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PREFACE

WITH the coming of the Aeroplane the quantitative study of

screws working in air has assumed a great importance.

Formerly in the design of screw propellers for marine work

experiments with models were carried out and the performance
of the full size screw calculated from them, and it was not

until 1882 that Drzewiecki first drew attention to a possible

more powerful method of design obtained by considering each

element along the blade as independent and behaving in the

same manner as if moving through the fluid in a straight line.

This method has since assumed great importance in the

practical design of air-screw blades, and the results obtained

seemed to justify the utilization of this theory as at least

approximately correct provided certain limits are not exceeded.

In the present work the theory has been assumed to be

absolutely correct, and the results obtained have been carried

to their logical conclusions. This has been done for various

reasons.

It does not make for completeness in any argument if the

results of the initial hypothesis are not carried to their ultimate

logical conclusions, and although in the present instance the

results so obtained may not be completely borne out in practice,

yet, in giving an insight into the applications of the theory,

and in establishing at any rate an approximate method for

dealing with the many cases arising out of the performances
of aircraft, the conclusions arrived at will, it is hoped, not be

without interest.

In any case the practical application of some of the more

extreme results should not be made without due caution, and
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iv PREFACE

in fact they are to be regarded as of an extremely tentative

nature. This caution is necessary, for
" There is no more

common error than to assume that, because prolonged and

accurate mathematical calculations have been made, the appli-

cation of. the result to some fact of nature is absolutely certain.

The conclusion of no argument can be more certain than the

assumption from which it starts
"

(Whitehead,
" Introduction

to Mathematics "). Mathematics are too often apt to be

regarded as capable of
"
creating

"
results, quite independently

of any initial hypotheses, when they are nothing more than a

very useful tool.

I have endeavoured to present the subject of air-screw

design in as simple a manner as possible, so that the ordinary

non-mathematical reader may be able to follow the train of

reasoning, at any rate as far as its qualitative nature is

concerned.

It may be that the first chapter is unnecessarily drawn out,

but it appears to me that in any investigation of this kind

the first essential is to be able to clearly ''visualise" what is

being done, the mere application of analytical processes being

but a secondary matter.

I have introduced graphical methods wherever it seemed to

be necessary, or where it was impossible to obtain solutions

without them. At the same time the results for the design of

an air-screw to fulfil any specified outside conditions have

been put into such a form that it is hoped that the design

will be able to be correctly carried out by the rules given,

even if the analytical processes have not been able to be

followed by the reader.

With regard to the possible errors involved in the applica-

tion of the results given in the text, these should not be found

to materially affect any but the last chapters of the book.

The chapters on "
static

"
thrust, efficiency of air-screws from

(V) equal to zero up to the velocity of flight, and on direct

lifting systems, are admittedly of a speculative chara'cter.
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It did not seem that a work of this kind could be regarded

as complete without some reference to the stresses occurring in

an air-screw blade, and accordingly a chapter on centrifugal

and bending stresses has been included.

It is hoped that the book will be found to be not without

interest to engineers desiring an introduction to the theory of

air-screws, while at the same time it may perhaps conduce to

a more scientific study of the subject, in place of what has

been aptly described as the
" make it 4 by 2

"
methods so

dear to the heart of the
"
practical

"
man.

I take this opportunity of thanking Mr. H. Bolas, of the

Air Department, Admiralty, for Ids valuable criticisms upon
the proofs. My thanks are also due to Mr. T. E. Ritchie for

his help in reading through the proofs, and to Mr. A. King for

his assistance in the compiling of the various diagrams.

The Controller of His Majesty's Stationery Office has

permitted me to quote from certain of the Technical Reports of

the Advisory Committee for Aeronautics.

M. A. S. R.
HENDON.
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AIE-SGEEWS
INTRODUCTION.

PKESSURE ON AEROFOILS.

THE problem of determining the form of air flow generated by
an aerofoil, moving through still air, is one that has so far

defied mathematical analysis. This problem, which applies

equally to water and other fluids, is one for which a solution

has only been obtained when the aerofoil is a flat plate of

infinite span.* The analytical results however do not conform

with those obtained by experiment, and it would seem that the

still more complex problem of the curved surface is beyond
the reach of present-day analysis.

The mathematical theory makes the pressure on a flat

surface vary as the square of the general velocity of the stream,

and experiment has shown that between fairly large limits in

velocity this holds good.

Briefly, if an aerofoil be exposed to a moving current of air

or, what is the same thing, if an aeroplane wing be moving

through still air, the resultant air pressure on the aerofoil may
be expressed by the formula (R = &.S.V2

), where (S) denotes

the area of the aerofoil surface, and (V) the velocity of flight

of the aerofoil relative to the air. (k) is a constant the

numerical value of which depends upon the units employed in

the measurements of the quantities (R), (S), and (V).

* A further development has recently been obtained by Professor

G. H. Bryan and Mr. E. Jones. "Discontinuous Fluid Motion past a

Bent Plane, with Special Eeference to Aeroplane Problems." By G. H.

Bryan, Sc.D., F.E.S., and Eobert Jones, M.A. (Proceedings of the Eoyal
Society, Vol. 91, No. A 630).
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It can easily be seen that (k) has thus the dimensions of

density. If we introduce the density of the air into the

equation, we can write (E =
c./o.S.V

2

), where (p) denotes

atmospheric density, and the constant (c) is then non-

dimensional.

The resultant pressure (E) is composed of two quantities,

the pressure on the under surface of the aerofoil and the

negative pressure on the top surface of the aerofoil. This

latter as a rule forms the principal portion of (E) and in many
cases is from three to four times as large as the pressure on the

under surface.

(E) can be split up into two components, measured normal

to, and tangential with, the line of flight of the aerofoil.

These two components are termed the lift and drag components

respectively, and the value of their ratio is termed the lift-

drag ratio of the aerofoil.

Since (c) has been shown to be non-dimensional, the two

constants in the expressions for the lift and drag will also be

non-dimensional, and accordingly we may write

L =
c^.p.S.V

2
,

D = cx.p.S.V
2

,

where the suffixes (y) and (x) affixed to (c) denote vertical and

horizontal components respectively.

(cy) and (cx) are known as the absolute lift coefficient and

absolute drag coefficient respectively.

From the above it can be seen that the ratio
^-

is equal

to the ratio
,
and so, when estimating the value of the lift-

cx

drag ratio of an aerofoil, it is unnecessary to know the value of

the actual pressures concerned; it is sufficient to know the value

of each of the coefficients.

f*

The value of this ratio - is of great importance in aeroplane
cx

design, and the suitability of an aerofoil shape as a wing section

depends largely upon this value.

It is always desirable to make this ratio as large as possible.
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This also applies to the theory of air-screw design based on the

aerofoil analogy.

In records of experimental results, the reciprocal of this

ratio is sometimes used.

n

The ratio -^ can also be expressed as cot 7, where 7 denotes
cx

the gliding angle of the aerofoil.

The numerical values of (cy) and (cx) are found to vary with

variations in the angle of the chord incidence of the aerofoil

with the direction of motion, and their values are usually given
over a large range of angles.

For many forms of aerofoil, the angle corresponding with

the highest value of is found to be in the neighbourhood of 4.
cx

The value of (c) for normal incidence, e.g.
" broad side

on," of a flat surface of infinite span is (*44) on the modern

mathematical theory, the actual value found from experiment

being ( 64).

There is another quantity upon which the values of (cy)

and (cx) depend to a certain extent. This quantity is the ratio

of the lengths of the span to the chord of an aeroplane wing.
It is commonly known as the "

Aspect Katio."

Model aerofoils used for purposes of testing in a wind

tunnel usually have a value of (6) for this ratio. As a rule

the higher the value of the aspect ratio, the higher the

value of .

C*

It can hardly be said that there is anything essentially new
in the development of a theory of air-screws from the analogy

presented with the motion of an aerofoil in a straight line.

This subject was first investigated by Drzewiecki in 1882

and has since been developed by Lanchester.*

The fundamental hypothesis underlying the whole theory
here set forth is that :

(1) Each infinitesimal element along the blade of an air-

screw may be treated as a separate aerofoil possessing the same

characteristics as those which an aerofoil, having the same shape
* "Aerial Flight," by F. W. Lanchester.

B 2



4 AIR-SCREWS

and haviDg an aspect ratio equal to the aspect ratio of the

whole air-screw, would possess ;

(2) The velocity of each blade element, compounded of the

translational velocity and the circumferential velocity, at the

point in question, may be treated as causing no appreciable
variation from the V2

law, so that the infinitesimal pressures
on every element of the blade may be considered as satisfying

the relation K = c.p.S.V
2

.

Messrs. F. H. Bramwell and A. Fage, of the National

Physical Laboratory, say with reference to the application of

these assumptions :

*

" There are at present two systems mainly employed in the

design of propellers. The first, which is generally used in

the design of marine propellers, consists in making small

variations from existing successful designs : it is necessary

that no very great variation should be made at any one time.
" The second, which has so far been used almost exclusively

for the design of aerial propellers, attempts to predict the

performance of a propeller from a consideration of the forces

on elementary strips of the blade. This method, if sensibly

correct, is far more powerful than the older one, as it affords

a means of introducing new features irrespective of whether

the variation from existing types is small or large.
" The initial assumptions underlying this method, which has

been developed by Lanchester and Drzewiecki, are that the

forces on the blades are due directly to the velocities of the

various sections relative to still air, these velocities being com-

pounded of the translational velocity and the circumferential

velocity at the point in question, and also that the sections

may be treated independently. . . .

" The final conclusion arrived at is that although the method

is not strictly correct, yet in the hands of a careful designer it

is probably by far the best method that can be used for the

design of propellers in the present state of knowledge on the

subject. . . .

" The question of practical importance, however, is whether

* "Technical Eeport of the Advisory Committee for Aeronautics,

1912-13."
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the theory affords a sufficient basis for purposes of design.

When examined from this point of view it is founcf that, if

the range of comparison be limited to that usual in flying

machines, the experimental and calculated results are in

sufficiently good agreement, and that so long as tho conditions

under which the propeller is working are not varied too widely,

the theory may be satisfactorily applied. The occasional failure

of propellers to satisfy the conditions of design may be due to

an overstepping of these limits. In most cases the differences

between the calculated and experimental results are not

sufficiently large for their effects to be observed in the flying

of the completed aeroplane. . . .

" On the other hand, it is more probable that most of the

discrepancies are due to the centrifugal forces on the air in

contact with the blade
;

this must alter the character of the

flow round the blade very considerably, and it is perhaps a

matter for surprise that the agreement between the calculated

and experimental values is as close as it is, and not that they
do not agree exactly."
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CHAPTER I.

THE PITCH OF AN AIR-SCREW.

IT is fairly obvious that when an air-screw is moving through
the aii

1 with some definite translational velocity the distance it

traverses in each revolution will be constant, providing the

line of flight be horizontal.

FIG. l.

Now if we consider any portion of the blade at a distance

of (x) feet say from the centre of the boss of the air-screw, we
shall find that as the air-screw as a whole moves forward, the

portion of the blade under consideration moves up some

particular helicoidal path due to the air-screw rotating about

its axis at the boss centre.



THE PITCH OF AN AIR-SCREW

The steepness of the helix traversed by the portion of the

blade at radius (x) will depend upon the value of the distance

traversed translationally by the air-screw in each revolution.

It will also depend upon the value of (#), that is upon the

distance of the portion of the blade considered from the centre

of the boss of the air-screw.

This may perhaps be more clearly visualized if we imagine

FIG. 2.

a cylinder having a radius of (x) and a depth of (P), as in

Kg. (1).

Or it may be demonstrated by taking a rectangular piece of

paper and drawing a diagonal line as in Fig. (2).

Then if the paper be rolled so as to form a cylinder having
both ends open, the diagonal line will represent the path or

helix traversed by the point under consideration
;
the diameter

of the cylinder so formed will represent twice the distance of

the point considered from the centre of the cylinder (i.e. the

centre of the boss of the air-screw).

The circumference of the base of the cylinder will represent
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the path that would be traced out, by the point considered, in

one revolution, if the air-screw was not moving forward at all,

but merely revolving on its axis
;
and the length of this circum-

ference can be seen to be equal to

(Tr).(the diameter of the cylinder),

that is (2.7T.X.), where (x) is the distance of the walls of the

cylinder from the centre of the cylinder, corresponding to the

K*)

2TTX

FIG. 3.

distance of the portion of the air-screw blade considered from

its boss centre.

And the depth of the cylinder will then represent the

distance advanced through translationally by the point, and

therefore by the whole air-screw, at each revolution.

If the paper cylinder be now flattened out as in (Fig. 3), it

at once becomes apparent that the helix traversed by the point

in each revolution of the air-screw is the hypotenuse of a right-

angled triangle, and therefore that its length is equal to

2"^ b Euclid L 4 Hr



THE PITCH OF AN AIR-SCREW 9

Let us denote the angle which the helix line makes with

the base by (A). Then if (V) ft./sec. be the translational

velocity and (n) the number of revs. /sec. of the air-screw, we

see that the distance advanced in each revolution translationally

y
is feet. This distance we shall here denote by (P), and (P)

is then defined as being the effective pitch of the air-screw.

We have so far only considered the path traced out by one

portion of the blade at a radius of (x). Suppose that we have

a large number of paper cylinders, each having the same depth

but of varying diameters. Then their respective diagonals

will represent the respective helicoidal paths traced out by the

various portions of the blade. It is at once obvious that to

completely portray the paths traced out by every portion of

the blade we should require an infinite number of such

cylinders.

We can, however, do this very easily for a limited number

of different parts of the blade by drawing a right-angled

triangle having a base equal to

(2.7r).(half the diameter of the air-screw),

and having straight lines drawn from the vertex of the triangle

to various points along the blade, as in Fig. (4).

The height of the triangle is then, as before, equal to (P),
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the effective pitch, and the angles formed by the various lines

at the base of the triangle represent the helix angles of the

respective portions of the blade considered.

We may denote these angles by (A 1} A 2 ,
A 3 , ) corre-

sponding to radii from the boss centre of (xlt x2 ,
x3 ).

The helix angle of the blade tip, that is the angle at a

radius equal to half the diameter of the air-screw, may be

denoted by (0).

It can be seen from the figure that since all the helicoidal

paths of the various portions of the blade meet in a point, they
must all satisfy the relation

tan A = -.,

p / p \

,
so that A = tan- 1

( ^ ),

2.7T.X \2.7T.xJ

giving the value of the helix angle (A) in degrees for any
radius (x) from the boss centre of the air-screw, providing the

value of (P) be known.

Now suppose that we have an air-screw, and that we
measure the actual chord angles of the blade to the disc of

revolution at various distances from the boss centre.

Let us denote these various chord angles by (fa, fa, fa ),

corresponding to radii of (xl} x2 ,
x3 ) from the centre of

the boss.

In some types of air-screws, these angles are designed so

that they all satisfy the relation

(<) being any chord angle measured along the blade.*

Air-screws of such a type are sometimes said to be of

"
constant pitch," although this term is somewhat misleading.

It must not be confused with the "effective pitch" already

defined.

The above condition of an air-screw having a "constant

pitch
"

is however in the nature of a restriction, and we shall

y
*

(P) does not necessarily here denote the value of ,
but usually has

a larger value than the effective pitch of the air-screw.
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therefore start with the assumption that the chord angles

($i 4>z, <f>3 ) have no specified connection, but that they

may be anything whatever.

