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PREFACE

In the following pages an attempt has been made to deal

with the Dynamics necessary for the Science and Art

Second Stage Examination in Theoretical Mecliaiiies (Solids).

In order, as far as possible, to separate the principles of

Dynamics proper from those applications of Geometry and

Trigonometry required to solve the more elaborate problems

in the subject, the first ten chapters deal exclusively with

Motion in a straight line, the Parallelogram Law being

introduced in Chapter XI. This course was adopted in the

first instance for two reasons. In the first place it must

have been the experience of most teachers that those

students who introduce higher analytic methods in a subject

like Dynamics at too early a stage are apt to mistake their

knowledge of such methods for a knowledge of Dynamics,

and to overlook such matters of fundamental importance as

relate to units and the like ;—indeed we have seen students

who could apply the Differential Calculus to problems on

Dynamics but who were quite incapable of intei'preting

their results and became hopelessly mixed between foot-

pounds, poundals, ergs and dynes. In the second place,

teaching experience soon convinced us that the Parallelo*

gram of Velocities is a far harder proposition to understand

than is frequently supposed. The notion of a point pos-

sessing simultaneously two velocities or accelerations is of

coui'se absurd, and we therefore introduced the notion of
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Relative Velocities at an early stage in the discussion of

the laws of Composition and Resolution. It is interesting

to note that since these chapters were written, a writer in

one of the Mathematical journals has advocated exactly

this mode of treatment. The latter chapters deal with

motion down rough and smooth inclined planes, chords of

quickest descent, the parabolic path of a projectile, circular

and harmonic motion, small oscillations of a pendulum,

impact of elastic spheres and tlie elements of rigid Dynamics.

The last named subject has been treated perliaps rather

more fully than would be necessary for mere examiiiaticm

purposes, owing to the want, felt by many students, of a

preliminary insight into the piinciples of Bigid Dynamics

treated without the use of the Calculus.

For exercises, every chapter but one will be found to bo

followed by a set of examples, and ten examination papers

are also given. Moreover the dynamical questions from tlie

Science and Art Examinations from 1885 to 1897 are given

at the end of the book.

We think it desirable to caution readers against relying

too much on the ** Summaries of Residts" to help them

through examinations. If the bookwork has been

thoroughly mastered they may prove of assistance in re-

membering some of the more important fonnulae, but

knowledge of tliese formulae alone is practically of no value.

The paits peculiar to the syllabus for the Advanced

Stage of the Science and Art Department were written for

this edition by Mr. A. G. Cracknell ; these we can unhesi-

tatingly submit to the reader with every confidence.
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INTRODUCTION.

UNITS.

1. Mechanics defined.—Branches of Mechanics.—
The name Mechanics was originally used to designate

tlie science of making machines. It is now, however,

very generally applied to the whole theory which deals

with motion and with bodies acted on by forces.

The subject Mechanics* is generally divided into two
parts

—

(1) Dynamics, which treats of moving bodies
;

(2) Statics, which treats of bodies kept at rest

under the action of forces.

2. By force is meant " any cause which changes or

tends to change a body's state of rest or motion." In
other words, whatever is capable of setting things in

motion or stopping them when they are in motion, or

altering the way in which they are moving, is called

"force."

Noting that force is defined by means of motion, it is

necessary, before considering the properties of forces, to

consider the properties of motion itself. This branch of

the subject is called Kinematics.
We then investigate the properties of force as deduced

from the properties of motion ; this branch is called

Kinetics.

* There is a little diversity of opinion as to the use of the names Mechanics and
Dynamics. Some wi-iters include Statics in Dynamics, thus using the name
Dynamics for what we have called Mechanics.

DYN. B



2 MECHANICS.

Lastly, in Statics, we treat of certain properties of

forces which do not involve any consideration of motion.

It is thus evident that very little can be said about

force until Kinematics has been dealt with ; and for this

reason we shall not treat of the measurement of force till

Chapter VI.

3. Origin and nses of Mechanics.—Mechanics is one
of the oldest sciences, for its study originated with the

first attempts to make contrivances for raising weights.

But it is only within the last three centuries that a simple

and consistent theory of the relations of force to matter
and motion has been developed. The laws of motion were
first discovered by Galileo (about the year 1600) from a

series of experiments on falling bodies dropped from the

top of the leaning tower at Pisa. They were afterwards

re-stated by Newton in his Pri'ncipia (1687) in the form
known as Newton's Three Laws of Motion, and as

such they are now universally accepted as the basis of

Mechanics. Since the time of Newton, no material change
has been made in these laws, and, though different writers

have modified the wording of them to suit their own
particular views, the general principles have never been
altered ; for every experiment by which the truth of the

laws has been tested has added evidence in their favour.

In this book we shall chiefly consider how the laws of

motion may be applied to determine the behaviour of given
bodies under given forces, not experimentally, but by
calculation alone. Such applications of Mechanics are of

the greatest practical use ; without their aid none of the
triumphs of modern engineering skill would have been
feasible. In building a bridge, for example, it is of the
utmost importance that we should be able to calculate

beforehand exactly what pressures have to be sustained

by the different parts ; otherwise we could not be sure of

the safety of the structure.

Nor is this the only use of Mechanics. Newton has
applied his laws of motion to the solar system, and his

investigations, supplemented by those of later astronomers,
have shown that these laws are capable of accounting very
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simply for all the apparently complicated movements of the

heavenly bodies. Moreover, the principles of Mechanics
enter prominently into every branch of physical science,

such as Heat, Sound, Electricity, and Light.

4. Three fandamental quantities to be measured.—
In Mechanics we have to deal with three fandamental
notions, namely, space, time, and matter. It would be
difficult, if not impossible, to give an exact definition of

either of these notions, but they are so familiar to us that

this is hardly necessary. It is much more important to

show how they can be measured, for in all applications of

Mechanics exact measurements of all the quantities with
which we are dealing are of the utmost importance.

It is easy enough to measure lengths with a foot rule or

a tape, wo thus obtain a measure of space.
A good watch or clock affords the means of measuring

time, and it should be observed that in Mechanics we are
chiefly concerned with measuring intervals of time.

Thus, in speaking of a ** time 3 hours," or a "time ^," we shall in
general moan an interval 3 hours long, or an interval whose measure is

t units of time, and shall not be referring to the instant when a clock
indicates 3 o'clock or the instant when its indication is denoted by t.

But it is more difficult to specify how quantities of

matter are to be measured, and before we can do so we
must clear the way by the following definitions :

—

5. Mass.—Definitions.—Quantity of matter is called

mass.

Any limited quantity of matter is called a body.

Thus a stone, a piece of earth, wood, or metal, a drop of water, the
whole of the Earth's globe, the Sun, and the other "celestial bodies,"
are all bodies.

A particle is a body whose size is so small that it may
be regarded as a quantity of matter or mass collected at

a single point.

A particle can only exist in theory, but it is often convenient to

treat bodies as particles by imagining their mass to be concentrated
at a single point.
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Mass is characterized bj the following properties :—

(1) The masses of different portions of the same sub-

stance under the same conditions are proportional to the

spaces they occupy.

(2) The mass of the same body is always the same^
and is not altered by changing the size of the body either

by compressing or heating it or otherwise.

6. Measurement of mass.—If we were to take the size

or bulk occupied by a body as a measure of the quantity
of matter contained in it, the second of these conditions
would not be satisfied.

Thus, we should have no hesitation in saying that two gallons of

water contain twice as much matter as one gallon. But it seems
unreasonable to suppose that a lump of lead represents the same
quantity of matter as the air which would fill the same space.

Moreover, we can compress air so as to make the same quantity of

air occupy a smaller bulk, and, on the other hand, we may convert
water into steam by boiling, and it then occupies a far greater bulk
than before. But this cannot alter the total quantity of material.

Hence the quantity of matter in a body cannot be measured by its

volume or bulk.

The nsual way of estimating the quantity of matter in

a body is by weighing it, i.e., placing it in a pair of scales,

and balancing it with suitable pieces of metal called
** weights " placed in the opposite scale-pan. In the course

of the present book it will be shown that what is commonly
called tJie *^ weight** of a body gives a correct measure of its

mass.

It would be impossible to use a pair of scales to weigh large quan-
tities of matter, such as a mountain, the Earth, the Sun, or the

Moon. Hence to speak, as many writers do, of the ** weight of the

Earth,*' is misleading.* The word " mass *' is not liable to be mis-
interpreted, and is always used in books on Mechanics to denote
" quantity of matter."

7. Units.—To measure any quantity of length, time, or

mass, or any other such thing, we must first fix on some
definite quantity of the same kind, and call this our nnit

* If, however, "weight" were defined by means of the universal gravUation

which exists between all bodies, it would be correct to speak of the " weight of

the Earth."
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of measurement. Havicg selected this unit, any other

quantity will be measured by the mimber of units it

contains.

The measurement of quantities in terms of some unit is familiar in

every-day life, but the use of the word ** unit" in this connection is

not so familiar. A few illustrations will make the matter clear. If

we speak of a sum of money as (say) five pounds, we imply that,

taking a pound as the unit of money, the number of such units in the

sum is 6. Similarly, in speaking of six yards of calico, the unit of

length is a yard, and the number of such units is 6. And by ten

pounds of sugar we mean that, if the unit of tnass is a pound, the
number of such units in the specified quantity of sugar is 10. Notice
that the measure 10 pounds specifies the mass of the sugar.

The unit of measurement must always be something of the same
kind as the quantity to be measured. For measuring a length, we
must take some letiffth for the unit ; for measuring a quantity of

matter, we must take some mass as our unit. The choice of a unit is,

to a certain extent, arbitrary. Certain definite units are very generally

adopted, and to these different names have been given.

The number which measures any definite quantity depends on what
unit is taken. Thus, 24 pence and 2 shillings represent the same sum
of money ; when a penny is taken as the unit, the number measuring
it is 24, and when a shilling is taken as the unit, the same sum is

measured by 2. On the other hand, 2 shillings is not the same as

2 pence. Hence, in specifying a definite quantity of anything {e.ff.,

2 shillings), we must give two data :

—

(1) The name of the unit chosen (in this case shillings).

(2) The number of units in the quantity measured
(in this case 2).

If we left out the word ** shillings " and said simply "2," we should
leave it quite vague whether we meant 2 shillings, 2 pence, or
2 pounds.
By change of units is meant the same thing as "reduction " in

Arithmetic. When we reduce from yards to feet, we are given that
a length contains (say) 2 yards, and we have to find its measure in

feet (viz. 6). This process we shall call changing the unit of length

from a yard to afoot.

8. The foot - pound - second system; or English
system.—The most convenient unit of length in common
use in England is the foot (ft.). A foot is one-third of a
yard, the yard being defined as the distance between two
marks on a certain bar of bronze kept at the offices of the
Exchequer in London at a temperature of 62° Fahr.
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Smaller lengths may be measured in inches^ or twelfths of

a foot ; larger lengths in miles (mile = 5280 ft.) ; but in

Mechanics it is better, as a general rule, to measure
lengths in feet.

For measuring areas, such as the size of a plot of ground,
we may take as unit a square foot, or the square whose
length and breadth are each a foot ; while for measuring
volumes, as, for example, measuring the capacity of a
tank, or a volume of water, the unit will be a cuhic foot, or

the capacity of a cube whose length, breadth, and depth
are each one foot.

The unit of time is the mean solar second, the
duration of which is derived from the average length of

the solar day (1 day = 24 x 60 X 60 seconds). We may, of

course, measure long intervals of time in minutes, hours, or

days, but for the sake of uniformity it is usually better to

use the second in Mechanics.

The English unit of mass is the pound avoirdupois
(lb.), and is the mass of a piece of platinum which is

preserved in the Exchequer offices.* The mass of any
other body is one pound if that body will balance the
standard mass when placed in a pair of scales. In this

way the standard pound is easily copied, and the mass of

a body of moderate size can then be measured in pounds
by finding how many pound masses are required to balance

it in a pair of scales.

Although the pound is the most convenient unit of

mass for general use in Mechanics, its multiple the ton

(= 2240 lbs.) is often used to measure large masses, and
its sub-multiple the ounce (=y^glb.) to measure small

masses.

A cubic foot of water contains 1000 ounces.

The system of units based on taking the foot, pound,
and second, as units of length, mass, and time, respec-

tively, will be spoken of as the foot-pound-second or

P. P. S. system.

* In the Weights and Measures Act, the pound is defined as the legal standard of
weight, because the term "weight" is commonly used to denote what measure;^
" niass," and masses are commonly cojnpared by " weighing" them.
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9. The Metric and C. G.S. systems,—The system
of weights and measures in common use in France and
certain other countries is called the metric system.

The metric nnit of length is the metre. It was

originally defined as the ten-millionth part of the length

of a quadrant of the Earth's circumference measured from

the North Pole to the Equator. Thus the whole circum-

ference of the Earth is 40,000,000 or 4 x 10^ metres.

The submultiple and multiple units of length are formed
by repeatedly dividing or multiplying the metre by 10, as

follows, the most important being printed in dark type :

—

A metre = 1000 millimetres (mm.).

„ = 100 centimetres (cm.).

„ = 10 decimetres.

10 metres = 1 decametre.

100 „ = 1 hectometre.

1000 „ = 1 kilometre (km.).

10,000 „ = 1 myriametre.

For scientific purposes the unit of length generally
adopted is the centimetre, or hundredth of a metre.

The unit of mass is the gramme, or gram (gm.), and
was originally defined as the mass of a cubic centimetre

of distilled water at the temperature 4° Centigrade.

Thus, if a small cubical box be made, having its length,
breadth, and depth (inside measurement) each one centi-

metre, and if this box be filled with water at the right
temperature, previously distilled to render it pure, the
mass of this quantity of water is a gramme.*

• Since the introduction of the Metric System, the Earth's circumference and
the weight of a cubic centimetre of water have been more accurately determined.
But the original standard metre and gramme have been retained ; hence the
Earth's circumference is not exactly 40,000,000 metres, nor is the mass of a cubic
centimetre of water exactly one gramme. The difference is, however usually
neglected.
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The submultiple and multiple anits derived from the
gramme by dividing or mnltiplying by ten are indicated

by the same prefixes as in the case of the metre ; thus :

—

A gramme = 1000 milligrammes (mgr.).

„ =100 centigrammes,

„ = 10 decigrammes.

10 grammes = 1 decagramme,

100 „ = 1 hectogramme.

1000 „ = 1 kilogramme (kilog. or kgr.).

10,000 „ = 1 myriagramme.

The units of time are the same in France as in England.
The system of units based on the centimetre as unit of

length, the gramme as unit of mass, and the second as

unit of time, is called the centimetre-gramme-second
system, or the C. G. S. system, and is used extensively in

all countries for mechanical, physical, and electrical

measurements.

10. Advantages of the Metric System.—From the

above description it will be seen that the metric system
possesses the following advantages :

—

(i.) Each unit is exactly ten times the next smaller unit

of the same kind, and therefore in changing the unit

there is not the tedious multiplication or division required

to reduce from one unit to another in the English system
—e.g.f from feet to inches or from ounces to pounds.

(ii.) The units of length, volume, and mass are con-

veniently related. Thus we can write down at once the

volume of a quantity of water in cnbic centimetres if we
know its mass in grammes, and vice versa.
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TABLES.
1. Mbthic Units op Length.

1 centimetre = 0*3937079 inches.

1 metre = 39-37079 „
= 3-2808991 feet.

1 kilometre = 3280-8991 „
= 1093-6330 yards

= 0-6213 miles.

2. Metric Units op Mass.

1 milligramme = •0164323488 grains.

1 gramme = 16-4323488 „
= -0353739 oz.

1 kilogramme = 2*20462 lbs.

3. Velocities.

Velocity of sound in air = 1,120 feet per second.

,, light = 186,330 miles per second.

= 299,860 kilometres per sec.

„ Martini-Henri rifle bullet = 1,330 feet per second.

4. Intensity of Gkavity.

(The numbers represent, in feet and centimetres, twice the distance

dropped by a falling body during the first second of its motion, at

different places at the sea-level.)

Flace. Ft. per sec. per see. Cm. per sec. per sec.

The Equator 32-091 978-10

London 32-191 981-17

Edinburgh 32203 981-64

The North Pole 32-266 983-11

6. Densities (appkoximate).

Mass ofcubicfoot in oz . Mass ofcubic cm. in gms.

Water 1000 1-0

Atmospheric air 1 -001

Mercury 13668 13-568

6. Power.

One horse power = 550 foot-pounds per second

= 7,460,000,000 ergs per second (roughly).
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11. Diagram of the Metric System.—Useful facts.

—The opposite diagram represents a cube whose side

is one decimetre, the lengths on its front face being

drawn to scale. The large cube would hold a kilogramme

of water, while the small cube at the left-hand top corner

would hold a gramme of water. For, the sides of the two

cubes being in the proportion of 10 : 1, their volumes are

as 10'' : 1, or 1000 : 1.

The following rough relations connecting the metric

system with other measures wUl also be found useful for

reference. More exact relations are given on page 9.

25 millimetres = 1 inch.

30 centimetres = 1 foot.

981 centimetres = 32*2 feet (double the height

dropped by a falling body in

one second).

1 decimetre = 4 inches.

1 metre = 3 feet 8^ inches.

8 kilometres = 5 miles.

65 milligrammes = 1 grain.

28^ grammes = 1 ounce.

453 grammes = 1 pound.

1 kilogramme = 2 lbs. 2>\ oz.

10 kilogrammes = 22 lbs.

1000 kilogrammes ') _ , j.

(theFrench"tonne")J~ ^ ^^'^'

The diameter of a halfpenny = 1 inch.

„ „ „ penny = 3 centimetres.

The mass of a penny = ^ ounce.

„ „ sovereign = 8 grammes.

1 metre = 39*3708 inches.

% kilogramme = 2 '204 lbs.
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CHAPTER I.

VELOCITY.

12. By Kinematics is meant the study of motion as

motion only. Considerations of what is moving or what
produces the motion do not enter this branch of the

subject.

When a body continues to occupy the same position for

any length of time, it is said to be at rest. When its

position varies, it is said to be in motion.*
Definition.— Velocity is rate of change of position.

When a body is continually changing its position, the

distance it moves depends on the length of time that it

is in motion. But if several bodies are moving for the

same length of time, the fastest one is that which gets

over the greatest distance in the time.

Thus if one railway train travels 60 miles in an hour and another
only goes 30 miles in an hour, we say that the former travels twice as

fast as the latter.

• Although we shall always speak of the velocity of a body, yet the idea of
velocity is not always necessarily associated with bodies. Thus sound travels with
a certain velocity (about 11 20 feet per second). It would be more general to speak
of the velocity of a ^' moving point," but motion is far more easy to realize when it

i^ some body that mov?s.
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This shows that two velocities may be compared by
comparing the distances traversed in the same interval

of time.

We know from common experience that a moving body
may continue to travel at the same rate for a considerable

time, or it may move faster at certain times than at others,

and in considering how velocity is to be measured it is

necessary to examine whether the motion continues at the

same rate ; if it does we say that the velocity is uniform.

If, for example, a railway train is observed to travel for a number
of successive miles, taking exactly one minute over each mile, we
might naturally infer that the train is moving with a uniform velocity

of one milo in a minute. We should however have a better test of

whether the motion is really uniform or not if we could observe

whether the distances travelled in each second of time were equal.

But if there were a number of stopping stations at equal distances

of 40 miles apart, and a train were to go from each statiou to

the next in an hour, we could not assert that the train was moving
with a uniform velocity of 40 miles an hour. For if were to measure
the distances passed over in smaller intervals of time, say, in each
minute, we should find them to be far from equal ; the train would
be goin^ much faster when midway between two stations than just

before stopping at a station or just after starting.

We are now in a position to give the following defi-

nitions :

—

13. XTniform and variable velocity.

—

Definitions.—
The velocity of a moving point or body is said to be

nniform when the distances which it traverses in equal

intervals of time are equal, however short these equal

intervals may be.

In other cases the velocity is said to be variable.

When velocity is uniform, it is measured by the distance

traversed in a unit of time.

The word " per " is used in speaking of a rate. Thus
we may restate the above definition of the measure of

velocity in the following form, which, as we shall show
later on, is also applicable to variable velocities :

—

Velocity is measured by the distance traversed per unit time*
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The unit of velocity is the velocity of a body which

moves over a unit of length per Tinit of time.

The P. P. S. unit of velocity is a velocity of one foot

per second.

The C. G. S. unit of velocity is a velocity of one
centimetre per second.

14. To find the distance traversed in any interval

of time by a body moving uniformly.

Let V be the velocity of the body ; then, by definition, v

is the distance traversed in each successive unit of time.

So, in 2 units of time the total distance traversed is 2v,

in 3 units of time it is 3u, and so on
;

and in t units of time it is tv.

Hence, if s denote the distance traversed in the interval

of time whose measure is t^ we have

8=:Vt (1),

or distance traversed = (velocity) x (time).

Examples.— (1) If the velocity is 88 feet per second, the distance
traversed in 25 seconds = 88 x 25 = 2200 feet.

(2) If the velocity is 500 centimetres per second, the distance

traversed in a minute (60 seconds) is 60 x 500 or 30,000 centimetres.

(3) To find the number of miles travelled in five minutes with a
velocity of 88 feet per second. We cannot put t; = 88 and t = 6 and
say " » = v< = 88 X 5," for the velocity 88 is measured in feet per
second and the time 5 is measured in minutes. The formula s = vt \a

not true unless everything is reduced to one system of units. If we
use the foot-second system we must take the time t not as 5 minutes

hut as 300 seconds. We then have
distance traversed = 88 x 300 = 26,400 feet,

because we have taken a. foot as our unit of length. Reducing this

to miles, we find distance traversed = 6 miles.

(4) To fiLud the number of metres described in an hour if the velocity

be one centimetre per second.
Since a centimetre and a second are the units employed in defining

the velocity, we must reduce the time (1 h.) to seconds. We then
have t = 3600 sec, v = 1 cm. per sec.

;

» = 1 X 3600 centimetres
B 36 metres.
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15. Observations.— Examples (2) and (4) should be carefully

studied, as they illustrate the following important points.

In working problems in Mechanics, it is necessary to begin by
fixing on some system of units and reducing everything to these units.

The answer must always be found in terms of these units in the first

place, but it may afterwards be reduced to any other units if required.

(Thus in Ex. 2 we reduced the final answer from feet to miles.)

In stating the answer the unit adopted must be mentioned, other-

wise the answer might mean amjthiny {vide $ 7).

It should also be borne in mind that algebraical formulsB, as

« = vty are only convenient abbreviations of facts, and for this reason

they should generally be remembered in words as well as in symbols,

and where formula) are employed the lull meaning of the symbols
should be distinctly kept in mind.

16. From (1) we have by division

s

hence the velocity of a body may he found hy dividing the

distance traversed hy the time taken in traversing it.

Examples.—A cyclist rides from ono milestone to the next in

i\ minutes. To find his velocity in feet per second.

The distance traversed is one mile or 6280 feet, and the time taken
is 4^x60 or 270 seconds ; therefore in one second the distance traversed

in feet = 6280-^270 = 19-5;

.-. required velocity = 19'6 feet per second.

17. Change of units. — When a given velocity is

expressed in terms of any given nnits of length and time,

the same velocity may be referred to any other system of

anits by nsing the method illustrated in the following

examples :

—

Examples.—(1) To express a velocity of (a) one nule per hour, {b) 60
miles per hour, in feet per second.

{a) A mile contains 5280 feet and an hour contains 3600 seconds.

Hence with velocity of one mile per hour
in 3600 seconds the distance traversed is 5280 feet

;

.-. in 1 second „ „ „ ||^ feet.

Therefore the velocity is represented in feet per second by ^^%, i.e. \^.

{b) A velocity of 60 miles an hour is 60 times as great, and it is

therefore represented in feet per second by ff x 60 or 88.

7r -- -'{^JY'M^-
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(2) When a foot and a second are the units of length and
time, the measure of a certain velocity is 27. What is its measure
when a yard and a minute are the units ?

With a velocity of 27 ft. per sec, 27 ft. are passed over in a second,
and, therefore, 27 x 60 ft. are passed over in a minute

;

i.e., 27 X 20 yards are passed over in a minute
;

.*. a velocity of 27 ft. per sec. = a velocity of 640 yards per minute
;

.'. the measure of the velocity is 540 when estimated in terms of the
new units.

Observation. —• The student will find it useful to

remember the relation

60 miles an hour s= 88 feet per second ... (2).

18. Positive and negative velocities. — Where we
are dealing with a number of motions in a straight line,

some of which motions are in the reverse direction to

others, it is convenient to regard velocities in one direction

as positive and velocities in the opposite direction as nega-

tive, the measures of the latter velocities being negative

quantities. A similar convention is also made with refer-

ence to the distance traversed, which is considered positive

if a body has moved in one direction, and negative if it

has moved in the reverse direction, the positive direction

being the direction in which it would move with the

positive velocity.

With tliese conventions the equation s =^ vt always holds

true.

The velocity of a body is always to be taken as defining

both the rate at which it is travelling and the direction in

which it is going.

The term speed is, however, often used to denote rate

of motion considered without reference to direction.

Thus if we take the positive direction to be from left to right, the

velocity of a body moving from left to right at the speed of 3 feet per

second will be represented by 3, but the velocity of a body moving
from right to left at the same speed will be represented by —3.

Again, if the body has moved 5 feet from left to right the distance

traversed will be represented by 5, if it has moved 2 feet to the left

the distance traversed will be represented by — 2.
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Example.—A balloon ascends with a velocity of 20 feet per second

for half a minute, it then ascends with a velocity of 50 feet per second

for one minute, it then descends at the rate of 10 feet per second

for 20 seconds, and at the rate of 15 feet per second for 50 seconds.

To find its final height above the ground.

If we regard the velocity of the balloon as positive when it is

ascending, the velocity will be negative when descending. Hence
the velocities during the four intervals, in feet per second, are repre-

sented algebraically by

+ 20, +50, —10, —15 respectively.

Also the intervals of time are

30, 60, 20, 60 seconds respectively.

Therefore the distances through which the balloon rises are repre-

sented algebraically by

20 X 30, 50 X 60, — 10 x 20, - 15 x 50 feet respectively.

The whole height to which the balloon has risen is the algebraical

sum of the heights risen by the balloon in the several intervals (each

taken with its proper sign), and is therefore

= 600 + 3000—200-750 = 2650 feet.

Observation.—In this example the minus sign before the velocity may be simply
regarded as a convenient way of representing the fact that " the height of the
balloon is becoming less." Of course we could dispense with the use of signs by
stating the same fact in words, and distinguishing the various distances as the

heights " risen " and "fallen " respectively. This would not make the work much
more laborious in the above example, but in more complicated problems the use

of signs to denote directions greatly simplifies the formulse and calculations.

19. Representation of direction by the order of
letters.—In luture, when we speak of " the straight line

AB,'' we shall imply that the line is drawn from A to 5,

not from B to A. If we use the signs + and — to denote

directions, as in § 18, the distance AB is considered positive

if we have to go in the positive direction to get from A to

B, negative if we have to go in the reverse direction. If

we interchanore the order of the letters, and write the

distance as BA, we imply that it is measured /rom B to A,

i.e., in the reverse direction to what it was before. For
this reason, BA is to be considered equal and opposite to

AB, or, as we may express it,

BA = -AB, or BAi-AB = 0.

This relation may be taken as another way of stating that if we go
a certain distance in one direction and then go an equal distance in

the reverse direction, we get back to where we started from.

DYN. ^
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20. Relative velocity.—Definition.—By the velocity

of one body relative to another is meant the rate at which
the first body is changing its position with respect to the

second.

The meaning and importance of relative velocity will be

best understood from the following simple illustrations:

—

(1) Suppose that a man on board a large steamer is walking along

the deck. We naturally say that he is in motion, because he is

walking. But this motion along the deck is only a relative motion^

and is not the true motion which he possesses, for he is also at the

same time being carried forward by the motion of the steamer. And
if the man remains standing in the same part of the deck we know
that he is not really at rest, but that he is moving with the steamer.

(2) Next, suppose that the steamer overtakes a small boat out at

sea, and after passing it leaves it behind. To a passenger on board
the steamer the small boat presents the appearance of moving swiftly

past the steamer from the bows towards the stern. But this appear-

ance of motion is really produced by the steamer itself passing the

boat in the opposite direction.

Moreover the boat may itself also be moving in the same direction

as the steamer, but if the steamer is going more quickly the boat

will fall behind and a passenger on board will think it is going in the

opposite direction. All that he can observe is the relative motion of

the boat and steamer with respect to one another. Unless there is

land in sight he has no other object with which to compare this

motion and find out what part of the motion belongs to the ship and
what part to the boat.

(3) Suppose two railway trains, A and fi, are drawn up side by
side. A passenger in A only sees the carriages of the train B begin
to move past the windows of his own carriage. From this he con-

cludes that one of the trains is in motion, but he will find it impos-
sible to tell V hether (i.) his own train A is moving in one direction, or

(ii.) the oihvv train B is moving in the opposite direction, or (iii.)

both trains are moving in opposite directions, or (iv.) both are

moving in the same direction but one is moving faster than the

other, so that they do not keep together. All he can say by
observing B is that the two trains A^ B have a relative motion.

If, however, he looks out at the station on the other side, he will

Bee whether his position is changing with reference to the station and
other surrounding objects. If so, he concludes that his train is

moving. Even in this case the same appearance would be presented

if his train were to remain at rest and the station were to begin
moving backwards, as the telegraph poles by the line often seem to

do. It is only from the results of previous experience that he is able

to assert with certainty that his train and not the station is moving.
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(4) If a fast train overtakes and passes a slow train, a passenger in

the former will obtain the impression that the latter is going back-
wards, because he is going faster and leaves it behind. This apparent
backward velocity is the relative velocity of the slow train with respect

to the fast. The slow train is really moving forwards all the time,

but as it is not going fast enough to keep up with the fast one, it

appears to go in the opposite direction to the latter.

These illustrations show that our ideas of motion are

purely relative. We can only fix the position of a' body
by comparing it with other bodies. If a body A is

gradually changing its position with reference to another
body B, we can, by observing this change of position, find

the velocity of A relative to B. But the body B may
itself be moving, and in that case the actual velocity of A
will not be tbe same as its velocity relative to B.

Again, if we observe that A always remains in the same
relative position with respect to B^ we cannot say that the
two bodies A and 5 are both at rest ; for if they are

moving together with the same velocity they will still

continue to retain the same relative positions, and will

therefore have the appearance of being at rest relatively to

each other.

Unless, then, we are given some point which may be
regarded as fixed, we can only regard velocities as relative.

21. Application to the Earth.—^We are accustomed to

consider the Earth as fixed, because we see on it trees,

houses, hills, and other objects which appear to retain

the same relative positions always. And so in measuring
velocities we naturally refer them to the Earth. We
observe that the Sun, Moon, and stars rise in the east, and
set in the west. At first, we should naturally say the
stars are moving, and that we are at rest. But wlien we
watch the stars for a long time, their relative configura-

tions never appear to change ; hence, if they are moving,
they must be moving together.

Now it is much easier to believe that a single body such
as the Earth, which is only 8000 miles in diameter, should
be moving as a whole than that the stars, which are
separate and distinct bodies, enormously larger than the
Earth, and at distances of many billions of miles apart,
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should be all revolving together about the Earth once in a
day, so as to always remain in the snme con6gurations.
This and other reasons force upon us the fact that it is

the Earth which rotates once a day, and not the stai's that
move. Further, we are taught that the Earth travels

round the Sun, describing roughly a circle of radius
92 million miles in the cour;;e of the year, and flying

through space at the rate of about I85 miles a second.
In most cases we do not have to take account of these

motions of the Earth. The relative motions can be worked
out in just the same way as if the Earth were fixed. In
fact, most of our ideas of motion are based on experiments
made with moving bodies on the Earth, and they really

refer quite as much to relative motion as to actual motion.

22. Properties of relative velocity. — From the
arguments and examples of the last paragraphs, the follow-

ing properties will be evident.

When two bodies, A and 5, are moving in any manner,
the velocity of B relative to A is the velocity with which
B would appear to move if the observer were moving with
the body A.

If the bodies are moving in the same straight line, the
rate at which the faster body overtakes and passes the

slower one is the relative velocity of the former with
respect to the latter.

It' A and B are the bodies in this case, the relative

velocity of B with respect to ^ is the rate at which the
distance AB (measured from A towards B) increases, and
is measured by the increase in the distance AB in a unit

of time.

Examples.— (1) To find the relative velocity of two traino, A and B^

both travelling in the positive direction at the rates of 30 and 60 miles

an hour respectively.

In one minute the train A has travelled \ mile and B has travelled

^ mile. Hence B gains (|^ - \) mile = \ mile on A in every minute.

Hence the distance that B overtakes and passes A is the same as if A
stood still and B moved forward at the rate of ^ of a mile a minute, or

20 miles an hour, an^ this is therefore the velocity of B relative to A
But the train A falls behind B at the same rate, namely ^ of a mile

a minute. Hence the relative motion is the same as if the train B
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stood still and the train A moved backward at the rate of 20 miles an
hour. Therefore the velocity of A relative to B will be —20 miles

an hour.

(2) Suppose the trains A, B are travelling in opposite directions at
the rates of 30 and .50 miles an hour.

If the velocity of B be called + 60 miles per hour or + 1 miles per
minute, that of A will bo — 30 miles an hour or — ^ mile per minute.
When the trains have passed each other it is clear that both velocities

will tend to increase the distance between them. In one minute from
the time they pass, they will evidently have separated a distance of

^ + 4 miles or ^ miles. B will then have got ^ miles to the positive

side of A, and A will have got ^ to the negative side of B.

Hence the relative velocity o( B is +^ miles per minute or

+ 80 miles per hour, and that of A is —^ miles per minute or
— 80 miles per hour.

23. To find the relative velocity of two bodies
moving with given velocities in the same straight
line, we have the following rules:

—

JVhen two bodies are moving along the same straight line^

their relative velocity is the difference of their actual velocities.

The velocity of one body relative to another is equal and
opposite to that of the latter relative to the former.

To prove the above properties generally, let A^ B be the

positions of the moving bodies at any instant, A\ B' their

positions after a \\W\t of time has elapsed, and \etO be any
point from which distances are measured. Since ,the

distance between the bodies increases from AB to A'B in

a unit of time, therefore the velocity of B relative to >f is

measured by the increase A'B'—AB. Also, AA\ BB'
measure the velocities of A and B respectively.

A A' B B'

Fig. 2.

Now, A'B' = OB'-OA\
AB=OB-OA;

.'. subtracting, (A'B'-AB) = BB'-AA'

;

i.e. (vel. ofBveh to A) = (vel. of i5)— (vel. of/?).

Similarly, if due attention is paid to sign,

(vel. of A relative to B) = (vel. of A)— (vc]. of B) ;

/. (vel. of A rel. to B) + (vel. of B reL to A) = O.
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24. Composition of velocities in one straight line.—From the consideration of relative velocities we natu-
rally pass on to cases where the velocity of a body is due
to a number of independent relative motions. We may
take the following as illustrations of such motions :

—

Examples.—(1) A river is flowing at the rate of 1 mile an hour,
and a man can row a boat through the water at 4 miles an hour. To
find his rate of progress (i.) down stream, (ii.) up stream.

Let B'AB be the direction of the river, the man's starting-point.
Then in one hour the water that was at will have flowed to a point
A one mile from 0, and if the man had allowed his boat to drift it

would have reached A.

B' A B

Fig. a

But the man has pulled his boat 4 miles through the water. Hence,
if he is pulling down stream, his action in rowing during the hour
-will have taken the boat to a point B four miles below A .

The whole space 05 is = 4 + I = 5 miles ; hence the man's rate of
progress down stream = 5 miles an hour.
But if the man pulls up stream, the action of his oars during the

hour will take him 4 miles through the water to a point B! four miles
above A.
In this case the whole space OB' (measured up stream) =4-1 = 3

miles ; hence the man's rate of progress up stream = 3 miles an hour.

(2) A steamer is travelling at 20 feet per second, and a man paces
the deck at the rate of 4 feet per second. To find how far the man
has actually moved in 10 seconds, and his actual velocity when he is

going (i.) towards the bows, (ii.) towards the stem.

Let A represent his position on the deck at the beginning of the
interval of 10 sec. At the end of the interval the ship has advanced
200 feet, and the part of the deck where he originally stood has moved
to a point B, 200 feet in front of A.
But the man has walked over 40 feet of the deck, and has therefore

got to a point C, 40 feet from B. Hence the actual distance the man
has gone is from A to 0.

(i.) "When the man is going towards the bow (Fig. 4), we have

AG-= AB-»rBG = 200 + 40 = 240 feet

;
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and, since the man moves over this distance in 10 sec., his velocity is

24 feet per sec.

A BOA C B
I \ I I 1 I

Fig. 4. Fig. 6.

(ii.) When the man is going astern (Fig. 5), we have

AC = AB-CB = 200-40 = 160 feet

;

and the man's velocity is therefore 16 feet per second.

25. Component and resultant velocities.—Dii^FiNi-

TiON.—If the different parts of a moving system have

certain relative velocities which determine the motion of

any body in the system, these relative velocities are called

the component velocities of the body, and its actual

velocity is called its resultant velocity.

Thus, in the first example of § 24, the rate of flow of the stream
and the rate at which the man rowed are called the components of the
velocity of the boat. The actual rate of progress is called the resultant

velocity of the boat. In the second example, the velocity of the boat

and the man's rate of walking are the man's component velocities, and
his actual rate of moving through space is his resultant velocity.

The process of finding the resultant velocity from the

components is called compounding velocities.

To componnd several velocities in the same
straight line we add them together.

For, '\i A, B, C are any bodies moving in the same
straight line (Fig. 4),

vel. of B — vel. of ^ = vel. of B rel. to A,

vel. oiC — vel. of 5 = vel. of C rel. to B ;

.-. vel. of (? = (vel. of /?) + (vel. of B rel. to A)

+ (vel. of (?rel. to B)
;

or,resnltantvel. = sum of component vels.

This is always true for motions in one straight line,

provided that their directions are denoted by the signs 4-

and — in the manner explained in § 18.
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26. Variable velocity may be measnred in two
ways

—

(i.) By the average velocity in any given interval

of time
;

(ii.) By the velocity at any given instant.

Both these ways are commonly used in speaking of the speed of

railway trains, steamers, &c. If a train travels from one station to

another 20 miles distant in half-an -hour, we say that the average
velocity of the train is 40 miles per hour. If, on the other hand,

the train is observed at any part of the journey to go a mile a minute,

we say that the velocity at that particular time is 60 miles per hour.

The expression 60 miles per hour does not mean that the train

actually goes 60 miles in any particular hour, hut that it would go
60 miles in an hour if it were kept going at the same rate all the time.*

27. Average velocity.— Definition.— The average

velocity of a moving body in any given interval of time

is the velocity witb which a body wonld have to move

uniformly in order to traverse the same distance in the

same time.

If a body traverses a distance s in time t with uniform

velocity v, then v is the distance passed over in a unit of

time, and by §§ 14, 16, s = vt,

8

If, however, the velocity is variable, the fraction sjt does

not represent the actual velocity but the average velocity

during the interval. Therefore

, ., distance traversed
average velocity = :

,

time

or distance traversed = (av. vel.) x (time).

Example.—If 36 feet is traversed in 2^ seconds, the average velocity

is 35/2^ or 14 feet per second. If the motion is uniform, the distance
actually traversed in each second is 14 feet. If the velocity is variahle,

* The use of the word "per" to denote a rate is familiar. We may invest a
sum of money at 5 per cent, per annum, and by using the word " per" we avoid
implying that the sum amounts to £100 or remains invested for a year.
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this is not the case, and it is only in one particular intewal of 2^ seconds

that the body traverses 35 feet. In the next 2^ seconds it may traverse

say 40 feet or 30 feet, and the average velocity will then be different.

28. Velocity at any instant.— Definition.— The

velocity of a body at any instant is measured by the

rate per unit time at which distance is being traversed by

the body in the immediate neighbourhood of that instant.

It will be noticed that a body can move over no distance

in no time, so that we could not find its velocity by
observing its position at one single instant. To find its

rate of motion, we must observe the distance traversed

during some interval of time near the given instant, even
though we may make this interval as short as we like

Hence the term velocity at any instant must be regarded

as a convenient abbreviation for average velocity during
a very small interval of time including the given instant.

By taking the interval very small, the velocity has no

time to alter in itj and the interval we consider must be so

small that the rate of motion cannot change at all.

Thus the speed of a railway train might vary considerably in

6 minutes, but in, say, so short an interval as a tenth of a second there

would not be time for the rate of motion to alter appreciably.

Summary of Results.

For motion with uniform velocity v, or variable velocity

when V is the average velocity in the interval t,

s= vt (1);

60 miles an hour = 88 feet per second (2).

EXAMPLES I.

1. Find the measures of the following velocities, a foot and a

second being the units of length and time :

—

(i.) Sixty miles per hour

;

(ii.) Thirty yards per minute
;

(iii.) Four hundred fost in half-an-hour.
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2. Find the measures of the following velocities, a yard and a
minute being the units :

—

(i.) Sixty feet per second

;

(ii.) Sixty miles per hour

;

(iii.) Thirty miles per half-hour.

3. A hody has uniform velocity 16 feet per second ; how far will it

go in a minute ?

4. A body moves with uniform velocity, whose measure is 180 if a
yard be the unit of length and a minute the unit of time. How far

will it go in 3 seconds ?

5. How far will an express train, travelling uniformly at a rate of

forty-five miles an hour, go in 6 seconds ?

6. If the unit of time be a minute and the unit of length be a yard,

what will be the measure of the velocity of a body which describes,

at a uniform rate, 14 miles in 3 hours ? ^

7. A mile race was run in 4 mins. 35 sees. What was the winner's

average velocity in feet per second ?

8. A train 215 yards long, going at the rate of 55 miles an hour,

takes 10 seconds in passing another train going in the opposite

direction at the rate of 35 miles an hour. What is the length of the

second train ?

9. A train going at the rate of 45 miles an hour takes half a minute

in passing another train 230 yards long going in the same direction

at the rate of 15 miles an hour. What is the length of the first train P

10. If w be the measure of a velocity in foot-second units, what is

its measure in yard-minute units ?

1 1

.

What is the measure of the centimetre-second unit of velocity

(i.) in metres per minute, (ii.) in kilometres per hour, (iii.) when a

quadrant of the Earth's circumfeience and a year are units of length

and time ?

12. A train travels 45 kilometres in an hour. What is its velocity

(i.) in centimetres per second, (ii.) in metres per minute; and how
many days would it take to travel over a distance equal to the

Earth's circumference ?



CHAPTER II

ACCELERATION.

29. The velocifcies of which we shall treat in this chapter
will be variable velocities, and we shall always suppose
them to be measured bj the velocities at different instants

of time as defined in § 28.

Definition.—Acceleration is rate of change of velocity.

When the velocity of a body is changing, its motion

is said to be accelerated.

Thus, when a railway train has just started and is getting up speed
its motion is accelerated.

30. Uniform and variable acceleration.— Defini-

tions. — Acceleration is said to be uniform when the

velocity always increases by equal amounts in equal intervals

of time. In other cases acceleration is said to be variable.

Uniform acceleration is measured by the amount by

which the velocity increases per unit of time.

31. Units of acceleration.—Definition.—The unit

of acceleration is the acceleration of a body which moves
so that the measure of its velocity increases by unity in

a unit of time.
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In the P. P. S. system of units, where the nnit of

velocity is a velocity of one foot per second, the unit of

acceleration is the acceleration which in one second

increases the velocity by one foot per second, and this may
be called an acceleration of " one foot per second per

second."

Similarly, the C. G. S. unit of acceleration is an

acceleration of " one centimetre per second per second."

Observation.—The words **per second" must be repeated because
the unit of time is involved twice, firstly in measuring the velocity or
change of velocity, and secondly in measuring the interval in which
this change of velocity takes place.

Examples.— (1) If a body is moving at the rate of 5 feet per second
at any instant, and its velocity one second later is 7 feet per second,

the increase of velocity in one second is 2 feet per second, and there-
fore the acceleration is 2 feet per second per second.

(2) If in one second the velocity changes from 10 feet per second to

8 feet per second, the increase of velocity is -^8— 10= -2 feet per
second, and the acceleration is — 2 feet per second per second.

(3) Similarly, if the velocities at intervals of one second are 53, 69,

65, ... centimetres per second, the acceleration is 6 centimetres per
second per second.

32. Having given the acceleration (supposed nni*

form), to find the velocity at any given instant.

Let / be the given acceleration, and let it be required

to find the velocity acquired after t units of time have

elapsed.

(i.) Suppose that the moving body starts from rest.

Then, since the acceleration = /,

the velocity acquired in 1 unit of time =/.
In the next unit of time the velocity increases by/;

.'. the velocity acquired in 2 units of time = 2/,

similarly, the velocity acquired in 3 units of time = 3/,

and the velocity acquired in t units of time = ft.
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Hence, if v denote tbe reqnired velocity,

v=ft (1).

(ii.) Suppose that the body starts with initial velocity w.

Then, as before, the amount by which the velocity

increases in the interval t =ft.
But the velocity at the beginning of the interval = u

;

.*. the velocity at the end of the interval = u-\-fi;

.*. in this case v^u-^-ft (2),

or v—u= ft.

In words,

(increase of velocity) = (acceleration) x (time).

Observation.—As in § 15, it should be noticed that the above
formula only holds good provided that all the quantities are expressed
in terms of the same units of length and time.

Examples.— 'I) A train acquires a velocity of 60 miles an hour in

two minutes. To find its acceleration in F.P.S. units.

In 2 min. (= 120 sees.) the velocity increases by 60 miles per hour

= 88 feet per second

;

.*. in one second the velocity increases -^^^ feet per second.
Therefore the given acceleration is y^^^ or '73 feet per sec. per sec.

(2) If the acceleration is 32 feet per second per second, and the

body starts with the velocity 100 feet per second, the velocity aft«r

ten seconds =100 + 32x10 = 420 feet per second.

83. Change of nnits.—When an acceleration is ex-

pressed in terms of one system of units, we may reduce it

to any other system of units, by adopting the method
illustrated in the following examples :

—

Example.— (1) To express an acceleration of 32 feet per second per

second in yards per minute per minute.

Here we are given that the increase of velocity in one second is

32 feet per second. In order to change to the new units we must

(1) find the increase of velocity in one minute
;

(2) express this increase of velocity in yards per minute.

"We accordingly proceed as follows :

—

In 1 sec. total increase of velocity = 32 feet per second

;
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.*. in 1 minute (60 sees.) the total increase of velocity

= 32 X 60 = 1920 feet per second

= 1920 X 60 feet per minute

1920x60 , . ,= yards per minute

= 38400 yards per minute.

Therefore the given acceleration is 38400 yards per minute per

minute.

Observation.—The change of the time unit from a second to a

minute is repeated twice. There would be nothing absolutely wrong
or illogical in speaking of the acceleration as "an acceleration of

1920 feet per second per minute,''^ but such a hybrid representation,

involving two different time units, would be confusing.

Example.—(2) A body is moving with an acceleration of 64000 miles

per hour per hour. Express this in feet per second per second.

A velocity of 54000 miles per hr. = a vel. of ————— ft. per sec.^ ^ 60x60
*^

= a vel. of 1800 x 44 ft. per sec.

This velocity is gained every hour

;

.•. the gain per second is — ft. per sec. = 22 ft. per sec.

;

° ^ 60x60
*^ 1- »

therefore an acceleration of 54000 miles per hour per hour

= an acceleration of 22 ft. per sec. per sec.

84. Positive and negative accelerations.—In § 18

we explained how the velocitie.s of bodies moving in

opposite directions are distinjofuished by prefixing the signs

4- and — to the numbers which measure them.
Now accelerations are measured by the velocities added

per unit time ; hence an acceleration must be considered
positive if this added velocity is po.sitive, and negative if

the added velocity is ne^rative, and tliis will depend on the
direction in which the cliange of motion is taking place.

When the velocity of a body is uniform the acceleration iszero,

for no increase takes place in the velocity.

Examples.—(1) If the velocities at intervals of a second are —9, —6,
— 3, 0, 3, 6, ... feet per second respectively, the acceleration is uniform
and 18-1-3 feet per sec. per sec, for each velocity is obtained by
adding 3 to the previous velocity. It will be noticed that the speed

diminishes when the velocity is negative and increases when the velocity

is positive.
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(2) If the velocities at successive seconds are 7, 4, 1, —2, -5, ...
,

the acceleration is - 3 ; here the speed diminishes as long as the
velocity is positive, but increases again when the velocity has changed
sign and become negative. The effect is therefore the reverse of that
in Ex. 1.

35. Retardation.—When the speed of a body is de-

creasiug, the motion is said to be retarded. In the above
examples it will be found that the motion is always
retarded when the acceleration is in the opposite direction

(of opposite sign) to the velocity, and we can easily see
that this property is perfectly general.

Thus the acceleration of a body is positive—
(i.) If the velocity is positive and the speed is increasing

;

(ii.) If the velocity is negative and the speed is decreasing.

Similarly, the acceleratitjn of a body is negative—
(i.) If the velocity is positive and the speed decreasing

;

(ii.) If the velocity is negative and the speed increasing.

36. Observation.— When signs are used to denote
direction, no alteration should on any account be made in

the form of the fundamental equations of motion. Thus (2)
§ 32 is always to be written v = u-{-ft, never v = u—ft,
even if the motion is retarded. If a body moving in the
positive direction is being retarded, the number/ measuring
the retardation is to be regarded as a negative quantity.

Examples.— (1) A body starts with velocity 144 feet per second, and
is subject to a retardation of 32 feet per second per second. To find
its velocity after 5 seconds.

Here t< = 144, /=-32, t = 5 ; whence, substituting in the
formula v = u +fi, we have

v= 144 + (-32) X 5 = 144-160 = -16.

Hence the body is moving with speed 16 feet per second in the
opposite direction to that in which it started

(2) If a railway train moving at 60 miles an hour (88 feet per
second) is brought to rest in one minute (60 sees.), and we consider the
original velocity positive, the acceleration = {v— u)-rt

= (0-88) -J- 60 = -88/60 = -22/15 feet per sec. per sec,

and is negative. If this acceleration were continued for another
minute, the train would acquire a velocity of — 88 feet per second, that
is its original velocity would be exactly reversed.
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37. Relative acceleration.— *Definition.— The ac-

celeration of any body B relative to another body A is the

rate of increase of the velocity of iff relative to >4. It is

therefore measured by the amount by which this relative

velocity increases per unit time, and is subject to the

usual conventions as regards algebraic signs.

Since always vel. of B rel. to v4 = vel. oi B — vel. of >4,

the same relation connects the amounts by which these

velocities increase in any interval, say in a unit of time

;

.*. accel. of B rel. to >4 = accel. of ^ — accel. of A,

In like manner we may deduce from § 23 that

accel. of B rel. to >4 + accel. of A rel. to ^ = ;

and other properties of relative velocities may be extended
to relative accelerations in the same way.
For example, accelerations in the same straight line

may be compounded by adding them together.

38. Variable acceleration is measured in a very-

analogous way to variable velocity. It may be measured
either

(i.) By the average acceleration in any given interval

;

(ii.) By the acceleration at any given instant.

39. Definition.—The average acceleration of a body
in any given interval of time is measured by the amount
by which the velocity would increase per unit time, if the
body were to be uniformly accelerated during the interval,

and to have the initial and final velocity.

Hence, since for uniform acceleration

v—u = Jt, or / = ,

it follows that (v— u) -r- t represents the average accele-
ration of any body whose velocity changes from u to v in

time t.

* Observation.—The reader is urged to apply the following principles to some
simple illustrative examples, e.g. to find the relative acceleration of two railway
trains that are starting or being retarded, and are travelling in the same or
opposite directions.
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40. Definition.—The acceleration at a given in-

stant of time is measured by the rate per unit time at

which the velocity is increasing in the immediate neigh-

bourhood of the given instant, or the average acceleration
in a small interval of time, including the given instant.

As in the case of velocity, the acceleration at an

instant could only be estimated by observing the increase

of velocity in a small interval of time, including the given

instant, and if the interval be taken sufficiently small, the

acceleration will not have time to change appreciably

in it.

Summary of Results.

For motion from rest, v = ft (1)

For motion with initial velocity tt,

v = u+ft (2).

where the acceleration / is either uniform or is the

average acceleration in the interval of time t.

EXAMPLES II.

1

.

How is tho measure of an acceleration changed if

(i.) the unit of space be changed from a foot to a yard,

(ii.) the unit of time be changed from a second to a minute ?

2. If the measure of the acceleration due to gravity be 32 when a

foot and a second are taken as units, what will it bo when the units

of length and time are

(i.) an inch and a second,

(ii.) a yard and a minute,

(iii.) a mile and an hour ?

3. Taking 72 as the measure of an acceleration when a yard and a

minute are the units of length and time, find its measure when a

furlong and an hour are the units.

4. A body uniformly accelerated is found to be moving, at the end

of 8 seconds, with a velocity that would carry it through 30 miles in

the next 10 minutes. Find its acceleration.

DYN. D
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5. A body is moving with an acceleration of 1000 yards per minute

per week. What is the measure of this acceleration when an inch

and an hour are the units of space and time ?

6. A body uniformly accelerated is found to be moving at the end

of 8 seconds with a velocity which would carry it through 60 miles in

the next hour. Find the acceleration.

7. If the measure of a uniform acceleration be 60 referred to a mile

and a minute as units of space and time, what will be its measure

when the imits of space and time are a foot and a.second respectively ?

8. If V and / are the measures of a velocity and an acceleration

when a foot and a second are the units of length and time, find their

measures when a yard and a minute are the units of length and time.

9. Express the C.G.S. unit of acceleration, and the acceleration of

gravity (980 cm. per sec. per sec),

(i.) in metres per minute per minute,

(ii.) in terms of a kilometre and an hour as units.

10. A body is moving with a velocity sufficient to carry it through

a distance equal to the Earth's circumference in 24 hours. Twelve

hours later it is moving with an equal velocity in the opposite

direction. Find the acceleration in C.G.S. units, supposing it

uniform.
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EXAMINATION PAPER I.

1. Explain wliat is meant by the acceleration of a point moving in a

straight line.

2. How are velocity and acceleration measured (i.) when uniform,

(ii.) when variable ?

3. Give an account of the French system of weights and measures,

and state accurately the connexion between the units of length,

capacity, and mass.

4. Express a velocity of a mile an hour in terms of a velocity of

10 feet a second as unit.

6. The radius of a circle is half a mile ; a horse runs round the

circumference five times per hour. What is his velocity in feet

per second ?

6. The acceleration of a body is 13 feet per second per second.

What is its measure in O.G.S. units ?

7. If a mile per minute be the unit of velocity, and 32 feet per

second per second that of acceleration, find the units of space and

time-

8. The velocity of a train is known to have been diminishing

uniformly; at 1 o'clock its velocity was 40 miles an hour; at 10

minutes past 1 its velocity was 10 miles an hour. What was its

velocity 7 minutes past 1, and when did it come to rest f



CHAPTER III,

UNIFORMLY ACCELERA.TED MOTION.

41. Preliminary observations.— In Chapter I. we
have shown that, for motion with uniform velocity v,

S = vt "... (1);

and in Chapter II. we have shown that, for motion under
uniform acceleration f, the velocity at any instant is given by

v = u+ft (2).

We shall now find expressions for the distance traversed

in any time-interval ^ by a body moving with uniform
acceleration.

We cannot do this by eliminating v from (1) and (2).

For in nniformly accelerated motion the velocity is

variable, and (1) does not hold good.

Examples.— (1) If a railway train starts from rest with uniform
acceleration, and at the end of one minute it has acquired a velocity

of a mile a minute, the train has not travelled a mile in that minute.

For to do so it would have to go at full speed the whole time, but in

reality the train never acquires this speed till the end of the mioute
;

at the beginning of the minute it is not moving at all.

At the middle of the interval, or half-a-minute from starting, the
velocity is ^ a mile per minute, and in each second it increases by ^
of a mile per minute. One second before the middle of the interval

the velocity is J^y of a mile per minute less than at the middle, and
one second after the middle it is ^ of a mile per minute greater.

And generally, the velocity t seconds before the middle of the interval

is as much below | a mile per minute as the velocity t seconds after is

above. H ence we are led to assume that the average velocity is ^ a mile
per minute, and that the distance traversed in the minute is ^ a mile.

The distance traversed in the first half-minute is, of course, less than

^ of half a mile, and the distance traversed in the second half-minute
is more than ^ of half-a-mile by an equal amount ; but the two
together make up exactly one half-a-mile.

(2) A body moves from rest with an acceleration 10 feet per second;

to find the distance traversed in 10 seconds, by making the supposition

that the velocity is uniform (i.) during each second, (ii.) during each
tenth of a second.
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(i.) The velocities after

0, 1, 2, 3, 4, 6, 6, 7, 8, 9, 10 seconds

are 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 feet per second.

First suppose the velocity during each second to remain the same
as at the beginning of that second. Then the distances traversed

over during the several seconds are

0, 10, 20, 30, 40, 50, 60, 70, 80, 90 feet respectively.

Hence distance traversed in 1st and 10th seconds = + 90 = 90 ft.

„ „ 2nd,, 9th „ =10 + 80 = 90 ft.

„ „ 3rd „ 8th „ -20 + 70 = 90 ft.

„ „ 4th „ 7th „ =30 + 60 = 90 ft.

„ „ 6th „ 6th „ =40 + 60 = 90 ft.

and the whole distance traversed is therefore = 90 x 5 = 450 ft.

Next suppose the velocity during each second is the same as at the

end of that second. Then the distances traversed during the several

seconds are, respectively,

10, 20, 30, 40, 60, 60, 70, 80, 90, 100 feet

;

and hence the distance traversed exceeds the distance previously

traversed by the 100 feet passed over in the last second,
.-. the whole distance traversed is now 450 + 100 = 660 feet.

Now the velocity at any intermediate time in any second is greater

than at the beginning and less than at the end of that second.

Hence the first result makes the distance traversed too small, and
the second makes it too large. If we take the mean of the two
results, we find

distance traversed = i (450 + 650) = 600 feet.

The distance traversed is therefore the same as if the velocity were
uniform and equal to 60 feet per second during the whole of the

10 seconds. Hence the average velocity is 50 feet per second, and is

therefore half the final velocity, as in Example (1).

(ii.) Take tenths of a second. Then, supposing the velocity for

the whole tenth to be the same as at the end of the tenth, the distance

is the sum of 100 terms of the series -^^ ^, -^^, ... 9y%, 10. Combining
the first and last term, the second and last but one, and so on, we
have 60 terms each = 10^;^^ and the distance = 50 x 10^ = 505 feet.

Next, supposing the velocity throughout the tenth of the second to

be the same as that at the beginning of that tenth, the whole distance

traversed will be the sum of 100 terms of the series 0, -J^, •^, y%, ...

... 9^. This is the same as before, but without the last term 10;
hence the distance traversed is now 605— 10, or 495 feet.

The mean of the two values = J (506 + 495) = 600 feet as before.

Observation.—We have not actually proved that the distance traversed is 600
feet. We have, in fact, only shown that it lies (i.) between 450 feet and 550 feet

;

(ii.) between 495 and 505 feet. By dividing each second into hundredths, we
should find closer limits. Thus, to find accurately the distance traversed under
variable velocity, we must divide the time into a very large number of very small
intervals, and add together the distances traversed in these Intervals.
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42. In nuiformly accelerated motion, the average

velocity in any interval of time is the arithmetic

mean (i.e., half the sum) of the velocities at the

beginning and end of the interval.

Let / be the nniform acceleration,

t the number of nnits of time in the interval,

u the velocity at the beginning of the interval,

V the velocity at the end.

Divide the time t into a number of smaller intervals,

each of length i, so that, if n denote the nnmber of sach

intervals, we have t = ni,

and, therefore, i = t/n.

By making the nnmber n very large, the intervals i

will be very small. Let them be so small that the velocity

has not time to change appreciably during a single interval

i (§ 28). Then the velocity daring any one interval may
be treated as nniform, and we have

velocity at beginning of 1st interval = w,

„ „ „ 2nd „ = u-\-fij

„ „ „ 3rd „ =w-f2/i,

„ „ „ 4th „ =tt-f-(4-l)/i,

&c., Ac.,

„ „ „(m-fl)th„ =u+ infi.

Also velocity at end of last interval = v,

„ „ last but 1 = v—fi,

„ „ last but 2 = v — 2/i,

„ „ last but m = v—m/i.

The distance traversed in any interval is found by

multiplying the corresponding velocity by i. Now take

the small intervals in pairs, and combine the first interval

Vbith the last, the second with the last but one, and so on, the

(7n.+ l)th interval being combined with the last but m.
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Then sum of distances traversed

in first and last intervals = («+v)t,

in 2nd and last but 1 = (u-\-fi-j-v^fi)i = (w+ v)»,

in 3rd and last but 2 = (u-\-2fi-\-v—2fi) i = {u-\-v) i,

in (m+ l)th and last but m = {u+ mfi+v—mfi) i

= {u+v) i.

Therefore the distance traversed in each pair of in-

tervals i is (w+t?) i, and is the same as if the velocity in

the pair were \{u-\-v). And, since this is ^^rue of every-

pair, the whole distance traversed is the same as if the

velocity were ^{u-\-v) throughout the whole of the time t.

