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PREFACE.

Mathematical Logic is a necessary preliminary to logical

Mathematics. &quot;Mathematical Logic&quot;
is the name given by

PEANO to what is also known (after VENN) as &quot;Symbolic

Logic&quot;;
and Symbolic Logic is, in essentials, the Logic of

Aristotle, given new life and power by being dressed up in

the wonderful almost magical armour and accoutrements

of Algebra. In less than seventy years, logic, to use an

expression of DE MORGAN S, has so thriven upon symbols and,

in consequence, so grown and altered that the ancient logicians

would not recognize it, and many old-fashioned logicians will

not recognize it. The metaphor is not quite correct: Logic

has neither grown nor altered, but we now see more of it

and more into it.

The primary significance of a symbolic calculus seems to

lie in the economy of mental effort which it brings about, and

to this is due the characteristic power and rapid development
of mathematical knowledge. Attempts to treat the operations

of formal logic in an analogous way had been made not in

frequently by some of the more philosophical mathematicians,

such as LEIBNIZ and LAMBERT; but their labors remained little

known, and it was BOOLE and DE MORGAN, about the middle

of the nineteenth century, to whom a mathematical though
of course non- quantitative way of regarding logic was due.

By this, not only was the traditional or Aristotelian doctrine

of logic reformed and completed, but out of it has developed,
in course of time, an instrument which deals in a sure manner

with the task of investigating the fundamental concepts of

mathematics a task which philosophers have repeatedly taken

in hand, and in which they have as repeatedly failed.
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IV PREFACE.

First of all, it is necessary to glance at the growth of

symbolism in mathematics, where alone it first reached per
fection. There have been three stages in the development
of mathematical doctrines: first came propositions with par
ticular numbers, like the one expressed, with signs subsequently

invented, by &quot;2 + 3 = 5&quot;;
then came more general laws hold

ing for all numbers and expressed by letters, such as

&quot;(a + b) c= ac-\- be&quot;;

lastly came the knowledge of more general laws of functions

and the formation of the conception and expression &quot;function&quot;.

The origin of the symbols for particular whole numbers is

very ancient, while the symbols now in use for the operations

and relations of arithmetic mostly date from the sixteenth and

seventeenth centuries; and these &quot;constant&quot; symbols together

with the letters first used systematically by VIETE (1540 1603)

and DESCARTES (1596 1650), serve, by themselves, to express

many propositions. It is not, then, surprising that DESCARTES,

who was both a mathematician and a philosopher, should

have had the idea of keeping the method of algebra while

going beyond the material of traditional mathematics and

embracing the general science of what thought finds, so that

philosophy should become a kind of Universal Mathematics.

This sort of generalization of the use of symbols for analogous

theories is a characteristic of mathematics, and seems to be

a reason lying deeper than the erroneous idea, arising from

a simple confusion of thought, that algebraical symbols nec

essarily imply something quantitative, for the antagonism

there used to be and is
(

on the part of those logicians who

were not and are not mathematicians, to symbolic logic. This

idea of a universal mathematics was cultivated especially by

GOTTFRIED WJLHELM LEIBNIZ (1646 1716).

Though modern logic is really due to BOOLE and DE

MORGAN, LEIBNIZ was the first to have a really distinct plan

of a system of mathematical logic. That this is so appears

from research much of which is quite recent into LEIBNIZ S

unpublished work.

The principles of the logic of LEIBNIZ, and consequently
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of his whole philosophy, reduce to two 1
: (i) All our ideas

are compounded of a very small number of simple ideas which

form the &quot;alphabet
of human thoughts&quot;; (2) Complex ideas

proceed from these simple ideas by a uniform and symmetrical

combination which is analogous to arithmetical multiplication.

With regard to the first principle, the number of simple ideas is

much greater than LEIBNIZ thought; and, with regard to the second

principle, logic considers three operations which we shall meet

with in the following book under the names of logical multi

plication, logical addition and negation instead of only one.

&quot;Characters&quot; were, with LEIBNIZ, any written signs, and

&quot;real&quot; characters were those which as in the Chinese ideo-

graphy represent ideas directly, and not the words for them.

Among real characters, some simply serve to represent ideas,

and some serve for reasoning. Egyptian and Chinese hiero

glyphics and the symbols of astronomers and chemists belong

to the first category, but LEIBNIZ declared them to be imper

fect, and desired the second category of characters for what

he called his &quot;universal characteristic&quot;.
2

It was not in the

form of an algebra that LEIBNIZ first conceived his charajeristic,

probably because he was then a novice in mathematics, but

in the form of a universal language or script.
3 It was in

1676 that he first dreamed of a kind of algebra of thought,
4

and it was the algebraic notation which then served as model

for the characteristic. 5

LEIBNIZ attached so much importance to the invention of

proper symbols that he attributed to this alone the whole of

his discoveries in mathematics. 6
And, in fact, his infinitesimal

calculus affords a most brilliant example of the importance

of, and LEIBNIZ S skill in devising, a suitable notation. 7

Now, it must be remembered that what is usually understood

by the name &quot;symbolic logic&quot;,
and which though not its

name is chiefly due to BOOLE, is what LEIBNIZ called a

Calculus ratiocinator, and is only a part of the Universal

1 COUTURAT, La Logique de Leibniz d afires des documents inedits,

Paris, 1901, pp. 431432, 48.
2

Ibid., p. 8l. 3 Ibid., pp. 51, 78. 4 Ibid., p. 61.

5 Ibid., p. 83. 6 ibid. t p. 84. 7 Ibid., p. 8487.
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Characteristic. In symbolic logic LEIBNIZ enunciated the principal

properties of what we now call logical multiplication, addition,

negation, identity, class-inclusion, and the null-class; but the

aim of LEIBNIZ S researches was, as he said, to create &quot;a kind

of general system of notation in which all the truths of reason

should be reduced to a calculus. This could be, at the same

time, a kind of universal written language, very different from

all those which have been projected hitherto; for the char

acters and even the words would direct the reason, and the

errors excepting those of fact would only be errors of

calculation. It would be very difficult to invent this language

or characteristic, but very easy to learn it without any
dictionaries&quot;. He fixed the time necessary to form it: &quot;I think

that some chosen men could finish the matter within five

years&quot;;
and finally remarked: &quot;And so I repeat, what I have

often said, that a man who is neither a prophet nor a prince

can never undertake any thing more conducive to the good
of the human race and the glory of God&quot;.

In his last letters he remarked: &quot;If I had been less busy,

or if I were younger or helped by well-intentioned young

people, I would have hoped to have evolved a characteristic

of this kind&quot;; and: &quot;I have spoken of my general characteristic

to the Marquis de 1 Hopital and others; but they paid no

more attention than if I had been telling them a dream. It

would be necessary to support it by some obvious use; but,

for this purpose, it would be necessary to construct a part

at least of my characteristic; and this is not easy, above all

to one situated as I am&quot;.