Now suppose our air-screw, having the chord angles

(<i> $2> $3 ) as defined, to have a translational velocity

of (V) feet/sec, and a speed of revolution of (ri) revs. /sec., then

the distance advanced through in the direction of translation

y
per revolution is - -

feet, and has already been defined as being

the effective pitch of the air-screw.

Suppose that we keep (n) constant, and give to (V) the

successive values of (V1} V2 ,
V3 ).

Then the distances advanced through at each revolution

.n , VT V2 V3
will be

, ,n n n
Thus it is possible to have an infinite number of values

for the effective pitch of any given air-screw, correspond-

ing to an infinite number of values of the translational

velocity (V).

It is obvious therefore that the effective pitch of any air-

screw is not necessarily a fixed quantity, but depends upon the

values of (V) and (n).

It is usual however to associate the pitch of a screw with

the screw itself, and thus to imagine it to be a fixed quantity

for any given screw.

In order to determine some analogous expression, in the

case of an air-screw, which is a constant quantity for any given

type of air-screw, we may define a particular value of the ratio

y
- at which there is
n

(1) no resultant thrust on the blades in the direction of

translation ;

(2) no resultant torque on the blades in a direction

normal to the direction of translation, and there-

fore tangential to the disc of revolution of the

blades
;

(3) no "
average" reaction on the blades.
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The three values of 'corresponding to these three cases

will be constants for any given type of air-screw.

The quantitative determination of these values of the

effective pitch may be found from the results of the analysis

to be proved later.

We may denote these values of (P) by (Pj), (P2),
and (P3),

or by P),P), and (I).\n/i W/2 \n/ 3

The "experimental mean pitch" of an air-screw has been

FIG. 5.

defined by Mr. F. H. Bramwell as being the value of the ratio -
TI

for which there is no thrust on the blades in the direction of

translation.

This definition corresponds to (1) already given.

Suppose then that our air-screw receives a velocity of trans-

lation of (V) feet/sec., and therefore has some definite value of

y
,
the effective pitch.n
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, Denoting the helix angles along the blade at radii of

(xlf a?a ,
a?3 , ) by (A lf A2 ,

A 3 , ......) and the chord

angles by (<j> lt $2 , </>3, ) we may represent the paths of

the various portions of the blade considered by Fig. (5).

We have made the chord angles in each case greater than

the corresponding helix angles for the sake of clearness.

Then it is obvious that, since each of the blade elements

considered is moving up the hypotenuse of one of the corre-

sponding right-angled triangles, the actual angles at which

these blade elements move to their respective helicoidal paths

are (<i
-

Aj), (< 2
- A 2), (< 3

- A3), ,
and these angles

are analogous to the chord angles of incidence of an aeroplane

wing in flight. They are here denoted by (a l} a2 ,
a 3 , )

and are termed the "angles of attack" of the various blade

elements considered.

Since the angles (< lf <f>2 ,
< 3 , ) are perfectly arbitrary,

these angles of attack are likewise arbitrary and may be made

anything that is convenient.
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CHAPTEE II.

THE FORCES ACTING ON AN AIR-SCREW BLADE.

Now it has already been stated that if an aerofoil be moving
in a straight line at a velocity of (V), the two components,
normal to and tangential with its line of flight, of the resultant

pressure exerted upon it by the air can be written

L = cy./>.S.V
2
,

D = ^.p.S.V
2
,

and we have the obvious relation already mentioned,

L cy

D
=

;r
= cot *

(7) being the gliding angle of the aerofoil at the particular

angle of incidence to its line of flight considered.

(7) is the angle which the direction of the resultant

air-pressure on an aerofoil makes with the direction of the

vertical component of (R), that is the lift.

It will be noticed that the blade sections of an air-screw

are similar to those used on aeroplane wings, and hence it at

once raises the question: Cannot we treat the sections along

an air-screw blade as if they were aeroplane wings moving at

angles of incidence of (a lf a 2 > s> ) ?

It is upon this very assumption that the whole of the

theory of air-screw design is based, as already explained in the

Introduction.

It is also obvious that, in order to be able to correctly

follow out the consequences of this assumption, we must treat

each of the portions of the blade as being of infinitely small

oreadth in the direction of the radius (x).
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We may then without error sum up the forces on all these

infinitely narrow blade strips, and hence obtain a correct

quantitative determination of the characteristics of the

air-screw.*

This is of course the ordinary mathematical process of

integration.

Let us then consider the forces acting upon a strip of blade

FIG. 6.

at a radius of (x) from the boss centre of the air-screw.

Fig. (6) shows the two views of the blade, in side elevation

and plan.

Since the element of blade is moving up the hypotenuse of

the right-angled triangle, the two components of the resultant

* This is of course an assumption of the theory.



16 AIE-SCKEWS

air-pressure upon it will be normal to and tangential with the

hypotenuse of the triangle respectively.

These infinitesimal pressures may be denoted by (dL)
and (dD).

Let the width of the blade at radius (x) be denoted by (&).

Then, applying the formulae for air-pressure, we have

dL =
Cy.p.b.dx.v

2
,

and dD = cx.p.b.dx.v
2

.

And the value of (v) is obviously equal to

for, as already shown, the quantity ^P 2
4-4.7r.V is the length

of the helix traversed by the element of blade at each revolution

of the air-screw, and hence the distance traversed by the element

per second is (n) times this amount, where (n) is equal to the

number of revolutions of the air-screw per second.

Whence the velocity of the blade element is n. x/PM-^Tr2^2
.

So that we have

dL =
p.ri*.Cy.1>. (P

2 + 4.7r
2

.

2

). dx,

dD =
p.n'

2
.cx.b. (P

2+ 4.7r
2
.z

2
).

dx.

Now we are not immediately concerned with (dL), but with

its components normal to and tangential with the disc of

revolution of the blade.

These are

(dL. cos A) and (dL. sin A) respectively.

Again, consider the value of (dD), the drag of the element.

We have

dD = P.n
2
.cx.b. (P

2 + 4.7i
2
.#

2

). dx,

and this may also be split up into two components normal to

and tangential with the disc of revolution of the blade.

These components are

(
dD. sin A) and (dD. cos A) respectively.

Now the thrust on the element is measured by the com-

ponents of all the forces acting on the element in a direction
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normal to the disc of revolution of the blade, that is, parallel

with the line of advance of the air-screw.

The forces so acting are seen to be

(dL. cos A) and
( dD. sin A),

so that the resultant force on the element in a direction normal

to the disc of revolution of the air-screw is (dL. cos A dD. sin A),
and this may be denoted by (dT), the elementary thrust on the

element.

In a similar manner it can be shown that the remaining
forces make up a total force in a direction tangential to the

disc of revolution of the air-screw, and of amount

(dL. sin A 4- dD. cos A).

This force comprises the drag or resistance exerted by the

element to circular motion, and is analogous to a friction

brake applied to the rim of a revolving wheel. It tends to

retard the motion.

It can be seen that the product of the above quantity and

the distance (x) of the element from the boss centre measures

the torque of the element.

Thus, denoting the torque by (dM.), we have

dM = x. (dL. sin A + dD. cos A),

and we have already shown that the thrust on the element may
be expressed by

dT = (dL. cos A-dD. sin A).

From these two equations and from the equation already

obtained for the lift on the aerofoil, we can solve all the

problems presented in the design of air-screws.

We have

dT = dL. cos A dD. sin A,

and we know that

cx drag dD
tan i = =:

"Eft-
=

dL'
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whence, substituting, we obtain

dTl = p.n
2
.Cy.b. (2.7r.x P. tan 7).\/P

2
-f-4.7r

2
..?j

2
. dx,

and therefore

T = p.n
2

. A (2.7r.a;-P. tan 7)VF+47T2
^?. dx,

Jr,

giving the total thrust on each blade of the air-screw.

(r) denotes the length of each blade from the boss centre.

(r ) denotes the length from the boss centre to the extreme

portion of the blade where the "
streamlining

"
of the sections

ceases. As a rule, in determining approximate values for the

integrals, we may take (?
1

)
as equal to zero without appreciable

error.

We have also

dM = x. (dL. sin A+d~D. cos A)
=

p.tf.Cy.l.x. (P+ 2.7r.x. tan

and therefore

M = .?i
2

. \C.b.x. P+ 2.7r.#. tanVP2+ 4.7T
2

.

2
. dx.

And since (M.2.7rji) is proportional to the B.H.P. required

to turn each blade of the air-screw, we can at once determine

the necessary value of the blade width at each radius to satisfy

any given set of conditions.

We are now in a position to write down the efficiency of

the whole blade, that is, of the air-screw.

The work done per revolution by the air-screw is the

product of the total thrust exerted and the distance through
which it is exerted, that is, the quantity having the value of

Y- and defined as the effective pitch of the air-screw.
n

Let (N) denote the number of blades of the air-screw.

Then we have

work done^by air-screw per revolution = (N.T.P.),

and
work done by motor per revolution in

turning the air-screw at (n) revs./sec.
= (N.M.2.7T),
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and therefore the efficiency of the whole air-screw is given by

N.T.P.
V =

and /. T =

N.M.2.7T.

P. I l.Cy. (2.7T.-P. tan 7)VFT4Pr
.

2
. dx

Jr

5.7T. b.Cy.x.
Jrn

.7r
2
.a

2
. dx

This gives the general formula for the efficiency of any type
V

of air-screw, for any specified value of .

We may now endeavour to determine the values of the

pitch, corresponding to no thrust on the blades, to no torque

on the blades, and to no resultant
"
average

"
reaction on the

blades.

The first of these quantities is called the
"
Experimental

Mean Pitch," and we shall now endeavour to determine by
calculation the value of this quantity for any given set of

conditions.

y
This value of the ratio is usually determined for any

given air-screw experimentally in a wind-tunnel.

The method to determine this theoretically is as follows.

We have already shown that the expression for the

thrust on each blade of any given type of air-screw may
be written as

T = p.n
2

.

\Cy.l. (2.7T.&-P. tan 7).
Jr

. dx,

Y
where P =

.

n

Now if T = 0, then since (p.n*) is finite we have

fr
=

Cy.l. (2.7r.a;-P. tan 7). \/P2
+4.7r

a
.a;

2
. dx,

Jr
C 2
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fr __
i.e. 2.7T. I C.l).x. \/P2

-{-4.7r
2

.

2
. dx

fr __
2.7T. I

Cy.l).x. \/P
2
-{-4.7r

2
.

2
.

Jr

= P. cy .t>.

Jr
tan 7. \P2+ 4.7r

2
.

2
. dor.

And this may be solved graphically as follows.

Take successive values of (P) from some value greater than

what would correspond to the effective pitch of the air-screw

upwards, and plot the two graphs 2.7r.%.6.#.\/P
2
-{-4.7r

2
.a;

2 and

P.Cy.6. tan 7. \/P
2 + 4.7r

2
.a3

2

against (x) between (?) and (r) for

each of the values of (P) taken. Take the areas of the two

figures thus obtained in each case. When the two areas in any
case are numerically equal, then the value of (P) taken for this

case is the value of the
"
experimental mean pitch

"
of the air-

screw.

It is of course apparent that the values of (cy) and (tan 7)

will vary with each value of (P) taken.

We can, however, determine their respective values in the

following manner.

Let us denote the successive arbitrary values of (P) taken

by (P', P", P'", ......
),
and let us suppose that P' < P" < P'" <

Moreover, let us denote the chord angles along the blade of

the air-screw by ($!, < 2 , $3 ).
Then if (A/, A2 ',

A 3

'

)
be the helix angles at radii (xit x2 ,

x3 )

y
respectively, for a value of equal to the first value of (P)

taken, namely (P'), the value of each of these helix angles at

any radius (x) will be given by the relation

A' = tan-
2.7T.O?./

And therefore the values of the respective angles of attack

of the sections at these radii will be given by

a =
(<j> A') = < tan" 1

for the particular value (P
f

) considered.



FOKCES ACTING ON AN AIE-SCEEW BLADE 21

Similarly, it may be shown that the angles of attack of the

sections for the other values of (P) taken, namely (P", P"'

),
will be given by

'"

a'" = - tan- 1 -

Now measure up the forms of the sections of the blade at,

say, (8) different radii. Then, if the sections so obtained are

ones that have been tested as aerofoils in a wind-tunnel, we
can at once write down their characteristics for any value of

the angle of attack (a).

We may thus plot a series of graphs, for each of the

arbitrary values of (P) taken, of (cy) and (tan 7) for the

different radii taken along the blade.

If we then construct a series of such graphs for (cy) and

(tan 7) for all the values of (P) taken, namely (P, P", P'"

),
we shall be in a position to determine the value of

the experimental mean pitch.

And we have to plot the two graphs already given for all

the values of (P) taken.

In order to be able to plot these two curves in any case,

we must draw out a curve of the actual blade widths against

radii (#).

It then only remains to obtain the two areas enclosed by
these two curves and the (x) axis. The value of (P) taken,

which makes these two areas equal, is the value of the experi-

mental mean pitch, corresponding to no thrust on the blade.

y
In a similar manner we can determine the value of for

n
which there is no torque on the whole blade.

V
To determine the value of -- for which there is a zero

n

value of the "
average

"
reaction over the whole blade, it is first

necessary to investigate the value of this resultant pressure at

any radius (x), and so compute the value over the whole blade

of the air-screw.
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We shall then be in a position to estimate the value

y
of - - for which this

"
average

"
resultant pressure over the

whole blade is zero.

In order to obtain the value of this resultant pressure (R)
we proceed as follows.

Consider a blade section at radius (#), and having a helix

angle of (A), Fig. (7).

The resultant air-pressure (R) upon the section is usually

T

FIG. 7.

split up into two components called the lift and drag of the

section. Let (7) denote the gliding angle of the section.

Then

Lift = R. cos 7,

and

Drag = R. sin 7,

whence

Lift = cot 7.

Now we have already shown that the resultant thrust on

the section, in a direction parallel to the line of advance of the

whole air-screw, is given by

T = L. cos A-D. sin A,
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where (L) and (D) denote the lift and drag components of (R)

respectively.

But
L = R. cos 7,

and
D = R. sin 7,

whence

L. cos A D. sin A = R. cos 7. cos A R. sin 7. sin A,

and therefore

T = R. cos (A+ 7),

whence

R = T. sec (A+ 7) for every point along the blade.

It is also obvious that

1
sec (A +7) = - T : 7^

cos A. cos 7 sin A. sm 7

2.7T.OJ. cos 7 P. sin 7'

whence

T. \/P2
+4.7r

2
.a;

2

~
cos 7. (2.7r.a-P. tan 7)'

and this in strictness should be written

~
cos 7. (2.ir".i-P. tan 7)'

since the pressures considered are infinitesimals/

And dT = p.n
2
J>.Cy. (2.7r.aj-P. tan 7).

so that

^R =
p.?i

a
.6.cy . (P

2
+4.7r

a
.aj

2

). sec 7. ^,
whence

R = p.n\ Ib.Cy. (P
2+ 4.7r

2
.^

2
). sec 7. dx,

Jro

and if this be now plotted against (x), we shall obtain the
" Load Grading Curve

"
for the whole blade.

Since (tan 7) is usually nearly constant between (r) and
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(r ), and also of small amount, we may write (sec 7) equal to

unity, and our expression for the total resultant force over the

whole blade then becomes

frR =
p.w?. I b.Cy.

Jr
dx,

and the curve obtained when integrating this expression

graphically will not appreciably differ from the one obtained by

inserting the rather troublesome (sec 7) under the integral sign.

Having then obtained the value of (R) for each blade of the

air-screw, we may proceed to determine the value of (P) for

which (B) has a zero value, in the same manner as for the case

of a zero value of the thrust on each blade.

y
In thus estimating this value of it will be prudent to

insert the (sec 7) in our expression for (R).

