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PREFACE.

This volume is intended to be a continuation of that already

published as Part I. in 1882. The time occupied in its pre-

paration has been longer than I had anticipated. This is partly-

due to the want of sufficient leisure, and partly also because as

I proceeded with the work new questions to which no sufficient

answers had yet been given seemed continually to arise. The

pleasure and labour of attempting to answer these, however im-

perfectly, has delayed the book.

Although a large portion of this volume has already appeared

in the latter half of the third edition, yet much of this has been

recast and new illustrations and explanations have been given

wherever they appeared to be necessary. Besides this much

new matter has been added. Exactly also as in the last edition

those parts to which the student should first turn his attention

are printed in a larger type than the rest.

Following the same plan as in Vol. I., the several Chapters

have been made as independent as possible. The object in view

was that the reader should select his own order of study. His-

torical notices and references have been given throughout the

book. But it has not been thought necessary to refer to the

author's own additions to the subject, except when they have

been first published elsewhere.

In this volume much use has been made of the new symbol

for a fraction lately introduced by Prof. Stokes. The symbol

E. D. II. b



VI PREFACE.

a .

a/b for T is very convenient as it enables the algebraical formulae

to be written on a line with the type. If some such abbreviation

as this is not used two whole lines are required to write the

simplest fraction. When the numerator or denominator of the

fraction so written contains several factors, the rule adopted has

been that all that follows the slant line up to the next plus or

minus sign is to be regarded as the denominator. In the same

way all that precedes the slant line up to the next plus or minus

sign is to be taken as the numerator. When more complicated

factors have to be written, brackets are used to indicate the

numerator and denominator. Thus —, ^ i would be written
cd g — h

ahlcd-h(e-{-f)l{g-h).

Numerous examples have been given throughout the book.

Some of these are intended to be merely simple exercises, but

many are important as illustrating and completing the theories

given in the text. Sometimes when the principles of a theory

had been explained numerous applications seemed to arise. In-

stead of loading the text with these it appeared preferable to

put them into the form of examples and to give such hints as

would make their solution easy. Everywhere the results have

been given, and care has been taken to secure their accuracy;

but amongst so many problems, it cannot be expected that no

errors have escaped detection.

EDWARD J. ROUTE.

Peteuhousr,

Auguit, 1884.
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DYNAMICS.

CHAPTER I.

MOVING AXES AND KELATIVE MOTION.

Moving Axes,

1. In many problems in dynamics it will be found that the

axes of reference suitable to the initial state of the motion are not

well adapted to follow the body under consideration during its

whole course of motion. It is therefore sometimes convenient to

use axes which themselves move in space so that they always keep
those positions which are most appropriate to the instantaneous

position of the body. Thus to take a simple case; in dynamics of

a particle we sometimes resolve our forces along the tangent and
normal to the path. This is practically the same as using a set of

Cartesian axes which move so as to be always parallel to the

tangent and normal. This theory has been generalised in Yol. I.

chap. IV. where the motion is referred to any two lines whatever
which move in one plane. We now propose to extend the theory

still further. We shall discuss the general equations of motion of

first a particle and then a rigid body referred to any rectangular

axes which move as we may find convenient^

2. If we make the axes to which we refer the body move, it

is clear that we must have some means of determining the posi-

tion and motion of these axes in space. This might be effected

by having another set of axes which are themselves fixed in space

and to which in turn we might refer the moving axes. This is the

course adopted by Euler; thus in the equations usually called

after his name (Vol. I. Chap, v.) he uses two sets of axes. The
advantage of giving motion to the axes is however greatly

diminished if we must use a set of fixed axes as well through-

out the motion. For this reason we shall now determine the

motion of the moving axes by angular velocities 6^, 6^, 6^ about

themselves. In other words, we regard the axes as if they were
a material system of three straight lines at right angles whose
motion at any instant is given by three coexistent angular veloci-

E. D. II. 1



2 MOVING AXES.

ties about axes which instantaneously coincide with them. In

this way we do not use any fixed axes except at the beginning or

end of the solution and only in such a manner as we may find

convenient.

3. In order to understand how the motion of a body is re-

ferred to moving axes let us first suppose that the body is turning

about a fixed point. Taking this point as origin we determine the

motion of the body by three angular velocities w^, co^, 0)3 about the

axes in the same manner as if the axes were fixed in space. The
position of the body at the time t-\-dt may be constructed from

that at the time t by turning the body through the angles co^dt,

G>^dt, (o^dt successively round the instantaneous positions of the

axes. But it must be remembered that oiy^dt does not now give

the angle the body has been turned through relatively to the

plane xz, but relatively to some plane fixed in space passing

through the instantaneous position of the axis of z. The angle

turned through relatively to the plane of xz is (a>3 — ^3) dt.

If there be no fixed point we follow the construction explained

in Vol. I. Chap. v. We represent the motion of the body by the

six components u, v, W) w^, (o^, od^ referred to any origin, the

axes being treated as if they were fixed for the moment. Here
u, V, w are the resolved parts in the directions of the axes of the

velocity of the origin or base point, and «,, a>^, 0)3 are the resolved

parts about the same axes of the angular velocity of the body. In
the same way the motion of the axes is given by the components
of motion j), </, ^'; ^^ ^2' ^s' ^^® moving axes being themselves the
instantaneous axes of reference.

In most cases however the axes will be made to turn round
some point which is either fixed or which may be treated as fixed.

Their directions in space are made to vary in a manner suitable to

the purpose we have in hand. We then have p, q, r all zero.

Since any point may be reduced to rest by the method explained
in Vol. I. Chap. iv. this supposition, which will be generally made,
does not really limit our choice of axes.

4. Velocities referred to Moving Axes. The position of a
point P being defined by the co-ordinates x, y, z referred to rect-

angular axes which turn round a fixed point O, it is required to

find the velocities resolved parallel to the instantaneous positions of
the moving axes.

The resolved velocities in space are not given by dx/dt, dyjdt:

dzjdt These are the resolved velocities of the point relatively to

the moving axes. To find the motion in space we must add to

these the resolved velocities due to the motion of the axes. If wo
supposed the particle to be rigidly connected with the axes its

velocities would be expressed by the forms d^z — 6^, &c. given in
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Vol. I. Chap. V. Adding these together the actual resolved veloci-

ties of the particle are

If the origin be itself in motion with the resolved velocities

p, q, r we must add these also to the right-hand sides of the
equations to obtain the actual resolved velocities of F in space.

5. Accelerations referred to Moving Axes. The instan-

taneous velocities of a point P in space being u, v, w when resolved

parallel to the instantaneous positions of the axes it is required to

find the accelerations parallel to these axes.

At the time t, let Ox, Oy, Oz be drawn from any point

parallel to the instantaneous directions of the axes. At this instant

u, V, w are the resolved velocities in these directions. At the time
t -\-dt the axes by their translations and rotations will have changed
their positions in space. Let Ox\ Oy, Oz be drawn from the same
point parallel to these new directions. At this instant,

,
du ,, dv J. dw j^u + -T:dt, v+-j-dt, w + -y- dt
dt dt dt

will be the resolved velocities in these directions.

Describe a sphere of unit radius whose centre is at the fixed

origin and let all these axes cut the sphere in the points x, y, z,

X
, y , z respectively. Thus we have two spherical triangles xyz

and xy'z , all whose sides are right angles. The resolved part of

the velocity of the particle at the time t + dt along the axis of z is

u -{• -Tj dt\ C0& zx'+{v-\- -r: dt\ cos zy -\- (w + -t: dt] cos zz .

By the rotation round Oy, x has receded from z by the arc 6^dt,

and by the rotation round Ox, y has approached z by the arc Q^t.

Therefore zx = zx-\- O^dt,

zy —zy — d^dt.

Also the cosine of the arc zz differs from unity by the squares

of small quantities. Substituting these we find that the compo-
nent velocity of the particle at the time t-^ dt parallel to the axis

of z is ultimately w + - , - dt — uO^dt + vO^dt

But the acceleration is by definition, the ratio of the velocity

gained in any time dt to that time. Hence if Z be the acceleration

1—2



4 MOVING AXES.

resolved parallel to the axis of Zy we have

Similarly if X and F be the accelerations parallel to the axes
of X and y, we have

6. Ex. 1. Let the motion be referred to oblique moving axes so that the

sides of the spherical triangle xyz are a, b, c and the angles A, B, C. Let the equal

quantities sin a sin 6 sin C7, sin 6 sine sin ^, sin c sin a sin £ be called fi. Prove

that if the velocity be represented by the three coviponents u, v, w parallel to these

axes, then the resultant acceleration parallel to the axis of z is

_ dw du dvZ=— + ,- cos + -51 cos a - ud2iJ- + vdifi,

with similar expressions for X and Y.

This may be done by the use of the spherical triangles xyz, x'y'z\ by first proving

that zx'=b-^ d^dt b,\ji c Bva. A, zy'=a - d^dt sin c sin B, and then substituting as before.

Ex. 2. Prove in the same way that if x, y, z be the co-ordinates referred to

oblique axes moving about a fixed origin, and u', v\ w' the resultant velocities

parallel to the axes, w'—— + -37 cos & + -^ cos a - xd^ + yd^fi,

with similar expressions for u and v',

Ex. 3. Prove also that the equations connecting the components m, v, w with

ihe co-ordinates a;, y, z referred to axes with a fixed origin are

dz sm'c
, ^- cot U - cot A

z X y

with two similar expressions for u and v.

Since w' is the component parallel to z of (m, r, w,) we have u cos b-\-v cos a-\-ic= w',

with similar expressions for u' and v'. By solving these we get the required values

of M, V, w.

Ex. 4. If the whole acceleration be represented by the three components

Xf Y, Z parallel to the axes, prove that the expressions for these in terms of uvw,

may be obtained from those given in the last example by changing x, y, z into m, r, w
and M, r, w into X, Y, Z.

7. Geometry of Moving^ Axes. In order to use moving
axes it is necessary to be able to express with respect to these
axes any conditions which may exist with regard to straight lines

or points which move independently in space. We have therefore

placed together in the following articles a few of the more im-
portant conditions.
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8. To express the geometrical conditions that a point whose
co-ordinates are (x, y, z) is fixed in space.

This may be done by equating to zero the resolved velocities

of the point as given in Art. 4. We thus obtain the conditions

with two similar equations.

9. To express the geometrical conditions that a straight line

luhose direction cosines are (I, m, n) moves parallel to itself in space
or that its direction is fixed in space.

Let a straight line OL of unit length be drawn from any point

fixed in space parallel to the given straight line. The co-

ordinates of L referred to axes which turn round as an origin

so as to be always parallel to the moving axes will be I, m, n.

Since OL is fixed in space, the resolved velocities of L are zero.

The required geometrical conditions are therefore

with two similar conditions.

It is sometimes necessary to express the direction of the straight line by the

Eulerian angles 6, 0, \p as explained in Vol. I. chap. v. The moving axes are there

called OA, OB, OC, and the straight line whose direction is to be fixed in space is

represented by OZ. We see that the equations just written down are equivalent to

those usually called Eulefs geometrical equations, but expressed in a symmetrical

form.

10. We may use the proposition of Art. 9 to find the path in space of the

origin of the moving axes, as well as the directions of the axes themselves. The

components of motion d^, 6^,, 6^ being given functions of the time, we have three

equations to find ?, m, n. These may be regarded as the direction cosines of any

one of three axes of reference ^, ?;, f fixed in space. The integration of these

equations will involve three arbitrary constants. One of these is determined by

the condition l'^ + m'^ + n^ = l. The other two will depend on the initial position of

the moving axes relative to the particular axis ^, t? or f we are considering.

The velocity of the origin of the moving axes parallel to this straight line is

equal to Ip+mq + nr (Art. 3). The velocities d^jdt, drjjdt, d^Jdt being thus found,

we determine ^, ij, f as functions of the time by integration.

Ex. If the components d^, 6^, 6.^ be all constant, prove l,m,n are given

by three expressions of the form

l= Gd-^ + AQ, sin fii - {Bd^ - Cd^) cos fit

where (2^^ e^ + e^^ + q^ and A9^ + Bd^, + Cd^= 0. The three arbitrary constants are

therefore A, B and G. Thence find the path in space of the origin of the moving

axes.

11. If the direction cosines of a straight line connected with the moving axes he

(1, m, ii),find the angle between two positions in space at an interval of time dt.

Drawing a unit length OL as before parallel to the position of the straight line

at the time t, the resolved velocities of L will be dlldt-rad^ + nd^^ &c. If OZ' be the
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parallel at the time t \- dt and SI, Sm, dn the projections of the length LL' on the

moving axes, we have therefore

H ^dl-vid.^dt + ne^dt,

dm=dm-n6idt + W^dt^

dn=dn- Id^dt + md^dt.

Since OL and OL' are each of unit length the required angle LOL'= dx is given

by {5x)"={5ir + {dm)^+idnY,

Cor. The direction cosines of the plane LOL' are obviously proportional to

mdn-nSm, nil-lSn, l5m-m5L

Ex. The six components of the motion of the axes (Art. 3) are given

functions of the time, find the radii of curvature and torsion of the path described

by the origin.

The direction cosines of the tangent are proportional to p, q, r. Hence by this

proposition the angle of contingence is known. By the corollary the direction

cosines of the osculating plane, and therefore those of the binomial are known. By
substituting for I, m, n in the proposition the direction cosines of the binormal,

the angle of torsion can be found.

12. Sometimes, while using moving axes, we require to refer

the motion of some straight line OM connected with the moving
axes to an axis of reference fixed in space. The object of the
following example is to show how this may be done.

Ex. Let the direction cosines of a straight line OM fixed relatively to the

moving axes be (X, /*, v) and let it be required to refer the motion of OM to some
straight line OL fixed in space whose direction cosines at the time t are {I, m, n).

Let the angle LOM be 6 and let \{/ be the angle the plane LOM makes with any

fixed plane in space passing through OL. Then show that

cos ^= ZX + 7n/i + nj',

Bin'^ ^ =^1 (^ ~ '^ ^^ ^) + ^2("» - /* cos e) + e^{n-v cos 6)

If ^/. ^« be the resolved parts of the angular velocities about OL, OM respec-

tively, the last equation may be written in the form

dt

If the straight line OM be not fixed relatively to the axes, then (X, /x, v) will be

variable and we must add to the right-hand side of the second equation the deter-

Ad/t d\\
, ( dv dfi\. f dk ^dv\

mmant (^x^^ -^ ^- j n+ (^^^
- v-j i+ (^.^ - X-jm.

In this determinant we may replace X, /z, v by any quantities Xv, jxk, vk propor-

tional to them (whether k be variable or not) provided we divide the determinant

byic'.

The mode of proof may be indicated as follows. Let P be a point in OM at a

distance unity from and let P move about with OM. The moment of its velocity

about OL is sin'd dypjdt. But if (x, y, z) be the co-ordinates of P, its velocities paral-

lel to the axes are given by Art. 4, and the moments of these velocities about the

axes will be L = yw-zv, M-zu-xw, N=zv-yu. Hence the moment about OL
will be Bin*d drjyjdt =Ll +Mm + Nn. If we effect these substitutions and (since OP
is unity) replace x, y, 2 by X, A^ v, we get the results in the example.
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13. It is not our object here to show the utility of moving axes in Solid

Geonietry further than to prove those theorems which are required in Dynamics.
It will be found however that both curves and surfaces are sometimes most easily

treated by referring them to a set of moving axes in which the origin travels

along the curve or surface and the directions of the axes are such tangents and
normals as may be suitable to the property under discussion. We may refer the

reader to a paper by the author in the Cambridge Mathematical Journal (Vol. vii.

1866) where the application of moving axes to the curvature of curves is illustrated

by several examples. The two following examples though of no immediate im-

portance will be found useful further on.

Ex. 1. The principal axes at any point P of a curve are the radius of curvature,

the tangent and binormal. If these be taken as the axes of x, y, z, prove that the

components of motion by which the axes are screwed along the curve through an

arc dy are p = 0, q=dy, r=0; ^i=0, 6^= -dr, e^=-de where dr and de are the

angles of torsion and contingence.

Ex. 2. The principal axes at any point of a surface are the tangents to the

lines of curvature and the normal to the surface. Let these be called the axes of

X, y, z. Let it be required to move the axes from into the position of the

principal axes at a neighbouring point 0' on the axis of x. If 00'=dx the six

components of motion for the base point are given by
'

,^a.. ,=0, ,.=0; .,=0, .,= -f ,
(i-i)^s=|; Q-^-.

where p, p' are the principal radii of curvature for the sections xz, yz respectively.

By combining this with a corresponding motion along the axis of y, we can move

the axes from into the positions of the principal axes at any neighbouring

point 0' on the surface.

-14. Application of Moving Axes to Dynamics. To
explain a method of changing from fixed to moving axes.

If a body be moving about a fixed point and we have esta-

blished any general proposition referring its motion to fixed axes

meeting at the fixed point, then we may use the following method
to infer the corresponding proposition referring the motion to axes

moving in any proposed manner about the origin. Suppose the

general equation established to be

i|r (o)^, dw^jdt, &c. ...}=0,

where w^y co^, co^ are the angular velocities about the fixed axes.

Let «!, 0)2, 0)3 be the angular velocities of the body about the

moving axes and let the motion of the axes be defined as before

by the angular velocities 6^, 6^, 6^ about themselves.

The fixed axes being arbitrary in position, let them be so

chosen that, at the moment under consideration, the three moving
axes are passing through them, so that the two sets are for an

instant coincident. Then we may write a)a, = a)j, (Dy = (o^y (o^ = (o^i

but we cannot assert dcoJdt = da)^/dt, for the moving axes at the

time t+ dt are not coincident with the fixed axes.

To determine the relation between dcojdt and dco^/dt we may
proceed thus. Let OL be any straight line fixed in space making
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with the moving axes the angles a, jS, y. Let D, be the angular

velocity of the body about this straight line, then

n = 0)^ cos a 4- W2 cos yS + cOg cos 7,

d2 , r^dB . dy

Since OL is any fixed line in space, let it be so chosen that the

moving axis of z coincides with it at the time t. Then a = ^tt,

y9 = Jtt, and 7 = 0, also dQ/dt will be deojdt Since a is the angle

OL makes with the moving axis of x, d^/dt is the rate at which the

axis of X is separating from a fixed straight line coincident with the

axis of z and this is clearly 0^, Similarly d^ldt= — 6^, hence

d(0, dco a , a

Similarly ^^ = ^-o>A + a>,e„

d(Oy day ^ ^

Hence we obtain the folloiuing rule. If we substitute in the

given general equation i/r = 0, for w^., w^, to, the values w^, w^, (o^

and for d(o^/dt, dcoy/dt, dcojdt the equivalents written above we
shall have the corresponding equation referred to moving axes.

If the moving axes he fixed in the body, and move with it, we
have 6^=(o^, 6^ = (o^, 6^ = co^. In this case the relations will

become dcOx/dt = d(i)Jdt, dci}y/dt = dcojdt, dcojdt — dtojdt, as in

Euler's equation, Vol. I. Chap. V.

The preceding proof of the relation between dcojdt and dcojdt is

a simple corollary from the parallelogram of angular velocities. The
resxdt will therefore he true for any other magnitude which obeys

the ^^parallelogram latu" In fact the demonstration is exactly the
same. Now linear velocities and linear accelerations do obey this

law. Hence the expressions obtained in Arts. 4 and 5, for the
velocities (u, v, w) and the accelerations (X, Y, Z) may be deduced
from the one proved above.

If the general equation ^^ — should contain the velocity or

acceleration of any particle of the body, then to obtain the corre-

sponding equation referred to moving axes, we must substitute for

these velocities or accelerations the expressions found in Arts. 4
and 5.

^15. If the general equation should contain d^Ugldt^ or any other second dif-

ferential coefficients, the expressions to be substituted for them become more
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complicated. Since diojdt, dioyjdt, dwjdt, are angular accelerations, they follow

the parallelogram law. We have therefore

^t
" ('^- '^A+ '^3^2)008 a +^'^'-^3^1 +

a-i(?3J
cos ^+^-^-^1^2 + w^^^ cos 7.

We may repeat the same reasoning and we shall finally obtain

So we may proceed to treat third and higher differential coefficients.

("IG. Expressions for the moments of the Effective

Forces. A body is turning about a fixed point in any manner,

to determine the moments of the effective forces about any axes

which meet at the fixed point.

Let X, y, z be the co-ordinates of any particle m of the body
referred to axes fixed in space and meeting at the fixed point.

Let h^, hyy hg be the angular momenta about the axes. Then if

6)3., ft)y, 0)^ be the angular velocities about these axes and A, F &c.

the moments and products of inertia, we have

h^ = A(o^ - F(Oj, - Eci)^,

with similar expressions for h^ and h^. The moments of the effec-

tive forces about these fixed axes will then be dhjdt, dhjdt, dhjdt.

See Vol. I. Chap. ii.

Let \j Agj ^3 ^® ^^® angular momenta about a set of moving
axes having the same origin; co^, co^^ co^ the angular velocities of

the body, A, F &c. the moments and products of inertia about

these moving axes. Let the motion of the moving axes be given

by the angular velocities 6^, 6^, 0^. Then since moments or

couples follow the parallelogram law, we see by the general pro-

position of Art. 14 that the angular momentum about the moving
axis is obtained by writing w^, o)^, co^ for (o^, co^, w^. We thus have

\ = A(t3^ — FcD^ — E(0^,

with similar expressions for h^ and h^. By the same proposition

the moments of the effective forces will be

f-M. + M.
17. If the moving axes be fixed in the body we have 6^= (o^,

^2 = «2 ^^^ ^3 = ^3- I^ ^^so ^^® ^^^^ ^® principal axes we have

K = A(x)^, h^ = B(o^, h^ = (7«,. The moments of the effective forces

about the axes then become

t-^t-^^-^'"^^^'



10 MOVING AXES.

with similar expressioDS for h^ and h^. These of course are the

Eulerian forms given in Vol. i. Chap. v.

18. If it be required to find the moment about the axis of z

of the effective forces for a rigid body moving in any manner in

space, we use the principle proved in Chap. Ii. of Vol. I. The
moment about any straight line is equal to the moment about a
parallel straight line through the centre of gravity plus the

moment for the whole mass collected into its centre of gravity.

In the case of a system of rigid bodies, the momBnt of their

effective forces may be found by adding up the separate moments
of the several bodies.

19. General equations of motion. To obtain the general

equations of motion of a system of moving bodies referred to any
rectangular axes moving about a fixed origin.

These equations of motion may be found by equating the
expressions just found for the resolved parts and moments of the

effective forces to the corresponding expressions for the impressed
forces.

Thus consider any one body of the system. Let X, Y, Z be
the resolved parts of all the impressed forces on that body, including

the unknown reactions of the other bodies of the system. Let
L, M, N be the moments of these impressed forces about the axes

of reference. Let m be the mass of the body. Let u, v, w be the
resolved velocities in space of the centre of gravity of the body,

then u, V, w are known in terms of the co-ordinates of the centre

of gravity by the equations of Art. 4. The equations of motion
of the centre of gravity are

du ^
^ ^ X

with corresponding expressions for Y and Z.

Let /ij, h^, ^3 be the angular momenta of the body about the
instantaneous positions of the axes of reference, then h^, h^, h^ are

known in terms of co^, co^, Wg the angular velocities of the body
by the expression found in Vol. I. Chap. V. The equations of

motion will then be

with similar expressions for M and iV*.

• These [equations were given in this form by the late Professor Slesser

{Cambridge Quarterly Journal, Vol. ii.), to whom the results of the two following

special cases had been previously shown by the author. It appears however that

similar results had been previously published in Liouville's Journal in 1858. The
reader should also consult a paper in Vol. x. of the Cambridge Transactions, 1856,

by B. Hayward.
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Besides these dynamical equations there will be the geometrical

equations which express the connections of the system. As every

such forced connection is accompanied by some reaction, the number
of geometrical equations will be the same as the number of un-
known reactions.

Thus we have sufficient equations to determine the motion.

^^20. Two important special cases. There are two cases

in which the equations of motion just found admit of great sim-

plification. As these often occur it is worth while to discuss them
separately.

In the first case we suppose the body to be turning round some
point fixed in space and to be such that two of the principal

moments of inertia at the fixed point are equal.

Let 00 be the axis of unequal moment of inertia and let us

take this as the axis of Z. Let us choose as the other axes of

reference two other axes OA, OB which turn round OG in any

manner we please. To fix this let ;^ be the angle the plane GOA
makes with some plane fixed in the body and passing through OG,

Then we have 6^ = (o^, 6^ = o)^ and 0^ = co^-]- dx/dt Also h^ = Ao)^

h^ = Bco^, h^ = Cftjg. The equations of motion are now

= L

co^co^ =M

N

In this case the most convenient geometrical equations to express

the relations of these moving axes to axes fixed in space are those

usually called Euler s geometrical equations. They are given in

Chap. V. of Yol. I. where 0^,6^, 6^ must of course be written for

G)j, 0)2, «3.

21. Since dxjdt is arbitrary it may be chosen to simplify either

(I.) the dynamical equations or (II.) the geometrical equations.

I. We may put dxjdt = - Wg. The dynamical equations then

become

^Ti* Cft>2^3 = L

^t- C(0^(0^ =M

"l?
^N
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II. We may so choose dyldt that <^ = 0. In this case the plane

COA always passes through a straight line OZ fixed in space.

Euler's geometrical equations then become

22. Second special case. In the second special case we
suppose as before that the body is turning about a fixed point, but

that all the moments of inertia at the fixed point are equal. In this

case there are three sets of axes which may be chosen with

advantage.

Firstly. We may choose axes fixed in space. Since every axis

is a principal axis in the body, the general equations of motion
become

cZ«, _ L dco^ _M J«3 _N
'dt~A' ~di'~A' ~dt~A'

Secondly. We may choose one axis as that of OC fixed in

space and let the other two move round it in any manner, then as

in the first special case, the equations of motion become

day, dy L
dt =* dt A

^24.,, ^_^
dt'^ 'dt "A

dt A
Thirdly. We can take ds axes any three straight lines at right

angles moving in space in any proposed manner. The equations

of motion may be deduced from the first set just written down by
the help of the general rule for changing from fixed to moving
axes. We have therefore '

dco ^ ^ L

The geometrical equations will then be the same as those

given in Art. 9.

23. Ex. An ellipsoid^ whose centre is fixed, contracts hy cooling and being

ut in motion in any manner is under the action of no forces. Find the motion.

The principal diameters are principal axes at throughout the motion. Let us

take them as axes of reference. The expressions for the angular moments about



CLAIRAUTS THEOEEM. 13

the axes are hj^ = Aio^, h^^Bw.^, \=Co}.^, The equations of Art. 19 then become

|(^a,,)-(B-C7)c.,a,3=0^

Multiplying these equations by^Wj, Bta^i CW3, adding and integrating we see

that A'^u}~^ + B'^(a^-\-Co}.^ is constant throughout the motion. To obtain another

integral, let^=^o/(f), B=BQf{t), 0=0^/(1) where /(<) expresses the law of cool-

ing which has been supposed such that the body changes its form very slowly. Let

«^i/(0 = ^i> w2/(0=^2> ^3/(0 = ^3 > ^^^ V^^ dtjdt'^f{t), then the equations become

Ao^^}-{Bo-c,)ap,=o,

and two similar equations. These may be treated as in the chapter on the motion

of a body under no forces. Liouville's JournaL

On relative motion.

24. Clairaut's Theorem^. The theory of relative motion is

best understood by viewing it in as many aspects as possible. We
shall therefore now consider a method of determining the motion
which is more elementary and does not in the result make an
exclusive use of Cartesian co-ordinates.

Let it be required to refer the motion of a particle P to any
given set of moving axes. Let P^ be the position of P at any
time t and let P^ be attached to the axes and move with them
during any short interval. Let f represent the acceleration of P^,

in direction and magnitude at the time t. The particle P will of

course separate from P^, but as is explained in Dynamics of a
Particle the actual acceleration of P in space is the resultant of

its acceleration relative to P^ treated as a fixed point and the

acceleration / of P^. The acceleration of P^ is called the " accele-

ration of the moving space."

Let ocyz be the co-ordinates of the particle P referred to the

moving axes and let X, Y, Z be the impressed forces on the

particle resolved parallel to the axes. If we eliminate 'u, v, w
from the equations of Art. 4 and Art. 5 we have

* This method of determining the relative motion of a particle was first given

by Clairaut in 1742, and afterwards the same rule was demonstrated in a different

manner by Coriolis. The arguments of the former were criticized and improved by

M. Bertrand in the nineteenth volume of the Journal Poll/technique. The mode of

proof of the latter is altogether independent of all co-ordinates. Another demon-

stration by the use of polar co-ordinates is given in Yol. xii. of the Quarterly

Journal of Mathematics by the Eev. H. W. Watson.
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with similar expressions for Y and Z. Here A, B, C, D are func-

tions of ^j, 6^, ^3, p, q, r and their diiFerential coefficients with

regard to t which it is unnecessary to write down. If x, y, z were

constants all the terms ofX would disappear except the four last.

These then with the corresponding terms in Y and Z express the

acceleration y* of a point P^ rigidly attached to the axes but

occupying the instantaneous position of P.

We have now to examine the effect of the remaining terms.

The motion of the axes of reference during any interval dt may
be constructed by a screw motion along and round some central

axis 01. Let Udt be the translation along and ^dt the rotation

round OL Let V represent the velocity of P relative to these

axes, and let 6 be the angle the direction of V makes with 01.

Consider now the second and third terms of X taken together,

and the corresponding terms of Y and Z neglecting for the

moment all the other terms. If we multiply the expressions for

Xy Yy Z by 6^, 6^y 6^ respectively the sum of these terms is zero.

The resultant of these accelerations is therefore perpendicular to

01. Again, if we multiply the expressions for X, Yy Z by dx/dt,

dy/dt, dz/dt respectively the sum of these terms is again zero.

The resultant of these accelerations is therefore perpendicular to

the direction of the relative velocity V. Finally by adding up
the squares of these terms we find that the magnitude of the

resultant acceleration is 20F sin 0.

To determine the manner in which these forces should be
applied, we must transpose the terms which represent them to the

other sides of the equations. The first equation will then become

and the other two will take similar forms. These are the equa-
tions of motion of a particle referred to fixed axes, moving under
the same impressed forces as before, but with two additional forces.

These are, first, a force equal and opposite to that represented by
mfy where/ is the acceleration of the point of moving space occu-
pied by the particle ; and secondly, a force whose magnitude has
been shown to be 2mFH sin 0. To determine the direction of this

force, let the axis of z be taken along the axis 01, and let the
plane of yz be parallel to the direction of motion of the particle,

then ^^ = 0, ^, = and dx/dt = 0. We then easily see that this

force disappears from the equations giving md^y/dt* and md^z/df
;

while in that giving md'xldt^, we have the single term 2m9^dy/dt.
The magnitude of this force is obviously 2mVil sin 6, and it acts
along the positive direction of the axis of x. This is the left-

hand side when the receding particle is viewed from the central
axis 01.
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When these equations have been integrated, the arbitrary con-

stants are to be determined from the initial values of x, y, z,

djcjdt, dyldtj dzjdt. These differential coefficients are clearly the

components of the initial velocity of the particle, taken relatively

to the moving axes.

25. Relative Motion of a particle. We may express these

conclusions in the following rule.

In finding the motion of a particle of mass m with reference

to any moving axes we may treat the axes as if they were fixed

in space, provided we regard the particle as acted on, in addition to

the impressed forces, by two other forces :

(1) a force equal and opposite to mf where / represents in

direction and magnitude the acceleration of the point of moving
space occupied by the particle. The force mf is called the "force

of moving space
;"

(2) a force perpendicular to both the direction of relative

motion of the particle and to the central axis or axis of rotation

of the moving axes and which is measured by 2mVn sin 6 Avhere

V is the relative velocity of the particle, fl the resultant angular

velocity of the moving axes and 6 is the angle between the

direction of the velocity and the central axis. This force is called

the compound centrifugal force.

To find the direction in which this force is to be applied ; stand

with the back along the central axis so that the rotation appears

to be in the direction of the hands of a watch ; then viewing

the particle receding from the central axis the force acts to the

left-hand. This central axis may be conveniently called the axis

of the centrifugal forces.

26. Ex. If the particle be constrained to move along a curve whicli is itself

moving in any manner, the compound centrifugal force, being perpendicular to the

direction of the relative velocity of the particle, may be included in the reaction of

the curve. The only force which it is necessary to impress on the particle is the

force of the moving space. If the curve be turning about a fixed axis with an

angular velocity fl, the components of the accelerating force of moving space are

clearly U^r tending directly from the axis of rotation, and rdQjdt perpendicular

to the plane containing the particle and the axis, where r is the distance of the

particle from the axis. This agrees with the result obtained in the section on

relative motion in Vol. i. Chap. iv.

27. In finding the compound centrifugal force it will be

useful to remember, that we may resolve the angular velocity H
or the linear velocity V in any manner that we please, and find

the forces due to each of the components separately. Though we
have thus more than two forces which must be applied to the

particle, yet, by making a proper resolution, some of these may
produce either nO effect, and may therefore be omitted, or may
produce an effect which it may be easy to take account of.
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28. Relative Motion of a Rigid body. When we wish to

apply Clairaut's theorem to the motion of a rigid body, we must
consider each particle to be acted on by the two forces which
depend on the position and velocity of that particle. To find the

resultant of all these forces, we shall generally have to effect an
integration throughout the body. This integration though not

difficult will sometimes be troublesome. To avoid this we may
use the two following methods.

In the first place we notice that the forces of moving space

for any body are the same as the effective forces of an imaginary
body occupying the instantaneous position of the real body and
moving with the space instantaneously occupied by it. The
resultant of these forces may therefore be obtained by the usual

rules given to find the resultant of the effective forces of a real

body. These have been already sufficiently explained in Vol. i.

In the second place we notice that the components of the
compound centrifugal forces on anjrparticle are by Art. 24 algebraic

functions of dxidt, dyjdt, dz\dt. These functions are of that kind
described in Vol. I. Chap. I. and represented in Art. 14 of that

chapter by the symbol V. We may therefore use the following

theorem. If M be the mass of the body, V the velocity of its

centre of gravity, H the angular velocity of the moving space, Q
the angle between the direction of Fand the axis of O, then the
compound centrifugal forces of all the particles of the body are

equivalent to a force 2 ^l/Fll sin ^ acting at the centre of gravity

perpendicular both to its direction of motion and the axis of H,
together with the compound centrifugal forces of the body after the
centre of gravity has been reduced to rest.

To find these latter forces, let us refer the body to the prin-

cipal axes at the centre of gravity as axes of co-ordinates. Let
G)j, Wg, 0)3 be the resolved angular velocities of the body, H^, H^j ^s
the resolved parts of II about these axes \ Ay B, G the principal

moments of inertia at the centre of gravity. Then, by Art. 24,

the compound centrifugal forces on any particle of the body whose
co-ordinates are {Xy y, z) and mass m, are

^=-Hf"»-^>|
with similar expressions for Y and Z. The centre of gravity being
at the origin, the resultant forces of these are easily seen by inte-

gration to be all zero, while the resultant couples about the axes
are

z = a>,n3 (^ + 5 - CO - a),n, (^ + a- i?) - 2n,xi3 (^ - (7j,

with similar expressions for M and N,

29. Ex. 1. A disc of mass M is constrained to move in a plane under any
forces while the plane turns about a straight line parallel to the plane and distant
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a from it with angular velocity O. Show that in finding the motion of the disc, we

may regard the plane as fixed, provided we impress on the disc in addition to the

given forces, (1) a force MUh' - Ma dQjdt acting through the centre of gravity tending

directly from the projection of the axis of rotation on the plane, where r is the

distance of the centre of gravity from the projection, (2) a couple iW where F ia

the product of inertia about two rectangular axes in the plane intersecting at the

centre of gravity, and respectively parallel to the axis and perpendicular to it.

The constants of integration are to be determined from the initial conditions taken

relatively to the moving plane.

Ex. 2. A disc of mass M is constrained to move in a plane under any forces

while the plane turns with angular velocity Q about a straight line perpendicular to

its plane and cutting the plane in the point 0. Show that we may regard the plane

as fixed provided we impress on the disc (1) a force MU-r acting at the centre of

gravity and tending directly from the axis, where r is the distance of the centre of

gravity from the axis, (2) a force 3Ir dQjdt acting at the centre of gravity perpen-

dicular to r in the direction opposite to the rotation, (3) a cOuple Mk^ dUjdt, where

3Ik^ is the moment of inertia of the disc about an axis through its centre of gravity

perpendicular to its plane, (4) a force 2MVQ acting at the centre of gravity perpen-

dicular to its direction of motion, where V is the velocity of the centre of gravity.

Ex. 3. A sphere of mass 31 moves in space, show that the compound centri-

fugal forces of all its elements are equal to (1) a resultant force 2MVQ sin 6 acting

at the centre of gravity, where V is the velocity of the centre of gravity and U the

angular velocity of the moving space and 9 the angle the direction of V makes with

the axis of O, (2) a couple ^liPilio sin 0, where w is the angular velocity of the

sphere, <p the angle its instantaneous axis makes with the axis of fi, and the plane

of the couple is parallel to the axes of and w.

30. Principle of Vis Viva applied to xuovins axes. Suppose the system at

any instant to become fixed to the set of moving axes relative to which the motion is

required, and calculate what would then be the effective forces on the system. These

have been called in Art. 25 the forces of moving space. If we apply these as ad-

ditional impressed forces on the system, but reversed in direction, we may use the

equation of Vis Viva to determine the relative motion as if the ax^s were fixed in

space. This theorem is due to Coriolis, Journal Polytech. 1831.

If we follow the notation of Art. 24 the accelerations of any point P resolved

parallel to the rectangular moving axes are

with two similar expressions for the axes of y and z. The last four terms, with the

corresponding terms in the other expressions, are the resolved accelerations of

a point Pq rigidly attached to the axes, but occupying the instantaneous position of

P. Let us call these Xq, Y^, Zq.

Let us now recur to the proof of the principle of Vis Viva given in Vol. i.

Chap. VII. To adapt that proof to our present case we have merely to substitute

these expressions for d^xjdt^, &c. in the general equation of virtual moments.

After substitution for the displacements 5x, 5y, 8z it is clear that the terms con-

taining dxfdt, dyjdt, dzjdt all disappear. The equation after integration then

becomes

^"'
l(^)'

"*"

{^dlf
+ ('I)}

=2Sm{(X-X„)dr + (F- Y,)d!,+ {Z - Zo)dz] + G.

R. D. II. 2
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31. This theorem of Coriolis also follows at once from tha* given in Art. 25 for

all kinds of relative motion. The mode of proof just given has the advantage of

recurring to first principles.

It is clear that when we use the principle of virtual velocities any force whose

line of action is perpendicular to the displacement given to its point of application

must disappear from the equation. Now in the principle of Vis Viva the displace-

ment given to every point is the elementary arc described by that point in the time

dt relative to the axes. The compound centrifugal force acts perpendicularly to

this arc, and therefore will disappear from the equation. But the virtual moments of

the forces of moving space will not be zero, and must be allowed for in the equation.

32. Ex. A sphere rolls on a perfectly rough plane, which twns with a

uniform angular velocity n about a horizontal axis in its own plane. Supposing the

motion of the sphere to take place in a vertical plane perpendicular to the axis of

rotation, find the motion of the sphere relatively to the plane.

Let Ox be the trace described by the sphere as it rolls on the plane, and let

Oy be drawn through the axis of rotation perpendicular to Ox in the plane of

motion of the sphere. Let nt be the angle Ox makes with a horizontal plane

through the axis of rotation. Let <p be the angle that radius of the sphere which was

initially perpendicular to the plane makes with the axis of y. Let x, y be the

co-ordinates of P the centre of the sphere and Mk^ the moment of inertia of the

sphere about a diameter.

If the sphere were fixed relatively to the plane its effective forces would be Mn-x
and Mn^y acting at the centre of gravity, and a couple Mk^dnldt= round the

centre of gravity. Also the impressed force, viz. gravity, is equivalent to g sin nt

and - g cos nt parallel to the moving axes. The equation of Vis Viva for relative

motion is therefore

.d (fdxy fdyy ,Jd<}>y\ ^ dx ^ dy . dx dii

Here dxfdt= a dtpldt and dyfdt = 0. We have therefore

d^x
=zn^x + g sin nt.(-3 dt^

This equation might also have been derived from the formulae for moving axes

given in Vol. i. Chap. iv.

If ^»=r|a' this equation leads to

where A and B are two constants which depend on the initial conditions of the

sphere.

On Motion relative to the Earth,

33. The motion of a body on the surface of the earth is not
exactly the same as if the earth were at rest. As an illustration

of the use of the equations of this chapter, we shall proceed to
determine the equations of motion of a particle referred to axes
of co-ordinates fixed in the earth and moving with it.

Let be any point on the surface of the earth whose latitude
is X. Thus \ is the angle the normal to the surface of still water
at makes with the plane of the equator. Let the axis of z be
vertical at and measured positively in the direction opposite to
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gravity. Let the axes of x and y be respectively a tangent to the
meridian and a perpendicular to it, their positive directions being
respectively south and west. In the figure the axis of y is dotted
to indicate that it is perpendicular to the plane of the paper. Let

ft) be the angular velocity of the earth, h the distance of the point

from the axis of rotation.

We may reduce the point to rest by applying to every
point under consideration an acceleration equal and opposite to

that of 0, and therefore equal to 0)^6 and tending from the axis of

rotation. We must also apply a velocity equal and opposite to

the initial velocity of 0. This velocity is &>&. The whole figure

will then be turning about an axis 0/, parallel to the axis of

rotation of the earth with an angular velocity &>.

When the particle has been projected from the earth it is acted

on by the attraction of the earth and the applied acceleration

v)^h. The attraction of the earth is not what we call gravity.

Gravity is the resultant of the attraction of the earth and the

centrifugal force, and the earth is of such a form that this resultant

acts perpendicular to the surface of still water. If it were not

so, particles resting on the earth would tend to slide along the

surface. It appears, therefore, that the force on the particle,

after O has been reduced to rest, is equal to gravity. Let this be
represented by g. Besides this there may be other forces on the

particle, let their resolved parts parallel to the axes be X, F, Z.

Since the earth is turning round 01 with angular velocity &>,

the resolved part about Oz is co sinX, since the angle lOz is the

complement of (o ; since the rotation is from west to east, the

resolved angular velocity is from y to oc, which is the negative

direction, hence 6^ = -co sin \. The resolved angular velocity

round Ooc is (o cos \ and is from y to z, which is the positive

direction, hence d^-oy cos X. Also since 01 is perpendicular to

2—2
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Oy, 6^ = 0. Hence, by Art. 4, the actual velocities of any particle

whose co-ordinates are {x, y, z) are

die
w = -IT + Q) sin Xy

dt
— (o cos \z — (o sin \x y '

dz
,

.

w = --r:-\-(*y cos Xy

To find the equations of motion it is only necessary to substitute

these in the equations of Art. 5.

The resulting equations may be simplified if we neglect such

small quantities as the difference between the force of gravity at

different heights. If a be the equatorial radius of the earth and

g the force of gravity at a height z, we have g = g {1 — 2z/a)

nearly. Now co^a is the centrifugal force at the equator, which is

known to be -^g. Hence if we neglect the small term gz/a we
must also neglect (o^z. The equations will therefore become

d^x ^ . ^ dy
^+2a,smX-J =

d\i/ „ ^dz
-ria — 26) cos A -r- •

df dt

d^^
. cs ^ dy

-y^ + zco COS X -f-dr dt

X

2a) sin X -t: = F
dt

-g + Z

where the terms (X, F, Z) include all the accelerating forces,

except gravity, which act on the particle. These equations agree

with those given by Poisson, Journal Polytechnique , 1838.

34. If we do not neglect the term containing rw^ the equations

of motion are

dtX du
-T^ + 2a) sin X -^ — o)' sin*\a? — o)* sin X cos Xs^ = X,

j^ — 2a) cos X-r: — 2a) sin X -77 — coy = F,
at at at

-i-j + 2a) cos X -^ — a) cos X? — a) sm X cos Xa; = — ^ + Z.

36. As an example, let us consider the case of a particle dropped from a

height h. The initial conditions are therefore x, y, dxjdt, dyjdt, dzjdt all zero, and
z=h. As a first approximation, neglect all the terms containing the small factor w.

Then we have a;=0, y=0, z = ^- i(7«'.

For a second approximation, we may substitute these values of (a:, y, z) in the

small terms. We have after integration

x = 0, y= -iwcosX<7«', z-h-^gt"^.

Thus there will be a small deviation towards the east, proportional to the cube
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of the time of descent. There will be no southerly deviation, and the vertical

motion will be the same as if the earth were at rest.

An elementary demonstration of this result will make the whole argument

clearer. Let the particle be dropped from a height h vertically over 0. Then O
being reduced to rest, the particle is really projected eastwards with a velocity

(ah cos X. Hence, if the direction of gravity did not alter owing to the rotation of

the earth about 01, the particle would describe a parabola and the easterly deviation

would be (wTtcos X) t where t is the time of falling. Since h= ^gt^, this deviation is

4 w cos \gt^. The rotation w about 01 is equivalent to w sin X a]30ut Oz and w cos X
about Ox. The former does not alter the position oi 00 the normal to the surface

of the earth, which is the direction of gravity. The latter turns 00 in any
time t through an angle wcosXf. Thus gravity gradually changes its direction

as the particle falls. The particle is therefore acted qn by a westerly component

=g sin (w cos \t), which, since ut is small, is nearly equal to gu cos Xt. Let y' be the

distance of the particle from the position of the plane xz in space at the moment
when the particle began to fall, and let y' be measured positively to the west. The
equation of motion of the particle in space is therefore<Py!Idt^=:g(at cos \. Inte-

grating this and remembering that as explained above dy'/dt= -wh cos X when
t=0, we get y'= - uht cos X + ^gtat^ cos X. When the particle reaches the ground we
have y'=y very nearly and ^= ^5ff^ thus the deviation westwards is - ^cagt^ coaX^

which is the same as before. If it be not evident that y'=^y„ it may be shown thus.

In the time t Oy, Oz have turned through a very small angle ^= w cos \t, hence, as

in transformation of axes, y'= y coad-z sin 6, which gives y'=y when we reject the

squares of 6.

36. In many cases it will be found convenient to refer the

motion to axes more generally placed. Let be the origin, and
let the axes be fixed relatively to the earth, but in any directions

at right angles to each other. Let 0^, 6^, 0^ be the resolved

parts of G) about these axes, then 6^, 6^, 6^ are known constants.

After substituting from Art. 4 in the equations of motion given
in Art. 5 we get

For example, if we wished to determine the motion of a projectile, it will be

convenient to take the axis of z vertical and the plane of xz to be the plane of

projection. Let the axis of x make an angle ^ with the meridian, the angle being

measured from the south towards the west. Then

^1= w cos X cos /3, ^2= - '^ cos X sin j3, ^3=— wsinX.

These equations may be solved in any particular case by the

method of continued approximation. If we neglect the small

terms we get a first approximation to the values of (x, y, z). To
find a second approximation we may substitute these values in the

terms containing o and integrate the resulting equations. As
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these equations are only true on the supposition that &>* may be

neglected, we cannot proceed to a third approximation.

37. Ex. 1. A particle is projected with a velocity F in a direction making an

angle a with the horizontal plane, and such that the vertical plane through the

direction of projection makes an angle /3 with the plane of the meridian, the angle /8

being measured from the south towards the west. If x be measured horizontally in

the plane of projection, y be measured horizontally in a direction making an angle

/9 + ix with the meridian, and « vertically upwards from the point of projection,

prove that x=V cos at + {V sin at^ - ^ gt^) w cos X sin j8,

y = (F sin at^ - ^gt^) w cos X cos j3+ F cos af^w sin X,

« = Fsin a« - \gt^ - Fcos at^w cos X sin /3,

where X is the latitude of the place, and w the angular velocity of the earth about

its axis of figure.

Show also that the increase of range on the horizontal plane through the point

of projection is 4w sin /3 cos X sin a (^ sin^ a - cos^ a) V^jg^t

and the deviation to the right of the plane of projection is

4w Bin'a (\ cos X cos /3 sin a + sin X cos a) V^fg^,

Ex. 2. A bullet is projected from a gun nearly horizontally with great velocity

so that the trajectory is nearly flat, prove that the deviation is nearly equal to

Rtu sin X, where R is the range, and the other letters have the same meaning as in

the last question. The deviation is always to the right of the plane of firing in the

Northern hemisphere, and to the left in the Southern hemisphere. It is asserted

(Comptes Rendus, 1866) that the deviation due to the earth's rotation as calculated

by this formula is as much as half the actual deviation in Whitworth's gun.

Ex. 3. A spherical bullet is projected with so great a velocity that the resistance

of the air must be taken into account. The resistance of the air being assumed to

be k (vel)2, and the trajectory to be flat, prove that, neglecting the effects of the

rotation of the earth,

Jcx

=

log (1 + kVt) kVy = 2w sin X ( F« - »)

^kV^{z-x tan a + am /3 cot \y)=-g (2Ft -2x + kVH^).

These are given by Poisson, Journal Polytechnique, 1838.

38. Disturbance of a Pendulum. Let us apply the equa-

tions of Art. 36 to determine the effect of the rotation of the earth

on the motion of a pendulum. In this as in some other cases, it

will be found advantageous to refer the motion to axes not fixed in

the earth but moving in some known manner. Let the axis of z

be vertical as before and let the axes of x and y move slowly

round the vertical with angular velocity w sin \ in the direction

from the south towards the west. In this case we have

6^ = (o cos \ cos y9, 0^= — (o cos \ sin y9,

and (?3 = — o)8in\+ ft)sin\ = 0,

where ff is the angle the axis of x makes with the tangent to the

meridian, so that dff/dt = w sin \. If, as before, we neglect quanti-

ties which contain the square of « as a factor, the terms which
contain dBJdt and ddjdt must be omitted. Hence the required

equations may be obtained from those of Art. 36, by putting ^3 = 0.
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If m be the mass of the particle, I the length of the string, and
T the tension ; these equations are

d^x ^ ^ , ^dz T X
-j-r. — zo) cos X sm n -77 = —— -r

dt' ^ dt ml

-T^ — ZCt) cos X cos p -t: = >
dt' ^ dt ml

^^
. o % • o^^ .0 ^ ody T l-z

:7^ + Zo) cos \ sin /3 -V7 + 2cD cos \ cos « -7^ = — gr 4-— -—
df ^ dt ^ dt ^ m I

the origin being taken at the lowest point of the arc of oscillation.

If the oscillation be sufficiently small z will differ from zero by
small quantities of the order 0? where a is the semi-angle of oscil-

lation. The last equation then shows that T differs from mg by
quantities of the order cool at least. If then we neglect terms of the
order oja^ and a^ we may put mg for T in the two first equations
and neglect the terms containing w dz/dt. The equations of motion
thus become the same as for a pendulum attached to a fixed

point. The solutions of the equations are clearly

a; = ^cos(^y/|^ + c), 3/ = 5 sin
(
W^| i5 + dV

The small oscillations of a pendulum on the earth referred to

axes turning round the vertical with angular velocity w sin X are

therefore the same as those of an imaginary pendulum suspended
from an absolutely fixed point.

Let us then suppose the pendulum to be drawn aside so as to

make with the vertical a small angle a and then let go. Relatively

therefore to the axes moving round the vertical with angular

velocity co sin X we must suppose the particle to be projected with

a velocity I sin aco sin X perpendicular to the initial plane of dis-

placement. We have then when ^ = 0, x = loi, y = 0, dx/dt = 0,

dy/dt = — laco sin X. It is then easy to see that in the above values

of X and y, G and D are both zero and that the particle de-

scribes an ellipse, the ratio of the axes being cosinX (//^)* The
eifect of the rotation of the earth is to make this ellipse turn

round the vertical with uniform angular velocity (o sin X in a

direction from south to west. If the angle a be not so small

that its square may be neglected, it is known by Dynamics of a

particle that, independently of all considerations of the rotation

of the earth, there will be a progression of the apsides of the

ellipse. It is therefore necessary for the success of the experi-

ment that the length I of the pendulum should be very great.

This motion, of the apsides depending on the magnitude of a is in

the opposite direction to that caused by the rotation of the earth.

It also appears that the time of oscillation is unaffected by the

rotation of the earth, provided the . arc of oscillation be so small
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that the effects of forces whose magnitude contains the factor ©a*
may be neglected.

39. Ex. 1. In Foncault's experiment, a long pendulum is suspended from a

point over the centre of a circular table, and the arc of oscillation is seen to pass

from one diameter to another. Show that the arc of the circular rim of the table

described by the plane of oscillation in one day is equal to the difference in length

between two parallels of latitude one through the centre and the other through the

northern or southern extremity of the rim. This theorem is due to Prof. J. R.

Young.

Ex. 2. A heavy particle is suspended from a fixed point of support by a string

of length a and the effect of the rotation of the eajth is neglected. In the two

following cases the path of the particle is very nearly an ellipse whose apses advance

in each complete revolution of the particle through an angle /S . 27r. If h and c be

the major and minor semi-axes of the ellipse, prove (1) when h and c are small

compared with a, that p=\hcja^^ and (2) when h and c are not small compared with

a, but are very nearly equal, that (j3 + 1)"^= 1 - 1 h^ja^.

Ex. 3. A pendulum, at rest relatively to the earth, is started in any direction

with a small angular velocity, show that the oscillations will take place in a vertical

plane turning uniformly round the vertical so that the pendulum becomes vertical

once in each half oscillation.

Ex. 4. Let d be the angle a pendulum of length I makes with the vertical, and

the angle the vertical plane containing the pendulum makes with a vertical plane

which turns round the vertical with uniform angular velocity w sin X in a direction

from south to west. Prove that when terms depending on w^ are neglected the

equations of motion become

^ /^8in2 ^ ^^A = 2 8in» ^ cos (0 + /3)w cos X^

,

where A is an arbitrary constant, and the other letters have the meanings given to

them in Art. 36. See M. Quet in Liouville's Journal, 1853.

These equations will be found convenient in treating the motion of a pendulum.

They may be easily obtained by transforming those given in Art. 38 to polar co-

ordinates.

Ex. 5. A semi-circular arch ACB is fixed with its plane vertical on a horizontal

wheel at A and B, and may thus be moved with any degree of rapidity from one

azimuth to another. A rider sUdes along the inner edge of the arch which is

graduated and may be fixed at any degree marked thereon. A spiral spring by

means of which a slow vibration is obtained with comparatively a short length is

attached at one end to a pin in the axis of the semicircle so that the point of

attachment may be in the axis of rotation and at the other end it is fixed to a

similar pin in a parallel position fixed to the rider. The vertical semicircle is not

placed in a diameter of the horizontal wheel but parallel to it at such a distance as

not to interrupt the eye of the observer from the vertical plane passing through the

diameter, and in which plane the wire in all its positions remains.

If the rider be placed at an angular distance d from the highest point of the

arch and the wire set in vibration in any plane, show that the plane of vibration of

the wire will make a complete revolution relatively to the arch while the arch turns

round sec 6 complete revolutions. This is best observed by fixing the eye on a line
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in the same plane with the wire while walking round with the wheel during its

rotation. This apparatus was devised by Sir C. Wheatstone to illustrate Foucault's
mechanical proof of the rotation of the earth. Proceedings of the Eoyal Society,

May 22, 1851.

40. Disturbance of motion in one plane. In the first volume of this treatise

a chapter has been devoted to the discussion of the motion of a body or a system of

bodies constrained to remain in a fixed plane. This plane has been treated as if it

were really fixed in space. But since no plane can be found which does not move
with the earth, it is important to determine what effect the rotation of the earth will

have on the motion of these bodies. Let us treat this as an example of the method
of Clairaut and Coriolis given in Art. 25.

Let the plane make an angle \ with the axis of the earth. Let a point in

this plane be on the surface of the earth and let it be reduced to rest. Then, as

proved in Art. 33, the moving bodies while in the neighbourhood of are acted on
by their weights in a direction normal to the surface of the earth. The earth is

now turning round an axis through parallel to the axis of figure with a constant

angular velocity w. Let this angular velocity be resolved into two, viz., -wsinX
about an axis perpendicular to the plane and w cos X about an axis in the plane.

Now the square of w is to be rejected, hence by the principle of the superposition of

small motions, we may determine the whole effect of these two rotations by adding

together the effects produced by each separately.

It is a known theorem that if a particle be constrained to move in a plane which

turns round any axis in that plane with a constant angular velocity w cos \, the

motion may be found by regarding the plane as fixed and impressing an accelera-

tion wV cos^ X on the particle, where r is the distance of the particle from the axis.

This may be deduced, as in Art. 26, from the theorem of Clairaut. This impressed

acceleration is to be neglected because it depends on the square of w. The angular

velocity w cos X has therefore no sensible effect.

If the bodies be free to move in the plane, the effect of the rotation - w sin X is to

turn the axes of reference round the normal to the plane drawn through the point

0. If then we calculate the motion without regard to the rotation of the earth,

taking the initial conditions relative to fixed space, the effect of the rotation of the

earth may be allowed for by referring this motion to axes turning round the normal

with angular velocity — w sin X. For example, if the body be a heavy particle sus-

pended by a long string from a point O fixed relatively to the earth, it is really

constrained to move in a horizontal plane, and the reasoning given above shows

that the plane of oscillation will appear to a spectator on the earth to revolve with

angular velocity - w sin X round the vertical.

If the bodies be constrained to revolve with the plane, it will be required to find

the motion relatively to that plane. We must therefore apply to each particle the

force of moving space and the compound centrifugal force. If r be the distance of

any particle of mass m from 0, the former is mrco^ sin^ X. This is to be neglected

because it depends on the square of w. The latter is therefore the only force to be

considered. By Art. 28, the compound centrifugal forces on all the particles of a

body are equivalent to a force at the centre of gravity and three couples. In our

case these couples are easily seen to be zero. For if the plane be taken as the plane

of xy, we have Oi= 0, ^=0, Wj^O, ^2= 0. Hence L, M, N are all zero. If, there-

fore, m be the mass of a body, V the relative velocity of its centre of gravity, the

effect of the rotation of the earth may be found according to the rule given in Art.

25, by impressing on the body a force equal to - 2mF« sin X, acting at the centre of



26 MOTION RELATIVE TO THE EARTH.

gravity, in the plane of motion and perpendicular to the direction of motion of the

centre of gravity.

The ratio of this force to gravity for a particle moving 32 feet per second, is at

most 4t/24. 60.60, which is less than a five thousandth. This is so small that,

except under special circumstances, its effect will be imperceptible.

41. Disturbance of the motion of a rigid body. Hitherto

we have considered chiefly the motion of a single particle. The
etfect of the rotation of the earth on the motion of a rigid body
will be more easily understood when the methods to be described

in the following chapters have been read. If, for example, a body
be set in rotation about its centre of gravity, it will not be difficult

to determine its motion as viewed by a spectator on the earth,

when we know its motion in space. It seems, therefore, sufficient

here to consider the peculiarities which these problems present,

and to seek illustrations which do not require any extended use of

the equations of motion.

42. The effect of the rotation of the earth is in general so

small compared with that of gravity, that it is necessary to fix the

centre of gravity in order that the effects of the former may be
perceptible. Even when this is done, the friction on the points of

support and the other resistances, cannot be wholly done away
with. If, however, the apparatus be made with care that these

resistances should be small, the effects of the rotation of the earth

may be made to accumulate, and after some time to become
sufficiently great to be clearly perceptible.

If a body be placed at rest relatively to the earth and free to

turn about its centre of gravity as a fixed point, it is actually in

rotation about an axis parallel to the axis of the earth. Unless

this axis be a principal axis, the body would not continue to rotate

about it, and thus a change would take place in its state of

motion. By referring to Euler's equations, we see that the change
in the position of the axis of rotation is due to the terms
{A — B)(o^(D^, (B— C)a)^(o^, {C— A) 0)^(0^. The body having been
placed apparently at rest, w^, w^, w, are all small quantities of

the same order as the angular velocity of the earth ; these terms
are, therefore, all of the order of the squares of small quantities.

Whether they will be great enough to produce any visible effect

or not will depend on their ratio to the frictional forces which
could be called into play. But since these frictional forces are

just sufficient to prevent any relative motion, these terms will in

general be just cancelled by the frictional couples introduced into

the right-hand sides of Euler's equations. The body will, there-

fore, continue at rest relatively to the earth.

In order that some visible effect may be produced, it is usual

to impress on the body a very great angular velocity about some
axis. If this be the axis of o),, the terms in Euler's equations,

which arc due to the centrifugal forces, and which contain w^ as a

\
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factor, become greater than when co-g had no such initial value.
The greater this initial angular velocity, the greater these terms
will be, and the more visible we may expect their effects on the
body to be.

If the angular velocity thus communicated to the body be
sufficient to turn it only once in a second, it will be still

24 X 60 X 60 times as great as the angular velocity of the earth.

In these problems, therefore, we may regard the angular velocity
of the earth as so small, compared with the existing angular
velocities of the body, that the square of the ratio may be neg-
lected.

As an example of the application of these principles, we have
selected one case of Foucault's pendulum, which seems to admit of

an elementary solution.

43. The centre of gravity of a solid of revolution is fixed,

while the axis of figure is constrained to remain in a plane fixed
relatively to the earth. The solid being set in rotation about its

axis offigure, it is required to find the motion.

Let us refer the motion to moving axes. Let the centre of

gravity be the origin, the plane of yz the plane fixed relatively to

the earth. Let the axis of figure be the axis of z, and let it make
an angle y^ with the projection of the axis of rotation of the earth

on the plane of yz. Let this projection, for the sake of brevity, be
called the axis of %. Let p be the angular velocity of the earth

about its axis, a the angle the normal to the plane of yz makes
with the axis of the earth. We suppose p to be reckoned positive

when the rotation is in the standard direction usually taken as

positive, i.e. when viewed from the positive extremity of the axis,

the rotation appears to be in the direction of the hands of a watch.

Since the earth turns from west by south to east, it follows, if the

angle a be measured from the northern extremity P of the axis,

that p is really negative and is represented in Art. 33 by — w. The
motion of the moving axes is given by

^1 = 2? cos a + -^

,

^2 =p sin a sin
;)^,

0^=p sin a cos x-

Let ft)j, ft)^, Wg be the angular ve-
locities of the body about the moving
axes ; A, A,C the principal moments
of inertia at the centre of gravity.

Let R be the reaction by which the
axis of figure is constrained to remain
in the fixed plane, then R acts

parallel to the axis of x. Let h be the distance of its point of
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application from the origin. The angular momenta about the

axes are respectively

Substituting in Art. 16, the equations of motion are

A^-c<D,e, + Aay,e,^Bh

C^^-Afofi. + Aco^O^^O

Since the axis of z is fixed in the body, we see by Art. 3, that

o,^ = ^^, (0^ = 0^. The last equation of motion, therefore, shows that

Wg is constant. It should however be remembered that &>, is not

the apparent angular velocity of the body as viewed by a spectator

on the earth. If Hg be the angular velocity relatively to the

moving axes, we have by Art. 3, fl^ = ct)^— 6^, so that

Hg + j9 sin a cos % = constant.

Thus the body, if so small a difference could be perceived, would
appear to rotate slower or quicker the nearer its axis approached

one extremity or the other of the projection of the axis of the

earth's rotation on the fixed plane.

The first equation of motion after substitution for w^, w^* ^2' ^a»

their values in terms of
'x^,

becomes

A -T,2 — ^p^ sin*a sin '^ cos x + ^''^Jp
sin a sin

;;^
= 0,

where n has been written for Wg. The second term may be re-

jected as compared with the third, since it depends on the square

of the small quantity p. We have, therefore,

cfY C . .

This is the equation of motion of a pendulum under the action

of a force constant in magnitude, and whose direction is along the

axis of %, i.e the projection of the axis of rotation of the earth

on the fixed plane. The body being set in rotation about its axis

of figure, we see that that axis will immediately begin to approach
one extremity or the other of the axis of x with a continually

increasing angular velocity. When the axis of figure reaches the

axis of X* i^s angular velocity will begin to decrease, and it will

come to rest when it makes an angle on the other side of the
axis of X equal to its initial value. The oscillation will then be
repeated continually.

The axis of figure will oscillate about that extremity of the
axis of Y, which, when x ^^ measured from it, makes the coefficient

on the right-hand side of the last equation negative. This extre-
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tnity is such, that when the axis of figure is passing thro*ugh it,

the rotation n of the body is in the same direction as the resolved
rotation p of the earth.

44. If we compare bodies of different form, we see that the
time of oscillation depends only on the ratio of G to A. It is

otherwise independent of the structure or form of the body. The
greater this ratio the quicker will the oscillation be. For" a solid

of revolution this ratio is greatest when l^mz^ = 0. In this case

the ratio is equal to 2, and the body is a circular disc or ring.

45. If we compare the different planes in which the axis may
be constrained to remain, we see that the motion is the same for

all planes making the same angle with the axis of the earth. It is

therefore independent of the inclination of the plane to the horizon
at the place of observation. The time of oscillation will be least,

and the motion of the axis most perceptible when a = Jtt, i.e. when
the plane is parallel to the axis of rotation of the earth. If the
plane be perpendicular to the axis of the earth, the axis of figure

will not oscillate, but if the initial value of dx/dt is zero, it will

remain at rest in whatever position it may be placed.

46. Ex. 1. Show that a person furnished with the particular form of Fou-

cault's pendulum just described, could, without any Astronomical observations,

determine the latitude of the place, the direction of the rotation of the earth, and

the length of the sidereal day. This remark is due to M. QUet, who has given a

different solution of this problem in Liouville's Journal, Vol. xviii.

Ex. 2. If the body be a rod, and its centre of gravity supported without friction,

prove that it could rest in relative equilibrium either parallel or perpendicular to

the projection of the earth's axis on the plane of constraint. If it be placed in any

other position, its motion will be very slow, depending on p^, but it will oscillate

about a mean position perpendicular to the projection of the earth's axis.

Ex. 3. If the axis of figure be acted on by a frictional force producing a

retarding couple, whose moment about the axis of x bears a constant ratio fi to the

moment of the reactional couple about the axis of y, and if the fixed plane be

parallel to the axis of the earth, find the small oscillations about the position of

equilibrium. Show that the position at any time t is given by

where 2i4\=/i(Cn-2^2;) and L and M are two constants depending on the initial

conditions.

Ex. 4. The centre of gravity of a solid of revolution is fixed, while the axis of

figure is constrained to remain in the surface of a smooth right cone fixed relatively

to the earth. Show that the axis of figure will oscillate about the projection of the

axis of rotation of the earth on the surface of the cone, and that the time of a com-

plete small oscillation about the mean position will be 27r(^ sine/Cjsn sin /3)4,

where e is the semi-angle of the cone, j3 the inclination of its axis to the axis of the

earth, and the other letters have the same meaning as before. This result is due to

M. Quet.



30 MOTION RELATIVE TO THE EARTH.

Ex. 5. Two equal heavy rods CAy CB are connected by a hingis at C, with a

spring so that they tend to make a known angle with each other. The free ends

A and B are then tied together and the whole is suspended by a string OC attached

to the hinge. The system is left to itself until it is at rest relatively to the earth.

If the string which fastens A and B be now cut, the arms separate from each other.

Show that the system will immediately have an apparent angular velocity round

the vertical equal to p sin \ {['-1)11', where /, 7' are the moments of inertia of the

system about the vertical OC respectively before and after the string joining A and

B was cut, p is the angular velocity of the earth about its axis and X is the latitude

of the place. In which direction will the system turn? This apparatus was

devised by M. Poinsot who considered that the experiment would be so effective

that the latitude of the place could be deduced from the observed angular velocity.

See Cotnptes Rendus, 1851, Tome xxxii. page 206.

Ex. 6. If a river is flowing due north, prove that the pressure on the eastern

bank at a depth z is increased by the change of latitude of the running water in

the ratio gz + bvu sin I : gz, where b is the breadth of the stream, v its velocity, I the

latitude and w the angular velocity of the earth about its axis. [Math. Tripos, 1875.]

Ex. 7. A wave like the Tide-wave travels along a river with its crest at right

angles to the banks. Deduce from Clairaut's rule (Art. 25) that the tide is higher on

one bank than on the other, and show that the height of the tide decreases in

geometrical progression for equal increments of distance from one bank.

The general line of argument is as follows. Since the motion of the water is

very nearly in a horizontal plane we may (by Art. 40) disregard the rotation of the

earth provided we apply to every particle an acceleration 2wv sin \ perpendicular to

its direction of motion, i.e. perpendicular to the direction of the river. Hence the

river must be so much higher on one side than the other that the pressure due by

gravity to the difference of level is equal to that due to the applied acceleration.

If ^ be the altitude of the tide above the mean level at a distance y from that side

of the river at which the tide is highest, we have - gd^= 2a>v sin \dy. But in the

theory of tides as undisturbed by the rotation it is proved that v is proportional to j;.

The result follows by integration.



CHAPTER II.

OSCILLATIONS ABOUT EQUILIBRIUM.

Lagrange's Method with indeterminate multipliers.

47. In the first volume of this treatise Lagrange's method
of finding the small oscillations of a system about a position of

equilibrium has been explained. It is our object, not to repeat
those explanations, but rather to examine how that theory is

modified by the use of indeterminate multipliers. In a dynamical
problem it generally happens that we want to know how some
particular quantities change with the time. Now it is one of the
chief advantages of Lagrange's method that it gives a large choice

of quantities which may be taken as co-ordinates. The quantities

we most wish to find are therefore usually chosen for the inde-

pendent co-ordinates and their variations can then be found from
Lagrange's equations. But sometimes we find that this introduces

a great complication of symbols. Perhaps we lose thereby some
principle of symmetry which would have abbreviated and simplified

the whole process. We now propose to consider what modifications

must be introduced into the equations when those particular

equations whose values we most require cannot be conveniently

introduced as independent co-ordinates. For this purpose the

method of indeterminate multipliers may be used with great

advantage.

48. Let the system be referred to any co-ordinates 6, 0, &c.

which are so small that we may reject all powers of them except

the lowest which occur. They should therefore be so chosen that

they vanish in the position of equilibrium. Let n be the number
of those co-ordinates. Assuming that the geometrical equations

do not contain the time explicitly the vis viva 2T will be a quad-
ratic function of the velocities, and may therefore be expanded
in a series of the form

2T= AJ" + 2AJ'<1>' + J,,f^ + &c.

Here the coefficients A^^^ &c. are all functions of 6, ^, &c. and we
may suppose them to be expanded in a series of some powers of

these co-ordinates. Since the oscillations are so small that we may
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reject all powers of the small quantities except the lowest which

occur, we may reject all except the constant terms of these series.

We shall therefore regard the coefficients A^^y &c. as constants.

We must now make an expansion for the force function U
in a series of powers of 0,

(f),
&c. If the co-ordinates 6,

<f),
&c. were

all independent, the terms containing the first powers would

vanish, because by the principle of virtual velocities dU/dd,

dUjdtf), &c. are zero in the position of equilibrium for all variations

of 6, <j>, &c. which are consistent with the geometrical conditions.

But as this does not necessarily occur when 0, <j), &c. are connected

by geometrical relations, we take as our expansion

U-'U,= C,0 + C,<f> + &c.+i 0^,6" + CJ<i> + C,,^' + &c.,

•where U^ is a constant which is easily seen to be the value of ZJ in

the position of equilibrium. We may notice that the coefficients

^\> ^8> &c. are not unrestricted. They must be such that the

equations of equilibrium are all satisfied.

Since the co-ordinates 6, </>, &c. are not independent there will

be some geometrical relations which connect them. To simplify

matters, let us suppose that there are but two such relations. Let
these be f{6, <j>, &c.) = 0, F {6, <f),

&c.) = 0. We may also expand
these in powers of the co-ordinates in the following manner

:

/= G,e + G,<j> + &c. -f iGJ' + GJ<I> + lG,,<i>' + &c.

F=^H,e + H,<t> 4- &c. 4- ^H^.e' + HJ<f> + \H^^<1>'^ &c.

The constant terms of these series are omitted because the geome-
trical equations are to be satisfied when the system is in equili-

brium, i.e. when ^ = 0, <^ = 0, &c.

We have now to substitute these series in the Lagrangian
equations. Referring to Chap. Vlll. of Vol. I. these are represented

by the type

d^dT_dJ_dU df dF
dtd& de'dd"^ dd'^^dO '

with similar equations for
<f>,

yjf, &c. Here X, fi are indeterminate

multipliers whose values have to be found from the equations thus

written down. The results of these substitutions are obviously

^„r + &c. = C, + GJ + &c.+\{G^ + &c.) + /* (J^, + &c.),

J^,r + &c. = 0, + CJ + &c. + \ {G, + &c.) -\-fi{H, + &c.),

&c. = &c.

49. Since the system has been disturbed from a position of

equilibrium these equations are all satisfied by ^ = 0, </> = 0, &c.

We thus obtain the equilibrium values of X, fi. Let these be

\,fi,, Theu
= C, + \G,-\-fji,H,]

= C7.-hX,G,+ /.a!
= &c
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These are the equations of equilibrium already alluded to. The force

function U being a known function of the co-ordinates, the co-

efficients (7p G^, &c. are all known; and thus any two of these

equations will determine X^, yLt^. The remaining equations will

then be identically satisfied, because the quantities G^, G^, &c. are

not unrestricted but are such that the equations of equilibrium

are all satisfied.

Let the dynamical values of \ and fihe 'k = \ + \, /jl = fi^-}- fi^.

Then X^ and fi^ are small quantities whose squares can be rejected.

The equations of oscillation then become

+ X,{GJ+0^<t> + ...)+\G,

&c. = &c.

"We have here as many equations as there are co-ordinates. Besides

these we have as many geometrical equations as indeterminate

multipliers. These are

Thus we have on the whole sufficient equations to find all the un-
known quantities 6,

(f)
...\, fi^.

50. To solve these we proceed exactly as in the corresponding
method described in Vol. L, where the co-ordinates 0, (jy, &c. are all

independent, except that we now include X^, fju^ amongst the
variables to be determined. We take as our typical solution

6 =M sin {pt + a), <^ = iV sin (_p^ + a), &c.

\ = D sin {pt+ a), fi^^ — E sin (pt + a).

Substituting these in the equations we see that sin (^^ + a) can be
• divided out from every equation. Writing

^ o,,==c^, + \G,, + f^oH:^A,^ &C.= &C.
J

we thus obtain

(A,,p' + GJM+(A^,p' + GJN+... + G,D + H,E=^0

(A.f + CJ M+ (A,,p'+GJ i\^+ ... + G,D + H,E=-.0

&c. =
G^M-hG^F+... =0
H^M+H^N+... =0

Eliminating the ratios M, N, &c. D, E, we have the determinantal

equation

R. D. ir. 3
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J,y + C,„A,,p'+0^,,...0„ff, =0.

&c. ,
&c. , &c., &c.

G, , G, , 0.0
H^

,
H, , 0,0

If there be n co-ordinates, this is an equation of the nth degree to

find p^. Taking any root positive or negative, the preceding equa-

tions determine the corresponding ratios of if, N, &c. Taking all

the roots in turn and adding together these partial solutions we
have a solution complete with its 2?i constants. These constants

have to be determined from the initial values of the co-ordinates

and their velocities.

51. This determinant differs from that used when there are

no indeterminate multipliers in two respects. (1) There is a

change in the quantities (7^^, G^^, &c. represented by the insertion

of the bar over the letters, (2) the determinant is bordered by the

coefficients 6\, H^,&c of the first powers of the co-ordinates in the

geometrical equations.

We notice that there is a very great simplification of the

process when the force function is such that the coefficients of the

first powers of the co-ordinates in its expansion are all zero. In

this case (7^, Og, &c. are zero, hence from the equations of equilibrium

X^=(), ^^, = 0. Thus G^, = G^,, G,^=G^^,&c. = &G. It immediately

follows that it is unnecessary to calculate the terms of the second

order in the geometrical equations, for these disappear from the

equations of motion. This of course is an important simplification.

Further the final determinant only differs from that used when
there are no indeterminate multipliers by being bordered by the

coefficients G^, &c. H^, &c.

This simplification occurs when the position about which the

system oscillates is a position of equilibrium for all variations of
the co-ordinates although the constraints compel the system to oscillate

in a given limited manner.

52. Brief Summary. In order to indicate the method of

proceeding in any particular case we shall now sum up the general

line of argument.

Expand the semi vis viva T and the force function Z7in powers
of the co-ordinates 6,

<f),
&c. and their differential coefficients

ff, (j)', &c. all powers above the second being rejected. Multiply

the geometrical relations/= 0, i^ = by \ = X,, + X^ and p. = /jl^+ fi^

where \ and p,^ are small quantities of the same order as the co-

ordinates By
<t>,

&c. and expand these products, all powers of the

small quantities above the second being rejected. First, taking

the expression U + Xf-^-pF, equate to zero the coefficient of the

first power of each co-ordinate, we thus have equations to find
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\y f^o- Secondly, omitting the accents in the expression for T and
also the constant terms in U, form the discriminant of

Tp'+U + y+fjiF
with regard to the co-ordinates and the subsidiary variables X^, fi^.

Equating this determinant to zero, we have an equation to find the
values oi p.

53. On Principal Oscillations. The equations which deter-

mine the constants M, N-, &c. D, B are shown above. Solving
these we see that their ratios are equal to the ratios of the minors
of the constituents of any row we please in the determinantal
equation. If we represent these minors by I^^ {p^), I^^ ( p^), &c. the

oscillations of the system are represented by

<^ =AA (i>i')
sin {p,t + a,) +L,4 (p/) sin (^./ 4- a,) + &c.

</>= A4 {Px) sin {Pxt + «i) +AA2 iP.') sin {P^f + «2) + &e-

&c. = &c.

where X^, L.^ &c. are constants which depend on the initial con-

ditions.

When the initial co-ordinates are such that all the constants

Lj, Z2, &c. vanish except one, the expressions for ^, (/>... \, //, are

reduced to the trigonometrical expressions in some one column.

The co-ordinates 6, (^, &c, then bear to each other ratios which are

constant throughout the motion. It follows also that the values of
the co-ordinates 6, </>, &c. repeat at a constant interval, viz. the

period of the trigonometrical expression in the one column pre-

served. Referring to Vol. I. we see that the characteristics of a

principal oscillation are satisfied.

54. The system being referred to any co-ordinates 6,
<t>,

&c. it

may be required to find how it shoidd he disturbed from its position

of equilibrium that it may describe any proposed principal oscilla-

tion. We see that the system must be so displaced that its co-

ordinates 6,
(f),

&c. have the ratios of the minors of any row of the

determinantal equation. It is also necessary that the initial

velocities 0\ </>', &c. have the same ratio. These conditions are

necessary and sufiicient.

55. Putting this into algebraical language, we say that when a system is per-

forming a principal oscillation of the type sin {p^t + a^), then

We also infer from these equations that throughout the motion $"= -Pi^O,

0"= -jPj20, &g.

56. Principal Co-ordinates. It may be required to find formulce of transforma-

tion hy which tee may change any co-ordinates 6, 0, d'c. into principal co-ordinates.

According to the definitions laid down in Vol. i. a system is referred to principal

co-ordinates ^, -q, &c. when the vis viva 2T and the force function U are expressed

in the forms 2r= ^'2 + ,^'2 + ^'2 + . .

.

|

2{U-U,) = c,,e + c,,v'' + c^3^^+-\ '

3—2
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Lagrange's equations then take the form ^" - c^^= 0, 17" - c.^ot] = 0, &c., so that the

whole motion is given by ^=£ sin {p^t + aj), r}=F sin {p.J, + 02), &c. , where E, F, &c.

are the constants of integration and pj^= -
<*i] , p.2^= - c^^ &c.

When the initial conditions are such that all the constants F., F, &c. are zero

except one the system is said to be performing a principal oscillation. If then we

write a;= 8in(pi« + e^, y= Bm{p^t + a^, x will be a multiple of ^, ?/ a multiple of 17,

and so on. . The expressions for 6, <f>,
&c. given in Art. 53, now reduce to

e= L,I,^{p,^')x+ L,T,^{p,')y+...

= LiJ12 ip^^) X + L^i^ {vi)y+...
&c.=<fec.

These formulae will enable us to change any co-ordinates ^, 0, &c. into others

X, y, &c. which make T and U assume the forms

2(t7-J7„)=Ci,x2+ Ci2y2+..

The n constants Lj, L^, &c. are arbitrary multipliers of cc, y, &c., and may, if we

please, be so chosen as to make a^j, 032, &c. each equal to unity.

On Lagrange s Determinant.

57. On examining Lagrange's method of finding the oscillations

of a system we see that the whole process depends on the solution

of a certain determinantal equation. Even the stability or in-

stability of the equilibrium depends on the nature of its roots. If

this equation can be solved, the character of the motion and the

periods of oscillation (if the motion be oscillatory) are immediately
apparent. If the equation cannot be solved, we may expand the

determinant and discuss its roots by the methods given in the
theory of equations. But without expanding the determinant we
may sometimes accomplish the same purpose by the following

theorem. We shall begin with the determinant in its simplest

form as it is obtained in Vol. I, Chap, ix.; we shall then consider

the modifications introduced by bordering it with any quantities.

58. Separation of Roots. Let the determinantal equation
be written in the form*

A= ^„/+C„, A,,f^C,,, &c. =0.

^„/ + C,„ A^p' + C^, &c.

&c. &c.

• The proposition that the roots of Lagrange's determinant when written in

this general form are all real is due to Sir W. Thomson. It is the extension of a

corresponding theorem for that particular form of the equation which occurs when
the vis viva is expressed as the sum of the squares of the velocities of the co-or-

dinates. Several proofs of this latter theorem will be found in Lesson VI. of

Dr Salmon's Higher Algebra. The simplest of these is the one given by Dr Salmon
himself. He also proves that the roots are separated by those of the leading

minors. The proof in the text is an extension of his line of argument to Lagrange's

determinant in its general form. Another line of argument is indicated in the

examples in Art. 71.



LAGRANGE'S DETERMINANT. 37

Let US form from this determinant a minor by erasing the first row
and the first column. We may then form from this minor a second
minor, and so on. Thus we have a series of functions of p^ whose
degrees regularly diminish from the nth. to the first. Let us call

the successive determinants thus formed A, A^, A^, &c. The de-

terminant A is not altered if we border it with a column of zeros

on the right-hand side and a row of zeros at the bottom, provided

we put unity in the vacant corner. We may therefore consider

that A„=l.
By a theorem in determinants, if 7,^, 7^^, &c. be the minors

of the several constituents of A, we have A A2 = 7jj 7^2 "~ ^J' ^'^^

we notice that 7^^ = A^. Let us suppose p^ to increase gradually

from p^ = — 00 to p'^ = + 00 , then when p^ passes through a value

which makes Aj = we see that A and A^^ must have opposite

signs. The same argument applies to every one of the series

A, Aj, Ag, &c., whenever any one of them vanishes the deter-

minants on each side have opposite signs*.

Using these determinants like Sturm's functions we see that

a variation of sign can be lost or gained only at one end of the
series. It can be lost at the end A only when p^ passes through
a root of the equation A = 0, and it will be regained again as p^

passes through the next root in order of magnitude, unless a root

of the equation A^ = lies between these two.

If then we can prove that n variations of sign are lost as p^

passes from p^ = — co to p^ = -\-co it is clear that the equation
A = must have n real roots and these roots will be separated by
the roots of the equation A^ = 0.

Now the coefficient of the highest power of p^ in the deter-

minant A is the discriminant of T and is therefore positive. The

* In this reasoning we have for the sake of brevity omitted the case in which

two or more successive determinants in the series A, A^, Ag, &c. vanish for the

same value of p^. But this omission is of no real importance, for we may change

these determinants into others whose constituents are slightly different from those

of the given determinants but are such that no successive two of the series have a

common root. In the limit, therefore, when these arbitrary changes of the consti-

tuents are indefinitely small, the roots of the series of determinants will still be real

and the roots of each will separate, or caincide with, the roots of the next before it

in the series.

To show that these changes are possible, let A, A^, Ag be any three consecutive

members of the series. Let us suppose that A2 does not vanish while the two mem-
bers (and perhaps others) just before it are zero. Then from the equation in the

text, wehave Jj2= 0. Let us add to each of the constituents of which I^^ is the

minor the small quantity a. The determinant Aj is unaltered and remains equal

to zero. The determinant A undergoes a slight alteration, so that in its new form

the equation just quoted becomes AA2= -a2A./. Thus A is no longer zero. In

this way whenever any two consecutive members of the series of determinants

vanish, one may be rendered finite.
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coefficient of the highest power of ^9* in A^ is the discriminant of

J* after & has been put zero, and this also is positive. Thus the

coefficients of the highest powers of 'j^ in every one of the de-

terminants A, A,, Aj, &c. are positive. If then we substitute — oo

for p', these determinants are alternately positive and negative, if

we substitute + oo for p^ the determinants are all positive. It

follows that n variations of sign are lost as 'j^ passes from p^ = — cc

to p* = + 00 .

Summing up we see that the roots of each determinant of the

aeries A, Aj, A^, &c. are all real and the roots of each separate or

lie between the roots of the determinant next before it in the series.

59. Resuming our line of argument we see that as p^ increases

from p* = — CO io p^ = -\-cc a variation of sign in the series A, A^, &c.

is lost when p^ passes through a root of A = 0, and once lost this

variation cannot be regained. It immediately follows that as p"

passes from p* = a fo p^ = y8 if k vamations of sign are lost there

are exactly k roots of the equation A = 0, between these limits.

60. It will be noticed that in this line of argument no as-

sumption has been made about the functions

V-U,= iC,,0'+C,Jf + iC,,^'' + I'

except that the successive discriminants of the former are all

positive. This may be expressed by saying that T is a one-signed

positive function, i.e. a function which keeps the positive sign for

all values of the variables and never vanishes except when all the

variables are zero. That the vis viva is a one-signed positive

function is of course evident. The necessary and sugicie^t con-

ditions that a quadric function should be one-signed ^ai^egTven in

Williamson's Differential Calculus and need not be repeated here.

They may be briefly summed up by saying that the successive

discriminants have all the same sign.

61. Equal Roots. Since the roots of any one of the leading

minors 7„, J^, &c. separate the roots of Lagrange's determinant,

it follows that when the latter has r roots each equal to /?j, each

of the former must have r — 1 roots each equal to p^. For the

same reason any leading second minor such as A^ must have r — 2

roots each equal to p^.

Consider next any other minor of the determinant. By proper

changes of rows and columns we may represent this by I^^. Since

AA, = I^^ I„ — /jj*, it follows that 7^, must also have r — 1 roots

equal to j)j.

On the whole we conclude that if Lagrange s determinant have
r equal roots, then every first minor has r — 1 roots equal to each of
these. In the same way it follows from this, that every second

minor has r — 2 roots equal to each of these, and so on.
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62. This theorem will often enable us to detect the presence of equal roots in

Lagrange's determinant. We equate any minor to zero and thus obtain an

equation to find js^, which is sometimes of a very simple form.

Suppose for example the system had two co-ordinates, so that

2T= Jii6''2 + 2Jio^'0' + ^220'^

2{U-Uo) = C„62 + 2cjcf> + C2202

If we form Lagrange's determinant, we see that the minors cannot be zero unless

(7ji/^ji
= Cj2Mi2=C'o2M22' 6ach of these ratios being equal to -p^. Unless there-

fore these conditions be satisfied there cannot be two equal roots.

63. The equation used in solid geometry to determine the lengths of the axes

of a eonicoid is an equation of Lagrange's form. As a consequence of this theorem,

the usual conditions for a surface of revolution follow at once by equating each of

the minors to zero.

- 64. The Bordered Determinant. Let us now border Lagrange's determinant

with any arbitrary quantities /, g, h, &g., so that we obtain the determinantal

equation
A'= ^nP' + Cn, ^lopHCjo.../ =0.

-9

f 9

Regarding this as a function of p% we see that its degree is one less than that of A.

We shall now consider how the roots of this equation are connected with those of

Lagrange's,

If we remove the zero in the corner of A' and write ap^ + c in its place, where a

and c are any quantities however small, we obtain another equation which is of

Lagrange's form but one degree higher than A. The expression for 2T from which

this new equation is derived is the same as the former with the addition of the

term ax'^ where x is some new variable. If then a be positive, we may apply the

theorem proved in Art. 58 to this new determinant. Call this new determinant D',

then the roots of D' are all real and are separated by those of the first minor of any

constituent in the leading diagonal. But the determinant A is the minor of the

last constituent in that diagonal. The roots of D' are therefore all real and are

separated by those of A. If we put a and c both infinitely small, two roots of

the equation D'= are each infinite, and the other roots may be made to ap-

proximate as closely as we please to those of A'= 0. Hence we infer that ivhatever

the quantities f, g, d-c. may be, the roots of tlw determinantal equation A' = are

real and separate or lie between those o/ A = 0.

65. The original determinant A has n columns and n rows. The determinant

A' has been derived from A by bordering it with n arbitrary quantities forming a

new column and a new row with zero in the corner. In the same w^ay we may
border the determinant A' with a new set of ?i- arbitrary quantities /', g', &c., filling

up the vacant spaces near the comer with zeros. Thus we obtain a new deter-

minant with four zeros in the corner, which we may call A". This determinant is

of one degree less than A' and its roots are all real and separate those of A'.

66. Lastly let us form the series of n + 1 determinants A, A', A", &c., termi-

nating with a constant. Each determinant is derived from the one before by

bordering it with n arbitrary quantities with zeros near the corner, so that the

determinants are all symmetrical. Proceeding as in Art. 64, we may regard this

set of determinants as the -limiting cases of other determinants which are all of
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Lagrange's form, but of degrees successively higher than A. The last of these,

being in the limit a constant, will have all its roots infinitely great. Prefixing to

this second set of determinants the set formed (as described in Art. 58) by cutting

off rows and columns, we have a complete series of determinants separated into

two sets by the determinant A. They begin with unity and terminate with a deter-

minant whose roots (in the limit) are all infinitely large. It follows by the theorem in

Art. 58 that,in passing from p^=a to 2>^=i3 no variation of sign can be lost in the

complete series because no root of the last determinant can lie between the finite

quantities a and /3. But if k roots of the determinant A lie between these limits,

K variations of sign must be lost in the first set of determinants. Hence as many
variations of sign are gained in the second set of determinants as are lost in the

first set. Summing up we infer that as p^ passes from p2=a to p^=j8, if k varia-

tions of sign are gained in the series A, A', A", &c. there are exactly k roots of the

equation A= between these limits.

67, Ex. 1. In the theorem of Art. 64 show without putting a=0 that the

roots of A' separate or lie between those of A.

Ex. 2. In the theorem of Art. 66 show that if variations of sign are lost as p^

passes from2>*= a top^=p, then a is greater than /3.

Ex. 3. If the system be referred to principal co-ordinates, show that the deter-

minantal equations A'=0, A"=0 may be written in the form

= 0,

(A,^''+C,,){A^p^ + G^)'^{A,,p^+C^) {A,,p^+C,y "•
'

68. Invariants of the S3rsteni. In order to determine the values of p^ it will

often be necessary to expand the determinant. When there are only a few co-

ordinates this can be done without difficulty. In other cases we may use Taylor's

theorem. Let A be the discriminant of T and let n represent the operation

^^^''dl^.-^^^'dA^.-^^'^dA^-^
•"

Then Lagrange's determinant becomes when expanded
,2n-4

Ap««+n(A)jp2«-2 +nMA)^+ ... =0.

If A' be the discriminant of U and 11' represent the operation 11 when the letters

A and C are interchanged, we may write the equation in the form

A'-hn'(A')i>«+n'9(A')j^-f- ... =0.

When there are only three co-ordinates we may adopt the notation used in the

chapter on Invariants in Dr Salmon's Conies.

69. It is sometimes convenient to change the co-ordinates from 6, <p, &c. to

others z, y, &c. connected by linear relations. Let these be

e=lix+l.j!/ + l^z+ ... \

= wijX +m^ -h m.^z -h ... (.

.

&c.=&c.
j

In whatever manner this is done it is clear that the equation giving the times of

oscillation must be the same. The ratios of the coefficients of the several powers of

p^ are therefore invariable. Let /a be the determinant of transformation, i.e. the

determinant whose rows are the coefficients of x, ?/, Zy &c. in the equations of

transformation just written down. Then by a known theorem in determinants the
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discriminant A is changed into yu^A. Hence all the other coefficients are altered in

the same ratio. The coefficients A, 11 (A), &c. are therefore called the invariants of
the system. The sign of each of these, and the ratio of any two, are unaltered by any
transformation of co-ordinates.

70. Ex. 1. If a system be in equilibrium, show that the equilibrium will be

stable if - n (A), U^ (A), - n' (A), &c. be all positive.

We notice (1) that A is necessarily positive (2) since the roots of Lagrange's

equation are all real, these are the conditions given by Descartes' theorem that the

roots should be all positive.

Ex. 2. The same dynamical system can oscillate about the same position of

equilibrium under two different sets of forces. If p^, p^, &o., o-j, o-g, &c. be the

^

periods of oscillation when the two sets act separately, 2?^, R^, &c. the periods when

they act together, prove that S-^ + S —= S-=r5.

This follows from the fact that 11 (A) contains C^, &c. only in their first powers.

Ex. 3. Two different systems of bodies when acted on by the same set of forces

oscillate in periods pi, P2, &c., (r^, o-g, &c. If jRj, R^, &c. be the periods when they

are both acted on by this set of forces, prove that Sp^ + 2^^= si?^.

71. Ex. 1. Let T and U be given in their simplest forms, i. e. referred to

principal co-ordinates, and let these be

2T= aie'^+a2<f>'^+ ...

It is required to transform these to general co-ordinates by using the formulse of

Art. 69, and thence to construct the general form of Lagrange's determinant. For

the sake of brevity let Bj^= aj^p'^ + c^, B^^a^y'^^-c^^, &c., let there be k of these.

Also let I{?i), l^^t &c. be the minors of \, l^, &g. in the determinant of transforma-

tion, called fi in Art. 69. Then show (1) that Lagrange's determinant is equal to

li^B-yB^ ... Bk, (2) that the minor of the leading constituent of Lagrange's determi-

nant is equal to {I {l^)\^B^B.^ ... Bk + {I{m^)}^B^Bs ... Bk+ ..., (3) that Lagrange's

determinant when bordered with /, g, h, &c. with zero in the vacant corner is

equal to

f g h ... ,^B,B^ ... B,

m^m^m^ ... \

n^n^n^ ...

^1 ^2 ^iJ

f gh
n^n^n^

^B^B^...Bk

Ex. 2. Deduce from the analytical results of the last article that if T and U
be any expressions which can be derived by a real linear transformation from the

forms 2T= aj^d'^ + a2<p'^+ ...

2(C;-I7o)=ci^2 + C202+ __^

where the a's and the c's have any signs, then (1) the roots of Lagrange's determinant

are all real, (2) that they will be separated by those of any leading minor, and (3)

that they will also be separated by those of the bordered determinant.

Energy of an Oscillating System.

72. A system is referred to its principal co-ordinates, it is

required to find its kinetic and potential energies.
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Let the co-ordinates be ^,17, &c. so that the vis viva 2Taiid force

function U are given by

Then by Lagrange's equations Art. 56, we have

f = ^sin
( ;?j« + flj), 77 = i" sin {pj^ + aj, &c.

Substituting these in the expressions for Tand ?7just written down,

we find

2r=^,« E' cos^ {p,t + aj +p/ F" cos^ (;?,^ + a,) + &c.,

2{U,-U) =p^'I? sin'' {pf + crj +jp/i^ sin^ (pj^ + ct,) + &c.

Here T is the kinetic energy of the system and when the

position of equilibrium is the position of reference, U^— Uis the

potential energy.

From these expressions we infer that the whole energy of a
system oscillating about a position of equilibrium is the sum of the

energies of its principal oscillations.

73. Mean kinetic and Potential energies. The mean
value of E^ cos^ {pt -\- a) with regard to time from ^ = to ^ = < is

E* rt
-—

I cos* (j>t + o) dt, which after integration reduces to ^E^ when t
t Jo

is very great. The mean value of E^ sin'' (pt-^a) is of course the

same. We therefore infer that the mean kinetic energy of a system

oscillating about a position of equilibrium is equal to the mean
potential energy, the mean being taken for a long period and the
position of equilibrium being the position of reference. Thus the
energy of the system is on the whole equally distributed into

kinetic and potential energies. Sometimes one has an excess and
sometimes the other, but in any long time their shares are equal.

74. Energy of any system. To find the energy of a system
oscillatingabout a position ofequilibrium referred to anyco-ordinates.

Let the general co-ordinates be 6,
(f>,

&c. so that the kinetic

energy T and the potential energy 11^,— U are given by

We have just proved that the whole energy is the sum of the
energies of the principal oscillations. Let us therefore find the
whole energy of that principal oscillation whose type (Art. 55) is

•^=-^=&c. = sin (;),< + a,).

where M, ^ Ljl {p,% ^\ = LJ,, {p^) &c.

Substituting in the expression for 2^ we find

2T=[A,J{,' + 2A„M,N, + ...-ip.'siu^p^t + a,).



EFFECT OF CHANGES IN THE SYSTEM. 43

Let us indicate by the symbol T^ the result of substituting for

&<j), &c. in T the coefficients i/^, N^, &c. of the column in Art. 53
which represents the principal oscillation whose type is sin {pj, + a ).

Then T^ will indicate the result of substituting M^, iV^, &c. and so

on. We see therefore that the whole kinetic energy of the system is

T^p^' cos'' {pj^ + a,) + T^p^ cos'' (^pj^ + aj + &c.

If f/j, [Tg, &c. indicate the results of the same substitutions in

U— U^, we find that the potential energy of the system is

= - CT, sin'' {^^t + aJ - Z7, sin' {p^f + aJ - &c.

If we compare the expressions for the kinetic and potential
energies of a principal oscillation obtained in Art. 72, we see that
the coefficients of the trigonometrical terms are equal. We there-

fore infer that

Tjp^ +U, = 0, T,p,' + IT^ = 0, &o. = 0.

Adding together the two expressions for the kinetic and poten-
tial energies we find that the whole energy is represented by

t.p^+t,p:+

75. We may also deduce the equation T^p^ + f/"^ = from the
equations given in Art. 50 to find M, iV, &c. If we multiply these

by M, JV, &c. respectively (omitting the two last) and add the
results, we obviously have

(AJP+ 2A^^MN+ „.)p' + {G,^3P + 2G,,MN+ ...) =0,

which is the result to be proved when written at length.

Effect of changes in the system,

76. Effect of an increase of inertia. Supposing the system to be oscillating

about its position of equilibrium under a given set of forces, it is required to find

the effect of increasing the inertia of any part of the system without altering the

forces.

Let 2r= ^ii^'2 + 2^j2^y+...l

2{U-u,) = c^^e'-+2c^^e<p+... ]
^

'

where the A'a and C's are all given by the conditions of the question. Suppose we

add on to 2T the quantity

it is required to find the change in the periods of oscillation.

Let us change the co-ordinate d by writing ei= 6 + b^ + &c., then eliminating 6

we find that T and U take the forms

2T=:{A,^ + f,)d^'^ + 2A\^e\<p'+...) .

2{u-u,)= c,,e,'+2c\,e,<p-v...]
''

where A'^^ &c., C'12 &c. are the coefficients as altered by the change of variables.

The periods are now given by the determinant

If we put fjt.
= 0, this equation gives the periods before the increase of inertia.
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We write this in the form/(jp*) = 0. Let I be the minor of the leading constituent

in the determinant. Then the equation to find the altered periods is

u=f{p^) + fipU=0,

We notice that I is independent of fi so that fi enters into the equation only in the

first power.

Let the roots of / ip^=0 be pi', p^, &c., and the roots of 1=0 be q^, q^\ &c.,

both series being arranged in descending order of magnitude. The roots of 1=0
separate those of /(2>") = by Art. 58 hence the terms of the series p^^, q^,P2, ?2^j ^^•

are arranged in descending order. The case in which some of these quantities are

equal may be regarded as the limit of the case in which they are all different,

however small those differences may be.

In order to discover how the roots of the equation m=0 have been altered by the

introduction of /a, we put p^ in succession equal to p^, p^^, &c. We see that u takes

the sign of I and is therefore alternately positive and negative, beginning with a

positive value. Thus all the roots have been decreased*.

But putting 2)2 in succession equal to q^^ q^^ &c., we see that u takes the sign of

/ (2)2) which is independent of /*. These signs are therefore the same as before the

introduction of /i. Thus the roots continue to be separated by tJie roots of 1 = 0.

Now I is the minor of the leading constituent in Lagrange's determinant, that is

1=0 is the equation which gives the periods when we introduce into the system

the constraint ^i=0. Hence we infer that though all the values of p^ are decreased

by an increase /* to the inertia of iiny part of the system, yet no increase however great

can so reduce them that any one passes the corresponding value obtained by absolutely

fixing the part whose inertia was increased.

It immediately follows that if any of the periods of the system are common to

the system before and after fixing the part under consideration, those periods will

not be altered by the addition to the inertia.