LEIBNIZ thus formed projects of both what he called a

characteristica universails, aud what he called a calculus ratio-

dnator; it is not hard to see that these projects are inter

connected, since a perfect universal characteristic would

comprise, it seems, a logical calculus. LEIBNIZ did not publish

the incomplete results which he had obtained, and conse

quently his ideas had no continuators, with the exception of

LAMBERT and some others, up to the time when BOOLE, DE

MORGAN, SCHRODER, MacCpLL, and others rediscovered his

theorems. But when the investigations of the principles of
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mathematics became the chief task of logical symbolism, the

aspect of symbolic logic as a calculus ceased to be of such

importance, as we see in the work of FREGE and RUSSELL.

FREGE S symbolism, though far better for logical analysis than

BOOLE S or the more modern PEANO S, for instance, is far

inferior to PEANO S a symbolism in which the merits of

internationality and power of expressing mathematical theorems

are very satisfactorily attained in practical convenience.

RUSSELL, especially in his later works, has used the ideas of

FREGE, many of which he discovered subsequently to, but

independently of, FREGE, and modified the symbolism of PEANO

as little as possible. Still, the complications thus introduced

take away that simple character which seems necessary to

a calculus, and which BOOLE and others reached by passing

over certain distinctions which a subtler logic has shown us

must ultimately be made.

Let us dwell a little longer on the distinction pointed out

by LEIBNIZ between a calculus ratiocinator and a characieristica

universalis or lingua characteristica. The ambiguities of ordi

nary language are too well known for it to be necessary for

us to give instances. The objects of a complete logical

symbolism are: firstly, to avoid this disadvantage by providing

an ideography, in which the signs represent ideas and the

relations between them directly (without the intermediary of

words), and secondly, so to manage that, from given premises,

we can, in this ideography, draw all the logical conclusions

which they imply by means of rules of transformation of

formulas analogous to those of algebra, in fact, in which

we can replace reasoning by the almost mechanical process

of calculation. This second requirement is the requirement

of a calculus ratiocinator. It is essential that the ideo-

graphy should be complete, that only symbols with a well-

defined meaning should be used to avoid the same sort of

ambiguities that words have and, consequently, that no

suppositions should be introduced implicitly, as is commonly
the case if the meaning of signs is not well defined. Whatever

premises are necessary and sufficient for a conclusion should

be stated explicitly.
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Besides this, it is of practical importance, though it is

theoretically irrelevant, that the ideography should be concise,

so that it is a sort of stenography.

The merits of such an ideography are obvious: rigor of

reasoning is ensured by the calculus character; we are

sure of not introducing unintentionally any premise; and

we can see exactly on what propositions any demonstration

depends.

We can shortly, but very fairly accurately, characterize the

dual development of the theory of symbolic logic during the

last sixty years as follows: The calculus ratiocinator aspect

of symbolic logic was developed by BOOLE, DE MORGAN,

JEVONS, VENN, C. S. PEIRCE, SCHRODER, Mrs. LADD FRANKLIN

and others; the lingua characteristica aspect was developed

by FREGE, PEANO and RUSSELL. Of course there is no hard

and fast boundary-line between the domains of these two

parties. Thus PEIRCE and SCHRODER early began to work at

the foundations of arithmetic with the help of the calculus of

relations; and thus they did not consider the logical calculus

merely as an interesting branch of algebra. Then PEANO paid

particular attention to the calculative aspect of his symbolism.

FREGE has remarked that his own symbolism is meant to be

a calculus ratiocinator as well as a lingua characteristica, but

the using of FREGE S symbolism as a calculus would be rather

like using a three-legged stand-camera for what is called

&quot;snap-shot&quot; photography, and one of the outwardly most

noticeable things about RUSSELL S work is his combination of

the symbolisms of FREGE and PEANO in such a way as to

preserve nearly all of the merits of each.

The present work is concerned with the calculus ratiocinator

aspect, and shows, in an admirably succinct form, the beauty,

symmetry and simplicity of the calculus of logic regarded as

an algebra. In fact, it can hardly be doubted that some such

form as the one in which SCHRODER left it is by far the best

for exhibiting it from this point of view. 1 The content of the

i Cf. A. N. WHITEHEAD, A Treatise en Universal Algebra with Appli

cations, Cambridge, 1898.
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present volume corresponds to the two first volumes of

SCHRODER S great but rather prolix treatise.
1

Principally owing

to the influence of C. S. PEIRCE, SCHRODER departed from

the custom of BOOLE, JEVONS, and himself (1877), which

consisted in the making fundamental of the notion of equality,

and adopted the notion of subordination or inclusion as a

primitive notion. A more orthodox BOOLIAN exposition is

that of VENN Z
,
which also contains many valuable historical

notes.

We will finally make two remarks.

When BOOLE (cf. 2 below) spoke of propositions deter

mining a class of moments at which they are true, he really

(as did MACCOLL) used the word
&quot;proposition&quot;

for what we

now call a &quot;prepositional function&quot;. A
&quot;proposition&quot;

is a

thing expressed by such a phrase as &quot;twice two are four&quot; or

&quot;twice two are
five&quot;,

and is always true or always false. But

we might seem to be stating a proposition when we say:

&quot;Mr. WILLIAM JENNINGS BRYAN is Candidate for the Presidency

of the United States&quot;, a statement which is sometimes true

and sometimes false. But such a statement is like a mathe

matical function in so far as it depends on a variable the

time. Functions of this kind are conveniently distinguished

from such entities as that expressed by the phrase &quot;twice

two are four&quot; by calling the latter entities &quot;propositions&quot; and

the former entities &quot;prepositional functions&quot; : when the variable

in a prepositional function is fixed, the function becomes a

proposition. There is, of course, no sort of necessity why
these special names should be used; the use of them is

merely a question of convenience and convention.

In the second place, it must be carefully observed that, in

S 13, o and i are not defined by expressions whose principal

1
Vorlesungen uber die Algebra der Logik, Vol. I., Leipsic, 1890;

Vol. II, 1891 and 1905. We may mention that a much shorter Abriss

of the work has been prepared by EUGEN MULLER. Vol. Ill (1895) of

ScHRdDER s work is on the logic of relatives founded by DE MORGAN and
C. S. PEIRCE, a branch of Logic that is only mentioned in the con

cluding sentences of this volume.
2 Symbolic Logic, London, 1881; 2nd ed., 1894.
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copulas are relations of inclusion. A definition is simply the

convention that, for the sake of brevity or some other con

venience, a certain new sign is to be used instead of a group

of signs whose meaning is already known. Thus, it is the

sign of equality that forms the principal copula. The theory

of definition has been most minutely studied, in modern times

by FREGE and PEANO.

Philip E. B. Jourdain.