We have then

R = p.n
2

. I b.Cy. (P
2+ 4.7T

2
.#

2

).
sec 7. dx,

Jr

and since (R) = 0, and (p.n
2

)
is finite, we obtain

(r= I hep (P
2
-f 4.7r

2
.

2
).

sec 7. dx.

J^o

/ c
2

c.
2

Now (sec 7) = \/ I -f- 2,
and -^ is always a positive quantity.

Cy Cy

Hence (sec 7) is always a positive quantity, and therefore

(cy) must be negative, when (R) is equal to zero, for at least

some portion of the blade.
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CHAPTER III.

BLADE SHAPE AND EFFICIENCY.

WE return now to a consideration of the formula already
deduced for the efficiency of any type of air-screw blade.

It is obvious that, if the sections at every radius from the

boss centre along the blade were of such a form (if it were
s*

possible) as to possess no drag, so that the value of would be
cx

infinite, the efficiency of the whole air-screw would be unity.

That this is so may be seen by making (tan 7) equal to zero

in the expression already obtained for the efficiency of any

type of blade.

We have

P. I Cy.b. (2.7r.x-l\ tan 7). \/W+^r\x\ dx

n - J r
V- rjr

2.7r. cy.b.x. (P+ 2.TT.X. tail 7). \/P2
4- 4.7^.0?. dx

Jr

and now, making (tan 7)
= 0, we get

P. I Cy.b.2.7r x.

.7T.

. dx

Unfortunately, however, (tan 7) never has the value of zero,

although the smaller its value the higher the efficiency and

vice versa.

It is obvious, since (&) is a function of the radius (x), that

the value of
(77)

will vary for different forms of blade outline,



26 AIPv-SCREWS
?

and it therefore becomes necessary^to find some form which

will give as large a value as possible to
(?;) consistent with

structural considerations.

Let us consider the efficiency of any blade element at

radius (x) from the boss centre.

We have already shown that the nett thrust of the element,

in a direction normal to the air-screw's disc of revolution, is

given by
dT = dL. cos A (1 -tan A. tan 7),

and that the nett drag of the element, in a direction tangential

to the disc of revolution of the air-screw, may be written

c?R* = dlj. sin A-f-^D- cos A
= dL. sin A (1 + cot A. tan 7),

and therefore the work done by the element per revolution of

the air-screw is

dT.P = P.</L. cos A (1 -tan A. tan 7),

and the work done by the motor in turning the element per

revolution of the air-screw is

dP\,.2.Tr.x = 2.7r.x.d~L. sin A (1-fcot A. tan 7),

whence the efficiency of the element is given by

_ P. cot A. (1
- tan A. tan 7) _ tan A

^A ~
2.7r.x. (1+cot A. tan 7)

~
tan (A+ 7)'

where the suffix (A ) in
(?7A) signifies the efficiency of an element

at a helix angle of (A).

We might also write this as
(rjx) denoting the efficiency of

an element at a radius of (x). So that
(T;A)

=
(rjx).

If we require the efficiency of the element in terms-of the

radius (x), we have

P. (2.7T.0-P. tan 7)
Vx ~

Z.TT.X. (P+ 2.7T. tan 7. x)'

We have thus shown that the efficiency varies at different

points along the blade, and hence we can plot a curve of efficien-

cies against values of (x). Such a curve is shown in Fig. (8).

* Not to be confused with the resultant pressure on an element,

denoted by the same symbol.
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The maximum point of efficiency along the blade may be

found by putting

The point of maximum efficiency is found to be at a value

of (A) = 45-? that is, in the neighbourhood of 43.
^ -*

Since tan A =
[

^
),
we can write

j.TT.XJ

, giving the value of (x) for the

2.7T. tan

maximum point of efficiency along the blade.

i' a' 3' 4'

Radius. (x)

FlG. 8.

The point of maximum efficiency so obtained is only strictly

true when (7) is supposecf to remain constant over the whole

blade, that is, for every radius.

ft

But in practice the values of -
x
- for the various blade sections

Cy

will not be found to vary very greatly, and hence the point of

maximum efficiency will not fall very far short of that given

by the formula.

It is obvious from the foregoing that the most efficient blade

would be one in which the whole of the blade surface was

concentrated at the point of maximum efficiency. The blade

width (&) would then become infinite and the length of the

blade in the direction of the radius (x) would be infinitesimal.
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As, however, such a form of blade is impossible to construct

we are forced to adopt a compromise between the width of the

blade and the diameter of the air-screw.

Let us first consider the point along the blade at which

the efficiency reaches a maximum value. We may regard (7)

as a variable, and we will denote it by tan" 1

ty(x), so that

tan 7 = -ty(x) ;
then we have

2.TT.X.

7 7O

and for a maximum value of (%),-^ = 0, and ,^ is negative.
ClX CLX

So that

and this expression gives the value* of (x) for which
(rjx) is a

maximum.
In order to evaluate the above it is necessary to know the

form of the function ty(x), i.e. (tan 7).

If (tan 7) is constant over the whole blade, then ^r'(x)

vanishes, and the above expression reduces to

P

!.7r.tan(45-|)

We thus obtain the original relation

A = 45 -

for the angle at which the point of maximum efficiency occurs

along the blade.

Now we have not as yet prescribed any particular value

to (&), the width of the blade at radius (x).

In the majority of air-screw blades the value of
(Z>)

varies

for different values of (x), i.e. for different radii along the

blade.

Now it is obvious that the blade should, from considerations

of overall efficiency, be wider at some radii than at others.

Hence in designing our blade we may plot a curve of propor-
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tional blade widths against radii (x\ so that the true or actual

blade width for each value of (x) will be equal to the width

shown on the curve multiplied by some constant.

We may thus write the blade width (&) as equal to the

product of a constant and a function of (x), or

b = C.f(X).

Now we have already assumed that (7) is a variable and

may have different values for different values of (x), and we
/>

have denoted the ratio of by ^(x) y
so that

Cy

tan 7 = ty(x\ and therefore

7 = tan" 1
Tfr(x), as already given.

/i

But if (7) and therefore is a variable or function of (x),
Cy

so also is (cy\ the absolute lift coefficient of the section at

radius (x). Hence we may also write this in the form

It has already been shown that

P. 2.7T

which when plotted against radii (x) will give a curve of

efficiency for each value of (x).

Now suppose we regard the curve so obtained as our pro-

portional blade width curve, so that at each point along the

blade the actual blade width is proportional to the efficiency

at that point. We shall then ensure at any rate that our blade

is widest at its most efficient point. This will not of course

necessarily give the most efficient form of blade outline, but

the efficiency of such a type of blade will be greater than that

of one possessing the same characteristics in other directions

but having a uniform blade width throughout.
If we turn to the "

efficiency curve
"
already given, we shall

notice the following.

(1) As (x) increases from zero up to about (J) the length

of the blade, the efficiency rises very rapidly.
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(2) As (x) increases, from the value corresponding to the

point of maximum efficiency, to its maximum value (i.e. the

length of the blade), the efficiency steadily decreases, although
somewhat slowly compared with its initial rise from zero up
to its maximum value.

(3) Hence, after the point of maximum efficiency has been

reached, the blade becomes less and less efficient as we proceed
to the tip. Hence the useful work done by the blade elements

decreases towards the blade tip.

(4) This at once suggests the advisability of making the

actual blade widths proportionally less at the outside radii than

they would be if made exactly proportional to the efficiency

curve. The second curve in Fig. (9) would then be a more

efficient shape than the efficiency curve. The maximum ordinate

is now further to the right than in the efficiency curve.

There are however other considerations bearing upon the

problem of the most efficient blade outline besides those

already given.

If we pursue still further the analogy with an aeroplane

wing, it at once becomes apparent that there may be a limit to

the useful blade width possible in an air-screw.

In the case of an aeroplane having two or more superposed
surfaces (e.g. as in a biplane) it is well known that the lift of

the lower wing is affected quite appreciably by the
" wash

"
of the

top wing, and that the smaller the vertical distance between

the two surfaces the greater is the loss in lift on the lower wing.
This vertical distance between the wings of an aeroplane is
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known as the
"
gap," and the ratio between this distance and

the width of each wing in the line of flight is known as

the
"

|f ,

"
ratio. This ratio has usually a value of between

chord

(8) and (1*2) and is often equal to unity in standard types of

aeroplanes.

The value of this vertical distance or "
gap

"
in the case of

the blades of an air-screw is equal to

P. cos A

for an air-screw having (N) blades.

(fl

FIG. 10.

It is the value of the vertical distance between any two

consecutive helicoidal paths after ^
th of a revolution and after

2

^
ths of a revolution respectively.

This may be illustrated if we have recourse once again to

the paper cylinder.

Consider an air-screw having (4) blades. And draw on the

rectangular piece of paper (7) parallel lines at equal distances

apart, Fig. (10).
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Now fold the paper into a cylinder having a depth as before

of (P), Fig. (11). Then the lines so drawn will represent the

helicoidal paths traced out by the same point on each of the (4)

blades of the air-screw. We notice that the vertical distance

or "
gap

"
between any two such consecutive paths is equal to

P. cos A

If then we make the width of the air-screw blade at any

FIG. 11.

radius (x) proportional to the vertical distance between any
two consecutive helicoidal paths, we introduce an allowance for

possible blade interference, Fig. (12).

So that we have
P. cos A

whence

I a

P. cos A
"IT"
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An air-screw having this type of blade outline has been

called by Mr. A. E. Low the " Eational
"

blade. We shall

refer to this type of blade by that name in what follows.

There are other types of air-screw blades, and we shall now
consider two of these further types.

The first type considered is one which would at first sight

seem to be the simplest possible type of blade, the blade of

uniform width. Here obviously (&) is independent of (x),

since it is the same for all values of the radii.

FIG. 13.

Hence (&)
= constant = c.f(x), whence /(,>;)

=
1, and therefore

(*)=().
And (c) has always the value of the ratio

actual blade width at radius (x)

scale blade width at radius (x)

'

In this case we can take the scale blade width as being

equal to unity.

A blade having a constant chord width has been called by
Mr. A. E. Low the

" Normale "
blade. We shall use this name

when referring to this type of air-screw blade.

The second form of blade considered is one which from a

constructional point of view forms the limiting curve of

construction in which all the lamina pass through the boss.

If in any type of air-screw the blade widths at any point

come outside this curve, it is not possible to construct such a

blade without using offsets on the laminae.

Such a form of blade is shown in Fig. (13).
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The form of blade outline is seen to be given by

b = B. cosec (A+ a),

whence

c.f(x)
= B. cosec (A+ a),

and therefore

c = B, and f(x)

and therefore

"

PTcos a+ 2.Tr.x. sin a

and this expression does not greatly differ from

the one obtained by making (a)
= 0. This, as will be seen later,

greatly simplifies the subsequent evaluation of the quantities

characteristic of such a type of air-screw blade.

This form of blade may be termed the
"
Constructional

Limit
"

type.

We shall now apply the formulae already deduced for

any type of air-screw blade to the four blade types already

considered, namely :

(1) The "
Efficiency Curve" type of blade outline.

(2) The " Bational" type of blade outline.

(3) The " Normale
"
type of blade outline.

(4) The "
Constructional Limit

"
type of blade outline.

The three expressions for Thrust, Torque, and Efficiency

have been shown to be given by

T = p.n
2

. Icy.l. (2.ir,oj-P. tan 7). \/P2+ 4.7r
2
.a3

2
. dx

9

Jr

which may be written as

T = p,n*.c.
\f(x)4(x). (2.7r,9;-P.^(t

,') ). \/F
Jr

giving the Thrust exerted by each blade of the air-screw.

D 2
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The Torque on each blade is given by

M = p.n
2

.

\Cy.l.x. (P+ 2.1T.B. tan 7). \/P2+ 4.7r2 .

2
. dx,

Jr

which may be written as

M = p.n\c. \f(x). 4>(x). x, (P+ 2.ir.x. ^(x) ). \/P
2
+4.?r

2^ dx.

Jr

The total Efficiency of each blade, and therefore of the whole

air-screw, is given by

. \cy.b. (2.7T.E- P. tan 7). \/P2 + 4.7r
2
,-e

2
. dx

2.7T. \cy.b.x. (P+ 2.7r.. tan 7). \/P
J^o

which may be written as

P. /(#). ^(a?). (2.ir.a;
- P. ^0) )-

2.7T. /(a;),

and we shall now apply these general results to the four types

of blade outline considered.

"Efficiency Curve" type of blade outline.

// \
P. (2.-n-.a?-P.^(aQ)

re J(
'

~
2.7r.x. (P+ 2.7r.aj; ^(x) )'

so that the expression for the Thrust on each blade becomes

r

... . \/P2
-f-4.7r

2^2
. (2.ir.a;-P. ^)) 2

. dx

2.7T
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The Torque on each blade is given by

M = ^?. fj(a>). (2.7r,*-P.
J/7r >o

The total Efficiency of the whole blade is given by

rr
I

(f)(x). (2.7T.OJ-P. ^0))
!

2.7T.
\<t>(x). (2.7r.# P. tfrfa)). vP2 + 4.7r'

2
.a5

2
. dx

Rational
"
type of blade outline.

N.

so that the expression for the Thrust on each blade becomes

2 Po^2
c f

r

T = - -' i
'. \x. 6(x). (2.TT.X P. ty(x)\ dx.

N
Jr.

The Torque on each blade of the air-screw is given by

J ro

And the total Efficiency of the whole blade is given by

P. lx.<t>(x). (2. TT.X- P. ^(x)).dx

2.7T. <x?. $(x). (P4-2.ir.ic. ^(x)). dx

It will be noticed that in the case of these expressions for

the "Kational" blade, the making of the blade width at any

radius proportional to the
"
gap

"
has led to a great simplification

being introduced into the results of the analysis.
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This becomes at once apparent when we consider the

particular case of uniform section over the whole blade.

</>(V) and ^r(x) are then constants, and the three expressions

given above can very easily be evaluated.

In this case the value of (c), which is the value of the

" - '

ratio of the blades, is usually chosen beforehand,
gap

and a good value for this constant appears to be about one-

third to one-quarter. Mr. A. R. Low suggests the rule :

1 < m < 4, where (m) is the reciprocal of (c).

If (c) be evaluated from outside considerations of B.H.l*.

available, etc., and therefore from the formula given for the

Torque, it is possible to see whether there is likely to be

any appreciable interfering action between the blades due

to forms of blade sections and therefore necessary blade

widths used, etc.

" Normale "
type of blade outline.

Here (b)
=

(c),
and f(x) = 1, so that the Thrust on cacti

blade is given by

T =
p.n*.c.

The Torque on each blade is given by

__M = p.tf.c. x. <(>>). (P + 2.7r.#. ^-(a?)). \/P2 + 4.7r
2.^. dx.

Jr

And the total Efficiency of the whole blade is given by

V =

/>,Jr
.TT

2
.^. dx
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" Constructional Limit" type of blade outline.

\/PM-~4 7T
2 X1

Here /(a?)
=

p
'

,
so that the Thrust on each blade

is given by

The Torque on each blade is given by

M = P

And the total Efficiency of the whole blade is given by

' \ fr\

Jr.'

As can be seen from the above three expressions for Thrust,

Torque, and Efficiency, the evaluation of each expression is a

simple matter if we take <$>(%) and ty(x) as being constants,

that is if we assume the air-screw to have a uniform section

throughout. The approximation thus introduced does not affect

the accuracy of the expressions to such a material extent as

might be expected. The main difficulty in the prediction of

the performance of an air-screw lies in the shape of the blade

outline not being as a rule readily capable of being expressed

by some simple function of the radius (x).

