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PREFACE

17VDR several years I have been giving, at the Massachusetts

X7 Institute of Technology, courses of lectures on those portions

of dynamics, both rigid and fluid, which are fundamental in aeronau-

tical engineering. The more elementary parts of these courses, cover-

ing about ninety out of one hundred fifty lectures, are found in this

book. Although it has been customary to teach the two subjects of

rigid and of fluid dynamics in parallel or in rapid alternation, so that

they are both developed as needed for each other and for the accom-

panying courses on airplane and airship design, it has seemed better

in making a presentation in book form to separate them. The stu-

dent should have completed Chaps. IX-XII of the fluid mechanics

before undertaking the latter part of Chap. VI.

A number of topics which might well be included in a work on

aeronautics have been omitted from the book, as they are from my
lectures, because they can be taken up so much better in the parallel

courses on design. In the preparation of the selected material I have

had constantly in mind my own experience and needs relative to

effective classroom instruction, particularly in the matter of lists

of exercises. Although my students are supposed to have completed

thorough courses in calculus, including the elements of differential

equations, and in theoretical and applied mechanics, it has seemed

better to assume too little, rather than too much, as retained in

usable form. I hope, therefore, that with the present interest in

aeronautics in particular, and in applied mathematics in general,

this work may prove stimulating to other than technical students

of aeronautical engineering.

Nobody can issue a book on aeronautics at this time without

lamenting the fact that much, if not most, of the progress in theory

which has been made during the war, particularly in England, has

not yet been released for publication. To wait, however, until its

release and subsequent digestion would mean a long delay. Indeed

from one viewpoint no time is more appropriate for the printing of

these elementary, introductory, and orienting lectures than just

now when there impends a deluge of material for advanced study.
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I desire to express my appreciation of the way Professor C. H.

Peabody, in charge of the work in Aeronautical Engineering, has in

every way encouraged and supported me. I am under the deepest
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AERONAUTICS
INTRODUCTION

CHAPTER I

MATHEMATICAL PRELIMINARIES

1. Definitions. The term "
aircraft" denotes any form of

craft designed for the navigation of the air airplanes, balloons,

dirigibles, helicopters, kites, kite balloons, ornithopters, gliders, etc.

The term "airplane" denotes a form of aircraft heavier than

air, which has wing surfaces for sustentation, with stabilizing sur-

faces, rudders for steering, and power plant for propulsion through
the air. The landing gear may be suited for either land or water

use.

The term "
dirigible" denotes a form of balloon the outer en-

velope of which is elongated in shape, provided with a propelling

system, car, rudders, and stabilizing surfaces.

2. Methods of Attack. The airplane' and dirigible, except for

their control and propelling surfaces, are essentially rigid bodies

moving in a fluid medium, the air. It is not practicable, however,

to treat the motion of the body and the medium simultaneously

by the method developed by Thomson and Tait, and found in

standard advanced treatises on hydromechanics. The moving

object is, therefore, treated as a rigid or nearly rigid body acted

upon by certain forces; namely, the propeller thrust, urging it for-

ward, and the air pressures, urging it backward, and, in the case of

the airplane, sustaining it against its weight W\ and the theory of

aeronautics is, consequently, divided into two parts: (i) the dy-

namics of flight, and (2) fluid dynamics.
In the dynamics of flight the motion of the craft is investigated

with the aid of empirical laws for air pressures. In fluid dynamics
those empirical laws are determined for the most part by experi-

ments, .but to some extent by general theoretical considerations

3
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involving the elements of hydromechanics. The two parts of the

subject have been separated in preparing this work; they have been

taught separately, but in parallel.

3. Engineering Units. As in all engineering practice, the

forces are expressed in pounds or kilograms, according as the English

or metric system is used. Work is expressed in foot-pounds or kilo-

gram-meters, and power either in foot-pounds or kilogram-meters

per second, or as horse power, whether English or French.

The pound-mass or kilogram-mass is a definite quantity of matter

obtained by weighing on an arm-balance against the standard pound
or kilogram, or replicas thereof; they do not depend upon the location

in which the weighing is carried out.

The pound-force or kilogram-force are defined as the force of the

earth's attraction upon the pound-mass or kilogram-mass. Owing
to the variation in the acceleration of g from point to point, the

units of force thus defined will vary from point to point unless it is

agreed in advance that the units of force shall be the attraction of

the earth upon the unit of mass at a standard place. Thus, it is

necessary logically to separate local units and standard units of force,

the latter being the value of the local pound where g = 32.174 feet

per second per second, or, in the French system, of the local kilo-

gram where g = 980.665 centimeters per second per second. As,

however, the variation of g from its standard value is only about

J% at most, it is customary in engineering practice when dealing

with machines in which the accuracy of measurement and perform-

ance is no greater than that of aircraft to disregard any difference

in local and standard units of force.

In some engineering work the unit of mass is taken as the slug

(English or metric), which is defined as g pounds or g kilograms,

and which, therefore, is about 32 pounds or 9.81 kilograms. If the

slug is used, the same differentiation between local and standard

slugs must logically be made; but again, the variation of the local

from the standard value is so small as ordinarily to be neglected.

As a matter of fact it is unnecessary to use the artificial unit slug

with the attendant artificialities of density in slugs per unit volume,

etc.; and, unless specified to the contrary, the units of mass will

be the pound and kilogram.

The unit of time throughout the work is the second; the unit

of distance, the foot or the meter; the units of velocity are the foot
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per second and meter per second, the mile per hour and the kilo-

meter per hour. It would be possible to deal only with a single

unit of velocity in each of the systems, English and the metric, but

for practical reasons such a restriction seems unadvisable.

4. Change of Units. These matters of units and the matter

of dimensions of physical quantities will be treated in detail later,

but it should be pointed out now that in order to change the value

of some quantity expressed in a certain set of units to the value

which the same quantity has when expressed in another set of units

it is only necessary to write the numerical value of the quantity
followed by the symbols for the units, and substitute for those sym-
bols their value in terms of the new units.

Example i. Change the velocity of five miles per hour (mi/hr) to

feet per second (ft/ sec).

mi 5280 ft i r-L ,

5
= 5^ = n ft/sec

hr 3600 sec

The following table contains necessary or convenient data for

changing from one system of units to another:

TABLE OF DATA
Metric

i centimeter (cm)

i meter (m)

i kilometer (km)

36 km/hr
i square centimeter

(cm
2
)

i square meter (m2
)

i cubic meter (m3
)

i kilogram (kg)

i kilogram-meter

(kg.m)

gravity g cm/sec
2

i calorie (Cal)

i force de cheval

i kg/cm2

i atmosphere

= 0.3937 in,

= 3.2808 ft,

= 0.62137 nii,

= 10 m/sec,

= 0.1550 in2
,

= 10.764 ft
2
,

- 35.315 ft
3

,

= 2.2046 Ib,

= 7.233 ft.lb,

= 981 cm/sec
2

,

= 3091 ft.lb,

= 75 kg.m/sec,

= 14.22 lb/in
2

,

= 1.033 kg/cm2
,

i inch (in)

i foot (ft)

i mile (mi)

30 mi/hr
i square inch

(in
2
)

i square foot

(ft
2
)

i cubic foot (ft
3
)

i pound (Ib)

English
=- 2.540 cm
= 0.3048 m
= 1.6093 km
- 44 ft/sec

= 6.452 cm2

= 0.0929 m2

= 0.028317 m3

- 0.4536 kg

i foot-pound (ft.lb) = 0.13826 kg.m

gravity g ft/sec
2

=32.2 ft/sec
2

i foot-pound (ft.lb) = 0.0003235 Cal

i horse power

(H.P.) = 550 ft.lb/sec

i lb/in
2 = 0.0703 kg/cm

2

i atmosphere -= 14.70 lb/in
2

(An atmosphere
" atmo "

is 760 mm or 29.92 in. of mercury.)
standard g go = 980,665 cm/sec

2
,

standard g = go = 32.174 ft/sec
2

standard air, dry, density p = 0.07608 lb/ft
3

, temperature T = 62 F, pressure p = 29.921

in.Hg



6 INTRODUCTION

6. Errors and Approximations. Throughout the work in

aeronautics it is necessary to make approximations. An extremely

important formula in this connection is the binomial expansion:

(i x)
n = i nx + \n(n - i)*

2 =*= . . . .

If * is extremely small and n not too large, the result may be written:

(i
== x)

n = i =*= nx.

This shows that an error of x on i becomes an error of nx on i

when a number is raised to the nth power. For example, if a velocity

is known within an error of 2%, and if a force depends on the square

of that velocity, the force is known only within an error of 4%. In

like manner, if a length is known only to 2%, the volume of the cube

with that length for its edge is known only to 6%. On the other

hand, if an expression contains a square root (J power) of a symbol

whose value is known to within 2%, the value of the expression itself

is accurate to within i %.

When an expression involves a number of symbols, x, y, z, etc.,

as in the case /(a,?,*...), the change in the expression produced

by slight changes in x, y, and z may be calculated approximately

by the formula for the total differential of /, namely,

df= ?fdx + dfd + *ldz +
dx dy

'
dz

where dx, dy, dz, . . . represent the slight changes in x
y y, z, etc.

In practical applications, dx, dy, dz, etc., are frequently not pre-

cisely known variations in x, y, z, etc., but merely possible errors in

the measurement of those quantities. The possible error made in

the calculation of / is estimated as the numerical sum of the terms

in the expression for df, disregarding the significance that the deriva-

tives may actually have.

Example 2. The time of oscillation of a pendulum (meaning

by "oscillation" the swing from one extreme to the other) is

T =

To find the possible error in the time if / is three feet with a possible

error of one-half inch, and g is 32.17 with a possible error of .01:

dT = J?r (l~* g~
} dl - l*g~*dg).

Substitute: I =3,dl = 1/24, dg = .01 and add the numerical

results, disregarding the negative sign. The result is: dT = .0068.
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It often happens that the expression f(x, y, z, etc.) is in reality

nothing but a product of different powers of x, y, z, etc. It is then

particularly easy to estimate the relative or the percentage error in

/ in terms of the relative or the percentage errors in x, y, z, etc.
;

for

if / = A(xpfz
r

), then

log / = log A +p log x + q log y 4- r log z,

df/f
= p(dx/x) + q(dy/y) + r(dz/z).

Hence the relative or the percentage error in/ is the sum of the relative

or the percentage errors in each of the variables, each multiplied

by the power to which that variable enters into the expression /.

Example 3. Find the possible relative or percentage error in the

time T of example 2.

dT/T = \dlll
-

\dglg

The possible error in / is \ inch in 3 feet, which makes the relative

error dill =
1/72, and its contribution to the relative error in T is

1/144. The relative error in g, namely dg/g, is only 1/3217, and its

contribution to dT/T is only 1/6434, which is entirely negligible

compared with 1/144. It follows, then, that the percentage error

in T may be taken as about 2/3 %.
A formula more general than that for the first differential is

which is Taylor's expansion, and is more frequently written (when
there is only one independent variable involved) in the form

A/ = /A* + J/"A*
2 + */ '"A*3 + . . .

,

where the successive derivatives are computed for that value of x

from which A# is measured. In particular if x is measured from

O, then A# = x and Maclaurin's expansion is found.

6. Laws of Motion. The fundamental principles of me-

chanics which will be assumed as known are as follows:

1. Fundamental theorem of statics. When a rigid body is at

rest, or in motion in a straight line with constant velocity and with-

out rotation, the resultant force and the resultant couple acting on

the body are each equal to zero. This means that the algebraic

sum of the component forces along any direction vanishes, and that

the algebraic sum of the moments of the forces about any axis also

vanishes.'

2. When a force acts upon a moving particle the rate of change
of momentum of the particle is proportional to the force, and takes
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place in the direction of the force. This means that the rate of change
of a component momentum along any fixed direction is proportional
to the component force along that direction.

3. Action and reaction are equal in magnitude and opposite in

direction.

If W be the mass of a body, u the velocity in some fixed direction,

and X the component force acting in that direction, the analytical

statement of the second principle is:

%-Wu = kX or W^= kX.
at at

The value of the factor of proportionality, k, depends upon the

units employed in measuring mass, velocity, and force. If the equa-
tion be applied to a body falling freely in vacuo with a mass

measured as W pounds, the force will be W local pounds, and the

acceleration, du/dt, will be the local value of g. Hence, k must be

equal to g, and the equation becomes:
'

If it be desired to use standard pounds of force and a standard

value of g, say g ,
the equation would be:

W Y
dt

where X is the force in standard pounds.

Many persons desire, for algebraic simplicity, to be rid of the

multiplier g. This may be accomplished by taking a unit of force

i/gth of the pound, or the unit of mass as g pounds. Thus, the

equation becomes:

j% = w' d -* or *$*#-*
where, in the first equation, W' is the mass in slugs, and in the second

equation X' is the force in poundals. In neither case does the ana-

lytical simplicity make up for the awkwardness of measuring mass

or force as the case may be in units that are not given in everyday

engineering experience.

A similar treatment may be given in the case of the metric system,

when the kilogram mass and kilogram force, or the metric slug and

the kilogram force, or the kilogram mass and the metric unit of force,

which is i/gth of a kilogram, is used. The metric C. G. S. system
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of units is so defined that the multiplier k or g does not occur in the

equation. The unit of mass is the gram and the unit of force the

dyne, and the unit of acceleration the centimeter per second per
second. The C. G. S. system is in common use in physics, but is

not used in engineering in France.

The fundamental equations to be used in what follows are as

follows:

W -~ = gX, g = 32.17 (more or less)

in the English system, where mass and force are measured in pounds,
and acceleration in feet per second per second;

W = gXj g =
9.81 (more or less)

dt

in the metric system, where W and X are measured in kilograms,

and acceleration in meters per second per second.

EXERCISES

Make the following changes in units:

i. 80 mi/hr to m/sec 2. 9.8 m/sec2 to mi/hr.sec

3. i atmo to lb/ft
2

4. 0.08 lb/ft
3 to kg/m3

5. 2000 lb/ft
2 to atmo 6. i atmo to kg/m2

7. loooo kg/m
2 to atmo 8. i ton.in to kg.m

9. If 13.6 be the specific gravity of mercury, what is its density in lb/ft
3

and kg/m3 ?

10. A cylinder 10 in long and 5 in across is exhausted to vacuum. How
many ft.lb and kg.m are done if the piston moves down the cylinder under atmos-

pheric pressure?

11. Give approximate values for Vi.o2, ^0.97, (1.005)*, (0.985)',

i/(i.o33), i/Vo.99, i/(o.98)
2
.

12. If p = p v*/2g, what relative error in p may arise from an error of i%
in p and 2% in v? Ans. 5 %.

13. The inside radius of a small tube is measured by filling the tube with

mercury, measuring the length of the column of mercury and weighing the mer-

cury. What percentage error may arise in the determination of the radius through

a 2% error in both length and weight? Ans. 2%.

14. The range of a projectile in vacuo is R = V2
/g sin 2*. If V = 100 ft/sec

and i = 30, what error in the range may come from an error of i ft/sec in V
and of i min of arc in i ?

15. Find the percentage error in R in Ex. 14 independently of the actual

error.

16. If the density and dimensions of a rigid body may be measured to |%,
what may be the error in the calculated moment of inertia? Suppose the mass
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and dimensions are known to J%, what is then the possible error in the moment
of inertia? Ans.$%; 1.5%.

17. If x < 25 show that the substitution of x in radius for sin x introduces

an error of less than 4%. For how large values of x may cos x = i - x*/2 be

used, with an error less than 4%? How about the approximation cos x = i

when x is small?



CHAPTER II

THE PRESSURE ON A PLANE

7. Normal planes. Various attempts have been made to obtain

theoretically by the applications of the principles of mechanics an

expression for the pressure upon a plane of area S situated in a stream

of which the velocity is U and the density p. The fundamental

equation of mechanics states that Pg (the force) is equal to the rate

of change of momentum. If, then, the rate of change of momentum
can be calculated, the force will be known as

P =
i/g X rate of change of momentum.

An early calculation known to Newton was based on the consid-

eration of the fluid as made up of particles impinging on the plate.

Consider that a stream of cross section S has its forward momen-

tum destroyed at the plate. The mass of the stream which falls

upon the plate is pSU per unit of time, and the velocity is U. The

total momentum destroyed per unit time is therefore, pSU2
,
and

the pressure is

P = PSU*/g.

Now for air, p = 0.08 lbs/ft
3

(nearly), and as g =
32, the pressure

would be
P = .002$pSU

2
.

The experimental coefficient is (for square planes) about .0015

instead of .0025. The argument, therefore, is only qualitatively

correct; but so far as it goes it does show that the pressure varies

with the surface and with the square of the velocity; and both of

these laws of variation are verified experimentally within reasonable

limits. The reason that the coefficient comes out too high is because

the plate does not actually stop a column of fluid of cross section

equal to S. The fluid can, so to speak, evade the plate by flowing

around it, and the effective column of fluid, whose momentum is

destroyed, has a cross section only 60% of S. When the plate is a

long rectangle, instead of a square, the fluid can only evade the

plate on two sides, instead of four, and it is to be expected that the

ii
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coefficient will be larger than .0015 but smaller than .0025, and

this is the fact.

8. Inclined Planes. In case the plate is inclined at an angle i

to the general direction of the stream, the velocity of flow U may
be resolved into a component U sin i perpendicular to the plate, and

a component U cos i along the plate. The plate may be considered

as stopping the momentum of the flow perpendicular to the plate

while allowing the momentum of the flow along the plate to proceed

unaltered. The amount of liquid which reaches the plate per. unit

of time may be taken as pUSsini,, because Ssin* is the normal

area which the plate exposes to the direction of the stream. The

velocity being U sin i, the rate of destruction of momentum is pSU2

sin2 i, the product of mass and velocity, and gives the formula

pg = PSU2 sin2 i,

which is known as the "law of the sine-square," and is attributed

to Newton. Experiments fail to verify this law. As the momentum

destroyed is momentum perpendicular to the plate the pressure

should be perpendicular to the plate, and this direction of pressure is

verified except for a slight tangential drag due to friction.

A second argument attributed to Euler is as follows: The pres-

sure on the plate must be (apart from friction) normal to the plate,

but it should depend upon the apparent normal area which the plate

exposes to the stream, which is S sin i. The amount of liquid which

reaches the plate per second is pUS sin i, and the momentum given

up is pSU* sin i, the product of the mass by the velocity. The pres-

sure on this basis is

pg = PSU2 sin i.

This is known as the "law of the sine," and is reasonably well verified

in experiment so far as the direct variation with the sine of the angle

is concerned, although the coefficient is not numerically equal to

P/g-

Both arguments for a pressure formula are crude, and chiefly

only of historical interest. It is, as a matter of fact, impossible to

obtain a theoretical formula without a considerable knowledge of

theoretical hydromechanics. In 1876 Lord Rayleigh_ obtained the

result (for infinite strips)

P = " gin *
. X pSV/g.

4 + TT sin ^
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When the angle i is 90 the value becomes for air (p = .08)

which is about half the experimental value .0021. When the angle

i is small, sins' may be replaced by i in radians and the formula

becomes
P = irpSU

2
i/4g = .002SUH = .oooo^SUH ,

which is in poor agreement with the experimental facts. At the

same time Lord Rayleigh obtained the formula

x 3 cos i - / \
T = -

;

-
:
=

-187
~

.147* (approx.)
b 4 4 -h TT sin s

for the distance of the center of pressure from the forward or leading

edge of the plane, if b is the breadth of the plate.

Lanchester has given a calculation for the pressure upon a plane

at the small angles in which the fact that the pressure must be due

to a change in the momentum of the fluid is given a fundamental

place. Let it be assumed that / is the length and b the breadth of

the plane which will be taken as slightly curved, so that the air may
follow it without discontinuity. Let it further be assumed that the

particles of the fluid trace lines more or less parallel to the plate,

leaving the rear of the plate at an angle of depression i. It is further

assumed that the region of the stream above and below the plate

which is affected by the presence of the plate has a total vertical

dimension h. The volume of air which flows by per unit time, and is

affected by the plate, is MU. When the stream issues with velocity

U from the trailing edge there is a downward component of velocity

equal to U sin i. Therefore, the downward momentum generated

per unit time is the product of the mass phlU, which is affected, and

the downward velocity U sin i. The plate, therefore, by its pressure

on the fluid has produced a rate of change of momentum in the fluid

equal to phlU* sin i; and by the law of action and reaction the fluid

must press against the plate with the pressure

pg = phlU
2 sin i.

From experiments by Langley on the interference of superposed

planes (biplane combinations) Lanchester inferred that the stratum

of air affected by the plate was equivalent to the breadth of the

plate both above and below, so that h = 26. Substitute this value

and the pressure on the plate is

Pg = 2pSU2 sin i,
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since S = bl. Or P =
.0052

= .oooogi ,
which is about right when

l/b is about 6, but takes no account of the aspect ratio l/b.

The theory is capable of extension to the curved aerofoil. It is

a matter of experience that in the neighborhood of the leading edge

the air stream is rising, whereas in the neighborhood of the trailing

edge it is falling. Let j be the angle at which the air is rising. Then

the action of the aerofoil is to convert upward moving momentum

into downward moving momentum, and the reaction of the fluid

on the plate is

P = 2pSU2
(sin i + smj)/g.

The factor 2 might be replaced by a constant multiplier k if it should

be found that a total vertical depth of 2b were not a just value for the

stratum of air affected.

Nobody recognizes better than Lanchester himself that this argu-

ment compounded of equal amounts of appeal to experiment and

to dynamics is justified mainly by the fact that it gives the desired

result and is suggestive.

9. Experimental Results. The actual experimental results for

the pressure, P*, on a plane inclined at an angle i to a stream, are

expressed in terms of the pressure Pgo on an equal area normal to

the stream. For air of standard density the values of Pgo for square

planes are

P9o
= .001$SU2

,
P in Ibs, U in ft/sec, S in sq.ft,

Poo = .00325F
2

,
P in Ibs, V in mi/hr, S in sq.ft,

P9o
= .oo6oSF2

,
P in kg, V in km/hr, S in sq.m,

POO = -oj&SU
2
,

P in kg, U in m/sec, S in sq.m.

These values are for square planes of large size; that is, of area

upwards of 12 square feet (a trifle over i m2
). For smaller areas a

correction factor c must be applied, so that the pressure is not P but

cP. The values of this factor are given in the accompanying table.

Correction Factor for Planes of less than 12 fP

S o.io 0.50 0.75 i.oo 3.00 5.00 8.00 12.00

c 0.86 0.88 0.89 0.896 0.93 0.97 0.98 i.oo

The pressure also varies with the aspect ratio, which is the ratio

r =
l/b of length to breadth, that is, P = c'P where c' is another

correction factor dependent on the aspect ratio r.
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Correction Factor for Aspect Ratio r

r i 1.5 3 6 10 14.6 30 50
c' i.oo 1.04 1.07 1. 10 1.145 I - 2 5 I -4 i-47

The two tables show that as a normal plane is smaller the pres-

sure is relatively less, and as the plane is more elongated across the

wind the pressure is relatively greater.

For planes inclined at an angle f to the direction of the stream,

the pressure is decidedly irregular as a function of i, but for small

values of i may be represented by the simple expression Pt
= kP^i ,

where k varies with the aspect ratio r and where the range of values

of i for which the simple expression holds also varies with r.

Values of Factor k in Pi =

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
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o.i

0.2

0.3

0.4

0.5

\

10

Leading Edge

The relation between aspect ratio r and the constant k may be

expressed approximately by the linear relation

k =
.032 + .oo5r,

so that the pressure takes the form

Pi = Ao(.o3 2 + .oosr)f,

where i is in degrees. The relation, however, is nowhere near valid

except for small values of the angle i. The actual curves for the ratio

are given in figure i. The irregularity of these curves will

serve as an indication
- , . fof how unsatisfactory

in aerodynamics em-

pirical formulas must

necessarily be.

The position of the

center of pressure on

the plane is measured

from the leading edge;

that is, from the edge
which is further up
stream; and is ex-

pressed as a fraction

of the width of the

plane. When the plane

is normal to the air

stream, reasons of sym-

metry show that the

center of pressure must

be at the center of the

\

Cer te

50 60 70 90"

Fig. 2. Curves of Center of Pressure (after Eiffel) for

Aspect Ratios, f, i, 3, 6. plane. When the plane

is inclined the center

of pressure must still lie in the middle line of the plane. The distance

from the leading edge varies both with the angle of incidence i and

with the aspect ratio r. The variation is indicated in figure 2. The

irregularity of these curves is such that no satisfactory empirical

equation can be given for the position of the center of pressure,

although it is clear that for any given aspect ratio the position for

the first few degrees might be represented tolerably well by a linear

relation. It should be observed that the greater the aspect ratio

the further the center of pressure lies from the leading edge.
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The irregularities of the functions which arise in expressing vari-

ous important properties of pressures in fluid motion are such that

no satisfactory insight into the behavior of fluids can be obtained

without a considerable study of theoretical fluid dynamics.

10. Factors of Proportionality. Not only is it necessary to

change a physical quantity from one set of units to another; it is

also important to change a factor of proportionality; for instance,

if P = .001$SU2 be the formula for the pressure on a normal plane
in pounds when velocity is in feet per second, it may be required to

find the formula when the velocity is in miles per hour. It is not

possible here to change feet per second formally as indicated in Art. 4

to miles per hour. It is necessary that the value of .001 $SU2 when

U is expressed in feet per second should be the same as the value of

kSV2 when V is expressed in the equivalent number of miles per hour.

Now, if U is i ft/sec, V f mi/hr; and the equation

.ooi 55(i)
2 = *S(f)

must hold. Hence
k =

I (.001 5)
=

.0034.

(The value f is about 3% in error, and its square about 6%. If

the 6% be deducted from 34 the result is 32, which checks with the

formula given.) The general inference is that in converting the

value of a factor of proportionality from one set of units to another

it is necessary to multiply by the reciprocals of the ratios of the

units, and not to substitute directly the ratios.

This inference may be demonstrated in detail as follows:

Take for illustration the formula

P = .001sSU2
.

The quantity .0015 is physically of the sort P/SU2
,
as may be seen

from the equation

.0015
= P/SU2

.

It is Ib divided by ft2
,
and by (ft/sec)

2
. If the quantity be written

with the symbols designating its quality the result is

.0015 Ib

ft2 (ft/sec)
2

'

Now if Ib be changed to kg or to any other unit and ft to m or other

units and ft/sec to any other units, by the formal rule of substituting

values as in Art. 4, the result will be the correct value for the new

factor of proportionality. For example:

\
\

\
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.0015 Ib .001 5 (.45kg)

ft
2
(ft/sec)

2
(.3 m)

2
(.3 m/sec)

2
=

The result is that in the metric system the formula for the pressure

should be
P =

(The value given is .078 instead of .083. The discrepancy is due to

the use of .3m =
ft, which is in error by i|%. As this factor occurs

in the denominator 4 times, the result should be in error about 6%
of .083, i.e., about .005, and subtracting this the result is .078, which

checks. This example is a good illustration of the care that must

be used to avoid a small percentage error in the value of a conversion

factor such as .3 when that factor enters a large number of times

into the expression to be calculated.)

11. A Moving Plane. It has been assumed that the plane is

at rest at an inclination i to the direction of the air stream which is

moving with a velocity U. The same pressure P would arise if the

plane traveled with velocity

U in still air. It is only

the relative velocity which

counts. In case it is con-

venient to consider both the

air and the plane as in

_. motion, the pressure P
Fig. 3. Pressure on Plane Moving across Wind.

must be calculated by using
for U the relative velocity of the plane and air and for i the angle
between the plane and the direction of the relative wind. If U
be the. velocity of the air and u that of the plane, the relative

velocity is U u provided both U and u be drawn as vectors and

the difference U u be a vector difference. If, for example, a plane
which makes the angle i with the wind velocity is itself moving per-

pendicular to the wind with velocity u, the vector diagram (Fig. 3)

shows that the numerical value of the relative velocity is (U2
-\- u2

)*

arid the actual angle between the plane and relative wind is not i

but <f>
= i tan-l

(u/U) in radians or f~- tan~!

(//) in degrees.

The pressure is, therefore,

P =

This result may be used to obtain a preliminary idea of the turn-

ing of a windmill or of a propeller. Suppose two or more surfaces
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5 are inclined at an angle i to a wind stream and are centered on

arms of length b from the axis of rotation about which the mill is

rotating with angular velocity co. The velocity of the vanes is across

the wind and u = co/. With

radian measure of angle the pres- f^ \
s

^_u_

sure on each vane is

P = kS(U*

where

k = .OOI 5 (.03 2 + .005?) X 57-3- Fig. 4. Pressure and Torque on Moving
Vane.

The thrust down the axis is T
P sin i and perpendicular to the axis it is P cos i\ the torque about

the axis is PI cos i due to each vane. The power absorbed by the

mill is the torque multiplied by the angular velocity or

n = nkS(U* + co
2
/
2
)p - tan^M/C/)]^ cos i

if n be the number of vanes. This has a definite maximum as a

function of co if i be considered as known. Moreover w comes in only

in the form /# for

These formulas are good only if </>
= z tan"1

(co//7) is a small

angle so that P may be assumed to vary with the angle, and if the

vanes do not interfere with each other's action. Moreover the tan-

gential drag has been neglected, the pressure being assumed to be

strictly normal to the vanes, whereas at high velocities and very small

angles the tangential drag is not negligible.

In the calculation of II it was assumed that the area S is cen-

tered at a distance / from the axis; if the area were distributed be-

tween I s and I + s (with S =
2sb) the inner parts of the vane

would have smaller total velocities and larger angles between the

relative wind and the plane. The evaluation of P, T
1

,
II would involve

an integration. Another problem will, however, be treated to illus-

trate this principle. Suppose a plate 2$ by b mounted on an arm of

length / and rotated with angular velocity co in a plane in still air,

the plate being inclined at an angle i to the plane of rotation. Let

y be the distance from the center to any strip dy by b of the plate;

the total distance from the axis is / + y. The velocity of the center
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is U = to/

*'. Hence

that of the strip is U =
co(/ -f y). The angle is constantly

P = C
S

J- t /
2/

tv

t

V.
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6. Make the change of units to verify Pw = .078 SU2 from PM = .oo6o5F2
.

7. Make the change of units necessary to verify the formula: Pgo = .00i$SU*

(P in Ib, U in ft/sec) from Pgo = .oo6oSF2
(metric).

8. Given W du/dt = 32.2^ in the English system. Make the change of units

to find the numerical multiplier if W is in kg, u in m/sec, F in kg. The answer

should be about 9.81.

9. How much force is required to hold a plate of 10 ft2 normal to a 2o-mile wind?

How much additional force if the plate is being moved 3 mi/hr into the wind?

Can a i5o-lb man hold the plate if his coefficient of friction is o.i? At what

angle must he stand?

10. If an automobile with top up exposes 6 ft
2 more of effective normal sur-

face to the wind and if the automobile is driving 25 mi/hr into a 2 5-mile wind,

how much is the additional force due to the top and how much additional power
is required?

11. A rectangle is held at an angle of 6 to a 20-mile breeze. How fast must

it be moved across the wind (a) to halve the pressure, (6) to double the pressure,

(c) to reverse the pressure?

12. A skater whose coefficient of friction is ju= 0.03 and whose weight is

1 50 Ib exposes (with sail) an area of 12 ft
2 normal to a 1 5-mile wind before which

he runs. Find his speed if r =3. Ans. 4! mi/hr.

13. A skater has a sail of 20 ft
2

,
r =

3, and a following wind of 20 mi/hr.

At what angle i must he set his sail so that there is equilibrium between his fric-

tion and the forward thrust on the sail? Take W = 150 Ib, ju
= 0.03. What is

the cross-wind thrust?

14. How fast will the skater in Ex. 13 move if i = 9?
15. A plane 50 by 8 ft moves in a circle of 2oo-ft radius with a velocity of

100 ft/sec and an angle of i = 8. Find the pressure if the surface is assumed

centered, find the actual excess pressure, the moment about the central line,

and the distance of the center of pressure from the line.



CHAPTER III

THE SKELETON AIRPLANE

12. Single Planes at Different Angles. Before proceeding to

the discussion of actual airplanes with cambered wings the simpler

analysis for the case of a skeleton airplane with a flat wing will be

taken up.

The airplane will be considered as reduced, so far as its mass is

concerned, to a single point, which will be called the center of gravity

(C. G.) Support is furnished by a single flat surface of area 5, corre-

sponding to the main wings. (See figure 6.) The external applied

forces are three: namely, the weight

W, acting down, the propeller thrust

T, acting forward, and assumed for

^e Present to pass through the cen-

ter of gravity, and the air pressure

P, acting normal to the wing.

Let it be assumed that the ma-
Fig. 6. Horizontal Flight, Propeller . . . , , , A , A ,

Thrust Horizontal. chme 1S m horizontal flight, and that

the wing makes an angle i with the

horizon, so that the wind pressure P, being normal to the surface by

assumption, makes an angle i with the vertical.

The conditions of equilibrium for uniform motion are

T = P sin *, W = P cos i . ... . . . (i)

If U be the velocity of flight, the air pressures may be represented

approximately for small values of the angle i by the equation

P = kU2
Si, ........ . -\ . (2)

the pressure varying as the square of the velocity, and as the angle

of inclination of the plane. The value of k depends on the units in

which P, U } Sj i are measured. Numerical values may be found in

Chap. II.

The work done by the force T is the product of the force by the

distance of horizontal motion; and the power or rate of doing work
22
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is, therefore, the product of T by the horizontal velocity U. Hence

n = TU = ku*si 2
, ......... (3 )

where the symbol II represents the power, and where sin i has been

set equal to i since i is assumed to be small and to be measured in

radians.

If the weight and surface be regarded as given, the velocity and

the angle i which the wing should make with the propeller shaft

or the horizontal are connected by the equation

W = kU2Si ........... (4)

inasmuch as for small angles cos i may be set equal to i. It is possi-

ble to eliminate the variable i between equations (3) and (4), and

obtain a relation between the velocity of flight and the power ex-

pended, namely:
n =

In this expression the value of k, suitable for radian measure of angle

in (2), must be used.

This shows what might appear at first sight to be a paradoxical

state of affairs, namely, that the greater the speed of flight the less

the power required for the propulsion of the airplane, it being as-

sumed that the design is so made as to give the correct value of i.

The result is not paradoxical because as the machine is supposed

to fly faster the angle i must be decreased in the design, so that we

have to deal not with the faster flight of an actual machine, but

with the faster flight of a series of machines designed to fly at a series

of speeds. As the pressure varies with i and the backward compo-
nent pressure varies with i

2 the diminution of i cuts down the force

very rapidly indeed so rapidly that, as shown above, the power

required is actually diminished. It may be pointed out that one

of the most serious difficulties in the early days of the airplane was

to get the airplane started. In order for it to fly at all it had to have

a considerable forward velocity. The situation was such that if

the machine could get a fast enough start it had sufficient power to

continue; but it did not have power enough to start.

13. Single Plane with Fixed Design. Suppose that instead of

considering a series of airplanes with different angles i between

the supporting plane and the direction of the propeller thrust we

treat the steady flight of the same machine at different speeds. Let

i be the fixed angle between the propeller thrust and the plane as
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before, and j the angle which the propeller thrust makes with the

horizontal, measured positively when the direction of the thrust is

above the horizontal (Fig. 7).

The angle between the plane and the direction of motion, which

is horizontal, is then i + y, and

P = kSU*(i+j) . . . ....... (6)

Horizontal and vertical components are

T cos./
= P sin (i + /), W = T smj + P cos (* +j). . (7)

As the angles i andy will be considered small, set siny =j, sin (i }- j)

= i +j, and cosy = cos (i +j) = i. The value of T is small com-

pared with W because it contains

i -\-j squared. The value of T sin j
or Tj is still smaller compared with

_ ^^ r W, and the equations may be written:

T = ksu*(* +y)
2

,

W = kSU*(i +j) ... (8)

Fig. 7. Horizontal Flight, Propeller Tr . . , . . ,

Thrust Inclined If W, S and ^ be considered

given, the second equation shows

that the velocity of flight varies inversely as the square root of i -\-j.

If, for instance, i = 4 andy = o for horizontal flight at the velocity

U, j must be 12 for horizontal flight at the velocity \U . As the

formula for the pressure which states that the pressure varies directly

as the angle between the plane and the direction of flight is only

reasonably correct up to angles of 14 to 18 for planes of ordinary

shape or aspect ratio (see Art. 9), the argument which is given is

intended only to show the very rapid increase mj which must take

place as the speed diminishes. The propeller thrust may be expressed

in terms of U by eliminating the variable j between the equations

(8), so that

The propeller thrust, therefore, increases as the speed diminishes;

the power is again seen to increase as the speed decreases, and to

decrease as the speed increases. Indeed, to the order of approxima-

tion used, the result is identical with (5).

14. Plane with Parasite Resistance. The next approximation

to reality in an airplane will be made by assuming that, in addition
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to the wing S, there is an opposing surface S' normal to the wind.

It is customary to treat the resistance of the body of the airplane,

that is, the parasite resistance, as that due to a certain amount of

surface normal to the direction of flight. The forces acting are,

then: T, P, W, and P' = k'S'U*. The conditions of equilibrium

are (assuming j =
o)

J = Psmi + k'S'U*, W = Pco&i . . . . (10)

Let cos i = i
,
sin i = i, and substitute for P. The result is

T = kSUH2 + k'S'U\ W = kSUH ..... (n)

The elimination of i gives for the power

n = TU =~ + k's'u* ........ (12)

The first term Wz

/kSU corresponds to the power consumed by

wing resistance alone, and, as before, diminishes as the speed in-

creases, owing to the diminution of the angle between the plane and

the direction of motion. The second term represents the power con-

sumed by the parasite resistance, and increases as the speed increases.

There must then be a particular speed, U, for which the power re-

quired is a minimum. The calculation for determining this speed

and the power then required is as follows:

dU
dU

~

kSU2

U =

+ $k
f

S'U* =
o,

3

The value of k suited to radian measure of i must be used; k
f

does

not involve angle at all because S' is the normal surface representative

of the parasite resistance.

The last equation shows that for the same machine (S'/S un-

changed) the weight carried per horse power varies inversely as the

speed, when the speed is the most economical; and that for the

same machine (SS
f =

const.) the most economical speed varies as

the square root of the weight. Hence, if the machine be loaded with

extra weight the speed increases, and the weight carried per horse

power decreases.
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If two machines were similar in design in all particulars the sur-

faces would vary as the square of the linear dimensions (length over

all or length of wing) ,
and the weight, depending on the volume, would

vary with the cube of the linear dimensions. The most economical

velocity would, therefore, vary with the square root of the linear

dimensions, and the horse power required with the y/2-power of the

dimensions. This very rapid increase of power required would indi-

cate that the linear dimensions of the machine could not be indefi-

nitely extended unless changes in design could be made which would

keep the weight from mounting in proportion to the cube of the

dimensions. One of the directions in which weight has been pro-

gressively saved in the last decade is by the construction of engines

more powerful in proportion to their weight, so that at present a

good engine may develop about ^ H.P. per pound weight, whereas

in early days only ^ H.P. or less per pound was developed.

The term "most economical speed" as used above refers only

to the minimum consumption of power in flight, and not at all to

the determination of the speed which would be most economical

commercially where the important element is the amount of useful

weight, that is, of weight above that of the machine and its equip-

ment. Moreover, the power is here calculated as though due to an

external applied force T.

Example. Let W = 2000, S =
500, aspect ratio =

6, so that

Pi = o.o6Pwi. Find the angle i for horizontal flight if II = 30 H.P.

Find the angle j for flight at 70 ft/sec and 40 ft/sec. Find the

additional H.P. required if the machine has the equivalent of 6 ft

of parasite surface normal to the wind, and the most economical

speed.

TakeP9o
= .001$SU2

. Then

W = 2000 = P = .00009 X 500 X UH,

T = U/U = i65,ooo/*7
= Psini = .00009 X 500 X U2 X *'

2
/57-3-

For these equations i is in degrees, and sin i has been replaced by

*/S7-3- The equations may be written

U2
i = 44,400, U3i

2 = 21,000,000,

Ui = 47, u = 95 ft/sec,

and hence i = 5. Next,

W = 2000 =
.045 X (7o)

2
0* +./),
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from which j = 4. At U = 40 ft/sec, i +j = 28 and j = 23.
At such values of i +j, however, the empirical expression for P is

far from right for aspect ratio 6, and the approximations for sine

and cosine are no longer very good. Hence it is by no means certain

that the machine could fly at all in this attitude, and it is probable
from general considerations that it could not.

At U =
95 ft/sec the power absorbed by 6 ft of parasite sur-

face is

II =
.0015 X 6 X (95)

3 =
.009 X 860,000 = 7740 ft. Ibs/sec.

The additional horse power is 14.

The most economical speed of operation is determined from

formula (13), where k must be the value appropriate to radian meas-

ure of angle. The value of k above is .00009 when i is in degrees, or

,.0051 when i is in radians. Hence

U = A/2000 = 45. = 88 ft/sec>
^3 X .0051 X .0015 X 500 X 6 -5 1

15. Inclined Flight. Consider next the case of the airplane

which climbs at an angle with the propeller thrust at an angle j
to the line of flight, and with no parasite resistance. The conditions

for uniform velocity are (Fig. 8)

T = W sin (0 +j) + P sin i, W cos (0 +j) = P cos i. (15)

where the resolution of forces has been made along and perpendicular

to the direction of the propeller thrust. With the customary approxi-

mations for the trigonometric func-

tions of the small angles i and j9

T = TF(sin0+ycos0)

W (cos -j sin 0) = kSU2
(i

The equations may be further re- Fig. 8. Inclined Flight,

duced if is small as it generally is

when positive; large negative values are of course of frequent occur-

rence, and for such values T may be zero because the machine may
descend with the engine cut off.

If j be eliminated from the expression for the power II and if

j sin be neglected relative to cos 0, and/5 relative to i,

W2 cos2= UW sin +
kSU



28 INTRODUCTION

The first term is the power consumed in raising the machine and the

second that in overcoming wing resistance. The power is a minimum
when U* = W cos2 9 -r- kS sin 9 for any given 9. This gives

^ 2TF
!
sin* 9 cos 9

II =
j ,

and tan 9 = i -\- j.

Since i +j is small, by the assumed approximations, 9 = i + j
is small, and the results hold only for small angles of climb. For

these angles, the line of flight bisects the angle between the plane and

the horizontal.

The velocity of climb is v = U sin 9 and hence the velocity of

climb when the power is least is found from

& = U2 sin2 9 = W cos2 9 sin Q/kS.

This is a maximum when 9 = sin"1

.577
= 35.2. For such large

values of 9 the analysis is, however, not valid because i +j = tan 9
is no longer small.

The equations for uniform motion with parasite are

T cosy = W sin 9 + P sin (i +j) + k'S'U*,

W cos 9 = P cos (i +j) + T siny,

if the resolution be made along and perpendicular to the path. With

the usual approximations these equations become

T = W sin 9 + kSU*(i +7? + k'S'U*,

IT cos 9 = kSU*(i+j),
n = WU sin 9 + kSU*(i +j) z + k'S'U*

= WU sin 9 +
W
\ fr Q + k'S'U*.
kSU

The power is least when

dU , . W2 cos2 9 .

f/2 =
W **

f

e
(V tan2 9 + i2k'S'/kS

- tan 9)
ok o

for any given value of 9. The value of i +j is

6k'S' i

kS V tan2 9 + iWSykS - tan 9

If k' = .0015 and k = .0051 for radian measure, 5r =
8, 5 = 400,

and W = 2000, the results are
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2000 COS 9,

29

.072
(Vtan

2 9 + .0706
- tan 9),

0353

R

W

Vtan2 9 + .0706
- tan 9.

It is only for values of 9 less than 12 that i+j is small enough so

that the approximations may be considered fair.

16. Circular Flight. Let the machine be turning uniformly in

a horizontal circular path of radius R. Let the angle between the

wing and the direction of flight be i, and let the plane be banked up
at an angle <. If the velocity of flight be U and if the area S be treated

as centered at the distance R from

the axis of revolution, the pressure

on the plane is

P = kSUH normal to the plane.

Let this be resolved first into two

components, one down the wind

equal to P sin i, one in the plane

through the axis of revolution equal

to P cos i. The first component

equilibrates the propeller thrust T

supposed horizontal. The second

must sustain the weight W and

also furnish the centripetal force

WU^/Rg necessary to keep the machine in its circular path. Thus P
cos i must be resolved into two components (Fig. 9)

P cos i cos
<t>
= W, P cos i sin < = WU*/Rg . . . (16)

Let cos i = i . The relations are

kSUHcas^ = W, kSism<t> = W/Rg (17)

Hence,
tan < = U*/Rg (18)

The banking angle must satisfy this relation; the tangent of the

angle varies inversely as the radius of the circular path and directly

as the square of the linear velocity. If U = 100, tan will be i and

<f> 45 for a radius R 310 ft.

The forward thrust and power used are

T = P sin i = kSU**, H

Fig. 9. Circular Flight.

n = TF2sec2 <t>

kSU (19)
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It follows that the effect of the turn is to consume additional

power, varying as the cube of the velocity just as when parasite

resistance was added. Put in another way, it may be stated that

for S and U given the angle i between the wing and direction of

flight must be as though the weight were W sec < instead of W, and

hence i must be larger for a sharp turn with a steep angle of bank

it must be considerably larger than for straight-away flight. If

there is parasite surface 5
1

', the expression for the power is

where the first turn is that due to wing resistance in horizontal flight,

the second the added amount due to turning, and the third that

due to parasite. The additional power required for turning is by
no means inconsiderable compared with the parasite consumption
of power; it is in the ratio

W* : kk'SS'&g'*

In the previous example, W = 2000, k =
.0051, k' =

.0015, 5* = 500

5" = 6. With these figures the ratio is (4I5/.R
2
) which is i for R

=
415, and 4 for a radius of 208 ft. Hence if this machine had to

make a turn of 280 ft radius at 95 ft/sec, the power taken by para-

site resistance would be 14 H.P., that by turning would be 56 H.P.,

whereas that due to forward motion would be about 30 H.P. a total

of 100 H.P.

In Art. ii it was shown that when a plane turns in a circle the

pressure is slightly greater than for the straight path at the same

velocity. The proof applied only to the motion of a plane when not

banked for the turn, but similar considerations would show that for

the banked plane there would be a slight excess of pressure. This

has been neglected in the calculations of this article. It was also

shown that the resultant pressure was displaced outward so as to

give a moment about the central line of the plane. This, too, is true

when the plane is banked in turning with the result that the plane

cannot turn without setting up a moment tending to spin the plane

about the horizontal (or a line nearly horizontal) in the direction of

flight, and thus over-bank it. Rudder control alone must, therefore,

be unsatisfactory.

17. Plane and Elevator. In the discussion thus far it has been

assumed that the machine could fly at any angle i of the design, or
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at any angle j for the propeller thrust, whereas, as a matter of fact,

not only must the forces be in equilibrium in respect to components,
but also in respect to moments. Suppose the machine to fly with

the propeller thrust horizontal, and to be in equilibrium in regard

to moments. The three forces W, P, T must then pass through a

point, and this point is the center of gravity if it be assumed that

the propeller thrust goes through the center of gravity.

To fly faster the machine must pitch down slightly so that the

angle j is negative, and the angle between the plane and the wind

direction is less than i. This causes the pressure vector to move
forward toward the leading edge of the plane, because the smaller

the angle of attack i the nearer is the center of pressure to the leading

edge (see Fig. 2, Art. 9). Hence, if the machine could fly withy =
o,

it cannot fly with j

negative unless some

moment is introduced

to equilibrate the mo-

ment which arises

from the motion of #" >

the center of pressure;

and, in like manner, if
Fig. 10. Plane with Elevator.

j should be positive

the center of pressure would retreat, and a moment would arise

which must be balanced.

Suppose, therefore, that at a distance / behind the center of

gravity there is introduced a plane of area Sf

which may be tipped

up and down. This plane is called the elevator, and is used for steer-

ing in a vertical plane. The size of the plane should be so adjusted

relative to the main surface S that the pressure upon it can equili-

brate the moments due to the motion of the center of pressure. The

three conditions for equilibrium are (Fig. 10)

W = kSU*(i +j) + k'S'U**',

T = kSU*(i +j)* + k'S'UH'*, . . * * . . (21)

M = akSU*(i +y) -
Ik'S'UH',

where i' denotes the angle between the tail plane and the horizontal

direction of flight (or better, from the "neutral" direction, if the

down-wash from the wing be considered), where k
f

may differ from

k because of the different aspect ratios of the tail plane or elevator
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from that of the main plane, and where a is the arm of the pressure

P on the main plane with respect to the center of gravity. (The
arm of the pressure P' on the tail plane is really / cos (i

r

j) but

may be taken as / since i' j is assumed to be small.) Stalling

moments are positive, diving moments negative.

Suppose that whenj = o the angle of the elevator i
f

is zero, so

that the tail plane is "neutral" and a = o. For flight withy at any
value other than zero the tail plane cannot be neutral, nor can a be

zero. The values forj which are reasonable for any flying attitudes

are from f to such values that i +j is some 15; that is to say,

a total range of 15 for the angle between the plane and the wind

is about all that can be treated with any satisfaction. For this range

of values the distance of the center of pressure (see Fig. 2, Art. 9),

from the leading edge of the wing varies from o.i to 0.3 of the breadth

b of the wing for square planes, from 0.26 to 0.356 for those of aspect

ratio 3, and from 0.256 to 0.386 for those of aspect ratio 6. The

variation is irregular, especially for angles under 5. Between 5

and 15 one may write (by reading from the chart in Fig. 2),

x/b .19 .0071, for aspect ratio = i,

x/b = .16 .015^, for aspect ratio =
3,

x/b =
.23 .oioi, for aspect ratio =

6,

where x is the distance of the center of pressure from the leading

edge of the plane. This shows that the value of a is a =
cbj where

c is somewhere between .007 and .015, according to the aspect ratio

of the elevator.

As S' is ordinarily small relative to 5, a first approximation may
be had by setting W = kSU2

(i +j), and neglecting k'S'UH'. Sub-

stitute for U2 in the expression for M. Then

,.. Ik'S'M ,..(= W(a\ kS

If this is to vanish for any particular value of j, the elevator must be

set at the angle

Substitute for a its value cbj. Then

/ /.\UtjK / \

* = -v (* +j)~ - ........ (22)
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This shows that if/ = 10 and i +/ = 15, such as might be the

case for slow flight, if S/S' =
20, which is a normal proportion in

area between main wing and elevator, and if b/l is J, and if c be

taken as o.oi, then i' = ioiik= k' . The elevator would have

to be turned up at the back edge. The pressure on the elevator

could be calculated if the velocity of flight were known. If U = 50

ft/sec when / = 10, the pressure is about 60 Ibs, though it will

depend somewhat upon the aspect ratio of the elevator.

18. Plane and Stabilizer. Distinct from the question of the

elevator is that of the stabilizer, which is a fixed plane of area S'

at a distance / behind the center of gravity. If i
r

denotes the angle
that this plane makes with the propeller thrust (not with direction

of flight) the weight and moment equations are

W = kSU*(i +/) + k'S'U*(i
r

M = akSU*(i +/) -
lk'S'U*(i'

where a is the distance of the pressure vector forward of the center

of gravity. In the normal attitude of flight / may be taken zero

and a may be written a . The moment equation is

o = aJiSm - Ik'S'UH'.

The center of gravity no longer lies in the line of pressure, but slightly

behind it if i' is positive, that is if the stabilizer is turned down at

the back, and in front of it if i' is negative. The moment developed
for any other value of/ becomes

Now it is a aQ} the change in a, which equals cbj . Hence

Ik'S' i' , .

-r X 7
-

cbj,

or

M =

It is seen, therefore, that the introduction of the fixed tail plane

(stabilizer) increases the moment Wcbj which must be taken care

of with the elevator in uniform flight unless i
r

>i. Whether this means

that a larger control (elevator) surface must be provided or that the

elevator must be turned through a larger angle to regulate the flight

of a machine with stabilizer, as compared with one without, cannot
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be surely inferred; for the surfaces of stabilizer and elevator are so

near together that there is interference in their action.

Entirely distinct from the question of the moments which arise

in uniform flight, where the condition W = kSU2
(i +j) may be

used, and where the problem is to set the elevator in such a way as

to make M =
o, is the question of the moments which arise when

the machine is slightly disturbed from uniform flight, as by a gust,

or by an accidental use of the elevator whereby the machine is pitched
to a slight angle without having time to adjust its velocity to the

new angle of flight; so that the equation W = kSU2
(i + j) cannot

be used. Suppose the machine is moving uniformly with the veloc-

ity U, and that the angle i +j is increased by the amount dj. The

pressure on the main plane is increased by kSU2
dj, and the center of

pressure moves back by the amount cb dj. The moment

akSU2
(i +j) becomes (a

- cb dj)kSU
2
(i +j + dj),

which is greater than the moment a dSU2
(i -\-j) by the amount

akSU* dj
- cbkSU2

(i +j)dj.

The pressure on the stabilizer is increased from lk'S'U2
(i' + j) to

lk'S'U2
(i

f + j + dj), which produces a negative moment of the

amount k'S'U2
dj. The total increase in the moment is, therefore,

U2
dj[_kSr

-
cbkS(i + j)

- Ik'S' X /].

In the condition of uniform flight

akSU*(i +j) = lk'S'U2
(i' +j).

