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PREFACE TO THE SECOND EDITION
OF PART II.

The present edition of this volume has been earefiiliy

revised and corrected throughout. The principal alterations

will be found in the Theory of Series; which has been

developed a little in some places, with a view to rendering

it more useful to students proceeding to study the Theory

of Functions. In the interest of the same class of readers,

I have added to the chapter on limits a sketch of the

modern theory of irrational quantity, one of the most

important parts of the purely Arithmetical Theory of

Algebraic Quantity, which forms, as the fashion of mathe-

matical thinking now runs, the most widely accepted basis

for the great structure of Pure Analysis reared by the

masters of our science.

I am indebted for proof-reading and for useful criticism

to my friends Prof G. A. Gibson and Mr. C. Tweedie, B.Sc.

It is but right, however, to add that the careful and

intelligent readers of the Pitt Press have rendered the

work of correcting the proofs of this volume more of a

sinecure than it often is when mathematical works are

in question.

G. CHRYSTAL.

Kdinbcroh, 3rd March, 1900,



PIIEFACE TO FITIST EDITION.

The delay in tlie appearance nf this volume finds an apology

partly in circumstances of a private character, pixrtly in

public engagements that could not be declined, but most of

all in the growth of the work itself as it pmgressed in my

hands. I have not, as some one prophesied, reached ten

volumes; but the present concluding volume is somewhat

larger and has cost me iu finitely more trouble than I

expected.

The main object of Part II. is to deal as thoroughly as

possible with those parts of Algebra which form, to use

Euler's title, an Introductio in Analysin Infinitorum. A

practice has sprung up of late (encouraged by demands for

premature knowledge in certain examinations) of hurrying

young students into the manipulation of the machinery of

the Difierential and Integral Calculus before they have

grasj>ed the preliminary notions of a Limit and of an

Infinite Series, on which all the meaning and all the uses

of the Infinitesimal Calculus are based. Besides being to

a large extent an educational sham, this course is a sin

against the spirit of mathematical progress. The methods

of the Differential and Integral Calculus which were once

an outwork in the progress of pure matheinalics threatened

fur a time lu become its grave. Mathematicians hud fallen
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into a habit of covering their inability to solve many

particular problems by a vague wave of the hand towards

some generality, like Taylor's Theorem, which was sup-

posed to give "an account of all such things," subject only

to the awkwardness of practical inapplicability. Much

has happened to remove this danger and to reduce d/da;

and fdx to their proper place as servants of the pure

mathematician. In particular, the brilliant progress on the

continent of Function-Theory in the hands of Cauchy,

Riemann, Weierstrass, and their followers has opened for us

a prospect in which the symbolism of the Differential and

Integral Calculus is but a minor object. For the proper

understanding of this important branch of modem mathe-

matics a firm grasp of the Doctrine of Limits and of the

Convergence and Continuity of an Infinite Series is of much

greater moment than familiarity with the symbols in which

these ideas may be clothed. It is hoped that the chapters

on Inequalities, Limits, and Convergence of Series will help

to give the student all that is required both for entering

on the study of the Theory of Functions and for rapidly

acquiring intelligent command of the Infinitesimal Calculus.

In the chapters in question, I have avoided trenching on

the ground already occupied by standard treatises: the

subjects taken up, although they are all important, are

either not treated at all or else treated very perfunctorily

in other English te.xt-books.

Chapters xxix. and xxx. may be regarded as an

elementary illustration of the application of the modem

Theur} of Functions. They are intended to pave the way
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for tho study of the recent works of continental mntlie-

maticians on the same subject. Incidentally they contain

all that is usually given in English works under the title of

Analytical Trigonometry. If any one should be scandalised

at this traversing of the boundaries of English examination

subjects, I must ask him to recollect that the boundaries in

question were never traced in accordance with the principles

of modem science, and sometimes break the canon of

common sense. One of the results of the old arrangement

has been that treatises on Trigonometry, which is a geometri-

cal application of Algebra, have been gradually growing into

fragments more or less extensive of Algebra it^self : so that

Algebra has been disorganised to the detriment of Trigono-

metry ;
and a consecutive theory of the elementary functions

has been impossible. The timid way, oscillating between ill-

founded trust and unreasonable fear, in which functions ol a

complex variable have been treated in some of these manuals

is a little discreditable to our intellectual culture. Some

expounders of the theory of the exponential function of an

imaginary argument seem even to have forgotten the obvious

truism that one can prove no property of a function which

has n<jt been defined. I have concluditi chapter XXX. with

a careful discussion of the Reversion of Scries and of the

E.\pansion in Power-Series of an Algebraic Function—
subjects which have never been fully treated before in an

English text-book, although we have in Frost's Curve Tracing

an adniinible collection of examples of their use.

The other innovations call for little explanation, as they

aim merely at gixater coiiipleleuesa on the old lines, la
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the chapter on Probability, for instance, I have omitted

certain matter of doubtful soundness and of questionable

utility; and filled its place by what I hope will prove a

useful exposition of the principles of actuarial calculation.

I may here give a word of advice to young students

reading my second volume. The matter is arranged to

fiicilitate reference and to secure brevity and logical

sequence; but it by no means follows that the volume

should be read straight through at a first reading. Such

an attempt would probably sicken the reader both of

the author and of the subject. Every mathematical book

that is worth anything must be read "backwards and

forwards," if I may use the expression. I would modify the

advice of a great French mathematician* and say, "Go on,

but often return to strengthen your faith." When you come

on a hard or dreary passage, pass it over
;
and come back to

it after you have seen its importance or found the need for

it further on. To facilitate this skimming process, I have

given, after the table of contents, a suggestion for the course

of a first reading.

The index of proper names at the end of the work will

show at a glance the main sources from which I have drawn

my materials for Part II. Wherever I have consciously

borrowed the actual words or the ideas of another writer

I have given a reference. There are, however, several

works to which I am more indebted than appears in the

bond. Among these I may mention, besides Cauchy's

• ''Alltz eu avuut, el iu ioi vous viendia."
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Analyse AlgMtrique, Scrret'H Algdbre Supirienre, and RchlS-

niilch's Algebraische Analysis, which have become classical,

the more recent work of Stolz, to which I owe many indica-

tions of the sources of original information—a kind of help

that cannot be acknowledged in footnotes.

I am under personal obligations for useful criticifira, for

proof-reading, and for help in working exercises, to my

assistant, Mr. R. E. Allardice, to Mr. G. A. Gibson, to

Mr. A. Y. Fraseu, and to my present or former pupils
—

Messrs. B. B. P. Brandford, J. W. Butters, J. Cbockett,

J. GOODWILME, C. TWEEDIE.

In taking leave of this w^ork, which has occupied most

of the spare time of five somewhat busy years, I may be

allowed to express the hope that it will do a little in a

cause that I have much at heart, namely, the advancement

of mathematical learning among English-speaking students

of the rising generation. It is for them that I have worked,

remembeiiog the scarcity of aids when I was myself a

student; and it is in their profit that I shall look for my
reward.

G. CHRYSTAL

Edimbubob, lit Hovember 1889.
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CHAPTER XXIII.

Permutations and Combinations.

§ 1.] We have already seen the importance of the enume-

ration of combinations iu the elementary theory of integi'al

functions. It was foimd, for example, that the ]iroblem of finding'

the coethcieuts in the expansion of a binomial is identical with

the problem of enumerating the combinations of a certain

number of things taken 1, 2, 3, &c., at a time. Besides its

theoretical use, the theory of permutations and combinations

has important practical applications ;
for example, to economic

statistics, to the calculus of probabilities, to fire and life assur-

ance, and to the theory of voting.

Beginners usually find the subject somewhat difficult. This

arises in part from the fineness of the distinctions between the

different problems, distinctions which are not always ea.'<y to

ejcpress clearly in ordinary language. Close attention should

therefore be paid to the terminology we are now to introduce.

1. § 2.] For our present purpose we may represent individual

\things by letters.

By an r-jyermutation of n letters we mean r of those letters

arranged in a certain order, say in a straight line. An M-permu-

tatiou, which means all the letters iu a certain order, is sometimes

called a. permutation simply.

Example. The 2-permutation3 of the three letters a, b, c are he, ch;

at, ca; ab, ba. The permutations of the thi'ee letters are abc, acb; hac, bca;

cab, cba.

By an r-combination of n letters we mean r of those letters

considered without reference to order.

Example. The 2-combinations of a, b, c are be, ac, ab.

C. 11. 1
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Unless the contrary is stjited, the same letter is not supposed
to occur more than once in each combination or permutation.

In other words, if the n letters were printed on n separate

counters eacii permutation or comliiiiatiou couKl bo actually

selected and set down before our eyes.

Another point to be attended to is that in some prublcms

cortaiu sets of ti>c given letters may be all alike or indifferent
;

that is to say, it may be supposed that no alteration in any

permutation or combination is produced by iutcrcliauging the^o

letters.

§ 3.] The fundamental part of every demon.stration of a

theorem in the tlieory of permutations and combinations is an

enumeration. It is necessary that this enumeration be systematic

and exhaustive. If porwible it should also be siniple.it, that is,

eiu-h pcrnuitatiiiu or combination should occur only once ;
but it

may be multiplex, provided the degree of multiplicity be ascer-

tained (see § 8, below).

Along with the enumeration there often occurs the process

of re:isoning step by step, called mathematical induction.

The results of the law of distribution, as applied both to

closed functions and to inlinite series, are often u.sed (after the

m.anner of chap, iv., §§5, 11, and exercise vi. 30) to lighten the

labour of cnuuienitiou.

All these methods of proof will be found illu.strated below.

We have called attention to them here, in order tliat the student

may know what tools are at his disposal.

I'EUMUTATIONS.

§ 4.] The numlier of r-permutations of n letters (»Pr) m

H(n-l)(n-2) . . . (n-r+1).

I.s7 Prixf.
—

Sui)po.se that we have r bkink spares, the problem

is to find in how many dillereut ways we can till these with n

letters all dilTerent.

We can fill the first blank in w different w.-iya, namely, by

]i\ittiii;;
into it any one of the n letters. Having put any one

letter into the first blank, we have » - 1 to choose from iu filling
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the second blank. Heuce we can fill the second blank in m - 1

different ways for each way we can fill the first. Hence we can

fill the first two in n (n- 1) ways.

When any two particular letters have been put into the first

two blanks, there are 7i--2 left to choose from in filling the third.

Hence we can fill the first three blanks in n («- 1) times («
—

2)

ways.

Reasoning in this way, we see that we can fill the r blanks in

«(m-1)(»-2) . . . (?*-?•+ 1) ways.

Hence „Pr = «(«-!) . . . (n-r+1).

2nd Proof.
—We may enumerate, exhaustively and without

repetition, the „Pr ^'-permutations as follows :
—

1st. All those in which the fir.st letter a^ stands first
;

2ud. All those in which «.> stands first : and so on.

There are as many permutations in which «i stands first as

there are (r— l)-permutations of the remaining »— 1 letters, tliat

is, there are n-iPr-i permutations in the first class. The same

is true of each of the other n classes.

Hence nPr = n„-J'r-j.

Now this relatif)n is true for any positive integral values of

n and r, so long, of course, as r :}> n. Hence we may write

successively

„_,P,., = («-1)„-..,/^ ,,

n-r^,P,= {n-r + 2)n-r.J\.

If now we multiply all these equations together, and observe

that all the Pa cancel each other except „Pr and „_r+iPi, and

observe further that the value of n-r-nPi is obviously n-r+l,
we see that

J>r = n{n-l) . . . {n-r+2){n-r+l) (1).

The second proof is not so simple as the first, but it illustrates

a kind of reasoning which is very useful iu questions regarding

permutations and combinations.

1—2
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Cor. 1. The number of diff,rent vays in uhich a set qf n

letters can be airanged in linear order is

H(n-l) ... 3.2.1,

tliat is, the product of the first n integral numbers.

This follows at once from (1), for the number reqiiirod is tlio

number of w-pcrmulations of the n letters. Putting r = fi in (I),

we have

.P, = n(»-1) . . . 2.1 (2).

Tiie jiroduct of the first n consecutive integers may be re-

g.wled as a function of the integral variable n. It is called

factorial-n, and is denoted by «!*.

Cor. 2. ,/V = «!/(«-f)!.

For J\ = n(n-\) . . . (n-r+1),

_ »(n-l) . . . (H-r+ l) (»-r) ... 2.1

(n-r) ... 2.1
«!

-(n-ry:

Cor. ?>. The number o/trai/s of arranging n letters in circular

order is (h-I)!, or (»-l)!/2, acronling a.< clock order and

counti-r-cluck-order are or are not distinguished.

Since the circular order merely, and not actual position, is

in question, we may select any one letter and kecj) it fixed. Wo
have thus as many diflercut arraugcmenta as there are («-l)-

permutations of the remaining n - 1 letters, that is (»
-

1)1.

If, however, the letters written in any circular order clock-

wi.se be not distinguished from the letters written in the .same

order counter-clock-wise, it is clear that each arrangement will

be counted twice over, lleuce the number in this case 13

(h-1);/2.

§ 5.] When each of the n letters may be repeated, the number

of r-permutalions is »'.

• TbiB is Eramp's notntion. Formerly |n^wag
u«rJ in Englinh worki, but

this is now being abanJoncd on account of tbe dillJcully in printing the (_.

Tho valuo of II is of course 1. Strictly speaking, 01 hu no nreaning. It is

convoiiirnt, bowpver. to use it, with tho nndcrstanding tliat its valne is 1 ; by

so doing WD avuid tlio (.'xu-^jlionol treatment ol initial terms in many scriva.
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Suppose that we have r blanks before us. We may fill the

liist in n ways ;
the second also in n ways, since there is now no

restriction on tlic choice of the letter. Hence the first two may
be filled in n x n, that is, h^ ways. With each of these ii' ways
of filling the first two blanks we may combine any one of the n

ways of filling the third
; hence we may fill the first three blanks

ill n' X
71, that is, n' ways, and so on. Hence we can fill the ?•

blanks in 71'' ways.

§ 6.] The number of per77iutations of n letters of tvhich a

(jivup of a are all alike, a group of /3 all alike, a group of y all

(dike, <i;c., is

n!/a!/i!y! . . .

Let us suppose that x denotes the number in question. If

wo take any one of the x permutations and keep all the rest of

the letters fixed in their places, but make the a letters unlike

and permutate them in every possible way among themselves,

we shall derive a! permutations in which the a letters are all

unlike. Hence the effect of making the a letters unlike is to

derive xa! permutations from the x permutations.

If we now make all the /3 letters unlike, we derive a;a!/3!

permutations from the xa\.

Hence, if we make all the letters unlike, we derive xa\p\y\ . . .

permutations. But these must be exactly all pos.sible permuta-
tions of « letters all unlike, that is, we must have

a;a!^!y! , . . =7il.

Hence a; = «!/a!/3!y! . . .

Cor. The number of ways in ivhtch n things can be ptit into

r pigeon-holes, so that a shall go into the first, )3 into the second,

y into the third, and so on, is

m!/a!y8!y! . . .

N.B.—The order of the pigeon-holes is fixed, and must be at-

tended to, but the order of the things inside the holes is indifferent.

Putting the things into the holes is evidently the same as

allowing them to stand in a line and affixing to them labels

marked with the names of the holes. There will thus be <?
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labels each marked 1, /3 each luarkcd 2, y each marked 3, and

so on.

The problem is now tc find in how many ways n lalH.'l», a of

which are alike, /3 alike, y alike, &c., can be distributed anion;;

n thingf- standing in a given order. The number in question is

n'.la'.fily'.
. . ., by the above proposition.

Exaniplo 1. Id arranRing tbe crew of on cight-oarrd boat the captain haa

four men that can row onl; on the Btriike-side aud four (hut can row odI; on

the bow-side. In how many different wayn can he arrange his boat— l»t,

when the stroke is not fixed ; 2ud, when the litroke is fixed?

In the first case, the captain may arrange his stroke-side in aa many

ways ns there are 4-permntatious of 4 things, that is, in 4! ways, and he

may arrange the bow-side in jast as many ways. Since the arrangemtnts uf

the two sides arc independent, ho has, therefore, 4txiI(=STC) dillureut

ways of arranging the whole crow.

In the second case, since stroke is fixed, there are only 31 ways of

arranging the stroke-side. Henoc, in this case, there are 3! x 41 (
= 144)

different ways of arranging the crew.

Example 2. Find the naniber of permutations that can be made with the

letters of the word tratualpitu-.

The letters are traannilpic, there Ining two sets, each containing
two like letters. The number re<iuirt'd ia therefore (by § 6) lll/2!2! =

11. 10. 9. 8. 7. C. 5. 3 . 2= 99711200.

Example 3. In how many different ways can n different liesds bo

formed into a bracelet?

Since merely turnmg the bracelet oTcr changes a clock-arrangement of the

stones into tlie corresponding counler-clock-arrangement, it follows, by { 4,

that tbe number nijuired is (n- 1)1/2.

C0MBINATION.S.

.5 7.] Thf numlirr of trai/s in vhick s things can be mhetei by

titkimj one out ofa set o/ni ,
one out ofa set ofn,, A:c., isn^n,. . .n^.

The first thing can Ik; selected in n, w.-iy.s ; the second in n,

ways ; and so on. Hence, since the selection of each of the

things docs not depend in any way on the selection of the others,

the number of ways in wliich the « tilings can be selected is

w, X
fi,

X . . . X n,.

§ 8.] The number of r-cnmhinatinns of n letters (.C,) m

rj(n-l) . . . (n-r-t-l)/! .2 . . . r.
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1st Proof.
—We ma)' enumerate the conibiiiatioiis as follows:—

1st. All those that contain the letter «i;

2nd. „ „ „ r^;

wth. „ „ „ «„.

In each of these classes there is the same nnmhcr of

combinations
; namely, as many combinations as there are

(r- l)-combinations of m-1 letters; for we obviously form all

the r-cornbinations in which ai occurs by forming all possible

(r
—

l)-combinations of a^, a,, . . ., a„ and adding Wj to each

of them.

This enumeration, though exhaustive, is not simplex ;
for

each r-combination will be counted once for every letter it

contains, that is, r times. Plence

r„(7r= «n-lCr-l (1).

This relation holds for all values of n and r, so long as r^ii.

Hence we have successively—

-1W-l — _ . n-2' 1-2,

«-2
n-s'^r-2 — „ .1 "-3'-''— 3>

r — \i

^ n-r+2 „
n-r+2^2

;^
fl-r+l -'!•

If we multiply these r—\ equations together, and observe that

the C's cancel, except „Cr and „_r+i(7i, and that the value of

,-r+iCi is obviously n-r-^\, we have

r - n{n-l) . . . (n-r+l) . .

" *
1.2 ... r

^''

2nd Proof.
—Since every r-combination of n letters, i! permu-

tatod in every possible way, would give r! j'-permutations, and

all the /•-permutations of the n letters can be got once and only
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once by dealing in this way with all the r-combinations, it follows

tliat.Crr!-./^. Hence

,Gr = nPr!r\^n(n-l) . . . (n-r+l)/1.2 . . . r.

Cor. 1. If we multiply both numerator and denominator of

the expression for ^C, by (n
-

r) (»
- r - 1 ) . . . 2 . 1 , we deduce

,Cr=n\/rl{n-r)\ (3).

Cor. 2. nCr = nCn.r.

Tliis follows at once from (3). It may also be proved by
enumeration

;
for it is obvious that for every r-conibination of

the « things we select we leave behind an (n
-
r)-combination ;

there are, therefore, just as many of the latter as of the former.

Cor. 3. ,C = „-,a + ,.,C,-. (4).

This can be proved by using the e.vpressions for ,C,, n-\Cr,

,_iCr-i, and the remark is important, because it shows that the

property holds for functions of n having the form (2) irrespective

of any restriction on the value of n.

The theorem (when n is a positive integer) also follows at

once by cla.ssifying the r-combinations of n letters a,, a, o,

into, 1st, those that contain Oi, n-iCy-i in number, and, 2nd,

those that do not contain a,, .-iCr in number.

Cor. 4. ,.,C. + „.,C. + n-,C. + . . . + .C. = ,C„, (5).

Since the order of letters in any combination is indifferent,

we may arrange them in alphabetical order, and enumerate the

(s+ l)-combination8 of n letters by counting, 1st, those in

which a, stands first
; 2nd, those in which a, stands first, &c.

This enumeration is clearly both exhaustive and simplex ; and

we observe that a, cannot occur in any of the combinations of

the 2nd cla,s,s, neither a, nor a, in any of the 3rd class, and so on.

Hence the number of combinations in the Ist class is ,-iC, ;
in

the 2nd, n-tC, ;
in the 3rd, «-iC, ; aud so ou. Thus the tiieorem

follows.

Cor. 5.

pC7,
4

pC7,_, j(7, +pC7,-j,C, + . , . +pt7i,C7,.i + ,C, =p«,C, (6).

If we divide p + g letters into two groups of p and 7 re-

spectively, the ,«,C, s-cond)inations of the p + q letters may i»

clas-sified exhaustively and simple.xly as follows :
—



§ 8 vandermonde's theorem 9s

1st. All the 5-combinations of the j» letters. The number of

these is
j,C,.

2u(i. All the combinations found by taking every one of

the (s- l)-combinations of the p things with every one of the,
1-combinations of the q things. The number of these is

3rd. All the combinations found by taking every one of

the (s
-
2)-combinations of the f things with every one of the

2-combinations of the q things. The number of these is

p^s-2 ^ q^3

And so on. Thus the theorem follows.

It should be noticed that Cor. 4 and Cor. 5 furnisli proposi-
tions in the summation of series. For example, we may write

Cor. 5 thus—
p{p-\) . . (/j-g+l) ^ ;>(/>- 1) . . (j3-s+2) q_

1.2 .. .
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§ 9.] To find t/ie unmlirr of r-comOiiialioii.i '</'/» + (/
letters

p of which are alii-e.

1st. Witli tlie '/ unlike letters we can form ,C> r-com-

biuatiuiis.

2iid. Taking one of the p letters, and r- 1 of the q we can

fonn ,Cr-i r-coiiiliinations.

3rd Taking two of the p, and r - 2 of the q, wc can form

,Cr-j r-combinations; and so on, till at last we tiiko r of tho

p (supposinj; /?
> r), and form one r combination.

We thus fmd for the number rciiuired

,Cr + ,Cr-i + qCr-t + . . . + ,C, + 1

,
f 1 I 1

1^
1

*lr!(7-;)!''(r- \y.O,
- r + I)]

'^ ' '

"^1!(./- iy.*qll'

Cor. The number of r-jhrniuUUions ofp + q thingsp of which

are alike in

q\r
\r\{q-

1

r)! i!(r-l)!(7-r+ 1)! 2!(r-2)!(7-r+2)!

•
(r-l)ll\{q-l)\*r\qir

For, with the ,(7, combinations of the 1st class above we can form

jCr/-.' i)erni\itation.s ;

With tho ,Cv_, combinations of the 2nd cla.ss, ,(7,., r! per-
mutations

;

With the ,Cr-j combinations of the 3rd class (in each of

which two letters are alike), ,Cr_i r!/2! permutations : and
so on.

Hence the whole number of permutations is

,C;r!+,<7r-,r!/ll + ,Cr-,r!/2! + . . . + ,C,r!/(r- 1)1 + 1,

whence the rcstiit follow.s.

A similar process will give the number of r-conibinations,
or of r-pennutitions, when we have more than one group of

like letters
;
but the general fonnula is very coniplirat<Hi.

§ 10.] The number of r-combinations of n letters (,//,), when
each Utter may be repeated any numlier of times up to r, is

n (h + 1) (h + 2) . . . (« + r - 1), 1 . 2 . 3 . . . r
( 1 ).
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In the first place, we remark that tlie uuniber of (r+l)-coni-

binations, in each of whicli the letter a, occurs at least once, is

the same as the number of r-combinatians not subject to this

restriction. This is obvious if we reflect that every (r + 1)-

combination of the kind described leaves an r-combiuation when~

a, is removed, and, conversely, every r-combination of the n

letters gives, when ai is added to it, an (r+ l)-combiuation of

the kind described.

It follows, then, that if we add to each of the r-combinations

of the theorem all the n letters, we get all the {n + r)-combinations

of the n letters, in each of which each letter appears at least

once, and not more than r+ 1 times. We may therefore

enumerate the latter instead of the former.

This new problem may be reduced to a question of peraiuta-

tions as follows. Instead of writing down all the repeated letters,

we may write down each letter once, and write after it the letter

s (initial of same) as often as the letter is repeated. Thus, we

write asssbsscs . . . instead of aaaabhhcc . . . With this notation

there will occur in each of the {n + r)-combi nations the n letters

fli, flj, . . ., rt„ along with r s's. The problem now is to find

in how many ways we can arrange these n + r letters. It must

be remembered that there is no meaning in the occurrence of s at

the beginning of the series ; hence, since the order of the letters

fli, Oa, . . ., an is indifferent, we maj' fix a, in the first place.

We have now to consider the different arrangements of the n - 1

letters a^, ch, • • •, (in along ^vith r s's. In so doing we must

observe that notliing depends on the order of a^, a,, . . ., a„

inter se
;

so that in counting the permutations they must be

regarded as all alike. We have, therefore, to find the number of

permutations of w - 1 + »• things, n - 1 of which are alike, and r

of which are alike. Hence we have

(n + r-l)\
"

{n-iy.rl
^-''

_«(»+!) . . . (n + r-l)
172 . . . r
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Cor. 1. nffr=n.r-lCr.

This follows at once from (2).

Cor. 2. J/r .-Jfr + nf/r-,.

For the r-coinhinations consist, 1st, of tho.sc in which a, oceiint

at least once, the number of which we have seen to bo J7r-i ;

2nd, of those in which a, does not occur at all, the number of

which is n-i//r.

Cor. 3. .//r = «-l//r+,.-,//r-. +,-l//r-. +. . .+,-,// + 1.

This follows from tlic consideration that we may cla.ssify the

r-combinatinn.s into

1st Those in which a, does not occur at all, ,-,//r in

number ;

2nd. Tliose in wliich a, occurs once, ,-,//r-i iu number
;

3rd. Those in which a, occurs twice, ,-i/7r-i in number :

and 80 on.

Cor. 4. T/ie numbir of different r-ary jmxlucts that can be

made with It different U'tters w «(«+ 1) . . . (h -t-r- 1)/1 . 2 . . . r;
and the number of terms in a complete Integral/unction of the rth

degree in n variables is (n + !)(« + 2) . . . (n + r)/l . 2 . . . r.

The first part of the corollary is of course obvious. The
second follows from the consideration that the complete in-

tegral function is the sum of all possible terms of the degrees

0, 1, 2, . . ., r resi>cctivcly. Hence the number of its terms is

1+.//.+,//, + . . .+,//,.

But, by Cor. 3, this sum is «ti^r.

Wc have tliua obtftinod n general Boltition of the problpmo FHRgBStpd in

chap. IV., §§ 17, 19. As a verification, if wo put n = 2, wo have for the
iiunibcr of tcmiH in the poncral integral funelion nf the rth dogrco in two
variables 3.-1 . . . (r + 2)/l.'i . . . r, which reduces to (r + 1) (r + 2)/2, io

agreement with our former result.

EXERCIRRS I.

Combination* and Permviafionn.

(1.) How many different numbers can bo made with the digits
11122333t.')()7

(2.) How many different permutations oun bo mode of the letters of the
lontcnco (/( lensio lic vul
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(3.) How many different numbers of 4 dibits can be formed with 012345G?

(4.) How many odd uumbers can be formed with tUe diyits 3094?

(5.) If :„C._i/j„_5C„= 132/35, find n.

(6.) If 7n=„C2, show that m'^i:
=

'^n+i('f

(7.) In any set of n letters, if the number of r-permutations which con-

tain a be equal to the number of those that do not contain a, prove that tlie

same holds of r-combinations.

(8.) lu how many ways can the major pieces of a set of chess-men be

arranged in a line ou the board ?

If the pawns be included, in how many ways can the pieces be arranged
in two lines ?

(9.) Out of 13 men, in how many ways may a guard of 6 be formed in line,

the order of the men to be attended to?

(10.) In how many ways can 12 men be selected out of 17—1st, if there be

no restriction on the choice ; 2ud, if 2 particular men be always included ;

3rd, if 2 particular men never be chosen together?

(11.) In how many ways can a bracelet be made by stringing together 5

like pearls, 6 like rubies, and 7 like diamonds ?

How many different settings of 3 stones for a ring could be selected

from the above?

What modification of the solution of the first part of the above problem
is necessary when two, or all three, of the given numbers are even ?

(12.) In how many ways can an eight-oared boat be manned out of 31

men, 10 of whom can row on the stroke-side only, 12 on the bow-side only,

and the rest on either side ?

(13.) In a. regiment there are 10 captains, 20 Ueutenants, 30 sergeants,

and 60 corporals. In how many ways can a party be selected, consisting of

2 captains, 5 lieutenants, 10 sergeants, and 20 corporals?

(14.) Three persons have 4 coats, 5 vests, and G hats between them ; in

how many different ways can they dress?

(15.) A man has 12 relations, 7 ladies and 5 gentlemen ; his wife has 12

relations, a ladies and 7 gentlemen. In how many ways can they invite a

dinner party of 6 ladies and 6 gentlemen so that there may be 6 of the man's

relations and G of the wife's ?

(16.) In how many ways can 7 ladies and 7 gentlemen be seated at a

romid table so that no 2 ladies sit together?

(17.) At a dinner-table the host and hostess sit opposite each other. In

how many ways can 2ii guests bo aiTanged so that 2 particular guests do

not sit together?

(18.) In how many ways can a team of G horses be selected out of a stud

of 16, so that there shall always be 3 out of the ABCA'B'C, but never AA',

BB', or CC together ?

(19.) With 9 consonants and 7 vowels, how many words can be made,
each containing 4 consonants and 3 vowels— 1st, when there is no restriction

on the arrangement of the letters ; 2nd, when two consonants are never

allowed to come together?

(20.) In how many ways can 52 cords, all different, be dealt into 4 equal
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huDdx, tlio order of the hauJd, but uot of the cards in the haudn, to be
attended to?

In how many cuhcs will 13 particular cards fall in one hand?
(21.) In how many ways can a set of 12 black and 12 white draagbt-men

be placed ou the black squares of a draught-board?

(22.) In how many ways can a set of chess-men be placed on a chess-board?

(23.) How many 3-combinatiun3 and how many 3-permutatious can be
made with the letters of farabolal

(21.) With uu unlimited number of red, white, blue, and black balls at

disposal, in how many ways can a bapfnl of 10 be selected?
In how many of these selections will all the colours be represented?
(25.) In an election under the cumulative system there were p candidates

for
(/ seats ; (1) in how many ways can an elector Rive his votes; (2) if there

be r voters, how many different states of the poll arc there?
If there be 16 candidates and 10 scats, and a voter nivo one minute to the

consideration of each way of giving his vote, how long would it take him to
make up his mind how to vote 7

BINOMIAL AND MULTINOMIAL THEOREM.S.

§ 11.] It has already been sliown, in chap, iv., § 11, tliat

where ,C,, ,Cj, . . ., ,Cr . . . denote the numbers of 1-, 2-,

. . ., r-coinbinations of n tilings. Using the expressioua just
found for ^C,, .Cj, &c., we now have

(a + b)'
= a" + na'-'b +

"_^Llil
a«-'i' -h . . .

This is the Binomial Theorem as Newton discovered it, proved,
of course, as yet for positive intcgnil indices only.

§ 12.] We may est^iblish the Binomial Theorem by a some-
what diflerent process of reasoning, which has the advantage of

being ajijilicible to the c.vjiansiou of an integral p<jwcr of any
mnltiuiiMiial.

Consider

(a, ^ n, 4- . . . + aj)* (2).

We have to distribute the product of n factors, namely,

(o,-Ha,-H. . .-^•a>)(a, + a,^. . .+a,) . . . (o,-Ki,-h. . .•fa.)(3);
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ami tlic problem is to find the coefficient of any given terra, say

«i"'«,.'^ . . . «„»- (4),

wlicre of course ttj
+ a, + . . .+a,„ = ?j. In other words, we have to

liiid how often the partial product (4) occurs in tiie distribution^

of (;!).

We may write out (4) in a variety of ways, such as

a,rtirtoa2a2a3«jrt4 . . . (5),

there being always a, a/s, a„ a^s, &c.

Written as in (5) we may regard the partial product as

formed by taking Ui fi'om the 1st and -Jud brackets in (3) ;
a.

from the 3rd, 4th, and 5th
; a^ from tlic Gth

;
and so on. It

appears, therefore, that the partial product (4) will occur just as

ol'ten as we can make diflerent permutations of the n letters, such

as (5). Now, since a, of the letters are all alike, a^ all alike, &c.,

the number of diflerent permutations is, by § 6, nljaju^l . . . a,„!.

Hence we have

(<7, + «o + . . .+«„,)" = 2 -j
—

j

—
: «i°'a/» . . . a,„'~ (6):

ailoj! . . . a,„!

wherein a,, a„, . . . a„ assume all positive integral values con-

sistent with the relation

tti + aj + . . . + a„,
= W (7).

This is the Multinomial Theorem for a positive integral index.

The Binomial Theorem is merely the particular case where

m = 2. We then have, since a, + 04 = n, and therefore uj = « - Oj,

= 2 n(n-l) . . (n-a,^X)
^^^^^ ^^^„_„^^

which agrees with (1).

Cor. To find the coefficient of of in the expansion of

(b, + b,x + . . .+ b^x'^-'T (8)

we have simply to pick out all the terms which contain .r^ The

general term is

—
/) 'iIj "i I) »m J-«1 + "''I+- • • +("1-1)"-
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Hence we have to take all the terms which are such tliiit

a, + -ia, + . . . + (7«
-

1) a„ = r (9).

The coefficient of of in the exjiansion of (8) is tlierefore

^
a.icu!."' . ^,

^-^»-- ••<'-'- (10).

where a,, a, a„ have all positive integral values subject
to the restrictions (7) and (9).

Example 1. The coefficient of a'M in the expansion of (a + {> -|- e -|- J)* ig

51

31210! 01"

Example 2. To find the coefficient of i» in (1 + ar +!>)*.

Here we mubt Lava a, + a, -|- a,
= 4,

a,+ 2o,=5.

Hence
o, = a,-l, o,= 5-2oj.

Since o, and o, must both be positive, the only two admissible values of a,
are 1 and 2. We have tlierefore the following table of valuu8 :

«1
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(«+l)/.c-l. Tliis ratio is less than uuity so long as
(ii + l)/.r<2, that is, so

loiiK as x>-{k+1)/'2. Until x falls below this value the tonus in the series

above mentioned will decrease; and after x falls below this limit they will

be;;in to increase.

If n be odd, ='2k + l say, then (« + l)/'2
= ft + l. Hence, if we make

j = i + l, the ratio (tt + l)/x-l = l, and two consecutive values of x\y\, viz.

(/; 4- 1)! i! and kl (k + 1)! , are equal and less than any of the others.

If n be even, =2k say, then
(7i + l)/2 = 4 + i. Hence, if we make x= k,

we obtain a single term of the series, viz. klk\, which is less than any of

the others.

Returning now to the general case, we see that, if u be a minimum for all

v:ilues of X, y, z, . . . subject to the restriction (2), it will also be a minimum
fur values such that x and y alone are variable, z, . . . being all constant.

In other words, the values of x and y for which xli/lz! . . . is a minimum
1st be such as render x\y'. a minimum. Hence, by what has just been

ved, X and y must either be equal or differ only by unity. The like

luws for every pair of the variables X, y, I, . . . Let us therefore suppose
it p of these are each equal to f ; then the remaining m-p must each be

"|iial to t + 1. Further, let q be the quotient and r the remainder when n is

divided by ;»; so that n= mq + r. We thus have

p^ + {'ii-p) {i + l) = mq+ T.

Hence ni^ + (m-p) = mq + r;

so that i + {m-p)lm= q + rjm.

Now (m-p)lm and rjm are proper fractions ; heuce we must have

|= g, m-p = r.

It follows, therefore, that ;• of the variables are each equal to q + 1, and
tlio rest are each equal to q. The maximum coefficient is therefore

nll(qlr-'{{q + iy.}r;

tli:itis, n!/(5!)'»('; + l)'' (3).

This coefficient is, of course, common to all terms of the type

ui U2 ... «m-r "m-r+1 * • "?n

As a special case, consider (aj + rto + flj)*.
Here 4 =3x1 + 1; q= l,T=l.

Ill lice the terms that have the greatest coefficient are those of the type

'I3-,
and the coefficient in question is 4!/(l!)'2i

= 12. This is right; for

1, c tind by distributing that

(<!] + a, + a.jY
=

Till* + *-"i'"3 + <}~<ii-<io- + i2Za{-a.^3.

Example 4. Show that

n 1+x n(n-l) l + 2x n(n-l)fa-2) l + 3x

1 l + nx"*" ^lT2~ (l + 7ixp~ 1.2.3 (I+nx)»
^ ~

{WoUtenholme.)
The left-hand side may be written

n 1 n (k
-

1) 1 n(n-l)(n-2) 1

ll + nx"*" 1.2 (l + nx)« 1.2.3 (1 + nxf'*"
" ' '

n x^ n(K-l) 2x n (n
-

1) (>i
-

2) 3x

"Il + jix"*" 1.2 (i+;Ix)2~ X.2.b (l + ;ixj3+
• •

C. II. 2
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n 1 n
(
n - 1) 1_ _ ri(n-l)(n-a) 1

~
il + iu* 1.2 (l + fur)' 1.2.3 (l + nx)'"^

• • •

fix I (B-1) 1 (n-l)(n-2) 1 1

i + iix t 1 (l + nx)"^ 1.2 (1 + nx)'
" *

j

'

-I
= ii__Lr__i«_|i__i_i

\ l+»ijr( 1 + nx
{

l + nx|

- i
"^

\

"
JI^ \ — I

""'

~[l + fu:) ~l + nill + fixj

'

- f
*"

1

"
(

nx 1*

~|l + nx( (l + nx)
*

=0.

13.] The Binomial TLeorcni can be used in its turn to

est.-iMlsli idi'iitities in the theory of conibiuatioua ;
as the two

following c.\;iiiii>los will show :
—

Examplo 1. We have

= (l + x)'--,C,x(l + xr' + ,C,x'(l + x)'-'- . . . (-)VC,x'.

On the rigbt-liand Bide of this identity the corflioient of every |Hiwar of x

mast vanish. Hence, « being any positive iutcger \e»s than r, ne have

,C.xl-,_,C,.,x,C, + ^5C..,x,C,-. . . + (-r'_»4.,C,x,C.., + (-)VC. =

Example 2. Tu lind the sum of the squares of the binomial coefficient!).

•Wchave (1 +x)» = (l + x)"x (x + l)»

=
(l + ,C,x + ,C^»+ . . . +.C,x-)

x(x- + ,C,x-' + ,C^»-»+ . . . +,rj.

If we imngine the product «n the right to bo distributed, »o see that tht

cocflicient u( x" is l'+,l'i' + ,C,'+ . . . +„CV ; 'he cucOicient of x" on the

left is ^C.. Hence

l' + -C,« + ,C,= + . . . +,C.'=^C.=2«l/«!nI.
Siocu

2n! = 2ri(2n-l)(2n-2) . . . 1 .3.2. 1 :=2". 1 . 2 . . . nxl.3 . . . (2rt-l),

we have 1» + «CV+,C,'+ . . . +,C,»= 2». 1 .3 ... (2n -
l)/iil.

A Croat varii'ty of results can be obtained by the above procctu of equating
coGfliciints in identities derived from the binumial theorem; some specimuaa

arc given aiuuiig the cierciscs below.

EXERClSEii II.

(1.) Find the Uiird term in the expansion of (2 + 3x)*.

(2.) Find tlie coefficient uf x* in the expansion o( {I -t- x + x*) (I -x)".

(3.) Find tlic term which is iudc|>eudeiit uf x in the expansion of

(x + l/x)*
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(4. )
Find the coefficient of ar* in the expansion of (x

-
1/j-)^.

(5.) Find the ratio of the coefficients of x-" in (1 + .t)''" and (1 + x)-".

(6.) Find the middle term iu the exijansion of (2 + Jx)".

(7.) The product of the coefficients in (l + x)"+i : the product of the

ioeffioients iu (1 + x)''
= (k + 1)'' : nl.

(8.) The coefficient of x' in {(r-2) x- + «x-r} (x + 1)" is ii„C,^„.

(9.) If I denote the integral part and /'' the proper fractional part of

3 + ^/5)", and if p denote the rational part and a the irrational part of the

lame, show that

I=2{3» + „C'5 3»-=.o + „C'^3''-*.5=+ . . .}-!,

(10.) If (,,/2 + l)"-^'+'
= J + i^, where Fis a positive proper fraction and 7 is

integral, show that F{I+F) = 1.

(11.) Find the integral parts of (-J^fi + S)"-"', and of (2^3 + 3)="'+'.

(12.) Show that the greatest term in the expansion of (a + x)" is the

(r+l)th, where r is the integral part of (« + l)/(«/x + l).

Exemplify with (2 + 3)"' and with (2 + ^j".

(13.) Find the condition that the greatest term in (a + x)" shall have the

gieatest coefficient. Find the luuits for x in order that this may be so

iii{l + x)>«'.

(14.) If the pth term be the greatest in (a + .c)"*, and the ijth the greatest
in (a + x)", theu either the {p + q)th or the {p + q -l]th or the [p + q

-
2)ih is

the greatest in (a+ x)*"*^.

(IS.) Sum the series

•£i+2»?»+3 2?'+ . . . +n-''r--

(16.) Sum the series

l + 2„C, + 3,.C.j + 4„C3+ . . .

(17.) U Pr denote the coefficient of x,. in (1 + x)", prove the following

relations :
—
r. Pi-2p, + 3p^- . . . +;i(-l)"->y„= 0.

a-. iP.-iP. + +^^' Pn=^i-

30. l+p^+p^ +.-.+-^ =^^.2 S n+l n+1

(18.) If pr have the same meaning as in last question, show that

(-1)--' ,11 1

Pi-iP'. + iPs- •••+—„ -i'»= l +
2
+ 3+

• • •

+,-,•

(19.) Show that

,C,xl + ^iC^iX,Ci + ,_5C,_„x,C3+ . . . +,._^,C,XrC,_, + lXrC,= rC,2'.

(20.) Show that

(i-„c,+„c,- . ..r+LC,-,fi,+ . . .)==i+„q + .A+ . . .

2—2
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(21.) Show tlial

1 -.(-'• + -<''i'<.t'.+ • • • +.0,_,x.C.= (2«)V(n+2)!(fi-2)l.

(32.) Show that 1 -„.+
("> -i>)'

-
(liili^-'j,<?-?>)•+

. . . =Oif

boodd, aud =(- l)*"(n + 2) (n+4) . . . 2h/J . 4 . . . n if n be even.

(23.) Show that

,.„(,.,,,, !;,„.,)„+''('^|i)(„_,,(„.i,+"i"_ti^)(iti.>(„_3,(„_2)

+ . . . =2(2n + l)!/(n + 2)!(n-l)I.

(24.) If IV stand for jf+ljx^, show tlmt

«r+l+r*|Cl"r-I + r+lC,Ur-3+ • . = "i ("r+ r^l "r-3 + r<^5 "r-** • • •
)•

(25.) If <if Jcuoto the cocdicicnt of x'' iu (l+i)'i"-''i(l
- j)» Bhow tliat

"t-fk^i^i + n^^j"!' • • =^ '"f "" Tohics of p except p= n, in which casa
the rigbt-haud eido of the oiualiun is i*.

(20.) Show that

1 _ .^ ^
.("a _ ,

(
-
iiV'. ^ n\

X x + 1 1 + 2 i + n x(x+l) . . . (i + w)'

(27.) riu.ithccocnicicntof x'iu (l + j- + x'+ ...)».
(28.) Find the cocOicicut of x" in (1 fj* + z« + *»).

(29.) Find the coefficient of x" in (l+x + 2x' + 3x'+ ...)».
(30.) If (I,, a "i, •"! the cucfBcicDls of the poweni of x in

(I+2x + 2x')», show thnt "."a -
a,a„., + . . . +a^n„=0 if n bo od,l,

=.2^i!/{(Jn)!j» if It be even.

(31.) If a, be the cocllicicnt of x' in (l + i + x»+ . . . +x'')», iiliow tlmt

"r
-

.<^i "r-i + «Ci "r-j
- ... =0, nnli'SH n 1)0 a niuUiple of p + 1. What

do(i the oqiiatiun bccuniu in the luttcr coac?

(32.) Find the coiflicicut of x" in (l + 2x + 3j-+ tx")".

(33.) Write out Ihu exjiauiauu of (a + 6 + c + <i)'.

(31.) Show that

v»''if
. . . n» 1

Jn(m.l )l
P

rl.I . . . il~p! I 2
(

•

whore r, » * have oU values between and p, both inclusive, subject
to the rei4liirtion r + §+ . . . -^-k-p.

(35.) If ,;/, have the meaning of f 10 above, prove that

l"- -*«Wr = «"r + ."r-.X,//,-f«H,.,X.//,+ . . . +,/^,x,/V,.
r. l-.C,x,//, + ,C,x,i/,-,C,x,//,+ . . . +(-l)%C,,//,=0.

(M.) Ifx, = x(x4l) . . . (x + r-I), nhowlhat

(37.) Find the largoal coedieicnl in the expansion of(a + 6 + c + <l + <)".
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EXAMPLES OF THE APPLICATION OF THE LAW OF

DISTRIBUTION.

§14.] If we haver sets, consisting of Hi, n.,, . . .
, nr dij/'erent

ktters respectivdij, the ivhole number of different ivat/s of making
combinations by taking l,2,Z, . . . iip to r of the ktters at a

time, but never more than one from each set, is

(«.+ l)(»,+ l) . . . (;/,.+ 1)-1.

Consider the product

(1 + Oj + 61 + . . . «i letters)

X {l + a.2 + b.i+ . . . n„ letters)

X (1 +rtr + /;,.
+ . . . tir letters).

In the distributed product there will occur every possible com-

bination of the letters taken 1, 2, 3, . . ., ?• at a time, with the

term 1 in addition. If we replace each letter by unity, each

term in the distributed product will become unity, and the sum

of these terms will exceed the whole number of combinations by

unity. Hence the number required is

(1 +«,)(!+«=) • • • (l + "r)-l
= 5«i + S»,Ho + . . . + ?;,?(.> . . . n,.

This result might have been obtained by repeated use of § 7.

§ 15.] If we have r sets of counters, marked ivith thefulluwing

numbers—
"i, Pu •. "u

a,, ji^, . . ., K.,,

Or, Pr, • > Xrt

the number of counters not being necessarily the same for each set,

and the inscribed numbers not necesaarHy all different, then the

number of different ways in which r counters can be drawn, one

from each set, so that the sum of the inscribed numbers shall be n,

u tlie coefficient of x^ in the distribution of the product
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(j"i + a^> + . . . + iC')

X {x^ + x^+ . . . + j-«)

X (t** + a^' + . . . + r''-).

Tliis lliporem is an obvious result of tlie principlas laid down

ill clm]i. IV.

Cor. 1. //* in the firft art there he a, couutiTS marked with

the nnmhiT ",, /», murked with /i,, <{r., in the second a^ marked

with a,, ft, marked with (i,, Xc, the number of wai/s in whieh r

rt'iinti'm can he dniiim so that the mim of the numbers on them it

It, is the coej/icient of 3^ in the dislrihiilion of

{atSf' + b,a^' + . . . 4 k,a:'')

X {a^t + b^' + . . . ^ /vf•)

X (a,J"r + i^r + . . . + k,JC*r).

Cor. 2. In a box there are a counters marked a, h marked ft,

<f-C. A couxter is drawn r times, and each time rephtci'd. The

iiumhcr ofwai/.t in whieh the sum of the drawimjs can amount to

n is the ooejjicient of j^ in the distribution of

(ttj- + bjfi+ . . .y.

ni.STRinUTION.S AND DERANGEMENTS.

§ 16.] Tlio variety of iirobloins that arise iu connection with

the 8ul)jecl of llio ]>ri'stMit chajitor is cndlc.s.s, and it would be

iliflirult within tlio. limits of a textbook to indicate all the

methods that have been used in solving such of these problems
as niathoinaticians have already discus.'^od. The followinjr have

l>ecn .selected jum typis of problems which are not, very readily at

least, reilucililo to the elementary ca.ses above discussed.*

§ 17.] To find the number of ways in whieh n different Iftten

can l/e distributed among r j>i{jeim-hohs, attention tn-intj paid to

tlui order of the j'liieon-holes, hnt not to thfl filler of the letters in

any one piffeon-hub', and no hole to contain less than one letter.

Let Dr denote the nund)er in ipiestion.

* For fuiUiur infuruuttiua ao* Wlutwurtli'i Clioiet and Chane*.

J
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It' we leave s specified holes vacant aud tlistribnte the letters

among the remaining r-s holes under the conditions of the

question, we shonld thus get Drs distributions. Hence, if ,(7,

liave its usual meaning, the number of distributions when s of

the holes are blank is rC^, D^-,.

Again, the whole number of distributions when none, one,

two, &c., of the holes may be blank is evidently r", for we can

distribute the n letters separately among the r holes in ;•" ways.

Hence

Br + rC, Dr-, + rC, A-. ^
. . . + .(7.-1A = »•" (A).

The equation (A) contains the solution of our problem, for, by

putting r = 2, /• = 3, &c., successively, we could calculate D^, D3,

&c., aud Di is known, being simply 1.

We can, however, deduce an expression for Dr in terms of n

and r, as follows. Writing r - 1 in place of r we have

A-l + r-xC\ Dr-,+ . . . + r-lCr-,A =
(^
-

l)" (B).

Prom (A) and (B), by subtraction, remembering (§ 8, Cor. 3)

that

we derive

A + r-i^iA-i + r-,tr,A-.+ . . . +r-,a-.A
= r''-(»--l)" (1).

From (1), putting r— 1 in place of r, we derive

A-l + r-iGl Dr-1 + . . . + r-oCr-aA
= {r-\Y-{r-2Y (1').

From (1) and (1'), by subtraction, we derive

A + r-3C',A-l+r-2C2A-2+ . . . +r-,Cr-2D.,

= r» - 2 (r -!)"+(»• -2)" (2).

Treating now (2) exactly as we treated (1) we derive

A + r-3C,A-l + ,-3C2A-5+ • • • +,-sCr-3A
= r''-3(r-l)" + 3(r-2)»-(r-3)" (3).

The law of formation of the right-hand side is obvious, the

coefficients being formed by the addition rule peculiar to the

binomial coefficients (see chap, iv., § 11). We shall therefore

liuaUy obtain
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D .,--,C7,(r-l)- + ,(7,(r-2r- . . . {-)'-\C,,\\

=
f--^(r-l)«

+
?^^(r-2)--. .

.(-r'Jl- (4).

Cor. Ifthe ordi'r ofthfipigeon-holeg he indifferent, the numher of
Jistriliutiitns is DJrl. In other worth, the uumber ofpartitions of
n diffrreiit letters into r lots, no vacant lots being allvwed, is Dr/rl

Wi- sliall discuss tlie cltwely-allicd problem to find tlie

uimibtT of r-iKirtitions of n—that is, to find the number of

waj-8 Id whicli n letters, all alike, may be distributed among
r iiijteon-hnlc's, the onler of the holes being indill'erent, and no
hole to be empt}'

—when we take up the Theory of the Partition

of Numbers.

§ 18.] Giien a series nf n letters, to find in hmc many uai/s
the iirder may be diramjed so that no one out nf r assigned Liters

shall occupy its original jtosition.

Let ,A,. denote the number in (jncstion.

The number of dillerent deraiigementa in which the r assigned
letters do all occupy their original places is {n-r)]. Hence the
number of derangement.s in which the r assigned letters do not

all occupy their original places is til-{n-r)l Now, this last

numln-r is made up of—
iBt The number of derangements in which no one of the r

letters occupies its original place ;
that is, ,A,.

2nd. The number of derangements in which any one of the r
letters occupie-s its original place, and no one of the remaining
r-1 does so; that is, ,C, ,-,A,.,.

3nl. The number of derangements in which any two of
the r letters occui)y their original places, and no one of the

remaining r-2 dws so; that i.s, ,C',,-^,.,. And so on.

Hence

+ rC>-l n-rtl-^l (A).

If we write in this equation n -
1 for n, and r - 1 for r, and

subtnwt the new oipiation thus dcrive<l fnim (A), we deduce
u'. - (n 1)1 -A,. , ,r,' ,A , + .^' _\ 4.

t r-lC>.|..r,jA, (I)
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We can now treat this eiiuatiou exactly as we treated

equation (1) of ^ 16. We thus deduce

„A, = „!-r(«-l)! +
1^Jll)(«-2)!-.

. . (-)-(«-»•)! (2).
^

If we remember that (?»
—

?•)!, above, stands for the number

of derangements in which the r letters all occupy their original

positions, we see that, when r = «, {n
—

r)\ must be replaced by 1.

Hence

Cor. The number of derangements of a series of n letters hi

which no one oftlie oi'iginal n occupies its original position is

The expression (3) may be written

n{ . . . (4(3(2(1-1) + 1)-1)+1) . . .-(-l)-) + (-l)-.

Hence it may be fonned as follows:—Set do\vn 1,- subtract 1
;

multiply by 2 and add 1
; multiply by 3 and subtract 1

;
and

so on. The function thus formed is of considerable importance

in the present braucli of mathematics, and has been called by
Whitworth suhfactorial n. He denotes it by ||m.

A more con-

venient notation would be n\.

SUBSTITUTIONS.

§ 19.] Hitherto we have merely counted the permutations

of a group of letters. If we direct our attention to the actual

permutations, and in particular to the process by which these

permutations are derived from each other, we are led to au order

of ideas which forms the foundation of that important branch of

modem algebra which is called the Theory of Substitutions.

Consider any two permutations, becda, bcade, of the five letters

a, b, c, d, e. The latter is derived from the former by replacing

a hy e, b by b, c by a, d hy d, e by c. This process may be

represented by the operator ( i '? )
!
-ind we may write

/ebadc\febadc\
\abcde)

becda = bcade :
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or, omitting tlie letters that are uualtercd, and thus reducing the

operator to ita simple^ /"im,

I ) Itecda = icade.
\acej

The operator \) ,
and the operation wliicli it cffcct«, are called

a Suhstitiitim
;
and the operator is often denoted by a single

capitui letter, S, T, itc.

Since the number of different permutations of a group of n

letters is «!, it is obvious tliat the number of diflorent substitu-

tions is also ;i!, if we include among them the identical snl>Mi-

tution ("^','^^''

' '

'), (denoted by S" or by 1), in which no letter

\abcde . . J
is altered.

We may effect two substitutions in succession upon the same

permutation, and represent the result by writinj,' the two symbols

representing the substitutions before tiie permutation in order

from right to left. Thus, if «S =
(^'J^)

, 7'aQ .

STaebcd - eaibd.

We may also effect the same substitution twice or three times

over, and denote SS by <Sf', SSS by S', &e. Thus, 6' being as

before,

S^aebcd = Sceabd = becad.

It should be observed that the nudtiplication of substitution

symbols is not in general comnuitative. For example, S and T
being as above, STaehcd - ecu/id, but TSiubcd = cacbd. If, when

reduced to tlioir sinijilest form, the symbols .S' and T have no

letter in common, they are obviously commutative. Tiiis con-

dition, although s>iflicient, is not necessary ;
for we have

/dr(ih\ /Uidr\ , , ., /b<ldc\ fdniliX

[um)W) "''^''^ = "^''"'' =
[aUdJ [ubcd)

'''"•''^-

8 20.] Since the number of permutations of n letters is

limiti'd, it is obvious that if we repeat the same substitution, S,

sufficiently often we shall nltiniately rejirodnce the permutation

that we started with. The smallest numlier, /», of rej^titions

for which this happens is aillod the order of the suistitutiun S.
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Hence we have S'^ = l, and S'"'=l, where p is any positive

integer.

TVe may define a negative index in the theory of substitu-

tions by means of the equation S''' = S""^'^, fi being the order of

S, and p such that p/i > q. From this definition we see that

S'tS-" = SXS'"'-^ = /S"" = 1. In other words, S' and S'^ are inverse

to each other
;
in i)articuhir, if

„ _ (dahc\
, „.j _ (abcd\ _ fhcia\~

\abcdj' \d(tbc)

~
\abcd)'

A set of substitutions which are sucli tluit tlie product of

an3' number of them is always one of the set is called a group;

and the number of distinct substitutions in the group is called

the order of the group. The number of letters operated on is

called the degree of the group.

It is obvious from what has been shown that all the powers
of a single substitution, S, form a group whose order is the

order of S.

§21.] A substitution such as
( i i /)>

where each letter

is replaced by the one that follows it, and the last by the first, is

called a Ci/clic Substitution, and is usually denoted by the symbol

{abcdef).*

The cyclic substitution (a), consisting of one letter, is an

identical substitution
;

it may be held to mean that a passes into

itself.

The cyclic substitution of two letters (ab), or what is the

same thing (ba), is spoken of as a Transposition.

The eSect of a cyclic substitution may be represented by

writing the « letters at equal intervals round the circumference

of a circle, and shifting each tlirougli l/zjth of the circumference.

Thus, or otherwise, it is ob\'ious that the order of a cyclic sub-

stitution is equal to the number of the letters which it involves.

§ 22.] Every substitution either is cyclic or is the product ofa

number of independent cyclic substitutions (cycles).

Consider, for example, the substitution

•
Or, of course, by (bcdtfa), {cdej'tib), Ao.
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g ^ fbj'dcgiuh\

\abcdefijh)
'

This replarps ahy b, b l)y/, /liy a; theso top;ptlior constitute

the cyclic sulistitntion (nbf). Next, c is replaced by </, and d by

c\ this is equivalent to the cycle {cd). Afc'uiii, <? is rej)lace<l by

g, aud <7 by e
; this gives the cycle {eg). Finally, h is unaltered.

Hence wo have the following decomposition of the substitution

S into cycles
—

S=(ubf)(cd)(eg){h).

The decomposition is obviously uniijue; and the reasoning

by which we have arrived at it is perfectly general. It .should

be noticed that, since the cycles are independent, that is, have

no letters in common, they arc commutative, and it is indilVerent

in what order we write them.

§ 23.] Every cyclic subiifilutioii nj n letters can be dicom}>osed
into the product o/n— I tran.ij)ositwns.

For e-xamplo, we have {abed) = (ab)(bc){cd) ;
and the process

is general.

Cor. Every substitution cun be de^u)mpised into n-r transpo-

sitions, where n is the number of letters which it displaces, and r

the number of its projitr cyclrs.

Tliis decomposition into transpositions is not unique, as will

be seen iircsently, but tiic above gives the minimum number.

§ 24.] The following ]iriiper(ies of a proiluct of two trans-

positions arc of fundanientjil ini|Hirt:incc.

I. The product of tiro tninsposifions which have two letters

in common is an identical sulistitiUion.

This is oi)vious from the meaning of {ali).

II. In the product of two tninsposilions, TT' , which hair a

Utter in common, 7" may he placed Jirst, pnirldul j/v rijilaee the

common Utter in T by the otli«r Utter in 7".
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For we have {ab){bc)
=
(J^) , («'c)(«c) =

(Jj,'')
.

therefore (ab){bc)
=

{bc){ac).

Cor. 1. ie/Ka/) = (ae){e/).

Cot. -2. (ae){af)
=

{af){e/).

III. 1/ two transpositions, Tand T', have no letter in common,

thy are commutative.

This is a mere particular case of a remark already made

regarding two independent substitutions.

§ 25.] Ths decomposition of a given substitution into transpo-

sitions is not unique.

For we can always introduce a pair of factors (ab){ab), and

then commutate one or both of them with the others, in accord-

ance with the rules of § 24.

In this way we always increase the number of transpositions

by an even number. In fact, we can prove the following im-

portant theorem—
Tki number of the transpositions which represent a given sub-

stitution is alaai/s odd or always even.

We may prove this by reducing the product of transpositions

to a standard form as follows—
Select any one of the letters involved, say a

;
take the hist

transposition, T, on the right that involves a, and proceed to

commutate this transposition successively with these to the left

of it. So long as we come across transpositions that luive no

letter in common with T, neither T nor the others are affected.

If we come to one that has a letter in common with 7" which is

not a, we see (§ 24, II., Cor. 1) that the « in T remains, the other

letter being altered, and the transposition passed over remains

unaltered. If we come to a transposition that has a, and a only,

in common with T, by § 24, II., Cor. 2, T passes to the left un-

altered, and the transposition passed over loses its a. Lastly, if

we come to a transposition that has both a and its other letter

in common with T, then both it and T may be removed. If

this last happen, we must now take that remaining transposition

containing a which is farthest to the right, and proceed aa

before.
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Tlie result of this process, so far as a is concerned, will bo,

eitlier that all the tninsjHjsitinns containing a will have dis-

appeared, or that some even number (including 0) will have dono

80, and one only, say (ab), will remain on the extreme left.

Consider now 0. If among the reniaining factors b does not

occur, then wo have obtained a cycle (al>) of the substitution
;

and we now proceed to consider some other letter.

If, however, b does occur again, we take the factor farthest

to the right in which it occurs, and commutate as before
;
the

result being, either that all the transpositions (even in number)

containing b disappear, or that an even number of them do, and
we are loft with, say {be), in the second place. We now defd

with c in like manner
;
and obtain in the third place, say (cd).

This goes on until all the letters are exhausted, or until we
come to a letter, s-ay /, that di.sajipears from the factors not yet

finally arranged. Wc thus arrive at a product (ab){bc)(cd){de){^
on the left.

Now {ab){bc){cd)ide){ef)
=
(^^^^J)

= (abcd^').

We have, in fact, arrived at one of the independent cycles of

the sulxstitution. If we now take any other letter tliat occurs in

one of the remaining substitutions on the right, we shall in like

manner arrive at the cycle to which it belongs, after losing an

even number, if any, of the transpositions ;
and so on, until all

the letters are exhausted, and all the cycles arrived at Since

the whole nundier of transpositions lost is even, the tnitli of the

theorem is now obvious
;
and our proof furnishes a method for

reducing to the minimum number of transpositions.

It appears, therefore, that we may divide all the substitutions

of a set of n letters into two classes—namely, etvn subntitutions,

which are equivalent to an even number of transjKwitions, and
odd siibstltiifioiis, which are eipiivalent to an odd number of

trans{)ositions.

Cor. 1 . 1/nbethe number qf letters altered by a stihstitutton, r

the nundier ii/it.t ri/rlt\i, and 'Js an tirbitniri/ eten intfijir, the num>>er

oj'/acturt in an ojiuivalent prudiict oj tranjtjMjsitiom w «-r + :i».
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Cor. 2. The number of the even is equal to the number of tlie

odd substitutions of a set of n letters.

For any oue transposition, applied in succession to all the

difl'erent odd substitutions, will give as many even substitutions,

all dilTereut. Hence tliere are at least as many even as there

are odd substitutions. In like manner we see that there arc at

least as many odd as there are even. Hence the number of the

even is equal to the number of the odd substitutions.

Cor. 3. A cyclic substitution is even or odd according as the

number of the letters which it involves is odd or even.

For example, {abc) = (ab) (be) is even.

Cor. 4. The product of any number of substitutions is even or

odd according as the number of odd factors is even or odd. In

pa/rticidar, any power ivhatevei- of an even substitution, and any
even power of any substitution whatever, form even substitutions.

Cor. 5. All the even substitutions of a set of n letters form a

group whose order is nl/2.

§ 26.] If we select arbitrarily any one, say P, of the n! per-

mutations of a set of n letters, and call it an even permutation,

then we can divide all the n\ permutations into two classes—
1st, ?i!/2 even permutations, derived by applying to P the nl/2

even substitutions
; '2nd, 7ilj2 odd permutations, derived by

applying to P all the «!/2 odd substitutions.

The student who is familiar with the theory of determinants

will observe that the above is preci.scly the classification of the

permutations of the indices (or umbrae) which is adopted in

defining the signs of the terms in a determinant.

It is farther obvious, from the definitions given in chap, iv.,

§ 20, that symmetric functions of a set of n variables are un-

altered in value by any substitution whatever of the variables
; or,

as the phrase is, they are said to
" admit any substitution ichat-

ever." Alternating functions, on the other hand, admit only even

substitutions of their variables, the result of any odd substitution

being to alter their sign without otherwise affecting their value.

§ 27.] The limits of the present work will not permit us to

enter farther into the Theory of Substitutions, or to discuss its

applications to the Theory of Ei^uations. The reader who desires
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to pursue tliis siilijoct farllier will fiiicl iiifurmatinn in tlic fidlow-

inp works: Scrret, Coiirs d'Alijihre Sup/rieure (I'aris, 1879);

Jordan, Traite di's Substiliifi'ms (I'aris, 1870); Netto, »S'«/«/iVm-

tioiu'ii-t/tcoru; (Leiiizig, 18S2) ; Burnsitle, Theory of Groups

(Cambridge, 1897).

ESERCIBES III.

(1.) There nrc 10 countora io a bux oiHrKuil 1, 2, . . .,10 rospcctively.

Throe drawings arc miule, the counter drnwn being ri-phtced cnch time. In

huw many ways cau the sum of the numbem drawn amount— Ist, to 9

exactly; 'ind, to 9 at least?

(2.) Out of the integers 1. 2, 3, . . .,10 bow many pairs can be selected

80 that their kuni liliall be even ?

(3.) How many diflorcnt throws can be made with n dice?

(-1.) In how many ways can 5 black, 5 white, o blue balls bo equally
distributed amon;; three bah's, the order of the b.'i^-s to bo attended to?

(5.) A Bclection of c tliinRs is to bo made partly from a Kroup of a, the

rest from u K™"P "f f>- Prove that the number of ways in which such a set

can bo made will never be ^renter than when the nnmber of things taken

from the croup of u is next less than (ii + 1) (t-(- !)/(« + 1 + 2).

(6.) In how many ways can p +'» and n - 's be placed in a row so that no

two - 's cumo together ?

(7.) In the Morse signalling system how many signals can be made
without exceeding 5 movements 7

(K.) In how many ways cm 3 pairs of subscribers be set to talk in a

telephone exchange having ii subseribers ?

("J.) There are 3 colours, and in balls of each. In how many ways can

they l>c arranged in 3 bags each containing m, the order of the bags to

be attended to?

(lU.) If of ;) + f + r things p be alike, q alike, and r different, the total

number of cunibinatiuMH will be (/> + l) ('/ + !) 'i'- 1.

(11.) In how many ways ctn 'in things bo divided into n pairs?

(12.) The numl>er of eombinatiuns of 3n things (n of which arc alike),

taken n at a time, is the cooflicieut of x* in (l+f)^/(l -x).

(13.) N boat clubs have n, 6, e, 1, 1 1 boats each. In how many
ways can the boats be arranged subject to the restriction that the Ist boat of

any club is to be always above its 2nd, its 2nd always above its 3rd, *c. 7

(14.) If there lie p things of unc sort, if
of another, r of anotlicr. Sic, the

numtxT of combinations of the p + q + r^- . . . things, taken k at a time, ia

the coefficient of x» in (1
- x^>) (1

-
jr»»->) . . . /(I

-
x) (1

-
j-) . . .

(1.").) In hi>w many ways can an arrangement of n things in a row be

deranged sn that -1st, each thing is moved ono place; 2nd, no thing more
than one plaro?

(16.) Uiveu n things arranged in soooessioo, the number of sets of 8
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which can be formed under the condition that no set shall contain two things
which were formerly contiguous is (n-2) (k-3) (tt-4), the order inside the

sets to be attended to.

(17.) In how many ways can m white and n black balls be arranged in a

row so that there shall be 2r- 1 contacts between white and black balls?

(18.) In how many ways can an examiner give 30 marks to 8 questions

without giving less than 2 to any one question?

*(19.) The number of ways in which n letters can be arranged in r pigeon-

holes, the order of the holes and of the letters in each hole to be attended to

and empty holes admitted, is r(r + l) (r+ 2) . . . (r+ 7i-l).

(20.) The same as last, no empty holes being admitted, nl(n-l)!/(«-r)l

(r-l)l.

(21.) The same as last, the oidcr of the holes not being attended to,

nl(n-l)!/(n-r)lr!(r-l)!.

(22.) The number of ways in which n letters, all aUke, can be distributed

into T pigeon-holes, the order of the holes to be attended to, empty holes to

be excluded, is „_jC,_,.

(23.) Same as last, empty holes being admitted, „+,_jC,_i.

(24.) Same as last, no hole to contain less than q letters, „_j_,(,_ijC,_i.

(25.) The number of ways of deranging a row of « letters so that no letter

may be followed by the letter which originally followed it is n\ -(- (»i
-

1) j
.

(26.) The number of ways of deranging m + n terms so that m are dis-

placed and 11 not displaced is (m + n)\m\jm\n\.

(27.) The number of ways in which r different things can be distribated

among n +p persons so that certain n of those persons may each have one at

least is

S^=[n^pY-n(n+p-\Y + ''l^^^(n+p--2Y-.
. .

Hence prove that

S,= S3=. . .=S„_, = 0, S„=nU
S„+i=(^+i')(«

+ l)!.

( WoUtenholme.)

(28.) Fifteen schoolgirls walk out arranged in threes. How many times

can they go out so that no two are twice together? (See Cayley's Works, vol.

1., p. 4S1.)

EXEKCISES IV.

Topoloffical.

(1.) The number of sides of a complete n-point is Jn(«-1), and the

number of vertices of a complete 7!side is the same.

(2.) The number of triangles that can be formed with 2n lines of lengths

1,2 2n isn(n-l)(4n-5)/G.
(3.) There are n points in a plane, no three of which are coUinear, How

• Exercises 19-25 are solved in Whitworth'a Choice and Chance; q.v.

C. u. 3
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many closod r-sidod figures can bo lurmt-d by joining tbc poiiila by straiglit

lincH?

(4.) If wi puiutB in ono KtraiKhl lino bo joined to n pointa in another in

every poiwiblu way, show that, oxcluHivo o( the m+n given pointK, there are

mil (in
-

1) (II
- l)/2 points of intersection.

(5.) On three striii^-lit lines, A, II, C, are taken I, m, n pointa respectively,

no on« iif which in n point ol intorsectiou. Show thnt the number of triangles

which can be formed by taking three of the f + m + ii points is i (in + n)(n + f)

{l + m)-mn- nl - Im.

(ti.) There are ii points in a plane, no three of which arc cullinear and no

four omcyclic. Through every two of the points is drawn a straight line and

through ev<Ty three a circle. Assuming each stniiglit hne to cut each circle

in two diiitinct (loiuts, find the number of the intersections of stniight lines

with circles.

(7.) In a convex polygon of n sidt's the number of exterior intersections of

diagonals is ,>jii (ii
-

3) (n
-
4) (n

-
5), and the number of interior intersections

is ,'.n (II
-

1) (n
-

-2) (n
-

3).

(8.) There arc ii points in space, no three of which ore coUincar, and no

four coplaiiar. A plune is drawn llirough every three. Vind, 1st, the num-

ber of ilistiiict liius of iiiter.sectionH of these planes; "Jnd, the number of these

lines of iutersection which puss through one of the given ii points; 3rd, the

number of distiuct points of intersection exclusive of the original « points.

(9.) Out of II ^lraight lines 1, 2. . . .
,

ii inches long respectively, four can be

chosen to form a pericyclic iiuadriluleral in {2ii(ii- 2)(2ii- 5)-3 + 3(
-
1)"|/18

ways.

( 10.) Show that n straight lines, no two of which are parallel and no throe

concurrent, divide a plane into J(ii' + n-l-2) regions. Hence, or ollierwise,

allow that ii pluueK through the centre of a sphere, no three of which arc

coaxial, divide its surface into ii'-ii + 2 regions.

(11.) Show that two ]icucils of straight lines lying in the same plane, one

containing m the other ii, divide the plane into iiiii + 2ni -t- 2n - 1 regions, it

bvnig supposed that no two of the lines arc i)araUcl or coincident

(13.) If any number of closed curves bu drawn in a plane each cutting all

tbc others, and if ii, be tlic number of jioints through which r curves pass,

the number of dibtiuct closed areas formed by the plexus ie

l + n, + 2H,+ . . . + rn,+,+ . . .



CHAPTEE XXIV.

General Theory of Inequalities.

Maxima and Minima.

§ 1.] The subject of the present chapter is of importance in

many branches of algebra. We have already met with special

cases of inequalities in the theory of Ratio and in the discussion

of the Variation of Quadratic Functions of a single variable
;
and

much of what follows is essential as a foundation for the theory

of Limits, and for the closely allied theory of Infinite Series. In

fact, the theory of inequalities forms the best introduction to the

theory of infinite series, and, for that reason, ought to be set as

much as possible on an independent basis.

§ 2.] We are here concerned with real algebraical quantity

merely. As we have already explained, no comparison of com-

plex numbers as to relative magnitude in the onlinary sense can

be made, because any such number is expressed in terms of two

absolutely heterogeneous units. Strictly speaking, tliere is a

similar difficulty in comparing real algebraical quantities which

have not the same sign ;
but this difficulty is met (see chap,

xni., § 1) by an extension of the notion of inequality. It will

be remembered tliat a is defined to be algebraically gi-eater or

less than h according as the reduced value of a - 6 is positive

or negative. An immediate consequence of this definition is

that a positive quantity increases algebraically as it increases

numerically, but a negative quantity decreases algebraically as

it increases numerically. The neglect of this consideration is a

fruitful source of mistakes in the theory of inequalities.

§ 3.] From one point of view the theory of inequalities runs

3—2
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parallel to tlic theory of coiiditioiiul eiiuations. In fact, the

approximate numerical Kuliition of eipiations depends, as we have

seen, on the establisiimeiit of a series of inequalities*.

TIic ti)llowing theorems will briiig out the analogies between

the two theories, and at the same time indicate the nature of

the restrictions that arise owing to the fact that the two sides of

an inequality cannot, like the two sides of an eipiation, be inter-

changed without altering its nature. For the sake of brevity,

we shall, for the most part, write the inequalities so that the

greater quantity is on the left, and the sign > alone a]ip(\'irs.

The modifications necessary when the other sign appears are in

all cases obvious.

I. IfP>Q,Q>R,R>S,thenP>S.
Proof.—(P-Q) + {Q-J{) + {R-S)BP-S,hcoce,BmccP-Q,

Q- It, R-S are all positive, P-S'k positive, that is, P>S.
II. If P>Q, then P±R>Q±R.
For (P±R)-(Q±R)^P-Q\ hence the sign of tlie former

quantity is the same as the sign of the latter.

Cor. 1. I/P+Q>R + S, then

P+Q-R>S, -R-S>-P-Q, -P-Q<-n-S.
It thus appears that we may transfer a term from one side of

an ine4]uaUty to mmther, provided we change its slijn ; and ire

may change the signs of all tlie terms oti both sides ofan inequality,

provided we reverse the symbol of inequality.

Cor. 2. Every inequality may be reduced to one or other of
the forms P>0 or P<0.

In other words, every problem of inequality may be reduced

to the determination of the .sign of a certain quantity.

III. JfP,>(^„ P.Xh PnXin.
then /^ + A +...+/',> Q. + Q, + ...+ ^. ;

for {P^P,+ . . . +Pn)-(Q, + (?,+ . . . * V.)
=
(/^-(^.) + (/^-V=)+ . . . M/'. -<?.),

whence the theorem follows.

It should lie noticed that it does not follow that, if Pi>Q,,
P,>Q„t\lcnP^-P,>Q,-Q,.

*
Soo, for example, the proof that eTtu7 cquntion has a root.
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IV. If P>Q, then PE>QR, and P/B> Q/R, provided R
be positive; but PR<QR, P/R<Q/R, if R he negative.

For {P-Q)R aud {P - Q)/R have both the same sigu as

P-Q it R be positive, and both the opposite sign if ^ be"

negative.

Cor. 1. If P>QR, and R>S, then P>QS, provided Q be

positive.

Cor. 2. Every fractional inequality can he integralised.

For example, if P/(2>R/S, then, provided QS be positive,

we have, after multiplying by QS, PS>QR; but, if QS be

negative, PS<QR.
If there be any doubt about the sign of QS, then we may

multiply by Q-S\ which is certaiidy positive, and we have

QPS"->Q'RS
V. ifPi>QuPi>Q^..---, Pn > Qn ,

and all the quantities

he positive, then

PJ\ . . . P„> Q,Q. . . . &.

For PJ\P, . . . Pn>QiPJ\ . . Pn.

since A>Qi and P.Pa . . . P„ is positive ;

>Q.Q.Pz . . P.,

since Pi>Qi and Q1P3 . . . Pn is positive ;
and so on. Hence,

finally, we have

P,P, . . . Pn> Q>Q. . . . Qn.

Cor. 1. If P>Q, and hoth he positive, then P"> Q", n being

amy positive integer.

Cor. 2. If P>Q, and hoth he positive, then P"">Q"", h

being any positive inte{/cr, and the real positive value of the nth

root being taken on hoth sides.

For, if P""5Q"", then, since both are real and positive,

(pi/i.)n=(Qi/n)n_ j^y (Jqj_ j
.

^\^^^ jg^ p~ Q_ ^s\\\i:\\ coutradicts our

hypothesis.

Cor. 3. If P>Q, hoth being positive, and n be any positive

qitantity, then P-''<Q''', where, if the iiidices are fractional,

there is the tisual understanding as to the root to be taken.

Remark.—'YXw necessity for the restrictions regarding the
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sign of the members of the inequalities in the present theorem

will appear if we consider that, although
— 2> -

3, and - 3 > -
4,

yet it is not true that
(
-

2) (
-

3)> (
-

3) (
-

4).

These restrictions niiglit be removed in certain cases
;

for

example, it follows from - 3 > - 4 that (
-
3)'>(

-
Af, in other

words, that - 27 > - 64 : but the imporbince of such {articular

cases docs not justify tlieir statement at length.

Cor. 4. An inequality may be rationalised i/ due attention h«

paid to tlie above-mentioned restrictions regarding sign.

g 4.] By means of the theorems just stated and the help of

the fundamental principle that the product of two real quantities

is positive or negative according as these quantities have the

.same or ojiposite sign, and, in particular, that the s^piare of any
real quantity is positive, we can solve a great many questions

regarding inequalities.

The following are some examples of the direct investigation

nf inequalities ;
the first four are chosen to illustrate the paral-

lelism and mutual connection between inequalities and equa-
tions :

—

Example 1. Under wliat circumstances is

(3j-1)/(i-2) + (2z-3)/(x-6)> or <57

Ittt. Let us suppose thnt x does not lie between 2 and 5, and is not eqnol
to cither of these valaos. Then (x -2)(x- 5) is positive, and we may multiply

by this factor without reversing the signs of inequality.

Hence f= (3x - l)/(x
-

2) + (2x - 3)/(x
-
5)>< 6,

according as

(3x
-

1) (x
-
5) + (2x

-
3) (x

-
2) ><6 (i

-
2) (i -

6),

according as 6x'-23x + ll><5x'-35i + 60,

according as \2x> <39,

according as x> <3^.

Under our present supposition, x cannot have the vnluo 3} ; but we con-

elude from the atrarc that if x^-S, /'>6, and if x<2, F<6.
2nd. Suppose 2<x<5. In this case (x-2)(x-6) is negative, and we

must reverse all the signs of inequality after multiplying by it.

Wc therefore infer that if 2<x<3|, i''<5, and if Si<x<6, then
ii'<5.

The student shnnid observe that, as x varies from -a> to -f eo , the sign of

the inequality is thrice reversed, niimely, when x = 2, when x = 3J, ami when
1 = 5; the first ami Init revorwals occur because F changes sign by passagg

through an inlinito value; the second reversal occurs because F
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tlirough the value 5. The student should draw the graph of the func-

tion F.*

Example 2. Under what circumstances is

F=(3x-4)/(x-2)><l?
Multiplying by the positive quantity (x- 2)^, we have

*

(3a:-4)/(x-2)><l,

according as (3x
-
4) (x

-
2)>< (a:

-
2)',

according as
{ (3i

-
4)

-
(x

-
2) } (x

-
2) > <0,

according as 2(x-l) (x-2)> <0.

Hence F>1, if x<:l or >2;
F<:1, if l<a:<2.

Example 3. Under what circumstances is x' + 25x > < 8x'+ 2G ?

i' + 2.5x><8x2 + 2G,

according as x'-Sx-+ 2ox-26> <0,

according as (x-2) (x'-6x+ 13)> <0,

according as (x-2){(x-3)= + 4}> <0.

Now (x
-

3)^ + 4 is positive for all real values of x ; hence

xS+25x> <8x2+ 2G,

according as x><2.

Example 4. If the positive values of the square roots be taken in all

ftfLRPS IS

V(2-i+ 1) + N'(-t
-

1) > < v/(3x) ?

Owing to the restriction as to sign, we may square without danger of

reversing the inequality. Hence

J(2x + 1) + V(x-1)>< v/(3x),

according as 2x + 1 + x - 1 + 2,^{ (2x + 1) (x
-
1)} >< 3x,

according as 2;^{(2x + l) (x- 1)}> <0.

Now, provided x is such that the value of ^ { (2x + 1) (x
-

1) } is real, that is,

provided x>l,
2V{(2x-|-l)(x-l)}>0,

therefore ,y(2x + 1) + ^(x -
1) > V(3x), if x > 1.

Negative values of x less than -J would also make ,^{(2x + l) (x- 1)}

real ; but such values would make ,^(2x+ l), ^(x-1), and ^{3x) imaginary,

and, in that case, the original inequality would be meaningless.

Example 5. It x, rj,
z . . . be n real quantities (n

-
1) ^x^-j 22xy.

Since aU the quantities are real, 2 (x-i/)--tO.

Hence, since x will appear once along with each of the remaining n - 1

letters, and the same is true of :/, 2, . . ., we have

(n-l)2x2-22xy-tO,
that is, (n

-
1) 2x= < 22xi/.

* The graphical study of inequalities involving only one variable will be

found to be a good exercise.
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In tliP case where x= ;/
= «=. . . . we have Si'r^njr', 2j;ry = 2,C^

= n(n-l)j', fo tliHt the inequality just becomes an equality.
When n=2, we have the theorem

x» + y'-t2ry;

or, if we put x= ,Ja, )/
= v">> " «nd 6 being real and positive,

a + b< 2s/{ab),

a theorem already establiebed, of which the preceding may be regarded ai a

genernlisfition. A more important generalisation of another kind will be

given jirraontly.

Example 0. If x, i/, r, . . . be n real positive quantities, and p and g any
two real quantities having the same sign, then

Ti£x''+«-«2x»'2:x«.

We have seen that xf-yf and r»-j/« will both have the Bome sign ai

« -
y. or 'both opposite signs, according as p and q are both positive or both

negative. Hence, in either case, («''
-

j/"") (J«
-
y«) has the positive sign.

Therefore

(xv-y'>){xf>-ii'i)<0,

whence z'*+« + i/''+^-<x''y' + i*y''.

If we write down the ,C, inequalities like the last, obtained by taking

every possible pair of the ii quantities x,y,z, . . ., and add, we obtain the

following result—
(n-l)2xP+«-«2:zV-

If we now add 2j»"+« to both siilcs, we deduce

N.H.—Up and q have opposite signs, then

nSxP*« i- 2x''i-r».

These theorems contain a good many others as partienlar caiM. For

Giample, if we put q= -p, we deduce

ZTP^x-f in'',

whic)i, when n = 3, p= l, gives

(x + y + i)(l/T + l/y + l/t)<9i

whence (x + y + t) (yi + ix + xy) -t 9xy» |

and so on.

Example 7. If r. y, t be real and not all equal, then Zx'> <3xy>,
according bm Xs> «0.

For 2r« - Sxi/i= 2x (Sx*
-
Zry),

siSx2(x^!/)«.
nencc the theorem, since 2 (x

-
y)* is osBcntially positive.

Example 8. To show that

i 1 . S
(
2»i -

1) s'(" + 1)

s'(J.i-i 1)* 2.4 . . . iii
"

2ii + l
•

where n is any positive iutegcr.
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From the inequality a + b>2^f{ah) we deduce

(2H-l) + (2tt + l)>2J{(2«-l)(2n + l)};

whence (2n- l)/2n<^{(2»- l)/(2n + l)} (1);

similarly (2n- 3)/2(n-l)<^{(2«-3)/(2n-l)j (2);

5/2.3<V{5/7} (n-2);

3/2.2<V<3/5} (K-1);

l/2.1<V{l/3} (n).

Multiplj'ing these inequalities together, we get

1.3.5 ... (2«
-

1) 1

2.4.G . . . (2n) ^{2n + l)

Again, n+ (n + l)>2^{n(n + l)},

that is, 2n+^>2V^n()^ + l)}.

Hence wo have the following inequalities—

(A).

(2n+l)/2»>V{(n+ l)/n}
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Hence, siuce 6,, 6,, . . ., i, are all positive,

a,<tA, (/,<//>„ . . ., «,<{://',.

Adding, we liave

{a,+aj + . . . + «,) «t/(i, + 1, + . . . + 6.) ;

whence

(rt,
+ n.j + . . . + «.)/(/>,

+
/'j + . . . + 6,) <t/.

In like manner, it may be shown that

(at + (h+. . . + a,)/(6. + ^, + . . .+6,)>/'.
liemark.—This theorem is only one among many of the same

kind*. The reader will tind no ditliculty in demonstrating the

following :
—

lfai,<h, . . .,a„,bi,b,, . . .,b, l>c as htifore, and I,, I, U
be n positive quantities, then ^l,aiftlib,{x not /ess t/ian (he liiuit,

and not greater than the greatest, among the n fractions a,/<>, , a^bt,

Ifa\,<h,- ,a„,bi,b,,. . .,b„,l,,l^,. . ., l„ be allpositive,

then {S/,«,"'/S/, /.,"•}"" and !«,«, . . . a.//>,6, . . . A,}"" are,

each of them, not less than the U-ast, and not greater than the

greatest, among the n fractions ajbi, a^Jb^, , . ., ajbn.

Example, to prove that

1 y a.3...(2H-i) )

2 V I 2.4 ... 2n ]

•

Since the fractions 1/2, 3/4, . . . (2n-l)/2n arc obvionsly in ascending
order of nmt;nitude, wo hare, in the second part of the last of tho thcoromi

just stated,

1 "/( I.S . . (2n-l) ) 2n-l
2 V (

2 . 4 . . . 2n
J

2n

Now, (2h-1)/2h = 1-1/2h<1, honco the theorem follows; and it holds, be it

observed, however great n may be.

§ 6.] If X, p,q be all jtositite, and p and q be integers, then

{jf
-
\)/p> <(a^ -

I )lq affording as p> <q.
Since p ami q arc positive,

(j^-\)lp><{:if>-\)lq,

according as y (j* -!)></> (i^- 1),

• Sec the interesting remarks on Mean Values in Caticliy's Analyu
Algf.liriqut.
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according as

(w-l){q{x^-' + .vP'^ + . . . + l)-p(af>-' + af'-' + . . . + 1)}><0.
Ifp>q, we have

X =
{x-l){q{a^-' + .x''-- + . . . + i)-p(afl-' + af--+. . . + I)],

"

=
(^-l){g'(a*-' + irP-= + . . . + af)- {p-q){j^-' + af-"- + . . , + 1)|.

Now, if a:>l,

a^-' + .rP-= + . . . + .7^>{p-q)afl;

af-^ + of-- + . . . + 1 < qafl-^ ;

therefore,
X> {x-\){q{p-q)af'- (p

-
q) q:^-\

>q{p~q)afl-'{.v-l)-,

>0.

Again, if a'<l,

af-^ + a-P-' + . . . + af<(p- q) afl
;

ar«-' + afl-- + . . . + 1 > qx"-'^ ;

but, since a;
- 1 is now negative, the rest of the above reasoning

remains as before.

Hence, in both cases,

{x^-\)lp>{afl-\)lq.

By the same reasoning, if q>p,

. {afl-\)lq>{o?-\)lp,
that IS, \ip<q,

{a^-l)lp<{af'-\)lq.

§ 7.] IfX be positive, and =t= 1, tlien

mx'"-^{x-l)>x"'-l>m{x- 1),

unless m lie between and + 1, in which case

maf-^ (x - 1) <.t'" -l<m{x- 1).

From § 6, we have

{^-l)><{p/q){i''-l) (1).

according as^Xg, where t is any positive quantity +1, and

p and q positive integers. In (1) we may put a^'" for ^, where x
is any positive quantity =# 1 (the real positive value of the yth
root to be taken), and we may put m for p/q, wliere m is any

positive commensurable quantity. (1) tlien becomes

af"-l><m{x-l) (2),
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according as wxl, wliicli is part of the theorem to be

established.

In (2) we may replace x by l/x, where x is any positive

quantity +1, and the inequality will still hold.

Hence (l/ar)"- l><m(l/x- 1) (3),

according as »»> < 1.

If we multiply (3) by - x", we deduce

ar-l<>mxr-'(.r-l),

that is, wij^-'(jr-l)><j:"-l,

according as wj>< 1 .

We have thus established the theorem for positive values

of TO.

Next, let TO = -n where n is any positive commensurable

quantity. Then
a;-"-l><(-«)(-^-l).

according as l-afx-nx'ix-l),

according as x'-lonx'ix- I),

fix'^'-nj^xa:"-!.

Add af*^ - .r" to both sides, and we see tliat

a-"-l><(-«)(x-l),
according as

(h + 1)x"(j--1)><j'*'-1.

Now, since n is positive, h+1>1, therefore, by what we

have already proved,

(n+l)x"(x-l)>a:"*'-l.

Hence a— -!>(-»)(*- 1) (•*)•

In (4) we may write 1/x for x ;
and then we have

(l/jr)-"-l>(-«)(l/x-l).

If we multiply by
- x"", this last inequality becomes

a:--l<(-n)x--'(x-l).

that is, (-n)x—'(r-l)>J— -1-

Hence, if m be negative,

my"-'(-r- l)>J--l>Hi(x -
1);

which completes the demonstration.
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Cor. If .r and i/
bo any two unciiual positive quantities, we

may replace x in the above theorem by x/^. On multiplying

throughout by i/"', we thus deduce the following
—

^x and y be jiositive and unequal, then

mx"'-'- {x-y)>x^- y"> mij'^-^ {x
-
y),

unless m lie between and + 1, in which case

mx'"-^ {x
-
y)<x'"'

-
y'"<my'"-^ (x

-
y).

We have been carefid to state and prove the inequality of

the present section in its most general form because of its great

importance : much of what follows, and many theorems in the

following chapter, are in fact consequences of it*.

Example 1. Show that, if x be positive, (I + .t)"' always lies between

1 + mx and (l + x)/{l + (l-)ii)i}, provided 7hx<1 + x.

Suppose, for example, that m is positive and < 1. Then, by the theorem

of the present section,

wi{l + .T)'"-ix<(l+x)"*- l<mx.

Hence (1 + x)"'<1 + »hx.

Also, (l + x)'»-l>J7ix(l + x)'"/(l + x),

{l-mj/(l + x)}(l + x)"'>l.

If mx<l + x, 1 -
7nj/(l + x) is positive, and we deduce

(1 + X)'»>1/{1-»HX/(1+X)},

>(l + x)/{l+(l-m)x}.
The other cases may be established in like manner.

Remark.—It should be observed that

(1±X)"'> <1±)HX,

according as vi does not or does lie between and + 1.

Example 2. Show that, iitt^,u^ . . . , «„ be all positive, then

(l + u,)(l + !(„) . . . (1 + «„)>1 + Ui + Ua+ . . .+«„;
also that, if Uj, u„ . . ., u„ be all positive and each less than 1, then

(l-K-,) (!-!/„) . . . {l-i(„)>l-«i-«a- • • -«n-

The first part of the theorem is obvious from the identity

(l + U,)(l + «2) • (l + U„) = l + 2«i + :;«lWa+2UiHjH:,+ . . . +U^U„ . . . !(„.

The latter part may be proved, step by step, thus—
1 -iii = l -u,.

(1
-

I<i) (1
-

II.,)
= 1 - Ui

-
tij + KiHj,

>l-Kl-«2.

* Several mathematical writers have noticed the unity introduced into

the elements of algebraical analysis by the use of this inequality. See

especially Schlomilch's Ilandbuch tier Alyebraischeii Analysis. The secret of

its power lies in the fact that it contains as a particular case the fundamental

limit theorem upon which depends the differentation of an algebraic function.

The use of the theorem has been considerably extended in the present volume.
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Heuco, giaco 1 - u, in positive,

11
-

«,) (1
- uj (1

-
u,) >(1 -

«,) (1
-

li,
-

",).

>l-U,-li,-U,+ li,(ll, + uj,

>l-u,-u,-u,.
Aud 80 on.

These inequalities are a gcncrolisalion of (l±x)">l±«x (x<l and n a

positive integer). They are userul in the tbcor; of infinite products.

§ 8.] The arithnutlc mean of n positive quantities is not less

than their (jvomdric mean.

Let us suiipo.se tliis theorem to hold for » quiiutities

a, b, c, . . ., k, and let / be one more positive quantity. By

b}T)othcsis,

(« + 6 + c + . . . + k)ln^(al>c . . . X)"^,

that is,

a+b + c + . . . + A<t;« {abc . . . k)^.

Therefore

a + + c + . . .+A + /<»! (a/jc . . . k)^' + L

Now,
« {aOc . . . X)"- +/<t(H + 1) (tt*c . . . X-0'i"+'),

provided

n{abc . . . X//"r"+K(H+ 1){«/'C . . . XV/f+'r'"*",

<t(H + l){«ic . . . X//-}"^"*'',

tluit is, provided

«f^' + l.«t("+«)s'",

where f«<-+'> = a^« . . . X//»,

that is, provided

{n+l)i'($-lHi'*'-l,

whicii is true by S 7.

Hence, if our theorem hold for « quuntitics, it will hold for

n+1. Now wu have seen that (<t +<>)/•_' -^Oi/')*, that i^s the

theorem holds for 2 quantitiej* ;
therefore it holds for 3

;
there-

fore for 4 ; aud so on. Hence we have in general

(rt + 6 + c+. . . +X-)/«<(<i/t . . . *)"".

It is, of course, obvious that the inequality bccomc'> :iii

equality when a = 6 = c = . . . — X.
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Tliere is another proof of this theorem so interesting and

fundamental in its character that it deserves mention here*.

Consider the geometric mean {ahc . . . X-)"". If «, b, c, . . .

be not all equal, replace the greatest and least of tiieni, say a

and /•, by {a + k)l'i; then, since {{a + k)l2\->uk, the result has

been to increase the geometric mean, while the arithmetic mean

of the n quantities (« + A-)/2, h, c, . . ., (a + /i)/2 is evidently tlie

same as the arithmetic mean of a, b, c, . . ., k. If the new set

of n quantities be not all equal, replace the greatest and least as

before
;
and so on.

By repeating this process sufficiently often, we can make all

the quantities as nearly equal as we please ;
and then the

geometric mean becomes eq\ial to the arithmetic mean.

But, since the latter has remained unaltered throughout, and

the former has been increased at each step, it follows that the

first geometric mean, namely, {abc . . . ky'", is less than the

arithmetic mean, namely, {a + b + c+ . . . + k)/n.

As an illustration of this reasoning, we have (1.3.5. 9)'
'*

<(5 . 3 . 5 . 5)1<(5 .4.4. 5)i<(4-5 . 4-5 . 4-5 . 4-5)l<4'5<(l + 3

+ 5 + 9)/4.

Cor. If a, b, . . ., k be n positive qiinntities, and 2^, q, . . . ,t be

n positive commcnsurtible quantities, then

pa + qb + . . • + ^/-

>fa,^, m.(,.M+. . .+n

p+q+ . . . +t ^

It is obvious that we are only concerned with the ratios

p : q : . . . : t. Hence we may replace p, q, • , t by positive

integral numbers proportional to them. It is, therefore, suffi-

cient to prove the theorem on the hypothesis that p, q, -, t

are positive integers. It tiieu becomes a mere particular case of

the theorem of the present paragrai)h, namely, that the aritlmietic

mean oip + q + . . . + t positive quantities, p of which are equal

to a, q to b, . . ., t to k, is not less than their geometric mean.

• See also the ingenious proof of the theorem given by Cauchy {Analyse

Algebrique, p. 457), who seems to have been the first to state the theorem in

its most general form.



8 1pa"'j'!ip^{1pa/1p)'' CH. xxiv

Example 1. Show that, if a, b, . . ., i be n positive qaanlities,

v. + 6+ . . . +* J
/a + b+ . . +>c \»->**^- •+»

The first part of the proposition folIowB from tbu above corollary bjr taking

p — a, q -b, . . ., k = c.

The second inequality is obvionsly equivalent to

{¥iy (fb)'
• • Q^y '^'

which again is equivalent to

\npa) XnpbJ
' ' '

\npk )
'

where p is a positive intei^er which mity be so chosen that pa, pb pk are

all piisitive intvr;cr9. We shall therefore lose no generality by supposing

a, b, c A: to be positive integers.

Consider nuw <i positive quantities each equal to Zajna, b positive quantitia*
each equal to 2:(i/n6, Ac. The geometric mean of these is not greater than
their arithmetic mean. Hence

l/S<i\"/'i:ay /ri'Vi'^' a(Zalna) + baalnb) + . . +t(Sa/iit)

\\,uij \iib)
•

\nk)l
"

a-rl+.-.+i

mm-- - &)"-
Einmplc2. Prove that 1 . 3 . . . (2n-l)<n*

W'chave {1 + 3+ . . . +(2n- l)}/n>{l .3 . . . (2n-l)}"»,

that is, nVn> {1.3 . . . (2n-l)}'/».

Hence ti"> 1 .3 . . . (2fi-l).

§ 9.] I/a, b, . . ., k he n positive quantities, and p, q, . . ., t

be n positive quantities, then

pa" + qb" + . . • + ^^"* u -c /i^ *?/'>. . . •• tiy . .

p+V+...+( \ p + g+ . . . +t )
^ '•

according as m dofs not or does lie between and + 1.

If we denote

PKP + 7 + . . . +
/), q!(p^q+ . .
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then, dividing both sides of (1) by

{{pa + qb+ . . .+tk)J(p + q+ . . . + <)}"•,

we have to prove that

Aa;"' + /./" + . . . + ««"'<0.1 (4), ,

according as ?w does not or does lie between and + 1.

Now, by g 7, if 7M does not lie between and + 1, .r"'-l

t^:??; (.r
-

1), y'"
- 1 -^m {y

-
1), &c. Tiieiefore, since A, ^, &c., are

positive,

2\(a;"'-l)<t:2X?w(a:-l),

<m{\-\),
by (2) and (3), that is,

2Aa;'»-2A.<!;0.

Hence 2Aa;"'<tl.

In like manner, we show that, if m lies between and + 1,

2/U"'$>l.

Cor. If we make p = q = . . .
=

t, we have

n <>[ n )
(^^'

that is to say, the arithmetical mean of the mih powers of n positive

quantities isnot less or not (jreater than the mthpower of their arith-

metical mean, according as m doi-s not or does lie between and + 1.

Bemark.—It is obvious that each of the inequalities (1), (4),

(5) becomes an equality if a = 6 = . . .
=

^", if w =
0, or if m = 1.

Example. Show that SXx'", considered as a function of m, increases as m
increases when m>+l, and decreases as m increases when ni<-l,

X, jj., V, . . ., X, y, z, . . . being as above.

1st. Let m>l. We have to show that SXi'"+'":>2Xx'", where r is very

small and positive, that is,

2Xi"'(x'--l)>0.

Now, 2\i"' (^'"
-

1) > SXx'^rx'-' (x
-

1),

>ri;\x"'+'"-i(i-l).

• The earliest notice of this theorem with which we are acquainted is in

Eeynaud and Duharael's Problemcs et Developmens sur Dii'crses Parties des

Mathematiques (1B23), p. 155. Its surroundings seem to indicate that it

was suggested by Cauchy's theorem of § 8. The original proof rests on a

maximum or minimum theorem, established by means of the Differential

Calculus ;
and the elementary proofs hitherto given have usually involved

the use of infinite seiies,

c. II. 4
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Since m>l, m + r>l, therefore (m + r) i"-"^' (r- l)>(m+ r) (x- 1), tlinl

is, t-^^Mx-II^Cj:-!).
Hence l\x''{x'-l)>rZ\{z-\).

> r (rXx -
DX),

>0.

Therefore Z\i^*^ > SXx".

2ad. Let m< -1.
SXi" (x'

-
1) ^ rlXx" (x

-
1).

Now (m + l)x"(i-l)>(ni + l)(x-l), eiuoe m + 1 is negative. ITence,

dividing by tlie negative quantity m + 1, wc have

x">(j-l)<(i-l).

Hence Z\x''{jf-l)<ry:\(z-l),

<r(^Xx-2\),
<0.

Tlierefore, 2Xx"*«'<2\a".

Exercises V.*

(1.) For what values of xji/ is (<i + fc) xy/(iix + by) > {az + by)l{a + 1) 7

(2.) H X, y, z bo uny real qiiautitics, and z>y>t, then x»y + y*i + r*x>

xj/' + !/J* + "*.

(3.) \t x,y, t be any real quantities, then 1(y - z)(t-x)>Q and i'j/i/

Sx«>l.

(4.) If x' + y' + »' + 2xi/« = l, then will all or none of the quantities x, y, t

lie between - 1 and +1.

(5.) If X and »i be positive integers, show that

jam+j< j: (^ ^ 1) (2X + 1) (8x» + 3x + Ij^/U . S" < (x + !)»"+».

(0.) (a»/l)> + ((<»*-« a* + l».

(7.) If x,,x,, . . ., X, all liave the same sign, audi -i-x,, 1 + x, l + «»

be all positive, then

ll(l+x,)>l + 2x,.

(8.) Trove that 8xi/j i-ll (y + r) i- JSx*.

(9.) If X, )/, : u, b, c . . . be two sets, each ooDlaining n real

quantities positive or negative, hIiow that

iu'^'-((l(ix)';

also that, if all the quantities be positive,

2(j/.i)/ix-«2x/2<ix;

and, if2:x = l, 21/x<n'.

(10.) If X,, X, X, and oUo y,, y,, .... y. bo positive and in

ascending or iu descending order of magnitude, then

Sx,Vi/i:x,y,>2>,'/£*,- (Laplact.)

* Unless the contrary is vlated, oil letters in Ibis set of exercises stand

fnr rtal positive quantitieo.
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(11.) Vn,h, . . .,( be in A. P., show that

a^J^ . . . P>aH''.

(12.) For what values of x is
(j;

-
3)/(x2+ x + 1) > (.r

-
4)/(x=

- 1 + 1) ?

(13.) Fiud the limits of x and y in order that

c>ax + by>-d,

a>cx +dy>b;

where ad- ic + 0.

(14.) x>'-x'y + ix'!/--2xh/ + ix-y*~xy'^ + y''>0, for all real values of

X and y.

(15.) Ib Wx- + ^y- + 13z-> = <Syz + 2xy + 18zx?

(16.) Up<2-^'2, then ^(x'' + y-)+p^{xy)>x + y.

(17.) Is ^/{a- + ab + b^)
- J{a- - ab + 6=) > = < 2^{ab) 7

(18.) If X and a be positive, between what limits must x lie in order that

x + a>^{h{x'+ xa + a"-)}+J{i{x''-xa + a')}7

(19.) If x<l, then {x+V(x--l)}i+ {i-^/(x'-- 1)}*<2.

(20.) If all the three quantities ^{a(b + c-a)], J{b{c + a-h)], ^{c{a +

h-c)] be real, then the sum of any two is greater than the third.

(21.) If the sum of any two of the three x, y, z be greater than the third,

then |2xi:x- ^ 2x^ + xyz.

(22.) 21/x>2x8/x3y3.3_

(23.) If Pr denote the sum of the products r at a time of a, b, c, d (each

positive and <1), ihen p.^ + ip^^'ip-^.

(24.) 2x^<X!/.'Sx.

(25.) If s = a + i; + c+. . .7t terms, then 2s/(s- a) <7!-/(k- 1).

(26.) If ?K > 1, X < 1, and mx -c 1 + x, then 1/(1 =f mx) > (1
± x)"'> 1 ± nil.

If m<l, x<l, 7nx<l + x, then (1 + x)/{l±(l -m)x} <(l±x)"'<
l±mx.

(27.) If z"=x" + ;/", then £"•:> <:x"' + i/'" according as m> <n.

(28.) If X and y be unequal, and x + y<<2u, then x'" + 1/"' > 2a'", m being a

positive integer.

(29.) )i{(n + l)i/»-l}<:l + l/2+. . . +l/H<:n{l-l/(/( + l)"" + l/(n + l)}.

(SchlomOch, Zeitschr.f. Math., vol. in. p. 25.)

(30.) IfXi.T2 . . . x„=i/», n(l + x,)<(l + 3/)".

(31.) If a, 6, . . .
,
kbe n positive quantities arranged in ascending order

of magnitude, and if M^={2,a'-lnyi^, W,= {2ai/f}7H, then

(ah . . . i)i/"<ilfj<J/j<. . .<A:,

{ab . . . &)'/»<. . .<Ar3<Nj<i^,.

(Schlomilch, Zeittchr.f. Math., vol. m. p. 301.)

(32.) If p, q, r be all unequal, and x + 1, then 2px«-'>2^.

(33.) If H be integral, and x and 7i each > 1, then

x»-l>7i(x(»+')'«-x (»-')/•-).

(34.) Prove for x, y, z that ('IZyz
-

•Zxr)'^'i (2x)S^II (2x- 2x)^

(35.) If« = ai + aj+. . . +a„, then H (s/a,-l)°'>-()i-l)'.

4—2
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(3G.) 3m(3m + l)»>4(3m!)"".

(37.) If <„ bo the Bum of the nth powers of a,, a,, . . . , a,, and p^ Die

enm of th.ir products m at a time, tlicn (n -!)!»„«« (ii
-
iii)!m!y„.

(38.) If a,>aj>. . . >a„, then

(<h -«»)"-' >(''-l)"-'(''i-<>i)K-''.) • • • (".-i-'O-

Hence, or otherwiac, show that {(ri- !)!['>«•-'.

(30.) Wliich is the greatest of the number* ^/2, ^/3, ^/l, . . . f

(40.) If there be n positive quantities j-, .x, x,, cach>l, and U

(i< fit • • {a l>e tl>e arithmetic means, or the geometric means, of all but

X,, all but X,, . . ., all but x„ then IIx/i j.n{,»i.

(41.) If u, 6, c be such that the sum of any two is greater than the third,

and X, y, z such that -x is positive, then, if £a*/x=0, show that xy: is

negative.

(12.) If A=ai + a^+ . . . +ii,, B= bf + li^+ . . . +6,, then Z{aJA-
b^lB) (ri J{i^)" has the same sign as u for all finite values of n.

(Math. Trip., 1870.)

APPLICATIONS TO THE TUEORY OF MAXIMA AND MINIMA.

§ 10.] The general nature of the connection between the

theory of maxima and minima and the theory of inequalities

may be illustnitcil as follows :
—Let <^(j*, ;/, z),f(x, y, z) be any

two function.s of x, »/, z, and su[)i>(i,se that for all values con-

Bistent \vith the condition

f{T,y.z) = A (1).

we have the inequality

<i>(x,y,z)1('/(x,y,z) (2).

If we can find valuo.s of x, y, z, say a, b, c, which stati.'^fy the

equation (I) and at the same time make the inequality (2) an

equality, then <^ (a, b, c) is a maximum value of i/> (x, y, :). For,

by hyiMithc.sis, i^(a, b, c)
= A and 'f>{x, y, z)'!^A ; therefore

<t>{x, y, z) cannot, for the values of x, y, z considered, be greater

than A
,
that i-s than </> {n, b, c).

Again, if we consiilcr all values of x, »/, z for which

,t>(x,y,z)
= A (1).

if wo have /(x, y, z)<i<t> (x, y, z)

<A (2'),

it follows in like manner that, if a, b, c be such that <^(a. b, c)-A,

/((«, b, c)
=

-4, thcuy\a, b, c) ia u minimum value of/(x, y, z).
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The reasoning is, of course, not restricted to the case of three

\ariables, although for the sake of brevity we have spoken of

niily three. The nature of this method for finding turning

values may be described by saying that such values arise from

exceptional or limiting cases of au inequality.

§ II.] The reader cannot fail to be struck by the reciprocal

character of the two theorems deduced in last section from the

same inequality. The general character of this reciprocity wLU

be made clear by the following useful general theorem :
—

Iffor all values of x, y, z, consistent with the condition

f(pc,y,z)
= A,

<i>{x,y, z) have a maximum value 4> {a, h, c)=Bsay {whereB depends,

of course, upon A), and if when A iiicreases B also increases, and

vice versa, then for all values ofx, y, z, consistent with the condition

<t>(x,y,z)^B,

f(x, y, z) will have a minimum valuef (a, b, c)
= A.

Proof.
—Let A' <A, then, by hj'pothesi.s, whcn/(.r, y, z) = A',

<i> {x, y, z)1^B' where B <B.

Hence, if
</> {x, y, z)

= B, f{x, y, z)<^A ;
for .suppose if po.isible

that/(^, y, z)
= A'<A, then we should have 'i>{x,y, z)1^B\ that

is, since B' <-B, ^ (x, y, z) could not be equal to B as required.

Hence, if a, b, c be such that i>{a, b, c)
= B and /(a, b,c) = A,

f{a, b, c) is a minimum value of f(x, y, z).

By means of the two general theorems just proved, we can

deduce the solution of a large number of ma.xiuium and minimum

problems from the inequalities established in the present chapter.

§ 12.] From the theorem of § 8 we deduce immediately the

two following :
—

I. Ifx, y, z, . . . be n positive quantities subject to the condition

%x = k,

then their product ILr has a maximum value, {k/n)", when x =

y = . . . = A/».

n. If X, y, z, . . . be n positive quantities subject to the

condition

Ux =
k,
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t/ii'H ffii'ir sum 2.r Aas a minimum value, wX;"", tphm x=y = , . .

= A"".

The second of these miglit be deduced from the 6rst by tlie

rcriprocity-tliciircm.

From the corollary in g 8 we deduce the following :
—

III. If X, y, z, ... be n positive quantities subject to the

condition

1px=k,

where p, q, r, . . . are all positive constants, then U.r* has a
maximum value, [kjlp]'^, tvhen x = y = . . .

-
kj'S.v.

IV. 1/ X, y, z, . . . be n positive quantities subject to the

condition

Ux' = k,

whire p, q, r, . . . are all positive constantx, thni Ipx has a
minimum valw, ('^j>)k'-'', tch^n x-y = . . .=k''-''.

From the last pair we can deduce the following, which are

.•still more general :
—

V. I/\, fi, V, . . ., I, m, n. . . ., p. q, r, . . . be all positive

constants, and x, y, z, . . . be all positive, then if

2A^ =
X-.

rij'' is a maximum when

l\x'/p
=

tntiy^/q
= nvz'jr = . . .

VI. And if Ux'^k,
SAx* is a minimum when

lKi*lp
= mjiiflq

=
nvz'jr = . . .

Proof.—Denote pfl, q/m, r/n, . . . hy a, ft, y, . . . ;

and let A:r' = a^, fj/"'
=

/J'j, i':^ = yC,&c

So that X =
(af/X)w &c. ; af = K/X)«, &c

We then have in the first case

^i = k (1).

nj* = n (a/x)«nf« (2).

Hence, since ("A)*, {Plii-Y, ... are all constant and all positive,

rij* is a ma.ximum when Ilf" is a maximum. Now, tinder the

condition (1), H^' is a maximum when f ^ij-. . . = X/2a.
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Hence Il.r'' is a maximum when \a^/a-iJLi/'"/P
= . . ., tliat is,

when l\.r'/p
=

miJ.i/'"/q
=

. . .

The maximum vahie of Uaf is n (a/X)« (A-/Sa)=«, and the

corresponding vahies of x, y, z, . . . are given by

X = (p.l\\1aY, . . .

Applying the reciprocity-theorem, we sec that, if

n.i'' = n(a/\)«(A/2a)'«,

the minimum vahie of 2W is k, corresponding to

x^iaklX^ay . . .

Whence, putting i=n(a/X)"(^/2a)'», wc sec that, if Ux''=j,

the minimum value of 2-W is 2a {j/n (a/X)"}''-', corresponding

X = [a{j/U{a/\YY^-'/Xr . .

Cor. If we put l = m = n= . . . =1, p = q = r= . . . =1,

we obtain the following particular cases, which are of frequent

occurrence :
—

j[f IXx =
k, Tlx is a maximum when \x = it.y

=
. . . ;

If TLx = k, 2Aj; is a minimum when Xo; = /«/
= . . .

Example 1. The cube is the rectangular parallelepiped of maximum

volume for given surface, and of minimum surface for given volume.

If we denote the lengths of three adjacent edges of a rectangular parallelo-

piped by x, y, z, its smface is 2(yz + j.t + xi/) and its volume is x\jz. If we

put i= yz, n = zx, i=xy, the surface is 2(£ + ij + f) and the volume sliivi)-

Hence, analytically considered, the problem is to make frjf a maximum when

{ + ,, + f is given, and to make 4 + t; + f a minimum when ftis" is given. This,

by Th. I., is done in either case by making J=7)= f, that is, yz=zx=xy ;

whence x=y = z.

Example 2. The equilateral triangle has maximum area for given peri-

meter, and minimum perimeter for given area.

The area is A= ^/s (s
-
a) (s

-
b) (s

-
c). Let x = s-a,y = s -b, z=s-c\

then i + »/ + z=s; and the area is Jsxyz. Since, in the first place, » is given,

we have merely to make xyz a maximum subject to the condition x + y + z=t.

This leads to x = !/
= j (by Th. I.).

Next, let A be given.

Then (x + y + z)xyz=A' (1);

« = A2/xi/2 (2).

If we put i= z'yz, r)
= xy-z, f =ri/j', we have

£+,+f=A^ (IT;

»=A=/(«'>i)"* (-')
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Ilcncc, to mnkc ( n niiniiuum when ^ is Kivon, we haro to mnke {ijC a

nKij-iRiiim, i>ul>ject to the coadition (I'). TliU liads to ( = i;
= f, that U,

^y: = Ty*z=Tiji*\ wboiicc x=y = f.

Example 3. To coDE^truct a rigbt circular cylinder of given volamo and

minimum total surface.

Let X be Ibu radius of tbe ends, and y the hci(;bt of the cylinder. The

total surface ia "ir (x-^rzij), and the volume is xi'ij.

We have, tbcrcforc, to make u = x'-i-ry a minimum, subject to tbe

coadition x'ij
= c. We hove

u=z- + Ty = ely-^elx (1);

xh, = c (2).

Let l/x = 2{, l/y = i,;

then u = c(2f + i,) (lO;

r-ij
=

!/*<: (2').

We have now to make 2{ + 1; (that is. { + ^ + ij) a miuimnm, subject to the

condition {tj = constant. This, by Tb. II., lends to {=t= ij, wbicb Rivca

2x= y. Hence the height of the cvlinder is equal to its diamiter.

By tbe reciprocity-theorem (applied to tbe problem as oriRinally stated in

terms of z and t/), it is obrious that a cylinder of this shape also has maximum
volume fur givtn total surface.

§ 13.] From the inequality of § 9 we infer the following :
—

VII. I/m do not lie betu-cen and + I, and i/p, q,r, . . . be

all constant and positive, then, for all jwsitive values of x, y, c, . . .

such that

Ipx^k,

Ipif (m unchanged) has a minimum value when x = y-z =
. . .

If m lie between and + 1, instead of a minimum we have a

maximum.

In (ititing the reciprocal theorem it is neces.s!iry to notice

that, in the ineijnality, Ipx occurs raised to the with {Hiwer; so

that, if m be negative, a maximum of 2/>x corrpsptuid.s to a mini-

mum of (Syjj-)". Attending to this point, we .see that—

VIII. j[f m> + 1, and if p, q, r, ... be all constant and

positite, then, for all jMsititv talui-s of x,y,z, . . . sucA that

2/)r"
- 1 (m unchanged),

2/jj- has a maximum inlue when x - y = z = . . .

Ifm<+1, tee have a minimum instead of a maximum.

Theorem VIII. might also be deduced from Theorem VII. hy

the substitution i = a^, v^!/", { = -". &c. . . .
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§ 14.] Theorem VII. may be generalised by a slight trans-

formation into the follo^nng :
—

IX. If mill do not lie between and + 1, and if p, q,r, . . .,

\, //., I', . . . be all constant and positive, then, for all positive ^

values of .v, y, z, . . . such that

SXr" = k {n unchanged),

'^/).v'" (m unchanged) has a minimum value tchen px^'/^af^

'nr/i^i/"
= -

Jfm/n lie between and + 1, instead of a minimum we /tave a

nutaimum.

The transformation in question is as follows :
—

Let \af' = pi, i^f'^crr,, . . . (1),

px'^
= p^, qy'^^o-r,^, . . . (2).

From tlic first two equations in (1) and (2) we deduce

t^-'=;j;r"'-7A, //-'
= W"-'"//', &c. Hence, if we take fn=m,

that is, /= m/n, p, a; . . . will be all constant and obviou.sly all

positive ;
we have, in fact,

|=0'a;'"-/\)W-", •r,= (?2/'"-"/,x)W-'), . . . (3),

p = Q/lpyV-^\ cr = (;a//g)'V-», ... (4);

and we have now to make Ipi^ a maximum or minimum, subject

to the condition

Now, by Th. VII., Spf' is a minimum or maximum, according

as /docs not or does lie between and + 1, when ^ = i?
= . . .

Thus the conditions for a turning value are

(;?a;'"-"/X)W-»
=

(yy"-7ft)"t^->'
=

. . .,

which lead at once to

paf/kx''
=

qi/"'/ni/''
= . . .

Cor. A very common case is that where n = 1, \ = /t
= . . .

= 1.

We then have, subject to the condition '2.a: = k, ^pi^, a

minimum or maximum when /)«*""'
=

g-y""'
= . . ., according as

m does not or does lie between and + 1.

§ 15.] We have hitherto restricted p, q, r, . . . in the in-
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equality of § 9 to 1)0 constant. 'I'tiis is unncccssjiry ; they may

be functions of tlie variables provide*! tliey be such that tliey

remain positive for all positive values of x, y, z.

We therefore have the following theorem and its reciprocal

(the last omittoil for brevity) :
—

X. If p, q, r, . . . be functions of x, if, z, . . . ufilch are

real and positive for aJl real and jwnitire valw.f of r, y, s, . . .,

t/ien, for all jKisitive values of X, y, z, . . . which satisfy

^px =
k,

(2;)x") (2/))""' {m unchanged) has a minimum or maximum value

wlien x = y-. . ., according as m does iwt or does lie between

and + 1.

For example, we may obviously pat p=Xa*. q-=l»^, • • •

We thus deduce that if m^ +1 or <0. then, for all positiro valne* of

x,y,z, . . . consistent with 2X.r«+' = *, (ZiVr'"*') (ZXx-)~-> is s minimum

when x=y= . . .

Theorem X. may again be transformed into others in appear-

ance more general, by methods which the student will rea<lily

divine after the illustrations already given.

Also the inoiiualities of § 8 may l>e u.sed to deduce ma.xima

and minima theorems in the same way as those of § 9 were uaed

in the proof of Theorem X.

Example 1. To find the minimnm Talne of u = j- + y + i, snbjcct to tha

conditions a/z + 6/y + c/i=l, x>0, y>0, r>0, a.b.e being positive oonstant*.

Let x=^. y = <V. '= Tf;

alx = f4, b/!/ = <r7, c/«= rf.

Hence (/"' = a//j/+'. If we take /= -
1, we therefore get

x=^ar\ »=v'fr'7-'. »=s''-r';

Tlic problem now is to make u = 2^/<if-" a minimnm snbject to the con-

dition 2^/<i{ = l. By Th. vn. thin is accomplishrd by making f = i|
= f.

Uence i = i}
= f= IjZyJa. The minimnm value required is thcrvfora

(Z^/a)'; the corresponding values of *, y, x are ^/al.^la, sJI>Z^/a, ^cZy/a

respectively.

Example 2. To find a point within a triangle such that the sum of the

mth powers of its distances from the sides shall bo a minimum (m>l).

Lot a, b, c be the sldi'*, *, y, i the three distances; then we have to mal •

tt^Xr" a minimum, subject to the condition S<u=2A, whoro A is the an .

of the triangle.
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If p^= x'", pi
= ax, then /5'"-'

= a'", p=«'":'('"-i).

Heuce, if we put ai= tt"'("'-i)f, 61/ = 6"'/(">-i) ,,, cs = c"' '("'-') f, we have

The solution is therefore given by t=
7,
= f=2A/So'»/('"-i).

Whence a:= 2Aa'/(">->)/2a'»/("'-i), y= (S:c., z = &c.

Example 3. Show that, if x' + 7/*+ r'=3, then
(.t« + j/O + s") {»' + y' + ?»)

has a minimum value for all positive values of x, y, 2 when x=y=z= l.

This foUows from Th. X., if we put m=2, p=x', q=y\ r=z*, which is

legitimate since x, y, z are all positive.

Example 4. If x, y, z, . . . be n positive quautilics, and m do not lie

between and 1, show that the least possible value of (Zx^-^) (21/x)"'-' is 71*".

This follows at once from the inequality of § 9, if we put p = l/x,

J= l/i/

§ 16.] The field of application of some of the foregoing

theorems can be greatly extended by the use of undetermined

multipliers in a manner indicated by GriUct*.

Suppose, for example, it were required to discuss the turuiug

values of the function

u = {ax+pf{hx + qT{cx + rY (1),

where I, m, n are all positive.

We may write

u = {\ax + XpY {ixhx + iiqY {vex + vrfjk'ix'^v'' (2),

where \ /x,
v are three arbitrary quantities, which we may sub-

ject to any three conditions we please.

Let the first condition be

l\a + mixb + nvc = (3) ;

then we have

l{Kax + \p) + m {nbx + ixq) + n {vex + vr)

=
l\p + miJ.q + nvr = k (4),

where k is au arbitrarj' positive constant.

This being so, we see by Th. III. that n(\ax +
>^j>)'

is a

maximum when

Xax + A/>
= fibx + it-q

= vex + vr

= k/ll (5).

Houvelles Annalei de Math., ser. i., tt. 9, 10.
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The four oiiii.itiiiiis (3) and (ri) arc not more than sntFicient

to exhaust the tliree conditions on A, i^, r, and to determine x.

We can easily deteruiine x by itself. In fact, from (3) and

(5) we deduce at once

i»/((i,r
+ p) + mbldbx + 7) + ncl{cx + r)

=
(6).

This quadratic gives two values for x, say a:, and x, ;
and the

equations (5) give two corresponding sets of values for X, /x, v,

in terms of /-, say X„ ft,, v, and A,, /i,, i-,.

If, tlicn, AiV,""!-," be positive, x^ will correspond to a maxi-

mum v;duc of u
;

if XiVi"'''i" be negative, a-, will correspond to

a minimum value of m
;
and the like for a*,.

Example 1. To discuss 11 = (x + 3)' (x
-

3).

Wc liav6 ti= (Xx + 3X)' 0*x - 3^)/X'/i.

Now 2 (Xx + 3X) + (mx - 3/i)
= t,

proviJcd 2X + /i
= (1),

lA-3,i = i (2).

Therefore (\x + 3\)'(aix-3m) will bo a mnximmii, provided

\x + 3X = Au:-3^ (3).

Hence, by (1),

2/(x + 3) + l/(x-3)=0;

which Rives x= 1. From (2) and (8) we deduce X = J.712, m= -
*/6 ; "O th«t

XV 's nopativc.

We therefore conclude that 11 \* a minimuiu when x = l.

The student should trace the Rraph of the function u ; he will thus find

that it has also a maximum value, corresponding to x= -3, of which this

method gives no account.

Example 2. For what values of x and y is

It = (a,i + fc,y + (-,)* + {<i:,i + b,!/ + <•-)' + . . • + (".x + 6,0/ + cJ'

a minimum?
Let X. , X,, . . ., X, be undetermined multipliers. Then wo may write

„ = i;x,'{('>,x+fc,!/ + c,)/X,l' (1);

and * = »,M('>i' + ''iy + '-i)/M (2).

where k is an arbitrary positive constant, that is, independent of x and y.

provided
S<i,X,=0, Z6,X,= 0, S(-,X,

= » (3).

This being so, by Th. VII., u is a minimum when

(<iii + 6,y + c,)/X,
= (nft + h^ + <-,)/X,

= . . . = kiZ\* (4).

The n + 2 equations, (3) and (4), juot sufhco for tbo determination of

X,.X, X,, X, y.

From the tirst two of (3), and from (4), wo doduoa



§§ 16, 17 METHOD OF INCREMENTS 61

S<Zi(n]X + 6i»/ + Cj)=0,

:i:;)i(<iix+ti!/+<;i)=o.

Hence the values of x and y corresponding to the mininmm value of n are

given by the system
^Oj^x + Sflifti!/ + SajCj= 0,

This is the solution of a well-known problem in the Theory of Errors of

Observation.

§ 17.] Method of Increments.—Following the method already

exemplified in the case of a fuuctiou of one variable, we may
define

I=4>{x + h,y + k,z + l)-<j^{x,y, z)

as the increment of <^(a?, y, z). If, when x= a, y = h, z = c, the

value of / be negative for all small values of h, k, I, then

<^ (o, b, c) is a maximum value of 4' (^. V, -) \
ii"d if, under like

circumstauce.s, / be positive, <^ (a, b, c) is a minimum value of

^(«, y, z).

Owing to the greater manifoldness of the variation, the ex-

amiuation of the sign of the increment when there are more

variables than one is often a matter of considerable difficulty ;

and any general theory of the subject can scarcely be establislied

without the use of the infinitesimal calculus.

We may, however, illustrate the method by establishing a

case of the following general theorem, which includes some of

those stated above as particular cases.

Purkiss's Theorem*.—7/" ^ (.r, y, z, . . .) f{x, y, z, . . .) be

symmetric functions of x, y, z, . . ., and if x, y, z, . . , be

subject to an equation of the form

fix, y,z, . . .)
=

(1),

t/ien^{x,y,z, . . .) has in general a turning value when x = y = z

=
. . .

, provided these conditions be not inconsistent with the

equation (1).

In our proof we shall suppose that there are only three

variables
;
and so far as that is concerned it will be obvious that

there is no loss of generality. But we shall also suppose both

• Given with inadequate demonstration in the Oxford, Cambridge, and

Dublin Messenger of Muthematict, vol. i. (ISOi^J.
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<f>(x, y, z) ami /(x, y, z) to be iiitej,'nil functions, and this Bup-

positiou, although it restricts the generality of the proof, renders

it amenable to elementary treatment

We remark, in the first place, that the conditions

x = y = s and /(x, y, 2) =

are in general just sufficient to determine a set of values for x, y, z.

In fact, if the common value of x, y, zha a, then a will be a root

of the equation /(a, a, a) = 0.

Consider the functions

I=<f>(a + h, a + k, a + l)-<t>{a, a, a), and/(o + A, a-*-t, a +
l).

Each of them is evidently a synnnetric function of A, t, I, and
can therefore be expanded as an intojrnil function of the

elementary symmetric functions 2A, 2^/, /lAl. We observe also

that, since each of the functiims vanishes when A = 0, 1 = 0, l-O,
there will be no term inde[iendont of A, k, I.

Let us now suppose h, k, / to be finite multiples of the same

very small quantity r, say h = ar, k^ fir, 1 = yr. Then 2/< = r5o
= r«say, :i/ik = t^la^ = r^v, hkl = i^w. Exjjanding as above in-

dicated, and remembering that by the conditions of our problem

/(a + h, a +
I-, a + /)

=
0, we have, if we arrange according to

powers of r,

/=^lH/+(/yM'+Cr)r' + &c. (I),

= i^ur + ((y + liv) r' + &c.
(•.>),

where the &c. stands for terms involving r" and hii,'her powers.
From (2) we liave

«r = -(V"'+A'y)r'//' + &c.,

ttV = + S:c.,

22n/?r' = - SaV + &c.,

&c- as before including powers of r not under the 3rd.

Hence, substituting in (1) and writing out only such t«rma

as contain uo higher power of r than r", we have

I=(0-AH/P)vi' + &c.,

= -
Jr" (C-yl /?//') 2«' + Ac.

Now (see chap, xv., § 10), by Uking r sufficiently small, wo

may cause the tirst term on the ri^^ht to dominate the sign of /.
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Hence /will be negative or positive according as {CP-AIi)jP
is positive or negative ;

that is, <^(a, a, a) will bo a maximum or

miuimum according as (GF-AR)/P is positive or negative.

Kxaruple. Discuss the turniug values of (x, y, z)
=

xijz + b{yz+zx + xy), ,

subject to the condition x- + y- + z-=3a'.

The system
x=;/ = z, x- + y- + z--5a-=0

has the two solutions x=y = z= ±a.

If we take x= y = z= +a, we find, after expanding as above indicated,

/= (a^+2ab) ur + {a + b) vr- + &c.,

0=2aur + {w'-2i')r-.

In this case, therefore, /i = a= + 2a6, C= a + b, P='2a, Ii=-2; and (CP-AR)I
P=2a + Sb.

Hence, when x= y = z= +a, <^ is a maximum or a minimum according as

2a + '6b is positive or negative.

In like manner, we see that, when x= y = z= -a, is a maximmn or a

minimum according as -2a + 'ib is positive or negative.

Exercises VI.*

(1.) Find the minimum value of bcx + cay + abz when xyz = abc.

(2.) Find the maximum value o( xyz when x-ja- + y-jb'^+ z-lc-=l.

(3.) If 2j-= c, Zlx is a maximum wlien x : y : z : . . . =1 : m : n : . . .

(4.) Find the turning values of X-t'"" + /i!/""* + vz™, subject to the condition

p3^ + qy'>-\-r~'
= d.

(5.) Find the turning values of ax'' + iy' + m' when xyz = (P.

(6.) It xyz = a-{x + y + z), then yz + zt + xy is a minimum when x= y= 2=

J3a.

(7.) Find the turning values of {x + l){y + m) (z + n) where n==6»c»=d.

(8.) Find the minimum value of iix"' + blx".

(9.) Fmd the turning values of (3x
-

2) (x
-

2)= (x
-

3)=.

(10.) If cx{b-y) = ay{c-z) = bz (a
-

x), find the maximum value of each.

(11.) Find the turning values of x"'/i/" ('"="')! subject to the condition

x-y= c. (Bonnet, Nouv. Ann., ser. i., t. 2.)

(12.) If x''!/' + xiyf= a, then x''+«+ J/''^ has a minimum value when x=y =

(al'2)V{i^i) ; and, in general, if Zxi'yi=a, Xx"^ has a minimum value, «/(n
-

1),

when x— y =z= . . . = {<i/(n-l) n}'A"+«). Discuss specially the case where

p and q have opposite signs.

(13.) If x''y'' + x''y'=c, then x'y" is a maximum when xJ'-^C™ "*')=!''"'/

{qt-pu), the denominators, ru-st and qt-pii, being assumed to have the

same sign. (Desboves, Questions d'AUjibre, p. 455. Paris, 1878.)

• Here, unless the contrary is indicated, all letters denote positiTe

quantities.
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(II.) If p>q. and x'' + y''
= aP, then ««+ y« is a mioimani when x=y=

afi^f. State tho reciprocal Ihiorcm.

(15.) I'iud the turning values of (ai' + J'j/')/v/(aV + !<»!/»)
when i« + y'=l.

(IG.) If Xi.i , X, bo each >a, and such that (4-,- a) (j-,- a) . . .

(x,-a) = fc", tho least value of r,r, ... i, is (a + (<)»,
a and 6 hcing both

positive.

(17.) If /(m) denote the greatest product that can be formed with n

integers whcie sum is m, show that /(m + l)//(>n) = l + V? "hero g is the

integral part of m/n.

(18.) ABCD is a rectangle, APQ meets DC in P, and DC produced in Q.

Find the position of APQ when the sum of the areaa AliP, PCQ is a

minimum.

(19.) is a given point within a circle, and POQ and ROS are two per-

pendicular chords. Find the position of the chords when the area of the

quadrilateriil PltQS is a maximum or a minimum.

(20.) Two given circles meet orthogonally ot A. PAQ meets the circles

in P and Q respectively. Fiud the petition of PAQ when PA . AQ is a

maximum or minimum.

(21.) To inscribe in a given sphere the right circular cone of maximum

volume.

(22.) To circumscribe about a given sphere the right circular cone of

miuiiiium volimio.

(23.) Given one of the parallel sides and also the nonp.irallcl sides of an

isosceles trapezium, to lind the fourth side in order that its area may be a

maximum.

(21.) To draw a line throngh the vertex of a given triangle, gnch that tho

sum of the projections upon it of the two sides which meet in that vertex

shall be a maximum.



CHAPTER XXV.

Limits.

§ 1.] In laying down the fundamental principles of algebra,

it was necessary, at the very beginning, to admit certain limiting

cases of the operations. Other cases of a similar kind appeared

in the development of the science ;
and several of them were

discussed in chap. xv. In most of these cases, however, there

was little difficulty in arriving at an appropriate interpretation ;

others, in which a difficulty did arise, were postponed for future

consideration. In the present chapter we propose to dt-al

specially with these critical cases of algebraical operation, to

which the generic name of
"
Indeterminate Forms

"
has been

given. The subject is one of the highest importance, inasmuch

as it forms the basis of two of the most extensive branches of

modern mathematics—namely, the DifJerential Calculus and the

Theory of Infinite Series (including from one point of view the

Integral Calculus). It is too much the habit in English courses

to postpone the thorough discussion of indeterminate forms

until the student has mastered the notation of the dilferential

calculus. This, for several reasons, is a mistake. In the first

place, the definition of a differential coefficient involves the

evaluation of an indeterminate form ;
and no one can make

intelligent applications of the differential calculus who is not

familiar beforehand with the notion of a limit. Again, the

methods of the differential calculus for evaluating indeterminate

forms are often less effective than the more elementary methods

which we shall discuss below, and are always more powerful in

combination with them. Moreover the notion of a limiting value

can be applied to functions of an integral variable such as n! and

to other functions besides, which cannot be differentiated, and

are therefore not amenable to the methods of the Differential

Calculus at all.

r.

C. lU J
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5) 2.] The cliaractifii.stic ditliculty ami tlie way of nieetiiif; it

will be best explained by disc\is.sing a simple example. If in

tlie function {x'-\)/(x-l) wo put j: = 2, there is no ilifficulty

in i-irrying out successively all the operations indicat^jd by tlie

synthesis of the function
;

tlie case is otherwise if we put x=\,
for we have 1' - 1 = 0, 1-1=0, so that the last operation in-

dicated is 0/0
—a case specially cxcluiletl from the fundamental

laws; not included even under the case a/0 (rt + 0) alre;uly dis-

cussed in chap, xv., § 6. The first impulse of the learner is to

assume that 0/0=1, in analo^^^y with a'a=l
;
but for this he

has no warrant in the laws of algebra.

Strictly speaking, the function (x*- l)/(a:- 1) has no definite

value when x= I
;
that is to say, it ha.s no value that can bo

deduced from the principles hitherto laid down. This being so,

and it being obviously desinibJo to make as genend as po.ssible

the law that a function has a definite value corre.sponding to

every value of its argument, we proceed to define the value of

{ar'-l)l{x- 1) when x=l. In so doing we are naturally guided

by the principle of continuity, which leads us to deline the

value of {x'-l)l(x-\) when 3;= I, so that it shall dilVer in-

finitely little from v.-dues of (x'
—

l)/{x
-

I), corresponding to

values of x that diller infinitely little from 1. Now, so long as

ar* 1, no matter how little it differs from 1, we can jjcrform tho

indicated division; and we have the identity (j*- l)/(x- 1)
=

x+l. The evaluation of a:+ 1 pre-sents no difficulty; and we
now see that for values of x differing infinitely little from 1, the

value of (jr- l)/{x- 1) differs infinitely little from 2. Ift l/icre-

fore define the value of (jr- l)l(x- 1) w/wii x=\ to be 2
; and we

see that its value is 2 in the useful and ])crfectly intelligible

sense that, /'// briuijiuij x sujficieutlij tuur to 1, we can caust

{x'- \)l(x- 1) to differ from 2 by as little as we pl^fose*. Tho
value of (j;*— l)l(x- 1) thus specially defined is spoken of as the

limitinff value, or the limit of{x'
-

l)/(x
-

1) fir jr = 1
;
and it is

symboli.seil by writing

* Tho reader shoald obwrro iliat tho definition of the critical value joit

(rivi'n has anothvr odvantaxv. namvljr, it cimbli'« u« to owiort the truth uf the

i<Iciitity (j'- l)/(x- l)3x+ 1 without cxcojitiuu in the cudv whtic x-L
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1=1 a:- 1

where L is the initial of the word "limit." The subscript x=l
may be omitted when the value of tlie argument for which the

limiting value is to be taken is otherwise sufficiently indicated.

We are thus led to construct the following definition of the

value of a function, so as to cover the cases where the value

indicated by its synthesis is indeterminate :
—

W/ien, by causing x to differ sufficientli/ little from a, ive can

make the value of f{x) approach as near as we please to a finite

definite quantity I, then I is said to be the limiting value, or limit,

offix) when x = a; and we write

L fix) = I.

I=a

Cor. 1. A function is in general continuous in the neighbour-

hood of a limiting value; and, therefore, in obtaining that value

we may subject the function to any transformation tvhich is

admissible on the hypothesis that the argument x has any value in

the neighbourhood of the critical value a.

We say "in general," because the statement \vill not be

strictly true unless the phrase "differ infinitely little from" mean

"differ either in excess or in defect infinitely little from." It may

happen that we can only approach the limit from one side
;
or

that we obtain two different limiting values according as we in-

crease X up to the critical value, or diminish it down to the critical

value. In this last case, the graph of the function in the neighbour-

hood of X = « would have the peculiarity figured iu chap, xv.,

Fig. 5
;
and the function would be discontinuous. The latter

part of the corollary still' applies, however, provided the proper

restriction on the variation of x be attended to.

When it is necessary to distinguish the process of taking a

limit by increasing .r up to a from the process of taking a limit

by decreasing x down to a, we may use the symbol L for the

former, and the symbol L for the latter.
i—a+O

Cor. 2. If L f(x) = I, then f{a + h)=l + d, whe-re d is a

function of a and h, whose value may be made as small as we

please by sufficiently diminishing A.

5—2
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'Diis is simply a ro-tiit:iteiucnt of tliu dctiiiitiuu of a liiuit froui

auotlRT point of view.

Cor. 3. Any ordinary value of a Junction sal'uifies the

definition of a litnitimj value.

For e.xaiiipif, L (r*- l)/(j:- l)
=

(i."- l)/(2
-

1)
= 3. Tlii.s re-

I—a

iiiarii would lie superfluous, were it not that attcntiou to the

point onalilcs u.s to abbreviate deinon.strations of limit thcorunis,

by u.sing tlie .symbol L where tliere is no peculiarity in the

evaluation of the fuuctinii to which it is prefi.xciL

§ 3.] It may happen that the critical value a, instt-ad of

being a definite finite quantity, is merely a quantity greater than

any finite quantity, however great. We symbolise the process

of taking the limit in this case by writing L f{x), or L f{x),

according as the quantity in question is positive or negative.

For e.xaiuple,

L{x+\)lx= L(i^\|x) = l.

In this cane, we can, strictly spcuking, approach the limit from one side

only ; and the ciuu.-ition of cuntiniiity on both sides of the liiuit dues not

arise. If, however, we, as it were, join the series of alKcbrnical quantity
-CC...-1...0. ..+!.. .+00 through infinity, by considerinR

+ oD and - 00 as consecutive values; then wo say that /(x) is, or is not, con-

tinuous (or the critical value x=ao , according as L/(x)and L /(x) have,
x—» x^—m

or have not, the same value. For example, (z-l- l)/x is continuous for 2= ao ,

for wc have L (x+l)/i=l= /, (x + l)/x; but (x'-f l)/x is not coDlinuoas

for X := CD .

S 4.] The value may of course otcur as a limiting value
;

for e-xamjile, /> jr(a;- l)=/(.r'- 1)
= 0. It may also happen, even

X— 1

for a finite value of a, that /(.r) can be nnulo greater than any
finite (juantity, however groat, by bringing x sutlicienf ly near to o.

In thi.s case we write L f{x) -^- «. In thus admitting and »
X—«

as limiting valuej<, the student must not forget that the general

ndes for evaluating limits are, as will bo shown presently, sub-

ject in certain cases to exception when these particular limits

occur.
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ENUMEKATION OF THE ELEMENTARY INDETERMINATE FORMS.

§ 5.] Let u and v be any two functions of x. We have

already seen, in chap, xv., that u + v becomes indeterminate

when u and v are infinite but of opposite sign ;
that u x v

becomes indeterminate if one of the factors become zero and

the other intiuite
;
and that u^v becomes indeterminate if u

and V become both zero, or botli infinite. We thus have

the indeterminate forms—(I.) co— so, (II.) x <», (III.) 0-^0,

(IV.) 00-00.

It is interesting to observe that all these really reduce to (TIL). Take

00-00 for example. Since u + t'
=

(l + i;/«)/(l/u), and Ll/u= l/ao =0, this

function will not be really indeterminate unless Li'/ii= -1. The evaluation

of the form oo - oo therefore reduce.'! to a consideration of eases (IV.) and (III.)

at most. Now, since «-M) = (1/i')-=-(1/h), case (IV.) can be reduced to (HI.);

and finally, since u x ii = uH-(l/i'), case (II.) can be reduced to (HI.).

To exhaust the category of elementary algebraical operations

we have to discuss the critical values of u'. This is most simply

done by nTiting u" = 0."^°^'" where a is positive and >1. We
thus see that «" is determinate so long as ^•loga« is determinate.

The only cases where v loga u cesuses to be determinate are those

where—(V.) v = 0, logo u = + oo, that is v = 0, m = oo
; (VI.) » = 0,

log<,a
= -oD, that is ^ = 0, m = 0; (VII.) v = +oo, logaM = 0,

that is ij = + 00
, M = 1. There thus arise the indeterminate

forms—(V.) 00°, (VI.) 0», (VII.) I*"*.

All these depend on a'x'o .

gr, if we choose, upon a"!"; so that it may
be said that there is really only one fundamental case of indetermination,

namely, O-r-O.

EXTENSION OF THE FUNDAMENTAL OPERATIONS TO LIJIITINQ

VALUES.

§ 6.] We now proceed to show that limiting values as above

defined may, under some restrictions, be dealt with in algebraical

* The reader is already aware that 1" gives 1 ; and he may easily convince

himself that O"*"", 0-", co +», to— give 0, ±oo, ±oo, respectively, uo

matter what their origin.
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operations exactly like ordinary operands. Tliis is established

by means of tlie follovriug theorems :
—

I. Thf limit ofa sum offunctions ofx i» the fum of their limits,

provided the latter does not take the indeterminateform ao - oo.

Consider tlie sum f{x)
~

<t>{x) ¥ x{t) for the critical value

x = a; and let IJ{x) =/', L4>{x) =
<^', Lx{r) = x'. Then, by § 2,

(."or. 2,

where a, (i, y can each be made as small as we please by

bringing x .-iutliciently near to a.

Now, f{x) -
<l>(x) + x(-r) =/' - «^' + X' + («

-
/J + y)-

But, obviously, a-fi + y can be made as small as we please by

bringing x sufficiently near t<^) a. Hence

L\f{x)-4>{x) + x{z)]=f-<f>' + x'.

that is, = Lf(x) - L^{x) + Lx {r) ( 1 ).