We shall now determine a few values for the expressions

already deduced for Thrust, Torque, and Efficiency, in the four

cases already considered, when the blade section is assumed to

be uniform throughout. This makes cf>(x) and ty(x) constants,

and we shall refer to these functions when considered as being

constants by (cy) and (tan 7) respectively.

We shall assume that (r )
= 0.

For the present we shall confine our attention to the

expressions for the efficiency of two only of the types of blade

considered.
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" Rational
"
type of blade outline.

We have

Cr

P. \x. (2.7T.X P. tan 7). dx
Jr = P. (4.7r.r-?).P. tan 7)

97
=

f~ - /. -n ,

Qirrr tan ^
!.7T. p.

J'o

And now, if we write (Z) equal to the ratio of the effective

p
pitch to the diameter of the air-screw, i.e. -r, we obtain

= 2.Z. (2.7T-3. tan 7.Z)
77

=

TT. (4.Z+ 3.7T. tan 7)
*

The substitution of (Z) for the ratio of pitch to diameter,

p
-y, puts the expression into a more convenient form.

Mr. A. K. Low has deduced practically the same expression

for the efficiency of this type of blade, his formula being

_
'

2.w
V

~
o -\irin

where his (w) is equal to ^ (as used here), and his (M') and
Li

(M'"), which are expressions for the average values of (tan 7)

over the blade, are equal to (tan 7), supposed to be constant

over the whole blade (as used here).

If we make these substitutions, the two expressions for the

efficiency of this type of blade become identical.*

We can introduce a still further simplification into the

"Rational" blade efficiency formula by taking the value of

(tan 7) as 1/12. This is a very fair average value for the

usual type of blade section employed in practice.

* See Paper on " Air-screws
"
read before the Aeronautical Society

in April, 1913.
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We have then

_ 2.Z.(8w-Z)
77

~~

7T. (16.Z+7T)'

This curve may now be plotted against values of (Z). Such

a curve is shown in Eig. (14).

FIG. 14.

Constructional Limit
"
type of blade outline.

We have

??
=

P. f(2.7r^-P. tan 7) (P
2+ 4.7r

2
.^

2
).
dx

2.7T. x.(P+ 2.ir.x. tan
Jr

5.P.(6.7r.P
2.^-12.P3

.

.7r'
2^2

. dx

.^
2

. tan 7)

.P2
.^. tan .7r

3
.rf

3
. tan 7)'
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and now, as before, making the substitution (Z) = -y, we obtain
Cv

5.Z. (G.T^Z^J^.Z^an 7-f3.7r
3 -4.77 2

.Z. tan7)
77
~

TT. 30.Z3+ 20^rrZ2
. tan

And if we make (tan 7) = 1/12, this reduces to

5.Z. (18.7r.Z
2 -3.Z 3+ 9.7r

3 -7T 2
.Z)

=

7T. (90.Z
3+ 5.7T.Z-+ 45.77

2
.Z + 3.7T

3

)'

and this curve may likewise be plotted against (Z). The curve

of this function is shown in Fig. (14).

It will be noticed from the two formulae deduced for both

the "
Eational

"
and " Constructional Limit

"
efficiencies, that

neither expression contains (d), the diameter of the air-screw.

This is as might be expected, since (ij) is non-dimensional,

and hence the expression for the same should only involve

ratios such as (Z).

If we make (tan 7) equal constant, and therefore assume

that (cy) is constant over the blade, we may obtain quantitative

expressions immediately evaluable for the case considered of

the " Eational
"
blade shape. These are then as follows :

-d
2

. (2.7r.d 3.P. tan 7)

"12

\r M c-Tf-P-Y-^-Cy-n
2

. (4.P+ 3.7T. tan 7. d)

48

, . 2.C.P.7T.^ , . .

and, since (b)
= =, we may obtain the above

N.\/P2
-f4.7r

2
.a;

2

expressions for the Thrust and Torque in terms of the width of

the air-screw blade at the tip, i.e. when (x) is equal to (?).

We may denote this tip blade width by (br).

These expressions then become

_ 5r .9i
a
.p.^VFT7r'

5Q2
.' (2.7r.^-3.P. tan 7)

12

.n'
2
.d

2
. (4.P-f 3.?r. tan 7. <j).
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and the value of
( r), the width of the air-screw blade at the

tip, is given by

C.P.TT.d

In deciding upon the best form of blade outline for the

air-screw, -an ideal condition would appear to be obtained when

the velocity in the slip stream is everywhere parallel to the

axis and uniform, that is when the thrust at any radius is

proportional to that radius. The ideal thrust grading diagram
would thus be a straight line passing through the origin at the

boss centre.

We can investigate the form of blade outline necessary to

secure such a condition from the results already obtained in

the general case.

It has already been shown that for any form of blade

outline whatever, the thrust at any radius is given by

(IT = c.M2 xx.2.7r.x-?.<>rx. z +4:.'Tr*.x
2

. dx

and the condition specified is that

dT = m.x.dx,

whence

m.x = c.pM
z
.f(x)4(x).(2.Tr.x^f.

and therefore

__
c.p.n*.<t>(x).(2.7r.x

-
P.^(a;)).v/P

2
-f 4.7r

2
.^'

which gives the necessary form of blade outline to satisfy these

conditions.

Whence it is only necessary to plot a curve of

to obtain the required blade outline for any specified outside

conditions.
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It will be noticed that when (#) has the value of

that is at a distance of about one inch from the boss centre, the

blade outline curve f(x) becomes discontinuous, being of the

form shown in Fig. (14A).

Thus in estimating the characteristics of such a type of

FIG. 14A.

blade it is impossible to integrate from the value (r )
= 0, since

the curve becomes discontinuous at the value -J^ of the
2.7T

radius.

It becomes necessary therefore, when evaluating the

expressions characteristic of such a type of blade, to take for
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the value of (r ) a value greater than _i^i?2. Since this value
2.7T

is usually very small, it will be sufficient to take for (r ) a

value of anything from say (-^Q) to (J) of the length of

each blade.

It is interesting to see how the efficiency of this type of

blade compares with those types already investigated.

The efficiency of any type of blade is given by

(
r ________

P. f(x). $(x). (2.7r.-P. Tjr(#))VP
2
4-4.7r

a
.sc'

2
. dx

= Jr
'

r 2 - v/
;

.j
.7r

2
.ic

2
. dx

and taking the value of

,, s _~

we obtain

Tr
L") I /yi //O'*L.It//. C6tXy

Jn

p
and this becomes, after making the substitutions =

(Z), and
Cb

(r )
=

-Q,
and ^(x) = tan 7 = constant,

=_3.77
2
.Z

and if tan 7 = ,

12

"

. log,
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It would appear that the curve of efficiency plotted against

values of (Z) for this type of blade does not greatly differ from

those already given. The efficiency for the respective values

of (Z) is slightly higher than that obtained for the
"
Rational

"

blade under similar conditions of blade section and angles
of attack.
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CHAPTER IV.

BLADE SECTIONS, AND WORKING FORMUL/E.

IN air-screws manufactured for and used upon existing types

of air-craft it will almost invariably be found that the blade

section changes from the tip to the boss, and this is in fact a

necessity, from considerations of strength due to the stresses in

the blades caused by the thrust exerted by the air-screw and

the centrifugal action due to the rotation of the whole air-screw

about its axis at the boss centre.

Aerodynamically the use of a varying form of section along

the blade usually somewhat tends to decrease the efficiency of

the air-screw as a whole, although this probably does not

amount to much. That is to say that the efficiency of any

type of air-screw blade having a section varying from the boss

to the tip is less than that of a blade of similar outline but

having a uniform section throughout, provided that such a

section is of such a form as to have a value of (tan 7) smaller

than the average value of (tan 7) on the other blade, and

equal to the smallest value of (tan 7) on any section there

employed.
As a rule, for sections of similar shape, the thinner the

fil 1 f* 1CTl f*^S

section, i.e. the less the value of the -
r

-, ratio, the lower

the value of (tan 7), and hence the greater the overall efficiency

of the whole blade employing such a section.

This only applies, however, between certain fairly well

, ,. thickness ,.

defined limits, for, after a certain value or the
g -j

ratio

is reached, the section becomes less and less efficient, that is has

a larger and larger value of (tan 7), until the limit is reached,
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when the
" camber

"
of the section altogether disappears and the

section ultimately becomes a flat plate for which the value of

the YJ ratio is quite small, being of the order of (*7) : (1) at
.Drag

the most efficient angle of incidence.

As a rule, in designing an air-screw to fulfil any given
outside conditions, the forms of the blade sections are chosen

ChoYd Angle of Incidence (ctegrte*)

FIG. 15.

so as to effect as far as possible a compromise between

considerations of aerodynamical efficiency and the necessary

strength of the various portions of the blade.

The aerodynamical considerations of overall blade efficiency

have, however, already been dealt with, and the expression for

the efficiency of any type of blade shape put into a suitable

form for purposes of air-screw design, so that we may proceed
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to select our sections along the blade without stopping to

consider whether it will be possible to express analytically
the characteristics of the same in estimating the Thrust, Torque,
and Efficiency of the whole blade, providing of course that the

forms of the blade sections chosen are such that they conform

to sections of which the characteristics are known from tests

Chord A ng/e of Incidence fdtyrreij

FlG. 16.

carried out in a wind-channel for the same when considered

as aerofoils moving in a straight line.

A somewhat typical series of such sections are given in the
(<
Technical Report of the Advisory Committee for Aeronautics

for 1911-1912," and their characteristics are shown plotted in

Figs. (15), (16), (17), (18), (19), (20), (21).

It will be noticed that the maximum value of the ^p-
Drag
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ratio, and hence the minimum value of (tan 7), occurs in all the

sections at an angle of approximately (4) degrees.

We may of course use any
"
angle of attack" we please for

each section along the blade, but it is advisable to use the angle

corresponding to the least value of (tan 7) fur each section

considered, as this gives a better overall efficiency for the whole

blade, since the efficiency of any section is equal to

tan A
tan (A +7)'

Chord Angle of
Inc. i d e. nee

FIG. 17.

and hence the smajler the value of (tan 7), and hence of (7),

the greater the efficiency at that section.

We now proceed then to a consideration of the design of

any type of air-screw to fulfil any given specified set of

conditions.
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It is usual to start with the following data, which are

supposed to be fixed from outside considerations.

(1) (V) The horizontal velocity of the air-craft.

(2) (?i)
The speed of revolution of the air-screw in

revs./second.

Chord Anyle of Incidence.

FIG. 18.

(3) (d) The diameter of the air-screw. This is

usually fixed from considerations of

ground clearance, etc., and is usually

made as large as the design of the air-

craft will permit. This seems to be

fairly standard practice at present.

Experimental research is required before

this point can be definitely settled.

E 2
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(4) <p(x) These functions of (%) and (tan 7) depend
and upon the form of the sections employed

fy(x) at various radii along the blade and their

respective
"
angles of attack," and may

be plotted when the form and position

of these relative to the boss centre are

known.

Chc-rd Anyle of Incide nc e Idcy

FIG. 19.

(5) (H) The B.H.P. of the motor multiplied by
the efficiency of the transmission (if

any) supplied to each air-screw (if there

are more than one).

We now proceed to draw out the blade shape of the air-

screw, making ordinates on the curve represent proportional
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widths. Here experience and a study of the particular type of

air-craft to which the air-screw is to be fitted will guide us.

Portions of the air-craft coming within the air-screw's disc

of revolution must be taken into account when designing the

blade shape.

An air-screw fitted to a rotary motor having a large cowl,

for instance, will not probably require so large a blade width

Chord Anyle of Inc i de nc t

FIG. 20.

for best efficiency at the inside radii near the boss as would

otherwise be advisable if the air-screw were working free from

any such obstructions in the air-flow.

In the theory of air-screw design as set forth in this book

no quantitative notice is taken of such stationary parts of the

air-craft, and to do so would be in most cases an exceedingly

difficult problem.
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A study of the efficiency curve for the blade will also help
us in the designing of a suitable blade outline.

Bearing then these considerations in mind we commence the

designing of our air-screw as follows :

(1) Plot the efficiency curve

P. 2/

J Incidence (deyrees)

FIG. 21.

We do not as yet know the value of the function ^r(,r),

but for a first approximation we may take this as

being constant and equal to say T^.Z

In slow running air-screws this curve of blade efficiency

will be found to be almost a parallel line with the

(x) axis, except close up to the boss, where it runs

down to the origin very rapidly.
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In high speed air-screws the change in slope of the

efficiency curve will be more marked, and this

brings us to a consideration of the best blade shape
under these conditions.

As an example of a good blade outline for an air-screw, the

four-bladed air-screw as used on the Royal Aircraft Factory

aeroplanes may be cited. This screw revolves at a speed of

900 r.p.m., which is if anything rather on the slow side.

We may however take it as a fairly good general rule that

in designing an air-screw blade, the maximum ordinate on the

blade outline curve, that is the point where the blade is widest,

should be somewhat nearer the tip of the blade than the point

of maximum efficiency as given by the efficiency curve.*

FIG. 22.

It is not proposed here to discuss the theoretically best form

for the blade outline function f(x), as to do so would be a very

difficult matter when treated generally.! Experience is a good

guide in choosing a suitable shape for the form of this function.

Taking then the blade outline as being something of the

* Recent tests on aerofoils with elliptical-shaped ends have shown a

marked improvement, in ratio, over similar aerofoils with square-

cut ends, provided that the section of blade in the former case is

everywhere geometrically similar. This indicates the superiority, from

efficiency point of view, of blades with tapered tips, apart from any other

considerations.

f A general treatment of the variation in (77) due to variation of /(#),

and the determination of the form of f(x) giving to (77)
a maximum

value, would require the application of the Calculus of Variations, and

is beyond the scope of the present work.
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form shown in Fig. (22), we may proceed to the determination

of the complete design of the air-screw.

/o\ T ^ fi ^ thickness ,. ,
.

(2) It is first necessary to fix the r T ratios of the

sections along the blade, and here again practical experience
will help us. It is undesirable to make the blade sections too

thin, especially near the boss, as this leads to undue flexibility

in the blade, with corresponding losses in efficiency.

In an air-screw having a diameter of (8) or (9) feet, the

following proportioning of the sections along the blade would

seem to be fairly standard practice :

At a radius of (1) foot from the boss centre,

Section No. 7, Fig. (21).

(2) feet 6, Fig. (20).

(3) 5,Fig.(19).

(4)

'

4 Fig. (18).

Having then selected a suitable series of aerofoil sections

and having spaced them along the blade, we may proceed
to the determination of the two functions </>(#) and ^(#)
characteristic of such sections.

The respective
"
angles of attack

"
of the various sections

employed will of course be the angles corresponding to the

least value of (tan 7) in each case, since this will give the

highest efficiency for any specified spacing of the sections and

form of blade outline.

In the case considered, these
"
angles of attack

"
are taken

as being constant and equal to (4) degrees, since, as already

stated, and as a reference to the curves given in Figs. (18,

19, 20, 21) will show, the respective minimum values of (tan 7)

occur approximately at the same angle of incidence in each

case, namely (4) degrees.

In this connection it does not seem to be unreasonable to

assume that sections lying between any two selected sections

along the blade will have characteristics intermediate between

those of the two respective outside sections considered, and
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quantitatively will approximate to the values of the character-

istics shown on a smooth curve drawn between the various

points along the blade corresponding to the characteristics of

the selected sections at those points.