Substituting for a, the change in moment is

dM = U2
dj \lk'S

f

(?r-~\ -cbkS(i +7*)] (24)
L \* -hr/ J

This moment dM will tend to restore the machine to its former

attitude (pitch it down) if dM is negative, but will tend to pitch the

machine up still further if dM is positive. The value of dM/dj is

surely negative if i
f

is zero or negative, and the larger the negative

value of i' the greater will be the moment tending to restore the

machine to its previous attitude in uniform flight. The value of the

restoring moment if i' = o, U 95 ft/sec, 5 =
500, S' =

25, i = 5,

j = 4, c = o.oi, k' = k =
.00009, ^ = 27, b =

9, is dM = 630

dj Ibs. If i' = 1 the result is increased by about 60 Ibs to 690;
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but if i' be i, the result is decreased by about 60 Ibs to 570. If

there were no stabilizer at all (S' =
o) the moment would be about

320 Ibs. The considerable additional stabilizing effect due to the

presence of the fixed tail plane is, therefore, apparent.

EXERCISES

1. Use the sine law P = kSUz sini for the pressure. Write the values of

T, W, II, for the airplane moving horizontally with the propeller thrust also

horizontal, and eliminate i, thus determining the expression for the power with-

out making the approximations sin i i and cos i = i .

2. Show that on the hypothesis of Newton's sine-square law, P = kSUz sin2 i,

the power required is independent of the velocity (the approximations cos i = i,

sin i = i may be made). Compare with (5).

3. A machine spreads 400 sq.ft of a surface. The angle i is 6. The weight

of the machine is 1000 Ibs. Use the formula Pt
- = o.o6Py)i, with Pgo = 0.00155U2

.

Find the velocity of horizontal flight and the horse power required.

Ans. 68 ft/sec; 13 H.P.

4. With the data of the previous exercise find j, the angle of the propeller

thrust with the horizontal if the speed is 30 mi/hr and if the speed is 70 mi/hr.

Ans.S.?', -3-4.

5. Given parasite resistance equivalent to 4 ft
2 normal surface. Find the

most economical speed in Ex. 3. Ans. 49 mi/hr.

6. In the case of horizontal flight at the most economical speed what pro-

portion of the power is used in overcoming wind resistance, and what proportion

in overcoming parasite resistance? What are these proportions if the speed is

double the most economical speed?

7. Show that if a plane without parasite glides uniformly without power

(T = o) at the angle 0, i = -0 and U varies inversely as #. Comment on the

conclusion that the plane glides faster on less inclined paths!

8. Let the angle of glide be reckoned positive (instead of negative) below

the horizontal. Assume a parasite surface S'. Show that for uniform velocity

with power off (T =
o), the relation i<Q holds and that

k'S'/kS = i cos * (tan - tan *)
= i sin (0 -

*)/cos 0.

Plot the right-hand side as a function of i, the unknown, for = 5, 10, 30,

60, 85. Show that if k'S'/kS is sufficiently small there are two values of i which

satisfy the condition for uniform gliding. Show that for a given value of k'S'/kS

there is a minimum angle of glide.

9. Solve the equation in Ex. 8 assuming i small and show that the minimum

angle of glide is = ta,n~i

2(k'S'/kS)*. Why must one of the roots be discarded

when is not small? Find a small value of i if is large.

I fe'C' '<?'

Ans. i = 1 tan - V i tan2 - = i =^ cot 0.
Kb R3

10. Find the speed at which the glider descends if i is small.
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11. Derive formulas for the increase of pressure and for the sidewise travel

of the center of pressure out along the wing when the banking is <f>. Show that

the results reduce to those of Art. 1 1 if < = o.

Ans. AP = Ps2 cos2 <^>/3/
2

, Ay = 2s2 cos 0/3/ (approx.).

12. If the data be as in Art. 16, in how small a radius may the plane turn

at a velocity of 80 ft/sec without expending more than 80 H.P.?

13. A plane with 5" = 400 ft
2
,
W = 1000 Ib, r =

6, can climb at sJ (o.i

radian) with U = 50 ft/sec. In how small a circle may it turn at the same speed

and what is the banking angle? What is the moment due to the sidewise motion

of the resultant pressure?

14. Write equations for spiraling down (with engine off) on a helix with

constant velocity, constant angle of decline, constant banking angle </>, and

constant angle i between the plane and the direction of flight. Compare the

minimum gliding angle with that which holds when < = o to ascertain whether

the spiral glide must be steeper than the straight glide.

15. From (22) calculate the value of i' if y = -2, i = 6, b/l
=

}, S/S' =
20,

supposing the aspect ratio of the wing is 6 and of the elevator 3. Calculate the

pressure on the elevator if U = 100 ft, and the moment M of the pressure.

16. Work out a formula similar to (22) from (21) on the assumption that

for j =
o, the elevator is not neutral but has *' = i'o and the arm a is OQ.

17. Verify the formulas for x/b from the graphs in Fig. 2.

18. Given a tandem monoplane, i,e., two planes of surfaces S, S' about equal,

inclined at angles i, i' to the propeller thrust, a distance / apart. Assume no

interference. Determine the position of the C. G. and the moment dM corre-

sponding to a change from j = o to j =
dj. Compare this with the result for a

single surface.
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CHAPTER IV

MOTION IN A RESISTING MEDIUM

19. The Forces. As an object, such as an airplane, goes through
the air there is a resistance or drag which, when the attitude of the

machine is unchanged, is generally assumed to vary with the square
of the velocity: R = ku2

. If the machine is falling vertically the

weight W also acts. If the machine is running along the ground, as

when alighting or departing, the acceleration of gravity does not

act in the direction of the motion, but there is additional resistance

of a frictional sort F which may be assumed in the first instance to

be constant; and there may be, furthermore, the propeller thrust

T acting forward. A more detailed analysis of the forces acting is

given in Art. 21.

20. The Machine Stopping. To determine the motion of a

machine when running along the ground to a stop, equation of mo-

tion is

Wdu/dt = -gF -gR, . ....... Vi)

where the frictional force (in pounds) will be treated as constant, and

where the air resistance (in pounds) will be taken as R = ku* propor-

tional to the square of the velocity. The equation may also be

written

TJ7 du dx jrr du ,-, / xWT 77 =Wu T = ~8F ~
8R ...... (2)

dx dt dx

The first form (i) involves u and /, and its integration will determine

the relation between the velocity and the time. The second form

(2) involves u and x, and, when integrated, will give the relation

between u and x.

To treat the first equation, we have

r
JF + ku2 W

Hence,

37
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or

if Jk \ if 47 k\
tan-' u- = tan-* __ _

g ?

or

u =
tan (gtVFk/W)

The time the machine takes to stop is

gVFk \ * F

The value of k will generally be of the form .001$S" ,
where S" is

the total equivalent normal surface, and is

5" = S' + (.032 + .oosr)S* sin i, sin i = *%7-3,

in the case of the skeleton airplane if the plane makes an angle of

f with the ground, if r is the aspect ratio, S the wing area, and Sf

the parasite equivalent normal area.

For the second equation the integration is

udu Cx
gdx

F + ku*
=

J W '

or

1V^ ~"~ - -
- w '

-zkgx -I

or
u, = FTf + kuf\ ^ _ J ........ (4)

K \_ \ f1 /

The value for the total distance run before stopping is

-)

If the air resistance is very small the total distance run reduces to

Wu<?/2gF, as is usual in uniformly retarded motion, by virtue of the

fact that log (i + x) = x when x is small. The logarithm which

enters in the expression for x is the natural logarithm to the base e,

and must either be looked up in a table of natural logarithms, or

must be converted from the base 10 by division by 0.4343, so that

WX =
o.86S6kg
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The relation between x and / may be obtained by integrating either

(3) or (4), or by elimination of u between these two expressions.

Example. Given a skeleton airplane with W = 2000 Ib, S = 500

ft
2

,
S' = 6 ft

2
,
r =

5, landing with i = 14.3. Find the landing

speeds and the length of run if F =
jj, W = o.2W.

At landing the lift P =
0.0015 X .057 X 5oow

2 X 14.3
= W =

2000. Hence Wo
2 = 3300 and UQ

=
57 ft/sec. The equivalent normal

surface is 5" = 6 -f .057 X 500 X 14.3 X J or 108. Hence k = .162.

v 2OO
i

I62 X ,x =
o< < vx

" loS10
(

* + ~~
)
= l62

.8686 X .162 X 32.17 \ 400 /

The run with the single drag of 400 Ib would be 255 ft. The back

pressure on the main plane has, therefore, materially reduced the

run. The parasite surface S' = 6 has not much effect at these low

speeds; the large surface S = 500 at the large angle i = 14.3 intro-

duces much more drag. Even if the machine were equipped with

braking surfaces (i.e., surfaces ordinarily held in the line of flight so

as to offer no resistance, but capable of being thrown out perpen-

dicular to the wind to give additional resistance on landing), the

additional parasite thus obtainable would not be very effective unless

the surfaces were large enough materially to increase the figure 108

for S".

As a matter of fact, machines are landed into the wind where

possible, and the motion depends on the wind velocity w. The

equation is

W du/dt = -gF -
kg(u + w)*.

Let v u + w. Then

Wdv/dt = -gF -
kgv*.

The equation between v and / is the same as that between u and /

above when at / = o the landing speed v = v is the same relative air

speed as u regardless of the wind velocity w. The machine comes

to rest when u =
o, that is, when v = w. The equation between

velocity and distance is

TT, du TI7 du dx , / NW = W-~ = -gF -
kg(u + w)\

dt dx at

Here dx/dt is the ground speed u = v w.

(v w)dv

F + kv2
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and the equation is not so simple as before. The integral is

and the total distance of run is

W
tan-1 VQ y- tan-1 w t/AY

fi T fi I

In the example worked above if w = 30 ft/sec the run is

2000

.8686 X .162 X 32.17

50 X 2000

logio
400 + .162 X 3300

400 + .162 X 900

tan-1

57
- tan-1 301/^22] = 22 ft.

400 *
400'

Fig. ii. Airplane Landing Force Diagram.

32.i7V.i62 X 400

This is a great reduction over that found before, and is due to the

fact that a large wind resistance is constantly operating.

21. Force Analysis. Such figures as have been obtained must

be regarded as very rough approximations. To get any really accu-

rate idea of the

distance run a

more careful an-

alysis of the

forces acting on

the machine must

be undertaken.

These are: the

weight W down
at the C. G., the ground pressure N upward on the wheels of the

landing gear, the rolling friction vN backward on the wheels, the

pressure R up on the tail skid, the sliding friction pR backward

on the skid, the drag D due to parasite, the wind pressure P on the

main plane, and the pressure P' on the tail plane and elevator (which

is sharply raised so as to bring the maximum pressure between the

skid and ground and thus increase pR). If i is the angle between

the main plane and the wind or ground, the components of P are

Psin*' back and Pcosi up, approximately Pf/$7 and P. The

components of P' may be taken as L' (down) and ZX back; they

cannot well be represented in terms of the angles which the stabilizer

and elevator make with the wind because of mutual interference.

The equation of motion is (Fig. n)
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%--,* -D-iy-vN- Pi/57.

As there is no vertical motion, the vertical forces are in equilibrium.

o = W P - N - R + L' (L
r

positive when downward).

As there is no rotation about the C. G., movements about that point

are zero. Let the distances of the skid below and behind the C. G.

be h, I respectively. Let the distances of the center of pressure of

P above and in front of the C. G. be b, a respectively, and the dis-

tance of N in front be a
1

'. Then

o = Pa + Nar + L'l + Pbi/$7
- vNh - Rh - Rl -

D'h,

neglecting any moment due to D. The two equilibrium equations

suffice to determine the unknown reactions R and N. Probably

fjiR is small relative to IR, and D'h relative to L'l. Let c = a + 2/57

and c' = a' vh. Then approximately

o = cP + c'N + II! - IR.

Hence
N = W - P -

cP/l -.c'N/l,

and the last two terms are surely small compared with either W or

P. Except at the moment of landing when W and P are about

equal, the conclusion N = W P seems justified. Also

R = L' + (c
-

c')P/l + c'W/l
-

c'L'/l
-

c'R/L

The terms c'R/l and c'L'/l are negligible relative to R and L'\ but

as P and W are large compared with Lf and R, it is not certain that

(c c'}P/l or c'W/l are negligible even though the c's be much smaller

than /.

In the equation of motion D and D' are small and will be omitted.

Then

W du/g dt = - MZ/ - (c
- c

r

}P/l
-

ttc'W/l
-
Pi/si -vW + vP

= -/*//
-

(v + rf/t)W - (i/57 + (c
~ c'VDP.

In this equation the term in W is constant, though small, and cor-

responds to F in the solution; the terms in L' and P both vary as

u2 and

It is probable that n(c <f)/l is not large relative to 2/57 for most

machines when in the landing position, but the term can hardly be

considered as always negligible. In the example worked out it was
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assumed that F = o.2W which is probably a high value; on the other

hand the resistance was taken as Pi/ 57 without the term pL' and

was probably somewhat small, for although L' is much less than

P, /A is greater than 1/57. The whole discussion shows how intricate

the application of the most elementary mechanical principles may
become when the airplane is in question.

22. The Vertical Dive. Consider next the case of free fall in

a vertical direction, distance being measured vertically downward.

The equation is then

W dv/dt
= Wg- gkv

2 ......... (5)

The acceleration becomes o when W kvz = o or

V = (W/k)*; .......... (6)

for this speed, therefore, the motion is uniform. If the machine is

falling with less than this speed V the acceleration of gravity pre-

vails over the retardation, due to the wind, and the machine increases

its speed. If, by any means, the machine could start downward at

a velocity in excess of V = (W/k) the resistance would prevail over

the force due to gravity, and the machine would slow up. The critical

velocity V = (W/k)* is called the terminal -velocity of fall because it

is the velocity which the machine approaches when it falls further

and further irrespective of whether the initial downward velocity is

greater or less than the terminal amount.

The equation of motion may be integrated either in the form

Pgdt r vdv
fygdz

J W '+kW~ kv* J W* W - k

where y is distance measured downward from the initial position.

The value of the first integral is

log gt,

or

The solution for v in terms of / is as follows:
2 gt/V

ir (V + Pb)
- (V - Po)e

(T 7) (v - v )e~'*
/V
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The time required to acquire a velocity v when falling from rest

in the resisting medium is

V V + v V

This equation shows that the time required to attain the terminal

velocity is not finite but infinite, and the same conclusion holds when
the fall is from any initial velocity VQ whether greater or less than V.

The equation (7) for v shows, however, that the velocity V is ap-

proached very rapidly as the time increases, owing to the presence

of the term e
,
which falls off exponentially; if V = 320 ft/sec,

the term is e which is very small after 15 seconds.

To find the relation between the distance and the velocity, inte-

grate. Then

or

2 w[ I kv *\
- 2^/>n

^-ir-l1 W J
...... (8)

or, introducing the terminal velocity,

[/
7^2\ ~ 2gy/V2~[

i-i-j J
....... (9)

Here again the expression e is noteworthy because of the rapidity

with which it fails off. If the terminal velocity be 200 ft/sec the

expression is e
,
and becomes equal to i/e after a fall of 625 ft, to

i/e
2 after a fall of 1250 ft, and so on decreasing in geometrical ratio.

If the terminal velocity were 300 ft/sec, the exponential factor would

be e
,
and would be reduced to i/e only after a fall of 1400 ft,

and i/e
2
only after 2800 ft.

As airplanes maneuver at great altitudes it is entirely possible to

dive down a distance sufficiently great so that the terminal velocity

will be nearly approached, particularly if the plane starts down

at its normal flying speed. The above formulas have been deduced

on the hypothesis that the machine is diving with the propeller cut

off, for the propeller thrust T has been omitted from the equations.

Experience seems to show that there is no very great addition to the

terminal velocity if the engine is left running, because at the high
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values of the terminal velocity the propeller is exceedingly inefficient.

However, if the propeller were left on, the machine would acquire

its terminal velocity somewhat quicker, because during the first part

of the dive the propeller would aid gravitation to a certain extent.

As the propeller thrust at these speeds is not a large fraction of the

weight in the case of most machines, the aid would not be very great.

23. Falling from a Great Height. The resistance of the air

depends on the density of the air, and, indeed, varies directly with

it, R = ku2 = cpu*. Therefore, at high altitudes, such as 20,000

ft, where the density is only about one-half what it is at the surface,

as the terminal velocity varies inversely as k
,
that is inversely as

p*, the terminal velocity would be 40% greater than at sea level.

In case a machine flying at 20,000 ft should be put into a dive, the

velocity would increase towards a terminal velocity which exceeds

that at the surface. It was remarked above, however, that if a fly-

ing body acquires a velocity in excess of the terminal velocity the

body will slow down. It, therefore, is quite possible that a machine

diving from a high level should acquire a velocity greater than it

could maintain as it descended into denser air. The equation of

motion when varying density is taken into account is

Wv^-= Wg cp(y)v
2

(10)
dy

If u v
2 be taken as the dependent variable, the equation is

du . 2cp(y) f ^-

This is a linear equation of the type

^ + P(x)y = Q(x\ , (12)

of which the solution in any standard book on differential equations

is found to be

ye
fP *

=
fe

fld
*Q(x)dx + C (13)

In order to integrate this equation with tables of integrals it is neces-

sary that P and Q should be such functions that

r spd*~, x

Pdxsaid \
e (*)*
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should both be found in the tables of integrals (or should be redu-

cible to forms there found).

It would, therefore, be necessary to fit to the observed curve of

density on altitude (Art. 60) an empirical equation of such form that

these integrals could be obtained (and this empirical equation might
not be one which would be simplest for other purposes). One ad-

vantage of the use of empirical equations is that a given curve or

table of data may be fitted reasonably well by a great variety of

equations, and that the one chosen to represent the data may often

be selected in such a manner as to simplify subsequent analytic

work. Consider, for instance,
a

(14)

This is convenient for integration because its integral is a logarithm

and the exponential of a logarithm is a power of y b
}
which in

turn may be integrated because Q(x) is a constant.

This equation contains two constants, a and b. The value of

the expression increases as y increases (downward) . Therefore, quali-

tatively, the formula appears to represent the change in density. It

is true that the density by this formula would become infinite when

y = b but if the value determined for b were sufficiently large this

would be no inconvenience. All that is necessary is that the empirical

formula should represent the density between an altitude such as

20,000 or 25,000 ft and the earth.

The way to fit the curve to the observed data is to write

py = bp
- a or py/p = bp/pQ

-
a/pQ ,

to plot z = py/po against p/po, and fit in the best straight line that

can be obtained. The constants b and a may then be read from the

graph. The work is as follows: consider y = o at 24,000 ft altitude

and take p/po from the standard table:

Alt. = 24,000 20,000 16,000



46 RIGID MECHANICS

constant and equal to the slope of the line. As a matter of fact the

ratio is not nearly constant and hence the relation cannot be well

represented by a straight line, nor the relation between p and z by
the form which was assumed because of its ease of integration. Never-

theless, the variables p/p and z could be plotted and a straight line

could be drawn as near as possible to all the points, and some sort of

values of a and b could be determined from the graph. With these

values of a and b the values of p/p for different /s could be calculated

from the assumed formula and compared with the actual known
values of p/p to see how bad or how good the agreement is. Another

method will, however, be followed.

Consider the ground as y = o and the y axis as upward. This is

more natural than to measure y down from some particular altitude,

whenever an empirical equation must be obtained between density

and altitude. The equation of motion is then

** (i5)
u/y u/y

and
du

___ 2cgp = _ = 2
, .

dy W
and

ite w J
y =

2g I e w J y
dy + C (17)

Now p dy is the amount of matter (air) between y and y + dy in a

column of unit cross section, and this is in pounds if p is in lb/ft
3

.

Hence fp dy is the amount of air between the limits of integration

in y. This amount is, however, proportional to the difference in

barometric pressure between the levels, and thus a table of the pres-

sure will give the value of fpdy already integrated. As the inte-

gral appears in the exponent, it is desirable that it be represented

empirically by a logarithm. Let F(y) be the amount of air estimated

in inches of mercury between y = o and y =
y. Then, from the

standard table (Art. 60), by subtracting the pressure at y from the

pressure at y =
o, the table

y = o 4000 8000 12,000 16,000 20,000 24,000

F = o 4.07 7.68 10.85 13.62 16.02 18.09

may be obtained. Try

F(y) = ft log (i +ay) . .... (18)
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This has the desired logarithmic form; it vanishes at y =
o, and

since it has two constants, a and b may be passed through two points
of the curve exactly, giving two equations

Fi = b log (i + ayi), F2
= b log (i +

for the determination of b and a. In particular

Fi'.Fz =
log (i + ayi) : log (i + ay2)

is an equation in a. It is equivalent to

(i + ayi)
=

(i +
' '

and may easily be solved if FiFj is a small integer such as 2. Let

y2
= 8000, and F2

=
7.68. Then 2F2

= Fi =
15.36. The value of

y\ is just under 20,000. Try y\
=

19,000. From the table F(19,000)
=

15.45. This is quite near enough to 15.36, though by interpola-

tion a nearer value might be had. The solution of

i + 19,0000
=

(i + Soooa)
2 = i + i6,oooa + 64,000,0000*

gives
a =

3/64,000, whence b =
24.1

is found by substitution. Hence

F(y) = 24.1 log (i + 32/64,000) ...... (19)

is the desired formula. If this be checked by substitution

y = o 4000 8000 12,000 16,000 20,000 24,000

F = o 4.05 7.68 10.8 13.5 15.9 18.1

The check is sufficiently good, though by trial a more accurate form-

ula might be obtained.

F(y) is the amount of air in inches of Hg; the amount in pounds is

13.6 -s- 12 X 62.5 X F = 1706 log (i + 3^/64,000).

If V be the terminal velocity in air of density p ,
then cp /W = i/F

2

and

2g C
y

pdy = -18- C
y

pdy = 1*440,000!
/ + _3Z_)

WJo
P y

PoF 2 J P y
V*

g
V

^
64,ooo/

The integral for the motion is

C

or if v o where y = y ,
then
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The value of v
z

is a maximum if d(v
2

)/dy = o; if the value of yQ is

sufficiently large, the maximum will occur when y > o, i.e., before the

body reaches the earth. For example if V = 600 ft/sec,

,_ 64,202

64,000; 3 X 3

If yo
= 16,000 ft, the velocity when y = o is

o , / / \ -\

v
2 = 2g X -^

-(i
-

(i.75)~*), v = 609.

The maximum velocity occurs when y = 2175 ft and is then 620.

The chief interest in this work, aside from the illustration that a

body may actually attain a higher speed than V in falling from a

great height, lies in its illustration of the methods of determin-

ing empirical equations, i.e., analytical expressions to represent a table

of data in a form suitable for subsequent analytical work. One

leading way of fitting an expression to a table is to throw the expres-

sion into linear form, plot, and fit the best straight line; a second

method is to fit the expression directly to several pairs of values of

the table by solution of equations.

In connection with the variation of density it should be pointed
out that the variation of gravity is too small to be of concern. Ac-

cording to Newton's law of gravitational attraction the accelerations

due to the earth's mass must vary as the square of the distance from

the center of the earth. If, then, g
r

be the acceleration of gravity at

any height, h,

g (R + k)* \ Rl R R * + . ...

where R = 4000 miles approximately.

As h is less than 5 mi, the variation in g will be less than one part

in 400, as estimated from the first term in the series, and, conse-

quently, too small to take into account when compared with the

inevitable errors in determining a resistance coefficient such as k.

24. The Start. The third problem alluded to above was the

get-away, where the machine runs along the ground under the action

of its propeller. The equation for the motion is

Wdu
dt

= Tg-Fg- kgu\ (21)
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where F is the frictional resistance and is small. The equation can

be integrated only after some assumption is made as to the value of

T. If T be assumed constant, the solution is analytically similar to

that of the diving airplane just treated. As a matter of fact, T is

by no means constant, but falls off rapidly with the increase of veloc-

ity. If it be assumed that T may be written in the form T + au

+ bu 2
,
the integration may still be performed either to obtain the

relation between u and / or between u and s, because

dx xdx
and

a + bx + ex 2 a + bx + ex 2

may both be found in the tables. In the absence of experimental

data for the determination of the change in T as a function of the

velocity there is little use in performing the integration.

25. Curvilinear Motion. If the airplane is moving in a verti-

cal plane in a curved path, as when pulling out of a dive, the equa-

tions of motion may be expressed either by writing the equations for

horizontal and vertical motion or by resolving along and perpendicular

to the path. This type of motion is also of importance in connec-

tion with the flying bomb, that is, in connection with any bomb
where the air forces do not act tangentially to the path, but have

a lift normal to the path in addition to the drift along it. The general

problem is of a complexity too great to treat at this point. The

equations of motion, however, relative to the path are of importance
for estimating the centrifugal forces which arise in a sharp curvature

of the path.

If the velocity be drawn in magnitude as well as in direction to

scale the velocities at nearby points may be compared, and it is

seen that the resultant change in velocity has a component perpen-

dicular to the path, and one along it. The component along the path
is simply the increase dv in velocity v regarded as a numerical quan-

tity, that is, the increase in ds/dt. The component normal to the

path is the product of the velocity by the change of inclination i of

the path, namely, v di. Hence, the accelerations are : along the

path, dv/dt; perpendicular to the path, v di/dt. The radius of curva-

ture R is the reciprocal of the rate of turning di/ds of the tangent line

with respect to the arc s, namely,

JL -4i.-4i4L-i.4i.
R~ ds~ dt ds~ v di
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Consequently, the normal acceleration may be written

v di _ v di
ds_ _ v^~

dt
~~normal acceleration =

dt ds R
. (22)

The tangential and normal forces acting on the center of gravity are,

therefore,
\\7 /X7J vtfl)

tangential force = -
,

normal force --.. (23)
g dt gR

When flying in a straight, horizontal path, the airplane wings

must support the weight W of the airplane. When flying in a path

of radius of curvature R the wings must support not only the weight

W (or a component of W) but the additional normal force Wv z
/gR.

Therefore, if v is sufficiently large or R sufficiently small to make

i>
2
/gR a considerable multiple of the weight, a considerable extra

strain will be put on the machine. For instance, if v = 200 ft/sec,

and R = 200 ft, the additional force on the wings is about 6W.

26. Forces on a Curved Wing. An interesting application of

the formulas may be made to Lanchester's theory of the forces upon
a curved aerofoil

in terms of the

angle of entry j
and the trailing

angle i (see Art.

8) . It is assumed

that the amount

of air affected is

Fig. 12. Angle of Entry and Trailing Angle (Schematic).

a stratum above and below the wing of total thickness 26, where

b is the breadth of the wing. The amount works out as W =
2plb

2

=
2plS, where / is the length of the wing, and S its area. If the air

is drawn up at the leading edge of the wing so that the angle of entry

isj", and issues behind the wing at an angle of depression i, the total

angular change produced by the wing is i +j, and the curvature of

the path is (i +j)/b, the radius of curvature being the reciprocal of

this (Fig. 12).

If it be assumed that the acceleration and curvature in the air

stream are uniform, or if the above average value is taken, the total

force exerted should be

P = (24)
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As the angles are small, this pressure is for the most part exerted

perpendicular to the wing direction, and may be taken as the lift

on the wing, which must be equal to the weight of the machine.

If it be assumed that the resultant force is normal to the wing

(supposed uniformly curved) at its middle point the pressure would

make an angle, (j i)/2, with the vertical, and the drag or com-

ponent of the pressure backwards would be

drag =5t>( *'->*); ........ (25)
o

and would be negative, that is, the wing would be urged forward if

/ were greater than i, and if frictional resistance in the direction of

the wind were neglected. As a matter of fact, the curvature of wings
is not uniform, and when examined carefully the flow of air about

the wing is not in parallel lines, so that no such obviously impossible
result as having a negative drag can actually arise; but it is a fact

that the distribution of pressures over the wing is such as to attrib-

ute to certain parts of the wing negative drag elements, and thereby
to diminish the total drag on the wing (see Art. 67).

It has been assumed that the velocity of flow along the surface

of the wing is everywhere constant. That is demanded by the equa-
tion of continuity of fluid motion if compressibility be neglected.

The actual motion of the fluid and its resultant reaction upon the

aerofoil are so complicated that no satisfactory theory can be con-

structed on any short general considerations such as those here

advanced; and the modification of assumptions so as to bring as a

final conclusion a proper value for the drag on an aerofoil is hardly
worth while.

27. Bomb Trajectories. The two-dimensional motion of a rigid

body in a resisting medium such as the air is of interest because of

the problem of bomb dropping. Let the #-axis be horizontal, and

the 3/-axis be vertically downward; and let i be the inclination of the

trajectory to the #-axis measured positively downward. The forces

acting are gravity and the resistance of the air. Two cases present

themselves: (i) The body dropped is so compact that there is no

planing action, and the resistance of the air is tangential to the path.

(2) The body dropped is a species of flying bomb, where there is

planing action, and a considerable lift perpendicular to the path.

The equations of motion for the first case are:
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du i Tr . dv 7 Tro . , , N

-^= -kgV 2
cc^s^,

~ = g-kgV2 sim . . . (26)

where V is the resultant velocity and where the resistance of the

medium has been written as

R = kV 2/W (Ibs)'......... (27)

Introduce s as the independent variable. Then

- = kgV cosi =
kgu, and u = Uoe~

kss
. . (28)

ds

The horizontal velocity, therefore, depends on the length of the

curved trajectory. If the bomb moved in vacuo (k
=

o), the trajec-

tory would be a parabola. It is possible to make analytic approxi-

mations which give an estimate of the departure of the path from the

parabola. To obtain the path it is necessary to eliminate the time

from the equations of motion. When we write

d2
y _ d^ idy\ _ &_ fdy\

dx _ d^ /dy dx\ dx _ d2
y z dy du

dt2
~

dt\dt)
~

dx\dt) di
~

dx\dx dt) dt
~

dx 2
"

dx ~dt'

then

d2
y 9 . dy du =

But
du LTr du dy
*

'- ~ gkvu '

~dt

= ~

Hence, for the path in the resisting medium

where k = i/U
2

if U be the terminal velocity. Then

An approximation which is often made is to assume that the

forward velocity u is always strictly equal to its initial value u .

Under this assumption the path becomes strictly parabolic because

the last equation becomes

#y_ j_
dx2

wo
2

'

a constant, and this parabola is the same parabola that the bomb
would follow in vacuo. It is, therefore, only by the diminution of

the forward velocity that the medium affects the path. If the ter-
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minal velocity U is about 900 ft/sec, the value of 2gs/U
2

is nearly

5/12,500, and hence 2gs/U
2
is nearly equal to i until s is over 1000;

even when s = 2000, the expression is not over 1.2. The departure
from the parabola is, therefore, not great for a short fall.

Equation (30) is not apparently integrable. Several approxima-
tions may be made. It will be assumed that the initial direction of

projection is horizontal, i.e., VQ = o, dy/du = o. First, the strict

parabolic path is

y = gx
2

/2UQ
2 .......... (31)

Next for motion near the vertex of the parabola (horizontal travel

large compared with the drop), as may be the case in submarine

bombing from seaplanes, s is nearly equal to x. The approximate

equation is

&y_ = JL
dx* u<?

2U<?

, .

(32)

For small values of 2gx/U
2 the exponential may be expanded

This approximate equation may be solved approximately for y

by writing

x =

and substituting for x to find e. Then, disregarding e
2

,

or

i = i + 2e + f -^ V
^ W + sma11 quantities,

and

Hence, ^ " 2

(33)
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The correction term is small. For instance if WQ = 100, U =
900,

it is y/i2O. By the assumption that s = x, the expression (33) is

no longer valid when y is not small relative to x. If y = 100, x = 250

and the correction is 0.8. If y = 400, x = 500 and the correction

is 3.3. For larger values of x the assumption s = x is far from

true. The inference is that the correction is probably negligible in

the cases where the assumption 5 = x is reasonable.

The path (32) is parabolic in its general nature but drops more

rapidly it lies under the parabola. There is, however, a value of

y for any value of x. As a matter of fact, the true path in a resisting

medium approaches an asymptote, i.e., y becomes infinite when x

is finite. This may be seen by another approximation. Always
s > y and

d*y _ *v/u* ^ g *gy/u*
J 9

~
9
^ ^

9
^

ax 2
UQ #0

The equation
<Py = JL ,w/tf
dx* u<?

therefore, represents a curve which lies above the true path (gives

too small a value of y) because the quantity integrated is always too

small. Let p = dy/dx.

^1 = dP = dP dy = pdp = JL
dx 2 dx dy dx dy #o

2

Then

and

_ ! j _ e
~ 2&y/ ui

Hence,
gx

cos~L
I e

"'

I
= -

or

V
y = log sec ^- . . ...... (34)

g

The curve has an asymptote when gx/UoU =
ir/l. The true trajec-

tory, which lies under (34), must have an asymptote at least no

further from the origin.
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In a similar manner s < x + y and

is the differential equation of a curve which lies under the true tra-

jectory. The integral is

COS""
1

or

^J I -I I gv * / wu i wo . * / H.Q i / x

If u is small compared with U, the asymptote is at

_ UpU f7T W 1 _ UpU 7T W 2

: 77
- ~

r ~i

instead of at x = uJJ-K/ig, and is nearer the origin. The true trajec-

tory lies between the two, but its exact position requires an intricate

series of approximations. The discussion of the trajectory of the

flying bomb, where planing action must be considered, will not be

undertaken.

EXERCISES

1. When landing the coefficient of mechanical friction is 0.2, the velocity is

40 mi/hr, the weight is 1500 Ibs, and the air resistance is 700 Ibs at 40 mi/hr.

Find length and time of run.

2. In Exercise i, suppose the landing made against a 15-mi wind. Find

length and time of run.

3. A looo-lb bomb has a terminal velocity of 900 ft/sec. Find k in R = kv2 .

Find k if R = W*1
.

4. A 3ooo-lb machine has 9 sq ft parasite surface and a terminal velocity

of 300 ft/sec. How much normal surface is equivalent to the wing in the altitude

of free fall?

5. The weight of a machine is 1800 Ib, and the value of k in R = kv2 is k =

.0325^, v in mi/hr, at diving altitude. Find the terminal velocity.

6. A machine starts in a dive at a velocity of 120 mi/hr. The terminal

velocity is 180 mi/hr. How far must the machine drop to require a velocity of

150 mi/hr, of 170 mi/hr? (Constant air density assumed.)

7. Find the time consumed in the drop in Ex. 6.

8. A machine with a terminal velocity 250 ft/sec dives 2000 ft with initial

velocity 150 ft/sec. Find the velocity and the time required. (Constant air

density.)

9. Suppose in Ex. i that the machine is equipped with "air brakes," i.e.,

with extra surfaces which may be set normal to the wind to add to parasite re-
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sistance on landing. Let the extra surface be 20 sq ft. Calculate the shortening

of the distance run in still air, and also against a i5-mi wind.

10. Suppose a bomb with terminal velocity 800 ft/sec is dropped from a

height of 20,000; find the velocity on reaching the earth, the maximum velocity,

and the level where the maximum is reached.

11. Show that the level of maximum velocity in a drop from a great height

must be that at which the density of the air is such as to give a terminal velocity

equal to that maximum, and thus check the result in the text and in Ex. 10.

12. The terminal velocity of a bomb is 800 ft/sec. The bomb is projected ver-

tically upward with this velocity. How far will it rise and how long will it take?

Assume p = const. Compare the results with the assumption of no air resistance.

13. Is the assumption p = const, justifiable in Ex. 12? Set up and integrate

for rising motion, taking account of the variation of air density with level.

14. A lo-lb projectile projected upward with a velocity of 400 ft/sec is ob-

served to rise 1000 ft. What can be inferred about the coefficient k in R = kv2
?

15. In Ex. i assume the machine lands (running up) on a slope of i in 10.

Find the length of run.

16. Suppose a machine, traveling horizontally 100 mi/hr with the main

plane at 7 to the direction of flight, could suddenly be changed to an altitude

of 14, what would be the retardation and the radius of curvature at the instant

after the change?

17. A machine is diving at 225 ft/sec. With how short a radius could it be

pulled out of the dive without putting more than SW additional force on the struc-

ture? Suppose the path a circle. If the machine does not sensibly slow down,
how long will it take to change from vertical dive to horizontal motion (neglect

any effect of the weight)? Is this time short enough so that the assumption of

constant velocity is justifiable?

18. On Lanchester's theory if the drag is one-fifth of the lift, what would be

the relative magnitudes of the angle of entry and trailing angle?

19. Derive the equation cPy/dx
2 = g/u

z from the tangential and normal

resolution of accelerations, and show that the result is independent of the law

R =
}(v) of resistance. Check this analytically.

20. Assume that the resistance to each component velocity varies with the

square of that component.

Show that the path has no asymptote.

21. Given U = 900, o
=

150. Calculate y when x = 1500 by (31), (32),

(34), (35).



CHAPTER V

HARMONIC MOTION

28. Physical Origin. Harmonic motion, damped, undamped, and

forced is of constant use in the dynamics of airplanes, partly in con-

nection with the motion of the airplane itself under certain flying con-

ditions, partly because by means of experiments on the harmonic

motion of models of airplanes certain aerodynamic properties of the

models (and hence of the full-sized machine) may be determined which

are necessary for setting up the general equations of motion of the

airplanx

The fundamental applied force from which harmonic motion

gets its name is a restitutive force proportional to the displacement
from a fixed point. Restitutive forces of this simple type occur fre-

quently on account of the wide application of Hooke's Law that in

an elastic displacement the force is proportional to the displacement.

Thus, if a particle is vibrating at the end of a helical spring, the force

due to the spring obeys Hooke's Law when the vibration is longitudi-

nal, that is in the line of the spring. Again, if a long wire or column

be twisted the restoring moment is proportional to the angular twist.

In this case moment and angle take the place of force and dis-

placement, and moment of inertia takes the place of mass.

Harmonic motion also sometimes arises through the process of

approximation; for example, if a body which is in equilibrium in a

certain position under the action of certain forces be displaced a

very small amount, the resultant force is ordinarily proportional to

the displacement except for infinitesimals of higher order, because

the force may ordinarily be expanded by Maclaurin's theorem in

the form

F = ax + bx* + ex* . . .
,

and for sufficiently small displacements all terms except the first

may be discarded.

29. Rectilinear Motion. If W be the mass, and if -Ex be the

force in pounds acting, the equation of motion is

57
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,J7 dv TJ , v dv

dt
=

~dx~
and

, N

(0

(2)

is the integral where x and v are the initial displacement and velocity.

When a body moves in a straight line under the action of a force

which is a function of the distance from some point of the line the

work done by the force is

work = fF(x) dx,

and potential energy = fF(x) dx ...... (3)

is taken as the definition of potential energy. As the force is meas-

ured in pounds, the work or its negative the potential energy is meas-

ured in foot-pounds. The fundamental equation of motion is

Hence
7 ' ON f "'- N

<k (4)

This equation shows that the work done by the force is equal to the

change in the quantity Wv 2
/2g, which is defined as the kinetic energy,

measured in foot-pounds or kilogram-meters. The work done is,

therefore, equal to the change in the kinetic energy. Introducing

the potential energy, F, the equation may be written

or

W
V
2 + v = W% 2 + Fo = C ..'..... (6)

The first equation states that the change in the kinetic energy is

the negative of the change in the potential energy, and the second

that the sum of the kinetic and potential energies is constant. This

is the principle of conservation of energy in mechanics in a simple

case. The equation (2) obtained in the special case of harmonic

motion is the equation of energy. The kinetic energy is Wv2
/2g,

as always, and potential energy is Ex2
/2, as is always the case when

4

Hooke's Law applies, and the force is Ex.
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Suppose that the initial conditions are x =
o, v =

VQ. Then from

(2) .

or ~ = dt.

On integrating and assuming that the time is zero when x =
o, the

result is

gE
' W

or

The motion is periodic, and the complete period of oscillation is

. , . . r: . . , . (8)

By the complete period of oscillation is meant the time from the

instant the particle starts to the time when it reaches that point

again with the velocity in the same direction, the round trip, so to

speak. When discussing the oscillations of a pendulum the time of

oscillation is ordinarily taken to be the time of beat from extreme to

extreme, which is one-half the period of oscillation, as defined above.

Suppose a spring or elastic cord be hanging vertically, with a

mass W attached to it, and that it be set in oscillation by depress-

ing the mass a distance x
,
and then releasing it. Let x be measured

from the position of the weight when at rest under the combined

action of gravity and the tension in the spring. By Hooke's Law
the tension is F = Ed, where d is the displacement. The displace-

ment in the position of equilibrium must be such that W = Ed.

The displacement in any position is d + #, and the force due to the

spring is F = E(d + x). The weight, however, is equal to Ed, and,

consequently, the resultant force acting is simply Ex, and negative.

The equation of motion is, therefore,

TT , v dv ~,W = -Egx.
dx

The energy equation, which is obtained by integrating, is

*--.&+$.
2g 2
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Hence
dx = J& dt.

v* 2 - x'
2 V W

The integral may be taken as

COS"1 =

or
/rs

(9)

The motion is simple harmonic as before with period

It is important to recognize the period of oscillation in simple

harmonic motion from the differential equation, or from the equa-
tion of energy. The differential equation may always be written

di
' ~

gX '

The equation of energy

K(V
2 _ v 2)

.
~E

(jA

2g
V

2

and the period being equal to 2-jrVw/gE is evidently 2ir times the

square root of the coefficient of either dv/dt or of v
2 in the two equa-

tions divided by the coefficient of x or of x2
.

30. Linear Differential Equations. The differential equation of

harmonic motion is of the form

This is a linear equation with constant coefficients; linear because

x occurs only to the first power, whether occurring by itself or in

differentiated form, and with constant coefficients because n is con-

stant. In such an equation if

xi =
F(t) and x2

= G(t)

are two different solutions, then

x = Cixi + Ctf* ..-. (")

where Ci and Ci are any constants, will also be a solution. This solu-

tion contains two constants which correspond with constants of
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integration which are obtained when the equation is actually inte-

grated. It is often, however, possible to determine two solutions by

inspection; for instance, in the above equation

xi = sin nt and x% = cos nt

are clearly solutions, as may be seen by substitution, and, hence,

the general solution is

x = Ci sin nt -f- 2 cos nt (12)

It is possible to throw this trigonometric solution into a different

form, as follows:

Let

= cos r,
2 - = sin F . , (14)7 /./-i o , s^i n ^ /

C2
2

Ci
2 + C2

2
-

as is possible since the sum of the squares of these quantities is unity.

Then

x = VCi2 + C2
2 sin (frf + T) (15)

The coefficient (C2
2 + C2

2
) is called the amplitude of the motion, and

represents the extreme value of x, whether positive or negative.

The period is

T =27T/W . . . . . (l6)

and the displacement is zero when t = T/n.

Still another method of solving the equation is to set

x =
6"*,

and to substitute in the equation. On substituting, e
mt

cancels out

and leaves the equation

w2
-f- n2 = o or m =

in,

if i = V i . This shows that two possible solutions of the equation
are

v _ Jnt onrl T - - />**X\ o dllU. yt/2 C
}

and, consequently,
x = dein< + C2e~

in<

(17)

is the general solution of the equation, but in imaginary form, since
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Now

2-3 2-3-4

T
and ety = i + ly , ....

2 2-3 2-3-4

or eiy = cos y + i sin y (18)

In like manner

e-iy = cos y i sin y (19)

Hence, the solution is

x =
(C\ + C2) cos nt + i(C\ C2) sin nt.

And since d and C2 are undetermined constants, the solution may
be written

x = K\ cos nt + K<i sin nt (20)

which agrees with that found before.

In solving linear equations with constant coefficients in physics

it is customary to use this last method of substituting for the vari-

able an exponential expression. This reduces the differential equa-

tion to an algebraic equation with a certain number of roots, and to

each root corresponds a different exponential expression. If some

of the roots are imaginary, it is necessary to transform the solution

over into trigonometric form.

31. Rotatory Motion. Consider the motion of a mass rigidly

attached to a vertical wire rotating about the axis of the wire, under

the influence of the restoring torsional moment. The torsional mo-

ment is proportional to the angle of rotation, and may be, therefore,

written Ed, where 6 is the angle. The corresponding potential

energy, that is, the energy stored in the wire when the angle is 6

is E6 2
/2 in foot-pounds. The kinetic energy in a rotating body

is /oo2
/2g, where

co = dB/dt

is the angular velocity, and / the moment of inertia. The energy

equation is, therefore,

-
(co

2 -
coo

2
)
=

(0
2 - 0o

2
) ...... (21)

2g 2

The time of oscillation is

tt
. . ... ..... (22)
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The differential equation for the rotating motion may be obtained

from the energy equation by differentiating and dividing by dQ/dt.

It is /

The moment of inertia times the angular acceleration is equal to the

moment of the force multiplied by g.

The equation of motion of the physical pendulum may be ob-

tained either from the principles of energy or from the principle

represented by the last equation. Let I be the moment of inertia

of the pendulum about its point of support. Let c be the distance

from the point of support to the center of gravity. Then

/!?= -cgWsine= -cgWe, ...... (24)

for the moment of the force is the arm c sin 6 multiplied by the

force W and sin 6 = 6 very nearly. The period is

(2S)

It is customary to write the moment of inertia as

I = Wk 2 ..... . ..... (26)

where k is called the radius of gyration. In the case of certain ob-

jects of simple form this method of regarding the moment of inertia

as the product of the mass and the square of the radius of gyration

is convenient. In many cases, however, it is necessary to write the

equation in the form
k 2 = I/W ......... , (27)

because the radius of gyration is actually determined from the ratio

of the moment of inertia to the mass.

32. Moment of Inertia of an Airplane. The moment of iner-

tia of a body about any axis is the vital physical constant of the body
in respect to the motion of rotation about that axis. In the case of

some simple bodies the moment of inertia may be calculated by the

process of integration, as may be seen in any standard work on

integral calculus; and the values of the moment of inertia or of the

radius of gyration may be found for certain standard engineering

shapes in engineering handbooks. In many cases, however, which

arise in engineering, and in particular in the case of an irregular

structure like the airplane, it may be desirable to determine the
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moment of inertia experimentally. The method of determining it

is to suspend the airplane so that it shall oscillate about some axis

and measure the time of oscillation. Three methods of suspension

are worthy of consideration, because sometimes one and sometimes

another is more convenient.

(i) The airplane is suspended as a simple pendulum, and allowed

to rotate under the action of gravity about the axis of suspension.

The distance of the center of gravity from the axis of suspension is

measured, the value being c. Then

or / = 47T
2 S .... (28)

This value of I is that of the moment of inertia about the axis of

rotation. By a fundamental theorem of mechanics the moment of

inertia about any axis is equal to the moment of inertia about the

axis parallel to that axis passing through the center of gravity plus

the mass times the square of the distance between the axes. Thus:

If /o be the moment of inertia about an axis through the center of

gravity,
/ = / + We2 or 7 = / - We2

. . . . (29)

Hence,

I =
(4*

2

jk-c*)w
........ (30)

This formula is used to determine the moment of inertia about

an axis through the center of gravity by measuring the time of oscilla-

tion of the airplane about some parallel axis. One difficulty with

this formula is that it contains the difference of two quantities, and

if these two quantities are nearly equal, each quantity must be de-

termined to a considerable degree of accuracy in order that their

difference may be known with reasonable accuracy. In the case

where the mass of the body is greatly concentrated in the vicinity

of the center of gravity so that the moment of inertia about an axis

through the center of gravity is small the method is not particularly

safe; but in the case of the airplane where there is a considerable

dispersion of mass the difficulty is not serious.

(2) It is also possible to suspend the airplane on a piano wire so

that it oscillates as a torsional pendulum. Then

r= 2^V/^ or 7 = 4T2

t! (3i)
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It is, therefore, only necessary in this suspension to measure the

time of oscillation, provided the torsion modulus E of the wire when

under a torsion equal to the weight of the airplane be known.

This torsional modulus E may have to be determined, which may
be done in either of two ways; first, statically, second, kinetically.

The airplane may be twisted through a measured angle 6 and the

moment about the center of gravity may be measured by determin-

ing the force required to hold the airplane at the angle 6; or there

may be suspended from the wire a mass equal to that of the airplane,

but of such simple form that its moment of inertia may be calculated,

as, for instance, a mass in the form of a solid cylinder or a hollow

ring, the latter being preferable. One timing experiment may then

be used to determine the modulus E from a known value of /, and

this value of E may be used to determine the moment of inertia of

the airplane. If

/i = w 2

-^;, then E = -J 1
)
.... (32)

i r 47r~g

and

I =
-J^T,

(33)

where /i is the known moment of inertia, and Ji the time of oscilla-

tion of that body.

(3) A third method of suspension is the bifilar pendulum. Here

the airplane is suspended by two wires a distance a apart, and of

length /, the center of gravity of the airplane lying halfway be-

tween the vertical wires. If, now, the airplane be twisted about a

vertical axis, it is raised by a small amount, and a certain quantity

of potential energy is thus stored up. If the airplane be then re-

leased the potential energy is converted into kinetic, and an oscilla-

tory rotation takes place about the vertical axis. If the angle of dis-

placement is small and the length / of the wires is large compared
with the distance between them, the up and down motion of the

center of gravity is very small, the velocity of that motion is small,

and its kinetic energy is negligible compared with the kinetic energy

of the motion of rotation about the vertical axis. The energy equa-

tion is, therefore, approximately

C, (34)
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where h is the distance the center of gravity is raised, Wh being the

potential energy. It is necessary to find the distance that the ma-

chine is raised when turned through an angle 6. To accomplish this

take a set of axes in space with the origin halfway between the upper
ends of the wires, the #-axis joining the upper ends, the s-axis drawn

downward, and the ;y-axis perpendicular to both x and z. The co-

ordinates of the upper end of one wire are

x = a/ 2, y =
o, z = a,-

The coordinates of the lower end of that wire in the equilibrium

position are

x =
a/2, y =

o, z = /.

If the airplane be turned through the angle 6 the coordinates of the

lower end are

^ x = fa cos 6, y = fa sin 0, z = z,

and the length of the wire may then be expressed as

/
2 = X(i - cos BY + %a

2 sin2 + z
2

.

Approximately, i cos 6 = 2
/2, sin 6 =

6, and hence the first term

is negligible compared to the second, and one may write

The distance the center of gravity is raised is / z. Now,

/2_ 2
2 = Q_ z)(f + z)

=
and

- z =

since / + z is practically 2/. The equation of motion is, therefore,

dd\* Wa*

Hence
'

and / = .... (36)f-rf \\-/ /

Wg i6irH

The moment of inertia can, therefore, be determined by measuring

a, /, W, and T.

The time of oscillation T can be determined fairly accurately with

a stop-watch if the pendulum be allowed to oscillate for a considera-

ble number of beats, and the total time of oscillation be divided by
the number of beats. The distance from the point of support to the

center of gravity in the first method may be
'

determined as accu-
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rately as the center of gravity can be placed in so complicated a struc-

ture as the airplane. The distance between the wires and the length

of the wires in the third case (bifilar pendulum) can be determined

with great accuracy. In the second and third cases the moment of

inertia is really determined about the axis of oscillation, and it is

therefore important that that axis should pass through the center

of gravity, if the moment of inertia about an axis through the cen-

ter of gravity is desired. However, a slight displacement of the center

of gravity from the axis of rotation would increase the moment of

inertia only by the small quantity We
2 where c was the displacement;

and as the center of gravity is known pretty well, c could only be

very small and the correction probably insignificant.

Example: Suppose that the radius of gyration of an airplane is

6 ft about some axis through the center of gravity. Find the time

of oscillation when the machine is suspended as a simple pendulum
to oscillate about a parallel axis 4 ft from the C. G. Find also the

time of oscillation when the suspension is bifilar, with wires 8 ft

long and 4 ft apart.

In the first case,

+ 4
'
=

3.9 sec.

32.2

T = 27rV
/

4///WVg = 27rV4/
2

/a
2 = 27r\A

X 8 X 6 2

= 9 .4 sec.

4
2 X 32.2

In the case of the simple pendulum or bifilar pendulum it is im-

portant to keep the angle of oscillation small because as the angle

increases the formula for the time becomes less accurate owing to

the fact that the motion is not strictly simple harmonic. In the

case of the torsional pendulum the angle of oscillation may be reason-

ably large without danger. Owing, however, to the presence of the

wings and other surfaces upon the airplane, it is desirable in all cases

to have the motion of oscillation very gentle so that the sweep of the

surfaces through the air may not disturb the motion. The presence

of these surfaces also will result in a damping of the harmonic motion,

which, however, does not materially influence the period T, as will

be shown.

Another caution to be observed in performing the experiment is

to be sure that the motion is actually as intended. For instance, if
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in the suspension as a single pendulum suspending wires are used,

it is possible that the pendulum may have a compound oscillation

because the wires may not remain absolutely in line with the center

of gravity; that is, there may be an oscillation of the wires combined

with an oscillation of the machine about the ends of the wires. In

the case of the torsion pendulum the machine unless carefully sus-

pended may not oscillate strictly about the vertical axis coincident

with the wire, but may have additional oscillations about other axes.

In the case of a bifilar suspension there may be in addition to the

oscillation about the vertical axis a certain oscillation about the

horizontal axis connecting the two wires, or even an oscillation of

the whole system in the plane of the two wires. A full discussion of

the methods of determining the moments of inertia from observed

times of oscillation would require a careful treatment of the errors

of observation due in part to possible inaccuracies in the measured

quantities, and in part to departures of the motion from the assumed

simple harmonic form. These matters/however, will not be treated

here.

33. Damped Harmonic Motion. In all oscillating systems there

is likely to be a certain amount of friction, which manifests itself by
a damping or decaying in the amplitude of the oscillation. This

friction may vary with some power of the velocity, and will be assumed

in the first instance to vary as the first power of the velocity. The

equation of motion for a rectilinear oscillation may then be written

Wd 2x dx
kg >

....... (37)

where F = Ex is the restoring force in pounds, and R = kv is

the frictional resistance in pounds. The equation may be written

d*x . dx . * / ON_ + a_ + te =
,
....... . . (38)

a = gk/W, b = gE/W.

This equation is linear with constant coefficients, and may be

solved by substituting

x = e
mi

, dx/dt = me", d*x/dt
2 = m2

e
mt

.

Then

m2 + am + b =
o, m = a/2 =t Va2

/4 b.
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Three cases are possible, according as

b > a 2
/4 or b = a2

/4 or b < a2

/4.