This reasoning supposes /', <^', x' to be each finite ;
but it is

obvious that if one or more of them, all having the same sign,

become infinite, then /' -
<^' + x and L \f(x)

-
</>(j-)

+ x(j')! are

both infinite, and the theorem will still be true in the peculiar

sense, at least, that both sides of the equality are infinite If,

however, some of the infinities have one sign and some the

opiK)site, f -4t + x' ceases to be intorpretjible in any definite

sense ;
and the projiosition becomes meaningless.

II. Tlie limit ofa product of functions of x is the product qf
their limits, provided the latter does not take the indelerminaU

form X oo.

Using the same notation as before, we have

/(.i) .^(.r) X(x) = (/'+ a)(,^'+ ^)(X'+ y)

=/>'x'+ 2a<^'x' + 2a/3x' + a/3y.

Now, provided none of the limits /', <^', x' be infinite, since o, /5,

y can all 1h' ni;ulo as small as we plea.'sc by bringing x sufficiently

near to a, the .same is trvie of 2iu</>'x', "S.afix ,
and o/3y. Hence

JJ{x) ^{x)x(t) =/>'x' = I/{x) I^(x) Lx(x) (2).

If one or more of the limits/', <f>, x' be infinite, providcil none

of the r&it be zero, the two sides of (2) will still bo equal in the

I
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sense that both are infinite
; but, if there occur at the same time

a zero aiul au infinite value, then the right-hand side assumes

the indeterminate form x so
;
and the equation (2) ceases to

have any meaning.

III. T/i*i limit of the quotient of two futictions of x is the

quotient of their limits, provided the latter does not take one of the

indeterminate forms QjO or oo /=o . We have

f{x) z' + g j^ .r±^ _r ji . °<^'-^/'

<t>{x) <^' + /3 <#.' <^' + /3 <!> <!>' ^'(<^' + /3)-

From this equation, reasoning as above, we see at once that, if

neither/' nor <j>'
be infinite, and <^' be not zero,

^<f>{x)-<i>''LHxy
^''>-

It is further obvious that if /'=oo, <^'# », both .sides of (3)

will be infinite ;
if <^'

= oo
, /' 4= oo

, both sides will be zero
;
and

if <^'
= 0, /' + 0, both sides will be infinite. In all these cases,

therefore, the theorem may be asserted in a definite sense. If,

however, we have simultaneously /' = 0, <t>'
= 0, the right hand of

(3) takes the form 0/0 ;
if /' = oo

, <^'
= »

, the form x. /go ;
and

then the theorem becomes meaningless.

§ 7.] If the reader will compare the demonstrations of last

paragraph with those of § 8, chap, xv., he will see that (except

in the cases where infinities are involved) the conclusions rest

merely on the continuity of the sum, product, and quotient.

This remark immediately suggests the following general theorem,

which includes those of last paragraph as particnlar cases :
—

JfF{u, V, w, . . .) be 0)11/ function ofu,v,w, . . .
,
which is

deterviinate, and finite in value, and also continuous when

u = Lf{x), v = L<t>(x), w = Lx{x), . . .,

then

LF{f(x), 4>(x), x(A • .}
= F{Lf{x), L^{x), Lx{.r) }.

The reader will easily prove this theorem by combining § 2,

Cor. 2, with the definition of a continuous fimction given in

chap. XV., §§5, 14.
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The most important case of Ibia proposition wbiob we shall have ooooaion

to use is that where we have a funotion of a single funotion. For example,

L l(*»-l)/(x -!)}'={ L (r»-l)/(x-l)l«= 4.

»-i i-i

/, log{(x'-l)/(x-l)}=log{ L (x«-l)/(x-l)} = lo«2.

ON THE FORMS 0/0 AND W /» IN CONNF.CTION WITH

UATIONAL FUNCTIONS.

§ 8.] The form 0/0 will occur with a rational function for

the value a; = if the absolute terms in the numerator and

denominator vanish. Tlie rule for evaluating in this case is to

arrange the terms in the numerator and denominator in order

of ascending degree, divide by the lowest power of x tliat occurs

in nuiiu'r;it<ir or denominator, and then put x = 0. Tlie limit

will be finite, and +0, if the lowest terms in numerator and

denominator be of the same degree ;
if the term of lowest

degree come from the deniiminator
;

oo if the term of lowest

degree come from tiie nuiiiemtor. All this will be best seen

from the following examples :
—

Example 1.

Example 2.

Example 3.

2x' + 3x' + j«_ 2 + 3x + i'_2
,., 3*» + x*+x» ~^3 +x«+*«~3*

2x« + 3x< + x»_ 2z + 9x' +i*_0
,.0 Sx' + x' + x' ~.li 3 + x» + i« 8

"•

2x« + x«_ 2 +x^_2_
JiU ««+x» "i;,x' + x*~0~*'

§ 9.] The form oo/oo can arise from a rational function when,

and only wlien, j- = x . The limit cjin he found by dividing

numerator and denominator by the iiighcst power of r that

occurs in either. If this highest power occur in both, the limit

is finite ;
if it icuni' from tlic dcnoniinntor alone, the limit is

;

if from the numerator alone, the limit is or.'.

Example I.

8x« + x« __ , 3/' + l "(1 1

,_.ar' + j* + :Jj-«~,_.2/x'+l/x + 3~0 + + 3" 3"
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Example 2.

i_„ •ix+ a^ + lix'

'
l/x< + 3/x3 + 4/x°

cJi 2/i=+ l/i3 + 6 ~6~""

Example 3.

x2 + 3x3+ 4x»_ l/j;< + 3/z»+4 _4_
x_„ 2x + 3.t- + x3 ~ti«2/a:° + 3/x^ + l/i3

~ ~ °° *

§ 10.] If the rational function /(a;)/<^ (a;) take llic form 0,u fur

a finite value of x, =1= 0, say for x = a, then, since /(a) = 0, </>(a)
=

0,

it follows from tiie remainder-theorem that x — a is a common

factor in f{x) and <^ {x). If we transform the function by re-

moving this factor, the result of putting a: = a in the transformed

function will iu general be determinate
;

if not, it must be of

tiie form 0/0, and x — a will again be a common factor, and must

be removed. By proceeding in this way, we shall obviously in

the end arrive at a determinate value, which will be the limit of

f{x)j<ii {x) when x = a.

Example. Evalu.ite (3x«- 10.1-3 + 3x2+ 12x-4)/(x^ + 2x'-22x'+32i- 8)

when x= 2. The value is, iu the first instance, indeterminate, and of the

form 0/0 ; hence x - 2 is a common factor. If we divide out this factor, we

find that the value is still of the form 0/0; hence we must divide ag.iiu. We
then have a determinate result. The work may be arranged thus (see chap.

v.. §13):-
3 - 10 + 3+12-4
0+6-8-10+4 2
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terms, since they imist, if tlio fonii to be evaluated be 0/0, be

zero iu eacli CibjC ; 'Jnd, tliat we are only concerned wjtli the

lowest powers of z that occur in the numerator and denominator

respectively.

3jr« - lOx^ + St' + 12j - 4_ a(2 + z)'
- mC-' + 1)' + HCi -t- .•)' + l'-M2 + i)

- 4

rl, ^F+it*^ir' + 3-Jj - 8
~
^(2 + *)« + 2l2+7)> - 22(2 + »)' + 32 (2 + 1)

- «

ISt' + Pt' + Ae.

IS + Pf + ito.

\i + Qt + &e.'

_ '^~
14"

This mptliod is of coufrc at buttom iilrntical with the forrncr; for, since

z =x- a, the division by z' corresponds to the rejection of the («ctor (x
-

a)'.

§ II.] The methods which are applicable to the quotient of

two intoj,Tnl fiinction.s apply to the iiunticnt of two algebraic

.sums of constant multiples of fractional powers of x. Ilach of

the two sums might, in fjict, be transformed into an integral

function of y by putting ^• = y', where d is the L.C.M. of the

denominators of all the fractional indices. It is, however, in

general simpler to operate, directly.

Example. Evaluate

j^^ xl+xi + 3jc!

«-«*i+2x4+«

II wo divide by x», the lowest power of x that occurs, we Imre

,_ . iJ+jl + axA
I— JJ

,

i-o l + 2x»+xl

§ 12.] The following theorem, although p.irtly a special case

under the present head, is of great importance, bocAu.sc it givea

the fundamental limit on which deiM^uds the "differentiation" of

algebmic functinns :
—

If mbe any real ct>mmengwal>k quantity, positive or nrgativt,

A(x--l)/(x-l) = fli (1).

I
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First, let ?» be a positive integer. Then we have

(x"'-l)l(x-i)
= x"'-' + .v""- + . . . + X+1.

Hence

L (jf"
-
l)l{x-l) = 1 + 1+. . . + 1 + 1 (to terms),

= m.

Next, let m be a positive fraction, say/i/y, where ]j and q are

positive integers. Then the limit to be evaluated i.s L
(.»''''

-
1 )/

(x—1)*. If we put x = z'', and observe that to a; = l corresponds

c ^ 1, the limit to be evaluated becomes L (z''
-

l)/(3«— 1). This
2=1

may be evaluated by removing the common factor z—l
;
or thus

£<-"/'->-.a-f)/(f^)'

—pjq = m.

Finally, suppo.se m to have any negative value, say
-

7i, where

n is po.sitive. Then

L {x-''-l)l(x- \)=L (l-af)lx''(x- 1),
I—1 x=l

= -L(x"-l)l{x-l)x'',

= -
{
X (a;»

-
1 )l(x

-
1)} X i l/x".

1=1 x=l

Now, by the last two cases, since n is positive, L (x"
-

1 )/

(x-l)=n. Aho L ljaf
= l. Hence

2=1

L{x-''-l)/{x-l) = -n;

that is, in this case also,

L{x'"-l)/{x-l) = m.
I—I

Second Demonstration.—The atove theorem might also be deduced at once

from the inequality of chap, xxiv., § 7, aa follows:—For all positive values of

a, and all positive or negative values of m, x™-! lies between )hx'""'(x-1)

and m(»-l). Hence (x™
-

l)/(x
-

1) lies between ni-r™-' and vt. Now, by

• There is here of course the usual understanding (seo chap, x., § 2) oa

to the meaning of xM.
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bringing x snflTiciently near to 1, nur"^' can be made to differ an little from m
as w<> pleaw. Tbe Baiiic is tlicrcforc true of (j:*

-
l)/(x

-
1) ; that is to say,

L(j:"-l)/(x-I) =m
(or all real values of m.

Example 1. Fin.l the limit of (z" - a'')l{x9
-
a*j when x=a. Wo hare

L (xP-a'')/(r«-a«)= L a'^{(*/a)''- l)/{(i/a)«- 1|,

.mii':^)-»-ix

where y=xla. Hence we have, by the theorem of the present paragraph
L {z' - ai')l{x^

-
a^) = a'^plti.

Exauiplu 2. Evaluate log(r'- l)-log(j:'
-

1) when x = l.

L{log(x!-l)-loR(Ti-l)}=Llog{(x'-l)/(xi-lll,

= 1ok{L(x»-1)/(x4-1)}, l.yS7.

-n'{i-.')A(#r)l'
= logH/il.
= log3.

Example 3. If Iz. Px, . . . denote logx, log (log x), . . . respectively,

th^n, whon x = », W{z + l)irz = l.

In the first place, we have

/(x+l)/lr={l(x + l)-;x + tr}/lr,

= J(l + l/j-)/li + l.

Now, when x = a>, J(l + l/x) = ;i = and lx= «. Ilenoe LI (x + l)/ti= l.

"> If wc asMimo thiit /.f(x + l)/rx= 1, we have

r+M-t + i)/r"x={f^' (x + 1)
- r+'x + r+'x}/r«'x,

=/{r(x+i)/rx}/r*'x + i.

nence
Lr+'(x + l)/J"'x= a/x +1,

= 1;

that is, the theorem holds for r + l if it holds for r. But it holds for r=l,M
wo have aevtt, therefore for r= 2. iVc. It is obvious th:kt this theorem holds

fur any lognrithmic base fur which In = <o.

Example i. If f have the same meaning as befon mai X have a similar

meaning for the ba«e a, then

L X'x/rx = l/logo.

Let M= 1/1"K<>. Since Xx = nU, the theorem clearly holds when r=l. It is

therefore sullicicnt to hIiow that, if it is true for r, it is true for r + l. Now

X'^'x/I'^'x = X (\'xV/"'x,

^^{Vz)lt^'x,
=M {' (x'x)

- r*'x+ JM-'xi/f^'x,

=M{'(Vx/rx)//"'x+i).
Bence, if we assnrao that J.VzlFz = /i, we have

/.X'^'x/r»'x =M('W»+ M.
= »•
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EXPONENTIAL LIMITS.

§ 13.] Tlie most important tlieoieiii in this part of the .sub-

ject is the following, on which is founded the ditl'erentiatiou of

exponential functions generally :
—

The limit of {\. + IjxY when x is increased tmthoiU limit either

positively or negatively is a finite number (denoted by e) lyin<j

between 2 and 3.

The following proof is due- to Fort*.

"We have seen (chap, xxiv., § 7) that, if a and b he positive

^quantities, and m any positive quantity numerically greater

than 1, then

»?«"'-' (ft
-

6) >«'"
- b'" > mb'"-' {a -b) (1).

In this inequality we may put a =
{y <r \)ly, b= 1, in=yjx, where

y> .1-> 1 . We thus have

\ y J X

Hence



creasing positive values to x, tlie function (1 + 1/j-)* continually

increases, ami the function (1
-

l/x)'' continually decreases.

Moreover, since a^>a^-l, we have

x x+l

that is, A--y'>l + -.

Hence
(l

-
i)->(l

.
'/ (4).

TIic values of (1
-

l/.r)"' and (1 + i/j-y cannot, therefore,

pass each other. Hence, when x is incrcivsed without limit,

(1
—

lfx)~' must diniiui.sh down to a finite limit A, and

(1 + IfxY must iucrea.se up to a finite limit B. The two limits

A and B must be equal, for the dilTerence (1
-
l/x)''-{l + l/xY

may bo written {x/{x
-

1)\'
-

{{x + l)/x)' ; and by (1) we have

1 / X \'
(

X \' (x+\\' 1_ (
x-^\ \' ,,.

x\x-\) ^\x-\) \ x ) ^a:(l-l/^)V X )
^•'^•

But, since, as has already been shown, {x/(a;-l)}* and

\{x-i-\)lx]' remain finite when x = fa, the upper and lower

limits in (5) approach zero when x is increased without limit;

the same is therefore true of the middle term of the inequality.

It has therefore been shown that i (1 + l/x)" and

// (1
-

1/x)"' have a common finite limit, which we may denote

by the letter c.

Since (I + l/6)«=2r.21 . . . and (1
-

1/6)"'
= 2-985 . . .,

e lies between 2"5 and 29. A closer approximation mi^'ht bo

obtained by using a larger value of x
;
but a better method of

calculating this important constant will be given hereafter, by
which it is found that

6 = 27182818285 . . .

Tlie constant e is usually called Napier's Base*; and it is the

logarithmic or exjmnential base u.sed in most analytical calcula-

tions. In future, when no ba.«o is indicated, and mere arith-

*
III honour of Napier, and nut because ho ciplicill^ uned this or indeed

any utUcr baiic.
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metical computations are not in question, the base of a

logarithmic or exponential function is understood to be «;; thus

log a; and expa; are in general understood to mean logcZ and

expjo; (that is, e*) respectively. »

Cor. 1. i(l+a;p = e.

1=0

For L {l + l/zY = e; and, if we put z=l/x, so that x =

corresponds to 2=00, we have Z (1 +ar)''^
= e.

Cor. 2. L\oga{{l + l/x)'}
= 2/ log„ ((1 + a;)''^}

=
log„ e.

I=» 1=0

For, since logai/ is a continuous function of
1/ for Unite values of

y, we have, by g 7,

L log, {(1 + l/xT) = log, {
Z (1 + l/x)%

=
loga e.

The other part of the corollary follows in like manner.

Cor. 3. X (1 + y/xf= Z (1 + xi/y'"
= e".

If we put \lz=ylx, then to a; = 00 corresponds z= 00
; hence

L{\+ylxf=L{l + llz)^,

= z{(i+i/c)r,

= {Z(l + l/c)T, by §7,

Cor. 4. Z(«^-l)/a;=loga.
1=0

If we put y = a'—\, so that a; = loga(l +y), and to a; = corre-

sponds ^ =
0, we have

Z(«^-l)/*-=Z2//loga(l+3^),
1=0 V=0

=
Zl/log,(l+y)''>',
y-dt

=i/iog„{Z(i+y)n
11=0

=
l/logae

= loga.

It will be an excellent exercise for the student to deduce directly from the

fundamental inequality (1) above, the important result that /, (a' - l)/x ia
jt—
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tiiiitti; and tLence, b; transfurinatiun, to pruve the leading tbeoiem of Ihii

paragraph*.

Cor. 5. If X be any positive quantit if .

and, i/ .r be positive and less than 1,

«•"'>! -^, -Iog(l -j-)>x.

Since «>(1 + 1/n)", wlieu « way be as great as we please,

e'-l>(l + l/«)«-l,
>n.r {(1 + 1/h)

- \\>x, by chap. XXiv., § 7,

for, however small j-, we cau by suthcieiitly iiicreasiug n make

n.r>l.

Hence e'> \ +x.

It follows at ouce that log «'>Iog(l +;r), that is, a:> log (I +x).

Agaiu, since e<(l -
1/h)'" and d-'>(l

-
l/«)",

«-'-1>{(»i-1)/hJ"-1,

>nj-{(«-l)/n-l},
>-r.

Hence «"'>! -x, and therefore 1/(1
-
x)>«<".

It follows at once tliat log j 1/(1
-

x)], that i.s, -log(l -t)>x.
Cor. Gt. If {.r, Px, . . . denote Inijx, log (litijx), . . . rv.ytect-

iivlif, x>y> 1, and r be any positive inttyer, then

(x-y)hM^y • • ry>r*'x-r*'y

>(x-y)lxLi'x . . . I'x.

This may be [)roved by induction as follows.

Hy Cor. 5,

lx-ly =
l{x/y)

= / {1 + {x-y)ly\<{x-y)ly,
whicli jirove.-i the first ineqn.ility when r-O.

Assume that it is true for r, i.e. that

r*'x-f*'y<{x-y)ly/yry . . . Ti/, then

r*'x-r"'yi(r*'x/r-'y),
= / II +(/-'*- /'»//'*'yl,

< (/'•*'x
-

l'*'y)!l'*'y, by Cor. 5.

Hence the induction is complete.

• See SchlOiiiilch, ZtiUchrift far Mnlhfmatik, vol. in., p. 387 (1868).

f Maluutuu, Onintri'i Archiv, viii. (181G).
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Again, we have by Cor. 5,

lx-hj = -l{!/lx) = -l{l-{x-y)lx}>{x-y)lx.

Using this result, and proceeding by induction exactly as before,

we establish the second inequality.

If we put X +\ and x for x aud y respectively we get the

important particular result

Ijxlxfx . . . l'x>l'-*'{x + V)-l'-*'x

>\l{x+l)l{x+l)P{x+\) . . . l'-(x+l).

Cor. 7. From the inequality of Cor. 6, combined with the

result of Example 3, § 12, we deduce at once the following im-

portant limits :
—
L{l'-(x+l)-rx] = 0,

L {;+' {x+l)- Vx] xlxl-x . . . Vx = 1.
3:=

Example 1. Show that the limit when n is infinite of 1 + 1/2+ . . .

+ \jn
-
log « is a finite quantity, usually denoted by 7, lying between and 1.

(Euler, Comm. Ac. Pet. (1734-5).)

Since, by Cor. 5,

-Iog(l-l/«)>l/K >log(l + l/H).

We have log {«/(«- 1)} >l/« >log{(n + l)/H},

log{(«-l)/(K-2)}>l/(«-l)>logW(«-l)},

log {.3/2} > 1/3 >log{4/3},

log {2/1} > 1/2 > log {3/2},

1=1 > log {2/1}.

Hence l + logn>21/n>log(n + l).

Therefore 1 > 21/n - log n > log (1 + 1/n).

Now, when n=<», log(l + l/K)=0. Thus, for all values of «, however

great, 21/h
-
log n lies between and 1.

The important constant 7 was first introduced into analysis by Euler, and
is therefore usually called Euler's Constant. Its value was given by Euler
himself to IG places, namely, 7= •o77215004901532(,';). (See Inst. Calc. Dif.,

chap. VI.)*

• Euler's Constant was calculated to 32 places by Masoheroni in his

Adnotatio)ies ad Hukri Calculum Integralcm. It is therefore sometimes
called Mascheroni's Constant. His calculation, which was erroneous in the

20th place, was verified and corrected by Gauss and Nicolni. See (iaus-i,

Werke, Bd. m., p. 134. For an interesting historical account of the whole

matter, see Glaisher, Mas. Math., vol. i. (1H7L').

c. II. G
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Examples. Show tliat ;, {1/1 + 1/2+ . . . + l/n}/logn = l.

Tliia follows ut once from the iuequality of last vxnmplo.
From this result, or from Example 1, we see that L {1/1 + 1/2 + . . . + l/n}

-co
; aud also that L {llk + ll{k + l} + . , , + l/n} = x ,

where k ia any finite

positive integer.

GENERAL THEOREMS.

§ 14.] Before proceeding further with the theory of tlie limits

of exponential forms, it will be convenient to introduce a few

general theorems, chiefly due to Cauchy. .Vlthough these theorems

are not indispensable in an elenientar}' treatment of limits, the

student will find that occasional reference to them will tend to

introduce brevity and coherence into the subject.

I. For any critical value of x,L{f(x)\ = {//(x)} , pro-
viJeJ the latterform be not indeterminate.

This is in reality a particular ca.se of the general theorem of

§ 7. The only que.stion that arises is as to the continuity of the

functi(liis of the limits. We may write

{/{x)}
= e

Now w = Iog u is a continuous function of u, so long, at least, as

u lies between + 1 and + »
; and e** is a continuous function

of V and w. Hence, so long as L<f> (x) and L log/(j-) are neither

of them infinite, we have

L {/(j-)i
= Le

i*(i)Zlog/(»)= « ,

Z4(«)lo((L/(x)= e

Hence Zl/W^' HVW}^'^ (1).

An oxaniination of the special cases where either L<f>(x) or

^'"K/i-*'). '" both, become infinite, shows that, so long aa

{//(.r)}

*
does not nssunio one of the indeterminate forms 0,

oc
, 1"°°, both sides of (1) become 0, or both «

;
so tliat the

theorem may be Blate<l us true for all cases where its sense ia

dotunuinuttf.
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II. L [/(a- + 1) -f{x)} = Lf{x)lx, provided L \f{x^\) -f{x)\
X='«> X=aO X=3D

be not indeterminate*. (Cauchy's Theorem.)

Since x is ultimately to be made a.s large as we please, we

may put x = h + n, where A is a number not necessarily an

integer, but as large as we please, and n is an integer as large

as we please.

First, suppose that L {/{x + 1) -f{x)\ is not infinite, = k say.

Since L\/{x+ \)—f{x)\=k, we can always choose for h a

definite value, so large that for x=h and all greater values

f{x+ l)—/{x)- k is numerically less than a given quantity a, no

matter how small a may be. Hence we have numerically

f{h + \)-f{h)-k<a,

/{h + 2)-/(h+l)-k<a,

fili + n) -f{k + n- l)-k<a;

and, by addition, f{h + n) ~/{k) - nk<na
;

that is, f{x) -/{//) -{x-h)k< (x
-

h) a.

Hence ^-^ ^-^ -
(l-^^ k<(l-^)a,X X \ xj \ xj

f{^) ;.^„|/W h{k +
a)^

X X .r

Since /(h), h, k, and a are, for the pre.sent, fi.xcd, it results

that, by making x sufficiently large, we can make f(x)/x
— k

numerically less than a. Now a can be made as small as we

please by properly choosing k
;
hence the theorem follows.

Ne.x't, suppose that L {/(x + l) -/(x)) = + cc
; then, by

taking h sufficiently large, we can assume that

/{h+l)-/{h)>l,

/{h + 2)-/{h + l)>l,

f{h + n)-f{h + n-\)>l,
where i is a definite quantity as large as we please.

* Tlieorems II. and III. are piven by Cauchy in his Analyse Algehriqur

(which is Part I. of his Cours iVAnalyse de I'icole Royale Polytechnique).

Paris, 1611.

6—2
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Heuce /(h + n) -/(A) > nl,

that is /(j-) -/(A) >{x-h)l.

Hence -^—'> / +"i-^—
'

.

Since /(A), /', / are all definito, we can, by siilTicicntly in-

crejisiug x, kwAct f(h)lx— hljx as suiali aa wc ple;ise, therefure

/{x)/x>l. Now, by properly clionsiug /», / can be made as largo

as we please ;
hence L/{x)/x = oo .

The case where L{/(x+ l)-/{x))=- oo can be included in

the last by observing that (-/(«+ l))-{-/(,x)) lias in this case

+ 00 for its limiting value.

III. L f(x + l)//(x)=Ly{x)]'^, provided Lj\x^\)lf(x)

be not indeterminate.

This theorem can be deduced from the \s\»i by transformation,

as follows* :
—

We have L \<i>{x-\-\)-<i>{x)}^ L'^^,

where i/' {x) is any function such that L {^(a; + 1)
- f {x)\ i.s not

indeterminate. liCt now tf/ (x)
=
log/(j;) ;

so that
i/i (j-

+ 1 )
-

«/' (x)
=

log / (a:
+ 1) -log /(a:) = log {/(a: +!)//• (J-)}; and ^ (j-)/*

=

\\og/(,x)\lx
= log {/{x)]"'. Then we have

Hence h.g [^Jy^ }
= log [£{/Win

provided L/{x+ l)//{x) be not indeterminate. Hence, finally,

Cauchy makes the imjwirtant remark that the dpmon.<itration8

of his two tlieorems evidently apply to functions of an iutogral

variable such as x'., where only positive integral values of z am
admissible.

* The reader will GdiI it a good exercise to oatablisli tbit theorem directly

from Gritt principlen, UK Cuuchj' Joui.
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14. 15 La^/x, Lhgax/x, Lxlog^^ f^6

For example, we have L (« + 1)!/.eI
=L (.t + 1)= co. Hence L (xl)V*=oo,

and consequently L (l/j;!)'/»=0.

EXPONENTIAL LIMITS RESUMED.

§15.] I/a>l,theii L w'/x^co; X log^.r/a;
=

;
L x \og„x -- 0.

The first of these follows at once from Cauchy's Theorem

(§ 14, 11.) for we have

L («•'+'
-

a'}
= ia.^ (rt

-
1)
= a, .

Hence La'/x = <x> .

As the theorem is fundamental, it may be well to give an

independent proof from first principles.

First, we observe that it is sufficient to prove it for integral

values of x alone, for, however large x may be, we can always

put x =/+ z where / is a positive proper fraction and z a

positive integer. Then we have

X«=a) X t=^J + Z

r f z a'

»=» y T *.. ^

= a/L%, (1),

where we have to deal merely with La-jz, z being a positive

integer.

Let Mj = a'jz, then «,+,/«,
=
azl{z + 1)

=
a/(I + 1/-). Now,

since L a/{l i-l/z)
= a>l, we can always assign an integral

value of z, say z = r, such that, for that and all greater values of z,

^»-¥ihh>b, where 6>1. We therefore have

Ur = «r,

Ur+ijUr>b,

Ur+i/Ur+l>b,
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Honce, by multiitlyiug sill tliesc inequalities together, we deduce

U:,>l/-''Ur>b'Ur/b''.

Now Mr/A' is finite, and, since 6>1, 0' can be nioiie as great as

we please by sulliciently increasing z. Hence L u,^ <x>, on the

supposition that z is always integral. But, since a^ is finito, it

follows at once from (1) that L a'lx= <x>, when x is unrestricted.

The latter parts of the theorem follow by transformation.

If we put a' = y, so that x = loga^, and to x = « corresponds

y = an
, we have

cc = i c^lx = L yfiog^y.

Ileuce L loga^/y
=

l/oo
= 0.

»-"

If we put a' = Ijy, so that x = - logay, and to x- <» corre-

sponds y =
0, we have

00 = i o7a; = - /y Xjy log^y.

Hence L y log^y
= -

l/a>
= 0.

ExaiDple 1. Show that, if a>l and n be positive, then L a'/x*=co ;

L logai/x»=0; L a;"log„i=0.
«—« r— -H)

I- aVx"= i {a*A>/j}i»,

=
{
L (a'/")'/x}-,

X—«

= ao"= oo ;

for, sincca>l ami n is positive, we have a"*>l, bo thai L((J"")'/*= » und

The two remaining results can be established in like manner, i( we put

y= \of^^x in tlie one case, and i/= -
log, i iu the other.

It should be noticed that if n be negative we see at once that L a*jx'= aB;

L log„ x/x" = X ;
L x"log„x= - 00 .

JT—> X—

Example 2. If x be any fixed finite qoantity, L z*/nl=0.

Since n is to be made infinite, and x is finite, we ma; select some flniU

positive integer k such that x < % < n. Then we have

nl (t-l)l * »+l n'

*(k-l)'\k)

Now, since x<.k, A(x/*)'>-**'
= 0, htncc the theorem.

I
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Example 3. Lm(m-1) . . . (hi
- k + 1)/h! = or oc , according as m>

or <: - 1.

First, let m> -1, then m + 1 is positive. We can alwaj-s find a finite

positive integer k such that 7(H-l<A;<re. Therefore we may write

m(m-l). . (m-« + l) _, ,„.j-+, , fi _'!^\ (i _"'±1\

••(-^).
= (-)'-*+',„C^_,P,say.

Now

lo,l/.= -lo.(l-'^)-lo.(l--^)-...-.o.(l-"LL^),

>{m + l)lk + (m + l)l{k + l)+ . . .+(m + l)/n,

by § 13, Cor. 5. Also, by § 13, Example 2, the limit of (m + l)//j + (hi + 1)/(/; + 1)

+ . . . + (Hi + l)/rt is infinite when n= co . It follows, therefore, that LP = 0,

and therefore that i,„(7„= 0.

Next, let m< -
1, say m= -

(1 + a), where a is a positive finite iiuantity.

We may now write

„c„= (
-

)"
^' +

"J(; ,^-^:^i"i'"
=

(
- rp. say.

Now

lo,P=_,o,(l.^)-lo,(l-.^y-...-log(l-,-^-J.

>a/(l+a)+a/(2 + a)+ . . . + a/(H + a),

>al{l+p) + al{2+p)+ . . .+al{n+p),

where p is the least integer which exceeds a. But the limit of 0/(1+7))

+ a/(2 + p) + . . . +a/(n+y) is infinite. Hence LP= oa.

When m=-l, m<^i.
= {-l)"i ''"'^ ^^^ question regarding the limiting

value does not arise.

§ 16.] T/ie fundamental theorem for the form 0° is that

*=+0

This follows at once from last paragraph ;
for we have

Laf = i(f""^ = e^^'^' = e» = 1.

Example 1. L (x»)"==l.
X-+0

For i(x»)'^= Ls'"= I-(j;'^)"
= (Lr')''

= l"= l.

Example 2. L x'"= l (n positive).
I-+0

For Li*"=Le=="i'>it=:=«""i<>B^=«''= l, by § 1.5, Example 1.

iV.C—If n be negative, L x'"=0" = 0.

I-+0
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§ 17.] If a unit V ho functions ff r, hith if wh'irh I'limsh wlimi

x = a, and art such tluU L vju"
-

1, where n h positivn and neither

nor oo, and I is not infinite, then L »"= 1, provided the limit be so
X—«

approached that u is positive*.

For Lu' = L («"")"" = (Lu"')'-'^'.

Now, by § 16, E.\anii)le 2, since n is positive, L m""= 1. Ilcnce
«--M

i4t''= l'=l.

If L r/«''=ao, this traiisfonnatioii leiuls to tlie furui 1";
x-a

aud tlicrcfore becomes illusory.

The above tlieoreni iiichnlcs a very large number of parti-

cular cases. We see, for cxauiplo, that, if Lvju be determinate and

not infinite, then Lu' = I. Af^aiii, since, as we shall prove in

chapter xxx., every algebraic function vanishes in a finite ratio

to a positive finit.e j)0\ver of .r-a, it follows that every such

function vanishes in a finite ratio to a positive finite power of

every other sucli function. Hence Z«'= 1 whenever u aud v

are algebraic functions of art.

Example. Evaluate L{x-1 + v'(x'
-

l)}'5'l»-'l when x = 1.

Here u = ^{x-l){^l{x- 1) + ^/{x> + x + l)}, v=*l{x-l), uI^/b
=
{^(x- 1)

+ V(x» + i + l)}"'.

Hcuce Lu^lv = i/X Therefore LW = L (u«*')'/»'^= l"^'= 1.

Jj 18] In cases where the la.st theorem doe.s not ajjply, the

evaluation of the limit can very often be efi"ected by writing «•

in the form e"'"", and then socking by transformation to deduce

the limit of tjlogM from some combination of standard cascs^.

Example. Evaluate x'''°«<«'"'l when x= 0.

It is obviously puKgootcd to attempt to make thin dcpcod on
L {{e*-l)lx} = l. This may bo effected as follows. Wo have

• Sec Franklin, Amrriran Journnl of ifathematict, 187ft.

t Sec Spragiic, Proe. F.dinb. Math. S»r., vol. in., p. 71 (188J5).

J At one lime an crrnneous imprpHKion prevailed that the iDdctcrminato

form 0° lia« alnayn the value 1. Sec Cretlt't Jour., Dd. xii.
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log X log XNow
log(c^-l) log{(e'-l)/x} + iogx'

1

log{(e=-l)/x}/logx+ l'

Since ilog {{e'^-l)/x} = 0, by §13, Cor. 4, and Llogx=-oo, we see that.

L log xjlog (^-1) = 1.

Hence ixi/>'>B(«'-i)= e.

§ 19.] Since u'=l/{l/u)'', indetermiiiates of the form »"

can always be made to depend on otliers of the form 0°, and

treated by the methods already explained.

Example. Evaluate (1 + x)''^ when x = oo .

Let l + x= l/j/, so that y = when x = oo
;
then we have

L (l+x)V^=I, {l/j/!'/(i-»)}
= l/L()/!')i/a-w.

NowLi/» = l andLl/(l-t/) = l; hence L (l+x)V»:=l.
X=ao

§ 20.1 The fundamental case for the form T is i (1 + l/xY
X=50

= Z (1 +j:y''
=

e, already discii.ssed in .§ 13. A great variety of
x=0

other cases can be reduced to this by means of the following

theorem.

1/ u and V be functions of x such that m = 1 and « = oo when

x = a, then Iai' = e^"'"-'', provided Lv{u-l)be determinate.

We have in fact

«» = {(! + M-1)''''-";"'"-''.

Hence, by § 7,

provided Lv{u-l)he determinate.

Example 1. L x'/l':-it= i (1 + jri)i/(x-i)= <;.

Example 2. Evaluate (1 + log x)'/(*-J)
when x= 1.

We have
Z =L (1 + log x)V(»-')

= L
{ (1 + log a;)i/l«!X}i<«*/(x-il,

= jLlogx/(i-l).

Now L log j/(x
-

1)
=i log xi'l^-'l = log LiV|x-i)= log e= X. Hence I= e.

TKIGONOMETRICAL LIMITS.

§ 21.] We deal with this part of the subject only in so far

as it is necessary for the analytical treatment of the Circular

Functions in the following chapters. We assume for the present

that these functions have been defined geometrically in the usual

manner.
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We shnll ro<iuire the fnllowiiif^ iiiiM|uality tlicoreniR:—
1/ X bt' thf numlx'r of rddians {circular units) in any pusitive

anijle lens than a right angle, then

1. tanx>x>siux;

II. z>a'inx>z- \j';

III. l>co.sar>l-A.r'.

If PQ be tlie arc of a circle of nvliiis r, whicli subtends the

central au^'Ie 2.r, ami if PT QT be the tangents at P and (},

then we ji.ssuuie as an axiom that

P7'+ 7'(^>arc Pq>c\\w\ PQ.

Hence, as the reader will easily see from the geometric defini-

tion of the trigonometrical functions, we have

2r t;in .r>'irx>2r sin x;

that is, tan.r> x> sin j-,

wliich is I.

To prove II., we remark that sin x = 2 sin \x cos Jj-

= 2 tan Jj: cos' ia:
= 2 tan J.r (1

- sin' Ax). Hence, since, by 1.,

tan }tx>\x and sin ix<ix, we have

8inx>2.ix{l -(Ax)'l,

>x-\j*.

The first part of III. is obvious from the geometric

definition of co.-fx. To prove the latter part, we notice that

cosx= 1 -2sin'ix; licnce, by I.,

cosx>l -2(ix)'

% 22.] The fundamental theorem regarding trigonometrical

limits is as follows:—
If X be the radian mctisure* ofan angle, then L (sin xjx) = 1.

a—

This follows at once from the first inequality of last para-

graph. For, if x<Jir, we have

tanx>x>8inx;

therefore sec x> x/sin x> 1 .

* In all that foUowi, and, in fact, in all analytical treatment of the trigimo-

metrical (uuclions, the aroumoDt ii auumod to douot« radian meaaora.
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If we diminish x sufficiently, sec x can be made to dillcT from

1 by as little as we please. Hence, by making x sufficiently

small, we can make a'/siu x lie between 1 and a quantity differing

from 1 as little as we please. Therefore

Lx/smx= 1.

Hence also L sin x/x = 1.

Cor. I. L tan x/x = 1.
X=Q

For L tan x/x = L{sm x/x)/cos x^L sin x/x x L 1/cos a; = 1 x 1 = 1.

Cor. 2. L sin - /- = i tan - /- = 1 provided a is eitlier a con-
i=„ X/ X x=~ X/ X

slant, or afimction of x which does not become infinite whenx= <x> .

This is merely a transforuiatimi of tlie preceding theorems.

It should also be remarked that

provided a and /3 are constants, or else functions of x which

do not become infinite when ar= oo.

If, however, a were constant, and /? a function of x wliich

becomes infinite when a; = co
,
then each of the two limits would

take the form 1", and would require further examination.

§ 23.] Many of the cases excepted at the end of last para-

grajih can be dealt with by means of the following results, which

we shall have occasion to use later on :
—

If a be constant, or a function of x which is not infinite when

x= oo
, then

xftanV-y=l-x-.\ X/ Xj

To prove the first of these, we observe that for all values of

ty/x less than Jir we have, by § 21, II.,

'>(''» i/ir>{-'e)T
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Now
L (1

-
a.y.l.T')' -L !(1 -a'/.lx')-*^'-'}-'''*',

=Ti (I
-

aV4j!')-*'''"'}-^''*'.

= «»=1, by S7 and 13.

llcnce L
(sin -/-)

= !•

In exactly the same way we can prove tliat // ( cos -j
1.

Filially, since

the thirrl result follows as a combination of the first two.

Kxaniplo. Evaluate (cos r)''^ when x = 0. By § 20, we have L (cosi)'"^

^eKmi-iifl". Now (coflJ--l)/i'
= -2Bin'Jx/x'= -i(ainix/Jx)». Ueuce

L(coax-l)/x»= -4.

We therefore have Z, (co8i)'/^=e-'.

SUM OF AN INFINITE NUMHER OF INFINITELY

SMALL TEUMS.

§ 24.] If we consider the sum of n torm.s .«ay, «, + «,+ . . .

+ M,, each of which depends on n in such a way that it becomes

infinitely small when n becomes infinitely j^at, it is obvious

that we cannot predict beforehand whether the sum will be finite

or infinite. Such a sum partakes of the nature of the form

X 3c
;
for we cannot tell a prvtri whether the smallncvs of the

individual terms, or the infiniteness of their number, will ulti-

mately predominate. We shall have more to do with such cases

in our next chapter; but the fnllomnp instance is so famous in

the history of the Infinitesimal Calculus before Newton and

Leibnitz that it deserves a place here.

//*r+ 1 bf pofltivc, then

z. (r + 'J"- + . . . +«•)/"'*' = ^Rr + 1).

In the case where r is an integer this theorem may be

deduced from the formula of chap, xx., § 9.
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The proofs usually given for the other cases are not very

rigorous ;
but a satisfactory proof may be obtained by means of

the inequality

{r+\)x^{x-y)^x'''-ir'%{r+\)f(.v-y) (1),
-

which we have already used so often.

If we put first x =
2}, y=p -

1, and then x =jj + 1,2/ =P, "'G

deduce

(p + !)'+'
-

p'--'' 5 (?•
+ l)p'' >;?'"+'

-
(p
-

ly-"' (2)

where the upper or tlie lower signs of inequality are to be taken

according as the positive number r + 1 is > or < 1.

If in (2) we put for j9 in succession 1, 2, 3, . . ., n and add

all the resulting inequalities we deduce

(?j +!)'+> -I2(r+l){r + 2'"+. . .+if)%n'-'\

Hence

{(1 + !/»)'•+'
-

!/«'+'}/(?• + 1) 2 (r + 2-- + . , . + «'•)/«'""

>l/(r+l).

That is to say, (F + 2*" + . . . + «'')/«''*' always lies between !/(»•+ 1)

and ((1 + !/«)'+'
-

l/n'"+'}/(r + 1). But Z (1 + !/«)'+'
= 1

;

and L Ijrf'^^
=

0, since r + 1 is positive. Hence the second of

the two enclosing values ultimately coincides with the first, and

our theorem follows.

It may be observed that, if r + 1 were negative, the proof

would fail, simply because in this case L !/«''''
= oo .

Cor. 1. Ifsbe any finite integer, and r + \ be positive,

L{v + '2r+ . . . + («
-

«)'•}/»'•+'
=

l/('- + !)

This is obvious, since L{V+2''+ . . . + (n
-

sY]/n''+^ differs

from L(r + 2''+ . . . +«'')/«''*' luy a, finite number of infinitely

small terms.

Cor. 2. I/abe any constant, and r + 1 be positive,

L {{a + l)-- + (a + 2)'- + . . . + (a + »)'}/«•+'
=

l/(r + 1).

This may be proveil by a slight generalisation of the method

used in the proof of the original theorem.
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Cor. 3. If a and c be constants, and r + 1 + 0,

L {{na + cY + (na + 2cY + . . . + («a + ncy\ln^*^

= {(a+c)'-+'-o'-+'}/c(r+l).

This also may be proved in the same way, the only fresh point

being the inclusion of cases where r + 1 is negative.

8 25.] Clo.sely coniiectoil with the re.sulLs of the foregoing

paragraph i.s the following Limit Theorem, to which attention

has been drawn by the researches of Dirichlet:—
If a, h, p he all positive, the limit, when m = x, of the sum of u

tei-ms of the serif's

1 1 _ 1__ 1

o'+p
"^

(o +'6)'+o
"^

(a + 2by*i'
+ ' • • +

(« + „/,)<+p

"^ ' • •
< ' '•

is finite for all finite values of p, howeeer small; and, {/'

2 l/(o + «i)'+<' denote this limit, then
»-<

Zp 2 l/(o + «/»)'+''= 1/6 (2).

By means of the inequality (1) of last paragraph, we readily

establish that

{a+ (j»-l)ij-p- \a+pb\-i'>i>b 'o+;>i["''"'>{a + pb]-'

-{a + (/>+l)t}-P (3).

Putting, in (3), 0, 1, 2, . . ., n successively in place of />,

adding the resulting incijualitieii, and dividing by bp, we deduce

1/ -A 1 l>v 1 >ifl L_ 1

^plla-tl" {a + «/*!"/ p_<,{a+;/6}'+p *p In^ |a + (» + I)*!'/

(4).

Since Ll/{a + nb\i'
=

0, and L\/[a + {n+l) b\'
=

0, when

n=cc, we deduce from (4),

1 -. 1 1

pb{a-by^^(a+pby*''^Pj^ ^^)-

From (5) the first part of the above theorem follows at

once; and we .see that \/pb (a- by and l/p6»+' are finite upper
and lower limits fur the sum in quuHtiou.
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We also have
1 _ s 1 1

b{a- by '^pZ {a + pby+f bw '

wliPiice it follows, since L l/b (a- by = L l/baf
=

1/b, when p = 0,>

tliat

p=o''p-o(a+j»i)'+p b'

From the theorem thus proved it is not difficult to deduce

the following more general one, also given by Dirichlet:—
1/ ^'i, L, . . ., k„, . . .be a series ofpositive quantities, no one

of which is less than any following one, and if they be such that

L T/t
=

a, where T is the number of the k's that do not exceed t,
1=1,

then ^1/kn+i' is finite fur all positive finite values of p, fiowever

small; and L p'S.Xjkn^i'
= a*.

Cor. It follows from (5) that

an inequality which we shall have occasion to use hereafter.

GEOMETRICAL APPLICATIONS OF THE TUEORV OF LIMITS.

§ 26.] The reader will find that there is no better way of

strengthening his grasp of the Anal}tical Theory of Limits than

by applying it to the solution of geometrical problems. We may

point out that the problem of drawing a tangent at any point of

the graph of the function y =f{x) can be solved by evaluating the

limit when ^ = of {f(x + A)-f{x)]/h; for, as will readily be

seen by drawing a figure, the expression just written is the

tangent of the inclination to the a.vis of x of the secant drawn

through the two points on the graph whose abscissae are x and

x + h; and the tangent at the former point is the limit of the

* Sop Dirichlet, Crelle's Jour., Ld. 19 (1839) and 63 (1857) ; also Heine,

ibid., Bd. 31.
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Hccant wlicii tlic lattor point is made to approach infinitely close

to the foruier*.

Example. To find the inclination of the tangent to the graph o( y = r'

at the point where thist graph crosses the axis of y.

If be the inclination of the tangent to the z-axis, we have

tantf = i:,(<»+»-e»)/h,

= L(e»-l)/;i,
= log<=l.

Ucnce =
Jir.

§ 27.] The limit investigated in § 24 enables us to solve a

problem in quadratures ;
and thus to illustrate in an elementary

way the fundamental idea of the Calculus of Definite Integrals.

We may in fact deduce from it an expression for the area in-

cluded between the graph of the function y = af/l^~\ the axis of

X, and any two ordinates.

Let A and B be the feet of the two ordinates, a, b the corresponding

abscissae, and b-a = ei: Dirirle AH into n cqaal parts; draw the ordinatea

through A, B, and the n - 1 points of division ; and construct— 1st, the scries

of rectangles whose bases arc the n parts, and whnsc altitudes are the Ist,

2nd, . . ., nth ordinates respectively; 'iud, the series of rectangles whose

bases are as before, but whose altitudes are the 3nil, 3rd, .... (n4-l)th

ordinates. If/, and </, be the sums of the areas of the first and second scries

of rectangles, and A the .irca enclosed between the curve, the axis of x and

the ordinate^ through A and B, then obviously I^<.A-<^J^.

Now

/.= c{a'+ (a+f/n)' + {a + 2c/n)'-+. . . + (a + nTTc/i.)'-} /nr-> ;

J,=c{(a + c/ri)'- + (a + 2<:/n)'-+. . . +(a + nc/n)'-}/n<'^'.

Since J, -/,= c(fc'-a'')/»i/'^', which vanishes when n= m
, Z./.= Z^,,aud

therefore A = LJ„ when n = x> . Hence

c {na + Ic)'' + (na + 'ie)'^ . . . + (iia ( tu)'

^-,T:i^ ^l .

-M"-i^ir^\-'''^"'^'-
Hence X = (fc'+>-a'+')/(r + l)r-'.

This gives, when r= }, and a = 0, the Archimcdian mlc for the quadrature
of a i>arabolic segment.

* We would earnestly reoomnnmd the learner at this stage to begin (if

he has not aln'ody done so) the study of Frost's Curre Tracing, a work which

should be in the hands of every one who aims at becoming a mathematician,
cither practical or aciontiflo.

t The reader shuuld draw the Qgure for hiuisclC
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NOTION OF A LIMIT IN GENERAL. ABSTRACT

THEORY OF IRRATIONAL NUMBERS.

§ 28.] lu tlie earlier part of this chapter liuiitiiig values have ,

beeu associated with the supply of values for a functiou in speei;il

cases where its definitiou iails owing to the operations indicated

becoming algebraically illegitimate. This view naturally sug-

gested itself in the tii'st instance, because we have been mt)re

concerned with the laws of operation with algebraic quantity than

with the properties of quantity regarded as continuously variable.

It is possible to take a wider view of the notion of a limit
;

and in so doing we shall be led to several considerations which

are interesting in themselves, and which will throw light on the

following chapter.

Although in what precedes we defined a limit, it will he

observed that no general criterion was given for the existence of

a finite definite limit. AH that was done was to give a demon-

stration of the existence of a limit in certain particular cases.

When the limit is a rational number, the demonstrations present

no logical difficulty ;
but when this is not the case we are brought

face to face with a fundamental aritlmiotical difficidty, viz. the

question as to the definition of irrational number. For examjile,

in proving the existence of a finite definite limit for (1 + ]/:»)'

when X is increased iudefinitelj', what we really proved was not

that there exists a quantity e such that \e-{l + llxY\ can be

made smaller than any assignable quantity, but that two rational

numbers A and B can be found differing by as little as we please

such that (1 + Xlx'Y will lie between them if only x be made

sufficiently large. From this we infer without farthur proof that

a definite limit exists, whose value may be taken to be either

A or B. For practical purposes this is sufficient, because we can

make A and B agree to as many places of decimals as we choose :

but the theoretical difficulty remaius that the limit e, of whose

definite existence we speak, is any one of an infinite number of

different rational numbers, the particular one to be differently

selected according to circumstances, there being in fact* no single

* See chap, xxvni., § 3,

C. II. 7
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rntioiiiil iiumbur wliich can claim to bo the value of the limit.

The iiitroiluctiou of a definite quantity e as the value of the

limit under these circumstmccs is justified by the fact that wo

thus cause no algebraic contradiction. Such ijuautitics aa J'i,

XJi, &c. have already been ailniittcd as algebraic operands on

similar grounds.

§ 29.] The greater refinement and rigour of modern mathe-

matics, especially in its latest develoi)ment
—the Theory of

FunctioiLs—have led mathematicians to meet directly the logical

dilHcultius above referred to by giving (i j>rit>ri an abstract defi-

nition of iiTational real quantity and building thereon a purely

arithmetic theory. There are tliree distinct methods, commonly

spoken of as the theories of Weierstras.s, Dedekiud and Cantor*.

A mi.xturc of the two last, although perhaps not the most elegant

method of exposition, apiwars to us best suited to bring the issucij

clearly before the mind of a beginner. We shall omit demon-

strations, except where they are neces.sary to show the sequence
of ideas, the fact being that the initial difficulties in the Theory
lie not in framing demonstratiuns, but in seeing where new

definitions and where demonstrations are really necessjiry. For

a similar reason wo shall at once a.ssume the properties of the

onefold of Kational Numbers as known ; and also tho theory of

• The theory of Wcierstrass, earliest in point of time, waa given in his

lectures. Lilt not pultlishod by himself. An account of it will bo fouml in

Bicrmauu, Tlitorie Jtr Analytitchtii Fuitctioncn (Leipzig, 184J7), pp. I'J— 33.

A brief but excellent account of DcJekiuJ's theory is given by Weber,
Lehrbuch dcr Aljcbra (Braunschweig, 18'J5, 1898), pp. 4— 10 : 8c« also

Dedukind's two tracts, Stetigktit und irrationuU Zithltn (Braunschweig,

1872, 1892) ; and H'of tind und mat $olUn die Zahlrn t (liraunschweig,

18S8, 1893). For ujiiKisitionB of Cantor's theory sec Math. Ann., Ud. 5

(1872), p. rjs, and lb. Ud. 21 (18K3), p. OOu; ako Heine, CrelU'$ Jour.,

Bd. 7-J (1872): and Stolz, Atlgemeiw Arithmetik, I. Th. (Leipzig, 1n8.",),

pp. 97—124.

Meray, in his Nouvetiu I'ricit d'Aiuily$e Infinil^timalt (Paris, 1872),

published indi'|itndcntly a tliojry very similar to Gintor's, which will b«

found set forth in tho lint volume of his Le^oiu KuufelUi tur I'Analyu

IitfinilitinuiU (Parin, IS'.H).

A good general sketch of tho whole subject is given by Priiigshcim in his

article on Irtatioualzahlcn, Ac, Kncycluyiidit dcr ilalhematiichen fl'iueit-

icha/ten (Leipzig, 1898), ltd. 1., p. 47.
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terminating and rei)eating decimals, wliich depends merely on the

existence of rational limits.

§ 30.J Starting with 1 and confining our operations to the

four species +,
—

, x, ^, we are led to the onefold of Kationaf

Quantity

. . .,
-
min, . . .

-
1, . . . 0, . . . + 1, . . . + w/n, . . . {li)

in which every number is of the form + mIn, where m and n are

finite integral numbers.

The onefold R possesses tlic following properties.

(i) It is an wdered onefold, in the sense that each number

is either greater or less than every other. The onefold may
therefore be arranged in a line so that each number occupies a

definite place, all those that are less being to the left, all greater

to the right.

(ii) R is an arithmetic onefold, in the sense that any con-

catenation of the operations +,
—

, x, h- in which the operands are

rational numbers (excepting always division by 0) leads to a

number in R.

(iii) a and b being any two positive quantities in R, such

that 0<a<b, we can always find a positive integer h so that

na>b*; and consequently bjiKn.

(iv) Between any two unequal quantities in R, however

nearly equal, we can insert as many otiier quantities belonging

to i? as we please. We express this property by saying that R is

a compact onefold. This follows at once from (iii),
since the

rational numbers

o, a + {b-a)/n, a+ 2 {b-a)/n, . . ., a + {7i-l){b
-

a)/n, b

are obviously in order of magnitude, and the integer n may be

chosen as large as we please.

§ 31.] DedekiiicUs Thmry of Sections. Any arrangement of

all the rational numbers into two classes A and B, such that

every number in .4 is le.ss than every number in B, we may call

a section t of R. We denote such a section by the symbol {A , B).

It is obvious that to every rational number a corresponds a

* This is sometimes spoken of as the Axiom of Archimedes,

t Dedekind uses the word Schnilt.

7—2
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section of R ; for wo may t;ike A to inclinlc all tlio rational

numljLT.s wliich are not greater than o, and D to inciiule tlie rest,

viz. all that iire greater than a. Conversely, if in the class A

thoro be a number a which is not exceeded by any of the others

in A, then the section may be rej^arded jw j,'enerated by o. The

same is true if in the class B there be a number a which is

not greater than any of the others in li
;
for we mi^ht without

essential alteration transfer a to the class A, in which it would

then be the greatest number. The case where there is a greatest

number a in A and a least number ft in H is obviously impossible.

For a and ft must be dillercnt, since the two chusses A and JJ are

exhaustive and mutually exclusive
; but, if o and ft were different,

we could, since R is compact, iu.scrt numbers between them which

must belong either to A or to B
\

.so that o and ft could not lie

greatest and least in their respective classes as snpjMxsed.

But it may happen that there is no greatest rational n\imber

in A, and no lea.st rational number in B. There is theti no

rational number which can be said to generate the section. Such

a section is called an «mpty or imttimial section. It is not

difficult to prove that, if m/n be any positive rational number

which is not the quotient of two integral square numbers, and A
denote all the rational numbers whose sipiares are less than mf»,

and B all tho.sc whose squares are greater than m/n, then the

section (A, B) is empty.

§ 32.] An ordered onefold which has no empty sections is

said to be coiitinwHis. It will be observetl that the onefold of

rational numbers is discontinuous although it is compact.

Starting with the discontinuous onefoM of nitional numbers

//, we construct another ouefohi iS by as.signing to every empty
or irrational section a symbol which we shall call by anticipation

a numlter, adding the adjective irnitional to show that it is not a

number in R. As the section and the number are coordinated,

we may use the synibol {A, B) to denote the number as well as

the section. We can also without contra<liction re-name all the

rational numbers by atbichiug to each the corresponding sectional

symbol.

Matundly wo detinu the number (.1, B) as being greater than
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the number {A', B') when A contains all the (rational) numbers

in A' aud moie besiiles
;
and consequently B' coutains all the

numbers in B aud more besides. The numbers {A, B) {A', B')

are equal when A' contains all the numbers in A, neither more

nor less, and the like is consequently true ofR and B.

is the section iu which A consists of all the negative and

J5 of all the positive rational numbers.

(A, B) is positive when some of the numbers in A are

positive ; negative when some of the numbers in B are negative.

Also, if we understand - ^ to mean all the numbers in A each

with its sign changed, then {-B, -A)=-{A, B).

The new manifold (S is therefore obviously an ordered mani-

fold
;
and it is clearly compact, since R is compact. It is also

continuous, i.e. every section iu S is generated by a number in S
;

for, if a, /3 be a classification of all the numbers (or sections) of <S'

such that every number in a is less than every number in /3, then

(o, ;8) determines a section in <S' of the most general kind. But,

if -4 contain all the rational sections in o and B all the rational

sections in fi, then {A, B) is a section in R, i.e. a number in S;

and it is obvious that every number in <S<(^, B) is a number in

a, and every number in S>{A, B) a number in ji. Hence (a, p)

corresponds to the number (^i, B), which is a number in &
§ 33.] Si/stemattc representation of a number, rational or

irrational. Consider any number defined by means of a section

{A , B) of the rational onefold R. We are supposed to have the

means, direct or indirect, of settling whether any ratiiuial number

belongs to the class A or to the class B. Suppose (^l, B) positive.

Consider the succession of positive integers 0, 1, 2, ... ; and

select the greatest of these which belongs to A, say <h- Then

fco
= ao+l belongs to B. The two ration.al numbers «„, b^ de-

termine two sections in R between whicli there is a gap of

width 1. Within this gap the section {A, B) lies, i.e. <h<{A, B)

<bo.

Next divide the unit gap into ten parts by means of the

rational numbers a, + 1/10, Oo+2/lO, . . ., Oo + 9/10, and select

the greatest of tliese numbers, say a, =a„ +/j,/10, which belongs

to A ;
then b^ = aj + 1/10 belongs to B. We Lave now a gap in
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R of wiiltli 1/10, determined by tlie numbers a,, 6, within which

(A, li) lies.

Wc next divide the gap of 1/10 into ton parts by means of

the numbers Oj + 1/10*, «, + 2/10*, .... «, + 9/U>'; and so on.

Proceeding in this w.iy, we run detcriiiine two rational numbers

(termiualiii^ docinials in fact),

o, = o,+/),/10 + . . .+Pnl\0\ t, = a.+ l/lu' (I)

between wliich {A, li) lies, the width of the gap between a, and /»,

being 1/10". It is obvious that a,, a,, . . ., a, are a non-decreas-

ing 8ucces.sion of positive rational numbers; and it can easily

be proved that b^, b,, . . ., b, are a non-increasing succes-sion.

1". At any stage of the process it m.ay haiii>en tliat a, is the

gre.itest possible number in A, in other words that p,+,, and all

successive pa are zero. The .section (A, B) is then determined

by the number a, ;
and (A, li) is the rafion:d number a,.

If the process does not stop in this way, two things may
happen.

2". The digits jw,, jt>„ . ..,/»,,... may form an endless

succession but rei)eat, say in the cycle /v, Prti, • , P»- In this

case there exists a rational number a to which a^^a,-*- pJlO + . . .

+/>,/I0" approximates more and more closely as we incrca.se w
;

and, since 6, = a« + 1/10", A, also approaches the same limit It

follows that the rational numbers of class A might he defined as

the numbers none of which exceeds every numWr of the succession

ft,, «,,..., o,, however large u be taken. Hence, if we agree to

att-ich the number a to the class y|, it will be the greatest number

of that class, and the .section {A, li) is genoratod by a.

3°. The digits p,, ;»i, . . ., p» may form an endless non-

repeating succRssion. Since the gap 6, -a, --=

1/10" can be made
as small as we plen.se, it follows as before that the rational

numliers of clitss A may l)0 defined as all the rational numbers

none of which exceeds every number in the endless succession

0,, a,, . . ., a, This sl:it'Oment does not as in last case

cnabli! us to identify (A, li) with iuiy rational numl>or; hut, since

n m.ay be as large as wc ple^ase, we can by cnlrulating a Hiilhcient

niimlicr of tiie digitus j>,, p,, . . . separ.ito (A, Ji) from every otlier
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uumber, rational or irrational, no matter how near that number

may be to {A, B).

Conversely, it is obvious from the above reasoning that every

terminating or repeating decimal determines a rational section in

R, and therefore a rational number ;
and every non-terminating

non-repeating decimal an irrational section in It, i.e. an irrational

number.

It is an obvious consequence of the foregoing discussion that

between any two distinct numbers, rational or irrational, we can

find as many other numbers, rational <ir irrational, as we please.

§34.] Caritor's Theory. The rational numbers flo, «i, • • •,

ffi„, . . . in § 33 evidently possess the following property. Given

any positive rational number «, however small, we can always find

an integer v such that la„-a„+r|<e when m<|:v, r being any

positive integer whatever.

We are tlius naturally led to consider an infinite sequence of

rational numbers

Ui, lu, . . ., «„, ... (2)

which has the property that for every positive rational value of £,

however small, there is an integer v such that
\
u„ - «„+,. |

< « w/ien

w^;^, r beinj any positive integer wliatever.

Such a sequence is called a convergent sequence; and )/i, u^,

&c. may be called its convergents. It should be observed that we

no longer, as in § 33, confine the convergents to be all (or even

ultimately all) of the same sign ;
nor do we suppose that they

form a non-dccrcasing or a non-increasing (monoclinic) scipu-nce.

To every convergent sequence corresponds a definite section of

the onefold of ra/ional numhers (E) : so that every suck sequence

defines a real number, rational or irrational.

We may prove this important theorem as follows.

Let e, be any ])ositive national nuudjcr whatever; then we can

find 1', such tliat, when H<t:i'i, |
?«„- «„+r |<ei. lu particular, we

shall have, if )«>i',, | w^,-«,„|<ei, whence

W,, -€i< i;,„<«,,, + €i (2).

In other words, the two rational numbers «,
--

«,.,
-

«i , ^i
=

«.-,
+ «i

determine two sections in R such that :dl the numbers of the
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se<]ncn(-c 2 on and after
w,.,

lie in the gap of width 2(| bctwceu

those two sections.

Next choose any rational number <.<*,. We can then es-

tablish a gap of width Sc,, whopc boumiing sections are given by

0,= «r,- *j, ^j = Ml, + «j. The niiiidnT v, will in general be greater

than I', ;
but it nii;;ht be less. Also the gap a.h, might partly

overlap tlie gap (ij>,. But, since all the convor^'ents on and

after m,, lie within the gap a-tli,, we can throw aside the part of

Ofl),, if any, that lies outside Oi^i, and detormiDe a number i','<^i'i

such that

when m-^v,. Then, all the convergents on and after u^ He

within the gap Hili^, whose width 1^ •.•«,<•-'€,. This process may
be repeated as often as we please; and the numbers tj, €,, . . .

may be made to decrease according to any law we like to choose.

The numbers Oi, (u, . . . form a non-decrc:ising and the numbers

bi, A,, ... a non-increasing sequence : and each successive gap
lies within the preceding, although it may be contcrminoua with

the ])receding at one of the two ends. Since «i, tj, . . . can bo

made as small a.s we please, it is clear that by carrying the above

process sufficiently far we can assign any given rational number

to one or other of the two following classes :
—(A) uuiubers which

do not exceed every one of the numbers ii,„ »/«+,, . , . when m is

taken suthciently large, (B) numbers which exceed any of the

numbers u„, «m+i, • • • when m is taken sufficiently large.

Hence every convergent .sequence detennines a section of R
;

and therefore defines a numlwr, rati0n.1l or irrational

Conversely, as wo have seen in § 33, every number, rational or

irrational, may be defined by means of a convergent sequence. If

the sdinence is 11,, «,,...,«,,... we shall often denote both

the sequence and the corresponding numln'r by («,). Since it is

only the ultimate convergent^ that determine the section, it is

clear that we may omit any finite nund>er of terms from a con-

vergent sequenc c without all'ecting the uumber which it defines.

In particular, the sequences M,, u,, . . . tir, . . ., Vn, luid

Mr, . . ., «„, . . . ilefine the same nniidjcr. It f^hould be notire<l

that in the c^u^e of nitinuul numbers the convuigenU on and alter
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a particular rauk may be all equal : in fact we may define any

rational number a by the sequence a, a, . . ., a, . . ., and call

it («).

Since each gap in the above process lies within all preceding

gaps, and the section in E which is finally determiued within

them all, we have, if v he suck that |7/„ -?<„+,!<£ when n-^v,

«„-£:}>(«,.):}>«- + « (3),

an important inequality which enables us to obtain rational

approximations as close as we please to the number which is

defined by the sequence Ui, xu, . . ., u,,,

§ 35.] Null-sequence. If by taking n sufficiently great we

can make
| m„ |

less than any given positive quantity c, however

small, it follows from (3) that (;;„) must be between and a

rational number which is as small as we please. We therefore

conclude that in this case the sequence ?<,, u«, ...,«„,...

corresponds to ;
and we call it a null-sequence.

§ 36.] Definition ofthefowr species for tlie generalised onefold

of real numhirs S.

If (m„) (r„) be any two numbers, rational or irrational, defined

by convergent sequences, it is ea.sy to prove that the sequences

(«n + v,.)i («»-»'"). ("nO, (un/vn), are convergent sequences*,

provided in the case of («„/i'„) that (y„) is not a null-sequence.

We may therefore define these to mean («„) + (vn), («„)
-

(vn),

(tin)
X

(^^n), («n) "^ (*n) respectively. For it is easy to verify that,

if we give these meanings to the sjTnbols +, -, x, -^ in connection

with the numbers («„) and (i'„), then the Fundamental Laws of

Algebra set forth in chap. i. § 28 ^TilI all be satisfied.

For exaniplet,

(«-.)
-

(««) + (v„) = («n
-

«•„) + («„), by definitions

= {\ii„-Vn] + Vn), by def.

=
(«„), by laws of operation for K

* The reasoning is iinioli the same as in § fi above.

t The pLaiii bracket
( )

is nppropriated to the definition of the number by

a sequence ; the ciooUeJ Linckct Las reference to operations in li.
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Again,

(m.) X
!(«'«) + ((''-)1 = (iin)

X
(«•,

+ w'.), ^y dcf.

s (m» {". + if.}), by (lof.

= («««'• •'M.w'ii), by laws nf operation for (//),

= («»«») + (".w",), by def.

= («»)(«•,) + (",.)(»,), by.Kf.
and so on.

In order that two nunibors («„) and («,) may be equal it is

formallij necessary and sufficient tliat (u,)-(»,)
=

0, in other

words, that («,-t)„) = 0, that is, that u, -d,, ri,-t',, . . ., u,-t",,

. . . shall be a null-sei[ueucc. This from the point of view of

our exposition might also be deduced from the fact that («,) and

((•,) must correspond to the same section in R. We can also

readily show that all nuU-se.iuences are ecjual, as they ought to

l>e, since they all correspond to 0.

M'e have now shown that tiie onefold of real quantity {S)

built upon II by the introduction of irrational numbers is on

arithmetic manifold. The proof that 6' lias the property iii. of

§ 30 is so simple that it may be left to the reader. Heno^fortli,

then, we may operate with the numbers of iS e.XiU'tly a.s we do

with rational numbers.

S 37.] It is worthy of remark that the properties of the

rational onefold It can, by means of ai>priipriat« abstract defini-

tions, be estal)lished on a jiurcly aritiunetic.-d basis. It is not

even necc.*«ary to introduce tJic idea of measurement in terms of

a unit. The numbers may be reganled as ordinal
;
and addition

ami subtraction, gre;itemess and Icisne.ss, &c. int4'riireted merely
as progress backwards and for^vards among objects in a row, which

are not nece.s.<<arily placed at equal or at any detenninatc distances

apart*.

Following the older m.ithematicians since Descartes, we have

in the earlier part of this work assumed that, if we choo,se any

point on a straight line a,s origin, every other point on it has for

*
S«!, r<ii cxftiiipli>, linrkncMK nnd Alorlc;, Inlrodiirlion U> the Theory oj

Analytic Functiniu. (Mariiiillnn, 1m iH)
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its coordinate a definite real quantity : and conversely that every

real (juantity, rational or irratinnal, can be represented iu this way

by a delinite point. The latter part of this statement, viz. tliat

to every irrational number in general* tlicre corresponds a definite^

point on a straight lino, is regarded by the majority of recent

mathematicians who have studied the theory of irrationals as an

axiom regarding the straight line, or as an axiomatic definition

of what we mean by
"
points on a straight line."

§ 38.] GeneraUsatlnn of the notion of a Convergent Seqmnce.

It is now open to us to generalise our definition of a convergent

sequence by removing the restriction that £ and Wj, u,

«„,... shall be rational numbers. Bearing in mind that we

can now operate with all the quantities in -S' just as if they were

rational, we can, exactly as in § 34, establish the tlieorem that

ever;/ convergent sequence oi real numbers Ui, u^, . . ., u„, . . .

defines a real number {u„).

Also we can show that, if e be any real positive quantity,

however small, we can always determine v so that

U,n-e<{Un)<U,„ + e (4),

when ni'iv.

For we have merely, as in § 34, to determine v so that

|Uro-M„,+r|<«'<e, when ?«<}:i'.

Then we have

and therefore

«,»-« <(«„)<«». + «,

when OT<ti'.

§ 39.] General Definition of a Limit and Criterion for its

Existence.

Returning now to the point from which this discussion

started, tve define the limit of the infinite sequence of real

quantities

i(\, n. Un, . . . (2),

as a quantity u such that, if e be any real quantity however small.

• We do not speftl? nf spfoial irrntionaliticg, such as ,^/2,
wliicli ari.se in

clcmmitmy geometrical consuucliona.
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then there exists alwat/s a positive int-egir v such that
| «,

- «
|
<€

w/n'ii H<^r. And we prove the following fundamental theorem.

The neri'.isurif and finllicient condition thut the seAimnc^, 2, luive

a finite definite limit is that it be a converijent sequ, nee; and titt

tiiiil/ is the real number whirh is then definetl hij the setjtwncs.

The condition is necessiiry ; for, if a limit u exist, then

I
«, - U,+r 1

5
I
tt,

- « + U - U^^r
I ,

>l«»-«l + |M»+r-«|.

Now, since « is the limit of tlie sequence, we can find v such

that |?<»-Ml<At when n-^v; and, it fortiori, |k,+, -m|<J€
when v-^v. Hence we can always find v so that |M,-«,^r|<«,
where € is any positive quantity as small as we choose. Hence S
is convergent.

Also tiie conrlition is sullicicnt In fact, we can show that

{u,^, the numlxT defined by the sequence when it is convergent,

satisfies tlie dilinition of a limit. Vnr, given c, we have seen that

we can find v t>o that

«„-«<((/.)<«„ + «

when m-^v : whence it follows that |«„-(«t,)|<« when w-f-
Moroovpr there cannot be more than one finite limit; for, if

there were two such, say u and e, we should have

|u-t>|
= |«-«, + M,-«|,

>|«.-tt|+|H,-tj|.

But, since bntli u and v are limits we could, by sufiiciently

increasing n, make |f/, -«| and |f«,
—

r| each le.s.s tlian Jc, and

therefore
|

« - e
|

< <, i.e. as small as wo plojwe. Hence u aiid r

ciinnot be unocpial.

The reader will readily prove that, ifih, «!,..., «,, • . . b«

a non-decreasing (non-inrrt'osing) infinite setjiiettr.e, no numlwr qf
which is greater than (/ess than) the finit,- number I, then this

sequence has a finite limit not gnatir tlutn (not L'ss than) I.

§ 40.] Let us now consider any function of x, say f(j-), which

is well defined in the sense that, for all v.ilues of j- that have to

be considered, with the possible exception of a finite numl>er of

i.solated criliml values, the value of /(j-) is dekTuiined when the

value of J- is given. We define tlw limiting viilue, i, <fj(x) when
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X is increased up to the value a, by the property that, w/ien any

positive quantity t is given, there exists a finite quantity ^<a such

that

\/{x)-l\<e
when i:!f>.r<a.

This obviously includes our former definition of a limiting

value
;
and we may denote I hy L f{x)-

Let a,, «a, ...,«»,• • be any ascending convergent

sequence which defines the number a
;
and let us suppose, as

we obviously may, that there is no critical value of x in the

interval ai1^x<a. Then, if we consider the sequence th =/(at),

rh=f(a-^, • • •> ««=/(«»). • • •> the results of last paragraph

lead us at once to the following theorem.

The necessary and sufficient condition that L f{x) be finite
a=a-0

and d^'finite is that it be possible to find a finite quantity i<a
such that, ichen i^x<x'<a,

where e is any finite positive quantity however small.

The reader will easily formulate the corresponding proposition

regarding L f{x).

§ 41.] There is one more point to which it may be well to

direct attention before we leave the theory of limits.

L f{x) is not necessarily equal to the value of f{x) when

x = a. For example, i (ar-l)/(a;- 1)
= 2

;
but (a^ -!)/(»- 1)

1=1iO

has no value when x=\.

A more striking case arises when f{x) is well defined when

x = a, but is discontinuous in the neighbourhood of x = a.

Thus, if

fix) = L {sin xjl
- sin 2aT/2 + . . . + (- 1 )""' sin nx/n},

n=oo

then it is shown m chap, xxix., § 40, that L f{.r)
= + 7r/2,

I-tT-O

L /(a;)
= -7r/2; whereas /(t) = 0.
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EXEIICIBEU VII.

Limitt.

Fiuit tho limiting valuei of tho followin); (anctions for tbo givuu valuui of

the variubles :
—

(1.) (3ji + 2x' + 8xi)/(xi+ii + i4), 1 = 0, and 1=00.

(2.) (x<-x'-9i'+16x-4)/(x'-2x'-4x + 8), i=2.

(3.) log(x'-2x'-2j-3)-loK(i*-4x»+tr-3), x= 8.

(4.) {x-(n + l)i"+' + iix"+^l/(l-x)», x=l (11 nposilivB integer). (Eulcr,

liijr. GaU.)

(5.) {^(x-l)-(x-l)(/{.y{x-l)-v/(x:-l)}. x= l.

(G.) (x'"+"-a"'x»)/(x'^«-.i''n), x=a.

(7.) {(a + x)"'-(a-x)'»}/{(ci+x)"-(a-x)-}, x= 0.

(8.) {(x-'-l)P-{x»-l)n/{(x-l)''-(x-l)»}. x = l.

(x"-l)»-(x"-l)(x'-l) + (x«-l)'
* '

(x"-l)=+ (x"'-l)(x»-l) + (x"-l)«'
'

(10.) {u
-

v'(a'
-
*')}/*'. a^=0- (Euler. DiJ. Calc.)

(U.) {i/(.<+x)-</(.i-x)l/{^(« + x)-^(a-x)}. x = 0.

(12.) {(a' + <ix + x'-)'-(u«-ax + x')i}/{(a + x)4-(o-x)i}, x=0. (Eulor,

Z)!^. Calc.)

(13.) {(2a'x-x«)4-a(a'x)^}/{o-(<ix*)i(, x= a. (Gixeory, fixdnip/.-. in

Di/r. Calc.)

(14.) {a + ^/(2a>-2ax)-^/(2ux-i»)}/{a-x + ^(a>-x')}, x = a. (Eulcr,

Dif. Cale.)

(IS.) X -
^'(x*

-
!/'),

wlicn X = 00 , 1/
= (» , but y'/x finite = 2p.

(l(i.) ix«(y-')/n (!/-«), x=!,=z.

(17.) 2x"'(!/»-i»)/2x<'(y«-i''), x=y= i = a,

(18.) nx»-'/(-r"-a")-l/(x-<i), x = <i.

(19.) 2'((i"»'-l), x= «. (20.) x"», i=x.
(21.) (l + l/x")'. x=». (22.) x^/(l+x»)', x = a).

(23.) (1 + 1/x)', x= 0. (24.) (l + l/x)»", x= oo.

(25.) xVH-'l', x=l. (26.) xM»"-H, ,= 1.

(27.) a«*/x, x = «. (2«.) (l..gx)"«, x= ».
(29.) OoR'W^ x = ao. (30.) log" x/Ior" x, x=t>.

(31.) <i'/(x), x= ao, where /(x) ia a rational fiiuutiun of r, and a a

constant.

(32.) ((ix»+tx»-'+ . . . )", x= ac. (Caucby.)

(83.) xiAi+«i««n x = 0.

(31.) {(x» + x + l)/(x'-x + l)}», z=a>.

(35.) {4("' + «^)}"'. * = 0.

(30.) {l + 2/^(x'+l))v'<«'*'i, x = oo. (LoDgchampi.)
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(38.) {l/(f»-l)}'/^ ;r = a>.

(39.) {l0g(l + x)}l"tll+*\ 35=0.

(10.) log (1 + «.T)/log (1 + 6x), j;= 0.

(41.) (c'^-«-^)/log(l + x), x= 0. (Eu\eT, Dif. Cidc.)

(12.) (4 IT -x) tan a;, x = ^. (13.) tun'' xjx, x = 0.

(U.) (l-sinx + cos3-)/(sinj: + co8x-l), x=J?r. {Eu\eT, iJiJf. Ciik.)

(•45.) Bin x/(l
-

x=/7r=), x= jr. (4G.) x {cos («/x)
-

1}, x= co.

(47.) (sinx-sina)/(.i;-a), x= a. (18.) seox-taux, x = l7r.

(49.) (sin-'x-tan*x)/(l + oosx)(l-cosx)3, x=0.

(50.)* 6iuhx/x, x= 0. (51.) (cosh x -
l)/x=, x = 0.

(52.) t;iuh-'x/x, x= 0. (53.) siu i/log (1 + x), x= 0.

(54.) sin X log X, x= 0. (55.) cos x log tan x, x=4?r.

(56.) log tan 7nx/log tan H.T, x = 0.

(.57.) (logsinmx-logx)/(logsm;ix-log.i-), x = 0.

(.58.) siux•l"^ x= 0. (59.) siux'""^ x= 0.

(CO.) (ainhx)'*"^ x= 0.

(CI.) {(x/a)6in(a/.T)}":"(m.c2), x = co.

(62.) (cosmx)""', x=0. (C3.) (cosm.!-)™"''"', .•;-=0.

(64.) (2 -x/o) '«"'''/-'', x = rt.

(C5.) log, (log, x)/ cos ^,
x = c.

(CC.) Show that sin x cot («/.c) log (1 + t!in («/.t)) has no iletei niinato limit

when X =: cc .

(C7.) If l^'x stand for log„ (log„:r), l/x for log„ (log„(log„x)), etc., show

that L [1- {l^''xll^'>{x + l)}"']xl^xl,;\c . . .lj'x^m(l^c)i'. (SchlOmilch,

Alijehidische Analysis, chap, ii.)

(68.) Show that L S (a + «)'/»/((
= 1.

(C',1.) Show that L i; {(« + s)/h}" lies between t" ami t"+'.

(70.) Show that L 2 {(a + sc/K)/(a + c)}»isfinitoif a + cbcnuinLiically

greater than a, and that L S {(a+ sc/H)/''}"is finite if a + cbe numerically
lees than a. »=" "=i

(71.) Trace the graph of y= (u'^- l)/x, when a>l, and when a-il.

(72.) Trace the graph of j/
= x''» for positive values of x ; and liud the

direction in which the graph approaches the origin.

* For the definition and elementary properties of the hyperbolic fuuctiona

ooshx, sinhx, tanh x, &c., see cha)). xxix. All that is really wanted here ia

CQshx—i^(c' + e~-'}, 6iuhx= ^{(r'- (,•
•').
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(73.) Trace tlio craph of y = {I + \ Jr)' ; and find thu angle at which it

cro«K<'8 tht> a\i8 of y.

(74.) Find the orders uf the zero and iiilinity vuliies ofy when detorminod

u a function of z by the foUovini; equations* :
—

(a) i(x»-(iy)'-y»=0. (Frost's CurF« Tracinp, § 155, Ex. 3.)

ifi) iV + '»V-**i^' + '»*V-<»*-«^'=0- (76., Ex. 7.)

(>) (x-l)!/« + (x»-l)y'-(x-2)'y + z(x-2)=0.

(73.) If u and v be funclioiiB of the inte^^ral .variable n determined by the

equations ti,
=

ii,_, + i„_,, r,=«,_,, bUow that t ''iJ''i,=(l*V6)/2. How

ou);ht the nnibii^uuus si^n to be Kc-ttled when Ug nml u, ore both ponilivo?

(76.) Show that

«-»(...)-(;)-("i-T'- ••(.-.)(;)'•

ei.) sbo.u,.i;. |l»±!L<-J:aiJ^t*_"l)'".,,
,,-« I

1 . 2 . . . «
I

(78.) Llog(l-i)logx= 0, when 1=0.

* Fui a general method for dealing with such problems, Bee chap. xxx.



CHAPTER XXVI.

Convergence of Infinite Series and of Infinite

Products.

§ 1.] The notion of the repetition of an algebraical operation

upon a series of operands formed according to a given law

presents two fundamental difficulties when the frequency of the

repetition may exceed any number, however great, or, as it is

shortly expressed, become infinite. Since the mind cannot over-

look the totality of an infinite series of operations, some defi-

nition must be given of what is to be understood as the result of

such a series of operations ;
and there also arises tiie further

question whether the series of operations, even when its meaning
is defined, can, consistently with its definition, be subjected to

the laws of algebra, wliicli arc in the first instance Inid down for

chains of operations wlierein the number of links is finite. Tiuit

the two difficulties thus raised are not imaginary the student

will presently see, by studying actual instances in the theory of

sums and products involving an infinite number of sunimands

and multiplicands.

§ 2.] One very simple case of an infinite series, namely, a

geometric series, has already been discussed in chap, xx., § 15.

Tiie fact that the geometric series can be summed considerably

simplifies the first of the two difficulties just mentioned*; never-

theless the leading features of tiie problem of infinite series are

all present in the geometric series
;
and it will be found that

most questions regarding the convergence of infinite series are

ultimately referred to this standard csee.

* The second vraa not considered.

0. IL 8
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'I'lic consi'lcrHtion of tliu iiilinite geometric 8oric8 suggests

the I'olluwiiig deliuitioiis.

Consider a succession of finite real sumniands M, , m,, m,, . . .,

?/,, .... unliiniti^d in nuinbiT, foniicd accordiiif,' t-o a ^ivon law,

so tliat the rttli term ii, is a fniitc oue-volucd fiinctinn of n
;
and

consider tlie successive sums

Si = Ui, /Sf,
= U,+M,, <S',

= u, + «j + 1/3,

(Sii
= u, + «j + . . . + M, .

When « is increased more and more, one of three things must

hapiien :
—

l.st. Sn may apprcxtcb a fixed finite quantity S in such a tniy

that by increasing n sujficiently we can make S^ differfrom S by as

little as tee please ; that is, in the notation oflast chajiler, L &', = 6'.

In this case tlie series

«1 + J«j + ttj + . . . + H, + . . .

is said to be convehoent, and to converge to the value S, which is

spoken of as the sum to infinity.

Example, l +
r,
+ T+ • • + .,,+

• • • IIcreS= L S,= 2.
- '* - «—•

2nd. /S', may increase with n in siirh a way that liy increasing

n sufficiently we can make the numerical value of .S, exceed any

quantity, however large; that is, L /S',
= +«. In this case th«

aeries is said to be divkroent.

Example. 1+2 + 3+ . . . Here L S,= a).

3rd. IS„ may neither become injinil-e nor approach a definite

limit, but oscillate between a numbrr if finite values the selection

among which is determined by the integral character of w, that is,

by such considerations as whether n is odd or even ; of theform .'Im,

'6m + 1, 3w + 2, itc. In this rase the s^-ries is said to i>s«ULLatk.

N.B. If all the terms of the series have the same sign, then iS',

continually increases {or at least never decretu^s) in numerical value

as n increases: and the series cannot oscillate.

Kxample. 8 - 1 - 2 + ."1
- I -

'.' + 3 - 1 - 2+ . . . IJiro L .S.^O, 3, or 8,

ftccirjiiitj an >i in o( Uie funu 3ui, !im + 1, or Urn + 2. ""



§§ 2, 3 CRITERION FOR CONVERGENCy 115

lu cases 2 and 3 the scries

Ui + 1U + Us+ . . . +?<„+. . .

is also said to be non-conven/ent*. In many important senses

iioii-convergent series cannot bo said to have a sum
;
and it is

obvious that infinite series of tliis description cannot, except in

special cases, and under special precautions, be emploj-ed in

mathematical reasoning.

Series are said to be more or less rapidly convergent according

as the number of terms which it is necessary to take in order to

get a given degree of approximation to the sum is smaller or

larger. Thus a geometric series is more rapidly convergent the

smaller its common ratio. Rapid convergency is obviously a

valuable quality in a series from the arithmetical point of view.

It should be carefully noticed that the definition of the con-

vergency of the series

U^ + 11-2+ U3+ . . . + ?<„ + . . .

involves the supposition that the terms are taken successively in

a given order. In other words, the sum to inlinity of a con-

vergent series may be, so far as the definition is concerned,

dependent upon the order in which the terms are written. As a

matter of fact there is a class of series which may converge to one

value, or to any other, or even become divergent, according to the

order in which the terms are wTitten.

§ 3.] Two essential conditions are involved in the definition

of a convergent series— 1st, that S„ shall not become infinite

for any value of 71, however great ; 2nd, that, as n increases,

there shall be continual approacli to a definite limit S. If we

introduce the S3-mbol m^„ to denote ?/„+, + !<„+,+ . . . +M„+m.

that is, the sum of m terms following the 71th, following Cauch)'

we may state the following criterion :
—

T/ie necessary and sufficient condition for the convergence of a

series of real terms is that, by taking n sufftcieiitly great, it be

possible to make the absolute value of ^Jln as small as we please, no

matter what the value of m may be.

* Some writers use divergent as equivalent to non-convergent. On the

wLole, especially in elementary exposition, this practice is inconvenient.

8—2
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This condition may bo amplified iiitx) tlie following; form.

(Jiven in a«.lvauce any positive ([uautity », however small, it nuist

be possible to assign an integer v such that for n = v and all

greater vabies lm/^»|<« : or it may be contracted into the form

L„Nn = wlien n= -j:
, for all values of m.

The condition is necessary ; for, by the definition of con-

vergency, we have L S^ = S, where <S is a finite definite quantity ;

therefore also, wliatevor m, L S„t„-S. Hence

that is, L „7?„ = 0.
It—•

Also the condition is suftu-ipnt : for, if we assign any positive

quantity «, it is possible to find a finite integer r such that, when

n-^ v,\ m/i„ I
< «, that is

| <S',+„
-

/S„ |
< «. In particular, therefore,

|<Si,t«-'S'.-|<«. Since S,, being the sum of a finite number of

finite terms, is finite, and ?« may have any value we please, it

follows that for no value of n exceeding v can S, become infinite.

Hence L S„ cannot be infinite.

Also the limit of <S', cannot have one finite value when n has

any particular inti-gral character, and another value when n has

a dilTerent integral character
;

for any such result would involve

that for certain values of m L S, and L <*>'„,„ should have

different values ;
but this cnnnot be the case, since for all values

n— to il-«

It should be noticed that, when all the terms of a series have

the .sjune sign, there is no possibility of o.scillation
; and the

condition that <S', be finite for all values of « however great

is .sufficient In ciise the subtlety of Cauchy's single criterion

should puMlc the beginner, he should notice that the proof which

shows that L„ 11^ = can usually be readily modified so as to

show that LS^ is not infinite. In fact some of our earlier

• A more riRoroiis deinonslrnlion of tlio nKovo criterion in obtAinod

by npplyiDK the rosult of §39, chap. xiv. to the BO<nicnc«> .S, , .S',.
. . .,

S , . . . Wo Imrp K>vcu tho above dcmoniitriitioD fur the Mtko of roadan

who have uul lUiutoruJ Iho Xiioury ijivvu iu chap. xxv. , §j 2S— 10,
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demonstrations are purposely made redundant, by proving both

i'mlin = 0, and LS'n not iufiuite.

Cor. 1. In any convergent swies L k,i
= 0.

For ?<„
= )S'„-jS„_i = ii?„_i, and, by tlie criterion for con-

vergency, we must have L Ji„.i = 0. This condition, altliough

necessary, is not of itself sufficient, as will presently appear in

many examples.

Cor. 2. 1/ Rn= L mRn, and S and /b'„ kave tlie meanings

above assigned to them, then Sn =S- Rn.

For Sn+m^'Sn + mRft, therefore L <S'„+„,
=

<S'„ + L mR<i', aud

L S„+m = S, hence the theorem.

Rn is usually called the residue of the series, and „,7?„ a

partial residue.

Obviously, the smaller R„/Sn is for a ^iven value of n, the

more convergent is the series : for R,, is the ditlerence between

Sn and the limit of S„ when n is infinitely great.

Rn is, of course, the sum of the infinite series

Mn+l + «n+2 + Un+3 + . .]

and it is an obvious remark that the residue ofa convergent series

is itael/a convergent series.

Cor. 3. Tlie convergency or divergency of a series is not

affected by neglecting a finite number of its terms.

For the sum of a finite number of terms is finite and definite;

and the neglect of that sum alters L S„ merely by a finite
n—oo

determinate quantity ; so that, if the series was originally con-

vergent, it will remain so ;
if originally oscillating or divergent,

it will remain so.

Example 1. Consiclor the series 1/1 + 1/2 + 1/3+ . . . +I/1+ . . .

Here„i?„=l/(n + l) + l/(«+2)+ . . . +l/(„ + m),

>l/(n + 7n) + l/(n + m)+ . . . +l/(n + m),

>ll(nlm + l).

Now, however great n may be, we can always choose m so much greater that

n/m shall be less than any quantity, however small. Hence we cannot cause

^R, to vani.sh for all values of m by sufficiently increasing n. We therefore

conclude that ihe series is not convergent; hence since all the terms are
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positive it mufit diverge, iiotwitlittandiiiR the fact that the temii ultimately

become intiuitvly email. We chall give beluw a direct proof that /^,= s .

Example 2.

1, V 1, 3» 1, (n + 1)'

i'°8l .3
+ 2'°^—4+ • • •

+n''"'Mi^^)•

Smee(»+l)Xn+2)=(l+l/n)/^l+l/(n+l)}. wehave

» -_LiocLLH.(^»)+_L i„-
1->-1/("^2)

"^~« +l^l + l/(n + 2) 11 +2^1 + 1/(11 + 3)

1
,

l + l/(n + iit)

i + m "^l+lMn + m+l)*
1 I,

l + l/(n + l) ,
l + l/(« + 2) . l + l/(n + ni) 1

"=„Ti h'i+ii(nT2i+'°«iTi?(irr3)+
•

^'°8i-+i7(.m,rTTy[
1

, i+i/(«+i) ,,^

*nTi'°«rT-i/(™T.;rfT)
<»>•

Now, whatever m may be, by making n large cDough we can make l/(n + l),

and, a fortiori, l/(n + in + l), as email as we please, thcrerore L „R, = (or

all values of m. *~*

If in (1) we put in place of n, and n in place of m, and observe that

1 + 1/1
^"'°g

l + l/(n + l)
'

BO that S. can never exceed log 2 whatever n may be.

Both conditions of conver;.'incy are therefore satisfied.

Pntting in= aci in (1), we find for the residue of the series

«.<[log{l + l/(n + l)}]/(n + l);

a result which would enable us to estimate the rapidity of the convci^cncy,

and to settle how many terms of the series we ought to take to get an

approximation to its limit accurate to a given place of decimals.

§ 4.] The following theorems follow at once from the

criterion for convergency given in la.st p.nragrap]i. Some of

them will be found very u.«cful in discussing questions regarding

convergence. We sh.ill use 2«, as an abbreviation for «*i
+ u,

+ . . . + u, + . . . , that is,
"
the series whoso nth term is «,."

I. If u. and V, be positive, tt,<v, /or all value« of n, and

2r, cnmrrffent, th' :t 2u, is convergent.

1/ M, and r, be positive, u,>i', /t all value* of n, and 2r,

divergent, then In, is divergent.

For, under the first set of conditions, the values of N, and

„/t, belonging to 2«, arc less than the values of the corre.<pond-

ing functions tS'„ and „/f, Wonging to 5r,. Hence we have

0<jS',<6"„ 0<»/^,<mA*',. But, by hyixithesis, 6", is finite for
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all values of n, and L mli'n = ;
hence Sn is finite for all values

of «, and L ,„Bn = ;
tiiat is, 2«„ is convergent.

n=ao

Under the second set of conditions, ;S'„ > (S"„. Heiiee>

since L (S"„
= co

, we must also have L Sn=^; that is, 2m„ is

divergent.

II. If, for all values of n, Vn>0, and ?«„/v„ i:^ finite, t/ieti

2m„ is convergent if 2y„ is convergent, and divergent if 2v„ is

divergent.

B}' chap, x.xiv., § 5, if .4 be the least, and B the greatest of

the fractions, i<„+,/'«„+i, M„+2/»n+2, • • •, «n+ra/v,.+,„, then

'fn+l + '«n+2 + . . . + i'„+m

Now, since ?<„/»„ is finite for all value.s of n, A and B are

finite. Hence we must have in all cases „Jhi= C„Ji „, where C
is a finite quantity whatever values we assign to /« and «.

Hence S,, (that is, „/?o) will be finite or infinite according as

S'n is finite or infinite
;

and if L mli'n =
^, '^^'^ must also

have L m.S„ = 0.
n=oo

III. If Un and Vn be jjositive, and if, for all values of n,

^n+il^n<'»n+il'Vn, «"'^ 2c„ is convergent, then 2i/„ is convergent ; and

if Un+i/Un>'Bn+i/Vn, and 2v„ is divergent, then Sms is divergent.

We have, if m„+i/«„ <?;„+,/«„,

( Ui U., th )

I Vi «a Vi

< — S'n.

Now, by hypothesis, Z*S"„ is finite : hence LSn must be finite.

Also, since all the terms of 2«„ are positive, the series cannot

oscillate, therefore 2«„ must be convergent.

In like manner, we can show that, if u„+i/un>v„+i/v„, and

2y„ be divergent, then 2«„ is divergent.

A\B.—In Theorems I., II., HI. we have, for siuii)licity,

stated that the conditions must hold for all values of n
;
but
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wc see from § 3, Cor. 'A, tliat it is siifTuii'iit if tlipy liolii for all

values of 11 exceeding a certain Jinite value r
;

for all the tonus up
to the rth in both series may be neglected.

Also, when all the terms of a series have the same sipn, we

suppose, for simplicity of statement, that they are all positive.

This, clearly, in no way affects the demonstration.

It is convenient to speak of «„+,/«„ as the Ilatio of Con-

vergence of S«„. Thus we might express Theorem HI. as

follows :
—Any series is convergent (divergent) if its ratio of

coijiver^nce is .always less (greater) than the ratio of convergence
of a cojivcrgent (divergent) series.

IV. If a series which contains negative terms be convergent

when all the mgative terms hai-e their sigtis changed, it will be

convergent as it stood originally.

For the effect of restoring the negative signs will bo to

liimini.sh the numerical value both of jS', and of ^„.
Dertnition.—A scries which is convergent irhen all its terms are

taJcen positively is said to be absolutkly converoknt.

It will be seen immediately that there are series who.se

convergency depends on the i)resence of negative signs, and

which become divergent when all the t<;rm8 are taken positively.

Such series are said to be semi-convergent. In §§ A and 6, unless

the contrary is indicated, we suppose any series of real terms to

consist of positive terms oidy, and convergence to mean absolute

convergence.

SPECIAL TESI^ OF CONVEROENCY FOR SERIE.S WHOSE TERMS
ARE ULTI.MATELV ALL POSITIVE.

§ 5.] If we tike for standard series a geometric progrcs-sion,

say 2r", which will be convergent or divergent arronling as

r< or >1, and apjily § -J, Th. 1., we see that 2m, will be con-

vergent if, on and after a certain finite value of n, tt„<r",
where r<\ ; divergent if, on and after a certain finite value of

H, H,>r", where r>\. Hence
I. 1u, M convergent or divergent according as m,"" it

ultimately less or greater than unity.
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This te^t settles nothhuj in the case ivhere ?<„''" is iiltimaleljj

unit//, or w/cere L m„"" Jluctxiates between limits which include

unity.

Example. 21/(1 + 1/h)" is a convergent series ; for

L u„'"'= l/L(l + l/n)"= l/e,

by chap, xxv., § 13, where e > 2, and therefore 1/e < 1.

If, with the series Sr" for standard of comparison, we apply

§ 4, Th. III., we see that 2«„ is coiiveri^ent or divergent according

as Un+i/u„ is, on and after a certain finite vakie of n, always < 1

or always >1. Hence

II. 2m,i is convergent or divergent according as its ratio of

convergence/ is ultima telij < or>l.

Nothing is settled in the case where the ratio of convergenct/

is ultimatel;/ equal to 1, or where L Un+Jun fluctuates between

limits which include unity.

The examination of the ratio m„+i/m„ is the most useful of

all the tests of convergence*. It is sufficient for all the series

that occur in elementary mathematics, e.xcept in certain extreme

cases where these series are rarely used. In fact, this test, along

with the Condensation Test of § 6, will suffice for the reader

who is not concerned with more than the simpler applications of

infinite series.

Notwithstanding their outward difference, Tests I. and II. are

fundamentaUy the same when L ?«„+,/«„ is not indeterminate.

This will be readily seen by recalling the theorem of Cauchy, given
in chap, xxv., § 14, which shows that L «„+,/?*„= L «„"". It is

useful to have the two forms of test, because in certain cases I. is

more easily applied than II.

Example 1. To test the convergence of 'Zii''x", where r and x are

oonstauts. We have in this case

"n+i/" »
=

(" + !)'' ^"'"'/"''•"^"i

=
(\ + llnYx.

Hence Lti^^Ju^ = x. The series is tlierefore couvergrat if x < 1, and divergent

ifi>l.

* We here use (as is often convenient) "convergence" to mean " the quality

of the series as regards couvurgtucy or divergency."
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It z = l, wo oannot settle the question hy means of the {ircscnt test.

Example 2. If
<fi (n) be any algebraical fanction of n, Ztp (n) x* is con-

Tergent if i< 1, divergent if j > 1.

This hardly needs proof if L <p{n) be finite. If L 0(n) be infinite, we

know (see chap, xxx.) that ve can always find a positive value of r, suck
that L ^ («)/«' is finite, =A say. We therefore have

_ I »(n+l ) / *(n)l (n + 1)'-

=x{AIA]xl,

This very general theorem includes, among other important oases, the

integro-geomctric scries

^(l)j + 0(2)i'+ . . . +0(n)x»+ . . .

where ^ (n) is an integral function of n ; and the series

X x* I"

j+_+. ..+_+.. . (1).

which, as we shall sec in chap, ixviii., represents (when it is oonvergenl)

-log(l -x). It follows, by § 4, Th. IV., that, since the series (1) is con-

vergent when x<I, the series

X X* X*

is also convergent when x< 1.

When (2) is convergent, it represents log(t-hx).

Example 3. 2Xc*/ii! (the Exponential Series) is convergent for all value*

orx.

=
-r/('i + l).

Hence, however great x may be, since it is independent of n, we may always
choose r so great that, for all values of n->r, zl(n -t- 1)<1. Since the limit

of the ratio of convergence is zero in this caw, we should ex|iect the con-

vergcncy for moderate values of x to be vcrj- rapid ; and thi8 is so, as wo
shall show by examining the residue in a later chapter. We have tuppotrd
X to bo poKJtive ; if x be negative the scricii is convergent a fortiori ; the

convergence is in fart absolute, § 4, Th. IV'.

Example 4. S (
-

)* m (m -
1) . . . (m - n -f 1) x*/ti! (x positive), where m

has any real value*, is oonvergeut if x< 1, divergent if x> 1.

*
If m were a positive integer, the series wonid terminate, and the

qnestioD of convergenoy would not arise.
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T. T t
m-n

I'or Lu^+Jii„=-xL —^,

_ mill
- I

Hence the theorem.

The series just examined is the expaiiiion of (l-z)*" when a!<l. It

follows, by § 4, Th. IV., that the series Xm{m-l) . . . (i»-71+ 1)x"/k!,

whose terms are ultimately alternately positive and negative, is convergent

if x«:l; this series is, as we shall see hereafter, the expansion of (l+i)"*

when a!<l.

g 6.] Cauchy's Condensation Test.—The general principle of

this method, upon which many of the more delicate tests of

convergence are founded, will be easily understood from the

following considerations :
—

Let 2«„ be a series of positive terms which constantly

decrease in value from the tirst onwards. Without altering the

order of these, we may associate them in groups according to

some law. If Vi, v^_, . . . v^, ... be the 1st, 2nd, . . . with, ... of

these groups, the series 2«„. wiU contain all the terms of 2m„ ;

and it is obvious from the definition of convergency that 2«„

is convergent or divergent according as 2t',„ is convergent or

divergent ;
we have in fact L 'S,Un= L Sv^. It is clear that the

convergency or divergency of S(',„ will be more apparent tiiaii

that of 2m„, because in 2i',„ we proceed by longer steps towards

the limit, the sum of n terms of tv^ being nearer the common

limit than the sum of n terms of 2m„. Finally, if 2u'„ be a new

convGr'^Gnt
series such that «'„5z^,„ then obviously 2m„ is j. J' . if 2y'„

. convergent

divergent

We shall first apply this process of reasoning to the following

case :
—

Example. The series 1/1 + 1/2+ . . . +l/n+ . . . is divergent.

Arrange the given series in groups, the initial terras in which arc of the

following orders, 1, 2, 2-, . . . 2'", 2™+', . . . The numbers of terms in tlie

successive groups will be 2 - 1, 2* - 2, 23 - 2-', . . . 2'"+i - 2"', V^- - 2'"+>

respectively. Since the terms constantly decrease in value, if 2'"+' be the

greatest power of 2 which does not exceed n, then
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„ 1 /I l\ /I 1 1 1\ /I 1 I \

^-^l + (-2

+
3)

+
(•2'

+
.5-^0

+
7)+

• • •

+(2^
+

---. + 1
+ • • -+2-—,}

> 1 + (2'
-
2)

|,
+ (2'

-
-J')

.],+
...+ (J""'

-
2")

._,
j^, .

,11 1

, m
>l+2.

Ilciiw, by making n Euflicicntly grrat, we ran make S^ n't large aa wo pleaie.

The 8erie8 1/1 + 1/2 + 1/3+ . . . ie tlivrcrorc (li%'<.'ri.-viit. This might alio be

deduced from the inequality (6) of chap, xiv., § 25.

duchy's Conclcnsaticm Te^st, of which the example just

discussed is a particular case, is as follows :
—

Iff(n) be pomtive for all values of n, and corufantltf den-fOM

as n increases, then -f(n) is convergent or divenjcnt ncmrding
as ^(i''/{a') is convenjent or divenjent, where a is any positive

integer -^ 2.

The series ^/"(n) may he arranged as follows :
—

[/(l)+. . .+/{„-!)]+ {/(a) +/(« + !)+. . .+/(a'-l)}

+ i/(a')+/(a'+l)+. . .+/(«'-!)}

+ {/(a")+/(a-+l)+. . .+/(<»-' -1)}

Hence, neglecting the finite number of terras in the square

brackets, we see that ^'(«) is convergent or divergent accord-

ing as

2 {/(«-)+/(«"+ 1) + . • .+/('•"' -1)1 (I)

is convergent or divergent. Now, since /(a")>/(a" + 1)>. . .

>/{a""- 1 )>/((«"'•'), we liave

(o"+'-u")/(a-) >/(a")+/(a"'+ 1)+ . . . +/(«"*'- 1)

>(«-+' -a")/((r+'),
that is,

(a
-
l)a-/(rt-)> /•(«-) +/(a"' + 1)

*
. . . +/(a-+« - 1)

>{(a-l)/o}a-*'/(a"*')-

Hence, by § 4, Th. I., the series ( 1 ) is convergent if 2 (a
-

1)

«"'/('*'") ><* convergent, divergent if 5 |(a- iVaja-^'y^a"*') is
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divergent. Now, by § 4, Tli. II., 2 («-!)«'"/(«"') is convergent

if 2a'"/(a"') is convergent, and 2 {(as- !)/«}«'"+'/(«"'+') is

divergent if 2a'"+'/(a"'+') is divergent ;
and for our present

purpose 2(f"'/(a"') and 2a"'+'/(a'"+') are practically the sanio

series, say 2a7'(a''). Hence Cauchy's Theorem is establi-shed.

N.B.—It is obviously siij/icieiit
that the function /(«) be

positive and cmistantly decrease for all values qf n greater tlum

a certain finite value r.

Cor. 1. Tlte theorem will still hold if a have any positive

value not less than 2*.

Let a lie between the positive integers b and 6 + 1, (i <t 2).

If SaVCa") be convergent, then L a''/(a")=0, thatis, L Tf(x)=0.

Hence, on and after some finite value of x, the function xf{x) will

begin to decrease constantly t as x increases. We must therefore

have (6 + l)"/{(6+l)"} <«"/(«"). on and after some finite value

of n. If, therefore, 2a'/(«") is convergent, afm-tiori, will 2 (6 + 1)"

/{(i+1)"} be convergent, and therefore, by Cauchy's Theorem,

2/(?i) will be convergent.

If ^a^fia") be divergent, xf{x) 1° may, or 2° may not decrease

as X increases.

In ease 1°, b'f{b") > a'f{a"). Hence the divergence of 2a'/(a")

involves the divergence of 2i/"/(i") ;
and the divergence of 2/(?*)

follows by the main theorem.

In case 2°, the divergence of lf{n) is at once obvious
; for,

if L xf{x)=¥0, then ultimately xf{.t)>A, where A>0. Hence

f(x)>A/x. Now %A/n is divergent, since 21/?* is divergent;

therefore "Sfin) is divergent.

In what follows we shall use fX, e'x, . . . to denote a',

a"', . . ., a being any positive quantity <^2 ;
and \a; \-x, . . .

Ix, Px,... to denote loga^:, loga(loga.T), . . . log.a;, loge(log,a,-), . . .,

where e is Napier's Base.

* Also if l<a<2, see Kohn, Grunerl's Arcldv, Bd. 67 (1882) and HUl,

Mess. Math., N. S., 307 (180G).

+ This assumes that xf(x) has not an infinite number of turning valneB;

so that we can take x so great that we are past the last tuiuing value, which

must be a maximum.
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Cor. 2. -/(ii) is contertjent or divfrgmt accordimj us

2c«e'« . . . i'^iij{i'ii) is convergent or divergent.

Tliis follows, for integral values of the base a, by ro|)eato«l

applicatiiiii of Catichy's Comleiisjitinn Test; ami, for nou-iiitei^J

values of a, by repeated applications of Cor. 1. Tiius %/{n) is

convergent or divergent according its 2««/(€n) is convergent or

divergent. Again, '^tn/(in) is convergent or divergent acconling

as icH€(tH)/{c(en)}, tliat is 2« «€'«/(«''«), is convergent or divergent;

and so on.

Cor. 3. 5/(h) is convergent or divergent according us the first

of tliefunctions

T, = \f{x)lx,

T, = \{xf(x))/\x,

T, = \{xkrf(x)]/\'x,

Tr = \{xXxyx. . . X.'-'xf{x)\/X'-x,

trhlrh does not ranish ir/ien x = oo
,
fiiis a tiegalive or a jwsitir,^ limit.

By Cor. '2, V(") is convergent or divergent according :is

Scfirn . . . €';;/(«'«) is convergent or divergent.

Now the latter series is (by § 5, Th. I.) convergent or

divergent acconling iis

L {tncn . . . *•;'/(«'«)}""< or>1 ;

that is, according as

L log.lcnc'H . . . <V('''»0}'*<>0;

that is, L logJcwf'H . . . c'-;i/"(«'«)}/"<>0.

If we put x = ^n, so that \x = €'''n, k*x = ^'*n, . . .

y~'x = €n, yx = n, and ;r=ao when M=ao, the condition for

convcrgency or divergency becomes

L XjxXxX'j: . . . y-'j-f{x)\/yx<>0 (1).

If, on the strength of Cor. 1, we tjiko e for the exponential

ba.sc, the condition may be written

L I'xM'x . . . l"'xf(x)\/l'x<>0 (2),

where all the logaritluus iuvolveil arc Napioriau logarithiua.
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We could establish tlie criterion (2) witliout the iuterveutioii

of Cor. 1 by first establishing (1) for integral values of a,

and then using the tlimrem of chap, xxv., g 12, E.\:iniple 4,

that L k^xjl'-x
=

1/la.

Cor. 4. Each of the sci'ies

21///'+" (1),

21/H{/»r+- (2),

21/k/h{P«}'+" (3),

tXlnlnl-n . . . /'•-'« {r»}'+'' (r+1),

is convergent if a>0, and dirergcnt i/a = or<0.

As the function nlnl-n . . . fn frequently occurs in what

follows, we shall denote it by Fr{n) ;
so that P„(«) = w, i^i(«)="

nln, &c.

1st Prao/—Apply the criterion that 2/"(») is convergent or

divergent according as LI {Pr(.i-)/{.r)}/l''''a;<>0. In the pre-

sent case, f{.v)
= l/Fr (.r) (f^f. Pleiice

= — a.

It follows that (r+1) is convergent if a>0, and divergent

if a<0. If a = 0, the (pie.stion is not decided. In this case,

we must use the test function one order higher, namely,

/ {l^.^ {r)/{x)\ll'^"-x. Since f{x) = l/P^ (•»),
we have

I {Pr« {a^/(x)Wx = I {l'^'w\ll^^"-x,

= 1>0.

Hence, when a = 0, (r + 1) is divergent.

2nd Proo/—By the direct application of Cauchy's Condensa-

tion Test, the convergence of (1) is the same as the convergence

of 2rt7(a")'+", tliat is, 2(l/rt")". Now the last series ia a geo-

metrical progression whose common ratio is l/«" ;
it is tlierefore

convergent if a>0, and divergent if a = or <0. Hence (1) is

convergent if a>0, aTid divergent if a= or <0.

Again, the convergence of (2) is by Cauchy's rule the same

as the couvergenco of Sa'/a" {/«"}'+«, that is, 2l/(/a)'+»H'+° ;
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anrl the conver],'enco of this liLst the same as that of 21/n'+".

Hence our theorem is proved for (2).

Let us now assume that the theorem holds up to the series

(r). We can then show tliat it holds for (r+ 1). In fact, the

convergence of (r+l) is the same as that of 2i<i"/a"^"/'a" , . .

/'-'a«{/'-o"}'+*, that is, 2l/(H/a)/(n/a) . . . r-'(«/a){/'-'(»/ci)}'+«.

First suppose o>0, and o>«. 'I'Ucn la>l, ula>n. Hence

l/{,ila)l{nla) . . . l'-' (nla) [l'-' (nla)]'*'

<\ji>hi . . . r-'nj/'-'n}'^'.

But, since o>0, ^l/Pr.j{n) {/*"'«[• is convergent, a fortiori,

^l/Pr(n) {/"«}• is convergent
Next suppose a^O, and 2<a<«. Tlien nla<n\ and, pro-

cee<liug as hefore, we prove SI//', (n) {/«[" more divergent than

the divergent series ^l/Fr-i(H) {/'"'hJ".

Logarithmic Scale of Convergency.
—The series just discussed

are of great importance, inasmuch jis thoj' form a scale with

which we can compare series whose ratio of convergence is

ultimately unity. The scale is a descending one
;

for the least

convergent of the convergent series of the rth order is more

convergent than the most convergent of the convergent series of

the (r+l)th order. This will be seen by comparing the «th

terms, «„ and «',, of the rth and (r+l)th series. We Imve

«'/". = {'''"' "!*/{''"}'**. where o is very .small but >0, and

o' is very large.

If we put x = l'~^n, we may write L u'Ju,= L {j*^'+*Y
»-• »—•

irl'**'. Hence, however small a, so long as it is greater than 0,

and however large o', Lu'Jti^
= oo .

If we suppose the character of the logarithmic scale estab-

lished by means of the second demonstration given above, we

may, by comparing liu with the various series in the scale, and

using § 4, Th. I., obtain a fresh demonstration of the criterion

of Cor. 3. Wo leave the detaii.s as an exercise for the student

This is perhaps the best demonstration, because, apart from the

criterion itself, nothing is presupixjsed rcganling /(x), except

that it is positive nheu x is greater than a certain huite value.
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By following the same cour.sc, auJ using § 4, Th. III., \vc

can establish a new criterion for series whose ratio of con-

vergence is ultimately unity, as follows, where Px=f{x+ 1)1f{x).

Cor. 5. If f{x) be always positive v-lien x exceeds a certain^

finite value, 'S.f{ii) is convenjent or dicenjeiit according as the first

of the following functions
—

To=pi-i ;

T,
= P(,(.c+l)p^-P„(a;);

T. = P,{x+l),>,-l\{x);

T, = p,_,(,i' + i)p,-iVi(.r);

which does not vanish when a; = oo has a negative or a positive limit.

Comparing 2/(«) with 2l/Pr(«){^''«l". we see that 5/(?i)

will be convergent if, for all values of x greater than a certain

finite value,

Px<Pr (^) {l'x]'^/Fr (X + 1) {/- {X + 1)1« (1),

where a>0.

Now (1) is equivalent to

Fr{x + l)p,-l\(x)<Pr{x) [{l^XJl^ix + 1)|«
-

l].

Also LPr {x) [{I'xll^ (x + 1)1'
-

1]

= - LPr-, (./•) {r (..
+ 1)

- / X] .

^,.
^

—
-^

.

J7r.^.;^r(^^l)j_l
.

= — Ixlxa- —
a,

by chap, xxv., .^.^
12 and 13.

Hence a sufficient condition for the convergency of 2/(?«) is

L {Pr {x +l)px- Pr (x)] < - a (a positive),
X=QO

<0.

lu like manner, the condition for divergency is shown to be

£ {Pr{x+1) i>j,
- Pr (x)}> - a (a uegati ve),

X=OD

>0.

Example 1. Discuss tbe convergence of ^c~^~'P~— ~'/"/ii''.

Here 2'„
= J {/(»)[/«,

1+ 1/2+. . + l/» + Wn~
n

Now, by cliap. xxv., § 13, Example 1,

1 + (i+1)(k>1 + 1/2t. . . + l/yi + ri»^rI/i + Un + l).

c. II. 9
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UcncoL7,= 0. Wo must tbcroforo examine r,. Now

T,= l{nf{»)\lln,

= -{1 + 1/2+. . . + l/n + (r-l)Iril/:n,

= -{1 + 1/2+. . . + l/nl/Jii-(r-l).

By chap, ixv., § 13, Kxamjile 2, L(l + l/2+. . . + l/n)/In = l. Ilcnoe

LT^= -l-r+l= -r. The giveu series is therefore convergent or divergent

according as r> or <0.

If r=0, Lr,=0, and /.7',=0. But wo have

T^= l{nlnf{n)\IPn,
= l-{l + l/2 + . . . + l/n-tn}/Pn.

Now, wh(>n n is very large, the value of 1 + 1/2 + . . . + 1/n
- In approaches

Enler's Constant. Hence X.7']=l:>0. In this case, therefore, the series

under divcussion is divergent.

Example 2. To discuss the convergence of the hypergcomctric series,

g./S a(a + l)./808 + l)

7« y{y + l).d(S + l)

"^" • •

The general term of this series is

//n>- °(''-'-l) • • • (a + n-l)./i(^ + l) (/3 +n-l)^
•'* '

7(7 + 1) . . . (-y + n-lj.JCa + l) . . . (i + n-l)*^-
Tlio form of /(n) renders the application of the first form of criterion

somewhat troublcbume. Wo shall therefore use the second. We have

_ (a + n){fi+ n)
'^'

{y + „){S + n)''

_(a + n){fi + n) _
^•-(7 + «)(« + «)'

^•

Lt,= x-1.
Hence the scries is convergent if x<l, divergent if x>l.

If z=l, Lr,= 0, and we have

_ (H + l)(a + n)(j3 + fi)
^'

(7 + n)(« + n)
""•

_ {a+p-y-S + l)n''+An + B ,

n' + Cn +D •

LT, = a + ^~y-i + l.

If, therefore, i = l, the hypcrgcometric series is oonvorgcot or divergent
according a«o + /S->-4 + l< or >0.

I(o + /S-7-« + l = 0, i;,r,
= 0. But wo have

= [n{J(n + l)-/nl + (a + ^ + l){J(n + l)-/n} + {/»/(n + l) + Wri}/n
+ CHn + l)/fi'J/[ 1 + E/n + Fln'l

Hence, since Ln{f (.i + l)-/n} = l, t |((n + l) -Jn} =0. L/(n + l)/n'=0,
Llnln'=0 (<>0), &o., wo have

Z,T,= 1>0.

in this case, tlicrcfure, the scries is divergent.
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Example 3. Consider the series

m m{m-l) ,,„ "'("'-!) • • jm-n + l) ,

^"r+~r:2~ +• • •+*"^) 1.2 . . .n + •••

This may be written

- m (-?«)(-;»+ :) (-w)(-m + l) . . (-ro + n- l)

^+^"*" 172
+ • •+

1.2 ... »
+• • •

It is therefore a hypergeometrio series, in which a= -m, p=y, 3 = 1,

x=l. It follows from last article that the series in question is convergent or

divergent according as -m<>0, that is, according as m is positive or

negative.

This series is the expansion of (1
-

x)"', when x= 1.

Example 4. Consider the series

m m(m-l) m{ni-l) . . . (m-n + \)l + y + -y^2 +...+
172 .. . „

+••• <^'-

In this series the terms are ultimately alternatively positive and negative
in sign. Hence the rules we have been using are not directly applicable.

1st. Let m be positive ;
and let m - r be the first negative quantity among

m, m-1, m-2, . . . etc., then, neglecting all the terms of the series before

the (r + l)tb, we have to consider

m(m-l) . (m-r+1) i m-r (m-r)(m-r-l) 1

1.2...r r"^r+ l+ (r+ l)(r + 2) +•••]•
H-

If we change the signs of the alternate terms of the series within brackets,

it becomes

, ,

r-m
,
(r-m)(r-m+l)

,

^+7Tr+ (r+ l)(r + 2)
+••• (^'

Now (3) is a hypergeometrio series, in which a = r-m, fi
= y, 5 = r + l,

x=l. Hence a + /3-7-a + l=r-7tt-(r+ l) + l= -m<0. Therefore (3) is

convergent. Hence (2), and therefore (1), is absolutely convergent.

2nd. Let m be negative, = -/x say. The series (1) then becomes

, ^ m(m + 1)
I I i;. m(m+1) . . . (^+ 11-1) ,,

l"^ 1.2
• • -"^V ^^ 1.2 ... n ^ ''

Since /i is positive, the hypergeometrio series

1 a. ^ J
M (m+JI) , ,

;^(m + 1) • (iL+n-1)
^l"^' 1.2

+ • •+
1.2 ...» ^- • * '•

is divergent.

Hence (4) cannot bo absolutely convergent in the present case.

Since p„= -
(/i + «)/{n + l), the terms will constantly increase in numerical

value if /ii>l. Hence the series cannot be even semi-convergent unless /u-cl.

If
ytt be loss than 1, p„<:l, and the series will be semi-convergent provided

iu.=0.

Now
log„„=21o3^

=
Slogjl+^[.

Since Llog ^l-^(/x- l)/{n-H)}/{(^- l)/(;i-l-l)}
= l (see chap, xxv., § 13),

the series 2;log{l-f(^- l)/(K-f 1)} and S
(/i

-
l)/(n -»- 1) both diverge to an

infinity of the same sigu. But the latter series diverges to - oo or -I- oo ,

according as /i< or >1. Hence i«„ = or oo
, according as /i< or >1.

9—2
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Ham the aarie* (1) isdirciiseDt if v^-I. «rmi-uimiiniwii if ^^l.
UokniouMj otiTlilM if ^=1. Heoee^ to toB ap, the aenet (1)

b afaaotatalj «aai«(sait, if O^B<-fx:
if -1<><0:

,if -1=-:
diiageBtiif -x<m<-1*.

SBKIBS WII06B TOUtS OATB PEXIOIMCALLT SBCCSUSG SHUTITB

EIGXS, OB OOXTACr A PESKHMC FACTOR SDCH MS StS m9.

§ 7.] Sefies vhich contain an infinh^ number of n^atiTe
tenus may or mar not be absolntelr oooTOgent. Tike Conner

class &lls under the cases alneadj discussed. We fropoae now

to give a few thecHems regariing the fauter daas of aeries, vbaae

conreqgencj depends on the distribatioD of negatiTe signs

throogbont the series.

The only cases of much practical importance are those— l^t,

where the infinity of negative signs has a periodic arrangement ;

*
niticrictl Si*e.—If «• empt a aiiab« of teaiUeni thaanaa, pveo

cluc4r bj Wanng ia hit Jtfditatitmn Amalftic^, and OaaM ia kia graal

^Beir OB the 'HrpapHmetiie Scnea, it nay be aaid that Gaacky «a* tha

faanfcr of the Bodem throty of eoamrsaat aariea ; aad noat of the gcBaial

|ai»i|ih« of the aabjeel woe pvea ia hia AfoaiA ^aaJgrtifwa umi ia

Am^fte dlffirifme, la his Extrtiea dt illhfmatifnrt, t. n. (1837), he ea«B
the ioUovine iBaagnl critaooa frmt which Boat of the highs cnteria have

:
:—If, for lai^e laloea of s./<) be poaitiic aad deetaaae aa i

3^(a) ii oooTBSea* i' ^
f^(x)=0 (aartitnzy).

The aeeood step of the r<nlena «aa fiiat gi«an by Baahe, CTrlW§ •'•v.,

B.l.xiii.(l'^>. I>eMoi8aB.iahisI>>/<na«MlCaJfWu.liLS:3<ti»f. (ISS9I.

fint gave the LoeaiithBie Soala of FaaetiaaBl DiBenaoe. i

Lagahthsie Scale of Can*a;geac7 of Cor. 4. and atatad <

to. bat aot idmticai ia tooa *ith, ihoae of Coc. 3 aad Oor. S. CoarKawital

viitera. acterthdeaa. ahaoat iaratiafelT attiibala the vholc theofy to Bartiaad.

Bertnad. Liaw. J«ar. (ISU). fDOte* be Mo^saa, atatiac that he hal <

iadcyeodeatty |ian of Da Moc^a'a raaalta. Hia Miaanir ia wj i

heeaoae it ecataiaaadiaeaaaioo of vaiioo* toaaa ofAe flritariaaad I

tHBof thoreqaivaiaaea: we have iheiefuie attarhad hia aaaaa.aht with Da

MoacaaX to the two ln^rith»ir etitcna. Poaart. Lumr. Jma. (IMSy. pk««

alaBcataiy diiai'aii«iati<aia of Battnad'a tnraaaha : aad MalaaliB. Grwatrft

JrrUr (t$IC|.gaT« aa •
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2iid, where tlio occurrence of negative signs is caused by tlio

presence in the nth. term of a factor, such as sin 7i9, whicli is a

periodic function of 7i.

lu the former case (whicli niiglit be regarded as a particuhxr^

insfcmce of the latter) we can always associate into a single term

every succession of positive terms and every succession of negative

terms. Since the recun'ence of the positive and negative terms

is periodic, we thus reduce all such series to the simpler case,

where the terms are alternately positive and negative.

We may carry the process of grouping a step farther, and

associate each negative with a preceding or following positive

term, and the result will in general be a series whose terms are

ultimately either all positive or all negative.

The process last indicated often enables us to settle the con-

vergence of the series, but it must be remembered that the series

derived by grouping is really a ditl'ereut series from the original

one, because the sum of n terms of the original series does not

always correspond to the sum of in terms of the derived series.

The difference between the two sums will, however, never exceed

on the inequcolity of cliap. xxv., § i;5. Cor. 6, that 21/P,.(m + 7i) {/'{;« + »)}<'

(where I'm is positive) is convergent or divergent, according as a< or «t 0; and
thence deduces Cor. 3. Paucker, Crclh's Jour., Bd. xLii. (1851), deduces both

Cor. 3 and Cor. 5 from Cauchy's Condensation Test, much as we have done,

except that the actual form in which we have stated the rule of Cor. 5 is

taken from Catalan, Traite El. d. Series (18G0). Du Bois-Eeymond, Crelle'a

Jour., Bd. Lxxvr. (1873), gives an elegant general theory embracing all the

above oiiteria, and also those of Kummer, Crelle's Jour., xui. (1835). Abel

had shown that, however shghtly divergent -i(„ may be, it is ahv.ay.s possible

to find 7i, 72, . . ., 7„, . . . such that /^7„= and yet ^y„u„ shall be

divergent. Du Bois-Eeymond shows that, however slowly 2;'„ converge, we
can always find 7,, 72, . . .,7„, . . . such that Z,7„= oo and 27„!i„ neverthe-

le.ss shall be convergent. He shows that functions can be conceived whose

,
ultimate increase to infinity is slower than that of any step in the logarithmic

scale ;
and concludes definitely tliat there is a domain of convcrgency on

whose borders the logarithmic criteria entirely fail—a point left doubtful by
bis predecessors. Finally, Kohn, Grunert's Archiv (1S82), continuing Du liois-

Eeymond's researches, gave a new criterion of a mixed character; and

Pringsheim (Mutli. Ann. 1890, 1891) has discussed the whole theory from a

general point of view. The whole matter, although not of great importance
as regards the ordinary applications of mathematics, illustrates an exceedingly

interesting phase in the development of mathematical thought.
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the sum of a finite number of terms of the original scries
; and

this diflTercnce must vanish for n = oo
,
if the terms of the original

scries uitiiuateiy become iiiliuitcly small.

Einmple. Consider tho series

1 11
(1).1 2 3^4 6 0^
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§ 8.] The following rule is frequently of use in the discus-

sion of semi-converging series :
—

Ifui>Un>U3>. . . >«„>... and all be positive, then

U1-U.+ U3-. . . (-)"-'«„ + (-)"«n+l + . . • (1)
"

converges or oscillates accoi-ding as i m„ = or 4= 0.

Using the notation of § 3, we have

„.^'»
= ± {I'n+l

-
«,.+!! + . . . ± lln+m),

= ±{Mn+l-(«B+2-Mn+s)-- • •}.

= ±{(«,i+l- «n+2) + ("u+S-«n+4)+- • •}•

Hence we have

M„+j>„,72„>M„+l-M„+2 (2),

numerical values being alone in question. If, therefore, Zi/„ = 0,

we have Lun+i = ii<,.+3
=

;
and it follows that L „/t„ = for all

n=oD

values of m. Also

Ui>„Ro = S„>2h-th,

so that <S'n is finite for all values of n. The series (1) is there-

fore convergent if Lu„ = 0.

If Lu„ = a*0, then L „ff„ = a or =0 according as m is odd

or even. Hence the series is not convergent. We have, in fact,

LiS^+i-Si„) = Lu,n+i = <^,
^Thich shows that the sum of the

series oscillates between S and S + a, where S=LSia-

Cor. The series

(2*1
-

U.) + {ih
-

«4) + • • • + («M-1
-

"2") + • • •

where u^ "n, • • • are as be/ore, is convergent.

Example 1. The scries S (
- l)"-'/n is convergent, notwithetanding the

fact, already proved, that 21/n is divergent.

Example 2. 2(- 1)""' (« + !)/« is an oscUlating series; but 2(-l)''-'

{(n + l)/n
-

(n + 2)/(n + 1)} is convergent.

§ 9.] The most important case of periodic series is 2«„cos

{n6 + <^), where a„ is a function of n, and <^ is independent of n,

commonly spoken of as a Trigonometrical or Fourier's Series. The

question of the convergence of this kind of series is one of great

importance owing to their constant application in mathematical

physics.
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We observe in the first place that

I. If 2»», hi an absolutely converging neries thm 1a^rai{n0+4>)

w contvrgiiit.

Tliis follows from § 4, I.

II. If 6-0 or 2Xt (/• hfing an integer), 1ft^cns{n6 + if)) m

convergent or dirergnit according as ^, is ct>nvrrgtnt or divergiiit.

This is olivious, since tlie series reduces to Sa, cos </>.

III. If6^0 or Ih-rr, then 1a^ cos (n6 +
<^) is ronrerrieiit if. fur

all raliifS of n greater than a certain finite value, a, //«.< the stinw

sign and never increases as n increases, and if i a, = 0.
—•

This is a particular ca.>ie of the following general theorem,

which is founded on an inequality ffiven by Abel :
—

IV. If^ii„l>ecoinYrgnitorimillal<rri/,nndaj, «,, . . .,a„ . . .

be a series qfpositive quantities, which never increase as n increases,

and if Z a, = 0, then Sa.M, is convergent.

Almfs Inequality is as follows :
—

If, for all values of n,

yl > «, + tt, + . . .*- u^>B,

where Hi, h,, ...,»», are any real quantities whatever, and

if O], A,, . . ., a. be a series of positive quantities which never

increase as n increa.ses, then

OiA >a,K, + a,M, + . . . + a,ii„>a-,D.

This may be proved as follows:—Let 5, = «, + «, + . . . + »/.,

»Si'
=

a,i/, + ff;sH, + . . .+a,f/,. Then «, =
<S'i, u, S^-zS,, &c. ;

and

<S.'
=

o,.Sr, + a, (S,
-
S.) + . . . + a. (S,

-
5,.,),

= S,{ai-aj) + S,(a,-at) + . . .+S,.,{a^-,-a,)^f!,n,.

Hence, since Si, S, .*>', are each <A and > li, and (a,
-
oj,

(oi-Ot), . . ., (a,_, -<T,), a, are all po.sitivc or zero,

{(rt,-«,) + («5-'»i) + . • . + ('/,-,- a,) + a,M

>iS','>{(ai-ai) + («»-a3) + - • . + (". i -«,) + ".1 /J :

that i.'*,

a,A>S,'>a,/J (1).

Tlienrriu IV. follows at oiico, for, since iu, is not divergent,
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Sn is not infinite for :my value of n. Hence, by (1), S^' is not

infinite. Also, by Abel's Inequality,

= Sn'+m-Sn'>an+tD (2),

where and D are the greatest and least of the values of

„Rn (= Un+i + «„+= + . . . + M„-Hn = S„+n,
-

S„) for all different

positive values of ni. Now, since lii„ is convergent or oscillatory,

S„+m - Sn is either zero or finite, and L a„+i = 0, by b}-po-
n=«>

thesis. Therefore, it follows fi'om (2), that imK„' = for all

values of m. Hence 2rt„«„ is convergent.

We shall prove in a later chapter tliat, when

u„ = cos {n6 + <^),

,S'„
= sin hie cos {h (n + 1)6 + <f>}lsm i^.

If, therefore, we exclude the cases where 6 = or 2Z;r, we see

that S„ cannot be infinite. Theorem III. is thus seen to be a

particular case of Theorem IV.

Cor. Ifa„ be as uhove, 2(- !)"-'«„ cos (iiO + ^), Sa„ sin (h0+ </>),

avd 2 (
-

l)"~Vt„ Sin {n9 +
</>)

are all convergent.

CONVEEGENCE OF A SERIES OF COMPLEX TERMS.

§ 10.] If the ?(th term of a series be of the form Xn + yJ,

where i is the imaginary unit, and .t„ and y„ are functions of /(,

we may write the sum of n terms in the form >S„ + TJ, where

Sn = 0Ci + X. + . . . + .r„,

T„ = y,+2/.2 + . . .+%
By the sum of the infinite series 2 {.r„+yj) is meaut the limit

when M = 00 of ,S„ + T„i ;
that is, (LS„) + (LTn) l

The vecessary and sufficient condition for the convergency of

^(.Xn + y„i) i erefore that 2.t„ and ly„ be both convergent.

For, if the series 2a:„ and ly„ converge to the values S and

T respectively, %(.r„ + yj) will converge to the value <S'+ Ti;

and, if either of the series 2.r„, 2_y„ diverge or oscillate, then

(Z/.S'„) -t {LT„) i will not have a finite definite value.
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§ II.] Lot £, denote x, + y,i ;
and let |s, |

bo the modulus

of z*\ so that |«,i'
=

|x,|» + |y,|'. We have tlio following

theorems t, which arc sulBcient for most elementary purposes :
—

I. The complex series 2r, is convergent \f the real series 2
1
s, |

is convergent.

For, since 2
1 s, ]

is convergent, and
| tr^ \

and
| y, |

are each less

than |«„|, it follows from § 4, I., that 2|a", |
and 2|y, |

are both

convergent ;
that is, 5.r, and 2y, are both ccmvergent Hence,

by § 10, 2;:, is convergent
It should be noticed that the condition thus established,

although sujjicient, is not necessary. I-'or example, the scries

(l-t)/l-(l-i')/2 + (l-t)/3-. . . is convergent since 1/1-1/2
+ 1/3-. . . and -

1/1 + 1/2- 1/3 + . . . are both convergent;
but the series of moduli, namely, ^/2/l + J'2/2 + J^/S + . . .,

is divergent.

When 2c, is such that 2
| s, |

is conrcrgnif, 2r, i.i said to be

absolutely convergent. Since the modulus of a real ([uantity m, is

simply M„ with its sign made positive, if need be, we see that

the present definition of absolute convergency includes that

formerly given, and that the theorem just proved includes

§ 4, IV., as a particular case.

Cor. 1. ]fw,Rn denote z^^i + «,+, . . . + z,+„, then the necessary
and sufficient condition that the compUjr series 2;, converge is that

it be possible, by taking n sufficiently great, to niuke ImB-J^ as small

as toe please, %chatever the value of m.

Cor. 2. If \^be real or complex, and z^ a complex; number

whose modulus is not infinite for any value of n, hoicever great, then

2(\ii,) will be aiisolutely convergent if 2\, is absolutely conivrgent.

For
I X,2. 1

=
I \i 1 1 2. 1 ; and, since 2X. is absolutely con-

vergent, 2
1 X, I

is convergent Hence, since
| s, |

is always

finite, 2
1 A, 1 1 r, I

is convergent by § 4, II.
;
that is, 2

| A,r, |

is

convergent Hence 2 (X„£,) is absolutely convergent

Riainpio 1. Tho acrica Zt'jnl ia absolutely convergent for all finite

values of I.

Example 2. Tlio norieii 2:<*/n ia absolutely ooDvcrgeut proviilocl |
<

|

< 1.

* Soo chap, zn., { 13.

t Caucliy, lUium/i Annlyliqutt, § xiT,
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Example 3. The series S (cos + i sin fl)"/ft is convert;ent if 6 + on 2kir.

For the series S cos nOjn and S sin nOjn are convergent by § 9, III.

Example 4. The series (cos S + i sin d)"jn^ is absohitely convergent. For

the series of moduli is 21/ii^, which is convergent.

II. Let n he the fixed limit or the greatest of the limits* to

lo/iirh |s„|"" tends when n is increased indefiniteli/, or a fixed limit

to which \Sn+-Jz„\ tends when n is increased indefinitely ; then the

series 2j:„ will be convergent if Q,<1 and divergent ifVi>l.

For, if 0<1, tlieu, by §5, I. and II., the series 2|jr„| is

convergent; and therefore, by § 11, I., 22;„ is convergent.

If n > 1
,

tlien either some or all of the terms of the series

5
I
Sa

I ultimately increase without limit. In any case, it will be

possible to find values of n for which
|
2,,

|

exceeds any value

however great ; and, since
|
»»

|

=
(| -^n I"

+
|
»/n |')"^, the same must

be true of one at least of \xn\ and \yn\- Hence one at least of

the series 2a;„, 2y„ must diverge ; and consequently 2 (.r„ + yj),

i.e. 23„, must diverge.

APPLICATION OF THE FUNDAMENTAL LAWS OF ALGEBRA

TO INFINITE SERIES.

§ 12.] Law of Association.—We have already had occasion to

observe that the law of association cannot be applied without

limitation to an infinite series; see the remarks at theend of § 7.

It can, however, be applied without limitation provided the series

is convergent. For let jS'^' denote the sum of m terms of the new

series obtained by associating the terms of the original series into

groups in any way whatever. Then, if (S'„ denote the sum of n

terms of the original series, we can always assume m so gi-eat that

Sm includes at least all the terms in S,^. Hence 6'm'
— Sn = plint

where p is a certain positive integer. Now, since the original

*
It will be noticed that this includes the case where L |«„i''" baa

different values according to the integral character of n : but the corre-

gpondmg case where L \z„+Jz„\ oscillates is not included. We have
n—«

retained Cauchy'n original enunciation ;
but it is easy to see that some

additions might be made to the theorem ui the latter case.
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scries is conv('r},'ent, hy UikiiiK ii siiflicii'iitly liir;;i; wc can make pit,

as small as we pleJise. It follows therefore that L S„' =^^ L S,.

Hence the association of terms produces nn effect on the sum of the

infinite convergent series.

§ 13.] Jmw of Commutation.—The hiw of coiMinutation is even

more restricted in its application than the law of association.

We may however prove that the law of commutation can be

applied to absolufeli/ convergent series.

We shall consider here merely the cuso where each term of

the series is di.splaccd a finite numher of steps*. Let 2ii, be

the original series, 2)/„' the new series obtained by commnta-

tion of the terms of 2«,. Since each term is only displa«'eil by
a finite niiniher of steps, we can, whatever n may be, by taking

m sufficiently great always secure that &'„' contains all the

terms of (S„ at least. Under these circumstances SJ-S^ con-

tains fewer terms than ,,f{„, where p is finite, since m is finite.

Now, since 2m„ is absolutely convergent, even if we take the

most unfavouralde case and supjiose all the terras of tiie same

sign, we shall have L p//,
=

; and, a fortiori, L SJ - L .S',
= 0.

Hence L S^ = LS^; which establishes our theorem.

7'he above reasoning trould not apply to a semi-convergent series

because the vanishing of L y/'„ does not dejjend .solely on the

individual magnitude of the terms, but partially on the alterna-

tion of positive and negative .signs.

Cauchy, in his IW.inme's Aunli/tiijues, § vii. (18.33), seems to

h.ave been the first to call explicit attention to the fact (hat the

c<mvergence of a .semi-convergent series is es.senti;dly dependent on

the order of its lenns. Dirichlet and Ohm gave e.xamples of the

effect of the orilcr of the tvrnis upun the sum.

Fin.ally Kieniann, in his famous memoir on Fourier's Soriest,

showed that the .scries S (- 1 )"''«, , where A»/, = 0, nn<l Sm^^ , and

lutn arc both divergent, can, by proper commiitation of its tonns,

• 8oo below, ; 3.3, Cor. 2.

\ Written ill iM.'il and puliliihol in lur>7. Sec liii OttammeUe Math

Werkf, p. 21 L
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be made to converge to any sum \vc please ;
and Dirifhlet has

shown tliat commutation may render a semi-convergent series

divergent.

When the sum of au infinite series is independent of the order"

of its terms it is said to converge itnmnditionally. It is obvious

from what has been said that unconditional convergence and

absolute convergence are practically synonymous.

Example 1. The series

J^ J^ J^ 1_ ,__J 1

Vl~^/2"'^/3 ^i'^
' '

'"''^/(J/i- 1)

~
VP'j

' *
* '

is convergent by § 8
;
but the serios

"*

W(4m + l)"*'V(lm + 3)~V(2"t+2)j'^"
* * ^^''

Trhieh is evidently derivable from (1) by commutation (and an association

which is permissible since the terms ultimately vanish), is divergent. For,

if «„ = l/^/(4m + l) + iy(4m + 3) -l/V(2m + 2), and r„ = l/^m, then

LuJ,;, =L {1/^(4 + 1/m) + 1/^(4 + 3/m)
-

1/^/(2 + 2/m)}= 1/2 + 1/2
- 1/^2 =

1 - j^2. Hence «„Ji',„ is always finite ; and i;ii„ is divergent, by § G, Cor. 4.

Hence 2h,„ is divergent. (Dirichlet.)

Example 2. The scries

11111 1 1
,^,

I~2 +
3"4"*"5"-

•

•*'(2«-l) (2")
* ''

(i+§)-^
+

(i
+ y -5+- • • +

Csrn+s;rf3)-2„.V2-^-
• '-'•

are both convergent; but they converge to different sums. For, by taking

successively three and four terms of each series, we see that the sum of (1) lies

between -583 and -833
;
whereas the sum of (2) lies between -926 and 117G.

Addition of two infinite series. Jj' 2?<„ and 2d„ he loth con-

vergent, and converge to the values S and T respectively, then

2(m„ + i?„) is convergent and converges to the value S+ T.

We may, to secure complete generality, suppose •«„ and Vn to

be complex quantities. Let Sn, 7'n, U^ represent the sums of

n terms of 5w„, 2i'„, 2 («„ + v„) respectively ;
then we have, how-

ever great n may be, U^ - ^n + T„. Hence, when « = oc
,

LUu = LSn + LT„, which proves the proposition.
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§ 14.] Imw of Distribution.—The application of the hiw of

distribution will he imlicateil hy the followiiifj theorems :
—

Jf a be aril/ Jinite quautiti/, and 5h„ anurnje to the value S,

tlwn Saw, converges to aS.

The proof of this is so siinplo tliat it may be kfi to the

reader.

// 2tt« and 2j', converge to the values S and T respectively, and

at least one of tlie two series be absolutely convergent, then the series

H,f, +
(Mil', + «.^',) + . . . + («iV, + «.jC,_, + . . . + «,ri) + . . . (1)

converges to the value ST*.

Let S^, Tn, Un denote the Ruins of n terms of 2«„ 2t',,

2(«it'» + «-jV»-i + . • . + M,t"i) respectively; and let us suppose that

2»» is absolutely convergent. We have

S,T,= U, + L„

where /.» = u.ji', + Ma»',-i + . . . + ",.»"»

+ Hj('„ + . . . + u,r,

= UiVn + «, (v„ + f.-i) + . . . + «/„(€, + . . . + f,) (2).

If therefore « be even, = '2m say,

+ [«m+l ('"sm + • • +V„ ,.,)
+ . . . + «»(fsm + . • • + t^)] (3).

If n bo odd, ^ 2»i + 1 say,

2/« = [«j«'j».+i
+ «.(t'sm+i + n-..) + . . . + a«(tv„+, + . . . + tv,j)J

+ [«m + I (»»+! + • . .+»'~*j) + . . . + «»+l (t':«+l + . . .+t',)] (4).

Now, since 2r, is converjjent, it is po.ssible, by making m
sufiiciently great, to make each of the quantities |fiu,|, |«i.i-i+tij«|,

• . .,|Vm+> + . .+t?2,„|, |f,„+,|, |t'» + t)»„|, . . .,!».+, + . . .

* Tbo oriKinal dcmoiiRtration of this tbeorom givi-n by Caachy in hii

Analyte Algibrique n-iniirod that both tho scrice -u,, Hr, bo Bbsolutrly con-

TorKont. Abi I'll dpinmiRtration in subject to the name restriction. The more

(:;«nenil form was givrn by McrtviiB, CreUr't Jour., i.xxix. (187.''). AIm'I had,

however, proved n more ni'tiiTal theorem (see % 20, Cor.), which partly io-

eludes the lenult in question.
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+ V2,„+i I

as small as we please. Also, since \Ti\, \T«\,\T3\, . . .,

\Tn\, ... are all finite, and |7;- 7'.|<|7;| + \T.\, therefore

I
r„,+i + . . . + l\m I,

. . ., k^ + . . . + «2m i,

I V„+j + . . . + l-o„,+i I, , . .,
I

IV + . . . + V2m+1 I,

are all finite. Hence, if e„ be a quantity which can be made as

small as we please by sufficiently incrca.sing m, and fi a certain

finite quantity, we have, from (3) and (4), by chap, xn., § 11,

l-Z'»|<«m(iw.| + |«3|+. . . + |«„,|)

+ /3(|m„+,| + |m„+,| + . . . + \u„\).