Therefore distance traversed = |(w+r)*

and average velocity = i(««+v),

as was to be proved.

Thus the distance traversed under uniform acceleration is

the product of the time into half the sum of the initial and

final velocities.

43. Obsbrvations.—We have supposed that, in the first, second, ...

intervals, the body retains its initial velocity ; and that, in the last,

last "but one, &c., the body moves with its final velocity. If we had
supposed that in each interval the velocity retained its initial value,

the velocities in the last, last but one, &c., would have been less than
before by /t, and we should have found the average velocity to be
^(m + v—/»). If, on the other hand, the velocity were taken the

same as at the end of each interval, the velocities in the first, second,

&c., intervals would have been greater than before by /t, and we
should have found the average velocity to be ^ (« + v +fi).
But fi is the change of velocity in a single interval t, and we have

supposed i so small that this change is practically zero. Hence, we
put/i = 0, and we find the average velocity = i (u + v), as before.

The velocities u, u+fi^ M + 2/i, ... in § 42 form an arithmetical

progression, and so do the corresponding distances traversed in the

intervals i. The formula given in Algebra for the sum of such

a progression miight therefore be used to find the distance traversed

in the whole time t. The student may do this as an instructive

exercise. But the proof of the formula—by combining the first term
with the last, and so on—is identical with that used above.
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44. TTniformly accelerated motion from rest.

—

From § 42 we see that : When a body starts from rest with

uniform acceleration, the average velocity is half the final

velocity.

The formulas for the distance traversed in uniformly

accelerated motion, which we shall now deduce, are very

important.*

Let / be the uniform acceleration,

t the time, measured from the instant of rest,

V tha velocity acquired,

8 the distance traversed in the time t.

From the definition of average velocity (§ 27), we have

(distance traversed) = (average velocity) x (time)
;

and average velocity = ^ y
;

.-. 8 = lvt (1).

Also by § 32, remembering that the initial velocity is

zero, V = ft (2);

/. « = i/^ X t,

or s^\fi (3).

Eliminating t from (1) and (2), we have

fs = W.
or v' = 2/s (4).

Formulas (1), (2), (3), (4) are suflBcient to work out

any problem relating to uniformly accelerated motion

from rest.

Example.—A train, starting from rest, acquires a velocity of 48 miles

an hour in 2^ minutes ; to find the distance run in that time.

Here the initial velocity is zero, and the final velocity is ^ mile per
minute. Therefore the average velocity is f mile, per minute, and
the distance run in the 2\ minutes

= I X 2^ = 1 mile.

* The student should not leave these until he is quite familiar with tJaem, as a

very large portion of the subject is dependent on them.
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45. TTniformly accelerated motion with an initial

velocity.—We have proved, in § 42, that

8 = i{v+u)t (6);

and, in §32, that v—u=fty ovv = u-\-ft (6);

and from these two equations we may find a relation

between any four of the quantities w, v, /, t, 8. Thus,

eliminating v, we have

or 8 = ut+lft^ .'(7);

giving the distance traversed in terms of the time, the

initial velocity, and the given acceleration.

Similarly, by eliminating w, we find

s = vt-ife;

giving the distance traversed in terms of the final velocity

and acceleration. This formula is not often used.

Lastly, eliminating t by multiplying (6) and (6) across,

we have

(v-u) X I (v+ u) =/5, or i (v'-u') = fs,

or v^—u^ = 2/8, or v^ = u^+ 2fs ... (8),

a relation between the distance traversed and the initial

and final velocities.

46. The average velocity in any interval is equal
to the velocity at the middle of that interval.

For we have seen that average velocity

= u-\-ift = u-}-f(it)

= velocity at time ^t

= vel at middle of interval.
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47. Observations.—To remember (7), it may be noticed that the

expression for s, the distance traversed, consists of two terms. The
term ut represents the distance traversed in time t with uniform

velocity u, and the term ^ft^ represents the distance traversed under

uniform acceleration / with no initial velocity. Hence the whole

distance traversed is found by adding together the part due to the

initial velocity and that due to the acceleration.

The equation (8) differs from the corresponding equation (4),

(viz., v^ = 2/8), in having the square of the initial velocity (m-) added

to its right-hand side.

In working numerical examples, it is always better to deduce the

results from first principles, rather than to have recourse to formulae.

For this reason it is often more convenient to make use of the property

of § 42, and to find the distance traversed by first determining the

average velocity. If formulae are used, great care must be taken not

to lose sight of their fuU meaning, otherwise mistakes will inevitably

occur in interpreting them.

48. Tike sigfns of tlie letters should never be changed in the

formrdsB, even when we are dealing with a retardation. In such a

case, the valm of / is a negative quantity, but the formula (7) must
still be written a = ut + ift% and not s = ut-y't^.

The following examples will show how the formula is to be applied

to retarded motion :

—

Examples.— (1) If a steamer starts from rest with an acceleration of

100 yards per minute per minute, it will at the end of five minutes

have attained

a velocity equal to TOO x 5 yards per minute.
{V) = (/) x(0

(2) Now suppose that, when the steamer is going at the rate of

600 yards per minute, the engines are reversed, so as to produce a
backward acceleration of 100 yards per minute per minute, and let it

be required to find out how far the steamer will go in 3 minutes.

We must now put/ = — 100 ; and therefore

our formula « = it* + \ft^

gives us * = 500x3 + i(- 100) X 32;

i.e., 8 = 1500 -450,
or distance traversed = 1050 yards.

A result whicli we might have arrived at as follows :

Supposing there had been no retardation, the steamer, moving with a velocity of
600 yards a minute, would have gone 1500 yards in 3 minutes. Again, if the

steamer started from rest with a backward acceleration of 100 yards per
minute per minute, it would have, at the end of 3 seconds, a velocity of 300 yards

300
per minute. Hence its average velocity would be — yards per second back-

wards, which gives us 150 yards x 3 = 450 yards as the distance it would move
backwards in that time. Hence we may say that the initial velocity carries the
steamer 1500 yards forwards, while the action of the reversed engines carries it

backwards through 450 yards. Therefore on the whole the steamer has moved
forward a distance of 1500-460 or 1050 yards, as before.
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(3) If a train, when going at 50 miles an hour, can be pulled

up in 48 seconds, find at what point the brakes must be applied.

"When the train is being pulled up, the initial velocity is | mile per

minute, and the final velocity is zero ; hence the average velocity is

-^ miles per minute. Also the time taken in pulling up equals | of a

minute.
Therefore the distance run when the brakes are on

= ^ X T^ mile = ^ of a mile.

Hence the brakes must be applied when the train is J of a mile from

the station.

49. To find the distance traversed in the nth
second of a body's motion.

With the usual notation, taking the second as the unit

of time,

velocity at end of w— 1 seconds = w4-/(w— 1),

velocity at end of n seconds = u -^fn ;

.*. average velocity during nth second

= i {u+f{n-l)-^u+fn} = u+^(2n-l)f;
and, since the measure of a second is nnity, the distance

traversed in the nth second

= {u+i (2w-l)/} X 1 = n+ i (2n-l)/.

It is better, however, to remember the method by which
this formula is obtained, and not the formula itself.

60. To find the acceleration of a moving body by
observation, it is only necessary to observe the distances

traversed in two successive seconds of the motion.

The distance traversed in the first second measures the
average velocity per second, and equals the velocity at the

middle of that second. Similarly, the distance traversed

in the next second measures the velocity at the middle of

that second. But from the middle of one second to the

middle of the next is exactly one second. Hence the
difference gives the increase of velocity in one second, and
this measures the acceleration.

Examples.— (1) If the distances traversed in two successive seconds
are 10 feet and 42 feet, to find the acceleration, supposing it uniform.

Here av. vel. in 1st sec. = vel. at mid. of 1st sec. = 10 ft. per sec.

;

,, „ 2ndsec.= „ ,, 2ndseo. = 42 ft. per ser.
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Therefore, from middle of Ist to middle of 2nd second of time,
velocity increases from 10 to 42 feet per second

;

.'. increase of velocity in 1 sec. = 32 ft. per sec.

;

.*. acceleration = 32 ft. per sec. per sec.

(2) If the distances traversed in three successive seconds are 5, 10,
14 feet, respectively, to show that the acceleration is not uniform.

The average velocities in the three seconds are 6, 10, 14 feet per
second, respectively.

The increase in average velocity between the Ist and 2nd seconds
of time = 10— 6 = 6 ft. per sec.

The increase in average velocity between the 2nd and 3rd seconds
of time = 14— 10=4 ft. per sec.

If the acceleration were uniform, the average velocities would be
the velocities at the middles of the respective seconds, and the two
increases of velocity would be equal. But this is not the case.

Therefore the acceleration is variable. It is evident that the
acceleration is decreasing.

(3) A body traverses altogether 66 feet in the fifth, sixth, and
seventh seconds of its motion from rest under uniform acceleration.
To find the value of this acceleration.

The average velocity in the three seconds

= 5/ =-= 22 ft. per sec.

This is the velocity in the middle of the interval; i.e., 6J seconds
after starting

;

22
.'. the acceleration == — = 4 ft. per sec. per sec.

It will be noticed that two observations of the position of a body are required to
find its velocity, three to find its acceleration, and four to test whether this accelera-
tion is uniform.

51* QrapMc representation of variable velocity.— We
shall now show how motion with variable velocity can be fully repre-
sented by drawing a curve which serves as a sort of map or diagram
of the velocity (Fig. 6).

Take a straight line OX (which we will suppose horizontal), and,
having selected any point on it, measure a length OM, such that
the number of units of length in OM is equal to the number of units
of time (say seconds) that have elapsed since the beginning of the
motion. Then the point M will represent a certain instant of time

;

thus, if OM contains t units of length, the point M will represent the
time t. The points a, 6, c, distant respectively 1, 2, 3 units of length
from 0, will represent the times 1, 2, 3 seconds after the beginning
of the motion, respectively.

* The rest of this chapter may be omitted on first reading, as it only contains
alternative methods. The graphic representation of uniform motion is, however,
simple and instructive.
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Through M draw a line MP perpendicular to OAf, and let the

number of units of length in MP be equal to the number of units of

velooity in the velocity of the moving point at the instant represented

by M. Let similar perpendiculars be erected at every point on OX,

so that (for example) aA, bB, cC, ... are to be taken proportional to

the velocities at the times 1, 2, 3, ... seconds, respectively. Then the

extremities of these perpendiculars will all be found to lie along a

certain straight or curved line ABCP. This line may be called the

velocity curve of the motion.

For negative velocities, we draw the perpendicular downwards
instead of upwards, so that the velocity curve is below instead of

above OX. Every horizontal length such as OM is called an

abscissa, and every perpendicular MP is called an ordinate.

, c^y^ G
e a^ F

A^ £^ H
D

I c l\if )(

Fig. 6. Fig. 7.

52. When the motion is uniform, the velocity curve is a
straight line parallel to OX ; for, if the velocity is «, all the ** ordi-

nates," such as MP, are u units long, and therefore the points on the
velocity curve are at the same distance from OX. In this case, if t

be the time OM (Fig. 7), we have (§ 14)

distance traversed = ut = MP x OM = area of rectangle OP.

We shall now extend this result to variable velocities by showing
that—

53. The distance traversed in any interval of time is
represented by means of the area contained by the
velocity curve and the two boundingf ordinates.

Let OM represent the given interval, QP the velocity curve ; then
it is required to show that the area OQPM measures the distance
traversed.

Divide OM into any number of intervals at the points a, 6, c,

and draw the ordinates aA, bB, cO to meet the velocity curve in

A, B, 0, so that OQ, aA, bB, cC, MP represent the velocities at the
instants of time represented by 0, a, 6, c, M.
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If the velocity during each of the intervals Oa, ab, bo, cM were
uniform and equal to the actual velocity at the beginning of that
interval, the velocity curve would consist of the straight lines QD, AE,
BF, CG parallel to OX. The distance traversed in the intervals
would be QY.Oa, aA.ab, bB.bCy &c., and would be represented by the
measures of the areas of the rectangles Qa, Ab, Be, «fec., and the
whole distance traversed would be represented by the sum of the
measures of these rectangles ; that is, by the area of the inscribed
figure OQDAEBFCGMO.
In like manner, if the velocity throughout each interval were equal

to the actual velocity at its end, the velocity curve would consist of
the lines dA, eB, fC ... , and the distance traversed would be repre-
sented by the area of the circumscribing figure OdAeBfCgPMO.
Now the distance actually traversed is intermediate between the

distances described on the two above suppositions ; it is, therefore,
represented by an area intermediate between those of the inscribed
and circumscribing figures. Now the area of the curve OQPMO
is intermediate between the areas of its inscribed and circumscribing
figures, and is the only area which always possesses this property,
however small the subdivisions 0, a, ab, be, .... Therefore the actual
distance traversed must be measured by the area OQPMO.

If the velocity is negative, so that the curve descends below the
horizontal line OX, the area of this portion is to be considered negative.

f C
G

A £
F^r HD

a/ \ c A1 X
Fig. 8.

54. To prove gr^aphically tlie formula for uniformly
accelerated m.otion, » = wf + ^/^2,

We shall first show that the velocity curve under uniform accelera-

tion is a straight line.

Let OQ denote the initial velocity w, and on OX measure any
number of equal lengths Oa, ab,bc,..., representing equal intervals of

time. Through a, 6, c draw aA, bB, cO, representing the velocities

of the instants a, b, c respectively. Draw QDH, AE, BF, . . . parallel

to OX, and complete the construction as in the figure.
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llien DA, EB, FO represent the total increases of velocity in the
equal intervals Oa, ab, be. But, since the acceleration is uniform, these
increases are equal ; that is, DA = EB = FC. Therefore the triangles

QDAy AEB, BFG are equal in all respects, and therefore

lAQD= LBAE = iCBF = ....

Hence it may be readily seen that the points Q, A, B, lie in a straight
line, and therefore the velocity curve QABOP is a straight line.

Now, if OM = t, MP represents the final velocity u+ft. Also,
MH = OQ = u, and therefore HP = ft ; and we have

distance traversed - area OfAPQ = rect. OMHQ + ^QHP
= rect. OAf//^ + ^ rect. QHPH
= OQ.OM + ^HP.QM
= u.t + ^fi.t = ut + \fl^ ;

as was to be proved.

Summary op Resqlts.

When a body starts with

initial velocity u,

Av. vel. = i(M + v)
;

whence 5 = i(w+ v)^...(5)

v = u+ft (6)

s = nt-\-\ft' ...(7)

v' = u'+ 2fs ...(8)

where u is the initial velocity,

V is the final velocity,

/ is the acceleration,

t is the time of motion,

s is the final distance from the starting point.

Tn each investigation we must assume some direction as
positive.

Suppose, for instance, that we are dealing with a train
on a line running north and south, and that at the
beginning of the interval considered the train is at a
certain station A. Then, if we have reason to believe
that at the end of the interval the train will be north of

A we may assume the direction from south to north as
positive. If we obtain a negative value for the distance,
itindicates thattheultimate position ofthe train is south of >l.

When a body starts from

rest,

Average vel. = ^ final vel.
;

whence s = ivt... ...(1);

v=ft .., ...(2);

s^^hft' ...(3);

v' = 2fs... ...(4).
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EXAMPLES III.

1. What is meant by the statement that the acceleration of a

particle is 32 foot-second units ? With this acceleration, how far will

the particle move in 10 seconds, and what will be its velocity at the

end of that time ?

2. A slip carriage is detached from a train and brought to rest

under the action of a uniform retarding force, the train meanwhile

proceeding with uniform velocity. Prove that, when the carriage

stops, the distance of the train in front of it is equal to the distance

through which the slip carriage has travelled from the instant of

being detached.
^

3. A body starts from rest and moves with uniform acceleration

18 (foot-seconds). Find the time required by it to traverse the first,

second, and third foot respectively. *

4. If a body moving with uniform acceleration pass over 260 feet

while its velocity increases from 40 to 60 feet per second, find the

acceleration and the time of motion.

5. A particle is observed to describe 7 feet in 3 seconds, and 13 feet

in the next 3 seconds. Find its acceleration.

6. A body moves over 30 feet during the 6th second and 42 feet

during the 7th second of its motion. Find the whole space passed

over in 10 seconds.

7. A body moving with uniform acceleration has the velocities «, v

at two given points
;
given s, the distance between the points, find

the time of describing it.

8. A body passes over a kilometre in 10 seconds under a uniform

acceleration of 1000 C.G.S. units. Find its velocities at the beginning,

middle, and end of the interval of time.

9. Show that the distance described from rest under a constant

acceleration in the {p'—p + l)th second is equal to the sum of the

distances described in the first (p — 1) seconds and in the first

p seconds.

10. A body A is moving with uniform velocity u in a straight line,

and another body B moves from rest with given acceleration / along

the same straight lino, being initially at a distance a behind A.

Find when and where B will overtake A,
''



CHAPTER IV.

GRAVITY.—MOT[ON OF BODIES FALLING

VERTICALLY.

55. The principles proved in the foregoing sections are

well illustrated bj their applications to the motion of

bodies falling to the ground.

The acceleration due to gravity is the same for

all bodies. If we allow a coin and a sheet of })aper or

feather to drop freely from rest, both will be accelerated

downwards, but the coin will reach the ground quicker

than the paper ; while a balloon will rise in the air instead

of falling. From this it might be supposed that different

bodies are differently accelerated by the action of gravity,

the coin being more accelerated than the paper. But we
must not forget that air itself has weight, and, moreover,

a body falling through the air has to set in motion the

particles of air which it displaces in its descent. Hence
a light body of large size has to displace more air, and
therefore encounters moie resistaijce than a body of

smaller size, but of the same weiirht. If the sheet of

paper be roiled up into a ball, it will fall much quicker

than before, because it offers less surface to the air and
therefore has less air to push out of its way as it descends.

But if different bodies be allowed to fall in a tall jar

which has been exhausted of air by means of an air-pump,
they will all reach the bottom at the same instant, thus

showing that all bodies are equally accelerated by gravity.

DYN. E
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66. The same thing can be shown more simply vdthont
an air-pump by the following experiments, which should
be performed by the stndent before proceeding further.

Experiment I.—Take a penny or other large coin and
cut a round disc of paper slightly smaller than the coin.

Lay the paper on the top of the coin, and carefully let the
latter drop. Although the paper is uppermost, it will

remain on the top of the coin, and both will fall together.

Here the coin, by going in front of the paper, overcomes
the resistance of the air, which would otherwise retard the
motion of the disc.

Experiment II.—Take a small tin canister without the
lid (e.g., a cocoa-tin), and in it place various objects, such
as a coin, a feather, a piece of thin tissue paper, &c. Drop
the canister from a height. All the objects will remain
inside and will reach the ground together, showing that

all are equally acted on by gravity.

Experiment III.—If a stone be allowed to drop from a
height of 4 feet, it will reach the ground in half a second.

If it be allowed to fall through 16 feet, it will take 1 second.

If dropped through 64 feet, it will take 2 seconds.

Now if/ be the acceleration, the formula s ^ |-/^', taken
in conjunction with these observations, gives

4 = */.(«', 16 = i/.P, 64 = i/.2',
whence / = 32.

Heiice we conclude that a falling body descends with a
uniform acceleration of about 32 feet per second per second.

That this acceleration is uniform is proved by the fact

that each observation gives the same value for /.

Observation.—This experiment is, of course, only a very rough
one, because it is very difficult to estimate times with sufficient

acciiracy.

57. The Intensity of Gravity.—The above and other

experiments show that the acceleration of an unresisted

falling body is uniform, and, since it is the same for

different bodies, its magnitude at any place must be
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constant. This constant acceleration is called the intensity
of gravity, and is invariably denoted by the letter g. Its

value is not quite the same in different parts of the Earth.
It is least at the Equator, where it amounts to only
32-091 F.P.S., or 978-10 C.G.S. units ; and it is greatest

at the North and South Poles, where it is estimated to be
33-255 F.P.S., or 98311 C.G.S. units. It also depends on
the altitude ; it is greatest at the sea level, and diminishes
slightly when we go either up to the top of a high moun-
tain or down a deep mine. At London, at the sea level,

F.P.S. units. C.G.S. units.

g = 32191 ft. per sec. per sec. = 981'17cm. persec. perseo.

[N.B.—The above numbers are not to be committed to memory.]

For rough purposes it is usual to take

g = 32 feet per second per second (1),

(7 = 981 centimetres per second per second (2).

These numbers must be remembered, as they are con-

stantly required. The more accurate value, g = 32*2 ft.

per sec. per sec, should also be remembered, although

it is less often used.

The vertical at any place may be defined as the direc-

tion in which a body falling freely at that place is

accelerated by gravity.

Observation,—It must be carefully borne in mind
that g is an acceleration, not a velocity. For a body
falls to the ground with uniform acceleration but with
ever increasing velocity.

58. Motion from rest nnder gravity.—If we neglect

the resistance of the air, a stone or other body dropped
from a height will fall freely with a uniform acceleration

g, or 32 ft. per sec. per sec. The distance fallen s and
acquired velocity v at the end of t sees, will be given in

feet and feet per sec. respectively by the formulae

v = gt = 'S2t, s = igt' = 16t\

obtained by putting f = g = 32 in § 44.
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The accompanying: diagram serves to illnstrate the

motion. The round dots on the vertical Hne show the

relative positions of the body at intervals of one second,

each of the smaller divisions being supposed to represent

16 feet. The velocities at each second are also stated on
the diagram.

Thus in one second a falling body will acquire a velocity of 32 feet

per second. It will not have fallen through 32 feet, but only through
16 feet, because it started with no velocity at all ; whereas to have
gone 32 feet it would have had to have fallen with the full velocity of

32 feet per second during the whole time. By § 42, the average
velocity during the second is half of 32, or 16 feet per second, and
therefore the distance fallen is 16 feet.

If the diagram be held with the line horizontal it will

represent the motion of a body moving from rest in a
horizontal line with acceleration /, if the smaller divisions

be taken to represent each \f units of length. The
particulars of the motion are given on the left.

"When a falling body is small and heavy, such as a stone or a
bullet, its motion will only be slightly afifected by the resistance of

the air, so that the results here obtained will give a fairly accurate
idea of the actual motion. But the motion of a body which is

very light for its size—such as a feather or a balloon—will depend
very largely on the eflfect of the surrounding air, and will be entirely

different.

59. Distance fallen in the nth second.
It will be noticed that the distances traversed in the

individual seconds are 1, 3, 5, 7, 9, 11 ... times 16 feet

respectively ; and we should infer that the distance fallen

in the nth second is \g (2n— 1) or 16 (2n— 1) feet.

This may be shown as in § 49, or as follows :

—

The distance fallen in the nth second is the difference

of the total distances fallen in n and n—\ seconds respect-

ively, and is therefore

= i3{»'-(»-l)'}=i5r(2n-l) (3).
Observations.—It is better not to remember (3), but to obtain it

in one or other of the above methods when required.

We notice that in each second the stone falls 32 more feet than in
the preceding second. This follows from the fact that in each second
the velocity increases by 32 feet per second.
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I. Uniformly
Accelerated

Motion.

II. Motion prom Rest under Gravity.

Acceleration y = 32 feet per second per second.
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t. t = kgxf^. V = gy.t.

sees. « = i32 X 02 = ft. v = 32 x = ft. per see.

1 sec. « = ^32 X 12 = 16 ft. v = 32 x 1 = 32 ft. per sec.

2 sees. « = i32 X 23 = 64 ft. i> = 32 x 2 = 64 ft. per sec.

3 sees. » = p2 X 32 = 144 ft. v = 32 x 3 = 96 ft. per sec.

4 sees. s = ^32 x 42 = 266 ft. i> = 32 x 4 = 128 ft. per sec.

• 5 sees. « = |32 x 52 = 400 ft. v « 32 x 5 = 160 ft per sec.
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60. If a stone is dropped from a given height h,

the time taken in falling and the velocity of striking the

ground may easily be got by substituting h for s and g

for /in formulae s = ^ff, v^ = 2/s,

which thus become ^gt^ = A, v' = 2gh.

whence t = ^/— , v = V2ghi

Or, if h be measured in feet, and g = 32,

/ = J v/A seconds, v = 8 \/h ft. per sec.

It is convenfent, though not essential, to remember the formula v* = 2gh, but it

is much better to be able to use the fundamental formulae.

It should require but little thought to see that the height from which the stone
is dropped is the distance it must traverse before it strikes the ground.

Examples.—(1) To find the depth of a well, when a stone takes

1^ seconds to reach the bottom.

The distance is given by
« = i^^2^ 16x(f)2 = 36feet,

which is, therefore, the depth of the well.

(2) If a brick drops off the roof of a chimney 100 feet high,
in what time will it strike the ground, and with what velocity ?

Here we have to find t and v, and we have given « = 100, and we
know f{=g) = Z2.

Now ^ is connected with s and/by the equation s = \ffi^ and so

by substitution we get 100 = l%xt^\

.: '' = '^. or . = 21.

Similarly, v is connected with/and* by the formula v^ = 2/»

;

.-. v2 = 2x32x100;

.-. v = 8x10 = 80.

Therefore the brick will strike the ground in 2J seconds, with a
velocity of 80 feet per second.

61. Bodies projected downwards.— If a body be
projected downwards with initial velocity w, we merely
have to write g for/ in the formulae of § 45 to obtain the

relations between the time t, final velocity v, and distance

fallen s. We thus have

V =u-j-gt (4),

8 = ^(u-^v)t = ut-\-\gr' (5),

v« = u^+ 2gs (6)
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Examples.— (1) To find the velocity of projection, if the body
descends 2000 feet in 10 seconds.

Let the required velocity be u feet per second. Putting ^ = 10,

« = 2000, ^ = 32, in the formula

« = ut-\-yfi,

we have 2000 = 10w + 1600
;

.-. 10m = 400, M = 40.

Hence the body must be projected with a velocity ol 40 feet per

second.

(2) If a body is projected downwards with an initial velocity of

20 feet per second, to find the time taken to describe 500 feet.

Let t seconds be the required time.

Putting M = 20, « = 500, ^ = 32, in the formula (5), we have

600 = 20^+16f^.

To find t we have to solve this as a quadratic* equation. "We may

rite the equation -f = 600

16
*

Completing the square on the left-hand side, we have

..|'.^(fr-
500

16
"^

25

64

2025
.

64 '

•*• -f= -f
.•. t

45-5=
8

= 5, or
-45-

8

-5 _ 25

4

But the time t cannot be negative. Therefore the required time is

5 seconds.

(3) A body is projected downwards with a velocity of 600 centi-

metres per second ; to find (i.) the velocity acquired, and (ii.) the
time elapsed, when it has fallen 50 centimetres.

Let the acquired velocity be v centimetres per second. Then, using
the C.G.S. units, we have « = 50, u — 500, g = 981 ; whence the

formula v^ = u- { 2gs

gives v^ = (500)2 + 2 . 981 . 50 = 250000 + 98100 = 348100
;

.*. V = 690 centimetres per second.

The increase of velocity during the interval is therefore 90 centi-

metres per second, and this increase = 981^, where t = time
taken in falling

;

required time t = -— =- —— = '091 sees, (approximately).

* This quadratic equation may be avoided by the double method adopted in the
next example. The student should do this for practice, finding v = 180.
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62. Bodies projected upwards.— When a body is

projected with a given upward velocity u, it is usually con-

venient to take the upward direction as positive. With this

convention, s will always represent the height of the body
above the point of projection ; v will be positive when the

body is rising and negative when the body is falling. Since

acceleration due to gravity takes place in a downward
direction, we must substitute —g for / in our formulae,

which now become
V = u-gt (7),

8 = \(u+v)t = ut-lgt'' (8),

v^ = u^-2gs (9).

Here we consider g to represent the acceleration due to

gravity, without reference to sign, so that g = S2, and not
= -32.

For the upward motion, u is positive, and v, which is

equal to u at starting, becomes less and less; for the

formula v = u—gt shows that v decreases as t increases,

until gt = u, when v becomes = 0. At this instant the

body remains stationary for an instant and then begins its

downward course, which (as we shall prove in § 66)
occupies exactly the same time as the ascent.

When the body returns to the point of projection, s

vanishes ; and if the body goes on below the point of

projection, s is negative.

63. To find the time daring which the body rises.

Since the body ceases rising, and begins falling, when

V = 0j it follows from the equation v = u — gtj that the

instant of time is given by

= u— gtf

whence t= — (10);
9

that is, the body rises during the interval —

.
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64. To find the greatest height to which the body

rises.

The height is greatest when the body just ceases rising.

We mnst therefore put f=—g and ^ = — in

and we have, for the greatest height,

8-=u. ¥9'(— = i— = S- ...(11)-
Q \9 I 9 9 ^9

[We might otherwise find the greatest height from the equation

by writing it, first, in the form

u^— v^
and then « = .

Hence s is greatest when «2—v^ is greatest, that is, when v — 0,

for then v^ is least. Therefore

greatest height s ^—J]

Examples.—(1) A stone is thrown upwards with a velocity of 48 ft.

per sec. To find the greatest height, and the time taken in reaching it.

When the stone is at its greatest height, its velocity is zero, and
the time is therefore given by

0=48-^7^ = 48-32^;

•'• ' = "11 = H sees.

The height is therefore given by
« = 48^-^^^== = 48.1-16.(1)2= 72-36 = 36;

.'. greatest height =36 feet.

(2) To find the greatest height attained by a body which is thrown
vertically upwards with a velocity of 100 ft. per sec.

The velocity at any height s is given by

t;2 = u^-2ffs = 1002- 2. 32. s = 10000-64«.

But, when the height is greatest, v = 0, and therefore

10000-64* = ;

.• greatest height s = -—-— = 156^ feet.
o4
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65. To find the whole time of flight.—After reaching

its greatest height the body will begin to fall ; its height

will then decrease, and when this height becomes zero

the body will have returned to the point of projection.

Hence fche time of flight t is found by putting f =z —g^ and
s = 0, in s = ut-hlft\

We therefore have ut—^gf = ;

.-. nu-^gt) = 0;

whence either ^ = 0,

or w = fgtj %.e. t = —

.

The factor t = only tells us what we started with,

namely, that the body was at the point of projection at

the time < = 0. Thus the time of flight must be given

by the other factor, and we have

time of flight t = ~ (12).
9

66. Observations.—Comparing (10) and (12) , we see that

the body rises during half the time of flight. It therefore

falls during the other half ; hence the time taken in rising

to the highest point is equal to the time taken in returning to

the point of projection.

More generally, the time taken by the body in rising

after passing any given point is equal to the time taken
in again falling to that point ; for, as we are not concerned
with the body's motion before it first reaches the given
point, we may treat that point as the point of projection.

Hence the diagram of § 58 gives a record of the upward
as well as the downward motion of such a body, for its

positions 1, 2, 3, ... seconds respectively before reaching
the highest point are the same as 1, 2, 3, ... seconds

after reaching the highest point.

Moreover, the upward velocity at any height when
rising is numerically equal to the downward velocity at

the same height when falling.
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67. To find the time taken to reach a given height.

First Method.—We may use the equation (8), viz.,

8 = ut—^gt\

where s the given height, u the initial velocity, and g the

intensity of gravity, are supposed known. We want to

find the time t ; accordingly we must regard the equation

as a quadratic equation in which t is the unknown
quantity, and solve it to find t.

Now a quadratic equation has in general two solutions,

and these determine the two instants at which the body is

at the given height, when it is rising and when falling

respectively.

Second Method.—Instead of finding the time at once,

we may find the velocity v from (9)

v^ = u^— 2gs;

and we may then find the time t from (7)

v = u— gt or t = (u—v) -7- g.

Examples.— (I) If the velocity of projection is 80 ft. per sec, the

time ofjlight is given by the equation

= s = ui-lfft^ = 80<-i
. 32 . t\

Rejecting the factor < = 0, this gives

t = \% = b sees.

(2) A body is projected upwards with a velocity of 96 feet

per second ; to find when it will be at the heights 80, 144, 160 feet

above, and 112 feet below, the point of projection, respectively.

We shall employ the second method; accordingly we have to

find the velocity v from the equation

t;2 = «2_2^s = 9G2-2.32.*;

where the height s = 80, 144, 160, —112 feet, respectively,

(i.) At height 80 feet,

f;2 = 962-64x80 = 968-82x42x5 = 322 x (9-5) = 322x4;
.*. V — 64, or —64,

according as the body is rising or falling.

Hence the corresponding times t are given by

^ 96-64 32 , J / • • X
t — = — = 1 second (nsmg),

9 "2

96- (-64) 96 + 64 160 « , ,. ,,. .

or t — 5^ '- = = __ = 6 seconds (faUing).
g g o2
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(ii.) At Leight 144 feet, we have
^ = 962-64 X 144 = 962— 82 X 122 = 0,

showing that the body is at its greatest height.

Here there is only one instant at which this height is reached,

namely, at the time

^^96±0 96^3
9 32

(iii.) At height 160 feet we should have
«,2 = 962-64x160 = 9216-10240 = -1024;

but this is impossible, for a square cannot be negative.

This means that the body never rises so high as 160 feet. In fact,

we have just seen that the greatest height is only 144 feet.

(iv.) At height — 112 feet we have

va = 962-64 X (-112) = 962 + 82 x 42 x 7 = 322 x (9 + 7) = 322x4',

.'. V — 128 or —128 feet per second.

Taking v = 128 feet per second, we find

^ 96-128 32 -

ff 32

and, taking v = — 128, we find

t = ^l±l^ = '^ ^7 seconds,
g 32

Since the given point is below the point of projection, the body
cannot reach it until it has begun to fall, and the required time is

given by the positive value, viz. 7 seconds.

The negative value, — 1 seconds, may be interpreted as follows :

—

If, instead of being projected with velocity 96 feet per second, the body
had been thrown upwards from below so as to pass through the point

of projection with this velocity, it would have been at a depth
112 feet 1 second before reaching the point of projection.

[If we had used the first method, we should have found the same
results, for in the respective cases the equation

s = iit-yt- = 96^-16^2

would give (i.) 80 = 96t-10i2^ or t^—U + 5 = ;

.'. {t-5){t-\) = ; .-. * = 1 or 5 seconds.

(u.) 144 = 964-16^2^ or i2_6i + 9 = 0;

.«. (4-3)2 = 0; .'. only value is 4 = 3 seconds,

(iii.) 160 = 964- 16*2, or f^-Qb-k-lQ = \

.'. (4-3)2= -1, and solution is impossible.

(iv.) -112 = 964-1642, or 42-64-7 = 0;

.-. (4-7)(4 + l) = 0; .-. 4=-l or 7 seconds.

These results would have to be fully interpreted as before, for an
algebraic answer to a problem in Mechanics is of no value unless its

meaning is properly interpreted and explained.]
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68. Relative motion of two falling bodies.—Since

the acceleration of gravity is the same for all bodies, the

relative acceleration of two bodies under gravity (being the

difference of their acrfcual accelerations) is zero.

Therefore their relative velocity is constant.

This principle is of great nse in finding when and
where two bodies projected in the same vertical line will

meet, or in finding their distance apart at any given

instant of time.

Examples.—(1) A stone is dropped from the top of a tower 100 feet

high, and at the same instant another stone is projected from the foot

with a velocity of 80 feet per second ; find when and where they
meet.

Initially the velocities of the two stones are and 80 ; hence the

lower one approaches the upper with relative velocity 80 feet per
second. And, since hoth have the same acceleration (viz., that due
to gravity), this relative velocity remains constant.*

But their original distance apart is 100 feet. Hence they will be
together in J^ seconds ; that is, in

1 J seconds.

In this time the upper stone will have fallen through a distance

s = ^ . 32 . (1)2 = 25 feet.

Hence the stones meet 25 feet below the top, and 75 feet above the
bottom of the tower.

(2) If a stone is thrown vertically upwards with a velocity of

64 feet per second, and another stone is thrown up with the same
velocity one second later, to find when they will meet.

At the instant that the second stone is projected the velocity of the

first = 64 -32 . 1 = 32 feet per second,

and the height through which it has risen

= 64.1-^.32.12 = 64-16 = 48 feet.

The second stone is now projected upwards with velocity 64 feet

per second. Its velocity upwards, relative to the first stone, is there-

fore = 64— 32 = 32 feet per second.

But, since hoth stones are equally accelerated hy gravity, their
relative velocity is constant, and therefore the second continues to
approach the first at a uniform rate of 32 feet per second.
But they are initially 48 feet apart.

Therefore they will meet in |f or 1^ seconds from the instant
when the second stone was projected.

* It is advisable to state this principle in solving any numerical example for a
correct knowledge of the principles employed is of the greatest importance in
Mechanics,
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69. Bodies dropped from a moving balloon.— If

bodies be let fall from the car of a balloon in motion, thej
do not start from actual rest bat from rest relative to the

balloon. They therefore have initially the same velocity as

the balloon. The same thing is true when bodies are

dropped from a lift or cage which is ascending or descend-

ing a mine, or indeed from any vehicle in motion, such as

a railway carriage or steamer.

If a stone is dropped from a balloon whose motion is

being accelerated, the subsequent motion of the stone will

depend only on the velocity and not on the acceleration of the

balloon at the instant when the stone was let go, for the

subsequent acceleration of the stone will always be that

due to gravity.

Examples.—(1) A stone is dropped from a balloon at a height of 400
feet above the ground, and it reaches the ground in 6 seconds. To
find the velocity with which the balloon was rising.

Let the upward velocity of the balloon be u feet per second. Then
the stone starts with an upward velocity «, and in 6 seconds it is at a
distance 400 below the point of projection. Therefore from

s = ut + \ft\

-400 =w.6-|.32.6>;
.•. 6m = 576-400 = 176;

M = 2^\ feet per second.

Note that the minus sign is given to g and s in this problem because they are

measured dovmicards, and the positive sign to u because it is upward velocity. If

the answer had come out negative, it would have indicated a downward initial

velocity of the balloon.

(2) If a balloon be moving with any velocity whatever, but without

acceleration, and a stone dropped from it reaches the ground in 5

seconds, to show that at the instant when the stone touches the

ground the balloon will be at a height of 400 feet.

Consider the motion of the stone relative to the balloon. The
acceleration of the stone is y, or 32 feet per second per second, while

that of the balloon is zero. Therefore the relative acceleration of the

fatone is 32— 0, or 32 downwards.

We do not know the velocity of the balloon, but we know that the

stone starts from relative rest, so that its initial relative velocity is

zero. Hence in 5 seconds the stone will have fallen through a space

^ . 32 . 52 or 400 feet relatively to the balloon, and it will therefore be
400 feet below the balloon. But at this instant the stone strikes the

ground. Therefore the balloon is at a height of 400 feet.
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Observation.—The argument of the last example shows that if a

stone is dropped from a balloon that is moving uniformly the depth

of the stone below the position which the balloon occupies at any-

time * will be yt^, and will be the same as if the balloon were at

rest. If the motion of the balloon itself were accelerated, this would
not be the case.

Summary of Results.

If g is tlie acceleration of gravity,

gr = 32 feet per sec. per sec (1)

(32'2 more accurately)
;

g = 981 cm. per sec. per sec (2) ;

distance fallen in the nth second = \g (2n—l) ...(3).

For bodies projected downwards, taking the downward

direction as positive,

v = u-\-gt (4);

s = i(u-\-v)t = ut-h^gt' (5);

v^ = u'-\-2gs (6).

For bodies projected upwards it is usually more con-

venient to take the upward direction as positive, and

then/=— gr; hence

v = u-gt (7);

8 = \{u-\-v)t = ut-\gt'' (8);

v^ = u^-2g8 (9).

For the time taken in rising,

t=- (10);
9

the height risen = — (11) ;

^9

the time of flight t = — (12)

= twice time taken in rising.

The relative velocity of two falling bodies is constant.

In the following examples, the value of y is taken to be 32 ft. per
sec. per sec, unless the more accurate value, 32*2 ft., is expressly
mentioned.
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EXAMPLES IV.

1. Find the distances traversed in feet, and the velocities acquired

in feet per second, by a body falling from rest for (i.) 5 seconds,

(ii.) half a minute, (iii.) 15 minutes, (iv.) -^ second.

Obtain the corresponding results in centimetres and centimetres

per second, taking ff
= 980.

2. Find the velocities acquired and the times taken in falling

freely through (i.) 100 feet, (ii.) 300 yards, (iii.) 3 inches, (iv.) 1000

centimetres.

3. What would the acceleration of gravity become if the imit of

space were one yard, and the unit of time the time of falling from ^
rest down a yard ?

4. A falling particle in the last second of its motion passes through

224 feet. Find the height from which it fell, the acceleration of^

gravity being 32.

5. A body falls freely through 400 feet from rest. With what

velocity will it reach the ground ?
*^

6. If, instead of falling from rest, the body (of the last question) be

projected downwards so as to reach the ground with twice the former

velocity, find the velocity of projection.

7. A cricket ball thrown up is caught by the thrower in 7 seconds.

Draw to scale a figure showing its position at the end of every entire

second since its start.

8. A ball thrown up is caught by the thrower 9 seconds afterwards.

How high did it go, and with what speed was it thrown ? How far

below its^ highest point was it 5 seconds after its start ? ^

9. With what velocities must two stones be projected upwards so

that'they may rise to heights of 100 and 121 feet above the ground

respectively ?

10. A particle is projected vertically under gravity. Prove that

it will be at half its greatest height after times whose ratio is

3 + 2^/2:1. y
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11. A stone is thrown vertically upward with a velocity of 160 feet

a second. How high will it rise, and how long will it be before it

returns to your hand ? .

12. If you let another stone drop down a well at the instant the first

is within 20 feet of your hand on its return journey, at what distance

below your hand will the two bodies meet ? (See Example 11.) v

13. Prove that two particles projected sitnultaneously from the same

point cannot afterwards collide, whatever be their initial velocities.

14. From the edge of a cliff two stones are thrown at the same time,

one vertically downwards with a velocity of 30 feet per second, the

other vertically upwards with the same velocity. The first stone

reaches the ground in 7^ seconds. How much longer will the other /

be in the air ?

15. From a balloon, which is ascending with a velocity of 32 feet

per second, a stone is let fall, and reaches the ground in 17 seconds.

How high was the balloon when the stone was dropped ?

16. A man stands on a platform which is ascending with a uniform

acceleration of 6 feet per sec. per sec. ; and, at the end of four seconds

after the platform has begun to move, he drops a stone. Find the ^
velocity of the stone after three more seconds.

17. ^ and B are two points in the same vertical line. From 5, the

lower of the two points, a heavy particle is projected vertically

upwards with a velocity which will just carry it to ^, and at the

same time a heavy particle is dropped from A. Show that when the

particles meet, their velocities will be equal and opposite, and the

spaces passed over by the particles will be as 3 : 1.
yT

18. A body is projected upwards from the bottom of a well, whose

depth below the surface is 8^ feet, with a velocity of hg feet per

Becond. Find the time in which the body, after reaching its greatest

height, will return to the level of the surface of the earth agaia« V

DYN.
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EXAMINATION PAPER II.

1. Investigate the formula s = ^ft'^, and deduce a corresponding

expression in the case where the particle has an initial velocity u.

2. Show that the space passed over in the «th unit of time by a

body moving with uniform acceleration /is A/(2n- 1).

3. Explain a convenient method of representing geometrically the

velocity of a body moving according to a fixed law, and the distance

passed over by it.

4. Find the acceleration necessary to make a body move firom rest

through 5 feet in 2 seconds.

6. What is meant by the statement y = 32 ? What units are

employed in this equality ?

6. A body is dropped from the top of a tower 146 feet high, and

strikes the ground with a velocity of 96*6 feet per second. Find the

value of g.

7. Prove that the relative velocity of two bodies falling vertically

downwards is constant.

8. A ball is thrown up with a velocity of 110 feet per second.

When will it be moving down with a velocity of 66 feet per sec. ?

9. A stone dropped into a well reaches the water with a velocity of

80 feet per second, and the sound of its striking the water is heard

2^ seconds after it is let fall. Find from these data the velocity of

sound in air.

10. A ball is allowed to drop to the ground from a height h, and at

the same instant another ball is thrown up with sufficient velocity to

carry it to a height 4A. Where and when will the two balls meet ?



CHAPTER V.

NEWTON'S FIRST LAW—MASS AND
MOMENTUM.

70. Kinetics.— In the first three chapters we have
considered motion in a straight line from a purely hine-

matical point of view. In the fourth chapter, we have
had to assume one experimental fact—namely, that all

bodies in vacuo fall to the ground with the same constant
acceleration.

In the present part we shall consider motion generally
with reference to (1) what moves, and (2) what causes

it to move. This portion of the subject is called kinetics,

in contradistinction to kinematics. To avoid introducing
geometrical complications, we shall at present only con-

sider motion in a straight line, a restriction which will be
removed in Part III.

71. Newton's Three Laws of Motion. — As has
been mentioned in the Introduction, Newton's Axioms or

Laws of Motion are accepted as the foundation on which
the relations between matter, motion, and force are built

up. These laws were stated by Newton as follows :

—

Lex I.

—

Corpus omne perseverare in statu suo quiescendi

vel movendi unifvrmiter in directum nisi quatenus illud a
viribus impressis cogitur statum suum Tnutare,
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Lex II.

—

Mutationem motus proportionalem esse vi motrici

impressae Sc fieri secundum lineam rectam qua vis ilia

imprimitur.

Lex III. — Actioni contrariam semper ^ sequalem esse

reactionem, sive corporum duorum actiones in se mutuo
semper esse cequales 8f in partes contrarias dirigi.

First Law. — That every "body perseveres in

its state of remaining at rest or of moving uni-

formly in a right line, except in so far as it is

compelled hy impressed forces to change its state.

Second Law.—That change of motion is pro-

p jrtional to the impressed motive force, and takes

place along the right line in which that force is

impressed.

Third Law.—That reaction is always opposite

and equal to action, or that the actions of two
bodies mntually on one another are always equal,

and tend in opposite directions.

We now proceed to examine Newton's Laws in detail.

72. The First Law furnishes us with the following

Definition.—Force is that which tends to change the

state of rest or uniform motion of a material lady. (§ 2.)

Force may manifest itself to otir senses in various ways.

If we push or pull a body, we exert a force on it ; and if

the body is acted on by no other force, we shall set it in

motion. Again, if we lift a heavy body off the gromid,

we shall have the body exerting a force on our hand,

owing to its weight ; and when we let the body go, this

weight causes it to begin falling. A magnet placed near

a bar of iron exerts a force of attraction on the iron.

All these forces are capable, under suitable circumstances,

of setting in motion, or changing the motion of, the bodies

on which they act.
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73. Measurement of time.— The First Law also

furnishes us with a theoret'cal means of comparing
different intervals of time. For ifc asserts that a body
under no impressed forces would continue to move with
uniform velocity ; hence, by § 14, the distances traversed

by such a body in different intervals would be proportional

to the times taken, and conversely.intervals of time might
theoretically be compared by comparing the distances

so traversed.

74. Evidence in favour of Newton's First Law.—The fact

that a body at rest would, if left to itself, remain at rest, will probably
be regarded as an obvious truism. It is not, however, so obvious
that a body, if left to itself, would continue to move for ever with
uniform velocity in a straight line ; for common experience affords us
no examples of bodies moving in this manner. The reason is that it

is practically impossible to isolate a body from the action of force.

We have, however, abundant evidence that the more neaaly a body
is isolated from the action of force, the more nearly will it continue
to move uniformly in a straight line.

A stone, if projected along a sheet of smooth ice, will continue to

skid along for a considerable distance, and will move in a straight

line, and the smoother the ice the longer wDl it travel. If the ice

were perfectly smooth, and there were no air to resist the motion, the
stone would always continue to travel with uniform velocity. But
no ice is perfectly smooth, for even with the smoothest ice there is a
small amount of friction. This, together with the resistance of tho
air, produces a small force on the stone, which gradually stops it,

changing its state from a state of motion to a state of rest. When
the stone has come to rest, these resisting forces cease to exist, and
hence the stone remains at rest.

It will be easier, however, to furnish illustrations showing that no

force is required to maintain a body in uniform motion in a straight line,

hut that force is required to reduce a body from motion to rest, or to

change its motion, as ivell as to start a body from rest into motion.

If a man stand upright in a railway carriage, then, so long as the
motion of the train is uniform and in a straight line, he will not feel

that he is being pushedforward in any way. But if the train suddenly
stops, the man will fall forwards owing to his tendency to go on
moving.
As an instance in which force is expended in changing motion,

consider a stone whirled rapidly round and round at the end of a
string. The stone describes a circle, not a straight line ; hence
Newton's First Law tells us tliat it must be acted on by some force.

We shall readily find tliat such is the case. Unless we hold the end
of the string firmly, and exert a considerable pull on it, the stone will
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fly right off. In fact, if it be whirled sufficiently rapidly, the force

required to continually change its direction of motion may become
great enough to break the string, and the stone will then fly ofE in a
straight line.

A body may remain at rest when it is acted on by several forces,

for although each force may have a tendency to set the body in
motion, these tendencies may be in opposite directions ; and, since

the body cannot move in two different ways at the same time, it will

remain at rest, if these opposing tendencies balance one another.
Thus, forces may exist even where there is no change of motion, and
we must regard force as characterized by its tending to change a body
from its state of rest or uniform motion, rather than by its actually

producing any such change.
Thus, if two teams of equal strength pull at opposite ends of a rope

]n a tug of war, the rope will not move, in spite of the great forces

which the two teams exert on it. This is because the two forces tend
to set the rope moving in opposite directions, and these tendencies

counteract each other.

75. Evidence derived from celestial phenomena.—Newton's
laws of motion are really axioms, for they cannot be proved by purely

mathematical reasoning. They rest on evidence derived from count-

less experiments and observations ; in Chapter IX., we shall describe

certain experiments by which they may be verified. But the most
conclusive evidence in their favour lies in the fact that in every c-ase

in which they have been adopted as the basis of calculations, the

results derived have been in strict accordance with actual observation.

As an instance we may mention their applications to the motions

of the Earth and planets about the Sun, and of the Moon about the

Earth. The Earth rotates on its axis once in just under 24 hours,

and this rotation causes a point on the Equator to move at the rate

of nearly 1000 miles an hour. The Earth also revolves about the

Sun once in every year, and its speed from tliis cause amounts to

about 1000 miles a minute. Yet we do not feel any sensation of

moving at these enormous speeds, as we should certainly do if mere
motion implied the existence of even a very small force. And, by
assuming the Second and Third Laws of Motion, as well as the

First Law, Newton and other astronomers have shown that all the

observed complicated motions of the Moon about the Earth, and of

the Earth and planets about the Sun, are natural consequences of the

mutual attraction that exists between the different portions of matter

forming them, and that it is this same attraction which gives rise to

gravity on our Earth, and to the tides produced by the Moon. Were
it not for tlie truth of the laws of motion, it would be impossible to

account so simply for the motions of the solar system.

76. Inertia and Mass.—Newton's First Law is some-

times called the law of inertia. It states that material
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bodies are unable of their own accord to change their

state of rest or motion.

We know that some bodies are mnch easier set in motion,

or stopped when moving, than others.

It is comparatively easy to set a small cricket-hall rolling along
the ground with considerable velocity, but to set a large cannon-hall
rolling even slowly requires a considerable effort. And, while we can
easily stop the cricket-ball when it is thrown towards us, we should
find it impossible to stop a cannon-ball travelling at anything like

the same speed.

This difference cannot be due to the difference of weight of the
balls, for, aa we do not lift them off the ground, we do not have to

overcome their weight in either case. And if the cannon-ball were
removed to the surface of the Moon, it could be lifted far more easily

than off the Earth ; but exactly the same effort as before would be
required to start it rolling along the ground.

The efforts required to produce the same change of

velocity in different bodies are proportional to the masses
of the bodies.

Thus, if the masses of two bodies are 1 lb. and 2 lbs., respectively,

and if both are set in motion with the same velocity, the effort exerted

in starting the second is double that exerted on the first.

Mass has been defined in § 5 as " quantity of matter."
The property in virtue of which more or less effort is

required to change the velocity of a body, is sometimes
called inertia^ so that mass may be said to be a measure
of inertia.

The properties of mass and force are so intimately

connected together that it is impossible to consider them
separately; accordingly a clearer idea of mass will be
formed when the next three chapters have been read.

77. Momentum.—Definition.—The momentum of a

body is a quantity measured by the product of its mass

and its velocity.

The momentum of a system of bodies is the sum of the

momenta of its different parts. If the mass be doubled,

the momentum, with the same velocity, will be doubled,

and with double that velocity it will be quadrupled

(Newton).
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If m denotes tlie mass, and t; the velocity of the body,

the momentnin = wiv (1).

The unit of momentum is the momentuTn of a unit

mass moving with unit velocity.

In the foot - pound - second system, the unit of

velocity is a velocity of one foot per second. Hence the

F. P. S. nnit of momentum is the momentum of a pound

of any substance moving at the rate of one foot per second.

Examples.—(1) The momentum of a 500-pound cannon-hall, when
fired with a velocity of 1,000 feet per second, is

= 500 X 1,000 = 500,000 foot-pound-second units.

(2) What momentum is produced when a mass of 20 lbs. falls

through a distance of 81 feet ?

Using the equation v^ = 2ffs,

we have v^ = 2 x 32 x 81 ;

,•. V = 72 ft. per sec.

;

.•. momentum = wv = 20 x 72 = 1440 ft.-lb.-sec. units.

The C.G.8. nnit of momentum is the momentum of

a mass of one gramme moving with a velocity of one

centimetre per second.

Example.—If a cannon-hall of 10,000 grammes is discharged with

a velocity of 50,000 centimetres per second, its momentum
= 10,000 X 50,000 = 500,000,000 C.G.S. units.

Summary op Results.

Newton s First Law.—Every body will continue in its

state of rest or of uniform motion in a straight line, except

in so far as it is compelled to change that state by

impressed forces.

Momentum of mass, m moving with velocity v

^ mv (1).



CHAPTER VI.

NEWTON'S SECOND LAW.

78. The quantity of motion (quantitas motus) of a

body or the " motion ** in Newton's Second Law, was
measured by the product of its mass and its velocity, and
accordingly is what we now call momentum. We may,
therefore, restate the law thus

:

Change of momentum is proportional to the impressed

force, and takes place in the direction in which the force is

impressed.

79. Observations. — Newton comments on this law
roughly as follows :

—

If any force generates a certain momentum, double that

force will generate double the momentum, and treble the

force will generate treble the momentum. This will be
the case whether the forces have been impressed simul-

taneously at a single instant (as occurs when a body is

struck with a violent blow) or gradually and successively

(as when the forces continue to act on the body for a
certain length of time). If the body was originally in

motion, the momentum produced by the force (since this

momentum is in the direction of the force) must be added
to that of the body if both are in the same direction, or

subtracted if they are in opposite directions. Or, if the
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force is in a direction inclined to the direction of motion,
the added momentum and the original momentum are
compounded to determine the motion of the body.

Newton's First Law gave us a definition of force. His Second Law
tells us how different forces are to be compared and measured. We
are not concerned in this chapter with the cases in which the force is

inclined to the direction of motion.

Examples.— (1) If a cricket ball is thrown with a Telocity of 50 feet

per second, the impressed force used in throwing it is twice as great
as if the same ball were thrown with a velocity of 25 feet per second,
for the impressed forces are proportional to the momenta produced,
and are therefore in the ratio 2 ; 1

.

(2) If two railway trains, of masses 120 and 90 tons, are started
together, and one of them acquires a speed of 60 miles an hour in the
same time as the other acquires a speed of 40 miles an hour, the
forces exerted by the engines of the two trains, being, by Newton's
Second Law, proportional to the momenta, are in the ratio of

m^v-^ : m^v^, or 120 x 60 : 90 x 40, or 7200 : 3600, or 2 ; 1.

80. The two measures of the effect of force.—
All forces with which we are acquainted have to act

for a greater or shorter length of time before they can
change the momentum of the bodies to which they are

applied. Newton's First and Second Laws show that as

long as a body is acted on by force, its momentum must
continually keep changing ; but as soon as the force

ceases to act, the body will move uniformly in a straight

line in obedience to Law I., and its momentum will remain
constant. Hence the effect of a force might be measured
in two different ways, as follows :

—

(i.) By the total change of momentum of the body on
which it acts.

This measure is called the impulse of the force, and is

the measure of force contemplated by Newton in his

Second Law. Newton's " impressed force " means

(ii.) By the rate ofchange ofmomentum., i.e. the change of

momentum per unit time which the force tends to produce.



Newton's second law. 75

This is the usual measure of a force. Except where
the " impulse of a force " is spoken of, it will always be
assumed that forces are measured by the intensity with
which they are applied at each instant, and not by the
accumulated effects of their action during the time which
has elapsed previously.

When a force is applied for two seconds, its total

effect in producing changes of momentum is evidently

twice as great as it' the force only acted for one second.

In other words, the impulse of a constant force is propor-

tional to the time during which it acts. If the force continues

to act during an indefinite time (as exemplified by the
weight of a body, which is continually tending to pull it to

the ground), its impulse continues to increase indefinitely,

and would, therefore, be a most inconvenient measure of

the force for practical purposes.

81. Application of Newton's Second Law to the
comparison and measurement of forces. — Writing
Newton's Second Law in the following form

—

The total change of momentum is proportional to the

impulse of the applied force—
we may apply it to the measurement of forces as follows :

—

Let any specified force be chosen as the unit of force,

and let h denote the velocity this force would impart to a
body of unit mass if applied to it for a unit of time (say

one second).

Then, since the mass in this case is unity, therefore

1 unit of force acting for I second produces a momentum
or change of momentum whose measure is k

;

Therefore 2 units of force, acting for 1 second, produce
a change of momentum whose measure is 2k, and so on.

Thus P units of force, acting for I second, produce a
change of momentum whose measure is Fk.

If the force P, instead of acting during 1 second, acts

during 2 seconds, the change of momentum during either

second is Pk ; and therefore the whole change of

momentum in 2 seconds is 2Pk ; and so on.
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Thns, in t Feconds, the wbole change of raomentam
produced bj the force F is tPk.

Now let the force P be applied to a body of mass m,
and let the velocity of the body be changed from u to v

in the time t.

Then the momentum is changed from mu to mv, and
therefore the whole change of momentum is mv—mu.

Hence, by what has been shown above,

mv—mu = tPk\

/. kTt=^m{v—u) (1);

and /. kJP =

= iiix£::::l* (u).

Equation (1) or (1a) determines the force P which
must be applied to a body of given mass in order to

change its velocity by a given amount in a given time.

It is to be observed that the value of k depends upon
what force is chosen as the unit of foi'ce.

Example.—If the unit of force is that force which, when acting on
1 lb. for 1 second, imparts to it a velocity of 32 feet per second, to

find the mc asure of the force required to impart a velocity of 60 miles

an hour to a railway train of 100 tons in 2 minutes.

Let P be the measure of the required force, and take 1 foot, 1 lb.,

1 second as units of length, time, and mass.

The velocity acquired by the train in 2 minutes = 88 feet per
second, and the mass of the train = 224,000 lbs.

Therefore the momentum imparted by P in 2 minutes

= 88 X 224,000 F.P.S. units.

Now a force 1, acting for 1 second, produces 32 such units of

momentum.
Therefore a force P, acting for 1 second, produces 32 P units of

momentum; and a force P, acting for 120 seconds (or 2 minutes),

produces 32 x r20P units of momentum.
This must be equal to the momentum just found

;

.-. 32 X 120P = 88x224,000;

... P=^liii2M00 = 5133i units of force.
32x120 ^
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82. To show that the rate of change of momentum
of a body is proportional to the applied force.

If k is the change of momentum produced in 1 second

by the unit of force, we have shown that the change of

momentum produced in each second bj the force P is Pk.

But the change of momentum produced in each second

measures the rate of change of momentum -per second.

.'. rate of change of momentum = kP.

and is proportional to P, the applied force.

Observation.—Some writers have re-worded the Second Law of

Motion thus; "Rate of change of momentum is proportional to the

impressed force. ^"^ According to this statement the impressed force

would be measured in the ordinary way, and not by its impulse. It

would he convenient in some respects to adopt this as the second law
of motion ; but if this were done, we could no longer regard it as

Newton's Second Law.

83. To show that the force acting on a body is

proportional to the product of its mass and its

acceleration.

In motion under uniform acceleration /, we have

v— u =ft.
But, by (1), kPt = m(v-2i);

.-. kPt = mft ;

/. kr = mf,

or r=zmf^k (2).

Therefore P is proportional to the product mf, as was
to be shown.

Corollary 1. — A constant force produces a uniform
acceleration.

For, evidenily, as long as P remains constant, the acceleration /
remains constant, and its value does not depend on the length of time
during which the force acts.

Corollary 2.—WLen the acceleration is variable, the
force producing by it is variable, but the force at any
instant is still proportional to the product of the mass into
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the acceleration at that instant^ so that the relation (2)

kP = mf
still affords a measure of the force at each instant of the

motion.

[To prove this, it would only be necessary to consider the change
of momentum produced in an interval of time t so small that the

acceleration had not time to alter during the interval (cf. § 40)].

84. To compare dijGTerent forces. — The relation (1) shows
that different forces are proportional to the velocities which they
would impart to the same mass or to equal masses in the same or

equal intervals of time.