In the last two cases the exponential expressions are real, and the

motion is non-oscillatory. These cases will not be treated.

In the first case the exponential expressions are imaginary, and

the motion is oscillatory, namely,

= e~at/2
(A cos Vb - a 2

/4t + B sin Vb - a 2

/4*). . (39)

The term in the parenthesis is periodic, but the motion is damped or

subject to decay on account of the multiplier, e~
at/2

. The complete

period of oscillation is

27TT ,
,T =

/, 2/
......... (40)v b a2

/4

The ratio of the displacement x at any time /, and at the time

/ + T is e
aT/2

and 5 =
log e

aT/2 = aT/2 is the logarithm of the ratio

of the displacement at any time / to the displacement at the time

/ + T. This quantity 8 is called the logarithmic decrement. As the

time increases in arithmetic progression, the amplitudes die off in

geometric progression. Thus, if #
, #2, #4 . . . x

2n
are the ampli-

tudes of successive swings to the right,

#2 = e
8x

,
#4

= e
8
Xz =A ,

. . . x2n
= e

n8xQ ,
.... (41)

and if *i, #3 . . . are the amplitudes of the swings to the left,

5/2 5/2 35/2 / x

xi = e XQ, x3
= e xi = e x ....... (42)

The logarithmic decrement

d =
log (XQ/XZ)

=
2.303 logio (XQ/XZ) ..... (43)

is very nearly equal to o when #2 is very nearly as large as XQ', that is,

when the damping is very small. If, after n complete swings the

motion is reduced to one-half amplitude,

5. . f*n . e . i
or S

#2 n n

Now,
rp _ 27T _ 27T / \

=

Vb - a 2

/4

=
V6 - 5 2

/r2

since aT/2 8. The solution for T is

1
. ....... (46)
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This shows that if 5 is a small quantity compared with 27T, the value

of T is practically equal to 27T/V0, which is precisely the value that

T would have if there were no damping at all; that is, if 6 =
o, or

k = o. If the motion damps to half-amplitude after one complete

oscillation, which is pretty severe damping, d 0.693. Even in

this case 5/27r *s onty about i/ioth, and 5 2

/47r
2 about i/iooth, so

that no serious error is made by neglecting the effect of damping on

the period. The approximate values for the period and for the log-

arithmic decrement when the decrement is small are

T = 2ir/Vb, d = ira/Vb ...... (47)

An experiment on oscillation with an observation of the time

therefore determines 6, and with an observation on the logarithmic

decrement it determines also a, and consequently the damping co-

efficient k in R = kv. In making use of these formulas it is neces-

sary to substitute for a and b their values in terms of k, g, E, W, as

given under equation (38). In the case of rotatory motion the differ-

ential equation is of the form

where 6 is measured in radians, and the resistance is proportional to

the angular velocity. This resistance is a resisting couple or moment

just as the restoring term EgB is a couple or moment. The ex-

pressions kdB/dt and EB are in ft.lbs.

34. Work and Energy. In case the damping is small, for

instance, 5<o.7, as in the case where the motion damps to one-half

amplitude (or less) after one complete oscillation, it is possible to

estimate the damping approximately by means of the principle of

work and energy. For the work done by the friction in foot-pounds is

Work = f*Rdx = fkvdx =
fwdt .... (49)

Let it be assumed that the motion is essentially simple harmonic,

with

x = XQ cos Vbt.

The total work in a complete oscillation is, then,

T

kvz dt = f
2T/V

*kx<?b sin 2 Vbtdt = wkVbxo2
(50)f

JQ
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The initial energy in foot-pounds is ExQ
2
/2. The final energy is

Exz
2
/2, and the difference must be the work done. Hence,

Ex 2

,

, /T ,

h irkVbxo2 ........ (51)

or

/L/J?
i 2wkVb/E

since by hypothesis the damping is small. Extracting the root,

^- = ! + vkVb/E = e = i + d.
xz

Hence,
d = wkVb/E = ira/Vb.

The approximate method has, therefore, brought back the same

value of 6 as previously obtained.

The method of estimating the damping by the principle of work

and energy is applicable to the case where the resistance varies as

the square of the velocity. Suppose R = kv 2
. Then the work done is

/2 C^/Vb 3/2

kv*dt =2 I kx<?b sm*Vbtdt= Skx*b/3 . . (52)
^n

The integration here has been taken for the half-swing, and the result

has been doubled, a procedure which might have been used in the

previous case. Then the equation of work and energy gives

Ex 2 Ex2
2 Skxjb

or

and

Hence
6 = Skxjb/sE = Skxog/^W. ........ (54)

It is seen from this expression that the logarithmic decrement

6 depends upon the initial amplitude XQ ,
and diminishes from oscilla-

tion to oscillation. It is only in case the damping is proportional to

the velocity that the decrement, that is, the logarithm of successive

amplitudes, is independent of the amplitude.
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When observing an oscillatory motion which is damped, it test

lor die type off damping may be made by calculating

is icafeled by a force proportional to the velocity,

of tlM* decrement ^3i be constant. If the values vary
could be expected from the ^p> off observation, and if

it were selected that die resistance varied as the square of the

velocity, it would be desirable to calculate the quantities

n the wagtail did vary as the square of the velocity, these quan-
tities should be constant except for the experimental enois. In

general it cannot be expected that the resistance win vary either

JhcUly as the velocity or directly as the square of the velocity, but

may vary with any power of the velocity between i and 2, or with

a mnfRntfA function of the velocity. Fortunately, in most cases

die resistance appears to vary very nearly with the velocity, and

the plot of the different values of 6 shows sensible constancy.

Example. The motion of the weather-vane is an illustration of

damped harmonic Mrfinm Consider the following idealized vane.

im

F%- 13. fhi'Jiliiai TJ a

A surface S located (and considered as centered) at a distance / be-

hind the axis of rotation. Let the wind velocity be 17, and steady
both in magnitude and in direction. Let / be the moment of inertia

about the axis of rotation, and neglect the factional couple on the

axis. If the vane has an angular velocity a about the axis, it has a

velocity ft* across the wind. The total relative wind is (IT
2 + JV)

1
,

which may be taken as simply U if to is small relative to U. The

angle between the relative wind and the true wind is taar^to/U) or

lu/U in radians, and between the vane and the true wind is some

value 9. The angle i between the vane and the relative wind is

therefore (Fig. 13)
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the nonnaJ pressure is P = ^6V T where ^depeiMfe 00 the aspect
ratio of the vane. The restoring moment m IP. Hence,

57-30

with o> = <#/<&. This equation is of the form

tFQ
,

:r ,-+ - + W =
o,

b = gltSU* X 57-3/1-

If / is numerically small compared with Uf a is small compared with

b, and the motion is damped harmonic.

The periodic time T varies iiifmdy as the square root of b, Le.,

inversely as the wind velocity 17; the decrement 5 varies as a/6* and

is ifulcpciidrnt of U, Le., the damping per oscillation is independent
of the wind velocity, though the Hampmg in time is faster the greater

U. If vanes differing only in dimensions are considered. S varies

as /* and 7 varies as /*. The periodic time wQl therefore vary as /.

and the decrement will not vary with /.

The simple weather-vane problem has a dose relation to the

more complex problem of the oscillations of the airplane in flight.

For if the airplane takes up oscillatory motion in pitch it win whip
the horizontal surfaces (particularly the elevator and stabflizer)

across the wind and introduce a restoring moment proportional to

the angular velocity, in addition to one proportional to the angular

displacement, and the machine win execute a damped oscillation in

pitch though the calculation is no longer simple and the motion

itself is complicated by up-and-down and fore-and-aft oscillatory

departures from the steady horizontal motion.

35. Two Remarks. One remark with respect to the equation of

rectilinear motion when there is a restoring force proportional to

the displacement, and a resistance proportional to the square of the

velocity should be made. The frictional force will always set itself

against the motion. Now when R = r. the expression for the force

reverses its sign when the velocity reverses its sign, because r enters

to the first power; and, consequently, the equation of motion may
always be written as
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with a similar expression where / replaces W, and 6 replaces x in

rotatory motion. But if R = kv2
,
the expression for the resistance

will not reverse its sign when the velocity reverses, and it is there-

fore necessary to deal with two different equations according as the

oscillation is from right to left, that is, in the negative direction;

or from left to right, that is, in the positive direction. For the first

case,
d2r

IF||= -Egx + kg* ........ (S5 )

In the second,
d2r

Wtjp- -Egx-kgv* ........ (56)

It is impossible to give a single analytical expression for both halves

of the oscillation. It was for this reason that in calculating the work

as above the calculation was made for the half-swing and then doubled.

The equation of motion from right to left may be integrated, for

d2x v dv Eex

dt2 dx W
and if u = v

2
,
the equation becomes

du 2gku 2

2

dx W W A (S8)

which is a linear equation of the type

dy

of which the integral is

P(x)y = Q(), ....;... (59)

ye
fpi' = e

fpi
*dX + C. ...-'. . (60)

The relation between u = v
2 and x may, therefore, be obtained. If

XQ be the initial amplitude, the relation between u and x is as follows:

-2gkx/W EW \ 2gK I -2gkx/W -2gkxo/W\ . -2gkx/W -2gkx /W )

ue = 7^ \ -Jr (
& ~W ) + -

r-

The position x\, at which the swing stops upon the left, may be had

by solving the equation obtained by setting u =
o, namely,

&~*
1 + c~* = fa'*

9 + -*
if { = 2gkx/W . . . (61)



HARMONIC MOTION 75

This equation is transcendental, and can only be solved by approxi-

mate methods; either by expansion into series, or graphically. In

most practical cases, however, the damping is so small that the

approximate method of solution by means of the work and energy
relation is sufficiently accurate.

A word must also be said about the mass of the spring or other

physical body which gives the restoring force. Consider, for sim-

plicity, the case in which a mass W is at the end of a spring. When
the mass oscillates the whole spring also oscillates. The potential

energy of the system, that is the work stored in the spring, is in any

position Ex
2
/2 if x = o in the position of equilibrium.. The kinetic

energy, however, is not merely Wv2
/2g, which is the energy of the

moving mass, but must include the kinetic energy of the spring.

Let it be assumed that the spring oscillates without surging; that

is, that the motion of the spring is similar at all points, and that

waves do not run up and down the spring. Let / be the natural length

of the spring, p its mass per unit length, y the distance from the

fixed end. Then the velocity u of the element of mass dm = pdy is

u : v = y : /, and the kinetic energy is, therefore,

I
2

6g 3 *f

where w is the mass of the whole spring. The total kinetic energy of

the system is, therefore,

(63 )

which means that the effective total mass is W + w/3- In the case,

therefore, in which the weight of the spring is any considerable por-

tion of the weight of the vibrating mass, the time of oscillation will

be not T = 2ir(W/Eg)* but

T = 27T 3 = 27r t/E(i + w/3W)* . . (64)
*Eg * Eg

36. Forced Harmonic Motion. In some problems in addition to

the restoring force and the frictional force there is an external applied

force, which is a function of the time, generally a simple sine or cosine

function. The equation for the motion is

W^j= -Egx-kg^ + Cgsinnt, .-.'.'...'. (65)
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where C sin nt is the applied force. Such a motion is called a forced

harmonic motion. It arises in one method of obtaining certain of the

aerodynamical coefficients of an airplane from experiments on models.

For brevity the equation may be written

Now if any one solution / for this whole equation is known, the com-

plete solution including two constants of integration may be ob-

tained; for suppose
d2!

,

adl
,

, T f< .

w + ^T +
bI '=csmnt ....... (67)

Subtract this equation from the equation in x. The difference of

two derivatives is the derivative of the difference. Hence

-'>-<> -- (68)

This equation, however, is the ordinary equation for unforced damped
harmonic motion, and its solution, x 7, is known from the previous

work.

To determine a particular solution the method of undetermined

coefficients will be used. Let it be supposed that

I = A cos nt -|- B sin nt ........ (69)

When this expression is substituted in the complete differential

equation for /, the result is

(An2 + aBn + bA) cos nt + (Bn 2 aAn + bB) sin nt = c sin nt.

This relation will be satisfied provided A and B satisfy the equations

-An2 + aBn + bA =
o, -Bn2 - aAn + bB = c.

The solution for A and B is as follows :

A anc _ _ b n2
, .

=

(b
- n2

)
2 + aV

=

(b
- n 2

)
2 + aV

' (7 '

With these values of A and B the complete solution of the equation is

y = e
at/2

(Ci cos Vb - a 2

/4 / + C2 sin Vb - a

+ A cos nt + B sin nt (71)

The first terms represent a damped harmonic oscillation, which,

after the lapse of a sufficient time, becomes as small as desired, and
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may be neglected; the second terms represent a permanent simple
harmonic motion of which the amplitude is

(72)

Indeed, the value of / may be written

A
cosnt +

B
sinn/ ,VA 2 + B2 VA 2 + B

= V~A 2~+B 2 sm (nt
-

T) . ............ (73)
where

^ (b n 2
)c . ^ anc

'-

(b
-

*)* + aW>
-

(y - *)' + aV
It is seen, therefore, that the forced oscillation represented by / is

not in phase with the force, but lags behind it by the angle T/n, for

the force vanishes when / = o, but the oscillation 7 vanishes when

/ = T/n. The value of the tangent T is

,
A an

After the natural damped oscillation has died out, and only the

forced oscillation persists, the amplitude and lag angle of the forced

oscillation depends upon the impressed frequency n. If a is small,

and n is nearly equal to b, the amplitude has a small denominator,

and is consequently large; that is, by tuning the impressed force

to the frequency of the natural oscillation, a relatively small force

may produce a considerable oscillation. This is the phenomena of

resonance. In fact, the amplitude of 7 will be greatest when n is so

selected that (b n2
)
2

-f- aV is smallest; that is, when

n2 = b - \a? .......... (76)

For this value of n the amplitude is

and the angle of lag is

T = tan-1 *Vb ~
<*

2
/ 2 = tan-1

2Vb/a .... (78)
a

if the damping is small. The maximum amplitude of the motion,

therefore, varies inversely as the damping coefficient a and the tangent
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of the lag angle also varies inversely as a. When the damping is

small, not only is the amplitude large, but the lag angle is nearly 90.
When, however, the damping is large, the amplitude is relatively

small, and the angle of lag is small.

Example. Suppose an ordinary clock pendulum beats seconds,

weighs 10 Ib (assumed concentrated in the bob), and damps to half-

amplitude in 5 complete oscillations if not actuated by any driving

force. How much driving force, resonant and perodic, is necessary to

maintain an amplitude of 2.9 (1/20 radian) on each side of the

vertical?

The equation of motion for the mass on its arc is (65) or (66)

with W =
10, E = W/l, k unknown. As the pendulum beats seconds

(r =
2), the length may be taken as / = 3.3 ft. Then E =

3. By
(44) the decrement is 5 =

.14. The resonant amplitude is by (77)

with sufficient accuracy c/ab
=

1/20. The values of a, b are by (47)

A 4 71
"

^2 vJ r .I47T= -= =
7T, a = -- =

.14, C = - - = .022
20

By
gC r WC IO(.Q22)
f ,

C = = - =
.007 Ib.W g 32

A periodic force of only a trifle over o.i oz maximum will keep up the

motion. This force applied statically would produce a deflection

in the lo-lb mass of only about .0007 radians instead of .05. Hence

the resonant periodic force at maximum is only about 1/70 of the

static force required for the same deflection. This is but a fair illus-

tration of the relatively great effects which may come from a small

resonant force when the damping is small.

EXERCISES

1. The force of a spring is 2 Ib when stretched \ in. A mass of 5 Ib is sus-

pended by the spring. Find the time of oscillation.

2. A spiral spring 18 in long has suspended from it a mass of 8 oz. The

periodic time is i^ sec. Find the elastic constant of the spring.

3. A cylindrical spar buoy stands vertically in the water. The diameter is

6 in, and the mass 203 Ib. Find the time of osc'llation if slightly depressed and

released. Ans. T = 4.46 sec.

4. Write in exponential form and, when necessary, reduce to trigonometric

equivalents, the solutions of

f ^ d?x _,, /TX cPx .

(a) -6\x =
o, (b) + 2\x = o.
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5. The equation of energy is ^64 + gx
z = C. Find the periodic time.

Find the maximum acceleration.

6. A couple of 3 ft.lb is necessary to twist a clamped rod through 19. Find

the time of oscillation if a circular disc of radius 6 in and weight 5 Ibs is clamped
to the free end of the rod with its plane perpendicular to the rod and its center

in the rod.

7. An airplane weighing 1800 Ib oscillates like a pendulum about an axis.

3 ft from the C. G. The periodic time is 4! sec. Find the radius of gyration about

a parallel axis through the C. G. How much error is made if there is an error of

o.i sec in the time? If there is an error of 2 in in the measurement of the dis-

tance of the C. G. from the axis of rotation?

8. An airplane is on a bifilar suspension with wires 8 ft long, 4 ft apart. The

time of oscillation is 10 sec. Find the radius of gyration. Estimate the error if

the position of the C. G. is unknown within 2 in.

9. Taking into consideration the structure of the airplane discuss the proba-

ble advantages of the three types of suspension for determining the moments

of inertia about the axes of pitch, of roll, and of yaw (see Fig. 26, Art. 75).

10. Given
-.-y + 0.5 -: \- 26x = o. Find T and 5 accurately and approxi-
(II (it

mately. Am. T = 1.2337, 1.2342; 5 = 0.30842, 0.30806.

11. Given v 2 -f o.i + 5^ = o. Find T and 5. Suppose W = 10 Ib.

What is the restitutive force per foot of extension? What is the resistance per

ft/sec of velocity? Ans. T =
2.82, 5 = 0.141, E =

1.55, k =
0.0311.

12. Given 5 =
0.2, T =

5 sec. Write the differential equation. How many
oscillations are needed for damping to half-amplitude?

13. You observe 6 =
0.3, T = ^ sec. Give the values of E in F = Ex

and of k in R =
kv, if W is the mass. Ans. E = 4.91^, k = .037 W.

14. A lo-lb mass is observed to oscillate 90 times per minute and to damp to

half-amplitude in 15 sec. Find the differential equation. Find E in F = Ex
and k in R = kv.

15. A lo-lb mass is act-ed upon by a restitutive force of 2 Ib when the displace-

ment is i ft. Find the period if the motion damps to i/io = amplitude after 300

oscillations. Find k in R = kv. A ns. T =
2.47, k =

.00193.

1 6. A large square plate of area S and weight w Ib per sq ft oscillates under a

restitutive force of i Ib per inch of displacement. If the resistance is R =
kv,

find the period and decrement.

17. A weather-vane consists of a 6-lb plate, one foot square, centered i ft

behind the axis of rotation, counter-balanced by a weight 6 in forward of the

axis. The wind is blowing 30 mi/hr. Calculate the period of oscillation and the

ratio of two successive amplitudes.

1 8. If the pendulum of a clock, 10 in long, damps to half-amplitude in six

complete oscillations, how large must be the amplitude of a periodic force (tuned

to best resonance) to keep the clock running with a swing of 7.2
= f radian on

each side of the vertical?
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19. Find the time of oscillation of a system in bifilar suspension wires 8

ft long, 4 ft apart W = 1800 Ib, radius of gyration 7 ft. Ans. n sec.

20. If in Ex. 19 the ratio of successive amplitudes Xz : XQ is 3 : 4, find the

amplitude of the resonant periodic couple necessary to maintain an oscillation

of 5 on each side of the equilibrium position. Ans. 14.2 ft.lb.

21. In Ex. 20, how much would the damping affect the period? How many
ft.lb is the damping moment in the position of equilibrium and in the extreme

position?

22. A child weighing 75 Ib swings in a swing with i3-ft ropes. Find the period.

If the motion damps to half-amplitude in 4 complete swings, what is the resonant

periodic force necessary to maintain the amplitude of 10 on each side? What
constant force applied for a distance of 6 in at the end of the swing will main-

tain the oscillation?

23. Calculate the work done or power delivered by the periodic force in a

forced oscillation and compare with the energy absorbed or power consumed by
the resisting force. What is the significance of the lag angle in this connection?



CHAPTER VI

MOTION IN TWO DIMENSIONS

37. Motion of the Center of Gravity. The motion of rotation

about a fixed axis has been treated in the case of a rigid body by
the use of the principle of work and energy. This is possible because

that motion depends on only one independent variable, namely,

angle; and the equation of work and energy furnishes one equation

which is sufficient. When a rigid body moves in a plane, three inde-

pendent variables are in general necessary to specify its position;

two, such as (x, y) to determine the position of some point fixed in

the body, and one, such as 6 to determine the angle through which

the body has turned. Ordinarily, except in the case of rotation about

a fixed axis, the point (x, y) is taken as the center of gravity of the

body. It is necessary to find the equations of motion of a body in

the plane.

What the forces are which actually determine the rigid configura-

tion of a rigid body we do not know. Rigidity can, however, be

obtained by imagining that each particle of the body is connected to

every other particle by a weightless rod of invariable length; for a

body is rigid by definition when the distance between any two points

remains unchanged. Moreover, any two systems of forces which

maintain rigidity are necessarily equivalent in the statical sense;

and, therefore, in deriving the equations of motion of a rigid body
the internal forces of action and reaction between the particles may
be assumed to be those which would arise from the system of inex-

tensible rods. It is not necessary to imagine this system of rods

at all if one postulates that the actions and reactions between the

particles of the rigid body satisfy Newton's third law of motion;

namely, that to each action there is an equal and opposite reaction;

and that the line of the action and reaction for any two particles is

the line connecting those particles. This law is verified in the imagined

case of the rods, and it is only this law which is needed in the deriva-

tion of the equations. Moreover, if this law be assumed, a certain

81
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part of the derivation may be given without assuming the restric-

tion of a rigid body; and this plan will be followed.

Let W be the mass of any particle in a system of particles. Let

x, y be the coordinates of the particle; and let X, Y be the forces

acting on the particle along the x and y directions. The equations of

motion are, then,

Let these equations be added for all the particles in the system.

Then,
2

(2)

The center of gravity (xe , ye) of the body is determined by the

equations
?Wx VWy , ,

'' 2W '' 2W ........ ^3

or

ZOT*) = (ZWO*c, 2(Wy) = (2W)yc .... (4)

If these equations be differentiated once or twice the velocities

and accelerations of the center of gravity are obtained from the

equations

,
---- (5)

... (6)

The equations (2) may, therefore, be written

,

. . (7)

This shows that: The center of gravity (xe , yc) moves exactly

as if all the mass (ZW) were there concentrated, and all the force

(2X, SF) were there appHed.

Now, the forces 2JT, SF contain not only the external forces

applied to the system, but also all the actions and reactions between

individual particles. Since, however, these actions and reactions are

equal and opposite in pairs, they will all cancel out from the sums

SX, SF; and, hence, the forces effective in moving the center of

gravity are only the external forces, which may be denoted by Xe ,
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Fe . The definitive equations of motion for the center of gravity are,

therefore,

. . . . (8)

and the theorem is that: The center of gravity moves as though all

the mass were there concentrated, and all the external forces there

applied.

38. Motion about the Center of Gravity. The moments of the

forces X, Y applied at the point (x, y), are about the origin +xY
and yX, it being understood that a moment is positive when it

tends to turn the re-axis into the ^-axis. The moment equation about

the origin for each particle is

A "moment" may be defined for the momentum, of which the com-

ponents are W dx/dt, W dy/dt, in exactly the same way that a moment

is defined for a force with components X, F; and the moment of

momentum is thus defined as

moment of momentum = W [x-?- y ]
. . . (10)

\ at at/

This is sometimes called the angular momentum instead of the moment

of momentum. It depends not only on the velocity of the particle,

but also on the position, because the arms of the momenta are x

and y. The moment of the force multiplied by g is equal to the rate

of change of the moment of momentum because

d|~TT7/ dy dx\~] TI/ / d2
y d 2x\ , T ,

Sr (**
~

y di)r
w

(
x w ~

y w)
= g(xY "

Let the moment equations for all the particles be added. The result

The equation states that: The rate of change of the total angular

momentum of the system about the origin is equal to g times the

total moment of the forces. Here, again, the forces may be divided

into the external applied forces and the internal actions and reac-

tions which occur in equal and opposite pairs, and which have no

moment about any point because the equal and opposite forces,
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being directed along the line joining the particles, produce no couple;

that is, the arm of any action and the corresponding reaction are the

same. In taking moments, therefore, only the external forces need

be considered, and the equation becomes

The theorem is that: The rate of change of the total angular mo-

mentum of the system is g times the total moment of the external

forces acting on it. The theorem and the formulas hold when mo-

ments are taken about the origin, regarded as a fixed point. The

origin may be anywhere, but it must be fixed. The theorem and the

formulas also hold when the point about which moments are taken

is the center of gravity, although this point may be in motion; that

is, it is true that

-
*.)F.

-
(y
-

The expression on the left may be written as

By (4) ?W(x - xc}
=

o, 2W(y- yc)
= o. By (5) 2Wd(x - xc)/dt

= o and 2Wd(y yc)/dt
= o. Hence, the last two terms are

zero as the summation 2 extends over W, x, y, dx/dt, dy/dt and

xc , yc ,
dxc/dt, dyc/dt are constant with respect to it. By (13) the

first term is g1<(xYe yXe) and if moments be taken on (8), the

second term becomes g1i(xcYe ycXe). The equation is, there-

fore, proved. Hence, the rate of change of the angular motion about

the center of gravity is equal to g times the moment of the external

forces about the center of gravity.

In the case of a rigid body, the angular momentum about any

point is the product of the moment of inertia about that point by
the angular velocity; for if r be the distance from the point to any

particle of the body, and o> be the angular velocity, the velocity of



MOTION IN TWO DIMENSIONS 85

the particle is /-co, and is perpendicular to the radius, r. The mo-

mentum is Wru, and the moment of the momentum is r(Wru>) = Wr2&.

Now, co is the same for all particles, and on summing, the total angular

momentum is

(ZJ7r
2
)

=
7co, (14)

if / be the moment of inertia.

The moment equation is, therefore,

* v i|-<
2<*F-^. <'s>

for any rigid body when moments are taken about any fixed point.

The equation, as has just been proved, holds also for the center of

gravity, though that point be moving; hence,

- O Ye
-

(y
-

yc}Xj .... (16)

In the rigid body Ic is constant, and the formula states that: The

moment of inertia about the center of gravity multiplied by the

angular acceleration is equal to the moment of the external forces

about the center of gravity multiplied by g.

The moment equation (16), taken with the equations for the mo-

tion of the center of gravity (8), give three equations regulating the

three independent variables xc , ye ,
and 6.

Now, let x, y represent henceforth the coordinates of the center

of gravity of a rigid body, W the total mass (the weight), X, Y, the

total components of the external forces, M the moment of those

forces about the center of gravity, / = Wk 2
,
the moment of inertia

about the center of gravity, and q
= co = dd/dt, the angular velocity.

The equations of motion are

W=- X W^=- Y Wk 2 =- M d }

dt
2 dt2 dt2

The theorem on the center of gravity enables the first two equa-

tions to be replaced if desired by the corresponding equations for

the tangential and normal resolution of forces along the path; namely,

Wd2s WV2

where V is the velocity in path, R the radius of curvature, T and N
the tangential and normal components of external force.
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39. Oscillations of the Airplane. The forces acting upon the

airplane, being aerodynamic in nature and caused by the rush of the

machine through the air, are so complicated that it is difficult and

at present impossible to give general theoretical or empirical expres-

sions for those forces in analytic form; and, consequently, the general

motion of the airplane in a plane cannot be solved. The problem of

coming out of a nose dive, or of looping the loop in a vertical plane

are beyond our present powers to solve directly. In normal flight

the airplane may be regarded as traveling with constant velocity in

a straight line; but in actual flight the motion is never exactly uni-

form in a straight line; there is always more or less slight pitching,

yawing, rolling, more or less slipping from one side to the other, or

rising and falling, and more or less irregularity in the forward motion.

One of the problems which can be solved is that of these slight varia-

tions from uniform motion. For the present it will be assumed that

there is no yawing, sideslipping, or rolling, but that there may be

slight variations in the forward velocity, slight velocities perpendicu-

lar to the general direction of motion, and a small amount of pitching.

The importance of the study of the small motions of an airplane

about its normal motion of uniform flight in a straight line lies in

the connection between these motions and the stability of the air-

plane. Owing to the unevenness of the structure of the air and to

other accidental causes, a machine can never fly uniformly in a

straight line, but can at best only approximate such motion. It is

always being slightly disturbed so that small oscillations are set

up. If these oscillations are damped, the effect of the accidental

disturbances will diminish in time, and the machine, apart from

subsequent disturbances, would settle back to -its normal flying

attitude. Such a machine is called dynamically stable. If, however,

the small oscillations should have amplifying instead of damping

effects, the machine would depart more and more from its normal

flight, and would be called dynamically unstable. By the constant

attention of the pilot a machine dynamically unstable may be flown,

and if the instability is not too great, without any serious danger.

But the machine which is dynamically stable does not require so

constant an attention on the part of the pilot, and may, indeed,

fly itself for long periods of time. Such very great disturbances in

the air may occasionally, be found as will throw a machine dynami-

cally/ stable so far from its natural flying attitude that it will not
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return. These great disturbances come under the class of problems
which are not yet satisfactorily solved. Much, however, is accom-

plished if the question of oscillation set up by small disturbances

is settled.

The air forces will be separated from the force of gravity and the

propeller thrust. For the purpose of making the notation conform

to that adopted for general motion in space, the Z-axis will be taken

vertical, and the X-axis horizontal in normal flight, the X-axis being

drawn backward from the point of view of the pilot. The equations

of motion are, then,
Wdu
gdt

Wdw
gdt

Wk 2 d 2d

= X -
T,

(19)

where u, w are the velocities along the X- and Z-axes, and u is very

nearly equal to a constant quantity, U, which is itself negative;

where X, Z, M are the air forces, and the moment of these forces;

where k is the radius of gyration about the axis through the center of

gravity perpendicular to the plane of the motion; where h is the arm

of the propeller thrust, counted positive when the line of the thrust

passes above the center of gravity. The conditions for uniform

flight are

u = U, w =
o, q

= dB/dt =
o, X = T, Z = W, M = hT. . (20)

It is assumed here that the propeller thrust is horizontal. This would

be impossible for flights at any speed other than a particular speed.

Ifj be the angle which the propeller thrust makes with the horizontal,

the first two equations would be

Wdu = X -T cosj,

wj*z^ w + T
gdt

(21)

Now, suppose that the motion is not uniform, but differs slightly

from the uniform motion. The forces will differ slightly from those

in the uniform motion. The air forces X, Z, M depend on the wind

velocities relative to the machine, and on the attitude of the machine;
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that is, upon the velocities w, w of the center of gravity of the machine,

the angular velocity q
= dd/dt of the machine about its center of

gravity, and upon the angle 6 through which the machine has turned.

It is assumed that w, q, 6 are all small, and that u differs by a small

quantity u' from its standard value U. Any force X may be written,

therefore, as

v i jv vi dA / . dX dX Q dX f \X + dX = X H u H w H H q, . . (22)
du dw dd dq

*

because since the standard values of u', w, 6, q are o, and the values

in any case are small, the quantities themselves may be written in

place of their differentials in the formula for the total differential.

A similar formula holds for Z and M. Moreover, when the motion

of the machine varies, the action of the propeller, which depends

upon the relative motion of the propeller and the air, will also proba-

bly vary, and, consequently, the propeller thrust T must be con-

sidered as expansible in the same form as X
} Z, and M. However,

the propeller thrust will be considered for simplicity to be constant,

particularly as data on the variation of the propeller thrust are not

yet available.

When the machine is in the general position, the equations are

Wd(U + ')

(23)
W dw . dZ dZ . dZ, .dZ

S-" + i* + irg dt2 dU dw

As U is constant, and X = T cos/, Z = W - T sin/, and M = hT,
the equations may be simplified; and, further, as 6 is small, cos0
=

i, and sin0 = 6 may be assumed. The equations for the small

oscillations are, therefore,

. (24)

Wdu_ dX^,



MOTION IN TWO DIMENSIONS 89

These equations, be it remembered, are obtained on the assumption
that T is constant.

These equations in the three variables u', w, 6 are linear, differen-

tial equations with constant coefficients, since all the derivatives are

taken for the values

u = U, w =
q
= 6 = o.

Before integrating the equations to determine the character of the

oscillations it is advantageous to explain the meaning of each of the

partial derivatives which occurs, and to describe a method of deter-

mining the value of that derivative for any particular machine.

(NOTE. The understanding of the work of the next article will

be facilitated by a study of Chap. XII under Fluid Mechanics.)
40. Determination of the Coefficients, (a) The air forces on an

airplane are supposed to vary with the square of the velocity. For

example,
X = ku2 = k(U + u'Y = kU2 + 2kUuf + ku' 2

.

The last term may be neglected because it involves the square of

the small quantity u', and is, therefore, an infinitesimal of the second

order. The change in X is, therefore, 2kUu'\ and if this be divided

by the change in u, namely, u' du, the result is

dX , TT 2kU2 2X_ = 2^ = ___ = __. (25)

Thus, the first coefficient is determined as twice the X force for uni-

form velocity divided by that velocity. This is a negative quantity
because U is negative. In the same way, Z and M vary with the

square of the velocity, and

dZ 2Z dM 2M , ^= and =
(26)

du U du U

Another way of writing these expressions is by introducing the values

of X, Z and M in terms of T, W, and /?; namely,

dX T cosy dZ W -T sinj dM hT
^-- 2

-iT> Vu- IT-' ^ ==2
77

The values of X, Z, M for any particular attitude of the machine

may be obtained from the tabulated values of the lift, drag, and

moment, as determined in wind tunnel experimentation; for it is

precisely the values of X, Z, and M which are determined by the
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experiments on the model at the speed- at which the experiment is

run. It is simply necessary to determine for the attitude of the

machine under investigation what is the speed U, or, if the speed U
be given what is the attitude. This is found by comparing the lift

with the weight. (See Chap. XII.) An actual calculation is carried

through in Art. 43, step for step parallel with the theoretical discus-

sion of this Article.

(b) The value 6 represents a change in the attitude of the ma-

chine; and, consequently, the derivatives dX/dQ, 3Z/d6, dM/dO are

obtained by differentiating, or rather differencing the tabulated values

for X, Z, M for the model after scaling the values up to those appro-

priate to the full-sized machine, running at the appropriate speed U.

(c) The values of dX/dw, dZ/div, and dM/dw are also obtained

from the lift, drag, and moment tables for the model, but the calcula-

tion is less simple. A velocity w combined with the forward velocity

U gives the machine a resultant velocity slightly inclined to the

direction of U, the tangent of this angle being w/U in magnitude.
This is the same as though the relative wind were less inclined to

the aerofoil by the amount ti3r*(w/l7), or, since w is small, by the

t
L+dL

Fig. 14. Change of Forces with Cross-wind Motion.

amount w/U radians (see Art. n). Hence, the velocity w is equiv-

alent to the change in attitude of tf.yiv/U degrees. The drag and

lift tables give the forces along the wind and perpendicular to it.

When the relative wind changes its direction, the lift L and drag

D change theirs; this change in direction must be taken into account

in calculating the change in X and Z. If the change be dj, the new

values of X and Z are (Fig. 14)

X + dX = (D + dD) cosdj + (L + dD> smdj
= D + dD + L dj,

Z -dZ = (L + dL) cos dj
- (D + dD) sin dj

= L + dL-Ddj, ........... (28)

if infinitesimals of higher order be neglected. As X = D, Z = L,

and dj
= w/U, since U is negative, and the change, di, in attitude
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of the machine as entered in the drag and lift tables 1557-3 4/ m
degrees, therefore,

and, hence, since w = dw,

dX _ST3dD L dZ = 51^dL D
( }

dw
~

U di U' dw U di U

The coefficient dM/ dw is obtained by differentiating, or, rather, by

differencing the moment curve, using for the difference di the value

w/Ut
the rate of change, or tf-$w/U degrees. Hence,

dM S7- , .

dw~
=

~!T~di

(d) There remains to be determined the values oi'dX/dq, dZ/dq,

dM/dq, which are the rates of change of the forces and moment with

respect to angular velocity. If the machine in its normal attitude

has a small angular velocity q the parts of the machine in front of

the center of gravity have a small velocity in a general upward direc-

tion proportional to q, and to their distance from the C. G., whereas

the parts behind the C. G. have a small downward velocity propor-

tional to q and to their distance from the C. G. This means that for

surfaces in front of the C. G. the effective angle of the relative wind is

diminished, whereas for surfaces behind the center of gravity it is

increased; but the stream lines around the body are so irregular,

and their position so poorly known, that an accurate calculation of

the effect of the rotation cannot be made from the lift, drag, and

moment tables (cf. Art. 77). The change in M, for instance, is due

partly to the down sweep of the tail, and partly to the travel of the

center of pressure and the variation in the pressure on the wings. It

is possible, however, to determine dM/dq by observing the damping
in a model oscillating about an axis located at the position of the

center of gravity of the machine.

Let the model be suspended upon an axis and held in the wind

in the tunnel in the position which the machine takes in flight, by

springs which produce a restoring moment so that any slight de-

rangement of the model tends to be corrected. If the model be

then slightly displaced it will oscillate about the axis under the action

of the restoring moment, due to the springs, and under the action of
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the wind forces upon the model. As the experiment on the model

is to be conducted at different wind velocities in the tunnel, it is

necessary to have the springs adjustable so that for all wind veloci-

ties the model may be held in the correct attitude toward the wind.

Let Im be the moment of inertia of the model, and of any portion

of the system by means of which the model is suspended, provided
that portion oscillates with the model. The equation of motion for

the oscillation is

, s
(32)

where cQ is the restoring moment due to the action of the springs,

and b dd/dt is the frictional moment due partly to the action of the

wind on the model and partly to the mechanical friction, which

would be present even if the model oscillated in a vacuum. The
solution for B is of the type

e = Ce-at
sm(/3t+ F),

where C and F are constants of the integration, and where

= . = -l ....... (33)

The value of Im is independent of the wind velocity in the tunnel.

So is the value of c, the restoring moment due to the springs, pro-

vided Hooke's Law be assumed; for no matter how loosely or tightly

the springs must be adjusted to keep the model in the proper atti-

tude for any particular wind velocity in the tunnel, the restoring

moment due to the springs for a slight displacement is always the

same for the same displacement, if the force due to the spring is

strictly proportional to the extension. On the other hand, b varies

with the wind velocity from the small value of b
,
which is due to

the mechanical friction alone, to a large and increasing value b as

the wind velocity is increased. In all cases the damping must be

sufficiently small so that a considerable number of oscillations may
be executed without the model coming practically to rest, for other-

wise it would be impossible to make accurate observations on the

damping coefficient. It is, therefore, possible to use the approximate
formulas

/
= yf , r- f, f =& . . . . . (34)" 1m P 1m J-



MOTION IN TWO DIMENSIONS 93

where T is the time of a complete oscillation. These formulas will

determine either c or Im if the other is known.

The ratio of the amplitude of the oscillation at the start and

after n complete oscillations is r = e
anT and the logarithm of that

ratio is

. ^ , 2lm \oger , N

loge r = anT =
-^

or b = *
. . (35)

Thus, by timing the oscillation and observing the damping the value

of b may be obtained. This value contains three damping moments,

namely, the mechanical damping, the damping due to the wind ac-

tion upon other parts of the oscillating mechanism than the model

itself, and, third, the damping due to the model. It is possible to

measure the mechanical damping by allowing the model to oscillate

in no wind. It is possible to determine the damping upon other parts

of the apparatus by allowing the apparatus to oscillate without the

model, and, thus, the net damping due to the model itself may be

determined.

A rough calculation dM/dq may be made by assuming that the

damping moment is due mainly to the action of the tail. If the tail

surface be S at a distance a behind the center of gravity, an angular

velocity q will give the tail a velocity w =
aq. If the tail were

originally neutral, the angle between the tail and the wing would

become approximately w/U, and the normal pressure upon the tail

would be
W

P = k
jjSU\

and the couple about the center of gravity would be aP. Hence,

this couple would be

dM = ka~SUz = ka?SUq, = ka*SU, . . . (36)U dq

since q
=

dq. Here k = .0015 (.032 + .0051") X 57.3 for radian

measure.

This formula shows that the coefficient dM/dq varies directly

with the speed, and directly as the fourth power of the linear dimen-

sion; and these laws are used to scale up the value dM/dq from model

experiments to the full-sized machine, the value for the model being

multiplied by the fourth power of the ratio of the linear dimensions,

and by the velocity ratio. Experiment shows, too, that the value
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of the coefficient does, in reality, vary almost exactly as the linear

velocity within the range of velocities used in the wind tunnel. If

the tail area be 30 sq. ft. placed 15 ft. behind the center of gravity,

then for a velocity U = 100 ft/sec.,

y-
=

.0015 X X 225 X 30 X (-100) = -
2320,

if the aspect ratio of the tail be taken as about ij.

There remain to be found dX/dq and dZ/dq. The presumption
is that dX/dq is small, for a rotary velocity should not influence very

greatly the value of the X force. The angle between the surfaces

and the wind is diminished in front of the center of gravity, and

increased behind it, and ought, more or less, to balance out. In

fact, if the calculation just given for dM/dq for the tail be applied,

it will be seen that the variation in the X force is zero for a flat tail,

because the pressure for a changed angle of the wind remains per-

pendicular to the tail. For the curved wing the change in the direc-

tion of the wind will introduce a slight change in the X force, but

the wing surfaces are very near to the center of gravity, and the effect

should be small. If the calculation be applied to determine dZ/dq,

the result found is that

az =
d#

"

a dq

As for the aerofoil itself, the change in the angle is small compared to

that for the tail because the surface is so much nearer the center of

gravity; and as the surface of the aerofoil itself is partly in front

and partly behind the center of gravity, the chances are that even

taking into account the large surface involved, the contribution to

dZ/dq is not great. Moroever, both dX/dq and dZ/dq occur, as will

be seen, in the equation of motion in a way which renders them rela-

tively unimportant for the motion.

41. Integration of the Equations. The linear equations (24)

become
duf

dQ
a\u <hw #3

-- #4 =
o,

dl at

, , . dw , , dQ , n
0\U + --

OtfU 03
--

0^0 =
O,

dt at

,

d26 dd-
c\u

- c2w +
-j-p

- c3
- c$ = o,

(37)
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where

_J_ ^ r _J_ , g ^ g dM
~

PF&2 dw
'

"

PF 2 to '

~

Wk 2
dq

'
"

Wk 2 dd
'

the coefficients a, b, c being introduced merely for brevity.

The set of equations in u 1

', w, 6 are simultaneous linear equations
with constant coefficients. The method of solving these equations
is to assume that each of the variables may be represented as a

multiple of an exponential function; namely,

u' = <V, w = C2e
x

<,
6 = C3e

xt
.

Then

^ = AC/',
dw = XC2e

x< do m xc
M m = X2C/<

dt dt dt dt
2

If these assumed values of the variables and their derivatives be

substituted in the equations, the exponential expression will cancel

out all the way through, and leave the following three simultane-

ous linear algebraic equations homogeneous in the three unknowns

(X
-

_5lCl + (\
_ J2)C2

-
(63X + 64)C3

=
o, . . . . (38)

ciCi c2C2 + (X
2 - c3X - c4)C3

= o.

Now three homogeneous equations in three unknowns such as

these cannot in general have a solution except the useless one \

Ci = C2
= C3

=
o,

for if the equations be divided through by one of the unknowns,

say, C8 , they become a set of three linear equations, in the two un-

knowns Ci/C3 ,
C2/C3 . Two such equations afford a solution for

Ci/Cz and Ci/Ci, and if the third equation is to be true, the result

of this solution when substituted in that equation must check. In

the notation of determinants the condition that the equations may
have a solution is

X #1 #2
~~ #3^ #4

A = X

X2
c 3X 4

= o . . . (39)
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The rule for expanding a determinant is

<*! 2 3

A= ft ft ft

7i 72 7s

and when this is applied to the determinant involving X the result is

A = X4 + B\* + CX 2 + D\ + E = o . . . . (41)
where

B = -ai - 62
- c s ,

C =
4 + #1^3 + 62^3 + #1^2 ^3 bid*

Z> = diet + 62^4 2^4 c\a + 0iC2&3 -f

E = a\cj)i

This is an equation of the fourth degree a biquadratic equation
in X, which will in general have four roots. To each root will

correspond a possible type of motion for the airplane of the form

ext . If two roots of the equation are conjugate imaginaries, the two

will be treated together, say as ju
=*=

vi, and the corresponding type
of motion will be of the form e^(Ki cos vt + K% sin vf) . Such a

pair of roots corresponds to an oscillation of the machine of total

periodic time T =
2ir/v, and with a time / = ==

-693/ju to amplify
to double-amplitude or damp to half-amplitude.

42. Stability. If the machine when slightly disturbed is to

return to its normal flying attitude, it is necessary that the real roots

X of the equation A = o shall be negative, so that the exponential

expression e
x/

shall decrease with the time instead of increase; and it

is further necessary that the real part JJL
of any pair of imaginary

roots shall be negative so that the oscillation shall have a damping,
not an amplifying, factor. Now, the solution of a biquadratic equa-

tion may be obtained by various approximations when the coefficients

are known numerical quantities; but the solution is tedious. To
determine whether or not there is stability, that is, whether or not

the real roots and the real parts of imaginary roots are negative, it

is sufficient to apply Routh's conditions, which are that all the coef-

ficients in the biquadratic equation (4^) and the expression

R = BCD - D* - B*E ...**.,. (42)

shall be positive.

It is of great importance to distinguish between static and dyna-

mic stability. An object at rest is stable if, when slightly displaced
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from its position of equilibrium, it tends to return to that position.

The condition for static equilibrium is that for any imagined infini-

tesimal displacement of the body from its equilibrium position, there

shall arise a restoring force that is negative. This kind of equilibrium

is familiar. Dynamic stability has to do with bodies in motion, par-

ticularly in steady motion, and a body is said to possess dynamic

stability if, when disturbed from a state of motion, it tends to return

to that state. Thus the airplane in uniform horizontal flight is stable

(dynamically) if the airplane, after being slightly disturbed in its

velocity or angular velocity, tends to resume its condition of uni-

form horizontal flight with its original speed. The disturbed motion

leads to differential equations which, as seen above, are linear with

constant coefficients and of which the solutions are exponential

expressions either real or imaginary. In case the exponential is real

it either increases indefinitely with time or falls off indefinitely toward

zero the latter being required for stability. In case the exponen-

tial is imaginary it represents an oscillatory function which may
amplify or damp the latter being required for stability. The

conditions for stability above are

B>o, Oo, D>o, >o, jR>o . . . (43)

The application of this criterion requires the calculation of the

aerodynamic coefficients in (38) and their substitution to find B, C,

D,E,R.
In order, however, to tell how great is the damping (or amplifying)

it is necessary actually to solve the biquadratic (42) by some approxi-

mate process. Now in the case of the airplane experience has shown

that a fair literal approximation may be had. It is easy to surmise

that the airplane should not experience nearly so great a resistance

in moving slightly to and fro in its direction of motion as in moving

up and down across its line of flight; for in the first case the surfaces

are so largely parallel to the wind that the air may blow through,

whereas in the second case the air is more seriously disturbed. Hence

it might be inferred that there is one type of motion heavily damped,
another lightly damped. Although such an argument proves nothing,

it does give a valuable indication as to the method of attack in solving

the biquadratic. For if two of the roots for X are large

X4 + B\* + CX* should be large compared with D\ + E
y
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and a trial equation for these roots would be

X4 + B\* + CX2 = o or X 2 + B\ + C =
o, . . (44)

with

X = -i * Vp^C ....... (45)

On the other hand if two of the roots for X are small, the higher

powers of X should be comparatively negligible and a trial equation
for these is

CX2 + D\ + E = o with X = - =1=

|
-

. . (46)

These assumptions amount to factoring the biquadratic into

(X + J3X + O
(x

+ ^ X +D = o ..... (47)

Experience seems to show that a closer factorization is given by

o, . . (48)

and this form will be ordinarily taken as affording a sufficiently good

approximation.

43. Illustrative Calculation for Stability. The case considered

will be that of the "Clark" treated by Hunsaker in Smithsonian Mis-

cellaneous Collections, vol. 62, No. 5, June 1916, pp. 1-78 in a dis-

cussion entitled Dynamical Stability of Aeroplanes. The machine

has for weight and radius of gyration

W = 1600 Ib, k =
4.65 ft;

the model was % size and tunnel tests were run at 30 mi/hr. The

lift and drag in pounds in the model and the moments in pound-
inches are as follows:

AM

.10

-.04

.00

-05

i
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* L AL D AZ> M AM
+ 1 .490 .102 .07

.135 .003 -.08
2 .625 .IO5 .OI

.247 .010 -.11

4 .872 .115 -.12

43 -038 -.16
8 1.30^ .153 -.28

.27 .060 ~- I3
12 1.57 .213 -.39

.07 .157 -.14
16 1.64 .370 -.53

These data may be plotted and a fair curve may be drawn through
the points but that is not essential. The reliability of such data

may be estimated by consulting the differences which should proceed
in an orderly fashion when referred to the same difference of angle i.

The differences AZ, are per degree as follows :

n, 13, 12, 13, 13^ 12, n, 7, 2.

These form a satisfactory sequence. A greater regularity would have

been indicated if the first 3 had been n, 12, 13. When a curve is

plotted and faired, the irregularities are somewhat smoothed out.

The fairing process may equally well be applied arithmetically in the

table. Only this caution must be observed: No more fairing is per-

missible than remains within the experimental errors. How much
this is can only be determined by a careful "precision" discussion

of the method and apparatus used in arriving at the final data. By
making several runs for the same data the differences between the

values found in the different runs will give an idea of the accidental

errors in the work; the systematic errors could be checked in a simi-

lar way by comparing results found by different observers using

different methods and different styles of apparatus. There is not

yet available the material for a satisfactory comparison.

The differences for D are per degree

-10, -4, -3, +i, 3, 5, 10, 15, 39,

and form a satisfactory sequence. The large jump from 5 to 10 is

not suspicious because the interval has been increased from 2 to 4

units in the table, where the differences are increasing. At degree

intervals the differences might look like this:

-13, -7, -4, -3, i, 3, 4, 6, 7, 9, 10, 12, 14, 15, 15, 16, 20, 30, 45, 62.
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Different persons would fair the table differently just as different

draughtsmen would fair the plotted curve differently. The data for

M give per degree

-Si -4,o, ~5, -8, -5i, -4, ~3, ~3i

This is an unsatisfactory set of differences, particularly with respect

to the o and the 8.

Consider another set of data for another model, that of the Curtis

JN-2, obtained by Hunsaker and published in the First Annual

Report of the National Committee for Aeronautics (Washington), 1916,

pp. 23-51. For this machine

W = 1800 Ib, k =
5.83 ft.

The model was ^ size and turned tests were run at 30 mi/hr.

The lift and drag are in Ib, and moments in Ib.in.

i
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The series is satisfactory like the other L set. The differences for D
per degree are

-9>
- Ji +ii, 5; 5 ? 7> S> i3i 24, 39, 38.

These are tolerably satisfactory like those above for D. The set

for M is

-if, -i|, -2j, -2, -5, -3, -8, -5, -5, -5, -4,

and are, like the previous set, not so satisfactory as could be desired.

Further the breaks do not come in similar places in the two cases;

so that the inference must be either that different models exhibit

queer irregularities in M in different parts of the range of observation

or that the data for M in both cases have considerable inaccuracies

in them. The latter inference is the more reasonable because the

transformation from M,, the moment about the spindle, to M involves

the subtraction of numbers of nearly the same magnitude (see Art. 77).

(a) To calculate (25) and (26) for the "Clark" at i = o. The
model is %$ size. The speed V is found from

W = 1600 =
.360 X (26)

2 X (F/3o)
2

,
V =

76.9.

The value of U is, therefore, U = 112^. The percentage error in

U will be half the percentage error in L .360.

|J
= ^ = 2 (.ioi) X (26)

2 X (76.9/3o)
2 + (-112$ =

-7.9,

dZ 2W 2 x l6o

dU U -112%
^

dU
''

The assumption is made that the propeller thrust is horizontal so

that it has no lifting effect; also that the moment is zero at i = o

because of the use of the elevator and because the propeller thrust

is assumed to pass through the C. G. so that L = o. Notice that

in calculating dM/du, the tabulated value of M is not used. In order

to fly at any given attitude the value of M, the moment of the air

forces, has to be regulated not by a table but by the pilot with the

elevator!

(b) To calculate the values of the derivatives with respect to 6.