We shall then obtain a series of points for the values of

(cy) and (tan 7) for the various radii chosen, and if smooth

curves be drawn through these points we shall obtain the two

curves denoted by <(^) and ty(x).

Fig. (23) gives these two curves for the sections and spacing

of the sections considered and for a uniform "
angle of attack

"

of (4) degrees.

We are now able to read off from the two graphs plotted

of <f>(x) and -fy(x) the respective values of these two functions

for any value of (x) considered, that is for any point along the

blade.

(3) It now only remains to determine the true value of the

blade width for every point along the blade.

The efficiency of the whole blade can be found at once, since

we know the values of the two functions </>(x)
and ty(x) for

each value of (x) considered.

The value of (&), the true blade width at any radius (#), can

be obtained in the following manner.

We already know that

b = c.flx),

where f(x) denotes the scale blade width for each value of (x)

considered, and the value of f(x) is thus the value of the

ordinate on the curve of proportional blade widths already

drawn. So that we have only to find the value of (c) in order

to be able to completely determine the value of (&) for any
value of the radius (x).

It has already been shown that the Torque (M) of each

blade of the air-screw may be expressed as

M = c.p.n\ \x.f(x). $(x). (P+ 2.7T,*. f(^))VPH-"4;7r^; dx.

Jr

And further (N.M.2.7r.w) is proportional to the horse-power
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o *

'

/ vW
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available to turn the whole air-screw, where (N) denotes the

number of blades.

Hence if we use Ib./ft./sec. units we get that

IN . ivi.-j.7T.n .

^TK =
J~ijooO

where (H) is the available B.H.P. after allowing for losses in

transmission (if any transmission is employed).

We also have the value of (p) as being equal to
( 00238) in

Ib./ft./sec. units.

So that we can at once write

= H

whence

550. H
(r

2.7T.n
S
.N.p. X.f($). <(.

Jr

and this gives the necessary value of (c) for any given outside

conditions.

It will be noted that all dimensions must now be measured

in feet.

We proceed then to the evaluation of the blade width

constant (c).

Since we have not obtained the functions <j>(x)
and ty(x) in

an algebraic form, that is we do not know the equations to

these two curves, we cannot evaluate the definite integral

I,

x.f(x). </>(.

algebraically, and hence must employ a graphical method

throughout. This also applies to the evaluation of (/;), the

efficiency of the whole blade.

In order then to obtain the value of (c) it is first
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necessary to determine graphically the value of the definite

integral

\X.f(x). $(X). (P-f2.7T.JE. ^)).V^ + ^7T\X\ dx,h
and we may proceed to do this as follows.

Plot the graph of the function

x. f(x). $(x]

to some convenient scale against values of (x), the radius from

the boss centre in feet.

yWe already know the value of (P) ;
it is

;
and both (V)

and (n) are known to start with, since they are assumed to be

fixed from outside considerations.

The value off(x) for any radius (x) is known, since it is the

value of the ordinate on the scale blade width already drawn.

The value off(x) is to be measured in feet, that is to say we

must take some convenient scale on the graph paper to represent

so many inches equal to one foot.

The respective values of </>(x)
and ^r(x) are determined at

once from a reference to the two curves already plotted of these

functions for any value of (x).

Having then taken a sufficient number of values of (x), and

having determined the corresponding values of the function the

graph of which we are plotting, a smooth curve drawn through
the points so obtained will give the curve required.

Now draw two ordinates from the (x) axis at the

points (r )
and (r) respectively until same cut the curve just

plotted.

Then the area of the enclosed figure so obtained, that is the

figure contained by the curve, the two extreme ordinates at (r )

and (r), and the (x) axis, is the value of the definite integral

required.

The areas of closed figures of this kind are most easily

obtained by means of a planimeter.

It is to be noted here in this connection that the actual area

of the figure so obtained will be in, say, square inches, and
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hence that it must be multiplied by some constant in order to

find the real value of the definite integral.

The value of this constant will depend, of course, upon the

scale employed in the plotting of the graph.

Thus, if the ordinate on the curve corresponding to any
value of (x) has a value obtained from the formula

T f(l-\ d\(t>\ (~P 4- 9 TT V ^(^\^J vV'V^V / \ -T^.TT.X.Yv*v

of such and such an amount, this value will probably not be

able to be represented on the graph paper used, since it may be

very much too large when taken to the same scale as that of

the (x) axis, and hence the scale of
"
heights

"
or ordinates will

probably have to be made much smaller than the scale used for

the (x) axis.

Having then obtained the value of this area in the required

dimensions, we may determine the value of (c) at once.

It is given by
550. H

/>
^

,
,

2.7r,n
3
.N.p. (area of figure obtained)'

where (p) has the value of (-00238) as already given.

We have then that the true or necessary blade width at

each radius (x) is the value of the scale blade width at that

radius multiplied by the value of the constant (c) already

found.

Or
I = cf(x).

The value of f(x) for any radius (x) will, of course, be

measured off the curve of this function already drawn, and

its corresponding real value found by reference to the scale

employed in drawing the curve.

Thus, if 1 inch on the curve ordinate represents 1 foot as

the actual scale blade width, a value measured at any radius

of, say, (
'

75) inch as the ordinate of the curve at that radius

would represent an actual scale blade width of ( 75) foot, that

is (9) inches.

And further, if the value of (c) was found to be, say, (1 2),

then the true or actual blade width at this point would be
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equal to (9 X 1*2) inches, that is (10*8) inches. And this

would be the width of the blade at that radius to be used in

the construction of the air-screw.

We may obtain the value of the total efficiency of each

blade, and hence of the whole air-screw, in a similar manner
as follows.

Plot the two curves

4.7r^ (1)

and

h4.^2
(2),

which is the one already plotted, and which therefore it is

unnecessary to replot.

Take the area of the figure enclosed by (1), the extreme

ordinates at (r )
and (r), and the axis of (x).

The area enclosed by (2) has already been obtained from the

evaluation of (c).

Divide the area enclosed by (1) by the area enclosed by (2),

p
and multiply the result by ^ . The answer will be the

efficiency of the air-screw.

It will not, of course, be necessary to trouble about scale

constants, etc., in determining the value of the efficiency of the

whole blade, as, provided that the two graphs (1) and (2) are

drawn to the same scale, it will only be necessary to divide

their actual areas one by the other in whatever dimensions

these two areas are obtained, provided, of course, that each area

is measured in the same dimensions.

In the determination of (c), and hence of the real blade

width for each radius, it will usually be found that the true

blade widths for each point along the blade will be somewhat

smaller than those actually employed in practice on a similar

form of air-screw. This is due to the fact that the calculated

Torque (M) is higher than the actual Torque found in practice,

and hence that the necessary blade widths at each radius will

have to be larger than those given by the theory.

Of course no one for a moment supposes that the theory of
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air-screw design based on an analogy with aerofoils moving in

a straight line is absolutely exact. It is merely a very useful

theory, the results of which conform very closely with those

actually obtained by experiment.

It is difficult to estimate the amount of this difference

between the calculated and actual Torques, without actual

quantitative experimental results, but it would appear that the

actual value of (c) is between -==- and ..- times the calculated
/ o 7o

value as given by the theory.

So that after having obtained the calculated value of (c), it

will be prudent to augment this value by say 33 %, that is

multiply the value of (c) obtained from the formula by -=- .

7 o

It will be useful here to have some independent check upon
the working, so that any arithmetical slips in the evaluation of

quantities such as (c) may be as far as possible avoided.

We may obtain a rather approximate check of this kind

by reference to the
" Rational

"
blade outline form already

considered.

If, in the expressions deduced for the characteristics of this

form of blade, we assume that both (cy) and (tan 7) are constant

over the blade, and that (r ) is equal to zero, and further if

we take the value of (tan 7) to be ^r, then we obtain the
\2t

following expression for the necessary blade width constant (c).

52800. H

and since as already shown

c =

where (br) denotes the tip blade width, we can obtain the

necessary value of (br) by substitution, thus

52800. H

And this then provides a useful approximate check upon
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the previous work in the determination of the true blade width

for each radius (#).

It will be noticed from this and previous expressions for

blade width, that doubling the number of blades of an air-screw

merely halves the respective widths of same at corresponding
radii.

This theory does not in fact take any notice of possible

improved efficiency by the use of more than the customary two

blades for an air-screw.*

We may also obtain an approximate value for the efficiency

of the whole blade by means of the same "
Rational

"
form of

blade outline.

This has already been shown to be given by

2.Z. (2.7T
- 3. tan 7. Z)

TT. (4.Z+ 3.7T. tan 7)

'

which reduces to the simpler form

2.Z. (8.7T-Z)
77

==
7T. (7T + 16.Z)

when (tan 7) has the value of .

Now there will be, corresponding to some particular value

of (Z), a value of (rf)
which will be a maximum, and this will

therefore give the theoretically best value of (Z) and therefore

of (n) to use for any given set of conditions, since the values

of (V) and (d) will usually be fixed from outside considerations.

We may obtain the value of this maximum efficiency and

the value of (Z) for which it is a maximum as follows.

The condition for a maximum value of
(77) is

^L-
dZ

~ U
'

and this gives

Zl
= ~. [\/8 + 9. tan2

~r7-3. tan 7],

giving the requisite value of (Z) for a maximum value of
(77).

*
Except in so far as the greater the number of blades employed the

higher the aspect ratio of each, and hence the greater the efficiency of

the air-screw due to increase of aspect ratio.
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This expression is seen to approximate to the value !^_f

as (tan 7) approaches zero.

As a rule this value is in the neighbourhood of (2) and

hence we may say that, for a near approximation, (77)
has a

maximum value when (Z) is equal to (2).

P V
Now (Z) = - = - and hence if (Y) and '(d) are fixed by

Cl> 1l'.(L

outside considerations, the value of (n) for which the efficiency

of the air-screw is a maximum is given by

Zl =
^d

~ 2
'

whence

(n L )
=

y-j
revs. /sec.

So that if

(V) = 100 feet/sec.,

(d) = 10 feet,

the speed at which the air-screw, or air-screws, should be run in

order to obtain the maximum efficiency would be (5) revs. /sec.,

that is (300) revs./min.

This speed is of course abnormally slow in the light of

present-day practice, although the speed of revolution of the

air-screws in some of the Wright aeroplanes is as slow as

(450) revs. /ruin.

A curve of efficiency for values of the ^i - ratio (Z)
Diameter

has already been given for values of (Z) occurring in practice.

Mr. H. Bolas gives a formula for the efficiency of an air-"

screw of good shape
*

(see
" Technical Report of the Advisory

* This formula is only an approximate one. It is

"
1 4- Ic. tan y. cot 6

- Z

Z 4- 7T./t. tan y'

and if tan y =
, A' = *7, we get

Z~
Z + '188'

which may then be plotted against (Z).
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Committee for Aeronautics, 1911-12 "), and this has also been

plotted against values of (Z). The two curves of efficiency are

shown in Fig. (14), and their close general resemblance will be

noticed.

It would seem that at any rate to a first approximation
the efficiency of almost any modern type of air-screw may be

obtained from the formula or graph given for the
"
Eational

"

shape.

As a rule, in practice it is found that the actual recorded

efficiencies of air-screws are higher than those given by the

theory.

Since (Z) may be taken as equal to (2) for a maximum
value of (??), the maximum value of (77)

will be obtained by

substituting this value for (Z) in the efficiency formula. We

shall take (tan 7) as being equal to ^ as before, and then

we have the value of (?;)
as ('84). Hence the maximum

overall efficiency of a,n air-screw having a
" Eational" blade

shape is (84%) when (tan 7)
= ^ and (Z) = (2).

Suppose that we wish to design an air-screw for an

aeroplane having a speed (Y) of (100) feet/sec., a rotational

speed (11)
of (20) revs./sec., a diameter (d) of (9) feet, and

having a motor capable of developing an effective horse-power

(H) of (100).

Then

1} and hence (P)
- Y

- = 5 feet.
( /Z' ) .. \J S Ji>

(d)
= 9

(H) = 100

Let the spacing of the sections along the blade be such as

already given with a uniform "
angle of attack

"
of (4), and

hence let the curves of $(#) and ^(x) be such as given in

Kg. (23).

Suppose that the form of /(#), the blade outline, is that

given in Fig. (22).
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Then we have to determine (1) The actual blade widths at

every point along the

blade.

(2) The total efficiency of the

whole air-screw.

We shall neglect the B.H.P. consumed in turning the

portion of the air-screw from the boss centre to the inside

radius (r ),
as by doing so we shall be on the safe side, since

our blade widths will now tend to come out larger than if we
allowed for the B.H.P. used near the boss. In any case the

amount of this B.H.P. is very small.

We proceed to determine the value of (c) in the manner

given by plotting the graph of

x.f(x). <(<'-') (P-

taking values of f(z), <(#), and ty(a') from the curves already

plotted of these functions.

The graph is shown in Fig. (24), and the actual area (as

originally drawn) is (50*25) sq. ins., between the two extreme

radii.

Now the scale of ordinates for this curve is taken to be for

convenience of the horizontal scale, so that the true area
o

enclosed by the curve will be (8 X 50*25) sq. ins., and, since

the horizontal scale employed is (2) ins. equal to one foot, this

area corresponds to (100*5) sq. feet.

Hence, applying the formula for
(c), we get

550. H
2.7r.7i

3

.N./o. (Area of figure)

where (N) = (2). It will be noticed that if we employ (4)

blades instead of (2), the value of (c), and hence the value of

the blade width at any radius, is halved.

If we now multiply the value (2 3) for (c) obtained above

by say -^K ,
so as to allow for differences between the

7o

F 2
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calculated and actual Torques, we obtain (3-07) as a more

exact value for this constant.

We can now of course obtain the true blade widths at each

radius by multiplying their respective values as given on the

i

s

5colc o/ 5colr Blade Width

Some as Horizontal 5 c a I e .

scale blade width curve by (3 -07) when the air-screw has

(2) blades.

We can also check this value by applying the
" Rational

"

blade constant formula and this then gives

52800. H^
Tr.n*.p.cy.d?.N. (16.P + TTJ!)V
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= (-486) foot, which is the value of the width of the blade at

the tip, when (N) =
(2). The value of (cy) has been taken to

be (*36). This value of the blade tip width is about what

might be expected for this type of blade, where the blade

increases in width towards the tip.

We may now determine the value of
(77),

the total efficiency

of the whole blade. We plot the curve

and take the area of the figure enclosed by it, the two extreme

radii at (r )
and (?'), and the

(,/;)
axis.

The area of this curve as originally drawn is approximately

(47 6) sq. ins. Eig. (24).

The value of the total efficiency of the whole blade is then

equal to

47-6 \ / P \ /47-6\ / 5 \
=

since (?) is equal to (5) feet.

The efficiency of an air-screw of this type would therefore

be approximately 75 3 %.

The blade sections of an air-screw at the inside radii near

the boss have to be made thick from considerations of strength.

We may, however, choose suitable shapes for the outside radii

from sections which have a high value of the , ratio as
Drag

aerofoils.

A few typical examples of such suitable shapes are given

in Eigs. (25), (26), (27), (28).*

* See " Technical Eeport of the Advisory Committee for Aeronautics,

1912-13."
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DCS.CN /*e.fo).

FIG. 25.

CAorrf An,/* o/ tnci-Jtct.(d*yi)

FIG. 26.
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FIG. 27.

FIG. 28.
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CHAPTEE V.

" LAYING OUT
"
THE AIR-SCREW.