77. Ex. 1. Suppose all the periods of oscillation of a system to be known and

let them be indicated as usual by the values oip. Let these be p^, p^, &c. Suppose

all the periods to be also known when some particular mode of motion is

prevented and let the corresponding values of p be q^, q^, &o. When the constraint

is partly loosened, i. e. when the system is allowed to move in the particular manner

formerly restricted but with more inertia than when free, show that the periods are

given by the equation {p^ - p-^) (p2 -p^) &c. + Mp^ {p^ - q-^) {p"^ - q^) &c. = 0, where

M is a quantity proportional to the mass added on to increase the inertia.

Ex. 2. Let the system be referred to any co-ordinates 6, 0, Ac. , and let the inertia

be increased by the addition of fi (a^'+ 60'+ ...)^» I^et A be the discriminant of T
before the addition to the inertia, and A' the same discriminant when bordered in

the usual symmetrical manner by a, b, &c. with zero in the corner. Prove that the

quantity M in Ex. (1) is given by if= -/a - .

78. Effect of introdncing a constraint. Supposing a system to be oscillating

about a position of equilibrium with any number of independent co-ordinates 6, 0, &c.,

it is required to find the effect on the periods of introducing a geometrical relation

between the co-ordinates.

• Lord Rayleigh shows in his Theory of Sound, Vol. i., Art. 88, that any indefinitely

small increment of mass is attended by a prolongation of all the natural periods or

at any rate that no period is diminished. Thence by integration a similar theorem

is true for any finite increment.
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Let this geometrical relation he f {0, (f>,...)
= 0, then since the system is in

equilibrium for displacements represented by any values of 6, 0, &c., the coefficients

of the first powers of 6, 0, &c. in the expansion of U will be zero. We may therefore

(Art. 51) write this equation in the iormf {6, <p...)=ae + b<p+ ...=0.

We now use the method of indeterminate multipliers as already explained in

Art. 48. We write down the equations of oscillation as if there were no geometrical

constraint and then add to their right-hand sides \df/d6 and \dfld(p, &c. In our

case these additions are simply \a and \b, &c. The new determinant found by

eliminating $, 0, &c. and the additional unknown quantity \ will be the same as

Lagrange's determinant bordered by a, h, &c. We thus have

^n2>'+Cn, ^122''+ Ci2 a =0.

&c. &c. h

a 6

This equation will give the periods after introducing the geometrical relation

between the formerly independent co-ordinates of the system.

The properties of this determinant have been discussed in Art. 64. We see that

the system will have one principal oscillation fewer than it had before, and the

periods of these principal oscillations will lie between or separate the periods of its

former oscillations.

79. Ex. 1. Two independent systems whose principal co-ordinates are re-

spectively (^, 0) and (^, 7]) vibrate in different periods. If- they are connected by

introducing a geometrical relation which may be represented by a^+ &0-ha^-f-/3i7= O,

show that the periods of the connected system are given by

a^ h^ gg jS^

p-^-p^ p'^-p^^ p^-T^^ P^-TT^'
where

(jpi, ^o) (ttj, tt^ are the values of p for the two disconnected systems.

Ex. 2. Two independent systems referred to any co-ordinates (Q, 0) {^, 77) are

connected together so that the co-ordinates and ^ are made equal. If the letters

have the meaning given in Art. 48 unaccented letters referring to the first and

accented letters to the second, show that the periods are given by

(^iil>'+Cn) ^^+^12

^12i>'+<^12, ^22P'+C2

Composition and Analysis of Oscillations.

80. The position of a system being defined by several co-

ordinates X, y, &c. the oscillations of that system will be generally

given by equations of the form

x = N^ sin {pf + z/J + N^ sin {pj^ + v^ + &c.

with similar expressions for y, z, &c.

In order to obtain a clear insight into the changes of the motion

indicated by these series it will sometimes be necessary to combine

these separate oscillations or to find some simple geometrical

methods of representing these terms which may enable us to realize

the nature of the motion.

To obtain a geometrical representation we use a representative

point whose co-ordinates whether Cartesian or polar are made to
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depend in some convenient manner on the co-ardinates so, y, z, &c.

The motion of this representative point will then exhibit to the

eye the motion of the system.

81. Commensurable Periods. Suppose for example we
wish to trace a motion represented by x = JSf sin pt +N sin 2ptj

the coefficients being equal in magnitude. Choosing Cartesian

co-ordinates we may let the abscissa of a point P represent on any
scale the time elapsed since some epoch, and let the ordinate

represent the value of x. There will be no difficulty in tracing the

two curves x^ =K sinpt and x^ = iVsin 2pt. Let these be the two
dotted lines. We obtain the required curve by adding the ordi-

nates corresponding to each abscissa. Let this be the continuous

line.

In the figure the axis of the abscissae is not drawn. It clearly

joins the two extreme points on the right and left-hand sides.

We see from a simple inspection of the figure that the motion

consists of a violent oscillation to each side of the mean position

followed by a very slight one and so on alternately. This figure

resembles that used in Astronomy to trace the changes in the

magnitude of the equation of time throughout the year.

82. Ex. 1. Show that the motion represented hyx=Nsiapt +N sin 3pt consists

of two large oscillations to one side of the mean position followed by two equally large

ones to the other side, and so on continually.

Ex. 2. Trace the motion represented by x= Nsm2pt + Nsin^tf and point out

the difference between the two parts of the large oscillation.

88. When we combine together an infinite number of commensurable oscillatiom

we obtain some interesting results by the use of Fourier's theorem. Thus, if we

examine the motion indicated by the BeiieHy=Nsmpt-lNBm2pt + lNBin3pt-&c.

it is evident that the representative point has an oscillatory motion whose period is

the same as that of the first term. This series is shown in treatises on the Integral

Calculus to be the expansion according to Fourier's theorem of \Npt between the

limits pt= -r to pt-ir. Betuming to the motion indicated by the series, we see
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that y increases uniformly from — ^TriVto ^irN during the time 2irlp, and then sud-

denly or rapidly changes to - ^tN, to repeat again its gradual increase during the

next oscillation.

As the series is convergent it will usually be sufiQcient to consider the motion as

represented by a limited number of terms. The expression for y is thus rendered

perfectly continuous.

84. Ex. Examine the motion represented by the series

y=Nsmpt + ^N sin Spt + ^N sin 5pt + &c.,

show that the representative point rapidly changes from one side of its mean position

to the other, remaining stationary for half the period of the first term in each of

these extreme positions.

85. Analysis of Oscillations. When the position of a
system is indicated by the sum of a number of oscillatory terms

whose periods are commensurable it is clear that the motion con-

tinually repeats itself at a constant interval. This interval is the

least common multiple of the periods of the several oscillatory

terms. Thus this compound oscillation resembles a principal

oscillation at least in one important feature. See Art. 53. Such
a compound oscillation might even be used as a new kind of

simple or principal oscillation by the help of which more compli-

cated oscillations of the system might be analyzed.

We are thus led to perceive that the single trigonometrical

oscillation is not the only one by which we may analyze a compli-

cated motion. We may sometimes find it advantageous to combine)

many of these oscillations into larger units to obtain any clear

idea of the motion. This may even prove to be a necessity when
the number of coexistent oscillations is infinite.

86. Analysis by Waves. When the surface of still water

is disturbed by throwing a stone into it, or when a piano string

or a drum head is struck at some one point, the parts of the system
remote from the impact do not begin to move at once, but appear

to wait until the effects of the impulse has reached them. In

other words, the motion appears to diverge from the centre of

disturbance in the form of waves. These waves may be taken as

new simple oscillations. The convenience of this new elementary

motion is evident, for if several disturbances are given to different

parts of the medium each will produce a wave and the actual

motion at any point is the resultant of all these waves.

87. The following illustration will put this theory in a clearer light. Let ^07?

be a tight string, such as a piano string, whose extremities A and B are fixed and

whose length AB= 2jrl, and let this string be vibrating transversely about its mean
position AB. Since the deviation of each particle from its position of equilibrium

will require a separate co-ordinate to express its value, it is clear that the string has

an infinite number of co-ordinates. Hence, by Lagrange's rule, the deviation of each

particle will be expressed by an infinite number of trigonometrical terms. Let y re-

present the deviation from the straight line AB oi the particle whose distance from

the middle point O is .r. Let the part of the string, viz. EOF, bounded by x= -e
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and «= +e be plucked aside and arranged so as to form the curve y =/(«), the rest of

the string being undisturbed, and let the whole string start from rest. By Fourier's

theorem we may represent this initial state of the string by an equation which may
sometimes be written in the form

y=2 piSin-+ 27j8in2- + J7^8sin3y + &c.j (1).

It will be shown in another chapter that the motion of the string at the time t is

given by y = 2j2Vi8in-cos2>t + iV2sin 2-cos2p« + &c.j (2),

where _p is a constant which depends on the nature of the string.

Since the particles of the string are oscillating about their positions of equilibrium,

their motions may be resolved into Lagrangian oscillations which of course are re-

presented by the several terms of this series. Taking any one periodical term by

itself (say the one containing cos Kpt) we see that all the characteristics of a principal

oscillation are satisfied. Thus the displacement of any one particle (defined by x=x^)

bears a ratio to the displacement of any other (defined by x=X2) which is equal to

Bin ^- / sin -y , and is therefore constant throughout the motion, Art. 53. In

other words the phases of the oscillations of all the particles are the same.

^ "-
'

' 7i' V /

But if we recur to the expression (2) and examine how the string appears to

move, we find something very different. If we trace the curve

y=NiShij + N^ain — + &c (3)

we find it represented in the accompanying figure. We have y=0 for all values of x

except those which lie between x= 2ilTr:he where i is any integer; between these

limits we have y=}if{x). Since 2irl is the length of the string, x is practicallj' limited

to lie between 0A= -irl and OB = irl. This portion is represented by the thick line,

while the dotted line exhibits the form of the curve for all values of x and should of

course be continued to infinity on both the right and left-hand sides.

Comparing equations (1) and (3) we see that the form of the string at the time

t=0 is represented by the portion of this curve between A and B, the ordinates being

doubled. To discover the motion at the time f, we write the equation (2) in the form

S^K sm K \j +pt\ + 22^K sin k {^ -pt\

The first of these series may be derived from (3) by writing x + Ipt for x. This may
be represented by moving the curve towards the left a distance equal to Ipt, the

origin O being fixed. Thus the disturbance EF travels towards the end A of the

string and passes off, a new disturbance E'F entering the string at B. The second
series may be represented by moving an equal and similar curve to the right of O
through a distance equal to Ipt. The sum of the ordinates of these two curves re-

presents the displacement at the time t of that particle of the string whose position

in equilibrium is the foot of the ordinate.

Thus the original single disturbance has separated into two disturbances, one of

which travels to the right and the other to the left. Each travels without change
of form and with uniform velocity. This wave-like motion may be treated as a
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simple motion, by means of which we may construct other more complicated wave-

motions. In this new simple oscillation all the particles have the same period, but

they are not all in the same phase. One particle is at the crest of the wave at the

same instant that another is in the hollow.

The case in which the particles of the string have any initial velocities may be

treated in the same way. If the elements bounded hy x= -€ and aj= c have an initial

velocity represented by/(0, the rest of the string being undisturbed, we obtain y by
simply writing dyjdt for y in equation (1) and integrating the result. If the elements

be both displaced from their initial position and have initial velocities, we merely

add the two separate values of y.

88. Composition of oscillations of nearly equal periods.
Trace the motion represented hi/x = 'N^ sin (pt + z^^) + Ng sin (qt + z/^),

where N^ and N^ are both positive and p and q ai^e nearly equal.

In the first place, consider any time at which pt + v^aud qt + v^

differ from each other by an even multiple of ir. At this instant

the two trigonometrical terms have the same sign, and, since p and q
are nearly equal, they will increase and decrease together for several

oscillations, how many will depend on the nearness of p and q to

each other. The value of x will therefore vary between the limits

+ {N^ + N^. Next consider any time at which pt + v^ and qt + v^

differ by an odd multiple of tt. The two trigonometrical terms
have opposite signs and will continue to have opposite signs for

several oscillations. The value of x will therefore vary between
the limits ± {N^ — N^. We see that the motion of that part of

the dynamical system which depends on the co-ordinate x under-
goes a periodic change of character. At one time, this part of the

system is oscillating with an arc N^-\- N^, after an interval equal

to 7r/(p — q), the arc of oscillation is N^ — N'^. If iV^^ and iV^ are

nearly equal, this last may be so small, that the motion is invisible

to the eye. Thus there will be alternate periods of comparative

activity and rest. This alternation is sometimes called beats.

89. Transference of Oscillations. When a system has

two degrees of freedom, two co-ordinates x and y will be necessary

to determine its position in space. Suppose the oscillation of oc

to be given by exactly the same expression as before, while that

of y is the same with the opposite sign given to N^. Let us also

suppose that iV^ and iV^ are nearly equal. Each of these co-

ordinates will have alternate periods of comparative rest and
comparative activity. But the period of rest in one will syn-

chronise with the period of activity in the other co-ordinate. If

now the visible motion of one part of the system depend on. x
and the visible motion of another on y, these parts will be ip

alternate rest and oscillation. Thus there will appear to be a
transference of energy from one part of the system to another and
back again.

R. D. II. 4
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90. This peculiarity of the resultant of two oscillations of nearly equal periods

renders it important to determine when two roots of Lagrange's determinant are

nearly equal. This point however has been practically discussed in Art. 62. It is

there shown that when two roots are equal every first minor must be zero. If two

roots are nearly equal, it follows from the principle of continuity that every minor

is nearly equal to zero. By equating to zero some minor whose roots may be found

as in Art. 62, we obtain some quantities which must be nearly equal to the roots

sought, if any such exist. To settle this last point we substitute these quantities

in turn in Lagrange's determinant and in the other minors. If all these nearly

vanish for any one of these substitutions there will be nearly equal roots in

Lagrange's determinant and these will be nearly equal to the quantity substituted.

91 . Composition of Oscillations ofvery unequal periods.

Trace the motion represented hy x = N^ sin (pt+ v^ + N^sin (qt + v^

where N^ and N^ are both positive and p is small compared with q.

In this case qt \- v^ increases by 27r, while pt + v^ alters only by
27rp/q, so that the second trigonometrical term goes through all

its changes while the first is only very slightly altered. The
system will therefore appear to oscillate about a mean position

determined by the instantaneous value of the first trigonometrical

term. Thus the oscillations will appear to be simply harmonic
tuith a period 27r/q and an extent of oscillation equal to Ng. At
the same time the apparent mean position will travel slowly Ji7'st to

one side and then to the other of the real mean in the comparatively

long period 27r/p.

92. BestQtant Oscillation. We may compound any number of oscillations

represented by the terms of the series

x = N-^sin{pyt + v^ +N2Qm{v^t-\-v^ + &Q (1)

in the following manner.

Let n be a quantity to be chosen at our convenience, and let^^^ = 7i+ Ji, p^= n + q.^, &c.

Suppose the resultant oscillation to be represented by

a;= i2sin {nt + p) (2),

then we have Jl qob p='LN cos [qt + v)

JiQmp= 'ZNBm{qt + v)S
^^'*

whence K and p may be found without difficulty.

93. This method of compounding oscillations is of great advantage when their

periods are equal. In this case all the ^'s are equal, and by choosing n=p we have

all the g's equal to zero. "We thus replace the series (1) by the simple harmonic

form (2) in which R and p are absolute constants.

If i\iQ periods are nearly equal, we can choose n so that all the g's are small. The
values of the elements R and p will now vary, but only slowly. The resultant os-

cillation is therefore very nearly a harmonic one. The elements of the resultant

oscillation, being found at any one moment, will be nearly constant for a considerable

time, and their small changes all follow known laws. These laws are determined by

equation (3). We may thus still obtain a clearer insight into the changes of the

values of x by examining the single term (2) than the scries (1).

94. Oeometxical Oonstraetion. We may represent any oscillation such as

x='Se>in{pt-\-v) by a simple geometrical construction which is sometimes useful.

From any origin draw a straight line OA whose length shall represent N on any
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scale we please, and let v be the inclination of OA to a straight line OL fixed in

space. We may call OL the axis of reference. With centre and radius equal to OA
describe a circle. If a particle P, starting from A, describe this circle with a uniform

angular velocity equal to p it is clear that the distance of P from the axis of reference

is equal to N sin {pt + v). Thus, by the help of this circle, when the straight line OA
is given, the whole oscillation is determined. We may therefore hy a straight line

OA represent any harmonic oscillation.

In this manner we may replace the oscillations to be compounded by a series

of straight lines OA-^, OA^, &c. The circles on OAj^, OA^, Ac. are to be described by

points P^, Pa , &c., and the sum of their distances from the axis of reference is the

quantity to be represented by the resultant oscillation. Let us also for the sake

of simplicity, suppose that the periods are all equal, so that the g's in equations (3)

are all zero.

Let OB represent the resultant of OA^, OA^, &c. found by the "parallelogram

law," i.e. found as if OA^, OA^, &c. were forces to be compounded as in statics.

Then by interpretation of equations (3) we see that OB will represent the resultant

oscillation.

We may therefore find the resultant of any numher of oscillations in the same co-

ordinate, if of equal periods, hy a geometrical construction. Representing each

oscillation by a straight line, the resultant is found by compounding these straight

lines according to the *'parallelogram laic.^'

4—2



CHAPTER III.

OSCILLATIONS ABOUT A STATE OF MOTION.

The Energy Test of Stahiliti/.

95. It has been proved in Vol. I. that when we know one

first integral of the equations of motion of a system disturbed

from a position of equilibrium, such as the equation of energy,

we may sometimes from that one integral determine whether the

position of equilibrium is stable or not. Thus when the potential

energy is a minimum in the position of equilibrium, it immediately
follows from the equation of vis viva that the position of equili-

brium is stable. But when the potential energy is not a minimum,
the equation of vis viva alone is not sufficient to determine

whether the equilibrium is stable or unstable. But by taking

into consideration the other equations of motion this position of

equilibrium is proved to be unstable.

We may apply an " energy test " of stability to a given state

of motion as well as to a given position of equiliWium, but with a

similar limitation. When a certain function derived from such of

the first integrals as we may happen to know is an absolute mini-

mum or maximum we may be able to prove that the system
cannot depart far from the given state of motion. But when that

function is neither a maximum nor a minimum we only infer that

there is apparently nothing in these equations to restrict the

deviations of the system. To determine this point we must
examine the equations we already have more minutely or we must
discover the remaining equations of motion. This latter part of

the question will therefore be postponed until we discuss the

oscillations about a state of motion. Meantime we shall consider

the "energy test" with a view to determine how far it can be

made to decide the question of stability.

96. Stability of a State of Motion. Let a dynamical
system be in motion in any manner under a conservative system

of forces, and let E he its energy. Then E is a known function

of the co-ordinates 6, <^, <&:c. and their first differential coefficients

&t <t>\ <fcc. : this is constant and equal to h for the given motion.



ENERGY TEST OF STABILITY. 53

Suppose that either some or all of the other first integrals of the

equations of motion are also known, let these he

For the purposes of this proposition, let us regard 6 and 0\
<f>
and

<t>', c&c. as independent variables, except so far as they are connected

hy the equations just written down. Then ^/*E he an absolute maxi-
mum, or an absolute minimum, for all variations of 9, 6\ <^c. {those

corresponding to the given motion making E constant), the motion is

stable for all disturbances which do not alter the constants C^,

C,, Sc.

Let as many of the letters as is possible be found from the first

integrals in terms of the rest, and substituted in the expression

for E. Let yjr, yjr', &c. be these remaining letters, then we have

E:=^f{f,ir\&c„G„ (7„&c.) = /t.

Let the system be started in some manner slightly different from
that given, then the constant h is altered into h + Bh. First let E
be a minimum along the given motion, then any change whatever
of the letters yjr, \{r', &c. increases E, and it follows that the dis-

turbed motion cannot deviate so far from the given motion that

the change in E becomes greater than Bh. Similarly, if E be an
absolute maximum, the same result will follow.

The same argument will apply to any first integral of the

equations of motion, besides the energy integral. If any one of

the functions F^, F^, &c., which contains all the letters, be an
absolute maximum or minimum, then the motion is stable for

all displacements which do not alter the constants of the other

integrals used.

97. When the system is disturbed from a position of equilibrium

which is defined, as in Vol. I., by the vanishing of the co-ordinates

0,
(f),

&c., we have

E=^iA^^r + AJ'<p' + &c.-U,
where A^^, A^^, &c. are all constants, and U is independent of

6', <^', &c. Here the terms which Constitute the kinetic energy,

being necessarily positive and vanishing with O', (f)',
&c., are evi-

dently a minimum for all variations of 6', </>', &c. We see, without
the use of any other integrals, that if — t'' be a minimum for all

variations of 0, cf), &c., E will be an absolute minimum, and that

therefore the equilibrium is stable.

In what follows a similar result will be obtained when the

system is disturbed from a state of steady motion. It will be
shewn that when a function represented by jP— U is a minimum
under certain conditions this state of steady motion is stable

under the same conditions. The function F of course reduces to

zero when the state of motion reduces to a state of rest.

98. To find a steady motion. It often happens that the motion whose

stability is in question is a state of steady motion. This generally occurs when
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some of the co-ordinates are absent from the Lagrangian function though present

in the form of velocities. Let us represent by or, ?/, &c. the co-ordinates which are

absent from the Lagrangian function, and let ^, rj, &c. be the remaining co-ordinates.

Thus the Lagrangian function L will be a function of ^, ^', rj, V, &c., x', y', &c., but

not of ar, y, &o. The Lagrangian equations will therefore take the forms

d dL dL , dL dL .

where w, r, &c. are constants introduced by integration. These equations will

contain f, ^, |", 17, 17', v'\ *c., x' x", y' y", &c., and do not contain t explicitly.

They may therefore be satisfied by putting x'=a, y' = b, &c., ^=a, i7= j3, &c., where

a, 6, &c., o, /3, &c. are constants to be determined by substituting in the equations.

If d stand for any one of the co-ordinates, it is evident that dT/dd and dTjdd' will

both be constants after the substitution is made. Omitting the equations which

contain u, v, &c. as they do not assist in finding the constants a, &, &c., a, /S, &c.

we have the equations "wt"^' T"~^' &c.=0 (1),

where L^T+U. Thus we have as many equations as there are co-ordinates $, tj,

&c. directly present (i.e. not merely present as velocities) in the expressions for T

and U, The quantities a, &, &c. are therefore undetermined except by the initial

conditions, while a, j3, &c. may be found in terms of a, b, &c. by these equations.

These equations may be conveniently remembered by the following rule.

In the Lagrangian function which is the difference between the kinetic and

potential energies, write for all the differential coefficients their assumed constant

values in the steady motion, viz. x'=a, y'=b, &c., ^'= 0, V= 0> &c« ^he Lagrangian

function is now a function of the co-ordinates ^, 77, &c. only. Differentiating this

result partially with regard to each of these co-ordinates and equating the results to

zero, we obtain the equations of steady motion.

99. Stability of a steady motion. To determine if this motion is stable we
use the method indicated in Art. 96. The equation of energy may be written in the

form E= T-U=h.
Since T is not a function of the co-ordinates x, y, &c. the Lagrangian equations

for these co-ordinates lead as before to the integrals dTjdx'=u, dTldy'= v, &c.,

where u, v, &c. are constants. By the help of these integrals we shall eliminate

of, y', Ac, and thus obtain E as a function of the other co-ordinates. If E be an

absolute maximum or minimum, this motion is stable for all disturbances which do

not alter the constants u, v, Sec. There can be no difficulty in effecting the elimi-

nation in any particular case, but we may perform the process once for all. The
process is a repetition of that called Modification in Vol. i.

To effect the elimination, let

T=l{xx)x'^ + {x^)x'^' + &Q (2),

where the coefficients of the accented letters, viz. the quantities in brackets, are

all known functions of f, 17, &c. , but not of x, y, &c. The integrals may then be

written in the form

{xx) x' 4 {"-y) /+... = M - (a;^) ^' - [xt)) 77' - &c.\

{xyy + {yy)y'+...=v-{y^)^- {yr,)ri'-&ci (3).

<fec.=&o.
)

For the sake of brevity, let us call the right-hand sides of these equations u-X,
v-Y, &c. Since T is a quadratic function of the accented letters, we may write

it in the form

T=hm^+{h)^'v'+ &c.+iia^(u + X) + 1iy'{v+y^ + &c.
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If we substitute in the terms after the first &c. the values of x', y' given by (3)

we obtain the determinant

^ 0, w + X, v+F, &c.

2A u-X, {xx), {xxj), &c.

V-Y, {xy), {yy), &G.

&C.

where A is the discriminant of T, when *', t?', &c. have been put zero. If we change
the signs of X, Y, &c. , this determinant is unaltered, hence when expanded such
terms as uX, vX, &g. cannot occur. If therefore, we put—

^

M V ...

u (xx) {xy)...

.(4).

and expand the first determinant, we have as the result of the elimination

T=F+lB,,r- + B,,^'7]'+ (5),

where the terms after F express some homogeneous quadratic function of ^', 77', &c.

Now T is essentially positive for all values of x', y', &g. and therefore for such
as make «, v, &c. all zero. Hence the quadratic expression B^^^'^ + &c. is a minimum
when ^', 7]', &c. are zero. If then the function F-JJ is a minimum for all variations

of ^, rj, &c., the steady motion given hy (1) is stable for all disturbances which do not

alter the momenta u, v, &c.

100. When f , V, &c. are put zero, the process indicated by the successive

equations (2), (3), (4), (5) is exactly that described in Vol. i. as the Hamiltonian
method of forming the reciprocal function of T for the co-ordinates x, y, &c. We
may therefore enunciate the rule in the following manner.

» Siippose a steady motion to be given by ^'= 0, rj' = 0, d-c.^ x'=a, y'= b, dtc, so that

the momenta u, v, (&c. with regard to x, y, <fec. are constants. Form the reciprocal

function of T icith regard to x', y', d-c, putting zero for each of the letters ^', 7;', dc.

Let F be this reciprocal function, and - U or V be the potential energy. Then if

F - U or F + V IS <x minimum for all variations of $, 97, dc. this steady motion is stable

for all disturbances which do not alter the momenta u, v, dc.

When the reciprocal function F has been found, we may put the equations (1)

which determine the steady motion into another form. The function F is tho

reciprocal of T with regard to x', y', &c., and ^, 77, &c. are merely other letters

present during the process of transformation, hence as explained in Vol. i., we have
dT fJF'

'Jl—~'Tt '^'^^^ similar equations for 77, &c. The equations of steady motion (1)

therefore become
^(-^-^)_ft ^^-^~^_n

d{F-V)
.(6),

du

lohere F -U or F +V is the energy expressed as a function of the momenta u, v, dc.

instead ofx', y', dc, the other accented letters ^', 77', &c. being put equal to zero either

before or after the differentiation.

101. Special case of Motion. If the energy be a function of one only of the

co-ordinates, though it is a function of the differential coefficients of all of them, we

may show conversely that the steady motion will not be stable unless F-U is a

minimum.

Let ^ be this single co-ordinate, then following the same notation as before, we
have by vis viva ^ B^^^'^ + F-U=k.
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Differentiating with regard to «, and treating J?n as constant because we shall

neglect the square of ^, we obtain

To find the oscillation, let ^= a+p, then by (6) we have

^"d^+L de > = ^' ....
where a is to be written for ^ after differentiation in the quantity in square

brackets. The motion is clearly stable or unstable according as the coefficient of p
is positive or negative, i.e. according as i^ - C7 is a minimum or maximum.

Further information on this subject will be found in the author's Essay on the

Stability of Steady Motion, 1877.

102. Examples of stability of motion. Ex. 1. Let us consider the simple

case of a particle describing a circular orbit about a centre of attraction whose ac-

celeration at a distance r is /tr"'. If d be the angle the radius vector r makes with

the axis of a;, we have here a stesidy motion in which r'=0 and Q' is constant. Also

We notice that B is absent from this expression, hence by the rule we eliminate

6' also by the integral r^6'=h, where h is the constant called n in Art. 99. We

have then £ = 1/2 +^"+/^,
"^ ^ r^ n + 1

Putting the remaining accented letters equal to zero according to the rule, we

have in steady motion -—=-— + »r«- 0,
ar 1"^

and smce -r-^ ~~^'^ fjtnr^-^ =fi{n + B) r^-^,

this steady motion is stable or unstable according as n + 3 is positive or negative

for all disturbances which do not alter the angular momentum of the particle.

Ex. 2. A top, two of whose principal moments at the vertex are equal, turns

about its vertex under the action of gravity. If OC be the axis of unequal moment,

and d, <p, \p the Eulerian angular co-ordinates of the body referred to a vertical axis

measured upwards, we have (as in the chapter on vis viva, Vol. i.)

U= - Mgh cos 6 + constant,

where h is the distance of the centre of gravity from and M is the mass of the top.

We have therefore the two integrals
<f>'
+ \j/' cos0 = n and Cwcos^ + ^ sin2^^'=7»

where n and m are two constants, the former representing the angular velocity of

the top about its axis and the latter the angular momentum about the vertical.

By eliminating
<f>'

and y//' and making the energy E a minimum, show (1) that a

state of steady motion, with real values of the constants m and n, is given by ^= a

provided C^n^ - AMghA cob a is positive. Show (2), by examining the sign of

d^EJdd^, that this motion is stable. Thus the axis of the top will describe a right

cone of semi-angle a round the vertical through the point of support with an

angular velocity given by the value of ^.

Ex. 3. A solid of revolution moves in steady motion on a smooth horizontal

plane, so that the inclination 9 of its axis to the vertical is constant. Prove that

the angular velocity /* of the axis about the vertical is given by

5 _ _Cn Mg ^ _ A
^ ~ A 008^ ^~ A%mQQOBd dQ~ '
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where z is the altitude of the centre of gravity above the horizontal plane, n the

angular velocity of the body about the axis, C, A and A the principal moments
of inertia at the centre of gravity and M the mass. Find the least value of n which

makes
ij.

real and determine if the steady motion is stable.

Examples of Oscillations about Steady Motion.

103. The oscillations of a system about a state of steady.

motion may be found by methods analogous to those used in the
oscillations about a position of equilibrium. Let the general equa-
tions of motion of the bodies be formed by any of the methods
already described. If any reactions enter into these equations it

will be generally found advantageous to eliminate them. Let
the co-ordinates used in these equations to fix the positions of

the bodies be called 6, <^, &c. Suppose the motion, about which
the oscillation is required, to be determined by 6=f(t),

f = F{t), &c. We then substitute 6 =f{t) + x, (j) = F (t) -]- y, &c.,

in the equations of motion. The squares of x, y, &c. being neg-
lected, we have certain linear equations to find x, y, Sic. These
equations can, however, seldom be solved unless we can make t

disappear explicitly from them. When this can be done the

linear equations can be solved by the usual known methods, and
the required oscillations are then found.

In what follows we shall first illustrate the method just de-

scribed by forming the equations in a few interesting cases from
the beginning. We shall then generalize the process and obtain

a determinantal equation analogous to that given by Lagrange for

oscillations about a position of equilibrium. This equation will be
adapted to all cases which lead to differential equations with
constant coefficients.

104. Theory of "Watt's Governor. To find the motion of the halls in WatVs

Governor of the steam engine.

The mode in which this works to moderate the fluctuations of the engine is well

known. A somewhat similar apparatus has been used to regulate the motion of

clocks, and in other cases where uniformity of motion is required. If there be any

increase in the driving power of the engine, or any diminution of the load, so that

the engine begins to move too fast, the balls, by their increased centrifugal force,

open outwards, and by means of a lever either cut off the driving power or increase

the load by a quantity proportional to the angle opened out. If on the other hand

the engine goes too slow, the balls fall inward, and more driving power is called

into action. In the case of the steam engine the lever is attached to the throttle-

valve, and thus regulates the supply of steam. It is clear that a complete adapta-

tion of the driving power to the load cannot take place instantaneously, but the

machine will make a series of small oscillations about a mean state of steady

motion. The problem to be considered may therefore be stated thus :

—

Two equal rods OA, OA', each of length I, are connected with a vertical spindle

by means of a hinge at which permits free motion in the vertical plane AOA'. At

A and A' are attached two balls, each of mass m. To represent the inertia of the
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other parts of the engine we shall suppose a horizontal fly-wheel attached to the

spindle, whose moment of inertia about the spindle is I. When the machine is in

uniform motion, the rods are inclined at some angle a to the vertical, and turn

round it with uniform angular velocity n. If, owing to any disturbance of the

motion, the rods have opened out to an angle d with the vertical, a force is called

into play whose moment about the spindle is - /3(^-o). It is required to find the

oscillations about the state of steady motion.

Let
<f>

be the angle the plane AOA' makes w-ith some vertical plane fixed in

space. The equation of angular momentum about the spindle is

|J(/+2mfc=sin2^)^}=-i3(^-a) (1),

where m^^ is the moment of iaertia of a rod and ball about a perpendicular to the

rod through 0, the balls being regarded as indefinitely small heavy particles. The

semi vis viva of the system is

and the moment of the impressed forces on either rod and ball about a horizontal

through perpendicular to the plane A OA' is ^dU/dd= - mgh sin ^, where h is the

distance of the centre of gravity of a rod and ball from 0. Hence by Lagrange's

d dT dT dU ,

^-sin.cos.(^y=-^sin. (2),

where a has been written for Tc^jh. This equation might also have been obtained by

taldng the acceleration of either ball, treated as a particle, in a direction perpen-

dicular to the rod in the plane in which 6 is measured.

To find the steady motion we put ^=a, d(f>jdt=n, the second equation then gives

n^ cos a =£r/a. To find the oscillations, we put d= a + x,d<pldt=zn+y. The two

equations then become

(1+ 2tnk^ sin2 a) ^ + imJcH sin 2a^ =

dt ut

-J-? - n sin 2ay = { n^ cos 2a -
at* \ a

To solve these equations, we must write them in the form

(^^2a5 + J^,-^)n.+
(

where the symbol 8 stands for the operation djdt. Eliminating y by cross multi-

plication we have

The real root of this cubic equation is necessarily negative because the last term

is positive. The other two roots are imaginary because the term S- has dis-

appeared between two terms of like signs. Also the sum of the three roots being

zero, the real parts of the two imaginary roots must be positive. Let these roots

therefore be - 2p and p ^ gV - 1. Then

X= He-^f* + Kef* sin {qt + L),

where 7/, K, L are three undetermined constants depending on the nature of the

initial disturbance. Thus it appears that the oscillation is unstable. The balls

will alternately approach and recede from the vertical spindle with increasing

violence.
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105. The defect of a governor is therefore that it acts too quickly, and thus

produces considerable oscillation of speed in the engine. If the engine is working

too violently, the governor cuts off the steam, but owing to the inertia of the parts

of the machinery, the engine does not immediately take up the proper speed.

The consequence is that the balls continue to separate after they have reduced

the supply of steam to the proper amount, and thus too much steam is cut off.

Similar remarks apply when the balls are approaching each other, and a con-

siderable oscillation is thereby produced. This of course is but an incomplete ex-

planation, but that the oscillation thus produced is of considerable magnitude has

been strictly proved in Art. 104. It will be presently shown that this fault may be

very much modified by applying some resistance to the motion of the governor.

In the same way when the motion of clock-work is regulated by centrifugal

balls, it is found as a matter of observation that there is a strong tendency to

irregularity. If the balls once receive in the slightest degree an elliptic motion,

the resistance jS (^ - a) by which the motion of the balls is regulated may tend to

render the ellipse more and more elliptical. To correct this some other resistance

must be called into play. This resistance should be of such a character that it

does not affect the circular motion and is only produced by the ellipticity of the

movement.

One method of effecting this has been suggested by Sir G. B. Airy. The elliptic

motion of the balls may be made to cause a slider on the vertical spindle to rise

and fall. If this be connected with a horizontal circular plate in a vertical

cylinder of slightly greater radius, and filled with water, the slider may be made
to move the plate up and down by its oscillations. Thus the slider may be

subjected to a very great resistance, tending to diminish its oscillations, while its

place of rest, as depending on statical, or slowly altering forces, is totally un-

affected. Memoirs of the Astronomical Society of London, Vol. xx., 1851.

The general effect of the water will be to produce a resistance varying as the

velocity, and may therefore he represented by a term - yddjdt on the right hand of

equation (2). The solution being continued as before, the cubic will now take the

form

If the roots of this cubic are real, they are all negative, and the value of x takes the

form x = Ae~^^ + Be~'^^ + Ce~''\

where -X, -/jl, -v are the roots, and A, B, C are three undetermined constants.

If one root only is real, that root is negative, and if the other two be jp ± 2 v- 1 the

value of X takes the form
X= He-'-' + KeP* sin {qt + L),

where H, K, L as before are undetermined constants.

In order that the motion may be stable it is necessary that p should be negative.

The analytical condition * of this is

7(l + 3cos'a+2-^,)>^,2cota.

* If the roots of the cubic ax^ + bx^+ cx + d= be a; = a±/3\/(- 1) and 7, we

have-6/a=2a + 7, c/a = 27a + a^ + jS^, - d/a= (a^ + /S^) 7, whence we easily deduce

{he - ad)la^= - 2a
{
(a + 7)^ + ^^\; hence be - ad and a have always opposite signs.
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If 7 be sufficiently great this condition may be satisfied. The uniformity of

motion of the rods round the vertical will then be disturbed by an oscillation whose

magnitude is continually decreasing and whose period is 27r/g. By properly choosing

the magnitude of / when constructing the instrument, the period may sometimes

be so arranged as to produce the least possible ill effect. If the period be made

very long the instrument will work smoothly. If it can be made very short there

will be less deviation from circular motion.

In this investigation no notice has been taken of the frictions at the hinge and

at the mechanical appliances of the Governor, which may not be inconsiderable.

These in many cases tend to reduce the oscillation and keep it within bounds.

106. In the case of Watt's Governor if any permanent change be made in the

relation between the driving power and the load, the state of uniform motion which

the engine will finally assume is different from that which it had before the change.

Thus, when the engine is driving a given number of looms, let the rods OA, OA' of

the Governor be inclined to each other at an angle 2a and be revolving about the

vertical with an angular velocity n. If some large number of the looms is sud-

denly disconnected from the engine, the balls will separate from each other, and the

rods will become inclined at some other angle 2a'. In this case, if n' be the angular

velocity about the vertical, n'-^cosa'=n2cosa. The rate of the engine is therefore

altered, it works quicker with a less load than with a greater. This is a great

defect of Watt's Governor. For this reason it has been suggested that the term

Governor is inappropriate, the instrument being in fact only a moderator of the

fluctuations of the engine.

This defect may be considerably decreased by the use of Huyghens' parabolic

pendulum. In this instrument the centres of gravity ^, ^1' of the balls are made to

move along the arc of a parabola whose axis is the axis of revolution. Let AN hQ

an ordinate of the parabola, AG the normal, then NG is constant and equal to L,

where 2L is the latus rectum. Eegarding the balls as particles, and neglecting the

inertia of the rods which connect them with the throttle valve, we see by the

triangle of forces that the balls will rest in any positions on the parabola, if

n^L=g, where n is the angular velocity of the balls about the vertical through 0.

It is also clear that when the angular velocity is not that given by this formula, the

balls (unless placed at the vertex) must slide along the arc. Let us now conpider

how this modification of the governor affects the working of the engine. When the

load is diminished the engine begins to quicken; the balls separate and the steam is

cut off. It is clear that equilibrium will not be estabhshed until the quantity of

steam admitted is just such as to cause the engine to move at exactly the same rate

as before.

Ex. Show that when the inertia of the rod and balls are taken account of,

the centre of gravity of either ball and rod must be constrained to describe a

parabola whose latus rectum is independent of the radius of the ball, if the

Governor is to cause the engine always to move at a given rate.

It should be mentioned that several other methods -of avoiding this defect have

been invented besides the parabolic pendulum. But any further description of these

would be here out of place.

107. The reader who may be interested in the subject of Governors may refer

to an article by Sir G. B. Airy, Vol. XI, of tlie Memoirs of the Astronomical Society.

1840, where four different constructions are considered. He may also consult an
article by Mr Siemens in the Phil. Trans, for 1866, and a brief sketch of several
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kinds of governors by Prof. Maxicell in the Pliil. Mag. jor 1868. An account of

some experiments by Mr Ellery, on Huyghens' parabolic pendulum, may be found
in the Astronomical Notices for December, 1875.

108. Laplace's Three Pabticles. It has been shown in Vol. I. Chap. VI.,

that if three particles be placed at the corners of an equilateral triangle and pro-
perly projected, they will move under their mutual attractions so as always to

remain at the angular points of an equilateral triangle. These we may call

Laplace's three particles. It is our present object to determine if this motion is

stable or unstable*.

We shall begin by assuming that the three particles remain always very nearly

at the corners of an equilateral triangle. We shall then have to determine whether
their oscillations about these corners are real or imaginary. To effect this we might
choose their common centre of gravity as a fixed origin of co-ordinates. But the

triangles formed by joining the particles to their common centre of gravity are not

marked by any simplicity of form. Instead of referring the motion to the centre of

gravity it will be more convenient to reduce one of the particles to rest, and to con-

sider the relative motion of the other two. We have thus only one triangle to

examine, and that one nearly equilateral.

Let the mass 31 of the particle to be reduced to rest be taken as unity, and let

m, m' be the masses of the other two. Let r, /, R be the distances between the

particles Mm, Mm', mm'; and let 0', 0, \}/ be the angles opposite to these distances.

If d, 6' be the angles of r, r' make with a straight line fixed in space, and if the law of

attraction be the inverse xth power of the distance, the equations of motion are

df2 \dtj

Id/
rdt\

1 + m m' cos \j/ m' cos (p ^

»•" r"" R" I

^dd\ vi'smyp m' sin <h ^1

at J ,."£ ]i<
*

with two similar equations for the motion of m'.

Let us now put r=a-\-x, r'= a + a; + A', and let the angle between these radii

vectores be \tt+ Y, also let B = nt-\- y, where x, y, X and Y, are all small quantities

whose squares are to be neglected. It should be noticed that a variation of x, y
alone, X and Y being zero, will represent a variation of steady motion in which the

particles always keep at the corners of an equilateral triangle, while a variation of

X, Y will represent a change from the equilateral form. The former of these by
hypothesis is a possible motion, hence the equations can be satisfied by some
values of x, y joined to X=0, 7=0. By this choice of variables we may hope to

discover some roots of the fundamental determinant previous to expansion, and
thus save a great amount of numerical labour. If d stand for djdt, and b= a'^^^t

the four equations will now become

* In a brief note in Jullien's Problems, Vol. ii. p. 29, it is mentioned that this

question has been discussed by M. Gascheau in a These de M^canique, the particles

being supposed to attract each other according to the law of nature. The result

arrived at is that the motion is stable when the square of the sum of the masses is

greater than 27 times the sum of the products of the masses taken two and two.

No reference is given to where M. Gascheau's work can be found, and the author is

therefore unable to give a description of the process employed.
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{65= - (/c+ 1) (1 +w + m')} X - 2abnSy-j m' {k +1)X-^ m' {k+ 1) ar=0,

2hnU+ db^y -^ m' (k + 1) X + ? m' (k + 1) aY= 0,

{65'-(K+l)(l+m+mO}x-2a&n8y+j&52-(K+l)^l + |+m'Mz-|2a6n8+^-7n(/c+l)ajr=0^

2&/i5»+a652y + J26n5-^(K+l)mLY+ja65=-|m(/cfl)ajr=0.

109. To solve these we put a; =^ e^\ y = Be^\ X= Ge^\ 7= He^K Substituting

and eliminating the ratios of A, B, G and If we obtain a determinantal equation

whose constituents are the coefl&cients of x, y, X and Y with \ written for 5. This

equation will give eight values of X. We see at once that one factor is X. This might

have been expected, because we know that a variation of y, (with x, X and Y all zero,)

is a possible motion. Again, some variation of x and y, (with X and Y both zero,) is

also a possible motion, hence some factor of the determinant can be found by ex-

amining the first two columns. By subtracting from the first 2n times the second

column we find that this factor is b\^ - (k - 3)(1 +m + m') = 0.

To find the other factors we divide the determinant by the factors already

found. Then subtracting the first row from the third and the second from the

fourth we have three zeros in the first column and two in the second. The

expansion is then easy. We see that there is another factor X, also

l^X* +h\^{3-K){l+m + m') + 1 (1 + k)^ (mi + m' + mm') = 0.

The two zero roots give x=A^ + A.2t with similar expressions y, X and Y. But

by substitution in the equations of motion we see that x = A-^, y = B^- \[K-\-l)A{)itla,

X=Q and r=0. These roots therefore indicate merely a permanent change in the

size of the triangle. On examining the other values of X^, we find (1) The motion

cannot be stable unless k is less than 3. (2) The motion is stable whatever the

masses may be, if the law of force be expressed by any positive power of the dis-

tance or any negative power less than unity. (3) The motion is stable to a first

approximation if

(If+m + m')'
-,>3m-Mm + Mm'+ mm'

where 21f, m, m' are the masses. To express the co-ordinates in terms of the time,

we must return to the differential equations of the second order. The results are

rather long, and it may be sufficient to state that when, as in the solar system, two

of the masses are much smaller than the third, the inequahties in their angular

distances, as seen from the large body, have much greater coefficients than the

inequalities in their linear distances from the same body.

The reader will find a more complete discussion of this problem in a paper by

the author published in the sixth volume of the Proceedings of the London Mathema-

tical Society^ 1875. The co-ordinates ar, y, X, Y are expressed in terms of the

time and the possibility of any small term rising into importance is shortly treated.

Theory of oscillations about steady motion,

110. Having illustrated by two important examples the

methods of practically finding the oscillations about a state of

motion, we pass on to the general theory of the subject.
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111. The Determinantal Equation of steady motion.
To form the general equations of oscillation of a dynamical system
about a state of steady motion.

Let the system be referred to any co-ordinates 0, cfy, yfr, &c.
If the geometrical equations do not contain the time explicitly

the vis viva 2 T may be represented by the expression

2T=PJ" + 2PJ'<i>' + P^^f^ + &c.

where P^,, Pjg, &c. are known functions of the co-ordinates 0,

\<\>, &c. Let the force function be U. Let the state of motion
about which the system is oscillating be determined by 6 =f(t),

(f)
= F(t), &c. To determine these oscillations we put 6 =f{t) + os,

<p= F(t) +y, &c. Let the Lagrangian function L=T-]-U he
expanded in powers of x, y, &c. as follows :

L=L^-\- A^x' + A^y' + &c. + G^x + G^y + &c.

+ i [A^^x" + ^A^^x'y' -K &c.) -f i (
G^.x'^ 4- 2 G^,xy -F &c.)

+ G^^xx + G^^xy -h G^^yx + &c.

It will afterwards be found convenient to write E^^— Gr^^— ^r^i*

^13= 6^,3 - 6^31, and so on.

We shall now define a steady motion to be one in which all the
coefificients in this expansion are independent of the time. The
physical characteristic of such a motion is that when referred to

proper co-ordinates the same oscillations follow from the same dis-

turbance of the same co-ordinate at whatever instant it may be
applied to the motion. If the coefficients are not constant for the
co-ordinates chosen it may be possible to make them constant by
a change of co-ordinates. There are obviously many systems of

co-ordinates which may be chosen, and a set may generally be
found by a simple examination of the steady motion. If there are

any quantities which are constant during the steady motion, such
as those called ^, 77, &c. in Art. 98, these may serve for some of

the co-ordinates, others may be found by considering what quanti-

ties appear only as differential coefficients or velocities, for example
those called x, y, &c. in the same article. If none of these are

obvious, we may sometimes obtain them by combining the existing

co-ordinates. Practically these will be the most convenient
methods of discovering the proper co-ordinates.

To obtain the equations of motion we must now substitute

the value of L in the Lagrangian equations

d^dL_dL^ ^c=0
dt dx dx '

*
'

and reject the squares of small quantities. The steady motion
being given by x, y, &c. all zero, each of these must be satisfied

when we omit the terms containing x, y, &c. We thus obtain the

equations of steady motion, viz.

c^ = 0, c; = 0, &c. = 0,



^„v-o.., ^,.^^--^„\--0,: A?^'--^..x--C'.s,

A,,X'+E,,\--c., ^.^'-c^, -^.v--E^^--C.3,

A^X'+E^X--G.S. AJ.'+E.J.--c.. ^.^'-C33.
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which by Taylor's theorem are the same as the equations (1) of

steady motion given in Art. 98.

Omitting these terms and retaining the first powers of all the

small quantities we obtain the equations of small oscillations.

Representing differentiations with regard to t by the letter S, we
have

{A,,h'- CJx+(AJ\-EJ - CJr/+{AJ'-~ EJ-CJz-V &c. = 0,

&c. + &c. + &c. = 0.

112. To solve these we write a; = Xe^', y = Me^\&c. Substi-

tuting and eliminating the ratios L, M, &c. we obtain the following

determinantal equation

&c. =0.

&c.

&c.

&c. &c. &c, &c.

f in this equation we write — X for \ the rows of the new deter-

minant are the same as the columns of the old, so that the deter-

minant is unaltered. We therefore infer that the determinantal

equation when expanded contains only even powers of\.
We notice that if we remove from this determinant the terms

which contain the letter E, the remaining determinant is the same
as that which gives the oscillation about a position of equilibrium,

Art. 58. We may therefore say that the terms which depend on

E are due to the centrifugal forces of the steady motion.

113. Conditions of Stability. Regarding this as an equa-

tion to find X*, we notice that if the roots are all real and negative,

each of the co-ordinates x, y, &c. can be expressed in a series of

trigonometrical terms having different periods; the motion will

therefore be stable. If any one of the roots is imaginary or if

any one is real and positive, there will be both positive and
negative real exponentials entering into the expressions for x, y, &c.

and therefore the motion will be unstable. The condition of dyna-

mical stability is therefore that the roots of this equation must all

he of theform \=±fjL J— 1, where /jl is some real quantity.

114. Number of Oscillations. It follows also that when
a system, under the action of forces which have a potential, oscil-

lates about a stable state of steady motion, the oscillations of the

co-ordinates are represented by trigonometrical terms of the form

A sin (\^ + a) which are not accompanied by any real exponential

factors such as those which occurred in the problem of the Governor.

We see further that there will in general be as many finite

values of \' and therefore as many trigonometrical terms of

different periods as there are co-ordinates. It often happens, as
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explained in Art. Ill, that some of the co-ordinates are absent from

the expression for X, appearing only as differential coefficients.

Suppose for example 6 to be absent; then (7^^, C^^, &c. are all

zero, and we may divide X both out of the first line and the first

column of the fundamental determinant. We therefore have two
zero values of X, while at the same time the number of finite

values of X^ is diminished by unity. Hence the number of trigo-

nometiHcal terms of different periods cannot exceed the number of
co-ordinates which explicitly enter into the Lagrangian function.

Thus, in Ex. 2 of Art. 102, the function r+ Z7 has only the co-

ordinate 6 explicitly expressed, the others <^' and i/r' appearing

only as differential coefficients. It follows that if a top is disturbed

from a state of steady motion, there will be but one period in the

oscillation.

115. The relations between the coefficients L, M, &c. in the

exponential values of x, ?/, &c. may be obtained w^ithout difficulty

if we remember that the several lines of the fundamental deter-

minant are really the equations of motion. Taking any one line

;

multiply the first constituent by L, the second by il/, &c. and
equate the sum to zero. We thus obtain as many equations as

there are co-ordinates. On the whole we shall have, exactly as in

Lagrange's equations, Chap, ii., twice as many arbitrary constants

as there are co-ordinates, all the other constants being determined
by the equations just found. The arbitrary constants are deter-

mined by the initial values of the co-ordinates and their differential

coefficients.

But, unlike Lagrange's equations, the quantity X occurs in

the first power in each of these equations, so that the ratios of

L, M, &c. thus found may be imaginary. If — /?^^ —p^^ &c- be the

values of X", the expressions for the co-ordinates when rationalized

may therefore take the form

cs = A^^m{pJ^ + a^ ^ A^%m{pjt -\- a^ + ...

2/ = ^, sin (^^^ + ySJ -f- 5, sin (;),^ + ^J 4- . .

.

z = &c.

where a^ is not necessarily equal to yS^, nor a^ to 13^, &c., though
they are connected together.

116. Principal Oscillations. When the iaitial conditions

are such that every co-ordinate is expressed by a trigonometrical

term of one and the same period, the system is said to be perform-

ing a principal or harmonic oscillation. Thus each trigonometrical

term corresponds to a principal oscillation, and any oscillation of

the system is therefore said to be compounded of its principal

oscillations. 2'he physical characteristic of a principal oscillation

is that the motion of every part of the system is repeated at a con-

stant interval. If the type of the principal oscillation be X^= — p^*,

R. D. II. 5
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we see that throughout the motion we shall have x"=^—p^x,

117. Ex. A homogeneous sphere of unit mass and radius a is suspended from

a fixed point by a string of length & and is set in rotation about the vertical dia-

meter. When the sphere is slightly disturbed from this state of steady motion, let

bx, by and 6 be the co-ordinates of the point on the surface to which the string is

attached; bx + a^, by+ arj and b + a the co-ordinates of the centre, the fixed point

being the origin and the axis of z vertical and downwards. Also let x= <f> + ^ where

<p and ^ have the meanings usually given to them in Euler's geometrical equations,

see Vol. I. Chap. v. Thus before disturbance x'=». Prove that the Lagrangian

function is

If the motion of the centre of gravity be represented by a series of terms of the

form Mcos {pt + a), prove that the values of ^ are given by

Show that, whatever sign n may have, this equation has two positive and two

negative roots which are separated by the roots of either of the factors on the left-

hand side.

118. ZmptilsiTe Forces. If we regard an impulse as the limit of a force acting

for a very short time, we may deduce from Art. Ill the equations of motion of a

system moving in steady motion and suddenly disturbed by an impulse. Integrating

the equations of motion given in Art. Ill with regard to the time during the limits

of the impulse, the integrals of all the terms except those of the form A^x will be

zero. This follows from the definition of an impulse given in Chapter ii. of

Vol. I. or from the argument given in adjusting Lagrange's equations to impulses

in Chapter viii. of Vol. i.

The equations of motion for impulses are therefore

^ii(5xi-5a;o)+^i2(5yi-82/o)+ =-X'.

^12 (5^1 - 5^"o) + ^22 i^Ui - ^Vo) + = i'»

&c. = &c.

Here &»i
- Sxq, Ac. are the changes in the velocities of the co-ordinates produced by

the jerks. The quantities A", Y, &c. are the integrals of the disturbing forces and

therefore measure the jerks. If Z7 be the force function of the impulses as explained

in Vol. I. Chap. vm. we have X^dUjdx, Y=dUldy, &c,

119. Analysis of the roots of the deterzninantal equation. If the dctcrmi-

nantal equation of Art. 112 is not very complicated we may expand it in powers of

X. "We thus have an equation with only even powers of X. The important point to

settle is the number of real negative values of X^ which satisfy the equation. To

determine this, we may use Sturm's theorem. Since the equation has only alternate

powers of X, we may use the short rule which will be given in the chapter on the

Conditions of Stability to find the successive remainders.

But if it be inconvenient to follow this process, we may use some of the following

theorems.

120. We shall first show that the quadratic expression

2A=A^^x'+ 2Ai^3i^y' + A22y''^ + &C'

it a one-signed positive function. To prove this we notice that the coefficients Aj^ , Ac.

are what the coefficients P„ , Ac. of the vis viva become when we write for the



GENERAL THEORY. 67

co-ordinates 6, 0, &c. their values in the steady motion. If then, by any linear re-

lation between the variables, we could make A equal to zero, we could by introducing

a constraint into the motion represented by a similar relation between d\ 0', &c.

cause the vis viva to be zero. But since the vis viva is essentially positive, this is

impossible.

When a given quadratic function is a one-signed positive function, it is known
(Art. 60) that its discriminant is positive. It follows immediately that every dis-

criminant formed after putting any of the variables x', y', &c. equal to zero must

also be positive.

121. Theorem I. It frequently happens that there are but two independent

co-ordinates, so that the determinant is reduced to two rows. If we write

the determinantal equation when expanded reduces to

The conditions of stability are therefore (1) D' is positive, (2) E^^^-Q is positive and

greater than 2JdD'. See Art. 113.

These conditions may also be expressed thus. Omitting the terms which contain

^12 ^s a factor, we notice that the determinantal equation assumes Lagrange's form.

It therefore reduces to a quadratic to find X^ whose roots are both real by Art. 58.

Let a and j8 be these roots. If both are negative the motion is stable. If both are

positive the motion is stable or unstable according as E^c^jD^ is numerically greater or

less than \/a + \/p, the roots being taken positively. If a and /3 have opposite signs

the motion is unstable.

122. Theorem IE. Whatever be the number of co-ordinates the steady motion

cannot be stable unless all the values of X^ given by the determinantal equation are

real and negative. The coefficient of the highest power of X^ (Art. 120) is positive,

hence the term independent of X^ must also be positive. We therefore infer that the

steady motion cannot he stable unless the discriminant of the quadratic expression

2G=-C^^x^-2C,^xy-C^2y^+
is positive.

123. Theorem III. Let there be n co-ordinates and let A be the determinant

given in Art. 112. Beginning with this determinant we may form a series of deter-

minants each being obtained from the preceding by erasing the first Hne and the

first column. Let us represent these by Aj, Ag, &c. The determinant A is not

altered if we border it with a column of zeros on the right-hand side and a row of

zeros at the bottom, provided we put unity in the corner. We may therefore con-

sider A„= l. Thus we have a series of determinantal functions of X^ analogous to

those used in connection with Lagrange's determinant. See Art. 58.

Let us substitute in this series of determinants any negative value of X^ and

count the number of variations of sign. If as X^ passes from \^= -aio\^= - §,

/c variations of sign are lost, then the number of real roots between -a and -pis
either exactly equal to k or exceeds k by an even number.

To prove this, we let I^^ , Ijg , &c. be the minors of the several constituents of the

determinant A. We notice that /jg i^ changed into I^^ by changing the sign of X.

Hence if Jio= 0(X2)-f X^ (X^),

then l2^=(p{\'^)-\^{\^).

Thus the product I^^ hi is necessarily positive for all negative values of X^. It also

follows that if I^o vanishes for any negative value of X^ then I^^ vanishes for the

same value of X^.

.5 -2
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Starting with the equation AA2=Iii Jaa-Iia-Tai t^e rest of the proof is so nearly

the same as that for the corresponding theorem in Lagrange's determinant (Art. 58)

that it seems unnecessary to reproduce it here. Passing over therefore this proof

we notice the following applications.

124. Theorem IV. The coefficients of the highest powers of X^ in the series of

determinants A, A^, &c. are the discriminants of the quadric A (Art. 120), and

are therefore necessarily positive. The signs of the series of determinants when

\2= _ 00 are therefore alternatively positive and negative. If the discriminants of

the quadric 20= - C^iX^- 20^^ - C^y^ - &c.

be also all positive, the signs of the series of determinants when \^ = are all

positive. Thus the full number, viz. n, of variations of signs have been lost in

the passage from \^= -ao to \2= 0. It immediately follows from the theorem just

stated that when the quadric C is a one-signed positive function all the roots of the

determinantal equation are real and negative.

We may also express this by saying that when the quadric function C is a

minimum for all displacements from the steady motion, that steady nwtion is stable.

125. "When this occurs the roots of each of the series of determinants A, Aj,

Ag, &c. are all real and negative and the roots of each separate or lie between the

roots of the determinant next above it.

This follows from the mode of proof adopted in discussing Lagrange's deter-

minant. '

126. Theorem V. Squal roots. The existence of equal roots usually indicates

that there are terms in the solution with t as a factor, but it will be shown in

another chapter that this is not the case when the minors of the determinant A
are also zero.

Suppose, as in the last proposition, that the full number of variations of sign

have been lost in the passage from X2= - oo to \^=0. Then it may be shown, as

iu the corresponding proposition in Lagrange's determinant, that if the funda-

mental determinant have r equal roots, then every first minor has r- 1 roots equal to

each of these and every second minor has r- 2 roots equal to each of these, and so on.

We therefore infer that the existence of equal roots merely indicates a cor-

responding indeterminateness in the coefficients of the principal oscillation which

is derived from these equal roots.

Thus in Art. 115 we have n - 1 independent equations to find the ratios of the

coefficients L, 3/, Ac. of any exponential. But when there are r equal roots we

have only n-r independent equations leaving r of the coefficients independent.

127. Tlworem VI. If we remove the terms which contain the centrifugal forces

the remaining determinant is the same form as Lagrange's determinant. Thus we
have two determinantal equations each of which, for its own use, may be regarded

as an equation to find X^. From each of these we may derive a series of deter-

minants formed by the rule given in Art. 58. If we count the number of variations

of sign when X'= -oo and when X'=0, it is evident that each of the two series

exhibit the same loss. It therefore follows that the equation with the centrifugal

forces has at least as many negative roots as the corresponding Lagrange's equation,

and if it have more, the excess is an even number. If therefore all the roots of the

corresponding Lagrange's determinants are negative, then all the roots of the

equation with the centrifugal forces are also real and negative. Thus the general

effect of these centrifugal forces is to increase the stability.
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128. Bxamples. Ex. 1. If the determinant A vanish for any negative value

of X^, prove that for this value of X^ all the leading minors, viz. In, I^, &c., have

the same sign.

Ex. 2. If the determinant A vanish for any negative value of X^ which makes

all the leading minors equal to zero, prove that every minor is also equal to zero,

Ex. 3. If the determinant be of the form

A= X2-Cii, EjjX 1=0,

— E^^, X — U22
I

JEjo, are all positive, show that no variations of sign are lost in the

A2 as X2 passes from X2= -00 to \^= Q. Show also

that if E12 >n/Cii + \/C22 tlie roots of the quadratic are real and negative. If

K^^-s/C-^^ + \/C^^, show that the roots are equal and negative. In this latter case

since the minors are not zero, the solution will contain terms with t as a factor.

Ex. 4. If the fundamental determinant be of the form

A= X^-Cn, £12^, ^igX, &c. =0.

i

— -EJ2X, X — C22 , -£'23^> ^^'

i &c. &c. &c. &c.

and if A vanish for two equal negative values of X^ which are numerically greater

than the greatest positive quantity in the series C^ , 022 , &c. ,
prove that these equal

roots will not introduce any terms into the solution which contains f as a factor.

The substance of this section may be found partly in a paper by the author

published by the London Mathematical Society, 1875, and partly in the author's

Essay on tJie Stability of Motion, 1877.

The Representative Point.

129. When a dynamical system has not more than three

co-ordinates, we may obtain a geometrical representation of the

oscillation. Let these independent co-ordinates be x, y, z. If we
regard these as the Cartesian co-ordinates of some point P, it is clear

that the positions of P as it moves about will exhibit to the eye
the motion of the system. We may call this point the representative

point.

130. Oscillation about equilibrium. Let us first suppose
the system to be oscillating about a position of equilibrium, and
let it be performing any principal oscillation. Then throughout the
motion the co-ordinates x, y, z bear a constant ratio to each other
(Art. 5.3). We therefore infer that the path of the representative
particle is a straight line passing through the origin. If the oscil-

lation be defined by the type sin (p^-f-a) we have also (by Art. 55)
^' = —p^x, y" = —p^y, &c. Hence the representative point oscillates

in a straight line with an acceleration tending to the origin and
varying as the distance therefrom.

131. To find the position of this straight line let the vis viva
2r and the force function U be represented by

2r=^„»,-+24„a.y + &c.i
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Then by Lagrange's equations, since dc' = —p^x, &c., we have

-p' {A^^x + A^^ + &c.) = C,,x + C,^ + &c.|

-p« {A^^ +^^ + &c.) = C,,x + G^ + &c.j ^
^•

&c. = &c.

Omitting the accents in T and the constant term f/^, let us put

2A = A^^x^ + ^A^^xy-\-kc\ ,.

-2(7=(7,y+2a,,^y+&c.j ^ ^'

We also construct the two quadrics A = a, 0=7 where a and 7
are any constants. These quadrics have their centre at the origin

and have a common set of conjugate diameters which may be

found by the following process. Let x, y^ z be the Cartesian co-

ordinates of any point on one of the three conjugates. Then, since

the diametral planes of this point in the two quadrics are parallel,

we have
dA^dC dA^dC dA dC

^ dx~ dx* ^ dy dy ' ^ dz dz'

Comparing these with the equations (2) we see that when the

system is performing a principal oscillation the representative point

P oscillates in one of the common conjugate diameters of the quadrics.

132. By Euler's theorem on homogeneous functions we have

fiA = C. Applying the same reasoning to equations (2) we have

p*A = (7. Hence fJ^—p^. Let the diameter described by the repre-

sentative point cut the quadrics A = ol and (7= 7 in the points

D and D' and let be the origin. Then putting P at i> we have

A=oL, and since (7 is a homogeneous function we have

C={ODIODyy.
Hence p' = {ODjODy 7/a. The period of oscillation corresponding

to any common conjugate diameter ODD' is therefore equal to

133. The quadric C= y possesses the property that if x, y, z

be the co-ordinates referred to any axes of a point P on its

surface the work done by such a displacement from the position of

equilibrium is constant and equal to — 7.

134. As an example of this geometrical analogy let us consider the following

problem. A rigid body, free to move about a fixed point 0, is under the action of

any forcei and makes small oscillations about a position of equilibrium ; find tlie

principal osciUatiom,

Let OAf OB, OC be the positions of the principal axes in the position of

equilibrium, 0A\ 0B\ OC their positions at the time t. The position of the body

may be defined by the angles between (1) the planes AOC, AOC, (2) the planes

IWC, BOC\ (3) the planes COA, COA. Let these be called 6, 0, ^p respectively.

Then 6, 0, yp are angular displacements of the body about OA, OB, OC. Taking

these as the axes of co-ordinates in the geometrical analogy ; a small displacement
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of P from the origin to a point x=6, y = 4>, z=:\J/ represents a rotation of the body

about the straight line described by P and whose magnitude is measured by the

distance traversed by P.

If Ij , Zg > -^3 ^6 the principal moments of inertia at 0, the vis viva of the body

is clearly 2T= I^d'^ + I^cf/^ + I^xp%

Writing x, y, z iord', 0', i/'' ^s before, the quadric T=a or A = a is evidently the

momental ellipsoid at the fixed point.

Let the work of the forces as the co-ordinates change from zero to 6, 0, xp, or

X, y, z be given by
2U= (7ii^2+ 2 C^^xy + &c.

Then, following the analogy, as P moves along a radius vector OB' of the quadric

TJz^-y or G= y, the work is -{OPjOD'fy. Hence this quadric possesses the

property that the work done by the forces when the body is twisted through a given

angle round any radius vector varies inversely as the square of that radius vector.

If the equilibrium is stable, the work due to a rotation about every diameter must

be negative, the quadric must therefore be an ellipsoid.

It now follows from the general theorem that the body will perform a principal

oscillation if it is set in rotation about any one of the three conjugate diameters of

the momental ellipsoid and the ellipsoid U= -7, and will therefore continue to

oscillate as if that diameter were fixed in space.

The quadric U has been called the ellipsoid of the potential. This name was

given to it by Prof. Ball, who arrived at the theorem just proved by a different

course of reasoning. See his Theory of Screws, Art. 126. The following application

is also due to him.

135. When the only force acting on the body is gravity, the- ellipsoid of the

potential is a surface of revolution about a vertical axis. For the inverse square of

any radius vector measures the work done in turning the body through a given

small angle about that radius vector. But the work is also proportional to the

vertical distance through which the centre of gravity has been elevated from its

position in equilibrium vertically under the point of support. Hence all radii

vectores which make the same angle with the vertical are equal. Further the

vertical radius vector is infinite, for the work done in rotating the body about

a vertical axis is zero. The ellipsoid of the potential is therefore a right circular

cylinder with its axis vertical.

The common conjugate diameters of these two quadrics are obviously the

vertical and the two common conjugate diameters of the two ellipses in which the

diametral plane of the vertical with regard to the momental ellipsoid intersects the

momental ellipsoid and the cylinder.

The principal oscillation about the vertical conjugate is performed in an infinite

time and would therefore cause the body to depart far from the position of equi-

librium. But this is contrary to supposition. The initial axis of rotation must
therefore be in the plane of the other two conjugates, i. e. must be in the diametral

plane of the vertical with regard to the momental ellipsoid, and it will remain in

this plane throughout the whole of the subsequent motion.

Since these conjugate diameters project into the conjugate diameters of the

horizontal section of the cylinder, it is clear that two vertical planes each contain-

ing one of the principal or harmonic axes are at right angles to each other.

136. Oscillation about steady motion. Let us next sup-
pose the system to be oscillating about some state of steady motion.
To*' determine the motion of the representative point we must have
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recourse to the equations of motion written down in Art. 111. We
have already seen (Art. 116) that when the system is performing

the principal oscillation defined by the type pt we have x" = —p^Xy
y" = —p^y^ z" — —l^z. Substitute these in the equations of Art.

111. Differentiate and substitute again. Multiply by x, y, z

respectively and add the results together. Integrating this sum
we obtain

{A^^x^ -f ^A^^xy + &c.)f + (O^y + 'LG.^o'y + &c.) = 2^
where /9 is some constant. Following the same notation as before

we may write this quadric in the compendious form

The path of the representative point lies on this quadric.

Returning to the equations of motion as given in Art. Ill, let

us resume the results of the substitution x" — —p^x, &c. Taking
as before the case in which there are but three co-ordinates, we
now multiply the three equations by E^^y — E^^, E^^ respectively.

Adding the results we obtain

f(^„£,-^A+^.s-^,J«+&c.]p'+[(O„^,,-O„£:„+O„^>+&c.]=0.
This is the equation to a plane. The path of the representative

point is therefore a plane section of a quadric. We infer that when
a system is performing a principal oscillation about a state of steady

motion the representative point describes an ellipse. The ellipse is

described with an acceleration tending to the centre and varying as

the distance therefrom. The periodic time in the ellipse is by defi-

nition the same as that in which the system performs its principal

oscillation.

137. Ex. 1. Show that the three planes of these harmonic ellipses are diametral

planes of the same straight line with regard to the three quadrics represented by

Ap^-C-P, where p^ has any one of the three values given by the determinant of

motion. The direction cosines of this straight line are proportional to £33 » - -^is* -^la

and it may be called the axis of the centrifugal forces.

Ex. 2. Show that the quadric Ap^- C=p has a common set of conjugate dia-

meters with the quadrics A = a, C = y. If the quantities E^ , E-^^ , Ej^ be all zero,

Hhow that the first of these quadrics becomes a cylinder whose axis is one of the

three common conjugate diameters of the two latter quadrics. Hence show that

when the system oscillates about a position of equilibrium the ellipses degenerate

into straight lines.

138. We may notice here a distinction between the principal oscillations of a

system about a position of equilibrium and about a state of steady motion. In the

former the representative point describes a straight line, in the latter it describes an

ellipse. In the former the representative point, and therefore also the system, passes

through the position of equiUbrium twice in each complete oscillation. In the latter

the representative point goes round the undisturbed position but does not pass

through it. Thus the position of the system in the distiurbed or actual motion does

not ever coincide with the simultaneous position of the system in the steady or

undisturbed motion. The only exception is when the ellipse degenerates into a

Htraight line.
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When a system is disturbed by a small impulse from a state of steady motion it

will in general describe a compound oscillation made up of at least two principal

oscillations. At the instant of disturbance these two neutralize each other so far

that in the disturbed and steady motions two simultaneous positions are coincident.

But it is clear this cannot happen again unless either the periods of the two princi-

pal oscillations are commensurable or the period of one of them is infinite.

139. The introduction of the representative point to exhibit the motion of the

system may appear somewhat artificial. But there is a closer connection than has yet

been mentioned. Let us transform the co-ordinates x, y, z into others ^, 7;, f by linear

relations so that A^^ x"^ + 2^1, ^'v' + *c. = ^'^ + 77'^ + f
'-.

This is the part of the Lagrangian function given in Art. Ill, which contains the

squares and products of the velocities. This change may obviously be effected in an

infinite variety of ways.

The equations of motion given in Art. Ill now take a simplified form. The

following is a specimen,

These are the equations of motion of a free particle of unit mass acted on by

(1) forces whose force function U is given by

2U= On x^+ 2Ci2 xy + &c.
,

and (2) by a force which is the resultant of the three components on the right-hand

sides of the equations of motion. This force is evidently the same as that which

has been already considered in Art. 25, and there called the compound centrifugal

force. The direction cosines of the axis of the centrifugal forces are here propor-

140. Thus, when the co-ordinates are properly chosen, the problem of finding the

oscillations of a system when the Lagrangian function is known, is the same as that

of finding the motion of a free particle acted on by known forces. This is, of

course, a simpler problem because its solution may be assisted by any of the

methods of resolution of the forces usually given in treatises on dynamics of a par-

ticle.

It has already been noticed several times how sometimes the analysis of one

dynamical problem resembles that of another. We may thus replace one body by

another of more convenient shape without altering the process of solution. The use

of the Representative particle is one more illustration of this property.

A more complete account of the theory of the Representative point is given in

the essay on the Stability of Motion already referred to.



CHAPTER IV.

MOTION OF A BODY UNDER THE ACTION OF NO FORCES.

Solution of Euler's Equations.

141. To determine the motion of a body about a fixed point,

in the case in which there are no impressed forces.

Euler*s equations of motion are

multiplying these respectively by w^, co^, Wg ; adding and inte-

grating, we get

Aay^' + B(o,'+Ca>^' = T (1),

where T is an arbitrary constant.

Again, multiplying the equations respectively by Aco^, Bw^, Oco^,

we get, similarly,

^V +^< + C'V = ^'
(2),

where G is an arbitrary constant.

To find a third integral, let

a,," + a)/ + «3« = a)' (3);

do) d(o.
, c?G>- dco

then multiplying the original equations respectively by eoJA, coJB,
wJCf and adding, we get

d(D (B-G
,
C-A A-B\

''di'^K A + -5- +-c^j«x«««3 (4)

{B--C){C -A)(A^B)=
ABC '^^^^^B-
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But solving the equations (1), (2), (3), we get

'"= (^-C)(^-B) -(-^- + '">

"'' = {G-B){0-A) • <~ ^^ + "')

where \ =—^^

—

^-J^ > '^i*^ similar expressions for X^ and X3.

Substituting in equation (4), we have

''^ = ^(\-«''){\-''')(\-''') (6)-

The integration of equation (6)* can be reduced without diffi-

culty to depend on an elliptic integral. The integration can be
effected in finite terms in two cases ; when A = B, and when
G^ = TB, where B is neither the greatest nor the least of the three

quantities A, B, C. Both these cases will be discussed further on.

Ex. If right lines are measured along the three principal axes of the body from

the fixed point, and inversely proportional to the radii of gyration round those axes,

the sum of the squares of the velocities of their extremities is constant throughout

the motion.

142. It will generally be supposed that A, B, G are in order of magnitude, so

that A is greater than J5, and B than (7. The axis of B will be called the axis of

mean moment. If we eliminate wj from the equations (1) and (2), we have

AT-G^= B{A-B)(c^^ + C{A-C)u}^^

which is essentially positive. In the same way we can show that CT - G^ is nega-

tive. Thus the quantity G^/r may have any value lying between the greatest and

least moments of inertia.

The three quantities \, Xg , Xg in Art. 141 are all positive quantities ; for since

B + G-A is positive, and G^IT<A, it follows that X^ is positive. The numerators

of X2 and Xg are each greater than that of \ , and are therefore positive, the denomi-

nators are also positive ; hence Xg and Xg are both positive. Also we have

ABC {\-\o) = {TG -G^){A-B), with similar expressions for Xg-Xg and Xg-Xj.

It easily follows that Xg is the greatest of the three, and X^ or Xg is the least according

as G^jT is greater or less than B.

It follows from equations (5) that throughout the motion w^ must lie between Xg

and the greater of the quantities Xj and Xg

.

143. Kirchhofrs solution. The solution in terms of elliptic integrals has

been effected in the following manner by Kirchhoff . If we put

d(p

A{<p)=.s/l-k-'Bm^cp, F {<!>) =
] I^1 - P sin20

'

* Euler's solution of these equations is given in the ninth volume of the Quarterly

Journal, p. 361, by Prof. Cayley. Kirchhoff's and Jacobi's integrations by elliptic

functions are given in an improved form by Prof. Greenhill in the fourteenth

volume, pages 182 and 265. 1876.
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then k is caUed the modulus of F, and must be less than unity if F is to be real for

all values of <p. The upper limit <p is called the amplitude of the elliptic integral

F and is usuaUy written am F. In the same way sin 0, cos 0, and A {<f>)
are written

sin am Fy cos am F, and A am F.

We have by differentiation

d cos ' ^d<f>

1^= CO8 0^|=CO9*A(*l !• (!)•

dA (0) _ F sin cos rf0

~~dF
~

aT^J dF "^" ^ "^

J

These equations may be made identical with Euler's equations if we put

/'=\(t-r)and Wi=aAamX{<-T) \

w.^=6 8inamX(«-T) v .(2),

W3= c cos am X (« - t)
)

A-B _ c\ -4^-0 __5X B-G_ j„a\ .^.

'~C~''~ab' B ~ ca' A ~ be ^
''

We have introduced here six new constants, viz. a, 6, c, X, k and t. With these

we may satisfy the three last equations and also any initial values of Wj, Wo, Wj'

The solution if real will also be complete.

When t=T we have from (2) 10^= a, W2=0, and ia^= c. Hence by Art. 141

Aa^+Cc^=T, A^a- + C^c^=G^;

a_ G^-GT ^_AT-G^
•'• ^ ~A{A-C)* ^ ~ CjA - C)

'

Dividing the second of equations (3) by the first, we have

h^_ A-C C,
.

AT-G»
c^~ A-B B*

•*• ~'B{A-B)'

Multiplying the first and second of equations (3), we obtain

(A-B){G^-CT)
ABC

The ratios of the right-hand sides of (3) are as c^ :h^ : k^a^, and these have just

been found. Hence if the signs of a, 6, c, X be chosen to satisfy any one of the

three equalities, the signs of all will be satisfied.

Dividing the last of equations (3) by either of the other two, we find

A-B G^-CT* •• * '• ^_B G-^-CT
'

If G*> BT and ^4, J5, C are in descending order of magnitude, the values of

a*, 6*, c* and X' are all positive. Also k^ is positive and less than unity. The
solution is therefore real and complete.

If G*< BT we must suppose ^, 5, C to be in ascending order of magnitude to

obtain a real solution. If we may anticipate a phrase used by Poinsot, and which

will be explained a little further on, we may say that the expression for w^ in this

solution is to be taken for the angular velocity about that principal axis which is

enclosed by the polhode.

If 0«=Br we have fc»= 1 and

y CO8
, , l4-sin0 . _,«'-«-

1 - sm 6'+c'
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Substituting in equations (2) the elliptic functions become exponential.

If B = C we have k^= and in this case 1^=0, so that &m.F=F. If we again

substitute in equations (2) the elliptic functions become trigonometrical.

The geometrical meaning of this solution will be given a little further on.

Poinsot's and MacCullagKs constructions for the motion,

144. The fundamental equations of motion of a body about a
fixed point are

J.V +^V + C^V= ^'
(1),

^< + 5a>/ + a< = r (2).

These have been already obtained by integrating Euler's
equations, but they also follow very easily from the principles of
Angular Momentum, and Vis Viva.

Let the body be set in motion by an impulsive couple whose
moment is O. Then we know by Vol. I. Chap. VL, that throughout
the whole of the subsequent motion, the moment of the momentum
about every straight line which is fixed in space, and passes through
the fixed point 0, is constant, and is equal to the moment of the
couple G about that line. Now by Art. 16, the moments of the
momentum about the principal axes at any instant are A(o^, -Sw^,

G(o^. Let a, ft 7 be the direction angles of the normal to the
plane of the couple G referred to these principal axes as co-

ordinate axes. Then we have

A(o^ = 6^ cos a
1

B(o^= C^cos/si (3),

CcOg = G COS 7J

adding the squares of these we get equation (1).

Throughout the subsequent motion the whole momentum of

the body is equivalent to the couple G. It is therefore clear

that if at any instant the body were acted on by an impulsive

couple equal and opposite to the couple G, the body would be

reduced to rest.

145. It follows from the definition given in Vol. I. Chap. VI.

that the plane of this couple is the Invariable plane and the

normal to it the Invariable line. This line is absolutely fixed in

space, and the equations (3) give the direction cosines of this line*

referred to axes moving in the body.

* That the straight line whose equations referred to the moving principal axes are

xjAb)-^ = yjBo)^= zjCio.^ is absolutely fixed in space may be also proved thus, if we assume

the truth of equation (1) in the text. Let x, y, z be the co-ordinates of any point

P in the straight line at a given distance r from the origin, then each of the equali-

ties in the equation to the straight line is equal to rfG and is therefore constant.

The actual velocity of P in space resolved parallel to the instantaneous position of
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It appears from these equations, tkat if the body be set in

rotation about an axis whose direction cosines are (I, m, n) when
referred to the principal axes at the fixed point, then the direction

cosines of the invariable line are proportional to Al, Bm, On. If

the axes of reference are not the principal axes of the body at the

fixed point, the direction cosines of the invariable line will, by
Art. 16, be proportional to Al — Fm — En, Bm — Bn — Fl, and
Cn— El — Dm, where A, F &c. are the moments and products of

inertia.

146. Since the body moves under the action of no impressed
forces, we know that the Vis Viva will be constant throughout the

motion. We have therefore

where T* is a constant to be determined from the initial values

of G),, O),, 6)3.

The equations (1), (2), (3) will suffice to determine the path in

space described by every particle of the body, but not the position

at any given time.

147. Poinsot's construction. To explain Poinsofs repre-

sentation of the motion by means of the momental ellipsoid.

Let the momental ellipsoid at the fixed point be constructed,

and let its equation be

Aa?-\-By^+ Cz^=Me\
Let r be the radius vector of this ellipsoid coinciding with the

instantaneous axis, and p the perpendicular from the centre on
the tangent plane at the extremity of r. Also let o) be the an-
gular velocity about the instantaneous axis.

The equations to the instantaneous axis are

oi _ y _ z

and if (ar, y, z) be the co-ordinates of the extremity of the length r,

each of these fractions is equal to rjo). Substituting in the equa-
tion to the ellipsoid, we have

(Ja,.«+ ZJo,.' + C<o:) '-, = Me' ;
• a, =^

^

r

The equation^ the tangent plane at the point {x, y, z) is

Axli^-By7)-vCzl;=Me\

the axia of « iB =^ - yw^+ zw, = ^ \a -^ -{B-CTj u^uX . But this is zero, by

Euler's equation. Similarly the velocities parallel to the other axes are zero.

• It should be observed that in this Chapter T represents the whole vis viva of

the body. In treating of Lagrange's equations in Chapter 11. it was convenient to

let T rcprcaent half the vis viva of the system.
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substituting again for (a?, y, z) we see that the equations to the
perpendicular from the origin are

Aco^ B(D^ Oog

'

but these are the equations to the invariable line. Hence this

perpendicular is fixed in space.

The expression for the length of the perpendicular on the

tangent plane at {x, y, z) is known to be -^= m^^ »

substituting as before we get

1 _^V +^V + 0^0)3^ r" _ G' Me'

f i/V •

ft)'^
~ iiV • T '

JMT ,

From these equations we infer

(1) The angular velocity about the radius vector round which
the body is turning varies as that radius vector.

(2) The resolved part of the angular velocity about the per-

pendicular on the tangent plane at the extremity of the instan-

taneous axis is constant. This theorem is due to Lagrange.
For the cosine of the angle between the perpendicular and

the radius vector = p/r. Hence the resolved angular velocity

is = COp/r = T/G, which is constant.

(3) The perpendicular on the tangent plane at the extremity

of the instantaneous axis is fixed in direction, viz. normal to the

invariable plane, and constant in length.

The motion of the momental ellipsoid is therefore such that,

its centre being fixed, it always touches a fixed plane, and the

point of contact, being in the instantaneous axis, has no velocity.

Hence the motion rnay be represented by supposing the momental
ellipsoid to roll on the fixed plane with its centre fixed.

148. Ex. 1. If the body while in motion be acted on by any impulsive couple

whose plane is perpendicular to the invariable line, show that the momental ellipsoid

will continue to roll on the same plane as before, but the rate of motion will bo

altered.

Ex. 2. If a plane be drawn through the fixed point parallel to the invariable

plane, prove that the area of the section of the momental ellipsoid cut off by this

plane is constant throughout the motion.

Ex. 3. The sum of the squares of the distances of the extremities of the princi-

pal diameters of the momental ellipsoid from the invariable line is constant through-

out the motion. This result is due to Poinsot.

Ex. 4. A body moves about a fixed point under the action of no forces. Show
that if the surface Ax^+ By^ + Cz^=M [x"^ \-y'^ + z^Y ^^ traced in the body, the principal

axes at being the axes of co-ordinates, this surface throughout the motion will

roll on a fixed sphere.



80 MOTION UNDER NO FORCES.

149. The Polhode. To assist our conception of the motion
of the body, let us suppose it so placed, that the plane of the

couple (r, which would set it in motion, is horizontal. Let a

tangent plane to the momental ellipsoid be drawn parallel to the

plane of the couple 0, and let this plane be fixed in space. Let
the ellipsoid roll on this fixed plane, its centre remaining fixed,

with an angular velocity which varies as the radius vector to

the point of contact, and let it carry the given body with it. We
shall then have constructed the motion which the body would have
assumed if it had been left to itself after the initial action of the

impulsive couple G*.
The point of contact of the ellipsoid with the plane on which

it rolls traces out two curves, one on the surface of the ellipsoid,

and one on the plane. The first of these is fixed in the body and
is called the polhode, the second is fixed in space and is called the
herpolhode. The equations to any polhode referred to the prin-

cipal axes of the body may be found from the consideration that

the length of the perpendicular on the tangent plane to the ellip-

soid at any point of the polhode is constant. Taking the expres-

sions for this perpendicular given in Art. 147 we see that the
equations of the polhode are

Aa? + By' + Cz^ = Me' J

Eliminating y, we have

A{A-B)x'+ C{C-B)z'=(^ - B\Me\

Hence if B be the axis of greatest or least moment of inertia,

the signs of the coefiicients of x^ and z^ will be the same, and the

projection of the polhode will be an ellipse. But if B be the

axis of mean moment of inertia, the projection is a hyperbola.

A polhode is therefore a closed curve drawn round the axis of

greatest or least moment, and the concavity is turned towards the

axis of greatest or least moment according as G^IT is greater or

less than the mean moment of inertia. The boundary line which
separates the two sets of polhodes is that polhode whose projection

on the plane perpendicular to the axis of mean moment is a

• Prof. Sylvester has pointed out a dynamical relation between the free rotating

body and the ellipsoidal top, as he calls Poinsot's central ellipsoid. If a material

ellipsoidal top be constructed of uniform density, similar to Poinsot's central ellip-

soid, and if with its centre fixed it be set rolling on a perfectly rough horizontal

plane, it will represent the motion of the free rotating body not in space only, but

also in time : the body and the top may be conceived as continually moving round

the same axis, and at the same rate, at each moment of time. The reader is referred

to the memoir in the Philvaophical Transactions for 1866.
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hyperbola whose concavity is turned neither to the axis of greatest,

nor to the axis of least moment. In this case G^ = BT, and the

projection consists of two straight lines whose equation is

A(A-B)x'-G(B-C)z' = 0.

This polhode consists of two ellipses passing through the axis

of mean moment, and corresponds to the case in which the per-

pendicular on the tangent plane is equal to the mean axis of

the ellipsoid. This polhode is called the separating polhode.

Since the projection of the polhode on one of the principal

planes is always an ellipse, the polhode must be a re-entering

curve.

150. To find the motion of the extremity of the instantaneous axis along the

polhode which it describes we have merely to substitute from the equations

Wj _ a>2 _ W3 _ w _ / T 1

\/s^ !^- *°- *<=•' -'=,-7r^frrB)(-V+'^). *-. *-=•

in any of the equations of Art. 141. For example we thus obtain

dx_ /T B-Gyz ,,^ ^^ ^,_ BG
dt.

Ex. I. A point P moves along a polhode traced on an ellipsoid, show that the

length of the normal between P and any one of the principal planes at the centre

is constant. Show also that the normal traces out on a principal plane a conic

similar to the focal conic in that plane. Also the measure of curvature of an

eUipsoid along any polhode is constant.

Ex. 2. Show that the straight line J whose direction cosines are proportional

to dbj^jdty du^ldtf dw^jdt lies in the diametral plane of the invariable line and is

at right angles to the invariable line. Show also that the sum of the squares

of these quantities is

fi'4= _ 0,4 + {2Tp, - G%) 0,7^3 - {p^^T^ - {p,p, + p,) G^T +p,G^]lp^

where jOj, p^, p^ are the sum of the products of the quantities A, By G taken re-

spectively one, two and three together.

Ex. 3. Show that the resolved pressures P, Q, R on the fixed point in the

directions of the principal axes at are given by

P= - Wiw^y {A - B)C+ W1W32 [C - A)IB + Wj [oj^y + w^z) - {w^ + u}^)x

with similar expressions for Q, and JR, where x, y, z are the co-ordinates of the

centre of gravity 0. and A, B, C are the principal moments of inertia at 0.

Thence show that the pressure on is equivalent to two forces (1) a force

fi'^. GK which acts perpendicular to the plane OGK, where GK is the perpendicular

drawn from G on the straight line OJ described in the last example, (2) a force

ta^ . GH acting parallel to GH where GH is a perpendicular from G on the instan-

taneous axis.

151. The Herpolhode. Since the herpolhode is traced out
by the points of contact of an ellipsoid rolling about its centre on a

fixed plane, it is clear that the herpolhode must always lie between
two circles which it alternately touches. The common centre of

these circles will be the foot of the perpendicular from the fixed

centre on the fixed plane. To find the radii let OL be this

R. D. II.
• 6
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perpendicular, and / be the point of contact. Let LI = p. Then

Me* ( T\
we have by Art. 147, p^ = r^-p^=^ -m- f co* -^ J

.

The radii will therefore be found by substituting for co^ its

greatest and least values. But by Art. 142, these limits are \,
and the greater of the two quantities \,\'

The herpolhode is not in general a re-entering curve ; but if

the angular distance of the two points in which it successively

touches the same circle be commensurable with 27r, it will be
re-entering, i.e. the same path will be traced out repeatedly on the

fixed plane by the point of contact.

152. MacCullagh^s Construction. To explain MacCul-
lagKs representation of the motion hy means of the ellipsoid of
gyration.

This ellipsoid is the reciprocal of the momenta! ellipsoid, and
the motion of the one ellipsoid may be deduced from that of the

other by reciprocating the properties proved in the preceding
Articles. We find,

(1) The equation to the ellipsoid referred to its principal

axes is ^a yi ^ ^ ^

a'^'b'^g'm'

(2) This ellipsoid moves so that its superficies always passes

through a point fixed in space. The point lies in the invariable

line at a distance -^== from the fixed point. By Art. 142 we

know that this distance is less than the greatest, and greater than
the least semi-diameter of the ellipsoid.

(3) llie perpendicular on the tangent plane at the fi^ed point

is the instantaneous axis of rotation, and the angidar velocity of
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the body varies inversely as the length of this perpendicular. If p
1 lY

be the length of this perpendicular, then « = - a / —

.

(4) The angular velocity about the invariable line is constant

and = p

.

The corresponding curve to a polhode is the path described on
the moving surface of the ellipsoid by the point fixed in space.

This curve is clearly a sphero-conic. The equations to the sphero-

conic described under any given initial conditions are easily seen

G^ x^ iP z^ 1
tobe ^ +y + ,^ =_, _ + _^ + _=^^.

These sphero-conics may be shown to be closed curves round
the axes of greatest and least moment. But in one case, viz.

when G'^jT= B, w^here B is neither the greatest nor least moment
of inertia, the sphero-conic becomes the two central circular sections

of the ellipsoid of gyration.

The motion of the body may thus be constructed by means of

either of these ellipsoids. The momental ellipsoid resembles the
general shape of the body more nearly than the ellipsoid of gy-
ration. It is protuberant where the body is protuberant, and
compressed where the body is compressed. The exact reverse of

this is the case in the ellipsoid of gyration.

153. MacCullagli's geometrical interpretation. MacCullagli has used the

ellipsoid of gyration to obtain a geometrical interpretation of the solution of Euler'a

equations in terms of elliptic integrals.

The ellipsoid of gyration moves so as always to touch a point L, fixed in space.

Let us now project the point L on a plane passing through the axis of mean
moment and making an angle a with the axis of greatest moment. This projection

may be effected by drawing a straight line parallel to either the axis of greatest

moment or least moment. We thus obtain two projections which we will call

P and Q. These points will be in a plane TQli which is always perpendicular to

the axis of,mean moment. As the body moves about the point L describes on

the surface of the ellipsoid of gyration -a sphero-conic KK\ and the points P, Q
describe two curves -p^', qq' on the plane of projection OBD. If the sphero-conic

as in the figure enclose the extremity A of the axis of greatest moment, the curve

inside the ellipsoid is formed by the projection parallel to the axis of greatest

moment, but if the sphero-conic enclose the axis of least moment, the inner curve

is formed by the projection parallel to that axis. The point P which describes the

inner curve will obviously travel round its projection, while the point Q which

describes the outer curve will oscillate between two limits obtained by drawing

tangents to the inner projection at the points where it cuts the axis of mean
moment.

Since the direction-cosines of OL are proportional to Au)^, B03.2, Cco.j it is easy to

see that, if x, y, z are the co-ordinates of L,

— = -!- = -- = -=--^- m
Au,, Buy, Cc.3 G JWr

^^'

C—

2
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Let OP=p, OQ=p\ and let the angles these radii vectores make with the piano

containing the axes of greatest and least moment be and 4> measured in the

.(2),

direction BD so that DOP= -
<t>,
DOQ =-</>': we then have

- p sin = 1/= J5a>2 (ilfT) - i
I

p cos sin a=-s = Cwj [MT)-

p'coa<p'coBa= x= A(ai{MT)-i\

-p'Bm<f>' =y=Bb}2{MT)-iS

It is proved in treatises on solid geometry that, if the plane on which the

projection is made is one of the circular sections of the ellipsoid, the projections

will be circles. This result may be verified by finding p or p' from these equations.

Remembering that p and />' are constants, let us substitute in Euler's equation

.(3).

-'a-io-

dtf>

Pa7 'MTpp' sin a cos a cos <f>\

A) (a^<i)i=

from (2) and the first of equations (3). We have

^A-C
dt AC

Since p' cos <p' is the ordinate of Q, we see that the velocity of P varies as the

ordinate of Q, and in the same way tJie velocity of Q varies as the ordinate of P.

To find the constants p, p' we notice that p is the value of y obtained from

the equations to the sphero-conic when z=0. We thus have

,JAT-O^B ^_ (G^-CT)B
^ Sir (A -By ^ ~MT{B-Cy

the latter being obtained from the former by interchanging the letters A and C.

Henoe
/velocity \ _ Jb-G ijnr-ri /ordinateX

V ofp >/-v2W^'*^"^ \ ofg J'

/velocity \ _ s/I^J InT-rr /"ordinateX
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154. Since p'sin ^'— /> sin
<f>,

we have by substitution

t=V" ^sinV,
P'

where X^ has the same value as in Art. 143. Let us suppose ^ expressed in terms

of t by the elliptic integral

SO that 0=amX(f-r). Substituting this value of ^ in equations (2) or (3), we
obtain the values of wj, Wj, W3 expressed in terms of the time.

155. Stability of Rotation. If a body be set in rotation

about any principal axis at a fixed point, it will continue to rotate

about that axis as a permanent axis. But the three principal

axes at the fixed point do not possess equal degrees of stability.

If any small disturbing cause act on the body, the axis of rotation

will be moved into a neighbouring polhode. If this polhode be a
small nearly circular curve enclosing the original axis of rotation,

the instantaneous axis will never deviate far in the body from the

principal axis which was its original position. The herpolhode also

will be a curve of small dimensions, so that the principal axis will

never deviate far from a straight line fixed in space. In this case

the rotation is said to be stable. But if the neighbouring polhode
be not nearly circular, the instantaneous axis will deviate far from
its original position in the body. In this case a very small dis-

turbance may produce a very great change in the subsequent
motion, and the rotation is said to be unstable.

If the initial axis of rotation be the axis OB of mean mo-
ment, the neighbouring polhodes all have their convexities turned
towards B. Unless, therefore, the cause of disturbance be such
that the axis of rotation is displaced along the separating polhode,

the rotation must be unstable. If the displacement be along the

separating polhode, the axis may have a tendency to return to its

original position. This case will be considered a little further on,

and for this particular displacement the rotation may be said to

be stable.

If the initial axis of rotation be the axis of greatest or least

moment, the neighbouring polhodes are ellipses of greater or less

eccentricity. If they be nearly circular, the rotation will certainly

be stable ; if very elliptical, the axis will recede far from its initial

position, and the rotation may be called unstable. If OG be the
axis of initial rotation, the ratio of the squares of the axes of the

A (A- C)
neighbouring polhode is ultimately n ) n _ p\ • I* is therefore

necessary for the stability of the rotation that this ratio should not

difier much from unity.

156. It is well known that the steadiness or stability of a moving
body is much increased by a rapid rotation about a principal axis.



80 MOTION UNDER NO FORCES.

The reason of this is evident from what precedes. If the body
be set rotating about an axis very near the principal axis of

greatest or least moment, both the polhode and herpolhode will

generally be very small curves, and the direction of that principal

jixis of the body will be very nearly fixed in space. If now a
.small impulse /act on the body, the effect will be to alter slightly

the position of the instantaneous axis. It will be moved from one
polhode to another very near the former, and thus the angular

|X)sition of the axis in space will not be much affected. Let fl

be the angular velocity of the body, co that generated by the im-
pulse, then, by the parallelogram of angular velocities, the change
in the position of the instantaneous axis cannot be greater than
sin"^ (ft)/n). If therefore H be great, co must also be great, to produce
any considerable change in the axis of rotation. But if the body
have no initial rotation H, the impulse may generate an angular

velocity co about an axis not nearly coincident with a principal

axis. Both the polhode and the herpolhode may then be large

curves, and the instantaneous axis of rotation will move about
both in the body and in space. The motion will then appear
very unsteady. In this manner, for example, we may explain

why in the game of cup and ball, spinning the ball about a ver-

tical axis makes it more easy to catch on the spike. Any motion
caused by a wrong pull of the string or by gravity will not produce
so great a change of motion as it would have done if the ball had
been initially at rest. The fixed direction of the earth's axis in

.space is also due to its rotation about its axis of figure. In rifles,

a rapid rotation is communicated to the bullet about an axis in

the direction in which the bullet is moving. It follows, from
what precedes, that the axis of rotation will be nearly unchanged
throughout the motion. One consequence is that the resistance

of the air acts in a known manner on the bullet, the amount of

which may therefore be calculated and allowed for.

On the Ccniea described by the Invariable and Instantaneous Axes
treated by Spherical Trigonometry.

157. There are various ways in which we may study the
motion of a body about a fixed point. We may have recourse to

the properties of an ellipsoid as Poinsot and MacCullagh have
done. But we may also use a sphere whose centre is at the fixed

point and which is either fixed in the body or fixed in space at our
pleasure. This method is particularly useful when we wish to find

the angular motion of any line in space or in the body. By
referring these angles to arcs drawn on the surface of the sphere
we are enabled to shorten our processes by using such formulae of

.spherical trigonometry as may suit our purpose.

The cones described by the invariable line and the instanta-
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neous axis intersect this sphere in sphere-conies. The properties

of such cones are not usually given with sufficient fulness in our
treatises on solid geometry. For this reason we have added a list

of several properties likely to be useful. In order not to interrupt

the general line of the argument this list has been placed at the

end of the chapter.

158. It is clear from what precedes that there are two im-
portant straight lines whose motions we should consider. These
are the invariable line and the instantaneous axis. The first of

these is fixed in space, but as the body movus the invariable line

describes a cone in the body, which by Art. 152 intersects the

ellipsoid of gyration in a sphero-conic. This cone is usually called

the Invariable Cone. The instantaneous axis describes both a
cone in the body and a cone in space. By Art. 147, the cone de-

scribed in the body intersects the momental ellipsoid in a polhode,

and the cone described in space intersects the fixed plane on

which the momental ellipsoid rolls in a herpolhode. These two
cones may be called respectively the instantaneous cone and the

cone of the herpolhode.

159. The Cones. Let the principal axes at the fixed point

be taken as the axes of co-ordinates. The axes of reference are

therefore fixed in the body but moving in space. By Art. 144,

the direction-cosines of the invariable line are AcoJG, BcoJGy
CcoJG; and the direction-cosines of the instantaneous axis are

COJCO, COJCO, COJCO. From the equations (1) and (2) of Art. 144, we
easily find

{Aco,' + ^o)/ 4- Ccoi) G' - [A-'co,' + B'co^' + a'V) ^.

If we take the co-ordinates ^, y, z to be proportional to the

direction-cosines of either of these straight lines and eliminate co^,

tOg, 6)3 by the help of this equation, we obtain the equation to the

corresponding cone described by that straight line. In this way
we find that the cones described in the body by the invariable

line and the instantaneous axis are respectively

A (AT^ G') x' + B (BT- G^)f -H G {GT- G') z' = 0.

These cones become two planes when the initial conditions are

such that G^'^BT.

Ex. 1. Show that the circular sections of the invariable cone are parallel to

those of the ellipsoid of gyration and perpendicular to the asymptotes of the focal

conic of the momental ellipsoid.