Girton, Cambridge. England.
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1. Introduction. The algebra of logic was founded by
GEORGE BOOLE (1815 1864); it was developed and perfected

by ERNST SCHRODER (1841 1902). The fundamental laws

of this calculus were devised to express the principles of

reasoning, the &quot;laws of thought&quot;. But this calculus may be

considered from the purely formal point of view, which is

that of mathematics, as an algebra based upon certain prin

ciples arbitrarily laid down. It belongs to the realm of

philosophy to decide whether, and in what measure, this

calculus corresponds to the actual operations of the mind,

and is adapted to translate or even to replace argument;
we cannot discuss this point here. The formal value of this

calculus and its interest for the mathematician are absolutely

independent of the interpretation given it and of the appli

cation which can be made of it to logical problems. In

short, we shall discuss it not as logic but as algebra.

2. The Two Interpretations of the Logical Cal

culus. There is one circumstance of particular interest,

namely, that the algebra in question, like logic, is susceptible

of two distinct interpretations, the parallelism between them

being almost perfect, according as the letters represent con

cepts or propositions. Doubtless we can, with BOOLE and

SCHRODER, reduce the two interpretations to one, by con

sidering the concepts on the one hand and the propositions

on the other as corresponding to assemblages or classes; since

a concept determines the class of objects to which it is

applied (and which in logic is called its extension), and a

proposition determines the class of the instances or moments

of time in which it is true (and which by analogy can also

be called its extension). Accordingly the calculus of con-

i*
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cepts and the calculus of propositions become reduced to

but one, the calculus of classes, or, as LEIBNIZ called it, the

theory of the whole and part, of that which contains and

that which is contained. But as a matter of fact, the cal

culus of concepts and the calculus of propositions present

certain differences, as we shall see, which prevent their com

plete identification from the formal point of view and conse

quently their reduction to a single &quot;calculus of classes&quot;.

Accordingly we have in reality three distinct calculi, or,

in the part common to all, three different interpretations of

the same calculus. In any case the reader must not forget

that the logical value and the deductive sequence of the

formulas does not in the least depend upon the inter

pretations which may be given them, and, in order to

make this necessary abstraction easier, we shall take care to

place the symbols &quot;C. I.&quot; (conceptual interpretation) and &quot;P. I.&quot;

(propositional interpretation} before all interpretative phrases.

These interpretations shall serve only to render the formulas

intelligible, to give them clearness and to make their mean

ing at once obvious, but never to justify them. They may
be omitted without destroying the logical rigidity of the

system.

In order not to favor either interpretation we shall say

that the letters represent terms; these terms may be either

concepts or propositions according to the case in hand.

Hence we use the word term only in the logical sense.

When we wish to designate the &quot;terms&quot; of a sum we shall

use the word summand in order that the logical and mathe

matical meanings of the word may not be confused. A term

may therefore be either a factor or a summand.

3. Relation of Inclusion. Like all deductive theories,

the algebra of logic may be established on various systems

of principles
1

;
we shall choose the one which most nearly

1 See HUNTINGTON, &quot;Sets of Independent Postulates for the Algebra

of
Logic&quot;, Transactions of the Am. Math. Soc., Vol. V, 1904, pp. 288309.

[Here he says: &quot;Any set of consistent postulates would give rise to a

corresponding algebra, viz., the totality of propositions which follow
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approaches the exposition of SCHRODER and current logical

interpretation.

The fundamental relation of this calculus is the binary

(two -termed) relation which is called inclusion (for classes),

subsumption (for concepts), or implication (for propositions).

We will adopt the first name as affecting alike the two logical

interpretations, and we will represent this relation by the

sign &amp;lt;[
because it has formal properties analogous to those

of the mathematical relation
&amp;lt;&amp;lt; (&quot;less than&quot;) or more exactly

&amp;lt;

, especially the relation of not being symmetrical. Because

of this analogy SCHRODER represents this relation by the sign =$

which we shall not employ because it is complex, whereas

the relation of inclusion is a simple one.

In the system of principles which we shall adopt, this

relation is taken as a primitive idea and is consequently

indefinable. The explanations which follow are not given

for the purpose of defining it but only to indicate its meaning

according to each of the two interpretations.

C. I.: When a and b denote concepts, the relation a
&amp;lt;C

b

signifies that the concept a is subsumed under the concept b\

that is, it is a species with respect to the genus b. From

the .extensive point of view, it denotes that the class of # s

is contained in the class of s or makes a part of it; or,

more concisely, that &quot;All # s are ^ s&quot;. From the comprehen

sive point of view it means that the concept b is contained

in the concept a or makes a part of it, so that consequently

the character a implies or involves the character b. Example:
&quot;All men are mortal&quot;; &quot;Man implies mortal&quot;; &quot;Who says

man says mortal&quot;; or, simply, &quot;Man, therefore mortal&quot;.

P. I. : When a and b denote propositions, the relation a
&amp;lt;

b

signifies that the proposition a implies or involves the prop

osition
,

which is often expressed by the hypothetical

judgment, &quot;If a is true, b is true&quot;; or by &quot;a implies b&quot;\
or

more simply by &quot;#,
therefore b&quot;. WT

e see that in both inter-

from these postulates by logical deductions. Every set of postulates should

be free from redundances, in other words, the postulates of each set

should be independent, no one of them deducible from the
rest.&quot;]
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pretations the relation
&amp;lt;&amp;lt; may be translated approximately

by &quot;therefore&quot;.

Remark. Such a relation as &quot;a
&amp;lt;

b&quot; is a proposition,

whatever may be the interpretation of the terms a and b.

Consequently, whenever a
&amp;lt;

relation has two like relations

(or even only one) for its members, it can receive only the

prepositional interpretation, that is to say, it can only denote

an implication.

A relation whose members are simple terms (letters) is

.called a primary proposition; a relation whose members are

primary propositions is called a secondary proposition, and

so on.

From this it may be seen at once that the prepositional

interpretation is more homogeneous than the conceptual,
since it alone makes it possible to give the same meaning
to the copula &amp;lt;&amp;lt;

in both primary and secondary prop
ositions.

4. Definition of Equality. There is a second copula
that may be defined by means of the first; this is the

copula = (&quot;equal to&quot;). By definition we have

a=b,
whenever

and b &amp;lt; a

are true at the same time, and then only. In other words,

the single relation a = b is equivalent to the two simulta

neous relations a
&amp;lt;&amp;lt;

b and b
&amp;lt;&amp;lt;

a.