For, supposing the equal masses m to start from rest and to acquire

the velocities v, v' in the interval t, under the forces P, JP', respect-

ively, putting w = in equation (1), we have

mv = kPt;

similarly w/ = kJP^t
;

,, » mv kPt
therefore —; = 7—- »

mv kFt
V P

or — = -^ »

as was to be proved,

85. Generalization.—More generally: Let m, m' be the masses of

two particles, and let their velocities be changed from «, ti' to v, v' in

the intervals of time t, t' respectively ; then if P, P' be the forces

required to produce the changes of motion, we have, by (1),

kFt = m{v^u), kPr = m'iv'-u');

and .*. = —77^ TT-
p't' »w. (v'

—

u)

This relation may be regarded as an analytical statement of the

Second Law of Motion.

86. Dynamical Units of Force.

The relations (1), (2) will always be true whatever be

the unit of force adopted, provided that a suitable value

be given to the quantity h. Thus the unit of force may be

chosen to be the weight of a pound, or the weight of a

ton, or any other force. We shall now show that the unit

of force may be chosen so that the constant A; = 1, and

that the equations of motion will then be much simplified.
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Definition.—The Dynamical or Absolute Unit of

Force is that force which, luhen applied to a unit of mass for

a unit of tiine imparts to it a unit velocity.

The magnitude of this unit depends on what units we
adopt for measuring mass, length, and time. The dynami-
cal unit of force in the foot-pound-second system is called

thepoundal; and the dynamical C.Gr.S. unit of force is

called the dyne.

87. Definition.—The poundal is that force which, when

applied to a pound of matter for one second^ imparts to it a

velocity of one foot per second.

The poundal is roughly equal to the weight of half-an-

ounce.

Definition.—The djne is that force which, when applied

to a mass of one gramme during one second, imparts to it a

velocity of one centimetre per second.

The dyne is a very small force indeed, being only

4.4 6^0 4¥ ^^ ^^® weight of a pound. For this reason forces

are often measured in megadynes, the megadyne being
one million dynes. A megadyne is rather more than the
weight of a kilogramme.

Example.—^To express the poundal in dynes.

A poundal acting on a pound for one second imparts a velocity of
1 foot per second.

But a pound = 453*7 grammes,

and a foot = 30'48 centimetres

;

therefore a poundal acting on 463*7 grammes for 1 second imparts a
velocity of 30*48 centimetres per second.

Therefore momentum imparted by a poundal in 1 second

= 453-7 X 30-48 = 13780 C.G.S. units.

But a dyne imparts 1 C.G.S. unit of momentum in 1 second; •

a poundal = 13780 dynes, roughly.
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88. Equations of motion in Dynamical Units.—
When force is measured in dynamical units, the value of

k in equations (1), (2) is equal to 1.

For k has been defined as the velocity produced by a

unit force acting on a unit mass for a unit time, and, by
the definition of § 86, this velocity is unity;

.-. k=l.

[Or, since by the definition of the dynamical unit we have P= 1,

when m = 1, < = 1, w = 0, V = 1, therefore, by (1),

k.l.l = 1(1-0), or k = 1.]

Patting fe = 1, equation (1) assumes the form

I*t = ni (v—u) = mv—mu (3) ;

or Change of momentum is eq^ual to the impulse of the force

measured in dynamical units.

Also, by § 82,

The rate of change of momentum is equal to the force,

-^.''^(2). p = ^^ (^).

or The measure of the applied force is equal to the product

of the measures of the mass and the acceleration.

It will be noticed that the dynamical unit of force is

the force which, when applied to a unit mass, causes it to

move with unit acceleration.

This is at once evident from the equation F = mf. For / = 1

when P = 1 and m = 1

.

The equation P = m/, together with the equations of

uniformly accelerated motion of Chap. TIL, are sufficient

to solve any problem relating to the motion of masses

under the action of forces when these forces are measured

in pour dais or dynes.



Newton's second law. 81

Examples.—(1) A force of 3 poundals acts on a mass of 4 ounces.

What is the acceleration produced ?

In equation (4), substituting P = 3 poundals,

m = 4 oz. = J lb.,

we have 3 = \f;
,'. /= 12 ft. per sec. per sec.

(2) How far can a force of 10 dynes move a kilogramme from rest

in a minute ?

Let/be the acceleration. Then the equation P = m/or 10 = 1000/
gives/ = -01 cm. per sec. per sec.

And distance traversed fi om rest in one minute

= i/- ^'^ = i . (01) X 602

= 18 centimetres.

89. Sudden changes of momentum. — Impulsive
forces.—Although all forces contimie to act for a certain

length of time, there are many forces which only act

during a very short interval, and which nevertheless pro-

duce a considerable change of momentum in that interval.

Such a force is called an impulsive force or blow.

As an illustration, consider the action called into play when a
billiard ball is struck with a cue. The whole change of momentum
takes place during the instant that the cue is in contact with the ball.

The ball rebounds almost immediately, and as soon as contact ceases

it begins to move uniformly along the table.

An impulsive force is measured by its impulse {i.e., by
the first method of § 80), and not like an ordinary force.

This mode of measurement is adopted for two reasons

—

(i.) Because it is not often necessary to investigate the motion
which takes place during the short interval while the impulsive force

is acting. The total change in the motion is usually alone of

importance.

(ii.) Because such forces do not usually remain constant during
their time of action, and it would be very difficult to estimate their

intensity at every instant of so short an interval.

It is convenient to take as the dynamical unit of
impulse the impulse of a blow which produces a unit of

momentum. Newton's Second Law asserts that a blow
whose impulse is I will then produce a change of mo-
mentum of I units. If this blow be expended in changing

DYN. O
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the velocity of a mass m from u to v, we have, therefore,

1= m(v—u) (5);

or, Impulse = change of momentum.

If we had ch.08en any other unit of impulse, we should have had

Id = m {v— u)y

where the value of Jc would depend on the unit adopted.

Observation.—The dynamical unit of impulse in the foot-pound-
second system is evidently equal to the impulse of a poundal acting

during one second. Similarly the C.G.S. unit of impulse is the

impulse of a dyne acting during one second.

Example.—If a cannon-ball of 50 lbs. is shot with a velocity of

1200 feet per second, the momentum produced is 50 x 1200 or 60,000

F.P.S. units, and therefore the impulse of the explosive force of the

powder is 60,000 foot-pound-second units of impulse.

Summary op Results.

Newton^s Second Law.—Change of momentnm is pro-

portional to the impulse of the force, and takes place in

the direction in which that impulse is impressed.

For motion in a straight line, this gives

lcPt = m(v-u) (1),

kP = mf (2).

When the forces are measured in dynamical units,

A; = 1, and the equations become

Ft= m(v-u) (3),

r = mf (4).

For the change of motion due to a blow whose measure

in dynamical units of impulse is J,

I = m (v — t*) = change of momentum ... (6).



hewton's second law. 83

EXAMPLES v., VI.

1. What is the moraentum acquired hy (i.) a mass of 1 oz. after

falling for 2 seconds, (ii.) a mass of 1 cwt. after falling through

1 foot, (iii.) a mass of 1 milligramme after falling through 1 metre ?

2. Equal forces act on two bodies whose masses are if and m; at

the end of a second the former is moving at the rate of 10 mUes an

hour, and the latter at the rate of 110 feet a second. Find the ratio

oi Mto m. State the physical principle that justifies your answer. ^

3. A force F, acting on a body of weight (mass) 10 lbs., increases

its velocity in every second by 7 feet a second ; another force Q,

acting on a body whose weight is 25 lbs., increases its velocity in

every second by 9 feet per second Compare the forces.

4. If a constant force will pull a body through 10 feet in a second

from rest, how far will it pull the body in a minute from rest ? How
fast will the body be moving at the end of the time ? »'

6. A steam engine moves a train of mass 60 tons on a level road

from rest, and acquires a speed of 5 miles an hour in 5 minutes. If

the same engine move another train and give it a speed of 7 miles an

hour in 10 minutes, find the mass of the second train. (The

mass of the engine is included in that of the train, and the forces

exerted by it are the same in both cases.)

6. If a force of 15 poundals act upon a mass of 13 pounds, what
velocity will it generate in 8 seconds ?

7. What force, acting for 6 seconds on a mass of 12 lbs., will

change its velocity from 200 to 320 feet per second ?

8. What force must be applied for one-tenth of a second to a

mass of 10 tons in order to produce in it a velocity of 3,840 feet per

minute. What would be the momentum of the mass so moving ?

[N.B.—A numerical answer is meaningless unless the unit •

intended is also stated.]
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9. A railway train whose mass is 100 tons, moving at the rate of a

mile a minute, is brought to rest in 10 seconds by the action of a

uniform force. Find how far the train runs during the time for

which the force is applied. Also determine the force, stating the

units employed.

10. A mass of 1 ton is moving at the rate of 60 miles an hour, and

1 minute later it is moving at the same rate, but in the reverse

direction. What force (expressed in poundals) must have acted on

the mass during the interval ?
"*

11. A certain force, acting on a mass of 11 lbs. for 5 seconds, gives

it a velocity of 4 feet per second. Obtain (i.) the magnitude of the

force, and (ii.) how long an equal force must act on a mass of 4 lbs. /

to move it through a distance of 27^ feet from rest.

12. A cricket ball weighing 4 oz. is travelling horizontally at the

rate of 45 miles an hour. What impulse must be given to it so that

it may start back with a velocity of 35 miles an hour ?
''

13. The velocity of a body is observed to increase by four miles pei

hour in every minute of its motion. Compare the force acting on it

with the force of gravity. (Accel, of gravity = 32 ft. per sec. per sec.) J

14. A mass of 1 kilogram starting from rest acquires a velocity of

1 metre per second in 1 second ; another mass of 1 kilogram also

starts from rest and acquires a velocity of 1 metre per second after

moving a distance of 1 metre. Find the forces acting on the two

masses, and state the name of the unit of force employed.

15. Two bodies initially at rest, whose masses are respectively

1 gramme and 100 grammes, move towards each other by virtue of

an attractive force of 0*1 dyne. Find the velocity acquired by each

in 3 seconds.

16. If 10 lbs., 1 yard, and 1 minute ars the units of mass, length,

and time, find the dynamical unit of force.

17. If the unit of mass is the mass of 12 lbs., and the units of

length and time are 14 feet and 12 seconds respectively, find the

measures of the mass, velocity, and momentum of a body which

weighs 1 cwt. and is moving with a velocity of 36 feet per second.
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NEWTON'S THIRD LAW.

90. Newton's Third Law may be stated thus

:

To every action there is an equal and opposite

reaction

;

Or, Action and reaction are always eqnal and
opposite.

Here action means the force which one body exerts on
another, and the law states that the second body always
exerts on the first an equal force in the opposite direction

in the same straight line. This force is called the

reaction of the second body on the first. In other words

:

" Whatever presses or pulls something else is pressed or

pulled by it to the same amount.^*—(Newton.)

Observation.—The law is true whether the bodies are

at rest or in motion, and whether they press against one
another through being in contact, or act on each other at

a distance (like a magnet acts on a bar of iron), provided
they act directly on one another, i.e., not through a third
intermediate body, nor through a system of such bodies
or machines.

91. Statical illustrations of action and reaction.

(1) " Jjf anyone presses a stone with his finger, his finger is

also pressed by the stone.''—(Newton.)

(2) ^^ If a horse draws a block of stone tied by a rope, the

horse is, so to speaJc, drawn back equally towards the stone,**

—(Newton.)



86 DTNAWTCS.

Of course this reaction of the stone does not actually

make the horse move backwards towards the stone, but
only tends to do so; or, what is more correct, tends to

prevent the horse from moving forward under the action

exerted by his feet on the ground. If the rope were
suddenly cut, and the horse continued to exert the same
effort with his feet as before, he would start so quickly

into motion that he would probably fall over forwards.

As Newton puts it, the pull of the rope " impedes the

progress of the one by the same amount that it promotes
the progress of the other."

(3) If a ladder is allowed to lean against a wall, the ladder presses

against the wall and the wall pushes with an equal force against the

ladder. The action of the ladder tends to overturn the wall, and will

actually overturn it if the masonry is weak and gives way. The
reaction of the wall on the ladder prevents the ladder from falling

over, as it would at once do if it were placed in the same position

without such support.

92. Thrust.—Definition.—When the action and re-

action of two bodies tend to keep them apart from one

another, or to prevent them from moving towards one

another, they constitute a thrust, or a push.

The first illustration of § 91 affords an instance of a thrust. The
finger exerts a thrust on the stone tending to push it away, and the

stone exerts a thrust which prevents the finger from penetrating it.

93. Pull.—Definition.—When the action and reaction

of two bodies tend to keep them together or to prevent

them from separating, they constitute a pull, or tension.

Thus in the second illustration of § 91 the horse exerts a pull on the

stone, and the stone exerts an equal and opposite pull on the horse.

94. Attraction and repulsion.—Definition.—When
bodies act on one another at a distance (as a magnet acts

on a bar of iron), the force between them is called an

attraction if it tends to bring them together, or a

repulsion if it tends to separate them.

Thus the Earth's attraction causes bodies to fall to the ground with

the acceleration g (Chap. IV.).
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95. Friction.—Definition.—When the action and re-

action between two bodies tend to prevent them from
sliding one along the other, they constitute what is

known as friction.

When a book rests on a table, and we try to push it along the
table, we shall experience a certain resistance. This is due to the

friction between the table and the book, which tends to prevent the

book from slipping.

96. Applications of the Third Law to locomotion.

(1) The act of walking affords an excellent example of

the equality of action and reaction, as well as of the

properties of friction. In starting ofif to walk we press

backwards on the ground with our feet, and the reaction

of the ground gives us an equal and opposite impulse
forwards, which sets us in motion.

This action and reaction are due to friction. If we try

to walk across a smooth sheet of ice, we shall experience
some difficulty, because only a very small amount of

friction can be called into play between our feet and the
ice.

(2) Motion of a horse and cart.—When a horse and cart

are just starting into motion, the horse exerts a forward
pull on the cart, and this pull sets the cart in motion.

It follows from Newton's Third Law that the cart exerts

an equal and opposite backward pull on the horse. If

this were the only force acting on the horse, the horse
would move backwards towards the cart instead of

forwards, and this we know is not the case.

But the action of the horse's feet in the act of walking
presses backwards on the ground, and therefore the equal
and opposite reaction of the ground (due to friction) tends
to push the horse forwards. This reaction exceeds the
backward drag of the carfc by an amount sufficient to

produce the acceleration with which the horse starts into
motion.

Let the masses of the horse and cart be m and J/ respectively.
Let P be the pull between the horse and cart, and F the horizontal

force of friction between the horse's feet and the ground, both
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expressed in dynamical units of force. Let/be the common accelera-
tion of the horse and cart (both of which move together, of course).

The cart is acted on by the pull F drawing it forwards, and there-

fore, by § 88, F=Mf (i.).

The horse is acted on by i^ pushing forwards and the reaction equal
and opposite to T pulling backwards ; since the latter acts in the nega-
tive direction, it is represented algebraically by —F. Hence the
force instrumental in producing changes of motion is F—P.

Therefore F-F = mf (ii.).

Adding (i.) and (ii.),

F= {M+m)f (iii.)

= (total mass of horse and cart) x (acceleration).

This shows that the change of motion in the horse and cart when
considered together as a whole is that due to the force F acting on
their combined mass, as we should expect.

Eliminating/from (i.) and (ii.) by cross multiplication, we have

M{F-F)-mF=(i\

.-. P=-~F (iv.),M + m
giving F (the pull on the cart) in terms of F (the action of the horse's

feet). In forming these equations, no account has been taken of

friction or inertia of the cart-wheels, resistance of the air, &c.

(3) In a railway engine the action of the steam causes the driving
wheels to press backwards on the rails, and the reaction of the rails

not only sets the engine in motion, but also causes it to pull the train

after it.

Here again action and reaction are due to friction, and, if the rails

are greasy and the train heavy, the wheels will sometimes skid round
instead of impelling the train forwards.

(4) The propulsion of a bicycle depends on exactly the same principle

—the propelling force is the reaction of the ground, which is exactly

equal and opposite to the action of the driving wheel produced by the

rider pressing on the pedals.

97. Changes of momentum due to action and
reaction.

In the last chapter we saw that the effects of forces

might be measured either

by the total changes of momentum they produce (or

tend to prodnce), i.e. their impulses ; or

by the rates of change of momentum, i.e. their impulses

per unit time.

Now action and reaction act during the same time,
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hence the Third Law asserts that the changes or tendencies

to changes of momentum of two bodies due to their action

and reaction are always equal and opposite. As Newton

" If one body impinges on another, and by its action

changes the momentum of the latter in any way, the first

body will in its turn undergo an equal change of momen-
tum in the opposite direction due to the reaction of the

second (because of the equality of the mutual pressure).

These actions give rise to equal changes of momentum^ not

of velocity, provided that the bodies are not impeded by
other forces. And since the changes of momentum are

equal, the changes of velocity produced in opposite direc-

tions are inversely proportional to the masses of the

bodies."

98. The recoil of a gun affords a good illustration of

this property. The explosion of the powder inside the

barrel exerts equal and opposite impulses on the shot and
the gun, and causes them to move in opposite directions

with equal momenta. Hence, if the speed of the shot be
given, the speed of recoil can be found.

Examples.— (1) If a 700-lb. shot be fired from a 75-ton gun, with a
speed of 1200 feet per second, to find the speed of recoil of the gun.

Here the momentum of the gun is equal and opposite to that of

the shot.

Now, momentum of shot = 700 x 1200 foot-pound-second units, and
.'. momentum of gun is also = 840,000 F.P.S. units.

But mass of gun = 75 x 2240 = 168000 lbs.
;

, ., , ., momentum 840000 c . - ,
.'. velocity of recoil = = -——-—

- = 5 feet per second.
mass 168000 ^

(2) If a 14-lb. shot leave the muzzle of a 2-ton gun with a relative

speed of 540 feet per second, to find the speed of recoil.

Let V feet per second be the required speed of recoil ; then, since

the relative speed of the shot is 540, its actual speed in the direction

opposite to that of recoil is 640— v. Also the masses of the shot and
gun are 14 and 4580 lbs. respectively.

Therefore, since the momenta are equal and opposite,

14x(540-t') = 4480 xv;
.-. 640-'y-S20t; = 0;

.«. V =— = —- = 1-682 feet per second approximately.
321 107

rr J
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Observation.—^Note that the body of greater mass undergoes the
smaller change of velocity, and vice versa. Thus the speed of recoil

of a large gun is very small compared with the speed of projection of

the bullet.

99. The propulsion of a rocket depends on the same
principle. As the contents of the rocket bnrn away, the

products of combustion are projected with considerable

velocity, and the downward impulses which project them
continually give rise to equal and opposite upward
impulses on the case of the rocket, causing it to rise in

the air.

100. Comparison of masses.—The same principle

suggests a simple means by which the masses of two
bodies could theoretically be compared. Suppose the

bodies A and B to have a small coiled-up spring placed

between them, and let this spring be suddenly released,

without jerking the bodies in any way. The springy will

exert equal and opposite impulses on A and B, and there-

fore A and B will separate with equal and opposite

momenta. Hence

(mass of >4) X (speed of ^) = (mass of B) X (speed of B)
;

mass of A _ speed of B
mass of B speed of A

Hence, by observing the speeds (or velocities in opposite

directions) with which the bodies /, B move after leaving

the spring, the ratio of the masses of A and B could be

found.

If one of the masses, say 5, be taken as the unit of

mass, say a pound, the ratio of the speeds will give the

mass of A in pounds, i.e.y in this case mass of A in pounds
= (speed of ^)/(speed of A).

To compare the masses of two bodies it is not necessary to

start them from rest by a spring placed between them.

If they are allowed to collide with one another in any
way, they will undergo equal and opposite changes of

momentum, and therefore, as remarked by Newton, the
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changes of velocity will be inversely proportional to the

masses.

Thus, if the velocities of two bodies (measured in the

same direction) are changed from ?7, u to F, v by a

collision between them, and if the masses of the bodies

are M, m, then, since the changes of momentum are equal

and opposite, M(V—U) = —m(v—u),
M v — u

or m U-V'
Obsbrvation.—This relation may be written

MV+mv = MTT+mu
;

or, momentum after the action = momentum before the action.

101. Quantitative definition of mass. — We are,

therefore, now in a position to give the following quanti-

tative definition of mass :

—

The tnass of any body is the measure of the quantity of

matter in the body, defined by the law that the changes of

velocity produced in two bodies by their mutual reactions are

inversely proportional to their masses.

102. The Principle of Conservation of Momentum.
Since the changes of momenta are equal and opposite,

the momentum of one body will increase by the same
amount that the momentum of the other decreases. This
will always be algebraically true, provided that we make
the same conventions with regard to sign for momenta as

for velocities {i.e. we regard the momenta of bodies
moving in one direction as positive, and the momenta of

bodies moving in the other direction as negative). The
only effect of the action and reaction will be to transfer

momentum from one body to the other, without altering

the algebraic sum of their momenta. In other words :

The total momentum of a system of moving bodies in any

direction is not altered by the mutual reactions of the several

bodies.
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This property is called the Principle of Conservation
of Momentum. It holds good for any number of bodies.

It is enunciated and proved by Newton as follows :

—

" The quantity of momentum formed by adding together

the momenta of those bodies which are moving in one direction^

and subtracting the momenta of those moving in the reverse

direction^ is not altered by the action of the bodies on one

another.^*

" For, by Law III., action and reaction are equal and
opposite, therefore by Law II. they produce equal changes
of momentum in opposite directions. Hence, if the bodies
are moving in the same direction, what is added to the
momentum of the body in front is subtracted from the
momentum of the body behind, so that the sum remains
the same as before. If the bodies are moving in opposite
directions, an equal amount of momentum will be sub-
tracted from both, so that the difference of momentum of

the parts moving in opposite directions will remain the
same."

Examples.— (1) A ball of mass 3 lb., moving with velocity 2 feet

per second, is struck by a ball of mass 1 lb., moving in the same
direction, with a velocity of 10 feet per second. If after the blow
the smaller ball comes to rest, find the subsequent velocity of the
larger one.

Momentum of smaller ball before blow = 1x10 = 10 units,

,, ,, ,, after ,, = ;

.'. change of momentum of smaller ball = — 10 = — 10 units.

The change of momentum of the larger ball is equal and opposite
;

and therefore = + 10 units.

But, before the blow, momentum of larger ball = 3x2 =» 6 units

;

after „ ,, ,, ,, = 6 + 10 = 16 units;

and its mass = 3 lbs. ;

.*. its velocity = -J^ >= 6^ ft. per sec.

(2) A billiard cue of mass 1 lb., moving with velocity 10^ feet per
second, strikes a ball of 5 oz. at rest. If immediately after the blow
the cue and ball move with a common velocity, find this velocity.

Before the cue strikes the ball, we have 1 lb. moving with

10^ F.P.S. units of velocity, and -^ lb. without any velocity

;

.*, total momentum = 1 x 10^ +^ x = 10^ F.P.S. units.



NEWTON'S THIRD LAW. 93

After the blow the momentum is the same as before, but the whole
mass, 1 ^^ lbs., is moving with a common velocity. Hence, if the

required velocity in feet per second is y, we have

.. velocity v = ^ x -iS- = 8 feet per second.

Hence the ball and cue move off with a velocity of 8 feet per second.

(3) A goods truck of 6 tons, travelling at 3 miles an hour,

collides with another truck at rest, and both move on together at

2 miles an hour. To find the mass of the second truck.

Taking a mile, an hour, and a ton, as units of length, time, and
mass, the momentum of the first truck is decreased by the collision by
6 X (3 — 2) or 6 units, and therefore 6 units of momentum are imparted
to the second truck.

But the velocity acquired by the latter is 2 units
;

hence its mass = a = 3 units of mass
;

.*. the mass of the second truck is 3 tons.

Or, as we should more commonly express it, the second truck
weighs 3 tons.

103. Inelastic and elastic bodies. — When two bodies (for

instance, two balls) collide, they sometimes continue to remain
together and move on with a common velocity. Such bodies are said

to be inelastic. In other cases the bodies rebound, and separate after

striking each other, and they are then said to be more or less elastic.

The laws which govern the rebound of elastic bodies have been
determined experimentally, and will not be detailed here.

104. External and internal forces.—When we are dealing
with the motion of a particular system of bodies, the actions and
reactions between the different pairs of bodies are called internal
forces of the system. Forces due to the action of bodies that do not
belong to the system which we are considering are called external
forces or impressed forces of the system.

By the Principle of Conservation of Momentum the total momentum
of a system is unaltered by the internal forces of the system, but it

may be altered by external forces. In that case an equal and opposite
change is produced in the total momentum of the bodies (outside the
system considered) by whose action the external forces are impressed.

105. Bieactiou of motions relative to the Earth.—
Newton's Third Law shows that when a man jumps off the
ground, he communicates to the Earth an amount of

momentum equal and opposite to that of his own motion.
But the mass of the Earth is so great—being about 6,067
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million billion tons—that the velocity thns imparted to

the Earth is absolutely imperceptible.

Moreover, the Earth yields slightly under the man, so

that, instead of the motion getting transmitted to the

whole Earth, only a slight vibration is produced in the
Earth in his immediate neighbourhood. In the case of a
man jumping, this vibration is imperceptible ; but larger

moving masses, such as traction engines and railway
trains, as also sudden explosions, often shake the ground
for a considerable distance.

Summary op Results.

Newton's Third Law.— Action and reaction are equal

and opposite.

The Principle of Conservation of Momentum.—The total

momentum of a system of bodies is not altered by their

mutual reactions.

If the velocities of two masses M, m are changed from

Z7, u to Vi V by their mutual reactions,

M u—v v—i
u-v u-v or MV-\-mv = MJJ+mu.

EXAMPLES VII.

1. Each of two hodies attracts the other with the same force. If

allowed to move, show that in any given time they move over dis-

tances which are inversely proportional to their masses.

2. Enimciate Newton's Laws of Motion. A shot weighing 20 Ihs.

is fired from a gun weighing 5 tons, with a velocity of 1120 feet per

second. Find the velocity with which the gun recoils.

3. A 10 lb. shot is fired from a gun weighing 1 ton, with a velocity

of 1000 ft. per second. Find the velocity with which the gun

recoils.
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4. An 80-ton gun on a smooth horizontal plane projects a bolt of

5 cwt. horizontally with a velocity of 1200 feet per second. What is

the velocity of recoil ?

5. A gun weighing 6 tons is charged with a shot weighing 28 lbs.

If the gun be free to move, with what velocity will it recoil when the

ball leaves it with a velocity of 100 ft. per second ? ^

6. Just as a tramcar reaches a man standing by the tramway it has

a velocity of 8-^- feet per second ; the man takes hold of and mounts

the car. What change of velocity takes place, the weights of the car

and man being 1 ton and 10 stone respectively ?
^

7. A shell, moving with a velocity of 50 ft. per second, bursts into

two parts, which weigh respectively 30 lbs. and 62 lbs. The velocity

of the larger piece is increased to 80 feet per second. What is the

velocity of the smaller ?

8. A ball /I, of weight 10 lbs., strikes a body B at rest, weighing

100 lbs., with a velocity of 100 ft. per second. Find the velocity of

B, supposing A brought to rest by the impact.

9. Three goods trucks, weighing respectively 6 tons, 7 tons, and

8 tons, are placed on the same line of rails. The first is made to

impinge on the second with a velocity of 60 feet per second without

rebounding. The first and second together impinge in the same way

on the third. Find the final velocity.

10. Two wooden balls, weighing 12 oz. and 16 oz., are connected by

a long coiled-up string. The smaller is projected with a velocity of

12 ft. per second. With what velocity must the larger be projected

in order that both may come to rest when the string becomes tight ?

11. Two balls whose weights are 6 kilog. and 10 kilog., and whose

velocities are 50 and 20 metres per second, approach in opposite direc-

tions, and, after impact, move on together. Find their common

velocity.

12. Two pieces of magnetized iron, subject to their mutual attraction

and to no other forces, start from rest. If their masses are 5 grammes

and 2 grammes, and the acceleration of the larger one is 40 cm. per

sec. per sec, find the acceleration of the smaller, and the force of

attraction, expressed in dynes.
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EXAMINATION PAPER III.

1. State Newton's Second Law of Motion in forms applicable

(i.) to finite forces, (ii.) to impulsive forces.

2. Explain the equation P = Mf.

3. State the Third Law of Motion, and explain clearly its applica-

tion to the case of a horse starting a cart into motion.

4. A 30-ton mass is moving on smooth level rails at 20 miles an

hour ; what steady force can stop it (a) in half-a-minute, {b) in half

-

a-mile ?

5. Find the acceleration produced, and the momentum acquired in

one minute when a force of

(i.) 32 poundals acts on a mass of 1 cwt.

;

(ii.) 5 dynes acts on a mass of 1 milligramme.

6. Define momentum. What is inertia ? Is it a force ?

7. A ball of mass 8 lbs. and velocity 60 ft. per second impinges

directly on another ball of mass 45 lbs. and velocity 45 feet per

second in the same direction. They move on together after impact.

What is their common velocity ?

8. When a man in a small boat moves forward, the boat begins to

go backwards. Why is this? If the man weighs 12 stone, and the

boat 18 stone, and the boat is 10 feet long, how far will the boat move

back in the water when the man walks from one end to the other, if

the resistance of the water be neglected ?

9. What momentum is produced when a mass 10 lbs. falls for

7 seconds ?

10. If the metre, the minute, and the kilogramme be taken as the

units of length, time, and muss, compare the unit of force with the

dyne.



CHAPTER VIII.

WEIGHT AND ITS RELATION TO MASS.

GRAVITATION UNITS OF FORCE.

106. Weight.—Definition.—The weight of a body is

the force with which it is attracted to the Earth.

When we lift a body off the ground, we have to exert

a certain force in order to overcome its weight. If the

body rests on a table, it presses on the table with a force

eqnal to its weight. If the body is nnsupported, it will

fall to the ground ; hence Newton's First Law of Motion
shows that some force must be acting on it. This force

is the body's weight. We shall now show that

107. The weights of different bodies are pro-

portional to their masses.

For in Chapter IV. we saw that all bodies fall to the

ground with the same acceleration.

But, by § 83, the force acting on any body is proportional

to the product of its mass and its acceleration.

In the case of a falling body the force is the weight of

the body.

Therefore the weight is proportional to the mass, as was

to be shown.
DYN. H
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108. To express the weight of a given mass in

dynamical units of force.

The acceleration of a falling body has been denoted by

gf, and it has been shown in Chapter IV. that

g = 32 ft. per sec. per sec.

= 981 cm. per sec. per sec.

This acceleration is produced by the weight of the body
acting on its mass.

(i.) In the foot-ponnd-second system we have

9 = 32.

Hence the weight of 1 lb. acting on the mass of 1 lb.

produces an acceleration whose measure is 32.

But, by the definition of the poundal (§ 87),

a force of 1 poundal acting on a mass of 1 lb. produces a

unit of acceleration, i.e. an acceleration whose measure is 1
;

weight of a pound = 32 poundals (1).

Hence also,

a force of one poundal = 75^weight of one pound

= weight of half-an-onnce.

[More accurately, the weight of a pound is 32*2 poundals.]

(ii.) In the C.G.S. system, we have

gr = 981
;

therefore the weight of 1 gramme acting on the mass of

1 gramme produces an acceleration of 981 C.G.S. units.

But, by the definition of the dyne (§ 87),

a force of 1 dyne acting on a mass of 1 gramme produces

1 C.G.S. unit of acceleration
;

.-. weight of a gramme = 981 dynes (2).

Hence also,

a force of I dyne = e^y weight of a gramme.
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(iii.) Genexrally, if W denote the weight of the mass m
measured in dynamical units of force, then, in the equation

where/=sr, P=TF;
.-. W=mg (3),

or weight (in dynamical units) = (mass) x g.

In this book, when the weight of a body is measured in

dynamical units of force, we shall, for brevity and to

avoid confusion, speak of it as the " absolute weight "

of the body. Hence

absolute weight of mass M = Mg,
or in words,

(absolute weight) = (mass) x (accel. of gravity).

109. Gravitation unit of force.—The forces which
occur most frequently in mechanical problems are those

due to weight ; moreover the weight of a gc ven quantity

of matter is a force which is easily reproduced as a
standard of comparison, while a poundal or a dyne is a
difficult unit to reproduce. For this reason it is con-

venient, both in engineering work and in all statical

investigations (where the forces are due to weight, and
no motion takes place), to measure force in terms of the

weight of a definite quantity of matter.

Definition.—The gravitation unit of force is the

weight of the unit of mass.

Where masses are measured in pounds, the gravitation

unit offorce is the weight of one pound.

If the gramme is taken as the unit of mass, the gravita-

tion unit offorce is the weight of one gramme.

The measure of a force in gravitation units is really the
measure of the mass whose weight is equal to that force.

By " a force of 1 lb." is meant " a force equal to the

weight of a pound."
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Similarly, a force of 10 tons or " a force of 5 oz." denote
forces equal to the weight of 10 tons or 5 oz., respectively.

To avoid confusion, however, it is better always to add
the word " weight " or its abbreviation " wt.," and we
may therefore speak of the above forces as " 1 lb. wt.,**

** 10 tons wt.j" *' 6 oz. wt.y'' respectively.

In like manner, by forces of " 1 gramme," " 5 kilo-

grammes," or "31 milligrammes" are meant/orces equal to

the weights of 1 gramme, 5 kilogrammes, and 31 milli-

grammes, respectively, and these are more accurately

spoken of as " 1 gm. tvt.y'' " 5 kilog. wt." " 31 mgr. wt.,**

respectively.

Whatever be the system of units adopted, we always
have, by § 108,

the gravitation nnit of force = g absolute nnits,

the absolute unit of force = 1/g gravit. units.

110. Equations of motion for gravitational units
of force.—In the first place it is important to observe

that

When measured in gravitatioti units the force

on a body is not equal to but only proportional
( mass X acceleration,

to Its
I ^^^^ ^£. change of momentum

;

and that change of momentum is not equal to but
only proportional to the product of the force and
the time.

In fact the relations pioved in § 88 are based on the

supposition that the unit of force is the dynamical unit.

In the general equation of motion

kP = mf
we must put k = g, for the case in which the force is

measured in gravitation units. For if the force is the

gravitation unit of force, i.e. is equal to the weight of unit

mass, and it acts on a unit mass, the acceleration is g ;

hence if P = 1 and m = 1, then f=g.
Therefore, substituting in the above equation,

A;.l = l.g.
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Hence h = g, and therefore the equation of motion

becomes JPg = nif (4) ;

i.e. (force in gravit. units) xg = (mass) x (accel.)>

Again, if the velocity changes from m to v in the interval of time t,

the equation of momentum kFC = in [v— u)

becomes gFt = m{v — u)

or (change of momentmn) = (force in gravit. units) %g y. (time).

Observations.—These equations might, of course, be applied to

the solution of problems, and the work would probably be rather

shorter than by either of tho methods given below. But the work
would not be so instructive, and confusion would be more likely to

arise.

The student should spare no pains in becoming familiar with the
dynamical and gravitational units of force, as well as the difference

between *'ma8s" and "absolute weight."
To understand these ideas fully may take some time, but the time

will be well spent if this is done before proceeding further. And in
working problems the only safeguard against confusion is to specify
at each step of the work the units in terms of which the
different quantities are measured—a caution which has already
been given, but which applies with especial force to problems of the
present class.

111. Application to problems.—In solving problems
relating to the acceleration of masses under the action of

forces where these forces are given or are required to be
found in gravitation units, we may employ the formulae
of the last article, or adopb either of the following
methods of solution. The first of the following methods
is the safest method, and should be used whenever the
problem presents any difficulty.

First method.— (1) Reduce all the forces to dynamical

units by multiplying their measures by the value of g (ex-

pressed in terms of the selected units of length and time).

(2) Work with the equations of motion, using dynamical

units throughout ; and, if any forces have to be calculated,

obtain them in dynamical units.

(3) Finally, reduce the required forces to gravitation units

by dividing by g.
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Examples.—(1) If a bucket of water, weighing 20 lbs., is pulled up
from a well with an acceleration of 8 feet per second per second, to

find, in lbs. weight, the force which must be applied to the rope.

Here the weight of the bucket

= 20 lbs. wt. = 20 X 32 = 640 poundals.

The force applied to the rope must not only support the weight of
the bucket, but must also produce an upward acceleration of 5 F.P.S.
units.

Now the force required to support weight of bucket = 640 poundals,

force required to produce anaccel. 8 in 20 lbs. = 8 x 20 = 160 poundals.

.*. total upward puU on bucket = 640 + 160 poundals

= 800 poundals = 800/32 lbs. wt.

= 25 lbs. wt.

Therefore the rope must be pulled with a force equal to the weight
of 25 pounds.

(2) A force equal to the weight of 5 lbs., acting on a body, produces
an acceleration of 9600 yards per minute per minute. What is the

mass of the body ?

Here P = wt. of 6 lbs. = 5 x 32 poundals,

/» 9600 yds. per min. per min. = 8 ft. per sec. per sec. ;

.. 6 X 32 = m X 8 ;

.*. m = 20 lbs.

112. Second method.—We Icnow that when any body

is acted on by a force equal to its weighty it moves with

acceleration g. Remembering that the force on a body is

proportional to the product of its mass and its acceleration^

the unitary method enables us to find a relation between the

masSj the acceleration^ and the impressed force measured in

gravitation units.

Examples.— (1) If a railway train of 120 tons is pulled by the

engine with a force of 3 tons weight, to find how far it will have to

travel to acquire a velocity of 60 miles an hour.

A force equal to the weight of the train, or 120 tons, would start it

with an acceleration 32 feet per second per second.

Therefore a force of 3 tons weight produces an acceleration of f^ or

A feet per second per second.

Let s be the required distance in feet. The acquired velocity

= 88 feet per second, hence the formula for accelerated motion

v2 = 2fs
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gives 882 = 2 X I X «,

whence » = 440 x 11 ft. = li of a mile.

(2) If a 2-oz. bullet, travelling 1600 feet per second, penetrates

10 inches into a target, to find in lbs. the mean resistance of the

target.

Let/ be the acceleration of the bullet in feet per second per second

:

then, by the formula v^— ^2 _ ijg^ ^^g have

02-16002 = 2x-iex/;

whence / = - 1600 x 960 = - 1536000.

Now a force of 2 oz. weight acting on the bullet (mass 2 oz.) would
produce a retardation 32. Hence the force required to produce the

given retardation

= 1,536,000 X ^^ oz. weight = 96000 oz. weight

= 6000 lbs. weight.

113. How mass is found by weighing.— We are

now in a position to explain why weighing a body in a

pair of scales determines its mass.

A common balance consists of a beam or lever which
can turn about its middle point, and at its ends are

suspended the two scale-pans. The body to be weighed
is placed in one scale-pan, and suitable weights are placed

in the other. Now it will be shown in Statics that if the

beam remains balanced in a horizontal position, the body
and weights must press with equal forces on the two
respective scale-pans. We thus infer that the weight of

the body is equal to that of the weights employed.
Bat weight is proportional to mass.

Therefore also the mass of the body is equal to the mass
of the weights used to balance it. If these weights are

known multiples and sub-multiples of a pound, their

amount is equal to the number of lbs. wt. in the weight of

the body, or the number of lbs. in the mass of the body.

Thus the weight of the body in pounds weight is

numerically equal to its mass in pounds.

Similarly, the weight of a body in grammes weight
is numerically equal to its mass in grammes.
When, therefore, we say that "a body weighs m lbs.,"

we imply that
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(1) The body is drawn towards the earth with

a force m times as great as that which acts on

a mass of 1 lb.

;

(2) The MASS of the body is m lbs. ;

and we may draw the corresponding inferences when the

weight of a body is given in grammes.
But this process of weighing does not measure the

absolute weight of the body in poundals or dynes.

114. Difference between mass and weight.— Al-

though the weight of a body may thus be measured by
the same number as its mass, it is important to distinguish

between the mass and the weight of a body. Mass always

represents a quantity of matter in the tody, and does not

depend on gravity ; while weight always means the force with

which a body is attracted to the ground.

So long as we only have to compare the weight of one

body with the weight of another body, and not to express

the weight in dynamical units of force, the distinction

between mass and weight is unimportant.

It does not matter, for example, whether we regard the weight of a
packet of sugar or tea as measuring its relative heaviness as compared

with that of the pound weight belonging to our scales or as measuring
the quantity of material or mass in it.

But when weight is considered dynamically, with refer-

ence to its power of producing changes of momentum, and
is measured in dynamical units of force, the distinction

between mass and weight is at once apparent. In fact,

weight of mass tn = ni times weight of nnit mass
= in gravitation units of force

=z tiig dynamical units of force.

116. Variations in the intensity of gravity.— In
Chapter IV., we stated that gr, the intensity of gravity,

is slightly diflferent at different parts of the Earth,

being greatest at the Poles and least at the Equator.

Since the absolute weight of a mass m is mg, it follows that

the absolute weight of a body is different in different

places. From the results stated in § 56.
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The absolute weight of a pound mass varies from
32'091 pouudals at the Equator to 32*255 ponndals
at the Earth's North and South Poles.

The corresponding limits for the absolute weight of
a gramme are 978*10 and 983*11 dynes, respectively.

These variations do not affect the determination of

masses by weighing with a balance, for at any given

place equal masses have equal weights, whatever be the

intensity of giavity.
Example.—Suppose that a pound of sugar is weighed out at the

Equator, where g = 32*091. The pound of sugar is attracted towards
the Earth with a force of 32-091 poundals, but the pound weight used
in weighing is also attracted with a force of 32 091 poundals ; and,

since these forces are equal, the two masses balance each other in the

scales. If the same masses be taken to London, where g — 32*191,

the sugar will be attracted to the Earth with a force of 32 '191 poundals,

and the pound weight will also be attracted with a force of 32-191

poundals. Hence they will still balance each other in the scales.

116. A spring balance is often used
for the purpose of weighing. One of

the simplest forms is shown in Fig. 10.

The scale-pan holding the goods to be
weighed is suspended from a spiral

spring. The spring is thus extended
by the weight, and the greater the load

the more is it extended. The required
weight is indicated by a pointer, which
moves up and down with the scale-pan,

along a graduated scale at the side of

the spring.

Unlike the common balance, the spring
balance measures the absolute weights

and not the masses of the bodies placed
in the scale-pan. A force of one poundal
will always extend the spring by an
invariable amount, so that if the scale be
graduated in poundals at one place, it

will correctly measure forces in poundals
at any other place.

Hence a spring balance really gives a
constant measure of force. Fig. la
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But ifc does not give an acenrate measure of mass nulcss
it is nsed to weigh goods at the place for which it is

graduated, as the following example will show :

—

Example.—Suppose that it is graduated for weighing bodies in

pounds at London, where g = 32- 191, and where a pound consequently
weighs 32-191 poundals. Then the pointer will always indicate 1 lb.

when the scale-pan is pulled down with a force of Z2- 191 poundaU.
At the Equator a pound only weighs 32*091 poundals, and therefore

the weight of a pound mass does not pull the pointer quite down to

the graduation marked " 1 lb." To bring the pointer down to the
1 lb. reading, we should have to add an extra force of -jJ^ of a
poundal, and this would require us to put in about -^ of an ounce
more into the scale-pan (since a poundal nearly equals \ oz. weight).

Hence if a tradesman were to buy a spring balance in London, and
to use it for weighing goods out at the Equator, he would have to add
about t'o P^r cent. (,^y nearly) to the old cost price to find the cost

under the new value of g.

[Observatjok. —PraciicaZ/.v, such difTerences are too small to be detected except
with the most sensitive spring balance.)

117. Apparent weight of a man in a moving lift.

—When a man is ascending or descending in a lift with
uniform velocity, the reaction of the floor of the lift is

exactly equal to the man's weight. When, however, the

lift is being accelerated upwards, the reaction of the floor

must be greater than the man's weight, because it has not

only to support his weight, but also has to give him an
upward acceleration. And when the lift is being acccZera^ec?

downwards, his weight must exceed the reaction of the

floor on his feet by the amount necessary to impart to him
the downward acceleration of the lift.

For let m bo the mass of the man, and suppose the lift

is moving with a downward acceleration /. Let It be the

thrust on the floor of the lift, which is equal and opposite

to the reaction of the floor on the man. We may call R
the man's " apparent weight."

Suppose It measured in dynamical units. The forces

acting on the man are his weight mg downwards and R
upwards, giving on the whole a downward force mg—R.
Remembering that

(force) = (mass) x (acceleration),

we have, therefore, mg—R = mf\
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.-. B = m(g-f)

/, thrust on floor = welglit of man x f 1— -^
J

... (i.).

Hence B, the man's thrust on the floor, is less than his

actual weight hj f/g of the latter, or, as we may express it,

^Hhe man apparently loses f/g of his weight.^'

Similarly, if the lift is ascending with an upward

acceleration /, B = mg (1+ ^-)
;

.", thrust on floor = weight of man x ( 1 + ^
J
...(ii.),

or, " the man will feel heavier by the fraction f/g of his

weight."

If tlie chain of the lift should break, it would descend
with acceleration f = g^ and (i.) shows that during the

fall B would be = 0, or the man " would not feel

his weight at all." In fact both man and lift would be

falling freely.

Example.—If a man, weighing 12 stone, is descending a lift with
acceleration 8 feet per second per second, the thrust of his feet on the

floor will be = 12 stone wt. x (1 — ^'a) = weight of 9 stone.

If he is ascending with the same acceleration, the thrust of his feet

on the floor = 12 stone wt. x (1 +^'3) = weight of 15 stone.

118. Observed effects when the lift is coining to

rest.—The changes in the man's apparent weight depend
on the acceleration of the li ft and not on its actual velocity^

so that, when the lift is descending uniformly the man
obtains the impression of being at rest, while the objects

outside the lift appear to move upwards past him. When
the downward motion is being retarded previous to stop-

ping, this retardation is equivalent to an upward accelera-

tion, and the man feels as if he were being lifted up.

Similarly, when the lift is ascending uniformly, he receives

the impression that the external objects are descending

past him. When the lift begins to slacken speed before
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coming to rest, the upward retardation is equivalent to a
downward acceleration, and he feels as if the lift were
beginning to fall from under him.*

Summary of Results.

Weight is proportional to mass.

Gravitation unit of force = weight of nnit mass.

Weight of mass of m lbs. = m^ poundals. (gr = 32'2.)...(!).

Weightof mass of m grammes = mgr dynes, {g =981.)... (2).

W= mg dynamical units (3).

EXAMPLES VIII.

1. Find the accelerations, the velocities acquired from rest in one

minute, and the distances traversed in that minute, by the following

given masses, when acted on by the given forces, namely :

(i.) Mass of 1 lb. under force of 2 oz. weight

;

(ii.) Mass of 1 cwt. under force of 5 tons weight

;

(iii.) Mass of 32 lbs. under force of 1 cwt. 1 qr.
;

(iv.) Mass of 1 kilog. under force of 1 gram weight.

2. A certain force can just support a weight of 8 tons. How far

would it move a mass of 16 tons in 1 minute if no other force acted

on it ?
"

3. A mass is acted on for 3 seconds by a uniform horizontal force

that would just support 24 lbs. What momentum does it acquire ?

4. If a force equal to the weight of 10 lbs. act on a mass of 10 lbs. y
for 10 seconds, what will be the momentum acquired ?

6. A horizontal force, which would statically support 5 lbs., acted

continuously for 3 seconds on a heavy body initially at rest on a

smooth horizontal plane, and at the end of that time the body was

moving with a velocity of 200 yards per minute. Determine (i.) the ^

acceleration, and (ii.) the mass of the body.

* The student should take an early opportunity of verifying this by actual
experience.
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6. A ball, whose mass is 3 lbs., is falling at the rate of 100 feet per

second. What force expressed in pounds weight will stop it (i.) in

2 seconds, (ii.) in 2 feet ?

7. A railway train travels ^ mile on a smooth level line, while its

speed increases uniformly from Ifl to 20 miles an hour. What pro-

portion does the pull of the engine bear to the weight of the train ? ^
8. Does the rope of a colliery-hoist have to bear most strain, when

the cage is at the top or at the bottom of the shaft ? To eliminate

the weight of the rope itself, consider only the portion immediately

above the cage. Explain under what circumstances the stress may
be greater than the weight of the cage attached to it.

9. 160 lbs. is drawn up the shaft of a coal-pit, and, starting from

rest, acquires a velocity of 3 miles an hour in the first minute.

Assuming that the acceleration is uniform, find how heavy the mass^
appears to one drawing it up.

10. In what time will a body fall from rest through 100 feetP If

it be retarded in its fall by the tension of a string attached to it, so as

to occupy 6 seconds in the faU, what is the pull of the string, the

weight being supposed given.

11. If the dynamical measures of the mass and weight be the same,

and the unit of length be 2 feet, find the unit of time.

12. A man whose weight is 160 lbs. is standing in a lift. With
what force will he press on the bottom of the lift when it is

(i.) ascending, (ii.) descending with uniform acceleration \g. •*

13. Ten pounds hangs by a string and is drawn up with an accele-

ration of 2 ft. per sec. per sec. Find th© tension of the string. v

14. A mass of 1000 kilogrammes is acted on for 1 hour by a force

equal to the weight of a gramme. Find the distance traversed from

rest. Find also (in centimetres per second) the initial velocity of

projection in order that the mass might travel a kilometre in the

hour.

15. A heavy vertical chain is drawn upwards by a given force of

Plbs. weight, which exceeds its weight W, Find its acceleration and

its tension at any assigned point. Show that the tension at its .

middle point is JP.
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EXAMINATION PAPER IV.

1. Distinguish between volumef mass, and weight,

2. Find the relation between the units of mass and weight in order

that JFmsLj be equal to Mff.

3. Explain how it is that the weight of a substance as determined

by a pair of scales is the same anywhere, while it will vary if a spring

balance be used.

4. A stone weighing two pounds falls for three seconds. What
force will be required to stop it in two seconds ?

6. If I lb. is the unit of mass, 1 ft. and 1 sec. being the units of

space and time, what is the weight of the body whose mass is the

unit of mass, and why ?

6. A stone, after falling 2 seconds from rest, breaks a pane of glass,

and in breaking it loses 4 of its velocity. How far will it fall in the

next second ?

7. An ounce, a second, and an inch being taken as the units of

mass, time, and length respectively, compare the (dynamical) unit of

force with the weight of a pound.

8. A lift is descending and coming to rest with a uniform retarda-

tion of 4 F.P.S. units. A man in the lift weighs out a pound of tea

with an ordinary balance and a pound of sugar with a spring balance.

How many pounds of each does he really obtain ?

9. A 3-ton cage, descending a shaft with a speed of 9 yards a

second, is brought to a stop by a uniform force in the space of 18 feet.

What is the tension in the rope while the stoppage is occurring ?

10. If a force equal to the weight of one gramme pull a weight of

a kilogramme along a smooth level surface, find the velocity when
the body has moved one metre. /



CHAPTER IX.

ATWOOD'S MACHINE—CONNECTED SYSTEMS.

119. The apparatus now to be described was invented
by George Atwood, F.R.S., a Cambridge mathematician
who published several works on Mechanics about the
year 1784. It is now used for illustrating the laws of

motion experimentally, and at one time was also employed
to determine the intensity of gravity. For the latter

purpose, however, it has been superseded by the pendu-
lum, as observations of pendulum oscillations can be
made with much greater accuracy. This method, how-
ever, does not depend on such elementary principles as
those involved in Atwood's machine.
For this reason, consideration of the pendulum method

is deferred till Chapters XVII. and XX., where the
theories of the simple and compound pendulum are con-
sidered in § 244 and § 285 respectively.

We could not find g accurately by letting bodies fall

down a shot-tower or down a mine, and timing them,
because the velocity acquired in a few seconds would be
so great that the motion could not be timed with sufficient

exactness. A rough method has however been devised,

in which a number of shot are released by an electric

contrivance, and allowed to fall through a given height,
in such a way that when one reaches the bottom the next
is released. Thus the time taken by twenty to fall is

twenty times the time taken by a single shot, and this

interval can be easily timed by a stop-watch.
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120. Atwood's Machine consists essentially of a light

brass pnlley (Figs. 14-16) fixed at a considerable height

above the ground, over which passes a fine string supporting

two weights P^ Q attached to its ends. A pulley (Fig. 11)

is a wheel with a groove cut round its rim to keep
the string which it carries from slipping off. In

Atwood's machine it is essential that this wheel should

turn very freely, for which reason its shaft usually rolls

TuUey

FiG.II.

MLetf

T r

F16.12.

R

FigA3,

FIG.15. F1G.I6.

on sets of supporting wheels called "friction wheels"
(Fig. 12), though any other arrangement which answered
the same purpose might be used instead.

For measuring the heights of the weights in any
position, a scale of inches or centimetres is attached to

the pillar or wall on which the pulley is fixed, and for

measuring time a clock is provided, whose pendulum
ticks every second. In most experiments, the weights P
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and Q are equal, and a small " rider" /?, of the sbape shown
in Fig. 13, is placed on the top of Q, the string passing
through the slot in /?. A (Fig. 14) is a platform by which
Q can be supported or released at will. 5 is a ring which
is just large enough to let Q pass through, but which stops

the weight R, and (? is a fixed platform that will stop

the weight Q. Both B and G can be fixed at any desired

height, measured by the scale on the pillar.

When the weights Q, R are released, they are together
heavier than P, so that they naturally begin to descend, at

the same time pulling up the weight P (Fig. 15). When
Q reaches the ring S, the weight R is detached, and the
equal weights P, Q continue to move on alone (Fig. 16)
until Q reaches the platform d when it also stops. The
times taken to fall to the ring B and then to the plat-

form C can be reckoned by the clock, and the scale

measures the depths fallen in these intervals.

121. In forming the equations of motion of the two
weights in Atwood's machine, it is necessary to make use
of the following facts :

—

I. The downward velocity of Q is equal to the upward
velocity of P, and the downward accelerc^ion of Q is equal to

the upward acceleration of P.

For, since the length of the string remains constant as

one weight falls and the other rises,

/. distance fallen by Q | C distance risen by P
per unit time )

~
(.

per unit time

;

I.e., downward velocity of Q =: upward velocity of P.

Hence also

increase of Q'a downward ) __ ( increase of P'a upward
velocity per unit time ) ( velocity per unit time

;

I.e., downward accel. of Q = upward accel. of P.

II. The tension of the string is the same throughout, to

that its upward pulls on the weights P, Q are equal,

DTN. I
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This is only true provided there is no friction and the pulley and
string have no appreciable mass (see §153 below) ; hence the investi-

gations of this chapter would require modification when applied to an

actual machine. The string pulls upwards on both weights ; these

pulls are therefore not opposite and are not the "action and reaction"

of Newton's Third Law. In fact, the action is transmitted from one

weight to the other through the string, and is not direct (§ 80).

Example. — Masses of 3 and 5 lbs. hang over a pulley, as in

Atwood's machine. Find the tension of the string in lbs. weight,

and the acceleration of either mass.

Let T be the tension of the string in poundals, and / the accelera-

tion produced. The greater mass will move downwards, and the less

upwards. Consider the motion of the 5-lb. mass. The forces acting

on it are its own weight, = 5 x 32 poundals, acting downwards, and
the tension of the string acting upwards. The total downward force

is therefore 160 — T poundals, and the mass moved is 6 lbs.
;

••• i^^=/. (i.).

Now consider the motion of the 3-lb. mass. The forces acting on
it are the tension actinc^ upwards and its weight acting downwards.
The total upward force is therefore T— 96 poundals, and the

moved is 3 lbs.

T-96 f ... V

3

Hence, from (i.) and (ii.),

160- T r-96
6 3'

. 8T = 480 + 480 = 960 poundals ; f\l.

T =^ poundals = 3| lbs. weight. V^'

9SVbs.

Substitute the value of T in poundals in either i

of the equations (i.) or (ii.). We thus obtain ^^
/ \Q

/ = 8 ft. per sec. per sec.

Second Method.—If the value of T is not to be
found, the following is the readiest method of

calculating/:— Fig. 17.

Resultant force producing motion

= weight of 5 lbs. —weight of 3 lbs. = weight of 2 lbs

= 64 poundals.

Total mass moved is (3 + 5) lbs. = 8 lbs.

;

.-. / = "^o^^ng fo^^e ^ 64 ^ g f^ ^^^ g^^^
mass moved 8
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122. Two unequal masses JP, Q* (Q>P), joined by
a string passing over a light pulley, as in Atwood's

.

machine, move under gravity (Fig. 17).

(i.) To find their acceleration ;

(ii.) To find the pull in the string

;

(iii.) To find the force which the pulley has to

support.

(i.) The masses being P, Q, the absolute weights of

the bodies are Fg and Qg.

Let the pull in the string be T dynamical units of force.

Let the downward acceleration of Q be /, then the

upward acceleration of P is also/ (§ 121, I.).

The forces acting on Q are therefore Qg downwards and

T upwards, and their difference produces the downward

acceleration /

;

.-. Qf=-Q9-T (i.).

Similarly, from considering the motion of P,

Pf=T-Pj ; (ii.).

To find / we must eliminate T (as we do not know the

value of T).

By addition, (Q+P)/= (Q-F)g;

.•. required acceleration / = ^—- g (1)

.

We notice that the bodies move with uniform accelera-

tion (for /is constant).

If the weight P is very small, ^^~g becomes nearly -^g, - g, which is the

acceleration of a free body.

* For convenience, we now UM the letter Q for the total mass of the Q and R
before mentioned.
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(ii.) To find T, the pnll in the string,

we must eliminate / from the equations

Qf=Qg-T
and Pf=T-Pg',
and we get

P(Qg-T) = Q(T-Pg),

or 2PQg=iP+Q)T;
2rQ

fi^
9'

T =
I'+Q

g dynamical units,

«3

Fig. 18

pull in string = ^gravitation units of force... (2).

(iii.) The strings on either side of the pulley pull with

a force T. Hence the pulley has to support altogether

a force 2T, equal to the weight of a mass

Observation.— Notice that this force is not equal to

the sum of the weights P-\-Q unless P = Q.

123. Alternative method of finding the accelera-

tion.

The weight of Q tends to pull down Q and to pull up P,

while the weight of P has the opposite tendency. Hence

the total force tending to accelerate Q downwards and

P upwards is the difference of the weights, or (Q—P)g
dynamical units. The whole mass accelerated in this way
is Q+ P, audits acceleration is the required acceleration /.

Hence the relation

mass X accel. = impressed force

gives {Qi-P)f=iQ-P)9',
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—P
giving, as before /=^—^gr (1).

Example.— MsLSBea of 6 lbs. and 8 lbs. are hung over a piilley. In
what time will they have moved over 7 feet ?

Force causing motion

= (8-6) lbs. weight = (8-6) 32 poundals.

Mass moved = 8 + 5 lbs.

8— fi

.*. / = X 32 ft. per sec. per see.
^ 8+6 ^ ^

32 ,j.= — ft. per sec. per sec.

Let t be the required time ; then

sees.

124. Experiments with Atwood's machine.

The advantage of Atwood's machine is that by taking
the weights at the ends of the string nearly equal, we can
make the acceleration as small as we like, and the motion
can then be investigated with great accuracy.

For, with the notation of § 122, the acceleration

and this is small if P and Q are nearly equal. If Q = P,
the acceleration becomes zero, as the formula and simple
experience show.

If the two masses are each equal to Jf, and a third

mass m is placed on the top of one of them, we muut
write M for P and M-\-m instead of Q in the expression

we have found for/, and wo have

f=W^n' (^)'

which is small if m is small compared with M. This
acceleration is the acceleration due to mg^ the weio-ht of w,
acting on 2ilf-f m, the total mass of the three weights, as

explained in § 123.
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125. To verify that bodies will continue to move
uniformly when not acted on by force.

Let the two weights P and Q be equal, and let a third

weight R be placed on the top of Q Let the ring B be

fixed at any convenient distance below the platform A.

As the weight R descends from A to B, it sets P and Q
in motion. After R is detached by the ring, there is no
force tending to change the motion of the system, because

the equal weights P, Q tend to pull the system opposite

ways. Hence, if Newton's first law be true, the velocity

after leaving B ought to be uniform. To verify this, let

the experiment be repeated with the platform G at difterent

depths below B^ and let the times taken by Q to traverse

BC be observed. The times will always be found to be
proportional to the depths traversed from B to G, showing
that the velocity is uniform after leaving the ring. Thus,
if the depth BG be doubled, the other circumstances being

the same, the time taken in traversing it will be doubled.

126. To verify that

A constant weight acting on a constant mass
prodnces a uniform acceleration, and that

(1) If the system start from rest, s ^P\*
(2) The acquired velocity v a: t;

(3) The average velocity from rest = J the
final velocity.

(1) Let the two equal weights P, Q and the third

weight R be attached to the string as before. Let the

experiment be performed several times with the ring B
fixed at different depths below A, and let the times taken
in falling from A to B he noted in each case. It will be

found that this time is always proportional to the square

root of the depth AB, or, what is the same thing, the

distance AB ia always proportional to the square of the

time taken.

The symbol a denotes "varies as" or "is proportional to," Thus « a f'

means that s is proportional to t^.



atwood's machine. Ii9

Thus, suppose B is so adjusted that Q falls from A to B in one
second. If the depth AB be increased four- fold, the time taken will

be found to be 2 seconds; ii AB "be increased nine-fold, the time will

be found to be 3 seconds ; and so on.