160. There is a third straight line whose motion it is sometimes convenient to

consider, though it is not nearly so important as either the invariable line or the

instantaneous axis. If x, y, z be the co-ordinates of the extremity of a radius vector

of an ellipsoid referred to its principal diameters as axes and if a, b, c be the semi-
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axes, the straight line whose direction-cosines are xja, yjh, zjc is called the eccentric

line of that radius vector. Taking this definition, it is easy to see that the direc-

tion-cosines of the eccentric line of the instantaneous axis with regard to the

momental ellipsoid are Wj JaJT, wj sfBfT, Wg >JC\T. These are also the direction-

cosines of the eccentric line of the invariable line with regard to the ellipsoid of

t'jration. This straight line may therefore be called simply the eccentric line and

the cone described by it in the body may be called the eccentric cone.

Ex. 1. The equation to the eccentric cone referred to the principal axes at the

fixed point is {AT-G^)x'^ + {BT-G^)y^ + {CT-G^)z^=0.
This cone has the same circular sections as the momental ellipsoid and cuts that

ellipsoid in a sphero-conic.

Ex. 2. The polar plane of the instantaneous axis with regard to the eccentric

cone touches the invariable cone along the corresponding position of the invariable

line. Thus the invariable and instantaneous cones are reciprocals of each other

with regard to the eccentric cone.

161. The sphero-conics. Let a sphere of radius unity be
described with its centre at the fixed point about which the

body is free to turn. Let this sphere be fixed in the body, and
therefore move with it in space. Let the invariable line, the

instantaneous axis, and the eccentric line cut this sphere in the

points X, /, and E respectively. Also let the principal axes cut

the sphere in A, B, G. It is clear that the intersections of the

invariable, instantaneous, and eccentric cones with this sphere will

be three sphero-conics which are represented in the figure by the

lines KIC, JJ\ DD\ respectively. The eye is supposed to be
situated on the axis OA, viewing the sphere from a considerable

distance. All great circles on the sphere are represented by
straight lines. Since the cones are co-axial with the momental
ellipsoid, these sphero-conics are symmetrical about the principal

planes of the body. The intersections of these principal planes

with the sphere will be three arcs of great circles, and the portions
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of these arcs cut off by any sphero-conic are called axes of that

sphero-conic. If we put -S" = in the equations to any one of the

three cones, the value oi yjx is the tangent of that semi-axis of the

sphero-conic which lies in the plane of xy. Similarly, putting

?/ = 0, we find the axis in the plane of xz. If (a, b), (a, b'), (a, ^)
be the semi-axes of the invariable, instantaneous, and eccentric

sphero-conics respectively, we thus find

tan a tan a tan a JAT--G' 1

J.G^- BT Jab'

Jat-G' 1

-B A Jab

tan b _ tan b' _ tan ^
~o~'~~Ar-jjd'^jW^W7Ad

The first of these two sets gives the axes in the plane AOB,
the second those in the plane A 00. The former will be imagi-

nary if G^ < BT. In this case the sphero-conics do not cut the

plane AOB. The sphero-conics will therefore have their con-

cavities turned towards the extremities of the axes OA or OC, i.e.

towards the extremities of the axes of greatest or least moment
according as G^ is > or < BT.

162. Ex. 1. If we put 1 - e^=sm%lsm^a we may define e to be the eccentricity

of the sphero-conic whose semi-axes are a and b. If e and e' be the eccentricities of

the invariable and eccentric sphero-conics respectively, prove that

e^=A{B- C)IB {A - G) and e'^= (B - C)l{A - C)

so that both these eccentricities are independent of the initial conditions.

Ex. 2. If the radius of the sphere had been taken equal to [G^jMT)^ instead of

unity, show that it would have intersected the ellipsoid of gyration along the invari-

able cone, and if the radius had been {MTe^lG^)^ it would have intersected the

momental elHpsoid along the eccentric cone.

Ex. 3. A body is set rotating with an initial angular velocity n about an axis

which very nearly coincides with a principal axis 0(7 at a fixed point 0. The

motion of the instantaneous axis in the body may be found by the following

formulee. Let a sphere be described whose centre is 0, and let / be the extremity

of the radius vector which is the instantaneous axis at the time *. If {x, y) be the

co-ordinates of the projection of I on the plane AOB referred to the principal axes

OA, OB, then x= Jb {B - G) L sin (pnt+ M),

y = /JA {A-G)L cos {put + M),

yfhere p^=i{B-G) (A - G)lAB, and L, M are two arbitrary constants depending on

the initial values of x, y.

Ex. 4. If in the last question L be the point in which the sphere cuts the

invariable line, if (p, 6) be the spherical polar co-ordinates of G with regard to

L as origin, and a the radius of the sphere, then

P^ =n^:^^L^{2AB-C{A+B) + {A-B)Gcos2{pnt + M)}, e= -^t+ ^^ J.-y .
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163. To find the motion of the invariable line and the instan-

taneous aans in the body.

Since the invariable line OL is fixed in space and the body

is turning about 01 as instantaneous axis, it is evident that the

direction of motion of OL in the body is perpendicular to the

plane lOL. Hence on a sphere whose centre is at the arc IL
is normal to the sphero-conic described by the invariable line. This

simple relation will serve to connect the motions of the invariable

line and the instantaneous axis along their respective sphero-

conics.

164. Let V be the velocity of the invariable line along its

sphero-conic, then since the body is turning about 01 with an-

gular velocity o), and OL is unity, we have v = « sin LOI, But
by Art. 147 TIG = ©cosZO/. Eliminating « we have

v = {TIG)i2.nL0L

165. Produce the arc IL to cut the axis AK m N, so that

LN is a normal to the sphero-conic described by the invariable

line. Taking the principal axes at the fixed point as axes of

reference, the direction-cosines of OL and 01 are respectively

proportional to A(o^, Bco^^ Cojg, and w^, co^, Wg. The equation to

the plane LOT is

{B - G) (o^fD^x ^-{C-A) WgW^y + {A-B) (o^(o^z = 0.

This plane intersects the plane of xy in the straight line 01^^,

hence putting ^ = 0, we find the direction-cosines of OJ^ to be
proportional to (A — G)(o^, (B — G) co^, and 0. Hence

cosLON==^^.z£M=±iMz£l^\
G J{A - Cf o),^ +{B- O/V

The numerator of this expression is easily seen to be G^ — CT.

Expanding the quantity under the root we have

A'cc,' + B'co,' -2C {Aa>;' + i?0 + G' {co^' + co^%

which is clearly the same as

G^ - V - 2 a (r- (7a>/) -f- G' {co' - ay;).

Substituting we find

cos LOJN = —-
;

G^G''-2CT+GW'

tan LON= ^., _ ^^

Bu t r/ 6^ = ft) cos Z 01, .'.Tim LOT = ^G'to^ - T\ Hence the

. tan L
tanZ

the motion.

,. tanZO/ G^-CT . • ,t . , , ,j , ,
ratw rrrvi = " >v#i— > ^^"' *^ therefore constant throughout
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Combining this result with that given in the last Article, we
see that the

velocity of X ) G' - CT ^
1 •/ • r

= ^r^r tan n,
along its conicj 66r

where n is the angle LOJS'. If we adopt the conventions of

spherical trigonometry, n is also the length of the arc normal to

the sphero-conic intercepted between the curve and the principal

plane AB of the body.

166. Ex. 1. If the focal lines of the invariable cone cut the sphere in S and S',

these points are called the foci of the sphero-conic. Prove that the velocity

of L resolved perpendicular to the arc SL is constant throughout the motion and

equal to ]{G^-BT) {AT- G^)IABG^\^. If LM be an arc of a great circle perpen-

dicular to the axis containing the foci, and p be the arc SL, prove also that

dp G AA - C) [B - C)\

dt- C] AB i^^"^^^-

Ex. 2. Prove that the velocity of L resolved perpendicular to the central radius

. AT-G"^
vector AL is—-—— cot AL.

A(jr

Ex. 3. If r, r', r" be the lengths of the arcs joining the extremity J of a princi-

pal axis to the extremities L, /, E of the invariable line, instantaneous axis, and

eccentric line respectively ; ^, d\ 6" the angles these arcs make with any principal

plane AOB, prove that

cos r _ cos / _ cos r" tan 6 _ tan 6' _ tan 6"

~Tt - G^^^^r g~/It' ~c~~~b~'=jM'
where ^ = arcZ/. This theorem will enable us to discover in what manner the

motions of the three points L, I, E are related to each other.

Ex. 4. Show that the velocity of the instantaneous axis along its sphero-conic

C C^ — CT
is -= —-^— tan n' cos f, where n' is the length of the normal to the instantaneous

sphero-conic intercepted between the curve and the arc AB, and f=:arc LI.

Comparing this result with the corresponding formula for the motion of L given

in Art. 165, we see that for every theorem relating to the motion of L in its sphero-

conic there is a corresponding theorem for the motion of /. For example, if S' be a

focus of the instantaneous sphero-conic, we see by Ex, 1 that the velocity of /

resolved perpendicular to the focal radius vector S'l bears a constant ratio to cos LI.

This constant ratio is equal to that given in Ex. 1 multiplied by G'^CjTAB.

Ex. 5. Show that the velocity of the eccentric line along its sphero-conic is

{{G^-CT)IJaBC1} tan n", where n" is the length of the arc normal to the sphero-

conic intercepted between the curve and the principal arc AB.

Ex. 6. Prove that (velocity of H)'^ - (velocity of L)^ ^-: constant. Show also that

this constant = (^T - G2) [BT-G^) (CT - G^)IABCG^T.

Ex. 7. The motion of L along its sphero-conic is the same as that of a particle

acted on by two forces whose directions are the tangents at L to the arcs LS, LS'

joining L to the foci of the sphero-conic and whose magnitudes are respectively

proportional to sin LS cos LS' and sin LS' cos LS.

Solutions of these examples and proofs of other theorems in this section may
be found in a paper contributed by the author to the Proceedings of the Royal

Society, 1873.
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167. The instantaneous axis describes a cone in space, which
lias been called the cone of the herpolhode. The equation of

this cone cannot generally be found, but when it can be determined

we have another geometrical representation of the motion. For
suppose the two cones described by the instantaneous axis in

space and in the body to be constructed. Since each of these

cones will contain two consecutive positions of their common
generator, they will touch each other along the instantaneous

axis. Then the points of contact having no velocity the motion
will be represented by making the cone fixed in the body roll on
the cone fixed in space.

168. Poinsot's theorem. To find the motion of the instan-

taneous axis in space.

Since the invariable line OL is fixed in space, it will be con-

venient to refer the motion to OL as one axis of co-ordinates.

J^t the angle the instantaneous axis 01 makes with OL be called

f, and let (p be the angle the plane lOL makes with any plane
passing through OL and fixed in space.

During the motion the cone described by 01 in the body rolls

on the cone described by 01 in space. It is therefore clear that

the angular velocity of the instantaneous axis in space is the

same as its angular velocity in the body. Describe a sphere

whose centre is at and radius unity, and let this sphere be
fixed in the body. Let L, I be the intersections of the invariable

line and instantaneous axis with the sphere at the time t, L\ T
their intersections at the time t + dt. Then /Z, TL' are con-
secutive normals to the sphero-conic KK' traced out by the in-

variable line and therefore intersect each other in some point P

which may be regarded as a centre of curvature of the sphero-
conic. Let p — PL. Then clearly

velocity of I resolved] _ /velocity\ sin {p + f)

perpendicularly to IL) \ of L J ' sinp
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Therefore by Art. 164 we have

sin f-^ = -^ tan f(cos f -f cot p sin f)

;

#^TA_^t^nr\
dt G\ tan /3/

*

But in any sphero-conic tan /o = tan" n/tan' /, where n is the

length of the normal intercepted between the curve and that axis

which contains the foci, and 21 is the length of the ordinate

through either focus, and is usually called the latus rectum.

Substituting for tan p, and remembering that

tanf G'-CT ,.,-,.. . , , tan^ &

u^^-cT-' ^^^'^' ^^"' ^^^ *^^^ = ti;^' ^" ^"^

d<l> T T l^-CTx' /tan^6\^ .^

If we substitute for tan a and tan h their values, we get

dcl>_T {AT- G') {BT- G') (CT ^ G') ,

di' G'^ ABGGr ''''^ ^'

169. A simple geometrical construction for this result has
been given by Dr Ferrers in a Smith's Prize paper (1882). If

OH be the projection of the instantaneous axis 01 on the in-

variable plane drawn through the fixed point 0, and if OH in-

tersect the momental ellipsoid in H, then

dcl> _ G'Me' 1

dt
~ TABG OH^

'

170. Since the resolved angular velocity about the invariable

line is constant, we easily find cd = sec ^T/G. Substituting this

value of o) in equation (6) of Art. 141, we find a relation between

f and d^/dt, which however is too complicated to be of much use.

The values of dcp/dt and d^/dt in terms of f have now both been
found; from these the motion of the instantaneous axis in space

can be deduced.

171. Ex. 1. Show that the angular velocity v' of the instantaneous axis in

space or in the body is given by ia^v'^= -jj-^ f^ + i? + C'-2^j - ^-|-^ , where w is

the resultant angular velocity of the body and X^, Xg, Xg have the meanings given

to them in Art. 141. This result is due to Poinsot.

Ex. 2. The length of the spiral between two of its successive apsides, described

in absolute space, on the surface of a fixed concentric sphere, by the instantaneous

axis of rotation, is equal to a quadrant of the spherical ellipse described by the same

axis on an equal sphere moving with the body. This is Booth's Theorem.



94 MOTION UNDER NO FORCES.

Ex. 3. If the eccentric line intersect in the point E the unit sphere which is

fixed in the body and has its centre at the fixed point, prove that

/velocityY_Td0

where the letters have the meanings given to them in Art. 168.

172. The Rolling and Sliding Cone. Let be the fixed

point, 01 the instantaneous axis. Let the angular velocity to

about 01 be resolved into two, viz. a uniform angular velocity TjQ
about tlie invariable line OL, and an angular velocity w sin lOL
about a line OH lying in a plane fixed in space perpendicular to

the invariable line, and passing through the fixed point 0. Let
this fixed plane be called the invariable plane at 0. As the body
moves, OH will describe a cone in the body which will always touch

this fixed plane. The velocity of any point of the body lying for a

moment in OH is unaffected by the rotation about OH, and the

point has therefore only the motion due to the uniform angular

velocity about OL. We have thus a new representation of the

motion of the body. Let the cone described by OH in the body
be constructed, and let it roll on the invariable plane at with the

proper angular velocity, while at the same time this plane turns

round the invariable line with a uniform angular velocity TjG.
The cone described by OH in the body has been called by Poinsot

the Rolling and Sliding Cone.

173. To find a construction for the sliding cone. Its generator

OH is at right angles to OL, and lies in the plane lOL. Now
OL is fixed in space; let OL' be the line in the body which, after

an interval of time dt, will come into the position OL. Since the

body is turning about 0/, the plane LOL' is perpendicular to the

plane LOT, and hence OH is perpendicular to both OIj and OL'.

That is, OH is perpendicular to the tangent plane to the cone

described by OL in the body. The cone described by OH in the

body is therefore the reciprocal cone of that described by OL.
The equation to the cone described by OL has been found in Art.

159. Turning therefore its coefficients upside down we see that

the equation to the cone described by OH is

AT-G'''''^ B'r- G'' y'"" CT- G'
^' = ^-

The focal lines of the cone described by OH are perpendicular

to the circular sections of the reciprocal cone, that is the cone
described by OL. And these circular sections are the same as

the circular sections of the ellipsoid of gyration. Hence the focal

lines lie in the plane containing the axes of greatest and least

moment, and are independent of the initial conditions.

This cone becomes a straight line in the case in which the

cone described by OIj becomes a plane, viz. when the initial con-

ditions are such that 6'"= BT.
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174. To find the motion o/OH in space and in the body.

Since OL. OH and 01 are always in the same plane the
motion of OH in space round the fixed straight line OL is the
same as that of 01, and is given by the expression for d(j)ldt in

To find the motion of OH in the body it will be convenient
to refer to the figure of Art. 168. Produce the arcs PL, PL'
to H and H' so that LH and L'H' are each quadrants. Then
H and H are the points in which the axis OH intersects the
unit sphere at the times t and t-[-dt. We have therefore

/velocity\ /velocityN sin(p + i7r) T, ^ ,

( om')=[ oil)- sinp
^ -gtanrcotp.

Substituting for tan p as before we may express the result in

terms of f or &> at our pleasure.

Since the cone described by OH in the body rolls on a plane
which also turns round a normal to itself at 0, it is clear that the
angular velocity of OH in the body is less than the angular
velocity of OH in space by the angular velocity of the plane, i. e.

/velocity\ _d^ T
[oiH )-Tt-G'

175. Ex. If I, m, n be the direction-cosines of OH referred to the principal

axes of the body, prove

I _ m _ n 1

(AT-(P)o,^- {BT - G3) 0,2
~ {CT - G^) Wg = gT/g'^w^ - T^

'

Motion of the Principal Axes.

176. To find the angular motions in space of the principal

axes.

Since the invariable line OL is fixed in space it will be con-

venient to refer the motion to this straight line as axis of z.

Let OA, OB, OG be the principal axes at the fixed point 0, and
let, as before, a, /3, y be their inclinations to the axis OL or OZ.

Let X, fi, V be the angles the planes LOA, LOB, LOG make
with some fixed plane LOX passing through OL. Our object is

to find dajdi and dXjdt with similar expressions for the other axes.

We might here refer to Euler's geometrical equations given in

Vol. I. chap. 5 and by writing a, \ for 6, -^ respectively obtain the

required expressions, but it will be found advantageous to make a

slight variation in the argument.
Describe a sphere whose centre is at the fixed point, and

whose radius is unity. Let the invariable line, the instantaneous

axis and the principal axes cut this sphere in the points L, I,

A, B, G respectively. The velocity of A resolved perpendicular
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to LA will then be sin a d\/dt. But since the body is turning

round 01 as instantaneous axis, the point A is moving perpen-

dicularly to the arc IA, and its velocity is co sin lA. Kesolving

this perpendicular to the arc LA, we have

. d\
sin a

dt
(0 sin AI cos LAI

cos LI — cosLA cos IA
8in LA

by a fundamental formula in spherical trigonometry. But w cos LI
is the resolved part of the angular velocity about OL, which is

equal to T/G, and co cos lA is the resolved part of the angular

velocity about OA, which is eo^. We have therefore

. , d\ T

a result which follows immediately from Art. 12. Since Gcos%=A(o^,
we have

. ^ dX T G^cos'^a

This result may also be written in the form

.(1).

dra^-Aa-""'''' (2).

177. To find -j- we may proceed in the following manner.

By Art. 144, we have cosa = ^a)j/(?, cosl3 = BcoJG, cosy = CcoJG.
Substituting in Euler's equation

^^-(B-C)a,,», = 0,

we have sina^ = (-= -^j Gcos/3cos7 (3).
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But by Art. 141 cos a, cos A cos 7 are connected by the equations

cos'' a cos'^ ^ cos'' 7 _ ^
1

and —P72— -—
Yj

^^ ^o^^ l»e positive. By Art. 142 the former of

A ' B ' G G'\ (4).

cos'' a + cos'' /9 + cos'' 7 = 1 J

If we solve these equations so as to express cos)8, cos 7 in

terms of cos a, we easily find

._ [day G^ fG^-CT A-C „ \ fG^-BT A-B^^.\ ,..

178. Since the left-hand side of equation (5) is necessarily real, we see that the

values of cos^a are restricted to lie between certain limits. If the axis whos6

motion we are considering is the axis of greatest or least moment let B be the

axis of mean moment. In this case cosset must lie between the two limits

CP-GT A G^-BT A
""

<?2 A^ ^"""^
G^ A^B

these two is positive and less than unity; this is easily shown by dividing the

numerator and the denominator by ACG\ If the latter is positive the spiral

described by the principal axes on the surface of a sphere whose centre is at the

fixed i)oint lies between two concentric circles which it alternately touches. If the

latter limit is negative cos a has no inferior limit. In this case the spiral always

lies between two small circles on the sphere, one of which is exactly opposite the

other.

If the axis considered is the axis of mean moment, cos^ a must lie outside the

same two limits as before. Both these are positive, but one is greater and the

other less than unity. The spiral therefore lies between two small circles opposite

each other.

In order that dXjdt may vanish we must have G^ cos^ a — AT^ but this by substitu-

tion makes dajdt imaginary. Thus dX/dt always keeps one sign. It is easy to see

that if the initial conditions are such that G^/T is less than the moment of inertia

about the axis which describes the spiral we are considering, the angular velocity

will be greatest when the axis is nearest the invariable line and least when the axis

is furthest. The reverse is the case if G^/T is greater than the moment of inertia.

179. Ex. 1. Let DM be any straight line fixed in the body and passing

through O and let it cut the ellipsoid of gyration at in the point M. Let DM' be

the perpendicular from on the tangent plane at M. If OM=r, OM'=p, and if

i, i' be the angles DM, CM' make with the invariable line OL, prove that

. „ .dj T G
sin2 1 -^ = cos t cos i\

dt G mpr

where j is the angle the plane LOM makes with some plane fixed in space passing

through OL and w is the mass of the body. This follows from Art. 12.

Ex. 2. If KLK' be the conic traced out by the invariable line in the manner
described in Art. 161, show that \={TIG) t+{a,ngle LAK) -{wectorml area. LAK)^
where X is the angle described by the plane containing the invariable line and the

principal axis OA.

Ex. 3. If we draw three straight lines OA, OB, OC along the principal axes at

the fixed point of equal lengths, the sum of the areas conserved by these lines on

the invariable plane is proportional to the time. [Poinsot.]

R. D. II. 7
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Ex. 4. If the lengths OA, OB, OC he proportional to the mdii of gyration

about the axes respectively, the sum of the areas conserved by these lines on the

invariable plane will also be proportional to the time. [Poinsot.]

Motion of the body when two principal axes are equal,

180. Let the body be rotating with an angular velocity w
about an instantaneous axis 01. Let OL be the perpendicular

on the invariable plane. The momental ellipsoid is in this case a

spheroid, the axis of which is the axis of unequal moment in the

body. Let the equal moments of inertia be A and B. From
the symmetry of the figure it is evident that as the spheroid rolls

on the invariable plane, the angles LOGy LOI are constant, and

the three axes 01, OL, 00 are always in one plane. Let the angles

LOG=y, IOG=-i.
Following the same notation as in Art. 141, we have

©3 = ft) cos i, (o^ + (o^ = (o^ sin^i,

(?=^(^«sin^•+C*cos^•)ft)^

r = (-4 sin^' + cosH')ft)^

We therefore have
(7ft)„ G cos i

cos 7 =

This result may also be obtained as follows. In any conic if

i and 7 be the angles a central radius vector and the perpendicular

on the tangent at its extremity make with the minor axis, and if

a, h be the semi-axes, then tan 7 = tan i . h^ja^. Applying this to

the momental spheroid, we have

tan 7 = -^ tan 1.

The angle i being known from- the initial conditions, the angle 7
can be found from either of these expressions. The peculiarities

of the motion will then be as follows.

The invariable line describes a right cone in the body whose
axis is the axis of unequal moment, and whose semi-angle is 7.

The instantaneous axis describes a right cone in the body
whose axis is the axis of unequal moment, and whose semi-angle

is i.

The instantaneous axis describes a right cone in space, whose
axis is the invariable line, and whose semi-angle is % ~ 7.

The axis of unequal moment describes a right cone in space

whose axis is the invariable line, and whose semi-angle is 7.

The angular velocity of the body about the instantaneous

axis varies as the radius vector of the spheroid, and is therefore

constant.
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181. To find the common angular velocity in space of the in-

stantaneous a^is and the axis of unequal moment round the invariable

line.

Let G be the extremity of the axis of figure of the momental
ellipsoid, and let O be the rate at which the plane LOG is turning
round OL. Let GM, GN be perpendiculars on OL and 01.
Then since the body is turning round 01, the velocity of is

ON . CO. But this is also GM . H. Since CM = 00 sin 7,

01^=00 sin I, we have at once

n sin y = (o sin ?',

whence O can be found.

182. To find the common angular velocity in the body of the

invariable line and the instantaneous aons round the axis of unequal
moment

Let D! be the rate at which the plane LOG is turning round
00 in the body. Let LM, LN be perpendiculars from any point

L in the invariable line on OG and 01. Then since OL is fixed

in space and the body is turning round OL, the velocity of L in

the body isLN . w. But this is also LM . Of. Since LM = OL sin 7,

LN= OL sin (^ — 7), we have at once

n' sin 7 = ft) sin (/ — 7),

whence II' can be found.

183. Ex. 1. If a right circular cone whose altitude a is double the radius of

its base turn about its centre of gravity as a fixed point, and be originally set in

motion about an axis inclined at an angle a to the axis of figure, the vertex of the

cone will describe a circle whose radius is fa sin a. [Coll. Exam.]

Ex. 2. A circular plate revolves about its centre of gravity as a fixed point. If

an angular velocity w were originally impressed on it about an axis making an angle

a with its plane, a normal to the plane of the disc will make a revolution in space in

a time r given by 27r/r = w>/l + 3 sin^ o. [Coll. Exam.]

Ex. 3. A body which can turn freely about a fixed point at which two of the

principal moments are equal and less than the third, is set in rotation about any

axis. Owing to the resistance of the air and other causes, it is continually acted

on by a retarding couple whose axis is the instantaneous axis of rotation and whose

magnitude is proportional to the angular velocity. Show that the axis of rotation

will continually tend to become coincident with the axis of unequal moment. In

the case of the earth therefore, a near coincidence of the axis of rotation and axis

of figure is not a proof that such coincidence has always held. [Astronomical

Notices, March 8, 1867.]

Motionn'hen G' = BT.

184. The peculiarities of this case have been already alluded

to in Art. 141. When the initial conditions are such that this

7—2
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relation holds between the Vis Viva and the Momentum of the

body the whole discussion of the motion becomes more simple*.

The fundamental equations of motion are

^a),^ + ^<+(7<=T 1 ... .

A'co.' + B'co.' + Cco^'^: G' = BT] '""^ ^'

Solving these, we have

, B-G G'-B'co,'\

''^^A^G- AB
, A--B G'-B'ay^'

'3 A-G' BG

(2).

^=^
cZa),_„ /(A-B){B^G) G'-B'co,'

•' dt~'^V AG • B'
•

When the initial values of eo^ and Wg have like signs, (G— A)(o^co^

is negative and therefore d(oJdt must be negative, hence in this

expression the upper or lower sign is to be used according as the

initial values of co^, Wg have like or unlike signs.

B' d(D, _ /'(A-B)(B-G)
V" G'-B'co,' dt ^y AG

If we put + n for the right-hand side and integrate we have

where E is some undetermined constant. As t increases indefi-

nitely, Wj approaches + G/B as its limit and therefore by (2) «,

and a)g approach zero.

The conclusion is that the instantaneous axis ultimately ap-

proaches to coincidence with the mean axis of principal moment,
but never actually coincides with it. It approaches the positive

or negative end of the mean axis according as the initial value

o( (G — A) ©jWg is positive or negative.

185. To find what the cones traced out in the body by the

invariable line and instantaneous cuds become when G^ — BT.

Eliminating co^ from the fundamental equations of the last

Article we have A (A - B) (o^ = G(B-G) co^\

Taking the principal axes at the fixed point as axes of refer-

ence, the equations of the invariable line are x/A(o^= ylB(o^= z/Go)^.

* This case appears to have been considered by nearly every writer on this

subject. As examples of different methods of treatment the reader may consult

Legendre, Trait6 des Fonctions Elliptiquca, 1825, Vol. i. page 382, and Poinsotf

Thiorie NouveUe de la Rotation det corp», 1862, page 104.
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Eliminating w^ and eo^ the locus of the invariable line is one of

the two planes lA — B _ /B— G

The equations of the instantaneous axes are xJod^ =y/(^2 "=
^/^s*

Eliminating eo^ and co^ the locus of the instantaneous axis is one
of the two planes

JA{A-B)x=±JG{B-G)z. .

In these equations since zfx follows the sign of (ojo)^ the upper
or lower sign is to be taken according as the initial values of

a)j, Wg have like or unlike signs. These planes pass through the
mean axis, and are independent of the initial conditions except

so far that G^ = BT.

The rolling and sliding cone is the reciprocal of that described

by the invariable plane Art. 173, and is therefore the straight line

perpendicular to that plane which is traced out by the invariable

line.

Ex. 1. Show that the planes described by the invariable line coincide with the

central circular sections of the ellipsoid of gyration and are perpendicular to the

asymptotes of that focal conic of the momental ellipsoid which lies in the plane of

the greatest and least moments.

Ex. 2. The planes described by the instantaneous axis are perpendicular to the

umbilical diameters of the ellipsoid of gyration and are the diametral planes of

the asymptotes of the focal conic in the momental ellipsoid.

186. The relations to each other of the several planes fixed

in the body may be exhibited by the following figure. Let
A, B, G be the points in w^hich the principal axes of the body
cut a sphere whose centre is 0, and radius unity. Let BLK\
BIJ' be the planes traced out by the invariable line and the

instantaneous axis respectively. Then by the last Article

tanCZ'V
A B-C
G'A-B tan GJ, /G B--G

A'-B
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Hence we liud
:__

This is the quantity which has been called n in Art. 184.

Exactly as in Art. 163 the direction of motion of L is perpen-

dicular to IL and hence the angle ILB is a right angle. Thus

the spherical triangle ILB has one angle right, and another

constant and independent of all initial conditions.

Exactly as in Art. 163, the velocity of L along LB is equal to

ft) sin IL which, by Art. 147, is equal to tauIL.T/G. But from

the spherical triangle ILB we have n sin BL = tan IL. If then we
put as before = BL, we have

^- = ±g.sm^.

If the initial values of ©,, ©, have the same sign, the body

is turning round 1 from K' to B. Hence, since L is fixed in

space, BL is increasing and therefore the upper sign must be

used in this figure. See also Art. 184.

We may also find an expression for ^ in terms of the time.

Since cos y3 = BcoJG we have, by Art. 184,

l-}-C0S;9 T^j^^Snt 6 rui "^-^^—I 5=^^ ' .-. cot9=V^e ^ .

1 — COS /3 2

Ex. Show that the eccentric line describes a great circle passing through B and

cutting ACin some point jy where tan* CD'= tan CJ' tan CK\ If E be the inter-

section of the eccentric line with the sphere, show that the arcs BE and BL are

always equal.

187. To find the moticm of the body in space.

We have already seen that the motion is such that a plane

fixed in the body, viz. the plane BK', contains a straight line

fixed in space, viz. the invariable line OL. Since the body is

brought from any position into the next by an angular velocity

ft) cos lOL = T/G about OL, and an angular velocity (o sin lOL
about a perpendicular to OL, viz. OH, it follows that the plane

fixed in the body turns round the line fixed in space with a

uniform angular velocity T/G or G/B. At the same time the

plane moves so that the line fixed in space appears to describe the

plane with a variable velocity co sin lOL. If y9 be the angle BL,
this has been proved in the last Article to be n sin ^ T/G.

188. The cone described by OH in the body is the reciprocal

cone of that described by OL, and from it we may deduce re-

ciprocal theorems. The motion is therefore such that a straight

line fixed in the body, viz. OH, describes a plane fixed in space,

viz. the plane perpendicular to OL. The straight line moves
along this plane with a uniform angular velocity equal to T/G or
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GjBy while the angular velocity of the body about this straigbt

line is ± ?i sin ^ G/B.

189. The motion of the principal axes may be deduced from

the general results given in Art. 176. But we may also proceed

thus. Since the body is turning about 01, the point B on the

sphere is moving perpendicularly to the arc IB. Hence the

tangent to the path of B makes with LB an angle which is the

complement of the constant angle IBL. The path traced out

by the axis of mean moment on a sphere whose centre is at is

a rhumb line which cuts all the great circles through L at an
angle whose cotangent is + n.

190. To find the motion of the instantaneous axis in space.

This problem is the same as that considered in Art. 168. We
may however deduce the result at once from Art. 187. The angle

ILB is always a right angle, it therefore follows that the angular

velocity of / round L is the same as that of the arc BL round L.

But the angular velocity of the latter is constant and equal to T/G,

If then
(f)

be the angle the plane LOI containing the instanta-

neous axis and the invariable line makes with some fixed plane
7 1 rp

passing through the invariable line, we have ~^ — -p'

191. To find the equation of the cone described by the

instantaneous axis in space, we require a relation between 5" and </>,

where 5* is the arc IL on the sphere. From the right-angled

triangle ILB we have n sin y8 = tan
J",
and by Art. 186,

cotf = 7^e"5»^

Eliminating y3, we shall have an expression for f in terms of t.

We find 7 ^,= cot^ + tang = V^^ -^ \- ~r=^e ^ .

tan f 2 2 JE
By the last Article </> = (TIG) t + F, where F is some constant.

Let us substitute for t in terms of
(f),

and let us choose the plane

from which (/> is measured so that jFe"^^^— 1.

The equation to the cone traced out in space by the instan-

taneous axis is

2ncoi^=e"^ + e-'^.

When (^ = 0, we have tan ^ = n. Therefore the plane fixed in

space from which </> is measured is the plane containing the axes
of greatest and least moment at the instant when that plane
contains the invariable line.

On tracing this cone, we see that it cuts a sphere whose centre
is at the fixed point in a spiral curve. The branches determined
by positive and negative values of (/> are perfectly equal. As <^

increases positively the radial arc f continually decreases, the
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spiral therefore makes an infinite number of turns round the

point L, the last turn being infinitely small.

Ex. In the herpolhode —~=c»»^ + e-'»^ if the locus of the extremity of the

polar subtangent of this curve be found and another curve be similarly generated

from this locus, the curve thus obttuned will be similar to the herpolhode. [Math.

Tripos, 1863.]

On Correlated and Contrarelated Bodies.

192. To compare the motions of different bodies acted on by
initial couples whose planes are parallel.

Let a, ft 7 be the angles the principal axes OA, OBy OG of

a body at the fixed point make with the invariable line OL,
Then by Art. 144, Euler's equations may be put into the form

(i cos a
,
^ / 1 1 \ ^ .. .-

.

: ^i-+^U-6r°^^*'°^^=" (^)'

with two similar equations. Let X, ft, v be the angles the planes

LOA, LOB, LOG make with any plane fixed in space, and passing

through OL. 'J'hen

. ^ dX T G cosset ,^.

'''"'Tt=G--^- (2)'

with similar equations for fi and v.

If accented letters denote similar quantities for some other

body, the corresponding equations will be

"rfT"
(^-g>-^,jcos^cos7=0 (3),

. , ,d\' r G'cos^a'

''""^Tt^O' T— (^)-

If then the bodies are such that

^(i-&)=^'(i-^')'
'«='=•=*<= (^)'

the equations (1) to find a, y9, 7 are the same as the equations (3)

to find a', ff, y. Therefore if these two bodies be initially placed

with their principal axes parallel and be set in motion by impulsive

couples whose magnitudes are G and G\ and whose planes are

parallel, then after the lapse of any time t the principal axes of

the two bodies will still be equally* inclined to the common axis

of the couples.

* In order that the angles which the principal axes make with the axis of the

couple may be the same in each body, it is necessary that the cones described by

ihe axis OL in the body should be the same. Hence by Art. 159, the two ellipsoids

of gyration mast have the same circular sections, or which is the same thing, the
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The equations (5) may be put into the form

A A' B B a C ^^^•

Since by Art. 146 the Vis Viva is given by

T _ cos^ a cos^ /8 cos''' y
G'~~Ar"^^^~^~G~ ^"^'

we see that each of the expressions in (6) is equal to T/G — TjG',

It immediately follows by subtracting equations (2) and (4)
and dividing by sin'^ a that

dt dt" G G'
'

with similar equations for fi and v. Thus the two bodies being
started as before with their principal axes parallel each to each,

the parallelism of the principal axes may be restored by turning
the body whose principal axes are A\ B\ C about the com-
mon axis of the impulsive couples through an angle {TjG — T'/G') t

in the direction in which positive impulsive couples act*.

193. When the couples G and G' are equal the. condition (6)

becomes 1 11 11 1 T-T
A A'~B B'~C G'~ G'

'

the bodies are then said to be correlated. If momental ellipsoids

of the two bodies be taken so that the moment of inertia in each

two momental ellipsoids must have the same asymptotes to their hyperbolic focal

conies. Also in order that the cones may be the same we must have

A G^B G^_£ G^

1 _ Z.
~

ii _ £! ~TTz^*
A' G'2 B' G'^ C G'2

If we put each of these equal to some quantity r, we easily find

i i 1_1 i_i
A~ B B G C A

A' B' B' G' G' A'

If in the two bodies the angles between the principal axes and the axis of the couple

are to be equal each to each at the same time, the equations (1) and (3) of Art. 192

show that we must have in addition G'jG=r. This leads to the generalization of

Prof. Sylvester's theory given in the text.

* Since the cones described by the invariable line in the two bodies are identical,

their reciprocal cones, i.e. Poinsot's rolling and sliding cones, are also identical in

the two bodies. Thus in the two bodies, the rolling motions of these cones are

equal, but the sliding motions may be different. The sliding motions represent

angular velocities about the invariable line respectively equal to T/G and T'jG',

„ , d\ d\' dn dfi' dv dv' T T'
Hence we have r- = -r~—f-=-r --^ = f<

— 7t,'
dt dt dt dt dt dt G G'

This remark on the former note is due to Prof. Cayley.
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bears tbe same ratio to the square of the reciprocal of the radius

vector tliese ellipsoids are clearly confocal.

Wlien the couples and G' are equal and opposite, the

equation (6) becomes

1 1^11 _1 , l_Zjt^'
A'^T'"B'^ B~ 0^ C" G'

'

and the bodies are said to be contrarelated,

194. To compare the angular velocities of the two bodies at

any instant.

Let o) be the angular velocity of one body at any instant, then

following the usual notation we have

2^ 2_L 2 ^2/cos'^«
,

cos^^ cos^yN

If the same letters accented denote similar quantities for the

other body ^ ^,,/cos'g ,
cos^/3

,
cos'

7

^

But remembering the condition (6) these give

..-„.=(|-j;)[».-.g.a.-''g4)--'(?4)]-
By referring to (7) the quantity in square brackets is easily

seentoheT/G+riG',
rjn'i m/2*

196. Ex. If two bodies be so related that their ellipsoids of gyration are con-

focal, and be initially so placed that the angles (a, /3, 7) (a', ^, y') their principal

axes make with the invariable line of each are connected by the equations

cos a _ cos a cos /3 _ cos /3' oos 7 _ cos 7'

'JI^'JT' ~JB~jW' ~Qg"'~JW''

and if these bodies be set in motion by two impulsive couples G, G' respectively

proportional to JABC and Ja'B'G', then the above relations will always hold be-

tween the angles (a, /3, 7) (a', /S*, 7'). If 2) and p' be the reciprocals of dKjdt and

dX'jdt^ then Gp-O'p' will be constant throughout the motion, where X, X', &c., are

the angles the planes LOA, L'O'A' make at the time t with their positions at the

time t^O.

* Thig result may also be obtained in the following manner. By Art. 172 the

angular velocity <a of one body is equivalent to an angular velocity T/G about the

invariable line and an angular velocity about a straight line OH which is a gene-

rator of the rolling and sliding cone. Hence uP=T^IG^ + U^. A similar equation

with accented letters will hold for the other body. Since in the two bodies the

angles between the principal axes and the invariable Hnc are equal each to each

throughout the motion, the rolling motions of the two cones must be equal, hence

Q = 0'. It follows immediately that br - w'^= T-JG^- T'^jG"^.
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196. Sylvester's measure of the time. When a body
turns about a fixed point its motion in space is represented by
making its momental ellipsoid roll on a fixed plane. This gives

no representation of the tinie occupied by the body in passing from
any position to any other. The preceding Articles will enable us
to supply this defect.

To give distinctness to our ideas let us suppose the momental
ellipsoid to be rolling on a horizontal plane underneath the fixed

point 0, and that the instantaneous axis 01 is describing a polhode

about the axis of ^. Let us now remove that half of the ellipsoid

which is bounded by the plane of BG, and which does not touch
the fixed plane. Let us replace this half by the half of another

smaller ellipsoid which is confocal with the first. Let a plane

be drawn parallel to the invariable plane to touch this ellipsoid

in /' and suppose this plane also to be fixed in space. These two
semi-ellipsoids may be considered as the momental ellipsoids of

two correlated bodies. If they were not attached to each other

and were free to move without interference, each would roll, the

one on the fixed plane which touches at I, and the other on that

which touches at I', By Arts. 192 and 193 the upper ellipsoid

(being the smallest) may be brought into parallelism with the

lower by a rotation Gt{llA — IjA') about the invariable line. If

then the upper plane on which the upper ellipsoid rolls be made
to turn round the invariable line as a fixed axis with an angular
velocity G (i/A — 1/A'), the two ellipsoids will always be in a state

of parallelism, and may be supposed to be rigidly attached to each
other.

Suppose then the upper tangent plane to be perfectly rough
and capable of turning in a horizontal plane about a vertical axis

which passes through the fixed point. As the nucleus is made
to roll with the under part of its surface on the fixed plane below,

the friction between the upper surface and the plane will cause
the latter* to rotate about its axis. Then the time elapsed will

be in a constant ratio to this motion of rotation, which may be
measured off on an absolutely fixed dial face immediately over the

rotating plane.

197. The preceding theory, so far as it relates to correlated

and contrarelated bodies, is taken from a memoir by Prof. Sylvester

in the Philosophical Transactions for 1866. He proceeds to in-

vestigate in what cases the upper ellipsoid may be reduced to a

* As the ellipsoid rolls on the lower plane, a certain geometrical condition must

be satisfied that the nucleus may not quit the upper plane or tend to force it

upwards. This condition is that the plane containing 01, 01', must contain

the invariable line, for then and then only the rotation about 01 can be resolved

into a component about OT and a component about the invariable line. That this

condition must be satisfied is clear from the reasoning in the text. But it is also

clear from the known properties of confocal ellipsoids.
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disc. It appears that there are always two such discs and no
more, except in the case of two of the principal moments being
equal, when the solution becomes unique. Of these two discs

one is correlated and the other contrarelated to the given body,

and they will be respectively perpendicular to the axes of greatest

and least moments of inertia.

198. PoinsoVs measure of the time. Poinsot has shown
that the motion of the body may be constructed by a cone fixed

in the body rolling on a plane which turns uniformly round the
invariable line. If, as in the preceding theory, we suppose the

plane rough, and to be turned by the cone as it rolls on the plane,

the angle turned through by the plane will measure the time
elapsed.

The Sphero- Conic or Spherical Ellipse.

199. The following properties of a sphero-conic will be found useful in con-

nexion with the theorems of Art. 157. They appear to be new. The curve is

represented by the line DED'E'. As before, the eye is supposed to be situated in

the radius through J, viewing the sphere from a considerable distance. The three

principal planes of the cone intersect the sphere in th^ three quadrants AB^ BC,CA,
and any one of the three points A, B, G might be called the centre. The arcs AD
and AE are represented by a and 6.

The letters are not always the same as those used in the dynamical applications

of the curve, but have been chosen to agree as far as possible with those usually

employed in plane conies. In this way the analogy between the plane and the

spherical ellipse will be made more apparent.

1. Equation to the conic. Draw the arc PN perpendicular to ^D and let

PN=y, AN=x. Let NP produced cut the small circle described on DD' as diame-

ter in P*, let NF be called the eccentric ordinate and be represented by y'. We
then have tan y ^ . tan 6 ,

*',= constant=7 , cos a = cos y' cos ».
tan / tan a
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2. The projection of the normal PG on the focal radius vector SP, i. e. PL, is

constant and equal to half the latus rectum. Also *?^^^= constantsmFN
If 21 be the latus rectum, then tan 1=

^^^^^
.

tan a

3. If QAF be an arc cutting PG at right angles, QA may be called the semi-
conjugate of AP. Then tan PG . tan PF= tan^ b.

4. The length PK cut off the focal radius vector by the conjugate diameter is

constant and equal to a. This follows from (2) and (3).

5. If 1 -
«^=^ij^ » « inay be called the eccentricity of the sphero-conic. Then

tan^G = e2tan^^.

6. Also S being a focus SE=HE = a, and tan SA=e tan a
t&n {SP-a)= e tan AN.

7. Polar equations to the conic

tan I ^ e „^ , sin^ 6

ta.n SP cos^b
'

sin^^P"

tan^i
8. If p be the radius of curvature at P, then tan p = r^

.

tan^ I

9. Eegarding AP, AQ as conjugate semi-diameters, defined as above,

sin3^P+sin2^Q = sin2a+sin2 6) t,,t. . r. IT^ sin2 6
^' jr, ' m^ • T I' t&nPAD .tan QAD = --^-ir- .smAQ. sm PF= sm a . sm 6 )

^
sin^ a

10. If p be the perpendicular from the centre A on the tangent at P,

tan^jp

11. Also tan^PG-tmH=^,Bin^PN. t^fPG ^tan^^
cos^ 6 sm 5fP . sm ffP sin2 a

'

19 sin2a-sin2^P) e^
^^-

=sinMQ-sin26l = l372^^^'^^-

Cob. tan2PG= ^.^^ (cosS^P-cosSacoB^J).
cos2 6 sm^ a ^ '

If sin ^Jlf=sin AM'=-— , the planes of the arcs BM and BM' are parallel tosma ^

the circular sections of the cone. Some of the properties of these arcs resemble

those of asymptotes when B is regarded as the centre of the conic. The properties

which connect the sphero-conic with the arcs BM and BM' will be found in

Dr Salmon's Solid Geometry.

Many other properties of sphero-conics will also be found in Dr Frost's Solid

Geometry.

EXAMPLES*.

1. A right cone the base of which is an ellipse is supported at G the centre of

gravity, and has a motion communicated to it about an axis through G perpendicu-

lar to the line joining G, and the extremity B of the axis minor of the base, and in

the plane through B and the axis of the cone. Determine the position of the in-

variable plane.

* These examples are taken from the Examination Papers which have been set

in the University and in the Colleges.
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Result. The normal to the invariable plane lies in the plane passing through

the axis of the cone and the axis of instantaneous rotation, and makes an angle,

whose tangent is h (/iH4a2)/166 {a^ + h-).

2. A spheroid has a particle of mass m fastened at each extremity of the axis of

revolution, and the centre of gravity is fixed. K the body be set rotating about any

axis, show that the spheroid will roll on a fixed plane during the motion provided

m/J/=^ (1 - a^lc^), where M is the mass of the spheroid, a and c are the axes of the

generating ellipse, c being the axis of figure.

3. A lamina of any form rotating with an angular velocity a about an axis

through its centre of gravity perpendicular to its plane has an angular velocity

a{B+ C)^I{B-C)^ impressed upon it about its principal axis of least moment,

A, B, C being arranged in descending order of magnitude : show that at any time t

the angular velocities about the principal axes are respectively

2a /B + C e^^-g"^ /B + C 2a

and that it will ultimately revolve about the axis of mean moment.

4. A rigid body not acted on by any forces is in motion about its centre of

gravity: prove that if the instantaneous axis be at any moment situated in the

plane of contact of either of the right circular cylinders described about the central

ellipsoid, it will be so throughout the motion.

If a, b, c be the semi-axes of the central ellipsoid, arranged in descending order

of magnitude, e^, e^, e^ the eccentricities of its principal sections, 0^, Oj* ^ *^^

initial component angular velocities of the body about its principal axes, prove that

the condition that the instantaneous axis should be situated in the plane above

described is QJei = {ahlc^) (Og/gg).

6. A rigid lamina not acted on by any forces has one point fixed about which

it can turn freely. It is started about a line in the plane of the lamina the moment
of inertia about which is Q. Show that the ratio of the greatest to the least angular

velocity is ,Ja +B : sJb + Q, where A^ B are the principal moments of inertia about

axes in the plane of the lamina.

6. If the earth were a rigid body acted on by no forces rotating about a diameter

which is not a principal axis, show that the latitudes of places would vary and that

the values would recur whenever Ja-B JA - G jw^dt is a multiple of 27r JbC.
If a man were to he down when his latitude is a minimum and to rise when it be-

comes a maximum, show that he would increase the vis viva, and so cause the pole of

the earth to travel from the axis of greatest moment of inertia towards that of least

moment of inertia.

7. If dtf be the angle between two consecutive positions of the instantaneous

...p.ove.H..(-y=(-.)V(-^)V(-^y_(-y.

8. If w be the angular velocity of the plane through the invariable line and
the instantaneous axis about the invariable line and \ the component angular

velocity of the body about the invariable line, prove that

9. If a body move in any manner, and all the forces pass through the centre of

gravity, prove that -^+ 2 - (log w,) - (logw^) ^^(logw3) = 0, where w^, w„, Wg

are tbe angular velocities about the principal axes at the centre of gravity, and w
is the resultant angular velocity.



CHAPTER V.

MOTION OF A BODY UNDER ANY FORCES.

200. In this Chapter it is proposed to discuss some cases

of the motion of a rigid body in three dimensions as examples
of the processes explained in Chapter I. The reader will find

it an instructive exercise to attempt their solution by other

methods ; for example, the equations of Lagrange might be
applied with advantage in some cases.

In each section of the Chapter the general method of proceed-

ing will first be explained and a number of examples will then be
considered. These have been chosen as being apparently the most
interesting cases of the motion of a body which occur. But of

course all the results obtained are not equally valuable. Besides

this, some of the processes are only slight variations of those

which have been already explained. Accordingly it has not been
thought necessary in every case to give the whole of the alge-

braical work. The plan of the solution is sketched more or less

fully and the results are stated. It is believed that the reader

will be able to supply the omitted steps for himself. The student

will find his interest in the subject greatly increased if, after

reading the first few articles in each section, he will attack the

problems which follow in his own way. He may then profitably

compare his results with the solutions here sketched out.

Motion of a Top.

201. A body two of whose principal moments at the centre

of gravity are equal moves about some fixed point in the axis

of unequal moment under the action of gravity. Determine the

motion*.

To give distinctness to our ideas we may consider the body
to be a top spinning on a perfectly rough horizontal plane.

Let the axis OZ be vertical. Let the axis of unequal moment
at the centre of gravity be the axis 00 and let this be called

the axis of the body. Let h be the distance of the centre of

gravity G of the body from the fixed point and let the mass
of the body be taken as unity. Let OA be that principal axis

* A partial solution of this problem by Lagrange's equations is given in Vol. i.,

Chap. VIII.
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at which lies in the plane ZOO, OB the principal axis perpen-

dicular to this plane.

If we take moments about the axis 00 we have by Euler's

equations (Vol. I. Chap, v.),

But in our case JL = i?, and since the centre of gravity lies

in the axis OC, we have iV = 0. Hence Wg is constant and equal

to its initial value. Let this be called n.

Let us measure along the axis 00 in the direction OG sl

length 0P=A/h. Then, by Vol. I. Chap, in., P is the centre*

of oscillation of the body. This length we shall call I. Let 6

be the incliuation of the axis 00 to the vertical, ^/r the angle

the plane ZOO makes with some plane fixed in space passing

through OZ. Then by the same reasoning as in Euler's geome-
trical equations (Vol. I. Chap, v.) we find that the velocities of P
resolved

perpendicular to plane ZOO= — 1(0^ = 1 sin d-^ldt) ,^

.

parallel to plane ZOO = Zo), = Z dejdt y"^ ^'

It is clear that the moment of the momentum about OZ
will be constant throughout the motion. Since the direction-

cosines of OZ referred to OA, OB, 00 are — sin^, and cos^,

this principle gives

- Aco^sind + On cosO = E. (2),

where E is some constant depending on the initial conditions,

and whose value may be found from this equation by substituting

the initial values of co^, and 6.

The equation of Vis Viva gives

^ (o),'' + 0),*) + Cv' = F-2ghco^e (3).

• To avoid confusion in the figure, the body, wliicli is represented by a top,

is drawn smaller than it should be.
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where F is some constant, whose value may be found by substi-

tuting in this equation the initial values of to^, co^, and 6 *.

202. Motion of the centre of Oscillation. Let us measure along the vertical

OZj in the direction opposite to gravity as the positive direction, two lengths

OU=EllCn, 0V=l{F-Cn^)l2gh. These lengths we shall write briefly OU=a,
and OV=b. Draw through U and V two horizontal planes, and let the vertical

through P intersect these planes in M and N. Then the equations (2) and (3) give

by (1), transverse velocity of P={Gnlh) tan PUM (4).

(velocity of P)2= 25rPiV (5).

Thus the resultant velocity of P is that due to the depth of P beloic the horizontal

plane through V, and the velocity of P resolved perpendicular to the plane ZOP
is proportional to the tangent of the angle PU makes with a horizontal plane.

It appears from thi« last result that when P is below the horizontal plane

through U, the plane POV turns round the vertical in the same direction as the

body turns round its axis, i.e. according to the usual rule, OV and OP are the

positive directions of the axes of rotation. When P passes above the horizontal

plane through U, the plane POV turns round the vertical in the opposite direction.

If P be below both the horizontal planes through and U these results are still

true, but if a top is viewed from above, the axis will appear to turn round the

vertical in the direction opposite to the rotation of the top. In all the cases

in which P is below the plane UM the lowest point of the rim of the top moves

round the vertical in the same direction as the axis of the top.

If we substitute for w^, Wg, E and F in (2) and (3) their values, we easily obtain

hlsin^e -±-+Cn 008 0= Cn^ |
"' '

'
(6).

'^!(ij+«'"=''(f)>^^('-'-H
These equations give in a convenient analytical form the whole motion. "We

see from the last equation, what is indeed obvious otherwise, that b-lcoad is

always positive. The horizontal plane through V is therefore above the initial

position of P and remains above P throughout the whole motion.

Ex. 1. If w be the resultant angular velocity of the body and v the velocity of P
show that io^ = n^ + {vliy.

Ex. 2. Show that the cosine of the inclination of the instantaneous axis to the

vertical is {E+{A-C) noos, d]lAo}.

* If we eliminate w^, a>2 from equations (1), (2), (3) we have two equations from

which 6 and xp may be found by quadratures. These were first obtained by

Lagrange in his Mecanique Analytique, and were afterwards given by Poisson in

his Traite de Mecanique. The former passes them over with but slight notice,

and proceeds to discuss the small oscillations of a body of any form suspended

under the action of gravity from a fixed point. The latter limits the equations to

the case in which the body has an initial angular velocity only about its axis, and

applies them to determine directly the small oscillations of a top (1) when its axis

is nearly vertical, and (2) when its axis makes a nearly constant angle with the

vertical. His results are necessarily more limited than those given in this

treatise.

R. D. II. 8
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203. Rise and Fall of a Top. As the axis of the body
goes round the vertical its inclination to the vertical is continually

changing. These changes may be found by eliminating d'^jdi

between the equation (6). We thus obtain

(idd\' o /r 7 a^ C'n' fa -I cos ey ,^.

It appears from this equation that B can never vanish unless

a=l, for in any other case the right-hand side of this equation

would become infinite. This may be proved otherwise. Since

a/l is equal to the ratio of the angular momentum about the

vertical to that about the axis of the body, it is clear the axis

could not become vertical unless the ratio is unity.

Suppose the body to be set in motion in any way with its

axis at an inclination ^ to the vertical. The axis will begin to

approach or to fall away from the vertical according as the initial

value of dO/dt or co^ is negative or positive. The axis will then

oscillate between two limiting angles given by the equation

= 2ghH' {b - 1 cos 6) (1 - cos' 9) - V (a - 1 cos Of (8).

This is a cubic equation to determine cos B. It will be neces-

sary to examine its roots. When cos^ = — 1 the right-hand side

is negative; when cos B = cos i, since the initial value of {dO/dty is

essentially positive, the right-hand side is either zero or positive

;

hence the equation has one real root between cos B = — \ and
cos B — cos {. Again, the right-hand side is negative when cos^= -I-

1

and 'positive when cos B= oo . Hence there is another real root

between cos B = cost, and cos^ = l, and a third root greater than

unity. This last root is inadmissible.

204. These limits may be conveniently expressed geometrically. The equation

(7) may evidently be written in the form

Describe a parabola with its vertex at U, its axis vertically downwards and its

latus rectum equal to C'^n^l2gk\ Let the vertical PMN cut this parabola in R, we
then have 2g Ji_ . JL nfi^

(ldeidt)^-2(/MN~ PM'^ PR ^ ''

The point P oscillates between the two positions in which the harmonic mean

of PM and PR is equal to — 2 . MN. In the figure V is drawn above U, and in

this case one of the limits of P is above VM, and the other below the parabola. If

we take U as origin and UO as the axis of x, we have PM = x, UM=y. Let 2pl be

the latus rectum of the parabola, and UV=c, then the axis of the body oscillates

between the two positions in which P lies on the cubic curve

y^x + c)= 2plx^ (11).

When c is positive, i.e. when V is above U, the form of the curve is indicated

in the figure by the dotted line. The tangents at U cut each other at a finite

angle and the tangent of the angle either makes with the vertical is {2pllc)K When
c is negative the curve has two branches, one on each side of the vertical, with a

conjugate point at the origin. It is clear from what precedes that the upper
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branch will lie above, and the lower branch below, the initial position of P,

and that P must always lie between the two branches.

205. In the case of a top, the initial motion is generally given

by a rotation n about the axis. We have initially co^ = 0, co^ = 0,

and therefore by (2) and (3) E= Cn cos i, and F — Cn^ = 2gh cos i.

This gives a=b = l cosi. Putting C%^/2gh^= 2pl, as before, the roots

of equation (8) are cos 6 = cos t, and cosd =p — *^l — 2p cos i + p\
The value cos ^ = p + Vl — 2p cos2'+^^ is always greater than
unity, for it is clearly decreased by putting unity for cost, and
its value is then not less than unity. The axis of the body will

therefore oscillate between the values of ^ just found.

Since a = 6, the horizontal planes through U and V coincide, and c= 0. The
cubic curve which determines the limits of oscillation, becomes the parabola UE
and the straight line UM. The axis of the body will then oscillate between the two

positions in which P lies on the horizontal through U and on the parabola.

Generally the angular velocity n about the axis of figure is

very great. In this case p is very great, and if we reject the

squares of 1/p we see that cos 6 will vary between the limits cos i

and cos^ — sin'^ i . /2p.

If the initial value of i is zero, we see that the two limits of

cos I are the sama The axis of the body will therefore remain
vertical.

206. Examples. Ex. 1. "When the limiting angles between which 9 varies are

equal to each other, so that 6 is constant throughout the motion and equal to a,

Bhow that tan2 - tan cp tan a + tan^ a cos ajAp = 0, where (p is the angle PUM.
Ex. 2. A top is set in motion on a smooth horizontal plane with an initial

resultant angular velocity about its axis of figure. Show that the path traced out

by the apex on the horizontal plane lies between two circles, one of which it touches

and the other it cuts at right angles. [M. Finek, Nouvelles Annales de Mathematiqitss,

Tom. IX. 1850.]

Ex. 3. Show that the vertical pressure of a top on the gi-ound is greater than

its weight by ^i^ ( sin ^ — ) . Hence by equation (7) of Art. 203 show that B
CL COS u \ azJ

is a quadratic function of cos 6 with constant coefficients.

207. Precession and Nutation of a Top. A body, two of whose principal

moments at the centre of gravity G are equal, turns about a fixed point in the axis

of unequal moment under the action of gravity. The axis OG being inclined to the

vertical at an angle a, and revolving about it with a uniform angular velocity, find

the condition that the motion may be steady, and the time of a small oscillation.

The equations (2) and (3) of Art. 201 contain the solution of this problem. But

if we use the equation of Vis Viva in the form (3) we shall have to take into account

the squares of small quantities. It will be found more convenient to replace it by

one of the equations of the second order from which it has been derived. The

simplest method of obtaining this equation is to use Lagrange's Bule as given in

Vol. I. Chap. VIII. We thus obtain

^^-^cos^sin^ (-^j \-Gn^\nd-Y^=9'h^m9 (12).

8—2
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This equation might also have been obtained by differentiating both (2) and (3)

and eliminating (Pypldt^.

When the motion is steady both d and drpldt are constants. Let d=a, dypldt=ix,

then the equation (2) only determines the constant E and (12) becomes

sino ( --4 cos aix^ + Gnp.-gh) = (13).

This indicates two possible states of steady motion, one in which o=0 or tt, and

the other in which Ow ± Jc^n^ - 4o/t^ cos a
'*=

2Jcosa ^^^)'

a relation which does not necessarily hold when a = or tt.

In the former of these two motions the axis of the body will oscillate about

the vertical and dyj/fdt will not be small or nearly constant. It will therefore be

more convenient to discuss the oscillations about this state of steady motion with

other co-ordinates than 6 and yj/.

In the latter of these two motions, if the centre of gravity of the body be above

the horizontal plane through the fixed point 0, h cos a will be positive. In this case

the angular velocity n of the top round its axis of figure must be sufl&ciently great

to make the quantity under the radical positive. We must therefore have w^ not

less than 4LghA cos ajC'^.

When a and n are given we can make the body move with either of these

two values of /x by giving the proper initial angular velocities to the body. By
equations (1) we see that the conditions of steady motion are Wj= -/a sin a, (i}^= Q.

When a top is set in motion by unwinding a string from the axis, the value of n is

very great while the initial values of w^ and Wg are zero. The steady motion about

which the top makes small oscillations will therefore have fx small. Hence the

radical in (14) wiU have the negative sign. We have therefore very nearly fi—ghjCn.

208. To find the small oscillation. Let 6= a. + 6', and dypjdt= fi + d\l/ldt, where $'

and d^'Jdt are small quantities whose squares are to be neglected. Let a and fi be

such that they contain the whole of the constant parts of 6 and dypfdt, so that 6' and

dxj/'ldt contain only trigonometrical terms. Then when we substitute these values

in equations (2) and (12), the constant parts must vanish of themselves. The equa-

tions thus obtained determine E and /*, and show that their values are the same as

those determined when the motion is steady. The variable parts of the two equa-

tions become, after writing for Cn its value obtained from (13),

d\l/'

AfMsina -~- {gh — Afjficosa) 6'=
ut

AfJL -r^ + sin a {gh -Afi^ cos a) -3^ + M^^ sin^ a6'=0\

To solve these, put d'=F Bin {pt +f), and ^' = G cos (pt+f).

Substituting, we have

- Afi sin a.pG = {gh- A/x^ cos a) F
{Afip^ - fx'^A sin" a)F=-{gh~ Ay?' cos a) sin a . Gp

Multiplying these equations together, we have

, i4V - 2(7^4 cos ttft' -t- g^h^^- IV '
.

and the required time is lirlp *. It is evident that p' is always positive, and there-

fore t)oth the values of /* given by (14) correspond to stable motions.

* This expression was given by the Rev. N. M. Ferrers, now Master of Gonvillo

and Caius College, as the result of a problem proposed by him for solution in the

Mathematical Tripos, 1859.
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It is to be observed that this investigation does not apply if a be very small, for

in that case some of the terms rejected are of the same order of magnitude as those

retained. A different mode of investigation is therefore required, this case will be

considered in Art. 212.

209. "We may also determine the steady motion very simply by another process,

which will be found useful when we come to consider Precession and Nutation. Let

OC be the axis of the body, 01 the instantaneous axis of rotation, OZ the vertical.

Then when the motion is steady, these three must be in one vertical plane which

revolves about OZ with a uniform angular velocity /x. Let w be the angular velocity

about 01, then wcosJC= ». Let OB be the horizontal axis about which gravity

tends to turn the body, then OB is perpendicular to the plane ZOC.
Since gravity generates an angular velocity {gh sin afA) dt in the time dt about

OB, therefore by the parallelogram of angular velocities, the instantaneous axis 01
has moved in the time dt through an angle {gh sin ajAw) dt in a plane perpendicular

to the plane ZOI. Hence the angular velocity of I round Z due to the action of the

d\pi _ gh sin a 1

'di'
forces is

Acj siniZ

Also, since the angular velocity of the body about OB is zero, the moments of

the centrifugal forces about the axes OA, 00 are zero. The moment about OB is

(A - C) nw sin IC dt, and this generates an angular velocity {{A - C)IA} nui sin 10 dt

about OB. Hence the angular velocity of I round Z due to the centrifugal forces of

the body is-~ A-G^ sinIC
' A '*sinIZ

The whole angular velocity is the sum of these two, i.e.

(gh sin a ^ ^^ A-G \ sin IC
Ac=r-—

i

cot IC +—— n] -r—,-^.
'^

\ An A J sm IZ

But when the motion is steady OZ, 01 and OG are all in one plane. Now the

angular velocity of G roimd / is w, and therefore its angular velocity round Z is /x

where fi sin ZG= w sin IG. But w cos IG= n, hence, tan IG= iu. sin a/n. Substituting

this value of tan IG in the value of /j,, we get ghlfi=Gn - Ajx cos a, the same expres-

sion as before.

210. Ex. A top two of whose principal moments at are equal is set in rota-

tion about its axis of figure, viz. OG with an angular velocity n, the point being

fixed. If OC be horizontal, and if the proper initial angular velocity be communi-
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cated to the top about the vertical through 0, prove that the top will not fall down,

but that the axis of figure will revolve round the vertical, in steady motion, with an

angular velocity ix=ghlCn, where h is the distance of the centre of gravity of the top

from O, and C is the moment of inertia about the axis of figure. Show also that if

the top be initially placed with OC nearly horizontal and if a very great angular

velocity be communicated to it about OC without any initial angular velocity about

OA or OB, then OC will revolve round the vertical remaining very nearly in a hori-

zontal plane with an angular velocity /* given by the same formula as before, and

the time of the vertical oscillations of 0(7 about its mean position will be ^irAlCn.

211. Unsymmetrical Tops. A body whose principal mo-
ments of inertia are not necessarily equal has a point fixed in

space and moves about O under the action of gravity. It is required

to form the general equations of motion.

Let OA, OB, OG he the principal axes at the fixed point 0,

and let these be taken as axes of reference. Let h, k, I be the

co-ordinates of the centre of gravity G, and let the mass of the

body be taken as unity. Let OF be drawn vertically upwards
and let p, q, r be the direction-cosines of OF referred to OA^
OB, 00. Then we have by Euler's equations

.(1).

Also p, q, r may be regarded as the co-ordinates of a point

in OVy distant unity from 0. This point is fixed in space, and

therefore its velocities as given by Art. 8 are zero. We have

^ = «8^ - «./> J = «i^ - «aPi ^ = «2P - «i?. .
.
(2).

It is obvious that two integrals of these equations are supplied

by the principles of Angular Momentum and Vis Viva. These

give A (o,p + Bo),^q + Cw^r = E,

Aco^' + Bw^ + C(o^ = F-2g {ph + qh-^ rl),

where E and F are two arbitrary constants. The first of these

might also have been obtained by multiplying the equations (1)

by /?, q, r respectively, and (2) by J-w,, Bco^, Cco^, and adding all six

results. The second might have been obtained by multiplying

the equations (1) by « , w^, Wg respectively, adding and simpli-

fying the right-hand side by (2j.

212. A body whose principal moments of inertia at the centre of gravity Q are

not necessarily equal, has a point in one of the principal axes at G fixed in space

and can move about under the action of gravity. It is set in rotation about OG

which is supposed to be vertical. Find the small oscillations.
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Eeferring to the general equations of Art. 211, we see that in this case h= 0,

k= 0. Since OC remains always nearly vertical, ui^ and Wg are small quantities, we
may therefore reject the product u^io^ in the last of equations (1). This gives Wg

constant. Let this constant value be called n. For the same reason r = 1 nearly

and p, q are both small quantities. Substituting we get the following linear

equations.

(3), 1 y (4).

... \P= Qn-G\ ._.

To solve these, assume

Wi = Fsin(\«+/)[ i)
= Psin(Xf+/)l

u}^=G cos {\t +/) J
' q = Q cos {\t +/)

J

Substituting, we get

A\F-{B-C)nG=glQ\ ,., \P= Qn
B\G-{A-C)nF=glp\

Eliminating the ratios F : G : P : Q we have

\H^ {A + B-C)^= {gl + A\^ + {B- C) n^] {gl + BX^ + {A-C) n%
If the values of \ thus found should be real, the body will make small oscillations

about the position in which OG is vertical. If C be the greatest moment, and n^

sufficiently great to make both gl-{C-A)n^ and gl - {C - B) nP negative, then all

the values of X are real and the body will continue to spin with OG vertical. If G
be beneath 0, I is negative and it will be sufficient that OG should be the axis of

greatest moment.

In order that the values of X^ may be real, we must have

{gl{A + B} +n^AC + BG-2AB-C^)}^^A{{B-C)n^ +gl}{{A-qn^ + gI}AB,
and in order that the two values of X^ may have the same sign we must have the

last term of the quadratic positive; .*. {{B - C) nP + gl} {{A - C) n'^ + gl} is positive,

and in order that the values of X'-^ may be both positive, we must have the coefficient

of X2 in the quadratic negative ; . •. gl{A + B)< n^ {B -C){A-C).

In the particular case in which A=B, each side of the quadratic becomes a

perfect square and we have

A\^:L{2A-C)n\+ {A-C)n^ + gl= 0\

2A-G jG'n^ - 4:Agl

•''^=''~2Ar''^^—2A • _
In this case the conditions of stability reduce to n > 2 jAgljG, By referring to

equations (o) and (6) it will be seen that when A =B we have F=G and P=Q. If

\, X2 be the two values of X found above, we have

p = Pi sin (Xi« +/i) + P2 sin (Xa* +/2)1

q = P^ cos [\t +/i) + P2 cos {\t +/2) j

•

Following the notation used in Euler's geometrical equations Vol. i. Chap, v.,

let 6 be the angle OC makes with the vertical taken as axis of z, then r^= cos^ Q— \- 6'^,

and hence O'^ =p'^ + q^ = P^a + p^a + 2P^P^ cos {{\ - Xg) t +f^ -f^}.

Let be the angle the plane containing OA, OC makes with the plane contain-

ing OG and the vertical OV, we have ^= - sin ^ cos (p, and g = sin ^ sin <p, and hence

_ tan r6
= -Pi cos {\t +/i) + Pg cos {\t +f^)

"^
Pi sin {\t +/i) + P2 sin (X2« +/2J

*

Since 6 is very small we have, still following the same notation, xj/^nt + a- ^,

where a is some constant, depending on the position of the arbitrary plane from

which \p is measured.
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When the axis of the top is inclined at an angle a to the vertical, the period of

oscillation about the steady motion is found in Art. 208 to be 2tIp. But this period

is different from either of the periods found in Art. 212 when the axis is supposed

to be nearly vertical. We easily see by eliminating fi from the expression for p that

jp= Xi-X2, so that the period of oscillation of 6 when the axis is inclined is the

same as the period of oscillation of 6^ when the axis is vertical*.

213. A body whose principal moments at the centre of gravity are not necessarily

equal is free to turn about a fixed point 0, and is in equilibrium under the action of

gravity. A small disturbance being given, find the oscillations.

Referring to the general equations in Art. 211 we see that in this case w^, Wg, W3,

are small, hence in equations (1) we may omit the terms containing the products

WjWg, W2W3, W3W1. Also since in equilibrium OG is vertical, p, g, r are always

nearly in the ratio h :k : I; hence if OG = a, we may write h/a, kja, Ija for p, q, r

on the right-hand sides of equations (2). The six equations are now all linear. To

solve these we put Wi=JEf sin(Xf + /*) and p = hJa +P cos (Xt + fx) (3),

Wj, wj, 5 and r being represented by similar expressions with K and L written for

H; Q, k and R, I written for P and h. Substituting these in the equations we get

six linear equations. Eliminating P, Q, R we have

* In order to understand the relation which exists between the results and

those of Arts. 208 and 212, it will be necessary to determine the oscillations by some

process which holds both when o is large and very small. This may be done as

follows. We have by Vis Viva the equation (see Art. 201)

fddy (
E - Cn cos ey _ F'- 2gh cos 6

\dt)'^\ ABmd~)~ A ^ ^'

where F' has been put for F - Cn^. If we put z= cos 6, this takes the form

A''{dzldtY-^{E-CnzY= A{F'-2ghz){l-z'') (2).

Let us assume as the solution of this equation z= cosa + Pcos (X«+/) (3),

where P is so small that on substituting in the above equation we may neglect P'.

Substituting and equating to zero the coefficients of the several powers of cos (Xt +/}

we get A'^P-\^ + (E-Cn cos a)2= A{F'- 2gh cos a) (1 - cos2o)V

-{E - Cn COS a) Cn= -ghA - AF' cos a + SghAcoa^a\. (4).

- ^2x3+ C2n2=-AF+ QghA COS a
)

Now let us change the constant E into another fi by putting j~-^.i
— = /* + 7^'.

where 7 is to be so chosen as to remove the term A'^P^X^ in our first equation.

SiBCeby (1) and (2) Art. 201 f,=-/,lT (5).

we see that, when 6 is not small, fi differs from the constant part of d^/d< only by

quantities depending on the squares of the small oscillation, and these are

neglected in the text. Substituting for E and eliminating F' between the first

and second equations we get CnfjL=A cos a/j.^ + gh.

Eliminating F between the first and third of equations (4) and substituting for n

we get \^={n*A^-2ghAcosan^+ gVi^)lA^n\

This process gives the period of the small oscillation in cos 6. When 6 is finite

this is the same as the oscillation in 6, since cos ^= cos a - sin aQ'. When d is very

small, cos^^l-^^- and the time of oscillation in cos^ is the same as that in ff^.

With this understanding it will be seen that there is a perfect agreement between

the results of Arts. 208 and 212, when a is put equal to zero.
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hkK-lhL =(-AX^ + k-'+An

-hkH+ (-BX^ + l^ + hAK-lkL=

- UiH - IkL + (- (7X2 + 7t2 + F^j Z=

.(4).

Eliminating the ratios of H, K, L we have an equation to find X^. One root is

X2= 0, the others are given by the quadratic

\'+(
A;2+ Z2 i^+h^ h^+k^

)i
^,^ Ak^ + Bk^+Cl^^^^

.(o).A B G Ja " ABC

To ascertain if the roots are real we must apply the usual criterion for a quad-

ratic. This requires that

{A{B-C)K^ + B{C-A)lc''-G{A-B)l"}'' + 4:AB{B-G){A-C)h''h'' (6)

should be positive. Since A, B, G can be chosen to be in descending order, we see

that the condition is satisfied. See also Art. 58.

If G is above O, a is positive and the values of X^ are both negative. The equi-

librium is therefore unstable. If G is below 0, a is negative and the values of X^

are both positive. If the roots are equal, the two positive terms in (6) must be

separately zero, this gives k = and A {B - C)h'^=G {A-B)l^, i.e. the centre of

gravity hes in the asymptote to the focal hyperbola of the momental ellipsoid. In

this case we find X^= -agjB. The case in which k= 0, i— 0, B = G has been con-

sidered in Art. 212.

If the values of X^ are written 0, X^^, Xg^ we have

wj= ifo + Ho't + H^ sin {\t + n-^) + Hg si^ (^2* + A'2)>

with similar expressions for Wg, "a- Equations (2) then give^), 2, t. But substitut-

ing in (1) we find that all the non-periodic terms which contain t are zero.

Eemembering that 2?^ + 3^ + r2= 1 we have finally

Wi= Qhja + H^ sin (X^^ + ^u^) + H^ sin {\t + fj^),

W2 and Wg being represented by similar expressions with k, K and ?, L written for

h, H. The values of K^ , L^ and K.^., L^ are determined by equations (4) in ternas of

ifj and H^ respectively. We also have

^"a"^ aX
--^cos (Xi« + yUi)+ -

kU
COS (Xa^ + ^^a)'

with similar expressions for q and r. There remain five constants, viz. fi, H^, H^^

fii, fi^ to be determined by the initial values of w^, Wo, Wg, r and q.

When the roots are equal the equations depending on p, r, lo^ separate from those

depending on g, w^, Wg, forming two sets; we find

Q- +Hsm{\t + fij) K sin {\t + fi^)

3 = H y cos (Xt + fJLj)

p = - +K-^ cos (Xt + Uo)^ a aX

r= --K~~ cos iXt + Uo)
a aX

A solution of this problem conducted in a totally different manner has been

given by Lagrange in his Mecanique Analytique. His results do not altogether

agree with those given here.

If we substitute the values of w^, Wg, Wg, p, q, r in the equation of angular

momentum of Art. 211 and neglect the squares of small quantities, we evidently

obtain (Ah^ + Bk^+ GP) Q - Ea\ A Ilh + BKk + GLl= 0.
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The first of these equations shows that Q vanishes when the initial conditions

are such that the angular momentum about the vertical is zero. In this case the

problem reduces to that considered in Art. 134.

214. A body whose principal moments of inertia are not necessarily equal has a

point O fixed in space and moves about under the action of gravity. It is required

to find what cases of steady motion are possible in which one principal axis OC at

describes a right cone round the vertical while the angular velocity of the body about

OC is constant; and to find the small oscillations.

Referring to the general equations of Art. 211, we see that r and Wg are given to

be constants. In this case the first two equations of (1) and (2) form a set of linear

equations to find the four quantities j?, q, Wj, to^. The solution of these equations

is therefore of the form

wi= Fo + i^i sin (Xf +/)] j)= Po + Pj sin {\t+f)\

w„=Go+GiCOs(\f+/)j
'

?= Qo + QiCOs(^«+/)J
*

But these must also satisfy the last of equations (1). Substituting we see that

there will be a term on the left side of the form

-^{A-B)F^G^Bin2{\t+f).

But there will be no such term on the right side. Hence we must have either

A= B, Fj= or Gj = 0. The motion in the case in which A=B has already been

considered in Art. 207. Again, substituting in the last of equations (2) and equat-

ing to zero the coefl&cient of sin 2 (Xf +/) we find

Substituting in the first two of equations (1) and equating to zero the coefficients

of cos (\t+/) and sin {\t +/), we find

A\F^-iB-C)nG^=glQ^
-B\Gi-{C-A)nFi= -glP^;

from these equations we have Fj, Gj, Pj, Q^ all equal to zero and therefore Wj, u^,

Pf q are all constant as well as the given constants u^ and r.

In this case the equations (2) give ujp= wjq= Wg/r, so that the axis of revolu-

tion must be vertical. Let w be the angular velocity about the vertical. Then
Ui=p<a, <a2=q(^, (a^=r<a. Substituting in equations (1) we get

p 9 ~q g ~r 9 ^
^'

Unless, therefore, two of the principal moments are equal, it is necessary for

steady motion that the axis of rotation should be vertical and the centre of gravity

(hkl) must lie in the vertical straight line whose equations are (3).

This straight line may be constructed geometrically in the following manner.

Measure along the vertical a length OV=glu)^ and draw a plane through V perpen-

dicular to OV to touch an ellipsoid confocal with the ellipsoid of gyration. The
centre of gravity must lie on the normal at the point of contact.

To find the small oscillations about the steady motion, i.e. to determine whether

this motion be stable or not, we must put

jp = cos a+ Pq sin X<+ Pi cos Xt,

with similar expressions for q, r, Wj, Wj, Wg. Substituting we shall get twelve linear

equations to determine eleven ratios. Eliminating these we have an equation to

find X. It is sufficient for stability that all the roots of this equation should be real.
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Motion of a Sphere.

215. General equations of Motion. To determine the motion

of a sphere on any perfectly rough surface under the action of any
forces whose resultant passes through the centre of the sphere.

Let G be the centre of gravity of the body and let the moving
axes GO, GA, GB be respectively a normal to the surface and
some two lines at right angles to be afterwards chosen at our
convenience. Let the motions of these axes be determined by
the angular velocities 6^, 6^, ^3 about their instantaneous positions

in the manner explained in Art. 3. Let u, v, w be the velocities

of G resolved parallel to the axes so that w = 0, and (o^, w^, Wg the
angular velocities of the body about these axes. Let F, F' be the
resolved parts of the friction of the perfectly rough surface on the
sphere parallel to the axes, GA, GB, and let B be the normal
reaction. Let X, F, Z be the resolved parts of the impressed
forces on the centre of gravity. Let k be the radius of gyration

of the sphere about a diameter, a its radius, and let its mass be
unity. We shall suppose that in the standard case the sphere
rolls on the convex side of the fixed surface and that the positive

direction of the axis Z is drawn outwards from the surface. The
equations of motion of the sphere are by Arts. 22 and 5,

~dt

dt

d(Oj. ^

du

di

dv

dt

e,v

+ e^u

Fa^

Fa
k'

X+F

(1),

= Y+F' (2),

and since the point of contact of the sphere and surface is at rest,

we have

u — aco,^ = 0, V + aw^ = (3).

Eliminating F, F\ oo^, Wg from these equations, we get

du ^ _ a^

di" ""' ^cT^k'

ar + K
-.Y +

a'+ l^
''

,(4).

216. The meaning of these equations may be found as follows.

They are the two equations of motion of the centre of gravity of
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the sphere, which we should have obtained if the given surface

had been smooth and the centre of gravity had been acted on

by accelerating forces , , .^
^lO^^Wg and -^-rr^ ^2^^$ along the axes

GA, GB, and by the same impressed forces as before reduced in

the ratio -J

—

tj. The motion therefore of the centre of gravity
tt "T* A?

in these two cases with the same initial conditions will be the

same. More convenient expressions for these two additional forces

may be found thus. The centre of gravity moves along a surface

formed by producing all the normals to the given surface a constant

length equal to the radius of the sphere. Let us take the axes

GA, GB to be tangents to the lines of curvature of this surface

and let p^, p^ be the radii of curvature of the normal sections

through these tangents respectively. Then

':-i' '^-l
•••••^^>-

If G be the position of the centre of gravity at the time t, the

quantity O^dt is the angle between the projections of two successive

positions of GA on the tangent plane at G. Let %i, X2 ^® ^^®

angles the radii of the curvature of the lines of curvature at G
make with the normal. The centre of the sphere may be brought
from G to any neighbouring position G' by moving it first from G
to H along one line of curvature and then from U to G' along the

other. As the sphere moves from G to H, the angle turned round
by GA is the product of the arc GH into the resolved curvature

of GH in the tangent plane. By Meunier's theorem, the curvature

is , multiplying this by sin ;^j to resolve it into the tangent

plane we nnd that the part of 6^ due to the motion along GH is

IL— tan ;)^j. Treating the arc HG' in the same way, we have

^3 = ^tan;^, + ^tan;V2 W-
ri ra

This result follows also from that given in Art. 13, Ex. 2.

We have also an expression for Wg given by equations (1).

Substituting for Wj, ay^ from the geometrical equations (3) we get

^«8 /I l^ /m

Many of the results in this section are deduced from equations

(4) and (7) and in all these cases an apparently independent
solution may be obtained by forming over again the equations

(1), (2), (3), &c. (from which (4) and (7) have been derived), with
such simplifications as suit the problem under consideration. An
example of this process is given in Art. 221.
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217. The solution of the equations may be conducted as fol-

lows. Let (x, 1/, z) be the co-ordinates of the centre of the sphere.
Then u, v may be found from the equation to the surface in terms
of doc/dt, dyldty dz/dt by resolving parallel to the axes of reference.

If we eliminate u, v, 6^, 6^, 0.^ by means of (4), (5), and (6), we
shall get three equations containing so, y, z, Wg, and their differential

coefficients with respect to t. These together with the equation
to the surface will be sufficient to determine the motion at any
time. One integral can always be found by the principle of Yis
Viva. Since the sphere is turning about the point of contact as

an instantaneously fixed point we have

Avhere </> is the force function of the impressed forces. This is

the same as 2.2. ^^^
2 o <^^

"+"+zTP'"»=2;iNhP^ («)'

and the right-hand side of this equation is twice the force function
of the altered impressed forces.

218. It will sometimes be more convenient to take the axis GA to be a tangent

to the path. Then v= and therefore a;j = 0. If TJ be the resultant velocity of

the centre of the sphere vre have u — U. Also if R be the radius of torsion of a

geodesic touching the path at G and p the radius of curvature of the normal

section at G through a tangent to the path, we have 0^= TJjR and 6^= TJJp. In these

expressions, as elsewhere, R is estimated positive when the torsion round GA is

from the positive direction of GB to the positive direction of GC. If x be the

angle the radius of curvature of the path makes with the normal, we have as before

03= tan X Ujp. The equations (4) become

dU a? ^ k'' U \

Z7\ a2 ,^ A;2 xj \
(i^)-

The expression for W3 given by equations (1) now takes the form

do), IP
^^ =-R (^")-

It may be shown by geometrical considerations that this form is identical with

that given in (7).

219. To find the pressure on the surface we use the last of equations (2). This

may be written in either of the forms
772 ,,2 ,,2^=^+!^ = -Z-i2 (9).

P Px P2

The sphere will leave the surface when R changes sign. This will generally

occur when the velocity of the centre of the sphere is that due to one half of the

projection of the radius of curvature of the normal section on the direction of the

resultant force.

220. Ex. 1. Show that the angular velocity of the sphere about a normal to

; surface, viz. W3, is constant when the direction of

gravity is a tangent to a line of curvature, and only then.

the surface, viz. W3, is constant when the direction of motion of the centre of
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Ex. 2. A sphere is projected without initial angular velocity about the radius

normal to the surface, so that its centre begins to move along a line of curvature.

Show that it will continue to describe that Hne of curvature if the force transverse

to the line of curvature and tangential to the surface is equal to seven-fifths of the

centrifugal force of the whole mass collected into the centre, resolved in the tangent

plane to the surface.

Ex. 3. If the sphere be not acted on by any forces, show that(ON 7 d [ 2\ 2
tan2 X +

^ J
= constant, awg= - C7 tan x, -^ log (^tan" x +

^j
= -

;^
tan x-

Show also that the path will not be a geodesic unless the path is a plane curve.

221. Motion on a rough plane. If the given surface on
which the sphere rolls he a plane, we have p^ and p^ both infinite,

hence 6^ , 6^ are both zero. If therefore a homogeneous sphere roll

on a perfectly rough plane under the action of any forces whatever

of which the resultant passes through the centre of the sphere, the

motion of the centre of gravity is the same as %f the plane were

smooth, and all the forces were reduced to five-sevenths of their

former value. And it is also clear that the plane is the only surface
which possesses this property for all initial conditions.

We may easily obtain the first part of this theorem from first principles.

Taking the directions of the axes of x and y to be fixed in epace and parallel to the

rough plane we have (Arts. 22 and 236)

dt I dt I «-a<.>2=0|

dt ) dt J

Eliminating F, F', w^, Wg we find

du __ a^ dv _ a'

di~^iHT^ ' di~^^^Tk^ '

which is the analytical statement of the theorem. The six equations of motion

from which this result is derived are obviously only simplified forms of equations

(1), (2), (3) of Art. 215.

222. Ex. A homogeneous sphere is placed upon an inclined plane suflQciently

rough to prevent sliding and a velocity in any direction is communicated to it. Show
that the path of its centre will be a parabola, and if V be the initial horizontal

velocity of the centre of gravity, a the inclination of the plane to the horizon, the

latus rectum will be ^ V'jg sin a.

223. Motion on a rough spherical surface. If the given

surface on which the sjyhere rolls be another sphere of radius b — a,

we have n=p^=z b. Hence <o^ is constant ; let this constant value

be called n, and let U be the velocity of the centre of gravity.

Since every normal section is a principal section, let us take GA a
tangent to the path. Hence the motion of the centre of gravity is

the same as if the whole mass collected at that point were acted on

by an accelerating force - , ,2 —^ " in a direction perpendicular to

the path, and all the impressed forces were reduced in the ratio
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2

—3—p . According to the usual convention as to the relative posi-

tions of the axes GA, GB, GG it is clear that if the positive

direction of GA be in the direction of motion, the angular velocity

n should be estimated positive when the part of the sphere in

front is moving to the right of GA and the additional force when
positive will also act toward the right-hand side of the tangent.

Since this additional force acts perpendicular to the path, it will

not appear in the equation of Vis Viva. Hence the velocity of

the centre of gravity in any position is the same as if it had
arrived there simply under the action of the reduced forces. Let

be the centre of the fixed sphere, 6 the angle OG makes with
the vertical OZ, and yjr the angle the plane ZOG makes with any
fixed plane passing through OZ. Then by Vis Viva we have

where F is some constant to be determined from the initial con-

ditions. This also follows from equation (8).

Also taking moments about OZ^ we have

b d_f . ^ad^lr\_ e dd

sinOdtV^'' ^ dt)~'a' + k''''' di'

an equation which will be found to be a transformation of the

second of equations (4). Integrating this equation we have

sm'^-^=^ 5—^2 -^cos^,
dt a'' + ¥ h

'

where E is some constant. These two equations will suffice to

determine ddjdt and dyjr/dt under any given initial conditions.

If the sphere have no initial angular velocity about the normal
to the surface it is clear that n =0 and the additional impressed
force is zero. If therefore a homogeneous sphere roll on a perfectly

rough fixed spherical surface, and if the sphere either start from,
rest or have its initial angular velocity about the common normal
equal to zero, the motion of the centre of the sphere is the same as

if the fixed spherical surface were smooth and the forces on the

rolling sphere were i^educed to five-sevenths of their former value.

224. Ex. A homogeneous sphere rolls under the action of gravity in any

manner on a perfectly rough fixed sphere whose centre is 0. Prove that through-

out the motion (1) the velocity of the centre G of the moving sphere is that due to

five-sevenths of its depth below a fixed horizontal plane
; (2) the moving sphere wUl

leave the fixed sphere when the altitude of its centre above is ten-seventeenths of

the altitude of the fixed plane above the same point; (3) the transverse velocity of

G is proportional to the tangent of the angle C^^'' makes with the horizon, where U
is a fixed point on a vertical through 0.

225. Motion on a rougli cylinder. If the surface on which the sphere rolls he

a cylinder the lines of curvature are the generators and the transverse sections.

Let the axis GA be directed parallel to the generators, then p-^ is infinite and p-^-a
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is the radius of curvature of the transverse section. We have ^i = -iVp2» ^3=0,

and since x>=0» ^s=0' The equations (4) and (7) therefore become

du_ g' y k^ V

dv _ a° ^

d (awg) _ M£

5t P2 J

From these equations the motion may be found.

The second of these gives the motion transverse to the generators of the cylinder,

and if Y be the same for all positions of the sphere on the same generator, this

equation may be solved independently of the other two. The transverse motion of

the centre of the sphere is therefore the same under the same initial circumstances

as that of a smooth sphere constrained to slide in a plane perpendicular to the

generators on the transverse section of the cylinder and acted on by the same impressed

forces but reduced in the ratio a^f (a^ + F).

Having found v we may proceed thus ; let ^ be the angle the normal plane to

the cylinder through a generator and through the centre of the sphere makes with

some fixed plane passing through a generator, then v=p^d<pldt. If d<f>ldt be not

zero, the first and third equations then become

du k^ _ g^ p2 -p. _d(aw.j)

If X be the same for all positions of the sphere on the same generator these

equations can be solved without difficulty. For v and p^ being known in terms of 0,

we have in this case two linear equations to find u and awg. If X be zero, and

&2=|a2, wefind

au}^=A8m{>Jf<p + B), u=A ^JfcoaiJftp + B),

where A and B are two arbitrary constants to be determined by the initial values of

u and 01^.

If X be not the same for all positions of the sphere on the same generator, let ^

be the space traversed by the sphere measured along a generator. Then

u=d^ldt={d^ld<p){vlp.,).

Substituting this value of u, we have two equations to find | and gwg in terms

of
<f>.

One integral of these is equation (8) of Art. 217 which was obtained by the

principle of Vis Viva.

226. Ex. A sphere rolls under the action of gravity on a perfectly rough

cylindrical surface with its axis inclined at an angle a to the horizon. The section

of the cylinder is such that when the sphere rolls on it, the centre describes a

cycloid with its cusps on the same horizontal Hue. If the sphere start from rest

with its centre at a cusp, find the motion.

Let the position of the sphere be defined by ^ the space described along a gene-

rator and 8 the arc of the cycloid measured from the vertex. If 46 be the radius of

curvature of the cycloid at its vertex, we have

/59.

,

, ^i, cos a ^*=46co8;,/-^2g^t.

Since r = d«/d« and p./+8^=16b* we find that vfp^ is constant. This gives with-

out difficulty gin

«

ussBin a
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227. The relation, v/pg = constant, holds whenever (1) the forces acting at the

centre of the sphere, and the form of the section of the cylinder, are so related that

the tangential component bears a constant ratio to p^dp^^jcis, and (2) the sphere starts

from rest at a point where p.^ is zero. In such a case, the normal plane to the section

through the centre of the sphere has a constant angular velocity in space and the

resolved motion of the sphere perpendicular to the generators is independent of that

along the generators.

Ex. A sphere rolls on a perfectly rough right circular cylinder whose radius is

c under the action of no forces, show that the path traced out by the point of con-

tact becomes the curve a;=^ sin (2?//7c)^ when the cylinder is developed on a plane.

This result shows that the sphere cannot be made to travel continually in one

direction along the length of the cylinder except when the point of contact describes

a generator.

228. Slotioii on a rough cone. If the surface on which the sphere rolls he a

cone, the lines of curvature are the generators and their orthogonal trajectories.

Let the axis GA be directed parallel to the generator, then p^ is infinite and p^-a

is the radius of curvature of a normal section perpendicular to the generators.

;Also 6^= -v/p^y ^2= 0. Let the position of the sphere be defined by the distance r

of its centre from the vertex of the cone on which the centre always lies and by

an angle
<f>

such that d<p is the angle between two consecutive positions of the

distance r, d0 being taken a« positive when the centre moves in the positive di-

rection of GB. If the cone were developed on a plane it is clear that r and would

be the ordinary polar co-ordinates of a point G. We have

dd> dr d(b

^^-Tt' "=*' "='4^

The equations (4) and (7) become therefore

d^r fd<f,y_ gg P r d^\

dt^ ^[dtj ~a^+k^ a' + k'^J^^'^^dt

rdt\ dtj~a^+ k^

d (awj) _ r d<f>dr

dt p2 dt dt

If the impressed forces have no component perpendicular to the normal plane

through a generator, 7=0, and we have r^d(pldt = h, where h is some constant de-

pending on the initial values of r and v.

If also the component X of the forces along a generator be a function of r only,

another integral can be found by the principle of Vis Viva, viz.

where h' is another constant depending on the initial values of u, v and r.

If, further, the cone be a right cone, p2='' tan a where a is the semi-angle, and

we have hcota ,,,aw3= 1- U ,

where h" is a third constant depending on the initial values of wg and r. The equa-

tions of the motion of the centre of the sphere resemble those of a particle in central

forces. Hence r and will be found as functions of the time if we regard them as

the co-ordinates of a free particle moving in a plane under the action of a central

force represented by -^

—

to )X-k^o}^ -^f [ , where Wg has the value just found.

R. D. II. 9
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229. Ex. A sphere rolls on a perfectly rough cone such that the equation to

the cone on which the centre G always lies is r=p2F{<p). If the centre is acted on

by a force tending to the vertex, find the law of force that any given path may be

described. If the equation to the path be l/r=/(^), prove that the force X is

230. Motion on a STir£a,ce of revolution. Let the given rough surface he any

surface of revolution placed with its axis of figure vertical and vertex upwards, and

let gravity be the only impressed force. In this case the meridians and parallels are

the lines of curvature. Let the axis of figure be the axis of Z. Let 6 be the angle

the axis GG makes with the axis of Z, yj/ the angle the plane containing Z and GO
makes with any fixed vertical plane.

Then e^^-sme-^,
^^^di'

^3=cose-^.

Hence the equations (4) become

:j- - cos e -j7 V = -2—72 ^ Bm 6- ..... aca^ sin 6 -~ (i),

di dt a^+k^" a^+ k- ^ dt ^'

dv ^dyl/ k^ dd ....

and equation (8) becomes

'*' + ^'+ ^2«'''3'=-E + 25r^J/>sin0d^ (iii).

where E is some constant, and p is the radius of curvature of the meridian. Also

we have by (7) dlwg _ _ ^ /I _ sJd^ N /. »

~di~~ a\^ r J
^^^^*

where r is the distance of the centre of the sphere from the axis of 2. The

geometrical equations (5) become
dd d^p

, ,

"=^dF» ^=^d7 <^)'

To solve these, we may put (ii) into the form

^ +cos^^n=^^,a«3,

1 • t- t / V i_
dv pcoBd k^

which by (v) becomes ^ + '^-y- v = ^^-^ au)^
;

differentiating this, we have by (iv),

|^,,££2--,P.=0 (vi,

Now p and r may be found from the equation to the meridian curve as functions

of 6. Hence P is a known function of 6. Solving this linear equation we have v

found as a function of 6. Then by (iv) we have

da>3 _ V /
^

pBin6\

~dd~~a \ r~)'
and thence having found W3 we have w by equation (iii). Knowing u and v \ 6 and

^ may be found by equations (v).

231. Oacillationa on the summit of a rough fixed surfiiee. A heavy sphere

rotating about a vertical axis is placed in equilibrium on the highest point of a surface

of any form and being slightly disturbed makes small oscillations
, find the motion.

Let O be the highest point of the surface on which the centre of gravity G
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always lies. ' Let the tangents to the lines of curvature at be taken as the axes of

X and y, and let {x, y, z) be the co-ordinates of G. "We shall assume that O is not

a singular point on the surface. In order to simplify the general equations of

motion (4) we shall take as the axes GA and GB the tangents to the lines of

curvature at G. But since G always remains very near 0, the tangents to the

lines of curvature at G will be nearly parallel to those at 0. So that to the first

order of small quantities we have

and ^3 will be a small quantity of at least the first order. Also since the sphere

is supposed not to deviate far from the highest point of the surface, we have Wg

constant, let this constant be called n.

The equation to the surface on which G moves, in the neighbourhood of

(x^ ip\—I- —
) « The direction cosines of the normal at

Pi NJ
X, y, z are xjp^, yjp^^ 1. Hence the resolved parts parallel to the axes of the normal

pressure R on the sphere are Rxjpi^ , Byjp^ and B. The equations of motion (4)

therefore become d^x a^ x
.

B
dt^ aHF pj

»2
y

fc2 dy aw"

a2+ A;2 dt Pa

fc2 dx an

a3+ fc2 dt Pi

ii^ +z.^^- (iv).

But z is a small quantity of the second order, hence the last equation gives

R=g. To solve these equations, we put

a;=-Feos(X<+/), y=G Bin {\t+f).

Thesegive (x»+^ ^V=T?i3 - «]
\ a^+J(^ pj a^ +P Pa I

A., «° 9\r ^^pI
V '^a^+k^ pJ a'+ h^ Pi J

The equation to find X is therefore

V ^a2+p pJ y' -^a^ + k^ pJ (a2 + P)2 p^^

This is a quadratic equation to determine X^. In order that the motion may
be oscillatory it is necessary and sufacient that the roots should be both positive.

If pi, p2 be both negative, so that the sphere is placed like a ball inside a cup, the

roots of the quadratic are positive for all values of n. If pi, po have opposite signs

the roots cannot be both positive. If pj, pg be both positive the two conditions of

stability will be found to reduce to n^ > —z-^ g {sfPi + sfp^)^-

If pi be infinite, it is necessary that p^ should be negative, and in that case

the two values of X^ are - —,—r? - and zero, which are both independent of n.
a^ + k^ p2

If p^=p^, we have F-G. In this case if 6 be the inclination of the normal to the

vertical, we have d^={x^ + y^)lp^ and, as in Art. 212, we find

where Xj , Xg are the roots of the quadratic

a^ + k^ p a^+k^ p

9—2
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232. This problem may also be solved by Lagrange's method although the

geometrical equations contain differential coefficients with regard to the time. To

effect this we have recourse to the method of indeterminate multipliers as explained

in Vol. I. Chap. viii. Let the axes of reference Ox, Oy, Oz be the same as before.

Let GC be that diameter which is vertical when the sphere is in equilibrium on the

summit. Let GA, GB be two other diameters forming with GC o. system of rect-

angular axes fixed in the sphere. Let the position of these with reference to the

axes fixed in space be defined by the angular co-ordinates dy </>, ^ in Euler's manner.

The vis viva of the sphere wiU then be

2T=x'^ + y'^ + z'^ + k^{<p' + yp'co8 0)^ + P{d'^+ sm^ ^t/^'sj.

If we put sin^cos^= f, sin0sin^=r;, 0+^=x> ^^^ reject all small quantities

above the second order, we find that the Lagrangian function is

\Pi P'iJ

It is easy to see by reference to the figure for Euler's geometrical equations

Vol. I. Chap. V. that f and i; are the cosines of the angles the diameter GO makes

with the axes Ox, Oy.

If Wj. , wy , Wj, are the angular velocities of the sphere about parallels to the axes

fixed in space, the geometrical equations are

a;'-a f Wy-Wg - j=0, "i/
+ aiwx-(j3g—\=0.

These are found by making the resolved velocities of the point of contact in the

directions of the axes of x and y equal to zero. See the expressions in Vol. i.

Chap. V. for tlie. velocity of any 'point. The angular velocities (a^, Wy, w^ may be

expressed in terms of 6, <p, rp by formuloB analogous to those of Euler. See Vol. i.