In both interpretations the meaning of the copula = is

determined by its formal definition:

C. L: a = b means, &quot;All a s are s and all s are
s&quot;;

in other words, that the classes a and b coincide, that they

are identical. 1

P. I.: a = b means that a implies b and b implies a; in

1 This does not mean that the concepts a and b have the same

meaning. Examples: &quot;triangle&quot;
and &quot;trilateral&quot;, &quot;equiangular triangle&quot;

and &quot;equilateral triangle&quot;.
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other words, that the propositions a and b are equivalent,

that is to say, either true or false at the same time. 1

Remark. The relation of equality is symmetrical by very

reason of its definition : a = b is equivalent to b = a. But

the relation of inclusion is not symmetrical: a
&amp;lt;&amp;lt;

b is not

equivalent to b&amp;lt;^a, nor does it imply it. We might agree

to consider the expression a
^&amp;gt;

b equivalent to b
&amp;lt;C a, but

we prefer for the sake of clearness to preserve always the

same sense for the copula &amp;lt;^. However, we might translate

verbally the same inclusion a
&amp;lt;&amp;lt;

b sometimes by &quot;a is con

tained in ft&quot; and sometimes by &quot;ft contains a&quot;.

In order not to favor either interpretation, we will call

the first member of this relation the antecedent and the

second the consequent.

C. L: The antecedent is the subject and the consequent is

the predicate of a universal affirmative proposition.

P. I.: The antecedent is the premise or the cause, and the

consequent is the consequence. When an implication is trans

lated by a hypothetical (or conditional} judgment the ante

cedent is called the hypothesis (or the condition) and the

consequent is called the thesis.

When we shall have to demonstrate an equality we shall

usually analyze it into two converse inclusions and demon

strate them separately. This analysis is sometimes made also

when the equality is a datum (a premise).

When both members of the equality are propositions, it

can be separated into two implications, of which one is

called a theorem and the other its reciprocal. Thus when

ever a theorem and its reciprocal are true we have an

equality. A simple theorem gives rise to an implication

whose antecedent is the hypothesis and whose consequent is

the thesis of the theorem.

It is often said that the hypothesis is the sufficient condition

of the thesis, and the thesis the necessary condition of the hy-

1 This does not mean that they have the same meaning. Example :

&quot;The triangle ABC has two equal sidas&quot;, and &quot;The triangle ABC has

. two equal angles&quot;.
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pothesis; that is to say, it is sufficient that the hypothesis be

true for the thesis to be true; while it is necessary that the

thesis be true for the hypothesis to be true also. When a

theorem and its reciprocal are true we say that its hypoth

esis is the necessary and sufficient condition of the thesis;

that is to say, that it is at the same time both cause and

consequence.

5. Principle of Identity. The first principle or axiom

of the algebra of logic is the principle of identity, which is

formulated thus:

(Ax. I) &amp;lt;a,

whatever the term a may be.

C. I.: &quot;All tf s are a
s&quot;,

i. e., any class whatsoever is con

tained in itself.

P. L: &quot;a implies 0&quot;,
i. e., any proposition whatsoever im

plies itself.

This is the primitive formula of the principle of identity.

By means of the definition of equality,, we may deduce from

it another formula which is often wrongly taken as the ex

pression of this principle:

a = a,

whatever a may be; for when we have

Oi *O,
we have as a direct result,

a = a.

C. L: The class a is identical with itself.

P. I.: The proposition a is equivalent to itself.

6. Principle of the Syllogism. Another principle of

the algebra of logic is the principle of the syllogism, which

may be formulated as follows:

(Ax. II) (a &amp;lt;b) (l&amp;gt;&amp;lt;c}&amp;lt; (a &amp;lt; 4
C. L: &quot;If all a s are s, and if all s are ^ s, then all a s

are &amp;lt;: s&quot;. This is the principle of the categorical syllogism,

P. L: &quot;If a implies b, and if b implies c, a implies/.&quot;

This is the principle of the hypothetical syllogism.
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We see that in this formula the principal copula has al

ways the sense of implication because the proposition is a

secondary one.

By the definition of equality the consequences of the

principle of the syllogism may be stated in the following

formulas 1
:

(a &amp;lt; b] (b
=

c}&amp;lt;(a&amp;lt; c\

(a = b) (b&amp;lt;c}&amp;lt;(a&amp;lt;c\

(a _*) (b
=

c)&amp;lt; (a = c).

The conclusion is an equality only when both premises

are equalities.

The preceding formulas can be generalized as follows:

(0&amp;lt;J) (b&amp;lt;c} (c&amp;lt;d)&amp;lt;(a&amp;lt;d),

(a^b] (b-c) (c
=

d)&amp;lt;(a
=

d).

Here we have the two chief formulas of the sorites. Many
other combinations may be easily imagined, but we can have

an equality for a conclusion only when all the premises are

equalities. This statement is of great practical value. In a

succession of deductions we must pay close attention to see

if the transition from one proposition to the other takes place

by means of an equivalence or only of an implication. There

is no equivalence between two extreme propositions unless

all intermediate deductions are equivalences; in other words,

if there is one single implication in the chain, the relation

of the two extreme propositions is only that of implication.

7. Multiplication and Addition. The algebra of logic

admits of three operations, logical multiplication, logical addition,

and negation. The two former are binary operations, that is

to say, combinations of two terms having as a consequent a

third term which may or may not be different from each of

them. The existence of the logical product and logical sum

of two terms mus.t necessarily answer the purpose of a

i Strictly speaking, these formulas presuppose the laws of multi

plication which will be established further on; but it is fitting to cite

them here in order to compare them with the principle of the syllogism
from which they are derived.
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double postulate, for simply to define an entity is not enough
for it to exist. The two postulates may be formulated thus:

(Ax. III). Given any two terms, a and b, then there is a

term p such that

/ &amp;lt; *, / &amp;lt; b,

and that for every value of x for which

*&amp;lt;a, *&amp;lt;t&amp;gt;,

we have also

x&amp;lt;p.

(Ax. IV). Given any two terms, a and b, then there exists

a term s such that

0O, &amp;lt;j,

and that, for any value of x for which

a
&amp;lt; x, b

&amp;lt; x,

we have also

s&amp;lt;x.

It is easily proved that the terms / and s determined by
the given conditions are unique, and accordingly we can

define the product ab and the sum a + b as being respec

tively the terms p and s.

C. L: i. The product of two classes is a class / which

is contained in each of them and which contains every

(other) class contained in each of them;

2. The sum of two classes a and b is a class s which

contains each of them and which is contained in every (other)

class which contains each of them.

Taking the words &quot;less than&quot; and &quot;greater than&quot; in a meta

phorical sense which the analogy of the relation
&amp;lt;&amp;lt;

with the

mathematical relation of inequality suggests, it may be said

that the product of two classes is the greatest class contained

in both, and the sum of two classes is the smallest class

which contains both. 1

Consequently the product of two

1 According to another analogy DEDEKIND designated the logical sum

and product by the same signs as the least common multiple and greatest

common divisor (Was sind und was sollen die ZaJden? Nos. 8 and 17, 1887.

[Cf. English translation entitled Essays on Number (Chicago, Open Court

Publishing Co. 1901, pp. 46 and 48) ]
GEORG CANTOR originally gave

them the same designation (Mathematische Annalen, Vol. XVII, 1880).
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classes is the part that is common to each (the class of

their common elements) and the sum of two classes is the

class of all the elements which belong to at least one

of them.