IN commencing to lay out the blade sections of an air-screw,

it is first necessary to determine the chord angles of the blade

at several radii. Having done this-, the plan and elevation of

the blade may be drawn out, consideration being given to the

fact that as far as possible the two following conditions should

be satisfied :

(1) The centre of area of the sections should lie on the

blade axis.

(2) The respective positions of the centres of pressure of

the sections should be so arranged about the blade

axis as to eliminate as far as possible all twist on the

blade. The loading on the blade may be taken as

being uniplanar.

FIG. 29.

These two conditions may be occasionally somewhat

antagonistic.

A symmetrical plan form is undesirable. A good plan form

is shown in Fig. (29).
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We can obtain the true chord angles ((/>)
for each radius

f the blade considered from the relation

(j) v
= ax + tan

where (P) has the value of as already denned.

The values of (ax ) may vary along the blade, although

usually it will be found that the values of the
"
angles of

attack
"
are approximately constant and in the neighbourhood

of 4 degrees.

If we draw, Fig (30), a vertical line to represent the value

y
of and a horizontal line to represent (radii X 2.?r) in the same

units, we may, by drawing in the various hypotenuses, obtain

the inclination of the helix paths for any element along the

blade. And if these helix angles (A) be augmented by the

respective
"
angles of attack

"
at these points, we shall obtain

the true chord angles for the various radii considered.

If, further, the widths of the blade at these radii be drawn

in to scale along the chord angle lines, we may at once proceed
to lay out the plan and elevation of the whole blade.*

Sections near the boss may be thickened up if necessary by

adding a convex lower surface. In such sections the calculated

chord angles may have to be departed from. This is not of

great importance, although the actual chord angles of such

sections should not be less than their respective helix angles

at these radii.

Modern air-screw blades are built up of several separate

laminations of wood. French walnut is usually chosen as

the most suitable material from which to construct the

air-screw.

The lamina? may be easily laid out when the chord angles

*
Strictly the blade widths and sections at each radius when obtained

should lie on cylindrical sections coaxial with the air-screw, and not on

plane sections at right angles to a fixed arbitrary line in the blade. The

difference, however, is small at all but the smallest radii, where it is of

least importance.
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at the several radii considered have been determined. The
method is indicated in Fig. (31).

The plotting of the contours along the blade is obtained

from a consideration of the plan form of blade and the con-

struction of the laminae.
' A specimen contour plotting is

shown in Fig. (."32).

In the laying out of the air-screw the various curves should

as far as possible be run into the boss with smooth curves, the

FIG. 31.

size of the boss being fixed from considerations of blade width

and type of air-screw mounting used.

The thickening up of blade sections by means of a convex

under surface would not appear to affect their aerodynamic

properties to any great extent. Such thickening up may
sometimes be necessary from considerations of strength.*

* The employment of a convex undersurface appears to slightly

decrease the value of (cy), and hence necessitates the utilisation of a

wider blade section. This is sometimes done when a stronger section is

required. The
Lift

Drag
ratio is only very slightly affected.



77

CHAPTEE VI.

STRESSES IN AIR-SCREAV BLADES.

Centrifugal Stresses.

WHEN an air-screw is rotating about its axis at the boss centre,

the various elements which go to make up each blade are forced

to follow a circular path. The forces necessary to make these

portions of the blade follow such circular paths are directed

towards the point about which the air-screw is rotating (i.e.

the boss centre), and are of amount equal to

(weight of portion of blade considered) . (average velocity

of portion considered)
2 divided by (g) . (average

distance of portion from the boss centre).

Hence the reactionary forces with which the portions of the

blade "
pull" on any section considered are of the same amount,

and constitute a stress in the material of which the blades of

the air-screw are made.

Let Fig. (33) represent a blade of an air-screw, and let AA'

be a section of same at a radius of (X) feet from the boss

centre. Then the centrifugal stress 011 the section AA' is

composed of the
"
total pull

"
exerted by the portion of the

blade from A A' to the tip, divided by the area of the section

at AA'.

Let (?) denote the overall length of each blade in feet.

And consider the portion of the blade from AA' to the blade

tip of length (r-X.) feet.

Consider the centrifugal pull on AA' due to a small element

of the blade cut off by the two radii (#) and (x + dv)

respectively. Then (X) remains constant, while
(./)

varies from

the value (X) to the value (r).
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Then centrifugal pull on AA' due to the element considered

may be written ,

/F _ (weight of element) (velocity of element)
2

$

And let (w) = weight in Ibs. of one cubic foot of the material

of which the blades of the air-screw are made, and (iv) is then

assumed to remain constant for all values of (x).

FIG. 33.

And let (a)
= area of element considered in sq. ins.

And therefore

in sq. ft.

= area ^ sec^on f element considered

a.dx
And therefore volume of element = -Vr cu. ft.

And therefore weight of element = TJJ- Ibs.

And circumferential velocity of element is equal to

(2.7r.x.n) ft./sec.
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So that we may write

giving the centrifugal pull on AA' due to the element con-

sidered.

Hence the total pull on AA' is given by

E = '

a.x.dx Ibs.

Whence the stress due to the centrifugal pull at AA' is

riven by

a.x.dx Ibs./sq. in.,

where (c^) is equal to the area of the section at A A' in

sq. ins.

Now () denotes the area in sq. ins. of the section at

radius (#) from the boss centre, and consequently the value

of (a) may vary with (x). It is, however, a simple matter to

E
evaluate graphically the expression for

,
if necessary.

We have then

Stress due to centrifugal action at any section distance (X)
F

from the boss centre = Ibs./sq. in.,

where

P
=T -I'

= x

We may at once estimate the tensile stress, due to

centrifugal action, near the boss of the air-screw, if weO 7

assume that

(1) The blade width is uniform, and

(2) The blade section is constant, except near the boss.
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Then we have fit once that

F 7r-.n\w.

!

"'

3Q.ff.a-i alx
since () is constant

And this formula holds good for any value of (X) providing

the initial assumptions (1) and (2) are satisfied.

Since near the boss (X) may be taken equal to zero, the

formula becomes

F 7r
2
.n

2
.w.a.r

2
.. ,

- = ^-r-
-

Ibs./sq. in.,
! 7'2.g.a l

and this gives the value of the tensile' stress at or near the boss

due to the centrifugal pull of the whole blade.

An example will make the application of this result clearer.

Let (n)
= 20 revs./sec., (r)

= 4 ft., (w) = 35 Ibs./cu. ft.,

(a)
= 7 sq. ins., and (i) = 16 sq. ins.

Then, taking the value of (?r
2

) as being equal to 10, we get

F 10.400.35.7.16

T ~T2.3216"
^ lbs./sq. in.

Hence the amount of the tensile stress at or near the boss,

due to the centrifugal pull of the whole blade, is equal to

425 Ibs./sq. in. This result is quite in the usual order of

practical work.

Stresses due to bending.

The stresses in the blades due to bending are due to the

resultant air pressure exerted upon each element of the blade.

Consider any section as in Fig. (34).

And let (Yc)
= the distance in inches of the extreme ordinate

of the section from the neutral axis passing through the centre

of area of the section.

And let (Yf )
= the distance in inches of the chord line,

assuming the sections to be flat underneath, from the neutral

axis.
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Then the extreme values of the tensile and compressive

stresses occur at the layers of the material most remote from

the neutral axis.

So that we have

Maximum value of compression stress at any section in

Ibs./sq. in. = compressive stress at outside fibres

=
M.YC

I

And similarly,

Maximum value of tension stress at same section in

Ibs./sq. in. = tension stress at outside fibres

I
'

FIG. 34.

where (M) = bending moment at section considered, and

(I)
= moment of inertia of the area of the section about

the neutral axis,

and (Yc)
and (Y) have already been defined.

If the values of
^-?

and '=-*- be then worked out for

various values of the radius (X), we can determine the values

G
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of the max. compressive and max. tensile stresses due to bending
and centrifugal force.

For we have

Max. compressive stress at any section, due to bending and

centrifugal force = ~ -
centrifugal stress at section.

And similarly,

Max. tensile stress at the same section, due to bending and

centrifugal force = M.Y,
4- centrifugal stress at section.

FIG. 35.

And if this be done for several sections of the radius (X}
we shall obtain the

" maximum maximorum "
stress at some

radius, which stress must not exceed the safe working stress of

the material used in the construction of the air-screw.

We have then to determine the Bending Moment (Mx )
at

any distance (X) from the boss centre, that is, at any section

considered along the blade.

Let Fig. (35) represent a side elevation of the air-screw

blade.

Consider a section at A A' at a distance (X) from the boss
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centre. Then the Bending Moment at AA' is equal to the

sum. of all the B.M.'s at the sections from AA' to the blade tip.

Let (x) be any radius from the boss centre, lying between

AA' and the blade tip, and let (dE) represent the resultant air-

pressure at this section. The value of (dE) has already been

determined in terms of the radius (x).

Then B.M. at AA' due to the force (dE) = (dE) . (x
-

X),
and therefore

the total B.M. at AA' at a radius (X) from the boss centre

Ja?

= r

dE. (x
-

X).
r = X

Now

(dR) =
p.tf.b.cy. (P

2 + 4.7T
2
.a?

2

).
sec 7. dx,

so that

^x - X) = p.n*. \(x
-

X). b.Cy. (P
2 + 4.7r

2.^2
).

sec 7. dx
X Jx = X

= B.M. at AA' at a distance of (X) from the

boss centre.

We are now able to calculate the value of the B.M. on any
section at any distance from the boss centre.

Since we may without appreciable error take the value of

(sec 7) as equal to unity, the above becomes

;x = p.n
2

.

x X

and, since (R) is usually measured in Ibs., (x) and (X) will

be measured in feet, when (p)
= '00238, and therefore the

value of (Mx )
will be obtained in Ibs. /ft.

But, since (Yc ), (Y t)
and (I) are usually measured in inches,

(Mx )
must also be measured in inches in order to give the

stresses in lbs./sq. in.

Hence we must multiply the value of (Mx ), obtained from

the formula already given, by (12).

So that we then have

B.M. at (X) in Ibs./in.
= (12). (Mx ),

which is equal to

*

f(L-
Jx = X

G 2
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and we may evaluate this at once if we assume that the

conditions (1) and (2) already given are satisfied, so that (b)

and (Cy) are constants over the blade.

To estimate the Bending Moment at or near the boss, we

put (X) equal to zero, and the formula then becomes

B.M. at (X) in Ibs./in.
=

e>.p.n\l).cy.r\ (P
2
-f 2.7r

2
.r

2
),

and if we take as an example that

p = -00238, n = 20, r = 4, b = -75, cy
= -2, P = 5, ?r

2 = 10,

we have

B.M. in Ibs./in. at or near the boss is equal to

(6) ( 00238) (400) ( 75) (
-

2) (16) (25 + 20x16)
= 4728 Ibs./in.

Now we have the maximum value of Compression stresses

at (X) ft. from the boss centre, due to Bending Moment and

centrifugal force in Ibs./sq. in. = 12.
c

centrifugal stress

= ~->.?i
2

. (*-X).&.<v.(P
i
+4.irUB).&!

ir*.n?.w (*
r

j- -^ a.x.dx.
36.0.i Jx

And similarly the maximum value of the Tension stresses

at (X) feet from the boss centre due to Bending Moment and

centrifugal force in Ibs./sq. in. = 12. -' - + centrifugal stress

12.Mx.Yt

I x

= 12.Y
^2 PL Xx 5c

1
^

ir*n*w r
+ T-T I

<

36.tf.ftn
'

Iv
t/ * y/-A

r

a.x. ax.
x

And we may ^now obtain the values of both the maximum
Tension and maximum Compression stresses at any distance

(X) feet from the boss centre.
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If then the values of these stresses be worked out for

several values of (X), we shall obtain a " maximum maximorum"

value for the Tension and Compression stresses at some

particular value of (X).

The greatest of these two values so obtained must not

exceed the safe working stress of the material of which the

blades of air-screws are made. An approximate value for the

safe working load of walnut is 2000 Ibs./sq. in.
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CHAPTER VII.

STATIC THRUST.

THE supposed "effectiveness" of an air-screw is sometimes

thought to depend upon the "
pull

"
it exerts when revolving

on the ground, that is when the aeroplane to which it is

attached is being held back prior to a flight.

Now although what may be termed the
"
Static

"
thrust of

an air-screw cannot be considered as necessarily being a

criterion of efficiency, yet it is interesting to see how far it is

possible to predict quantitative values for this thrust when
considered in the light of the aerofoil theory.

It is quite evident that the analogy still holds in this case,

for we may consider each section along the blade as moving
with a definite velocity and hence exerting a definite thrust,

although the air-screw is acting like a fan, since it has no

velocity in a direction normal to the disc of revolution of the

blades.*

The helix angles (A) are thus equal to zero, and the
"
angles of attack

"
(a) must therefore be considered as being

equal to the actual measured chord angles at the various radii.

Thus (P) = 0, and (a)
=

(</>).

The general expression for the thrust on an air-screw blade

y
for any value of is given by

(
r

T =
c.p.n*. f(x). <j)(x). (2.TT.X-P. ^(x) ). \XP"-f 4.ir

a
.a;

a
. dx.

J r

*
Owing to some of the speeding up of air occurring before the

air-screw is reached, the theory cannot be applied directly without very

appreciable error. This error is not so great in the case of stationary

air-screws working in an enclosing channel.
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And, since in this case (P) = 0, this becomes

T = 4.7r
2

.c.p^
2

. P/0). $(x). x\ dx,
Jr

And this can be evaluated for any form of air-screw blade

considered.

Let us suppose however that the blade widths are uniform

from boss to tip, and that the section is also uniform.

We may regard (r )
= 0, so that we get

T = 4.7r
2
.p.&.?t

2
.cv . I y?. dx

and .-.

which gives an approximate value for the
"
Static

"
thrust on

each blade.

The value of (cy) will depend upon the form of the blade

sections at the outside radii, and the
"
average

v
values of ($),

the chord angles of the blade to the air-screw's disc of

revolution.

Approximate values for (cy) can be obtained from reference

to tests carried out on sections similar in form to those

employed at the outside radii of the blade and at angles of

the same amount as the "
average

"
chord angles.

(cy) often has a value of about ( 4).

Ic is useful, however, to obtain this
"
Static

"
thrust expres-

sion in terms of the horse-power of the motor.

Since

550.H.5 550.H.7;

V P.w,

in Ib./ft./sec. units, we obtain

= __
S.ir.n.d. tan 7

The value of (tan 7) depends upon the values of the outside

chord angles.
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If we take (tan y) = -, we get

N.T =

1

3'

700.H

n.d

This formula, while being very simple, is of course only a

very approximate one.

1000

8CO

GO

400

20C

H.P. - CuYve

400 800 /ROC

Revs, /

FIG. 36.

/600 8000 MOO

If as an example

H = 40, n = 2Q,d = 8, we get

XT 700 x 40

20x8
=

'
a verv

In any case, however, it would appear that we can put the

expression for the "
Static

"
thrust into the form

N.T = X.H

n.d'

where (X) has a value in the neighbourhood of (1000).
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Suppose

H = 40, n = 8, d = 8, \ = 1000
;
then

XTT 1000x40N 'T=
8x8

We notice that the "
Static

"
thrust increases inversely as

the rate of revolution of the air-screw, so that we should expect
a slow-running, i.e. geared-down, air-screw to have a higher

26OC
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rotational speed, and that the necessary B.H.P. required to turn

the air-screw varies as the cube of the rotational speed.