The time taken can be measured by counting the ticks

of the clock from the instant Q is released till the weight
R is heard to strike the ring B.

(2) To measure the acquired velocity, fix the platform

C at any convenient depth below B, and observe the time
taken to traverse BG. Since the velocity is uniform after

R is detached, the ratio of the distance BO to the time
taken in traversing it gives the velocity of the system,

which is therefore known. It only remains to show that

for different positions of B this acquired velocity is pro-

portional to the time taken to traverse AB, or (by the
first part of the experiment) to the square root of the
depth AB. With any number of experiments this relation

will be found to hold good in every case.

Thus, if the time taken from >f to fi is 2 seconds, the velocity

acquired will be double what it would be if fi were raised to such a
height that the time was 1 second.

(3) Arrange the platform and ring so that the depth
BG is double the depth AB. Then on repeating the

experiment it will be found that the time taken from A
to B is equal to the time taken from B to (?. Now the
weight R is detached at B, and so BG is traversed with
uniform velocity = the final velocity at B.

Hence the average velocity in traversing AB is half the
final velocity at B. That is, a distance {BG) twice AB
is traversed with a velocity equal to the final velocity at

B in the same time that AB was traversed.

127. To verify the relations between force, mass,
and acceleration, it is only necessary to vary the
weights P, Q, and /?, remembering that the mass moved
is 2M"+m, the sum of the combined masses, and the
moving force is the weight of m, or the difference of the
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weights on opposite sides of the pulley. The accelerations

in different cases may be compared by fixing the ring B
at a constant depth s below A^ and noting ^ the time taken

to fall to the ring ; if / is the acceleration, the equation

. 2s
gives -^ = ^'

whence / is found.

The following different cases have to be considered:—

128. To verify that the acceleration is proportional
to the impressed force when the mass moved is kept
constant, we must vary the masses of P, §» ^ i^ such a

way as to keep the combined mass constant. This may
be most easily accomplished by having the weights P^ Q •

made up of a number of small weights (each equal, say,

to R). By taking one of these weights from P, and
another from Q, and attaching them both above the

moveable weight /?, we shall increase the weight of the

latter without altering the total mass. When this is

done, the acceleration of the system will always be found
to be proportional to the total weight of R (as found by
weighing in a pair of scales), and therefore to the

impressed force.

129. To verify that the force required to produce
a given acceleration is proportional to the mass
moved.

If the weights P, Q, R are all doubled, it will be found
that the system takes the same time as before to move
through the distance AB, showing that the acceleration is

unchanged. A similar result holds good if the three

weights are all increased threefold or in any other

proportion. Now the moving force is the weight of R

;

hence we infer that the acceleration is constant if the

moving force and the mass moved are both increased in

the same proportion, or the force is proportional to the

mass.
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130. To prove that the acceleration produced by a
given force is inversely proportional to the mass
moved.

Since the moving force is the weight of R, we must
perform the experiment several times, using the same
weight R and altering the equal weights P, Q each time.

It will then be found that the acceleration is always

proportional to —— , and is therefore inversely pro-

portional to the mass moved.

131. To find g, the acceleration of gravity.

In Atwood's machine we have (§ 124)

/= ^ n (3).
•^ 23/+m'^ ^ ^

This acceleration may be measured, as in § 127, by ob-

serving the time required to fall a given height from rest.

The masses M", m may be compared by weighing them in

a pair of scales, and, knowing them, g may be found from

(3), which gives

132. To arrange the masses so that the system
may move with an acceleration of one foot per
second per second (taking g = 32).

Let us make the combined masses of P, Q, R equal to

1 lb. A force of 1 lb. weight acting on this mass would
produce an acceleration of 32 feet per second per second

;

therefore the force required to produce an acceleration 1

is aV lb. wt. = ^ oz. wt.

;

.*. m (the mass of /?) = J oz.

Also 2M+m (the whole mass) = 1 lb. = 16 oz.

;

.-. 2M = 15J oz., M = 7| oz.

Hence the weights P, Q must each be 7f oz., and R
must be half-an-ounce. Or P, Q, R may be taken to be
any multiples whatever of 7| oz., 7f oz., and | oz.
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133. One weight drawn along a table by another.

A weight of m lbs., hanging freely hy a string, draws a
weight of M lbs. along a perfectly smooth table by means of
a string passing over a small pulley at the edge of the table

(Fig. 19). To find the acceleration and the tension of the

string in lbs. wt.

Let T be the pull of tlie string in lbs. wt. ; then its

value in poundals = Tg. Also the weight of the hanging
mass = mg poundals, and that of the other mass is

Mg poundals.

M
lis.

mils.

Fig. 19.

Hence, if / be the acceleration of the two masses in feet

per second per second, we have, by considering the hanging

mass, / m.f = mg— Tg;

and, by considering the mass on the table,

M.f=Tg.
Eliminating T, we have

(M-\-m) .f = mg
;

.'. acceleration/ = a (4).

Eliminating/, we have

mMg-MTg = mTg
;

tension T= ^—— lbs. wt (5).

The result (4) also follows at once from the fact that

the moving force is the m lbs. weight hanging freely and
the whole mass moved ia m-\-M lbs.
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Examples.—(1) A mass of o lbs., on a horizontal table, is con-
nected by a string passing over an edge of the table with a mass of

3 lbs. hanging vertically. How far will the latter mass have fallen

in one second ?

Total mass moved = (5 + 3) lbs. = 81bs.

Force producing motion = weight of 3 lbs. = 3 x 32 poundals
;

.*. acceleration produced = —— ft. per sec. per sec.

=» 12 ft. per sec. per sec.

Distance fallen = i/^2 _ ^ x 12 x P ft. = 6 ft.

(2) In the preceding example, what is the tension of the string ?

Consider the mass on the table. The only force moving it is the
tension T of the string

;

T = m/ = 6 X 12 poundals = 60 poundals = \\ lbs. weight.

Summary op Results.

When two weights P, Q hang from the ends of a string

passing over a smooth pulley,

the acceleration / = -^—— g (1) ;

2P0
the pull of the string, T= ——^ units of weight... (2) ;

the thrust on the pulley = 2T.

If two equal weights M are attached to the string, and

a third weight m is placed on one of them,

/=2i^^ (3>-

If a weight jyr is drawn aloug a smooth table by a string

carrying a weight m hanging over the edge,

the acceleration / = —ff (4) ;
171 "T" JxL

the pull of the strinor = _. units of weight... (5).

In working numerical examples, it is advisable not to

quote these formulae, bat to work from first principles.
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EXAMPLES IX.

1. Two weights are attached to the ends of a string passing over

a smooth pulley. Find the acceleration (stating the units employed),

the tension in the string (in gravitation units), and the force which
the pulley has to support, when the weights are

:

(i.) 17 lbs. and 15 lbs., ^ (ii.) 1 oz. and 15 oz.,

(iii.) 1 cwt. and 16 lbs., (iv.) 1 lb. and 14 oz.,

(v.) 5 lbs. and 4 lbs., (vi.) 20 lbs. and 4 lbs.,

(vii.) 490 grams and 491 grams, / (viii.) 1 kilog. and 90 grams.

2. The pairs of weights of Example 1 are laid with one weight resting

on a horizontal table and the other hanging from the edge of the

table. Find the acceleration and the tension in the string in each of

the cases, considering separately the two different arrangements

when (a) the lighter, (i) the heavier weight rests on the table. y

3. In what time will a weight of 37 lbs. draw another of 24 lbs. up
through a height of 32 feet, and what velocity will each particle have

at the end of that time ?

4. Two weights of 5 lbs. and 7 lbs. respectively are fastened to the

ends of a cord passing over a frictionless pulley supported by a hook.

Show that when they are free to move, the pull on the hook is equal

to 1 If lbs. weight.
^

5. Two weights, 7 oz. and 9 oz., are attached to the ends of a

string passing over the comer of a smooth table at the edge of a

precipice, the larger weight being drawn along by the smaller, which

descends vertically. After 3 seconds, the string is cut. How far

will the 7 oz. weight have descended after another second ?

6. A weight of 14 lbs. is moved from rest on a smooth horizontal

table by a weight of 2 lbs., which hangs over the edge of the table

and is connected with the large weight by means of a fine string

passing over a small smooth pulley at the edge of the table. Find the

tension of the string and the velocity of each weight at the end of^
2 sccondi.
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7. A mass of 9 lbs. is attached to one end of a string, and masses of

7 and 4 lbs. to the other end, and the whole is hung up over a pulley.

The system is allowed to move for 15 seconds, when the 4 lb. weight

is cut away. How long will it be before the system comes instanta-

neously to rest ?

8. A string passing over a smooth pulley has attached to it on one

side (at different points) masses of 3 lbs. and 5 lbs., and on the other

side masses of 4 lbs. and 6 lbs., the heavier mass on each side being

lowest. Find (without using formulae) the tension of each portion of

the string, in lbs. weight.

9. A man weighing 12 stone and a sack weighing 10 stone are

suspended over a smooth pulley by a rope whose weight may be

neglected. Find their common acceleration. ^

10. If in the last example the man pulls himself up by the rope so

as to diminish his downward acceleration by one half, find the^
upward acceleration of the sack in this case, and prove that the

acceleration of the man upwards relative to the rope will be 3-2 (foot- ^

second units).

11. If ACB be a string, G a pulley, and a weight of 5 lbs. be

attached at >4, a weight of 3 lbs. at B, and another of 3 lbs. between

B and 0, and if B be originally 11 feet above the ground, find the /

distance above B of the third weight in order that the latter may just/
reach the ground. Find also the time of motion, [y = 32.] J

12. Two masses P, Q are attached to the ends of a string which
passes over a smooth horizontal table and hangs over its two opposite

edges. A third mass R is attached to the string near its middle

point and rests on the table. Show that the system will move with

F— Q
acceleration — a. and find the tensions in the two portions of \

F-j-Q + H '^ '

the string, expressing them in gravitation units.
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EXAMINATION PAPER V.

1. Describe Atwood's machine, and explain how it is used to deter-

mine the acceleration of gravity.

2. Explain how to use Atwood's machine to show (i.) that a body-

acted on by a constant force moves with a uniform acceleration;

(ii.) that the acceleration of a given mass is proportional to the force

acting on it.

3. In Atwood's machine, one of the boxes is ^ oz. heavier than the

other. What must be the load of each in order that the overweighted

box may fall through 1 ft. in the first second ?

4

.

Describe an experiment to prove that the weight of half-an-ounce

will produce in a mass of I lb. an acceleration of (approximately) 1 ft.

per sec. per sec.

5. Describe experiments and observations tending to prove that the

change caused by a given force is independent of the body's actual

velocity.

6. Two scale-pans, each weighing 2 oz., are suspended by a weight-

less string over a smooth pulley. A mass of 10 oz. is placed in one

and 4 oz. in the other. Find the tension of the string and the pressure

on each scale-pan.

7. Two weights P and Q are connected by a fine thread passing over

a smooth pulley. P descends through a distance A, when a part of P
falls oflF, leaving only P^, which is less than Q. How far will Pj

descend ?

8. What must be the masses attached to the ends of the string of

an Atwood's machine, and the mass of the rider, in order that the

action of a force of 10,000 dynes upon a mass of 1000 gprammes may
be investigated ?

9. Two unequal weights are connected by a string hanging over

the edge of a smooth table. Show that the tension of the string is

the same whichever weight is placed on the table.

10. A weight of 4 lbs., connected with another as in the previous

question, falls 12 feet in the third second of motion. What is the

of the latter weight ?



CHAPTER X.

I/O —
WORK, ENERGY, AND POWER.

134. Work.—A force is said to do work when its point

of application moves in the direction in which the force acts.

When the point of application moves in a direction opposite

to that of the force^ work is said to he done against the

force.

By the ''^ point of application" of a force is meant the
particle on which the force acts. When the force acts,

not on a particle, but on a body of any size, the force may
be supposed to be applied at some particular point of the
body, and the " distance moved by the point of applica-
tion " means the distance moved by the particle of the
body at that point.

Examples of Work. — (1) An engine drawing a train does work,
for the train moves in the direction in which the engine pulls. But
when the train is being stopped by the brakes, the train does work
against the brakes, because the resistance of the latter acts in the
opposite direction to that in which the train is moving.

(2) If a heavy body falls to the ground, its weight does work. If
we Hft it up again, we must do work against its weight.
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135. Definitions.— The work done by a force is

measured by the product of the force into the distance through

which its point of application moves in the direction of the

force.

In the present chapter, we shall suppose the point of

application to be moving in the same straight line as the

force. If it is moving in the direction towards which the

force tends, the work done will therefore be positive. If

it is moving in the reverse direction, we may regard the

distance traversed as negative (§ 18), so that the work
done by the force is now a minus quantity.

Hence work done against a force is the same thing as a
negative quantity of work done by a force.

Thus, when we do work against the weight of a body in

lifting it off the ground, the weight of the body does a
negative quantity of work.

136, Definition.—The dynamical or absolute unit
of work is the work done by the dynamical unit of force in

moving its point of application through a distance of a unit

of length, whatever system of units be used.

The F.P.S. dynamical unit of work is the foot-

poundal, and is the work done by a force of one poundal
in moving its point of application through one foot.

The C.G.S. dynamical unit of work is called the erg,

and is the work done by a force of one dyne in moving its

point of application through one centimetre.

A million ergs is called a megalerg. It is the work
done by a megadyne in moving through one centimetre.

Owing to the sraallness of the erg, work is often measured
in megalergs.

Another Metric nnit of work is the joule,* which
contains ten million (10^) ergs or 10 megalergs ; this is,

however, principally used in electrical measurements.

• Lately it has been the practice to give the names of eminent physicists to new
constants which have been required by the advance of science ; e.g., watt, aiiijjere,

volt. Joule worked out the mechanical equivalent of heat
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Examples.—(I) To find the work done in moving 10 lbs. through a
distance of 3 feet with an acceleration of 5 feet per second per second.

The force applied to the body

= mass X accel. = 10 x 5 poundals,

and the work done

= force X distance tra-'^ersed = 50 x 3 = IbQ foot-poiindals.

(2) The work done by a force of 980 dynes in moving through a
distance of 10 centimetres is

980 X 10, or 9800 ergs.

(3) To express the foot-poundal in ergs.

By § 87, a poundal contains 13,780 dynes, and a foot contains
30-48 centimetres. Hence, by definition, the foot-poundal is the work
done by 13,780 dynes in moving through 30*48 centimetres, and

.•• a foot-poundal =U,no %ZQA%, or 420,000 ^r^«.

137. Definition.—The gravitation uiiit of work is

the work done in lifting the weight of a unit Tnass through a
height equal to the unit of length.

The English gravitation unit is the foot-pound, or the

work done in raising one pound of matter vertically through

one foot.

The C.G.S. unit is the gramme-centimetre, or the

work done in raising one gramme through a height of one

centimetre.

Owing to the smallness of the gramme-centimetre,
another Metric gravitation anit, called the kilogrammetre,
is generally used instead. This is the work done in raising

a kilogramme through one metre.

Thus a kilogrammetre = work done in raising 1,000
grammes through 100 centimetres = 1000 X 100 or 100,000
or 10^ gramme-centimetres.

Examples.—(1) To compare, and express in foot-pounds, the work
done by a man weighing 10 stone in climbing a mountain 4,000 feet

high ; and the work done by the tide between low and high water in
raising a ship of 500 tons through 20 feet.

The man raises a weight of lOx 14 or 140 lbs. through a height of

4,000 feet ; .-. work done = 140 x 4,000 lbs. = 560,000 ft.-lbs.

The tide raises 500 x 2,240 or 1,120,000 lbs. through 20 feet

;

.-. work done = 1,120,000 x 20 = 22,400,000 ft.-lbs.

These are in the ratio of 1 to 40.

DTN. ^
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(2) To compare the kilogrammetre with the foot-pound.

A kilogramme = 2i pounds, and a metre = 3^^^ feet, roughly
;

.-. a kilogrammetre = 2-2x3 '3 = 7'26 ft. -lbs., roughly.

138. The gravitation unit of work is g times the
corresponding dynamical unit.

The weiglit of a pound is 32 2 poundals ; hence the

foot-pound, or work done in raising a pound weight
through one foot, = 32*2 foot-poundals.

Again, a gramme weighs about 981 dynes. Hence the

gramme-centimetre = work done by a lifting force of

981 dynes in moving through one centimetre = 981 ergs.

Generally, the weight of a unit mass is g dynamical
units of force. Hence, in raising a weight of unit mass
through a unit height, we have to apply a force of g
dynamical units, and to move the point of application

through a unit of length
;

.*. work done = ^ X 1 = ^ dynamical units of work.

139. Energy.— Definitions.— By energfy is meant
capacity for doing work.

The potential energy of a body or system of bodies is

the amount of work which it is capable of performing in

virtue of its position {or the positions of its parts).

Examples.— (1) If a million tons of water are stored in a reservoir

600 feet above the sea level, the water may be said to have 500,000,000
foot 'tons of potential energy, for if the water were allowed to run
down to the sea it would be able to perform 500,000,00 J foot-tons

of work in its descent. By employing the water to drive a series of

water wheels in its fall, this work may bo utilized for driving
machinery.

(2) If, in winding a clock, a weight of 8 lbs. is raised to a height
of a yard from the bottom of the clock, its potential energy is then
1^ foot-pounds, for in descending again it is able to perform 24 foot-
pounds of work. This work is expended in driving the clock, and
overcoming the friction of the machinery. When the weight has
fallen one foot, its potential energy is only 16 foot-pounds, for it has
only 2 more feet to fall, and it has already done 8 foot-pounds of work.
When it has fallen another foot it has only one more foot to fall

through, and its potential energy is only 8 foot-pounds.
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140. If a body of weight W is at a height h above

the ground, its potential energy = Wh (1).

For this is the amount of work its weight would do if

the body fell to the ground.

If the weight JF is expressed in dynamical units of force, the

potential energy is JFh dynamical units of work. If Wia the weight
measured in gravitation units (so that TF is numerically equal to the

measure of the mass of the body), then Wh represents the number of

gravitation units of work in the potential energy of the body.

Thus, if the mass of a body is M pounds, its weip:ht

= M pounds weight = Mg poundals, and its potential

energy when at a height of h feet above the ground is

= Mh ioot-poutids = Mgh ioot-poundals (g = 32, or 32 "2).

Similarly, the potential energy of if grammes at a height

of h centimetres = Mh gramme-centimetres = Mgh ergs

{g = 981).

141. Definition.—The kinetic energy of a body is

its capacity for doing work in virtue of its motion. It is

measured by the amount of work that the body is capable

of performing in coming to rest.

The following illustrations show that a moving body
does actually possess energy.

Examples of kinetic energy.—
(1) A bullet when fired at a wooden target will penetrate a con-

siderable distance into the wood, thereby doing work against the

very great resistance to penetration offered by the target. Hence,
before the bullet struck the target, it must have possessed kinetic

energy, or capacity for doing work.

(2) A stone, when projected vertically upwards, will rise in the air,

and thereby do work against gravity. Evidently, the capacity

for doing work depends on the initial upward motion, and the kinetic

energy ia measured by the work done by the stone against gravity in

coming to rest.

Thus, if a mass of 3 pounds is shot upwards with a velocity of

40 feet per second, it will rise to a height A, where (by w' = 2yA),

402 = 2 . 32 . A, or A = 26 ft.

In rising through this height the body will do 3 x 25 or 75 foot-pounds
of work. Hence the original kinetic energy must hare been 76 foot-

pounds, or 2400 foot-poundals.
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142. To find an expression for the kinetic energy
of a moving body.
Suppose a body of mass m to be moving with velocity w,

and let us calculate the work it is capable of doing in

coming to rest. If the velocity changes from w to

under the action of a force of P dynamical units, and if /
denote the acceleration, s the space passed over, we have,

by §46, {y'-u'=2fs),
0-w' = 2/5,

and, by § 88, P = m/.

Hence the work done hy the force P, moving over a dis-

tance s,

= Ps = mf.s = 2fs X j-m = —u^ X ^m = — |mit*,

and the work done by the body against the force P is

equal and opposite to this, and is therefore

= -Ps = -i-imu') = imu\
Therefore the body, in coming to rest, is capable of per-

forming ^mw' dynamical units of work, or

The kinetic energy of the body = Jim*' (2).

Or in words

:

The kinetic energy of a body is half the product
of its mass into the square of its speed.

Since the momentum of a moving body = mass X velocity,

and its kinetic energy = -j (mass) X (velocity)^,

kinetic energy = ^ (momentum) x (velocity),

an expression which is often useful. In all the above
expressions the kinetic energy is supposed to be expressed
in dynamical units of work (foot-poundals or ergs).

When expressed in ioot-pou7ids, the kinetic energy

= mv^-—2g.

Obseryations.—^We notice that the work which a body can perform
in coming to rest does not depend on how it is brought to rest. If it

it retarded by a very great force it will stop after going a very short

distance, while if it is retarded by a A-ery small force it will run a.

considerable distance, but the work done will be the same in every case.

Many writers define the kinetic energy of a moving body as

^ (mass) X (speed)',
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and they then go on to prove that the kinetic energy is the work whicK
the body will perform in coming to rest. This is, however, not so
logicfil as the point of view that we have adopted, as it shows no
reason why the factor ^ is inserted. Still, candidates for an examina-
tion should be prepared to give either definition, and to deduce one
definition from the other.

^Example.—A cannon-ball, ofweight 10 lbs., is fired horizontally,with
a velocity of 1120 feet per second, from a gun, and the weight of the
gun, with its carriage, is 5 tons. Find the kinetic energy of the gun
immediately after the explosion, expressing it in foot-pounds.

The momentum of the cannon-ball is 10 x 1120 foot-pound-second
units, and this is also the momentum of the gun (§ 98).

Now kinetic energy

_ iTir^i _ ^v^ _ square of momentum~^ 2M twice the

Hence the kinetic energy of the gun is

ft.-poundals.
(11!^0)2

2 X 5 X 2240

^ill200)i
22400 X 32

= 176 ft. -lbs.

143. In uniformly accelerated motion the increase
of kinetic energy is always equal to the work done
by the impressed forces.

We have, in motion under uniform acceleration /,

v^-u'' = 2fs',

also, if F be the impressed force and m the mass moved,

P = mf.

,'. Ps = mfs = Jm X 2fs = ^m (v'^—w^),

or JPs = \mv^-~l7nu^ (3);

that 155, work done by JP

= (final kinetic energy)— (initial kinetic energy)

= increase of kinetic energy.

In particular, if the body start from rest, the whole
kinetic energy acquired is equal to the work done by the
impressed force.

Equation (3) is called the Equation of Work,
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Alternative proof.—The same results may also be proved from
first principles, as follows :

—

If t be the time during which the force F acts, the total change of

momentum is equal to the impulse of the force
;

.*. Ft = 7n{v—it) (i.).

Also the motion is uniformly accelerated; therefore the average

velocity is ^{'V + tf);

and therefore » = ^(v + w)< (ii.).

Multiplying (i.) and (ii.) together, and dividing throughout by ty

we have, as before, Fs '^ ^m{v"—u") (3).

144. Comparison of the equations of momentum
and work.—The student should be careful to distinguish.

the property just proved from the property which forms
the subject of Newton's Second Law [§ 88, equation (3)].

The Second Law states that

change of momentum = impulse of impressed force

= force X time ;

and the Principle of Work states that

change of kinetic energy = work of impressed force

= force X distance traversed.

Examples.—(1) A stone weighing 3 lbs. falls through 7 ft. What
is its kinetic energy, and what force will stop it in 2 ft. ?

Kinetic energy of stone = work done by gravity

= weight X distance fallen

= 3x7 ft. -lbs. = 21 ft. -lbs.

= 21 X 32 ft.-poundals = 672 ft.-poundals.

Let F lbs. be the force required to stop it in 2 ft. Then we have

f lbs. acting upwards and the weight 3 lbs. acting downwards. Hence
the upward force retarding the motion of the stone is P— 3.1bs. wt.

When the stone is brought to rest,

work done against retarding force = kinetic energy lost

;

.'. (P-3) X 2 ft. -lbs. = 21 ft. -lbs.
;

.'. required force P = 13^ lbs. wt.

(2) A stone weighing 8 oz. falls for 5 sees. What is its momentum,
and what force will stop it in 3 sees. ?

Weight of stone = J lb.
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Momentum acquired = impressed force x time

= ^y X 5 F.P.S. dynamical units

= 80 units (taking^ = 32).

Let P lbs. be the force required to stop it in 3 sees. Then tho
actual retarding force = (P— i) lbs. wt. = (P- ^) (/ poundals,

and impulse of this force in 3 sees. = momentum destroyed
;

.*. required force P =
1 J lbs. wt.

(3) To find the kinetic energy acquired by a kilogramme in falling

through a metre.

The weight = 1000 gm. wt. = 1000 x 981 dynes,

and distance fallen = 100 centimetres.

Hence, by the Principle of Work,
acquired kinetic energy = work done by weight

= (force) X (distance)

= 981,000 X 100 (dynes, cm.)
= 98,100,000 erffs = 98-1 megalergs.

Observation.—Examples (1) and (3) show that when it is required
to calculate the kinetic energy acquired by a body after moving
through a given distance under a given force, it is not necessary to

find the velocity and substitute in the expression ^mv^, for the
acquired energy is simply the work done by the force.

(4) To find the velocity of an 8-lb. shot that will just penetrate an
armour plate 10 inches think, the resistance being 84 tons.

Let u be the required velocity in ft. per sec. The resistance

= 84 X 2240 lbs. wt. = 84 x 2240 x 32 poundals,

whence the Equation of Work
hn{v"-u") = P X *

gives ^ . 8 (0-««-) = - (84 X 2240 x 32) x i^ ;

«- = 70 X 2240 X 8 = 1120 X 1120 ;

.*. required velocity = 1120 ft. per sec.

(5) If the velocity of the shot be doubled, what must the thickness
of the plate be in order that the shot may only just penetrate it.

Let u' be the new velocity, s' the new thickness. Then the
Equations of Work for the two cases give

^mu'-^ = -P/,

Butw' = 2w; .-. ti'^ = iti^.

Hence s' = 4s,

or the thickness of the plate must be increased fourfold
;

.-. required thickness = 40 inches.



136 DYNAMICS.

(6) A 1-oz. bullet is fired with, a velocity of 1000 ft. per sec. Find
the velocity with which a 2-oz. bullet could be fired from the same
rifle with treble the charge of powder.

Since the explosive force always moves the bullet through the same
distance (viz., the length of the barrel), the work done on the bullet is

proportional to the charge of powder.
Hence the kinetic energy is trebled by trebling the charge, and, it

m, my be the masses, v, i\ the velocities of the two bullets, we have
1. w, Vy^ = 3x^ m v^,

i.2.V = 3xi.l.i'2;

.-. V = l^'2;

,\ required velocity i-j = t?\/f = lOOO^/f = 'v/( 1,500, 000)

= 1225 ft. per sec. nearly.

145. The following applications should be noticed.

If different forces act on equal masses during the same
time, the forces are proportional to the velocities acquired.

For the times being the same, the impulses, and there-

fore the acquired momenta, are proportional to the forces.

But if the different forces move the bodies from rest

through equal distances, the forces are proportional, not to

the acquired velocities themselves, but to the squares of

the acquired velocities.

For, since the forces move the bodies through equal
distances, the works done by them are proportional to the

forces ; hence the forces are proportional to the kinetic

energies of the two bodies.

The apparent discrepancy is easily accounted for. In
the second case, the greater force moves the mass over
the given distance more quickly, and therefore it acts for

a shorter time than the lesser force. Hence the impulses,

and therefore the momenta produced, are not proportional

to the forces.

146. The Principle of Conservation of Energy.*—
If a body is started in motion by any force, we see, from
§ 143, that the kinetic energy acquired is equal to the
work done. If after a certain time another force acts on
the body, the increase of kinetic energy is equal to the

work done by the second force, and the total kinetic

* The Principle of Conservation of Energy, when it is first realized, is a most
important revelation to every thinking being.
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energy is therefore equal to the sum of the works done by
the two forces. In like manner, if any number of forces

act in succession on the body, the final kinetic energy is

equal to the sam of the works done by the several forces.

If therefore the body is again brought to rest, it will

have done an amount of work equal to that done in setting

the body in motion.

Thus we get as much work out of the body as was previously

put into it.

This is a particular case of the Principle of Conserva-
tion of Energy, which may be briefly stated thus

—

Energy can never be created nor destroyed, but
can only be transformed from one form into another

;

or,

The total quantity of energy present in the uni-

verse always remains the same.

147. Observations.—The Principle of Conservation of
Energy, like Newton's Laws of Motion, does not admit of a
perfectly general proof, but is based on evidence derived
from experiment. Energy may manifest itself in many
•other forms besides the ordinary mechanical (kinetic and
potential) energy of moving bodies, and it is only when all

these forms of energy are taken into account that the
principle really holds good.

These forms of energy include energy of ribration which gives rise to sound,
heat energy, radiant energy in the form of liglit, electrical energy, and chemical
energy. Tlie tendency of modern physical science is to regard all forms of energy
as the kinetic and potential energies of the ultimate molecules of which matter is
supposed to be built up. We cannot, of course, tell what these molecules are like
or how they really move, for they are far too small to be seen with any microscope.
All that we can do is to build up theories of them that will account for physical
{phenomena. By so doing physicists hope to represent all such phenomena by
particular cases of the principles of dynamics.

The Principle of Conservation of Energy has, however, now'ISSen bo
thoroughly established upon accumulated evidence that if any result
should be arrived at which appeared at variance with the principle, it

•would not be inferred that the principle was incorrect, but that
energy had appeared in some form which had previously been over-
looked.

The name Mechanical Energy is often applied to the two forms,
kinetic and potential energy, to distinguish them from the other
forms of energy mentioned above.
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148. Particular cases of the principle.

Motion of a body projected under gravity.— If a

mass m be projected vertically upwards with velocity Uy

we have, when the height above the ground is s,

v^ = u^— 2gs
;

But mgs is the potential energy (in dynamical units) at

height 5, and ^mv^ is the kinetic energy. Hence
kinetic energy + potential energy

= original kinetic energy.

Hence the total energy of the body always remains
constant and equal to its original energy.

149. Verification for Atwood's machine.— Let P,

Q be the total masses suspended from tlie ends of a string
passing over a pulley, as in Atwood's machine, where Q>P.
Then, if Q falls through a distance s, P rises through an
equal distance s. The work done by the weight of Q is

Qgs, and that done against P is Pgs; hence the potential

energy of Q decreases by Qgs, and that of P increas^ by
PgSj 80 that the loss of potential energy

= (Q-P)gs.
If u is the initial velocity, and v the final velocity,

the initial and final kinetic energies of the system are

IQu' + ^Pu' and iQv'+ ^Pv';

hence gain of kinetic energy = | (Q+ P) (t^—u^y

The Principle of Conservation of Energy requires that

gain of kinetic energy = loss of potential energy,

or that I (Q + P) (v'-u') = (Q-P) gs,

ortfat ^2_^2^2§Z:^^5 (i,)^

This relation is satisfied, for in uniformly accelerated
motion v^—u^ = 2/5,

and we have seen in § 122 that

^-qTp^-
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Whence (i.) follows immediately ; hence the snm of the

kinetic and potential energies is constant.

Similarly the principle may be verified for the case in

which a body is drawn along a smooth horizontal table by
a second body falling vertically (§ 133).

150. Applications.—Conversely, we may often deter^

mine the motion of a dynamical system by expressing in

mathematical language the condition that the total

mechanical energy is constant, or that the increase of
kinetic energy is equal to the work done on the system.

This is really a most convenient way of finding the
acceleration of the masses in Atwood's machine, especi-

ally if it is required to find the velocity acquired when
these masses have moved through a given distance.

Examples.—(1) If a mass of 1 lb., hanging from the edge of a table,

draws a mass of 8 lbs. along the table by means of a string, to find
the velocity acquired in moving over 1 foot ; and the acceleration.

Let the required velocity = v ft. per sec.

Then the total kinetic energy = ^ {I +8)v^ = ^v" ft.-poundals

;

and the work done by the 1-lb. mass in falling

= 1 ft.-lb. = 32 ft.-poundals.

Therefore p^ = 32, or v^ = s^;

whence t; = § = 2J ft. per sec.

Also the relation t^ = 2/s

gives V^ = 2/. 1
;

whence the acceleration / = -^^ ft. per sec. per sec.

(2) A mass of 50 lbs. falls from a height of 50 feet, and penetrates
2 feet into loose sand. To find the resistance of the sand in pounds
weight.

The kinetic energy acquired in falling is destroyed by the resist-

ance of the sand. Hence the work done on the body by gravity is

equal to the work done by the body against the resistance of the sand..

But the body falls altogether 52 feet,

.•• work done by gravity = 52 x 50 = 2600 ft. -lbs.

;

and, since the body moves 2 feet against the resistance,

.*. resistance of sand = s^^ = 1300 lbs. weight.

[Notice in this example that we have not had to calculate the
velocity of the body.]
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*1 5 1 . Connection of tlie Principle of Energy with Newton's
Third Law.—Conservative forces.—Although, according to New-
ton's Third Law of Motion action and reaction are equal and opposite,
it does not necessarily follow that the works done by them are equal
and opposite. For two equal forces can only perform equal amounts
ofj work provided that their points of application move through equal
distances. Hence, if two bodies approach or separate from one
another, there is a gain or loss of work done against their action and
reaction.

In many cases this work will be restored if the bodies are brought
back to their original position. When this is the case, the forces are
said to be conservative, and the total energy, potential and kinetic,

of the system is constant.
In other cases, however, work may be lost in altering the positions

of two bodies, and may not be restored when the bodies are brought
back to their original position. In such a case the forces are non-
conservative, and there is a loss of mechanical (kinetic and
potential) energy, which energy is transformed into heat or some other
form of energy not usually considered in mechanical investigations.

In all cases where the forces between two bodies are of the nature
of action and reaction, these forces are always equal and opposite, and
therefore they both come into existence and both cease simultaneously,
and therefore they act during the same time. Hence the changes of
momentum^ and not the changes of energy^ are equal and opposite in
such cases, as shown in Chapter VII.

Exaviples of non-conservatim systems.—(1) If we push a book along a table, we do
work against the rexiction of the table on the book due to friction. But, since the
table does not move, no work is done by the action of the book on the table. To
bring the book back to its original place we again have to do work against the
friction of the table. Hence there is a loss of work in both processes, and the
work 80 lost is converted into heat.

(2) To find the loss of kinetic energy when a mass of 1 lb., moving with a velocity
of 10 feet per second, strikes an equal mass of 1 lb., and both continue to move on
togetlier.

If r is the common velocity of the two masses after the blow, the constancy of
momentum gives

noroentam of 2 lbs. moving with vel. v = momentum of 1 lb. with vel. 10

;

.*. 2v = Ix 10, or V = 5 ft. per sec.

The kinetic energy of 1 lb. moving with a velocity of 10 feet per second

(= ^mys) = ^ . 1 . 10* = 50 ft-poundals.

The kinetic energy of 2 lbs. moving with a velocity of 5 feet per second

= i . 2 . 52 =25 ft.-poundals.

Hence the loss of energy = 50-25 =25 ft.-poundal8 = ^ ft.-lbs.

*152. Newton's " scholium " to the Third Law.—
The Principle of Conservation of Energy was first enunci-

ated by Newton in a note or "scholium" on his Third
Law, in a form the general purport of which may be stated



WORK, ENERGY, AND POWER. 141

as follows :

—

"If action be measured by the rate at whicb a fore©

woiks, and reaction be measured by the rate at which
work is done against friction, gravity, and cohesion,

together with the rate at which work is expended for

producing kinetic energy, then action and reaction are

equal and opposite."

This is to be regarded as the statement of an independent physical principle
rather than as a necessary consequence of the Third Law of Motion, for the
" action " and " reaction " in the above statement represent rates of working and
not forces

153. Tension of a stringy over a smooth pulley.— JFhen a
string passes over a pulley without friction, the tension is the same
throughout, if the mass of the string and pulleg be neglected.

Let one end of the string be pulled with a force T, and suppose, if

possible, that the pull at the other end is T', and is not equal to T^
If a length s of the string is pulled over, the work done on the string

by the force T is Ts, and the work done by the string at the other
end is Ts.

Their difference {T— T') s is the mechanical energy communicated
to the string and pulley. But there is no friction ; hence the system
is conservative, and this mechanical energy cannot be lost. Also the
string and pulley have no mass ; therefore they cannot acquire kinetic

energy. Hence the communicated energy {T—T')s must be zero,

and therefore T= T.
Therefore the pull is the same^throughout the string {\ 121).

154. Definition. — Power is the rate of doing

work.

—

The power of an " agent " {e.g., a steam engine,

a horse, or whatever does work) is measured by the amount

of work the agent is capable of peyfoi'ming per unit of time.

The P.P.S. dynamical unit of power is, of course,

a rate of working of one foot-poundal per second. This
unit is rarely used.

The C.G.S. dynamical nnit of power is a power of

one erg per second. This unit is too small for most
purposes (being only about ^ro-yVoo ^^ ^ foot-poundal
per sec), but from it is derived a larger unit called the
watt. A watt is ten million (10^) C.G.S. dynamical units,

of power, and is therefore = 10,000,000 ergs per second.
Or one joule per second. It is principally used in

electrical engineering.
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155. Horse-Power.—Gravitation Units of Power.

—The power of a steam-engine is always measured in

iiorse-power.

Definition.—A horse-power (li.-p.) is a rate of ivorking

of 550 foob-pounds per second (<c)

Hence 1 h.-p. = 33,000 foot-pounds per minute.

This unit of power was introduced by Watt, who esti-

mated it as being the rate of working of a good horse,

and it has been universally adopted by engineers as the

unit of power. The power of an engine when expressed in

horse-power is spoken of as the horse-power of the engine.

[Note that the horse-power is a gravitational unit of power.]

There is a corresponding gravitational unit in the

Metric system, called the force de cheval. It is a power

of 75 kilogrammetres per second.

When engineers speak of an engine of so many horse-power

—say a 10 horse-power engine—they mean an engine
which is capable, under favourable circumstances, of

working at 10 horse-power— ^^e., performing 5500 foot-

pounds per second. But such an engine might be worked
more slowly and might be used to perform, say, only
4400 foot-pounds per second. It would then be said that
the engine was working at

-f-
of its full horse-power.

Examples.—(1) To find the horse-power of an engine which draws
a railway train at 60 miles an hour against a resistance equal to the
weight of 1 ton.

Here the engine moves 88 feet per second against a resistance of
2240 lbs. wt. Hence it performs

88 X 2240 ft. -lbs. per sec.

;

.*. required horse-power of engine = — = 358-4.
560

(2) A steam pump raises 11 tons of water 15 feet high every
minute. What is its horse-power ?

Work done per min. - 11 x 2240 x 16 ft. -lbs.

;
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.•. work done per sec. = 11 x 2240 x 15-J-60 ft. -lbs.

= llx560ft.-lbs.

But one horse-power = 550 ft. -lbs. per sec.

;

. , , 11 xo60 56 ,, orequired horse-power = = — = 11*2.

(3) To express the horse-power in F.P.S. dynamical units.

A horse-power = rate of working of 650 ft. -lbs. per sec.

= 550 X 32 ft.-poundals per sec.

= 17600 F.P.S. dynamical units.

156. General expression for rate of working.— If

a body is moving with velocity v under the action of a
force P, the distance traversed per unit of time by the

body is v, and therefore the work done per unit of time

is Pv] .*. rate of working = Pv
= (force) X (velocity of its point of application)... (5).

If P is expressed in poundals, this is rate of working
in ioot-poundals per second. To redace to ioot-jjounds

per second we should have to divide by g or 32, and to

leduce to horse-power we should have further to divide

by 650.

Summary of Results.

Potential energy of weight TFat height h = Wh (1).

Kinetic energy of mass m moving with velocity v

= ^mv^ dynamical units of work (2)
i

= —— foot-pounds if m and v are in F.P.S. units.

The equation of worh for a body moving in a straight

lineis Ps =^ \mv^—\mu^ (3),

or, work done = increase of kinetic energy.

This may be written

decrease of potential energy = increase of kinetic energy,

or, potential energy + kinetic energy = constant,

in accordance with Principle of Conservation of Energy.

A Jiorse-power = 550 ft.-lbs. of work per second ... (4).

Hate of working = (force) x (vel. of pt. of application).. (5).
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EXAMPLES X

1. A lump of stone weighing 20 lbs. was dropped from a scaffolding,

and, after falling freely through 35 feet, was brought to rest by-

penetrating 2 J feet into mud. Assuming that the force of pressure

of the mud on the stone was uniform, determine its magnitude. /

2. A body weighing 4 lbs. falls 200 feet, and is then brought ta

rest by penetrating 2 feet into sand. What is the average resistance

of the sand ?

3. A cannon ball, whose mass is 60 lbs., falls through a vertical

height of 400 feet. What is its energy ? With what velocity must
such a cannon ball be projected from a cannon to have initially an
equal energy ?

4. A body, whose weight is 3 lbs., is thrown vertically upwards

with a velocity of 32 feet per second. What is its kinetic energy

after (i.) ^ second, (ii.) 1 second?

5. A shot is fired from a gun, which is fixed, with a certain charge

of powder. If the quantity of powder be quadrupled, in what pro-

portion will the velocity of the shot be increased ?

6. Find the average force which will bring to rest, in 2 feet, an

ounce bullet, moving at the rate of 1,500 feet per second. How long

will it take to bring it to rest ?

7. A stone, moving with a velocity of 15 feet per second, would

just break through a pane of glass and come to rest. If the same

stone be allowed to strike the pane with a velocity of 17 feet per

second, what will be its velocity after passing through ?
*^

8. An inelastic mass of 13 lbs., moving along a smooth horizontal

plane with a velocity of 87 feet per second, impinges directly on an

inelastic mass of 16 lbs. at rest on the plane. What kinetic energy is

lost ? What has become of it ?

9. Find, in miles per minute, the speed which would be maintained

by an engine of 1 horse-power working against a resistance o^

1 poundal. v
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10. How long will a man, whose weight is 11 stone, take in getting

from the ground to the top of a steeple 400 feet high by means of

ladders, if he exerts -j^ horse-power P

11. The resistance to the motion of a steam plough along level

ground being supposed uniform and equal to the weight of 1^ tons,

and the horse-power of the engine employed 28, find the greatest

uniform speed of the plough that can be maintained. ^

12. A steam crane of 6 horse-power raises a load to a height of

100 feet in 6 minutes. What is the greatest possible weight of the

load ?

13. In a railway train the resistance and friction of the rails is

1 lb. per ton. What is the horse-power of an engine which will

maintain a speed on the level of 30 miles an hour in a train of

60 tons ?
^

14. It has been calculated that a whale exerts 145 horse-power

when swimming at 12 miles an hour. Find the resistance of the

water in tons.

16. How many watts are there in 9k force de eheval (taking g = 981)P

16. Show that the rate at which work is done on a body is the

product of its momentum and acceleration. What unit of power
must be adopted in this case ? Reduce the result to horse-power.

17. Having given that the unit of power is a million ergs per

minute, that the unit of force is a thousand dynes, and the unit of

time the tenth of a second, find what must be the units of mass and

length.

18. Given that the Earth's radius is 4000 miles, that a cubic foot

of water contains 1000 oz., that a quadrant of the Earth's Equator is

107 metres, that a cubic centimetre of water contains one gramme,

find the ratios (i.) of a centimetre to a foot, (ii.) of a gramme to

a pound, (iii.) of a dyne to a poundal, (iv.) of an erg to a foot-pound.

19. An ocean steamer does w knots when the engines indicate N
horse-power. Find, in tons, the resistance of the steamer m her

passage through the water. (A knot = 6086 feet per hour.)

DTN. L
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EXAMINATION PAPER VI.

1. Define work and horse-power. How are they measured ?

2. Distinguish between the momentum and the energy of a moving

body.

3. How much work is done against gravity, by a man weighing

12 stone, in climbing a mountain a mile high ?

4. A train of 200-ton mass is drawn by an engine of 120 horse-

power. If the resistance is 4 lbs. to the ton, what is the velocity of

the train ?

5. A number of men can each do, on the average, 495,000 ft. -lbs.

of work per day of eight hours. How many of such men are required

to do work at the rate of 10 horse-power P

6. Find an expression for the whole amount of work done in

raising several weights through different heights.

7. What is the horse-power of an engine which can project

10,000 lbs. of water per minute with a velocity of 80 feet per second,

20 per cent, of the whole work done being wasted by friction, &c. P

8. A bullet of mass 1 oz. leaves the muzzle of a gun 3 feet in length

with a velocity of 1000 feet per second. Find the average pressure of

the powder on the bullet.
"^

9. A horse, drawing a cart along a level road at the rate of 2 miles

an hour, performs 29,216 ft. -lbs. of work in 3 minutes. "What pull in

lbs. does the horse exert ?

10. Enunciate and explain the Principle of Conservation of Energy.



CHAPTER XL

COMPOSITION AND RESOLUTION OF
VELOCITIES.

157. Representation of uniform velocities by
straight lines.—We shall now deal with motions which
are not all in one straight line ; and in the first place we
shall consider the properties of two or more motions
which take place with uniform velocities in different

straight lines.

In future, when we speak of a body as " moving
uniformly," we shall imply that it is moving with uni-

form velocity in a straight line.

In order to specify completely the velocity of a body, it

necessary to state

(a) E.01V fast it is moving
;

(6) In what direction it is moving
The first of these two data is called the speed of the

body, or the magnitude of its velocity ; and, if the motion
is uniform, it is measured by the distance traversed in a
unit of time (Chap. I.).

The second is called the direction of the velocity, and
is the direction of the straight line in which the body
moves. It may be specified by referring it to certain
fixed directions, such as the vertical and horizontal
directions, the points of the compass, &c.

If then we draw the straight line which the body
actually traverses in a unit of time, the length of this line
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will measure the speed, and its direction will indicate the
direction of motion ; hence the line will be sufficient to

completely specify the velocity of the body. Such a line

is said to represent the velocity in question.

Thus uniform velocities may be represented by straight

lines.

Any equal and parallel straight line drawn anywhere would also

represent the same velocity, since it would serve equally well to

indicate the magnitude and direction.

The sense of the direction may be shown by an arrow
drawn on or by the side of the line, or by the order of the

letters used in naming the line. Thus AB represents a
velocity which in unit time would carry a body from A
to B ; BA a velocity which in unit time would carry it

from BioA(^ 19).

Example.—Two boats are sailing, one due east at 6 miles an hour,

the other north-east at 7 miles an hour. To represent their velocities

in a diagram.

Draw AB due east, and on it cut

off AB, containing six units of C
length.

Draw AC, making an angle 45° with

AB, and on it cut off AO, containing

seven units of length.

Then, if a mile and an hour are

the units of length and time, AB, AC
represent completely the velocities of

the two boats. ^ B

Fig. 20.

158. Kepresentation of variable velocities.—When
a body is not moving in a straight line, its velocity is

variable, even if its speed remains constant.

Thus, if the body revolves in a circle so as to describe equal arcs of

the circle in equal times, its velocity will be variable.

In dealing with variable velocity, it is usually necessary

to specify it by the velocity at any instant of time. This

is the velocity in a small interval of time, including the

given instant, the interval being so short that neither the

speed nor the direction of motion has time to change in it.

The velocity at any instant is not represented by the
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path actually traversed in a nnit of time, but bj the
straight line vs^hich would be the path traversed if the
velocity were to remain uniform from that instant onwards
(as would be the case, by Newton's First Law, if the body
were not acted on by any force). This line is a tangent
to the carve along which the body actually moves. Thus,
velocities are always represented by straight lines,
never by arcs of curves.

159. Relative velocity.— As explained in §§ 20-22,
the velocity of one body relative to another is the velocity

with which the first body would appear to move if the
person observing it were moving with the second body.

If two persons are travelling along parallel straight
lines with the same velocity, each will always see the
other at the same distance away, and in the same direc-

tion, and therefore they will be at rest relatively to one
another. In other cases the change in position and
direction of one as seen from the other determines their
relative velocity.

In many cases the relative velocity may be found from
first principles.

Examples.— (1) Two men start simultaneously to walk, one east-
wards at 4 miles an hour, the other northwards at 3 miles an hour.
To find their relative velocity and the direction in which they
separate.

Let the men start from A. Then, in 1 hour the first man will have
arrived at B, 4 miles east of A, and the second
will have arrived at C, 3 miles north oiA.

Since the two men started together, BO re-
presents the distance the second man appears to
have moved away in an hour, as observed by the
first.

Therefore BO measures the relative velocity in
miles per hour.
Now, by Euchd I. 47, since BAO is a right

angle, Fig. 21.

BC^ = >4fi2 + ^^2 = 42 + 32 = 16 + 9 = 25 ;

.-. BO = 5.

Hence the relative velocity is 6 miles per hour, in a direction
parallel to BO.
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(2) To determine {a) the direction taken by the smoke of a steamer,

(b) the direction and velocity with which the wind appears to blow to

a passenger on board.

[N.B.—The smoke is carried along with the wind.]

(a) Let AB represent the velocity of the wind, AO that of the

steamer. Then the smoke will always be in a line through the
steamer parallel to BO.

For, in a unit of time, the smoke
which left the funnel at A will have
been blown to B. Also the steamer
will have gone from A to C, and
smoke will be just leaving its funnel
at C. Therefore the smoke will lie

along BC. It is easy to see that, as

the steamer moves on, the line of

smoke always lies in the same direc-

tion, provided the velocities of the

wind and steamer do not change.
Fig. 22.

{b) In unit time the wind has blown the smoke from the steamer
through the relative distance CB ; therefore CB represents the relative

velocity of the wind to a passenger on board, both in magnitude and
direction.

(3) A carriage is travelling through a shower of rain, which is

falling vertically with a velocity equal to that of the carriage. To
show that, to a person in the carriage, the rain appears to fall at an
angle of 45° with the vertical, and to find its apparent velocity.

Suppose that at any instant a raindrop appears

to coincide with a speck on the carriage-window

at A. Then, when the speck (with the carriage)

has moved through a horizontal distance AB,

the drop will have fallen through an equal

vertical distance AC, and the relative positions

of the speck and drop will be B, 0. Therefore

BC represents the direction in which the drop

appears to move away froni the speck, i.e. the

apparent direction of the rain relative to the

carriage. Fig. 23.

But ABC is a right-angled isosceles triangle, and therefore

ACB = 45°.

Hence the direction of the rain appears to make an angle 45° with

the vertical.

Also, BC^ = AB'' + AC"' = 2A(r'; .-. B0 = AGV2;
.'. apparent dist. traversed by drop = \/2 x (actual dist. traversed) ;

.'. apparent vel. of drop = a/2 x (actual vel. of rain).
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160. Having given the velocities of two bodies,

to construct their relative velocity.

Let the velocities of the two bodies be represented in

magnitude and direction by the straight lines AB, AC^
respectively, both drawn from the point A. Complete the

triangle ABC.
Then BG represents the velocity of the second body

relative to the first

;

and GB (which is eqnal and opposite to BG) represents
that of the first relative to the second.

If the bodies start together at A^ then in a unit of time
one will arrive at B and the other at G. The second will

have separated from the first through the distance BG ;

therefore its relative velocity will be represented by BG^

Fig. 24.

and the first will have separated from the second through
the distance GB ; therefore its relative velocity will be
represented by GB.

If the bodies do not start from the same point, let them
describe the straight lines A'B' and AG, respectively, in
unit time. Complete the parallelogram ABB'A\ and join

GB.
Then AB or A'B' represents the velocity of the first

particle.

Also AA' is equal and parallel to BB' ; therefore B
occupies the same position relative to B' as A does relative

to A'.



162 DYNAMICS.

Hence the change per

unit time in the relative

positions of the bodies is

the same as if the first

body remained at B\ and
the second moved from
B to C. Therefore BG re-

presents the velocity of

the second body relative

to the fi.rst.

Example.—To find the rela-

tive velocity of the boats of

§ 157, Example, By careful

measurement, BG (Fig. 20) = 5 Fig. 26.

units, approximately

;

.-. required relative velocity = 6 miles an hour.

161. Composition of velocities.— A body cannot be
in two places at the same time ; therefore it cannot move
in two different ways at the same time, and it cannot
have two velocities at the same time. Bnt it is often

convenient to consider the motion of a body as made up
or compounded of several independent velocities.

These velocities are called the component velocities of

the body, and are in every case to be regarded as relative

velocities on which the motion of the body depends.

Thebody's actual velocity is called its resultant velocity.

The process of determining the resultant velocity when
the components are given is called compounding the

several velocities.

Thus, the definitions of § 25 are perfectly general. But
unless the motions are all in one straight line, the resultant

velocity is not the algebraic sum of the components.

Thus, suppose a river is flowing, a steamer is being driven through
the water by its engines, a man is walking across the deck of the
steamer, and a fly is crawHng up the man's hat. Then the component
velocities of the fly are {a) the velocity of the water, {b) the velocity

with which the steamer is driven relative to the water, {c) the velocity

with which the man walks relative to the steamer, {d) the velocity

with which the fly crawls relative to the man's hat. Each of these
relative velocities affects the motion of the fly, but the actual or
resultant velocity of the fly is different from any of them.
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Examples.—(1) A ship is sailing at the rate of 12 feet per second,

and a sailor climbs up the mast at the rate of 3^ feet per second. To
find the man's actual velocity.

Suppose the sailor originally at the foot of the mast at A. Then in
one second the motion of the ship carries the foot of the mast from
A to B, where AB = 12 feet. But the sailor has climbed up 3^ feet,

therefore he is at a point C, 3^ feet above fi, and AG i^ the distance
actually traversed in one second.

Fig. 27.

Now, since ABC is a right angle,

AO^ = AB' + BC'^ = 122 + (1)2 = 144 + >_£ ^ a^a .

.-. AG = ^==12\;
and therefore the sailor's actual velocity is 12^ feet per second.

(2) A man rows a boat through the water at the rate of 3 miles an
hour in a direction 60° east of north, in a current flowing southwards
at the rate of 1| miles an hour. To show that the boat will travel

due eastwards, and to find its rate of progress.

If a straw, dropped from the boat at A,

were to drift with the current (supposed

constant), it would in an hour reach a
point B, l\ miles south of A.

But the man has rowed relatively to

the water and straw through 3 miles in a
direction 60° east of north.

Therefore the boat will have arrived at

G, where fiC = 3 miles, and Z ABG = 60°.

Complete the equilateral triangle BGD.

Then AB = \\ miles = \BG = IDB.

Therefore A is the middle point of BDj
and AG is at right angles to AB.

Therefore th^ boat's course AG i^ due
eastwards.

Also

AG' = BG^-AB^ = 32- (1)2 = 9_9 = ^ ;

.-. AG = ^V3 miles.

Therefore the boat's actual velocity is %V3 miles an hour.

Fig. 28.
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162. The Parallelogram of Velocities. — If two
component velocities be represented in magnitude

and direction by the two adjacent sides of a

parallelogram drawn from a point, then their

resultant velocity will be represented by the

diagonal of the parallelogram drawn from that

point.

Let AB, AD represent the two component velocities.

Then a body starting from A with velocity AB would,

in unit time, arrive at B.

Let a second body start simultaneously from A with

velocity relative to the first represented hj AD ; then

the velocity of the latter body is the resultant of the two

velocities AB. AD.

Fig. 29.

Since AD represents the relative velocity, therefore at

the end of a unit time the bodies will have separated

through a distance equal to AD, in a direction parallel to

AD. But the first body is then at B. Therefore the

second body is at a point C, such that BO is equal and
parallel to AD.

.'. ABGD is a parallelogram, and AO is its diagonal;

.'. in unit time the second body moves from A to C

;

.'. AO represents its actual velocity
;

.'. AO represents the resultant of the two velocities AB,

ADj as was to be proved.
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163. If the tnro component velocities are nniform,
the resultant velocity will also he uniform.

hetAB be the distance which would be traversed in any
time ^ by a body moving with one of the component veloci-

ties, AD the distance which would be traversed in the

same time ^ by a body moving with the other component
velocity (Fig. 29).

Then, as in the last paragraph, it may be shown that

the distance whicli would be traversed in the time ^ by a

body moving with the resultant, of the two component
velocities is represented by the diagonal AC oi the paral-

lelogram ABGD.
Since the component velocities are uniform,

.*. a body moving with either of these components
would traverse equal distances in the same direction in

equal intervals of time
;

.'. AB, AD represent the distances which would be tra-

versed in every interval of length t by bodies moving with
the respective com^jonent velocities

;

.-. AC represents the distance traversed in every interval

of length ^ by a body moving with the resultant velocity

;

.*. such a body will traverse equal distances in the
same direction in equal intervals of time

;

.*. the resultant velocity will be uniform.

164. Observation.—The student should be careful to distinguish

between the constructions for the relative velocity of two bodies
moving with given velocities, and the resultant of two given com-
ponent velocities.

If the velocities of two bodies be represented by the sides BA, BO of

a triangle, both drawn from B, the third side AG will represent their

relative velocity.

But if two velocities are represented by AB, BO, one drawn towards

B and the other drawn from B, the third side AO will represent the
resultant obtained by compounding the two velocities.

Now the velocity AB is equal and opposite to the velocity BA.

Hence the relative velocity of two moving bodies is the same as the

resultant velocity obtained by compounding the velocity of one body with a

velocity equal and opposite to that of the other.
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165. Definition.—The sides of a triangle or polygon
are said to be taken in order, when of any two adjacent
sides one is drawn towards^ and the other away jrom their

common angular point.

The phrase ** taken in order " refers to the sense in which the sides

are directed (p. 148). Thus, if we call the sides of a triangle BC, CAy
AB, they are taken in order; but if we call them CBj CA, BA, they
will not be taken in order.

In drawing a triangle or polygon without lifting the pencil off the
paper, the sides will be described taken in order.

166. The Triangle of Velocities.—If a body have
three component velocities which can be represented

by the sides of a triangle taken in order, then the
body will remain at rest.

Let the three component velocities be represented by
AB, BG, GA.

Let a body start from A, with velocity represented by
AB,

let a second body start from >4, with velocity com-
pounded of AB, BG ; and

let a third body start from A^ with velocity com-
pounded of AB, BG, GA.

Fig. 30.

Then, at the end of a unit time, the first body will

be at B,

the second body will have separated from the first

through a relative distance BG, and will therefore have
arrived at G ;

and the third will have separated from the second
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through a relative distance CA, and will therefore be

at A.

Hence the third body, which has the three velocities

AB, BG, GAf remains at rest at ^4, as was to be proved.

The following is a generalization of the above propo-

sition :

—

167. The Polygon of Velocities.—If a body have

any number of component velocities, which can be

represented by the sides of a closed polygon taken

in order, the body remains at rest.

Let AB, BG, GD, DA be the sides of the polygon repre-

senting the several component velocities.

Th^-

Fig. 31.

Let a nnraber of bodies start simultaneously from A.

Let the first have a velocity AB,

„ second „ „ compounded of >45 BG,

„ third „ „ „ „ AB.BG GD,

„ last „ „ „ „ AB, BG, GD, DA,
the number of bodies being equal to the number of sides.

Then, at the end of a unit of time,

the first has moved from A to B;
the second has separated through BG relative to the

first, and is at (?
;

the third has separated through GD relative to the

second, and is at Z? ;

the last has separated through DA relative to the third,

and is at ^.

Hence the last body, whose motion is compounded of

all the velocities, remains at rest at >4.
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168. To construct the resultant of any nnmber
of different component velocities.

Let the given velocities be represented by the straight

lines AB, BG, CD, taken in order, forming all the sides but
one of a polygon. Then, if the polygon be completed by
drawing the remaining side from the first extremity A to

the last extremity Z>, the line AD will represent the
resultant velocity.

For in the course of the last proof it was shown that, if a body-

start from A with component velocities AB, BG, CD, it will in unit
time arrive at D. Therefore AD represents the resultant velocity of

the body.

169. To find the magnitude of the resultant of

two velocities u, v in directions at right angles

to one another.

Draw AB, AD at right angles, and let AB contain w, and

AD contain v units of length.

: f

D C

%

^-<A
i\ ^IL B X

Fig. 32.

Then AB^ AD represent the two velocities t*, v.

Complete the parallelogram ABCD.

Then AG represents the resultant velocity.

Let AG = V.

By Euclid I. 47,

AG" =AB'^BG' = AB'+AD'',

... r' = u'+v'', (1);

resultant velocity F = V(«*H«?^).
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Examples.— (1) If the component velocities are 3 and 4 units

respectively, F^ = 3= + 42 = 9 + 16 = 25 = 52,

and the resultant velocity V = 5 units.

(2) If the component velocities are 8 and 12 units respectively,

F^ = 52+122 = 25 + 144 = 169 = 132,

and resultant velocity F= 13 units.

170. To find the direction of the resultant of two
given velocities u, v at right angles to one another.

With the construction of the last paragraph, let

I BAG = A.

By the definition of the tangent of an angle,

/. tfinA= — (2).
tt,

Knowing the tangent of A, the angle A may be found
from a table of trigonometrical tangents, and the direction

of the resultant is determined by this angle.