As 6 is in radians and i is in degrees,

dX _ dX^ _ AX
SB

~ 57 '3
di

~~~
57 '3

A*
=" 57 '
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Now at i = o, AZ) = .001 if the average of the adjacent differences

.003 and +.001 be taken for the value at i = o. Hence

dX dZ= -255, and =
31,900,

if AM be taken from the table as .03. An average of .00 and .05

would be .025, but the adjacent differences are .04 and .08 and indeed

if the whole range from 2 to +2 be taken, AM figures as over

.04 per degree. It is very difficult to say what value should be taken

for AM at i = o; the value of dM/dd estimated from the given table

might be anywhere from 10,000 to 25,000. The values of these

three derivatives may be obtained from the plotted curves of L,

Z>, M by estimating the slope at i = o. The slope, however, on a

fair curve depends very much on the way it is faired and is just

as liable to error as an arithmetical estimate from the tabulated

values.

(c) Find next the derivatives with respect to w.

iX ' "' f +
7^l)^'(^)'-

Hence

=
16.5,

= -287,

/76.Q\
2

=
dw 112% Ai 12 \ 30 /

(d) Finally the derivatives by q must be found. The value of

dM/dq is had by an oscillation experiment. For the model by (36)

the value of b = (dM/dq)m may be calculated if the total time nT
is observed in which the oscillation damps from a given amplitude to

i/r of that. In the experiments r =
9. The value of Im itself was

small compared with 7a ,
the moment of inertia of the apparatus to

which the model was attached. Indeed

Ia = I.l8, Ia + m =
1.26^, Im =

.085.

Moreover, it is of course necessary to eliminate the mechanical fric-
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tion so that only the wind friction remains for dM/dq. Let 6, there-

fore, be divided into three parts, b due to mechanical friction, ba due

to wind friction on the apparatus, and bm due to the wind friction

on the model, then b = bQ + ba + bm . The apparatus being set

to oscillating in no wind the time nT =
105 seconds was required

to damp to ^. Hence

, 2 X I.l8 X log* 9
b = 3=-* =

.00154.
105 X 32-2

Next the apparatus was oscillated in a 30 mi wind with nT = 94 sees

observed. Hence

7,7 2 X 1.18 X loge 9
b + ba = =" =

.00172.
94 X 32.2

Then the model was placed in the altitude i = o and oscillated in

the wind. The damping time nT was 17.5 sees. Hence

77 7 2 X 1.26^ X loge 9
bQ + ba + bm = =

.00993.
17.5 X 32.2

Therefore, for the model

bm = -
[ I = -

(-00993
-

-00172)
= -.0082.

\dqjm

It remains to scale this value up. Now (36) shows that dM/dq varies

as the fourth power of linear dimension (a*S) and as the velocity U.

Hence, for the machine

dM .-,
x(26)4x |/^yj =

_
96lQ-

ty V dq /m \ 30

The value of dX/dq is small, that of dZ/dg may be roughly esti-

mated as around ^ f dM/dq or say 500. The value will enter

into the equation in such a way as not to make a large effect. This

will be seen in the ensuing calculation, and the general discussion of

large versus small quantities will be taken up in Chap. VIII.

(e) Come now the equations of motion (37). The coefficients are

(since g/W = 32/1600 =
1/50, near enough):

0i = -.158, <k = +.330, 3
=

o, 04 = -5.10-

bi = -.570, b2 = -5-74, &3 = 10, 4
= 646.

Ci = o, c2 = +.140, cs
=

8.90, c4
=

15.7.
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The determinant in X is

X + .158

57

o

=o.
-330 5-io

X + 5-74 -loX -
646

.140 X 2 + 8.9oX + 15.7

Observe that 15.7
=

.14 X 112^ and that 646 =
5.74 X 112^ and

that 5.10
=

.33 X 112^ 32, because always

dM
-4- I = II

dd
U f'dw dw

dX = dX_
dd dw

It is a rule of determinants that the determinant is not altered if one

column multiplied by any number is added to another column term

for term. If the middle row of the above determinant be multiplied

by 112! and added to the last column, then

X + .158 --33 ~3 2

.570 X + 5.74 102 X

o .140 X2 + S.goX

This form of A is simpler to expand. Then

A = (X + .is8)[(X + 5-74)(A
2 + 8.9 X) + .14 X 102 X]

A = = o.

= X4 + I4-5X
3 + 67.9X

2 + i2.oX + 2.55
= o.

Hence,
B =

14.5, C =
67.9, D =

12.0, E =
2.55,

and R = BCD - D 2 - B 2E > o.

The machine is stable dynamically (as well as statically).

(f ) Finally the roots X must be formed to ascertain the periods of

oscillation and the damping factors. The short oscillation, heavily

damped, is obtained from

X2 + 14-sX + 67.9
=

o, X = -7.25 3.92*.

The periodic time is T = 2^/3.92 = 1.6 sec. The time to damp to

half amplitude is / = loge 2/7.25
=

.095 sec. The oscillation is indeed

rapid and heavily damped; it would be only (|)
l6>8 or about io~6

after one oscillation! The long weakly damped oscillation is obtained

from (48) as

= o.

'9 W-9r / 67.9

This gives a period of about T = 35 sec with a damping in about

t = 8 sec to half amplitude. The amplitude will be reduced to about

aV in one complete oscillation. The machine is very stable.
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NOTE. These results are .given by Hunsaker in his Smithsonian

paper above cited with slightly different numerical values. It cannot

be expected that two calculations should agree more closely than 2 or

3%. The difficulties were pointed out in the discussion of the ques-
tion of fairing tabulated or plotted values.

EXERCISES

1. Show that if two particles (or bodies) impinge, the momentum after

impact must be equal to that before impact. Two bodies, of masses as i : 2 and
with respective velocities as 4 : 3, moving in directions including an angle of 60

impinge. Find the direction and magnitude of the subsequent motion of their

C. G.

2. Prove that if two particles are rigidly connected, any forces of action

and reaction in the line joining them can do no work. (This result is really needed

to justify the application of the principle of work and energy in the case of a

rigid body.)

3. Two particles moving in the same line impinge. There is no loss of energy
in the impact. Show that the relative velocity of the particles after impact must
be equal and opposite to that before impact.

4. Discuss the problem of Ex. 3 when the particles are not moving in the

same line.

5. A bar of mass W and length / is rotating about its C. G. (the axis being

perpendicular to the bar) with angular velocity o>. What is the angular momen-
tum? Find the numerical value if W = 2 Ib, / = 2 ft, w = 200 R.P.M.

6. Solve Ex. 5 if'the bar is rotating about one end.

7. A bar of length / and weight W is at rest. It is struck normally at one end

by a particle of mass 2W. The particle adheres to the rod after impact. Find the

direction and magnitude of the velocity of the common C. G. after impact, and

the angular velocity of the system about it.

8. A 6oo-lb, uniform disc of radius 4 ft is spinning about a fixed axis through

its center with co = 30 R.P.M. A loo-lb boy is at the center. If he crawls out

to the edge what will the angular velocity be?

9. A cube sliding on a horizontal plane strikes a small ridge which instantly

stops the forward edge. Will the cube tip over or not? (Consider the ridge as

an axis about which the angular momentum just before and just after impact

must be the same.)

10. A cylindrical mass of fluid is circulating about an axis irrotationally

(see Art. 80). The radius of the cylinder is a and the peripheral velocity is v. If

the fluid congeals, find the angular velocity of the whole.

11. A flat disc, mass W, radius a, is moving with both translation and spin

on a horizontal plane of which the coefficient of friction is
fj..

Find the magnitude
and direction of the total friction, and the frictional torque. Write the equations

of motion. Solye.

12. Prove that if the moment of inertia about the C. G. is 7C ,
that about a

point (or axis perpendicular to the plane) at a distance d from the C. G. is Ic + &W.
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13. A loo-lb disc of radius 2 ft has a force of 20 Ib applied tangentially to the

rim at one point. What accelerations, linear and angular, does the force set up?

14. A boy throws a hoop, W = i Ib, a = i ft, with a forward velocity of

10 ft/sec, and a reverse spin of 2 revolutions per second, on to a horizontal plane

of which the coefficient of friction is J. Describe qualitatively and find quanti-

tatively the motion.

15. If an airplane weighs 1800 Ib and has a radius of gyration equal to 6 ft,

how great will be the angular acceleration set up by the elevator if a torque of

1500 ft Ib is possible? How long will it take the machine to turn through 4
-

supposing no other torques to act?

16. Calculate the derivatives with respect to u, w, 6 for the "Clark" at

* = 3. Check by the equations (49).

17. Calculate the derivatives with respect to u, w, d for the "Clark" at

i = 6. Check by equations (49).

18. Given as the results of oscillation experiments with i = 6 that the time

nT to damp to | for the
" Clark" in 30 mi wind is 20 sees. Find (dM/dq)m , dM/dq

and estimate dZ/dq as so dM/dq.

19. Given for i = 12, nT = 25 sec, etc., as in Ex. 18.

20. Given that for the
"
Clark

"
at i = 6 and i = 12 the modified determi-

nants A are respectively

A6
=

X + .12

I.CO

o

-.24
X + 2.9

-.106

-32
6oX

X2 + 4-4X

X + .16 o -32
1.20 X + i 5iX
o -.066 X2 + 2.8X

Calculate the coefficients and R from these determinants, and obtain the periodic

and damping times.

21. Compare your results of Exs. 17, 18 with Ae of Ex. 20 and make the

calculation from your data.

22. Given that for the JN-2 model Ia = 1.18, Ia+m =
1.34^. Given that

nT, the time to damp to | is for apparatus in 30 mi wind 97 sec; for apparatus and

model 16 sec when i = 10. Calculate dM/dq for the whole machine. The value

should be about 8400.

23. Make a stability calculation for the JN-2 at i = i.



CHAPTER VII

MOTION IN THREE DIMENSIONS

44. Angular Motion. For two-dimensional motion of a mass,

the moments of inertia about the center of gravity, the position of

the center of gravity, and the amount of turning about the center of

gravity, the component forces, and the moments of the forces about

the center of gravity entered into the equations of motion. In three

dimensions the mass of the body, the position of the center of gravity,

and the component forces will again enter a motion, and in a way
entirely analogous to that found in the two-dimensional case, namely,

W ?V W-^ - t>7
2

'

2 g
dt2 '

dt2
'

dt

To prove these equations the method used in the simpler case applies

except for the necessity of carrying an additional equation.

The angular motion, however, is decidedly more complicated. In

two dimensions rotation can take place only about a point, that is,

about an axis perpendicular to the plane of motion. In three dimen-

sions rotation may take place about various axes, and the composi-

tion of rotations, that is, the result of a rotation through a finite angle

about one axis followed by the rotation through a finite angle about

another axis is a complicated subject. Even the specification of the

new positions of the axes in a body when rotated from a standard

position to some other is itself complicated. All these matters will

be omitted.

Angular velocity is a simpler quantity than angular displacement

because if a body has simultaneous angular velocities about two

axes intersecting at the point O, and if these angular velocities be

represented as vector quantities by drawing along the axes of rota-

tion a directed magnitude equal to the angular velocity, then the

resultant motion of the body is an angular velocity determined both

in regard to its magnitude and its axis of rotation by the law of com-

position of vectors, that is, by the parallelogram law. To prove this

107
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will require the values of the velocities of any point in space arising

from an angular velocity about a particular axis.

Let p represent an angular velocity about the axis of x. Every

point (x, y, z) then moves along a circle concentric with the #-axis,

and the velocity of the point will have the components u, v, w as

follows:

u =
o, v =

zp, w = yp ...... (2)

In like manner, the velocities due to an angular velocity q about the

y-axis must be
u =

zq, v = o, w = -xq ...... (3)

and the velocities due to the angular velocity r about the z-axis are

u =
yr, v = xr, w =o ....... (4)

When all these angular velocities operate simultaneously, the result-

ant velocity of the point (x, y, z) will be the respective sums of these

velocities, namely,

u =
zq
-

yr, v = xr - zp, w = yp
-

xq ... (5)

Now, if the law of vector composition of angular velocities is true,

the velocities u, v, w here, found must be those due to the angular

velocity _
about a line whose direction cosines are respectively

p_ = P = Q
r_ =

r ,.

* + r
2

'

co V> 2 + 2 + r2
'

co

'

That this is so may be proved geometrically. It is easier, however,

to proceed differently. Suppose a second set of angular velocities

p', q
f

,
r' be considered. The velocities due to these are by (5)

u' =
zq'

-
yr', v' = xr' - 2p', w' =

yp'
-

xq' y (5')

the velocities due to the superposition of p, q, r and p', q', r' are then

u + u' =
z(q -f q')

-
y(r + r'}, etc.

and these are precisely the velocities due to angular velocities p + p',

q + q', r + r'. Now if p, q, r be regarded as components of a vector,

and />', q', r' as components of a second vector, the composition of

the two angular velocities leads to a vector with components p -f p'',

q + q', r + / when and only when the parallelogram law is obeyed.

Hence the proof.
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45. Angular Momentum. If a body be rotating with angular

velocities p, q, r about the three axes, the angular momentum of the

body may be calculated as follows:

Let dW be an element of mass situated at x, y, z. The momentum
in the x direction is u dW, representable as a directed quantity located

at (x, y, z). The moment of this quantity about the #-axis is zero,

but about the ^-axis the angular momentum or moment of momentum
is zu dW, whereas about the z-axis it is yu dW. The velocity u of

the mass dW, therefore, contributes the following angular momentum :

dhi =
o, dh2

= zudW, dh* = -yudW, . , . (8)

where dhi, dh%, dhs are the elements of angular momentum or mo-

ment of momentum about the three axes. In like manner the veloci-

ties v and w contribute elements of angular momentum respectively

as follows:

dhi = zvdW, dhi =
o, dhs

= xvdW, . (9)

dhi = ywdWj dh% = xwdW, dh3
= o . . . . (10)

The total angular momentum has, then, for its components

dhi = (yw zv)dW, dh% = (zu xw)dW, ) ,

^

dhs
=

(xv
- yu)dW, \

and if the values for u, v, and w be substituted from (5),

dhi = [O2 + z*)p
-

zyq
-

xzr'ldW,

with similar expressions of dfe and dh3 obtained by advancing the

letters.

The total value of hi is obtainable by integration as

h = p f(y
2 + z

2
) dW -

q fxy dW - r fxz dW . . (12)

with similar expressions for fe and h3 . The coefficient of p in hi is

the moment of inertia of the body about the #-axis. The coefficients

of q and r are quantities called products of inertia. The following

notation is used for moments and products of inertia:

= f(y* + z*)dW,B = f(z* + x 2
)dW, C= f

J J J
A

r r r (13)

D= I (yz)dW, E = / (zx)dW, F = / (xy)dW.

Then,

hi = Ap - Fq -
Er, h> = Bq - Dr -. Fp, hz = Cr - Ep - Dq (14)



HO RIGID MECHANICS

That the angular momentum may be regarded as a vector with

components h\, /^, h3 and that angular momenta compound according

to the parallelogram law follows from (14) and the composition of

angular velocities just as the composition of angular velocities fol-

lowed from (5) and the composition of velocities. Hence, although

the moment of momentum or angular momentum of a plane rigid

body is the moment of inertia / times the angular velocity co namely,
h =

/co, the component moments of momentum for the rigid body
in three dimensions contain not only three moments of inertia, but

three products of inertia, and each component of angular momen-
tum contains all three components of angular velocity. The angular

momentum vector and the angular velocity vector are not in gen-

eral in the same direction; that is, it is not in general true that the

ratios hi : fe : hz are the same as the ratios p : q : r. In fact, the angle

between the angular momentum and angular velocity, regarded as

directed quantities, is (by a well-known formula of solid geometry)

^
( }

+ hf + /*3
2

46. Kinetic Energy of Rotation. The kinetic energy of rotation

of the rigid body is

K.E. = S(w
2 + v

2 + w*) dW, (16)
2

when kinetic energy is measured as usual, in foot-pounds or similarly.

If the values for #, v, w, be substituted from (5), the result is

K.E. = (Ap* + B(f + Cr2 -
iDqr

- 2Erp- 2Fpq) = /co2
, (17)

O O

for the kinetic energy is necessarily i/2g times the product of the

moment of inertia into the square of the angular velocity. The cal-

culation of the kinetic energy of rotation in the plane is a simple

problem involving the moment of inertia and the angular velocity;

in space it involves the three moments of inertia, and the three prod-

ucts of inertia, and the component angular velocities.

From the formula for the kinetic energy it is easy to obtain the

ellipsoid of inertia. The definition of the ellipsoid of inertia is that

it is the locus obtained by laying off from the origin on each axis of

rotation the reciprocal of the square root of the moment of inertia

of the body about that axis. Now, the coordinates of the point x,

y, z thus defined for each axis of rotation are
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. (18)
VI a' VI co' VI co

The substitution of these values in the equation of kinetic energy

(17) gives for the locus of (x, y, z) as

Ax 2
-f- By

2 + Cz2
2Dyz 2Ezx 2Fxy = i . . . (19)

This is a quadric surface because it is an equation of the second

degree. It is an ellipsoid (rather than a hyperboloid) because the

radii being equal to the reciprocal of a moment of inertia must always

be finite. This ellipsoid may be reduced to standard form by chang-

ing to a new set of axes directed along the principal axis of the ellip-

soid. After this reduction the equation of the ellipsoid becomes

merely
,4V 2 + B f

y
f2 + CY 2 =i, ....... (20)

where A', B', C are the moments of inertia about the principal axes

of the ellipsoid of inertia. As the terms in y'z
1

', zV, and x'y' do not

occur in the reduced form, the products of inertia Df

,
Ef

,
F' must

all vanish when the axes of coordinates coincide with the axes of

the ellipsoid of inertia.

The axes of the ellipsoid of inertia are called the principal axes

of the rigid body. For these axes there are no products of inertia,

and for these axes the relation between angular momentum and

angular velocity is simply

V = A'p', fe' = 5Y, fe' = CV, .... (21)

and the kinetic energy of rotation is

K.E. =
i/2g(A'p'* + B'q'

2 + CV 2
) ..... (22)

The great simplifications for the angular momentum and for the

kinetic energy which arise when principal axes are used make it

desirable that whenever feasible those axes shall be used. It may
be added that there is an even greafer simplification in the dynamical

equations of angular motion.

The reduction of an ellipsoid given in general form to its principal

axes is a complicated piece of algebra. Fortunately, in most cases

which arise in engineering, some, at least, of the principal axes can

be foreseen from the symmetry of the figure.

If there is a plane of symmetry with respect to mass, that is to
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say, if there is a plane in the figure such that for every element of

mass dW on one side of the plane, there is an equal element of mass

dW on the opposite side of the plane (the line joining the two ele-

ments being perpendicular to the plane and bisected by the plane),

the plane is one of mechanical symmetry. And if one axis, say the

^-axis, is perpendicular to this plane, two of the products of inertia,

namely, those that contain y,

D = fyzdW, F = fxydW,

vanish; for each dW with coordinates (x, y, z) there is by hypothesis

another dW, equal in magnitude, with coordinates (x, y,z). Hence,

the terms in the integrals cancel in pairs, and

D = F = o ...... ..... (23)

The ellipsoid of inertia then reduces to

Ax2 + By
2 + Cz2 - 2Ezx = i ...... (24)

The y-axis is the principal axis, but the x and z axes are not unless

E = o. However, the algebraic problem of determining the two

remaining principal axes now becomes merely that of finding the

principal axes of the ellipse

Ax2 + Cz2 - 2Ezx = i.

If a new set of axes x'
',

z' be taken, inclined at an angle 6 to the axes

x and z, then

x' = x cos 6 z sin 6, z' = z cos 6 + x sin 6,

and

E' = fx'z' dW = %(A -
C) sin 26 + E cos 26 . , (25)

For E' =
o, the result is

tan 26 = 2E/(C -A) ........ ( 2 6)

The angle 6 is, therefore, determined. The new values of the mo-
ments of inertia may also be calculated as

A' = %(A 4- C) + |(C - A) cos 26 - E sin 20, )
(

.

C = %(A + C) + \(A -
C) cos 26 + E sin 20. \

'

The values of A' and C' can, therefore, be obtained from the expres-

sion for tan 26.
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47. Equations of Rotatory Motion. It is next necessary to

prove that the rate of change of angular momentum is equal to g

times the moment of the forces. As in the case of the plane, this

theorem is true first, when the point about which moments are taken

is any fixed point in space, and, second, when moments are taken

about the moving center of gravity. The proof, moreover, is identical

with that given in the case of the plane, except that another variable

must be carried throughout the demonstration, and that three equa-

tions must be carried in place of one. There is no need of giving the

demonstration again, because the proof given before holds identically

for the case of the component angular momentum and moment about

the z-axis, whereas the proof for the components about the x and

^-axes is obtainable by merely permuting the letters. The result is

^ =
j-(

(AP - Fq -
Er) = g(yZ

-
zY), . . . . (28)

if Z, F are the components of the external applied forces. The total

moments about the three axes are denoted by L, M and N respec-

tively. Hence,

I (Ap -Fq- Er) = gL, | (Bq
- Dr - Fp) = gM, etc. (29)

If the axes x, y, z through the center of gravity are fixed in direc-

tion in space, and the body moves relative to them, the moments

and products of inertia are variable as the body moves, and the

equations of motion must be obtained by differentiating not only p,

q, r, but also A, F, E, etc. It is ordinarily very inconvenient to

calculate moments and products of inertia with respect to fixed axes

relative to which the body moves, and further inconvenient to calcu-

late their rates of change. It is not only inconvenient, but exceed-

ingly complicated. It is, therefore, customary to use axes moving
in space, but fixed in

%
the body. When this is done, the moments

and products of inertia are constant, and may be calculated once for

all. On the other hand, the expressions for the rate of change of

the quantity referred to moving axes must be developed for axes in

space. These expressions for rates of change are themselves some-

what complicated, but the final result is ordinarily simpler than would

be found by regarding the axes as fixed in direction.

48. Moving Axes. Consider first the case of plane motion.

Let F be a vector quantity with components u, v along x, y. Let
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the axes x, y be themselves rotating with an angular velocity r so that

they turn through the angle r dt in the time dt. It is required to

determine the components of the rate of change dV/dt of the vector

V along the axes. Draw the vector

V and its new position V + dV.

Now OM is the value of u, the

component of V along x\ and OM'
is the value of u + du

}
the com-

ponent of V + dV along x
r

. Then

du = OM' -OM = OM' - OP
= PR + #M' = MN + Af'.

In writing this equation, OM
= OP cos 6 = OP and MN =

PR cos = PR have been used since

cos 0=1, except for infinitesimals of the second order. Now MN
= du is the component of dV along x and bu/dt is the component of

the rate of V. On the other hand du = MN is not the change in u

because the rotation of the axes has brought in the additional part

RM' = BR sin = BR 0. Hence

du = du-BRrdt, jJ-.4S-J!Rr!

Now let dt approach zero. Then BR approaches AM =
v, component

of V perpendicular to x. Hence

du du

6-rdt. M N
Fig. 15. Rate of Change of Vector,

Moving Axes.

-r- vr (30)

The component along x of the rate of change of V is the rate of change
of the component of V along x diminished by the product of the

angular velocity r by the component of V perpendicular to x. In

like manner it may be shown that the component along y of the rate

of change of V is the rate of change of the component of V along y
diminished by the product of the angular velocity r by the com-

ponent of V perpendicular to y. This component is not u but u be-

cause it is x which bears to y the relation which y bears to x. Hence

_i_ ( ")

The need for these formulas lies in the fact that the force X along x

(multiplied by g) is the mass W times the acceleration along x and
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du/dt no longer gives the acceleration. In fact for the case of the

plane, the equations of motion relative to rotating axes are

W W ( \ Y W W ( 4- \ V ( \

Next proceed to the case of axes rotating with angular velocities

p, q, r about a point in space. If u, v, w are the components of a

vector V along the moving axes x, y and z, the following are the

formulas which must be demonstrated:

Component rate of change of vector V along x = du/dt vr-{- wq,}
" " " " " " "

y = dv/dt-wp + ur,\ (33)
" " " " " " "

z =dw/dt-uq + vp.)

It is sufficient to demonstrate any one of these formulas because the

others are obviously obtainable merely by permuting the letters. A

comparison of the rate of change along x with the expression obtained

(30) for the plane shows that in addition to the term vr there is

the term wq; whereas in addition to the term ur for the change along

y there is the term wp.

The proof of the formulas may be carried out as follows: The

term du/dt is evidently due to the change of the component of V

along x in the body, whereas the terms vr and wq are due to the

change of the direction of the axis of x. This change is brought
about by the infinitesimal rotation r dt about the z-axis, and an in-

finitesimal rotation qdt about the ;y-axis. The infinitesimal rota-

tion r dt will introduce the term vr in the component acceleration,

just as in the demonstration for the plane. Both the demonstration

and the figure there used may be repeated identically. There will

also be a contribution -{-ur to the component acceleration along y.

The infinitesimal rotation q dt about the ;y-axis may be treated in

exactly the same manner, and it is then seen that the contribution

to the acceleration along x is -{-wq (not wq), and to the accelera-

tion along z is uq.

49. Equations of Motion. When the formulas (33) are applied

to the motion of the center of gravity itself, with u, v, w interpreted

as the component velocities along the axes, the equations of motion

for the center of gravity referred to moving axes become

TTT /duW I- vr + 1
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When the same formulas are applied to the rate of change of angular

momentum, the result is

-+ - hr + h*q
= gL, ........ (35)

with similar expressions for the change in hz and /r3 . If the values

of hi, hi and h3 be substituted from (14), the result is

A(dp/dt]
-

F(dq/di)
-

E(dr/dt) + (C
-

B)qr + D(r
2 -

q
2
)

+ Fpqr
- Epq = gL,

with similar expressions obtained by permuting the letters.

These expressions are very much simplified when the body is

referred to its principal axis. In that case,

D = E = F =
o,

and the equations become

A(dp/dt) + (C- B)qr = gL,
}

B(dq/dt) +(A-Qrp =gM,\ (36)

C(dr/dt) + (B - A)pq =
gN.I

This set of equations is known as Euler's equations.

The airplane is itself a body which has a plane of symmetry.

Perhaps the symmetry is not quite perfect. For instance, the two

sides of the wing may not be of absolutely the same design. There

may be some
"
washout," designed in part, at least, to compensate for

the torque of the propeller. There may not be an absolutely perfect

distribution of the masses of different parts of the machine relative

to the plane of symmetry. Nevertheless, for practical purposes the

central #z-plane is sufficiently near a plane of symmetry to be treated

as such. As the ;y-axis is taken perpendicular to this plane, and the

x and z axes in it, the products of inertia D and F vanish, and for

the airplane one may write

h = Ap- Er, h* = Bq, h3
= Cr - Ep, . . (37)

and the equations of motion may be written as

A(dp/df)
-

E(dr/dt) + (C
-

B)qr
- Epq = gL,

B(dq/df) + (A
-

C)rp + E(p*
- r

2
)

= gM, . . (38)

C(dr/dt)
-

E(dp/dt) + (B
- A)pq + Erq = gN..

These equations will be used later to discuss stability.

50. Steady Motion. The motion of a body is said to be steady

when the derivatives with respect to the time vanish in the equations
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of motion referred to moving axes. For a person who moves with

the body, steady motion is no motion at all. When a top spins

in the vertical position with constant angular velocity, the motion of

the top is steady. When the top spins about an inclined axis, and

the axis rotates uniformly about the vertical, the motion is also

steady. If the body is referred to its principal axes, the condition

for steady motion about the center of gravity is obtained from (36)

by setting the derivatives equal to zero. Then

(C
-

B)qr =
gL, (A

-
C)rp = gM, (B -

A)pq = gN . (39)

are the conditions connecting the angular velocities about the axes,

the moments of inertia about the axes, and the moments of the forces.

It is necessary to note that the moments of the forces are not

proportional to the component angular velocities. In fact, if the

moment of the forces were proportional to the angular velocities, so

that the resultant moment were in the same direction as the result-

ant angular velocity, the conditions to be satisfied would be

L : M : N = p : q : r.

As a matter of fact, the torque, that is, the resultant moment, is as

a directed quantity perpendicular to the axis of spin in steady motion;

that is, the torque is in a plane passing through the axis of spin.

The condition that the vector whose components are L, M, N,
be perpendicular to the vector whose components are p, g, r is

Lp -\- Mq + Nr = o. If the values for L, M and N be substituted

from (39), it is seen at once that the condition for perpendicularity is

satisfied, and the resultant torque is in a plane passing through the

axis of rotation. Again, if the angular velocity be co, and the

direction cosines of its direction relative to the axes be /, m, n, so that

p =
Is, q

= ms, r =
ns,

the components of the torque necessary to maintain this steady

angular velocity co about this direction are

gL = (C
- B)mnu\ gM = (A

- C}lnu\ gN = (B
- A)lmtf . (40)

Whenever a rigid body is balanced upon an axis passing through
the center of gravity, the body is necessarily in static equilibrium,

with no tendency to rotate about the axis. Whenever that same

body is rotating with an angular velocity co about an axis passing

through the center of gravity, there is in general a torque passing
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through that axis, and tending to deviate the axis into a new posi-

tion. The amount of that torque is given by its components from

(40). If the axis of rotation happens to be a principal axis, the angu-
lar velocity co becomes either p or q or r, the other two components

being zero, because p, q, r are by definition the component angular

velocities along the principal axis. Moreover, / or m or n is equal to

unity, and the other two vanish. It, therefore, appears from (40)

that whenever the body rotates about a principal axis through the

center of gravity, there is no torque acting upon the axis and tend-

ing to deviate it. A body is said to be in dynamical balance for rota-

tion about an axis when there is no tendency for the axis to change
direction under the action of the rotation; that is, when the axis is

a principal axis. In the case of rapidly rotating shafts, armatures,

and the like, in engineering structures, it is very important, if possi-

ble, to have the axis of rotation a principal axis passing through the

center of gravity of the rotating body; for only in that case will the

resultant torque on the bearings be zero. In case the body is out of

dynamical balance, that is, in case the axis of rotation be not a prin-

cipal axis, there is a torque upon the axis, and consequent excessive

pressure upon the bearings, with much wear and tear.

51. Angular Momentum and Torque. The relations between

angular momentum and torque, or moment of force, can best be

explained with the aid of vectorial nomenclature.

First, consider the motion of a particle. Let Wv be the momen-

tum drawn as a vector. Now, if the force F acts for the time dt, the

contribution to the momentum is F dt, both in magnitude and in

direction. If the force acts in the direction along which the particle

is moving, then the magnitude of the momentum is increased; but

if the force acts in a direction perpendicular to that in which the

particle is moving, then the momentum is changed in direction with-

out being altered in amount. However, the rate at which the mo-

mentum vector turns is co = gF/Wv. The same treatment may be

accorded the velocity and acceleration that has been given to the

momentum and the force. An acceleration dv/dt which acts in the

direction of a velocity v produces an increase in the velocity without

change of direction; but an acceleration which acts perpendicular

to a velocity turns the velocity vector with an angular velocity de-

termined by the relation z;co = dv/dt.

Passing to angular velocity and angular acceleration, the facts
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are as follows: An angular acceleration, du>/dt, which takes place
about the axis of the spin co, increases the magnitude of co. If, how-

ever, the angular acceleration generates angular velocity about an

axis perpendicular to the axis of the spin co the effect of the angular
acceleration is to rotate the axis of spin, with an angular velocity

12, which is the quotient of the angular acceleration and the angular

velocity co. That is, co!2 = du/dt. But it is not angular velocity

which is of fundamental importance in the mechanics of a rigid body.
The dynamical concept that must be used is angular momentum,
which is not necessarily in the same direction as the angular velocity.

The angular momentum has three components, and is regarded as

a directed magnitude. The torque, or moment of the forces, has

three components, and is also regarded as a directed magnitude. If,

then, the torque is in the direction of the angular momentum, the

effect of the torque is to increase the magnitude of the angular mo-

mentum; whereas if the torque is perpendicular to the angular mo-

mentum, the effect of the torque is to rotate the angular momentum
vector in the plane determined by that vector, and the torque vector;

and the angular velocity of rotation 12 is the quotient of g times the

torque T by the angular momentum h. That is, 12 = gT/h. It is

also possible to regard the torque as a couple in the plane instead

of as a vector perpendicular to that plane. The couple in a plane

generates angular momentum perpendicular to that plane, and if

the angular momentum is itself perpendicular to the plane, the effect

is merely to increase the magnitude, whereas if the angular momen-
tum lies in the plane, the effect is merely to rotate the angular

momentum.

For example, consider the effect on the motion of an airplane of

the angular momentum of the rotating parts, which consist, first of

the propeller, and second of certain parts of the engine. In the case

of a rotating engine, like the Gnome, the contribution of the rota-

tion of the engine itself to the angular momentum is considerable.

Imagine that the rotation appears clockwise from in front of the

propeller, counterclockwise from behind. The angular momentum
due to the rotating parts will, then, be drawn as a vector forward,

because clockwise rotation is positive. If the pilot by operating the

elevator tries to change from uniform horizontal motion to a climb,

the angular momentum vector for the rotating parts must tip up.

This means that a torque must act in the horizontal plane, and in
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the absence of an external force producing this torque, the machine

will yaw off under the reaction set up by the rotating parts. In a

similar manner, if the pilot tries to execute a turning (yawing) mo-

tion, the angular momentum vector turns to the right, which re-

quires the operation of a torque in the vertical plane; and in the

absence of such a torque, the machine will pitch or stall under the

reaction of the motion due to the rotating parts. The torque re-

quired is the product of the angular momentum h by the angular

velocity 12 of turning divided by g. That is T =
h$l/g.

EXERCISES

1. Component angular velocities are i, 3, 5. Find the resultant and the

angles it makes with the axes.

2. A brick 2X4X8 inches is spinning 240 R.P.M. about its main diagonal.

Find the component angular velocities about the three edges.

3. A body is rotated 90 about a given horizontal axis and then 90 about the

vertical. It is also first rotated 90 about the vertical and then 90 about that

same horizontal axis. Show the difference in position illustrating that large

angular displacements do not compound vectorially. If they did compound, what

would the position be?

4. A body is rotated J, ^, f about three perpendicular axes. Assuming
that these rotations can be treated as infinitesimal find the resultant axis of rota-

tion and the amount of rotation.

5. In Ex. 2 find the component velocities of each corner.

6. In Ex. 2 assume a density of 150 lb/ft
3 and calculate the moments of

inertia about the C. G. about axes parallel to the edges.

7. In Ex. 6 calculate the products of inertia D, E, F if the origin is at one

corner.

8. A thin rectangular plate a X b ft has two squares c X c nicked out of two

diagonally opposite corners. Calculate the moments and products of inertia

about axes through the C. G. parallel to the edges of the plate (one perpendicular

to the plate).

9. The plate of Ex. 8 is spinning about an axis in the plate parallel to one

edge. Find the component angular momenta, and the total angular momentum

in magnitude and direction.

10. Find the kinetic energy in Ex. 9 and check (17).

11. If /o is the moment of inertia about an axis through the C. G., show that

7 + Wd? is that about a parallel axis at a distance d.

12. Ii A, B, C, D, E, F are moments and products of inertia about axes

through the C. G., find the corresponding quantities about parallel axes through

(a, ft, c}.

13. Find the principal axes in Ex. 8, and the moments of inertia about them.

14. Write out the proof of (31) from a figure.
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15. Suppose in Ex. 2 that the density is 150 lb/ft
3 and that the spin is dying

out at the rate of 24 R.P.M. per second. Find the torques about the principal

axes.

16. The plate of Ex. 8 is spinning steadily about the other diagonal. Find

the torque.

17. If the rotating parts of an airplane have / = 200 and co = 1200 R.P.M.
,

the axis of rotation being supposed to be along X (negative), what gyroscopic

torque will be experienced if the machine pitches down i in i sec? Give mag-

nitude, and tendency on the machine.

18. Data as in Ex. 17 with the mass of the machine 1600 and its radii of

gyration about X, Y, Z equal to 5, 6, 7. Find the angular acceleration set up by
the torque, and the angular velocity generated in i sec.

19. Suppose the airplane yaws 3 in 2 sec. Solve as in Ex. 17 and 18.

20. An airplane weighs 1600 and has radii of gyration of 5, 6, 7 about axes

supposed principal. Find moments and products of inertia about new axes ob-

tained by rotating the original axes about Y through 12 from X toward Z.

21. An airplane weighs 1800 and has radii of gyration 6, 6, 8| about axes

supposed principal. Find moments and products of inertia about new axes

obtained by rotating these through 15 from X to Z.



CHAPTER VIII

STABILITY OF THE AIRPLANE

52. The Form of the Equations. When an airplane moves in

three dimensions the equations of motion referred to moving axes

through the origin of the center of gravity with the ^-axis perpen-
dicular to the plane of symmetry, and with the x- and z-axes in the

plane of symmetry, are as follows:

W(du/dt
- vr + wq) = gX, dhi/dt

-
far + h3q

= gL,
]

W(dv/dt -wp + ur) = gY, dfa/dt
-

fap + far = gM,
[

(i)

W(dw/dt -uq + vp) = gZ, dfa/dt
-

faq + fap
= gN, j

with

fa = Ap - Er
} fa = Bq, fa = Cr -

Ep. . . . (2)

The conditions for steady motion in the direction of the axis of x

with velocity U are

X =
o, 7 =

o, Z =
o, L =

o, M =
o, N = o. . . (3)

The forces and moments are not exclusively those due to the air

forces. In the #z-plane there is acting a propeller thrust and the

weight of the machine. Moreover, there is about the #-axis the

constant action of the propeller torque, which is balanced or nearly

balanced by the
" wash-out" on the wing or is to be regarded as small

compared with other moments. The moment L may, therefore, still

be regarded as o, at least in the preliminary discussion of stability.

The forces X and Z and moment M, however, must be separated

into the aerodynamical forces and the thrust and weight, namely,

X = X' -
T, Z = Z' -W, M = M' -

hT, . . (4)

if the normal attitude is horizontal with propeller thrust horizontal

and passing above the C. G. by the distance h. The conditions for

steady motion are

u = U, v = w =
q
= r = o, (5)

and for motions near the steady motion, which are the only ones dis-

cussed for stability, u is nearly equal to U, and v, w, p, q, and r are

122
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all nearly equal to zero. The equations may be simplified by dis-

carding the products of two small quantities. They then become

-^ '- eX A-E- - eL
dt

~ g '

dt dt~ g

gM,
,di

W( d^-

(6)

The forces X, Y, Z and moments L, M, N are infinitesimal. The

quantity u remaining in the first equation may also be taken as the

infinitesimal departure of u from the constant value of U. It is neces-

sary to calculate the infinitesimal values of the forces and moments.

So far as the aerodynamic part of the forces is concerned, it may be

assumed that the value depends wholly on the velocity and angular

velocity of the machine relative to the air, that is (apart from the

velocity U) upon u, v, w, p, q, r. The aerodynamic #-force may be

written

. dX
t
^C . dX

,

\X ^ ,

dX
'

dX
f

<X^XQ+u + v+-w + p + -q + ~r,. (7)
du dfl dw dp dq dr

where the partial derivatives are taken for the value appropriate to

the steady state, and where XQ is equilibrated by the thrust T.

(NOTE. In every equation beyond (6) the symbols X, Z, M will

denote the aerodynamic forces and the effects of thrust and weight

will be separately allowed for; moreover u will be the infinitesimal

change in forward velocity.)

In like manner, the forces F, Z and the moments Z,, M, and N
may be expanded to a first order of approximation into a linear ex-

pression in the small velocities, u, v, w, p, q, r. There arise, therefore,

for the determination of the new values of the forces and moments

36 partial derivatives.

Of these 36 derivatives, however, 18 may be shown to vanish by

using the fact that the airplane is a symmetrical structure. Those

which vanish are the derivatives of X, Z, and M with respect to

v, p, and r, and the derivatives of F, L, and N with respect to u, w,

and q. These may be written in the symbolic form

d(X, Z, M) d(Y, L, N) ,,
; r = O and : r- = O (o)

d(v, p, r) d(u, w, q)
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To prove, for instance, that dX/dv = o the argument is as follows:

The change in X due to the velocity v is (dX/dv)v. The derivative is

a constant, and the force due to v changes its sign when v changes

sign, provided the derivative does not vanish; but owing to the sym-

metry of the structure, if a side slip v to the right produces a force

along x, a side slip v to the left must produce the same, not the oppo-

site, force along x. Therefore, dX/dv must vanish. In the same way,
the pitching moment about the ;y-axis due to an angular velocity p
of roll is (dM/dp)pj and must change its sign with p. Now, as the

structure is symmetrical, if a positive angular velocity of roll about

the #-axis pitches the machine over, a negative angular velocity must

also pitch it over in the same sense; so that the sign cannot change,

and, hence, dM/dp = o. The argument goes in exactly the same

way for all the other 16 derivatives which have been stated to vanish.

It is now necessary to calculate the changes in the equation due

to the propeller thrust and gravity when the axes are changed in direc-

tion by infinitesimal amounts. An infinitesimal angle of pitch is

designated by 6, and measured positively when the machine tends to

climb. An infinitesimal angle of yaw is denoted by ^, and is measured

positively when the machine yaws from left to right as viewed by
the pilot. The infinitesimal angle < of roll is positive when the right-

hand side of the machine tips down, and the left hand up. The varia-

tion of the propeller thrust T with velocity and angular velocity is

assumed to be o; that is, the propeller thrust is taken to be constant.

If the thrust were considered as changing an equation

,

dT .dT.dT .dT^.dT .dT
T = To + u + ^v + -w + /+--g + r,

du dv dw dp dq dr

analogous to (7) would have to be used, with X = T as the equilib-

rium condition. A yaw of the machine does not change the direc-

tion of action of the force of gravity relative to the axes; but a pitch

6 or a roll 4> does introduce changed components of gravity along the

axes because of the variation in direction of the axes. The roll </>

introduces a component W<t>, tending to make the machine slip in

the y direction in the negative sense. A pitch 6 introduces the com-

ponent W6, tending to make the machine slip back in the x direc-

tion. The Z component of the weight is not changed except for

infinitesimals of higher order. The equations of motion may then

be written
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W du

g dt du

dX. . dJ(.
w H--

dw d
+ W6,

W (dw TT \ dZ . dZ . dZ
[ Uq I

= u H w -\ q.

g \dt
*
) du dw dq

*

B dq dM . dM . dM
w H--- w H--

du dw

W \ dY
}
= v

) dv

A dp E dr dL
-j- = y

g dt g dt dv

aF

dp

dL

dp

dq

dY_

dr

dL

dr
r
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(9)

. .

P +

C dr E dp dN . dN ^ ,dN--- -*- = v H-- i) H-- r^
dr

(10)

g dt g dt dv dp

with q dO/dt and r = d<j>/dt, because infinitesimal angles 6, </>, ^
compound Hke angular velocities so that infinitesimal rotations 6,

$, \fr
are geometrically independent.

The first three equations contain only the variables u, w, and 6.

The second three equations contain only the variables v, <, and r.

The first set of equations determine the so-called longitudinal mo-

tion. They are equivalent to, and, indeed, identical with (except for

rotation and the difference between moving and fixed axes) the equa-
tions which have already been obtained (Art. 41) for the discussion

of the motion in two dimensions. The theory of the longitudinal

stability may, therefore, be considered as already largely completed,

inasmuch as the work of this chapter has shown that for infinitesimal

displacements the longitudinal and lateral motions are independent.

The second set of three equations determines the so-called lateral

motion; that is, the interrelation of side slip, roll, and yaw. The

equations are linear with constant coefficients, and the method of

treatment, so far as the analysis is concerned, does not differ materi-

ally from that given for longitudinal stability. In the details, how-

ever, the discussion is considerably different.

53. The Determination of the Coefficients. It has been stated

that equations (9) are equivalent to (24) of Art. 39. The demonstra-

tion of this fact will throw light on the meaning of the coefficients and

the significance of moving as contrasted with fixed axes. Compare
first the equationsWW = W u, dM

w <M dM
e

,.
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and
B da <M/ . dM . dM

,
.

-f-
= ~T~ W + T~ w H--- 9....... (12)

g dt du dw dq
"

The values of Wk* and 5 are the same the moment of inertia about

y. The meaning of u' and u are the same the variation of the for-

ward velocity from U except for this difference: In (n), u' repre-

sents velocity along a fixed horizontal axis; in (12), u is velocity

along a moving forward (or better, backward) axis. In like manner

the two w's mean respectively small vertical velocity and small nor-

mal velocity. Now as U is large, a small value of 6 will give a small,

but not negligible, component velocity across the path. In fact if w
is the velocity along z, the vertical velocity w

f

is (U being itself

negative)
wr = w cos 8 U sin 6 = w U6...... (13)

Next, in (n) the value of

and are obtained by differencing in the table of M or i as shown in

Art. 39. Hence, if w' denote vertical velocity, two terms of (n)
are

The value of dM/dw in (12) is also $*j.$dM/U di obtained by dif-

ferencing in the table. For all these derivatives in both sets of equa-

tions are constant quantities calculated by altering a single one of

the variables from its zero value, and whether moving or fixed axes

be used the steady motion is the same and represented by the same

values (zero) of the variables. Consider next another pair of equa-

tions, say,

W dw' dZ , dZ , dZ . dZ * .

( }

g t du dw dq

where in the first equation w has been written w' and denotes a true

vertical component instead of one along the moving s-axis. Now by

(31) of Art. 39 and (13) above
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But D = Tcosj and hence the right-hand sides of (14) and (15)

become identical. As for the left-hand sides dw'/dt represents the

vertical acceleration, whereas (dw/dt Uq) represents the accelera-

tion along z which though not quite vertical is practically so and

second-order infinitesimals have been systematically neglected. The

discussion of the third pair of equations is left as an exercise.

With regard then to the coefficients in (9) the former results hold :

--. = . = . =
du~~ U

'

U' du
==

U
==

U' dU~~ U'

dL D dM = 57.3 dM
dw

~

U di U' dw U di U' dw
"

U di
'

where L denotes the lift (not the rolling moment L). These six are

obtained from the lift, drag, and moment tables, the first three with-

out, the second three with differencing. The values of the deriva-

tives by q are obtained so far as dM/dq is concerned by an oscillation

experiment, and so far as dX/dq and dZ/dq are concerned by simply

neglecting them, partly because they are small, partly because they

enter the equations of motion coupled with large quantities (or the

value of dZ/dq may be estimated as dM/dq -5- /, if / be the arm of

the tail).

For the coefficients in (10) the procedure is as follows:

(a) If the model is placed in the wind tunnel with a slight yaw,

the side slipping force upon the model may be measured. Now, a

slight yaw in the set-up in the wind tunnel is equivalent to a small

velocity of side slip, the relation between the angle of yaw and the

equivalent side slip in the wind being

- or ,

If, therefore, the side force Y or the moments L or N be measured for

different angles of
\[/, the derivative dY/dv may be obtained as the

slope of the curve of Y on
\// when \f/ o, multiplied by 57.3, divided

by Z7, and changed in sign; that is,
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aL dL _. ,_-
dv d\l/ U '

dv d\l/ U '

dv d\// U
'

The rules for scaling up forces and moments from the model to the

full-sized machine are as before, namely : forces are scaled up accord-

ing to the square of the velocity and the square of the linear dimen-

sion, moments according to the square of the velocity and the cube

of the linear dimension. The, results may be scaled up before cal-

culating the derivative, inasmuch as the value of the derivatives

themselves for the model are not important.

The derivatives dL/dp and dN/dr which are respectively the rates

of change of rolling moment with respect to angular velocity of roll,

and of yawing moment with respect to angular velocity of yaw, may
be determined by allowing the model to oscillate in roll, or to oscil-

late in yaw; and by observing the damping. With respect to this ex-

perimental method nothing need be added to what was given in deter-

mining the rate of change of pitching moment with respect to angular

velocity of pitch. It is merely necessary to rig the model so that the

oscillation takes place about the proper axis. The result is scaled up
to the full-sized machine by multiplying by the first power of the

velocity ratio and by the fourth power of the linear dimension ratio.

(b) It is possible to give a fairly satisfactory calculation for

dL/dr. This is the rate of change of rolling moment with respect

to angular velocity in yaw. Consider the machine to be in its position

of steady flight, but to be animated with an angular velocity of yaw.

This means that any part of the wing with coordinate y is being

carried forward with the velocity yr (i.e., backward with velocity

yr) superposed upon the velocity U. The resultant velocity is,

therefore, U yr. Let b be the breadth or cord of one plane, and

s the total span. The change in rolling moment (dL/dr)r is produced

by the excess of lift on the left wing due to the increased relative

velocity U yr, and the defect of lift on the right wing, due to the

diminished relative velocity. Consider a strip across the wing of

breadth dy and area b dy. The change of lift on this strip should be

to the change of lift on the whole wing in proportion to the breadth dy

of the strip, and the length s of the wing; but for the whole wing
the change in lift with forward velocity u is

dZ 2Z dy 2Z ydy 2Z
u = u; hence r* -7? and ^""^

T7 u
du U s U s U
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are respectively the proportional change in the lift for the strip dy
and in the moment of the change in the lift, which is the contribution

of this strip to the rolling moment. Let the change in velocity u be

set equal to yr, and integrate over the entire wing from y =
5/2

to y = + s/2. Then

dL Cs/2
_ iZ_ z d

2Z r 2S^

dr
r "

J-s/2 Us Ty y
"

Us 3 8

and
dL Zs* Ws 2

The derivative may, therefore, be calculated from the weight, the

span, and the velocity. The calculation shows that the value of this

derivative varies inversely with the speed U for a machine of given

weight.

The rate of change of yawing moment due to rolling, namely,

dN/dp may be calculated in a similar manner. The machine is con-

sidered to be in the standard position, but to have superposed upon
the velocity U an angular velocity p of roll. This means that a strip

of breadth dy on the left-hand wing is being raised with a velocity

w =
yp. This will alter both the X and Z force on the strip, and it is

the change in the X force which produces the yawing moment. The

change in the X force with a velocity w is (dX/dw)w for the entire

wing, and for the strip of breadth dy the proportional change and its

moment should be

dX dy dX dy 2-w and y P-dw s dw s

Hence,

dN . fs/2dX
, dy dN dX s

2
, ,

p = I y p -*- and =
. do)

dp J-s/2dw s dp dw 12

Thus, the value of dN/dp may be obtained from that of dX/dw and

the span of the wings.

In both these calculations only the effect of the wings them-

selves has been taken into consideration. It is not probable that

the contribution of other surfaces to dN/dp would be great, because

those surfaces are relatively small and relatively near the axis of

rotation. For dL/dr the wings again seem to contribute practically

all the effect, because an angular velocity of yaw would apparently

produce from surfaces other than the wings very little rolling moment.
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The arguments just given for the calculation are applicable also

to calculate dL/dp and dN/dr. The change in the rolling moment
due to rolling (dL/dp) p would arise from the changed value of the

lift, just as (dN/dp) p arose from the changed form of the drag. The
result should, therefore, be so far as the wings are concerned,

dL = dZ
s^_

dp
~
dw 12'

It does not seem as though the surfaces other than the wings would

contribute much to this effect. In like manner dN/dr would so far

as the wings are concerned be

dN _ dX s
2

f
.

dr
"~~ ^ T2 ........... (2I)

In this case, however, it must be remembered that the angular veloc-

ity of yaw produces a sidewise velocity of the whole body, and of the

vertical surfaces in the rear, so that the value of dN/dr, as calculated

from the wings alone, might well be considered too small. As a

matter of fact, a comparison between the calculated and observed

values for these two aerodynamic coefficients shows that the argu-

ment is not as good as might be hoped.

This lack of agreement throws some suspicion on the accuracy

of the values for dL/dr and dN/dp as calculated; and an experi-

mental method of procedure is, therefore, advisable. The following

method, dependent upon the theory of forced oscillations and reso-

nance (see Art. 36) may be devised for the experimental determination

of these quantities. The method may also be applied to the deter-

mination of other aerodynamic coefficients.

(c) Suppose the model mounted in the wind tunnel with the

proper attitude for a particular speed of flight. Let it be free to

oscillate about the jc-axis under the action of a restoring moment due

to springs; and let it be forced to take a periodic yawing motion about

the z-axis. This may be accomplished by means of a suitably devised

driving mechanism. The differential equation for the motion of

the model will be of the form

* + "* = gL = &* sin qt' ' ' "'"' (22)

where
\I/Q is the amplitude of the yawing motion and q is a number

determining the frequency. The moment, ju d<t>/dt is the frictional
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moment resisting oscillation about the #-axis, and is related to dL/dp.

The restoring moment v<t> is due to the action of the springs. The

moment C sin qt is the rolling moment due to the forced oscillation.

in yaw, and is related to dL/dr. Let v = n 2L The solution of the

equation for the forced oscillation will contain a complementary
function and a particular integral. After a certain time, the com-

plementary function will disappear, owing to the damping, which

for a rolling motion is reasonably large, so that the time taken for

the disappearance of the complementary function is not great. There

would, then, remain merely the particular solution '

p sin (qt
-

ft) , ,

~ 222 *'

where
. r. __/z<7_ * _"

' '

=

Now, let the frequency, q, of the yawing motion be adjusted so

as to produce the maximum periodic displacement 4> corresponding

to a given angular amplitude \f/o of yaw. If, then, <f>o be the resonant

amplitude of
</>,

the relation holds

or C =

The rolling moment due to an angular velocity of yaw is

(dL/dr)r = C\l/Q sin qt, ... ..... (25)

where dL/dr is a constant and r is a periodic variable. If the ampli-

tude of the yawing angle be \f/o,
the amplitude of the yawing angular

velocity is
\[/Qq. Hence, if amplitudes be taken in the equation (25),

the result is that for the model _~
~^L

(,6)

or

dL </> / M
2
\ / N

^ = HI+^' (27)

approximately.

The numerical value of dL/dr for the model is, therefore, calcula-

ble from the ratio of the observed resonant amplitude < of roll to

the forced amplitude i/'o of yaw and the frictional moment ju, which,
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for the model, is ju
= gdL/dp, apart from whatever mechanical fric-

tion there may be in the mechanism. The sign of dL/dr is not de-

termined by the experiment if only the amplitudes are observed,

It may be determined from an observation on the phase difference

between the forced oscillation and the forcing oscillation, or it may
be considered as sufficiently well known from the calculation given

above. The value of dL/dr for the machine is obtained by scaling up
the value for the model by multiplying by the velocity ratio and the

fourth power of the ratio of the linear dimensions as in the case of

other derivatives of moments by angular velocities.

In like manner, the value of dN/dp may be obtained by leaving

the model free to oscillate about the z-axis while forcing an oscilla-

tion in roll. The value of dZ/dq could be obtained by forcing a pitch-

ing motion, and leaving the model free to oscillate in the vertical

direction. The equation for that motion would be

TT7 d*z . dz . ^./iW + n + vz = gZ = gC6 sin qt,dr at

and when adjusted to resonance, the value of dZ/dq would be (with

approximately, where JJL
is g dZ/dw except for mechanical friction. In

a similar way dX/dq could be measured by observing the oscillation

in the X direction when an oscillation in pitch was forced.

(d) It is not necessary that the oscillations should take place

about the center of gravity of the machine; but if they do not, the

forces and moments introduced into the equations for the forced

oscillation will have other terms in them than the simple ones here

given. It is not even necessary that the motion should be a forced

motion. Consider, for example, the oscillation as a pendulum of a

model, held in the proper attitude of flight when in the position of