This is borne out approximately by experimental tests on

air-screws, as Figs. (36), (37) will show. These Figures are

taken from the results of tests carried out at the National

Physical Laboratory by Mr. F. H. Brainwell and Mr. A. Fage.*
We notice from these experimental curves that for a static

thrust of approximately 1050 Ibs. on an 8 ft. diameter air-

screw having a rotational speed of 1600 revs, per min., the

B.H.P. necessary is approximately 270. Hence if we apply
the formula deduced for the static thrust we may determine

an approximate value for the constant (X).

We have

"X TT
Total static thrust of air-screw = X.T =

n.d

whence

X.270.60

1600.8
'

and therefore

(X) = 830.

This value is rather smaller than the value proposed, from

reference to actual static tests carried out on aeroplane air-

screws, for this constant, namely 1000.

* See " The Aeroplane," By A. Fage, A.E.C.Sc. (Charles Griffin & Co.).
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CHAPTER VIII.

EFFICIENCY OF AN AIR-SCREW AT DIFFERENT SPEEDS OF

TRANSLATION.

PRESENT day aircraft, whether aeroplanes or dirigibles, have as

a rule two distinct limiting speeds of flight. In the dirigible

the minimum speed will of course be zero, but in the aeroplane

this is not so, and the minimum possible speed of flight for

any given type may be calculated approximately when the

characteristics of the machine are known.

Now between these two limiting speeds, that is between the

minimum and maximum climbing speeds, there will be an

infinite range of speeds at which the aeroplane may fly. That

is to say that, if an aeroplane has a maximum velocity of say

100 feet per second and a minimum velocity of say 50 feet

per second, then between these two outside speeds the aeroplane

has an infinite 'number of different velocities at which it

may fly.

Now it will usually be found that in the case of an aeroplane

the speed at which it is able to climb fastest, that is the speed

at which the reserve thrust horse-power of the motor is greatest,

will lie between its maximum and minimum speeds and will

usually be nearer the latter.

If we examine the thrust horse-power curve of an aeroplane

it will usually be found that the ordinates on the curve have

at some value of the abscissae (in this case velocity) a minimum

value, and the velocity corresponding to this minimum point

will be the velocity at which the thrust horse-power required

for horizontal flight is a minimum, and hence the reserve thrust

horse-power is a maximum, that is the velocity of ascent will

be greatest at this value of the velocity.
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Now this is only true when the efficiency of the air-screw

is supposed to remain constant throughout the interval between

the maximum and minimum speeds of flight. In practice,

however, this is never so, since the air-screw is usually designed
for the maximum flight velocity, and hence for any other value

of the velocity the efficiency of the air-screw falls off.

Hence the curve of available thrust horse-power is now no

longer a straight line, and therefore the maximum difference

between the ordinates of this curve and the curve of thrust

horse-power required for horizontal flight will no longer neces-

sarily occur at the velocity corresponding to the minimum
value of the thrust horse-power required for horizontal flight,

but will usually be found to occur at a value of the flight

velocity slightly greater than this value.

Now in order to be able to determine this point on the

curve and hence the maximum rate of climb possible and also

the speed of flight corresponding to this maximum climb, it is

necessary to know how the efficiency of the air-screw varies

for different values of (V), the velocity of flight. Experimental
results of tests on air-screws have been obtained for various

types and curves of efficiency plotted against values of (V).

It is interesting, however, to attempt to predict the amount

of this variation in efficiency from the results already obtained

on the assumption of the aerofoil analogy.

We have already obtained an expression for the efficiency

y
of any type of air-screw at any value of the effective pitch ,

tv

that is at any value of the velocity of advance (V).

Hence we may, providing we possess the necessary informa-

tion with regard to the values of the lift and j of the sections
drag

at various angles of incidence, determine the value of (r;),
the

efficiency of the air-screw, under varying sets of conditions and

for various values of the translational velocity.

Now it has already oeen shown that the results obtained

from the "
Rational^' blade form in many cases approximate

very closely to standard types of air-screw blades, and we shall

therefore use this form of blade in the quantitative determina-
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tion of the values of
(7;)

for various values of the velocity of

advance (V).

This modification is introduced for convenience and simplicity

of working out the numerical examples, which become very
tedious when treated from the most general expression for

efficiency.

We have then the efficiency of an air-screw of this type is

given by

P.
(
X. ftx). (2.7T.X

- P. ^(X) ).
dx

Jr

J,r
x*. $0). (P + 2.TT.X. ^r(x) ).

dx
>

for any value of (P) =
,
and we proceed to discuss the varia-

tion in the value of
(77)

for variations in the value of (V).

Now it is not proposed to attempt to evaluate algebraically

y
the expression for

(77)
for any value of

,
since to do so would

71

necessitate the determination of at least approximate equations
y

for the two functions <f>(x)
and ty(x) for each value of -

considered.

We shall therefore employ a graphical method in this

investigation.

It will be necessary to determine the value of
(77),

the

efficiency of the air-screw, for several values of the advance per

revolution . and when these values have been obtained a
n

smooth curve drawn through the points will give at any rate

a near approximation to the value of the air-screw's efficiency

at any value of the velocity (V) considered.

We have then to plot the two graphs of

and

Y
for each value of taken, then determine the two areas

n
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enclosed by each respectively, the extreme ordinates at radii of

(?' )
and (r), and the (x) axis, divide the area thus enclosed by

the first curve by the area enclosed by the second curve, and

V
multiply the result by ^ ,

where (V) has the particular

value of the velocity of advance chosen. The value of (P) in

y
each case will then of course be

, (V) having the particularr
fi

value already defined.

Since we know the form of the blade sections at various

radii we may, by reference to tests carried out in a wind-

channel on sections of similar form, determine the probable
values of (cy) and (tan 7), that is of

</>(x)
and ^(#), of the

sections at these radii when we know the respective values of

the angles of attack of the sections considered.

We may determine the values of these angles of attack for

y
each value of (V), and hence of

,
chosen as follows.

iii

We must first determine the values of the chord angles (</>)

at the radii considered, and we can do this either by direct

measurement of these angles on the air-screw, or, if we know
Y

for what value of - - the air-screw is designed, it is only
id

necessary to determine the values of
(</>)

for any radius chosen

from the relation

tan -'

where (P) has the value of the designed effective pitch, that is

the value of the velocity of the aircraft (usually the maximum

velocity) for which the air-screw is designed, divided by the

value of (n) at this velocity.

(ax) is the value of the
"
angle of attack

"
of a section at

radius (x), for the velocity of the aircraft for which the air-

screw is designed.

(ax) may be termed the "initial angle of attack" of any
section at radius (x).

Having then found the value of (fa), the chord angle for
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any radius (x), we may proceed to determine the new value of

(ax) for the various values of (V) considered.

Since the effective pitch has now a different value from its

"initial" designed value, we may denote it by (P'), and the

new "
angles of attack

"
at each radius (x) by (ax

r

). We then

have at once that

; = <^- tan-' (-,
and we are now in a position to make the following table for

each value of*(V) taken.

Section No.
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designed velocity of flight. From each of these tables we may
plot two curves, the curves respectively of

and

&.#X). (P + 2.TTJCW) ),

and the two areas enclosed by these two curves may then be

found in each case. We may thus calculate the efficiency of

y
the air-screw for each value of -

chosen, and the values so
n

obtained can then be plotted against their respective values of

(V), giving a curve of efficiency for any value of the velocity of

advance of the air-screw considered.

It will be found that when (V) = 0, then (?;)
= 0, and that

when (V) has values appreciably greater than the designed

value of (V) the value of (rj) rapidly falls off.

An example will make the application of this method

clearer.

Let

(V) the designed or initial value of the flight velocity

of the aircraft = 100 ft. per second.

(n) the speed of revolution of the air-screw at this

value of (V) = 20 revs, per second.

Then (P) the initial value of the effective pitch = 5 feet.

(d) the diameter of the air-screw = 8 feet.

(ax) the initial angles of attack of the sections along

the blade = 4 = constant over blade.

Let the sections along the blade be those already referred to

and let them be spaced as follows :

At a radius of 1 foot, section no. 7.

2 feet, 6.

O K
o ,, ,, ,, o.

4 4.

We may then form the following table :
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y
- = 5 feet.

Section No.
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Y
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y = 7 feet.
n

Section No.
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FIG. 40.
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the higher value of (Z) makes a preponderance in the efficiency

y
of the whole blade. At a value of - - =7 ft., however, we

n

notice that the efficiency is very much smaller in spite of the

still higher value of (Z).

Of course if the air-screw was designed initially for a value

V
of - = 6 ft., the efficiency would be greater than that now

y
given at this value of

, providing of course that the spacing/

TL

and forms of the sections, etc., remained the same as in the

initial case here considered.

This curve of efficiency against values of translational

velocity (Y) appears to conform to curves obtained by

experiment on similar types of air-screws.



109

CHAPTEE IX.

DIRECT LIFTING SYSTEMS.

WHEN" a force (P) moves its point of application through a

distance (s), in the direction of the force, it is said to do (P.,s)

units of work.

If a weight of (W) Ibs. be lifted through a distance of

(x) feet the work done against gravity is (W.x) ibot-lbs., sup-

posing the distance (x) to be negligible in comparison with the

earth's radius.

Now suppose that a body of weight (W) Ibs. is being lifted

against gravity at a uniform speed of (Y) feet/sec., then the

work done per second is equal to (W.V) ibot-lbs., and the

horse-power necessary to keep the body moving at this velocity

is equal to -

550
.

And suppose the B.H.P. of the motors installed in the

machine to be denoted by (H), and the efficiency of the lifting

screws to be (rj), then the Effective Thrust Horse-Power of the

motors is equal to (H.??), and this is the horse-power available

for keeping the machine in motion.

So that we have

11-77
=

550
'

whence

V =
,i?' feet/sec.,W

or

W.V
:

550^'
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Now suppose that (V) =
0, so that the machine remains

stationary in the air, then

H ------=

550' rj

= : V
and if (77) is not zero, the B.H.P. required to sustain the

weight (W) vanishes.

But from the general expression for the efficiency of any

type of air-screw, we notice that when the effective pitch,

that is the advance per revolution of the air-screw, is zero

the efficiency of the air-screw is also zero, so that (H)
is not necessarily a vanishing quantity, for we obtain the

expression

W_ Q ^~

550*0
"

0'

which is indeterminate, and may be zero or a finite quantity.

We can however obtain the value of (H) for the case

(V) = from a consideration of the more general case when

(V) is not zero.

And if, having obtained the value of (H) for finite values

of (V), we consider (V) and therefore the effective pitch to

become very small and ultimately vanish, we shall obtain the

required value of (H) for the case when the machine remains

stationary in the air.

Suppose then that a body is moving vertically upwards
with a uniform velocity of (V) feet/sec., under the action of

screws which revolve at (n) revs. /sec. Then the effective pitch

y
of such screws will be -

feet, and if we know the diameter (d)
71*

of each screw we can find an expression for the efficiency of

the screws in terms of the quantities already known.

We will suppose for the sake of simplicity that we are

using a shape of air-screw blade similar to that already defined

as the
" Eational

"
blade. Then, if we further suppose that

(cy) and (tan 7) are constants over the blade, and that (tan 7)

has the value of
=-^, we can at once write down an expression
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for the efficiency of the whole air-screw under the conditions

specified.

The above assumptions are made for the sake of simplicity

and convenience, and do not affect the general results to any

very great extent. The " Rational
"
form of blade outline is

such a simple one to deal with analytically that the great

simplification in the work obtained by using this form of blade

is a justification for not treating the problem of direct lift in

its more general form, when the blade outline is considered as

some arbitrary undetermined function of the radius (x).

The expression for the efficiency is therefore given by

2.Z.(8.7r-Z)

^.(TT + IG.Z)'

P V
and, since (Z) = -7

= we obtain
Cv ??/ . Ct>

And this expression is the value of the efficiency of the

lifting screws under the conditions specified.

We are now in a position to estimate the necessary B.H.P.

of the motors for the velocity (V) upwards. We have already

shown that the required B.H.P. is given by

II -
W V

"

550* 7,'

and

2.V. (S.TT.n.d -V)
71

=

so that

1100' (S.Tr.n.a- \)

W TT nd
And now, if (V) = 0, then (H) = ^^- t

which gives the B.H.P. necessary for
"
hovering."
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This was the case which before we were unable to evaluate

owing to the indeterminateness of the expression-.,.

Thus as an example suppose that

W = 1100 Ibs.,

n = 20 revs. /sec.,

d = 8 feet,

then the B.H.P. necessary to keep the machine hovering in the

air is given by the value of (H), which in the above example is

found to be equal to (63) B.H.P. approx.

It can be seen from the formula that when (V) is not zero,

the B.H.P. required is greater than what it was for the case

when (V) = (0), and as (V) increases so does (H) increase.

The value of (H) is strictly the value of the B.H.P. of the

motors multiplied by the efficiency of the transmission to the

lifting screws.

It will be noticed that when

(V) = 8.7r.n.d

the value of (H) becomes infinite, which forms therefore the

limiting value of (V). This limiting value of (V) is caused

by the fact that when (V) has the value given above, (Z) is

equal to (8.77-.),
and this corresponds to a zero value of the

efficiency of the air-screws.

Now in order that the screws may be capable of lifting

the whole machine, it is necessary that their combined

effective thrusts shall be greater than the total weight of the

machine (W).
This is equivalent to saying that the air-screws must be

capable of sustaining a greater weight than (W) when (V) = 0,

for if it be supposed that the machine has an extra weight (w)

attached to it, and that the screws are just supporting the

combined weights of (W) and (w) in the air, then it is obvious

that if the weight (w) be detached from the machine it will

fall, and the machine will then be subjected to an accelerating

force greater than its weight (W), and hence that it wT
ill

commence to rise.
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In order therefore that our helicopter may be capable of

rising off the ground, the effective horse-power of the motors

must satisfy the relation

TJ- W.ir.n.d*>
880CT-

The quantitative determination of the acceleration produced

by the reserve horse-power is somewhat difficult to arrive at.

There are however other considerations bearing upon the

subject of vertical ascent in the air.

We have already shown that

H W~
1100

y = Tr.n.d.(8800.TI-W.7r.n.d)

whence

which gives the velocity of ascent through the air.

We notice at once that when

W.Tr.n.d

8800

the value of (Y) is zero, and the machine remains stationary.

This is the condition already established for "hovering" flight.

Iii order, therefore, that (V) may be positive, it is necessary

that

W.ir.n.d

8800
'

and this condition brings us to a consideration of the requisite

values of (n) and (d), which values so far have been assumed

to be anything whatever.

It is of course obvious that in order to obtain a good

efficiency for the lifting screws, the value of (Z) should approxi-

mate to the value at which the efficiency of the screws is a

maximum. But since it will be found that the velocity of

ascent, and hence the effective pitch, may be small compared
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to the diameter of the air-screw, unless this diameter be itself

small, it will be more economical to use possibly a large

number of separate air-screws, in which the ratio of effective

pitch to diameter is such as to entail at least a moderately

good efficiency. This may of course make the diameter of

each individual air-screw quite small. The reason for using a

number of separate air-screws is that the necessary width of

blade would be inordinately large in the case of one or two

lifting screws only, and hence the value of (c) would be such

as to entail an enormous amount of interfering action between

the blades of each air-screw.

Suppose then that there are (Q) separate air-screws, each

W
exerting a thrust of -~- Ibs., then the horse-power available for

turning each screw is
^-.

And let each air-screw (all of which are assumed to be

identical) have (N) blades.