If, therefore, we make n infinite, and observe that, since

2«,„ is absolutely convergent, Iw^l + lu^] + . . . + |?<„| is finite, and

X(|«m+i| + |",n+2| + . . . + |w»|)
=

0, we have (seeing that i£„ = 0)

i
I
Z„

I

= 0. Hence X^S'„ T„ = LV'„, that is, LUn = ST.

Cauchy has shown that, if both the series involved be semi-

convergent, the multiplication rule does not necessarily apply.

Suppose, for example, H„= r„=(-l)»-'/\/". Then both Zh„ and i:i„ arc

Bemi-convergent series. The general term of (1) is

""= ^im "
v/{(«- 1) 2}

+ • • +
^{2 [l

-
1)}

+
7F})

(')•

Now, since r(n-r + l)
= J («+l)-- {J (n + 1) -r}', therefore, for .ill values

of r, r(H-r+ l)<J(ii + l)-, except in the case where r=^(n + Vj, and then

there is equality. It follows that
i w"„ |

> «/i (n + 1) > 2/(1 + 1/n). The terms of

2w„ are therefore ultimately numerically greater than a quantity which is

infinitely nearly equal to 2, Hence ^w„ cannot be a convergent series.

UNIFORMITY AND NON-UNIFORMITT IN THE CONVEKGENCE

OF SERIES WHOSE TERMS ARE FUNCTIONS OF A VARIABLE.

§ 15.] Ijct X for the present denote a real variable. If the

fith term of an infinite series be f{n, x), where/(??, x) is a single

valued function of n and of x, and also for all integral values of n

a continuous function of x within a certain interval, then the

infinite series 2/(n, x) will, if convergent, be a single valued

finite function of x, say '^(ir). At first sight, it might be

supposed that <t> {x) must necessarily be continuous, seeing that

each term of J\n, x) is so. Cauchy took this view ; but, as
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Abel* first pointed out, <t>{-f) is not necessarily continuous.

No doubt 2/(h, j: + /() and ~/(ii. x), beinj; each convergent, have

each definite finite values, and therefore 2 {/(», x + h)-/{n, x)\

is convergent, and has a definite finite value
;
but this value is

not tu'cesgiirlfi/ zero when h-0 for all vultii's of x. Suppose, for

example, following l)u Bois-Keyniond, that /(«, x) = a-/(/(j- + 1)

(hjt -x+\). Since /(«, x) = nx/{nx + 1)
-
(n

-
l)r/{n

- Ix + 1},

we have, in this case, S^- iix/(iix + I). Hence, provided x*0,
X<S', = 1. If, however, x = then 8^ = 0, however great n may
be. The function <f> (x) is, therefore, in this case, discontinuous

when x=0.
The discontinuity of the above series is accompanied by

another peculiarity which is often, although not always, asso-

ciated with discontiuuit)'. The Residue of the series, when

x^O, is given by

i?. = l-5'.= l/(nx+l).

Now, when x has any given positive value, we cAn by making n

large enough make l/(iix+l) smaller than any given jmsitivo

quantity e. But, on the other hand, the smaller x is, the larger

must we take n in order that l/{iix + 1) may fall under «; and,

in general, when x is variable, there is no finite lower limit for w,

independent of x, say v, such that if n>v then 7i',<c. Owing
to this peculiarity of the residue, the series is sjiid to bo non-

uni/brmly convergent in any interval which includes ; and,

since, when x approaches 0, the nundier of t<'rms required to

secure a given degree of ajipro.ximation to the limit becomes

infinite, the series is said to Converge Infinitely Hlouhj near x = 0.

These considerations lead us to establish the following

important definition, where we no longer restrict ourselves

to functions of a real variable. Jj', for all values ef z within

a ijiven reijion 11 in Anjand's Diagram, we can for every

positive value of <, however snutll, assign a jiosltive integer v

iNUEi'KMiENT OF z, nuch tluit, ichfii n>v, \J(,\<t, tiun the seriei

Rochcrchus bur U S6rio 1 + t- ' + —
,

—
tt

- *' + • • • CrtUe't Jour,
X X.J

Ud. 1.
(1H-.'C).

i
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2/(«, x) is said to be Uniformly Convergent within the region
in question.

Stokes*, who in his classical paper on the Critical Values of

the Sums of Periodic Scries was the first to make clear the

fundamental principle underlpng the matter now under dis-

cussion, has pointed out that the question of uniformity or

non-uniformity of convergence always arises when we consider

the limiting value of a function of more than one variable.

Consider, for example, the function /(x, y) ; and let us suppose

that, for all values of ?/ in a given region R, f(x, y) approaches
a finite definite limit when x approaches the value a

; and let us

call this Hmit/(a, y). Then if we assign in advance any positive

quantity t, however small, we can always find a positive quantity

A, such that, when |^-aI<X, \f{x,y)-f{a,y)\<€. If it be

possible to determine X so that the inequality

\f{x,y)-f{a,y)\<^
shall hold for all values of y contained in R, then the approach
or convergence to the limit is said to be uniform within R. If,

on the other hand, X depends on y, the convergence to the limit

is said to be non-uniform.

Example 1. Consider the serieg 1 + 2 + 2^+. . .+z»+. . .; an,j igj

I* I <p< 1. We have
| i?„ |

=
| «''+V(l

-
z) | <p»+V(I -

p). Hence, in order to

secure that i?„ < e, we have merely to choose n> - 1 + log (e
-
ep)/log p.

Since - 1 + log (e
-

cp)/log p is independent of z, we sec that within any circle

whose centre is the origin in Argand's Diagram, and whose radius is less

than unity by however little, the series 2z" is uniformly convergent.
On the other hand, as p approaches unity log (e-cp)/logp becomes larger

and larger. Hence the convergence of Zz" becomes infinitely slow when
|
z

approaches unity. We infer that the convergence of 22" is not uniform
within and upon the circle of radius unity. And, in fact, when the upper
hmit of

1

2
I

is 1, it is obviously impossible when e is given to assign a finite

value of n such that
1 2''+'/(l

-
2) |

< e shall be true for all values of z.

•
Trans. Camb. Phil. Soc, Vol. viii. (1847). Continental writers have

generally overlooked Stokes' work
; and quote Seidel, Abhl. d. Bayerischen

Ak,id. d. Wiss. Bd. v. (1850). For exceptions, see Keiff, Gescliichte der
unendticheti Eeiheii, p. 207 (1889); and Pringsheim. Enc. d. Math. Wiss.
Bd. II. p. 93 (1899). In his first edition the writer, although well acquainted
with Stokes' great paper, by an unfortunate hipse of memory, fell into the
same mistake. The question of uniformity of convergence is now a
fundnmeutttl point in the Theory of Functions.

C. II. 10
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Example 2. Osgood* has shown that, if

<t>nW = \'(2<) n pinVi . ^--'i-'",

the infinite serioa which hag 0, (x) + 0,(21 x)/2I-)- . . . -t- 0, (nl x)/nl for the

Eum of n terms converges non-anilormly in over; intorval.

From the definition of Uniform Convergence we can at once

draw the foUowini; conclusions.

Cor. 1. If the terms of 2|/(n, z)\ are ultimately less than

the terms of a converging series of positive terms irfiose values are

independent of z, then '%f(n^ z) converges uniformly.

For, if 2h, be the series of positive terms in question, and R^
the residue of ^(n, z), then

Ii?,|>|/(« + l.z)| + |/(« + 2,c)|+. ...

< «,+, + u,+, + . . .

Since 2m, is convergent, we can find an integer v so that, when

n>v, Un+i + «„+j+ . . • <<; and v will be independent of c, .since

Mii+i, "n+s. • • • •ii'e independent of z. Hence we can find v

independent of s so tliat |/if, |<c, when n>v, t having the usual

meaning.

Cor. 2. If 2|/(n, z)\ is uniformly convergent, then V(". *)

is uniformly convergent.

§ 16.] We now proceed to est.ibli.sh a fundamental theorem

regarding the Continuity of a Uniformly Converging Series.

Let fill, z) be a finite single valued function of the complex
variahh z and the integral variaUe n, which is continuous a$

regards z for all values of n, however large, and for all values of
z within a region II in Argand's Diagram. Farther, let 'Sf{n, t)

converge uniformly within It, say to <^(s). Then 0(c) is a con-

tinuousfunction of z at all j'oints vAthin the region 11.

Let the sum to n terms and the residue after n terras of

2/(n, ;) be <S', and 7/, ;
and let iS",' and 7/,' be the like for

^(n, z), where z and z are any two points within the region R.

Then wo have

4>(:)
= S, + Il„ <^(r')

= 6V + 7C (1).

* Hull. Am. M.ilh. Soe., Si-r. 2, m. (lJ-9fi). Tliin paiior in well wortliv ol

study on account ut lh« inlcrusliug (jcoiuulricul tuuUiuJji which Uiu aulhur

OHea.

4
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Since 2/(/;, s) is uuiformly couvergent within R, given anj'

positive quantity «, however small, we can find a finite integer v,

independent of s, such that for all values of z within Il,Itn<f and

En<f, when n>v. Let us suppose n in the equations (1) chosen^

to satisfy this condition. Since the choice of z is unrestricted we

can by making |«-s'| sufficiently small cause the absolute value

of each of the difFerences/(l, s)-/(l, z), . . .,/(n, z)-f{n, z)

to become as small as we please, and, therefore, since « is Unite

we can choose
1

2 - 2'
|

so small that
|
Sn - S^

\ , which is not greater
n

than 2 \/{n, z) -f{n, z')\, shall be less than «.

1

Now
\4>{z)~<1>{z')\

= \S„-S: + R„-R:\

>l>s',.-5^„'l+|ii;„l + |7?„'l

<3e,

which proves our theorem
;
for e, and therefore 3«, can be made as

small as we please.

It follows from what has been proved that discontinuity of

^(n, z) is necessarily accompanied by non-uuiformity of con-

vergence ;
but it does not follow that non-uniformity of con-

vergence is necessarily accompanied by discontinuity. In fact,

Du Bois-lleymond has shown by means of the example

'%{xlii{nx + \){nx-x+ \)- arl{nar+ l){nx'-x-^ 1)}

that infinitely slow convergence may not involve discontinuity.

The sum of this series is always zero even when x = Q; and )'et,

near x=0, the convergence is infinitely slow.

It should also be noticed that the fact that a series converges

at a point of infinitely slow convergence, does not involve that

the sum is continuous at that point. Thus the series

^x/{nx + 1) (nx
- X +1)

converges at x = 0; but, owing to the infinite slowness of con-

vergency at x=0, the sura is discontinuous there, being in fact

at a: = 0, and 1 for points infinitely near to x = 0. In such

eases it is necessary to state the region of uniform convergence
with some care. The fact is that the series in question is

oonvergeut in the real interval p:!(>x:^b, where b is any finite

10—2
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positive quantity and p is a positive quantity as small as we

please but not evanescent. Tiiis is usually ex]>rc8sed by saying

that the series is uniformly convergent in the interval 0<x^b.
Such an interval may be said to be 'open' at the lower and
'

closed
'

at the upper end*.

Eiamplct. If /i, be independent of t, and if, (j) be a single valacd

fanction of n and i, finite for all valncs of n, bowevcr great, and finite and
continnoos as regards t nitliin a region li, then, if ^/i^ be absolutely con-

vergent, SMn^a (<) is a continuous function of t within li.

It will be sullicicnt to prove that the series i:^,w, (i) is uniformly

convergent within if.

Since u>, (z) is finite for all points within li, we can assign a finite

positive quantity, g, independent of z, such that, for all points within 1!,

Consider 7J„, the re.<:idue of S^ir^ (t) after n terms. We have

„ •B.=^,+i«',+iW+M«+j«',+i(«)+ • • •

Uenco

|i?-l>lM.+ill«'.+,(i)| + |M.+,I|"',+,WI+. . ..

Since 2^ is ab.'Jolutely convergent, S
| /i, |

is convergent, and wc can a)t.<!ign

an integer y such that, wlicn n>r,
| >«„+i |

+
1 /:i„+5 1

+ . . . <</?. where < is a

positive quantity as small as we please.

Both ;i„ and g being independent of z, it is clear that r is inde-

pendent of z. Hence we have, when nx', |7?„|<e, » being independent
of z. The scries is therefore uniformly convergent : and it follows from the

main theorem of this paragraph that its sum is a continuous function of i.

SPECIAL DISCUS.SION OF THE POWER SERIES 2a„r".

§ 17.] As the series 2fl(„c" is of prcat importance in Algebraic

Analysis and in the Theory of Functions, we shall give a special

discussion of its i)roperties as regards both convergence and

continuity. We may speak of it for shortness as the Power

Series ;
and we shall consider both a, and s to be couiple.T

numbers, say a„ = r, (cos a, -n' sin oj, z = p (cos fi + i sin 6), where

r, and a, arc functions of the integral variable », but p and 6 are

iudependeut of «.

• Harkncsfl and Morley use these convenient words in their Intrnduetion

tn the Theory nf Analytic Functioiu. Macmillun (IS'JS).

t l^u Uuis-Ileymoud, Math. Aim. iv. (lt>71).
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The leading property of the Power Series is that it has wliat

is called a Circle* of Convergence, whose centre is the origin in

Argand's Diagram, and whose radius {Radius of Convergence) may
be zero, finite, or infinite. For all vahies of z within (but not"

upon) this circle the series is absolutely and uniformly con-

vergent ;
and (if the radius be finite) for all values of z without

divergent. On the circumference of the circle of convergence

the series may converge either absolutely or conditionally,

oscillate, or diverge ;
but on any other circle it must either

converge absolutely or else diverge.

The proof of these statements rests on the following theorem.

If the series 2a„«" be at least semi-convergent when z = z„,

then it is absolutely and 'uniformly convergent at all points within

a circle whose radius <
1 2o I

Since Srt.jCo" is convergent, none of its terms can be infinite

in absolute value, hence it is possible to find a finite positive

quantity g such that
| a„»o" I

< 9> for all values of n however large.

Hence
| «„«"!

=
|a„s„"(5/s„)»|,

=
l«„^o"|l(s/«o)"|,

<o\{zlzoT\.

Now, since z is within the circle |«o|, \zlZii\<l. Hence the

series g'S.iz/zo)" is absolutely convergent. Therefore (§ 4, I.)

2
1
a„s"

I

is absolutely convergent.

The convergence is uniform. For, since |2|<|2;o|, we can

find z such that |3|<|3'|<|so|- Now, by the theorem just

established, 2
|
a,,-'" \

will be convergent, and its terms are inde-

pendent of z. But, since
|

s
|

<
1

2'
| ,

|
«„«"

|

<
|
a„s'" |. Hence, by

§ 15, Cor. 1, 2a„«" is uniformly convergent.

Circle of Convergence. Thi-ee cases are in general possible.

1st. It may not be possible to find any value Zo of z for which

the series 2a„5'' converges. We shall describe this case by saying
that the circle of convergence and the radius of convergence are

infinitely small. An example is the series 2??! a;".

2nd. The series may converge for any finite value of z

* When in what follows we speak of a circle (It), we mean a (•jrcle of

radius B whose centre is the origin in Argand's Diagram.
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however large. We sliall then say that the circle and the rwliiis

of coiivergenco are infinite. An example of this very important
class of series is 2y/«!.

3rd. There may be finite values of z for which 2a, j* con-

verges, and other finit.e values for which it does not converge.

In this case there must be a definite upper limit to the value

of \z^\ such that the scries converges for all points within the

circle l^,! and diverges for all points without. For the series

converges when |2:|<|?o|> n'ld it must diverge when |z|>|;,|;

for, if it converged even conditionally for |2'|>|2;,|, then it

would converge when |r]<|5'|. We could, therefore, replace

the circle |so| by the greater circle |s'|, and proceed in this way
until we either arrive at a maximum circle of convergence,

beyond which there is only divergence, or else fall back upon
case 2, where the series converges within any circle however great.

We shall commonly denote the radius of the circle of con-

vergeuce, or as it is often aiUed the Radius of Convergence, by R.

It must be carefully noticed that both as regards uniformity and

absoluteness of convergency the Circle of Convergence is (so far

as the above demonstration goes) an open region, that is to say,

the points on its circumference are not to be held as being within

it. Thus, for example, nothing is proved a.s regards the con-

vergence of the power series at points on the circumference of

the Circle of Convergence ;
and what we have proved as regards

uniformity of convergence is that 2(i,i;" is uniformly convergent
within any circle whose radius is less than It by however little.

§ 18.] Cattchy's Ruks for determining the Radius qf Con-

vergence qf a Power Stries.

I. Let <D be the fixed limit or the greatest qf the limits to

which IobI"" tends when n is increased indefinitely, then l/«

is the radius qf convergence qf 2a,s".

For, a.«i we have seen in § 11, II., 2rt,s" is convergent or

divergent according as i|a,s"|''"<or>l ;
that ig, according as

o)|c|<or> 1 ; that is, according as |r|<or>l/ci».

II. fyet u be a fired limit to which |a,+,/a, |
tends when n it

increased indefinitely; then 1/<d is tits radius qf oonvergenc« qf
v., .»
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Tlie proof is as before. The second of tliese rules is often

easier of application than the first
;
but it is subject to failure in

the case where L
\ a-n+i/an \

is not definite.

Example 1. l + j/l + i'/2+ . . .

Here, by the first rule, w= L {l/n)''"= L m"'^! (chap, xxv., §16).

Hence iJ= l.

By the second rule, u= L {l/(n + l)}/{l/n} = L n/(n + l) = l. Hence

i? = l, as before.

Example 2. « + 2s»+ z' + 2s<+ . . .

Here if n= 2m, L |a„»/»|= L VI"= 1,

if n = 2m + l, L |o„J/»i= i 2>/" = l.

Hence u= 1, and iJ= 1. The second rule would fail.

§ 19.] Convergence of a Power Sei-ies on its Circle of Con-

vergence.

The general question as to whether a power series converges,

oscillates or diverges at points on its circle of convergence is

complicated. For series whose coefficients are real the following
rule covers many of the commoner cases.

I. Let (7„ be real, such, that ultimatehj (in has the same sign
and never increases; also that ZrT„ = 0, and La„+,/a„=l, when
n=co. Then the radius of convergence of SanS" is unity ; and

1st. If 2rt„ is convergent, 2rt„5" converges absolutely at every

point on its circle of convergence.

2nd. If 2«„ is divergent, 2a„s* is semi-convergent at every

point on its circle of convergence, except s=l, where it is

divergent.

If we notice that on the circle of convergence 2a„s" reduces

to 2a„ (cos nd + i sin n6) = Sa„ cos nO + «2a„ sin nO, we deduce the

above conclusions at once from § 9.

Cor. Obviously the above conclusions hold equally for
2 (-!)"»„«", except that the point z- — l takes the place of
the point z=l.

The folloiving Rule, given by Weierstrass in his well-known

memoir Ueber die Thcorie der Analytlschen Facultaten*, applies

CrelU'$ Jour., Bd. 51 (18.50).
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to tlie innro poiieral case wlicre tlic coefficients of tlie jxiwer series

may bo comiilex. By § 6, Cor. 5, it is ea.sy to sliow lluit it

includes as a particular case the greater part of the rule already

given.

II. If on and after a certain value qf n ice can expand

o.+i/«» t» the form
0(.+i - o + hi a,

a, n «'

ich're g and h are real, then the beharioitr of 2rt,c" on its

circle of converf/ence, the radius of which is obviously unity, is

as follows :
—

1st. If d'i^Q the series diverges.

2iid. Ifg<-l the series converges absolutely.

3rd. If - l^g<0 the series is semi-convergent, except at the

point 5=1, where it oscillates i/' g = -l and A = 0, and diverges

if g>-l.
For the somewhat lengthy demonstration we refer to the

original memoir.

§ 20.] Abel's Theorems* regarding tlte continuity ofa power
series.

Since (§ 18) Sa.s" converges uniformly at every point within

its circle of convergence, we infer at once that

I. The sum of the power series Sa,;" is a cnntinuotisfunction

of z, say <^(s), at all points xnthin its circle of convergence.

This theorem tells us nothing as to what happens when we

pa.ss from within to points on the circumference of the circle of

convergence, or when we pass from jwint to point on the circum-

ference. Much, although not all, of the remaining iuformation

required is given by the following theorem.

II. If the power series -«,£" be convergent at a point z, on

its circle of convergence, and s be any point within the circle, then

•-•, 1 1

provided the order qf the terms in 2rt„i|," be not deranged in cases

where it /.« only semi-con vergent.

CrelWs Jour., Bd. i. (1826).
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In the first place, we can show that, in provinrr tliis thoniein

we need only consider the case where s and Zo lie on the same

radius of the circle of convergence. For, if z and «„ he not on

the same radius, describe a circle through z, and let it meet the"

radius Oz^ in z^. Then it is obvious that, by making [s-^ol

sufficiently small, we can make
|

~ -
a,

|

and
|
c,
-

;r„
|

each smaller

than any assigned positive quantity however small.

Since z and Zi are both within the circle of convergence, we

can, by making |«
—

2i| sufficiently small, make
| <^ (s)

-
<^ (;,) |

less than any assigned positive quantity e, however small. But

\4>{z)-4>{z,)\
= \<i>{z)-^{z,) + <i.{z,)-^{z,)\,

>|<^(«)-<^(«,)l + l<^(~i)-'/'(-c,)|.

<£+|.^(c,)-<^(c„)|.

If, therefore, we could prove that by making 1
2^
-

^o I sufficiently

small we could make
|
<^ (s,)

-
<^ (so) |

as small as we please, it

would follow that by making 1

2 - So I sufficiently small we could

make
|
^ (5)

-
<^ (so) |

as small as we please.

Let us suppose then that z and Zq have the same amplitude 6,

then we may put z = p (cos 6 + i sin 6), Zo = Po (cos 6 + isin 6), and

we take «„ = r„ (cos a„ + i sin a„). Hence

a„z"' = r„ (cos a„ + i sin a„) p" (cos nO + i sin nO),

=
(f.J

'"nPo" {cos (nO + a„) + i sin {?id
+ a,,)}.

^X^U^ + iVn),

where iB = p/p„, and becomes unity when z = Z(,; and ?7„ and F„

are real and do not alter when z is varied along the radius of the

circle of convergence.

It is now obvious that all that is required is to prove that if

the series of real terms ^afU„ remains convergent when x='l,

then L 2a:"?7„ = 2f7'„, or, what is practically the same thing,
I-l-O 1 1

to prove that, if 2 f^„ be a convergent series, then

1=1-0 1

Let S„ = {1
-
x) ni + {I

-
x") U^ + . . . + (1

-
X") Un,

= {l-x'')U„ + {l-af-')U„., + . . .+{l-x)Ur.
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Since *:^ 1 , 1 — j^, 1 — .r""', . . ., I - x satisfy the conditions

imposed ou a,, a., a, in Abel's ludiiiality (S 9). Also,

since 2^7, is convergent, l/„, Z7«_,, . . ., Ux satisfy the con-

ditions imposed on «,, u, »,. Hence, A and B being two

finite quantities, we have

(\-a')A>S^>{\-3f)D.

This inequality will hold however large we may choose n
;
and

we may cause x to approach the value 1 according to any law we

please. Let us put a: = 1 - 1/h'. Then we hiive, for all values

of K, however great,

{1 -(1 -l/«')-}^>'S.>{l -(1 -1/"')"}A
But L {\- 1/h')"

= X {(1
-

l/tt')--'}-""
= «"• = 1.

Therefore, since A and B are finite, L <S„
=

;
that is,

r-l-o 1

It will be observed that, in the above proof, each term of

2j:"f7, is coordinated with the term of the same order in 2f7,.

Hence the order of the terms in 2Cr, must not be deranged, if it

converges conditionally.

It follows from the above, by considering paths of variation

within the circle of convergence and along its circumference, that,

if a power serie.? converge at all points of the circumference of its

circle of convergence, then as regards continuity of the sum the

circle of convergence may be regardt-d as a closed region. This

does not exclude the possibility of point-s of infinitely slow con-

vergence on the circumference of the circle of convergence,

because such points are not necessarily points of discontinuity.

On the other hand, if at any point P on the circumference

of the circle of conver;;ence the series either ceases to converge

or is discontinuous, then the series cannot at such points be

continuous for paths of variation which come from within. If

however the series converge on both sides of P at points on the

circumference iufmitrly near to P, it must conver>;e to the same

values.

It would tlius appear t<} be impossible tli;vt a ixjwer series
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should converge infinitely near any point P of the circumforence

of its circle of convergence to one finite value and to a different

finite value at P itself. It follows that, if a power series is

convergent, generally speaking, along the circumference of its»

circle of convergence, it cannot become discontinuous at any

point on the circumference unless it cease to converge at that

point.

By considering the series SwnS", S-Pnz", and the series

5 («„i>i + «„-, I's
+ . . . + ihVn) a''+',

wliich is their product when both of them are absolutely con-

vergent, and applying the second of the two theorems in the

present paragraph, we easily arrive at the following result, also

due to Abel.

Cor. If each of the series %Un and 2v„ converge, say to limits

u and V respectively, then, if the series 2 («„ri + «„-ii'a + . . . + z<,»„)

be convergent, it will converge to uv ; and this will hold even if

all the three series be only semi-convergent.

Example 1. The series l+z+ . . .+j"+. . . has for circle of oon-

Tcrgence the circle of radius unity. Witliin this circle the series converges

to 1/(1-2). On the circumference the series becomes 2(co8»ifl+ isinn9),

which oscillates for all values of 6, except = for which it diverges. At

points within and infinitely near to the circle of convergence the series

converges to J + icotK.

Example 2. The radius of convergence for s/l+ . . . +j"/n+ ... is

nnity. Within the unit circle, as we shall prove later on, the series con-

verges to - Log (1
-

2). On the circumference of the unit circle the series

reduces to S(cosn9-|-»sinji^)/n. This series (see § 9, UI.) is convergent

when 9=t=0 ; but only semi-convorgent, since 21/n is divergent. Wheu e = 0,

the series diverges. The sum is therefore continuous everywhere at and on

the circle of convergence, except when d= 0. At points within the circle

infinitely near to 2= 1 the series converges to a definite limit, which is very

great; but at 2 = 1 the series diverges to +00.

Example 3. 22"/n' converges absolutely at every point on the circum-

ference of its circle of convergence (iJ
= l): and consequently represents a

function of 2 which is continuous everywhere within that circle and npon
its circumference.

Example 4. 2n2" is divergent at every point on its circle of convergence

(P = l); and its sum is a continuous function at all points within its circle

of convergence, but not at points npon the circumfijreuco.
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Exnnipio 6. PriiiKiihcim
* has cstablinhpcl the existence of n liirgo cl&M

of series which are tcmi-convcrgunt at every point on Ibc circumfcreuco of

their circle of coDvorgcnce : a particular case ia the series S (
-
l)*<i*/n log ii,

>

where X,= l when 2«"j.n<2*»", X,=0 when 2=^'m<2»»+'.

§ 21.] I'r'iiiriple of Imletermiixite Coeffirlrnts.

If 0,4-0, tin re is a circle of non-ecaiw^cent raJius within

which the convergent power series 2a,z" cannot vanish.

.Since the evanescence of the series implies a„ = - a,c- tfjC*
-

• • •,

it will be sufficient to show th:it there exists a fiuitc po.-itive

quantity X svich that, if p = lsl<A, then

|-a,c-rt,s»-. . . |<lflro|.

Now, since the series 2</„c" is absolutely conver;;pnt at any

point Zo within its circle of convergenceT there exists a 6nit€

positive quantity j such that for all values of «, | a,V |

= a^p'<g.
Hence |a,|<<;/p,".

Now
|-«.z-«,c*-. . .l>|a.c|+|a,z'| + . . .

>l«i|p + l«i|p' + - • •

<9{(pM + (j>ipoy+- • •}

<jpHp*-p)-

Hcnco, if we choose X so that g^/(p,
-
X)
=

|
a, |, that is X =

| a, | p^

(^ -•-
1 Og I ),

we shall have

\-a,z-a.,z'-. . .|<|a,|

for all values of s within the circle X.

Cor. 1. J/ rt„ + 0, there is a circle of non-evanescent rwUus

within whiih the convtrgent power siriis tf„s" + a«+,c"+' + . . .

Vitnijyhes only when 2 = 0.

For a«s" + o«4-iS"*' + • • •

= «"(a„ + a«+,r + . . . ).

Now, since (i„+0, by the theorem just provod there is a cin-lc

of non-evanescent radius within which </,„ + <««+iC •••... cannot

vanish : and 2" cannot vanish unless a = 0.

• Uatk. A>M., Bd. UT. (llWo).
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Cor. 2. If ao + ttiS + Oos' + . . . vanish at least once at some

point distinct from s = within every circle, however small, then

must ao = 0, ai = 0, a.,-0, . . ., that is, the series vanishes

identically/.

Cor. 3. ff for one value of z at least, differing from 0, the

series ^a^z" and 2^„3" converge to the same sum within every

circle, however small, then must a(,= ho, ai = bi, , . ., that is, tlw

series must be identical.

INFINITE PRODUCTS.

§ 22.] The product of an infinite number of factors formed

in given order according to a definite law is called an Infinite

Product. Since, as we shall i^resently see, it is only when the

factors ultimately become unity that the most important case

arises, we shall write the nth factor in the form 1 + m„.

By the value of the infinite product is meant the limit of

(1 + «i) (1 + 11.) . . . (1 + «,.),

(which may be denoted by 11(1 + ii„), or simply by P„), when n

is increased without limit.

It is obvious that if lAt„ were numerically greater than unify,

then LPn would be either zero or infinite. As neither of these

ca^es is of any importance, we shall, in what follows, suppose

I Ma I

to be always less than unity. Any finite number of factors

at iJie commencement of the product for which this is not true,

may be left out of account in discussing the convergency. We
also suppose any factor that becomes zero to be set aside; the

question as to convergency then relates merely to the product of

all the remaining factors.

Four essentially distinct cases arise—
1st. LF„ may be 0.

2nd. LFn may be a finite definite quantity, which we may
denote by n (1 + «„), or simply by P.

3rd. LP„ may be infinite.

4th. LP„ may have no definite value ;
but assume one or

other of a series of values according to the integral character of n.
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lu ca^es 1 and 2 the infiuite product mi>,'ht be said to be

convergent; it is, liowever, usual to confine tlie term convergent

to the 2nd case, and to this convenient usage we sliiill adhere
;

in case 3 divergent ;
in case 4 oscillatory.

§ 23.] If, instead of considiTing /*,, we consider ite logarithm,

we reduce the whole theory of inlinite products (so far as real

positive factors are concerned*) t« the theory of infinite series ;

for we have

logP, = log(l + u,) + log(l + a,) + . . . + log(l + «.)

= 2 log (1 + J/») ;

and we see at once that
ft

1st. If 21og(l + M„) is divcrgnnt, and Z.2log(l +h,) = - «,
then n (1 + M„)

=
;
and conversely.

2nd. If 2 log (1 + u.) be convergent, then n (1 + ii,) convcrgee

to a limit which is finite both ways ;
and conversely.

It

3rd. If 21og(l +»<,) is divergent, and Z21ng(l +t<„) = + oo,

then n (1 + I/,) is divergout; and conversely.

4th. If 2 log (! + «„) oscillates, then n(l+u,) oscillates;

and conversely.

§ 24.] If we confine ourselves to the case where m, has

ultimately always the same sign, it is ea-sy to deduce a simple

criterion for the convergencj' of n (!+«,).

If iK,<0, then 2 log (1 + u,)
= - oo

,
and n (1 + «,) = 0.

If Z,H,>0, 2 log (1 + f/„)
= + oc

,
and n (1 + «,) is divergent

It is tlienj'itre a nece^ary conJit inn for the convergence qf

n (1 + u,) that Lun = 0.

Since Lu^ = 0, /. (1 + «,)""" = e ; hence L log (1 + «,)/»*,
= 1,

It therefore follows from § 4 that 2log(l + m,) is convergent or

divergent acconling as 2tt, is convergent or divergent. More-

over, if «, be ultimately negative, the last and infinite part* of

Stt. and Slog(l -f u.) will be negative ; and if u. be ultimately

• Tlie logarithm of a coiij|)lcx number bim not yet been drfmrd, much
Imb diitcudiuad. Given, however, the theory of the loi^'arithm of n pmiiplex

vai-uible there id iiothinR illotiioal in mnkin^ it the hasiii of the tbourjr of

inQoito produuli, a( the foraiur dooa not pnuuppuM tho Utt49r.
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positive, the last and infinite parts of S«„ and 2 log (1 + «„) will

be positive. Hence the following conclusions—
If the terms of 2?<„ become ultimately infinitely small, and

have vltimatcly the same sign, t/ien

1st. n (1 + «„) is convergent, if 2m„ be convergent; and con-

versely.

2nd. II (1 + ?(„)
=

0, if 2m„ diverge to - co ; and conversely.

3rd. n (1 + M„) diverges to +ai,if 2m„ diverge to +<x>; and

conversely.

Since in the case contemplated, where «<„ is ultimately of

invariable sign, the convergency of n (I +?i„) does not depend on

any arrangement of signs but merely on the ultimate magnitude

of the factors, the infinite product, if convergent, is said to be

absolutely convergent. It is obvious that any infinite pivduct in

which the sign of m„ is not ultimately invariable, but which is

convergent when the signs of u„ are made all alike, will be,

a fortiori, convergent in its original form, and is therefore said

to be absolutely convergent ; and we have in general, for infinite

products of real factors, the theorem that n (1 + u„) is absolutely

convergent when 2«„ is absolutely convergent; and conversely.

Cor. Ifeither of the two infinite jjroducts
n (1 + m„), n (1

-
«„)

be absolutely convergent, the other is absolutely converge)^.

For, if 2?«„ is absolutely convergent, so is 2 (-;/„); and

conversely.

Example 1. (1 + 1/1=) (1 + 1/2=) • . • (l + l/n=) ... is absolutely conver-

gent Bince 21/h= is absolutely convergent.

Example 2. (1
-

1/2) (1
-

1/3) ... (1
-

l/») . . . baa zero for its value

since S (
-

Ijii) diverges to - a> .

Example 3. (1 + 1/^2) (1 + 1/v/-) • • • (l + l/v'") • • • diverges to +co

Bince 2{l/v/n) diverges to +co.

Example 4. (l + l/^/l) (1
-

l/v/2) {1 + 1/^/3) {l-l/v/4) . • . Since the

sign of ]/„ is not ultimately invariable, and since the series 2 (
-

1)" '/V" '^

not absolutely convergent, the rules of the present paragraph do not apply.

We must therefore examine the series S log (1 + (
-
l)»-'/V«)- ^he terms of

this series become ultimately infinitely small ; therefore we may (see § 1'2)

associate every odd term with the following even term. We thus replace the

series by the equivalent series

Slog il + ll.J{2n
-

1)
-

l/v/(2n)
- Wl*"' "

2'')}-
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It is eesy to show t)iat

1/^/(2,.
-

1)
- 1/VC2«) -

l/v't-in'
-
2n) <0.

for all values of n > 1. Hence the terms of the serieii in qaestion altimately

become noRative. Moreover, l/^(2ii
-

1) -l/ij(2ii)
- l/VH"'-2n) is ulti-

mately comparable with -
l/2ri. Hence Slog(l + (- 1)"-'/%/") diverges to

- 00 . The value of (1 + 1/v'l) (1
-

l/^/2) (1 + l/v/3) (1
-

1/^/4) ... in there-

fore 0. This is ail example of a seiiii-convcrgont product.

Examples. <'+'«-l"ie' + l<r-*~* . . . The scries 2 log (1 -fuj in this

case becomes

(l-H)-{l-^i)-Kl-^4)-(l-^i)-^...

which oscillati'S. The iiiGiiitc product therefore oscillates also.

Example 6. n (1
-
i»"'/n) is absolutely convergent if x < 1, and baa for

its value when x = l.

§ 25.] We have deduced the theory of the convergence of

infinite products of real factors from tlie theory of infinite series

by means of logarithms ;
and this is probably the best course for

the learner to follow, because the points in the new theory are

suggested by the points in the old. All that is necessary is to

be on the outlook for discrepancies that arise here and there,

mainly owing to the imperfectness of the analogy between tlie

properties of (that is, +a- a) and 1 (that is,
x a -^ a).

It is quite easy, however, by means of a few simple inequality

theorems*, to deduce all the above results directly from tlie

definition of the value of n (1 -i- «,).

If r„ have the meaning of g 22, then we see, by exactly the

same reasoning as we used in dealing with infinite series, that

the neces-sary and suflicicnt conditions for the convergency of

H (1 -I- «,) are that 1\ be not infinite for any value of n, however

large, and that L (/*,+«
-

I'n)
=

;
and that the latter condition

includes the former.

If we exclude the exceptional case where L J\ = 0, then,
»—•

since P, is always finite, the condition L (/',+ - P^) = is

equivalent to L (P^+JP,- i)
=

0, that is, i/\+«//',= l.

* 8po Wcionitraiui, Abhandlungcn aiu d. FuiutionttUehre, p. 203 ; or

CrtlU't Jour., Bd. 51.
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It', tlierolbre, wc deuote (1 + m„+i) (1 + (',,+j) . . . (1 + «„+„,)

by mQm we may state the criterion iu tlic following form, where

M„ may be complex :
—

T/w necessary and sufficient condition that n (1 + u„) coiivenjo.

to a finite limit differing from zero is that L
\ ,„Qh

- 1
|

=
0, for

all values of m.

For, since L
\ „,Q„

- 1
1

=
0, given any qviautity e however

n=ao

small, we can determine a finite integer v such that, if u-iv

UQ.i-l|<«- Therefore, since mQn = Pn+mll\, we have in

particular

l-£</',+„,/P.<l + e.

Since V is finite, P^ is finite both ways by hypothesis. Therefore

(l-e)P,</',+„<(l + .)P,.

Since m may be as largo as we please, the last inequality shows

that Pn is finite for all values of n however large.

Again, since P„ is not infinite, however large n, the con-

dition L
I ,„Q„

- 1
1

= 0, which is equivalent to L „Q„ = 1, leads

to L Pn+m = L P„. The possibility of oscillation is thus ex-

eluded. The sufficiency of the criterion is therefore established.

Its necessity is obvious.

We shall not stop to re-prove the results of § 24 by direct

deduction from this criterion, but proceed at once to complete

the theory by deducing conditions for the absolute convergence

of an infinite product of complex factors.

§ 26.] n (1 + «„) /a" convergent if 11 (1 + 1
?<„ |) is convergent.

Let p„ = I M„|, so that p„ is positive for all values of n, then,

since n (1 + p„) is convergent,

ii(l+P-.+.)(l+P"+.;)- • .(l + P.+,«)-l} = (1).

Now

JU - 1 = (I + ^^.+,) (1 + u„ ,,) . . . (1 + «„+,„)
-

1,

= .««„+l + -<«„+iW„-(..i + . . . + ?<„+! W„+.j . . . M„4,„.

Hence, by chap, xii., g§ 9, 11, we have

0^|mQ»-l I ^^Pn+I +2p„+,p„+o+ . . .+p„+,p,H2. . Pn+m,

>(! + p„h) (1 + Pn+=) . . . (1 + p„+,„)
- 1.

C. II. 11
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Hence, l.y(l),XUf^-l 1

= 0.

Ilemark.—Tlie converse of tliis tlieorcin is not tnie ; as may
be seen at once by considering the product (1 + 1) (1

-
i) (1 + \)

{\-\) . . ., wliicli converges to the finite limit 1; although

(1 + 1)(1 + J)(l +i) (l + i) . . . is not convergent.

When n (!+</„) is such that n(l + |«„|) is convergent,

n (1 + j/„) is said to be nbsnlulely convergent. //" n (1 + ?<„) be

convergent, but n (1 +
1 «, |) non-conrergent, U (1 + «,) is said to be

semi-convergent. The present use of these terms includes as a

particular ca.se the use formerly made in § 24.

§27.] 1/ 'S,\u„\ be convergent, thin n (!+«,) is absolutely

convergent; and conversely.

For, if 2
I «„ I

be convergent, it i.s absolutely convergent, seeing

that
I
«/n

I

is l)y its nature positive. Hence, by § 24, 11 (1 + 1 u„ |)

is convergent. Therefore, by § 26, n (1 + «,) is absolutely con-

vergent.

Again, if 11(1 + ?/,) be absolutely convergent, n(l + |«,|)

is convergent; that is, since |k,| is positive, 11(1 +
1 a, |) is

absolutely convergent. Therefore, by § 24, 2
1 ?<, |

is absolutely

convergent.

Cor. If lun be absolutely convergent, 11 (1 + u„x) is absolutely

convergent, u-here xis either independent of n or is such a function

of n tliat i
I

a:
I

=*= ao when n= <x>.

Example 1. IT (1 -z*/n) is absolatclv convergent for all complex valaes

each that
|
x

|
< 1, but is not abRolut«1y convcrRcat when

|
z

|

= 1.

Example 2. 11(1 -z/n'), where z is indcpcmlcnt of n, ig absolutely

canvergcnt.

§ 28.] After what ha.s been done for infinite scries it is not

necessary to discuss in full detail the a])i>lication of the laws of

algebra to infinite products. We have the following results—
I. The law of association may be sa,fehi applied to titefacton

o/' n (1 + w„) provided Iai„ = ;
but not otherwise.

H. The necessary and sufficient condition that n (1 + «,) shall

converge to the same limit {finite both ways), whatever the order of
ifs factors, is that the .•'rries 2//, be nJistilutrly convergent .

When w, is real, this result foUow.s at once by considering the

series 2 log (1
+ u„) ;

and the .same method of proof ajiplies when
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«„ is complex, the theory of the logarithm of a complex variable

being presupposed*.
An infinite product which converges to the same limit what-

ever the order of its factors is said to be unmnditionally convergent.

'

Tlie theorem just stated shows that unconditional convergence and

absolute convei-gence may be taken as equivalent terms. A con-

ditionally convergent product has a property analogous to that of

a conditionally convergent series
;

viz. that by properly arranging

the order of its terms it may be made to converge to any value

we please, or to diverge.

III. 1/ both n (1 + M„) and n (1 + Vn) be absolutely/ convergent,

then n {(1 +M„) (1 +i'n)} is absolutely convergent, and has for its

limit {n (1 -H w,,)}
X {n (1 + V,,)] ;

also U {(1 -i- «„)/(! 4- v„)\ is abso-

lutely convergent, and has for its limit {13 (1 + M„)}/{n (1 -^ v„)},

provided none of thefactors ofU {I + v„) vanish.

If Qn denote (l + Un+i) (1 + 11^+2) • • •, the total residue of

the infinite product n (1 + «<„) after n factors, then, if the product

converges to a finite limit which is not zero, given any positive

quantity e, however small, we can always assign an integer v such

that \Q„— l\<e, when n<^v.

If M„ be a function of any variable z, then, when « is given,

V will in general depend on z.

If, however, for all values of z within a given region li in

ArgandJs diagram an integer v independent of z can be assigned

such that

\Qn-l\<^,

when nJs^v, then the infinite product is said to bo UNiroUMLY

CONVERGENT tvithiu R.

IV. Tff{n, z) be a finite single valuedfunction of the integral

variable n and of z, continuous as regards z within a region R,

and if II {1 +f(n, z)} converges uniformly for all valves of z

tvithin R to a finite limit <^ (s), then <f> (s) is a continuousfunction

of z within R.

Let z and z' be any two points within R, then, since

* See Harkness aiul Morley, Treatise on the Theory of Functions (1893),

§ 79 ; or Stolz, AWjenieine Arithmctik, ThI. u. (laSG), p. 238.

11—2
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if>{z) and 0(c') are each iiiiito both ways, it is sufficient to prove
that L \4>{z)/'f>{:)\

= l.

Let

where P., (?», &c. have the usual meanings.

Since tlie product is uniformly convergent, it is possihle to

determine a finite integer v (independent of z or z) such that,

when n-d(.v, wo have

|Q.-1|<€, and IQ-.-lKc,

where € is any assigned positive quantity however small. Hence,

in particular, we nmst have

\Q.\ = i + e., |Q'.|
= i+x«;

where and x are real quantities each lying between - 1 and + 1.

Now *(^)

*(«)
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Since ;/;„ (-) is finite for all values of n aud :, we can find a finite

upper limit, g, for !«'„+,, w'„+2, . . . Therefore

I (?„
- 1

I

< (1 + !7/„+,) (1 + ffn'n+n) ... - 1.

Since 2/i'„ is absolutely convergent, 2.r//i'„ is absolutely con-

vergent. Hence n (1 + ^7/,,) is absolutely convergent ; and we

can determine a finite integer v (evidently independent of z,

since g and /a'„ do not depend on z), such that, when 7i<t''>

(1 +gr|x'„+,)(l +giJ.'n+2) . . . -1<£. Hence we can determine v,

independent of z, so that
| Q„

- 1
1

< £, where e is a positive

quantity as small as we please. It follows that n {1 +/i„w„(«)}

is tiniformly convergent, and therefore a continuous function of

z within li.

Cor. 2. ^ ^a^z" be convergent when \z\
= B, then n (1 + a„s")

converges to ^ (z), ichere <f> {z) is a finite continuaus function of z

for all values of z such that |s|<ii!.

Cor. 3. If f(n, y) he finite and single-valued as regards w,

and finite, single-valued, and continuous as regards 1/ within the

region T, and if ^'{n, y) z" he ahsolutcly convei-gent wJien \z\
=

Ii;

then, so long as\z\<li,'0.{\ +f(n, y) s") cotiverges to tp (y), where

'^(y) is a finite continuous function of y ivithin T.

Cor. 4. If 2a„ be absolutely convergent, then EI (1 + a„z)

cotiverges to
i/f (z), where ip (s) is a finite and continuous function

of z for all finite values of z.

We can also establish for infinite products the following

theorem, which is analogous to the principle of indeterminate

coefficients.

V. If, far a continuum of values of z including 0, II
( 1 + a^z")

and n (1 + ftnc") be both absolutely convergent, and n (1 + a„s")
=

n (1 + i„3"), then rti
=

bi, a^ = b,, . . ., a„ = i„, . . .

For we have

21og(l+a„2») = 21og(l + 6„c'').

both the series being convergent.

Hence for any value of z, however small, we have, after

dividing by z,

la^z"-' log (1 + a^z'-f^''
= 26,s"-' log (1 + />„=")"'-^.
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yince i log (1 +a,2")""^'= 1, wo have, for very small

values of z,

(hAi + aiAiZ + a,At:^ + . . .=biBi + l>.iBjZ + b,B,^+ . . . (1),

where A,, At, . . ., /?,, //j difler very little from unity, and all

have unity for tlioir limit wliun c = 0.

ITcnee, since in,;""' and 2<<,c""' are, liy virtue of our

li)'l)otheses, absolutely convergent, we have

L {cUiA«: + a-,A,!^ + . . .) =

L {b.,BtZ + tj/^.r" + . . . )
= 0.

Hence, if in (1) we put z = Q, we must have

a, L ^ 1
=

6| L yy, .

But LAx = LBi = \
;

therefore a, = bi. Removing now the

common factor l+rt,2 from both products, and proceeding as

before, we can show^ that «, = /*,; and so on.

§ 29.] The f<jllowing theorem gives an extension of the

Factorisation Theorem of chap, v., § 15, to Infinite Products.

Jf i/' (2)
= n (1 + a,j) be contergont for all i-ulii^i of z, in the

sense that L
\ ^Q, — 1

1

=
0, when n = « , no matter itftat value m

may hate, then <p{z) will vaiii.<h if z hmv one of the tYi/;/<',«
-

1/a,,
-

l/oa, . . .,
-

\/a, and, if i/'(s)
=

0, tht-n z mujst have one

of the tallies - 1/a,,
-

l/oj, . . .,
-

l/or, . . .

In the first place, we remark that, by our conditions, the

vanisliing of LnQ„ when n = oc is precluded The exc«i)tioniJ

ca.se, mentioned in §23, where 21og(l+«,c) diverges to - »,
and n (1

+ a,z) converges t^i for all values of z, is thus excluded

Now, whatever « may be, we have

^i') = PnQ, (1).

Suppose that we cause z to appm.'ujh the value —l/or. We
can always in the equation (1) take n groat<'r than r; so that

1 +a,z will occur among the fact4)rs of the integral function P,.

Hence, when z = -l/ar, we have /\ = 0, and therefore, since

Again, suppose that iA(s)
= 0. Then, hy (1), P,Q, =

But, since n may be us large as we please, and L(i» = 1 when
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m=oo, we can take n so large that <3„ + 0. Hence, if only »t

be large enough, the integral function F,, wiU vanish. Hence s

must have a value which will make some one of the factors of

P„ vanish
;
that is to say, z must have some one of the values*

-1/ai, -l/oj, . . ., -1/ar, ...
It should be noticed that nothing in the above reasoning

prevents any finite number of the quantities Oi, a.i, . . ., Or, . .

firom being equal to one another
;
and the equal members of the

series may, or may not, be contiguous. If there be /^ contiguous

factors identical with 1 + a„z, the product i/' (z) will take the form

n (1 + a^zY' ;
and it can always be brought into this form if it be

absolutely convergent, for in that case the commutation of its

factors does not affect its value.

Cor. 1. I/z lie within a continuum {£) which includes all the

values

-l/oi, -1/rto, . . ., -1/rt,., ... (A),

and -\lh, -l/b.„ . . .,
-

1/6„, . . . (B),

(/ n (1 + UnzY' and n (1 + InzY' he absolutely convergent for all

values of z in (z), iff{z) and g{z) be definite functions of z which

become neither zero nor infinite for any of the values (A) or (B),

and if, for all values of z in (z),

f(z) n (1 + a,zY' = g(z)n(l+ b„zY' (1),

then must each factor in tlie one product occur in the other raised

to the same power ; and, for all the values of z in (z),

f(~)-9{z) (2).

For, since, by (1), each of the products must vanish for each

of the values (A) or (B), it follows that each of the quantities

(A) must be equal to one of the quantities (B) ;
and vice versa.

The two scries (A) and (B) are therefore identical.

Since the two infinite products are absolutely convergent, we

may now arrange them in such an order thatai = &j, a., = bi, . . .,

&c., so that we now have

/(s) (1 + a,zY' (1 + a,z)>^ ...=g{z){\ + a.s)"' (1 + a,zY^ . . . (3).

Suppose that /Xi4=v,, but tliat /^i, say, is the greater; then

we have, from (3),

f{z){l+a,zY'-'''{l+a,z)'^. . .=g{z){i + a.,zy'. . . (i).
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Now this is impossible, because the left-hand side tends to

as limit wlicn z=-l/at, whereas the richt-hand side does not

vaiiisli wlien 2 = — l/o,. We must thcrefure have /*]
=

>',; and,

in like manner, /tj
= v, ;

and so on.

We may therefore clear the first n factors out of each of the

products in (1), aud thus deduce the eiiuation

/(z)Q. = ff{=^)Qfn (5),

where Q, aiitl Q\ have the usual meaning. The equation (5) will

hold, however large n may be. Hence, since LQ^ = L(/n =
1, wo

must have

/(--)=i7(--).

Cor. 2. From t/ii.< it/nllows that a given /unction of z tchich

vanishes for any of the values (A) and for no others within thr

continuum {z), can be expressed within (z) as a convergent it\finite

product of the form f(z) U (1 +«,;)•'• {wheref(z) is finite and not

zerofor all finite values of z within (z)), if at all, in one way only.

If the infinite product be only semi-convergent, the above

demonstration fails.

It may be remarked that it is not in general possible t<i

express a function, having given zero points, in the form described

in the corollary. On this subject the student should con.sult

AVeierstrass, Abhandlnngen am dcr Functlonenlehre, \i.
14 et saq.

K.STIMATION OF THE IlKSinLE OK A CONVERGING SE1UF:.S OR

iNKi.NiTE runnrcT.

§ 30.] For many theoretical, ancl for .some practical purposes,

it is often required to assign an upper limit to the residue of an

infinite series. This is ciisily done in what arc by far the two

nio.st important cases, namely:—(1) Where the ratio of converg-

ence (pn = Un+t/u») ultimately becomes less than unity, and the

terms are all ultimately of the same sign ; (2) Where the terms

ultimately continually diminish in numerical vaiuo. and altoni.'ite

in sign.

Cast (1). it is e.^>eutial to distiugui^ili two varieiics of series
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under this lioad, namely:—(a) That iu which p„ descends to its

limit p ; {b) That in whicli pn ascends to its limit p.

In case (a), let n be taken so large that, on and after n, p„ is

always numerically less than 1, and never increases in numericaP

value. Then

Rn = Un+1 + M«t!!
+ «'«+3 + . . . ,

= M„+i
-^

1 + + . + . . . K
I "u+l *'n+2 M„+i J

= M„+i {1 + p„+i + p„+i p„+2 + p„+i Pn+2pn+3 + ...}•

Therefore, if dashes be used to denote the numerical values,

or moduli, of the respective quantities, we have

R'n'ifu'n+l {1 + P'n+I + P'n+l' + • • •},

>«<'n+l/(l
-

P'n+l),

:t>M'„+,/(i
-

u'„+./u'„+,) (1).

And also, for a lower limit,

ii;'n<w'n+i/(l-p) (2).

In case (b), let n be so large that, after n, p„ is numerically

less than 1, and never decreases in numerical value. Then

Ji„ = «<„+! {1 + p„+i + P„+2P„+1 + . . •}•

.B'„>?«'n+i{l + p + p- + . . .},

:t>M'„+i/(i-p) (3);

and we have also

-K'„<t?t'„+l/(l
-

P'n+l),

<j: ?«'„+,/(!
-

u'n+,/u'„+i) (4).

Case (2). When the terms of the series ultimately decrease

and alternate in sign, the estimation of the residue is still

simpler. Let n be so large that, on and after n, the terms never

increase in numerical value, and always alternate in sign. Then

we have
il n = W n+i

~ U n+i + U ,,+3
—

. . .

>f4+i (5);

<t«'n+l-«'«+J (6).
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§ 31.] Pesldue of an Infinite Product. Let us consider the

infinite products, n (1 + «,) aud n (1
-

u,), in which m, becomes

ultimately positive and less than unity. If the series 2«, converge

in such a way that the limit of tlie convergency-ratio p» is a

positive quantity p less than 1, then it is easy to obtain an

estimate of the residue. Let Q,, Q\ denote the products of all

the factors after the «th in 11 (I + «.) and n (1
-

u,) respectively,

so that Q,>1, and Q'»<1. We suppose n so great that, on

and after n, u, is positive, p, less than 1, and either (a) p, never

increases, or else {b) p, never decreases. In case (o), Su, falls

under case (1) (a) of last paragraph ;
in case (b), isu, falls under

case (1) (b) of last paragraph. We shall, as usual, denote the

residue of 2«, by It, ;
aud we shall suppose that n is so large

that |J?,|<1.

Now (by chap, xxiv., § 7, Example 2),

Q» =
(1 + «.+,) (1 +«,+,) . . .,

>1 + »/.+ ,+ M.+J + . . .,

>1 + /^, (1).

Q'n^{l -«» + l)(l -«,+5) • • M

>1-/^ (3).

Also,

l/Qn =
{1
-

«.+l/(l + «.+.)} {1
- «.W(1 + «.«)} • • M

>1 -
«»m/(1 + «.4l)

- ««W(l + «*«+l) -• • •»

>1 -«, +,-«,+,-. . .,

>l-/.V

Whence <?.-!< nj{l -
/?.) (.3).

In like manner,

1/Q'. = {1 + ««,m/(1
-

«.^i)} {1 + «.«'(!
-

««-«>} • • ..

>1 +W,+,/(l -«.,,) + «.fj/(l -"»»:)+• • •»

>1 +W.,., + «,+, + . . .,

>1 + /.'..

Whence 1 - U:>I.'J(i + /'.) (».
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From (1), (2), (3), and (4) we have

/i„<Q,.-l<7?„/(l-70 (5);

E,J{l + R„)<l-Q\<E„ (G).

Since upper and lower limits for 11,,, can be calculated by
means of the inequalities of last paragraph, (5) and (G) enable us

to estimate the residues of the infinite products IT
(1 + «„) and

n(i-«„).

Example. Find au uiiper limit to the residue of n (l-i"/H), x<l.
Here «„=x"/;i, p„=.T/(l + l/n), p=x. The series has an aseendinR con-

vergenoy -ratio ; and we have iJ„<«„^.J(l -p)<a.-"+i/(tt+l) (1-x). There-

fore, 1- Q'„<.r"+'/(H-(-l) (1 -x). Hence, if 7"„ be the ;ith approximation to

11(1 -x"/h), P'„ differs from the value of the whole product by less than

100x"+V(K-l-l)(l-a;) «/o of P'„ itself.

CONVERGENCY OF DOUBLE SERIES.

§ 32.] It will be necessary in some of the following chapters

to refer to certain properties of series which have a doubly in-

finite number of terms. We proceed therefore to give a brief

sketch of the elementary properties of this class of series. The

theory originated with Cauchy, and the greater part of what

follows is taken with slight modifications from note vin. of the

Analyse Algebrique, and § 8 of the liesumes Ana/jjtiques.

Let us consider the doubly infinite series of terms repre-

sented in (1). We may take as the general, or specimen term,

Mm, n, where the first index indicates the row, and the second the

column, to which the term belongs. The assemldage of such

terms we may denote by 2«m, % ',

and we .shall speak of this

assemblage as a Double Sei-ii's*.

A great variety of definitions might obviously be given of

the sum to a finite number of terms of such a series
; and,

corresponding to every such definition, there would arise a

definite question regarding the sum to infinity, that is, regarding

the convergcncy of the series.

There are, however, only four ways of taking the sum of the

double series which are of any importance for our purposes.

• Sometimes the term "Series of Double Entry" is used.
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J^irst Way.—We may define tlie finite sum to be the sum of

all the mn terms witliin the rectnngiilar array OKMN. Tliis

wc denote by iS„, ,. Then we may t^ike tlic limit of this by

first making m and finally n infinite, or by first making w in-

finite and finally m infinite. If the res\dt of both these limit

operations is the same definite quantity S, then we say tliat

2«,i, a converges to S in the first way.
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other not
; 4tli, that oue leads to one detiuite finite vahie, and

the other to another definite finite vahie*. In all these cases

we say that the series is non-convergent for the first way of

summing. %

Second Way.—Sum to n terms each of the series formed by

taking the terms in the first m horizontal rows of (1) ;
and call

the sums Jj, „, Tj, „, . . ., ?'„,,«• Define

S'^,„=T,,,+ T.^,, + . . . + r„,„ (2)

as the finite sum.

Then, supposing each of the horizontal series to converge

to Ti, To, . ., Tm respectively, and STm to be a convergent

series, define

S'='T^+T^ + . . . + T„ + . . . ad 00 (3)

as the sum to infinity in the second way.

Third Way.—Sum to m terms each of the series in the first

n columns; and let these sums be Z7i, m, f^2, m, • •, f^n, m-

Define

S",„,n=Ul.m+U,,„, + . . .+ U„,„, (4)

as the finite sum.

Then, supposing these vertical series to converge to Ui, U^,

. . ., Un respectively, and 'S.Un to be a convergent series,

define

S"= Z7i+ U. + . . .+ £/•„ + . . . ad CO (5)

as the sum to infinity in the third way.

So long as m and n are finite, it is obvious that we have

^ m,n~ ^ m, n *-'m, n ,

SO that, for finite summation, the second and third ways of

summing are each equivalent to the first.

The case is not quite so simple when we sum to infinity. It

is clear, however, that

S'=L{LS,n,„\ (6);
m=-B n=«

and S"=L{LS„,.} (7);
A^ao m^s)

•
Examples of some of these cases are giveo in § 35 below.
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BO that S' and S" will be c<ni!il t<> cjkIi otlicr and to 6' when the

two ways of taking tlio limit of A',,,, both lead to the Kimo
definite finite result*.

Fourth Wni/.
—Sinn tlic tcnns which lie in the successive

diagonal lines of the array, namely, A A', BB', CC , . . ., KK';
and let these sums be />,, A, .... /),+, resi)ectively ; that is,

A =
«1.I, A=Ki,. + «=, A+i = «,., + «,,,-, + . . . + «,,,.

Define

-5>";=A +A + . . . + />. (8)

as the finite sum ; and, supposing 2Z), to bo convergent, define

S" =LK + D, + . . . + />, + . . . ad « (9)

as the sum to iiijiniti/ in the fourth u-ai/.

The finite sum according to this last definition includes all

the terms in the triangle OKK'; it can therefore never (except
for m = n=l) coincide with the finite sum according to the

former definitions. Whether the sum to infinity {S'") accortling

to the fourth definition will coincide with S, S', or S", dei>ends

on the nature of the series. It may, in fact, happen that the

limits S, S', S" exist and are all equal, and that the limit S'" is

infinite t.

§ 33.] Double series in which the terms are all ultimately of
the same sign. By f;ur the most important kind of double series

is that in which, for all values of m and n greater than certain

fi.vcd limits, «„, , has always the same sign, say always the

positive sign. Since, by adding or subtracting a finite quantity
to the sum (however defined), we can always make any finite

number of terms have the same sign as the ultimate tonus of

the scries, we may, so far as questions regarding convergency
are concerned, suppose all the terms of 2«», , to have the same

(say positive) sign from the beginning. Suppose now (1) to

represent the array of terms under this l;ust su])position ; and let

us farther suppose that 2u,^ , is convergent in the first way.

Then, since L{S^^_n*^-S^») = 8-8=0, when TO=ao,
n = 00 whatever p and q may be, it follows that the sum of all

* For an ilUmtration of the caso whco tbia ia not to, tea below, { 35.

t S«o bvlow, § 35.
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the terms in the gnomon between NMK and two parallels to

NM and MK below and to tlie right of these lines respectively,

must become as small as we please when we remove NM suffi-

ciently for down and MK sufficiently far to the right.

From this it follows, a fortiori, seeing that all the terms of

the array are positive, that, if only m and n be sufficiently great,

the sum of any group of terms taken in any way from the residual

terms lying outside OKMN will be as small as we please.

Hence, in particular,

1st. The total or partial residue of each of the horizontal

series vanishes when w = oo .

2nd. The same is true for each of the vertical series.

3rd. The same is true for the series 2Z)„.

The last inference holds, since >S""„ obviously lies between

/S',,„-,
and Sn-i,„-i.

Hence

Theorem I. If all the terms of %Um, „ be positive, and if the

series be convergent in the first sense, then each of the Imizontal

series, each of the vertical series, and the diagonal series will be

convergent, and the double series will be convergent in the re-

maining three ways, always to the same limit.

If we commutate the terms of a double series so that the

term ;<„, „ becomes the term «„. „-, where m =f{m, n), n' = g (m, n),

f{m, n) and g {m, n) being functions of m and n, each of which has

a distinct talue for every distinct pair of values of m and n (say

non-repeating functions), and each of which is finite for all finite

tallies ofm and n (Restriction A*), then we shall obviously leave

the convergency of the series unaffected. Hence

Cor. 1. If 2Mm, „ be a series of positive terms convei-gent in

the first way, then any commidation of its terms {under Re-

striction A) will leave its convergency unaffected; that is to say, it

will converge in all the four ways to tlie same limit S as before.

* No 6Uoh restriction is usually mentioned by writers on this subject;

but some such restriction is obviously implied when it is said that the terms

of an absolutely convergent series are commutative; otherwise the character-

istic property of a convergent series, namely, that it has a vanishing residue,

would not be conserved.

(
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Cor. 2. Jj titu terms (all jmsitict:) nf a coin\rijvnt siiigLi geries

iiMn (»> urraiKjid into a double svr'us 2h„._„., wlure m and n are

functions of n suhject to Restriction A, then Su.', „> will converge

in allfour ways to the same limit a.i 2«,.

It shoiilil be noticed tluit tliis la.st corollary gives a, furtlier

extctLsion of tlio laws of coiDiinitivtioii and a.s.sociation to a series

of positive tonus
;
and therefore, as we sliall see presently, to

any absolutely convergent series.

Let us ne.xt a.ssunic that the scries 2h„_ , is convergent in tho

second way. Then, since ^T„ is convergent, wc ciin, by suffi-

ciently increasing m, make the resiilue of this series, that is, the

sum of as many as we choose of the terms below the iufmite

horizontal line iVJ/, less than it, where t is as small as wo

please. Also, since each of the horizontal scries is, by our

hypothosi.s, convergent, we can, by sufficiently increasing n, make

the residue of e;K'h of them, less than c/'i;/* ;
and therefore the

sum of their residues, that is, as many as we please of the terms

above iVJ/ producoil and right of J/A", less than J t. Hence, by

sufficiently increiusing both m and n, we can make the sum of

the terms outside OKMN, less than e, that is, as small as we

please. From this it follows that 2«„, „ is convergent in the

first way, and, therefore, by Theorem 1., in all the four ways.

In exactly the same way, we can show that, if 2m„, , is cou-

vergeut in the third way, it is convergent in all four ways.

Finally, let us assume that -u„^ , is convergent in the fourth

way. It follows that the residue of the diagonal series i/>,, can,

by making p largo enough, be made as small as we jilease.

Now, if only m and » be each largo enough, tho residue of <Si«,,,

that is, the sum of as many as wo jdejuse f(f the tt'rins outside

OKMN, will contain oidy t4.Tnis outside OKK', all of which are

terms in the residue of S"'p. Hence, since all the terms in the

army (1) arc positive, we can niake tlie sum of as many a-s wo

pleiuse of the terms outaido UKMN as snniU as we pltaac, by
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sufficiently increasing both 7« and 7i. Therefore S«„,_„ is con-

vergent in the first way, and consequently in all four ways.

Combining these results with Theorem I., we now arrive at

the following :
—

Theorem II. If a double series of positive terms converge in

any one of the four ways to the limit S, it also converges in all the

other three ways to the same limit S ; and the subsidiary single

scries, horizontal, vertical, and diagonal, are all convergent.

Cor. Any single series 2m„ consisting of terms selected from

~t'm,n {nnder Restriction A) will be a convergent series, if 2!/„,,„

he convergent.

Restriction A will here take the form that n must be a

function of m and n whose values do not repeat, and wliich is

finite for finite values of ;« and n.

Example. The double series 2x"'y" is convergent for all values of x
and y, such that 0<x<: +1, 0-ci/< +1.

For the (m + l)th horizontal series is ^'"Si/", which converges to x"'/(l
-
y)

BinoeO^y < +1. Also Si"7(l-J/) converges to 1/(1 -x)(1-j/) since 0<x< +1.

§ 31.] Absolutely Convergent Double Se>-ies.—When a double

series is such that it remains convergent when all its terms are

taken positively, it is said to be Absolutely Convergent.

Any convergent series whose terms are all idtimately of the

same sign is of course an absolutely convergent series according

to this definition.

It is also obvious that all the propositions which we have

proved regarding the convergency of double series consisting

solely of positive terms are, a fortiori, true of absolutely con-

vergent double series, for restoring the negative signs will, if it

affect the residues at all, merely render them less than before.

In particular, from Theorem II. we deduce the following,

which we may call Cauchy's test for the absolute convergency of a

d<iuble series.

Theorem III. If u'^.n be the numerical or positive value of

i/„,n, and if all the horizontal series of 2M'm,n be convergent, and

t/ie sum of their sums to infinity also convergent, then

1st. 77/6 Horizontal Series of 2«„,,n are all absolutely con-

c. II. 12
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wrgetU, and the sum of their sums to infinity converges to a

definite finite limit S.

2nd. -«„,n converges to S in the first way.

3r(L AU the Vertical Series are absolutely convergent, and

the sum of their sums to infinity converges to S.

4th. The Diagonal Series is absolutely convergent, and con-

verges to S.

5th. Any series formed by taking terms from iM„,, {under

Restriction A) is absolutely convergent.

The like conclusiims also follow, if all the vertical series, or if

the diagonal series of -«'„.» be convergent.

Cor. Xf "StU^ and S», be each absolutely convergent, and con-

verge to u and v respectively, then 2 ((/,i'i
+ «,-it', + . . . + u,v„) is

absolutely convergent, and converges to uv.

For the scries in question is the diagonal series of the double

series 2«„rn, which, as may be easily shown, satisfies Cauchy's
conditions.

This is, in a more special form, the theorem already proved
in § 14.

Example 1. Find the condition that the double scries 2 (-)"*,C,,!*""^'"

{n-t m, ,Cg:=l) lie absolutely convei');cnt; and find its sum.
The scries may be arranged thus :

—
1 + x+ x'+. , . +i"+. . .

-y - 2yx- Syx'-... _(n + l)yi«- . . .

+ y»+ 3y'j-+ Ci/'i> + ... + }(n + l)(n + 2)y>i"+. . .

(-ry"' + (-r„+,C,y'»x + (-r„+,C,s,-x»+. . . + (-)-«+,C,y-x»+. . .

ir x' and y' bo the moduli, or positive values, of x and y, then the ecriei

2m'„,, correspoiidiuK to the above will bo

1 + z'+ x'»+. . . +x'"+. . .

+ y'+2y'x' + :tyV+. . . + (n + l)y'x*+. . .

In order that the horizontal series in this last may bo eonvcrf^nt, it is

BoooBsary and snlTicicnt that x'< 1.

Also !''„+,
=

!/'•"/( I -x')""*'; hence the necessary and rafBcient condition

that 27*„ be convergent is that y'<l-x', which implies, of course, that

The given series will thcrafnro satisfy Cauchy's conditions of absolute

eonvergi'ncy if |x|-;l, |x| + |t/|<l, and conseiiucntly also |y|«-L
These being fulflllod, we have Tim^i= (

-
)"V"/(1

-
x)"^' j
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1-x+y
'

and the sum of the series, in whatever order we take its terms, is 1/(1 -x + y).

Example 2. If Ur=a;='+ a:-'*' + a;'^"+ ..., where i<l, show that

t/o Ui Ifc. - x'^ X-' x'^

2» 2' 2- " 2" 2' 2-

Let S denote the series on the left. Then S may be written as a double

series thus,

i(x=^+^' + x^V. . .+x^+. . .)

+
2j(0

+ir+x--+. . . + x- +. . .)

+
2j(''

+0 + 1-'+. .. + !="+.. .)

Now each of the vertical series is absolutely convergent, and we have

l7,=ar''(l-l/2»+i)/(l-^)= x=" (2-1/2"). 2y„is of the same order of con-

vergence as 2x'", hence it is absolutely convergent. Also aU the terms of the

double series are positive. The double series therefore satisfies Cauchj-'s
conditions ;

and its sum is the same as that of 2f7„, or of 2r„. Now

ZT^=u„l20 + u,l2> + u,l2-+. . .;

and 2l/„=2x="(2-l/2»),

= 22j;=''-2x-"/2",

= 2u„-i2°/2»-a:=V2'-. . .

Hence the theorem.

§ 35.] Examples of the exceptional cases thai arise when
a double series is not absolutely/ convergent. It may help to

accentuate the points of the foregoing theory if we give an

example or two of the anomalies that arise when the conditions

of absolute convergency are not fulfilled.

Example 1. It is easy to construct double series whose horizontal and
vertical series are absolutely convergent, and which nevertheless have not a

definite sum of the first kind
; but, on the other hand, have one definite sum

of the second kind and another of the third kind.

If the finite sum of the first kind, S^„, of a double series be A +f{m, n),

where A is independent of m and n, then it is easy to see that

"....»=.'('«> n)-f{m-l, n)-/(m, n-l)+/(ni-l, n-1).
Hence we have only to Bive/(m, ;i) such a form that

L { Lf{m,n)]* L { Lf{m.v)],

12—2



ISO EXCEPTIONAL CASES CH. XXVI

and we shall liave a series whose sums of the second and third kind are not

alilie, and which cousciiucntly has no dclhiite gum of the first kind.

Suppose, for example, tbat/(m, fi)
= (m + l)/(m + n + 2), then

u^,= (m + l)/(m + n + 2)-m/(m + n + l)-(m + l)/(m + n+ l) + in/(m+ n),

= (m-ii)/(m + n)(m + »i + l) (m-t-n + 2).

It is at uDcc obvious that the sums of the second, third, and fonrtb kind

for tliis series are all diffurent. For in tlio first pliioe we observe that

ij,^^= -u^„. Hence there is a "skew" arrangement of the tcnns in tlie

array (I), such that the terms equidistant from tlie dexter diagonal of the

array and on the same perpendicular to this dia;j;oual are equal and of opposite

sign, thoBe on the diogoual itself being zero. Each term of the diagonal series

SD, is therefore zero ; and the sum of the fourth kiud is 0.

Also, owing to the arrangement of signs, we have T,^^= -
P,,.,; and.

since each of the horizontal and each of the vertical scries in tbis case is

convergent, T,„= -
l'^, and therefore 8"= -S".

Now

r».,= 2 [(m + l){l/(m + n + 2)-l/(m + n + l)}-m{l/(m + n + l)-l/(m + ii)|].

= (m + l){l/(m + n + 2)-l/(m + 2)}-m{l/(m + n + l)-l/(m + l)>.

Hence

T„= -(m + li/(m + 2) + m/(m + l)= -l/(ni + l)(m + 2).

The series ST„ is therefore absolutely convergent ; and its sum to infinity

is obviously -1 + 1/2= -1/2. Hence the double series has for its sum
-

1/2, + 1/2, or 0, according as we sura it in the second, third, or fourth way.
At first si);ht, the reader might suppose (seeing that the horizontal series

are all nbsolutcly convergent, and that the sum of their actual snms is also

absolutely convergent) that this case is a violation of Cauchy's criterion.

13ut it is not so. For, if we take all the terms in the mth horizontal Berioa

positively, and notice that the terms begin to be negative after ni = n, then

we sec that T'„ the sum of the positive values of the terms in the mth scries

is given by

»"! ii—t«-fl

=
(Hi + l){l/(2m + 2)-l/(m + 2)}-m{l/(2m + l)-l/(m + l)}

-(in + l){0-l/(2m + 2)}+m{C-l/(2m + l)}.

= l-2ni/(-2m + l)-(m + l)/(m + 2) + m/(in+l).
= (m' + m + l)/(m + 1) (m + 2) (2m + 1).

Now the convergence of ~T'„ is of the same order as that of Dl/m, thut is

to say, 2I"„ is divergent. Hence Cauchy's conditions are not fully satisin- 1;

and tlie anomaly pointed out above reuses to be surprising. The present com
is an excellent example of the care required in dealing witli double series

which are wont to bo used somewhat recklessly by beginners in mathematics*.

* Doforc Cauchy the reckless use of double scries and riininqnwl

perplexity was not confined to beginncra. Bee a curious pojicr by Babbaf^
J'hiL Tram. It.S.L. (1819).
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Example 2. The double series Z{-y"*^llmii, whose horizontal aud

vertical series are each semi-convergent, converges to the sum (Ior 2)= in the

second, third, or fourth way (see chap, xiviii., § 9, and Exercises xiii. 14).

Bot alteration in the order of the terms in the array would alter the sum

(see chap, xxviii., § 4, Example 3).
^

Example 3. If the two series 2(i„ and 26„ converge to a and b respectively,

and at least one of them be absolutely convergent, then it follows from § 14

that the double scries 2a„6„ converges to the same sum, namely ab, in all

the four ways, although it is not absolutely convergent, and its sum is not

independent of the order of its terms.

The same also follows by § 20, Cor., provided Sa„, Zb,^, 2 (a„ii + a„_iia

+ . . . +ai6J be all convergent, even if no one of the three be absolutely

convergent*.

If, however, both 2a„ and 26„ be semi-convergent, then the diagonal series

may be divergent, although the series converges to the same limit in the

second and third way. This happens with the series S(-)"''''"l/(m'i)'' where

o is a quantity ^ing between and ^. This series obviously converges to the

finite limit (1
-
l/2"-^l/J''— ...)'- in the second and third ways. For the

diagonal series we have

C„= 2 l/r«(ii-r)'».
r—1

Now, since 0<o<l, we have, by chap, xxiv., § 9, r" + («-r)''<2i"'"{r

-f(K-r)}''<2i-''»«.

Therefore
1 2'-'«° 1 ^ r°+(H-r)''

-'^n- 2i-a„<i ,-<i(n-,)a
"*

2'-° ji"
"^

r" (it
-
r)"

'

2 » 1 2 n
< — 2 — <-

i 2''7i>--''.

Hence, if a=i, LD„<2«; aud, if o<^, LD„= a>
,
when h=od. Therefore

2D„ diverges if < a > }.

IMAGINARY DOUBLE SERIES.

36.] After what has been laid down in § 10, it will be

obvious that, in the first instance, the couvergeucy of a double

series of imaginary terms involves simply the convergency of

two double series, each consisting of real terms only.

It is at once obvious that each of the two double series,

2ot„ „ i/?m,„, will be absolutely convergent if the double series

• See Stolz, Allgemeine Arithmetik, Th. i., p. 248.
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2^/(o'„_, + ^,^,) is convergent. Hence, if «'^, denote the

nioduluB of u„.,
= a^, +

I'/Sm,,, we see that *««., will converge

to the same liiuit in all four ways if 2m'„,. be convergent
In this case wo say that the imaginaty series is absolutely

convergent.

Since all the terms «'„,, are positive, we deduce from

Theorem II. tlie following:
—

Theorem IV. J/ all the horizontal series in the double series

formed by the moduli of the terms ofZu^^^ be convergent, and the

sum of their sums to infinity be also convergmt, then the series

2«m,, is absolutely convergent, and all its subsidiary series are also

absolutely convergent.

Here subsidiary series may mean any series formed by

selecting terms from 2«„., under Restriction A. Tlieorem IV.,

of course, includes Tlieorem III. as a particular case.

§ 37.] The following simple general theorem regarding the

convergency of the double series 2o„mX"y will be of use in a

later chapter.

If the moduli of the coefficients of the series 1an_^ify^ have a

finite upper limit X, tlien ^a^^^nX^y* is absolutely convergent for

all values of x and y such that |a:|<l, |y|<l.

For, if diLshes be used to indicate moduli, we have, by

hjiiothesis, a'„_n^K Hence the series 2a',^„x''y'' is, a fortiori,

convergent if the series 2Xa:'"y" is convergent ;
tliat is, if

Vj.'«y'» ig convergent Now, as we have already seen (§ 33),

this last series is convergent provided x'<l audy<l. Hence

the theorem in question.

Exercises VIII.

Exnmiue the oonTcrgoncjr of tbo Korics wlioao nib tcnus aro ibo

followinK :
—

(1.) (l + n)/(l + n«). (2.) nP/(n» + a).

(3.) «-«^ (4.) !/(«•* 1).

(5.) lMn^-n){^fi-^{n-l)\. (G.) «•/("" + '•).

(7.) (nl)»x«/{2n)l. (8.) n'/n!.

(9.) {(y + «-)/(• -«•))>/». (10.) nlo«{C.',. + l)/(2n-l)}-l.

(11.) 1.3.6 . . . (2n-l)/2.4.0. . . a™.

(12.) {l/l« + l/'.>« + . . . + l/n«|/«».



^ 36, 87 EXERCISES VIII 183

(13.) 1/(«K + /'). (14.) n/(aH=+ fc).

(15.) m(m-l) . . . (m-n + l)/n". (10.) {(;i + l)/(n + 2)}''/n.

, „, , m )n(m + l) m(m+l)(;»+ 2) . .

(17.) Show that - + ;' + V-nJI-T-oi + • • • 18 convergent or
* ' n 7i(n + l) 7t(ii+ l) (n+ 2) x

divergent according as n - ;«> or > 1.

(18.) Show that ai/" + aV"'+V('"+i)+ aV™+i/(»>+i)+i/(m+=)+ ... is conver-

gent or divergent according as a< or «t 1/e. (Bourguct, Nmw. Ann. , ser.

II., t. 18.)

(19.) Examine the convergenoy of Sl/n'"*'"".

(20.) Show that 2n"'/(7i + l)'^" is convergent or divergent according as

o>or>l. (Bertrand.)

(21.) Show that 21/;i log n {log log nj" is convergent or divergent accord-

ing as o> or <: 1 .

(22.) Show that S1/(k + 1 + cos «jr)= is convergent. (Catalan, Traile El.

d. Series, p. 28.)

Examine the convergency of the following infinite products :
—

(23.) II{1 +/(")'"}, where/(K) is an integral function of n.

(24.) n{(x2»-H.r)/(x="-t-l)}. (25.) nK+>/(n-l)»(n-l-2)}.

(26.) If 2/(n) be convergent, show that, when »i = co
,

L{n(x+f{n))}^l»=x.
1

(27.) If p denote one of the series of primes 2, 3, 5, 7, 11, . . ., then

2/(p) is convergent if 2/(p)/logp is convergent. (Bonnet, Lioui-ille's Jour.,

Tin. (1843), and Tcbebichef, ib., xvii. (1852).)

(28.) If x<l, show that the remainder after n terms of the series

l'•x + 2'x-'-^3'a:^-^ . . .

is <(n-|-l)'x»+V{l-(l-hl/")''a:}-

(29.) If Uj, «j, ...,!(„ be aU positive, and 2»„x'' be convergent for all

values of x-< a', then

2..-j«„-(«
+ l)««,,. +i^±;n';t^aX«-*e.[

will be convergent between the same limits of x.

(30.) Point out the fallacy of the following reasoning :
—

Let S=l + i-Hj-l- . . . ad CO,

then log,2= l-i + ^-i-t-. . .

= (l-l-}-l-i-)-. . .)-2(.J-l-UJ+. . •)

— 2 — 22/2 = 0.

(31.) If p and p' be the ratios of convergence of Sl/P^-i (") {'''"' "V*" i"^

Sl/P, (») {''•«}'+''' (see § 6), then L (p'„
-

/>„) Pr-i («) = a, when n = oo . What

conclusion follows regarding the convergence of the two series ?

(32.) If 2u„ is divergent, then 2m„/S„_,"» is divergent if o>l (where

S,= Ui-H(,+ . . . -h«„), and SiiJSn^+i is convergent if o>0. Hence show
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that there can be no function (n) BQch that every Ecries £u, ia convergent
or divergent, according aa L <t>{n) u,= or +0. (Abel, CEuvrei, ii., p. 197.)

(33.) If 2u, be any convergent series whoso terms are nltinmti-ly positivo,

we can always find another convergent scries, -t\, whoso terms are ultimately

positive, and snch that Lvju^ = (z> .

If 2u, be any divergent ecries whose terms arc nltimatoly positive, we
can always find another divergent seriea whose terms are nltimatcly positive,

and such that I,i(Jr,= ao .

(ThcHo theorems are due to Dn Bois-Reymond and Abel respectively; for

concise demonstrations, see Thomae, Elementare Theorie der Analytitchtn
Funetionen. Halle, 1880.)

(34.) If u.+,/u.= (n« + ^n«->+. . . )/(n« + i4 'n«->+ , . .), then Su, wiU
bo convergent or divergent according as ^-.<l'>or >-l. (Gauss, tVerke,

Bd. III., p. 1.S9.)

(35.) If u,+,/M,=a-/3/n+7/n*+«/n'+ . . ., then 2u, is convergent or

divergent according as a< or >1. If a= l, Su, is convergent only if /S>1.

(Schliimilch, Zeitschr. f. Math., i., p. 74.)

(36.) 21/u, is convergent if u„+,
-

2ii„+, + u, is constant or ultimately
increases with n. (Laurent, Nmiv. Ann., ser. ii., t. 8.)

(37.) If the terms of 2i/„ are ultimately positive, then—
(I.) If ^(n) can be fuund such that ^(ri)i9 positive, X,f(n)u,= 0, and

Xi {v^(") "«/",+!
- ^ (n + l)} >0, -u, is convergent.

(U.) If ^f.(n) besueh that L^t(n)M,=0, I, i^(n)uJ«,+,-^(n + l)}=0,
and Lrf- (n) uj{<f' (ii) uju,^^ - ^ (ii + 1) | + 0, 2u, is divergent

(III.) If tiju„+, can bo expanded in descending powers of n, 2u, is

convergent or divergent according as I, {nii,Ju,+,
-
(n + 1)) > or >"0.

(IV.) If uji'„+, can be cxpauded in descending powers of n, 2u„ is

convergent or divergent according as Lnu^= or #0. (Kommer's Criteria,

Crelle't Jour., xiii. (1835) and ivi.)

(38.) If the terms of ^m, be ultimately positive, and if, on and after •

certain value of n, a,u,Ju,+i-'',»4.i>M, where a, is a function of n which

is always poHitive for values of n in question, and m is a positive constant,

then 2u„ ia convergent.

From this rule can bo deduced tho rules of Canchy, Do Morgan, and

Bcrtrand. (Jensen, Comptet liendiu, o. vi., p. 7*29. 1888.)

Discuss tho convergence of tho following double scries:—
(39.) i:(-)»-'r"/n. (40.) r (-l)»-'r-/nl.

(41.) 2 1 (H-l)'"/n"'+' -«•»/(« + 1)"^')-

(42.) Zx-^y'lim+ tt). (43.) 2;i/(m + n)'.

(41.) Zll{m + u). (46.) 21/(m«-n').

(4)i.) Under what restrictions can 1/(1-1-2 + y) be expanded In a double

«eric» of the form l + ^A^^x'^*7
(47.) If -"„^,, converge to .V in the first way, and if its diagonal Mrie* be

convergent, sliow that tho diagonal series converges to S alio.
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Deduce Abel's Tlieorein regarding tlic product of two semi-convergent

series. (See Stolz, ihith. Ann., xxrv.)

(18.) If i(„/u„_, can bo expanded in a series of the form l + a^jn-i-ajir+ . . .,

show that

1°. If
<r,
= 0, a.,=0, . . ., a,i_i

= 0, a^=t=0, then «„=u + v„/n, where u is u^

detinite constant +0 and +00, and Lv^ is finite when ji= oo.

2°. If Oj + O, and the real part of a^ be positive, then iu„=oo when
n=QO .

3°. If
0-1 + 0, and the real part of a^

= 0, then Li(„ is not infinite, but is

not definite.

i°. If
(ii + O, and the real part of Oj be negative, then Z,«„=0.

Apply these results to the discussion of the convergency of SKni", and,

in particular, to the Hypergeomctric Series, and to the following series :—

^M-viGni^ + yi)", 2a-»/«''+'"-, X^GJ{m + n)>>, 2
(
-

)VCJ(nH- n)".

(See Weierstrass, Ueber die Theorie der Analylischen Facultdt.— Crclle's

Jour., LI.)

(19. )
Discuss the convergence of 2 „(7„ (a

-
n/S)"-' (x + n/S)".

(50.) If u„ and !'„ be positive for all values of n, never increase when n

increases, and be such that iu„=0, Lv„= 0, when n = x, find the necessary

and sufficient condition that 2 (H„rj+ «„_it'2+ . . . -n/irj = 2«„x 2t'„. (See

Pringsheim, Math. Ann., Ed. xxi.)

(51.) If <: 3/„ <:
il/„^.i and X..1/„=0 when n= oo, show that every diver-

gent series of real positive terms can be expressed iu the form 2 {M„^i
-

il/„) ;

and every convergent series of real positive terms iu the form 2 (J/„+i
-

J/,,)/

Also that the successions of series

S(il/„+,-]l/„)/P,(J/„), r=0,l,2, ...

S(3/„+,-il/„)/P,(il4«) (^.il/„«)^ r=0, 1, 2, . . .,

where 0<p<l, and Pr{x) has the meaning of § 6 above, form two scales, the

first of slower and slower divergency ; the second of slower and slower

convergency. (Pringsheim, Matli. Ann., Ddd. xxxv., xxxix.)



CHAPTER XXVII.

Binomial and Multinomial Series for any Index.

BINOMIAL SERIES.

§ 1.] We have already sbowa that, when m is a positive

int<^er,

(l+a:r=l+«C,x+„(7,:t' + . . . + «C.x» + . . .+»C,.r- (1).

where „C, = ffi(m-l) . . . {m-n + l)/n\ (2).

When m is not a positive integer, „C although it ha.s still a

definite analytical meauing, can no longer be taken to denote

the number of n-combinations of m things ;
hence our former

demonstration is no longer applicable. Moreover, the right-hand

side of (1) then becomes an infinite scries, and h:LS, according
to the principles of last chapter, no definite meaning unless the

series be convergent In cases where the series is divergent

there cannot be any question, in the ordinary sense at lea.'sf

regarding the equivalence of the two sides of (1).

As has already been shown (pp. 122, 131), the series

l + ^CtX + ,Ctx' + . . .+.C,j' + . . . (3)

is convergent when x has any real value between - 1 and + 1
;

also when x = +l, provided m>-l; and when ;r = — 1, pro-

vided m>0. We propose now to inquire, whether in these casc-

the series (3) still represents (1 + x)" in any legitimate seasc.

In wliat follows, wo suppose the numerical value of m to be

a commensurable number*; also, for the present, we consider

* If m be ioeommeniurnblc we moat snppoM it replaced hj • coauocnior-

able approzimatioD of aufiicicnt aoouraoy.



§§ 1, 2 FIRST PROOF 1S7

only real values of .r, and understand (1 +x)'" to be real and

positive.

§ 2.] If we assume that (1 +z)'" can be expanded in a con-

vergent series of ascending powers of x, then it is easily shown"

that the coefficient of *•" must be m (/»- 1) . . . {m-n+\)ln\.
For, let

{i+xy = (h + aiX + aia? + . . .+a„a:" + . . . (1)

where a„ + aiX + (ha? + . . .+«„a:" + . . . (2)

is convergent so long as |a:|<i? (it will ultimately appear that

B=\). Then, if h be so small that \x+h\<B, we have

{I + X + h)"'
= a^+ ai,{x + h) + a.i{x + hf + . . . + a„(a; + /;)"+. . . (3),

the series in (3) being convergent by hypothesis.

Hence by the principles of last chapter, we have

(l+a; + ^)"'-(l+a;)°' _ (x + k)-^x {x + Kf-a?
(l+x-^h)-{\+x)

~
{x + li)-x

^

{x + h)-x

(x + hY-x''

{x + h)-x
(4).

the series in (4) being still convergent. Hence, if we take

the limit when h = 0, and observe that

{l+x + h)-{l+x)
^ ' '

{x + h)-x

by chap, xxv., § 12, we have

»j(l+ar)"'~'
= ai+2a2a; + . . . + «a„a;"~' + . . . (5),

where the series on the right must still be convergent, since

L {n + 1) a„+i/«a„ = Lan+ila^ when m = go *. Hence, multiplying

by ].+ X, we deduce

m (1 + xy = Oi + (oj + 2«2) x + . . . + {w«„ + («+!) a„+i} a;" + . . . ,

that is,

ma„ + nutiX + . . . + ?wa„a:" + . . . = Oj + ((«i
+ 2a^ x + . . .

+ {nan + (n + 1) fln+i} a;" + . . . (G).

* We hero make the farther assumption that the limit of the sum of the

infinite number of terms on the right of (-1)
is the sum of the limits of these

terms.
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V>y i-lia]i. XXVI., S 21, tlie cocflii'ipiits of tlio lowers of x on

both sides of (G) must Iw equal. Hence

o, = ma,. 2a.j
- (m - l)a,, ...,(«+ l)a,+, = (;/»

-
«)a„, . . . (7).

From (7) we deduce at once

ai = mat, a, = »n(ni- l)a„/2!, . . .

a, = »j (;«
-

1) . . . (n»
- n + l)ajn], . . .

To dotcnniue «•» we may put x - 0. We tlien get from (1),

fl^
= 1*" = 1 (if we sujiposo, aa usual, the real positive value of

any root involved to be alone in question). We therefore have

(l+j-r=l+2„C,^ (8).

The thenrcm is tlierefore establi.shcd
;
and we see tliat the

hypothe.fis under which we .'Started is not contratlicted providiMl

|ar|<l, tills being a suflicient condition for the couvergcncy of

§ 3.] Although the assumption that (1 + x)" can be expanded
in a series of ascending powers of x leads to no contradictirin in

the process of detenuiniug the coefficients, so long as |a:|<l ;

tiiis fact can scarcely be regarded .-is sufficient evidence for the

validity of a theorem so fundamentally importjiut. We proceetl,

therefore, to establish the following theorem, iu which we start

from the series in the first instance.

W/ienever the seru's 1 + 2;„6',a:* is convergent, its sum is the

real jmsitive value o/" (1 + x)"'.

The fundamental idea of the following demonstration is due

to Euler*
;
but it involves important additions, due mainly to

Cauchy, which were necessary to make it accurate according to

the modem view of the nature of iulinito series.

Let us denote the series

\+^C^x + ^C^a* + . . . + ^C^a* + . . . (1)

by the symbol /(m).

So long as —\<x<+ 1, f{m) is an absolutely convergent

series, and (by ch.ap. XXVL, § 20) is a continuous function both

of m and of x.

• Nov. Comm. Petrop., t. m. (1775).
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Hence, m^ and m. being any real values of m, we have

f{m,)f{m,) = {1 + ^^finx"\ {1 + ^^C„ar},

= 1 + 2 UGn + ™,^. mfin-, + ^C, ™,C„-, + . . .+^C:)af^ (2), ^

where the last written series is convergent (by chap, xxvi., § 14),

since the two series, 1 + 2„,(7„.«" and 1 + 2„^(7„a:'', are absolutely

convergent.

Now, by chap, xxm., § 8, Cor. 5,

hence /("'^/("O = 1 + 2„„+„^,C„a,-",

=/(???, + Mj) (3).

In like manner, we can sliow tliat

/(Wll + ?»o)/()»3) =/(»?, + Too + Wis).

Hence /{'mi)/{nh)/{iih) =/{m, + nh + m,) ;

and, in general, v being any positive integer,

/{m^)f{nh) . . . /(?«.) =/(»». + OTn + . . . + m„) (4).

This result may be called the Addttmi Theorem for the

Binomial Series.

If in (4) we put mi = rrh = . . .
= 7«„=1, then we deduce

{/(I)}" =/('') (5).

where v is any positive integer.

K in (4) we put mi = m^ = . . . = »w„ =p/q, where p and
<?

are any positive integers, and also put v = q, we deduce

{fiplq)V-f{p) (6)-

Hence, by (5), {/(W'i)}'
= {fO)V (7)-

Again, if in (3) we put m^ = m,m^=- m, we deduce

/{m)/{-m)=f{m-m)=f{0) (8).

Hence /(- w) =/(0)//(ff») (9)-

These properties of the series (1) hold so long as -l<a;<+l,

and they are sufficient to determine its sum for all real com-

mensurable values of m.



190 SUMMATION OF S„C„«" CM. XXVIl

For, since ,(7,= 1, ,<7,
=

0, . . ., ,C, =
0, . . . ,C7,=0, ,C, = 0,

• • •
, oC",

=
0, . . . we liave

/(1)=1 + ^. /(0) = 1.

Suppose, now, m to bo a positive integer. Then, by (5),

(1 + x)' =/(m) = 1 + ^C,x + ^C,a^ + . . . + .C.o- (10).

where the series terminates, since «C,i+i = 0, «C„+t = 0, . . .,

when m is a positive integer. This is another demonstration of

that part of the theorem with wliich we are already familiar.

Next, let m be any positive commensurable quantity, 8ay

p/q, where p and q are positive integers. Then, by (7),

{/(P/?)1' = (1+^)' (11)-

Hence/ip/q) is one of the yth roots of the positive* quantity

(1 + a-)*". But /{p/q) is necessarily real; hence, if (1 + x)*""

denote, as usual, the real positive 5th root of (1 + x)', we must

have

/0'/7)=±(l+^)"' (12).

The onl}' remaining question is the sign of the right-hand side

of (12).

Since /(p/y) is a continuous function both of p/q and ot x, its

equivalent ± (1 + a')" must be a continuous fiinction both of

p/q and of x. Now (1 + ar)'' does not vanish (or become in-

finite) for any values of p/q or of x atlmi.s.'iible under our present

hypothesis ;
and being tiie equivalent of a continuous function it

cannot change sign without passing through 0. Hence only one

of the two possible signs is admissible ; and we can settle which

by considering any particular Ciise. Now, when x = 0, /(p/q)
= + 1.

IIcDce the positive sign must be taken
;
and we establish finally

that

/<J'/q)
= + {i+^)'-',

that is,

(l+a:)- = l+«(7,x + ,C,x' + . . . + «C,jr»+. . . (13),

when m is any positive commensurable quantity.

•
roaitivG, since -l-:i<:l, liy h^polliciis.
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Finally, let m be any negative commensurable quantity, say

m = - m, where m is a real positive commensurable quantity.

By (9) we have

/(-»0=/(0)//(«0 =
!//('«')•

Hence, by (13),

/(- in) = 1/(1 +
a:)'"-,

=
(1+.^)-'"'.

that is,

(I + .r)"-
= 1 + ,nCiX + rnC^ar + . . . + M.-r" +. . . (14),

where m is any commensurable negative quantity.

The results of (10), (13), and (14) establish the Binomial

Theorem for all values of a; such that -!<.»•<+ 1. It remains

to consider the extreme cases.

When x = +l, the series (1) reduces to

l + mCi + „,Cn + . . .+„,(7„ + . . .

This series is semi-convergent if - 1< ?« < 0, absolutely con-

vergent if m>Q. Hence, by Abel's Second Theorem, chap, xxvi.,

§20,

(1 + 1-0)"'= L {l+„(7,a; + „C:,.r-= + . . . + ,„a..T" + • • .},

1=1-0

that is,

2"'=l + ™(7, + „,C, + . . . + ,nC„ + . . . (15),

provided »n>-l, with the condition that, when -l<ffj<0, the

order of the terms in the series of (15) must not he altered.

If 0<a;< 1, we have, by the general case already established,

(1 -.?)">
= l-„(7ia;-H„,^,.i--. . .(-)"„.C„,r" + . . .

Hence, since the series

1— mCi + mCj— . . .(-)"mW + . . •

is convergent if 7»>0, we have, by Abel's Theorem,

(1-1^)'"= L {l-n,G,x + ^C,3r-. . .{-T^C„x'' + . . .),

I-l-O

that is,

0=l-„C, + ^C,-. . . (-r„.C„ + . . . (16),

provided m be positive.

The results of (15) and (16) complete the demonstration of
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the Binomial Theorem in all cases where its validity is iu

question.

Cor. If x^y, it follows from the above result that we can

always expand (x + y)" in an absolutely convergent series. Wo
have in fact, if |d;|>|y|, that is, \ylx'\<\,

(x + y)"*
= a-" ( 1 + yjx)",

= a- {1+ „<7, {ylx) + „(?, {ylxf + . . . + „C, {ylxf + ...},
= .r"' + „67,j-™->+„(7..r"-y + . . . + ,„C,.z-"'- "y- + • • • (17);

and if |a'|<|y|, that is, \xly\<\,

(a:
+ y)'"=2/"(l+a-/.y)"',

= y'"{l+-^.(-r/y) + «C;(a-/y)U. . . + „(7,(.r/y)" + . . .}.

=
y'^ + ^C,y''-'x+„C,y"'-'j= + . . . + ^C^y-'-'x' + . . . (18).

If »» be a pcsitive integer, both the formula; (17) and (18) will

be jwlniissible because both series terminate. But, if w be not a

positive integer, only one of the two series will be convergent

§ 4.] The general formulas of last paragraph contain a vast

niimber of particular ca.<cs. To help the student to detect these

particular cases under the various disguises which they assume,

we proceed to draw his attention to several of the more com-

monly occurring. The difficulties of identification are iu reality

iu most cases much smaller than they at first sight appear. We
assuiue in all cases that the values of the variables are such tlmt

the series are convergent.

Example 1.

(l+j-)-> = l-x + x'-. . . + (-)»j-" + . . .;

(l-i)-' = l + z + is + . . . + !" + . . .

For (l+i)->= l+S_,C,i";
ami _,C,= -l(-l-l){-l-2) . . . (-1-w + ll/nl.

= (-)"!. 2. 3 . . .
ii/iil,

= (-)"!.

(l-i)-> = l + 2.,C.(-x)-;
ana -,C, (-!)- = ( -)"(-)"«"= (-Px«

= x".

Example '2.

(l + x)-'= l-2i + 3i'-. . . + (-)''(n + l)x"4-. . .;

(l-i)-«= l + 2x + ar' + . . . + (n + l)i" + . . .

For _,C,= -2(-2-l) . . . (-2-n + l)/iil,

= (-)'(n + l).
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Example 3.

(l+x)-s=l-3*+Gx'- . . . +(-)»i(« + l)(tt+2)x''+ . . .;

(l-x)-»=:l + 3x + ().c2+ . . . +i^(,i + l){H + '2)x«+ . . .

Example 4.

(l + x)l=l + Jx-ix' + ^x-3- . . . +(-)'-' -^ i
• • • <^""^'

^"+----.
2 . 4 . 6 . . . 2»

(l-x)l= l-ix-ix»-,Vx^- . . . _
l-3-5-- • (2»-g) ^._ . . .

^ . 4 . O . . . J/t

Example 5.

; (l + x)-t=l-ix + ix'-Ar'+. . . +(-)" ^-^-f
• • • ''•^""^^

x"+...;2 . 4 . b . . , 2n

(l-x)-»=l + Jx + ix» + A^»+ . . . + ^1^5
• • ^^"-l)

;,n^. . . .
li . 4 . 6 . . . 2/1

Example 6.

nt(TO-2)(m-4) . . (m-2ii + 2) /xV'
«l V2J

+ • • '

_ m m{m-2)
,

m (m-2) (m-4) . . .(H>-2n + 2) „,
-^+2^+ 2.4

^ +••• +
2.4.6 2«

^"+ • • •

n+x)'">r.^l + V
,
_ )n

"'(m + 2)fH, + 4). . .(,„ + 2n-2)

Example 7.

(iir)""'-ii:!:
^<P"^^'P"'-^'^>- • •(P-"? + g) :t-

3 .
2(ji

. 3(7 . . . 717
'

(1 - a:)-Prt= 1 + 2 P(P
+ 9)(P + '^1)- (/' + '"/-?) ^„

7 . 25 . 3-7 . . . «J

Example 8.

(1
-
x)-".= 1 + 2 '"("' +

l)--^^-("'

+ "-l) ^„

It will be observed that the coefllcient of x" in this last expansion, when
Bi is integral, is (see chap, xxiv., § 10) the umaher (,„//„) of ii-corabiuations

of m things when repetition is allowed. It is therefore usual to denote this

eoefBcient by the symbol mli„, m being now unrestricted in value. We
shall return to this function later on.

Example 9.

i{{l +xr + {l-x)"'} = l + „C,x= + ,„C,x^+ . . . +„C„.x="+ . . .;

\{(\+xr-(i-xr}=„fi,x+^c,x^+ . . . +„c5„_ix--''-i+ . . .

Ultimate Sign of the, Terms.—Infinite Binomial Series belong
to one or other of two classes as regards the ultimate sign of

tlie terms— 1st, those in which the signs of the terms are

ultimately alternately positive and negative ; 2nd, those in

which all the terms are ultimately of the same sigu.

c. n. 13

\

k
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If z and m deuote positive quantitica (m of ooanw not a positive integer),

Ist. The cxpausioDS of (1+x)" and (l + z)~** both belong to the fint

class. In (l + z)"" the first negative teru will bo that containing x*'*'', where

n is the least intci;er which exceeds m. In (l+x)~" the first negative term

is of course the second.

•Jnd. The expanhions of (1-x)", (I-i)-"", both belong to the second

class. Ill (1
- x)" the terms will have the same sign on and after the tenn

in x" n being the least integer which exceeds m, and this sign will bo -) or

- according as n is even or odd. In (1
- x)~* all the terms are positive

after the first.

§ 5.] A great variety of series suitable for various purposes

can be readily deduced froui the Binomial Series; and, conversely,

many series can be summed by identifying them with particular

cases of the Binomial Series itself, or with some series deducible

from it.

The following cases deserve special attention, because they
include so many of the series usually treated in elementary text-

books as particular cases, and because tlie methods by which the

summation is effected are tj'pical.

Consider the series 2<^r(")«i^»^. where </>,(«) is any integral

function of n of the rtli degree. Such a series stands in the

same relation to the simple Binomial St-ries as does the Integro-

Geometric to the simple Geometric Series. We may therefore

speak of it as an Iiitegro-fiinomial Scrifs.

We may always, by the process of chap, v., § 22, establish

an identity of the following kind,

<t>r(n)=.A,+Ain + Atn(ii-l) + . . . + ^r«(«-l)- • • («-r+l) (1),

where ^o, Au A,, . . .
, ^r are constants, that is, are independent

of n.

We can therefore write the general term of the Integro-

Biuomial Series in the following form :
—

+ Arn{n-\)... (n-r+l).(7,x*,

= At^Caf * mA,.r ^.,C,.,J*'^

+ III {in
-

1) A,3^m->C,.,af~*+ . . . + TO (w -
1) . . .

(w -r + i;.lrJ:'.-,C.-,x—
•

(2).
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Hence, if the summation proceed from to oo
, we evidently

have

1

+ m{m-l) . . . {m-r+l)Ara;'-^,n-rC„-rX''-' (3),
r

= Ao{l+a;)'" + 7nAtx(l+x)'"-^+. . .

+ m{m-l) . . . {7n-r+l)ArX''{l+x)'"-';

since all the Binomial Series are evidently complete*. Hence

'S:'l>r{n)„,C„a;"'
= {Ao + mAix/{l+x) + m{m-l)A.x-/{l+.cy + . . .

+ m{m-l)... (m -r+1) .4,u;7(l + xY} (1 + x)'" (4) ;

and the summation to infinity of the Integro-Binomial Series is

efiFectedt.

The formuhi will still apply when m is a positive integer,

although in that case the series on the left of (4) has not an

infinite number of terms. The only peculiarity is that a number
of the terms witliin the crooked bracket on the right-hand side

of (4) may become zero.

Cor. We can in generalsum the series %'t>r{n)mC„af/(n + a) {n + 0)

...(« + k), where a, b, . . ., k are unequal positive integers,

in ascending order of magnitude.

For, by introducing the factors n + 1, n + 2, . . ., n + a -
1,

n + a+\.,n + a + 2, . . ., n + b-l, &c., we can reduce the general
term to the form

>!' {n),^^tGn^iX"*''/{m + 1) (m + 2) . . . (?« + k) x-^ (5) ;

where
i// («) is an integral function of n, namely, <t>r (n) multiplied

by all the factors introduced which are not absorbed by m+kOn+k-

*
If the lower limit of summation be not 0, then the Binomial Series on

the right-hand side of (3) will not all be complete, and the sum will not be

quite so simple as in (4).

t It ma.v be remarked that the series is evidently convergent when x<.l.
The examination of the convergence when x= l viiM form a good exercise on

chap. XS.VI.

13—2
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Hence

^<t>r (») ».C,a:"/(n + a) (ti + «.) . . . (n + k)

= {2^(n)m.»a^i^+»}/(»n+l)('» + 2)- . .('» + X-)^ (6;.

The suminiition of tlie series iii.siile tlie crooked bracket may
be effected

;
for it is an Integro-Binomial Series. Hence the

suiumation originally uroposcd is always possible.

We have not indicated the lower limit of the summatiou,
and it is immaterial what it is. Even if the lower limit of

summatiou be 0, the Binomial Series into which the right-

hand side of (6) is decomposed will not all be complete (see

E.xample 6, below).

It should al.so be noticed that this method will not apply if

m be such that any of the factors m + \, m + 2, . . ., m + k

vanish. In such ca.ses the right-hand side of (6) would becomi

indeterminate, and the evaluation of its limit would be trouble-

some.

The above method can be varied in several ways, which

need not be specified in detail. It is sufficient to add that by

virtue of Abel's Second Theorem (chap. X.wi., § 20) all tin

above summations hold when a: = ±l, provided the scries in-

volved remain convergent.

Exuuiplu 1. To expand (x + >/)'" in a highly convergent seriea when x

ami y are nearly equal. Trom the obTious identities

|(i + y)/2xl"=12x/(x + !,)l-»={l + (x-y)/(i + y)l--,

((x + y)/2y}'»={2y/(x + y)}-«={l-(x-!,)/(x + y)|-",

(x + yr|l/(2xr±l/(2yr( = {l+(x-y)/{x4-y)}
—

±{l-(x-y)/(x + j,)}--

wc deduce at uucc

(x + s,)"=2"x"
jl

+
2(-)V".(^-^||)")

.

where „//, = m(m + l). . . (m + n-l)/n!,

_2"+'x"'!/'» I m(nn-l) /x-y\' m (m + I) {m + i) (m -t- S) /i-y\*-
xm^.ym jl+ 21 \,x + yj

*"
4! U+W

2«.»ij».ym J
„ /x_y \ m(m + l)(in + 2) /x- v\' 1

=
."-y" tiiU+y>''^ 3! \x + yj *(

All Ibesu scriua are hitjhly convergent, since (x
- y|/(x -t- y) is smaU.

!
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Example 2. To sum the series

2 2 /2y 2.5 /2\« 2.5.8 /'2\*

9
+

2! l^gy*

+ IT 1,9;
"* ~li~ V9j

• • •

If we denote this series by !t,+H3 + «3+ . . ., we see that «

2.5. . .{2 + (n-2)3} 2»
""

n\ 3="'

_ i .j.l. . .(-j+m-l) /2\»

nl [3)
'

_ (-^)(-4 + l)(-l+ 2). • . (-^+ n-l) /2\"

nl \3)
'

= _(_)»
ia -i)(»-2). ..g-n+l)

/2y_
Hence

l-(H, + »„ + Hs+ . . .) = (l-5)l/3,

=
l/4/.-i.

Therefore, «i + W2 + i(3+ . . . =1-1/4/.?,

Example 3. To snm tlie series

»n(m-l) m (m - 1) (m
-

2)m+
J

+
j-2

+ . . .,

whenever it is convergent.

Here we have

_m(m-l) (m-2) . . . (m-«)

m (m - 1) (»t
- 1 - 1) . . . (m - 1 - n + 1)~

;n
•

= m„_,C„.
Hence

iii + «j + «3+ . . . =ni{l+m-i<7,+„-iC5+ . . .}

= m{l + l}"'->=m2™->,

provided m- 1> -
1, that is ni>0.

It should be observed that we have at once from § 2 (5) the eqnatlon

m(l + x)"'-'
= l„Ci + 2,„CjX+ . . . +n„C„i''->+ . . . (1),

from which the above result follows by putting x = l.

By repeating the process of § 2, we should doduce the equation

m(m-l). . . (ni-ft + l)(l + xr-*= 1.2. . . J:„Ci+2.3 . . .
(fc + 1)

„C^,x+ . . . +{n-k + l){n-k + 2). . . n,„C,x»-t+ . . . (2),

whence it follows that

iB(m-l). . .(m-;; + l)2'»-*= 1.2. . . k^C^
+ 2.3. . .(A;+l)„Ct+,+ . , . (3),

provided m>k -1. These results might also be easily established by the

method Qrst used.

Example 4. To sum the series

1 ^ mCl^ . n.CjX'

l.i. . .k 2.d. . .(k+ l) 3.4. . . (i-l-2)

+ .
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Here we have

KXAMPLE3

,C.x«

cu. XXVII

Hence

(n+l)(n + 2) . . . (n + k)

"(in + l)(m + 2)

(1 + ^)"

(m + lt)!*'

1

(m + l)(m + 2) . . .{m + k)x* (m + 1) (m + 2) . . . (m + i) x*
^ ^ * "+*^' '

+m+*C,x»+ . , . +^tC4_,j*-'}+<u, + ti,+ u,+ . . . }.

Therefore

(l+i)" • ^ ~ m4-t<^l»
-
m+t^^i^'

- — ..iiCt-l**"'

(m+ l)(m + 2). . .{m + k)x*

If m> - i - 1, this gives as a particular case

2mCJ(n + l)(n + 2). . . {n + k) =

(1).

{a----*-!- 2 ^tC,}/(m + l)(m + 2). . .(m + t) (5).
1-1

The formula) (1), (2), (3), (4), and (5) contain of course a consiilerable

variety of particular cases.

Example 5. Evaluate Sn'^C.x".

Let n' =
iJ|, + il,n + /l,n(n- 1) + /I,n (n-l)(n-2), then we have the follow-

ing calculation to determine A„. Aj, A,, A, (see chap, v., § 22).

1 +0 +0|+0 Af-0,
+1 +1

J, = l,

Hence

1 +1|+1
+2

'11+3 A, = 3. At = l.

2n'„C,i-= . S„C.x- + l»ur2„_,C..,i«-> + 3m (m -
1) x'l „_,C^r-»

1 t

+ m (m -
1) (m- 2)x»S«-,C..,x"-»,

I

=mi (1 + x)"«-> + 3m (m -
1) i> (1 + x)"-«+m (m - 1) (m -

2) x> (1 + x)»-»,

=
{
m'x» + m (3m - 1

)
x" + mx ( ( 1 + x)*"-'.

Example 6. Evaluate 2„C,x»/(n + 2) (n + 4).

-4
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We therefore have

^(n + 2)"n + 4)

=
a* (m + 1) (m+ 2) (m -TaUririT) *^f

•»+«^>-m^"'^*
- 3 (m + 1) x

»

+ (m + 4)(jn + 3)i2{(l + i)m+3_i_^^„C,x}],

=
xM». + l)(,,. + -^)(,» + 3)(,» + 4)

tU"' + ^)("'^'^)-^°-^('» + ^)^+ ^Hl+xr^'
+ {J('n + 3)("i + 4)i— 3}].

Exercises IX

Expand each of the following in ascending powers of x to 5 terms; and in

each case write down and simplify the coefficient of x''.

(1.) (1 + xyr-. (2.) (l-i)-!-^. (3.) {l-x)-V'.

(4.) {2-4xp. (5.) (a + 3i)i/3. (6.) i'ia'-x^).

(7.) ::/{l-nx). (8.) l/(l-3x=)i/3. (9.) (x-l/x)-»

(10.) Write down the first four terms in the expansion of
{ (a + x)/(a

-
x) }

'/•

in ascending powers of x.

Determine the numerically greatest term in

(11.) (3 + xp, x<3. (12.) (2-3/2)11/2. (13.) (1
-
5/7)-"/».

(14.) Find the greatest term in (1 + x)"", when x= f, n= 4.

(15.) If 71 be a positive integer, find the greatest term in (n
-
l/n)***'.

(IG.) The sum of the middle terms of (l+x)"" for all even values of m
(including 0) is (1

-
ix)-^P.

,„,,.. ,,„(..!),.Jlti)(..i)V...
(18.) Show that, if m exceed a certain value, then

om_i
I

('» + l )»t
, (m+ l)TO(m-l)(>»-2) ,2 -1 +—

2^
+

jj
+.,.

(19.) Sum the series

,> , .-.IV '"("'-1) / „,>»»('n- !)("'- 2)
a-(a + i)m+(a + 26)—>-2J—'-{a + 36)-^

^^^
'+. . .,

for such values of m as render the series convergent.

(20.) V27= 2 +A+y+...
,.,, V

23 2 1 1.3 1.3.-5
'^^•* 24

~
3^'~2^

"
2MI

'^
2^51

' ' *
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('2'i.) Sam to infinity

1 Ui 1.4.7
6'''6.12''"6.r2.18"''*

• *

(23.) Sum the series

, ,. ni(m-l){m-2) ni(in-l) . . . (m-r+l)
„.(„..:)+

A__U >^. . .+ K

/_^_^^|

for such ^-alues of m as render the scries convergent.

(24.) If n be even, show that

n(n + 2) . . . (2n-2)/1..3 . . . (n-l) = 2»-'.

(25.) In the cxpuiiiiion of (1 -f)'" no coefhcicnt can be equal to the next

following unless all the coofTicients are equal

(20.) Prove by induction that

1 J.™ .!."'('"
+ ^) J. , m(m + l) . . . (m + r-l)_ (m + r

)ll +m+ 2^— + ...+ —
^ —i^K'

where r is a positive integer. Hence show that, if x<l,

^ ''
(m-l)lrl

•

(27.) The sum of the first r cocfQcicnts in 1/^/(1 -*) : the coefDcient of

the rlh tenn = l + n{r- 1) : 1.

(28.) IfF(a) = l+^ + ^*'x» +
^ii±4j(i±^'x»+...,:

.

being absolutely convergent, then

P(a)F[b) = F{a + h).

What is the condition for the convergency of the series?

(29.) Show tliat

I'-.C, j + .C,J-.
. .=[l-{(f. + l)* + l}(l-x)-+']/(n+l)(n + 2).

Bum the following series, so far as they are convergent:—
(30.) Z(n-l)'m(ni-l) . . . (m-n + l)j-*/nl, from n = l to n = ao.

(31.) 2(-)»-'(H + l)(n + 2)1..3.5 . . . (2n
-
5)i"/nl, from n = to n=» .

(32.) 2:ni(ni + l) . . . (ni + n- l)x"/(n + 3)n!, from n = to n = ii>.

(33.) 2(ri-l)'1.4.7 . . . (3n -
2)/(n + 2)(n + 3)nI, from n = l to n= » .

(34.) Wliy docs the method of snmmatioD given in § 5 not apply to

li«/(n + l)r

SEIUES DEDUCED BY EXPANSION OF RATIONAL FUNCTIONS OF x.

^ 6.] Since every rational function of x can be c.xprc8se<l in

the fnnn I+F, where / is an integral function of x, and Fa
proper ration.-il fraction, and since F can, by cliap. viil., § 7, be
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expressed iu the form 2.4 (^
-

a)-", where A is constant, it follows

that for certain values of a; a rational function of x can be ex-

panded in a serias of ascending powers of x, and for certain

other values of ar in a series of descending poweiis of x*. We^

shall have occasion to dwell more on the general consequences of

this result in a later chapter, where we deal with the theory of

Recurring Series. Tliere are, however, certain particular cases

which may with advantage be studied here.

§ 7.] Series for expressing a" + /?" and (a"+>
-

/?"+')/(a
-

ft) in

terms of aft and a + ft, n being a positive integer.

If we denote the elementary s)nnmetric functions a + ft and

aft by p and q respectively, it follows from chap, xvni., § 2, that

we can express the symmetric functions a" + ft", (a"*'
-

^''+')/

(a
-

ft) as follows :
—

a" + yS"
= a,p" + a^p^-^q + . . . + arP^'-'-'f + . . . (1),

(a"+'
-

;8"+')/(a
-

ft)
=

h.p'' + hp'^-'q + . . . + brP"-"-' q'' + • • • (-2),

where both series terminate.

By the methods of chap, vin., § 8, or by direct verification

we can establish the identity

2 -px ^ 2-{a + ft)x ^ 1
^

1
/gv

1 -px + qx'~{l-ax){l-ftx)~l-ax l-ftx

Now if X be (as it obviously always may be) taken so small

^a.tpx-q.-i?<\, we have by the Binomial Theorem

+ {px
-
qirf + . . .+{j)X- qx')" + . . . } (4).

Now (by chap, xxvi., § 34) if x he taken between - a and + a,

a being such that the numerical value of ±pa±qa'<l, that

arrangement of signs being taken which makes ±pa ± qa' greatest,

then each of the terms on the right-hand side may be expanded

in powers of x and the whole rearranged as a convergent series

proceeding by ascending powers of x.

*
Strictly speaking, this ia as yet establislied only for cases where c

is real. The cases where o is imaginary will, however, be covered by the

extension of the Binomial Theorem given in chap. xxii.
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We thus find tliat

+ (-)\.rCrp'-''gr-^. . .)x-\ (5),

= 2{l + 2&c.}-j»j;{l+2&c.) (C).

Tlie coefficient of ar" on the right-hand side of (6) is

+ (-)Vr-C;i>"-''-'7'+- • •}•

Now

2,-,C;-„-r-i<7r = «(«-r- l)(«-r-2). . . (« -2r +
l)/r!.

Hence

^-P^ = 2 + 2 /«" - -^ »•-»« + "("-^) „«-*^_

^^_^.«(»-r-l)(»-,--2).
•

-("-^^-^O^,.-.^^. . .

j,,
(7).

Again

-;
+

, a ={l+a^ + a'.r'+ . . . +a'x'+ . . . ]
+ \l + Bx

+ I3'x'+ . . . +^"j^+. . .
},

= 2 + 2(a» + y3")a:« (8).

All the series involved in (8) will be absolutely convergent,

provided t be taken so small that \ax\ and \fix\ are each <1.

Now, by (3), the scries in (7) and (8) mnst be identical. Hence,

comparing the coefficients of x", we must have (by chap, xxvi.,

§21)

, ( ^^,
»(»-r-l)(n-r-2). . . (n

- 2r + 1)
^..^^ ^

(9).

As we have indicated (by using h), tho equation (9) is an

algebraical identity, on the undcrst-'iuiling that p stands for o + /?
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and q for a/8. The last term ^vill or will not contain p according

as n is odd or even.

In like manner, from the identity

X X fl 111*-^/_i L_l_
' W-ax 1 —fix] a-X—px-vqa? l-{a + P)x + afix'

we deduce

subject to the same remarks as (9).

If we write the series (9) in the reverse order, and observe

that, when n is even, = 2m say, only even powers of p occur, and

that the term which contains p'" is

/ x^-. 2m{m + s-l){m + s-2). . . (2s + 1)
^ '

_
{m-sy.

P ^ '

that is,

, ,„_, 2?w(ot + s-1)(?w +S-2). .{7)1+ l)m{m- 1) . . . (m-5+ 1)
^"^

(2s)I

i>"?"-'.

that is.

^"^ "^

(2s)!
P 1
.st^m—•

then we have

tt'" +yy =
(-)" 2

jg"
-
^VV"'

+
"'

^"4,"

^"^
jo^g""'

-
. .

+ (-)
(2s)!

^^^^
J

^ ^'

Similarly, we have

(»i + 2)»»(OT''-r) , „,_,

0!

/ v-i ("' + g-l)»'('»'-l')- . . (ffi'-g-2') „^,, „_.^i 1

^^ '
(2s- 1)1

^ ^ /
(9").
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^^_^... ..K-n^^._.K-.-i') ^,..^,..^
.}

(10-).

„»^._^^. ,
(m4-l)ffi (m4-2)>n(w'-r)

a-p
=("'

1'^ 2!~'"^
"

41

;*'7"-'-. ..+(-)'
. (»i + s)w>(>n''-l*). . .(m'-s-l*)

(2«)I

^"7"
}

(10").

Since o and ft jiro the mots of the quadratic function

:?-pz + q, we may replace a and /3 in tlie above identities by

h \P * Jip^
~

4?)}i <""! i {p
~

n/0»'
~

4(/)[ respectively. If

this be done, and we at the s.-irae time put p = x and -iq =
y',

we deduce the following :
—

n(n-r-l)(n-r -2). (»-2r+l) 1

fr2""
y "^- • •

I
•

=
2jy*+-a:»y"-'

+—
!-jj

— '

jr'y-* + . . .

n' («'
-

2') (n'
- 4') . . (»'

- 27 2̂') .^ 1 I
(g--).

(2s)!
"^^ +-.-|.

^

if n be even
;

_„/ ,, «(«'-!'),, , n(n'- !')(«' -3')

Ji'y— + . . . +
H (/t*

-
1') («'

-
3') . . (n'

- 2.< -1')

jj.,y-«.-.+ . .

j
_

if „

(2.s-+l)l

be iiiliL
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1!2'
-^

2!2*

(w
- r - 1) (?t

- r - 2) . . (n
-

2/-)

r! 2-'"

= 2VC*-" + y)
(a^"-'

+
'-^fnjJ^ «"-'?/ +

^

=
2,/(ar' + y=)g,ry-U^l^.,y-^+.

. .

^
(2s- 1)!

"^ ^ +•••}.
if n be even

;

a.-*?/"-" + . . . + (?i'- 1") («'
-

3') («'
- 2s - 1")

ar»?/»-»'-' + . . .

I
,
if «

(2s)!

bo odd.

(!(»")

These series are important in connection with tlie theory of

the circular and hyperbolic functions.

§ 8.] A slight extension of the method of last paragraph

enables us to lind expressions /or the sum and for the number of

r-ary -products of n letters (repetition of each letter being allowed).

The inverse method of partial fractions gives us the identity

\l{].-a,x){l-c^x). . .{\-a„x) = %A.(l-a,x)-' (1),

where A, = o.,''-^l{a,-a^{a,-a^ . . .{a,- On).

Also, .since (l-a,.r)-'=l + Sa/a:', we have (by chap, xxvi.,

§ 14), provided x be taken small enough to secure the absolute

convergency of all the series involved,

1/(1
-

a.^x) (1
-

ttja') ... (1
-
a^x)

=
(1 + 5a,'.?;'-) (1 +

•S.a^'af) . . . (1 + :iaZ of) (2),

= 1 + I.KrOf (3),

where ^XV is obviously the sum of all the r-ary products of

a,, a,, . . . tt„. Since the coefficients of of on the right-hand

sides of (1) and (3) must be equal, we have

JT, = 2a."+'-V(a.
-

a,) (a.
-

a,) . . . (a.
-
a„) (4).
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If, for example, there be tliree letters, <i,, a,, a,, we have

»"-r = 7-
—w- —

^
+

/„ „ \7-
—

\
+

(o,
-

a,) (o,
-

o,) (a,-o,)(a,-a,) (o,
-

a,) (a,
-

a,)

_ <^' (g,
-

g.) -t- g,-^' (a,
-

a.) -^ <^' (a.
-

g.)

(a,
-

o,) (a,
-

o,) (a,
-

a,)

If we put a, = a,= . . . =a„ =
l, tlieu Biich of ths terms iu

n^r reduces to 1, aud .A'r becomes .iTr. Hence, from (3),

(i-a-)-"=i + :i„//,^ (6).

Equating coeflicieiits of a.' ou both sides of (6), we have

,//,= »(« + !). . . (M+r-l)/r!,

a result already found by another method in chap, xxiii., § 10.

§ 9.] Suiue interesting results can be obtained by expanding

l/(y +
•t)(if + j: + 1) . . . (y + a: + «) in descending, and iu ascend-

ing powers of y.

If we wTite

l/(y + a?) (y + -r + 1) . . . {i/
+ x + n)= i Ariy+x + r)-',

r—

then we find, by the method of chap, viu., § 6, that

l = Ar{-r){-r+l). . .(-1)1.2. . .(u-r).

Hence Ar={-)\Cr/n\.

Therefore

«!/(i/
+ -r)(y + ^+l)-.(y + -r + «) = 2(-)'.C(j, + j: + r)-' (1).

Hence, if Pi, Pj, I\, . . . denote resi>ectively the sum of

X, X + 1, . . .,
x + n, and of their products taken 2, 3, . . . at a

time (without repetition), we have

=
2(-)^6v(l

+ i
(-)•(•" "^yi (2),
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where we suppose y to have a vahie so large that all the series

involved are couvergent.

Since there is uo power of Xjy less than the nth. on the left

of (2). the coefficient of any such power on the right must'>

vanish. Therefore

(3 + «)"
-
„Cj (« + w - 1)' + „<72 {x + n-'2)'-. .. (-)'\if = (3),

where .< is any positive integer <n.

Equating coefficients of 1/y", Ijy"*^, and l/y^'*'\ wo find

(x 4 n)"
- „C, (x + n- 1)" + „Co {x + n- 2)"

-
. . .

(-)"a;" = 7j! (1);

(.r + ??)"''"'
- nO, (^ + ?«

-
1)"+' + „C, (x + n -

2)''+'
-

. . .

(_)«a;"+'
= „!iJ„

= {n+\)\{x+hi) (5);

{x + «)"+'
-

u(7i (« + « - 1)"+- + „C, (* + M - 2)"*--
-

, . .

(-)'U>"+==«!(Pr-P,),
= J (n + 2)! {x- + «^- + iV« (37J + 1)} (G) ;

and so on.

Again from (1) we have

x(x+ i) . . . {x + n)

T-a
' x + r\ x + r)

where Q„ Qo, Q^, . . . are respectively the sum of l/x, l/{x+ 1),

. . .
, l/{x + n), and the sums of their products taken 2, 3, . . .

at a time. From (7), by expanding and equating coefficients of

y, we get
n\ f 1 1

^ _^

1 1

x{x+l) . . . (x + n)\x X + 1
' ' '

(x + n)j

~.t' (x+if (x+2y
••^ '

(x + ny
^°''

If we put x=l, we get the following curious relation between

the sum of the reciprocals of 1, 2, . . .,» + !, and the reciprocals

of their squares :
—
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1
/i

1 M - ^ »^''
I

"^'

n+1 li ^2
• • •

n+lj 1' 2' '3*
' ' '

§ 10.] We have now exeiuplilied most of tin; elementary

processes used in the transformation of Binomial Series. The

following additional exiiniiiles may be u.seful in helping; the

student to thread the intricai.ii-s of this favourite field of exercise

for the tyro in Mathematics.

Example 1. Find the oocQioient of x" iu the GxpansioD of (1
-
z)'/(l + ')*'*

iu ascendini; powers of x.

If (l + xJ-»/=
= l + i:.i„i», then (l-i)'/(l+x)V=(l_at + i»)(H-2<i.x").

Hence the coi'OJcient required ia ",
-
2a,_, + a,_j . If we sabstitute the

actual values of a„ u„_|, a,_j, we tind that

°,-2...-. + ''..-.
= (-)"("'"''-8"-l) ^g^4;6 ' ^^''.In

-

Example 2. If /(j:)=Uj + u,x + (i,i-+ . . ., then the cooO'icient of x' in

the expansion of / (x)/(l
-

x)"" in ascending powei-s of x is n, „//, + o, „H,-j
+ 11, „Hr-4 + . . . + 0,. This follows at once from the equation

/(i)/(l-xr=K + 2,.,x'-)(l+i:„//,x'-).

In particular, if we put / (x) = (1
- x)"* and m = 1, we deduce tbkt

»+l^'r= J^r + »^^r-l + n^r-J + • + 1
!

and, if we put f{i) = (1
-
x)~", we deduce that

results which have already appeared, in the particular case where m and n are

integral (xee chiip. xxtii., § IU).

Example 3. bhow that

.CJ2 + «+,C'J2' + ,^C'J2' + . . . ad 00 = 1 + „C, + „C, + . . . + „r, (I).

The left-hand side of (1) is ubviously the oueQicicnt of x* iu

A' = (l + j)"'/2 + (l+x)"-t'/2' + (l + x)'»+'/2'+- . . adx.

Now j:= i(l + x)"'[l + {(l + x)/J} + ((l+i)/2l'+. . . adocl
= (l+x)"/2{l-(l + x)/2}, if we 8up|K>su«<l.

= (l + x)-/(l-x),

= 1 + 2(1+.C, + ,«C,+ . . .+„6'.)«-,

by last example. Ucnce the theorem follows.

Example 4. Sum the series

fi-3 (n-.«)(n-5) (n-6)(>.-6)(n-7) .

5-1--^+ y, ^^
+....

n beiii{j a positive integer.
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The equations (9'") of § 7 being algebraical identities, we may substitute

therein any values of x and i/ we choose, so long as no ambiguity arises in

the determination of the functions involved. We may, for example, put
ir=-l and y = 2i. We thus find

Hence, If u and u- denote, as usual, the two imaginary cube roots of + 1,

we have

S={l + (-)"-i(a,»+ <„'")}/n.

If we evaluate u^+ or" for the four cases where n has the forms Gm, 6m±l,
6m ±2, 6;« + 3 (remembering that u*"'=l, w~^ = (a', u-'=u), we find that

S has the values -1/n, 0, 2/«, and 3/n respectively.

Example 5. Sum the series

n (n
-

1) ;t(n-l)(n-2)(»-3) «(n- l)(it-2) (n-3) (n-4) (n-5)

'2(2r + l)'*" 2.4(2r+ l)(2r + 3)
"*"

2.4.6(2r+l)(2r+3) (2f + 5)

+ . . .

n being a positive integer.

If we denote the series by 1 + «j + «j+ Uj + . . . , then

n(n-l) . . . (>i-2s + l)

"«— -,

—
. .-,

., n+Ir^sr+M
• H-«^« •

' 2.4 .. . 2s(2)-+ l)(2r + 3) . . . (2)+2s-l)'

_ »il(2r)!(r + l)(r + 2) . . . (r + »)~
(n-2s)!(2r + 2«)lsl

'

restricting r for the present to bo a positive integer. We may therefore write

nl (2r);

'••"(n + 2r)!'

Now ^,C, is the coefficient of x^ in the expansion of a:*+=« (1 + Ijx')'*' ;
that

is, in the expansion of x'^^^{J{l + ljx-]l^'^^, Hence 2u, ia one part of the

coefficient of x-'' in the expansion of

(SSj'l
"^ + '^'^^^ + l/x=)}»+-^ + {

1 - xj{l + l/x») }»+>].

Hence 2S is the whole coefficient of x^ in the expansion of

g5^,[{i+v(i+x»)}-+-^-+{i-V(i+^=)}"^n

Now, by § 7,

{l + ^(l + i')}-+» + {l-v/(l + x=)}"+=''

= 2»+*
|l +S

("+ 2'-)(» + 2r-»-l)(/. + 2r-»-2). . . (n+ 2r-a» + l)
i^i _

the coefficient of x" in which is

(n+ 2r)(n + r-l)(« + r-2) . (n + 1)

rl2»

a II. 14
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Henoe

o_ ,..^^-1 »l(2r)!(n + 2r)(n+r-l)l
(ii + 'Jr)!rlH!'i*-

*

_ (n+r-l)(n + r-2) . (r + 1)~
(n+ 2r-l)(n + 2r-2) . . . (2r + l)*

The snramation is thin offectoJ for all integral values of r. So far, how-

over, 08 r is conccrneJ, the formula arrived at might be reduced to an

identity between two integral fuuctions of r of finite degree. Since we have

ehown that this identity hold.-) for an intinite number of particular valui>8 of

r, it must (chap, v., § IC) hold for all values of r. The summation ia there-

fore general so far as r is concerned.

Exercises X.

Find the coefficient of f' in the expansion of the following in ascending

powers of X.

(1.) x/(x-a)(i-fc)(x-r). (2.) x^^^Hx - a) (x
-

b) {x
-

e).

(8.) x'^'l{x
-
a) (x

-
6) (x

-
c), where m is a positive integer < r - 8.

(4.) {3-x)/(2-x)(l-x)«. (5.) 2x'/(x-l)»{x' + l).

(6.) (1-pxni-qx)-^.

(7.) If (1
-
3x)"/(l

-
2x)' be expanded in a.^cending powers of x, the co-

efficient of 1"+^' is (- l)"(r-2n) 2''-', n and r being jKisitive integers.

(8.) Find the numerically greatest term in the expansion of (a
-
x)y(b -f c)*

in ascending powers of x.

(9.) Show that

(x+ff)(x + 2/j) . . . (x+ufi)

(x-^)(x-2;3) . . .(x-n/3)

-14.'^/ 1^ "(" + •)("'- ^'j ("•- •^•) ••• ("'-'•-'•) ^P
,~

rT,
*'

(rl)' ,.rfi*

and hence show that

r-I C')

(10.) If n be a positive integer, show that

l-mCl+™C,-. . . (-)"„C,= (-)"..,C,.

(11.) If n be an even positive integer,

(12.) If m and n be ]KiKitivo integers, show that

m^O • mtli^n + m^f (m-sl/>''ii-l +m^f (m-4)/»^i>-» + • • • + m^M • (m-lnyi^*

m»(m'-2») . . . (m'-aiTn;^

(2n)l
'

_ m(m' -l»)(in«- 8^ . . .
(
m'-JgrTni)

(2n + l)!

(See Scblumilcb, Handb. d. Atg. Anal., jj M.)
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(13.) Show, by equating coefficients in the expansion of (l-x~i)"'(l -a:)""',

wliero 7K is a positive integer, that

(1 J.) If n bo a positive multiple of 6, then

„C,-„C33 + „(7532-. . . =0;

(1.".) If {l + x)-^= l + a^x + a.,x- + . . ., sum the series l-aj+a„-a^ + . . .

to n terms.

(16.) If (l + x)'''
= l + a^x + a^x--i- . . ., then 1 - a^- + a.;^^

-
. . .=

(-l)»2n(2»-l) . . . (n + l)/>il.

m\ jl_2M»jtl)l (-l)'-2-'-(2r)! _(-l)^
* '

r!ll (r-l)l:il 01(2r+l)l 2r + l*

(18.) ''z'llir (r!)2 (2«
-

2r)l = (4?i)l/4''{ (2k)I (».

(19.) Sum to n terms S(2n-2)l/22"-'H {(k- 1)1 }^

(20.) Sum the series

, ,>1 , <^. 1.4 , „1.4.7 1.4 .. . (3n-5)
„ +

(n-l)3
+ (n-2)— + („-3)3-g-g+. . • +^ . . (3»-3)

"

(21.) Find for what values of n the following series are convergent ; and

Bhow that when they are convergent their sums are as given below.

l_n_]_ n{n-l) 1 (m-l)l

m llm + l''" 21 m + 2
•"

(ii + l) (j( + 2) . . . (n + m)
'

m"^llm + l"^ 21 m + 2"*'-
'

~(h+1)(« + 2) . . . (n + 7»)'"'+"'"-'

-m4.A.-22"+= + . . . + (-)--12''+™+(-)"'1},

tn in both cases being a positive integer.

(00 1

'
n" ('• + s)I ("' + "-'•-8-1) 1 ^ (m + «)

* "'
,=0 rl si (m-r- 1)1 (j!-s)! ml hI

'

(23) r^m«y(
,. + s)l(m + n-r-s)! ^(m + n+ l)l

^

r=i)j«o J"! «!("!- rj^n-s)! mini

(24.) The number of the r-ary products of three letters, none of wliioh is

to be raised to a power greater than the »ith, where n<r<2n, is

r(3n-r) + l -]«(«-!).

(25.) Prove, for a, b, c, that 2a7(a -
6) (o

-
c)s 0, if r= 0, or r= 1 ;

= 1 ,

ifr=2 ; and generalise the theorem.

(26.) Show that

g (6
- f) {be

-
aa') (a"*

- a"") b{c-a) {
ca -

tfr') (ii"*
- 6*"

)

a -a'
* 6-^

c(a- b) (ab- ccf) (c"^
- c"^)

= {b-c)(c- a) {a
-

b) {hu
-

aa') {ca
-

66') {ab
-
cd) S^_^\i\hc,

where aa'= bb' =cc', and S„_3 is the sum of the (m-3)-ary products of

o, 6, c, a', 6', e. (Math. Trip., 188G.)

U—2
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(27.) ir S^ be the siun of the r-ary products of the roota of the eijualioD

x" + a,x"-' + o,x* I-. . . + u,=0, then

0=S, + o„
= S,+ S,<i, + a„

= S. + S.., a, + .?„.,«, + . . . + <!.,

= S,+ S^,a, + Srt(i, + . . . + .SV-1.''.- „
(Wronski.)

(29.) If
.*?,.

be the sum of the r-ary products of n letters, f, the sum of the

proilucUs r at a time, 2^ the sum of their rth powers, then

2,= ii5,-(n-l)/',S^,+ . . .+(-iy{ii-r)l\, if r<n-l.

= »S,-(fi-l)/'i.SVi+- • .+(-l)"-'iViS^«. if r>n-l.

(Math. Trip., 1B82.)

(29.) If 0= (1
-

ttj)-' (1
-

/3j-)-' . . . , the number of ways of dutribntiiiK n

things, X of which are of oue sort, n of another sort into p boxes

place<l in a row is the coeflicient of x"o*^ ... in the expansion of {v- 1}'

in ascending powers of x, namely,

ii,-pC,n,+pC,ii,-. . ..

where u,=(p + X-s)I(p + M-»)! • • /(p-*)lX! (;>-«)! m' • • •

(Math. Trip., 1888.)

(30.) With the s.-ime data as in last question, show that the whole number

of ways of distributing the things when the order in which they are arranged

inside each box is attended to is

nl(ti-I)l/(n-p)l(p-l)IX!M!»'l • • •

(Math. Trip., 1888.)

Show that

(81.) 1 + 1/2 + . . . + VT=.C,-i,C, + l,r,-. . .

,o,v ,
{m + \)m {m + 2){m + l)m(m-l ) „, J-l)"

(3^) 1-
g,

P+ ^—
6i

- am+r

(34.) If m and n are both positive integer*, and m>n, then

a^* , (m-n)(w-n-l) (m-ii)(m-n- l) (m
- n -8)(m-ii-3) .

nl
*

ll(n + l)!

"^

iil(n + 2)I

1.8.5 . . . (2w-l)-^
(m + n)!

(85.) If r bo a positive integer,

= (X + ir' - ^C, (X + -i}r-* + ,_,C-, (X + 2)'^ - ^C, (X + a)--' + . . .
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MULTINOMIAL THEOKEM FOli ANY INDEX.

§ 11.] Consider the integral function aiX + a.,x'+ . . . +ar.r'',^

whose alDsolute term vanishes, the rest of the coefficients being

real quantities positive or negative. Confining ourselves in the

meantime to real values of a-, we see, since the function vanishes

when x = 0, that it will in all cases be possible to assign a posi-

tive quantity p such that for all values of x between - p and + p

we shall have

I
ai.r + a..v' + . . . + ar-r^

|

< 1 (1).

In fact, it wiU be sufficient if p be such tliat

ap + ap^+ . . . +ap''<l

where a is the numerical value of the numerically greatest

among Oi, a., . . ., «r. That is, it will be sufficient if

ap(l-pO/(l-p)<l;

a/ortiari (supposing p<l) it will be sufficient if

ap/{l-p)<l;

that is, if P<l/(« + l)* (2).

p is, in fact, the numerically least among the roots of the

two equations
UrOf + . . . +a,a;±l = 0,

as may be seen by considering the graph of UrOf + . . . + a^x.

Therefore, whether m be integral or not, provided

-p<x< + p we can always expand (1 + Oia; + Wo.ir' + . . . + UrX'')'"

in the form
1 + 2„.C. (a,.r

+ a,a-'+ . . .+ ardf)' (3) ;

and the series (3) will be absolutely convergent whether m be

positive or negative. Hence, since aiX + a^a^-i- . . . +aT^is a

terminating series and therefore has a finite value for all values

of X positive or negative, it follows from the principle established

in chap, xxvi., § 34, that we may arrange (3) according to powers

* This 13 merely a lower limit £or p ;
iu any individual case it would in

gejiural be much greater.
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of X, and the result will be a power scries wliidi will converge to

the sum (1 + a,j; + a.jj.^ + . . . + Oraf)" so long as -p<x< + p.

Since ,"! is a positive integer, we can expand „C,(rt,j + fi.^j:' +

. . . +arjf)' by the formula of chap, xxiii., § 12. The coelhcient

of of in this expansion will be

that is,

2a,°'"i°' . . • ar'^m{m-\) . . . (m -s+ l)/a,!a.,! ... a,! (.J).

where the summation ext-tnds over all positive integral values of

"^i. "i. • • •> "t> including 0, which are such that

a, + So, + . . . + ro, = n)

In order, tlicrefore, to tiud the coefficient of x* in (.3) «c have

merely to extend the summation in (4) so as to include all

values of s
;
in other words, to drop the first of the two restric-

tions in (5).

Hence, whether m be integral or not, provided x be small

enough, we haw

(l+o,ar + o,a?+ . . . +«r^)"'

= 1 + 2 —5 '-—-—i -Ui 'a,^ . . . arx* (O),
O,! CL,! . . . u,!

the summation to be extended over all positive integral values qf'

"i, "-ii • •. "ri including 0, such that

a, + 2a, + . . . 4 ra, - n.