equilibrium, about a point at a distance / below the axis of rotation.

When the model on the end of its spindle of length / measured from the

center of rotation to the center of gravity oscillates under the action

of the wind, and of a restoring moment produced either by springs

or by a counter-weight, the equation of motion will be

g dt
2

dq dt
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where I is the moment of inertia of the model about its point of

attachment and I' is that of the suspension; for in this case there is

also motion of the center of gravity backward and forward, which

contributes the final term (the motion of the center of gravity in the

normal direction being negligible if the oscillation be sufficiently

small). But u =
Iq
=

IdQ/dt, and hence

(/ + Wp + 1')
= _ * _ +,. . . (28)

g dr \dq du/ at

Therefore, the solution of this equation in 6 would give for the model

except for mechanical friction the two quantities dM/dq and dX/du
in combination. By making the experiment with two different values

of /, for example, with / = o in one case, it would be possible to deter-

mine not only dM/dq but dX/du, without using the method of forced

oscillations. In like manner, if the model were oscillating about a

center at a distance / to the rear of the center of gravity, the differen-

tial equation obtained would involve dM/dq and dZ/dw.
The rule for scaling up a quantity like dX/du or dZ/dw calls for

the first power of the velocity ratio and the square of the linear dimen-

sion, whereas the rule for dM/dq calls for the first power of the velocity

ratio and the fourth power of the linear dimension. It, therefore,

follows that if the experiments were made with a % sized model the

value of

dX/du for model _ , dX/du for machine

dM/dq for model dM/dq for machine

Now, for the machine dX/du is very small, whereas dM/dq is large,

and if it were necessary to perform the oscillating experiment upon
the full-sized machine it is probable that dX/du occurring in the same

equation with dM/dq would escape detection; but when the experi-

ment is performed on the model the values of dX/du and dM/dq are

not so dissimilar that one would entirely mask the other (owing to

the different scale ratio i: 576).

(e) There have now been treated the following lateral coefficients :

a(F, L, N) d(L, N) d(L, N)
dv dp

'

dr

This leaves only two, dY/dp and dY/dr. The value of (dY/dp)p
is the variation of side force due to angular velocity of roll. This

may arise from fin surface, i.e., vertical surface parallel to the axis
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of the machine, or its equivalent. For example, if there is a surface

of area 5 at a distance / above the axis of rotation, the angular velocity

p will give the surface a lateral velocity Ip, causing an angle Ip/U with

the relative wind and a cross pressure

Y = -
.0015 (.032 + .oo$r}SU* X 57 -tip/U,

where r is aspect ratio. Hence,

dY Y= - = -.0015 (.032 + .oo$r)SlU X 57-3- (29)
dp p

This derivative varies with the cube of the linear dimension and

with the speed. If the wings have a dihedral angle so that they are

not horizontal in normal flight but are either raised or lowered at

the tips, the presence of the dihedral is equivalent to a certain amount

of fin surface. For if the machine has an angular velocity p so that

the right wing is moving down, and the left up, the pressure on the

right is increased and on the left is decreased (owing to the change
in direction of the relative wind). The increase and decrease are of

equal amounts, and for wings without dihedral would produce no

effect on Y, but with dihedral the pressures, being normal to the wing,

have components toward the plane of symmetry as well as parallel

to it, and one of these components is lengthened, whereas the other

is shortened, thus setting up a side thrust (dY/dp)p equivalent to a

fin surface.

Consider finally (dY/dr)r, the variation of side thrust due to

yawing, or rather to angular velocity of yaw. The value of this

depends on the balance of vertical or fin surface fore and aft of the

C. G., just as (dY/dp)p depended on the distribution above and

below. It is a sort of weather-vane effect. So is the value of (dN/dr)r

but with this difference : the yawing moment coefficient dN/dr
is increased by the addition of fin surface whether fore or aft of the

C. G., whereas the side thrust coefficient is increased by fin surface

fore and diminished by fin surface aft. In the ideal case of a fin sur-

face of area S a distance / behind the C. G., the angular velocity r

yields a linear velocity Ir which sets up an angle Ir/U with the rela-

tive wind and hence a force

Y =
.ooi5(.o3 2 + .oo$r)SU

2 X 57-&/U>
and

dV
f-

=
.oois(.o3 2 + .oo$r)SlU X 57-3 . . - (30)

OT
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For a positive yaw this is negative with U, i.e., the thrust is toward

the right.

54. Longitudinal Stability. Although the longitudinal dyna-
mical stability of the airplane was discussed with fixed axes, it will

be taken up briefly here, with a revised notation, for the purpose of

making a few additions. The longitudinal motion is in u, w, 6 and

the equations are (9). Let

W du
Y YW dw~ "" ___ j-r-t Q wrw*

FT d

Then if &J be written for the radius of gyration (squared) about the

pitching axis y, the equations become

du/dt Xuu + Xww + Xqq +gt

dw/dt = Zuu + Zww + (Zq + U)q,

k
z

Bdq/dt
= Muu + Mww + M9g.

The substitution of expressions of the type e
x/

gives the equation

X Xu Xw

Zu A Zw

-(X,\ + g)

-(Z,+ U)\
k

2

D\ 2 Ma\

= o. . (32)

This is biquadratic of the form

Ai(X) = ^iX4 + BJ
with

4i = k*

+ + AX + E, =
o,

B! = - Mq + k*B (- Zw - Xu),

W - XWZU)
- Mq(-Zw - Xu)

-
(Zq + U)MW - MuXq ,

A = -Mq(XuZw - XWZU)
-

(Zq + U}(XUMW - MUXW) (33)

- Mug + (ZWMU
- MwZu)Xq ,

E1
= +g(ZwMu

- MWZU).

Routh's discriminant, now that the coefficient of X4
is k*B

=
AI, is

Ri = ftCiA - ^4iA
2 -

i^i
2....... (34)

The condition for stability is that all the coefficients and R be positive.

A typical set of values for the coefficients is as follows (JN-2) :

'

k
*

B =34, U = -115.5, W =
1800,

Xu = -.128, ZM = -.557, Xw = +.162,

g 32.17,

-3-95, (35)

Mw = +1.74, = -150, Mu ,
Xq ,

Zq all small.
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Consider for example Mu . If the propeller thrust passes through the

C. G.,MU = o.

g dM g 2M g 2hT
~

W du
"
W U

"

W U '

where h is the distance above the C. G. of the line of T. Suppose
T = 400 Ib, which is near the value of the drag in this case. Then

, , i 2h X 400 h f , N^" =
^6^T = -

8
(near1^

If then h were as great as 2 ft (and it is not over a few inches in this

machine), the value of Mu would be =^.25 according as h were nega-

tive or positive. Would this be effectively a large or a small value?

For that the general size of the coefficients (33) must be estimated.

Now,
XuZw - XWZU = .128 X 3.95 + .162 X .557

= roughly 0.6,

XJtfw - MuXw = -.128 X 1.74
- Mu X .162,

ZWMU - MWZU = -395MU + 1.74 X .557.

The value of Mu does not affect A\ or B\\ in Ci, which is the sum of

three large terms with a total magnitude running into the hundreds,

it appears only in the doubly small term MuXqy in A the initial

term is about 90 and the second term so far as XUMW goes contributes

about 20 more, whereas even if Mu were so large as 0.25 the term con-

taining it would only contribute about ==3. It is safe to assume,

therefore, that Mu is without appreciable effect on any but Et . Here,

however, Mu is multiplied by the large quantity Zwy whereas the

other term is small (about i.o). Hence a value of Mu approximating

0.25 would bring EI down toward the vanishing point and make

toward instability. If Mu is to be regarded as
" small" and to be put

equal to o, it must be decidedly smaller than 0.25, as indeed it is

for this machine or Mu must be negative (the propeller must pass

under the C. G. so thatM is negative) . In the latter caseMu increases

EI which is favorable to stability unless the increase is so great as

materially to reduce RI.

The discussion for Xq and Zq may be carried on similarly. As

Zq occurs only when combined with U, and then only in those terms

of Ci and A which are added to other large terms, it appears that

a value of 9 or 10 for Zq could be considered
"
small." A rough guess

at Zq showed (Art. 39) that it should be of the magnitude of Mq

divided by the length of the machine from C. G. to tail some 15
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ft. Hence Zg is probably in the neighborhood of 10 and is
"
small."

As for Xq ,
it occurs negligibly in Ci, and in Di appears with a coeffi-

cient of only about i whereas the rest of A is around 100. Hence

Xq would be " small" if not greater than 2 or 3. But the X force set

up by an angular velocity of pitch can, judging from the configura-

tion of the airplane, be at most only a small part of the Z force thus

set up. Hence Xq appears surely as small as 2 or 3 and probably
much smaller. The final conclusion is that Xqj Zq ,

and Mu may be

set equal to zero for the machine in question where h is small

whether Mu be negligible for a seaplane in which the engines are

high is far from certain from the above analysis.

According to the approximation made before, the biquadratic

may be factored into the two quadratics

and hence may be solved. The approximate periods and times of

damping to half-amplitude may thus be found. If there is reason

to doubt whether the approximation is good enough, the approxi-

mate value X = r found for one of the roots may be used as the basis

for the calculation of a second approximation as follows: Suppose
x = r is near a root of f(x)

= o. The function f(x) may be expanded
in powers of x r by Taylor's formula.

If the first two terms be taken as a sufficient approximation (since

x r is small) ,
the equation f(x)

= o becomes linear and

f(r) _ Af
4 +.ftf> + Cif + Ar + Jgi xv

f(r)

'
* *

This will probably give a sufficient approximation. In the case, how-

ever, of a complex value of r such as a + bi, the calculation is labori-

ous. The work may be shortened (especially in calculating the

numerator) by using the equation

+ Bir + Ci = o or Cir
2 + D& + EI =

according as r is a root of the first or second quadratic factor.

A rough estimate of the coefficients in the biquadratic is useful

to indicate the main sources of stability in the design. Leaving aside

the smaller terms as judged by (35),
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Ai = k*B , Bi = -Mg
- k*BZw ,

E1
= -gZuMw ,

Ci = ZwMq
- UMW ,

Dl
= -Xu(ZwMq

- UMW).

The short, quickly damped oscillation is so quickly vanishing as to be

negligible (except possibly for the calculation of accelerations and

stresses). The long, slowly damped oscillation is determined by

For damped motion CiA > B\Ei or

-Xu(ZwMq
- UMWY > gZuMw(Mq + KBZW).

But Zu = 2g/U and Xu : Zu = X : Z = T : W, where T is the propeller

thrust or drag. Hence,

(ZwMq
- UMWY > g (

- Mq
- k'BZw)..... (38)

Now Mw is a measure of the statical stability; it is obtained as the

slope of the moment curve, and may be varied widely merely by alter-

ing the setting of the stabilizer; a large Mw favors stability. M q

and Zw enter squared on the left but only linearly on the right. Hence,

increasing Zw and Mq favors stability. Zw will be larger as the wing

loading is smaller so that a machine with ample wing area per unit

mass should be more stable than one with high load. Mq is partly

due to the side motion of the tail (in fact the part of Mq due to the

tail is IMW if I is the distance of the tail behind the C. G.) and that

part of Mq may be increased by lengthening the body. The tail,

however, is responsible for only a part of Mq and that part due to

the wings would be increased (like Zw) by lighter wing-loading. In-

asmuch as the airfoil itself, by virtue of the contrary motion of the

center of pressure, is unstable, the use of a wing or combination of

wings with smaller travel of C. P. would be equivalent to additional

stabilizer or to greater stability. Further, stability is increased by
a low L/D or W/T and a small moment of inertia Wk*B . Increased

speed is also clearly favorable to stability.

Each of these criteria has been stated independently on the

basis of the inequality that must be satisfied for stability, i.e., for

damping, and the words
"
other things being equal" should every-

where be understood. When a given machine flies faster or slower,

the attitude changes and with that the values of the coefficients.
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But the changes are apparently conspiring to increase stability as

the speed increases, because Z,, Mq , U, Mw ,
are T and all increasing.

The period should also be considered, as well as the damping, because

a long period would make easier riding than a short period, i.e., it

is more comfortable to have

Ei _ (AG - B&Y -gZuMw

Ci

~

Ci
2 ZwM q

- UMW

\j-Xu(ZwMq
- UMwy - gZuMw(Mq + VBZW)J

(ZwMq
- UMW)

2

small rather than large. The numerator of the last fraction is increas-

ing as the stability, measured by the damping coefficient, increases.

The denominator is also increasing, but apparently not so fast be-

cause ZwMq UMW enters only squared instead of raised to the

fourth power. Hence, the negative part is increasing which is

desired. The first fraction is positive and as Zu = 2g/U may be

written as

gZuMw 2g
2

ZwMq
- UMW

=

-U(ZwMq/Mw - U)'

This part, therefore, decreases with Zw , 7, and Mq but increases with

Mw . Hence for comfort the statical stability (Mw) should not be

too large, and dynamical stability should be secured rather from

Zu,, Uj Mq . A machine, however, will not be executing oscillations

unless it be disturbed. Hence, for comfort, it is important so to

design the airplane that gusts do not disturb it; this puts further

conditions on the aerodynamic coefficients and on the design. The

matter will, however, not be pursued here.

Calculation shows that at low speed both the "Clark" and the
"
JN-2

" become unstable. The change in the aerodynamic coefficients

may be estimated as follows. Zu which is ig/U must increase as U
decreases. As Xu : Zu = X:Z = D:L, and as D/L increases at low

speeds, Xu : Zu must increase, and so must Xu . But as D/L at low

speed is considerably less than D/L at high speed, the value of Xu as

U diminishes may first decrease, and increase only when the speed

of least drag is approached; it cannot be affirmed that Xu is necessarily

larger at a low speed than at high speed, but only that if the speed

becomes low enough Xu increases. The whole range of Xu is ordi-

narily not great, though it runs up rapidly when the speed falls below
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that of minimum drag. The value of Xw diminishes and may even

become negative; for Xw is calculated from

dX 5M^,> aZ = 57.3 dD L
dw

~

U di U' dw U di

"
U'

and as i increases L approaches a maximum and dL/di tends to vanish,

whereas D increases, so that evidently there must come a value

of i, less than that of maximum lift, where Xw turns negative. The

trend of Zw is from a large negative value to a smaller negative value,

though the formula does not make this so clear and the minimum
for Zw may actually be passed. Mw obtained by differencing the

moment curve and dividing by U increases at first, while the differ-

ences ofM are nearly constant, but subsequently falls off as differences

for M become smaller at large angles, whereas U changes only slowly

at these attitudes. Mq falls off steadily as might be expected from its

physical origin. Reference to the criterion of stability shows that

every change is toward instability. It is advantageous to preserve

stability down to as low as the landing speed, because irregularities

in the air are great near the ground and amplifying oscillation of

the airplane would make landing more hazardous.

These tables taken from Hunsaker's
u
Smithsonian " and "

Nat.

Adv. Comm." papers give data by which the above discussion may
be checked.

Data for the
"
Clark," V = mi/hr, W = 1600, k*B

= A l
= 21.6.

V
i

Mq

ft
Ct

A
&

period T
time t

76.9
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Data for Curtiss JN-2. V = mi/hr, W = 1800, k*B =
34.

V
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C2
= N rLp

- L rNp + ffc(Y,Lp
- LVYP) + k\(NvU - NvY r + YvN r)

+ k*E(NpYv
- YPNV + YvL r

- LvY r + L.U),

D2
= -Yv(N rLp

- L rNP) + gk
2

cLv + gk^,
- U(NVLP

- LVNP)

+ Yp(L,Nr
- NvL r) + Yr(LpNv

-

The value of the product of inertia E being unknown it is assumed

that E = o and that the forward and vertical axes are principal axes.

This cannot be true for all values of i. But

B = /(*
2 + z*)dW, E = fxz dW, B 2E = f(x z)*dW.

The last integral is necessarily positive and hence E must be numeri-

cally less than B/2. For the
"
Clark" k*B

= 21.6 and k*E can only be

about 10 at the most, whereas k*A
=

27 and k*c
=

48.6. For the

JN-2, kg
= 34 and k*E is only about 16 at most, whereas k*A

=
36.7

and k
z

c
=

70.6. In both cases k'B is small compared with k*A k*c even

at worst. As a matter of fact the third integral above can only van-

ish when the mass is all concentrated in a single plane x = zorx = z.

This is far from the case in the airplane and hence it is probable that

E is much less than B/2. The theory of change of axis (Art. 46)

shows that if E = o when i = o, E will be J- (C A) when the axes

are turned through 15. Hence if in the JN-2 the axes are principal

at highest speed, k*E will be about as high as 9 at lowest speed. It is

probable that E may be neglected as assumed; but the applied me-

chanics of the airplane is indeed far from complete when, entirely

apart from the aerodynamical coefficients, the dynamical characteris-

tics are unknown. The experimental determination of the moments

of inertia about three different axes through the C. G. in the #-z-plane

would fix the position of the principal axes and give the moments of

inertia about them.

To have an idea of the magnitude of the various coefficients

the following data given for an old Bleriot may be considered.

Data for Bleriot (National Physical Laboratory, Teddington, Eng.)

W = 1800,
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The machine is unstable because one of the coefficients, 2, is nega-

tive; ^2
=

21.5 X io10 and is positive. The biquadratic is

6ooX4 + 6y8oX
3 + 558oX

2 + 664oX - 68 = o.

The noteworthy feature is that the ratio Ez/A is small, so very small

as to indicate a small root about equal to X = E^/Di = .01 and

a typical solution e-
011

. This is not an oscillation but a straight

amplifying term, doubling in 69 sees. A better approximation to the

root may be found by (37), which is easy to apply when the root is

real. A formula may also be developed by considering

C2X2 + AX + & =
o, X = -

(i + ij), T) small,

= " 'A 2 A1
/

This shows that the percentage correction 77 to X is small whenever

C2^2/A
2
is small in this case wholly negligible.

As the biquadratic has one real root, it must have another. More-

over physical reasons will show that there should be a large negative

real root. For the frictional resistance to rolling is very great owing

to the wing surface catching the air (Lp is large) and there is no large

restoring moment opposing roll as there is in the case of pitching

(Mw). The machine should act in roll like a pendulum in a very

viscous fluid where the motion is non-oscillatory. A large root could

be sought from the first two terms of the equation as X = B2/A 2

=
11.3 corresponding to a heavily damped rolling motion e~n '3t '

If again the assumption be made that

^ 2X2 + B2\ + C2
=

o, X = - ^(i + i?), rj small,
A*

T> 2 73 2 X? 2

=
o,

The percentage correction 77 is in this case larger, some 8%. It will,

therefore, be better to take as the value of X

- or
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as a factor of the biquadratic. Two roots or factors are, therefore,

approximately known.

The other factor will represent a pair of complex roots; for obvi-

ously a machine may have an oscillation in yaw of the weather-vane

type. One might try the intermediate terms B\2 + C2X + Dz for

that factor, and corrections to it could be made. The general prac-

tice has led to the use of the factor

The correction term E^/Di is generally very small, but there are

cases where it is not small. The product of all three factors gives

the biquadratic approximately.

NOTE. The aerodynamic coefficients have been taken as the

corresponding derivatives multiplied by g and divided by W as was

natural in the simplification of equations (38), Chap. VI. It would

be possible to divide the moment equations by Wk* (with the appro-

priate k for each axis). Then the moment equations would become

equations in angular acceleration, just as the force equations have

become equations in acceleration. With this convention

M'
q
= Mq/k*B ,

M'w = Mv/k*B ,
M'u = Mu/k*B ,

L'p
= Lp/k'A , Li = L,/VA ,

L'r = L r/VA ,

N'r = Nr/k*c ,
N' = Nv/k*c ,

N'p = NP/k*c .

This convention appears natural if the principal axes are the axes of

reference so that E =
o, less natural when E =*= o. Cowley and Levy

in their Aeronautics give a set of coefficients with the k2 divided out as:

Xu = .14, Ztt
=

.08, Mu = o,

Xw = .19, Zw =
2.89, Mw = .106,

Xq
=

.5, Zq
=

9.0, Mq
= -8.4,

Yv
= -.25, L, = .0332, Nv = -.015,

Yp
=

i, Lp
= -8, Np

= -.57,

Yr
= -3, L r

= 2.6 #2
= -1.05.

To compare this set with that given above for the Bleriot, it is merely

necessary in the case of the Bleriot to divide the L's by 25 and the

N's by 36. Thus,
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Lp
= -6.7, L r

= +2.2, Lv
= +.028,

Nr
= -.86, Np

= +.67, Nv
= -.012.

56. Stability Calculation. The details for longitudinal sta-

bility were well enough covered in Chap. VI. For lateral stability

the procedure is as follows:

(a) To find the derivatives by v it is necessary to have the experi-

mental data for F, Z,, AT" when the machine is yawed. The following are

Hunsaker's data on the
"
Clark." The values have been converted

already to the full-sized machine, multiplied by g and divided by W.
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For Np use (19). Then

Np
= -

To check Lp use (20)

RIGID MECHANICS

1616

12
= --356 x 135 = -48.

Lp = Zw X 135 = -5.62 x 135 = -
759.

The value given by the oscillation of the model is 631. The
check is not very good. To check Nr use (21).

Nr
= Xu X 135

= -.158 X 135 = -21.3-

The oscillator gives 39.4. This cannot be considered a bad check

because the calculation determines only the effect of the wings on

Nr whereas the body and fin surface must have considerable effect.

In the case of Lp the calculation gives for the wings more than the

oscillator shows for the whole machine. As a matter of fact the far

greater part of Lp must be due to the wings because of their large

extent, distance from the axis of rotation, and motion about that

axis. There is no need here to enter into the details of the calculation

of Lp and Nr from the observed damping of the oscillation of the

machine about the x- and z-axes the work is exactly like that for

Mq . The method of calculating L r and Np from observations on

forced resonant oscillations will be omitted. The calculation of Yp

and Yr both of which are
"
small" will not be given further than

illustrated in principle by the formulas (29) and (30).

(c) The following data are given by Hunsaker for the
"
Clark"

in three attitudes and the JN-2 in two, in his Smithsonian paper.

I have, however, substituted my own calculation for Np by (19) which

differs from his.

"
Clark"

JN-2:

W = 1600, kA
=

5.2, kc
=

6.975, s =
40.2;

W = 1800 k 4
=

6.06, kr =
8.4, s =

36.
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(d) The remainder of the calculation requires merely first that

these numerical values be substituted in the formulas for the coeffi-

cients using k*E
= Yp

= Y r
=

o, as
"
small" quantities; and second,

that the values of the coefficients thus found be substituted in R2

to ascertain whether all coefficients and R2 be positive or whether

one or more be negative. Thus stability is determined. To ascertain

how great or small the stability may be the roots of the biquadratic

must be calculated from the approximate factors given. In all this

treatment of lateral stability, as of longitudinal, it has been assumed

that only oscillations from horizontal flight are concerned. Calcula-

tions could also be made relative to uniform motion in an inclined

line, motion at different levels (air-density different), gyroscopic

effect of propeller, etc. These questions must be reserved for more

advanced study.

57. Balance of the Airplane. The question of dynamical bal-

ance can only be settled when the principal axes are known. The

matter of aerodynamical balance refers to the placing of surface fore

and aft, above and below the center of gravity in such a way as to

secure the desired flying properties. For longitudinal motion this

was treated above. Most machines appear longitudinally stable

except at very low speeds and the chief adjustments are in stabilizer,

both in area and in angle, so as to get satisfactory values of Mw and

Mq the position of the C. G. being dependent on the stabilizer.

For lateral motion the matter of balance may be presented thus:

The preponderating terms in A^ J32 ,
C2 ,

D2 , E% are

A 2
= k\VB , 2

= g(NvLr
- LvNr),

B2
= -Yvk

z

A k*B
- Lpk

2

c -Nrk\,
C2

= (NrLp
- L rNp) + YvLpk

2

c + k'A(NvU + N rYv),

D, = -Yv(NrLp
- NM + U(NPLV

- NVLP) + gk*cLv .

(a)
"
Rolling." Root X .= -B2/A 2 C2/B2 . The main part is

and approximately

The values of Lp and Nr are large and negative. The root X is large

and negative. Rolling dies out. Observe, however, that the value

of X depends both on the coefficients Lp , k\ for roll and on the coeffi-

cients Nrj k*c for yaw. It cannot be assumed that roll, yaw, and side-



148 RIGID MECHANICS

slip are independent. A "
rolling" motion in reality is a combination

of all three and the damping is on this combined motion. (Compare
the physical theory of

" normal" coordinates or
" normal" modes of

motion in coupled systems.) "Roll" is so strongly damped as to be

negligible in the discussion of balance.

(b) "Spiral." Root X = - E2/D2 . The quantity D2 is always

large and positive. The criterion, therefore, as to whether the ma-

chine is stable or unstable is the sign of E2 ,
stable if 2 is positive,

unstable if Ez is negative, and in either case a small amount of stabil-

ity or instability because E2/D2 is small. The condition for stability

is

NvLr
- LvNr > O.

Now Nr,
the (damping) moment due to yawing, is negative; it is a

weather-vane effect and may be increased by lengthening the body
or increasing the vertical fin surface. It is the amount of this surface

and its distance from the C. G. which is important, rather than its

position, whether fore or aft, in augmenting Nr negatively. As Lv

is positive, any such increase in Nr favors stability. On the other

hand Nv ,
the yawing moment due to side-slipping, depends on the

balance of vertical fin fore and aft of the C. G. Equal amounts of

surface added or subtracted at equal distances before and behind the

C. G. would not alter Nv (other things being equal). From the data

it is seen that Nv is negative, as might be expected from the configura-

tion of the machine. Diminishing Nv favors stability, and this means

evening up the fore and aft vertical surface. Lv ,
a rolling moment

due to side-slip, depends on the balance of vertical surface above and

below the C. G. Increasing Lv favors stability. This means the

surface should rather be above than below the C. G. By (18) Lr

depends on the span s fixed for a given design except for major
alterations.

As the numerical magnitudes of E% are small, it appears that

relatively minor changes will make a shift from stability to insta-

bility or inversely. No serious changes would be needed. Lr increases

as the speed decreases; this is unfavorable to stability at low speeds.

Nr is reasonably constant relative to speed; in this respect it differs

markedly from either Lp or Mq . But this difference is to be antici-

pated because as the angle i increases more and more of the larger

wing surface is opposing rotation about the z-axis. For the "Clark"

N9 increases (negatively) as the speed decreases, whereas for the
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JN-2 the change is contrary. The result is that although at high

speed the
"
Clark" is spirally stable, it becomes unstable for i = 12;

whereas the JN-2, unstable spirally at high speed, has become stable

spirally at I = 15!. The delicate nature of the balance for spiral

stability could hardly be better illustrated. The change in Lv for

the two machines is also contrary. The "
Clark" has dihedral

the wing rises at i.63. The effect of dihedral is to increase Lv ,
be-

cause the relative wind shifts to one side; but the effect is less marked

for large values of i than for small.

Suppose the machine side-slips to the right (v negative). The

negative Nv multiplied by the negative v causes a positive yawing

moment, turning the machine to the right. The positive L r banks it

over positively as should be the case. If L r is just right in magnitude,

the bank will be right; if L r is too large the machine will overbank,

side-slip worse, yaw more, and so on into a spiral dive. Nr resists this

tendency and so does Lv . This is the physical statement of the

criterion for spiral stability and from it the name "spiral" is

justified.

(c)
" Dutch Roll." Roots A 2 + - %\ A +

t

BA
.

= o.

This oscillation will be stable if C2A > -#2^2 Ordinarily this condi-

tion is amply fulfilled. In cases where E% is negative (spiral insta-

bility) the condition is certainly fulfilled provided the other coeffi-

cients are all positive, as they are in all cases that have come to my
attention. The "Dutch Roll" is ordinarly stable, damping 50% in

one to six seconds. For the Curtiss JN-2 at i 15^, BI = 6860,

C2
= 815, Dz = 6670, E2

=
1175. Now

C2 2 815 1175 ^
B2 A 6860 6670

Hence, this machine is unstable in this type of oscillation at high

speed. The larger terms in the expression give

n
B* A k'cL, L k

'

cL

Hence large values (positive) of Np are unfavorable. But Np depends

on Xw which changes from, negative to positive for sufficiently large

values of i. In the JN-2 this change comes around i = 8|. In the
"
Clark" it is just putting in its appearance at i = 12. The analysis
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of the changes necessary to avoid this type of instability could be

pursued further on the basis of the equations that have been de-

veloped; but it should be remarked that the precision of the data

are not such as to permit much confidence in any conclusions drawn

from a too close scrutiny of numerical relationship. Much additional

data is needed; much awaits release by European governments and

by our own. The war has done much for aeronautics; but peace
will bring an opportunity to digest the results and pursue the research.

EXERCISES

1. State the argument for the vanishing of dZ/dp and dL/dw.
2. Show that for motion in a path inclined at an angle 6 the equations for

the infinitesimal oscillation are the same as (9) and (10) except for these three

W du dx . dx . dx . TJ7/)
~= u + w + g + JF0 cos 0,

g dt du dw dq

W /dw ,, dZ dZ dZ . ~

g \dt dv dp dr

Treat 8, <j>, \[/ as infinitesimal so that they may add vectorially.

3. Prove equivalent the third pair of equations for the longitudinal motion

as expressed in reference to moving and to fixed axes, i.e., the X-equations.

4. Suppose the wings have a dihedral, i.e., let each wing rise ft degrees (gen-

erally not more than i to 3) from the horizontal. Note that the lift L will be

normal to the wing (assumed plane). Let the wing-chord make an angle of i

to the horizontal. What is the angle between the wind and the wing? Treat

i and ft as small.

5. If a wing has dihedral ft calculate the value of dY/dv.

6. Prove (21), having regard to sign.

7. A surface of i sq.ft is placed in the *-z-plane, 2 ft above the C. G. and 15

ft back of it. What derivatives will this effect, and how much (V = 100 mi/hr).

8. Suppose the "Clark" model (Chap. VI) be attached to a pendulum 40

in long, the moment of inertia of the pendulum itself being 2 ft. Ibs, and be placed

in a 3o-mi wind so that at the position of equilibrium i = o. Write the equation

of oscillation for the pendulum near this position and determine the time to

damp to ^.

9. Using the tabulated values of the coefficients for the JN-2 at i = 7

calculate the coefficients of the longitudinal biquadratics, find by (36) the values

of X for the long oscillation, and by (37) estimate the error in using (37). How
much difference does this make in the times T and t?

10. If the statical stability (as estimated by AfJ for the "Clark" were

o at i = o, all other coefficients remaining the same, would (38) indicate sta-
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bility or instability? How small may Mw be at i = o without loss of dynamical

stability?

11. Take the data for the Bleriot. Estimate the change in the values of

A*, B 2 ,
C 2 ,

D 2 , 2 if k
2

E were as large as 6.

12. As in Ex. ii estimate the size of Y
f (ordinarily assumed to vanish) which

may be considered "small."

13. As in Ex. ii estimate the size of Y
p
which may be considered "small."

14. Using the Bleriot data, find all the roots, the damping (or amplifying)

times and the periods.

15. Make a calculation for longitudinal stability for the machine with data

from Cowley and Levy. Find periods, etc.

16. As in Ex. 15, for lateral stability.

17. Calculate Y
v ,
L

v ,
N

v
for the "Clark" at * = 6 and compare with the

tabulated values.

18. Calculate L
r ,
N

p ,
L
p ,
N

f
for the "Clark" at i = 6.

19. Oscillation data for L
p

at * = o. I
a
=

.0373$, I
a + m =.0399^. Time

to damp to |: apparatus, 78 sec; model and apparatus, 6 sec. Calculate
L^.

Tunnel wind, 30 mi.

20. Oscillation data for N
r
at * = o. I

a
=

.0343^, I
a + m =.0396^. Time:

apparatus, no sec; model and apparatus, 57 sec. Test at 30 mi. Calculate N
r

.

21. Determine damping times and periods for the lateral oscillations in each

of these five cases: (a) "Clark" at * = o, (b) at i = 6, (c) at i = 12; (d) Cur-

tiss JN-2 at * = i, (e) at i. = 15^.
22. Suppose the "Clark" flying at * = 6 at an elevation where the air-den-

sity was 81% of that at the surface. Discuss longitudinal stability as thoroughly

as possible and point out any additional experimental data that might be needed.

23. As in Ex. 22, for lateral stability.

24. Is a machine more or less stable on a hot than on a cold day? Barometer

reading supposed the same.
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CHAPTER IX

MOTION ALONG A TUBE

58. The Variables Used. Suppose that a fluid is in motion

along a tube which has a cross section 5 at a distance 5 from any

point of the tube which may be chosen as origin. The motion of the

fluid is characterized by two equations, one kinematic, the other

dynamic. The kinematic equation expresses the fact of the indestruc-

tibility of matter; the dynamic equation gives the relation between

the acceleration of the fluid at any point and the forces which act

upon the fluid.

The term
"
fluid

"
itself is usually applied to either compressible or

incompressible fluids. The term
"
liquid" is specific, and refers to

an incompressible fluid. For every homogeneous fluid there is a

so-called characteristic equation of the form F(p, p, T) =
o, con-

necting the pressure p in the fluid, the density p of the fluid, and the

temperature T. In the case of the so-called permanent gases, such

as air, the characteristic equation is

P = RpT, -.;... (i)

where T is the absolute temperature; that is, the temperature in

Centrigrade degrees measured from 273, or the temperature in

Fahrenheit as measured from 460. The value of the constant R

depends upon the units used in measuring pressure, density, and

temperature.

The effect of temperature is ordinarily disguised by the use of

some assumption; for instance, the temperature is assumed to be

invariable. Then,
p = kp, Boyle's Law (2)

Or the motion of the fluid is supposed to be adiabatic, so that

p = kp
n

,
Adiabatic Law (3)

where the value of n in air is about 1.4.

152
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For a liquid the effect of pressure on density is negligible, and

the effect of temperature is disregarded, so that the characteristic

equation becomes p = const.

The variables used to characterize the motion of a fluid are the

position s along the tube, and the time /. The velocity u along the

tube, the pressure p in the fluid, and the density p depend on s and /.

These variables are called the Eulerian variables. The motion of

the individual particles of fluid is not followed. All that is stated

is the state of motion of the fluid at different points and at different

times. Lagrange introduced a method of studying fluids by follow-

ing the motion of individual particles, as is done in the mechanics

of a particle. His theory is more advanced than Euler's, and not

necessary for the present work.

The dependent variables p, p, u, regarded as functions of the

independent variables s and /, may have rates of change dependent
either on a change in position or a change in time; and these rates

are denoted by partial derivatives. Thus, dp /ds represents the rate

of change of pressure at any particular instant as one advances along
the tube. On the other hand, dp /dt represents the rate of change of

pressure in time at any point of the tube, that is, pressures are com-

pared at the same point but in different instants of time. The change
in pressure when both position and time are changed is given by
the formula for the total differential, namely

Here ds and dt are wholly independent. A particular value of the

differential is obtained if it be assumed that the displacement ds in

space is that which actually occurs in the fluid in the time dt as the

fluid is moving with the velocity u. This displacement is ds = u dt.

Hence

(s)

is the infinitesimal change of pressure during the time dt if the motion

of the fluid be followed. This value of the differential is called the

fluid differential and, if it be divided by dt, the rate

dp dp dp
dt ds dt

is the rate of change of pressure as one moves with the fluid.
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The density p and the velocity u may be treated in exactly the

same manner: du/ds is the rate of variation of the velocity in the

stream at a particular instant, whereas du/dt is the rate of change of

velocity in time at a particular point of the stream. The accelera-

tion of the particles in the stream is the rate of change of the velocity

when the motion of the particle is followed, and is

du du du

that is, it is the fluid derivative of u.

59. Equations of Motion. Consider next a small volume of

the fluid included between two nearby cross sections of the tube, a

distance ds apart. Let dt be a short interval of time. The amount

of fluid which flows across the cross section S in the time dt is the

product of the density, the velocity, the time, and the cross section;

namely, puS dt. This product may be calculated for the cross section

at s, and for the cross section at s -f ds\ and the difference between

the values of the product puS dt at the two points represents the net

outflow of the fluid in the time dt from the region between the two

cross sections. The difference of the same function puS dt at 5 and

5 + ds is simply

d(puS)dt
= - ds dt = net outflow.

The amount of matter in the infinitesimal region is the product of

the density by the volume, namely, pS ds\ and the amount of increase

in the time dt is

d(pS)ds = dt ds = amount of increase of fluid.
ot

By the principle of the indestructibility of matter the increase in the

volume must be the negative of the outflow from the volume, or,

if ds dt be cancelled.
3/^,C^ s/'O\

(8)
ds dt

This is the so-called "equation of continuity," the kinematic equa-
tion of fluid motion for the one dimensional case.

If the tube is of constant cross section, S may be cancelled out

of the equation of continuity. If the density is constant, that is,

if the fluid is a liquid, p may be cancelled out. The motion of the

fluid is said to be steady when all partial derivatives with respect to
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the time are zero; that is, when the state of the fluid is at each point

the same at all times, although the state may differ from point to

point. For steady motion the equation of continuity may be inte-

grated, and becomes merely

puS = C (const.) (9)

The forces which act on a fluid are of three different types: first,

the pressures p in the fluid, or between the fluid and its container;

second, forces which act at a distance, such as the pull of gravity, or,

if the fluid is rotating, the
"
centrifugal force"; and, third, the viscous

actions and reactions of adjacent particles of fluid on one another.

It will be assumed for the present that the fluid is not viscous.

This means that if one part of the fluid is moving relative to a neigh-

boring part there is no tendency for the faster moving to accelerate

the slower, or for the slower to retard the faster, the only action

between the two being their common pressure acting normal to the

surface separating the two particles. The forces which act at a dis-

tance upon a fluid are in reality accelerations, because the force upon
a small element of mass, dW, of the fluid is proportional to dW.

Thus, if gravity acts the force on dW is simply dW Ib. The force

equation is, therefore, taken as being in reality an acceleration equa-

tion, namely:

du/dt = acceleration due to pressures + external acceleration. (10)

The effect of the fluid pressure in accelerating the element pSds
of mass located between two cross sections of the tube is a composite
of the pressure pS, acting forward

on the rear face, of (p + dp)

(S + dS), acting back on the for-

ward face, and of the forward com-

ponent of the pressure p acting on

the lateral surface of the element.

The component in any direction of

the force due to a pressure p acting
e . ,, - . Fig. 1 6. Pressures on an Element of

upon a surface is the pressure multi-
Fluid

plied by the projection of the sur-

face on a plane normal to the direction. The projection of the

lateral surface of the element of volume on the plane S + dS is

simply dS. The resultant pressure is, therefore (Fig. 16),

pS -
(p + dp)(S + dS) + p dS = -S dp.
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The acceleration due to this force S dp is the quotient of the force

(multiplied by g) by the mass pS ds. Hence,

sf--f *+* ........ (ii)
at p ds

where X is an acceleration of the external applied forces. In the

theory of fluid motion X is called a force, although it is really an

acceleration. The equation just obtained is the dynamical equation
of fluid motion.

An application of the kinematic equation is seen in the proof for

the pressure on a plane (Art. 8) following Lanchester. It was there

assumed that the fluid followed in lines essentially parallel to the

plate, and, consequently, the fluid must emerge at the trailing edge
with the same velocity with which it entered at the leading edge.

If it were assumed that the lines of flow converged toward the trail-

ing edge the velocity at the trailing edge would be greater than at

the leading edge.

60. Hydrostatics. In case there is no motion in the fluid, the

dynamical equation becomes

0=- g-^+X.......... (12)
p ds

which is the fundamental equation for hydrostatics in the simple

case of one dimension. This equation may be applied to discuss the

distribution of pressure with height in the atmosphere. Let s = h

be altitude above the earth's surface. The external acceleration is

that due to gravity, namely, X =
g. The equation becomes

where the partial sign of differentiation is not needed, because in

hydrostatics there can be no change with the time. If the assumption
be made that p =

kp, which is Boyle's Law, the equation is

dp - _ P k-& dA
77

"
rJ K ~

>
........ \ X 4/

ah k po

where the value of k may be determined by comparing the pressure

and density of the air at some known altitude such as the surface

of the earth where h = o. On integrating, the result is

logp = -h/k + C ........ (15)

or

p = Ce~
h/k

. . . . . , . . , . (16)
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The constant C may be determined by substituting p = p , p = pfl

when h = o. The final result is

According to this formula, pressure in the atmosphere falls off

indefinitely as the altitude increases indefinitely. The atmosphere
does not come to an end. Moreover, the use of Boyle's law indicates

that the temperature in the atmosphere is constant, whereas the

temperature is known to fall off.

Another assumption that could be made is that the distribution

of temperature in a vertical direction is such that air could move
from one level to another without any loss of heat, that is, adiabati-

cally. That is, we could assume

p = kp
n

,
k = pQ/p

n
, (18)

The equation then is

dit

= "

U/ ~~^
n

tf
Integrating, this gives

n -
If p = p when h =

o,
n-l n-1

p =
p.

-
"

A"
Or

According to this law the pressure becomes zero and the atmosphere
ends at a height

n - i

For air n =
1.4, p =

.08, pQ
= 2100 lb/ft

2
,
all approximately. Hence

approximately,

p = PJi --^
S

........ (22)
L 92,oooJ

The height of the atmosphere, therefore, is 92,000 ft, or about 17^

miles. The absolute temperature in the atmosphere is obtained from

p = RpT as

T/T = p/p . po/p =
(i
-

VQ2,ooo)..... (23)
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The temperature, therefore, falls off linearly from that at the surface

to the absolute zero at 92,000 ft.

An empirical law connecting p and h and differing from (17) or

(20) is determined in Art. 23 as

p =
29.92

-
24.1 loge (i .+ 3^/64,000). .... (24)

good between the o and 24,ooo-ft levels. This would make the height

of the atmosphere 10 i, if mextrapolation were legitimate. Balloons

reach levels between 20 and 25 mi and meteors become incandescent

much higher up.

As a matter of fact, conditions in the atmosphere are not so

simple as any of the laws (17), (22), or (24). The temperature may
actually rise with the height for a short distance; that is, the surface

temperature may be less than that somewhat higher up. Moreover,

at a certain elevation the temperature ceases to fall off, and remains

nearly constant, or even increases a little up to the greatest heights

reached. The following tables give the actual record for one par-

ticular case and the so-called average or standard condition:

TABLE I

Ascension at Eccloo



MOTION ALONG A TUBE 159

meters (about y| miles). The fall of 78 C. is equivalent to one of

140 F., the surface temperature being 53.5 F. The rate of change of

temperature with altitude is not constant as required by the adiabatic

law, but varies between about i/2oth and i/i2th of a Centigrade

degree per 100 meters of ascent. Above 12,000 meters there is a slight

rise of temperature, and at the greatest elevation reached the tem-

perature has increased by 22 C. The inversion point, 12,000 meters,

varies from season to season, and also very greatly with latitude. In

the temperate zones the average height is between 10 and n km,
and the temperature about 216 C. absolute; at the equator it is 17

km, and the temperature 182. This altitude is above that of air-

plane flight. The average table shows a drop of one inch per thousand

feet near the surface, shading off to a drop of only one-half inch per

thousand at 4 to 5 miles, and a drop of 2 C. in temperature per

thousand feet near the ground shading off to half that rate at 4 to

5 miles of elevation.

61. Bernoulli's Equation. For steady motion in one dimension

the dynamical equation is

~

*

dt ds p ds

This may be integrated

or

r&-
J Po P

This is known as Bernoulli's equation, and has many applications in

hydromechanics and in hydraulics.

Bernoulli's equation may be used to demonstrate Torricelli's

Law. Suppose that a small hole is opened in a vertical cylinder of

water at a depth h below the surface. As the area of the hole is small

compared to that of the cylinder, the velocity of drop at the top of

the surface of the liquid must be small compared with the velocity

of efflux, and, hence, the square of the velocity exceedingly small.

The external acceleration is +g if distance be measured downward

from the top of the liquid. Then

u? o . p po 7
/ \

h - h = o (27)
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The pressure at the top of the liquid is the atmospheric pressure, and

in the stream outside the vent is also the atmospheric pressure. The

equation, therefore, gives

u2 = 2gh or u

which is Torricelli's Law.

In the demonstration it has been assumed that the fluid was

frictionless, and, consequently, the value for u must be expected

to be slightly too high.

(NOTE: It is entirely incorrect to assume that the amount of

fluid discharged per unit time through the orifice is puS where S is

the area of the orifice. The stream lines in the liquid converge toward

the orifice on the inside, and continue to converge for some small dis-

tance outside, so that the cross section of the stream at its narrow-

est point where the stream lines are parallel is not S, but a fraction,

about 0.62, of 5.)

A second application of Bernoulli's formula is to the efflux of a

gas from a large tank, in which the pressure at a distance from the

orifice is po, and the velocity u = o. The effect of gravity in this

case is negligible, owing to the small density of the gas. The theorem

gives

w2 - o . f*dp , p /pY--h /
=

o, where f =
(

-
I ,

2g Jpo P pQ \PO/

if the gas is supposed, as is natural, to follow the adiabatic law. For

air n =
1.4, for steam in some conditions n =

1.2, and for all gases

n lies between 1.67 and i.oo. On integration the equation gives for

the velocity of efflux

This formula must not be applied in cases where the velocity is ex-

ceedingly high, so high as to approach the velocity of sound, for at

these high velocities whistling, throbbing, and other complicated

phenomena set in.

(Bernoulli's equation for a liquid under gravity may be written
2
/2g + pip + h = C. The height h represents the static

" head "

above a certain level. The term u2
/2g is called the kinetic head, and

pip the pressure head. The formula states that the total head,

kinetic plus pressure plus static, must be constant in steady motion.
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The formula really is merely the statement of the conservation of

energy for the unit mass of liquid.)

If the pressure p differs little from p so that p = p (i a),

where a is small, the value found for u2
may be expanded by the

binomial theorem. Then

n - i po

-*("+)
In this form an estimate of the error in the determination of u2 due

to the neglect of the compressibility in cases where the change of

pressure is not great may be made. For a liquid n oc
?
since p /pQ

must be constant and independent of p/po. For a liquid, then,

u2 = 2gpQdfp, when the percentage change in pressure is iooa and

negative. For a gas the formula contains also a2
/2H', the ratio of

this to a is a/2n y
and n lies between i and 1.66. The relative error in

neglecting compressibility is, therefore, a/2n t
which is never greater

than a/2. If, then, the pressure difference observed is less than i%
of the initial pressure p Q ,

the calculated value of u2 based on the

assumption of incompressibility will differ from the true value by
less than J%, and the calculated value of u by less than J%. For

almost all practical purposes in aeronautics the formula

u2 =
^(pQ -p)..... ...... (30)
Po

may be used. If the air has a velocity when p = p ,
the formula

for the velocity is

u2 = u<? + ^ (p Q
-

p) ........ (31)
P

62. The Pitot and Venturi Tubes. The Pitot tube is a device

for measuring velocity in a stream of air. The tube is double, the

inner tube being exposed directly Air {n mofian
to the flow of the air. The outer

tube has on its lateral side perfora- Air still

tions which transmit the pressure

of the air in the moving stream. Fig. 17. Pitot Tube (Air coming from

Now in both tubes the air is neces-
the Right)

sarily at rest. The center tube transmits the pressure of the air at

the nozzle, where the stream is stopped, and the velocity is zero.
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The outer tube, through its lateral openings, transmits the pressure
in the stream when in motion. By Bernoulli's proposition the pres-

sure where the stream is in motion and the pressure where the stream

has been brought to rest differ by an amount proportional to the

velocity. The velocity in the stream, therefore, may be taken as

(32 )

the density of the stream being considered constant.

In careful experimentation with the Pitot tube it is necessary to

reduce to a standard temperature, pressure, and density. These

standards are

p =
29.921 in. Hg, T = 62 F., p = .07608 lb/ft

3
.

Changes in the barometric pressure or temperature introduce changes

in the density of the air, which may be calculated by Boyle's Law.

Moreover, for really accurate work the humidity of the air must be

taken into account.

The Venturi tube is a device designed for magnifying the effect

obtained by the Pitot tube. In the Venturi tube there are two cones

placed end to end with the

shorter cone opening upstream.

The narrowing of this cone from

its cross section Si at the mouth

to Sz at the throat produces, on

account of the equation of con-

Fig 18. Venturi Tube (Air coming from
tinuity, an increase in velocity

from the value UQ at the mouth

to the value u\ = SiWo /Si at the throat. If then the air pressures are

taken off at the mouth and the throat from perforations in the tube,

The pressure difference is magnified in the ratio approximately as

the squares of the cross sections, and is, therefore, easier to measure.

If the pressure should be taken off at the orifice from a tube pointing

upstream instead of from a lateral perforation, the pressure differ-

ence and velocity would be connected by the relation
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Example: Find the pressure difference in a Pilot tube if the

stream is moving 60 miles an hour.

Po
- p = 88 2

(.o76o8)/2g =
9.15 lb/ft

2
.

This value is in pounds per square foot. Its equivalent in inches of

mercury is 0.13. and in inches of water 1.76. This example illustrates

the very small pressure difference (compared with the value of the

atmosphere itself) which is due to a velocity of 60 miles an hour.

If the temperature of the air were not at 62 F., and the pressure

not at 29.921, some value of p other than 0.07608 would have to be

substituted in the formula. The value of the density varies inversely

as the absolute temperature; the absolute Fahrenheit temperature

corresponding to 62 is 522. An increase in temperature to 92 F.

would represent a decrease of about 6% in density, and a drop to

o F. an increase of about 12% in the density. As the pressure dif-

ference in the Pitot tube varies directly with the density, changes of

temperature such as are normal in temperate zones may, therefore,

introduce considerable errors in the calculated pressure drop unless

allowance could then be made. A variation of i inch in barometric

pressure represents a variation of about 3% in the value of p, and,

consequently, the extreme ranges in barometric pressures even at

the surface of the earth are sufficiently great so that they should be

taken into account.

EXERCISES

1. Given that for standard dry air p = .07608 lb/ft
3

,
T = 62 F., p = 29.921

in. Hg. Find R when p = RpT, where T is absolute F.

2. Given that for standard air p = 29.921 in. Hg when T =
15 C. and

p =
po. Find p/po when T = -7 C. and p = 19.06 in. Hg.

3. Show that if liquid is diverging in a narrow cone the velocity must vary

inversely as the square of the distance from the vertex.

4. If liquid diverges in a sector (region bounded by two parallel planes and

by two intersecting planes), the velocity must vary inversely as the distance

from the vertex.

5. Given that/?
= p e~ pah/po

, p = 29.92 in. Hg,p = .0761 lb/ft
3

. Compute
the pressures at altitudes of h = 3000, 6000, 9000, 12,000, 15,000, 18,000, 21,000

ft, and compare with the tabulated values.

6. Given that p =
po (

i
}

~
l with n =

1.41, p = 29.92 in. Hg,
V n poj

Po = .0761 lb/ft
3

. Compute p for h = 3000, 6000, 9000, 12,000, 15,000, 18,000,

21,000 ft, and compare with the tabulated values. Find the temperatures at these

levels if T = isC. for h = o.
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7. The gage'pressure in an air tank is 200 lb/ft
2

(in excess of atmospheric).
How fast will the air flow out (neglecting viscous friction) through an orifice?

Take n = 1.41 and use 2 = -^- ?? i -
f
~

I
' Is the velocity so high that

n - i PO |_ uV J

the velocity of sound is approached?
8. The velocity in a stream (at a point at an instant) is 10 ft/sec and is ob-

served to be increasing 2 ft/sec per foot and decreasing 5 ft/sec per second. What
is the acceleration?

9. The acceleration in a stream (at a certain point and at a given instant)

is 15 ft/sec
2

,
and is decreasing 5 ft/sec per second. If the velocity is 20 ft/sec.

how fast is it increasing as one advances along the stream, and what is its value

i in from the given point?

10. A tank 10 ft high and 2 ft in diameter has a hole of 2 in diameter from

the bottom. Use Torricelli's law for the velocity of efflux and a contraction

coefficient 0.62 to find a differential equation between the height h of the water at

any time and the time /. Integrate and determine how long it takes for the tank

to become half emptied.

n. It is desired to make an hour-glass, in the form of a surface of revolution

with a hole in the bottom, so that if the glass be filled with water, the level of

the water will descend equal amounts in equal times. Find the shape of the

surface of revolution. Show that y must vary as x4
,
if y is the height above the

bottom and x is the radius of the glass at that height.

12. Find thepressure difference recorded in the Pitot for a velocity of 1 50 mi/hr
in standard air. What would be the pressure difference on the 20,000 ft level?

13. A Venturi tube records a pressure difference 24 times as great as the

Pitot; what is the ratio of the diameters of mouth and throat?

14. On a boat the (relative) wind comes from a direction 10 out from dead

ahead. A Pitot held in the wind registers a pressure difference of i inch of water.

Find the velocity of the boat and of the true wind, also the direction of the wind,

if the velocity of the boat is 20 knots (i\ mi/hr).

15. A Pitot in a stream of water and one in a stream of air register the same

pressure difference. Find the ratio of the velocities of the streams.

16. Suppose a small mass dW = pS ds of fluid is transferred from a point

where the pressure is p to one where it is p + dp. Show that the work

done against the pressure is dW dp/p. Hence show that Bernoulli's formula

(u?
-

o
2
)/2g + fdp/p -

i/g- fX ds = o is, when multiplied by dW, the state-

ment that the gain in kinetic energy is equal to the work done by the forces.

17. A tube filled with liquid of specific gravity 0.8 is inclined at an angle of

5 to the horizontal and graduated in mm. When the ends of the tube are con-

nected with the two pressure chambers of a Pitot tube, the liquid moves 170

mm. What is the velocity of the air stream?

1 8. In standard air the pressure difference registered in the Pitot tube is 20

lb/ft
2

. What is the speed? What would be the speed if the air density were only

half as much?

19. If liquid is rotating steadily with angular velocity co about a vertical

axis, show that the free surface must be a parabola.



CHAPTER X

PLANAR MOTION

63. The Variables. If a fluid moves in two dimensions, -that

is, if the flow is parallel to a plane and is the same in all planes parallel

to that plane, the notations required will be as follows: p for the

pressure in the fluid at any point (x, y), p for the density, u and v

for velocities parallel to the axes of x and y, t for time. In this case

there are three independent variables, x, y, t, the variables p, p, u, v

being regarded as dependent upon them. The equations of motion

are (i) the equation of continuity, which expresses the indestructi-

bility of matter, and (2) the two dynamical equations which deter-

mine the accelerations of each particle of fluid along the axes.

The fluid derivative for 2-dimensional motion, that is, the rate

of change of any quantity when both space and time change together

as they do in the actual motion of the fluid, is

d( ) = a( ) ud( ) va( ) n
dt dt dx dy

where any symbol may be put into the parenthesis. The proof of

this expression is from the formula for the total differential,

It is only necessary to divide by dt to obtain the time rate, and to

put
dx dyu =
di>

v =
dt

to express the fact that the changes in x and y are thus actually due

to the fluid velocities u and v. In the case of the steady motion

'. ^LJ = and *U_2L_) + !2U . . . (2)
dt dt dx dy

64. The Equations of Motion. To determine the equation of

continuity consider a small rectangle dx dy parallel to the axis. The
165
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flow into this rectangle per unit time across the various edges is as

follows: Flow in across left-hand edge = pu dy, flow out across right-

hand edge = (pu + dx(pu)dx) dy,

flow in across bottom edge

pv +d(Pv)
= P dx

>
flow out acr ss top edge

=
(pv + dy(pv)dy)dx, where

pu + d (pu)

^-
Each rate of flow has been de-