CoR.—The following particular cases are important :

—

(i.) If u = -^, then tan 4 = -i-; and .'. A = 30°.

(ii.) If V = M, then tan A = 1; and .*. A = 46°.

(iii.) If V = ?V3, then tan A= ^S; and .'. A = 60°.

If the tangent of the angle A has not either of these values, and
a table of tangents is not at hand, the angle may be found approxi-

mately by drawing the diagram as true to scale as possible, and
measuring the angle BAG with a protractor.

171. Besolntiou of velocities.—It may happen that

we are given the resultant velocity in magnitude and
direction, and that we have to find what are the compo-
nent velocities along two given lines which have the given

velocity for their resultant. This process is called

resolving the given velocity into components in the

given directions, and is the reverse of compounding
velocities.
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172. To resolve a given velocity into components
in two different directions at right angles to one
another.

Let AX, AY he the two given lines at right angles.

Let the given velocity be specified by its magnitude V
and the angle A which its direction makes with AX.

A "' B X
Fig. 33.

Let Z XAG = A, and let AG = V.

Then AG represents the given velocity, and we have to

find two velocities along AX, AY, whose resultant is AG.
Draw GB parallel to YA, and GD to XA.
Then ABGD is a parallelogram, and therefore AG repre-

sents the resultant of the velocities represented by AB, AD.
Therefore AB, AD represent the required components.

Let AB = u, AD = V. By Trigonometry,

COB BAG = ^',

.'. AB = AG cos BAG,

or u = Fcos^ (3) ;

. p.n BG AD
s^nBAG = ^^=-^;
.'. AD = AG sin BAG,

or v=VsinA (4).

Therefore the recitiired components are F cos A
and V sin A, respectively.

Cor.—The following cases are important :

—

(i.) If A = 30°, then

(ii.) If A = 45°, then

(iii.) If A = 60°, then
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173. Other properties of velocities.— In Chap. XIII. we
Bhall show that forces may be compounded by the same rules as

velocities. Hence all theorems relating to the composition of

velocities will hold equally good for the composition of forces, and
vice versa. In the earlier chapters of The Tutorial Statics, a number
of other theorems about forces are proved, all of which are equally
applicable to velocities. As, however, they are more often used in
connection with forces than velocities, they are usually treated in
Statics.

Summary op Results.

The Parallelogram of Velocities. — If two component
velocities be represented by the two adjacent sides of a
parallelogram drawn from a point, their resultant is

represented by the diagonal of the parallelogram drawn
from that point.

Triangle and Polygon of Velocities.—If a body have three

or more component velocities which can be represented

by the sides of a triangle or closed polygon taken in order,

the body will remain at rest.

Resultant of two velocities u, v at right angles is given

in magnitude by V^ = u^-\-v^ (1),

and in direction by tanJ. = v-T-w (2).

Components of a velocity F, along two lines inclined to

its direction at angles A, 90°—-4, are given by

u = VcoaA (3), V = Fsin J. (*).

EXAMPLES XI.

1. One body moves south uniformly at the rate of 9-8 inches per

second, another east from the same point at the rate of 17 "6 inches

per second. Both started at the same time. How far will they be

asunder in 3 minutes ?

2. A body is approaching an observer with a velocity due east. In

what direction wLU it appear to move if the observer is himself

moving due north with an equal speed ?

DYN. M
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3. A ship is sailing north at the rate of 8 miles an hour through

the sea, and a man walks at the rate of 7 feet per second straight

across her level deck on a line drawn at right angles to her length.

Draw a diagram (as well as you can to scale) hy mea8uring(which one

mightjfind the angle the man's resultant path makes with the north,

and calculate his velocity with respect to the sea.

4. A fly crawls along a straight line ruled on a piece of paper, and

the paper is made to slide along the table in a direction making an

angle of 120° with this line, with a velocity equal to the fly's rate of

crawling. Find the direction and rate at which the fly moves along

the tahle.

6. A railway carriage is travelling at the rate of 60 feet per second,

and a passenger rolls a ball across the floor of the carriage at the rate

of 11 feet per second in a direction perpendicular to the line of motion

of the train. Find the actual velocity with which the ball moves

relative to the ground.

6. If a cannon ball is flred at 2000 yards range with a horizontal

velocity of 1200 feet per second from a ship travelling 16 miles an

hour, show that it strikes the water 110 feet in front of the point

towards which the muzzle is pointed.

7. A ship is sailing north-east with a velocity of 10 miles an hour,

and to a passenger on board the wind appears to blow from the north

with a velocity of 10 ^2 miles an hour. Find the true velocity of

the wind.

8. A person on an express train moving 60 miles an hour wishes to

hit a stationary object which is situated 100 yards ofi* in a line through

the marksman at right angles to the line of motion of the train. If

his bullet moves 1200 feet per second, find out how much to one side

of the object he should aim.

9. With what velocity must a man swim across a river 140 yards

•wide, flowing 2 miles an hour, so that he may not be carried further

down the river than 40 yards ?

10. A body has a velocity of 3 miles an hour to the north, and also

a velocity of 5 miles an hour 30° south of east. It is brought to rest

by the addition of a third velocity. Determine the magnitude of the

additional velocity.



CHAPTER XII.

THE PARALLELOGRAM OF ACCELERATIONS.

PROJECTILES.

174. General definition of acceleration.— When a

body is moving in a straight line, its acceleration, if any,

is in the line of motion, and may be defined as in Chap. II.

In other cases we must define the acceleration as follows :

—

Definition.—Acceleration is measured by the rate per

unit time at which velocity is being acquired^ and the direc-

tion of the acceleration is the direction of this acquired

velocity. The velocity acquired by a body in any interval

of time is that velocity which must be compounded with

the initial velocity in order to obtain the final velocity,

the composition being effected by the Parallelogram (or Tri-

angle) of Velocities.

From this definition it will be seen that changes in the
direction of motion of a body involve acceleration, as well
as changes in its actual speed. Unless a body is moving
in a straight line, the direction of its acceleration will be
found to be generally different from the direction of

motion at any instant.

Example.—A body uniformly accelerated starts with a speed of

20 feet per second in a direction 30° west of south, and 10 seconds
later it is moving with the same speed in a direction 30° east of south.
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To find the acceleration and the velocity of the body 5 seconds after

starting.

Draw AD due south. Make Z BAD = L DAG = 30°, .

and take AB = AG ^ 10 units of length (Fig. 34). 1
Then ABy AG represent the initial and final velocities / i\
of the body, and, by the Triangle of Velocities, BG / \ \
represents the velocity which must be compounded / | \
with the former to obtain the latter. BG therefore / i \
represents the change of velocity in 10 seconds. B D G

Since AB = AG and Z BAG = 60°, the triangle ABG Yis 34.
is equilateral, and AD^ the bisector of BAG, bisects

°'

the base BG at right angles. Thus BG = AB = 20, and BG pohits due
east.

Therefore the velocity acquired in 10 sees, is 20 ft. per sec. in a

direction due east, and therefore the body is subject to an eastward

acceleration of 2 ft. per sec. per sec.

At 5 sees, from starting, the acquired velocity is half as great, and
is represented by BD. Therefore the actual velocity is represented

by AD. Since Z BAD = 30°, therefore \_AD = AB cos 30°, or]

AD = AB^ = 20^ = 10^/3.
2 2

Hence the velocity 5 sees, after starting is lO-v/S ft. per sec. due
south.

175. When two bodies have the same accelera-

tion, their relative velocity is iiniforui.

Let AB, AG represent the

initial velocities of two bodies

at any instant. Then BG re-

presents their initial relative

velocity (§ 160).

Let OA, drawn towards >4,

represent the velocityacquired

by either body in any given

interval of time, under the
common acceleration. ^igf* 3^*

Then the final velocities are

obtained by compounding the

velocity 0>4 with AB and AG, respectively ; and are, there-

fore, represented by OB, OG. Hence the final relative

velocity is represented by BG, and is the same as the

initial relative velocity. Therefore the relative velocity

is constant.
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Cor. If two bodies are 'projected in any directions and fall

under gravity, their relative velocity ivill he uniform, for the

acceleration of gravity is the same for all bodies, and

takes place in the vertical direction.

This property is of frequent nse in investigating the

motion of projectiles (§§ 184-188, below).

176. Properties of velocities extended to accelera-

tions.—From the fact that an acceleration is a velocity

acquired per unit time, it follows that, to most of the

properties of velocities proved in the last chapter there

correspond analogous properties of accelerations. These
we shall now enumerate, in some cases without proof.

An acceleration may be represented by a straight
line, for the velocity imparted per unit of time may be
represented by a straight line (§ 167), and we may take

this line to represent the acceleration.

Thus an acceleration of/ ft. per sec. per sec. in any direction may
be represented by drawing a line in that direction, and on it measuring
a length representing /feet.

177. Definition.— The relative acceleration of one
body witb respect to another may be measured by the

relative velocity acquired per unit time, this acquired
velocity being compounded with the original relative

velocity.

It is also the acceleration witb which the first body
would appear to move, if observed by a perison moving
with the second body.

To find the relative acceleration of two bodies.—If the
accelerations of two bodies be represented by AB, AC, the
two sides of a triangle drawn from A, their relative

acceleration will be represented by the third side BG.
For AB, AC represent the velocities acquired by the two bodies per

imit time, and therefore, by § 160, fiC represents the relative velocity
acquired per unit time.

178. Component and resultant accelerations.— If

the velocity acquired by a body per unit of time be re-

garded as compounded of several independent velocities,
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these may be defined as the component accelerations of

the body.
The body's actual acceleration is called the resultant

of the several component accelerations.

Component accelerations, like component velocities, are most easily-

realized by regarding them as the relative accelerations of a system of

bodies on whose motion the resultant acceleration depends.

Thus, when a man is walking at a variable rate along the deck
of a steamer which is starting into motion, the acceleration

of the steamer and the man's acceleration relative to the steamer are

the man's component accelerations.

179. The Parallelogram of Accelerations.— If two

corwponent accelerations he represented hy two adjacent sides

of a jparallelogram drawn from a point j their resultant

acceleration shall he represented hy the diagonal of the

parallelogram drawn from, the same point.

For since the sides of the parallelogram represent the

component accelerations, they represent the component
velocities acquired by the moving body per nnit time.

By the Parallelogram of Velocities, therefore, the diagonal

represents the resultant velocity acquired per unit time,

due to the two components, and this is the resultant

acceleration of the body.

Observation.—In the above proof we have assumed the Parallelo-

gram of Velocities to hold good for the velocities communicated to

the body. The following alternative proof shows how to take account

of the initial velocity of the body.

180. Alternative proof of the Parallelogram of
Accelerations.

Let the initial velocity of a

body be represented by OA,
and let the body be subject

tothe two component accelera-

tions represented by AB, AD.
These accelerations are mea-
sured by the component velo-

cities they impart in a unit of

time ; hence, in a unit of time
(supposing the accelerations Fig. 36.
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to remain uniform) a component velocity represented

by AB will be acquired in virtue of the acceleration ABf
and a component AD in virtue of the acceleration AD. The
actual velocity at the end of a unit time is compounded
of the three velocities OA, AB, AD.

Complete the parallelogram ABCD. Then BG represents

the same velocity as AD, since they are equal and parallel.

Hence the final velocity is the resultant of the velocities

OA, AB, BC, and is represented by OG. But the initial

velocity is represented by OA. Therefore the velocity

acquired per unit time is represented by AG. Therefore

AC represents the resultant acceleration, as was to be
proved.

181. Triangle of Accelerations.—If three accelera-

tions he represented by the sides of a triangle taken in order

then a body whose acceleration is compounded of the three will

either remain at rest or move uniform^ly in a
straight line.*

Polygon of Accelerations.—Generally, if a body have

any number of component accelerations, represented by the

sides of a closed polygon taken in order, the body either

remains at rest or moves uniformly in a straight

line,*

For, in either case, the sides representing the accelera-

tions also represent the component velocities imparted per
unit of time. By the Triangle or Polygon of Velocities the

resultant imparted velocity is zero. Hence no velocity is

imparted to the body, and if it was originally at rest it

remains at rest. If not, it continues to move uniformly
onward with its initial velocity.

If a number of component accelerations be represented

by all the sides but one of a polygon, their resultant will

be represented by the remaining side required to complete
the polygon, drawn /rom the extremity of the first side to

that of the last.

* Notice the dift'erence between tl.cse enunciations and those of the Triangle and
Polygon of Velocities.
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182. Composition of two accelerations at right angles.

I^ /i> /a t»e the component accelerations in two directions at right
angles, F the resultant acceleration, then

Also the resultant acceleration makes with the direction of / an
angle Ay such that tan A = f^Jfv

Resolution of a given acceleration in two directions at right angles.

Conversely, if we are given the resultant acceleration Fy and we
have to resolve it into two components in two given perpendicular
directions, where the direction of i^ makes a given angles -4 with one
of them, these components /i, /g are given hy

/i = i^cos Ay /a = i^'sin A.

These results follow from the Parallelogram of Accelerations in
exactly the same way as those of § § 169-172 follow from the Parallelo-

gram of Velocities.

183. Projectiles. — The properties of accelerations

enable us to investigate the motion of a body thrown
in any direction (not necessarily vertical) and falling

under gravity. Such a body may be called a projectile.

We shall always neglect the resistance of the air, and
shall assume that the acceleration of gravity {g) is the

same (both in magnitude and direction) at all points of

the path.

184. A body is thrown with a given velocity
V in any g^ven direction. To construct geometric-
ally its position at any given instant of the motion.

Let AP he the direction of projection.

On AP cut off

AB = Vt = distance which would be
traversed in time t, if the

velocity were uniform
and equal to V.

Draw AD vertically downwards, and
make
AD = ^gi^ = distance which would be

traversed in time ^ by a
body falling from rest

at A. Fig. 37.
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Complete the parallelogram ABCD. Then C represents

the actual position of the body at the time t.

For suppose that, at the instant of projection, a second
body is let fall freely from rest at A. Then at the time i

this body will arrive at D. Also, since both bodies have
the same acceleration (viz., that due to gravity), their

relative velocity is uniform (§ 175), and equal to their

initial relative velocity V. Hence, since both start

together, their distance apart at time t is Vt in a direction

parallel to AB. Hence the projectile must be at (?, where
DG is equal and parallel to AB, as was to be proved.

Observation.— Since ^fiCZ> is a parallelogram, .*. BC = AD = ^g^,

showing that at time t the projectile has been pulled down by gravity

through a depth ^gt^ from the line of projection.

Hence, in firing at a target, the

muzzle ofthegunmust be directed
towards a point ^fft^ above the

target, where t is the time taken
by the bullet to reach the target.

186. Fig. 38 shows how this

construction may be used to find

the position of the body at every
second of the motion. The points

Oi, D2, D^ ... represent the posi-

tions of a body falling from rest

after 1, 2, 3 ... seconds respect-

ively. They are therefore
the points shown in the
diagram on page 53. On
the direction of projection, we
must take each of the divisions

^iffj, ByB^, B2B3 ... to represent

V units (supposing the unit of

time to be one second). Com-
pleting the corresponding paral-

lelograms, we find the points Ci,

C2, C3... representing the posi-

tions of the projectile after 1, 2,
3 ... seconds respectively.

If the points A, C„ Co, C^ ...

bejoined together by a curve, this Fig. 38.
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curve, when well drawn, will represent the path described by the
projectile. The curve must be drawn touching AB a.t A, for at the

instant of projection, the direction of motion is along AB.

[The curve is called a pardbda, and its properties are discussed in treatises on
Conic Sections.]

186. A body is projected with a velocity whose
horizontal and vertical components are it and v.

To find its position and velocity at any given
instant.

Let A be the point of projection. On the horizontal

line through A measure off

AB = ut = distance that would be traversed in time t with
uniform horizontal velocity u.

On the vertical, measure off

AD = vt—^gt"^ = height at time ^ of a particle projected
with vertical velocity v.

Complete the parallelogram ABCD. Then G represents
the actual position of the projectile at time t.

Again, in the time t the acceleration g imparts a down-
ward vertical velocity-component gt. This has to be
compounded with the initial velocity-components u, v ;

hence, if u, v' are the horizontal and vertical velocity-

components at time t,

u' = u, v' = v—gt (1),



PARALLELOGRAM OP ACCELERATIONS AND PROJECTILES. 171

187. Greatest height and time of flight.— The vertical part

of the motion is the same as that of a body D projected vertically

upwards with initial velocity v.

[For if such a body is projected at the same instant as the projectile, the latter
will separate from it with uniform horizontal relative velocity «.]

Therefore, by §§ 63-65,

The body ceases to rise when its vertical velocity v—gt = ; there-

fore time taken in rising = — (2).
9

The greatest height {be or Ady Fig. 39)

-I • <»'•

The time of flight on the horizontal plane AB is foimd by putting
« vertical height = vt—^gt\ and is therefore

2v
ss _ = twice time of rising (4).

188. Range on a horizontal plane. — If t is the time of
flight, the horizontal range {AA', Fig. 39) is ut, the distance traversed
in a horizontal direction. Therefore, by (4),

horizontal range = «x — = -^ (5).
9 9

Cor.—If the body is projected with velocity V at an inclination
46** to the horizon, then, by § 172, Cor.,

u == —^, V = —T-, and therefore horizontal range = —...(6),
-v 2 -v 2 g

It can be shown that this is the greatest possible horizontal range
for a body projected with velocity V. We observe that the greatest

range is double the height to which the body would ascend if projected
vertically with velocity V. See 5 221.
u=t^^. v'-if'r^^ £^-t . i^V^j< -f c .. >^--*-— -^^-^ '^'1

Example. — If a bullet is fired at elevation 30° with velocity
1000 ft. per sec, then

horizontal velocity « = 1000 cos 30° =1000x^^/3 = 500 -v/3 ft. persec,
vertical velocity v = 1000 sin 30° = 1000 x ^ =500 ft. per sec.

;

hence time of flight = ^I^ = ^x^ = IM = 3H seconds,
g 32 32

and range on horizontal plane = ut = 31i x 500^/3 = 15625 a/3 feet

= 27063 feet (approximate) = 9021 yards = 5| miles.
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Summary of Results.

The Parallelogram of Accelerations.—(See page 166.)

The Triangle and Polygon of Accelerations.—(Page 167.)

For a body projected with horizontal and vertical

velocity-components u, u, the horizontal and vertical

distances traversed in time t are ut and vt—^gi^.

The velocity-components at time t are

u' = Uf v=v—gt (1)

The time taken in rising = — (2).
9

The greatest height =^ (3).

The time of flight on a horizontal plane

= 7 ^'^-

The horizontal range = -^ (6).
9

The range is greatest when the elevation is 45°, and is

=? <«'•

EXAMPLES Xn.

1. A body is initially moving eastward at the rate of 15 miles an

hour, and 11 sees, later it is moving northward at the same rate.

Find the direction and magnitude of the acceleration, supposed

uniform, and the velocity 5i sees, after starting.

2. A particle moves uniformly along the sides of a regular hexagon.

Calculate the change of velocity at each comer of the hexagon, and

the magnitude of the blow required to cause this change.

3. A body is projected horizontally with a velocity of 32 ft. per

sec, and falls under gravity. Represent in a diagram its velocities y

after 1, 2, 3 sees, respectively, and find their magnitudes.
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4. Each of two projectiles is moving directly towards the other at

a given instant. Show that they must ultimately meet.

5. A particle is projected in a horizontal direction with a velocity

of 10 miles an hour, and at the same time falls under the action of

gravity. Assuming that no other forces are acting, and taking

ff
= S2 (feet, seconds), draw a figure representing the positions of

the particle at the end of 1, IJ, 2^, and 3 sees.

6. A cannon hall is shot horizontally from the top of a tower

49 feet high, with a velocity of 2000 ft. per sec. Find at what dis-

tance from the tower the cannon hall will strike the ground. ^
7. A hall is thrown horizontally from a height of 100 ft., with a

velocity of 60 ft. per sec. What is its velocity on reaching the

ground P

8. A cannon hall of mass 7 lbs. is fired horizontally from a gun
whose mass is 2 tons. The mouth of the cannon is 9 feet from the

ground, and the hall strikes the ground i of a mile off. What force

will he required to bring the cannon to rest in 10 ft. ?

9. A stone is thrown from the top of a tower with a velocity of

60 feet a second, in a direction making an angle of 30° with the

horizon. Find the distance of the stone from the point of projection

at the end of 6 seconds.

10. A stone is projected into the air with a velocity of 200 ft. per

sec. in a direction inclined at 60" to a horizontal plane. With what
velocity must another stone be projected vertically upwards so that

the two stones may rise to the same height above the horizontal /

plane.

11. A body, thrown in a direction making an angle of 30° with the

horizon, passes through a point 400 \/3 feet horizontally from the

point of projection and 76 feet above it. Find the velocity of

projection.

12. The velocity of a projectile when at its greatest height is \/f of

its velocity when at half its greatest height. Show that the angle of

projection is 60°.

13. Two stones are simultaneously thrown from the top of a tower

in any two directions at right angles, with velocities of 5 and 12 ft.

per sec. respectively. Find their distance apart after 4 sees. s/
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EXAMINATION PAPER VII.

1. Explain and illustrate the " Parallelogram of Velocities."

2. Show how to find the relative velocities of any set of bodies with
regard to one of their numher.

3. Find the direction in which a man must strike out across a river

flowing half a mile an hour, if he swims at the rate of a mile an hour,

and wishes to land at a point immediately opposite.

4. A person travelling eastward at the rate of 4 miles an hour
observes that the wind seems to blow directly from the north ; on
doubling his speed, the wind appears to come from the north-east.

Determine the direction and velocity of the wind.

5. Show that the highest point of the wheel of a carriage moves

twice as fast as the carriage itself.

6. A ship is sailing due north with a velocity of 10 miles an hour.

In what direction and with what velocity must a stone be thrown

from its deck, that it may start in a north-westerly direction with a

velocity 10 a/2 miles an hour ?

7. A particle is projected in any manner in a vertical plane. Show
how to find its position at the end of a given time.

8. Explain a geometrical method of finding in direction and

magnitude the velocity of a projectile at any instant, the initial

circumstances being given.

9. A stone is projected horizontally from the top of a tower 100 ft.

high with a velocity of 64 ft. per sec. "What will be its distance

from the foot of the tower when it strikes the ground P

10. Prove that the height to which a projectile ascends varies as

the square of the velocity of projection.



CHAPTBH XIII.

THE PARALLELOGRAM OF FORCES.

189. Bepreseutation of forces by straight lines.—
Newton's Second Law tells ns that force, like velocity,

has direction as well as magnitude. For it asserts that
change of momentum is proportional to the impulse of the
force, and takes place in the direction in which the force is

impressed. Hence the magnitude of a force is measured,
as in Chapter VI., by the momentum per unit time which
it imparts to the body on which it acts, and the direction
of the force is the direction of this imparted momentum.

Or, what is equivalent, the magnitude of the force may
be measured by the velocity it would impart to a unit
mass in unit time, and its direction is the direction of
this velocity, or the direction in which the body would
begin to move if it started from rest.

If, therefore, this velocity be represented by a straight
line, this line will indicate both the magnitude and direc-

tion of the force, and it may therefore be said to represent
the force.

Thus forces may he represented by straight lines.

190. Tlie Principle of the Physical Independence
of Forces.—When a body, instead of starting from rest, is

initially moving in a direction different to that of the
impressed force, the velocity which the force imparts to
the body in any given interval of time must be compounded
with the body's initial velocity in order to obtain its final

velocity (see Newton's comment on Law II., in § 79).

A few simple illustrations will ehow this.
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(1) Let A, D be the positions at any instant of two men seated in a
railway carriage moving uniformly with velocity AB. If the man at

A throws a hall so as to reach the other in one second, he will project

it in the direction AD, in just the same way as he would have done if the

carriage had been at rest. But, owing to the motion of the train, the

two men will, in one second, he carried, say, to B, C, and the actual

path of the ball in space will be the diagonal AC.

Fig. 40.

Hence the force exerted in throwing the ball merely imparts the
relative velocity AD. But, before the ball was thrown, it had the same
velocity AB as the carriage. Therefore the final velocity AC ia

obtained by compounding the initial velocity AB with the velocity

AD due to the impressed force of projection.

(2) Again, when a stone is dropped, we say that its momentum ia

equal to the impulse of the force due to its weight. But, when
the Earth's motion is taken into account, the momentum which
we observe is only the momentum of the velocity relative to the

Earth. The actual velocity of the stone in space is compounded of

this relative velocity and the velocity of the Earth. But, before it

dropped, the stone had the same velocity as the Earth. Therefore its

final velocity is compounded of its initial velocity and the velocity

due to the impulse of its weight, the latter component being given

by Newton's Second Law.

This property may be stated more generally thus : The

velocity-component which any given force imparts to a body

in any given time is independent of any other velodty-

components which the body may possess or acquire.

This is called the Principle of the Physical Inde-
pendence of Forces.
Employing the definition of acceleration of § 174, it

hence follows that the relation

P = mf,

or force = mass X acceleration,

holds good in every case of motion under force.
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191. Composition of forces acting on a particle.—
A force cannot act on nothing ; it must be applied to some
definite particle or body whose velocity it changes or tends

to change, and the change of velocity will depend on the

mass moved. Hence, to completely define. a force, it is

necessary to specify on what particle the force acts ; i.e.,

to specify its point of application (§ 134).

When^ therefore, a force is represented by a straight line,

this line must be drawn from its point of application. An
equal and parallel straight line will represent a force of

the same magnitude and direction, but with a different

point of application, and therefore not the same force.

A body may be acted on by two or more independent
forces at the same time.

We have abundant experience of this.

If two or more men pull a block of stone by means of separate ropes

attached to it, the forces which they exert are entirely independent.

Yet they all tend to set the stone in motion.

If we lift a body off the ground, the body is acted on simultaneously

by two entirely distinct forces, namely, its weight and the lifting force

exerted by our hand.

When two or more forces act simultaneously on the

same particle, each force tends to impart a certain

acceleration in the direction in which it is applied. But
a particle cannot actually move in two different ways at

the same time ; it must move with a certain definite

acceleration in some direction. Such an acceleration

could always be produced by a single force of suitable

magnitude applied to the particle in that direction. This
force is called the resultant of the original system of

forces. Hence we have the following

Definition.—The resultant of two or more forces is

that force which would produce the same acceleration that

is produced by the several forces acting simultaneously.

Any forces which have a given force for their resultant

are called components of the given force.

Further, we see that any number of forces must have a
single resultant,provided that they all act on the sameparticle.

DTN. »
.
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192. The Parallelogram of Forces.—If two forces,

acting simultaneously on the same particle, be re-

presented by two adjacent sides of a parallelogram

drawn from their point of application, their re-

sultant shall be represented by the diagonal of the

parallelogram drawn from that point."^'

Let the two forces P, Q be represented by the sides ABj

AD of the parallelogram ABCD. These lines represent

Fig. 40.

the velocities which P, Q, respectively, acting separately,

wonld impart to a unit mass in a unit time (or to m units

of mass in m units of time). When the two forces act on

the same particle during the same time, the velocity-

component imparted by either force is independent of the

velocifcy-component imparted by the other (§ 190). There-

fore the actual velocity acquired is found by compounding

the velocities AB, AD by the Parallelogram of Velocities,

and is therefore represented by the diagonal AG. Hence

the change of momentum is fche same as would be produced

in the same time by a single force represented by AG;

therefore the diagonal AG represents the resultant of the

two given forces, a.^ was to be proved.
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193. Equilibrinm.— Definition.—A system of forces

is said to balance, or to be in equilibrium, when the

forces, acting simultaneously
,
produce no change in the

state of rest or uniform motion of the body or bodies to which

they are applied.

Thus, when several forces in equilibrium are applied to

a body at rest, the body will remain at rest. If the forces

are applied to a body in motion, the body will continue to

move uniformly in a straight line as long as the forces

balance. In each case the acceleration of the body is zero;

therefore the resultant of the forces is zero.

194. Deductions from the Parallelogram of Forces. —
The following properties of forces acting on a particle are analogous
to those of velocities and accelerations (§§ 165-172 and 181, 182).

As they will bo considered more fully in treating of Statics, we shall

now merely state them without proof.

Triangle of Forces.—If three forces acting on the same particle can

be represented in magnitude and direction (but not in position) by the

sides of a triangle taken in order, they will be in equilibrium.

Polygon of Forces.—If any number of forces acting on the same

particle can be represented in magnitude and direction by the sides of

a closed polygon taken in order, they will be in equilibrium.

Composition of two forces at right angles.—If X and Y denote two
forces acting at right angles on a particle, the magnitude of their

resultant R is given by

Also, if this resultant makes an angle A with the force Z, then

tan^ = —

.

X

Resolution of a force in two directions at right angles.—Conversely,

if we have to resolve a force P into two components along two
straight lines at right angles, and if A is the angle the force makes
with one of these lines, the components {X, Y) are given by

X = Pcos^,

Y= Psin A.
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To find the resultant of two forces P, Q ivhose directions include a given
angle A, we replace P by its components X, Y along and perpendicular
to the direction of Q. Then P and Q are together equivalent to Q +Z
and Yin these directions ; hence R, the resultant, is given in magnitude

by i?2= (Q + X)2+r2= Q2 + 2QX + .T2+r2.

But X = PcosA and X^+ Y- = PS;

.-. J^= Q^ + 2QPcobA + P^,

a well-known formula.

194a. The following is an instructive illustration of thelawafor the
composition and resolution of velocities.

Example.—The sail of an ice-yacht* is set at an angle a to the keel.

The wind is blowing at right angles to the keel with velocity V.
Required to find the greatest possible velocity of the ice-yacht, sup-
posing there be no resistance to motion along its keel.

Let V be the velocity. So long as there is any wind pressure on
the sail, the speed of the yacht must be increasing, for there is no
resistance to its motion. The speed will therefore continue to increase
till the yacht is moving at such a rate that there is no wind pressure
on the sail.

This will be the case when the velocity of the wind relative to the
sail is along the surface of the sail, i.e., when the resolved velocities

Fig. 41.

of the wind and of the sail, at right angles to the sail, are equal.

Whence F.cos a = v sin a

;

(Fig. 41)

.-, V = Vcota.
Otherwise thus :

—

Let ABhe the sail. Draw AC and BC respectively perpendicular and
parallel to the keel. Then, if a particle of air with velocity V moves
from ^ to C in the same time that B moves from B to C, the particle of
air tvillJHst slide along the sail ivithout pressing on it.

But B moves from 5 to C in time BOlv, and a particle of air moves
from ^ to C in time AOj V.

Hence — = ^; ••. v=^.V= Vcota.

Cor.—If a = 46°, v = V; if a<i5°, v> V; and v increases as a

decreases.

* An ice-yacht i.s a vessel used in America for sailing on frozen rivers. It rests

on the ice on blades parallel to the keel, and runs along like a sleigh.
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Summary of Results.

TJie Parallelogram of Forces.— If two forces, acting

simultaneously on the same particle, be represented by
two adjacent sides of a parallelogram drawn from their

point of application, they shall be equivalent to a single

resultant force represented by the diagonal of the paral-

lelogram drawn from that point.

For other results, see § 194.

EXAMPLES XIII.

[Further examples on Composition and Resolution of Forces will

be given in Statics, Chaps. I., II. The following are miscellaneous

examples.]

1. Find the resultants of the following pairs of forces acting at

right angles to one another :

—

(i.) 7 lbs. and 24 lbs.

;

(ii.) 8 oz. and 15 oz.
;

(iii.) 20 cwt. and 21 cwt.

;

(iv.) 24 and 55 grammes weight.

2. Two forces of 12 lbs. and 13 lbs, act on a particle; what are

the greatest and least values of their resultant ?

3. A bullet is let fall from the mast-head, 30 feet above the deck,

of a ship steaming at 20 miles an hour. Find how far the ship will

have advanced before the bullet strikes the deck.

4. Describe, with diagrams, the apparent path of the bullet (of the

last question) to an observer on board the ship, and its actual path in

space.

6. A body, weighing 1 lb., is allowed to fall from rest under

gravity, and is at the same time pulled aside by a horizontal force.

If the body describes a straight line inclined to the horizon at an

angle of 30°, what is the magnitude of the force, and what is the

acceleration of the body ?
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6. Find the maximum velocity of an ice-yacht sailing at right

angles to a wind of 10 miles an hour if the angle between the sail

and the keel is sin-^ f (neglecting all resistances to motion along the

keel).

7. Find the angle between the sail and the keel of the ice-yacht if,

when the wind is perpendicular to the keel, the maximum velocity of

the yacht is four times the velocity of the wind.

8. An ice-yacht is sailing at right angles to the wind at the rate of

20 miles an hour. Its sail makes with the keel an angle of 30°. Find

the least possible velocity of the wind.

9. Find the greatest possible velocity of an ice-yacht sailing due

N. under a N.W. wind of 20 miles an hour if the sail makes an

angle of 30° with the keel.

10. Two particles A and B are moving along lines which meet at

right angles at 0. One is approaching, and the other receding from,

0. If at each moment their velocities are inversely in the ratio of

their distances from 0, prove that the distance between them is

constant.

11. AOB is a right angle ; >40 = 20 ft. Two particles start at the

same instant with equal velocities, one from A toward 0, the other

from toward B. What is their least distance apart ?



CHAPTER XIV.

MOTION DOWN INCLINED PLANES.

195. Definitions.—An inclined plane may be exempli-

fied by a plank tilted up at one end, so that bodies can

slide down it, or by a road

or railway running down
hill at a uniform slope. It

will, however,be conveuient
to take an inclined plane as

the slanting face AGG'A' of

a block of material whose
verticalface ABG is a right-

angled triangle. The hypo-
tenuse AG is called the

lengfth of the plane, AB is

the base and is horizontal, the perpendicular BG is the
height of the plane, and the angle BAG measures its

inclination to the horizon.

The plane is said to be at an inclination of " 1 in n,"
when its height is one n*^ of its length, that is

BG = ^.

Fig. a

In this case 8'm BAG = ^=:
AG

so that 1 -f- w is the sine of the angle of inclination, and
there would be a rise or fall of 1 foot for every n feet

traversed up or down the plane.

Thus, i£ the angle is 30°, sin 30° = |, and the inclination is 1 in 2.

By a perfectly smooth plane or other surface, we
mean one that is perfectly slippery or devoid of friction,

so that bodies can slide along it freely and without resist-

ance. When a body presses against any surface, the
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surface exerts a reaction, for otherwise the body would
penetrate it ; hut the reaction of a perfectly smooth surface

is perpendicular to the surface.

If we stand on a slippery sheet of thick ice, the reaction of the ice

prevents our going through ; but if we try to walk, we cannot get

much foothold, because the ice exerts but little friction. If the ice

were perfectly smooth, we could not walk on it at all.

per-
the

196. A heavy body slides from rest down a
fectly smooth, inclined plane. To construct
position of the body at a given time t.

Let the body start from rest at A. Draw AG vertically

downwards, and cut off

AG = Igi^ = distance that would be fallen in time ^ by a
body dropped from A.

B.A

Fi-. 43. Fiir. 44.

Drop GB perpendicular on the plane.

Then B represents the position of the body on the

plane at the time t.

For let a second body be let fall from A at the instant

that the first starts sliding down.
Then gravity tends to produce the same acceleration in

both bodies, and therefore does not affect their relative

motion.
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The only other force is the reaction of the plane acting

on the first body.

This reaction is perpendicular to the plane, and there-

fore constant in direction. Hence the relative velocity

acquired by the bodies is perpendicular to the plane.

Bat both bodies start from rest together at ^.

Therefore the line joining the bodies is always perpen-
dicular to the plane, which proves the construction.

CoR. 1. Since the angle ABC is a right angle, B lies on
a circle having AG as diameter (Euc. III. 31). Hence, if

any number of bodies start simultaneously from A, and slide

down straight lines in the same vertical plane, their positions

at any instant will all lie on a circle whose highest point is A,

Cor. 2. Hence the times taken to slide down different

chords of a vertical circle, starting from the highest point of
the circle^ are all equal.

197. Fig. 44 shows how the position of the hody may be constructed
at each second of the motion. The points Ci, C2, C3 are the positions

of a freely falling body after 1, 2, 3 seconds, aud these are given by
the diagram on page 63. Drawing perpendiculars on the plane, their
feet Bi, B2, B3 represent the positions of a body sliding down the
plane at the same instants.

198. To find the acceleration of a body sliding
down a smooth incline of 1 in n.

Let the body be at C.

Let its weight be repre-

sented by the vertical

line Ca. Complete the

parallelogram Gcibd.

Then Cb and Cd repre-

sent the components of

the vv^eight along and
perpendicular to the

plane.

Since the body moves
down the plane, the
resultant force produc-
ing motion is down the
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plane. Hence the reaction of the plane, acting perpen-

dicular to it, must be equal and opposite to the component

Cd, and the force producing motion is represented by Cb.

On the plane cut off

CA = Ca,

and draw AB horizontal.

Then the right-angled

triangles ABC, abc are

equal in every respect

;

.-. Cb = CB.

But, since the incline

is 1 in n, the height CB
is one nth of the length

GA ; therefore also

Cb = Ca ^ n ;

^'«- *'

.'. resultant force producing motion = weight of body — w.

But a force equal to the weight of the body would
impart to it an acceleration g ;

It

the acceleration down the plane

= (/x
height of plane

length of plane

(1)

Cor. Let /.BAO = A.

acceleration = g sin A

Then 8in^= -r^ = ^-
AC Ca

(2).

In particular, if the inclination = 0°, 30^ 45^ 60°, 90°,

the acceleration down the plane = 0, ^, -^, ^-^> 9-

199. Work.—When the direction of motion of a body
is not in the same straight line with the force acting on
it the work done must be defined as follows :

—
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Definition.—Let a force P, constant

in magnitude and direction, move its

point of application from A to C. Draw
CB perpendicular on the direction of P.
Then the product of the force P into the A
distance AB measures the work done
by the force, AB being considered positive

or negative according as its direction is ^^S* *7.

the same or opposite to that of the force.

Observations.— When the point of application moves
'perpendicular to the force, no work is done; for, if AG is

perpendicular to P, then B coincides with Aj and AB
vanishes.

If the point of appKcation is moved first from A to B and then
from B to (?, the work done by F in the former displacement Ir

FxAB, and in the latter it is zero, because BC is perpendicular to P

;

therefore the whole work done is P x AB, and is the same as if the
point of application moved directly from A to C.

200. Work on an inclined plane.—Work done by
gravity.—When a weight W slides down the inclined

plane CA (Fig. 42 or 46), the work done by gravity is,

by definition,

= W xCB = W X vertical height descended
;

and is the same as the work which would be done in

falling vertically down the height of the plane.

Thus, the work done hy gravity on a body is always equal

to the product of the weight of the body into the vertical

height through which it descends, whether the weight falls

vertically or slides down an inclined plane.

Similarly, the work done against gravity in raising a
body is the product of the weight into the vertical height
through which it is raised.

When a body moves horizontally no work is done
either by or against gravity.

Hence, in walking along a level road, no work is done against

gravity, so that the fatigue felt after a walk is not entirely measured
by the work done.



188 DYNAMICS.

Examples.—(1) To find the work done against erravity by a horse
in pulling a cart weighing 6 cwt. up a hill a mile long, at a slope of

1 in 40.

The vertical height risen

= i- of a mUe = ^^ ft. = 132 ft.,
40 40

and the weight raised = 6x112 lbs. =660 lbs.

;

.-. work done = 132 x 660 = 73920 ft.-Ibs.

(2) To find the horse-power required to draw a train of 160 tons up
an incline of 1 in 128 at 30 miles an hour, if the resistance due to
friction is 10 lbs. per ton.

In one second the train moves 44 feet

;

44 11
.*. vertical height risen per sec. = ft. = — ft.

* ^ 128 32

Also, weight of train = 150 x 2240 lbs.

;

.*. work done per sec. against gravity

= — X 160 X 2240 ft.-lbs. = 116600 ft.-lbs.
32

Also, total resistance due to friction = 10 x 150 lbs. « 1600 lbs.

;

-•• work done per sec. against resistance

= 1500 X 44 ft.-lbs. = 66000 ft.-lbs.

;

••. total work done per sec. - 115500 + 66000 ft.-lbs. = 181500 ft.-lbs.;

• J 1. 181600 „i,«
.*. required horse-power = = 350.

201. To verify the principle of Conservation of
Energy for motion down a smooth inclined plane.

Let a mass m slide down an incline of 1 in n, starting

with initial velocity u. By (I) § 198, the acceleration is

g -^ n. Hence, if v is the velocity after the body has gone
a distance 5, then, by (8) § 45,

v^-tc^ = 2-3-8,
n

,'. \mv^—\mv?' = mg x — .

The left-hand side represents the increase of kinetic

energy. Also mg is the Aveight of the body, and s -i- n is

the vertical height through which it has fallen in moving
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a distance s on the plane; hence the right-hand side

represents the work done by gravity.

Therefore increase of kinetic energy

= work done by gravity = decrease of potential energy.

Cob. If the body starts from rest, we have

v' = 2g— = 2gx height fallen.

Hence, if different bodies slide down inclined planes of the

same height^ they will all acquire tlie same speed on reaching

the bottom,.

Examples.— (1) A body slides down a smooth plane whose height is

one-third its base. To find the velocity acquired when it has
travelled 12 feel!

Let the mass of the body be m lbs. In travelling 12 ft. it falls a
vertical depth of ^/ ft. or 4 ft.

;

.'. work done by gravity = 4//» ft. -lbs. = img ft.-poundals

= 4m X 32 ft.-poundals.

This is equal to the kinetic energy. Hence, if t> is the required

velocity, \mv- = 4m x 32
;

.-. t;2 = 4 X 2 X 32 = 4 X 64
;

.*. V = 2 X 8 = 16 ft. per sec

(2) A weight of 3 lbs. draws a weight of 4 lbs. up an incline of 30°

by means of a string passing over a pulley at the top of the plane and
hanging vertically. To find the acceleration.

Let V be the velocity acquired when both weights have moved
over 8 feet.

The 3-lb. wt. will have fallen vertically through « ft.
;

.'. work done by 3-lb. wt. = 3« ft. -lbs. = Zga ft.-poundals.

The 4-lb. weight will have moved s feet up the plane, and, since

the incline is 1 in 2, it will have risen vertically through ^« feet
;

.. work doneby 4 -lb. wt. = — 4 x |» = - 2«ft.-lb8. = —2^«ft.-poundals

The whole work done is equal to the kinetic energy

;

.-. ^(4 + 3)v2 = 3^«-2ys =y«;

Comparing this with r' = 2/«, we have

required accelerationf = \g.
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202. The problem of the previous example can also be
solved by a somewhat different method without employing
the Principle of Conservation of Energy; we shall now give
an example of this method before applying it to a more
general case.

Example.—(3) A mass of 14 lbs. hanging by a vertical string draws
a mass of 10 lbs. up a smooth incline of 45'', the connecting string
passing over a pulley at the summit. To find the acceleration and
the tension of the string.

Let the acceleration bo / ft./sec,

and the tension T'poundals.
Consider the motion of the 10 -lb.

If allowed to slide freely down the
plane, its acceleration would be g sin 46°

or g V\ down the plane.

Therefore the tension T must be
sufficient to change the acceleration of

the 10-lb. mass from ^r sin 45° down-
wards to / upwards, i.e., it produces
an acceleration-component /h-^' sin 45° uptvards, and the property

force = mass x acceleration

gives T= 10 (/+i? sin 45°) (i.).

Similarly, considering the 14-lb. mass, the tension T, acting upwards
On it, changes its acceleration from g (the acceleration with which it

would fall ftreely) to /, and therefore produces a downward acceler-

ation-component, f—g, or, what is the same thing, an upward
acceleration-component g—f. Therefore

T=U{g-f) (ii.)

From (i.) and (ii.) we have

10(/+^siil45°) = 14(^-/);

.-. (10 + 14)/=(14-10 8in3 46°)5r;

- 14- 10 sin 46° / 7 6-(M4-)-^^^^^^ ^ 10+14 ^ \ 12 24

Again, by (ii.), T= Ug-U{^^^V2)g;
.-. tension = || (2 + v'2) g poundals

= i|(2 + V2) lbs. wt.

We now proceed to consider a further generalization of

the preceding examples.
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203. Motion of connected bodies on two inclined
planes.—A mass P is drawn up a smooth plane of inclina-

tion A by a mass Q sliding down a plane of inclination B,

the two being connected by a string passing over a pulley at

the common vertex of the planes. To find their acceleration

and the tension of the string.

Let / = acceleratiou of mass P up AG
= acceleration of mass Q down GB.

T = tension of string (in dynamical units of force)

.

This tension acts upwards on either mass, i.e., in the

directions AG, BG on P, Q, respectively.

D

Fig. 49.

The tension T acting on the mass P changes its acceler-

ation from g sin A downwards to/ upwards, and therefore

produces an upward acceleration-component f-{-gain A.

Hence T = P(/+^sin^) (i.).

Again, the tension T acting on the mass Q changes its

acceleration from g sin B along CB to / in the same direc-

tion ; it therefore produces an accelcration-coaiponent in

the opposite direction of g sin B—f. Hence

T=Q(gsmB-f) (ii.).

From (i.) and (ii.),

P (g sin A -f/) =:Q(g sin B-f) ;

.-. (P+Q)/= Qg sin B-Pg sin A;

. , 1 i.- i* QsmB—PsinA ,^^
.'. required acceleration /=: -'^^ —

—

g ...(3).
^-j-P

To eliminate/, multiply (i.) by Q and (ii.) by P, and
add*,

.-. (P+Q)T=PQ(8in^ + sinP)gf;
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tension T = JPQ_ (sin A -{ sin 7?) g (dynamical units)

PO= ^—^^ (sin A + sin J5) (gravitation units)
^^^

(4).

[If formula (3) makesf neffative, P pulls Q up.]

204. To find the line of qnickest descent from a
given point to a given straight line.

Let A be the given point, and BG the given straight

line. (Fi^. 50.)

Through A draw AD perpendicular to BG, and AE

vertically down. Bisect Z DAE by AF, cutting BG in F.

Then AF shall be the line of quickest descent ; that is

to say, a particle wonld slide more quickly down AF than
down any other lino joining A to BG.
Draw FG perpendicular to BG, cutting AE in G. Then,

since FG and AD are parallel,

.-. /.AFG = L DAF
Bnt lDAF = /l GAF

/lGFA = /lGAF;

: GA = GF

(Construction.)
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Thns, if, witli G as centre and GA as radius, we describe

a circle, it will touch BC at F, and A will be its highest

point.

Draw any other line AK to meet BC, cutting the circle

in M. Then the time a particle would take to slide down
AF = time to slide down AM (§ 196, Cor. 2), and is

therefore less than the time to slide down AK.

205. To find the line of quickest descent from a
point to a circle.

Let A be the given point, BCF the given circle, and
its centre. (Fig. 51.)

Draw a radius OC, vertically down. Join AC, cutting

the circumference in F; then AF shall be the line of

quickest descent from A to the circle.

Join OF, and produce it to meet the vertical through
AinE.
Then jLAFE= /. OFC

= L OCF = Z EAF (by parallels).

Hence AE = EF. Therefore, if, with centre £ and
radius EA, we describe a circle, it will touch BCF at F,

and A will be its highest point. Hence, as before, AF will

be the line of quickest descent.

DYN.
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206. To find the line of slowest descent from a point to
a circle.

Let A be the given point, and BFC the given circle (Fig. 52). Draw
a radius 00 vertically up from the centre. Join AOy and produce to

Fig. 52.

cut the circle again in F. Then AF shall he the line of slowest descent.
Join FO, and produce to meet the vertical through A at £.

Then LEAF = I OOF (by parallels)

» lOFO; .-. EA^EF
Hence, if, with centre E and radius EA, a circle be drawn, A will

be its highest point, and it will touch the circle BFO internally at F.

Draw any other chord ALM. Then time to slide down AF = time
to slide down AM > time to slide down AL ; which proves the construc-
tion.

207. Sliding Friction.—If a body is sliding over a
smooth surface, we know that the thrust between the body
and the surface is always perpendicular to the surface.

If, however, a body is sliding over a rough surface, the
thrust is not perpendicular to the surface.

The reaction of the rough sui'face may be regarded as

consisting of two forces : the one perpendicular to the

surface, which is usually called the normal reaction*
;

the other, along the surface, acting in the opposite di-

rection to that in which the body is moving—this force is

called the friction. The normal reaction prevents the

body from penetrating into the surface ; the friction is

merely the resistance which the rough surface offers to

sliding.

* The line drawn perpendicular to a surface at any point is called the normal at
that point.
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The magnitude of the friction depends partly on the

roughness of the surface and of the body which is sliding

over it, and partly on the magnitude of the normal re-

action.

208. It is found by experiment that the friction between
materials of given roughness is always in constant ratio to

the 7iormal reaction. This constant ratio is called the

Coefficient of Friction. If we denote the coefficient of

friction by /x, the friction by Fy and the normal reaction

by By this experimental law is represented by the formula

^ = ,x; i.e.yF=f,IC (5).

It is important to notice that the value of jx does not depend on the
velocity of sliding, nor on the magnitude of the area of the body
which is in contact with the surface ; but only on the roughness of

the body and of the surface.

209. Let A represent a body sliding over a rough sur-

face EH, with velocity u (Fig. 53) ; let AG and AB
represent B and F. Then, completing the parallelogram

ABDG, AD represents the resultant reaction of the
surface.

«•€

Let /.DAG = 6; then

,^^fi-DG_F _
(6).

Thus the resultant reaction always makes with the nor-

mal an angle whose tangent is fx ; this angle is called the
angle of friction.
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210. Motion down a rough inclined plane.—Suppose
a body D, of mass M, sliding down a roii^h plane AB
inclined afc an angle a to the horizon. (Fig. 54.)

Then the forces acting on the body are :

—

(i.) Its weight Mg, acting along DG ; the normal
reaction i2, acting along DE ; and

(ii.) The friction /xE, acting along DA {up the plane

since the body is sliding down it).

Also z FDG = 90°- z GDB = L ABC = a.

Thus Mg can be resolved into the two forces Mg cos a

along DF, and Mg sin a along DB. (§ 194.)

Now, since the body has no acceleration perpendicular

to the plane, .'. the forces along EF must balance ; i.e.,

R = Mg cos a.

Again, the resultant force down the plane is

Mg sin a— /x B, i.e., Mg sin a—fx Mg cos a.

Thus, if/be the acceleration down the plane,

Mg sin a—fxMgcoaa = Mf [§ 88 (4)] ;

whence /= gr (sin a— /m cos a) (7).

But, if $ be the angle of friction, /x = tan 6
;

.*. /= gr (sin a— cos a tan ^)

sin a cos 6^— cos a sin ^ . , a\ ^ /a /o\= g ^
= Sr sin (a— 0) sec 6' ... (8).

cos c»
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Cor. 1.

—

If the plane he horizontal^ we must put a = in

the above result; hence, attending to the negative sign of /,

we see that a body sliding along a horizontal plane

experiences a retardation y^g. This retardation continues

to act as long as the body is in motion ; when it comes to

rest, friction ceases.

This result may better be established independently from the equa-
tions F = fxR, R = mg and mf = F. Hence, mf = p. mg, or / = fig,

and, since the friction is in the direction opposite to that of motion, /
is here a retardation, not an acceleration.

CoR. 2.—If = a, / = ^ sin (o— 0) sec = ; hence the body will

remain at rest if it be initially at rest, or will descend with uniform
velocity if it be initially projected down the plane. Thus, if the in-

clination of the plane be equal to the angle offriction, the body tvill not

begin to slide doivn the plane.

If the angle of inclination be now diminished, we know from
ordinary experience that the body will still remain in equilibrium

;

it is, however, important to understand that the equations used in this
paragraph no longer hold, since they are based on the laws of Sliding
Friction ; these are not identical with the laws of Statical Friction,
i.e., of friction in cases of equilibrium ; this subject will be fully (Jis-

cussed in Statics.

If, however, the particle be projected down the plane in this case,

then, since a < 0, it follows that / will have a negative value,
proving that the body will experience a retardation g sin {B—a) sec 6
till it comes to rest.

211. Motion of a "body projected up a rough in-

clined plane.

This problem differs from that discussed in the last

paragraph in one point only—the friction will now act
down the plane since the body is moving up ; hence, fol-

lowing the same line of reasoning, we shall find that the
resultant force down the plane is now

Mg sin a-\-p,Mg cos a',

whence

f=g (sin a-f/xcosa) = fir sin (a+^)sec^ ... (9).

Hence, given the initial velocity up the plane, we could
tell how far the body would go before this acceleration
down the plane reduced it to rest.
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When once the body was reduced to rest it would
remain at rest if a = ^ or < 0; but, if a>0, the body
would slide down again, and this part of its motion would
be determined bj the equations of the last paragraph.

212. A heavy body slides from rest down a rough
inclined plane. To construct the position of the
body after a given time t.

Let the body start from rest at /I ; draw AC vertically

downwards, and cut o& AC =^ } gt^ = distance that would
be fallen in time ^ by a body dropped from A. (Fig. 55.)

Fig. 66.

Draw CD perpendicular to the plane, and make angle

DCB = 0. Then B represeats the position of the body

after time t.

For let a second body be dropped from A at the instant

when the first starts sliding down ; then gravity tends to

produce the same acceleration in both, and therefore does

not aifect their relative motion.

The only other force is the reaction of the plane acting

on the first body.

Now the normal to the plane at any point is parallel to

CD; and the reaction makes with the normal an angle 6.

But angle DCB = 6 ; therefore the reaction always acta

in a direction parallel to CB.
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Hence the relative velocity acquired by the bodies is

parallel to GB. Bat both bodies start from rest at A.

Therefore the line joining the bodies is always parallel

to GB. Thus when the one body is at G the other is at B.

Coil.— IABC= L BDC + L BCD = 90° + 0.

Draw a segment of a circle ABO, and draw any other chord AE ;

join CE.
Then lOEA = I CBA = 90° + ^;

.*. if a body slide down an equally rough plane in the position AEf
it will be at £ after t sees.

Hence, if a series of bodies start from A to slide down, various

equally rough chords of the segment on AC, which contains the angle
(90° + e), they will all arrive at the arc at the same moment.

Summary of Results.

If / is the acceleration down an incline of 1 in n,

/ = t = ^xgS-«' or/=,sin^ (2).

For two masses P, Q joined by strinpf on two inclines,

of angles A, B,

J. Q sin B^P sin A ^n^.

^ qTp
^ ^^''

tension T= (sin ^ + sin B)^^ (4).

To determine the magnitude of the friction when one

body is sliding over another, i'' = /A i? (5).

In the same case, if 6 be the angle between the resultant

reaction and the normal (i.e., the angle of friction)

tan ^ = /x (6).

Acceleration down a rough plane inclined to the horizon
at an angle a greater than 6 is

(gf sin a— ft cos a) (7)

= ^sin (a— ^) sec^ (8).

Retardation up a rough inclined plane is

gr (sin a+/xcosa) = gr sin (a+ ^) sec ^ (9).
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EXAMPLES XIV.

1. Find the distances traversed in 1 sec, and the velocities

acquired in that time, by particles sliding down planes of inclinations

30°, 45°, 60°.

2. A body, starting from rest on an inclined plane, describes 40 ft.

in the third second ; find the inclination of the plane.

3. A boy in a toboggan slides down a perfectly smooth hill, whose

inclination is 1 in 20. At what rate will he be going (in miles per

hour) when he has travelled 100 yds. from the start ?

4. A body moves up an inclined plane, whose angle is 30°, starting

with a velocity of 48 ft. per second. What is its velocity when it

reaches a point 64 ft. from the starting-point P

5. The pull exerted by a rope which draws a carriage up an incline

of I in 4, with an acceleration 2 (ft. per sec. per sec), is i ton.

What is the weight of the carriage ?

6. A mass of 62 lbs. lies on a plane inclined at an angle of 60° to

the horizon. Find the work necessary to (remove the mass 20 ft. up

the plane.

7. An engine takes a train of 60 tons in all up an incline of 1 in 100

at a maximum speed of 30 miles per hour, and it can take a train of

150 tons on the level at the same speed. Find the fractional resist-

ance of the road in lbs. per ton ; and also the rate, in horse-power, at

which the engine works when running at this speed.

8. Find the H.-P. of an engine which is taking a train of 200 tons

up an incline of 1 in 224, at 30 miles an hour, assuming the resist-

ance due to friction to be 20 lbs. per ton.

9. A body, weighing 187 lbs., is supported on an inclined plane,

whose angle is 30°, by a horizontal force. Find the force and the

work necessary to remove the body 20 ft. along the plane.
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10. Three planes are inclined at angles of 30°, 45'^, and 60°, respect-

ively. Find the distance a body must slide down each plane in order

to acquire a velocity of 10 cms. per second.

11. Find also, in ergs, the work required to move a mass of 1

gramme along each of the planes (of the last example) through a

distance of 10 cms.

12. Two bodies, whose masses are F and Q, are connected by a fine

stretched string ; P hangs vertically, and Q is placed on a plane

whose inclination to the horizon is 30°. Find the ratio of P to Q, ifP
descends from rest through a given space in (i.) twice, (ii.) four times

the time in which it would fall freely through the same space.

13. A bullet, moving at the rate of 160 ft. per second, penetrates

7 ins. into a trunk of wood. With what velocity would another

similar bullet, moving with the same velocity, emerge, after passing

through a similar piece of wood, 3 ins. thick ?

14. The side BC of a triangle ABC is vertical; show that, if the

times of falling down the two sides BA, AC be equal, the triangle

must be isosceles or right-angled.

15. A body is projected with velocity 20 ft. per second along a

rough horizontal plane ; it travels 25 ft. before it is brought to rest.

Find the coefficient of friction.

16. Determine the acceleration of a body sliding down a rough
plane whose coefficient of friction is ^\/3, if the inclination of the

plane to the horizon is (i.) 30^, (ii.) 45°, (iii.) 60°.

17. A particle takes 2 sees, to slide down a rough plane in-

clined to the horizon at an angle of 60°. If the coefficient of friction,

is \ '/S, determine the length of the plane.

18. Find the velocity with which a body reaches the bottom of a

rough plane, 48 yds. long, inclined at an angle of 30° to the horizon.
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19. How far would a body travel before coming to rest if projected

up a rough plane, inclined at an angle of 30° to the horizon, with

initial velocity 40 ft. per sec. (/t = ^ a/3.)

20. How far would the body in the last question travel if projected

down the plane with the same initial velocity ?

21. A particle acquires a velocity of 8 ft, per sec. in sliding

down a rough inclined plane whose base and height are both 2 ft.

Find the coefficient of friction.

22. A body is projected up a rough plane inclined at an angle of 30°

to the horizon ; compare the times occupied in sliding up, and down
again. (;^-|^/3.)

23. Two particles of equal mass are connected by a light smooth

inextensible string, of length 6 ft. One is placed on a rough plane

(inclination = 30°, (x. = ^ V3) ; the other is just hanging over the top

of the plane. Find the acceleration of the system, the tension of the

string, and the velocity with which the first particle reaches the top

of the plane.

24. The inclination (o) of a rough plane to the horizon is less than

its angle of friction {&). Prove that the distances travelled by two

bodies which are projected with equal velocities straight up and

straight down the plane, respectively, are in the ratio

sin (0-o): Bin(e + a).

25. Find the line of quickest descent from a given line to a given

point.

26. Find the line of quickest descent from a given circle to a given

point.

27. Prove that the line of quickest descent from a given point to a

given curve bisects the angle between the vertical and the normal to

the curve at the point where it meets the curve.
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28. Prove the same theorem for lines of slowest descent.

29. Find the line of quickest descent from a circle to a circle.

30. Find the line of quickest descent from a point within a given

-circle to the circumference.

31. The engine of a train of 200 tons exerts a steady hauling force

of 3,000 lbs., and the frictional resistances to the motion of the train

amount to 10 lbs. per ton. Find the times that the train would take

to travel 5 miles, starting from rest, (i.) when the line is level,

(ii.) when there is a down gradient of 1 in 150 for the first 2 miles

and an up gradient of 1 in 450 for the remaining 3 miles.

32. A mass M lies on an incliaed plane and is connected with

fl,nother mass m by a thread, which passes over a smooth pulley at the

top of the plane. "When the plane is smooth, m is sufficiently great

to pull M up the plane.

(i.) Show that, when the plane is smooth, the tension of the

thread is constant, and find the velocity when the particles have

moved over a given space from rest.

(ii.) If the plane is so rough as just to produce equilibrium,

find the mass which must be added to m in order that M may be

dragged up the plane at the same rate as in case (i.).

33. Two weights P and Q are connected by a string. P hangs

vertically and draws Q up a plane of inclination o and coefficient of

friction yn, the string passing over a pulley at the top of the plane.

Prove that the acceleration is less than it would be if the plane were

smooth by an amount
p^^TT^'

34. Find the line of quickest descent from a given circle to a given

straight line without it.

35. Find the line of quickest descent from a given straight line

without a given circle to the circle.
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36. In Example 32, if the height of the plane be given, show that,

if m pull up M in the shortest possible time, the inclination of the plane

must be such that m is twice as great as it is for equilibrium.