The dct.-tils of the evaluation of the coillicient in any parti-

cular CAse are much the same as in chap, xxiil., .sj 12, Example 2,

and need not be farther illustntcd. It need scarcely be .added

that when n is very large the calculation is tedious. In some

cases it can be avoided by tmn.sforming 1 + «,x + a,3^ + . . . + Ortf

before applying the Binomial Kxpan-sion, but in most cases the

application nf the above formula is in the end both quickest and

most conducive to accuracy.
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Examj]lc. To find the coefficient of x" in (1 + .T+ I-+ . . . +i'')"'.

We have

(l + a; + x=+. . .+x7"={(l-a:'-+')/(l-x)}"»,

= (1-x'^')'"(1-.t)-"',

Hence, if n<r + l, the coefficient of x" is siiniily

„H„=m(m+l) . . . (m + n-l)/Hl;

bnt, if n •* r+ 1, the coefficient of x" ia

NUMERICAL APPROXIMATION BY MEANS OF THE BINOMIAL

THEOREM.

§ 12.] The Binomial Expansion may be used for the purpose

of approximating to the numerical value of (1 +a;)'". According

as we retain the first two, tlie first three, . . . ,
the first n+1

terms of the series 1 + nCiX + nCnx' + . . ., we may be said to

take a first, a second, ... an 7(th approximation to (1 +
j.-)'".

The principal points to be attended to are—
1st, To include in our approximation the terms of greatest

numerical value ;
in other words, to take 7i so great that the

numerically greatest term, at least, is included.

2nd, To take ii so gi-eat that the residue of the series is

certainly less than half a unit in the decimal place next after

that to which absolute accuracy is required.

3rd, To calculate each of the terms retained to such a degree

of accuracy that the accumulated error from the neglected digits

in all the terms retained is less than a unit in the place uexi; after

that to which absolute accuracy is required.

The last condition is easily secured by a little attention in

each particular case. We proceed to discuss the other two.

§ 13.] T/ie order of the numericalli/ greatest term.

In the case of the Binomial Series (1 +.r)"', if
* denote the

numerical value of x, so that 0<^<1, we have lor the numerical

value of the couvergency-ratio m„+,/"„
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(1).
m-n . n- m ,

<r«
= r f, or =——

, t»
n+ 1 n + 1

according as m - n is positive or negative

Heuce it is obvious, in the first place, that, if - 1 S m<+ 1,

that is, if m be a positive or netjative proper fraction, the condi-

tion cr,<l is satisfied from the very beginning, and the first

term will bo the greatest

If «j>+ 1, the condition o-,<l is obviously satisfied for any

value of n which exceeds tn; in fact, the condition will be

satisfied as soon as

(m-n)i<M+l,

thatifl. n>(m^-l)/(l+0 (2),

the right-hand side of which is obviously less than m. Tliis

condition is satisfied from the beginning if f<2/(m-l).

If m be <-!=-/*, say, where /*>!, the condition <t,<1

will be satisfied as soon as

(/x
+ n)f<n + l,

that is, n>{i^-\W-i) (3).

This condition is satisfied from the beginning if ^<2/(^ +
1).

§ 14.] Upptr limit of the residue. We have seen that,

ultimately, the terms of a Binomial Series either (1) alternate in

sign or (2) are of constant sign.

To the first of these cla-sses belong the expansions of (1
+ J-)"

and (1 +;r)'"', where x and m are positive.

If n be greater than the order of the n\imcrically greatest

term, and in the c.ise of (1 +x)" (see § 4) also >m, tlien the

residue may be written in the form

ff»-±(«<»+i-".*« + «*»+«-- • •) (')•

where «,+,, «,+,, »*,+•, • • • are the ntimerical values of the

various terms, and we have »*,+i>''i,+«>Uii+i> • •

Hence, in the present ca.sc, the error committed by taking an

nth approximation is numerically less than «,+,, In other words.
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if we stop at the term of the nth order, the following term is an

upper limit for the error of the approximation.

Cor. A lowei' limit for tlie error is obmously «„+i- (<„+j.

The expansions of (1-a;)"' and (l-a;)""" belong to the

second class of series, in which the terms are all ultimately of

the same sign. It will be conveuicut to consider these two

expansions separately.

In the case of (l-a')"", if we take n>m, then we shall

certainly include the numerically greatest term; and (r„, the

numerical value of the convergency-ratio, will be («
- m) x/{n + 1),

that is, {l
—
{m+l)/{n + l)}x. This continually increases as n

increases, and has for its limit x, when w = oo . Hence

Therefore, Mn+i. Mn+2, • • • having the same meaning as before,

^n = ± («'»+! + t<n+2 + «n+3 + • • •).

Therefore

\Ii„\<u„+i(l+x + ar + a^ + . . .),

<«„«/(! -^) (2).

Hence the error in this case is numerically less than M»+i/(l
-

x),

and it is in excess or in defect according as the least integer

which exceeds m is even or odd (see § 4).

Cor. A lower limit for the error is obviously Mn+i/(l
—

fn+j),

that is, ™C„+i«"+V{l
-
(« + 1 - »«) ^/i"' + 2)}.

In the expansion of (l-a:)"™, all the terms are positive;

and, in order to include the greatest term, we have merely

to take n> {mx - 1)/{1
-

x).

We have, in this case,

<T„
=

(re + m) x/{n + 1)
=

{1
-

(1
-
m)/(n + l)} x,

=
{l + (m-l)/{n + l)\x.

Hence, if «i< 1

(r„+i<o-„+3<. . .<.<•< 1,
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ami an upper limit of /;, will be «,+i/(l -x) as in last case, a
low, r limit being «,+,/(! -tr,+,), that is, „//,+,j:"+Y{l

-
(" + 1 +

m) x/(n +
2)}.

If «i>l,

l>tr„+,><r„+,>. . .>x,

and an upj>er limit of /.'„ will be »i,+,/(l
-

«r,+,), that m,

„//,+,a:"+V{l -(H + l + »i)a:/(H + 2)}, a loirer limit being u,+,/

The error for (1
-

a-)'" is, of course, always in defect

Eiami>lo 1. To calculate the cube root of 29 to C places of decimals.

The nearest cube to 2'J is 27. We therefore write

4/2y=(3'+ 2)'/>=3 (1 + 2/3')'".

=
Ilj + U,-B, + U,-Uj . . . ,

The first term is here the greatest; and the terms alternate in si^ni after m,.

Also Uri written in the most convenient form fur calculating successive terms, is

«r=3(A)(rh)(,'A)(M)(A\). . -C^)-
Therefore
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where we have already neylectetl all powers of x above the second in each of

the two series ;

( m(m-l) If m(m-l) „»= n-m.z +—^— ^x^V •( l-Hi:cH
5_^
—^*

f
•

, , ^ i m(m-l] . vi(m~ 1)1 „= l + (-m-m).c+ i -^—i+ma+-A_—'I
^^^

where higher powers of x than x- have again been neglected in distributine
the product ;

= 1 - 2mx + m {'2m
—

l)x-.

Exercises XI.

(1.) The general term in tlie expansion of {l + x + y + xi/)l(l + x + y) is

(
-
1)'"+" (m + ?j - 2)1 x'"y''l{m

-
1)! (n

-
1)1.

Determine limits for x within which the following multinomials can bo

expanded in convergent series of ascending powers of x
;
and find the

coeQicients of

(2.) a:* in (1
- 2x + x« - 3.t^)-V'. (3.) x» in (1

- 3x - 7x2 + jSj-a/s.

(4.) x» and x' in (x + Sx^ + Sx" + 7x' + . . . )-''.

(5.) x' in (1
- 3x + x3 - x')"'''. (0.) x' in (2 + 3x + x')-^.

(7.) Show that in (Oa* + 6ax + ix")-^ the coefficient of x'' is 2^ (3a)-*^';
and that the coefficient of every third term vanishes.

(8.) The coefficient of x"* in (1 + r -f x^)"* (m a positive integer) is

m(m-l) m(m-l) (m-2) (»»-3)^
(1I)=

"*

(2!p
•"• •

(9.) The coefficient of r"^Mn (l + x)/(l+x + x=)^ is -(r + 1).

(10.) Evaluate 7(100/99), and 1^(1002/998), each to 10 places of deci-

mals
;
and demonstrate in each case the accuracy of your approximation.

l>'ind a first approximation to each of the following, x being small:—
, {x + V(x2+1)}^-''-{x-^/(.t' + 1)1^"
^ '

{x + ^{x' + l)]^'^i-{x~^(x- + l)Y--"'->-''

(12.) (l+x)(l + rx)(l + r-x). . ./(1-x)(1-x)'-(1-i)'*. . . .

(13.) ^(2- j(2-,,/(2- . . . -^(1 + x). . .))); where J is repeated
n times.

(14.) If X be small compared with N^, then J{N' + x)=N + xliN +

Nzji (2iV' + x), the error being of the order x'/W. For example, show that

v/(101) = 105VA. to 8 places of decimals.

(15.) If;) differ from N' by leps than 1 per cent, of either, then ^p differs

from iN+lpjN^ by less than jy/90000. (Math. Trip., 1882.)
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(16.) II p=N* + x where x is small, then approximately

^^= ^^'+^'''''^ + 13 ^''^''P + ^^'> '

show that whpn N = 10, x^l, this approximation is accurate to 10 places of

decimals. (Math. Trip., 1886.)

(17.) Show that L {l/,^n> + 1/V(n'+ 1)+ • • • + l/v/(ri' + 2n)| = 2.

(CatulttD, Nouv. Ami., sec. i., t. 17.)

(18.) Find an nppor limit for the robiduo in the uxpanuioo of (l-t-x)"*

when m is u puaitive int«^oi.



CHAPTER XXVIII.

Exponential and Logarithmic Series.

EXPONENTIAL SERIES.

§ 1.] Wc have already attached a definite meaning to the

s}Tnbol cf when a is a positive real quantity, and x any positive

or negative comuieusurable quantitj-. We propose now to discuss

the possibility of expanding aj' iu a series of ascending powers
of X.

If we assume that a convergent expansion of a'' in ascending

powers ofX exists, then we can easily determine its coefficients.

For, let

a' = Aa + AiX + A^ + . . .+A„x'' + . . . (1),

then, proceeding exactly as in chap, xxvii., § 2, we have

L{a'*''-a')/h
= A, + 2A^ + . . . + 7iA„x"-' + . . .;

and the series on the right wih be convergent so long as x lies

within limits for which (1) is convergent. Now (by cliap. xxv., § 13)

L (rt^+*
-
a'yh = (fXL (e**

- 1 )/M,

= X<
where X^log^rt, and e is Napier's Base, namely, the finite quantity

L {I + 1/71)". Hence
*""

Xa^=lAi + 2A^ + . . . + n^,3-"-' + . . . (2).

Therefore, by (1),

\{Ac + AiX+. . . + An-iHf'^ + . . .)

= \Ai + 2A^ + . . .+«^„a^-' . . . (3).

Since both the series in (3) are convergent, we must have

l^li = A^o, 2xlj = A.^i, . , ., Hj4, = \4,-i.
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Usiug these equations, we find, successively,

^, =
yl,X/l!, ^, = ^.\V2! J,= yUX"/«! (4).

Also, since, by the meaning atbichcd tf) «*, a* = + I, putting

x = on both sides of (1), \vc have

+ 1=^1. (.U

Hence, finally,

a' = 1 + X^/1 ! + (\j-)V2! + . . . + (Xj-)"/«! + . . . (C).

We see, a posti'riori, that the expansion found is really con-

verj^ent for all values of x (chaji. xxvi., S ^}, a"d also that the

scries in (2) is convergent for all values of jr. Our hj^othcscs

are therefore justified.

This donionstration is subject to the siinie objection as the

corresponding one for the Binomial Scries : it is, however, interest-

ing, because it shows what the expansion of o* must be, provided

it exist at all. We shall next give two other demonstrations,

each of which supplies the deficiency of that just given, and each

of which has an interest of its own.

§ 2.] Di'dnrthm ofthe f'Jxpont'nfial/rom t/ii- li'mnmial Krpnn.oittn.

By the binomial tluorem*, we have, provided z be numeric-

ally greater than 1,

(••:)"=
1 zx{zx-l)l

^

zx{zx-\) . . . {zx-n^\) \
^

n\

= 1 + a: + ^ „,'+... + —^ '—^—
i—^

—'

2! n!

+ -R. (1),

where

(n+l)l (n + 2)!

^

^- • • (-0-

* In wliat frillowR we linvr rofitricted the value of the index tx. Bince

z is to be ultimaU'lv innde infinite, tlirre is no objxtion to our supposinR it

always so chosen that tz is a pofiitivo intei^cr. We then depend merely
on the binomial ez)>an»ian for positive intr^al indices, Thix will not affect

the value of 1.(1 -t- l/i)**, for it has Ixtn shown (chap, xzv., § 13) that this

has the same valu>' when x becomes + ur - cc , and whether i iucnoiies bjr

iuli.'ijral ur b> (rocliuual inctvuivut*.
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Suppose now a: to be a given qiiantity ;
and give to n any fixed

integral value whatever. Then, no matter what positive or

negative commensurable value x may have, we can always choose

z as large as we please, and at the same time such that zx is a^

positive integer, p say, where p>n. The series (2) will then

terminate; and we shall have l/zx<2/zx<. . .<n/zx . . .

<(j}- l)/zx<l. With this understanding, it follows that

<;?;"+'/(« + 1)!{1
-
xl{n + -2)] (3) ;

and we have

(\ I M"-l i.r|-̂ '^^~^/-^^ ^

.T"(l-l/p)...(l-»-l/p)
\ z)

'

2! w!

+ /-,. (4),

where R,, satisfies the condition (3).

Now let z, and therefore also jj, increase without limit («

remaining fixed as before). Then, since

L(\-\Ip) . . . {l-n-l/p) = l,
p=oo

we have

.(-')'
l+.r+-+. . .+f^ + 7.'„ (5),

2! w!

Bn being still subject to (3).

We may now, if wo choose, consider the effect of increasing

n. When this is done, x"+y{7i+iy.{l-x/{n + 2)] (see chap.

XXV., § 15) continually diminishes, having zero for its limit when

n = 00
;
wc may therefore write

l+x + %+. . . + —. + . . . ad CO (6).
2 ! 11]

Thus the value of Z(l + l/s)'^ is obtained in the form of an

infinite series, which converges for all values of .2-. For most

purposes the form (5) is, however, more convenient, since it gives

an upper limit for the residue of the series.

IL
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§ 3.] Tlie comlitions of the demonstration of last paragraph
will not be violated if wo put x=\. Heuce, using e, as in chap.

XXV., to denote L {1 + lis)', we have

where IL< (« + 2)/(« + 1 ) (« + 1 ) ! (8).

This formula enables us to calculate e with comparative rapidity

to a large number of decimal places. We have merely to divide

1 by 2, then the quotient by 3
;
and so ou. Proceeding as far

as n = 1 2, we have

1 + 1 -
'.
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Hence, multiplying by g!, we get

where p{q- 1)1 and I are obviously integral numbers. Hence q\Iiq must be

integral. ,

Now 3liJ,<(g + 2)/(j +!)••',

<(3 + 2)/{'/(? + 2) + l},

that is, q\Eq is a positive proper fraction.

The assumijtion that e is commensurable therefore leads to an arithmetical

absurdity, and is inadmissible.

Another demonstration which gives more insight into the

nature of this and some other similar cases of incommensurability

in the value of an infinite series is as follows :
—

1{ Ti, T„, . . ., r„, . . . be an infinite series of integers given in magnitude
and in order, then it can be shown {see chap, ix., § 2) that any commen-
surable number p/q (where p and q are prime to each other, and p< s) can

be expanded, and that in one way only, in the form

P^Pl+P^ + _P^ + ... + ^t^ +... (9),
q Ti rir„ r^r.,r3 r^r„ . . . r„

where Pi<rj, P2<r.2, . . ., iJ„<:r„, . . .; and that the series wUl always
terminate when either g or all its factors occur among the factors of the

integers rj, rj, . . ., r„, . . . Hence no infinite series of the form (9) can

represent any vulgar fraction whose denominator consists of factors which

occur among r^, r^, . . , r„, . . .

In particular, if r,, Jo, . . ., r„, . . . contain all the natural primes,

and, a fortiori, if they be the succession of natural numbers {excepting 1),

namely, 2, 3, 4, 5, . . .,» + !,. . ., then the series in (9) caimot represent

any commensurable number at all'.

The ineommensurabilitj' of e is a mere pai'ticular case of the last con-

clusion ;
for we have in the series representing « - 2

ri
= 2, r^=Z r„ = u + l, . . .;

j),
= l, i>2=l, . . ., p„=l

Hence e - 2 is incommensurable, and therefore e also.

§ 4.] Returning to equation (5) of § 2, since L{1 + l/z)' has

a finite value e, we have i (1 -i- l/sY"" = {L{1 + l/z)'f ^ <f, there-

fore

*
It should be noticed that an infinite series of the form (9) may

represent a fraction whose denominator contains a factor not occurring

among rj , r„ , . . . , r„ , . . . , for example,112 3 4

2
=

3
+
375

+
37177

+
3:5:7:9+

••• '^ " •

This point seems to have been overlooked by some mathematical writers.

c. a. 15
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«'=l +
f,
+ ^ + - • +

f^
+ ^'. (10).

where If^ is subject to the inequality (3).

Finally, since a'=e^, where X = log,rt, we liave

^...(^).<M%...,!M-.„. ,„,

where /^,<(Xa:)»+V(« + 1)!{1
-

kt/(ti + 2)} (12).

Since LR„ = Q when n=oo, the series (10) and (11) may of

course each be continued to infinity.

This completes our second demonstration of the exjwnential

theorem.

§ 5.] Summation of the Exponential Series for real values ofx.

A third demonstration was given by Cauchy in his Analyse

Algebrique. It follows closely the lines of the second demonstra-

tion of the binomial theorem
;
and no doubt it was sugge.sted

by the elegant process, due to Euler, on which that demonstra-

tion is founded. This third demonstration is of great import-

ance, because we shall (in ch;i]). .xxix.) use the process involved in

it to settle the more general question regarding the summation

of the Exponential Series when a; is a complex number.

Denote the iuhuite scries

a? a*
1+0: +

.,,
+ . . , + -:+. . .

2! n\

by the symbol f{x). Tlicn, since the series is convergent for all

values of x, f(x) is a single valued, finite, continuous function

of X (chap. XXVI., §19).

Also, since f{x) and f(i/) are both absolutely convergent

scries, we have, by the rule for the multiplication of series

(chap. XXVI., § 14),

/(-)/(i/)
= l +

(.r+y)+(^+j^
+
^)^...

*
\h!

^
(i, -1)!T!

*"

("^^2)121
*••• "^

Hly/
"^ •• • •
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Now

til '*'(w-l)!I!'^(?»-2)!2!"'"'
''^

III

=
(a; + #/«!,

by the binomial theorem for positive integral exponents.

Hence /{c)f{y) = 1 + S (x + yflnl,

-f{x+y) (1).

Hence f{x)f{y)f{z) -^fix + y)f{z),

=f{x+y + z);

and, in general, x,y, z, . . . being any real quantities positive or

negative,

f('^)f{y)fi^). . .=f{x + y + z + . . .) (2).

This last result is called the Addition Theorem for the

Exponential Series.

From (2), putting x=y =
z, . . ., =1, and supposing the

number of letters to be n, we deduce

{/(!)}"=/(«) (3).

Also, taking tlic number of the letters to be q, and each to

be p/q, we deduce

where p and q are any positive integers. From (4), by means of

(3), we deduce

{/(W?)}' =
{/(!)}" (5).

Finally, from (1), putting i/
= —

a-, we deduce

f{x)/{-x)=/{0) (6).

The equations (5) and (6) enable us to sum the series /(x)
for all commensurable values of x.

From (5) we see that /(p/q) is a qth root of [/(Ojp Now,
since p/q is positive, the value of f(j)/q) is obviously real and

positive. Also /(I), that is, 1 + 1/1! + 1/2! + . . .
, is a finite

positive quantity, which we may call e. Therefore {/'(OH", or «^>

is real and positive. Hence /(pjq) must be the real positive

2'th root of e'', that is, ti''"'. Hence

15—2
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p and q being any jwsitive integers.

Finally, siiioe/(0)= 1, we see from (G) tliat

/(-P/<J) = 1//{PI'1).

= «-"«.

Hence

. = e-'f*
(8).

1! 2!

where pjq is any positive cumniensurablc number.

By combining (7) and (8) we complete the demonstration of

the theorem, that

..•ex' a*

for all commensurable values of x, e being given by

,11 1
.= 1^-, + ^ +

...-.^....
.

The student will not fail to observe that e is introduced and

defined in the course of the demonstration.

The exteujiioii of the theorem to the case where the ba.sc is

any positive quantity a is at once effected by the transformation

(j' = fl**, as in la.st demonstration.

§ 6.] From the Exponential Series we may derive a largo

number of others ; and, conversely, by means of it a variety of

series can be summe<i.

Bernoulli's Numbeni.—One of the most important among the

series wliicii can be deduced from the e.x|>inential theorem is

the expansion of j-/(1 -«"*), the coefficients in the even tenn-

of which are closely connectc<l witli tlie famous numbers of

Bernoulli.

We shall first give Cauchy's demonstration, which shows, a

priori, tliat j-/(1
-

«"') fan be exjxtiided in an a-stcending series qf

puWiTS of X, provided X lit within certain limits.
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We have

' '

(1),l-e-' {\-e-=')lx l-.v

where 2'=l-(l-0/« (2)-

Now, from (1), we have

.r/(l -«-^) = 1 +
2/
+

2/'
+ • • • arl » (3) ;

and this series will be absolutely convergent provided
- 1< ?/ < + 1.

Also, from (2), using the exponential theorem, we have

y = xl2\
-

a?li\ + a-V4!
- ... ad » (4) ;

and this series is absolutely convergent for all values of x, and

therefore remains convergent when all the signs are taken alike.

If, therefore, we can find a value of p such that

p/2! + pV3! + pV4! + . . . ad =c < 1 (A),

then, for all values of x between -
p and + p, Cauchy's condi-

tions of absolute convergency (chap, xxvi., § 34) will be fulfilled

for the double series which results, when we substitute in (3) the

value of y given by (4). Tliis double series may therefore be

arranged according to powers of x, and the result will be a

convergent expansion for xj(\
—

e~^).

It is easy to show that a value of p can be found to satisfy

the condition (A) ;
for we have

p/2\+p'jS\ + . . .
= {e''-l)lp-l.

We have, therefore, merely to choose p so that

e''-l<2p (5).

If the graphs of e^ — 1 and of •2x be drawn, it will be seen

that both pass through the origin, the former being inclined to

the a;-axis at an angle whose tangent is 1, the latter at an angle

whose tangent is 2, tliat is to say, at a gi-eater angle. There-

fore, since e'—l increa,ses as x increases, and that ultimately

much faster than 2x, the graph of e^ — 1 will cross the graph of

2a; just once. Therefore the inequality (5) will be satisfied pro-

vided p be less than the unique positive root of the equation

e'—l = 2x. Since e'-l<2 x
1, and e^— 1>2 x 2, this root lies
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betweeu 1 and 2.* It will, therefore, certainly be possible to

expand z/{l-e~') in a convergent series of powers of a; if

-l<a:<+l.

If we make the substitution for y, and calculate the co-

efficients of the first few terms, we find that

«_ 1 l^_i.^ ±^_ /e\
»-•" ^''j^'^Aoi anil ''ii-^ fir

••• W-
1-fl-" 2 62! 304! 4261

Knowinj;, a priori, that the ejtpansion exists, we can easily

find a recurrence formula for calculating the successive co-

efficients. Let

xl{l-e-') = At + A,x + Afi^ + AtT' + ... (7).

Then, putting
- x in place of z, wo must have, since

-xj(l-e') = e-'x/{ !-«-'),

e-'3:/(l-e-')
= A,-A,x + A3r'-At3:* + . . . (8).

Since both the series are convergent, we have, by sub-

tracting,
x = iA,x + 2A^ + . . . (9).

Hence j4, = J; and all the other coefficients of odd order

must vanish.

Therefore, from (7), we have

x = {A, + ^x + Atx'+At3* + . . .)(!-<;-'),

= (At + JiX+A,x'+AiJ^ + . . . + Jj,x*' + . . .)

x' X* a-"- a*-*'

\U 2! "^3!
• •

(2n)!'^(2» + !)!"•
' T

The product of these two convergent series will be another

convergent series, all of whose coefficients, except the coefficient

of X, must vauisli. Hence, equating coefficients of odd powers of

r, we deduce A»= \, and

1! 3! (2n-l)l 2(2»)!(2n + !)!""

• Mor<- noArlv, thr> root ir l-'i^O . . . ; bat tbo aotiul value, at will I..'

Men iircHiiUy, U uot u( luucli luipuiunoo.

1
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Iq like manner, if we equate the coefficients of even powers

of X, we deduce

A^ A^n-2 , ,
-^1 _ ^^

(\\\
2! 4! (2")! 2(2« + 2)!

^ ''

If, as is usual, we put A.n = {-f''^BJ{2n)\, our expansion

becomes

and the equations (10) and (11) may be written

S„+l C>n -5„ — 2„+l C2B-2 -Oii-l + . • • (
~

)"~ 2n+lC2-"l = (
-

) (""-)

and
^^ ^ ^_^ (^*»;)

2„+2 Con-^n
—

2n+2 Can-s /^>i-l +• • • (
"

)" 2n+2C'2 i>i - (
—

)" « (H)

respectively.

If we put n = \, n = 2, m =
3, . . ., successively, either in

(10') or in (11'), we can calculate, one after the other, the

numbers Bi, B^, . . ., Bn, . • ., which are called Bernoulli's

numbers*. Since we know, a priori, that tlie expansion exists,

the two equations (10') and (11') must of necessity be con-

sistent. Neither of them furnishes the most convenient method

for calculating the numbers rapidly to a large number of decimal

places ;
but it is easy to deduce from them exact values for a

few of the earlier in the series, namely,

-^>"6' ^''^SO' ^'^42' ^'"30'
5 „_ 691 „ 7 „_3617

^5-gg, ^«-2730> -^'-6' ^*"510'
43867 „ fl222277^'

— = il^h^lJ

* There is considerable divergence among mathematical writers as to the

notation for Bernoulli's numbers. What we have denoted by £„ is often

denoted by iJ.,„, or by fijn-i. For further properties of these numbers, and

for tables of their values, see Euler, Inst. Diff. Calc. Cap. 5, § 122 ; Ohm,
Crelle's Jour., Bd. xx. p. 11 ; J. C. Adams, Jlrit. Assoc. Rep., 1877, p. 8,

also Cambridge Observations, 1890, App. i. ; Staudt, Crelle's .Tour., Bd. xxi. ;

Boole's Finite Dijfferences (cd. by Moulton) ; and, for a useful bibliography

of the relative literature, Ely, Am. Jour. Math. (1882).

L
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We sliall rettirn to the proi)erties of these imiiibers iu

cluip. XXX.

Rrmiirk Ttgarding the limitt tcithin tchieh the expaniion of i/(l -e~*) u
ralid.—IT we dcnoto tbe serieg

by 0(z), we may state the problem we have just solved as follows:—To find
a convergent teriei <p (x) nich that(X- e'*) (x) = x, that it, $uch that (x

-
x'/21

+ I>/3I- . . .)4,{z) = i.

Now, since x-x-/2! + x'/3l -is absolutely convcrt-ent for all values of x,

and tbe cocflicicnts of <t>{x) satisfy (10') and (IT), <t>{i) will satisfy the con-

dition (x-x'/2!+x'/3!
-

. . .) ^(x) = x BO long as ^(x) is convergent. Hence,
so long as

<f> (x) is convergent, it will be tbe expansion of x/(l
-
e-'). As a

matter of fact, it follows from an expression for Bernoulli's nnmbers given io

diap. iix. tbat ^(x) is convergent so long as -2)r<x< +2t. The actual

limits of the validity of tbe expansion arc tbcrcfore much vridcr than those

originally assigned in the a priori proof of its existence.

Cor. 1. Since a: (^ + e-')/{e'
-

«"") sx/(l
-
«"")

-
x/(l

-
e^),

we deduce from (12)

Cor. 2. Since .r/(l + e-')
=
2x/(l

-
«"»')

-
j-/(I

-
«-),

j-^,
=
|(2'-l)x

+
||(2^-l)^-§(2'-l)y+.

. . (14).

§ 7.] Bernoulli's Theorem.—We have alrcafly seen that the

sum of the rth powers of the first n integers (,5r) is an integral

function of n of the r + 1th degree (see chn]). xx., S 9).

We shall now show that the coefficients of this function can

be expressed by means of Bernoulli's numbers.

From tlie identity

(«"-!)/(«'- l)Hl+<^ + t^ + . . .+el-'l',
that is,

(e«
-

1)/(1 -«-')
= «' + *>*' + c** 4- . . . + ^,

we deduce at once

[nx nV nV W, 1 B, . li,

{-11 "^^•••^H ^•ll'^'-^ 21^-47
r' -t".
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wherein all the series are ahsolutely convergent, so long as n

is finite, provided a; do not exceed the limits within wliich

l + ^x + Biar/2l-B2X*/4:l + . . . is convergent. The coefficient »

of a:'*' on the right of (1) must therefore he equal to the co-

efficient of a^"*"' in the convergent series which is the product of

the factors on the left. Hence

^Sr_jr^ j^ B^if-^ B.jf-' BsW-'
r! "(r+l)!'^2.rl"^2!(r-l)! 4!(r-3)!

"^

6! (r-5)!
' * * •

Therefore

""^^
= 7^ ^

2
" ""

2^:
^- " ~^

4!
^^"

6!

the last term being (
-

)i''"-'' Bi^n, or |(
-

)il''-'lr .Bl(r-l)7^^ accord-

ing as r is even or odd.

This formula was first given by James Bemonlli {Ars Gonjectandi, p. 97,

published posthumously at Basel in 1713). He gave no general demonstra-

tion ; but was quite aware of the importance of his theorem, for he boasts

that by means of it he calculated intra semi-quadrantem horce ! the sum of

the 10th powers of the first thousand integers, and found it to be

91,409,924,241,424,213,424,241,924,242,500.

It will be a good exercise for the reader to cheek Bernoulli's result.

SUMMATION OF SERIES BY MEANS OF THE EXPONENTIAL

THEOREM.

§ 8.] Among the series which can be summed b}' means of

the Exponential Series, two, related to it in the same way as the

series of chap, xxvn., § 5, are related to the Binomial Series,

deserve special mention.

We can always sum the series 2<^r ("») .?"/«!, w?ie7-e <^r («) ^'s ««

integral function of n of the rth degree. {Integro-Exponential

Series.)



2^4 l(f,r(n)ln\, f<^,(n)/;i!(n+a)(n + 6) . . . (n +/.) C». xxviii

For, as in chap, xxvii., § 5, we can always establish an identity

of the form

<^r(n)
=

-fl<> + ^in + -4,n(n-l) + . . . + Arn{n-1) . . . (»-r + l).

Tlion wo liave, tikiiig, for simplicity of illustration, the lower

limit of summation to be 0,

• nl on! 1 (»- 1)! 1 (n-2)l

= (At + AiX+ A,a^ + . . . +Ar!t^)e'.

Cor. We can in general sum the series 'S,<t>^(n)3^/n\(n + a)

(n + b) . . . (n + k), where a,b, . . ., k are unequalpositive integers.

The process is the same as that used in the corollary of

cliap. XXVII., § 5, only the details are a little simpler. (See

Kxample 5, below.)

Example L To deduce the formnliB (3), (4), (6) of chap, ixvn., § 9, by
means of the exponential theorem.

(x + n)'-,C,(x + n-l)'+. . . (-)',C,(x + n-r)'+. . .
(
-
)*x'

ia evidently the cocQicient of 2' in

The lowest power of t in the product last written is t', and the ooelGcicnta

of«", I*", £»+' are il, «!(i + Jii), Jt!{x' + njr +^ n(3n + l)} rcspoctiveJy.

Hence

(i + n)'-,C,{x + n-l)' + . . . (-)'.C,{x + n-r)' + . . . (-j-x-

= 0, if i<n;

=nl, if (=ri;

=
(n + l)!(x + Jn), if i = n + l;

= J(fi + 2)!{x' + iLr+,>5n(3n + l)}, if(=n + 2.

Example 2. If n and r be positive integers, show that

^ii+ "
XI . n(n-l)...{n-.+ !)_., n(n-l)...l 1

1 n + T+\ {n + r+l)(n + r+2 ) . . . (n-hr + i)
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The right-hand side is the coefficient of z"+'' in

n+r
(z+l)"+l (2 + j)

(Z + X)''+''-^
+ . . .+i '-

(z+j;)"+'-+'+ . . . + ^

,

'

„ +. . .

=
(^ + ^)"(»+^

.+»C, .x"}x
|l

+
^,
+

21
+ -

J"
.+ -. + .

til

Now the coefficient of c""*^ in this product is

n(n- 1)

Vl ll(r4+ 1)1

x + . . .+
nl(;

1) . 1 J

Hence the theorem.

If we put 7=0, and x=l, we have

n + 1 (n+l)(n + 2)

^+(lir^
+ '

(2!)=

- + . . . ad 00

J n n(n-l)
,
"(«-!) • • •

Ij

Example 3. Sum the series

IS is + 23 „
.+

13+ 23+. . + ll3

2"+. ad 00.

We have (by chap, xx., § 7)

l' + 2' + . . . + n'=()i'' + 2)j3 + ,i2)/4,

=4{4<,+ /Ii7i + .l2?!(n-l) + J3n(7i-l)(«-2) + ^4m(n-l)(n-2)(n-3)},

where ylj,^,, . . ., ^4 may be calculated as follows :
—

A,= 0,

A,= 4,

A,= 8, A,= l.

+1
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Example 5. Evalaato ^ (n
-

1) x'>/(n + 'i) nl.

(n-l)x' _l (n'-l)x-^
(n+2)nl z' (n + 2)l

"

Now n'-l = 3-3(»i + 2) + (ii + 2)(n+l).
Therefore

;(n + 2)Hl i')t(n + 2)I , (n + l)l^ , n!(
'

= {(i»-3x+3)<r*+(Jx>-3)}/i'.

ESEBCISGS XII.

(1.) Evaluate 1/^ to f^ii places of dccimalH.

(2.) Calculate x to a second approximation from the equation

501op,(l + x) = 49x.

(3.) If e*= \ + xe'^, and x* be negligible, show that

ft = l/2!+x/4l-x*/4!5l.

(4.) Show that, if n bo any positive integer,

(l-l/n)-«>l + 1/11 + 1/2! + . . . + l/n!>(l + l/<i)«.

(5.) Sum from to cc S (1
- 3n + «=) i»/»J.

Sum to infinity

(fi.) l»/2! + 2»/3! + 3'/4! + . . . .

(7.) l»/2! + 2'/3! + 3'/4l + . . . .

(8.) l-2>/ll + 3»/2!-4V3! + . . . .

(9.) l* + 2«/21 + 3V3! + . . . .

Show that

(10.) l/(2n)l-l/l!(2ii-l)l + l/2!(2it-2)l- 1/I!(2ii- l)I + l/(2n)I = 0.

(11.) If n>3, n> + .C,(n-2)» + .C,(n-4)'+ . . . = n» (n + 3) 2»-«.

(12.) n"-.C, (n-2)- + ,C,(n-4)«-. . .=2"n!.

(13.) By expanding fW-*!, or otherwise, show that, if

Ar=''i (n + r-l)!/nl(n-l)!, thenil^,-(9r + l).4,+r(r-l)^^, = 0.
*-'

(Math. Trip., 1882.)
(14.) Prove that

(x-x»/31 + x»/51- . . .)(l-x'/21 + x</41-. . .) = 2(-)'2»x«^'/(2r + I)l.

(16.) Solve the equation x»-x- l/n=0; and »how that the nth power of

its greater root has e for its limit when n = oc .

(IG.) For all positive integral values of n

--'m'wr (.!-,)<--•
(17.) If

'"-'<. +
=5',('-l)

+
^|('-l)(x-2) +

. . . +
^"(x-l)(x-2)

. . . (x-n).

•how that /<,
=

(» + l)"-,C,f»+,C,(»-l)"-. , . (-)"/'.>•.
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(18.) Show that l(n' + -2n' + n-l)ln\ = 'Je + l.

1

(19.) Sum :S,(n + a)(n + b)(n + c)x"ln\ from 7i=0 to k=qo.

(20.) Show that e cannot be a root of a quadratic equation having finite

rational coefficients.

(21.) Sum the series 2i"/(n + 3) n\ from n= to n= QO.

(22.) Sum to infinity the series l»/3. 11 + 33/4. 2! + 5'/5. 31 + . . . .

If £, , iJj, . . ., i3„ denote Bernoulli's numbers, show that

(23.) ^+iCj„-iBn-:m+iC=»-sB»-i + - • (-)''-'»»«CiBi= (- 1)""'-

los\ r n in+i^an-a -^n-i
.

/ \„-i a.+i <^2 -^i , _ >„_!
^n

l^*') 2n+1^2n-"ii 22
• • ( ; 2-"

^ ' 2*"

(25.) 4,.Ci-Bi-i»CsB2+}„C5B3-. . . = (n-l)/2(n + l), the last term on

the left being (-)""-=• £^2. "^ 4( -)»("-=) »lB(„_i)/2, according as n is even or

odd.

(26.) By comparing Bernoulli's expression for 1'' + 2''+ . . .+n'' with the

expressions deducible from Lagrange's Interpolation Formula, show that

"rV)'-s.«c,'^-(-)p-i.v>1 '

(-2p+a ,s.

Also that
fr=.27) 9

t
^ '

»w-l^'t(«+l)-"-

(Kronecker, Crelle's Jour., Bd. lxxxiv.; 1887.)

(27.) x(e-
-
e-)l(c- + e-) =§ (2^

-
1) 2=x2 + ff (2^

-
1) i^x' +§ ('i^

-
1) 2«x« + . . .

LOGARITHMIC SERIES.

§ 9.] Expansion of log {I + x).
—It is obvious that no function

of X which becomes infinite in value when a; = can be expanded

in a convergent series of ascending powers of x. For, if we

suppose

f(x) = Aa-¥AiX+A.x~ + . . .,

then on putting ^ = we have 00 = ^1„ ;
and the attempt to

determine even the first coefficient fails.

There can therefore be no expansion of log a: of the kind

mentioned.
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]Ve ain, howenr, expand lng{\ +x) in a series of ascending

powers of X, prtrvided x be uumericaUii less than unity.

Tlio bafie iu the first instauce is understood to be « as usual

By § 4, we have

(l + a;)'=l+£{log(l+a')}+£»{log(l+3-)}V2! + . . . (1);

and this series is couvergeut for all values of z.

Again, by the binomial theorem, we have, provided the

numerical value of z be less than 1,

{\ + xY =1 + :x + z{z-\)3>l-2\ + z{z-\){z-2)x'IV. + . . .,

= l + zx-z{l-zll)x'!2 + z(l-z/ini-z/2)j'l3 + ... (2).

If we arrange this as a double series, we have

(l + xy =l+zx- {ca.-»/2
-
z'x'/2] + {zuf/S

-
(1 + l)^x'/3 + i s'x'/S] +

(
-
)-' {c^/n - ...P, :r'jf/n + ,.,P, ^jfjn -. . .

(-)— .->P.-,s"^/»}

(3),

where ,_iiV stands for the sum of all the r-jjroducts of 1/1,

1/2, . . . , l/(n
-

1), without repetition.

In order that Cauchy's crittTiou for the absolute convergency
of the double series (3) may be satisfied, it will be sufficient if

the series

zjf/n + .-,A z'x'jn + . . . + ,.,/',., z'^ln (4)
and

1 + r.r + ; (1 + z/l)x'j2 + z(l + s/l)(l + z/2) af/S + . . . ( :,)

be both convergent when z and x are positive.

Now the sum of (4) is always s (c + 1) . . . {z + n- 1) j-'/n! ;

and this has for it« limit when n=ao, provided x<l. Also,

the series (5) is absolutely convergent when x< 1.

Hence, by chap, xxvi., S 34, we may rearrange tlie scries (3)

according to pnwcrs of z, and it will still converge to (1 1- x)'.

Confining onr attention to the first power of z, for the

present^ we thus find

(l+;r)' = l + {a:/l-«'/2+a:'/3-. . .\z + . . . (5).

Now, since there can only be one convergent ejcpausiou of
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(1 + xf in powers of z, the scries in (1) and (5) must be

identical. Therefore

hg(l+x)'-^x/l-af/2 + .v'/-S-. . . (
-

)"-^ a-"/?* + . . . (6).

The series on the right of (6) is usually called the logaritiimic

series. It is absolutely convergent so long as - l<a;< 1, and it

is precisely under this restriction that the above demonstration

is vaUd.

If we put x = l on the right of (6), we get the series

l/l
-

1/2 + 1/3-. . . {-l)'^~yn + . . ., which is semi-conver-

gent. Hence, by Abel's Theorem (chap, xxvi., § 20), equation

(6) will still hold in tliis case
;
and we have

log 2 = 1/1-1/2 + 1/3-. . . + (
-

1)''-Vm + . . . (7),

provided the order of the terms as written be adhered to.

If we put x = -l in (6), the series becomes divergent. It

diverges, however, to - oo
;

so that, since log
= - oo

,
the

theorem still holds in a certain sense.

Cor. 1/ we arrange the coefficients of the remaining powers

of z in (5), and compare with (I), we find

{log (1 + x)Y = 2! {,Pi arl-2
- .Pi 3?IZ + ^Pi a.-*/4

-
. . . },

{log (1 +0;)}"= h! {n-iP,.-!^-"/" -„Pn-. *-"+V(« + 1)

+ „.iPn-ia;''+V(« + 2)-. . .} (8).

These formula3 and the above demonstration are given by

Cauchy in his Analyse Algehrique.

§ 10.] A variety of expansions can be deduced from the

logaritiimic theorem. The following are some of those that

are most commonly met with :
—

We have

log(l+a:)
=
;r/l-.r=/2 + ar'/3-. . . (

-
)"-'.z'"/« + . . .;

also

\og{\- x) = -xl\-irl-2-a?IZ-. . .-x"/n-. . . .

Hence, by subtraction, since log(l +a;)
-

log (1
-
.r)2log

{{l+x)j{\-x)}, we deduce

log{(l+a:)/(l-.r)}-2{x/l + .i'V3 + . . . +.r--"-V(2«-l)+. . .} (0).
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Tutting in (9) y =
(l + j-)/(1

-
j), and therefore x--(y-\)l

(y+1), we get

(10),

an expansion for log y (but not, be it observed, in powers of y)

which will be convergent if y be positive
—the only case at

present in question.

Again, since 1 +j- = x(l + 1/j-), and log ( 1 +
J-) = log a- + log

(1+1/J-), putting in (10) y=l + l/ar, so tliat (y-l)/ty+l) =

l/(2jr+l), we have

log(l+*) = logx + 2{l/l(2x+l) + l/3{2x + l)' + . . .1 (11).

Finally, since x + 1 = x" (1
-

l/x»)/(x
- 1 ).

log(x+l) = 2logx-log(x-l)

-2{l/l(2x*-l)+l/3(2a!»-l)' + . . .} (12).

I^ in any of the above formidrc, we wish to use a base a

different from e, we have simply to multiply by the
" modnlus

"

1/log.o (see chap, xxi., § 9). Thus, for e.xample, from (10) we

derive

ON THE CALCULATION OF HXJARITHJtS.

§ 11.] The early calculators of logaritlims largely usicd

methods depending on tlio repteated e.xtraction of the square

root. Thii process was comhiued with the Metliod r.-,

which seems to have arisen out of tlie practical nee— thi-

Logarithmic Calculator*.

• See GlaiKhcr, Art. "^ -,' Fnqiclopjdia BriUuuiica, 9th e<L,

(rom wludi luuch ol what ..kuu.
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Thus, Briggs used the approximate formula

logio 2
=

(2">""
-

1) 2'710 lege 10,

depending on the accurate formula

L{af-l)/z = logea;,

which we liave already established in the chapter on Limits,

and w^hich might readily be deduced from the exponential

theorem. The calculation of logio2 in tliis way, therefore, in-

volved the raising of 2 to the tenth power and the subsequent

extraction of the square root 47 times !

Calculations of tliis kind were infinitely laborious, and nothing

but the enthusiasm of pioneers could have sustained the calcu-

lators. If it were necessary nowadays to calculate a logarithmic

table afresh, or to calculate the logarithm of a single number to

a large number of places, some method involving the use of

logarithmic series would probably be adopted.

The series in § 10 enable us to calculate fairly rapidly the

Napierian Logarithms of the small primes, 2, 3, 5, 7.

Thus, putting y = 2 in (10) we have

Iog2 = 2{l/l. 3 + 1/3. 3^ + 1/5.3= + . . .
}.

The calculation to nine places may be arranged thus :
—

1/3
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tliat is, less tli;in -OOO.OOO.OOO.OG ; anil the utmost error from

tlie Ciirri;ij,'e
to tlie hust line is + 4. Tlio utmost error in our

calculation is + 8. Hence, subject to an error of 1 at tlie utmost

in the la.st place, we have

log 2 = -693,147,18.

Having thus calculated log 2, we can obtain log 3 more

rapidly by putting a: = 2 in (11). Tims

Iog3 = log2 + 2{1/1.5 + l/3.5'+l/5.5' + . . . }.

Knowing log 2 and log 3, we can deduce log4-2log2, and

log 6
-=
log 3 + log 2. Then, putting ^ = 4 in (12), we have

log5 = 2log4-log3-2{l/3H- 1/3.31' + . . .1.

Also, putting x = & in (12), wc have

log 7 = 2 log 6 - log 5 - 2 {1/71 + 1/3 . 71' + . . . }.

It will be a good e.xercise in computation for the student to

calculate by meun.s of these fonnulie the Napierian Loj.'iirithms

of the first lU integers. The following table of the rc^iults to

ten places will serve for verification :
—

No.
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auy number into the ordinary or Briggian Logarithm, whose base

is 10.

Much more powerful methods than the above can be found

for calculating log 2, log 3, log 5, log 7, and M.

By one of these (see Exercises xm., "2, below) Professor

J. C. Adams has calculated these numbers to 260 places of

decimals.

§ 12.] The Factor Method of calculating Logarithms* is one

of the most powerful, and at the same time one of the mo.st

instructive, from an arithmetical point of view, of all the methods
that have been proposed for readily finding the logarithm of a

given number to a large number of decimals.

This method depends on the fact that every number may, to

any desired degree of accuracy, be expressed in the form

io>„/(i-Wio)(i-/',/io=)(i-^Vio^) . . , (1).

where p^, Pi, p^, . . each denote one of the 10 digits, 0, l,

2, . . ., 9, jt?„ being of course not 0.

Take, for example, 314159 as the given numljcr. First

divide by 10\ 3, and we have

314159 = 10\ 3. 1-047,196,660,006 ....
Next multiply r047,196,666,666 by 1-4/10=, that is, cut

off two digits from the end of the number, then multiply by 4

aud subtract the result from the number itself The effect of

this will be to destroy the first siguiticant figure after the

decimal point. We have in fact

1-047,196,666,606 x (1 -4/10==)= 1-005,-308,800,000.

Next multiply r005,308,800,000 by 1-5/10', and so on
till the twelve figures after the point are all reduced to zero. The
actual calculation can be performed very quickly, as follows :

—

• For a full history of this method see Glaishcr's article above quoted ;

or the Intioduclion to Gray's Tubles for the Formation of Logarithms and

Auti-LoijaiiDims to Twiiity-four Places {1S7G).

16—2
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10 17,i96,(;GG,6|66
41,887,866,666
5,308,800,1000
5,026,544,000
282,25|6,000
200,056,451
8 2, 1|9 9, 5 4 9

80,006,57 6

2,119 2,9 7 3

2,000,004

|1 9 2, 9 6 9

100,000
9 2, 9 6 9

4/10'

5/10'

2/10*

8/10*

2/10*"

1/10'

9/10*, 2/10*, 9/10", G/10", 9/10".

Tlie remaining factors being obvious without farther calcula-

tion. Hence we have

. (1-9/10")
= 10».3(l + x/10"), 3'>9.

314159 x(l-4/10')(l- 5/10")

Therefore

314159 =10*. 3 (l+a-/10")/(l-4/10')(l- 5/10') . . . (1-9/10")

(2).

Since log(l + j-/10")<j-/IO", it follows from (2) th.it, as far

as the twelfth place of decimals,

log 314159 = 5 log 10 + log 3 -log (1-4/10') -log (1-5/10*)

-
log (1

-
2/10*)

-
log (1

-
8/10*)

-
log (1

-
2/10')

-
log (1

-
1/10')

-
log (1

-
9/10')

-
log (1

-
2/10")

-log(l- 9/10") -log(l-6/10")-log(l- 9/10").

All, th(>rcforc, that is required to enable us to i-alculato

log 314159 to twelve places is an au.xili.ary tible containing the

logarithms of the first 10 integers, and the logarithms of l-p/W
for all integral v.ilucs ofp from 1 to 9, and for all integral values

of r from 1 to 12. To make quit« sure of the last figure this

au.xiliary table should go to at lea.<t thirteen places.

§ 13.] It should be noticed that a method like the above is

suitable when only solitary logarithms are required. If a com-

plete table wore required, the Metliod uf Differences would I*

employed to find the grcil majority of the numbers to be entcrod.
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A full discussiuu of this method would be out of place here*
;

but we may, before leaving this part of the subject, give an

analytical view of the method of interpolation by First Differ-

ences, already discussed graphically in chap. xxi.

We have

logio {w + h)
-

logio X = logio (1 + hlx)

= M{hlco-lAhl.'cr + l{l,l.vf-. . .} (I).

Hence, iih<x, we have approximately

logio {x + li)
-

logio X = Mhjx (2),

the error being less than \M{hlx)-.

The equation (2) shows that, if ^31{k/.r)- do not affect the

nth place of decimals, then, so long as h:!f>k, the differences of

the values of the function are proportional to the differences of

the values of the argument, provided we do not tabulate beyond
the ?!th place of decimals.

Take, for example, the table sampled in chap, xxi., where the numbers
arc entered to five and the logarithms to seven places. Suppose a= 30000;
and let us inquire within what limits it would certainly be safe to apply the

rule of proportional parts. We must have

ix-4343(/!/30000)2<5/108,

if the interpolated logarithm is to be correct to the last figure, that is,

ft<:3V23'04,

<14.

It would therefore certainly be safe to apply the rule and interpolate to

seven places the logarithms of all numbers lying between 30000 and 30014.

This agrees with the fact that in the table the tabular difference has the

constant value 144 within, and indeed beyond, the limits mentioned.

SUM5IAT10N OF SERIES BY MEANS OF THE LOGARITHMIC

SERIES.

§ 14.] A great variety of series may, of course, he summed

by means of the Logarithmic Series. Of the simple power series

that can be so summed many are included directly or indirectly

under the following theorem, which stands in the same relation

* For sources of information, see Glaisher, l.c.

i
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to the lo^jaritliinic tlicorem as do the tlieorems of cha]). xxvii., §5,

and chap, xxviii., §8, to tlie binomial and exponential thcoreuia:—
T/ie set-ies whose general term is <^(n)x"/(n + a)(»» + 6) . . .

(n + k), where <f> (») is an integral function of n, and a, h

k are positive or negative* uneqtuil integers, can alwai/s be

summed to infinity prnvided tlw series is omvergent.
It can easily be shown that the series is convergent provided

X be numerically less than unity, and divergent if 2: be

uunierically greater than unity.

If the degree of <^ (n) be greater than the degree f>f (n + o)

(n + l>) . . . (n + k), the general term can be split into

\l>{n)af + x{fi)^Kn+a){n + l>) . . . (n + k) (1),

where i/'(h) and x{ti) are integral functions of », the degree of

the latter being less than the degree of (h +a)(n + b) . . . (n + k).

Now Si/f (n) x" is an iutegro-gcometric scries, and can be

sumnied by the method of chap, xx., § 13.

By the method of I'artial Fractions (chap, vui.) we can

express x(n)/('» + «)(» + i) . . . {n + k) in the form

Af(n+a) + Bl{n + b) + . . . + Kl(n + k),

where A, B Jf are independent of n. Hence the second

part of (1) can be split up into

Aafjin + a) + Bjr/{n + b) + . . . + Ax"/(h + k) (2) ;

and we have merely to sum the series

A 2a:»/(n + a), B 2x»/(n +b) K^j^/(n + k) (3).

Now, supposing, for simplicity of illustration, that the sum-

mation extends from n=l ton=ao, we have

A ir"/(» + a) "Ax-'l-af^'/in + a),

--^ar-{a-/l + ar"/2 + +jf/a+log(l-x)\ (4).

Each of the other series (3) may be sumnied in like manner.

Hence the summation can be completely eflected.

* Wlicn any of the int«i;erii a, b, . . ., k are negative, Ibe method

requires the evalunlion of limita in certain case*.
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If ,r= 1, the series under consideration will not be convergent

unless the degree of <^ {}>) be less than the degree of (w + a)

(n + b) . . . {n + it).
It will be absolutely convergent if the

degree of <^ (n) be less than that of (w + a) (w + 6) . . . (» + fc) by

two units. If the degree of <^ (n) be less than that of (ii
+ a)

{n + b) . . . {n +
A-) by only one unit, then the series is semi-

convergent if the terms ultimately alternate in sign, and divergent

if they have ultimately all the same sign.

In all ca.ses, however, where the series is convergent we can,

by Abel's Theorem, find the sum for ;?; = 1 by first summing for

.r<l, and then taking the limit of this sum when x = \.

In the special case where 4> {») is lower in degree by two

units than {n + a){7i + l>) . . . (ii+k), and a, b, . . ., Jc are all

positive, an elegant general form can be given for 5<^ («)/('* + '*)

(» +b) . . . {n + k).

From the identity

4>{n)Hji + a){ii + b) .

we have

+ .

{n + k)

iA/{n + a) + Bl(n + b) + . . . + K, {71
+ k),

. . {n + k) + B{n + a)(?i + c) . . . (n+k)
. + K{n + a){n + b) . . . {ii+j) (5),

and, bearing in mind the degree of 4> (n), we have

A + B + . . .+K=Q (6).

b, . . ., n = -k, \IQAlso, putting in succession n = -
a, n-

have
.4 = </> (

-
a)/(6

-
a) (c

-
rt) .

B = <t>{-b)l{a-b){c-b) .

(k
-
a) \

{k-b)

K=<j>i-k)/{a-k){b-k) . . . (j-k).

Reverting to the general result, we see from (4) that

2<^ (m) af/(n +a){7i + b) . . . {11 + k)

(7).

(8),
= -%Ax-''{xl\+arl-2 + . . .+afla)~\og{l-x).:S.Ax-

where the 2 on the right hand indicates summation with respect

iQ a, b, . . ., k.



248 KXAMPixs r\\. XXVIII

Now, since yl+/y + . . .+A' = 0, iyLr"" is an algebraical

function of .f wiiicli vanishes wlitii .r-1. ^Vlso l-x is aa

algebraical function of u: iiaving the same property. Therefore,

by chap. XX v., § 17, we Imve

L log(l-.r).2^ij;--= L log{(l -;r)*'"-},

=
logl.

= 0.

Hence, taking the limit on both sides of (8), we have, by Abel's

Theorem,

i<f.(n)/{n + a){n + 0) . . . (n + k) = -:S.A (l/l +1/2 + . . . + 1/a),

^.^( -a)(l/l-i-l/2 + . . .-t- l/g) .~ "
{b-a){c-a) . . . (c-k)

^ '•

the i on the right denoting sumiuutiou with respect to

a, b, c, . . ., k.

Eiample 1. Evaluate Sn'i"/(n
-

1) (n + 2).

Wchave f.'j"/(n- l)(« + 2)= (n- l)i- + ii"/("- l) + !a^/(" + 2).

Now £(n-l)x»=lx»+ 2x' + 3i* + . . .,

s

(1-x)-^(k-1)x»=1x' + 2x' + 3z« + . . .

-2.1x»-2.2x«-. . .

+ lx^ + . . .,

= i'.

Hence l(n-l)*»=x»/(l-x)'.
1

AlBO j£x»/{n-l) = ixLx-i/(n-l).
t 1

= -ixiog(i-x):

I Lvi"+ 2)= |x-« £x"+'/(n + 2).

= -
1 r-> {*/l +at'/2 + x»/3 + log (1

-
x)}.

Bcnco the whole sum is

x»/(l
-
x)'

- 5x-' -\-lz-\(x+ 8x-«) log (1
-
x).

Example 2. Evaluate £ l/(n
-

1) (n + 2).
*

TSy the same process as before, we find

L"/("-l)(n+ 2)-J'"' + i + i^ + l('"'-')'»t5U--)-
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Now, since L {l-a;)»"'-»=l (chap, xxv., § 17), L (x-2-x)log(l-i)= 0.
X=l 1=1

Therefore 21/(7.-1) (H + 2) = J + J + i = Ji.

This result miRlit be obtained in quite another way.
It happens that -l/(n

-
1) (n + 2) can be summed to n terms. In fact,

wo have

l/(n-l)(n + 2) = 5{l/(»-l)-l/(» + 2)}.

Hence, since the series ia now finite and commutation of terms therefore

permissible,

„5,,, ,,, „ 1 1 1 1 1 1 1

s '12 3 n-4 n-3 n-2 n-1

1 J. 1 1 1_"!" n-4 re-3 n-2~n-l

_ 1
_ _1 1_

n n+1 n+2'
1 1 1_ 1_^^ 1_

""l''"2"'"3 n n + 1 n + 2'

Hence, taking the limit for n=»
,
we have

-l/l 1 1\ 11

T~3 Vl'*'2"'"3y~18"

Example 3. To sum the series

(Lionnet, Nouv. Ann., ser. n.,t. 18.)

Let the (n + lUh term be «„, then, since «„=0, association is permitted
(see chapter xxvi., § 7), and we may write111

4n + 1^4n + 3 2;i + 2'11111
,
+ TITT^

- TTT-r + :4n+l 4h + 2 47J + 3 4rt + 4 4n + 2 4h + 4'

^ / 1 1 1
_ 1 \ 1 /_^ 1_\~

V4n + 1~ 471 + 2"*" 4h + 3 4/1 + 4/
*"
2 1.271 + 1 271 + 2 j'

=
v„+ U!„, say.

Now, as may be easily verified, u„ and w„ are rational functions of n, in

which the denominator is higher in degree than the numerator by two units

at least. Hence (chap. xx\x, § 6) 2r„ and 2i(i„ are absolutely couveigent
series. Therefore (chap. xxvi.

, § 13)

S«„=S (»„+ «>„),

=2u„+2ic„.
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Uence, again dissociating i', and ir, (ni* is evidently iKTmisaible) wo liave

- ,1111111
,1/, 1.111111 \
+
2i^-2

+ 3-4 + 5-G +
7-8+---j

= lop, 2 + i loR, 2, by § 9 above,

=
5 log, 2.

Tliiit example is an iiittircsting Bpecimon of Die somewhat dvlicatc opera-

tion uf evaluating a scnii-convergcnt series. Tlic process may be described

B!) consisting iu the conversion of the semi-convergent into one or more

absolutely convergent scries, whose terms can be commutatcd with safety.

It sliould be observed tlint the terms in the yiven series are merely those of

the series 1-1/2+1/3-1/4 + 1/5- . . . written in a different order. Wo
have thus a striking' instance of the truth of Abel's remark that the sum of

a Bcmiconvergent series may be altered by commutaling its terms.

APPLICATIONS TO INEQrALITY AND LIMIT THEOREMS.

g 15.] Tlie Expiiiientiiil and Loijarithiiiic Series may be

applied with eflcct in establishing theorems regarding inequality.

Thus, for example, the reader will find it a good exercise to

deduce from the logarithmic expansion the theureiu, already

proved in chapter xxv., that, if a: be positive, then

.r-l>logx>l-l/a; (1).

It will also be found that the use of the three fiiuda-

mcntiU .series—Binomial, Exponential, and Logarithmic
—

greatly

facilitates the evaluation of limits. Both these remarks will be

best brought home to the reader by means of examples.

Example 1. Show that.nil 1 1
,

n+1
log -!>-+ =•+ -,+ ... + ->logm-1 m m+1 m+2 n ° m

If we put l-l/x=l/ni, that is, z = m/(m-l), in the second pnrl of (1) abova,

and then replace m by m + 1, m + 2, . . .,n successively, we get

log m -
log (m -

1) > 1/m,

log (m+ 1)
- log m > l/(m + 1),

log n - log (n
-

1) > 1/n.

Ilcnce, by adlition,

logn-log(m-l)>l/m+ l/(m + l)+. . . + 1/n (2).

J
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Next, if we put x - 1 = l/m in the first part of (1), and proceed as before,

we get
log (m + 1)

- loH J« < l/m,

log (hi + 2)
-
log (m + 1) < l/(m + 1),

log (n + 1)
- log n < 1/n.

Hence

log(H + l)-Iogm<l/m+lAm+ l)+ . . .+l/n (3).

From (2) and (3),

log{H/(ni-l)}>l/m+ l/(m + l)+ . . . +l/n>log{(« + l)/»i}.

Example 2. If p and q be constant integers, show that

L {l/m + l/(ni + l)+ . . . +ll{pm + q)} = \og2>-

(Catalan, Traite Elcmentaire dcs Scries, p. 58.)

Put n=pm + q in last example, and we find that

log{(pm+ 3)/(m-l)}>l/m + l/{m + l) + ... + l/(7)m + g)>log{(iim + (; + l)/m}.

Now L log{(i)7n + 3)/(m-l)}=logi),

and L \os{{pm+q + l)lm}=logp.

Hence the theorem.

Example 3. Evaluate L (c==- l)=/{.T-log(l + x)} when x= 0.

Since {e'-l)^={x + hx-+ . . .)••'= x2(l + i.i;+ . . .f;

x-log(l + j;)
= ix2-ix3+. . .=i.r=(l-|x+. . .).

Therefore

{<!»-l)=/{x-log(l + x)}=2(l + ix+. . .)-l{l-lx+. . .).

Since the series with the brackets are both convergent, it follows at once

that i(t^-l)-/{x-log(l + x)} = 2.

Exercises XIII.

(1.) If P=1/31 + 1/3.3P + 1/5.31»+. . .,

g = 1/49 + 1/3. 49^ + 1/5. 495+. . .,

B= 1/161 + 1/3.1613 + 1/5.1G1°+ . . .,

then log2= 2(7P + 5Q + 3i?),

log3 = 2(llP + 8Q + 5fl),

log5= 2(ir,2^ + 12Q + 7fl).

(See Glaislier, Art. "Logarithms," F.ncy. Brit., 9th cd.)

(2.) If a= -log (1-1/10), 6= -log (1-4/100), c = log (1 + 1/80), d=

-log (1-2/100), c = log (1 + 8/1000), then lo-2 = 7a-26 + 3c, log3 = llrt-36

+ 6c, log 6= 16a -46 + 7c, log7=4(39a-106 + 17c-d) = 19a-46 + 8c + e.

(Prof. J. C. Adams, Proc. E.S.L. ; 1878.)

(.'!.)
Calculate the logarithms of 2, 3, 5, 7 to ten places, by means of the

foimulffi of Example 1, or of Example 2.

(4.) Find the smallest integral valne of z foi which (1-01)';> lOx.
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Sum tbo series :
—

(5.) 2'/l(r>-3j:)' + 2:'/3(x»-3j-)'+ . . .

(7.) x>/1.2-x»/2.3 + x'/3.4- . . . (
-
)"-'i»/;i(h + 1) . . ,

(8.) i'/3 + z</15+. . . +i»"/('in«-])+ . . .

(9.) i/l» + x'/(l' + 2») + r'/(l> + 2' + 3-) + --- + x"/(l' + 2'+ ... + ,!») + ...;

also l/i= + l/(l' + 2') + l/(l' + 2' + 3») + . . . + l/(l> + 2«+ . . . + «')+ . . .

(10.) 4/1.2.8 + G/2.3.4 + 8/3.4.6+. . .

(11.) If x>100, thon, to seven places of decimals at knst, log(x-t.8) =
2 lo^ (x + 7)

- log (x+ 5)
- log (x + 3) + 2 log X -

log (x
-

3)
-
log (x

-
6) + 3 log

(x-7)-log(x-8).

(12.) Expand log(l + x + x') in ascending powers of x.

(13.) From log (x'+l)s log (x+l) + log(j'-z + l), show that, if m be a

positive integer, then

6m -2 (Gm - 3) (Gwt
-
4) (Cm -4) (Cm -5) (6m -6) , _

^~~2r'*' 31

"
41

•" •

(Math. Trip., 1882.)

(14.) {Iog.(l+x)}'=2x»/2-2(l/l + l/2)x>/3 + . . . (-)"2{l/l + l/2 + . . .

l/(n- l)}x"/n . . . Does this formula hold wlicn x= 17

(15.) log(l+x)'°«('-'l=-(?,x>/l-Q,x*/2-. . .-(?^.,x~/n-. . .;

where $,,-, = 1/1-1/2 + 1/3 . + l/(2n
-

1).

(16.) Ifx<l, show that

x + Jx' + ix' + ,',x'«... = log{l/(l-x)}-JP,-tP,+ JP,-|P,-|P, + AP„...:

whore P,=i"+x'" + x*» + x'" + x""+ . . ., and the general term ia i-)'PJn,
unless n is a power of 2, in which case there is no term.

(Trin. Coll., Camb., 1878.)

(17.) Ite-'xc^'xe"'' ...= A^ + AtX + .. ., thou ^,,.=^^, = 1.3.6 . . .

(2r-l)/2.4.6. . .2r.

(18.) Ifx + a,x» + a,x» + . . . + y + <t,!/' + <i,y» + . . .= {rx + y)/(l -X!/)}' +

a,{(x + y)/(l-r)/)}' + (i,{(x + !/)/(l-xi/)}'+ . . ., for all values of x and y
which render the various aeries convergent, find a^, a„ , , .

Show that

(19.) log(4/«) = l/l. 2-1/2. 3 + 1/3. 4-1/4. 6+. . .

(20.) log2 = 4(l/l. 2. 3 + 1/5. 6. 7 + 1/0. 10. 11 + 1/13. 14. 15 + ...) (Eulor.)

(21.) (l-l/2-l/4) + (l/3-l/6-l/8) + (l/8-l/10-l/12) + ... = Jlog2.

(See Liounet, lYour. Ann., scr. ii., t. 18.)

(22.) <T,/ll-ncrJ2! + n(n-l)(r^,1l- . . . ton+1 terms =l/{n + l)', where

«r,
= 1/1 + 1/2 + 1/3+. . .+l/r. (Math. Trip., 18S8.)

(23.) «~(l + l/m)"' lies between ^/(2m + l) and e/(2m + 2), whatever m

may be. {Souv. Ann., sur. ii. , t. 11.)

(24.) L{x/(i-l)-l/logx}=4.whenx = l. [E\i\eT, Iiut. CaU. Diff.)

(25.) I, {
f* - 1 - log (

1 + x) 1 /x«= 1 , when X = 0. (Euler, J.c. )

(28.) L(x'-x)/^l-x + logx)=-2, whcnx=I. (Eulcr, *.«.)
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(27.) I,(l + l/;!)""(l + 2/;i)""- • (1 +«/n)'''"='l/<'. when n = oo.

(28.) I,{(2h-1)!/)i'-"-i}''»=4/c2, whenn= oo.

(29.) c^> 1 +1, for all real values of x.

(30.) a;-l>logx=-l-l/x, for all positive values of x
;

to be deduced

from the logarithmic expansion.

(31.) e";> (1 + 7i)"/;il, n being any integer.

(82.) If n be an integer >-e, then Ji"+' > (n + 1)".

(33.) If A, B, a, b be all positive, then {a-l)l(A- L) + {A^ -
Bh)

\os{BIA)l{A-B)^ is negative. (Tait.)

(.34.) Ilx>y>a, then {(x + a)/(i -«)}=:< {(y + a)/(»/-a)}i'.

(35.) L{ll{n + l) + ll{n + 2) + . . . + l/2H}=log2, when 71 = 00 . (Catalan.)

(36.) log{{7i+ i)/(ni-i)}>l/m + l/(m + l) + . . . + l/n>log{(K + l)/m}.

(Bourgnet, Nouv. Ann., ser. 11., t. 18.)

(37.) log3 = 5/1. 2. 3 + 14/4. 5.6 + . . . + ('J7( -4)/(3n-2) (3n-l) 3k +. . .

(38.) If i(-)''->0(n)/(n + a) (n + h) . . . (n+k), where a, b ft are
1

all positive integers and </>(«)
is an integral function of n, be absolutely

convergent, its sum is

S= S .^(-a){l/a-l/{a-l). . . (-)''-il/l}/(&-a) (c -«) . . .{k-a);
a,h it

and, if it be semi-convergent, its sum is

S + log2 S (-)«0(-a)/(6-a)(c-a). . .(i-a).
a,b k

(30.) Show that the residue in the expansion of log {1/(1 -«)} lies

between

x''+i{l + (»i + l)x/(n + 2)}/(;i + l)

and x''+i{l + (n + l).r/(l-x)(K + 2)}/(n + l).

(40.) In a table of Briggian Logarithms the numbers are entered to

5 significant figures, and the mantissie of the logarithms to 7 figures.

Calculate the tabular difference of the logarithms when the number is near

30000 ; and find through what extent of the table it will remain constant.

(41.) Show that (1 + l/x)^+» continually decreases as x increases.

(42.) Show that 5l/)i (4)i=-l)-= J- 21og2.

L



CHAPTER XXTX.

Summation of the Fvmdamental Power Series for

Complex Values of the Variable.

GENERALISATION UF THE ELEMENTARY TRANSCENDENTAL

FUNCTIONS.

§ 1.] One of the objects of the present chapter is to generalise

certain cxpan.sion theorems establislied in the two chapters which

precede. In doing this, we are led to extend the definitions of

certain functions such as a', log„;r, cos;r, &c., already introduced,

but hitherto defined only for real values of the variable x ;
and

to introduce certain new functions analogous to the circular

functions.

Seeing that tlie circular functions play an iinj>ortant part in

what follows, it will be convenient here to rec.-ipitulate their

loailing properties. Thi.s is the more nece&sary, because it is

not uncommon in Engli.sh elementary courses so to define and

di.scuss the.se functions that their general functional character is

lost or greatly obscured.

§2.] Dt'finitionandPropi-rticsofthe Direct CircularFunctions.

Taking, as in cliap. xii., Fig. 1, a system of rectangular axes, we

can represent any real algebraical quantity 6, by causing a radius

vector OP of length r to rotate from OX through an angle con-

taining radians, count<'r-clockwise if <* bo a p<jsitive, clockwise

if it be a negative quantity. If (x, y) be the algebraical values of

the coonlinatcs of P, any point on the radius vector of 0, then

xjr, yjr, yjx, xjy, r/x, r/y are obviously all functions of 0, and

of alone. The functions thus geometrically defined are called
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COS 6, siu 9, tau 6, cot 6, sec 6, cosec 6 respectively, and are spoken

of collectively as tlie circular functions.

All the circular functions of one and the same argument, 6,

arc algebraically expressible in terms of one another, for their

definition leads immediately to the equations

tan 6 = siu 6/cos 6, cot 6 = cos 6/sin S
;
\

sec 6 = 1/cos Q, cosec 6 = 1/sin 6
;

\ (1) ;

COS" B + sin- 6 = \, sec" 6 - tan^ ^ = 1
;

)

from which it is easy to deduce an expression for any one of the

six, cos 6, sin 6, tan 6, cot 0, sec 6, cosec 0, in terms of any other.

When F{6) is such a function of 6 that F{- 6)
=

i^(6i), it is

said to be an even function of &
; and, when it is such that

F{-0) = -F(0), it is said to be an odd function of 6. For

example, 1 + 6^ is an even, and 6 - ^6^ is an odd function of 0.

It is easily seen from the definition of the circular functions

that cos 6 and sec are even, and sin 6, tan 9, cot 6, and cosec 6

odd functions of 0.

When F{e) is such that for all values of 0, F(0 + nX) = F(e),

where X is constant, and 7i any integer positive or negative, then

F{6) is said to be a periodic function of having the period X.

It is obvious that the graph of such a function would consist

of a number of parallel strips identical mth one another, like the

sections of a wall paper ;
so that, if we knew a portion of the

graph corresponding to all values of 6 between a and a + X, we

could get all the rest by simply placing side by side with this an

infinite number of repetitious of the same.

Since the addition of + 27r to d corresponds to the addition

or subtraction of a whole revolution to or from the rotation of

the radiiis vector, it is obvious that all the circular functions are

periodic and have the period 2^. Tliis is the smallest period,

that is, the period par excellence, in the case of cos 0, sin 6, sec 0,

cosec t/. It is easily seen, by studying the defining diagram, tbiit

tau 6 and cot 6 have the smaller period ir. Thus we have
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COS (6 + 2nT) = cos 0, sin {6 + 2«r) = gin 0,

sec (0 + 2nn) = sec 0, cosec (0 + 2nir) = cosec 6, j- (2).

tan {6 + nw) = tan ^, cot (0 + nir)
= cot 0.

Besides these relations for whole periods, we have also the

following for half and quarter periods :
—

cos(?r+e) =-cos^, sin(7r + e)
= + sintf;

cos{W±6) = + 9in0, !im(hTr±0)=+cos0; \ /^\

tan(j7r + e)
= + cote, cot(h-!r

+ 0)
= + Uu0;

&c.,

all easily deducible from the definition.

We have the following table of zero, infinite, and turning

values :
—

(•»).

which might of course bo continued forwards and backwards

by adding and subtracting whole periods

Hence cos 6 has an infinite number of zero values correspond-

ing to = ^{2n+ 1)t, where n is any positive or negative integer ;

no infinite values; an infinite number of nuLxima and of minima

values corresponding to = 2nir and = {2h + 1)t respectively;

and is susceptible of all real algebraical values lying between

-1 and + 1.

Sin is of like character.

But Uin 6 is of quite a diflerent character. It has an infinite

number of zero values corre.'.ponding to 0=ffr
;

an infinite

number of infinite values corresponding to 0= h{'2n + l)v ;
no

tuniing values
;
and is susceptible of all real algebraical values

between - « and + oc .

Cot is of like character.

e



_l
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Sec 6 and coscc 6 have again a distinct diameter. Kiwli of

tbeiu lias infinite and turning values, and is susceptible of all

real algebraical values not l3^ng between - 1 and + 1. The

graphs of the funetions y = sin ar, y = cos a-, <S:c., are given in

Fig. 1. The curves lying wholly between the parallels KL,
K'L, belong to cos x and sin x, the cosine graph being dotted

;

all that lies wholly outside the parallels KL, K'L', belongs either

to sec X or to cosec x, the graph of the former being dott<;d. The

curves that lie partly between and partly outside the parallels

KL, K'L', belong either to tana; or to cot a;, the graph of the

latter being dotted.

Agiiin, from the geometrical definition combined with

elementary considerations regarding orthogonal projection are

deduced the following Addition Formulw :
—

cos (0±<l)) = cos ^ cos <^ + sin 5 sin ^ ;

sin (6 ±<t>)
= sin 6 cos <^ ± cos 6 sin <t> ;

tan (^ ± </>)
=
(tan 6 ± tan </>)/(! + tan ^ tan

<(>).

As consequences of these, we have the following :
—

cos ^ + cos <^
= 2 cos h{6 +

<}>)
cos h(,6-<p);

cos <^ -cos 0=2 sin i(6 + <^) sin i{d
-

</.) ;

sin 6 ± sin <^
= 2 sin A(fl ± ^) cos i(^ + <^).

cos cos <!>
= ^cos (6 + <f>)

+ Jcos (6-<l>);\

sin 6 sin <^
= A cos {B-<f>)~i cos {0 + <t>); t

sin 6 cos <^
- Asin (6 + <^) + isin {0

-
<f>).

J

C082e = cos'e-siu'e = 2cos'tf-l = l-2sin'tf
'

= (l-tAi\'6)f(l+t&u-e).

sin 20 - 2 sin 6 cos 0^2 tan 0/(1 + Un» 0).

tan 20 = 2 tan 6/(1
- tan' 0).

(.'.).

(C)

(7)

(8).

§ 3.] Liri'r.i<' drrnhir Functions. When, for a continuum

(continuous stretch) of values of y, denoted by (y), we have a

relation

x-r(^) (1),



§§ 2, 3 INVEKSE CIRCULAR FUNCTIONS 259

wliich enables us to calculate a single value of x for each value

of y, and the resulting values of x form a continuum (*•), theu

the graph of F {y) is continuous ;
and we can use it either to

find X when y is given, or y when x is given. We thus see that

(1) not only determines x as a continuous function of y, but also

y as a continuous function of x. The two functions are said to

be inverse to each other
;
and it is usual to denote the latter

function by F~^ (x). So that the equation

y = F-'{x) (2)

is identically equivalent to (1).

It must be noticed, however, that, although F'^ {x') is con-

tinuous, it mil not in general be single-valued, unless the values

in the continuum {x) do not recur. This condition, as the

student is already aware, is not fulfilled even in some of the

simplest cases. Thus, for example, if x = y-, for -oc <y< + oo,

the continuum {x) is given by 0;:)>a;<+ oo
;
and each value of x

occurs twice over. We have, in fact, y = ±a^ \
that is, the

inverse function is two-valued.

It is also important to notice that, even when the direct

function, F{y), is completely defined for all real values of y, the

inverse function, i^"' {x), may not be completely defined for all

values of x. F~^{x) is, in fact, defined by (1) solely for the

values in the continuum (x). Take, for example, the relation

x=y-, for -a)<y<+oo. The continuum (x) is given by

0^x< + <x)
;
hence y is defined, by the above relation, as a

function of x for values of x between and + -x> and i'ur no

others.

The application of the above ideas to the circular functions

leads to some important remarks. It is obvious from the

geometrical definition of siny that the equation

x = smy (3)

completely defines x us n single-valued continuous function of

y, for — CO < ^ < + CO . Hence, we may write

^ = sin-' X (i),

n—2
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where tlie inverse function, sin"'ar*, is continuous, but neither

siugle-vahied, nor completely defined for all real values of t.

Since, by the properties of sin y, x lies

between - 1 and + 1 for all real values

of y, sin"' x is, in fact, defined by (3)

only for values of x lying between — 1

and + 1. For other values of x the

meaning of sin"' :r is at present arbitrary.

By looking graphically at the problem
"to determine y for any value of x lying

between -1 and +1," we see at once

that sin"' a: is multiple-valued to an

infinite extent.

If, however, we confine ourselves to

values of sin"' x lying between -
\-r and

+ \ TT, we see at once from the graph

(Fig. 2) that for any value of x lying

between - 1 and + 1 there is one, and

only one, value of sin"'x. If we draw

parallels to the axis of x through the

points A, B, C, , . ., A', B", ....

whose ordinates are + irr, + § -, + f t, . . .
,

- i t,
-
f t, . . . , then

between every pair of consecutive parallels we find, for a given

value of a: (- \1cx1f'+ 1), one, and only one, value of y = sin"'ar.

'n»e values of y corresponding to points between the parallels

A' and A constitute what we may call the PriiicijHil Branch of

the function. Similarly, the part of the graph between A and B
represents the 1st positive branch ; the part between B and C
the 2nd positive branch ;

the part between A' and B" the Ist

negative branch
;
and so on.

If, as is usual, wc understand the symbol sin"' a; to give the

value of y corresponding to x, for the principal branch only, and

use y„ or „ sin"' x for the wth branch, then it is easy to see that

Fig. 2.

y» = „8iu"' a; = HTT + (
- 1 )" sin"' a- (5).

• ThJB may 1)C road "angle whose sine i« x" or "aro-sincx." In

Coiitiuont.ll works the latter name is coutracted into uro-iiiax; and lhi> u
used iustcoU of biu~ ' z.
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where ii is a positive or negative integer according as the brancli

in question is positive or negative.

It is obviously to some extent arbitrary wliat portion of tlie

graph shall be marked oif as coiTesponding to the principal

branch of the function
;
in other words, what part of the function

shall be called the principal branch. But it is clear!}- necessary,

if we are to avoid ambiguity
—and this is the sole object of the

present procedure
—that no value of

1/
should recur within the

part selected
; and, to secure completeness, all the ditierent values

of 1/ should, if possible, be represented. Attending to these con-

siderations, and drawing the coiTesponding figures, the reader

will easily understand the reasons for the following conventions

regarding cos~^ar, tan~'^, cot"'^ a;, sec~'a^, cosec~'a;, wherein y
and the inverse functional symbols cos""'ir, &c., relate to the

principal branch only, and ?/„ to the ?ith branch, positive or

negative.

y = COS"' a-, y between and +77; i

3'n
=
(n + | + (-)"-'i)T+(-)"cos-'.r. |

^^^

y = tan~'.r, y between -\Tr and + ^t; l

y„ = WTT + tan"' X. J

y = cot"' X, y between and tt
;

»

y„
= riTT + cot"' X. jy„
= niT + cot"' X. )

y = sec"' X, y between and ir
;

1

y« = (» + ^ + (-)''-'|)T + (-)"sec-'.r. J

y = cosec"'a;, y between —\-i: and +1-; \

«^„
= WTT + (

-
)" cosec"' X. J

(7)

(8)

(9)

(10)

Since every function must, in practice, be unambiguously

defined, it is necessary, in any particular case, to specify what

branch of an inverse function is in question. If nothing is

specified, it is understood that the principal branch alone is in

question.

It is obvious that all the formnlte relating to direct circular

functions could be translated into the notation of inverse circular

functions. In this translation, however, close attention must be

paid to the points just discussed. Thus
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If X be jiositive, the fonuula cos -±J(l - sin' 6) becomes

sin"' X = COS"' J(l-^);

but, if z be negative, it becomes

sin"' x= — COS"' ^(1
-

J-').

If 0<r<\IJ2, 0<y<l/^2, we deduce from the addition

formula) fin" the direct functions

siu-'a- + 8in"'y = cos-'[v/{(l-a^)(l-y')| -ry] ;

if 0<a:<l, 0<y<l,
tan"' X + tan"' y = tan"' [(x + y)/(l

-
xy)].

\{ X and y be both positive, but such that ry>\, then

tan"' X + tan"'y = it + tan"' [(x + y)/(l
-
ay)] •;

and, in general, it is esisy to show that

«tan-' X + „tan-' y = {m¥n^p)v^ tan"' {{x +
.v)/(l

-
xj/)},

= .+.+ptan-'{(a: + y)/(l-ay)} (U),

where p= 1, 0, or -
1, according as tan"' a: + tan"'y is greater

than \-ir, lies between \v and -^t, or is less than -\-!t.

ON Tnr. INVERSION OF w = r".

§ 4.] When the argiunent, and, consequently, in general,

the value of the function are not restricted to be real, the

discussion of the inverse function becomes more complicated,

but the fundamental notions are the same.

For the present it will be sufficient to confine ourselves to

the case of a binomial algebraical equation. Let us first consider

the case

ir = s» (1),

where n is a positive integer, s is a complex number, say

2 = x + yi, and, consequently, w also in general a complex

number, say w = u + vi.

To attain absolute clearness in our discussion it will be

* Id En^'lioh Text-nonka cqantionB of this kind aro »rtcn loonlj
taU'J ; and tlic resall Ini.'i bccu Bomc confusion in tbo blKlicr liranchat

of ninthematica, anch as tho integral calculus, wlioro tbcae invcnc fuuctiona

pla> au importaut port.

J
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necessary to pursue a little farther the graphical method of

chap. XV., § 17.

It follows from what has there been laid down, and from the

fact that any integral function of x and y is continuous for all

finite values of x and y, that, if we form two Argand Diagrams,

one for x-^yi (the s-plane), and one for « + vi (the w-plane), then,

whenever the graphic point of s* describes a continuous curve, the

grapliic point ofw also describes a continuous curve. In this sense,

therefore, the equation (1) defines w as a continuous function of

z for all values, real or complex, of the latter. For simplicity in

what follows we shall suppose the curve described by z to be the

whole or part of a circle described about the origin of the c;-plane.

We shall also represent z by the standard form r (cos B-^i sin G),

and w by the standard form s (cos <^ + •( sin
</>) ;

but we shall, con-

trary to the practice followed in chap, xii., allow the ampHtudes
6 and <^ to assume negative values. Thus, for example, if we

wish to give s all values corresponding to a given modulus r,

without repetition of the same value, we shall, in general, cause

B to vary continuously from - ir to +
ir, and not from to 27r,

as heretofore. In either way we get a complete single revolution

of the graphic radius
;
and it happens that the plan now adopted

is more convenient for our present purpose.

It is obvious that by varying the amplitude in this way, and

then giving all different values to r from to + co
,
we shall get

every possible complex value of z, once over
;
and thus effect a

complete exploration of any one-valued function of z.

Substituting in (1) the standard forms for w and z, and

taking, for simplicity, n =
3, we have

8 (cos ^ + i sin <^)
= r^ (cos + i sin Of

= r'{coa3e + ism36) ('->)

by Demoivre's Theorem. Hence we deduce

* For shortness, in future, instead of "graphic point of z" we sliall say

"z" simply.
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or, if (as will be Buflicieiit for uur purpose) we confine ourselves

to a single complete revolution of the graphic radius of z,

s^r', * = 3fl (3).

If, therefore, we give to r any particular value, s has the

fixed value r*
;

that is to say, w describes a circle about the

origin of tlio w-plano (Fig. 4). Also, if we suppose z to describe

its circle (Fig. 3) with uuiform velocity, since ^=3^, w will

describe the corresponding circle with a uniform velocity three

times as great To one complete revolution of z will therefore

Fio. 3. Fia. 4.

corre.spond three complete revolutions of ir. In other words, the

values in the (MO-continuum which corre-ijwnd to those in the

(c)-continuuni (ire each rejmifi'd three times ox\r*.

The actual cour.se of «• is the circle of radius r* taken

three times over. We may represent this multiple course

of w by drawing round its actual circular course the spiral

0', T, r, 0, r, 1, 0', which re-enters into it.^elf at O' and 0'.

The actual course may then be imagined to be what this spiral

becomes when it is .shrunk tight upon the circle.

• To indionto this poculiiiiitv "f ic wo gliall occasionally urw thi" term

"RcpoatinK Fonotion." A rc|>onling function need not, howi'vor, Ih' jx-iioilia

an »=:' u.
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If we now letter the corresponding points on the s-circle with

the same symbols we have the circle O'll' in the w-plane, cor-

responding to the circular arc O'lI' in the £-pLine, and so on, in

this sense that, when z describes the arc O'll', then w describes

the complete circle O'll', and so on.

It follows from this gi-aphical discussion that the equation

w =
!?, which defines w as a one-valued continuous function of z

for all values of z, defines z as a three-valued continuous function

ofw for all values ofrv.

In other words, since, in accordance with a notation already

defined, (1) may be written

z = yw (1'),

we have sho\vn that the cube root of wis a three-valued continuous

function ofw for all values of w.

It is obvious that there is nothing in the above reasoning

peculiar to the case n = 3, except the fact that we have a triple

spiral in the i<;-plane, and a trisected circumference in the z-plane.

Hence, if we consider the equation

w = .5" (4),

aaid its equivalent inverse form

z=^w (4'),

all the alteration necessary is to replace the triple by an m-ple

spiral, returning into itself on the negative or positive part of

the M-axis, according as n is odd or even
;
and the trisected

circumference by a circumference divided into n equal parts.

Thus we see that the equation (4), which defines w as a

continuous one-valued function of z for all values of z, defines z

{that is, the nth root of w) as a continuous n-valued function of to

for all values of w.

§ 5.] Riemann't Surface. It may be useful for tliose who are to pursue
their mathematical studios beyond the elements, to illustrate, by means of

the simple ease w = z^, a beautiful method for representing the continuous

variation of a repeating function which was devised by the German mathema-
tician Eiemann, who ranks, along with Cauchy, as a founder of that brancli

of modern algebra whose fundamental conceptions we are now explaining.
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luatcad of Bupposing all the spircB of the le-path in Fig. 4 to lie in oue

plaue, we may conceive each complete spire to lie in a Boparate plane snper-

posed on the tc-plane. Instead of the sinBle ir-plane, we have thus three

separate planes, P,, /*„, P, . superposed upon each other. To Becnre continuity
between the planes, each of them is supposed to bo slit along the u-axis from
to - 00 ; and the three joined toRothcr, so that the upper edge of the slit in

P, is joined to the lower edge of the slit in P, ; the lower edge of the slit in

P(, to the upper edge of the slit in P, ; the lower edge of the slit in P, to the

npper edi^e of the slit in P, , this last junction taking place across the two

intervening, now continuous, leaves. Wc have tlius clothed the whole of the

irplane with a three-leaved continuous flat belicoidal* surface, any continn-

ou<i path on which must, if it circulates about the origin at all, do so three

times before it can return into itself. This surface is called a Ritvmnn'i

Surface. The origin, about which the surface winds three times before

returning into itself, is called a JVinding Point, or Branch I'oint, of the

Third Order. Upon this three-leaved surface w will describe a continuotu

single path corresponding to any continuous single path of t, provided we

suppose that there is no continuity between the leaves except at the junctions
above described.

§ G.] If we confine to tliat part T'Ol' of its circle which

io bi.sected by OA', and <^ to the corresponding .spire T'Ol' of its

path, so that <t> lies between — ir and + t, and between -
v/n

and -1- n/n, then s becomes a one-valued function of w for all

values of tc. We call this the princip.il brancli of the n-valued

function !!/w; and, as we have the distinct notation tr"" at our

disposal, we may restrict it to denote this particular branch of

the function z. In other words, if

w = « (cos <^ + / sin <^),
— ir<<^<-t- jr,

we define ir"" by the equation

w^ = s"" (cos . <i>ln + i sin . <f>/n) ;

and we also restrict (cos <^ + 1 sin <^)''" to mean cos . <j>/n + 1 sin . <t>/n.

Just as iu § 4, we take the next spire after T'Ol' in the

positive direction (counter-clock) to represent the first positive

branch of yw; the ne.xt in the negative direction to represent the

first negative branch of ^w; and so on, the last positive and the

la.st negative being full spires, or only half spires, according as n

is odd or even.

If, as is usual, we repre.sent the actual analytical value of w

* Like a spiral BUurcaM.
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by the form s (cos <^ + i siu
</>),

where <^ is always taken between

- TT and + TT, then it is easy to find expressions for the values of z,

belonging to the m - 1 positive and negative branches of ^w and

corresponding to any given value of w, in terms of the value

belonging to the principal brancli. We have, obviously, merely

to add or subtract iimUiples of Stt to represent the successive

positive and negative whole revolutions of the graphic radius of

w. Thus, if z, z,, Z-, relate to the principal, tth positive, and

<th negative branches oi z= 'ijw respectively, we have

z = s"" {cos . ^In + i sin . </>/«} ;

2;t
=
s""{cos . (</>

+ 2<7r)/rt + / sin . (<^ + 2tTT)ln] ;

z-t = s""{cos . (<^
-

2tir)/n + i sin . (<^
-

2t7r)/n]. ,

(5).

We have thus been led back by a purely graphical process to

results equivalent to those already found in chap, xii., § 18.

Cor. 1. Hence, if z denote the principal value of the nih root

of w, and u)n
— cos. ^irfn + i sin . iirjii, then

Zt=e'»n, s-( = ««)„"'; ) ,„.

that is, c,
= w'"W, S-« = w'"'o)„-'i

Cor. 2. The principal value of the nth root of a positive real

numhe)' r is tlte real positive nth root, that is, what has already

been denoted by r"" (sec chap, x., § 2).

For, in this case, we have w = r (cos Q + i sin 0), that is, "^
= 0.

Hence 'ijw
= r^".

Cor. 3. The/re is continuity between the last values of any
branch of IJiv and the first values of tJie next in succession, and

between the last values of the last positive branch and the first

values of the last negative branch; but elsewhere tivo values of

^w belonging to different branches, and cm-responding to the

same value of w, differ by a finite amount.

It should be noticed as a conseixueace of the above that the principal

value of the jith root of a real negative number, such as -
1, is not definite

until its amplitude is nssif^ned. For we may write -l = eos7r + isin tt or

= cos(
-

jt) + isin (- tt) ;
and the principal value in the former case is

cos.Tr/M + isin.Tr/ji, in the latter cos(
-

7r/H) + i sin (-x/n). This amhiguity
doeR not exist for complex numbers differing; from -

1, even when they differ

inQuitely little, as will be at once seen by referring to Figs. 3 and 4.
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%!.] It should be observed tliat if, instead of restrictJDg ^
in the expression a = s""{co8. <^/» + f sin.<^/n} to lie between

— :r and +7r, we cause it to vary continuously from -nw to

+ MTT, then «* {cos .</)//»
+ t sin. <^/n} viiries continiiously and

passes once through every possible value of ijw, where
|
tc

|
is

given =s.

It follows also tliat, if to describe any continuous path

starting from P and returning; thereto, the value of ^'w will

vary continuously ; and will return to its original value, if w
have circulated round tiic origin of the rr-plane pn times, where

p is or any integer ; and, in general, will return to its original

value multiplied by <i)„', where t is the algebraical value of

+ /1— V, fi and V being the number of times tliat w has circu-

lated round the origin in the positive and negative directions

respectively. On account of this property, the origin is called a

Branch Point of ^w.

§ 8.] Let us now consider briefly the equation

M'P = £« (1),

where ;) and q are positive integers. We shall suppose p and q
to be prime to each other, because that is the only ca.se with

which we shall hereafter be concerned*.

Our symbols having the same meanings as before, we

derive from (1)

s" (cos/x^ + 1 sin p<t>)
= f^ (cos qO + 1 sin qO) (2).

Hence, taking the simplest correspondence that will give a

complete view of the variation of both sides of the etjuation

last written, we have

.,p = ,w, j,^ = qe (3).

If, then, we fix r, and therefore s, the p.nths of z and w will

be circles abo>it the origins of the z- and w-planes resjiectively ;

and, since p is prime to ^, if s and w start from the positive part

•Up and q hail the Q.C.M. k, no that p = hp', q
—

kq', whoro p' nnd q' are

mutually prime, then the equation (I) could \k written («>'>')*
=

(r«')», which

in equivalent to the k cqnationH, «*"=!<', ic<>' = <i»jj«', m>»' = «j'x*', . . ., k**

z:u^*z^', where w^ Ik n primitive k\.\\ root of 4- 1. Kach of thme k equation!

falU under the case above dincnniiod.
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of tlie X- and «-;ixes slmultaueously, they will not again be

simultaneously at the starting place before z has made p, and

M) has made q revolutions.

To get a complete representation of the variation we must

therefore cause 6 to vary from -j»7r to + jott, and i^ from — qir to

+ qTr. The graphs of z and w will therefore be spirals having

p and q spires respectively. To each whole spire of the (/-spiral

will correspond the p/qth part of the j[?-spiral. The case where

p = 3 and
(/
= 4 is illustrated by Figs. 5 and 6.

Fig. 5. Fig. 6.

It follows, therefore, that the equation (1) determines w as a

cuntinumis p-vaiued function of z, and z as a continuous q-valucd

function of w. Taking the latter view, and writing (1) in the

form

z^'Jw" (1').

and (3) in the form
r = «"/«, 6=p4>lq (3'),

wc see that, if we cause <^ to vary continuously from -qir to

+ qir, then s*"'
(cos -<t> + i sin - <^ j

will vary continuously through

all the values which :^w^ can assume so long as
|

w
|

=
s, and

will return to the same value from which it started. In fact, we
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sec in general tliat, if w start from any point and return to the

same point again after circulating ft times round tlie origin in

the iwsitive direction, and v times in the negative direction,

then ijw'' returns to its original value multiplied by cos . iptvjq +

t sin . iptnjq where < = + /x
-

»•
;
that is, by «,", where «, denotes

a primitive gth root of + 1.

If, as usual, we divide up the circular graph of w into whole

spires, counting forwards and backwards as before, and consider

the separate branches of the function ijuf corresponding to these,

then each of these branches is a single-valued function of 6.

The spire corresponding to -jr<<^< + 5r is taken as the

j)rincipal spire, and corresponding thereto we have the principal

branch of the function z = ^w', namely,

s = s'^|cos^<^
+
tsin^<^|,

--<4><+T.

For the (+ t)th. and (-r t)t\i branches respectively, we have

z,
= «»"«{cos .p{<t> + 2tir)lq

+ » sin .
jt> (<^

+ 'it-^Vq],

z., = «*"« {cos . J? (<^
-

2«7r)/«/ + i sin . p (^ - 2«ir)/<7l>

As before, we may use w'"' to stand for the principal branch

of ilw", and we observe, as before, that the principal value

of llw' when w is a real positive (juautity is the real positive

value of the gth root, that is, what we have, in chap, x.,

denoted by if'''.

§ 9.] It mast be observed that, when p is not prime to q, the erprcasioni

fn/«{co8.p(^±2(T)/g + ipin.p(^±2(T)/<;} no loDRcr furnish &1I the q Taluos

of i!\C, but (na may be easily vi rifiL-d) only qfk of them, where * is the

O.O.M. of p and q. The appropriate expression in this case would bo

»p/»{co8.(p0i2«T)/g + iBin.(p^±2(T)/9}.

This last expression Rives in all cases the q different value* of !j^ ; but

it has this great inconvcnicnoe, that, if we arrunge the branches by taking

succcssivfly t = 0, « = 1, f = 2 the end value of each branch is equal,

not to the initial value of the sacceeding branch, but to the initial value of

a hrnnch several orders farther on. There will therefore l>e more than one

cruMinis in the graphic epiraL The invesUgution from this point of view will
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be a good exercise for the student. Wheu p is prime to 7, the two expres-

sions for ^wP are equivalent ; and WG have preferred to use the one which

leads to the simpler grajjhic spiral.

If we adopt Eiemann's method for the graphical representation of the

equation w''=z'>, then we shall have to cover the z-plaue with a p-leaved

Eiemann's surface, having at the origin a winding point of the j)th order
;

and the w-plaue with a j-leaved surface, having at the origin a winding

point of the qt'a order.

Exercises XIV.

(1.) Solve the equation

tan-i{(a; + l)/(j:-l)}+tan-i{(2 + 2)/(x-2)}=jF,

and examine whether the solutions obtained really satisfy the equation wheu
tan"' denotes the principal branch of the inverse function.

(2.) If 27r-<4q^, show that the roots of the equation x'- qx-r=0 are

2 (9/3)1/2 cos a, 2 (4/3)'/= cos (J 7r + a), 2 (7/3)1/2 cos (^tt- a), ^jj^-g „ jg jgtgr-

mined by the equation cos 3a= J r
(S/i/)-'/^.

Show that the solution of any cubic equation, whose roots are all real,

can be effected in this way; and work out the roots of x^-5x + 3 = to six

places of decimals. (See Lock's Higher Trigonometry, § 135, or Todhunter's

Trigonometry, 7th ed., § 200.)

Trace the graphs of the following, x being a real argument :
—

(3.)
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part of the subject dn not arise where we have to lU'iil merely
witli a finite summation

; that is to say, tlie summation of a

series to « terms. For any sudi siinnnatinn involves merely a

statement of the identity of two ciiains of oj)erations, eacli con-

taining a finite number of links, and any such identity rests

directly on tlic fundamental laws of algebra, which apply alike

to real and to complex quantities.

Even when the series is infinite, provided it be convergent,
and its sum be a one-valued function, the difficulty is merely one

that has already been fully settled in chap. xxvi.

The fresh difficulty arises when the sum depends upon a

multiple-valued function. We have then to detennine which

branch of the function represents the series
;

for the series, by
its nature, is always one-valued.

We commence with some caaes where the lai^t-mentioued

point does not arise.

GEOMETRIC AND INTEGRO-GEOMETRIC SERIES.

§11.] The summation

l+c + =^+. . .+z' = (l-z'*')/(l-:) (1),

since it depends merely on a finite identity, holds for all values

of z. We may therefore .suppose that z = x + ifi
= r (cos + i sin 6),

and the equation (1) will still hold.

Also, since L s"+' = Zj-^' (cos n + ifl + i sin » + \$) =
0,

when r<\, we have, provided |s|<l, the infinite summation

l+c + s^+ . . . adoo = l/(l-c) (2)

for complex as well as for real values of z.

In like manner, the finite summation of the integro-geoinetric

series 2<^(H)i", which we have seen can always be effected for

real values of z (see chap, xx., § 14), holds good for all values

of z; and, since 2<^(h)^ is converfjent provided |s|<l, the

infinite summation deducilile from the finite one will hold good
for all complex values of z such that

1
2

1
< 1.
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By substituting in (1) or (2), aud in the corresponding

equations for 2<^ (h) s", the value r (cos + i sin 6) for s, and then

equating the real and imaginary parts on both sides, we can

deduce a large number of summations of series involving circular

functions of multiples of 6.

Example 1. To sum the series

S„=l + rcose + r-cos2e+ . . . + r»cos>i9,

r„= rsinfl + r=sin2fl + . . . + r"smne,

U„=cosa + rcos{a + 0)+r-cos{a + 2e) + . . . + r''cos{a + n0),

F„= sina + rsin(a + 9) + r=siii(o + 2«) + . . . +r'" sin {a + nO),

to n terms ;
and to x when r<l.

Starting with equation (1), let us put 2 = r (cos (? + f sin ff), and equate real

and imaginary parts on both sides. We find

l + r(cosS + i sinfl) + )-^(cos2^ + isin29) + . . . + r"(cos?!9 + i sin
jiS)

=
{
1 - r»+' (cos (n + l)e + i siu {n + 1) 0)}/{l

- r {cose+ i sin 8)} (3) ;

whence*

S„={l-rcos9-r»+icos(n + l)e+j«+»cosn9}/{l-2rcose + rS} (4);

T„={r am 6- r"+' sin (n + 1) fl + r"-" sin )ifl}/{l
- 2r cos fl + r=} (5).

Again, since U„= cos aS„ - sin a7'„ ,

F„ = sin oS„ + cos oT„ ,

we deduce from (4) and (5) the following:—
i7,= {coso

- rcos (a
-

0)
- r''+' cos (n + 19 + a) + r"*' cos (nff + a)}/

{l-2rcose + r2} (G),

r,= {sin a - r sin {a -6)- r"+i sin {n + lO + a)+r''+- sin (n« + a)}/

)l-2rcos9 + r=) (7).

From these results, by putting r=+l, or r=-l, we deduce several

important particular cases. For example, (6) aud (7) give

coso + coa (a + fl) + cos(a + 29) + . . . + oos(a + Ji9)

=cosJ{a+ (o+ ne)}sin J(n+l)fl/sinie (G');

sino + sin (o + S) + sin (a + 29) + . . . + sin(o + ;i0)

= sin J{o+(a + ne)}sinJ(n+ l)9/sinJ0 (7').

Finally, if r< 1, we may make n infinite in (4), (5), (G), (7) ; aud we thus

find

S„ = (l-rcose)/(l-2rcos9+rS) (4");

T„ = r8ine/(l-2rcose + r=) (5");

i;„ = {cos a - r cos (a
-

e) }/{l
- 2r cos e + r=} (6") ;

V„ = {sin o -r siu (a
-
»)}/{!

- 2r cos fl + r''} (7").

* For brevity, and in order to keep the attention of the reader as closely
as possible to the essentials of the matter, we leave it to him, or to his teacher,
to supply the details of the analysis.

c. II. 18
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Exuinplo 2. Sum to iutiuity tbu aerios

S=l-2rcoBff + 3r*coB2»-4r»co93tf + . . . ('•<1)-

If 2 = r (cos $ + i siu 0), then S in tiic real part of tlie niim of the series

r=l-2i + 3»«-U' + . . . .

Now, by chap, xz., § 14, Example 2,

r=l/(l + «)«.

Ileiieo S= iJ (1/(1 + rcoBe + ri sin «)'},•

= J? {(1 + r COB e - n sin ej'/(iTrco80» + ri sin' e)»),

= (1 + 2r COB 9 + r* cos 2fi)/( 1 + 2r cos e + r»)'.

Example 3. Exemplify the fact that every algebraical identity leads to

two trigonometrical identities in the particular case of the identity

-{b-c)(c-a) {a-b) = bc{b-c) + ca (c-a) + ab(a~b).

In the given identity put a = C0Ba + i sina, 2>= cob /3 4- i sin
/3,

e= cos 7+
t sin y, and observe that

cos ^ + i Bin /3
- cos 7 - 1 Bin 7= 2i Bin i (^

-
7) {cos i (/S + 7) + 1 sin J (/J + 7)} .

We thus get

4UsinJ(/3-7){coBj(/S + 7) + iBinJ(/S+ 7)}

=S8inJ(^-7){coBp + <Binp}|oo87 + t8in7}{cosJ(/J + 7)

+ t8ini(/} + 7)}.
whence

4 COB (a + /S + 7) n Bin J (/S-7) = S sin i (/9-7) COS I (/9+7) ;

4 sin (a +/3 + 7) n Bin i 03- 7) = 2 sin J (/3-7) sin I (^ + 7).

formula: connected with demoivke's theorem and

tllk binomial tueohem for an integral index.

§ 12.] By chap, xn., § 15 (3), we have

cos(fl, + e,+ . . .+0,) + iBm{0i + 6t+. . .+e,)
=

(cos 0, + i .sin 6,) (cos 0, + 1 sin 0,) . . . (cos 6, + 1 sin 0,).

If we expand the right-hand side, and use P, to denote

Sees 6, cost/, ... cos 6,m\ d^+i . . . sin^,, that is, the sum of all

the partial i)roducts tliat can be formed by taking the cosines

of r of the angles ^i, ^,, . . ., P» and the sines of the rest, then

we tiud that

co8(e, + tf,+ . . . 4-e,) + «8in(e, + 6*,+ . . . +0n)

* Wc aac R/{z + yi) and //(z + yi) to denote Uie teal and imaginary parts

of / (x + yi) respectively.
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Heuce

cos{0, + o,+ . . . +0„) = P„-iV« + P„-4-^„-6+. . . (1);

sin (d, + e,+ . . .+e,)= p„_, - p„_3 + i^,-5
- P„-7 + . . . (2).

LVom these, or, more directly, from

cos {0i + 6^+ . . . + 6„) + i sill (^1 + 63+. . . + 6n)
= cos 0i cos 0,

... cos 6„ (1 + i tail ^^i) (1 + i tan 0.,) . . . (l+i tan On),

we derive

tan(e.+ 0, + . .. + e„)^{T,-T, + T,-. . .)I{\-T,+ T,-. . .) (3),

where TV = 2 tan ^i tan 6^ . . . tan 6^.

The formula) (1), (2), (3) are generalisations of the familiar

addition formulae for the cosine, sine, and tangent.

From tlie usual form of Demoivre's Theorem, namely,

cos nO + i sin nO = (cos 6 + i sin 6)'\

we derive, by expansion of the right-hand side,

cos nO + i sin nO = cos" + i„Ci cos""^ 0sm6-„C2 cos"~^ sin^ $

Hence

cosme=cos"fl-„(7aCos"-'6'sin=e + „C4Cos"-'esiu«6i-. . . (4)*;

sin w0 = „C, cos"-' e sin 61
- „C, cos"-» e sin'

+ ,.C;cos"-'esiii=e-. . . (5);

. . „Citan6l-„C3tan'(9 + „C5tan''0-. . . .„,
**''"^=

l-„(7.tan-'^ + „(7.tan^e-.. .

<^)-

These are generalisations of the formula; (8) of § 2.

The formulae (4) and (5) above at once suggest that cos nO

can always be expanded in a series of descending powers of cos^;

that, when n is even, cos 7i9 can be expanded in a series of even

powers of sin 9 or of cos 9; sin ?(6/sin in a series of odd powers

of coa 9
;
and sin nO/cos in a series of odd powers of sin 9 :

and, when n is odd, cos n9 in a series of odd powers of cos 9
;

cos n9/cos 9 in a series of even powers of sin 9
;
sin nO in a series

of odd powers of sin 9
;

sin n9/sin ^ in a series of even powers

of cos 9.

* The formula; (1), (5), (G), (8) were first giveu by John Bernoulli in 1701

(seeOii., t. L.p. 3a7).

18—2
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Knowing', a priori, that these series exist, we could in variniis

ways iletermiue their coefficients ; or we could obtaiu certain

of them from (1) and (2) by direct transformation, and then

deduce the rest by writing hir-6 'm place of 6. (See Todluiuter's

Trigonamitry, §g 2S6-28S.)

We may, however, deduce the expansions in question from

the results of chap, xxvii., § 7. If in the equations (9), (10), (9'),

(9"), (10'), (10") there given we put o = cos6 + i8in ©, /3
= co8 6-

t sin 6, and therefore p = 2 cos 6, q= 1, we deduce

2 cos ne = (2 cos 6)'
-

", (2 cos «)""' +
"^""^^

(2 cos «)-'
-

. . .

^_^,
»(»->-l)(>'-r-2)...(»-2r^li

^.^^^^^^,.,^ ^.^,.

sin ne/siu 6 = (2 cos 6)-' -—
j^,

'

(2 cos «)"-• + ('iZL^Hwjii)

(2cose)--. _^_)M-r-l){n-r-2).
. .{n-2r)

(2 cos 6)"-*'-'+ ... (8);

cos «g = (-)"'
jl

-
^'

cos' 6 +
"'^"^7

^'^
cos' e - . . .

, ,.«'(n»-2'). . . (n'-27^») „„ 1, , ,„,
(
-

)•
—^

(ily.
e+. .

j(n even) (9) ;

cos n6 = (~ y-'y i - COS ^^
—'

cos* 6 +—^

^p
^

5/1 / X.
» (»'

-
1') («'

-
3') . . . (»'

-
27-"l') ^ .

,
.

)cos'O-. ..{-y^
^2^1 1)!

^C08**'fl + . .

.j

(«odd) (10);

sin «g/sin e^{- )'^-' |^
cos g -

"

^"g~
^"^

cos* g -t- . . .

(-)'
(27^)1

'co8**'e+. .

.J(«even)
(11);

•
Tlic Bcrica (7). (9'), (10') were first given by James Bcmoalli in 1703

(ace Op., t. II., p. 92C). He deduced them from the formula

2.in»n0=g(2,in .).- "'<";-
^•)

(2,in.)..H "'<"'-^;)i!!l:igl>(a.in.)«-...,

wliidi lie ciitabliahed by an induction baaed ou the preTioui r«iulla of Vieta

rcgarJjug ilie mulliaection of au angle
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sin ne/sin 6 = (-)('-»^
|i
-!^ cov 6 + ("'-I'K^'-S")

^^^4^ _ _ _

(-)"
^

^^-^
'cos-^e+ . .

.|
(«odd) (12).

If in the above six formulse we put hir-O'in place of 6, we
derive six more in which all the series contain sines instead of

cosines. In this way we get, inter alia, the following :
—

cos ?ig = 1 -
|j

sin° 6 +
^ ^^'

~
'
sin* B - . . . (n even) (9');

sm ne = - sm e —' sm^6+ ^ '- sin' 6- . . .

1! ol 5!

(modd) (10');

mnOIcos9 = -j
sm - -~^—-' sin' 6 + -^

-^
'
sin'd-. ..

(w even) (11');

sm

cosw
., .

,
n'-l» . ,„ («^-l=)(»»-3") . ,„

-fl/cos0=1 -7— s\v? 6 + ^
^-^

' sm* -

^! 4!

(n odd) (12').

The formulfe of this paragraph are generalisations of the

familiar expressions for cos 26, sin 29, cos 30, and sin 39, in terms

of cos 9 and sin 6.

§ 13.] The converse problem to express cos" 9, sin" 0, and,

generally, sin™ 6 cos" ^ in a series of sines or cosines of multiples

of 9, can also be readily solved by means of Demoivre's Theorem.

If, for shortness, we denote cos 9 + { sin 6 by cc, then we have,

by Demoivre's Theorem, the following results :
—

x = cos9 + ism9, l/x = cos9 — ishi9;
^

af = cos n9 + i sin n9, IjaP = cos n9 - i sin nO :

i

cos9 = --(x+l/x), sin9 = —:(x-l/a;):
2 2z

cos ne =
5 («" + l/x"), sin nO = ^. {x"

-
l/x").

y (•)•
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Hence

+ ^C, {a^^ + 1/.!*-^) + . . . + ,„.r.},

= -5^, {cos 2m0 + tt.C, cos {2m - 2)0 + ^.C, cos (2m - 4)5 +

. . .+UC7.} (2).

Similarly,

CDS'"*' tf= „L {cos (2m + 1)0 + a„+,C, cos (2m -
1)0

+ a«+iCjC08(2m-3)6+ . . . +»+,C«co8fl} (3);

8in'^0 =
^^^{cos2me-t„CiCos{2m-2)6

+ ^C,CM(2m-4)e+. . .(-)"4«C«} (4);

sin"-*' 6 =^^ {sin (2m + 1)0
- ^+,C, sin (2m - 1)6

+ ,„+,C;sin(2m-3)0+. . .(-)"«+,C. sin 0} (5).

These formulae are generalisations of the ordinary trigonometrical

formula; sin' B = -\ (cos 20-1), cos' Q=\ (cos 30 + 3 cos 0), &c.

In any particular case, especially when products, such as

sin" cos" 0, have to be expanded, the use of detached coefficients

after the manner of the following example will be found to con-

duce both to rapidity and to accuracy.

Example 1. To expand sin' cos* in a aeries of sines of multiples of B.

Bin' 9 cos> tf =
2^, (X

-
l/x)» (i + l/z)>.

Starting with the coefficients of the highest power which happens to bo

remembered, sny the 4th, we proceed thus—
CocUidonU of MulUpllcr.
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i
(j'

-
1/x') by sin S9,

.j-. (.c"
-

1/x") by sin 69, aucl so on, wc find

8in»ecos'9= s7{sin8e-2sin(i9-2sin4tf + Gsin2ff + 4.0},

=_ {sin 8ff - 2 sin 69 - 2 sin 49 + 6 sin 29}.
128

The student will see that sin'" ^ cos" 6 can be expanded in a

series of sines or of cosines of multiples of 6, according as m is

odd or even. The highest multiple occurring will be (m + n) 6.

Example 2. If 9 = 27r/n, and a any angle whatever, and

,„P„=coB'"a + cos'»(a + 9)+. . . +cos"'(a+ 7^- 19),

„;"„=sin'»a + sin'"(a + 9)+. . . + sin™ {a + ?»-!«),

where m is any positive integer which is not of the form r+ snj2, then

«nP»=am^«="-l'3- • • (2m-l)/2.4. . .2m;

Sm+l ^n= 2ni-f1 '^n
— ^*

This will be found to follow from a combination of the formula) of the

prcBent paragraph with the summation formula of § 11.

Exercises XV.

Sum the following series to n terms, and also, where admissible, to

infinity :—

(1.) cos o- cos (a + 9) + cos (a + 29)-. . .

(2.) sin a -sin (a + 9) + sin (a + 29)-. . .

(3.) Ssin'nS. (4.) ncos9 + (n- 1) cos29 + (?i-2) cos39 + . . . .

(5.)
2 sin n9 cos {?i + 1)9. (6.) S ain h9 sin 2k9 sin 3n0.

(7.) sin a - cos a sin (a + e) + cos= a sin (a + 29)
-

. . . .

(8.)
l + co3 9/cos9 + co3 29/cos=9 + cos39/cos''9 + . . . to n terms, whore

e='mr.

(9.) l-2rco3 9 + 3r=cos29-4r'cos39 + . . . .

(10.) sin 9 + 3 sin 29 + 5 sin 39 + 7 sin 49 + . . . .

(11.) Sh= cos (n9 + a). (12.) S« (u + l) sin (2;( + l) 9.

(13.) 6in2H9-j„CiSin(2n-2)9 + j„C2sin(2n-4)9-. . . (n a. positive

integer).

(14.) sin(2« + l)9 + o„+,CiRiu(2n-l)9 + 2„+iC2sin(2n-3)9 + . . . (n a.

positive integer).

(15.) 2m(m+ l). . . (m + ii- 1) r" cos (o + n9)/Hl to infinity, m being a

positive integer.

(16.) Does the function

(sin= 9 + sin' 29 + . . . + Bin'n9)/(co8'9 + co8=29 + . . .+cob»7i9)

approach a definite limit when n= co ?

(17.) Expand l/(l-2cos9.i + x=) in a series of ascending powers of x.
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(18.) Exi)and 1/(1
- 2co3 9,x + x')' in a Bcrics of ascending powers of x.

(19.) Expand (l + 2x)/(l -x*) in a scriee of ascending powers of z ; and
show that

„_, (3»-l)(3n-2) (3H-2)(3n-3)(3n-4) . _l-3n+ -, 5i
+ . . . = (-!)•.

(20.) Show that l/(l+i+x') = l-x + x»-x« + x«-x' +x'-x"+ . . .;

and that, if the sum of the even terms of tliis expunuion be ^(x), and tlio

sum of the odd terms ^ (x), then {0(x)}'- {f (x)}»=0(x') + ^(x').

Prove the following identities by means of Demoivre's Theorem, or

othenvise. S and IT refer to the letters o, /9, 7:—
(21.) 2sino/(l + 2coso)= -11 tan } a, where a + ^ + y=0.
(22.) S sin (9

-
/9)

sin (9
-
7)/sin (o

-
/3)

sin (o - 7) = 1 .

(23.) Ssini(a+ /3)sin J(o + 7)coso/sin4(a-/3)sinJ(a-7)= co8(o+^+7).
(24.) cos a cos (a

-
2o) cos (<r

-
2/3) cos (<r

-
27)+ sin a sin (cr

-
2o) sin (a-

-
2/3)

sin (<r
-
27) = cos 2a cos 2/3 cos 27, where <r= a+ ^ + 7.

Expand in series of cosines or sines of maltiples of $ :—
(25.) cos"fl. (26.) sin'ff. (27.) siu'tf.

(28.) cos*0Bin'«. (29.) cos* sin' 0.

Expand in series of powers of sines or cosines :
—

(SO.) cos 109. (31.) sin 79.

(32.) sin 30 cos Cd. (33.) cosn>9cosn0.

EXPANSION OF COS 6 AND SIN 6 IN POWERS OF 6.

§ 14.] We propose next to show that, for all finite real

values of 6,

cos« = l-^/2! + ^/4!-^/6! + . . . adoo (1);

Bine = e - e'/3< + e'/5l-6'/ll + . . . ad« (2).

These expansions* are of fundamental importance in the

]iart of algebraical analy.si.s with which we are now concerned.

Tiiey may be derived by the method of limits cither from the

formula! of § 12, or from two or more of the equivalent formula)

of § 13. We shall here choose the former course. It will appear,

however, afterwards that this is by no means the only way in

which these important expansions might be introduced into

algebra.

* First given by Newton in his tract Atialytit per aguationei ttumero

terminorum rnfnilat, which was shown to Barrow in 1GC9. The lending idea

of the above demonstration was given by Euler (7n(rod. in Anal. Inf., t. I.,

§ i:!2), but bis demonstration was not rigorons in its details.
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From (4) and (5) of § 12, writing, as is obviously permissible,

6/?« in place of 9, and taking n = m, we deduce, after a little

rearrangement,

cos^ =
cos'"ifl-^}/^^"-(tan^/iy771 1. 2! V m/ m)

^(1-1M(1-2M(1-3A»),.A i/^Y_ I (,)
4! \ ml mj )

a
= cos"' - {1

-
Ms + «4

-
. . .

}, say, (3') ;

and

sin Q = cos"
I \ ml ml

_(i-iM)(i-2M^A j/^V^^ 1

3! V ffj/ »!/ J

= cos" - {Mi !(, + . say, (4').

Here, from the nature of the original formula, m must be a

positive integer ;
but nothing hinders our giving it as large a

value as we please, and we propose in fact ultimately to increase

it mthout limit. On the other hand, we take to be a fixed

finite real quantity, positive or negative.

The series (3), as it stands, terminates
;
and its terms alter-

nate in sign.

We have

lUi

u,.

_ (l-2»/m)(l-2» + lM /
e_

leV'

(2»+l)(2?« + 2) V^^m/mJ-

Hence, so long as n is finite,

L
W2»

e^

(2w + 1) {2n + 2)
•

If, therefore, we take 2»+l>^*, we can always, by taking
m large enough, secure that, on and after the term Ui„, the

numerical value of the convergency-ratio of the series (3) shall

be less than unity.

*
Strictly speaking, it is sufficient if e<J{{2n+ l) (2n-|-2)}.
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Frnni tliis it follows that, if 2h + \>0, and m lie only taken

large enough, cos 6 will ho intermediate in value hetween

a

cos"- {!-«., + «,-. . .(-)"«„} (5),

and

COS-^fl-Kj
+ M^-. . .(-)"«« + (-)"^'»*«„} (C).

Therefore cosfl will always lie between the limits of (5) and

(6) for m= cc.

Now (see chap, xxv., § 23)

L cos" (0/m)
= 1 , itt, = ^/2! , Lti, = 0'H\, . . .

Hence cos lies between

l-6y2\ + eyil-. . .(-)"^/(2n)!
and

1 - ^/2! + ^/4!
-

. . .
(
-
)"^/(2n)! + (

-
)"+' <?»"+V(2« + 2)1.

In other words, j^rovidM 2» + 1 >d,

cme=\ -
0^121 + e*l^\-. . .(-)''r'/(2M)! + (-)"+' //a. (7),

where R^< <?»+V(2n + 2)! .

Here 2/» may be made as large as we please, tlicrefore since

L e»+V(2n + 2)!
=

(cliap. xxv., § 15, Example 2), we may

write

cosfl = 1 - ^/2! + ^/4!
-

. . . ad 00
(7').

By an identical process of reasoning, wc may show that,

provided 2n + 2> 6*, tlu-n

8iad = tf-^/3! + . . .(-)"^+V(2» +
l)! + (-)"*'yA».+. (8),

wlure j?a,+, < e^*'H:2n + 3)! ,

and tlter^ore

sme = e- 0>/3\ + 0"/5!
-

. . . a<l oo
(8').

It has already been shown, in chap, xxvi., that the series (7*)

and (8') are convergent for all real finite values of
; they are

• More closely , if « <^ { (2n + 2) (2n + 3) } .
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therefore legitimately equivalent to the one-valued functions

cos and sin 6 for all real values of 6, that is, for all values of

the argument for which these functions are as yet defined. From

this it follows that the two series must be periodic functions of

9 having the period 27r. This conclusion may at first sight

startle the reader
;
but he can readily verify it by arithmetical

calculation tlirough a couple of periods at least.

When 6 is not very large, say :}>|t, which is the utmost

value of the argument we need use for the purposes of calcula-

tion* the series converge with great rapidity, five or six terms

being amply sufficient to secure accuracy to the 7th decimal

place.

We sliall not interrupt our exposition to dwell on the many

uses of these fundamental expansions. A few examples will be

sufficient, for the present, on that head.

Example 1. To calculate to seven places the cosine and sine of the

radian.

We have

COBl= l-l/2! + l/4l-l/6!-Hl/8!-l/101 + iJio.

Bio<l/12!,

= 1 - -500,000,0 + -041,606,7 - -001 ,388,9 + -000,024,8 - -000,000,3 + iJ,„ ,

iJj„< -000,000,003.

= -540,302,3.

Similarly,
sin 1 = 1 -1/3! + 1/51 -1/71 + 1/9! -/Ja,

i;g< 1/11! < -000,000,03,

= -841,471,0.

The error in each case does not exceed a unit in the 7th place.

Example 2. If «<3, then fl>sin9>9-49'; l-ie'<cosd<l-ie-+ ^0'.

These inequaUties follow at ouce from (7) and (8) above. They are

extensions of those previously deduced, in chap, xxv., §21, from geometrical

considerations.

Example 3. Expand cos {a+ 0) in powers of $.

Besult. cos (o+ S)
= cos o 003 e - sin a sin 9,

= cosa-6ino9-co8ae-/2! + sinoe'/31 + co3a9741-. . .

•
Seeing that the cosine or sine of every angle between Jt and i«- is

the sine or cosine of an angle between and itr.
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Example 4. Find tho limit of

e (1
- COS <?)/(tan 0-0) wlien 9 = 0.

L9 (1
- cos 0)/(tan 9

-
«) = I, see 9 />9 (1 - cos ff)/(sin ff - fl cos 0),

= lxL0(0-j2-0*lil + . . .)l{0-9'l:i\ + . . .-9 + (Pyj-. .
.),

= L{e'l2-0>H\ + . . .)/(ff'/3 + . .
.).

= L{ll2 + PeP + . . 0/(1/3 + <?»»+ . . .).

= 3/2.

EXKRCISES XVI.

(1.) Expand sin (o+ 9)sin + d) in powers ot S.

(2.) Calculate sin 45^ 32' 30" to five places of decimals.

(3.) Given tan 9/9= 1001/1000, calculate 0.

(4.) Expand co!;-d, sin- 9, and sin* 9 cos 9 in powers of $; and find the

general term in each case.

(5.) Show that cos™ 9 (m a positive integer) can be expanded in a con-

vergent series of even powers of j and that the coefficient of 0" in thia

expansion is

(-)"{m^+„C,(>»-2p+„C,(m-4)*+ . . .}/2"-MaFi)l.

(6.) Show that, if m and n be posiitive inte^ters, and l<n<in, then

'n"-mC,(">-2)- + >C,(m-4)»-. . . = 0.

Examine how thia result is modified when n = l, or n= in.

Evaluate the following limits:—

(7.) (sin'm«-sin'n9)/(cosp9-cos59), 9=0.

(8.) {sinp(a + 9) -8inpo}/9, 9=0.

(9.) |sin»;)(o + f)-sin».Do}/9, 9= 0.

(10.) {8in"p(o + 9)cos(o + ())-sin";)acosa|/9, 9=0.

(11.) (a*sina9-6''sin^-9)/(6*tan<I9-a''tan^9), 9= 0.

(12.) l/2x» -t/2x tan TX- 1/(1-1^, x= l (Euler).

(13.) {sinx/x}"/*", x=0.

(14.) {(x/a)sin(a/i)}^, x= <b, (m=>2).

(15.) Show, by employing tho process used in chap, xxvii., § 2, that the

scries for sin n9/co3 9 in powers of sin 9 can be derived from tho scries for

C08n9 in powers of sin 9; and so on.

(16.) Show, b; using the process of chap, zxvii., § 2, twice over, that, if

0O8n0=l + i4,Bin»9 + /f,8in*9 + . . . + il,6in*'9+. . .,

then

-n»0O8n«=2.i, + (3.44,-2'^,)8in'9 + . . .

+ {(2r+l)(2r+ 2)^^,-(2r)'.4r}»in*9 + . . . .

Hence determine the cocQicicnts.^,, A„ Ae.; and, by combining Exercise

15 with Exercise 16, deduce all the soricg (7) . . . (12') of § 12.

(17 ) Show (from § 18) that cos0 9 and sin* 9 can each be expanded in a

convergent series of powers «f 9 ; and lind an expreMiion for the coefficient of

the general term in each cnoe.

In particular, show that

8in»x/31 = i'/3!-(l + 3')x'/5! + (l + 3' + 3«)x'/7l-(l + 3' + 8«+ 8«)*»/'Jl + ... .
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BINOMIAL THEOREM FOR ANY COMMENSURABLE INDEX.

§ 15.] If, as iu chap, xxvii., § 3, we write

/(m) = l+2„(7„«" (10),

wliere m is any commensurable number as before, but z is now

a complex variable, then, so long as |2|<1, 2,„C„c:" will (chap.

XXVI., § 3) be au absolutely convergent series
;
and /(m) will be

a one-valued continuous function both of m and of z. Hence

the reasoning of chap, xxvii., § 3, which established the addition

theorem /(»i,)/(w?2) =/(?«i + m>) will still hold good; and all the

immediate consequences of this theorem— for example, the

equations (4), (5), (G), (7), (8), (9) in the paragraph referred to—

will hold for the more general case now under consideration.

In particular, if p and q be any positive integers (which for

simplicity, we suppose prime to each other), then

= (l+c)" (11).

It follows tha,t f{p/q) represents part of the g'-valued function

;^(1 +z)'' ;
and it remains to determine what part.

Let z = r (cos 6 + isin 6), then, since we have merely to ex-

plore the variation of the one-valued function /{p/q), it will be

suthcient to cause 6 to vary between — -n- and + -a:

Also, let

w = 1 + r = 1 + x + yi,

= \+rco%6 + ir sin 0, \ («),

= P (cos 4' + i sin <^),

so that

p
=

{(1 + xf + y-y^
=

(1 + 2r cos 6 + ry-
'

tan 4>
= y/{l+x) = r sin 6/{l + r cos 6),

If we draw the Argand diagram for w = l+x + yi, we see

that when r is given w describes a circle of radius r, whose centre

is the point (1, 0). Since r<l, this circle falls short of the

origin. Hence <^, the inclination to the a;-axis of the vector

drawn from the origin to the point m, is never greater than
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tan-' {rAl
-

r")"). anil "ever lesa than - tan"' {r/(l
-

r*)"^}.

Hence <^ lies in all cases between -
Jir and + ^x. Therefore,

since /{piq) is continuous, only one branch of the function

^(1 + 2)'' is in question. Now, if we denote the principal

brancli by (l+s)*"', so that

( 1 + z)'" = p"" (cos . p<\>lq + i sin . p<l>lq),

we have, by § 8,

^(l + s)''
=

(l + c)''«< (12),

where f = 0, ±1, ±2 according to the branch of the

function which is in question. Hence we have

f<j>lq)
= 0-^:y<,

where t has to be determined.

Now, when s = 0, we have/{p/q) = 1, hence we must have

1 = -,".

Hence * = 0, and we have

/(j>lq)
=

(1 + =)"«
= P"'" (cos . p<l>/q + I sin . p<t>/q),

where -Jfl-<<^<Jjr.

Next consider any nej^tive commensurable quantity, say

-p/q. Then (by cliap. xxvii., § 3 (9)),

A-p/q)=AO)l/{p/q).
=

i//(j>lq)-

If, therefore, wo define (l + s)-*"* to mean the reciprocal of

the principal value of (1 +c)'"', we have

= p-"'' {cos ( -p^lq) + % sin ( -p4>lq)\ (13).

To sum up : We have now eftahlisheJ tlie fullowing exjxiii.tion

/or the principal value 0/ {\ + :)", in all cases inhere m is any
commensurable number, and

|
s

|
< 1 :
—

(l + s)-=l + 2«C.5- (14).

The theorem may also be written in the following forms :
—

1 + :i„r.(j- + yi)*
=

{(1 + xf + yr' [cos . m tan-' {y/(l + x)\

+ I sin . VI tau"' ly/(l + x))] ^li; ;
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1 + 2,„C>,r" (cos iiO + i siu nO)

=
(1 + 2/- cos 6 + r")""^ (cos ffi<)!>

+ i sin m<j>),

where -iTr<<^ = tan~' {rsin^/(l+rcos^)}<+ Jt (16).

§ 16.] The' results of last paragraph were first definitely

established by Cauchy*. In a classical memoir on the present

subject!, Abel demonstrated the still more general theorem

l + 2„.+i.iC„(.r + FT
=

[(1 + xf + y-Y''- [cos {m tan"' {yl{l + x)} + Ik log ((1 + xf + f-\\

+ i sin {m tan"" {y/(l + x)] + \lc log {(1 + xf + fW]

Exp[-^-tan->{i//(l + ^)}]-

Into the proof of this theorem we shall not enter, as the

theorem itself is not necessary for our present purpose.

§ 17.] The demonstration of § 15 fails when |2|
= 1. Here,

however, the second theorem of Abel, given in chap, xxvi., § 20,

comes to our aid. From it we see that the summation of, say,

(16) will hold, provided the series on the left hand remain con-

vergent when r = 1.

Now the series 1 + 2„,C„ (cos nQ + i sin nO) will be convergent

if, and will not be convergent unless, each of the series

S=l + %n,G„ cos n6,

r=2„.0„sin?j«
be convergent.

In the first place, we remark that, if 7W<— 1, LmCn = ±<^

when TO = CO
,
so that neither of the series S, T can be convergent.

If TO = -
1, then „.a, =

(
-

1)", >S' = 1 + 2 (
-

1)" cos n6,

T= 2 (
-

1)" sin nO, neither of which is convergent (see chap.

XXVI., § 9).

If -l<m<0, then L,nC„ = 0; and the coefficients ulti-

mately alternate in sign. Hence, by chap, xxvi., § 9, both the

series >S' and T are convergent, provided 6 + + 7r. When 6 has

one or other of these excepted values, then S=l +2(-l)"mC>,,
which is divergent when m lies between -1 and (see chap.

XXVI., § 6, Example 3).

* Seehis Analyse Algibrique

t (Luvret Comjaletes (ud. by Sylow & Lie), 1. 1., p. 233.

L
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If m>0, then, as wo have already proved (see cliap. xxvi.,

§ 6, Example 4), 'S.^Cn is absolutely convergent, and, a /urtiori,

1 + 2.(7. cos nO and SnC. sin nO are both absolutely convergent.

It follows, therefore, that the equation

(l+rr=l + 2„^,c-

will hold u-hcii
1
5

1

= 1
,

ill all ca^s where ni >
;
and also when m

lies between -1 and 0, provided that in this last case the imaginary

part ofz do not vanish, that is, provided the amplitude o/z is not±it.

In other cases where
|

s
[

=
1, the theorem is not in question,

owing to the non-convergency of 2«<7,s".

In all cases where |c|>l, the series 2„C,c" is divergent, and

the validity of the theorem is of course out of the question.

EXPONENTIAL AND LOGARITHMIC SERIES—GENERALISATION

OF THE EXPONENTIAL AND LOGARITHMIC FUNCTIONa

§ 18.] The series

l+s + c'/2! + s'/3! + . . .

is absolutely convergent for all complex values of z having a

finite modulus (see chap, xxvi., § 10). Hence it defines a single-

valued continuous function of z for all values of z. We may
call this function the E.xponential of c, or shortly E.\pc*; bo

that Exp z is defined by the equation

E.\ps=l+; + c'/2!+a'/3! + . . . (1).

The reasoning of chap, xxvin., § 5, presupi)o.ses nothing but the

absolute convergence of tlie Exponential Series, and is therefore

api)licable when the variable is complex. We have therefore

the following addition theorem for the function Exp z :
—

* When it is ncco^snry to distinguiah botwccn the gcnpTol fanction of t

complex variable x and the ordinary exj>uncntinl function of a real variable z,

we shall ubc Exp (with a capital letter) for the former, and cither r* or cxp z
for the latter. After the student fully understands the theory, bo may of

courxc drop this distinction. It socms to be (orijottcn by some writers that

the r in «** is a mere nomxnii umbra—n contraction for the name of a function,

and not 2'71S'2s . . . Oblivion of this fact has led to some Btrmogo pieces of

luatlicmalical luifio.
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Exp^iExp^;., . . . Exp z^ = Exp (zi +:., + . . . + z,„) (2),

where Sj, z.^, . . ., s,„ are any values of z wliatever.

In particular, we have, if m be any positive integer,

(Exp»)"' = Exp(»w) (3).

Also

Exp z Exp {-z) = Exp 0,

= 1;

and therefore

Exp(-c) = l/Exp^ (4).

We have, further,

Exp 1 = 1 + 1 + 1/2! + 1/3! + . . ,,

= « (5);

and, if x be any real commensurable number,

Expir=l + .r + .-r/2! + a:73! + . . ,,

=^ (G),

by chap, xxviil., where e' denotes, of course, the principal vahie

of any root involved if x be not integral.

It appears, therefore, that Exp x coincides in meaning with

(f, so far as (f is yet defined.

We may, therefore, for real values of x and for the corre-

sponding values of y, take the graph of y = Exp x to be identical

with the graph of y = (f, already discussed in chap. xxi. Hence

the equation

y = Exp X (7)

defines a; as a continuous one-valued function of y, for all positive

real values of y greater than 0. We might, in fact, write (7) in

the form

x^Exp-^y (8);

and it is obvious that Exp^^y may, for real values ofy greater
than 0, he taken to be identical with logy as previously defined.

If we consider the purely imaginary arguments + iy and
-

iy,

we have, by the definition of Exp s,

c. II. 19
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Exp ( + 11/)
= 1 + i> -fl2\

-
if/31 + i//i\ + iy/5!

-
. . .,

= (l-y/2I + t/*/4!-. . .)

+ e(y-y'/3!+y'/5!-. . .

).

= cosy + «siiiy (9);

Exi)(-/» = (l-y/2! + y/4!-. . .)

-.•(y-y'/3!+//5!-. . . ).

= C08y-t8iuy (9'),

by § U.

Fiually, by the addition theorem,

Exp (x + yi)
= Exp (x) Exp (yi),

= e* (cosy + «' sin y) (10).

The Greneral Exponential Function is therefore always expressible

by means of the Elementary Transcendental Functions «*, cosy,

siny, already defined.

Inasmuch as the function Expc possesses all the character-

istics which «* has when z is real, and is identical with «* in all

cases where ^ is already defined, it i.<! usual to employ the nota-

tion e" for Exp;; in all cases. This simply amounts to defining

0* in all cases by means of the equation

0"=l+2 +
~'/2! + s'/3! + . . .,

wliich, a.s we now see, will lead to no contradiction.

§ 19.] Graphic Discuitsion qfthe General Exj)oiieiitial Fiinctitm—
Definition of the General Logarithmic Function. Let w be

defined as a function of z by tiie equation

w = Exp« (1);

and let z=x+ yi, and «> = u + r* = s (cos <^ + « sin
<t>). Then, sine

Exp {x + yi)
= e' (cos y ¥ i sin y), we have

s (cos <^ + » siii<^)
=^ (cosy + 1 sin y) (2).

Hence
3 = e', 4>

= y (3),

where we take the simplest relation between the amplitudes that

will suit our purpose.

Suppose now that in the c-plnne (Fin. 7) wo draw a 8trai),'lit

lino 'i'l'l'^' parallel to the y-uxis, and at a distance x from it.
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Tlieii, if wc t-iiisc z to describe this line, o" will remain coii.staiit, and

therefore tf will remain constant; that is to say, the point w will

describe a circle (A') (Fi^'. 8) whoso radius is tf about the origin

in the M.'-pliine. If we draw parallels to the ^-axis in the z-plane,

at distances O'l' = ir, 0'2' = 3:7 above, and O'l' = ir, 0'2' -
3ir,

. . ., below, then, as y varies from -tt to +7r, s travels from 1'

to r ;
as y varies from + tt to + 3ir, z travels from 1' to 2', and

80 on
;
and each of these pieces of the straight line corresponds

to the circumference of the circle K taken once over. To make

the correspondence clejirer, we may, as heretofore, replace the

repeated circle iT by a spiral sujjposed ultimately to coincide

with it. Then to the infinite nuuibor of pieces, e:ich equal to

2ir, on the line K corresponds an iutinite number of spires of the

spiral A'.

In like manner, to every parallel to the y-axis in tlie r-plane

corresponds a spiral circle in the it'-plane concentric with the

circle A'. To the axis of y itself corresponds the spiral circle

BAOAB of radius unity ;_to
the parallel DO'D to the left of

the y-axis the spiral circle DO'D
;
and so on.

To the whole strip between the infinite parallels Dli and

DB corresponds the whole of the w-'-plane taken once over ;

namely, to the right half of the infinite strip corresponds the

part of the M.--])lane outside the circle BAOAB; to the left

half of the strip the part of the u?-plane inside the circle

BAOAB.
To each such parallel strip of the c-piane correspondB the

whole of the u'-plane taken once over.

Hence the vahies of ic are repeated infinitely often, and we

see that the e<iwition (1) dtfnus w as a continuous periodic

function of z having the jicriod 'Iwi,

Converse/y, the above graphic discmsion shows that the equation

(1) dijirifs z IIS a continuous <x>-jile vahwd fnnrtiim (fw.

Taking the latter view, we might write the equation in the

form

£ = Exp w (1).
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Instead of E.\p"' w we shall, for the most iiart, employ the

more usual notation Logw, tising, however, for the present at

least, a capital letter to distinguish from the one-valued function

logy, which arises from the inversion oi y =
e', when x and y arc

both restricted to be real.

In accordance with the view we are now taking, we may
write (3) in the form

«=logS, 7/=<^.

Hence z = Log w
gives x+yi = Log {s (cos 4> + i sin 4>)],

where x = log s, and y =
4>-

In other words, we have

Log w = \og\w\ + i amp (w) (2') ;

and, if we cause ^ (that is, amp {w)) to vary continuously through
all values between - oo and + oo

, then the left-hand side of the

equation (2') will vary continuously through all values which

Logw can assume for a given value of \w\.

If we confine <^ to lie between -ir and +ir, then Logw
becomes one-valued

;
and we have

Log w =
log s + i<i> (4),

wheres = |w|=,y(«- + ir), andcos<^=M/V('*"+e'), sm(f>=v/J{u'^+v'),
—
ir'^cj>^+ IT.

This is called the principal branch of Log w ;
and we may

denote it by z.

It is obvious from the graphic discussion that, if z, or tLogw
denote the value of Logw in its t-th branch, z being the value in

the principal branch corresponding to the same value of ir (that

is, a value of w whose amplitude differs by an integral multiple

ofiir), then

jLog W = Zt
= Z + 2tTri,

= \ogs + i{4> + 2tTr) (5),

where
<}> is the amplitude (confined between tlie limits — tt and + ir)

ofw, and t is any integer positive or negative.

If V) be a real positive quantity, =u say, then s = \w\ = u,

<l>
^ amp w = Q ;

and we have, for the principal value of Log u,

Log u = log u.
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Iltnice, for real p<mt'tve vulws of tlie nnjument, log u is the

princi'iial value of Lixj u. The other values are of course given

b}i ,Logu = logu + 2tni, t being the order of the branch.

We have also the following jmrticular jiriiicipal values :
—

Lo'^ (
+ i)

= Ui,

Ij'Jg(-t) = -iTt,

Log(-l) = + Tri:

the principal value in the la-st case is not rlotenninato until wo

know the amplitude ;
and the same applies to all purely real

negative arguments.

§ 20.] Definition if Exp aZ. The meaning of a', or, as it ia

sometimes wTitten, Exp aC, has not as yet been defined for values

of 2 which are not real and commensurable.

We now define it to mean E.vp (z . ,Log a), where ,Loga is

the <-th branch of the inverse function Log a, and t may have

any positive or negative integral value including 0.

Thus defined, a' is in general multiple-valued to an infinite

extent. In fiiet, since ,Log a =
log s + « (<^

+ 2<ir), where » = |a|,

and
</>
= amp a (

- tt < <^< + tt), we have, \i z = x + yi,

o^*^" = E.xp [{x + yi) {log s + t
(</.

+
2tir)\],

= Exp [{x log « - (<^ + 2/7r) y] + i\y log s + (/>
+

2/rr) x\],

= exp {.C log S - (<^ + 2t-n) y\. [cos {y logs + (<^+ 2tTr)x\

+ is\n\y\ogs +
{i> + 2tir)x\] (1).

If we put t = 0, that is, take the principal branch of Log a,

in the defining equation, then we get what may be cjilled the

principal branch of o^^"^, namely,

o*^»' = Exp(sLoga),

=
cxp{xlogs-<^y}.[cos{ylog«+<jl>j-}+t.Mn{.vloK»+<^j'}] (2).

The value given in (1) would then bo called the <-th branch,

anil might for distinction he denoted by fi'*"* or by ,Exp ^(j- +y«).

It is important to notice that the ahore definition of a' agrees

vith that already girenftr real commenjturalde ralues ofs provided
we take the corresjMnding branches. In fact, when y = 0, (1) gives

a' = exp (x log s) . [cos (<^ * 2tir) x + i sin (<^ + 2/>r) j-] ;
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that is, if X =plq,

[s (cos <^ + t sin <^)]'"«

= s*" [cos . (<^
+ '2H)plq + i sin .