P. I.: i. The product of two propositions is a proposition

which implies each of them and which is implied by every

proposition which implies both:

2. The sum of two propositions is the proposition which

is implied by each of them and which implies every prop

osition implied by both.

Therefore we can say that the product of two propositions

is their weakest common cause, and that their sum is their

strongest common consequence, strong and weak being used

in a sense that every proposition which implies another is

stronger than the latter and the latter is weaker than the

one which implies it. Thus it is easily seen that the product

of two propositions consists in their simultaneous affirmation:

&quot;a and b are true&quot;, or simply &quot;a and b&quot;
;

and that their

sum consists in their alternative affirmation, &quot;either a or b

is
true&quot;,

or simply &quot;# or b&quot;.

Remark. Logical addition thus denned is not disjunctive;
1

that is to say, it does not presuppose that the two summands

have no element in common.

8. Principles of Simplification and Composition.
The two preceding definitions, or rather the postulates which

precede and justify them, yield directly the following formulas :

(1) ab&amp;lt;a, ab&amp;lt;b,

(2) (*&amp;lt;*) (x&amp;lt;b)&amp;lt;(x&amp;lt;ab\

(3) a
&amp;lt;

a + b, b
&amp;lt;

a + b,

(4) (&amp;lt;*)(* O)&amp;lt; (a + *&amp;lt;*).

Formulas (i) and (3) bear the name of the principle of

simplification because by means of them the premises of an

1 [BooLE, closely following analogy with ordinary mathematics, premised,

as a necessary condition to the definition of &quot;x -f-y, that x andy were

mutually exclusive. JEVONS, and practically all mathematical logicians after

him, advocated, on various grounds, the definition of &quot;logical
addition&quot;

in a form which does not necessitate mutual exclusiveness.]
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argument may be simplified by deducing therefrom weaker

propositions, either by deducing one of the factors from a

product, or by deducing from a proposition a sum (alter

native) of which it is a summand.

Formulas (2) and (4) are called the principle of composition,

because by means of them two inclusions of the same ante

cedent or the same consequent may be combined (composed).

In the first case we have the product of the consequents,

in the second, the sum of the antecedents.

The formulas of the principle of composition can be trans

formed into equalities by means of the principles of the

syllogism and of simplification. Thus we have

1 (Syll.) (x&amp;lt;ab) (ab&amp;lt;a)&amp;lt;(x&amp;lt;a),

(Syll.) (x &amp;lt; ad) (ab &amp;lt;b)&amp;lt;(x&amp;lt; b).

Therefore

(Comp.) (x &amp;lt; ab} &amp;lt; (x &amp;lt; a) (x &amp;lt; b).

2 (Syll.) (a&amp;lt;a + b) (a + b&amp;lt; x)&amp;lt; (a &amp;lt; x\

(Syll.) (b&amp;lt;a + b) (a + b&amp;lt;x)&amp;lt;(b&amp;lt;x).

Therefore

(Comp.) (a + b
&amp;lt; x)&amp;lt; (a &amp;lt; x) (b &amp;lt; x).

If we compare the new formulas with those preceding,

which are their converse propositions, we may write

Thus, to say that x is contained in ab is equivalent to

saying that it is contained at the same time in both a and b;

and to say that x contains a + b is equivalent to saying

that it contains at the same time both a and b.

9. The Laws of Tautology and of Absorption.
Since the definitions of the logical sum and product do not

imply any order among the terms added or multiplied,

logical addition and multiplication evidently possess commu
tative and associative properties which may be expressed in

the formulas

ab = ba, a + b = b + a,

(ab) c = a (be), I (a + b) + c = a + (b -f c).
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Moreover they possess a special property which is expressed

in the law of tautology:

a = aa, a a + a.

Demonstration :

i (Simpl.) aa&amp;lt;^a,

(Comp.) (a &amp;lt; a) (a &amp;lt; a)
= (a &amp;lt;

aa)

whence, by the definition of equality,

(aa &amp;lt;^a) (a &amp;lt;C
aa ) (a = ad).

In the same way:

2 (Simpl.) a
&amp;lt;&amp;lt;

a + a,

(Comp.) (&amp;lt;z O) (a &amp;lt; a)
= (a + a

&amp;lt; a),

whence

(0 &amp;lt;C
tf + a) (a -}- a&amp;lt;^a)

= (a *=-- a + a).

From this law it follows that the sum or product of any
number whatever of equal (identical) terms is equal to one

single term. Therefore in the algebra of logic there are

neither multiples nor powers, in which respect it is very

much simpler than numerical algebra.

Finally, logical addition and multiplication possess a

remarkable property which also serves greatly to simplify

calculations, and which is expressed by the law of absorption:

a + ab = a, {
a (a + b)

= a.

Demonstration :

1 (Comp.) (a &amp;lt; d) (ab &amp;lt; #)&amp;lt; (a + ab
&amp;lt; a\

(Simpl.) a
&amp;lt;^

a H- ab,

whence, by the definition of equality,

(a + ab
&amp;lt;C d) (a&amp;lt;^a + ab} = (a + ab = a).

In the same way:

2 (Comp.) (a &amp;lt; a) (a &amp;lt;
a + )&amp;lt; [a &amp;lt;

a (a + b)\

(Simpl.) a (a + b] &amp;lt;C a,

whence

[a &amp;lt; (a -f )] |&amp;gt; (a + ) &amp;lt; a]
=

[a (a + )
=

].

Thus a term (a) absorbs a summand () of which it is a

factor, or a factor (a + ) of which it is a summand.
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10. Theorems on Multiplication and Addition. We
can now establish two theorems with regard to the com
bination of inclusions and equalities by addition and multi

plication:

(Th. I) (a &amp;lt;*)&amp;lt;(*&amp;lt;&amp;lt;, | (a&amp;lt;b}&amp;lt;:(a + c&amp;lt;b + c}.

Demonstration :

1 (Simpl.) ac
&amp;lt;&amp;lt; c,

(Syll.) (ac &amp;lt;a) (a &amp;lt; b)&amp;lt; (ac &amp;lt; b\

(Comp.) (ac&amp;lt;b) (ac&amp;lt;cX(ac&amp;lt;bc).

2 (Simpl.) c
&amp;lt;

b + c,

(Syll.) (a&amp;lt;b) (*&amp;lt;-*+;#&amp;lt;(*&amp;lt; +&amp;lt;),

(Comp.) (a &amp;lt;
b +

&amp;lt;r) fc &amp;lt;
3 + *)&amp;lt; (0 + c

&amp;lt;
^ + ^).