37. A weight of 12 lbs., moying down the side of an isosceles triangle

whose base is horizontal, draws a weight of G lbs. up the other side by

means of a string passing over a pulley at the vertex. Determine the

vertical angle of the triangle, that the tension of the string may be

4 lbs.
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EXAMINATION PAPER VIII.

1. Give a dynamical proof of the proposition known as the

Parallelogram of Forces.

2. Three equal forces P diverge from a point, the middle one being

inclined at an angle of 60** to the others. Find the resultant of the

three.

3. If a body, acted on by several forces, move in a straight line

with uniform velocity, what conditions must the forces satisfy ?

4. Find the acceleration down a smooth inclined plane.

6. Two bodies start from rest, one down a smooth inclined plane

and the other falling freely. Prove that either body, as seen by a

person moving with the other, appears to be moving from the

observer in a straight line perpendicular to the plane with uniform

acceleration.

6. A mass of 6 oz. slides down a smooth inclined plane, whose

height is half its length, and draws another mass from rest over a

distance of 3 feet in 5 seconds, along a horizontal table which is level

with the top of the plane, the string passing over the top of the plane.

Find the mass on the table.

7. Prove that, if a particle slide down a smooth inclined plane, the

kinetic energy acquired is the same as if it had fallen vertically

through an equal height.

8. A number of smooth rods meet in a point A, and rings placed on

them slide down the rods, starting simultaneously from A. Prove

that, after the time t, the rings are all on the siirface of a sphere with

radius igi'-.

9. Find the retardation of a body projected down an inclined

plane, supposing the tangent of the inclination to be less than the
coefl&cient of friction.

10. A particle on a rough plane inclined at an angle o to the horizon
is on the point of motion ; if the plane were inclined at an angle $ to

the horizon, its acceleration would be doubled by making the plane
smooth

;
prove that tan )8 = 2 tan a.



CHAPTER XY,

PARABOLIC MOTION.

213. Properties of a parabola.—In this chapter we
shall consider more fully the motion of projectiles, to

which reference was made in §§ 183-188 of Chap. XII.
Before doing this it will be necessary to explain what is

meant by a parabola, and to deduce one or two of the
simpler properties of the curve.

Definition.—A parabola is the locus of a point which moves so

that its distance from a given line is always equal to its distance from
a given point.

The given line is called the directrix of the parahola ; the given
point is called its focus. The line through the focus perpeodicular
to the directrix is called its axis.
The curve is not a closed curve, but is of the shape represented in

Fig. 56. (The branches AL and AK of the curve are both continued
indefinitely.)

Fig. 56.

214. Let QR be the directrix, S the focus, SX the axis. Bisect 8X
at A. Then, since the distance of A from S = distance of A from QR^
.'. ^ is one point on the locus. Let P be any other point, and PM
the perpendicular on QR. Then, since P is on the locus, SP = PM.
Draw PN perpendicular to the axis.
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Then NP^ = SP^-SN^ = PM^-SN^
= (AN + AXy-{AN-AS)^= {AN + AS)^-{AN-AS)\

i.e., NP^'^^AS.AN.
This is one of the fundamental properties of the parabola.

Definition.—The point A in which the curve cuts the axis is called

the vertex of the parabola. The chord through S perpendicular to
the axis is called the latus rectum. It is easily seen (from the

definition of a parabola) that the latus rectum = 25/ = 4^45.

CoR.

—

-— = 4^5 = a constant quantity.
AN

Hence, conversely, if P move in such a way that NP^IAN = k (where k
is any constant), then the locus of P is a parabola, whose vertex is at A.

Also (since k corresponds to ^AS) we see that the distance of thefecus

from the vertex = k/i.

215. Horizontal and vertical motions of a pro-
jectile.—Suppose a body projected with velocity ?7 iu a
direction inclined to the horizon at an angle a. Then,
resolving this velocity vertically and horizontally (§172),

we have initial horizontal velocity = Z7cosa,

initial vertical velocity = U sin a.

Now let us consider the vertical and the horizontal

motions separately. We have

initial horizontal velocity = CTcosa,

horizontal acceleration = 0.

Thus the horizontal velocity at any time during the

motion = U^cosa (1),

and the horizontal space described in t sees.

= Utcosa (§ 14) (2).

Again, initial vertical velocity = CTsina,

vertical acceleration = —
g.

Hence, vertical velocity after t sees,

= Usina^gt (§32) (3);
also, vertical space described in t sees.

= Ut sin a— ^gt^ (§45, equation 7) (4).

These four formulae are most important, and they agree
with those of § 186 on putting u = Cfcoaa, v = [/sin a.
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216. Definitions.—Let a particle be projected from a
point 0, with velocity U, whose direction is inclined to

the horizon at an angle a.

Let A be the highest point of its path, and let it fall to

the gronad again at C (Fig. 57). Draw AB perpendicular
to OG.
Then OG is called the horizontal range of the pro-

jectile, and the time taken to reach OG is called the time
of flight.

217. To find the time to the highest point—Let

ti be the time taken in reaching A. Then the velocity of

the particle at A is horizontal ; .*. vertical velocity after

t^ sees, is zero ; i.e.,

Usina-gti = 0, (§215)

whence t^ = (5).

218. To find the greatest height to which the
hody rises.

AB = vertical space described in t^ sees.

TT. ' 1.3 U^ Bin^ a 1 U^ sin^ a= Uti sm a— fgr^i = — i
9 " 9

U^ sin^ a x^x

This result also follows from § 187 on putting v= Usin a.
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219. To find the time of flight.—Let t^ sees, be the
time of flight. At G the particle is on the same horizontal

level as at (? ; hence the vertical space described in t^ sees.

is zero, i.e., Ut^ sin a— \gtl = ;

, . 2 17 sin a .^^whence fo = (7),
a

'

Cor.—Hence fg = 2^i ; that is, the projectile takes the
same time from (? to y4 as from A to G.

220. To find the horizontal range.

OG = horizontal space described in f^ sees.

7-r . _ 2 ZT* sin a cos a U'' sin 2a ,«.= UL cos a ^ ^ ... (8).
9 V

If u and V are the horizontal and vertical components of U^ this
expression assumes the form of (5) §188, viz., 2uv:g.

Cor.— OB = horizontal space described in t^ sees.

= Z7^i cos a = J 1% cos a = \0G.

Hence OB = BG.

221. Greatest horizontal range.—Given the initial

velocity of a projectile, to find what angle of projection will

give the greatest range.

The range is Z7^sin2a/gr. This expression is greatest
when a = 45° : for then sin 2a = 1 ; in all other cases
sin2a<l. Thus the greatest possible range, with initial

velocity [7, is

TPIa (9).

This is twice the height (U^/2g) to which the body
would rise if projected vertically upwards with velocity tl

(see § 64).

When projected at an angle of 45°, so as to give
the greatest horizontal range, the greatest height is

U^ain^4:6°/2g, or U^/4!g, and is one quarter of the range.

CoR.—Hence the greatest distance to which a cricket ball can be
thrown is twice the greatest height to which it can be thrown up into
the air.

DYN. P
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222. The path of a projectile is a parabola, and
the highest point of the path is the vertex of the parabola.

Fig. 58.

Let P be the position of the projectile after t sees. ; and
let Oj A, B, and C represent the same points as in § 217.

Draw PN and PD perpendicular to AB and OB respectively.

Then OD = horizontal space described in t sees.

= Ut cos aj

PD = vertical space described in t sees.

= Ut sin a—^gt^;

.-. AN = AB-PD=^^^^-m8ma-hhe

_ TpMii^a-Wgt%ma-\- gH^ _ (URina—gty"
2g 2^

•

PN = OB-OD=\OG-OD
?7^ sin a cos a xr, _= Ut cosa

9

= (JJ s\n a— gt)

.

9

2f72cos2a

Also

Hence
AN

= a constant quantity

for 2U^cos^a/g does not contain ^, and therefore has the

same value for every position of P.

Hence from § 214, Cor., it follows that the locus of P is
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a parabola ; that A is its vertex^ and AB its axis; and that

the distance of the focus from A is

* 9 ^9 '

Thus, if from AB we cut off

^5^£W«
(jo)^

S will be the focus of the parabola.

223. The height of the directrix above the point
of projection is U^'/2g.

To construct the directrix, produce SA to Xj making
SA = AX ',

and through X draw QR perpendicular to SX.
Then QR is the directrix. (Cf. § 214.)

Hence the height of the directrix above the point of

projection = XB = XA -\-AB

2g '^ 2g "20 ^"^^

Cor. 1.—If the body were projected vertically, it would rise to a
height U'^l2g. Hence the height of the directrix above the ground is the

height to which the body tvould have risen had it been projected vertically.

Cor. 2.—If several bodies were projected from the same point with
the same velocity Uy but in different directions, the directrix of each
path would be at a height U^l2g above the point of projection; i.e.,

the parabolas which the several particles described would have a common
directrix.

224. The velocity of the projectile at any point
of its path is of the same magnitude as if it had fallen to

that point from the directrix.

Let P be the position of the projectile after t sees.

Draw PM perpendicular to the directrix (Fig. 58). Let
V be the velocity at P. Then V is the resultant of a
horizontal velocity Ucos a, and a vertical velocity

Usina—gt',

.-. V^=U'coa'a+(Usma-gty
= U^-2Ugtsma+gH\
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Had the particle been dropped from M, its velocity at P
would be equal (c/. § 60) to

V(2g.MP) = x/{2g(BX^PD)}
= ^{2g [U'/2g--{m8ma-^gt')]]

.

= ViU'-2Ugtsma-^gH') = V,

wbich proves the proposition.

=^225. The path of a projectile is a parabola.
(Alternative proof.)

Let A be the highest point to which the projectile rises,

and let u be the velocity at A . Then the direction of the

velocity u is horizontal. Hence, since the horizontal

velocity is uniform, u is the horizontal component of

the velocity at every point of the path.

Firstly, let P be the position of the particle t sees, after

reaching the highest point. Drop PN perpendicular on
the vertical through A.

Then

yi/P = horizontal distance described in t sees. = ut ... (i.),

AN = vertical distance fallen in t sees. = ^gt^ (ii.)

(remembering that the vertical velocity at A is zero).

Eliminating t, we have

NP" 2u^ 2u'

AN \gt^ g g

Hence the locus of P in the downward motion from A is

part of a parabola whose latus rectum is u^/2g.
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Secondly, let Q be tlie position of the projectile t sees.

hefore reaching A. Draw the perpendicular Q/^, and let v

he the vertical component of the velocity at Q.

Then, in t sees, after leaving Q, the projectile will

he at A, and its vertical velocity will then be zero.

.•. QJ\I = horizontal distance described in t sees. = ut...{i.)j

AN = vertical distance risen in t sees. = vt — ^gt^ (ii.).

Also v—gt=. vertical velocity at ^ = (i"-)*

Hence, v = gt, and, by substituting for v in (ii.), we have

AN = W' (iv.).

Eliminating t from (i.) and (iv.), we have, as before,

QN'=—AN.
9

Hence the locus of ^ in the upward motion to A is part

of the same parabola as before.

.*. the complete path of the projectile is a parabola.

^226. To find tlie velocity at any point of the path

in terms of the depth of the point below the di-

rectrix. (Alternative Proof,)

(i.) Let the vertical through A meet the directrix in X,

Then we know that, if u is the horizontal velocity,

AX = -;- (latus rectum) = -—— = —•
4 4i g 2g

.-. u' = 2g.XA,

or velocity at >4 = \/(^g • XA).

(ii.) If t; is the vertical velocity at a point P after pass-

ing A, V ia the velocity due to falling through the vertical

height AN, and therefore v^ = 2g . AN.

Hence the square of the resultant velocity at P
= u'+ v' = 2g.XA \-2g AN = 2g . XN,

or velocity at P = ^(2g . XN).

(ii.) Similarly, if v is the vertical velocity at Q, v ia
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the velocity required to carry the projectile to a height

NA, and therefore v^ = 2g . AN, giving as before

velocity at g = ^{2g . XN).

Hence in every case the velocity at any point is that

which would be acquired in falling vertically from the

directrix to that point.

Examples.—(1) A ball is thrown with velocity 100 ft. per sec. in a
direction inclined at an angle of 60" to the horizon. Find where it

will strike a cliflF distant 150 ft. from the point of projection.

Suppose the ball to start from 0, and to strike the cliff QR at a point

P after t sees. Let PQ = x. (Fig. 60.)

Then horizontal space described in t sees. = 150 ft. ; also vertical

space described in t sees. = x.

R

P

Hence fTifcoso = 160, V'tsma—\gt^ = x. Substituting the known
values of TT and o, we have

CTcos a = 100 cos 60° = 60,

CTsin a = 100 sin 60° = 100 x ^V3 = 50 VZ ;

.-. 50^=150, 60<a/3-16<2=, ar;

whence < = 3, «= 150^/3-144 = 116-8.

(2) Two seconds after its projection a projectile is travelling in a
direction inclined at 30° to the horizon ; after one more second it is

travelling horizontally. Determine the magnitude and direction of

its initial velocity.

Let Z7and a have their usual meanings. The velocity after 2 sees.

is the resultant of a vertical velocity V s\na— tg and a horizontal

velocity ?7co8 o. The direction of the resultant velocity makes an
angle 30° with the horizon. Hence, by § 170,

Ucoaa
= tan 30<=

1

VS""
(a).
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Again, after 3 sees, the vertical velocity is zero ; i.e., Usm o— 3^ = ;

whence Usina = 3/7.

Substituting this value for Usina in («), we obtain Ucoaa = ^a/3.

Thus U^ = U-^ cos2 a + V^ sinS a = V + 3^2 .

whence C/" = 2<7 V'3.

Also tan a = ^^^5^ = VZ ; whence a = 60°.

227. Range on an inclined plane.—A body is projected with

velocity tt, at an inclination a to the horizon, from the foot of a plane

inclined at an angle /3 to the horizon. Determine its range up the plane.

Let be the point of projection, 00 the range up the plane

(Fig. 61). Through draw the vertical OD, meeting the horizontal

through at D. Let 00 = x, and let the time of flight be t.

Then OD = x sin 0, OD = x cos ^.

Also, horizontal space described in t sees. = OD,

i.e., itt cos a = X coa fi (a).

Again, vertical space described in t sees. = CD,

i.e., tit s\n a— hfff^ "^ X sin fi (b).

Find t from (a), substitute in {b), and solve the resulting equation

for X. We then obtain

o o sin a cos /8— cos a sin $X = 2ti' cos a —
g COS" &

_ o 2co8a.Bin(a— j8) _ 2 sin(2a— )8) — sin

g

g cos- fi g cos^ ^8

CoR.—To find what value of o will make this expression a maxi-
mum :—sin (2o— )3) must have its maximum value ; hence

2a- )3 = 90°; i.e., a = |(j8 + 90°).

It is easy to see that in this case the direction of projection bisects

the angle between the inclined plane and the vertical.
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Summary of Results.

At t sees, after the projection of a projectile,

horizontal velocity = Z7cosa (1),

horizontal space travelled = tV co%a (2),

vertical velocity = TJ&ina—gt (3),

vertical space travelled = tTJ&\na—\gt'^... (4).

Time to highest point = Usina/g (5).

Greatest height ^U^sin'a/'Ig ...(6).

Time of flight =2U8ma/g (7).

Range = Z7» sin 2a/g (8).

Greatest range = U^/g (9).

Distance of focus below highest point

= U^co8'a/2g... (10).

Height of directrix = TTy2g (11).

Velocity at any point equals that due to falling from
the directrix to that point. (§§ 224, 226.)

EXAMPLES XV.

Note.—tan-^^ denotes the angle whose tangent is ^\ similarly,

COS~^ f denotes the angle whose cosine is f, and so on.

1. Find the range, greatest height, and time of flight, of projectiles

thrown with the following velocities, in directions inclined to the

horizon at the following angles :— (i.) 640 ft. /sec, 30°; (ii.) 100

ft./sec, 45°
;

(iii.) 1600 ft./sec, 60°
;

(iv.) 416 ft./sec, tan-i ^ ;

(v.) 800 ft./sec, cos-if.

2. A particle is projected at an angle of 30°, with velocity 192

ft./sec. When will it be at a height of 80 ft. above the ground, and

what will be the distance from the point of projection at that instant ?

3. A body is projected from the ground with velocity 160 ft./sec.

at an angle of 60°. At what height will it strilce a cliff distant

120 ft. from the point of projection ?
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7

4. Find the velocity with which a stone must he thrown in order to

strike horizontally the top of a cliff h ft. high, at a distance d ft. from,

the point of projection.

5. Two particles projected from different points in the same hori-

zontal plane at the same instant meet in the air. Prove that their

initial vertical velocities are equal.

'B. A particle is projected from the ground straight up a smooth

iinclined plane. If it goes over the top of the plane, prove that it falls

to the ground with a velocity equal to its initial velocity. (Use § 224.)

7. A series of particles are projected in a room from the same point

with the same velocity in different directions. Prove that all of them

which strike the ceiling strike it with the same velocity.

8. A body is projected from the ground in a direction inclined to

the horizon at the angle 60°. Find velocity of projection, given that

-at a height of 96 ft. the direction of motion, is 30° from the horizontal.

9. Find the smallest velocity with which a body may he projected

in order to have a range of 100 ft. on a horizontal plane.

10. Given range = 100 ft., greatest height = 100 ft. ; find the

velocity of projection.

11. Given velocity of projection = 100 ft./sec, greatest height

= 100 ft. ; find the range.

12. Given velocity of projection = 50 ft./sec, range = 42 ft.;

find the greatest height.

13. Express the velocity of projection in terms of the range and

greatest height.

14. Determine the least velocity with which a hall can be thrown,

so that its range up an incline of 30° should he 768 ft. (Use § 227,

Corollary.)

16. Determine the least velocity with which a ball can he thrown

to reach the top of a cliff 128 ft. high and 128^/3 ft. away from the

ihrower.
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16. The direction of motion of a projectile at a certain instant is

inclined at an angle o to the horizon ; after t sees, it is inclined at an

angle j8. Prove that the horizontal component of the velocity of the

proj ectile is gtj (tan o— tan fi).

17. Given u the velocity of projection, and v the velocity at' the

highest point ; determine the greatest height.

18. Find the latus rectum of the path of a projectile in vacuo y.

having given that at a certain instant the projectile is moving with

velocity u in a direction inclined at an angle 46° to the horizon.

19. Smooth heavy particles are let fall simultaneously down chords:

of a vertical circle from its highest point. Show that they all reach

the circumference again at the same instant and that their subsequent

parabolic paths have the same directrix.



CHAPTER XVI

CIRCULAR MOTION.

228. From our general definitions of acceleration it

follows that, when the direction of motion of a body is

constantly changing, it is subject to some acceleration

even if its speed constantly remains the same. We shall

now investigate this acceleration, considering particularly

the case of a body moving in a circle. It will be con-

venient to regard this as the limiting case of that of a
body moving along the sides of a polygon inscribed in the

circle.

229. Motion round the sides of a regular polygon.—A particle of mass m is moving with constant speed v

round the perimeter of a regular polygon inscribed in a circle

of radius r. Tofind the impulsive force on the particle at each

angular point of the polygon.

Let ABCD ... be the polygon (Fig. 62), the centre of

the circle, t the time taken to describe each side. Then
the lensrth of each side is vt.

Fig. 62.

While the particle is moving with uniform velocity
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along AB, it follows from Newton's First Law that it is

not under the action of any force. The sndden change
in the direction of the velocity which occurs at B must be
produced by an impulsive force. It is required to deter-

mine the magnitude and direction of its impulse.

Fig. 63.

Join AO, BO ;
produce AB to ?k point K, such that BK

contains v units of length. Draw KL parallel to BO,
meeting BG in L.

Then, since the polygon is regular, BO bisects the
angle ABC.

Also aBKL^ Z ABO (by parallels)

= /.OBL= Z. BLK (by parallels)
;

.-. BL = BK = v.

Thus BK and BL represent the velocities with which
the particle travels along AB and BG respectively.

Now, the velocity of a particle after being subjected to

an impulse is the resultant of the velocity of the particle

before the impulse, and the velocity communicated by
the impulse.

But, by the triangle of velocities, the velocity BL is the
resultant of velocities BK and KL ; hence KL represents the

velocity communicated to the particle by the impulse at B ;

.*. the direction of the impulse at B is parallel to KL, i.e.,

along BO ; and its magnitude is m x /TZ. (for it produces
velocity KL in mass m).
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Now, the triangles OAB and BKL are similar ; for the

four angles OAB, OBA, BKL, and BLK are all equal.

^, KL AB . KL vt
"^^"^

BK^TO' ""' V=T'
whence KL = —

.

r

Thus the impulse at B is tnvHjr toward the centre.

230. Motion in a circle with constant speed.—
A particle is travelling with constant speed v round the

circumference of a circle ; to determine its acceleration and
the force which is acting upon it, and the time of revolution.

Suppose that in the problem of the last paragraph we
increase the number of sides indefinitely, keeping the
values of v and r unaltered. Then t will become infinitely

small, since the sides have become infinitely short. The
perimeter of the polygon will now coincide with the cir-

cumference of the circle, and the series of small impulsive
forces, each acting toward the centre, occurring in very
rapid succession, will be equivalent to a continuous force

always acting toward the centre.

This force produces an acceleration (say /) toward the
centre, and the velocity ft produced by this acceleration

in each time t must be the same as that produced at each
corner of the polygon.

Thus ft=:KL = vH

whence /= v^Jr (1).

Thus a particle describing a circle of radius r with velocity

V has an acceleration v^jr toward the centre.

The force producing this acceleration in mass m must
be a force inv^/r toward the centre.

Again, let T be the time of revolution.

Then vT = total length of path described

= circumference of circle = 27rr

;

.-. T =^ (2).
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Note 1.—It is important to notice that the results of this paragraph
and the preceding are based on the principle of the Physical Indepen-
dence of Force (§190).

Cor.—Hence also v = 2irrJT,

and acceleration to centre = r (la).

231. Centrifngfal Porce.—It will be seen that if a particle is

moving in a circle, there is an apparent tendency in the particle to

leave the circular path, necessitating a force directed towards the
centre to keep it on the circumference of the circle. To this force

there has been applied the somewhat misleading name of centripetal
force.

This force, whose magnitude is wiv'/r, must be due to the action of

some other body. And, since action and reaction are equal and
opposite, the particle exerts on the latter body a force mv^lr away
from the centre, and this is called centrifag'al force.

In reality, the tendency of the particle at any point is (by Newton's
First Law) to continue moving in the same straight line, that is,

along the tangent to the circle at that point. This is spoken of as

the tendency to fly off at a tangent. The force to the centre
is necessary to make the particle deviate from the direction of the
tangent, and continue to move along the curve.

Applications.—If a particle of mass m, not under gravity, is revolv-

ing with velocity v round a fixed point to which it is attached by an
inextensible string of length r, the tension of the string is mv"jr.

Hence the particle exerts on the string an outward force ;»v^/r, which
is called the centrifag'al force.

If a bead is travelling round a smooth circular wire, the same
formula gives the reaction of the wire on the bead. The action of the
bead on the wire is the centrifugal force in this case.

If a planet is describing a circular orbit round the Sun, the same
formula gives the force with which the Sun attracts the planet.

Examples.—(1) A railway carriage of mass 1,000 lbs. is travelling

with velocity 50 ft. /sec. round a curve. If the radius of the curve be
1,000 ft., find the magnitude and direction of the resultant thrust on
the rails.

The reaction of the rails must (i.) support the weight of the train
;

(ii.) supply the necessary force, mv^fr poundals, toward the centre of

the circle.

The first requires a vertical force of 1,000 lb. wt. The second
requires a horizontal force toward the centre of the circle of

1000x502 ,, 625,, .—__ pdls. = — lb. wt.
1000 ^ 8
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The reaction of the rails is therefore the resultant of these two forces

at right angles, V{(1000)2 + («|A)2| ib. wt.

The direction of the resultant reaction is obviously inclined to the

vertical at an angle whose tangent is

Afi^-ioOO, or Jf.

NoTB.—If the thrust between the

carriage and the rails is not at

right angles to the plane of the rails,

there will be a tendency in the carriage

either to wrench the rails from the

sleepers, or more probably to run off

the lines. To prevent this, in con-

structing a curved piece of railway,

the outer rail is raised to a somewhat

higher level than the inner, so that

for a train travelling at average speed

the plane of the rails is again perpen-

dicular to the thrust between the

carriage and the rails.

(2) If the rails are 4 ft. 8^ ins. apart, to find how mucli

the outer rail must be raised so that the carriage of Ex. 1 may press

perpendicularly on the rails.

The plane of the rails must evidently make an angle of tan'^^'j

with the horizon.

4 ft. 8^ ins. X sin 6,

5

Fig. 64.

Calling this 0, the outer rail must be raised

56ix
a/(642 + 5-)

ins. = 56^ X^ ins. roughly, or nearly 4^ ins.

232. Angular velocity.—When a particle P is moving
in a plane, the line OP joining it

to a fixed point in that plane
will, in general, revolve about the

fixed point. The exception would
be in the case where the particle

P is moving either directly to-

wards, or directly from, the fixed

point ; the joining line will
^^

then obviously be stationary. 'Pig. 65.
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Definition.—The an^nlar velocity of a moving point
about a fixed point is the rate (per unit time) at ivhich the.

line joining the two points is describing angles about its fixed,

extremity.

If OX is a fixed line through (? and Z' is moving in the

plane XOP, the angular velocity of P is measured by the
rate at which the angle XOP is increasing.

If the angles described in equal times be equal and in-

the same plane, however short these equal times be made,,

the angular velocity is said to be nniforiu, and it can be
measured by the angle actually described in a unit of time.

In other cases the angular velocity is said to be
variable, and must be measured in a similar way to.

variable velocity or variable acceleration by dividing the

angle described in an infinitesimally short interval of time
by the duration of that interval.

It follows from what has been said that the angular velocity of a
moving particle about a fixed point will be zero if the direction of"

motion of the former passes through the latter.

233. Unit of angular velocity.—Angular velocities

are usually measured in qircular measure, i.e., in radians
per second, thus the unit of angular velocity is the
radian per second.

In certain cases it may be convenient to measure angular velocity

in degrees per secotid instead.

It is readily seen that, if be the angle described in

time ^ by a particle revolving about a fixed point with
uniform angular velocity w, then

e^wt (3).

This gives w = Bjt. If the angular velocity be variable, Bjt is the

average angular velocity in any interval t ; and, if this interval be
made infinitely small, the average angular velocity becomes the

angular velocity at the corresponding instant of time. .

Again, in one complete revolution, four right angles are

described, and the circular measure of four right angles is ,

27r (radians). Hence, if The the time of revolution,

wT = 277, or T= 27r/w.
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234. Theorem.—If a particle is describing a circle of

radius r with constant speed v, and, if w he the angular

velocity of the particle about the centre, then v = wr.

Let be the centre of the circle (Fig. 66), and let AB
he the arc described in t sees. Then arc AB = vt and

Fig. 66.

Z AOB = wt radians. But the arc AB divided by the

radius gives the circular measure of the Z AOB, i.e.,

vtlr = wt, or — =iW (4).
V

CoR.—The acceleration of the particle toward the centre

= ii!=M,V (5).

Note.—If the speed in the circle is variable, the velocity and
angular velocity at any instant are connected by the relation v — wr,

as is evident, by making t infinitesimal.

235. Motion round a circle with variable speed.—If a

particle is describing a circle with variable speed, and if v is its

speed at any given instant, the particle at that instant wUl have an

acceleration v'^jr toward the centre. If the speed along the curve is

changing at that instant, it will also have an independent acceleration

along the tangent to the curve.

This acceleration is measured by the rate of change of the speed

with which the particle is moving.

DTN. ' Q
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236. An^lar velocity of a particle moving in a
straight line.—A particle is moving with uniform velocity

V along a given straight line; to determine its angular
velocity at any instant about a given point.

Let P be the position of the particle at the given instant,

PQ the given straight line, the given point (Fig. Q7).

Let R be the position of the particle after time ^, and w
the average angular velocity of the particle about during
this time t. Let Z OPQ = a and distance OP = r.

Then PR z= vt; also Z POR = angle described in time t

= average angular velocity x time = wt.

PR RO vt ROBut
sin POR sin RPO

'
' sin wt sin a'

Now, suppose t to be indefinitely diminished, then the

average angular velocity between P and R will become the

actual angular velocity at P.

But, if t be indefinitely diminished,

the limit of (Bin wt)-7-wt = 1 (by trigonometry)
;

hence the limit of -: = —

.

sm wt w

Also OR = OP = r

(since PR is indefinitely small).

Hence — =5 -;—

.

w am a

Whence w= (6).
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Alternative proof.—Resolve the velocity v into its two
components v cos a along PO and v sin a perpendicular to

PO. The former produces no angular velocity about

(§ 232), and the latter gives rise to an angular velocity

w sin a -r-r about (§234). Hence w = v sin a-r-r, as

before.

Cor. 1.—The angular velocity about will be a maxi-
mum when the particle is at the foot of the perpendicular
from to PQ. For then a = 90°, and therefore sin a is a
maximum, aud also r is a minimum.

Cor. 2.—Drop OM perpendicular on PQ.

Then sin a = OM/OP, and .
•. w = v. OMjOF.

Hence the angular velocity varies inversely as the square
of the distance from 0.

237. Motion in a smooth curve under gravity.

—

A body is sliding down a smooth wire or tube of any shape.

To deduce its velocity at any point from the principle of
Conservation of Energy.

Suppose a bead of mass m to slide down a smooth wire
of any shape from A to B. Let u and v be its velocities

Fig. 68.

at ^ and ^ respectively, and let AO (^
= h) be the vertical

height of /I above B (Fig. 68).
Then, since no work is done in overcoming friction, the

gain in kinetic energy in passing from A to B = loss in
potential energy = work done by gravity

;

.'. |m (v^—u^) = mgh
;

whence v^—ti^ = 2gh, or v^ = u^+2gh (7).
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Cor.—The velocity at B is independent of the shape of

the curve between A and B.

Note.—The investigation applies equally to a bead constrained to slide down a
smooth wire, or to a small body allowed to slide, without rolling, in tiie interior of a
smooth tube, or on the surface of any smooth body ; but it is supposed in every
case that no friction exists.

Example.—A bead of mass 1 oz. is free to move on a fixed smooth
circular wire of radius 1 ft. whose plane is vertical. It starts from
rest at one end of the horizontal diameter ; find the thrust between
the bead and the wire at the lowest point.

Let A be the starting point of the bead, B the lowest point of the
wire, and the centre (Fig. 69).

{a) To determine the velocity at B, apply the formula of the last

paragraph, remembering ^r = 32.

Then w = 0, A = OB = 1.

Whence t^ ^ 2^ . 05 = 2 x 32 x 1,

giving V = 8.

{b) Let R lbs. weight be the reaction of the wire at 5, acting along
BO.
The only other force acting on the bead is its weight.
The acceleration of the bead is v^fr, i.e.y 8^/1 or 64 ft./sec' along BO.

.'. resultant force along BO = {Rg—mg) poundals.

Hence (from the formula P = mf)

Eg— nig = m . 64 ; also w = ^

;

whence ^ = _^, or the thrust = ^ lb. wt. = 3 oz. wt.

The same result could have been obtained as follows :

—

The force of pressure of the bead on the wire at B is due (i.) to its

weight, (ii.) to the centrifugal force.
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The weight = ^ lb. wt. = 1 oz. wt.

The centrifugal force = mv"lr pdls.

= ilb. wt. = 2oz. wt.

Hence, force of pressure = 2 + 1 = 3 oz. wt.

Summary of Results.

If a particle is describing a circle with velocity v,

the acceleration towards the centre = v^/r (1),

the force towards the centre = mv^/r, (§ 230)

and the time of a complete revolution = 27rr/v (2),

If a particle is describing a circle of radius r, with

angular velocity w, the velocity := wr (4) ;

and the acceleration towards the centre = w\ (5)

.

Angular velocity of any particle about a given point

t;sin a

r
(6).

Velocity of a bead sliding down a smooth wire or tube

is given by v^ = u^-\-2gh (7).

EXAMPLES XVI.

1. A body of mass 3 lbs. (not under gravity) is describing a circle

round a point to which it is attached by a string 3 ft. long. If it

makes 7 revolutions per second, find the tension of the string.

[t = ¥-]

2. If the tension of the string in the last question is 18 lb. wt., find

the number of revolutions per second.

3. An engine of mass 1 ton is travelling round a curve at the rate

of 30 miles an hour. If the curve is an arc of a circle whose radius is

1210 ft., determine the horizontal thrust between the engine and the

rails.
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4. Two particles of equal mass are describing circles round fixed

points to which they are attached by inextensible strings. Prove
that, if the times of revolution are the same, the tensions of the

strings are proportional to their lengths.

5. Two particles of mass 2m and ni respectively are revolving round
fixed points to which they are attached by strings of length I and 2/

respectively. If the tensions in the strings are equal, compare the

times of revolution of the particles.

6. A particle hanging, by a string 8 ft. long, from a fixed point is

pulled aside till the string makes an angle of 60° with the vertical,

and then let go. When the particle is passing through its equilibrium

position, compare the tension of the string with the weight of the

particle.

7. A smooth circular tube of radius 2ft., whose plane is vertical,

contains a particle of mass 1 oz. If the particle slide from rest at the

highest point, find its velocity and the thrust between the particle and

the curve at the lowest point.

8. In the last question, determine the thrust between the particle

and the tube at the end of the horizontal diameter.

9. If the particle in Question 7 were projected from the lowest point

with velocity 32 ft./sec, find its velocity and the pressure on the tube

at the highest point.

10. Find the velocity with which the same particle must be pro-

jected from the lowest point in order that it should just rise to the

end of the horizontal diameter.

11. A child -weighing 5 stone is on a swing suspended by two cords.

If the swing is describing an arc of 120° in each oscillation, find the

tension of each cord when the swing is at the lowest point.

12. A light rod 3 ft. long is hinged at one extremity ; at distances

of 1, 2, and 3 ft., respectively from that extremity are attached

masses of 3, 2, and 1 lb., respectively. Compare the tensions in each

portion of the rod, if the 1 lb. mass is describing a circle at the rate of

10 ft./sec.

13. Determine the thrust between the particle and the tube in

Question 7 when the radius through the particle is 30° below the

horizontal diameter.
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14. At what point of the motion of the particle in Question 7 will

there be no thrust between the particle and the tube.

15. The attraction exerted by the Sun on any one of its planets

varies directly as the mass of the planet, and inversely as the square

of the planet's distance from the Sun. Assuming that all the orbits

are circular, prove that the squares of the times of revolution of the

planets vary as the cubes of the radii of the orbits.

16. A bicyclist is riding at the rate of 15 miles anhr. round a curve

of radius 121ft. Determine at what angle his machine must be

inclined to the vertical.

17. Find the ratio of the centrifugal force on a body at the Equator

{due to the Earth revolving on its axis once in 24 hrs.) to the weight

of the body, taking the Earth's radius as 4,000 miles, and g = 32 •2.

18. A particle, suspended from a fixed point by a string of length

r, hangs vertically. It is projected horizontally with velocity V{6gr)

and describes a circle in a vertical plane. Show that the tension of

the string when the particle is at the end of a horizontal diameter is

four times the tension when the particle is at the highest point.

19. A body of 5 lbs. weight is swung round in a horizontal circle

of 4 ft. radius, making 40 revolutions per minute : find the force, in

lbs. weight, with which it pulls outward.



CHAPTER XYII.

SIMPLE HARMONIC MOTION.

Simple and Conical Pendulums.

238. In varions kinds of machinery, devices are used

for converting to-and-fro motion in a straight line into

rotatory motion ; as instances, we may mention the common
turning lathe or the crank of a steam engine. Hence, from
circular motion we naturally pass on to considerations of

to-and-fro rectilinear motion, the simplest form of which
is known as simple harmonic motion. It will be necessary

to preface the subject by establishing the following

lemma :

—

239. Lemma.—A particle P is describing a curved path CD, and
a second particle Q is travelling along a straight line AB in such a

manner that PQ is always perpendicular to AP. (Fig. 70.)

It is required to investigate the relation between the velocities and
accelerations of the two particles.

Since PQ is always at right angles to AB, the velocity of P relative

to Q is always at right angles to AB.
Also the velocity of ^ is along AB.
Now, by definition of component velocities (§ 161), the velocity of P

is compounded of the velocity of Q and the velocitv of P relative

to Q.
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And these two components are at right angles ; hence they are the
resolved parts of the velocity of P along and perpendicular to AB*.
Hence at any instant

Q^B velocity =» P's velocity resolved parallel to AB.

Hence also the rate of change of ^'s velocity at any instant = the rate-

of change of P's velocity parallel to AB.

i.e.y at any instant,

Q'a acceleration = P'b acceleration resolved parallel to AB.

In short, ^'s motion is simply the resolved part of P's motion paral-

lel to AB, without P's motion perpendicular to AB.

240. Simple harmonic motion.

Def.—Let ABC be a circle of radius r; let be its

centre, and AOO a diameter. Suppose a particle P to travel

round the circumference with uniform angular velocity ky

starting at (? (Fig. 71).

Fig. 71.

Also suppose a second particle Q to start from (? at the-

same instant and to travel along the diameter GA in such
a manner that the line joining P to Q is always perpen-
dicular to AG. Then the motion of Q is called simple
harmonic motion.

Obviously travels to and fro along >4^; this is ex-

pressed by saying that Q oscillates ; and the motion
from G toA and back is called one complete oscillation.

* When a velocity or acceleration is resolved into two components, one along and
the other perpendicular to a given line, the former is called the resolved part of
the velocity or acceleration along the line. Thus, if a velocity Tis in a direction
making an angle A with a given line, its resolved part along the line is V cos A
(from § 172).
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The time occupied by one oscillation is the same as the
time occupied by P in one revolution, and is therefore

found by dividing the circumference by the velocity of P,

i.e. by kr. Thus the time of one oscillation is

2irr 2ir

fcr k (1).

241. In simple harmonic motion the acceleration
varies as the distance from a fixed point.

By § 230, the acceleration of P is in the direction PO^
and its magnitude

r
.'. acceleration of Q

= Ps acceleration resolved parallel to CA {^ 235)

= W. OP cos POQz=kKOQ (2).

Pig. 72.

Thus the deceleration of Q is always towards and varies

directly as the distance OQ.

If we are given the initial velocity of a particle, and its

acceleration at every point, the motion of the body is

entirely determined.
Putting Tt^ = /x, we may state this result in a somewhat

different form, thus :

—

If a particle Q start from rest at G under an acceleration

fx . OQ, always towards 0, the particle will oscillate to and fro
•along AC ; and the time occupied in one oscillation will he
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The motion of the particle will be simple harmonic
-motion.

Definitions.—The distance OG, or the greatest distance
of the particle from the centre, is called the amplitude
ofthe oscillation

; and the time occupied in one oscillation

is called its period.

Cor. 1.—The period of oscillation is independent of r,

i.e., of its amplitude.
Such oscillations are called isochronous, which means

that they are performed in the sam,e time (whatever be
their amplitude).

Cor. 2.—If the mass of the particle is m, the force
required to produce the acceleration fi.OQ is m/x . OQ.
Hence

—

The inotinn of a particle under a force toward a
given point, 0, which varies directly as the distance is simple
harmonic motion, and the oscillation is independent of the

amplitude.

242. To determine the position and velocity of the
jparticle after a given time t.

(i.) Since P moves round the circle with velocity Icr

(Fig. 72),

.*. arc CP = distance travelled by P in time t = htr.

circular measure of angle POG
= arc P(?/radins = htrjr = ht.

Thus distance of Q from starting point

= GQ ^ GO-OQ = r-rcoaPOQ
= r (I'-coskt) (3),

(ii.) Let the tangent at P meet OG produced in R ; then

velocity of Q = velocity of P resolved parallel to GA
= kr cos PRO = kr sin POR = kr sin kt

= k,QP (4).

Jf the motion be considered as starting from 0, it is easily seen that P
will start from B, and hence that the distance travelled in time t is

given by r sin kt ; and the velocity by kr cos kt. .^

m^
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243. Simple harmonic motion alongf a curve.—The same
kind of motion would be possible along a curve. Thus, if a particle

P (Fig. 73) is constrained to move along a curved path AOC, with an
acceleration along the tangent to the curve directed towards and of

magnitude /i . (arc OP) , the period of a complete oscillation will be
independent of the amplitude, and will be 27r/ Vfx, &c.

Fig. 73.

This naturally follows from considerations such as those given in

§ 235.

244. To find the period of a small oscillation of

a simple pendulum.

Definition.—A heavy particle suspended from a fixed

point by a weightless inextensible string is called a.

simple pendulum.

Let P be the particle (Fig. 74), m its mass, I the length,

of the string, A the fixed point, AO the vertical position.'

of the pendulum.
If the pendulum be pulled aside till the string is in the

position AB, and then let go, the pendulum will swing to

and fro, describing an arc of a circle BG, of which is the
middle point.

Let the tangent at P meet AO produced in Q. Draw
PD vertically down, and PM perpendicular on AQ. Then
the forces actiug on P are the tension T along P>4, and the

weight mg.
Resolving along PQ, we have

force along tangent = mg cos DPQ = mg sin

= mg . MP/AP.

This force, acting on the mass m, produces an accelera-

tion g . MP/l along the tangent, i.e., along the direction of

the arc at P.
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Fig. 74.

Now suppose the angle OAB subtended at A by the
whole arc OB is small. Then, in any position of P, the
perpendicular MP is approximately equal to the arc OP,
and therefore the acceleration at P

= -^ .'arc OP = -^x distance of Pfrom 0.

Hence, by § 243, the motion is a simple harmonic oscil-

lation, whose period is

^a^=2.,/i (5).

245. Def.—A pendulum is said to beat when it swings
from rest on one side of the vertical to rest on the other.

Hence each oscillation consists of two heats, backwards
and forwards.

A clock usually ticks once in each beat of its pendulum.

A seconds pendulum is one which beats once a
second ; its period of oscillation is therefore two seconds.

246. To find the length of the seconds pendulum,
we put ^ = 2 in the formula t = 27r^{l/g). Then
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•• «=4 (6).VI-
and, if g be known, I can be found.

Conversely, knowing the length of the seconds pendulnm
at any place, the value of g can be found by the same
formula.

More generally ff may be found with great accuracy by observing

the time of oscillation of a pendulum of known length. To do this a

large number of oscillations are counted and the time they occupy
observed ; whence the time of one oscillation is found with a high
degree of accuracy by division.

Thus the pendulum may be used to compare ff
at different places.

247. Conical Pendulum.—Definition.—When a parti-

cle attached to a fixed point by a string, instead of swinging
to and fro in a vertical plane, revolves in a horizontal

circle, it is called a conical pendulum.

Fig. 75.

To find the time of revolidion of a conical pendulum.

Let a particle /f, of mass m, suspended from P by the

string P/C, revolve in a horizontal circle, whose centre M ia

vertically below P. Then the force mv^jMK to the centre

required to keep it in the circle is the resultant of the
tension T along KP and the weight mg acting vertically

downwards. Since the forces are parallel to the sides of
the triangle PMK, therefore, by the triangle of forces,

mg ^T ^ mv'/KM

PM KP KM '

KM' PM KM \ PM-V-
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Bat, if t be tlie time of revolution,

t=2^rJ!W. Hence * = 2,J^ (7).
V \ g

Hence the time of revolution depends only on the vertical

depth of the particle below the point of support.

Cor.—It follows that, if any number of particles be suspended from
a fixed point and revolve in circles in the same periodic time, they
will all lie in the same horizontal plane.

248. Watt's Governor.—The principal of the conical pendulum is

well exemplified in the governor of a steam engine. Two balls are

suspended like the particle of the last article and are driven round by
the engine. If the speed of the engine increases, the time of revolu-

tion decreases, and therefore the depth (PM) of the balls below their

attachment decreases, i.e., the balls begin to rise. In doing so they
are made by means of a suitable mechanism to act on the valves of the

engine so as to shut ofi" part of the steam. In this way the engine is

prevented from working at too high a speed. This is particularly

useful when the engine is sometimes employed to drive machinery
and sometimes not ; without such a governor the speed would become
excessive when the engine was not working against any resistance.

Summary op Results.

In simple harmonic motion

if the period of oscillation be = 2'7r/k (1),

then the acceleration = A;' x distance (2),

the distance after time <, from extreme position

= r(l—cos^O (3),

and the velocity after time t = Jcr sin M (4)

,

where H is the circular or radian measure of the angle
whose sine and cosine are taken.

Period of oscillation of simple pendulum, of length I

'I= 2.^
9

•
''''
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EXAMPLES XVII.

1. A particle, of mass 1 gramme, starts from rest at a distance

10 cms. from a fixed point 0, towards which it is attracted with a force

whose measure in dynes is 100 times the measure of the distance of

the particle from in centimetres. Determine after what time it will

reach ; also its position and velocity after 7r/40 seconds.

2. A particle, of mass 1 gramme, is moving with simple harmonic

motion. If its greatest velocity is 20ir cm./sec, and the amplitude of

the oscillation is 10 cm., find the period of oscillation and the force

of attraction toward the centre when the particle is at its greatest

distance.

3. In a simple harmonic motion, given the greatest velocity r, and

the period of oscillation t, determine the amplitude.

4. Given the amplitude s, and the force of attraction on the particle

when at its greatest distance from the centre of attraction P, deter-

mine the greatest velocity, if the mass of the particle is m.

5. Assuming ^ = 32, find the period of oscillation for a simple

pendulum of length 1 yard.

6. What would be the measure of the acceleration of gravity in

F.P.S. units if a simple pendulum, 39 in. long, made exactly one beat

per second, in small oscillations ?

7. What would be the measure of the acceleration of gravity in

C.G.S. units, if the length of the "seconds pendulum" were exactly

one metre ?

8. The number of beats made in an hour by one pendulum is to the

number made in half-an-hour by another as 13 : 6 ; and the length of

the first pendulum is 1 ft. Determine the length of the second.

9. A seconds pendulum has its length slightly altered, and in con-

sequence loses n seconds a day ; find whether it has been lengthened

or shortened, and by what fraction of its original length.

10. A particle is oscillating harmonically from A to B and back

along a straight line AB whose middle point is 0. If Tis the period

of oscillation, prove that the velocity at any point P is given by

t,2 = ^'(0/J2^0p2).
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1 1

.

A particle, suspended from a fixed point C by a string of length I,

swings to and fro in a circular arc AOB, of which is the lowest point.

Prove, from the Principle of Conservation of Energy, that the velocity

at any point P of the arc is given by

where OA and OP are the chords joining io A and P respectively.

Hence deduce the time of a small oscillation {cf. Ex. 10), explaining

why the result will not apply when the arc of oscillation is large.

12. A point moves uniformly with velocity u in a circle whose

radius is a
;
prove that the projection of the moving point on a fixed

diameter of the circle oscillates in periodic time 1-Ka\H as if it were

a material particle under the influence of a force to the centre, pro-

ducing acceleration tih/a^, where x is the distance from the centre.

13. If gravity were 31 "5 in feet and seconds, what would be the

length of a pendulum performing complete vibrations in 2*0 seconds?

14. Find the acceleration of gravity (i.) in Paris, (ii.) at the Equator,

having given that the lengths of the seconds' pendulums are 3-26 ft.

and 3'251 ft. respectively.

15. Prove that the time of revolution in a conical pendulum of

length I is ultimately 2ir \J~ when the cone described by the pen-

dulum is indefinitely small.

16. Prove that, if Tis the time of revolution of the bob of a conical

pendulum at the bottom of the shaft of a deep mine of depth I, the

pendulum being suspended from the surface of the Earth, then the

value of ff at the bottom of the shaft is given by

4i

H^-i)-9 rjl-i

where a denotes the radius of the Earth.

17. In harmonic motion, show that, if the force to the centre be

doubled, the period of oscillation will be altered roughly in the ratio

of 5 to 7.

DTN.
'

R



CHAPTER XVIII.

IMPACT OF SMOOTH SPHERES.

249. Direct Impact.—Definition.—When two bodies

strike against or collide with one another they are said to

impinge on one another, and the collision is termed an
impact.
A sphere is said to impinge directly on a fixed plane,

if the direction of its velocity, just before impact, is per-

pendicular to the plane.

A direct impact of two spheres is one in which the

centres of the spheres, just before colliding, are moving
along the same straight line.

From common experience (derived from the collision of

billiard balls, the rebound of tennis balls, and the like), we
know that after an impact the two impinging bodies

usually rebound and separate. In cases of direct impact
it is obvious (from considerations of symmetry) that the

motion after impact is in the same straight line as before.

The object of the present chapter is to investigate the
velocities with which two bodies rebound after an impact
between them.
The problem which we first require to solve may be

stated thus :

—

Given the masses of the two spheres (say M and m), a7id

their velocities before direct impact (say U and u)^ find their

velocities after impact (say V and v).
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250. The equation of momentum.—We have already
seen iu Chapter VII. that, in the case of direct impact,

the algebraic sum of momenta after the impact

= the algebraic sum of momenta before
;

the words " algebraic sum " being used to denote that the
momentum of each body is to be reckoned positive or

negative according as the body is moving in the positive

or negative direction. From this principle we have also

in the same chapter derived the equation

MV-\-mv = MU+mu (1).

This one equation is, however, insufficient to determine
the two unknown quantities Fand v. Moreover we know,
as a matter of ordinary experience, that what happens
after the collision does not depend only on the masses of

the spheres and their velocities before impact, but also

on their mutual elasticity.

251. Newton's Law of Impact.—The manner in

which the elasticity affects the motion after impact can
only be determined by experiment ; and the result of

Newton's investigations was to establish the following
law :

—

The ratio of the relative velocity after impact to
the relative velocity before impact depends only on
the materials of which the bodies are composed ; and
i's independent of the actual velocities or the masses of the

bodies.
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For instance, if two spheres be made of glass, then the ratio of the
relative velocity after impact to the relative velocity before impact
is always approximately if.

This ratio is nsually called the coefficient of restitu-
tion for the given materials ; sometimes it is called the
coefficient of elasticity* ; in formulas it is usually
represented by the letter e.

Hence the law is often quoted in the form

—

velocity of separation = ex velocity of approach.

If e were equal to 1, the two bodies would separate at

the same rate as they approached ; they would then be
called perfectly elastic.

If e were equal to 0, the two bodies would not separate
at all ; in which case they would be called perfectly
inelastic.

In practice e is always found to be between and 1, no
known solids being either perfectly elastic or inelastic.

We will now express the law in mathematical lan^age.
The relative velocity of M to m before impact is

obviously U—u ; and after impact it is V—v. Also these
two relative velocities are in opposite directions and
therefore of Opposite sign ; for the spheres are approaching
each other before the impact, and receding apart after.

Thus V—v and e (U—u) are numerically equal, but of

opposite sign.

.-. V-v=-e{U-u) (2).

This equation may be called the equation of restitution.

252. To determine the velocities of two given
spheres after direct impact, we therefore write down
the equation of momentum (with the notation of § 245)

MV+mif=MU-\-mu (1)^

and the equation of restitution

V-v = -e(U-u) (2).

If the value of e is known, equations (1) and (2), when

* Botli names should be remembered, but the term "coefficient of restitution

is the better, as the tenn " coefficient of elasticity " has several other meanings
besides the present one.
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solved as simultaneous equations, are sufficient to deter-

mine the two unknown quantities V and v.

It is important that the student should understand that the ahove
formula} include both cases of impact, viz., when the spheres hefore
impact are moving in opposite directions, and when they are moving
in the same direction. The argument is most easily followed if we
assume all the velocities to he in the same direction, and take this as

the positive direction. But it is equally true in all cases if we assign

the correct signs to all the velocities when substituting in the formulae,
velocities in the direction opposite to the positive one being considered
negative.

Example.—A sphere of weight 20 lbs., moving with velocity 10 ft.

per sec, impinges directly on a second sphere of weight 6 lbs. moving
in the opposite direction with velocity 30 ft. per sec. If the coefficient

of elasticity is '5, find the velocities after the impact.

Let the velocities after the impact be V and v. Then we must
substitute the following values in equations (1) and (2) :

—

Jf=20, m = 5, ^ = 1,

U= 10, u = -30.

Fig. 77. Before impact.

Diredim I

of rehoundA

Fig. 78. After impact.

We thus obtain the equations

20r+5t; = 50,

7/-v=-20.
Solving these, we find F = — 2, f = 18.

Comparing the signs of U and u with the signs of V and v, we
notice that the direction of motion of each sphere has in this case
been reversed.
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253. Direct impact against a fixed plane.—In this

case the velocity of rebound will be e times the velocity of

impact; where e is the coefficient of elasticity for the

materials of which the sphere and plane are respectively

composed.

254. Loss of kinetic energy in impact.—To express

the loss of Jcinetic energy in a direct impact between two
spheres in terms of the masses and velocities before impact.

The total kinetic energy of the two spheres after

impact is

and their kinetic energy before impact is

iMU'+imu\
Hence, if L denote the kinetic energy lost in impact,

L = i (MU'-\-mu')--i (MV'+ mv') (a),

where V and v are given by the equations

MV-\-mv = MU-\-miL (1),

V-v= -e{U-u) (2).

Hence all that now remains is to find the values of

Fand v by solving (1) and (2), and substitute them in

(a), and simplify the resulting expressiou.

From here on the work is mere algebra.

The best plan would be for the student to work out the result as an
exercise, proving that

2 M+m^ '

If this should be found too difficult, the following will be found the

shortest way of getting the result:

—

Squaring (1) and (2), we have

Jf2 yi + iMm Vv + wiV = JK-s ir.2 ^ 2i|f„j r« + w%2,

V^^IVv 4v2 ^ e-iJI-^ -2Vu +«*2).

Now L does not contain the produced Yv. To get rid of this we
multiply the second of these equations by Mm^ and add to the first,

giving

{M- + Mm) V- + (w2 + Mm)v^
= M-2m+ 2Mm Uu + mhfi + e^-Mm {IP-2Uit + u") .
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The left-hand side is equal to

= 2 {M+m) X kinetic energy after impact.

Hence, subtracting from both sides the expression

we have

{M+ m)
{ (j!/t;2 + mt'2)- {Mifi + mu'^)

}

= Jf2 u-2 + 2Mm Ufi + «i-?(2

-

{M" + mM) TP- [m^ + JfwOt*'

or {M+ m) X ( - 2X) = -Mm{V^-2Un + u^) + e^Mm {U^-2Utt + u^)
;

.-. 2(M + m)L= (l-^)Mm{IP-2Uu + n-),

or i = —— rj {V-iif (3).
2 M-\-m

255. This expression for the loss of kinetic energy, in

terms of the masses and of the original velocities, gives

ns some very important results.

Firstly, e is never greater than 1, and therefore this

expression can never be negative ; that is to say, the

Jiinetic energy is never increased by the impact.

If e=l, the Ji-inetic energy is unaltered; if e<l, it is

diminished.
In the latter case the lost kinetic energy mostly reappears in the

form of heat energy, while part of it is expended in producing
sound vibrations (as exemplified by the click of billiard balls). From
the principle of Conservation of Energy we infer that this total energy
which reappears in these forms is equal to the lost kinetic energy.

256. To find the total impulse between the two spheres at
the instant of collision. Let I denote the impulse of the blow
given by M to m ; then, since the impulse is measured by the change
of momentum produced in m,

.'. I = m {v— u).

Now, eliminating V from (1), (2) by multiplying (2) by if, and
subtracting from (1), we have

{)n + M) V = MU'+mtc + eM{U— ti).

Subtracting {m + M)u from both sides

[m + 31) [v -u) ^ M{U- w) + eM{ V- u) ;

M + m
T , X Mm ( 1 + ^) ( TI— u) ,j. X

and the impulse of the blow which m gives to M is, of course, equal
and opposite to this.
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*257. Before we proceed to deduce further conclusions from the
algebraical results of §§ 252, 256, we must analyse more closely the
history of an impact.

The whole action between the balls takes place in an extremely
short space of time, but this time can be divided into two distinct

periods : firstly, the period of compression, during which each ball is

approaching towards and compressing the other ; secondly, the period
of restitution, during which each ball is trying, more or less, to regain
its original shape, and in so doing is pushing the other away from it*
During the first period, the two centres are approaching one another

;

during the second, they are separating ; and at the instant of greatest

compression their relative velocity is zero ; that is to say, they are travel-

ling with a common velocity. But, it the balls were perfectly inelastiCy

there would be no period of restitution ; the balls would make no
attempt to regain their original shape, but would go on travelling

together in their compressed state, with common velocity.

It follows from this that to find the common velocity at the instant

of greatest compression we need only find what the ultimate velocity

would be, if the balls were inelastic ; and to find the measure of the
impulse during the period of compression we need onl}- find the total

impulse, supposing the balls inelastic.

Now let 7, and /g ^6 the measures of the impulses during the

periods of compression and restitution respectively ; then, obviously,

/=/, + /,.

Again, by the preceding argument, I^ is found by putting

c = in formula (4),

,. Mm ( U—u) .

••'•'^•' M^m '

also /a = I—I\

^ Mm{\-^-e){U-u) _ Mm{JJ-u)
M+m M+m

^ eMm{U-u)
M + m

Hence we see that 1^ = ely^ (5).

Again, by putting e = in formula (3), we see that loss of kinetic

energy during the period of compression is

. MmiU^u)^
,

^ M+m '

• This is well exemplified by the case of a collision between two railway
carriages fitted with spring buffers. Here the compression and subsequent exiwin-
sion of the buffers can be very easily observed.
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thus total loss of kinetic energy

= (1 — ^" ) X loss during period of compression,

= loss during compression— ^- x loss during compression.

.-. during the period of restitution there must be a gain of kinetic

energy equal to c^ x loss during period of compression.

258. Oblique impact.—Definition.—When the impact
between two bodies is not direct it is said to be oblique.

Thus a sphere is said to impinge obliquely on a plane

when its direction of motion before impact is not at right

angles to the plane.

259. Oblique impact of a sphere on a perfectly
smiooth plane.—Let the velocities of the sphere before

^and after impact be u and v, and let their directions make
angles a and yS with the plane respectively. (Fig. 79.)

Fig. 79.

Given u and a, required to find v and p. Since no
friction is supposed to act, the blow which the plane
inflicts on the sphere is perpendicular to the plane, and
therefore does not affect the resolved velocity of the sphere
parallel to the plane.

The resolved velocity perpendicular to the plane is

altered according to the same law as in the case of direct

impact. Thus we have :—
(a) resolved velocity parallel to the plane after impact

= resolved velocity parallel to the plane before impact

;

(5) resolved' velocity of separation perpendicular to the

plane after impact = ex resolved velocity of approach per-
pendicular to the plane before impact^ these velocities being
•of course in reverse directions.
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From these statements we derive tlie two equations

—

V cos P = u COS a (5),

V sin P = eu sin a (6)

.

Hence v^ = v* cos^ ^+ v' sin' p = n^ cos' a+ e't*' sin' a,

, , o "^ sin /3 CM sin a ,

and tan B = ^ = = e tan a

;

V cos p u cos a

whence v and)8 are determined.

260. Oblique impact of smooth, spheres.

If at the moment of impact two spheres are not both

moving along the line joining their centres, the impact is

said to be oblique.

Given the direction of the line of centres at impact and
the magnitudes and directions of the velocities of the sphei'es

before impact, to determine the velocities after impact.

Let ACB be the line through the two centres at the

moment of impact (Fig. 80). Let ?7and u be the respec-

tive velocities of the spheres before impact, and let their

Fig. 80.

directions of motion make angles a and f3 with AB respec-

tively.

Let V and v be the respective velocities after impact,

and let their directions make angles y and 8 with AB
respectively.
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We are given 31, m, Z7, u, a, /3, and e ; we are required

to find F, V, y, and 8.

Suppose all these velocities resolved along and perpen-

dicular to AB ; viz., U into C^cos a and ZJsin a ; &c. ...

Now tlie spheres are smooth, and therefore the blow
which m gives to M will be perpendicular to the common
surface at G, i.e., will be along the line CA. This blow
will therefore not alter the resolved velocity of M perpen-

dicular to AB, but only the resolved velocity along AB.

Thus (a) resolved velocity of M perpendicular to AB after

the impact = resolved velocity of M perpendicular to AB
before the impact.

In the same way we can show that

—

(b) Resolved velocity of m perpendicular to AB after the

impact = resolved velocity of m perpendicular to AB before

the impact.

Again, exactly the same arguments and laws apply to

the resolved parts of the velocities of the spheres along AB
as in the case of direct impact (§§ 250, 251). We shall

therefore obtain the two following results :

—

(c) Tlie algebraic sum of momenta along AB after the

impact = algebraic sum, of momenta along AB before the

impact.

(d) The difference of the velocities along AB after the

impact = —ex difference of the velocities along AB before

the impact.

From these four statements we obtain the following
four equations :

—

from (a), Fsiny=Z7sina (7);

from (6), «; sin S = {» sin j3 (8);
from (c), MVcos y+mv cos 8 = MU cos a-\-tmi cos fi

(9);
from {d), Fees y—t^ cos S = —e (ZJcos a— /f cos)8)

(10).

These four equations are sufficient to determine the
four unknown quantities, F, v, y, and 8.
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261. The method of solution requires careful attention.