Chap. V. Thus Wa,= - 6' sin ^+ 0' sin ^ cos ^ \

u)y= ^cos\^ + 0'sin ^sin ^L .

w,= 0'cos^+^'
j

Substituting and expressing the result in terms of the new co-ordinates f, rj, x, the

geometrical equations become

^i = -^ + x''?+r-x'f=o, i2=^' + x'^-V-x'^=o.

Lagrange's equations of motion modified by the indeterminate multipliers X and fi

are represented by the typical form

d dL dh_ dLi dL^

dt d^' ~ di 'd^' "^ ^ d^ '

where q stands for any one of the five co-ordinates x, y, f, rj, x- The steady motion

is given by x, y, f, rj aU zero and x='"" Taking q = x and q = y and giving the

several co-ordinates their values in the steady motion, we find that X and fi are both

zero in the steady motion.

To find the oscillations, we write for q in turn x, y, x, ^ and rj, and retain the

first powers of the small quantities. Remembering that X and ^ are small quanti-

ties (Art. 61), we find

Pi »

Pa o

^Mr+xV)-x

»

kHv"-x'0+/^:l

These and the two geometrical equations Lj and L^ are all linear, and may be

solved in the usual manner. If we put x'=^ ^^^ eliminate first X and /x and then



OSCILLATIONS OF A SPHERE. 133

^ and t) we get two equations to find x and y, which are the same as those marked

(iv) in the solution of Art. 231.

233. Ex. A perfectly rough sphere is placed on a perfectly rough fixed sphere

near the highest point. The upper sphere has an angular velocity n about the

diameter through the point of contact
;
prove that its equilibrium will be stable

if n'>Sog {a + b)la^, where b is the radius of the fixed sphere, and a the radius

of the moving sphere.

234. Oscillations about steady motion. A perfectly rough surface of revola-

lion is placed icith its axis vertical. Determine the circumstances of motion that a

heavy sphere may roll on it so that its centre describes a horizontal circle. And this

state of steady motion being disturbed, find the small oscillations.

In this case we must recur to the equations of Art. 230. We shall adopt the

notation of that article, except that to shorten the expressions we shall put for k'^

its value f a^.

To find the steady motion. We must put u, v, Wg, d, dxf/Jdt all constant. Let

a, IX and n be the constant values of d, d^jdt and w.^. Then we have m = 0, v = bfA,

where b is the constant value of r. The equation (i) becomes

- 6 cos afjL^=^g sin a - |^an sin afi.

The other dynamical equations are satisfied without giving any relation between

the constants. If the motion be steady, we have therefore

5 g 7 b

2 a/x 2 tt

thus for the same value of n we have two values of fx, which correspond to different

initial values of v.

We have the geometrical relation aa>i= -v, so that w^ and n have opposite

signs. Hence the axis of rotation which necessarily passes through the point of

contact of the sphere with the rough surface makes an angle with the vertical less

than that made by the normal at the point of contact.

If the sphere roll on a surface of revolution so that the axis GC is turned

from the axis of symmetry, the angle a must be positive. By inspecting the

expression for n and making dnjdfji. = it will be seen that the least value of the

angular velocity n of the sphere is given by n^= 35 cot a .bgla^. In this case the

processional motion of the sphere is given by Ac^= f tan a . gjb. If the sphere roll

on the inner and upper side of such a surface as an anchor ring held with its axis

vertical the angle a is negative, and there is no inferior Hmit to the value of n.

To find the small oscillation.

Put e= a + d', d\pldt=ix-\-dfdt, where a and [x are supposed to contain all the

constant parts of d and d-ipjdt, so that d' and dxf^'jdt only contain trigonometrical

terms. Let c - a be the radius of curvature of the surface of revolution at the point

of contact of the sphere in steady motion, so that p differs from c only by small

quantities, and may be put equal to c in the small terms. Also we have r= 6 + c cos a. 6',

Now by equations (iv) and (v) of Art. 230 wq have

dw, _ dd dxp p sind-r _dd' c sin a — b^

at ~ dt dt a ~ dt^ a *

c sin a - 6 ..

where n is the whole of the constant part of W3.
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Again, from equation (ii), we have

1 d / d^\ p dd drp i*

^adt\dt) adt^^^^ dt'^a^ +a» + fe»''3^=^'

u de b d^}f/ c COB afidd' 2 dd' ^

a dt a dt^ a dt 1 dt

. . .

.

, f2 2fxc cos a\ -, b d^p'
integrating we nave

I sW - — ) 6'= - -^

,

\7 a J a dt*

the constant being put zero because 6' and ^' only contain trigonometrical terms.

Thirdly, from equation (i), we have

+

1 d f dd\ r fdxpy ^2 . ^dxl/ 5 g . ,

-adtVdi)-a[Tt)
cos^ + ^c.38m^^ = ^^sm(?;

c d?e' b + ccoaad', . ^^ / „
. „ df\

-(sma+ cosa^') (a*+ -^ ) (w+m ^
)
=- -(sina+ cosa^).

This expression must be expanded and expressed in the form

In this case, since 6' contains only trigonometrical expressions, we must have J5=0.

Putting ^' = in the above expression, we find the same value for n as in steady

motion. After expanding the preceding equation we find

A=u^ (- cos2a+ = sin'a ) + u2 —^— f 2 cos^a+^sin'a )
\ 7 /'csma\ 7 /

25 o2 sin a 10 cr . 10 g+ A(i —Ti —
I sin a cos a +— - cos a.

49 fj^hc 7 6 7 c

In order that the motion may be steady, it is sufiicient and necessary that this

value of A should be positive. And the time of oscillation is then ^ttJsJA,

It is to be observed that this investigation does not apply if a and therefore 6 be

small, for some terms which have been rejected have 6 in their denominators, and

may become important.

235. Motion on an Imperfectly rough surface. The
general equations of the motion of a sphere on an imperfectly

rough surface may be obtained on principles similar to those

adopted in Vol. I. Chap. vi. to determine the motion of rough
elastic bodies impinging on each other. The difference in the

theory will be made clear by the following example, in which a
method of proceeding is explained which is generally applicable,

whenever the integrations can be effected.

236. A homogeneous sphere moves on an imperfectly rough
inclvied plane with any initial conditions, find the direction of the

motion and the velocity of its centre at any time.

Let G be the centre of gravity of the sphere. Let the axes of

reference GA, GB, GO have their directions fixed in space, the

first being directed down the inclined plane and the last normal to

the plane. Let u, v,w be the velocities of G resolved parallel to these

axes, and o),, (o , Wg the angular velocities of the body about these

Hxes. Let F, F' Ijc the resolved parts of the frictions of the plane

on the sphere parallel to the axes GA, GB, but taken negatively
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in those directions. Let h be the radius of gyration of the sphere

about a diameter, a its radius, and let the mass be unity. Let a

be the inclination of the plane to the horizon.

Whether the sphere roll or slide the equations of motion
will be

at
(1)

dt J dt

(2).

Eliminating F and F' from these equations and integrating we
have yr,2

^
w + -2 ^^2 =^0 + 9 sin at

I (3),

a

where U^ and Y^ are two constants determined by the initial

values of u, v, co^, co^.

The meaning of these equations may be found as follows. Let
F be the point of contact of the sphere and plane, let Q be a point

within the sphere on the normal at F so that FQ = (a^-i- k^)/a.

Then Q is the centre of oscillation of the sphere when suspended
from P. It is clear that the left-hand sides of the equations (3)

express the components of the velocity of Q parallel to the axes.

The equations assert that the frictional impulses at F cannot affect

the motion of Q, and this also readily follows from Vol, I. Chap, ill.,

because Q is in the axis of spontaneous rotation for a blow at F.

237. The friction at the point of contact F always acts oppo-
site to the direction of sliding and tends to reduce this point to

rest. When sliding ceases the friction (see Vol. i. Chap, iv.) also

ceases to be limiting friction and becomes only of sufficient magni-
tude to keep the point of contact at rest. If sliding ever does
cease, we then have

u -aco^ = 0, v + ao)^=0 (4).

The equations (3) and (4) suffice to determine these final values

of u, V, &)j and (o^. Thus the direction of the motion and the
velocity of the centre of gravity after sliding has ceased have been
found in terms of the time. It appears that both these elements
are independent of the friction.

If the equations (4) hold initially the sphere will begin to move
without sliding provided the friction found from the equations (1),

(2) and (4) is less than the limiting friction. To determine this

point we must find the magnitude of the friction necessary to

prevent sliding. If the sphere does not slide we may differentiate

the equations (4) ; then substituting from (1) and (2) we find F' =0
and F= g sin OL. k^/(a^ -\- k'^). But ^ince the pressure on the plane is
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g cos a, this requires that the coefficient of friction ^ > tan a ^ .

tt ~T~ a7

Supposing this inequality to hold the friction called into play will

be always less than or not greater than the limiting friction, and
therefore equations (3) and (4) give the whole motion.

This method of finding the inferior limit to the value of ^ is

the same as that used in Vol. I. Chap. IV. in the corresponding

problem where the sphere rolls down the inclined plane along the

line of greatest slope.

238. If the equations (4) do not hold initially or if the in-

equality just mentioned b6 not satisfied, let S be the velocity of

sliding and let 6 be the angle the direction of sliding makes with
GA. To fix the signs we shall take S to be positive while 6 may
have any value from — tt to tt. Then

S cos 6 = u — awg, /Sf sin ^ = V +a«i (5).

The friction is equal to ^ig cos a and acts in the direction oppo-
site to sliding, hence

F = ixg cos a cos ^, F' = ^g cos a sin 6.

The equations (1), (2) and (5) therefore give

-^-^^—' (^-^ +pj W^os a cos (9 + 5rsma
|

Expanding we find

dS /, a^ .
/,

-7- = — 1 1 -f^ ) fjig cos a 4- ^ sm a cos

ndd • ' no -J- = — g sm OLsm

If be not constant, we may eliminate t and integrate with

tan ^j (8),

where w = (1 + a'jjc^) fi cot c, and A is the constant of integration.

If Sq and 0^ be the initial values of S and determined by equa-

tions(5), we have 2A = S^sm ^Jcot-^"] (9).

Substituting the value of S given by (8) in the second of equa-
tions (7) and integrating we find

n-l "^""T+l n-l "^
n + 1 A ^""^^^)'

the constant of integration being determined from the condition

that =
0f,
when t = 0. The equations (8), (9) and (10) give S and

(7).
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6 in terms of t The equations (3) and (5) then give u,v, w^ and w^

in terms of t.

The second of equations (7) shows that dOjdt has an opposite sign

to 6, hence 6 beginning at any initial value except ± tt continually

approaches zero. It follows that, unless a is zero, 6 will be constant

only when ^^ = or + tt.

If n > 1, i.e. )Lt > tan a . k'^jia^ + F), we see from (8) that sliding

will cease when 6 vanishes. This, by (10) will occur when

^sina\w — 1 w + l/

The subsequent motion has already been found.

\i n<l we see by (8) that >Si increases as 6 decreases, so that

sliding will never cease. It also follows from (10) that 6 vanishes

only at the end of an infinite time.

If >Sio = 0, sliding will never begin if w > 1, but will immediately
begin and never cease if w < 1.

239. Billiard Balls. The theory of the motion of a sphere

on an imperfectly rough horizontal plane is so much simpler than
when the plane is inclined or when the sphere rolls on any other

surface, that it seems unnecessary to consider this case in detail.

At the same time the game of billiards supplies many problems
which it would be unsatisfactory to pass over in silence. The fol-

lowing examples have been arranged so as both to indicate the

mode of proof to be adopted and to supply some results which may
be submitted to experiment.

The result given in Ex. 1, was first obtained by J. A. Euler the son of the cele-

brated Euler, and published in the M6m. de VAcad. de Berlin, 1758. Most, possibly

all, of the other results may be found in the Jeu de Billiard par G. Coriolis, pub-

lished at Paris in 1835.

Ex. 1. A billiard-ball is set in motion on an imperfectly rough horizontal

plane, show that the direction and magnitude of the friction are constant through-

out the motion. The path of the centre of gravity is therefore an arc of a parabola

while sliding continues, and finally a straight line. The parabola is described with

the given initial motion of the centre of gravity under an acceleration equal to [xg

tending in a direction opposite to the initial direction of sliding.

Ex. 2, If S^ be the initial velocity of sliding prove that the parabolic path lasts

for a time ^-SJfxf;. From some experiments of Coriolis it appears that fi= ^ nearly.

If the initial velocity of sliding be one foot per second, the parabolic path lasts

therefore less than a twentieth part of a second.

Ex. 3. If P be the point of contact in any position and Q the centre of oscilla-

tion with regard to P, prove that the velocity of Q is always the same in direction

and magnitude. Thence show that the final rectilinear path of the centre of gravity

is parallel to the initial direction of the motion of Q and the final velocity of the

centre of gravity is five sevenths of the initial velocity of Q. If PP' be the initial

direction of motion and V the initial velocity of the centre of gravity and t the time
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given by Ex. 2, prove that the final rectilinear path of the centre of gravity inter-

sects PP' in a point P so that PP'= i Vt.

Ex. 4. A billiard-ball, at rest on an imperfectly rough horizontal table, is struck

by a cue in a horizontal direction at any point whose altitude above the table is /?,

and the cue is withdrawn as soon as it has delivered its blow. Supposing the cue

to be sufficiently rough to prevent sliding, show that the centre of the ball will

move in the direction of the blow and that its velocity will become uniform and

equal to - - B after a time —^— — where B is the ratio of the blow to the mass
la la no

of the sphere and a is the radius.

In order that there should be no sliding the distance of the cue from the centre

of the ball must be less than a sin c where tan e is the coefficient of friction between

the cue and ball.

Ex. 5. A billiard-ball, initially at rest and touching the table at a point P, is

struck by a cue making an angle /3 with the horizon. Show that the final recti-

linear motion of the centre of gravity is parallel to the straight line PS joining P
to the point S where the direction of the blow meets the table, and the final velocity

of the centre of gravity is f P sin/3 . PSja in the direction of the projection of the

blow on the horizon. It will be noticed that these results are independent of the

friction.

Ex. 6. Measure ST=^ a coi ^ along the projection of the blow on the horizon-

tal table, then TS measures the horizontal component of the blow referred to a

unit of mass, on the same scale that PS measures the final velocity of the centre of

gravity. Prove that during the impact and the whole of the subsequent motion the

friction acts along PT and that the whole friction called into play will be measured

by PT on the scale just mentioned. Thence show that unless ix<^PTIa the para-

bolic arc of the path will be suppressed. Show also that PT is the direction in

which the lowest point of the ball would begin to move if the horizontal plane were

smooth and the ball were acted on by the same blow as before.

Motion of a Solid Body on a plane.

240. Bistorical Saxnmary. The motion of a heavy body of any form on a

horizontal plane seems to have been studied first by Poisson. The body is supposed

to be either bounded by a continuous surface which touches the plane in a single

point or to be terminated by an apex as in a top, while the plane is regarded as per-

fectly smooth. Poisson uses Euler's equations to find the rotations about the

principal axes, and refers these axes to others fixed in space by means of the

formulae usually called Euler's geometrical equations. He finds one integral by the

principle of vis viva and another by that of angular momentum about the vertical

straight line through the centre of gravity. These equations are then applied to

find how the motion of a vertical top is disturbed by a slow movement of the smooth

plane on which it rests. See the TraiU de Mecanique.

In three papers in the fifth and eighth volumes of Crelle*» Journal (1830 and

1832) M. Coumot repeated Poisson's equations, and expressed the corresponding

geometrical conditions when the body rests on more than one point or rolls on an

edge such as the base of a cylinder. He also considers the two cases in which the

plane is (1) perfectly rough, and (2) imperfectly rough. He proceeds on the same

general plan as Poisson, having two sets of rectangular axes, one fixed in the body

and the other in space connected together by the formula) usually given for
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-transformation of co-ordinates. As may be supposed, tlie equations obtained are

extremely complicated. M. Cournot also forms the corresponding equations for

impulsive forces. Those however which include the effects of friction do not

agree with the equations given in this treatise.

In the thirteenth and seventeenth volumes of LiouvilWs Journal (1848 and

1852) there will be found two papers by M. Puiseux. In the first he repeats

Poisson's equations and applies them to the case of a solid of revolution on a

smooth plane. He shows that whatever angle the axis initially makes with the

vertical, this angle will remain very nearly constant if a sufficiently great angular

velocity be communicated to the body about the axis. An inferior limit to this

angular velocity is found only in the case in which the axis is vertical. In the

second memoir he applies Poisson's equations to determine the conditions of

stability of a solid of any form placed on a smooth plane with a principal axis at

its centre of gravity vertical and rotating about that axis. He also determines

the small oscillations of a body resting on a smooth plane about a position of

equilibrium.

In the fourth volume of the Quarterly Journal of Mathematics, 1861, Mr G. M.

Slesser forms the equations of motion of a body on a perfectly rough horizontal

plane and applies them to the problem considered at the end of Art. 251. He uses

moving axes, and his analysis is almost exactly the same as that which the author

independently adopted.

241. Oscillations about steady motion. A solid of revolution rolls on a per-

fectly rough horizontal plane under the action of gravity. To find the steady motion

and the small oscillations.

Let G be the centre of gravity of the body, GC the axis of figure, P the point of

contact. Let GA be that principal axis which lies in the plane FGC and GB the

axis at right angles to GA, GC. Let GM be a perpendicular from G on the hori-
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zontal plane, and PN a perpendicular from P on GC. Let R be the normal reaction

at P; F, F* the resolved parts of the frictions respectively in and perpendicular to

the plane PGC. Let the mass of the body be unity.

Let 6 be the angle GG makes with the vertical, yp the angle MP makes with any

fixed straight line in the horizontal plane. Then 6 and yj/ are two of the angles used

in Euler's geometrical equations (Vol. i. Chap, v.) to refer the moving axes GA, GB,

GC to an axis fixed in space, viz. the vertical. The third Eulerian angle is here

zero. The moving axes GA, GB, GG are therefore the same as those described in

Art. 21. Since GC is fixed in the body we have d-^ = Wj, ^2 = ^v Since = the third

of Euler's geometrical equations gives 6^= cos 6 dyf/jdt. Remembering that the

angular momenta about the axes are hi = A(a^, ^2= ^0)3, h.^=Cu3 as in Art. 20, the

equations of moments of Art. 19 become

A^^^-A(o.;^^co8e+Cu}.^o}2 = -F' . GN (1).

A^^-Cu^t^^ + Aoj^^^cosd^-F. G3I-R.MP (2).

C^=F.PN (3).

The first two of Euler's geometrical equations give the relations between 6^, 6^

and the angles 6, \f/.
Since ^i= Wi, ^2 ='•'2 *^^ 0=0, these become

at ''' (^^- ^^^^d7=-'^i (^)-

The Eulerian geometrical equations which refer the body to the axes fixed in

space are not required. We may also notice that the equations (4) and (5) are suf-

ficiently obvious from the geometry of the figure to render any reference to Euler's

equations unnecessary.

Let u and v be the velocities of the centre of gravity respectively along and per-

pendicular to MP, both being parallel to the horizontal plane. The accelerations

of the centre of gravity along these moving axes will be

^-v^4=F (6),
dt dt ^

'*

dv d\l/ „,

And if 2 be the altitude of G above the horizontal plane, le. z = GM, we have

^'=-*+« (8)-

Also since the point P is at rest, we have

M-Gil/a>2= (9),

v + PNu)3-GNo}i = (10),

z=- GNcose + PNeind (11).

These are the general equations of motion of a solid of revolution moving on a

perfectly rough horizontal plane. If the plane is not perfectly rough the first eight

equations will still hold, but the remaining three must be modified in the manner

explained in the next proposition.

When the motion is steady, we have the surface of revolution rolling on the

plane so that its axis makes a constant angle with the vertical. In this state of

motion, let e = a, dypjdt^fjL^ "3= 71, GM=p, MP=q, GN=^, NP=ri, and let p be "the

radius of curvature of the rolling body at P. Then the relations between these

quantities may be found by substitution in the above equations.

When the form of the solid of revolution is given these equations will admit of

considerable simplification, and may therefore be formed in any special case without
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much diflSculty. Thus if the solid were a hoop or disc of radius a, we should have

GN=0, GM=z= a8ind, MP= a cos d, and the radius of curvature p = 0.

242, Suppose it were required to find the conditions that the surface may roll

w^ith a given angular velocity n with its axis of figure making a given angle with the

vertical. Here n and a are given, and p, q, |, 77, p may be found from the equa-

tions to the surface. We have to find fx., Wj , oj^, u, v and the radius of the circle

described by G in space. Then eliminating F and R, we have F'= 0, and

fi" sin a(^cos a-p^)-n/JL{C sin a +pri)-gq = (12),

Wi=-/*sina, w.2= ^>

M= 0, v= -nrj-^fx sin a.

Let r be the radius of the circle described by G as the surface rolls on the plane.

Since G describes its circle with angular velocity fi, we have rfjt,=v, and hence

r= --— f sm a.
/*

Eliminating n we may also find r from the equation

/i^ {Aij sin a cos a + G^ sin^ o + 7* (C sin a +prj) ] =gqrj.

For every value of n and a there are two values of p., which however correspond

to different initial conditions. In order that a steady motion may be possible, it

is necessary that the roots of the quadratic (12) should be real. This gives

((7 sin a +prifn^+ 4:gq sin a {A cos a - p^)= a positive quantity.

If the angular velocity n be very great, one of these values of fi is very great

and the other small. If the angular velocity be communicated to the body by

unwinding a string, as in a top, the initial value of Wj will be small. In this case

the body will assume the smaller value of fi, and we have approximately

a= —^ .

n{C sin a+p7))

243. To find the small oscillation, we put d=a+ 6', d\pldt = /^ + dfjdt^ Wg= n + w^'.

Then we have by geometry,

z=GM=p + qd', PM=q + {p-p)d',

GN=^ + pd' sin a, FN= rj + pd' cos a,

and substituting in (5), (9), (10), (6), (7) respectively, we find

., . dxf/ dd
0}^= -fisma- ficosad -sina -^f u=p—-,

at at

V= - fi sin a^ - nr] - {fx cos a^+fip sin^ a + 7ip cos a) 6' - sin a^-j-- jywg',

F=p-^^+/jPsina^ + nfj.'>] + 2 sin ap.^ -^ + rjn
-^

I*— -{p. cos a^ -pp. + p.p sin^a + np cos «) -^ - sin a^ —.^ ~ ^
~/jt

+ p.{p. cos a^+ p.p sin2 a + np cos a) d' + ly/^Wg',

Substituting these in equation (3) and integrating, we have

{C-\r7p) Wg'= {pp. - p.^ cos a-p.p sin^ a-np cos a) T]d' - rj sin a^ ~~ (A),

the constant being omitted because n, a and p. are supposed to contain all the

constant parts of W3 , 6, and d\pldt.

Again substituting in (1) and integrating, we have

{Cn-2Ap. cos a + f {pp. -p.cosa^- p. sin^ ap - np cos a)} 6' - {A + ^-) sin a -^ = ^r]o}.J{B).
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Also substituting in (2), we hav©

{A +p*+ q^)-^ + d' {Afi^ (sin* a - cos» a) + Cufi cos a + (p -p)g

+ /*' sin a fg + tifiriq + m' cos a^ + rifipp cos a + /*'' sin^ app
}

+ -i^ { - 2^^ sin a cos a + Cn sin a +2^;?/* sin a+npyj}
(it

+ u^'{Cix8ma + iJ.pyi}

= 0...(C).

+ {-A sin a cos a/*' + Cnfi sin a+ £rg + sin a/t^pt + n/ipyj}

The last term of this equation must vanish since 6', d\p'jdt, ta.J only contain

periodic terms. It is the equation thus formed which determines the steady

motion and gives us the value of /*.

To solve these equations we may put

dxl/'

e'=Leia{\t+f),
dt
=if sin (\t +f) , Wg =N sin {\t +/)

.

-{A+p^ + q^)\^+ (p-p)g

+ fi^ {p^- A cos 2a -qr)

+ nfiG COS a

Afx sin a cos a

it*

C/x, (i; sin a - p)

Cn - 2Afi cos a A sin a Q
(^-^cosa-psin^a)/!*

— pncosa f sin a -{G+ v')

If we substitute these in (A), (B), (C) we shall get three equations to eliminate

the ratios L : M : N. Before substitution it will be found convenient to simplify

the equations first by multiplying (A) by ^ and (B) by rj and subtracting the latter

result from the former, and secondly by multiplying (A) by /ap/t; and adding the

result to (C). We then obtain the following determinant,

= 0.

244. Examples. Ex. 1. To find the least angular velocity which will make

a hoop roll in a straight line.

In this case r is infinite and therefore fi must be zero. It follows from the

equation of steady motion that g = 0, or the hoop must be upright. We have

j)= a, g=0, ^=0, r]=a, fi=0, and C=2A. The determinant becomes

{A + a*) X«= 2n» {2A + o») - ag,

80 that the least angular velocity which will make X a real quantity is given by

2{C + a:')n^ = ag.

Let the hoop be an arc, we have C=a', and if V be the least velocity of the

centre of gravity, this equation gives V^>iag. Let the hoop be a disc, then

C= J a', and we have V^>1 ag.

Ex. 2. A circular disc is placed with its rim resting on a perfectly rough

horizontal table and is spun with an angular velocity about the diameter through

the point of contact. Prove that in steady motion the centre is at rest at an

altitude k^Q^/g above the horizontal plane, where k is the radius of gyration about

a diameter; and, if a be the inclination of the plane to the horizon, the point of

contact has made a complete circuit in the time 2ir sin a/0. If the disc be slightly

disturbed from this state of steady motion, show that the time of a small oscillation

(P + a')sina U^
3i«co82o+a«sin2oj

i8 2T I-
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Ex. 3. An infinitely thin circular disc moves on a perfectly rough horizontal

plane in such a manner as to preserve a constant inclination a to the horizon.

Find the condition that the motion maybe steady and the time of a small oscillation.

Let the radius of the disc be a, and the radius of gyration about a diameter Tc.

Let W3 be the angular velocity about the axis, ix the angular velocity of the centre

of gravity about the centre of the circle described by it, r the radius of this circle,

then in steady motion

{2F+ a?) 0,3= /cV cos a -^ cot a, (2F+ a^)r=- Tc^a cos a+^ cot a.
[X, fAi

If T be the time of a small oscillation

Ex. 4. A heavy body is attached to the plane face of a hemisphere so as to form

a solid of revolution, the radius of the hemisphere being a and the distance of the

centre of gravity of the whole body from the centre of the hemisphere being h. The

body is placed with its spherical surface resting on a horizontal plane, and is set

in motion in any manner. Show that one integral of the equations of motion is

.4 sin^e -^ + Cw.^ ( cos H -)= constant whether the plane be smooth, imperfectly
(tt \ (XfJ

rough, or perfectly rough.

It is clear that the first two terms on the left-hand side of this equation is the

angular momentum about the vertical through G. Let this be called J. Since we
may take moments about any axis through C'' as if G were fixed in space, we have

dIldt=F' . PM. But P3I= -PN . hja, hence eliminating F' by equation (3) and in-

tegrating, we get the required result.

Ex. 5. A surface of revolution rolls on another perfectly rough surface of

revolution with its axis vertical. The centre of gravity of the rolling surface lies

in its axis. Find the cases of steady motion in which it is possible for the axes of

both the surfaces to lie in a vertical plane throughout the motion.

Let 6 be the inclination of the axes of the two surfaces, P the point of

contact, GM a perpendicular on the tangent plane at P, PN a perpendicular

on the axis GG of the rolling body ; F the friction, R the reaction at P ; w the

angular velocity of the rolling body about its axis GG, fi the angular rate at which

G describes its circular path in space, r the radius of this circle. Then in steady

motion M/x sin 6 {Gn -Aficos 6)= - F . GM-R . MP,
R= - MriJ? sin a + Mg cos a,

F= - MriJ? cos a- Mg sin a,

n . PN+fi sin 6 . GN=: - rfi,

where M is the mass of the body.

245. General equations of motion. A surface of any form rolls on a fixed

horizontal plane under the action of gravity. To form the equations of motion.

Let GA, GB, GG, the principal axes at the centre of gravity, be the axes of
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reference and let the mass be unity. Let (^, rj, f) = be the equation to the

bounding surface, (^, 17, f ) the co-ordinates of the point P of contact. Let {p, q, r)

be the direction-cosines of the outward direction of the normal to the surface at

ld(f> id<p jdtp
the point ^, ,7, ^ then i,/^ =?/- = r/-|.

Firstly, let tJie plane he perfectly rough. Let X, F, Z be the resolved parts

along the axes of the normal reaction and the two frictions at the point ^, ?;, f, and

let the mass of the body be unity. By Euler's equations we have

(B-C)w2«8= 7;Z-fF

kz

C^-{A-B)<,^<.,: :^Y-VX

(1).

Also the equations of motion of the centre of gravity are by Art. 5,

du— -VU^ + WU^: 9P +X

w»Wi+ U(>}^= gq +Y

Also since the line {p, q,

dv

di

dw „
-7- -MW2+ vwi=5'r+Z

r) remains always vertical (Art. 9),

dp

(2).

dq

dt ^
dr

P<^3

dt =p(^2-q(^i

(3).

Since the point (f, tj, i")
which, for the moment, is fixed relatively to the moving

axes is also, for the moment, fixed in space, we have by Art. 8

V=v-tu,, + ^o,,=oK (4).

where U, F, W are the resolved parts of the velocity of the point of contact P in

the positive directions of the axes.

246. Secondly, let the plane be perfectly smooth. The equations (1), (2), (3),

apply equally to this case, but equations (4) are not true. Since the resultant of

Xf r, Z is a reaction JR normal to the fixed plane, we have

X=-pR, Y=-qR, Z= -rR (5).

The negative sign is prefixed to R because [p, q, r) are the direction-cosines of

the outward direction of the normal, and it is clear that when these are taken posi-

tively, the components of R are all negative. If at any moment R vanishes and

changes sign the body will leave the plane.

Since the velocity of Q parallel to the fixed plane is constant in direction and

magnitude, it will usually be more convenient to replace the equations (2) by the

following single equation. Let GM be the perpendicular on the fixed plane and let

irO= z, then ePzldt^ = -g +R (6).

It is necessary that the velocity of the point of contact resolved normal to the

plane should be zero, this condition may be written in either of the equivalent

forms Up + Vq + Wr --

dzldt + (17W,-Mp + (f«i - f'•'s) Q + (f<^2 - '^"i) *• = i (7).
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247. Thirdlyy let the body slide on an imperfectly rough plane. The equa-

tions (1), (2), (3) and (7) hold as before. If n be the coefficient of friction the

resultant of the forces Z, F, Z must make an angle tan~i ^ ^i^j^ ^he normal at the

pomt of contact, hence
x^ +y^j^Z'^ ^1 + J'

^^*

Also since the resultant of (X, 7, Z), the normal at P and the direction of slid-

ing must lie in one plane, we have the determinantal equation

X{qW-rV) + Y {rU-pW) +Z {pV- qV)=0 (9).

Since the friction must act opposite to the direction of sliding, we must have

XXJ+ YV+ ZW negative. When this vanishes and changes sign, the point of con-

tact ceases to slide.

If the body start from rest we must use the method explained in Vol. i. Chap. iv.

to determine whether the point of contact will begin to slide or not. The rule may
be briefly stated as follows. Assume X, Y, Z to be the forces necessary to prevent

sliding. Then since u, v, w, Wj, w.^, w.^ are all initially zero, we have by differentiat-

ing (4) and eliminating the differential coefficients of u, v, w, Wj, Wg, Wg three linear

equations to find X, Y, Z, in terms of the known initial values of {p, q, r) and

(l> Vj f)« The point of contact will slide or not according as these values make the

left-hand side of equation (8) less or greater than the right-hand side.

In this way when the point of contact is fixed for the moment the equations

(1), (2), and (4) are srufficient to find the initial values of X, Y, Z, i.e. the components

of the reaction at the point of contact. This is also the rule given in Vol. i. Chap. iv.

under the heading Initial Motions to find the initial value of a reaction, viz. we

differentiate the geometrical equations, and substitute from the dynamical equa-

tions. This seems the simplest method of proceeding, but we may also adopt

either of the following methods.

The equations to find X, Y, Z may be obtained by treating the forces as if they

were indefinitely small impulses. In the time dt, we may regard the body as acted

on by an impulse gdt at G and a blow whose components are J^dt, Ydt, Zdt at P.

It is shown in the chapter on Momentum in Vol. i. that we may consider these in

succession. The effect of the first is to communicate to P a velocity gdt in a

direction normal to the fixed plane and outwards. If P does not slide, the effect of

the blow at P must be to destroy this velocity.

. In the chapter on Momentum in Vol. i. certain formulae have been deduced from

the ordinary equations of impact by which we can find the resolved initial velocities

of the point of application of any impulse. A geometrical representation of these

formulas is also given by the help of an ellipsoid, ^= constant, where E is the vis

viva generated by the impulse. To avoid the repetition of this investigation we

may use these formulae to find X, Y, Z. We accordingly write Ui=pg, Vi= <7<7,

Wi=rg and Wg, Vg, w/g all equal to zero on the left-hand sides and (to suit the

notation of this article) change p, q, r on the right-hand sides into ^, 17, f.

Geometrically the point of contact will not slide if the diametral line of the fixed

plane with regard to the ellipsoid called E makes a less angle with the normal than

In any of these cases when p, q, r have been found, the inclinations of the prin-

cipal axes to the vertical are known. Their motion round the vertical may then be

deduced by the rule given in Art. 12. When m, v, to and the motions of the axes

have been found, the velocity of the centre of gravity resolved along any straight

line fixed in space may be found by resolution.

R. D. II. 10
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248. Some integrals of these equations are supplied by the principles of angular

momentum and vis viva. If the plane is perfectly smooth we have

A Wjp + Bw^c^ + Cwgr= a,

A a>i2 + Bi^^ + CiJi.^ + {dz\dtf = jS - 2<72r,

where a and /3 are two constants. If the plane is perfectly rough we have

Aw^^-Bia^->rCi^^^-u^->tV^\w'^= ^-1gz.

249. Examples. Ex. 1. A body rests with a plane face on an imperfectly

rough horizontal plane whose coefficient of friction is /u. The centre of gravity of

the body is vertically over the centre of gravity of the face, and the form of the

face is such that the radius of gyration of the face about any straight line in its

plane through its centre of gravity is 7. The body is now projected along the

plane so that the initial velocity of its centre of gravity is v^ and the initial rota-

tion about a vertical axis through its centre of gravity is w^. If w^ be very small,

prove that the centre of gravity moves in a straight line and its velocity at the end

of any time t is v^ - jxgt. If w be the angular velocity at the same time prove that

75 log—= 1 , where k is the radius of gyration of the body about a vertical

through the centre of gravity. [PoissoUy TraiU de Mecanique.]

Ex. 2. A body of any form rests with a plane face in contact with a smooth
fixed plane so that the perpendicular from the centre of gravity G on the plane falls

within the face. If the body is then struck by a blow which passes through G or

begins to move from rest under the action of any finite forces whose resultant

passes through G, prove that it will not turn over, but will begin to slide along the

plane, even if the line of action of the force cuts the plane outside the base.

[CournoL]

Ex 3. A heavy ellipsoid is placed on an inclined plane, touching it at a point

P whose co-ordinates referred to the principal diameters are (^, 17, f). Deduce from

Arts. 246 and 247 the initial values of the reaction at P when the plane is (1)

perfectly rough, and (2) perfectly smooth. Thence deduce the initial direction of

motion of the centre of gravity.

250. Oscillations on a rongh borizontal plane. Whatever the shape of a

body may be we may suppose it to be set in rotation about the normal at the point

of contact with an angular velocity n. If this angular velocity be not zero, the

normal must be a principal axis at the point of contact, and yet it must pass

through the centre of gravity. This cannot be unless the normal be a principal

axis at the centre of gravity. If however n= 0, this condition is not necessary.

There are therefore two cases to be considered.

Case 1. A body of any form is placed in equilibrium resting with the point C on

a rough horizontal plane ^ with a principal axis at the centre of gravity vertical, and
is then set in rotation with an angular velocity n about GC, A small disturbance

being given to the body, it is required to find the motion.

Case 2. A body of any form is placed in equilibrium on a rough horizontal plane

with the centre of gravity over the point of contact, A small disturbance being given

to the body, to find the motion,

251. Case 1. Supposing the body not to depart far from its initial position,

we have p, q, u, v, w, w,, Wj all small quantities and r=l nearly. Hence by (2),

when we neglect the squares of small quantities, we see that X, Y are also small,

and Z= -g nearly. It follows by (1) that ta^ is constant and .-. =n. Also f and tj
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are small and f= h nearly, where h is the altitude of the centre of gravity above the

horizontal plane before the motion was disturbed. The equation to the surface

may, by Taylor's theorem, be written in the form

2 \a 6 cj

where (a, 6, c) are some constants depending on the curvatures of the principal

sections of the body at the point G.

The squares of all small quantities being neglected, the equations of Art. 245

become .<^'-,^-0) nw2= - gv-hY

Bt-(C-.) ncoi= hX + g^
J

dit
-.-nv=gp + X,

dv-+nu=gq+Y,

dp

dt=''^-''^

dq

u-nri + ho}2=0, r-?iwi + n^=0,

-!-?. -^!-
Eliminating X, Y, w, v, Wj., w^ from these equations, we get

(4 + /i2)g + (^ + ^+ 2/i2_(7)n^-{(5-C)n2 +% + 7iV}<z = -(r/ + 7m2)^ + 7m^^

It will be found convenient to express ^, tj in terms of p, q. The right-hand

sides of each of these equations will then take the form

To solve these equations, we must then assume p, q to be of the form

^=:P(jCOs\« + Pi sinXf 1

q = Qf^ COS \t + Qi sin \t i

If the tangents to the lines of curvature of the moving body at C be parallel to

the principal axes at the centre of gravity, these equations admit of considerable

simplification. In that case the equation to the surface may be written in the form

^--i(f4).
where a and c are the radii of curvature of the lines of curvature. The right-hand

sides of the equations then become respectively

-{g + hn^)cq + hna~- and (g + hn^) ap + hnc-^,
(it dt

To satisfy the equations, it will be sufficient to put

p = FQOB{Kt-irf), g = Gsin(\f+/).

This simplification is possible, because we can see beforehand that if we substi-

tute these values, the first equation will contain only sin (Xf +/) and the second only

cos(X«+/). These trigonometrical terms may be divided out of the equations

leaving two relations between the constants F, G and X. Eliminating the ratio F/G,
we get the following quadratic to determine X^.

[{A + h^)\^ + {B - C + h{h- c)}n^ + g {h- c)][{B + h'')\^ + {A - C + h{h- a)}n^+g{h-a)]

= \^n" {A+B + 2h^~C- ha] {A+B + 2h^- C- he}.

10—2
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If Xj , X, be the roots of this equation, the motion is represented by the

equations 1>= -^i cos {\t +/, ) + F^ cos (\t +f^))

q = Gj^ sin {\t +f^ ) + G^ sin {\t +f^)f
*

where GJF^f GJF^ are known functions of \, \ respectively, and F-^^ -Fa./i, /a are

constants to be determined by the initial values of 2>, q, dpjdt, dqfdt.

In order that the motion may be stable, it is necessary that the roots of this

quadratic should be real and positive. These conditions may be easily expressed.

252. fixamples. Ex. 1. A solid of revolution is placed with its axis vertical

on a perfectly rough horizontal plane and is set in rotation about its axis with an

angular velocity n. If c be the radius of curvature at the vertex, 1i the altitude of

the centre of gravity, k the radius of gyration about the axis, k' that about an axis

through the vertex perpendicular to the axis of figure, show that the position of the

body will be stable if n > 2 K^d(h-c) ^

Ex. 2. An ellipsoid is placed with one of its vertices in contact with a smooth

horizontal plane. What angular velocity of rotation must it have about the vertical

axis in order that the equilibrium may be stable ?

Result. Let a, 6, c be the semi-axes, c the vertical axis, then the angular

/5a *./c* — a*4- »./c* — b^
velocity must be greater than a/— .

— r^ • [Puiseux.]

Ex. 3. A solid of any form is placed in equilibrium with the point C on a

smooth horizontal plane, a principal axis GC at the centre of gravity being vertical,

and an angular velocity n is then communicated to it about GC. A small disturb-

ance being given, show that the harmonic periods may be deduced from the quad-

ratio {A\^ + E) {B\^ + F) = {A+B-C) w2X2 + g^ {p' - p)^ sin^ 8 cos2 5,

where E = {B- C)n'^+g {{k - p) sin2 8 + {h- p') cossg},

if = (^ - C)?i2-|-,cr {(;i-/))cos25 + (/i-/) sin25}.

Also li is the altitude of the centre of gravity, p, p' are the principal radii of

curvature at the vertex, and S is the angle the principal axis GA makes with the

plane of the section whose radius of curvature is p. [Fuiseux.^

253. Case 2. Returning now to the general problem enunciated in Art. 250,

we proceed to discuss the oscillations about equilibrium of a heavy body resting on a

rough horizontal plane with the centre of gravity over the point of contact.

Supposing the disturbance to be small, we have Wj, Wj* "j, w, v, w; all small

quantities. Hence when we neglect the squares of small quantities the equations

(1) and (2) of Art. 245 become respectively,

a'-^=,z-!:y, b%=j-x-{z. c^^'={r-,x (i).

du „ dv _. dw _ ....

ai=9P+^* Tr^q+Y, -^r^r+z (n).

I^t fot I?©* fo ^® t^6 co-ordinates of the point of contact in the position of equili-

brium, and let f=fo + f'» V = VQ + v'i f^fo + T* Then in the small terms of

equation (4) we may write ^o, -/Jq, ^q for f, rj, f. Hence differentiating these and

eliminating X, Y^ Z,u,Vy w by help of equations (i) and (ii), we get

(-l+V+W^' - fon.^ - U.^= -Sivr-fq) (iii),

and two similar equations.
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Let Pq, Jo , Tq be the values of p, q, r in the position of equilibrium. Then

^ofPo= Vo[(Io=^tol^o=P> where p is the radius vector from G to the point of contact.

Now in the small terms of equations (3) we may write pp^ , pq^, , pi-Q for In » ^70 > fo • Hence
equations (iii) become by substitution from the second and third of equations (3)

^ d/
=
^«^rfr2-^o^d«^-^^^'-^2)

(IV),

and two similar equations. At the time t lei p=pQ-\-p', q= qo + Q, and r=rQ+r'.

Then since (^o + PT+(?o + 2')^+(''o + ^')^=l. "wa have PoP' + 305'+ »'o»^=0- The
form of the surface being known we can find p\ q', r' in terms of |', rj', f ', and thus

express rjr - ^q, ^p — |r, ^q - -qp in the form -g{rir-^q) =Lp' + M^,

The equations (iv) now become

. (7w, d'^r' . d^q' -.,._. , .

^^='^^PdF^-^^dr^-+^^+^^^' (^)'

and two similar equations.

Differentiating equations (3), and substituting for dujdt, du^Jdt, dujdty from

(v), and for r' and dh-'fdfi {rompQp' + qQq' + rf/=0, we get equations of the form

To solve these we put p'=Pco8{\t+f), q'= Q cos (\t+f), substituting and

ehminating the ratios P/Q, we have the following quadratic to determine X^

I

F\^ + H, G\'+K
I
_

I

F'\^ + H', GV+ K'
I

~" ^^^^*

Thus by virtue of the relation existing between p', q', r', each of these may be

represented by an expression of the form

Pj cos {\t +/i) + P2 cos {\t 4-/2).

Substituting these values in equations (v) we see that Wj, Wj, W3 can each be

represented by an expression

Oi + E^ cos (\t +/i) + ^2 cos (Xjt +/2),

where E^, E^ are known functions of Pj, Pa.-.and Xi, X2, but il^, fig, fig are small

arbitrary quantities. By substituting in equations (3) and equating the coefficients

of co8(Xit+/i) and cos(\2t+/2), we may find the values of Ej^ and E^ without diffi-

culty. And we also see that we must have QJpq= fi2/9'o= ^3/^0 > ^^ *^at, of the three

fij, fig' ^3» only one is really arbitrary. We have therefore but five arbitrary

constants, viz. P^, P^^h^fit and fij. These are determined by the initial values

of Wj , Wg , W3 ,
p' and q'.

To find the motion of the principal axes round the vertical, let be the angle

the plane containing GG and the vertical makes with the plane of A C. Then by

drawing a figure for the standard case in which p, q, r are all positive, it will be

seen that if /* be the rate at which GC goes round the vertical,

/* Ji^r^= a>i cos (f>
+ w^sin <p= {p^Wj^ + ^0^2) />/l - r^^

Substituting for w^, Wgj this takes the form

fx—n^+Nj^ cos {\jt +/i) + ^2 cos (Xgi +/2),

where n^, N-^^ N^ are all known constants.

In order that the equilibrium may be stable it is necessary that the roots of

the quadratic (vi) should both be real and positive. These conditions may easily

be expressed.
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These conditions being supposed satisfied, the expressions for p', g', / will only

contain periodical terms, and thus the inclinations of the principal axes to the

vertical will not be sensibly altered. But the expressions for w^, a'g, W3 may each

contain a non-periodical term, and if so the rate at which the principal axes will

go round the vertical will also contain non-periodical terms. The body therefore

may gradually turn with a slow motion round the normal at the point of contact.

The expressions for «, v, w will contain only periodic terms, so that the body will

have no motion of translation in space.

Motion of a Rod.

254. When the body whose motion is to be determined is a rod, it is often

more convenient to recur to the original equations of motion supplied by

D'Alembert's Principle. The equations of Lagrange may also be used with

advantage. These methods will be illustrated by the following problem.

A uniform heavy rod, suspended from a fixed point by a string, makes small

oscillations about the vertical. Determine the motion.

Let be taken as origin, and let the axis of z be measured vertically downwards

;

let 2a be the length of the rod, 6 the length of the string. Let {I, m, n) (p, q, r)

be the direction-cosines of the string and rod. Then I, m, p, q are small quantities

whose squares are to be neglected, and we may put n and r each equal to unity.

Let u be the distance of any element du of the rod from that extremity A of the

rod to which the string is attached. Let {x, y, z) be the co-ordinates of the element

rfw, then we have x=bl + up, y = bm+u,q, z = b + u (1).

Let M be the mass of the rod,. MT the tension of the string. The equations of

motion of the centre of gravity will be

^->«f=-« ^'^-t^=--"' «--- <^)-

By D'Alembert's Principle the equation of moments round x will be

^^""{y^-' §) =^^" {yZ-zY) = Zdu{i,g).

By equations (1) this reduces to

j^u |-(6 + t.) (b^+ «.||)} =2ag (bm + aq).

Integrating, we get

^,f,d^m d^q\ „, ^d^m ^a^ d?q „ „-2ai(^&^+ajj-26a2-^,-- J^2a,(&m + ag),

which by equations (2) reduces to

,d?m 4 drq ,„,

Therefore by (2) and (3) the four equations of motion are

^dH d^p
,

^d^Z 4 d2„

^dr2+^dr^=-^^' ^dr^-^s''dt = '^p ^^)'

and two similar equations for m, q. These equations do not contain m or q, and

on the other hand the equations to find m and q do not contain I or p. This shows

that the oscillations in the plane xz are not affected by those in the perpendicular

plane yz.

To solve these equations, put l=F Bin (Kt^ a), p= G Bin {\t + a),

we get b\*F+ a\^G= gF, bX^F

+

^ a\^G=gO ;

ab *^ ab '

and the values of X may be found from this eciuation.
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255. In order to make a comparison of different methods, let us deduce the

motion from Lagrange's equations. In this case we must determine the semi vis viva

T true to the squares of the small quantities p, q, I, w, we cannot therefore put r=l,

n = 1. Since p'^+ g^ + r^= 1, Z^+ ^/i^ -\-n^=l, we have

r=l-\{p'' + q% n = l-HZ2 + m2),

we must therefore replace the third of equations (1) by

If accents denote differential coefficients with regard to t, as in Lagrange's

equations we have

2ma:'2= 2wi {hH'^ + 2W>'w +p'H'^) =M {hW^ + 2U'p'a + 1 a^p'a).

The value of 'Lmy"^ may be found in a similar manner. The value of 'Zmz''^ is of

the fourth order and may be neglected. Hence the vis viva is

2T=b\{V^ + m'2) + 2ab [I'p' + m'q') + 1 a^ [p'^ + 2")-

Also we have U = -\gh{l'^ + m^) -\ga {p"^ + q^) + constant.

.. d dT dT dU

.

iw . „ 1
The equation — -j^. -t, =-jt becomes hi" + ap' = -gl;

at dl al al

similarly we get bl" + i ap"= - gp.

These are the same equations which we deduced from D'Alembert's Principle,

and the solution may be continued as before.

EXAMPLES*.

1. A uniform rod, moveable about one extremity, moves in such a manner as

to make always nearly the same angle a with the vertical ; show that the time of a

small oscillation is 2ir . / ^r-. z—r 5— , a being the length of the rod.
'V og l + 3cos^a

2. If a rough plane inclined at an angle a to the horizon be made to revolve

with uniform angular velocity n about a normal Oz and a sphere be placed at rest

upon it, show that the path in space of the centre will be a prolate, a common, or a

curtate cycloid, according as the point at which the sphere is initially placed is with-

out, upon, or within the circle whose equation is x^-i-y^= {Sog sin aj2n^)x, the axis

Oy being horizontal.

When the sphere is placed at rest on the moving plane, it should be noticed

that a velocity is suddenly given to it by the impulsive frictions.

3. A circular disc capable of motion about a vertical axis through its centre

perpendicular to its plane is set in motion with angular velocity 0. A rough

uniform sphere is gently placed on any point of the disc, not the centre, prove that

the sphere will describe a circle on the disc, and that the disc will revolve vsdth

angular velocity _-.,„—-—
„ S2, where 3Ik^ is the moment of inertia of the disc

iMK^ + Zmr

about its centre, m is the mass of the sphere and r the radius of the circle traced

out.

4. A sphere is pressed between two perfectly rough parallel boards which are

made to revolve with the uniform angular velocities fi and Q' about fixed axes per-

pendicular to their planes. Prove that the centre of the sphere describes a circle

about an axis which is in the same plane as the axes of revolution of the boards and

* These Examples are taken from the Examination Papers which have been

set in the Uni\:ersity and in the Colleges.
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whose distances from these axes are inversely proportional to the angular velocities

about them.

Show that when the boards revolve about the same axis, their points of contact

will trace on the sphere small circles, the tangents of whose angular radii will be

- •q—o/ » « being the radius of the sphere and c that of the circle described by its

centre.

6. A perfectly rough circular cylinder is fixed with its axis horizontal. A
sphere being placed on it in a position of unstable equilibrium is so projected

that the centre begins to move with a velocity V parallel to the axis of the cylinder.

It is then shghtly disturbed in a direction perpendicular to the axis. If d be

the angle the radius through the point of contact makes with the vertical, prove

that the velocity of the centre parallel to the axis at any time f is F cos ^J^ 6

and that the sphere will leave the cylinder when cos ^=14.

6. A uniform sphere is placed in contact with the exterior surface of a perfectly

rough cone. Its centre is acted on by a force the direction of which always meets

the axis of the cone at right angles and the intensity of which varies inversely as

the cube of the distance from that axis. Prove that if the sphere be properly

started the path described by its centre will meet every generating line of the cone

on which it Hes in the same angle. See the Solutions of Cambridge Problems for

1860, page 92.

7. Every particle of a sphere of radius a, which is placed on a perfectly rough

sphere of radius c, is attracted to a centre of force on the surface of the fixed sphere

with a force varying inversely as the square of the distance ; if it be placed at the

extremity oi the diameter through the centre of force and be set rotating about that

diameter and then slightly displaced, determine its motion ; and show that when it

leaves the fixed sphere the distance of its centre from the centre of force is a root of

the equation 20x» - 13 (2c + a) a;^ + 7a (2c + a)2= 0.

8. A perfectly rough plane revolves uniformly about a vertical axis in its own
plane with an angular velocity n, a sphere being placed in contact with the plane

rolls on it under the action of gravity, find the motion.

Take the axis of revolution as axis of 2, and let the axis of x be fixed in the

plane. Let a be the radius, m the mass of the sphere ; F, F' the frictions resolved

parallel to the axes of x and z and R the normal reaction. The motions of the

axes (Art. 5) are given by 6^= 0, 6^=0, d^=n. The equations of motion (Arts. 4,

5, 22) are

u=:dxldt-ani v= xn, 'W = dzjdt,

dufdt - rn= jP/ni, dvjdt + un= Rim, dwjdt= -g + F'fm,

dojjdt - nuy= - F'ajk^ dwyjdt + nux= 0, d(ajdt= Fajk\

Si ice the point of contact has the same motion as the plane the geometrical

equations are M + a<.;,=0, w7-awj.=0. Solving these equations we find that the

sphere will not fall down. If the sphere start from relative rest at a point in the

axis of X, we have n'z = - £/ tan* i {1 - cos (ne cos ?')} where Bin i= JJ. The sphere

will therefore never descend more than 5///n2 below its original position.

9. A perfectly rough vertical plane revolves with a uniform angular velocity fi

about an axis perpendicular to itself, and also with a uniform angular velocity Q
about a vertical axis in its own plane which meets the former axis. A heavy uni-
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form sphere of radius c is placed in contact with the plane
;
prove that the position

of its centre at any time t, will be determined by the equations

z denoting the distance of the centre from the horizontal plane through the hori-

zontal axis of revolution, and ^ that from the plane through the two axes.

Prove also that 7u= 7cfi + 2fib, Iv + 2[xa = 0, if a and h be the initial values of ^

and z, u and v those of d^fdt and dzjdt.

10. A hoop AGBF revolves about AB its diameter as a fixed vertical axis. GF
is a horizontal diameter of the same circle which is without mass and which is

rigidly connected to the circle; DC is a smaller concentric hoop which can turn

freely about GF as diameter. If O, ft', w, &?', be the greatest and least angular

velocities about AB, GF respectively, prove that 12 . ft'=w^- w'^.

11. OA^ OB, OC are the principal axes of a rigid body which is in motion

about a fixed point 0. The axis 00 has a constant inclination a to a line OZ
fixed in space, and revolves with uniform angular velocity ft round it, and the

axis OA always lies in the plane ZOO. Prove that the constraininig couple has its

axis coincident with OB, and that its moment is -{A- C) ft^ sin a cos a.

12. A heavy sphere rolls, without spinning, round the inside of a rough

horizontal circular wire, the normal to the sphere at the point of contact being

inclined at a constant angle a to the vertical
;
prove that the angular velocity of the

point of contact of the sphere is given by w2 = Y^tana/(/i- 6sina) where h is the

radius of the ring and & that of the sphere.



CHAPTER VI.

NA.TURE OF THE MOTION GIVEN BY LINEAR EQUATIONS
AND THE CONDITIONS OF STABILITY.

Linear Differential Equations.

256. It has been shown in Chap. iii. that the problem of

determining the small oscillations of a system about a state of

steady motion is really the same as that of solving a corresponding

system of linear differential equations. In that chapter the forces

were assumed to have a potential, so that the differential equations

had a certain symmetry which simplified the solution. We now
propose to remove this restriction. Taking the differential equa-

tions in their most general form, but still with constant co-efficients,

we shall briefly discuss any peculiarities of their solution which
appear to have dynamical applications.

The chief object of this chapter is to determine the conditions

that the undisturbed motion should be stable. This resolves

itself into two questions (1) under what circumstances do positive

powers of the time enter into the expressions for the coordinates,

and what is the highest power which presents itself? (2) when
the roots of the fundamental equation cannot be found, what
conditions must the coefficients of that equation satisfy that

stability may be assured ? In order to make our remarks on
these two questions intelligible it will be necessary to sum up a

few propositions which belong rather to Differential Equations

than to Dynamics. The discussion of the first question begins

therefore at Art. 268 though alluded to before that article. The
second question will occupy the next section.

257. Following the same notation as in Art. Ill, let 6,
<f>,

&c.

be the co-ordinates of the system. Let the system be moving in

any known manner determined by 6 =f{t), <t>
= E(t), &c. We

now suppose the system to be slightly disturbed from this state of

motion. To discover the subsequent motion we put 6 =f(t) + x,

(f}
— F{t)-{y, &c. These quantities x, y, &c. are in the first in-

stance very small because the disturbance is small. The quantities
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Xt y, &c. are said to be small when it is possible to choose some
quantity numerically greater than all of them which is such that

its square can be neglected. This quantity may be called the

standard of reference for small quantities.

258. To determine whether a?, y, &c. remain small, we substi-

tute these new values of 6, 0, &c. in the equations of motion.

Assuming, for the moment, that x, y, &c. remain small we may
neglect their squares, and thus the resulting equations will be
linear. The coefficients of x, dx/dt, d'^x/df, y, dy/dt &c. in these

equations may be either constants or functions of the time. Fol-

lowing the definitions in Art. Ill, the undisturbed motion in the

former case is said to be steady.

259. We propose to consider first the case in which the system
depends on two independent co-ordinates or (as it is sometimes
called) has two degrees of freedom. This is a case which occurs

very frequently, and as the results are comparatively simple, it

seems worthy of a separate discussion. We shall then proceed to

the general case in which the system has any number of co-

ordinates.

260. Two degrees of fVeedom. The equations of motion of

a dynamical system performing its natural oscillations with two
degrees of freedom may be written

-^S-^-'S .fi+ff,.=
J

To solve these equations we put

-[4.« dr ^] r,

these suppositions evidently satisfy the first equation whatever V
may be. Substituting in the second and using the symbol B to

represent -j- for the sake of brevity we find

EB' + F8 + a E'B' + rS + G
F=0.

This is an equation to find V in terms of t. Since 8 enters

into the determinant in the fourth power, the value of V when
found will contain four arbitrary constants. Thence we find

both X and y by means of the formula given above. It will be
observed that these require no operation to he performed except

differentiation. Thus, no matter how complicated V may be, the

values of x and y readily follow.



156 NATURE OF THE MOTION GIVEN BY LINEAR EQUATIONS.

261. Let A(S) represent the determinant which is the operator

on V. Then making A (B) = 0, we have a biquadratic to find B.

If the roots of this biquadratic be m^, m^, m^, m^, we know by the

rules for solving dififerential equations that

where L^, L^, L^, L^, are the four arbitrary constants..

If all the roots of the biquadratic are real and unequal, this is

the proper expression to use for V, But it takes a variety of

different forms when the biquadratic contains imaginary or equal

roots. These however are described in the theory of differential

equations, and will be summed up in Art. 2C4.

262. Many degrees of freedom. The equations which
occur in Dynamics are in general all of the second order, but as

this restriction is not necessary in what follows, we shall suppose
the equations to contain differential coefficients of any order.

Let there be n dependent variables represented by x, y, z, &c.

and one independent variable represented by t If the symbol 3

represent differentiation with regard to t, the n equations to find

w, y, &c. may be written :

/«(8)«'+A(8)y+/.,(8)^ + ... = 0]

/..(«)«=+/,, (8) 2/ +/,3(S)^ + ..- = (1).

.
=oj

To solve these, we use the analogy which exists between the

rules for combining symbols of differentiation and those of common
algebra. Omitting for the moment any one equation, say the first,

and proceeding to solve the remaining n — 1 equations by the rules

of common algebra, we find the ratios

I,(B)-- 1,(8)^ I,{B)

where each of the equalities has been put equal to V. Here we
have used the letter / to stand for the minors of the determinant

A(S) =
A(S),/«(S),/3(8),...

(3).

The suffix of the letter I indicates the number of the column
in which the constituent of the omitted equation lies whose minor
is required.

Substituting these values of x, y, z, &c. in the equation pre-

viously omitted, we obtain

A(a)F=0 (4).

This. i« an equation to determine a single quantity F as a

function of/. We may call Fthc type of the solution. Supposing
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this equation to be solved by the usual rules, the values of x^ y, Zj

&c. are found by equations (2). Thus we have

« = /.(S)F, y = /,(8)F,&c (5).

These operators, I^ (S), I^ (8), &c., are all integral and rational

functions of B; so that when V is once known, all the other opera-

tions necessary for the complete solution of the equations are

reduced to the one operation of continued differentiation.

263. This arrangement of the solution of the differential

equations (1) has the advantage of expressing the results by means
of integral and rational functions of the symbol 3. In practice,

this will be found to introduce a great simplification into the

solution. The type V can always be immediately written down by
the usual rules for solving equation (4). It is sometimes very
complicated. In such cases it may be found very convenient to

be able to deduce the forms of x, y, z, &c. without having to per-

form any inverse operation.

264. 3>i£Ferent typea of tlie solution. If the roots of the determinantal

equation A (5) = be %, m^, &c. the type V is known to be

V=L^e'^^*+ L,e'^*+

where Lj, L^, &c. are arbitrary constants. When a pair of imaginary roots of the

form r ±2? sj-l occurs we replace the two corresponding imaginary exponentials

by the terms V= e*"^ {L coapt +M sin pt).

If equal roots occur, the value of V thus given has no longer the full number
of constants. Supposing that we have a roots each equal to m, the type of the

solution which depends on these roots is

where the L's are a arbitrary constants. This may be put into the form

If we have a equal pairs of imaginary roots of the form r^p ij- 1 we replace

the a pairs of terms by

€*"* {Lq cospt + Mq sin pt) +— e*"* (Lj cospt + M-^ sin pt) + &c.

Here, if we please, we may replace the differentiation with regard to r by a differen-

tiation with regard to p.

The peculiarity of the case of equal roots is the presence of terms containing

some power of < as a factor. The occurrence of a equal roots will in general indicate

the presence of terms containing all the integral powers of t up to f*"^ in the

solution.

265. In order to deduce the corresponding values of sc, y, &c. from these types,

we shall have, in the absence of equal roots, to operate with some integral and

rational function of 5 such as I (8) on an exponential real or imaginary.

I. We have the theorem I{8)e'^*=I (m) e^'*^

so that when the roots of the equation A(5) = are all real and unequal we have

immediately x = L^I^{vi^) e"*'^ + LJi (m^) e^^^+ &c.,

y = 1.^1^ (wj) e^^i^ + UJ^ (Wo) e^'^^ + &c.,

z = &c.
'
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II. If A' be any function of «, we have the theorem I(5)e»*'X=e***/(5 + r) .Y,

so that when a pair of imaginary roots occurs, and we have to operate on the

product of a real exponential and a sine or cosine, we can immediately remove the

real exponential, and reduce the operator to that of continued differentiation of the

Bine or cosine.

m. We have the theorem / (5-) sin mt =/(- m^) sin mt.

Hence if we have to operate with F{8), we arrange the operator in the form

ip (5«) + 5^ {8^). We then have F (5) sin mt= ^{- m^) sin mt + ^ (- m^) m cos mt.

266. When the determinantal equation A (S) = has equal roots we have to

operate on expressions which contain some powers of t. But since the operators

dldt and djdm or djdr are independent we may use the theorem

^ 'dm" dm''^ ^ ' ^

Thus when the equation A(5) = has a roots each equal to m we may write

the solution given by equation (5) of Art. 262 in the form

y = L, [I, {m) e^'j+ L,^ [I, {m) e^] + .,.+L,_^^^ [I, (m) e^l

z = &c.

267. Ex. 1. If there be two roots of the determinantal equation A (5)=0 each

equal to m, show by an actual comparison of the several terms that we have the

same solutions for x, y, &c whether we use as operators the minors of the first or

the minors of any other row of the determinant A (S).

Ex. 2. The values of x, y, &g. are obtained from V by operating with certain

functions of 5, viz. Ii(3), l2(^)> ^c. If instead of these operators we use fili{d),

/t Jj (5), &c. where fi is some function of 5 such as fi=fid), show that the effect is

merely to alter the arbitrary constants Lq, Lj, <fec. Thence show that the solutions

are the same, whether there be equal roots or not, whatever set of first minors of

A (d) are used as operators.

268. An Indeterminate Case. If the roots of the deter-

minantal equation A (8) = be m^, m^, &c. we have shown that the
vahies of x, y, &c. are given by

X = 2X/j (m) e'^S y = %LI^ (m) e»»' , &c.

But we see at once that there is a case offailure. If one of the

roots of the equation A (8) = make all the minors, I^ (tw), /„ (m),

&c. equal to zero, the solution becomes incomplete. One constant L
disappears from the solution. If all the minors of only one row
vanished, we could find the values of x, y, z, &c. by choosing as our
operators the minors of some other row. But this cannot be done
if all the minors of all the rows are zero*.

• See also a paper by the author in the Proceedings of the MatJiematical Society

^

1883.
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269. We shall now prove that this indeterminate case cannot occur unless the

determinantal equation A(5)=0 has equal roots. To show this, we differentiate

equation (3) of Art. 262. We find

dA{8)_ df, df,, 4f,

where the letter / stands for the minor of that constituent of the determinant A (5)

which is indicated by the suffix. We notice that the right-hand side of this equa-

tion vanishes when all the first minors are zero. Thus the equation A(5) = must
have at least two equal roots. In th.e same way, if the second minors are all zero

also, any first minor has two equal roots, and therefore the original equation has
three equal roots.

270. We may notice two obvious results. (1) If all the first minors of a
determinant have a root a times, the determinant has the root a + 1 times at least.

(2) If a determinant have r equal roots, and all its first, second, &c. minors vanish

for these roots, then each of the first minors has the equal root r - 1 times, each of

the second minors r - 2 times, and so on.

271. We may now consider the following general problem:

—

Let the determinant A (3) have a. roots each equal to m. Let ^ of
these roots make every first minor of A (3) equal to zero. Let y of
these last make every second minor equal to zero, and so on. It is

required to state the general form of the solution and to explain how
the a constants in that solution are to he found.

272. Solution with a single type. First, let us consider
the a roots which are equal to ni. It has been proved in Art. 266,
that the part of the solution which depends on these may be
written in the form

^=4[/.(m)6'«] +A^K(m)n+ - +i.-x£i uM)n.
with similar expressions for y, z, &c.

If these first minors are finite, these formulae contain powers
of t from f to t"-~'^y and thus supply the a constants which belong
to the a equal roots. If the first minors have ^ roots equal to m,
I^{m)y I^(m), &c., and their differential coefficients up to the

(/& — 1) th are all zero. In this case the powers of t extend only
to ^*-^~i, and thus these formulse do not supply the full number
of constants.

When all the first minors have the root a times and all the
second minors have the root /3 times, we know by Art. 270 that
a — y8 — 1 cannot be negative.

273. Solution with a double type. To find the proper
forms for x, y, &c. when the first minors are all zero, we return to

the analogy between operations and quantities alluded to in Art.

262. We now reject any two of the equations (1), say the first

two. Solving the remaining n — 2 equations we can express all

the co-ordinates z, u &c. in terms of x and y, thus obtaining a
series of equations of the form

z =
(f)

{B) X + yfr (8) y,
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where the functional symbols are really second minors of the

determinant A (8). We now substitute these expressions for z^

u, &c. in the two omitted equations. These two equations will be

satisfied provided x and y have any values which make /(S) a; =
and 7(5) y = 0, where / (8) is any first minor of A (3).

We notice also that these two equations are satisfied by the

separate parts of these values of z, u, &c. which arise from x and

from y. We may therefore arrange the solution so as to find

these two parts separately, and then finally add the results. The
following arrangement will be found convenient in practice.

When the first minors are all zerOj reject some one of the given

differential equations (1), say the first. We have now n — 1 equa-

tions to determine the n co-ordinates. Putting ^ = in these

equations we find x, z, &c. in terms of a single type f, where f
satisfies the equation I^ (B) f= 0. Here I^ represents the minor of

the second constituent of the first line of the determinant A (8).

We write the solution thus found in the form

where the operators are the second viiinors of the constituents in

the first two lines of A (8). Next, putting ic=0 instead of y
in the equations after the first, we obtain another solution, by
which X, z, &c. are expressed in terms of another single type rj.

Here rj satisfies the equation /, (6) 97 = 0, where I^ is the minor of

the first constituent of the first line of A (8). We write the solu-

tion thus found in the form

Adding these two solutions together, we have the following values

of X II z &c

These evidently satisfy all the equations except the one rejected.

But this equation also is satisfied because by hypothesis we take

those parts only of these solutions which make all the first minors

equal to zero.

If the minors which the types f and v) are to satisfy contain

the root 8 = m, y8 times, we have therefore

274. The corresponding values of a;, y, &c. are found by sub-

stitution, and may be written in the form

«=<?.[/„ (m)e^] + G'. ^J/„(m)eT + ... + (?^_i£;^JJ-..(m)e"'].

with similar expressions for y, &c.

The peculiarity of the solutions which are derived from the

double type f, 77 is that the coiTesponding terms in the expressions

for X and y have independent constants.
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If the second minors which form the operators are all finite,

these formulae contain powers of t up to t^~'^ and supply 2/3 con-

stants. But if these second minors contain 7 roots equal to m,
the powers of t extend only to i^-^-^, and thus the full number of

constants has not been found.

275. Solution witb a triple tinpe. Thirdly, we have to find the solution when
the second minors are zero as well as the first minors. In this case the solution

just found becomes again insufiicient. To determine the proper forms of x, y, z, &c.

we now reject any three of the differential equations (1) of Art. 262, and proceed as

before. We thus have n - 3 equations to find the n co-ordinate. We see at once

that we can express all the co-ordinates in terms of any three we please, say x, y, z.

We thus have three times as many arbitrary constants as there are roots equal to m.

In the same way as before we can express the solution in terms of a triple type

^, 7], f. Putting y and z equal to zero, we find the remaining co-ordinates, viz.

X, u, &c. in terms of a single type $. Putting x and 2 equal to zero (instead of y
and z) in these n - 3 equations we obtain a second solution depending on another

single type 7). Lastly, putting x and y equal to zero we obtain a third solution

depending on f.
Adding together these three solutions we find that all the co-

ordinates may be expressed by means of operators which are really third minors of

the determinant A (5). The subjects of operation are the three independent

functions ^, 77, f. These are such that if I (5) be any of the second minors of the

constituents of the three omitted equations I {5)^= 0, I (S) 97= 0, I {8)^=0. If

these contain the root 5=m, 7 times, each of the three ^, ij, f will be expressed by

a series of the form {Ko + K^t+...+ Ky_ity

~

^) e*^,

but with independent constants.

276. Tlie number of constants. Each of the sets of values of x, y, &c. given

in Arts. (272), (273), and (275) is, of course, a solution. The complete solution is

really the sum of these partial solutions, provided it has the proper number of

constants. We appear, however, to have too many constants. We must therefore

examine these, and determine what terms are absolutely zero and what terms are

repeated in the several partial solutions.

We begin with the solution derived from the type F, Art. (272), by the help of

the first minors. Since the first minors have j8 roots each equal to m, the first /3

terms of each of the expressions for x, y, &c. are easily seen to be zero. Consider

the solution derived from any term L;^, where h lies between j3- 1 and 2(3. In the

case of the variables x and y they are expressions of the form

All these are evidently included amongst the terms derived from ^, tj by the help

of the second minors. The corresponding terms in 2, u, &c. must be related to the

terms in a;, ^ by the formula given in Art. (273), and are therefore also included in

the series derived from ^, 77. Lastly, consider the solution derived from the terms

from 1,2/3 *o -^a-l- They include powers of t from t^ to t*"!"^. These a -2^
terms are not included in the terms derived from ^ and 77, and they supply a - 2j3

arbitrary constants.

Secondly, we turn our attention to the solution derived from the double type

1, 77 by the help of the second minors (Arts. 273 and 274). Each of these second

minors has 7 roots each equal to m ; hence, by the same reasoning as before, the

first 7 terms of the series for x and y are zero, and the highest power of t is /3 - 1 - 7
instead of j3- 1. In consequence of this, the terms of'the series derived from the

R. D. IL H



162 NATUKE OF THE MOTION GIVEN BY LINEAR EQUATIONS.

single type F, and not included in those derived from the double type ^, i;, now
extend their powers of t from t^~y to f*~^~^. Thare are therefore a-2j8+ 7 such

terms instead of a - 2^3.

The same reasoning applies to all the other partial solutions derived from the

triple and higher types. We therefore conclude that the partial solution derived

from a single type by operating with the first minors of the first row of the fundamental

determinant supplies a -2^+ 7 terms not included in the solutions which follow.

These supply as many arbitrary constants. The partial solution derived from a

double type by operating with the second minors of the two first rows of the funda-

mental determinant supplies /3 - 27 + 5 terms not included in the solutions which follow.

These supply twice as many constants. The partial solution derived from a triple

type by operating with the third minors of the three first rows supplies y~28 + € terms

and thrice as many constants, and so on.

Thus suppose {for example) the fourth minors are not all zero; the number of

constants supplied by each of the several partial solutions is indicated by the terms of

the series (a-2/3 + 7) + 2()3-27 + 5) + 3 (7-25)+45.

If none of the terms of this series are negative, we have obtained a series of

partial solutions containing the proper number of constants. This point we now

proceed to discuss.

277. If a determinant contain the root just a times, if the first minors of the

two first constituents of the two first rows contain the root just /3 times, if the second

minor of these four constituents contain the root just 7 times, then a -2/3+ 7 is

positive.

To prove this, let A be the determinant, Ij, Jg, Jj, J3 the four first minors, Aj

the second minor. Then we know that AA2=Iie72~-^2'^i* The left-hand side

contains the root just a + 7 times, the right-hand side contains the root at least 2/3

times. Hence a + 7 - 2/3 is positive.

In the same way we may show, on similar suppositions, that /3 - 27 -H 5 is positive,

and so on.

278. Example. Solve the differential equations

(5-l)2(5 + l)x-(5-l)(5-2)?/ + (S-l)2:

3(5-l)2a;-{5-l) (5-3)?/ + 2(5-l)2:

{5-l)-'»a; + (5-l)?/-f(5-l)«:

The fundamental determinant (Art. 262) is A (8)= - (3- 1)«. This determinant

(Art. 271) has six equal roots (a = 6), every first minor has the root three times

(/3=3), and every second minor has the root once (7 = 1). The part of the solution

depending on a single type (Art. 276) will supply o-2/3-f-7 (i.e. one) constants.

These accompany the highest powers of t which occur in the type, one constant for

feach power (Art. 272). The part of the solution depending on a double type will

supply 2(/9-27) (i.e. two) constants. These accompany the highest powers of t

which occur in this type, two constants to each power. The part of the solution

depending on a triple type will supply 37 (i.e. three) constants which again accom-

pany the highest powers of f, three constants to each power. To obtain the full

number of constants it is necessary in this example to retain only the one highest

power of t which occurs in each type.

The single type is ^ = {&c.+Al^) e* by Art. 26 1. Taking the minors of the first

rowof A(5) wehaveby Art. 262 x= - (5-1)3^, y= -{h-lf^, z= 5(5-l)3^

To find the part of the solution which depends on a double type we reject the

first equation (Art. 273). Tutting « = we find y = (5-l)^, z=-(5-l)| where

(8-l)3t = 0. Tutting y = we find ar=(3-l)7;, 2 = -(5-l)27; where (5-1)377=0.

:0,
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The double type is therefore ^= (&c. + Bt^) e\ 97= (&c. + ct^) e*. The values of the co-

ordinates are x={S-l)v, y= {5-l)^, 2= - (5-1) ^-(5-1)*^
77.

To find the part of the solution which depends on a triple type we reject the two
first equations (Art. 275). The three partial solutions are then j^rsf, x= 0, ?/= 0,

z— De*; secondly, a;= 0, y = Ee% 2= 0, thirdly, x = Fe*, 2/= 0, 2= 0. The sum of

these is the solution derived from a triple type.

Adding up the solutions which are derived from all the different types and sim-

plifying the constants we have

x = {F + Ct + At^)e\ y = {E + Bt + At^)e', z = {D -Bt-A{t'^ + 2t)} e*.

279. Conversely, suppose it is given that ice have such a solution as that described

in Art. 276, let us enqxiire ichat minors must be zero.

Let it be given that the solution contains terms depending on a triple type con"

taining (7 - 1) powers of t accompanied by independent constants in some three

co-ordinates. Putting any two of these co-ordinates equal to zero the differential

equations are satisfied by a solution depending on a single type. Thus we have

n equations containing n-2 co-ordinates all satisfied by values of the co-ordinates

which contain powers of t up to the (7-l)th. This shows that all the second

minors which can be formed from these equations must be zero and each of these

minors must contain the root 7 times.

From this we infer by Art. 270 that every first minor must contain the root 7 +

1

times. But let us suppose that the given solution contains also terms derived from

a double type which have powers of t extending up to the (j3-7-l)th with inde-

pendent constants in some two of the co-ordinates. Eeasoning in the same way as

before, we see that every first minor must have the root (/3 - 7 - 1) times. These

must be in addition to the 7 + 1 roots already counted, because we may regard the

given solutions derived from the double and triple types as solutions which depend

on unequal roots and then make these roots become equal in the limit. It follows

therefore that every first minor has the root j3 times.

We now infer by Art. 270 that the determinant (4) of Art. 261 must have the

root /3-1 times. But if the given solution also contains terms derived from a

single type with powers of t extending to the (a-/3-l)th, we deduce by the preced-

ing reasoning that the determinant (-4) must have the root a times.

280. We may notice as a corollary of this theory that the solution cannot contain

terms in which the high powers of t depend on a larger type than the low powers

of t. For example, if the term i^e"" occur accompanied by k independent con-

stants, this term must be part of a solution derived from a fcth type. It follows

that all the lower powers of t which multiply the same exponential will be part of

the same type and must be accompanied by at least k independent constants.

281. Condition that all powers of t are absent. In some
dynamical problems it is ivell known that, though the fundamental
determinaivt has a equal roots, yet there are no terms in the solution

with powers of t. We may now determine the conditions that this

may occur.

We see by Art. 272 that, unless every first minor has the root

a — 1 times at least, a solution can be deduced from the first minors
which has some power of t greater than zero in the coefficient.

Again, unless every second minor has the root a— 2 times at least,

a solution can be deduced from the second minors with some power

11—2
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of i in the coefficient. On the whole, we infer that when a equal

roots occur in the determinant, and tJie terms in the solution with t

as a factor are to he absent, it is necessary as luell as sufficient that

all the first, second, dx. minors up to the (a— 1)^^ shoidd be zero.

282. Dynamical Meaning of the Types. We shall now
consider how the three different types of solution given in Art. 264
indicate different kinds of motion. Let us begin with a real root.

In this case every co-ordinate has a term of the form Me'^^. Ifm
he positive this term will become greater as time goes on, and the

system will therefore depart widely from its undisturbed state,

and our equations v/ill represent only the manner in which the

system begins its travels. Ifmbe negative this term will gradually

dwindle away and the motion will finally depend on the other

term in the solution.

Similar remarks apply whenever we have a real exponential

whether multiplied by a trigonometrical function or not. We may
therefore state as a general principle, subject to some reservations

in the case of equal roots which will be presently mentioned, that

the necessary and sufficieiit conditions of stability are that the real

roots and the real parts of the imaginary roots shoidd be all

negative or zero. A simple rule to determine whether this is the

case or not will be given in another section of this chapter.

283. Effect of equal roots on stability. When there are

equal roots in the determinantal equation we have seen that the so-

lution in general has terms which contain powers of ^ as a factor.

The important question for us to determine is the effect of these

terms on the stability of the system. If m be positive the presence

of a term Mt^'e'^ will of course make the system unstable. But if m
be negative, this term can never be numerically greater than

M l~] , If ??i be very small the initial increase of the term may

make the values of x, y, &c. become large, and the motion cannot

be regarded as a small oscillation. But if the system be not so

disturbed that M I - j is large, the term will ultimately disappear

and the motion may be regarded as stable. If m be wholly

imaginary and equal to n*J — l, this term will take the form

f sin nt and will of course cause the system to be unstable.

Thus equal roots do not disturb tJve stability if their real parts

are negative, hut do render the system unstable if their real parts

are zero.

284. It is clear from this that the whole character of the

motion depends on the nature of the roots of the determinantal

equation A(5)=0. If we can solve this equation and find the

roots, we of course know immediately the nature of the motion.
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But if this cannot be done we must have recourse to the Theory
of Equations to determine whether the roots are real or imaginary,

and whether any roots are equal or not. The theorems of Fourier

and Sturm will be of use in the equations of the higher orders, but

in many dynamical problems we have only to deal with two co-

ordinates, and we have therefore to examine the roots of the

biquadratic in Art. 260.

Eules by which the analysis of a biquadratic is made to depend
on the solution of a cubic are given in most treatises on the

Theory of Equations; but as this form is not convenient in prac-

tice, a short analysis will be given here for reference.

285. Analysis of a biquadratic. Let the biquadratic be

axi^ + 4.bx^ + (icx^+ 4.dx + e=:0,

so that the invariants are J= ae - 4&i + Bc^, and J— ace + 2l)cd - acC' - eh" - c^. This

last may also be written as a determinant. It will generally be found convenient

to clear the equation of the second term. Let the equation so transformed be

a^^-2aH^+ aG^ - aF==0,

where a^H= 3 {b^ - ac) and a^G= 4 {2b^ - 3abc + a^d). By using the invariants or by

actual transformation it is easy to see that

I=lam-a?F and J=^jam^ -^^a^G^-lalH.

Let A be the discriminant, i.e. A= 73-27J'^ then it is proved in all books on

the theory of equations that if A is negative and not zero, the biquadratic has two

real and two imaginary roots. If A is positive and not zero the roots are either all

real or all imaginary.

Usually we can distinguish between these two cases by ascertaining if the bi-

quadratic has or has not a real root. Thus if a and e have opposite signs, one root

is real and therefore all the roots are real. In any case we can use the following

criterion. Having cleared the given biquadratic of the second term we may write

the resulting equation in the form (^^ - H)'^+G^=K.
If S^ be the arithmetic mean of the ?ith powers of the roots, we have by

Newton's theorem on the sums of powers, 8^= 0, S>^ = H, 4:8^ = - 3 (? and K=S^- S^^.

If all the roots are real we have S^ positive and by a known theorem in "in-

equalities" S^ is greater than ^2^. Hence H and E are both positive. If all the

roots are imaginary, let them be ripA^-l and -rigV^. Then

If H is positive or zero we see that K is negative. The criterion may therefore be
stated thus. If H and K are both positive the four roots are real. If either is

negative or zero the four roots are imaginary.

If the discriminant A is zero but I and J not zero, it is known that the biquad-

ratic has two roots equal. If two of the roots are real and equal and the other two
imaginary we see (by putting g = 0) that if H is positive or zero, K must be negative.

The criterion therefore is, ifH and K are both positive all the roots are real, ifH or

K is negative or zero, two roots are real and two are imaginai-y. If G is zero, there

are then two pairs of equal roots. In this case K is zero and these roots are all

real if II is positive, all imaginary if H is negative.

Lastly let the discriminant A be zero and also both I and J zero. The biquad-

ratic has three roots equal and therefore all the roots are equal. If H be also zero

the four roots are all equal and real.
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Ex. If the discriminant of a biquadratic be positive, clear the equation of the

term containing the third power in the usual manner, and then arbitrarily erase the

term containing the first power. If both the roots of the quadratic thus formed be

real and the sum of the roots be positive, then all the four roots of the biquadratic

are real. If either contingency fail the four roots are imaginary.

Conditions of Stability.

286. It has been shewn that the determination of the oscilla-

tion of a system can be reduced to the solution of a certain

deterrainantal equation, which has been represented in Art. 2G2,

by A=/(8) = 0. In many cases it is impracticable to solve this

equation and therefore the motion cannot be properly found. If

however we only wish to ascertain whether the position of equili-

brium or the steady motion about which the system is in oscillation

is stable or unstable we may proceed without solving the equation.

It is clear from Art. 282 that the conditions of stability are

that the real roots and the real parts of the imaginary roots should

all be negative. It is now proposed to investigate a method to

decide whether the roots are of this character or* not.

287. Taking first the case of a biquadratic ; let the equation

to be considered be

f{z)=az* + h.z^ + cz'' + dz + e = 0,

where we have written z for 8. Let us form that symmetrical

function of the roots which is the product of the sums of the roots

taken two and two. If this be called X/a^j we find*

X = hcd-ad'-eh'=i 2a h c

h d

c d 2e

* This value of X may be found in several ways more or less elementary. If

we substitute z=E±Z in the given biquadratic and equate to zero the even and
odd powers of Z, we have

aZ*+ {(iaE^ + dbE + c)Z^ + aE* + bE^ + cE^ + dE + e = 0\

(4aE + 6)Z3 + (4aE3 + 36£2+ 2c£ + d)Z=0i
Bejecting the root Z=0 and eliminating Z we have

64a3£H + hcd-ad^-eb^= 0,

where only the first and last terms of the equation are retained, the others not

being required for our present purpose. Since z=E:LZ it is clear that each value

of E is the arithmetic mean of two values of z. We have an equation of the sixth

degree to find E because there are six ways of combining the four roots of the

biquadratic two and two. The product of the roots of the equation in E may be

deduced in the usual manner from the first and last terms, and thence the value

of X is seen to be that given in the text.

If we eliminated E we should obtain an equation in Z whose roots are the

arithmetic means of the differences of the roots of the given equation taken two

and two. If we put iZ^= f, we obtain by an easy process the equation whose roots

are the squares of the differences of the roots of the given equation/ (2= 0).
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It will be convenient to consider first the case in which X is

finite. Suppose we know the roots to be imaginary, say a.±pj—l,
and /3 ± ^ J'^, Then

Z/V = 4.^ {(a +^r+(p+ qy] {(a -h fif -^ (p - q)%
Thus, (XyS always takes the sign of XIa, and a + /S always takes the

sign of — 6/a. The signs of both a and /3 can therefore be deter-

mined; and if a, b, X have the same sign, the real parts of the

roots are all negative.

Suppose, next, that two of the roots are real and two imagi-

nary. Writing q J— 1 for q, so that the roots are a ± p J—1 and

^ ± q, we find

X/a' = 4^1/3 ([(a + jSy +/ - q'J + 4/^'^.

Just as before, a/S takes the sign of X/a, and a + /8 takes the sign

of — h/a. Also, |8^ — q^ takes the sign of the last term e/a of the

biquadratic. This determines whether ^ is numerically greater or

less than q. If, then, a, b, e, and X have the same sign, the real

roots and the real parts of the imaginary roots are all negative.

Lastly, suppose the roots to be all real. Then, if all the

coefficients are positive, we know, by Descartes' rule, that the

roots must be all negative, and the coefficients cannot be all posi-

tive unless all the roots are negative. In this case, since X is the

product of the sums of the roots taken two and two, it is clear that

Xja will be positive.

Whatever the nature of the roots may be, yet if the real roots

and the real parts of the imaginary roots are negative, the biquad-
ratic must be the product of quadratic factors all whose terms are

positive. It is therefore necessary for stability that every coeffi-

cient of the biquadratic should have the same sign. It is also

clear that no coefficient of the equation can be zero unless either

some real root is zero or two of the imaginary roots are equal and
opposite.

Summing up the several results which have just been proved,

we conclude that if X and e are finite, the necessary and sufiicient

conditions that the real roots and the real parts of the imaginary
roots should be negative are that every coefficient of the biquadratic

and also X should have the same sign.

288. The case in which X = does not present any difficulty.

It follows from the definition of X, that if X vanishes two of the

roots must be equal with opposite signs, and conversely if two
roots are equal with opposite signs X must vanish. Writing
— z for £? in the biquadratic and subtracting the result thus
obtained from the original equation we find bz^ + c?^ = 0. The
equal and opposite roots are therefore given by ^= ± J—d/b. If

b and d have opposite signs these roots are real, one being positive

and one negative. If b and d have the same sign, they are a pair

of imaginary roots with the real parts zero.
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The sum of the other two roots is equal to — 6/a and their

product is hejad. We therefore conchide that i/ X = 0, the real

roots and the real parts of the imaginary roots will he negative

or zero if every coefficient of the biquadratic is finite and has the

same sign.

289. If either a or e vanishes, the biquadratic . reduces to a
cubic, see note to Art. 105. Putting e zero, we have

X/a^d = hc — ad.

If the coefficients have all the same sign it is easy to see that

it is necessary for stability that be — ad should be positive or zero.

If a and e be not zero and one of the two b, d vanish, the other

must vanish also, for otherwise X could not have the same sign as

a. In this case X vanishes, and the biquadratic reduces to the

quadratic c-s* + c<s^ + 6 = 0.

As this equation admits of an easy solution, no difficulty can

arise in practice from this case. It is necessary for stability that

the roots of the quadratic should be real and negative. The con-

ditions for this are, firstly the coefficients a, c, e must all have the

same sign, secondly that c^ > 4ae.

290. Equation of the nth degree. When the degree of

the equation is higher than a biquadratic the conditions of stability

become more numerous. A very simple rule will now be proved

by which these conditions can be calculated as quickly as they can

be written down. Besides this we propose to give an extension of

this rule by which we may determine how many roots there are,

real or imaginary, which have their real parts positive. If there

be no such roots the conditions of stability are supposed to be

satisfied. The number of roots with their real parts equal to zero

is also found.

291. To discover this rule we have recourse to a theorem of Cauchy. Let

z=iz+ y \/— 1 he any root, and let us regard x and y as co-ordinates of a point

referred to rectangular axes. Substitute for z and let

Let any point whose co-ordinates are such that P and Q both vanish be called a

radical point. Describe any contour, and let a point move round this contour in the

positive direction, and notice how often P/Q passes through the value zero and

changes its sign. Suppose it changes a times from -t- to - and /3 times from - to

-f . Then Cauchy asserts that the number of radical points within the contour is

^ (a- /3). It is however necessary that no radical point should lie on the contour.

Let us choose as our contour the infinite semicircle which bounds space on the

positive side of the axis of y. Let us first travel from y=-oo to2/=+oo along

ihe circumference. If

/(z)=Po2~+i>l«""^+--+Pn (1).

vre have changing to polar co-ordinates

f {z)=Pf,r^ (cob n0 + Bmnd fj^) + ...

Hence P zzp^r'' cos nO+p^r''-'^ cos {n-1) 6+ ...\ .

Q=zp^r"Hin nO +Pi}"-^ Bin (n-1) 6+...)
^'^''
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In the limit since r is infinite P/Q = cot nd.

P/Q vanishes when ^==t- ^, i-J, ±- J (A).
'
^ n 2 n 2 n 2 ^ '

P/Q is infinite when ^ = 0, ±- J. ±" ? (B).

The values of 6 in series (B), it will be noticed, separate those in series (A).

"When d is small and very little greater than zero, P/Q is positive and therefore

changes sign from + to - at every one of the values of 6 in series (A). If there-

fore n be even there will be n changes of sign.

If n be odd there will be ri - 1 changes of sign excluding ^= ± ^ tt, in this case

PjQ is positive when ^ is a little less than ^tt and negative when ^ is a little greater

than ^ 7r, but this result will not be wanted in the sequel.

Let us now travel along the axis of y, still in the positive direction round the

contour, viz. from ?/=+oo to y=~cc. Substituting z=x + y J'^ in (1) and
remembering that x= along the axis of y, we have, when n is even.

p =Pn -Pn.-2y'+Pn.-,y'-- .. + {- i)^Poy'

Q-=Pn--iV-

Q p,y--^

-(-i)"^i'i2/':4
.(3).

• (4).

Let e be the excess of the number of changes of sign from - to + over that

from + to - in this expression as we travel from y= + cD to y=: - oo , then by

Cauchy's theorem the whole number of radical points on the positive side of the

axis of y is ^{n + e). This of course expresses the number of roots which have

their real parts positive.

292. To count these changes of sign we use Sturm's theorem. Taking

/i(y)=Por-i'2r"'+-.- I ,..

A(2/)=i'ir-'-i'32/"-'+.-j ^
^

we perform the process of finding the greatest common measure of /^ (y) and/g (y),

changing the sign of each remainder as it is obtained. Let the series of modified

remainders thus obtained he f^{y), f4,{y), &c. Then, as in Sturm's theorem, we
may show that when any one of these functions vanishes the two on each side have

opposite signs. It also follows that no two successive functions can vanish unless

/j [y] and /g (?/) have a common factor. This exception will be considered presently.

Taking then the functions /^ (2/),/2(</)» &c., using them, as in Sturm's theorem,

we see that no change of sign can be lost or gained except at one end of the series.

Now the last is a constant and cannot change sign, hence changes of sign can be

gained or lost only by the vanishing of the function /^ (y) at the beginning of the

series.

Consider now the beginning of the series of functions /^ (?/), f^ (y), &c., and

using them in Sturm's manner let y proceed from + oo to - oo . We see that a

change of sign is lost when the first two change from unlike to like signs, i.e. when
the ratio of /^ (y) to f^ (y) changes from - to + . In the same way a change of

sign is gained when the ratio changes from + to - . Hence e is equal to the

number of variations or changes of sign lost in the series as we travel from i/= + oo

to y= - 00 .

293. When ?/ = ± co we need only consider the coefficients of the highest

powers in the series of functions /j {y),/^ {y), <fec. Let these coefficients when y is

positive be called p^, p^, q^ , q^ , &c.
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When y is negative the signs, since n is even, will be indicated by

Pay -i>l» ?3' -q^^&O'

Then we have just proved that e is equal to the number of variations or changes of

sign lost as we proceed from the first series to the second.

294. If every term of the series |)(, > i^i . Q'a*
&c. have the same sign, it is evident

that n changes of sign will be gained and therefore e= -n\ and e cannot = -n
unless all these terms have the same sign. In this case there will be no radical

point on the positive side of the axis of y. We therefore infer the following

theorem. The necessary and sufficient conditions that the real part of every root

of the equation f{z)=0 should be negative are that all the coefficients of the

highest powers in the series f^iy), f2{y), &c. should have the same sign.

295. Suppose next that these coefficients do not all have the same sign. The

degree of the equation being n, there are n + 1 functions in the series /j (y), f^ {y), &c.

,

and therefore on the whole there are n variations and permanencies. Let there be

k variations and n-h permanencies of sign. Now every permanency in the series

y= 4 00 changes into a variation in the series y = - co , and every variation into

a permanency. It follows that there will he n-k variations and k permanencies

in this second series. Hence the number e of variations lost in proceeding from

the first to the second series is 2k - n. But the number of radical points on the

positive side of the axis of y has been proved to be =^{n+ e); substituting for e,

this becomes equal to k. We therefore infer the following theorem. If we form
the series of coefficients of the highest powers of the functions f^ (y), f^ (y), &c., every

variation of sign implies one radical point icithin the positive contour, and there-

fore one root with its real part positive. '

296. We require some rule to construct the series of coefficients with facility.

If we perform the process of Greatest Common Measure on the functions /^ (y),

/2(y) changing the signs of the remainders, we find that the first three functions are

/i (2/) =i>o2/" -l^al/""^ +i'42/""^ - &c.,

/a (y) =i'iy""^ -Pzy"^^ +ny''~^ - &c.,

/3 (y)
^PlPrzPoPz yn-2 _PlP4jZPoPp ^n-i+ &c.

Thus the coefficients off^{y) may be obtained from those of f^ {y) and f^ (y) by a

simple cross-multiplication^ and may therefore be written down by inspection. The
coefficients of /j (y) may be derived from those of /a {y) and f^ [y) by a similar cross-

multipHcation and so on. These successive functions may be called the subsidiary

functions.

297. First form of tbe StQe. Summing up the preceding arguments, we have

the following rule. The equation being

/ (z ) =iJo^»+ Piz"-i +i)2a"-2+ . .

.

arrange the coefficients in two rows thus

Po* Pif P4* *o.

JPi. i'st Pe. &o.

Form a new row by cross-multiplication in the following manner

PiPa-PoPs P1P4 -P0PB P,„
1

f <»o.

Pi Pi
Form a fourth row by operating on these two last rows by a similar cross-

multiplication. Proceeding thus the number of terms in each row will gradually

decrease, and we stop only when no term is left. Then in order that there may be

no roots whose real parts are positive it is necessary ami sufficient that the terms in
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the first column should be all of one sign. If they be not all of one sign, the number

of variations of sign is equal to the number of roots ivith their real parts positive.

The terms which constitute the first column may be called the test functions.

As in forming these rows we only want their signs, we may multiply or divide

any one by any positive quantity which may be convenient. We may thus often

avoid complicated fractions.

298. Equations of an odd degree. In order to simplify the argument we have

supposed the degree of the equation to be even. If n be odd, let as before

"We may regard this equation as the limit of

VqZ^^^ +P^z^ + . . . +p^z +p,Ji= 0.

If h be positive and indefinitely small the additional root of this equation is real

and negative, and ultimately equal to - h. Those roots also of the two equations

which lie within the positive contour are ultimately the same.

Since n + 1 is even we may apply to this equation the preceding rule. The two

first rows are p^, i)o &c., Pn-iy PiJ^y

Pi, Pi &c., p^.

We easily see by calculating a few rows that none of the coefficients in the sub-

sequent rows contain h as a factor except the extreme coefiicients on the right-hand

side. Hence in the general case all the test functions, except the two last, remain

finite when h is put equal to zero ; and therefore have the same sign as if the rows

had been calculated before the addition of the final term p^h. The last two co-

efficients in the first column, when only the principal power of h is retained, are p^
and pji. But since h is positive there can be no variation of sign in this sequence.

We may therefore omit this final term pji altogether as giving nothing to the

number of variations of sign. The result is that the rule to calculate the number

of roots whose real parts are positive is the same whether the degree of the equation is

even or odd.

299. Simplification of the rule when tests of stability only are required.

In a dynamical point of view it is generally more important to determine the condi-

tions of stability than to count how many times those conditions are broken. If

we only want to discover these conditions we may in forming the successive sub-

sidiary functions by the rule of cross-multiplication omit the divisor at every stage

provided p^ be made positive to begin tvith, for this divisor being one^ of the test

functions must in every case be positive.

Supposing the conditions of stability to be satisfied we see by reference to Art.

292 that the proper number of variations cannot be lost at the beginning of the

series unless the roots of the equation fi {y) are all real and the roots off^ {y) separate

the roots of f^{ij) and therefore are all real also. Then because when a subsidiary

function vanishes the two on each side have opposite signs it follows that the roots

off^ (?/) ai'e real and separate those offo (y) and so on.

Supposing the roots of the equation f{z) = to have their real parts negative,

the real quadratic factors made up of those roots must have their terms positive.

Thus every term of the equation /(2) = must be positive. It follows from the

definition of the functions /^ (y) and f^ (y) in Art. 292 that the signs of their terms

are alternately positive and negative, and since their roots are real every one of

those roots is positive. Hence all the subsequent auxiliary functions f^iy), fiiy),

&c. have their roots real and positive. The signs therefore of all their terms are

alternately positive and negative, and by Art. 297 the coefficient of the highest

power is in every case positive.
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In this way we are led to an extension of the theorem in Art. 297. Supposing

Pq to have heen made positive, we see by the preceding reasoning that though it is

necessary and sufficient that all the terms in the first column should be positive,

yet it is also true that the terms in everxj column must be positive. Hence as we per-

form the process indicated in that article we may stop as soon as we find any negative

temtj and conclude at once that/ (z) has some roots with their real parts negative.

300. Ex. 1. Express the condition that the real roots and the real parts of

the imaginary roots of the cubic ^ + pj^z-+p^+p^= should be all negative.

By Art. 296 Mj) = y^-V'zy.

f2{y)=Piy'^-Pz-
Using the method of cross-multiplication given in Art. 297 and omitting the

divisors as shown in Art. 299 we have

h{y) = {P\V2-Pi)y^

f4{y)= {PlP2-P3)P3'
The necessary conditions are that pj, PxP2~Pv and^jg should be all positive.

We have retained the powers of y in order to separate the terms, and also the

negative signs in the second column, but both these are unnecessary and in accord-

ance with Art. 297 might have been omitted. In both this and the next example all

the numerical calculations are shown.

Ex. 2. Express the corresponding conditions for the biquadratic

z^ +PiZ^ +p»z^ +P2Z + P4= 0,

fi{y)=y^ -P22/'+i'4.

f2iy)=Piy^ -P0,
My)={PxP'2-Pz)y'^ -PiPi.

h iy) = { iPiPi -Pi) Pi -Pi^Pi) y.

/5 {y) = { {P1P2 -Pi)Ps - pi'p^} piPa-

The conditions are that p^, PiP^-p^, iPiP^-Pi^Pz-PiPi ^^^ Pa should be all

positive. These are evidently equivalent to the conditions given in Art. 287.

301. Second Form of the rule. When the degree of the equation is very

considerable there is some labour in the application of the rule given in Art. 297.

The objection is that we only want the terms in the first column and to obtain these

we have to write down all the other columns. We shall now investigate a method

of obtaining each term in the first column from the one above it loitlmut the necessity

of writing down any expression except the one required.

We notice that each function is obtained from the one above it by the same
process. Now the three first functions are written down in Art, 297. The first

and second lines will be changed into the second and third by writing for

Po^ Pv Piy ^3. &c.

4the values p„
p.^.P^Pl,

p^,
p^.PoPjt, &^, ^

(A).

Pi Pi

We therefore infer the following rule. To form the test functions of Art. 297 we
write down the first, viz. p^; the second may be obtained from the first and the third

from the second and so on by changing each letter as indicated in the schedule A just

above.

In these changes we always increase the suffix, hence we may write zero for any
letter as soon as its suffix becomes greater than the degree of the equation.

We thus form the test functions, each from the preceding, and we stop as soon

as we have obtained the proper number, viz. (counting p^ as one test function) one

more than the degree of the equation.
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302. Example. Express the test functions for the quintic

f[z)=p^z^+p^^+p^z^+p.^z''+p^z+p^ = 0.