This theorem may be easily extended to the case of

equalities:

(a = )&amp;lt; (a*
= bc\ (a = ^)&amp;lt; (a + ^ = ^ + 4

(Th. II) ( &amp;lt; b) (c&amp;lt;d}&amp;lt; (ac &amp;lt; &/),

(a&amp;lt;b) (c&amp;lt;d)&amp;lt;(a + c&amp;lt;^b-^d}.

Demonstration :

1 (Syll.) (ac

(Syll.) (^

(Comp.) (ac

2 (Syll.) (&amp;lt;

(Syll.) (c&amp;lt;d

(Comp.) (a&amp;lt;^t + d) (c &amp;lt;
b

This theorem may easily be extended to the case in which

one of the two inclusions is replaced by an equality:

When both are replaced by equalities the result is an

equality:

(a = b} (c
=

&amp;lt;/)&amp;lt; (ac
=

bd),

(a = b) (c
=

aT)&amp;lt; (a + c = ^ + d).

To sum up, two or more inclusions or equalities can be

added or multiplied together member by member; the result

will not be an equality unless all the propositions combined

are equalities.
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ii. The First Formula for Transforming Inclusions

into Equalities. We can now demonstrate an important

formula by which an inclusion may be transformed into an

equality, or vice versa:

(a &amp;lt;; b}
=

(a = a b)
\ (a &amp;lt;b)

=
(a + b =

I))

Demonstration :

1. (a &amp;lt; )&amp;lt; (a
= ab), (a &amp;lt; )&amp;lt; (a + b = V).

For

(Comp.) (a&amp;lt;a) (*&amp;lt;)&amp;lt;(*&amp;lt;&amp;gt;),

(a&amp;lt;) (b&amp;lt;b)&amp;lt;(a + b&amp;lt;b).

On the other hand, we have

(Simpl.) ab&amp;lt;^a, &amp;lt;
a + b,

(Def. =) (a &amp;lt;; #) (0 &amp;lt; a)
= a),

(a + b
&amp;lt; ) (3 &amp;lt;

a + )
=

(a + b = ) ;

2. (0
=

0)&amp;lt;(0&amp;lt;), (d! + ^ )&amp;lt;(&amp;lt;).

For

( fl^) (a^ &amp;lt; ^)&amp;lt; ( &amp;lt; b),

(a&amp;lt;^a-\-b) (a + b =
^)&amp;lt; (a &amp;lt; ^).

Remark. If we take the relation of equality as a primitive

idea (one not denned) we shall be able to define the relation

of inclusion by means of one of the two preceding formulas. 1

We shall then be able to demonstrate the principle of the

syllogism.
2

From the preceding formulas may be derived an inter

esting result:

(a = b)
= (ab = a + b).

For

i. (a = b)
=

(a&amp;lt; b) (b &amp;lt; a\

(a&amp;lt;^b}
= (a = ab), (b &amp;lt; a)

= (a + b = a\

(Syll.) (a
= ab) (a + b =

a)&amp;lt; (a = a + ^).

1 See HUNTINGTON, op. cit., i.

2 This can be demonstrated as follows: By definition we have

(a&amp;lt;^b}
= (a ab], and (&amp;lt;*)

=
(
=

be). If in the first equality we
substitute for b its value derived from the second equality, then a ==&.
Substitute for a its equivalent 0, then ab= abc. This equality is

equivalent to the inclusion, ab
&amp;lt;

c. Conversely substitute a for ab\

whence we have
-&amp;lt;

c. Q. E. D.
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2. (ab = a + )&amp;lt; (a -f b
&amp;lt; ab),

(Comp.j (a + b
&amp;lt; )

=
(0 &amp;lt; 0) ( &amp;lt; 0),

(a &amp;lt; a) 0&amp;lt; &amp;lt; a)
= == a) = 0&amp;lt; ),

( &amp;lt; a) (ab &amp;lt; )
=

(
= a) = ( &amp;lt; a).

Hence

(a ^ = a + b)&amp;lt; (a &amp;lt; ^) (b &amp;lt; a) = (a
=

).

12. The Distributive Law. The principles previously

stated make it possible to demonstrate the converse distributive

law, both of multiplication with respect to addition, and of

addition with respect to multiplication,

ac + be
&amp;lt; (a + b)c, ab + ^

&amp;lt; (a +
&amp;lt;:) (^ + ^).

Demonstration :

(a&amp;lt;a + b)&amp;lt;:[ac&amp;lt;:(a + b}c} )

(b
&amp;lt; + )&amp;lt; [^&amp;lt;r &amp;lt; (a + )*];

whence, by composition,

\ac&amp;lt;(a + ^)^r] [^^ &amp;lt; (a + b}c\ &amp;lt; [ac + ^ &amp;lt; (a + )*].

2. (^^&amp;lt;^)&amp;lt; (^ + c&amp;lt;^a + &amp;lt;;),

(^ &amp;lt; )&amp;lt; (^ + ^r
&amp;lt;

b + c),

whence, by composition,

(ab+c&amp;lt;^a + c) (ab + ^
&amp;lt;

b + &amp;lt;;)&amp;lt; [a^ + c
&amp;lt; (0 + c) (b + &amp;lt;)].

But these principles are not sufficient to demonstrate the

direct distributive law

(a + ) ^
&amp;lt;

ac + be, (a + c} (b + ^)&amp;lt;
ab +

&amp;lt;:,

and we are obliged to postulate one of these formulas or

some simpler one from which they can be derived. For

greater convenience we shall postulate the formula

(Ax. V). (a + b) c
&amp;lt;

ac + be.

This, combined with the converse formula, produces the

equality

(a + b] c = ac + be,

which we shall call briefly the distributive law.

From this may be directly deduced the formula

(a + b) (c + d) = ac + be + ad + bd,
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and consequently the second formula of the distributive law,

(a + t) (b + c)
= ab + c.

For

(a + c) (b + c)
= ab + ac + be + c,

and
; by the law of absorption,

ac + be + c = c.

This second formula implies the inclusion cited above,

(a + c) (b+cXab + c,

which thus is shown to be proved.

Corollary. We have the equality

ab + ac -t- be = (a + b) (a + c) (b + ^),

for

(a + b) (a + c) (b + c)
=*

(a + bc) (b + c)
= ab + ac + &amp;lt;:.

It will be noted that the two members of this equality

differ only in having the signs of multiplication and addition

transposed (compare 14).

13. Definition of o and I. We shall now define and

introduce into the logical calculus two special terms which

we shall designate by o and by i, because of some formal

analogies that they present with the zero and unity of arith

metic. These two terms are formally defined by the two

following principles which affirm or postulate their existence.