termined as the product of the
Fig. 19. Flow across Infinitesimal

. .

Rectangle. density, the velocity in the direc-

tion of the flow, and length of

the line across which the flow takes place. The net outflow from

the rectangle is

net outflow . /** + fc^ dxdy = - d
-^(dx dy) ,

. (3)
\ ax dy / dt

for the net outflow must be equal to the rate of diminution of the

amount of matter p dxdy inside the rectangle. The equation of con-

tinuity, therefore, is

dp . dpu . dpv f >.

H o. . . . . (4)
dt dx dy

The derivation of the dynamical equations is simpler. The accele-

rations are those due to the fluid pressures and those due to the ex-

ternal accelerations. The pressure on the left-hand of the rectangle

is p dy, and on the right-hand side is (p + dxp)dy. The net pressure

is backward, and equals

-dxpdy =
-^dxdy.

The acceleration produced is the product of the pressure by g divided

by the mass p dxdy. Hence,

du = du du du
= -gdp y

dt dt dx dy p dx

dv dv dv dv g dp I TT / \

dt dt dx dy p dy

where X, Y are the external applied accelerations and where the

second equation is obtained in a manner entirely similar to the first.



PLANAR MOTION 167

The equations for steady motion are by (2)

&+,&m-=lf. u
sJL + v %L

= ^dP + Y . (6)
dx dy p dx dx dy p dy

65. Bernoulli's Formula. These equations cannot be integrated

in general in any simple manner, but may be integrated in a number

of cases where some simplifying assumption is made. In particular,

they may be integrated to determine the relation between the velocity

and pressure along a stream line in the steady motion (6). For a

stream line

u : i) : q
= doc : dy : ds, ......... (7)

where q is the resultant velocity, namely, (u
2 + v

2
) . Furthermore,

d^_)_ = d^dx + d^_)dy = d( )u d( )v
ds dx ds dy ds dx q dy q

The equations, therefore, may be written

_ = + Y
ds p dx ds p dy

Multiply by dx and dy respectively, and add, placing q dx = uds,

q dy = v ds. Then

u du + v dv = g dp/p + X dx + Y dy,

and, integrating, the result is

or

P g

This equation is Bernoulli's formula, applicable along any stream

line in steady motion. The terms in it are identical with those found

for motion in one dimension, and should be so, because steady motion

in two dimensions when a single stream line is considered may be

regarded as motion in one dimension, namely in a tube along the

stream line.

It is customary to interpret the different terms in Bernoulli's

equation as "heads." This may be seen most clearly by supposing

that the fluid is liquid, and that the acceleration acting is gravity.

Then
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if h is the difference in level between the initial end of the stream line

and any point on it. The last term appears, then, as the "head"

(of a certain number of feet or meters) of the fluid and may be called

the static head, being simply a difference in level. The middle term

is the pressure difference divided by the density, and may be called

the pressure head. The first term depends on the square of the

velocity, which enters into the kinetic energy in mechanics, and is

consequently called the kinetic head or velocity head, and Bernoulli's

theorem states that the total head is always zero along a stream line

in steady motion. Or if the equation be written as

the theorem is stated that the total head, kinetic, pressure, and static,

is constant along a stream line. There is no contradiction in the two

statements, because in one case the origin is not determined, whereas

in the other case the various heads are all measured from a given

origin.

66. Experimental Discussion. If the external applied accelera-

tions, X, Y, are so small as to be negligible, as in the case of gases

except in exceedingly large columns, or if the motion is such that the

external accelerations do no work, as in the case when a liquid flows

horizontally under the action of no force other than gravity, the

equation of Bernoulli states that

+ p- = c,
2g P

which means that: The velocity is larger where the pressure is smaller,

and smaller where the pressure is larger. This is to many a paradox,

because there is an intuition that the pressure must be high where

the velocity is great. The following illustrations will serve to show

that the general intuition is wrong, and that Bernoulli's equation is

right.

(i) What moves the fluid apart from its own inertia and in the

absence of external force is the pressure difference in the fluid. If,

therefore, the velocity is increasing down a stream line, there must

be more pressure on the back side of each little element than on the

forward side, which means that the pressure must be decreasing

down the stream line. On the other hand, if the fluid is slowing up,

that is, suffering a retardation, there must be a resultant pressure
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difference acting back along the stream line, which means that the

pressure in advance is greater than the pressure behind, and the

pressure must be increasing down the stream line as the velocity

decreases.

(2) Consider the motion of a ball pitched so as to describe a curve

an in or out curve and neglect the drop of the ball under grav-

ity. The ball is moving forward, and rotating about a vertical axis.

The rule for the deflection of the ball to the right or left is that the

ball follows its nose; that is, if the front of the ball is by the rotation

moving to the right, the ball moves to the right. Now the motion

of the air about a moving ball is not steady; the relative motion of

the ball and the air is, however, the same as though the ball were

at rest, except for its spinning, and the air were moving by the ball.

In this case the motion of the air is steady. If, then, a ball be spin-

ning on a vertical axis, and the air be moving past it with a certain

velocity, the air is dragged by the friction of the ball against the

air so that the velocity in the stream is greater on that side of the

ball on which the rotation causes the surface to move in the same

direction as the stream, and less on that side of the ball in which the

rotation causes the surface to move opposite to the general direction

of the stream. According to Bernoulli's principle there should be a

pressure urging the ball side-

ways, and acting from the side

where the air velocity is least

(and pressure greatest) toward

the side where the air velocity

is greatest (and pressure least);

this pressure is in the direction

which urges a ball to follow its

nose.

(3) If a tube penetrates a

flat disk, and a light disk be

held near the flat disk, and a

stream of air be blown through

the tube, the velocity of the

stream between the two disks is greater than the velocity on the

outside of the disk where the air is relatively at rest; therefore, the

pressure between the two disks should be less than the pressure on

the outside, and the lower disk should be drawn up toward

Fig. 20. Suction between Discs.
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the other. And this is exactly what happens. One might think,

intuitively, that by blowing hard enough through the tube in the

upper disk he could blow off the lower disk, but, as a matter of

fact, the harder he blows the more tightly the lower disk sticks to

the upper one. The experiment is, therefore, in corroboration of

Bernoulli's principle, and not at all in corroboration of the intuitive

feeling.

(4) Suppose a long rectangular plate be held normal to a stream

of fluid. The motion of the fluid in this case is to a certain extent

discontinuous. The fluid is deflected by the plate, and does not

close in behind the plate. The result is that there is a more or less

"dead" wake behind the plate. It will be assumed that this dead

wake is clearly defined, and separated from the moving fluid by a

Fig. 21. Pressure on a Rectangle Discontinuous Motion.

surface. Let # be the general velocity of the stream at great distances

from the obstructing plate. When the fluid reaches the plate and is

deflected by it the velocity at the Center of the plate is zero, and the

pressure must, therefore, be greater at the center of the plate than

at great distances. Consider, next, the wake, which is a portion of

fluid at rest. The pressure throughout this region must be constant,

and equal to its value at a great distance. Now, the pressure in the

wake and in the stream just outside the wake must be the same, for

if it were not there would be a resultant pressure upon the surface,

separating the wake from the moving fluid, urging the surface in-

ward toward the wake, or outward from it; whereas in the steady

state of motion which is assumed, the surface has taken a certain

definite position of equilibrium, and is not urged in one direction or

the other. The consequence is that the pressure along the surface

of separation is everywhere the same. Applying Bernoulli's formula,
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it appears that the velocity in the fluid on the outside of the surface

must also be everywhere the same.

At a great distance the velocity is qiy
and the pressure in the mov-

ing fluid and in the wake is the same, and equal to pi. Returning
now to the front face of the plate, where the fluid is at rest at the

center, and moving at the edge with the velocity qi} it may be in-

ferred naturally that the velocity along the plate from the center

toward the edge increases from zero to ^ and is, therefore, everywhere
less than ^t . The average pressure over the front of the plate must,

therefore, be greater than p it whereas the pressure on the back is

equal to p^ and there must be a force tending to move the plate

down the stream, as is known to be the case. Bernoulli's principle is,

therefore, again corroborated, although the introduction of the idea

of a discontinuity in the motion has somewhat complicated the

demonstration, because it has made necessary the application of

Bernoulli's theorem both in the dead wake and in the moving fluid.

It will not do to apply Bernoulli's theorem simultaneously to the

moving fluid and to the wake, because in that case the argument
would be as follows: The wake is at rest. The fluid on the front of

the plate is in motion, except at the central point. The pressure,

therefore, on the back should be greater than on the front, and the

plate should be urged up stream. A comparison of the experimental

effect cited under (3) with the experimental effect cited under (4) re-

veals a considerable complexity in the results obtained by the applica-

tion of Bernoulli's principle. It must be always borne in mind that

Bernoulli's principle applies along a stream line. For the demonstra-

tion in (3) it is supposed that the stream lines close in behind the

lower disk. For the demonstration in (4) it is assumed that there is

a discontinuity, and that the stream lines do not close in. In any

particular case the question of whether or not the stream lines do

close in is of vital importance, and the complexity of nature is such

that sometimes no conclusion can be reached apart from an appeal

to experiment.

Furthermore, in any natural fluid there is always a certain amount

of viscosity, or friction, so that a surface of discontinuity is not

actually possible, and the wake is not actually dead. As a matter of

fact, however, the wake is in much less rapid motion than the fluid

outside, and such motion as there is is not at all stream line, but

quite heterogeneous, consisting of a system of more or less well-de-
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fined eddies. Wherever there is a tendency to form a surface of

discontinuity, there is also a tendency for the surface to break down
into a series of eddies, so that whereas outside of the surface the

motion is stream line, at the surface it is eddy motion, and inside

the surface it may be entirely irregular. This tendency for a surface

to break 'down may be illustrated by a flame experiment. If a gas

flame be lighted and not turned up too high there is a general stream

line motion in the flame, and a general stream line motion in the air

outside the flame, with a surface of discontinuity between the two.

If the flame be turned so high that the surface of discontinuity breaks

down into a series of eddies, the flame itself will flicker and roar, indi-

cating a disturbed motion in the flame, and near by it on the outside.

67. Pressure on Aerofoil. Bernoulli's theorem throws a good
deal of light on the distribution of pressure between the under and

Fig. 22. Distribution and Pressure on Cross Section of Aerofoil.

Wind direction indicated by arrow U. Suction (above) and pressure (below) laid off

along normals to the surface of the aerofoil.

upper surface of an aerofoil. Where the velocity of the air along the

foil is checked the pressure will be increased, and where it is accele-

rated the pressure will be diminished. The pressure distribution over

the under surface (excess pressure) and over the upper surface (pres-

sure defect) of the aerofoil is indicated in the figure. The remarkable

phenomenon is that it is the deficiency of pressure on the upper
surface much more than the excess of pressure on the lower surface

which sustains the wing. The deficiency of pressure will tend to

suck off the fabric on the top surface of the wing, and accidents have

actually happened in cases where the fabric was not sufficiently

strong or not sufficiently well attached to withstand the suction.
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Drag

Anti-Drag

Fig. 23. Suction and Pressure on Idealized

Aerofoil (Schematic).

Forces resolved in lift and drag or anti-drag.

The direction as well as magnitude of the pressure is worth study.

As the pressure is normal to the surface certain areas of the wing

tend to urge the wing forward and thus diminish the drag on the

whole wing. The figure, which is purely diagrammatic, illustrates

this. As the drag repre-

sents power required to

maintained flight, whereas

the lift represents susten-

tation afforded to support

the machine, an increase

of lift accompanied by no

increase in drag would in-

dicate an increase of effi-

ciency in wing design; so

would a decrease of drag

with no decrease in lift.

Even small changes in the

shape of the wing may
produce such relatively

larger effects on lift or drag (including anti-drag) as materially to

alter the flying properties of a wing. No hydrodynamic theory is

adequate to the prediction of the best design of wing for a given

purpose appeal must be made to experiment with a great variety

of shapes.

Further theoretical discussion of two-dimensional motion of a

perfect fluid, that is, of one without viscosity, will be postponed to

a later chapter, and the phenomenon of viscosity will now be briefly

discussed.

68. Viscous Fluids. When the fluid on one side of an imagi-

nary surface in moving more rapidly than that on the other side, the

internal friction or vis-

cosity of the fluid sets

up an action and its

equal and opposite reac-

tion. The faster moving
fluid tends to drag with

it the slower moving, and

the slower moving tends to retard the faster moving^ Consider the

special case of motion between two parallel planes, where the fluid

Fig. 24. Action and Reaction due to Viscosity.
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is at rest in contact with the lower plane, and is in motion with the

velocity V in contact with the upper plane (the plane itself may be

supposed to be in motion with the velocity V). The upper plane

experiences a tangential drag tending to retard it, and the lower one

a tangential force tending to set it in motion. The amount of this

force per unit area is found by experiment to vary directly with the

velocity V, inversely with the distance between the two planes. It

may, therefore, be written

F = V/b Ibs/sq.ft ......... (12)

where b is the distance between planes. The coefficient /z is called

the coefficient of viscosity. The motion between the two planes

in case one is held at rest and the other moved at the velocity V is

such that the velocity of motion

increases linearly from zero to

V. If the breadth b be very

small, say db, and the difference

u+du of velocity V be very small, say

dV, the force may be written

F = ydV/db. . . (13)

Suppose, now, that a liquid

is in motion between two paral-
'

Fig. 2S . Viscous Action on a Liquid
lel PlaneS ' Let the X^S be

Rectangle. parallel to the planes, and the

y-axis be perpendicular; and let

the flow take place in lines parallel to the #-axis. By the equation

of continuity the velocity cannot vary with x. The velocity, how-

ever, may vary with y. Consider a small stratum of the fluid

between y and y + dy. At the lower face the rate of change of

velocity with y is du/dy, and there must be a viscous action equal to

duF = JJL--
dy

On the upper face, at y + dy, there is a viscous action equal to

and there is, consequently, a differential effect of the amount

dF = dy. . . . . . ,-. . . (14)
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per unit area, accelerating or retarding the material between y and

y + dy. The amount of this material per unit surface is p dy, and,

consequently, the acceleration is

u 0u
*
p ay*

The equation for the motion of the fluid is, therefore,

**_ _^_i_M^4_y dJL- _d+ y fje \

dt~ ~p dx
+

p dy
2

"*

dt~ p dy
H

(a) Consider, now, the motion of a viscous fluid, between two

planes which are at rest, under the action of no external force X,
in the particular case when the motion is steady. There is no need

here of using a partial derivative for u, because u varies only with

x by virtue of the hypothesis introduced. If there is no force acting

in the y direction dp/dy must be zero, because by hypothesis there

is no motion in the y direction, and, consequently, dp/dx may be

written dp/dx, because p does not depend on y or /. The dynamical

equation reduces to

dp . d2u f ,.-- +
"d?

......... (I6)

Now, the second term varies with y only, but not with x
y
and the

first term varies with x, only, but not with y. Consequently, both

terms must be constant; for a function of y cannot be equal to a

function of x unless each be a constant. Hence,

dp n d2u n ( ^- ~C, ^ = C- ....... . (17)

If a column of liquid between the two planes of total length / be

under consideration, and if the pressure be p at the beginning and

pi at the end of this length, the pressure gradient or rate of change of

pressure with x must be

d _ PI
~

Po /- PQ
~

PI

dx
=

I I

The integration of the equation for u gives

M = -Cy + Ci IM = -Ky + C<y + C2 ,
. . (18)

dy

where Ci, Cz are constants of integration. Let the origin for y be

taken at the middle of the column of fluid, and let b be the whole
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distance between the planes. Now, owing to the viscosity, the fluid

will stick to both planes, and, consequently u must be zero when

y = +b/2 and when y =
b/2. Hence,

o = - JC6
2

Cib + C2 ,

and from these equations d o, C2
= C6 2

/8. Hence,

The velocity is greatest midway between the planes and falls off

according to the parabolic law to zero at the planes.

The rate of flow of the fluid for any value of y is u, and the average
rate of flow between the planes is

(20)
-b/2

when measured by the volume passed per unit time; it is p times this

when measured by the weight. The central rate of flow at y = o is

(A)
~ PW = 3 $
8//i 2

which shows that the average velocity is two-thirds of the central

velocity. The relation between the total volume of flow F = ub,

the pressure difference at the two ends of the column, the distance

between the planes, and the coefficient ju of viscosity is

This formula affords an experimental procedure for determining JJL.

It is merely necessary to force a viscous fluid between two planes

for a given length under known pressure difference, and measure the

rate of flow F by volume per unit distance along the plane perpen-

dicular to the direction of flow.

(b) Better than to force the fluid between two parallel planes is to

force it down a cylindrical tube. The equations of motion for the

fluid in a vertical tube may be obtained as follows: Let a be the

radius of the tube, and r the distance from the axis to any point.

Consider the cylindrical shell of fluid which lies between r and r + dr.

At r the viscous drag is
fj, du/dr, and is applied to a surface pro-

portional to 2 TIT. At r + dr the force per unit surface is

. d du
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applied to a surface proportional to 27r(r + dr). The differential

effect of the drag is, therefore,

d 2

u~] (rtfu du\ J

^J =M^ + ^)^ (23)

The amount of matter in the cylindrical shell is proportional to

2irr dr, and hence the acceleration due to the frictional drag is

M = M A rdu

dr)
"

pr dr dr
*

pr\ dr2 d

The dynamical equation is for steady motion

0= _S^ + ^gd/r_du\
p dx pr dr\ dr )

As before, dp/dx depends only on x, whereas u depends only on

r, and, consequently, if X be zero, or if it be constant, the equation

when written in the form

, ^
dx r dr dr g

shows that dp/dx must be constant; that is,

-- = -C =

dx I

and

V d^
r du pX _ _ pQ pi

r dr dr g I

This equation will be integrated when X = o. Then

M^= --Cr + d, . ....... (28)
dr 2

or

"S
= "? +

7'
Then

CV2

IJLU
= h Ci log r + C2 (29)

4

where Ci and C2 are constants of integration. Unless Ci =
o, u

= oo when r = o, owing to the presence of log r. As the velocity in

the middle of the cylinder cannot be oo, Ci must be zero. As the

velocity when r =
a, the radius of the tube, must be zero, C2

=
J<

and

4M
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This gives the law of variation of velocity with distance from the

axis of the cylinder. To calculate the flow measured by volume,

fa
(po

- ^" 4

F = I 2irrudr = -

** o

and the value of ju may be obtained as

8/M

SIF (32)

This is known as Poiseuille's formula, and is useful in obtaining the

value of AI from experimental data. It is possible to draw capillary

tubes of such small radius that the flow is both small and steady under

the pressure difference p pi, and, consequently, reasonably satis-

factory values of ju may be obtained.

The definition above given for
JJL
and used throughout the analysis

is one in which the force is measured as is customary in engineering,

in pounds or kilograms, whereas the definition of /z given in treatises

on theoretical physics is one in which the force is measured in dynes,

or, if the English system be used in "poundals." The value of /z

here used is, therefore, the ordinary value divided by g.

The ratio of /x to p, namely v = /i/p, is called the kinematic

coefficient of viscosity; it is this ratio which enters into the expres-

sion for the acceleration, where ju enters into the expression for

force. The following are the values of jug or vg for some substances:

Substance
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69. Physical Observations. In the discussion of this chapter

it has been pointed out that there is (i) continuous stream line flow,

(2) discontinuous flow, as when a stream passes around an obstruct-

ing object, (3) continuous flow in which viscosity is taken into account,

the first two types of flow being discussed on the basis of no viscosity.

If, in experiments on viscosity, the fluid is passed too quickly through

the tube, or if the tube is too large, the fluid will adhere, as required

by the theory of viscosity, to the tube at the outside, but the flow

will not be the simple flow found above, because if the velocity in

the center is too great the flow becomes discontinuous; near the

boundary it is as determined for simple viscous flow; near the center

it is more like simple stream line flow without viscosity, and there

is at a certain distance from the center a surface of discontinuity

full of small eddies or rollers. Hydraulic engineers, therefore, can-

not assume that when liquid flows in a pipe they are in the presence

of either the simple viscous flow or of simple stream line flow without

viscosity. If the velocity of flow down the middle of the pipe is in-

creased too much the motion becomes still more complicated. In-

stead of having the region of simple viscous flow near the boundary
and the region of steady stream line flow on the interior, separated

by a surface of discontinuity made up of small rollers or eddies, the

eddies break down and move in toward the center, disturbing the

stream line motion; and there thus arises what is known as (4) tur-

bulent flow. This is a fourth type, separate from the three enumer-

ated above; and for the most part what is known about turbulent

flow has been derived by experimentation, and is expressed by empiri-

cal formulas. In turbulent flow there is a general velocity of the

stream, as in stream line flow in a nonviscous fluid, or steady flow

in a viscous fluid; but the actual motion of the particles of fluid is

not even approximately the same in velocity as the general motion

of the stream. The velocities in the fluid vary rapidly from point

to point, and hence the name "
turbulent flow." This is the kind of

motion found in the wake of a steamer.

When one observes the motion of the fluid around a steamer the

following facts stand out:

(a) At reasonable distances from the steamer the flow is stream

line, slow and steady relative to the steamer, apparently not much

influenced by viscosity.

(b) Very close to the hull the water is dragged with the steamer.
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The motion is slow and steady relative to the steamer, and appar-

ently depends mainly on viscosity, in that the velocity increases more
or less uniformly as one passes out from the hull into the fluid.

(c) There is a region not particularly wide in which the viscous

motion goes over into the nonviscous, and in which numerous small

eddies are observable, so that judged from the point of view of a

person on deck the outside motion appears to roll on the inside mo-

tion through the intermediary of these eddies.

(d) At the stern there is a long, turbulent wake in which no

velocity can be assigned to the particles of fluid that is anything like

constant even over relatively small volumes.

It is clear, therefore, that the phenomena which arise when a body
moves through a fluid are of great complexity; that only the simplest

cases can be stated in simple mathematical equations and solved;

and that to a considerable extent general physical arguments or

empirical data must be used to represent the effects of fluid motion

on a body moving in a fluid. These general physical principles will

be taken up next. It will not do, however, to overlook the fact that

when a body moves through a fluid there are both close to the body
and particularly at a considerable distance simple types of fluid

motion, and that the discussion of these simple types of motion is

important because of the information it will give in respect to some

of the main characteristics of the flow when a body moves in a fluid,

and of the effects of that flow on the body. This matter will be

taken up later.

EXERCISES

i. Show that for steady flow out radially from a point and equal along each

radius, the fact of "continuity" is expressible as p ur = const., if u is the radial

velocity at the distance r. Hence infer that for steady radial flow of a liquid the

velocity must vary inversely as the distance.

2. Show that for radial flow +- -

at aT

3. Derive the equation of continuity in polar coordinates by examining the

flow across the sides of the element rdBdr of area. The radial and normal

d(pr) d(pru)
velocities are u, v. Ans. --

1

-----
1

-- - = o.
at aT au

4. Derive the dynamical equations of fluid motion in polar coordinates.

to-*--Z*i + x,
1 ()-_ f ^+ e.

dt r p dr r At p rde
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5. Show that ^P = *L)+ w *U+v*L)in polar coordinates.
dt dt dr rde

6. Suppose that the forces on the moving spinning ball may be calculated

from the relative velocities and the sine law P = kU2 sin i. Assume that the

velocity at the periphery is a composition of the forward and rotary motions,

disregarding the actual complex disturbance of the stream. Is the deflecting force

in the right direction?

7. Suppose that in the problem (a), Art. 68, the planes are vertical and that

X = g cannot be neglected. Find the law of variation of u with y and the total

volume of flow (per second per unit breadth along the plate perpendicular to

the flow).

8. If in problem (b), Art. 68, the liquid were forced between two concentric

cylinders, find the law of variation of the velocity and the total flow. Show that

if the inner radius is large and the outer radius only slightly larger, the results

reduce to the flow between parallel planes.

9. Suppose that in problem (6), Art. 68, the tube is vertical and X = g

cannot be neglected. Find the law of flow and the total amount. Compare with

Poiseuille's formula to exhibit the effect of the action of g.

10. A cylinder of radius a spins with angular velocity co in a larger coaxial

cylinder of radius b, the space between the cylinders being filled with a viscous

fluid. Assume the motion to be steady and in circles concentric with the axis of

the cylinders. (Neglect end effects, i.e., assume both cylinders long.) Calculate

the torque per unit length necessary to maintain the spinning. Plot as a function

of b/a.

11. In the problem of the steady motion of a viscous liquid between parallel

plates calculate the work consumed by the forces of viscosity and compare it

with the work done by the pressures. (See Ex. 16, Chap. IX.)

12. Compare the tabulated values pg = .000179 (metric) and vg = .000159

(English) to see how well they check.

13. Two parallel planes are i in apart and the relative motion is 3 ft/sec.

If the true viscous flow is maintained, calculate the force per square foot on the

planes due to viscosity.

14. Water is forced through a tube of radius 1/2000 in at a mean velocity
of 4 in/sec. What is the pressure gradient?

15. Show that the motion of a viscous liquid between two parallel plates is

rotational and find the angular velocity in the fluid.

1 6. Show that the motion of a viscous liquid in a tube is rotational and find

the angular velocity at any distance from the center.

17. In the flow of Ex. 14 calculate the angular velocity of the elements of

the fluid near the boundary r = a in R.P.M.

(NOTE. In Exs. 15-17 the angular velocity of rotation of the particles of

the fluid may be calculated from the formula co = f - 1 . Motion is
Ldx dyJ

called rotational if co ^ o, irrotational if co = o. See Art. 80.)



CHAPTER XI

THEORY OF DIMENSIONS

70. Fundamental Units. The dimensions of a physical quan-

tity have to do not with the magnitude of the quantity, but wi th its

quality. From geometry the fundamental dimension of length,

designated L, is taken, and certain derived dimensions, for example,

area, which is the product of two lengths in the case of the rectangle,

and which for any set of similar figures varies with the square of the

corresponding linear dimensions, is said to have the dimensions L 2
.

This type of dimensionality is indicated in the abbreviations for

the units of measure; for example, for length the abbreviation is

ft, for area, ft
2

. The dimensions of volume are Z,3
;
and angle is

denoted by Z,, because the definition of angle in radian measure is

arc divided by radius; and in general, since the angles in similar

figures are equal, the measure of angle must be independent of the

measure of length. A number which has no dimensions is called a

pure number. Angle is, therefore, a pure number. This must not

be taken to mean that angle has no other characteristics than those

of pure number, but that whatever other characteristics it has are

not dependent on the unit of length.

In kinematics time is introduced, and the dimensions of time are

written T, and considered independent of linear dimensions. By
combining time and space the dimensions of various kinematic quan-
tities may be obtained obviously, from the definitions appropriate to

those quantities. Thus, velocity being a quotient of a distance

(finite or differential) by a time (finite or differential) has the dimen-

sions L/T, which corresponds to the customary way of writing the

unit of velocity, ft/sec, or m/sec. Acceleration, in like manner, has

the dimensions L/T
2

,
whereas those of angular velocity and angular

acceleration are i/T and i/T
2

, respectively, because angle has no

dimensions. According to one of Kepler's laws, when a planet

moves around the sun the radius vector drawn from the sun to the

planet describes equal areas in equal times, and the rate at which

182
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the radius sweeps out area is called the areal velocity, to which the

dimensions L 2

/T are naturally assigned.

Another element in mechanics is mass, or quantity of matter,

which is independent both of length and time measurements, and is

assigned the dimensional symbol M . From this many units may be

derived; for example, the density is the mass per unit volume, and

its dimensions are M/L?\ and in the case of chains or steel rails, it

may be convenient to define linear density as the mass per linear

foot, and linear density would, therefore, have the dimensions M/L.
In the equations of fluid motion there occurs a term corresponding

to rate of change of density, dp/dt, and the dimensions of this quan-

tity must be M/LZT. In mechanics there occurs momentum of

dimensions ML/T, moment of inertia of dimensions, ML 2
(because

the definition of moment of inertia is the mass times the square of

the distance), angular momentum or moment of momentum (which

is a momentum times the distance) of dimensions ML 2

/T, and work

or energy, ML 2

/T2
.

It is entirely possible that two different physical things should

be numerically equal but of different dimensions; for example, the

specific gravity of a substance is the ratio of the density of that sub-

stance to the density of water in a standard condition, and specific

gravity is, therefore, a pure number without dimensions, because it

is the ratio of two physically like quantities. In the metric system
the density of standard water is unity; and, therefore, the specific

gravity (a pure number) and the density (of dimensions M/L3
) are

numerically equal for all substances. In the English system, how-

ever, the density of water is not i, but about 62 lb/ft
3

,
so that specific

gravity and density are not numerically equal.

Whenever an equation is written between physical quantities the

terms of the two sides of the equality must be equal not only in mag-
nitude but in quality, that is, in dimensions. A momentum cannot

be equated to a mass or a time, but only to a momentum. Dissimilar

things are never equal in physics, and cannot be added to one another,

or subtracted from one another, though they may be multiplied as

is the case in obtaining momentum from mass and velocity, or di-

vided, as in the case of density. When, therefore a physical law

is stated as an equation it is necessary that the quantities on the

two sides of the equality should have the same dimensions. Thus,

Newton's second law states that the mass times the acceleration
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(or the rate of change of momentum) is proportional to the force;

or Wa = kF, if W denoted mass, a, acceleration, and F, force.

From the dimensional point of view this means that

ML/T2 =
(k) (F),

where the parentheses denote "
dimensions of"; that is to say the

factor of proportionality k and force F must have such dimensions

that together the product kF has the dimensions ML/T2
',
and except

as some physical characteristics of force are known which limit the

dimensions assigned to F, any dimensions whatsoever may be assigned

to it, provided that in the dynamical equation other dimensions be

assigned to k which make the product kF of dimensions ML/T2
.

It is customary in physics to assign to F in Newton's equation the

dimensions ML/T2
j
and to treat k as a pure number equal to i in

the metric system, and equal to 32.174 in the English system where

force is in standard pounds.

It would be equally possible to consider F to have the same di-

mensions as mass, namely, (F) = M, and to assign to k the dimen-

sions of an acceleration, particularly as k is numerically equal to the

acceleration of -gravity, or to its standard value.

According to another law of Newton, the force of attraction

between two masses varies as the product of the masses, and in-

versely as the square of the distance between them; or

WW ,_. , ,M2

F = c
-jp-,

and (F) = (c),

would then be the dimensional equation for F. If here the dimen-

sions of c be taken as zero, that is, if it could be assumed that c is a

pure number, which is the assumption made in the electrical theory

in connection with Coulomb's Law, the dimensions of force would

be M2
/L

2
,
and the dimensions of k in the dynamical equation would

be LZ/MT2
. As a matter of fact, the dimensions of F are taken as

ML/T2
,
and the dimensions of c in the equation for gravitational

attraction are, therefore, assigned as L*/MT
2

.

From the engineers' point of view, where force is regarded as

perhaps more fundamental even than mass, it would be natural to

take length, time and force as a system of quantities upon which to

found the theory of dimensions; and if the multiplier in the dynami-
cal equation be considered as having no dimensions, the dimensions

of mass would then be
= ^
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There are authors who use this system of dimensions, but in this

text the customary physical system will be used. The symbol W
will, however, always stand for mass, and the force due to a weight
will be written Wg with g assigned the usual dimensions L/T

2

of an acceleration.

71. Use of Dimensions. There are three reasons why the theory
of dimensions is important:

(i) It is often possible to detect careless errors in analytical work

by checking through each and every equation to see whether it is

dimensionally correct.

(2) It is often possible, as will be seen, to predict the quality of

a formula for something that is unknown merely from a knowledge
of the dimensions of the result, and the dimensions of the variables

upon which the result depends.

(3) The theory of dimensions is constantly used in scaling up
model experiments to full-sized machines.

As an illustration of (i), consider the motion of a body in a

resisting medium determined by the equation

W dv TJ7 , 2 , .-__ = Wg -
kgv

2
. . . . ...... (i)

In dimensions this is written

As all the terms in this equation must have the same dimensions,

(kg)
= M/L or (k)

= MT2

/L
2

.

The terminal velocity (Art. 22) is

V = Vw/k. .... ... .... . . (3 )

Now W has the dimensions M
,
and k the dimensions MT2

/L
2

,
and

therefore,

(7) = VM -s- MT2
/L

2 = vzyr = L/T, .... (4)

and the dimensions check.

As an illustration of (2), suppose it be required to determine the

time of oscillation of a simple pendulum in vacuo. The time of oscil-

lation of the pendulum can depend only on its length / and on the

acceleration of gravity g at the location where the pendulum oscil-

lates. The mass, which is supposed to be located at a point, does not
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enter into the time of oscillation because the forces will all be pro-

portional to that mass. Suppose, then, that the time is regarded as

a product of a certain power of / by a certain power of g, namely as

T = alng
m

,
where a has no dimensions; that is, suppose that the

whole physical dependence of T on / and g can be accounted for by
the proper choice of n and m. The dimensional equation is

(T) = Ln
(g)

m or T = Ln
(L/T*Y = Ln+mT~2m

. . . (5)

That the two sides may be the same, it is necessary that

n + m o, 2m =
ij ........ (6)

from which it follows that m =
i,

= +}, and

The expression for the time of oscillation is, therefore, entirely de-

termined except for the value of the pure number a.

In the case of the time of oscillation of the pendulum, dynamical

theory is sufficient to prove that T =
7r(//g)*, so that the value of a

and the form of T are both determined theoretically. Suppose, how-

ever, that dynamical theory could not predict the formula for the

time of oscillation, but that the formula must be obtained empiri-

cally by experiment. For the empirical determination it would be

necessary to treat pendulums of all sorts of length to find the varia-

tion T with /, and in all possible gravitational fields to determine the

dependence of T on g; and when the experiments had been made

and the results tabulated or plotted, it would be necessary to fit

empirical equations to the data. If, however, it is known in addi-

tion from the dimensional argument above that T is necessarily of

the form a(l/g) ,
it is necessary only to perform a single experiment

to determine from, the observed values of T, I, and g the numerical

value of a. This is a great saving.

(3) The use of the theory of dimensions in scaling up the results

of model experiments to full-sized machines will be taken up later.

At this point a determination of fundamental laws of fluid resist-

ance by means of (2) will be discussed.

72. Fluid Resistance. To determine the pressure on a circular

disc of radius r in a stream of incompressible fluid, moving normal

to the disc with velocity U, and of density p, under the assumption

that viscosity will be neglected. The pressure Pg (P in Ib) is a force
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to which dimensions ML/T2 have been assigned; and it can depend

only on the radius r of the disc, the velocity U of the stream, and

the density p; that is,

Pg=f(r,U,p) =arrUp*, <, . (8)

where it has been assumed, as always, that the function may be con-

sidered as a product of properly chosen powers of the variables enter-

ing the function, and a numerical multiplier a without dimensions.

Then the dimensional equation is

LM/T2 = L*>(L/TY(M/L*)* = L*>+-**T- M, ... (9)

and the exponents p, q, s, must be determined so that

s = i, -q = -2, p + q-3S**i.... (10)

Here are three equations in three unknowns, and the solution is

s =
i, q

=
2, p = 2 (n)

Hence,
Pg = ar2U2

p = a'SU2
p, . . . . . . . (12)

if S be the surface of the disc, which varies as r2
. It has, therefore

been proved that the pressure upon the circular disc varies jointly

with the surface exposed, the square of the velocity of the stream,

and the density. (The pressure has been written in the form Pg
instead simply of the form P, because the force inserted in any

dynamical equation is inserted in the form Pg if P is in pounds or

kilograms. It is advisable when forces are measured in weight units

to keep the value of the force and the multiplier g together, in order

to avoid any difficulties that might arise from a confusion in

dimensions.)

Suppose the pressure is desired on a rectangle of dimensions

/ by b in a stream moving with velocity U, and of density p. Then

Pg=f(l,b, U,p) = al'b*U'p, .'.'. . . . (13)

and
ML T

The equations to be solved for establishing the identity of dimensions

on the two sides of the equations are

. . (15)
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Here are three equations in four unknowns, and it is only possible

to solve the equations for three of the unknowns in terms of one of

the others. One method of solution gives

s = i, q
= 2 - p, r = 2....... (16)

Hence,

Pg = aW-Wp = aSU2

p(l/b)-
1

,
..... (17)

where 5 = Ib is the area. The formula for the pressure, therefore,

contains the aspect ratio l/b to an unknown power. Moreover, the

power may not only be unknown, but the constant a may depend on

the power, and, finally, the pressure may be any combination of terms

containing SU2
p and some power of the aspect ratio and a constant

depending on that power or on the aspect ratio itself, since the aspect

ratio is a pure number. The value for the pressure may, therefore,

be written

and although this form is apparently more general in that it con-

tains an unknown function / of the aspect ratio, it is not in reality

more general because of the possible variations in p and a in the

previous formula.

The mdetermination which has arisen in the previous problem
is typical of that which arises in every problem to which the dimen-

sional argument is applied when the number of variables exceeds

three. There are only three independent dimensions in mechanics,

M
y L, T and, consequently, only three equations can be obtained

from the dimensional argument. The final form of a formula de-

termined by the dimensional argument can, therefore, be obtained

qualitatively only in case three or fewer physical variables enter

into the quantity which it is desired to determine. To express this

another way, any physical quantity in mechanics may be represented

dimensionally in terms of any three independent physical elements

Ei, EZ, Es where by independent is meant that the three contain

M, L, and T in such a form that any physical quantity with arbitrary

dimensions may be determined as a product of certain powers of

those three, or in other words that no one of the three may be ex-

pressed in the form EI = aB^Etf.

In fluid mechanics the area 5, the velocity U, and the density p

are generally taken as the three fundamental physical quantities.

The pressure P upon any body may be written as

Pg = SU*pf(x, y, z, . . .)......... (19)
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where x, y, z, are not merely the variables other than S, /2
, p which

enter into the problem, but are combinations of those variables with

5, U, and p in such a manner as to be free of dimensions. Thus, in

the above case the function depended on l/b, a dimensionless quantity.

It should be noted in general that if JBi, 2, 3 are three independent

physical quantities any other quantity may be expressed dimen-

sionally as aE^EtfEf.

The pressure on a rectangle inclined at an angle i to the stream

would be of the form

Pg = SU*pf(l/b,t), . A;, ...... (20)

and would depend on two dimensionless variables, the aspect ratio

and the inclination of the plane to the stream. As angle has no

dimensions, it will not be possible in any way to determine the varia-

tion of the pressure with the angle by a dimensional argument, and

for the same reason the variation of the aspect ratio cannot be de-

termined. It remains necessary to fix by experiment the expression

of the function / in terms of aspect ratio and angle of incidence. To
find this is far simpler than to determine the dependence not only

on these two variables but also on 5, U, and p which would have

been necessary if the dimensional argument had not first been given.

It has been assumed in all the demonstrations above that the plane,

whether circular or rectangular, had no thickness. If a plane of

appreciable thickness were opposed to a stream not only the aspect

ratio l/b would occur in the function /, but the ratio t/l of the thick-

ness to the length, or, if more convenient, the ratio of t/b, or, if still

more convenient, the ratio /
2

/5.

73. Viscosity. The effect of viscosity on the pressure may be

discussed by the dimensional argument. The form in which the

coefficient of viscosity /z enters into the dynamical equation is seen

from the equation, namely,

**
= _ & dP

i
W d*M

i v
dt

~

p dx
~*

p dy*

where every term in the equation is necessarily an acceleration, and

where for convenience jdg will be treated together just as Pg is. The

dimensional equation is

and
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The dimensions of the coefficient of viscosity in the form fjig are,

therefore, mass divided by the product of distance and time; that is,

coefficients of viscosity are measured in lb/(ft. sec.). The particular

combination jjig/p has the dimensions L 2

/T. The ratio JJL/P
= v

is called the kinematic coefficient of viscosity, or coefficient of kine-

matic viscosity, because it depends only on space and time units,

and not on mass.

To summarize: Dimensions of the coefficients of viscosity are

(fig)
- M/LT, (pg)

= L*/T...... (21)

(The presence of g accompanying the symbol P for pressure, /z for

viscosity, and v for kinematic viscosity is caused by the use of force

in pounds or kilograms instead of force in "poundals" or
"
dynes,"

coupled with the desire to use the ordinary M,L,T system of dimen-

sions, and to treat g as an acceleration instead of as a pure number

so that the force which is the weight or earth-pull in a mass W shall

be Wg. This is one of the awkwardnesses of using the engineers'

system of force units without going over to the corresponding system
of mass units, namely the English or metric slug (g pounds or g kilo-

grams). It seems, however, that occasional occurrence of analytic

awkwardness such as this is hardly sufficient to make it worth while

to do away in engineering with those units of mass and force which

are of nearly universal acceptance, and which are certainly far more

natural to the student. In other words, occasional analytical arti-

ficiality or complication is preferable to constant engineering arti-

ficiality.)

(i) Suppose that it be required to determine the force upon an

object in a moving fluid, when the viscosity is important, and the

density relatively unimportant, as is the case when the fluid is

moving very slowly, so that the dynamical effects are due to the

stickiness, not to inertia. Then

and

ML.. TP (
LMM\.

T*
'

'

\T)\LT)
The equations are as follows:

p + q r =
i, r =

i, q r = 2.

From which r = i, g
=

i, />
= i and

Pg = alUng or P =
lUfj,. .... . (23)
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It appears that in this case the pressure of the fluid on the immersed

object varies directly with the linear dimension instead of with its

square, directly with the velocity, instead of with its square, and

directly with the coefficient of viscosity. This law of resistance is

known as Stokes's Law, and is applicable only when the motion is

very slow, as in the case of minute particles of dust suspended in the

air.

(2) If the pressure be considered to depend on both the coefficient

of viscosity and the density,

or

ML /LV/MV/JA-- L
(T) (v) \LT)

and

p + q-tf s = i, r + s = i, -q - s = -2.

Hence r = i s, q
= 2 s, p = 2 s and

...... (as)

In this solution s is not determined, and the general functional form

may be given. As g is constant, within the accuracy generally postu-

lated, the pressure P is a function of the quotient of the kinematic

coefficient v by the product of the stream velocity and the linear

dimension of the object.

(3) Intermediate between (12), in which viscosity is neglected,

and (23), in which inertia is neglected, comes a formula which is

necessarily a special case of (25) and which is known as the law of

skin friction. In Art. 69, it was pointed out that when a body moved

through a liquid there adhered to the skin of the body a boundary

layer in which viscosity was the ruling factor. Suppose the body at

rest and the fluid moving by with velocity U. Let the boundary

layer be of thickness w. Consider the body as a rectangle parallel

to the direction of the motion. Let the length of the rectangle

be / and the breadth be b. The wetted surface is 2/6; the volume

of the adhering layer is ilbw. The motion in the layer is slower

than that outside, so that the "trapped" volume 2lbw represents a

loss of momentum. The amount of fluid trapped per unit time is

proportional to U (w being assumed constant) but does not depend
on the length / in the direction of motion, and the loss of velocity
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is proportional to U. Hence the force is proportional to bwpUU or

F = kbwpU
2

,
but F =

2fj,lbU/w, . ." . . (26)

is by definition the viscous reaction. Hence,

kwpU =
2fjil/w or tPO&Gii/pfT)*...... (27)

This is not unreasonable because the thickness of the boundary layer

should physically increase with p and decrease with p and U. Sub-

stitute (27) in (26). Then

W1^1 .......... (28)

This is the law of skin friction or Allen's law. The force varies as

the f power of the velocity, as the f power of the wetted surface, and

as the square root of both viscosity and density jointly.

It is difficult to separate the skin friction from the total resistance

in experiment. It might be expected that the total force acting on

a body moving in a liquid would be of the form

F = ap&U + a'n*p*S*U* + a"pSU\ . ... (29)

The first term would be small, if at all detectable, because the straight

viscous resistance is known to apply only when the velocity is very
small so that the complicated disturbances accompanying turbulence

do not appear. The main part of F should be found in the last two

terms because as a matter of fact when a body moves in a liquid the

phenomenon of the boundary layer and of the outer general stream-

line disturbance do clearly appear. A compromise could be made by

writing

F = kSU**, f</><i, ... . . .' . . (30)

when fji
and p are given constants. Zahm has made measurements

indicating that p =
0.93 in his range of experiments. When an aero-

plane wing moves through the air, the lift L sustains the weight and

the drag D is equilibrated by the propeller thrust. It would not be

unreasonable to expect that the drag, which is mainly tangential

to the wing, might have in its make-up a much larger percentage of

the skin friction and a much smaller percentage of the general inertia

reaction than the lift which is mainly noimal to the wing. That is

some such result as

D<xSpUz
P, L<x>SU*, f < p < q < i . . . (31)

might be expected.
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74. Dynamical Similarity and Models. For geometrical simi-

larity a single ratio, the ratio of lengths of corresponding lines is

sufficient to determine one figure from another. For dynamical

similarity three other ratios are necessary, namely, the ratio of the

masses, the ratio of the forces, and the ratio of the times.

Let it be supposed that X, x, m, t, represent respectively a force,

distance described, a mass, and the time of describing the distance

in the case of a model of a machine; and that X', x', m'
,

t'
, repre-

sent the corresponding quantities for the machine itself. Further let

it be assumed that

X' = X, x
f = \x, m f = pm, /' = Tt, . . (32)

, X, ju, T being four ratios of similitude. It is understood that all

forces are in the ratio as between model and machine, all masses

in the ratio ju, etc. Velocities will be in the ratio X/r, accelerations

in the ratio of X/r
2

,
and the fundamental equation of dynamics

connecting mass, acceleration, and force requires that for similarity

MX = ST* (33)

Hence, there is a relation between the four ratios of similitude, and

only three of those ratios are in fact independent.

If a machine and model are geometrically similar and of the

same material, if the masses are in corresponding proportion, and if

the machine and model begin to move in similar fashions, they will

continue to move in a similar manner, provided the applied forces

are proportional to the mass multiplied by the linear dimensions and

divided by the square of the time. If the velocity ratio be intro-

duced as X/r =
77, this statement may be phrased as follows: The

forces must be proportional to the mass multiplied by the square

of the velocity, divided by the linear dimensions as may be seen

by eliminating r between (33) and X/r =
t\ to obtain = M7

?

2
/^-

In many cases the weight of the machine is one of the funda-

mental forces to be considered; and the weight is proportional to

the mass or =
ju. Hence tf = X and the velocity of the model,

when working similarly to the machine, must be proportional to

the square root of the linear dimensions. When the velocities are

proportional to the square root of the linear dimensions the model and

machine will be said to be working at "corresponding" velocities.

If, as is assumed here, the weight is an important force for the proper

working of the machine, all other forces must be in the same ratio
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as the weights, that is, as the masses. Now, if the model and machine

be made of the same material, the weights of corresponding parts

assumed geometrically similar are as the cubes of the linear dimen-

sions; and, hence, all the applied forces must vary as the cubes of

the linear dimensions. In the case of a model of a gas engine the

piston area is proportional to the square of the linear dimensions;

and, consequently, the pressure in the cylinder must be proportional

to the linear dimensions. The performance of a full-sized engine

cannot be predicted from that of a model unless this proportionality

between the fluid pressures in the cylinder be preserved.

(i) In addition to the external or applied forces there are de-

veloped in any machine or model certain internal actions and re-

actions; and on the hypothesis that the weights are important forces

it is necessary that all the actions and reactions developed by the

working of the model should also be proportional to the masses, that

is, to the cube of the dimensions. For example, in the case of the

airplane the forces which are developed by the motion of the machine

or model are the friction resistances of the air. These are generally

assumed to vary with the surface and with the square of the velocity.

As the velocity varies as the square root of the linear dimensions, the

air pressures will indeed vary with the cube of the linear dimensions

at corresponding velocities; and, hence, the prediction of perform-

ance from the flying model to the machine is justified so far as the

forces of air resistance are concerned, provided at any rate those

forces do not in fact differ much from the law assumed and used

throughout this work. This principle was used by Langley in the

predicting of performance of a man-carrying machine from the per-

formance of a one-quarter size model. In ordinary practice at the

present time the dynamical performance of machines is calculated

and not obtained from flying models.

In naval architecture the resistance of full-sized ships is investi-

gated by measuring resistance on small models. If it be assumed

that the model and the ship are of the same material, that is, that

they have the same mean densities, the weights vary as the cube of

the linear dimensions. Corresponding velocities vary as the square

root of the linear dimensions; and the resistances vary approximately

as the squares of the velocities multiplied by the areas immersed.

The results are entirely similar to those in the case of the air ship or

airplane. The forces vary as the cubes of the linear dimensions;
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and thus if a 1/2 5th sized model is made and drawn through the

water at the proper speed, which is i/5th the speed of the full-sized

ship, the forces upon it should be the i/(25)
3 of the forces upon the

ship; and the resistance to motion of the ship may be taken as (25)
3

times the resistance measured on the model. This is not, in fact,

the procedure used in aeronautics, for in wind tunnel experiments it

is not assumed that the velocities are in the proper ratios. The

forces are obtained by multiplying the observed force on the model

by the ratio of the surfaces (the square of the ratio of linear dimen-

sions), and by the square of the ratio of the velocities. As a matter

of fact, if it were convenient to run the wind tunnel at the correspond-

ing speed, which would be to the speed of the airplane in the ratio

of the square root of the linear dimensions between model and air-

plane, the forces on the machine could be calculated directly by

multiplying by the cube of the linear dimensions.

If instead of assuming that the forces vary with the square of the

velocity, the general law of variation (25) be used which includes

any possible effect of viscosity, then

may be taken as the forces on the machine and model respectively.

Hence
, pSU* (v/lU) , .

p'S'U* <t> (v'/l'U'}'

The force on the machine may then be calculated from that on the

model taken with the respective values of p, 5, U, p', S
f

, U', pro-

vided the arguments v/lU and v'/l'U' of the unknown function </>

are the same. Hence, the test on the model should not be run at an

arbitrary velocity U
f

but at one such that

U':V =
l/v:l'/if. . . ... .... (36)

If the test be run in air, v =
v'\ and the wind velocity in the test

should be to the velocity of flight inversely as the lengths of model

and machine. That is, a test on a i/24th size model should be run at

24 times the velocity of flight of the machine. This is entirely im-

practicable, for such velocities cannot be obtained; and would be

valueless if practicable, for at high velocities the compression of the

air cannot be neglected, but has to be regarded as a variable in addi-

tion to M, P, S, U which were used in deducing (25),
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(2) The theory of models may also be applied to statical struc-

tures. In recent years it has become customary to sand-test airplanes

to determine the limits of their structural strength. In case it be-

came necessary to sand-test exceedingly large machines the cost of

the construction of the machine for sand-testing might be very high.

The question would, therefore, arise whether one might not equally

well construct an exactly similar model of the machine and sand-test

that. The forces involved here are the weights; and to be able to

sand-test the model with assurance that results could be carried over

to the full-sized machine it would be necessary to carry out a test

with weights of sand proportional to the cubes of the linear dimen-