{<i>
+ 2tTr)p/q] (3) ;

the riglit-hand side of whicli is the ^th branch of the left as

ordinarily defined.

Cor. It /iillowsfrom the above that when x is an incommen-

surable number the function (f has an infinite number of values

even when both a and w are real.

The principal value of a'', however, when both a and x are

real and a is positive, is exp {x log a), which differs infinitely

little from the principal value of a'^', if x be a coiunieusurable

quantity differing Infinitely little from x.

§ 21.] The Addition Theorem for Logz.

By the result of § 19 we have

„Log w, + „Log Wi

= log I
w'l

I

+ log I

ifo
I

+ i amp Wj + i amp w^ + 2 (to + n) nri.

Now (chap. XII., % 15) \wi\\Wi\ = \wiWi\, and, if amp (wi w^)

were not restricted in any way, we should have ampwj + amp Wo

= amp (m,'i W2). Since, however, amp ( Wj w^) is restricted in the

definition of Log ( Wi w^) to lie between - ir and ir, we have

amp Wi + amp w^ = amp {wi w,) + 2pT,

where p = + 1
, 0, or - 1 according as amp Wi + amp w.,> + ir, lies

between +ir and -ir, or <-7r. Hence we have

JjOg Wi + „Log Wj = m+„+pLog (Wi Wa) (1),

where p is as defined.

In like manner, it may be shown that

„Log Wi - Jjog Wi = „_„+pLog (WiM) (2 ),

where p= + l, 0, or -1 according as amp Wj - amp W3>+ ir,

between +ir and —
ir, or <— ir.

1] Taking the definition of a'^'^ given in § 20, and making use

of equation (1) of that paragraph, we have
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tLog K'"^*^ = log I fi'*'^ I

+ (amp k*'*'^ + 'JX-tt) /.

= x\ogs-{<f> + 2tir) y + ly log » + (<^
+ 2tv) a-l « + 2 (i + /) «t,

where / is an integer, positive or negative, chosen so that

-Tr<7/I(>gs + (<^ + 2tTr) X + 2h< + TT.

Hence

iLog ,a'*'^ = (x + yt) {log « + (<^ + 2tw) i\
+ 2 {k + 1) ^ri,

= (x + yi)tLoga + 2{k + l)-iri (3).

Tlie equations (1), (2), (3) are generalisations of formulae for

log;r with which the reader is already familiar.

If we confine each of the multiple-valued functions |Log and

(E.xpa to its principal branch, we have

Loga'+'* = (x + yt')Loga + 2W (3'),

where / is so chosen that

-
Tr<i/\ogs + <t>x + 2lir<+v.

§ 22.] Ej'jKtii.^inii of ,Loij (1 + c) in poirers of z.

Con.sider first the principal branch of the function Log(l + z).

By the definition and di.scus.sion of § 20, we see that, when x is

any real quantity, the princijMil branch of (1 + £f has for its

value Exp {x Log (1 + a)}. Hence we have

(l + cr=l + {j:Log(l + r)} + {xLog(l + c)lV2! + . . .;

and, since the series 1 + 2,C,c" represents the principal branch

of (1 + zY, we have

l + 5,C,;- = l+{./-Log(l + c)} + . . . .

Now all the conditions involved in the reasoning of chap,

xxvm., § 9, will be fulfilled here, provided the complex variable

z be so restricted that
|
c |< 1.

Hence, if |i:|<l, we must have, as before,

Log(l + s)
= £-r'/2 + s'/3-2'/4 + . . . (1).

In other words, so long as\z\<\, the series z - z'Ji + c'/S
-

, . .

reprtseuts the principal branch of Exp''^ (1 +s)-

Cor, aince ,Log (! + £)
= Log (1 + r) • 2<>ri, \re havs

.Log (1 + ;)
= 2tni + s - s=/2 + z'13

-
;'/•» + • • • (-').
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wliicli gives us an expausiou lor tlio t-th branch of Exp~' (1 +2}
within the region of the «-plane for which

|

s
1

< 1.

It follows readily, from the principles of chap, xxvi., § 9, that

when
I

»
I

= 1 the series z - z-/2 + s^/3
- ... is convergent, pro-

vided amps=t=±7r (other odd multiples of tt are not in question

here). Hence, Ijy the theorem of Abel so often quoted already,

the expanssion-formuUe (1) and (2) will still hold when |s|
=

l,

provided amp s =t= + tt.

GENERALISATION OF THE CIRCULAR FUNCTIONS—INTRO-

DUCTION OF THE HYPERBOLIC FUNCTIONS.

§ 23.] General definition of Cosz, Sinz, Tcmz, Cotz, Secz,

Cosecz. Since the series l-2?/2! + 2^/4! -. . ., z-s^/3\+s^/5\
—

. . . are convergent for all values of z having a finite modulus,

however large, they are each single-valued continuous functions

of z throughout the s-plane. Let us call the functions thus

defined Cosz and Sins, using capital initial letters, for the pre-

sent, to distinguish from the geometrically defined real functions

cos X and sin x. We thus have

Coss=l-«=/2!+£V4!-. . . (1),

Sin c = 5-2^/3! +;j=/5!-. . . (2).

We also define Tans, Cot 2, Secz, Cosec« by the following

equations :
—
Tans = Sinc;/Coss; Cot s = Cos c/Sin c ;1

Secs=l/Coss; Cosec s = 1/Sin s. J
^''•

In tlie first place, we observe that when z is real, =x say,

we have, by § 14,

Cos .2; = 1 - a-/2! + .r*/4!
-

. . .
= cos a*,

Sin a; = a; — .r73! + a;^/5!
—

. . .=sinir;

so that, when the argument is real, the more general functions

Cos., Sin., Tan., Cot., Sec, Cosec. coincide with the functions

COS., .sin., tan., cot., sec, cosec. already geometrically defined

for real values of the argument.
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(«)*

Since

l-s'/2! + ;V4!-. . . =
^iExp(u)

+ Exp(-ic)},

s-c'/3! + z'/5!-. . .
= i

i Exp (li)- Exp (-»•--)},

it follows from (1) and (2) that we havefor all valiu\'< of x

Co3s =
^lExp(/s)

+ Exp(-tz)},

Sin^ = i {Exp (L-)- Exp (-/--)};

with corrpsponcling expressions fur T;inc, Cots, Sees, and

Cosec z.

By (4) we have

Cos'a + Sin'a

=
i [{Exp (/r)}' + {Ex-p (

-
ic)}» + 2 Exp (t.-) Exp (

-
is)

-
{Exp (/c);'

-
{Exp (

-
u-)}' + 2 Exp (/.-) Exp (

-
iz)\.

Hence, beariiij,' iu mind that \n\ have, by the exponential

addition theorem,

Exp {%£) Exp (
-

\z)
=

I]xp (ts
-

tc)
= Exp 0=1,

we see that

Cos'« + Siu'2=l (5).

from which we deduce at once, for the generalised functions, all

the algebraical relations which were formerly est^iblishcd for the

circuliir functions properly so called.

We also see, from (4), that Cos (-c) = Cose and Sin(-e)
= -Sin2:; that is to say, Co8£ is an even, and Sin 2 an odd

function of z.

Since, by (4), we have

Cos z + i Sin z = Exji (/;),

Cos z-i Sin z = Exp (
—

iz),

' Tbeso fiirmulm were first RiTcn by Kuler. Sec Int. in Anal. Inf., t. L,

% 13S. Ho Kiivi'. hnwi'ViT, no fnilTicipnt jiiHtifloalion for lliuir iiiia);p, ri'uliiig

uiorcly on a buM aimlu).'y, as Ucrnoiilli ni»l Dfinoivrc IiikI iluau biTure liim.
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it follows from the exponential addition theorem, namely,

Exp (?S] + iSj)
= Exp {Iz^ Exp (jc,),

that

Cos («i + 2^) + i Sin (si + So)
= (Cos Sj + i Sin 2i) (Cos ^j + i Sin zi)

= (Cos 2, Cos «2
- Sin 5j Sin Sj) + i (Sin ^i Cos Cj + Cos z^ Sin c,)*.

Hence, changing the signs of «i and z,, and remembering that

Cos. is even and Sin. odd, we have

Cos {zi + Cj)
- i Sin (zi + j-,)

= (Cos s, Cos «2
- Sin Ci Sin z.^

— i (Sin Si Cos S3 + Cos Zi Sin s^a)-

Therefore, by addition and subtraction, we deduce

Cos («i + S2)
= Cos Si Cos z^i

- Sin «i Sin Co O , ,

Sin(si+2:2)
= SiusiCoss2 + Cos~iSins2.J

^ '*

In other words, the addition theorem for Cos. and Sin. in

general is identical with that for cos. and sin.

By (6) we have

Cos (z + 2?i7r)
= Cos z Cos 2mr - Sin z Sin 2ii-!r,

that is, if n be any positive or negative integer, so that

Cos 2mr = cos 2iiir = 1, and Sin 2mr = sin 2mr = 0, then

Cos (z + 2mr) = Cos z.

In iilie manner, Sin (s + 2mr) = Sin s
;
Tan {z + mr) = Tan z

; &c.

That is to say, the Generalised Circular Functions have tlie same
real periods as the Circular Functions proper.

Just in the same way, we can establish all the relations for
half and quarter periods given in equatiojis (3) of § 2. Thus, for

example,
Cos {ir + z)

= Cos TT Cos z - Sin tt Sin z,

= cos TT Cos z — sin ir Sin z,

= - Cos z.

Also all the equations (5), (6), (7) of ^ 2 will hold for the

generalised functions ;
for they are merely deductions from the

addition theorem.

* We cannot here equate the coefBcient of i, Ac, on both sides, because

Siu(i, + j.j), Ac, are no longer necessarily real.
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§ '-'1.]
We proct'ed next to discuss brielly tlie variation of

the generalised circular functions.

Consider first the case where the argunient is wholly

iniaginiiry, say z =
li/. In this case we have

<^'"s ('» =
2

!''^P (''!/) + ^^<^- »"'»}.

^lie-'-^-e*)
(1):

=
I («»-«-») (2).

We are thus naturally led to introduce and discuss two new

functions, namely, hie' + «"') and J (e* - e""), which are called

the Hyi)erbolic Cosine and the Ilj'porboiic Sine. The.se functions

are usu.ally denoted by cosh// and siiiliy ; so that, for real values

of y, coshy and sinhy arc delined by the equations

cosh y = J (e* + e""), sinhy = J(e»-e"'') (3).

In general, when y is complex, we define the more general

functions Cosh z and Sinh z by the equations

Coshc=i{E.xp(5) + Exp(-c)(,

Sinh 2 = i{E.xp(c)-I-:.xp (-.-)), (3').

We also introduce tanhy, cothy, sechy, and co.sechy by the

definitions

tauh y =
sinhy/cosh y, coth y = cosh y/sinh y ;

scch y = 1/cosh y, coscch y = 1/sinh y ;

and the more general fmutions Tanh z, Coth z, &c, in precisely

the same way.

From the equations (1) and (2) we have

Co8(iy)
= co.sh y. Sin (»y)

= i sinh y ;
1

Tan (iy)
= « tanhy. Cot (M/) = -«cotliy ;

> (1),

Sec (/y)
= scch y, Cosec (ly)

= - « coscch y ;J

and, of course, in general, Cos iz = Cosh z, &c.

J
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The discussion of tlie variatioti of the circular functions for

purely imagiuary argumeuts reduces, therefore, to the discussion

of the hyi)erbolic functions for purely resd arguments.

§ 25.] Variation of the IIi/j>erMic Functions/or real argu-

ments. The graphs of y = coshx, y = 8inha:, &c., axe given in

Fig. 9 as follows :
—

co.shar, CO; siuhar, SOS;

cothar, T'TTT; tanhar, TTOTT;
scchar, G'C; cosecha-, S'S'S'S'.

By studying these curv-cs the reader will at once see the tnith

of the following remarks regarding the direct and inverse hyper-

bolic functions of a real argument.

(1) cosh a; is an even function of x, having two positive

infinite values corre.sponding to x = ±<a, no zero value, and a

minimum value 1 corresponding to a: = 0.

cosh"'^ is a two-valued function of y, defined for the con-

tinuum 11i>i/^oo, having a zero value corresponding to y=l,
and infinite values corresponding to j/

= oc
,
but no turning value.

(2) sinh a; is an odd function of x, having a zero value when

x = 0, and positive and negative infinite values when ar= + oo aud

x = - (x> respectively.

8inh~'y is one-valued, aud defined for all values of y ;
it has

a zero value for y =
0, and positive and negative infinite values

when y = + 00 and y = - oo respectively.

(3) tanha; is an odd fiinction, has a zero value for x = 0,

positive maximum + 1, and negative minimum -
1, corresponding

to ar= + « and x = - as respectively.

tanh"'y is a one-valued odd function, defined for -1 ;^y5» + 1
;

has zero value for y = 0, positive and negative infinite values

corre.sponding to y = +l aud y = -l.

(4) cotha: is an odd function, having no zero value, but an

infinite value for x = 0, and minimum + 1, and maximum -
1, for

a;= + 00 and a: = - oo respectively.

coth~'y is a one-valued odd function, defined, except for the

continuum -\^;/^-^\, havini; ))nRitivo and negative infinite

values corresponding to y=+l uud y--l respectively, and

a zero value fur y - oo .
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(5) sech X is an even function, having a maximum + 1 for

a; = 0, and a zero value for x ^± x.

sech'^}/ is a two-valued function, defined for 04>J'^1, having

a zero value for y=l, and infinite values for y = 0.

(6) cosech a: is an odd function, having zero values for

x = ±co ,
and an infinite value for x = 0.

cosech"'y is one-valued and defined for all values of
jr, haviug

zero values for
3/
= + qo

, and infinite values for y = 0.

§ 26.] Logarithmic expressions for cosh'^y, sinh~'y, ttc.

If X = cosh~'y, we have

^ = cosh a; = J («*-!- 6"^) (1).

Therefore

±v/(y-l) = H'''^-e-^) (2).

From (1) and (2),

e'=y±J{ir-i)-
Hence

x = \oz{y±^(y--\)];
that is, cosh-'3^

= '^og\y±J{f-\)} (3),

the upper sign corresponding to the positive or principal branch

of cosh"'?/, the lower sign to the negative brauch.

In like manner we can show that

siDhr^y
=
log {y + J{f + 1)} (4) ;

tanh-'y = ilog{(l + 7/)/(l-3/)} (5);

coth-'3/
= ilog{(y+l)/(y-l)} (6);

sech-'y = log[{l±V(l-r)}/2/] (7);

cosech-'^^
=
log [{1 -I- V(l + f)\jy] (.s).

§ 27.] Properties of the General Hyperbolic Functions ana-

logmts to those of the Circular Functions.

We have already seen that the properties of the circular

functions, both for real and for complex values of the argument,

might be deduced from the equations of Euler, namely,

Cos2=2 ^^•''P (
+ *^) + E^p (-'*)};

Sin;: = l{Exp(-^^^)-Exp(-L-)}

(A).

In like manner, the properties of the general hyperbolic

functions spring from the defining equations
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(B).
Coshc^JiE.xi.(+c) + Exp(-c)}n
Sinh s = A {Exp (

+ c)
- Exp {-z)\ )

Wo should tliercforo exi)ect a close analogy between the

functional relations in the two cases. In what follows we state

those properties of the hyperbolic functions which are analogous

to the projwrtics of the circular functions tabulated in § 2. The
demonstrations are for the most part omitteil ; they all depend
on the use of the equatifms (B), combined with the properties of

the general cxjwnential function, already fiilly discussed.

The demonstrations might also be made to dejiend on the

relations connecting the general circular functions with the

general hj'perbolic functions given in § 24*, namely,

Cosh z = Cos iz, I Sinh z = Sin iz
;

+ 1 Tauh z = Tan iz,
- i Coth z = Cot iz

;

Sech c = Sec iz,
- i Cosech z = Cosec iz ;

(C).

(1).

Algebraic Relations.

Cosh' z - Sinh' z = \, Scch' z + Tanh' z = 1

&c.

Pcriodicifi/.
—All the hjqjerbolic functions have the period

25r»
;
and Tanh z and Coth z have the smaller period jti.

Thus
Cosh (s + 2iivi)

- Cosh z; &c.\
Tanh {z + mri) = Tanh z ; &.c.)

Also,

Cosh (tt/ ±z) = - Co.sh z, Sinh (W ±z) = + Sinh z
;

Cosh (4ir/ ± s) ^ ± » Sinh z, Sinh {Wi ±z) = i Cosh z
;

Tanh (^w ± s)
= ± Coth z, Coth (JW ± c) = ± Tanh z

;

Addition FormuUr.

Cosh (;,
+ ;,)

- Cosh c, Cosh Cj ± Sinh c, Sinh r, ;

Sinh (s, + c,)
= Sinh c, Coshc,+ C<)shi, Sinh c, ;

Tanh (j, ± .-,)
= (Tauh z, ± Tanh i,)/(l ± Tanh c, Tanh r,).

('-').

(3).

(5).

* This connection furiiUboa the umplost memoria technica for the bjpor-

bolic foriuuln.

(

I
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Cosh z, + Cosh 23 = 2 Cosh I (z, + z,) Cosh J (z,
-

c,) ;

Cosli z,
- Cosh s. = 2 Sinh i («r. + -,) Siuh J (^^

-
z.) ;

Sinh «, ± Sinh ^^ = 2 Sinh ^ (s, ± z^) Cosh J (z, + c,)-

305

(G).

Cosli z, Cosh ^2 = i Cosh (z, + Z2) + h Cosh (r,
-

;r„) ;"

Siiili S-, Sinh z,= i Cosh (cj + «o)
- i Cosh

(cr,
-

c.) ;

Siuh ;. Cosh 2„ = 1 Sinli (s, + So) + J Siiih (s,
-

c,). .

Cosh 2z = Coslr z + SiiJr a = 2 Cosh' z-1,
^^

= 1+2 Siuh- « = (1 + Tanh= c)/(l
- Tanli" c).

Siuh 2- = 2 Siuh z Cosh z = 2 Tanh ^/(l
- T;iuh' z).

Tanh 2^ = 2 Tanh «/(l + Tanh=«).

(T).

(S).

Inverse Functions.—Regarding the inverse functions Cosh-^
Sinh~\ &c., it is sufiicient to remark that we can always express
them by means of the functions Cos"', Sin"', &c. Thus, for

example, if we have Cosh~^a = iv, say, then

z = Cosh w = Cos iw.

Hence iw = Cos~'^z;

that is, w = -« Cost's.

So that Cosh-'s = - i Cos-'c
;

and so on.

In the practical use of such formula;, however, we must
attend to the multiple-valuedness of Cosh"' and Cos"'. If, for

example, in the above equation, the two branches are taken at

random in the two inverse functions, then the equation will take
the form

Cosh->s = 27nTri ± i Qos-'^z,

where m is some positive or negative integer, whose value and
the choice of sign in the ambiguity ± both depend on circum-

stances.

§ 28.] FormulcB for the Ihjperholic Functions analogous to

Denutivre's Them-em and its consequences.
We have at once, from the definition of Cosli s and Sinh 2,

c. 11. 20
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Cosli (c, + r, + . . . + Zn)± Sinli (;, + c, + . . . + r,)

=
I'-xp ±(z,+z,+ . . . + :,),

= ILxp + z, Exp + 2i . . Exp + r„
= (Cosh Zi ± Sinh z,) (Cosli s, + Sinh i-j)

. . . (Cosh r, ± Sinh c„) (A);

and, in particular, if n be any positive integer,

Cosh fiz ± Sinh nz = (Cosh z ± Sinh z)' (B).

Tliese correspond to tlie Denioivre-formulae, with which the

reader is already i'aniiiiar*.

We can deihice from (A) and (B) a series of formnl.T fur the

hyperbolic functions analo^'ous to those established in § 12 for

the circular functions.

Thus, in particular, we have

Cosh (c, + c, + ...+-.) = /'. + P,_. + /^.. + . . . (1'),

where Pr = 2 Cosh Si Cosh r, . . , Cosh «r Sinh Jr+, . . . Sinhc,.

Tanh(c, + «, + . . . + c„)

= (7',+ 7',+ 7', + . . .)/(! + 7", + 7'. + . . .) (.r).

where 7; = 5 Tanh c, Tanh :, . . . Tanli c^.

Cosh nz = Cosh"s + ,Cj Cosh"-";: Sinli^c

+ ,C4Cosh"-«cSinh*r + . . . (»').

Sinh nz = ,(7, Cosh-'* Sinh z + ,C, Cosh"-'c Sinh' z

+ ,C.Cosh"-'sSinh''r + . . . (5').

Cosh nz = {- )-«
{l
-

2'
cosh' z + "'("'-^')

cosli* :-. . .

(-)•—i

(2«)!

^'co8h-z + . .

.j
(9),

(n even) ;

• As ft mutter of liistory, Dcmolvre first fonnd (B) in the form

V = i[l/\'{v'(l + «")-''}-'J'{\/(l+0-«'}]. "''"''o y '» ">» ordinate of l> in

I'ig. 10 bcluw, aiiil v the orclinnto of y, y corrvBjwndinK to a vector OQ nuch

tliat the nrca AOQ in n times AOV, and OX is taken to be 1. He then

deduced the corienjiondinK formula for the circle l>y an imagiiury traoi-

formaliuu. (Sue il'ucMaxuiX Aitiili/tica, Lib. 11., cup. 1.)
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Smbn5/siuhc =
(-)i''-=)^|jicosli;;-'-?-^:'^f^cosli^i;

+ . . .

(« even) ;

and so on.

We may also deduce formulie analogous to those of § 13,

such as

Smh''"+'z =
^{sinh(2;«

+ l);;-^+,(7,sinh(2;«-l)a + . . .

{-)'"5™+iC'„sinhs}.

§ 29.] Fundamental Inequality and Limit Thmrems for the

Hyperbolic Functions of a real argument.

Ifube any positive real quantity, then

tanhM<M<siiihtt<cosha (1).

By the definitions of § 24 we have

sinh u = \ {exp (m)
-
exp (

-
m)} ;

= m + mV3! + mV5! + . . . (2);

cosh«=l+MV2! + MV4! + , . , (3);

whence it appears at once that sinha>2<.

Again, cosh?t = +;^(l+sinh=M), so that cosh m> sinh w.

Finally, since

tanh u = sinh m/cos1i m

= «(l+M-/3! + ?*V5! + . . .)/(1+m72! + mV4!. . .),

and mV3!<m72!, mV5!<mV4!, &c.,

we see that tanhw<M.

Cor. When u = 0, L sinh u/u = l, and L tanh n/u = 1. This

may either be deduced from (1) or established directly by means
of the series (2) and (3).

If a be a quantity which is either finite and independent of n
or eke has a finite limit when n = oo

, t/ien, when « = oo ,

20—2
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We have

Hence, if wc put 1 +6-'""=^ 2 -2c, so that 2 = coirpsiinmU
to n = oo, then we have

L ('cosh-y = f- L {(1 -;)-'••}
-WorP-*!

n=oo\ «/ t-0

Now, L {I -£)-"• = €, and i2;/log (1
-
2j) = - 1. Hence, by

chap. XXV., § 13,

,(co.sh;;)'
= <^e"

We leave the demonstration of the second limit as an exer-

cise for the reader. The third is obviously dcducible from the

other two.

A very simple proof of these theorems may also be obtained

by using the convergent series for cosh . a/n and sinh . a/n.

§ 30.] GeometriailA nalogies between t/w Circular and I/ifjter-

bolic Functions.

If 6 be continiiously varied from —ir to +ff, and we connect

X and y with by tlie equations

a; = acos^, y = osinfl (1),

then we have

a^ + if
= a^{cm*6 + sWe)=a' (2).

Hence, if (r, y) bo the co-ordinates of a point P, as 6 varies con-

tinuously from — IT to + TT, P will describe continuously the

circle A'AA" (of radius a) in tlie direction indieated by the

arrow-heads (Fig. 10).

Let P be the point corresponding to 6
;
and let denote the

area AOP, to be taken with the sign + or —
according as ^ is

positive or negative. Then is obviously a function of 0. Wo
can determine the form of this function as follows :

—
Divide 6 into n equal parts, and let /•, , f,, . . ., Pr, . /'

be the points corresponding to 6/n, 20/)i, . . ., rO/n, . . . nO/n

respectively. Then we have, by the lemmas of Newton,

Area ^10/^" L ^'i'^ PrOPr^i.
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Fio. 10.

Now

PrOPr^,

= OMr^, P,+, + i)/.« P,« PrMr - OMrPr.

= h {^r+l^r+l + (]/r+l
+

I/r) {^r
-

^r+i)
-

^r^^r},

=
^tt' {cos . r9/n siu . (r + l)0/>i,

- sin . rO/n cos . (r + l)9/u],

= ia''sin. d/n.

Hence

=
|a' Ln sin . 6/«,

=
^''9i(siii.e/n)/(0/n),

=W^- (3).

Hence, i{ =
2@/a^, we have cos6 = x/a, s\n6 = j/la, t3,n0=i//x,

cot 6 =
ic/y, &c.

let

Thou

Next, let u be continuously varied from - « to + oo
;
and

x = a cosh a, y = o sinh ?/ (1').

x'-if =0' (cosh^ u
- sinh" u)

= a' (2').

i
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Hciico, if (x, y) be the co-ordinates of 1\ jis «• varies con-

tinuously from — CO to +Q0, P will describe continuously the

right-baud brauch A'AA" of the rectangular hyperbola, whose

Fio. IL

Bemi-ftxis-major is OA-a, in the direction indicated by the

arrow-heads in Fig. 11.

If f be the point corresponding to u, 7',, /%+, the points

corresponding to ru/n and {r-*-\)u/?i, and f^ the area AOP
agreeing in sign with u, tlien, exactly as before,

*
Adopting an axtrononiioal term, ire may oall u the hTperbolio exoentrio

anomaly of P. The quitiitity u lOayg in the theory of iho hyp<>rl>ola, in

general, tlio saiiiu |iart an Uio cxccutrio angle in the theory of the ellipae.
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r=n— 1

U=^r L 2 (.rr^r+l-irr+iy,);
n = «j r=0

= a" {cosli . ru/n siuh . (r + 1) «/»
- sinh . ru/n cosh . (r + 1 ) »/"}.

= a' sinli . u/n.

Therefore ^= I "^^-^^ si"h • «/".

= \a-uL (sinh . u/n)/{ti/n),

= ia-u, by §29, (3').

Hence, if the area AOP=U, and u = 2U/a-, then, a- and

^ being the co-ordiuates of P, we might give the following

geometric definitions of cosh u, sinh u, &c. :
—

coshM = a;/a, smh.u = 2//a,

tanh M = Tf/x, coth M = x/^, & c.

It will now be apparent that the hyperbolic functions are

connected in the same way with one half of a rectangular

hyperbola, as the circular functions are with the circle. It is

from this relation that they get their name.

We know, from elementary geometrical considerations, that the area 6 is

the product of Ja- into the number of radians in the angle AOP. It there-

fore follows from (3) that the variable $ introduced above is simply the

number of radians in the angle AUP. Our demonstration did not, however,

rest upon this fact, but merely on the functional equation cos- fl + sin- 9= 1.

This is an interesting point, because it shows us that we might have intro-

duced the functions cos 9 and sin 9 by the definitions co» fl= J {Exp (i9)

•hExp(-i9)}, Bine=
^. {Exp(ie)-Exp(-ie)};

and then, by means of the

above reasoning, have deduced the property which is made the basis for their

geometrical definition. When this point of view is taken, the theory of the

circular and hyperbolic functions attains great analytical symmetry ;
for it

becomes merely a branch of the general theory of the exponential function as

defined in § 18.

When we attempt to get for u a connection with the arc A I', like that

which subsists in the case of the circle, the parallel ceases to run on the same

elementary line. To understand its nature in this respect we must resort to

the theory of Elliptic Integrals.

§ 31.] E.rpression of Meal Hyperbolic Punctioim in terms oj

Real Circular Functions.
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Since the rnnjje nf the variiition of cosh » when « varies from

- 00 to +00 is tl>e saiiio as the range of sec 6 when varies

from -
JjT to + jTT, it follows that, if we restrict and u to have

the same sign, there is always one and only one value of u

between - « and + oo and of between -\v and + ja- such that

cosh u = sec tf (1).

If wo determine in this way, wo have

sinh « = ± ^(cosh' « - I),

= ±^/(sec'^-l);

hence, bearing in mind the understanding as to sign, we have

sinh u = tan 6 (2).

From these we deduce

e' = cosh tt + sinh u,

= sec ^ + tan 6
;

u = log (sec + tan 6),

= logtan(j7r + i(9) (3).

Also, as may be easily verified,

tanhitt = tanlfl (4).

When 6 is connected with « by any of the fotir equivaii^nt

equations just given, it is called the GuJn-mannian* of u, and we

write ^ = gd M.

* This name was invented by Cnyley in honour of the Ocrman mathe-

matician Gnderniann (179^-1852), to whom the introduction of the hyperbolic

functions into modern analytical practice ia largely due. The origin of the

functions goes back to Mercator's discovery of the logarithmic quadrature of

the hyperbola, and Dcmoivre'e deduction therefrom (sec p. 30G). According
to Houel, F. C. Mayer, a contemporary of Demoivre's, was the first to give

shape to the analogy between the hyperbolic and the circular functions. The
Dotation co.^h. sinh. seems to be a contraction of coshyp. and sinhyp., pro-

posed by Lambert, who worked out the hyperbolic trigonometry in consider-

able detail, and gave a short numerical table. Many of the hyperbolic

fiirmuliD were indopondcntly deduced by William Wallace (Professor of

Mathematics in Edinburgh from IHIO to 1838) from the geomotriral pro-

perties of the rectangular hyperbola, in a little-known memoir entitled S'eit

Serif for the Quadrature of Conic Section* and the Computation of Lojarithmt

(Trnnj. li.S.E., vol. vi., 1812). For further historical information, iie«

Oiintlier, Die Lehre i^on den j/cirii'iri/iV/K-n und verallgrmcinerlen Hyprrbel-

funktioncn (Halle, 1881) ; also, Heitrfigetur GetchichU der S'eueren Malltematik

{Programnuchri/t, Anabach, 1881).
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It is easy to give a geometrical form to the relation between $ and u. If,

in Fig. 11, a circle be described about with a as radius, and from M a

tangent be drawn to touch this circle in Q (above or below OX according as u
is positive or negative), then, since 3IQ-=0^P- 0Q-= 3i^-a"=y-, we have

Beoshu=a;=asec QOlf. Therefore QOAf=S, and we have
j/
= J[/Q = atan9.

From this relation many interesting geometrical results arise which it would

be out of place to pursue here. We may refer the reader who desires further

information regarding this and other parts of the theory of the hyperbolic

{unctions to the following authorities:—Greenhill, Differential and Integral

Calculus (Macmillan, 1886), and also an important tract entitled A Chapter
in the Integral Calculus (Hodgson, Loudon, I88S); Laisant, "Essai sur leg

Fonctions hyperboUques," il^m. de la Soc. Pltys. et Nat. de Bordeaux, 1875 ;

Heis, Die Uyperbolischen Functionen (Halle, 1875). Tables of the functions

have been calculated by Gudermann, Theorie der Potential- oder Cyclisch-

hyperbolischen Functionen (Berlin, 1833); and by Gronau (Dautzig, 1863).

See also Cayley, Quarterly Journal of Muthematics, vol. xx. ; aud Glaisher,

Art. Tables, Encyclopcedia Britannica, 9th Ed.

Exercises XVII.

(1.) Write down the values of the six hyperbolic functions corresponding
to the arguments Atti, vi, ^ri.

Draw the graphs of the following, x and y being real :
—

(2.) y= sinhxlx. (3.) y = xcothx.

(4.) t/
= gdi. (5.) !/

= 6inh-i{l/(.r-l)}.

(6.) Express Sinh~'z, Tanh-^z, Sech"'2, Cosech~'z, by means of Sin-'z,

Cos~'z, &c.

(7.) Show that cosh'u-sinh'u=l + 3sinh'uoo8h'u.

(8.)
Show that

4 cosh'u - 3 cosh u — cosh 3u= ;

4 sinh'u+ 3 sinh u- sinh 3u=0.

(9.) Show that any cubic equation which has only one real root can be

numerically solved by means of the equations of last exercise. In particular,

show that the roots of x!'-qx-r= are ;^(7/3) cosh u, 2J{ql'S)(cos^Tr
cosh II ±i sin jTTSinh u), u being determined by cosh 3u= 3r,^S/2^/(;'.

(10.) Solve by the method of last exercise the equation a^+ 6a + 7= 0.

Express

(11.) tanh"'x + tanh-'!/ in the form tanh~'2.

(12.) cosh-' X + cosh"' ?/ in the form cosh^'z.

(13.) sinh-'i-Binh-'?/ in the form cosh-'z.

Expand in a serios of hyperbolic sines or cosines of multiples of u :
—

(U.) Cosh'i'u. (15.) sinh'u. (16.) cosh»uBinh»u.
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Expnnd in a serica of powers of bjrpcrbolio sines or ooaincs of u:—
(17.) CoshlOu. (18.) siiihTu.

(19.) cosh Cu siiih 3u. (20.) siub mu cosli nu.

Establish the following identities :—
(21. ) tanh J (u + 1')

- tanh J (u
-

r) = 2 sinh t7/(co6h u + cosh v).

,-- . 8inh(u-r) + sinhu + sinh(« + r) , .

(22.) , ,

'

, .;
' = tanhu.' ' cosh (u

- r)+ cosh « + cosh (u + r)

(23.) tanh u + tanh (J»-i + u) + tanh(3ri + u) = 3tanh 3«,

cosh 2u + cosh 2i' + cosh 2ui + cosh 2 (u + r + ir)
= 411 cosh (p + »).

(24.) Tan Hu+ iv)
= (sin u -{- i siuh p)/(cos u + cosh r).

(25. ) Express Cosh* (u+ ii') + Sinb* (»+ iv) in terms of functions of u and p.

Eliminate u and v from the following eqauliuns:—

(20.) x= aeosh (u + \), y = b anh (u + ft).

(27.) y cosh u-XBiiihu:=a cosh 2u,

y sinh u -t- z cosh u= a sitih 2u.

(28.) X = tanh u + tanh r, y= coth u 4- coth r , u-t-r^e.

(29.) Expand sinh(u + A) in powers o( h.

(30.) Expand tanh-'i in powers of x; and deduce the expansions of

cosh-'x and Binh"'x. Discuss the limits within which your expansions ar«

alid.

(31.) Given 8inhu/u= 1001/1000, calculate u.

" 1 /x'''*~'-l\
^

(32.) Show that the series S ^j ( —
j

is conrergcnt, and that ita

sum is (xi+l)/(x>-l)-l/logx (Wallace, I.e.).

(33.) Prove that the infinite product cosh
,r|

cosh ^ cosh
,tj

• • . > oon-

vergent, and tliat its value is sinh u/u.

(34.) Show that

«-x-» 3 3 _
(Wallace, Le.)

I
» — * - • « * ,

from 1/log X (in defect) by less than

{1 + 1 (x'/'"*' + x-"'*^')}/3. 4»+'P,.

Evaluate the following limits:—
(30.) (sinhx-Einx)/x>, x=0.

(87.) (sinh' mx- sinh' nz)/(eosb;>T- cosh 9x), x=0,

(88.) (tan' x - Unh' x)/(cos x - oush x) , x= 0.

d
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Show that, when /i=0,

(39.) L {cosh a (x + /')
- cosh n.T}/A

= a sinh ax,

(40.) L {smYi a (x + h)
- sinh rjx}/ft

= acosh<(j;.

(41.) L {tanh a(x + h)- tanli ttx\jh=a sech- ax.

(42.) L {cotho (x + ft)
- coth ax)lh= - acoBech'o*.

(43.) Show that

1 -2-«
'=°''''

2^
= """^ " - -

.jl.

'""'^
2^'

•

1 " 1 «- = coth u-S^i tanh— ,u 1 2" 2"
'

and state the corresponding formuls for the circular functions (Wallace,

Trans. R.S.E., vol. ti.).

(44.) From the formulie of last exercise, derive, by the process of chap.

XXVII., § 2, the following :
—

2S
coth'-^

|„=coth»u-
2

.-jj-„ tanh^-|i
,

i,=coth«u-sist''nt'|.

(Wallace, I.e.)

In the following, is the centre of the hyperbola x-/n^
-

2/-/ft"
= 1

; A one

of its vertices ; F the corresponding focus ;
F and F' any two points on the

curve, whose excentric anomalies are u and ii, and whose co-ordinates are

(x, y){^, y), so that s = acosh«, y = b siahu, &a. ; and iV is the projection

of P on the axis a. Show that

(15.) Area JWP=Ja6(sinh2u-2u).

(46.) Area of the right segment out off by the double ordinate of 1'

= -xJ(x-- a-) -ab cosh"' -
,

a a

= -xJix^-a^)-ab\oB—2L! '.

,

a a

(47.) Area of the segment cut off by PP'=Ja6{sinh(u'-ii) -(u'-u)}.

Express this in terms of x, y, x', y'.

(48.) If 7i be the middle point of PF', and Oil meet the hyperbola in S,

the co-ordinates of S are {a cosh J (ii + u'), 6 sinh J (u + u')}.

(49.) OS bisects the hyperbolic area POP'.

(50.) If PP" move parallel to itself, the locus of ji is a straight line passing

through 0.

(51.) If PP" cut ul! a segmuut of couslaut area, the locus of ii is a

hyperbola.
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GRAPHICAL DISCUasiON OF TlIK GKNKHALISED CIRCULAR

FUNCTION'S.

§ 32.] Let U8 now consider the gciienil functional (Miuation

w = Cos z, or, as wo may write it,

u + it> = Cos (a; + yi) (1),

wliore M, V, X, y arc till real.

Since (,'os {x + yi)
= Cos x Cos yi

- Sin x Sin »/«'
= cos x cosh y

-

i sin X sinh y, we have

« = cos .T cosh y, t) = -sina;8iuhy (2);

and therefore , ,

M7cos'a;-«'/8in'a:=l (3),

u'/cosh'y + cV.siuh''y
= 1 (4).
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of a hi-perbola in the w-plaue {Vig. 13), having its foci at the

fixed points i<'and G, which are such that 0F= 0G= 1. Thus,
for example, if in the s-plane FP =

\Tr and FQ =
f tt, then to the

parallels LFL, iVQi\' coiTespoud the two halves LFL, N(^N oi

a hyperbola whose transverse axis is PQ = J2.
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To the parallel MAM, wliich bisects the strip, correspoiKk
the axis of v (which may be regarded as that hyperbola of the

confocal system wliich has its transverse axis equal to 0) ;
and

to the parallels KFK -AmX UGU, which bound the strip, corre-

spond the parts KFK and UGtJ oi the u-axis, each regarded as

a double line (flat hyperbola).

Aj,'ain, if we draw parallels to the a"-axis across the strip, to

each of these will correspond one of the halves of an ellipse

belonging to a confocal system having /"""and G for common foci.

Thus to BllDHC and BIIDHC equidistant from the x-axis corre-

spond the two halves BKDSG and BIIDSC of the same ellipse

whose semi-axes are coshj/ and sinhy. In particular, to FPAQG
on the X-axis itself corresponds the double line (Hat ellipse)

FPAQG. _
Thus, to the whole of the first parallel strip between KOK

and UU corresponds uniquely the whole of the ir-plane. Hence,

if we confine ourselves to this strip, (1) defines w and z each as

a continuous one-valued function of the other. To each succeed-

ing or preceding strip corresponds the w-plane again taken once

over, alternately one way or the opposite, as indicated by the

lettering in Fig. 12. w is therefore a periodic function of s,

having the real period 2n-
;
and s is a multiple-valued function

of w of infinite multiplicity, having two branches for each period

of w.

The value of s corresponding to the first strip on the right

of the ji/-axis is called the principal branch of Cos"' w, and the

others are numbered as usual. We therefore have for the /-th

branch

,C08-'fC = S, = (t + i+(-)'-'i)ir + (-)'(;03-=M> (5),

where Cos"' w is the principal value aa heretofore
; and Cos"' w

= x + i/i, X and y being determined by (3) and (4), when u and ti

are given.

It should be noticed tli.it for the .same branch of : there is

continuity from H to li not directly across the M-axis, but only

by the route BFB; whereas there is continuity from li to Ti
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directly, if we pass from one branch to the next. This may be

represented to the eye by slitting the w-axis from i^ to + oo and

from G to -co, as indicated in Fig. 13. If we were to con-

struct a Kiemann's surface for the w-plane, so as to secure unique

correspondence between every tt'-poLnt and its z-point, then the

junctions of the leaves of this surface would be along these slits.

The reader will find no dilhculty in constructing the model.

Since to the line KFPAQGU (the whole of the w-axis) corre-

sponds in the 3;-plane the three lines KF, FPA QG, GU taken

in succession, we see that as w varies first from + oo to 1, then

from 1 to —
1, and finally from — 1 to - <»

,
Cos~^ w varies first

from CO i to 0, then from to jt, and finally from tt to tt + oo «
;

so that an angle whose cosine is greater than 1 is either wholly
or partly imaginary.

§33.] If w = Sin 5, say

u + iv = Sin {x + yi) (1),

then, as in last paragraph,

u = siu X cosh y, « = cos x sinh y (2) ;

wYsin" X - 'wYcos^x=l (3) ;

u^/co!i\i^y + v^/sm\i'y
= l (4).

The graphical representation is, as the student may easily

verify, obtained by taking Fig. 13 for the w-plane and Fig. 14

for the a-plane.

We have also, for the t-th branch of the inverse function,

eSin~' u' = Zt = ttr + (- y Sin"' w,

where Sin~' w = x + yi, x and y being determined by equations

(3) and (4), under the restrictions proper to the principal branch

of the function.

§34.] If w = Tans;, say

u + ic = Ta,n(x + yi) (1),

then (u + iv) Cos (x + yi)
= Sin {x + yi),

that is,

(m cos X cosh y + vsmxsinhy) + i {-u sin « sinh y + « cos x cosh y)

= sin X cosh y + i cos x sinh y.
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Tlierefore

UKAPII OK TAN(x + y») CU. XXIX

tt COS X cosh y + » sin X siiih y=«va.x cosli y,

— u sill X sinli y + » cos a; cosh y = cos a- sinh y.

From the last pair of equations it is easy, if we hear in mind

the formulae of § 27, to deduce the following :
—

H = sill 2j-/(co8 2a; + cosh ly), v = sinh 2y/(cos 2x + cosh ly) (2) ;

tt» + «• + 2m cot 2z - 1 = (3) ;

«• + «=- 2p coth 2// + 1 = (4).

Tlie graphical representation of these results is given by

Figs. 15 and 16.

Y
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to-plane taken ouce over. The corresponding values of z are

said to belong to the principal branch of the function Tan"' w.

To the vertical parallels in the ^-plane correspond the circles

passing through / and / in the w-plane, and to the horizontal

parallels correspond the circles in the «<'-plane which cut the

former orthogonally.

It should be noticed that / and I in the w-plane correspond
to + 00 and - oo in the direction of the y-axis in the s-plaue, and
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§ 35.] It will bo a useful exercise for the student to discuss

directly the graphical represeutiition of «; = Sec2;, w = Co8ec«,

and M; = Cots. The iij^ures iu the w-jilane for these functions

may, however, be derived from those already given, by means of

the following interesting general principle.

JfZ be any z-path, W and U" the corrc.yxmding w-p<tths/or

w =J\x + yi) and w =
l/Ji-t+yi), tlien W is the image withresi>fct

to the u-ajcis of the invrrse of \V, t/ie centre 0/ inversion being the

origin of the w-plane and the radius of inversion being unity.

This is Ciusily proved ; for, if (p, <^), (p, <^') be the polar

co-ordinates of points on I^aud W corresponding to the point

{x, y) on Z, then we have

P (cos </>
+ »' sin <^) =f{x + yi),

p (cos <^' + 1 sin <^')
= l/f{x+ yi).

Hence p (cos <^ + 1 sin <^)
=

l/p'(cos <^' + » sin <j>'),

=
( 1/p') (cos (-.^') + .- sin (-«')).

Therefore p = \/i>', <^
= -

<^' + 2Xir, which is the analytical ex-

pression of the principle just stated.

From this it appears at onco tbat, if we choose for our Btandard t-psths

a doable sjBtem of orthotoiuic parallels to tlio .r- and y-axes, then the w-p«tha

for ic=Cot2 will be a double ryintern of orthotomic circles, and tbe ir- paths

for u;=Secz aDdu>= C!osccr a double system of orthotomic Bicircul&rQuartica.

Example 1. If u + vi = See [x + yi), show that

u= 2 cos z cosh y/(co8 'Jx + cosh '2y) ;

ti='2sinx8uih j//(cos2x + coBh 2y\;

(u' + c')'= u'/cos' X - I'/sin' x ;

(u»+ 1')'= u'/cosh' y + t)»/siiih' y .

Piscuss the graphical representation of the functional equation, and show

bow to deduce the (-th branch from the principal branch of the function.

The curves represented by the lost two eqoations are most CMily traoad

from their polar c<iuations, which arc

p»=2(cos2^-co8 2x)/sin' 2i,

p'= 2 (cosh 2y - coa 2^)/6inh* 2y,

respoctivcly.

Example 3. The same problem for u + t'i = Cosoo (x + yi).

Kiauplu 3. The same problem for u + ii = Col (x i- y 1).
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§ 36.] Before leaving the present part of our subject, it will

be well to point out the general theorem wliich underlies the

fact that to the ortliogoual parallels in the s-plane in the six

cases just discussed correspond a system of orthogonal paths in

the it'-plaue.

Let us suppose that f{z) is a continuous function of the

complex variable z, such that for a finite area round every

point z = a within a certain region in the ;i-plane f{z) can

always be expanded in a convergent series of powers of z-a,
so that we have

/(-) =/(«) +A,{z-a)^ A, {z -af + . . . (1),

where ^I,, A.^, . . . are functions of a and not of 3.

Then we have the following general theorem, which is funda-

mental in the present subject.

If Ai^O, the angle between any two z-ixtths emanatinfj from
a is the same as the angle between the corresponding w-paths

emanating from the point in the w-j)laiw which corresponds
to a.

Proof.
—Let z be any point on any path emanating from a,

{r, 0) the polar co-ordinates of z Avith respect to a as origin, the

prime radius being parallel to the a;-axis. Let w and b be the

w-poiuts con-esponding to z and a, (p, <^) the polar co-ordinates

of w with respect to b. Then we have

P (cos <f>
+ i sin <^)

= w-b=f(z)-f(a),
= A,iz-a) + A3(z-a)' + . . ., by (I),

= A^r {cos6 + isin 0) + A.^i-{cosO + i sin 6)-+ . . . (2).

Let now J ,
=

r, (cos uj + i sin a,), A. = r^ (cos a., + i sin a,), . . .
,

then (2) may be written

P (cos </)
+ J sin <^)

= r^r (cos (a, + 6) + i sin (uj + 6)]

+ r^r" {cos (oj -I- 25) + i sin (a, + 2(9)} + . . . (3).

Whence

P cos ^ =r^r cos (o, ^6)^ r^r' cos (a, + 20) + . . . (4) ;

p sill <^
- r^r sin (a^ + 6) + r-ji' sin (a.^ + 25) + . . . (5).

21—2
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III tlie limit, when r mid consoiticiitly p are inacle iiiHiiitcly

small, (4) ami (5) reduce to

(p/r) cos <)!)
=

r, cos (a, + tf), (p/r) sin <^
=

r, sin (a, + <?) (G).

Since p and r arc both positive, these equatious lead to

p/r
=

r,, and ft>
= 2kir + ai + (7).

Hence, if we take any two paths eniauatiug from a iu directions

determined by and 6", we should have <f>- <t>'
= 0-0', which

proves our theorem.

We see also, from the first of the equations in (7), that if we

construct any intinitely small triaiij;le in the r-plane, having its

vertex at a, to it will correspond an infinitely small similar

triangle in the u?-plane having its vertex at b.

Hence, if we establish a unique correspondence between points

(m, v) and {x, y) in any two planes by means of the relation

u + vi =/(x + yi)
= X (x, y) + t> (x, y),

then to any diagram D in the one plane rorres/tonds a diagram
D' in the other which is similar to D in its infinittsimal detail.

The propositions just stited show that, if we hate in the

z-plane any two families of curves A and B such that each curve

of A cuts each curre of B at a constant angle a, thiti to these

correspond respectively in the w-plane families A' and B' such

that each curve of A' cuts e<ich curve of B' at an angle a.

Since the six circular functions sjitisfy the preliminary condition

reganliug the function f{x + yi), the theorem regarding the

M-c-curves for these functions which correspond to j: = const.,

y = const, follows at once.

If .1, = 0, ^la = 0, . . ., vl,_, = 0, .'l, + 0, then the above con-

clusions fail. In fact, the equations (7) then become

plf'-r,, <l>
= 2U + a, + n0 (7');

and we have </>
-

<^'
= w (0

-
0').

In this ia.sc, us the point ; circulates once round a, the point

w circulates ;» times round b. That is to say, b is a winding

point of the «th order for z
;
and the Kiemann's surface for the

tp-plane ha.s an w-fuhl winding ])oint at b. We have a simple

example of this in the ca^u of u'-.^, already discussed, fur which
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w' = is a wiudiug point of the third order. The points w = ± 1

and z = ±0 are coiTOsponding points of a similar character for

tv = cos z.

The tlieorem of the present paragraph is of great importance in many parts

of mathematics. From one point of view it may be regarded as the geomet-
rical condition that

(j, y ) + 7x (j^, y) may be, according to a certain definition,

a function of x + yi. In this way it first made its appearance in the famous

memoir entitled Gnindlagen fiir eine allgcmeine Theorie der Functionen einer

verdnderlichen compleien Grbsse, in which Kiemann laid the foundations of

the modern theory of functions, which has borne fruit in so many of the

higher branches of mathematics.

From another point of view the theorem is of great importance in

geometry. When the points in one plane are connected with those in

another in the manner above described, so that corresponding figures have

infinitesimal similarity, the one plane is said by German mathematicians to

be conform abgebildet, that is, conformably represented (Cayley has used the

phrase
"
orthomorphically transformed") upon the other; and there is a cor-

responding theory for surfaces in general. JNIany of the ordinary geometrical

transformations are particular cases of this ; for example, the student will

readily verify that the equation \D= a^jz corresponds to inversion.

Lastly, the theory of conjugate functions, as expounded by Clerk-

Maxwell in his work on electricity (vol. I. chap, xii.), depends entirely on the

theorem which we have just established. In fact, the curves in Figs. 12,

13, 15, and IG may be taken to represent lines of force and lines of equal

potential; so that every particular case of theequation u-l-fi=/(a; + yi) gives

the solution of one or more physical problems.

Exercises XVIII.

(1.) Discuss the variation of 6in~'u and sin~'n', where « and v are real,

and vary from — oo to -h x .

Draw the Argand diagrams for the following, giving in each case, where

they have not been given above, the to-paths when the z-paths are circles

about the origin and parallels to the real and imaginary axes:—
(2.) ui= log«. (3.) jc= exp2.

(1.) w= cosh2. (5.) «; = tauh2.

(0.) Show that co-s"' (u-H't))
= C03-' {/-icosh"' V ;

sin"' («-)-ir) = sin~i P+icosh~i V,

where iV=^{(n + lf + v-}-J{(ii~\Y-^v''},

the principal branch of each function being alone in question.
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(7.) Sbow that the prineipnl branch of tau"' (u + iv) u given by x + yi,

where y = J tanh"' {2u/(u' + t!'+ 1)};

and «=itsn-'{2u/(l-u»-i')>. if u» + t''<l;
= ± Jt + i tan-' {2ii/(l-u« -«•')}, ifu» + w»:.l,

the upper or lower sign being takin according aa u ii positive or negative.

(8.) If u + fi = cot(x + j/i),
show tliat

u = sin 2x/(cosh 2i/
- cos 2x), ti = - Riiih 2y/(cosh 2y - cos 2x) ;

u' + »'-2ucot2jc-l=0, u' + 1>' + 2t' colli 2i/ + 1=0.

(0.) If u + ri= C08ec(x + yi), show that

u = 2 ?in X cosh y/(cosh iy
- cos 2x), v = -2 cos x siiih y/(coBh 2y - cos 2x) ;

(u' + tJ*)'
= u'/oos'x

-
c'/sin'y, (u' + r')'= u»/cosh»y + p'/sinh'y.

Express the following in the form u + ri, giving both the principal branch

and the general branch when the function is mnltiplc-vnlucd:—
(10.) Cosh->{*+yi). (11.) Tanh-'(x + yi).

(12.) iLog{(x + yi)/(i-y.)}. (13.) Log Sin (x + yi).

(1*.) (cosff+ isin*)'. (15.) Loga+tf (x + yi).

(16.) Show that the general value of Sin"' (coscc «) is ((-(-i) r + ilog

cotJ((ir + e), where t is any integer.

(17.) Show that the real part of Exp^ {Log (l + i)} i»«-^'cog (It log 2).

(18.) Prove, by means of the series for Cos $ and Sin 0, that Sin '20= 2 Sin

Cos0.

(19.) Deduce Abel's generalised form of the binomial theorem from

§§ 20, 22.

(20.) Show that

l + «+,iCi'+ m+,(C,x'+. . . adeo

=
(1 + x)"" [cos {n log (1 +z)} + 1 sin {n log (1 + j))].

(21.) Show that the families of curves represented by

sin X cosh y = X, cosxsinhy=/<
are orthotomic.

(22.) Find the equation to the family of curves orthogonal to r*

oosn0= X.

(2.'i.)
Find the condition tliat the two families

/(x5 + 2/.xy + Cy'= \, il'x» + 2/('xy + Cy«=^
be orthotomic.

(24.) If tan (z + iy)=siD(u-l-ii7), prove that coth r siuh 2y = cnt u sin 2x.

SPECIAL APPLICATIONS OF THE FOREGOING THEORY TO

THE C.IRCULAK FUNCTIONS.

§ .37.] In order to nvoiii breaking; our o.\po.'»ition of tlic

geiicrul theory of the eluiiicuUiry trauscendeulA, wu did not stop

I
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to deduce consequences from the various fundamental theorems.

To this part of the subject we now proceed ;
and we shall find

that many of the ordinary theorems regarding series involving

the circular functions are simple corollaries from what has gone

before.

Let us take, in the first place, the generalised form of the

binomial theorem given in § 15. So long as l + 2m(7„s" is

convergent, we have seen that it represents the principal value

of (1 + s)'". Hence, if z = r{cos6 + is\u6), where r is positive,

and -•«:}> 6 :|> +7r, we have

1 + 2 „,C„r" (cos 110 + i sin nO)
=

(1 + 2r cos 6 + »-)""' (cos m<l) + i sin «i0),

where -
^7r::|>

= tan"' {r sin 6/(1 + r cos 6)}> + i^.

Hence, equating real and imaginary parts, we must have

1 + 2,„C„r'' cos 110 = (1 + 2r cos + rY'' cos m4> (1) ;

2„^„r'' sin n0 = (1 + 2r cos ^ + rT" sin m4> (2).

These formuhc will hold for aU real commensurable values of

m, provided r<l.

When r = l, we have

</>
= tan-' {sin 6/(1 + cos 0)}=10,

and (1) and (2) become

l + 2,„(7„cosHe = 2""cos"'^J6'cos^?w0 (1'),

2„.a„ sin 710 = 2" cos"'i6' sin lm0 (2').

These formulte hold for all values of between — ir and + tt*,

when w>— 1; and also for the limiting values — tt and + t

themselves, when m>0.

§ 38.] Seriesfor cos m(l> and sin m<l>, wheti m is not integral.

If in (1) and (2) of last paragraph we put 6 =
|n-, and

r = tan 4>, so that <^ must lie between -
\ir and + ^tt, tlien

(l + 2rcos6 + r')'"''=sec'"<^; and we find

cosm<^ = cos"'<^(l-„Cstan''^ + „,C4tan^<^-. . .) (3),

sin 7n<l>
= cos'" <j>UCi tan <p-,nCs tali-' <i>

+ . . .) (4).

* Since the left-hand sides of (1') and (2') are periodic, it is easy to

Bee that, for 2fm - n > $ > '2i-Tr + ir, the right-hand aides will be •2'"cos"'A0

eosim(e-2t>Tr) and '-""cos'njSsinim (fl-2pj-) respectively, where 2'"cos'"itf,

being the value of a muduluii, must he made real and positive.
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WLence
,C,taii«^-„C,tan'0-t-. . . , .

These foniiuliB are the generalisations of forimilaB (4), (5), (6)

of § 12. They will hold even when <^ lias either of the limiting

values +
Jn-, j)rovided m>- 1

;
so that we have

2""'cosim7r=l-„C, + „C4-. . .;

2"^8inJw7r = „C, -„(7, + . . . .

Since

cos"-*-./. = (1
-

sin'.A)'"-*'^''
= 1 + 2

(
-
)\„.^nC. sin*-.^,

and the t«rnis of this series are ultiniatoly all positive, it follows

that the double scries deducililc from (3), that is to say, from

2(-)''m^jrC0s'""''<^sin*<^ by substituting cxpan-sions for the

cosines, satisfies Cauchy's conditions (chap, xxvi., § 34), for

there is obviously absolute convergency everywhere under our

present restriction that —
\-ir^<l>^ +\-n:

Hence we may arrange this double series according to powers

of sin
<f>.

The coefficient of (
-

)" sin*"/!) is

»—r

r-o

OT(m-2) . . (m-2r + 2) x r r=
1.3 .. . Cir^ 5(«-.)«t'.(*-il,C,-,.

Now, by chap, xxiii., § 8, Cor. 5,

Hence the coefficient of (
-

)' sin*".^ is

wi(m-2) . . (m-2r + 2)(m + 2r-2) . . . {m + 2)m
1.3... (Jr- 1) 2 . : . (2r- 2)2r

^ fH'(w'-2') • •

j^ (m' - 2r - 2*)

(2r)!

Hence

cos m<l> -1--^ 8in'<^ + —^-, siu*<>
-

. . . (C).
2! 4:
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In like manner, we can sliow that

m . m{m/-\-) . .

sin »;</>
=

Y",
sin —— sin <^

+—^

Tp 'sin'<^-. . . (7).

Also

cos m<p = cos ^
j
1 —

j— sin-0

^
<"^'-y-^'> sinV-...} (8);

sin m<p = cos <^
-^ —,

sin <p ^—-^ s\v?<j>

5!
sin^t^-

.}
(9)-

Tlie demonstration above given establislies these formulae

under the restriction -
^7r:}>(/):j>^jr. It can, however, be shown

that they hold so long as -^7r:}>^:}>i7r ;
that is to say, so long

as the series involved are convergent.

Cauchy, from whom the above is taken, shows that by

expanding both sides in powers of m and equating coefficients

we obtain expansions for <^, <^'*, <^', &c., in powers of sin ^.

Thus, for example, we deduce

,
. ^ Isin'.^ 1.3sin=<^ 1 . 3 . 5 sin'^p = sin <i H + + + . . . .^ ^2 3 2.4 5 2.4. G 7

If we put a; = sin 4', this gives

.

,
1^ 1.3 a.-' 1.3.5.r' .,„,sm-^ = ^ + -3+--+2-^^^^... (10).

In particular, if uo put a; = \, we obtain

'^=^{^2i:2-»-^2-:ji:¥^---} ^''^'

from whicli the value of t might be calculated with tolerable

rapidity to a moderate number of places. The result to 10

places is 7r = 3-U1.5926r)3G ....
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The important eerics (10) for expanding bid'' x ia here demoogtratod for

values of I lying between - 1/^2 and +1/^/2. It can be shown that it ia

valid between the limits i = - 1 and x= + 1.

The series was discovered by Newton, who gives it along with the series

for sinz and cosz in powers of t in a small tract entitled AnaUjiii per
yEquationet Numero Tfrminonim Iiifinitait. Since this trnct wafl shown by
Newton to Barrow in iri'iD, the series (10) is one of the oldest oxaD)|>lea of an
infinite series applicable to the quadrature of the circle.

Example 1, If m>0, and

C= 2-" S „C,cos(m-2;i)x,

S= 2-" 2 „C, Bin (m - 2n) x,

C=2-«'2 (-)->„C.C08(Fn-2;i)x,
n-O

.9'= 2-" 2 (-)-'„C.8in(m-2n)x.

then, p being any integer,

1°. C=(co3i)'"co8 2nipx, S=(coBx)"8in2mpT,
from x= (2p-4) r to x = (2/>-i-i) r.

V. C= (-cosx)'»cosm(2p+l)ir, .S =
(
-cos x)'"8in m(2p+ l) «•,

from x=('_'p + i) T to x = (2p + ?)T.
8°. C'^(8ini)'»oo8m(2p+4)T, S' = (sin xj'-sin m(2p+ J) t,

from x = 2pir to x= (2p + l) r.

4°. C'= (-8inx)'»co8m(2p + J)ir, S' = (- sin i)" Bin m (2p +$)»•,
from x = (2p + l)r tox = (2p+ 2)»-.

These formula] will also hold when m lies between -1 and 0, only that

the extreme values of x in the varioos stretches most be excluded. (Abel,

(Eiivrfi, t. I., p. 249.)

If we multiply {!') and (2') above by cos a and sin a respectively, and add,

we obtain the formula]

COS a + 2„C, cos (o
-
nS) = 2" cos"* JS cob {a-im8 + mpr),

wherein it mast bo observed that cos^JO is the modulus of (1 +2reo8ff + r')'^
when r = 1, and must thoroforo bo always ko adjusted as to have a real positive

value.

From the equation jof t written, Abel's formulas can at once be deduced

by a series of substitntions.

Example 2. Show, by taking the limit when ni= on both sidea of

(1) and (2) above, that the series (1) and (2) of § 40 can be deduced from tlie

generalised form ol the binomial theorem.

Rxaiuple 3. Sum to infinity the aertes 2n'„t', sin")? cos n9. This seriea

is the real part of 2n'„C,8in*0(co8fl0'f '«inn9). Uenco

S = «(2ii'„C.Bin»e(o08*+ »Wn»)»),
= /il{m'Bin'e(oostf+i sinP)»+m {Sm -

1) sin'O (cosfl + i sin 0)'

+ m din e (cos + it)iud)\{lr »in (((cos e + i sin C}J""'J,

J
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by Example 5 of chap, xxvii., § 5,

= [m»sin»ffoos{39+ (m-3)^} + m(:ini-l)sm«9cos{29 + {m-3)^}
+m sin e cos {9 + (m - 3) 0}] (1 + 2 sin e cos e + siu= e)(^-^ift,

wliere = tan-' {sin-S/{l + sin 6 cos 6)}.

^ 39.] Formulw deducedfrom the Exponential Series.

From the equation

^ (cos y + 1 sin
3^)
= 1 + S (a;

+ yiTln\ ,

putting x = rco&6,y = r sin 6, we deduce

grcosfl jgQs^^gjn g) +jsin(rsiuO)}= 1 + 2r"(cos?i0 + «sin«O)/)i!.

Hence

grcos»cos(r sin (')
= ! + 2r" cos wS/«! (1) ;

gr cos 8 gin
(,.

gin e)
= -S, r'^sm n6/n ! (2) ;

wliich liold for all values of r and 0.

In like manner, many summations of series involving cosines

and sines of multiples of 6 may bo deduced from series related

to the exponential series in the way explained in chap, xxviii.,

§8.

Thna, for instance, from the result of Example 3, in the paragraph jnst

qaoted, we dedace

2(1»+2H. . .+n')x"/n! = c'"<*^*{rco3(« + rsinfl) + tr=cos(2S + rsine)
'

+2r'cos{3e+rsine) + Jcos(49+ rsine)}.

§ 40.] FormulcB deuced from the Logarithmic Series. Since

the principal value of Log(l +
2:) is given by Log (!+«) = log

1

1 + s| + 2amp(l +s), and since the series s - s^/2 + 2^/3
—

. . .

represents the principal value of Log(l +z), if we put « = r(cos6
+ 1 sin 6), we have

log (1 + 2r cos e + r')" + / tun"' {r sin 6/(1 + r cos 6)]

= 2 (
-

)"-' r^ (cos n6 + / sin n6)lv,

where -|7r:}>tan-' {r sin 6/(1 +r cos 6)}:t>|:r, that is, the prin-

cipal value of tlie function tan"' is to be taken.

Hence we have the following :
—

i log ( 1 + 2»- cos 61 + r*)
= 2

(
-

)"
-•

r" cos nOln ( 1 ) ;

tan-' [r sin (/y\l + r cos e)}
= 2 (

-
)"-' r" sin nejn (2).
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Altliougli, strictly speaking, wc Lave cstablislied tlicso results

for values of 6 betwceu -ir and +ir both inclusive, yet, since

both siiies are periodic functions of 6, they will obviously hold

for all values of 6, provided r<\.
If r=l, (1) and (2) will still hold, provided ff + ±ir; for the

serie.a in (1) and (2) are l>oth convergent, and wc have, by
Abel's Thcoroiu,

cos^-Jcos2fl + ^cos35-. . .= Z |log(l + 2rcostf + r*),
r-l

= log(2co8je) (3);

s\n0-l sin 25 + J sin 3^ -. . . = tan"' {sin 0/{l + cos 6)),

=
tan-'{tan|(fl +

2/l-7r)},

= ie + kn (4),

wlicre k must be so chosen that ^6 + kir lies between - J*
and + Jtt. Thus, if 6 lie between -n- and +jr, k = 0, and we
have simply

sin 5 - § sin 26 + lsm30- . . . = JO (1).

In particular, if we put =
^ir, we get

which is Gregory's quadrature ; see § 41.

When 0= ±(2p + l)T, the scries id (3) diverges to - to
, and tlio right-

band side becomes log 0, that in - x
, so that (3) still holds in a oertain

Bense.

The behavioar of the scries in (4) vhen 9= ±(2^ + 1) r is very onrioiu.

Let us take, for eimplicitr, Uic caKe 0= i^r. With this value of we bav*
for values of r as near unity as wc please tan~> (rain 0/(1 + r cos 0)}

= O.

Tlence, by Abel's Theorem, when 0=^w, sin 0-}sin2tf -f . . .=0, as il

otherwise suflicicntly obvious.

On the other hand, for any value of didering from ±t by however little,

we have X. tan"' {rsin 0/(l + rco»(?)} = 49. IIcDCa, again, by Abel's Theorem,
r—1

toT $= ^T'rp, where is infinitely small, wc have

sin0-^sin '20+. . . = ±JttJ*.
The porics y = sin —

J sin 2tf + . . .is therefore discontinnons in the neigh-
bonrhood of (>=*»; for, when 0= ±t, j/

= 0, and when dilTcrs infinitely

little from <tr, y dilTcni infinitely little from *-wji. This discontinuity ii

accompanied by the phcnomeuon of infinitely slow ooDTergencc in the

neighlxinrhood of r = l, 9= *»; and the sudden alteration of the value of

the sum ia ai>.->ociatud with the fact that the values of the double Uniita
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L L tan-i {rsinfl/(l+rcose)} and L L tan-' {r sin (?/(! +rcos 0)}
r = l fl = ±ir e=±ir r=l
are not uliUe.

When lies between tt and 3ir, we may put 9= 2jr + 6l', where 9' lies

between -ir and +7r, then, for such vaUics of 9, we have

j/
= sin^-j8in20'+ . . .,

= W, as we have already shown.

Hence, however small
<j> may be, we have, for 9= n + (l), ?/

= i0- Jr. But,
as we have just seen, for 9 = 7r- we have )/= - J0 + Jir. Hence, as 5 varies

from TT-.^ to 7r + 0, y varies abruptly from -^tp + ^ir to ^^-^ir. In other

words, as 9 passes through the value jr, y suffers an abrupt decrease

amounting to tt*.

We have discussed this case so fully because it is probably the first

instance that the student has met with of a function having the kind of

discontinuity figured in chap, xv., Fig. 5. It ought to be a good lesson

regarding the necessity for care in handling limiting cases in the theory of

infinite series.

§41.] Gregory's Series. If in equation (2) of last paragrapli

we put 6= lir, we deduce the espausion

tau-V = r-l^-^+i/-^-. . . (6),

where tau-'r represents, as usual, the principal value of the

iuver.se function, and —
i:j>r:)>l.

In particular, if r = 1, we have

x = 4(l-i + i-. . .)•

The series (G), which is famous in the history of the quadrature of the

circle, was first published by James Gregory in 1670 ; and independently,
a few years later, by Leibnitz. About the beginning of the 18th century, two

English calculators, Abraham Shai-p and John Machin (Professor ofAstronomy
at Gresham CoUege), used the series to calculate t to a large number of places.

Sharp, using the formula; iir = tan-'l/,y3 = (l/^3){l- 1/3.3 + 1/5.33-. . .},

suggested by Halley, carried the calculation to 71 places ; that is, about

twice as far as Ludolph van Ceulen had gone. Machin, using a formula
of his own, for long the best that was known, namely, Jr = 4 tan"' 1/5
- tan"' 1/239, went to 100 places. Euler, apparently unaware of what
the English calculators had done, used the far less effective formula

J7r=tan-' J+ tan-' J. Gauss {Werke, Bd. ii., p. 501) found, by means
of the theory of numbers, two remarkable formulte of this kind, namely :

—
Jr= 12 tan-' 1/18 + 8 tan-' 1/57-5 tan"' 1/239,
= 12 tan-' 1/38 + 20 tan-i 1/57 + 7 tan-' 1/239 + 24 tan"' 1/268,

* The reader should now draw the graph of the function y, for all real

values of 9.
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by means of which w could be calculated with great rapidity aboold its value

over be required beyond the 707th place, which was reached b; Mr Shanks

in 18731*

Exercises XIX.

Sum the following series to inljuity, pointing out io each caae the limits

within which the summation is valid :—
« X , 1 - 1-8 o^ 1-8.5
(1.) l-^cosg+^^co82a- ^ ^ g

C0B3g+. . . .

cos tf 1 , COS 3* 1 . 3 , cos 68
(2.) .

-j-
+ 2.«'-3-+27^x«-^+. .. .

,_ , cos tf 1 COS 39 1.3 cos 59
<3)
— +2^-+2-4-5-+-- =

result }cos-> (1
- 'i sin 9).

(4.) 2(2n-l)(2ri-3)cosn9/iiI (5.) 2 sin ne/(n + 2) lU

(6.) «-'6in9- J<>"''Bin38 + i<-*'sin50-. . . .

(7.) sinff-^—
-8in29 + -—jsinS*-. . . .

(8.) Bin*9-^8in>29 + isin'39-. . .;

result \ log SCO 0.

(9.) Sco8 2n0/n(n-l). (10.) Ssinn9/(ii'- 1).

(11.) |sin0sin0-^ sin29sin'6 + lsin38Bin'9- . . . .

(12.) co8(o + /9)-cos(o+ 3/3)/31 + cos(o + 50)/5l-. . . .

(13.) cos « -
1 cos 29 + J cos 39 - . . . ;

result \ log (2 i- 2 cos 9), except when 9 - (2p + 1) r.

(14.) oos9 + Jcos29 + }cos39+. . .;

result -
i log (2

- 2 cos 9), except when 9 = 2j>r.

(15.) 8in94'i si°-^ + l ">°89-i- . . .;

result =0, if 9=0; =\(t -a),UO<.e>ii , Ac.

(16.) 6in9-}Ein 39-t-t BinS9- . • •

(17.) j:co8 9-}i'co8 39+lr'co<i59- . . .;

result J tan-' {2xco8 9/(1
-
jr)).

(18.) oos9co8 0- i cos29cus2^'f icoii39cos3^- . . .;

rcKult ^log {4 cos) (e+ ip)iM»\ (9-^)).

(19.) xcos9cos0- Jx'oos39coBS^-f(x*oos59oos 5^- . . .;

iMult itan-'(4x(l -«»)co89cos0/{(l+x»)«-ix»(co»'»-ooe»0)}l.

(20.) Show that log (l+x + x») = 22; (-)•-' co« inri"/n, provided |x|<l.
and examine whether the result holds when |x| = l.

* For the liistory of this subject see Ency. BnU, art. "Squaxinj{ the

Circle," by Muir.

I
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(21.) Show that, under certain restriotiona upon e,

log (1 + 2 cos
ff)
= - 22; COS \mr cos nfl/ii ;

d= — S cos |H]r sin nS//i.

(22.) Show that

TT ,11111 1 1

2;7^=^"*"3"5"7
+ y+n-i2~i3+-" •

(Newton, Second Letter to Oldenburg, 1676.)

Exercises XX.

(1.) Calculate ir to 10 places by means of Maohin's formula.

(2.) Show that, if j: < 1,

(tan-' 1)2

=x'-{l + ll3)x*l2 + . . .(-)"-'{! + 1/3 + . . . + l/(2n-l)}x-'"/«. . . .

Does the formula hold when x = 17

(3.) Expand tan"' {x + cot o) in powers of x.

(4.) Deduce the series for sin"' x from Gregory's series by means of the

addition theorem for the binomial coeflicients.

(5.) If X lie between 1/^2 and 1, show that

^(I-:r=)J, 11 -x\ l(I-x-)^ )
,,„ 'x=x-^^^ |l-3 ^5-+5 ^i . .

j
.

(6.) Show that § 38 (10) is merely a particular case of (7).

(7.) Show that

8 2 2 4 2 4 6
- = sin9 + -8inSe + 5-^sin5e + .5^„sm'fl + . . . .

cos i 3.5 i.O. I

(Pfaff.)

1 „ sin^e 2 sin* 9 2.4 sin" 9 ,„, .
.,,

,

{8.) 2»^=-^ + 3^- +
3-:5-6

+••• • (btamville.)

(9.) e3^sin30 +
^.|(l

+
pjsin5e

+ . . .

3.5...(2«-l)^_/ 1+ + J^ '\sin'^»Hff + . .. .+
"~4.6...2n 2n + lV 3=^^ ^{2«-l)V

(10.) e<=sin»e+
|.|^l

+
.i)siu«fl

+ . . .

4^(2„:2) 2 /I
.^

1
Vi„..,^. . . .

^5.7...(2ii-l)nV •^- («-l)V

(11.) Deduce from § 38 (6) and (7) an expression for e"'/sin"'9 in powers

of sin d.

(12.) If 6ine= i8in(9 + o), show that e + r7r = 2x"sin ;m/«.

(13.) If c^=a^- 2ab cos C + b"; then

log c = log a - (6/a) cos C -
i {bja)^ cos 2C - ^ {bja)" cos 3C - . . . .

(14.) Show that

- n-3 (n-4)(n-5) _ («-5) (n- 6) (n-7) ^ 1 + (-)»-" 2 cos jht

2
"*"

2.3 2.3.4
+• • •

„
^
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8I10W that

(15.)* e>=8in«e + 2'Bin«' +
2'8in<|;

+ 2«Bin«.'+. . . .

(IG.)* u'=8inb=u-2'Binh*"-2«Binh*^-2*8inh«^j-. . . .

(17.)* ?e= 6me +
3Bin»*+3'Bin>^

+ . . . .

(18.)* ?BinO=^ 3^„..Bin3'"tf
+ 2

3^.sm»3-'(;.
Q • / _ 1 \ni— I

(19.)* 2coB»=2
5_^__eoB»3'»-'*.

* See Laisant,
" Essai siir les Fuuclioua bjpeiboliques," Mim. de la Soc.

de Bordeaux, 1875.

I



CHAPTER XXX.

General Theorems regarding the Expansion of

Functions in Infinite Forms.

EXPANSION IN INFINITE SERIES.

§ 1.] Cauchys Tlieorem regarding the Expansion ofa Function

ofa Function.

If

y = a„ + 'Sanaf' (1),

the series being convergent so long as |a;|<^, atid if

z = h + lKy'' (2),

this series being convergent so long as\y\<S, t/ien from (1) and

(2) we can derive the expansion

s = C, + ^C„x\

provided x be such that \x\<R, and also

|a„| + 2|a„||a;i"<-Sf.

This theorem follows readily from cli.np. xxvi., §§ 14 and 34.

We have already used particular cases of it in previous chapters.

§ 2.] Expansion of cm Infinite Product in the form of an

Infinite Series.

If 'S.ii,, be an absolutely convergent series, and „2i<i, „2«, m^,

. . ., „2«, Uq. . . Ur, . . . denote the sums of the pi-oducts of its

first n terms taken one, two, . . .
, r, . . ., at a time, then

L „tu,= T„ Ln~UlUi=Ti, ..., L n'S.lHUi. . .Ur=Tr, . . .

where Ti, T^, . . ., Tr, . are allfinite.

Also the infinite series 1 +S7'„ is convergent ; and converges

to the same limit as the infinite product n (1 + «„).

c. II. 2:2
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After wluit has been laid down in cimp. xxvi., it will

obviously be sufficient if we prove the above theorem on the

assumption that all the symbols «i, m, «,, . . . represent

positive quantities. In the more general case where these are

complex numbers the moduli alone would be involved in the

stiitements of inequality, and the statements of equality would

be true as under.

Since «i, «,,...,« are all positive, we see, by the

Multinomial Theorem (chap, xxiii., g 12), that

0<«2»/iU,. . .«r <(«, + «,+ . . . + «,)7rl

<(«, + w,+ . . . + «„+. . .adx)7rl

<^/H, (I),

where S is the finite limit of the convergent series Su, ; and the

inequality (1) obviously holds for all values of r up to r = n,

however great « may be.

Tlicrcforo „2«i «, . . . «r has always a finite limit, T, say,

such that

0>7;>.S7r! (2).

By (2), we have

0<l+7',+ Z', + . . . adoo<l+«/l! + /S72! + . . , adx,

that is,

0<l + 27',<«» (3).

Hence 1+27', is a convergent series, whose limit cannot

exceed e*.

Again, since /i,2i/, »/, . . . Mr = TV when » = oo
, we may write

,1U,U,. . .Ur = (l+rAn)Tr (4),

where LrA, = when n= «.

Hence, A, being a mean amiuig ,^4., ,A , ..4., and

therefore such that LAn = ^> "lien h = oo, we have

11(1 + IIJ _ 1 + ,2m, + ,2m, m, + ,

a + (l + -l.)2/'. (:,).

I
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If iu (5) we put H = 00
,
we get

n(l + «„)
= l + Z{(l + .l„)2 7;},

=i + 2r,.

'

(6),
1

since LA„ = 0, and 27'„ is finite.
1

Tills completes the proof of our proposition.

Cor. 1. 1/ 2«„ be ahiJutcli/ convergent, then, 7",, having the

above meaning, \ + So:"?',, will be convergent for all finite values

of x; a/nd we shall have

\l{l + xu,) = l + ix"Tu (7).

This follows at once by the above, and by chap, xxvi., § 27.

Cor. 2. Let

nn = n% + n'Vl-'>: + nV-zX- + . . . (8),

where n'Wo, n^'i) <&c-, <*'« independent of x, and the series on the

right of (8) may either terminate or not ; and let

Mn'=|nlV|+U'Wl|k|+|ni'2lk|"+. •• (9).

Then, if 2i(„' be convergent for all values of x such that

\x\<p, it follows that for all such values n (1 + n„) is convergent,

and can be expanded in a convergent series ofascendingpowers ofx.

For, if Tn have the meaning above assigned to it, then it will

obviously be possible to arrange 7',, as an ascending series of

powers of x. Moreover, if we consider the double series that

thus arises from 1 + STn, we see that all Cauchy's conditions

(see chap, xxvi., § 35) for the absolute convergence of this

double series are satisfied. Hence we may arrange l+27'„ as

a convergent series of ascending powers of x.

Example 1. Toexpand (l + x)(l + x-')(l + r')(l + x8) . . . in an ascending

series of powers of i. (Euler, Introd. in Anal. Inf., § 328.)

The series 2;|xp" is obviously convergent so long as |x|<l. Hence, so

long as |x|<;l, we may write

(l+i)(l + x=)(I + x«)(l + a«). . .= 1 + Cix+ Cji2+ . . . + C„x"+. . . (10).

To determine the coefficients Cj, C„, C„, we observe that, if we multiply

both sides of (10) by 1-x, the left-hand side becomes L (1-x-"), that is,

1, since
|

x
|

< 1 . We must therefore have

l/(l-x)--.l + C,x + C„x-+. . . + C„.i''+. . .,

22—2
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llmt is,

therefore C, = C,= . . .=C,= . . .=1.

Another way is to put x^ fur x on both aides of (10), and then multiply by

(l+i). Wo thus got

l + 2C„i»=l + x + C,i'+. . .+C,T*' + C, !»"+'+. . .;

whence Cj„=Cj,+, = C,, C, = l,

from which it is cosy to prove that all the oooHJcicnts are unity.

Example 2. To show that

(l+j-.:)(l + x=r). ..(l + x-z)

-'\r, (i-xj(i-x^)...(i-x-)
"

(Caucby, CompUt lieiuiut, 1810.)

Let

(l+xr)(l + x'r)...(l+x'"2)
= l + Ait + A„z'+. . .+A,z'+. . .+A„t'' (2),

where j4,, /I,, . . . are functions of x which have to be dotormincd.

Put Tz in place of z on both eidcs of (2), then multiply on both sidea by

(l + xz)/(l+x'"+'i), and we get

(H-xz)(l + xa;) ...(l + xmj)
=

{l + (l + ^,)xr + (^, + ^5)x3r' + ... + (^„_, + ilJx":- + ... + .l„x'"+>i"+'},

x{l-x»+»2 + x=("'+')c3 + . . .(-)»x»<"^'lr"+. .
.J (3).

Hence, arranging the right-hand side of (3) according to powers of »,

replacing the left-hand side by its equi\-alcnt according to (2), and then

c<jualiug the cucllieicnts of z" on the two sides, we get

^«={-',. + J,-i)a:"-'"*'(^.-i + ^.-J»-*

• • • •

(_)»-llO>-I)(i»+l)(^,-hl)z

(-jl-X-^^ll);

whence

Putting n - 1 in place of n in (4), we have

,=4^-^,_,x"-l-^..,x*-- . . . (-).->x<"-»'- (S).
«"->(l-x'")

"-•

U we multiply (5) by x" and odd (4), we derive, after an obvioot

reduction,

(l-x-)^,= (x--x»+').<,., (6J.

In like manner,

(l-x-')^.., = (x-->-x-^')^,-, ((y,

(1 -x--') .<,.,= (x-'-x^')^^, (OJ.

(l-x).J, = (x -*«•+') (CJ.
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Multiplying (6,), {65), . . . , (G„) together, we derive

_ (j
- x'»+') (j

- -
1°'+') (g;"

- x'"+' )

""
("l-a:)(r-i=).'. .(1-j:")

^'''

(l-a;)(l-x-). . .(1-x")
^ '

which establishes our result.

If |a;|<l, the product (l + xz){l+x'z) . . . will be convergent when

continued to infinity, and will, by the theorem of the present paragraph, bo

expansible in a series of powers of z. The series in question will be obtained

by putting j«=oo in (1). We thus get

(l + x.)(l +x».)...ad«=l+^Sj^-^j^j-^^,y—^5-^^ (1.).

an important theorem of Euler's {Introd. in Anal. Inf., % 306).

§ 3.] Expansion of Seek x and Sec x.

We have, by the definition of Exp x,

2/(Exp a; + Exp -
<r)

=
1/(1 + 2.;-""/(2w)!) (1)-

Heuce, if y = 'S.x"'l{2n)\ (2),

2/(Exp X + Ex-p -x) =
1/(1 +y),

= l + S(-r2/" (3).

The expansion (3) will be valid provided ]2/]<l ;
and the

series (2) is absolutely convergent for all finite values of x.

Hence, if i=|a-|, it follows from § 1 that the series (3) can

be converted into a series of ascending powers of x provided

i P/(2«)!<1 (4).
n=.l

This last condition involves that

that is, that ^<log (2 + 73).

This condition can obviously be satisfied
;
and wo conclude

that 2/(Exp X + Exp - x) can be expanded in a scries of ascending

powers of x provided |

a;
|
do not exceed a certain finite limit.

Since the function in question is obviously an even function

of X, only even powers of x will occur in the expansion. We

may therefore assume

2/(Exp a; + Exp -
a;)
= 1 + 2

(
- TE„x^l{2n)\ (5).

To determine E^, E^, . . ., we multiply one side of (5) by
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i (Expx + Exp -
x), and the otiicr by its cqiiivnlont 1 + 2«*/(2n)!;

wu thus have

1= {1+2 (-)"/;„ .r*/(2H)!)!l+2.J^/C.'H)!} (6).

El, Ei, ... must be so detennincd that (6) becomes au

identity. Wc must therefore liave

(2H):0!~(2«^)!2!'^(2n-4)!4!~*
' '^"^

oTcJ^"" ^'^ •

or,

a; = ^c./i",-, -
^c, /i-,-, +...(- r-'^c^.,E, + (

- 1 )-' (8).

The last eiiuation enables us to calculate E,, E~, Et, . . ,

successively. We have, in fact,

Ei = l; E.. = GE,-\; E, = \5E,-\ 5/i', + 1
;

Ei = ^inE,
- lOEj + 2,s£'.

- 1
; &c

whence

E,= 2702765,

E=- 199360981,

E,= 193915121-15,

£, = 2404879075441,

JS,= 1,

E3= 5,

i> 61,

JE'«= 1385,

£•. = 50521,

Tiiese numbers were first introduced into analysis by Ruler*
,

and the above table contains their values so far as he calculated

them.

Since the constants Ei, E„ . . . are determined so as to make

(G) an identity, (6), and therefore also (5), will be valid for all

values of x, real or complex, which render all the series involved

convergent. Hence, since 1 + 2ij*'/(2H)! is convergent for all

values of or, (5) will be valid for all values of x which render the

series 1 + 2(-)''£',a*'/(2n)! convergent. We shall determine

the radius of convergency of this series presently. Meantime
we observe that (5) as it stands may be written

Sech X = 1 + 5 (
-

)" A', j*/(2«)l (9) ;

and, if we put ix in place of x, it gives

Sec X = 1 + 2A\a*'/(2n)! (10).

• Sco Intt. Calc. Diff., $ 2'.' I : the last five diffits of K, are JncorrocUy

given by Kiiler an fil671.

Fnr aiiumliiT of curioas pro|Mrticaof tlio Kulcrinn numl>«r*i)oe Sjrlvoalei,

Comptei Rtndiu, t. 52 ; anil Stcru, CrtlU'i Jour., hi. Lxxix.
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Cor. Sech"x and Sec"x can each be expanded in a series of

even powers of x.

The possibility of such an expansion follows at once from the

above. The coefficients may be expressed in terms of Euler's

numbers. We may also use the identity 1 = (1 + 2^„.r-7(2?))!)

cos"ar; expand cos" a; first as a series of cosines of multiples of x\

finally in powers of x
;
and thus obtain a recurrence formula for

calculating A^, ^2, . . . The convergency of any expansion thus

obtained will obviously be co-extensive with the convergency of

(10).

§ 4.] Expansion of Tanh x, x Coth x, Cosech x
;

Tan x,

xGoix, Coseca;*.

We have already shown, in chap, xxviii., § 6, for real values

of X, that

xl{\
-
e-')

= 1 + ^a: + 2 (
-

)"-' i?,..r="/(2«)!,

the expansion being valid so long as the series on the right is

convergent. In exactly the same way we can show, for any

value of X real or complex, that

a;/(l -Exp-a-) = 1 + ^^r + S( -)"-' Z?„.r™/(2«)! (I),

where Exp — a; is defined as in chap, xxix., and x is such that

|ir| is less than the radius of convergency of the series in (1).

From (1) we derive the following, ail of which will be valid so

long as the series involved are convergent :

X (Exp X
- Exp -

;r)/(Exp x + Exp - x)
=

4.r/(l
- Exp - 4.^:)

-
2.r/(l

- Exp -
2.r)

-
x,

= 2
(
-

)"-' 2-" (2="
-

1) B^3?^l{2n)\ (2) ;

X (Exp X + Exp
-

ir)/(Exp x - Exp - x)
=

a-/(l
- Exp - 2x)

-
xl(l

- Exp 2x),

= 1 + 2 (
-

)"-' 2^" B„a?"j{2n)\ (3) ;

2.r/(Exp X - Exp -x) = 2.r/(l
- Exp -x)- 2x1{I

- Exp -
2x),

= 1 + 22 (
-

)" (2-"-'- 1) /;„ar"/(2«)! (4).

From these equations, we have at once

Tanh a: = 2
(
-

)"-> 2-" (2"'
-

1) BnX-"''/{2ny. (5) ;

X Coth a: = 1 + 2 (
-

)"-' 2=" Bnx"'/(2n)\ (G) ;

X Cosech a: = 1 + 22 (
-

)" (2*-'
-

1) B^ar"/{2n)\ (7).

•
Euler, l.c.
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If in (2), (3), and (1), we replivce x l)y tjr, we deduce

Tun X = Sa*- (2" - 1) BnX^-'l(2n)\ (S) ;

;rCotx = l-22»iB,ar"/(2n)! (9);

arCosecar=l + 22(2»-'-l)Zf.a*'/(2n)! (10).

Cor. Eiirh of thefunctions ( Tank x)', (x Coth x)', (x Cosech x)',

(Tan x)', {x Cot x)", {x Cvsic x)" can be expanded in an ascendimj

series ofpowers of x.

EXERCISKS XXI.

(1.) If 0=gdu (sec chap, xiix., § 31), show that

=
a,ii -<;,»' + <;,«'- . . .,

u= a,tf+a,^ + a,0» + . . ..

where a^+, = ^J(2fi + 1)!.

(2.) Find expressions for the coeflicicnts in the expansions of Sin'z and

COB»X.

(3.) Find recarrcncc-fonnolie for calcalating the coefficients in the

expansions of (xcosccj')* and (seci)*.

In particular, show that

Sec'i*+'x=
"

•^r^»+^p-i^iH->-»-- • •+ ^i^>n>-i +^»»p ^_^ (2p)I •(2n)l'

where 5, denotes the sum of the products r at a time of 1*, 8*, 5', . . . , (2p - 1)*.

(Ely, American Jour. Math., 1882.)

(4.) ir|z|<l, showthat

{l+x'){i. + x*)(l+z*) . . .ad cr =l + ±r"**'/(l-x')(l-x«) .. .(l-x'-).

(5.) If {x|>l, and p be a positive integer, show that

*,r,(x-l)(x'-l)...(x«-l)

(G.) Show that the Binomial Theorem for positive integral exponents U
a particular case of § 2, Example 3.

(7.) Show that

(l + iz)(l+x>r) . . . (l + i»»-»*)

_ m
(l-x*")(l-r'--')...(l-x^-»^») ,~

«::i (i-x»)(i-x')...(i-x*')
'^'^•

(Cauchy, CompUt lUndiu, 1840.)

(8.) Show that

(l-x»)(l-x'*)...(l-*"x)~ (l-x)(l-x»)...(l-«")

also that, if |x|<l, |ix|<l,

l/(l-xz)(l-x«j). ..ad 00 =l + Zx*««/(l-i){l--r*). . .(I-x*).

(Euler, Inl. in Anal. Inf., § 813.)
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(9.) If m be a positive integer (1
-

a"*) (1
-

x'"-') ... (1
-
x"*-"*') is exactly

divisible by (1
-
1) (1

-
x=) . . . (I

-
x").

{Gauss, Summatio quarumdam sericrum singulariuvi,

Werke, Bd. ii., p. 16.)

(10.) If/(..,,0 = l + ^(-)"
'^-(f.'g-;:;;;V.';;_y"'

.where |x|

>1, show that

/(x, m)=/(x, m-2X)(l-x'"-i)(l-x"'-S) . . . (1
-

x"'--''+>)

1 - x'"-! 1 - x">-- 1 - x">-5

1-X-l 1-1-3 1-X-S
Hence show that, if |x|<:l, then

1-x- 1-r* 1-3-5
l + 2x»(»+')/'=i-^.'-^.i—^ . . . ad «>.1-x 1-x' 1-x*

ad 00 .

(Gauss, lb.)

(11.) Show that, if in be a positive integer,

(l + x)(l + x2) . . . (1 + a"')
= 1 + 2a" ^^

"
"''"^

^\~,'!°""°1

" ' '

^},

~ "'

(12.) Show that

1

(1
-

l2j (1
-

X*) ... (1
-

X=")

(Gauss, lb.)

(1
-
X2) (1

-
i^j) . . . (l-x=^-iz)

„ Jl-a'^Xl-a""-") (l -x=>"+^-»)
"^ ^

(l-x-)(l-x^) . . . (l-a»»)
Also that, if |a|<l, and |2x|<l,

l/(l-x^)(l-x32) ... ad » =l + 2x"2»/(l-x=){l-x<} . . . (l-x=").

(13.) Show that, if |x|<l,

l/(l-i)(l-a3)(l-x5) ... ad QO =(l + x)(l+x=)(l+x3) ... ad x.

(Euler, I.e., § 325.)

(14.) If lx|<l,
+«

(1
-

x) (1
-

x=) (1
-
x=) . . . ad 00 = 2 (

-
)nxi'n'+'')l^.

(Euler, Nov. Comm. Pet., 1760.)

(15.) If |x|<l,

log)(l-x)(l-x=)(l-x') . . . nd oo}=-2j(H).c"/n,

where ^{n) denotes the sum of all the divisors of the positive integer n
; for

example, J(4)
= l + 2 + 4.

Hence show that

(Enler, lb.)

(16.) If d(n) denote the number of the different divisors of the positive

integer »(, and |xj<:l, show that

2d(n)x"=S= -.
1 1 l-a»

(Lambert, Essai d'Architectonique, p. 507.)
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Also that
m m /I + r<»\

(Clausen, Crelle'g Jour., 1827.)

(17.) I(|x|<l, show that

I i> _^ _jc_ «» J*

1-x l-x'"^l-x»" ~l + x»'^l+x*'^l + *«'^"
• •

(18.) Sj«"+'/(l-**'*')'=2nx"/(l-x*').

2(-)»-'nx»/(l + x") = 2(-)"-'x»/(l+i")'.

(19.) The sum of the products r at a time of x, x', . . . , x" U

x'tr*l««(xr+l_l)(jrM_x) . . . {x»-l)/(z-l)(x«-l) . . . (x"-'-l).

(20.) If Sf be the sum of the products r at a time of 1, *, . . ., x^', then

Sr='S,_,X-<»-'l(»-*T/».

(21.) Show that, if x lie between certain limits, andtherootsof ox' + fcx + c

be real, then {px + q)l{ax' + bx + c) can be expanded in the form u,+
S (i/,x* + t',z~*) ; and that, if the roots be imaijinary, no expansion of this

kind is possible for an; value of x.

ON THE EXl'KESSION OF CERTAIN FUNCTIONS IN THE FORM

OF FINITE AND INFINITE PRODUCTS.

g 5.] The following (Jeneral Theorem covers a variety of

cases in which it is pos.*ible to express a given function in the

form of an intinite product ;
and will be of use to the student

because it accentuates certain points in this delicate operation

which are often left obscure if not misunderstomi.

Let /(n, p) be a function {with real or inuujinary coefficifnti)

of the integrcU variables n and p, such that L f(n, p) is finitefor

all finite values of n, suiy L f{n, p) =f{n); and let us suppose

that for all vnln<'s of n and p {n<p), hmn'rer great, tfhich exceed

a certain finite value, [f(n, p) \/\f(n) \
is not infinite.

Then L n {1 +/(",;')l = n {1 +/(»)} (1).

provided 2|/(n)| be convergent {that is, providid IT {1 +f(»)\ he

absolutely convergent).

Let us denote fi {1 +/(«, p)\ by P,; L n {1 +/(n, p)\ by

P ; l/(n, P) i by y. («. p) ; and \f{n) \ hyf^n).
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We may write

P,= n{l+/{n,p)\ 11 {!+/(",/')},

= i^m§m, say, (2).

Just as ill chap, xxvi., § 26, we have

|ft„-l|>> n {l+A(n,2y)}-l.
n=ni+l

Now, by one of our conditions, if m, and therefore p, exceed

a certain finite vahie, we may put /i (n, p)/J\ (n)
= A„, where An

is not infinite. If, therefore, A be an upper limit to An, and
therefore finite and positive, we have/, (», /))4>vl/, (?j). Hence

|ft.-l|> n {l+AMn)]~l.

> n {l + AA{n)}-l, (3).m+l

Let US now put p= x> in (2). Since m is finite, and

^ /(«. i') =/{>')' ^TO tave

p=» 1

m
Therefore P= n {1 +/(;,)} Q,,. (4),

where Qm is subject to the restriction (3).

Let us, finally, consider the effect of increasing ot.

Since n (1 +/i (n)} is absolutely convergent, 11 {1 + A/j {n)\ is

absolutely convergent. It therefore follows that, by sufficiently

increasing m, we can make II {I + A/i(n)} -1, and, a fm-timi,
m+l

|Q„-1| as small as we plea.se. Hence, by taking m sufficiently

great, we can cau.se Qm to approach 1 as nearly as we please.

lu other words, it follows from (4) that

P = n{i +/(»)} (5).

In applying this theorem it is necessary to be very careful to see that both
the conditions in the fir.st part of the enunciation rej^ardiug the Talne of

f(n,p) are satisfied. Thus, for example, it is not sufficient that L f{n, p)
p=a5

have a finite definite value f(n) for all finite values of n, and that -/,(«) be
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absolutely convergent. This seems to be taken (or granted by many mathe-
matical writers

; bnt, as will be scon from a striking example given below,
sach an ossauiption may easily lead to fallacioas results.

§ 6.] Factorisation of sink pu, sink u, sinpd, and sin 6*.

From the result of chap, xu., § 20, we have, p beiug any

positive integer,

x^-l =
{x'- 1) ll'

(x'
- 2areos - +

l)
(1).

From this we have

—3—- = n
(
j:" - 2.r COS — + 1 ;a^-1 -A P y

whence, putting « =
!, and remembering that Z<(.r*-l)/(j:»-l)=;>,

we have

p = 2'-' n (1
- cos . htt/p) (2) ;

= 4'-' n sin'.«>r/2/> (3);
1

anil, since sin . ir/2/?, siu.^2v/2p, . . ., sin . (/>- 1) jr/2/> are

obviously all positive,

v/p = 2"-' n sin . nir/ip (4).

If wc divide both sides of (1) by a*, we deduce

3f-x-'' = {x- X-') n (x + x-' - 2 cos . nv/p) (5),

where for brevity we omit the limits for the product, which are

as before.

If in (5) we put ar = «*, we get at once

siuh pu = 2''"' sinh u U (cosh u - cos . nwfp) (6),

= 4'-' sinh u n {sin*.fi-/2p + sinh'. m/2) (7).

Using (3), we can throw (7) into the following form :
—

8inh/>M =p sinh m IT {1 + sinh'.
H/2/8in'.tnr/2/>} (8).

Finally, since (8) holds for all values of u, wo may replace u

by u/p, and thus derive

• The resnlts in §,5 f>-9 were nil (rivpn in one form or another by Enler in

bis IntToductio in Analyhn Infinilonim. His demonstrntionH of the funda-

mental theorems were not satinfactory, altlioui;h they are still to b« (uuod

unaltered in many of oar elementary text-books.
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smh «« = « smli - 11
-^
1 + - .-- '.-f-^ (0).

i' a=i l snr. mr/'2p)
^ '

Wo pliall next apply to (9) the general theorem of § 5.

pK'fiirc lUiiiig so, we must, however, satisfy ourselves that the

rc(iuisite conditions are fulillled.

lu the first place, so long as n is a finite integer, we have

J sinh" w/2j.) ti^

p=ocSm". M3r/2^J n'tr'
^

This can be deduced at once, for complex values of ?<, from

the series for sinh . ul'lp and sin . mrj^p. When u is real it

follows readily from chap, xxv., § 22.

The product n {l + u-jn-Tr) is obviously absolutely convergent.
We have, therefore, merely to show that, for all values of n and 2)

exceeding a certain finite limit,

siuh° . m/2/? / ii

sin'' . tnr/2p,
7—1 <A (11),

where ^ is a finite positive constant. That is to say, wo have

to show that

remains finite.

Now

u/2p A
sin . 7i-n-j2p\

nnl2p ~)

sinh . uj^p //sin
.
n-n-j'2p\

= 1 +
.

sinh . nj^p

uj2p

1
(:iL\

>\ +
3\\2p2J" (12).

Since the series within the bracket is absolutely convergent,
its modulus can be made as small as we please by taking p
sufticiently great.

Again we know, from chap, xxix., § 14, that, if 6:}>^(G x 7)

:^6'4S, and, a fortiori, if e:t>2jr, then

that is, if 6 be positive,

sin e/(9<t;l -!(/-.
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Now, since ti^p
-

1, mTJ'iplf \-r. Tliereforo

sin. nn/2p ^, i /'"^V
*!-*£fMr/2/>
"^

*V2;i/

<tl-g<-53 (13).

From (12) and (13) it is abundantly evident that the con-

dition (11) will be satisfied if only p be taken large enough ;
and

it would be easy, if for any purpose it were necessary, to assign

a numerical estimate for A. All the conditions for the ajjplica-

bility of the General Limit Theorem being fulfilled, we may make

p infinite in (9). Remembering that Lp siuh . u/p
=

«, we thus get

sinh « = u n (1 + u'/u-'ir') (14).

To get the corresponding fonnuhc for RinpO and sintf, we

have simply to put in (5) x = exp iO. The steps of the reasoning

are, with a few trilling modifications, the same as before. It will

therefore be sullieient to write down the main results with a

corresponding numbering for the equations.

p-i

8in;;6i
= 2'-' sin 6 Xl (cos

- cos . nx/p) (C') ;

ii-i

= 4'-' sin eil (8in'.Mir/2;>
- sin'. 6/2) (7').

sin|>e=j»sin 6a (1 -siu'.e/2/sin'.«jr/2;>) (8').

Bintf=»sin- II \l- . ,--- t (9)-
ji> „.i I sin'.HJr/2y>J

s\ne=e ini -eyn^T'i (u').
H-I

It should be noticed that, inasmuch as (f>), (7), (8), (9), and

(14) were proved for all values of «, re.-U and complex, we might

have derived (6'), (7'), (8'), (9), and (14') at once, by putting

u = i6.

Cor. 1. T/if foUowiuij Jiiiite products for siiijtO and sinJipu

should bo noticed :
—

J
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smpd = 2''-^sm6sin{9 + Tr/p)sm{d + 2Tr/p) . . ,

sm{0 + p-l-n-/p) (15);

5mhpu =
(-2i)''~^sm'hus\Tih(u + iir/p)smh.(u + '2iTr/p) . . .

sinh (u+p- Utt/p) (16).

The first of tliese may be deduced from (6'), as follows :
—

smp$ = 2^"' sin ^11 (cos 6 — cos. nv/p),

= 2P-' sin en {2 sin {mr/2p + 6/2) sin {mr/2p
-

6/2)},

= 2"-' sin 6n {2 sin {mr/2p + 6/2) cos {p-n-rr/2p + 61/2)}.

Hence, rearranging the factors, we get

smp6 = 2^-' sin ^n (2 sin {n7r/2p + 6/2) cos {mT/2p + 6/2)],

= 2"-^ sin 6 n sin (5 + nir/p).

We may deduce (16) from (15) by putting 6 = -iu.

Cor. 2. Wallis's Theorem.

If in (14') we put 6 = \t, we deduce

1 = irfl (1
-
1/2V) (17);

,
TT 2^^ 4= (2?«)'

Wlience - = ,—
-

. r—^ . . . r: h-j- r-, . . . ad 00
,2 1.3 3.5 (2m-1)(2«+1)
'

2 2 4 4 2n 2» , ,,„,=
r3-3-5---2;^^-2^rri--

•''^=° ^^^^-

This formula was given by "Wallis in his Aritlimetica In-

finitorum, 1656. It is remarkable as the earliest expression
of -IT by means of an infinite series of rational operations. Its

publication probably led to the investigations of Brouncker,

Newton, Gregory, and others, on the same subject.

§ 7.] Factorisation of cosp6, cos 6, coshpu, cosku. Following
the method of chap, xu., § 20, and using the roots of -1, we
can readily establish the following identity :

—

arP+lH
n(ar'-2^cos

^^""^^'^
+l) (1).

Putting herein «= 1, we get

2 = 2''n(l-cos.(2n-l)ff/2ij) (2);

=
4''Usin^(2H-l)7r/4^ (3).
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Ueace, since all the sine:) are positive,

^2 = a'n sin . (2n
- 1 ) njip (4).

From (1),

jJ + a;-"= n (a:
+ a;-' - 2 cos . (2n

- 1 ) jr/2;;) (5) ;

whence, putting a: = Expt5, we deduce

cospe = i . 2''n (cos e
- cos . (2»

-
l) 7r/2^>) (C) ;

=
i . .fn (siu\(2H

-
1) 7r/4;,

-
siii'.e/2) (7).

From (7), by means of (3), we derive

Ltispe=U. (1
-

sin'.6'/2/8in'.(2M
-

1) ir/ip)

From (8), putting 6/p in place of 6, we get

sin'.tf/2p
cosfl= n n- -.-j-T^

—
-,\-^7-\

,-1 I sill'. (2« -
1) njAp]

(8).

(9).

For any finite value of n we have

. sin'.g/2;> 40*

p.. sin'. (2h
-

1) 7r/4;; (2»
-

Xf-n'

Also the product U (1 + 46''Y(2h
-

l)'7r') is absolutely con-

vergent.

Moreover,

I
sm.Ojip

ej2p

(12);

80 that
I
sin . 6/2pl0l2p \

can be brought as near to 1 as we plea.se

by sulliciently iiicreiising/>.

Also, since (2h
-

l)5r/ly):^j7r, we have, exactly as in !a'<t

paragraph,

(13).
6m^(2n-l)j/4p .

(2n-l)^/4p^^^^

We mayi therefore, put p=co in (9) ; and we thus get

coaO= I'l {l-4</V(2«-l)V'} (14).
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In like mauuer, putting ar = g" in (5), we get

cosh^M = i . 2'' n (cosh « - cos . (2«
-

1) Tr/2p) (6') ;

n=I

= i . 4" II (sin' . (2«
-

1) n/ij) + sinh' . «/2) (7').

coshpu = n (1 + sinh' . M/2/sin . (2»
-

1) 7r/4/i) (8').

,
p

f, sinh\w/2/> ) ,„,,coshM= n
-^1

+ .
,
—frVr r (9)-

cosh » = n {1 + 4«7(2h - 1)= ir=} (14').

We might, of course, derive tlie hyperbolic from the circuhir

formulse by putting 6 = iu.

It is also important to observe that we might deduce (14)

from the corresponding result of last paragraph, as follows :
—

From (14') and (17) of last paragraph, we have

^'^'=^"{rT/(2«)=}'

TT t(2»-l)7r'(2«+l)ffj

Hence, putting lir-6'm place of 0, we deduce

cosf^--—
U|~-^2„_i)^

•

(2« + 1)^ J'

=
(1
-

2e/7r) n {(1 + 2e/(2»
-

1) tt) (1
-

26i/(2?« + 1) tt)},

=
(1
-

26/77) (1 + 2^/7r) (1
-

2^/377) (1 + 26/377) ....
Written in this last form the infinite product is only semi-

convergent, and the order of its terms may not be altered

without risk of clianging its value
;
we may, liowever, associate

them as they stand in groups of any finite number. Taking
them in pairs, we have

cos (9 = (1- 40^/77=) (1- 46^/3V=) . . .,

= n{l-46-/(2»-l)V}.

§ 8.] From the above results we can deduce several others

which wiU be useful presently.

c. II. 23
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We Imve, since all the iirodiu-ts involved arc absolutely

couvergeut,

sin (0 + «^) ^
e + ^ U{ l-(g-t

-

<i>fl>'''f^

sinfl
~

e UII-^/m-V}
•

provided fl + 7i7r.

Hence, provided O^tfr,

cos <^ + sin <^ cot e =
(l

+
^)

II

{l
-
^^43 ^' )•

In like manner, starting with cos (0 + <>)/cos tf
, we deduce

cos * - sin <^ tan <> = n
{1

- 4
^.~^tff_^^)

(-').

provided tf + H2» -
1) T.

Also, from the identity

sin «^
+ sin 6 _ sin |(</» + 0) cos A («^- 6)

sin 6
~

sin JO cos i^
*

we derive

1 + cosec 6 sin <^

-(^^±\ n r<l
-

('/'
-> g)V4>»^^l {1 -(</.- g)V(2» - D^ir'n

=(-i)"{'-'4?f;*'} <*

provided 64= nn-.

A great variety of other results of a similar character could

be de<lucc(l ;
but these will sulhce for our purpose.

§ 9.] Before leaving the present subject, it will be instructive

to discuss an example which brings into prominence the ueccjs-

sity for one of the least obvious of the conditions for the applica-

bility of the General Theorem of § 5.

We have, being neitlicr nor a multiple of r,

a* - 2j* cos e + 1 = {j*
-

(cos (? + 1 sin 0)\ {j*
-
(cos 6

-
1 sin tf)}.

The pi\\ roota of cos d + 1 sin fl are given by

COB . (2n7r + tf)/;;
+ I sin . (2Mn- + <>)//>,

n = 0, 1, . . ., p-\ (1).

The j)i\\ roots of cos 0-i sin 6, that is, of cos (-<?) + i

8in(-e), by

cos. (2Hir-0)//^+« sin. (2«n^ -*)//>, M = 0, 1, . . ., ])-\ ('.').
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Since cos . {'2inr
-
6)/p

= cos . {2 (p -n)-n- + 0\lp,

sin . (27jjr
-

0)Ip
= — sin . {2 {p -n)Tr + 6\lp,

(2) may be replaced by

COS. {'imr + 6)lp-i^n\.{2,mr + 6)lp, « = 0, 1, . . .,p-l (2').

We have, therefore,

arP-2a*cose + l

=
{x"

- 2x cos .6lp+\)n {or
- 2x cos . (2«:r + e)lp + 1 } (3).

n=l

Since cos . {2mr + 6)lp
= cos . 12 {p -n)ir- 6\lp, wo may, if^ be

odd, arrange all the factors of the product ou the right of (3)

in pairs. Thus, if ^ = 2q + 1, we have

a;*2+a_2a;28+icos6i + le

(a?-ixcos-^ +l\h{ (•^^-2^cos.(2«^ + e)/(2.y+l)+l)|
\ar ix cos

5^ + ^
+

^)liA>^ {or
- 2x cos . (2«7r

-
0)li2q + 1) + 1)1

(4).

If we now put x=l, we get

2nir + . „ 2«ir-

4g' + 2„'^ir'"'
'

iq + 2
'

iq-

If we divide both sides of (4) by x^*^, and put x = Ex^i<l>,

we deduce

2 (cos (29- +!)</) -cos 6)

=
2'^+'{cos <^

- cos . e/{2q + 1)} n {cos .^
- cos . (2?«7r

+
e)/{2q + 1)}

(6),

where the double sign indicates that there are two factors to be

taken.

Transforming (6), and using (5), &c., just as in the previous

paragraphs, we get, finally,

cos <#>
- cos

- 2 ^mne h - !H'LMii±2)l ^ f,
sm\<i>/{4q 4-2)

I- ^ siu JP
|i g.^, _ ^^^^^ ^ 2)J„ii l^ sin= . (2«7r ± 6»)/(4<? + 2)J

(7).

Since n:!f>q, (2n-!r±6)/(iq + 2):!^{2qTr±6)/{4q+2); and the

limit of this last when 5-= 00 is ^tt. Heuce, by taking q large

enough we can secure that {2mr±6)/{4:q + 2) shall have for its

23—2

4.sm-- = 4-«+'sm- -n^sur. -sin-.— -} (5).
2 4g + 2„=il 4(7 + 2 4g + 2j

^ '
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upper limit a tpiautity wliicli diO'cni from Jr by as little as

we please; aud therefore (see § 6) that sin. (2nir + e)/(4g + 2)/

(2nir±d)/{4q + 2) shall have for its lower limit a quautity uot

less than "58.

We may, therefore, put g - «
, &c., in (7). We then get

cos<^-cosd = 2siu'Jtf(l-<^76f)n{l-0»/(2«7r + e)'} (8),
n-l

that is,

cos 4>
- cos

Putting <p
= iu in (8), we deduce

cosh U-C08 tf = 2 sin' A« (1 + u'/9') n {1 + «V(2n» + df, (9).

The fonnula (8) might have been readily derived from those

of previous paragraphs by using the identity cos <^
- cos tf

= 2 sin J (^ + '^) s'" i (^
~
^) and proceeding as in the latter part

of § 7.

Itenuirk.—At first sight, it seems as if we might have dis-

pensed with the transformation (4) aud reasoned directly from

(3), thus—
From (3) we deduce

p-i
2 (cos;^0

- cos 6)
= 2' (cos <^

- cos . 0/j>) 11 {cos ^ - cos . (I'/iir + e)/p\.

Hence

cos ^ - cos d

= 2 sin' Je fl
-
«!";t/-n u7l - _!i5l^*/?P_l

Put now p ^
<x>, &c, aud we get

cos ^ - cos e - 2 sin' i e
( 1
-

^'/^') fl
j
1 -

.j!,'/(2»ir + 6)').

This result is manifestly in contnuiiction with (8), although
the reasoning by which it is established is t\w s;iniu as that often

considered sutlicieut in such coses.
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In point of fact, however, the condition of § 5, tliat

M=fi{n, p)/fi(n) must remain finite wlicn n and p exceed certain

limits, is not satisfied.

lu the present case the upper limit of {2)i7r
+ 6)/2p, namely,

{2 (p
—

1) 5r + 6}/2p, can be made to approach as near to ir as we

please. Hence iu this case 31 may become infinite. We have,

in fact,

^^1 ^m.{4>l2p)l{^lip) \

I
sin . (2??7r + e)l'2pj{2n-7T

+ 6)/2p

hence, if we give n its extreme value p — 1, and put p= cc, M
becomes infinite. No finite upper limit to the modulus M can

therefore be assigned ;
and the General Theorem of § 5 cannot be

applied.

This is an instructive example of the danger of reasoning

rashly concerning the limits of infinite products.

Exercises XXII.

(1.) If (1 + irja) (1 + ixlh) (1 + ixjc) ... = A+iB, then

2 tan-' (.r/«)
= tan-' (BjA).

Hence show that S tan->(2/n2) = 3ir/-l.
1

(Glaisber, Quart. Jour. Math., 1878.)

(2.) Find the n roots of

"("-3).„-4_x''-nx''-»+
2j

(
_

j,
«(«-r-l)(n-r-2)...(n-2r+l)

^„_,, ^ _

(,S.)
If n be an odd integer, find the n roots of the equation

x+—
gpar'

+ 5——
5!

'^'^
y,

' 'x'+- .=a.

(1.) Solve completely

x''+ „CiCOsax''~' + „C„cos2ax"--+ . . .+cosna= 0.

(Math. Trip., 1882.)

(5.) The roots of

s»sinn9-„C,s»-isin(H(7 + c^)+„C„x»-2sin(?ie + 20)- . . .=0

Rra given by x= sin [d + (p
~

k-!rln)cosec (0- liirjn), where /i = 0, 1, . . ., or

I! a= vj'2p, prove the following relations:—

(6.) J)
= 21^' sin 2a sin 4a. . .sin (2p

-
2)o;

l= 2i>-'siuo sin 3a. . .sin(2j)- l)o.
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(7.) VP=''^'^'"'""''08 2o. . .cos (p- l)a.

(8.) l = 2P-'siD.a/2 6in.3o/2. . .8in.(2p-l)a/2;

= 21^' coa . o/2 COS . 3o/2 ... cos . (ip
-

1) o/2.

(0.) Binpe=2P-'(!in<»8in(2a + 0)sin(4o + tf). . . sin {"ip
- 2a + e);

COBp9= 2'^'Bin(a + (?)8in(3a + e)Biii(5a + tf). . .sin (2;>
- la + fl).

(10.) tan p(? = Ian tan (ft + 2a) . . . tan(0 + (2p- 2)o), wlierep in odd.

(
U

.)
ten « tan (fl+ 2o) . . . tan (9 + (2/»

-
2) o)= (

-
1)''/», where p is even.

(12.) Show that tbo modulus of

C08(ff+ t»C08(e + i>+ r/p). . .coB(9 + i> + {p-l)»/p)

is {co8h/)#-c03(pir + 2pe)}/2»*-i.

(13.) If n he even, show that

• »" / ,„flo.-. * * + 2»- e + ir ff + (2n-2)»-
Biu' -: = (

- )»/>2"-' COB - COB COS . . . COB ^
,

2 ^ n n n n

(14.) Show that ri(l + 6ec2"(?) = ten2»fl/lan9;

and evaluate

"

fl

jll^/''^'j
.

(15.) Show that

\l
(l-4sin'

-
j
= coBO;

and write down the corresponding formoUB for the hyperbolic fanctions.

(Laisant.)

Prove the following resnltB (Ealer, Int. in Anal, Inf., chap, a.):—

no '^+'^'-n fi, 4(fc-c)x+4x' 1
.

''"-'^ = /l + ifL^ „ |l + *ibzAf±±'2 \

*»-«• V 6-cr r (2")'ir>+ (6-c)'r

C08hy + coBhc_„ j, , J=2^;/ + y« )
' '

l + coshc
~

t ^(2h-1)»ip»+c-4
•

coshy-coah c_ / y'\ „ /i *2q/ + y'l
1 - cosh c

~
V c'/ I (2n)* T»+ c»[

'

Writ«>down thooorroBpondinK rorniiilio lot Iho circular function*, and dnliiM

them by trannroriuulion fruni § U.
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C08^+C03 g L 0^ )

'^^•' 1 + C03 9 -"} {(2n-l)ir±e)H-

(19.) cos,^ + tanpsm«=n
j(l

+
^2ir=lt^ ('l-^'J-^^)}.

Bin (e*
-

1

(21.) Show that

cosh 2v - cos 2u= 2 («2+ 1-')
H

j

'"'^

^g*^, f 5

„ (((27i-l)7r±2a)2 + 4r=)
cosh2o + cos2M=2n

y^ (2n-lpT^ ('

( 4u*)
C03h2u-00B2u=4u'II a+^4~4> ;

( 2*u*
I

cosh 2u + cos 2« = 2n <1+
.., _ ^^4y4(

•

(Schlomilch, Handb. d. Alg. Anal., chap, xi.)

(22.) Evaluate
n(,-^^j35^J.

(2.S.)
U tn-=log (l + x/2), show that

EXPANSION OF THE CIRCULAR AND HYPERBOLIC FUNCTIONS

IN AN INFINITE SERIES OF PARTIAL FRACTIONS.

§ 10.] By § 8 we have, provided 6 + ^{2n-l) ir,

200 + <^=

cos - sin <!>
tan 6 = H

{l
- 4

(,,_,).^_,gj
(D-

Now, referring to § 2, Cor. 2, we have here

«„' = 8
(2h

- 1)V - 46;Jl'^l
+ 4

1

,<^' + ,

(2»
-

l)'w=
- 46

4

1*1'.

<^".

I (2»
- 1)V - 46'=r

*
|(2»

- 1)V - 46'=
I

where 6' =
1

6
1, <^'

=
| c^ |.

It follows, therefore, that the product

in (1) may be expanded as an asceudmg series of powers of </>.
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Expaiuling also on tlie left of (1), we have

+ 1 6 (26* + <^')' :S

|(2«-l)'«»-4e'}{(2«-l)'7r»-4^1
(2)-

Since the two scries in (2) must bo identical, we have, by

comiiavin^ the coefficients of <^,

*""^ =
«^! (2;.-l)'^-4^

(^)-

This series, which is analogous to the expansion of a rational

function in partial fractions obtained in chap, vni., is absolutely

convergent for all values of except Jir, ^n, Jn-, . . . It should

be observed, however, that when lies between J (2n
-

1) t and

i (2n + 1) IT, the most importAiit terms of the scries are those in

the neiKhbourhood of the wth term, so that the convergence

diminishes as increases.

We may, if we please, decompose 8^/{(2n- l)V-4^} into

2/{(2«
-

1) TT - 26)
-

2/{(2rt
-

1) IT + 261, and write the aeries (3)

in the semi-convergent form

2 2 2 2
taa6 = -

20 IT + 26 3ir - 26 3ir + 26

2 2

5n- - 26 r>n + 26,^
+ ... (3').

In exactly Ihe same way, we deduce from (1) and (3) of § 8

the following ;
—

6cot6=l-26'S ,-^-5 (4),

or

6 6 6
6 cot 6 = 1 .+ -. - 2 + ,r a

+ r,
—

. . . (4 ).

3r-6 37r+6
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provided ^4=t, Stt, Sir, . . .
;

and

cosec = 1 + 2^- S-^rP"^l ('"').

or

.3 /) 1
^ ^ ^ ^

6 cosec t' = 1 +
j; 2,

~
"^ a + S a

provided 5 =f= -, 2t, 3^, .

_« 6__

We might derive (4) from (3) by writiBg (Itt-B) for 9 on

both sides, multiplj'ing by 6, decomposing into a semi-convergent

form hke (3'), and then reassociating the terms in pairs ;
also

(5) miglit be deduced from (3) and (4) by using the identity

2 cosec = tan ^6 + cot ^0.

When we attempt to get a corresponding result for sec 0,

the method employed above ceases to work so easil}' ;
and the

result obtained is essentially different. We can reach it most

readily by transformation from (5'). If we put (5') into the form

,111 1 1
cosec p = :5 + 7. n

~
r: o +6 TT-O TT + e 27r-6l -iTr + d

1

iir-e Srr + e
' " "

which we may do, provided 5 + 0, and then put Jtt-^ in place

of 6, we get

2 2 2 2
sec Q = -7; + -

_2e 7r+2t> 3^-20 37r+25

2 2_ _ . ,.

^5ir-2e'^5^ + 2^
• • • ^^'

or, if we combine the terms in pairs,

sec e = 42 C - ^"-' (gj
-

1) ^ ... /gNsecp 4-.( ;

(27»-l)"-7r'-4e»
^*'''

where 6 =t= \Tr, fir, \-k

The series (G), unlike its congeners (3), (4), and (5), is only
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simii-convergent ; for, when n is very large, its nth term is com-

parable with the Hth term of the series 21 /(2n
-

1).

We might, by pairing tlie terms differently, obtain an abso-

hitely convergent series for sec 0, namely,

but this is essentially clifTorent in form from (3), (4), and (5).

Cor. 1. The sum o/all the products two and two of the terms

of the s<'ries 21/!(2«-l)'7r^-46'} is {tan
-
e)jVi8e*; and the

like sum for tite series il/lH':!^
-

^^} is (3
- ^ - 3fl co< e)/8^.

This may be readily established by comparing the coefficients

of <^' in (2) above, and in the corresponding formula derived from

S 8 (1).

Cor. 2. The series 21/{(2»- l)=5r'-4^}' converges to the

value (6 tan' e- tan 6 + 6)/640'; and 2l/(H'ir*-ff')' to the value

{&' cose<? 6 + 6 cot 6- 2)/i0*.

Since the above series have been established for all values of

6, real and imaginary, subject merely to the restriction that

shall not have a value which makes the function to be expanded

intinite, we may, if we choose, put 6 = ui. We thus get, inter aiia,

tanh M = 8«2l/{(2n
-

lY^r' + 4t<'i (8) ;

ttcoth«=l+2M''2l/{n'ir' + M'} (9);

u cosech M = 1 - 2h'2
(
-

l)"-'/{n'>r' + «'} (10) ;

sech « = 42 (-)"- (2n
-

1) T/((2n
-

l)'7r' + 4H'} (11).

EXPRESSIONS FOR THE NUMBERS OF BERNOULLI AND EULER.

RADIUS OF CONVEUfiENCY FOR THE EXPANSIONS OF

TAN ^, COT^, COSEC d, AND SEC^.

§ 11.] If |0|<»r, then every term of the infinite scries

20'/(n'ir'
-

e*) can be expamlcd in an ab.solutely convergent scries

of ascending powers of 6. Also, when all the powers of are

replaced by their moduli, the series arising from l/(»''r'
- ^)

will simply become l/{n^i!'~\0\'l, whicli is positive, since \0\<'-

The double scries
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« r 6= (/•• e-'" 1

thorofiire satisfies Caiich)''s criterion, and may be arranged

according to powers of 6. Hence, if

<r,„=l/P"'+l/:i'^"' + l/3="'+. . . (1),

we have, by § 10 (4),

6'cot6l = l-2261V(MV"--e'),

= l-2So-,„e="'/^"™ (2).

Since o-2m(<o'2) is certainly finite*, the series (2) will be

convergent so long as, and no longer than, 6<-ir.

Now, by § 4 (9), we have

6 cote = 1- 22-"'/?„.e^"'/(2»i)! (3),

provided 6 be small enough.

The two series (2) and (3) must be identical. Hence we

have

^ 2(2m)!<r,„. ^ 2(2»^)! fill 1

"
(27r)='" (27r)-"' Ip™

"^

2="" 3="' •/
^ ''

§ 12.] If, instead of using the expansion for OcotO, we had

used in a similar way the expansion for tan 6, we should have

arrived at the formula

Bm = 2(2?w)!

(1
-

1/2="') (2:r)" ll^"" 3="" 5="*
' '

")

This last result may be deduced very readily from (4); it is,

indeed, merely the first step in a remarkable transformation of

the formula (4), which depends on a transformation of the series

o-m due to Eulert. We observe that the result of multiplying

the convergent series a-^m by 1 - 1/2"'" is to deprive the series of

all terms whose denominators are multiples of 2. Thus

(1
-

1/2='") <r2„
= 1 + 1/3='" + 1/5='" + . . . .

•
It may, in fact, be easily shown tliat La;^=l when m=a); for, by

chap. XXV., § 25, we have the inequality l/('2m- l)>l/2^' + l/:!-"' + l/4^
+ . . .>l/(2m-l)2™-', which Bhowe that /-(l/2-'"+ l/:!2'"+l/4-'"'+. . .)=0,

when m= « .

t See Inlrod. in Anal. Inj., ^ 2S<i.
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If we take the next prime, namely 3, and multiply

(l-l/2'")<r„ by 1-1/3™, we shall deprive the scries of all

terms invohnng multiples of 3 ; and so on. Thus we shall at

lost arrive at the equation

(1
-

I/a'") (1
-

1/3»") (1
-

1/5=") ... (1
-

!/;>*") <r«
= 1 + l/g«- + . . . (G),

where 2, 3, 5 p are the succession of natural primes np to

p, and q is the next prime to p. We may, of course, make q
as large a.s we please, and therefore l/q^+. . . (which is less

than the residue after the y— 1th term of the convergent series

o-j„) as small as we please. Hence

a-„= 1/(1
-

1/2"") (1
-

1/3'") (1
-
1/5*) . . . (7),

where the succession of primes continues to infinity. Hence

5„ = 2 (2»»)!/(2>r)'" (1
-

1/2'") (1
-

1/3*") (1
-

1/5'") . . . (S).

§ 13.] Bernnulltn Numhcrs are all j>f>.<i!(if^ ; th/y increase

after B^; and have oo for an tipper limit.

That the numbers are all positive is at once apparent from

§ 11 (I)- The latter part of the corollary may also be deduced

from (4) by means of the inequality of chap, xxv., g 2.'). For

we have

l/(2m-l)>l/2'"+l/3*" + l/4*"+. . . >l/(2w-l)2'"
'

(9).

Hence

^„+, ^ (2OT + 2)(2OT+l)crM..n

B, (2:r)V„

^
•

(2/» + 2)(2OT-H){l-t-l/(2w -t- 1 ) 2*"^'}^ '

(2»-)''{l + l/(2»»-l)}

"

^(2w)'-l^ W
Hence 77„+,/5„>l, provided n>^/(T*+^), that is, if

w>316. Now lh>B,, hence B,<Bt<Bt< . . ..

Again, it follows from (9) that A<t,„ = 1 when m = oe
, and

Z(2OT)!/(2n-)'" is obviously inrmitc
;
hence LB^ is infinite.

Cor. //„/(2m)! ullimntely dtrreasfs in a (fi'omffriral }tro-

gressitin hunngj'ur its common ratio l/4ir'. From which it/olU>ir$
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tiat the series for tan 9, 6 cot 6, and OcosecO, given in § 4, have

for their radii of convergence 6 = iir, tt and t- respectively.

§ 14.] Turning now to the secant series, we observe that

42 (
-

)"-' (274
-

1) 7r/i('2«
-

Ifrr'
-

461^} does not, if treated in the

above way as it stands, give a double series satisfying Cauchy's

criterion, for, although when
|

^
|

< |ir the horizontal series are

absolutely convergent after we replace 6 by |6|,yet the sum

of the sums of the horizontal series, namely, 42 (-)""' (2«
-

1) t/

{(2h- l)"?r--4|^|"J, is only semi-convergent. We can, however,

pair the positive and negative terms together, and deal with the

series in the form

f (In-S)^ (in~l)7r
1*

l(4«-3)V-4e» (An-lfTT'-m
^ ^'

o ,. (4»
-

3) (4»- 1)77^ + 46'
,,,,that IS,

^""-{(^i^^rff^i^^WHIM^l^f^i^^^W}
^^^^-

Since (11) remains convergent when for 6 we substitute

\6\, it is clear tliat we may expand each term of (10) in as-

cending powers of 9, and rearrange the resulting double series

according to powers of 0. In this way we get

/I _ . V r ;- f
1 1 ]-i 2-'"ff^

^^^ ~
%i« L..-1 1(4«

-
3)='"+'

~
{in

- ir+'j] 1^^ '

= 2 2="'+=T^+.e^"/'^"'+' (12),

where t2,„+i=1/1="'+i-1/3™+'+1/5="'+'-. , . (13).

Comparing (12) with the series

sec6»=l + 2£'„^"/(2m)!,

obtained in § 3, we see that

2''""(2m)!r,„^.

(2\2m+I

/J 2 I
•

-) li^^TH-giSiiri+SSi^x--
•

•}
(14),

which may be transformed into

E^ =
2(2,„)! gPy(l .

^i^.) (l
-
^i^.) (l

.
^.i)

. . .

in the same way as before. (15)*.

• See agaiu Euler, IiUrvd. in Anal. Inf., § 284.
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Cor. 1. Etder's numlurs are all positive; thry omlinually

increase in vutijiiitude, and liave injinity for their upper limit.

For we liave

l>T3^+,>l-l/3*^> (IG).

Heuca
E„-n _ (2m + 2)(2«+l)4T»+,
H- ir^T,m-fi

{-2m + 2){2m + 1)4(1- X/S-"*')>
:^

.

But this last constantly increases with m, and is already

..'leater tlian 1, wlieu »»=1. Hence E,<L\<E,<. . . Also,

from (16), we see that Ltm+i = 1 when m = «, and

Z,(2OT)!(2/7r)'-^'
= ao, hence LE„=x.

Cor. 2. Em/{2m)\ ultimatelif decreases in a geometrical

progression whose common ratio is 4/^*. Hence the rrnlius of

convergence of the secant scries is 6= Sir.

§15.] Wehave, by§ll (4),

1 1 1 021M-I D

and hence

' - JL JL JL / l\2"'-'/?«

T^ (2) ;

and

2 (2m)

111 ^, 2\2™-'//„^,
1 - -^1— "ir-

2»>' (2w)!
'» j« 2'" 3"-

• •

\* 2"y (2w)

^(^-'-1)5.
(2».)!

Again, from (14) of la.st paragrajjh

(3).

__i L_+_i__ - _^ V-.+I (u
'"+'~l«'«+i 3»"+' 5"+'

•

~2'"+'(2ni)!
^''

* Tho rcinnrkablc suiuiniitinns involved in t)io formulm (I), (2), (3) wen
discovcroJ iiiilopcndcutly by John liuruoalU (occ Op., t. iv., p. ID), and by
Euler {Cumin. Ac. Ptlrop., 1740).
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Inasmuch as we have iiidepeudent means of calculating the

numbers Bm and £"„,, the above formula; enable us to sum the

various series involved. It does not appear that the series (^^,,,+1

can be expressed by means of Bm or £',„; but Euler has cal-

culated (to 16 decimal places) the numerical values of a-^m-vi in a

number of cases, by means of Maclaurin's formula for approxi-

mate summation*. As the values of o-„ are often useful for

purposes of verification, we give here a few of Euler's results.

It must not be forgotten that the formulce involving ir for o-^

are accurate when m is even ; but only approximations when

m is odd.

<r2= 1-6449340668 .
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The corresponding fonniiltc for cos aro

log cos fl = - 2 (2=»
- 1 ) <r.„. (P^lvi^' {'>);— 2'.>""-' (2'"

-
1) D„e'-'lm (2m)! (2').

Till- like fonniilu; for log t:in 0, log cotO, log siiili u, log cosh «,

&c., can be derived at once from the above.

If a table of the values of o-j„ or of //,„ be not at hand, the

lirst few may be obtained by expanding log (sin OjO), that is,

log(l -673! + tf*/5!
—

. . .), and comparing with the series

-'^<T^ff""lmir^, For example, we thus find at once that

stikijng's theorem.

§ 17.] Before leaving this part of the subject, we Fhall give

an elementary proof of a theorem of great practical importance

which was originally given by Stirling in his Methodus Differen-

tialis(ll-M).

]l'/icii n is very great, n\ approaches equality with J(2mr)(n/e)*;

or, more accurately, when n is a lurge number, we have

«! = ^/(2IrH) («/c)''exp {1/12« + e\ (1),

where -
l/2i«'<e< l/2i« («

- 1 ).

Since log {«/('*
~

1)1
= ~

^"o (1
~

!/'')< we have

,
7) 1 1 1 1 I

^ M - 1 M 2/r 3«' 4«' mw "

We can deprive tliis expansion of its second term by multi-

]ilying by n - i. We thus get

,,,,», 1 1 m - 1

(tt
-

A) log
—

I = 1 + r.i J + , .."1 + • • • + a
—

7 rr~m + • • • •- "h-I 12h' 12«' 2wi(»»+l)»"

Hence, taking the exponential of both sides, and writing suc-

cessively H, M — 1, H-2, . . .,2 in the resulting cijuation, wo

deduce

/ n V'-* /, 1 1

\7«- 1/
'
\ 12n' 12;i

w -
1 \

*
2m (m+1) «"*"

•

7'
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/«-l\''-i-4 /, 1 1

m-1 \

m-\ \
*
2}n{m+l){7i-2)"''^'

'

')'

/3\3-J /, 1 1

33
+ . . .

m-1 \
"^

'2)» (ot + 1) 3""
"*"

')'

/2\2-i / 1 1

"^

2»i(7« + l)2"''''' 7"
By multiplying all these together, we get

nz — 1 „, 1

where S',^ = 1/2"' + l/S"" + 1/4"" + . . . + l/w".

Now

-»'„ = /S„
-

l/(« + ir - l/(« 4-
2)-"

-
. . . (3),

where S,„ = 1/2"" + 1/3'" + . . . + l/»i"' + ... ad 00 .

By the inequality (6) of chap, xxv., § 25, we have

1/(ot
-

1) «"-'> l/(;i + 1)'" + l/(« + 2)-" +...>!/{?« - 1) („, + i)>"->.

Heuce

-S'„- l/{m
-

1) {u + !}"'-'>S-^>S„- lj{m-l) «"-».

Therefore

i2*'»^l2^''"'-' •^2J(^+1)'^'"'+---

•^2W2(?«+1) "2 m (to + !)«*""'
^''

-2 7n(/n + l) ^2 ?«(/« + 1)(«+ 1)"'-'
^'•

c. 11. 24
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Since ('^„<l/(m- 1), the scries 2(m -
l)iS'„/m (»» + 1) con-

verges to .1 finite limit which is independent both of m and of n.

Again,

S 1

(c);
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Hence, putting

(7=exi,{l-ji(^^4 (11),

so that C is a finite numerical constant, we have

n\> Ce-n^i exp (i
-
^,) (12),

< Cfe-''w"H exp (~ + 1 -^ (13) :

or, since the exponential function is continuous,

«! =
(7.-»«"+iexp(jl-^+e) (14),

where -l/24«-<e<l/24n(re-l).

Hence, putting »i = qo on both sides of (14), we have

Z»i! = CZe-"m"+5 (15).

Tiie constant C may be calculated numerically by means of

the equation (11). Its value is, in fact, ^/(27r), as may be easily

shown by using Wallis's Theorem, § 6 (18).

Thus we have, when « = 00
,

IT 2"'(w!)'(2?t+l) ^ J
2^'' («!)*(2»+l)

2 P3V . . (2w+l)^ {(2«+l)!p
•

Hence, using (15), we get

'^ = (^T
2"'^~"»'"'^' (2» + 1)

2 e-'"-''(2a+l)«+»
'

^ c;^
, e»

4 {(l + l/2?i)-T{l + l/2n}-'

~
4V'

Therefore, since C is obviously positive,

e=V(2-) (16).

Using this value of Cin (14), we get finally

w! = 7(27r») {njef exp {1/12» + 0]* (17),

where -
l/24n'^<0< 1/24h («- 1).

* An elementary proof that Ln\ = LJ(2im)(nje)'^ was given by Glaisher

(Quart. Jour. Math., 1878). In an addition by Cayley a demonstration of

the approximation (17) is also given ; but iuasmucb as it aasames that series

24—2
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Cor. By combining (11) and (16), tw dedure that

where 5,= 1/2"+ 1/3- +1/4" + . . . ad ».

Exercises XXIII.

(1.) Show that, when |i|>t, f cotz can bo cipnndcd in the form

il,+ 2(7?,x-"+C,x"); and determine the coeOicients in tlie particnUr esM
where ir<i<2r.

(2.) Show that the snm of the prodacts r at a time of the tiqnares of the

reciprocals of all the integral nambers is w'/ISr+ l)!; and find the like sam
when the odd integers alone are considered.

(3.) Sam to n terms

tan9 + tan (9 + r/n) «• tan (0 + 2T/n)-t-. . .;

tan»tf + tan»(e + r/n) + tan'((? + 2T/n) + . . . .

Snm the following:
—

(4.) 1/(1« + j^ + 1/(2' + x») + 1/(3' + i») ....
(5.) l/x'-l/(x>-T^) + l/(i>-2'x')-- • •

(6.) l/x + l/(z-l)+l/(x + l) + l/(x-2) + l/(r + 2) + . . . .

(7.) 1/(1 -«) + 1/(1-') + 1/(9-') + - • . + !/(«' -f) + . ..

(8.) 1/1. 2 + 1/2. 4+1/3. 6 + 1/4. 8 + . . . .

Show that

(9.) (ir'-6)/6= l/l».2 + l/2'.3 + l/3>.4 + . . . .

(10.) T/8-l/3 = l/1.3.6-l/3.S.7 + l/5.7.9-. . . .

(11.) If /r (n) be an integral function of n whose degree i* r, Rhow that

—/r (')/(^'>
-

1)*** can be expressed in terms of BcmouUi's nombera, proridod

r > 2m - 2 ; and 2 (
-
)"-'/r ('')/(2''

-
l)*"'*'' in terms of Ealer's nnmbcrs, pro-

vided r J»2m - 1.

In particniar, show that

1 1 + 2 1 + 2 + 3 »»/, ir>\

(13.) Show that

Sl/(«i-+«)«=oo8ec>#;

2 l/(n» + «)*=oosec*9 - } eoitt?0,

11=0 being incladcd among the valaes to bo given to n. (Wolslenholme.)

of the form of 1/2" + 1/3"+ . . . can be expamled in powers of 1/m, it cannol

be said to be elementary. The proofs nsuallr given by means of the Mio>

laurin-iom-fonnola are nnsatisfactoty, for they depend on the oae of a seriee

which does not in grnenil convergn nhen cnntinned to infinity, and which can

only b« used in cuujanctiou with ita rcnidue. Sui lUabc, CrtlU'i Juur., xxr.
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nn
" 1 _ ^'J'i sinh . irx^2 + sin . -rxji 1

T "H x'
~

40-" cosh . 7rj-^/2
- cos . irx^/2

~
'ic"

(Math. Trip., 1888.)

(14.) Sliowtbat

5 1 ir^ 1^
,^i{(2n)»-(2m-l)«}2 I6(2m-1)3 2(2m-l)»'Si 5r»

„=i {(2n
-

1)2
-
(2m)2}«

~
Urrfi

'

Also that the sum of the reciprocals of the squares of all possible differ-

ences between the square of any even and the square of any odd number is

jr«/384.

(15.) If|)<7i, show that

cos "9 _ 1 "-^^ _ w sin . (2r-H) 7r/2ra . cos P(2r+ 1) jr/2n
cosHtf nr=o cos « - cos . (2r + 1) wftii

*

(IG.) Show that

*''""' ^" ^ itau-i—
"

tan-i—^i=tau->(tanhj)cot«):

„i. r°"'(2«-l).-2«-^^°" (2„-l). + 2,. [
=t-"-Mtanh.tan«).

(Schlomilch, Ilandb. d. Alg. Anal., cap. xi.)

(17.) If X(x)srfI{l-(x/Ha)2}, /i(x) = n{l-(2x/2^r^a)=}, express

X (a; + a/2) in terms of /i (i) , and also
|it (x + a/2 ) in term s of X (x).

Hence evaluate I, 1 . 3 . 5 . . . (2m-l)^(2m + l)/2"7n!.

(Math. Trip., 1882.)

(18. ) Show that, if r be a positive integer,

.i('-r('-r--('-'-^)'"--»-
(19.) Show that

(20.) If 71, p, X be all integers, prove

(
7t + x)(7t+a + l) . . . (71+y +x-l )

^. (l + x)(2 + x) . . . (j + x)

EEVERSION OF SERIES—EXPANSION OF AN ALGEBRAIC

FUNCTION.

§ 18.] The subject which we propose to discuss in this and

the following paragraphs originated, like so many other branches

of modern analysis, in the works of Newton, more especially in his

tract De Analyst per jEquationes Numero Terminorum Injinitas.
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Let US consider the function

2(;«, u)x''ir={h 0)ar+(0, l)y + (2, O.r'+d, l)j-^+(0, 2)^ + . . .,

where the indices m and n arc positive integers, and wo use tlio

symbol (m, n) to denote the coefficient of x"y", so that (m, n) is

a coustiint. We suppose tlie absolute term (0, 0) to l>e zero
;

but the coefficients (1, 0) (0, 1) are to be different from icro.

The rest of the coefficients may or may not be zero
; but, if the

number of terais be intinit<?, we suppose tiie double series to be

absolutely convergent when |a:|
=

|y |

= 1*. From this it follows

that the coefficient (;«, n) must become iufuiitely small when m
and n become infinitely great ;

so that a jinsitive (piantity X c^in

in all Ciises be assigned such that |(/n, h)|;^X whatever values we

assign to m and n. It also follows (see chap, xxvi., § 37) tlrnt

2(ni, n)afif^ is absolutely convergent for all values of x and y
such that \x\1f>\,\y\1c\.

We propose to show tluit one value, and only one value, ofyat
a function ofx can befound which has thefollowing projKrties:

—
1*. y is expausihle in a connrgcnt series of integral jnniYrx of

X for all values of x lying within limits which are not itijinitcly

narrow.

2°. y has the initial value when x ^0.

3*. y makes the equation

2(m, u)x"y'-0 (l)
an intelligible identity.

Let us assume for a nioincnt that a cnnvrrpent sorios for y
of the kinil deniandcil can bo fouml. It« absolute tenn must

vanish by condition 2°. Hence the series will be of the form

y = btX + b^x' + b,3^ + . . . (2).