Here we notice that j?g, p^, &c. are all zero, so that any term which has the factor 2J5

will become zero in the next test function. Following the rule the six test functions

are p„ p,, P2-~^\
Pi

^ Pl{PlP4-PoP5) _PoP5 {PlP2-?0Pz)hh
^ PiP^-PoVz

*
^ Px PiPAPiPi-PoPzi-Pi^PiP^-PoP^y

and lastly, p^.

If we regard z as of one dimension in space it is clear that the dimensions of the

several coefficients p^, p^, &c. are indicated by their suffixes. Hence we may test the

correctness of our arithmetical processes by counting the dimensions of the several

terms in each of the test functions.

303. When any test function vanishes this process causes an infinite term to

appear in the next function. In such a case we may replace the vanishing function

by an infinitely small quantity a and then proceed as before. Thus suppose Pi = 0,

writing a for ^Jj the six functions become Po, a, -PoPsI'^^ Pb^ Pi-P^PslPs+PoPs^lPs^^
jpg. Consider the first four of these functions; the signs of jpo and p^ being given, it

is easy to see by trial that there will be the same number of variations of sign

whether we regard a as positive or negative. Thus if p^ and p^ have the same sign,

the middle terms have always opposite signs and there will be just two variations

;

if Pq and ^3 have opposite signs, the middle terms are both positive or both negative

and there will be just one variation.

304. Vanishing of a Subsidiary function. In the preceding theory two

reservations have been made.

1. In applying Cauchy's theorem it has been assumed that there were no

radical points on the axis of y.

2. It has been assumed that P and Q have no common factor. In this case as

we continue the process of finding the gieatest common measure in order to con-

struct the subsidiary functions f^{y), &c. we arrive at a function which is this

greatest common measure and the next function is absolutely zero. Thus we are

warned of the presence of common factors by the absolute vanishing of one of the

subsidiary functions.

It is clear that if f{z)=0 have two roots which are equal and opposite, the even

and odd powers of z must separately vanish. It follows from the definition in Art.

292 that fi iy) and f^ {y) will have these roots common to each. The greatest

common measure oi f-^iy) and f^iy) must therefore contain as factors all the

roots of f{z) which are equal and opposite. Conversely, the greatest common
measure of /^ {y) and /g (y) is necessarily a function of y which contains only even

powers of y*, and if it be equated to zero, its roots are necessarily equal and
opposite. These roots must obviously satisfy / (2) = 0.

Now if any radical point lie on the axis of y, f{z) must have roots of the form

± ksj - 1 and therefore equal and opposite. The two reserved cases therefore are

included in the one case in which /^ (y) and /g {y) have common factors.

* If p„= 0, we have an additional root, viz. ^ = 0, which is not included in this

remark. But this root may be either divided out of the equation / [z) = 0, or it may
be included in the following reasoning as a part of the function (z).
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305. Let the greatest common measure of /j (y) and /g (y) be ^ {y-). If then we

put f{z) = \l/{-z^)<p (z), the function <p {z) is such that no two of its roots are equal

and opposite, and to this function we may therefore apply Cauchy's theorem without

fear of failure. By Art. 295, the number of roots of (z) which have their real

parts positive is equal to the number of variations of sign in the coefficients of the

highest powers of the subsidiary functions of <p [z). But, since ^{-z"^) is real when

we write z= y\/ - 1, the subsidiary functions of <p {z) become, when each is multiplied

by \{/{y\ the subsidiary functions of/(-2:). The presence of this common factor will

not affect the number of variations of signs in the series. Suppose then we agree to

omit the consideration of the factors of \f/{-z^), we may test the positions of the

remaining radical points by discussing either of the functions / (2) or <p (2).

We may therefore make the following addition to the rule given in Art. 297.

If we apply tliat rule, using only the subsidiary functions icliich do not wholly vanish^

we obtain the number of roots which have their real parts positive, but excluding

those roots which are in pairs equal and opposite to each other.

These omitted roots are of course given by equating to zero, the last subsidiary

function which does not wholly vanish. Putting y^J-l=z we may deduce the

corresponding roots of the original equation.

It will be seen that for every pair of imaginary roots of y there will be one

value of z which has its real part positive, and for every pair of real roots of y there

will be two values of z of the form ^IcJ -\. The former indicate an unstable, the

latter a stable motion according to the rule of Art. 283.

306. Usually we may best find the nature of these roots by solving the equation

formed by equating to zero the last subsidiary function. But if this be troublesome

we may conveniently use Sturm's theorem. Since the powers of y in any subsidiary

function decrease two at a time we may effect Sturm's process of finding the

greatest common measure exactly as desciibed in Art. 297. "We may also show by

the same kind of reasoning as in Art. 295, that for every variation of sign when

2/= +00 in Sturm's functions there will be a pair of imaginary values of y. We
may thus make a second addition to the rule given in Art. 297.

In forming the successive subsidiary functions as soon as we arrive at one which

•wholly vanishes, we write instead of it the differential coefficient of the last which does

not vanish and proceed to form the succeeding functions by the same rule as before.

Every variation of sign in the first column will then indicate one root with its real

part positive. The remaining roots will have their real parts negative or zero.

307. Equal Boots. We know by Art. 283 that whether a single root of the

form a + b\/ -1 indicate stability or instability, several equal roots will indicate the

same, except when a = 0. In this latter case while solitary roots of the form rt b\/ -

1

imply stability, several equal roots indicate instability. It is therefore generally

important to determine if the roots of the latter form are repeated or not.

When the equal roots are of the fii-st form and there happen to be no others

equal and opposite to them, their number is fully counted in using Cauchy's theorem.

When the equal roots are of the second form, i.e. ±6\/- 1, they appear in the com-

mon factor \f/{-z'^). If we can solve the equation \//{-z^) = 0, we know at once

whether the repeated roots are of the first or second forms. If wo analyse the

equation by Sturm's theorem (Art. 30G) and stop as usual at the first Sturmian

function which does not vanish, we must remember that these equal roots will be

counted as if they were one root. The last Sturmian function which does not
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vanish gives by its factors the sets of equal roots with a loss of one root in each set.

If we differentiate this function and continue the process described in Art. 297, we
are really applying Sturm's theorem anew to this function, and will arrive at another

Sturmian function containing the sets of equal roots with a loss of two of each set.

Thus by continuing the process the number of repetitions may be counted.

ITuxnerical Examples. Determine how many roots of the equation

^10 + ^9 - 28 _ 22? + z^ + Sz^ + z^ -2z''i - z^ + z + 1 =

have their real parts positive.

Forming the first two rows by the rule of Art. 297 we have

y'' 1, -1, 1, 1, -1, 1,

y^ 1, -2, 3, -2, 1,

where we have written on the left-hand side the highest power of each subsidiary

function, and have omitted the negative signs given in the second, fourth and sixth

columns of Art. 292. We may notice that the presence of negative terms shows that

the equation indicates an unstable motion (Art. 299). Hence if we merely wish to

determine the question of stability or instability the process terminates at the first

negative sign.

Operating by the rule of Art. 297 we have

y^ 1, -2, 3, -2, 1.

These are the same as the figures in the last line, hence the next subsidiary

function will wholly vanish. Therefore \l/{-z~)=z^- 2z^ + 3^4 -222 + 1. By Art. 306

we replace the next function by the differential coefficient

f
8,

2,

-12,

-3,

12, -4, divide by 4,

3, -1,

ye
-1,

1,

3,

- 1, 1, multiply by 2,

-3, 2,
•

y.
\l

-3,

-1,

3, divide by 3,

1,

y'
2,

1,

-2,

-1,

2, divide by 2,

1.

Here again the next function vanishes. There are therefore equal roots given

by 2^-22 + 1 — 0. The nature of these roots may be found by solving this equation.

Disregarding this, we may (Art. 307) replace the next function by the differential

coefficient

4, - 2, divide by 2,

" ( 2, -1,

2/2 - 1, 2, after multiplication by 2,

y 3,

2/" 2.

Looking at the first column, we see that there are four changes of sign. Hence

there are four roots whose real parts are positive. We verify this by remarking

that the given equation may be written in the form [z^ -z^ + 1)^ {z^ j^. z -\- 1) = 0.

In this example we have exhibited all the numerical calculations.

Ex. 2. Show that the roots of the equations

24 + 223 + ^3+1=0,
28 + 227 + 42^ + 425 + 624+623 + 722 + 42 + 2 = 0,

do not satisfy the conditions of stability.
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Ex. Show that the roots of the equations

z^+ z^ + (jz*+ 5z^ + llz^+ 6z + e=0y

do satisfy the conditions of stability.

The conditions of stability given in this section are taken from the third chapter

of the author's essay on Stability of Motion. Other methods of testing the roots of

the equation / (z) = are given in the second chapter of that essay. The conditions

for a biquadratic were read before the Mathematical Society in 1874.



CHAPTER VII.

FREE AND FORCED OSCILLATIONS.

Free Oscillations.

308. The difference between free and forced vibrations will be explained in the

next section of this chapter. The following rough distinction will be sufficient f6r

our present purpose. "When the forces which act on a system depend only on the

deviations of the several particles from their undisturbed motion, every term in

the equations of motion, as explained in Art. 257, will contain the first powers, of

the co-ordinates. The equations of motion will then take the form given to them in

Art. 310 of this chapter. The oscillations of such a system are called liBfree oscil-

lations.

Besides these forces we may have others due to external causes which may be

functions of the time, and may not vanish when the system is placed in its undis-

turbed position. Such forces are usually written on the right hand side of the

equations of motion, to intimate that their effects must be calculated by different

rules from the former forces. The oscillations produced by these forces are called

forced oscillations.

309. Introductory summary. The propositions in this section are con-

structed for the purpose of examining the small oscillations of a system which

depends on many co-ordinates. But as they are of general application they are

here presented in a form which is purely mathematical. No reference is made to

any dynamical principle and when dynamical terms are used it is only for the sake

of explanation.

We begin by taking the equations of the second order with n dependent variables

in their most general forms, though such general forms do not occur in dynamics.

Two typical equations are then deduced, and from these, the chief propositions in the

section are derived.

The first step usually taken in solving simultaneous equations is to form a cer-

tain determinant (Art. 262). The general form of the solution and the stability of

the resulting motion depend on the roots of this determinant. If as explained in

Art. 282 the real parts of the roots are positive the motion is unstable. Two
propositions are shown to follow immediately from the typical equations. If three

functions here called A, B, C be one-signed it is shown (1) however general the

equations may be the real roots of the determinant cannot be positive, (2) if the

equations be of that simpler character which occurs in dynamics the real part of

every imaginary root is negative.

R. D. XL 12
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When we apply our equations to the case of a system oscillating about a posi-

tion of equilibrium we see that the function A corresponds to half the vis \iva, B to

the dissipation function, and C to the potential of the forces of restitution.

The first of these propositions has been established by Lagrange and Sir W.
Thomson when the equations represent the oscillations of a system about a position

of equilibrium. The second is to be found in the author's essay on the Stability of

Motion but expressed in a different form. It is also given in the last edition of

Thomson and Tait's Natural Philosophy. The reader is also referred to a paper by

the author read in April 1883 before the Mathematical Society of London.

810. The roots of the flindamental determinant. Let
there be any number of dependent variables x, y, z, &c., to be

found in terms of t, by means of as many differential equations of

the second order with constant coefficients. Whatever these

equations may be, they may be very conveniently written in

the form

(^„52+ 5u5+Cn)a;+/ A^^h'^^-B^.l^G^^y^ f ^1352+ 5^35+ 013X2 + &c.= 0,

V + A25' + ^125 + ^12/ V +Di352 + Ei35+ i''J

/ y4ij53 + JBi35+Ci3\x + (^225=^+^228+C22)y+/ ^33^^ + -^233 + ^23^ + &C.=0,

V-I>i252-^i25-2^J V + ^DaaS' + EggS+ irJ
/ A3«^+ A35+Ci3\a;+/ J2352+i?235+Co3\y + U3352 + ^333+C33)2 + &C= 0,

&c. + &c. +&c.=0,

where the symbol 8 represents differentiation with regard to f, and
the order of suffixes is immaterial, so that A^^—A^^, and so on.

We see here two sets of terms, (1) those which depend on the

letters A, B, C, and which by themselves constitute a symmetrical

determinant
; (2) those which depend on the letters D, JS, F, and

which by themselves constitute a skew determinant.

311. For the reasons given in Chap. ix. of Vol. i., we may
call the terms which depend on the letter A the effective forces,

those which depend on the letter B the forces of resistance, those

on G the forces of restitution. It will generally happen that

the terms which depend on the letters D and F are absent. The
terms which depend on the letter E will occur when we consider

the oscillations about a state of motion, Chap. III., Art. 112. These
we shall call the centrifugal forxes.

If we write A, B,G for the three functions

A = iA^y+A^^xyi-iA^^f+ ,

B = iB,,x'-^B,,xy + ^B^,f-^ ,

C = iG,,x' + C,,xy + iC^^+
the terms in the several equations which arise from A, B, G may
be written

^^dA
^
^dB

^
dG ^,dA

^

^dB dG .

ax ax ax ay ay dy

Hence A, B, G may be called respectively the potentials of the
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effective forces, the forces of resistance, and the forces of resti-

tution, ^

312. When we compare the equations of motion with those

given by Lagrange for the oscillations about a position of equi-

librium (Chap. II.), we see that the function A cannot be otherwise

than positive. So also these oscillations are stable if the function

G be always positive.

Thus, it will frequently occur that the three functions A, B, C,

or some of them, are such that they keep one sign whatever real

quantities we write for . x, y, z, &c., and do not become zero except

when X, y, &c. are all zero. Such functions will be referred to as

one-signed quadrics.

313. The method of solving the differential equations in

Art. 310 has been explained in Chap. vi. Let m^, m,^, &c., be
the roots of the fundamental determinant, which we need not here

write down. This determinant is the same as that represented

by the symbol A (S) in Art. 262. Let us suppose that these roots

are unequal, the case of equal roots being regarded as a limiting

case of unequal roots. The solution may be written thus :

—

X = x^e"^'' + x^e"^'* + . . .

]
dxidt = x^e"^'' + x'^e"^'' + .

y = 2/xe"*'' + y^e'""'' + . . . I , dyldt = y.e"^'' + y'.e"^^' + .

^ = &c.
J

&c. = &c.

where x[= x^m^, y[ = y^m^^ &c., x,^ = x^m^^ &c.

Here x^^ y^, z^y &c. contain as a common factor one constant

of integration, x^, y^, &c. another constant, and so on. The forms
of these constants are not wanted here. It is enough that we
should remember that the coefficients which belong to a real ex-

ponential are themselves real. On the other hand, if m^, m^ be a
pair of imaginary roots, the coefficients {x^y x^, &c., take the form

314. The first equation. If we substitute the first terms
of each of these values of x, y, z, &c., in the equations of Art. 310,

we obtain a set of equations which differs from those only in

having m^ written for 8, and x^, y^, &c. for x, y, &c. Multiply

these respectively by x^,y^, &c., and add the results together; we
have

iK< + ^^xMx + &c.) m^ + {B^^x^ + "LB.^x^y, + &c.) m,

+ (o,,< + 2a,,T,i/,+&c.) = o.

It should be noticed that the terms which depend on the letters

D, E, F have altogether disappeared from this equation.

It should also be noticed that the coefficients of the powers of

m are twice the functions A, B, G with x^^ y^, &c. written for

X, y, &c.

12—2
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315. Prop. I.—On real roots.—We may immediately de-

duce the three following theorems :

—

(1) If the potentials A, B, C be either zero or one-signed fane-

tionSy and if all three have the same sign, the fundamental deter-

minant cannot have a real positive root.

For if Wj were real, the coefficients x^, y^y &c. would be real.

We should thus have the sum of three positive quantities equal

to zero;

(2) If there he no forces of resistance, i.e. if the term B he

absent, and if the potentials A and C be one-signed and have the

same sign, the fundamental determinant cannot have a real root,

positive or negative.

(Z) If A, B, C he one-signed functions, hut if the sign of 'Q he

opposite to that of A and 0, the fundamental determinant cannot

have a negative root.

These propositions, are true, whether there he any terms in the

differential equations which depend on the functions I), E, F or not.

We may also notice that unless the potential G can vanish for
some real values of the coordinates other than zero, the fundamental
determinant cannot have a root equal to zero. If, for example, the

coordinate a; is absent from G (Art. 98), then G vanishes when the

other coordinates are zero and x is finite. In this case m^ can be
equal to zero. If the forces depending on B are absent also the

determinant will have two roots equal to zero.

When two zero roots occur terms such as nt + a must be added to some of the

expressions for the co-ordinates given in Art. 313. Unless the initial conditions

are such as to make the constants n and a equal to zero, these terms should be

included in the expressions 6—f{t), <p=F{t)y &c., which as explained in Art. 257,

give the steady motion. The presence of these terms thus indicate a slight change

in the steady motion about which the system has been supposed to oscillate.

316. The two equations. Exactly as in Art.. 314, let us

again substitute the first term of each of the values of x, y, &c. in

the equations of motion. But let us now multiply these by
x^,y^, &c., and add the results. We thus obtain

[^1x^1^2 + J,3 (x^y^ + x^) + ^^3 {y^z^ + 2/^J + &c.] m,«

+ \B^^x^x^ + &c.] m^ + [C^u^i^a + <^c-]

= [^12 (^1^2 - ^22/i) + As (2/1^2 - ^2^1) + &c.] m/

To bring this equation within bounds, we must use some
notation to shorten the coefficients. Let us represent the halves

of these series by their first terms, omitting suffixes to Ay B, &c.

We may therefore write the equation in the form

A (x^x^) ni ^^ + B{x^x,^) m^ -fC (x^x^)

= /> K2/2)K + ^ (^,2/2) ^^ + ^(^1^2)-
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In the same way we have
.

Also we deduce from these the two equations

A {x^x^ m^ + B {x^x^ m^ + G {x^x^) = 0]

A (x^x^^ m/ + B {x^x^ m^-^G {x^x^) = Oj
*

The first of these is the same as that already found in Art. 314.

,
Here we may notice that the functions A{xx), B{xx)y G (xx)

are really the same as those we have already more simply denoted
by A, B, G. We also notice that D (x^t/J = 0, E(x^y^=0, and

317. Let us now suppose that there is a pair of imaginary
roots in the fundamental determinant of the form m^ = r-1-^ \/""l>

m^==r—pA/—l, The values of x, y, &c., given in Art. 313,
become

x = {x^-\- x^ e^*- cospt + (^1 - x) J-1 e^ sin/>^ + &c.,

2/ = (3/1 + 2/2)
^^' cosi9^ + (y^ - y^ V^ e^' sin pi + &c.,.

which may be conveniently abbreviated into

{- [ x = X^e^' Gospt-\-X^^^\npt^x^e'^^' ^ ..^

y = Fje""' cos^i + r^ e*"* sin _pi 4- 3/3 e*"^' + . . . i .

5=&c. j

If Z/ = rX^ +pX, and X; = -i^X, + rZ,, &c.,

dx\dt = XI e'"' cos pt + X; e*"' sin pt +< e"^'' + . .A

dyldt= Y; e"" cos pt + Y; €"' sm'pt^yle'^^' + ...I.

&c. = &c.
)

318. Returning now to the two first equations of Art. 316,

let us divide them by m^ and 7)i^ respectively. If we first add and
then subtract the results, we have

: A {xix.,)p- G {x^x^) ;^^^ = JD {x^y^) r+E (x^y^) +F {x^y^ ^^^^ -j==^ .

By substitution, we find that

^A{x^x,) = A{X^X;) + A{X,X,))

-2D{x^y,)J-l = I){X,Y,) r
.with similar results for the other letters. We also infer from these

equations that if J. be a one-signed function, A, {x^ x^) is not only

real, hut has always the same sign as A. Similar remarks apply

to the functions B and G.
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If the functions D, E, F be absent, the two first equations of

this Article reduce to

-^A(x,x,){r'+p') + G(x,x:) = 0]'

except when p = 0, i.e., except when the roots (which we have

supposed imaginary) are real.

These equations may be conveniently written

B{X,X,) + B{X,X,) C(X,X,) + G(X,X,)
"^— ^A (X.X.) +A (X,X^ ' "^^P-A (X.Z.) +A (X^X,)

'

thus giving r and p when the amplitudes of the oscillations are

known.

319. Peop. II. On imaginary roots.—We may immediately

deduce the following theorem from the equations of Art. 318.

(1) Let the fundamental determinant he symmetricaly i.e., let

the functions D, E, F he all ahsent. Let the potentials A and B
he one-signed and have the same sign {whether C he a one-signed

function or not). Then the real part r of every imaginary root

must he negative and not zero. But if the potential B he ahsent,

then the real part of every imaginary root is zero.

Lf the potentials A and C he one-signed and have opposite signs,

there can he no imaginary roots.

These results follow by simply looking at the two last equations

of Art. 318.

(2) If the terms depending on D and F he ahsent from the

equations, whether the terms depending on E he present or not, and

if the three potential functions A, B, C he all one-signed and have

the same sign, then the real part r of every imaginary root is negative,

and not zero. But if the forces of resistance, i.e. B, he also ahsent,

then the real part of every imaginary root is zero.

(3) If the terms depending on D and E be absent, but not

necessarily those depending on F, and \i A, B, G be all one-signed

and have the same sign, then the real part r of every imaginary
root must be negative, or, if positive, must be less than p.

320. Ex. 1. U Ahea. one-signed function prove that {A{XiX2)}^ is always less

than the product A (x^Xi), A {x^x^).

Ex. 2. If A {m) be the determinant of motion, A^ (m) the minor of its leading

constituent, x^iji, &c. the minors of the first row, and m any quantity not neces-

earily a root of A (m), prove the identity

A (xiXj) rn^ +B (a:i«i) m + C {x^Xi)=A (m) Aj {m).

Ex. 3. If nij, wia be any two quantities not necessarily roots of the determinant

A (m), prove that

A {x,x^) m,^ +B {x,x,)m, + a{x,x,)l _.... (^.
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Ex. 4. If the determinant be symmetrical, and if the potentials A and C be

one-signed and have opposite signs, then whatever sign the potential B may have,

the roots of the determinant are all real.

Ex. 5. If the terms depending on F and E be absent, but not necessarily those

depending on D, and if the three potentials A, B, Che all one-signed and have the

same sign, then the real part r of any imaginary root must be negative or if posi-

tive less than p.

321. Effect of tlie forces of resistance on oscillations about a position of

equilibrium. Let a system be oscillating about its' position of equilibrium under

no forces of resistance, so that the functions B, D, E, F are all zero. We also

suppose the functions A and G to be one-signed and to have the same sign.

By referring to the equations of motion in Art. 310 we see at once that the

determinant of the motion A (S) will contain only even powers of 8. This deter-

minant is of course the same as the Lagrangian determinant discussed in Chap. ii.

It follows either from Chap. ii. or from Arts. 315 and 319 of this chapter that all

the roots of the equation A (5) = are of the form ^ps/ - 1. Any co-ordinate will

therefore be represented by a series of the form

a;= A\ cos pi + A'2 sin2>i+

Let now some small forces of resistance act on the system. We therefore intro-

duce into the equations of motion the terms which depend on the function B. The
forces thus introduced are supposed to be so small that we may reject the squares

of the coefficients of the function B. We represent this by supposing every co-

efficient to contain a factor k whose square can be neglected. It is the effect of

these additional forces on the former motion which we wish to discover.

Referring again to the equations of motion in Art. 310, let Aj (5), A2 (5) be the

determinants of motion before and after the introduction of these forces of resis-

tance. The determinantal equation therefore becomes

A2 (5) = Ai (5) + J3n 5 1^ (8) + &c. = 0,

where the symbol / indicates the minors of the constituents of A^ (5) as explained in

Chap. VI.

This equation may be written in the form Ai(5)-|-«:50 (5)=0, where (5) con-

tains only even powers of 5. Since p\/-l is a root of A^ (5) =0, we let the corre-

sponding root of this new equation be p\/-l+r where r is a small quantity, real

or imaginary, whose square can be neglected. We find by Taylor's theorem

Al{p\^-l)r+Kp^J-l<p{p^/-l) = 0.

Hence since A^' (5) contains only odd powers of 8, it follows that r is necessarily

real.

We have thus proved that the correction to any root of the determinantal equa-

tion when we introduce the resistances is necessarily real. This means that the

correction to the imaginary part of the root depends on the square of the resistances.

The addition r to the real part of the root introduces a real exponential factor e" into

the amplitude of any oscillation. The addition to the imaginary part alters the

period of the oscillation (Art. 317). Thm the periods of the oscillations are affected

only by the squares of small quantities lohen %oe introduce the resisting forces.

322. The series for any co-ordinate will now take the form (Art. 317)

a; = Zi fi'* cos 2)< + A2 e*"' sin pi + . .

.

where p is the same as before and by Art. 319 r is negative. With the same given

initial values of x, y, &c. dxjdt, dyjdt, &c. the coefficients X^, &c. will be changed
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only by terms which contain the factor /r, and being themselves small, these changes

may be neglected.

The value of r may be deduced from the expressions given at the end of Art
318. If the forces of resistance were zero, the real exponentials would be absent

and the ratios A'j/A'a, YifY^ would all be equal. With small forces of resistance

these ratios differ from each other by quantities which contain the small factor k.

It follows that the ratios B(X^X^IA{X-^X^ and B {X^X^)^ (X^X^) are also equal

when we reject the square of the small quantity. The expression for r therefore

reduces to the simple form

«(^Xi)_ B,,X,^ + 2B,,X,Y,+ ...

'^-
^A{X^X^)~'^A^^X^^+ 2A^^X^Y^ + ...-

Translating this formula into English we see by Art. 73 that the numerical value

of r, for any one principal oscillation, is one half the ratio of the mean value of the

dissipation function to the mean value of the kinetic energy for that oscillation.

Forced Oscillations.

323. We may suppose a system to be moving in a given state

of motion defined, as explained in Art. 257, by the co-ordinates

6 = Oq,<I> = <^„, &c. where 6^, (p^, &c. are known functions of the time.

This motion we shall call sometimes the undisturbed motion and
sometimes the steady motion. If the system be now disturbed in

Jany manner, we write = 6q + x, </> = <^o + 3/» ^^- where x, y, &c. are

so small that we may reject their squares. This disturbance may
.have been made by some small impulse and the system may then

liave been left to oscillate about the undisturbed motion.

We may also have continuous forces acting on the system

tending to make it oscillate about the undisturbed motion. As
the object of our enquiry is the oscillation of a system, we shall

suppose that these forces when they exist are periodic. If f{t)

represents any one we may suppose this function to be expanded
by the known processes of Trigonometry in a series of multiple

angles ; thus

f{t) = Pe-** sin {Xt + a) + i^e""'^ sin {\'t + a ) + &c.

Each of these terms is called a disturbing force. The coefficient of

the trigonometrical factor of any term is called the magnitude or

amplitude of that term. The angle Xt-\-ais called sometimes the

phase and sometimes the argument
It frequently happens that the real exponentials are absent

from the expression for the force. This case will therefore be more
particularly considered in what follows. When we wish to call

attention to the absence of the real exponential, the disturbing

force i^ often called a permanent force. When the real exponential

is present with a negative index, we may call the force evanescent,

324. The general equations of motion of the second order are

given in Art. 310, but in Dynamics the terms which depend on
the functions I) and i^are in general absent. The mode in which
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these are formed ^vhe^ the resisting forces are absent is explained
in Art. 111. Including these resistances we may suppose that the
equations of motion take the form

{AJ' +BJ + C,> + /AJ'-i- BJ +C\y+,.,= Pe-* sin {\t + a)

V +J^J J

fAJ' +BJ + C,,\ X + {AJ^+BJ +CJy+... = Qe-<i sin (/.« + /3)

&c. = &c.

where we have written on the right-hand side only one disturbing
force in each equation as a specimen.

For the sake of brevity, it will be found convenient to distinguish the equation

in which any disturbing force occurs by some simple phrase. The first equation

is obtained from Lagrange's equations by differentiating with regard to d or x.

The second by differentiating with regard to or y. The force on the right-hand

side of the first equation may therefore be said to act directly on the co-ordinate x
and indirectly on y, z, &c. So the force on the right-hand side of the second equa-

tion acts directly on the co-ordinate y and indirectly on x, z, &g.

825. Forced and Free Oscillations. It is proved in the
theory of Differential Equations that the solution of these equa-
tions leads to an expression for each of the co-ordinates which
contains two sets of terms. The first set is called a particular
integral and consists of any solution obtained by any process

however restricted. The second set is called the complementary
function and represents the value of the co-ordinate when all the
disturbing forces on the right-hand side are omitted. The comple-
mentary function is therefore the same as the solution found and
discussed in the first section of this chapter.

The complementary functions in the expressions for the co-

ordinates give the oscillations of the system about the undisturbed
motion when not influenced by any disturbing forces. These
integrals are therefore said to constitute the natural or free vibra-

tions of the system. The particular integrals in the several co-

ordinates which indicate the effects of any disturbing force are

called the forced vibrations or oscillations due to that force.

According to this definition any particular integral may be
taken to represent the forced vibration. But in practice there is

one particular integral which is more convenient than any. other.

What this is will be made clear by the next proposition.

A free oscillation does not necessarily mean a principal oscilla-

tion though it is sometimes used in that sense (Arts. 53 and 116).

Any motion represented by any number of terms selected from
the complementary function will be a free motion. The word
" free " is meant to be a contrast to the word " forced."

The term "Complementary Function" is used in Gregory's Examples, 1841.
The distinction of Waves into "free " and " forced" may be found in Airy's Tides
and Waves, published in the Encyclopaedia Metropolitana, 1812.
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326. To find the Forced Vibration. To find a particular

integral for any force Pe'"' sin {\t + a) we follow the methods
already explained in Chap. VL If A (8) be the determinant of

the motion and 1^ (8), I^ (8), &c. be the minors of the first,

second, &c. terms in that row of A(8) which corresponds to the
equation in which the force occurs, we have

^ = ^,gj- Pe-'^^ sin (\t + a), y =i|| Pe""' sin {Xt + a), z^ &c.

We shall now prove that these operators will lead to two
trigonometrical terms in each of the co-ordinates. These two
terms constitute the forced vibration in that co-ordinate.

327. To perform the operations indicated by these functions of 5, we use the

following simple rule. To perform the operation F (S) =~^ on Pe"**
^^^

{\t + a) we

iorite 8=-k + \\/-1 <*^<* reduce the operator to the form li + M\sJ-l. The

required remit is then Pe~*^ (L + M5) {\t + a).

To prove this rule, we notice that by Art. 265 F (5)
g"*= (L + il/>/ - 1) e"' where

m= - K + \y/ -1. If we now replace the imaginary part of the exponential by its

trigonometrical value, and equate the real and imaginary parts on each side of the

equation, the result follows at once.

328. Ex. If the determinant A (5) have a roots each equal to m, i.e. ~k+\J -1,

the result assumes an infinite form. Prove that in this case the operator may be

replaced by {^"1(5) + af«-^r(5) + ... +I«(5)}/A"(5),

where the coefficients follow the binomial law, and A* (5), &c. have been written

to express the ath differential coefficient of A (5), &c. Every one of these operations

may now be performed by the rule given in the last article.

To prove this, we replace the root m by m+ ^ where h is to be afterwards put

equal to zero. We then find

i|e-={lWe-.....+£,,I(»)0|^,}/{A'W|:j

The first a terms of this series though infinite may be absorbed into the

complementary function. The solution is therefore expressed by the (a + l)th term.

329. Ex. A particle describes a nearly circular orbit about a centre of force

whose attraction varies inversely as the square of the distance. It is also acted on

by two disturbing forces represented by P sin X( and Q sin Xt acting respectively

along and perpendicular to the radius vector. If the polar co-ordinates r, 6 be given

hj r=a+Xf 0=int+y, prove that the equations of motion are

(52 - 3n2) X - 2andy=P sin \t
j

2n5.r + a52// = Q8inXM
show that the forced vibrations are given by

330. Smooth and Tremulous Motion. We have supposed
the system to be capable of moving in some state of steady

motion, just as a hoop rolls on the ground in a vertical plane.

But owing to some small disturbances the system really oscillates
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on each side of this steady motion, the amount of disturbance
being always represented for each co-ordinate by the sum of

the natural and forced oscillations. When the period of one
of these is small the system rapidly changes from one side to

the other of its mean or steady motion. This mean motion will

then appear to the eye to be tremulous. When the periods of all

the oscillations are very long the changes from one side of the
mean motion to the other takes place so slowly that it is hardly
perceived to be an oscillation. The mean motion is thus said

to be smooth.

331. Disappearance of the Free Vibrations. When a
system is set in vibration by any continuous permanent disturbing

force, we have seen that two kinds of vibration are excited in

the system, viz. the free and the forced vibrations. If there be
no forces of resistance both these will continue to coexist through-
out the motion. But the forces of resistance introduce an ex-

ponential into the free vibration which causes the amplitude
of the vibration to decrease continually (Art. 319). Finally the
free vibration becomes insensible. But the amplitude of the
forced vibration does not decrease. Thus the oscillation of the
system is ultimately independent of the initial conditions and
depends only on the forced vibrations. The forced vibration

produced by a permanent disturbing force is therefore sometimes
called the permanent vibration.

332. It is sometimes important to compare the rates at which
the different free oscillations tend to become extinct under the
influence of the resisting forces. It is clear that this depends
on the magnitude of the negative quantity r in the exponential

factor e*^ introduced by these resistances. Since this factor is not
necessarily the same in all the terms, it follows that all the free

vibrations do not diminish at the same rate. Some may become
insensible before the magnitudes of others have been much
impaired.

When the initial amplitudes of any one principal oscillation are known in all

the co-ordinates, the value of r for that oscillation can be deduced from the equations

given in Art. 318. But when the system is oscillating about a position of equilibrium

and the forces of resistance are small the expression for r takes the very simple

form given in Art. 322. If Z^, Y^ &c. be the ampUtudes in the co-ordinates x, y,

&c. of any one free principal oscillation, this expression is

^^iiZi2+ 2^i2Ziri+...'

where the vis viva and twice the dissipation function are given by

2^= ^iia/2 + lA^^y^y' + . .
.
, 25 = jB^a^'^ + IB-^^y' + , . .

.

The use of this expression for r will be best shown by a few examples.

333. Ex. 1. Let us regard a homogeneous tight chain as constructed of a series

of equal very small particles, each of mass w, connected by very short strings each

of length I and without mass. Let x, y, &c. be the displacements of the particles of
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such a string vibrating, say, transversely. Then the vis viva is given by Smx'^.

Suppose the resistance of the atmosphere to be represented by a retarding force on

each particle which varies as its actual velocity. Prove that the dissipation func-

tion B may be represented by 2B= 'Zkirx^ Taking k to be the same for all the

particles it inmaediately follows that r=-\K. This is the same for all the free

vibrations.

Ex. 2. If the particles of the chain vibrate longitudinally instead of transversely

the effects of the resistance of the air will be less than before while the effects of

viscosity or imperfect elasticity wiU be more apparent. Let us suppose that these

may be represented by a series of forces resisting compression or extension between

adjacent particles, each force being proportional to the relative velocities of the two

particles between lohich it acts and reacts. Prove that the dissipation function B
inay be represented by 2B= Sxm {x' - y')^.

Speaking in general terms, we infer that r is greatest for that kind of oscillation

in which the differences of the amplitudes of the oscillations of adjacent particles

are greatest. Oscillations of this kind will disappear the soonest, while those in

which adjacent particles move nearly together may remain perceptible for a long

time after. This is sometimes briefly expressed by saying that the effect of viscosity

is to extinguish the shorter waves before the longer ones.

Ex. 3. If the co-ordinates be so chosen that the dissipation function and the vis

tiva take the forms 2B = J9nx'2 + B^^j'^ + ... 2T = A^^x'^ + ^22!/'^ + • • •

then the value of r for every principal vibration lies between the greatest and least

of the fractions J?ii/2Jii, B^zl^An, &c. It will be noticed that these limits are inde-

pendent of the force function and are therefore the same whatever the forces may be.

Ex. 4. The membrane which forms a drum-head vibrates transversely when

struck. If the resistance of the air be slight and vary as the actual velocity of each

particle, show that all the free vibrations have the same real exponential factor.

Ex. 5. When successive notes are sounded on a musical instrument the terminal

motion of one note is the initial motion of the next. Explain why each note is not

sensibly affected by the preceding one.

.334. HerschePs Theorem on the period of the Forced
Vibration. On comparing the terms in Art. 327 which con-

stitute the forced vibration with that which forms the disturbing

force, we notice that the period of the forced vibration is the same
as that of the force to which it is due. Thus if any periodical

cause of disturbance act on a system of vibrating particles the

forced vibrations follow the period of the exciting cause. This

important theorem is due to Sir J. Herschel, who first enunciated

it in his Theory of Sound {Encyc. Met. 323). His demonstration

however is totally different from that given here.

More generally, the disturbing force and the resulting forced

vibration have not only the same period, but have the same real

exponential .also. Thus, when the fundamental determinant has

no equal rpots the two have the same general form or type. A
permanent force produces a permanent vibration, an evanescent

vibration follows only from an evanescent force.

. In the proof of this theorem we have assumed that the system
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of vibrating particles is such that the squares of the displacements
can be neglected.

The theorem also only applies to the forced vibrations. If

therefore we wish to apply Herschel's theorem to the actual

visible motion, a time sufficient to allow the free vibrations to

die away, must have elapsed since the initial motion. See Art. 331.

•335. As an example of this principle we may notice that when a sounding body

(such as a drum) excites vibrations in the air, the period or pitch of the sound

produced in the air and in the ear is the same as that of the sounding body.

336. As another example we may take one given by Herschel. Let a ray of

light fall on a refracting substance like glass. The vibrations of the incident light

must excite vibrations inside the glass. These last as long as the exciting cause

continues and therefore constitute the forced vibration. The period of the re-

fracted light is, by Herschel's theorem, the same as that of the incident light.

There are however some exceptions to this result. Thus in the Phil. Trans, ioi

1852 Prof. Stokes has pointed out that light beyond the ultra violet by passing

through certain substances may have its period so lengthened as to become visible*.

And Prof. Tyndall by means of the ultra red rays heated a platinum foil to

incandescence and thus so shortened the periods that the vibrations became visible.

See his Rede Lecture, 1865.

337. How a Disturbing Force is Magnified. Let a system
be acted on by two permanent disturbing forces which we may
represent by the two terms P sin {Xt + a) and Q sin (fxt + ^) both
placed in the first equation of Art. 324. The corresponding
forced vibrations in the co-ordinate 00 are given by

where 1(B) is the minor of the x term in the first line of the

determinant A (S). These coefficients contain the operator 8 and
their magnitudes will therefore depend on X and fi. We therefore

infer that the effects of different permanent disturbing forces acting

under similar conditions on the same co-ordinate are not simpli/

proportional to their respective magnitudes hut depend on their

periods.

* To understand the cause of these exceptions we must remember that the

forces of restitution have been taken proportional to the first power of the displace*

ments, i.e. only the first powers of x, y, &c. have been retained. Now the molecules

of a body may be compounded of smaller atoms closely packed together. When the

oscillations under consideration are such that only the molecules move amongst

each other these displacements may be so small compared with the distances of the

molecules from each other that the force of restitution /(^), due to a displacement ^

of any molecule, may be replaced by the first power which occurs in M'Laurin's ex-

pansion. But when the oscillations are such that the closely packed atoms of each-

molecule move amongst each other, the force of restitution may no longer vary as

the first power of the displacement. Thus the equations of Art. 324 may apply to the

former but not to the latter kind of motion. The reader is referred to Prof. Stokes'

paper.



190 FORCED OSCILLATIONS.

338. Without however restricting ourselves to permanent
disturbing forces, let us consider the forced vibration produced by
the disturbing force Pe"*^ sin \t. Writing as before (Art. 327)
m = — /c + XV — 1> the resulting forced vibration is the co-

efficient of V- 1 in I (^) p ™e _ p^W «»

A (6) A (m)

If m be nearly equal to a root of A (S) the denominator of this

expression is very small. But the types of the free vibrations

are given by A{m) = as shown in Art. 262. We therefore infer

that a disturbing force whose period and real exponential are

nearly the same as those of any one free vibration will produce a
largeforced vibration.

339. Usually the disturbing forces are of the permanent
type P sin {\t + a). If there be any free permanent oscillation

of the form A sin (pt + ^) where p and X are nearly equal, we
have just seen that this force will produce a magnified oscillation.

But if any resisting forces, which vary as the velocities, act on
the system, these resistances will introduce a real exponential
into the free oscillation (Art. 319). Thus the t5rpe of the dis-

turbing force will be no longer the same as that of the free

particles. We conclude that one effect of the resistances on a dis-

turbing force which would otherwise produce a magnified forced
oscillation is to modify that oscillation and keep it within bounds.

340. As a simple example of this dynamical principle, let us consider how
easily a heavy swing can be set into violent oscillation by a series of little pushes

and pulls if properly timed. If we push when the swing is receding and pull when
it is approaching us, the swing is continually accelerated and the arc of oscillation

will be greater and greater at each succeeding swing. Such a series of alternations

of push and pull is practically what we have called a permanent disturbing force

whose period is the same as that of the free vibration of the swing. But if the

period be very unequal to that oT the free vibration though a few pushes and pulls

may increase the arc of vibration yet a time comes when the effect is reversed. The

force acts opposite to the motion of the swing and the oscillations will decrease just

as they before increased.

341. We may take a second example from the rolling of ships at sea. The
ship has its own natural vibration together with that forced one which follows the

oscillation of the waves. If the periods of these synchronise the rolling of the

ship may become very great. Mr White in his Manual of Naval Architecture men-

tions several interesting examples of this. After noticing how some vessels are

made to roll heavily by an almost imperceptible swell, he mentions the case of the

Achilles, a vessel of great reputation for steadiness, which rolled more heavily off

Portland in an almost dead calm than it did off the coast of Ireland in very heavy

weather. Again in the cruise of the combined squadrons in 1871, though the

Monarch far surpassed most of the vessels present in steadiness when the weather

was heavy, there was one occasion (possibly owing to a near agreement between the

natural period of this ship and the period of the waves) when the ship rolled more

heavily in a long swell than some of the most notorious heavy rollers.
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342. A good use of this principle was made by Capt. Kater in his experi-

ments to determine the length of the seconds' pendulum. It was important to

determine if the support of his pendulum was perfectly firm. He had recourse

to a delicate and simple instrument invented by Mr Hardy a clockmaker, the

sensibility of which is such that had the slightest motion taken place in the support

it must have been instantly detected. The instrument consists of a steel wire,

the lower part of which is inserted in the piece of brass which forms its support,

and is flattened so as to form a delicate spring. On the wire a small weight slides

by means of which it may be made to vibrate in the same time as the pendulum
to which it is to be applied as a test. When thus adjusted it is placed on the

material to which the pendulum is attached, and should this not be perfectly firm,

the motion will be communicated to the wire, which in a little time will accompany
the pendulum on its vibrations. This ingenious contrivance appeared fully adequate

to the purpose for which it was employed, and afforded a satisfactory proof of the

stability of the point of suspension. See Fhil. Trans. 1818.

343. It has been shown in Art. 338 that a disturbing force may produce a large

vibration in x if its period be such that the denominator A (5) is small. But this

result is affected by the operator / (5) which occurs in the numerator. If for

instance the result of the operation of the minor I (5) be zero, the forced vibration

disappears.

Now these minors are just the operators used in finding the free vibrations.

Thus in Art. 2G2, we have x= I{8) [type].

If then any one of the free vibrations be absent from one of the co-ordinates

though present in the others, then a disturbing force of nearly the same period will

not produce a large forced vibration in that co-ordinate. We infer that a disturbing

force can prodtice a large forced vibration in any co-ordinate only if there be in that

co-ordinate a free vibration of nearly the same period and containing nearly the same

real exponential.

344. If the force be nearly equal to Pe ~ '^^ sin (X« + a) , it may occur that the deter-

minant A (5) has a roots equal to -k-\-\ \/ -1^ while the minor 1(5) has none of

them. In this case the forced vibration will be divided a times by a small quantity

and is said to be magnified a times. But if the minor I {5) has j3 of these roots, the

forced vibration will be magnified a - j3 times. By reference to Art. 272 we see that

the co-ordinate x has in this case powers of t up to the (a - j3 - I)"' in the coefficients

of its free vibration. We infer that the forced vibration in any co-ordinate loill be

magnified once more than the highest poiver of t ivhich occurs in that co-ordinate in

connexion with the free vibrations of nearly the same period.

345. As an example let us consider the case of a planet describing a circle about

the sun considered as fixed in the centre. If slightly disturbed the change in the

radius vector and longitude will be small and these changes may be represented by

what we have called x and y. From the theory of elliptic motion we know these

will be approximately x=a-ae cos [nt + a),

2/= 6f + c + 26 sin (nf + a),

where a, b, c are small quantities and 2irjn is the period of the planet. These are

of course the free vibrations. Comparing these with the type sin {\t -{- a) we see that

two free vibrations occur in x, viz. \= n and X = 0. There are three free vibrations

in the expression for y, viz. \= n and two equal values of X each zero. These equal

values introduce the terms with powers of t as explained in Art. 266.
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We infer that any small permanent periodical force will produce a viagnijied

disturbance both in the radius vector and longitude of a planet, if its period is

nearly equal to that of the planet or is very long. Since there are two equal free

periods in the longitude whose type is X= and only one in the radius vector, those

small disturbing forces whose periods are very long will be twice magnified in their

effects on the longitude and once magnified in the radius vector. If any such forces

as these act on the planet it will be necessary to examine into their effects. Small

disturbing forces, whose magnitudes are less than the standard of small quantities

to be retained, may be disregarded only if their periods are different from those

just indicated.

These rules are used in the Lunar and Planetary Theories to assist us in estimat-

ing the values of the disturbing forces. They enable us to separate from the crowd

of small forces those which can produce sensible effects on the motions of the

planets.

346. How a disturbing force is diminished. Let us resume
the expression given in Art. 326 for the forced vibration due to

a continuous disturbing force. We remark in the first place that

the denominator of the coefficient contains higher powers of \
than the numerator. To show this it may be sufficient to notice

that the determinant of the motion A (8) has two powers of 8 more
than any of its minors. We therefore infer that, in the limit,

when X is very great, i.e. when the period of the disturbing force is

much smaller than that of any free oscillation, the forced vibration

produced is in general insignificant.

347. When the type of a continuous disturbing force f{t)
which acts directly on the co-ordinate x is such that it satisfies

the differential equation I^(S)f(t) = 0, we remark in the second

place that the forced oscillation in the co-ordinate so wholly

vanishes. Now I^{B) = is the determinantal equation whose
roots give the free vibration when the co-ordinate x is constrained

to be zero. We infer that when the type of a disturbing force

which acts directly on any co-ordinate x is nearly the same as any
one of the modes of free vibration when x is constrained to be zero,

then the forced vibration in x will be very small.

348. Ex. A tight string, whose extremities A and B are fixed, is acted on trans-

versely at any point C by a permanent disturbing force. If the period of the force

be equal to any one of the periods of a string stretched with the same tension but

whose length is either ^C or CB^ show that the forced vibration will not disturb the

point C. If the strings A C, CB have no free period in common, show that one

string will not be moved by the forced vibration.

We may also deduce this result from some elementary considerations. Let the

string be held at rest at C and let the part ^C be set in motion, CB being at rest.

The pressure at C when resolved perpendicular to the string will represent a per-

manent disturbing force whose period is equal to that of any one of the free vibrar

tions of AC. Replacing the pressure by the disturbing force we have -4C in

vibration and CB at rest.

349. How an Impulse is diminished. When a system of

machinery is moving in some state of steady stable motion it may
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be liable to disturbance from any sudden jerks whose effects it

may be important to diminish as much as possible. Let us con-

sider briefly what means we have to abate an impulse.

When the jerk has completed its work and has ceased to act,

the system is displaced from its proper state of motion. It now
begins to oscillate about this state. Thus the effect of the jerk

is to introduce a new set of " free oscillations." If there be any
forces of resistance these free vibrations will begin to fade away
and the system will tend to assume a state of steady motion.

One method of correcting the effects of a disturbing impulse is there-

fore to increase the resisting forces.

These resistances which are thus intentionally introduced into

the machinery should be properly arranged. They should be such

as not to affect the steady motion, but to begin to act only when
the machine deviates from its intended course. An example of

this has been given in Art. 105, where the motion of the Governor
was discussed.

350. The actual effect of a jerk X on any co-ordinate such as x is easily deduced

from the equations of Art. 118. If A be the discriminant of the quadric A where

2A=A-^y^x'^ + 2Ai2^+ and I^ the minor of the constituent A^-^, we have

dx^-dx,={I^JA)X.

If then it is important to lessen the effects of the impulse X, we may make

some addition to the machine or modify the arrangement of its parts so as to in-

crease the discriminant A as compared with / as much as possible.

If the function ^ be a positive one-signed function, its discriminant A is positive.

We may then show, as in the next article, that the ratio of /^ to A is in general

decreased by the addition of the square of any linear function of at, y, &c. to the

function A. Now the quadric function A with accented co-ordinates is part of the

expression for the vis viva (Art. Ill) and is always a positive function. Hence if

any addition be made to the vis viva the corresponding addition to this function is

also positive and may be expressed as the sum of a number of squares of linear

functions. We may therefore in general weaken the direct effects of jerks on a

system by increasing the expression for the vis viva.

The usual method of effecting this is to attach a fly-wheel to the machine. The

vis viva of a rotating body is Mk-u^, where Mk^ is the moment of inertia of the

body about the axis and w is the angular velocity. The advantage of using a wheel

is that with a given quantity of additional matter, the additional terms may be in-

creased to any extent by increasing the radius of gyration.

351. Ex. 1. If the co-ordinates be so chosen that the square factor added to

the quadric 2A is of the form fiy^, where y is any co-ordinate other than x, show

that the ratio I^/A becomes {Iii + fiA2)l{A + fiI^2)f where Ag is the second minor

formed by omitting the two first rows and columns, and the suffix of each I indi-

cates as usual the constituent of which that I is the minor. Show also that the

second ratio is less than the first by I-^^^/xjAlA + fil^z). Show also that thi$

difference is positive or zero and has a finite limit when fi is infinite.

Ex. 2. If the square factor added to the quadric 2^ be fjL{ax+ hy + cz + ...y\

show that the direct effect of an impulse represented by X on the co-ordinate x will

not be altered by this addition to the inertia if a^I^j^ + 2^61^112 + 62/12^ -1- ...=0.

R. D. II. 13
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352. The interval at which any phase of effect follows
the same phase of cause. Any disturbing force tends alter-

nately to increase and decrease the deviation of the system from

its undisturbed position, but it is not true that this deviation

actually increases when the force urges an increase or decreases

when the force urges a decrease. To examine into this point we
notice that by Art. 327 the forced vibration produced by a disturb-

ing force Fe-"^ sm(Xt + a) is

Pe""' {L sin {Xt + a) + 3/ cos {\t + a)]

= PsIuTWe-'^i sin (\t + 0L + tan"'^V
In this transformation it is clear that if the square root in the

coefficient be regarded as positive, the angle added to the phase

must be such that its sine has the same sign as M and its cosine

the same sign as L. The consequence is that all the possible

values of the change of phase differ by multiples of 27r.

Comparing the expression for the forced vibration with that

for the disturbing force we see that their maxima do not occur

simultaneously. The maximum of the oscillation occurs later than

the maximum of the force by an interval equal to - (1/X) tan"\i//i^).

In the same way every phase of the oscillation follows the corre-

sponding phase in the force after the same interval.

The change of phase in any co-ordinate thus depends on the

values of L and M for that co-ordinate. These are easily found

by the rule given in Art. 327, where it is shown that if we write

8 = ^ AT-t-X V— 1 i^ ^l^e operator 1(B)/A (B) for that co-ordinate the

result is Z-filf7-1.

353. If the disturbing force be permanent, i.e. be of the form Psin(\f+ a),

and if the forces of resistance be neglected, the determinant A (S) contains only

even powers of 5 and is therefore real after the substitution d=\s/ -h "We infer

therefore that if the minor 7(5) be also real when the same substitution is effected,

the phase of the forced oscillation is the same as that of the force or is greater by

T according as I, =1(5)/A (5) is positive or negative. If the minor 1(5) is of the

form HfJ - 1, the phase of the oscillation is greater than that of the force by + ^tt

or - ^TT according as I(5)/5A(5) is positive or negative.

If we consider the direct effect of a force on any co-ordinate the minor 7(5)

contains only even powers of 5, as well as the determinant A (5). If the centrifugal

forces are absent as when the system oscillates about a position of equilibrium,

every minor contains only even powers of 5. In all these cases the forced vibra-

tion is simply a multiple positive or negative of the disturbing force without

further change of phase.

354. Ex. A particle describes a nearly circular orbit about a centre of force

which attracts according to the Newtonian law, and is acted on by a permanent

disturbing force along the radius vector. Show that the particle at any moment is

inside the mean circular orbit when the force acts outwards and outside when the

force acts inwards, provided the period of the force is less than that of the particle

in its undisturbed orbit round the centre of the force. But the reverse of this is the
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case if the period of the disturbing force is greater than that of the particle. Would
there be a similar distinction of cases if the centre of force attracted according to

some inverse power greater than 3 ?

Second approximations,

855. When we try to find the oscillations of a dynamical
system we generally proceed by continued approximations. We
first reject all the squares of the small quantities and thus obtain

a set of linear differential equations. Solving these we substitute

the results in the terms of the second order and treat these

functions of t as disturbing forces. Their corresponding forced

vibrations are then found. The operation may be repeated for a

third approximation and so on.

It has been shown in Art. 337 that when the forces of resistance

are small, a permanent disturbing force whose period is nearly

equal to that of any one of the free vibrations produces a magnified

forced vibration. It follows that a small force of proper period

which would appear in the . differential equations only when we
include terms of (say) the third order may produce oscillations in

the co-ordinates which are of the second or first order.

If therefore we wish to have our results correct to any given

order it will he necessary to retain, for examination, those periodic

terms in the differential equations of higher orders whose periods

are nearly equal to any of the free vibrations.

We also see the importance of proceeding to higher approxima-

tion. These small terms which produce such large forced vibra-

tions may not make their appearance until the terms of the higher

orders are examined. Thus some important oscillations may be
missed if we stopped at a first approximation.

356. When we substitute our first approximation in the terms of the higher

orders it sometimes happens that permanent disturbing forces make their appear-

ance whose periods are exactly the same as those of some of the free vibrations

included in the first approximation. When this occurs, it has been shown in

Art. 328 that the forced vibration changes its character. The solution now con-

tains terms with powers of t as factors. These terms (not being balanced by the

proper exponential factors, Art. 283) will become large, so that the system will

depart widely from the state indicated by the approximate solution.

This is another way of saying that what we have taken as our first approx-

imation is not sufficiently near to the truth to serve as an approximation. In

most dynamical problems the disturbing forces are given as functions of the co-

ordinates and then by the approximate solution expressed as functions of the time.

Thus the expressions for the forces themselves are only approximations. It may

therefore happen that if we can obtain a more correct first approximation to the

motion the small terms which indicate such a large departure from the first

approximation may not make their appearance.

To find a sufficiently correct first apiiroximation to the motion it may not he

enough to take the solution of the differential equations when all the terms of the

13—2
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higher orders are neglected. We must include in these differential equations all

tJiose small terms of the higher orders which so materially affect the viotion. The

solution of these modified equations {if one can be found) is to be taken as our first

approximation.

Let us repeat the argument in a slightly different form. The first approximation

comprises aU the largest terms in the expressions for the coordinates and may
generally be taken to represent the visible motion of the system. If now a disturb-

ing force, such as that we have just described, act on the system, it greatly modifies

the visible motion and in turn its own period is modified by the change of motion.

Thus the system takes up some new state of steady motion with oscillations about

that steady motion. This obliges us to abandon the former first approximation

in order to use one which may be a permanent representation of the new visible

motion.

When we examine this new first approximation, as in the following examples,

we find that it sometimes has the same general character as the former, but with

the important exception that the free vibration whose period was the same as that

of the force has been greatly modified. We therefore infer that when a small

disturbing force is wholly or in part a function of the co-ordinates and has the same

period as a free oscillation of the system, it may have the effect of removing that type

offree oscillation from the system and replacing it by some other type of a different

period.

367. Before proceeding to the general theory we shall illustrate the method of

proceeding by a simple example.

A particle oscillates in a straight line about a centre offorce whose attraction at a

distance x is represented by p^x + /Sx^. Find the time of a small oscillation.

The equation of motion is clearly

-^^,+ p'x=-px^ (1).

As a first approximation we reject the term on the right-hand side as being of the

third order of small quantitiesi We then find

x=MBm{pt + a) (2).

Proceeding to a second approximation we substitute this in the term previously

rejected. We have

d^x B—+p^x=-'^M^ {S Bin {pt + a) -Bind {pt + a)} (3).

The first trigonometrical term on the right-hand side has the same period as the

oscillation which represents the first approximation and will therefore modify

considerably that approximation (Art. 356). To include its effects we must alter

equation (2). This modified solution when substituted in the differential equation

must make the left-hand side, not equal to zero as before, but equal to a very small

quantity, viz. the small disturbing force. As a trial solution we shall therefore

retain the same general form. The letters M and a being undetermined will still

serve for general symbols, but we shall replace p hy p + fi where /j. is some small

quantity to be determined by the disturbing force. We shall therefore write the

first approximation in the form

x= MBin {{p + fM) t + a) (4).

Proceeding to a second approximation we have

^^+p^x=-^]iPBm{{p + ^)t + a)\.



CHANGE OF THE FIRST APPROXIMATION. 197

If our correction be successful, this equation must be satisfied by our amended first

approximation. Substituting we find the equation is satisfied provided

M{-{p + fjir+p']=-i^m,
a

.'. u=f- il/2 nearly.
P

Thus the oscillations of the particle about the centre of force are very nearly

represented by equation (4). The effect of the disturbing force - ^x^ is to shorten

the time of oscillation by a quantity which depends on the square of the arc.

358. If the force of attraction had been p^x + p{dxIdt)^ instesid of that given

above, we may show that this process would have failed.

Taking the first approximation as before and substituting in the differential

equation we obtain

—^+p^x=^-^3P {3 COB {pt + a) + cos S{pt + a)}.

Neglecting the second trigonometrical term as before, let us try to include the other

in our first approximation. Taking the amended form (4) and substituting we find

that we should have

M{-{p + /xf +p^} sin {{p + fi)t + a}=- f/^ili^ cos {{p + /*)« + a}.

But this equation cannot be satisfied by any constant value of /j.. The effect of this

disturbing force is therefore not merely to alter the time of oscillation.

359. Ex. A particle describes a nearly circular orbit about a centre of force

whose attraction at a distance r is represented, by fi {u^ + jSu") where u is the re-

ciprocal of r. If j8 be very small show that the path is nearly represented by

u= a{l + e cos {cd - a)},

where c= 1 - ^/Sa^-s (w - 2) {1 + ^ (w - 3) (n - 4) e^+ &c.},

provided the square of ^ can be neglected. This example is a modification of a case

which occurs in the Lunar Theory.

360. General Theory. Having illustrated the method of treating the terms of

the higher orders by several examples, we shall now consider the subject more
generally. Our object is to so modify the first approximate solution as to include

in it (when such a thing is possible) the effects of small forces whose periods are the

same as those of the free vibrations (Art. 356). The general result arrived at will

be given in the summary at the end of the argument.

We shall suppose the left-hand sides of the differential equations to contain

all the first powers of the small coordinates x, y, z, &c. These therefore take the

form given in Art. 324 or more generally Art. 262. The disturbing forces are placed

on the right hand sides and contain powers and products higher than the first of

the co-ordinates x, y, &c., and their differential coefficients. Thus all these dis-

turbing forces would be neglected if we took into account only the terms of the

first order. We shall also suppose that these disturbing forces are not explicit

functions of the time. If this condition be not satisfied, the following analysis

must be slightly modified.

361. To avoid a complication of symbols let us resume the exponential values

of the sine and cosine. Let then the first approximation obtained by neglecting in

the differential equation all terms beyond the first order be

x=-M^e'^^^+ M^'^'*+..y

y = N^e'^^* + N^e'"^*+...[ (1).

&c. = &c. 7
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On proceeding to a second approximation we substitute tliese values of «, y, &o. in

the several small terms which were before neglected. Taking some term which

contains the products and powers of the variables the result of the substitution

produces disturbing forces of the form

SPe(/'»i+fl'"»a+- •)^
(2),

where the order of the term is f+g+... If these quantities /, g, &c. are such that

any number of relations hold of the form

fmj +gm2+...=mi (3),

there will be just so many of these disturbing forces which take the type Pe^i^.

The forced vibrations derived from these are obtained by using the operator I (5)/A (5)

and are evidently infinite. To include these in the first approximation we replace

the equations (1) by
x=M,e''^*+M^''^U ...\

&c.=&o. )

where the AVs 2^s, &o. are not necessarily the same as before, and each n only

differs slightly from the corresponding m. Substituting as before we of course

obtain a disturbing force of the form (2) but with w's written for the m's. If we
assume the same relations to hold as before between the exponents, viz.

/Wi + <7W2+...=ni (5),

this force will take the type Pe^^*. There may also be other relations similar to (5)

but with ng or Wg, &c. written for % on the right-hand side and these will introduce

other disturbing forces whose effects have also to be included in the new first

approximation.

Including these forces we may write the differential equations in the form

/ii(8)«+/i2(5)2/ + ...=Pie^^'+P2e^'+...l

f2A5)x+f^{8)y + ... = Q,e''^*+Q,e'^+...\ (6).

&c.=&c. '

where the functional symbols /u (5) &c. have been used for the sake of brevity. If

we have been successful in including the effects of these disturbing forces in our

new first approximation, these differential equations must be satisfied by the values

of X, y &c. given in (4). Substituting we have

/2lK)^l+/22K)^l+... = Ql \ (7).

&C.=&C.J
with similar equations for each of the other disturbing forces.

In these equations the Ws are to be regarded as arbitrary, their values being

reserved to satisfy the initial conditions of the motion. Our object is to find the

values of the remaining coefficients, viz., the 77's and also the values of the n's in

terms of the M's. These values of the n'« must also satisfy the relations (6).

Supposing this test to be satisfied we have found values of the co-ordinates which
satisfy the differential equations to the first order, and include the disturbing forces

which appeared to threaten the stability of the system.

862. The forces P, Q, &c. may each consist of several terms of different orders

of smallness. But the lowest is supposed to be of a higher order than the coefficients

3f, N &c. Taking only the lowest powers which occur in P, Q &c., we may easily

find a first approximation to the values of nj, n^ &c. Solving the equations (7) we
find M, A in,) = PJ,, (n^) + Q,I,, {n,) -f &c.,
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where Ju (n) &c. are as usual the minors of the determinant A (w). Let n^=mi+ n^,
W2=m2+ /A2 &c- Since all the terms on the right-hand side are smaller than ilf^ we
may in these terms write n^= m^, n^= vi^ &c. Eemembering that A {m-^ = 0, we have

^^i^^^A*i=i'iiuK) + Qi/2iK) + &c (8).

In the same way we have
'

The forces P^ &c. are functions of il/j, N^ &c., Mc,, N.^ &c. But looking at equa-
tions (7) we see that the ratios of iHj, Nj^ &c., differ from the ratios of the minors

Jii(%), IiaW &c. by quantities of the order PjM. We may therefore in calcu-

lating the values of P^ &c., substitute for iV^ &c., N^ &g. by the help of these ratios.

Thus the right-hand sides of the equations (8) are all known functions of the

arbitrary iH's and of the roots of the determinantal equation A (5) = 0.

The quantities /, g &o. are usually positive integers. In this case the orders of

the quantities P &c. are not less than /+ g + &c. It follows that the corrections

/ij, /j,2 <^c. are of the order f+ g + &c. - 1 at least.

363. Suxuxnary of results. We may embody the results of equations (8) in a

rule.

Taking the first approximation viz. a;= Mje'^i*-i-&c. found by rejecting all terms

of the higher orders in the differential equations, we proceed to a second approxi-

mation. Suppose that in consequence of some relations such as

frrij^ + gm^ + &c. = m^,

we arrive at disturbing forces P^e'"''*, F^e^'^* &c. These would produce infinite

terms in the co-ordinate x, if we employed the operators J (5)/A (5), &c. as usual

(Art. 326). Instead of these let us employ the operators I (5)/A' (5), &c. simply

replacing A (5) by A' (5). Let the result be x=B.e^^^->rKe^^-\-&Q., where II and K
contain powers of M^, M^, &c. above the first. Then the effects of these disturbing

forces may be taken account of to the next approximation by replacing the first

approximation by aj^iUje^^'^i+'^i^'^-f Jf2e("'2+M2)^ where fi^= HjM-^, fi^^KlM^ &c.,

provided these new indices satisfy the relations /^j + gix^ + &c. = ijl^, &c.

Supposing this condition to be satisfied, we see that a disturbing force of the

same type and period as a free vibration has the effect of removing that type from

the system and replacing it by some other type of vibration which is more and more
remote from the original type the greater the amplitude of the vibration.

364. Examples. A pendulum swings in a very rare medium, resisting partly as

the velocity and partly as the square of the velocity, to find the motion.

Let 9 be the angle the straight line joining the point of support to the centre

of gravity G of the pendulum makes with the vertical. Then the equation of

motionis
d^ + V'''^=-^''d^-f'[dl) ^^)'

where I is the length of the simple equivalent pendulum, 2k and /j. the coefficients

of the resistance divided by the moment of inertia of the pendulum about the

axis of suspension. Let g = ln^. Since d is small we may write the equation in the

- d^d ,^ „ de fdey ^e^
form _+„.,= _2.^-^(^)+«=.^-...

Since k and 6 are very small, we might at first suppose that it would be

sufficient as a first approximation to reject all the terms on the right-hand side.
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This gives (?=aBinnt, the origin of measurement of t heing so chosen that t and d

vanish together. If we substitute this in the small terms we get

— + n^d= - 2icn . a(iOBnt + \ n^a" sin nt + &c.,

which gives ^= a sin nt — Kat sin nt +^naH cos nt + &c.

These additional terms contain t as a factor, and show that our first approximation

was not sufl&iciently near the truth to represent the motion except for a short

time. To obtain a sufficiently near first approximation we must include in it the

small term 2k ddjdt (Art. 356). We have therefore

d'^d ^ dd ,, ^

This gives ^= ae ~ "'
. sin mt, where for the sake of brevity we have put n^- k^= m*.

In our second approximation we shall reject all terms of the order a^ or a?K

unless they are such that after integration they rise in importance in the manner
explained in Art. 344. We thus get

^ + 2K^^+n''e= -^"^ e-^''Hl + coB2mt) +'^a^^^^{Z%inmt-Bm^mt^

-fia^Ke 2*M - ^ + |cos2m<+msin2mn,

where all the terms on the right-hand side after the first are of the third order, and

are to be rejected unless they rise in importance. To solve this, let us first consider

the general case

j-^+2K~+n^e=e~'P'^^ . {A Bin rmt +B cos rmt).

Put ^= e P*^ (L sin rmt+ 31 cos rmt). Substituting we get

L{{p-lYK^+ m^{l-r^)} + 2{p-l)KrmM=.
M{{p - l)2/c2 + m2 (1 - r2)} -2{p-l) KrmL=.

Now K is very small. If then r be not equal to unity, we have L= —yy. — j^

,

B — B A
*^=—271 5^ nearly; but if r=l, we have L=^r-, =t— , -Sf=ir? r^— nearly.

m^{l~r^) •' ' 2{p-l)Km 2{p-l)Km *'

The case of p= l does not occur in our problem. It appears that those terms only

in the differential equation which have r=l give rise to terms in the value of x

which have the small quantity k in the denominator. Hence in the differential

equation the only term of the third order which should be retained is the first.

We thus find, putting successively r=0, r=2, r=l,

^= ae -«< sin m« -^ « ~ 2"
^ +^ e~^''* cos 2mt +^^ e^^"^ cos mt.

2 6 32/c7n

This equation determines the motion only during any one swing of the pendu-

lum ; when the pendulum turns to go back /* changes sign. Let us suppose the

pendulum to be moving from left to right, and let us find the lengths of the arcs of

descent and ascent. To do this, we must put ddjdt = 0. Let the equation be written

in the form d=f{t), then if we neglect all the small terms, ddjdt vanishes when
mt= :k^T. Put then mt= -^t + x where a; is a small quantity, we have

f (t) =M~ "^ (m eoB mt - K Bin mt) -^ e' ^^(-2k-^^ COB 2mt +^ Bin 2mt\

Now

f9«8

+ 57r^-« ^*' (- m sin mt - 3k COS mO-
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A sufficiently near approximation to the value of /" (f) may be found by differ-

entiating the first term of the value of/' {t). We thus finda;=---^^^- ^^:
the second of these terms being smaller than the other two might be neglected.

We also find as the arc of descent
Kir Kir Kir Skit

Similarly to find the arc of ascent we put mi=J + y. This gives y= -- - ^^^
and the arc of ascent is

6 "^
[ 32/cm

j

In these expressions for the arcs of descent and ascent the terms containing x
and y are very small, and assuming k not to be extremely small, these terms will be

neglected*.

Now a is different for every swing of the pendulum, we must therefore eliminate

o. Let w„ and w^^.^ be two successive arcs of descent and ascent, and let \= e~'"^/2'»,

so that X is a little less than unity. Then we have

12 1 2

eliminating a we have very nearly [- = —( h-i,
Un+l c X2 \^u^ cj

, 3 1-X2 Skw
^^^^^

^=2^iTP=4;^^^^^^y-
The successive arcs are, therefore, such that 1/w^ + 1/c is the general term of a

geometrical series whose ratio is g*"/*"-. The ratio of any arc w„ to the following arc

Kir Kir

Mn+1 C

which continually decreases with the arc. In any series of oscillations the ratio is

at first greater and afterwards less than its mean value. This result seems to agree

with experiment.

To find the time of oscillation. Let ij, t^ be the times at which the pendulum is

at the extreme left and right of its arc of oscillation. Then

TT K 'nPa^ _ TT K Ti^a^

i~"2 ~m"327/^' '"*2 = 2 -^-32^-
The time of oscillation from one extreme position to the other is t^ - <i

which is

equal to tt/w. This result is independent of the arc, so that the time of oscillation

remains constant throughout the motion. The time is however not exactly the

same as in vacuo, but is a little longer ; the difference depending on the square of

the small quantity k. See Art. 321.

Ex. 2. A rigid body is suspended by two equal and parallel threads attached

to it at two points symmetrically situated with respect to a principal axis through

the centre of gravity which is vertical, and being turned round that axis through a

small angle is left to perform small finite oscillations. Investigate the reduction to

infinitely small oscillations. [Smith's Prize,]

* If these terms are not neglected the equation connecting the successive arcs of

descent and ascent becomes = - ^r /i* (1 + X^) +„^ -^^— . Now 1 - X*=—
^» ^n+i ^ 32/cw X m

nearly, so that this additional term is very small compared with that retained.



CHAPTER VIII.

DETERMINATION OP THE CONSTANTS OF INTEGRATION IN TERMS
OF THE INITIAL CONDITIONS.

Method of Isolation.

365. Our object in this chapter may be very briefly stated.

Given any number of simultaneous differential equations with
constant coefficients, it is known that the dependent variables

X, y, z, &c. can be expressed in terms of the independent variable t,

by means of a series of exponentials real or imaginary. Let one
of these exponentials be a; = Md^, then if is a function of the

initial values of the variables x^ y, &c. and of their differential

coefficients. It is here proposed to exhibit this function. Thus,
without solving the equations, any one term of the solution, if its

exponent be known, can be separated from the others and its

value written down, without finding those other terms.

When the differential equations are not of a high order we
can generally solve the determinantal equation and find all the

possible values of m. In such a case it is merely a question of

algebra to find the constants in terms of the initial values of the

variables. We may, however, effect this more briefly and simply

by using the rule here given. Sometimes it is impossible to

solve the determinantal equation. We may find one or more
roots, but the rest remain unknown. In such a case we could

not proceed by the processes of common algebra, for the equations

cannot be written down. Our object is to find the constants ^vhich

accompany these known terms without the knowledge of the re-

maining ones.

This method is very simple and easy of application when the

exponential to be separated from the others is connected with a

solitary root of the fundamental determinant. But it may be
used even though the root is repeated several times. The com-
plication arises from the fact that the exponential is then accom-
panied by as many constants as there are equal roots. Each of

these requires a separate operation to find its value.

The method is generally applicable whatever be the order of

the equations, but there is considerable simplification when the

order is not higher than the second. This is of course the most
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interesting case, as the equations may then be such as occur in
Dynamics.

In some cases the rule can be put into another form, which
may possibly be thought simpler. In these cases it takes the
form of the Method of Multipliers. When the number of de-
pendent variables is infinite, we have an example in Fourier's rule
to expand any function in a series of sines or cosines.

366. The Determinant of Isolation. Eesuming the no-
tation of Art. 262, we let the n equations to find cc, y, z, &c. be
written in the form

/n(S)^+/.(^)2/+/.s(S)^+... = 0)

where S as before stands for d/dt. In dynamical applications
these functions of B are all of the second degree, but at present we
make no restriction of that kind.

To solve these we proceed as explained in Art. 262
form the determinant

and

A (8) = /n(«).

/n(S).

AM
/.a (8)

If we equate this determinant to zero, we have an equation to

find 8. Let its roots be m, m^, &c. omitting the suffix of the first

for the sake of brevity. Then we know that

X = Me"^^ + if^e^^^ -f- . .

.

It is our present object to find any one of these coefficients, say M,
without finding any of the others.

To effect this we deduce from the determinant A (8) another
determinant, which we write

h —m B — m

B —m B — m '

U(m) = 2/ + &c.,/2(m),/3(m) &c.

+ &c.,/,,(m),/,,0>2)&c.

We form this determinant by the following rule. Erase any
column of the determinant A(S), say the first column. To replace

it we divide the first equation by B — m, and rejecting the remainder
place the quotient in the first row of the erased column. We divide

the second equation by B — m, and place the quotient in the second

row, and so on. Finally we put B=m in the remaining columns.

If we erase the second column of the determinant A{B) or

A (m) we obtain a slightly different determinant, which we may
write II.^{m), the suffix indicating which. column of A(m) we erase.



204 DETERMINATION OF THE CONSTANTS OF INTEGRATION.

The determinant 11 (m) is evidently a function of the co-ordi-

nates X, 2/, &c. and their differential co-ordinates mth regard to i

np to the (ti — 1) th. For all these we write their given initial

values. We then have

.r _ n (m)
^^ ~ b! (m)

'

where A'(m) means as usual the differential coefficient of A(m)
with regard to m. In the same way if Nt^^ be the corresponding

term in the value of y, we have N= -zyt—I > and so on.^ A (m)

367. Examples. Before proceeding to the demonstration of this theorem let

us consider some examples.

Ex.1. Talang the equations
\j+ 6)x + (S«-5)y = o}

'

we see that the fundamental determinant

A(m) = |m2-4w, -(m-1) |=m4-5m3 + 5w' + 5m-6.
I TO+ 6 m^ - m I

Equating this to zero, we find that one value of m is to=- 1. Let us find the

coeflBcient of e~* in the value of x.

Dividing the equations by 5 + 1 and rejecting the remainders, we form at once

:, :i ^ J.
' n(TO) = l(5-5)a;-w, 21,

the second determmant, VIZ. ,« „. «
\x+{d-2)y, 2\

the second column being obtained by putting to= - 1 in the second column of A (to).

Expanding, and noticing that A' (m)= - 24 when to= - 1, we find

-12M=8x-8y-6x+ y,

where M is the required coefficient. Here x, y, 8x, dy are supposed to have their

known initial values.

We may show in the same way that there is a term M'e^' in the value of x

where -3M'= 28x+5y-3x-y.

Ex. 2. Let us take another example, in which the differential coefficients rise

to a higher order, but let us still restrict ourselves to two dependent variables to

save space. Taking the equations

(53 + 252 + 5 + l)a;+(53 + 2S + l)y= 0)

(52+ 25 + 2) a; + (54+ 5 + 2)y = o\'
we see by inspection that the determinantal equation is satisfied by to = 1. Thus

x=Me* is a part of the solution. Let it be required to find M when the initial

values of 5a;, 523;, 5y, 52y, 5^y are all zero, and the initial values of x and y unity.

Constructing the function II by dividing each equation by 5-1, and putting 5=0

J , n (to)= |4a: + 3y, 4| = it/'A'(m).
as we proceed, we have ^ „ « J^

I

3x + 2y, 4 I

But, differentiating the determinant without expanding it, and putting to=1, we

have A'(wi) = 16. Hence, putting x and y each equal to unity, we immediately find

368. We now proceed to the proof of the rule given in Art.

3CG.

Let p be some quantity which we shall write for m in the

definition of the determinant Ti{m) in order to call attention to

the fact that p is not necessarily a root of A (h) — 0.
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Taking the general expression for the determinant 11 (p) given
in Art. 366, we may resolve it into the difference of two determi-

nants, the first rows of each of which may be written as follows.

^
/„(8)«+/..(8)2/ + &c.,/,(8), &c.'a{p)

8—p
1

g_^ /u(;^)^+/i2(p)y+&c., ^(p), &c.|.

Consider the first determinant, the first column is occupied by the

functions which form the differential equations. Hence this deter-

minant vanishes whenever w, y, &c. have values which satisfy the

differential equations.

Consider the second determinant, it may be made into the

sum of as many determinants as there are terms in the leading

constituent. All these determinants have two columns the same
except the first determinant. This first determinant is clearly

A(p)a).

It immediately follows that

(8-p)U(p)^-A(p)x,
Solving this linear differential equation in the usual way, we have

U(p) + A{p)eP*jyp^xdt= CeP* (1).

Here p is any quantity at our disposal and x, y, &c. have any
values which satisfy the differential equations.

To find the value of the constant G, we put ^ = 0. The second

term on the left-hand side is then zero because the limits coincide.

It follows that G is the value of n(p) when we write for x, y, &c.,

8x, By, &c. their initial values.

Since p is arbitrary we may differentiate the equation partially

with respect to p. Differentiating and putting p = m, where m is

a solitary root of the equation A(p) = 0, we find

^^^^ + A' (m)e'^H'e-^*xdt = Gte^^ +^ e^K
dm ^ ^

-"^ dp

Let us now substitute x = Me^^ + M^e'^^^ + &c. with the corre-

sponding values of y, z, &c. in the left-hand side of this equation

and let us search for terms of the form te'^*. The operator

dU(m)/dm is a linear function of x, y, &c., 8x, &c., and can

clearly give rise to no term of the required form. The re-

maining portion of the left-hand side gives only the single term

i:^'{m) Mte"^^ of the required form. Equating this to the corre-

sponding term on the right-hand side we have C^\m) M=G. Since

(7 is the initial value of Tl{p), this equation is exactly equivalent

to that given in Art. 366.

369. On Bepeated Boots. When the root p=m is a repeated root of the equa-

tion A [p) =0, the demonstration just given no longer applies. Since p is arbitrary

we may differentiate the equation (1) as often as we please, and after each differen-

tiation we may write p = m. Since A (m) = 0, A' (m) = 0, &o. the successive left-hand
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sides redaoe to II (w), dll {m)jdnh, &q. On the successive right-hand sides we have

only terms which contain the exponential e"".

It follows that if A (jj) = have a roots each equal to m, the operators

„, , dn{m) d?n{m) d»-in(m)

°<"*^'-d^' -dm^' ~s«;^i"'

all produce zero when we substitute for x, y, c&c. any solutions of the differential

equations which do not contain the exponential e°^.

Thus it appears that if we calculate the results of these operations by substitut-

ing the particular parts of the values of x, y, &c which depend on the root m of

the equation A (5) = 0, the results will be general, i.e., will be the same as if we had

substituted the complete values of x, y, &c.

Without using any further rule, therefore, we may find the a constants which

depend on the repeated xooi p=m by substituting in these a operators the particular

terms in x, y, &c. which contain the exponential e"". Thus we obtain a expressions

for the operators which contain the a constants. At the same time the values of

the operators themselves may be found by giving the variables x, y, &c. their initial

values.

This, however, requires that we should use all the co-ordinates, but if we wish to

find the values of the constants which occur in one co-ordinate only, we may use

the results of the following theorem.

370. It is required to find in terms of the initial conditions tJie values of the

constants tchich enter into the expression for any one of the co-ordinates when the

fundamental determinant A (p) has a roots each equal to m.

In this case the value of x will contain powers of t, but how many will depend

on whether the minors of the determinant A (5) are zero or not. Since, however

the highest power of t cannot exceed a - 1 we may take as the general value of x

«= (m^ + M^t + ... + jrf^~\x t*""^) e'^'+ ^Nt'e^*,

where the terms included in the S stand for those portions of the value of x which

do not depend on the root m and L{a-l) = l . 2 . 3 ... (a-1). There will be

similar expressions for y, z, &c. also containing powers of t not higher than the

(a - 1)"", but it will be unnecessary to write these down.

We now proceed to differentiate equation (1) of Art. 368 r times with regard

to Pf and after substitution for x, y, &c., we will search for the terms containing

t^c"^ where r and k are any integers we may find convenient to use. The r**" differ-

ential coefficient is clearly

drnjp) d^^{p)P _d:
'~d^'^ dp- -dp^^^

• ^°^'

where P=ef*fl «""' xdt.

We notice that the first of the two terms on the left-hand side is a linear

function of ar, y, &c. and their differential coefficients with regard to t. Hence no

term of the form searched for can enter unless with powers of t less than a. If

then we restrict ourselves to values of /c greater than a-1, we may pny no further

attention to this term.

The second term on the left-hand side of (IT) may by Leibnitz's theorem be

written Ar(p)P +,A'-'w| + ... + ^^^^ll_j A-,p)C2^.

In this series all the differential coefficients of A (p) below the a*"" have been omitted

because the equation A (p) = has been supposed to have a roots each equal to m.
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If we substitute in the expression for P any such term as Nt*e''* we find after

integration only one term which is free from the exponential e«*, and this one term
is of the form He^". Hence d'Pjdp' contains no power of t higher than the s"'.

In this series therefore, when we put p —m and search for the terms of the

form t*^ e"", if we restrict ourselves to values of k greater than r-a, we may pay no
further attention to such terms as NPe^\

We have next to find the value of d'Pjdp' when we substitute for x any term of

the form j^^^_^^tK igmt. Now whatever cb may be we have

where Ls = 1 . 2 . 3 . . . s as usual. Substituting for x and writing p = m, we may
effect the integrations represented by 5-" without difiiculty. The exponential

disappears and we find at once 5— = —--^—r M , t""^* e"".
dp* L(k + s) ^f-l'^

No correction is necessary to the integration since this vanishes with t.

Supposing then k to be greater than both a - 1 and r - a we find for the coeffi-

cient of t'^ e"*' on the left-hand side of the equation (E)

-^^ i^Arim) iIf<-i+rA^-l(m)MK-2+ -^'^U^-2(m)ilf«-3 + &c.l .

Tr d^~'^C
On the right-hand side we find the coefficient of fe^ to be -=^^ . - -

LKL{r-K) dm^-it
Equating these two we have

Lr L{r"l) La ^{r- k) ^ji^v-k

The letter C stands for the initial value of H (w), it will therefore be more conve-

nient to replace it by the latter symbol, with the understanding that all the co-

ordinates have their initial values.

Since k must be greater than a - 1 and M«-= 0, the only useful value of k is

K= a. Since k must be greater than r-a, the only possible values of r are r=a,

a -h 1, ... 2a - 1. Writing these in succession for r, we obtain

A*— ilia-l= n(w),

A*+^ -_ , A* ,^ dU (m)

L{a+1) "* " "Za " " dm '

&c.=&c.

A^*"^ ,^ ,, ,
A'*+^ ,^ A**,, 1 fZ«-ln(m)

I,{2a-1) " ' L(a-l-l)"i'ia^^o-L(a-l) ,;^a-l

We have here just the right number of equations to find the a arbitrary con-

stants which occur in the value of x without requiring the corresponding values of

the other co-ordinates.

If all the first minors of the determinant A (3) have j3 roots equal to m, the first

/3 operators on the right-hand side vanish whatever x^ y, &c. may be. In this case

therefore the coefficients Ma.-\... Ma-^ are all zero. Thus the expression for x

(as already explained in Art. 272) loses /3 of its highest powers of t.

In the same way we may find the constants which occur in y by using the

operator called Hj in Art. 366 instead of H.
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371. Another form of the determinant. There is another
form in which the operator 11 (m) can be written and which is

particularly useful when the differential equations are of the
second order. Returning to the proof given in Art. 368, we see

that the determinant n(^) may be written as the difference

between two determinants, the second of which is zero when
A(j9) = 0. Looking at the first determinant, we may divide all

the constituents of the first column by any power of S we please,

provided we finally multiply the determinant by the same power
of 8. But these constituents are the functions which form the

differential equations. We may therefore modify the rule given
in Art. 366 as follows. First divide the equations hy any 'power of
B we please. Then form H (m) from these modified equations by
the same rule as before and finally multiply the constituents of
the first column by the same power of B. If this modified operator

be called n'(m), we see that H(7n) and 11' (m) differ by some
multiple of A(m). If A(8) = have a roots each equal to m,
it follows that all the differential coefficients of 11 (m) and Il\m)
up to the (a — l)th are equal each to each.

372. Thus let the equations be

(AJ' +BJ + C.,) X + (AJ' +BJ + CJ y = 1

{AJ^ + BJ + CJ X + (^,,8^ + BJ + OJ 2/ = 1

taking only two variables to shorten the results. We divide each
equation by S, then to form 11 (m) we divide by 8 — m and reject

the remainders. Finally we multiply again by S. We thus have

n(m) = m

AJx^AJy-^^^^±^, A,,m^+B^m + C,

In this form the constituents of the first column (when the equa-
tions are of the second degree) may be written down by copying
them from the equation.

The advantage of this form is that the forces of resistance

which depend on the potential B (Art. 311) have disappeared
from the symbol 11 (m). It also leads to the method of multipliers

to be explained in the next section.

873. Ex. 1. Let the equations be

(52-35 + 2U + («-l)y = 0j

-(3-l)x + {52-63 + 4)y=0r
The fundamental determinant is

A(TO)= |m2-3m + 2 m-1 I = (m - 1)2 (m - 3)«.

I

-(m-1) mP-Sm + il

The equation A (wi) = has therefore two roots each equal to 3 and the corresponding

terms in the value of z will be x = {Mq + Myt) e^'.

It is required to find M^ and M^ in terms of the initial values of the co-ordinates.
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We form the operator 11 (w) by the rule given in Art. 372, copying the columns
from the equations given above

n{m): 5a; , m -

1

TO
= (TO-l)j(m-4)5a;-5y-?!^^a;+y

This gives when »i=3, H (m) = - 2 {Sx+Sy-x-y}, ^I^ = Sx-dy-x + y,

Also when w= 3 we have A (m) = 0, A' (m) = 0, A" (w) = 8, A'" (m) = 2 1. Hence by the

rule given in Art. 370 , ,tf=:f ^TT^^'^^i4:{M^ + Mf,) = 8x-dy-x +
'i

where the quantities on the right-hand side have their initial values.

Ex. 2. Let the equations be Jf ~ ^^^ "^'J^^A

-

(2S-l)fl5 + 52y=oj
Find the constants in a5= [MQ+ Mit + ^M^t^) e'.

The result is 2M2= Sx + 5y + x + y, 2M-^+ M2=28x-x + y, 2M'q + Mj^= $x + x.

374. The following examples illustrate the application of the preceding theorems
when the differential equation has but one dependent variable.

Ex. 1. The differential equation (53-2S2-5 + 2)a;= is satisfied by a;= ilfe'.

If the initial values of x, dx, S^x are a, a', a", prove that 2M = 2a + a' - a".

Ex. 2. Let the differential equation be /(5)x= and let/ (5) contain only even

powers of 5. If the terms of the solution depending on the pair of solitary roots

m= ^k\J-1 of /(w) = be x=F co&'kt+ G Binht, prove that

Ff{m)_ f{5) Gf{m)_ f(8) dx

2 m 'd^ + k'^^
"^

2 m ~P + k^k'

Ex. 3. Let A^S^x + ...+A^dx+ A^x = be a differential equation. Eepresenting

this by/ (5) x=0, let m be a real solitary root of /(5) = 0, and let ilfe'"' be the corre-

sponding term in the value of x. Prove that a superior limit to the value of

Mf'{m) is the sum of those terms in the series ^„5"~iic-f ...-H-igSx + ^i which have

the same sign as /' {m). Here of course x, bXy &c. are all supposed to have their

known initial values.

375. The following examples indicate another method of investigating the

theorems of this section.

Ex. 1. Let the first minors of the determinant A (5) be represented by the

letter J, the suffix indicating the constituent of which it is the minor. If q be any

root of A (5)=0 we know that a solution of the differential equations is

x=GIyT^{q)e''\ y= GI^^{q)e^\ z= &c.,

where G is an arbitrary constant. Let us however suppose that q is unrestricted

in value and is not necessarily a root of A(5)=0. Prove that the result of the

substitution of these values of x, y, &c. in n {'p) is

n(p) = (7.^eA(g)In(p)-A(^)A,(,)

where p also is unrestricted in value.

This result may be proved by resolving n {p) into the difference between two

determinants as in Art. 368, and then substituting in each.

Ex. 2. Deduce from the last example that if p and q be unequal solitary roots

of A (5) = 0, then II (j?) = 0. But if p and q be the same solitary root then

n{p) = GI^,{p)M{v)ePK

R. D. IL 14
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Ex. 3. If the equation A (5)=0 have /3 roots each equal to q, the form of tbo

solution is indicated hj x=. GqIi^ {q)e9* + ... + Gp-i {dldqf~^ {In (q) e«'},

with similar expressions for the other co-ordinates. If the equation A (5)=0 have

also a roots each equal to p, prove that the result of the substitution of these

values of the co-ordinates in any one of the determinants 11 (jp), (d/d'^p) IT (p) . .

.

{dJdp)'^~^JI{p) is zero if j? and q be unequal, li p and q be equal, we obtain the

results given in Art. 366.

This may be proved by using Leibnitz's theorem to differentiate the equation of

Ex. 1, i times with regard to p, and j times with regard to q, where i is less than a

and^' than j3.

Ex. 4. When all the first minors of A (5) vanish for any particular value of 5,

the solution depends on a double type ^, 17 so that 05=^12 (S) ^, 1/ = ^^^ (5) tj &c. where

J12 (5) is the second minor of A (5) formed by omitting the first two rows and

columns as in Art. 273. Prove that if we write ^=Ge^\ 7}= He''*, where G and

H are two arbitrary constants which run through all the values of the other co-

ordinates, then

Herep and 5 are unrestricted in value and do not necessarily satisfy A (8)=0.

Ex. 5. Deduce from the result of Ex. 4, that if A (5) have two roots each equal

to m one of which makes all the first minors zero, so that x= il/e"", y= Ne"^ are

parts of the solution where M, N are independent constants, then

iA"(m)M=^, kA"(m)N=^,
^ ^ ' dm' ^ \ ' cLm'

where ITg is obtained from A [m) by erasing the second column instead of the first

(see Art. 366). Here the co-ordinates on the right-hand side are supposed to have

their initial values.

Ex. 6. Let the equation A (5) =0 have a roots each equal to ?», and let all the

first minors have )3 roots also equal to m. Let us form from 11 {m) a new determi-

nant n' {m) by omitting any row we please and any column except the first. Prove

that if we substitute in the determinants (c?/c?m) n'(m), &c. {dldm)^~^U'{m) any
values of the co-ordinates which satisfy the differential equations and which do not

involve the exponential e"^, the results are all zero.

Method of Multipliers,

376. In the last section we showed how the constant belonginor

to any one oscillation could be determined when the differential

equations were of any order. We now propose to consider what
simplifications can be made in the rule when the differential

equations are of the second order and of that simpler kind which
usually occurs in dynamics.

Referring to Art. 310, we find the equations of the second
order written at length. But forms so general as these seldom
make their appearance. The two most important problems which
occur in dynamics are those in which we have

—

(1) Oscillations about a position of equilibrium, whether with
forces of resistance or not.
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(2) Oscillations about a state of steady motion.

In the first of these cases the terms depending on D, E, F are
absent from the equations so that the fundamental determinant is

therefore symmetrical. In the second the terms depending on
D and F are absent, but those depending on the centrifugal forces

E are present. In this case the forces of resistance B are generally
absent.

377. We may therefore simplify these equations of motion
and write them in the form

{A,,h^ +BJ + OJ X +
{f^'^^X^^'j-^

^'^)
2/ + &c. = 0,

&c. • +&C. +&c. = 0.

The solution of these equations has been already expressed in

Arts. 313 and 317 in the following forms. If m^, m^, &c. be
real roots of the fundamental determinant, we have

X = x^e"^^* + x^e'""^^ + &c. \ dxjdt = x^e"*"^* + x^e"^^* + &c.
]

y = y^e'^it + 2/^e^"2i5 _}_ ^^c. I dyjdt = yle'""^* + y^e"^^* + &c. I

&c.=&c. J &c. = &c. J

Here x^, y^, z^, &c., a?/, y/, &c. contain as a common factor one
constant of integration, x^, y^y &c., x^^ y^y &c. another constant and
so on. Also x^ — x^m^

, y^ = y^m^ and so on.

378. If there be a pair of imaginary roots in the fundamental
determinant of the form m^ — r-\-p\/—\, ii\ = r — j) ^J—l, the

preceding solution takes the form

X = Z/"* cos pt + Z/' sin pt + x^e"^^* + &c.^

y = r^e*^ cos pt + F/' sin pt + y^e"^'^ + &c. I

&c. = &c. J

dx/dt = X/e*^ cos pt + X^V sin^^ + <e'«3« + &c.^

dy/dt = ry cos^^ + F/e'-' sin pt + y^e'^'^f + &c. I

&c. = &c. J

where X^ = x^ + x^, X^=(x^ — x^) *^- 1 and X^=rX^-\-pX^

X^J = —pX^-\-rX^. There are of course similar expressions for

the F's, &c. Here we notice that all the coefficients in the first

two columns are linear functions of two constants of integration,

the coefficients of the third column are multiples of a third

constant and so on.

379. If we examine the form of the solution given in the

last article we see that the columns are arranged according to

the roots of the fundamental determinant. Each column contains

14—2
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one or two arbitrary constants which have to be determined from

the initial values of x, y, &c. If the whole solution be known
we may therefore find the constants by common algebra, though

if there be many unknown constants the process may be very

long. But if the whole solution be not known the processes of

common algebra fail.

380. Thus suppose we have found only one root of the funda-

mental determinant, then we know the terms which occur in one

column only. The other columns depend on the other roots

which have not yet been investigated. We may yet wish to find

the value of the constant which occurs in this column in terms of

the initial values of the variables. We should then be able to

find the magnitude of any one oscillation without finding the others.

To effect this we use the method of multipliers, our object is to

find some multipliers for the equations which express the values

of Xy y, &c., dxidt, dyjdty &c. such that on adding together the

products all the columns will disappear except the one we wish

to retain. Supposing this done ^ve have one equation containing

the constant to be found and the initial values of x, y, &c. This

equation will be sufficient to determine the value of the constant.

There is this point of difference between the method of isolation and that of

multipliers. In the former we find the constant connected with any one term in

any column without caring for the other terms in that or any other column. In

the latter we require to use all the terms in that column to find the one constant.

In the former method we isolate any one term, in the latter we isolate any one

column.

381. The proper multipliers may be deduced from the determinant 11 (wi).

Taking the form given in Art. 371 as the best adapted for equations of the second

order, we have by expansion

n (m) =Px + Qy + &c. + P'bx + Q'Sy + &c.,

where P, Q, &o. stand for the coeflBcients in the expanded determinant. Now it has

been proved in Art. 369 that 11 (m) is zero when we write for x, y, &c., the terms of

any column of the solution in Art. 377 depending on a root other than m. It

follows at once that the proper multipliers to separate the column depending on the

root m from the other columns are P, Q, &c., P', Q', &c.

These multipliers are really determinants, and when there are many co-ordinates

it may be very troublesome to calculate their values. The coefficients of the

column which is to be separated from the others are also determinants. Both these

Bets of determinants are connected with the minors of the fundamental determi-

nant ; the former with the minors of some column, the latter with the minors of

some row. When the differential equations are of the simpler kind which occurs

in dynamics, (Art. 377) the fundamental determinant has a certain symmetry

about the leading diagonal. In this case the two sets of determinants are con-

nected together so that the required multipliers can be expressed as some simple

function of the coefficients of the column we wish to separate.

Instead of making the transformation from one set of determinants to the other,

it will be simpler to adopt an independent mode of proof. The required multipliers

follow at once from the two equations which have been made the foundation of the
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theorems in the first section of Chap. vii. (see Art. 316). As the equations now
under consideration are simpler than those treated of in the section just referred

to, the proofs of ihese two theorems wUl he briefly summed up in the next article.

The definitions of the functions A^ By G (Art. 311) will also be adapted to the

special use which we now intend to make of them.

382. If we substitute the terms in the first column of the
expressions for x, y, &c. given in Art. 377 in the differential

equations we obtain a set of equations which differs from the
differential equations only in having m^ written for h and ic^,

2/j, &c. for x,y, &c. First multiply these respectively by x^, y^^ &c.

and add the results together, the sum may be briefly written,

A {x^x^ m^ + B (x^x^ m^^-G ix^x^ = 0.

Next, multiply these respectively by x.^, y^, &c. and add the results

together. The sum may be briefly written

A (x^x^) m^ + B {x^x^ m^ + C (x^x^) = E (x^ y^ m,.

The functional symbols J., By G when not followed by the

subject of the functions all represent functions of the co-ordinates

X, y, z, &c. which have been defined in Art. 311. Thus

A = \Ay + A^^xy + J^^y + . .
.

,

B=iB,,x'-^B,,xy + lB,,f+.,.^
G^\G,,x^ + G,,xy + lG,,f + ,...

When the differential equations are given the following rule

to find A, B, G will be useful:

—

Multiply the equations by x,

y, z, <&c. and add the products, treating the operator S as an al-

gebraic factor. The halves of the coefficients of the powers of B are

the functions A, B, C.

When we wish to substitute for the variables x, y, z, &c. any
quantities we affix as usual those quantities to the functional

symbol and write

^ (Vi) = iAi^i + ^i2^i2/i + i ^222/i' + '">

with similar expressions for ^(ajj^j) and G(x^x^).

We then generalize these expressions and for the sake of brevity

write

-4(^10:2)= jAl^l^2 + i^l2(^l2/2 + ^22/l)+i^223^l2/2+ ••• '

383. Prop. A.

—

To determine the multipliers when the funda-
mental determinant is symmetrical and the forces of resistance not

absent.

Let m^m^ be any two roots of this determinant. Then, by

Art. (382), since the terms depending on E are absent,

A (x^x^ m^ + B {x^x^ m^-hG (x^x^) = 0)

A(x^x^)m^'+B{x^x;)m, + G(x^x^) = 0l
^

^'
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Eliminating B and G in turn from these equations, we have

A (x^ x^) m^m^ = C (x^x,)
\

- A (x^x^)K + rn,) = B (a:,^,)J
-'-: ^^^'

except when m^ and m^ are the same root.

Either of these equations may be used to find the required
multipHers. We thus find two sets of multipliers. We shall

choose the first equation, as giving the simpler results.

If there be a pair of imaginary roots in the fundamental de-

terminant, say m^ = r + p >y - 1 , m^ = r — j? J^^, and if m.^ be any
other root, the first of equations (2) gives

A(x^xXr+ p J^)m^=C(x^x^))
^^^^

A(x^xXr-p'^-l)m^ = G{x^xJ
Kemembering that A and C are linear functions, we see that

these give by addition and subtraction

^(Z>3)m3=a(X,^3)l ...

A(XX)m,^C{X,x,)] ^^'

where X^Z/, X^XJ have the meaning given to them in Art. 378.

The function A (x^x^) may obviously be deduced from the

potential A (x^x^) by the process

o ^ / N dA (x^x.) dA (x.x,)

where of course A {x^xj (Art. 382) represents the value oi A(xx),
or A when x^, y^, &c. have been written for x, y, &c. The functions

B and G may be treated in a similar manner.
We may now immediately deduce the proper multipliers.

Taking the solutions written down in Art. 377, let us multiply
the expressions for x^ y, &c. by —dC/dx, —dC/dy, &c., after writing

^n Vx^ <^c. in these multipliers for x, y, &c. ; also let us multiply
the expressions for dxjdt^ &c. by dAjdx, &c., after writing x^,

2//, &c., for x, y, &c., in these multipliers. Finally, let us add
the products ; then, by virtue of the first of equations (2), the sum
of every column except the first is zero.

If we have imaginary roots in the fundamental determinant,

we take the solution given in Art. 378. Treating it in the same
way, we see by equations (4) that all the columns disappear except

the two first. Repeating the process for the second column, we
again find that all the columns except the two first disappear.

384. The rule may be summed up as follows :

—

Let the fundamental determinant be symmetrical, and the

forces of resistance not absent. Let it be required to separate

by the method of multipliers any given column from the others.