Then we have

Total thrust exerted by each air-screw = (N.T) Ibs.,

and

Total weight required to be supported by each air-screw

=
Q

lbS "

whence
W

(N.T) =--

Q,

Now we have for simplicity assumed that the blade shape

for each air-screw is that defined as the "Eational" blade

shape. And we have further assumed that the section of the

blade is uniform throughout the entire blade, except perhaps

near the boss, which does not affect the argument to any

appreciable extent.-

We can then at once apply the formula already obtained

for the thrust of an air-screw having this shape.
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We have

c.^^p.cy.l\d'
2

.(2.7r.d-3.P^nry)
12

whence
/ V \

~rT c.n.TT.p.V.d^.Cu. I 2.7T.d 3. -
. tan 7 )W V n '/

Q
:

~l2~ '

and /.

12.W
Q =

c.p.7T.V.d
2
.cy . (2.7r.d.n 3.V. tan 7)'

In this formula for the determination of (Q) all the factors

are known with the exception of (V), the velocity of ascent.

We have, however, already obtained a formula for (V), viz.

ir.n.d.(88QQ.'E-W.Tr.n.d)~
'

so that we can at once determine the least necessary value of

(Q) for any chosen value of (c).

Suppose that

W = 1000 Ibs.,

n = 20 revs. /sec.,

d = 10 feet,

H = 100 effective horse power,

and let

1
C =

3'

Cy
= "4,

tan 7 =
j^,

then, since we are using lb./ft./sec - units, (p) will have the

value of (-00238), and hence we get the value of (Q) as

given by

12x1000
y =

-i
-- ~r~ 1?:

i X 00238 XTTX 15 x 10 2 x
'4^2.^.10.20

- ~
I 2
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/

We thus obtain the least value of (Q) required in order

that the initial conditions may be satisfied.

We notice that if (c) be less than -^ the necessary value
o

of (Q) will be greater than (6).

If we solve formally to obtain (Q) in terms of (H), we get

* =

and it can be seen from this that as (d) decreases in value (Q)
increases. It is interesting to consider for what value of (d)

(V) has a maximum value, and hence to obtain the necessary
A'alue of (Q) for this.

To find the value of (d) for which (V) is a maximum, we put

Id
=

'

and this gives

_ (712-5).H 227.H

w.v.^r WM

as the value giving (V) a maximum value.

To obtain the value of the maximum value of (V), we
substitute the value of (d) obtained from the above in the

general formula for (Y), and get

462.H ,
v max = w feet/sec.,

and this gives the maximum velocity upwards under the best

possible conditions.

The value of the number (462) depends upon the value of

(tan 7) taken.

We also notice that the efficiency of the lifting screws

under these conditions is equal to ^-^, that is approximately

(84) per cent.

Thus a machine, weighing complete with engines, screws
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fuel, etc., (1000) Ibs., and having motors capable of developing
an effective horse-power of (100), would have an upward

velocity under the best conditions as already given of (46 2)

feet per second, or roughly (2800) feet per minute. This rate

of climbing is about double that of the fastest aeroplane scouts

at present in existence.

We can now obtain the necessary value of (Q) for a

maximum value of (V).

We get

QV *JiJj.j\*-v )- ./i./fc

7 ~r T-f*
J

and since

227 H
d = ^ r

'

: for a maximum value of (Y),W.n

where (n) is arbitrary, we can find the necessary value of (Q)
for any arbitrary chosen value of (d).

This then gives

o = (_'i99)ao-
4

).w_
3

whence the larger the value of (d) the smaller the value of (Q).

Applying this result to the previous example, where

W = 1000 Ibs.,

_
1

<'<!/

= * 3
>

H - 100,

d = 10 feet,

we get

Q = 26-2.

So that we shall require at least (27) separate helices in

order that (c) may have a value not greater than -,.

Thus the blades would have to be between two and three
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feet wide and the air-screw would have to rotate at a speed

given by the relation

227.H

W.d'
so that

(n) = 2* 27, which is approximately (136) revs./rnin.

It is a simple matter to determine the necessary value of

the blade widths at any radius (x) along the blade. We have

2. C.P.^..

giving the value of (b) for any radius (x).

At the tip of the blade (x) = (r), and the value of (b) is then

given by
C.l\7T.d

br = -

Applying this last result to the example given above

1 46-2
- X

we get

So that if N = 2, that is, if each air-screw has (2) blades

we get

br = (2 '65) feet (approx.),

and this is the necessary value of the blade width at the tip

under the conditions specified.

As stated in the Preface the results given by the theory in

the case of Direct Lifting Systems and for Static Thrust must

not be accepted without due caution.

Owing to the fact that in both these cases the translational

velocity of the machine is usually zero or very small, and

hence the ratio of the slip-stream velocity to this velocity

rather high, the angles of attack of the various blade elements
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are not the same as given by the theory, and consequently the

results obtained from it by calculation may be quite fallacious.

It would appear, however, that, providing the value of (Z)

is sufficiently large and in the neighbourhood of that obtaining

in standard types of air-screws as used upon aeroplanes (that is

having a value of say between *4 and unity), the results as

given by the theory in Chap. IX. should be found to be

sufficiently true, at any rate as a basis for practical design and

further investigation.

This would probably necessitate a very high rate of ascent,

or at any rate the utilization of the value of (Q) giving a

maximum value to (V), in order to obtain the requisitely large

value for (Z).

The calculated value of the B.H.P. required for
"
hovering,"

given on page 112, is for these reasons probably much too small.

Mr. F. W. La.nchester, in a recent paper,* gives a formula

for the determination of the least requisite B.H.P. for a

stationary helicopter, his expression being

where (A) is the area of the propeller disc, (W) is the weight

sustained, and (p) the density of the fluid, in the case of air

approx. ,
or 078.

If we apply this to the example quoted, we obtain (135) as

a minimum value for (H). This is probably a much more

accurate figure.

* "The Screw Propeller," by F. W. Lanchester, M.Inst.C.E., read

before the Institution of Automobile Engineers in April 1915.
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APPENDIX I

NOTE ON THE INFLUENCE OF "ASPECT EATIO."

IN the Introduction a brief reference was made to the ratio of

the span to the chord of a wing, commonly known as the
"
Aspect Batio." It is fairly certain that the characteristics of

an aerofoil vary with variation of aspect ratio, although any
exact quantitative determination of the alteration of lift and

, corresponding to a given change in the value of the
drag'

aspect ratio of a wing, would appear to be impossible at

present.

At the same time it would appear that an increase in the

, lift ,

value of the
-^

-
always accompanies an increase in aspect

ratio.

The graph given in Fig. 46 is plotted from the result of

tests on a wing carried out at the National Physical Labora-

tory,* and serves as an indication of the kind of change to be

expected. The difficulty of correctly anticipating the amount

of this change in any case appears to be largely due to the

form of the wing tips employed.
This question of aspect ratio should be taken into account

as far as possible when designing an air-screw, as experimental

tests have shown that high efficiencies may usually be expected

from screws having blades of a high aspect ratio.

In fact it is apparent that, without attempting to formulate

any exact connection between blade efficiency and aspect ratio,

a high speed air-screw might conceivably have a better

efficiency owing to the necessary comparative narrowness of

* " Technical Eeport of the Advisory Committee for Aeronautics,

1911-12."
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the blades than one designed for the same conditions but to

rotate at a slower and otherwise more economical speed.

It is obvious, therefore, that this question cannot be

altogether neglected either in aeroplane or air-screw design,

and, in view of the comparatively meagre information at

present available on the subject, further experimental research

in this direction would appear to be required.

/ 2 3 4 & 10

FIG. 46.
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APPENDIX II

NOTE ON THE EFFECT OF THE INDRAUGHT IN FRONT
OF AN AIR-SCREW.

IT was stated in the Preface that the theory here outlined was

not in any sense to be regarded as bearing any more than a

fairly close relationship to the actual conditions surrounding
the working of a screw in air. It would indeed be well nigh an

impossibility to formulate a theory which would adequately

deal with all the various complex factors entering into the

problem of screw propulsion in fluids, and the most that

scientific analysis can do is to build up some kind of a working

hypothesis which may reasonably be expected to give results

sufficiently true for the purpose of practical design.

In fact, in any investigation of this kind, certain factors

bearing upon the problem may have to be ignored owing to the

difficulty of accurately representing their effects without the

too continuous employment of experimental data in the form

of checks upon the theory.

One such factor, of which no quantitative notice has been

taken in the previous work, is the indraught of air in front

of an airscrew, the effect of which is to modify the conditions

under which any element of blade has been assumed to be

working. The main modifications introduced by such an

indraught appear to be a decrease in the
"
angle of attack

"
and

an increase in the relative air velocity of each element along

the blade, thus altering to some extent the values of the air

reactions upon the same, although it is evident that these two

effects tend to partially neutralise each other. Quantitatively,

however, it appears to be very difficult to readjust the foregoing

theory so as to include this effect of indraught, without very
much greater experimental evidence than is at the present

time available. Some experiments have been carried out by
G. Eiffel * to determine the magnitude of this incoming air,

and he shews that the ratio of the indraught velocity to the

velocity of translation is a function of the = - ratio only.
diameter

* " Nouvelles Recherches sur la Resistance de 1'Air et 1'Aviation," 1914.
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If we assume that the analogy with aerofoils still holds for

every element of the blade, it is a simple matter to shew that

this ratio cannot exceed a certain limit directly depending

upon the value of the
"
angle of no lift

"
for the blade section

considered. The value of this ratio for air-screws of the type

as at present employed, and having 5 _ ratios of from
- diameter

( 5) to (
*

7), appears to lie in the neighbourhood of ( 6) to
( 7)

for the effective portion of the blade.

Further, if we assume that the correction factor already

given for the calculated torque of a blade to be capable of

being applied to each element along the blade between the

limits of integration, we obtain a value of about ( 4) for this

ratio as sufficient to account for the difference between the

values of the torque as calculated and found by experiment.

The value of the correction factor taken is (-^\7o J

For a value of ( 4) for this ratio, the "
angles of attack

"
of

the elements near the blade tip are found to be between (3)
and (4) less than the original values assigned to them when

no account was taken of the indraught. This would make the

real values of these angles of attack nearly zero for blades

designed on the aerofoil theory.

Eiffel's experiments do not, however, appear to substantiate

this view, the values of this ratio for various speeds of trans-

lation appearing not to exceed (-1). In any case, without

further experimental evidence it is quite useless to attempt to

fix any definite value for this ratio.

This question of the ratio of the indraught velocity to the

translational velocity is one which becomes of fundamental

importance in the case of screws having very small or zero

values of the effective pitch to diameter ratios, and were it

possible to obtain an accurate determination of the amount of

this ratio in such cases, the problem of the helicopter already

discussed would be much easier of a representative solution

than has so far been found to be the case, owing to the

limitations of the present theory.
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Aerodynamical efficiency,

48

Aerofoil, 1

Aeronautical Society, 40
"
Aeroplane," 90

Air-flow, 1

Air pressure, 16
"
Air-screws," Paper on, 40

"Angles of attack," 13, 56

Angles of incidence, 13
"
Aspect Ratio," 3, 121

"
Average

"
reaction, 11,21

Bending moment, 81, 82

Bent plane, 1

B.H.P., 18, 52, 59, 119

Biplane, analogy of, 30

Blade elements, 13

Blade sections, 14, 47

Blade shape, 25

Blade tip angle, 10

Blade width constant, 59

Bolas, H., 65

Bramwell, F. H., 4, 12, 90

Bryan, G. H., 1

(c), value of, for normal

incidence, 3

Calculus of Variations, 55

Camber, 48

Centre of area of sections,

72

Centre of pressure of sec-

tions, 72

Centrifugal forces, 5, 77

Centrifugal pull, 77

Chord angles, 10, 13
4 ' Constant Pitch," 10

"Constructional Limit"

type of blade, 35

Contours, plotting of, 76

Convex under-surface, 76

Correction factor on blade

width, 63

Cylinder, 7
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Diameter of air-screw, 51 Fluid motion, discon-

tinuous, 1

Formula for air-pressure, 1

Formulae, working. 47

Direct lifting systems, 109,

118

Dirigible, 91

Discontinuous blade out-
|

Fundamental hypothesis, 3

line curve, 44

Discontinuous fluid mo- "Gap," 31

tion, 1
| "Gap/chord" ratio, 31

Drag, 2
j

Gliding angle, 3, 14

Drag coefficient, absolute, 2 i Graphical methods, iv, 60,

Drzewiecki, iii, 3, 4

"Effective Pitch," 9, 10

Efficiency curve, 27

Helicoidal path, 6

I Helicopter, 113, 119
"
Efficiency curve

"
blade

j Helix, 7, 8

shape, 29, 35
j

Helix, angle of, 9

Efficiency, maximum point I Helix angles, 13

of, 27

Efficiency of an air-screw,

19, 91

Efficiency of an element, 26

Helix, length of, 8

Hovering flight, 113, 119

Ideal thrust grading dia-

Eiffel, G., 123 gram, 43

Elliptical shaped ends, 55 Indraught in front of an

Empirical multiplying fac-

tor, 63

Equations, 17

air-screw, 123

Infinitesimals, 23

Integration, 15

Experimental Mean Pitch, ! Interference, 30

12, 19,21

Experimental research, 51
|

J nes
>
& *

Fage, A., 4, 90

Flat plate, 1

Laminae, 34, 73

Lanchester, F. W., 3, 4, 119



INDEX 127

Laying out blade, 72

Lift coefficient, absolute, 2

Lift/drag ratio, 2

Lift of an aerofoil, 2

" Load Grading Curve," 23

Low, A. R., 34, 38, 40

Marine propellers, 4

Marine work, iii

Mathematical theory, 1

Mathematics, iv

" Maximum maximorum,"

82, 85

Maximum ordinate, posi-

tion of, 27, 30

Moment of inertia, 8 1

National Physical Labora-

tory, 4, 90

Negative pressure, 2

Neutral axis, 80

"Normale" blade shape,

34, 35

Outside fibres, 81

Pitch of an air-screw, 6

Pitch of zero
"
average

"

Reaction, 11

Pitch of zero Thrust, 1 1

Pitch of zero Torque, 1 1

Pitch ratio, 40

Pressure, negative, 2

Pressure, positive, 2

"
Rational

"
blade efficiency

formula, 40
"
Rational

"
blade shape,

34, 35

Resultant air pressure, 1,

14, 21, 22

Resultant Thrust, 1 1

Resultant Torque, 11

Royal Society, Proceedings

of, 1

Screws, marine, 4

Slip-stream, 43

Slip-stream velocity, 119

Speeding up of air, 86

Static Thrust, 86, 118

Stresses, 47

Stresses, bending, 80

Stresses, centrifugal, 77

Symmetrical plan form, 72

"
Technical Report of the

Advisory Committee for

Aeronautics, 1911-12,"

49, 65
" Technical Report of the

Advisory Committee for

Aeronautics, 1912-13,"

4, 69
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" The Screw Propeller," 119 i Velocity, minimum, 91

Thickness/chord ratio, 47, ; Velocity of blade element,

56 16

Thrust of a blade, 18, 19
i

Vertical ascent, 113

Thrust of an element, 1 6

Thrust, Static, 86 Walnut, safe working load

Torque of a blade, 18 of, 85

Torque of an element, 17 "Wash" of top wing,

Translational velocity, 9, 30

118 Whitehead, A. N., iv

I Wind-tunnel, 19

Velocity, climbing, 91 Working formulae, 47

Velocity, maximum, 91
; Wright Aeroplane, 65
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