In order that this value of y may make (1) an intelligible

identity, it nnist bo possible to find a value of x<l such tliat

(2) gives a value of y<l. The series (1), when transfomietl by
means of (2), will then satisfy Caucliy's criterion, and may be

arranged according to powers of x. All that is further necessai .

* The more goniTal coiio, when the scriei U eonvargont no long an |<| >•
and ly I >/3, can eimily ba bronght uuder Uia above by a Dimple traDifonniu

tiou.
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to satisfy condition 3° is simply that the coefficients of all the

powers of x shall vanish.

It will be convenient for wliat follows to assume that

(0, 1)
= - 1 (which we may obviously do without loss of

generality), and then put (1) into the form—

y = ((l, 0).c + (2, 0)a;" + (3, 0)a,-' + . . . }

+ {(1, l)a;+(2, l)«= + (3, l).i^ + . . . ]y

+ {(0, 2) + (1, 2) .V + (2, 2) .1' + (3, 2) ,r' + . . .}f

+ {(0, n) + (1, n).t + (2, n) a? + (3, n) o,-^ + . . . } ?/"

(3).

Using (2), we get

biX+ LaP+ b3a^ + . . .

=
{(l,0)a; + (2,0)ar' + (3,0)«' + . . .}

+ {(l,l)a; + (2, l).r' + (3, l)x-= + . . .}\b, + b.x+b,,T'+. . .}x

+ {(0,2)+ (1, 2).r + (2, 2)^ + (3, 2).r' + . . .\{b, + b.x+b,.v'+. . .^x^

+ {(0, h) + (1, fi)x + (2, n)x~ + (3, n) J-' + . . .
} {b^ + b,.c+b,x'+. . .}"«"

(4).

Hence, equating coefficients, we have

J. =(1,0),

6,=(2, 0) + (l, 1)6, +{0.2)b^

b,={3, 0) + (l, 1)6. +(2, 1)6, +(l,2)6.'+2(0, 2)6.63 + (0, 3)6^

6» = (», 0) + (1, 1)6„-. + (2, 1) 6„_, + . . .
+ (0, «) 6."

(5).

Here it is important to notice that each equation assigns one

of the coefficients as an integral function of all the preceding

coefficients. Hence, since the first equation gives one and only

one value for 6,, all the coefficients are uniquely determined.

There is therefore only one value of y, if any.

In order to show that (5) really affords a solution, we have to

show that for a value of x whose modulus is small enough, but

not infinitely small, the conditions for the absolute convergency

of (2) and (4) are satisfied when 6„ 60, . . . have the values

assigned by (5).
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This, following a method invented by Cauchy, we may show

by considering a jjarticular case. The moduli of the coefficients

of the series (3) have, as we have seen, a finite upjjcr limit A,

Suppose that in (3) all the coefficients are replaced by A, and

tliat X has a positive real value <1. Then we have

y=X{a; + ar' + jr' + . . . [

+ \{ar + a;^ + «* + . . . \i]

+ X{1 +a:+ar' + a!* + . . . [y*

(fi).

This scries is convergent so long as j^<l and |y|<l. It

can, in fact, be summed
; for, adding X + Xy to both sides, we get

(l + X)y + X = X/(l-x)(l-y),
that is, (1 + X)y--y + Xj/(l-ar) = 0.

Hence, remembering that the value of y with which we are

concerned vanishes when x = Q, we have

y =
[1
- 7(1 - 4X (1 + X) x/(l

-
a-)}]/2 (X + 1) (7).

Now, provided 4X (1 + X) j-/(l
-

a:) < 1, that is, x< 1/(2X + 1)',

the right-hand side of (7) can be expanded in an absolutely con-

vergent series of integral powers of x, the absolute term in which

vanishes. Also, when x<l/(2X+l)', the value of y given by

(7) is positive and < 1, therefore the absolute convergency of (6)

is assured.

It follows that the problem we are considering can be solved

in the present particular case. If we denote the series for y in

this case by
y = C,.r+(7jJ^+C,a:^ + . . . (8).

then the equations for determining C|, C%, Ci, . . . will be

found by putting (1, 0) = (2, 0) = (1, 1)
= . , ,

= X in (5), namely,

e, =X,

C,=X(1 + C. + C,»),

C, = X (1 + C, + C, +C + 2(^,(7, + C),

C,= X(1+C,., + C,., + . . . + C',"),

(9);

from which it is seen that C'„ t'„ C'„ . . . are all n-al and

positive.
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Returning now to the system (5), and denoting modnli by

attaching dashes, we have, since (1, 0)', (2, 0)', &c., are all less

than X,

6/ = (l,0)'<\<^„

^-oX2, oy + (1, 1)'^' + (0, 2)7V^<\(1 + c, + Ci=)<c;,

^'3>(3, 0)'+(l, l)V+(2, l)'6i'+(l, 2)V+2(0, 2)Vi; + (0, 3)V,
< X (1 + (7j + (7, + (7.=' + 2Cx(7a + Ci')< C„

.• .
• (10)-

Hence the moduli of the coefficients in (2) are less than the

moduli in the series (8), which is known to be absolutely con-

vergent. It therefore follows that the series (2) will certainly be

absolutely convergent, provided \x\< 1/(2X + 1)-.

It only remains to show that x may be so chosen (and yet

not infinitely small) that y as given by (2) shall be such that

y'<l. We have

y' <hix' + bix^ + h3x'^+ . . .,

<C,x + C^x"'+C,x'^ + . . .,

<[l-V{l-4X{l+X)^7(l-^')}]/2(X + l) (11).

Now the right-hand side of (11) is less than 1, provided

a;'<l/(2X + l)''. If, therefore, |a:|<l/(2X + 1)-, the absolute

convergency of the double series (3) or (4) will be assured ;

and (2) will convert (1) into an intelligible identity.

We have thus completely established that one and only one

value of y expansible within certain limits as a convergent series

of integral powers of x can be found to satisfy the equation (1) ;

and the like follows for x as regards y. Thefunctions of x and y
thus determined, being representahle by power-series, are of course

continuous. The limits assigned in the course of the demonstra-

tion for the admissibility of the solution are merely lower limits ;

and it is easy to see that the solution is valid so long as (2) itself

and the double series into which it converts the left-hand side of

(1) remain absolutely convergent.

It should be remarked that we have not shown tliat no other

power-series whose absolute term does not vanish can be found to

satisfy (1) ;
nor have we shown that no other function having

zero initial value, but not expansible in integral powers of x, can
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be found to satisfy (I). We sli.ill settle these qiie-stions presently
in the ca,«e where tlie series 2i (m, ti)jfi/' terminates.

§ 19.] The problem of the Ileivrsion of Series pmiwrly so

called is as follows :
—

Given the equation

a; = rto
+

o-.v'" + <»-+iy"+' + . . . (i;.

tv/iere a^=^0, but a, may or may not be zero, and the series

Om y" + <»ii.+i y""*"' + . . . is absolutely convergent so bmg as

\y\^a fixed poMtive quantity p, to find a convergent exiHuifion,

or convergent ejrpansions, /or y in ascending powers qf x-a,.
Let ^ denote {(jr-aoVa.}""', that is, tlie principal \'alue of

the with root of (x-ao)/(J„, and w„ a primitive nith ri>ot of

unity, then (1) is efpiivaleut to m cnuations of which the

following is a type :
—

Now, the series inside the bracket in (2) being absolutely

converj;ent for all values of y such that lyl^^p, it follows from

the binomial theorem combine*! with § 1 that we can, by taking y
within certain limits, expand the right-hand side of (2) in an

ascending series of powers of y. We thus get, siiy,

-<"»\* + i/+C,y+(7,y' + . . .=0 (3).

It follows, therefore, from the general theorem of last para-

graph that we have, provided |(| does not exceed a certain

limit,

y=*.«--'^ + V-'f' + 6.«^.^''^-. . . (4).

We have, of course, m such results, in which the coefficients

bi, bt, b,, . . . will be the same, but r will liave the different

values 0, 1, 2, . . ., (ot-1).

Each of these solutions is, by chap, xxti., § 19, a continuous

function of x. If wc cause x to circulate about a, in Ar^'and'a

Diagram, the m branches of y will piss c*>ntinuou.<<ly into each

other; and after m revolutions the branches will recur. The

point a, is therefore a liranch Point of the f/ith order for the

function y, just as the puinl U ia for the iuuctiuu w''* in

chap. XXIX., g 5, 6.
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Cor. In the particular case where aa = Q, m =
\, we get tlw

single solution

y=hiX + biX^ + bs^ + . . . (5).

Example. To reverse the series

r = l + ;//ll+2/='/2l + 2/3/3! +.. . (G).

Let ; = 1 + X, Iheu we have

Hence, provided |

x
|

lie withiu certain limits, we must have by the

general theorem

y = b^T.^-b„x'' + b,x'+ . . . (S).

Knowing the existence of the convergent expansion (8), we may determine

the coeflicicnts as follows.

Give 2/ a small increment i-, and let the corresponding increment of a; be /(;

then, from (7), we have

A-
jj

+
2,

+
3j

+. . . .

Hence, since i{(2/ + fc)"- !/"}/'>"
= «!/""' when k=.0, and since, owing to

the continuity of the iseries as a function of y, /i= when /i;= 0, we have

^fc-^+ii + 2"i+---
= \ + x
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w/wTo the series on the left terminates, gives for any aiwigned value

of a: a finite number of values of
i/. If the highest power of y

involved be the Hth, we might, in fact, write the equation in the

form

Anif + A„.,y'-' + . . .+A^y^A, =
(2),

wliere Ao, Ai An are all integral functions of x. If, then,

we give to x any pjirtioular value, a, real or complex, it follows

from cliaj). xil., §23, that we get fmni (2) n corresponding values

of y, say b„ b-^ b^- If we change x into a value o + /<

difl'ering slightly from a, then i,, 6, 6, will chango into

ft, + A,, hi + /;, . . ., bn + /"„ ;
that is to say, we shall get n values

of y which will in general be different from the former set. We
may therefore say that (2) defines y as an n-valued function of

x; and we call y when so determined an nhjibraic function of a:.

Since every equation of the form y=F{x), where Fix) is an

ordinary synthetic irrational algebraic function (as defined in

chap. XIV., § 1), can be rationali.sed, it follows that every ordinary

irrational algebraic function is a branch of an algebraic function

as now defined. Since, however, integral eqtiations whose degree
is above the 4th cannot in general be formally solved by means

of radicals, it does not folK)w, conversely, that every algebraic

function is expressible as an ordinary synthetic irrational alge-

braic function.

In what follows we assume that the equation (2) contains (so

long as X and y are not specialised) no factor involving x alone

or y alone. We aUo supi)osc that, so long as x is not assigned,

the equation is Irreducible, that is to say, that it has not a

root in common with an integral equation of lower degree in y
whose coefficients are integral functions of x. If this were so, a

factor could (by the process for obtaining the G.C.M. of two

integral functions) be found having for its coefficients integral

functions of x, and the root.'* of the equation formed by equating

this factor to would be the common root or roots in question.

Therefore the eqtiation (2) could be broken up into two integral

equations in y whose cot'iTicipnts wo\ild be integral functions of x;

and each of these would dofiuf a separate algebraic function of j*.

The condition of irreducibility involves that (2) cannot have



§ 20 SINGULAR POINTS 3S1

two or more of its roots equal for all values of x. For, if (2)

had, say, r equal roots, then, denoting all the roots by

Vu Vi, , yn, the equation

^(^-yi)(y-2/-2) . {y-y<,-i){y-ys+i) {y-yn) = o (3)

would have r-1 roots in common with (2), for r-1 equal

factors would occur in each of the terms comprehended by 2.

Now the coefficients of (3) are symmetric functions of the roots

of (2) ;
therefore (3) could be exhibited as an equation whose

coefficients are integral functions of ^o, Ai, . . ., A„, and there-

fore integral functions of x*. Hence (2) would be reducible,

which is supposed not to be the case.

It must, however, be carefully noticed that irreducibility in

general (that is, so long as a; is not speciahsed) does not exclude

reducibility or multiplicity of roots for particular values of x. In

fact, we can in general determine a number of particular values

of X for which (2) and (3) may have a root in commont. In

other words, it may hajipen that the n branches of y have points

in common; hut it cannot hajipen that any two of ttw n branches

wholly coincide.

When, for x = a, the n values b,, b^, . . ., 6„ are all different,

a (or its representative point in an Argand-diagram) is called an

ordinary point of the function y, and 61,62, . . ., 6„ single values.

If 61
= 62 = . . .

=
br, each =

b, say, then a is called an r-ple paint

of the function, and b an r-j)le value.

For every value of x (zero point) which makes Ao = 0, one

branch of y has a zero value
;
for every value of x (double zero

point) which makes ^o = and Ai = 0, two branches have a zero

value
;
and so on. These are called single, double, . . .

, zero

values.

For every value of x {pole) which makes A„ = 0, one branch

of y has an infinite value
;

for every value of x (doubk pole)

which makes -4„ = and ^„_i = 0, two branches have an infinite

* See chap. xvin. , § i.

t These are the values of x for which

and n^„;/"-' + (n-l) J„_ii/»-2 + , . .+J,=

have a root iu common.
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value; and so on. These may be calloil ainoU, (ImliU-

in/inities of the function.

Tlie main object of what follows is to show that every branch

of an algebraic function is (within certain limits), in the neigh-

bourhood of every point, ex]>ansible in an ai:rrnding or descending

power series of a jtarticular kind ; and thus to shmc that every
branch is, except at a pole, continuous fur all finite values of x.

§ 21.] If, at the point x = a, the abjibraic function y has a

single value y = b, then y-b is, within certain litnits, expansible
in an absolutely convergent series of the form

y-b=C,{x-a) + Ct{x-a)''+ Ct(x-ay + . . . (4).

Let x = a + (, y = b + r), then the equation (1) becomes, after

rearrangemeiit,

(0, 0) + (l,0)f + (0, l)i7 + (2, 0)i' + &c. =
(5).

Since y = b is a single root of (1) correspoutling to x=a, it

follows tliat when ^ = (5) must give one and only one zero

value for r). Therefore we must have (0, 0) = and (0, 1 ) + 0.

It follows, from the general theorem of § 18, that within

certain limits the following convergent expansion,

V = C,(+C,e + C,i' + . . ..

and no other of the kind will satisfy the equation (5) ;
that is,

y = b + Ct (x
-

a) + Ct(x - a)* + C,{x - ay + . . . (6)

will satisfy (1).

The function y determined by (6) is continuous so long as

|ar-a| is less than the radius of convcrgeucy of the series

involved; and it has the value y = b when x = a.

If we suppose all the values of y, say b,, b,, . . ., b„ corre-

sponding to a: = a to be single, then we shall get in this way for

each one of them a value of the function y of the form (6).

Hence we infer that

Cor. So long as no two nf ihi' branches of an algebraicfunction

have a point in common, each branch ui a continuous J unction qf x;

and the increment of y at any point of a particular branch it ex-
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pansible in an ascending series of positive integral poicers of the

increment of x so long as the modulus of the increment of x does

not exceed a certain finite value.

§ 22.] We proceed to discuss the modification to which the

conclusions of last paragraph are subject when x = a is a multiple

point of the function y.

We shall prove that for every multiple point of the qth order, to

vhlch corresponds a q-ple value y = b, we can find q different con-

vergent expansionsfor y of the form y = b + 'S,Cr(x
-
aY, where the

exponents rform a series of increasing positive rational numbers.

It will probably help the reader to keep the thread of the

somewhat delicate analj-sis that follows if we premise the follow-

inj5 remarks regarding expansibility in ascending power-series

in general :
—

If 17 be expansible in an absolutely convergent ascending

series of positive powers of i, of the form

, = C, i-. + d'".+'^ + (7s£».+-^+''^ + . . . (A),

where a,, oo, . . . are all positive, then we can establish a series

of transformations of the following kind:—

';„-.
= l'«(C„ + '?„) (B),

where i/i, v-i, • • , Vn all vanish when ^ = 0; Ci, C,, . . ., C,

are all independent of ^, and all diflerent from zero ;
and

C, = Lnli''', G^ = Lnili''' C, = Lr,n-,/i'^ when f=0.

(Conversely, if we can establish a series of transformations of

the form (B), and if we can show that rin is expansible in a series

of ascending positive powers of $, it will obviously follow that 17

is expansible in the form (A).

Let now y = bhe a y-ple value of y corresponding to x = a,

and put as before x = a + i, y = b + r], tiien the equation (1)

becomes

2K «)?"»;" = (7).
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Since q values of y become b when x = a, q values of >7 must

become when ^ = 0. Hence the lowest power of rj in (7)

whidi is not muitiiilied by a power of ^ must be if. There

must also be a power of t' which is not multiplied by a jwwer of

T), otherwise (7) would be divisible in general by some power of

ij, which is impossible since (1) is irreducible. Let the lowest

such power of i be i''.

Put now

, = ^((7, + 7j.)
= ^» (8),

and let us seek to determine a positive value of X such that

Ci = i/T = Zij/i* is finite both ways* when f=0.
The equation (7) gives

2(m, «)f^*"e" = (9).

Now (9) will furnish values of r which arc finite both ways when

^ = 0, provided we can so determine A that at least two tonus of

(9) are of the same positive degree in i, and lower in degree

than all the other terms.

Assume for the present that we can find a value of X for

which a group of r terms has the character in question, so that

8=»n, + Xh, = OT, + Xn, = . . .
= njr + Xwr (10),

where »», :^ w, :J> . . . :^ «r ;

and ^ = {f»i
-
mr)/{nr

-
th)

=
g/fi, sixy, (11).

where g is prime to h,

S = {mi/i
+

n,g)/h.

Then, putting d = f'*,t so that f,
= when ^ = 0, and dividing

out ^i"*!**"!', we deduce an equation of the form

<t>{i„ «)^, + (mr, «r)i'"' + (;nr-i, nr-i) «"'-' + . . .+("1,, n,)«"i =

(12),

where <^(^i, v) is an integral function of ^, and v.

For our present purpose we are concerned only with those

* That in, noithcr zero nor infinite—n Dscful phrniio of Do MorRan'i.

t It i» Hiifl'icicnt for our iiurjioiio to tukv tku |>riDci]i»l value iuurcl>' of tho

/ilk root of {.
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roots of (12) whose initial values are finite both ways. There are

evidently rir-ih such roots, and their initial values are given by

(nir, llr) »"'-"! + {nir-i, «r-l) V^r-l-"! + . . . + (tBi, «,)
=

(13).

If the roots of (13) are aU different, then we get % —
jti trans-

formations of the form (8) ; and the coiTcspouding values of v,

that is, of Ci + r]i, are given by the algebraical equation (12).

Moreover, since all the values of v are single, we shall get for

each value of rji an expansion of the form

Vx
= diii + d.2$i- + . . .,

= dj"^ + d,$"'^ + . . . (14);

and each of these will give for rj a corresponding expansion of

the form

7,
= Cr&'^ + d,$'9+^V^ + d^^+'^"' + . . . (14').

If a group of the roots of (13) be equal, then we must

proceed by means of a second transformation,

v.
=

i.''{C, + v.) (15),

to separate those roots of (12) which have equal values. If the

next step succeeds in finally separating all the initial values,

then we have for each of the group of equal roots of (13) two

transformations (8) and (15), and finally an expansion like (14'),

the result being the final separation of all the «r - »i roots of

(12), with convergent expansions for each of them.

Moreover, we must in every case be able, by means of a

finite number of transformations like (8) and (15), to separate

the initial values, otiierwise we should have two branches of y
coincident up to any order of approximation, which is impossible,

since (1) is irreducible.

The indices in the series (14') may be all integral or else

partly or wholly fractional (see Examples 2 and 1 below).

In the former case the corresponding branch of the function

1) is single-valued in the neighbourhood of the point i= ; that

is to say, if we cause i to circulate about the point | = and

c. II. 25
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return to its original position, 17 returns to the value with which

we started.

If some or all of the indices be fractional, the scries will Uiko

the form

where one at least of the fractions afq, pjq, . . .
,
is at its lowest

terms. The function >; is then g'-valued and the series (14")

will as in g 19 lead to a cycle, as it is called, of q branches

which pass continuously into each other when i is made to

circulate q times round f = 0. At any multiple point there

may be one or more such cycles ;
and for each of them the

point is said to be a branch point of the 5th order, q being the

number of branches belonging to the cycle.

All that now remains is to show that we can in all cases

select a number of groups of terms satisfying the conditions (10)

Euilicient to give us q exi)ansions corresponding to the q branches

which meet at the g'-ple point x = a.

Tiie best way, both in theory and in practice, of settling this

point is to use Newton's Parallelogram, which is constructed as

follows :
—Let OX and Y (Fig. 1) be a pair of rectangular axes,

the first quiulrant of which is ruled into squares (or rectangles)

for convenience in plotting points whose co-ordinates are positive

integers. For each term (m, n)f"i>" in equation (7) we plot a

point K {dt'ijree-point) whose co-ordinates are 0M~ m, iIK= n.

We obser\e that^ if KP be drawn so that cotA7-'0 = A, then

OP =OM + MP = m + nK Hence OP is the degree in f of the

term in (9) which corresponds to (ni, w)i'">;''- If. tiiercfore, we

select any group of terms whoso degree-points lie on a stniight

line A, these will all have the same degree in ^, namely, the

intercept of A on OX.
Tlie necessary and suflicient conditions, therefore, that a

group of two or more terms furnish the initial values of a group
of e.\]>ausions, let us say be an ejffectlve group, are :

—
1°. Tliat the lino A containing the degree-points shall cut

OX to the riglit of 0, and Y aliove 0, Tliis secures that X be

positive.
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2°. That all the other degree-points shall lie on the opposite
side of A to the origin. This secures that all the other terms in

than those of the selected group.(9) be of higher degree in $
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anrl so on, until at last it passes through E, or through a group
of which E is the last.

We thus form a brokeu line convex towards 0, beginning at

A and ending at E, every part of which contains a group of

degree-points the terms corresponding to which satisfy the

conditions (10).

Now the degree of the equation (13) corresponding to any

group CD is the diflerouce between the degrees of >} in the first

and hist tonus C and D
;
but this diflerence is the projection of

CD on OY. The sum of all the projections of AC, CD, &c., on

Oy is OE, that is to .say, q. Ilcuce we shall get, by taking all

tiie groups AC, CD, &c., q difl'erent expansions for y correspond-

ing to the q different branches that meet at the multiple point

x^a. Each one of these has the same initial value b, and each

is represented by a separate expansion in positive ascending

rational powers of x-a.

Example 1. To separate the branches of the function i) at the point {= 0,

») being dutermined by

+ /J|'»,,"=0. (ir,).

The lowest term in i\ alone is i)'", eg that {= is a multiple point of the

10th order. Plotting the decrees of the terms in Newton's diagram, and

naming the points by affixing the cocfiioients, we find (see Fig. 1) that the

effective groups are AliC, CD, DK. Taking, (or simplicity of illustration,

A = +-i, B=-3, C=+l, D=-l, E=+l,
we get from the group AUG

\=C/2^3/l, so that h = l, aud ti°-3t> + 2= gives the initial values of d,

that is, v = l, or 2, the corresponding expansions being

From the group CD, wo get

X=l/3, t;'-l = gives the initial values of r,

that is, i>= l, u, u', where u is a primitive imaginary cube root of 1, the

corresponding expansions being

,={'/>(! +d,{"' + rf,fw+. . .),
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In like manner, DE gives five expansions of tlie type

where a is any one of the five 5th roots of 1.

All the ten branches are thus accounted for
; and they fall into cycles of

the orders 1, 1, 3, 5.

Example 2. To separate the branches of ij at the point {=0, ij being
determined by

ie-Si*- 4^- h -i) + i(r,- f)- = (17).

The effective group for (17) at the point f=0 corresponding to branches
which have the initial value ij=0 is 4(ij-t)-; as will be readily seen from
Newton's diagram.

X= l, /i = l and, if i;=|(Cj + i;,)=|t), we have

4|'-3«-4|(v-l) + 4(t>-l)== (18).

Hence two branches have the same initial value for v, viz. v= l. For
each of these ri

= i{i + Vi)', and we have for
tj^ the equation

'i4^-3e-iiVi +H-=0 (IS').

If we draw Newton's diagram for (18"), we find that the effective group is

*Vi^-iiVi~^?'; and that X=l. Put now
i;i
= {(C„ + i;o)=|i;i; and we get

4|+ (2f,-3)(2r, + l) = (19).

The initial values of v^ are given by (2t)i
-

3) {2i\ + 1)= 0, which give the

«i7i<;te values
i',
= 3/2, «i= -

1/2. Hence for the two branches we have

,,=|(3/2+,j); r;i'=l(-4+%');

and the farther procedure will lead to integral power series for
ijj

and
ijj .

We have therefore for the two branches

and the double point is not a branch point on either.

It should be observed that, if we form an integral equation

by selecting from any given one a series of terms which form au

effective group, the new equation gives an algebraic function.

Those branches of this function that have zero initial values

coincide to a first approximation (that is, as far as the first term

of the expansion) with certain of the branches of the algebraic

function determined by the original equation which have initial

zero values. Thus, reverting to Example 1 just discussed,

from the group ABC we have

Ae^ + Bi^rj + CiW^O.
This gives, when we drop out the irrelevant factor ^,
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which breaks up into two equations,

and thus determines two functions, each of which has a l>ranch

coincident to a first approximation with a branch of >; (as deter-

mined by (16)) which has zero initial vahie.

In lilvc manner, CD gives Ci* + />>;'
=

;
and DE gives

We tluis get a number of binomial equations, each of which

gives an approximation for a group of branches of the function

ij determined by (16). We shall return to this view of the

matter in § 24.

§ 23.] Before leaving the general theory just established, we

ought to point out that Newton's Parallelogram enables us to

obtain, at every point (singular or non-singular), convergimt

expansionsfor every branch ofan algebraic function in ascending

or descending power-series, as the case may be.

To establish this completely, we have merely to consider the

remaining cases where a; or y or both become infinite.

Ist. Let us suppose that the value of the function y tends

towards a finite limit b when x tends towards oc. Then, if we

put >;
= y - 6, X = f, we shall get an equation of the form

2(ffi, n)r",," = (17),

which gives »?
= when i=^.

Jjdt us suppose that Fig. 1, as originally constnicted, is the

Newton-diagram for (17), and let i* bo the highest power of (

that occurs in (17) so that 00, = k. Now in (17) put i=l/^,
and multiply the equation by ^'* ;

we then get the equation

2(m, «)f*-"v" = (18),

which is obviously equivalent to (17).

But the Newton-diagram for (18) is obviously still Fig. 1,

provided 0,X, and 0,1', be taken, instead of OA' and OF, as

the positive parts of the axes.

Hence, if we make a boundary convex towards 0, in the

same way as we did for 0. we sliall obtain a series of branches

of r)
all uf wliich are exp)ln^>ible in a-scending powers uf i', tiuit
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is, in descending powers of $, and all of which give jj
= when

^=00. For each such branch we have

that is,

(ij-b)a^ = c + d/a^ + e/x^ + . . . (19),

where A, a, /?, . . . are all positive, and c is finite both wa}-s.

2nd. Suppose that a: = a is a pole of y, so that
i/
= <x> when

a; = a
;
and put i;

=
y> ^ = x — (t, so that we derive an equation

2 {m, n) f'Tj" = (20),

for which Fig. 1 is the Newton-diagram with OX and F as

axes. Then, putting t;
=

l/V, we get an equation of the form

2 {m, n) e'v''-" = (21),

I being the highest exponent of rj in (20).

The Newton-diagram for (21) is then Fig. 1 with 0,A'i

and Oil^i as axes; and we construct, as before, a boundar)',

EFG say, convex towards Oi, every part of which gives a series

of branches of
77', that is, of l/»;, expansible in ascending powers

of i. For every such branch we shall have

7y.^=l/(c-Hrf|'' + ^^3 + . . .),

where X, a, /8, . . . are all positive, and c is finite both ways.

Hence also, by the binomial theorem combined with § 1,

7?^^
=

l/c + rf'4" + e'^'+. . .,

that is,

ij(.v-a)''
=

l/c + d'{x-a)'+e'(x-ay+. . . (22),

where X, a, ji', . . . are all positive, and c is finite both ways.

3rd. Suppose that y has an infinite value corresponding to

a: = 00 (pole at infinity). Then, if we put a;= f = 1/f , 2/
=

•^
= l/V.

we shall get, by exactly the same kind of reasoning as before, a

boundary GHI convex to O2, each part of which will give a

group of expansions of the form

7)'
=

i'>'{c + d^"' + ei'^ + . . .}.

Whence, as before, for every such branch

yla^ = \j{c + dl3f + elafi + . . .),

= l/c + d'/af + e'/a^+. . . (23),

where X, a, P', . . . are all positive, and c is finite both ways.
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If we ciiiiibine the results uf the present with those of the

foregoing paragraphs, we arrive at the following important

general theorem regarding any algebraic function y:
—

lfy = when x = a (a4=oo), then L yl(x-aY is finite both

ways.

Ify = when ar= oo
,
then L yjx'*- is finite both ways.

Ify=<x> irhen a: - a (a 4= oo
), then L y/{x

-
o)"* is finite both

ways.

Ify='X) w/ien ar= co
,
then L y/x^ is finite both ways.

X is in all cfise.i a finite positive commensurable number

which may be called tlie order of the particular zero or ii\finite

value qfy.

This tlicorcm leads ns naturally to speak of algrhrnical trro- or infinity-

rallies of functions in t;<^neral, moanini; such as bave the property just

stated. Thus 8in:r = when x= 0; but Lsin jr/x= l when z =
; therefore

we suy that sinx has au algebraic zero of the tirsc order when x = 0. Attain,

tanx= ao when x= hr; but Lt8nx/(x- Jt)-' is finite when x=Jf; the

inlinity of tan x is therefore alKebraieal of the first urdor. On the other

hand, r'=x) when x=x ; but this is not an algebraical infinity, since no

finite value of \ can be found such that Le'lx^ is finite when x= cd. (See

chap, ixv., § 15.)

§ 24.] Application of the method of successive approxima-
tion to the crpansion of functions. This method, when applied

in coiijnnctiou with Newton's diagram, greatly increases the

practical usefulness of the general theorems which have just

been cstiibli.shed. Tiie method is, moreover, of great historical

ititcrest, because it apiiears from the scanty records left to us

that it was in this form that the general theorems which we have

been discn.ssing originated in the mind of Newton.

Let us suppose that the terms of an ecpiation (which may be

au infinite series) have been plotted in Newton's dijigram, and

that an effective group of terms hits been found lying on a line

A; and let ij"-f" (the coeflieients are taken to be unity for

8iini)licity of illustration) be a factor in the group thus selected,

repeated, say, a times, so that the whole groui) is ijl>,(f, j?) (>?'"— f")".

Let A bo moved parallel to itself, until it meetj) a term or group
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of terms </)j {$, '/) ;
tlieu again iintil it meets a grcmp <^3 {$, ?/) ;

and so on.

The complete equation may now be arranged thus—
<^i {^, v) ('?"'

-
r)" + 4>. (f. v) + i>. (f, v) + . .

= 0,

or tlms—

say, (V"-t")° + '-2 + '-3
+ - - -=0.

Now, by the properties of the diagram, when >]
= f'"",

<^a (^, '?), "^3 (^, v). • • • are in ascending or descending order as

regards degree in ^, and the same is true of tj, tj, . . . Let

us suppose that f and r] are small, so that tj, tj, . . . are in

ascending order.

As we have seen, rj'"
= ^, that is, »/

=
^""", gives a first

approximation. To obtain a second, we may neglect t,, tj, . . .,

and substitute in
t._, the value of rj as determined by the first

approximation. To get a third approximation, neglect tj, . . .,

substitute in tj the value of »? as given by the second approxima-

tion, and in t, the value of >/ as given by the first approximation.

We may proceed thus by successive steps to any degree of

approximation ;
the only points to be attended to are never to

neglect any terms of lower degree than the highest retained,

and not to waste labour in calculating at any stage the co-

efficients of terms of higher degree than those already neglected.

There is a special case in which this process of successive

substitution requires modification. We have supposed above

that the substitution of the first approximation, 17
=

1^'", in t^

does not cause r^ to vanish, which will happen, for example,

when <^o(^, rj) contains i?™-^" as a factor. In such a case the

beginner might be tempted to put Ta
= and go on to substitute

the first approximation in tj. This would probably lead to error.

For, if we were to substitute the complete value of 17 in tj, it

would not in general vanish, but simply become of higher order

than is indicated in Newton's diagram, of the same order

possibly as t,. The best course to follow in such cases may be

learned from Example 5 below, which deals with a case in point.
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Exiimple 1. Taking Uio equation (10), to flud a third approximation to

one of the brandies of the group CD.
Next in order to C and D a parallel to CD meets Bucccssivcly li and A.

Hence, putting, for simplicity, D=+l, C=D = A=-1, the equation (16)

may bo vrritten

r'l'('7'-f*)-f"ij-{"+. . - = 0.

Whence »;'-£*- r/-!
-

{'7')' + • • - =
(Z.-^.

The first approximation is 17
=

1*'' ; hence, neglecting {"/i?* in (25), wo j,'il

for the second

Whence i)
=

f«'''(l + f')">=f*»(l + J{''^) (26).

If we nee this second approximation in {^/i), and the first approximation
in {'"/i)' now to be retained, (25) gives for the third approximation

1)'
-
f*
- r/f'''

(1 + If") - f"/i"*= 0.

Whence, if all terms higher than the last retained bo neglected,

which gives

,= {«.> (l+^/»+3£10,»)t.
= {*'(! + if"+ ii'") (27),

which is the required third approximation.
This might of course bo obtained by successive applications of the method

of transformation empIo}-cd in the demonstration of § 22, or by the method

of indeterminate coeOicicnts, but the calculations would be laborious. It

will be observed on comparing (27) with the theoretical result in § 22 that

dj=d, = df = di= df=dj=df=df = 0; a fact which, in itself, shows the advan-

tages of the present method.

The other branches of the cycle to which (27) belongs are given by

,= (a,{> ')« {1 + i (a,£''')» + J («£'-»)•} .

where u is any imaginary cube root of unity.

Example 2. To find a second approximation for the branches corre-

sponding to AUC in equation (16), in tlic special case where A=i +1, B= -2,

C= + l, D=-l.
The terms concerned in this approximation aro {ABC) and {D). We

therefore write

r(')-w-e'v=o.
or (.(-a'-Wf^o.

The first approximation is i)
= ('; hence the second is given b^

(v-i')'-V'lt=o,

that is, (')-f')'-{"=0.

Whence ,-{»i|ii/"=0,

which givrs the two second approximations oorrosponding to the group.

I'here arc two, because to a firm approximation the hranc-lics are coincident

This, therefore, is a cose where a second approxiuuliuu is necessary to

distinguish the brauchug.
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Example 3. To fiutl a second approximation, for large values both of

f and 7), to the branch corresponding to HI in equation (16).

Referring to Fig. 1, we see that, if HI move parallel to itself towards 0,

the next point which it will meet is G. Hence, so far as the approximation

in question is concerned, we may replace (16) by

(H|'V' + ^l'V) +GW = 0-

For simplicity, let us put H = l, 7=G= -1, and write the above equation

in the form

Confining ourselves to one of the five first approximations, say ))=t^'°, we

get for the second approximation

which gives 1?=!*'^ (1 + ir^'"')-

The other branches of the cycle are given by

where u is any imaginary fifth root of unity.

Example 4. Given

x=y+ y-li\ + y'ji\ + y*li\+ .. .,

to find
2/

to a fourth approximation. We have

j/=x-J/=/21-!/3/3!-2/-'/4!- . . . .

Hence 1st approx. y= x.

2nd ,, y=x-ix\
3rd „ y=x-)i{x-ix-)--i^^

= x-ix''+ i:i?.

4th „ t/
= x-4(i-ix= + ix=)2-i(x-Jx-)'-,\xS

Example 5. To separate the branches of ij at f=0, where

4|5_3|4_4|2(,_|) + 4(,-f)2=0.

If we plot the terms in Newton's diagram, and arrange them in groups

corresponding to their order of magnitude, we find

where the suffixes attached to the brackets indicate the orders of the groups.

The first approximation i;={ is common to the two branches.

Since ij-J is a factor in { },,
we cannot obtain a second approximation

by negleotmg { }s and putting 7;=| in
{ }.,.

In obtaining the second

approximation we therefore retain { },, treating jj-J as a variable to be

found. We thus get

4(n-tT-4s"(')-«) = 3|*;

whence {2 (t)
-

I)
-

t''}'=4i'',

which gives v=^ + '^i'l^i

or v'=i-m-
The branches are thus separated.
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If a third approxiiuatioa wcro required, we should now retain
{ }^, and

write

i2{.;-0-P}'=4{*-4i'.

Henoe 2(,-f)-{»= ±2{'(l-f)»,
= ±2{'(l-{/2).

We thus get

i,={ + 3f-/2-f'/2;

V=f-r/2 + f/2.

Historical Note.—As has alrcoily been remarkwl, the fandnmrntal idea of the
reversion of series, and of the expaiiHinn of the roots of algebraical or other equa-
tions in power-scries. on(rin:ilcd with Niwton. Uis f.-'nions

"
P:iralUlo(;min

"
is

first mentioned in the second letter to Oldeiihur);; but is more fully ciplainod
in the Geometria Anahjiicn (sec HorsUj's c<lilioii of Newton's Workt, t. I.,

p. S98). The mctho<l was well nnderstoml by Newton's followers, Stirling and
Taylor; bat sceius to have been lost sight of in Englaml after their time. It was
much used (in a nuidilicd fonn of Dc Gua's) by Cramer in his well-known Analy$»
des Ligne.1 Courhes Algdhriijiut (1750). Lngritnge gave a complete analytical form
to Newton's method in his "Mi'Uioiro snr I'Usngu dcs Fractions Continues," yi>uv.

Mint. d. I'Ac. roil. <i' Sciences d. Berlin (177G). (See (Kitrres de Larrramje, t. rv.)

Notwithstanding its great utility, the method wns everywhere all but forgotten
in the early part of this century, as has been pouited out by Do Morgan in an
interesting account of it given in the Cambridge Philosophical Traiuaetions,
vol. IX. (\»:>5).

The idea of demonstrating, a priori, the i«>ssiliility of expansions such as the

rcTcrsion-formnhc of § is originated with Cauchy ; and to him, in effect, arc duo
the methods employed in §5 IS and I'J. See his memoirs on the Integration of

Partial Differential Kqimti'iis. on the Calculus of Limits, and on the Nature and

Properties of the Itonts of an Equ:itl«n which contains a Variable Parameter,
Exercices d*Analyse et de rhysiquc Afath^matique, t. 1. (IS-iO), p. 327; t. ii.

(1841), pp. 41, 10!l. The form of the demonstrations given in §§ 18, ly baa
been borrowed partly from Thonme, A7. Theorie der Anali/tischen Functiontn
einer Comjilexen Ver/tnderlichcn (llallo, ISSO), p. 107 ; partly from StoU, Alhje-
meine Arillimelik, I. Th. (Leipzig, 18S5), p. -I'M.

The Parallelogram of Newton was used for the tlieoretical pnrpose of cstablisli-

ing the expansibility of the brnnches of an algebraic function by Puiaeux in

his Classical Memoir on the Algebraic I'unctinus (Liour. Atalh. Jour., 1850).
Puiseux and Briot and Bouquet {7'hcone des functions f.'llii'liques (1S75), p. 19)
use Cauchy's Theorem regarding the number of the roots of an algebraic equation
in a given contour; and thus infer the continuity of the roots. The denumstra-
tion given in § *J1 depends U|Kin the iiroof, a priori, of tlie possibility of an

expansion in a {wwer-serios; and in this respect follows the original idoa of

Newton.
The reader who desires to pursue the subject farther may consult Dnr^go,

Elrmentc der Theorit dir Functionrn einrr Ct'mpUren Veranderlichen OrGste, for

a go<Hl inlrwluction to this great branrh of modern function-theory.
The English student has now at his di.sposal the two treatises of Harknew and

Miirhy, and the work of Forsyth, which deal with function-theory from Tarious

points of view.

The applications are very numerous, for example, to the dnding of corvatores

and curves of closest contact, and to curve-tracing generally. A number of

iM-autifnl cxamiiles will be fuuud iu that much-to-bo-rocouuueuded text-book,
Frost'a Curve Tracing,
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Exercises XXIV.

Eevert the following series and find, so far as you can, expressions for

the coefBoient of the general term in the Eeverse Series :—

(1.) j,
= i +^+'i(^W!L(!iZ^_(!Ll^W ... ,

(2.) y = x-ix^+ ix''-}x'+ ....
x' ^ x"^

(3.) 2/=^- 37
+

5! "71+ •• • •

(4.) y = i+x2/2=+xS/3= + xVi=+ ....
(5. )

If !/
= sin i/sin (x+ a), expand x in powers of y.

X and y being determined as functions of each other by the following

equations, find first and second approximations to those branches, real or

imaginary, for which
|

a;
|

or
| i/ 1 ,

or both, become either infinitely small or

infinitely great :
—

(G.) y^~2y=x*-x"-.

(7.) a^(y+x)-2a-x{y + x)+x^=0, (F. 69*).

(8.) {x-yY-{x-y)x^-ix*-iy^=0, (F. 82).

(9.) a{y"--x^){y-2x)-y*=z0, (F. 88).

(10.) ax{y-x)--y*= 0, (F. 96).

(11.) x(y-x)--a3=0, (F. 115).

(12.) x^y-^-2a^x-y + a*x-h^=0, (F. 121).

(13.) y{y-x)-{y + 2x) = 9cx^ (F. 131).

(14.) {x{y-x)-a-'ry^=a-', (F. 140).

(15.) a? -x*y^ + a^y*-axy^=0, (F. 143).

(16.) a{x^+y'')-a-x^y+3?y*=0, (F. 143).

(17.) x^y* + ax-y^ + bx*y + cx + dy'-
= 0, where a, b, c, d are all positive,

(F. 155).

(18.) If e„ be any constant whatever when ti is a prime number, and
Buch that e^=epe^e^ . . . when n is composite and has for its prime factors

p, q,r, . . ., then show that

If a, i, c, . . . be a given succession of primes finite or infinite in number,
s any integer of the form a^b^cy . . ., t any integer of the forms a, ah,

abc, . . . (where none of the prime factors are powers), and if

i^(a:)
= 2e./(x»),

then /(x) = 2(-)"6',F(x'),

where u is the number of factors in t.

(This remarkable theorem was given by Mobius, Crelle's Jour., ix. p. 105.

For an elegant proof and many interesting consequences, see an article by
J. W. L. Glaisher, Phil. Mag., ser. 5, xviii., p. 518 (1884).)

*
F. 69 means that a discussion of the real branches of this function,

with the corresponding graph, will be found in Frost's Curve Tracing, § 69.



CHAPTER XXXI.

Summation and Transformation of Series

in General.

THE METHOD OF FI.MTE DIFFERENCES.

§ 1.] We have already touched in various connections upon
the summation of series. We propose in the present chapter to

bring together a few general propositions of an elementary
cliaracter which will still further help to guide the student in

this somewhat intricate branch of algebra.

It will be convenient, although for our immediate purposes it

is not absolutely necessary, to introduce a few of the elementary

conceptions of the Calculus of Finite Differences. We shall thus

gain clearness and conciseness without any sacrifice of simplicity ;

and the student will have the a<lditional advantage of an intro-

duction to such works as Boole's Finite Differences, where he

must look for any further information that he may require

regarding the present subject

Let, as heret<ifore, «, be the nth term of any series ; in other

words, let u, be any one-valued function of the integral variable

n; u,_,, «,_,, . . ., u, the same functions oi n-l, n-'Z, . , ,, I

respectively.

Farther, let Au„ Am,_,, . . ., Sii,

denote «<i.+i-«», ««-".-i, . . ., «,-«,;

also A(Au,), A(A«,.,) A (Am,),

which we may write, for shortuuas,
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^<^ (n)
=

«^ (n + 1) ; £"«*, = «,+, ; £*«, = «, ;

and 80 on.

In accordance with this definition we have E(Eii^), which we

contract into £Pu^, = Eii^+i = «»+, ; and, in genend, A'"tt, = «,+«.

We have also, as with A, E''L''u^ = E''*'tt„, for each of these is

obviously equal to u^+r-n-

Example 2. £'ii»=
(ii + r)'.

Example 3. The nitli iliflercuce of an iutcgral fanction of n of the rtb

degree is an integral fuuction of the (r-i»)tb degree if ni<r, a cocstant if

r=ni, zero if m>r.
Let

^r (n)= an'+in'^'+ en'-'+. . .;

then

A^,(n)= a(n + l)'- + 6(n + l)'^>+c(n + X)'^>+. . .

-an""- brf-^- cn''~'+. . .,

= r<i«'-' + {ir(r-l)a + (r-l)l}n'--» + . . .,

= *'r-l(").

say, where <t>^i (n) is an integral function of n of the (r
- l)th degree. Then,

in like manner, we have i^^., (n) = 0,_, (n). But A^p_,(n) = A-0,n ; hence

AVr(") = *'r-i(")- Similarly, AVr(") = 0r-j('>); wl. in general, A'"<i,(n)

= 0,._„(n). We see aUo that A''<t>r{n) will reduce to a constant, namely, r'.a;

and that all differences whose order exceeds r will be zero.

The product of a series of factors in arithmetical progression, such as

a{a + b) (a + (m - 1) 6), plays a considerable part in the summation of series.

Such a product was called by Kramp a Faculty, and he introduced for it the

notation a"'"', calling a the base, m tlie exponent, and 6 the difference of the

faculty. This notation wo shall occasionally Uf=c in the slightly modified

form a""'^ which is clearer, especially when the exponent is compound.
Since

a{a + b) . . . (a + (m-l)t) = i'"(a/6)(fl/t + l) . . . (<i/6 + m-l),

any faculty can always be reduced to a multiple of another whose differenoe

is unity, that is, to another nf the form c""", which, omitting the 1, we may
write c""'. In this notation the ordinary factorial ml would be written 1 "".

The reader should carefully verify and note the following properties of

tlie differences of Faculties and Factorials. In all cases A opiiatc^ as unual

with respect to n.

Example 4.

A(a + fcn)"»'»=mi{a + 6(n + l)}'"^'i».

Example 6.

A{l/(a + 6n)i»i»}=-m6/(o + tn)'"«-'i».

Example ti.

a-e{a- b)<**>'*

'a-b 0'"+''*
*
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Example 7.

Acos(o + |8n)= -2sini^sin(a + Jj3 + /3H) ;

Asin (a + |3n)= +2sin4/3co3(a + i/3 + /3H).

§ 2.] Funrlamcntal Theorems. The following pair of

theorems* form the foundation of the methods of differences,

both direct and inverse :
—

I. A'"«„ = M„+„-„C, ?<„+„,-! +mC;M«+m-2 + . . . + (-)'"«„.

To prove I. we observe that

Am„ = «„+!- </„;

A M„ = tt„+2
—

W„+i

-
tln+i + Un,

hence

and so on.

- «„+2 + 2(/„+i-?/„,

= Mn+3
-
3K„+a + 3«„+i - Un ;

Here the numerical values of the coefficients are obviousl}'

being formed according to the addition rule for the binomial

coefficients (see chap, iv., § 14) ;
and the signs obviously alter-

nate. Hence the first theorem follows at once.

To prove II. we observe that we have, by the definition of

^«mi «m+i = «m + ^Mm- Heuce, siuce the difference of a sum of

functions is obviously the sum of their differences, we have, in

like manner, «„+, = «„+! + Att„+j = «„ + Ai<„ + A («,„ + Ae/„,)
=

«m + Au,„ + Ae/„ + A=«„. We therefore have in succession

* The second of these was given by Newton, Principia, lib. m., lemma v.

(1G87) ; and is sometimes spolten of as Newton's Interpolation Formula. See
his Itact, Methodiis Differentialis (1711) ; also Demoivie, Miscellaiiea Analytica,

p. 152 (1730), and Stirling, Methodus Differentialis, &c., p. 97 (1730).

c. 11. 26
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+ Am,+ A'm„

M„ + 2A«„+ A'm^;

««+.= «-+2Au.+ A'm«
+ A», + 2A'»„ + A'w„,

«„ + 3Ai/„ + 3A»«„ + A'««;

and so on.

The second theorem is therefore established by exactly the

same reasoning as the first, the only difference being that the

signs of the coefficients are now all positive.

If we use the sj-mbol K, and separate the symbols of opera-

tion from the subjects on which they operate, the above theorems

may be written in the following easily-remembered symbolical

forms :
—

A",/, -.(£-!)"'«„ (I.); «„+. = (! +A)"«« (II.).

§ 3.] The following theorem enables us to reduce the sum-

mation of any series to an inverse problem in the calculus of

finite diflerences.

If i\ be any function of n such that Ai', = ««, then

2H, = e„+,-r, (1).

This is at once obvious, if we add the equations

«,_i = Ap,.,=t>, -r,-,,

«. = At>, = v^i -
v..

The difficulty of the summation of any series thus consists

entirely in finding a solution (any solution will do) of the finite

difi'ereuce equation AV, = u,, or t\+,
-

1),
= «,. This solution tan

be effected in finite t<,'rms in only a limited number of ca>c-,

borne of the more important of which arc exemplified below.

Ou the other baud, the above tlieurcu enables us to con-
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struct an iiifiuite number of finitely summable series. All we

have to do is to take any function of n whatever and find its

first difference
;

then this first diflerence is the ?ith term of a

summable series. It was in this way that many of the ordinary
summable series were first obtained by Leibnitz, James and John

Bernoulli, Demoivre, and others.

Example 1. i: {a + nb} {a + {n + l)b} . . . {a + {n+ m.-l)b}.

Using Kramp's notation, we have here to solve the equation

Av„={a+ nbY"^"> (2).

Now we easily find, by direct verifloation, or by putting m + 1 for m and
r - 1 forn in § 1, Example i, that

A[{« + (n-l)6}i"'+'ii'/("< + l)&] = {a + ni}""'*.

Hence «,,= Ja + (7!- 1) ii}""+i'''/(m + l) ii is a value of v,, such as we

require.

Therefore

a
' '

{m + l)b
^' '•

Hence the wcll-knoicii rule
n
2{a+ nb}{a + {n+l)b} . . . {a + {n + m-\)b}
-GJr{a + nh){a + {n + l)h\ . . . {a + {n + m-\)h} {a + (n + m)b}l(m + \)b

where C is independent of n, and may be found in practice by makinrj the two

sides of (4) aijree fur a particular value of n.

Example 2. To sum any series whose nth term is an integral function of

n, say/(ji).

By the method of oliap. v., § 22 (2nd ed.), we can express /(«) in

the form a + hn+ cn{n + \) + dn(n + \)(n + 'i) + . . . Hence

if(n) = G + an + lbn{n + \) + \,:n(n + l)(n + i) + idn{n + l)(n + 2)(n + Z) + . . .

(5),

where the constant C can be determined by giving n any particular value

in (5),

Examples. 'Zll{a + bn} '"">.

Proceeding exactly as in Example 1, and using § 1, Example 5, we deduce

_1 l/{a + fcg}""-'i''-l/{a+'^(fi + l)}i'"-'i'
'

", {a + lm}"»''> {m-l)b
Hence a rule for this class of series like that given in Example 1.

(G).

Example 4. To sum the series 2f {n)l{a+ bn}"""', f {n) being an integral

function of n.

26—2
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Decompose /(n), as in Example 2, into

a + p(a + bny"^+ y{a + bn)i*>i+i{a + bn)<*l> + . . . (7).

Then wc have to evaluate

a5l/{u + 6n}"»i' + /3Sl/{o + J(n + l)}"»->i»+ . . . (R),

which can at once be done by the rule of Example 3*.

Example 5.

V lL'^ _ " ((0 + 6)""* (a + &)i»-'i>) . .

Thin can be deduced at once from § 1, Example 6, by writing a + 6 for 6

and n - 1 for n.

Example 6. To sum the aeries whose terms are the Figurate Numbers of

the mth rank.

The Cguratc numbers of the Ist, 2nd, 3rd, . . . mnks are the numbers

in the let, 2nd, 3rd, . . . vertical columns of the table (II.) in chap, rv.,

§ 2,'5. Hence the (n+l)th figurate number of the mth rank is ,4^_,C„_,
= ii+m-i^»= "'("' + ^) • • • (m + n- l)/"!- Hence we have to sum the seriea

, ,

»
i;i(>n + l) . . . (m+ n-1)

^^t 1.2 ... Fi

•

Now if in (9), Example 5, we put a = m, b= 1, e = 1, we get

« ml"! _ (m+l)i«i m+ 1

film- II. I

-
1

•

Hence

ij.„ j-^'^ + ^'x m(m+l) . . . (m+n- 1)

^ (m + l)(m + 2) . . . (m + l + B-l ) .

1 . 2 . . . n

that is to Bay, the mm of thefirit n figurate numbert of the mth rank it the nih

figurate number of the (m + l)th rank.

Thiii theorem is, however, merely the property of the function „//,, which

wo have already established in chap, xxiii., § 10, Cor. 4. The present

demonRtration of (10) is of course not restricted to the case where m is a

positive integer.

Many other well-known results are included in the formula of Example 6,

acme of which will be fuupd among the exercises below.

* The methods of Examples 1 tn 4 arc all to bo found in Stirling's iletho4u$

Differentialit. Ho applies them iu a very remarkable way to the npi<roxi-

matc evaluation of series which caunut be summed. (See Exercise*

xxvu., 17.)
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Example 7. To sura the series

S„=cosa + cos(a + /3) + . , .+ cos(a+ (n-l)/3);

r„=sina + siu (a + ^) + . . . + siii (a + {n- l)/3).

From § 1, Example 7, we have oos(a + j3«)
= A {sin (o- Ji3 + j3«)/2sin J/3}.

Hence
S„={sin(a-4^ + /3n)-sin(a-i/3)}/2sm4ft

sin 4/371 , , ,
. , ,,,

Similarly,

§ 4.] Expression for the sum of n terms of a series in terms

of the first term and its successive differences.

Let the series be Mi + «<2 + • • • + 'U !
s^utl let us add to the

beginning an arbitrary term «o- Then if we form the quantities

. . . , Sn=Uo+ lh + U2 + - • . + «n, • • • >

we have

A>S„ = Mn+i, A=^„ = A«„+„ .... A'",S?„
= A"'->«„«, ....

Hence, putting n = 0,

AS, = tH, A^S'o = A«„ . . . , A^^S^,
= A"-' «,,... (1).

Now, by Newton's formula (§ 2, II.),

S^ = S, + „C, A^„ + „aA'S, + . . . + A"^„ (2).

If, therefore, we replace S^, ^So, A^aS'q, ... by their values

according to (1), we have

2!<„ = «o + nCilh + nCjAi<^ + nCA'lh + . . . + A""'
(<j (3) ;

or, if we subtract Uo from both sides,

2m„ = „Cith + nCjAtt, + nCsA'w, + . . . + A"-'?*, (4)*.
1

The formula (4) is simply an algebraical identity which may
be employed to transform any series whatsoever ;

for example,
in the case of the geometric series 2a;" it gives

* This formula, which, aa Demoivre (Miscell. An., p. 153) pointed out, is

an immediate consequence of Newton's rule, seems to have been first explicitly

stated by Montmort, Journ. d. Savans (1711). It was probably independently
found by James Bernoulli, for it is given in the Ara Conjeetaiidi, p. 98 (1713).
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J-' + i* + . . . + x'

n(n-l) / ,\ n(»-l)(n-2) , ,,.= HJ+
\jj—'dr(x-l)+

-^ ^ 'x(;r-l)' + . . .

+ x(x-ir-\

which can be easily verified independently by transforming the

right-hand side. The transformation (4) will, however, lead to

the sum of the series, in the proper sense of tiie word sum, only

when the »ith differences of the terms become lero, m being a

finite integer. The sum of the series will in that case be given

by (4) as an integral function of n of the mth degree. Since the

nth term of the series is the first difference of its finite sum, we

see conversely that any series whose sum to n terms is an

integral function of n of the »»th degree must have for its nth

term an integral function of n of the (m — l)th degree- We have

thus reproduced from a more general point of view tlie results of

chap. XX., § 10.

Example. Sam the Beries

2{n + l)(n + 2)(n + 8).
1

If we tabulate the Cist few terms and the eaocessive diffeieooes, we get

1, 2, 3, 4, S

"«

A",
A'u.

A* II,

Hence, by (4),

r(n + l)(n + 2)(n + 3)

=
„.24^"i"^.36^"J:^L^!l^>.84^."("-^)("j'><n-3) ^^

= i("* + 10n' + S5n»+50n).

§ 5.] Montmort's Theorem regarding the summation q/'Si/.j^.

An elegant formula for the transformation of the power-
series 2u,.r* may be obtained as follows. Let ua in the first

place consider S= 2u,a:", which we suppose to be convergent when

|xl<l; and let ua further suppose tliat |x|<|l-«|. Put

ar = y/(l +y); so that

24,
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\yl{\+y)\ = \x\<\,

and |?/|
= |ir/(l-«)|<l.

Then, since

(l+7/)-"'=l-„(7i?/+„+i(722/'-m+2C'3/ + . . .,

we have

£f=i«„2/"/(i+#,
1

= u,ij-Uif+ Ujf- Mi/+ n^f-. . .

+ Ihy"
-
iGi^kl^ + sGitky^

-
iPsU^lf + . .

+ Usf - iCiUsy* + iC.ttsi/
-

. . .

+ ItiV*
-
iCi^hf +

+ thf--

This double series evidently satisfies Cauchy's criterion, for

both \y\<i and \y/{l+y)\<l. Hence we may rearrange it

according to powers of y. If we bear in mind § 2, I., we find

at once

S=tiiy + ^iiiy- + ^"nif + ^'uiy* + ^*ihf + - • • •

Hence, replacing y by its value, namely, x/(l
-

x), we get

r'" i-a;^(i-^r-^(i-a;)=^--
^^^ •

When the differences of a finite order 7n vanish, j\Iontmort's

formula gives a closed expression for the sum to infinity ; and,

if the differences diminish rapidly, it gives in certain cases a

convenient formula for numerical approximation.

Cor. 1. We havefor the finite mm

+
(A^«,-a;''A^M„+i)(j^a+.

• • (2).

For, if we start with the series ?<„+ia;"+' + ?<,i+2.?;"+- + . . ., and

proceed as before, we get

From (1) and (3) we get (2) at once by subtraction.

• First given by Montmort, Phil. Trans. R.S.L. (1717). Demoivre gave

in his Miscellanea a demonstration very much like the above.
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The formula (2) will furnish a sum in the proper sense only
when the dilVurences vanish after a certain order. The summa-
tion of the intcgro-geometric series, already discussed in chap.

XX., ^13 and 14, may be effected in this way. It siioidd bo

observed that, inasmuch as (2) is an algebraic identity between

a finite number of terms, its truth does not depend on the con-

vergeucy of 2j/„;r", although that suppoi^ition was made in the

above demonstration.

Cor. 2. 1/ u„ be a real jmnitive quaii^itt/ which comtantly
diminishes as n increases, and if Lun = 0, then

Uj-th+ti,-. . .=-?/,- ^ Ak,+ -,A'm,-, . . (I)*.

Tliis is merely a particular case of (1) ; for, if in (1) we put
-X for x, we get

i(-)-«,;r- = i(-)-A-X.(j^)" (5).

Since the differences must ultimately remain finite, the right-

hand side of (5) will be convergent when x=l. Also, by Abel's

Theorem (chap, xxvi., § 20), since 2 (-)"«, is convergent, the

limit of the left-hand side of (5) when a; =1 is 2 (-)"«,. Hence

the theorem follows.

The transformation in formula (4) in general incrca-ses the

convergency of the series, and it may of course, in particular

cases, lead to a finite expression for the sum.

Cor. 3. We get, by subtraction, tfte /olloipingformula :
—

«.-«, + . . . (-)"-'«, = 2 ("-(-)""»+.) -2»('^"'-(-)"'^"«+>)

in which the restrictions on u„ will be unncces.sary if the right-

hand side be a closed e.xpres-sion, which it will be if the differences

of tt, vanish after a certain order.

*
Enler, Itut. D{ff. Cole., Tort II., cap. i. (1787).
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Example 1. We have (Gregory's Series)

T
, 1 1 1

4=^-3 + 5-7 + - •• (^>-

If we apply (4), we have ii„=l/(2ra-l). Hence

A'"«„=(-)'"2.4 . . . 2)/(2«-l)(2n+l)(2» + 3) . . . (2(i + 2r-l);
A'-Ui= (-)'-2.4 . . . 2r/1.3.5 . . . (2r+l),

= (-)'-2'-.1.2 . . . r/1.3.5 . . . (2r + l).

-n f IT, 1 1.2 1.2.3
Therefore ^ = 1 H 1 h h . . . (S)

2 8 3.5 8.5.7 ^ '

Example 2. To sum the series

S„ = l=-22 + 32-. . . (-)''-'«'.

Since A«^i = 2in-3, A«-i
= 3,

'i-"n+i
= 2, A-iti= 2,

A=«„+, = 0, A3u, = 0,

we have, by (fi),

Sn=Hl-(-)''(« + l)'}-i{3-(-)"(2n + 3)}+J{2-(-)"2},
= (-)"-' 4" (n + 1)-

Exercises XXV.

(1.) Sum to n terms the series whose Jith term is the >ith r-gonal
number*.

Sum the following series to n terms, and, where possible, also to

infinity :
—

(2.) 2»{7i + 2)(n + 4). (3.) 21/(k=-1).

(4.) 1/3.8 + 1/8.13 + 1/13. 18 + . . . .

(.5.) 1/1. 3. 5 + 1/3. 5. 7 + 1/5. 7. 9 + . . . .

(6.) 1/1. 2. 3. 4 + 1/2. 3. 4. 5 + 1/3. 4. 5. 6 + . . . .

(7.) 2(aH + 6)/n(n + l)(n + 2).

(8.) 1/1.3.5 + 2/3. 5.7 + 3/5.7.9 + . . . .

(9.) 1/1. 2. 4 + 1/2. 3. 5+ 1/3. 4. 6 + . . . .

(10.) 1/1. 3. 7 + 1/3. 5. 9 + 1/5. 7. 11 + . . . .

(11.) 2(n+l)=/;i(n + 2).

(12.) 4/1.3.5.7 + 9/2.4.G.8 + 1G/3.5.7.9 + . . . .

(13.) 2?ecnescc(n + l)<'. (14.) 2 tan
((?/2'>)/2".

(15.) 2 tan-i |(na
- n + 1) a"-'/(l + n (n

-
1) a-"-')}.

(16.) 2tan-'{2/H=}.

(17.) ml + (m + l)I/ll + (m + 2)I/2! + . . . .

(18.) l!/m! + 2!/(m + l)! + 3I/(m + 2)I + . . . .

* The sums to n terms of arithmetical progressions whose first terms are

all unity, and whose common differences are 0, 1, 2, . . ., (r- 1), . . . respec-

tively, are called the nth polygonal numbers of the 1st, 2nd, 3rd, . . .
, rth, . . .

order. The numbers of the first, second, third, fourth, . . . orders are spoken
of as linear, triangular, square, pentagonal, . . . numbers.
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(19.) i-„c, + „r,-. ..(-)-„c,.
(20.) Show tbnt ibe CRurato Duiiibers of a gircD rank can be Bammod bjr

the fonnula of § 3, Example 1.

i 12 1.2.3
* '

'^m'*'m{m + l)'^m{m + l)(m + 2)'*''

' ' '

a(a + l) . . . ja + r) . a(a + l) . . . (g + r+l ) .

*''''•'
c(c + l) . . . (c + r)*e(c+l) . . . (c + r+ l)**

' ' *

(24.) 2(a + n)i"'-»7(c + n)"»'.

1.3 1.3.5 1.8.5.7
'""'' 1.2.3.4"'"l.2.3.4.5'*'l.a.3.4.5.6^"

• ' *

/Ofi X (l+jllljL^r) (1 + r) (1 + 2r)(l + 3r)
* ' 1.2.3.4.5 1.2.3.4.6.6 "

(27.) jm-j—gm(m-l) + j--g--gm(m-l)(m-2)-.
. . .

(28.) Show that

^/^^
• •

("+^)-ri/M
• • •

("-D+^/]|
• • •

{"-I)--'-

(GlaUhcr.)

(20.) Show that

l + 2(l-a) + 3(l-<i)(l-2u) + . . . + n(l-a)(l-2n) . . . (l-(»i-l)a)
= u-'{l-(l-<i)(l-2<i) . . . (1-na)).

_1__^ 21
3]

^ ' i+ l~«-l"(x-l)(i-2)'*'(x-l)(«-2)(r-S)"*
* •

(-)'*'nl /,
n + l\

{x-l){x-2)...{x-n)V-x+-i)-
(31.) If a + 6 +2=e + (l, then

;. ai»it»""_ ab ((g + l)'" (fe-Hl)'"' (o + l)i'-"(t + l)i»-" )

7ci"'(J'»'~(a + l)(6 + l)-ed( cl«i<|i«i
~

eit-iidn-ii (•

(32.)

, 9-r 7 (^-l).r(r-l)

^~(p-, + l).(l)+ r-r)'^(p-? + l)(i.-j + 2).(p+r-l)(p + r-2)
' ' '

^(p-?)-(P + '-)

p.(p-9 + r)

•

(Educational Timu Rrprint, toI. xu., p. 08. t

(33.) Transform the equation

log2 = l-i + l-J + . . .

by § 6, Cor. 2.

(34.) Show, by moans of § 2, I., that, if m bo a positive integer, then

1 r "^ r " <"-') r -(<»- IX^-S) ,

<^-:){^-bh)'"{^-b-^y
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RECURRING SERIES.

§ 6.] We have already seen that any proper rational fraction

such as {a + bx + cj^)/(1 +px +
q.i-

+ rx^)* can always be expanded

in an ascending series of powers of x. In fact, if
|

a;
]

be less than

the modulus of that root of ra? + qar+px+l = Q which has the

least modulus, we have (see chap, xxvu., §§ 6 and 7)

a + bx + cx' .,
, n , /i\

\ +px + qx" + rx^

We propose now to study for a little the properties of the

series (1).

If we multiply both sides of the equation (1) by l+p.r

+ qx^ + rx^, we have

a + bx + cxr = {l+px + qx' + rx^){tio + u^x + u.2ar + . . .+u„af^ + . . . )

(2).

Hence, equating coefficients of powers of x, we must have

Mo = a (3i);

Vj+pUo = b (Sa);

v._+pih + qUo = c (83);

v-i+piu + qih + r 11^
= (84);

«» +pUn-l + qUn-i + rUa-s = (3„+,).

• •••••
Any power-scries which has the property indicated by the

equation (3„+i) is called a Recurring Power-Series] ; and the

equation (3„+i) is spoken of as its Scale of Eelation, or, briefly,

its Scale. The quantities p, q, r, which are independent of n,

may be called the Constants of the Scale. According as the scale

has 1, 2, 3, . . ., r, . . . constants, the recurring series is said to

be of the 1st, 2nd, 3rd, .... »-th, . . . order. When x=l, so

that we have simply the series «„ + «i + «2 + • • • + «» + . .
,

with a relation such as (3,+i) connecting its terms, we speak of

* For simplicity, we confine our exposition to the case where the

denominator is of the 3rd degree; but all our statements can at once be

generalised.

t The theory of Recurring Series was originated and largely developed

by Demoivre.
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tlie scries as a recurriwj scries simply* ; so that every recurring

series may be regarded as a particular ca-st- of a recurring power-
series.

It is obvious from our definition that all the coefficionts of a

recurring power-series of the ?-th order cau be calculated when

the values of the first r are given and also the constants of its scale.

Hence a recurring scries vf the rth order depends upon 2r constants ;

namely, the r constants of its scale, and r others.

From this it follows that if the first 2r terms of a series (and
these only) be given, it can in general be continued as a recurring

series of the rth order, and that in one way only ;
a.s a recurring

series of the (r + l)th order in a two-fold infinity of ways ; and

so on.

On the other hand, if the first 2r terms of the series bo

given, two conditions must be satisfied in order that it may be a

recurring series of the (r- l)th order; four in order tlrnt it may
be a recurring series of the (r

-
2)th order

;
and so on.

Example. Show that

is a rconrriog series of the 2ud order. Let the scale be u„ +i»u,_, + ?•',-,
= 0.

Then we must have

The first two of these equations give p= -2, g= +1 ; and these values

are consistent with the remaining two equations. Hence the theorem.

§ 7.] The rational fraction {a->i-bx + cx')!{l-¥px + q3? + r3^),

of which the recurring power-series «,, + M,a; + f^ar" + . . . is the

development when
|

a;
|

is less than a certain value, is called the

Generating Function of the series. We may think of the series

and its generating function without regarding the fact that tlie

one is the equivalent of the other under certain restrictions. If

we take this view, we must look at the denominator of the

function as furnishing tlic scale, and consider the coelhcienta

* Wo might of course regard a reonrring powor-Bcries as a particular casa

of a recurring scries in general. Thns, if wo put (/,=u,t', wo might rvgarj
the series iu (1) as a recurring series whose scale is
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as determined by the equations (3i), (3j), . . ., (3„+,)*. No

question then arises regarding the convergence of the series.

Given the scale and the first r terms of a recurring power-

series of the rth order, we can always find its generating function.

Taking the case r = 3, we see, in fact, from the equations (3i),

{3s), . . .,(3n+i), . . .of§6, that

{mo + (mi +pUo) X ->-

{Ui +pih+ qUo) ar}l{l +px + qx^ + ra?)

is the generating function of the series «o + u^x + u^ir + . . . ,

whose scale is M„+j9i<„_i + 5'(/„-2
+ rM„-3=0.

Cor. 1. Every recurring power-series may, if \x\ be small

enough, be regarded as the expansion of a rational fraction.

Cor. 2. The general term of any rectirring series can always

be found when its scale is given and a sufficient number of its

initial terms.

For we can find the generating function of the series itself

or of a corresponding power-series ; decompose the generating

function into partial fractions of the form A{x- a)-' ; expand

each of these in ascending powers of x
;
and finally collect the

coefficient of of from the several expansions.

Example. Find the general term of the recurring series whose scale is

u„ - 4u„_i + 5u„_5
-
2u„_3= 0, and whose first three terms are 1 + - 5 . Con-

sider the corresponding power-series. Here p= -4, g = 5, r= - 2; so that

a=
«(|
= l, 6= u-i+pU(|= -4, c = U2+i)Ui + 2"o=0.

The generating function is therefore

l-4x _ 1-4j
l-4j;+ 5i»-2i»~(l-if(l-2x)'

2 3 4

~l-x^ (l-x)- (l-2x)

Expanding, we have

= l + 2(3« + 5-2»+»)x».

The general term in question is therefore 3n-l-5-2"+-.

§ 8.] If Un bo any function of an integral variable n which

satisfies an equation of the fonn

M„ + p«„_i + qUn-i + rUn-s = 0,

or, what comes to the same thing,

«n+3 +pnn+i + Q>t«+i + rUn = (1),

• We might also regard the series as deduced from the generating

function by the process of ascending continued division (see chap, v., § 20).
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we sec from the reasoning of last paragraph that «, is uni(iuely

determined by the equation (1), provided its three initial values

Mo, u,, J/, are given; and we have found a process for actually

determining u».

It is not difficult to see that we might assign any three

values of u„ whatever, say «., u^, Uy, and the solution would

still be determinate. We should, in fact, by the process § 7,

determine u„ as a function of n linearly involving throe arbitrary

constants «/„, u,, u.^, say/(ao, «^, «,, n) ;
and u^, «,, «, would bo

uniquely determined by the three linear equations

/(««, «.,Wi,,a) = Ma, /{u„ih,th,P) = Uff,/(u„u^,u,,y) = Uy (2).

An equation such as (1) is called a Linear Difference-Equal ion

of the 3rd order with constant coefficients ;
and we see generally

that a linear difference-equation oj the rth order vith constant

coefficients has a unique solution when the values of tlie function

involved are given for r different values of its integral argument.

Example. Find a function u, snoh that u„+,-4u,+j + 5u,4., -2u,= 0;
and u„= l, t»j

= 0, Uj=-5.
We have simply to repeat the work of the example in § 7.

§ 9.] To sum a recurring series to n + 1 terms, and (when

convergent) to infinity.

Taking the case of a power-series of the 3rd order, let

then

pxS^ =pu^x + puiar+. . . +/?«,_, ar"+ pu^x'^^,

qar'Sn= qu^a^ +. . .+qu^_jx"+qu,.ia:"*^ + qu^af*"^,

r3?Sn= . . . + n/„-3ar"+rM,.aX"+'+»-tt,-,j-"+'+ru,j*^'

Hence adding, and remembering that «, +p«,_, + (ytt,_,

+ r«,-j = for all values of n which exceed 2, we liave

( 1 + /).r + ^jr' + ra?) Sn = u, + («, + puj) ^ + (m^ + />(/,
+ qu^) 3*

+ (/'«» + gitn-x + rUn-3) a;"^' + (!Z«, + r«,_,) x'** + ru,x^*' (1) ;

whence -S„ can in general be at once determined by dividing by
I +px + ijx' + ra?.

The only exceptional case is tliat where for the particular

value of X in question, s^y x =
a, it happens that

\+pa + qa? + ra.' = 0.
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In this case the right hand of (1) must, of course, also

vanish, and *S'„ takes the indeterminate form 0/0. S^ may in

cases of this kind be found by evahiating the indeterminate form

by means of the principles of chap. xxv. This, however, is often

much more troublesome than some more special process applicable

to the particular case.

If the series S^t^a;" be convergent, then 7^«„a:" = when

w = cc
;

therefore the last three terms on the right of (1) wiU

become infinitely small when ?i = qo . We therefore have for

the sum to infinity in any case where the series is convergent

""
1 +px + qor + rx'

The particular cases

Mo + "i + '^ + • • • + "'• + • • • (3)'

«o-Mi + «--. • .+(-)"(<»+. . . (4),

are of course deducible from (1) and (2) by putting x=+l
and x = -\. Exceptional cases wiU arise if \+p + q + r = Q, or

if l—2) + q-r = 0.

It is needless to give an example of the above process, for

Examples 1 and 2, chap, xx., § 14, are particular instances,

"^.n-af and 1 + 2 (
-

Y-'^2nx" being, in fact, recurring series whose

scales are «„-3«„-i+ 3i«„-2- '<n-s=0 and m„ + 2«„_i + m„_o =

respectively.

Exercises XXVI.

Sam the following recurring series to n + 1 terms, and, where admissible,

to infinity :
—

(1.) 2 + 5 + 13+ 35 + 97+ ....
(2.) 2+10 + 12-24 + 2 + 10+1-2+. . . .

(3.) 2 + 17i: + 95i= + 461xS+. . . .

(4.) 5 + r2j; + 30x2 + 78x3 + 210j;^+. . . .

(5.) l + 4x + 17j;= + 76x» + 353i-'+. . . .

(6.) 1 + 4x + 10j;2+ 22i3 + 46x<+. . . .

(7.) If a series has for its rth term the sum of r terms of a recurring

series, it will itself be a recurring series with one more tenn in the scale of

relation.

Find the sum of the series whose rth term is the sum of r terms of the

recurring series 1 + 6 + 40+ 288+ . ...



416 EXERCISES XXVI CH. XXXI

(8.) If r,, T„+i, r,« be consocntive terms of the reonrring aerica

whose scale is J',+j
=

'>r,4.,
- bT,, then

(T,.^,'
- aT, r„+, + 6r.')/( r._^,' - or,_, r._^+, + fcr,_,») = fc'.

(9.) Form and sum to n terms the teria each term in which is half the

difference of the two preceding terms.

(10.) Show that every integral series (chap, zx., § 4) is a recarring scries;

and show how to find its scale.

(11.) If u,=u,_,+u,_,, and u,= au,, show that

«,'- ".+«,-,= (- )"(«'-« -l)"!*.

(12.) If the series u,, u,, u,, . . ., u,, . . . be ench that in every four

consecutive terms the sum of the^cxtrcmes exceeds the sum of the means by
a constant quantity e, find the law of the series ; and show that the sum of

im terms is

Jm(m- l)(4m-5)e- m(m- 2) 11] + mU]+in(n>
-

1) u,.

(13.) If u,.^=u,^i + u„, U] = l, u,= l, sum the series

(14.) By French law an illegitimate child receives one-third of the portion
of the inheritance that he would liave received had he been legitimate. If

there be / legitimate and n illegitimate children, show that the portion of

inheritance 1 due to a legitimate child is

1 n n (n -
1) n(n-l). . . 2.1

J~3/(i + l)'*'8''J(J + l)(i + 2)
•••'

'3«J({ + 1) . . . (Jin)*

(Catalan, Nouv. Ann., scr. ii., t. 2.)

SIMPSONS METHOD FOR SUMMING THE SERIES FORMED BY

TAKING EVERY AtII TERM FROM ANY POWER-SERIES

WHOSE SUM IS KNOWN.

§ 10.] This method depends on the theorem that the sum of
the ptb powers of the kth roots of unity is k if p be a multiple

of k, but otherwise zero.

This is easily seen to be true
; for, if w he a primitive /ttli

root of 1, tlicn the k roots are <«', <•>',
<u' w'-'. If p /i/-,

then (w*)''
= (1)'''' =

(o)*)"'
= 1. If p bo not a multiple of k, then

we have

(<i>y -h (my + . . .+ (ui*-')"
= 1 + (u^y *

(a.")'
+ ...-• (o)'/-',

=
{I -K)'i;(i --•').

=
0.

for (a.")*
-

(ui'y
= 1 , oud o,' +- 1.

J



§ 10 SIMPSON'S THEOREM 417

Let us suppose now that f{x) is the sum of n terms of the

power-series «„ + 2M„a:", n being finite, or, it may be, if the series

is convergent, infinite.

Consider the expression

k

.. .
(1).

where m is or any positive integer <A-.

The coefficient of of in the equivalent series is

«,{(o.<')*-'"+'-+(<oi)*-'"+'' + (a)=)*-'"+'' + . . . + (o)*-»)*-'"+'"}/A- (2).

Now, by the above theorem regarding the ^h roots of unity,

the quantity within the crooked brackets vanishes if k-m + r

be not a multiple of k, and has the value k if k- m + r be a

multiple of k. Therefore we have

f7„ = u^af + M,„+iar"'+* + tt„+aa:"+^ + . . . (3),

where the series extends until the last power of x is just not

higher than the «th, and, in particular, to infinity if f{x) be a

sum to infinity*.

If we put 7» = 0, we get

{f{x) +f{u>'x) +f(u,'x) + . . . +/(<.»-' a:)}/^-

=
Uf,+ i/tA* + tl^X^ + UjkO^ + . . . (4).

Example 1.

l + x+<c'+. . .+i''=(l-i"+i)/(l-i).

Hence, if u be a primitive cube root of 1, we have

(1 - a:"+' 1 - u"+' 1"+' 1 - u'»+=x»+'1
l + x^ + x*+. . .+x^=i\—. + —. -+—

,
^ V,

(1-X l-Ci)X 1- u-x
)

where 3< is the greatest multiple of 3 which does not exceed n.

Example 2. To sum the series

i» x' x" ,

* This method was given by Thomas Simpson, Phil. Trans. R. S. L.

Nov. 16, 1758 (see De Morgan's Trigonometry and DouhU Algebra (1849),

p. 159). It was used apparently independently by Waring (see Phil. Tram,

li. S. L. 17S4).

C. II. 27
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We have

e'=l+x +
|-'
+ |J+...ad».

Ilcnco, if w bo a primitive 'lOi root of unity, say u = i, then, aiooe here

4= 4, m = 8, k-m = l, ()'=-!, u'=-i, we get

x* x" x"
that is, i (sinh ' - "° ')

=
o]
+

71
+

i ij
+ • • • •

MISCELLANEOUS METHODS.

§ 11.] When the nth term of a scries is a rational fraction,

the finite summation may often be effected by merely breaking

up this term into its constituent partial fractions
; and even

when summation cannot be effected, many useful transformations

can be thus obtained. In dealing with infinite series by this

method, close attention must be paid to the principles laid down

in chap, xxvi., especially § 13; otherwise the tyro may easily

fall into mistakes. As an instance of this method of working,
see chap, xxviil, § 14, Examples 1 and 2.

Example 1. Show that

((x + 1)' (x + 2)
"•"

(X + 2)» (X + 3)
*

(l+3j» (7+T)
*" • •

•[

( 1 1 1 1 _ 1
*"

|(x+l)(x + 2)«''"(x+ 2)(x + 3)''''(x + 3)(x + 4)>'^'
'

•|~(F+Tj'"
Denote the earns of n terms of the two given series by S, and T

respectively, and their nth terms by u, and w, respectively. Then

u,= -l/(x + n) + l/(x + n)«+l/(T + n + l);

t>,=l/(x + n)-I/(x + n + l)»-l/(x + fi + l).

Whence we get at once

S,+ r, = l/(x + l)'-l/(x + n + l)'.

Therefore S. + T. = l/(x + 1)'.

Example 2. Bosolution into partial fractions will always effect the

summation of the scries

2/(n)/(n + a)(n + 6) . . . (n + A),

whore a, b, . . ., k aro positive or ncgntivo integers, and /(n) is an integral

function of n who«« degree is less by two at least than the degree of

(n + o)(u + i<)
. . . {« + *).
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For we have

f{n)l{n + a)(n + b) . . . {n + h)^ZAI{n + a),

and
/(n) = 2J(n + fc)(« + c) . . .

(ii + k).

Since the desreo of f{n} is less by one at least than the degree of the

right-hand side of this last identity, we must have

A +B+. . .+K=0.

But, since a, i, . . ., k are all integral, any partial fraction whose

denominator p is neither too small nor too great will occur with all the

numerators A, B, . . ., K, so that we shall have Alp + Blp+ . . . +Klp = 0.

On collecting all the fractions belonging to all the terms of the series we

shall be left with a certam number at the beginning and a certain number at

the end; so that the sum will be reduced to a closed function of 71.

§ 12.] Elders Identity. The following obvious identity*

1 - Oi + «! (1
-

«2) + «ia2 (1
-

«3) + . . . + ai«2 . . . a„ (1
-

a^+i)

= \-a^a. . . . as„+i (1)

is often useful in the summation of series. It contains, in fact,

as particular cases a good many of the results already obtained

above.

If in (1) we put

flh
— —

, tta— t OE3
—

, • • •) (ln-\-\— t

y y+Pi y+Pi y^P"

and multiply on both sides by y/(y
-

x), we get

X X {X +Pi) X(x+pi) . . . (x+Pn-i)
^
y+Pi

^
(y+Pi) (y +p^)

^' ' '^
(y +b) iy+pd • (y +p«)

^ _y ^ (x+pi){x+p.) . . . {x+p„)

y-x y-x' {y +p^) (y +2h) • • • (y+Pn)

If the quantities involved be such that

(2).

»=« iy+Pi) (y +i^2) • -(y+Pn)
then

l + _^x--^.?^+...adoo = J^
(4).

y+Pi {y+Pi){y+p^) y-^

Used in the slightly different form,

Ii)(l + aj)(l + a3)(l + a,) . . .

= l + a, + a5(l + aj)+a,(l + a,)(

by Euler, Nov. Comm. Petrop. (17C0)
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If ill (2) wc put y =
0, we get

Pi PiP,
' ' '

P>P,- Pn
1 + £ + £i-^ +/»>) + + x{x+p,). . . (x+p,-,)

=('v,)('v.)-('^^.)
"'

From (3) a variety of particular cases may be derived by

putting 71= x), and giving special values to pi, pt, . • Thus,

for instance, if the infinite series 21/;;, diverge to + <», then (see

chap. XXVI., § 24) we have

l_£+*L(^Z£il_. . .ad« = (6).
Pi PiPi

00

In general, if the continued product n(l +a-/j3,) converge to any

CO

definite limit, then the series l + 2j-(x+p,) . . . {x+pn-i)/piPi />.

converges to the same limit.

Example. Find when the infinite Ecries

<;=l4._f- , _fj£+£)_ ,
x(x+p){x + 2p)

y+P {y+p){y+-2p) ly + r>){y + 2p){y + 3p)
•'•

oonTcrges, and the limit to wbicb it converges.

If in (2) above we put Pi=p, Pi= 2p, *<>•, • • •> w have

„_ y X
^ (j + p)(x + 2p). . . jx + np) .

y-x~y-x ...{y + f}{y + 2p). . .iy + np)

How the limit in question may be written

I I
1 + y/np)

but this diverges to x if (x
-
y)/p be positive, and converges to if (x

-
y)/p

be negative (cliap. xivi., § 24).

Hence, if p denote in all cases a positive quantity, we see Uiat

z x(x+p)
. . od« = -i^.

^y+P^{y+p){y+^p) v
if y>z; and

y-p (y-pXy-ap) »-»
if y<.x.

EXERCIBEB XXVII.

(I.) Given 1/(1 -x)'= 1 + 2x + 8x' + '1jc'+ . . .,

sum l + 4x»+ 7x« + 10x»+. . . .

(2.) Sum the scries

l + i»/4+z«/7+. . .;

l + i'/3I + «»/CI+. . . .
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(3.) If /(j-)
=

i(„ + )(,x + «o,r=+. . ., and a, p, y, . . . be the ;ith roots

of -
1, show that

i{a2»-'»/(<u:) + /3-"-™/(/3.r) + . . .}
= ",„.c'"-«m+„.i:'"+" + w™+o„.r"'+"-»- . . .

n

where m<n. (De Morgan, Diff. Calc, p. 319 (1839).)

Sum the following series, and point out the condition for couvergeucy

when the summation extends to infinity :
—

(4.) l-a:'/4+ x«/7-. . . ad oo ;

i-x*/4!+x7/7I-. . . ad 00.

(5.) l + „C, + ^Ce + „,C^+. . . adco;

i-m^'3 + m<^e-m'-»+- • ad CO .

(G.) 1/1.3+1/1.2.4 + 1/1.2.3.5+ . . . to n terms.

(7.) l/1.2.3 + „,C,/2.3.4 + ,„Cj/3.4.5+. . . ad co .

(8.) 1-2j:/1 + 3x'-/2-4i»/3+. . . adoo.

(9.) cos(;/1.2.3 + cos2ff/2.3.4 + cos3e/3.4.5+. . . ad oo .

(10.) 1/12. 2=+ 7/2-. 32+. . . + {2ir + iii + l)l{ii + l)-(n + 2)-.

(11.) l/l».2a-l/2-.3=+. . . (-)"-il/u2(„ + l)J+. . . adoo.

(12.) If n be a positive integer, show that

n 1 n(«-l) 1 n(7i-l)(n-2)
^

in + n'*' 2 (m + n) {m + n-1)'*' 3 {m+ n) (m + n-1) (m + n-2)

_ n 1 n (n
-

1) 1 7i{n-l){n-2)
~m + l~2(m+ l)(m+ 2)'^3(Hi + l)(m + 2)(m + 3)

••• *

(13.) Show that

„C, rfit , s9l :=
"

.

l-xjl (l-x/l)(l-x/2)"^(l-x/l)(l-a:/2)(l-x/3)
•••

n-x'

and hence show that

„Ci<ri
-

„C,<r3 + . . . (-)"„C„(r„=l/n,

where (Tr
= 1/1 + 1/2+. . .+l/r.

(14.) Sum the series

m'
, m°(m'-l') m» (m'

-
1=) (m'

-
2=)

F *—
P:2= 13722. 3"

+ . . . aa CO ,

, , m\ mMm^ + l') mMm' + l") (m' + 3')

1+P+ 12.3.
+

iTsTsQ
+ • • . adco.

(15.) Show that

ai+Pi K+ftlK+Pa) {ai+Pi)K+i'2)(03+i's)

PlPa • • fn-l^n _ I
PlPa • • Pn

(ii+PilK+Pa) --K+PJ ("i+PiJK+Pa) ••• K+P«)*

(16.) Show that

,1 _ l*-{V-x-)'' 3*-(3'-3:°)»
tan

2'f*- (ia_a2j2
"*

(l3-xY(3'-xT
' " '

(Glaisher, MatU. Mess., 1873, p. 188.)
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(17.) Showtliat11.1. 1-2

n-~n(n + l) ii(n + l)(n + 2) n(n + l)(Fi + 2)(n + 3)
" •'

and apply this result to the approximate calculation of w* bjr means of tho

formula

t'/C= 1/1«+1/3>+ 1/3»+. . . .

(Stirling, ilethodiu Diftrentialit, p. 28.)

(18.) Show that 21/(m»-l) = l and 21/(<i*-l) = log2, where m and n

have all possible positive integral values difloring from unity, a is any even

positive integer, and each distinct fraction is counted only once.

(Qoldbacb's Theorem, see Li'our. Math. Jour., 1842.)

(19.) If n have any positive integral value except unity, and r be any

positive integer which is not a perfect power, show that S(n- l)/(r<*- 1)

= ir-/C; and, if d{n) denote the number of divisors of n, that 2 (d (n)
-

l)/r»

= 1; also that 2(71- l)/r
= i;i/(r-l)>. {lb.)



CHAPTER XXXII.

Simple Continued Fractions.

NATURE AND ORIGIN OF CONTINUED FRACTIONS.

§ 1.] By a continued fraction is meant a function of the form

ai +
b.

aa+-
a, + ^... (1);

the primary interpretation of whicii is that Ih is the ante-

cedent of a quotient whose consequent is all that lies under the

line immediately beneath h^, and so on.

There may be either a finite or an infinite number of links in

the chain of operations ; that is to say, we may have either a

terminating or non-terminating continued fraction.

In the most general case the component fractions
—

,

-^
,

a^ a^

—
, , . ., as they are sometimes called, may have either positive or

a*

negative numerators and denominators, and succeed each other

without recurrence according to any law whatever. If they do

recur, we have what is called a recurring or periodic continued

fraction.

For shortness, the following abbreviative notation is often

used instead of (1),

^+AAA.... (2),
a, + a, + a4 +

the signs + being written below the lines to prevent coufLi.sion

with
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61 b, bt «
«h + — + — +— + ... .

a-, a, a.

Examples have already been given (see clia]). in., Exercises

in., 15) of the reduction of terminating continued fractions;

and from these e.\ami)les it is obvious that «ivry terminating
continuedfraction whose constituents a,, a^ f>t, b„ . . . are

commensurable numbers reduces to a commensurable number.

§ 2.] In the present chapter we shall confine ourselves

mainly to the most interesting and the most importiint kind

of continued fraction, that, namely, in which each of the nume-
rators of the component fractions is +1, and each of the

denominators a positive integer. When di.stinction is necessary,
this kind of continued fraction, namely,

111
may be called a simple continued fraction. Unless it is otherwise

stated, we suppose the continued fraction to terminate.

In this case, for a reason that will be understood by and i)y,

the numbers a,, a,, a,,. . . are called the first, second, third, . . .

partial quotients of the continued fraction.

§ 3.] Every number, commensurable or incommensurable, may
be expressed uniquely as a simple continued fraction, which may
or may not terminate.

For, let X be the number in question, and a, the greatest

integer which does not exceed X; then we may write

-i'=«.+^^ (1).

where -rT',> 1, but is not necessarily integral, or even commensur-

able.

Again, let a, be the greatest integer in Xi, so that «»,< 1
;

then we have

where A'j> 1, as before.

A'. = a, +
-J.

(2).

The DOUkUoD Oi-h— -I-
— + --)-. . .u frcaueutl; uied bv CoDtinental^

Oj «» "4
writers
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Again, let ^3 be the greatest integer ia Xt ;
then

Xi=ch +^ (3);

and so on.

Tiiis process will terminate if one of the quantities X, say

Xn-i, is an integer ;
for we should then have



426 CONVERSION UNIQUE Cll.
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remainder when B is divided by C; a^ the quotient and E the

remainder when C is divided by D ;
and so on, just as in the

arithmetical process for finding the G.C.M. oi A and B. Since

A and B are prime to each other, the last divisor will be 1, the

last quotient a„, say, and the last remainder 0. We then have

A_ G _ 1

B~"^* B'^'^BjO
B D_ _1

G E 1

-^-<h
+
j)-a,

+
^j^

Hence
&c.

1 1

^ = a, +B a^+ as +

It should be noticed that, if^ <B, the first quotient a, ^\-ill be zero.

Example 1.

To convert 107/81 into a continued fraction.

Going tlirough the process of finding the G.C.M. of 167 and 81, we have

81)li;7(2
lljj

5)81(16
80

1)5(5
5

Hence

Example 2.

Consider -23 = 23/100.

We have

1G7

81'
2 +

16+ 5*

Hence

100)23(0

_0
23)100(4

92

8)23(2
16

7)8(1
7

1)7(7
7
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Cor. Jf we remove the restriction that the last partial quotient

shall l>e greater than unity, we way devtlop any commensurable

number as a continued fraction which has, at our pleasure, an

even or an odd number of partial quotients.

For example, 2 + .-^
— = has an odd namber of partial qnotients; but we

164* O

may write it 2+ -,„
— -r— r. wbich has an even namber.

' 10+4+1

§ 5.] Any single surd, and, in fart, any simple surd numlier,

such as A +
i//>""

+ CjP"" + . . . +71^""''", can be converted into

a continued fraction, although not, of course, into a terminating

continued frcKtion.

Tlie process consists in finding the grcat<?st integer in a series

of surd numbers, and in rationalising the denominator of the

reciprocal of the residue. Jlctliods for elTecting both these

steps are known (see chap, x.), but both, in any but the

simplest cases, are very laborious. It will be sufficient to give

two simple examples, in each of which the result happcus to

be a periodic continued fraction.

Example 1.

To convert JT3 into a continued fraction.

We have, 8 being the greatest integer < ./iS,

l/(sA3-8)

=3+ -pj (1).

(Vl8+3)/4

Again, since the greatest integer in (J\.'i-\-3)H is 1, no have

5/ii+?= l+ ">/i^^ = l+ 1
* "-T—^-4/(yi8-l)'

Similarly, we have

= 1 +—7=*^ (2).
(yi3 + l)/S

=l+-7= (3);
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^ + 2 JI3-1
.

1

3
~ "^

3 3/(Vl3-l)'

429

=1+-7J: (4);

(n/13 + 1)/4^+ 1_ ^/l3-3_ L—
J— -A+

4
-^ +

4/(^/l3_3)'

=1+-pi— (5):

Vl3 + 3

^/l3 + 3=6+ Vl3-3= G + -

l/(Vl3-3)

= 6 + -pi (C);

(Vi3 + 3)/4
after which the process repeats itself.

From the equations (1)...{6) we dei-ive

/T3_« 111111V13-3+—
j-j-

— — _^^ ....

« «

where the
* * indicate the beginning and end of the cycle of partial quotients.

Example 2.

To convert ^L— into a continued fraction.

We have

2 2/(V3-l)'

^/3 + l = 2 + J3-l = 2 + ^ ,

1/(^3-1)

= 2 +—=4 ;

(v/3 + l)/2

V3+1 73-1 1

~^~ ^""27^75^)'

^3+1
after which the quotients recnr. We have, therefore,

2 "^2+ 1+
••• •

* *

It will be proved in chap. xxxm. that every positive number of the form

(iJP+Q)IR, where P is a positive integer which is not a perfect square, and

Q and R are positive or negative integers, can be converted into a periodic

continued fraction ; and that every periodic continued fraction represents an
irrational number of this form.
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EiEBCisra XXVIII.

Eipteas tha following u limpla oontiiiaed bmetiooa. tenniiutiog or

periodic as the etae mmj be:—

*^'
73- *^'

1193- <'> S^- <*-) "i23-
(5.) 2-71628L (6.) 0079. (7.) ^'i. (S.) ^'5. (9.) ^(11).

(10.) V(10). (11.) ^(12). (12.) ^'}. (13.) ^/3 + l.

(15.)8howth.tl+
-^g

= l +^^^-L... .

(16.) A line AB is divided in C, go that AB.AC=BC^. Expnn the
ratios ACjAB, BCIAB as simple eontinned fracaons.

(17.) Express ^'(a»+a) and ^{<^-a) as simple eontinoed bactions, a
being a positiTe integer.

(18.) If a be a positiTe integer, shov that

(19.) If a be a positive integer > 1, show that

(20.) Show that

2 a+ 3<i.f

^'"'— +
4+ 2.r 6+

• •• •

(21.) Show that ererj rational algebraical fonetioo of X QUI be expanded,
and that in one way only, as a terminating oontintwd fraction of the I

where Q, , Q, . . . .. Q, are rational integral functioos of x.

Exemplify with (*» + x« + r+l)/(x* + a««+fc»+i + l),

• •

•ad ,»A .f_* 1+ iT-- ••

• •

•bow thai x-y = a-6i.



1 1 1

ftj + rtj + (If +
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The fractions /),/7, , p.Jq^, ... are called ihi first, second, . . .

conrergents to the continued fraction.

Cor. If the continued fraction terminates, the last convergent
is, by its definition, the continuedfraction itself.

§ 7.] It will be seen, from the e.xpressions for pu Pi, p, and

?., 3-3, ?j in § 6 (a), (yS'), (/), that we have

Pt = (hPi+Pi (1);

q>
= a^i + qx (2).

This suggests the following general formulw for calculating the

numerator and denominator ofany convergent when the num,rat",s
and denominatf/rs of the two preceding convergents are inuun,
namely,

/>»
=
a,^.-i+/>,-s (3);

g'.
=
a«!7»-i+5'«-j (4).

Let us suppose that this formula is true for the nth con-

vergent. We observe, from the definitions (a), (/3), . . ., (g) of

§ 6, that the n + lth convergent, Pn+Jg„+,, is derived from the
nth if we replace a, by a, + l/a,+,. Hence, since ^,_„ g„.,,

Pi-i, ^n-i do not cont<ain o,, and since, by hypothesis,

Pj, _ a»Pn-l+Pn-2

?« Onqn-l + qn-i
'

it follows that

P«+i_ (o,+ l/a..t.i)p.-i +/>._,

?.+i (a, + l/a«+i) qn-i + 7,-,'

or, after reduction,

P,+l _ g.-t-i (<T„/',-i •^P.-i)+Pn-l

ff.+i O1.+1 (a,y,-i + qn-i) + 7.-1
'

_ a%+lP» +Pn-l

by (3) and (4).
ITence it is sufficient if we take

P»+i = a»+\P»+p»-i ;

q»+\=<ty,+iq» +
y.-i.

In othcr^ords, if the rule hold for the nth convergent, it holds
for the n+ 1th. Now, by (1) and (2), it holds for the third;
hence, by what has just been proved, it holds for the fourth

;

hence for the fifth
; and »o ou. That is to say, tlie rule is

general
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Cor. 1. Since a„ is a positive integral number, it follows from

(3) and (4) that the numerators of the successive convergents form

an increasing series of integral numbers, and tliat the same is true

of the denominatois.

Cor. 2. From (3) and (4) it follows that

and

Pn-l

1 1

1^
(5);

(6).

For, dividing (3) by jo„_i, and writing successively n- 1, n-2,
. . ., 3 iu place of n, we have

Pn/Pn-l=an+--'T-—;
Pn-\IPn-2

Pn-llPn-2
=

Cln-l +
PnSn-i

'

P3/Pi=a3+Pl/P2;
1 1= a3 + .

ao + flSj

From tbese equations, by successive substitution, we derive (5) ;

and (6) may be proved iu like manner.

Example 1.

The continued fraction which represents the ratio of the circumference

of a circle to the diameter is 3 + y- j-g— y-
-

Y+ 1+
' '

required to calculate the successive convergents.
1 3 22

The first two convergents are 3 and 3 + -
, that is,

-
,

—
.

Hence, using the formulae (3) and (4), we have the following table :-

It is

n
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Tha saecossive conTergcnta are therefore

3 22 333 356 103993

r T' 106' 113* 33102

Example 2.

If PiNu rJ<},. . • • bo the convergent, to 1 +
^^ gTf rf

* ' '

."Tf
' • •

ad ao , show that

p, = (it-l)p.-, + (n-l);>,-, + ('«-2)p,.,+ . . .+3i., + 2p, + 2.

By the recurrence-formula we have

P.= n/'»-i+P«-s;

;>,-!=(" -iJf.-s+P.-j •

;>.-»=("- 2) p,-i+p.-«;

p,=3pj + p,;
and (eince />i

= 1 . Pj= 3)

i',
=

2i>i + l-

Adding all these equations, and observing that p^-,, r,-ji • • •> fi

each occur three times, once on the left muliiiilii^d by 1, once on the right

multiplied by 1, and again on the right multiplied by n-1, ii-2 3

respectively, we have

p.=(n-l)p.-, + (n-l)p,^, + (n-2)r.-,+ . • • +3p, + 2p, + (p, + 1),

which gives the required result since Pi = 1-

Example 3. 1111
In the case of the continued fraction a, +

—- —— -—- —— . • • prove

that p,,= ?*,«, i'»,-i
=

<'i?»J<'i-

By the definition of a convergent, we have

9t.41 "3+ "l

gince every odd partial quotient is a, .

Again, by Cor. 2 above,

P^=.a,+^ .. .^ (P).
Pi» "5+ "i

?»»+i Pn
Hence

which gives

Also, since ri.= ''irni-i + 7'»-5i

9i.+i = ''lV«. + «»-!•

"jPs.-i+J>».-i=<'i9«« + 9>»-i (*)•

Now, if we writu n - 1 for n in (•>), wo have p»,-, = 7j,-i : hence («) giTO

'»ii'f«-i
= '»i9«»-

Therefore

(7) loads to
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§ S.] Frdiu equations (3) and (4) of last section we can prove

the following important property of any two consecutive con-

vergcnts :
—

Pnqn-l-Pn-iqn = {-'^T (l)-

For, by § 7 (3) and (4),

i'n+l'Zn -PnqrH-\
= (^n+lPn +Pn-l) Qn-Pn (^H+l^n + <7.i-i).

= -
(j}nqn-l -Pn-iqn)-

Hence, if (1) hold, we have

= (-1)"".

In other words, if the property be true for any integer «, it

holds for the nest integer n + 1. Now

=
1,

that is to say, the property in question holds for w = 2, hence it

holds for n = 3
;
hence for w = 4 ; and so on.

Cor. 1. Tke convergents, as calculated by the rule of ^7, are

fractions at their lowest terms.

For, if pn and q„, for e.xample, had any common factor, that

factor would, by § 8 (1), divide (-1)" exactly. Hence p„ is

prime to qn] and F„/g'» is at its lowest terms.

Cor. 2.

qn qn-i qnqn-i
^ ''

Cor. 3.

qn qi \q2 qJ W3 qJ
' ' '

W» qn-J'

=a.,^-A^.....(^ (3).
q,q^ Ms q,,-iqn

^ '

Cor. 4.

Pnqn-3-p«-iqn = {-)''''a„ (4).

For

P«qn-1 -pn-".qn
=

{dnPn-X +Pn-2) 5'n-J -/'n-s (dnqn-l + ^n-s),

=
(Pn-iqn-i -Pn-iqn-i) On,

= (-)"-'«„, by Cor. 1.

28—2
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Cor. 5.

/'«/'; -Pn-'Jl.-0 = (
-
)'''njq„qn-t (5).

Cor. 6. TAe odd coiivergents continualli/ increase in xralue, the

even convergevts continually decrease; etery even convergent is

greater than every odd convergent; and every odd convergent is /ais

than, and every even convergent greater than, any following con-

vergent.

These conclusions follow at once from the equations (2) and (5).

Cor. 7. Given two positive integers p and q which are prime
to each other, tee can always find two positive integers p' and q'

such that p'i -p'q = + 1 or = -
1, as we please.

For, by § 4, Cor., we can always convert pjq into a continued

fraction having an even or an odd number of partial quotients,

as we please. If p'/q' be the penultimate convergent to this

continued fraction, we have in the former c*se />/-/>'j = + l, in

the latter pq -p'q = - 1.

Example. If pjv. be the nth convergent to a, + . . .
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From (c)
we derive

Pn9u-r -Pn-rin = "
(P,.-r'7,.-r-I

"
Pn-r-l In-r) i.-r+lQu.

= (-1)(-1)"-Vh-iQ™.

by (1) above,

as was to be shown.

§ 9.] The convergents of odd order are each less than the

ichole continued fraction, and the convergents of even order are

each greater; and each convergent is nearer in value to the whole

continued fraction than the preceding.

We have, by § 7,

Pn+l_ C'n+lPn+Pn-l ,

9'n+i (tn+i^ln + Qn-l

and the whole continued fraction Xi is derived from 7?„+,/'7„+i by

replacing the partial quotient a„+i by the complete quotient x^+i.

Hence

_ a!n+lPn+Pn-l

From this value of a-j we obtain

Similarly

'in

X^

a-H+lPn+i'B-I
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Now tlie first convergent is obviously less than a-,, hence the

second is greater, the tliird less, and so on
;
and the difference

between j-, and the successive convergents continually decreasefi.

Cor. 1. The difference between the continued fraction and

the nth convergent is less than i/(j,qn+\, and greater than

0|l+2/?ll?«+J-

For, by what has just been proved,

?« !7r.+J ?»+l

are, in order of magnitude, either ascending or descending.

Hence

— <- X] <. — ~

1

, by § 8 (2).

Again,

> ?^,by§8(5).
Vnyii+t

Since y„+,>y„ and since y.Wa.+a =
(««+j7»+i + 7.)/a.+t

=
q,+i + qn/a»+i<g.+i + q, (a,+5 being ^l), it follows that the

upper and lower limits of the error committed by taking the «th

convergent instead of the whole continued fraction may be

taken to be I/7,,* and 1/g, (7, + ?«+i). These, of course, are not

80 close as those given above, but they are simpler, and in many
cases they will be found sufficient.

Cor. 2. In order to obtain a good approximation to a

continued fraction, it is advisable to take that convergent vhose

corresponding partial quotient immediately precedes a very much

larger partial quotient.

For, if the next quotient be large, there is a sudden increase

in g,4i, RO that l/g.^.+i is a very small fraction.

The same thing apjtears fnnn thf consideration that, in

taking ^)„/(/, in.sUad of the wlndc fraction, we take a, instead of
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a„ + . . .
,
lliat is, we neglect the part ... of the

complete quotient. Now, if a„+i he very large, this neglected

part will of course he very small.

Cor. 3. The odd convergents form an increasing series of

rational fractions continualli/ appi-oacldng to the value of the

whole continued fraction; and the even convergents form a

decreasing series having the same property*.

Cor. 4. If Pnlqn-Xi<\lqn{qn + qn--i), vhcre q„-T, is tlie de-

nominator of the penultimate convergent to pjq,,. when converted

into a simple continued fraction having an even number of

quotients, then pjqn is one of the convergents to the simple

continued fraction which represents Xx; and the like holds if

a^i-p,Jq„<l/qn {q„ + q,i-i), where qn-i is the denominator of the

penultimate convergent to pJqn when converted into a simple

continued fraction having an odd number of quotients.

Let «!, Oj, . . ., On he the n partial quotients of i?„/g'„

when converted into a simple continued fraction having an

even number of quotients, and let pn-ifqn-i be the penultimate

convergent. Then pnqn-i -Pn-\qji.
= 1-

Let 3-„+i be determined by the equation

1 1 1

Xi=ai + . . .
—-—

.

Then we have

Xl = {Xn-nPn +i',i-l)/(A+l?«
+ qn-\),

whence

(Th+X
=

{Xiqn-i -Pn-^)KPn
-

X.qn),

* The value of every simple oontinued fraction lies, of course, between

antl C30
;
and we may, in fact, regard these as the first and second con-

vergents respectively to every continued fraction. If we write = J, and

oD = i , and denote these by —' and -*
, BO that we understand j)_, to be 0,

9-1 So

Pj to be 1, g_i to be 1, and q^ to be 0, then p_^ and pj will be found to fall

into the series p,, p.^, p.^, lic, and g_, and q^ into the series ?, , q.^, Jj, Ac.

It will be found, for example, that p,= ujPo+y_i, i;,
=

u,(/o + 9-i. ^uS-i -i'-Wo

= (-!)"= !, and so on.
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or, if we put ( =pjqn - a:,,

ic^i = {(/>»?»-. -Pn-iqn)/q,-q,-i()/qni,

=
(i/?.-?.-.^)/ynf.

Hence the necessary and suHicicnt condition that x,+,> 1 is tliat

ih»-gn-ii>qnt
that is,

i<ilqn(qn + qn-x),

which is fulfilled by the condition in the first of our two

theorems.

Let now 6,, Aj fc, be the first n partial quotients in the

simple continued fraction that represents x,. Then we have

_. 1 11

where y,+,>l.
Hence

1 11.^1 II
03+ a» + a-,+, bi+ 0. +y,+j

Therefore, by § 3, Cor., we must have

a,=0„ a^^L, . . ., a, = 6„ a-,+,=y,4.,.

Hence a, + . . . + — , that is,
— is the nth convergent to

a-,.

The second theorem is proved in precisely the same way.

Since qn-i<qn, the conditions above are a fortiori fulfilled if

itt~Pn/qn<ll^'Jn.

§ 10.] The propositions and corollaries of last section show

that the method of continued fractions possesses the two most

iniportant advantages that any system of inimericul calculation

can have, namely, 1st, it furnishes a regular series of rational

approximations to the quantity to be evaluated, which increase

step by stop in complexity, but also in exactness
; 2nd, the error

committed by arresting the approximation at any step can at

once be estimated. The student should compare it in these

respects with the decimal system of notation.
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§ 11.] It should be observed that the formation of the suc-

cessive convergents -vnrtually determines the meaning we attach

to the chain of operations in a continued fraction.

If the continued fraction terminate, we might of course pro-

ceed to reduce it by beginning at the lower end and taking in

the partial quotients one by one in the reverse order. The

reader may, as an exercise, work out this treatment of finite con-

tinued fractions, and he will find that, from the arithmetical

point of view, it presents few or none of the advantages of the

ordinary plan developed above.

In the case of non-terminating continued fractions, no such

alternative course is, strictly speaking, open to us. Indeed, the

further difficulty arises that, a priori, we have no certainty that

such a continued fraction has any definite meaning at all. The

point of view to be taken is the following :
—If we arrest the

continued fraction at any partial quotient, say the sth, then, in

the case of a simple continued fraction, however great « may be,

we have seen that the two convergents, p-M-ilq^n-i, P-mllin, in-

clude the fraction psjq, between them. Hence, if we can show

that p^n-ih-in-i and PmI^m each approach the same finite value

when n is increased without limit, it will follow that as s is

increased without limit, that is, as more and more of the partial

quotients of the continued fraction are taken into account, pjq,

approaches a certain definite value, which we may call the value

of the whole continued fraction. Now, by § 8, Cor. 5, Pin-il^tn-i

continually increases with n, and Pml^m continually decreases,

and p2nl7M>P2n-ill'>n-i- Hence, since both are positive, each of

the two must approach a certain finite limit. Also the two

limits must be the same
;
for by § 8, Cor. 2, p^^lq^ -pM-i/g^n-i

=
l/<?'>ii 731-1) and by the recurrence formula for q„ it follows that

q^n and q>a-i increase without limit with ;;
;

therefore PmlqM

—Pin-ilqa-i may be made as small as we please by sufficiently

increasing n.

It appears, therefore, that every simple contintied fraction has

a definite finite value.

Example.
To obtain a good commeosurable approximatiou to the ratio of the
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ciroumforcncc of a circle to the dinmctcr. Ilcferring to Example 1, § 7,

we have the followiog approximations in defect:—
3 833 103093 ^

&0.}
!•
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(7.) Find a good rational approximation to s/0-^) which shall differ from

it by less than 1/100000; and compare this with the rational appi'oximation

obtained by expressing s,/{li)) as a decimal fraction correct to the 6th place.

(8.) If a be any incommensurable quantity whatever, show that two

integers, m and n, can always be found, so that < an -7k</c, however small

It may be.

(9.) Show that the numerators and also the denominators of any two con-

secutive convergents to a simple continued fraction are prime to each other;

also that if p„ and j)„_, have any common factor it must divide a„ exactly.

(10. ) Show that the difference between any two consecutive odd convergents

to ^/(a'+l) is a fraction whose numerator, when at its lowest terms, is 2a.

(11.) Prove directly, from the recursive relation connecting the numera-

tors and denominators, that every convergent to a simple continaed fraction

is intermediate in value to the two preceding.

(12.) Prove that

9n'l-Pn=(-l)''+Vj2^3- • • 'n+I-

Show that pjq„ differs from x, by less than l/a^rta . . . a,.+i7„. Is this a

better estimate of the error than l/g„?„+i?

(13.) If the integers x and y be prime to each other, show that an integer

u can always be found such that

(x'+y'^u=z- + l,

where z is an integer.

(14.) Prove that

(i>„'
-

?,') (i'„-l'
-

9.-l') = {PnPn-l
-
9„?n-l)'

- 1 ;

Pn-1 + 9n-i {Pu-lPr>-i + 9-.-1 in-:)" + ^
'

(15.) Prove thatp„_ip„-7„_ig„ii^ is positive or negative according as n

is even or odd.

(It;.)
If PjQ, P'jQ', P"IQ" be the nth, ?i-lth, n^th convergents of

J 1 1 J^
"1+ "2+ "»+ "4 +111
Oj-f o,-f O^-h

1 1

0-3+ O4 +

respectively, show that

P= a.J>' + P", (?= (a,a.,-t-l)F + ajF'.

(17.) If the partial quotients of x, =?„/?„ form a reciprocal series (that is,

a series in which the first and last terms are equal, the second and second

last equal, and so on), then p„-i = q„, and ((/„=il)/p„ is an integer; and,

conversely, if these conditions be satisfied, the quotients will form a

reciprocal series.

(18.) Show, from last exercise, that every integer which divides the sum

of two integral squares that are prime to each other is itself the sum of two

squares. (See Serret, Air). Sup., i"' ed., t. i., p. 2'J.)



44+ EXERCISES XXIX C». XXXII

(I'J.) Showtbat 11 11
0,+ --...- a,+ -...-

Oi+ °i. _ a»-i+ <h

1 1" 1 I*

(20.) If X,
=— — — . . .

,
Bhow thst p.= 9... .

(21.) The successive convcrgents of 2a +— ;-— . . . are* ' " a+ 4a+ a+ 4a +

always double those of a + „
— ... .

' 2a + 2a +

(22.) If the reduced form of the nth complete quotleut, f, , in

a, H ... be iJr),, show that
'

a,+ 0,+
**' "

Vn = fn+1 •

(23.) Find the numerically least value of ox -by for positive integral

values of x and y, a and b being positive integers, which may or may not be

prime to each other.

CLOSEST COMMENSURABLE APPROXIMATIONS OF GIVEN

COMPLEXITY.

§ 12.] One commensurable approximation to a number

(commen.'surable or incommensurable) is said to be more complex
than another when the denominator of the representative frac-

tion is greater in the one case than in the other. The problem
which we put before ourselves here is to find the fraction, whose

denominator dois not exceed a ffirrn inteijer D, which shall most

closely approximate {by excess or by defect, as may be assigned)

to a given number commensurable or incommensurable. The
solution of thi.s problem is one of the most important uses of

continued fractions. It dejiends on a princijile of great interest

in the theory of numbers, which we proceed to prove.

Ijemma.— Ifpl'l andp'jq be twofractions such that nij'—p'q= 1,

then no fraction can lie between them unless its denominator is

greater than the denominator of either of them.

Proof.
—Let ajb be a fraction intermediate in magnitude to

piq and p'lq. Then

q (> q q'
^''•

I' 'I <i
^
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^ "
qb qq

pb — qa 1

qb qq
'

Hence qb>qq'(pb-qa);

and b>(pb- qa)q.

Now piq
—

a/b is positive, hence pb -
ga is a positive integer.

It follows, therefore, that b>q'.

Similarly it follows from (2) that b>q.
Hence no fraction can lie between plq and 2)'/q' unless its

denominator is greater than both q and q'. In other words, if

pq -p'q= 1, no commensurable number can lie between plq and

p'l(( which is not more complex than either of them.

§ 13.] The nth convergent to a continued fraction is a nearer

approximation to the value of the complete fraction than any

fraction whose denominator is not greater than that of the con-

vergent. For any fraction ajb which is nearer in value to the

continued fraction than Pnjqn must, a fortiori, be nearer than

p„-Jqn-i- Hence, since pjq^ and pn-\lqn-\ include the value of

the continued fraction between them, it follows that ajb must

lie between these two fractions. Now we have, by § 8, either

Pnqn-i-Pn-iqn='^, Or p„.^q„-p^q^--.^ I. Hence, by § 12, b

must be greater thau q^, which proves our proposition.

Example.

Considerthe continued fraction 11= 3 +— oT 4T 2+ 5"

3 4 15 64 143 779 „ . ,

The snccessive convergenta are
^

,

^
,

-j-
, j^

>

"33
>

2(57
' " ^"^ '^''^

any one of these, say 64/17, the statement is, that no fraction whose

denominator does not exceed 17 can be nearer in value to Xj than 64/17.

§ 14.] The result of last section is a step towards the solution

of the general problem of § 12
;
but something more is required.

Consider, for example, the successive convergents Pn-ilqn-^,

Pn-i/qn-i, Pnlqn to x>., aud kt M be odd, say. Then

Pn-2 Pn ^ Pn-1

are in increasing order of magnitude. We know, by last
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section, that no fraction whose denominator is less than q^-i can

lie in the interval />,_j;(/,_,,/>,_,/j,_,, and also that no fraction

whose denominator is less than q» can lie in the interval

pjq,, pK-\lq»-\\ but we have no assurance that a fraction

whose denominator is less than y, may not lie in the interval

r^-J'Jm-i, pjq», for j!J,'7,-a-/».--7.
= a,, where o, may bo>l.

This lacuna is filled by the following proposition :
—

r. The series effractions

/*.-» P<,-i-^r»-\ Ph-2 + ip»-\

P»-i •*•«!.- lp«-i /'1-!

'«-a + 0.?.-i \ qJ7«-s + 0,-l?.-i ?•

form {according as n is odd or eeen) an increasing or a decreasing
series.

2*. Each of them is at its lowest terms; and each consecutive

pair, say P/Q, FjQ\ satisfies the condition PQ - FQ=±\; so

that no commensurable quantity less complex than the more complex

of the two can be inserted between them.

The first and last of these fractions (formerly called Con-

vergents merely) we now call, for tlie sake of distinction, Principal

Contergents ; the others are called Intermediate Convergents to

the continued fraction. To prove the above properties, let us

consider any two consecutive fractions of the series (1), say PjQ,

Fiq; then

tP _ ^^ ^ JP.-» -^ rP— 1 />.-i-l-r+l p._,

Q Q qu-t + rqn-, ?,., + r+l7,-,

(where r = U, or 1, or 2, .... or o,- 1),

_ -(p«-i?»-i-i'«-j?«-i)

(7.-1 + rq,.t) (7-. + rTIg,.,)
'

+ 1

(?.-. + rq,.t) {q,.t + r + 1 g,.J
'

^iy
if n be odd,

'

Ofy
'* " ^ even.

(2).
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xl6nC6

PQ'-rQ = -li(nheoAd, \ ,g>
= + 1 if » be even. J

(2) and (3) are sufficient to establish 1° and 2°.

3°. Since P!Q-p„-i/qn-i
= ±llln-i{qn-2 + rqn--,), and since

Xi obviously lies between PjQ and Pn-ilqn-i, it follows tliat t/ie

intermediate convergent PjQ differs from the continued fraction

by less than l/<7„-i Q, a fortiori by less than l/qn-i*

§ 15.] If we take all the principal convergents of odd order

with their intermediates wherever the partial quotients differfrom

unity, andform the series

P, Pz Pn-^. Pn (KS
V '

,j,'

• ' •'

q/
' •'

y„-/
• • •'

q,r
• • • ^'''

and likewise all the principal convergents of even order with

their intermediates, and form the series

1 P-i Pi Pj^ Pj^ /T!\

0'
•• •'

q.'
• • '

qi -/n-a'

' " "
?n-a'

" ' ' ^'^^'

then (A) is a series of commensurable quantities, increasing in com-

plexity and increasing in magnitude, which continually approach

the continued fraction; and (B) is a seriss of commensurable

quantities, increasing in comjylexity and decreasing in magnitude,

which continually approach the same; and it is impossible between

any consecutive pair of either series to insert a commensurable

quantity which shall be less complex than the more complex of the

two.

If the continued fraction be non-terminating, each of the two

series (A) and (B) is non-terminating.

If the continued fraction terminates, one of the series will

terminate, since the last member of one of them will be the last

convergent to Xi ;
that is to say, Xi itself. The other series may,

however, be prolonged as far as we please; for, if Pn-ilq^-i and

pjqn be the last two convergents, the series offractions

Pn-l Pn-1 +Pn Pn-l + ^Pn.

qn-l' qn-l+qn g„-i + 2y.
'

• For a rule for estimating the errors of principal and intermediate

convergents to a continued fraction, see Hargreaves, Mess. Math., Feb. 1898.
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forms cither a continually increasing or a continually decreasing

srrif.o, in tr/iirh no principal amvergmt occurs, hut whogf. terms

approach more and more nearly the value pJq^, that is, j-,*.

§ 16.] We are now in a position to solve the general problem

of § 12t. Suppose, for exaraple, that we are required to find the

fraction, whoso denominator does not exceed D, which shall

approximate most closely by defect to the quantity x,. What tee

have to do is to convert a", into a simple continued fraction, form
the series (A) of last section, and select that fraction from it trhose

denominator is either D, or, failing that, less than but nearest

to D, say P/Q. For, if there were any fraction nearer to x, than

P/Q, it would lie to the right of P/Q in the scries; that is to say,

would fall between P/ Q and the next fraction P'/Q of the series,

or between two fractious still more complex. Hence the denom-

inator of the supposed fraction will be greatc-r than (/, and hence

greater than D.

Similarly, the fraction vhich most nearly approximates to j",

by excess, and tchose denominator dues not exceed I), is obtained

* This may also bo Been from tbe fact that the continaed fraction

a, -I ... — may also be written a, + . . . : that u to

ay, wo may consider the Ukst qaotient to be co , and tbe last coDvergent

(P.-i + *PJ/(7.-i + «?.)•

t The Brst general S'^lntion of this problem was given by Wallis (s«e

bis Algtbra (16m5), chap, x); Huj^hens also was led to discuss it when

deagning the toothed wheels of his Planetariam (see his Detcriptio Autowmli

Plamtarii. I6fi2). Que of the earlier appearances of continued fractions in

mathematics was the value of 4/t given by Lord Brouncker (about 1655).

While discussing Brouocker's Fraction in his Arilhmttiea Injinilorum (ICSfi),

Wallis gives a good many of the elementary properties of the oonvergenta

to a general continued fraction, including the rule for their formation.

SaundcrBon, Kulcr, and Lamlx'rt all helped in developing the theory of

the subject. See two interesting bibliographical papers by Oiintlier and

Favaro, BuUttino di BihUographia t di Storia drlle Scienie Mathematieht e

Fisielu, t. VII. In this chapter we have mainly follnwed Lagrange, who gave

the first full exposition of it in his a<lditions to theFrencli edition of Euler's

Algtbra (\lWt). Wo may hero direct the attention of the reader to a series

of comprehrnHiTO articles on continued fractious by Stem, CrflU'$ Jour., x.,

XI.. XVIII.
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by taking tlmt fraction in series (B) of last section whose de-

nominator most nearly equals without exceeding D.

N.B.—If tlie denomiuator in tlie (A) series wliicli most

nearly equals without exceeiling D be the denominator of an

intermediate convergent, the denominator in the (B) series which

most nearl)' equals without exceeding D will be the denominator

of a principal convergent.

Example 1.

To find tbe fraction, whose denominator does not exceed GO, which

779
approximates most closely to ,^—

.

„, ,
779 , 1 1 1 1

We have
207

= ^ +
1^ 3^ 4? 2T
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If wo turn WilOO/20929 into a continned fraction and form the (A) and (B)

eric* of convcrgcnta, wo have (omitting the earlier terms)

4 33 161 2865 8434 14003 .

i' ¥' 89' "694
•

2043' 8392'
" * '"

6
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Hence, it X= 47, »/
= 4- 1/223. But 360°/223 = l°-61. Hence, 47 lunations

after total eclipse, new moon will happen when the earth is less than 1°-G1

from the line of nodes, 47 lunations after that again when the earth is less

than 3°'2 from the line of nodes, and so on. Hence, since 47 lunations= 1388

days, eclipses will recur after a total eclipse for a considerable number of

periods of 1388 days.

If we take the next convergent we find for the period of recurrence 22:j

lunations, which amounts to IS years and 10 or 11 days, according as five or

four leap years occur in the interval. The displacement from the node in this

case is certainly less than 3607710, that is, less than half a degree, so that

this is a, far more certain cycle than the last; in fact, it is the famous

"saros" of antiquity which was known to the Chaldean astronomers.

Still more accurate results may of course be obtained by taking higher

convergenta.

Exercises XXX

(1.) Find the first eight convergents to l +^g— J— =— . . ., and find

the fraction nearest to it whose denominator does not exceed GOO.

(2.) Work out the problem of Exercise xxix., 4, using intermediate as

well as principal convergents.

(3.) Work out all the convergents to 27r whose denominators do not

exceed 1000.

(4.) Solve the same problem for the base of the Napierian system of

logarithms e = 271828183 ....
(5.) Two scales, such that 1873 parts of the one is equal to 1860 parts of

the other, are superposed so that the zeros coincide : find where approximate

coincidences occur and estimate the divergence in each case.

(6.) Two pendulums are hung up, one in front of the other. The first

beats seconds exactly ; the second loses 5 min. 87 sec. in 24 hours. They

pass the vertical together at 12 o'clock noon. Find the times during the day

at which the first passes the vertical, and the second does so approximately

at the same time.

(7.) Along the side AB and diagonal AG of a square field round posts are

erected at equal intervals, the interval in the two cases being the same. A

person looking from a distance in a direction perpendicular to AB sees in the

perspective of the two rows of posts places where the posts seem very close

together ("ghosts"), and places where the intervals are clear owing to

approximate coincidences. Calculate the distances of the centres of the

ghosts from A, and show that thuy grow broader and sparser as they recede

from A.

(8.) Show that between two given fractions p/j and p'jq', such that

pq' -p'q = i, an infinite number of fractions in order of magnitude can be

inserted such that between any consecutive two of the series no fraction can

be found less complex than either of them.

2'J— 2
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(9.) In tho series of (rnctions vliogo douomiuatorti arc 1, 2, 3, ... , n

there ia at least one wlioso denominator is r, say, sach tliat it diOfers from a

given irrational quantity x by less thiin 1/mk. (For a proof of this theorem,

duo to Diriclilct, nut depending on the theory of continacd fractions, aeo

Sorrct, Alff. Sup., 4~ id., t. i., p. 27.)

(10.) If tho ncnreiit rational approximation in excess or defect (sec § IG)

be an intemirdittte convergent I'lQ, where Q= X9,-, + g,_,, show that the

Bpproximntion in defect or excess will be nearer unless Q>i?, + 7,-i/'-T|,+,.

(11.) If ?.eto partial quotients be (contniry to the usual undcnitaiidinK)

admitted, show that cveiy continued fraction muy bo written in the form

Qj . . ., where a,, a,, a,, . . . are each cither or 1. Show

the bearing of this on the theory of the so-colled intermediate convergcnta.

(12.) xz„=0, a?,
= 1, arr=<'.+r o^r-i + Cr-j". show th.it ;>.+,/?.+r-Pj7.=

c'r/'/.'/.+r; 'i -P»/?»= (i^r+.^» 1 ^'^.-l)/7,.(9l,+T+/l•+r^l.^r-l). wliero /»='»- a,-

(nortrcavcs, Ilea, ilalh., rtb. 18Ub.)



CHAPTER XXXIII.

On Recurring Continued Fractions.

EVERY SIMPLE QUADRATIC SURD NUMBER IS EQUAL
TO A RECURRING CONTINUED FRACTION.

§ 1.] We have already seen in two particular instances

(chap, xxxn., § 5) that a simple surd number can be expressed

as a recurring continued fraction. We proceed in the present

chapter to discuss this matter more closely*.

Let us consider the simple surd number (Pi + Jl{)/Qi. We
suppose that its value is positive ;

and we arrange, as we always

may, that Pi, Qi, E shall be integers, and that \/B shall have

the positive sign as indicated. It will of course always be

positive ;
but P^ and Q, may be either positive or negative. It

is further supposed that B - Pi' is exactly divisible by Q^. This

is allowable, for, if ^-Pi^ were, say, prime to Qi, then we might

write (P, + JP)/Q, = {P,Qi + slqm/Qr = (P/ + ^o')/Q,',

whereE -
P,'= {

=
Q,= (P - Pf) = (P - P,') Q>'} is exactly divisible

by Qi'.

For example, to put 7(2- */ ^ ]
into the standard form contemplated,

we must write

BO tliat in this case Pi= -
16, (?,

= -
32, JJ= 96 ;

iJ - Pi'= 9e - 236= - ICO,

which i3 exactly divisible by Q, = - 32.

* The following theory is due in the main to Lagrange. For the details

of its exposition we are considerably indebted to Serret, Alg. Sup., chap. n.
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§ 2.] If we adopt the process and notation of chap, xxxii.,

g 3 and 5, tlie calculation of the partial and complete quotient*

of the continued fraction which represents {Pi + s^Jt)jQi proceeda

as follows :
—

P, + JR 1

ar,=
-

r, =«!+ _ ;

Pt+-JR 1

Pn + >/T{ ^ 1

kirn JJ;»+1

(1),

where it will be remembered that Oi, a^, . . . are the greatest

integers which do not exceed Xi, Xj, . . . respectively; and

Xf, Xt, . . . are each positive, and not less than unity.

It should be noticed, however, that since we keep the radical

\^ unaltered in our arrangement of the complete quotients, it

by no means follows that P,, Q,, Pt, Qt, &c., are integers, much

less that they are positive integers.

The connection between any two consecutive pairs, say /\,

Q, and jP,j.i, <2»+j, follows from the equation

1

Q. "'^iP^^i + jRVQ,
(2).

or

\(P,-a,Q.)P.^i-Q,Q,^,->-Ii\-^{P.-a,Q, + P„i)^ =

(3).

It follows from (3). by chap, xi., § 8, that

(Pn -a,Q,) P.+, - Q.Q.+, + 7? = 0,

whence

P.+, = a.(?.-P. (4).

/\.,' + <?,<?,..
= « (5).

If we write n - 1 for n in (5), we have
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From (5), by means of (4) and (6), we have

SO that Q„+i = Q,i- 1
+ 2a„P„ -

a„= Q„ ,

= Qn-i + a«(P.-Pn+i) (7).

The formula3 (4) and (7) give a convenient means of cal-

culating Po, P3, Qs, Pi, Qi, &c., and hence the successive

complete quotients Xr., X3, . . .

Q2 is given by the equation

namely, Qa = ^-^ '-,

From this last equation it follows, since by hj'pothesis

{M-Pi")IQi is an integer, that Q2 is an integer. Hence, since

Pi, Qi are integers, it follows, by (4) and (7), that Po, P3, . . .,

Pn, Q3, •> Qn are also all integers.

§ 3.] We shall now investigate formula3 connecting P„ and

Q„ with the numerators and denominators of the convergents

to the continued fraction which represents (Pi+v'^)/Qi.
We have (chap, xxxn., § 9)

^ j9„-l Pn + Pn-lQv. + j^n-l^
g-n-i P„ + g„-2 Q„ + qn-i -fR

Hence

(P, + JE) {qn-, P„ + qn-, Qn + ?»-. ^B)
= Ql (j}n--i Pn +Pu-1 Qn+Pn-i V^) (1).

From (1) we derive

qn-i Pn + qn-1 Qn = QlPn-1
-
PlQu-l (2) ;

R-P^
Pn-l Pn ^ iA.-2 Qn = PlPn-i + —Q-^ 1"-i (3)-
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I'roin
(•-')

Miiil
(.'!)

wc obtain, since 7^«-i <7n-a -;'»-» y»-i

= (-1)-,

(
-

1)"
' P. = y, (;»«-, 7.-1 + /J.-, qn-x)

It- F''
+ —g—^

?»-! 7i.-a- <?i ^"-1 /'»-» (4) ;

(-l)"-'Q. = -2;;.-,?„-,i',-^^'
?.->'+ «./>.-.' (5).

The formulae (4) and (5) give us tlie required expressions,

and furninh another proof that Pj, P, Pn, Qi, Qs, • , Q»

are all integral.

§ 4.] If in equation (2) of last paragraph we replace /*, by

its value (li(j\-xXn+p»-^l{qn-iXn + qn-i)- ^^, dcrivcd from

equation (A), we have

q.-J\^q.-.Q. = ^^'^'- ^qn-.^ (I).

Also, since Xn = (/\ + •SR)IQn, we have

Pn-^nQn^-^i (2).

From equations (1) and (2) we derive, by direct calculation,

the foUowing four :
—

Pn =

7 ^r r, {7.-. (7-.^. + 7,-0) 2 v^ +
(
-
!)«- Q.} (4) ;

(7«-i^« + 7»-w

sfTt-P,=

,
"^

«{27-.(7»-.+^-) v^-(- l)"-'<?.} (5);
(qn-l-Tn + qn-i) I \ ^i, / J

,
^-

^,{(^V^7-.+7.-^)('7-.^« + <7.-^)2^/S-(-l)"-'<^.}(6)•

The coclTicionts of Jit and 2%^// in these four formula; are

positive, and inerease without limit when n is increased without

limit Hence, since Q, is a fixed quantity, it follows that fur
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some value of n, say n =
i', and for all gi-eater values, P„, (j„,

JR-Pn, iJH—Qn will all be positive. In other ivords, on

and after a certain value of n, n-v say, P„ and Q„ icill he

positive; and P„<Jll, and Q„<2jK
Cor. 1. Since F„ and Qn are integers, it follows that

after n = v P„ cannot have more than JR different values, and

Qn cannot have more than 2 J7i different values; so that ar„

= (P„ + jR)IQn cannot have more than Jli x 2 JB = 2i? different

values. In otlier words, after the ith complete quotient, the

complete quotients must recur within 2R steps at most.

Hence the continued fraction which represents {Pi + Jll)/Q,

must recur in a cycle of 2R steps at most.

Since ever after n = v P„ and Q„ remain positive, it is clear

that in the cycle of complete quotients there cannot occur any one

in which P„ and Q„ are not both positive.

It should be noticed that it is merely the fact that P„ and

Q„ ultimately become positive that causes the recurrence.

If we knew that, on and after n = v, P„ remains positive, then

it would follow, from § 2 (4), that Qy and all following remain

positive ;
and it would follow, from § 2 (5), that Py+i and all

following are each <JR ;
and hence, from (4), that Q^+i and all

following are each <2jR; and we should thus estabhsh the

recuiTence of the continued fraction by a somewhat different

process of reasoning.

Cor. 2. Since a„ is the greatest integer in {Pn + •JR)/Q„,

and since, if n>v, P„ and Q„ are both positive, and Pn<jR,
and Qr,>i, it follows that, if n>v, an<2jR.

It follows, therefore, that none of the partial quotients in the

cycle can exceed tJie greatest integer in '2jR.

Cor. 3. By means of (3) and (4), we can show that idtimately

Pn+Qn>jR (7).

Cor. 4. From § 2 (5), we can also show that ultimately

I\+Q„.,>JR (8).
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Cor. 5. Since JJ{>P„, it follows from Cor. 3 and Cor. 4

t/iat ultimately

<(,?.-! (9).

EVERY RECUURINQ CONTINUED FRACTION IS EQUAL TO A

SIMPLE QUADRATIC SURD NUMBER.

§ 5.] We shall next prove the converse of the main pro-

position wliieli has just been established, namely, we shall show

that every recurring continued fraction, pure or mixed, is

equal to a simple qua<lratic surd number.

First, let us consider the pure recurring continued friction

ar =a, + ... — ... (1).

•

Let the two last convergents to

1 1

o, + , . .
—

Oj+ a,.

be p'lq and pjq.

From (1) we have

1 _1_
1

Q, + a, + a-,
'

_ pXx + p' _"
qx, + q

'

whence

qx,' + {q-p)x,~p' =
(2).

The quadratic equation (2) has two real roots; but one of

them is negative and therefore not in question, hence the other

must be the value of Xi rctjuired.

We have, therefore,

a:,
=

a, +

a-,-
-^

(3).

L + JA=
j^f

.say;

which proves the proposition in the present case.
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It should be noticed tluit, since aj + O, p/(j>l; so that

p>q>q'- Hence p-q' cannot vanish, and a pure recurring

fraction can never represent a surd number of the form JNJM.
Next, consider the general case of a mixed recurring con-

tinued fraction.

Let
1 111 1 ,,.

^'='^ +
«-
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Examplo 2,

^ , „ 1 1 1 I 1

Tho two lost coDvergonts to 3 + - nre 3/1 and 13/4 ; nnd, by Example 1

above,

Wo have, therefore,

11 _l+^/lO
^^2+1+ 8~-

"'-^'4+
(l + yi0)/3'

_13 (l + ^in)/3 + 3

"ill +
7111)^/3+1

•

22 + 13V10

ON THE CONTINUED FRACTION WHICH REPRESENTS ^/(CID).

§ 6] The square root of every positive rational number, say

J(C/D), where C and D are positive integers, and C/D is not

the square of a comuiensunible number, can be put into tlie form

JN/M, where NCD and M=D. Since X/M = C is an

integer, we know from what precedes that JN/M can be

developed, and tliat in one way only, as a continued fraction of

the form

1 111 1

x,<=a, + — ... ... ... (1).
a, + Or + Oi + o, + a, +

'' '

We have, in fact, merely to ])ut P, =
0, R = N, Q, =M in our

previous formula:.

We suppose that JN/M is greater than unity, so tliat a, + 0.

If JN/Af were less than unity, then we have only to consider

if/jN = JAPXIN, which is grait<!r than unity.

The aiyclic part (/, + ... must consist of one term at

I
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least, for we saw, iu g 5, that a pure recurring continued fraction

caiiniit represent a surd number of the form JNJM. Let us

suppose that there are at least two terras in this part of the

fraction
;
and let P'jQ', PjQ be the two last convergeuts to

,

«i + . . .
—

;
and p'lq, pjq the two last convergents to

1 111 1
,,„ .,

a, + — ... . . .
—

. Then, if

1 1

we have *

1 1 1

Xi = ai + . . .
,

a., + ar+ !/i'

1 1 1 1_ J_ J_

U.,+
' ' '

«r + "l + °-2 +
' ' '

«a + yi
'

Hence

^ ^ Pyi + F ^ pyi+p
'

Qyi + Qf qyi+q

Eliminating ?/i from the equations (2), we have

(.Qq
-

Q'q) *v - {Qp -
Q'p + Pq - Pq) x, + {Pp'

- rp) = o (3).

Now, if Xi = jA'jM, we must have

M-.T,- -N=0 (4).

In order that tlie equations (3) and (4) may agree, we must
have

Qp'-Q-p + Pq--P-q = (5);
and

Qq-qq- ip (^^-

It is easy to show that equation (6) cannot be satisfied. We
have, in fact,

Pp-PpTpP/P-p/p'
Qq'-Qq Q'q Q/Q'-q/q

^^'-

But, by chap, xxxn., § 7,

P p 11 11
^v - .

= «r + . . . o« . . .
-

,P p ttr-t + «i a,_i + Ui
'

= ar-a, ±f,

where/ is a proper fraction.
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Similarly

Q q 1 1 11
V q flr-i + «-j a,_, + M.J

= Or-a.±/',

where/' is a proper fraction.

Now ar-o, cannot be zero, for, if that were so, we should

have ar = <*«> that is to say, the cycle of partial quotients would

begin one place sooner, and would be o,, o,, a,, . . . , a,_,, and not

o,, a,, . . . , a,, as was supposed. It follows then that a, - «, is

a positive or nc;,'ativc integral number. Hence the signs of

PjF -
pIp' and QjQ -

qjq are either both positive or both

negative, and the sign of the quotient of the two is positive.

Hence the left-hand side of (6) is positive, and the right-hand

side negative.

There cannot, therefore, be more than one partial quotient in

the acyclic part of {\).

Let us, then, write

^, = a +— . . .
~ — ... (S),

11 11= a +
a, + a, +

*

o, + l/(x,
-
a)

'

Hence

^ _pK^i-a)+p'

,., .

'

q!(-r,-a) + q"
which gives

qW-(p' + q'a-q)ari-(p-ap') = (9).

From (9) we obtain

_ p' + q'a-q Jjp + q'g -qy+i(p- gp-f^
2q'

*
§7

In order that (10) may agree with Xi=Jn/M, we must have

p' + q'a-qO (11);
and

q"N/AP^(p-ap')^ {12).

Cor. 1. By equation (11) we have

F'/q' + a = q/q'.

(10).
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Hence, by chap, xxxii., § 7, Cor. 2,

11 1^1 1

a, + 02 + o,-i o«-i + "i

It follows, therefore, by chap, xxxn., § 3, that

a, = 2a, aj-i = ai, o.-2 = "a, • • •> "i
=

<'»-i-

In other words, the last partial quotient of the cyclical part of

the continued fraction ivhich represents jNjM is double the

unique partial quotient which forms the acyclical part; and the

rest of tlw cycle is reciprocal, that is to say, the partial quotients

equidistant from the tivo extremes are equal.

In short, we may write

JN 11 1111 , „v

«
"

*

Cor. 2. If we use the value of q'a given by (11), we may
throw (12) into the form

q-NlM" =pq -p {q -p) ;

wltence

q'^NIM'-p"=pq'-p'q,
= ±1 (14),

the upper sign being taken if pjq be an even convergent, the lower

if it be an odd contergent.

§ 7.] All the results already established for {Pi + Jli)IQi

apply to J^jM. For convenience, we modify the notation as

follows :
—
«, =«, x,=^{P, + JR)JQ, = (0 + JN)!M;

a, =a„ x, = {P, + jR)IQ,={L, + JF)IMr,

a, =cu, x, = {P, + JTt)IQ,= {L, + jN)IM,;

a, =«._„ x.={P, + jR)IQML,-, + jN)IM,^,;

a.+i = 2a,

a.+j = "i.

From § 2 (4), we then have

Ln = <^-iMn-l- In-l (1);

and, in particular, when n=\,
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From § 2 (5), we have

and, ill particular,

(2);

(-')•

From § 3 (4) and (5), we have

(
-
1)-Z, = (A7'l/)?.7-.

-
^fp.Pn-i (3) ;

(-)'M,^3W-iNIM)q,' (4).

Tlio^e formulro are often useful in particular applications.

It will be a good exercise for the student to establish them

directly.

§ 8.] Let us call ij, Zj, &c., the Jiatiotial Dividends and M,

3f, , 31,, &c., the Divisors belonging to the development of jNjM.
Then, from the results of § 4, we see that

None of the rational dividends can ejrceed JN; none of the

partial quotients and none of the divisors can exceed ^JN.
All the rational difidend.s. and all the dirisors, are jMsitive.

It is, of course, obvious that the rational dividends and the

divisors form cycles collateral with the cycle of the partial and
total quotients; namely, just as we have

so we have

and
Zj+i — /<i, L,+i- Lj, (1),

J/.« = JA. il.v, = 31„ (2).

We can also show that the cycles of the rational diviileuds

and of the divisors have a reciprocal property like the cycle of

the partial quotients ; namely, we have

L. =i,. 31. =31;'

i,_i = L,, 31,^1 = J/i ; _

L,-t = Zj, J/,-j = J/j ;

For, bv ? 7 (-2),

L.^,' + J/.H M, =W + ^1 -'^;

but Z.t, - Li and 3I,^.^
-- 31,, hence

3J.-3f (4).