The proper multipliers for the co-ordinates are the values of dC/dx,

dC/dy, d^c, after we have substituted for x, y, <^c,, in these mul-

tipliers the corresponding coefficients in the column we wish to
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preserve. The proper multipliersfor the velocities are the values of
— dA/dx, — dA/dy, <^c., after we have substituted for x, y, <&;c. in
these multipliers the corresponding coefficients in the column of
velocities we wish to preserve. Finally, we add the products
together.

In this way we can find an equation connecting the initial

values of the co-ordinates with the constant which accompanies
any one column. Since these initial values are arbitrary, neither
side of this equation can wholly vanish unless all the multipliers
themselves vanish. Hence the coefficient of the exponential on
the right-hand side cannot be zero, except in this one case.

The multipliers cannot all vanish unless the quadric functions
G and A also vanish for some finite values of the co-ordinates. In
dynamics the function A is such a function of the co-ordinates as

the vis viva is of the velocities. It is therefore impossible that A
could vanish for any finite values of the co-ordinates.

385. Example. Let us consider the equations

It is easily seen that the determinant of the solution reduces to m"*- y\=0.
We therefore have, if vi now stand for ^ A^5,

jc= iCi e""+ iCg e~"" + Xj cos mt + Z4 sin mt\

y= 1/16'^ + 7/2 e-™'+ F3 cos w< + F4 sin mtf
'

dx[dt=mxj^ e"" — niX2 e"™' + mX^^ cos mt - mX^ sin mt\

dyjdt= my^ e"' - mi/2 e"""+mF4 cos mt - mFg sin mtf
'

Also multiplying the equations by x and y, and taking the halves of the coefficients

of the powers of 5, we have

A=i{x^ + 2/2), C= ix2 - ixy + ly^
Suppose we wish to find the coefficients ctj, y^ in terms of the initial conditions.

Following the rule, we multiply x and y by the differential coefficients of C after we
have written x^, y^ for x, y in the multipliers. We multiply the velocities by minus
the differential coefficients of A, writing in the multipliers mx^ and my^ for x and y.

Finally, we add the results. Thus we have

x{x^-iy^)+y{-lx^+lyM r^2_.^y .1^21

Putting <= 0, and giving x, y and their velocities their known initial values, we
have one equation to find the constants x-^, y-^. Their ratio,

y,^_m2 + m + l

^1 4(wi-f) ' ^^
being known from the first equation, we easily find both x-^ and y-^.

If we wish to find the coefficients of the trigonometrical terms, we use two sets

of multipliers, because the two imaginary exponentials have become mixed up to-

gether in the trigonometrical term ; or we may replace them by their imaginary

e-iponentials, and find the coefficients of either by one set of multipliers. Taking

the first alternative, one set of multipliers will be respectively

^Yg-SFg, -fXg + JFa, -mX^, -mY^.
The other set will be
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386. Prop. B.—To determine the multipliers when the funda-
mental determinant is symmetrical and the forces of resistance

absent.

This proposition is really included in the last. But as the

absence of the function B introduces great simplification, it is

worth while to consider this case separately.

Since the forces of resistance are absent, none but even powers
of B enter into the equations. Hence for every root of the funda-
mental determinant there is another equal in magnitude but con-

trary in sign. If A and G are one-signed functions, and have the

same sign, these roots are of the form ±p*J—l. Choosing this

as the type, we may write the equations of Art. 378 in the form

x^^^X^cospt + X^smpt + x^e"^'*-^ ...

&c. = &c.,

dx/dt = Z/ cospt + X; sinpt + ^e*"^^ + . .

.

&c. = &c.

Here, unless there be equal roots, we have
Y V Y

'

Y'

I?
= -^^= &c. =-^=

-^|„ = &c. = IT,

because the ratios of the coefficients of any exponential are ex-

pressed by the minors of the fundamental determinant, and these,

containing only even powers of m, are the same when the exponents
are equal in magnitude but contrary in sign.

Here H will stand for the constant in the second column on
the right-hand side of the equations, the constant in the first

column being included as a factor in X^, Fj, &c., X^, F/, &c.

Since the function B is zero, the equations (2) of Art. 383
reduce to A (x^x^ = 0, G {x^x^ = 0,

except when 7n^^±m^, For a pair of imaginary roots such as

m^ = r+pj—l, m^—r —pj— 1, combined with a third root m^,

we have (exactly as in that article)

^(X^^3) = 0| G(X^x,)=^Ol
A(X,x,) = 0]' G{X,x,)^0]-

387. "We may use either the function A or the function G to

supply the proper multipliers. We thus find two sets of multipliers.

Which we should choose depends on the forms of ^ and C.

If either of these functions contain only the squares of the

co-ordinates, i.e. if it be of the form

ax^-\-bf + cz^ + ...,

it is clear that its differential coefficients will be much simpler

than if the terms containing the products of the co-ordinates

were also present. The multipliers are indicated by these dif-

ferential coefficients, and will therefore also be simpler. That
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function is therefore to be chosen which has the fewest terms
containing the products of the co-ordinates.

Choosing the function -4, we have the following rule to find

the multipliers. Let it be required to separate from the others

any particular oscillation—say the two columns containing the
phase pt. The proper multipliers for the co-ordinates x, y, &c. ay^e

dA dA
the values of -r- t -r- , &c., after we have substituted for x, y, &c.

in these multipliers the coefficients of either of the columns contain-

ing the phase pt. Adding these products, we have one equation

from, which all the oscillations except the one to he preserved have
disappeared. The same midtipliers may now he used for the velo-

cities, and thus hy a second addition we ohtain another equation of
the same kind.

The two equations thus obtained may be written thus :

—

^^^^Iz^ ' + &c. = 2A (X,Z,) (cosjpe + H^mpt],

Putting * = either before or after using the multipliers, we
have two equations to determine H and the other constant in-

cluded in Xj, Fj, &c.

388. A rule to find the functions A and when the differential

equations are known has already been given in Art. 382. But
in using Lagrange's method it is sometimes more convenient to

refer to the expression for the Vis Viva and the Force Function
from which these equations have been derived. Referring to

Vol. I. we see that the Vis Viva is

2T = A^/'-\-2A,,w'y + ...

Thus the function A is derived from T by merely dropping the

accents from the co-ordinates. The function G is of course the

same as the function U^— C/" as defined in Vol. I.

389. Prop. 0.

—

To determine the midtipliers when the forces of
resistance are ahsent hut the determinant is skewed hy the centrifugal

forces.

Referring to the equations of motion in Art. 377, we form the

determinant which we have called the fundamental determinant.

It is unnecessary to write this determinant, as its form is evident

from the merest inspection of the equations. It is also given at

length in Art. 112.

If in this determinant we write — S for 8, the rows of the new
determinant are the same as the columns of the old, so that the

determinant is unaltered. When expanded, the determinant will

contain only even powers of 8, and therefore its roots enter in
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pairs. We shall therefore take as our standard form of solution,

instead of that in Art. 378, the expressions

a; = Zj cos pt + X^ sin pt + x^e'""'* + . .
.^

y=Y^co^pt+ Y^^mpt + y/''*+..\ (1);

&c. = &c. J

dxidt= X/cos pt +X;sin pt + x^e'^'^-^-

.

.
.^

cZy/(^^=F/cos^^ + r;sin^^ + 2/3'e"'^^+...l (2);

&c. = &c, J

Here the first two columns represent the most common form

of a principal oscillation, and the third column represents any
other form. When the centrifugal forces (i.e. the terms depending

on E) are present, the minors of the fundamental determinant do

not contain only even powers of 8. It follows that the coefficients

in the second column do not necessarily bear a uniform ratio to

those in the first column.

Since the function B is absent, we have by Art. 382, the equa-

tions A (x^x^)m^ + C{x^x^) — =E(x^ y^)

.(3).

. ,^...x_nr (5).

A (x^x^)m^ + C(x^x^)— = - ^(^,2/,)

Adding these to eliminate the functional symbol E, we find

A(x^x^)m^m^-\-C{x^x^)=0 (4),

except when m^ = — m^.

We notice also, that by Art. 382,

A{x^x;)m^'+G(x^x;) = 0]

We might also eliminate the function A orC from the equations

(3) instead of the function E, and in each case we may deduce a
rule to find the multipliers ; but the simplest rule is found by
eliminating the function E.

The formula (4) resembles that used in Art. 383, and there

called (2), except in the sign of A. Proceeding therefore exactly

as in that article, we shall deduce the corresponding rule for the

multipliers.

Instead of equations (3) of Art. 383, we now have (since r = 0)

A (.TjiPg)pJ—lm^+C (iCjiCg) = 01
.(6).

- ^ (^^-^a)pJ-lm^ + C (x^x;) - OJ

Remembering that A and G are linear functions of the letters of

any one suffix, these give by addition and subtraction

A(X,'x,)m, + G{X^,)^\ ^'>'

where as before X=x^-hx^, X^={x^—x^J- 1, X^=pX^, X^'=-pX^.
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Also writing on^=pJ- 1, m^— —jp J—1 in equations (5), we
find by subtraction

A{X;x:) + C{X,X,) = Q (8).

390. From these formulae we now deduce the following rule

to find the multipliers.

Let the forces of resistance be absent, and let the fundamental
determinant be skewed by the centrifugal forces only. Let it be
required to separate any principal oscillation from the others.

Selecting one of the two columns which form the oscillation, the

2oroper multipliers for the co-ordinates x, y, &c. are the values of
dC dC
-p- , -J— , &c., after we have substituted for x, y, &c. in these multi-

pliers the corresponding coefficients in the column selected. The
dA dA

proper multipliers for the velocities are the values of -j-
, -r— , &c.,

after we have substituted for x, y, &c. in these multipliers the co-

efficients corresp)onding to these velocities in the column selected.

Finally^ lue add all these products together. We then repeat the

process with the coefficients of the other of the two columns which
form^ the oscillation.

By virtue of equations (5) and (8) it will be found that in each
of these processes every column except one will disappear from the
final summation. But we may notice a curious difference between
the columns which contain real exponentials and those which con-

tain trigonometrical expressions. If we operate with the coeffi-

cients of one of the former introduced into the multipliers, it is

the companion column which does not disappear; but if we operate

with the coefficients of one of the latter, it is the column whose

coefficients we have used vjhich does not disappear.

391. Example. Let us consider the equations

It is easily seen that the fundamental determinant reduces to m*- 16=^0. Hence

we have ic= A^ cos 2 « + X^ sin 2« + x.^ e-* + x^^ e~^*
j

y=Y-^ cos 2t + Y2 sin 2t + V3 e-

dxjdt^ilX^ cos 2t - 2X1 sin 2« + 1x^ e^' - 2x^ e-^']

dyldt= 2 Fg cos 2t - 2 Fj sin 2t + 2y^ e^' - 2y^ e-2'

i

where 20-3= ^6^3) Y^^^-sJ^X^)

2x^=-sJ^yy 72= V6Aii
Also multiplying the equations (Art. 382) by x, y, adding and taking the halves of

the coefficients of the powers of 5,

A = l{x'' +y\ C= i (-8x2 + 22/2).

The proper multipliers are indicated (Art. 390) by the formula

dC dC dx dA dy dA

Now

X
d^-^^d^-" dt dx'^ dt dy'

dC
dx~

--- Sx,
dC
dy

--2y,
dA
-dx=''

dA
' dy~-

--y-
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Having chosen the column whose coefficients are to he used in the multipliers, we
see by Art. 390 that the proper multiplier for the first equation is minus eight times

the coefficient of the column in that equation ; the proper multiplier for the second

equation is twice the coefficient in that equation ; the proper multipliers for the

third and fourth equations are the coefficients themselves in those equations.

Suppose first we wish to find x^ and 7/4, then, because the fourth column con-

tains a real exponential, we operate with the coefficients of the companion column.

The multipliers are therefore

dC _ dC ^ dA . dA .

d^= -®^«'
dy=^y^^ ^=20:3, ^ = 22,3.

Hence we find - 8x^x+ 2y^+ 2x^-^+2y^-^= IGy^^ g"*

;

substituting for x^ in terms of y^ and putting t=0, we find

-4V6x + 2r/+V6^+ 2^= 16^4,

which determines y^ in terms of the initial values of the co-ordinates and their

velocities.

Suppose next we wish to find X^, X^. Taking the coefficients of the fijrst

column, the multipliers are -r-= -8Zi, -v-=2Fi, -r- = 2Zo, -r— =2ro.
' ^ dx ^ dy ^ dx ^' dy ^

Since these columns contain trigonometrical expressions, we know that when we

operate with the coefficients of either column in the multipliers, the other column

disappears. Hence, paying no attention to any column except the first, we have

- QX^x + 2 Fiy + 2Z2 dxfdt + 2 Fg dyfdt= 16 {XjS + X^) cos 2«

;

substituting for Y^ and Y^ and putting t=0, we find

- SZiCc - 2 ^/QX^ + 2^3 dxjdt + 2 yJ^X^ dyjdt= 16 {X^^ + X^).

Operating in the same way with the coefficients of the second column, we have

- 8X2* + 2 Fgy - 2Zi dxfdt -2Y^ dyjdt= 16 {X^^ +X^ sm 2t

;

substituting as before, we have

- 8A> + 2 yJ^X^y - 2^1 dxjdt+ 2 ^J^X^ dyjdt = 0.

These equations determine Xj and Xg in terms of the initial values of x, y, and

their differential coefficients.

392. Prop. T>.—To consider the effect of equal roots on the

rules already given.

When there are equal roots in the fundamental determinant,

we require only some slight modification of our rules. Referring

to the general solution exhibited in Art. 377, let us suppose, for

example, that there are three roots equal to mj. Regarding these

as the limits of the unequal roots, m^, m^ + h, m, + kj we may write

that solution in the form

&c. = &c.,

(fee. = &c.

;



METHOD OF MULTIPLIERS. 221

where x^ — x^Tni^y oo^ = x^m^, &c., and G, H are the two constants

in addition to the one included in x^,y^, &c.

Two questions now present themselves :— (1) When we use
certain multipliers to separate a column which depends on a
solitary root such as m^, will the columns which depend on other

equal roots such as nn^ (and therefore contain powers of t as

factors) still disappear?

(2) What multipliers must we use to separate the three

columns which depend on the three equal roots from the re-

maining columns ?

393. Taking the first of these questions, suppose we wish
to separate the fourth column of the equations of Art. 392 from
the others. Let us use the same multipliers as if there were
no equal roots. It is obvious that, since the three first columns
disappear in the general case in which li and h have any values,

these columns must also disappear when h and h are indefinitely

small. We therefore infer that any column which depends on a
solitary root may be separated by the same rides as before.

As an example, take the rule given in Prop. A, Art. 383. To
separate the fourth column, we multiply the equations by

dC (x^x^)/dXi, &c., —dA {x^xDIdx^, &c.,

and add the products. Since the three first columns must dis-

appear, we have G{x^x^ — A {x/x^) =

The last two of these equations also follow from the first by an

evident process.

394 Taking the second question, we wish to find what
multipliers will separate the three first columns from the others.

But these are supplied by the equations just written down.

Since m^ is any other root, and

we have merely to use the multipliers indicated by the coefiicients

of x^, y^, &c. in these equations. The rule may be enunciated as

follows :

—

Multiply the equations by the proper factors for the first column,

treating Xj, y^, ^c, x/, y/, c&c. as the coefficients, and add the

products. We thus have one of the three required equations. Mul-
tiply the equations by the proper factorsfor the second column as if

,—^
, -r^ , <&c., T—^ , (&c. were the coefficients, and add the

dm ' dm. dm, "^
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products. We thus obtain the second equation. Lastly, multipb/

the equation by the proper factors for the third column as if

<tc., J—^, d'C, were the coefficients, and add the products.
dnV' ' dm;
We thus have, on the whole, three equations to find the three

constants which enter into the three first columns.

The proper factors just mentioned are those calculated from

the coefficients by the rules of Prop. A or Prop. C.

395. In some cases of equal roots it is known that some of

the terms with ^ as a factor fail to introduce themselves into the

solution. The number of constants is then made up by a greater

indeterminateness in the coefficients which accompany the ex-

ponential. * Regarding these equal roots as the limits of unequal

roots, as in Art. 393, it follows that we can still use the same rules

to find the multipliers. We arrange our solution in columns

with one constant in each column. Then using the proper mul-

tipliers, as described above, we can separate any solitary root

at once. To determine the constants which accompany the equal

roots, we shall require as many sets of multipliers as there are

columns with that root or its companion root.

396. Example. Let us consider the equations

{d^-l)x + y + z=0\

]

It is easily seen that the fundamental determinant reduces to {m'^ - 2)^ {ni^+ 1) = 0.

Putting a = \/2, we write the solution in the form

a5= Ee'^ +Ge"*' +7f sin t + LcosO

y= +Fe'^ +He~'^^+Ksmt + Lcos\

z = - Ee""^ - Fe""^ - Ge'*"^ - He-''^+K Bmt + Lcoa

>

where E, F, G, II, K, L are the six constants to be determined.

Looking at the equations to be solved, we see that the potential functions A and

C are given by

2C=-x^-y^-z^ + 2xy + 2yz + 2zx\

2A= a;3 + 2/2 + 22

Following the rule indicated in Art. 387, we choose the function A to operate with,

because this function will supply the simplest multipliers. The proper multipliers

will therefore be dAldx=x, dAJdy = y, dAldz = z,

where we write for x, y, z the coefficients of the column under consideration. The
proper multipliers are therefore the coefficients of the columns in succession.

Suppose we wish to find K and L. The coefficients in either of these two

columns are all equal. The multipliers are therefore equal. We therefore obtain,

by adding the equations and putting t = 0,

x+y+ z = SL.

Treating the differential coefficients in the same way (Art. 387), we have

Sx+dy + Sz = 3K.

If we wish to find the four constants E, F, G, II which are all connected with

the companion roots ± a, we must find four equations. According to the rule, the
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multipliers are the coefficients of the several columns. We thus obtain, when i= 0,

Ex + 0y-Ez=:E{2E + 2G +F+H)}
Ox + Fy -Fz=F {E + G + 2F+2H)^

'

E8x + 08y - Edz=Ea {2E -2G +F - H))
0Sx + F5y-Fdz =Fa{E-G + 2F-2H))'

This simple and obvious example sufficiently illustrates the method of proceed-

ing when the proper multipliers could not be otherwise found.

397. Ex. If the differential equations are such that the fundamental deter-

minant is symmetrical about the leading diagonal whether the forces of resistance

be present or not, we have by Art. 262, x^lT-^-y{m^=y-^jI-^<^{m-^ = &c.= G, where G is

an arbitrary constant. There will be similar equations for the other roots of the

fundamental determinant. Thence show that the operator 11 (m) on expansion

takes the form

Gn(m) =—-^-^-^dx +—J
^ ^'

8y + &c. -— —)^-^x —P-^y-&c.
^ ^ dx^ dy^ *' mj dx-^ m-^ dy^ ^

Thence deduce the forms of the multipliers given in Prop. A, Art. 383.

Fourier s Rule.

898. Of the two important problems which occur in dynamics

(Art. 376) the most common is that in which the system is oscil-

lating about a position of equilibrium free from any forces of

resistance. This of course is Lagrange's problem and the solution

has been discussed in Chapter ii.

It often happens that the co-ordinates chosen are such that

the vis viva 2T can be written in the form

without any terms containing the products of the velocities. In

other cases when the vis viva contains products, it may happen
that the force function U can be written in the form

2U=x'+7/+...
without any terms containing the products of the co-ordinates.

In either of these two cases if we follow the same line of argu-

ment as in Art. 386 we arrive at a simple rule. Taking the first

case, Lagrange's equations are

SV + C',,^ + C^.3/ + ...=0 (1).

&c. = Oj

As in Art. 386 the solutions of these may be written in the form

a; = Xj cos pt + X^ sinpt + Zg cos qt -\- X^ sin qt + &c.] .

2/
= F, co^pt + Fg sin pt + Y^ cos qt \- Y^ sin qt -h &c.J

" '^ ^'

&c. = &c.

Since the equations (1) are analytically satisfied by the values of

X, y, &c. expressed by any one column, let us substitute for x, y, &c.
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the terms in the first cohimn and multiply the resulting equations

by Xg, Fg, &c. respectively. Adding these results we find after

division by cosjt?^,

Since the right-hand side is a symmetrical function of the co-

efficients of the first and third columns, we have

j,'{X,X,+ &c.) = q'iX,X,+ &c.).

It immediately follows that unless p=' ±q we must have

Z,X3+F,Fg + &c. = (3).

An exactly similar proof applies in the case in which the products

are absent from the force function.

In either of these cases any column, say the first, may be
separated by using as multipliers the coefficients X^, F^, &c. of

that column. Thus we have, giving the co-ordinates oc, y, &c. their

initial values,

xX^ ^yY^+ &c. = A7 + F/ + &c. j

Jx,4-|F,-f&c. = MX/-fF/-f-&c.)|-

These equations lead to a rule to find the coefficient which
when applied to some problems in heat or sound is usually called

Fourier s Rule. This may be stated as follows. Multiply each

co-ordinate by the coefficient of the cosine in the column we wish to

separate and add the results together. All the other columns will

disappear from this sum, leaving one equation to find the constant

of integration which accompanies that cosine.

To find the constant of integration which accompanies the sine

which occurs in any column^ we differentiate the co-ordinates and
thus turn sines into cosines. Repeating the same process as before

we have an equation to find the constant. These rules are simple

corollaries from that given in Art. 387.

399. It sometimes happens that the vis viva 2 T can be written

in the form

where m^,m^, &c. are the constants connected with the co-ordinates

X, y, &c. In such a case the rule requires only a slight modifica-

tion. By the same reasoning as before, we show that

m,X^X^ + mJ,Y,-\-...=0.

Thus the multipliers necessary to separate the first column of the

values of x, y, &c. from the other columns are ni^X^, ^2^i> *^^'

It will often happen that the coefficients m,, m^, &c. are the masses
of some particles connected with the co-ordinates x, y, &c. Using
this phraseology we have the following rule. To separate any
column we multiply the co-ordinates of the several particles as before

by the coefficients in that column and by the masses of the several

particles. We then add these results and proceed as before.
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400. The investigation we have here given of Fourier's rule

is purely analytical. All we have assumed is that the values of

X, y, &c. satisfy certain differential equations. But we may also

give a physical meaning to the process and show that we have
really been using the principle of Virtual Velocities.

It has been shown in the first volume that that general prin-

ciple may be analytically represented by the equation

^dt dx dx I \dt dy dy j
'

'

where f, rj, &c. are any small arbitrary variations of the co-ordinates

X, y, &c. consistent with the geometrical conditions.

Let us suppose the system to be performing any principal

oscillation, say the one represented by the first column in the

values of x, y, &c. Let us take as the arbitrary variation of the

co-ordinates, a displacement along any other principal oscillation,

say the one represented by the third column in the expressions

for X, y, &c. This variation is consistent with the geometrical

conditions since the two oscillations might coexist in the same
motion.

In this case f, 77, &c. are proportional to X^, Fg, &c. After

substituting for x, y, &c. their values as given by the terms in the

first column and dividing by cos pt, the equation becomes

Since the right-hand side is a symmetrical function of the co-

efficients of the first and third columns, we immediatelv have, as

before, X,X^+ Y^Y^+ ...=:0,

except when p and q are numerically equal.

Lagrange shows how to find the constants of integration in certain cases in

Sect. VI. of the second part of his Mecanique Analytique. Poisson devotes

Chapters vii. and viii. of his Theorie de la Chaleur to an explanation of the method

of expressing arbitrary functions in a series of sines and cosines. Another treat-

ment of Fourier's rule is given in Arts. 93 and 94 of Lord Eayleigh's Theory of

Sound.

The reader may consult two papers by the author on the several subjects dis-

cussed in this Chapter. The first is in No. 75 of the Quarterly Journal of Pure and

Applied Mathematics, 1883. The second may be found in the Proceedings of the

London Mathematical Society for the same year. The solutions also of many of

the examples given in this Chapter may be found in these two papers.

R. D. IT.



CHAPTER IX.

APPLICATIONS OF THE CALCULUS OF FINITE DIFFERENCES.

Solution of Problems.

401. In the first section of this chapter we propose, by the

consideration of some examples, to show how the Calculus of Finite

Diiferences may be applied to the solution of dynamical problems.

In the second section we shall examine a few remarkable points

in the theory of such oscillations.

The calculus of finite differences may be used when the system
contains a great many oscillatory bodies arranged in some order.

Perhaps there are so many that to write down all their equations

of motion individually would be impossible. If however there be
a sufficient amount of similarity between the motions of successive

bodies taken in order, it may be possible by writing down a few
equations of differences to include all the equations of motion.

To show how this can be done we shall begin with the following

problem.

402. Ex. A string of length (n + 1) 1, and insensible mass,
stretched between two fixed points with a force T, is loaded at

intervals 1 with n equal masses m not under the influence of gravity
and is slightly disturbed ; if T/Im = c^ prove that the periodic times

of the simple transversal vibrations which in general coexist are
given by the formula (tt/c) cosec i7r/2 (n + 1) on putting in succession

i=l, 2, 3...n.

Let Ay B be the fixed points
; y^, y^^-'-yn the ordinates at time

t of the n particles. The motion of the particles parallel to AB
is of the second order, and hence the tensions of all the strings

must be equal, and in the small terms we may put this tension
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equal to T. Consider the motion of the particle whose ordinate
is y^^. The equation of motion* is

.•.^^ = c^ (./,,, -2^, + 2/.J (1).

'

Now the motion of each particle is vibratory, we may therefore

expand y^ in a series of the form

y, = tL^m{pt + a)) (2),

where 2 implies summation for all values of ^.
As there may be a term of the argument jpt in every y, let

L^, L^,... be their respective coefficients. Then substituting, we

have 4„-24+Z,^, =-j4 ....(3).

To solve this linear equation of differences we follow the usual

rule. Putting L^ = Aa!", where A and a are two constants, we get

after substitution and reduction a — 2 + l/a = — {plcf, or

^a - }- =^ V- 1, and V^ + 4- = + 2 jl - (^
^H

^Ja = ±\\ -iShi^'-
Let these roots be called a and ^, then

L^=^Aa.' + B^'

is a solution, and since it contains two arbitrary constants it is the

general solution.

The constants A, B, a, ^ are the same for all the particles, but
not necessarily the same for all the trigonometrical terms defined

by the different values of p. When we wish to discuss the pro-

perties of any particular A and B we write as a suffix the letter p
by which they are distinguished.

* This equation might also be deduced from Lagrange's general equations, of

motion. If U be the force function, the position of equilibrium being the position

T T T T
of reference, we have 2 U" = - y

y^s -^ ^ (1^2 - 2/i)^
- &c. - y {y^ - Vn-i? - -^ Vn-

The vis viva is evidently w?//^ + my2'^ + . . . + my^'^.

Substituting these in Lagrange's equations of motion we obtain the equations

represented by (1).

This problem is discussed by Lagrange in his Mecanique Analytique. He
deduces the solution from his own equations of motion. He also determines the

oscillations of an inextensible string charged with any number of weights and

suspended by both ends or by one only. Though several solutions of these

problems had been given before his time, he considers that they were all more or

less incomplete.

15—2
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The term distinguished hy p = requires some further con-

sideration. In this term the two values of a viz. a and yS are

each equal to unity, and the solution of equation (3) loses one of

its arbitrary constants. But this defect is easily cured by follow-

ing the usual rules for treating equations of differences. We
have in that case L^ = Aq-\- BJ^.

The term distinguished by p = 2c also presents some pecu-

liarity. In this term the two values of a are each equal to — 1.

We have therefore

Summing up, the solution of equation (1) may be written

at length

y,=^A, + Bfi + (A^ + B^Jc) (- ly sin {2ct + «

J

-]- ^ (AX-^B^^') sin (pt + co;) (4X
where the 2 implies summation for all existing values of p. We
know from the theory of equations of differences that the first

four terms in this expression are really included in the last as

the limiting case of the terms distinguished by ^ = and p = 2c.

Unless therefore we wish to call attention to these terms, they may
be omitted in the expression for y^.

403. The equation (1) represents the motion of every particle

except the first and last. In order that it may represent these

also it is necessary to suppose that yo and y^^^ are both zero

though there are no particles corresponding to the values of k
equal to and n i-l. With this understanding the solution (4)

will represent the motion of every particle from ^ = 1 to k = n.

404. Since y-0 when k=0 for all values of t every term
in the series (4) must vanish ;

.*. ^o - ^^ ^^c — ^ ^^^ ^p + ^p = 0.

Also y = when k = n-\'l for all values of ^, .*. Bq = 0, B^ = ajid

^^'+^^"''=0. These equations give o.''^' = I3"^\ li p he

greater than 2c the ratio of a to /8 is real and different from unity.

Hence we must have p less than 2c. Let then

p/2c = sin e, .-. a = cos 2d ± sin 20 V- 1.

Hence by what has been proved before

(cos 20 -{- sin 20 V- 1)"'' = (cos 20 - sin 20 V-l)"""'

;

.-. sin 2 (n + 1)^ = ; .'. = i7r/2 (n + 1),

and the complete period of any term is P = 27r/p = 7rc/sin 0. The
letter { indicates any integer, but since p=^2c sin 0, we see it

is necessary to consider only the integers from i = l to i = n.

405. In forming the differential equation (1) we have sup-

posed . the distance I between any two successive particles to be

unaltered. This will practically be the case if y^— ^/^.jbe small

compared with the distance I. This limitation however does not

prevent us from enquiring what would be the effect of reducing
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the masses of all the particles and placing them proportionally

closer, so that the total mass per unit of length is unaltered.

The restriction is that the inclinations of the strings must still

be sufficiently small. The interest of this change is that the
closer the particles are placed the more nearly does the system
approach to that of a uniform string stretched between the two
fixed points A and B.

Let us represent by p the mass per unit of length, then
c^P = Tl/m = T/p. Put a = cl, then a is equal to the square root

of the ratio of the tension to the mass of a unit of length. Thus
a is unaltered by any of these changes of the particles.

If the length of the string AB he L we have L=(n + 1)L
If n be very great we find p = 2csin = a I'lr/L very nearly.

Thus the notes sounded by a string loaded with small particles

at short intervals are such that their periods are given by
P=2L/ai. The note given by i = l is called the fundamental
note, those given by the higher integer values of ^ are called the
harmonics.

406. Determination of Constants. If we express a and /3 in terms of 6 and

substitute these in equation (4) we find the typical equation

y;t= 'ZEiSin2kecos{2ct8me) + ZFiSm2kdsin{2ctsind) (5),

where Et and Fi have been written for 2Ap sin w^ >/ — 1 and 2Ap cos cjp^/ -1. As be-

fore d— iirj2 (n + 1) and the symbol S implies summation for all values of i from t= 1

to t=n. This equation has n terms and thus we have 2n arbitrary constants, viz.

El, E^.-.E^ and F-^, F^.-.F^. These have to be determined from the known initial

values of the n co-ordinates i/j, y.2---yn ^^^ of their initial velocities ?//, y^-'-Vn'

Since h may have any value from k = lioh-=n the typical equation (5) represents

as many equations as there are particles. We may imagine these to be written

down one under another exactly as described in Chap. viii. Art. 379. To find the

constant Ei which runs through all the terms in any one column we use the

multiplier to separate that column from the others. To find this multipher we
write down the vis viva of the system which in our case is 2T=Swii//2. According

to the rule given in Chap. viii. Art. 387 or Art. 399, the proper multiplier for

the equation giving y^ is found by differentiating T with regard to yk and substitut-

ing for y^' the coefficient of the oscillation we wish to separate. The differentiation

in our case is my^. The proper multipliers to separate the two columns dis-

tinguished by any value of i are therefore mEi sin 21cd and mFj sin 2kd. Thus we

find after division by common factors

S
{ y^ sin 2hd ] = \Fi {n + 1) 2c sin i

"

Here we have written on the right hand side for S (sin 2kd)'^ its value | {n + 1) which

is easily found by ordinary trigonometrical processes.

These equations determine the values of Ei and Fi for any particular value of i.

On the left hand side the co-ordinates y^, y^, &c. and the velocities y^, yc^, &c. are

supposed to have their initial values, and the symbol S implies summation for all

values of A;, from k = l to k = n, the value of i included in 6 being given.

407. Ex. 1. A string of length 2 (n-1- 1) I is stretched between two fixed points

A and B as before and loaded with 2/i+l particles at distances apart each equal

to I. Taking the origin at the middle particle, let the particles from k — ~e to
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k= + €he initially displaced so that yt= C sin kir/e. Let all the other particles be in

their undisturbed positions in the straight line AB, so that 2/*= for all values of k

not comprised between the limits =fc e. Let also the system start from rest. Then

by proceeding as explained in the last article, we find that the motion is given by

yt= S£, sin 2ke cos {2ct sin 6),

. a_ iir —_C cos iw sin 2e^ sin 7r/e
^'^^^^

^~2(^rfl)' ^*~2{^hT) sin^ 7r/2€ - sin2 d'

Ex. 2. A string of length (n+ 1) I is stretched between two fixed points A and B
and loaded with n particles at distances each equal to I. The extremity A defined

by ^•= is suddenly moved a small space equal to i/q at right angles to the original

position of the string and is there kept fixed. The motion of the k*-^ particle is

given by y*= yo (
1 ^. )

- S -^- cot 6 sin 2ke cos {2ct sin 6), •

where 6=1x12 (n+ 1), and the symbol 2 implies summation for all values of i from

I = 1 to n.

To prove this we have the following conditions
; (1) for all values of t we have

2/*=yo when k=0, and yt= when k=n+l. These give Bq=i/q and AQ{n + l) = -yQ,

(2) when t= we have 2/*=0 for all values of k except ^=0.

408. Agitation of one extremity. When one extremity

of the string of particles is agitated according to any given law,

a slight modification of the solution given in Art. 402 will enable

ns to find the motion. Let us suppose that the extremity A, defined

by k = 0, is agitated so that its motion is continuously given by

yQ = G sin /Jit it is required to find the motion of the particles.

We may notice that it is sufficient for our present purpose
that the law of agitation, however complicated, can be represented

by a finite series of terms of this form. The resultant motion
of any particle is then found by compounding together the motions
due to the several terms of the series.

The motion of the string of particles may be regarded as made
up of two separate oscillatory motions. There are (1) the forced

oscillation whose period is the same as that of agitating force,

and (2) the free oscillations whose periods are the same as those

found in Art. 404 when the two extremities of the string were
fixed. Our present object is to find the former of these.

Proceeding as before, we have by equation (4)

y^=AQ-\-BQk+{A.^ + BJ:){- l)*sin {2ct + o}^) + ^{A^a} + B,,^'') sin {j>t-{-u),).

Since y„ = C sin yut when A: = we have p = fi, (0^ = in the forced

vibration. Also unless /z.= or 2c we have Aq= 0, A^ = 0.

Again, 2/^=0 when k = 7i-\- 1, hence B^=0, B^ = and the forced

vibration is given by

A^ -f B^ = (7, A^o.''^' + ^^iS"^' = 0,

where a and yS are the two values of a given by
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409. If IX he greater than 2c, let //, = 2c/sin <^, and all possible
cases are included if we suppose

<f)
to lie between and Jtt.

Making the necessary substitutions we find for the forced
oscillation

(tani<^)^^«^^-*^-(coti<^)^^"+^-% ,,,^ .

y^ - (tan i 0r--- - (cot Ur-^ •
(-^^^"^ ^^-

•

'(^)'

If the string be very long we have n infinite, and this ex-
pression takes the simpler form

2/, = (tani</,r(-iyOsin/.iJ (2).

The first of these two expressions applies to a finite string

of particles and is clearly made up of two expressions like the
latter, the coefficients being such that the displacements of A and
B are respectively sin yu,^ and zero. The motion has therefore

been analysed as the resultant of two motions each of which is

represented by equation (2).

410. If fjb he less than 2c, let />t = 2c sin -v/r, the forced vibra-

tion then becomes

_ sin2(7i + l- k)±
y^- sin2(7i+l)>^^ ^''""^^ ^*^^*

(?l+l)^|r

This can be written in the form

_G cos [/i^-2(?i-hl-A;)a/r] _ cos \}it^2{n^\-h)^'\
y^ 2 sin 2 (71 + 1) -i/r 2 sin 2 (ti + 1) -f

"

'

'^ ^•

Taking the first of these two terms by it??elf we see that

after a time T given by //,T'= 2-v/r, the term is unaltered if we write

h — \ for h. This term therefore represents a wave which travels

the space between one particle and the next in the time T. In
the same way the second term represents a wave which travels

with the same velocity in the opposite direction.

411. Two kinds of possible motion. Attention should

be particularly directed to the great difference between the two
kinds of oscillatory motions. If the period of the agitating force,

viz. 27r///. be long enough to make //. < 2c, the forced oscillation

transmitted to the string of particles is formed by the superposition

of two waves which travel in opposite directions without change
of magnitude. Thus the particles near the further extremity B
of the string may be as greatly agitated as those near the point

of application of the force. Suppose i/r = 7r/2g where g is some
integer, then by (3) every q\h particle counting from the further

extremity B is permanently at rest and forms a node. The
strings of particles between these successive nodes form equal

loops which are alternately on one side and the other of the

straight line AB.
Let us now compare this state of motion with that which

results from the agitating force when its period is so short that
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/i. > 2c. In tliis case no motion in the nature of a wave is trans-

mitted along the string. Taking the case of a very long string

the particles are alternately on opposite sides of AB, while their

displacements form a series in geometrical progression. Thus
the displacements of the particles are less and less the more remote
they are from the agitating force.

412. The transition from the one kind of motion to the other

is easily understood by supposing the period of the agitating force

to grow gradually less and less until it passes the critical value.

It is clear that sin -^jr will increase but it cannot become greater

than unity. The number of particles, viz. ^ — 1 between two
successive nodes decreases and finally vanishes when i/r = |7r.

But since no further decrease is possible the motion changes its

character.

The expressions (1) and (3) both assume the form 0/0 when
(^ = -v^ = ^TT. The motion in the transitional state may be deduced
from either of these expressions by the usual rules in the dif-

ferential calculus. But we see independently by Art. 402 that it

is given by

y, = (A+Bk)('-iysm2ct
Since y^ = (7 sin 2ct when k = and y^ = when k = n-^l, we
easily find y, = {1 ~ Jc/(n + 1)} (~1)* G sin 2ct

413. Discontinuous agitating force. When the agitation communicated to

the extremity A is not continuous, but acts for a short time only, the resulting

motion may be found by the method of the superposition of small motions.

Thus if the extremity A be suddenly moved at the time i = a short distance

?/,, at right angles to AB^ the resulting motion has been found in Ex. 2, Art. 407.

Let us represent this motion by 2/i= yo/(^> 0- After a time t-u has elapsed, let

the extremity A receive another displacement F^, the rest of the string being undis-

turbed. If we superimpose these two motions we obtain

y*-yo/(*. i)+Yof{K t-u).

At the time t= u, the second function and its differential coefficient with regard to t

both vanish for all values of k from k = l to k= n + l. Thus the initial conditions

of motion at this time are expressed by the first function. This equation therefore

represents the motion produced by these two disturbances for all time from t = u to

t = co

.

Generalizing this, we see that if the extremity A be moved according to any law

Bay 1/0= F{t) for a time extending from t-0 to t=y, then the motion of the string

is given by yk=J F'iu)f{ h, t - u) du

for all time extending from < = 7 to « = co .

Since the agitating force ceases to act after the time t = y it is clear thjit the

motion of the string after this time is made up of the free vibrations belonging to

a Htriug of particles having each end fixed. Accordingly, if we substitute for the

function /(/t, t - «) its value given in Art. 407, we see that this expression for //* con-

BiHts of n oscillations whose periods are the same as those already found in Art. 404.

Tlieir phases and magnitudes depend on the action of the agitating force.
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414. Ex. Let the extremity A of the string of particles already described be
moved so that i/Q= Csin/j.t for a time extending from «= to t = irlix. Supposing
the extremities to remain at rest for all subsequent time, prove that the motion of

the k^^ particle is given by

An a • ma sin 2c sin ^ ( f - -^ ) COS — sin
_ 4C/A cos ff sm ITcd \_ V 2,a/J L /^ J^*~

w+ 1
~~ '

ix'-W^Qin^d

where 0=iirj2 (n + 1) and the S implies summation for all integer values of i from
i=l to w+ 1.

415. Analysis by 'Waves. There is another method of arranging the solution

of the equation of motion given in Art. 402 which has the advantage of enabling

us to analyse the motion by waves instead of by Lagrangian elements, see Art. 85.

Writing 5 for dfdt as usual the equation of motion becomes

y*+i-2y*+y*-i=^y*- (l).

Treating the operator on the right-hand side as a constant, we proceed to solve

the equation of differences in the manner already explained in Art. 402. The two

constants A and B are now functions of t. Hence if we put

-^(l)]^-| (^'.

we have yk==U^f{t) + il-^F{t) (3).

This is a symbolical solution of the equation of differences with its two arbitrary

functions / («) and F {t). When the forms of these functions are given, the opera-

tion represented by Q can be performed and a solution of the equations of differences

will be found.

416. To obtain one interpretation of this symbolical solution let us suppose the

functions f (t) and F {t) can be expressed in a series whose general term is

A cos(2csin ^f+ w), where d is the parameter whose value distinguishes any term

of the series from another. All cases are clearly included if we suppose 6 to lie

between the limits and ^ir.

Since the radical in the operator fi contains only even powers of 5, we obtain the

result of its operation by writing - (2c sin dY for 5^, see Art. 265. We therefore find

il cos (2c sin dt+u) = cos (2c sin dt + u-d).

Bepeating this process 2k times we have

7/4= 2/1 cos (2c sin dt + o)- 2kd) + SB cos (2c sin et-^03 + 2kd).

If we take by itself any one term of the first series we see that if we write for k,

k + 1 and for t, t + T where T is given by c sin ^ r= ^, the term is unaltered. Hence

(exactly as in Art. 87) any one term represents a wave which travels the space

between one particle and the next in the time T. In the same way the correspond-

ing term of the second series represents a wave which travels in the opposite direc-

tion with the same velocity.

Each term of either series represents a wave. Each wave travels with a uniform

velocity but the different waves have different velocities. Consider the wave defined

by any given value of 6, and let a= cl. If v be the velocity, X the length of the

wave measured from ridge to ridge, and P the period of oscillation of any one

sin ^ ^ irl ^ tI
particle, we have v = a —^— , ^ = —

,

a sin d

Since d lies between and ^tt we see that the velocities of all these waves lie

between a and 2a/7r ; the length of every wave is greater than 21 ; the period of.
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oscillation of every particle is greater than 7r7/a. The longer the waves are the

more nearly do they travel with the same velocity.

If we suppose I to decrease the particles will be closer together, and if each

particle have proportionally less mass the quantity a will be unchanged. Consider-

ing then all waves whose lengths have a given inferior limit, we see that the closer

the particles are together, the mass of a unit of length being unchanged^ tJie more

nearly do waves of all lengths travel with the same velocity.

417. Other interpretations of the symbolical solution (3) given in Art. 415 may
be obtained by substituting other forms for the arbitrary functions / (t) and F {t).

Thus we might have

If /t be greater than 2c we may introduce the subsidiary angle <p as in Art. 409.

This expression then reduces to

yt=(- 1)* (tan h(p)^ C cos fit.

418. Ex. If we write x= kl and make the interval I between the particles

indefinitely small, the operation represented by ft^* takes the singular form 1*.

Show by finding the limit in the usual manner that J22*= <2~^^^*^^ and thence deduce

419. Ex. 1. A long row of particles, each of mass m, is placed on a smooth

horizontal table. Each is connected with the two adjacent ones by similar light

elastic stretched strings of natural length I. They receive small longitudinal dis-

turbances such that each of them proceeds to perform a harmonic oscillation

:

prove that there will be two waves of vibrations in opposite directions with the

same velocity, viz. Z' /—^ sin - , where I' is the average distance between two

successive particles, q the number of intervals between two particles in the same

phase, and E is the modulus of elasticity. [Math. Tripos, 1873.]

Ex. 2. A light elastic string of length n^ and coefficient of elasticity E is loaded

with n particles each of mass m ranged at intervals I along it, beginning at one

extremity. If it be suspended by the other prove that the periods of its vertical

oscillations are given by the formula ir . /~ cosec _ ^ , where i=0, 1, 2...n -

1

\ E 2n+ l 2 '

successively. Hence show that the periods of vertical oscillation of a heavy

elastic string are given by the formula w^l \/ "F~ » ^^^^^ -^ is t^ie length of the

string, M its mass, and i is zero or any positive integer. [Math. Tripos^ 1871.]

Ex. 3. A railway engine is drawing a train of equal carriages connected by

spring couplings of strength yt* and the driving power is so adjusted that the velocity

is ^ + Z^sin5t. Show that if q'^ {{M + im) b^ + imk"^} be nearly equal to 2/xft2 the

couplings will probably break, M being the mass of a carriage which is supported

on four equal wheels of mass w, radius b and radius of gyration k. Are there any

other values of q for which the couplings will probably break? [Coll. Exam. 1880.]

Ex. 4. Equal uniform rods, n in number, and each of mass m, are smoothly

hinged together at their ends and are suspended by light elastic strings which are

fastened to tbe joints and the free ends. The other extremities of the strings are

attached to n + l points in a horizontal line whose distance apart is equal to the

length of a rod. The strings arc all of a natural length I and modulus E, except
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the extreme ones whose modulus is ^E. The system rests in equiUbrium under the

action of gravity and the rods are in a horizontal straight line and all the strings

vertical. Show that the periods of the small co-existent oscillations about this

position of equiUbrium are -r^ jmM 2 + cos— j| where i is zero or any integer,

the joints and ends being supposed to move approximately in vertical straight lines.

[Coll. Exam. 1881.]

420. Network of Particles. Let columns of threads in one plane be cut at

right angles by rows of threads. Let a particle of mass m be attached to them at

each intersection. Let the interval between two adjacent columns be I and the

interval between two adjacent rows be V. Let the tensions of the rows and columns

be respectively T and T'. Let the particles vibrate perpendicularly to the plane of

the threads, and let the whole system be removed from the action of gravity.

Ex. 1. If It? be the displacement of the particle in the h^^ column and k^^ row

and Tjml=c^, T'lml'= c'^, prove that the equation of motion is

dricldt^= c^ (m?a+i - 2wk + it^A-i) + c'^ [ic^^ - 2iVt + 2fa_i).

Ex. 2. Prove that the motion of the particles may be represented by the series

whose general term is

w= -Z{a'^{Ab'' + Bb-'') + a-'^{A'b'' + B'b-'')} sinpt (1),

where the S implies summation for aU values of a and 6 connected by the equation

-p-= c («-2 4)+e'^(6-2+^).

Show that if a and b are both real, one at least is negative. Show also that if

the circumstances of the problem permit 6 = ± 1 the corresponding coefficient of

sin 2>« becomes {±l)'{a''{A+Bk) + a-^A' + B'k)} (2).

If a and b are both = =t 1, the corresponding coefficient is

{:LlY{±lf{A+Bh+Ck + Dhk) (3).

What is the general form of the solution, when one of the two a and b is

imaginary and the other real? When both are imaginary with unity for modulus,

w= :EP sin {pt-2he-2kct>) Ishowthat
p^= c^2siner + c'^{2sin<pf\

^^^

Ex. 3. Show that the solution (4) of the last example represents a wave

motion. If \ be the length of the wave, v its velocity and a the angle the direction

in which it travels makes with the rows of thread, prove that

\d = irl cos a, \<f)
= Trl'sina, v" {'rrlX)^= c^sin^ O + c"^ sin^ (p.

Ex. 4. If the network be so constituted that cl=c'l', prove that there are two

directions in which a wave of given length will travel with the greatest velocity and

in these cases the fronts are the diagonals of the openings between the threads.

The two directions of least velocity are those in which the fronts are along the

threads.

Ex. 5. If cl= c'l' and if the intervals between the threads be very small, prove

that the network becomes a membrane which is equally stretched in all directions.

In this case waves of all finite length and all directions of front travel with the same

velocity.

Ex. 6. A network, otherwise infinite, is bounded by a rod which runs along the

diagonals of the openings. This rod is agitated according to the law io=F sinpt.

Prove that two distinct motions will result according as the period of agitation is

greater or less than 7r/(c2 + c'2)^. In the former case waves will travel over the net-

work, in the latter the motion will resemble that described in Art. 411.
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421. Network with Qaadrilateral openings. To bring these particles into

order we regard them as arranged in rows and columns, as in rectangular networks,

though these are no longer straight lines. If the network be so stretched that the

tension of every thread is proportional to the length of the thread along which it

acts, the ratio being equal to c*, the equation of motion may be proved to be

where A operates on h and A' on k. This is exactly the same equation as that

which determines the motion of a rectangular network when c = c'. Thus the

motions of the two networks will be the same when the central and boundary condi-

tions are made to correspond.

In this way we may deduce the motion of one kind of network from another

just as in Hydrodynamics we change one fluid motion into another.

Ex. 1. Show that the geometrical peculiarity of this quadrilateral network is

that each particle is the centre of gravity of the four adjacent particles to which it

is connected by strings.

Ex. 2, If {x, y) be the Cartesian co-ordinates of the particle {hk), prove that

X and y both satisfy the equation of differences A^a^^.j^t + A'-iCj t_i= 0. Show also

that the values of x and y may be written in the compendious form

a; + 7/V-l = S.4e2'^+2pW-l^
i (e«-e-*)= dbsin/S.

Other forms of the solution may be deduced as in Art. 420. For example, we
may have x=A + Bh+Ck+ Dhk.

In all these solutions the directions of the threads which form the sides of the

quadrilateral openings are defined by (1) making h constant and k variable, (2) by

making k constant and h variable. Thus taking a single exponential, we find

x=Ae"'^eoa2pk, y = Ae^'^Bm2pk. These lead to aP-i-y^=Ah^, yjx = ian2^k.

The quadrilateral openings are therefore formed by concentric circles and radii

vectores from their centre.

Ex. 3. When the openings of the network are indefinitely small, the result of

the last example becomes x + y s/ -l=f(h+ky/ -1), so that that result may be

regarded as an extension to Finite Differences of the theory of conjugate functions.

Ex. 4. If in Ex. (2) the values of h and k be not restricted to be integral,

prove that ^Xh-i.k= =t A'?/A.t-j, A'x^, *_j = t A?/»_j,t.

The analogy of these results to some well-known theorems in conjugate functions

is obvious.

Ex. 5. The Cartesian co-ordinates of the particles of a triangular network are

given by x = h, y = hk, where h, k are any integers. The equations to the three fixed

boundaries are a;=n, y = 0, y=n'x. Following the rule given in Ex. 2, show that

the quadrilateral openings are formed by radii vectores from the origin and ordi-

nates parallel to the axis of y. Prove that the period of vibration, viz. 2irjp, is

given by p^jc^=3in^ {ivj2n) + sin^ (i7r/2/j').

Theori/ of Equations of Differences.

422. Oeneral Bquations of BKotion. Let a series of n particles of masses
wip WI3... be arranged in a straight row at intervals equal to l^, l^... and be in

equilibrium under the action of external forces and their mutual attractions. Let

these particles be now displaced from their positions of equilibrium cither all at
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right angles to the axis of the row, or all along its length. Let the displacements

at the time t he y^, 7/3 ... 2/„. Our ohject is to find these y's as functions of the time.

The forces which act on the particles are of several kinds. (1) There are the

external forces of restitution which are functions of the displacements of the

particle acted on from its position of equilibrium. These must supply terms to the

force function of the form -^'Za^y/,^; all the higher powers of the displacements

being rejected. (2) There are the forces of restitution which depend on the action

of the adjacent particles on each side of the particle under consideration. These

must supply terms to the force function which contain squares of the y's and pro-

ducts of y's with adjacent suffixes. But since ^Vkyk+i^yi^ + yk+i -{Vi+i-y^^, the

only additional terms thus introduced into the force function will be of the form
- iSfi* (z/*+i - 2/i)2. (3) There are the forces of restitution which depend on the

action of the two adjacent particles on each side of the particle under considera-

tion. These supply terms to the force function containing squares and products of

y's whose suffixes differ at most by 2. But since 27/^1/4+2= (2/*+2-2?/a+i + 2/a)2-|-&c.,

where the &c. indicates squares of y's and products of 2^'s whose suffixes differ by
unity, it is clear that the only additional terms introduced into the force function

are of the form - pc^ (7/4+2 " 2y*+i + Vk?.

The forces which depend on the action of the three adjacent particles may be

treated in the same way.

Besides these forces there may be some external forces of constraint acting on

the two extremities of the row. These are functions respectively of y^ and y^ and
therefore supply terms to the force function of the form - l\y-^ and - \ixy^. If

the forces of constraint act on the two last particles at each end we must add to

these the terms -W {y^ - y^Y and - i/x^-i (t/^ - 7/„_i)2.

Let U be the force function and let the position of equilibrium be the position of

reference. To simplify the argument let us in the first instance restrict ourselves

to the following terms

2 C7 = - \y^^ - i,y^^ - Za,y,^ - Xh, {y,+^ - y,)\

If 2r be the vis viva, we have 1T= 'Lmkyk^.

The Lagrangian equations of motion may therefore be written in the typical form

mkVk' = - akVk + [h (y*+i - Vk) - h-i [Vk

-

2/*-])],

= -%2/i + A(6i_iA7/*_i),

where A has the usual meaning given to it in the calculus of differences.

423. The Boundary Conditions. This typical equation represents the motion

of all the particles except the first and last. It does not include the case ^-= 1,

because the term - \ {y^ - 7/0)2 is missing from 2U and the term - Xt/^^ has not been

taken account of. If the differential coefficients of these with regard to y^ were

equal, the errors would correct each other. This gives

&o(yi-yo) = ^2/r

Treating the other extremity in the same way, we find

There are no particles corresponding to the values 7c= and k=^n + l, but the n

equations of motion corresponding to A; = 1 to fc = ti are all truly represented by the

same equation of differences if we suppose 7/0 and y^^^ to stand for their values as

given by these two conditions.

424. In the same way we may show that if we take the more general value for

U, viz. 2[/=- AjT/i^ - x^ (Ayi)2 _ ^^^yj _ ^^^_^ i^y^-iY
- 2a,7/,2 _ v/,^ (^y^)2 _ 2e, (AV,)2,
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the typical equation of motion becomes

»»*y*" = - OkV, + A {6t_i A?/t_i) - A2 (ct_2 A^Vk-z).

The terminal conditions at one extremity are

6oAyo-A(c_iAVi) = \yi
-CQA-yQ=X.Ay^\

There are similar conditions at the other.

425. Bletbod of Solution. To solve the typical equation of motion

wi*2/*" = - «*!/* + A (&t_i A?/4_i),

we follow the method of Lagrange. To find a principal oscillation we put

y*= L*sin(2)f + a)).

We thus have a^Lk - A {bt-i AL^-i) =p%*Z*.

This equation can also be written in the form

bi Lh-1 = (a* + **-i + ^* - P^"h) -L* - h-i -L*-]

.

If we wrote down at length the n equations given by ^=1, 2 ... n we could by

successive substitutions express the value of L^ as a linear function of Lq and L^.

But since the ratio of Lq to L^ is given by one of the equations at the limits, we can

find Li in the form Lj,=^G(t> {k, p), where C is either Lq or Lj at our pleasure or any

function of Lq and L^. See Art. 423.

If we make a few of the substitutions indicated it will be at once evident that

/p {k, p) is an integral rational function of p^ of the {k - Vf^ degree. We must now

substitute this result in the equation of condition at the other limit. We thus have

after division by C 6„ { (n + 1, i?)
- ^ (n, p)]+iJ.(p (n, p) = 0.

This equation will be shortly represented by \l/{p) = 0. We may notice that this

reasoning is perfectly general, so that no value of L^ not included in this solution

can satisfy the equation of differences.

This process is strictly Lagrange's method of finding the principal oscillations

and the final equation \£'{p) = Ois merely Lagrange's determinantal equation in an

expanded form. Accordingly we see that it is an equation of the n^^ degree to find

the n values of p\
But if w be considerable this method of eUmination cannot always be employed.

The Calculus of Finite Differences sometimes enables us (as in Art. 402) to arrive at

a solution in a simpler manner. But whatever method be adopted the solution

obtained, whether partial or complete, must be included in that indicated above.

426. If the given function 6* be such that &o= 0, 6„= and X, /* are also zero, there

are no conditions at the limits. In this case the equation of differences defined by

k= only contains Li and L^, the term - Sq (y^ - y^) being now absent. This equa-

tion therefore determines the ratio of L^ to L^ and the argument proceeds as before.

It is however more convenient to regard this case as included in the former with

the condition that y^, y^, y^.j, y^ are not to be infinite. With this proviso the

terms - b^ (?/i
- y^) and 6„ (y„+j - y„) cannot become finite.

427. Tlie corresponding Differential Equation. The limiting case of this

equation of differences is peculiarly interesting. Let us make all the intervals

l^, ?2, &c. between the particles equal to each other and each equal to I ; and let us

write x=H. Then in the limit when I is indefinitely small we have dx = l, and all

the various functions of k may therefore be regarded as continuous functions of x.

Writing mt= m^x, a^—a^dx^ and b^^bxldx the equation of differences becomes in

the limit a,y, "^ ( *«^ ) ^P'^m^Vx-
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This equation is to hold for all values of x between certain limits, say x= to

x— L. The conditions at the limits are

In the same way we may find the differential equation which corresponds to the
equation of differences given in Art. 424.

In this equation it is not necessary to suppose y to be small, for since the

equation is linear we may multiply y by any constant quantity we please. It is

necessary however that all the functions and as many of their differential coeffi-

cients as enter into the equation should be finite.

Suppose the function 6^ = at each limit and that X and fi are both zero. The
conditions at the limit disappear for a differential equation of the second order.

We thus have no equation to find p. But in the following theorems, the condition

that the solutions chosen for y must be finite between the limits remains in full

force. In some cases this one condition will limit the values of p.

428. Ex. If the differential equation be -~\{l-x^)^\= phj and the limits

be a!;= to a;= 1, show that no solution can be finite at both limits unless p^= i {i + 1)

where i is any positive integer.

429. This equation of differences and its limiting case the differential equation

are of considerable importance in other besides dynamical investigations. It is

therefore useful to notice that though the equation presented itself with a dynami-
cal meaning, yet the results in this section are perfectly general. We may regard

the equations of motion as simply so many differential equations to find t/j, t/.,, &c.

derived, as explained in Chap, vii., from the two auxiliary functions A and C, the

other auxiliary functions B, D, E, F being all zero. The functions A and G are

here called T and - U and the symbol m is here replaced by p^ - 1.

430. Three Propositions. We immediately infer the following theorems con-

cerning the values of p.

Prop. 1. If the function w^,. or m^ be positive between the limits, the function

T will be a one-signed positive function. It therefore follows from Art. 319, that

all the values o/p'^ are real.

This also follows from the theorem that all the roots of Lagrange's determinant

are real*.

431. Prop. 2. If the functions aj^, b^, &c. or a^, b^, &c. as well as mk or m, be

positive between the limits, and if X, /x be also positive, the function C = -U will

* Another proof that the values of p^ are all real is given by Poisson in Art. 90

of his Theorie Mathematique de la Chaleur. He there shows that if p^ could

have a pair of imaginary values of the form f±g\/-l, the integral / m^X^Y^dx

(see Art, 432) could not be zero. The argmnent is as follows. Since, by Art. 425,

Lk is a function of p^, it follows that the corresponding values of X^ and Y^ may be

written F^G\/-1. This leads to the result jm^{F^ + G^)dx=0, which is an

impossible equation if m„ keep one sign between the limits. Poisson applies his

argument to the case of a differential equation of the second order, but it may
evidently be extended to the general case of a differential equation or an equation

of differences of any order.
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be a one-signed positive function. It therefore follows from Art. 315, that all the

valves of p' are positive.

This also follows from the theorem in Vol. i. that when the force function U is

a maximum in the position of equiUbrium, that position of equilibrium is stable.

- 432. Prop. 3. Let p and q be two unequal possible values of the parameter p,

and let the corresponding solutions be indicated by the typical equations

yk= X^. sin pt, and y^= Y^. sin qt.

Then we may use the method of multipliers as explained in Chap. viii. Art. 399, and

assert that 2OT*^*n

=

m^^X^ Fj + . . . + »J„X„r„= 0.

In the case of the differential equation this becomes / m^X^Y~dx=0.

433. Sturm's Theorems. Restricting ourselves to the case in which the equa-

tion of differences has the form a^y^.- ^.{hk_^^y^^) =phn^yk, let us compare the

different kinds of motion indicated by different values of p"^.

In order to realize the motions of the several particles more easily, let an

ordinate be drawn perpendicular to the length of the row at the position of each

particle when in equilibrium. Let the length of this ordinate be equal to the dis-

placement of that particle at the time t. The curve traced out by the extremities

of these ordinates will exhibit to the eye the nature of the motion. The intersec-

tions of this curve with the axis of the row are called nodes, the maxima and

minima ordinates are called loops.

Let all the possible values of p be arranged in ascending order beginning with

the least.

In the solution given by the least value of p, it will be shown that at any one

moment all these ordinates have the same sign. Thus throughout the motion the

indicating curve will form an arc with a single loop which oscillates from one side

to the other of the axis of x.

In the solution given by the next smallest value of p, it will be shown that at any

instant there is one cJiange of sign among the ordinates, as we travel from one

extremity of the row to the other. Thus throughout the motion the indicating curve

wiQ form a double arc with two loops separated by a node.

In the solution given by the third smallest root there are at any instant two

changes of sign among the ordinates. Thus the indicating curve forms three loops

separated by two nodes, and so on through all the values of p.

In all these cases the nodes which belong to any value of p are separated by or

lie between the nodes which belong to the next value of p in the series.

434. To prove these theorems we require the following lemma. Let p and q
be two possible values of p, and let the corresponding motions be given by

2/fc = Xk sin pt and y^= Y^ sin qt. We have therefore

flfcXifc - A (6fc_, AZfc_i) =p^mA]
a^Yk- A{b,^,AY,_^) = q^m,Y,\

Eliminating the function a,, we find

(q'^ -i>2) m,X,n = h (AV,n - X,Y,+,) - 6,_, (.Y,n_, - AVi Y,).

This gives by summation from k=a to k=^k

{q^-V') {maXaYa+ ... +m,X,Yk)= b, (A,+in - A',r,+,) - ha-, {A'ay«-i - A'a-i r„).

The right-hand side may also be written

huiYuAX^-X^AY,) - ba., (la-, AAa_, - Xa_, AYa.,).
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In the limiting case in which the equation of differences becomes the differential

equation (Art. 427) this lemma takes the form

435. Cor. 1. Consider the full series of values X^, X^...X^ arranged in order.

We shall have ranges of positive and negative values succeeding each other. Let

Xa... Xjche one of these ranges in which all the constituents have one sign, while

those on each side, viz. Z^-j and X^+j, have the opposite sign. We shall prove that

if <1>P there is one change of sign at least in the corresponding range ofY's extend-

ing from Ya_i to Y^+i both inclusive.

For if possible let all these Fs have one sign, then every one of the four terms

on the right-hand side of the equality in the lemma has the sign opposite to that of

the product X^Yk. Hence the lemma could not be true.

We have made no assumption as to the function %, but 6^ and m^ have been

supposed to have the same sign, and to keep that sign from one limit to the other.

436. Cor. 2. Consider next a double range of values, say Xa ... Xp ... Xk, such

that all the constituents from Xa to Xp_j^ have one sign, say negative, and Xp to A^.

have the other sign while (to make the double range complete) X^_^ and Xk+i have

opposite signs to their adjacent constituents. Then by Cor. 1 t/q>p Y must change

sign between Y^_^ and Y/s and also between Y^_;^ and Yj^^. We shall noio prove

that a single change of sign between Yp_-^ and Y/3 ivill not suffice for both these

requirements.

For if it did, the products XaYa ... X^Yk would all have the same sign : but every

one of the four terms on the right-hand side of the equality in the lemma has the

sign opposite to that of the product A^.T^. Thus again the lemma could not

be true.

In the same way if we consider a triple range of values Xa.... Xp ... Xy ... Xk so

that X changes sign twice as k varies from one limit to the other, then by Cor. 1,

Y must change sign between F^-i and Yp, F^.j and Yy, ry_i and Yk^-^. But it follows

exactly as before that two changes of sign will not sulHce for all three requirements.

437. Cor. 3. Consider the range of values Z^, X^ ... Xk all of one sign begin-

ning at one extremity of the complete series and such that A^.+j has the opposite

sign. We shall prove that t/ q>p there is one change of sign at least in the cor-

responding range of Y'« extending from Yj to Y^+i.

In this case the range begins at one extremity, we have therefore the conditions

&^ (Xi - Zo)= XA\ and b^ (Fj - Yq) = \Y^ which hold at that extremity. The equality

in the lemma becomes therefore

(32 -p^) KXiFi + . . .mkXkYk) = bk (A,+i Yk - Z, l^i)

.

If then all the Y's from 7^ to Yk^i had the same sign, every term on the left-

hand side would have the same sign, and the two terms on the right-hand side

would have the opposite sign, and thus the equality could not exist.

Similar remarks apply to a range terminating at the other extremity.

438. Cor. 4. Lastly consider all the n series X^ ... A'„, Y^ ... Y^, &c., &c., cor-

responding to the n values oi p, q, &c. arranged in order of magnitude beginning at

the least. By the preceding corollaries, each of these series must have at least one

more change of sign than any series before it. As there are but n terms in each

series, the last, i.e. the n*'', can have but n-1 changes of sign. Hence the first

series has no changes of sign, the second has one change, the third has only tioo and

R. D. II. 16
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80 on. Also the changes of sign in each series alternate, in the manner already

explained, with tlie changes of sign in any series next to it.

439. It should be noticed that in Cor. 1 and 2 no use has been made of the

conditions at the limits. In these propositions therefore p and q are any arbitrary

quantities except that q must be greater than p. In Cor. 3 the conditions at one

limit are introduced, so that all three corollaries are true if only XJXq=YJYq at

one limit. Finally in Cor. 4 the conditions at both limits are supposed to be

satisfied and therefore p and q must now be different roots of the equation repre-

sented in Art. 425 by xj/ {p)=0.

440. Let us suppose that the conditions of constraint at one limit are satisfied

as in Cor. 3. We may therefore write the lemma in the form

iq^-p^) ^mXY=h, {Xn+iY,,-X„Y„+,),

when the summation extends from k = lto k=n. Since p and q are now arbitrary

quantities we may put q^=p^ + dp^. We therefore have to the first order of small

quantities dp^2mX^= 6„ {X^+i dX^ - Z„dX,^j) .

This equation may be written in the form

SmZ2 =^" {6„ [X^, . ZJ +/XZJ - Z„ ^3 {h„ iX^, - XJ +/.Z,}.

But the quantity in brackets is the left-hand side of the equation yp {p)= arrived

at in Art. 425 as the equation to find all the possible values of p when the condi-

tions of constraint at both extremities are taken account of. We therefore infer

It immediately follows from this equation that no value of p can make both

if/{p)= and ^ {p)=0. The equation ^^ (p)= cannot therefore have equal roots.

441. Ex. 1. If n particles of any masses at any intervals be arranged in a

straight row, as already explained, and oscillate transversely with the motion indi-

cated by any one value of the parameter p, prove that the straight line joining

any two particles cuts the axis of the row in a point which is fixed throughout the

motion.

Ex. 2. If yk= XkQUi.pt represent the principal oscillation corresponding to

the value p, prove that

p^ S»tfcXfc2= Sa,V + 2J, [Xj^^ _ XkY + XZjS+ f,X^\

The two first S's imply summation extending from A; = l to k = n, and the third

from Tc= l to k=n-l.

Ex. 3. If ttjfc, hk and m* be all positive and ^irjp be the longest period of a

principal oscillation, prove that p^ is less than the greatest value of (a* + 6* + 6t_i)/w*

and greater than the least value of atjmk.

If 2<t>lp be the shortest period of a principal oscillation, prove that p^ is greater

than the least value of (a* -F 6* + 6*_i)/wit and less than the greatest value of

(a4-f-264 + 26i_i)/mt. In this example h^ and 6„ are to be taken equal respectively to

X and IX.

Ex. 4. If the function a^ and h^ keep one and the same sign or are zero, show

that no value of p can be zero unless X and /x are both zero.

Ex. 5. Let y^^Xk^mpt, ?/*= 7* sin jf represent two principal oscillatory

motions such that q is greater than p. If a range of values be taken, say Xa ,,, X^,

which are all of one sign and such that X* is at a loop and that a node lies between

Xg,_^ and Xa, prove that either a node or a loop lies within the range Yg,_^ ... T*.
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Thence show that either a node or a loop of the shorter-timed oscillation must
lie within (or at the boundaries of) the space joining any node to any loop of the

longer-timed oscillation.

Ex. 6. In the equation P ^+Q-^ + Ry=pSy, where P, Q, R, S are given

functions of x, let y =X and y= Y he two solutions corresponding to different

values of p, and let jj. be the integrating factor of the first two terms on the left-

hand side. Prove that fjui.SXYdx=0 for any limits between which Z, Y and their

differential coefficients are finite provided that at each limit either

dY/^^ dX
^0"l-/-=.fA-dx' dx

The diflferential equation of the second order mentioned in Art. 427 is discussed

by C. Sturm in the first volume of Liouville's Journal. He there establishes the

theorems given in Art. 433 which we have called after his name. The extension of

these to equations of finite differences will be found in a paper by the author in

the eleventh volume of the Proceedings of the Mathematical Society, 1880. The

theorems on a network of particles are taken from a paper by the author in the

fifteenth volume of the same Proceedings, 1884.

IG—
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CHAPTER X.

APPLICATIONS OF THE CALCULUS OF VARIATIONS.

Principles of Least Action and Varying Action.

442. Two flindamental equations. Let {q^, q^, q^, &c.)

be the co-ordinates of a system of bodies, and let q stand for

any one of these. Let 2 T be the vis viva of the whole system

and U the force-function, and let L=T-\-U. As before let accents

denote differential coefficients with regard to the time.

Let us imagine the system to be moving in some manner,

which we will call the actual motion or course. Then q^, q^,

&c. are all functions of t, and it is generally our object to find the

form of these functions. Let us suppose the system to move in

some slightly different manner, i.e. let q^y q^, &c. be functions of t

slightly different from their actual forms. Let us call the motion

thus represented a neighbouring motion or course. We may pass,

in our minds, from the actual motion to any neighbouring motion

by the process called variation in the calculus of that name. By
the fundamental theorem in that calculus

where the letter S implies summation for all the co-ordinates

9i> ^2' ^^- ^^^ ^^ ^^ implied by the square brackets that the terms

outside the integral sign are to be taken between limits.

The co-ordinates being independent of each other, each sepa-

rate term under the integral sign vanishes by Lagrange's equations,

and we have therefore

,/>. = [(.-x|,)..xfa,]:

.[-™.s|8,];;,

where H is the reciprocal function of L, as explained in the first

volume of this treatise.

The integral I Ldt has been called by Sir W. R Hamilton

the principal function, and is usually represented by the letter S.
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If the geometrical equations do not contain the time explicitly,

T will be a quadratic homogeneous function of the velocities;

we have therefore t (dT/dq) q = 2T. In this case H=T-U. The
equation of vis viva will now hold and therefore T—U=h, where h
is a constant which represents the energy of the system. The
Hamiltonian equation just proved now takes the simpler form

BS = 8pLdt = -h (Bt, - BQ + [s^ BqT,

443. Other functions may be used instead of S. Let us put

V=S+[Ht]l, ,-. BV = BS+[HBt + tBH]l

dT
dq

The function V is called the characteristic function.

If the geometrical equations do not contain the time explicitly,

we have H =hy where A. is a constant which may be used to repre-

sent the whole energy of the system. In this case

v=s + h{t,- g = [V+ U) dt + 1*\t- U) dt,
J to Jto

.-. V=2f'Tdt.
J to

The function V therefore expresses the whole accumulation of the

vis viva, i.e. the action of the system in passing from its position

at the time t^ to its position at the time t^.

For the sake of simplicity it will be generally assumed in this

section that the geometrical equations do not contain the time

explicitly.

445. In the proof of these theorems we have supposed that all the forces are

conservative. If in addition to the impressed forces there are any reactions, such

as rolling friction, which cannot be taken account of by reducing the number of

independent co-ordinates, we must use Lagrange's equation in the form

d dL dL_ p
dt dq' dq

'

where, as explained in Vol. i., PS^ is the virtual moment of these reactions corre-

sponding to a displacement 5^. In this case the quantity under the integral sign

will not vanish unless the variations are such that

'ZP{Zq-q'ot) = Q.

Now q being the value of any co-ordinate in the actual motion at the time «,

q + Sq is its value in a neighbouring motion at the time t + dt. But qU is the

change of q in the time dt, hence q + Zq- q'8t is the value of the co-ordinate in the

neighbouring motion at the time t. The neighbouring motions must therefore be

such that the virtual moments of the reactions corresponding to a displacement of

the system from any position in the actual motion into its position in a neighbour-

ing motion at the same time is zero. With this restriction on the variations, the

two equations which express the variations of S and V will still be true.
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446. Another Proof. We may also establish these theorems withont the use

of Lagrange's equations. Let x, y, z be the Cartesian co-ordinates of any particle,

and let m be the mass of this particle. Let U be such a function that dUJdx,

dUjdi/y dVjdz are the components of the impressed forces on this particle in the

directions of the axes. We may write mX, mF, mZ as usual for these components.

Then L=T+U=pw» {x'^ + y'^+ 2^) + C7.

By the fundamental theorem in the Calculus of Variations, we have

where the variations Sx, &c. are connected together by the geometrical relations of

the system. If we substitute for L and remember that T is a homogeneous quad-

ratic function of a/, y\ z\ this becomes

5P^Ldt=[(U-T)dt + S»ix'5xJ ^ T'2m (Z - x") (&»

-

a^8t) dt.

Now 5x - afU is the projection on the axis of x of the displacement of the particle

m from its position in the actual motion at the time t to its position in a neigh-

bouring motion at the same time. Hence the part under the integral sign vanishes

by the principle of virtual velocities.

The term Swia/Sx is clearly the virtual moment of the momenta. If the co-

ordinates be expressed as functions of any independent quantities q-^, q,^, &g., it has

been proved in the first volume that this is equal to S {dTJdq') dq. Putting

T-U=H vre have as before

8flLdt= [- Hdt + S {dTldq') dqj^.

447. Principle of Least Action. Let us call the positions

of the system at the times t^ and i, the initial and terminal posi-

tions. Let us suppose these fixed so that the actual motion and all

its neighbouring motions are to have the same initial and terminal

positions. In this case 8q vanishes at each limit and the two
fundamental equations giving the values of BS and 8V take the

simpler forms

BS^BC'Ldt = -h{St-Bt,l
J to

BV=2BrTdt = {t^-t,)Bh,
J to

where it has been supposed that the geometrical equations do not

contain the time explicitly.

If the time of transit of the system from its initial to its terminal

position be also given, we have Bt^ = Bf^, and therefore

B rLdt = 0,
I"

If the constant h be given, or which is the same thing, if the

energy of the system be given, we have Bh = 0, and therefore

B ^Tdt = 0.
Jtn
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448. Since S V= 0, it follows that for the actual motion F is a
maximum or minimum, or at least the change it undergoes in

passing to any neighbouring motion is of the second order of small

quantities. It cannot be a maximum since by causing the bodies to

take circuitous paths we may make Fas large as we please. Again,
since the vis viva cannot be negative there must be some mode
of motion from one given position to another for which the action

is the least possible. When therefore the equations supplied by
the Calculus of Variations lead to but one possible motion that

motion must make F a minimum. But when there are several

possible modes of motion, though none can be a maximum some
may be neither maxima nor minima. With this understanding
we may infer the two following theorems.

449. Let any two positions of a dynamical system be given,

the actual motion is such that jTdt is less than if the system
were constrained, without violating any geometrical conditions, to

move in some other manner from the one position to the other

with the same energy ; these other motions being such that,

throughout, T is the same function of the co-ordinates and their

differential coefficients. This particular inference from the general

equations in Art. 447 is usually called the Principle of Least

Action.

In the same way, if the system move in the varied course not

with the same energy, but in the same time, from the one given

position to the other, then jLdt is a. minimum.

450. Maupertuis conceived that he could establish a priori by theological argu-

ments that all mechanical changes must take place in the world so as to occasion

the least possible quantity of action. In asserting this it was proposed to measure

the action by the product of the velocity and space ; and this measure being

adopted, mathematicians though they did not generally assent to Maupertuis'

reasonings found that his principle expressed a remarkable and useful truth, which

might be established on known mechanical grounds. "Whewell's History of the

Inductive Sciences, Vol. ii. p. 119.

Euler, at the end of his Traite des Isoperimetres, 1744, established the truth of the

principle for isolated particles describing orbits about centres of force. This was

afterwards extended by Lagrange to the motion of any system of bodies acting in

any manner on each other. In deducing conversely the equations of motion from

the principle of Least Action, Lagrange seems to have fallen into some errors which

were pointed out by Ostrogradsky in his Memoire sur les equations differentielles

relatives au probleme des Isoperimetres published in the Memoirs of the Academy of

Sciences at St Petersburgh in 1850.

451. Motion deduced from the Calculus of Variations.

By making the first variation of either V or S equal to zero (under

the given conditions) according to the rules of the Calculus of

Variations we may conversely find the co-ordinates q^, q^, &c.

as functions of t. Amongst these functions of the time we shall

certainly find the motions given by Lagrange's equations because
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we have just proved that these make the first variations equal to

zero. But it is possible that there may exist other courses or

modes of conducting the system from the initial to the terminal

positions which (though contrary to mechanical laws) may make
V or ^ a minimum. It is easy to see that some other courses

must exist, for the two positions may be so placed that it is

impossible to project the system from the initial position with a
given energy so as to pass tli rough the terminal position. Thus
suppose it is required to project a particle under the action of

gravity from an initial position with a given velocity so as to pass

through a position B on the horizontal line through A, but beyond
the maximum range. We know that this cannot be done with

real conditions of projection in a real time. Yet some course of

minimum action from ^ to ^ must exist. We shall now show,

(1) that the ordinary processes of the Calculus of Variations,

which are founded on the supposition that the variations of the

independent co-ordinates may have any sign, lead only to La-
grange's equations

; (2) that there are certain other modes of

motion which are so situated that the co-ordinates (along some
part at least of the course) cannot be made to vary on one side

without introducing imaginary quantities, and that when these

impossible variations are omitted such courses may give a maxi-
mum or minimum.

452. Continuous Motions. Beginning with the iSrst of these two proposi-

sitions, let us make dS and 5V equal to zero according to the rules of the Calculus

of Variations.

Taking 5fLdt= where the time of transit is given, we immediately have

/X^M^)^^-"
for all variations. Since the Sq^s are all arbitrary and independent, it follows that

each coefficient imder the integral sign must vanish separately. In this manner we
are led directly to Lagrange's equations of motion.

453. If the action is to be a minimum some further considerations are

necessary because the condition that the energy T-U should be constant may act as

a limit to the variations which can be given to the co-ordinates. Let h be this

constant, then following Lagrange's rule in the Calculus of Variations we put

W=T + X{T-U-h) and make d/Wdt=0,
without regard to the given condition. Afterwards we choose the arbitrary quantity

\ so that the given condition is satisfied. Then 8fWdt being zero for all variations

of the co-ordinates, it immediately follows that d/Tdt is also zero for all variations

which do not violate the given condition. With the same notation as before

we have

where the integrals and the quantities in square brackets are to be taken between

the given limits, which are omitted for the sake of brevity.

First, let us consider the part outside the integral sign. The initial and final

positions being given, each 87= 0. We therefore have
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This equation is satisfied by 5^= 0, but since the time of transit is not to be the

same in the actual and varied motions this factor is to be rejected. Also T is a

homogeneous quadratic function of the q's, hence 2 {dTldq)q' = 2T. Substituting

for W its value and using this equation we find {l + \) T + \{U+h) = 0. But \ is

such that T-U=h. Hence (1 + 2X) T=0, and therefore \=-^.
Next, consider the part under the integral sign. By the rules of the Calculus of

Variations we have (since the 5g's are all arbitrary) the typical equation

dW_ d W^
dq dt dq'

Substituting for W and giving X its value just found, we have the typical

Lagrange's equation.

454. Ex. If we add to the conditions used in the principle of Least Action the

condition that the time of transit as well as the energy is to be the same in all the

varied motions, show that the minimum does not in general lead to Lagrange's

equations. Following the same notation as in the last article, show that the mini-

mum for a given time (not necessarily equal to the time of free transit), leads to

X= - ^ + A/T, where ^ is a constant to be so chosen that the energy has its given

value. Show also that when the time of transit is given so that ^ =0, the minimum
thus found is the least.

455. Discontinuous Motions. Turning now to the second proposition men-

tioned in Art. 451, let us investigate if there can be any other modes of motion

besides those just found, which make the first variation of the action equal to zero.

In obtaining these equations it is assumed that the S^'s are all independent ; but, if

the conditions of the question imply any boundary, this may not be true for any

actual motion which takes the system in the immediate neighbourhood of that

boundary. Thus, in our case, since T cannot be negative, all positions of the

system outside the boundary Z7+ 7i = are excluded. In the immediate neighbour-

hood of this boundary the variations of the co-ordinates may not be susceptible of

all signs*. It follows that a motion along the boundary maybe a course of mini-

mum action though not given by the ordinary equations of the Calculus of

Variations.

It is evident that we cannot make the system travel along the boundary whose

equation is U+h= because this requires all the velocities to be zero. But the

system may travel as near as we please to this boundary with a total "action" as

small as we please. The following discontinuous motion may therefore be a course

of minimum action. First project the system from its given initial position [A)

with such velocities and directions of motion, but with the given energy, that every

particle may come simultaneously to rest. Assuming the equations to give real

* Exceptional cases, similar to these, occur in the theory of maxima and minima

in the Differential Calculus. When the independent variable is not capable of

unlimited increase, but is bounded in one or both directions, its value at either

boundary sometimes corresponds to a maximura or minimum value of the dependent

variable, though this is not found by making the differential coefficient equal to

zero.

In the Calculus of Variations some instances in which the variations at the

boundaries are not susceptible of every sign are given in De Morgan's Differential

Calculus, page 460, &c. These appear to have been rediscovered by Dr Todhunter

in his " Researches in the Calculus of Variations" Art. 18. See also Chap. viii. of

his " Researches &c."
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conditions of projection, the system is then situated on the boundary. Let

this position be called B. Next move the system close to the boundary until it

reaches such a position (C) that on being set free without velocity it passes through

the given terminal position (D) under the action of the forces represented by 17.

The motions from A to B and C to D are courses of minimum action, while the

action from B to G may be made as small as we please.

456. We may show that the action along this discontinuous course is really a

minimum. To prove this, let us take any neighbouring motion beginning at A and

ending at D. Let B', C be any positions of the system on the neighbouring course

near B and C respectively. Since 8h=0, the action (Art. 443) along AB' exceeds

that along AB by dV=\2i{dTldq') 5gl^. This vanishes at the lower limit since

both courses begin at A. Since T ia a. quadratic function of the velocities, dTjdq'

contains a velocity in every term and all these velocities vanish in the position J5,

i.e. at the upper limit. We therefore have bV=0. We infer that the difference

of the actions along AB and AB' is of the order of the quantities neglected in

investigating this expression for 5V. Thus the difference of these two actions is of

the order of the squares and products of 5q and hq'.

Next let M' be any position on the neighbouring motion B'C so that the change

of place B'M' is finite. The velocities in every position of the system between B'

and M' are of the order 5q\ and hence the semi vis viva T is of the order (Sg')^.

But the time of transit from B' to M' varies inversely as the mean velocity, hence

the JTdt^ i. e. the action from B' to M', is of the first order of small quantities,

viz. 5q'. This action is essentially positive, and we have just proved that it is

infinitely greater than the difference of actions along AB and AB'. Hence the

action along AM' is greater than that along AB.

In the same way if N' be a position of the system properly chosen on the neigh-

bouring course nearer C, we may show that the action along N'D is greater than

that along CD. The action along M'N' is also greater than that along BG. It

follows therefore that so long as the separation in space between the positions B
and G is finite, the action along ABCD is less than that along any neighbouring

course.

457. Ex. If we use the principle of least action in the manner explained in

Art. 453 we virtually remove the restriction on the variation of the co-ordinates.

Show that in the discontinuous course the first variation of fWdt is zero if we
regard X as a discontinuous function which is equal to - ^ along the courses ABy
GD and equal to zero along the course BG.

458. Is the Action an actual minimum ? To determine
whether the integral is a maximum or a minimum or neither,

we must examine the terms of the second order in the variation

of the integral to ascertain if their sum keeps one sign or not for

all variations of the independent variables. This is a very trouble-

some process, but it is unnecessary to discuss it. It will be
sufficient to remind the reader of some remarks of Jacobi, given
in the seventeenth volume of Crelles Journal^ 1837, and trans-

lated in Dr Todhunter's History of the Calculus of Variations,

page 250.

Suppose a dynamical system to start from any given position

which we shall call xi, and to arrive at some position B. If the
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time be given, the motion is found by making SjLdt = 0; if the
energy be given, by making BJTdt = 0. The constants which
occur in integrating the differential equations supplied by the
Calculus of Variations are to be determined by means of the
given limiting values ; but as this involves the solution of equa-
tions there will in general be several systems of values for the
arbitrary constants, so that several possible modes of motion from
AtoB may be found which satisfy the same differential equation
and the same limiting conditions. Now let one of these modes
of motion be chosen, and let the position B approach A, so as to

be always on this chosen mode of motion. Suppose that when B
reaches the position C another possible mode of motion from A
to B is indefinitely near to the chosen motion. Then G determines
the boundary up to which or beyond which the integration must
not extend if the integral is to be a minimum*.

Jacobi illustrates his rule by considering the principle of least

action in the elliptic motion of a planet. Let >Si be the sun, and
let the particle start from A towards aphelion to arrive at a point

B, The path is known to be an ellipse with S for focus. Since

we use the principle of least action, the energy of the motion is

given : hence the major axis of the ellipse is known, let this be 2a.

* One part of the argument may be briefly sketched thus. Let the system

depend on two co-ordinates q^ , q^ and let fWdt be the integral under consideration.

Kestricting ourselves to such variations as have the limits fixed, the terms of the

first order may be written f{Mu + Nv)dt, where u and v contain the arbitrary

variations. Since u and v may have any sign, we have along the chosen course

31=0, N=0. The second variation of this integral may be written f{8Mu + 8Nv) dt,

where 5x¥= [dMJdq-^ 5q^ + {dMjdq^) 5^/ + (dMldq^) dq^ + {dM/dq^') dq^ and bN is ex-

pressed by a similar equation.

Let the equations to the chosen course be

qi= 4>{t, a-^,a^,a.^,a^), q^= \p{t,a^,a^,a.^, a^,

where flj, a^, a^, a^ are the four constants of integration. These are of course

the integrals of the differential equations M=Q, N=0. The equations to the

neighbouring course which brings the system from the position A to the position C
are found by writing a^ + 5%, &c. for a^, &c. It therefore follows that 8q-^ = S {d<plda) da

and Sq2=:'2i{dxl/jda)da is a solution of the simultaneous differential equations

8L = 0, dM=0.
This variation from the chosen course must therefore make the terms of the

second order vanish. Thus, by Taylor's theorem, dfWdt is now expressed by the

terms of the third order. Since 8L = 0, 8M=0 are linear equations to find Sg-j and

5^2, they are still satisfied if we change the sign of all the constants 5%, &c. at

once. The terms of the third order may therefore be made to be of any sign.

Thus SfWdt does not keep one sign for all variations from the chosen course.

The result is that if the final position B be at C, variations from the chosen

course can be found which make SfWdt either positive or negative. If B be beyond

C the same conclusion follows, for we may conduct the system from ^ to C along

the neighbouring course and then from C to i> along the chosen course.
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The other focus H of the ellipse is the intersection of two circles

described with centres A and B and radii 2a — SA, 2a — SB re-

spectively. The two intersections give two solutions which only

coincide when the circles touch, that is when the line AB passes

through the focus H. Thus if we draw a chord AG through H
to cut the ellipse described by the particle in (7, then the terminal

position B must fall between A and G if the integral which occurs

in the principle of least action is really to be a minimum for this

ellipse. If B coincide with G, then the second variation cannot
become negative, but it can become zero, so that the variation of

the integral is then of the third order, and may therefore be either

positive or negative. If B be beyond G the second variation

itself can become negative.

If the particle start from A towards perihelion, then the ex-

treme point G is determined by drawing a chord A G through the
focus S to cut the ellipse in G. For if A and G are the limits we
can obtain an infinite number of solutions by the revolution of

the ellipse round AG. If in the last case the second limit B fall

beyond G, Jacobi considered that there would be a curve of double
curvature between the two given points for which the action is

less than it is for the ellipse. But this supposition is unnecessary,
for the discontinuous course spoken of in Art. 456 supplies the
minimum for this case.

459. Examples. Ex. 1. A particle, under the action of a centre of force at

whose attraction varies as the distance, is projected from a given point A with a

given velocity in such a direction as to reach another given point B. If C be the

first point on the elliptic path at which the tangent is perpendicular to the direction

of projection at A, prove that the "action" from A to B will be or will not be a

minimum according as B is between A and C or beyond C.

If B lie within a certain ellipse having its centre at and one focus at A, prove

that there are two directions in which the particle can be projected from A to reach

B and that the action is a minimum for one of these and not for the other. If B
lie outside this bounding ellipse, the particle cannot reach B. If OA be produced

to D, where D is such that the velocity of projection at A is equal to that acquired

by a particle starting from rest at D and moving to A under the action of the

central force, prove that the major axis of the bounding ellipse is equal to twice the

distance OD.
If the point B be without the bounding ellipse, the particle can reach B only if

properly conducted thither by some curve of constraint. The curve of minimum
action can be found by the following construction. Produce OA, OB to meet the

auxihary circle of the bounding ellipse in E and F. The required path is in-

definitely near to AEFB.
To prove these results, let us find the direction of projection from A that the

particle may pass through B. We notice that if OD = h, the sum of the squares of

any two semi-conjugate diameters is k^. Bisect AB in N and let ON=x,
NA=NB—y. Let the required direction of projection from A cut ON produce!

in T. Then from the equation to the ellipse we have a quadratic to find 07',

showing that tliere are in general two elliptic paths which may be described in



PRINCIPLE OF LEAST ACTION. 253

passing from A to B. Let the tangents at A to these intersect ON produced in

T and U; we deduce from the quadratic that OT . OU=h^ and NT . NU=y^.
These equations determine T and U.

We see at once that the two directions of projection coincide when OT=Jc, i.e.

when the tangents at A and B, viz. AT and BT, are at right angles.

Describe two circles with centres and N and radii equal to k and y respectively.

Describe a third circle on TU as diameter. Since OT . OXJ=B this third circle

cuts the circle with centre at right angles. Similarly it cuts the circle with

centre N at right angles. The tangents from the centre E of this third circle are

therefore equal. The centre B is therefore on the radical axis of the circles whose
centres are and N. This gives an easy geometrical construction to find T and TJ.

The points T and U will be imaginary unless the radical axis lie outside the

circles. The circles must therefore not intersect. Hence ON +NA must be less

than h. Produce AO to A' so that OA' = OA. Then we see that AB + BA' must be

less than 2k. Hence unless B lie within an ellipse whose foci are A and A' and
major axis 2k, the particle cannot be projected from A to pass through B.

Ex. 2. A particle is projected from a given point A under the action of gravity

and ^C is a focal chord of the parabola described. Prove that the action from A
to B is not a minimum unless B lie on the parabola between A and G. If B lie

beyond C, find the path which makes the action a minimum.

The first result follows at once from Jacobi's example. To answer both these

questions, we notice that there are two directions (if any) in which a particle may
be projected from one given point A to pass through a second given point B. These

have their foci >S', S' one above and the other below the chord A B, so that SS' and

AB bisect each other at right angles. These paths coincide when B is at C, and

wherever B may be one of these has its focus below AB. This parabola is the

path required.

Ex. 3. A particle, projected from a given point A with a given velocity, describes

a circle about a centre of force on the circumference whose attraction varies in-

versely as the fifth power of the distance. If B be any other position on this circle

through which the particle will pass before arriving at the centre of force, prove

that the action from ^ to ^ is a minimum according to Jacobi's condition,

460. Ziagrange's transforxnation. Lagrange has given a general view of his

transformation from Cartesian co-ordinates which seems worthy of notice. Let L
be any function of x, x', &o., y, y', &c. and of t, not restricting ourselves to dif-

ferential coefficients of the first order. Let the variables x, y, &c. be transformed

to others q^, q.2, &c. by writing for x, y, &c. any functions of q^, q^, &c. and of t.

The function L is thus expressed in two ways. By comparing the two values of

d/Ldt, given by the Calculus of Variations when the time is not varied, we see that

fh^ fdL d dL ^ \^ ^, /<! fdL d dL . \^ .^

is equal to the difference of the integrated portions of the two variations. Hence the

expression under the integral sign must be a perfect differential with regard to t,

quite independently of the operation 5. But this cannot be unless the expression

is zero, because it contains only the variations dx, 5q, &c. and not the differential

coefficients of these variations. We have therefore the general equation of trans-

formation
^fdL d dL „ \^ ^fdL d dL ^ \ ^

where the 2 implies summation for all the variables x, y, &c., q^, q^, &c.
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If as, y, &c. be Cartesian co-ordinates and if L be of the usual form 2ni«'2+ Z7,

the left-hand side of this equality vanishes by virtual velocities. Hence the right-

hand side must also vanish. The g's being all independent, we are led to Lagrange's

equations.

461. Cyclical Motions. When the geometrical equations do not contain the

time explicitly the symbol H or h may be used to express the energy of the system.

If we represent the energy by E, Sir W. E. Hamilton's fundamental equation may

be written 25 rTcZ«= f5£-i- Fs^SgT .

This equation has been applied to the mption of a system of bodies oscillating

in such a manner that the motion repeats itself in all respects at some constant

interval. Let this interval be i. Suppose that some disturbance is given to the

system by the addition of a quantity of energy 8E. Let the system be such that

the motion still recurs after a constant interval, and let this interval be now
i+ 5L The symbols of variation in Hamilton's equation may be used to imply a

change from one kind of motion to the other. If the time t be taken equal to the

period i of complete recurrence, the initial and terminal states of motion are the

same and therefore the last term vanishes when taken between the limits. The

equation reduces to 2d jlTdt=i5E. Let T^ be the mean vis viva of the system

during a period of complete recurrence of the motion, then flTdt= iT^. We

therefore have^/ = 2 ^!'^-\

This equation may be put into another form. Let P^ be the mean potential

energy of the system during a period of complete recurrence ; then we have

8P^ + dT^=dE,
Si

i
'

which serve to determine the change in the mean potential and kinetic energies

when any additional energy 8E is added to the system.

These or equivalent equations have been applied by Bolzman, Clausius and

Szily to the Dynamical Theory of Heat. The papers of the two latter are in

various numbers of the Philosophical Magazine extending from 1870 onwards.

The second of the equations above written may be called Clausius' equation,

462. Ex. 1. If the period of complete recurrence of a dynamical system is not

altered by the addition of energy, prove that this additional energy is equally dis-

tributed into potential and kinetic energy. See Art. 73.

Ex. 2. A quantity of energy dE is communicated to a system whose mean

semi vis viva during a period of complete recurrence is T^. This is repeated

continually, so that at last the mean vis viva and the period of complete recurrence

(dE
are the same as at first. Prove that I ^,- =0. This example is due to M. Szily,

and is important in the Dynamical Theory of Heat.

On the Solution of the General Equations of Motion,

463. Hamilton's Solution. Sir W. E. Hamilton has ap-

plied his fundamental theorem expressing the variation of the

Principal and Characteristic functions to obtain a new method of

solving dynamical problems.
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Let (a^, a/, a^, a/, &c.) be the values of (q^, g/, q^, q^, &c.)

when t = tQ, and let T^ he the same function of {a.^, a^, &c.) that
T is of (^j, q^, &c.). We have then by Art. 442 when t is written

for the upper limit

rIT dT
BS = t^, Bq-t^Sa- mt + IT.SL.

dq ^ da ^ ^

It is clear that both S and V may be regarded as functions of

the time and the initial conditions of the system of bodies, i.e. we
may regard either of these quantities as a function of t^, t, a^, a^^

&c., a/, «/, &c. Also the co-ordinates q^^ q^, &c. are functions of

t^, t and the same initial conditions. Though these functions are

in general unknown, yet we can conceive the initial velocities

a/, a/, &c. eliminated, so that S and V are now functions of t^, t,

and ttj, a^, &c., q^, q^, &c. the co-ordinates of the system at the

times t^ and t.

Let 8 be thus expressed, then, by the equation for BS, we have
the typical equations

dS^dT dS^_dT,
dq dq ' da da

'

Since T is not a function of q'\ the first of these equations

contains no differential coefficient of a co-ordinate higher than the

first. This equation, therefore, represents typically all the first

integrals ofthe equations of motion.

Since T^ contains only the initial co-ordinates and the initial

velocities, the second equation has no differential coefficient of

any co-ordinate in it. This equation, therefore, represents typically

all the second integrals of the motion.

Besides these we have the two equations

dS rr d8 rr

where, if the geometrical equations do not contain the time ex-

plicitly, we may put h for U, h being a constant. In this case

these integrals may be used to connect the constant of vis viva

with the constants (a, a, &c.).

Comparing Art. 447 with these results we see that >S^ is such

a function, that all the equations of motion and their integrals are

included in the statement that B8 is a known function of the

variation of the limits. If we keep the limits fixed, we get

Lagrange's equations ; if we vary the limits we get the integrals.

464. In just the same way, if we regard §'/, q^, &c., as

functions of t, the initial co-ordinates and their initial velocities,

we may eliminate t also by means of the equation
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We may eliminate t^ also by means of a similar equation
giving Hq in terms of the initial conditions. Both these reduce
to H = h^ — T — Z7 when the geometrical equations do not contain
the time explicitly.

Let us suppose V to he expressed in this manner as a function

of the initial co-ordinates, the co-ordinates at the time t, and of H
and Hq. Then, by the equation for SF,

dV^dT dV__dT^ dV _ dV__
dq dq' da~ da" dH ^' dH~ *''

Supposing V to he known, the first of these equations gives in

a typical form all the first integrals of the equations of motion.

The second supplies as many equations as there are co-ordinates

(q^, q^, &c.). When the geometrical equations do not contain the

time explicitly these do not contain t, but they all contain h.

One of them, therefore, reduces to the relation between this

constant and the constants (a, a\ &c.). The two last equations

hecome dV/dh = t — tQ. T'his will give another second integral of
the equations of motion containing the time.

465. The typical expression dT/dq has been called in Vol. I.

the momentum corresponding to the co-ordinate q or, more briefly,

the q component of the momentum. We may therefore say that

the q component of the momentum is given by dS/dq or dV/dq
according as we are using S or V.

The momenta corresponding to the co-ordinates q^, q^, &c. will

be represented by the symbols jt?^, p^^ &c., or typically by the single

letter p.

466. I£ Q=l {:2qp' + H)dt, where p = j-,, prove that 8Q= ['Hdt + i:q8p]l .

Thence show that if Q be expressed as a function of the initial and terminal

components of momentum, viz. (6^, feg* &c.) and {p^, p2, &c.) and of the times Iq and t,

then ^- = q, M = - «. S=H. This result is due to Sir W. R. Hamilton.
dp do dt

467. Examples. Ex. 1. A homogeneous sphere of unit mass rolls dovm a

perfectly rough fixed inclined plane. If the position of the sphere is defined by the

distance q of the point of contact from a fixed point on the inclined plane, show that

where g is the resolved part of gravity down the plane and t^= 0.

Thence obtain by substitution the Hamiltouian first and second integrals of the

equation of motion.

"We easily find, as in Vol. i., that q = a + a't + ^^gt^. Also T=^^q'^, U=gq.

To find S, we substitute in S=J^ {T+ U) dt. After integration we must eliminate

a! by means of the equation for q.

Ex. 2. Taking the same circumstances of motion as in the last example, show

ihsXV=-^ ,J^{(gq-\-h)^-[ga + h)h. Thence also deduce the Hamiltonian first
og

and second integrals.
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Ex. 3. Show how to deduce the equation of vis viva, from the Hamiltonian

integrals.

We have V a function of q^^, q^, &c. and H. Hence -^-='2—-q'+—- —-
,

at aq all at

which becomes by Hamilton's integrals 2r= S [dTjdq') q'+ t {dHldt). When T is a

homogeneous quadratic function of (g/, q.^', (fee.) this gives dHldt= 0, or if= con-

stant. The equation of vis viva may also be deduced from Hamilton's principal

function.

Ex. 4. When the geometrical equations do not contain the time explicitly,

show that no two of the Hamiltonian integrals can be the same and no one can be

deduced frpm two others.

If it were possible that two could be the same, the ratio of dTfdq^' to dTjdq^ must

be some constant m. Integrating this partial differential equation we find T to be a

homogeneous quadratic function of g/ - mq^, q^', &c. It would, therefore, be possi-

ble to set the system in motion, with values of 5/ and
q.J

which are not zero, and

yet so that the system is without vis viva.