Eliminate vcos 5 between equations (9) and (10), i.e., multiply (10)
by m, and add (9) ; from the resulting equation we obtain

Fcos 7
MUcoa a + tnu cos $—tne{U cos a — n cos /3)

Jf+m

Using this last result with equation (7), we find

r^ = r2 sin2 y+V^ C082 7

_ JJ.2
• 2 . C MUcos a + mtt COS B— fn^{ Ucos a—u cos $)

")*

(. M+ m 5
'

whetice V is known.

Also cot = ^^^^y =3
MUcos a + mn cos g — >»<? ( ?7co8 a— f< cos /3)

* "^ r8in7^ (if + w) tTsina
'

whence 7 w known.

In the same way, if we eliminate FCO87 between (9) and (10), we
can determine v cos 5 ; and, taking this result in conjunction with
equation (8), we can find v and 5.

The student should remember the statements (at), (i), (c), and (rf),

and should be able to write down at once the equations (7), (8), (9),

(10), which are derived from them.

Example.—Two smooth spheres of mass I lb., each moving with
velocity 20 ft. per sec. in directions at right angles to one another,
impinge in such a way that the line joining their centres is the direc-
tion of motion of one of them. If ^ = i, determine the subsequent
motion.

Fig. 81.

Using the accompanying figure (74), we have

velocity of A perpendicular to PQ after impact

= velocity of A perpendicular to PQ before impact
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velocity of B perpendicular to PQ after impact

= velocity of B perpendicular to PQ before impact = 20.

[Cf. § 256 {a) and (*).]

Again, if u and v be the respective velocities in the direction PQ
after impaot, vrehave

u + v = 20, [Cf. §256 (c)]

ti-v= -i {20-0) = -10; [Cf.§2b6{d)]

whence tt = 5, v — 15.

Thus the final velocity of y4 is 5 ft. per sec. along PQ ; and the final

velocity of B is the resultant of 15 ft. per sec. along PQ and 20 ft. per
sec, perpendicular to PQ. The magnitude of this resultant

= v/(152 + 202) = 5^/(32 + 42) = 25 ft. per sec.

262. Pressure of a falling* chain on an inelastic plane.

Example.—A perfectly flexible chain is hanging from a point with
its lower end just in contact with a horizontal plane. If it is allowed
to fall, find the force of pressure on the plane at any time during the
motion.

Let the mass of unit length of the chain be m.
The pressure on the plane after any time t is due to two causes :

—

(o) the weight of that portion of the chain which is already lying
coiled up on the plane

;
(i) the continuous impact of fresh portions of

the chain on the plane.

(a) After time t the chain has fallen a distance ^fft" ; hence a length

ifft^ of the chain is lying coiled up on the plane. The mass contained
in this length is Jii x i^(/t^, and the weight of it is therefore

m X hfft'^ X (/ poundals = imff^t^'

(b) Let F be the reaction of the plane due to the continuous impact,
and let T be a very small interval of time during which the velocity
of the chain may be considered as constant.

Then, since the chain has been falling for time t, its velocity is fft.

Thus, during the interval T, a length fftT (and therefore a mass mgtT)
falls on to the plane ; thus, in time T, the force P reduces the velocity
of a mass mgtTixoxa. gt to 0.

Hence (§ 88, formula 3), we have

FT=mgtT{0-gt);

whence F= —mg't^ (the negative sign merely denoting that the re-

action of the plane is in the opposite direction to the motion of the
chain)

.

Combining {a) and (i), we obtain the total force of pressure on the

plane, viz., ^>ng-t'' + mgH^ = fmg^t^

= three times the weight of the portion lying coiled up on the plane.



254 dynamics.

Summary op Results.

In direct impact the velocities are found from the

•equations

—

MV+mv = MU-^mu (1),

V-v= -eiU-u) (2).

Loss of kinetic energy in an impact

_ ^ Mm(l-e')(U-uy
M-\-m

(3).

Measure of impulse = ^^—

-

^
^ (4)

,

M-{-m

li = ell-

Por oblique impact against a fixed plane

Fcos/3= ZJcosa (5),

7siny8 = eU'sina (6).

Results of ohlujue impact between tivo spheres determined
from equations

—

Fsiny= ^sin a (7)

V sin 8 = u sin /3 (8)

MV cos y-{-mv cos 8 = MU cos a + mu cos P ... (9)

Fcosy—vcosS= — e (CZcosa— ?*cos/8) (10).

EXAMPLES XVIII.

1. A sphere of mass 10 lbs., travelling with velocity 20 ft. per sec,

•overtakes a sphere of mass 20 lbs., travelling in the same direction

with velocity 10 ft. per sec. If the coefficient of elasticity be -5, find

the velocities after impact.

2. If in the last question the spheres were moving in opposite direc-

tions, determine the subsequent motion.
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3. Two spheres of masses 6 and 8 lbs. are moving directly towards

one another, each with velocity 20 ft. per sec. After impact the

velocity of the first sphere is reversed ; find the coefficient of restitu-

tion and the subsequent motion of the second sphere.

4. A sphere impinges directly on another sphere at rest ; the coeffi-

cient of restitution is e ; the first sphere is reduced to rest by the

impact
;
prove that the masses of the spheres are in the ratio e \\.

6. A sphere impinges directly on another sphere at rest ; the

coefficient of restitution is e ; the final velocity of the second sphere is

equal to the initial velocity of the first
;
prove that the masses of the

spheres are in the ratio 1 : e.

6. After a direct impact two spheres are observed to be moving in

the same direction with velocities 20 and 10 respectively ; their masses

are 1 and 3 lbs. respectively ; the coefficient of restitution is known to

be 1/3 ; find the velocities before impact.

7. The centres of two equal and perfectly elastic smooth spheres

are moving with equal and opposite velocities along parallel lines. If

the distance between the parallel lines is ^^2 x the radius of either

sphere, show that after impact the velocity of each sphere will be at

right angles to its former direction.

8. A smooth sphere of mass 5 lbs., travelling with velocity 20 ft. per

sec, impinges on another of mass 10 lbs., travelling in a direction at

rigbt angles to its own with velocity 10 ft. per sec. At the moment of

impact the centre of the first is on the line of motion of the centre of

the second. Determine the subsequent motion, if e = -5.

9. A body, dropped from a height A on to a horizontal plane,

bounces up and down, and finally conies to rest. If the coefficient of

restitution be e^ prove that

—

(«) The velocities at the beginnings of two consecutive rebounds

are in the ratio 1 : e.

(J) The times occupied by two consecutive rebounds are in the ratio

1 : e.

(c) The distances travelled in two consecutive rebounds are in the

ratio 1 : ^2.
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10. Using the results of Question 9, find the time before a ball is-

reduced to rest which falls from a height of 16 ft. and bounces on a

horizontal plane, if the coefficient of elasticity is -5. Find also the-

total space traversed.

11. Considering the earth as a sphere of infinite mass at rest,

investigate the subsequent motion if an elastic ball of finite mass

impinges directly on the earth, deducing the result of § 249.

12. A sphere of mass 1 lb., moving with velocity 27 ft. per sec.,

impinges directly on a sphere of mass 3 lbs. at rest. The second

sphere then impinges directly on a plane, and afterwards impinges

again on the first. Determine the final velocity of the first sphere, if

the coefficient of restitution for each impact is 1/3.

13. A ball in a square courtyard with smooth walls and floor is

projected along the ground in a direction parallel to one of the

diagonals
;

prove that it will constantly be returning to the point

from which it started.

14. A smooth sphere, moving with velocity u, impinges on an equal

smooth sphere at rest ; the impact is oblique and perfectly elastic.

Prove that after impact the two spheres are moving at right angles.

15. A ball is dropped from the top of a tower 100 ft. high, and at

the same instant another is thrown vertically up from the foot of the

tower. The two balls impinge directly, and the first ball just reaches

the top of the tower in the rebound. If the balls are perfectly elastic,

find the velocity with which the second was thrown up.

16. Three imperfectly elastic particles, of masses wij, Wo, wjg, respec-

tively, and of the same material, are lying at rest in one straight line.

If the first be projected toward the second with velocity ?<, and if the

second impinging on the third imparts to it a velocity v, prove that

(mj + in.2) {m.2 + w/3) V = m^m^tt ( 1 + e)-.

17. A hose discharges every second 20 lbs. of water with velocity

40 ft. per sec. against an inelastic plane. Determine the force of

pressure on the plane.

18. A Maxim gun is firing oflF 8 bullets a second ; each bullet

weighs 5 ozs., and is discharged with velocity 1,000 ft. per sec. Deter-

mine the force necessary to keep the gun from recoiling.
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19. Determine the H.P. at which the gun in the last question is

working.

20. Two perfectly elastic balls, equal in all respects, are in contact,

and are impinged upon simultaneously by a third ball, in all respects

equal to each of the former, moving with velocity u perpendicular to

the line of centres of the two former. Find the velocity of the balls

after the impact.

21. A series of 21 inelastic particles of equal mass are arranged at

equal intervals in a straight line. The first particle is projected in

the direction of the second, and strikes it in one minute. Find the

total time before the last impact.

22. What would be the result in the last question if the masses

were proportional to 1, 1, 2, 4, 8, &c. ?

23. Two elastic spheres, equal in all respects, are moving towards

each other with equal velocities, their centres being on two parallel

lines whose distance apart is di (less than d, the diameter of either

sphere) . Prove that after impact they will move away from each

other with equal velocities, so that their centres are on two parallel

lines whose distance apart d,^ is given by the equation

^2^ [e^d^ + (1 -«^) ^1^} = ^2^1^.

24. A sphere moving with a velocity v impinges directly on another

of twice its mass. Find the velocities after impact (i.) if the two

spheres are inelastic, (ii.) if they are perfectly elastic.

25. An imperfectly elastic ball impinges upon a plane at an angle

of 30°, and is deflected from it at an angle of 60° from the perpendic-

ular. Find the coeflicient of elasticity.

26. Two spheres, of masses m and n, moving in the same right line

with velocities u and v, being supposed to interchange velocities by
direct collision with each other ; required their ratio of masses, and

coefl&cient of elasticity.

27. An elastic ball, moving vertically under the action of gravity,

heing supposed to fall through a height h upon a horizontal plane

;

required its coefficient of elasticity in order that, after reboimding

from the plane, it may ascend again to a height k above it.

DYN. S
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EXAMINATION PAPER IX.

1. Prove fully that a particle projected horizontally describes a

parabola whose vertex is the point of projection and whose axis is

vertical.

2. A particle is projected from the foot of an inclined plane ; its

first impact with the plane is direct : prove that 3 cos a = cos (o— 2)8),

where o and $ are the inclinations to the horizon of the initial direc-

tion of motion, and of the plane, respectively.

3. A particle describes a circle of radius r with uniform speed r

show that its acceleration is directed towards the centre of the circle

and is equal to v^/r.

4. If a point P describes uniformly a circle, whose centre is 0,

show that M, the foot of the perpendicular from P on any diameter^

moves with an acceleration which varies as OM, and find (i.) the

period of the motion of M, and (ii.) its velocity when at a given dis-

tance from 0.

0. Find the period of a small oscillation of a simple pendulum.

6. On a certain planet the length of the seconds pendulum is

exactly 2 metres. How far will a body fall in 1 second on that planet ?

7. An imperfectly elastic particle, moving with given velocity,

impinges obliquely on a smooth fixed plane : find the magnitude and

direction of the velocity after impact.

8. A particle impinges directly on a second particle of three times

its own mass, initially at rest ; the second particle then impinges

directly on a fixed plane ; the coefficient of restitution for both impacts

is e : prove that there will always be a third impact unless c = I.

9. A particle of mass M impinges directly on a particle of mass tn

initially at -est : determine the condition that exactly half the kinetic

energy should be lost in the impact.

10. At any point within a solid sphere the attraction towards the

centre varies directly as the distance from the centre. Supposing a

small hole were bored straight through the earth, and a stone dropped

down it, determine roughly with what velocity the stone would reach

the centre (/7 = 32 ; diameter of earth = 8,000 miles), and after what

time it would come up at the other side of the earth.



OHAPTEE XIX.

MOMENTS OF INERTIA.

263. Rigid Dynamics.—In the preceding chapters we
have considered only the motion of particles and bodies

which move as a whole without rotation. That portion

of dynamics which deals with the motion of rigid bodies

when rotation takes place is called Rigid Dynamics.
By a rigid body is meant a body which always remains

of the same size and shape however it is moved about.

This implies that the line joining any two particles of a
rigid body always remains of the same length, and, if three

particles are joined together, it follows that the angles as

well as the sides of the triangle so formed are constant in

magnitude.

264. Angular velocity of a rigid body.

If a rigid lamina is revolving in its own plane about a
fixed point in itself, it is clear that, since the lamina is

rigid, all points on it describe equal angles about the fixed

point, and hence we can measure its rate of revolving by
measuring the angle described per unit time by any
straight line in the lamina which passes through the fixed

point.

In the same way, if a rigid body be revolving about a
fixed axis, we measure its rate of revolving by measuring
the angle described per unit time by any straight line in

the solid which passes through and is perpendicular* to

*A line not perpendicular to the axis would describe a cone instead of revolving
through a plane angle in any given time, as does a line which is perpendicular.
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the fixed axis. This angle measures the angularvelocity
of the lamina or solid body.

In investigating the rotation of rigid bodies under
forces, certain quantities called moments of inertia are

constantly occurring. We now proceed to define these

and to show how they enter into the expressions for the

kinetic energy of rigid bodies.

265. Moments of inertia.—Definition.—If a series of

particles of masses m,, m^, mg, &c., are arranged at perpen-

dicular distances r^, rg, rg, &c., from a given line, then the

moment of inertia of the systsm about this line is the

quantity
m{r^-\-'m^r^-\'m^ri-\-&,o (1).

Fig. 82.

This expression may be conveniently represented by
the notation ^ {ni7^). The symbol 5 (the Grreek capital

S, called sigma) is used in Mathematics to denote sum-

mation. 1!S (mr'^) denotes the sum of all the terms formed

on the model of the term mr^.

In this connection the term axis is usually applied to

the given line about which the moment of iaerfcia is

taken.

If, instead of a system of particles, we are dealing with

a continuous rigid body, we may divide the body up into

a very large number of parts, and make these parts so

small that each may be regarded as a single particle.

The value of 5 (mr^) for these particles will be defined

to be the moment of inertia of a body.
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266. Kinetic energy of a rotating body.

Suppose a body rotating about a

fixed axis with angular velocity w
;

and let I be its moment of inertia

about this axis. Let mi, m^, ...
;

ri, rg, ... have the same meanings

as in § 265.

Then, by § 234, velocity of nii is

wvi ; hence the kinetic energy of mi
is Jmiw;Vi^ Thus, since iv is the

same for each of the masses, the

kinetic energy of the body

= % {^mwV) = imiw;Vi'+ ^myr,'+ ^m^w^'+ ,. .

.

= iw' (m,r,'+ m,r,'+ m,r,' +...) = ^^^'^ (^r^)

Fig. 83.

= lltv^ (2).

Examples.— {\) Masses 1, 2, 3, 4 grammes are placed at the corners

of a square ABCD whose sides are 10 cm. long. To find their moments

of inertia about straight Hnes through their centre of gravity parallel

to AB and perpendicular to the plane of the square respectively.

Let X he the distance of the c.o. from DA, y
its distance from AB. By a well-known formula,

in Statics, we have

1.0 + 2.10 + 3.10 + 4.0 .^
- = o cm.,

1+2+3+4
1.0 + 2.0 + 3.10 + 4.10 = 7 cm.

Fig. 84.

1+2+3+4
(i.) If an axis he taken through G parallel to

AB, the points A, B are distant 7 cm. from it on
one side and B, are distant 3 cm. on the other

side; if the former distance be called +7, the

latter will he —3, and the moment of inertia will he

1.72 + 2. 72 + 3. (-3)2 + 4(-3)2 = 49 + 98 + 27 + 36
_= 210 gramme-centimetre units.

Since moments of inertia are the result of multiplying masses by
the squares of lengths, we write the above result thus :—210 gm.-cm.2.

[Note also that it is not necessary to take account of the signs of the

various distances, since the negative ones on being squared give a
positive result.]

(ii.) When the axis is perpendicular to the plane of the paper ABCD,
the lengths AG, BG, CG, DG are the perpendicular distances from it,

and therefore, the moment of inertia

= l.AG^ + 2.BG^^-Z.CG^ + ^.DaK
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By Geometry,

A(P = BG^ = 52 + 72, C(P = DG2 = 52 + 32

;

whence we find required moment of inertia = 460 gm.-cm.*.

(2) When a foot and a pound are units the measure of a certain
moment of inertia is 14. To find its measure when an inch and a
hundredweight are units.

The moment of inertia is evidently equal to that of a single mass of
14 lbs. placed at a distance 1 ft. from the axis, i.e., -^ cwt. at a dis-
tance 12 in. from the axis. Hence, in the new units,

the moment of inertia = (mass) x (distance)^

=^ X 12= = i X 144 = 18 units.
Otherwise thus

:

14 lh8.-ft.2 = 14 (^ cwt.) (12 ins.)2 = 14 x yi^ cwt. x 12^ ins.«

= 14 X -r^ X 122 cwt.-in8.2 = 18 cwt.-ins.2

267. Relation between the moments of inertia of a
lamina.—Given the 'incnnents of inertia of a lamina about

two axes in its own plane at right angles to one another

;

required to determine the moment of inertia about the line

through their point of intersection perpendicular to the plane

of the lamina.

Fig. 86.

Let OX, OK be the two axes at right angles (Fig. 85).

Let m^ m^, &c., be the masses of the various particles of

which the lamina is composed ; let ^/u 2/2* <^c. be their

respective perpendicular distances from OX ; ajj, x^^ Ac.,

tbeir respective perpendicular distances from OY 'j
and
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rj, 9-2, &c., their respective distances from 0. Then
r^ z=ix^-\-yxi &c. Also r^, rg, &c., are the respective

perpendicular distances of the particles from the line

through perpendicular to the lamina. Let J^, Jj*

and J, be the moments of inertia about 0/, OY and the

new axis respectively. Then

I = m-^r^+ m^r^+ &c.

+ Wjaji^+ Wgajj^+ &c.

But

7i = miyi^+m22/j^+ ... and Ij = mia;i'+ 1712853'+ ...
;

.-. I-=I^+ I, (3).

268. The principle of parallel axes.—Given the

moment of inertia of a lamina about any axis in its plane
through its centre of gravity^ required to find its moment of
inertia about a parallel axis also in the plane of the lamina
at a distance h from the original axis.

Let ABhe the axis through G, the centre of gravity of

the lamina j and CD the parallel axis (Fig. 86). Let the

moments of inertia about AB and CD be I and T respect-

ively.

Let M be the total mass of the lamina ; Wi, Wj? ^^- *^6
masses of the particles of which it is composed ; aJi, jBjj &c.,

their distances from AB, the signs of x^, ajj, &c. being
reckoned positive or negative according as the particles

are on the positive or negative side of AB.
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Then I=^(mx').
Again, the distance of m from CD will be Xi—h^ ; and

similarly for mj, &c,

. Thus

r = Wj (Xj^—hy+ m^ {x^—hy+ SLO.,

or, on squaring out and rearrangiug,

= miXi^+ m2X2-{-&c.

+ ^2(tni + m2 + &c.)

= :S (mx')-2h^ (mx) -{-Mh\

where

If = S (m) = total mass of the

lamina.

Now the distance of G from AB =
a well-known proposition in Statics,

S (mx)

hence S (mx) = 0.

Thus r = 2(maj2)+MA2

.-. r = I+Mh^ (4).

Now Mh^ would be the moment of inertia about CD of a
single particle of mass M at G.

Hence the moment of inertia of a lamina about any axis in

its plane is equal to the moment of inertia about the parallel

axis through the centre of gravity, together with the moment
of inertia about the given axis of the luhole mass collected at

the centre of gravity.

This property is known as the principle of parallel

axes.

The same principle is also tnie for a solid body about any axis, or a
lamina about an axis not in its own plane ; but the proof is more com-
plicated.

0;

•This is true, taking account of the sign of Xi, no matter on which side of AB
mx may lie.
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Example.—To deduce the Principle of Parallel Axes for a lamina
when the axes are perpendicular to its plane.

Let the axes AB, CD cut the lamina in its centre of gravity G and
in 0. In the plane of the lamina, draw Y'GY, H'OH perpendicular to

GO, and produce GO to X. Let A,B\>e the moments of inertia of the

lamina about GX, GY, /and I' its moments of inertia about AB and
CO respectively.

Then, by what has just been shown, if GO = h, the moment of

inertia about HOH = B + Mhr, and then, by § 267, we have

I=A-^B, I' = A+B + Mh^; .'.r = I+Mh^.

269. The following well-known theorems in Algebra
will be used in the ensuing paragraphs :

—

(a) 1 + 2 + 3+... +» ='i(^.,

(i) I'+y + 3'+... +»' = " («+l)(2n+ l)
.

6

(c) V+2'+ 3'+...+n>= J'LO^I".

The sums in these formulae may be written

2 (n), :S (n^), 2 W.
In what follows we shall in general suppose the bodies

to be of y,niform density, so that the masses of equal
volumes (however small) in di:fferent parts of the same
body are equal. In dealing with laminse, or thin flat

sheets of matter, we shall suppose them of uniform thick-

ness and density, so that the masses of equal areas are
equal.
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270. To determine the moment of inertia of a
Tectangular lamina about one side.

Required the moment of inertia of the rectangle ABCD,
about the side AD (Fig. 89).

Fig. 89.

Let AB =a, BC = 6, total mass = J/, and let the lamina
be divided into n equal strips by lines parallel to ADy
where n is some very large number.
Then the breadth of each strip = a/n, and the mass of

each strip = M/n.
Let PQRS be the 5th strip from AD ; then AQ = qa/n.

Also, since this strip is very narrow, all the particles

which compose it are approximately at a distance ra/n

from AD.
Hence the moment of inertia of this strip about AD

n \ n I n*

The moment of inertia of all the strips about AD will

be obtained by giving to q in this expression the succes-

43ive values 1, 2, 3, ..., n.

Thus the moment of inertia of the lamina about AD
:= sum of moments of inertia of the strips about AD

= thelimitofM^.l»+^'.2'+^.3'+ ...+M5!.„.
n' n' n «

_Ma',,„o,. .„i^_Ma' «(«+ !) (2»+ l)

6 \ n 1^1
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Now, if we make n infinite, this result will be no longer

merely approximate, but exact ; thus we obtain the value

of the moment of inertia as —-— (6).
3 ^

Cor.—If Jo ^6 the moment of inertia of the rectangle

about a line through the c.G. parallel to AD, then, by the

principle of parallel axes, since the distance of the C.G.

from AD is J a, — = Io+lf(-)
;

r Ma^ Ma^ Ma} ,^.
" ^"=^-ir=-i2- («>•

271. Radius of gyration.—Suppose a massM equal to that of the
lamina in the last paragraph collected at a point at distance k from
AD. Then the moment of inertia of this mass about AD is Mk^.
This will be equal to the actual moment of inertia of the lamina, if

>k = a/ \/3. aj a/3 is then called the radius of gyration of the lamina
about AD. Hence we have the following :

—

Definition.—The radius of gyration of a body about a given
axis is the distance from that axis at which a particle of equal mass to
the body must be placed in order that it should have the same
moment of inertia about that axis.

272. To find the moment of inexrbia of a straight
line about an axis through one extremity, ^perpendicular to

the line.

This may be deduced at once from § 270, for, if 5 = 0,

the rectangle becomes a line ; and the required moment
of inertia is Ma-/3 (7).

273. The moment of inertia of a parallelogram ABCD
about the side AB can be found by
•dividing its area into an infinitely

iarge number of equal narrow strips

by lines parallel to AB. If A is

the perpendicular distance between
AB and DO, and there are n strips,

the distance of the qth. strip from
AB is ffh/n, and its mass is Mln

;

whence, as in the case of a rect-

angle, we find that the moment of

inertia about AB = ^M7i,^ = ^M.B(P sin2 ABC,
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274. To find the moment of inertia of a triangle

about a line through either vertex parallel to the opposite side.

Let ABC be a triangle of mass M. Draw AX parallel to,,

and AN perpendicular to, BG (Fig. 91) ; let

AN=p, BC = a.

Divide AN into a large number (n) of equal parts.

B N C
Fig. 91.

Let LM be the ^th of these parts, counting from A.

Divide the triangle into strips by lines through the points

of division of AN, and let PQRS be the strip cutting AN in

LM. Then the area of the strip is practically equal ta

LM X SR, since the strip is very narrow.

Now, by similar triangles,

SR : BG = AR : AC = AM : AN = q : n
;

whence SR = aq/n. Also LM = p/n. Hence

area of PQRS = qpa/n^.

Again,

mass of PQRS : mass of ABG = area o^ PQRS : area oiABG
= qpajn^ : paj^

;

whence mass oi PQRS= 2qM/n^.

Also, distance of this mass from the axis AX
= AM = qp/n.

,'. the moment of inertia o^PQRS about the axis AX

^m^±)\.^,ufi
Hence, giving to q the successive values 1, 2, 3, ..., tiy.

and summing, we see that the moment of inertia of the

whole triangle about AX

= the limit of 2if/ x
l'+ 2'+^-+^'
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= 2.fp'x«^^=2.v[iH-i +
U'

Putting n = CO , we obtain

moment of inertia = —— (8).

Cor.—The moment of inertia about the side BG can
-easily be deduced from the principle of parallel axes.

Let I and Jo be the moments of inertia about BG and
about a parallel to BG thioiigh the c.G. Then, since the
distances of the c.G. from BG and from AX are ^p and fj9,

respectively, we have, by (6),

^ = I,+Mapy and l = I+Mapr,

whence i". =^ and I = MK
° 18 6

(9).

Example.—To find the moment of inertia of a rectangle about a
diagonal.

Let ABCD be the rectangle (Fig. 92) ; let AB = a, BC = b, and let

the mass of the rectangle = M. Draw AN perpendicular to BD,

Then, moment of inertia of ABCD about BD
= sum of moments of inertia about BD of

AS ABD, CBD
= twice moment of inertia of AABD
^M AN^

' 2-"6-
Also AN ,BD = 1 area of AABD = ab;

... AN = ^^=--£^.
BD ^/ai + b'^

Hence required moment of inertia

(§ 274, Cor.)

6 '+&-
(10).
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275. The moment of inertia of a uniform circnlar
wive ofradius r about an axis through its centreperpendicu-
lar to its plane is obviously

= Mr^ (11).,

For every particle is at the same distance r from the
axis.

We can now determine the moment of inertia of a circu-

lar wire abont a diameter.

Let this be J. Then if we take two diameters, at right
angles, and apply the theorem of § 267, we see that

the snm of the moments of inertia abont these two dia-

meters = moment of inertia about the axis through the
centre perpendicular to the plane of the wire ; i.e., since

the moments abont the two diameters are equal,

2Iz=Mr^;

whence I = ^^ (12).

276. To find the moment of inertia of a circular
lamina of radius r about an axis through its centre

perpendicular to its plane.

Let OA be a radius of the lamina (Fig. 93). Suppose
OA divided into a large number (n) of equal parts, and

suppose the lamina divided into n concentric rings by
means of circles drawn with centre 0, throngh the points-

of division of OA.
Let LM be the pth division. Then the area of the
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ring corresponding to LM is practically tlie circumference
of the ring X its breadth

n n

Again, mass of the ring : mass of the lamina = area of
ring : area of lamina; whence mass of the ring

n'
'

Hence moment of inertia of this ring about the given

axis =-^.^ = —^./.

Hence moment of inertia of the lamina

= sum of moments of the rings

= limit of^ (P+2H ... +n')

Making n infinite, this reduces to

^ (13).

By a similar argument to that of § 275, we see that the
moment of inertia of a circular lamina about a diameter is

given by

1 =^ (14).

Cor.—The moment of inertia of a solid cylinder of radius r about
its axis is also equal to ^i/r^, because the cylinder can be split up into
thin laminae by planes perpendicular to its axis, and the moment of
inertia of each lamina is equal to its mass multiplied into ^r^.

277. Sphere, and Spherical Shell. We give the following
results without proof :

—
The moment of inertia oE a uniform thin spherical surface of radius a

about a diameter = ^Ma^ (15)»

That of a solid sphere of radius a about a diameter

= |^«2 (16).
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Example.—To find the moment of inertia of a hollow sphere of
Tadius a containing a concentric cavity of radius b.

Let d be the density of the matter in the hollow sphere.
The moment of inertia is clearly the difference between that of a

solid sphere of radius a of density d, and that of the matter which
would fill the cavity, i.e.y that of a solid sphere of radius b and of the
^same density d.

The masses of the solid spheres are ^iraH and ^vb^d ; hence the mass
•of the hollow sphere is ^ir [a?— P) d = M, siary.

"The moments of inertia of the two spheres are therefore

\iTaM X U^ and ii (from above)

Hence the moment of inertia of the hollow sphere

= iiraM X |«2_ 4^pa y. 2 j2 ^ *^ax% (a»- b^)

fA A5
= ^M-—- (1^).

278. Froblem.—Given the moments of inertia of a lamina about two
perpendicular axes in its plane, with respect to one at least of tvhich it is

symmetrical; required to find its moment of inertia about another axis in
its plane through their point of intersection making an angle a with one of
the given axes.

Let mi be the mass of any particle at P. Let OXy K be the two
given axes (Fig. 94), and let PN and PM , the perpendiculars on K and

PCs, %Ca)i^

Fig. 94.

OX, be Xi and Pi, respectively. Suppose the lamina symmetrical with
respect to Y. Draw PK perpendicular to the new axis OR.
Then it can be easily shown that

PK = Vi cos a—Xi sin a.

Thus the moment of inertia of m, about OR is

»Zi (2/1 cos a— a?! sin o)2.
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Hence the moment of inertia of the lamina is

Wj (yi cos a—Xi sin a)^ + W2 (^2 cos a—x.2 sin o)^ + &c,

= cos^ a {ruiy^ + nic^^ + &c.) + sin^ o {m^x^ + wig^s^ + &c.)

— 2 sin a cos o {m^x-^yi + m-^x^y.^. + &c.).

Now, since the lamina is symmetrical to K, there will be another

particle of equal mass to m^ (say w,) at a point ?' on PH produced to

the opposite side of OK, such that NP' = PN. Hence

M'P' = MP and NP' = PN ;

whence yr = t/i and Xr = -Xi.

Also mr = Wj.

Hence mrXryr + m-^x-^y^ = 0.

Since all the particles can be paired off in this way, it follows that

mi^i?/i + Jrto^-oya + &c. «= 0.

Hence the moment of inertia about OR
= cos*^ o {miyi" + ^2^2^ + &,c.) + sin^ o {lUiXi^ + in^^ + &c^)

= Zicos-a+jjsin^a (18),

where I^ and I^ are the given moments of inertia about OX and Y
respectively.

*279. If the body were not symmetrical about either OX
or K, the equation for / would generally take the form

J = ij cos2 a + /j 8in2 o— 2 sin o cos o 2 {mxy) .

2 C'^ary) is called the iJrodfMc^o/i;ii;r<m about the two axes OX, OY (9a).

If this product of inertia be known as well as I^ and I^, the moment
of inertia of the lamina about any line through in its plane can be
found.

*Examples.— (1) Given the mass of a lamina, the position of its

centre of gravity, and the moments of inertia about any three lines in

its plane, no two of which are parallel, to find the moment of inertia

about any other line in the plane of the lamina.

First, let the three lines intersect in the c.g. of the lamina, and let

them make angles o, i8, 7 with the axis of x. Then, ii A,B, C are the
moments of inertia about them, we have, with the notation of the
above paragraph,

A = Ii cos^ a + I^ sin2 a— 2 5 {mxy) sin a cos o,

B = Ii cos" iS + J2 sin^ ^— 22 {mxy) sin )8 cos )8,

C = Ii cos^ 7 + /g sin.^ 7— 22 {mxy) sin 7 cos 7.

These three equations suffice to determine J^, Jg, and 2 {mxy).

The moment of inertia about any other line through G can now be
found, and the moment of inertia about any line not through G can be
deduced from the principle of parallel axes.

DYN. T
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If the lines about which the moments of inertia are A, B, C do not
pass through G, let them be at distances a, b, c from G. By the
principle of parallel axes, the moments of inertia about three lines

through G parallel to them are A— Ma-, B—Mb-, and C—Mc^, respect-

ively, and, these being known, we proceed as in the first case.

*(2) The moment of inertia of a triangular lamina of mass M about any
axis is the same as that of three equal particles of mass \M placed at the

middle points of its sides.

The three particles have the same mass and the same c.g. as the
triangle ; hence we only have to show that their moments of inertia

about three straight lines in the plane of the triangle are the same.
Take these lines to be the sides of the triangle. If jt? is the distance

of A from BC, the middle points of AB, AC, BC are distant ^p, ^p, and
from BC. Hence the moment of inertia of the particles about BC

= moment of inertia of triangle about BC. (§ 274, Cor.)

Similarly, the moments of inertia of the particles and triangle about
CA and AB are the same, and therefore their moments of inertia about
ant/ straight line are the same. The particles are therefore said to be
equimomental to the lamina.

'-'^^"^^ Summary of Results.

The moment of inertia of a system of particles

= ^mr' (1).

Kinetic energy of a rotating body = ^Ivr^ (2).

The moments of inertia of a lamina are connected by

the relation I=Ii-\-I, (§267) (3).

The Principle of Parallel Axes gives

r=I+Mh' (§268) (4).

The moments of inertia of a symmetrical lamina about
different directions give

1= Iicos'a + Ijsin^a (§278) ... (5).
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Moment of inertia of

a rectangle about one edge = —— (6),
o

„ about parallel axis through centre = -—- (7)

;

la

& straight line sibont one end = —;^ (8) j

o

a triangle about line through vertex parallel to one side

=^ (9),

where p is the altitude,

„ about line through c.G. parallel to side

=^ (10),

„ about one side = —^ (H)
J

6

a rectangle about a diagonal = -^ .
^ ^ ^^ (12) ;

6 'a'+ b'

a circular wire about an axis through its centre, perpen-

dicular to its plane = Mr" (13),

„ about a diameter = -—— (14);

a circular lamina about an axis through its centre perpen

le =dicular to its plane = —- (1^)>

„ about a diameter = -— (16);

a spherical surface about a diameter = ^Ma^ (17) ;

a solid sphere about a diameter = fifa^ (18) ;

a triangle about any axis is same as that of masses |Jf at

middle points of sides (19).
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EXAMPLES XIX.

1. ABC is an equilateral triangle, whose sides are 1 it. long, i), E, F
are the middle points of its sides. If masses of 1 lb. are placed at A,

By C, and masses of 2 lbs. at D, E, F, find the moment of inertia of the

system of masses (i.) about BC^ (ii.) about Z)£, (iii.) about a line

through the centre of gravity parallel to BC

2. In the last example find the moments of inertia of the system

about axis drawn at right angles to the plane of the triangle (i.) through

A, (ii.) through D, (iii.) through the centre of gravity of the triangle.

3. Taking a foot and a pound as units, the moment of inertia of a

certain body is 54. What is its amount when a yard and an ounce

are taken as units ?

4. The measure of a certain moment of inertia is 260 when a

centimetre and a gramme are units. What is its measure (i.) when a

millimetre and a kilogramme are units, (ii.) when a metre and a

milligramme are units, (iii.) when a metre and a kilogramme are units ?

5. If equal masses m be placed at the corners of a regular hexagon

whose side is a, find their moment of inertia (i.) about a side of the

hexagon, (ii.) about a diagonal, (iii.) about an axis perpendicular to

the plane of the hexagon through its centre, (iv.) about an axis per-

pendicular to the plane through an angular point. [The Principle of

Parallel Axes is not to be assumed.]

6. Verify that the Principle of Parallel Axes holds good in connec-

tion with the first and second results of Example 5, as also in connec-

tion with the third and fourth.

7. A rectangle without mass, whose sides are 2 metres and 1 metre

long, has masses of 1 kilogramme placed at the four comers, and

masses of 5 kilogrammes at the middle points of the two longest sides.

Taking a kilogramme and a metre as units, find the moments of inertia

of the system of masses (i.) about the sides of the rectangle, (ii.) about

its diagonals, (iii.) about parallels to the sides through its centre of

gravity.

8. Deduce from § 270 the moment of inertia of a rectangle about

an axis through its centre parallel to one side, not using § 268.
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9. Hence determine its moment of inertia about an axis half-way

between one side and its centre. (Use § 268.)

10. Deduce from § 273 the moment of inertia of a parallelogram

about one side.

11. Determine the moment of inertia of a triangle about a median.

12. Find the moment of inertia of a circular wire about a tangent.

13. Find the moment of inertia of a circular lamina about a tangent.

14. Verify that the moment of inertia of a triangle about a lino

through its c.g. parallel to either side is equal to the moment of inertia

of three particles placed at the middle points of the sides, the mass of

each particle being one-third that of the triangle.

16. From a circular lamina of radius a, a concentric aperture of

radius b is cut out. Prove that the moment of inertia of the remain-

der about an axis through the centre perpendicular to the plane

16. A wire of mass M and length Za is bent into the form of an
equilateral triangle. Find its moment of inertia about an axis through

its centre of gravity perpendicular to its plane.

17. A wire of mass M and length ^a is bent into the form of a
square. Find its moment of inertia about a side of the square.

18. Find the moment of inertia of a thin cylindrical shell about its

axis, the ends of the cylinder being made of material of the same
thickness and density as the curved surface.



CH APTEE XX.

PRINCIPLE OF WORK FOR RIGID BODIES.

280. In tlie last chapter (§ 266) we proved that the
kinetic energy of a rigid body rotating about a jBxed axis

witb angular Velocity w is ^Iw^, where the moment of

inertia I can be calculated for bodies of certain given
shapes. By assuming the Principle of Conservation of

Energy, we are now able to investigate very easily the
motion of certain rigid bodies when acted on by given
forces.

It will be necessary to remember that, in the case of a body acted
on by gravity, the work done by gravity in any change of position

is the same as if the mass of the body were all collected at its centre
of gravity, and is therefore equal to Mgh dynamical units of work,
JIf being bhe mass of the body and h the vertical depth through which.

its centre of gravity has fallen.

We may introduce the subject by the following example :

—

Example.—A rectangular lamina ABCD is free to revolve about the

edge AB, which is horizontal. If it be held horizontally and then let

go, determine its angular velocity when passing through its vertical

position
;
given /15 = 3 ft., 5C = 4 ft.

Let 10 be the required angular velocity ; then the kinetic energy of

the lamina = Utv^ = i ^^-^ tv^ = ^^^. (§ 270)
3 3

Also, loss of potential energy in falling from the horizontal to the

vertical position = work done by gravity = weight x vertical distance

through which the centre of gravity has fallen = Mg x 2.

But loss ofpotential energy = gain of kinetic energy ;

whence 2Mg = —-— ;

= W?^ = 2 v/6 (radians per sec).
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281. To find the acceleration in Atwood's Machine
when the inertia of the pulley is taken into

account.

Let the two masses P, Q be connected by a string

passing over a pulley. Let a be the radius of the pnlley

A
^

Fig. 95.

in the groove where the string passes, I the moment of

inertia of the pulley about its axis.

Let V be the velocity of the two masses when the
heavier, Q, has fallen, and the lighter, P, has risen,

through a distance s.

Then, if w; be the angular velocity of the pulley, it is

clear that the velocity of the particles of the pulley in

contact with the string is loa^ and hence, if the string

does not slip, w .a = v, whence v = wa.

The total kinetic energy of the masses and pulley

= iPv'+ iQv'+ ^Iw' = ^v\P+Q+ I/a').

Also the work done by gravity

= {Q-P)gs.
Equating these, we have, by the Principle of Work,

iv'(P+Q-\-I/a') = (Q-P)gs',

\-P
Q-^P+ I/a'

Comparing this with the equation for uniformly acceler-

ated motion v' = 2/5, we have

acceleration/=^-g=^ ,9.

3 O ^— J^
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IfM is the mass and k the radius of gyration of the

pulley, we have I = Mk^,

-^ ••• '= Qj+3Uya^ » W-

The acceleration is therefore the same as if the pulley

were without mass, and masses equal to ^]\Ik^/a^ were
added to each of the two masses P and Q.

Note.—In the7present case, the tensions in the Uvo parts of the

string are not equal. The difference between these tensions is the

force producing motion of the pulley.

Example.—To determine the value of f/ by two observations made
with Atwood's Machine, the moment of inertia of the pulley being
unknown.

J

Let F be the observed acceleration when the mass F descending
pulls the mass Q up. Let other masses j3, q be substituted for F and
Q, and let the new acceleration be observed to be /. Then

Q + P+J/«2^' ''
q+p-\-Ila^'

IJa^ is unknown, and must therefore be eliminated. "Writing the

equations— Q + P + 7/^2 = {Q-F) gJF,

q+p + Ia^ = {q-p)ff!f,

we have, by subtraction,

(Q+P)-(j+i,)= {«^-«r?J^;
whence

ff
may be found in terms of the known accelerations F, /, and

the known masses P, Q, p, q.

282. Instantaneous centre of rotation of a rolling
wheel.

If a wheel is rolling ^ without slipping, over any surface,

its motion at any instant may be regarded as a rotation

round that point which is in contact with the surface.

For suppose, first, that the wheel, instead of being
circular, is in the shape of a regular polygon of a large

number of sides. Then, as it rolls over the surface, the
different angular points of the polygon come successively
in contact with the surface ; and, if there is no slipping,

the wheel revolves round the one angular point till the
next comes into contact with the surface. But, if we
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Vel.vr.OP
P.

suppose the number of sides to be indefinitely increased,

the polygon becomes a circle ; whence the theorem follows.

For this reason the point of the wheel in contact with
the surface is called the instantaneous centre of rota-

tion.

283. To determine the magnitude and direction of
the velocity of any point on a rolling wheel of radius

r, which is travelling with velocity v along a fixed plane.

Let A be the centre of the wheel, the point of contact

with the plane, and P the given point on the wheel (not

necessarily on the circumference). (Fig. 97.)

Let OP = d, and let w be the angular velocity with
which the wheel is revolving.

Draw PL perpendicular to OP.

(i.) To determine to :
—

Since the wheel is travelling with velocity v, the velocity

of ^ is = V.

But, since is the instantaneous centre of rotation, the

velocity oi A ia z=z w . OA = wr
; (§ 234)

.*. wr ^= v; whence w = v/r.
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(ii.) To determine tlie velocity of P.

The magnitude of P's velocity is

w.OP= —.d.
r

and its direction is perpendicular to OP, i.e., along PL.

P.

Alternative method.—Consider first the motion relative to the centre
of the wheel. Since the wheel is turning with angular velocity w,
the velocity of any point P on the wheel relative to y4 is u; . AP.

(i.) Hence, since AO = r, the velocity of relative to A is tvr perpen-
dicular to AO, and the velocity of A relative to is equal and opposite t

.'. 1- = wr and w = vjr.

(ii.) The velocity of P is compounded of the velocity of P relative

to A and the velocity of A.

The former iqw.AP perpendicular to AP, and the latter is %v . OA
perpendicular to OA. These velocities are perpendicular to the sides

APj OA of the triangle AOP \ hence, if the triangle AOP were turned
through a right angle, it would become a Triangle of Velocities.

Hence the resultant velocity of P is perpendicular to the third side OP,
and its magnitude is w . OP.

284. To find the acceleration of a wheel rolling
down a rongh inclined plane.

[The plane is supposed to be sufficiently rough to

prevent the point of contact of the wheel from slipping.]

Let M be the mass of the wheel, r its radius, h its

radius of gyration about an axis through its centre

perpendicular to the plane of the wheel, and let A be the

angle of inclination of the plane.

Let V be the velocity of the centre of the wheel when
it has moved through a distance s. Then, by § 282, the
wheel is at this instant rotating about its point of contact
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witli the plane, with angular velocity iv equal to v/r;

hence, by § 266, the kinetic energy of the wheel is ^Iw^ or

Jv'/?-', where I is its moment of inertia about an axis

through the point of contact^ perpendicular to its plane.

The work done by gravity

= Mg& sin A.

Equating these, we have

\Iv^/r^ = Mgs sin A,

whence t?^ = 2 —— o sin J. . s.

I ^

Comparing this with v^ = 2/5,

we have / = -j-Q si^^ 0-)-

Now the moment of inertia about an axis through the

centre perpendicular to the wheel is Mk^.

Hence, by the Theorem of Parallel Axes,

I=Mk^+Mr\
Substituting this value in (i.), we have

^=TO-'^^^ ^'^-

Hence the acceleration of the wheel is to the acceleration

of a body sliding down a smooth plane of the same inclination

in the ratio of r^ to r^+ J^.

CoR.—For a circular hoop,

/b = a(§275); .-. f=\g sin A.

For a circular disc or cylinder,

k' = ir'; .'. f=ig sin A.

For a thin spherical shell,

k' = %r'; .-. / = |^8in^.

For a solid sphere,

P = |r^ .-. f=fg sin A.

By observing the acceleration of a sphere or cylinder
rolling down an inclined plane, the value of g could be
found.
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Examples.— (1) To find the acceleration of a truck running down
an incline on wheels.

Let M be the mass of the truck; mi, m^, ... the masses of the
wheels ; i\, r^, ... their radii; Ic^, /c^) ••• their radii of gyration about
the axes through their centres; /,, I2, ... their moments of inertia

about their points of contact with the ground. Let A be the inclina-

tion of the incline, and, if the truck does not start from rest, let the
velocity change from u to v when the truck moves over a distance s.

Then the initial and final kinetic energies are, respectively,

and a similar expression with v written for u.

Remembering that /^ = m^ (^i^ + ^'i'), &c.,

and equating the increase of kinetic energy to the work done, we have

= {M+ mi + m2+ ...)ffs BinA.

Comparing this equation with v^—ii^ = 2/«, we have

acceleration / = — "^
T ,y, «.

5^ sin -4

,

where the symbol 2 indicates summation for the several wheels on
which the truck stands.

(2) Two spheres of the same size and mass are exactly of the same
outward appearance, but one is solid and the other contains a hollow
cavity, the hollow one being made of matter of greater density so as

to make the masses equal. To find which is the hollow sphere.

Allow the two spheres to roll down an inclined plane, starting

simultaneously from rest. Then, from the formula

,.2

r^ + k^

we see that the sphere for which k^ is the greatest will have the least

acceleration.

Now the particles of the solid sphere are distributed uniformly
throughout its volume, while those of the hollow sphere all lie outside

the cavity. It is clear that the matter of the hollow sphere lies on
the whole further from the centre than that of the solid one, and
therefore further from any diameter, and hence the value of k^ (which
may be regarded as the mean square of the distance of the particles

from the axis) is greater for the hollow sphere.

Hence the acceleration of the hollow sphere will be less than that

of the solid one, and, by observing the two, they may be distin-

guished.
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285. Compound Pendulum.—Definition.—Any body
which is capable of swinging to and fro about a fixed

axis under the action of gravity may be called a pendu-
lum. Such a pendulum is frequently referred to as a
compound pendulum, to distinguish it from the simple
pendulum consisting of a single suspended particle as

considered in Chap. XVII.
Two pendulums which will oscillate through equal

angles in equal times are said to be equivalent.

Fig. 98.

286. A body oscillates under gravity about a fixed
horizontal axis. To prove that this pendulum is

equivalent to a simple pendulum, and to find the
length of the latter.

Let a body of mass M be suspended from a fixed hori-

zontal axis through S, perpendicular to the plane of the
diagram (Fig. 98). Let G be the c.G. of the body, so

that in equilibrium SG is in the vertical position <SZ.

Let the body be drawn aside from the equilibrium
position through an angle a (so that its C.G. is brought to

//), and then let go.

Then, if w is the angular velocity acquired when SG
makes an angle 6 with the vertical and I the moment of

inertia about the fixed axis,

the kinetic energy = ^Iw^,
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Fig. 98.

and the work done by gravity

= Mg X vertical distance of G below H
= Mgx{SN-SM)
= Mgh (cos a— cos 0)^ where h = SG.

Equating these, we have

\Iw- = Mgh (cos a— cos 0) ;

j^ = '^—^g (cos a— cos ^) (i.).

This equation gives the angular velocity after falling

from the initial position through an angle a— 0.

Now compare the motion with that of a simple pen-
dulum of mass m and length Z, initially drawn aside

through the same angle a and allowed to fall through
the same angle a— 0. If it; is the angular velocity ac-

quired, the velocity of the mass is liv^ and the equation

of energy gives

\7nlho^ = mgl (cos a— cos 0),

2
or w^ =^ -— g (cosa— cos^) (ii.).

I

Comparing (i.) and (ii.), we see that the value of w
will be the same in the two pendulums, provided that

1 3/^ ,1
I

1 =
Mil
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If Z have this value, then, since the angular velocities

of the simple and compound pendulums after describing

equal angles are equal, it follows that the angular motions
of the two pendulums are identical, so that if started

together they will continue to swing together, describing
the same angles in the same times.

Hence the body is equivalent to a simple pendulum of
length I/Mh.

Now let h be the radius of gyration of the body about
an axis through its centre of gravity parallel to the fixed

axis. The moment of inertia about the new axis is there-
fore if^•^, and hence, by the Theorem of Parallel Axes,

I=M(k'+ h').

Substituting, we see that the length of the simple
pendulum is given by

1 =^ (3).h
Cor.—If a simple pendulum oscillates through a small

angle, we know that its time of oscillation is 27rV(Z/gr).

Hence the time of a small oscillation of the body is

given by T=2^yJ'^ (4).

287. Centres of suspension and oscillation.— The point S
about which the body swings is called the centre of suspension,
and, if on S6 a length SO is marked off equal to I, the length of the
simple equivalent pendulum, the point is called the centre of
oscillation.
From this we have the following :

—

Definition.—The centre of oscillation of a compound pendulum
is the point at which a single mass would have to be placed in order
that it should oscillate in the same time as the original pendulum.

[Note that the time of oscillation is not the same as if the mass were
coUected at its centre of ffravity.l

Examples.—(1) A rod of length 2a oscillates about a point distant h
from its middle point. To find the length of the simple equivalent
pendulum.
Here A-2 = Ja^

and I = —;— = ^

—

'— = rr + ^•
h h Zh
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(2) A pendulum consists of a sphere of mass M and radius a sus-

pended from 5 by a rod of mass m and length b. To find the length

of the simple equivalent pendulum.

The centre of the sphere is at a distance

a + h from S.

Moment of inertia of rod about S

Moment of inertia of sphere about centre

Therefore moment of inertia of sphere about 5
= |Jf«2 + Jf(a + by.

Therefore momentof inertia ofwholependulum

Distance SG of centre of gravity

^ m. \b-k-M{a + b)

m +M *

and total mass

Hence [by the formula I = liMh)] we have

\mb^ + M{a^+ia + b)^}

(m + M) ^ -^ ^
^ ' m +M

~
^mb + M{a + b) Fig. 99.

288. The centres of suspension and oscillation are con-

vertible.

From (1) we have

n h ob

G0 = S0-8G =
SG

and GO.SG = k^ (5).

In this formula, the lengths GO, GS are interchange-

able ; thus we obtain

GS = ^, and OS = f^.OG.
Fig. 100.
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It follows that, if the body were inverted and suspended from 0,

the centre of oscillation would be 5 ; in other words, the centres of

smpension and oscillation are convertible. We notice that, the length

of the equivalent pendulum being equal to OS, whether the body-

be suspended from S or from 0, the times of oscillation about

and S are equal.

CoR.—On any straight line through G there are four

points about which the times of oscillation will be equal.

For, if we cut off GS' = GS and GO' = GO, the time of

oscillation about S' is clearly the same as about S (the

length of the simple equivalent pendulum being

and that about 0' is clearly the same as that about 0.
We notice that the four points are sjinmetrically situated

in pairs on opposite sides of G, that

OS = O'S' = I,

and that GS.GO ^ GS'. GO' -= A^.

-0'

Fig. 101.

289. Captain Kater's Fendulnm is a loaded bar which can be
suspended from either of two parallel axes formed by knife edges in

the same plane as its c.o. and on opposite sides of it.

By varying the positions of the loads on the bar

or of the knife-edges (all of which are adjustable),

the period of a small oscillation about either knife-

edge may be varied.

To Jind the length of the seconds' pendulum at any

place, and thus determine the intensity of gravity, the

knife-edges and loads are so arranged (by repeated

trials) that the period of a complete small oscillation

about either knife-end is exactly 2 sees. (§245), but
the centre of gravity is not midway between the knife-

edges. Since the periods about the two centres of

suspension are thus equal, we know that each is the

centre of oscillation about the other ; hence the dis-

tance between them is equal to the length of the
simple equivalent pendulum, i.e., the seconds' pendulum. By
measuring the distance between the knife-edges, this length is found,
and hence g is determined.

DTN. U

Fig. 102.
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*290. Motion of any rigid body about a fixed axis.

A rigid body is free to turn about a fixed axis AB, and is acted on by
given forces. It is required to investigate the motion.

Let P be a small portion of the body, of mass m, small enough to

be regarded as a particle, m its mass, r its distance PN from the

axis AB.
Then, if w be its angular velocity, its actual velocity will be rw

perpendicular to the plane ABP, and its acceleration will consist of

two components—that along PN being of magnitude u-h' (since the

particle is revolving in a circle of radius r), and the component
perpendicular to the plane APB being

= rate of change of the velocity ur
= r X rate of change of w

Fig. 103.

where w' represents the rate of change of the angular velocity w ; so

that tr' may be called the angular acceleration of the particle.

It follows that the resultant forces producing motion of the particle

are mtc-r along PN and virw' perpendicular to the plane APB. Let
these be called the "effective forces" on P. If, then, additional

forces equal and opposite to these were applied to the particle, they
would destroy its acceleration, and, if similar sets of forces were
applied to the whole body, they would keep it in equilibrium.

Hence the sum of the moments about AB of the actual forces

producing motion, minus that of the effective forces, is equal to zero.

Now the forces such as mwh' have no moment about AB, and the
moment of the force mrw'

= mrw' X r = mr^w'.

Hence sum of moments of impressed forces

= ^mrhv'

= w' y. 2w^'

(since iv' is the same for all the particles)

= w'I,

where / is the moment of inertia about AB.
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Hence, for angular motion about AB, the analogue of the equation
of linear motion,

impressed force = mass x acceleration,

is impressed moment = moment of inertia x angular accel.

We can thus find the angular acceleration of a body made to

revolve about a fixed axis bj' given forces.

*29I. Angular xuomexitain.—Suppose P is a particle of mass m
moving with velocity V in any given direction PQ, and let AB be any
axis not in the same plane as PQ. Resolve the velocity V into two
rectangular components, one in and one perpendicular to the plane
APB, and let these be u and v. Drop PN perpendicular on the
axis AB, and let NP = r. Then the product mvr is called the
angular momentum or moment of momentum of the particle

Fig. 104.

about AB. Hence the following :

—

Definition.—The angular momentum of a particle about a
given axis is thus the product of its distance from the axis into the
resolved part of its momentum perpendicular to the plane through
the particle and the axis.

The angular momentum is thus the moment of the momentum
about the axis formed in the same way as the moment of a force.

Definition. — The angular momentum of a system of
particles or a rigid body about a given axis is equal to the

sum of the angular momenta of the particles of which it is composed.

In the case of a rigid body rotating about the fixed axis ABy with
angular velocity lo, the velocity of any particle P is w.NP
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perpendicular to the plane APB ; hence the angular momentum of the

mass m a,t P = mtvr'^, where r = NP.

Therefore the angular momentum of the body

= tmrhv = u'x'^mr^ = tcl (6),

where / is the moment of inertia about AB.
It follows from § 290 that the rate of change of the angular

momentum about AB is equal to the moment of the impressed forces

about AB.

*292. General Equations of Motion of a Plane Body.—
When a plane lamina is moving in its plane under the action of forces

in that plane, it is known from statical considerations that the forces

can be replaced by a single force at the centre of gravity and a couple

whose moment equals the sum of the moments of the forces about
the centre of gravity. If P denotes the force, L the couple, M the
mass of the body, and k its radius of gyration about its centre of

gravity, then the acceleration of the centre of gravity takes place in

the direction of P; and, just as in the case of a particle, it is given

by the equation F = Mf (1).

If IV is the angular velocity of the body About its c.o., the rotational

motion is determined by the equation

L = Mk^ X (rate of change oi w) (2)

.

Equation (1) expresses the fact that the rate of change of the trans

-

lational momentum is equal to the resultant of the applied forces, and
equation (2) expresses the fact that the rate of change of the angular
momentum about the c.o. is equal to the moment of the applied forces

about that point.

It may also be shown that the rate of change of the angular
momentum of any body or system of bodies about a.fxed axis is equal
to the moment of the impressed forces about that axis. If then a
system is acted on by no forces beyond the mutual actions and re-

actions of its parts, the angular momentum of the system about any
fixed axis remains constant ; and the same is the case when the only
forces acting on the body intersect or are parallel to the fixed axis.

This property is called the Principle of Conservation of
Angular Momentum.



principle of work for rigid bodies. 293

Summary op Results.

Acceleration in Atwood's Machine^ taking account of

inertia of pulley, is

S^:^ _. (1).

Instantaneous centre of a rolling wheel is at its point of

contact with ground.

For acceleration of wheel rolling down inclined plane

f=^^,ga{nA (2).

A compound pendulum is equivalent to a simple pendu-

lum of length

l
= ^^±^ ^^^

h

The centres of suspension and oscillation are convertible,

and GO.SG = k' (5).

Angular momentum of a body rotating about a fixed axis

=:ZOl (6).

EXAMPLES XX.

1. A circular wire, of radiu8 1 ft., is free to turn about a horizontal

axis through a point in its rim, perpendicular to its plane. If it be

held in such a position that the centre of the wire is on the same level

as the axis, and then let go, determine its angular velocity when

passing through the position of equilibrium.

2. Solve the corresponding problem, given a circular lamina instead

of a circular wire.

3. Two masses, P and Q, are respectively attached to the rim and

axle of a wheel and axle, whose radii are a and b respectively. If the

moment of inertia of the wheel and axle is J, determine the velocity

of the mass F after falling « ft.
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4. A mass P is attached to the end of a light inextensible string,

which is wound round the rim of a wheel of radius r, free to turn in

its own vertical plane, about its centre. If the moment of inertia of

the wheel is 7, determine the velocity of the mass after falling a ft.

5. If a, wheel is rolling on any surface, plane or curved, prove that

at any given instant the direction of motion of all points on the rim

passes through that point which is farthest from the point of contact.

6. A wheel is rolling on a horizontal plane. Compare the velocities

of the highest point, the centre, and either extremity of the horizontal

diameter.

7. A piece of mud is thrown o£E from the top of a cab-wheel. Prove

that, when it falls to the ground, the distance between it and the

point of the wheel then in contact with the ground will be equal to

the distance moved by the wheel since it was thrown off.

8. A wheel is rolling along a horizontal road, and a piece of mud is

thrown off from its hindmost point. Prove that it will just touch the

wheel again as it falls.

9. A wheel is rolling on a horizontal plane. Find at any instant

the locus of those points on the wheel whose direction of motion

passes through a given point not vertically above the point of contact.

10. A railway carriage is moving at 30 miles an hour ; its wheels

are 3 ft. in diameter. Determine their angular velocity.

11. A top whose moment of inertia is /foot-pound units is spun by

pulling a string of length I feet wound round its axis. Supposing a

force of F lbs. weight exerted in pulling the string, what is the

angular velocity with which the top spins ?

12. Compare the times in which a sphere and a cylinder of the

same radius roll down a rough inclined plane.

13. A fine piece of string is wound round a heavy solid sphere, one

end being attached to the sphere, and the other end being fixed up.

Prove that, if the sphere be allowed to fall so that the string uncoils,

its acceleration will be |^.
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14. Find the corresponding acceleration of a falling solid cylinder

round "which a string has been wound in the same way, supposing the

axis of the cylinder to remain horizontal.

15. One side of a uniform lamina, in the form of a square of side 2a,

is attached to a horizontal bar by two smooth hinges equidistant from

the ends of the side. The lamina is held in a horizontal position and

is allowed to fall in vacuo under the action of gravity. Determine its

angular velocity when it is vertical, and find the length of a simple

pendulum which will acquire the same angular velocity, if let fall in

a similar manner.

16. A triangular lamina swings about one of its sides which is

horizontal. Prove that the length of the simple equivalent pendulum
is half the altitude of the triangle.

17. Find the lengths of the simple equivalent pendulums in the

following cases :

—

(i.) An isosceles triangle of base a and altitude h suspended

from its vertex and swinging in its own plane.

(ii.) The same triangle swinging about an axis through its

vertex parallel to the base.

(iii.) A square hung up by one comer and swinging in its own
plane.

(iv.) A rod of length 2a placed at the bottom of a spherical

bowl of radius r and oscillating about its position of equilibrium

in a vertical plane.

18. The radius of gyration of a certain body about a fixed axis

through its centre of gravity is k. Prove that, if the body be sus-

pended about a parallel axis, the time of oscillation cannot be less

than27rA/(2A:/y).

19- Py Qf /? are three points on the rod of a compound pendulum

such that PQ = QR, and the time of oscillation (t) about each is the

same. Prove that, if T is the minimum time of oscillation of the

pendulum (see the last example), S?!'' = 4T*.