sions. It would also be necessary to show that in geometrically simi-

lar structures the forces developed by slight deformation were all

proportional to the cubes of the linear dimensions. Consider, for

example, a stay wire. The strength of the wire varies with the cross

section; F = kSAl/l, where k is a constant of the material. The

extension, in similar figures, would vary with the linear dimensions.

The total force developed would, therefore, vary only with the square

of the dimensions. A similar argument would apply to compression

members under slight compression. With bending moments the

argument is different; for

EI-j%
= Moment, (37)

doc

is the equation, in which E is a constant of the. material (Young's

modulus). Now if forces vary as Z,3
,
moments vary as Z,

4
. But the

moment of inertia / of the area of a section varies as Z,
4 and d 2

y/dx
2

as i/L. Hence moments should vary as L? instead of as Z,
4

,
and

similar structures loaded similarly in proportion to their weights

would not suffer similar deflections.

The general discussion for sand-testing will give an indication of

the method to be pursued. Let/ be the load, 5 the strain, E Young's

modulus, / the length, W the weight, A the cross section, and I the

moment of the section. For different members these may all be

different. The dimensions are, if force F be taken as the fundamental

unit with length L as the other, as would be natural in statics,

(E) = F/L\ (/) = F, (s)
= L, (Z)

= L4
. . (38)

There are two fundamental quantities and any quantity may, by the

general theorem, be written as the product of any two raised to the
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proper powers multiplied by a function containing the others ex-

pressed in terms of them in such a way as to make the combination

non-dimensional. Let / and E be taken as the two fundamental

quantities. Then

(/)
= (/2

), (s)
=

(1), (A) =
(P), (W) = F = (P), (39)

and
A W I\ ,

N
-, ,

-J
........ (40)

The function has the four variables s, A , W, I in the desired combina-

tions with E and / so as to make the ratios pure numbers. If the

structures are similar geometrically, two of the numbers become i

and the function may be written

f =
El*<l>(s/l, W/El

2
). .... ...... (41)

If the variables for the model are designated by accents,

/ EV 0(V/, W/EP)
f ET

or

,(s W\ ,(s' W'\ ,
,

*
(r m)

' *
(e> ET) (43)

The value of / for the machine can be predicted from that of /' for

the model, taken with the values of E, E'
', /, /', only when the values

of the function < are the same; and as the function is unknown, this

means that the variables must be equal, namely,

5 = / s

W_ W
i~ i

n
Ei2

~ '

If then the values of E and E' are the same, the weights must vary
as /

2 which would be impossible unless two different materials could

be found with the same value of E but with densities inversely propor-

tional to the lengths of machine and model. The test of a statical

structure could, however, be made if the weight was so small rela-

tive to the load (both for machine and model) that the variables W
and Wr

could be omitted. Then with the strains similar the loads

would be as El2
: E'l'

2
.

EXERCISES

i . Derive the formula for the time of oscillation of a pendulum without assum-

ing that the time does not depend on W, i.e., take T =
/(/, g, W). What informa-

tion can be had as to the dependence of T on the angular amplitude of the motion?
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2. Discuss the time of oscillation in simple harmonic motion of a mass W
under a restitutive force F = Ex (Ib) when the amplitude is A .

3. The central acceleration of a particle of weight W moving uniformly with

velocity v in a circle of radius R can clearly depend only on W, v, R. What in-

formation does this give as to the formula for the acceleration?

4. If the velocity of a sea-wave be assumed to be dependent only on the depth
of the sea, the length X of the wave, the density p of the water, and the value of

g, what information is furnished by the theory of dimensions?

5. If the thrust T of a propeller depends only on its diameter Z>, the forward

speed U, the number N of revolutions per minute, and the density p of the air,

show that T = pD*Uz
<f>(DN/U).

6. Discuss the torque Q of the propeller along the lines of Ex. 5. Show that

Q = pD*U*<j>(DN/U). What other features of the propeller might have to be

considered?

7. Suppose the resistance of a fluid depends not only on 5, p, U, but also

on the hydrostatic pressure po at a distance in the fluid. Prove P = SUz
pf(pQ/pU

2
).

8. If the thrust of a propeller depends on the quantities in Ex. 5 and also

on the viscosity, what other variable must enter into <f>
in addition to DN/U?

9. Assume the central acceleration in a planetary orbit is/ =
jjL/r

2 accord-

ing to Newton's law. Let a be a dimension of the orbit. Find the dependence of

the periodic time T on
JJL
and a. If /z is proportional to the mass W of the central

attracting body, how should the periodic time depend on W? What would be

the earth's period if its orbit were the same size and the sun were twice as massive?

10. Give the argument leading to a formula like (28) for a body of total

surface S wholly immersed in a fluid.

11. If Langley's quarter-size model used J H.P. in flight, how much would

the full-size machine use?

12. Show that according to the ordinary law for sliding friction, the forces

of friction satisfy the condition for dynamical similarity. Is this true of rolling

friction?

13. Experiments on the deflection of a 5o-ft bridge weighing 100 tons when

a 20-ton engine runs over it at 40 mi/hr are to be made on a model bridge 5 ft

long weighing 6| Ib. What should be the weight of the model engine? If the

stiffness of the model bridge is such that its statical deflection under the model

engine is rV the statical deflection of the bridge under the engine, what should

be the velocity of the model for the test?

14. If experiments to find the resistance of air to a dirigible are to be made

by measuring the resistance of a model in water, what should be the relation of

the dimensions and velocities of dirigible and model. Is this practicable?

15. Two airplanes are exactly similar in the ratio 1:2. If the efficiency of

the two engines is the same, what is the ratio of radii of action?

1 6. If the range R of a projectile (neglecting air resistance) depends only on

the velocity and inclination of projection and on the value of g, find R.

17. Check for dimensional correctness a number of formulas in Chaps.

IV, V, IX, X.



CHAPTER XII

THE FORCES ON AN AIRPLANE

75. Lift and Drag. The statical forces and moments on an

airplane may be determined from model experiments in the wind

tunnel. The model may be fixed in the desired attitude toward the

wind, and the forces or moments on the model may be measured by
the aerodynamical balance, and may be scaled up to the full-sized

machine by the following equations, where F' denotes the force on

the model, and F that on the machine, / the linear dimension, and

U the velocity:
72 772 737T2

P = Pf ___ M = M'_ (T\'

The forces are scaled up as the square of the linear dimensions and

as the square of the velocities of the relative wind. The moments
are scaled up as the cube of the linear dimensions and as the square
of the velocity. This rule is dependent upon the ordinary assump-
tion that the pressures vary with the surfaces and with the squares of

the velocity, and are practically independent of the quantity lU/v.

It is desirable to have a convention as to the position of axes of

reference in the model or airplane. The origin is taken at the center

of gravity of the airplane, and at its corresponding point in the model

(which need not be the center of gravity in the model, because it is

only with respect to the surfaces exposed to the wind that the model

is true). The F axis is fixed as the line perpendicular to the plane of

symmetry of the machine, and extending from the center of gravity

to the left of the pilot. The X and Z axes are in the plane of sym-

metry, and are so chosen that for flight in a horizontal line the X axis

is horizontal and toward the rear, the Z axis vertical and upward.

Now, for uniform flight at different speeds, different lines with the

machine are horizontal; consequently, the X and Z axes by the

above definition are not fixed in the airplane except when the speed
of horizontal flight is given. In most machines the attitude may
change through a range of something like 15 between the position

199
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taken at highest speed and the position at lowest speed. In case it

is desirable to use the same X and Z axes over a wide range of speeds,

it is necessary to specify what direction in the machine shall be taken

as the X direction. (See Figure 26.)

As the X axis is drawn backward, the velocity of the machine

when in uniform flight is a negative quantity. To a certain extent

this is an artificial convention, but it is natural when viewed from

the wind tunnel experiment, because the direction of the relative

wind (the model being fixed) is along the X axis, and the velocity of

the relative wind is positive. When it is a question of a machine

in flight it is necessary to remem-

y ber that it is not the velocity of

V J Positive yaw tne machine but the velocity of

the relative wind which is posi-

tive. Angles and angular velo-

Positive roll, or bank cities will be considered positive

-~ when the rotation about any axis

is clockwise; that is, a yaw is

Positive pitch
positive when the machine is

Fig. 26. Position of Axes Relative turning from left to right from

to Airplane. the point of view of the pilot,

namely, when there is rotation

about the Z axis which tends to carry the X axis into the Y axis. In

the same way, rotation about the Y axis from Z to X is positive;

that is, pitching down is negative, pitching up or stalling is positive.

Finally, rolling about the X axis is positive when the right hand of

the pilot drops, and the left hand rises; that is, the bank proper to

a positive yaw is a positive bank. Forces are positive when directed

in a positive direction along the axes; moments are positive when

they tend to produce positive angular accelerations.

The relations between different sets of rectangular axes in space

are complicated in the general case, but simple when the angular

displacements between the two positions of the axes are small. Con-

sequently, it will be assumed that during the motion of the machine

the axes are not much disturbed from their given positions, at least,

in yaw and roll. The angular displacement in pitch if unaccom-

panied by yaw and roll need not be restricted to being infinitesimal.

If the model be placed in the wind tunnel with the Y axis hori-

zontal and athwart the tunnel, the forces and moments produced will
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be a force down the wind; that is, essentially in the direction of the

X axis; a force across the wind, that is, essentially in the direction

of the Z axis; and a moment about the Y axis. The moments about

the axes of X and Z and the forces around the Y axis will vanish,

owing to the symmetry of the model with respect to the x-z plane.

The force down the wind is called the drag, and the force cross the

wind the lift, because in the standard position it is the force across

the wind which sustains the machine against gravity.

The following data are for the lift and drag on a model of the

Curtiss JN-2. The angle i is the angle of the wind-chord to the rela-

tive wind. The linear dimensions of the model were fa those of

the full-sized machine.

Data on the Curtiss JN-2 (Hunsaker). Model -fa size

i
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Wind velocity in tunnel = 30 mi/hr. Lift and drag in pounds on

model.

To examine the values one may either plot L and D against i,

or one may consider the differences in the table. If the differences

are constant, the curve is straight; if the differences of the differ-

ences, that is, the second differences are constant, the curve is a

parabola. The differences in the lift L are exceedingly constant over

a considerable range of angle, but beyond that neither the differences

nor the second differences are constant. For the restricted range

from 4 to about 8 a linear or straight line formula holds very well.

It is difficult to obtain a satisfactory empirical formula to represent

L over the whole range of the table, and one reason for this difficulty

lies precisely in the extraordinarily good fit of the linear formula for

the restrictive range.

The differences in the drag are not at all constant; but over a

restricted range, such as from 4 to 8, the second differences are

reasonably constant; and for this reason a parabola will fit the curve

very well over this range. For larger values of i, however, the curve

first arises more steeply than this parabola, because the second dif-

ferences are much larger; and then the curve straightens out, and

toward the end of the table actually reverses its curvature.

In taking differences in a series of experimental values it must be

borne in mind that the values themselves are liable to slight errors.

In the case of the drag, if the figure .108 for i = 2 be changed by
one unit to .107, the adjacent first differences are each changed by
one unit to .005 and .on, and the corresponding second difference

is changed by two units to .006. It can hardly be hoped that the

experimental values are accurate to more than about i%; and, con-

sequently, the variation of two units in the second difference is not

serious except when there is a progressive change of considerable

magnitude. All in all, it is not considered at present worth while to

develop empirical formulas for lift and drag on a particular model,

because the empirical formula is either not nearly so accurate as the

table, or is too complicated to be of much value entirely apart

from the difficulty of obtaining an accurate empirical formula, which,

in itself, is a time-consuming process.

76. Performance Curves. Performance curves for the machine

may be obtained from the data in the following manner: Suppose

the machine to weigh 1800 Ibs, and to fly at the angle i = 2. The
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lift on the model is 0.56 Ib at 30 mi/hr. The lift on the machine is

24
2 = 576 times as much at 30 mi/hr. Assuming that the lift varies

as the square of the speed, the speed of the machine may be deter-

mined so that the total lift shall be 1800 Ibs, namely,

1800 = 576 X 0.56 X (F/3o)
2 or V =

71 mi/hr.

The drag on the model at 2 is 0.108 Ibs. The drag on the ma^
chine is 576 times as great, and is further multiplied by the square

Air Speed, N :iles per Hou
56 60 64 68 72 76

Fig. 27. Performance Curves for Curtiss JN-2 (after Hunsaker).

of the velocity-ratio, namely, 5.58; hence D = 347 Ib. The pro-

peller thrust must be equal to the drag, as the cosine of the small

angle is practically i. The horse power required is the product
of the drag by the velocity divided by 375, and is in this case H.P.
= 347 X 71/375 = 66. The points in figure 27 have been deter-

mined by carrying through the calculations for different angles of

assumed flight.
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It is known that the forces on a body moving in a fluid do not

vary strictly with the square of the velocity and with the square of

the linear dimension (see Art. 73). It is, therefore, possible to take

account of this variation if desired in calculating the drag and the

horse power required. For instance, suppose that the lift varies as

the square. The velocity is then 71 mi/hr as before; but let the drag

vary as (7F)
1 -9

. Then the drag in the machine is

D = .108 X r4 ^ 71
)

=
233, H.P. = 44.

Note how very greatly the change from the exponent 2 by o.i to 1.9

changes the drag and consequently the H.P. It follows that if any
considerable part of the drag is due to skin-friction instead of inertia

in the air, the curves of drag and H.P. required are decidedly too high

at high speeds, the performance of the machine would be better

than expected.

The ratio of D/L is of importance because it gives the tangent of

the angle of glide under no power; it is generally plotted as L/D,
and the inclination of the path is then "i in L/D" Thus if L/D
be 7, the glide is i in 7, and the machine comes down slowly with the

wing-chord at a large angle to the path. In a rough way, too, the

ratio L/D for horizontal flight may be regarded as a criterion for

power required; for, as L = W, the larger L/D, the smaller the value

of D, and hence the smaller the power required. Of two machines of

equal weight that with larger L/D will for a given speed use less

power. The lift itself reaches a maximum at an angle of about 18;
at this angle the speed of horizontal flight must be least. (The ma-

chine may not have power enough to fly in this attitude, because the

power required rises rapidly at low speeds owing to wing resistance,

see Chap. III.) This minimum speed (if attainable) is the landing

speed V and is about 43 mi/hr for the JN-2. (Whether landing at

so slow a speed would be safe from the point of view of the control

or stability of the machine is another matter; there is dynamical

instability below 46 mi/hr.) If LQ be the maximum lift, then V : VQ

= LQ : i) is a proportion which determines V.

The discussion of different aerofoils may be carried on like that

for the whole machine so may that for different bodies. In the

design of the body the aim should be to diminish the drag by using

a stream-line shape. The parasite resistance is a very serious factor
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in power consumption at high speeds. In the design of an aerofoil

different features must be kept in mind according to the use for which

the machine is intended. The discussion may be made with reference

to the curve for L/D for the aerofoil. As most of the weight of the

machine is carried on the wing, L W, nearly, for horizontal flight,

and large values of L/D correspond to small values of D. If a ma-
chine is to fly mainly at high speeds, the values of L/D should be

large at high speeds, i.e., for small angles of attack; but if the ma-
chine is to fly at lower speeds, it is for this range that L/D should

be large, i.e., for larger angles of attack. By varying the shape of

the section of the aerofoil considerable differences in form of the L/D
curve may be obtained. It is not possible here to go much into

detail that belongs rather to the course in design but it is

desirable to point out the main facts that should be borne in mind.

Other things being equal, it would be better, for structural reasons,

to have a thick wing rather than a thin one. Indeed if the wing
without much loss of aerodynamic efficiency could be so thickened that

it could be supported by internal spars instead of by external wires and

struts, a considerable saving in parasite resistance might be effected.

In giving data on wings it is usual to give not the values of L and

D but those of the coefficients Kx ,
Ky in the expressions

L = KySV2
,

D = KJSV\
The units of Kv and Kx are, therefore, Ib/(ft.

2mi2
/hr

2
). The ratios

L/D and KV/KX are the same. In the following table the last column

gives the distance x of the center of pressure from the leading edge
of the aerofoil as the fraction / = x/b of that distance to the width

of the chord.

i loooKy ioooKx L/D f
-4 -123 +.164 -0.75
-2 +-5 20 - I][ 5 +4-52 -67
-i -765 -108 7.11 .52^

.975 .103 9.44 .46
1 1.118 .100 ii.8 .41!
2 1-38 .099! 13.9 .39

4 i-77 -mi 15-9 -35

5 I -98 .134 14-8 .33

8 2.56 .190 13.5 .30
12 3.31 .310 10.7 .27!

14 3.60 .354^ lo.ij .27!
16 3.61^ .443 8.15 .27!
18 3.47 .558 6.22 .30
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Here the ratio L/D reaches nearly 16, which is not at all excessive

for a wing alone (though the whole machine will usually not reach

half so much). Moreover the ratio remains high over a considerable

range of angle i. The position of the center of pressure has to be

determined by measuring moments as explained in connection with

the Vector Diagram of the next Art. But this fact is noteworthy:
The center of pressure approaches the leading edge as the angle of

attack is increased (until it is very large). This is characteristic of

most curved aerofoils in distinction to what happens in the case of a

flat plate where the C. P. retreats from the leading edge with increas-

ing values of i. In discussing the stabilizer (Art. 18) it was seen that

the effect of the stabilizer was to increase the restoring moment tend-

ing to bring the skeleton airplane back to its normal flying attitude

when slightly disturbed. But the skeleton airplane is stable any-

how, because if the angle i be increased the C. P. retreats, giving rise

to a differential diving moment, whereas if the angle i be decreased

the C. P. advances toward the leading edge, giving rise to a differential

stalling moment. With the curved wing, however, the motion of

the C. P. is contrariwise, and an airplane with the wing only (without

stabilizer) would not tend to return to its normal attitude but would

depart further from it by virtue of the moment brought to play.

NOTE. In place of the lift and drag coefficients Ky ,
Kx above

used, there may be introduced the coefficients Ky ,
K'x defined as

Lg = K'ypSU\ Dg = K'xpSU\
and called the absolute lift and drag coefficients. The dimensions are

Thus KX and Ky are free from dimensions, and hence "absolute."

Indeed the values of K'x ,
Ky are the same in any two different but

consistent set of units, e.g. ft, Ib, ft/sec, g
=

32.2 and m, kg, m/sec,

g
=

9.81 ; they will, however, not be the same if V is in mi/hr unless

p is in lb/mi
3 and g in mi/hr

2
. The maximum values of Ky run as

high as 0.70. The "absolute" coefficients are used by the National

Physical Laboratory, England, but have never found favor with

Eiffel or in this country.

77. The Vector Diagram. The knowledge of the lift and drag

serves to determine the total resultant as the square root of the sum of

their squares, namely, R = + 4
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The angle made by the resultant with the wind direction is tanr^Z/D).
It is necessary to observe carefully the fact that the direction of the

resultant is specified relative to the wind, and not relative to a fixed

direction in the model. As the wing-chord is used as a fundamental

line of reference in the model, the angle between the resultant and

the wing-chord may be found as tett~*(L/D) + i measured from the

rear of the chord. Thus, both the magnitude and the direction of

the resultant relative to the model are known.

To determine the actual line of action of the resultant on the

model (regarded as a rigid body) it is necessary to know the distance

of the resultant from some fixed point; and this is determined by

measuring the moment of the air forces on the model about an axis

passing through the center of gravity of the model. The following

table gives the results for the Curtiss JN-2.

Data on the Curtiss JN-2 (Hunsaker). Model -fa size

M8/R
0.12

3-3

3-2 '.

2.9!

2.9

2.6

2-5

Wind velocity in tunnel = 30 mi/hr. Lift and drag in pounds on

the model; moments about the spindle in pound-inches; M,/R is

in inches on the model, not on the drawing (Fig. 28).

The spindle, or axis about which moments are taken, pierces

the model through its center of gravity, which is not the point corre-

sponding to the center of gravity of the machine. The advantage

of having the spindle pass through the center of gravity of the model

itself arises from the fact that the moment about this axis is the

moment of the air forces alone; whereas the moment about any

i
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other axis would be due partly to the moment of the air forces, and

partly to the weight of the model located at its center of gravity. If

the moment Ms be divided by the resultant R, the quotient is the

arm of the resultant; and the knowledge of this arm, taken with

the direction of the resultant, makes it possible to locate on a draw-

ing of the model the resultant of the air forces (Fig. 29.).

In order to fly at any particular attitude, that is, at any particular

speed in a horizontal line, it is necessary to set the elevator at such

O *+ ytO fej
,ift, Po^X Scale for Lift, Pounds

~
I 1

M
I I

M
:ale for Moment, Pound nch

\ \

Stf

V

S:ale or D, ift. I ounds

S to ,o>

Fig. 28. Lift, Drag, and Moment Curves for Curtiss JN-2 Model (after Hunsaker).

an angle that the resultant force passes through the center of gravity,

so that the condition for equilibrium in respect to rotation is satis-

fied. The resetting of the elevator changes in some small measure,

but only in a small measure, both the lift and the drag. The major

change is in the moment, and not in either the magnitude or direc-

tion of the resultant. The effect, therefore, on the vector diagram
of a change in the elevator is to move the lines of action back and

forth relative to the center of gravity.

If the machine is supposed to be flying with some given velocity

at a certain attitude, and is accidentally tipped up or pitched down

a little, a moment should be developed which will right the machine;
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but when the attitude of the machine is changed, the result may be

expressed by saying that instead of the force through the center of

gravity, an adjacent force passing not quite through the center of

gravity is brought into action. If the machine is tipped up, the

angle with the relative wind is increased, and a vector to the rear on

the diagram comes into action. This has a tendency to pitch the

machine down. If, however, the machine were depressed slightly,
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the new vector would be forward of the center of gravity, and would
tend to restore the machine. The condition, therefore, that a restor-

ing moment shall be brought into action by momentary changes
of attitude in the machine is that adjacent vectors in the force dia-

gram shall intersect above and not below the center of gravity.

When a machine flying in a certain attitude has a restoring mo-
ment brought into action by a slight change in attitude, the machine

is said to be stable. The condition for stability is, therefore, that the

vectors on the vector diagram intersect above the center of gravity.

(Strictly speaking it is not the vectors on the diagram but the vectors

as they would be displaced by the moment due to the elevator.) If

the vectors intersect below the C. G. a disturbing moment will be

brought into action by a slight change in attitude and the machine

will be unstable. The stability here referred to is a statical stability,

very much simpler than the dynamical stability discussed in Chaps.
VI and VIII; it has to do with conditions of rest, as when the ma-

chine is considered fixed to an axis through its C. G. and held in

balance in a wind by the moments of the air forces; it corresponds to

the stability of ships discussed by use of the "metacentric height."

Indeed, other things being equal, the greater the distance above the

C. G. of the point of intersection of the vectors, the greater is the

statical stability of the machine.

The elevator (movable) is used to equilibrate moments about the

C. G. so that flight at different attitudes and the corresponding speeds

is possible; in addition to the discussion above, the simple case

was treated analytically in Chap. III. The stabilizer (fixed) was

also treated in Chap. Ill and was seen to give added stability. The

stability of the skeleton airplane, however, is ample in itself; that

of the real airplane with curved aerofoil is not. What is the effect

of the stabilizer on the vector diagram? It is, like that of the ele-

vator, to shift the vectors, because, although the lift and drag are

slightly altered, the chief change is again in the moment, i.e., in the

arm of the resultant rather than in the resultant itself. Suppose the

stabilizer set so that it is
"
neutral" when the machine is flying in a

certain attitude, say with i = 4. Then the presence of the stabilizer

has no effect upon the position of the resultant for i = 4 in the

diagram. If the machine stalls a bit, so that i = 6, say, the stabili-

zer is blown upon from the bottom and produces a diving (negative)

moment, which means that the vector for i = 6 must be moved to
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the rear (as compared with its position in a machine without stabili-

zer); but if the machine noses over, say to i = 2, the stabilizer is

blown upon from above and there is a stalling (positive) moment and

the vector for i = 2 must be moved forward. The result is, there^-

fore, to cause the vectors for 2 and 6 to intersect that for 4 further

above the C. G., thus increasing the
"
metacentric height" and the

statical stability for flight at i = 4. Indeed with a large enough

stabilizer far enough aft, it is clear that any instability due to the

aerofoil could be overcome.

It has been assumed that the stabilizer was neutral. This can

be the case only for one attitude, which may not be any attitude

actually flown. If the stabilizer is a lifting surface at that speed of

flight for which the design calls for a neutral elevator, the location of

the C. G. relative to the wings must be rearward of where it should

be if there were no stabilizer. If there is a negative lift, the C. G.

must be further forward. Thus if the stabilizer be considered as

set at various negative angles (turned up at the rear) relative to the

wing-chord, the machine must be designed with its C. G. in various

positions, and the greater the (negative) angle, the further forward

must the C. G. go for the larger angles means a relatively larger

negative lift. These details were worked out for the simple case in

Chap. Ill; the principles still apply, but the numerical details are

different because the travel of the center of pressure on the aerofoil

is contrary in direction and because the direction as well as the

magnitude of the resultant force varies.

Suppose that with the elevator neutral and the stabilizer at a

given angle i
r

with the wing-chord the machine balances with the

C. G. in a certain position, corresponding to a definite attitude. The

resultant through the C. G. is L = W. Now if the stabilizer be set

at a greater negative angle i
f Af there is a stalling moment AM

brought into play. This change in moment on the stabilizer will be

the same for all attitudes of the machine so long as the angle i is not

so greatly altered that the pressure on the stabilizer can no longer

be regarded as a linear function of the angle between the stabilizer

and the wind. Corresponding to this AM, the C. G. must be set

forward by the amount x = AM/PF. The vectors in the vector dia-

gram have their arms changed by the amount AM/7?. Now for the

vectors originally ahead of the C. G., R is less than W (since R and

L are nearly equal, as may be seen in the table for the range i =
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to i = 19^) whereas for the vectors originally behind the C. G., R
is greater than W. Hence, the former vectors are advanced more,
the latter less than C. G., and there is a greater general dispersion of

the new vectors about the new C. G. than of the old vectors about the

old C. G. The result is that the new vectors intersect further above

the C. G., and the statical stability has been increased by the change
A** in the setting of the stabilizer, as in the simple case of

Chap. III.

This result may be exemplified by figures from a test by Hunsaker

on the same model ("Clark") with three different tail settings at

2f, 5, 7 respectively to the wing-chord. The moments
have been reduced to the estimated C* G. L and D in pounds, M in

pound-inches about the C. G., V = 30 mi/hr. Model ^V-
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3.04", and the angle between this line and the arm of R be 6, the

moment M of R about the C. G. will be

M = R ^ - a cos 6
)

= M8
- Ra cos = M8

-
3.04^ cos 6.

Now the angle between the wing-chord and the line joining the C. G.

to the spindle was in this case i .6. The angle between the wing-chord

and R is taxrl

(L/D) + i. Hence

6 = 90
- tairl

(L/D)
- i + 1.6,

M = M8
-

3.047? sin [tan-
1

i - 1.6].

By substituting in this formula, the value of M on the model may. be

found. To find M on the machine it is necessary to multiply by

iV, by the square of the speed-ratio, and by the cube of the linear

dimension. The work involves, as so often in calculations with

experimental data, differences of quantities nearly equal, so that the

results are far from being as accurate as the data. Two persons work-

ing the slide-rule on the same figures may differ by ^ to i % and if

they be required to subtract 4.00 from a computed 4.60 one may get

0.57 because of underestimating 4.60 by 0.03, and others may get

0.63 by overestimation particularly when the "4.60" is the

result of a series of operations. The following values are, therefore,

but approximate.
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EXERCISES

1. Plot the values of L and D for the JN-2 from the table in Art. 75 indicating

on the scales both the figures for the model and those for the machine. Note

that the D curve becomes concave down at the extreme right.

2. Find a linear expression L = a + bi to represent the lift over the range

i = -4 to * = 8 and compare the differences between the formula and the

tabulated values.

3. Write L =
.35 + 10.5*' + ain or L .35 10.5*

= ain . Tabulate ain and

determine a and n to represent the data. (NOTE. If z = ain
, log z = n log i +

log a, and a plot of log i against log z should give a straight line from which

the values of a and n may be read.)

4. Find by interpolation from the table in Art. 75 the values of L and D for

i = \, i|, 72, 9^ and compare with the values entered in the table of Art. 77

for the same model.

5. Find the values of dL/di as AL/A^ from the table at i = i and i = 7

by differencing the values at o and 2 and at 6 and 8. Find dL/di for i =
10, by

using the values of L at i = 8 and i = 12. In like manner find dD/di for i = i,

i =
7, i = 10.

6. Find the values of dL/di and dD/di for the full machine (JN-2) at

i = 4 and i = 8.

7. Show that the second differences in the parabola y = a + bx + ex2 are

constant and equal to 2c(A#)
2
.

8. Model test, ^V size, 30 mi/hr. Results as follows:

Ms M/R
i5s -7

.26^ 3.0

3 1 ! 7-o

31? 3-4i

35s 2.2

37* 1.6*

.42 i.i|

.46 .96

47* -78

375 48
.20} .25

.19! .23

.17 .20

Plot the curves for L, Z), L/D, and If on one diagram.

9. Data as in Ex. 8. Difference L and D and discuss the results.

10. Find dL/di and dD/di in Ex. 8 at i = -2, o, 6, 8.

i



THE FORCES ON AN AIRPLANE 215

11. Find L, D and M for full -size machine in Ex. 8 at 60 mi/hr, at i =
o,

and at i = 6.

12. Model test, fa size, 20 mi/hr. Results as follows:

i L D R L/D Ms M/R

-6

-4
2

O

+ 1 .2IO .065 .220 3-22 .79 3.6

2 .27! .066 .28^ 4.2 I.OO 3.5

4 .40! .071 .41 5.7 1.40 3.4

8 .64 .105 .65 6.1 2. ii 3.2^

12 .78 .180 .80 4.3 2.56 3.2

16

18 .84^ .30^ .89 2.7 2.57 2.9

-.286
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23. Plot on one diagram, and discuss, these two wing tests and that in Art. 76.

i
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31. In the table of moments of the
"
Clark," Art. 77, take differences to detect

whether their irregularity throws any values of M strongly in suspicion. Plot

the three curves for M on one diagram.

32. If the "Clark" test were run at 30 mi/hr on a ^ size model, what

would be the moments at i = o and 77 mi/hr in the three cases?

33. In the second case of the "Clark" model with V = -5, find the speed

when i = 1 2 and the moment in ft.lb at that speed and attitude.

34. Check the values for the moment M as calculated for the JN-2 from

M, for i = -i 7^, i si

35. If the co6rdinates of the spindle center are (a, c) relative to assumed

X and Z axes through the C. G. show that M = Ms + cX - aZ.

36. If L and D are relative to the wind which makes an angle 6 with the X
axis show that the X and Z forces are

X = D cos B - L sin 0, Z = L cos + D sin 0.

Suppose the wing-chord makes an angle of 3^ with the X axis, calculate X and

Z for the JN-2 with i = *]\ and use the result of Ex. 35 with c = -.10 and

a = 3.04 to calculate M from Ms . Check with the value otherwise found.



CHAPTER XIII

STREAM FUNCTION AND VELOCITY POTENTIAL

78. Stream Function. The equations for planar motion of a

fluid without viscosity were found to be

4* v - ^ = V - - ?P f \

dt
'

p dx' dt
~

p dy

dp dpu dpv
'

In the case of a liquid where p is constant, the third, that is, the

kinematic equation becomes simply

du . dv

The condition that M dx + N dy shall be an exact differential

AT? At?
Mdx + Ndy = dF = dx + dy, ..... (4)

dx dy
is that

dM = dN = d 2F . .

dy

"
dx dx dy'

The equation of continuity for the liquid shows that u dy vdx, or

v dx u dy is an exact differential, because the equation of continuity

is precisely the condition for an exact differential. Let

d\f/
= v dx w dy.......... (6)

Then ^ is called the stream function of the motion. The reason for

this is as follows:

Consider an element, ds of any curve in the plane, and its pro-

jections dx, dy. As the fluid is incompressible, the amount of flow

across the element ds is equal to the amount of flow across the two

elements dx and dy otherwise fluid would be collecting in the

triangular area, contrary to the condition of constant density. Now,
the flow across dy is udy, and the flow across dx is vdx. Hence,

218
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u dy v dx is the total flow across ds from left to right, as the point

advances along ds, and
v dx u dy =

d\j/

is the amount of flow across ds from right to left. Hence, d\l/ is the

flow across an element of arc ds, and the difference of
\f/

at any two

points of the plane, namely,

/ =
(v dx

- u dy)
= $ (x, y)

- $ fa, y ) . . . (7)

is the total flow across any curve joining these two points. (The
total flow across any two curves is necessarily the same because of

the incompressibility) . One reason for calling \l/
the stream function

is that it determines the amount of fluid streaming across a curve.

Consider next the curves
\[/
= const. If

t = C, df = o; ..... ". . . . (8)

and, consequently, there is no streaming across any element ds of

arc on the curve \f/
= C, and the equation \l/

= C must, therefore, be

the equation of the stream line; for the stream line is by definition

one along which the fluid is flowing, and across which no fluid is

flowing. (This is a second reason for calling \f/
the stream function.)

The velocities in the fluid may be expressed in terms of the stream

function; namely, since

v dx udy = d
\l/
= dx -\ dy, ...... (9)

uX oy
it follows that

d\// d\t/ , ,

v =
,

u = ---......... (10)
dx

j

dy

A knowledge of the stream function, therefore, determines the stream

lines and the velocities throughout the fluid at any time.

The stream lines themselves may change, and,' in general, do

change from instant to instant if the motion is not steady. The stream

line is a line of flow at an instant. In steady motion, where the flow

is the same at all times at each point, \// does not depend upon time,

and the stream lines are the actual paths of the particles in the fluid.

Thus, when a hose is playing and is held steady the stream lines are

constant in position, and the motion of the individual particles is

along one; but if the hose be swept from side to side the stream lines

at any instant are changing, and over an interval of time change a
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great deal in position; but no particle flows exactly along a stream

line.

79. Circulation. The circulation of a fluid along a curve may
be calculated as follows: The velocity u multiplied by dx may be

taken as the measure of the flow along (not across) the element dx.

In the same way, v dy may be taken as the flow in dy. The flow in

or along ds may be denned as the product of ds by the component of

the velocity along ds, or as the product of the velocity by the com-

ponent of ds along the velocity. This definition of the flow along a

curve is exactly similar to the definition in mechanics of the work

done, namely, as the displacement times the component force in.

the direction of the displacement, or as the force times the component

displacement in the direction of the force. In elementary mechanics

it is known that the differential work is

dW = Xdx + Ydy,

that is, that the work may be calculated by resolving both the dis-

placement and the force. In the same way, the circulation may be

calculated by resolving both the displacement and the velocity, for

the mathematical statement of the definitions is entirely similar in

the two cases, and the analytical expression of the definition must,

therefore, also be similar. Hence, the circulation along ds is

dC = udx + vdy, (n)

and the circulation along any curve joining the point (XQ, y ) to the

point (x, y) in the plane is

I
dC = f(udx + vdy), . . ... . . (12)

where the integration goes from (XQ, yo) to (x, y) ,
and is along the

path; that is, the values of dx and dy at each point of the path must

be those appropriate to the path.

(NOTE. The fact that the product of the displacement and the

component of the velocity in the direction of the displacement takes

the form u dx + v dy has been inferred from the corresponding fact

for force and displacement. It is very important for any student of

science to see the analogies between different branches of science,

and thereby to be able to write down a result in one domain from a

known result in another. Whenever such an analogy is seen to exist,

and is used in a demonstration, time is saved; but the fact of the

existence, and the possibility for the use, of the analogy are a-ttrib-
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utable to an underlying identity of mathematical ideas. The

above proposition stated as a purely mathematical theorem is this:

Two directed magnitudes OP and OF are given, and are resolved

along two perpendicular directions into OP = OM + MP, OF
= ON + NF. The product of either OP or OF by the projection of

the other upon it is the sum of the products of the appropriate

projections, namely, OM X ON + MP X NF. This geometric prop-

osition is very easy to prove by the principle of similar triangles

combined with the fact the projection of a broken line on a fixed

direction is the sum of the projections on that direction of the

segments of the broken line.)

The value of an integral such as the circulation taken around a

closed path may be expressed as a double integral over the area en-

closed by the path. This may be proved first for an infinitesimal

rectangle with sides dx, dy. The flow in the bottom side of the rect-

angle is u dx. That in the top side is (u + dyu)dx where dyu is the

change in u corresponding to a change in y alone, and is dyu = (du/dy)

dy. The flow up on the right-hand side is v dy, whereas the flow on

the left-hand side is (v + dxv)dy, where drv is (dv/dx)(dx). The

total flow is, therefore,

udx (u + du/dy -dy)dx + v dy (v dv/dx -dx)dy
= (dv/dx du/dy)dx dy. . (13)

Now, if there be given any closed curve, and the plane be ruled

into rectangles, the flow around each little rectangle may be ex-

pressed as dv/dx du/dy times the area of that rectangle. When
two adjacent rectangles are considered the flow around the two

rectangles may be computed without reference to the common side,

because the common side is regarded as described in opposite direc-

tions for the two different rectangles, and the flow on this side for

two rectangles is equal and opposite, and cancels out of itself. By
piecing together any number of adjacent rectangles, the total circu-

lation around all those rectangles is seen to be equal to the cir-

culation around the perimeter bounding the totality of the rectangles.

This circulation, however, is equal to the sum of the expressions

(dv/dx du/dy)dx dy for all the rectangles, and this sum would be

written as a double integral. Hence

/ (u dx + v dy)
=

I I (dv/dx
-

du/dy) dx dy. . . (14)
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(NOTE. This result is, of course, a geometric result independent of

the actual fact that u and v are velocities in a fluid, and that u dx + v dy
is the flow in a curve. The general formula would be

f(Xdx + Ydy) =
j f(dY/dx

-
dX/dy)dxdy, . (15)

where X, Y are any functions whatsoever of the coordinates x, y\

and where the integration on the left is performed around a closed

curve, and that on the right over the region bounded by the curve.

The theorem is really merely a theorem in partial integration, be-

cause, clearly,

J*(dY/dx)dx
= (Fi

-
Fo),

and

(dY/dx) dxdyJJ
With respect to the u term care must be exercised to get the right

sign.)

The circulation around a closed curve may be expressed in terms

of the stream function; namely,

I udx + vdy = I I (dv/dx
-

du/dy)dx dy

. (16)

The circulation around any closed curve will vanish if

= o ....... . (17)

at every point in the plane. Conversely, if the circulation around

every closed curve vanishes, the equation (17) must hold; for if the

circulation be applied to an infinitesimal rectangle the double integral

(16) reduces to a single term, and its vanishing gives (17).

80. Velocity Potential. If the circulation about every closed curve

vanishes, the circulation along a curve joining two points A and P
is the same for every curve joining those points; for consider two

curves joining A and P, and making together a closed curve. The

circulation around the two curves APA vanishes, but the circula-

tion along either curve from A and P is the negative of that along

the same curve from P to A . Therefore, the circulation around the

closed curve is the difference of the circulations along the two curves,
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which must, therefore, be equal. If the circulation around every
curve vanishes, then

dv du '

for the circulation may be computed around an infinitesimal rect-

angle where the double integral reduces to a single term. This

condition is, however, the condition that u dx + v dy be an exact dif-

erential; and hence when the circulation around every closed curve

vanishes u dx + v dy is an exact differential.

In this case let

udx + vdy =
d<t>. . . ...... (19)

Then
u =

-d(j)/dx, v = -dcj)/dy....... (20)

Hence, if the circulation around every closed curve vanishes the veloci-

ties may be written as the negatives of the derivatives of a function

(j)(x, y) . This function is called the velocity potential. The circulation

along a curve is the negative of the change in the velocity potential,

for

/ u dx + v dy = - I d<t>
= -

(</>i
-

< ) ..... (21)

This result holds only when there is a velocity potential; that is,

only when the circulation depends solely upon the initial and final

points, and not upon the curve joining them.

In every case for the motion of an incompressible fluid, that is,

a liquid, in a plane there is a stream function ^; but there is a velocity

potential only when d^\l//dx
2 + d^/dy

2 = o. In some cases there is

a velocity potential for the motion of a fluid which is not incompressi-

ble; namely, when the component velocities satisfy the equation (18).

In treating the motion of liquids in a plane the stream function may
always be used whether or not there is a velocity potential. In

treating the motion of incompressible fluids the velocity potential is

used provided there is a velocity potential; that is, provided the

circulation along all closed curves is zero.

When there is a velocity potential for the motion of a fluid, whether

compressible or not, the motion is said to be irrotational. The reason

for this name depends upon the analysis of infinitesimal displace-

ments in a moving fluid. A small particle of fluid has a resultant

velocity. This is the amount observable in looking at the motion.

If, however, the motion of the different points in the small particle
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of fluid be observed, it is seen that superposed upon the general

velocity of the whole particle there is a deformation of the particle,

and a rotation of the particle. The detailed analysis of the deforma-

tion and rotation will not be given here. It will merely be stated

that the angular velocity of rotation when examined is found to be

w = %(dv/dx
-

du/dy); (22)

and consequently, the condition for the velocity potential is co = o,

which means that there is no rotation the motion is irrotational.

The importance of irrotational motion is partly due to the analytic

simplicity which arises when there is a velocity potential; and partly

due to the physical fact that owing to the viscosity in the fluid any
rotation that exists in the general body of the fluid tends to disappear.

The effect of viscosity on rotation is very interesting. Near a bound-

ary of the fluid the fluid sticks, and the general rush of the fluid

further away from the boundary brings viscous forces into action,

which make the motion near the boundary rotational or even full of

eddies (turbulent). These eddies peel off from the boundary, so to

speak, and move out into the fluid. They may be observed moving
off into the fluid on the down-stream side of a bridge which is sup-

ported on piers or piles that obstruct the flow of the river. Once the

eddies are well into the stream the effect of the boundaries subsides,

and then the viscous forces tend to reduce the relative motion, and

the eddies die out. This dying out is also readily observed. The im-

portance of the study of irrotational motion lies mainly in the

physical fact that, in the main body of the stream, motion does

tend to be irrotational.

Care must be taken to distinguish between rotational and circula-

tory motion. By circulatory motion is meant motion of a fluid in

circles around a center. The velocity is then perpendicular to the

radii, and a function of the distance from the center. It may be

proved that circulatory motion is irrotational, provided the velocity

falls off inversely as the distance from the center; for consider the

circulation in any circle. If q be the constant velocity and r the ra-

dius, the circulation is 2irrq, and the circulation in an arc of the

circle which subtends the small angle dd at the center is rq dd. Now
consider the polar element of area bounded by two radii subtending

an angle dd and two circular arcs. The circulation along the radii

is -zero because the velocity is perpendicular to the radii. The cir-
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culation along the circular arc is rq dd, and if the total circulation

around the infinitesimal figure is zero, the value of rq dd must be the

same on both circular arcs
;
one being described in the direction oppo-

site to the other. Hence, rq must be the same for r and for r + dr
;

that is,

d(rq) =o, rq
= C, q

= C/r...... (23)

81. Irrotational Motion. When fluid motion is irrotational, the

dynamical equations of the motion may be integrated. The equa-
tions are

*
+ *! + ,

* = Jr-*$
dt dx dy p dx

'

dv . dv dv T7 g dp--
\- u --h v = Y -

dt dx dy p dy

If the velocity potential be introduced by (20), the equations become

d_$ dfy d$
_

dxdt dx dx 2
dy dx dy p dx'

d d d$ dty = _ g dp.'

dy dt dx dx dy dy dy
2 d py

If the first equation be multiplied by dx, and the second equation by

dy, and the results be added and simplified by the use of the formula

for the total differential, then

The external applied accelerations X, Y generally satisfy the condi-

tion that X dx + Y dy is an exact differential because the forces are

ordinarily conservative. Let it be assumed that

Xdx + Ydy = -dV......... (26)

Then V is an acceleration potential, just as< is a velocity potential.

An integration of the differential equation (25) with respect to

space, since the differentials are space differentials, gives

where C is a constant of integration, independent of space, but possi-

bly dependent on the time. In steady motion d<j>/dt vanishes, and C
is a constant independent of the time. This integral is generally

called Kelvin's theorem. It corresponds to Bernoulli's equation with
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Fig. 30.

this difference that Bernoulli's equation holds only along a stream

line in steady motion; the value of the constant is different for dif-

ferent stream lines, that is, is a function of space. Kelvin's theorem

has the additional term d<t>/dt, and holds only for irrotational mo-

tion; the value of the constant varies in time but does not vary in

space, that is, maintains the same value at any instant over the whole

fluid. In the special case that the

motion is both steady and irrota-

tional, Kelvin's theorem and Ber-

noulli's are identical, and there is

the added information that the con-

stant is the same for all stream lines.

An important quantity is the rate

of change of the circulation in the

curve, where the rate is a fluid rate,

that is, the curve is supposed to

move with the fluid. Let PQ = ds be an element of arc at any

time, and P'Q' the element at the time 8t later, namely, ds + 8 ds.

Let q be the velocity in the fluids, regarded as a vector. Then (Fig. 30)

PP' =
q dt, QQ' =

(q + dq)dt,

where dq represents the change in q in space alone, and since the

perimeter of the infinitesimal quadrilateral PQQ'P' is zero, the relation

P'Q' + Q'Q + QP + PP' =

ds + 8 ds (q + dq)8t ds + q 8t = o

must hold when the additions are considered as geometric; that is,

as vectorial. Hence, 8ds = dq 8t, and

8 dx = du 8t, 8 dy = dv 8t, (28)

may be obtained by taking components, regarding ds and dq as

vectors. Here 8 represents the kind of change that has been desig-

nated as fluid. Now, the element of circulation is u dx + v dy, and the

fluid change in this element may be obtained by the rules for differ-

entiation, namely,

8(u dx + v dy)
= 8u dx + 8 vdy -f u 8dx + v 8dy,

and
8 , 8u , , 8v

(u dx + v dy)
= dx + -r- dy

ot ol ot
u du + v dv.
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The expressions du/dt, dv/dt are the accelerations, and may be sub-

stituted from the dynamical equations. Then

f (u dx + vdy) = - g
-dp - dV + \d(u* + z;

2
),

of p

inasmuch as X and Y are generally derivable from a potential V.

Integrate along a curve from A to B. Then (using d/dt for fluid

differentiations)

| f\u dx + v dy)
= fj(

2 + *
2
)
~ V -

g f^]
B

. . (29)
./4 L 7 P_U a

Hence, the rate of change of the circulation in a curve which

moves with the fluid may be obtained by subtracting the value of a

certain expression at one end of the curve from the value of that

same expression at the other end of the curve. If, then, the curve be

a closed curve, the rate of change of the circulation must be zero

because the points A and B coincide. Hence, the important theorem :

The circulation in a closed curve for any non-viscous fluid subject to

external accelerations derivable from a potential remains constant

for all time as the curve moves with the fluid.

For example, suppose water to be running out of a circular sink.

The particles which lie upon a circle concentric with the outlet remain

upon a circle concentric with that outlet; but as the water runs out

the circle shrinks in diameter. Hence, the velocity in the circle must

speed up as the circle shrinks if the circulation is to remain constant.

In fact, if the velocity is q when the radius is r, and if the velocity of

flow at that radius makes an angle i with the circle, the circulation

in the circle is 2irrq cos i, and must be constant. If i were to remain

constant, q would vary inversely as r; but as a matter of fact i be-

comes larger and larger as r diminishes, being nearly equal to zero

for large values of r, and not far from 90 for small values. Thus,
cos i diminishes as r diminishes, and q increases more rapidly than

i/r. Of course, the efflux of water from a circular sink is not strictly

a two-dimensional problem, because the water is drawn by its tend-

ency to fall under the action of gravity; but the problem may be

imagined to be two-dimensioned by considering the fluid as sucked

out from the orifice, gravity not to act. In this case the fluid would

flow out if confined between two parallel horizontal planes.

The stream function for liquid motion had a simple geometrical

interpretation because the difference of the stream function at any
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two points gave the flow of the incompressible fluid across any curve

joining those points. The velocity potential, or rather its negative,

had likewise a simple geometric meaning, namely, that of the flow

along any curve joining two points. This flow would be the same

along any two curves joining the same points in case there was a

velocity potential. The velocity potential, therefore, was seen to be

the negative of the circulation in case the circulation was independ-
ent of the path of integration; that is, in case the circulation vanished

around a closed path.

The theorem on the constancy of the circulation along the closed

curve shows that if the circulation in any particular closed curve is

zero at any time, the circulation in that curve as it moves with the

fluid must always remain zero. If, now, irrotational motion be de-

fined as that for which the circulation in every closed curve is zero,

it follows that in a perfect fluid, compressible or not, the motion if

once irrotational must remain always irrotational, and if once rota-

tional, must remain always rotational. This constancy of the irrota-

tional or rotational character of the motion applies not to a particular

region of space, but to a particular part of the fluid, for the theorem

on the rate of change of the circulation applies to fluid curves. It

follows that whenever eddies are observed to be generated in the

body of a moving fluid or whenever they are observed to die out there

is evidence by this very fact that the fluid is not free from viscosity.

It is important to note the difference between the expression

which occurs in the formula for the rate of change of circulation

and that which occurs in Bernoulli's or Kelvin's theorem; namely,

and

The signs of the last two terms in the second are opposite to those in

the first. It is possible to transform the first expression into the second

by using the velocity potential; for udx + v dy =
d<t>, and

dd) dd> . dd)
,

dd> dd) / <> , 9\ / \- = -?- + u-- + v- = -
(u

2 + v2
). . . . (31)

dt dt dx dy dt

One application of the circulation theorem may be made to the

case of a rotating fluid. Suppose a fluid rotating with constant
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angular velocity co about an axis, and suppose further that the cir-

culation theorem applies for three-dimensional motion, as is the fact;

namely, that

y f\udx
dtJA

vdy+w dz)
= lO 2 + v* + w*)

- V -
g . (32)

P AA

The external acceleration is g if the Z-axis be taken upward, and

the acceleration potential V =
gz. Now, consider any curve running

from the axis of rotation out in a plane passing through that axis. In

the case that the motion is circulatory, that is, the particles of fluid

trace circles concentric with the axis, w = o. Moreover, the motion

at any point of the curve is perpendicular to the curve, and hence

the circulation in the curve lying in the plane through the axis is

necessarily zero, and its rate of change is zero. Hence,

o -
\\(u*

+ v *) -gz- #T, ...... (33)
L P _U

provided the density be considered constant. The curves of constant

pressure are

JcoV
2 -

gz
= const. .... ...'*..,. (34)

if r be the distance from an axis. In particular, the free surface must be

a surface of constant pressure, namely, the atmospheric. The free

surface is, therefore, a parabola. This could also be proved by treat-

ing the problem as one in hydrostatics, where the external accelera-

tions were g downward, and coV radially.

In the above illustration Bernoulli's theorem is applicable for any

particular stream line; that is, for any particular circle concentric

with the axis because the motion is steady; but this theorem gives no

information which is not obvious at once from the symmetry of the

motion; it merely states that the velocity must be constant around

such a circle because both the pressure and the potential are constant.

Kelvin's theorem is not applicable to the problem because the motion

is not irrotational. There is no velocity potential $. The problem,

therefore, is one which must either be handled by the methods of

hydrostatics or by some theorem such as the circulation theorem,

which goes further than either Bernoulli's or Kelvin's.

82. Irrotational Liquid Motion. When motion is irrotational

there is velocity potential. When the fluid is incompressible there

is a stream function. Therefore, for the irrotational motion of a



230 FLUID MECHANICS

liquid there is a stream function and a velocity potential. The equa-

tion of continuity,

du . dv . .

, gives ^ + ^ =
0, . . . (35)

as a condition which must be satisfied by the velocity potential in

irrotational liquid motion; and the condition for irrotational motion,

namely,
dv du d^ . a 2^ , ^- - - =

o, gives
jj.

+
.j*

- * v -
.;..

(36)

as a condition imposed upon the stream function. This equation for

\l/ or $ is called by the name Laplace's equation. Hence, for the

irrotational motion of an incompressible fluid the velocity potential

and stream function satisfy Laplace's equation. Let

z = x + iy, w = -u + iv, i = Vi. . . . (37)

The complex number z determines, therefore, a point (x, y) in the