Ex. 5. In any dynamical system if the co-ordinates q-^^, q^, q.^ and their corre-

sponding momenta Pi, p.^ p.^ be expressed in terms of their initial values and the

time elapsed, prove that the Jacobian of Pi, p<y, p^, q^, q^, q.^ with regard to their

initial values is equal to unity.

Ex. 6. A system whose co-ordinates are q^, g.^, &c. is mating small oscillations

about a state of steady motion determined by 5-1 = 0, g-g^O, &c. The Lagrangian

function, as in Art. Ill, is given by L = LQ+'ZAq' + L^, where L^ is a homogeneous

function of the second order of the co-ordinates and their velocities. Prove that

S = L^{t^ g + ^A{q-a)+l [-LqdL^q'l

where the last term is to be taken between the limits t^ and t. Here the in-

tegrations have been effected, but in order to express S (Art. 463) as a function of

the co-ordinates we must finally substitute for q' and a' in terms of these quantities.

Ex. 7. The position of a system making small oscillations as in Ex. 6 is

defined by one co-ordinate g, so that

I.= Lo-i-Ag' + i^n5'^ + Kn(Z'+Gfn22'»

where the coefficients are all constants. Prove that when <o =

where m^= Gul^n'

468. Hamilton's Differential Equations. By the pre-

ceding reasoning all the integrals of a dynamical system of equa-

tions can be expressed in terms of the differential coefficients of

a single function. But the method supplies no means of discovering

this function d priori. We shall now show that this function

must always satisfy a certain differential equation, so that the

solution of all dynamical problems may be reduced to the inte-

gration of one differential equation.

Let us for the sake of brevity, suppose that the geometrical

equations do not contain the time explicitly. We have then

H=T —U. To construct this differential equation we must find

the reciprocal function of T—U, according to the rules given in the

first volume of this treatise. Let

^T=A,^q;'+2A,,q;q,'+

R. D. II. 17
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We now put dTldq^^p^, dT/dq,^=p^, &c. and eliminate from T
the velocities q^\ q.^\ &c. so as to express T as a function of the

co-ordinates and momenta alone. As explained in the first volume,

we arrive at the result

-"« 2A
Pi P, ...

Pi At ^ir"

where A is the discriminant of T, The reciprocal function of

T-U is therefore H= T^ — U. Thus ^ is a quadratic function

of the momenta p^, p^, &c. We may shortly write this in the

form ir= iB,^p,' + B^j>j),-\' ... - U.

But Pt — dV/dq^, Pi = dV/dq^y &c. and the equation of vis viva

gives H — h Hence Fmust satisfy the equation

^^A'd^j'-^^^dJ.dq,-^^''-^-^'
^^-

In just the same way p^—dSjdq^^ p^=dS/dq^,&c. and H——dS/dt,
Hence S must satisfy the equation

*A.(f)'-^..f,f/'«-<'=-f •;••<')•

Here the coefficients B^^, B^^, &c. are all known functions of the

co-ordinates q^, q^, &c.

We have supposed V to be expressed as a function of the

co-ordinates at the time t, the initial co-ordinates and the energy

h. But in this equation we may also regard F to be a function of

the co-ordinates at the time t, the energy h, and as many arbitrary

constants as there are co-ordinates. In this case these constants

are really functions of the initial co-ordinates which we do not

care to determine. The equations giving the momenta ^j, p^, &c.

at the time t as the differential coefficients of V with regard to

^j, q^, &c. will still be true; but the equations expressing the

initial momenta are supposed not to be wanted.

If we take as these constants the actual co-ordinates at any
epoch t = tQ we may form another equation of a form similar to (I.)

with ffj, a^, &c. written for q^, q^, &c. and t^ for t. It is then
necessary that V should satisfy both these equations.

Summing up, we may form the Hamiltonian equation (I.) by
the following process. We first write down the equation of vis viva,

viz. T — U = h. We next form the reciprocal function of the left-

hand side. To do this we differentiate the left-hand side with
regard to the velocities q^\ q^, &c. and equate the results to the

momenta ^j, ^2, &c., we then eliminate the velocities. Lastly we
write foi' the momenta in the reciprocal function the differential

coefficients ofY %uith regard to the co-ordinates q^, q^, &c.
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469. Jacobins complete Integral. We thus have, in
general, a partial differential equation to find V or S. This
equation admits of many forms of solution, but Sir:W. R. Hamilton
gave no rule to determine which integral is to be taken. This
defect has been supplied by Jacobi in the following proposition.

Let there he n co-ordinates in the system.

Suppose a complete solution to have been found containing n — 1

constants {besides h) and the constant which may he introduced by
simple addition to the function Y. These constants need not he the

initial values o/q^, qg, &c., but may he any constants whatever. Let
them be denoted by a^, a^ ... ci^_^, so that

Then the integrals of the dynamical equations will he

| = /S.,&c.£ = A,... |=^ + e (2).

where ^^, ^^... /3„_j and € are n new arbitrary constants, and the

first integrals of the equations may he written in theform

iL-^X C=^ &e=&c rsi

It appears from Jaeobi's proposition that any integral provided

it is complete^ will supply a solution to the dynamical problem.

We have also a sufficient number of constants, viz. a^ ... a„_j, h, e

and /3j . . . /5„_j to satisfy any initial conditions.

470. To prove these results, we must show that if the form

of V given by (1) satisfies identically the equation

H=iB,^p,' + B^,p^p,+ ...-U=h. (I),

where p stands for dV/dq, then the relations (2) will satisfy iden-

tically the two typical Hamiltonian equations

dH , dll , ,-rT\

-^-2. -^=i' (")•

It will immediately follow, since H and T— U are reciprocal func-

tions, that the relations (2) will also make

dT
p-§ • •-(™>-

Since (I.) is identically satisfied, w^e may differentiate it partially

* An integral of a partial differential equation has been called by Lagrange

•'complete," when it contains as many arbitrary constants as there are independent

variables. It is imphed that the constants enter in such a manner into the inte-

gral that they cannot by any algebraic process be reduced to a smaller number.

For instance, if two of the constants enter in the form a^ + Oj, they amount on the

whole to only one.

17—2
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with regard to each of the n constants a^ ... a^_^ and h. We thus

obtain, after substitution from (1), w — 1 equations of the form

dpj^ dz dp^ doL '" '

and an nth equation derived from this by writing h for a and
unity for the zero on the right-hand side. We shall use these n
equations to find dHjdp^, dH/dp^, &c.

But if we differentiate Jacobi's integrals (2) with regard to t

we have ?i — 1 equations of the form

^1 JZ_+^_1!^ +...=0
dt d^dq^ dt dddq^ '" *

and an nth equation derived from this by writing h for a and
putting unity on the right-hand side. We shall use these n equa-

tions to find dq/dt^, dqjdt, &c.

Comparing these two sets of equations, we see that when we
substitute for the typical p its value derived from p = df/dq, the

equations become identical. Hence,

dH _^dq^ dH_dq^ o

d[\~'dt' dp^~"dt'

Again, if we differentiate the identical equation (I.) with regard

to each of the co-ordinates q^... q^in turn, we obtain after sub-

stitution from (1) the typical equation

dq dp^ dq dp^ dq '" '

...
dH_dq, d?f ^dq, cPf

^ _^
dq dt dq^dq dt dq^dq

But since p = df/dq, the right-hand side is the same as dp/dt, we
therefore have

"
'dq\

~ dt' 'd^~~di' '

471. aeometrlcal Bexnarks. To simplify the argument let us suppose that

the dynamical system depends only on two co-ordinates q^, q^. The Hamiltonian

equation (I.) therefore takes the form

*^"Q
Let us suppose that a complete integral has been found, viz.

V=f{qv (Z2. ai) + a2 (2).

Regarding q^, q^ and V as the Cartesian co-ordinates of a point P, this is the

equation to a double system or family of surfaces. Let us select any family we
please, so that the constants a^, a^ are now related by some equation a2=yp{a^.

The characteristics of this chosen family are given by

V=f{q,, qvH) + ^{<^i)\ /o^

= dflda^ + dyf^lda^ f
^

''

where Oj is regarded as a constant.
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The general integral ia obtained by eliminating aj between the two equations (3).

Here o^ in the first equation is to be regarded as a function of q^, q.^ determined by

the second equation. This of course is merely following Lagrange's rule to find the

general integral when any complete integral is known.

In the same way we find that Lagrange's singular solution is at infinity.

It appears from this that all the characteristics of all the families of surfaces

included in the complete integral (1) are used to build up the general integral. We
choose any set of characteristics we please so that a surface can be made to pass

through every member of the set. This surface is a particular case of the general

solution.

472. According to Jacobi's theorem the path of the dynamical system is defined

by 5//dai= j3i.
Looking at the second of equations (3) we see that this is equivalent

to asserting that d^/cZaj and therefore a^ is constant. It follows that the possible

jpaths of the dynamical system are the characteristics of the families which may he

chosen out of the complete integral.

473. Since Lagrange's method of finding the general integral will give a solu-

tion whatever the form of \p (a^) may be, we may use that process to obtain other

complete integrals. If we write ^ (wi, a^) + n for \i' [a^ and proceed to eliminate a^ we

obtain a solution which contains two constants, viz. m and n, and is therefore a

complete integral. Here ^ may be any function we please, and a^ is to be regarded

as a function of q-^^, q^ determined by the second of the equations (3).

The paths derived from this new complete integral by Jacobi's method are

given by {dflda^ + d-^jda^ daJdm + dij/jdm

=

/3.

By the second of equations (3) the term in brackets is zero. The path therefore

is defined by equating to a constant a function of a^ and m. The paths are there-

fore given by equating a^ to a constant. It follows that the two complete integrals

lead to the same set of dynamical paths.

474. If the Hamiltonian equation

i Bji {dVldq^j^ + i3i2 {dVldq^) {dVldq,) + B,.^ {dVjdq^Y=U+h
be such that all the coefficients on the left side and also U are functions of one co-

ordinate only, say q^, then a complete integral can be found by writing V~ W+ a^g'j,

where W is a. function of q^ only. Substituting this in the Hamiltonian equation

we have a differential equation with one independent variable viz. gg* The solution

of this can be effected by the ordinary method of separating the variables. Thus

we easily find by solving a quadratic that dVjdq^ is a known function of q^ and a^.

Integrating this we have a value for V with one additional constant. This there-

fore is a complete integral.

475. Examples. Ex. 1. Taking the same problem as in Ex. 1 of Art. 467,

show that Hamilton's differential equation V is ^^ {d Vldqf -gq = h. Integrate this

equation and thence find the motion.

Ex. 2. Let us next consider a more complicated case in which there are two co-

ordinates. The simplest example we can take is that of the motion of a projectile

under the action of gravity.

If q^, q^ be its co-ordinates the equation of vis viva may be written

i (2i'^ + 22'^) = - 9Q2+ ^' Following the rule of Art. 468 we see that the Hamiltonian

equation is |{d Vldq^)^ + 1 {dVjdq^y= - 5'?2 + ^- ^o solve this we notice that all the

coefficients on the left side are constants and that U is a function of q^ only. By



262 APPLICATIONS OF THE CALCULUS OF VARIATIONS.

Art. 474 we therefore assume F= W+ a^q^. Substituting and integrating we find

Wi so that finally V= a^q^^ -^ (2A - a^^ - 2gq^i + a^.
Off

Following Jacobi's rule (Art. 469) the motion is given by

d Vfda^= g'l +- (2;t - a^ - 2gq^)\= ^

dVldk== ^-{2h-ai'-2gq;

These easily reduce to the ordinary formulaB for the motion of a projectile.

Ex. 3. A particle describes an orbit about a centre of force which attracts

according to the law of nature. If r, 6 be its polar co-ordinates referred to the

centre of force as origin, show that the Hamiltonian equation is

(d Vjdrf+ {d Vjrddf=2fxlr-\-2h.

Show also that a complete integral may be found (as in the last example) by

putting V=W+ad.

476. Jacobi has extended his theorem to the case in which the geometrical

equations do contain the time explicitly. But for this we have no space. We can-

not also do more than allude to Professor Donkin's theorem that a knowledge of

half the integrals of the Hamiltonian system will in certain cases lead to a determi-

nation of the rest.

In Boole's Differential Equations it is shown that when the Hamiltonian equa-

tions are four in number, and one integral besides Vis Viva is known, both the

remaining integrals can be found by integrating an exact differential equation.

Miscellaneous Exercises, No. 15.

Variation of the Elements.

All. Let the integrals of a dynamical problem be

C2=f2{Pv QvP2^ g'2. ••' *)} (1).

&C.=&C.
)

where j), q, ... are some variables which determine the position and motion of the

system, and which are such that the equations of motion may be written in the

dH , dH
^^"^« ^=-dq^ '^=dp ^2),

in the Hamiltonian manner. Let the equations of motion of a second dynamical

,, , , dH dK- , dH dK
problem be y=____. 3'=^ + ^^- (3).

where K is some function of ^, q, ... t. If we consider Cj, Cj, ... the constants of the

solution of the first problem to be functions of p, q, and t, we may suppose the

solution of the second problem to be represented by integrals of the same form

(1) as those of the first problem. It is therefore our object to discover what func-

tions Cj, Cj, ... are of jp, q, and t. The function K is called "the disturbing func-

tion," and is usually small as compared with //.

Since the equations (1) are the integrals of the differential equations (2), we

shall obtain identical expressions by ijubstituting . from (1) in (2). Hence dif-

ferentiating (1), and substituting for p' and q' their values given by (2), we get

^_ dc^ dH dci dH dcA

dp d^'^dq'dp'^ '^'dt[ ^
^'

0=&'O. ^
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Co

of the differential equations (3). Hence repeating the same process, we have

dc^ dc^ dH dc. dH dc, dc-, dK dc-, dK
-r- + ^-^ +di dp dq dq dp '" dt dp dq ^ dq dq

where the differential coefficients on the left-hand side are total, and those on the

right-hand side partial.

Hence, using the identities (4), we get

dc^_ dc^ dK dc^ dK
(K\

dt dp dq dq dp

with similar expressions for -r^ , &c.
dt

If K be given as a function of p, q, dc. and t, we have dcjdt, &c. expressed as

functions of p, q, &c. and t. Joining these equations to those marked (1) we find

Cj, Cj . . . as functions of t.

JfK be given as a function of e^, 03, ... and t we may continue thus,

dK dK dc. dKdc. dK dK dc, dK dc.

dp dc^ dp dc^ dp '"* dq dc^ dq dco dq

dc
Substituting in the expression for -^ ^ , we get

^— y, r^ ^^2 - ^^1 ^^'^~\ ^^ ^ rdc^ dc^ dc^ dc^~\ u,.^

dt L dq dp dp dq J dc^ '" [_dq dp dp dq J
^

dK
dp dq J dc^

where the S means summation for all values oi p, q, viz. p^^, q^, p^, q^, &c.

Since by hypothesis c^, c^, ... are supposed expressed as functions of p^, q^, &c.

and t, these coefficients may be found by simple differentiation. It will, of course,

be more convenient to express them in terms of c^, Cg, &c. and t by substituting

for p^, q^, &c. their values given by the integrals (1).

478. On effecting this substitution it will be found that t disappears from the

expressions. This may be proved as follows. Let A be any coefficient, so that

-4 = 2 ~T^ Y^ - -T^ -y^ > we have to prove that A being regarded as a function

o^ Pit Qv '^c. and t, the total differential coefficient d.Ajdt is zero. Now

d.A dA dA , dA ,

^df^l^-^d^^-^Tq^-^-

The letters ^j, q^, &c. enter into the expression for A only through e^ and Cj.

Let us consider only the part of d.Ajdt due to the variation of c^, then the part due

to the variation of Cg may be found by interchanging c^ and Co, and changing the

sign of the whole. The complete value of d.Ajdt is the sum of these two parts.

The part of d.Ajdt due to the variation of c^ is

y.rdc^\±^__^i dH d\dH
I

_^\±dc^_^id^ ,_f^i ^, n
[_dp \dq dt dpdq dq dq^ dp '") dq (dp dt dp" dq dpdq dp "jj*

If we substitute for dcjdt its value given by the indentity (4), we get

Fdc^ {dc^d'H dc^ dm \ dc, \dc^ dm dc^dm\-\

\_dp (dp dq^ dq dpdq) dq \dp dpdq dq dp^)J
'

If we now interchange Cj and c^ we get the same result. Hence when the two

parts of d . Ajdt are added together, the signs being opposite, the sum is zero.
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479. Let the expression SI ^ .r^
- 3^ 77^ where the S means Bumma-

tion for all the values of p, g, be represented shortly by (cj, c^. Then in any

dynamical problem if A' be the disturbing function, the variations of the parameters

Cj, Cj, ... are given by

where all the coefficients are functions of the parameters only and not of t.

This equation may be greatly simplified by a proper choice of the constants

Cj, C2, ... In the Micanique Analytique of Lagrange, it is shown that if the con-

stants chosen be the initial values of p^, i?2» ••• ^^^ Qv ^2' •••» ^^^^ £*> A 7> •• aod

\, /A, V, ... respectively, then the equations become

, &c.

It is assumed in the demonstration that A" is a function of g^, q^,, ... only. This

simplification has been extended by Sir W. Hamilton and Jacobi to other cases, but

for this we have no space.

480. It follows from the investigation in Art. 478, that if two integrals of a

dynamical problem be found, viz. Ci= a, 0^= ^, where Cj and Cg stand for some

functions of pj, q^, Pg, q2f ... and t, and a and j3 are constants, then (Cj, Cg) is also

constant. So that (cj, 03)= 7, where 7 is a constant, is either a third integral of

the equations of motion or an identity. If it is an integral it may be either a

new integral or one derivable from the two Cj and c^ already found.

da

dt~'

dK
'dX'

dp

di~'
dK

'
dfi

dt~
dK
da'

dn
dt~

dK
d^



CHAPTER XI.

PRECESSION AND NUTATION,

&C. &C.

On the Potential.

481. To find the potential of a body of any form at any
external distant point.

Let the centre of gravity G of the body be taken as the origin

of co-ordinates and let the axis of x pass through S the external

point. Let the distance GS= p. Let {x, y, z) be the co-ordinates

of any element dm of the body situated at any point P and let

GP = r, then P/Sf' = p^ + r^- 2px. The potential of the body is

^^
. . ir—-^ ^^ f1 ^P^F=S^; .-. F=2— 1--

F8' ~ p r P'

arranging these terms in descending powers of p, we get

dm( X 3^^-r^ bx^-^xr" 35a;"- 30^V^+ 3r* )

P { P ^P 2/) 8^ J

Let M be the mass of the body, then ^dm = M. Also since the

origin is at the centre of gravity, we have "^xdm = 0.

Let A, B, C be the principal moments of inertia at the centre

of gravity, / the moment of inertia about the axis of x, which in

our case is the line joining the centre of gravity of the body to

the attracted point. Then

tdmr' = :^(A + B+C\
tdmx' = ^dmif-y^ - z^)^\{A-\-B^G)-L

Let I be any linear dimension of the body, then if p be so

great compared with I that w^e may neglect the fraction {Ijpf of

the potential, we have

M A + B + G-SI
p'^ V
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If we wish to make a nearer approximation to the value of V,

we must take account of the next terms, viz.

V
Let ({, 77, f) be the co-ordinates of m referred to any fixed

rectangular axes having the origin at G, and let (a, ^, 7) be the
angles GS makes with these axes. Then

so = ^ cos a. + 7j cos /3 -h J* cos 7;

.'. Xmx^ — cos^a^m^^ + S cos^a COS fiXm^^Tj -{

If the body be symmetrical about any set of rectangular axes
meeting at G, we have 2wif' = 0, ^m^^rj — 0, &c. = 0, so that this

next term in the expression for the potential vanishes altogether.

Thus the error of the preceding expression for V is comparable
to only the fraction {lIpY of the potential. This is the case with
the earth, the form and structure of which are very nearly sym-
metrical about the principal axes at its centre of gravity.

This theorem is due to Poisson, but it was put into the convenient form just

given by Prof. MacCullagh. See Royal Irish Transactions for 1855, page 387.

482. In the investigation of this value for the potential, S
has been supposed to be at a very great distance. But the ex-

pression is also very nearly correct wherever the point S be
situated, provided the body is an ellipsoid whose strata of equal
density are concentric ellipsoids of small ellipticity.

To prove this, we may use a theorem in attractions due to

Maclaurin, viz. The potentials of confocal ellipsoids at any ex-
ternal point are proportional to their masses. Let us first con-

sider the case of a solid homogeneous ellipsoid. Describe an
internal confocal ellipsoid of very small dimensions and let a\ b', c'

be its semi-axes. Then because the ellipticity is very small, we
can take a', h', d so small that S may be regarded as a distant

point with regard to the internal ellipsoid. Hence the potential

due to the internal ellipsoid is

P
"^

2p»

where accented letters have the same meaning relatively to the
internal ellipsoid that unaccented letters have with regard to the
given ellipsoid. The error made in this expression is of the
order {ajpfV. Hence, by Maclaurin's theorem, the potential V
of the given ellipsoid is

and the error is of the order {a'jpf F.
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If a, hj c be the semi-axes of the given ellipsoid, we have

a' - a'' = h' -h" = c' - c" =:X';

Similarly, ^ =J 5' + ? m^ C =J 0' + 1m^

Also if (a, /3, 7) be the direction-angles of the line GS with
reference to the principal axes at G, we have

^f 9I=A cos" OL + J5cos'^ + Gcos^y=^r-\- ^ Mx\M 5

Hence, substituting, we have

^^_i^, A + B+G-M
p ^p

If a, h, c be arranged in descending order of magnitude, we
can by diminishing the size of the internal ellipsoid make c as

small as we please. In this case we have ultimately a = Jd^ — c^

Let € be the ellipticity of the section containing a and c the

greatest and least semi-axes. Then a' = a J^e, and the error of

the above expression for V is of the order 4 {ajpf e^ V,

The theorem being true for any solid homogeneous ellipsoid

is also true for any homogeneous shell bounded by concentric

ellipsoids of small ellipticity. For the potential of such a shell

may be found by subtracting the potentials of the bounding
ellipsoids, A-\-B + G (see Vol. I.) being independent of the direc-

tions of the axes.

Lastly, suppose the body to be an ellipsoid whose strata of

equal density are concentric ellipsoids of small ellipticity, the

external boundary being homogeneous. Then the proposition

being true for each stratum, is also true for the whole body.

This theorem was first given by Prof. MacCullagh as a problem, and was pub-

lished in the Duhlm University Calendar for 1834, page 268. Some years after,

about 1846, he gave his proof of the theorem in his lectures, which is substantially

the same as that given in this Article. See the Transactions of the Royal Irish

Academy, Vol. xxii., Parts i. and 11., Science.

483. The following geometrical interpretation of the formula of Art. 481 is

also due to Prof. MacCullagh. His demonstration and another by the Rev. E.

Townsend may be found in the Irish Transactions for 1855.

A system of material points attracts a point S whose distance from the centre

of gravity G of the attracting mass is very great compared with the mutual

distances of the particles. If a tangent plane he drawn to the ellipsoid of gyration

perpendicular to GS, touching the ellipsoid in T and cutting GS in U, then the

resultant attraction on S lies in the plane SGT. The component of the attraction
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3M
on S in the direction TU = r GU . UT. The component of the attraction on

P*

a . ,7 ^. *• TT^ M 3A +B + C-3I
S in the direction UG= -rr + ^ . •

These theorems are also true if we replace the ellipsoid of gyration by any

confocal ellipsoid. Let a, h, c be the semi-axes of this confocal, and let p be the

perpendicular GU on the tangent plane. Since (see Vol. i.), A=Ma^ + X, i? = Mb^ + X,

&c. where X is some constant, we have V=—I ^
^r-r, .

P 2/)"*

To prove that the resultant force on S lies in the plane SGT, let us displace

S to S' where SS' is perpendicular to this plane and is equal to pdxp. Because V is

a potential, the force on S in the direction SS' is d Vjpd^. But after this displace-

ment the tangent plane perpendicular to GS' intersects along TU the former tangent

plane, hence dpjd\j/= Q, and .•. dVld\p= 0.

To find the force P acting at 5 in the direction TU, let us displace S to S' where

SS" is parallel to TU and is equal to pdxp. Since GZ7 is perpendicular to UT we

have, exactly as in the Differential Calculus, TU=dpld\p. Hence

Lastly, to find the force R in the direction SG we have

dV_M 3 A+B + G-3I
^ dp~'p^'^2 p^

Ex. Show that the product GU . TU ia the same for all confocals.

484. Examples on attractioiui. Ex. Let GP be a straight line through the

centre of gravity such that the moment of inertia about it is equal to the mean of

the three principal moments of inertia at G, then the resolved attraction of the

body on any point S in the direction SG is more nearly the same as if the body

were collected into its centre of gravity when S lies in GP, than when S lies in any

other straight line through G.

Show also that the moment of inertia about GP is equal to the mean of the

moments of inertia about all straight lines passing through G.

If two of the principal moments of inertia are equal, prove that GP makes with

the axis of unequal moment an angle equal to cos~^ {ll\/'6).

485. Eqoi-attractive bodies. Ex. 1. If two bodies exert equal attractions on

all external points, prove that their centres of gravity must coincide and their

masses must be equal. The principal axes at their common centre of gravity must

be coincident in direction, and the difference of their moments of inertia about any

straight line constant.

Ex. 2. Thence show that two Chaslesian shells of the same body have the

same principal axes at their common centre of gravity and the difference of their

moments of inertia about any straight line constant.
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Ex. 3, If the attraction of a body on every external point be the same as that

of a single particle placed at some point, then the mass of the particle is equal to

the mass of the body, the point is the centre of gravity ; also the law of attraction

must be either as the inverse square of the distance or as the direct distance, and in

the former case every axis through the centre of gravity is a principal axis at the

centre of gravity. See a paper by the author in the Quarterly Mathematical

Journal, 1857, Vol. ii. page 136.

Ex. 4. Let an ellipsoid be described having its semi-axes a, b, c such that

M^a^=B + C-A+\, M^b'^= C +A-B + \, M%c^=A+B - C+\ where \ is at

our disposal, and may be any quantity positive or negative which does not make
a, h, c imaginary. Let an indefinitely thin shell of mass M be constructed

bounded by similar ellipsoids and having this ellipsoid for one bounding surface.

Then the attractions of the given body and this shell on any distant external point

arc the same in direction and magnitude.

The attraction of such a shell on any external point is normal to the confbcal

through that point and is equal to -rrr-/ v't where a', &', c' are the semi-axes of the

confocal and p' the perpendicular on the tangent plane at the attracted point. See

a paper by the author in the Quarterly Journal of Pure and Applied Mathematical,

1867, Vol. VIII. page 322.

Ex. 5. The attraction of a body two of whose principal moments at the centre

of gravity A and B are equal and greater than the third attracts a distant point as

if its mass M were equally distributed over a straight line of length 11, where

MP= ^ (A-C), placed perpendicular to the plane of A, B with its middle point at

the centre of gravity. This proposition is accurately true if the body be an indefi-

nitely thin shell bounded by similar prolate spheroids. In any case it is necessary

that the equal moments A, B should be greater than the third moment of inertia C.

Ex. 6. Whatever be the relative magnitudes of the three principal moments
of inertia, the attraction on a distant point is the same as if the mass was distributed

over the focal conic of the ellipsoid described in (4) so that the density at any point

P is proportional to ABI{AP . PB)\ where AB is the diameter through P.

Ex. 7. The attraction of any body of mass 31 on a distant particle may be

found in the following manner. Let an indefinitely thin shell of mass SM be

constructed bounded by similar ellipsoids and having the ellipsoid of gyration at

the centre of gravity for one bounding surface. Also let a particle of mass 41f be

collected at the centre of gravity. Then the attraction of M on any distant

particle is the same in direction and magnitude as if 4iV/ attracted it and SM
repelled it.

Otber laws of attraction. Ex. 8. If the law of attraction had been - (dist.)

instead of the inverse square, the potential of a body on any external point S

would have been represented by 2w0i(P/S'), where (f>{p) is the differential coefficient

of ^1 {p). In this case, by reasoning in the same way as in Art. 481, we get

T7 ^r. ,^. ^,,, A+B + C p d
f4>{p)\V=Mcf>,{p) + <p{p) ^ -_(^-^ jZ,

where A, B, C and I have the same meanings as before.

If [x', y', z') be the co-ordinates of S referred to the principal axes at G, the

moment of the attraction of S about the axis of y is =-^ —- . {C-A)x'z'.
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486. To find the Force-function due to the attraction of any
hody on any other distant body.

Let Gy G' be the centres of gravity of the two bodies, and let

GG'=R. Let A, B, G\ A\ B\ G' be the principal moments of

inertia of the two bodies at G and G' respectively; /, I' the

moments of inertia about GG\ and let M, M' be the masses of

the two bodies.

Let m be any element of the body M' situated at the point S,

and let GS= p. Then the potential of the body M at m is

m \—I ^3 ^L where I^ is the moment of inertia of

the body M about GS. We have now to sum this expression for

all values of m. This gives

^^^y""^^ V

—

'

The first term by the same reasoning as before gives

MM' ^^A' + B'-^G'-%r
E "^

2R'

In the second term, let x\ y\ z be the co-ordinates of in

referred to G' as origin. Then

/3 = i?[l + -^ + squares of Xy y', z\

Jj = 7(1 + ax' + ^y' + 72' + squares),

where a, P, 7 are some constants. Substituting these, and re-

membering that ^m'x = 0, %m'y' = 0, Xm'z' — 0, we get

^, A-^rB-\-G — ^I {^ /terms depending on the\)

2R^ \ \ squares of x'y y, z ]\

'

Hence the required force-function is

,, MM'
.

^A' + B'-^C-Sr . „,^-f ^ + (7-3/

^--R-^^ m +^ 2R^
—

•

The error of this expression is of the order (ll'/R^y F, where
I, V are any linear dimensions of the two bodies respectively.

487. Moment of the Sun's force. To find the moment of
the attraction of the sun and moon about one of the principal axes

of the earth at its centre of gravity.

Let the principal axes of the earth at its centre of gravity be

taken as the axes of reference, and let a, yS, 7 be the direction-

angles of the centre of gravity G' of the sun. Then if V be the

potential of the sun or moon on the earth, we have

30/'
^^ A' + B'-vC'-^r ,.,A + B±C-SI

Y J-
4-^

2^3
+il/

2^3 >
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where unaccented letters refer to the earth, and accented letters

to the sun or moon. Let 6 be the angle the plane through the

sun and the axis of y makes with the plane of xy, then dV/dd is

the required moment in the direction in which we must turn the

body to increase 6. From the above expression, since 6 enters

only through /, we have

dV^_S3rdI
de 1W dO'

Now I = A cos'^a + ^cos^/3+ Ccos'y, and by Spherical Trigo-

nometry, we have

cos 7 = sin /3 sin 0, cos a = sin /8 cos ^

;

.'. ^ = -2(^-(7)sin''y3sin^cosl9;

.*. the moment required) t^^^' /n as
1 X xi ' \ y = — o

-j^-^ (U - A) C03 CL cos y.
about the axis oi y }

M ^

In this expression the mass of the attracting body is measured
in astronomical units. We may eliminate this unit in the follow-

ing manner. Let n be the mean angular velocity of the sun

about the earth, R^ its mean distance, so that if M be the mass
of the earth, we have {W + M)IR^ = w'l Now M is very small

compared with M', so small that MjM' is of the order of terms

already neglected. Hence we may in the same terms put

M'lR^ = n\ and therefore

the moment of the sun's at-l _ o '2 /rr _ yi \ l?^
traction about the axis oi y]

^ '^ ^ \RJ
'

Let n" be the mean angular velocity of the moon about the

earth, so that, if 21" be the mass of the moon, R\ the mean
distance, we have (M'' + M)IR'^ = ?i'". Let v be the ratio of the

mass of the earth to that of the moon, then M" (1 + v)IR'^ = n"^\

and therefore if R be the distance of the moon

the moment of the moon's at-] _ 3//'^ (n __ a\ (?^
traction about the axis oi y

)'~
l-\-v \R' 1

'

In the same Avay the moments about the other axes may be

found. Putting k for the coefficient, we have

moment about axis of x = —S/c{B — C) cos cos 7,

moment about axis of z = — ^k{A — B) cos a cos yS.

488. Examples. Ex. 1. The force-function between a body of any form and

a uniform circular ring whose centre is at the centre of gravity of the body and

. ,^, . ^^ MM' ^„A+B + C-3J
whose mass is 31 is V= M r-^j

,

P ^P^

where J is the moment of inertia of the body about an axis through its centre of

gravity perpendicular to the plane of the ring, and A, B, G are the principal

moments of inertia at the centre of gravity.
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Thence show that Saturn's ring supposed uniform will have the same momenta

to turn Saturn about its centre of gravity as if half the whole mass were collected

into a particle and placed in the axis of the ring at the same distance from Saturn,

provided the particle repelled instead of attracted Saturn.

Ex. 2. If the earth be formed of concentric spheroidal strata of small but

different ellipticities and of different densities, show that the ratio of C to il may be

found from the equation Cfpd{a'^€) = {C- A)fpd{a^), where e is the ellipticity and p

the density of a stratum, the major-axis of which is a; the square of e being neg-

lected. It follows that if c be constant, the ratio of C to ^ is independent of the

law of density.

If we assimie the law of density and the law of ellipticity given in the Figure

C — A
of the Earth, this formula gives -——= -00313593. See Pratt's Figure of the

C

EartK

Ex. 3. A body free to turn about a fixed straight line passing through the

centre of gravity is in equilibrium under the attraction of a distant fixed particle.

Show that the time of a small oscillation is 27r j-,^,^,,^ ^^.^ „ , V , where the
\SM'^{{C-A)^ + Fv}j

fixed straight line is the axis of y, the plane of xy in equilibrium passes through the

attracting particle, and ^, t] are the co-ordinates of the particle. Also A,B,C, D, E, F
are the moments and products of inertia of the body about the axes. If the straight

line did not pass through the centre of gravity show that the time would be propor-

tional to p.

Motion of the Earth about its Centre of Gravity.

489. To find the motion of the pole of the earth about its

centre of gravity when disturbed by the attraction of the sun and
moon, the figure of the earth being taken to be one of revolution.

Let us consider the effect of these two bodies separately.

Then, provided we neglect terms depending on the square of

the disturbing force, we can by addition determine their joint

efifect.

The sun attracts the parts of the earth nearer to it with a
force slightly greater than that with which it attracts the parts

more remote, and thus produces a small couple which tends
to turn the earth about an axis lying in the plane of the equator
and perpendicular to the line joining the centre of the earth

to the centre of the sun. It is the effect of this couple which
we have now to determine. It clearly produces small angular
velocities about axes perpendicular to the axis of figure. We
shall also suppose that the initial axis of rotation so nearly coin-

cides with the axis of figure, that we may regard the angular
velocities about axes lying in the plane of the equator to be small
compared with the angular velocity about the axis of figure.

Let us take as axes of reference in the earth, GG the axis

of figure, GA and GB moving in the earth with an angular
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velocity 0^ round GO. Then following the notation of Art. 16,
we have h/ = Aco,, h' = Aw^, h' = (7ot>„.

.(1).

The equations of motion are therefore

^^ - Aeo^e^ + Cco^(o^ = L

A^^-.Cco,^^ + Ao^^e, =M

at

The last of these equations shows that Wg is constant. Let
this constant be denoted by n.

The other two angular velocities are to be found by solving

the other two equations. This solution must be conducted by
the method of continued approximation, Wj and co^ being regarded

as small compared with n.

In the first instance let us suppose the orbit of the dis-

turbing body to be fixed in space. This is very nearly true

in the case of the sun, less nearly so for the moon. This limi-

tation of the problem proposed will be found greatly to simplify

the solution. We can now choose as our axes of reference in

space two straight lines GX, GY sit right angles to each other

in the plane of the orbit and a third axis §Z normal to the

plane.

490. In these equations of motion the quantity 6^ is at

our choice, let it be so chosen* that the plane containing the

* We might also very conveniently have chosen as axes of reference, GC the

axis of figure and axes GA', GB' moving on the earth so that GB' is the axis of

R. D. II. 18
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axes GC, OA also contains GZ. Then 6^ is the angular velocity

of the plane ZGG round GG. If co^ and (o^ were zero, and
the earth merely turned round its axis GG, it is clear that

GG and therefore also the plane ZGG would be fixed in space.

Hence 6^ is a small quantity of the same order at least as w^

or (o^. For a first approximation we neglect the squares of the

small quantities to be found. We therefore reject the small

terms (o^O^, wfi^ in the equations (1). The equations now become

A -^ + (7wft)» = L
at ^

A'^^Gnay^AI
at '

(2).

Following the usual notation let 6 be the angle ZG and

the resultant couple produced by the action of the disturbing body on the earth.

In this case the plane CA' moves so as always to contain the disturbing body Sy

so that ^3 is the angular velocity of CS round C and is therefore a small quantity of

the order n'. We shall therefore reject the small terms Wg^s and bj^d^ in equations

(1). The equations now become

at

A~- Cno}i =M= -3k{C- A) cos a cos 7

1

(it J

where the value of 31 is at once obtained from Art. 487, and in our case a= {T-y.

Ehmmating Wg we have -^-^^ + ( —
j 0}^= - j^M.

Since the angular distance 7 of the disturbing body from the pole of the earth

varies very slowly, the term on the right-hand side is very nearly constant. If

this be regarded as a sufficient approximation we have

3k C-A . ^
w, = s 77-sm27, and Wo=0.
^ 2n C

But in fact these are nearly true when we take account of the periodical term

provided only S moves slowly. For suppose

M=Mf^ + i:P Bin (pt + Q),

where p is small ; we have in that case

Mj. _ CnP . , , , ^,

M
neglecting the small term p^ in the denominator we have as before Wj= - — .

The motion of the axis C in space is therefore simply that due to an angular

velocity Wj about the axis A'. Since the plane A'C moves so as always to contain

the disturbing body S, the axis of figure GC is at any instant moving perpendicular

to the plane containing it and the disturbing body (i. e. in the figure C is always

moving perpendicular to SC) with an angular velocity equal to ^ 77— sin 27. If

we resolve this in the direction along and perpendicular to ZC we easily deduce the

equations (7) in the text and the solution may be continued as above.



MOTION OF THE EARTH ABOUT ITS CENTRE OF GRAVITY. 275

yjr the angle the plane ZG makes with the fixed plane ZX, We
have then the two geometrical equations

a,, = -sin^^, ., =^ (3).

These follow at once from a mere inspection of the figure, or

we may deduce them from Euler's geometrical equations (see

Vol. I.) by putting ^ = 0.

We have now to find the magnitudes of L and M. Let S
be the disturbing body and let it move in the direction X to Y,

According to the usual rule in Astronomy, we shall suppose
the longitude Z of >S' to be measured in the direction of motion
from the point on the sphere opposite to B. This point is

usually called the first point of Aries. Then

BS^ir-l and SN=1~\it.

By Art. 487 we have

Z = - 3/c (5 - 0) cos ;3 cos 7 = - 3a: (^ - (7) sin >SfiV cos >SfA^ sin ^

= f /c (^ - C) sin (9 sin 21 (4),

if= - 3/c ((7- J) cos a cos 7 = - 3/c ( (7- ^) cos'/SfiVsin 6 cos d

= _3^(a~^)sin^cos6'(l-cos20 (5).

Since the motion of the disturbing body is very slow com-
pared with the angular velocity of the earth about its axis,

I and therefore L and M are very nearly constant. If this be

regarded as a sufficiently near approximation we have at once

by (2) "•=-5' -"^=4 (^)-

That these are the integrals of equations (2) when we take

some account of the variability of L and M may be shown by
substitution in those equations. We see that they are satisfied

if we may neglect such a term as

^ = - f/c (^ - (7) jcos (9 sin 2Z^ + 2 sin |9 cos 2Z^^l

.

Since k(B-~C) and dOjdt are both small quantities of the

order co^ or w^, the first of these terms is of the order oa^ and
such terms we have already agreed to neglect. The last term

is of the order w^n jn^ where n is the mean angular velocity of

the disturbing body about the earth. Rejecting these terms also,

we have by (3), (4) and (5),

dd SfcG-A
dt 2n a

sin ^ sin 2^

dy!r ok C— A ^ ,^ j,,x

(7).

18—2
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491. To find the motion of the pole of the earth in space

referred to the pole of the orbit of the disturbing body as

origin, we have merely to integrate the equations (7). For a

first approximation, in which we reject the squares of the small

quantities to be found, we may regard on the right-hand side

as constant and equal to its mean value. If we write for I its

approximate value

we find by integration

(8).

6 = const. + '.—, —TT— sm cos zl
4inn C

yjr = const. — -— , —^— cos 6 (l — ^ sin 21)

492. AnoUier solntion. We may also solve equations (2) in the following

manner. Since we reject the squares of the small quantities to be found, we may
in calculating the values of L and M to a first approximation suppose 6 to be con-

stant and I to be measured from a fixed point in space. We then have by the

theory of elliptic motion

?= n't + e'+ Pj sin
( jjjt + ^i) + Pg sin (^2* + ^'2) + *c.,

where the coefficients of the trigonometrical terms are all known small quantities,

and all the coefficients of t are very small compared with n. In the case of the

sun the coefficient of t in the greatest of the trigonometrical terms is ^J^n and in

the case of the moon ^j n.

We may also include in this formula the secular inequalities in the value of I.

For, we shall presently find that 6 has no secular inequalities, and that the first

point of Aries from which I is measured has a very slow motion which is very

nearly uniform on the plane of the orbit of the disturbing body. This slow motion

may obviously be included in the n'.

If we eliminate wg between equations (2) we have

d^co, C-n^ 1 dL Cn ,^

The first term on the right-hand side we have already agreed to neglect. Sub-

stituting in the expression for JIf given in (5) the value of I, suppose we have

M"=SFcos(\«+/),

where the constant part of M is given by \ = and all the other values of X are

very small. Then solving, we find

Since F and X^ are both vwy small we may reject the small term X' in the

denominator, we then have

.,= -±XFcos(Xt+ f) = -§^.

This result is strictly true for the constant term and very nearly true for the

periodical terms. In the same way we may prove that o}^=LICn.

When we proceed to find d and
\J/

from the values of Wj and Wg by the help of

equations (3), it will be seen that no term will rise on integration in which X is not

small. These rejected terms will not therefore afterwards become important.
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493. The integration of equation (7) may be effected without neglecting the

terms containing the powers of e' in the expression for I. By the theory of

elliptic motion we have B?-— = constant

=

Ri^n' a/1 - e"^^

where a very small term has been rejected on the left-hand side depending on the

motion of Aries. Substituting for k its value given in Art. 487 we find

dQ 3»' 1 G-A Rq ^ ' oi 1—= -jr-— yz . smgsm2?
dl 2n 1 + v C Rjl-e'^ I

dxp 3n' 1 C-A Ro ^ ,. „,j'
-37= - H— 1 t; ,

" cos ^ (1 - cos 2,1)
dl 2nl + v C Rjl-e'^

'

where i* is to be put equal to zero when the disturbing body is the sua. From
the equation to the ellipse, we have

-5-^- ' = 1 + e' cos (Z - L).

If this value of R be substituted in the equations, the integrations can be effected

without difficulty. But it is clear that all the terms which contain e' are periodic

and do not rise on integration so as to become equally important with the others.

Since then e' is small, being equal in the case of the sun to about ^V» i* will be

needless to calculate these terms.

494. Let us now examine the geometrical meaning of the

equations (8). For the sake of brevity, let us put >Sf = ^—^
—

j^
—

,

so that by Art. 487 S = -^—^^ or 8= -^—7^ z ac-
*'

2 C 71 2 C }i 1 -{-V

cording as the sun or moon is the disturbing body, the orbit of the
disturbing body being in both cases regarded as circular.

Let us consider first the term —S'cos^l in the value of
i/r. Let a point (7^ describe a small circle round Z the pole of

the orbit of the disturbing planet,, the distance CZ being constant

and equal to the mean value of 6. Let the velocity be uniform
and equal to Sn cos sin 6, and let the direction of motion be
opposite to that of the disturbing body. Then (7^ represents

the motion of the pole of the earth so far as this term is con-
cerned. This uniform motion is called Precession.

Next let us consider the two terms

8(9 = J >Sf sin ^ cos 21, By{r = i ,Sfcos (9sin 2/.

If we put ic = sin ^ Byfr, y = hO, we have

x^ y^

(P'cos e sin 6^)''
"^ (i/S sin df

" ^'

which is the equation to an ellipse.

Let us then describe round C^ as centre an ellipse whose
semi -axes are J /S cos ^ sin ^ and J>S>sin^ respectively perpen-
dicular to and along ZC ] and»let a point G^ describe this ellipse

in a period equal to half the periodic time of the disturbing

body. Also let the velocity of G^ be the same as if it were
a material poipt attracted by a centre of force in the centre
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varying as the distance. Then C, represents the motion of the

pole of the earth as affected both by Precession and the principal

parts of Nutation.

If we had chosen to include in our approximate values of

and -^/r any small term of higher order, we might have repre-

sented its effect by the motion of a point G^ describing another

small ellipse having G^ for centre. And in a similar manner by
drawing successive ellipses we could represent geometrically all

the terms of Q and n/r.

495. The Complementary Functions. In this solution

we have not yet considered the Complementary Functions. To
find these we must solve

A^-V Gnay^ = 0, A^^- Gna,^ = 0.
dt ^ dt ^

We easily find w^ = Hmi f -^ t-\-K\, Wg = - ^cos i-j- t-V K\.

The quantities H and jK' depend on the initial values of g)^, (o^.

As these initial values are unknown H and K must be deter-

mined by observation. If H had any sensible value it would be
discovered by the variations produced by it in the position of

the pole of the earth. No such inequalities have been found.

If however any such inequality existed we might consider these

two terms together as a separate inequality to be afterwards

added to that produced by the other terms of w^, co^.

496. The effect of the complementary functions on the motion of the pole of

the earth has been already considered in Arts. 180 to 182. The motion is the same

as if the earth were at any instant to be set in rotation about an axis GI making an

angle i with the axis of figure GC and then left to itself. Here tan i = J//n. Let GL
be the invariable line and let y be its inclination to the axis of figure of the earth,

then by Art. 180 tan 7 = tan i . AjC. In the case of the earth A and C arc very nearly

equal, and 1-AJC has been variously estimated to lie between -0031 and '0033.

Thus 7 and i differ by at most -j^th part of either.

As explained in Art. 181, the instantaneous axis describes a right cone in space

whose axis is GL and angular radius i - 7. The time of a complete revolution is

equal to a (sin 7/sin ?)th part of the time of a revolution of the earth about its axis,

and is therefore very nearly equal to a sidereal day.

The instantaneous axis also describes a right cone in the earth whose axis is the

axis of figure, viz. GC, and whose angular radius is equal to i. The time of a

complete revolution is equal to a (8in7/8in (t-7))th part of the time of a revolu-

tion of the earth. It therefore lies between 30C and 325 days, according to the

value taken for AJC.

If we construct these two cones (as explained in Art. 167) and make the cone

fixed in the body roll on the cone fixed in space, the motion in space of the axis of

figure of the earth is represented. •

The co-latitude of any place on the earth is found by observing the zenith

distances of a circumpolar star .S' at its superior and inferior transits. Let Z be the

zenith of the place, and at the first transit let the zenith distance observed be
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ZS=z. At the second transit the directions GO, GZ will have described a semi-

circle round the axis of rotation GI while that axis of rotation will have described a

semicircle about the invariable line GL, In this position let the zenith distance

observed be z'. Thus the mean of the two zenith distances z and z' is the angle ZL,
while half their difference is the angle SL, Since the direction in which the star is seen

and the invariable line are both fixed in space, it follows that the latter angle, which

we may call the north polar distance of the star, is not affected. The former angle

differs from the geographical latitude of the place by the angle 7. Thus in a period

which is equal to about 306 to 325 days the latitude of the place found by these

observations should have altered by twice the angle 7 and returned to its original

value. As no such periodical changes of latitude have been discovered we must

conclude that the axis of rotation differs from the axis of figure only by an insensible

angle.

497. Numerical results. The preceding investigations are

of course approximations. In the first instance we neglected in

the ditferential equations the squares of the ratios of co^ and o)^

to n, and afterwards some periodical terms which are an (n/n)th.

of those retained. We see by equations (3) and (8) that the

second set of terms rejected is much greater than the first, and
3^et when the sun is the disturbing body these terms are only

about sJgth part of those retained, and when the moon is the

disturbing body these are only ^V^ti part of terms which them-

selves are imperceptible.

We have also regarded the earth as a solid of revolution so

that A — B may be taken zero, a supposition whicli cannot be

strictly correct.

498. In the case of the sun we have S=-^—j^
, so that

. . . SG-An' .i ^^^ J" ,

the precession m one year is ^ —^^
cos U ztt. it is shown m

treatises on the Figure of the Earth that there is reason to sup-

pose that (C-A)/G lies between '0031 and -0033. Also we have

<)i'lfi = Q^, and ^ = 23^.8'. This gives a precession of about 15''*42

per annum. Similarly the coefficients of Solar Nutation in -^jr

and 6 are respectively found to be l''-23 and 0"-53. If we sup-

posed the moon's orbit to be fixed, w^e could find in a similar

manner the motion of the pole produced by the moon referred

to the pole of the moon's orbit. In this case

SC-An" 1

^ 2 G n 1 + v'

The value of 6 varies between the limits 23*^ ± 5". Putting

n'/n = -gY, z/ = 80, 6 = 23°, we find a precession in one year a little

more than double that produced by the sun. But the coefficients

of what would be the nutations are about one-sixth of those

produced by the sun.

499. Motion of the plane of the disturbing body.

We have hitherto considered the orbit of the disturbing body to
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be fixed in space. If it be not fixed, we must take the plane CA
perpendicular to its instantaneous position at the moment under
consideration. The quantity 6^ will not be the same as before*,

but if the motion of the orbit in space be very slow, 6^ will still

be very small. We may therefore neglect the small terms O^oy^

and ^gO), as before. The dynamical equations will not therefore

be materially altered. With regard to the geometrical equa-

tions (3) it is clear that co^, (o^ will continue to express the re-

solved parts of the velocity of G in space along and perpendicular

to the instantaneous position of ZC. To this degree of approxi-

mation therefore, all the change that will be necessary is to

refer the velocities as given by equations (7) to axes fixed in

space and then by integration we shall find the motion of 0.

This is the course we shall pursue in the case of the moon.
The attractions of the planets on the earth and sun slightly

alter the plane of the earth's motion round the sun, so that the

position of the ecliptic in space varies slowly. It can oscillate

nearly five degrees on each side of its mean position. If the earth

were spherical there would be no precession caused by the at-

tractions of the sun and moon. The direction of the plane of the

equator would then be fixed in space, and the changes of its

obliquity to the ecliptic would be wholly caused by the motion of

the latter, and would be very considerable. But, as Laplace re-

marks, the attractions of the sun and moon on the terrestrial

spheroid cause the plane of the equator to vary along with the

ecliptic so that the
.
possible change of the obliquity is reduced

to about one and a third degrees which is about one-quarter of

what it would have been without those actions.

At present the obliquity is decreasing at the rate of about
48'' per century. After an immense number of years, it will begin

to increase and will oscillate about its mean value. We must
refer the reader to the second volume of the Mecanique Celeste,

livre cinqui^me. He may also consult the Connaissance des

Temps for 1827, page 234.

500. Examples. Ex. 1. If the earth were a homogeneous shell bounded by

similar ellipsoids, the interior being empty, the precession would be the same as if

the earth were solid throughout.

Ex. 2. If the earth were a homogeneous shell bounded externally by a spheroid

and internally by a concentric sphere, the interior being filled with a perfect fluid

* The value of 0^ may be found in the following manner. The orbit at any
instant is turning about the radius vector of the planet as an instantaneous axis.

Let u be this angular velocity which we shall suppose known. Let Z, Z' ; B, B' be

two successive positions of the pole of the orbit and the extremity of the axis of B
respectively. Then ZB = a, right angle = Z'J5'. Hence the projections of ZZ', BB',

on ZB are equal. This gives, since ZB is at right angles to both CZ and SB,

BSB' sin BS = ZCZ' sin ZC. Now the angle ZCZ' = - 56^ and the angle BSB' = u,

hence id^.mid --us'ml. The value of 86^ must be added to the former value of ^;,.
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of the same density as the earth, show that the precession would be greater than if
the earth were solid throughout.

Let (a, a, c) be the semi-axes of the spheroid, r the radius of the sphere. Then
since the precession varies as {C-A)IC by Art. 494, the precession is increased in
the ratio a'^c : a'^c - j-^.

Ex, 3. If the sun were removed to twice its present distance show that the
solar precession per unit of time would be reduced to one-eighth of its present
value; and the precession per year to about one-third of its present value.

Ex. 4. A body turning about a fixed point is acted on by forces which tend to

produce rotation about an axis at right angles to the instantaneous axis, show that
the angular velocity cannot be uniform unless the momental ellipsoid at the fixed

point is a spheroid.

The axis about which the forces tend to produce rotation is that axis about
which it would begin to turn if the body were placed at rest.

Ex. 5. A body free to turn about its centre of gravity is in stable equilibrium
under the attraction of a distant fixed particle. Show that the axis of least

moment is turned toward the particle. Show also that the times of the

principal oscillations are respectively 27r \^~rf~—,, [ and 2ir l^-^rrry^ \ .(6M {C-A)] [SM {B-A)\
If the body be the earth and M' be the sun, show that the smaller of these two

periods is about ten years.

501. To give a general explanation of the manner in which
the attraction of the Sun causes Precession and Nutation.

In order to explain the effect of the sun's attraction on the
earth it will be convenient to refer to Poinsot's construction for

the motion of a body described in 144 and the following articles.

If a body be set in rotation about a fixed point under the
action of no forces, we know that the momenta of all the particles

are together equivalent to a couple which we shall represent by G
about an axis OL called the invariable line. Let T be the Vis
Viva of the body. If a plane be drawn perpendicular to the axis

of (r at a distance e^ jMTjG from the fixed point, then the whole
motion is represented by making the momental ellipsoid whose
parameter is e roll on this plane. In the case of the earth, the
axis 01 of instantaneous rotation so nearly coincides with OC the

axis of figure that the fixed plane on which the ellipsoid rolls is

very nearly a tangent plane at the extremity of the axis of figure.

This is so very nearly the case that we shall neglect the squares

of all small terms depending on the resolved part of the angular

velocity about any axis of the earth perpendicular to the axis of

figure.

Let us now consider how this motion is disturbed by the action

of the sun. The sun attracts the parts of the earth nearer to it

with a slightly greater force than it attracts those more remote.

Hence when the sun is either north or south of the equator its

attraction will produce a couple tending to turn the earth about

that axis in the plane of the equator which is perpendicular to



282 PRECESSION AND NUTATION.

the line joining the centre of the earth to the centre of the sun.

Let the magnitude of this couple be represented by a, and let us
suppose that it acts impulsively at intervals of time dt.

At any one instant this couple will generate a new momentum
adt about the axis of the couple a.. This has to be compounded
with the existing momentum G, to form a resultant couple G',

If the axis of a were exactly perpendicular to that of G we should

have G' = JG^ + {oidt)^ = G ultimately.

Let 6 be the angle that the axis of G makes with 0(7, then
^ is a quantity of that order of small quantities whose square is

to be neglected. Taking the case when 00, the axis of G, and
the axis of a are in one plane, for this is the case, in which G' will

most differ from G, we have

G'^ = {G cos ef + {G sin 6 + adtf

= G^-\-2Goismedt (1).

Then a and 6 being of the same order of small quantities, the

term a sin 6 is to be neglected. Hence we have G' = G. But the

axis of G is altered in space by an angle adt/G in a plane passing

through it and the axis of a.

Next let us consider how the Yis Viva T is altered. If T' be
the new Vis Viva we have

T' — T= twice the work done by the couple a

= 2x{cocos^)dt (2),

where co cos^ is the resolved part of the angular velocity about
the axis of a. For the same reason as before the product of this

angular velocity and a is to be neglected. Hence we have T' = T.

It follows from these results that the distance e^ JmTJG of the

fixed plane from the fixed point is unaltered by the action of a.

Thus the fixed plane on which the ellipsoid rolls keeps at the

same distance from the fixed point, so that the three lines 00,
01, OL being initially very near each other will alwa3"s remain
very close to each other. But the normal OL to this plane has

a motion in space, hence the others must accompany it. This

motion is what we call Precession and Nutation.

Lastly these small terms which have been neglected will not

continually accumulate so as to produce any sensible effect. As
the earth turns round in one day, the axis 00 will describe

a cone of small angle 6 round OL. The axis about which the sun
generates the angular velocity a is always at right angles to the

plane containing t!ie sun and 0. Hence, regarding the sun as

fixed for a day, the angle 6 in equation (1) changes its sign every

half day. Thus G' is alternately greater and less than G. Simi-

larly since the instantaneous axis describes a cone about OL it

may be shown that T' is alternately greater and less than T.
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502. Solar Precession and Nutation. The three axes in

the earth which are the most important in our theory are (1) the
axis of figure 0(7, (2) the instantaneous axis of rotation 0/, (3) the
invariable line OL. It has just been proved in the last article

that if these three be at any one instant very nearly coincident

with each other they will, notwithstanding the sun's attraction,

always remain very close together. It will therefore be sufficient

for our present purpose to find the motion in space of any one of

the three.

Let OA^ OB be two perpendicular axes in the earth's equator
and let the earth turn round OC in the positive direction AB.
Let the sun 8 at the time t be in the plane GOA and on the
positive or north side of the equator. The sun's attraction during
the time dt generates a couple adt about the axis OB which acts

in the negative direction AG. It follows from the last article

that OL (which is very nearly coincident with OG) moves in space

in the plane BOG with an angular velocity equal to a/G in the

direction BG. Since the sun moves round in the same direction

that the earth turns round its axis OG, it follows that when a is

positive, the axes OL and OG move very nearly at right angles to

the plane COS in a direction opposite to the sun's motion.

Knowing the motion produced in these axes by the sun in the

time dt, we now proceed to sum up the whole effects produced by
the sun in one year. For simplicity we shall speak only of the

axis of figure, viz. G.

Describe a sphere whose centre is at and let us refer the

motion to the surface of this sphere. Let K be the pole of the

ecliptic and let the sun S describe the circle DEFH of which K
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is the pole. Let DF be a great circle perpendicular to KC, then
since OCand the axis of figure of the earth are so close that we
may treat them as coincident, D and F will be the intersections of

the equator and ecliptic. When the sun is north or south of the

equator, its attraction generates the couple a, which will be
positive or negative according as the sun is on one side or the

other. This couple vanishes when the sun is passing through the

equator at D or F. If the sun be anywhere in DEF, i.e. north

of the equator, C is moved in a direction perpendicular to the

arc CS towards D. If the sun be anywhere in FHD, a has the

opposite sign and hence C is again moved perpendicular to the

instantaneous position of CS but still towards D. Considering

the whole effect produced in one year while the sun describes the

circle DFFH, we see that G will be moved a very small space

towards B, i.e. in the direction opposite to the sun's motion.

Resolving this along the tangent to the circle centre K and radius

KG, we see that the motion of G is made up of (1) a uniform
motion of G along this circle backwards, which is called Preces-

sion and (2) an inequality in this uniform motion which is one
part of Solar Nutation. Again as the sun moves from D to F, G
is moved inwards so that the distance KG is diminished, but as

the sun moves from E io F, KG is as much increased. So that

on the whole the distance KG is unaltered, . but it has an in-

equality which is the other part of Solar Nutation.

It is evident that each of these inequalities goes through its

period in half a year.

503. Lunar Nutation. To explain the cause of Lunar
Nutation.

The attraction of the sun on the protuberant parts at the

earth's equator causes the pole G of the earth to describe a small

circle with uniform velocity round K the pole of the ecliptic with
two inequalities, one in latitude and one in longitude, whose period

is half a year. These two inequalities are called Solar Nutations.

In the same way the attraction of the moon causes the pole of the
earth to describe a small circle round M the pole of the lunar

orbit with two inequalities. These inequalities are very small

and of short period, viz. a fortnight, and are therefore generally

neglected. All that is taken account of is the uniform motion
of G round M. Now iT is the origin of reference, hence if M
were fixed the motion of G round M would be represented by a
slow uniform motion of G round K together with two inequalities

whose magnitude would be equal to the arc MK, or 5 degrees,

and whose period would be very long, viz. equal to that of G
round K produced by the uniform motion. But we know by
Lunar Theory that M describes a circle round K as centre with

a velocity much more rapid than that of G. Hence the motion
of G will be represented by a slow uniform motion round K,
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together with two inequalities which will be the smaller the
greater the velocity ofM round K, and whose period will be nearly
equal to that of M round K. This period we know to be about
19 years. These two inequalities are called the Lunar Nutations.
It will be perceived that their origin is different from that of
Solar Nutation.

504. To calculate the Lunar Precession and Nutation.

Let K be the pole of the ecliptic, M that of the lunar orbit,

C the pole of the earth. Let KX be any fixed arc, KG— 6,

XKC = '>^, then we have to find 6 and ^^ in terms of t. By
Art. 494 the velocity of G in space is at any instant in a direction
perpendicular to MG, and equal to

^n"' G-A 1 ,,^ . ,.^— -^ 7^— ^—;— cosMG sm MG.
zn G 1 + v

For the sake of brevity let the coefficient of cos if(7 sin Jf(7
be represented by P. Then resolving this velocity along and
perpendicular to KG, we have

dd/dt = - PsinMG cosMG sin KGM)
sin 6 df/dt = - P sinMG cosMG cos KGM\ '

By Lunar theory we know that M regredes round K uniformly,

the distance KM remaining unaltered. Let then KM= i, and
the angle XKM = — mt \- a. Now by spherical trigonometry,

cos MG = cos i cos 6 + sin i sin 6 cos MKG,
' n/rn r^n n r COS I — COSMG COS 6

Sin MG cos KGM= r—^
sin

= cos { sin 6 — sin i cos 6 cos MKG^
sinMG . sinKGM= sin i sin MKG.

Substituting these we have

dOjdt = -P {sin I cos i cos 6 sin IkKG + J sin\* sin 6 sin 2MKG},

sin 6 dyjr/dt = — P {sin 6 cos 6 (cos^i — J sin%*)

— sin { cos i cos 26 cos MKG — J sin^i sin cos ^ cos 2 J^fiTC}.

For a first approximation we may neglect the variations of 6

and yjr when multiplied by the small quantity P. Hence dO/dt

contains only periodic terms, and the inclination 6 has no per-

manent alteration. But d-^jdt contains a term independent of

MKG; considering only this term, we have

yjr — constant — P cos ^ (cos'^^i — ^ sin^t) t

This equation expresses the processional motion of the pole

due to the attraction of the moon. We may write this equation

in the form -^ = ^^r^ — pt
To find the nutations, we must substitute for MKG its ap-

proximate value MKG = {~m-\- p) t + a — ^Ir^.
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We then have after integration

^ , P sin i cos I cos ^ TirT^^ Psin'zsin^ o^irr^/^
6 = const. cos MKG j-. r- cos 2MKC,

4 {m—p)

The second of these two periodic terms being about one-

fiftieth part of the first, which is itself very small, is usually

neglected. Also p is very small compared with m, hence we have

^ ^ Psinicosicos^ Tirr^/v6 = 0^ cos MKG,
" m

This term expresses the Lunar Nutation in the obliquity.

In the same way by integrating the expression for '>/r, and
neglecting the very small terms, we have

I . r» a, 2 • 1 • 2 'x ^ 73 sin 2i cos 2^ . T^jTTzn<r = ylr.- P co^ 6 (cos'^t - i sm'^^) t-P -^— . -r-,. sm MKC,

The angle MKG is the longitude of the moon's descending
node, and the line of nodes is known to complete a revolution

in about 18 years and 7 months. If we represent this period by
T we have MKG = - 27r^/r+ constant.

The pole M of the lunar orbit moves round the point of re-

ference if with an angular velocity which is rapid compared with ^,
but yet is sufficiently small to make the Lunar Nutations greater

than the Solar. We may also notice that ifM had moved round
K with an angular velocity more nearly equal to p the Nutations
would have been still larger. This may explain why a slow motion
of the ecliptic in space may produce some corresponding nutations

of very long period and of considerable magnitude.

Motion of the Moon about its centre of gravity.

505. In discussing the precession and nutation of the equinoxes, the earth has

been regarded as a rigid body two of whose principal moments at the centre of

gravity are equal to each other. One consequence of this supposition was that the

rotation about the axis of unequal moment is not directly altered by the attraction

of the disturbing bodies. As an example of the effect of these forces on the

rotation when all the three principal moments are unequal, we shall now consider
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the case of the moon as disturbed by the attraction of the earth. As our object is

to examine the mode in which the forces alter the several motions of the moon
about its centre of gravity rather than to obtain arithmetical results of the greatest

possible accuracy, we shall separate the problem into two. In the first place we
shall suppose the moon to describe an orbit which is very nearly circular in a plane

which is one of the principal planes at its centre of gravity. In the second case we
shall remove the latter restriction and examine the effects of the obliquity of the

moon's orbit to the moon's equator.

606. The moon describes an orbit about the centre of the earth which is very

nearly circular. Supposing the plane of the orbit to be one of the principal plants

of the moon at its centre of gravity, find the motion of the moon about its centre of

gravity.

Let GA, GB, GO he the principal axes at G the centre of gravity of the moon,

and let GC be the axis perpendicular to the plane in which G moves. Let A, B, C
be the moments of inertia about GA, GB, GO respectively, and let 11 be the mass

of the moon, and let accented letters denote corresponding quantities for the

earth.

Let be the centre of the earth, and let Ox be the initial line. Let OG = r,

GOx= 6. Let us suppose the moon turns round its axis GC in the same direction

that the centre of gi-avity describes its orbit about 0, and let the angle OGA = <p.

The mutual potential of the earth and moon is by Art. 486

r 2r^ 2r"*

Here 1= ^ cos' +5 sin^ and therefore the moment of the forces tending to

turn the moon round GC is

^=-2^(^-^)B^^20 (1).

Since ^ + is the angle which GA, a line fixed in the body, makes with Ox, a

line fixed in space, the equation of the motion of the moon round GG is

d^ d^^^M^B-A

The motion of the centre of gravity of the moon referred to the centre of the

earth as a fixed point is found in the Lunar Theory. It is there shown that r and

6 may be expressed in the form

r= c {1 -hL cos (25t + a) + &C.},

-—= n + Bt-\- Mn cos {pt + a) + &C.,
dt

where pt is a very small term which represents a secular change in the moon's
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angular velocity about the earth, and is really the first term of the expansion of a

trigonometrical expression.

If we substitute the value of ddjdt in equation (2) we have the following equation

to determine ^,

^= -^q^Bin2<p-p + npMam{pt + a) + &c (3),

where for this sake of brevity we have put n^ ^
~

= ^

.

Now we know by observation that the moon always turns the same face towards

the earth, so that amongst the various motions which may result from different

initial conditions, the one which we wish to examine is characterized by being

nearly constant. Let us then introduce into this equation the assumption that

is nearly constant ; we may then deduce from the integral how far this assumption

is compatible with any given initial conditions which we may suppose to have been

imposed on the moon. Putting 0=0o + 0', where ^^ is supposed to contain all the

constant part of 0, we easily find

i5«sin20o = -/3
)

d?d,' \ (4).^+22co8 20o0'=npilfsm(2)t+ a) + &c.J '

' '

Solving the second equation, we find,

0=Hsin(5« + ir) + 0o + M-2 ^- -2sin(pt+ a) + &c (5),
^ COS ^V^Q "~ "p

where K and K are two arbitrary constants whoso values depend on the initial con-

ditions. The angular velocity of the moon about its axis is therefore given by the

formula

f4t=«+^.+ H,cos(,<+ ir)+;.f^-|^~^^^,co=(pt+ a) + *c (G).

In this investigation the axis GA which makes the angle with the radius

vector GO drawn to the earth may be either of the principal axes in the moon's

equator. If we choose GA to be that axis whose mean position makes the lesser

angle with the radius vector GO, the quantity cos 20o will be positive. The quantity

(^ will be positive or negative according as that axis GA has the least or greatest

moment. In the solution just written down g^ has been taken to be positive.

If g2 were negative or zero, the character of the solution of (3) would be altered.

In the former case the expression for would contain real exponentials. If the

initial conditions were so nicely adjusted that the coefificient of the term containing

the positive exponent were zero, the value of 0' would still be always small. But
this motion would be unstable, the smallest disturbances would alter the values of

the arbitrary constants and then 0' would become large. If we also examine the

solution when 3^= 0, we easily see that 0' could not remain small. The comple-

mentary function would then take the form Ht +K and as before some small

disturbance might cause 0' to become great. We therefore infer that of the axes

GA, GB of the moon, the axis of least moment is turned more towards the earth

than the other and that these two principal moments are not equal.

In order that the expression (5) for may represent the actual motion it is

necessary and suflBcient that H when found from the initial conditions should

be small. We see, by differentiation, that Hq is of the same order of small

quantities as d<f>Jdt. Hence U will be small if at any instant the angular velocity,

viz. d$Jdt + d^Jdt, of the moon about GC were so nearly equal to the angular
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velocity, viz. ddldt, of its centre of gravity round the earth, that the ratio of the

difference to q is very small.

We see from the first of equations (4) that the magnitude of the constant angle 0o
which the axis of least moment in the moon's equator makes with the radius vector

drawn to the earth depends on the ratio 2^lq^. The value of j3 is found in the

Lunar Theory and is known to be extremely small. The numerical value of q^ depends

on the structure of the moon and is not properly known. Its value can only be found

by comparing the results of this or some other investigation with observation.

The first of equations (4) shows that 2/3 must be less than q^. So that unless the

moments of inertia A and B in the moon are sufficiently unequal to satisfy this

condition the moon could not move so as always to turn the same face to the earth.

If we enquire what can be the physical cause of the difference between the

moments of inertia about the two principal axes in the moon's equator we naturally

think of the attraction of the earth on that body. This attraction, either in the

past or in the present time, would tend to lengthen that diameter which is directed

to the earth. Taking the suppositions usually made in the theory of the Figure of

the Earth, Laplace has attempted to deduce from this the value of q^. The only

result we are here concerned with is that the ratio 2^lq^ is so small that we may
reject its square. Assuming this, we see that 0o must also be very small. It

follows also that we may write - /S/j^ for <pQ and unity for cos 20^ in equations

(5) and (6).

If therefore we suppose the moon at any instant to be moving with its axis of

least moment pointed towards the earth and its angular velocity about its axis of

rotation to be nearly equal to that of the moon round the earth, then the axis of

least moment will continue always to point very nearly to the earth. The mean
angular velocity of the moon about its axis will immediately become equal to that

of the moon about the earth and will partake of all its secular changes. This is

Laplace's theorem. It shows that the present state of motion of the moon is

stable, rather than explains how the angular velocity about the axis came to be so

nearly equal to the angular velocity about the earth.

507. By comparing the value of the angular velocity of the moon about its

axis obtained by theory with the results of observation, we may hope to obtain

some indications of the value of q^ and thence of {B~A)IC. If the term

Ilq cos (qt + K) could be detected by observation, we should deduce the value of

{B-A)IG from its period.

Among the other terms of the expression for the angular velocity of the moon

about its axis, those will be best suited to discover the value of q which have the

largest coefficients, that is those in which either the numerator M is the greatest

or the denominator q^-p^ the least possible. By examining the numerical value of

their coefficients Laplace has shown that if {B - A)IC were as great as -03 the elliptic

inequality could be recognized by observation, and if it were between -0014 and -003

the annual equation could be observed.

508. Motion of tlie centre of gravity of the Moon. We may also deduce

from the potential given in Art. 506 the radial and transverse forces which act on

the centre of gravity of the moon due to the mutual attractions of the earth and

moon. Since the principal moments of the moon are nearly equal and its linear

size small compared with its distance from the earth, these forces are very nearly

the same as if the moon were collected into its centre of gravity. The effect of the

small forces neglected by this assumption will be insignificant compared with the

R. D. n. 19
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other forces which act on the centre of gravity of the moon. The motion of the

centre of gravity of the moon is therefore very nearly the same as if the whole mass

were collected into its centre of gravity.

Since however there are no other forces which have a moment round GG besides

those found above, the effect of these may be perceptible. The effects of tidal

friction on the rotation of the moon may be omitted, at least at the present time.

Ex. The centre of gravity G of a rigid body describes an orbit which is

nearly circular about a very distant fixed centre of force attracting according

to the Newtonian law and situated in one of the principal planes through G. If

r= c{l+p), d=nt + nyf/ be the polar co-ordinates of G referred to 0, show that the

equations of motion are

B-A , 2C-A-B
where 7=-;^^. 7=

3^^,.

We may notice that the values of 7 and 7' are much smaller than q^ and might

therefore be rejected in a first approximation.

If the body always turns the same face to the centre of force so that
<f>

is

nearly constant and is small, show that there will be two small inequalities in the

value of of the form L sin (pt + a), where p is given by

(;>2 _ n2) (^2 _ ^2) _ 3nV (p2 + 3^2) ^ q,

one of these periods being nearly the same as that of the body round the centre

of force and the other being very long.

If the body turns very nearly uniformly round its axis GC, so that 0=n'f + e'

nearly, show that there will be two small inequalities in the value of 0, one in

which p=n and another in which p = 2n'.

509. Examples. Ex. 1. Show that the moon always turns the same face

very nearly to that focus of her orbit in which the earth is not situated. [Smith's

Prize.]

Ex. 2. If the centre of gravity G of the moon were constrained to describe a

circle with a uniform angular velocity n about a fixed centre of force attracting

according to the Newtonian law ; show that the axis GA of the moon will oscillate

on each side of GO or will make complete revolutions relatively to GO according

as the angular velocity of the moon about its axis at the moment when GA and GO
coincide in direction is less or greater than n + q where q has the meaning given

to it in Art. 506. Find also the extent of the oscillations.

Ex. 3. A particle w moves without pressure along a smooth circular wire of

mass M with uniform velocity under the action of a central force situated in the

centre of the wire attracting according to the law of nature. Show that this system

of motion is stable if-r;.>

—

i^J^— . The disturbance is supposed to be givenM 25

to the particle or the wire, the centre of force remaining fixed in space.

Ex. 4. A uniform ring of mass M and of very small section is loaded with a

heavy particle of mass m at a point on its circumference, and the whole is in
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uniform motion about a centre of force attracting according to the law of nature.

Show that the motion cannot be stable unless ml{M+ m) lies between -815865 and
•8279.

This example shows (1) that if a ring, such as Saturn's ring, be in motion

about a centre of force, its position cannot be stable, if the ring be uniform; and

(2) that if, to render the motion stable, the ring be weighted, a most delicate

adjustment of weights is necessary. A very small change in the distribution of

the weights would change a stable combination to one that is unstable. This

example is taken from Prof. MaxivelVs Essay on Saturri's Rings.

Ex. 5. The centre of gravity of a body of mass M, symmetrical about the plane of

xy, is G ; and is a point such that the resultant attraction of the body on is

along the line GO. Then if the body be placed with coinciding with a fixed

centre of force S, and be set in rotation about an axis through O perpendicular to

the plane of xy with an angular velocity a>, G will, if undisturbed, revolve uniformly

in a circle, always turning the same face towards O, provided Maia^ is equal to the

resultant attraction along GO, where a is the distance GO. It is required to

determine the conditions that this motion should be stable.

The motion being disturbed, will no longer coincide with the centre of force

S. Let two straight lines at right angles revolving uniformly round S as origin

with an angular velocity w be chosen as co-ordinate axes, and let x be initially

parallel to OG. Let {x, y) be the co-ordinates ot 0, <p the angle OG makes with

the axis of x, then x, y, are all small. Let V be the potential of the body at 0,

and let dWldx^= a, (PV/dxdy^y, d^Vldy^= ^. Let S be the amount of matter in

the centre of force. The equations of motion of a particle referred to axes moving

in one plane round a fixed origin are given in Vol. i. These equations may also be

deduced from Arts. 4 and 5 of this volume by putting ^^= and 6^— 0. Ill this way

the equations of motion of G reduce to

and the equation of angular momentum about S will lead to

2waa;-}-a— 2/-f(a2 + ^2) 0=0,

where ^1; is the radius of gyration of the body about 0. Combining these equations

as a determinant and reducing we find that the differential equation in ^, t;, or ^

is of the form ^ dX^^^~d^^^^^^'

The condition of stability is that the roots of this equation should be real and

negative. Hence A, B, C must be of the same sign and B^>4:AC. This pro-

position is due to Sir W. Thomson and is given in Prof. Maxwell's Essay on Satnrn's

Rings.

510. Laplace's theorem on tlie Moon's equator. The motfon of a rigid

body about a distant centre of force has been investigated on the supposition that

the motion takes place entirely in one plane. We see by equation (2) of Art. 506

that the case in which the centre of gravity describes a circular orbit, and the rigid

body always turns a principal axis towards the centre of force, is one of steady

motion. The preceding investigation also shows that this motion is stable for all

disturbances which do not alter the plane of motion, provided the moment of

19—2
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inertia about that principal axis which is directed towards the centre of force is less

than the moment of inertia about the other principal axis in the plane of motion.

It remains now to determine the effect of these disturbances in the more general

case when the motion takes place in three dimensions.

The whole attraction of the centre of force on the body is equivalent to a single

force acting at the centre of gravity, and a couple. If the size of the body be small

compared with its distance from the centre of force, we may neglect the effect of the

motion of the body about its centre of gravity in modifying the resultant force.

The motion of the centre of gravity will then be the same as if the whole were

collected into a single particle. The problem is therefore reduced to the following.

A rigid body turns about its centre of gravity G, and is acted on by a centre of

force E which moves in a given manner. In the case in which the rigid body is

the moon, this centre of force, i.e. the earth, moves in a nearly circular orbit in a

plane which itself also has a slow motion in space. This motion is such that a

normal GM to the instantaneous orbit describes a cone of small angle about a

normal GK to the ecliptic. The two normals maintain a nearly constant in-

clination of about 5^. 8' ; and the motion of the normal to the instantaneous orbit

is nearly uniform.

511. It will clearly be convenient to refer the motion to axes GX, GY, GZ
fixed in space such that GZ is normal to the ecliptic. Let GA, GB, GG he the

principal axes of the moon at the centre of gravity G. Let {p, q, r) be the direction-

cosines of GZ referred to the co-ordinate axes GA, GB, GO. Then we have by

Art. 9, since GZ is fixed in space,

^-W3gr + W2**=0, j^-<^ir + (^zP = 0, £-to^p + Uiq = (I).

Let GG be the axis of rotation of the moon, and as before let the moment of

inertia about GA be less than that about GB. ,

Now our object is to find the small oscillations about the state of steady motion

in which GZ, GG, GM all coincide. We shall therefore have p, q, Wj, Wg all small,

and r very nearly equal to unity. The equations (I) will therefore become

^-7ii) + W2=0, ^-u}j^ + np = 0,

where n is the mean value of wg.

Let X, /i, V be the direction-cosines of the centre of force E as seen from G.

Then we have by Euler's equations and Art. 487,

^ ^1 _ (B - C) W2W3= - 3«'2 {B-G)ixv'
ut

ut

€^-{A-B)u}^Uz=:-3n'^A-B)\fl

In the case of steady motion, the rigid body always turns the axis (GA) of lesser

moment towards the centre of force, and Wg= n'. We have then both fi and p small

quantities, so that in the first equation we may neglect their product fxu, and in

the second equation we may put v\ = v. Also, we may put u}^= n = n' in the small

terms.

If I be the latitude of the earth as seen from the moon, we have

sin I = cos ZE =p\ + qfi + rv=p + v nearly.

(11).
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.(HI).

Hence the two first of Euler's equations take the form

If the earth, as seen from the moon, be supposed to move in a circular orbit in

a plane making a constant inclination tan~i k with the ecliptic, and the longitude

of whose node is -gt + j3, we shall have

sin l=ksin (n't + gt — ^).

In this expression g measures the rate at which the node regredes, and is about

the two hundred and fiftieth part of n. We shall therefore regard gjn as a small

quantity.

To solve these equations, it will be found convenient to substitute for Wj, Wg

their values in terms of ^, q. We then have

B^^- {A + B - C)n^+ An^{G - A)p= Bn\G - A)8mlj

To find _p, g, let us put p = PBm{{n'+g)t~p}, q = Qcos{{n' + g)t- ^},

where P, Q are some constants to be determined by substitution in the equation.

WphnvP Q{^in+9)'+{B-C)n^}=P{A + B-C)n{n+g) {
P{B{n +g)^-'i{C-A)n^-Q{A+B-C)n{n + g)=-Sn^k{C-A)j

'

We may solve these equations to find P and Q accurately. In the case of the

moon the ratios
A-B B

-J— ,
—-— and - are all small. If then we neglect the

A B n

products of these small quantities, the first equation gives us QJP=l-gln.
second equation will then give

Snk{C-A)

The

3nC-A)-2Bg
As g is very small compared with n, we may regard P and Q as equal.
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512. The complementary functions may be found in the usual manner by

assuming p = Fam{st + H), q = G cos {st + H),

on substituting we have the quadratic

ABs*- {{A+B - Cy- - B {B- €)- iA{A-C)} nh'^ + ^iA- C) {B - C)n^= 0,

. ^ , „ , G (A+B-C)n8
tofind«»,and F =

As^ + iSZqn^^
to find the ratio of the coefficients of corresponding terms in p and q. If the roots

of this equation were negative p and q would be represented by exponential values

of t, and thus they would in time cease to be small. It is therefore necessary for

stabihty that the coefficient of s^ should be negative and the product (-4 -C){B- C)

positive. Both these conditions are probably satisfied in the case of the moon.

For since B-G and ^ - C are both small, the term {A+B- Cf is much greater

than the two other terms in the coefficient of s^. Also, since the moon is fiattencd

at its poles, we shall probably have A and B both less than G.

513. Let M be the pole of the moon's orbit, which is the same as that of the

earth's orbit as seen from the centre of the moon. Then M is the pole of the

dotted line in the figure of Art. 511. Therefore the angle EZM measured by

turning ZE in the positive direction round Z until it comes into coincidence with

ZM, is = %Tr-{in + g)t- ^}. Again, if the angle EZG be measured in the same

direction, we have

^^-, cos EC- cos CZ cos ifJE v-ripX + qti + rv) —p .

cos EZG= . ^^ . ^^ =
, J:'

^ = , V - , nearly.
sm CZ sin ZE

Jp2 + g2 gin ZE Jp^+ q-"

Henoe we easily find sin EZG= —, .

But sin CZM= sin EZM cosEZG - cosEZM sinEZG
cos {{n + g) t - ^} p - Bin {(n + p)t - ^}

q

If now we substitute for p and q their values, it is clear that the terms in p and

qr, whose argument is w+^r, disappear. So that if F and G were zero, the sine of

the angle GZM would be absolutely zero. In this case the three poles C, Z, M
must lie in an arc of a great circle, or, which is the same thing, the moon's equator,

the moon's orhit, and the ecliptic must cut each other in the same line of nodes.

If however P and G be not zero, but only very small, we have

. ^___ SF'sin(s'« + ir')
sm GZM=-7= -^— '

,

JP^ + I^G'^ sin {s't + H')

where F*, G' contain either F ox O q.sq. factor, and are therefore small. If then F
and G be both small compared with P, the angle GZM will remain either always

small or always nearly equal to w.

The intersection of the moon's equator with the ecliptic will then oscillate about

the intersection of the moon's orbit with the ecliptic as its mean position. Since

these oscillations are insensible, it follows that in the case of nature, the com-

plementary functions must be extremely small compared with the terms depending

directly on the disturbing force.

514. If we disregard the complementary functions we have p=Psin0,
g =P cos ^, where = {n' +g)t-p. Now sin^ GZ =p'^ + q^; therefore GZ= -P very

nearly. The value of GZ, the inclination of the lunar equator to the ecliptic, is

known to be about 1^.28'. Hence, since gjn= 'OOi, we may deduce from the ex-

pression for P at the end of Art. 611 an approximation to the value of {G-A)IB.

In this manner Laplace finds -^- = '000509.



CHAPTER XII.

MOTION OF A STRING OR CHAIN.

The Equations of Motion.

515. To determine the general equations of motion of a strhig

under the action of any forces.

Inextensible strings. Let Ox, Oy, Oz be any axes fixed in

space. Let Xmds, Ymds, Zmds be the impressed forces that

act on any element ds of the string whose mass is mds. Let
u, V, w be the resolved parts of the velocities of this element
parallel to the axes. Then, by D'Alembert's principle, the

element ds of the string is in equilibrium under the action of

the forces

rnds^Xy^), m<i«(r-|), r,ids{Z-'^) (1),

and the tensions at its two ends.

Let T be the tension at the point (po, y, z), then Tdx/ds,

Tdy/ds, Tdz/ds are its resolved parts parallel to the axes.

The resolved parts of the tensions at the other end of the element

will be r^+lfr^)^.,
ds ds\ as J

and two similar quantities with y and z written for w.

Hence the equations of motion are

du _d f rpdx^

dt~ ds\ ds,
+ mX

m

m

dv _ d frpdy\ Y
dt

~ ds\ ds)

dwd^^,dz\^^
dt ds\ ds J

(2).

In these equations the variables s and t are independent.

For any the same element of the string, s is always constant, and

its path is traced out by variation of t. On the other hand, the

curve in which the string hangs at any proposed time is given by

variations of 5, t being constant. In this investigation 5 is

measured from any arbitrary point, fixed in the string, to the

element under consideration.
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To find the geometrical equations. We have

(iy-©"*er-> «
Differentiating this with respect to <, we get

dx du dy dv dz dw _ .

ds ds ds ds ds ds

The equations (2) and (4) are sufficient to determine x, y, ^,

and T, in terms of s and t.

516. Ex. If V be the Vis Viva of any arc AB of the chain ; T^, T^ the tensions

at the extremities of this arc ; m^', u^' the velocities of the extremities resolved along

the tangents at those extremities, prove that

1 dV
2
— = TgMa' - TX +J{^u+Yv + Zw) mds,

the integration extending over the whole arc.

517. The equations of motion may be put under another
form. Let </>, i/r, ')^ be the angles made by the tangent at x, y, z,

with the axes of co-ordinates. Then the equations (2) become

'^'i^ds^^''''^^^'^'^^
(^^^

with similar equations for v and w.

To find the geometrical equations, differentiate cos (^ = dxjds
with respect to ^: . , dS du ,^v

'-'''"l'dl=ds ^^^-

Similarly, by differentiating cos yjr = dy/ds and cos ^ — dz/ds,

we get two other similar equations for i/r and
)(^.

Taking these

six equations in conjunction with the following

cos^</>+ cos^^lr + cos- ;^ = 1 (7),

we have seven equations to determine u, v, w, cf),
>|r, -^ and T.

If the motion takes place in one plane, these reduce to the

four following equations

:

'"l=i(^^-'^)+'^^

(8),

. , d(j) du . d<f) dv .^v

-^^°'^d7=^ ''''"^irds
^^^-

The arbitrary constants and functions which enter into the

solutions of these equations must be determined from the peculiar

circumstances of each problem.

518. Blastic strings. Let <t be the unstretched length of the arc «, and let

md<r be the mass of an element da of unstretched length or ds of stretched length.



THE EQUATIONS OF MOTION. 297

Then by the Bame reasoning as before, the equations of motion become

™di = dj(^s)+™^ w>

and two similar equations for v and w. To find the geometrical equations we must

the independent variables being now <r and *. Differentiating with regard to t we

, dx du dy dv dz dw ds d fds \
have 1

—

~
1 = —- — (

— ).
d<T da- . d<r d<y da d<r da dt \daj

ds T
But if X be the modulus of elasticity of the string, we have -i-= 1 + t (")•

da A

c, r. J.-X A.- 1 dx du dy dv dz dw [ ^ T\ 1 dT .....
Substituting we have _ _ +^_ +_ _ = (^l + _j _ „ („,).

The two equations (ii) and (iii) together with the three equations (i) will suffice

for the determination of u, v, w, s and T in terms of a and t.

If we wish to use the equations of motion in the forms corresponding to (5) or

(8), the dynamical equations become

du d ,^

with similar equations for v and w.

The geometrical equations corresponding to (6) or (9) may be found thus. We
, dx ds /^ T\
have -=cos0^=cos0(^l +-j.

Differentiating, we have --- = - sin -^ + - — (Tcos 0),da at A dt

with similar expressions for v and w.

519. Tangential and Normal Resolution, When the

motion of the string takes place in one plane, it is often con-

venient to resolve the velocities along the tangent and normal to

the curve.

Let u, v' be the resolved parts of the velocity of the element

ds along the tangent and normal to the curve at that element.

Let (^ be the angle the tangent to the element ds makes with

the axis of x. Then by Chap. iv. of Vol. I. or by putting

^3 = d^\dt, 0^=0,6^ = in Art. (5) of this Volume, the equations

of motion are

du' fd<j> _ -rr/ dT '

dt dt mds
(1).

dv'
,

,dct> ^, T
dt dt mp

The geometrical equations may be obtained as follows. We
have u = u cos (p — v sin </>.

Differentiating with respect to s, we have by Art. 517,

where p is the radius of curvature, and is equal to ^ .
Since
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the axis of x is arbitrary in position, take it so that the tangent
during its motion is parallel to it at the instant under considera-

tion ; then </> = and we have

= ^'-*^ '.

(2).
as p ^ '

Similarly, by taking the axis of x parallel to the normal,

d^ __dv u

Tt'-Ts'^ p
^'^^•

These four equations are sufficient to determine u', v\ <p and
T in terms of s and t.

If the string be extensible, the dynamical equations become

dn' ,d(h ^, dT
—--v'-£ =X'+^
dt dt mda
dv' ,d<b ^, T ds .

dt dt vip da)

To find the geometrical equations, we may differentiate m= m'cos 0- v'sin

with regard to cr. This gives by Art. 518

. ^d(f) 1 d ,^ ^. (du' -J ds\ ^ fdv' u' d^\ .

By the same reasoning as in Art. 519, this reduces to

IdT _dvi/ _ (/
f

T\
\dt~da pV X/*

dt

/. T\ dv' u' f^ T\

520. The equations (2) and (3) may also be obtained in the

following manner. The motion of the point P of the string being

represented by velocities u and v' along the tangent FA and
normal PO at P, the motion of a consecutive point Q will be
represented by velocities u' + du and v' + dv' along the tangent

QB, and normal QO at Q. Let the arc PQ = ds, and let QN be
a perpendicular on PA. Since the string is inextensible, the

resultant velocity of Q resolved along the tangent at P must be
ultimately the same as the resolved part of the velocity of P in

the same direction. Hence

(u + du) cos dcj) — {v + dv') sin dcf) = u\

or, proceeding to the limit,

du'-v'd6 = 0; .-. ^'-^=0.^ ds p

Again, d(l)/dt is the angular velocity of PQ round P, Hence
the difference of the velocities of P and Q resolved in any direc-

tion which is ultimately perpendicular to PQ must be equal to

PQ d^/dt
;

.*. {u + du') sin dcf) + {v + dv') cos d<f)-v =ds^ ,

. ., ,. .^ d<i> dv u'
or in the hmit -r- = -7- + — •

dt ds p
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621. Examples. Ex. 1. An elastic ring without weight, whose length when
unstretched is given, is stretched round a circular cylinder. The cylinder is

suddenly annihilated, show that the time which the ring will take to collapse to its

natural length is (i>/a7r/8X)^ where M is the mass of the string, \ its modulus of

elasticity, and a is the natural radius.

Ex. 2. A homogeneous light inextensible string is attached at its extremities

to two fixed points, and turns about the straight line joining those points with uni-

form angular velocity. Let the straight line joining the fixed points be the axis of

X. Show that the form of the string, supposing its figure permanent, is a plane

curve whose equation is 1 + {dyldx)^= b {a - y^Y, where a and 6 are two constants.

On Steady Motion.

522. Def. When the motion of a string is such that the
curve which it forms in space is always equal, similar, and simi-

larly situated to that which it formed in its initial position, that

motion may be called steady.

523. To investigate the steady motion of an inextensible

string.

It is obvious that every element of the string is animated with
two velocities, one due to the motion of the curve in space, and
the other to the motion of the string along the curve which it

forms in space. Let a and h be the resolved parts along the axes

of the velocity of the curve at the time t, and let c be the velocity

of the string along its curve. Then, following the usual notation,

we have

w = a+ccos^, V = h-\-c^m^ (1).

Now a, h, c are functions of t only, hence dulds = — c sin (j)d(l>/ds.

Therefore by equation (9) of Art. 517 we have

d(i> _ d(f> .^.

dt
'"^

ds
^*^^-

Substituting the values of u and v in the equations of motion,

Art. 515, we get

da dc , . d<b ^ d [T ,\

TT + -7i cos <f) - c sm 6 '^ = A + -J- [
— COS(p]

dt dt ^ ^ dt ds \m ^

dh dc

It di
sm.^ + ccos<^J=F+J^gs«<A)J

Substituting for d(f)ldt, these equations reduce to

dh ( ^r do . ,\ .
d {(T

dt^V-dt''''̂̂ "^)+l{S-^^)'^"^

(3).

The form of the curve is to be independent of t ;
hence, on

eliminating T, the resulting equation must not contain t. This

will not generally be the case unless dajdt, db/dt, dc/dt are all
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constants. In any case their values will be determined by the

known circumstances of the Problem. The above equations must
then be solved, s being supposed to be the only independent
variable, and t being constant.

524. If the string move uniformly in space, and the elements

of the string glide uniformly along the string, da/dt = 0, dh/dt = 0,

dc/dt = 0. It will then follow from the above equations, that the

form of the string will be the same as if it was at rest, but the

tension will exceed the stationary tension by mc^.

525. Ex. 1. Form of an electric cable. Let an electric cable be deposited at

the bottom of a sea of uniform depth from a ship moving with uniform velocity in a

straight line, and let the cable be delivered with a velocity c equal to that of the ship.

Find the equation to the curve in which the string hangs.

The motion may be considered steady, and the form of the curve of the string

will be always the same.

If the friction of the water on the string be neglected, gravity diminished by the

buoyancy of the water will be the only force acting on the string, let this be repre-

sented by g\ Hence the form of the travelling curve will be the common catenary,

and the tension at any point will exceed the tension in the catenary by the weight

of a length of string equal to c^/g'.

Next let the friction of the water on any element of the cable be supposed to

vary as the velocity of the element, and to act in a direction opposite to the direc-

tion of motion of the element*. Let /a be the coefficient of friction.

Let the axis of x be horizontal, and let x' be the abscissa of any point of the

cable measured from the place where the cable touches the ground, in the direction

of the ship's motion. Also let s' be the length of the curve measured from the

same point. Then x=ot^+ct, and s=s' + ct.

Following the same notation as before, we have

X= - jxu, Y= —g' - [XV.

But u=^c-c cos 0, v= -c sin 0.

Hence the equations (3) become

0= -/iC+AlCCOS0+ -^ U— c^
J
cos^l

0^ - g'+ lie Qm (})-{— i(- -c^J sin^l

To integrate these put sin = dylds, cos
<t>
= dxjds. Hence,

g'A= -ixcs + ficx-\-i c^jcos^l
^'^

^ \ (1),

g'B= -g's + ficy+[~- cM sm
^J

where A and B are two arbitrary constants.

At the point where the cable meets the ground, we must have either r=0 or

= 0. For if be not zero, the tangents at the extremities of an infinitely small

portion of the string make a finite angle with each other. Then, if T be not zero,

* Each element of the string has a motion both along the cable and trans-

versely to it. The coefficients of these frictions are probably not the same, but

they have been taken equal in the above investigation.
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resolving the tensions at the two ends in any direction, we have an infinitely small
mass acted on by a finite force. Hence the element will in that case alter its posi-
tion with an infinite velocity. First, let us suppose that = 0. Also at the same
point, y= and s'= 0. Hence B=-ct.

Putting ^=e, we get by division J/ ^ ^ ~ey

This is the differential equation to the curve in which the cable hangs.
To solve this equation*, let us find s' in terms of the other quantities,

dy
, dy

, dx' dx'
s = i^—

^ dx'

2,-{A-ex' + e^y)

Differentiating, we have /i ^ / ^yV _ 2f

Put p for dy[dx where convenient, and put v for A-cx' + e"y; the equation then

dp

becomes ^^= ~'^
vdx' {l-ep)Jl+p^'

in which the variables are separated, and the integrations can be effected. The
equation can be integrated a second time, but the result is very long. The arbitrary

constant A may have any value, depending on the length of the cable hanging from
the ship at the time t = 0.

The curve in its lowest part resembles a circular arc or the lower part of a com-
mon catenary. But in its upper part the curve does not tend to become vertical,

but tends to approach an asymptote making an angle cot"^^ with the horizon. The
asymptote does not pass through the point where the cable touches the ground but

below it, its smallest distance being Aje{e^+ l)i; the asymptote also passes below

the ship.

If the conditions of the question be such that the tension at the lowest point of

the cable is equal to nothing, the tangent to the curve at that point will not neces-

sarily be horizontal. Let \ be the angle this tangent makes with the horizon.

Keferring to equations (1) we have simultaneously

x'= 0, y= 0, 8=0, T=0, and = \.

c^ c"
Hence ^ = -

-, cos X, B=--, sin \

-

ct.

9 .</

The differential equation to the curve will now become

, > sin \ -I- s' - ew
dy _ gl f /oA

dj'
—

'c2—:;—7~", ^'^^'

> cos\+es-ex:
9

which can be integrated in the same manner as before. One case deserves notice

;

viz. when e= cotX. The equation is then evidently satisfied by y = x'le. The two

constants in the integral of (3) are to be determined by the condition that when

* The problem of the mechanical conditions of the deposit of a submarine cable

has been considered by the Astronomer Eoyal in the Phil. Mag. July 1858. His

solution is different from that given above, but his method of integrating the

differential equation (2) has been followed.
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x'=0, 2/= 0, then dyldx' = tKn\. Both these conditions are satisfied by the relation

y=x'le. Hence this is the required integral. The form of the cable is therefore a

straight line, inclined to the horizon at an angle X = cot~ie; and the tension may be

found from the formula T=
l+cos\'

Ex. 2. Let a cable be delivered with velocity c' from a ship moving with uni-

form velocity c in a straight line on the surface of a sea of uniform depth. If the

resistance of the water to the cable be proportional to the square of the velocity,

the coefficient B, of resistance for longitudinal motion being different from the

coefficient A, for lateral motion, prove that the cable may take the form of a

straight line making an angle X with the horizon, such that coi~\=,Je'^ + ^-^,
where e is the ratio of the speed of the ship to the terminal velocity of a length of

cable falling laterally in water. Prove also that the tension will be found from the

equation T= \y - -7 e^ l~ - coa\j -^^[ »»•/. [Phil. Mag.]

On Initial Motions.

526. Initial Tension. A string under the action of any

forces begins to move from a state of instantaneous rest in the

form of any given curve ; find the initial tension at any given

point.

Let mPdSy mQds be the resolved parts of the forces respec-

tively along the tangent and radius of curvature at any element ds.

The force P is taken positively when it acts in the direction in

which s is measured and Q is positive when it acts in the direction

in which the radius of curvature p is measured, i.e. inwards. Let

the rest of the notation be the same as in Art. 515.

Let us multiply the equation (2) of Art. 515 by the direction-

cosines of the tangent, viz. dx/ds, dy/ds, dzjds and add the results.

Remembering that

doo d'^x dy d'^y dz d'^z _
ds ds^ ds ds^ ds ds*

~
'

a result which follows at once by differentiating (3) with regard

to s, we find

dx du dy dv dz dw _ 1 dT p .^v

ds dt ds dt ds dt m ds

In the same way if we multiply the equations (I) by the direction-

cosines of the radius of curvature, viz. pd^xjds^, pif^ylds^, pd'^z/ds"

and add the results, we find

d^oc du d^y dv d^z dw IT ^
.-tt-.

PWdt^P'ds'dt^Pd^-di^m-p^^ ^")-

These two equations may also be directly deduced by simpl}^

resolving the forces (1) of Art. 515 along the tangent and radius

of curvature.
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Let us differentiate the first of these with regard to s and
subtract the second after division by p ; we have

dx dhi dydPi^ ^^ -^ (}l ^^ _ 1 ^ ^^ Q
ds dsdt ds dsdt ds dsdt ds\mdsj m p^ ds p ^ '*

If we differentiate equations (4) of Art. 515 with regard to t,

we find that the left-hand side of equation (III) may be written in

either of the forms

In the beginning of the motion, i.e. just after the string has
started, we may reject the squares of the small quantities dujds, &c.

or dcft/dt, &c. We therefore deduce from either of the expres-
sions (IV) that we may reject the left-hand side of equations (III).

We therefore have

Ifl^^-L^^^^ + Q
(Y)dsymds) m p^ ds p ^

^'

When the string is homogeneous, we may put m equal to

unity and the equation takes the simple form

d^_^T^_dP Q
ds' p' ds^ p

^^^^*

If we write mds = ds and mp = p, the equation (V) takes the
form (VI) with p and 5' written for p and s.

These are the general equations to find the tension of a string

which has just begun to move from a state of rest.