20. A door consisting of a uniform rectangular lamina 7 ft. high

and 3 ft. wide is hinged in such a way that when swinging to after

being opened its centre of gravity falls 1 inch. Find the angular

velocity acquired.
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21. A long rod AB, hinged at >1 to a horizontal plane, rests on a

smooth cylinder of radius a which is moving along the plane toward

A with velocity v. Prove that the angular velocity of the rod is

2 sin'^ — . —, where 6 is the inclination of the rod to the plane.
2 a'

22. In the last example, the masses of the rod and cylinder are m
and M, and the length of the rod is /. Apply the principle of energy

to find the greatest value of t> in order that the rod may not be over-

turned ; and, supposing v to he less than this value, find the inclination

of the rod to the horizon when it and the cylinder come to rest.

23. Two masses Pand Q are connected by a string passing over an

Atwood pulley whose radius is a, mass M, and radius of gyration k.

Find the acceleration of the masses, the angular acceleration of the

pulley, and the tensions of the two portions of the string, by writing

down the separate equations of motion of the masses and pulley (the

latter expressing the fact that the rate of change of the abgular

momentum is equal to the difference of the moments of the tensions

of the two parts of the string).

24. Find the total angular momentum about the axis of rotation of

the whole system consisting of the masses and pulley of the previous

example. Verify that the rate of change of this total angular mo-

mentum is equal to the difference of the moments of the weights of

P and Q about the axis.

26. A lamina is moving in any manner in its plane. If x, y are the

coordinates of any particle of mass m of the lamina, w, v its component

velocities parallel to the axes of x and y, prove that the angular mo-
mentum of the lamina about an axis through the origin perpendicular

to its plane is equal to 2 in [yx— uy).

26. If on the lamina of the last question there be impressed an
additional velocity whose components are U and V and are the same

for every particle, prove that the angular momentum of the whole is

increased by an amount
M{VX-UT)

where M is the whole mass of the lamina, and .X, Y the coordinates

pf its centre of mass.
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EXAMINATION PAPER XI.

1

.

Find the kinetic energy of a rigid body rotating about a fixed

tixis with angular velocity w.

2. Prove that the moment of inertia of a uniform plane lamina

about an axis 00 perpendicular to its plane at is equal to the sum

of its moments of inertia about any two perpendicular lines OAj OB in

the plane at 0.

3. Find the moment of inertia of a triangular lamina about a side

by direct summation of the moments of inertia of the thin strips into

which it may be divided by equidistant lines parallel to the sides.

4. Given that the moments of inertia of a lamina about two lines OAj

OB in its plane are I^ and /j, and that the lamina is symmetrical about

one of them, find the moment of inertia about any other axis through

in the same plane ; and, if I^ = /j, prove that the new moment of

inertia is equal to either of them.

5. Two masses, F and Q, are attached to the ends of a light rough

inextensible string, which passes over a pulley of radius r. Given

that the moment of inertia of the pulley about its axis is I, determine,

by the Principle of Conservation of Energy, the velocity of P after it

has fallen s ft. from rest.

6. Find the acceleration of a hoop rolling down a rough inclined

plane.

7. Prove that the centres of suspension and oscillation of a compound

pendulum are convertible, and that the time about each is the same.

8. A walking-stick, which may be regarded as a thin uniform rod

3 feet long, is stood vertically on end on a horizontal plane, and

topples over from this position of unstable equilibrium. If the plane

be rough enough to prevent'slipping, find the angular velocity of the

stick, and the velocity of its upper end when it strikes the plane

(assume^ = 32).
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EXAMPLES XXI. (Miscellaneous.)

1

.

Two stations are
1
J miles apart. A goods train starts from

rest at one of them, moving with uniform acceleration 6 ins. per sec,

per sec, until the steam is shut off and the brakes are applied so as to

bring it to rest at the other station. If the brakes cause a retardation

of 5 ft. per sec. per sec. in the train, at what distance from the second

station must they be applied ?

2. A bicyclist, riding at 20 miles an hour, passes a horseman, who
immediately starts off in pursuit. The horse can gallop at 30 miles

an hour, and he attains this speed with an acceleration of 11 ft. per

sec. per sec. Find how far the cyclist has gone before the horseman

overtakes him.

3. Two trains on the same line are approaching one another with

velocities CTand «, respectively. When there is a distance s between

them, each is seen from the other. Prove that it is just possible to

avoid a collision if u^F + U^f = 2Ffs, where i^ and /are the greatest

retardations which the brakes can produce in the respective trains.

[Omit the possibility of one train being able to move back before the

other is brought to rest.]

4. An express train is overtaking a goods train on the same line

;

their velocities are I'' and u, respectively. When there is a distance s

between them, each is seen from the other. Prove that it is just

possible to avoid a collision if {U—uy= 2{F+f)s, where i'' is the

greatest retardation and /the greatest acceleration which can be pro-

duced in the two trains respectively.

5. A train weighs M tons, and the resistance of friction is p lbs.

per ton. If the engine can exert a pull of Plbs., and the brake a

resistance of E lbs., find the distances passed over in attaining a speed

of V miles per hour from rest, and in slowing down from that speed to

rest respectively.

6. A pile of mass 160 lbs. is driven into the ground by a weight

of i ton, which is repeatedly let fall on it from a height of 16 ft.

If each blow drives the pile 1 ft. farther in, determine the average

resistance of the ground.
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7. A steam hammer of mass ^ ton is hammering a red-hot plate

of steel. At every stroke the hammer falls 10 ft. ; the average

force exerted by the steam pressure behind the hammer is 4^ ton*

weight. If the hammer compresses the steel 3 ins. in one blow,

determine the average pressure of the hammer on the steel.

8. A hammer-head of mass 14 oz., travelling with velocity 16 ft.

per sec, strikes an inelastic nail of mass 2 oz., and drives it 2 ins.

into a fixed block of wood. Determine in lbs. wt. the average re-

sistance of the wood to the nail.

9. Suppose that in the last question the block of wood weighs

20 lbs., and is free to move along a smooth horizontal plane ; also

suppose the average resistance of the wood to the nail to be 60 lbs. wt.

Determine how far the nail will penetrate ; also find the final velocity

of the block.

10. A mass m with initial velocity v penetrates into a mass 3f

initially at rest. The average resistance to penetration is It. Prove

that the mass m penetrates a distance —-——— , and that the final^
2i2(if+w)

velocity of the system is M+ m

11. A rifle bullet of mass 1 oz., travelling with velocity 1,000 ft. per

sec, passes through a block of wood 1 ft. thick, weighing 50 lbs. If

it leaves the wood with velocity 200 ft. per sec, determine the final

velocity of the wood.

12. Given a smooth perfectly elastic plane and two points in space

on the same side of it, determine geometrically in what direction a

particle must be projected from the one point in order that it should

pass through the other after impact with the plane. [Gravity not

being taken into account.]

13. Given two smooth perfectly elastic planes and two points in

space ; find how to project a particle from one point in order that,

after impact with each plane, it should pass through the other point.

(See Ex. 12.)

14. A bullet of mass m travelling with velocity u passes through

the centre of a sphere of wood of mass M and diameter d, which was
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originally at rest on a smooth horizontal surface. If the bullet leave

the sphere with velocity v, find (i. ) the final velocity of the sphere
;

(ii.) the time occupied by the bullet in penetrating
;

(iii.) the average

pressure between the bullet and the sphere.

16. A particle of elasticity e is projected in a direction inclined to

the vertical, and bounces along a smooth horizontal plane. The range

•of one rebound is r ; find the range of the next.

16. A heavy slab, whose under surface is rough, but the upper

smooth, slides down a given inclined plane. Find the acceleration

with which a small particle laid on its upper surface will move along

the slab. [Given inclination of plane = a, coefl&cient of friction = /*.]

17. A heavy particle slides from the top of a smooth sphere of

diameter 2 ft. Find at what point it will leave the sphere.

18. A flexible heavy string, length 2/, is moving over a smooth

fixed peg, the two unequal portions hanging vertically. Prove that

at the instant when its middle point is at a distance x below the peg

the acceleration of the motion is xfffl.

19. Determine the tension at the middle point of the string in the

last question.

20. A weight JF hangs by a string over a pulley. A monkey takes

hold of the other end, and at an instant when W is at rest commences

to climb. He climbs h ft. in ^ sees, without disturbing JJ\ Deter-

mine his motion, and find his weight. If at the end of t sees, he

cease to climb, how much farther will he ascend in the next t sees. ?

21. Two monkeys of masses M and m start climbing, each with

uniform acceleration, up the two ends of a rope which is hanging over

a pulley. Find the relation between their accelerations if the rope

always remains in exactly the same position.

22. A light wheel of radius 3 ins., which is rigidly connected with

a light axle of radius 1 in., is free to revolve in a vertical plane. A
string wound round the rim of the wheel carries a weight of 5 lbs.,

and a string wound round the axle in the opposite direction carries a

weight of 9 lbs. If the system be left to itself, determine the accele-

ration of each weight.
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23. A heavy uniform perfectly flexible string is placed over a

perfectly smooth peg in such a way that a length L ft. hangs over one

side, and I ft. over the other. The string is then left free to move.

Prove that the velocity of the string just as it leaves the peg is

V2LIgl{L^l).

24. A weightless rod 30 cm. long is hinged at one end ; masses 2,

4, and 6 grammes are attached to it at distances 10, 20, and 30 cm.,

respectively from the hinge. If it is held in a horizontal position,

and then let go, find the angular velocity when the rod is vertical,

and also the pull on the hinge.

25. Equal heavy particles are attached to the middle and end of a

light rod. The other end is fixed. If the system be set rotating

about the fixed end, prove that the tensions in the two parts of the rod

are in the ratio 3 : 2.

26. If H be the greatest height of a projectile, R the horizontal

range, and Fthe velocity of proj ection, prove that iJ* = 1%H [\ V^/g—H) .

27. A 111 -ton Armstrong gun, whose muzzle is 16 ft. above the

ground, discharges a projectile horizontally to strike the ground

750 yds. off. Neglecting the resistance of the air and the friction of

the gun, compare the work done by gravity with that done by the

gunpowder on the projectile.

28. If two particles be projected from the same point in the same

vertical plane with equal velocities «, in different directions, so as to

have the same range B, find the diflference between their times of flight.

29. A particle is placed on a rough horizontal plate (/* = '6) at a

distance of 9 ins. from a vertical axis about which the plate can turn.

Find the greatest number of revolutions per minute the plate can

make without causing the particle to slip upon it.

30. Two guns are pointed at each other, one upwards at the angle

of elevation a, and the other downwards at the same angle of depres-

sion, the muzzles being 100 ft. apart. If the bullets leave the muzzles

with velocities 2,200 and 1,800 ft. per sec, prove that they will meet,

and find after what time.

31. Let Of An, An-\, -..A^, Ai, A be points arranged in this order on

a straight line. A body starting from rest at A moves towards

under the influence of a uniform force |/i {OA + OAi) until it reaches
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Ai- Then the force becomes ^fx {OAi + OAo), and remains so until the

body reaches A.2. Then the force becomes ^fi [OA^ + OA^, and remains

so until the body reaches ^3, and so on ; and whilst the body is moving
from An to the force is uniform and equal to i/* {OAn). Prove that

the body will reach with velocity OA Vfi.

Apply the result to determine the velocity with which a body
moving in a straight line under the influence of a force, varying

as the distance from a point on a straight line, will arrive at the

centre of force.

32. 0, B, A are three points arranged in this order on a straight

line. A particle is projected from A towards B with velocity u, and
reaches B with velocity v, being acted on during the motion by a force

which produces uniform acceleration h-t-{OB . OA) towards 0.

Prove that \ {i^- »') = ^
(
^ - J-

)

.

33. 0, Ant An-\, ... Az, Ax, A are points arranged in this order on a

straight line. A particle is projected from A towards Am with velocity

Uy and reaches An with velocity r, being acted on during the motion

by a force of the following nature :—Whilst the particle moves from

A to Ai, it produces uniform acceleration fxjiOA .OAi); whilst the

particle moves from Ax to A^, it produces uniform acceleration

n/iOAi . OA<i) ; whilst the particle moves from A2 to A:i, it produces

uniform acceleration n/iOA^ - OA3) ; and so on.

Prove that H"-^) = . (^^^^
- i)-

34. In Example 33 show how, by keeping the points >!„, A fixed in

position, and making n infinitely great, to prove the formula

where v is the velocity, and fx/r^ the acceleration at the distance »*

from 0, and C a constant.

35. A point moves in a plane so that its projection on the axis of x

performs a harmonic vibration of period 1 second with an amplitude

of 1 foot, whilst its projection on the axis of y (which is at right

angles to the axis of x) performs a harmonic vibration of period 2

seconds with an amplitude of 1 foot. Find the equation of the path

of the point, it being given that the point, whose coordinates,

measured in feet, are 1, 0, is on the path. Draw the path.



RESULTS IN MENSURATION.

The following facts in Solid Geometry and Mensuration are

assumed. The references given below are to the articles in Briggs
and Edmondson's Mensuration, where the reader will find the pro-

perties in question fully proved. Proofs of them are also given in

most elementary treatises on Solid Geometry. The results alone need
"be remembered :

—

(1) The area of a triangle

= ^ {base) X {altitude). (§46.)

(2) The area of a trapezoid {i.e. a quadrilateral with two

sides parallel) = {its height) x (^ sum ofparallel sides). (§ 49.)

(3) The leugfth of the circuxuference of a circle of radius r

— IT X {diameter)

= 2irr ; (§ 67.)

where the Greek letter v (" pi ") stands for a certain '* incommensur-

able " number (that is, a number which cannot be expressed as an

exact arithmetical fraction), whose value lies between 3-141592 and

3*141593. The following approximate values should be remembered

and used, unless otherwise stated.

22
IT = -^, for all reuffh calculations;

IT = 3*1416, more approximately.

(4) The area of the circle

= — {radius) x {circumference)

= xr*. (§ 68.)
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(5) Tlie Toluxne of a psrramid

= — (height) X (area of base)
3

= ^hA, (§106.)

the height h being the perpendicular from the vertex on the plane of

the base, and A the area of the base.

(6) Tlie area of the curved surface of a cylinder, whose

height is h and the radius of whose base is r,

= {height) x {circumference of base)

= 2irrl^. (§ 115.)

(7) The volume of the cylinder

= [height] x [area of base)

= irr^h. ($116-)

(8) The area of the curved surface of a right circular

cone, whose height is h and the radius of whose base is r,

» —- (cireumferenee of base) x [length of slant side)
2

= irr,/(h^^f^)i (§117.)

a slant side being a line drawn from the vertex to a point in the

circumference of the base.

(9) The volume of the cone

= — [vol. of cylinder of same base and height)
3

= ^'^'^h. (§118.)

(10) The area of the surface of a sphere of radius r

= 4 times area of circle of same radius

= 4irr2. (§ 126.)

(11) The volume of the sphere

— — [radius) x [surface)
3

= l-irr'. (§§ 127, 128.)



EXAMINATION QUESTIONS IN DYNAJilCS
FROM THE

SCIENCE AND ART PAPERS.

{ADVANCED STAGE.)

1885.
1. (») It is said that a horse can do about 13,200,000 ft. -lbs. of

work in a day of 8 hours, walking at the rate of 2\ miles per hour.

What pull (in pounds) could such a horse exert continuously during

the working day ? {b) How many such horses would be required to

do as much work as an engine of 10 horse-power, working day and

night ?

2. (a) A body in motion is observed to increase its velocity in every

second by 5\ ft. per sec. ; how far would it move from rest in 12 sees. ?

If the body has a mass of 10 lbs., what is the numerical value of the

force producing the motion, (b) in absolute units, [c) in gravitation

units P {g = 32.)

3. A particle slides along a rough horizontal plane; find the re-

tardation of its velocity.

If the coefficient of friction between the particle and the plane

is 05, and the velocity of the particle at a certain point 40 ft. a

second, at what distance from that point will it come to rest, and

after what time ?

4. Two masses, P and Q, are connected by a fine thread passing

over a perfectly smooth fixed horizontal cylinder ; the mass of P is

greater than that of Q ; P is allowed to descend through a distance A,

drawing up Q ; at the instant the distance has been described, part of

P falls off, leaving only P^, the mass of which is less than that of Q ;

find how far P^ will descend.

5. A particle, whose mass is 4, moving with a velocity 12, meets

and impinges directly on a particle whose mass is 8 and velocity 4
;

the coefficient of restitution is 0-5
; find, from first principles, their

velocities at the end of the impact, and what part of their joint kinetic

energy has disappeared in the impact.

ADV. DYN. X
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1886.

1. Define a/oo^-^o?^;?^ of work, and a horse-poiver. A steam-crane,

working with 3 horse-powers, is found to raise a weight of 10 tons to

a height of 50 ft. in 20 minutes ; what part of the work is done

against friction ? If the crane is kept at similar work for 8 hours,

how many foot-pounds of the work are wasted on friction ?

2. Find the position of a hody at the end of a given time from

the instant at which it is thrown with a given velocity in a given

direction, the motion heing supposed to take place in vacuo. A body

is thrown in a direction making an angle of 30° with the horizon,

and passes through a point whose horizontal distance from the point

of projection 400^/3 ft., and vertical height above the point of pro-

jection 76 ft. ; find the velocity of projection, {g = 32.)

3. A particle, whose mass is 10, moving with a velocity 5, meets

and impinges directly on another particle whose mass is 20 and

velocity 3 ; the coefficient of restitution is 0-125
; find from first

principles the velocities of the particles at the end of the impact.

State the dynamical principles employed in answering this

question, and define the coefficient of restitution.

4. (a) A flywheel weighs 10,000 lbs., and is of such a size that the

matter composing it may be treated as if concentrated on the circum-

ference of a circle 12 ft. in radius ; what is its kinetic energy when

moving at the rate of 15 revolutions a minute ? (^ = 32, ir = 3-1416.)

{b) How many turns would it make before coming to rest, if

the steam were cut off and it moved against a friction of 400 lbs.

exerted on the circumference of an axle 1 ft. in diameter ?

1887.

1. A shaft, 560 ft. deep and 5 ft. in diameter, is full of water;

how many foot-pounds of work are required to empty it, and how

long would it take an engine of 3^ horse- power to do the work?

(N.B.—Of course, it is to be assumed that there is no flow of water

into the shaft. Take tt = 3^.)

2. Find the ratio of the height to the length of a smooth inclined

plane, down which when a particle slides the acceleration of its velocity

is one-fifth of the acceleration of the velocity of a body falling freely

under the action of gravity.

If such a particle has a mass of 12 lbs., find its velocity and its

kinetic energy acquired in descending along 100 ft. of the length

of the plane. (<7 = 32.)
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3. A particle describes a circle with a constant velocity ; show

that the force acting upon it is always directed to the centre, and find

the magnitude of the force in terms of the radius of the circle, and the

mass and velocity of the particle.

4. {(() Define the moment of inertia of a system of particles. Find

the moment of inertia of a rod of uniform density, with reference to

an axis passing through one end at right angles to its length.

(b) A rod, 6 ft. long, weighing 12 lbs., revolves uniformly 30

times a minute about an axis at right angles to its length and

passing through one end ; find its kinetic energy.

1888.
1. Find the time in which a particle will slide down a chord drawn

through the highest point of a circle whose plane is vertical.

Find the straight line down which a particle will slide in the

shortest time from a given point to a given plane.

2. («) The mass of a particle is m lbs., and its velocity v ft. a

second ; find the number of foot-pounds of work it can do against a

resistance.

(b) A particle weighs 10 lbs., and moves at the rate of 1250 ft.

a second ; find the distance through which it could overcome a

resistance of one million pounds.

3. If V is the velocity of a simple pendulum at its lowest point,

show that at any time, t, after passing through the lowest point its

velocity is V co92irtlT, where T denotes the time of one complete

oscillation.

4. Find the moment of inertia of a rectangular lamina about an edge.

A rectangular lamina, whose shorter edges are 4 ft. long, turns

round one of its longer edges 50 times a minute ; it weighs 441 lbs.

Find its kinetic energy (a) in foot-poundals, {b) in foot-pounds.

1889.
1. Find the number of foot-pounds of work required to wind up a

^ven chain which hangs by one end.

2. A particle describes the perimeter of a regular hexagon with a

constant velocity of 100 ft. a second. Find the magnitude and direc-

tion of the velocity that must be communicated to it at the instant it

reaches an angular point.

3. Investigate the time of a small oscillation of a simple pendulum.

A seconds pendulum has its length slightly altered, and, in
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consequence, loses n sees, a day. Find whether it has heen

lengthened or shortened, and by what fraction of its original

length.

4. Find the moment of inertia of a circular lamina of uniform

density, with reference to an axis through its centre at right angles

to its plane.

If the mass of the lamina is 100 lbs., and its diameter 3|ft.,

and if it turns round the axis 120 times a minute, find its kinetic

energy {a) in foot-poundals ;
(b) in foot-pounds, {v = 3|, </ = 32.)

1890.
1

.

Find an expression for the whole amount of work done in raising

several weights through different heights.

A uniform beam weighs 1,000 lbs., and is 20 ft. long. It hangs

by one end, round which it can turn freely. How many foot-

pounds of work must be done to raise it from its lowest to its

highest position ?

2. State the meaning of each letter in the formula v^ = J^ + 2/«,

and prove the formula.

A particle, whose velocity undergoes a constant acceleration,

starts from rest, and, after describing 50 ft., has a velocity of

20 ft. a second. Find the increase of its velocity per second, and

the time in which it describes the distance of 50 ft.

3. A body is thrown obliquely in vacuo. Find expressions for its

horizontal distance from, and its vertical height above, the point of

projection after the lapse of a certain number of seconds.

4. A body impinges directly with a given velocity against a fixed

plane. Given the coefficient of restitution, find the velocity of rebound

If the mass of a body is 10 lbs., the velocity of impact 20 ft. a

second, and the coefficient of restitution 0-5, how many foot-

poundals of energy disappear in the collision ?

1891.
1

.

Show that the time in which a particle falls from rest down a

chord drawn through the highest point of a vertical circle is constant.

Find the straight line of quickest descent from a point within

a given vertical circle to the circumference.

2. Two particles, whose masses are F and Q, are connected by a

thread which is placed on a smooth point. If P goes down and draws

Q up, find the acceleration of its velocity.
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Find the mass of P when the tension of the thread equals three

times the weight of Q.

3, Two bodies of given masses, moving with given velocities,

impinge on each other directly. Find their velocities after impact,

the coefficient of restitution being known.

If one of the bodies is at rest, and its mass is indefinitely greater

than that of the other, find the velocity of the second body after

impact.

4. Define the centre of percussion ^ and find its position from first

principles in the case of a rod of uniform density suspended freely by

one end.

1892.

1. Define angular relocitij. P is a point of a body turning uni-

formly round a fixed axis, and PN is a line drawn from P at right

angles to the axis. If PN describes an angle of 375° in 3 sees., what

is the angular velocity of the body, and, if PN is 6 ft. long, what is

the linear velocity of P ?

2. State Newton's Third Law of Motion, and give his illustration

of it. How does it appear that, when one body impinges directly on

another, their velocities undergo changes which take place in opposite

directions, and are inversely as their masses ?

3. If two circles touch each other (internally) at their highest

point, and a straight line be drawn through this point, show that the

time of falling from rest down the part of the straight line intercepted

between their circumferences is constant.

4. Two particles of given masses are connected by an inextensible

thread which passes over a smooth point. One of the particles is at

rest on a table, while the other descends. Find their common velocity

the instant after the thread is drawn straight.

The mass of the particle at rest is 5 lbs. ; the mass of the

descending particle is 3 lbs., and it falls through 10 ft. before the

string is drawn straight. How much of the kinetic energy dis-

appears when the thread is drawn straight ?

6. If a particle slides down a rough inclined plane, find an ex-

pression for the acceleration of its velocity.

If the inclination of the plane is 30°, and the acceleration is at

the rate of 12 ft. a second in each second, find the coefficient of

friction, (/y = 32.)

6. If a curve is drawn in such a way that the ordinates represent
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the successive values of a variable force, and the corresponding

abscissae the distance through which it acts, show that the area re-

presents the work done by the force.

7. A particle describes successively the the sides of an equilateral

triangle with a constant velocity V. Find the magnitude and direc-

tion of the velocity v that must be communicated to it when it comes

to an angular point.

Compare the results in this case with those that would be

obtained in the case of a regular hexagon.

8. Define moment of inertia. Find the moment of inertia of a

circular lamina about an axis at right angles to its plane and passing

through its centre.

9. A particle, whose mass is 5 lbs., moves at the rate of 20 ft. a

second. Express its kinetic energy in foot-poundals. If it moves

over a distance of 30 ft. against a constant resistance R, and its

velocity is thereby reduced to 15 ft. a second, fiind R in poundals.

10. A particle, whose mass is 10 lbs., is constrained to move in a

horizontal circle by a string 6 ft. long fastened to a fixed point. If

at any instant the tension of the string is 98 poundals, find the velocity

of the particle, and its angular velocity about a fixed point.

1893.

1. Two points, P and Q, move with different velocities along the

same line. "What is the relative velocity oi Q to P?
If Q is allowed to fall freely, and, 2 sees, after, P is allowed

to fall freely from the same point, find the relative velocity of

^ to P at any subsequent time.

2. What is the numerical value of the angular velocity of a body

which turns uniformly round a fixed axis twenty-five times a minute ?

ABC is a triangle with a right angle at C. It is turning with a

given angular velocity round an axis through A at right angles to

its plane. Find the magnitude and direction of the velocities of

B and C ; find also the relative velocity of B to (?.

3. Define an absolute unit offorce and b, ponndal.

It is sometimes said that a poundal is half an ounce or the

weight of half an ounce. Point out {a) the inexactness of the

statement, {b) why the statement, even if exact, would not be a

definition of a poundal.
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4. 0, A, B are three points in order along a line Ox. AH is drawn

at right angles to Ox. Pisa force acting in the direction to x, and

its point of application moves in the direction to x. The magnitude

of F varies inversely as the distance of its point of application from 0.

Given that its magnitude at A is represented hy AH, show how to draw

a diagram of the work done while the point of application moves from

AtoB.
If 0>I = 1 ft., OS = 9 ft., AH =12 lbs., draw the diagram of

work, and from it determine, approximately, the number of foot-

pounds of work done by the force.

6. Prove the formula s = ift^ for the distance described by a

particle whose velocity undergoes constant acceleration.

AB 18 a given straight line, and P a point above it. Find the

straight line down which a particle would fall from P to AB in

the shortest time.

6. In the conical pendulum, given the mass of the bob, the length

of the thread, and the angle of the cone, find the tension of the thread

and the time of one revolution of the pendulum.

If the pendulum is 10 ft. long, the half angle of the cone 30'',

and the mass of the bob 12 lbs., find the tension of the thread and

the time of one revolution.

7. Define the coefficient of restitution.

A particle, whose mass is 10, moving with a velocity of 12,

meets and impinges directly on a particle, whose mass is 8,

moving with a velocity of 7*5. The coefficient of restitution is 0*8,

Find, from first principles, the momentum gained by the one

particle and lost by the other during the impact, and, hence, the

momenta of the particles after impact.

8. Define moment of inertia.

If the moment of inertia of a body with reference to an axis

passing through the centre of gravity is known, how can the

moment of inertia be found with riBspect to a parallel axis ?

9. Define angular velocity.

A particle, whose mass is 3 lbs., moves uniformly in a circle.

It describes the circumference 42 times a minute. Find its

angular velocity about the centre, and, if the radius is 14 ft., find

its kinetic energy.
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1894.

1. State the rule for the composition of two Telocities.

Draw two lines AB, AC containing an acute angle. A particle

is at Af moving with a given velocity V from A towards B. Give

a construction for determining the velocity that must he impressed

on it to make it move with a velocity 2 V from A towards C.

2. Draw a circle with centre 0, and two diameters AB, CD at right

angles to each other, and let the direction A, C, Bhe contrary to that

of the motion of the hands of a watch. Produce OA to P, making AP
equal to OA. Let the radius of the circle be 20 ft. Suppose a particle

to move along the circumference of the circle in the direction A, C, B
at the rate of 12 ft. a second. Find its angular velocity with respect

to ; find also its angular velocity with respect to P (i.) when it is at

Af (ii.) when it is at C, (iii.) when it is at B.

3. State Newton's Three Laws of Motion. Give his illustrationa

of the Third Law of Motion. Give Newton's proof of the Parallelo-

gram of Forces.

4. Define b. poundal.

It is known that the acceleration due to the attraction of a

planet on a body near its surface varies nearly as the mass of the

planet directly, and the square of its radius inversely. It is found

that the mass of Jupiter is about 370 times that of the earth, and

that his radius is about 11 times that of the earth. With these

data, and assuming that the acceleration due to gravity near the

earth's surface is 32 in feet and seconds, find the force, in poundals,

of Jupiter's attraction on a pound of matter near his surface.

5. A particle slides down a rough inclined plane. Find the

acceleration of its velocity.

The angle of inclination of the plane is 30°, and the coeflBcient

of friction is 0*5. If one body falls freely through a given dis-

tance, and another body slides down the plane along an equal

distance, show that the time of the first body's motion will very

nearly equal one fourth part of the time of the second body's

motion. ( n/3 = 1-73205.)

6. A body is tied to a string and is whirled round in a vertical

circle. Find the least velocity it can have at the lowest point if it is

to describe the whole circle.
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If the mass of the body is 1 2 lbs. and the length of the string

6 ft., find the tension of the string at the lowest point if the body

just stays in the circle. In what units is your answer expressed ?

iff
= 32.)

7. A is a particle at rest, and B, moving with a given velocity,

impinges on it directly. Find, from first principles, the coefficient of

restitution if B is brought to rest by the collision.

The masses of A and B are 12 lbs. and 4 lbs. respectively, and

fl's velocity is 10 ft. a second. Find how many foot-poundals of

kinetic energy disappear in the collision if B is brought to rest.

8. The sides of a rectangle are a and b. Find the moment of

inertia about the side a of a diagonal considered as a line of uniform

density.

9. Define angular velocity.

Draw a straight line and mark on it four points, in order,

A, B, C, D. Let AB, BC, CD be respectively 2 ft., 1 ft., 3 ft.

Suppose a particle to be at C, moving at right angles to AD at the

rate of 4 ft. a second. Find its angular velocity with reference

to A, By and D respectively.

In what respect does the angular velocity with reference to A
diflfer from the angular velocity with reference to ^ ?

1895.

1. "De&ne poiver and horse-power.

An engine with its tender weighs 80 tons. It is moving uni-

formly at the rate of 20 miles an hour, against a resistance of

7 lbs. a ton. At what horse-power is it working ?

If it drew after it a train of 12 carriages, each weighing 10 tons,

at the rate of 40 miles an hour, against a resistance of 8 lbs. a ton,

at what horse-power would it now be working ?

2. Define o. poundal (or British absolute unit offeree).

If a force of 5 poundals acts on a mass of 10 lbs. in the direction

of the motion, what velocity would it impart to the mass in

3 seconds ?

3. A body is thrown upward from the top of a tower with a velocity

of 48 ft. a second. Find where it will be at the end of 4 seconds.

{g = 32.)

"Write down the formula or formulae by means of which you

answer this question, and state what it means (or they mean).
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4. Draw a square ABOD. A particle moves along AB with a

velocity 10. It is made to move along BC with a velocity 20. Find

the magnitude and direction of the velocity that must be impressed on

it at B.

"5. A body moves with a constant velocity in a given circle. State

what is known as to the force which acts on the body.

Find a numerical result when the mass of the body is 10 lbs.,

and it moves at the rate of 900 ft. a minute in a circle 3 yds. in

diameter.

6. A point {A) is moving with a given velocity (F) along a given

line. Another point {B) is moving with a given velocity (f) along a

given line intersecting the former. Show how to find the velocity

of B relative to A.

7. A point mo\e3 along a line. Find its angular velocity with

respect to an assigned point outside the line.

Given the line and the fixed point, and that the movable point

has a constant velocity along the line, find the position of the

movable point when its angular velocity about the fixed point is

greatest. Find also its position when its angular velocity is one-

fourth of that greatest value.

8. Draw ABC, an equilateral triangle, with the base AB horizontal

and B downwards. Let a weight at C be tied by threads AC, BC to

fixed points at A and B. If the thread BC is cut, show that the

tension oi AC is suddenly increased by one-half.

9. Given F, the velocity of projection of a projectile, and v, its

velocity at its highest point, find the position of the highest point.

10. A bullet, moving at the rate of 1, 100 ft. a second, passes through

a thin plank, and comes out with a velocity of 1,000 ft. a second. If

it then passes through another plank exactly like the former, with

what velocity will it come out of this second plank ?

11. Assuming that the earth turns once in 86,164 seconds, that the

equatorial radius is 20,900,000 ft., and that the acceleration due to

gravity at the equator is 32*1, find what part of the weight of a body

is used up in keeping the body on the equator. (N.B.— Take

jr2 = 9-87.)
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12. Describe the action that takes place between two smooth spheres

when one of them impinges directly on the other.

A shot, whose mass is 1 lb., moving at the rate of 1,377 ft. a

second, strikes a body, whose mass is 50 lbs., in such a way as to

cause no rotation. It enters the body and stays in it. Find the

velocity of the body after the impact.

1896.

1. Define the angular velocity of a moving point with respect to a

fixed point. Under what circumstances will the angular velocity of

the moving point be equal to its linear velocity divided by its

distance ?

Draw an equilateral triangle y4fiC, having each side 12 ft. long
;

a point moves along BG with a velocity of 10 ft. a second. When
. it is at C, what is its angular velocity with respect to ^ ?

2. State Newton's Second Law of Motion. Explain briefly how
the measure of force is derived from this law ?

In the equation P = mf, in what units is P when the units of

mass, distance, and time are a pound, a foot, and a second P

3. "When two smooth bodies are pressed together, in what direction

does the mutual action take place ? If the bodies are rough, what

other force may be called into play ?

A particle of given weight is placed on an inclined plane and

stays at rest : what is the magnitude of the friction called into

play ? Under what circumstances would the particle stay at rest

if the inclination of the plane were increased ?

4. A curve is drawn, and AN, NP are the abscissa and ordinate ofany

point (P) of the curve. If AN represents the distance through which a

force has acted, and PN represents the magnitude of the force when

it has acted through that distance, show that the area of the curve

represents the work done by the force.

5. Two circles touch each other externally, and the point of contact

[A) is in the same vertical line as the centres ; from any point (P) of

the upper circumference draw a straight line PAQ to meet the lower

circumference in Q. If a particle is allowed to fall from P along PQ,

show that the time it takes to reach Q is constant for all positions of P.

Also compare the times in which PA and AQ are described.
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6. A particle slides down a rough inclined plane : find the accelera-

tion of its velocity.

Under what circumstances would the velocity be retarded ?

The angle of friction between a particle and a plane is 30°, and

the angle of inclination is 15°. If the particle begins to slide

down with a velocity of 100 ft. a second, how far will it slide

before coming to rest ?

7. A particle of given mass moves with a given velocity in a circle

of given radius : state what is known as to the force -which acts on

the particle.

Prove the statement.

8. A particle (A) whose mass is 3 is tied by an inextensible thread

to a particle (B) whose mass is 5, and B is placed on a smooth table,

while A is allowed to fall from the edge; at first the thread is slack,

but at the instant A has fallen 9 ft. the thread is drawn tight. "With

what velocity does B begin to move ?

What part of the kinetic energy of the system disappears when
the thread is drawn tight ?

1897.

1. Define the angular velocity of a moving point with respect to a

given fixed point. Under what circumstances will a moving point

have no angular velocity with reference to a given fixed point ?

AB is a given straight line, and P a given fixed point without

it ; a particle Q moves along AB with a given constant velocity ;

when Q is in any assigned position, find its angular velocity with

respect to P.

2. Two particles move in a straight line, and are acted on by forces

P and Q respectively ; the mass of the one particle is m, and its

velocity is increased by / in a certain time ; the mass of the other is

mi, and its velocity is increased in the same time by/i ; show that it

follows from Newton's Second Law that

—

P: Q::mf:niJi,

Explain how we can reduce from this proportion the number of

absolute units of force in P.
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3. A uniform rope hangs by one end, and carries a weight at the

other ; show how to draw a diagram to represent the work done in

winding up the rope, and thereby lifting the weight.

4. A 'particle is projected in a given direction in vacuo; show that

it describes a parabola.

A is the highest point, and S the focus of the path of a pro-

jectile ; N is the point in which AS produced meets the horizontal

plane through the point of projection
;
given that SN is twice AS,

find the point of projection and the direction of projection.

5. A uniform and perfectly flexible thread (or chain) is placed on a

smooth horizontal table so that one end just hangs over the edge, and

consequently that end falls, dragging the rest of the thread after it.

Find {a) the acceleration of the velocity at the instant when an

assigned length is hanging; {b) the work that has been done bj-

gravity up to that instant
;

(c) the velocity of the thread at that

instant.

State the mechanical principles that justify your results.

6. A particle falls from a given height on to a smooth horizontal

plane; the coefficient of restitution between the particle and the

plane is given ; find the height of the first, and also of the second

rebound.

7. Draw AB inclined at a given angle to the vertical and BC
horizontal in such a way that A is above the prolongation of CB.

Let AB represent a thread fastened to a fixed point at A, and to a

heavy particle at B ; the particle is kept in position by a force pulling

it along a thread BC ; after a time the thread BC breaks ; show that

the weight of the particle is a mean proportional between the tension

of AB before BC breaks and its tension immediately after BC breaks.
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Examples I. (Pages 25, 26.)

1. (i.) 88 (ii.) |. (iii.) f. 2. (i.) 1200. (ii.) 1760. (iii.) 1760

3. 960 ft. 4. 9 yds. 5. 396 ft. 6. 136f.

7. 194- ft. per sec. 8.225 yds. 9. 210 yds. 10. 20m,

11. (i.) -6. (ii.) -036. (iii.) •0315576.

12. (i.) 1250. (ii.) 750. (iii.) 37,V days.

Examples II. (Pages 33, 34.)

1. (i.) Diminished to ^ of its former value, (ii.) Increased to 36(0

times its former value.

2. (i.) 384. (ii.) 38400. (iii.) 78545^5^.

3. 1178^. 4. 33 ft. per sec. per sec. 5. 12857|.

6. 11 ft. per sec. per sec. 7. 88. 8. 20 T, 1200/.

9. (i.) 36; 35280. (ii.) 129-6; 127008. 10. - 2 ^'^o/^ cm. per sec. per sec.

Examination Paper I. (Page 35.)

1. See § 29. 2. See §§ 30, 38-40. 3. See ^ 9-11.

4. -H-. 5. 23^ ft. per sec. 6. 390.

7. 242 ft.; 2f sees. 8. 19 miles an hour ; 13^ mins. past one.

Examples III. (Page 48.)

1. 1600 ft.; 320 ft. per sec. 3. 1 sec, (^/2— 1) sec, (a/3~ ^2) sec.

4. 4 ft. per sec. per sec. ; o sees. 6. ^ ft. per sec. per sec.

6. 330ft. 7. 2/(m + v). 8. 50, 100,and 160 metresper sec,respectively.

10. Time = {u + \/u^ + 2af)//

;

B has travelled over («' + af+ u\/u^ + 2af)lf.
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Examples IV. (Pages 64, 65.)

1. (i.) 400 ft., or 12,250 cm. ; 160 ft., or 4900 cm. per sec.

(ii.) 14,400 ft., or 441,000 cm. ; 960 ft., or 29,400 cm. per sec.

(iii.) 12,960,000 ft.or 396,900,000 cm. ;28,800ft.or 882,000 cm.persec.

(iv.) '16 ft., or 4-9 cm. ; 3*2 ft. per sec, or 98 cm. per sec.

2. (i.) 80 ft. per sec. ; 2^ sees. (ii.) 240 ft. per sec. ; 7^ sees,

(iii.) 4 ft. per sec.
; | sec. (iv.) 1400 ft. per sec. ; If sees.

3. 2. 4. 900 ft. B. 160 ft. per sec. 6. About 277 ft. per sec.

8. 324 ft. ; 144 ft. per sec. ; 4 ft. 9. 80 ft. per sec; 88 It. per sec.

11. 400 ft.; 10 sees. 12. ^^ ft. 14. If sees.

15. 4080 ft. 16. 72 ft. per sec. downwards. 18. 3 sees. ?

EXAMIHATION PaPBR II. (PaOE 66.)

1. See §§44, 46. 2. See §49- 3. See § 51.

4. 2^ ft. per sec. per sec. 6. 32-18 ft. per sec. per sec, nearly.

7. See § 68. 8. 5^ sees. 9. 1200 ft. per sec.

10. -xz^^ sees.
;
\^h above the ground.

Examples V., VI. (Pages 83, 84.)

1. (i.) 4 F.P.S. units. (ii.) 896 F.P.S. units,

(iii.) .gZjjv/10 C.G.S. units.

2. 15 : 2. 3. 14 : 45. 4. 12000 yds. ; 1200 ft. per sec.

5. 85f tons. 6. 9^-', ft. per sec. 7. 7^ lbs. weight.

8. 14,336,000 poundals, or 200 tons weight ; 1 ,433,600 F.P.S. units

of momentum, or 640 tons-ft. per sec.

9. 440 ft. ; 27i tons weight. 10. 6570J poundals.

11. (i.) 8-^ poundals. (ii.) 5 sees. 12. 29^ F.P.S. units.

13. 11 : 3600. 14. 100,000 dynes; 60,000 dynes.

15. "3 cm. per sec. ; -003 cm. per 8«c. 16. yi^poundal.

17, Mass = 9\, velocity — 30, momentum = 280.

Examples VII (Pages 94, 95.)

2. See § 71 ; 2 ft. per sec. 3. 4if ft. per sec. 4. 3| ft. per sec.

5. \ ft. per sec. 6. 8 ft. per sec. 7. 12 ft. per sec.

8. 10 ft. per sec. 9. 15 ft. per sec. 10. 9 ft. per sec.

11. 6^ metres per »ec 12. 100 cm. per sec. per sec. ; 200 dynes
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Examination Paper HI. (Page 96.)

1. See $§ 78, 81, 82. 2. See § 88. 3. See $§ 90, 91, 96 (2).

^' (^) ii toJi weight, or 66706J poundals.

(*) "H t^^Ji weight, or 10951^ poundals.

5. (i.) f ft. per sec. per sec. ; 1920 F.P.S. units,

(ii.) 5000 cm. per sec. per sec. ; 300 C.G.S. units.

6. See §§ 77, 76. 7. 47ii ft. per sec. 8. 4 ft.

9. 2240 F.P.S. uniU. 10. 27^ dynes.

Examples VIII. (Pages 108, 109.)

1. (i.) 4 ft. per sec. per sec. ; 240 ft. per sec. ; 7200 ft.

(ii.) 3200 ft. per sec. per sec. ; 64000 yds. per sec. ; 1090|^ miles,

(iii.) 140 ft. per sec. per sec. ; 2800 yds. per sec. ; 47-j't miles,

(iv.) -981 cm. per sec. per sec. ; 68-86 cm. per sec. ; 17G5-8 cm.

2. 28800 ft. 3. 2304 F.P.S. units. 4. 3200 F.P.S. units.

5. 3^ ft. per sec. per sec; 48 lbs. 6. (i.) 7\}, (ii.) 237f lbs. weight.

7. 77 : 17280. 8. At the bottom. 9. loO^J lbs. weight.

10. 2\ sees.; | of the weight. 11. 4 sec.

12. (i.) 240 lbs. weight, (ii.) 80 lbs. weight. 13. 10| lbs. weight.

14. 63-5688 metres ; 26-01197 cm. per sec. per sec.

15. (P— W)glW; uF, if « be the fraction of the chain below point

considered.

Examination Paper IV. (Page 110.)

1. See §§5, 6, 106, 107, 114. 2. See § 108. 3. See ^§ 113,115, 116.

4. 5 lbs. weight. M^ 5. See § 108 (i.) 6. G4 ft. 7. 1 : 6144.

8. 1 lb. of tea, ^ lb. of sugar. 9. 4|i| tons. 10. 14 cm. per sec.

Examples IX. (Pages 124, 125.)

1. (i.) 15j^ lbs. weight; 2 ft. per sec. per sec. ; 31| lbs. weight.

(ii.) 1 J oz. weight ; 28 ft. per sec. per sec. ; 3 J oz. weight.

(iii.) 28 lbs. weight ; 24 ft. per sec. per sec. ; 56 lbs. weight.

(iv.) \^ lb. weight ; 2^g- ft. per sec. per sec.
; m lbs. weight.

(v.) 4f lbs. weight; 3^ ft. per sec. per sec; Sf lbs. weight.

(vi.) 6| lbs. weight ; 21^ ft. per sec. per sec. ; 13J lbs. weight.

(vii.) 490^fagm. weight; Icm.persec.per sec; 980^f^gm. weight.

<viii.) 165-^^5% gm.weight; 99cm.persec.persec.; 330/50^ gm. weight.
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2. (i.) (a) 17, {b) 15 ft. per sec. per sec. ;
7|a lbs. weight,

(ii.) {a) 30, {b) 2 ft. per sec. per sec. ; ^ oz. weight.

(iii.) (as) 28, (b) 4 ft. per sec. per sec. ; 14 lbs. weight.

(iv.) (a) 17yV> (*) l^TT ^*- P^r sec. per sec. ; -/^ lbs. weight,

(v.) (a) 17^, (A) 14§ ft. per sec. per sec; 2f lbs. weight.

(vi.) (a) 26f ,
(b) 5^ ft. per sec. per sec. ; 3^ lbs. weight,

(vii.) (fit) 491, (A) 490 cm. per sec. per sec. ; 24o|Jf gramsweight

(viii.) (a) 900, {b) 81 cm. per sec. per sec. ; 82foff grams weight.

3. VijS^i sec. ; S2V^ ft. per sec. 5. 58 ft.

6. 8 ft. per sec. ; If lbs. weight. 7. 12 sees.

8. Tension between 3 lbs. mass and 6 lbs. mass = 6| lbs. weight

;

tension between 4 lbs. mass and 6 lbs. mass =• 5^ lbs. weight

;

tension of portion over pulley = 8| lbs. weight.

9. 2^a ft. per sec. per sec. 10. 4ff ft. per sec. per sec. H. 4 ft. / 3-;^

12. Tension between P and i2 = (2Q + E) PJ (P+ Q + li);

„ between Q and i? = (2P+i2) QJ{F+Q + E),

Examination Papbr V. (Page 126.)

1. See §§ 120, 131. 2. See §§ 126, 128. 3. 4| oz., and 3^ oz.

4. See § 132. 6. See § 126.

6. Tension = i lb. weight; pressures on pans = 6J oz. weight and

S^oz. weight. ^ (P-Q)((2 + P,)^
* (P+Q)(Q-Pi) •

8. Each mass = 494fff grams ; rider = 10|^fl grams.

9. See § 122. 10. 22J lbs.

Examples X. (Pages 144, 145.)

1. 300 lbs. weight. 2. 404 lbs. weight.

3. 24000 ft.-lbs. ; 160 ft. per sec. 4. (i.) 384 ft.-poundals ; 0.

5. The velocity is doubled. 6. 351^\ poundals
; ^\ v/2 sees.

7. 8 ft. per sec. 8. 848| ft.-lbs. 9. 200 miles per min.

10. 7 min. 11. 275 ft. per min. 12. 9900 lbs.

13. 4|. 14. 453H lbs. 15. 735-75 watts.

16. 1 ft.-poundal per sec, or Trhso horse-power.

17. Unit of mass = 6 grams ; unit of length = 1| cm.

18. (i.) 1 cm. = -033173 ft. (ii.) 1 gram =- '00228 lb.

(iii.) 1 dyne = -0000757 poundal.

(iv.) 1 erg = -000000785 ft.-poundal.

19. 12375iV/85204» tons.

ADV. DYN. Y
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Examination Paper VI. (Page 146.)

1. See §§ 134, 135, 155. 2. See §§ 77, 139, 142.

3. 887040 ft.-lbs. 4. 66^ miles per hour. 5. 320. 7. 37||.

(f 8. 328 lbs. 8ioz. weight. 9. 55^ lbs. 10. See §§ 146, 147.

Examples XT. (Pages 161, 162.)

1. 302 ft. 2 ins., nearly. 2. South-east. 3. 13-66 ft. per sec.

4. In a line making 60° with the line on the paper, and with the

same velocity as that with which it crawls along the paper.

5. 61 ft. per sec. 7. 10 miles an hour from the north-west.

8. 22 ft. behind the object, measured parallel to the direction of

the train's motion.

9. 7 miles an hour. 10. V19 miles an hour.

Examples XII. (Pages 172, 173.)

1. N.W. ace. of \\V2 ft. per sec. per sec. ; -*^'/2 ft. per sec. N.E.

2. Change of velocity = velocity of particle ;

momentum of blow = momentum of particle.

3. 32 a/2 ft. per sec. ; 32 a/5 ft. per sec. ; 32 a/10 ft. per sec.

6. 3500 ft. 7. 100 ft. per sec. 8. 13-2 lbs. wt. 9.350 ft.

10. 100 a/3 ft. per sec. 11. 1600/9 ft. per sec. 12. 60°. 13. 62 ft.

Examination Paper VII. (Page 174.)

1. See § 162. 2. See ^ 160. 3. 60° with the bank, up stream.

4. 4 a/2 miles an hour from N.W. 6. 10 miles an hour, W.
7. See § 184. 9. 160 ft. 10. See § 187.

Examples XIII. (Page 180.)

1. (i.) 25 lbs. (ii.) 17 oz. (iii.) 29cwt. (iv.) 60 grams weight, nearly

.

2. 25 lbs. ; 1 lb. 3. 40-16 ft., nearly.

5. 64/ a/3 ft. per sec. per sec. ; l/VS lbs. weight. 6. 133 ft./sec.

7. tan-i-25. 8. 20 a/3/3 ft./sec. 9. 10 a/2 (a/3-1) ft./sec.

11. 10 a/2 ft.

Examples XIV. (Pages 200-204.)

1. 8 ft., 16 ft. per sec; 8 a/2 ft., 16 a/2 ft. per sec; 8 a/3 ft.,

16 a/3 ft. per sec.

2. 30°. 3. 21-1 miles per hour. 4, 16 ft. per sec. 5. If tons.

6. 520 a/3 ft.-lbs. 7. 14-86 lbs. per ton; 179-2 H.P. 8. 480.
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9. 107-96 lbs. wt.; 1870ft.-lb8. 10.^'

11. 4905 ergs; 4905 V2 ergs; 4905^/3 ergs.

12. (i.) P= Q. (ii.) P= IQ. 13. ^'^V^ ft. per sec.

15. "25. 16. (i.) -25^; (ii.) -503^; (iii.) -722^. 17. \gVZii.

18. 48 ft./sec. 19. 20 ft. 20. 100 ft. 21. -5.

22. 1 ; 2. 23. 4 ft./8ec.2, ^w lbs., 4^3 ft./sec.

25. Through the given point draw a line vertically up, and a line

perpendicular to the given line; bisect the angle between

these two lines.

26. The line from the point to the circumference which, if produced,

passes through the highest point of the circle.

29. The line which, if produced both ways, passes through the

highest point of the first circle and the lowest point of the

second.

30. The line which, if produced, passes through the highest point of

the circle.

31. 860 sees, on level, 270 sees, down, 206 sees, up (to the nearest sec).

34, 35. The line in either case bisects the angle between the vertical

and a perpendicular to the given line, and, when produced,

passes through the highest point of the circle in Ex. 34, the

lowest point in Ex. 35. 37. 30°.

Examination Paper VIII. (Page 205.)

1. See § 192. 2. 2i*, acting along the direction of the middle one.

3. See § 193. 4k. See § 198. 6. 24 lbs. 10 oz. 7. See § 201.

Examples XV. (Pages 216-218.)

1. (i.) 6400 ^/3 ft. ; 1600 ft. ; 20 sees. (ii.) 312-5 ft. ; 78-125 ft.

4-419 sees. (iii.) 40000 a/3 ft.: 30000ft. ; 50-v/3 sees.

(iv.) 3840 ft. ; 400 ft. ; 10 sees, (v.) 19200 ft. ; 6,400 ft.

40 sees. 2. After 1 or 5 sees. ; 16 a/133 ft., or 80 ^/lOO

3. 12 (10 a/3 -3) ft. 4. 4a/(4A + <^2/A) ft./sec. 8. 96 ft./sec

9. 40 a/2 ft./sec. 10. 20 a/17 ft./sec. 11. 300 ft.

2. 36, or 3-0625 ft. 13. A/{(16ir+i22/^)^/8} ft./sec.

14. 192 ft./sec. 15. 64 a/3 ft./sec. \*j,t^ii, IZ. V^jg.
2^
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Examples XVI. (Pages 229-231.)

1. 644-5 lbs. wt. 2. 4/7r. 3. -05 ton wt. 5. Equal.

6. 2 : 1. 5^. 16 ; 5 oz. wt. 8. 2 oz. wt. 9. 11 oz. wt.

10. 8^2. 11. 5 stone. 12. 10 : 7 : 3. 13. 3-5oz. wt.

14. When the particle has fallen a vertical distance of 8 ins.

16. tan-ii. 17. About ^le, or -0034 approx. 19* 10-97.

Examples XVII. (Pages 240, 241.)

1. ir/20 sec. ; 5 s^l cm. from ; 50 \/2 cm, per sec.

2. 1 sec. ; 407r2 dynes. 3. vt\'lir. 4. ViPshn).

5. 1-92 sees. 6. 32-08. 7. 986-96. 8. 169/144 ft.

9. Lengthened by w/43200 of original length, approximately.

13. 4-892 ft. 14. (i.) 32-182. (ii.) 32-09.

Examples XVIII. (Pages 254-257.)

1. 10, 15 ft./sec.

2. 10, 5 ft./sec. direction of motion reversed in each sphere.

3. '75; returns with velocity 10 ft./sec.

6. 20 ft./sec, 10 ft./sec. ; in opposite directions.

8. The 10 -lb. mass proceeds in its original line of motion with

velocity 5 ft./sec. ; the 5.1b. mass proceeds obliquely with

velocity 10^/5 ft./sec. 10. 3 sees., 26 ft. Sins.

12. 3. 15. 80 ft./sec. 17. 25 lbs. wt.

18. 125 0Z. wt. 19. 625/88 H.P. 21. 3-5hrs.

22. (2-0-1) min. 24. (i.) ^v. (ii.) -fy and ft'.

25. i 26. m = n, e = I. 27. Vik/h).

Examination Paper IX. (Page 258.)

6. n" metres. 9. M = m (1 -2e"). 10. 17700 mls./hrs., 42*5 mins.

Examples XIX. (Pages 276, 277.)

1. (i.) |. (ii.) |. (iii.) |. 2. (i.) |. (ii.) f. (iii.) -3.

3. 96. 4. (i.) 26. (ii.) 26. (iii.) -000026.

5. (i.) 15ma^/2. (ii.) Sma^. (iii.) 6ma^. (iv.) 12;;?«2.

7. (i.) 7; 18. (ii.) 3f. (iii.) 3i; 4.

8. if«73 (2« = side of rectangle). 9. IMa^VZ.

10. Mp^/3 {p = breadth of parallelogram).

11. Mq"/6 {q = perpendicular from angular point on the median).

12. dMr"l2. 13. 5Mr"Ji. 16. Ma"j6. 17. 5Mayi2. 18. Mr^.
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Examples XX. (Pages 293-296.)

1. 4 v/2 radians per sec. 2. f \/6 radians per sec.

3. v"= 2ogs [Pa- Qb)/{Fa"- + Qb- + 1). 4. r^ = 2r'^gsPl{Pr' 4 /)

.

6. 2 : 1 : ^2.

9. A circle whose diameter is the line joining the given point to

' the point of contact.

10. 88/3 radians per sec. 11. \/{2P^///} radians per sec.

12. a/(14/15). 14. I//. 15. V'(3^/2a) radians per sec. ; 4n'/3.

1*7. {{.) }{Sh + a"//i). (ii.) 3///'4. (iii.) 2^/2a/3, (a = side of square).

(iv.) (3>-2-2«2)/ v^(r2_a2). 20. H radians per sec.

22. Jlmf/l{i-8me)llM+^*^8m*^)

y \ ffl \ m 3 fl2 2 /

23. 2{P-Q)ff/{2P+2Q + M); 2{P-Q)gla(2P+2Q + M) ;

P{iQ + M)(//{2P+2Q-^M); Q{iP+ M) ff /
{2P+2Q^M).

Examination Paper X. (Page 297.)

4. 7, cos2 e + I. sin= 6. 5. v^ = 2r> (P- Q)/{Pr^ + Qr^ + 1).

6. y sin a. 8. 4 a/2 radians per sec. ; 12 a/2 ft. per sec.

Examples XXI.

—

Miscellaneous. (Pages 298-302.)

1. 640 ft. 2. 176 ft.

5. 77Jfr2/5400 (P-Mp) miles ; 7731vV5iOO (E + Mp) miles.

6. 53/7 tons wt. 7. 205 tons wt. 8. 294 oz. wt.

9. -7 in. ; 8 in. per sec. 11. 1 ft. per sec.

12. From second point P drop PM perp. on plane; produce it to Pj,

making MPi = PMje, and project particle towards Pj.

14. m{u—v)jM; 2Msj {M {u-^v)-m {u-v)]
;

m {ti— v) [M{u + v) —tn (w— v) } / 2Jf».

15. er. 16. fiff cos o. 17. After falling a vertical distance of 4 ins.

19. {l—x)/2l X weight of string.

20. Uniform acceleration of ^ft./sec.2; -^l—W; 5'^^'
„ .

21. Miff -r P) = m {g +/).
^

22. g\Z
; g\^.

24. 7 a/14/3 radians per sec. ;
33'7 gr. wt. 27. 266 : 1265625.

25. 2V{ii^-gR)lg. 29. 160/7r. 30. -025 sec.

31. -2«(a/3-1)/5; «(2+ a/3)/5. Zb. x = 2y'^-l, or y^ = \{x-¥\).
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Science and Art Examination Questions. (Pages 305-315.)

1885.

1. {a) 125 lbs.; (b) 36. 2. {a) 384 ft.; (b) 53.^ poundals ; (c) If lbs.

3. («) ,Mff; {b) 500 ft., 25 8608. 4. {P-Q) [Q+ Px)hj{P-\- Q){Q-P,).

5. -4; 4; 256.

1886.

1. II; 20,640,000 ft. -lbs. 2. 177^ ft. per sec.

3. -1; 0. 4. («) 55561-2 ft.-lbs.
;

[b) 44-1964 turns.

1887.

1. 192,500,000 ft.-lbs. ; 1666| minutes.

2. 1:5; 16 -/o ft. per sec. ; 7680 ft.-poundals.

4. {a) \ml^, where m is the mass and I the length of the rod ;

{b) 12if' ft.-poundals.

1888.

2. (a) mv^I'lg-;' (b) 244 ft.

4. (a) 98 00ir2/3 ft.-poundals
;

(A) 9800ir73y ft.-lbs.

1889.

1. h Wl ft.-lbs. 2. 100 ft. per sec. towards centre of hexagon.

3. Lengthened by w/43200 of its original length.

4. {a) 12,100 ft.-poundals; {b) 378-125 ft.-lbs.

1890.

1. 20,000 ft.-lbs. 2. 4 ft. per sec. ; 5 sees. 4. 1500 ft.-poundals.

1891.
2. P= 3Q.

1892.

1. -Itc radians per sec. ; 4^ ft. per sec. 4. 600 ft.-poundals.

5. ^3/12. 7. 2r, V. 8. Wv^' 9. 1000; H^V-
10. 7 ft. per sec. ; 1-4 radians per sec.
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1893.

1. 64 ft. per sec. 2. ott/G radians per sec. 4. 26-366 ft. -lbs.

6. 8-v/3 1bs.; 3-27 sees. 7. 156; 156; -36; 96.

9. 4| radians per sec. ; 5691-84 ft.-poundals.

1894.

2. I; |; 3/5 \/5; -i radian per sec. 6. V5^r; 72 lbs.

7. mjM; 1 33i ft.-poundals. 8. Mb"l'6. 9. I; 4; —| radians per sec.

1895.

1. 29if H.P., 170| H.P. 2. U ft. per sec. 3. 64 ft. below top.

4. 10 V5. 5. 250 poundals. 10. 100 -v/7 9 ft. /sec.

11. 0-003462315. 12. 27 ft./sec.

1896.

1. {a) When the line of motion is at right angles to the line joining

the moving point to the fixed point; {b) ^^ a/3 radians

per sec.

3. The particle will remain at rest as long as the angle of inclina-

tion of the plane is less than the angle of friction.

5. '^(i : \^b, where a and b are the radii of the circle.

6. 80 ft. 8. 15 f.s. ; 1800 ft.-poundals.

1897.

1. When the fixed point lies in the line of motion; ud/PQ'^, where u

is the constant velocity, and d the length ofthe perpendicular

from P to AB.

4. Point of projection is at P in horizontal plane through N, where

PN = 2 V3AS ; angle of projection = 60®.

5. (a) gxjl; [b) \mgx^ll; {c) ^/{gx^lJ), where I and m are the

length and mass of the thread and x is the length hanging

over the edge.

6. e"h, e^h^^YLQTQ h is the given height and e the co. of restitution.
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