plane and the complex number w determines a pair of components,

u, v, and if these are regarded as component velocities in a fluid, the

complex number w determines the velocity just as z determines the

position. Let w =
/(z) be any function of the complex number z.

For example,
w = z

2 =
(x + iy)

2
,

or

u + iv = x2
y

2
-f 2txy,

or

u = y
1 x 2

,
v = 2xy.

On trial it is found that these values of u and v satisfy the relations

(35, 36), which are the conditions satisfied by a liquid moving irrota-

tionally.

It may be proved that if w =
/(z), the real and imaginary parts

of
>, namely, u, v are always such functions of (x, y) that equations

(35, 36) are satisfied. For let

-u + iv = /(z)
= f(x + iy).

Differentiate with respect to x, and denote by/'(z) the derivative of

/(z) with respect to the variable z. Then

And
dli . . dv /// \ dz . ft / \- + i = fun =

if (z).

dy dy
J w

dy
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Hence,
du . . dv . / du . . dv\ . du dv---h ^ = ^^

----h i 1 i-
dy dy \ dx dxj dx dx

Equate the real and imaginary parts in these two equations, and the

proof is complete. The result is that by writing down any function

of a complex number and by separating this function into real and

imaginary parts and prefixing the negative sign to the real part,

possible velocities for irrotational liquid motion are obtained.

Another use of the complex number is related not primarily to

the velocity but to the velocity potential and stream function. The

relations between these two are

d<t> ty d<6 ty ( \u = =
,

and v = = ---. . . (38)
dx dy dy dx

Now, if the function

w =f(z) =<t> + fy ......... (39)

be regarded as having for real part the velocity potential, and for

imaginary part the stream function, precisely the conditions (38)

on the derivatives are fulfilled. Therefore, a possible case of fluid

motion may be obtained by using for the velocity potential the real

part of any function / of the complex number z = x + iy, and for

the stream function the imaginary part (omitting i). In treating

liquid irrotational motion it is generally simpler to deal with the

stream function or the velocity potential, and to determine from them

the velocities rather than to deal with the velocities themselves.

Consequently, this second usage of complex numbers is more com-

mon than the first.

When the stream function is set equal to a constant, the stream

lines are obtained, and this is one of the most important uses of the

stream function. When the velocity potential is set equal to a con-

stant, an equipotential line is obtained. These lines are important,

but not so important as the stream lines. The equipotential lines

are perpendicular to the stream lines because along an equipotential

line

determines the slope of the equipotential line as

dy = _ cty 700
dx dx/ dy'
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whereas the slope on a stream line is determined from the equation

from which

dy _ d\f/ / d\l/

dx~
~

dx / dy
'

which is the negative reciprocal of the value for the equipotential

line.

If the velocity potential <j>
is given, the stream function

\f/ may be

determined if it is possible to recognize what function of the complex
number z = x + iy has its real part equal to <j>. If, however, this

function cannot be determined by inspection, the stream function

may be found by integration because

d\l/
= v dx u dy

-- dx H dy.

When the values for the partial derivatives are substituted the re-

sulting expression is an exact differential, and may be integrated by
the methods applicable to exact differentials.

83. Sources and Sinks. Thus far it has been assumed that

the fluid was neither generated nor destroyed; but a considerable

number of cases of fluid motion can best be treated by imagining

that at certain points liquid is being produced, or is disappearing,

the former being called sources, the latter sinks. A source or sink

may be realized in two-dimensional motion approximately by supply-

ing fluid to the region between two near-by parallel planes through

a pipe perpendicular to one of the planes, and opening into the region

between the two. If the fluid is pumped in there is a source; if it is

sucked out there is a sink. If from the point O in a liquid so much
fluid is radiating as will cause the liquid to cross a unit circle concentric

with that point with unit velocity, the source at O is said to be a

unit source. The equation of continuity does not apply at the point

O itself, but does apply throughout the mass of the liquid, and as

the same amount of fluid must cross every circle concentric with 0,

the velocity of the fluid motion must vary inversely with the dis-

tance from the source. For a unit source the velocity is radial, and

equal to i/r. For a source of strength m, that is, a source which

radiates m times as much fluid as a unit source, the velocity is every-

where m times as great, and is m/r.
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Now, if polar coordinates with origin at be used

<j>
= - I

(u dx + v dy)
= - I (uidr + vir dff),

if #1, Vi are radial and normal velocities respectively. Hence,

(j)
= -

J m~
^ -wlogr, (40)

may be taken as the velocity potential of the flow from the source of

strength m. This form of velocity potential suggests the logarithm

of a complex number; in fact, if

w =
<j) + i\l/

= m log z = m log (re),. . . . (41)

then

<t>
= mlogr, \f/

= m6, (42)

where 6 is the angle made by the radius with the X-axis. The stream

function for a source is, therefore, md. If the source is at the point

(a, b), the velocity potential is

(j)
= -m Jog r = -m log V(x -

a)
2 + (y

-
b)

2
,

. . (43)

and the stream function is

\l/
= md= m tan"1

( ) (44)

For a sink it is only necessary to take m as a negative quantity. The

liquid motion which arises from any combination of sources and

sinks is obtained by adding the velocity potentials for the different

sources and sinks to obtain the velocity potential for the combination

of sources and sinks, and by adding the stream functions to obtain

the total stream function. The actual velocities in the fluid may
then be obtained by taking the proper derivatives of either the veloc-

ity potential or the stream function.

The uniform motion of. the fluid with velocity U in the x direc-

tion obviously has the velocity potential (f>
= Ux, because the

derivative of
<t>

with respect to x changed in sign is equal to U, and the

derivative of $ with respect to y is zero. This suggests that for the

complex variable

w =
4> + fy = -U(x + iy), ...... (45)

and, indeed, this function does give

<t>
= -Ux, and ^ = -Uy. , , . . .. (46)

The stream function, therefore, for the uniform motion is Uy.
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EXERCISES

1. Show that for the steady motion of a fluid (not necessarily liquid) there

is a flux function f(x,y) such that

id/ i dfu = *| v = - *-:

p d;y p d#

and that / = C gives the stream lines and /i
- / the amount of flow per second

across any curve (measured by amount of matter).

2. What are the dimensions of circulation, velocity potential, stream func-

tion, and flux function as denned in Ex. i?

3. In the following cases sketch the stream lines, determine whether or not

the motion is rotational, calculate the velocities, and the pressure, and also the

velocity potential when there is one, and the angular velocity when the motion

is rotational. Assume X = Y = o.

(a) + = x* - y\ (b) j =
(x* + y) (c) * = tan-' y/x,

(<*) * = log (x* + /), (e) + =
(x* + y*}-\ (/) * = sin x sin y,

(g) ^/
= e

x
cosy, (ti) \f/

= cos x cosh y, (i) ty
=

(49) .

4. Prove that (30) may be derived from (29) instead of by direct integration

of the equations of motion.

5. Show that in the steady motion of formula (33) the pressure is greater

where the velocity is greater and less where the velocity is less. Compare with

the statement of Art. 66.

6. Obtain the velocities whichjcorrespond to these functions (w = - u + iv) :

(a) w =
i/z, (b) w = e

z
, (c) w =

z*,

(d) w = log z, (e) w = z + i/z, (/) w = cos"1
z.

[Remember that e* = ex+iv = e
z
(cos y + i sin y), z = re = r (cos 6 -f i sin 9),

cos z = \(e" + e~ iz

), log z = log r + IB,
- =- e~

id

, etc.]

7. If the polar element of arc be used, what is the expression for the flow

d\{/ across a curve from right to left? Let u, v. be radial and normal velocities.

Show that v = d^/dr, u = - d^/r dB.

8. What is the formula for circulation along a curve in polar coordinates?

What is the condition that the differential be exact? If it is exact show that

u =
d<f>/dr and v = d<t>/r 36.

9. Prove that if ds is any arc and d<f> is the increase of cf> along that arc, then

d<f>/ds is the negative of the component velocity along ds.

10. If w =
/(z)

= + fy is denned by any one of the expressions in Ex. 6,

find the velocities in the liquid.

11. If w =
/(z)

=
<j> + fy show that

/// \ dw . . u + iv

/'(,)
= _=_ + ,= -

Hence show that /'(z) is the velocity vector reversed in direction and with recip-

rocal magnitude.
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12. A source discharges one gallon per second between two planes 3 in apart.

Find the velocity at any distance, the strength, and the velocity potential and

stream function.

13. If a source at A (a, b) and equal sink at A '(a', &') be combined, show

that the stream lines are circular arcs passing through the source and sink. (Hint:

Show that by (44) the angle APA' subtended at any point P by the segment

AA' joining source and sink is 4>/m.)

14. A source of strength m is in a general stream of velocity U. Find and

sketch the stream lines. Calculate the velocity at any point.

15. A source and equal sink 6 in apart discharge and take in one gallon per

minute. Find the velocity (a) halfway between them, (ft) six inches from the

center on the line joining them, (c) six inches from the center on the line perpen-

dicular to the junction. (Assume the thickness of the stream is i inch and that

the liquid is water, p = 62% lb/ft
3
).

16. Find the pressure defect at each of the three points in Ex. 15 as compared
with the "pressure at infinity."

17. Given
\f/
= x2 + xy - y

2 + x -y. Show that the motion is irrotational

and find the velocity potential. Are there any points at which the liquid is at

rest? Find the pressure difference of between (0,0) and (10, 10) if the liquid is

water.



CHAPTER XIV

MOTION OF A BODY IN A LIQUID

84. Sources and Sinks. If a body moves in a liquid the fluid

motion cannot be steady, for the position of the body changes with

the time, and, consequently, the motion of the fluid cannot be the

same at each point for all time, even if the body moves uniformly
in a straight line. When the motion of the body is uniform and in

a straight line it is possible to regard the body as at rest, and the fluid

as flowing past the body with the opposite velocity. The motion in

the fluid is then steady. In treating the motion of a body in a fluid

it is convenient always to bear in mind the possibility of considering

the motion of the fluid about the body rather than the motion of the

body through the fluid. One of the most important problems to

solve for the motion of a body in a fluid is the distribution of pres-

sures due to the motion about the different portions of the body, so

that by integration the resultant pressure of the fluid on the body

may be obtained. The method of solution consists in determining

the velocity potential or the stream function for the motion, from

which the velocities of the fluid may be calculated, from which in turn

the pressure in the fluid may be found by applying Bernoulli's theorem

in the case of steady motion, or Kelvin's theorem in the general case.

The direct method of treating the motion of the body in the fluid

would call for the determination, from the given motion of the body
and the figure of the body, of the velocity potential or stream func-

tion, using the condition that the contour of the body must neces-

sarily be a stream line, because the fluid can only flow tangentially.

An indirect method would consist in setting up different types of

fluid motion, and determining their stream lines. Any stream line

might then be taken as the contour of the body moving in the fluid.

This indirect method does not, except accidentally, determine the

motion of the fluid about a given body. Rather it determines a type

of fluid motion and the shape of body which could give rise to it.

The indirect method is, however, much simpler than the direct for

236
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it depends on differentiation, whereas the direct method depends on

integration.

Suppose that there is a source of strength m at the point (a, o)

and a sink of strength m at the point ( a, o). The stream lines

of this motion will be

\[/ m tan"1
h m tan"1 = C . (i)

x a x + a

The equation may be freed from antitangents by taking the tangent
of both sides. The resulting stream lines are similar to the magnetic
lines about a magnet with poles at (a, O) and ( a, 0). The motion

of the fluid along the X-axis may be obtained either from the stream

function or from the velocity potential, which is

(j>
= m log V(x - a)

2 + y
2 + m log V(x + a)

2 + y
2

,
. (2)

and in particular the velocity at the point x is

2ma
(3)

This shows that the velocity is negative for points between the source

and sink, and positive for other points on the axis. The physical con-

siderations connected with source and sink would show this same

result.

Now, if there be superposed upon the motion due to the source and

sink a general uniform motion along the X-axis equal to 'U, the

velocity upon the X-axis will vanish at the two points where

(4)

The stream function for this superposed motion is

*= -mtan-1^ + wtan-1^+^, ... (5)

and the stream lines are given by the equation

-w tan-1 + m tan-1 - + Uy = C, (6)
x - a x + a

or

m

or

(8)
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For different values of C these stream lines may be plotted. The

noteworthy characteristic of the system of stream lines is, however,
this: The plane is divided into two regions; there is an oval stream

line which passes through the two points where the velocity is zero

(C = o); the stream lines outside of this oval (C > o) are open and

run from infinity to infinity parallel at great distances with the J^-axis;

the stream lines inside the oval (C< o) run from the source to the sink.

The flow in the fluid is, therefore, of two distinct types; a general

flow past the oval stream line, and a circulation within the oval

stream line. The equation of the oval stream line itself is

2ay Uy- -- = -^ , .

(9)x + y a w<

A body with the shape of this oval would move through the fluid

with a velocity potential and stream function equal to the values

(2) and (i), provided x and y are coordinates referred to the center

of the body, and hence moving coordinates. For different values

of the constants a, U, and m, this oval takes a variety of shapes.

It may be elongated, as when the source and sink are very far apart,

or it may be practically circular, as when the source and sink are very
near together. There is a general resemblance of the oval when

fairly elongated to the shape of a ship.

The facts with regard to the stream lines have been stated; the

proof is straightforward. Take a figure with source at A (a, o) and

sink at B( a, o). Let P (x, y) be any point. Let

^PBA =
2 , %.PAx =

0i, %.APB = 0.

Then (6) is

-wBi + wBi + Uy = C, ....... (10)

or
= 0!

-
2
= Uy/m - C/m ....... (n)

If if = o, the stream lines are circles passing through A and B be-

cause the vertical angle is constant. If U/m is sufficiently small

the stream lines will still be nearly circular arcs joining A and B
unless y is large so that Uy/m is not appreciable compared with

C/m. The stream lines cannot cross the #-axis (y
=

o) except at

A and B (when is indeterminate) unless C = o. But if C = o the

stream line (8) for small enough values of y may be written_2ay Uy 2a
U_

x2 + y
2 a2 m x2 a 2 m
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as in (4) . Hence the oval stream line must be C = o. For any given

y the angle 6 is greater inside the oval and less outside than upon it.

Hence, if C > o there are points outside the oval, but if C < o there

are points inside.

85. The Doublet. If the source and sink are very near to-

gether almost all the fluid emitted from the source is sucked into

the sink, and there is very little motion except in the immediate

neighborhood of the source and sink unless the source and sink are

exceedingly powerful. This is similar to the case of a small magnet.
Unless the magnetic poles are very strong there is practically no

magnetic effect except very near the magnet. Let the equation of

the oval be written

2may Uy- ^ = m tan
+ y or m

and let the polar strength m be very large, and a very small. Then
tan (Uy/m) is nearly equal to Uy/m; and the equation may be

written

-^* =Uy, S = 2ma, (13)

or

xz + y*
= S/U (14)

It is, therefore, seen that the combination of an infinitely strong

source and sink infinitely near together (called a doublet) with a

general stream of velocity U in the negative x direction gives rise to

an oval stream line which is a circle; and, consequently, this case

corresponds to the motion of a cylinder in a fluid, or, rather, to the

motion of a fluid around the cylinder. The stream function and

velocity potential which correspond to this limiting case can be cal-

culated as follows:

i A /x + y 2ax + a
i TT- m log A/ 2 , 2 , i
+ Ux,

\ x2 + y
2 + 2ax + a2

. TT Sx
-o-r~2 + Ux

>

= ~TTx2 + y
2 x2 +
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If the radius of the cylinder is R =
(S/U)*, the stream function and

velocity potential are

where (r, 6) are polar coordinates referred to the center of the cylinder.

86. Moving Cylinder. To find the stream function and veloc-

ity potential for the cylinder moving in the fluid with the velocity

U it is merely necessary to subtract from the values above found

the uniform velocity U; that is, to add to (15) and (16) or to (17)

and (18) the values of
\[/

and
</>

which correspond to the velocity U;
and these values are respectively Uy and Ux. Hence, for the

moving cylinder,

_ UR 2
y = _ UR 2

UR 2x UR
cos 6 (20)* T y j

But in these formulas it must be remembered that (x, y) and (r, 6)

are coordinates referred to the moving center of the cylinder. If

the cylinder be moving uniformly along the #-axis, and if the center

of the cylinder were at the origin when / = o, then at any time the

stream function and velocity potential would be

UR 2
y UR 2

(x
-

Ut}v ~

(x
_ ut)* + y

v *-

(x
_ uty + f

These formulas contain the time explicitly, and show that in case

the cylinder moves the motion is not steady.

(i) Given the velocity potential or stream function, the next

step is to calculate the velocities and substitute in Bernoulli's or

Kelvin's formulas. The first case to be considered is that of steady

motion, with equations (17) and (18). Here -

UR 2
.= v = -- sin 26.

dy r
2

Hence,

= W2 + V
2 = u'l

L _.^ cos
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r r , ( \= C - *- = C ---
1

---- cos 26 -- -
. . . (23)

P 2g 2g gr
2

To find the pressure of the stream on the cylinder past which it flows

it is merely necessary to calculate the pressure in the direction of the

stream because the symmetry of the figure shows that there can

be no resultant pressure perpendicular to the stream. Then

P = - 2 f*p cosdRdO, ........(24)
Jo

whence P =
o, by substitution from (23) with r = R; that is, the

stream does not exert a pressure on the cylinder.

(NOTE. This result is, of course, contrary to ordinary experi-

ence. It is valuable, however, in showing that in a perfect fluid,

where there is no viscous drag, and where the stream lines close in

symmetrically behind the body, there is no resultant pressure. Any
pressure that there is on a cylinder must, therefore, arise either from

the viscosity of the fluid directly, or from the viscosity indirectly,

through the breaking up of the fluid behind the object into eddies,

or from cavitation, that is, discon-

tinuous motion, which theoretically

could exist in a perfect fluid.)

(2) If the cylinder be moving in

a fluid, formulas (19) or (20) must

be used, and Kelvin's theorem, ,

which contains the term dj/dt is
Fig 3i Moving Cylinder.

needed. To calculate dcfr/dt from

(20) ,
the condition must be expressed that a point (r, 6) shall be

fixed in space. In fact, r and 6 being coordinates relative to the

center of the cylinder, that is, moving coordinates, will designate

different points at different times. Now,

d<j> = d$ dr d$ dO

dt

"
dr dt 30 dt'

Consider the infinitesimal figure formed by any fixed point P in

space, and two positions 0, 0' of the moving center. Strike an arc

with center PO, and radius OP', meeting P in M. Then OO' = U dt,

and
dr = -OM = -OO'cos0 = -UcosBdt, . . . (25)

M = 4 P = O'M/MP = (UdtsmO)/r. . . . '/ (26)
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Hence,

d<t> UR 2 ~ UR 2
.=

ut

af ~ UR 2
. Q / TT smd\cos 6 (-u cos 6)

--- sin 6
[
U-

) ,

T \ T f

a</> U2R 2
a , N

or
-ft

=

^-
cos 2(9 (27)

The radial velocity may be taken as d</>/dr, and the velocity per-

pendicular to the radius as d$/Vd0; and this form is more con-

venient than to use the velocities along x and y. Then

2 _ /^Y /d$Y _ U2R*

From Kelvin's theorem

P~ 2# gdt'
or

p n U2R* . U2R2

a , .- = C H cos 26 (28)
p 2gr* gr

2

The pressure is again found by (24), and is seen to vanish as before.

In fact, the two expressions for the pressure differ only by the term

U2
/2g, which may be absorbed into the undetermined constant C.

(NOTE. It is particularly instructive to note that the term

d<t>/dt does contribute a necessary term to the expression p/ p; and,

that when this correction is applied the expressions for the pres-

sures (23 and 28) on the cylinder become identical except for the

undetermined constant. These pressures should, of course, be

identical, because the uniform motion of a cylinder in a fluid should

set up the same pressures as the uniform motion of the fluid past

the cylinder, it being only the relative motion which counts.)

(3) If the cylinder moving in the fluid with a velocity U has an

acceleration, that is, if U is not constant but variable, there is another

term in d<t>/dt, owing to the necessity of differentiating /; so that

d<t> U*P? n ,

dU R 2_ = -^ COS2* +^7 COS * '" * ' ' - (29)

This additional term 'in dcfr/dt contributes to the pressure the addi-

tional expression
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Hence, the acceleration of the cylinder is opposed by a pressure.

The expression irpR
2
is the amount of fluid displaced. LetW = wpR2

be this amount. Then the back force is

If the cylinder were acted on by an external force X, the equation

of motion of a cylinder would be

which may be written

(W + W)^-gX ........ (33)

Thus, the effect of the fluid is to produce an apparent increase in

the mass of the moving cylinder, the increase being equal to the mass

of the liquid displaced. The effect is, in other words, not a resistance

to motion in the ordinary sense of an expression dependent on the

velocity, but a resistance to motion in the sense of a quantity depend-

ing on the acceleration, and thus in the nature of an inertia reaction.

A word should be said, too, about the force X. The external

force may be of either of two sorts : it may be due to a force applied

as by a string, that is, a direct mechanical force applied to the cylinder;

or it may be due to a force like that of gravity, which is applied at a

distance, and which acts not only on the cylinder, but on the sur-

rounding fluid. This latter kind of force gives rise to the ordinary

hydrostatic buoyancy. It gives no net force on the object in the

fluid when the density of that object is the same as the density of

the fluid. Let the first type of force be designated by X\, and the

second type of force by X2 . The equation becomes

W + W dU v Y , .--
77

= Xi + X2 ........ (34)
g dt

In the particular case where a uniform force like gravity acts,

X, = (a
-

p)Vf/g = (W- W)f/g, ..... (35)

where is the density of the cylinder, and p the density of the fluid,

and V is the volume of the cylinder, and / is the acceleration due to

the external action. The equation of motion then becomes

g
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In case there is no direct force Xi acting, the acceleration of the body
is

dU W -W
dt

'' =

W + W' J .... (37)

A dirigible of the Zeppelin type (or a submarine, well submerged)
when moving transversely approximates to the case of a cylinder

moving in a fluid. If the dirigible were in equilibrium, W and W
would be equal, and there would be no net buoyant effect. A force

applied by a rope in a similar manner tending to move the dirigible

through the air perpendicular to its axis would produce an accelera-

tion equal only to the force multiplied by g and divided by twice the

weight, because the weight of the. displaced air and the weight of the

Zeppelin are equal. This added apparent inertia would be different

in amount for motion in the direction of the axis. Moreover, the

moments and products of inertia which have to do with rotary dis-

placements of the dirigible would be altered by the presence of the

surrounding fluid. As the air certainly would not behave quite like

a perfect fluid, it might be that the added apparent inertia in the

case of transverse motion would not in reality be as much as the

weight of the air displaced. These changes in apparent inertia make
the problem of the motion of a dirigible distinctly more difficult than

the corresponding problem for motion of an airplane; for the air-

plane has such a great average density that whatever may be the

effect of the displaced air, the mass of the air involved is so small

compared with that of the airplane that the effect would appear to

be negligible; and thus throughout the theory of motion of an air-

plane, and in particular in the discussion of stability, no allowance

is made of the inertia effects of the fluid in modifying the coefficients

which must be applied to the accelerations.

87. Spinning Cylinder. If the cylinder were spinning on its

axis as it moved, there would be no effect of the spin transmitted to

the fluid in case the fluid were non-viscous; but in case the fluid be

viscous it must necessarily adhere to the cylinder; and thus there

must be set up by the spinning of the cylinder a circulatory motion

of the fluid about the axis of the cylinder. It may be imagined that

in some way this circulatory motion were set up in a perfect fluid,

and the question would then arise: what are the effects of the fluid

upon a cylinder moving with the velocity U when there is super-

posed upon the ordinary motion of the fluid a circulation about the
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cylinder? It may be assumed for simplicity that the circulatory

motion is irrotational. It has been seen that there is one type, and

only one
;
of circulatory motion which is rotational; namely, that in

which the fluid velocity dies off inversely as the distance from the

center, and for which the velocity potential is of the form Ad. The
motion to be discussed, therefore, has the velocity potential

<t>
= -A6 + cos ........ (38)

In these expressions r and 6 are polar coordinates referred to a mov-

ing region. As the motion is irrotational, Kelvin's theorem may be

applied.

The velocity in a fluid may be resolved along the radius and

perpendicular to it. Then

dr
= _ d0 = UR 2 cos B

dt~~

~

dr~~ r
2 '

rdO
= d(j> UR 2 sm0 A

dt rdO~ r
2

~

r

'

Hence

2 rr2 #4
,
2AUR 2

.
f> ^A 2

<?
= u + ~T- sme + -> ......... (39)

d<j> TT,R
2

.
,
dU R 2

a AU . ,
,

.- == C/^-cos 26 + -cosB -
smfl, . . (40)

if the intensity of the circulatory irrotation motion as measured by
A be treated as constant though the translatory motion be allowed

an acceleration. The pressure in the fluid is, then, for values on the

cylinder where r = R, as follows:

g w 2

~R cos + U2 cos 20 -^ sin
it R

To find the resultant pressure on the cylinder it is necessary to

calculate in this case both the pressure along x and the pressure

along y because the circulatory motion has destroyed the symmetry
so that the pressure along y cannot be guaranteed in advance to

vanish. These pressures are

C^TT /"27T

Px = -
I pR cos d0, Py

= - I pR sin d0.
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The value for Px turns out to be exactly what it was before. The
added terms in p contribute nothing to the integral. Hence,

P WL ML'

g dt'

In calculating Pv most of the terms in p may be neglected because

they obviously give a zero value to the integral. The result is

2PirAU 2W'AU
v

~~

~T ~W~'
' ' ' (4I)

where as before Wr
is the weight of the fluid displaced. When, there-

fore, there is forward motion of the cylinder combined with the cir-

culation (irrotational) in the fluid around the cylinder, equations of

motion in the x and y directions become

WdU W'dU WdV
,

2W'AU
TT-?-* -3t-

F + -TpT'
' (42)

This shows that in addition to the inertia reaction to motion through
the fluid and in addition to the external applied forces there is a lift

exerted upon the cylinder urging it in the direction of the F-axis,

the amount of the lift being 2WAU/R 2
.

It follows, therefore, that there is no longer the possibility of

neglecting the motion in the Y direction in calculating the equations

of motion for the cylinder in the fluid. The lift due to the circula-

tion produces a component acceleration in the Y direction, and this

will set up a velocity in the Y direction, so that it will be necessary

to go over the whole problem from the start, and take account of the

possibilities when there is motion U in the X direction, and V in the

Y direction. For motion with a velocity V in the Y direction the

velocity potential is

VR2

<t>
= sin (43)

The total velocity potential is, therefore,

UR2
a VR2

. Q AQ f
.

<t>
= cos 6 -\ sin 6 AS (44)

This allows for velocities U and V along the two axes, and a circula-

tion about the cylinder. It is again necessary to calculate q
z

,
and

d0/d/, and by integration to determine the resultant pressures in the

X and Y directions. The final equations of motion are then found

to be
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WdU
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The position of the cylinder at any time is then obtained by integra-

tion as

x= + sin ni - cos nt + ^ + C'",n n n

C' C"
y = cos nt sin nt + Clv

.

n n

(5)

It will be observed that these equations are not at all of the form

appropriate to the parabolic path; that is, the motion of a cylinder

in the fluid when circulation takes place around the cylinder is

very different from the motion of the cylinder in a vacuum. As a

particular case it may be supposed that the cylinder is projected

horizontally with a velocity U from the origin of coordinates. The

initial conditions are, therefore, when t = o as follows:

x =
o, y =

o, dx/dt = U, dy/dt = o.

Hence,

C = U - ^, C" = C" =
o, Civ = - - 4,n n n2

and the equation for the path of the center of the cylinder is

n

These are the equations not of a parabola, but of a trochoid.

When the circulation in the fluid is zero the value of n is also zero.

If the values of sin nt and cos nt be expanded into series, the results

may be written

z't
2

x = Ut + higher powers in w, y = h higher powers in n.
2

Therefore, as n approaches the limit zero, the equations of the path

go over into the equations for the parabola, with this difference

that the effective value of gravity has been reduced from g to #',

owing to the inertia of the fluid.

If a cylinder were spun in a fluid such as the air, and launched

rotating with its axis horizontal, the viscosity of the air would set

the fluid into circulation about the cylinder. To solve the problem
of the motion, taking account of the viscosity of the fluid would be

too complicated, but if it be granted that the effect of the viscosity is
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manifested chiefly in setting up the circulatory motion, and if it be

granted further that the motion is irrotational, it would follow that

except for the diminution of the angular velocity of the cylinder,

owing to the frictional reaction, the path of the center would be a

trochoid. This departure from the parabolic path is well known in

the case of pitched balls. As the rotation is about the horizontal

axis, in this case only the "rise" and "drop" are considered, not

the "in" or "out." In order, however, to obtain a mathematical

treatment of the pitched ball along the general lines here given

for the cylinder, it would be necessary to have available the ex-

pressions for the velocity potential of a sphere moving in a three-

dimensional liquid with circulation about an axis of the sphere.

The solution of this problem will not be undertaken, but the result

is similar to that just found for a cylinder. The apparent increase

of inertia in the case of the sphere is not the weight of the displaced

fluid, nor the mass of the displaced fluid, but one-half that mass.

EXERCISES

1. A source spills 50 ft
3
/min of water; there is an equal sink 2 ft away, and

a general stream of 3 ft/sec in the line joining the two. (The third dimension is

i ft.) Where is the velocity zero? What is the velocity halfway between source

and sink? What is the pressure difference between the two points?

Ans. \ in beyond source or sink; 3.27 ft/sec; io Ib/ft.
2

2. A source and sink (5 gal/sec) are 6 in apart in a stream of 2 ft/sec in the

line joining them. (Let the third dimension be figured as i ft for the given rate

of discharge.) Where is the water at rest and what is the velocity halfway be-

tween source and sink?

Ans. f in from source or sink; 2.87 ft/sec.

3. Plot (6) or (8) if U/m = i,a = i,C = o. The second may be solved for

x as a function of y.

4. Plot (6) or (8) if U/m =
i, a =

i, C/m = -i.

5. Plot (6) or (8) if U/m =
i, a =

i, C/m = +i.
6. Plot (6) or (8) if U/m =

i, a =
\, C = o.

7. Plot (6) or (8) if U/m =
i, a =

2, C = o.

8. In (17) show that ^ = o is the circle. Plot \J/
= U.

9. A cylinder is at rest in a stream. Find where the velocity of the liquid is

greatest and how much it then is.

10. Find how much the pressure at infinity must be, if the pressure in the

stream about a fixed cylinder is to be everywhere positive, except where it is

least (zero). What happens if the pressure at infinity is not so great?

n. A cylinder moves in a liquid otherwise at rest. Show that the velocity

of the liquid at the periphery of the cylinder is always equal to the velocity of the
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cylinder, and find its direction. Why is the pressure not constant if the veloc-

ity is?

12. A Zeppelin (assumed cylindrical) is 500 ft long by 40 ft in diameter.

If the Zeppelin remaining horizontal descends uniformly with a velocity of 10

ft/sec, how many ft.lb of work would be needed to stop it (on the assumption
of the laws of perfect liquids). Ans. 156,000.

13. If the Zeppelin of Ex. 12 floats at rest and a force of 150 Ib is applied

vertically, what is the acceleration?

14. The Zeppelin of Ex. 13 throws over 200 Ib of ballast. With what accele-

ration does it start to rise?

15. A cylinder of radius R moving sidewise with velocity U spins with angu-

lar velocity co. On the assumption that the irrotational circulatory motion of the

fluid outside the cylinder has at the periphery of the cylinder the same velocity

as that of the cylinder due to its rotation, find the lift on the cylinder.

16. A cylinder of the same density as water moves 10 ft/sec in water and

turns on its axis once per second. The radius is i ft. Calculate, on the assump-

tions of Ex. 15, the lift on the cylinder in pounds and the radius of curvature of

its path (the tangent is supposed to be horizontal).



CHAPTER XV

MOTION IN THREE DIMENSIONS

88. General Equations. The equations of motion are

_i_ -L. ^_L du y ^ g dp
~dt

"
~di

~ U
dx

V

dy

~ W
dz

' ~

~p dx'

dv dv dv dv dv g dp- =
\- u -f v \- w = F -

,

dt dt dx dy dz p dy
dw _ dw d^i ^ i <}W _ 7 & dp
dt dt dx dy dz p dz

The proof of the equations is obtained by considering the forces act-

ing upon an infinitesimal volume dxdydz. There are three inde-

pendent variables w, v, w, which are the component velocities along

the axis. The formula for the total differential is

d *. d i d -i d i / \

(i)

the first term dealing with the variation in time at a specific point,

the last three, terms with the variation in space at a particular time.

The fluid derivative is obtained by dividing the differential by dt,

and using the fact that if the motion of the fluid be followed,

dx dy = dz = w

In addition to these dynamical equations there is the equation of

continuity, which for three dimensions is

dp dpu dpv dpz , .

The circulation along any curve is for three dimensions

(udx + vdy + wdz), . ....... '(5)

just as the work done by a particle is

x + Ydy + Zdz). . ...... (6)
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The geometric proof that the circulation is a product of the velocity

by the element of arc by the cosine of the angle between the two is

much as in the case of two dimensions. The calculation of the rate

of change of the circulation is also carried on in a manner similar

to that used before. The result is that for a curve moving with the

fluid

^
| f\udx + vdy + wdz) = -

\V + ftP
_ <?!7

. , (7)
g dtJA \_g J p 2g\A

The conclusion follows as before that the circulation around a closed

fluid curve must be constant. Motion is again defined as irrotational

in case the circulation around all closed fluid curves is zero. If motion

is once rotational it remains always rotational, and if once irrota-

tional, it remains always irrotational when the fluid is followed.

For irrotational motion the circulation around closed curves is

zero, and therefore, the circulation along any two curves joining

point A to any point P must be the same. Consequently, the cir-

culation depends only upon the point P if A be regarded as a fixed

lower limit of integration. The circulation is thus a function of the

coordinates x, y, z, of P. Let

rp
d<t>

= udx + vdy -\-wdz, (<f)p 4>A)
= I (udx + vdy -\-wdz). (8)

JA

The function </>
is called the velocity potential, and

As in the previous case there is a velocity potential when the mo-

tion is irrotational. If the fluid is a liquid, that is, if p is constant,

the equation of continuity expressed in terms of < is

This is the equation of Laplace.

For irrotational motion, that is, when there is a velocity potential,

the dynamical equations may be integrated in the terms of the veloc-

ity potential. It is merely necessary to substitute for u, v, w, the

derivatives of $ changed in sign, to multiply the three equations

respectively by dx, dy, dz, and to add. The result is a perfect differen-

tial if X, Y, Z be derivable from a potential V. Then,
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- + = / + C(f) (ll)
g dt 2g g J p

The constant of integration depends on the time, because the integra-

tion is performed with respect to space only, assuming time to be

constant. The equation may be written

*g

Y. + /"^ = i **

g J P g dt

This is again Kelvin's theorem, which states that the total head,

namely, the sum of the kinetic head, the static head, and the pressure

head is equal to the rate of change of the velocity potential divided

by g, except for a constant, which may be a function of the time.

The theorem holds only for irrotational motion. If it happens that

the motion is steady, the total head is constant all over the fluid at

all times, for then d<t>/dt
= o and C cannot depend on t. If the fluid

is a liquid, p/p may replace the integral of dp/p. All these theorems

apply, of course, only to motion in a liquid without viscosity, but

as has been explained for the two-dimensional case, a great many

types of fluid motion go on very much as though there were no vis-

cosity, even when fluids are slightly viscous.

89. Sources and Sinks. For the motion of a body in a liquid

in three dimensions there is available both the direct and indirect

attack. For the direct attack it would be necessary to integrate the

equations of motion, fitting the integrals to the known motion of the

fluid around the periphery of the moving body, and to the known

fluid velocity (generally assumed to be zero or constant) at an infi-

nite distance. For the indirect method of attack, a start is made by

considering simple types of motion due to sources and sinks. In

three dimensions a source is a point in the liquid which radiates

liquid in every direction with equal velocity. The strength of the

source is unity when the velocity of the fluid at a unit distance is

always one. As the same amount of fluid must flow across every

sphere concentric with the source, and as the surface of the sphere

varies with the square of the radius, the velocity at any distance

from the source must vary inversely as the square of the distance.

(This is a very different law of variation from that found for two-

dimensional flow, where the velocity varied inversely as the distance.)

If r denotes the distance from the source, then
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Hence, the velocity potential for a simple source is

, _ w ___m_ x .

"

'
"
V(x - ay + (y- b)*+ (z

-
c)

2

if the source of strength m is at the point (a, b,c). A sink is the

negative of the source, and the velocity potential is, therefore, the

same as that for a source except that m is negative. The lines of

flow about a source and sink are the same as the lines of electric

force about a positive and negative charge, or the lines of magnetic
course about a magnet idealized to consist of two magnetic poles.

If there is a general flow of the liquid along the #-axis from -f oo

to oo, with a velocity U, the velocity potential for this uniform

flow must clearly be <t>
= Ux. Hence, the velocity potential for a

source at (a, o, o) and an equal sink at f a, o, o) in the presence of a

generally uniform stream U is

</>=
m - +T7*. (15)

V(x - a)
2 + y

2 + z
2

V(* + a)
2 + / + z2

The velocity in this combination of source and sink in a stream must

vanish at two points in the line of the source and sink, and outside

both. This may be seen from the fact that to the right of (a, <?, o)

the source is discharging liquid in the positive x direction, the sink

is sucking the liquid back, but with a smaller velocity, and the stream

is carrying the liquid back. There is a point at which these three

velocities, taken together, vanish, namely, when

Passing through the two points where the velocity is zero, there is

a surface of revolution about the #-axis, which is a particular stream

surface; that is, it is a surface such that the velocity of the fluid at

any point of the surface is parallel to the surface. Thus, in the three-

dimensional case, as in that of two dimensions, the liquid is divided

into two regions, one in which the stream lines issue from the source

and return to the sink, and the other in which the stream lines are

open, passing from + around the oval stream surface on to oo.

The oval surface is, therefore, a possible surface for a body moving
in a fluid.
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It is necessary to find the shape of this surface. In the two-

dimensional case the stream function was known, and the surface

was obtained by setting the stream function equal to a constant.

In this case the stream function is not known, and in general in three

dimensions there is no stream function (though, as a matter of fact,

for motion symmetric about an axis of rotation, as here, such a func-

tion can be defined). The component velocities u, v, w may, how-

ever, be obtained from the velocity potential, and the stream line is

one in which the differential displacements dx, dy, dz are propor-

tional to the velocities; that is, the differential equations of a stream

line are

dx _ dy _ dz

As the motion is one in which there is symmetry around the X-axis,

it is sufficient to solve the problem of the determination of the stream

lines in the #, y plane. Now,

deft__m(x a)___m(x + a)__ jj~

to
~

[(*
_

)' + j-

2 + 22J
~

[(* + a? + y
2 + z

2
]

1

"

_ d<t) __my_ _my_"

^
~

[(*
- a)t + y

2 + tfj

~
[(* + <*)

2 + y
2 + z

2J

Let z = o. Then the stream lines in the x, y plane are given by

dx dy , ,= or v dx udy =
o,

u v

or

L [(*-)

IL--

x a x -f- a U'
-T - n \dy = o.

As this stands, it is not an exact differential, but becomes so if multi-

plied through by y. Multiplying and integrating, the result is

V(* -
a)

2 + y
2 V(x + a)

2 + y
2 2W

The revolution of this curve about the #-axis gives the symmetrical

stream surfaces. The only one of these curves which can cut the

;y-axis (elsewhere than at the source or sink) may be found by put-

ting y =
o, which shows that C = o. Hence the closed oval curve,
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the revolution of which gives the surface of revolution which may
move in the fluid with a velocity U, is

x a x 4- a Uy2
_

V(x -
a)

2 + y
2

V(x + a)
2 + y

2 2m

If a is large, this surface is elongated something like a long ellipse,

and much the shape of a dirigible, except that in practice, owing to

the viscosity of the fluid, it is advisable for the nose of the dirigible

to be blunter, and the tail of the dirigible to be sharper than would

be determined by this symmetrical curve, which is suitable for a

perfect fluid only.

90. Moving Sphere. It was found that in case the source and

sink approached each other, the strength of each becoming infinite,

the oval curve approached as its limit a circle of definite radius.

Consider, therefore, the problem of determining the velocity poten-

tial for a source and sink of infinite strength, and infinitely near

together. It will be convenient to use polar coordinates in the plane,

measuring the angle from the #-axis, and the radius from the center

of the source and sink. Then

m m
<t>
=

K9\ 2 / 9\ J~l
20 a . a*\ I id a a L

\
i cos 6 + )

-
I i H cos 6 + )

r r
2
/ \ r r

2

/ J

m
|~

a cos 6 a cos
0"[ _ 2 ma

r
\_

r r r

Vr2 - 2ar cos 6 + a 2 Vr 2 + 2ar cos 6 + a 2

cos 6

In this calculation a is assumed small, and higher powers of a/r have

been neglected. If the product 2ma be denoted by S, the velocity

potential is simply
5

<j>
= -cos 6..... ...... (20)

The combination of an infinitely strong source and sink infinitely

near together is called a doublet.

If there be superposed upon the doublet a uniform stream, the

resultant velocity potential is

S cos 6 . TT Q

The velocity in the radial direction is

( \

(21)
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2s cos e

- dr r* \Ur*

This radial velocity will vanish for all values of 6 when

25 = t/r3
,

or r* = 2S/U . . . . . (22)

Hence, for a sphere of radius R = (28/U) the velocity in the fluid is

wholly tangential to the spherical surface, and the velocity potential

</>
is that due to the motion of a liquid flowing around a sphere. If

R be introduced into the formula for the potential, the result is

The velocity potential for a sphere moving in the liquid is

4,
=
gt/cos0.

...... , . . (24)

With these values of the velocity potential it is possible to calculate

from Kelvin's theorem the reaction of the fluid on the sphere when

the fluid moves by the sphere, or when the sphere moves in a fluid

which is otherwise at rest.

The stream lines for the motion of the liquid around the sphere

close in symmetrically behind the sphere, and the result is that the

resultant pressure upon the sphere is zero, as it was in the case of

the cylinder. For the motion of the sphere in the liquid, it is neces-

sary to calculate not only g
2

,
but d<t>/dt. From

Next

d^ = a^ dr ,d$_ rdB R^ dU^ -

dt

==

dr dt rdd dt 2r
2 dt

C

cos0. . . (26)
27 (tt

The resultant force on the sphere is calculated as

p = - r*(p cos 6 X 2TrR 2
sin e) M,
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the value for p being taken from

P. = c- + - &.
p 2g g dt

= C + ^ JZoosfl + ^
tf

2
(9 cos'0 - 5) .'.. (27)

The only term that contributes anything to P is the term in dU/dt.

The integration and transformation give
'

<->

where Wr

is the mass of the liquid displaced. As in the case of the

cylinder, this reaction varies with the acceleration, and does not

depend at all upon the velocity. The coefficient, however, contains

one-half the mass of the liquid displaced, instead of the whole mass.

The equations for motion of the sphere in the jc-direction are, there-

fore,

W + W' dU

~T ~dt

" = xi + x*'

where the external force has been resolved into the directly applied

force Xij and the net buoyant force X2 due to action at a distance.

In case the sphere moving in the liquid is of the same density as the

liquid, the buoyant force vanishes in the simple case when the exter-

nal acceleration is that due to gravity or any uniform force. In the

general case where the external acceleration is /, the result is

M_ (w _ ^z. ..,-.; (29)
dt g

Thus, when a sphere is projected in a liquid in a horizontal direction

with the velocity U under the acceleration of gravity, the effective

downward acceleration is g(W W)/(W -\- %W), and the path is

a parabola.

If the sphere were spinning about an axis, there would be, owing
to the viscosity, some circulation about the sphere, but it is not at

all certain what the circulatory motion would be. The liquid in

contact with the spherical surface would be dragged with the surface,

and thus have a large velocity around the equator, and a small veloc-

ity near the poles of the spinning axis. It would undoubtedly be

true, however, that in addition to the retarded action dependent
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upon the acceleration there would be a lift perpendicular to the

direction of motion.

91. Sustentation. The results found for the cylinder and the

similar results which undoubtedly hold for the sphere are closely

connected with the theory of sustentation of the airplane, according

to Lanchester and Kutta. The straight mathematical analysis of

this motion is too difficult to undertake at this point, but a descrip-

tion of the phenomenon may be given. Suppose, first, that the air-

plane wing is of infinite lateral extent, so that the motion is strictly

two-dimensional. Instead of considering the motion of the airplane

through the air, let it be supposed that the air flows by the aerofoil.

The general motion of the stream past the aerofoil may be considered

in the first instance to be irrotational, because if the air were a per-

fect fluid, and were moving irrotationally at a great distance in front

of the aerofoil, it must continue to move irrotationally when passing

the wing. This irrotational motion, at any rate if it were discon-

tinuous, so that there were a dead wake over the upper surface of

the wing, would give rise to a resultant force, largely normal to the

aerofoil; and thus there would be a lift and drag as observed. As a

matter of fact, the hypothesis of Lanchester and Kutta is that in

addition to the general irrotational stream motion there is a circula-

tory motion of the air about the aerofoil whereby the air passes for-

ward under the wing, up past the leading edge, back across the top

of the wing, and down the trailing edge. Such a circulatory motion

in the fluid superposed upon the general stream would increase the

velocity of the stream above the wing, and decrease the velocity

below, as compared with the velocities which would be present if

there were no circulation superposed on the stream. If it be assumed

that the circulatory motion is irrotational, Kelvin's theorem may be

applied with the special restriction that the motion is steady, so that

64>/dt vanishes, and the pressure may be calculated from the formula

The presence of the circulation increases the velocity q above

the wing, and thus diminishes the pressure, or increases the suction,

giving a greater lift on the top of the wing. It also diminishes the

velocity below, the wing, and thus augments the pressure there.

The result is that the circulatory motion produces an increase in the
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lift on the wing. Certain assumptions may be made for the detailed

mathematical calculation, and when these are made the results as

found by Kutta bring the lift on the wing more closely in accord with

the observed values than when corresponding calculations are made
without the assumption of circulation.

Of course, with an airplane wing of finite lateral extent, there is

considerable spilling of the air from the ends of the wing, and one

may imagine that vortices are set up at the lateral ends of the wing,

and that these vortices peel off and flow down the fluid. The matter

may be pursued further by referring to Lanchester. The detailed

theory of vortices is left for more advanced lectures. It was, how-

ever, stated in Art. 80 that the angular velocity in plane motion is

co = %(dv/dx du/dy). It may, therefore, be surmised that the

three component angular velocities in three dimensions are

Motion in space is rotational wherever
/>, q, r do not all vanish, irro-

tational when p =
q
= r = o.

EXERCISES

1. Write out the details of the proof of one of the set (i).

2. Write out the proof of (4).

3. Write out the proof of (7).

cu ,, . ,
v . . dw dV du dw dv du

4. Show that (o) are equivalent to = = =o.
dy dz dz dx dx dy

5. Show that if r, to, are polar coordinates in space, being the colatitude

and u the longitude, component velocities along the radius, along the meridian

and along a circle of constant latitude are respectively

dr dB . n duu
,

v = r . iv = r sin .

dt dt dt

6. Consider the polar element of volume; show that its faces are: perpendic-

ular to the radius r2 sin dB du, (r -f dr)
2 sin dB du; perpendicular to the

meridian, r sin du dr, r sin (0 -f dB} du dr; perpendicular to the latitude circle,

r dB dr, r dB dr; and that the element of volume is r2 sin dr du dB.

7. Show that in polar coordinates the equation of continuity is

dp durz sin dpvr sin dpwr _
dt r2 sin 6 dr r* sin 6 dB r* sin du

~

where u, v, w are denned as in Ex. 5. Reduce the expression.
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8. If there is a velocity potential <f>(r, co, 6) show that

d<ft

9. Show that if liquid motion has a velocity potential

i d ( . n 3<A .
i

(r -^ +
sin 6 dO\ d0J

'

sin
2 dco

2

10. Give the steps in the proof of (12) from the equations of motion.

11. Derive (12) from (7) when there is a velocity potential.

12. The discharge from a source and absorption by a sink are equal to 2

gallons per second. The source and sink are i ft apart. Find the defect of pres-

sure in the fluid (as compared with the pressure at great distances) at the follow-

ing points (a) halfway between source and sink, (b) half a foot beyond the source

or sink in the line joining them, (c) half a foot from the mid-point in any direc-

tion perpendicular to the line.

13. If the source and sink of Ex. 12 lie in a general stream of velocity U = |

ft/sec in the line joining them, find the points of zero velocity.

14. A spherical balloon, 50 ft. in diameter, floats at rest in the air. If a force

of 100 Ibs is applied downwards, what acceleration would theoretically be set up?

15. The balloon of Ex. 14 throws over 50 Ib of ballast. With what accelera-

tion does it start to rise?

16. If the balloon of Ex. 14 is not at rest but rising at a uniform rate of 3

ft/sec, how many ft.lb of work are needed to stop it? Assume perfect fluids.

17. A sphere of radius R is moving with uniform velocity U in a liquid, the

radius is not constant but is increasing at the rate dR/dt. What is the velocity

potential and what the resultant pressure?

1 8. A liquid of great depth is moving about an axis" from r = o to r = a

with a constant angular velocity o>, and from r = a to r = oo irrotationally.

Find the shape of the free surface. (See Arts. 80 and 81. Two equations are

necessary, one from r = o to r =
a, the other from r = a to r =

oo; but the

surfaces should have the same slope at r =
a.) This is known as Rankine's

combined vertex; if the angular velocity is high the free surface is funnel shaped.

19. Show that in cylindrical coordinates the equation of continuity is

dp dpru dpv dpw _
dt rdr rdd dz

and that for the motion of a liquid when v = o and all motion is in the planes

through the z-axis, d(ru}/dx + d(rw)/dz = o. Hence infer that for this type
of motion there is a stream function,

^ = fr(ivdz -udr).
Apply in Art. 89.
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ABSOLUTE lift and drag coefficients, 206.

Acceleration, tangential and normal, 50;

moving axes, 113; in fluids, 156, 166.

Adiabatic law, 152.

Aerodynamic coefficients, 89, 123.

Aerofoil, pressure on, 50, 172, 259.

Air, density, 45.

Airplane, moment of inertia, 63; os-

cillations of, 86, 141.

Angle of entry, 50.

Angular velocity, 108; in fluids, 224.

Angular momentum, 83, 109, 118.

Anti-drag, 173.

Approximations, 6.

Aspect ratio, 15, 32.

Atmosphere, height of, 157.

Axes, change of, 112; moving, 113; in

airplane, 200.

BALANCE of airplane, 147.

Balloon, inertia of, 258.

Barometric pressure, 46.

Bernoulli's equation, 159, 167.

Bifilar suspension, 65.

Biquadratic, roots of, 98, 137, 144.

Bleriot, data for, 142.

Body moving in fluid, 179, 240, 256.

Bomb trajectories, 51.

Buoyancy, 243.

CENTER of gravity, motion of, 81, 107.

Center of pressure, 13, 205.

Change of axes, 112.

Circling flight, 29.

Circulation, 220.

Circulatory irrotational motion, 224.

Clark model, 98, 140, 146.

Coefficients, aerodynamical, 89, 127.

Complex functions, 230.

Continuity, equation of, 154, 166.

Curtiss JN-2, 100, 141, 146.

Curvilinear motion, 49, 51.

Cylinder moving in fluid, 240.

DAMPED harmonic motion, 68.

Decrement, logarithmic, 69.

Density of air, 45.

Derivative, fluid, 153, 165.

Derivatives of forces, 123.

Differential equations, linear, 60, 76, 94.

Dimensions, 182.

Discontinuous motion, 170.

Diving, 42.

Doublet, 239, 256.

Drag, 51, i?3, 199-

Dynamical similarity, 193.

Dynamical stability, 86, 135, 141.

EFFECTIVE mass of body in liquid, 243,

258.

Eiffel, pressure on planes, 14, 16.

Elevator, 30, 210.

Ellipsoid of inertia, in.

Empirical equations, 45.

Energy, kinetic and potential, 58, 62;

of rotation, no.

Equation of continuity, 154, 166.

Errors, 6.

Euler, theory of pressure, 12.

Exponential functions, 62.

FACTORS of proportionality, 17.

Falling from height, 44.

Flight, horizontal, 12; inclined,

circling, 29.

Fluid derivative, 153, 165.

Fluid resistance, 186.

Forced oscillations, 75, 130.

Forces on airplane, 88, 123.

27;
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GRAVITY, variation of, 48.

Gyroscopic effects, 120.

HARMONIC motion, simple, 57; damped,

68; forced, 75.

Heads of fluid, 160.

Height of atmosphere, 157.

Hydrostatics, 156.

IMAGINARIES, 61, 230.

Inclined flight, 27.

Inertia, apparent increase, 243, 258.

Inertia, ellipsoid of, in.

Inertia, moment of, 62, 109; products

of, 109.

Irrotational motion, 223, 229.

KELVIN'S theorem, 225, 252.

Kinematic viscosity, 178.

Kinetic energy of rotation, 1 10.

Kutta on sustentation, 259.

LANCHESTER, on pressure, 13, 50; on sus-

tentation, 259.

Landing run, 37.

Lateral motion, 125; stability, 141.

Lift and drag, 50, 173, 199, 206, 246.

Linear differential equations, 60, 76, 94.

Logarithmic decrement, 69.

Longitudinal motion, 125; stability, 98,

135.

MODELS, theory of, 193.

Moment of inertia, 62, 109; of momen-

tum, 83, 109.

Moments of forces on airplane, 30, 207.

Motion, laws of, 6.

Motion referred to moving axes, 115.

Moving axes, 113, 241, 257.

NEWTON, laws of motion, 6; law of pres-

sure, ii.

OSCILLATION experiments, 92, 130.

Oscillation of airplane, 86, 125.

Oscillation, time of, 59.

PARASITE resistance, 25.

Pendulum, physical, 64; torsion, 64;

bifilar, 65.

Performance curves, 203.

Periodic time, 59, 68.

Pitch, yaw, roll, 200.

Pitched ball, 169, 249.

Pitot tube, 161.

Plane, pressure on, 11, 170.

Poiseuille's formula, 178.

Power for flight, 19, 23, 28, 203.

Pressure on plane, n, 18, 170; on aerofoil,

50, 172.

Pressure on moving cylinder or sphere,

242, 258.

Pressure, atmospheric, 46, 158.

Products of inertia, 109.

Proportionality, factors of, 17.

RAYLEIGH'S pressure formula, 12.

Rectilinear motion, resisted, 37; har-

monic, 57.

Resistance of a fluid, 186.

Resonance, 77.

Roll, yaw, pitch, 200.

Rotation, 62, 84, 108.

Routh's discriminant, 96, 135.

SAND-TESTING, 196.

Similarity, dynamical, 193.

Simple harmonic motion, 57.

Skin friction, 191.

Sources and sinks, 232, 236, 253.

Spinning cylinder, 244.

Stability, dynamical, 86, 135, 141; static,

34, 210.

Stabilizer, 33, 211.

Static stability, 34, 210.

Steady motion, 116.

Streamline body, 238, 255.

Stream function, 218.

Suction on wing, 172.

Sustentation, Lanchester-Kutta, 259.

TAIL-SETTING, 212.

Terminal velocity, 42.

Torque, 118.

Torricelli's law, 160.

Trailing angle, 50.

Trajectories of bombs, 51.

Tube, Pitot, Venturi, 161.

UNIFORM flight, 22.

Units, 4; change of, 5.

Units, dimensions of, 182.
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VECTOR diagram, 206.

Vector representation, 118.

Velocity, angular, 108.

Velocity potential, 2*22.

Velocity, terminal, 42.

Venturi tube, 162.

Vertical dive, 42.

Viscosity, 173, 189-

WEATHERVANE, 72.

Work and energy, 58, 62, 70.

YAW, roll, pitch, 200.

ZEPPELIN, inertia of, 243.













?



UNIVERSITY OF CALIFORNIA LIBRARY
BERKELEY

Return to desk from which borrowed.

This book is DUE on the last date stamped below.
ENGINEERING LlbHAHY

LD 21-95m-ll,'50(2877sl6)476



I

T," .

V