527. Initial direction of motion. Let X, fi, v be the

direction-cosines of the binormal, and let mRds be the resolved

part of the impressed forces in this direction. If we multiply

the equations (2) of Art. 515 by X, //-, v and add the results, or if

we resolve the forces (1) directly along the binormal, we find

du dv dw ^ .^jjj

Since the string begins to move from rest, we have initially 21 = 0,

v = 0, w = 0. At the end of a time dt, the velocities will be

proportional to du/dt, dv/dt and dw/dt. Thus it appears that the

left-hand sides of equations (I), (II) and (VII) are respectively

proportional to the resolved velocities of the element in the di-

rections of the tangent, principal normal and binormal. Hence

the direction of motion of any element makes angles with the

tangent, principal normal and binormal whose cosines are pro-

portional to — -:r- + P> ^ Qy ^'^ m ds m p

528. The two arbitrary constants introduced into the solution

of the equations (V) or (VI) are to be determined by the cir-

cumstances of the case. If either end of the string be free wo
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have T= at that end. If one extremity be acted on by a given
force that force must act along a tangent since it must be balanced
by the tension at that end. If one extremity be constrained to

slide along a given smooth curve, we must equate to zero the
resolved velocity along the normal to that curve.

It must also be remembered that these constants introduced

by the integration are constants only as regards s, and at the

time ^ = 0. They may be functions of t and may be continuous
or discontinuous.

529. A string is in equilibrium under the action of any forces.

Supposing the string to be cut at any given point, find the instan-

taneous change of tension.

Let Tq be the tension at any point (xyz) just before the string

was cut. Then the resolved forces P, Q, R must be such that

when T=Tq both sides of the equations (I), (II) and (VII) are

zero. We thus find

1 dT 1 T0=P + -^\ 0=Q +-—", = P.
m, as m p

If we substitute for P and Q in the equations (V) or (VI) and put
T = T-T„ we find

A (L ^X\ . 1 1! = o or — - — =
ds \m ds ) m p^ ' ds^ p^

'

according as we regard the string as heterogeneous or homogeneous.
Here T' is the instantaneous change of tension at any point of

the cut string.

530. Examples. A string is in equilibrium, in the form of a circle about a

centre of repulsive force in the centre. If the string be now cut at any point A,

prove that the tension at any point P is instantaneously changed in the ratio of

„-e , -(n-e)
1-" -"" =1,

TT -IT '

e +e
where 6 is the angle subtended at the centre by the arc AP.

Let F be the central force, then P—0, and mQ= - F. Let a be the radius of the

cPT T F
circle. Then the equation of Art. 526 to determine T becomes —-r ;= .

ds^ a^ a

Let s be measured from the point A towards P, then s = ad; also F is independent

of ». Hence we have T=Fa + Ae^ + Be~^.

To determine the arbitrary constants A and B we have the condition 2'=0 when

^=0and^ = 2ir; .'.T=Fa.h \.

But just before the string was cut T= Fa. Hence the result given in the enuncia-

tion follows.

Ex. 2. A string is wound round the under part of a vertical circle and is just

supported in equilibrium at the ends of a horizontal diameter by two forces. The

circle being suddenly removed, prove that the tension at the lowest point is

instantly decreased in the ratio i : c- +c~^^.
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Ex. 3. The extreme links of a uniform chain can slide freely on two intersect-

ing straight lines which are at right angles and equally inclined to the vertical.

The chain is in equilibrium under the action of gravity. If now the chain break

at the lowest point show that the tension at any point P is equal to the statical

tension multiplied by 20/(7r + 2), where is the angle the tangent at P makes with

the horizon.

Ex. 4. A string rests on a smooth table in the form of an arc of an equiangular

spiral and begins to move from rest under the action of a central force F which

tends from the pole and varies as the n}^ power of the distance, show that the initial

tension is given by T= -rF —-— -^ _^ + ^7«p + Br», where a is the angle
71 (w + 1) cos^ a - sm^ a

of the spiral, 2? and q are the roots of the quadratic a;{K-l)=tan2a. Show that

the solution changes its form when a is such that the first term is infinite, and find

the new form.

531. Impulsive tensions. A string rests on a smooth hori-

zontal table and is acted on at one extremity hy an impulsive tension,

find the impulsive tension at any point and the initial motion.

Let T be the impulsive tension at any point P, T -{- dT the

tension at a consecutive point Q, then the element PQ is acted on

by the tensions T and T+dT at the extremities. Let
<f)

be the

angle the tangent at P to the string makes with any fixed line

;

u, V the initial velocities of the element resolved respectively

along the tangent and normal at P to the string, Then, resolving

along the tangent and normal, we have

muds = (r+ dT) cos d(f>-T)

mvds= (T+dT) sin d(l> ]'

1 dT IT
therefore proceeding to the limit u = ^, v = .

^ ^ m ds m p

But by Art. 520, we have du/ds = v/p. Hence the equation to

d^_T
ds' p'

This, as might have been expected from mechanical considera-

tions, is the same as the equation in Art. 529.

If the chain be heterogeneous we easily find in the same way

ds \m ds J m p^'

The two results in this article appear to have been first given

in College Examination Papers.

532. Ex. If Ti, Tg be the impulsive tensions at the extremities of any arc of

the chain, u^, u^ the initial velocities at the extremities resolved along the tan-

gents at the extremities, prove that the initial kinetic energy of the whole arc is

This readily follows by integrating m{u^ + v^)ds along the whole length of the

arc. But it also follows at once from the proposition proved in Vol. I. that the

work due to an impulse is the product of tjie impulse into the mean of the resolved

R, D. XL 80

find T becomes -^rr—2 = ^«
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velocities of the point of application just before and just after the action of the

impulse. Hence, since the string starts from rest the work done at either extre-

mity is the product of the tension into half the initial tangential velocity.

d^T T
533, Solution of a Differential Equation. The equation -zr-„ —^=0 can he

ds^ p^

solved whenever p is a quadratic function of s.

Case I. If the factors of the quadratic be real, let p= ^^~ g^~
. Assume

as a trial solution T=iH(s-a)*»(s-6)". Substituting in the differential equation

and dividing by (s - a)"*-^ (g _ j)n-2^ ^q find

(m+ n-1) {(TO+w)s2-2(an + 6m)s} ) ^
+ aH{n-l) + 2abmn + h^m (m - 1) - jS^j

~ '

This equation is satisfied if we choose m and n so that the coefl&cients of the

several powers of s are zero. The two first powers lead to m + n=l and the last

then gives mn (a - h)^+ jS^= 0. The required solution is therefore

T= M{s-a)^(s - 6)'» + ^' (s-a)« (s - &)'»,

where A and JB are two arbitrary constants and w, n are the roots of the quadratic

^~*~(~r7 ) • -^^^^ solution is given by Prof. Stokes in the eighth volimie of

the Cambridge Philosophical Transactions, 1849.

Case II. When the factors are imaginary we may deduce the solution from the

(s + a)^ + h^
result just given. But putting p=- ^ it will be more convenient to proceed

P
thus. If we write s +a= 6 tan 6, the differential equation takes the form

^'^-2tan/^-^'!7'--^-2tan^— -p2',

.•.^,(rcos^) + (l-Q(rcos^)=0.

The solution of this equation is well known and is trigonometrical or exponential

according as /3 is less or greater than b.

(s — a)^
Case III. When the factors are equal, let p=-—--- . If we write T={8-a)z

1 ^z
and « - a= - the equation reduces to -r-j - p^z= 0. We therefore have

T={s-a) {Me*-''+ Ne «-«)

.

Case IV. If p be a function of s of the first degree, let p=a(s- 6). In this

case the differential equation assumes a known form and is reduced to an equation

with constant coefl&cients by putting « - 6= e<^.

534. Another solution is given in the ninth volume of Liouville*8 Journal by

Besge who reduces the equation to one solved by Euler.

d^T AT
Let us write the equation in the form -j-^ =

, ^rr ^^ .

Putting log T=fUd8 we find by substitution

^+U^= ^
ds^ (a + 26« + c«2)3-

The denominator on the right-hand side suggests that a solution can be found of

V
the form 17=

, „.
,

—«

.

a+ 2b8+C8*
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Substituting in the differential equation we find

^(a+ 2bs + cs^) + {V-b-c8)^= {b + cs)^ + A.

Now it is obvious that if we put V-b-cs=^, where k is some constant, the

equation reduces to ac-h^ + h^= A.

Thus we have two values for h Two particular integrals have therefore been

found, viz. log T= [~,^^ ds.
^ Ja + 2bs + cs^

Each of these integrations can be effected in finite terms. If the values of T
thus found be 0(s) and \f/{s), the general integral required is T=M(f>{s) + N\p {s),

where M and N are two arbitrary constants.

535. Ex. 1. If the given curve be the catenary cp=c^+s^, show that the
solution of the differential equation is Tz=y[A<f) + B), where y is the ordinate

measured from the directrix and ^ is the angle the tangent makes with the horizon.

This result may easily be obtained by noticing (1) that T= yia one solution and
then finding the complete integral in the usual manner by putting T=yz. See

Cambridge Senate House Problems for 1860 with Solutions, page 65.

Ex. 2. If the curve in which the string is placed be such that p^= r where
i{i + i.)

i is any positive integer, show that one solution is T=fPidx, where x=sla and Pi is

a Legendre's function of x of the i"" order.

Ex. 3. Trace the curve pp = {s-a){s-b).

The curve has three branches, the first extends from s = a to 6, the curvature

is always in one direction and the branch terminates at each extremity with an
infinite number of diminishing convolutions being ultimately an equiangular spiral

whose angle is tan-i/3/(a-6). The second branch extends from s= b to oo , it

unwinds like an equiangular spiral with an infinite number of turns. The winding

and unwinding branches have the same directions of curvature when the arc in each

is measured from the infinitely small cusp. The unwinding branch finally proceeds

to infinity like one branch of the catenary ^p= s^ + ^^, the tangent being ultimately

parallel to that at s = ^{a + b). The third branch extends from s = - c to - oo and

resembles the second branch.

Small Oscillations of a Loose Chain.

586. Chain suspended by one extremity. A heavy

heterogeneous chain is suspended by one extremity and hangs in a
straight line under the action of gravity. A small disturbance

being given to the chain in a vertical plane, it is required to find
the equations of motion*.

* In the Seventh Volume of the Journal Polytechnique, Poisson discusses the

oscillations of a heavy homogeneous chain suspended by one extremity. Putting

{l-xfjo\gh equal to s or s' according as the upper or lower sign is taken, and

y'z=y[l- ic)i , he reduces the equation to the form
-j-Y'~

~
4 fs^'s')^

' ^^ obtains

the integral by means of two definite integrals and two infinite series. After a

rather long discussion of the forms of the arbitrary functions which occur in the

integral, he finds that a solitary wave will travel up the chain with a uniform

acceleration and down with a uniform retardation each equal to half that of

gravity.

20—2
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Let be the point of support, let the axis Ow be measured
vertically downwards and Oi/ horizontally in the plane of disturb-

ance. Let mds be the mass of any elementary arc whose length

PQ is ds, and let jTbe the tension at P. Let I be the length of

the string, and let us suppose that a weight 3Ig is attached to the

lower extremity. The equations of motion as in Art. 515 will be

d^a)_l d ( rpdx\

df m ds\ ds /

.(1).

(4),

Since the motion is very small, the point P will oscillate in a

very small arc, the tangent at the middle point being horizontal.

Hence we may put dxjdt = 0. For a similar reason we may put
dx = ds. We therefore have by integrating the first equation

T = constant —gjmdx.
But T— Mg when x=l, hence we find

T = Mg + g jlmdx (2).

When the chain is homogeneous, this equation takes the simple

form T = Mg + mg{l-x).... (3).

It may be noticed that this expression is independent of the

time ; the tension at any point of the chain is equal to the total

weight of matter below that point.

The second equation may be written in either of the forms

df mdx\ dx)

m dx^ m dx dx

where T is a function of x given by the equations (2) or (3).

537. Let us suppose that the displacements of the particles

forming any finite portion of the chain during a finite time, are

represented hy y = ^ (x, t), where ^ is a continuous function of x
and t. Let P be a geometrical point within this portion of the
chain which moves so that the particle-velocity at P, i. e. dy/dt is

always equal to some constant quantity A. Let v be the velocity

with which P moves, then following in our mind the motion of P,
we have by differentiating dy/dt = A with regard to t

2-^S.-«- <^)-

Let Q he a, point also within the portion, such that the tangent

to the chain at Q makes with the vertical an angle whose tangent,

i.e. dy/dx, is B/T, where B is some constant quantity. Let v be
the velocity with which Q moves, then

^;S,+l(^l)'-=» «•
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Eliminating the second differential coefficients of y from equa-
tions (4), (5) and (6), we easily deduce that if P and Q coincide

at any instant,

T
vv' = - (7).m

This reasoning requires that all the second differential coeffi-

cients should be finite, and that y should be a continuous function

of X and t. It would not apply to any point P, if the discontinuous

extremities of two waves were passing over P in opposite direc-

tions. But the consideration of these exceptions is unnecessary
for our present purpose.

Let AB be a disturbed portion of the chain travelling in the

direction AB on a chain otherwise in equilibrium. At the con-

fines of the disturbance the two portions of the string must not

make a finite angle with each other. If they did, an element of

the string would be acted on by a finite moving force, which is the

resultant of the two finite tensions at its extremities. In such

a case the disturbance would instantly extend itself further along

the chain and take up some new form. Supposing we exclude

any such case as this, we must have, as long as the motion is

finite, both dyjdt = 0, and dy/dx = 0, at both the upper and lower

extremity of the disturbance. If then P be a point at which
dy/dt = 0, and Q a point at which dy/dx = 0, P and Q may be

considered as taken just within the boundary of the wave ; P and

Q will therefore each travel with the velocity of that boundary.

Hence putting v = v\ we find for the velocity of either point

T
v' = - (8).m

It appears therefore that if a solitary wave travel up the chain»

the velocity increases as the wave approaches the upper extremity.

The upper end of the wave will travel a little quicker than the

lower end, because the tension at the upper end exceeds that at

the lower; thus the length of the wave will gradually increase.

When the wave travels down the chain, the velocity for the same

reason decreases.

538. Examples. Ex. 1. If the chain be homogeneous, show that the boundaries

of a solitary wave will travel up the chain with an acceleration equal to half that

of gravity, and down the chain with a retardation of the same numerical amount.

Ex. 2. Let the law of density be m^A{l+l' -x)-^ where I is the length of

the chain and A, V two constants. Also let a weight equal to lAgsJV be fastened

to the lower extremity, prove that

2/=/U+ I'-xf -
ilg)^ t} + F{{l+ V-x)\+{ig)^ t].

This integration may be effected by writing d= {l + V)^ -{l + V- x)^. The equation

of motion then takes the form^ =
|^ ' which can be solved in the usual manner.
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Ex, 3. The chain is said to sound an harmonic note when its motion can be

represented by an expression of the form y= (l>{x) sin (/ci + a) ; so that the motion of

every element repeats itself at the same constant interval. Show that the harmonic

periods of the chain and weight are given by kV^ tan k{{1+ V)^ -l'^\= 1.

To prove this, we substitute y—f{d)Bva.{Kt-\-a) in the dififerential equation

obtained in the last Example; we thus find f[d) to be trigonometrical. Since y=0
when « = for all values of t, the expression for y reduces to

where Ak and Bk are two arbitrary constants. But when '05=?, y must satisfy the

equation of motion of the weight, viz. d^yldt^= -g dyjclx. Whence the result

follows by substitution.

539. Chain suspended by both extremities. An in-

elastic heterogeneous chain is suspended from two fixed points

under the action of gravity. Any small disturbance heiiig given

in its own plane, it is required to find the small oscillations.

Let the axis of x be horizontal and that of y vertical. Let G
be any point on the chain when hanging in equilibrium, and let

the arc s be measured from G. Let {x, y) be the co-ordinates of

any point P determined by GP = s. Let T be the tension at P,

mgds the weight of an element ds situated at P. The equations

of equilibrium are

Let a be the angle the tangent at P makes with the axis of x,

then we easily find T=—~, m = w—^
— (1),-' cos a ds ^ '

where w is an undetermined constant.

When the chain is in motion, let (^ + f,
y-^fj) be the co-

ordinates of the position of the particle P at the time ty and let

the tension at that point be T' =T+U. The equations of motion

d^
df

df~mds\ [ds'^dsJl ^'

which, by subtracting the equations of equilibrium, reduce to

'"* m ds\ \ds dsjj

'

df m ds \ ds ds)

df m ds\ ds ds)

when the squares of small quantities are neglected.

Since the string is inelastic, we have

{dx^d^f^{dy^drjy = {ds)\

(2),
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Expanding and rejecting the squares of small quantities, this

becomes ^^ +#^ = (3).
as as as as

We have thus three equations to find ^, tj and TJ as functions

of s and t

540. Velocity of a wave. To find the velocity with which
a solitary wave will travel along the chain.

If we suppose a small disturbance to travel along this chain,

so that there is no abrupt change of direction of the chain at the

boundaries of the wave, we must have at those points d^/ds = 0,

drj/ds = 0, d^/dt = 0, dTj/dt = 0, and U=0. Let v be the velocity

with which one boundary of this wave travels along the chain,

then, following that boundary in our mind, we have as in Art. 537

d^, d^ _^ d^ d^_
df'^^dsdt ' dtds'^^ ds'~ '

and therefore -1^ = '^ j^f

with a similar equation for 77. Thus the dynamical equations be-

come at the boundary

(
^_T\d^^ldUd^'

\ m) ds^ m ds ds

\ m) ds^ m ds ds

and the geometrical equation becomes

c?^f doD _ d^Tj dy

ds^ ds ~ ds^ ds
'

From these we easily get v^ = T/m. Substituting for T and m
their values, we have if p be the radius of curvature at P,

v = ^/(gp cos a) (4),

so that the velocity of either boundary of the wave is that due to one

quarter of the vertical chord of curvature -at that point.

Ex. A chain is in equilibrium under the action of any forces which are

functions only of the position in space of the element acted on. Show that the

velocity of either boundary of a solitary wave is that due to one quarter of the chord

of curvature in the direction of the resultant force at that boundary.

641. Intrinsic equation of motion. To solve as far as possible the equations

of motion of a heavy slack heterogeneous chain.

It will be convenient to express the unknown quantities ^, rj, U in terms of

some one function 0.

Let a + be the angle the tangent at P makes with the horizon at the time t.

. dx+ d^ • /
.
^\ dy + drj

Then . cos (a + 0) = —^^

,

sm(a + 0)= ^^ ;

d^ , dv /K\.
.'. -<l>sma=£, ,

0cosa=^ (5),
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dB . d-n
.'. ^=- p<f> sm a, —=p<pcosa (6),

^= - I p(pBinada + A, ?;=
j
p<pco8ada + B (7),

where A and B are two undetermined functions of t.

The equations (2) now become by substitution from these and from (1)

d2^ 1 d f ^^ U \\
:j7r—^ = 5- I -fir0tana+ — cosa

)
dt' cos^a da\ ^^ w J\

d^V ^ d ( U . \ [
^ ''

cU^^^^a = d-a[f'^-^w
'''"')

J

For the sake of brevity let accents denote differentiations with regard to t.

Expanding the differentiations on the right-hand side, these equations may be

written in the form

-f"sina + V'co8a-r/ (0 sina + ^cosa j =U^^^]

y,, , n ' ^ dU cos^af
f"cosa + V 8Uia + S'0cosa =- 1

aa w ^

Differentiating the first with regard to o and adding the result to the second,

we obtain

p<t>" d^(f> d / Z7 cos a\

cos a "^ da^ ~ da\ w J
'

Differentiating the second and subtracting the first from the result, we obtain

d^_ d^ /ZJcosaN
^ da~d^^\ w J'

These equations evidently give

U COB a= wg{2f<p da + Ca + D) (9),

d^d> cosa/^V \

W'=^—[J^^^*^^) d")-

where C and D are two undetermined functions of t. These are the general

equations to determine the small oscillations of a slack chain.

The undisturbed form of the curve being given, p is known as a function of a.

We may then use the equation (10) to find ^ as a function of a and t. The tension

is then found from the equation (9), and the displacements ^, rj of any point of the

chain by equations (7).

642. The determination of the whole motion depends therefore on the solution

of a single equation. Supposing the integration to have been effected, the ex-

pression for will contain two new arbitrary functions of a and t. These we may
represent by ^(P) and x{Q) where ^ and x are arbitrary functions of two determinate

combinations P and Q of the variables. The arbitrary functions A and B are not

independent of C and D, and the relations between them may be found by substi-

tuting in equations (8).

We have thus four arbitrary functions whose values have to be determined from

the conditions of the question. Let a^, Oj, be the values of a which correspond to

the two extremities of the string. Then the values of <p and d0/d« are given by the

question when t = for all values of a from a= a^ to a = a^ ; also the initial values

of A and B are given. Thus the values of \//{P) and xiQ) are determined for all

values ofP and Q between the two limits which correspond to a= ao, t = and a = ai,

t= 0. The forms of xp and x for values of P and Q, exterior to these limits, and the

values of A and B when t is not zero, are to be found from the conditions at the

extremities of the chain. If the extremities be fixed, we have both ^ and r) equal to
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zero for all values of t when a = aQ and a = aj. It may thus happen that the

arbitrary functions A, B, xp and x are discontinuous.

In many cases the circumstances of the problem will enable us to determine

at once the form of C. Thus, suppose the string when in equilibrium to be

symmetrical about a vertical line, say the axis of y, and let the points of support be

fixed in the same horizontal line. Then if the initial motion be also symmetrical

about the axis of y, the whole subsequent motion will be symmetrical. Thus
<f>

must be a function of a, containing when expanded only odd powers of a. Sub-

stituting such a series in equation (10) we see that G must be zero.

543. Oscillations of a cycloidal chain. There are several cases in which
the equation to find the small motions of a chain may be more or less completely

integrated. One of the moat interesting of these is that in which the chain hangs
in equilibrium in the form of a cycloid. In this case we have, if b be the radius of

the generating circle, p = 4& cos a. The density of the chain at any point is given by

w=w/46 cos^a, so that all the lower part of the chain is of nearly uniform density,

but the density increases rapidly higher up the chain and is infinite at the cusp.

The equation to find the oscillations now takes the simple form

d^_ g fc^V

in which all the coefficients are constants.

There are two cases of motion to be discussed, (1) when the chain swings up
and down, and (2) when it swings from side to side. The results are indicated in

the two following examples.

Ex. 1. A heavy chain suspended from ttco points in the same horizontal line

hangs under gravity in the form of a cycloid. Find the symmetrical oscillations

of the chain, when the lowest point moves only up and doicn.

In this case we have (7=0. To find the nature and time of a small oscillation,

we put = SjR sin Kt+ SE' cos Kt,

where S implies summation for all values of /c, and jR, R' are functions of a only,

d^B f bK^\
Substituting, we have -^ + 4fl+— \ B= 0;

with a similar equation to find B' . Therefore i2=Zsin2a(lH
j

where L is an arbitrary constant, the other constant being determined by the

consideration that the motion is symmetrical about the axis of y. For the sake of

brevity, put X= 2\/(l +&/c2/5'). Substituting in (7), we find that the terms derived

from i? become ^^2^ _2^^^^^^^^^.^2a-2sinXa cos 2a} sin Kf,

17= S - L r-g

—

1 { X COS Xa cos 2a + 2 sin Xa sin 2a } - L t- cos Xa + il sin /ci,

where If is a constant depending on the position of the points of support. The

terms derived from B' must be added to these, but have been omitted for the sake

of brevity. They may be derived from those just written down by writing cos Kt

for sin Kt and changing the constants X, B. into two other constants L', H'.

Let the length of the chain be 11, then at either end sinao= Z/46. At both

extremities we must have ^= 0, 17= 0. All these four conditions can be satisfied if

tan Xao _ tan 2a„

~X ~^ '

This equation therefore determines the possible times of symvnetrical vibration

of a heterogeneous chain hanging in the form of a cycloid.
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544. If a he not very large ^ the oscillations are nearly the same as those of a

uniform chain*. In this case since a^ is small but Xa^ is not necessarily small,

the equation to determine \ is approximately

tan Xtto = Xtto.

The least value of Xa^ which can be taken is a little less than fir. Hence X

is great, and therefore K=\{gl'ib)^ nearly. The expressions for ^ and rj now take

the simple forms

^=1,L-^ {XacosXa-sinXa} sin j(^ j
Xt + eY

i7=2LY{cosXao- cosXa} sin ](^J ^* + ^r,

The terms depending on cos Kt have been included if. these expressions for ^ and

71 by introducing e into the trigonometrical factor.

The roots of the equation tanXao=Xao may be found by continued approxi-

mation. The first is zero, but since X occurs in the denominator of some of the

small terms, this value is inadmissible. The others may be expressed by the

formula Xao= i(2*+ l)7r-^, where 6 is not very large. This makes the time of

vibration nearly equal to ^.—^ . . Thus the times of vibration of the chain
2* + 1 ij4:gb

are aU short.

This result will explain why the marching of troops in time along a suspension

bridge may cause oscillations which are so great as to be dangerous to the bridge.

It is clearly possible that the "marching time" maybe equal to, or very nearly

equal to, some one of the times of vibrations of the bridge. If this should occur

it follows from Arts. 338 and 340 that the stability of the bridge may be severely

strained.

It should be noticed that the terms in the expression for ^ have the square of X

in the denominator, while those in the expression for tj have the first power of X.

Since X is great we might as a first approximation reject the values of ^ altogether,

and regard each element of the chain as simply moving up and down.

545. Ex. 2. A heavy chain suspended from two points hangs under gravity in

the form of a cycloid. If it swings from side to side in its own plane so that the

middle point has only a lateral motion without any perceptible vertical motion,

find the times of oscillation.

As in the last example, we put = Si2 sin Kt+ SiJ' cos Kt,

where R and jR' are functions of a only. Substituting in equation (11) we see that

2C= I,h Bin Kt + Ilk COS Kt where h and k are arbitrary constants. The equation to

If we put \2= 4 (1 + hK^jg) as before, we find i? = - hjX^+L sin (Xa+ If).

£PJB
find 22 becomes ^ + 4 ( 1 + ^^ ) J2= - A.

* The reader who may wish to see another method of discussing the small

oscillations of a suspension chain may consult a memoir by Mr Rohrs in the ninth

volume of the Cambridge Transactions. Mr Ilohrs considers the chain to be homo-

geneous, symmetrical about the vertical, and nearly horizontal from the beginning

of the process. In the second edition of this treatise the small oscillations were

also treated on the same hypothesis, but in a different manner. That method,

however, is not nearly so simple as the one here given in which the approximate

oscillations for a catenary are deduced from the accurate ones for a cycloid.
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Thence taking the term of which contains sin Kt,

_|_ ^ ^ji^6 co82a^^_2^ ^^ ^^g (Xa + M) sin 2a- 2 sin (\a + iU) cos 2a},

where h' is an arbitrary constant introduced on integration. Substituting in

equation (8), we find h' = -h {h+gJK% Also, we have in the same way

-^= -^(2a+ 8in2a)

-L——j{\ cos {\a +M) cos 2a+ 2 sin {\a + M) sin 2a} - L — cos {\a + M) + II.
A — 4 A

If we suppose the two supports to be on the same horizontal line, we must have

^=0 and 77=0, when a=±aQ. These conditions may be satisfied if we take

M=\'ir, H=0, for then ^ becomes an even and rj an odd function of a. In this case

1;= at the lowest point of the chain. We have then two equations to find Ljh,

equating these values, we have

_ , „ - . - tan Xao X2 - 4
2 tan 2ao - X tan Xa^ -

cos 2ao X _ X tan Xa^ tan 2ao + 2

2 cos^ ao +

:

2ao+ sm2ao ^_ „ . 4

X2-4

546. If ao be small, this equation is very nearly satisfied by Xao=t7r where

i is any integer. In this case the complete expressions for ^ and 17 take the simple

forms 1= SL r^ (cos Xa^ - cos Xa - Xa sin Xa) sin
)(^ )^ ^* + 4 1

i7=SLysinXasin j(^yx« + e|
J

547. Examples. Ex. 1. If we change the variables from a, ttop, q where

^
J \g cos aj '

^
J \g cos a/

show that the general equation (10) of small oscillations takes the form

where ix^=g cos ajp and <}>=ijt.<p'.

Show also that the coefficient of <j>' is a function of p + q, the form of the

function depending on the law of density of the chain.

This transformation may be useful, because it follows from Art. 540 that p is

constant for the boundaries of a solitary wave travelling in one direction, and q for

a wave travelling in the other direction.

Ex. 2. A heavy string hangs in equilibrium under gravity in such a form that

COS OL 6^

its intrinsic equation is = - sin* (2a+ c) where h and c are any constants.

Show that its law of density is given by w=w -^— . If such a chain be
^ ° g COS"* a

set in motion in any symmetrical manner, prove that its motion is given by

, . ,^ X {^f cot(2o + c)\ ,/ cot(2a + c)\)
= &8in(2a + c)|i^(^t

W~^J+-^V'^ 2p~"jr
Ex. 3. If in addition to gravity, each element of the chain be acted on by a

small normal force whose magnitude is Fg, prove that the equation of motion

ofthechamis -£- ^^-^-4.<p-2G =-^^+2 f-^ da.
g cos a dt^ do?

^ cos a da J cos a
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If the chain is nearly horizontal, so that a is very small, and if li'=/sin {at - ca),

prove that the denominator of the corresponding term in the expression for (p is

g{c^-4:)-pa\

Ex. 4. A heavy chain of length 21 is suspended from two points A, B in the

same horizontal line whose distance apart is not very different from 21. Each

particle of the chain is slightly disturbed from its position of rest in a direction

perpendicular to the vertical plane through AB. Find the small oscillations of the

chain.

Ex. 5. A heavy string is suspended from two fixed points A and B and rests

in equilibrium in the form of a catenary whose parameter is c. Let the string

be initially displaced, the points of support A, B being also moved, so that

= 0- (1 + cos 2a) + 0-' sin 2a,

where <r and <r' are two small quantities and the other letters have the same

meaning as in Art. 541. If the string be placed at rest in this new position, prove

that it wUl always remain at rest.

Small Oscillations of a Tight String.

548. An elastic string lohose weight may be neglected and whose unstretched

length is 1 has its extremities fixed at two points whose distance apart is V. The

string being disturbed so that each particle is moved along the length of the string^

find the equations of motion.

Let A be one of the fixed points, and let AB he the string when unstretched

and placed in a straight line. Let the extremity B be pulled until it reaches the

other fixed point B'. Let PQ be any element of the unstretched string, P'Q' the

same element at the time t. Let AP=x and let the abscissa AV be x'. Let T and

T + dr be the tensions at P' and Q'. Let M be the mass of the whole string, m the

mass of a unit of length of unstretched string. The mass of an element is mdx,

and the effective force on it is therefore [mdx) {d^x'jdt^). The difference of the

tensions at the two extremities of the element is dT. Equating these, we find that

d^x' dT ,-.
the equation of motion is m -tm=-j— ' v)-

If £ be the modulus of elasticity, we have by Hooke's law

^"-4 • (^)-

Ehmmating T, we have ^ =^,rf^
(3)-

If we put E = ma^, the integral of this equation is

x'=f{at-x) + F{at+ x)f

where / and F are two arbitrary functions.

The discussion of this equation may be found in any treatise on Sound. The
result is, that a function of the form ^ {at - x) represents a wave which travels with

a velocity equal to a. In the case therefore of the string, the motion will be repre-

sented by a series of waves travelling both ways along the string with the same

velocity. This velocity is such that the time of traversing a length I of unstretched

string or a length V of stretched string is I {mjE)^. It should be noticed that this

time is independent both of the nature of the disturbance, and the tension of the

string.

It should also be noticed, that assuming as usual the truth of Hooke's law, the

equation (3) and these results are not merely approximations, but are strictly

accurate.
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It is often more convenient to select some particular state of the string as a
standard of reference and to express the actual position of any particle at the time
t by its displacement from its position in this standard. Thus if the unstretched
state AB of the string be chosen as the standard of reference, we put x=x + ^, so

that ^ is the displacement of the particle whose abscissa in the unstretched state

is X. The equation of motion now takes the form

and the integral may be obtained as before.

549. An elastic string being stretched as in the last proposition is slightly dis-

turbed in any manner, find the equations of motion.

Following the same notation as before, let {x\ y', z') be the co-ordinates of P'.

Proceeding exactly as in Art. 515, we may form the equations of motion. Since

the mass of an element is mdx instead of mds, these equations will be

dV d ( rj,dx'\

"^d^^dxVw) W'

dxV ds') ^^^'
m

m
dt^ dx \ ds'J

^^^'

where ds' is the length of the element P'Q'. If E be the modulus of elasticity we
ds' T

have by Hooke's law -—= 1 +_ /4).
dx E • "V /

Since the disturbance is very small dy'jds' and dz'fds' are very small and dx'Jds'

is very nearly equal to unity. Hence the first equation takes the form

dV _ dT
"^Wd^'

dx' T
and Hooke's equation takes the form -r— = 1 + - ,

dx E
which are the same equations as in the last proposition, so that when the disturb-

ance is small the longitudinal motion is independent of the motion transverse to

the string.

In the second equation we may regard T as constant, its small variations being

multiplied by the small quantity dy'/ds'. Hence we may put T= Tq where

T,=E{V-l)ll.

This gives by equation (4) ds'jdx= I'jl. The equation of motion therefore becomes

dY^T^ld^'
dt^ m I' da^

'

The third equation may be treated in the same way.

The velocity of a transverse vibration measured in units of length of unstretched

string is therefore {TotfrnVf. The time of traversing a length I of unstretched string

or I' of stretched string is [mll'lT^f. This velocity is independent of the nature of

the disturbance but depends on the tightness or tension of the string.

If the string be very slightly elastic we may, in this last formula, put l'=l. In

this case we obtain the results given in all treatises on Sound.

550. There are two modes of applying the equations of motion to actual cases.

We shall first illustrate these by solving a simple example by both methods, and we

shall then make some remarks on the results.
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An elastic string whose unstretched length is I rests on a perfectly smooth table

and Jias its extremities fixed at two points A, B' whose distance apart is V, where V is

greater than I. The extremity B' is suddenly released, find the motion.

Solution by discontinuous functions. Following the same notation as in

Art. 548, the motion is given by the equation

^=f{at-x) + F{at + x),

where ^ is the displacement of the particle whose abscissa in the unstretched string

is X. The conditions to determine / and F are as follows.

1. Whena;=0,^=0 for all values oft.

2. When x=l, T=0 and .-. d^ldx=0 for all values of t.

3. When <=0, ^=rx from x=0 to x= l, where V={r + 1) I.

4. Whent=0,d^ldt=Ofromx=Otox=l.

From the first condition it follows that the functions F and / are the same with

opposite signs. From the second condition we have f {at + l) = -f' (at-l), so that

the values of the function /' recur with opposite signs when the variable is in-

creased by 21. If then we knew the values of /' {z) for all values of z from z = Zq to

z=Zq+21 where Zq has any value, then the form of the function is altogether known.

Now the third condition gives f{-x)-f{x) = i'x and the fourth gives f {-x)—f (aj)

from as=0 to x=l. Hence f i^ = ~\r from x = -l io x=l. It follows that

/' (2) = -\r from « = - Z to Z, /' {z) = \r from z — lio^l and so on changing sign every

time the variable passes the values Z, 3i!, 57, &c. Let us consider the motion of any

point P of the string whose unstretched abscissa is x. Its velocity is given by the

formula v/a=/' (at- «) -/'(af+ a:). Sincea;<Z we have !?/«=- |r + ^=0; hence the

particle does not move until at-\-x=l. The second function then changes sign and
we have v\a= -\r- \r= - r. The particle continues to move with this velocity until

at - x=l, when the first function changes sign and so on. Let ABhe the unstretched

string, and let a point R starting from B move continually along the string and

back again with velocity a. Then it is easy to see that when R is on the same side

of P as the loose end of the string, P will be at rest, and when R is on the same
side of P as the fixed end, P will be moving with a velocity alternately equal to

±ra. The general character of the motion is; the equilibrium of the string being

disturbed at B, a wave of length 4Z travels along the string, so that P does not

begin to move until the wave reaches it. This wave is reflected at A and returns.

551. Solution by Trigonometrical series. The second method of conduct-

ing the solution is as follows. Taking as before the expression

^=f{at-x)+F{at + x),

let us expand each function in a series of sines and cosines, so that we have

^='Z[A sin {n{at-x) + a} + BBm{n{at + x) + p}],

where S implies summation for all values of to, and A, B, a and /9 are constants

which are different in every term and may conveniently be regarded as functions

of TO.

Since the motion is oscillatory, we may suppose that all the values of to are real,

and it is clear that without loss of generality we may restrict-ti to be positive. We
do not propose to discuss the circumstances under which these suppositions may be

correctly made. For these we must refer the reader to Fourier's theorem. We
may here regard the assumptions as justified by the result, because we can thus

satisfy all the data of the question.

The four conditions of the problem enable us to determine the constants. From
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the first condition we have p=a + Kir, B= {-1)''+'^A where k is any integer. It
easily follows, by expanding, that ^ may be written in the form

^= S (C sin nat +D cos nat) sin nx,

where C and D are to be regarded as functions of n. From the second condition we
have cosnl= 0, hence nl = ^ {2i+l)Tr where i is any positive integer. The periods
of the principal oscillations (Art. 53) of the string, with proper initial disturbances,
one end being fixed and the other loose, are therefore included in the form
4Z/{2i+ l)a.

The initial disturbance is given by the third and fourth conditions. We have
^D sinnx=rx, IiGn sinnx= 0.

To find the value of D in any term we multiply the first equation by the coefficient

of D in that term and integrate throughout the length of the string, i.e. from
x=Otox=l. This gives

r^l r^ ' 7 sin nl

The other terms all vanish since /osin nx sin n'xdx=Q, when n and n'are numerically
unequal. This follows also from the rule given in Art. 398.

Treating the second equation in the same way, we find C=0. Hence the

,. . . r V -.2rsinwZ
motion IS given by ^= ]£— —^ cos nat sm nx.

Writing for i its values 1, 2, 3, &c. successively, this equation becomes when
written at length

. %rl f
trat . irx 1 ^irat . dirx 1 birat . 5irat „ )

This is a convergent series for ^, and it may be a sufficient approximation to the

motion to take only the first few terms. For example, suppose we reject all beyond

the first two terms, and in order to compare the result with that obtained in the

first solution let us put at=^l. If we trace the curve whose ordinate is - d^/dt and

abscissa x, we find that it resembles ^=0 for small values of x, then rises with a

point of contrary flexure and becomes nearly horizontal as x approaches I. This

agrees very well with the former result.

552. If we examine these solutions, we shall see that we have two kinds of

conditions to determine the arbitrary functions; (1) There are the conditions at

the two extremities of the string. The peculiarity of these is, that they hold for all

values of t. (2) There are the initial conditions of motion. The peculiarity of

these is, that they do not hold for all values of cc, but only for all values within a

certain range limited by the length of the string. The first set of conditions is

used to determine the mode in which the values of the functions recur, so that

when their values are known through a certain limited range, they will become

known for all those values of the variable which occur in the problem. The second

set of conditions is used to determine their values during this limited range.

The functions were found to be discontinuous. It may be objected that no

notice was taken of any possible discontinuity in forming the equations of motion

;

and that therefore these equations cannot be applied, without further examination,

to any cases which require the arbitrary functions introduced into the solution to be

discontinuous. This question has been much discussed, but we have not space here

to enter into it. We must refer the reader to De Morgan's Differential Calculus,

Chap. XXI. Art. 92, where both a short history of the dispute between Lagrange

and D'Alembert and a discussion of the difficulty may be found. See also the

Mecanique Analytique, Seconde Partie, Sect. vi. § iv.
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In the second form of the solution we replace the arbitrary functions by a

convergent series of harmonic vibrations. Taking a finite number of terms as an

approximation, we have a perfectly continuous solution whose initial conditions

differ but slightly from those of the proposed problem. This difference is less and

less, the more terras of the series are included in the solution.

In comparing the two results, we see that each form has its advantages. The

first determines the motion by a simple formula. The second is more convenient

when the harmonic periods are required.

653. Examples. Ex. 1. A heavy elastic string AB whose unstretched length

is I is suspended from a point A under the action of gravity. If f be the vertical

displacement of any point whose distance from Aisx when the string is unstretched,

and if a be the velocity of a wave measured in units of unstretched length, prove

that ^ = - g + ^+/(at-a:)-/(a« + ^),

where / {z) recurs with an opposite sign when z is increased by 21. If the string

is initially unstretched and at rest, prove that

the upper sign being taken when z lies between - 1 and 0, and the lower when z

lies between and I. Thence show that the whole length oscillates between

Zand l + gPla^.

Taking the other form of solution, show that the harmonic periods are

P= iTT-
—TT- where i is any integer. Show also that^ (2t + l)a

. f2i + lirx\ /2i + lTat\

^~
2a^'^ a" TT^a^ ^ (2i + l)3

'

the summation extending from i=0 to i=co .

Ex. 2. A string infinite in length in both durections has its initial state deter-

mined by ^=f{x) and d^ldt— F(x). Show that the displacements at the time t are
1 »x+at

given by ^=y{x + at) + y{x-at) +— F{\)d\.
^(^''x-at

Riemann's Partial Diferential Equations.

Ex. 3. A string AB is stretched at a tension such that the velocity of a wave is

equal to a. One extremity A is fixed, while the other B is agitated according to

the law y = C Bin -pat. If A be the origin show that the forced vibration is

y=C-7—^ sin pat. If the string start from rest the additional free vibrations are
*^ em pi

y= 7:M einmx sin mat where ml = iir and M (pH^-i^ir^) = - 2Cpl {-!)*. The S
implies summation for all integral positive values of i.

Ex. 4, If, as in the last example, the string start from rest and have the

extremity A fixed, but the extremity B agitated according to the law y =f (t) prove

,, , 27ra2 inx iirat r*
\ ^iirat r' , , iirat ,J ,^that 2/= - -Tg- 2 1 ( - 1)' sm— cos — - /
j sec" -. / / {«) cos dt\ dt,

for all values of x between and 7, the latter being excluded. Show also by an
application of Fourier's theorem that the result of the last example follows from

this.
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554. Several strings. Three elastic strings AB, BC, CD of different materials

are attached to each other at B and C and stretched in a straight line between tioo

fixed points A, D. If the particles of the string receive any longitudinal displace-

ments and start from rest, find the subsequent motion.

Let A be the origin, AD the direction in which x is measured. Let the un-

stretched lengths of AB, BGy CD be Zj, I2, l^. Let E^, E^, E^ be their respective

coefficients of elasticity, %, w.2, Wg the masses of a unit of length of each string.

For the sake of brevity let E^^m^a^, E^—m^a^, E^=m.^a.^. Let the rest of the

notation be the same as before.

When the string is stretched in equilibrium between the two fixed points A and

D, let 2'o be the tension of the string. In this position the displacements of the

elements of each striug from their positions when unstretched may be written

At the time t after the equilibrium has been disturbed, let these displacements

be respectively $i+ ^i', ^2 + ^2'' ^a+ s/* We then have as in Art. 551

^1'= SLi sin (n^x+ il/j) cos n^a^t,

^2 = SLg sin
{ n.2 {x - 1^) + il/o } cos n^ci^tj

^3'= 21/3 sin {n^{x-li- y + M^ } cos n^a^t,

where S implies summation for all the harmonics. The terms containing sin n^a^t,

sin n^at^, &c. are omitted because the string starts from rest, and therefore d^i'ldt,

d^aV^^ <^c- niust vanish with t.

In order to compare the coefficients of the same harmonic we must suppose

nj^a^ = n2a2= n^a^= 2Trlp, where p is the period of the harmonic. To find the con-

stants we have the conditions

when .T= 0, x = l,, x=l, + k, X= l^ + l2 + l^r

^i'
= 0, ^l'= C2', ?2'= ?3', ?3' = 0,

j,d^,'_ dl^

^^d^--^^dx' ^'-dx=^'dx-

These give ilf^=
L2 sin 3/2

=

Li sin {njl^+ M{) \

E^n^L^ cos iU2=Ei%Lj cos (%Zi+ M-^\

I/3 sin illg= 1/2 sin {^n^l^ + ^I^)

E^n^L^ cos il/g= E.^n^L^ cos {nji^+ ^^2)

'

= 1,3 sin (wg^a + il/g).

These give the following equations to find the iH/'s

;

Q-M tanl/2 _ tan(n^^^+i^fl) tan illg _ tan (Tt^Zg + -?^4) Q_ tan (n-^Za + il/a)

1' S^na -
^irji ' ^3^3 " E^n^

'

^3»»3

Solving these we find

tan n-J.^ tan n^l^ ia.nn.J.^_.^ gtarrnj^ tan ^loZ^ tan ^3^3

Substituting for w^, Wg. ^3 in terms of p we have an equation to find the period p
of any principal oscillation.

555. The values of p being known, it is clear that the preceding equations

determine all the constants except Lj. We have therefore one constant undeter-

E. D. IL 21



322 MOTION OF A STRING.

mined for each liaiinouic function of t. To find these we must have recourse to

the initial conditions. The rule to effect this has been fully given in Art. 399.

The equations may be written in the forms

fj'=SP„ cos naf, ^2'= ^Qn cos naf, ^3'= JJ„ cos na<,

where P„, Q„ and R^ stand for the coefficients as exhibited in the last article. The

first of these three equations represents in a typical form the motion of any particle

in the string AB, the second represents the motion of any particle in PC and so on.

Referring to Art. 399, the three sets of multipliers may be typically represented by

m^dxPn, m^dxQn, m-idxR^,

The summations spoken of in Art. 399 are here integrations and extend over the

lengths of the three strings respectively.

Suppose now that we have initially ^i'=/i(x), ^/=/2(-r), ^^= fi{x). We easily

find

r^i fh^^a f11+12 + 13

J m^dxf^ (x) P^ + / m^^dx/^ {x) Q„ + /
m^dxf^ [x) i?„

/ nudxPn^+ / vUixQ^+ / m^dxR^.

These integrations can be effected when the forms of fi{x), fzi^) and f._^{x) are

given. Thus we have an additional equation to find the L which corresponds to

any value of p.

556. Examples. Ex. 1. If the three strings vibrate transversely, and a^, ag,

Og be the velocities of a wave along them measured in units of length of unstretched

string, prove that the periods of the notes are given by the equation

tanwi^i tann.^/^ tanw3?3_ ^tan n^l^ tanwg^g tanWgZg

«1 W2 ^3, ^1 «2 W3

where n^a^ = n^^= nQa^=2Trlp. If the initial disturbance is given show how to find

the subsequent motion.

Ex. 2. Two heavy strings AB, BG of different materials are attached together

at B and suspended under gravity from a fixed point A. Prove that the periods of

the vertical oscillations are given by the equation

, 27rii ^ 2t?2 E,ao
tan —-^

. tan—? =—!-?

,

a^p a^p ii'2'^1

the notation being the same as before. If the two strings be initially unstretched,

find their lengths at any time.

Ex. 3. Two strings AB,BC oi different materials are attached at P to a particle

of mass M, while their other extremities A and C are fixed in space. If the particles

of the system vibrate along the length of the straight Une AC, prove that the

period p of any principal oscillation is a root of the equation

,, 27r E. ^ 27r^ E^ ^ ^irh
J/ — = -J cot —-J + —' cot 2

,

p fli a^p^ aj a^iPi

where Zj, l^ are the unstretched lengths of the strings, ^j, E^ their elasticities,

and Cj, Oj the velocities of a wave measured in units of unstretched length. The

values of p obtained by equating (when possible) both the cotangents simultaneously

to infinity are to be included.

If the system make small oscillations transverse to the straight line AC, the

periods will be given by the same equation if we replace £, , E^ by Tq the tension of

the string when in equilibrium.

Ex. 4. A particle is suspended from a fixed point by an elastic string and

performs small oscillationR in a vertical direction, supposing the string uniform in
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its natural state and of small finite mass show that the time of a small oscillation

will be approximately the same as if the string were without weight and the mass

of the particle were increased by one third that of the string. (Smith's Prize.)

Ex. 5. Two uniform heavy elastic beams AB, CD equal in every respect are

connected by a light inextensible string BC ; the beam AB lies unstrained on a

smooth horizontal table while CD is suspended at rest under the action of gravity

by a string which, being held at B passes over a smooth pulley P at the edge of

the table, PBA being a straight line. Investigate the motion of the string when set

free
;
prove that its tension after being instantaneously diminished by one half,

remains constant and that its velocity receives equal increments at equal intervals.

(Math. Tripos.)

Ex. 6. A particle is fixed to the middle point of a heavy string, which is

stretched to double its length between two fixed points on a smooth horizontal

table. The unstretched length of the string is 21, its modulus is n times, and the

weight of the particle is r times the weight of the string. The particle is then

moved through a distance \l towards one of the fixed points, and when the string

has been reduced to rest the particle is set free. Show that there are sufficient

conditions to determine completely the four arbitrary functions, and indicate how

they are to be employed. Prove that the velocity of the particle during the first

21 - "^

interval — is Xa (1-e ^''), where a^=2gnl and t is the time from rest. (Caius

Coll., 1871.)

557. Energy of a string. An elastic string is stretched between two fixed

points A and B' and is set in vibration, it is required to find the energy.

Let the notation be the same as that used in Arts. 548 and 549.

First let the vibrations be longitudinal. The equation of motion is

dt^ ctx^

Hence we have ^= -j-x + I, [A sin {n{at-x) + a] +.5 sin {n {at + x) + ^\].

Since ^ must vanish when 05= and be equal to I'-l when x=l we find, as

in Art. 551, ^— ——x + 'ZC smnxs'm{nat + y),

where nl= iir and Z implies summation for all positive integer values of i. The

letters C and y are constants which may be different in every term and which de-

pend on the initial disturbance. The kinetic energy of the whole string is

= /
o"^^-^(jf) =/ -^mdx{'ZCnasinnx(iOQ{nat-iry)\'^.

Now
J^'

siu7u;sinn'xrfx= when n and n' are numerically unequal since nl and

n'l are both integer multiples of tt. Hence, when the square of the series is ex-

panded, the integral of the product of any two terms is zero.

Since
|J

sin^ nxdx= \ I, the kinetic energy becomes = Imla^ ^CH^ cos^ {nat + 7)-

To find the potential energy; we notice that the work done in stretching an

element from its unstretched length dx to its length dx + d^ is (see Vol. i.) equal

to - £ (
-i

) dx. Hence the whole work done in stretching the string is

2 \dxj

=.('-Ed.r($Y= P-Edx^^^ + 2CncoHnxfim{nat + y)\ .

Jo2 \d-rj J(i2 i I '

21—2
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Now
J'

coBnx cos n'xdx = or ^ I according as n and n' are numerically unequal

or equal to each other; also T co8nxdx= 0. Hence as before, the integral becomes

= ^E i^-^ + 5 Ell, C'n^ sinS {nat + 7).

The first term is the work done in stretching the string from the unstretchei

length I to the stretched length V. If we refer the potential energy to the position

of the string when stretched in equilibrium between the extreme points A and B
as the standard position, we retain the latter term only.

The energy is the sum of the kinetic and potential energies. Since E=ma^y

this becomes energy= | mla'^'S. GHi^.

Thi3 result might have been deduced more simply from Art. 72, where it

is shown that the energy of a compound vibration is the sum of the energies of the

simple vibrations into which it may be resolved. The kinetic energy of any single

harmonic is easily seen by integration to be J m^a^C^w^ cos^ (na< + 7). Hence the

whole energy is ^ mla^'ZC^v?.

We may also notice that, as in Art. 73, the mean kinetic energy is equal to the

mean potential energy, the means being taken for any very long period.

558. Next, let the vibrations be transversal.

Following the notation of Art. 549, the motion is given, as before, by
y' = '2,C sin nx sin {nat + y),

where nl= itr and 2 implies summation for all positive integer values of i.

The kinetic energy by the same reasoning as in Art. 557 is equal to

I mla^'ZC^n^ cos^ {nat + 7).

To find the potential energy, we notice that the work done ia stretching an

element from its unstretched length dx to its stretched length ds' is (see Vol. i.)

equal to ^E (^- 1) dx. Now {ds'f={dxy+ {dy')^= (j dx\ ^-dip,

ds' r L 1 ?2 fdy'yi

Eemembering that, by Art. 549, ma^=E {V -l)ll'; we find that the whole work

done in stretching the string is / ^dxlE ( —r—
J
+ ma^

( 77 )

Substituting for y' and integrating we find that the work is equal to

I E l^-^ + i mla^Z C2„2 ginS ^^^^t + 7).

If we take the position of equilibrium of the string when stretched between the

extreme points A and B' as the position of reference, we find that the

energy= I mla^^C^n'K

This we may call the energy of the disturbance.

Prof, Donkin in his treatise on Acoustics, page 128, has found the energy of a
string vibrating transversely, by an ingenious application of the method of sub-

tractions.

Ex. An elastic rod AB has the end A fixed and B free. Being placed on a

perfectly smooth table, it vibrates longitudinally. Show that the energy of a disturb-

ance represented by f= SC sin no; sin {nat + 7) where nl= ^ (2i + 1) r is 4 mla^ZChi^.



CHAPTER XIII.

MOTION OF A MEMBRANE.

The transverse Oscillations of a plane Membrane,

559. Let us take as the subject of consideration a plane membrane equally

stretched throughout, v?hose boundaries are either fixed or subject to given condi-

tions. Let this plane be called the plane of xy. Suppose this membrane to be

disturbed so that its particles are slightly displaced parallel to the axis of z. The
membrane will now make small oscillations about the plane of xy. It is the laws

of these oscillations which we wish to discover.

Let w be the displacement at the time t of a particle P whose co ordinates when
undisturbed are sc, y. Taking an elementary area dxdy at the point P, let pdxdy be

its mass ; thus if the membrane be homogeneous, p is the mass of a unit of area.

The oscillations being transversal the effective force on the element will be

pdxdy dhc/dt^.

Let us now consider the action across any side, as dy, of the elementary area.

In the general case of a lamina this might consist of a force and a couple. But

since a membrane like a string can be folded in any manner and can only exert a

force along its length, it is implied that the couple is zero and that the force acts in

the tangent plane. Further the membrane being equally stretched in all directions,

this force acts perpendicular to the side across which it acts. Let us represent this

force by Tdy, then T is called the tension referred to a unit of length and sometimes

briefly the tension.

The actions across the two sides of the rectangular element which are parallel

to the axis of y have to be resolved parallel to the axis of z. These resolved

^. dw ^- /dw dho . \
parts are clearly ' ^dy^ . Tdy{^~ + ^dxy

The resultant of these two is T -r-^ dxdy. In the same way the resultant of the two

d'^w
actions across the sides parallel to a; is T -p^ dxdy. Taking both these resultants,

and equating them to the effective forces we have the equation of motion*

d^_ fdho dhc^

''~d^~ [dx^'^dy^

* The reader will find a more complete discussion of those principles of the

theory of elasticity on which this equation is founded in the Leqons sur la theorie

Mathematique de Velasticite des corps solides par M. G. Lc^me. The equation itself

was first given by Poisson in his Memoire sur Vequilihre et le mouvement des corps

elastiques in the eighth volume of the Memoires de VInstitut 1828. The oscillations

of a rectangular membrane (Art. 562) were also first discussed by him.
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660. Since the axes of co-ordinates may be any whatever provided tliey are

rectangular, this equation must be the same whatever be the directions of the axes.

If the membrane be referred to obUque axes inchned at an angle e, we may show

that the equation of motion is

661. To obtain a solution of this equation of motion we notice that if we dis-

regard the boundaries, it must be possible for the membrane to vibrate as if it were

constructed of a series of strings laid side by side whose lengths are all parallel to

any fixed direction we please. Let a be the angle this fixed direction makes with

the axis of x. Then putting T^vi^p, one solution of the equation is certainly

w=f{x(iOBa. + y &\na-mt) + F (x cos a -+ y sin a-\-mt),

where a is any arbitrary constant, and/, F are two arbitrary functions which may be

continuous or discontinuous as explained in Art. 552. Either of these functions

with a given value of a represents a wave travelling in the direction defined by a

with a front which is always parallel to the straight line a; cos a + 2/ sin a = 0. A
more complete solution may then be found by summing these fur all values of a.

Since the motions under consideration are oscillatory, it will be more convenient

to expand the functions / and F in sines and cosines. Taking only a principal

oscillation we write w =P sin ymt + Q cos pint,

where P and Q may be written in either of the following equivalent forms but with

differwit constants,

S { ^ sin p (jc cos a + 2/ sin a) + 2) cos p {x cos a + 1/ sin a)

}

+ S { C sin p (x cos a - y sin a) + Z) cosp (x cos a - y sin a)

}

„ ^ sin , , sin ,= 2L (Bojcosa) (»?/ sm a).
cos

^^ ' cos ^^-^ '

The positive values of o are included in the first line and the negative values in

the second line. It follows that the S here implies summation for all positive

values of a.

562. Rectangular Membrane. To find the oscillations of a homogeneous rect-

angular membrane whose four boundaries are fixed.

Let OACB be the membrane and let the sides OA , OB, be taken as the axes of

X and y. Let OA=a, OB = h. Then we have to find a solution which (1) makes

ic= when «= and when x — a independently of any particular values of y and

(2) makes w= when y = Q and when y — b independently of any particular values

of X. Such a solution can be at once selected from the general form given in Art.

661, viz. w — 2L sin (pa; cos a) sin (pt/ sin a) cos pmt,

with a similar expression to contain sin ymt. Here we must have

pa cos a-iir, pb sin a = i'lr,

where £ and i' are any two integers. The periods (viz. 27r/pm) are therefore given by

The question arises whether this solution is perfectly general or not. The

solution satisfies the equation of motion and all the boundary conditions. If then

it can be made to satisfy the in'tial conditions of the membrane it will certainly

include every case. Let the initial displacement he w=
<f>

{x, y) ; then putting f =

we have ip («, y)= 2L sin - sin -; ,

for all values of x and y respectively less than a and b. But by an extension of
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Fourier's theorem such an expansion as this is always possible. The solution is

therefore perfectly general.

Ex. The weight W of a rectangular membrane and its tension T referred to a
unit of length are both given. Show that the gravest note is given when the
membrane is square, and in this case the period of the note is {2WlgT)^' Thus the

period is independent of the area. Poisson's Theorem.

563. When the period of vibration of a rectangular membrane is given by some
value of p, all the possible modes of vibration are included in the form

C^T
. iirx . i'ny~\

2L sm— sm -^^ cos pmt,

with a similar term containing sin pmt. In this form, i and i' represent any

integers which satisfy (-) +(r) =() •

If two sets of values of i and i' can satisfy the last equation, it easily follows

that the squares of the sides are in the ratio of two integers. Supposing this

condition not to be satisfied each oscillation will be of the form

. iirx . i'lry ._ ^, .

ID - sin — sm —— [L cospmt + L sm pmt)^

and will contain just two constants, viz. L and 1! . In this case it will be seen that

each of these oscillations will be a principal oscillation and all the periods will be

different.

But if several sets of values of i and i' accompany the same period there will be

more than two constants in the expression for each oscillation. In this case it

appears there are several ways in which a membrane may be set in vibration so

that the periods of oscillation may be the same. It follows therefore that the

Lagrangian equation (Art. 57) giving the periods of the principal oscillations has a

number of equal roots.

564. The nodal lines are those lines on the membrane which remain in their

positions of equilibrium during the whole motion. If the period be such that the

oscillation is accompanied by only one set of values of i and /', the nodal lines for

that oscillation are of course given by

. iirx . i'Tnt .
sm — sm —r^ = 0.

a b

These values of a: or y make the coefficients of both cos pmt and sinpmt equal to

zero. The nodal lines are therefore straight lines parallel to the sides. But, if

there are several sets of values of i and i' which give the same p, and if the initial

conditions are such that the corresponding coeflSicients in the coefficients of cos pmt

and Binpmt have the same ratio, the nodal lines will be given by the equation

ZL sm — sm -r^^ =0.a

They may assume a great variety of forms depending on how many terms there are

in the series and what arbitrary values are given to the coefficients represented by

the letter L. Lam^ in his Theory of Elasticity gives a brief sketch of these.

Anotlier analysis is given in Eiemann's Partial Differential Equations. They both

remark that if we take only two terms in the series of the form

-. . iirx . i'lry ^ . i'lrx . irry .

L sm— sm -r- -Lsm sm -^=0,
a b a b .

ona nodal line will be the diagonal xfa = yjb. Here the integers i and i' have been

interchanged in the two terms. But since the equation connecting these integers
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with the given value of j) must also be satisfied, we have

{ilay-+{i'lbr^= {i'la)^ + {ilb)\

which requires that a=h. The rectangle must therefore be a square.

From this we may deduce that the oscillations of a membrane bounded by an

isosceles right-angled triangle are given by

„^ r . iirx . i'vy . i'lrx . iiry~\
tp= 2L sm— sm—- - sm— sm—- cospmt,La a a « J

with a similar term containing sin pmt, there i and i' are integers connected by the

equator i^+ i'^= [apjir) 2,.

and a is a side of the square. See Lord Rayleigh's Sound.

Ex. 1. If the squares of the sides of a rectangular membrane do not bear to

each other the ratio of any two integers, prove that the nodal lines of a rectangular

membrane must be straight Unes parallel to the sides. Poisson's Theorem.

Ex. 2. If the sides of a rectangular membrane are such that two sets of values

of i and i' give the same period of vibration, then by proper initial conditions

a nodal line may be made to pass through any given point on the membrane.

565. Ex. naembrane bounded by an equilateral triangle. A membrane is

bounded by an equilateral triangle and its boundaries are fixed. If ^, 77, f be the

trilinear co-ordinates of any point within the triangle^ show by actual substitution

that the equation of motion is satisfied by

_T . iir^ . iTTij . iirt
w=2L sin -^ sin -r- sin -7-^ cos vmty

ti h n

where p= ^iirjh. Here h is the altitude of the triangle and i is any integer.

This result follows at once from the trigonometrical theorem that if the sum
of three angles is equal to iir, the sum of the products of their cotangents taken

two and two is equal to unity.

This is not however the most general form of solution because we have only

one independent arbitrary integer, viz. i. We cannot therefore satisfy all the

possible initial values of w.

It is shown in Lamp's Theory of Elasticity that a more general expression for

the period is given by p= {^njU) {? \-i'^ + ii')^,

which contains the two arbitrary integers i and i'.

566. Ex. 1. Zioaded Membrane. A uniform rectangular membrane whose sides

are a and b and mass M has a finite mass equal to fi attached to it at the point

whose co-ordinates are h, k when referred to the sides as axes. Show that the

periods (2TrJpm) of the small transversal vibrations are given by

. „iirh . A'tfk
-. , Bin"— sin^-

-

J/ J^ __ a b

where the S implies summation for all values of the integers i and i', and m (as

before) is the ratio of the tension to the density of the membrane.

To prove this we shall suppose the mass yi. to be distributed over a small area

equal to a^. Let W be the displacement of this small area at the time i. The sum
of the resolved tensional forces round the perimeter of this area is equal to

H -i7r—~^' ^® ^*^® therefore to find the motion of a membrane acted on by a

periodical force i? at a given point //, A*. Let us replace this single force by a
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continuous force Zdxdy wliicli acts at every point of the membrane, euch tliat

Z= 10 sin (iVac/a) sin {i'lrylb).

Since Z vanishes all over the membrane except in the immediate neighbourhood of

the point h, k; and at this point Za/3= -fJLd'lVjdt^; we have by Fourier's theorem

dW . iirh . i'Trh , ^ ,

dt^ a b ^

The equation of motion of the membrane is now

dho „ ^d'^w d^w\ „

To solve this we put w=f{x, y) cos pmt.

Substituting we find by Theorem in. of Art. 265

. iirx . i'lry . iirh . i'lrh

T,, J,, ^ sm— sm -~ sin — sm —r-
JJi / {xy) _ a b a 6_

The form of the function / corresponding to any value of p has now been found.

Putting x— h, y = k, we have an equation to find p.

Another solution is added in a note.

Ex. 2. A rectangular membrane of mass 31 is oscillating with a period {2ir[pni)

such that only one set of values of /, i' accompany this value of p. A small load of

mass fi is placed at any point {h, k), prove that the new period of vibration, viz.

{2irlqm), is given by

This follows from the result given in the last example, for only one denominator on

the right-hand side will be small. Eejecting all the terms except this one, we have

the result.

Ex. 3. A membrane of mass M is bounded by two concentric circles whose

radii are a and b and the density varies inversely as the square of the distance from the

centre. The period P of any symmetrical oscillation is given by P=- ( -^ ^^^h) '

where q = iir if both the boundaries are fixed in space. But if the outer boundary

only is fixed in space while the inner is attached to a ring of mass /*, then q is given

by q tan q = Mj/x.

If the ratio afb is not very great this membrane may be regarded as nearly

homogeneous, with the inner parts slightly denser than the outer.

567. Ex. SXembrane acted on by a given periodical force. A rectangular

membrane is bounded by the co-ordinate axes and the straight lines x= a, y= b.

A finite accelerating force acts at the point (/i, k) and is represented by A sin rt.

Show that the forced vibration is represented by

. iirh . i'lrk . itrx . i'ttt/ .

sin sin -r~ sm— sm - sm rt
4A a b a b

where S implies summation for all values of the positive integers I and i'.
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Motion of a heterogeneous membrane. ^

568. We propose to show in this section how by the use of the theory of con-

jugate functions we may deduce the motion of certain heterogeneous membranes

from the corresponding motions of homogeneous membranes. The corresponding

theorems for a network of particles are briefly given in Art. 421.

We shall begin by giving a list of those theorems on conjugate functions which

we shall afterwards require, and in the next article we shall consider their application

to the motion of membranes.

If we have two variables ^, tj connected with x, y so that

^ + r}^-l=f(x + ysy-l),
where / is any real functional symbol, then ^, 17 are called conjugate functions.

See Art. 421, Ex. 3.

By taking the first differential coefficients of this equation with regard to x and

y and comparing the coefficients of the imaginary quantity we arrive at the well-

, ,, d^ d-q d^ dv
known results ^- = 3- »

'y- = --r •

dx dy dy dx

Since we have also as+yV- l = ^''(l +W- 1) i* follows ia the same way that

dx dy , dy dx
Zr>-
= T^ and ;.^ = - ;r- .

We may also shoAv by a simple transformation of variables that

7U^"^ dy"^
~ Id^ ^ &rf\ \ [dxj ^ [dj/J

Since we may interchange x, y and ^, i] in this formula, it easily follows that

We shall also require a geometrical theorem. Let us draw two diagrams each

referred to a set of rectangular axes. In one let ^, 17 be the co-ordinates of a point

which we shall call IT, in the other let x, y be the co-ordinates of a point which we

shall call P. These points are said to correspond. In one diagram the loci defined

by ^= a, 77= ft, where a and b are constants, are straight lines parallel to the axes.

In the other, where ^ and 77 are regarded as functions of x and y given above, the

loci will in general be curved lines. In the same way the equation r] = <p{^) wUl

represent two corresponding curves one on each diagram. Let the tangents to these

curves at corresponding points 11 and P make angles e and e with the axis of x, then

tan e= dvld^ and tan e = dyldx. Through P draw the curve 17= 6, where b has its

proper constant value, and let the tangent to this curve make an angle A with the

axis of X. Then denoting differential coefficients with regard to x and y by suffixes,

we have 173. + 17^ tan ^ = 0. We also have, as proved above, ^^^Vv ^^^ ^if= ~Vx'

^ dr) rj^dx + n„dy - tan A + tan e
Smce tan e = — = .^ ~"/- = -—^

,

d^ kx^^ + ^v^y 1 + tan A tan e

we see that c= e- A. It immediately follows that the angle made by any two curves

which meet at P is equal to the angle between the corresponding curves which meet at

n. In other words corresponding angles are equal.

If we draw two corresponding networks, one on each diagram, and if the meshes

of each be infinitely small triangles, it follows from the equality of the angles that

the networks are similar to each other at corresponding points. The scale or ratio of

the networks is not however the same all over the diagrams.

It also follows from the equality of the angles that the curves defined by ^=a,

17 = 6 cut at the same angle in each dia{?ram. They therefore cut each other at right

angles.

1.



-§"-(:

HETEROGENEOUS MEMBRANE. 331

569. Suppose we know the motion of a homogeneous membrane with given

bounding conditions vibrating transversely, say w = <p{^, -q, t), where w represents the

displacement of a point whose co-ordinates are (^, 7;). Then this value of w satisfies

^'dt:^-^[d^^d^\
where Dq is the density and T is the tension of the membrane.

Let X, y be the co-ordinates of a point on another membrane which has sand

strewed over it and fastened to it, so that the sand vibrates with the membrane.
Let the density D of this heterogeneous medium be given by

Do \dxj + \dy)
•

Then the equation of motion of this new membrane is

'd'w d^\
dx'

"^
dy^J'

But since ^, rj are known functions of x, y, we obtain, by substitution in the equation

'w = (p{^, Vf 0» *^6 ^6W relation tc = ^ (x, y, t), which is the solution of the equation

of motion of the new membrane.

Thus the motion of the new membrane is deduced from that of the first with

corresponding bounding conditions.

570. Generall}', we do not want the actual motion of the membrane, but only

its possible periods of vibration and nodal lines. We may notice that these two

membranes have the same periods of vibration and corresponding nodal lines.

571. In this transformation it is necessary that only one point of each mem-
brane should correspond to any single point of the other membrane within the area

considered. If this be not attended to, some difficulties in interpretation may
occur.

572. The new membrane is of course heterogeneous, and it may be objected

that the cases now considered are not such as occur in nature. If, however, the

density is not very variable over the membrane, the results will nearly represent

the motion of a homogeneous membrane. At the same time we must remember

that the results to be obtained are not merely approximations, but are accurate

solutions of the equations. Such a solution, if short, and obtained by some simple

process, is sometimes preferable to one obtained by a long approximation, even

though the latter may appear to be more directly applicable.

To take a simple example, the oscillations of a homogeneous loose heavy chain,

suspended from two fixed points, can be found only by very troublesome algebraical

approximations. But if we suppose the chain to be heterogeneous, we may obtain

an accurate solution of the equations. This solution leads to nearly the same

results as the approximate investigations for a homogeneous chain. See Art. 544.

To take another example, we may notice that the motion of a homogeneous

membrane bounded by two radii vectores and two circular arcs, can be expressed by

the help of Bessel's functions. But the motion of a membrane bounded in the

same way and of the proper density, can be expressed by ordinary sines and cosines.

This is much simpler than a solution in Bessel's functions, and helps us to under-

stand the nature of the motion.

573. We may, if we please, express all this in geometrical language.

Consider first a heterogeneous membrane with any fixed boundary which vibrates

according to the law w = \p{x, y, t),

where w is the displacement of the point P whose Cartesian co-ordinates arc x, y.
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Trace on the membrane the two sets of curves whose equations are / (r, y) = ^

and F {x, y) = rj, where ^ and 7} are two parameters. These curves aie to be such

that, when the parameters |, 17 increase by a constant increment J| = a or drj = a,

the two sets of curves divide the membrane into elementary squares. That the

corresponding increments of | and rj should be equal when these curves form

squares, follows from the proposition that the small corresponding figures formed

on the two membranes by the method of conjugate functions are similar. It may,

however, also be deduced from the relations mentioned in Art. 568. If ABCD be

one of these squares, draw a parallel to the axis of x through any corner A, and

then draw perpendiculars BM and DN from the two adjacent corners on this

p:irallel. We have thus two equal triangles ABM, ADN\ the sides in each triangle

being the dx and dy produced by varying first ^ only, and then r] only. It follows

from this that^ d^ =^ drj and ~ dr]= - %d^. We therefore infer from Art. 568
d| dri di) d^

that d|= ff7;.

The area of one of these squares is ( 31: 3- - 3- 3I ) a^*

Thus, since the density D is given by
'n

~ \Hi) "^
V ^ ) '

it follows tliat the mass of each elementary square is the same.

Next, consider the corresponding homogeneous membrane. Draw on the mem-
brane straight lines parallel to the axes of ^, ?; at a distance a from each other, so

that each straight line corresponds to one of the curves drawn on the heterogeneous

membrane. Let a new boundary be drawn which cuts these straight lines at the

same angles which the boundary of the heterogeneous membrane cuts the corre-

sponding curves.

Then the motions of these two membranes are the same at corresponding

points. We may consider each to be given by w = \j/ (a;, ?/, t),

according as we express lo in terms of |, i; or a;, y.

574. We may notice that the two membranes are so related that the masses of

corresponding squares on the Jieterogeneou^ and homogeneous membranes are equal to

each other. Thus the whole masses of the membranes are the same, but differently

distributed,

575. Similar theorems apply in changing from one heterogeneous, medium to

another, but as this case does not present any novelty, and is not so simple as the

one just considered, we need not discuss it minutely.

676. Having traced on the membrane the two orthogonal sets of curves

f{pc, y) = ^, F {x, y)=7i, where ^ and 77 are constants, and the functions both satisfy

Laplace's equation, we may trace a third set of curves given by

(i)^(iy=(i)^(^;r=—
These are, of course, the curves of constant density.

A curve of constant density which passes through any point will cut the two

members of the two orthogonal sets which pass through the same point at comple-

mentary angles. Then we may show tliat the sines of these angles are as the radii of

curvature of the two members at timt point.

To prove this, let us find tan d, where 6 is the angle the curve of equal density

makes with the curve /(.r, y) = |. By simple differentiation, we find

"^ '-VJ,f,Mf:'--sv)u'
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where suffixes, as usual, imply differential coefficients. Since f^= Fy and fy= -F^,
we see, by substituting in the numerator, that

sin^ ^ _ {FJ' - Fy^) F,, + 2FyF,F^

But the radius of curvature p of the curve / is given by

p

Hence, we see that ~—zr,=--, •

*^

sin 6 p

^11. It is not every heterogeneous medium whose motion can be deduced from
that of a homogeneous one. If we eliminate ^ between

,^^fd^y_D d^ d^

(MMdijj D/ dx^^dy''
^'

we easily obtam —-^ +—,^— = 0.
dx'^ dy^

It immediately follows (from Art. 568) that

fZMogD dMogD
de drj^

""•

The density of the heterogeneous membrane must, therefore, be such that its logarithm

satisfies Laplace's equation,

578. For convenience of reference, let [x, y) be the Cartesian co-ordinates, (r, 6)

the polar co-ordinates of a point P on the heterogeneous membrane; (^, rj) the

Cartesian, {p, w) the polar co-ordinates of the corresponding point IT on the homo-
geneous membrane. Suppose we take as our relation between the two points.

^4-7? ^-l=clog -^ .

Then we find ^=clog-, 'r]= c9.

P
Thus straight boundaries on the homogeneous membrane parallel to the axis of ^

correspond to straight boundaries on the heterogeneous membrane which pass

through the origin. At the same time, straight boundaries parallel to the axis of rj

correspond to circles whose centre is at the origin.

The density Misgiven by |=(|)% (f,7=(^)'-
If r vanish, we have D infinite ; it will therefore be necessary to exclude the origin

from the area of the membrane.

679. If, then, we know the motion of a membrane bounded by a rectangle, this

transformation immediately gives the motion of a heterogeneous membrane bounded by

tivo circular arcs and any two radii vectores.

Example.—The motion of a rectilinear homogeneous membrane bounded by the

straight lines |=^i, ^=^2? V=h> V=^2^ is known to be given by the type

, . . ^-h, . ., v-^1w = Asin ITT —J- sm iw j- ^ cos pnit,

where the integers i, i' are any which satisfy
rrz^h)'^

'''

(k - k)^
~ ^

'

and where m^= T/Dq.

It immediately follows that the motion of a heterogeneous membrane bounded by

the arcs of concentric circles, whose radii are h\ and h'^, and by two radii vectores
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^ = aj and d= a.^, ia given by

w = A Bin I tTT ,
—

,
,—

, ,] I
sin I I'lr ——^ ) cos vmt,

\ log /i
2 -log A i/ \ aj-aj

where the integers i and f
'
satisfy

(log /.-, - log /.-,)
^ + (^[^^ = '^ '

J) /c\2
and the density D of the membrane is given by --=(-].

680. Another useful relation between the corresponding points P and 11 is

Thisgives ^ = c {-\ cosm^, 97= c(-j sinji^;

and therefore, in polar co-ordinates, p =c(-|, aj= 7i^.

By this transformation all radii vectores are turned round the origin and altered

in a known manner.

2) /y\2(n-l)
Also, the density D of the heterogeneous membrane is given by - =n2 f -

J

Since 6= constant makes w= a constant, we see that straight lines through the

origin correspond to straight lines through the origin. Also, circles whose centres

are at the origin correspond to circles whose centres are at the origin.

If we choose n= - 1, we have the ordinary case of inversion; thus

r

In this case any circle inverts into a circle. The density of the membrane is then

given by — = ( -
)

. As this is infinite when r is zero, the centre of inversion must

be external to the membrane.

581. Example.—The density of a membrane bounded by two concentric fixed

circles of radii a and b at any point distant p from the centre is A/p^. Let it

vibrate symmetrically so that the nodal lines are concentric circles, then by Ex. 3,

Art. 566, the possible periods of vibration are 27r(J//>2r)i, where p is such that

p (log a - log b) = ITT, where i is any integer.

Let us invert this with regard to an external point. We immediately have this

theorem.

A heterogeneous membrane is bounded by two fixed circles, centres C and C.

Let be that point which has a common polar line in both circles, and let this polar

line cut the straight line OCC in the point JR. Let the density of this membrane
(OR N"

OP~Rp) *

Then this membrane can vibrate so that the nodal lines are circles, and the possible

periods of vibration are 2ir ( —p=, ) , where p is such that p log ,'- = tV,
\P 1 / ft . OC

and where a and a' are the radii of the circles whose centres are C and C.

582. Example.—The motion of a rectilinear membrane bounded by the axes of

f and ri and the straight lines ^=h, rj= k, Ib known to be given by the type

. . tV^ . i'lrrf

h k
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where i and i' are any integers which satisfy ^ + ?_ = ?_
h^ k'^ tr^

'

Let us invert this with regard to the origin, we see that—
The motion of an infinite membrane bounded by the axes of x and y, and the

arcs of two circles whose diameters are /i', A;', and which touch the axes of x, y at the
• • • . 1. .1 I . . ii^h' cos Q . i'lrli' sin B

origin, IS given by the type «; =^ sm sm cos vmU
r ^ r y

where the integers i and i' satisfy the equation mC^ + i"^k'^=^ c*

provided its density is given by i)= (
- I . —^ ,

where r= tension of the membrane.

583. Example.—If we transform the same theorem with w = 2, we see that—
The motion of a finite membrane bounded by two straight Hnes OA = h', OB = k',

inclined at an angle 7r/4, and by two rectangular hyperbolas passing respectively

through A and B, and having OB and OA for asymptotes, is given by the type

, . iTrf^ 008 20 . i'IT r- sin 2dw = Asin j^
— sm

^^ cospwf,

where i and i' are connected by 775 + 777, = ^-,,
h^ k^ ir^ c
/r\2 T

provided its density is given by D = 4 ( -
j . —

.

584. Suppose, in an infinite homogeneous membrane, a very small circular

area of radius c to become rigid, and to be constrained to move transversely with a

motion given by ir = ^ cospmt. Then waves will spread out equally in all directions,

aiid when the motion has become steady, the vibration at any point distant p from

the centre of disturbance is given by w=Jq{pp) A cospmt.

Here we have supposed c to be so small that Jff{pc) = l. Such a small circular

vibrating area may, for convenience, be called a source of disturbance, or more

shortly a source.

If we transform this theorem by the method of conjugate functions, we see, for

the reason to be given in Art. 580, that the infinitely small circle will transform into

a similar figure, i.e., into another circle.

585. Example.—The vibrations of an infinite homogeneous membrane bounded

by a fixed straight line taken as the axis of x, and acted on by a source at some

point di, 77i),
are given by m; = {Jq (pp) - J^ {pp')} A cospmt,

where P^ = {^- ^i? + {v-Vi)',

and p'2=(^-li)^ + (^ + '7i)^

so that p, p' are the distances of the point (^, rj) from the source, and its image on

the other side of the axis of ^.

Hence we infer that the vibrations of an infinite heterogeneous membrane

bounded by two fixed radii vectores forming a corner of angle tt/ji, and acted on by a

source at a point r^^p are given by

^= {<^o (P^) - -^0 {P^')\ ^ cos pmt,

where c^^-a R^= r^^ + rj^" - 2r"ri~ cos n(e- 6^)

c2«-2 i2'2= r2« + ri^" - 2r"ri« cos n{d + 6-^),

J)
/^.\2(n-l)

provided the density of the membrane is given by —=n^l-\

Here r, 6 are the running co-ordinates of any point of the medium, and ic is the

transverse displacement at the point p,
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Art. 23. Liouville's form of the equations of motion of a changing body.

M. Liouville has also given in his Journal, Vol. iii. 1858, the equations of motion of

a body which is changing its shape by cooling or by some other cause without

assuming the body to be symmetrical like the ellipsoid discussed in Art. 23.

Let hi, 7*2, h^ be the angular momenta of such a body about the instantaneous

positions of the axes Ox, Oy, Oz moving about a fixed origin with angular

velocities di, d^, B^ about themselves. Then exactly as in Art. 19, we may show that

the equations of moments become

^-h^e^+h,e,=L (I.)

with two similar equations.

Let (xyz) be the co-ordinates of a particle of mass m of the body referred to the

moving axes. Let u, v, w be its resolved velocities in space. Then by Art. (4), we

have u= dxldt-yd^ + zd.2, v = dyldt-zdi + x0^, &c,

also h^ = Zm{xv-yu).

Writing H.i= 'Zm{xdyldt-y dxjdt) (IL),

we find h^= H^+Cd^-Edi-I>d^ (III.),

where ABCDEF are, as usual, the moments and products of inertia about the axes.

By similar reasoning we find hi and h^, and substituting these in equations (I.), we

deduce Liouville's equations of motion.

K the moving axes be so chosen that they are always the principal axes at the

origin, the products of inertia DBF are all zero, and the equation IIL takes the

simple form 7<3= jr3 + C^3 (IV.)

If the body be symmetrical about the principal axes and remain so throughout

the changes of structure, as in the case of the ellipsoid discussed in Art. 23, we have

Hi=0, 7/2=0, 1/3 = 0. The equations then take the simple form

^^{A0i)-{B-qe,0,=L,

~(Bd^)-{c-A)e^9i=3r,

^{Cd,)-{A-B)eid,=N,

We have supposed the body to be changing its shape by some such cause as

a change of temperature. The quantities //j, H^, H^ are the angular momenta
produced by these changes about the instantaneous positions of the axes. If we
take the centre of gravity of the body as origin and the principal axes as the axes of

reference, these quantities will be given functions of the time when the changes are

given. If the body were rigid they would obviously be zero, and will therefore

in general be small quantities. In the same way the principal moments will also be

given functions of the time. Thus Liouville's equations may be used to determine
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the motion of such a body as the earth, turning about its centre of gravity as a fixed
point, and at the same time altering its form and structure in a given manner. As
an example of this the reader may consult an article by Prof. Darwin, On the

influence of geological changes on the Earth's axis of rotation, in the Philosophical
Transactions for 1876.

Art. 56. Transformation to principal co-ordinates. This method of trans-

forming any co-ordinates 6, 0, &c. to the principal co-ordinates ^, yj, &c. may be
presented in a purely Mathematical form. Let us first assume the transformation
to be possible, so that we have

2T^A^^d'^ + 2A^^d4>+ =a,i^2 + ^^^^2+

2U=C,,d^^ + 2C,,f}cp+ =c,,^^ + c,,ri-'+ \
W,

where the accents have been dropped from the co-ordinates in 2T as being

unnecessary for our present purpose. We have also omitted Uq from the second
equation for the sake of unity. Let the formulae of transformation, which we have
to find, be, as in Art. 69,

<f>=m^^ + in^r]+...i (2).

&c.=&c. )

Let us eliminate ^^ from the equations (1) and differentiate the result with

regard to d. Putting p^^= - c-^Ja^-^ we have

^0{Tpi'+U) = {a^^p,^ + c^) Vp^ + ia.^i' + c,,) t%+ (3).

This vanishes when we put r] = 0, f=0, &c. whatever ^ may be. Hence if the

transformation be possible we have after substitution from (2)

{A,,Pi'+C,,)l, + {A,,p,^+C,,)m, + =0 (4).

In the same way by differentiating with regard to we have when rj— O, ^=0, &c.

Ui^Pi" + C12) h + i^^Pi + <^22) nh + = 0.

Thus we see that p^ is one value of p^ obtained from Lagrange's determinantal

equation as given in Art. 58, while the values of Z^, m^, &c. are proportional to the

minors of the determinant. Eliminating 77^^ ^^ &c. in turn from the equations (1),

the same argument applies to each of the other columns of coefficients in the

formulae of transformation (2). Thus we obtain the rule given in Arts. 53 and 56.

The formulae of transformation are written at length on page 36. We see that

the coefficients of x, y, &c. are the values of the minors luip^), &c.

If there were on the right-hand side of the equations (1) any term such as ^rj,

this product would give on the right-hand side of (3) a term {a^^Pi^ + ^12) ^ dvl^d

when we eliminate ^^ ^nd differentiate with regard to d. It would give

(a^gW" + ^^12) ^7 ^^/(^^^ when we eliminate 77^ and differentiate with regard to d. Now
the differential coefficients of^ or rj with regard to the co-ordinates 6, (j>, xp, &c.

cannot be all zero, for this would make ^ or 7; independent of all the co-ordinates.

Also if Lagrange's determinantal equation have all its roots unequal, the coefficients

a^^p-^ + ^12 and a-^^V^ + <^i2
cannot both vanish. Hence in this case, when the right-

hand sides of (3) are made to vanish, there cannot be any products of co-ordinates

in either of the expressions on the right-hand side of (1).

If Lagrange's equation have equal roots we know by Art. 61 that all the minors

will be zero. The ratios of I, m, &c. found by the preceding rule will therefore be

nugatory. To simplify the argument let us suppose that the equation has two equal

roots and let these be p^ and p<^. The ratios of the coefficients in the third and

following columns of (2) may be found as before because they depend on unequal

roots in Lagrange's determinant. Since the first minors are zero for the equal roots

R. D. n. 22



3:38 NOTES.

the equations (4) to determine the coefficients of either of the first two columns of

(2) are not independent. Rejecting any one of these equations (as in Art. 273) we
obtain by using the second minors all the letters in the first column in terms of any

two, say li and mj. The letters in the second column are found in terms of Zg and

7»2 by the same formulae. Thus we have two independent coefficients in each of

these columns instead of one as before.

But if \ve use these formulae of transformation without further limitation, we are

not sure that terms containing the product ^t) may not enter into the two right-hand

sides of the expressions (1) provided they enter both with coefficients in the ratio

Pi^ : 1. To secure the absence of such temis, it will be sufficient to make the

coefficient of ^rj in either of the coefficients T or U equal to zero. If we choose T,

we have by substituting from (2) in (1)

or as it is written in Art. 316

Regarding then I^ri^ and Zg ^^ arbitrary we have sufficient linear equations of the

first order to find all the other coefficients of the two first columns in the formulas

of transformation. Thus we have three arbitrary constants instead of two.

Art. 60. The conditions that a quadric should be one-signed. The con-

ditions briefly quoted from Williamson's Differential Calculus have reference to the

quadric T, which is to be a positive one-signed function and it is meant that the

successive discriminants should all be positive.

If we assume that the sign of the discriminant is not altered by any linear trans-

formation of the co-ordinates we may obtain an easy proof of this proposition. Let

the quadric be 2T= A^^d^ + 2A^2d(f>+A^2<j>'^ + &c (1),

and to simplify the argument let there be only four co-ordinates 0, 0, rj/, x- I^et D
be the discriminant, D^ the discriminant when any one co-ordinate, say x, is put equal

to zero, Dg the discriminant when two co-ordinates, as x and '/'> are both put equal

to zero, Dj the discriminant when three co-ordinates, x, ^ and 0, are put equal

to zero and so on.

Collecting all the ^'s together, then the 0's and so on, we may write T in the form

2T= B,{^ + a,<p + h^^f^ + c,x? + B^(<p + b^^p + c^xY + B^{^P + c.,x)^ + B^X^

where all the Eiiglish letters on the right-hand side are rational functions of

^„ A ^.2, &c. and therefore are real.

We may now write this expression in the form

2T= 7?lx2+/?27/-f-i?3^Hi?4w'^ (2),

where u = x. z=^ + C3X> and so on.

Since (1) and (2) may be derived from each other by a linear transformation,

their discriminants have the same sign. Hence the product B^B^B^B^ has the same

sign as D. Again, putting m = x = and repeating the argument, the product B^B^B^

has the same sign as Dj. Similarly the product B^B^ has the same sign as Dg and

B^ has the same sign as Dg. Thus Bj, Bg, Bg, B4 arc positive ichcn the discriminants

J), Dj, Dj, D3 are all positive and not otherwise.

The conditions that T should be a one-signed positive quadric follow im-

mediately. The conditions that T should be a one-signed negative quadric may be

deduced from these by changing the signs of all the coefficients ^n, A^,,, &c, in the

expression for T.

That the discriminants of (1) and (2) keep the same sign may be shown by the

method indicated in Art. 71. Taking the second expression let us write



NOTES. 339

y = m-^d + m.^(p+ ... - (3).

Z = &G. J
Substituting in (2) we obtain a quadric expression whose discriminant is easily seen
to be

B^lj^ + Bomj^+... Bjl^l^ + B^m^m.;^^- ... &c.

B, 1^1^ + B^vi^m^ +... B^l^ + B^m^ + . . . &c.

&c. &c. &c.

This is obviously the square of

sjB,\ \/B^m-^

\/B^m^

cfec.

\/^3"l &C.

\/-B3^'2. &c.

&C. &c.

The discriminant of T when expressed as a function of d, <p, &c. is therefore equal to

h Wl, &C.

/« m^, &c.

&c. &Q. &c.

The sign has therefore not been altered.

The determinant on the right-hand side is the Jacobian of x, y, &c. with regard

to d, 0, &:c. We may therefore also immediately deduce from this result by a

double transformation the theorem quoted in Art. 69.

Art. 138. The representative point. The statement in page 73, line 5,

admits of some exceptions. To prove this let us suppose that the system has two

co-ordinates x and y. Let the two principal oscillations be represented by the two first

terms of the expressions for x and y given in Art. 115, Taking the first principal

oscillation alone and eliminating t from the resulting expressions for x and y, we of

course find a quadratic relation between x and y. Thus the representative particle

describes an ellipse. The same remark applies to the second oscillation. We have

therefore two representative particles, one for each oscillation. These describe two

concentric ellipses in one plane with periodic times respectively equal to 27rlpi and

27r/p2- The co-ordinate x of the system is the sum of the abscissae of these particles,

the co-ordinate y is the sum of their ordinates.

These two ellipses will intersect in four points real or imaginary, viz. D, D',

E, E', where DD', EE' are diameters. The co-ordinates x and y will simultaneously

vanish only when the two representative points are at opposite extremities of the

diameters DD', EE'.

Let the particles start from the opposite extremities of DD'. Then, the periods

not being commensurable, they cannot again be at the opposite extremities of this

diameter. If however the initial conditions of the system and the periods happen

to be such that the time from D to jE or E' in one ellipse is equal to the time from

D' to E' or E in the other ellipse, then the representative points will be simul-

taneously at the opposite extremities of the diameter EE'. But if this be so, it

cannot happen again. Thus when the system is disturbed from its steady motion, it

may happen once again that its position coincides with the position it would have

had at that instant if it had not been disturbed.

If however the two ellipses are coincident, every diameter is a common diameter.

Since the representative points describe this ellipse in different times, they will

obviously pass the opposite extremities of some diameter at a constant interval

equal to 7r/(_pi -p.^). In this special case the position of the system will coincide

with the corresponding position in the steady motion whenever the time is an

integer multiple of this interval.
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Art. 451. Ostrogradsky on tbe minimum of fLdt. Lagrange's equations

are the ordinary equations supplied by the Calculus of Variations when we make
fLdt a minimum under known conditions. Sir W. Hamilton put these equations

under a form (see Vol. i.) which is very useful in Dynamics. It is an interesting

question to determine what is the corresponding transformation when L is a

function of differential coefficients higher than the first. This was considered by

Ostrogradsky in the Memoir referred to in Art. j44^.^^his Memoir is rather

difficult on account of the immense length of the algebraical transformations. The
following short account may therefore prove useful.

Let L be a function of t and of in variables, of which q is any one, and let it be

a function of the first n differential coefiicients of q with regard to t.

Let Qt stand for the partial differential coefficient of L with regard to d''qldt'',

and let ^*=Qt- Q't+i + Q"*+2- ,

where, as usual, accents denote differential coefficients with regard to t, and let k

accents be denoted by (k). The relations between these variables are, therefore,

Qo= dLldq-'Q\, Q, = dLldq'-Q'^ &c. (1),

and so on up to Qn-i = dL/dq^"-^^ - Q'„,

and the last is Q„ = dLjdq^^K

By the principles of the Calculus of Variations, the minimum is given by the

typical equation Q^ = 0.

When L contains no differential coefficient above the first, Sir W. Hamilton

eliminated the m first differential coefficients typified by q' by introducing vi new
variables typified by Qi= dLJdq\ Let us in the same way eliminate the highest

differential coefficients typified by g^") and introduce instead the m new variables

typified by Q„. Let H= L-i:{^,q'+Q^q"+ ... + Q„q^"^),

where the 2 refers to summation for all the g's. Let g^"^ be found from the equa-

tion Q„=dL]dq^"> and let its value be substituted in this expression for II so that H
is now a function of (, q, q'...q^"-^\ Q^f Qz^-.-Qh' Since L was originally a function

of t, q, q'...q'^"^ it is now a function of t, q,
q'...q^"~^^ and Q„.

"We have by differentiation

^r -'''"'-
-T^"'"

<^*'

provided /: + 1 is not n. In that case

dff ^^d5<»)_ dj^

dQ„ di'"'dQ„ "dQ,'
but the first and third of these terms destroy each other, so that the theorem (2) is

also true when k + l = n. Also

dH _dL^ dL^d^ _ _ dq^"^

dqik) - dqW + dq^n) d^)'Qk-Qn dr/^)
»

Here the second and fourth terms destroy each other. The first and third, by

(1), become ^'*+i or^-^*+i. Thus all the equations may be written in the typical

Hamiltonian form

JIL__ d
(^)

dll d -.

which are true for all values of k from k=0 to k — n~l. Thus there are 2« equa-

tions con'csponding to Ciich q.
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We may show in the same way as in Vol, i., that the total differential coeffi-

cient of H with regard to t is equal to its partial differential coefficient. So that
when L, and therefore H, are not explicit functions of t, we have as one integral
H=li, where h is a constant. Writing this at length it becomes

L = ^[Q^q' + Q^q"+...) + h,

which is the integral continually used in the Calculus of Variations. We see that
this integral corresponds to the equation of Vis Viva in Dynamics.

Art. 566. Zioaded Membranes. We may also deduce this result from the

formulae in Arts. 76 and 77. We shall begin by referring the unloaded membrane to

principal co-ordinates. To effect this we write (see Art. 56) the complete expression
for w given in Art. 563 in the form

w = sm— sm—r^^ + sm-^ sm —-ri + Scc.
a 6 a b '

*

then the quantities ^, rj, &c. are principal co-ordinates.

The vis viva of the membrane is easily seen to be

Sf{dwldtfpdxdy = \pah (|'2 + ^24- ...)

where accents denote differential coefficients with regard to the time. If we now
form Lagrange's determinant, every constituent will be zero except those in the

leading diagonal. If q^, q.^, &c, be the roots of the determinant and M~pah, these

constituents will be ^M {q^ - q^), IM iq^-q.^), <fec. Here q stands for the quantity

represented by 2^m in Art. 563 ; the roots g^, q^ &c. are all found in that Article and
are expressed by giving i and i' all integer values.

Placing now a mass /i at the point (/?, Tc) its displacement will be given by

„^ . irih . iri'k , ,
.W= sm— sin -r— t + &c.,

a

which we may abbreviate into

There will now be an additional term in the expression for the vis viva, while the

force-function will be the same as before. This additional term will be

There will therefore be an additional term to every constituent of Lagrange's

determinant. The determinant will be

lM{q'^-q^^) + fio?q^ Ha^q"" &C. =0.

fia^q^ iM{q^-q2^)+f^PY &C.

&C. &G. &C.

Expanding this, and remembering that by Art. 76 only the first powers of fi can

enter into the expansion, we have

{(l'-qi'){<f-q^) &C. + ^^q^a^q^-q^) &c. + ^^q"^ - q,') &C. -f- &C.} = 0.

Dividing by the first term we have

31 a' eP

Substituting for a, /S, &c. their values given above and writing q=pm, we have

the result given at length in Art. 566.

This method is clearly general and will apply, when the proper values of o, p, &c.

are substituted, to membranes of other forms.

Art. 568. Conjugjate Punctions. The application of the theory of conjugate

functions to Hydrodynamics is probably well known to the student. By that theory

the potential of a complicated fluid motion can sometimes be made to depend on
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that of some simpler motion. But this of course is beyond the scope of the present

work. We may however notice some propositions which appear to be new.

When one fluid motion is changed into another by a method analogous to that

described in Art. 569 for membranes, the kinetic energies of the two fluids which

occupy corresponding elementary areas are equal. Thus the whole kinetic energies

of the two motions are equals hut differently distributed over the areas of motion.

This corresponds to the theorem proved in Art. 573 for membranes.

Suppose a vortex 11 of strength m to exist in one fluid at a point whose co-

ordinates are (^, ti). Then there will be a vortex P of equal strength at the corre-

sponding point (x, y) of the other fluid. But these will not continue to move so as

to occupy corresponding points. We may, however, infer the motion of P from that

of n by the following rule. Let x (^. il) ^^ « current function {not the current function

of the fluid) giving the motion of the vortex II so that its velocities resolved parallel

dv dy
to the axes of | and rj are respectively —" ^^d - ~ . Then the motion of P is given

by a current function

X' {^y y) = x{^, v) - h^ailog fi,

dx' dy'
i.e. its velocities resolved parallel to the axes of x and y are respectively ^ and - -,-

,

and its path is found by equating x' to a constant. Here
fj."^

is the quantity called

D/Dq in Art. 569. Generally we may say that the current function of P is obtained

from that of H ly subtracting \ m log fx, where

p?= (d^/dx)2 + (d^7dy);= (dr,/dy)2 + (d»,/dx)3.

In using this rule the strength m of a vortex is to be considered positive when

the vortex rotates in the direction opposite to the hands of a watch, that is from the

positive direction of ^ to the positive direction of 77.

As an example of this rule, let us investigate the path of a vortex P swimming

in the corner formed by two straight lines inclined at an angle equal to trfn. This

problem is discussed by Prof. Greenhill in the Quarterly Journal, Vol. xv. Let us

first suppose a vortex IT to swim in the infinite space bounded by the axis of ^.

Placing an image on the negative side of this axis, we see that the vortex n moves

parallel to the axis of ^ with a velocity w/277. Its stream function is therefore ^ m log ij.

Taking any point on the axis of | as origin, we shall turn the negative side of the

axis round the origin until it makes an angle equal to irfn with the positive side.

To express this we use the formulre of transformation given in Art. 580. We thus

have 77 = c (r/c)** sin rj^. The value of /t is therefore n{rjc)'^~^. According to the

rule the stream function which gives the motion of the vortex P in the corner is

x!= \m\o^-n-\\ogfi
= ^mlog{rsin72^).

The path is therefore given by r sin nd= c where c is a constant. It may be noticed

that n need not be an integer.

If two circles intersect in A and B, we may find, by inverting this result, the

motion of a vortex V in the ypace between the circular boundaries. Let d be the

angle the circle through Ay B and the vortex V makes with either circular boundary,

and let a be the angle between the circular boundaries. Then the current function

of the vortex V is found by subtracting J^wilog/x from the value of x! given above,

where fjL—l-\ , as shown in Art. 680. The current function of the vortex V is

therefore X— ii log ( ^ F. PF . sin—
J

.
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—.a

The path of the vortex is given by the equation AV .BV .^\x\ — = C,
a

where C is a constant.

The chief objection to using the method of conjugate functions in Hydrodynamical

problems is the difficulty of finding the proper formula of transformation. But to

discover these we have a convenient rule, viz., that if we know the motion of a fluid

within the space hounded by one or two infinite curves, we can in general find the

motion xoith the same boundaries when complicated by the presence of sources and

vortices. To prove this, let ^ and r) be the velocity and stream potentials of this

motion. Then rj is constant along the boundaries. If we use ^, 17 as our formulaa

of transformation, the given boundaries will transform into straight lines parallel to

the axis of ^. The motion due to vortices and sources in this space has already

been investigated. Hence the motions in the more general spaces may be deduced.

We may regard any closed curve, such as an ellipse, as a section of an infinite

C3'linder. If we know its potential at any external point when charged with a

given quantity of electricity, we may immediately deduce the motion of a fluid with

vortices and sources outside this curve from the corresponding motion round a

circle.

For these theorems, as well as for the application of conjugate functions to

membranes, we refer the reader to a paper by the author published in the twelfth

volume of the Proceedings of the Mathematical Society, 1881.
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