(3).
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Again, by § 7 (1),

Ls+\ = 0;Ma - L, ;

but Z,+i = Zi , a,
= 2a, Ms = M, hence we havo

Li = 2aJ/- A-

Now, by § 7 (1'), Li = a3f, hence

Zi = 2ij - La,

therefore L, = Li (5).

Again, by § 7 (2).

L:- + MMs-, = L,' + MJT,

whence, bearing in mind what we have akeady proved, we have

il/.-i
=

i»/i (6).

Once more, by § 7 (1),

L2 = a-iMi
—
Xj.

Now 31,-1 = 3Ii and a,_,
=

a^, hence

Z, — ij = x/i
-

Zj_i.

But L,= Li, hence

Zs-l = Z.2.

Proceeding step by step, in tliis way, we estabhsh all the

equations (3).

It appears, then, that we may write the cycles of the rational

dividends and of the divisors thus—
Li, Zj, Z3, . . ., L~, Z2, Zi;

M„ M,, iV„ . . ., 3f„ M„ M„ M.

Since 31 precedes J/j ,
we may make the cycle of the divisors

commence one step earlier, and we thus have for partial quotients,

rational dividends, and divisors the following cycles :—

o-u <H, «3. • • •> "3> °2> "i. 2a; a^.

Zi, Zj, Z3, . . ., Zj, Z2, Zi ; Zi.

31, 3Iu 3L, 3I„ . . ., 3L, 31, ; 31, 31,.

That is to say, the cycle of the rational dividends is collateral

with the cycle oj'tlie jjartial quotients, and is completely reciprocal;

c. II. 30
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the cycle of the ditisors beging one step earlier* (tluil is, from th«

very iM-ifinning), ami is rcciprucal after the first term.

§ D.] The following theorem forms, in a certain sense, a

converse to the propositions just established regarding the cycles

of the continued fraction which represents o/N/M.

If Z„ •=£,+,, M^ =3/,, o_ =a„
thm j[,„., = i,+j, 3/„.i = 3/,+,, 0^-1 =

0,^., (1).

We have, by § 7 (2),

Z.' + J/,3/„., = i.„' + M.^,M„

whence, remembering our data, we deduce

3/.., = iA,+. (2).

Again, by § 7 (1),

X,„ + Z„_, = a„_, 3/«_„

Z.+i + i,+i = o,+, 3/,+i,

whence, sini-i- />„ = £,+, by data,

= (a—,-<!,+,) 3/,+, (3).

If 2i„-i>i,+j, we may write (3)

(Z„_,
-

X,+j)/3/,+i
= a„-,

-
a,^., (4) ;

if /,>-,< Z,+„ we may write

(Z,+,
-
Z„.,)/3/„_, = Q,+,

-
o._, (5).

But, by § 4 (9), the left-hand sides of (4) and (5) (if they

dillor fnun 0) are each <1, while tlie right-hand sides are each

positive integers (if they difl'er from 0).

It follows, then, that each side of equation (3) must vanish,

80 that

Zr-1 = Z,« (6),

<»«-i=<»ii+i (7),

which completes the proof.

* The fact tliat t)ir cjclc of the divisore begins one step earlier than the

cjcle* of the partiitl i)Uoticiit« anJ rational dividends is true for the general

recurring continued fraction. Several otlier propositioni proved for the

special coKC now under consideration liavo a more general ajipUcaliuu. TU*

eircumslauces ar« left fur the nador hiusslf to disouvcr.
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Cor. 1. Stiu-ting with tlie equations in the second line of {I)

as data, we could in like manner prove that

and so on, forwards and backwards.

Cor. 2. If we put m = n, the conditions in (1) become

Ln = Xn+i , Mn = Mn, a„ = a„ ;

in other words, the conditions reduce to

J-'n
—

J-iii+i i

and the cnnckision becomes

Hence, if two consecutive rational dividends be equal, tfiri/ are

the middle terms of the cycle ofrational dividends, which must tliere-

fore he an even cycle ; and the partial quotient and divisor cor-

responding to thefirst ofthe two rational dividends will he the middle

terms of their respective cycles, which must therefore be odd cycles.

Cor. 3. If we put m=n + 1, the conditions in (1) reduce to

ilf„+i
= Mn, a„+i = a„ ;

and the conchision gives

Using this conclusion as data in (1), we have as conclusion

and so on.

Hence, if two consecutive divisors (Mn, il/»+i) be equal, and also

the two corresponding partial quotients («„ , a„+j) be equal, these two

pairs are the middle terms of their respective cycles, which are both

ei>m ; and the rational dividend (in+i) coiresponding to the second

member of either pair is the middle term of its cycle, which is odd.

These theorems enable us to save about half the labour of

calculating the constituents of the continued fraction which

represents -JN/M. In certain cases they are useful also in

reducing surds of the more general form (L + sIN)!]^! to con-

tinued fractions.

Example 1.

Express ^8463/39 as a simple continued fraction ; and exhibit the cycles

of the rutioual dividends and of the divisors.

30—2
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Now tho cqufitioua (2) and (3) of § 3 give us

Pmc Pmc+\ +Pmc-i Qmc+1 = (^1^^ 1<,J
In tho present case,

Qm.+l=<?c+l = 'U.
= ilZ.

The equations (j3)
therefore give

<'9mc+<!mc-l=Pmc 1 (^\

aPrr^+P^l^im^qJ ^^''

From (a) and (7) (III.) follows at once.

The formulm (I.), (II.), (III.) enable us, after a certain number of oon-

vergents to Jn/M have been calculated, to calculate high convergents

without finding all tho intermediate ones.

Consider, for example,

V84G3 _ _L_LJ_J_J_J-
89

~
"'"2+ 1+ 3+ 1+ 2+ 4+

•

» •

Here c=G, t= 3, and we have for the first four convergents 2/1, 5/2, 7/3,

26/11; hcnco

P6_P_i!h±JVh
?« Qilli + Si)'

26x3 + 7x2 ^92~
3(11 + 2) ~39'

Pr.^Pi'±i^!B^hl^
3i2 ^Peie

92° + (8463/39°) 39- _ 16927
_~

2 X 92 X 39
"

7176
'

P^^P_^±ME^l±l,

16927- x39°+8163x 7176"
~

2 X S'J' X 16927 X 7176
'

The rapidity and elegance of this method of forming rational approximations

cannot fail to strike the reader.

Exercises XXXI.

Express the following surd numbers as simple continued fractious, and

exhibit the cycles of the partial quotients, rational dividends, aud divisors:—

(1.) V(lOl). (2-) W(G3)- (3-) V(B)-

.
)

JL_. (5.) 2-±^). (6.)
1 + V*.

(7.) Express the positive root of i> - 1 - 4 = as a continued fraction, and

find the 6th convergent to it.

(8.) Express both roots of 2x°-6x-l = as continued fractions, and

point out the relations between the various cycles in tho two fractions.

Also
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(U.) Show that

^(a. + 6) = „ +^. ....

i^/(a'-6) = o-2;j— . . . .

(10.) Express ,^'(ii' + 1) as a simple continacd fraction, and find nn

cxprcssiou (or the nib convcrRcnt.

Evaluate tbo following recurring continued fractions, aiid find, where you
can, closed expressions for their nth convcrgents; also obtain recurring
formuliD for simplifying the calculation of high oonTergents :—

1
(U.)
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(i;i.) If p. be the numerator of any convergent to a^/2, then 2j)'±l will

also be the numerator of a convergent, the upper or lower sign being taUen

according as jtjq is an odd or an even convergent; also, if q, q' be two oon-

seontive denominators, q' + q'" will be a denominator.

(20.) Evaluate

J_ J_ 1

1+1+" ••«+••• •

* ft

where the cycle consists of /i- 1 units followed by n,

(21.) In the case of =— t— . . ., prove that

ft ft

P2n= ?=„«= {(v/2 + 1)="+' + (v/2
-
l)=»+i}/2^2,

l>2»-i
= i?en = {(v/2 + iP'- W2-lp}/V2.

(22.) Convert the positive root of ax- + al)x-b= into a simple con-

tinued fraction ; and show that y„ and g„ are the coefficients of a;" in

{x+ bx'-x*)l{l
- ab + 2.x- + x*) and (ax + ah + l.x-+ x*)l{l

- ab + 2.x' + x^)

respectively.

Hence, or otherwise, show that if o, /3
be the roots of 1- (((6 + 2)2 +i-= 0,

then
a" -8'^

P:r,+l
= Izn

_ (a"+i
-
^+1) -

(a"
-

/S")

(23.) If the number of quotients in the cycle of

show that

JN 11 111^ =(H . . . ^ ... be c,
il a, + 112+ a„+ ai+ 2a +

1 111 1 1,„„„„,„.,_ iV<?^
a-\ , . . i . . . (m cycles)— ^,„ -.

Oi+ aj+2a+ai+ Oj+a^
•' '

M-p,„c

(24.)* If c be the number of quotients in the cycle of ^/NjM, show that

if c = 2« + l,

p'(-^i+yV ^ N
Tl-r-l + ri+r ^^'

r=0, 1 t-1;
andif c= 2f,

Pl-T-iPl-T-l+Pl+r-lPl+r _ ^
9(-r-2?(-7-l + ?(+r-l!(+r •'^'"

(25. )t If JZ= a-\ . . . =— .... and if the convergent* ' ^
a,+ 0.,+ 0^+01+ 2<i+

"

• •

• For solutions of Exercises 24 and 26-29 see Muir's valuable little tract

on The Expression of a Quadratic Surd as a Continued Fraction, Glasgow

(Maclehose), 1874.

t In connection with Exercises 25 and 30-32 eee Serret's Cour$

d'Algebre Supgrieure, 3<°° ed., t. I., chaps, i. and ii.
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APPLICATIOXS TO THE SOLUTION OF DIOPHANTINE PROBLEMS.

§ 10.] When an equation or a sj'stem of equations is in-

determinate, we may limit the solution by certain extraneous

conditions, and then the indeterminateness may become less in

degree or may cease, or it may even happen that there is no

solution at all of the kind demanded.

Thus, for example, we may require (I.) that the solution be

in rational numbers
; (II.) that it be in integral numbers ; or,

still more particularly, (III.) that it be in positive integral num-

bers. Problems of this kind are called Diophantine Problems,

in honour of the Alexandrine mathematician Diophantcs, who,

so far as we know, was the first to systematically discuss such

problems, and who showed extraordinar)' skill in solving them*.

We shall confine ourselves here mainly to the third class of

Diophantine problems, where positive integral solutions are

required, and shall consider the first and second classes merely

as stepping-stones toward the solution of the third. We shall

also treat the subject merely in so far as it illustrates the use of

continued firactions : its complete development belongs to the

higher arithmetic, on which it is beyond the purpose of the

present work to enter t.

Equations of the \st Degree in Two Variables.

§ 11.] Since we are ultimately concerned only with positive

integral solutions, we need only consider equations of the form

ax±hy = c, where a, b, c are positive integers. We shall suppose

that any factor common to the three coefficients has been

• See Heath'B Diophantot of Alexandria (Camb. 188.5).

t The reader who wishes to purstie the study of the higher arithmetic

Bhonld first read Theory of Numbtrt, Part I. (1892) by G. B. Mathews,

M.A-; then the late Henry Smith's series of Eeports on the Theory of

Numbers, published in the Annual Beports of the British Association (1859-

60-61-62) ; then Legendre, Thiorie da Sombret ; Dirichlet's VorUtungen

uber ZaMentheorie, ed. by Dedekind; and finally Gauss's DUquiritiorvt

Arithmetica. He will then be in a position to master the various special

memoirs in which Jacobi, Hermite, Summer, Henry Smith, and others have

developed this great branch of pure mathematics.
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roinoveii. We may obviously confine ourselves to the cases

where a is prime to b
; fur, if x and y be integers, any factor

common to a and b must Le a factor in c. In other words, if a
be not prime to b, the equation ax±by = c has no integral solution.

§12.] To find all the integral solutiuii-i ofax- by = c; and to

separate the positive integral solutions.

We can always find a particular integral solution of

ax-by = c
(1).

For, since a is prime to b, if we convert ajb into a continued

fraction, its last convergent will be a//). Let the penultimate
convergent be pjq, then, by chap, xxxii., § 8,

aq-pb = ±l (2).
Therefore

a{±cq)-b{±cp)=c (3).
Hence

x=±cq, y'=^±cp (4)

is a particular integral solution of (1).

Next, let
(j-, y) be any integral solution of (1) whatever.

Then fix)m (1) and (3) by subtraction we derive

a{^-{±cq)\-b{y-(±cp)\ = 0.

Therefore

{i!-(±cq)]l{y-{±cp)\=bla (5).

Since a is prime to b, it follows from (5), by chap, in.. Exercises

IV., 1, that

x-{±cq) =
bt, y-(±cp) = at,

where t is zero or some integer positive or negative. Hence
every integral solution of (1) is included in

x = ±c/i + bt, y = ±cp + at
(6),

where the upper or lower sign must be taken according as the

upper or lower sign is to be taken in (2).

Finally, let us discuss the number of possible integral solu-

tions*, and separate those which are jwsitive.
r. If aib>plq, then the upiKT sign must be taken in (2),

and we have

x-cq + t/t, y=-cp + at
(ti;.
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There are obviously an iutinity of integral solutions. To get

positive values for x and y we must (since cp/a<cq/b) give to

t values such that -
cp/a > < :t» + » . There are, therefore, an

intinite numlier of positive integral solutions.

2°. If a/b<p/q, so that cp/a>cq/b, we must write

x = — cq + bt, y=- cp + at (6").

All our conclusions remain as before, except that for positive

solutions we must have cp/a^fjp- + co .

We see, therefore, that ax — by=^c has in all cases an infinite

number ofpositive integral solutions.

§ 13.] To find all the integral solutions of

ax + by = c (7),

a7id to separate the positive integral solutions.

We can always find an integral solution of (7); for, if p and

q have the same meaning as in last paragraph, we have

( ± eq) a +
{ + cp)b = c (8),

that is, x' = ± cq, y'=+cp is a, particular integral solution of (7).

By exactly the same reasoning as before, we show that all

the integral solutions of (7) are given by

x = ±cq-bt, 1/= + cp + at (9);

so that there arc in this case also an infinity of integral

solutions.

To get the positive integral solutions :
—

1°. Let us suppose that a/6 >j3/2', 80 that cp/a <cg'/6. Then

the general solution is

x = cq-bt, y =
-
cp + at (9').

Hence for positive integral solutions we must have cpjal^t

>cq/b.

2°. Let us suppose that ajb<plq, so that cpla>cq/b, then

x = -cq-bt, y = cp + at (9").

Hence for positive integral solutions we must have -
cpja 1^ t

>-cqlb.
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In both these cases the number of positive integral solutions

is limited In fact, the number of such solutions cannot excce»l

l + \cq/b-cp/a\; that is, since 10^-^1 = 1, the numl>er of

positive integral solutions of the equation <ix + by = c cannot

exceed 1 + cjab.

Example 1. To find all the integral and all the positive iutegral Bolationi

o(ar + 13!/ = 159.

We have

A-_L J- JL J_l
13~1+ 1+ 1+ 1+2*

The pcnnltimate convergent is 3/5; and we have

8x6-13x3= 1,

8 (795) + 13 (-477)= 159.

Hence a particular eolation of the given equation is i'= 796, y'= -477; and

the general solution ia

z = 795-13(, y=-477 + 9«.

For positive integral solutions we mnat have 795/13 !«•< 477/8, that is,

eiiS-^t^S'JI- The only admissible values o( t are therefore 60 and 61;

these give i = 15, y= 3, and x = 2, !/
= ll, which are the only positive integral

solutions.

Example 2. Find all the positive integral solutions of 3x + 2i/ + 3» = 8.

We may write this equation in the form

3j+ 2y=8-3i,

from which it appears that those solutions alone are admissible for which

« = 0, 1, or 2.

The general integral solution of the given equation is obviously

i= 8-3j-2«, y=-8 + 3r + 3«.

In order to obtain positive values for z and y, we must give to ( integral

values Ij-ing between +4- ji and +2J-». The admissible values of t are

8 and 4, when < = 0; 2, when 2 = 1; and 1, when z= 2. Uenoe the only

positive integral solutions are

1 = 2, 0, 1. 0;

y = l, 4, 1, 1;

« = 0, 0, 1. 2.

In a similar way we mny treat any single equation involving more than

two variablee.

§ 14.] Any system of equations in which the number of

variables exceeds the number of equations may be treated by

mcthixla which depend ultimately on what has been already

done.
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Consider, for example, tlie system

ax + by + cz = d (1),

a'x + b'y + c'z = d' (2),

wliere a, b, c, d, a, &c. denote any integers positive or negative.

This system is equivalent to the following :
—

-{ca')x + {bc')y
=

{dc') (3),

ax + by + cz — d (4),

where {ca') stands for ca -
c'a, &c.

Let S be the G.C.M. of the integers {ac\ {be). Then, if S

be not a factor in {dc), (3) has no integral solution, and conse-

quently the system (1) and (2) has no integral solution.

If, however, 8 be a factor in {dc), then (3) will have integral

solutions the general form of which is

x = x" + {bc')t/&, y = y' + {ca')t/8 (S),

where {x", y") is any particular integral solution of (3), and t is

any integer whatever.

If we use (5) in (4), we reduce (4) to

cz-c {ab') t/8
= d- ax" -by' ( G ),

where c {ab')/& is obviously integral.

In order that the system (1), (2) may be soluble in integers,

(6) must have an integral solution. Let any particular solution

of (6)bes = s', ^ = i!'. Then

z-z' _ {ab')

t-i" 8

Hence, if € be the G.C.M. of {aU) and 8, that is, the G.C.M.

of (ic), {cd), {ub'), then

z = z' + {ab')uji, t = t'+hilf. (7),

where u is any integer.

From (5) and (7) we now have

x = x' + {bc')u/€, y =
y' + {ca')u/t, z = !/ + {ab')u/f (8),

where x' = x" + {be) t'jh, y = y" + {ca') t'/S.

If in (8) we put u = 0, we get x = x',y
=

y', z = !!
; therefore

{x , y , z) is a particular integi-al solution of the system (1), (2).

A little consideration will show that we might replace {x, y', z)

by any particular integral solution whatever. Hence (8) glees all
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thr Integral »>lulioii.<t of (1), (2), (j-', i/', z) being amj particular

integral solution, t the G.C.M. of (be), {ca), (al/), and u any

integer whatever.

The positive integral solutions can be found by properly

limiting «.

Example.
3x + 4y + 27r = 34, Sx + Sy + 21t = 20.

Here (6c')= -51, (<;a')
= 18, (a6') = 3. Hence «= 3; a particular integral

solution is (1, 1, 1) ;
and we have for the general integral solution

i=l-17«, t/
= l + Cu, X=:l + U.

The only positive integral solution isx = l, y = \, » = 1.

Equations of the 2nd Degree in Two Variables.

§ 15.] It follows from § 7 (4) that, if pjq» be the nth con-

vergent and Mn the (M + l)th rational divisor belonging to the

development of J{C/D) as a simple perioilic continued fraction,

then

/>/>,'-<?</.'
= (-)- 3/. (1).

Hence the equation Dx^-Cf= + H, where C, D, U arc po.^itiv0

integers, and CjD is not a perfect square, admits of an infinite

number of integral solutions provided its right-Itand side occurs

among the quantities (
-

)"J/, belonging to the simple continued

fraction which represents JiCjD) ;
and the same is true of the

equation D^ -
Ci/'

= -II.

The mo.st important case of this proposition arises when wo

Biii)poi?e /)= 1. We thns get the following re.sult :
—

The equation x'-Ci/'
= ±II, where C and II are positive

integers, and C is not a perfect square, admits of an ii\finite

number of integral solutions provided its right-hand side occurs

among the quantities (
-

)" J/, belonging to the development qf JC
as a simple continued fraction.

Cor. 1. The equation x'-Ci/'=l, where C is positive and not

a perfect square, always admits of an infinite number qf solutions'.

*
By what seems to bo a historical misnomer, this equation is commonly

ppnken of as tho IVIIiau Equation. It was oriRinally proposed by Fcrmat

a* a obollcugc to the Eugliah mathematicians. Solutious wen obuiucd b/



§§U-1G LAGRANGE'S THEOREM REGARDING «"- (7?/'= ±^^ ^~^

For, if llie number of quotients in the period of JC be

even, =2s say, then {-)'^]\T^ will be + 1 (since here J/=+ 1).

Therefore we have

where t is any positive integer ;
that is to say, we have the

system of solutions

a;=ihu, y=q-t, (A),

for the equation a^ - Cif = 1.

If the number of quotients iu the period be odd, = 2s - 1 say,

then (
- r-Wo,_, will be - 1, but (

- )"-W„-,, (
-
^-^M^-,, . . .

will each be + 1. Hence we shall have the system of solutions

a:=Pit,-a, y = qits-'.t (B),

for the equation x^ — Cy-
= 1.

Cor. 2. The equation a?-Cy- = -\ admits of an infinite

number of integral solutions jn-ovided there be an odd number of

quotients in the period of JC.

% 16.] In dealing with the equation

ar-Cf=±n (1)

we may always confine ourselves to what are called primitive

solutions, that is, those for which a; is prime to y. For, if .r and y
have a common factor 0, then &- must be a factor in II, and we

could reduce (1) to x'^-Cy'- = ±HI6'. In this way, we could

make the complete solution of (1) depend on the primitive

solutions of as many equations like x'^- Cy'^
= ±II/B- as 5^ has

square divisors.

We shall therefore, in all that follows, suppose that x is

prime to y, from which it results that x and y are prime to //.

With this understanding, we can prove the following im-

portant theorem :
—

If II<JC, all the solutions of {\) are furnished by the

conmrgents to JC according to the method of § 15.

This amounts to proving that, i{ x = p, y = qhe any primitive

integral solution of (1), then pjq is a convergent to JC.

Brouncker and Wallis. The complete theory, of which the solution of this

equation is merely a part, was given by Lagrange in a series of memoirs which

form a landmark in the theory of numbers. See especially (Euvra, t. u.,

p. 377.
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Now WO have, if the upper sign be taken,

j>
- cy = //.

Hence plq- JC =n/</(p + JCj),

<JCIq{p^JCq).
<WiPl<lJG^\) (2).

Now piq
- JC is positive, therefore piq JC> 1. Hence

p/q-JC<\l-2,f (3).

It follows, tlierefi)re, by chap, xxxii., § 9, Cor. 4, that p/q is

one of the convergeuts to JC.
If the lower sign be taken, we have

q'-illOp'-II/C.
where niG<J{ljC). We can therefore prove, as before, that

qlp is one of the convergonts to J(l/C), from which it follows

that p/q is one of the convergents to JC.
Cor. 1. All t/ie solutions of

^-C,f=\ (4)

are furnished by tlie penultimate contergentg In the successive

or alternate jKriods of JC.
Cor. 2. If the number of quotients in the period of jC be

even, the equation

£'-Cf = -l (5)

has no integral solution. If the number of quotients in the

period be odd, all the integral solutions are furnished by t/ie

penultimate conrergents in the alternate periods of JC.

§ 17.] We have seen that all the integral solutions of the

equation (4) are derivable from the convergents to JC; it is

easy to give a general expression for all the solutions in terms

of the first one, say (p, q). If we put

ir+yJC=(p +
qJC)'\ ..>

'r-yJC={p-qJC)'i
^ '•

we have

Hence (fi) gives a solution of (4).

In like manner, if « be any integer, and (/>, q) the first

Bolutiou of (5), a more general solution is given by

x^yJC = (p-^qJCr-\ ...

a-yJC=(j>-qJcM



§§16.17 EXAMPLES 481

Finally, if {p, q) be the first solution of (1), we may express

all the solutions derivable therefrom* bj' means of the general

solution (6) of the equation (4). For, if (r, s) be any solution

whatever of (4), we have

p'-Ccf = ±U,

{f-C<f){r'-Cr) = ±n,
{pr± Cqsf -C(j)s± qrf = ±U.

Therefore

x=pr+Cqs\
.g>

y=ps±qr j

is a solution of (1).

The formulae (6), (7), (8) may be established by means of the

relations which connect the convergents of JC (see Exercises

XXXI., 25, and Serret, Alg. Sup., § 27 et seq.). This method of

demonstration, although more tedious, is much more satisfactoiy,

because, taken in conjunction with what we have established

in § 16, it shows that (6), (7), and (8) contain all the solutions

in question.

Example 1. Find the integral solutions of i' - ISy''
= 1.

If we refer to chap, xsxii., § 5, we find the following table of values

for ^/13 :—

n
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From (6) above, wo see that the Rcneral eolution is given bj

x = i {(649 + 180^13)" + (049
- 180V13)*}.

y = 4 { (M9 + 180v/13)»
-
(C49

- ISO^13}') IJ 13,

where n is any positive integer.

In particular, taking n = 2, we get the solntion

a= 64'J»+ 13.180'=8424ni,

y= 2.649.180=233640.

Example 2. Find the integral solutions of x*- 13y«= - 1.

The primary solution is given by the 5lh convergent to ^/13, u may be

seen by the table given in last example.

The general solution is, by (7),

*=
^{(18

+ 5V13)*'-' + (18-5s/13)>»-'}.

!/
=
2^13

{(18+ 5V13)*-» - (18- 5^13)«-'}.

where n is any positive integer.

Example 3. Find all the integral solntions of x*- 13y'=3.

The primary solution is x = 4. y= l, as may be seen from the table abova.

The general solution is therefore, by (t),

i= 4r±135, y = 4<±r,

where (r, i) is any solution whatever of x' - 13y' = 1.

In particular, taking r=649 and » = 160, we get the two solutions, z= 256,

y= 71, and x= 4936, y = 1369.

§ 18.] Let us uext consider the equatioa

x'-Cy' = ±H (9).

where C is positive and not a perfect square, and 11 is positive

but >JC.
We propose to show that the solution of (9) can always be

maile to depend on the solution of an equation of the same form

in which H<JC\ that is, upon the ca.se already completely

solved in §S 15-17.

Let (x, y) be any primitive solution of (9), so that x is prime

to y. Then wo can always determine (x,, y,) so that

ayi-y^i = ±l (10)».

lu fact, if piq be the penultimate convergent to xjy when

converted mUi a simple continued fraction, we have, by § 12,

ar,=-tj:±p, y,
= ly±q (11).

* Thuto ii no connection between the doable tigni beie and in (9).
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If we multiply both sides of (9) by x{ - Cy^, and rearrange

the left-hand side, we get

{XX,
- Cyy,y -C{xy,- yx,f =±B (x,^

-
Cy?).

This gives, by (10),

{xx^-Cyy,r-C=±R(x^-Cy^) (12).

Now
xx^ - Cyy, ^t^x'-ChD + ixp- Cyq) (13).

But we may put xp - Cyq = SH± K,, where Ki'^hU. Hence

xx,-Cyy, = (t±S)H±{±K,) (14).

Now t and the double sign in (13) are both at our disposal ;

and we may obviously so choose them that

xx-,-Cyy, = Kx (15),

where

zi>izr. (16).

We therefore have, from (12),

K:--C^±U{x,'-Cy?) (17).

Now, by hypothesis, ^G<H, therefore C<E:' and K^-G
<E\

Since (ar,, ^i) are integers, it follows from (17) that, if (9)

have an integral solution, then it must be possible to find an

integer Kil^^H such that

{K^-C)IH=n, (18),

where H, is some integer which is less than H-jH, that is, < H.

If no value of Ki<\H can be found to make {K^ — C)IH

integral (and, be it observed, we have only a limited number of

possible values to try, since Ki1:^\H), then the equation (9) has

no integral solution.

Let us suppose that one or more such values of Ki, say K,,

Kx, K", . . ., can be found, and let the corresponding values of

Hi be Hi, Hi, Hi', . . . Then it follows from our analysis that

for every integral solution of (9) we must be able to find an

integral solution of one of the limited group of equations

x^-CyC- =±H \

xi'-Cy,' =±H'

x,'-Cy,' =±H"
(lU

where H, Hi, H", ... are all less than H.

31—2
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If it also hajipens tliat iu all the equations (19) the numerical

value of the ripht-liand side is < JC, then these equations can

all be conii>letcly solved, as already explained.

If (•Til Vi) he a solution of any one of them, wo see, by (10)

and (15), that

or ar = (ir.'a-. + Cy,)/iy.'. i'
=
(^.'y. + a^)//7.',

If iu any of the equations (19), say, for instance, in the first,

the condition Hi<JG is not yet fulfilled, we can repeat the

above transformation, and deduce from it a new system.

where Hi and IT, are each less than /T, ;
and we have

X, = {K,.r, + Cij..)III, , y,
= {K,y,

+jr,)//I,
Xi = (A"; X., + Ci/.)/II.;, y,

=
(AVy, + x^yii^

(21).

(22).

Since the fTs are all integers, the chain of successive operations

thus indicated must finally come to an end in every branclL

Thus we sec that any integral solution o/{9) must be deJucibh

from the solution of one or other of a finite group ofequations qf

tite type

x'-Cf=IW^ (23).
where II^^^^KjC.

The practical method of solution thus suggested is as

folhiws :
—

Find all the integral values of A',<i// for which {K^*- 0)1II

is an integer. Take any one of those, say A', ;
and lot //, be

the corresponding value of {Ki'-C)/H. Then, if II,<JC, solve

the equation x^-Cy* = ±IIi generally; take the formula (20);

au<l find wliioh of the solutions (j,, »/,), if any, make (j", y) integral

We thus get a group of solutions of (9). If IIt>JC, then we

find all the values of A'j< J//, for which (A,'
-

C)/II, is integral,

* Since tliv bIkdh of x and y are imiiilcront in tlic Bolulions of x*- Cy'=
*//, it ia unnccfRiiary to tako ncconnt of the doublo oiRna of //,. //,', *o.

Fur the eaiuu rcunuii, lliv uiubiguitieit uf 8i(;n iu (20) and [22) arc indciH-'udunt.
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= U<i say, and, if Il2<JC, solve the equation x?—Cy2=±Hi;
then pass back to x through the two transformations (20)

and (22) ; and, finally, select tlie integral values of x and y tluis

resulting, if there be any.

By proceeding in this way until each branch and twig, as it

were, of the solution is traced to its end, we shall get all the

possible integral solutions of (9), or else satisfy ourselves that

there are none.

The straightforward application of these principles is illus-

trated in the following example. Into the various devices for

shortening the labour of calculation we cannot enter here.

Esample. Find the integral solutions of

x«-15»/-=61 (9').

Let (fi'i=-15)/61=J7, (18'),

where ffjt. 30.

Then iri==15+ 61Hi.

Since K^ t> 900, we have merely to select the perfect squares among the

numbers 15, 76, 137, 198, 259, 320, 381, 412, 503, 564, 625, 680, 747, 808, 869.

The only one is 025, corresponding to which we have A',
= 25 and Zf,

= 10.

Since Hi>^15, we must repeat the process, and put

(AV-15)/10= iJj (18"),

where i'jt>5, and therefore ii.'j'>25.

Since A"2-=15 + 10//2, the only values of K.^- to he examined here are 5,

15, 25. Of these the last only is suitable, corresponding to which we have

K3=5, Ha=l.
We have now arrived at the equation

Xj'-15!/.,='=1 (21'),

the first solution of which is easily seen to be (4, 1). Hence the general

solution of (21') is

^J=^{(^ + v'15)» + (4-^/i5)"} ]

(24).

The general solution of (9') is connected with this by the relations

x^
= {5x,^15ij^)ll, yi = {5y„TX,)ll (".22');

x=(25x,=Fl5i/,)/10, »/
= (25i/,TX,)/10 (20').

Hence x= lix.j^i'iy,, y=^'Sx,+ liyr,\

x=11x2=f30i/3, y= =f2X3 + 11(/2 j

where Xj and y, are given by (24). The question regarding the integrality of

X and y does not arise in this case.

As a verification put Xo= 4, y^=l, and we got the solutions (11, 2),

(101, 20), (14, S) and (74, I'J) for
(9'), which are correct.

:!
^''^^
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§ 19.] TLcre remain two cases of the binomial equation

1^ -
Cy'

- ± II wliicli are not covcreil by the above analysis
—

x'-Ctf=±II (26).

where C is a perfect square, say C = l{'; and

x' + Ci/'
= +n (27).

The equation (26) may be written

(x-ll!/){x + l{y)
= ±fl.

Hence we must have

r-Iii/-

'="} (28).

where « and v are any pair of complementary factors of + //.

We have therefore simply to solve every such pair as (28), and

select the integral solutions. The number of such solutions is

clearly liniitoil, and there may be none.

In the case of equation (27) also the number of solutions is

obviously limited, since ejich of the two terms on the left is

positive, and their sum cannot exceed //. The simplest method

of solution is to give y all integral values :^^/(///C'), and

examine which of these, if any. render II- Cf a perfect square.

)j 20.] In conclusion, we shall brictiy indicate how the

solution of the general equation of the 2nd degree,

aj:» + Ihxy + bi/'
+ 2gx + 2fy + c = Q (29).

where a, b, c, /, g, h are integers, can be made to depend on the

solution of a binomial equation.

By a .slight modilication of the analysis of chap, vii., § 13,

the reatler will easily verify that, provided a and b be not both

zero, and c be not zero, (29) may be thrown into one or other

of the forms

{Oy + Ff-C{a.r + hy + gy = -a\ (30);

or (Gx-*-G)'-C(lur+by+/y = -biL (31),

v\)ere^=af>c + 2/gh- q/''-bg'-c/i\ C=/i'-fih, F=gh-(\f,
G =

/{/'- bg ; any into the form (30). If, then, wo put

rtj-

Cy^F=i)
+ % +

r/
- 7 J

(32),
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(30) reduces to

$^-Cv'=-aA (33),

which is a binomial fonn, and may be treated by the methods

already explained.

If h->ab, then C is positive, and, provided C be not a perfect

square, we fall upon cases (1) or (9).

If C be a positive and a perfect square, we have case (26).

It should be noticed that, if either a = or 6 = 0, or both

a = and 6 = 0, we get the leading peculiarity of this case, which

is that the left-hand side of the equation breaks up into rational

factors (see Example 2 below).

If P<ab, then C is negative, and we have case (27).

inr = ab, then C=0, and the equation (29) may be written

(ax + hyf + 2agx + 2«/j/ + ac = (34),

which can in general by an obvious transformation be made to

depend upon the equation
V'^Q^ (35),

which can easily be solved.

Example 1. Find all the positive integral solntions of

3x' -Sxy + -n/-ix + 2ij
= 109.

This equation may be written

(3x-42/-2)»+5(!/-l)''
= 33G,

Bay f'+57;2=336.

Here we have merely to try all values of tj from to S, anj find which of

them makes 336 - 5ir a perfect square. We thu3 find

J=±16, ii=±4;
{=i4, i;=±8.

Hence
Si-4!/-2=±16, v-l=±4 (1);

3x-4i/-2=±4, y-l=±8 (2).

It is at once obvious that in order to get positive values of y the upper

sign must be taken in the second equation in each case. Hence
j/
= 5 or

y=9. To get corresponding positive integral values of x, we mii=t take the

lower sign in the first of (1), and the upper sign in the first of (2). Hence

the only positive integral solutions are

x-2, y = j, and J=14, y = 0.
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ILxamiilo 2. Find the positn-o iDtrgral eolations of

3xj/ + 2y'-4i-3y = 12.

Tliia is a CAPO where the terms of the 2nd degree break up into two rational

(actors. We may put the equation into the form

(9x + 6y-l)(3y-4) = 112.

Since 3i/
- 4 i^^ ohvionsly less than 9x + 0y-l when both z and y aro

positive, 3y-4 must be equal to a minor factor of 112, that U, to 1, 2, 4, 7,

or 8; the second and the last of these alone give integral values for y, namely,

y = 'i and y = 4. To get the corrcsjonding values of x, we hiive 9x + C.y- 1

= 5C and ttx + C;/ -1=14, that is to say, Ox = 45 and 9x= -9. Uence the

only po;>itive integral solution is x = 5, y = 2.

I^xample 8. Find all the integral solutions o(

9x» - 12xy + 4j/' + 3x + 2y = 12.

Here the terms of the 2nd degree form a complete square, and wo may
Trrito the equation thus—

(3x
-

2i/)» + (3x
-
2y) + 4y = 12,

or 4(3x-2y)»+ 4(3x-2y) + l + 16j/
= 49;

that is, (Cx
-
4y + 1)»

= 49 - ICy.

Uencc, if

u = Cx-4y + l (1),

so that u is certainly integral, we must have

y = (40-u')/16 (2).

Now we may put u = lG^±», where « is a positive integer >8.

It then appears that y will not be integral unless (49 -
«')/10 be integral.

The only value of ( for which this happens is » = 1. Therefore

u= 16/i=>=l (3).

Hence, by (1), (2), and (3), we must have

i=2 + 4/i(1-8m)/3. y = 3-2/i-lG^« (4),

or
*= 4m + (5-32ai')/3, y = 3+ 2,i-16M» (5).

It remains to determine /i so that x shall be integral.

Taking (4), we see that ^ (1
-

8;i)/3 will be integral when and only when

lt.
= %r or /i

= 3r- 1.

Uting these forms for pt, we get

i = 2 + 4r-96»', y = 3-C»-14li." (6);

x= -10+ C8»-9Gr', y= -n + 90»-144»' (7).

Taking ('>), we find that (5-32;i*)/3 is iutcgrol when and only when

^=3r+l or /i
= 3i'-l.

Using these forms, we get from (6)

«=-5-C2»-9Gk', y=-n-9nr-144r« (8);

x= -18 + 76»-9G»«, y=-15 + 102»-144r« (9).

The formnliD (G). (7), (H), (fl), wherein r may have any integral valno,

positive or negative, coulaiu all the integral solutions of the given equation.
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Exercises XXXIL
Find all the integral and also all the positive integral solutions of the

following equations :
—

(1.) 5i + 7y = 29. (2.) iex-17i/ = 27.

(3.) lli + 7y= U03. (4.) 13G7x-ioi% = lC24G.

(3.) If £x. ys. be double £;/ is., find x and y.

(6.) Find the greatest integer which can be formed in nine different

ways and no more, by adding together a positive integral multiple of 5 and a

positive integral multiple of 7.

(7.) In how ninny ways can £2 : 15 : 6 be paid in half-crowns and florins?

(8.) A has 200 shilling-coins, and B 200 franc-coins. In how many ways
can A pay to B a debt of 4s. ?

(9.) 4 apples cost the same as 5 plums, 3 pears the same as 7 apples, 8

apricots the same as 15 pears, and 5 apples cost twopence. How can I buy
the same number of each fiuit so as to spend an exact number of pence and

spend the least possible sum ?

(10.) A woman has more than 5 dozen and less than 6 dozen of eggs in

her basket. If slie counts them by fours there is one over, if by fives there

are four over. How many eggs has she ?

(11.) A woman counted her eggs by threes and found that there were two

over ; and again by sixes and found there were three over. Show that she

made a mistake.

(12.) Find the least number which has 3 for remainder when divided by

8, aud 5 for remainder when dirided by 7.

(13.) Find the least number which, when divided by 28, 19, 15 re-

spectively, gives the remainders 15, 12, 10 respectively.

(14.) In how many ways can £2 be paid in half-crowns, shillings, and

sixpences ?

(15.) A bookcase which will hold 250 volumes is to be filled with 3-volumed

novels, 5-volumed poems, 12-volumed histories. In how many ways can this

be done? If novels cost 10s. 6d. per volume, poems 7s. 6d., and histories 5«.,

show that the cheapest way of doing it will cost £129. 15s.

Solve the following systems, and find the positive integral solutions:—
(IG.) x + 2y + 3z = 12b.

(17.) x+y + z +u= 4,1 (18.) 2x + 5y+ 32= 324,1

5i/-l-Gj-h9u = 18.| 6x-4i/H-14z= 190.f

(19.) Sx-Gy-h 72= 173,1 (20.) 17x -H9i/ -I- 21^ = 400.

17x-4j/-f3j= 510.|

(21.) x+ y+ 1+ u=2G,-\

3x-i-2y + iz+ «=63,
|.

2x-l-3y-h2j-(-4«=74.J

(22.) Show how to express the general integral solution of the system

OuXi-hflioXj-f. . . + ai„x„=d„
OjiXi+ aj^Xj-h. . , + a^x„=d,.

by means of determinants, wiieu a particular solution is known.
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Find the valacs of x which make the values of the foUomng functions

intcgrnl 8i|uarcs :
—

(23.) 2x' + 2x. (24.) (j^-x)/5. (23.) i + 11 and 1 + 20, simultaneously.

(26.) Tf + fl and 1]: + 3, simultaneously. (27.) i' + i + 8.

Solve the following cqaations, giving in each cose the least integral

solution, and indicating how all the other integral Bolutions may bo found:—
(28.) i«-44j/'=-a



CHAPTER XXXIV.

General Continued Fractions.

FUNDAMENTAL FORMULA.

§ 1.] The theory of the general continued fraction

,
bi b} ...

^' = '^ +^^"- ('^)'

whore «,, ffl., (T,, . . ., &2, ''s, • • are any quantities whatever,

i.s inferior in importance to the theory of the simple continued

fraction, and it is also much less complete. There are, how-

ever, a number of theorems regarding such fractions so closely

analogous to those already established for simple continued

fractions that we give them here, leaving the demonstrations,

where they are like those of chap, x.x.xii., as exercises for the

reader. Tiiere are also some analytical theories closely allied to

the general theory of continued fractions which will find an

appropriate place in the present chapter.

In dealing with the general continued fraction, where the

numerators are not all positive units, and the denominators

not necessarily positive, it must be borne in mind that the chain

of operations indicated in the primary definition of the right-

hand side of (A) may fail to have any definite meaning even

when the number of the operations is finite. Thus in forming

the third convergent of 1 +
:j

— -— t— . . . we are led to

1 + 1/(1
-

1) ;
and in forming the fourth to 1 + 1/(1

-
1/(1

-
1)}.

It is obvious that we could not suppose the convergcnts of this

fiactiun formed by the direct process of chap, xxxii., ^ 6 ("), (/J),
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(y). It must also lio romeinliored tliat no piece of reasoning

that involves the use of the value of a non-trrminating continued

fraction is legitimato till we have shown that the value in

question is finite and definite.

Jii casfn where any dijficuUy regarding the meaning or conver-

gennj of the continued fraction taken in its primary sense arises,

ve regard the form on the right of (A) merely as representing the

assemblage of convergents /),/<7,,W7a. • • •./'«/?« w'^"^* denomi-

nators are constructed by means of the recmrence-formulw (2) and

(3) below.

That is to say, when the primary definition fails, wo make

the fonnula) (2) and (3) the definition of the continued fraction.

In what follows we shall be most concerned with two varieties

of continued fraction, namely,

a, + ttj +

and Ci + -— -—
• • • (^)>

wherc a,, a,, a„ . . ., 6„ b„ . . . are all real and positive. We
shall speak of (B) and (C) as continuedfractions of the first and

second class respectively.

§ 2.] Kpi/qi, pjqt, &c. be the successive convergents to

bi bt / , \

cUi+ at +
then

Ph = a«P.-i + bnPn-t . (2) ;

g, = a^qn-i + t„7,-i (3),

with the initial conditions Pt=l,pi = ai; qi
=

l, qt
= <h-

Cor. 1. In a continued fraction of the first class p» and q»

are both positive ; and, protided a,-d;:l, each qf them continually

increases tcith n*.

In a continued fraction of the second class, subject to the

restriction a,«tl + i'„, j», and q, are positive, and each of them

Continually increases with u*.

•
It doca not necessarily follow that Lp,= eo and Lq,= a) , for llie «uo-

ec'Bivc incrcmcnti here arc not positive inU^ral numbers, aa in Iho caw of

imi'lc coutioucd fracliuua.
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These conclusions follow very readily by induction fiom such

formulae as

Pn -Pn-l = («n
- 1 )i^H-l + KPn-t (4).

Cor. 2.

F^=«„+.A- A-_..> (5);
Pn-i a„-i + a„-j + (h.

2^ =a.^-^^' ...^ (6).

§ 3.] From (2) and (3) we deduce

Cor. 1. The convergents, as calculated by the recurrence-rule,

are not iiecessarily at their lowest terms.

Cor. 2.

Pn _ Pn::! = /_)-.
^2^3 . . -h

/2\

qn <7n-l 9nqn-l

Cor. 3.

^" = „^ +A _ ^3 ^ . . . (_)'>¥i^^jA (3).

q„ qiq-i qiqi q^-iq^

Cor. 4.

p„qn-2- Pn-'.q,,
= (-)"'' a,fiA • • ^n-1 (4);

Pn Pn-1 ^ ,

yi-i
a-nbA ^«-l

/gX

Cor. 5.

= ^;i%5 (G).

Cor. 6. In a continued fraction of the first class, the odd

convergents form an increasing series, and the even convergents a

decreasing series ; and every odd convergent is less than, and every

even convergent greater than, following convergents.

In a continued fraction of tlie second class, subject to the

restriction a„<t:l + b„, all the convergents are positive, and foi-tn

an increasing series.
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These conclusions follow at onco from (2) and (j), if we

remember that, for a fraction of the second class, wo have to

replace b„ . , .,b» by -b„. . ., -<<«.

CONTINUANTS.

g 4.] The functions p,, g, of a,, Oj, . . ., o«; 6i, ftj, • . m K
which constitute the numerators and denominators of the con-

tinued fraction

bt b, 6,

belong to a common class of rational intej,TTvl functions*.

In fact, />, is determined by the set of equations

Pt=<hPl + f>tP», Px = <hPl + b,Pl P, = anPm-l+bnPn-t

together with the initial conditions ^o = li Pi
=

ai; while g, is

determined by the system

qi
= (hqi + btqi, qi

= atq, + btqi, .... ?«
= a«7«-i + *-.7.-i

(2),

together with the initial conditions ^i
=

1, ?«
= o^•

Iti8obvious,therefore,thatg„tsM«sa/n#/u7lcri<>no/o,,flb

o»; bt, 6«, . . ..b^aspn is of Uu a-i, • • . ««; ^i. ^. • • •. ''••

We denote the function />, by

^"
\a,,(i,, . . ., a,/

(3).

and speak of it as a continuant of the nth order whose denomin-

ators are ch, <*, ««, and whose numerators are b , t,.

We have then

/ b„...,b.\
y^"

\flt„ *,, . . . ,
aJ

* This was firat pointed out by Enter in his memoir entitled "
Specimen

Algorithmi Siugulariii," Sov. Comm. I'rtrop. (1764). Elegant demoD«tr«tioni

of Eulcr's results were given by Mobius, CrtlU't Jour. (1.S30). The theory

has been trvatcd of late in oonnoction with determinants by Sylrester and

Muir.
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When the numerators of the continuant are all unity, it is

usual to omit them altogether, and write simply Jr(a,, (u, . . . , a„).

A continuant of this kind is called a simple continuant.

When it is not necessary to express the numerators and

denominators it is convenient to abbreviate both

^L ^••'^)andi^(a„ «„.,.,«„)
\aj, »3, . . ., «n/

into K{1, n). In this notation we should have, if r<s,

^<'.'>=^(„„l:;:::;:f3 (^^

^(•'••)-'^C.,,.';:::;;f;*')
(«'

In particular, K{r, r) means simply Ur, so thatj^i
= K{\, l)

= a^.

To make the notation complete, we shall denote p^ and q^ by

K(^ ),
which therefore stands for unity ; and, in general, wlien

the statement of any rule requires us to form a continuant for

which the system of numerators and denominators under con-

sideration furnishes no constituents, we shall denote that con-

tinuant hy K{ ) and understand its value to be unity. It will

be found that this convention introduces great simplicity into

the enunciation of theorems regarding continuants.

§ 5.] A continuant of the nth order is an integralfunction of
the nth degree of its constituents.

This follows at once from the definition of the function, for

we have, by g •! (1),

K{1, n) = a„ K{1, n-\) + KK{1, » - 2), ^

K(l, n-\) = a„.iK{l, n-2) + K-,K{1, n -
3),

K{l,l+\) = ai^,K{l,l) + h^,K{ ),

K(l,l) = a„ K{ )=1.

(7).

The following rule of Hindenburg's gives a convenient

process for writing down the terms of a series of continuants,

say K{1, 1), A'(l, >). K{1, 3), . . . :-
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12 3 4 5

1
-

,

Oi

t.

<h

a.

U.J

<h
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For example, to get the terms of K{1, i). The first is a^a^fisa^. By
omitting from this, first fljOj, then njflj, then a^a^, and replacing by b.,, 6,, 64

respectively, we get three more terras, b«a^a^, a^b^a^, a^ajt^. Then, omitting
two pairs, we get b^b^. We thus get all the terms of A' (1, 4).

It is easy to verify this rule up to K(l, 5); and a glance at

the recurrence-formula (8) shows that, if it holds for any two

consecutive orders of continuants, it will hold for all orders.

From Euler's rule we deduce at once the following :
—

Cor. 1. The value of a continuant is not altered by reversing

the order of its constituents, that is to say,

^f h, . . .,

^"\^g;(
in, . . ., h,\

Voi, ff.„ . . .,aj \a„, a„_„ . . ., aj

We could obviously form the continuant ir(l, n) by starting

with a„a„-i . . . aMi instead of aiU^ . . . «„-!««, and replacing each

consecutive pair of a's in every possible way by a b of the same

order as the first a of the pair. In this way we should get pre-

cisely the same terms as before. Hence the theorem. We may
express it in the form

K{l,m)=^K{mJ) (10).

Cor. 2. We have the following recurrence-formula :—
K{1, m)=aiK{l+ 1, m) + bMK{l+2, m) (11).

For, by Cor. 1,

K{l,m) = K{m,r),
= a,K(m, l+l) + b,+iK(m, /+2), by (7),

= a,K{l+l, vi} + b,+iK{l + 2, m),hy Cor. 1.

§ G.] The theorems (1) and (4) of § 3 may be written in

continuant notation as follows :
—

E(l,n)K{2, n-l)-K{l, n-l)K{2,n)
= (-)''bA...b„K{)K{ ) (12),

.£"(1, n)K{2, n-2)-K{l,n-2)K{2, n)
=

(
-

)"-' bh . . . b„., K{ ) K{n, n) (13).

These are particular cases of the following general theorem,

originally due to Euler*:—
• Euler stated it, however, only for simple continuants. It has been

stated in the above general form and proved by Stern, Mnir, and others.

c. II. 32
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A'(l, «) /v'(/, m) -
A'(l, m) K{1, n)

= (-r-'*'tA«. . . t-+iA'(l, /-2)A'(m + 2. fi) (14),

where l</<m<?j.

Tliis tliPorcm is easily rcmcmborM by mcnni; of tlie fuUowing elegant
mcmuria tcchnica, given by itn discoverer :—

1, 2, . . ., f-2, t-1, H, ., wi. |m + l, 111 + 2, . . ., K.

Draw two vcilical lines enclosing the indices belonging to A'(/, m); then twn

horizontal linos as above; and put dots over the indices immodiatcly outsiil'

the two vertical lines. The indices (or the first continuant on the lert of (14)

are the whole row ; those of the second arc inside the vertical lines; those of

the third and fourth under the npper and over the lower horizontal lines;

those of the two continuauts on the right outside the two vertical lines, the

dotted indices being omitted. The b'a are the i's of A'((, m) with one more at

the end
;
and the index of the minus sign is the number of constituents in

K(l. m).

The proof of the theorem is very simple. We can show, by
means of tlie recurrence-formula; (7) .iiid (11), that, if the formula

hold for /, m + 2, ami for /, m + 1, or for /- 2, m, and for l-\,m,
it will hold for /, m. iS'ow (12) asserts the truth of the theorem

for /=2, m=n-l; and it is easy to deduce from (12), by
means of (7) and (11), that the theorem holds for / = 3, »i = n- 1,

and also for /=2, m = w - 2. The general case is therefore

establi.shed by a double mathematical induction based on the

particular case (12).

Tlie theorem (14) might be made the basis of the whole

theory of continued fractions ; and it leads at once to a variety
of important i)articular results, some of which have already been

given in the two preceding chapters. Among these we shall

merely mention the following regarding what may be called

rcciprocnl 8im])le continuants :
—

*•'(«!. <h <?<, a,, . . ., «,, a,)

= A'(o,.n„ . . .,a<)' + A'(rt,, ff, a,.,)' (A);

S'(oi,o> a,.,, a(,rt,.,, . . ., a,, a,)

= ir(<i„ ffj <T,.,) {A'(«,, o,, . . ., rti) + A'(o„ a, a, ,)}

(B).

I



^§ 6, 7 smith's proof of a theorem of fermat's 499

Example. Show that every prinie p of the form 4\ + 1 c:in be exhibited as

the sum of two integral squares*.
Let

/xj , /i^ , . . .
, M, he all the integers prime to j) anil <c Ap ; and let simple

continued fractions be formed iov pjfi^, pjfji^, . . ,, pl/i,, each terminating so

that the last partial quotient > 1. Then each of these continued fractions has

for its last convergent the value K(a^, Qj, . . ., a,^jK(a„, Oj, . . .,a„), where
the two continuants are of course prime to each other, and aj>l, a„>l.

From this it appears that there are as many ways, and no more, of

representing p by a simple continuant (whose constituents are positive

integers the first and the last of which are each gi-eater than unity) as there

are integers prime \o p and <^^p.

Now, since A'{«i, a„ a„) = 7C(a„, . . . , a„, Oj), and a„>l, it is

obvious that A'{(7„, . . ., a^,a^) must arise from one of the other fractions pjpi.

Hence, given any fraction pjn, it is possible to find another also belonging to

the series which shall have the same partial quotients in the reverse order.

Let p be a prime of the form 4X + 1, then the greatest integer iu Jp is 2X,

which is even. Since, therefore, the number of continuants which are equal
to p must be even, and since A' (p) is one of them, there must, among the

remaining odd number, be one at least which gives rise to no new fraction

when we reverse its constituents, that is to say, which is reciprocal. Now
the reciprocal continuant in question cannot be of the form K(a^, a„, . . .,

"i-i' "•' "i-i' • • •' "s> ''i)'
^""^ '' follows from (B) that such a continuant

cannot represent a prime, unless j= l, or else i = 2, and aj
= l, all of which are

obviously excluded.

We must therefore have an equation of the form

p = K(a^, flj, . . ., oj, Ui, . . ., Oj, Oj),

K(a^, a„, . . ., flj)'' + A'(«,, a^, . . ., a^^jP,

by (A), which proves the theorem in question.

As an example, take 13 =3x4 + 1.

„ ,
13 ,„ 13 . 1 13

,
1 13 „ 1 13 „ 111

We have -r-=13; — = 6 + ^; -^= i + ^; -r= ^+i' —= 2 + ,-,— s!1 2 2 3 34 4o 1+1+2

-r = 2 + l. So that 13= A'(13) = ir{6, 2)
= A'(4, 3)=ii:(8, 4)

= A'(2, 1, 1, 2)
I) u

= A(2, 6); and, in particular, 13 = A'(2, 1, 1, 2)
= K{2, l)2 + A'(2)==3' + 22.

§ 7.] By considering the system of equations (I) of § 4, it is

easy to see that, if we multiply ar, br, K+i hy c^, the result is

the same as if we multiplied the continuant ^'(1, n) (n>r) by

Cr. Hence we have

= cx.
\a,, oj, . . ., aj

* The following elegant proof of this well-known theorem of Fermat's was

given by the late Professor Henry Smith of Oxford ^Crellc'i Jour., 1855).

32—2
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We may so detenuiue c,, c,, . . ., c, that all the nuuierutorB

of the coatiuuant become equal. In fact, if we put

c-A = \ e^A = \ . . ., c,.,cA = \
we get

Ct
=
\bibjbjjtb,, . , , ,

Hence

k(
* M

=(i/xy b,b^-A-A . . .^
£^[^^^ xaX. «3*A. ^/Ai..' • • -y

(16).

where p is the numher of even integers (excluding 0) which do

not exceed n.

Cor. Every continuant can be reduced to a simple continuant,

or to a continuant each of whose numerators is - 1.

Thus, if we put X = + 1 aud X = - 1, we have

k( *•

''-)\a,,a„ . . ., nj
= hjb^-i ... X A' (a,, ajbi, ajbjb,, aj>jbj>t

anbn-ibn-, . . ./^A-t • . ) (17).

= (-)''M.-, . .

.xA-(^_ _^^' a^Jb,',-a,bJbA. . . .',

(-)»-> aA-A-..../*A-....)
^**^-

§ 8.] The connection between a continuant and a continued

fraction follows readily from (11). For we have, provided

K{'Z, n). A' (3, n), A' (4, «),... are all dillerent from zero,

-g(l.n) _^ . ft.

r(2rJr)-""*A'(2, n)/A'(3.n)'

^(2. w) ^6j

A'(3.«) '^'"A'(3,n)/A'(4.«)-

Ilonco

K(\,n) „.hj_b, br «...

A'CA »)
^

a, + a, +
• '

A'(r, n)/A'(r + 1, n)
^^^''
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If in tliis last equation we put r = n, and remember tliat

here K{7i + 1, n) = K{ )
=

1, we get

a result which was obvious from the considerations of § 4.

§ 9.] When the continuant equation

^(1, n) = a„K{l, n-l) + b„K{l,n- 2),

or Pn = UnPu-i + h„pn-i,

which may be regarded as a finite difference equation of the

second order, can be solved, we can at once derive from (20) au

expression for

'

Oa + a3 + a„

When «„ aud 6„ are constants, the problem is simply that of

finding the general term of a recurring series, already solved iu

chap. XXXI.
, § 7.

Example. To find an expression for the nth convergent to

F=X-\ —
. . .
— ....

Here we have to solve the equation Pn=Vn-\+Vn-it \i\lh the initial con-

ditionspi)= l, pi= l. The result ia

£•(1. n) =p„= {(1 + V5)"« -
(1

-
v/5)»+i}/2"+\/5.

Hence

f„ K(l, n) {(1 + V5)"«-(1-^/5)"-^'}/2""n/5

ql'KCi^n) {(l + V5)"-(l-x/5)»}/2V5
'

_ (i+^/5)''+i-(i-.y5)"+'
-*

(l + ^/5)»-(l-V5)''

From the expression for K(l, n) (all the terms in which reduce in this caso

to + 1) we see incidentally that the number of different terms in a continuant

of the nth order is

2n+l ;g
—

on ln+l^l + "n+l^S+0 n+1^3+ • • •/•

§ 10.] When two continued fractions 7^ and F' are so related

that every convergent of F is equal to the convergent of F' of

the same order, they are said to be equivalent*.

• We may also have an (m, n)-equiTalence, that is, Prmllrm=Pn'hrn-
See Exercises xxxiii., 2, 17, &c.
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It follows at once from g 7 and 8 (and is, indeed, otherwise

obvious, provided the continued fraction has a definite meaning

according to its primary definition) that we may multiply o^, b,,

and br+i by any quantity »»( + ()) without disturbing the e<iui-

valence of the fraction. Hence we may reduce every continued

fraction to an equivalent one which has all its numerators equal
to + 1 or to - 1. Thus we have

a,+
hi b, bt

a, + a, + a, +
'
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(2.) If piq and p'jq' be the uUimnte and pennltiraate convergents to

a+ ;

—•
. . . Ti bIiow that

b+ k

a + ,
—

. . . ;
— ... to 71 pcriocIs = - p^—,— ; ...—.,

, b+' k+ ^ qL q+PT q +P-F qJ
*

where the quotient q'+p is repeated n-1 times, and the upper or the lower

sign is to be taken according as pIq is an even or an odd convergent.

(3.) Evaluate OH . . . to n quotients, o being any real quantity
(I + (1 4"

positive or negative. Show from your result that the continued fraction in

question always converges to the numerically greatest root of j;^ - ax - 1 = *.

(4.) Deduce from the results of (2) and (3) that a recurring continued

fraction whose numerators and denoiuinators are real quantities in general

converges to a finite limit
;
and indicate the nature of the exceptional cases.

(5.) Evaluate 2- r— ^— -— . . . to n terms.

14 2 2 2
(6.) Show that the nth convergent to g— .3

—
.r
—

j— r— . . . , every sub-
o— o ^ o — o — o ^

2
sequent component being

-
, is (2"

-
l)/(2" + 1).

(7.) Show that z ;
— ... to n terms= —vn—=-.*' x + l-x + 1- x"+'-l

(8.) =— —
-, ^

— . . . (h + 1 components)^'l-a + l-o + 2- ^

= l + a + a(a + l)+ . . . +u(a + l) . . . (a + n-l).

(9.) If 0(") = . . . n quotients, then

^ (m + n)
=

{,p (hi) + (n)
- 00 (m) (p (u) }l{l + <p [m] <j> («)} .

(Clausen.)

(10.) Show that

A'(0, Qj, 03, . . ., «„) =£ (oj, . . ., a„);

K(. . . a,b,c,0,e,/,g, . . .)
= K{. . . a,b,c + e,f,g, . . .);

K{. . . a, b, c, 0, 0,0, e,f,g, . . .)
= K{. . . a, b, c + e,f,g, . . .);

A'(. . . a, 6, c, 0, 0, e, /, . . .)
= K{. . . a, b, c, e, f, . . .).

(Muir, Determinants, p. 159.)

(II.) Show that the number of terms in a continuant of the nth order is

I4.r„ n, (»-2)(»-3)
,

(K-3)(»-4)(«-5)
i + in-ij-t- 21

+
gi

T. . . .

(Sylvester.)

(12.) Ifp„=ir(
'^ »••'

"), show that there exists a relation of

the form

^Pn^ + •«i>„-i'+ Cp„_,' + Di)„_,«=0,

where A, B, C, D are integral functions of a„, b„, o„_i, 6„_j.

* This is a particular case of the theorem (due to Euler?) that the

numerically greatest root of x--px + (j
= is p . . . •
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(13.) SliowUiat

jf/ i..(fc.+ a,)6,.{i,+ <.J5... .

•)
=

(t, + a.){6, + oJ(6, + «,) . . .;
\i. <h> "t. "s- • • •/

and afduco the theorem of § 19. (Muir, I.e.)

Taking (<i, b, c, . . ., A) to donoto the continued fraction — ;— —
... J. and [a, b,c /.] or, wbcn no confusion is likely, [a, k], to

denote A' I ~,'~ ''"''", I. prove the following theorems*:—
\a, 0, c */

(11.) If i= (a, b.c e, y), then !/
= («, . . ., c, 5, a, i) ;

xy-(e a)x-(a, . . .,e)y + {e, . . .,a){a <f)=0;

(a,. . .,e){e 6)
=

(< a)(a, . . ., d);

{*-(" «)}{y-(< »)>
=

(<• aYid a)'(e <i)'. ..(«)'.

(15.) (« c)-{/t d) = (« a)(d aj'C- a)'. ..(.!)•.

(16.) [a, b, c, d, f]=l/(a, b, e, d, e)(b, e, d, <•)(<•. d, e)(d, e) (<r).

(17.) Prove the following equivalence theorem :—

(a «,/, a' t'.f, a" «",/". a'" «'",/'")

-
L«T7i V"'

'J "^

[«, «']
-

[a'. «"]
-

la". «'"]
-

[a"'. «'"]/'-
-

[a'", cf-jf

'

118.) (a,f, a',/', a",/", a'"./'",. . .)

_1 I g' aa[[
a'a"

)

~a
[ '"a/a'-a-o'- o'/V-a'-a"- a'/V" - a" - o'" -

' '

"I

*

1 J_ _1
1 1

( 9.) a +
^,^ j^ OT+ c+ m+

'il
1 1

)

2 + 6m -2 + cm- )

(20.) ,/2= l +
^-L^-L...4J7

+
ji^ji^ji^...}.

(21.) (a f, /, rt «, /', o, . . ., e, /", . . . ad oo)

-(«•,.. .,.!,/, ? a,/', <,...,<"./"..• -ftdoo)
= (" <)-(< a).

(32.) Show that the rucccssive constituents a, p, y Kt^,' may bo

omitted from the continued fraction {. . . a,b,a, p,y \, m, i*, c, d, . . .)

without altering its value, provided [fi, . ., n]=il, o==t[y, . . ., fi],

and i>=±[p \]; and construct examples.
• •

(23.) If x=(<>, . . ., e, f, . .
.),

the other root of the quadratic equation

to which this leads is x= (/, e a, . . .}.

(21.) If 6+ ,

— . . . ; ... ... bo one root of a qusdratio

• •

* The notation and the order of idcns used in (14) to (23), as well as

some of the siivcial rcbults, uro duo to Mobius {CrclU'$ Jour., 1830).
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equation, the other is

1 111 111
6 +

*1+ >>m-''m- <hn-i+ <'m-i+
' ' '

a+ a„+
' ' '

a+
' ' ' '

» •

(Stern, Crclle's Jour., 1827.)*
(25.) ir q >p, show that

i_ g -ppq (g -p) pg (q^pf

Pik-P)'
{,q-p)q = 1--f

r-p'

CONVERGENCE OF INFINITE CONTINUED FRACTIONS.

§ 12.] By the v.ilue or limit of an infinite continued fraction

is meant the limit, if any such exist, towards which the con-

vergent pjqn approaches when n is made infinitely great. It

may happen that this limit is finite and definite
;
the fraction is

then said to be convei-gent. It may happen that L p„/qn fluctuates

between a certain number of finite values according to the

integral character of n
; the fraction is then said to oscillate.

Finally, it may happen that L pjQn tends constantly towards
n=aD

+ 00
;

in this case the fraction is said to be divergent.

We have already seen that all simple continued fractions are convergent.

The fraction 1 —
^

— — —— ... is an obvious example of oscillation, its

value being 1, 0, or - oo according as n=3m+ l, 3m + 2, or 3m + 3.

The fraction 1 ;
—

, ,_
-

z
—

z
—

:;

—
. . . diverges to - co

,
for =—

:;

— -—
-i +W5-l+l+l+ 1+1+1 +

. . . converges to -4 + Jv'5> "^ ™*y ^^ easily seen from the expression for

its nth convergent given in § 9.

The last example brings into \ieyi a fact which it is important

to notice, namely, that the divergence of an infinite continued

fraction is sometliing quite different from the divergence of an

infinite series. The divergence of the fraction is, in fact, an

accidental phenomenon, and will in general disappear if we

modify the fraction by omitting a constituent. It is therefore

*
(23) and (24) are generalisations of an older theorem of Galois'. See

Qergonne Ann. d. Math., t. jlii.
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not safe iu general to arguo that a continued fraction does not

diverge because the cuntiuued fraction formed by taking all its

constituents after a certain order converges.

With the exception of simple continued fractions and recur-

ring coLtinucd fractions (whether simple or not), the only cAses

where rules of any generality have been found for testing con-

vergency are continued fractions of the "first" and "second

class." To thefo we .shall confine ourselves iu what follows*.

§ 13.] A continued fraction of the first class cannot be

divergent; and it will be convergent or oscillating if any one qf

the residualfractions x, a:, j-,, . . . converge or oscillate.

The latter part of this proposition is at once obvious from the

equation
/*, /', bn

x,=ai + . • .
—

.

Oj + a, + X,

Again, since (§ 3, Cor. 6) the odd convergents continually

increase and the even convergents continually decrease, wliile any
even convergent is greater than any following odd convergent, it

follows that Lpt„l<hn
= -A and Lp»-^lq^.i = B, where A and li are

two finite quantities, and A-^li. U A -B, the fraction is con-

vergent ;
if .4 >^, it oscillates ; and no other case can arise.

§ 14.] A continued fraction of the first class is convergent if

the series 2«,.,a^ii, be divergent.

We have, since all the quantities involved are positive,

q»
=
anqn-i + buqn-i;

Q»-l
= aH-iqm-i+ bn-iqn-t, qn-i>ci,-\qm-ti

gn-t
=

aM-tqm-3-*- b,.jq^.t, y,-j>o,-57,-s;
• • .•••

?4
=

04(?i + ^45'!. qtXttqs ;

q,
=
a,qt + b,qi , q,> 0,7, ;

qt
=
<hqi-

• Our knowledge of the convcrRcnoo of oontinuod fractiona ii chiefly dae
to SchlOmilcU, Handb. d. Atgebraiichen Analysis (1845) ; Amdt, Disquisitione*

Nonnulla de FraetionibuM Continuis, Sundiffi (18'1.5) ; Scidcl, Untersiu-hungen
Ubfr die Converijou und Divergent drr Kcttenhriiche |HiibilitAtinuiL'<chrift

MfiDchcD, IH40) ; nlHn AhhntuHungen d. .Mnth. Clatte d. K. liayerischen Akad.

d. H'lss., lid. vu. (1855); and Stern, Crtlte'i Jour., xxint. (1H48).
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Hence

qn>{an(>n-l+bn)qn-1,

g'„_l> (a„-ian-3 + ^n-O^n-S,

g'i.-3>(an-5«n-s + bn-i)qn-i,
• • • •

qt>{aia3 + bt)q2,

q%
=

{fh(h + b^qi-
Therefore

qnqn-i>qiq2 (h + (h(h) (*« + a^a*) • U>n + dn-ia^,

and, since q^
=

1, ga
= Oj,

srl^>F:('-^)('*°f)---(-°=if)»
Now, since 2ff„_ia„/ft„ is divergent, n (1 +an-ia„/b„) diverges

to + 00 (chap. XXVI., § 23), therefore Lqnqn-i/b^bj . . . 6n= + <»•

Hence

r ('^ Pm-i \ ^ j^
bjb, . . .bin ^ Q

that is, the continued fraction is convergent.

Cor. 1. Tkefraction in question is convergent i/La„-ia„/bn>0.

Cor. 2. Also i/La„/bn>0, and 2a„ be divergent.

Cor. 3. Also ?yia„+i6„/a„_i^„+i> 1.

The above criterion is simple in practice ;
but it is not

complete, inasmuch as it is not proved that oscillation follows

if 2a„_ia„/i„ be convergent. The theorem of next paragraph

supplies this defect.

§ 15.] 1/ a continued fraction of the first class be reduced to

the form ,111 1 /,x

dt+ d3+ di+ dn +
so that

di = ai.
d,-j^,

cfa-
^^

, *~bA' '"
J Cinbn-\"n~t • • • /^k
"" = bb o

^^^'

then it is convergent if at least one oftlie series

ds + di + d^ + . . . (6)

d^ + dt + dt+ . . . (7)

be divergent, oscillating if both tJtese series be convergent.
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This proposition depends on the following inequalities be-

tween the q'& and d'a of the fraction (4) :
—

0<7.<(l+rf.)(l+rf,). . .(l+<^,.) (8);

q„>d^^d^+ . . . +rf» (9);

<?»-.>! (10).

These follow at once from Enler's law for the formation of

the terms in q^, wliich, in the present case, runs as follows :
—

Writo duwu rfjrf, . . . dn and all the terms that can be formed

therefrom by omitting any number of pairs of consecutive d'a.

We thus see that y» contains fewer terms than the product

(1 + d,) (1 + (/,) . . . (1 + dn) ; and, since the terms are all positive,

(8) follows. Again, in forming the terms of the Ist degree

in q„, we can only have letters that stand in odd phices in the

succession rf,*/,^, . d.„; hence (9); aud (10) is obvious from a

similar consideration.

To apply this to our present purpose, we observe that, since

the numerators are all equal to 1, we have

If we suppose rf, 4= 0, neither q^ nor q^-i can vanish. Hence,

if both Lqm and Lq»-^ be finite, the fraction will oscillate, and

if one of them be infinite it will converge.

Now, if both the series (6) and (7) converge, the series

rf, + rf, + (/« + . . . + d, will converge ;
and the product on the

right of (8) will be finite when n = oc . In tliis ca.se, therefore,

both q^ and qn-\ will be finite ;
and the fraction (4) will

oscillate.

If the series rfj + </, + </, + . . . diverge, then by (9) Z^», » ao,

and the fraction (4) will converge.

By the same reasoning, if the series dj + d,-*-d,+ . . . diverge,

then the fraction .11 1

^
</,+ </,+ d,+

will converge ;
and consequently the fraction (4) will converge.
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Remarh—We might deduce the criterion of last paragraph
from the above. For we have

did,i
=

Cha-ijbi, d.id3
=
aM^lbi, ••^ d„-id^ = a^^iajbn.

Now, if the series 2(^„ coBvefgeTthe series formed by adding

together the products of eVery possible pair of its terms must,

by chap, xxx., § 2, converge : a fortiwi, tlie series l,dn-idn, that

is, ^a„-ia„/b„, must converge. Hence, if this last series diverge,

'S.dn cannot converge. 2c?„ must tliercfore diverge, since it cannot

oscillate, aU its terms being positive. Therefore either (6) or (7)

must diverge, that is to say, the fraction (4) must converge.

Example 1. Coasider the fraction

^•2+2+ 2+
• • • •

_ 2(2n-l)'(2n-3)''. . . 3M»
Here a^n+i-

(2„)» (2n
-

2)« . . . 4= . 2»
*

It may be shown, by the third criterion of chap, xxvi., § G, Cor. 5, that

the series ^d.^,^^ is divergent. Or we may use Stirling's Theorem. Thns,
when n is very great, we have very nearly

d„.+, = 2(2nip/2'" (»!)*,

= 2 [{V(27r2n) {2n/eP'}/{2=» (2^1.) («/«)=»}]',

= 2/7rn.

The convergence of ^d^n-n '^ therefore comparable with that of 21/h, which

is divergent.

Hence the continued fraction in question convergea.

Example 2.

a+ ...
a+ a+ a+

oscillates or converges according as x>l or >1.

Example 3.

12 3

2T3T4T--- •

Here La„_,aJ6„=L(n-l)n/(n + l)
= co,

therefore the fraction is convergent.

§ 16.] There is no comprehensive criterion for the con-

vergence of fractions of the second class ;
but the following

theorem embraces a large number of important cases :
—

If an infinite continuedfraction of the second class of theform

jjT^A-A ...A..,. (1)
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be suck that

a^Zhn^X (2)

for all valufis o/n, it converges to a finite limit F not greater than

unity.

If the sign > occur at least once among the conditions (2), then

F<1.

If the sign
= abne occur, then F=l- 1/6', where

S=l + bt + btb, + bihbi + . . . + bjb, ... 6, + ... ad co (A),

so that F= or <l according as the series in (A) is divergent or

convergent.

These results follow from the following characteristic pro-

perties of the restricted fraction (1) :
—

Pn-Pn-i S:btb,. . .b, (3);

;), ^bi + bA + b-Al^t + . . . + b-A . .b, (4) ;

qn
-

g.-i S bjbj .../>. (5) ;

q^S.! +b3 + bA+ • + f>A (>» (6) ;

qn -Pn S qn-l
-
Pn-1 S • • . ^ ?. "i^a S 1 (7).

To prove (3) we observe that

Pn -Pn-l = (a«
-

i)Pn-l
-

bnPn-J.

Hence, since ;>„, q^ are positive and increase with n (§ 2,

Cor. 1),

Pn
-
Pn-l S bn (pn-l

-
Pn-i),

Pn-l -Pn-i 2 t.-i (Pn-%-Pn-t),

acc. as a. £ 6. -)- 1 ;

ace. as a,-, S 6,., + 1 ;

p,
—
p2 = bA- acc. as a, = 6, + 1.

Tlicrcfore/?, -^,-1 ^bA • • • l>n, where the upper sign must

be taken if it occur auywliere among the conditions to the riglit

of the vertical line.

To prove (4), we have merely to put in (3) «— 1, « -
2,

. . ., 3 in place of n, adjoin the equation Pt = bt, and add all

the resulting equations.

(5) and (G) are estahli.siicd in preci.sely the same way.

It follows, of course, that p^ and ^„ both remain finite or

both become infinite when » = oo
, according as the series in (6)

is convergent or divergent.
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To prove (7), we have

?« -lK=rin{qn-l -Pn-l)
"

^n (qn-i-p„-i),

= (in-l -Pn-l) + b„ {(qn-l
-
Pn-l)

"
(<7n-s

-
Pn-2)],

according as a„^b„+l, provided q„-i-p„.i is positive.

This shows that, if any one of the relations in (7) hold, the

next in order follows. Now q2-p2 = a2-bo = l, according as

a.3 ^L_ + l; and q3-p% = (^(h - ^3
- ha^ = {(h

-
^a) (^3 + 1)

-
&s

S (a.2
-

bi) + 63 (eh
-

62
-

1), according as a^~bi+ 1 ; hence the

theorem. It is important to observe that the first > that occurs

among the relations «f.2 = ^2+l, a3=bs+l, . . . determines the

first > that occurs among the relations (7) : all the signs to the

right of this one will be =
,
all those to the left >,

The convergency theorems for the restricted fraction of the

second class follow at once. In the first place, as we have

already seen in § 3, the convergents to (1) form an increasing

series of positive quantities, so that there can be no oscillation.

Also, since g-n-jOn S 1, it follows that

Pn/q„ £ 1 - l/g-n (8).

Therefore, since <7„>1, it follows that i^ converges to a finite

limit >1.
If the sign > occur at least once among the relations (2),

the sign < must be taken in (8); that is, F<1.
If the sign

= occur throughout, we have

LpJq„ = l-L\lq„=\-llS,

where S is the sum to infinity of the series (6). Hence, if (6)

converge, F< 1
;

if it diverge, F= 1.

If we dismiss from our minds the question of convergency,

and therefore remove the restriction that b^, b, 6„ be

positive, but still put a„ = 6„ + l, a„_, = 6„_i+l,. . ., 03 = 63+1,

05 = 62+ 1, we get by the above reasoning

Wg„=l-l/gr„ (8');

q„=l+bi + bibs + . . . + bibs ... 6, (G').
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Now (8') gives us ?,= 1/(1 -/>«/?»). Hence the following

remarkable transformation theorem :
—

Cor. Ifh ib^he any quantities whatsoever, then

1 + i, + 6,6, * . . .-^btb,. . .bn

_ 1 fc. b,

l-6j + l-6,+ l

from which, putting «i = i,, «, = ia6, «, = i,6, . . . 6,+i,

we retidily derive

1 + «1 + tta + . . . ^ «n

_ 1^ U, H?_ "' "' <<:l«4

~1- 1 + ttl- «! + «,- Ml + «J- «> + "«-
' *

«.-» "»-! «»-»»»
/JQ\

an important theorem of Euler's to which we shall return

presently.

INCOMMENSURABILITY OF CERTAIN CONTINUED FRACTIONS.

§ 17.] Tf a,, a„ . . ., a„ b,, b, b, be all positive

integers, then

I. The infinite continued/raction

hi b, bn f.K

0^+ a,+ o, +

converges to an incommensurable limit provided that after soms

finite value of n the condition o,-<6, be always satisfied.

II. The infinite continuedfraction

b, b, bn ,n\
•—

• • •
'—

• • • V*/
Ot- Oj- a, -

converges to an incommensurable limit provided that (ifler tome

finite wtlue of n the condition a, S i, + 1 6« always satined, where

the sign > need not always occur but must occur infinitely often'.

To prove II., let us first suppose that the condition

o. £6. + 1 holds from the first Then (2) converges, by § 16,

* TbfM tbGorcma are dae to Lugendni, iUmenU dt QiomStrit, DOto it.
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to a positive value < 1. Let us assume that it converges to a

commensurable limit, say X/Xi, where Xi, X„ are positive integers,

and Ai>.'V2-

Let now

Pi
=

. • .

03- a4-

Since the sign > must occur among the conditions 03 S ^3 + 1,

Ui^bi+l, . . ., P3 must be a positive quantity < 1. Now, by
our hj'pothesis,

X,/Xi = bj{ai
-

ft),

therefore P3
=

{(f2\t- bi^i)/^,
= yA„, say,

where X3 = ai\2-h,Xi is an integer, whicli must be positive and

<A3, since pi is positive and < 1.

Next, put
k I.

Pt
= ... .

at- tti
—

Then, exactly as before, we can show that p^
=

Xt/X, , where A4 is a

positive integer <A3.

Since the sign > occurs infinitely often among the conditions

«« S 6n+ 1, this process can be repeated as often as we please.

The hypothesis that the fraction (2) is commensurable therefore

requires the existence of an infinite number of positive integers

^i> h, A3, Aj, . . . such that Ai>A2>A3>A4> . . .
;
but this is

impossible, since K is finite. Hence (2) is incommensurable.

Next suppose the condition a„S6„ + l to hold after 11 = m.

Then, by what has been shown,

y —— • • •

is incommensurable.

Now we have

bi 63 bmF=

consequently i' = ) -"".-^ , ,^ ^
{am-y)qm-i-bmqm-a

Qm
-
yim-l

(3),

33
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where pJin, Pm-J^m-i are the ultimate aiid penultimate cou-

vergenta of

a,-<h-'
'

««

It result* from (3) that

y (F'Jm- 1
-
p»-i)

=
i'V-

-Pm (4).

Now Fq^-i-p^-i and Fq„-p^ cannot both be rero, for

that would involve the equality pjq^=p^.jq^.i, which is

inconsistent with the equation (2) of § 3. Hence, if F were

commensurable, (4) would give a commensurable value for the

incommensurable y. F must therefore be incommensurable.

The proof of I. is exactly similar, for the condition a^-^b,

secures that each of the residual fractions of (1) shall be positive

and less than unity.

These two theorems do not by any means include all cases of

incommensurability in convergent infinite continued fractions.

1' 3' 5'
Brouncker's fraction, for example, 1 + -— —— -— ....^ 2 + 2+ 2 +

converges to the incommensurable value 4/n-, and yet violates the

condition of Proposition I.

CONVERSION OF SERIES AND CONTINUED PRODUCTS INTO

COXTINDED FRACTIONS.

§ 18.] To convert the series

u, + «,+ ...+ u, + .. .

tnto an "equivalent
"
continued fraction of theform

o,- a,- a,-

A continued fraction is said to be "equivalent" to a series

vhen the nth convergent of the former is equal to the sum of %

terms of the latter for all values of n.

Since the couvergents merely are given, we may leave the

denominators ji, q^, • , '/• arbitrary (we take q,= I, a*

usual).
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For the fraction (1) we have

Pn/qn -Pn-l/qn-l = ^1^2 • • • bjQn-iqn (2) ;

qi
= (h, q2

= (hqi-h, ., qn = a„q„.i-bnqn-i (3);

Since
Pi/qi

=
bi/qi

Pnlqn = Ml + Kn + . . , + U„

we get from (2) and (5)

Un = bih . . . l>,Jqn-iqn,

«n-l = ^l*2- • K-llqn-iqn-l,

(4).

(5).

(6).

th = hhlqiqi,

From (6), by using successive pairs of the equations, we get

bi
=
qilh, h =

q2lk/Ui, Z'3
=

2'3«3/g'l«2, . • ., bn = qnU„/q„-^Un-l

Combining (3) with (7), we also find

01 = 21, a-i
=

q'i{ih + u.i)lq,ih, a3 = qs{ik+U3)/q2n^, . . .,

a» = g'a(««-l +«»)/2'»-l«n-l (8).

Hence

Sn=Ui + n^+ . . . + tu,

_g'i«i q-.ua/ih qjihlqiih

qi- g'aK + MsVa'iWi- gaith + uayquh-'

(9).
qn{iin-l+ U„)/qn-lU„.i

It will be observed that the q's may be cleared out of the

fraction. Thus, for example, we get rid of ^i by multiplying

the first and second numerators and the first denominator by

1/qi, and the second and third numerators and the second

denominator by q^ ;
and so on. We thus get for (S„ the

equivalent fraction

" 1- {th + «2)/Mi
-

("2 + «3)/«2-
' *

(«»-l + ««)/«n-l

which may be thrown into the form

Ml U, ttl«, Mn-jMn

(10),

s„^
1 - Ui + U^- t/j + !/3 I'n-l + Un

(11).

33—2
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Thi.s formula is practically tho same as the ono obtained

incidentally in § 16
;

it was first given, along with many applica-

tions, by Euli-r in his memoir,
" De Transforui.itione Serierum

in Fractionea Continuas," Opuscula Analytka, t. II. (1785).

It is important to remark that, since the continued fraction

(10) or (11) is equivalent to the series, it must converge if tho

scries converges, and that to the same limit.

By giving to «,, u.,, . . ., tu various values, and modifying

the fraction by introducing multipliers as above, we can deduce

a variety of results, among which the following are specially

useful :
—

(12);

ViX + V-iX' + . . . + VnOf
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Also, if »i> -
1,

2m= 1 +^ iL"*
-

1) 2(m-2) 3 (m-3)
1- nt + 1- ?» + l- m+1- ' ' ''

and, if m > 0,

_ ^ l(m-l) 2 (m - 2
) 3 (m - 3

)"
1+ 3-m+ 5-m+ 7-7n+

' ' ' '

§ 19.] T//e analysis of last jyaragraph enables us to construct

a continued fraction, say of theform (1), whose first n convergents

shall he any given quaiititiesf^f, . . .,fn respectively.

All we have to do is to replace Ui, «.,, . . ., «„ in (10) or (11)

by/i,/2-/i, . . .,/„-/«-! respectively.

The required fraction is, therefore,

/. A-AAifs-f) iA-A)(f-f)
1— fa~ J3~fi~ fi~/i~

{.In—2 ~Jn-3/ \Jn ~Jn-V

Jn Jn—1

Cor. Hence we can express any continued product, say

d-id^ . . . dn

e^e-i. . . Cn

as a continued fraction.

We have merely to "gnt fi = d,/ei, A^dido/eie^, . . ., effect

some obvious reductions, and we find

p di eiidi-e^) d.^.i{d3-e3) d^ddi -
e^{di-et) d^et {di-ei){di-ei)

"~ei- di— d^3 — e^3— d^i — esfit— did^-e^t —

dn-\en-l{dn-'i-en-i){dn-e^ /,/.\«
. . . J

—
J (16) .

§ 20.] Jnstead of requiring that the continued fraction be

equivalent to the series, or to the function f{n, x), which it is to

represent, we may require that the sum to infinity of the series

(or/(oo , x)) be reduced to a fraction of a given form, say

1_ I — I -
' ' '

I -
' ' ' V '»

where /3o, /3, /^n are all independent of .r.

There is a process, originally given in Lambert's Beytrdge

• A similar formula, given by Stem, CrclU'i Jour., x., p. 2C7 (1833), may
be obtained by a slight modification of the above process.
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(til. II., p. 75), for reducing to the form (1) the quotient qf two

conrergmt series, my F{\, a-)/F{0, jr).

We suppose that the absohitc terms of F(l, a:) and F{0, t)

do not vanish, and, for .simplicity, we take each of these tcnn.s to

be 1. Then we can establish an equation of the form

F(l,x)-F{0,x) = l3,:rF{2,x) (2,),

whore F(2, x) is a convergent series whose absolute term we

suppose again not to vanish, and y3, is the coefficient of x in

/''(I, a:)-F{0, x), which also is supposed not to vanish*.

In like manner we establish the series of equationa

^(2, a;)
- F{1, x) = P,xF(3. x) (2,),

F(3, x)
- F{2, x)=li,xF{i, x) (2,),

F{n + l,x)- F(n, x)
= Pn*,xF(n + 2, x) (2,+,).

Let us, in the meantime, suppose that none of the functions

/'' becomes for the value of x in question. We may then put

G{n,x) = F{n+l,x)/F{n,x) (3),

where G (n, x) is a definite function of n and x which becomes

neither nor oo for the value of x in question.

The equation (2,+,) may now be written

G(n,x)-\^ Pn^.xG (n +l,x)G (n, x).

that is, G(»i,a:)=l/{l-/3.„a:G(n+l, .r)} (4).

If in (4) we put successively n = 0, n = 1, . . ., we derive

the following :
—

^^"''^'"f^ r^-
•

•l-(l-l/G(n,a:))
^*''

^

G{n,x)~ I-
' ' '

l-{l-l/G{n + tn,w))
^''

* Tlic TaniR)iiDg of one or more of tlicso coeOioioiiU woulil lead to a mora

general form than (1), namely,

1- 1^
•

Oeneral cxpronaiona have been foond {orfi,,ft by Heilcrmann, CrtlU'i

Jour. (1846), and by Muir, Proc. L.il.S. (1U7G).
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In order that we may be able to assert the equality

(^ (0, .^)
=

j-^ Y3 . . .

'^
_j ... ad 00 (7),

it is necessary, and it is sufficient, that it be possible by making
m sufficiently great to cause 1 - 1/(? (w, x) to differ from the mt\\

convergent of the residual fraction

1 - 1 _
• • •

1 _
• • • yy)

by as little as we please.

Let us denote the convergents of (8) hy Pijqi, p^jqi

Pm/qm- Then, from (6), we see that

{1-1/G(n, x)}-pjq„

^Pm-Pm-l{l
-
1/G(7l + m, X)} Pm

qm-qm-i{l-l/G{n + m,a;)) q^'

_ {1
-
1/g {n + m, X)] (Pmlqm-Pm-Jqm-i)

qm/qm-i -{1-1/G {n + m, «)}

_ {l-l/G{n
+ m, x)} P„+, ff„+a . /?„+„.a;'" .

qm[qv,-qm-i{l-l/G{n + m,x)]]
^

The neccsmry and sufficient condition for the subsistence of (7)

is, there/ore, that the right-hand side of (9), or of (10), shall

vanish when m = <a.

Concerning these conditions it should be remarked that while

either of them secures the convergence of the infinite continued

fraction in (7), the convergence of the fraction is not necessarily

by itself a sufficient condition for the subsistence of the equation

(7).

In what precedes we have supposed that none of the functions

F{n, x) vanish. This restriction may be partly removed. It is

obvious that no two consecutive F's can vanish, for then (by

the equations (2)) all the preceding F's would vanish, and

(?(0, x) would not be determinate. Suppose, however, that

F{r+\, x')
=

Q, so that G{r, x')
= 0; then (5) furnishes for

G (0, x') the closed continued fraction
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lu order that tliis may be identical with the value given by

(7), it is necessary and sufiicient that G(r+1, x), as given by

(C), should bocome ao
,
that is, it is necessary and sufficient that

the residual fraction

Pli^^ . . . a.l 00

should convcr^jo to 1
;

but this condition will in general be

satisfied if the relation (4) subsist for all values of w, and the

condition (9) be also satisfied when n-^r-Vi.

% 21.] As an example of the process of last paragraph, let

Fill, x) = l + -r, X
+ „-,-7—

—w ,\ + • • • (' !)•^ '

l!(y + n) 2!(y + n){y + n+l)
^ '

Then

Fin . 1, .)
-
Fin, .) = -

(^,„)J,„,,)
F^n . 2. .) (2') ;

and

G{n,x)=\l[\^- ^ -G(f. + 1. a:)| (4'),
I y (7 + n)(y + H+ 1)

'

')

where G{n, x) = F{n+ 1, x)lF(», x).

Hence

rtn -r^-
' ^/Y(y+l)^/(y+0 (Y-<-2) a-/(y + n-l)(y + n)

0(V,x)-^^ 1+
'

1+
• •

1-{1-1/G(w, J-)}

(5');

and

1 x/{yi-ii)(y + n+l)
^

G(n,x)~ 1 +

a-/(y + n + m-\){y + n + m) ...

l-{l-l/G(n + m, a-)}
^^'•

Tlie series (11) will be convergent for all finite values of x,

and for all positive integral values of n, including 0, provided y
be not or a negative integer. Hence we have obviously, for

all finite values of x, LG (n + tn, jr)
= 1 when m = oo .

Let us suppose that x ia positive. Then the residual con-

titiued fructiuu
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xl{y + n) (y + n + 1) x/{y + n + l)(y + w + 2)

1+ 1 +

a:/{y + n + m-l){y + n + m) , ,.

is (by the criterion of § 14) e^ndently coavergent. Hence the

factor Pmlqm-Pm~-ilqm-i in the expression (9) vanishes when

«»=oo.

Also, since the ^''s continually increase, Lq„lq„--i -^ 1.

Therefore we may continue the fraction to infinity when x is

positive.

Nest suppose x negative, =-y say ; we then have

r(n ,.\
^ y/y(y + i) My + i)(y + 2)

^yj>-y)=Y^
—^ Yz

• • •

y/(y + «-l)(y + ») , „.
.

l-{\-llG{n,-y)\
^^^'

and

1 _ ^ _ y/(y + «)(y + « + i )

G{n.-y) 1-

y/(y + n + m.
-

1) {y + n + m) . „.

~l-{l-\IG{n + m,y)}
^^ ^

The fraction (8) in this case is "equivalent" to

_J_ f_^ E__
. . .

V
. . .

\
(8"),

y + nly + M+l-y + « + 2-'''y + w + OT— J

which is obviously convergent (by § 16), if y have any finite

value whatever. Hence the factor pjqm -pm-i/qm-i belonging

to the equivalent fraction (8) must vanish.

Again, by § 2 (6),

<?m-l

y/{y + n + m -
l){y + n + m) y,'{y + n + m-2){y + n + m-l)

-1
i- 1-

y/(y + »)(y + w + l)...
J

=!__!_ / y y _.^(i2).
y + 7i + 7n [y + n+ m-l- y + n + m-2- y + n)
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If only » be taken large enough, the fraction inside the

bnickcta satisfies the condition of § 16 throughout: its value is

therefore < 1, however great m may be ;
and it follows from (12)

that Lqjq^.i = 1 when m = oo .

Since LG (n + m,
—

y) = 1 when ot = x
, it follows that all the

requisite conditions are fulfilled in the present case also.

We have thus shown that

F(h^^ ± xly(y+l) xl(y+l){y + 2)

J>\0, x) 1+ 1 + 1 +
• •

whence, by an obvious reduction,

F(l, x) y_ X X X

F{0, a;)~y + y+l + y + 2 +
' ' '

y + n+'
'

a result which holds for all finite real values of x, except such

as render i^(0, x) zero*, and for all values of y, except zero

aud negative integers.

If we put ±x'li in place of x in the functions F(0, x) aud

^(1, x), and at the same time put y = i, we get

/'(O,
-

ar'/4)
= cos a-, /'( 1

,

-
a:»/4)

= sin xjx ;

F(<d, a^ji)
= cosh x, F{1, ar'/4)

= sinh x/x.

Cor. 1. Hence, /rom (14), toe get at once

OC it? 3^ St

Cor. 2. Thf numerical constants tt and n' are incomnwnsurahU.

For, if TT were commensurable, ir/4 would be commeusunilile,

Bay =X//i. Hence we should have, by (15),

* In a seDM it will hold even then, for the fraction

7 1^^7 + 1+ 7 + 3+' -f
«'hioh represents F(0, x)IF(\., x) will conTer|;e to 0. Of oonme, two eonseou-

tiva funolioDi F(n, x), /'(ii + l, x) caoDOt Taniah for the same Taluc of x\
otbeiwiM ws aboulJ have >' (ao , x) = 0, which U impossible, sinos f (ae , x) = 1.
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>/^ X7^' \7/.»
1 =

1- 3- 5-
\ \» X'

(17).
/i- 3/i- 5/*

— ' '

*(2?i+l)/A-'

Now, since X and ^i are fixed finite integers, if we take n large

enough we shall have (2?j + l)/x>X*+ 1. Hence, by § 17, the

fraction in (17) converges to an incommensurable limit, which

is impossible since 1 is commensurable.

That TT is also incommensurable follows in like manner very

readily from (15).

By using (16) in a similar way we can easily show that

Cor. 3. Any commensurable pmcer of e is incommensurahh* .

§ 22.] The development of last paragraph is in reality a

particular case of the following general theorem regarding the

hypergeometric series, given by Gauss in his classical memoir

on that subject (1812) t :
—

K
T7/ o X , «/8 a(a + l)/3(/J+l) „

j'(a,/3,y.^)=i +
^^H- \,,,;^;^i)

•^-+--..

and
G (a, /3, y, x) = F{a, /? + 1, y + 1, x)/F{a, p, y, x),

then

^^"'^'>'''^^~1- 1- 1-'
•

•ljG{a. + n,p + n,y + 2n)

(18),

_ a(y-i3) „ _ (/?+l)(y+l-°)

^•-7(7^'
''^-

(y+l)(y + 2)
'

_ _ (a + l)(y + l-)S) „ _ (/? + 2)(y + 2-a)
'*»-

(y+2)(y + 3)
•

•

'''

(7 + 3)(y + 4)
'

(a + w-l)(y + w-l-;3) „ (/? + w)(y + n-a)
^*'-'~

(y + 2»-2)(y + 2w-l)
' '^'"

(y + 2«- 1) (y + 2«)"

• The reeulta of this paragraph were first given by Lambert in a memoir

which is very important in the history of continued fractions (IlUt. d. I'Ac.

Roy. d. Berlin, 17(il). The arrangement of the analysis is taken from Legendre

(I.e.), the general idea of the diBCUssion of the convergence of the fraction

from Schlomilch. t Werke, Bd. in., p. 134.
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After what has been done, the proof of this theorem should

present no difficulty.

Th>'
'

Q of the question of convergence is also com-

parativ when x is p<jsitive ; but presents some difficulty

in the case where x is negative. In fact, we are not aware that

any complite elementary discussion of this latter point has been

given.

Cor. If in (18) we pat /3
= 0, and write y - 1 in place qf y,

wa gat the tran^ormation

. tt_ . a(a-H) _, . a(a-f-l)(«-t-2) _,,

y y(r + i) r(y + i)(r + 2)

where
1- 1- 1-

' (19).

a „ _ y-'
y r(y*i)

f,_ ('^i)y o 2(r_+i-a)
'^

(y+i)(y + 2)' '^•'(yVsHT^S)'

^-1= (g-m- l)(y -»• n - 2) ^ _ w (y -i- » - 1 - a)

(y + 2B-3)(y + 2» -2)'
'^

(y + 2«-2)(y + 2(.-l)-

Gauss's Theorem is a very general one
;
for the h}'pergeometric

series includes nearly all the ordinary elementary series.

Thus, fur example, we have, as the reader may easily verify,

(i+xr = /'(-in,AA-*);

log(l+x) = xf(l, 1. 2, -x);

sinh X = * Z. L F{k, k\ \ , x»/4tfc') ;
*—• k —«

sin X = X I L F(k, i,i,- x'lWc) ;

8in-'x = xF(i.i,f,x^;

= xV(l-x»)/'(l. l,i,x^;

tan->» = xf(J, I. |,-x»).
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Exercises XXXIV.

Exjunine the conTergencc of the following :—
111 I' 2^ 8»

1' \*.2> 2».3^ ,. , , 1 1.2 2.3

<5> i+iT 1- iT
• • • • <^' ;rr ^.Tf-

—
n-+"

• • •

1* 2* 3* „, , 1.3 3.5 5.7
(7.) i+- ... . (8. 1 + rr T- TT • • • •
' ' Z+I+X+ 1+1+ 1 +

,„, 2 1».3 2».4 3>.5 ,,„, 2 2» 2» 2«

<^) iTXTTTTT--- • (i«) mTiTiT--- •

6, 6,
(11.1 Show that the fraction of the second clasa, o,

—
. . .

, con-
a,- a,-

Tergea to a positive limit if, for all Taloea of n,

(4/6,6, + a,/6,i>,+ . . .+a»+i/*.i'»+i>-l.

(Stem, Gdtt, Naeh., 1845.)

fl2.) Showthat -?1- -^ -^'-. . .,where<i.>0,coDTerge8ifa,^,>a, + l.

<h- "i- <H-

(13.) Show that the series of fractions (p,-p,-i)/(?,-?»-i) forms a

deteending series of coDTcrgents to the infinite continacd fraction of the

second class, provided ». ^ {'»+ !< and the sign > occurs at least once among

these conditions.

(11.) Show that

Z X X

i + 1- x + 1- x + 1-
' '

where z>0, is equal to x or 1 according as x< or < 1.

12 3
(15.) Evaluate o^ 3Z iT ' * • "

I M + l in + 2
and

where m is any integer.

1 + 1- 1+2- m + 3-

Show that

<^®> ^ +
6+6TtTT]'"-

• •=^'^6~r+6T2^ a + 6 + 4-
••' '

X z* 2.3r» 4. ox'

(17.) ""'=1:^: 2.3-x'+ 4.S-x»+ 6.7-x»+
' * " '

X I'x 2»x S'x
(18.) iog(i+x)=,- ^-^ 3^:^^ i^:^ ....

Eiercises (5) to (10) are taken from Stem's memoir, CrelU't Jour., xxxtiu
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„„, , 1« 2» 3>

(19) 1 =3-5-7-- •• •

(20.) log^^'
' ''' ''^ «''

I

(2n -•!)'(»' -1)»

*("»' + » + ")-

,„. . 1 X s 2x 3x
(22.) e'=j- j-^^^ ^;^;^ g^j:^ ^^j:^.

. . .

Evalaate the following :—
,„„, ,112 3 4 _.,„,. 1 2 3 4 -
(23) 1 + 1-3-43 5^6-- •• •-* (^J rf2-T3-;:4-:f-

"

*-<

,25) J-iL^il -Log Z ,26)-?-^-?-^ =^-^
(25) f^i— 1+1+-

• • • "^e (-'^•) 2+3+4+6+ ••-
-e-^

(27.) Show that tanz and tanhx arc incommonsarable if z be commcn-

BQrable.

Establieh the following transformations :
—

m) ^-± JL J. JL JL J- ± ±. . .*'"'' '^"l- 1+ 2- 3+ 2-5+2-7+
,„„,,„ ,

I I'x I'x 2»x 2-^1 3>x 3'x
(29.) log(l + x) =j^

______... .

„« , . .
' 1'*' 2'x' 3'x>

(30.) tan-x =
^-3^^ sT 7T

- " ' '

I l'x> 2'x« 3»i»

tanh-'x=j- ^_— —
. . . .

ntunx (n>-l*)tan*x (n>-2^tan>x
(31.) tan nx = -y—

*

gi—
— *- ^~ .

(Eoler, Hem, Acad. Pet., 1813.)

Bin(n + l)i - 1 1

(32.) -. ^=2C08X-s 5
— —

• • ;> ' suinx 2oosx- 2ooax-

where there ore n partial quotients.

(33.) If

(o, ft, y, ')

_j,(g'-l)(7''-l)j|
(?'-l)(g""'-»)(/-l)(/^'-') ^,

(J
-

1) (,»
-

1) (8
-

1) («»- 1) (,»
-

1) (,»+'
-

1)

then

»(a./g + l. 7-Kl. *) _ J_ /?if ftf

^(a,p,y.x) -I- 1- 1-
•• ••

I



§ 22 EXERCISE!- XXXIV 527

where

_ (g-+^-l)(g>+-^-l) B4r

(Heine, Crelle's Jour., mii.)

(34.) Show that

„_( _i,_^^ 3' 5'
\"

l" "^2(a-l)+ 2(a-l)+ 2(a-l)+
•

•)

( _1 3» 5' 1

"
l"''" """2(0+1)+ 2(a + l)+ 2(a + l)+

'

f'

WaUis (see Muir, Fhil. Mag., 1877).



CHAPTER XXXV.

General Properties of Integral Niunbc -.

NUMBEKS WHICH ARE CONGRUENT WITH RESPECT TO

A GIVEN MODULUS.

§ 1.] Jfmbe any positive integer whatever, which we call the

modulus, ttco integers, M and N, which leave the same remainder

when divided by m are said to be congruent with respect to the

modulus TO*.

In other words, if M=pm + r, and N=qm + r, M and N are

said to be congruent with respect to the moduhis m. Gausa,
who made the notion of congruence the fundamental idea in his

famous Disquisitiones Arithmeticw, uses for this relation between
M and N the symbolism

M=N{moAm);
or simply M s N,
if there is no dnultt about the raoduhis, and no danger of con-

fusion with the use of h to denote algebraical identity.

Cor 1. If two numlters M and N be congruent with respect
to modulus m, then they differ by a multiple of m; so that «w
have, say, M=N+pm.

Cor. 2. If either M or N have any factor in common with m,
then the other must also have that factor; and if either be prime
to m, the other must be prime to m also.

In the present chapter we sliall use oidy the most elementary

conseiiucuces of the theory of congruent numbers.

* To »avo repetition, let it bo aodprntocHl, when nothing else in indicated,
tliat Ihroughuut thin chapter every Idler BtimcU for a posiiliTe or ncgatira
integer.
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Our object here is simply to give the reader a conspectus
of the more elementary methods of demonstration wliich are

employed in establishing properties of integral numbers; and to

illustrate these methods by proving some of the elementary
theorems which he is likely to meet with in an ordinary course

of mathematical study. Further developments must be sought
for in special treatises on the theory of numbers.

§ 2.] If we select any
"
modulus

"
m, then it follows, from

chap, ni., § 11, that all integral numbers can he arranged into

successive groups of m, such that each of the integers in one of these

groups is congruent with one and with one only of the set

0, 1, 2, . . ., (7«-2), (m-1) (A),

or, if we choose, of the set

0, 1, 2, . . ., -2, -1 (B),

where there are m integers.

Another way of expressing tlie above is to say that, if we
take any m consecutive integers whatever, and divide them by m,
their remainders taken in order will be a cyclical permutation of
the integers (A).

Example. If we take m=5, the set (A) is 0, 1, 2, 3, 4. Now if we take

the 5 consecutive integers 63, 64, 65, 66, 67 and divide them by 5, the

remainders are 3, 4, 0, 1, 2, which is a cyclical permutation of 0, 1, 2, 3, 4.

§ 3.] A large number of curious properties of integral

numbers can be directly deduced from the simple principle of

classification just explained.

Example 1. Every integer which is a perfect cube is of the form 7p, or

7j)
± 1. Bearing in mind that every integer N has one or other of the forma

7m, 7m±l, 7m±2, 7m±3,

alsothat (7Hi±rp=(7n!)3i3 (7m)=r + 3(7m))-±i-3,

= (V-m?± 2lm-r+ 3mr-) 7 ± »*,

= Jl/7±r3,

we see that in the four possible cases we have

A-3=(7m)s= (7%3)7;

A'3=(7m±l)»=il/7±1;
^

^.•3= (7m ±2)3,
= iir7±8= (J/±l)7±l;

:js=(7m±3)'=(3/±4)7=r].

c. IT. 34
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In every case, then-fore, Hie cube has one or other of the forma 7p or

7f±I.

Kxam])1c 2. Prove that 8*"+' + 2"+» is divisible by 7 (Wolsteubolme).

Wo liftvo 3»»+' + 2"+'= (7
- 1)"*' + 2"+'.

Now (sec above, Example 1, or below, § 4)

(7
-
4)"+' = 3/7 - 4»»+'.

Ucnce 3'»+' + 2»+'=iV7-4»»+' + 2"+',

= Jlf7-2««(2'»-l).

But a*" - 1 is divisible by 2' - 1 (see chap. v.
, § 17), that is, by 7. Heoce

2»+>(2'»-l) = A'7.

Finally, therefore, S*"** + 2«+'= (J/
-

A') 7,

which proves the theorem.

Example 3. The product of 3 sacccssive integers is always divisible by

1.2.3.

Let the product in question be m (m + 1) (m + 2). Then , cinco m must have

one or other of the three forms, Sin, 3m + 1, 3m- 1, we have the following

cases to consider :
—

3m(.Sm+ l)(3m + 2) (1);

(3m + l)(3m + 2)(3in + 3) (2);

(3m-l)3ni(3m+l) (3).

In (1) the proposition is at once evident ; for 3m is divisible by 8, and

(3m + 1) (3m + 2) by 2. The 6.imo is true in (2).

In ca.sc (3) wo have to show that (3m - 1) m (3m + 1) is divisible by 2.

Now this must be so; because, if m is even, m is divisible by 2 ; and if m be

odd, both 3m -1 and 3m + 1 are even; that is, both 3m -1 and 3in-«-l are

divisible by 2.

In all casc.s, therefore, the theorem holds.

Example 4. To show that the product of p successive integers is alwavi>

divisible by 1 . 2 . 3 . . .p.

Let as suppose that it has been shown, 1st, tliat the product of any p - 1

successive integers whatever is divisible by 1.2. 3. . .p-1; 2nd, that the

product of p successive integers beginning with any integer np to x is divisible

by 1.2.3 . . . p-l.p.
Consider the product of p successive integers beginning with x+1. We

have

(i + l)(x + 2)...(x+p-l)(i+p)
=p(i+l)(x + 2)... (x+p-l)+i(i + l)(x + 2).. .(x+p-1)... (I).

Now, by our first sapposition, (x + 1) (x + 2) . . . (i+p— 1) is divisible by

1.2. . . p-1 ; and, by oar second, z (x + 1) (x + 2) . . . (x +p -
1) is diriaibl*

by 1.2.3 . . .p.

Hence each member on the right of (1) is divisible by 1 . 2 . 8 . . .p.
It follows, therefore, that, if our two suppositious be right, then the pro-

duct of p BUCcrsHivc intogiTS beginning with x + 1 is divisible by 1 . 2 . 3 . . .p.

Dot we have shown in Kxamplc 3 that the product of 3 conHCCUtive integer*

is always divisible by 1.2.3; oud it is sclf-«viJuut that the product of 4 con-
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siicntivc integers boginning with 1 is divisible by 1 . 2 . 3 . 1. It follows, there-

fore, that the product of 4 consecutive integers beginning with 2 is divisible

by 1 . 2 . 3 . 4. Using Example 3 again, and the result just established, we

prove that 4 consecutive integers beginning with 3 is divisible by 1 . 2 . 3 . 4 ;

and thus we finally establish that the product of any 4 consecutive integers

whatever is divisible by 1 . 2 . 3 . 4.

Proceeding in exactly the same way, we next show that our theorem holds

when y= 5
;
and so on. Hence it holds generally.

This demonstration is a good example of " mathematical induction."

Example 5. If a, b, c be three integers such that a' + b-=c', then they are

represented in the most general way possible by the forms

a= \{m''-n'}, b = 2\mn, c= \{m- + n-).

First of all, it is obvious, on account of the relation a- + b-=c^, that, if

any two of the numbers have a common factor X, then that factor must occur

in the other also
;
so that we may write a= \a', b= \b', c = \c', where a', b', c'

are prime to each other, and we have

o'»+6'2=c'» (1).

No two of the three, a', i', c', therefore, can be even ; also both a' and 6'

cannot be odd, for then a" + b'' would be of the form 4n + 2, which is an

impossible form for the number c'-.

It appears, then, that one of the two, a', b', say b' (=2^), must be even, and

that a' and c' must be odd. Hence (c' + a')/2 and (c'
-
a')/2 must be integers ;

and these integers must be prime to each other ; for, if they had a common
factor, it must divide their sum which is c' and their difference which is a';

bnt c' and a' have by hypothesis no common factor.

Now we have from (1)

whence

C-^)K^>^= ^^

(3),

Therefore, since (c' + a')/2 is prime to (c'
-

a')/2, each of these must be a

perfect square ;
so that we must have

p=mn (o),

where m is prime to n.

From (3) and (4), we have, by subtraction and addition,

a'=m'-n', e'= 7n'+n';

and, from (5), i'=2/3= 2mn.

Eetuming, therefore, to oar original case, we most have generally

a= \{m'-n^), 6 = 2Xmn, c= \(m^+ n').

This is the complete analytical solution of the famous Pythagorean

problem—to find a right-angled triangle whose sides shall be commensurable.

34—2
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§ 4] Tlie following theorem may be deduced very readily

from the priiK-ii)le3 of § 2. Let /(j-) stand for />o+/>,x+/)jjr' +

. . . +p,x", where po. Pi, - • , Pn are positive or negative

integers, and a: any positive integer; then, if x be congruent

ifith r with respect to the modulus m, f{x) will be congruent with

f{r) with respect to modulus m.

By the binomial expansion, wc have

(ym + r)"
=

(</w)* + ,C,(?m)-'r+. . . + .C,., (ym) r""' + r",

= M»m + r*;

whore 3/, is some integer, since all the numbers ,(7,, ,Ci, . . .,

nCn-i are, by § 3, Example 4, or by their law of formation (see

chap. IV., § 14) necessarily integers.

Similarly

(qm + r)"""
= M,., m + r""',

• • «

Hence, M x = qm + r,

/{x)-=p,+pir^Pir^ + . . .+|j,r" + (p,il/,+p,3/, + . . .+/),3/,)»».

=/(r) + 3fm.

Hence /(x) is congruent with /{r) with respect to modulus m.

Cor. 1. Since all integers are congruent (with respect to

modulus m) with one or other of the series

0, 1, 2, . . ., m-1,

it follows that to test the dirisiliiliti/ o//(x) hij m for all intetjral

values of x, we need only test the divisibility by m <'//(0), /(I),

/(2) /(»'-!).

Examiilcl. lj(itf(x) = z{x + l){2x + l); and let it be rcqnircd to find when

/(i) is divisible by 6. Wo havo/(0) = 0,/(l) = 6,/(2) = .SO,/ (3) = 84,/(<) = 180.

/(5) = 330. Each of these is divisible b; C ; and every integer is ooDRruciit

(mod 6) with one of the tix numbers 0, 1, 2, 3, 4, 5 ; bcnce x{x + l)(2x + l)

is alaayi divisible by 6.

Cor. 2. f\qf{r) + r} is always divisible by f{r); for

/{q/(r) + r|
= Mf(r) +f{r) = (M + l)/(r).

Hence an infinite number of values of x can always be found
which will vuike f(x) a composite number.
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Tliis result is sometimes stated by saying that no integral

function of x can furnish prime numbers oily.

Example 2. Show that ar» - 1 is divisible by 5 if s be prime to 5, but not
otherwise.

With modulns 5 all integral values of x are congruent with 0, ±1, ±2.
If /(i) = i<-l,/(0)=-l,/(±l) = 0,/(±2) = 15. Now and 15 are each
divisible by 5 ; but - 1 is not divisible by 5. Hence x*-l is divisible by 5

when X is prime to 5, but not otherwise.

Example 3. To show that a;- + x + 17 is not divisible by any number lesa

than 17, and that it is divisible by 17 when and only when x is of the form

17m or 17m -1.
Here

/(0)= 17, /( + 1)
= 19, /( + 2) = 23, /(+ 3) = 29, /( + 4)

= 37, /( + 5)
= 47,

/{ + 6)
= 59, /( + 7) = 73, /( + 8)

= 89, /(-1) = 17, /(-2) = 19, /(-3) = 23,

/(-4) = 29, /(-5) = 37, /(-6) = 47, /{-7) = 59, /(-8) = 73.

These numbers are all primes, hence no number less than 17 will divide

x' + x + n, whatever the value of x may be; and 17 will do so only when
x=ml7 or x=ml7-l.

§ 5.] Method of Differences.
—There is another method for

testing the divisibility of integral functions, which may be given

here, although it belongs, strictly speaking, to an order of ideas

somewhat different from that which we are now following.

Let /„ {x) denote an integral function of the «th degree.

/„ (a;
+ 1) -/„ (a;) =p„ +^1 (« + 1) + . . . +^„., {x + l)""' +_p„ (a;

+ 1)»

-Po-Pix-. . .-p„.iaf-^-p„af (1).

Now on the right-hand side the highest power of x, namely

a;", disappears ;
and the whole becomes an integral function of

the M-lth degree, fn-i(x), say. Thus, if m be the divisor,

we have

m m ^ ''

It may happen that the question of divisibility can be at

once settled for the simpler function fn-\{x). Suppose, for

example, that it turns out that /„_i {x) is always divisible by m,

whatever x may be
; then/„ {x + 1)

—
/„ {x) is always divisible by

m, whatever x may be. Suppose, farther, that /„ (0) is divisible

by m ; then, since /„ (1)
—
/„ (0), as we have just seen, is divisible

by m, it follows that/„(l) is divisible by m. Similarly, it may
be shown that f^ (2) is divisible by m ;

and so on.
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If tlip divisibility or non-divisibility of /,-i (x) be not at once

evident, we may proceed with /,_i (x) as we did before with

/„ (x), and make the question depend on a function of still lower

degree ;
and so on.

Example. /, (x) = i* - x is always diviBiblo by 5.

= 6i* + 10x» + 10x» + 5x,
= iI5.

Now /.(1) = 0,

therefore /, (2) -/, (1)
=

.V<,.5.

and /.(2) = ,V„5.

Similarly. /, (3)
-
/. C^)

= J/,5,

therefore /,(3) = (.V, + JI/,)5:

and BO on.

Thus we prove that/, (1), /, (2), /, (3), Ac, are all divisible by 5 ; in other

vrords, that z* - x in always divisible by a.

Exercises XXXV.

(I.) The enm of two odd squares cannot be a sqnara

(2.) Every prime greater than 3 is of the form &n ± L
(3.) Every prime, except 2, has one or other of the forms 4ii^l.

(4.) Every integer of the form 4n - 1 which is not prime has an odd

number of factors of the form in - 1.

(5.) Every prime greater than 5 has the form 30m + n, where n= 1,7, 11,

13, 17, 19, 23, or 29.

(C.) The square of every prime greater than 3 is of the form 24m + 1 ; and
the square of every integer which is not divisible by 2 or 3 is of the game

form.

(7.) If two odd primes differ by a power of 2, their snm is a multiple of S.

(8.) The difference of the squares of iiny two odd primes is divisible by 24.

(9.) None of the forms (3m + 2)n* + 3, 4mn-m- l,4mn-m-ncan repre-

sent a square integer. (Goldbach and Eulcr.)

(10.) The nth power of an odd number greater than nnity can b« presented

as the difference of two square numbers in n different ways.

(11.) If N differ from the two successive squares between which it lies by
X and y respectively, prove tliat N -xy is a sqaare.

(12.) The cube of every rational number is the difference of the squares of

two rational numbers.

(13.) Any uneven cube, n', is the sum of n consccatJTa nneven nombera,

of which n' is the middle one.

(14.) There can always bo found n consccutlTS integers, each of which is

not a prime, however great n may bo.
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(15.) In the scale of 7 every square integer mnst have 0, 1, 2, or 4 for its

nnit digit.

(16.) The scale in which 34 denotes a square integer has a radix of the

form ?t(3;! + 4) or (n + 2) (3n + 2).

(17.) There cannot in any scale be found three different digits such that

the three integers formed by placing each digit differently in each integer
shall be in Arithmetical Progression, unless the radix of the scale be of the

form Sp + l. If this condition be satisfied, tliere are 2(p-l) such sets of

digits ;
and the common difference of the A.P. is the same in all cases.

(18.) If X > 2, I-" - 4x3 + 5x= - 2x is divisible by 12.

(19.) x'/5+x</2 + x3/3-x/30, and x«/C + x=/2 + 5x-'/12
-
x=/12 ore both in-

tegral for all integral values of x.

(20.) If X, y, 2 be three consecutive integers, (Sx)'-3Sx' is divisible

by 108.

(21.) x' - X is divisible by 6.

(22.) Find the form of x in order that x' + 1 may be divisible by 17.

(23.) Examine iiow far the forms x- + x + 41, 2x- + 29 reiiresent prime
numbers.

(24.) Find the least value of x for which 2"= - 1 is divisible by 47.

(25.) Find the least value of x for which 2"^- 1 is divisible by 23.

(26.) Find the values of x and y for which 7^=-^ is divisible by 22.

(27.) Show that the remainder of 2-'^'^''+ 1 with respect to 2=^+ 1 is 2.

(28.) 3=^-2=^" is divisible by 5,ilx~y= 2.

(29.) Show that 2'-^+' + 1 is always divisible by 3.

(30.) 43^*' + 2"=t> + 1 is divisible by 7.

(31.) x^'" + x-"' + 1 never represents a prime unless x = or x= l.

(32.) If P be prime and =w' + b-, show that F" can be resolved into the

sum of two squares in ^n ways or J {n + 1) ways, according as n is even or odd,

and give one of these resolutions.

(33.) If 2^ + y-= 2', X, y ,
2 being integers, then xyz= (mod CO) ; and if x

be prime and >3, !/
= (mod 12). Show also that one of the three numbers

= (mod 5).

(34.) The solution in integers of x' + j-=2;= can be deduced from that of

x^ + i/'=2^. Hence, or otherwise, find the two lowest solutions in integers of

the first of these equations.

(35.) If the equation x' + y^= :^ had an integral solution, show that one of

the three x, y, z must be of the form 7m, and one of the form 3ik.

(36.) The area of a right-angled triangle with commensurable sides cannot

be a square number.

(37.) The sum of two integral fourth powers cannot be an integral square.

(38.) Show that (3 + ^5)== + (3-^/5)"^ is divisible by 2=.

(39.) If X be any odd integer, not divisible by 3, prove that the integral

part of 4"=- (2 + v'2)': is a multiple of 112.

(10.) If n be odd, show that l + „C4 + „Cg + „Ci8+ ... is divisible by
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ON THE DIVISORS OF A GIVEV INTTOER.

§ C] Wc have already seen (chap, m., § 7) that every

composite integer N can be represented in the form a*b^cy . . .,

where rt, i, c, . . . are primes. If iV be a perfect square, all tlio

indices must be even, and we have N=a^U'^<fy . . , ;
so that

jN=a''b»'cy' .... _
In this case N is divisible by JN.
IfN be not a perfect square, then one at least of the indices

must be odd ;
and we have, say,

JV=o'"+'6'^c'»' . . . =a"7/*cr' . . . a'+7>8V»' . . .,

80 that N is divisible by a'b^cy .... which is obviously less

than JN. Hence

Eieri/ composite number has a/actor which is not greater than

its square root.

This proposition is useful as a guide in finding the least

factors of large numbers. This has been done, ouce for all, in a

systematic, but more or less tentative, manner, and the results

published for the first nine million integers in the Factor Tables

of Burekhard, Dase, and the British Association*.

§ 7.] The divisors of any given number N = a'l/'cy ... are

all of the form a'b^cy .... where a', fi', y, . . . may have any

values from up to o, from up to /?, from up to y, . . .

respectively. Hence, if we include 1 and ^V itself among the

divisors, the divisors of N=u'0^cy . . . are the various terms

olAained by distributing the product

(1+0 + 0-+ . . . +a*)

x(l +t + t'+ . . . +6*)

X (1 +c + c" + . . . + rT)

^ (1).

* For an intercBting account of the oonitruction aiid dm of thate tables,

see J. W. L. GlainliiT's Boport, Rfp. liril. Anoc. (1877).
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Cor. 1.

Since

!+« + «'+. . .+«' = i

a- 1

is+i - 1
1 + 6 + «*= + . . . + is =

6-1
and so on,

It follows that the sitm of the divisors ofN= a'l^c-i . . . is

(«'+'- l)(&g+^-l). . .

(a-l)(6-l). . .

•

If in (1) we put a= 1, 6 =
1, c= 1, . . ., each divisor, that is,

each term of tlie distributed product, becomes unity ;
and the

sum of the whole is simply the number of the different divisors.

Hence, since there are a + 1 terms in the first bracket, /3 + 1 iu

the second, and so on, it follows that

Cor. 2. The numhcr of the divisors of N= a'b^cy . . . is

(a+l)(/J + l)(y+l). . . .

Cor. 3. T/te number of tvai/s in which* N'= n°-h^cy . . . can

beresohedi7itotwofactorsis^{l + (a+l){/3+l)(y + l). . .}, or

|(o + 1) (^ + 1) (y + 1) . . ., according as N is or is not a square
number.

For every factor has a complementary factor, that is to

say, every factorisation corresponds to two divisors ; unless N be

a square number, and then one factor, namely ,JN, has itself

for complementary factor, and therefore the factorisation

N =JN X iJN^ corresponds to only one divisor.

Cor. 4. The number ofv:ays in which N=a'b''c'' . . . can be

resolved into two factors that are prime to each other is 2""',

n being the number of prime factors a', b^, cy, . . . .

For, in this kind of resolution, no single prime factor, a' for

example, can be split between the two factors. The number
of different divisors is therefore the same as if a, /?, y, . . .

* This result is given by Wallis in his Ducoiirse of Combinations, Alterna-

tions, and Aliquot Parts (1G85), chap, ni., § 12. In the same work are given
most of the results of §§ b and 7 above.
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were each equal to unity. Hence the number of ways is

J(l + l)(l + 0(1 + 1). . . (n factors) =i. 2" = 2-'.

Example 1. Find the different divisors of 360, their tain, and their

naiuber.

WohaTo860 = 2'3'5.

The divisors are therefore the terms in the distribnted prodact

(l + 2 + 2» + 2')(l + 3 + 3')(l + 5); that is to say,

1, 2, 4, 8, 8, 6, 12, 21, 9, 18, 30, 72, 5, 10, 20, 40, 15, 30, 60, 120,

45, 90, 180, 360.

Their8nmi8(2«-l)(3>-l)(5'-l)/(2-l)(3-l)(5-l) = 1170.

Their number is (1 + 3)(1 + 2)(1 + 1) = 24.

Example 2. Find the lea^t number which has 30 divisors. Lot the

nuniber be N='t°b^cy. There cannot be more than three prime factors : for

30=2x3x5, which has at most three factors, must =(o+ 1) (^ + l)(y + 1).

There mi);ht of course be only two. and then wo must have30= (a+ 1) {ji+ 1);

or there nii(;ht bo only one, and then 30 = a + 1.

In the first case a = l, /3
= 2, 7= 4. Taking the three least primes,

3, 3, 5, and putting the larger indices to the smaller primes, we have

JV^ 2*. 3^.5 = 720.

In the second case we should get 2>* . 3, 2* . 3*, or 2* . 3*.

In the last case, 2".

It n-ill be found that the least of all these is 2* . 3* . 6 ; so that 720 is the

required number.

Example 3. Show that, if 2'> - 1 be a prime number, then 2*-' (2"
-

1) is

equal to the sum of its divisors (itself excluded)*.
Since 2* - 1 is supposed to be prime, the prime factors of the given nomber

are 2*'> and 2*- 1. Heuce the sum of its divisors, excluding itself, is, by
Cor. 1 above,

(2Tinj2i^ripif
-a"-'(2--l)= (2--l) {(2--l) + ll

-
a«-'(2-- 1),

= (2«-l){2--2-'J,
= 2«-'(2»-l){2-l},

as was to be shown.

0.\ TUE NU.MIiEU OF INTEfiERS LESS THAN A GIVEN

INTEGER AND PRIME TO IT.

§ 8.] If we consider all the integers less than a given one, N,
a certain number of th&ie have factors in common with N, and
the rest have none. The number of the latter is usually denoted

* In the language of the ancients snob a nomber waa ealled a Perfect
Nnmber. 6, 28, 496, 8128 are perfect numbers.
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by <t> (N). Thus <^ (N) is taken to denote the number of integers

(including 1) trkic/i are less than N and prime to N.

We have the following important theorem, first given by

Euler :—

Zf N'=ai'uu''Ht,'' . . . ffn*", then

*<^=-'('-J;)('-|)(-l>--('4.) w
The proof of this theorem which we shall give is that which

follows most naturally from the principles of § 7.

Proof.
—Let us find the number of all the integers, not

greater than N, which have some factor in common with N'.

That factor must be a product of powers of one or more of the

primes a^, a^, a^, . . ., a„.

Now all the multiples of ai which do not exceed N are

loi, 2ai, 3ai, . . ., {Nja^On, iV/oi in number (3);

all the multiples of a.^ which do not exceed N are

lOa, 202, 3».i . . •, {Nja-^ai, i\7aa in liumber (4);

and so on.

All the multiples of ctiOs which do not exceed N are

Ifflifla, 2aia3, 3«ia2, . . ., {NJata^) aiO^,

iV7ai«2 in number (5) ;

and so on.

Similarly, for Oia^as we have

laifljOa, 2aiajaa, Saia^a^, . . ., {N/Uiaias) asanas,

N/aia^ai in number (6).

Let us now consider the number

N N N— + — +— +. . .

N jsr N
a^a^
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The number of terms in the first line is ,<7i. Tlie mimbor
in the second line is ,C,, since every possible group of 2 out of

the n letters a,a, . . . rt, occurs among the denominators. The
number in the tliinl line is »Cj for a similar reason. And so on.

Now consider every ujultiplo of the r letters a^a^at ... a,

which does not e.xceed N
\

in other words, every number, not

exceeding N, that has in common with it a factor of the form

Oi" 'Oj*' • . Or*'- This multiple will be enumerat^id in the first

line, once as a multiple of a,, once as a multiple of a,, and so

on
;

that is, once for every letter in it, that b, rCi times.

In the second line the same multiple will be enumerated once

as a multiple of OiCCj, once as a multiple of OxOi, and so on
; that

is, once for every group of two that can be formed out of the r

letters a,aa . . . Or, that is, ,<?» times. And so on. Hence,

paying attention to the signs, the multiple in question will in

the whole e.\pression (7) be enumerated

rC,-rC, + rO,-. . . ± r^- + r^ = 1 - (1
"

1 ^

times
;
that is, just once. This proof holds, of course, whatever

the r letters in the group may be, and whether there bo 1, 2, 3,

or any number up to n in the group.

It follows, therefore, that (7) enumerates, without repetition

or omission, every integer which h;us a factor in common with N.

But, from formula (1), chap, iv., § 10, we see that (7) is simply

^'-^(-s)('-i)---('-i) <*

To obtain the number of integers less than N whkh are

prime to iV, we have merely to subtract (8) from A'. Wo thus

obtain

,(„,^(._i)(,_i)...(,-i).
which establishes Euler's formula.

Example. N=100 = 2>.6>; 0(1OO)=2>.6»(1-J)(1 -
J)= 40.

§ 9.] // if= PQ, where P and Q are prime to each other, then

«(.V) = <^(/>).^(Q) (1).
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For, since P auJ Q are prime to each other, we must have

F =
a,''a^'^. . .,

Q = b,i>'b./'. . .,

wliere none of the prime factors are common
;
and therefore

i!'/=a,"'a/'. . . b,»'b/'. .
.,

where ai, a^, . . ., bi, b^, . . . are all primes.

But, by § 8, we then have

-K-.')(-i3---(-^)(-,l)---.

Cor. IfFQRS . . . be 2}>-{?ne to each other, then

<f>{PQRS. . .)
=
^(P)<t>{Q)<l>(R)4.{S). . . (2).

For, since P is prime to Q, R, S, . . . , it follows that P is

prime to the product QRS . , . Hence, by the above proposition,

<I>(PQRS. . .)
= <i>(P)<l>(QRS. . .).

Repeating the same reasoning, we have

<I>{QRS. . .)
=
.t>(Q)<t>{RS. . .);

fmd so on.

Hence, finally,

<I>{PQRS. . .)
= <l>{P)4>{Q)<t>{R)4>(S}. . . .

Remark.—There is no difficulty in establishing the theorem

4>{PQ) = <f> (P) <^ (Q) « priori. This may be done, for example, by
means of § 13 below (see Gross' Algebra, § 230). The theorem

of § 8 above can then be deduced from 4> (PQR , . .)
=

(P) <^ (0 <^ (R) . . . The course followed above, though not

so neat, is, we think, more instructive for the learner.

Example. 56 = 7 x 8,

0(7) = 6,

0(8) = 4;

0(56) = *.(7)x,^(8).
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§ 10.] 1/ di, (/,, d,, . . ., (tc, denote all the divis(/rs of the

integer N, then*

*W) + 0(</,) + *(rf.) + . . . = iV. . . (1).

(Giiuss, Disq. Arith., § 39.)

For the divisors, rfi, rf-j, d, are the terms in the

distribution of the product

(l+a,+0|'+. . . +o,°')(l +a, + rt,' + . . .+a,*i). . . .

If we take any one of these terras, say rf^
= a,*''a/'' . . .,

then, by § 9, Cor.,

= .^(«,v) </.«.')• • •;

since «!, a.j, . . . arc primes.

It follows that the left-hand side of (1) is the same as

{l+<^(a,) + ./.(a,»)
+ . . .+^(0)}

x{l+^(a,) + <^(a,') + . . .+*(«,••)}

(2).

But <^ (a,--)
=

a,"- A - -
^
=

rt/
-

a,'--'.

Hence

= l + Oi-l+ai'-ai + . . . + a,*'
-

o,"i"',

and so on.

It appear-s therefore, that (2) is eriual to a'>a^ . . ., that

is, equal to N.

Example. A'=315= 3>.5.7.

The divisors arc 1, 3, 6, 7, 9, 15, 21, 35, 45, 63, 105, 315, and we bavo

*(l) + ^(3) + 0(6)+ . . . +^(31.5)
= 1 + 2 + 4+ i;+ 6 + 8 + 12 + 24 + 24 + 86 + 48+ 144 = 816.

* Here and in what follows 1 is incladed among the divisors, and, foroon-

vonicncc, ^ (1) is token to stand fur 1. Strictly speaking, ^ (1) has no meaning
at all.
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PROPERTIES OF m!

§ 11.] The following theorem enables ns to prove some

important properties of ml :
—

TAe highest power of tlte prime p which divides m\ exactly is

where -^(— ), ^i^)' • • • denote the integral parts of tn/p,

m/p", . . . ; and the series is continued until the greatest power of

p is readied which does not exceed m.

To prove this, we remark that the numbers in the series

1, 2, . . .,»»

which are divisible by p are evidently

\p, 2p, Zp, . . ., Ip,

where kp is the greatest multiple of pl^m. In other words,

k = I{mlp). Hence I{mjp) is the number of the factors in to!

which are di\nsible by p.

If to this we add the number of those that are divisible by

p^, namely I(m/p"), and again the number of those that are

divisible by p^, namely J{7n/p^), and so on, the sum will be the

power in which j? occurs in ml.

Hence, since p is a. prime, the highest power of p that will

divide m\ exactly is

/©*<l)^^0)
It is convenient for practical purposes to remark that

'(?)=^K-)A}-
For, if

then
m/p'--'

= i + k/p"-' {k Kp'-') (1),

m/p^ = ilp + k/p^ (2),

=j + l/p+k/p^l<p) (3).
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Now
l/p + klp'Xp- i)/p + (j^-'-i)/if,

<1.

Hence, by (3),

But, since i/p =j + l/p,

^•='(^'{'C-)A}- '•'<^>-

We may thercfdre proceed as follows :
—Divide m l/y p: tale

the iutiijral quotient and divide again by p; and so on ; until the

integral quotient becomes zero ; then add all the integral quotients,

and the result is the highestpower ofp which will divide m\ exactly.

Example 1. To find the highest power of 7 which divides 10001 exactly.

In dividing sncccssively by 7 the integral quotients ara 142, 20, 2 ; the

anm of these is 164. Hence 7'" is the power of 7 required.

Example 2. To decompose 251 into its prime factors.

Write down all the primes less than 2S ; write under each the snoocssive

quotients ; and then add. We thus obtain

1
2
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§ 12.] 1/ /+ g + h-*- . . .>«?, thm m\!/\g\h\ . . . is an

integer*.

To prove this, it will be sufficient to show that, if any prime

factor, p say, appear in f\g\h\ . . ., it will appear in at least

as high a power in m\ In other words (§ 11), we have to

show that

+ . . . . (1).

Now, if d be any integer whatever, we have

//d=/'+/"/d (/">d-l),

g/d=g' + g"/d (g":i>d-l),

h/d = h' + h"/d (/i'>(^-l),

• . ,
',

and we obtain by addition

/+ q + h+ . . . J., , ,, f"+q" + h"+...

Hence, if/" + ?" + ^" + . . .<d,

^ff+n + h+ . . .\ J., , ,,

/(
^

-^

^ )=/ +9+h +. . .,

If, on the other hand, /" + g" + h" + . . . >d,\ then

/r—^-^ j>/ +g +k + . . .,

• This theorem might, of course, be inferred from the fact that

m!//I</!AI . . . represents the number of permutations of 7n things / of

which are alike, g alike, h alike, &c.

+ If 71 be the number of the letters f,g,h,.. ., the utmost value of

f"^g" + h" + . . .isn((i-l). Hence the utmost difference between the two

Bidesof (•2)is/{n((J-l)/<i}.

C. II. 35
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It appears, therefore, that, even '\{m^/+g + h + . . .,

A fortiori is this so if m >/+ g + h+ . . . .

If uow we give d the successive values p, y', . . . ,
and com-

bine by a«lditiou the inequiJities tlius obUined from (3), the

truth of (1) is at once established.

Cor. 1. If /+g + h+ . . . >m, and none of the uumbcrs

/,g,h,... is equal to m, the inteytr m\lf\g':h\ . . . is divisible

by m if m be a prime.

Cor. 2. The product of r success! iv integers is exactly

divisible by r\.

The proofs of these, so far as they require proof, we leave to

tlie reader. Cor. 2 has already been established by a totally

dillcrent kind of reasoning in § 3, Example G.

Exercises XXXVL

(1.) What is the least multiplier that will convert 915 into a complete

sqnare ?

(2.) Find the number of the divisors of 2100, and their sum.

(U.) I'ind the iiilco-ral solutions of

Ty = 100i + 10y + l (a);

xy= 12« {?);

y'=10ai (7)-

(1.) Ko number of the form i* + 4 eioept 5 is prime.

(.3.)
No number of the form 2**+' + 1 except 5 is prime.

(6.) To find a number of the form 2" . 3 . a (a being prime) which shall be

equal to half the sum of its divieors (itself excluded).

(7.) To find a number H of the form Vabc ... (a, 6, e being unequal

primes) such that N is one-third the sum of its divisors.

(8.) Show how to obtain two " amicable
" numbers of the forms 2^7. 2*r,

where p, q, r arc primes. (Two numbers arc amicable when each is the sum

of the divisors of the other, the number itself not being reckoned aa a

divisor.)

(fl.)
To find a cube the sum of whose divisors shall be a square.

(One of Fcrmafs challenges to Wallis and the EngUsh mathematicians.

I'ar. Op. Math., pp. 1««, 190.)

(10.) If S be any integer, n the number of its divisors, and P the product

of them all, Uiiu .V" = i".
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(11.) The sum and the sum of the squares of all the numbers less than

N and prime to it aru m (a
-

1) (6
-

1) (c
-

1) . . . and i^P (1
-

1/a) (1
-

1/6)

. . . + jJV(l-a) (l-l) . . . respectively. (Wolstenholme.)

(12.) If p, q,T, . . . be prime to each other, and d (N) denote the sum of

tlie divisors of N, show that

d{pqr...) = d(p)d{q)d{r)... .

(13.) If N=abc, where a, 6, c are prime to each other, then the product of

all the numbers less than N and prime to N is

(abc
-

1)1 n {(a
-

l)l/(6c
-

1)! a«>-'l(c-i|}.

(Gonv. and Caius Coll., 1882.)

(14.) The number of integers less than (r^ + 1)" which are divisible by r

but not by r- is (r- 1) {(r^ + l)"- l}/r=.

(15.) Prove that

(IG.) In a given set of N consecutive integers beginning with A, find the

number of terms not divisible by any one of a given set of relatively prime

integers. (Cayley. )

(17.) If m - 1 be prime to n + 1, show that „C„ is divisible by n + 1.

(18.) (a + l)(a + 2). .. 2a X 6(6 + 1). . . 26/(a + 6)! is an integer.

(19.) The product of any r consecutive terms of the series i- 1, x'- 1,

a;'- 1, . . .is exactly divisible by the product of the first r terms.

(20.) If p be prime, the highest power of p which divides n\ is the

greatest iuteger in {71
- S (n)]l{p

-
1)"', where S (n) is the sum of the digits of

n when expressed in the scale of p.

If S (m) have the above meaning, prove that S (m - n) «t S (m)
- S (n) for any

radix. Hence show that
(;i + 1) (h + 2) . . . (n + m) is divisible by m!.

(Camb. Math. Jour. (1839), vol. i., p. 226.)

(21.) If/(n) denote the sum of the uneven, and ii'(n) the sum of the even,

divisors of n, and 1, 3, 6, 10, . . . be the "triangular numbers," then

•/{n)+/(n-l)+/(n-3)+/(n-6)+. . .

= F(n) + F{n-l) + F(n-3)+F{n-6)+. . .,

it being understood that/(n-n) = 0, F{n-n) = n.

ON THE RESIDUES OF A SERIES OF INTEGERS IN

ARITHMETICAL PROGRESSION.

§ 13.] The least positive remainders of tlie series of numbers

k, k + a, k + 'ia, . . ., k + {m-l)a

with respect to m, where m is prime to a, are a permutation oftho

numbers of tlie series

0,1,2,. . .,(«»-!).

35—2
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All the remainders must be difTerent
; for, if any two

different numbers of the series had the same remainders, then

wo should have

k + ra = ixm + p, and k + sa = ii'm + p,

whence

(r
-

s) o = (fi
-

fx') m, and (r
-

s) a/m = /a
-

/i'.

Now tliis is impossible, since a is prime to m, and r and s arc

each < m, and therefore r-s<m. Hence, since there are only

m possible remainders, namely, 0, 1, 2, . . ., (m- 1), the proposi-

tion follows.

Cor. 1. J/ the remainders of k and a with respect to m Im>

k and a', the remainders will occur as follows:—
X', k' + a, k' + 2o', .... A' + ra',

until we reach a number that equals or surpasses m ; this we must

diminish by m, and then proceed to add a at each step as before.

Thus, if 4 = 11, = 25, m = 7, the series is

11, 36, Gl, 86, 111, 136, ICl.

Wc have k'= i and o'=4, hence the remainders are

4,4 + 4-7= 1, 5, 5 + 4-7=2, tc;
in fuct,

4, 1, 5, 2, 6. 3, 0.

Cor. 2. If the progression of numlters be continued beyond

m terms, the remainders will repeat in the same order as before ;

and in this jyeriodic series the number of remainders intervening

between two that differ by unify is always the same.

Cor. 3. T/wre are as many terms in the series

k, k+a, k + 2a, . . ., k + (m-l)a
which are prime to m, as there are in the series

0.1,2.. . .(m-1).

That is, the number of terms in the scries in que.<ition which are

prime to m is 4> (m). See § 8.

Tiiis follows from the fact that two numbers which are

congruent with resiwct to m are either both prime or Ixith non-

prime to »H.

Cor. 4. If out cf the scries of uumbi-rs

0, 1.2,. . .,(w-l)
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we select those that are less than m and prime to it, say

(the number n being 4> {tn)), then the numbers

k + r,a, k + r^a, . . ., k + r„a,

where k = or a multiple of m, and a prime to m as before, are

all prime to m : and their remainders with respect to m are a

permutation of
r,, n, . . ., r„.

For, as we have seen already, all the n remainders are unlike,

and every remainder must be prime to m
; for, if we had

k + rta = fim + p, where p is not prime to m, then rta = nm+p-k
would have a factor in common witli m, which is impossible,

since r, and a are botli prime to m.

Hence the remainders must be the numbers ri, /-j, . . ., r„

in some order or otlier.

§ 14.] Ifm be not prime to a, but have with it the G.C.M. g,

so that a = ga', m =
gm', the remainders of the series

k, k + a, k+2a, . . ., k+{m-l)a
with respect to m ivill recur in a shorter cycle of m.

Consider any two terms of the series out of the first »»', say

k^ra, k+sa. These two must have different remainders, otherwise

{r-s)a would be exactly divisible by m: that is, {r-s)ga'/gm'

would be an integer ;
that is, (r

-
s) a'/ni would be an integer ;

which is impossible, since a is prime to m' and r-s<m'.

Again, consider any term beyond the m'th, say the (»»'
+ r)th,

then, since

{k + (»»' + r)a}-{k + ra} = m'a,
= gm'a,
= ma',

it follows that the {m' + r)th term has the same remainder with

respect to ?» as the »-th.

In other words, the first m' remainders are all diflferent, and

after that they recur periodically, the increment being ga",

where a" is the remainder of a with respect to m', subject to

diminution by m as in last article.

Example. If /f= ll, n = 2.5, m= 15, we have the series

U, 30, 61, SG, 111, 136, 161, 186, 211, 236, 261. . . . ;
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anti liprc g = iii a'=5; m' = 3; a" = 2; fc'=ll; pa" = 10. HcDco the re-

mainders are

11, 6. I, 11, G, 1, 11, C, 1, 11, 6

Cor. I/tie G.C.M., g,nfa and m divide k exactly, and, in

jHirticulnr, if k = ii, the remainders of the series

k, k + a, k + ia, ...
are the numhers

0,j, lg,2g.3g (m'-l)g

continually rejHuted in a certain order.