(Ax. VI). There is a term o such that whatever value

may be given to the term x, we have

(Ax. VII). There is a term i such that whatever value

may be given to the term x, we have

It may be shown that each of the terms thus defined is

unique; that is to say, if a second term possesses the same

property it is equal to (identical with) the first.
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The two interpretations of these terms give rise to para

doxes which we shall not stop to elucidate here, but which

will be justified by the conclusions of the theory.
1

C. L: o denotes the class contained in every class; hence

it is the &quot;null&quot; or &quot;void&quot; class which contains no element

(Nothing or Naught), i denotes the class which contains all

classes; hence it is the totality of the elements which are

contained within it. It is called, after BOOLE, the &quot;universe

of discourse&quot; or simply the &quot;whole&quot;.

P. L: o denotes the proposition which implies every prop

osition; it is the &quot;false&quot; or the &quot;absurd&quot;, for it implies

notably all pairs of contradictory propositions, i denotes

the proposition which is implied in every proposition; it is

the
&quot;true&quot;,

for the false may imply the true whereas the true

can imply only the true.

By definition we have the following inclusions

o&amp;lt;o, o&amp;lt;i, i
&amp;lt; i,

the first and last of which, moreover, result from the prin

ciple of identity. It is important to bear the second in mind.

C. L: The null class is contained in the whole. 2

P. L: The false implies the true.

By the definitions of o and i we have the equivalences

(a &amp;lt; o)
= (a = o), (i &amp;lt; a)

=
(a
=

i),

since we have

o
&amp;lt; a, &amp;lt;

i

whatever the value of a.

Consequently the principle of composition gives rise to

the two following corollaries:

(0=0) (b
=

o)
=

(a + b = o),

(a - i) (J
~

i)
= (ab = i).

Thus we can combine two equalities having o for a second

1 Compare the author s Manuel de Logistique, Chap. I., 8, Paris,

1905 [This work, however, did not appear].
2 The rendering &quot;Nothing is everything&quot; must be avoided.
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member by adding their first members, and two equalities

having i for a second member by multiplying their first

members.

Conversely, to say that a sum is &quot;null&quot; [zero] is to say that

each of the summands is null; to say that a product is equal

to i is to say that each of its factors is equal to i.

Thus we have

(a + b = o)&amp;lt; (a = o),

(ab= i)&amp;lt;(fli==i),

and more generally (by the principle of the syllogism)

(a &amp;lt;b) (b
=

o)&amp;lt; (a
=

o),

(a&amp;lt;b) O=i)&amp;lt;(= i).

It will be noted that we can not conclude from these the

equalities ab = o and a + b = i. And indeed in the con

ceptual interpretation the first equality denotes that the part

common to the classes a and b is null; it by no means

follows that either one or the other of these classes is null.

The second denotes that these two classes combined form

the whole; it by no means follows that either one or the

other is equal to the whole.

The following formulas comprising the rules for the cal

culus of o and i, can be demonstrated:

aXo = o, a + i = i,

a + o = a, aX i = a.

For

(o &amp;lt;^ a)
= (o = o X a)

= (a + o = a),

(a &amp;lt; i)
=

(a
= a X i)

= (a + i = i).

Accordingly it does not change a term to add o to it or

to multiply it by i. We express this fact by saying that

is the modulus of addition and i the modulus of multi

plication. On the other hand, the product of any term

whatever by o is o and the sum of any term whatever with

1 is i.

These formulas justify the following interpretation of the

two terms:

2*
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C. I.: The part common to any class whatever and to the

null class is the null class; the sum of any class whatever

and of the whole is the whole. The sum of the null class and

of any class whatever is equal to the latter; the part common
to the whole and any class whatever is equal to the latter.

P. I. : The simultaneous affirmation of any proposition

whatever and of a false proposition is equivalent to the latter

(i. e., it is false); while their alternative affirmation is equal

to the former. The simultaneous affirmation of any prop
osition whatever and of a true proposition is equivalent to

the former; while their alternative affirmation is equivalent to

the latter (i. e., it is true).

Remark. If we accept the four preceding formulas as

axioms, because of the proof afforded by the double inter

pretation, we may deduce from them the paradoxical formulas

o
&amp;lt;I x, and x

&amp;lt;^ i,

by means of the equivalences established above,

(a
= ab) = (a &amp;lt; b)

= (a + b = b}.

14. The Law of Duality. We have proved that a perfect

symmetry -exists between the formulas relating to multiplication

and those relating to addition. We can pass from one class

to the other by interchanging the signs of addition and

multiplication, on condition that we also interchange the

terms o and i and reverse the meaning of the sign &amp;lt;^ (or

transpose the two members of an inclusion). This symmetry, or

duality as it is called, which exists in principles and definitions,

must also exist in all the formulas deduced from them as

long as no principle or definition is introduced which would

overthrow them. Hence a true formula may be deduced

from another true formula by transforming it by the principle

of duality; that is, by following the rule given above. In its

application the law of duality makes it possible to replace

two demonstrations by one. It is well to note that this law

is derived from the definitions of addition and multipli

cation (the formulas for which are reciprocal by duality)
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and not, as is often thought
1

,
from the laws of negation

which have not yet been stated. We shall see that these

laws possess the same property and consequently preserve

the duality, but they do not originate it; and duality would

exist even if the idea of negation were not introduced. For

instance, the equality ( 12)

ab + ac + be = (a 4- b) (a + c] (b + c)

is its own reciprocal by duality, for its two members are

transformed into each other by duality.

It is worth remarking that the law of duality is only

applicable to primary propositions. We call [after BOOLE]

those propositions primary which contain but one copula

or =). We call those propositions secondary of which

both members (connected by the copula &amp;lt;&amp;lt;

or =) are primary

propositions, and so on. For instance, the principle of

identity and the principle of simplification are primary pro

positions, while the principle of the syllogism and the principle

of composition are secondary propositions.

15. Definition of Negation. The introduction of the terms

o and i makes it possible for us to define negation. This

is a
&quot;uni-naiy&quot; operation which transforms a single term into

another term called its negative* The negative of a is called

not-# and is written a.* Its formal definition implies the

following postulate of existence 4
:

1
[BooLE thus derives it (Laws of Thought, London 1854, Chap. Ill,

Prop. IV).]
2

[In French] the same word negation denotes both the operation

and its result, which becomes equivocal. The result ought to be denoted

by another word, like [the English] &quot;negative&quot;.
Some authors say, &quot;supple

mentary&quot; or
&quot;supplement&quot;, [e. g. BOOLE and HUNTINGTON]. Classical

logic makes use of the term
&quot;contradictory&quot; especially for propositions.

3 We adopt here the notation of MAC COLL
;
SCHRODER indicates

not-a by a-t which prevents the use of indices and obliges us to express

them as exponents. The notation a has the advantage of excluding

neither indices nor exponents. The notation a employed by many
authors is inconvenient for typographical reasons. When the negative

affects a proposition written in an explicit form (with a copula) it is

applied to the copula or =) by a vertical bar
(&amp;lt;j^

or
=^=).

The

accent can be considered as the indication of a vertical bar applied to letters.