For, iu this case, since k = gx, we have {k + ra)lm =
(«

+
ra')/m',

hence the remainders are those of the series

K, K + a', K + 2a', . . .

with respect to m' which is prime to a', each multiplied by g.

Hence the result follows by § 13.

Example. Let i: = 10, a= 26, m=:15 ; then the Bcries of numbcrg is

10, 35, 60, 85, 110, 135, ICO, 185

'Wehave(;=6; a'= o; m'= 3; ic= 2; and the remainders ore

10, 5, 0, 10, 5, 0, 10, 5, ... ;

that is (o say,

2x6, 1x6, 0x6, ... .

§ 15.] From § 13 we can at once deduce Fermat's Th&irkm*,
which is one of tiie corner-stones of the theory of numbers.

If m be a prime number, and a be prime to m, a"'' - 1 i$

divi-sible by m.

If a be prime to m, then we have

la=/i,f7i + p,,

• • > . •

where the numbers p,, p, p«_, are the numbers

1, 2 (ffi-1) written in a certain order.

* Great historical interest attaclies to this theorem. It was, witu lerenl

othiT striking result.-) in the theory of numbers, published without demonstra-

tion among Fi'rmat's notes to an edition of Bachct dc Mcziriac's DiophantuM

(IGTO). For many years no demonstration was found. Finally, Euler (Con.
iTurrit. Acad. Prtrop., viii., 1741, and Commrnt. Sov. AcniL Petrnp., m., 1761)

gave two proofs. Another, due to Lagrange (.Vour. Mem. dt V Ae. de Berlin,

1771). is rrprodnced in § 18. The proof h-ivcn alioTo is akiii to Kuler'sMoood

aud to that given by Uauss, Duq. Arilh., § I'J.
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Ileuce

1.2. . . {m
-

1) a"'-^ = (mm + pi) {jum + p.,) . . . {f;„~im + p,„-i),

=Mm + P1P2 pm-i,

=Mm + 1.2 . . . {m- 1).

We therefore have

1.2. . . (?»-l) (a"'-^-l)
= il/OT.

Now, m being a prime number, all the factoi-s of 1.2 . . . (?»- 1)

are prime to it. Hence m must divide a"'~'- 1.

It is very easy, by the method of differences, explained in § 5,

to estabHsh the following theorem :
—

If m he a frime, aP'-a is exactly divmble by m*.

Since »"'-« = «(«"•"' -1), if « be prime to /«, this is simply

Fermat's Theorem in another form.

§ 16.] By using Cor. 4 of § 13 we arrive at the following

generalisation of Fermat's Theorem, due to Euler :
—

If m be any integer, and a be prime to m, then a*'"'' - 1 is

exactly divisible by m.

Here <i> (m) denotes, as usual, the number of integers which

are less than m and prime to it.

For, if r,, 7-2, . . ., »"„ be the integers less than m and prime

to it, we have, by the corollary in question,

r„a = fi-nm + p,,,

where the numbers p,, P2, • • -i Pn iii"e simply r,, Vn, . . ., »•„

written in a certain order.

We have tlierefore, just as in last paragraph,

n''2 . • • »'n (a"
-

1)
=

-3/'»,

whence, since rj, ra, . . ., r„ arc all prime to m, it follows that

a" - 1, that is, a*''"' - 1, is divisible by m.

§ 17.] The famous theorem of Wilson can also be estabhshed

by means of the principles of § 13.

* For another proof of this theorem see § 18 below.
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Any two integfi-s whose i)ro(iiift lias tlie rciuaindfr + 1 with

respect to a. given luodulus m may be called, after Euler, Allied

NumbiTS.

Consider all the integers,

1,2,3 (w-1),

less than any prime number m (the number of them is of course

even). We shall prove that, if we except the first and last, they
can be exhaustivi-ly arranged in allied pairs.

For, take any one of thctn, say r, then, since r is prime to m,
tlie remainders of

r.l, r.-l r(m-l)
are the numbers

1, -2 (w-1)

in some order. Hence, snnie one of the series, say rr', must have

the remainder 1
;
then rr will be allies.

The same number r cannot have two different allies, since all

the remainders are different.

Nor can the two, r and r', be equal, unless r=l or = »i-l;
for, if we have

i^ = ixm + 1,

then r"- l=/am; that is, (r+1) (r-1) must be divisible by m.

But, since m is prime, this involves that either r+1 or r-1 be

divisible by m, and, since r cannot be greater than m, this involves

in the one case that r= m —
1, in the other that r= 1.

Excluding, then, 1 and m-l, we can arrange the series

2, 3 (w-2)

in allied pairs. Now every product of two allies is of the form

/im + 1
;

hence the pmduct 2.3 . . . (w -
2) is of the form

(ti,tn + 1) {fLttn + 1) . . ., which reduces to the form Mm + 1.

Ill ine

2.3. . . (»n-2) = J/m + l;

and, multii>lying by w -
1

,
we get

I.-'. a. . .(m-2){m-l) = Mm{m-\) + m-l.
Whence

l.i'.;> . . . (m- I)* I -^Aw*.
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Tliat is, {/' m be a prime, {m
-

1)! + 1 is divisible by m, which is

Wilson's Tueorem*.

It should be observed that, if m be not a prime, (»»— 1)!+ 1

is not divisible by m.

For, if m be not a prime, its factors occur among the numbers

2, 3, . . ., {m—\), each of which divides (ot-1)!, and, there-

fore, none of which divide {m -
1)! + 1.

§ 18.] The following Theorem of Lagrange embraces both

Fermat's Theorem and Wilson's Theorem as particular cases :
—

lf{x + \) (.r + 2). . , (x-vp-l)
= x^-'' + AiXP-^ + . . .+Ap-.x + Ap.„

and p be prime, then A-^, A-^, . . ., Ap.^ are all divisible by p.

We have

{x+p){a^-'^ + Ayjf-- + . . .+Ap-iX-^A,,-^)
= {x + \){{x + l)''-' + A,{x+\f-^ + . . .+A,-.{x+\)-\-Ap-,\.

Hence

px'''^+pAiOfl~^+pAiX''~' + . , .+pAp-^_x + pAp^-i
= {(x+Vf~xP\ + A^{{x+\f-'-x''-'\ + A.A{x+\)''-'-.i^--\+. . .

Therefore

pAi=pCi + p-iCxAi,

pAi =pCi + p-iCj^i + p-iC«Ai + p-iCiAi.

Plence, since p-iC,, p-iC^, p-sCi, ... are not divisible hy p

Up be prime, we get, by successive steps, the proof that Ai, A.,

A-i, . . . are all divisible by^.

* This theorem was first pnblished by Waring in his Medilationef Atge-

bmiae (1770). He there attributes it to Sii- Jolin Wilson, but gives no proof.

The first demonstration was given by Lagrange {Nouv. ilim. de I'Ac. de

Berlin, 1771) ; this is reproduced in § 18. A second proof was given by Euler

in his Opuscula Anabjtica (1783;, vol. i., p. 329, depending on the theory of

the residues of powers.
The proof above is that given by Gauss (DUq. Arith., §§ 77, 78), who

generalises the theorem as follows:—"The product of all the numbers less

than m and prime to it is congruent with -1, if m=:p'^ or =2^**, where p
is any prime but 2, or, again, if m = 4; but is congruent with +1 in every

other case." This extension depends on the theory of quadratic residues.
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V*)T. 1. Put X = 1, and we get

2.3. . . p=\ +(Ai + Ai + . . . + Af.,) + Ap-t.

Therefore A^-i + 1, tkat is, (p
-

1)! + 1, w divisible Inj p.

Cor. 2. Multiplying by x and transposing, we get

a*-x = x{x+\). . .(x^-p-\)

-(1 +^p-,)a:-(^,x»'-' + yl,a'-' + . . .k-Af-.r).

But x(x+\) . . . {x+p- I), being the product of p con-

secutive integers, must be divisible by p. Also, if ^ be prime,

1 + Ap-t is divisible by p.

Therefore, x' — x is divisible by p i/p be prime. From which

Fcnnat's Theorem follows at once if x be prime to p.

Exercises XXXVIL

(1.) x" - X is divisible by 2730.

(2.) If X be a prime greater than 13, x" - 1 is divisible by 21R40.

(.3.)
If tbc nth power of every number eud with the same di);it as the

nnmber itself, then n = ip + l.

Give a rule for detemiiuing by inspection the cnbe root of every perfect

cube less than a million.

(4.) If the radix, r, of the scale of notation be prime, show that the rth

power of every integer has the same final digit as the integer itself, and that

the (r
-
l)th power of every integer has for its final digit 1.

(5.) If n be prime, and z prime to n, then either x'"""''- I or x'*~'i^+I

is divisible by k,

(6.) If n be prime, and x prime ton, then either i" I"-'!/'- 1 or x*i*"'l'' + l

ii dinsible by n'.

(7.) If m and n be primes, then

m*"' + n"*"' = 1 (mod. mn).

(8.) If o, ^, 7, . . .be primes, and >?=o^7 . . ., then

S (A'/a)"-' = 1 (mod. afiy . . .).

(9.) If n be an odd primo, show that

(a + 1)«
-
(o" + 1)

= (mod. 2n).

nencc phow that, if n be an odd prime and p an integer, then any int<»gpr

cxpri'sspd in the scale of 2n will end in the same digit as its {pn-p + ljlh

power. Uednce Format's Theorem. (Math. Trip., 1H79.)

(10.) If n be prime and >x, then

x«-» + x"-'+. . . ^x + lsO (mod. n).

(11.) If n bo an odd prime, then

l+2(n + l) + a'(n + l)'+. . .+2"-«(»' + l)"~'s0('nod. n).

(12.) If n be odd, l" + 2" + , . .+(n-l)*BO (mod. n).



§§ 18, 19 NOTATION FOR NUMBER OF PARTITIONS 555

(13.) If n be prime, and p<n,

(p
-

1)1 (n-p)\
-

(
- 1)P=0 (mod. n),

and, in particular,

[{ i (n- l)}'P + (
-

1)
'"-""= (mod. n).

(Waring.)

(14.) Find in what cases one of the two {i(n-l)}l±l is divisible by n.

What detennines which of them is so ?

(15.) If p be prime, and n not divisible by p -
1, tlicn

11 + 2"+. . . + (p-l)»= 0(mod.i)).

(IG.) If ^ be any odd prime, TO any number >1 which is not divisible by

p -
1, then

/n-lN-"'
1="' + 2='"+...+ ( ^—^ j

= (mod. p).

(17.) If neither a nor h be divisible by a prime of the form in-\, then

a4Ji-; _ jjn-s ^fm not be exactly divisible by a prime of that form.

Hence show that a*"-- + h*'''- is not divisible by any integer (prime or not)

of the form in - 1.

Also that a? + lP is not divisible by any integer of the form 4«-l which

does not divide both a and 6. Also, that any divisor of the sum of two

integral squares, which does not divide each of them, is of the form in + 1.

(Euler.)

(18.) Show, by means of (17), that no square integer can have the form

4m.n -m -
n", where m, n, a are positive integers. (Euler. )

PARTITION OF NDSIBERS.

EuUr's Tlmory of the Enumeration of Partitions.

% 19.] By the partition of a given integer n is meant the

division of the integer into a number of others of which it is the

sum. Thus 1 + 2 + 2 + 3 + 3, 1+3 + 7, are partitions of 11.

There are two main dasses of partitions, namely, (I.) those in

which the parts may be equal or unequal ; (II.) those in which

the parts are all unequal. Wlien the word "
Partition

"
is used

without qualification, class (I.) is understood.

We shall use a quadripartite symbol to denote the number

of partitions of a given species. Thus P {\ 1) and P?« ( | | ) are

used to denote partitions of the classes (I.) and (II.) respectively.

In the first blank inside the bracket is inserted the number to

be partitioned ;
in the second, an indication of the number of the

parts ;
in the third, an indication of the magnitude or nature of
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the pjirUi It is alwaj's iinpliod, unless the coutrar}' is stated,

tliat the le:tst part admissible is 1 ; so that :^ m means any

integer of the series 1, 2 m. An asterisk is use<l to mean

any integer of the soriCvS 1, 2, ...,», or that no restriction is

to be put on the number of tlie part« other than what arises

from the nature of the partition otherwise.

Thus F{n\p\ q) means the number of partitions of » into p
parts the greatest of which is q\ /*(«!/>,> 17) the number of

partitions of n into p parts no one of which exceeds q ;

P {n\* \1p-q) the number of partitions of n into any number of

parte no one of which is to exceeil q\ P«(n j:^/? |

»
) the

number of partitions of « into p or any less number of unequal

parts unrestrict<>d in nia^itude ; Pu{n\p\r>AK\) tiie number of

l>artiti()ns of n into p unequal parte each of which is an odd

integer; P(h|*|1, 2, 2', 2', . . .) the number of partitions of

« into any number of parte, each part being a number in the

series 1, 2, 2', 2^ . . .
;
and so on.

The theory of partitions has risen into great importance of

late in connection with the researches of Sylvester and his

followers on tlie tlicory of invariants. It is also closely con-

nected with the theory of series, as will be seen from Euler'a

enumeration of certain species of partitions, which we shall

now briefly explain.

§20.] If we develop the product (1 +rx) (1 +sj:') , . .

(1 + zj^), it is obvious that we get the term s'j" in as many
difl'erent ways as we can produce n by adding togetlier p of the

integers 1, 2, . . ., q, each to be taken only once. Hence wo
have the following equation :

—
(l+sj:)(l + j:jr»). . . (1 +rj^) = 1 + 2/'«(n |/>|>g) £»a- (1).

Again, if to the product on the left of (1) we adjoin the

fjictor l + c + c' + s'+. . . adoo (that is, 1/(1
-

s) ), we shall

evidently get z'jf as often as we can produce w bj' adding

together any number not exceeding /> of the integers 1, 2, . . ., q.

Therefore

(l+c.r)(l+rjJ). . .(1 +s^)/(i-j)
= 1 +S/'« (»!>;,,^j);^ (2).
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In like manner, we have

{I + a-) (I + or) . . . (l+af) = l+-%Pu(n\*\:!f>q)x'' (3);

(1 + sx) (1 + zx-) . . . ad 00 = 1 + 2P« {n \p\*) s^x"- (4) ;

(1 +
a;) (1 + is=) . . . ad 00 = 1 + 2Pm (m j

*
i

*
)
x" (5).

Also, as will be easily seen, we have

ll{\-zx){l-za?). . .{l-z3fl)
= l + ^P{n\ij\1Sr'q)z''x'' (6);

ll{l-z){l-zx). . .{l-Z3fl)=l + %P{n\-ii>p\-^q)s?'x'' (7);

1/(1
-

a:) (1-^)- .(l-a;'')=l+2P(M|*|>>!7)a;" (8);

1/(1
-
zx) (1

-
zar) . . . ad 00 = 1 + 2P (» I J9 1

*
) «"«" (9) ;

\l{\-z){\-zx){l-zx-) . . .ad CO = 1 + SP \n |>;> !*)«?«'' (10) ;

l/(l-a;)(l-a.'=). . .a.A^ = l + tP(n\*\*)x" (11);

and so on.

By means of these equations, coupled with the theorems

given in chap, xxx., § 2, and Exercises xxi., a considerable

number of theorems regarding the enumeration of partitions

can be deduced at once.

§ 21.] To find a recurrence-foi-mula for enumerating the

partitions of n into any number of parts none of which exceeds

q; and thus to calculate a table for P {n\ * \^q).

By (8), we have

1/(1 -a;) (1- a-). . .{l-x'')= 1 + ^P{n\^\:!f>q) x\

Hence, multiplying on both sides by 1 — xf, and replacing

ll(l—x){l-ar). . .{l-x"'^) by its equivalent, we derive

1 + 2P(m|*1>- (/-!)«"
= 1 + 2 1P(«| * \>q)-P{n-q\* \>q)}x- (12),

where we understand P(0, |

*
|:j>2') to be 1.

Hence, if M^^gf,

P{n\* \>q) = P{n\ * \1f>q-l)+P{u-q\ * l^^q) (13) ;

and, if n<q,

r{n\*\1f>q)
= P{n\*\::^q-l) (14).

By means of (13) and (14) wo can readily calculate a table of

double entry for P{n[ * l^*^), as follows :
—
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*
| :j- <;)
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13 8 4 6 6t 7c 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 1 I

6 6 6 6 7 7

8 "lo] 12 U 16 19 21

11 15 18 [23 27 3^1 89

13 18 23 301j7 47 57

I J 20 26 85 44 J>8 71

15 21 28 38 49 Ca 82

. 22 29 40 52 70 89
[

116

. 30 41 54 73 94 123

42 55 75 97 128 164 [212 267 340

. 56 76 99 131 169 2191278 358

F 1

Take a rectangle of squared paper HA C; and enter the values

of n at the heads of the vertical columns, and the values of q
at the ends of the horizontal lines. We remark, first of all, that

it follows from (14) that all the values in the part of any vertical

column below the diagonal AF are the same. We therefore

leave all the corresponding .si)aces blank, the last entry in the

column being understood to be repeated indefinitely.

Ne.xt, write the values of /-"(l |

» |:^1), /'(2|*|>1), . , .,

that is, 1, 1, . . ., in the row headed 1.

To fill the other rows, construct a piece of paper of the form

abed. Its use will be understood from the following rule, which

is simply a translation of (13) :
—

To fill the blank immediately after the end of any step, add

to the entry above that blank the number which is found at tho

left-hand end of the step.

Thus, to get the number 23, which stands at the end of the

step lying on the fourth horizontal line, we add to 14 the number

9, which lies to the immediate left of ab in the same line as

the blank. Again, in the ninth line 157 = 146-»-ll; and

so on.

By sliding abed backwards and forwards, so that be always
lies on .'1 1>, we can fill in the t.-iMe rapidly with little chance of

crmr. Wo shall speak of the table thus couslructtd iu> Euler's
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Table. It will be found in a considerably extended form in his

Introductio, Lib. I., cliap. xvi.

A variety of problems in the enumeration of partitions can

be solved by means of Euler's Table, as we shall now show.

§ 22.] To find by means of Euler's Table the number of

partitions of n into p parts of tmrestr-icted magnitude.
Let ns first consider P (n \p\i). By (9) above, we have

l + :S.F{n\p\*) .r"5P = 1/(1
-
zw) (1

-
zx''} . . . ad co

,

= 1 +
•S,x''sf'l{l -x){l-ar). . .{l-x^),

by Exercises xxi. (18).
Hence

lPiii\p\*) x" = ^x^lil
-
x) {1-x'). . . (1

-
a*),

= 2P(«|*l^;')-»"^", by (8).

ThGrGfoPG

P(n\p\*) = F{n-p\*\1f>2y) (15).

Again,

l + ^Pu{n\p\*)x''z'' = {l+zx){l+Zir). . . ad co,

= 1 + 2a;JP('+i) aV(l -x){l-^r). . . (1
-

x^),

by chap, xxx., § 2, Example 2.

Hence

%Pn(n\p\*)x'' = xVf'">-'y(l-x)(l-x-). . .{1-xp),
= 2P (» j

*
\:lf>p) .i-''+5!'(^+i), ^y (g)_

Therefore

Pu(n\p\*) = P{n~ip(p+l)\*\::f>p) (16).

Example 1. P(20 |

5
| »)=/'(15 |

. |>5) = 84.

Example 2. P«(20 |

5
| .) = P(5 |

»
1 1>5)=7.

§ 23.] If we take any partition of 7i into p parts in which

the largest part is q, and remove that part, we shall leave a parti-

tion of n-q into ])-! parts no one of which exceeds q. Hence
we have the identity

P{n\p\q) = P{n-q\p-l\^q) (17);

and, if we make j» infinite, as a particular case, we have

P{>i\*\q) = P{n-q\*\:!t>q) (18).

It will be observed that (18) makes the solution of a certain

class of problems depend on Euler's Table.
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By comparing (l.">) and (18), we have the theorem

P{n\*\q)^F{n\q\i,).

which, however, is only a particular case of a theorem regarding

conjugacy, to be proved presently.

§ 24.] T/ieorems regarding conjugacy.

(I.) P(»|>;,!>7) = P(7i|>y|>;,) (19).

(II.) P{n-p\q-\\>p) = P(n-q\p-\\-:(>q) (20).

(III.) P{n\p\q) = P{n\q\p) (21).

To prove (I.) we observe that, by (7), we have

1 + •S.P{n i>/>l>g)3'^= 1/(1 -z) {\-zx). . . (1 -ly),

_,
,

v^ (l-^^')(l-^^*)---(l-^*'')'^
(l-x){l-a^)...{l-j,f)

'

Hence

vp(„,:c,.. -)^,
(l-^-')(l-a^-'). . .(l-^->)il (n\:f>p\:f>q)X

(l-arXl-x"). . . (l-;r')

(l-a:)(l-f')...(l-j^*'')

(l-a:)(l-x')...(l-j^)(l-j-)(l-aJ)...(l_;H')-

Since the fiiuction last written is symmetrical as regards p
and q, it must also be the equivalent of 2P(n l>gj>/>);r".
Hence Theorem (I.).

Theorem (II.) follows from (6) in the same way.

Since, by (17), we have

P{»\p\7) = P{n-q\p-l\>q).

P(n\q\p)^P{n-p\q-l\1i>p);

therefore, by (II.),

P(n\p\q) = P{r,\q\p).

which establishes Theorem (III.).

The following particular ca-scs are obtaine<l by making p or

q infinite :
—

P{H\>p\»)^P(n\*\1i^p) (22);

P{n\p\») = P(n\*\p) (23).
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§ 25.] The followiug theorems enable us to solve a number

of additional problems by means of Euler's Table :—

P(n\p\::f>q)
= F(,i-p\*\^p)-'S,P{n-^-p\*\:!f>p)

+ 2P(«-/i/,-^l*|>>p)

-^P{n-fH-p\*\>p)
(24).

Here the summations are with respect to /*,, //n, . . .
;
and

/x, is any one of the numbers q, q+1, . . ., q+2)
-

1, Ma the sum

of any two of them, /j.^ the sum of any three, and so on. The

series of sums is to be continued so long as n — fj^-p'^O. If

P{n\p\^q) come out or negative, this indicates that the

partition in question is impossible.

P{n\:^p\>q) = P{n\*\:!fp)-^P(n-v,\*\:!pp)
+ 2P («

-
1*2

I

*
I ^1})

-^P(n-y,\*\^p)
. . . . (25).

Here v^, v„, . . . have the same meanings with regard to

q + 1, q + 2, . . ., q+p as formerly /jj, ft-j, . . . with regard to

q, q+1, . . ., q+p-1.

P{n\*\*)
= P(«-11*|>1) + P(h-2|*|>2)+. , .+P(Ol *!>.») (26).

The demonstrations will present no difficulty after what has

already been given above.

CONSTRUCTIVE THEORY OF PARTITIONS.

§ 26.] Instead of making the theory of pai-titions depend on

series, we might contemplate the various partitions directly, and

develop their properties from their inherent character. Sylvester

has recently considered the subject from tliis point of view, and

has given what he calls a Constructive Theory of Partitions, which

throws a new light on many parts of the subject, and greatly

simplifies some of the fundamental demonstrations*. Into this

• Amer. Jour. Math. (1832),

c. II. 36
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theory \vc cannot witliiu our present limits enter
;
but we desire,

before leaving the subject, t*> call the attention of our readers to

the graphic method of dealing with partitions, which is one of

the chief weajMins of the new theory.

By the graph qf a partition is meant a series of row., if

asterL^ks, each row containing as many asterisks as there are

»uuit8 in a corrcisponding part of the partition. Thus

• • •

• • • • •

is the graph of the partition 3 + 5 + 3 of tlie number 11.

For many purposes it is convenient to arrange the graph so

that the i>arts come in order of magnitude, and all the initial

afiterisks are in one column. Thus the above may be written—
The graph is then said to be reoiilar.

The direct contemplation of the graph at onc«

gives us intuitive demonstrations of some of the

foregoing theorems.

For example, if we turn the columns of the graph last

written into rows, we have

where there are as many asterisks as before. The new

graph, therefore, represents a new partition of 11, which

may be said to be conjugate to the former partition-

Thus to erery partition of n into p parts the greaUst cj
which is q, there is a conjugate partition into q parts the

greatest of u-hich is p. Hence

s • •

• • •

P{n\p\q) = P{n\q\p),
an old result.

Again, to evert/ i>artition of n into p jxirfs no one qf trhick

efceetis q, there will be a conjugate partition into q orfewer parts
the greatest of which is p. Hence

Pin\p\>g)-P{n\:i>q\p) (27).

a new result ; and so on*.

*
According to Sylreatcr {Le.), thU wa; of proving the theoreroa of
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§27.] The following proof, given by Franklin*, of Euler's

famous theorem that

{l-x){l-x'){l-aP). . .ad<x>=^(- )Pa:«*'*P' (28)t,

is an excellent illustration of the peculiar power of the graphic

method.

The coefficient of x" in the expansion in question is obviously

Fu{n\evm\*)-Fu(n\odLd\*) (29).

Let us arrange the graphs of the partitions (into unequal

parts) regularly in descending order. Then the right-hand edge

of the graph will form a series of terraces all having slopes of

the same angle (this slope may, however, consist of a single

asterisk), thus—
A B

* *
* * *

* * *
* * * ****** ******

# * * * Vf » *******
* * # * * * #

We can transform the graph A by removing the top row and

placing it along the slope of the last terrace, thus—
, We then have a regular graph A'

representing a partition into unequal parts.

This process may be called contraction.
je. -jt -jt jt jt

We cannot transform B in this way ;

but we may extend B by removing the

slope of its last terrace, and placing it

above the top row, thus—
„, We then have a regular graph R repre-

senting a partition into unequal parts.

Every graph can be transformed by con-

traction or by extension, except when the top

row meets the slope of the last terrace
;
and in

this case also, provided it does not happen that

the number of asterisks in the top row is equal
•

Comptes Rcndus (1880).

+ Euler originally discovered this theorem by induction from particular

caries, and was for Ions unable to prove it. For other demonstrations. Bee

Letjendie, Xklorie des Nombrcs, t. u., 5 13, and Sylvester (i.e.).

3G—2
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to tlio number in tlio lust slope or exceeds it only by one,

a.s, for example, in

« • • • • • •

• ••• •••••

Contraction or extension in the first of tiicse would produce
an irregular graph ;

contraction in the second would produce an

irregular graph ; aud extension would produce a graph which

corresponds to a partition having two {mrts etpial. These two

cases may be spoken of as uiiomjutjute ; they can only ari^e when
tlie p parts of the partition are

p, p^\, p + 2 -J;'-!,

and the number

n=/> + (p+l) + . . . +(2;^-l) = |(.V-;));

or when the p parts arc

p+l, p + 2, p + 3, . . ., 2p,
and

n = {p + l) + (p + 2)+. . . +2p =
i{3p' + p).

Since contraction or extension always converts a partition

having an even or an odd number of parts into one having
an odd or an even number of parts respectively, we see

that, unless n bo a number of the form j(3/>'+/>),
I'u (n

I
even

|

#
)
=Pm (n 1

odd
|

»
).

When n hiis one or other of the forms i (iip'tp), there will

be one unconjugate partition which will be even or odd

according asp is even or odd
;

all the others will occur in pairs
wliich are conjugate in Franklin's transformation. Hence

J>i, (J (3/>'±|>) I
even \»)-Fu (hA^p'lp) |

o<ld
| .)

=
(
-

1)" (30).

Euler's Theorem follows at once.

ExF.ncisEs XXXVIII.

(1 .) Show how to evaluate Pu(n\ >p\,) by moaim of Knlcr'n Table,

Eraloate

(2.) /'(13,fij^3). (3.) /'(13|>6|).3I.
(4.) i'(10|.l.). (0.) /'^a)|'Jl».8).



§ 27 EXERCISES XXXVIII 565

Establish the following :
—

(6.) P«(n|.|.)=P(7i-49(? + l)|»| >q), where i 7 (7 + 1) Ji^st > n.

(7.) Pu{n\p\,) = P{n-ip{p-l)\p\*).

(8.) P (n I p I

.
)
= Pu (n + Jp (p

-
1) Ip I

. ).

(9.) PH(n|p|l>g)=P{n-ip(p-l)|p| t"Z-p + l).

(10.) Is the theorem P(n-p | g -1 1 .) = P(n-?|p- 1
1 ) universally

trne?

(11.) Show how to form a table for the values of P {« |

.
|
2, 3, . . .

, q).

(See Ptoc. Edinb. Math. Soc., 188.3-^.)

(12.) Show how to form a table for the number of partitions of n into an

indefinite number of odd parts.

Establish the following :—
(13.) P(»|.|l, 2, 2=, 23, . . .)

= 1.

(14.) Pu(nlp|l,3, . . .,23-1) = P(«-P=+p1p11,3,. . ., 2(7-1).

(15.) P(nlp|2, 4, . . .,2g) = P(n-p|pll, 3 2^
-

1).

(16.) P(K|.|odd) = P«(nl.|.).

(17.) P{n\>p\2,i 2?)= P(n|t-?|2, 4 2p).

(18.) P(n+p|p|l,3 2gr + l)
= P(n + 3|3|l, 3 2p + l).

(19.) Pu(n + p'\p\l, 3, . . .,23 + l)=P«(»+ 3»l3|l, 3, . . ., 2p + l).

(20.) P{7i+ 2plp|2, 4 23 + 2) = P(n+ 23|7|2, 4, . . .,2p + 2).

(21.) Show that P {>i\p\ .) = P (n -l\p-l\ *) + P {n-p\p\ *); and

hence construct a table for P (/i \p [ .). (See Whitworth, Choice and Chance,

chap. lu.)



CHAPTER XXXVr.

Probability, or the Theory of Averages.

§ 1.] An elementary account of the Theory of Prohahility,

or, as we should prefer to call it, the Theory of Averages, haa

usually found a place in English text-books on algebra. This

custom is justified by several considerations. The theory in

question afl'ords an e.xcellent illustration of the application of the

theory of permutations and combinations which is the funda-

uieutal part of the algebra of discrete quantity ;
it forms in its

elementary parts an excellent lugical exercise in the accurate use

of terms and in the nice discriniinatiou of shades of meaning ;

and, above all, it enters, as we shall see, into the regulation of

some of the most important practical concerns of modem life.

The student is proliahly aware that there are certain occur-

rences, or classes of events, of such a nature that, although we

cannot with the smallest degree of certainty assert a particular

proposition regarding any one of them taken singly, yet we can

assert the same proposition regarding a large number iV of them

with a degree of certainty which increases (with or without limit,

as the ca.se may be) as the number N increa-ses.

For example, if we take any particular man of 20 years of age,

nothing could be more uncertain than the statement that he will

live to be 25 ; but, if we consider 1000 such men, we m.ay assert

with con^idorable confidence that 96 per cent, of them will live to

be 25 ; and, if we take a million, we might with much greater con-

fidence assign the proportion with even closer accuracy. In so

doing, however, it woidd be necessary to state the limits both of

habitat and epoch within which the men are to be taken
; and,

even with a million ca.ses, we must not o.xpect to be able to assign
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the proportion of those who survive for 5 years with absohite

accuracy, but be prepared, when we take one million with

another, to find occasional small fluctuations about the indicated

percentage.

We may, for illustration, indicate the limits just spoken of

by saying that
" man of 20

"
is to mean a healthy man or

woman living in England in the 18th century. The "event,"

as it is technically called, here in question is the living for 5

yejirs more of a man of 20
;
the alternative to this event is not

living for 5 years more. The whole, made up of an event and
' its alternative or alternatives, we call its universe. The alternative

or alternatives to an event taken collectively we often call the

Complementary Event. The living or not hving of all the men
of 20 in England during the 18th century we may, following

Mr Venn*, call the sei-ies of the event. It will be observed

that on every occasion embraced by the series the event we are

considering is in question ;
and we express the above result of

observation by saying that the probability that a man of 20

living under the assigned conditions reached the age of 25 is '96.

We are thus led to the following abstract definition of the

Probability or Chance of an Event :
—

If on taking any very large number N out of a series of cases

in u-kich an event A is in question, A happens on pN occasions,

tlie prohability of tlm event A is said to be p.

In the framing of this definition we have, a.s is often done in

mathematical theories, substituted an ideal for the actual state

of matters usually observed in nature. In practice the number

p, which for the purposes of calculation we suppose a definite

quantity, would fluctuate to an extent depending on the nature

of the series of cases considered and on the numberN of specimen

cases selected!. Moreover, the mathematical definition contains

no indication of the extent or character of the series of cases.

*
Logic of Chance.

t We might take more explicit notice of this point by wording the

definition thus:—"If, on the average, in N out of a series of cases, Ac."

But, from the point of view of the ideal or mathematical theory, nothing

would thus be gained.
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How fiir tlie possible (luctuations of p, tlic extent of the seriea,

and tlio luagnitiide of iV will affect the bearing of any con-

clusion on pnictice must be judged by the light of circurastancos.

It is obvious, for instance, that it would be unwise to ajipl)- to

the 1 1th century the probability of the duration of human life

deduced from statistics taken in the 18th. This leads us also to

remark tiiat the application of the theory of probability is not

merely historical, as the definition might suggest Into most of

the important practical applicJitions there enters an element of

induction*. Thus we do in fact apply in the 19th century a

table of mortality statistics deduced from observations in the

18tli centurj-. The warranty for this extension of the series of

caises by induction must be sought in experience, and cannot in

most cases he obtained a priori.

There are, however, some cases where the circumstances aro

80 simple that the probability of the event can be deduced,
without elaborate collecting and sifting of observations, merely
from our definition of the circumstances under which the event
is to take place. The best examples of such cases are games of

liazard played with cards, dice, &c. If, for example, we assert

regarding the tossing of a halfpenny that out of a large numljcr
of trials heads will come up nearly as often as tails—in other

words, that the probability of heads is J, what we mean thereby
is that all the causes which tend to bring up heads are to

neutralise the causes that tend to bring up tails. In every
series of cases in question, the assumption, well or ill justified,
is ma<le that this counterbalancing of causes takes place. Th.it

this is really the right point of view will be best brought homo
to us if we reflect that undoubt^-dly a machine could bo con-

structed which would infallibly toss a halfj^nny so as alwavs
to land it heid-up on a thickly sjinded floor, provided the coin

were always i)laced the same way into the machine; also, that the
coin might have two heads or two tails

; and .so on.

In cflscs where the statement of probability rests on grounds
80 simple ns this, the difficulty regarding the extension of tiio

series by induction is less prominent The ideal theory in such

• In tlio proper, logical scnae of the word.



§§1,2 COROLLARIES ON THE DEFINITIOX 5G9

cases approximates more closely than usual to the actual circum-

stances. It is for this reason that the illustrations of the

elementary rules of probability are usually drawn from games of

hazard. The reader must not on that account suppose that the

main importance of the theory lies in its application to such

cases
;
nor must he forget that its other applications, however

important, are subject to restrictions and limitations which are

i.ot apparent in such physically simple cases as the theory of

cards and dice.

Before closing this discussion of the definition of probability

as a mathematical quantity, it will be well to warn the learner

that probability is not an attribute of any particular event

happening on any particular occasion. It can only be predicated

of an event happening or conceived to happen on a very large

number of "occasions," or, in popular language, of an event "on

the average" or in the "long run." Unless an event can happen,

or be conceived to happen, a great many times, there is no sense

in speaking of its probability, or at least no sense that appears to

us to be admissible in the following theory. The idea conveyed

by the definition here adopted would be better expressed by

substituting the word frequency for the word probability ; but,

after the above caution, we shall adhere to the accepted term.

§ 2.] The following corollaries and extensions may be added

to the definition.

Cor. 1. If the probability of an event be p, then out of N
cases in which it is in question it will happen pN times, N being

any very large number*.

Tliis is merely a transposition of the words of the definition.

As an example, let it be required to find the number out of 5000 men of

20 years of age who will on the average live to be 25. The probability of a

man of 20 living to be 25 may be taken to be '96 ; hence the number

required ia -96 x .5000= 4800.

Cor. 2. If the probability of an event be p, the probability of

itsfailing is \-p.
For out of a large number N of cases the event will happen

on pN occasions ;
hence it wiU fail to happen on N-pN

*
It is essential that pN also be a very large number. See Simmons,

Pruc. L. J/. S., XXVI., p. 307 (16^5).
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=
(1 -p) N occasions. Hence, by the definition, tlie probability

of the failing of the event is 1 -jo.

Cor. 3. J/th4i un'mTse of an event be made up ofn alt'

or, in other words, if an event must happen and that in one out of
n ways, and if the respective probabilities of its happening in these

vaijsbep,,p, p,,, then pi + p, + . . .+/>,= !.

For on every one of N occasions the event will happen ; and

it will happen in the first way on piN occasions, in the second on

p^N occasions, and so on. Hence N=piN +p,N+. . .+/>,A'';

that is, 1 =^1 +P3+ . . . +p„.
Cor. 4. Ifati event is certain to happen, its pritlntbility is I

;

if it is certain not to happen, its probability is 0.

For in tlie former case the event happens on 1 . N cases out

of N ca.ses ;
iu the latter on . A' cases out of N.

The probability of every event is thus a positive number

lying between and 1.

I'or. 5. Jf an event must happen in one out of n ua;/s all

equally probable, or if one out of n events must happen and alt are

e</ually probable, then the probability of eitch way of happening in

the first case, or of each event happeninij in the second, is \jn.

This follows at once from Cor. 3 by making />i =/>,
= . . . =/>,.

As a particular case, it follows that, if an event be equally

likely to happen or to fail, its probability is A.

Definition.— The ratio of the probability qf the happening of
an eient to the probability of its failing to happen is called the

odds in favour if the event, and the reciprocal of this ratio is called

the odds against it.

Thus, if the probability of an event be p, the odds in favmir

Mop-.l-p; the odd.s ajjainst I -p.p. Also, if the odds in

favour be m : n, the probability of the event is m/{m + n). If the

probability of the event be J, that is, if it be equally likely to

happen or to fail, the odds in favour are 1:1, and are said to

be even.

Cor. 6. ^/'the unliyrse of an event can Im atialysed into m + n
cases each of which in the long run will occur equally often*, and

• This u oiiuU; exproMed by saying that all the o*iM an Aqnally likely.
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if in m of these cases the event will happen and in the remaining
71 fail to happen, the probalilifi/ of the event is m/{7n + n).

After what has been said this will be obvious.

DIRECT CALCULATION OF PROBABILITIES.

§ 3.] The following examples of the calculation of proba-

bilities require no special knowledge beyond the definition of

probability and the principles of chap, xxiii.

Example 1. There are 5 men in a company of 20 soldiers who have

made up their minds to desert to the enemy whenever they are put on

outpost duty. If 3 men be taken from the company and sent on outpust

duty, what is the probability that all of them desert ?

The 3 men may be chosen from among the 20 in ^^C^ ways, all of wliieh

are equally likely. Three deserters may be chosen from among the 5 in 5C3

ways, all equally likely. The probability of the event in question is therefore

„ , „ 5.4.3 /20.19.18 ,,„ .

Example 2. If n people seat themselves at a round table, what is the

chance that two named individuals be neighbours ?

There are (see chap, xxiii., § 4) (n-l)l different ways, all equally likely,

in which the people may seat themselves. Among these we may have A and B
or B and ^ together along with the («-2)! different arrangements of the

rest ;
that is, we have 2 (n

-
2)! cases favourable to the event and all equally

likely. The required chance is therefore 2(ii- 2)!/(n- l)!
= 2/(;i- 1).

When Ji = 3, this gives chance =1, as it ought to do. The odds against

the event are in general ;i
- 3 to 2 ; the odds will therefore be even when the

number of people is 5.

Example 3. If a be a prime intogcr, and 7i= a', and if any integer 1 1> 74

be taken at random, find the chance that I contains a as a factor s times

and no more.

The integer I must be of the form Xa", where X is any integer less than

a'"' and prime to a"""'. Now, by chap, xixv., § 8, the number of integers

less than a'"' and prime to it is n''"'(l
-

1/a). Also the number of integers

> n is a*". Hence the required chance is u'-" (1
-

l/a)/u''=a~' (1
-

1/a) = 1/a"

-1/aM-'.

Example 4. Find the probability that two men A and ZJ of )k and n years

of age respectively both survive for p years.

The mortality tables (see § 15 below) give us the numbers out of 100,000

individuals of 10 years of age who complete their mth, »th, jn + ^th, n+pth

years. Let these numbers be !,„, i„, 2,„+p, J„+p. The probabilities that A
and B live to be m+p and n-^p years of age respectively are Im+plhi^ 'nWn
respectively. Consider now two large groups of men numbering M and N
respectively. We suppose A to be always selected from the first and B always
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from tlio fcpond. lu thin way we couM Boloct altogctlicr MS pairs of men

wlio mny Iw rUvo or deail aftur p yenra linvc clapwH. The niimbor out of

the M m-'U living after p years is .V/„+r/'„, by § 2, Cor. 1. Similarly the

number livint; out of the N men is A'/,+p//,. Out of Ihenc we could form

HSI„+pl^pll„ln Pft'". This last number will be the number of pairs

of Burvivors out of the MS pairs with which wo started. Hence the

probability required is J„+pJ,+p/'m'»=('m+i./'J C+r/'-): '" o'ber words, it

is the product o( the probabilities that the two men singly each surrive for

p years. The student should study this example carefully, as it furnishes a

direct proof of a result which would usually be deduced from the law for

the multiplication of probabilities. See below, § 6.

Example 5. A number of balls is to be drawn from an urn, 1, 2, . . ., n

being all equally likely. What is the probability that the number drawn

be even?

We can draw 1, 2 m respectively in „C,, ,C, ,C, ways

resjioctively. Hence we may consider the universe of the event as consisting

of ,C, + ,C'j + . . . + ,C„= (1 + 1 )"
- 1 = 2* - 1 equally likely cases. The number

of these in which the drawing is even is ,C, + ,C,+ . . .=^{(1 + 1)"

+ (1- l)"-2} = J(2»-2) = 2"-'-l. The number of ways in which an odd

drawing can be made is .C', + ,C,+ . . . =4 {(l + l)«- (1
-
1)"1 = J2" = 2«->.

Hence the chance that the drawing bo even h (2»-'
-
l)/(2"- 1), thot it bo

odd 2"-'/(2*-I). The sum of these is unity, as it ought to be; since, if

the drawing is not odd, it must be even. In general, an odd drawing is more

likely than an even drawing, the odds in its favour being 2""' : 2""' - 1 ; but

the odds become more nearly even as n increases.

Example 6. A white rook and two block pawns are placed at random on

a chess-board in any of the positions which they might occupy in an actual

game. Find the ratio of the chance that the rook can take one or both of

the powns to the chance that either or both of the pawns can take the rook.

Let us look at the board from the side of while ; and calculate in the first

place the whole number of possible arrangements of tlii' pieces. No block

pawn can lie on ouy of the front squares ;
hence we may have the rook on

any of these 8 and the two pawns on any two of the remaining 56 ; in all,

8 X 2 j,Cj
= 8 X 50 X 55 arrangements. Again, we may have the rook on any one

of the 60 squares and the two pawns on any two of the remaining 55 squares;

in all, 60x65x54 arrangements. The universe may therefore be supposed

to contain 02 x 50 x 55 equally likely cases.

Instead of calculating the chance that the rook can take either or boUi of

tho pawns, it is simpler, as often happens, to calculate the chance of the

oomplcmentary event, namely, that the rook can take neither of the pawns.

If the rook lie on one of tho front row of squares, neither of tho pawns can

lie on the corresponding column, that is, the pawns may occupy any two ont

of 49 squares ; this gives 8 x 4U x 48 arrangements. If the rook lies in any
one of the remaining 50 iu|uares, neither of tho pawns must lie in tho row or

oolnnin belonging to that square; hence there are for the two pawns 42 x 41

positions. Wo thus have 50x42x41 arrangements. Altogether wo havo
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8x49x48 +56x42x41=56x49x42 arrangements in which the rook can

take neitlier pawn. Hence the chance that the rook can take neither pawn
is 56 X 49 X 42/62 x 56 x 55 = 1029/1705. The chance that the rook can take

one or both of the pawns is therefore 1 - 1029/1705 = 076/1705.
Consider now the attack on the rook. If he is on a side sciuare, he can

only be attacked by either of the two pawns from one square. For the side

sqiiares we have therefoi'e only 24 x 54 arrangements in which the rook can

be taken. There remain 36 squares on each of which the rook can be taken

from two squares, that is, in 6 ways. For the 36 squares we therefore have

36 X 2 + 36 X 4 X 53 arrangements in which the rook can be taken by one or by
both the pawns. Altogether there are 9000 arrangements in which the rook

may be taken. Hence the chance that he be in danger is 9000/62 x 50 x 55 =

225/4774. The ratio of the two chances is 9464 : 1125.

§ 4.] A considerable number of interesting examples can be

solved by the method of chap, xxni., § 15. Let there be r bags,

the first of which contains Oi, bi, c,, . . ., k^ counters, marked

with the numbers oj, /3j, yi, . . ., k^; the second, a.,, i/o, Cj, . . . ^2,

marked <u, p^, y„, . . ., xj; and so on. If a counter be drawn

from each bag, what is the chance that the sum of the numbers

drawn is « ?

By chap, xxm., § 15, the number of ways in which the sum

of the drawings can amount to n is the coefhcient, A „ say, of x"

in the distribution of the product

(«,.r"' + 6iir*' + . . . + kiX'')

y.
{a^.v'^ + b^a^' + . . .+k.x")

X (arX'^ + brX^' + . . . + kr3f').

Again, the whole number of drawings possible is the sum of

all the coefficients ;
that is to say,

(a, + 61 + . . . + ^1)

X
(t/j + ^2 + . . . + il-j)

y.{ar + hr+ . . . + kr)
= D, say.

Hence the required chance is A„/D.

Example 1. A throw has been made with three dice. The sum is known

to be 12 ; required the probability that the throw was 4, 4, 4.

The nwnber of ways in which 12 can be thrown with three dice is the

coefficient of i'- in
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that is to lay, of x* in

(I+i + i»+i»+*« + r')*.

Now the coefficients in (1 +x+ . . . +i*)' up to the term in i* are (»ee

chap. IT.,§ 15) 1 + 2 + 3 + 4 + 5 + 6 + 6 + 4 + 3 + 2. Hence the coeiTicient of x»

in tlic cabe of the multinomial is 6 + C + 5 + 4+ 3 + 2 = 26.* The required

probability is therefore 1/2.5.

Example 2. One die has 3 faces marked 1, 2 marked 2, and 1 marked 3;

another has 1 face marked 1, 2 marked 2, and 3 marked 3. What is the

ino!it probable throw with the two dice, and what the chance of that throw?

The numbers of wn.vs in wliich the sums 2, 3, 4, 5, 6 can be made arc the

cooClicicnts of x», i», x*, x», «* in the expansioDof (3z + 2x'+z*)(x + 2x'+8x').

Naw this product is equal to

3x«+ Sx* + 1 Jx« + 8x» + 3x«.

Tiic sum that will occur oftenest in the long run is therefore 4. The
whole number of dillciont wajs in which the different throws may turn out

is (3 + 2+ 1) (l + 2 + ;jJ
= 36. Hence the probability of the sum 4 is 14/36

= 7/18.

Example 3. An nm contains m counters marked with tlie numbers

1, 2, . . ., m. A counter is drawn and replaced r times; what is the

chance that the sum of the numbers drawn is n?t
The whole number of possible d fferent drawings is w'.

The number of those which give the sum n is the coefficient of x" in

(x + x»+. . . + 1"")', that is to say, of x*"' in (l + x+. . . + x"'-')'. Now
1 + X + . . . + x"'-' = (l-x'")/(l-x). We have therefore to find the coefficient

of X*-' in

(l-i'")'-(l-x)-'={l-,C,x"« + rC5X»»-rCji*» + . . .}

*
V*i'* 1.2

"^^
i.a.8

'^^- •

•]•
The coefficient in question is

_ r(r+l ) ._^ .(n-l) r(r + l). . (n-m-l)r
-'"

(n-r)!
"

(n-r-m)lll
r(r + l). . .(n-2m-l)r(r-l)

(n-r-2m)!21
-• • • •

The required probability is A^^jm''.

Example 4. If m odd and n even integers (n<tm-l) be written down at

random, show that the chance that no two odd integers are adjacent ia

nl (n + l)l/(m + II)! (n
- m+ 1)1.

In order to tind in how many different ways we can write down the

intei^t rs so that no two odd ones come together, we may suppose the m odd

integers written down in any one of the ml possible ways, and omsider the

m - 1 spaces between them together with the two spaces to the right and left

of the row. The problem now is to find in how many ways we can fill the

* We mij^ht also have found the coefficient of x* by expanding
(1 x")*(l-x)"', as in Example 4 below.

t Thi> is gcnernlly called Di'moivre's Problem. For an interesting account

o( ltd hiitory sec Tudlmntcr, llitt. yrob., pp. C'J, 85.
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74 eveu intoKcrs into the spaces so that tlioro ehaU always be one at least in

every one of the m - 1 spaces. A little consideration will show that the

number of ways, irrespective of order, is the coefficient of s" in

(l+j + j;= + . . . ad 00 )2(x + i3 + . . . ad co )'"-';

that is, of s»-"'+i in (l + x+ x2 + . . .)^{l + x + x- + . . .)'"-»;

that is, of a;»-^+' in (1
-

x)-l"'+').

This coefficient is

(m + l)(Hi + 2). (» + !) _ (« + !)!

(n-m+l)I ~ml(n-m+l)l'
If we remember that every distribution of the n integers among the m + 1

spaces can be permutated in n\ ways, we now see that the number of ways
in which the m + n integers can be arranged as required is

m! 77i! (n + l)I/m! {n-m + iy.
= nl (» + l)I/(n

- 7n + 1)1.

The whole number of ways in which the 771 + 7t integers can be arranged is

(m + 7i)I,
hence the probability required is 7il{tt + l)!/(7t-7a+ l)!(m + n)!.

ADDITION AND MULTIPLICATION OF PROBABILITIES.

§ 5.] In many cases we have to consider the probabilities of

a set of events wliich are of such a nature that the happening of

any one of them upon any occasion excUides the happening of

any other upon that particular occasion. A set of events so

related are said to be nnitualhj exclusive. The set of events

considered may be merely different ways of happening of the

same event, provided these ways of happening are mutually
exclusive.

In such cases the following rule, which we may caU the

Addition Rule, applies :
—

If the prohabilities of n mutually exclusive events be pi, p^,

. . ., p„, the c/uince that one out of these n events happens on any

ixirticular occasion on which all of them are in question is pi+pi +

. . .+Pn-
To prove this rule, consider any large number N of occasions

where all the events are in question. Out of these N occasions

the n events wiU happen on piN^, PiN", . . ., p„N occasions re-

spectively. There is no cross classification here, since no more

than one of the events can happen on any one occasion. Out of

N occasions, therefore, one or other of the n events will happen
GO. piN + p^N + . . . +pnN=(pi+Pi + . . . +Pn)N' occasions.

Hence the probability tliat one out of the n events happens on

any one occasion is 2h + I>i + • • • +2'»-
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It should be ohserved that the reasoning would lose all force

if the cvcnt.s were not mutually exclusive, for then it might be

that on the />,^ ocatsions on which the first event hapjeus one
or more of the others hapfien. We shall give the proper formula

iu this case presently.

As an illustratiou of the application of this rale, let as snppose that a
throw is made with two ordinary dice, and calculate the probability that the
throw does not exceed 8. There are 7 ways in which the event in que»tion
may hnppon, namely, the throw may be 2, 3, 4, 5, 6, 7, or 8

;
and these ways

arc of course mutually exclusive. Now (see § 4, Example 1) the probabilities
of these 7 throws are 1/30, 2/30, 3/36, 4/3G, 5/30, 6/30, 5/36 rei^pvctivcly.
Hence the probability that a throw with two dice does not exceed 8 is

(1 + 2 + 3 + 4 + 5 + 6 + 5)/36= 2G/3C=13/18.

§ 6.] When a set of events is such that the happening of

any one of them iu no way affects the happening of any other,

we say that the events are mutually independtnt. For such a set

of events we have the followiug Multiplication Rule :
—

i/' tlie respective probabilities of n independent events be />,,

Pi< • • •, P«, the probability that they all happen on any occasion

in which all o/thim are in question is pip^ . . . p^.
In proof of this rule we may reason as follows :

—Out of

any large numberN of cases where all the events are in qtiestion,

the first event will happen on ^i A'' occasions. Out of these />,-V
occasions the second event will also happen on Pt(piN^ =PiPi^
occasions ;

so that out of N there are pip,N occasions on
which both the first and second events happen. Coutinuing
in this way, we show that out of N occasions there are

p,p, . . . pnN occasions on which all the n events happen.
The prolability tliat all the n events happen on any occasion

is therefore />,/>, . . . ;>,.

It should be tioticed that the above reasoning would stand

if the events were not independent, provided />, denote the

probability tliat event 2 happen after event 1 has happened, />,

the probability that 3 happen after 1 and 2 have happened, aud
so on. *

It must be observed, however, that the probability calculated

is then that the events happen in the order 1, 2, 3, . . ., «.

Hence the followiug conclusion :
—
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Cor. Ij the eceiUs I, •!,..., n be inierdepmdent and pi

denote tfie probabiliti/ of l,2h the probabilifi/ that 2 hapjjen after

1 has happened, p, the probabiliti/ that 3 happ)en after 1 and 2

have happened, and so on, tJien the probability that the events

1, 2, . . .,n luippen in the order indicated is p^p^ . . . />„.

As an illustration of the multiplication rule, let U3 suppose that a die is

thrown twice, and calculate the probability that the result is such that the

first throw does not exceed 3 and the second does not exceed 5.

The probability that the first throw does not exceed 3 is, by the addition

rule, 3/6 ; the probability that the second does not exceed 5 is 5/0. The result

of the first throw in no way affects the result of the second ;
hence the

probability that the result of the two throws is as indicated is, by the

multiplication rule, (3/6) x (5/6)
= 5/12.

As an example of the effect of a slight alteration in the wording of the

question, consider the following:—A die has been thrown twice : what is the

probability that one of the throws does not exceed 3 and the other does not

exceed 5 ?

Since the particular throws are now not specified, the event in question

happens—1st, if the first throw does not exceed 3 and the second does not

exceed 5 ; 2ud, if the first throw is 4 or 5 and the second does not exceed 3.

These cases are mutually exclusive, and the respective probabilities are 5/12
and 1/6. Hence, by the addition rule, the probabihty of the event in question
is 7/12.

§ 7.] The following examples will illustrate the application
of the addition aud multiplication of probabilities.

Example 1. One urn. A, contains m balls, pm being white, (l-p)»K black;

another, B, contains n balls, qn white, {l-g)n black. A person selects one of

the two urns at random, and draws a baU ; calculate the chance that it be

white ; and compare with the chance of drawing a white ball when all the

ni + K balls are in one urn.

There are two ways, mutually exclusive, in which a white ball may be

drawn, namely, from A or from B.

The chance that the drawer selects the urn A is 1/2, and if he selects that

urn the chance of a white ball is p. Hence the chance that a white ball is

drawn from A is (§ 6, Cor.) ip. Similarly the chance that a white biiU

is diawn from B is i,q. The whole chance of drawing a white ball is there-

fore {p + q)l2.

If all the balls be in one urn, the chance is {pm + qii)l{in+n).
Now (pm + 5;i)/(m + n)> = <(p + g)/2,

according as 2{pm + qn)> = <{p + q) (m+ n),

according as (m-n) (p-g)> = <0.
Hence the chance of drawing a white ball will be unaltered by mixing if

either the numbers of balls in A aud £ be equal, or the proportion of white

balls in each be the same.

C. II. 37
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If Oie nambcr of balls Iw unoqnal, and tlio proportions of whito bo an-

cqiml, then the miring of the balls will incrca«c the chnnco of drawing a

white if the urn which contains most balls hnro also the larger projiortioD of

white; and will dimiuish the chance of drawing a white if the urn which

ooutains mogt balls have the smaller proportion of white.

De Morgan* has used a particular case of this example to point out tho

danger of a (iiUacious use of the addition rule. Let us suppose the two cms

to be OS follows: A (3 wh., 4 bl.) ; h (-1 wh., 3 bl.). We might then with

some plausibility reason thus:—The drawer most select cither il orU. If he

select A, the chance of white is 8/7 ; if ho select B, the chance of white is

4/7. Hence, by the addition rule, the whole chance of while is 3/7 + 4/7 = 1.

In other word^, white is certain to be drawn, wliich is absurd. The mistake

consists in not taking account of the fact that the drawer has a choice of urns

and that tho chance of his selecting A must therefore bo maltiphed into hit

chance of drawing white after be has selected A. The chance should there-

fore be 8/14+4/14=1/2.
The nec<^ssity for introducing the factor 1/2 will be best seen by reasoning

directly from the fundamental definition. Let us suppose the drawer to make
the experiment any large number N of times. In the long run the one urn

will be selected as often as the other. Hence out of H times A will be selected

A/2 times. Out of those A72 times white will be drawn from A (3/7) (A/2)
= A (3/14) times. Similarly, we see that white wUl be drawn from h A'(4/14)

times. Hence, on the whole, out of A trials white will be drawn

(3/14 + 4/14) N times. The chance is therefore 3/14 + 4/14.

Example 2. Four cards are drawn from an ordinary pack of 62 ; what is

the chance that they be all of different suits?

We may treat this as an example of § G, Cor. The chance that tho

lir»t caril drawn be of one of tho 4 suits is, of course, 1. The chance, after one

suit is thus represented, that the next card drawn be of a different suit is,

since there are now only 3 suits allowable and only ol cards to choose

from, 3.13/51. After two cards of differeut suits are drawn, the chance that

the next is of a different suit is 2.13/50. Finally, the chance that the last

caid is of a different suit from the first three is 13/49. Uy the principle justf

mentiuned tho whole chance is therefore 8.18.2.13.13/51.50.49= 13*/17.2o.49
= 1/10 roughly.

Example 8. How many times must a man be allowed to toss a penny in

order that tho odds may be 100 to 1 that he gets at least one head?
Let z be the number of tosses. The complementary event to " one head

at least
"

is
"

all tails." Since the chance of a tail each time is 1/2, and the

result of each toss is iudc|>cndeut of the result of every other, the chance ot

"all tails" in x tosses is (1/2)*. The chance of one head at least is therefore

1 - (1/2)*, Ijy the conditions of the question, wo must therefore have

1-(1/2)«=100/101;

•
Alt. "Theory of rrobabiLty/'iiicy. J/etru/). lUipublislicd A'ncy. Purti

Uaih. (Ibl7), p. U'J'J.
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hence 2=== 101,

x=Iogl01/log2,
= 2-0043/-30in,
= 6-6 ....

It appears, therefore, that in 6 tosses the odds are less than 100 to 1, and in

7 tosses more.

Example 4. A man tosses 10 pennies, removes all that fall liead up ;

tosses the remainder, and again removes all that fall head up ; and so on.

How many times ought he to be allowed to repeat this operation in order

that there may be an even chance that before he is done all the pennies have

been removed ?

Let X be the number of times, then it is clearly necessary and sufficient

for his success that each of the 10 pennies shall have turned up head at least

once. The chance that each penny come np head at least once in x trials is

1 - (1/2)'. Hence the chance that each of the 10 has turned up heads at least

once is {1- (1/2)'}"'. By the conditions of the problem we must therefore

have

{l-(l/2)'}i»=l/2;

(1/2)'= 1 - (l/2)iAo
= -06097 ;

x= -log -06697/108 2,

= 3-9 very nearly.

Hence he must liave 4 trials to secure an even chance.

Example 5. A man is to gain a shilhng on the following conditions. He
di-aws twice (replacing each time) out of an urn containing one white and one

black ball. If he draws white twice he wins. If he fails a black ball is added,

he tries twice again, and wins if he draws white twice. If he fails another

black ball is added ;
and so on, ad infinitum. What is his chance of gaining

the shilhng? (Laurent, Calcul des Probabilitis (1873), p. 69.)

The chances of drawing white in the various trials are 1/2^^, 1/3-, . . .

1/n*, . . . The chances of failing in the various trials are 1-1/2^,
1 - 1/3*, . . . , 1 - 1/h-, . . . Hence the chance of failing in all the trials

is (1
-

1/2=) (I
-

1/3-) ... (1
-

1/«-) ... ad X ,

Now

,i.('4.)('4.)-('-^.)
_ {1.3}{2.4} . . . {(n-3) (»-l)}{(n-2)n}{(n-l)(» + l)}

~,^. P.2^..«2 »

- r M?_+i)

n-.2 V nj 2

The chance of failing to gain the shilling is therefore 1/2. Ilence tlie chance

of gaining the shilling is 1/2.

We might have calculated the chance of gaiuing the shUling directly, by

37—2
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observinK thnt it is tlio sum of the clianoes of the following CTcntR : 1°,

gaining in the first trial; 2°, foilinR in let and fc-aining in 2nd; 3°, failing

in Ist and 2iid and gaining in the 3rd; and so on. In this way the chance

proseuU iUilf a* the following infinite series:—

i.H'-^0^---H'-^.){'-r.)-{'-i),v',,----
Tlie fum of this scries to infinity must therefore be 1/2. That this is eo may
be easily verified. The present is one example among many in which the

theory of probability soggcsts interesting algebraical identities.

Ejample 6. A and fl cast altcrnntcly with a pair of ordinary Hiee. A

wins if he throws 6 bcfure I) throws 7, and I> if he throws 7 before A throwi

6. If J bigin, show that his chance of winning : i)'s=30 : 31. (Duyghens,

De Hatiocinii' in Ludo Alta, 1G57.)

Let p and q be the chances of throwing and of failing to throw 6 at a

single cast with two dice ; r and $ the corresponding chances for 7.

A may win in the following ways: 1°, A succeed at Ist throw; 2°, A fail

at 1st, B fail at 2ud, A sDcceed at 3rd ; and so on. His chance is thurcfuie

represented by the following infinite scries:—
ji + 5il) + 9«.;»j) + . . .=p{l + (?<) + (9«)' + . . .},

=j./(l-j.).

B may win in the following ways:—1°, A fail at Ist, B sncccod at 2nd;

2°, A fail at 1st, U fail at 2nd, A fail at 3rd, B succeed at 4th; and su on.

Ilis chance is therefore

jr + j».ir + g»7«jr+. . .= ?r{l + (}») + {j*)'+ . . .},

= 9r/(l-g.).

Ilcnce A'a chance : B's=p : qr.

Now (see § 4, Example l)p=S/36, g = 31/36, r = G/36; hence

A's chance : B's=S/36 : 6 . 31/3C»,
= 30 :31.

For Hnygliens' own solution see Todliunter, Hut. Prob., p. 21.

Example 7. A coin is tossed ni-t-n times (m>n). Prove that Uie chance

of at least m c>insc<:utire head^ apiwaring is (n + 2)/2"+'.

The event in question happins if there apptar—Ist, exactly m ; 2nd,

exactly m -t- 1 ; . . .; (n + l)th, eiactly m + n consecutive hiads.

Now a run of exactly m consrcutive heads may commence with the Ist,

2nJ, 3rd, n-ltb, nth, n + lth throw. Since m>n, there cannot be mure
than one run of m or more consecutive heads, so that the complication duo

to re|>«tition of runs docs not occur in the |)resent problem. The chance*

of the first and last of those cases are each 1/2"'*'', the chances of the other*

Il'tm-M^ Hence tlio chance of a run of exactly m consecative heads is

2/2-+' + (h
- 1 )/2""= (n + 3)/2»'-".

In like manner, we sec that the chance of a run of m-t-l consecutive

heads is (n + 2)/2"*+' ; and so on, up to m + n-2. Also the chances of a mn
of exactly m-f n- 1 and of exactly in-i-n consecutive head* are 1/2—

1^>~' and

lyomf. icaiKtIivcly.
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lloiicu the cliance 2> of a run of at least m heads is given by

_n + 3 n + 2 _5_ ^ 1

P ~ 2m+2
""

2'»+3
+ • • • +

2">'H>
"''

2'"+»+i
'*'

2"»+"

The summation of the series on the left-hand side is effected (see

chap. XX., § 13) by multiplying by (1
-
1/2)== 1/4. We thus find

_ w + 3 71 + 2 n + 1 4
iP~- 2m+i

"*
ym+S

'''

2"'+^
+ . . . +

2m-hi+i

_ 2(« + 3) _ 2(» + 2) _ 2.5 _ _2^
2*n+3 2"*''"*

• • • ~
2m-Hl+l 2"*"^"^

n + 3
.

6
' nm+l T • • • T o,«4._4.| + om+-i»4.Q •

gn'+l
T . . . T

2m+i>+l
^

2"''H»+>
^
2"*+^' 2'''+"''"-

'

J .
"+3 " + 4 S 2 1

4^^2"»+3 2"'+-* 2*'*'*''*'*'^ 2"''^'*"- 2"*"^'*"*"-*

_« + 2

-2m+3'

Hence i)
=

(n + 2)/2'"+i.

GENERAL THEOREMS REGARDING THE PROBABILITY OF

COMPOUND EVENTS.

§ 8.] The probaliilit!/ that an event, whose probability is p,

hap2)en on exactly r out of n occasiotis in which it is in question is

uPrp^q^''', where g= 1 -p is the probability that the event fail.

The probability that the event happen on r specified occasions

and fail on the remaining n-r is by the multiphcation rule

ppqpqq . . . where there are rp's and n— r q's, that is, p''q''~''.

Now the occasions are not specified ;
in other words, the happen-

ing, and failing, may occur in any order. There are as many

ways of arranging the r happenings and n— r failings as there

are permutations of « things r of which are alike and n—r alike,

that is to say, «!/»•! (w
—

»-)! =„Cy. There are therefore „Cr

mutually exclusive ways in which the event with which we are

concerned may happen ;
and the probability of each of these is

p^'q'"''. Hence, by the addition rule, the probability in question

is .CrpY-''-

It will be observed that the probabilities that the event

happen exactly «, n- 1, . . ., 2, 1, times respectively, are the

1st, 2nd, 3rd (n + l)th terms of the expansion of (p + q)".

Since, if we make n trials, the event must happen either 0,
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or 1, <'r 2, . . ., or fi times, the sum of all these prohahilities

ought to be unity. Tliia is so ; for, since p + q=l, (p + q)''= I.

It will be seen without further demonstration that the pro-

]>osition just establislied is merely a particular case of the

following general theorem :
—

If there be m eirnts A, B, G, . . . one but not more qf which

muit happen on every ocrasioti, and if their probuhilities he p, q, r,

. . . re^ectivilij, the probability that on n occa,*i')ns A happen

exactly o times, B exactly /3 times, C exactly y times, . . . is

n\p'q'^n. . ./al^ly!. . .,

where a + ^ + y+. . .=n.

It should be obf^erved that the expression just written is

the general term in the expansion of the multinomial

(/> + 7+r+. . .)"•

Exiinipio 1. The facea of a cnbical die are marked 1, 2, 2, 4, 4, 6;

required the probability that in 8 throirs 1, 2, 4 turn op exactly 3, 2, 3 tinics

resiwotively.

By the general theorem just stated the prolmbility is

81 /ly/iy/iy 7.5.2

81 21 31 \6 J V3/ VS/
"

»'
'

~Qi 'PProiJniately.

Exainplc 2. Out of n occasions in which an event of probability p is in

question, on what number of occasions is it most likely to happen?
We have here to determine r so that „CtP^9''~' """y ^ * maximum.

Now «C,y<j"-'/.C^,p'-'g—
^• = (i.-r+ l)p/rj.

Hence the probability will increase as r increases, so long as

(n-r-\-\)p>rq,
that is, (n + 1) p > r (p + ?),

that is r<(n+l)p
If (n + l)p bo an intcRer, =» say, then the event will be equally likely to

Imppi n on • - 1 or on < occa'iions, and more likely to happen < - 1 or < times

than any other number of times.

If (n-t- l)p bo not an integer, and t be the greatest integer in (n-i- l)p, then

the event is most likely to happen on • occasions*.

• When n is very large, (n + l)p differs inappi-eciably from np. Henoe

out of a very large number n of occasions an event is most likely to hap|>en

on pn occasions. This, of course, is simply the fundamental principle of g 2,

Cor. 1, arrircd at by a circuitoas route starting from itself in the first

instanoe.
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As a numerical instance, suppose an ordinary die is thrown 20 times,

what is the niimber of aces most likely to appear?

Here »i==20; p = l/6; (n + l)p = 3i.

The most likely number o£ aces is therefore 3.

§ 9.] The probabilittj that an event happen on at least r otit

of n occasions where it is in question is

nCrpY-'' + nCr+lP'^Y'"-' + • + nCu-^f'-'q + p" . . . (1).

For an eveut happens at least r times if it happen either

exactly r
;
or exactly r + 1

;
. . .

;
or exactly n times. Hence

the probability that it happens at least r times is the sum of

the probabilities that it happens exactly r, exactly r+ 1, . . .,

exactly n times
;
and this, by § 8, gives the expression (1).

Another expression for the probability just found may be

deduced as follows :
—

Suppose we watch the sequence of the

happenings and failings in a series of different cases. After we

have observed the event to have happened just r times, we may
withdraw our attention and proceed to consider another case ;

and so on. Looking at the matter in this way, we see that the

r happenings may he just made up on the rth, or on the r+ 1th,

. . ., or on the nth occasion.

If the r happenings have been made up in just s occasions,

then the event must have happened on the sth occasion and on

any r - 1 of the preceding s - 1 occasions. The probability of

this contingency is

p X ...Cr-^p'-y-'^.-.C^^rPY-"-

Hence the probability that the event happen at least r times in

n trials is

p^ + rC^'-q + ,+,ap'-q'+. . . +,.,C„_,j3V"'"

=^^••{1 + rC,q + r+,C..q^ + . . . + n-iC,..,.^''-'-} (2).

As the two expressions (1) and (2) are outwardly very different, it may be

well to show that they are reaUy identical. To do this, we have to prove that
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The cxprcKnioii ]a»t written is, up to tlio (n
-

r)tli power of j, identical with

(l-,)"---!! + 5/(1 -9)}» = (l-7)"-^/(l -?)•= (! -8)-'.

Now, as may bo readily verified,

(1-9) '•=1+,C,7+ ^,C,?»+ . . . +,_,P.-r9"-'+ • • • .

The rciiuircd identity is therefore establislud.

Example. A and li play a game which muBt be either lost or won; the

probability that A piins any game is p, that li gains it l-p = q; what is the

chance tliat A gains m games bofure B gains n? (Pascal's Problem.)*

The issue in question must be decided in m + n - 1 games at the utmost.

The chance required is in fact the chanco that A gains m games at least out

of m + n- 1, that is, by (1) above,

P'^-' + m-H.-iC, ?»+-'?+ . . . +„,+,-,C„p»«'-' (1').

We might adopt tlie second way of looking at the question given above,

and tUUB arrive at the expression

P"*{l + mC,g + „^,C,«'+ . . . +„+,-,C..,<j->} (2').

for the required chance.

§ 10.] The re.sults just aiTivcd at may be consideralily

generalised. Let us consider n independent events .^i, At,

. .
., An, whoi?e respective probabilities are p,, ji^, . . .,/),.

In tlie first place, in contrast to §§ 8, 9, let us calculate the

chance that one at Ifaxt of the n events happen.

Tlie complementary event is that none of the « events happen.
The probability of this is (1 —p^ (1 -/>,,) ... (1 -/'). Hence the

probability that one at least happen is

1-(1 -/>.)(! -;'.)• • . (!-/'»)
=
~pi

-
^PiPi + "S-ptPiPi

-
. . . (

-
)"-V'i/'i • • • r« (!)•

Next let us find the probabiliti/ that one and no more qf the n

events happen.

The probability that any particular event, any A,, and none

of the others happen is p, (1 -/>,) (1 -p,) ... (1 -/>,). Hence
the reijuired probability is

5/>. (1 -p.) (1 -p,) ... (1 -Pn)
=

5;>,-jC,5;»,/>j + ,Cj2/>,;>,;3,-. . . (-)"-',(7,-,;>,/>j. . .j», (2).

* riiraouB in the history of mathematics. It was lirst solved for the

particular case p = </ by Pascal (l(i.'i4). The more general result (1*) above
vi.i- i-ivi'n by Jnhn IVrnmilli (1710). The other formula {2") wcms to be dua
U< .MMiiliiiurt (171 1). See Toilhuiitcr, Ih/t. I'rob., p. 98.
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For the products two and two arise from -
277, (/>., +2h+ • •

+Pn), and eacli pair will come in once for every letter in it. Again,

the products three and three arise from 2pi {P2P3 +PiPi + • • • ) >

lience each triad will come in once for every pair of letters that

can be selected from it
;
and so on.

By precisely similar reasoning, we can show that tlie probability

that r and no more of the n events happen is

^PiPi ' • i'r (1 -Pr+i) (1 -Pr+2) ... (1 -p„)
=

'^PlPi- . . Pr- r+lC{S.lhPl • . .jCr+l

+ T-i^Ci^PlPi . Pr+1

(-Yr+sC.'S.p.p. . . .pr+,

(-)"'\Cn^rPlP-2- -Pn (3).

We can now calculate tJ/e probabi/iti/ that r at least out of tlm

n events happen.

To do so we have merely to sum all the values of (3) obtained

by giving r the values 7; r+1, r+2,. . ., n successive!}'.

In this summation the coefficient of %PiP2 . Pr+i is

\~y {r+s(^s
~

r+sCj-l + r+sCj_2
—

. . .(-)'" r+sCj + (
—

1)*}.

Now the expression within the brackets is the coefficient of

af in {l+xy+'x{l+x)-\ that is to say, in {l+xy+'-\ This

coefficient is r+s-iO,. Hence the coefficient of 'S.p,p.2 . . . pr+, is

(
~

)'r+«-lL's-

The probability that r at least out of the n events happen is

therefore

"^PlPi- -Pr-rCi^Pip.. . .Pr+l

+ r+lColjhp. . . .pr+2

{-yr+,-lC,1pip.i. . .prv,

{-y-\-,C^-rPlP2 . . .Pn (4).

Since the happening of the same event on n different occasions

may be regarded as the happening of n different events whose

/
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probabilities are all equal, the formulae (3) and (4) above ought,
when p,=p,= . . . =/> eacli =

p, to reduce to Crjj'g""'" and
the expression (I) or (2) of § 9 respectively.

If the reader observe that, when pi =/>,= . . . =Pn=p,
^PiPt . . . Pr = mPrp', &C. , he wiU have no difticulty in showing
that (3) is actually identical with jCrP^<f-^ iu the particular

case in question.

The particular result derived from (4) is more interesting.

We find, for the probabilitj- that an event of probability p will

happen r times at least out of n occasions, the expression

(-)'-V.C.-,;>- (5).

Here we have yet another exjiression equivalent to (1) and

(2) of § 9. It is not very difficult to transform either of the two

expressions of § 9 into the one now found
; the details may be

left to the reader.

Examplp. The probabilities of three independent events arc p, 7, r;

required the probability of happening—
1st. or one of the events bat not more;
2nd. Of two but not more;
8rd. Of one at least ;

4th. Of two at least ;

6th. Of one at most;
Cth. Of two at most.

The results are as follows :
—

Ist. p+j + r-2(p9+pr+jr) + S;>7r;
2nd. I>g + pr + ?r-3p^;
8rd. p + 9 + r-(pg+pr+ gr)+j)5r;
4th. pj+;)r + gr-2p5r ;

6th. l-(|'?+pr + gr) + 2p}r;
6lh. 1 -pjr.

The first four are particular oases of preceding formula ; 5 is comple-
mentary to 4 ; and 6 is complementary to " of all three."

§ 1 1.] The Recurrence or Finite Difference Method for solving

problems in the theory of probability possesses great historical and

practical interest, on account of the use that has been made
of it iu the solution of some of the most difficult questions in

the subject The spirit of the method may be e.xjilained thus.
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Suppose, for simplicity, tliat the required probability is a function

of one variable x
;
and let us denote it by u^. Reasoning from

the data of the problem, we deduce a relation connecting the

values of Mj, for a number of successive values of x
; say the

relation

/(%:+3, Mx+l, «x) = (A).

We then discuss the analytical problem of finding a function

Ux which will satisfy the equation (A).

It is not by any means necessary to solve the equation (A)

completely. Since we know that our problem is definite, all

that we require is a form for Uj, which will satisfy (A) and at the

same time agree with the conditions of the problem in certain

particular cases. The following examples will sufficiently illus-

trate the method from an elementary point of view.

Example 1. A and B play a game in which the probabilities that A and
B win are a and /3 respectively, and the probability that the game be drawn
is 7. To start with, A has vi and B has n counters. Each time the game
is won the winner takes a counter from the loser. If A and B agree to play
until one of them loses all his counters, find their respective chances of

winning in the end*.

Let Uj and v^ denote the chances that A and B win in the end when each

has X counter."!. If we put m + ;t=/), the respective chances at any stage of

the game are u^ and ip^^..

Consider A's. chance when he has x + 1 counters. The next round he

may, 1st, win ; 2nd, lose
; 3rd, draw the game. The chances of his

ultimately winning on these hypotheses are an^j^^ ; ^Uj. ; yWx+i respectively.

Hence, by the addition rule,

If we notice that a + ;8 + 7= l (for the game must be cither won, lost, or

drawn), we deduce from the equation just written

a";c+2-(<' + ^)«x+i + |3"x
=

(li-

lt is obvious that Uj.=A\^, where A and X are constants, will bo a

solution of (1), provided

oX2-(a + /3)\+ /3
=

(2),

that is, provided X=l or X= (3/a. Hence u^^A and «i=B(i3/a)* are both

solutions of (1) ; and it is further obvious that u^=A + B (§\af is a solution

of (1).

We have now the means of solving our problem, for it is clear from (1)

that, if we knew two particular values of u^, say u, and «,, then all other

*
First proposed by Hnyghens in a particular case ; and solved by

James Bernoulli. See Todhunter, Hist. Prob., p. 01.

/
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values cnnlJ be ctiltiilatoil liy llic rocurroiicc furmnla (1) ilwlf. The nolutioD

v, = A+Ji{fila)*, containing two undptcrmiiicd constants A and B, is

therefore gafficiently general for our purpose*. Vie may in fact dctcmiino
A and B most simply by remarking that when A has none of the counters hia

chance is 0, and when he has all the counters his chance is 1. We tlioa have

A+D=0, A + B{fila)i'=l,
whence A = aPI(a''-p''), B= -o''/(o''-/J'').

We therefore have

«,=aP-'(a'-/S')/(aP-/3'');
and, in like manner,

r,=;J''-»(a'-/S')/(a''-/S").

The chances at the bopinning of the game are given by

„„ = a-(a">-/S")/(aP-^P),

r,=/3"(a»-/S")/(ai'-^i').

Cor. 1. Ifa= p, then (see chap. «v., § 12)

«m= '"/P. »,="/?.
The oddt on A in thit particular case are m to n.

It might be supposed th:it when the skill of the players is unequal this

could be compensated by a disparity of counters. There is, however, a

limit, as the following proposition will show :
—

Cor. 2. The utmost disparity of countert cannot reduce the odds in A'$

favour to la* than a-p to
/S.

For, if we give A 1 counter, and B n counters, the odds in A'b favour are

Q"(o-)3)//}(a"-/J»):l; that is, (o-/3)//S(l-(^/a)»| : 1. Now, if a>p. this

can be diminished by increasing n; but, since L (/J/a)"
= 0, it cannot become

less than (o
-

/3)/^ : 1, that is, o - /3 : ;3.

"""

Hence we see that, if A be twice as skilful as B(o = 2;S), we cannot by
any disparity of counters (so long as wo give him any at all) make the odds
in his favour less than even.

Example 2. A pack of n different cards is laid face downwards. A
person name.i a card; and that card and all above it are removed and shown
to him. He then names another ; and so on, nntil none ore left. Acquired
the chance that during the operation he names the top card once at leastt.

Let u, be the chance of succeeding when there are n cards; so that u,.,
is the chance of succeeding when there are n- 1

; and so on. At the first

trial the player may name the 1st, 2nd, 3rd, . . . , or the ntli card, the
chance of each of these events being l/ii. Now his chances of ultimately
euccoeding in the n cases just mentioned are 1, u,.,, u,_,, . . .

, n,,

respectively. Denco

u,=l/fi + u,_^n + u,.,/n+ . . . +ujii + u,/n.

We have therefore

nu,= l-mi + i/,+ . . . +u,-, (1).

• Thia piece of reasoning may be replaced by the considerations of

chap. XXXI., § H.

+ Urprint of frolilfiiu from the Kd. Timet, vol. iLii., p. G'J.
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From (1) we deduce

(n
-

1) »„_, = 1 + 7-, + «, + ... + ,/„_, (2).

From (1) aud (2)

. ''"»-{n-l)"„-,= "„-5.
that 13,

"("»-«„-!)= -("„-! -"„-:) (3),
Ileuco

("
-

1) ("n-l
-

",.-2) = -
(''„-2

-
«„-j),

(''
-

2) {«„-2
-
«„-3) = -

(h„_3
-

!t„_J,

3(K3-ig=-(H„-Uj).
Hence, multiplying together the last n-2 equations, we dedace

4«!("n-''„-i) = (-l)''-=("-.-«i).

Since «j
= l, «2= 5, this gives

«„-«„-i = (-l)''-V"l W.
Hence, again,

''„-j- "„-2= (-!)"-=/(»- 1)!.

«,-«, = (-1)72!,

Ui-0= 1.

From the last n equations we derive, by addition,

«„= l-l/2! + l/3!-. , . + (-l)''-i/i!! (5).

Introducing the sub-factorial notation of chap, xxni., § 18, we may write

the result obtained in (5) iu the form «„=1 —
«;/«!.

From Whitworth's Table* we see that the chance when n=8 is "632119.

When n=oo the chance is 1 -l/c= •632121 ; so that the chance does not

diminish greatly after the number of cards reaches 8.

EVALUATION OF PROBABILITIES WUERE FACTORIALS OF

LARGE NUMBERS ARE INVOLVED.

§ 12.] In many cases, as has been seen, tlie calculation of

probabilities depends on the evaluation of factorial functions.

When the numbers involved are large, this evaluation, if pursued

directlj', would lead to calculations of enormous length t, and the

greater part of this labour would be utterly wasted, since all

that is required is usually the first few significant figures of the

probability. The difficulty which thus arises is evaded by the

use of Stirling's Theorem regarding the approximate value of a:'

* Choice and Chance, chap. iv.

t lu some cases the process of chap, xixv., ^ 11, Examples 2 and 3 is

asefui.
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wlieu X is large. In it^ luoderu foriu this tbeurum luay bo

sUted thus—

(see chap, x.vx., § 17).

From tliis it ajjpeare that, if x be a large number, x\ may
be replaced by J(2'rx)x'e''', the error thereby committed being
of tlie order 1/V2ut\i of tlie value of x\.

As an example of the ase of Stirling's Theorem, let us consider the follow-

ing problem :
—A pack of 4n cards consista of 4 suits, each cousistinK of n

cards. Tiie pack is »liuQli'd and dealt out to four players ; required the

choiice that the whole of n particular i'uit falls to one particular player. The
chauce in question is easily found to be given by

p= (3n)ln!/(4ii)I.

Bcnce, by Stirling's Theorem, we have

V(2ir3n) (3n)»'t-*'^(2»n) n"«-«^^
^/(2ir 4..) (4;i)«" <-*»"'

"'

the error being comparable with l/llnth of p. Hence, approximately,

y= ,y{3irn/2)(27/25C)".

Example. Let In = 52, n = 13, then

/)
= V(3 X 3-1416 X 13/2) (27/256)".

This can be readily evaluated by means of a table of logarithms. Wo
find

p = 156/10'«.

The event in question is therefore not one that would oocur often in the

experience of one individual.

Exercises XXXIX.

(I.) A startH at half-piist one to walk up Princes Street; what is the

probability tliat he muct li, who may have started to walk down any time
between one and two o'clock ? Given that it takes A 13 minutes to walk op,
and B 10 niinutt'S to walk down.

(2.) A bag contains 3 white, 4 red, and 5 black balls. Three balls are

drawn ; required the probability
— 1st, that all three colours; 2nd, that only

two colours ; 3rd, that only one colour, may be represented.

(3.) A bag contains m white and n black balls. One is drawn and then a
second ; what is the chauce of drawing at least one white— 1st, when the first

ball is replaced; 2nd, when it is uot replaced?

(4.) If n persons meet by chance, what is the probabiUty that they all

have the same birthday, nuppoHing every fourth year to be a leop year?

(S.) If II queen and a knight bo placed at random on a cheu-board, what
is the chauce that one of the two may be able to take the other ?
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(6.) Three dice are thrown ; show that the cast is most likely to be 10 or

11, the probability of each being J.

(7.) There are three bags, the first of which contains 1, 2, 1 count«rs,

marked 1, 2, 3 respectively ; the second 1, 4, 6, 4, 1, marked 1, 2, 3, 4, 5 ro-

Bpectively; the third 1, 6, 15, 20, marked 1, 2, 3, 4 respectively. A counter

is drawn from each bag; what is the probability of drawing 6 exactly, and of

drawing some number not exceeding 6 ?

(8.) Six men are bracketed in an examination, the extreme difference of

their marks being 6. Find the chance that their marks are all different.

(9.) From 2n tickets marked 0, 1, 2, . . ., (2n-l), 2 are drawn; find the

probability that tlie sum of the numbers is 2n.

(10.) A pack of 4 suits of 13 cards each is dealt to 4 players. Find the

chance—1st, that a particukar player has no card of a named suit ; 2nd, that

there is one suit of which he has no card. Show that the odds against the

dealer having all the 13 trumps is 158,753,389,899 to 1.

(11.) If I set down any r-permutation of n letters, what is the chance that

two assigned letters be adjacent?

(12.) There are 3 tickets in a bag, marked 1, 2, 3. A ticket is drawn

and replaced four times in succession ; show that it is 41 to 40 that the sum

of the numbers drawn is even.

(13.) What is the most likely throw with ;i dice, wheu n > G ?

(14.) Out of a pack of n cards a card is drawn and replaced. The opera-

tion is repeated until a card has been drawn t\vice. On an average how many
drawings will there be ?

(15.) Ten different numbers, each >100, are selected at random and

multiplied together ;
find the chance that the product is divisible by 2, 8,

4, 5, 6, 7, 8, 9, 10 respectively.

(16.) A undertakes to throw at least one six in a single throw with six

dice; B in the same way to throw at least two sixes with twelve dice; and C
to throw at least three sixes with eighteen dice. Which has the best chance

of succeeding? (Solved by Newton; see Pepys' Diary and Correspondence,

ed. by Mynors Bright, vol. vi., p. 179.)

(17.) A pitcher is to be taken to the well every day for 4 years. If the

odds be 1000 : 1 against its being broken on any particular day, show that the

chance of its ultimately surviving is rather less than J.

(18.) Five men toss a coin in order tiU one wins by tossing head ; calculate

their respective chances of winning.

(19. )
A and B, of equal skill, agree to play till one is 5 games ahead.

Calculate their respective chances of winning at any stage, supposing that

the game cannot be drawn. (Pascal and Fermat.)

(20.) Wliat are the odds against throwing 7 twice at least in 3 throws

with 2 dice ?

(21.) Show that the chance of throwing doublets with 2 dice, 1 of which

is loaded and the other true, is the same as if both were true.
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(22.) A and B throw fiir a 8lako; A's die in marked 10, 13, Ifi, 20, 21, 25,

and /I's 5, 10, ir>, 20, 25, 30, The liipliest throw is to win and equal throws

to Ro fur nothiDR; show tliat A'a chance of winninK is 17/^13.

(23.) A pack of 2fi cardH, n red, n black, is divided at random into 2 eqn I

parts and a card is drawn from each ; find the chance that the 2 drawn are

of the same colour, and comparo with the chance of drawing 2 of the same

colour from the undivided pack.

(24.) Am cards, numbered in 4 sots of m, are distributed into m stacks of

4 each, face np ; find the cliance that in no stack is a higher one of any set

above one with a losver number in the same set.

(25.) Out of m men in a ring 3 are selected at random; show that the

chance that no 2 of them are neighbours is

(m-4)(in-5)/(m-l)(m-2).

(20.) If m things be given to a men and h women, prove that the chance

that the number received by tlie group of men is odd is

{4(6 + a)"'-4(6-a)'»l/(6 + a)"'.

(Math. Trip., 1881.)

(27.) A and 7? e.ich take 12 counters and play with 3 dice on this condi-

tion, tliat if 11 is thrown A gives a counter to U, and if 14 is thrown B gives

a counter to A ;
and he wins the game who first obtains all the counters.

8how that A's chance is to li'a as

244,140,625 : 282,42!l,536,481.

(Iluyghens. See Todh., Ilitt. Proh., p. 23.)

(2fi.) A and B play with 2 dice; if 7 is thrown A wins, if 10 B wins,

if any otiicr number the game is drawn. Show that A'a chance of winning
is to B's as 13 : 11. (Huygbcns. See Todli., Uitt. Prob., p. 23.)

(2'.t.)
In a g.ame of mingled chance and skill, which cannot be drawn, the

odds are 3 to 1 that any game is decided by skill and not by luck. If A
beatK B 2 games out of 3, show that the odds are 3 to 1 that he is the better

player. If B beats C 2 games out of 3, show that the chance of A'a winning
8 games running from C is 103/332.

(30.) There are m posts in a straight line at equal distances of a >a i

apart. A man starts from any one and walks to any other; prove that the

average distance which ho will travel alter doing this at random a great

many times is ^(in-fl) yards.

(31.) The chance of throwing/ named faces in n casts with a j>-t lituxd

die ia

j(p
+ l)._Zp- + /</-J)(p_i)»

j j(p
+ l)«.

(Dcmoivre, Doctrine oj Chanctt.)

(33.) If n cards be thrown into a bag and drawn out successively, the

chance that one card at least is drawn in the order that its number indicates

ii

1-1/21 + 1/3!- . . . (-I)*-'/"!-

(This is known as the Trrixe I'fubUm. It wus originally solved by

Moutmurt and Bernoulli.)
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(33.) A and B play a game in which their respective chances of winning

are o and /S. They start with a given number of counters p divided between

them ;
each gives np one to the otlier when he loses ; and they play till one

is ruined. Show that inequality of counters can be made to compensate for

inequality of skill, provided a//3 is less than the positive root of the equation

xP - 2xP-' + 1 = 0. If J) be large, show that, to a second approximation, this

. . « 1 P-1
rootis2-2j=j-25^j.

MATUEMATICAL MEASURE OF THE VALUE OF AN EXPECTATION.

§ 13.] If a mail were asked what he ^yollld pay for the

privilege of tossing a halfpenny once and no more, with the

understanding that he is to receive £50 if the coin turn up head,

and nothing if it turn up tail, he might give various estimates,

according as his nature were more or less sanguine, of what is

sometimes called the value of his expectation of the Mim of £50.

It is obvious, however, that in the case where only one trial

is to be allowed the expectation has in reality no definite value

whatever—the player may get £50 or he may get notliing ;

and no more can be said.

If, however, the player be allowed to repeat the game a large

numher of times on condition of paying the same sum each time

for his privilege, then it will be seen that £25 is an equitable

payment to request from the player ;
for it is assumed that

the game is to be so conducted that, in the long run, the coin

will turn up heads and tails equally often
;
that is to say, that

in a very large number of games the player will win about as

often as he loses. With the above understanding, we may speak

of £25 as the value of the player's expectation of £50 ;
and it

will be observed that the value of the expectation is the sum

expected multiplied by the probability of getting it.

This idea of the value of an expectation may be more fully

illustrated by the case of a lottery. Let us suppose that there

are prizes of the value of £a, £b, £c, . . . , the respective prob-

abilities of obtaining which by means of a single ticket are

p, q, r, . . . If the lottery were held a large number N of

times, the holder of a single ticket would get £a on pN
c. n. 33

i
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occasions. £/» on qN occnsiona, £c on rN occai^inna, . . . Henco

the lioldiT of a single ticket in each of the A' lotteries would get

£{pya + giVb + rNc + . . .)• If. therefore, he is to pay the same

price £t for his ticket each time, we ought to have, for equity,

Nt =pNa + qNb + rNc + . . . ,

that is,

t = pa + qb + rc + . . . .

Hence the price of his ticket is made up of parts corresponding

to the various prizes, namely, pa, qb, re, . . . 'i'hese parta are

called the values of the expectations of the respective prizes ; and

we have the rule that the viilue of the expectation of a sum of

money is that sum multiplied by the chance of yetting it.

The student must, however, remember the understanding

upon which this definition has been based. It would have nu

meaning if the lottery were to be held once for all.

Example. A plnver throws a six-faced die, and is to receive 20t. if be

tbrows ace the Crxt throw ; half that sum if he thrown ace the srcond throw;

quarter that eum if he throws aco the third throw ; and so on. Ittquired the

value of his expectation.

The player may get 20, 20/2, 20/2', 20/2', . . . shillings. His chances of

getting these sums are 1/6, 6/C', 6'/C', 5'/G*, . . . Hence the respective

values of the corrcxpondiug parts of his expectation are 20/6, 20.5/C'.2,

20 . 6'/C . 2', 20 . 5'/C' . 2', . . . shillings. The whole value of hia expectation

is therefore

that is, C(. 8i<i.

§ 14.] It is important to notice that the rule which directs

us to add the component parts of an e.vpectation applies whether

the separate contingencies be mutually exclusive or not Thus,

if P\> Pit Pi, • be the whole probabilities of ol/taining the

sejHtrate sums a^, 02, a,, . . ., then the value of the expectation

is }>ia, + p/i, + p/t, + . . .,evcn if the expectant may get more

than one of the sums in question. Observe, however, that /», must

be the whole jirobability of getting o,, tliat is, the probability of

getting the sum a, irrespective of getting or failing to get tho

other sums.

If the expectant may get any number of the sums O], a,,
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. . ., a„, we might calculate his expectation by dividing it into

the following mutually exclusive contingencies:
—

ai, Wj a„;

Oi + Oa, «! + «s, &c.
; Oi + Ui + a,, &c. ; , , .; Oj + f/j + . . . + a„.

Hence the value of his expectation is

2a,p,(l-^,)(l-^3) . . . (l-jo„)

+ ^{ch+ai)piP3{l-ps) • • (i-Pn)
+ 2 («! + Oa + ai)p,p.vp., (1 -pi) ... (1 -p,)

+ («, + «. + . . . + a„)piPiP3 . . .pn-

By the general principle above enunciated the value in

question is also Saj/),. The comparison of the values gives a

curious algebraic identity, which the student may verify either

in general or in particular cases.

Example. A man may get one or other or both of the sums a and b.

The chance of getting a is p, and of getting b is q. Kcquired the value of

his expectation.

He may get a alone, or 6 alone, or a + i ; and the respective chances are

p0--9)< l(^-p)t Vi- Hence tlie value of his expectation is ap(l-q)

^hq(l-p)-¥(a + h)pq, which reduces to ap + lq, as it ought to do by the

general principle.

N.B.—If the man were to get one or other, but not both of the sums a

and 6, and his respective chances were p and q, the value of his expectation

would still be ap + bq ; but p and q would no longer have the same meanings
as in last case.

LIFE CONTINGENCIES.

§ 15.] The best example of the mathematical theory of the

value of expectations is to be found in the valuation of benefits

which are contingent upon the duration or termination of one or

more human lives. The data rec^uired for such calculations are

mainly of two kinds— 1st, knowledge, or forecast as accurate as

may be, of the interest likely to be yielded by investment of

capital ou good and easily convertible security ; 2ud, statistics

regarding the average duration of human life, usually embodied

in what are called Mortality Tables.

The table printed below illustrates the arrangement of

mortality statistics most commonly used in the calculation of

life contingencies :
—

38—2



696 MORTALITY TAni.K cn. XXXVI

Tlif Tl" Tnhlt ofth/i TtutUiUe of Aehuirin.

Age.
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to indicate tlie limits of its use
;
we merely remark that in

ajiplying it in any calculation tlie assumption made is that the

lives dealt with will fall according to the law indicated by the

numbers in the table. This law, which we may call the Law of

Mortality, is of course only imperfectly indicated by the table

itself ;
for although we are told that dx die between the ages of

X and x+\, we are not told how these deaths are distributed

throughout the intervening year. For rough purposes it is

sufficient to assume that the distribution of deaths throughout
each year is uniform

; although the variation of the decrements

from one part of the table to another shows that uniform

decrease
*

is by no means the general law of mortality.

§ 16.] By means of a Mortality Table a great many interesting

problems regarding the duration of life may be solved which do

not involve the consideration of money. The following are

examples.

Example 1. By the probable duration n of the life of a man of m years

of age is meant the number of years which he has an even chance of adding
to his life. To find this number.

By hypothesis we have /,„+.„/?„,
= 1/2. Hence lm^=l,^2. 1^1^ will in

general lie between two numbers in the table, say Ip and Zp+, . Hence m + n
must Ue between p and p + 1. We can get a closer approximation by tho

rule of proportional parts (see chap. xxL, § 13).

Example 2. To find the " mean duration
"
or "

expectancy of life
"

for a

man of m years of age.

By this is meant the average N (arithmetical mean) of the number of

additional years of life enjoyed by all men of m years of age.

Let us take as specimen lives tho („, men of the table who pass their mth

birthday ; suppose them all living at a particular epoch ; and trace their

lives till they all die.

In the first year ;„,- /,„^, die. If we suppose these deaths to bo equally

distributed tlirough the year, as many of the lm~^m+i ^''^^ ''^<^ ""y assigned

amount over lialf a year as wiU live by the same amount under half a year.

Hence the l^
-

Z„,+i lives that have failed will contribute \ (?„,
-

;„^,) years to

the united lite of the /„, specimen hves. Again, each of the 7„^i who live

through the year will contribute one year to the united life. Hence the

whole contribution to the united life during the first year is i('m~'nn.i)

+ '»»+!
= i Cm +'m+i)- Similarly, the contribution during the second year is

\ {'m+i + 'm+!!) ; ^'"^ ^^ °°- Hence the united life is

i('m+'m+l) + 4('m+l + 'm+2)+ • • = i 'm+ 'm+l + 'm+, + • • • (1),

• Demoivre's hypothesis.
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t)io horios continuing so long as tlic numbers in the tabic have any significant

valtio.

If wc now divide the united life by the number of original lives, we find

for tliu iuc:in duration

^V=i + (f^, + f„4i+ . •)/'» (2).

Owing to oar assumption rogarding the uniform distribution of deaths over

the intcr^-als between the tabular epochs, this expression 'n of course merely
an approximation.

Example 3. A and B, whose ages are a and b respectively, are both

living at a particular epoch ; find the chance that A survive 11.

The compound event whuse chiince is required may be divided into

mutually exclusive contingenoics as follows:—
l^t. B may die in the first year, and A survive ;

2nd. „ second „ ;

and so on.

The 1st contingency may be again divided into two :
—

(o) A and B may both die within the year, B dying Crut ;

(/3) B may die within the year, and A live beyond the year.

The chance that A and B both die within the first year is ('a-/„4,)
{'»- '*+i)/'o'6- Since the deaths are equally distributed through the year, if

A and B both die during the year, one is as likely to sun-ive as the other ;

hence the chance of A surviving B on the pnsent hypothesis is ^. The
chance of the contingency (a) is therefore ('«- 'a+ij('»- 'm-i)/-'.'»- The
chance of (/3) is obviously 'a+i ('*

-
'ih-i)/'o'6 •

Hence the whole chance of the Ist contingency, being the sam of the
chances of (a) and

(jS), is ('a + 'o+iH't-'w-i)/-''.'»-
In like manner, we can show that the chance of the 2nd contingency is

('aH + ',.,)('(H.,-'l^,)/2/a'k.

Hence the whole chance tlmt A survive B is given by

S.,»={(/.+ /„+,)('t-'w-i) + (',^n + ',+i)(Wi-'»+j)+- • •]rit,lk (1).

The reader will have no diflioulty in seeing that (1) may bo written in the

following form, which is more convenient for arithmetical computation :

S*6= i +
{^"'^('6»r-)

-
'w^,)-'.'w-,l/2U (8).

where » stands for the greatest age in the table for which a significant value
of f, is given.

U we denote by S^, the chance that B survive A, we have, of course

If a = 4, it wUI be found that (2) gives S,^»=l/2 ; as it ought to do.

§ 17.] Let US now consider the following money problem in

life contingenoics :— ]V/,at shmUd an Insurance Offirf ask Jbr
undeitakinij to pay an annuity of £1 to a man ofm yiars oj age,
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the first payment to be made n + \ years hence*, the second w + 2

years hence ; and so on, for t years, if the annuitant live so long.

We suppose that the office makes no charges for tlie use of

the shareholders' capital, for managemeut, and for
"
margiu

"
to

cover the uncertainty of the data of even the best tables of

mortality. Allowances on this head are not matters of pure

calculation, and differ iu different offices, as is well known. We
suppose also that the rate of interest on the invested funds of

the office is £«' per £1, so that the present value, v, of £1 due

one year hence is £1/(1 + i). The solution of the problem is then

a mere matter of average accounting.

Let „!(«,„ denote the present value of the annuity; and let

us suppose that the office sells an annuity of the kind in

question t to every one of /„ men of m years of age supposed to

be all living at the preseut date.

The office receives at once „|(am^m pounds. On the other

hand, it will be called upon to pay

£'m+n+l> £^m+ll+2) • • •) £'m+n+()

n+ I, » + 2, . . . , 11 + t

years hence respectively. Reducing all these sums to present

value, and balancing outgoings and incomings on account of the

C lives, we have, by chap, xxii., § 3,

Hence

nil'^m— (^' 'm+n+1 + y A»+n+2 + ... +V lm+n+t)/'m)

= «"2'u„+,i;7C (1).
r—1

The same result might be arrived at by using the theory of

expectation.

• This is what is meant by saying that the annuity begins to run n years

hence.

t The annuity need not necessarily be sold to the person ("nominee")
on whose life it is to depend. The life of the nominee merely concerns the

definition of the " status
" of the annuity, tiiat is, the oomlitiona under

which it is to last.
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The annuity whose value we have just calculated would be

technically described as a deferred temporary annuity.

If the annuity be an immediate temporary annuity, that is,

if it commence to run at once, and continue for t years provided

the noniiuee live so long, we must put « = 0. Then, using the

actuarial notation, we have

ua„=i'L»^IU (2).
r—I

If the annuity be complete, that is, if it is to run during the

whole life of the nominee, the summation must be continued as

long as the terms of the series have any significant value
;
this

we may indicate by putting / = oo . Then, according as the

annuity is or is not deferred, we have

„1<7,„
= r" 5 /„+,+re7^« (3).

r-I

a„=TL^r^/L (4).
r-l

§ 18.] The function a„, which gives the value of an im-

mciliute complete auimity on a life of 7n years, is of fundamental

importance in the calculation of contingencies which depend on

a single Ufe. Its values have been deduced from various tables

of mortality, and tabulated. By means of such tables we can

readily solve a variety of problems. Thus, for example, «|am,

it««.. «|i«« can ^ ^ found from the annuity tables; for wo

have

,i««
= e" Ivn-n am+,/fm (5) ;

{ia^
= am-1^ L+tOm+l/lm (6);

iia- =
(«"/-+» fflm-H.

- v'*' /.+,+, a«+,+i)/C (7) ;

as the reader may easily verify by means of formula; (I) to (4).

The.se results may also be readily established a priori by
means of the theory of expectation.

§ 19.] Jjct us next find at,m '^« present valiu of an im-

mediate complete annuity oj £l on the joint lires of tteo nominees

of k and m years of age resptctiivly.

The understanding here is tiiat the annuity is to be paid so
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long as both nominees are living and to cease wlien either of

them dies.

The present values of the expectations of the 1st, 2nd, 3rd,

. . . instalments are

Vlic+ilm+jlklm, «'"4+jL+2/4C 1^%+3lm+s/hlm, &:C., ... .

Hence we have

at,m=(^•4+l4+l + »'4+2A„+3 + . . .)/44-.,

= ^'v'lt^L^/U^ (1).

Just as ill § 18, we obviously have

» , "* ,
m = ''" ^*-Hl , m+n 4+ii 'm+n/4 4> >

\tClt,m
=

(I'll, m ~ ''flSt+J.m+I 4+« Im+tlh^m >

n|l<*t,m
=

\0 dk+n.m+n 4+n 'm+n
— V fljr+n+i , m+n+I 4+n+l 'm+n+l)/4 'm !

and it will now be obvious that all these formulse can be easily

extended to the case of an annuity on the joint lives of any
number of nominees.

Tables for «*,„ have been calculated; and, by combining
them with tables for a,„, a large number of problems can be solved.

Example 1. To find the present value of an immediate annuity on the

last survivor of two lives m and n, usually denoted by a;;^.
Let Pr, 7, be the probabilities that the nominees are living r years after

the present date ; then the probability that one at least is living r years
hereafter is Pr+lr-PAr-

Hence

a;r^= -«''(l'r+ 9r-Pr'7r).
1

= am+an-a„h«.
This is also obvious from the consideration that, if we paid an annuity

on each of the lives, we should pay £1 too much for every year that both

lives were in existence.

Example 2. Find the present value a^n,n of an annuity to be paid 6o

long as any one of three nominees shall be alive, the respective ages being

k, m, n.

If p,, q„ r, be the chances that the respective nominees be alive after t

years, then

ai:^=2t''{i-(i-p.) (1-9^(1-'-.)}.
= 'Lv'(p,+ q,+ T,-q,r,-r,p,-p^,-\-p,q;r,),

The numerical solution of this problem would require a table of annuities

on three joint hves, or some other means of calculating ai,,,,.,,.
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§ 20.] A contract of life insurance is of tho following
nature :

—A man A agrees to make certain payments to aa

insurance office, on condition that the office pay at some stated

time after his ilcath a certain sum to his heirs. As regards A,
he enters into the contract knowing that he may pay less or

more than the value of what his heirs ultimately receive accord-

ing as he lives less or more than the average of human life
;
his

advantage is that he makes the provision for his heirs a certainty,

80 far as his life is concerned, instead of a contingency. As

regards the office, it is their business to see that the charge made
for A\ insurance is such that they shall not ultimately lose if

they enter into a huge number of contracts of the kind made
with A ; but, on the contrary, earn a certain percentage to cover

expenses of management, interest on sharchoKlers' capital, tic.

The usual form of problem is as follows :
—

What annual premium P„ must a man of m years of a^e pay
(in advance) during all the years nf his life, on condition that the

office shall pay the sum of £1 to his heirs at the end of the year in

which he dies I

P„ is to be the "net premium," that is, wo suppose no

allowance made for profit, &c., to the office. Suppose that tlie

office insures l„ lives of m years, and let us trace the incomings
and outgoings on account of these lives alone. The office

receives in premiums £P„L, £P„,l„+i, ... at the beginning
of the 1st, 2nd, . . . years respectively. It pays out on lives

failed £(/»-/„+,), £(/„+,- 4.+)), ... at the end of the Ist,

2nd, . . . years re-spt-ctively. Hence, to balance the account,
we must have, when all these sums are reduced to present

value,

Pm{L-^L+,v + L+,v'+ . . .)

=
(/»-/-+i)» + ('-+i-/-«)t;' + (/-+,-t.+,)f'+ . . . (1),

the summation to be continued as long as the table gives signi-
ficant values of t.

Since rf« = 4i
-

/«+! , we deduce from (1)

(2).
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Dividing by Im, we deduce from (1)

-fm(l + {L+lV + l,„+l1^ + lm+3V' + . . .);/,„}

= V + v{U+iV + Im+iV- + . . .),'/,„

- {L+iV + L+i'o' + . . .)IL.
Hence

F,n (1 + Cm) = v + va„^~ a,a,

F„, = v-aJ{l+a^) (3).

The last equation shows that the premium for a given life

can be deduced from the present value of au immediate com-

plete annuity on the same life. In other words, life insurance

premiums can be calculated by means of a table of life annuities.

§ 21.] It is not necessary to enter further here into the

details of act>iarial calculations ;
but the mathematical student

wiU find it useful to take a glance at two methods which are in

use for calculating annuities and life insurances. They are good

specimens of methods for dealing with a mass of statistical

information.

Eecurrence MetJtod for Calculating Life Annuities.

The reader will have no difficulty in showing, by means of

the formulaj of § 17, that

«„ = «(!+ a„,+r)ln+i/im (1).

From this it follows that we can calculate the present value

of an annuity on a hfe of m years from the present value on a life

of TO + 1 years. We might therefore begin at the bottom of the

table of mortality, calculate backwards step by step, and thus

gradually construct a life annuity table, without using the com-

plicated formula (4) of § 17 for each step.

A similar process could be employed to calculate a table for

two joint lives differing by a given amount.

Columnar or Commutation Method.

Let U8 construct a table as follows :
—

In the 1st column tabulate 4 ;

„ 2nd „ <4;

„ 3rd „ v'4 = 2),, say;

„ dth „ ir'+'ofj,
= C^, say.
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Next form the 5th column by adding the numbers in the

3rd cohiinn from the bottom upwards. In other words, tabulate

iu the 5th column the values of

iVx = />x+l + D^t + ^«+. + • • .

In like manner, in the 6th column tabuliito

J/x=C«+a+i + C'^i+ • • • •

All this can be done systematically, the main part of the

labour being the multiplications in calculating />x and C,.

From a table of this kind we can calculate annuities and

life premiums with groat ease. Referring to the formula; almve,

the reader will see that we liave

a„ = iV„/Z). (2);

.,a» = i\r„+./Z). (3);

l,a„
= (i^.-iN'«+,)/Z)- (4);

.l,«-
= (iVm*.

- N^*,)ID^ (5) ;

P^ = MJi\\-, (6).

§ 22.1 In the fnrc|;oing ciuipter the object haa been to

illustrate as many as possible of the elementary mathematical

methods that have been used in the Calculus of Probabilities
;

and at the same time to indicate practical applications of the theory

All matter of debatable character or of doubtful utility li

been excluded. Under this head fall, in our opinion, the

theory of a priori or inverse probability, and the applications to

the theory of evidence. The very meaning of some of the pro-

positions usually stated in parts of these theories seems to us to

be doubtful. Notwithstanding the weighty support of Laplace,

Poisson, De Morgan, and others, we think that many of the

criticisms of Mr Venn on this part of the doctrine of chances

are unanswerable. The mildest judgment we could pronounce

would be the following words of De Morgan himself, who seems,

after all, to have "doubted":—"My own impression, derived

from this [a point in the theory of errors] and many other cir-

cumstances connected with the analysis of probabilities, is, that

mathematical results have outrun their inteq)retation*."

* "An Eiuy on ProbBbilitics and on their Applicstion to Life Contin-

ganciea and Insurauoe OlBoei" (De Morgan), Cabinet Cyclopadia, Aff.,

p. xxvi.
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The rpader who wishes for further iufonnatiou slioulJ consult

tlic elementary works of Do Morgan (just quoted) and of Whit-

worth {Choice and Chance) ;
also the following, of a more advanced

character :
—Laurent, Traite du Calcul des ProbahiUtes (Paris,

1873) ; Meyer, Vorltsungen uher Wahrscheinlichkeitsrechnung

(Leipzig, 1879); Articles, "Annuities," "Insurance," "Proba-

bilities," Encijclopcvdia Britannica, 9th edition.

The classical works on the subject are Moutmort's Essai

d!Analyse stir les Jeux de Hazards, 1708, 1714
;
James Bernoulli's

Ars Conjcctdiidi, 1713; Demoiwe's Doctrine of Chances, 1718,

1738, 1756
; Laplace's Theorie Amilijtique des Frobahilites, 1812,

1820; and Todhunter's History of the Theory of Probability,

1865. The work last mentioned is a mine of information on all

parts of the subject ;
a perusal of tlie preface alone will give the

reader a better idea of the historical development of the subject

than any note that could be inserted here. Suffice it to say that

few branches of mathematics have engaged the attention of so

many distinguished cultivators, and few have been so fruitful of

novel auuljtical processes, as the theory of probability.

Exercises XL.

(1.) A bag contains 4 shillings and i sovereigns. Three coins are

drawn ;
find the value of the expectation.

(2.) A bag contains 3 sovereigns and 9 shillings. A man has the option,

1st, of drawing 2 coins at once, or, 2nd, of drawing first one coin and after-

wards another, provided the first be a shilling. Wliich had he better do?

(3.) One bag contains 10 sovereigns, another 10 shillings. One is taken

out of each and placed in the other. This is done twice; find the probable

value of the contents of each bag thereafter.

(4.) A player throws n coins and takes all that turn up head ; all that

do not turn up head he throws up again, and takes all the heads as before ;

and so on r times. Find the value of his expectation ;
and the chance that

all will have turned up head in r throws at most. (St John's Coll., Camb.,

1870.)

(5.) Two men throw for a guinea, equal throws to divide the stake.

A uses an ordinary die, but B, when his turn comes, uses a die marked

2, 3, 4, 5, 6, 6 ; show that B thereby increases the value of his expectation

by 5/18ths.

(G.) The Jeu dea Noyuux was played with 8 discs, black on one side and
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white on tlio othrr. A oUkc F! wax uamcil. Tlio diHca were tossed up by tlie

plajor; if tlio uuuibor of Macks turned np was odd the playiT won S, if all

wore blnckii or all vrhitcii be won 2.S', otherwiso ho lost S to his op|ionent.

Show thiit the expectations of the player and opponent are 1315/256 and

U5SI'2r,G rchi>eclively. (Montmort. See Todh., Hint. Prob., p. 95.)

(7.) A promises to give H a shilling if he throws C at the first throw

with 2 dice, 2 shillings if he throws 6 at the second throw, and so on, until

a G is thrown. Calculate the value of li'a expectation.

(8.) A man is allowed one throw with 2 ordinary dice and is to gain a

unmber of shillings equal to the greater of the two numbers thrown
; what

ought he to pay for each throw? Generalise the result by supposing that

each die has n faces.

(9.) A bag contains a oortaiu number of balls, some of which are white.

I am to got a shilling for every ball so long as I continue to draw white only

(the balls drawn not being replaced). 13ut an additional ball not white

having been introduced, I claim as a compon^iation to be allowed to replace

every white ball I draw. Show that this is fair.

(10.) A per.-ion throws up a coin n time.s; for every sequence of m(m>n)
heads or m tails he is to receive 2'"-! shillings; prove that the value of his

expectation is n (n-i-3)/4 shillings.

(11.) A mannfacturcr has n sewing machines, each requiring one worker,

and each yielding every day it works q times the worker's wages aa net profit.

The machines are never all in working order at once ; and it is equally likely

that 1, 2, 3, . . . , or any number of them, ore out of repair. The worker's

wages mii»t be paid whether there is a machine for him or not. Prove that

the most profitable number of workers to engage permanently is the integer
ntxt to nql{q + 1)

-
J . (Math. Trip., 1875.)

(12.) A blackleg bets £5 to £1, £7 to £6, £9 to £5 agauist horaei whoie

chances of winning are |, \, ) respectively. Calculate the most and the

least that he can win, and the value of his expectation.

(13.) The odds against n horses which start for a race area : 1; a + l :1;

. . ., a + n-1 :1. Show that it is po.isible for a bookmaker, by properly

laying bets of different amounts, to make certain to win if n > (a -t- 1) (e .(- 1),

and impo.'isible if n < a (e
-

1), where e is the Napierian base.

(14.) If A,, denote the value of an annuity to last during the joint Uvea

of p persons of the same age, prove that the value of an equal annuity, to

continue so lon^; as there is a survivor out of n persons of that age, may be

found by means of the formula

nA "<"-^)j ,

n(n-l)(n-2)

(15.) M is a number of married couples, the husbands being m yean of

age, the wives n years of aec. What is the number of living pairs, widow*,
widuwors, and dead pairs after ( years?

Work out the cose where If = 500, m = 'tO, n = 30.

(lo.) If 5^1 have the meaning of § 16, show that
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(17.) Fiarl the probability tliat a man of 80 survive one or other of two

men of 90 and 95 respectively.

(18.) If «, ,
• • • denote the present value of an immediate complete

annuity of £1 on the joint lives of a set of men of I, m, n, . . . years of age

respectively, show that the present value of an immediate annuity of £1

which is to continue so long as there is a survivor out of i men whose ages

are I, m, n, . . . respectively is »

2a(-2a,,„, + 2a,,^„- . . . .

(19.) What anunal premium must a married couple of ages m and n

respectively pay in order that the survivor of them may enjoy an annuity of

£1 when the other dies?

(20.) Calculate the annual premium to insure a sum to he paid n years

hence, or on the death of the nominee, if he dies within that time.

(21.) Show how to calculate the annual premium for insuring a sum which

diminishes in arithmetical progression as the life of the nominee lengthens.

(92 )
An annuity, payable so long as either A (m years of age) or B (n

years of age) survive C (p years of age), is to be divided equally between A

and B so long as both are aUve, and is to go to the survivor when one of

them dies. Show that the present values of the interests of 4 and B are

"m -
J "m, »

- "m, P + 5 "m, n.P

and <'n-h''t>>,n-''n,P+h<'m.n,P

respectively. .

(23 )
If the population increase in a geometrical progression whose ratio

U r, show that the proportion of men of n years of age in any large number

of the community taken at random is CJi")/- dJ''").





RESULTS OF EXERCISES.

I.

(1.) 504000. (2.) 1210809600. (3.) 720. (4.) 12. (5.) 0. (3.) 5010;
64864800. (9.) 1235.520. (10.) 6188; 3003; 3185. (11.) 408688; 18 ways of

setting together on the front, 10 ways of setting at equal distances all round.

(12.) (igCj ijC^+ ijCj ijC, jCj + ,.,0^ ]„C„ jC;+ jjCj j„C, 9C3 + ,5(74 o'^itiP^-

(13.) ,„Cj„(,C5s,Cio6„C2o. (14.) 172S00. (15.)2G7148. (16.) 1814400, if

clock and counter-clock order be not distinguished. (17.) 2{2n--3n + 2)(2n- 2)!.

(18.) 960. (19.) ,C,,C,,P,; sC, 7C3 ,P, 3P3. (20.) 52!/(13!)'; 391/(13!)'.

(21.) 32!/(12!)-8!. (22.) 64!/(2!)6(8!)232!. (23.) 26; 136. (24.) 286; 84.

(25.) (p + q)^lp^-q\; {p + qry.lp\{qry.; a little over six years.

II.

(1.) 448266240i3. (2.) -2093. (3.) 2". 1 .8 . . . (2n-l)/H!. (4.)

(-)"+'-(2n)!/(n + r)I(n-r)l. (B.) 2=».l.a.. . (4«-l)/(2n)!. (6.) If h be

even, the middle term is {H!/(in)l}x"/'; if n be odd, the two middle terms

are {nl/i(n
-

1)! J(n + 1)!} {2x(»-il/2 + i^C+'W^}. (11.) (2,^3 + 3)2"

+ (2V3-3)=»'-l; (2V3 + 3)="'+'-(2V3-3)^»+>. (IB.) iu{n + l). (16.)

2"-! (2 + 71). (27.) r + 1. (28.) 10. (29.) Hn^+ Un). (32.) 100274064.

(33.) ZaJ + 7 2a«6 + 21 2a''b- + i2Za^bc + io1a*b^ + 105 ^a'b^c + 210 Za*bcd +
li0^a^b^c + 2lOZii:^b-c- + i202,a>b-cd + G30Za-lrc-d. (37.) 23!/(4!)^5'.

III.

(1.) 944. (2.) 20. (3.) (n + l)(n + 2)(n + 3)(7i + 4)(n + 5)/5I if the

separate numbers thrown be attended to; 5»+ l if the sum of the numbers

thrown be alone attended to. (4.) 231. (6.) p^.lC„. (7.) 62. (8.) 15„Cg.

(11.) (2H)l/2"7i!. (IS.) {N + a + b + c-3)lja\b]d. (16.) 1 or according as

«isevenorodd; {(l + ^/S)""- (1
-
Vo)''+'}/2»+V5. (17.) 2,„_iC^i„.jC,.,.

(18.) 116280.

V.

(1.) xjy must not lie between 1 and b^ja'. (2.) x must lie between

4(7-v/53) and i{7 + J53). (3.) x between {dc
-

b'^)l{ad
-

be) and

{d''-ab)l{ad-bc), and
;/

between {ah- c')!(ad -be) and {or -cd)l{ad-bc).

(IB.)
Greater. (17.) Less. (39.) 3'''.

C. 11. 3'J
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VI.

(1.) Habc. (a.) ahelZJS. (4.) (/"/S"*"' is a roinimam Talae if m do

Dot lio between and 1, otherwise a maiiniam. (S.) Minimum when

apx''=bqy^ = rrz''. (7.) There is a maximnm or minimum when (x + f) logo

=
{i/ + m)lof;b= {t + n) lope, according as logalogbloge is positirc or nega-

tive. (8.) i = («(</ma)'"»+"l. (9.) x= 1, x= 3S/15 give maxima ; « = 2, x = 8

minima. (10.) ^abc. (11.) Minimum when x= ni<:/(>ii-ii), y = nc/(iii-ii).

(18.) Minimum 2v'(af')/(a+ 6)-

VII.

(1.) 3. CD. (3.) 9/4. (3.) log 13/7. (*.) ln(B + l). (5.) 0. (6)

a'^+^-i'-^mlp. (7.) a'^'mln. (8.) n', ao , h'' according as p> = <5. (9.)

(in«-mB + n»)/(m'+mn + ii'). (10.) l/2a. (11.) aH-«/«,y/p. (la ) o*.

(18.) ICki/9. (14.) 1. (IB.) p. (16.) -Jn(n -!).-•-«. (17.) a">+«-»^9»m(ni
-
n)/

n-y{p-q). (18.) (n-l)/-'a. (19.) log a. (M.) 1. (21.) 1. (2i.) 1.

(23.) 1. (24.) 00. (26.) x if x=l + 0, if x= l -0. (26.) f*. (27.)

if n be negative, if n be pofitive or oo according as a< >1. (28 )
1.

(29.) 1. (30.) or 00 according as mxn. (31.) oo or according as

axl. (32.) 1. (33.) A (34.) A (35.) ^f{ab). (36.) Exp (24/3).

(37.) 00 or according as X,(a,-i/,) is positive or negative. II a^=bf,

<7^, + J.,.„ the limit is /.(a-i-*'-.)/"'; Ac. (38.) IJe. (39.) 0. (40.) <i/6.

(U.) 2. (42) 1. (43.) 1. (44.) 1. (46.) Jt. (46.) 0. (47.) cos a.

(48.) 0. (49.) -8. (60.) X. (61.) J. (82.) 1. (63.) 1. (84.) 0. (66.) 0.

(56.) 1. (67) log m/log n. (68.) 1. (69.) 1. (60.) 1. (61.) 1. (62.) «-»'"'».

(63.) «--"•''"'. (64.) e^'. (66.) 2/t. (74.) See chap, iix., § 23.

VIII.

(1.) Div. (2.) Div. (3.) Conv. if x be positive. (4.) Conv. (6.) Div.

(6.) Div. if modxt-a; conv. if modx>a. (7.) Conv. if x < 4 ; div. if x •< 4.

(8.) Conv. (9.) Piv., (x<l). (10.) Conv. (11.) Div. (U.) Conv. if o>l;
div. ira>l. (13.) Div. (14.) Div. (16.) Abs. conv. (16.) Div.

IX.

(1.) (-)> '3.1.1.3. . . (2r-5)/2.4.6.8...2r. (2.) 1.8. .. (2r-l)/

2.4...2r. (3.) 3.7.11 ...(4r-l)/4. 8.12. .. 4r. (4.) 2. 1 .4. 7 . . .

(.Sr-6)2-/>/12. 24.36.48 ... 12r. (6.) (
-
)'-'l .2 . . . (3r-4)a'/«-^/r!.

(6.) -1.2.5 . . . (3r-4)a>-*-/3.6.9 . . . 3r. (7.) -(n- l)(2n- 1) . . .

(nr
- n -

l)/rl. (8.) 1 . 4 . 7 . . . (.Sr/2
-
2)/(r/2)!

if r be even ; if r bo odd,

(9.) (-)*n(n + l).. .(n + J(r-n)-l)/{i(r-n)ll. (10.) 1 + 1 (x/a) + 1 (x/a)>

-t-}|(x/<0'. (11.) The 6rgt. (13.) The third. (13.) The fourth and filth.

(14.) The eighth. (16.) II n=l, the 2nd and 3rd; if n= 2, the 2nd ; ifn-(3,

the 1 St. (19.) If m = 0, .S = a; if in = I, .S = l; if n>l, S = 0: if «<1(*0)
the Bcricx is divergent. (23.) 1 -

^ i. (23.) If m-< 1, .'S = m(iii
-
Iji""-'; if

111 = 0. S = 0.
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X.

(1.) Sl/rt'-(c-a)(n-6). (2.) 0. (3.) 21/a'-^-2/(c
-

o) (a
-

1). (*.)
2r+ l + l/2'-+i. (6.) )-,if rbeeven; r-l,if r = 4J + l; r+l,if r= 4?-l. (6.)

nHr<f-m'^l-mJir-iP<r^+^fi-i-Jir--p-r'-+ {16-) H« + 1) (« + 2)(« + 3).

(19.) 1-1.3 .. . (2)i-l)/2";il. (20) 7 . 10 . . . (3n + l)/3.ti. . . (3n-3).

XI.

(2.) 27.5/I2S. (3.) 8G9Gnn/256. (4.) id; 0. (6.) 11989305/2048. (6.)

(-)'-{(r-l) + (r+.'>)/2'-i-}. (10.) 1-0001005084 ; 1-000400080-5. (11.) 2mx.

(12.) l + 2j;(l-r»)/(l-r). (13.) l + (-)"-ix/2".

XII.

(1.) -367879. (2.) -ones. (5.) (l-x)-e^. (6.) 3(e-l). (7.) e + l.

(8.) 1/f. (9.) 15e.

XIII.

(4.) 917. (5.) 21og{(r-l)/(.r + l)}+log{(x + 2)/{.r-2)}. (6.) log (12,.).

(7.) (l + l/x)log(l + x)-l. (8.) i(.r-x->)log{(l + .r)/(l-x)} + 4. (9.)

When x=l the sum is 18 -24 log 2. (10.) J. (12.) S {a-3»-=/(3n
-

2)

+ i»»-V(3»-l)-2a^'V3«l-

XXV.

(1.) ^n{n + l) + l{r-2)n{n + l){n-l). (2.) Jh,(«+1) (K + 4)(n + 5). (3.)

3/4-l/2K-l/2(n + l). (4.) 1/1o-1/o(5h + 3). (5.) 1/12- l/4(2K + l)(2rt + 3).

(6.) l/18-l/3(n + l)(n + 2)(n + 3). (7.) «/2 + 6/4-a/(» + 2)-6/2(n + l)(n + 2).

(8.) l/8-(4!i + 3)/8(2n + l)(2K + 3). (9.) 7/36- (3H + 7)/(n+l) (h + 2) («+ 3).

(10.) ll/180-(C»i + ll)/12(2;i + l)(2« + 3)(2K + 5). (11.) 3/4 + n-(2« + 3)/

2 (n + !)(« + 2). (12.) u„= (n + l)^(n + 3)(n + 5)/;i(n + l). . . (n+ G); apply

§ 3, Example 4. (13.) sin d sec (« + 1)0 sec 0. (14.) cot
(«/2»)/2»

- cot 9.

(16.) tan-'na". (16.) tau-'l + tau-'l/2- tan-U/n- tau-U/(H + l). (17.)

(m + H)l/(»i +!)(«- 1)!. (18.) {l/(m-l)l-(» + l)!/(m + n-l)!}/(m-2).

(19.) (-r^-iG„. (21.) {m-l-(n)l/"i"->'}/('»-2). (22.) {a>''+^'lc"''
-

„ir+ii)/(a_c + r + l). (23.) (oi"+-7ci»+'^-»i-a/ci'-i)/(n-c-r + l). (24.)

{(a-l)""-'7ci"'-'i-(a + H)"^iV(c + 7i+ l)i'»-i'}/(m-l)(a-c-l). (25.)

Deduce from (24). (26.) Deduce from (24). (27.) 2m{l - (-)"2"(m- 1)

(m-2) . . . (m-«)/1.3 . . . (2k- l)}/(2w- 1).

XXVI.

(1.) 2"+' + 4(3"+' -3). (2.) ;{l + (-l)''} + C-3{!»+> + (-r)"+'}-

V{i"-(-i)"}. (3.) ll{l-{lx)»+'}/{l-4x}-9{l-(3x)»+i}/{l-3x};

(2 + 3t)/(1-7x + 12x5), x<J. (4.) 3 {1- (2x)"+>}/{l-2x} +2 {1- (3i)»+i}/

{1
- 3x

} ; (5
-

13x)/(l
- 5x + Gx''), x< J . (5.) J {

1 - (3x)"+'}/(l
- 3x) +

J{l-(5.r)'-n}/(l-5x); (1 -4x)/(l -8x+ 15x=), x<J. (6.) 3{l-(2x)''+i}/

{l-2xJ-2{l-x"+'}/{l-x}; (l + x)/(l-3x + 2x=), x^J.
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XXVII.

(1.) (l + 2jr')/(l-x')'. (2.) -[log{(l-i)/(l + x + T>)}-^/3tan->{V8T/
(2 + j-)}]/3i; H^ + 2^-'/'C09(^3j-/2)}. (4.) He-' + e"* {cos (^18x12) + J3
8iD(v'3j-/'2)}]. (8.) l(2"' + 2co9.mT/3): IS^'coB-mF/e. (6.) 1/2

-
l/{n + 2)I.

(7.) {2'»+'-l-(ri + 3)(m+l)/2}/(m + l)(m + 2)(m + 3). (8.) 1/(1 + *)-
log(l + i). (9.) 4 =08* -1 cos 20. (10.) l-(2K + 3)/(r. + 2}'. (U.)2-41og2.
(14.) Bin mwlmw ; cosh mr.

XXVIII.

The partial qnotients arc as follows :—
(1.) 0, 4. 1, C, 2. (a.) 0, 2. 4, 8, 10. (3.) 1. I.i. 1, 1, 1, 3. 1, M, 1. 1,

6. (4.) 31, 1, 1, 1, 1, 1, 1, 1, 1, 3. (6.) 2. 1. 2. 1, 1, 4, 1, 1. 0. 3, 12, 3.

6, 1, 2. (6.) 0, 120, 1, 1, 2, 1, 1, 0. (7.) 1, 2. (8.) 2, 4. (9.) 3. 3, 0.

(10.) 3, 6. (11.) 3, 2. 5. (12.) 1, 4, 2. (13.) 2, 1, 2. (14.) 3, i, 6,

(16.) 0, 2, 1; 0, I. (17.) a, 2, 2*a; a-1, 2, 2 (.4-1).

XXIX.

(1.) The Ist, 2nd, 3rd, . . . convcrgcnts are 1, 2/3, 9/13, 20/29, 20/42,

78/113, . . .: the errors corresponding less than 1/3, 1/39, 1/377, 1/1218,

1/4740, 1/17615, . . . (a.) 972/1393. (3.) 2177/528. (4.) TransiU at

the same node will occur 8, 243, . . . years after : after 8 years Venus will

be less than l°-5 from the node. (S.) Transits at the same node will occur

13, 33, . . . years after.

XXXI.

(1) 10,2*0; (2.) 0, 1, 126. 2;

0, 10, 0, 0, 0*3, 0*3 ;

1. C4,C3, i.

(3.) 1, 5, 3, 1, 8, 1,3, 5. 2;

0, 12, 13, 8, 12, 12,8, 13, 12;

1*2, 5, 7, 20. 3, 20, 7, 5.

(4.) 0,7, 1,4,3,1,2,2,1,3,4, 1,14;

0,0. 7.5,7,5,4,6,4.5.7. 6, 7;

61, 1. 12. 3. 4, 9. 5. 5. 9, 4, 3, 12.

(B.) 1, 2, 10, 2, 1; (6.) 2,4;

1*0, IS, 2.-,, 25, 1*6 ; 2, 2 ;

25, 20. 6. 20. 25. 2, I.
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* » « » *

(10.) a + ^
—

;
a + (a"-i-j8"-')/(a'» -;?")» °- ^^^ ^ ^^i^g ^^6 roots of

*

x--2ax-l = 0. (11.) i{o + V(a= + 4)}; (a"+i-/3"+')/(a''-/3"), whereoand

|S
are the roots o(x^-ax-l=0. (12.) § {a

-
^(a'>

-
4)} ; (a"

-
/3")/(a»+'

-
/3*<->),

where a and /3
are the roots of x= - oi + 1 = 0. (13.) {-ab + sj{ci%^ + iab)} 12a;

if o, p be the roots of i»- (a6 + 2)a; + l= 0, then pj„= 6(a"-/3")/(o-;3),

9»n=(a"+'-(3''+»-a" + /S")/(a-yS), and ?,„-,= (p,„-Ps„-5)/6, 9.„-, = (gs„-

^.n-jVi- {14-)
- 1 + v/ [{3 (a"

-
/3") + 2 (a»->

-
/S"-') l/la"*'

-
|S"+')], where a

and ^ are the roots of X--X- 1 = 0. (20.)
- in + V[{(in- + ")(«''"' -/3""') +

(in'+l) (a»-2-/3''-=)}/(a»-jS")], where a and |3 are the roota of r"- a; -1=0.

XXXII.

(1.) 3+ 7«, 2- 5f. (2.) 17e + 7, 16( + 5. (3.) 220G - 7f, IK - 3309. (4.)

1013«- 8021756, 13C7t- 4077746. (5.) 13. (6.) 2S0. (7.) G. (8.) It

25fr. = 20s., 41. (9.) Buy 300 of each and spend 1021<i. (10.) C9. (12.)

19. (13.) 715. (14.) 697.

XXXIV.

(1.) Converges. (2.) Converges. (3.) Oscillates. (4.) Converges. (5.)

Converges. (6.) Converges. (7.) Converges if fc > 2, oscillates if fc > 2. (8.)

Converges. (9.) Oscillates. (10.) Oscillates. (15.) Each of the fractions

converges to 1. (23.) e. (24.) 1/(1 -e). (25.) log, 2. (26.) (3-e)/(e-2).

xxxrs.

(1.) 11/30. (2.) 3/11, 29/44, 3/44. (3.) m(n» + 2n)/(m + n)',m(m+2n- 1)/

(m+ n)(m + n-l). (4.) (365 .4»+ l)/(1461)». (5.) 4/9. (7.) 55/672, 299/2G88.

(8.) 1/42. (9.) («-!)/« (2n-l). (10.) (39!)»/26152I, 4(391)»/26!521. (11.)

2 (r
-
l)/n (n

-
1). (13.) 7n/2, or, if this be not integral, the two integers on

either side of it. (14.) "2 r(r-l)n(n-l) . . . (n-r + 2)/rt'. (18.) 16/31,

8/31, 4/31, 2/31, 1/31. (19.) The chances in A's favour are 6/10, 7/10, 8/10,

9/10, when he is 1, 2, 3, 4 up respectively. (20.) 25 to 2. (23.) (1
-

1/«)/2,

(l-l/n)/(2-l/n).

XL.

(1.) £1 : 11 : 6. (2.) His expectations are lis. Grf. and lOj. Hd. respect-

ively. (3.) £8:5:94, £2:4: 2i. (4.) n(l- 1/2--), (1-1/2T- (7.)75.2irf.;

{n+ l)(4n-l)/6n. (12.) £0, £1, £4 : 2 : 24.



INDEX OF PROPER NAMES,

PARTS I. AND II.

The Soman numeral re/en to the part*, the Arabic to the page.

Abel, ii. 132, 13C, 142, 141, 152,

164, 287
Adams, ii. 231, 243, 251

Alkhnyami, ii. 4o0
Allardicf, i. 441

Arohiiucdca, ii. 99, 412

Argand, i. 222, 254

Arudt, ii. 500

Babhaoe, ii. 180

Bernoulli, James, ii. 228, 233, 276,
403, 405, 587, COS

Bernoulli, John, ii. 275, 298, 3GC,
403, 584'

Bortrand, ii. 125, 132, 183

Bezout, i. 358

Biermann, ii. 08
Blissord. L 84

Bombelli. i. 201

Bonnet, ii. 03, 132, lf»3

Boole (Moulton), ii. 231, 398
Hoarguot, ii. 183, 253

Briggfl, i. 529; ii. 241
Briot and l)ouc|uet, ii. 396
Brounckcr, ii. 351, 413, 479, 516
Burc-khardt, ii. 536

Biirgi, i. 558

Barnside, ii. 32

CiNTOB, iL 98
Cardano, i. 253

Catalan, ii. 132, 183, 220, 251, 353,
416

Cauchy, i. 77, 254; ii. 4-.>. 47, 83,
110, ll.";, 12:1. 132, i:w, 142, IM,
171. 188, 226, 239, 2S7, 340, 844,
896

Cavley, ii. 33, 312, 325, 871, 496
Clausen, ii. 340, 503

Clcrk-Maiwfll, ii. 325
Cossali, i. 191

Cotcg, L 247

Cramer, ii. 396

Dase, ii. 536

Dedekind, ii. 98
De Gua, ii. 396
De Morgan, i. 254, 346; ii. 125, 132,

381, 390, 417, 421, 578, 004

Dcmoivre, i. 239, 247; ii. 298, 806,
401, 4U3, 405, 407, 411, S74, 593.
697, 005

Desboves, iL 63

Dcscarte.'i, i. 201

Dinphautos, ii. 473

Pirichlet, iL 95, 140, 473
Du Uois lieymond, ii. 133, 147, 148,

Dur^e, ii. 396

Ei.T, ii. 231, 344

Kuclid, L 47, 272

Euler, L 254; iL 81, 110, 18fl, 231,

2.''>2, 280, 841, 342, 343, 344, 345,

348, 358, 363, 305, 306, 408, 41'J,

448, 494, 41)0, 512, 515, 616, 526,

539, 550, 551, 553, 555, 556, 668

Favabo, ii. 448
Format, ii. 478, 499, 640, 660. 591
Ferrers, ii. 6i'.2

Fihonaoci, i. 202

Fomyth, ii. 890

i'uiti ii. 77



INDEX C15

Fourier, ii. 135

Franklin, ii. 83, 5G1

Frost, ii. 9G, 112, 30G, 397

Galois, ii. 505

Gauss, i. 46, 254; ii. 81, 132, 184,

333, 345, 473, 523, 542, 550, 553

Glaisher. i. 172, 530; ii. 81, 240,

313, 357, 371, 397, 410, 421, 53C

Goldbach, ii. 422

Grassmann, i. 254

Gray, ii. 243

Greenhill, ii. 313

Gregory, ii. 110

Gregory, James, ii. 333, 351

Grillet, ii. 59

Groiinu, ii. 313

Gross, ii. 541

Gudermann, ii. 312, 313

Guutlier, ii. 312, 448

Hamilton, i. 254

Hankel, i. 5, 254

Hargreaves, ii. 447, 452

Harkness and Morley, iu lOG, 148,

163, 396

Harriot, i. 201

Heath, ii. 473

Heilermaun, ii. 518

Heine, ii. 95, 98, 527

Heis, ii. 313

Herigone, i. 201

Hermite, ii. 473

Hero, i. 83

Hindenburg, ii. 495

Horner, i. 34G

Houel, ii. 312

Hutton, i. 201

Huyghens, ii. 448, 580, 587, 592

Jacobi, ii. 473

Jensen, ii. 184

Jordan, i. 76; ii. 32

KoBN, ii. 125, 133

Kramp, ii. 4, 403

Kronecker, ii. 237

Eummer, ii. 133, 184, 473

La Caille, ii. 449

Lagrange, i. 57, 451; ii. 396, 448,

450, 453, 479, 5.50, 553

Laisaut, ii. 313, 336, 358

Lambert, i. 176: ii. 312, 345, 448,
517, 523

Laplace, ii. 50, 605

Laurent, ii. 184, 579, G05

Legondre, ii. 473, 512, 523, 503

Leibnitz, ii. 333, 403

Lionnet, ii. 249, 252

Lock, ii. 271

Longcbamps, ii. 110

Macdonald, i. 530

Maohin, ii. 333

Malmsten, ii. 80, 132

Waseheroni, ii. 81

Mathews, ii. 473

Mayer, F. C, ii. 312

Meray, ii. 98

Mercator, ii. 312

Mortens, ii. 142

Metius, ii. 442

Mever, ii. 605

Mobius, ii. 397, 494, 504

Montmort, ii. 405, 407, 584, 592,

605, 606

Muir, i. 358; ii. 334, 471, 494, 4D7,

502, 504, 518, 527

Napier, i. 171, 201, 254, 529; ii. 78

Netto, u. 32

Newton, i. 201, 436, 472, 474, 479;
ii. 14, 280, 330, 335, 351, 373,

386, 392, 396, 401, 591

Nicolai, ii. 81

Ohji, ii. 140, 231

Osgood, ii. 146

Oughtred, i. 201, 256

Pacioli, i. 202

Pascal, i. 67; ii. 584, 591

Paucker, ii. 133

Peacock, i. 254

Pfaff, ii. 335

Pringsheim, ii. 98, 133, 156, 185

Pniseux, ii. 396

Purkiss, ii. 61

Pythagoras, ii. 531

Eaabe, ii. 132, 372

Eecorde, i. 216

Keifif, ii. 145

Keynaud and Duhamel, ii. 49

Kiemann, i. 254; ii. 110, 265, 325

Eudolf, i. 200

Salmon, i. 440

Sang, i. 530

Saunderson, ii. 443

Scheubel, i. 201
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Bchl6milcl), ii. 46. SI, 80, 111, 1R4,
210. 35'J, 373. r,lt6, 523

Scidel, ii. 143, 60t>

Serret, i. 76; ii. 32, 443, 453, 471,
481. 490

Shanks, ii. 334

Sliarp, ii. 333

Simpson, ii. 417

Smith, Ueary, ii. 473. 499

Spragoe. i. 531 ; ii. 83
StA-nville, ii. 335

BUudt, ii. 231

Btern, ii. 312, 418, 497, 505, 600,
617, 525

Stevin, i. 171, 201

Stifel, i. 81, 200

Stiriing. ii. 308, 401, 404, 422, 589
Stokes, ii. 145

Stolz, ii. 93. 163, 181, 185, 396
Sutton, i. 531

Sylvester, i. 48, 176; ii. 312, 494,
603, 556, 561

Tait, ii. 253

TnrtBRlia, i. 191

Tchobiclipf, ii. 183
Thomo, a. 184, 396
Todhunter, ii. 271. 276, 674, 680,

584, 587, 592, 605

Van Ceclev, ii. 833
Vandermondf, ii. 9
Venn, ii. 567

ViMe, i. 201; ii. 270
Vlncq, i. 530

Wallace, ii. 312, 314, 315
AVallis, ii. 351, 44S. 479. 527, 537
W.iring, ii. 132, 417, 653, 555
Weber, ii. 98

Weierslr.is.s, L 230; ii. 98, 151, 100,
168, 185

Whitworth, ii. 22, 26, 33, 665, 589.
005

Wilson, ii. 551

Wol.stcnholmc, i. 413: ii. 17 83
372. .'547

Wiuui>ki, ii. 213

THE END.

CAMBniDGE : PBINTED IIY W. I.EWLS. itjl., ATTUE CNIVERSITV PBESS









I



BINDING SECT, JjJM 1 4 1982

PLEASE DO NOT REMOVE

CARDS OR SUPS FROM THIS POCKET

QA



fl