4 [BooLE follows Aristotle in usually calling the law of duality the
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(Ax. VIII.) Whatever the term a may be, there is also a

term a such that we have at the same time

a a = o
,

a + a = i .

It can be proved by means of the following lemma that if

a term so denned exists it is unique:

If at the same time

then

Demonstration. Multiplying both members of the second

premise by a, we have

a -f- ac = ab + ac.

Multiplying both members by b,

ab + bc = b + be.

By the first premise,

ab + ac = ab + be.

Hence
a + ac = b + be,

which by the law of absorption may be reduced to

a = b.

Remark. This demonstration rests upon the direct dis

tributive law. This law cannot, then, be demonstrated by means

of negation;
at least in the system of principles which we are

adopting, without reasoning in a circle-

This lemma being established, let us suppose that the same

term a has two negatives; in other words, let a\ and a 2 be

two terms each of which by itself satisfies the conditions of

principle of contradiction &quot;which affirms that it is impossible for any

being to possess a quality and at the same time not to possess it&quot;. He
writes it in the form of an equation of the second degree, x x2= o,

or or (i ^-)
= o in which I x expresses the universe less x, or not

x. Thus he regards the law of duality as derived from negation as

stated in note I above.!
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the definition. We will prove that they are equal. Since,

by hypothesis,

a a i
= o, a + a\ = i,

a a 2
= o

,
a 4- a 2

= i
,

we have

aa\ = aa 2) a + a\ = a + a 2 ;

whence we conclude, by the preceding lemma, that

a\ = a 2 .

We can now speak of the negative of a term as of a unique

and well-defined term.

The uniformity of the operation of negation may be ex

pressed in the following manner:

If a = b, then also a = b . By this proposition, both

members of an equality in the logical calculus may be

&quot;denied&quot;.

16. The Principles of Contradiction and of Excluded

Middle. By definition, a term and its negative verify, the

two formulas

a a = o
,

&amp;lt;? + # = i
,

which represent respectively the principle of contradiction and

the principle of excluded middled

C. I. : i. The classes a and a have nothing in common;
in other words, no element can be at the same time both a

and not-tf.

2. The classes a and a combined form the whole; in

other words, every element is either a or not-#.

1 As Mrs. LADD-FRANKLIN has truly remarked (BALDWIN, Dictionary

of Philosophy and Psychology, article &quot;Laws of Thought&quot;), the principle of

contradiction is not sufficient to define contradictories; the principle of

excluded middle must be added which equally deserves the name of

principle of contradiction. This is why Mrs. LADD-FRANKLIN proposes
to call them respectively the principle of exclusion and the principle of

exhaustion, inasmuch as, according to the first, two contradictory terms

are exclusive (the one of the other); and, according to the second, they

are exhaustive (of the universe of discourse).
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P. L: i. The simultaneous affirmation of the propositions

a and not-# is false; in other words, these two propositions

cannot both be true at the same time.

2. The alternative affirmation of the propositions a and

not-&amp;lt;2 is true; in other words, one of these two propositions

must be true.

Two propositions are said to be contradictory when one is

the negative of the other; they cannot both be true or false

at the same time. If one is true the other is false; if one

is false the other is true.

This is in agreement with the fact that the terms o and i

are the negatives of each other; thus we have

ox i =-- o
, 0+1 = 1.

Generally speaking, we say that two terms are contradictory

when one is the negative of the other.

17. Law of Double Negation. Moreover this reciprocity

is general: if a term b is the negative of the term a, then the

term a is the negative of the term b. These two statements

are expressed by the same formulas

ab = o, a + b = i
,

and, while they unequivocally determine b in terms of a, they

likewise determine a in terms of b. This is due to the

symmetry of these relations, that is to say, to the commu-

tativity of multiplication and addition. This reciprocity is

expressed by the law of double negation

(&amp;lt;0 -,
which may be formally proved as follows: a being by hy

pothesis the negative of a, we have

ad = o, a + a == i.

On the other hand, let a&quot; be the negative of a; we have,

in the same way,

a a&quot;
= o

,
a + a&quot;

= i .

But, by the preceding lemma, these four equalities involve

the equality
a = a&quot; . Q. E. D.
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This law may be expressed in the following manner:

If i = a
9
we have a = b

,
and conversely, by symmetry.

This proposition makes it possible, in calculations, to

transpose the negative from one member of an equality to

the other.

The law of double negation makes it possible to conclude

the equality of two terms from the equality of their negatives

(if a = b then a = b), and therefore to cancel the negation

of both members of an equality.

From the characteristic formulas of negation together with

the fundamental properties of o and i, it results that every

product which contains two contradictory factors is null, and

that every sum which contains two contradictory summands

is equal to i.

In particular, we have the following formulas:

a = ab + ab , a (a + b) (a -\- b ),

which may be demonstrated as follows by means of the

distributive law:

a = ax i a (b + b )
= a b 4- ab

,

a=*a-\-o = a-\-bb = (a + b} (a + b ) .

These formulas indicate the principle of the method of

development which we shall explain in detail later ( 21 sqq.)

18. Second Formula for Transforming Inclusions

into Equalities: We can now establish two very important

equivalences between inclusions and equalities:

(0&amp;lt;)
= (^ = o), (a &amp;lt;b)=*(a +&= i).

Demonstration. i. If we multiply the two members of the

inclusion a
&amp;lt;^

b by b we have

(ab &amp;lt;
bb }

=
(ab &amp;lt; o) = (ab = o).

2. Again, we know that

a = ab + ab .

Now if ab ==
o,

a = ab + o = ab.
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On the other hand: i. Add a to each of the two members
of the inclusion a&amp;lt;^b; we have

(a + a
&amp;lt;

a + b)
=

(i &amp;lt;
a + b)

=
(a + =

i).

2. We know that

b = (a + b) (a + b).

Now, if a + b = i
,

= O + )x i =a + b.

By the preceding formulas, an inclusion can be transformed

at will into an equality whose second member is either o or i.

Any equality may also be transformed into an equality of

this form by means of the following formulas:

Demonstration :

(a= b}
=

(a &amp;lt;) (&amp;lt;
= (ab = o) (ab= o)

=
(a

(a
=

b)
=

(a &amp;lt;b) (b&amp;lt;a)
=

(a +b= i) (a + & = i)
=

[(a + b
f

) (a+b)= i\. ~~l^

Again, we have the two formulas

(a=*b)=*[(a + b) (a +b )
=

o] t (a
=

b)
= (ab + a b = i),

which can be deduced from the preceding formulas by per

forming the indicated multiplications (or the indicated additions)

by means of the distributive law.

19. Law of Contraposition. We are now able to demon

strate the law of contraposition,

Demonstration. By the preceding formulas, we have

(#&amp;lt;)
= (ab = o)

=
(b &amp;lt; a).

Again, the law of contraposition may take the form

which presupposes the law of double negation. It may be

expressed verbally as follows: &quot;Two members of an inclusion

may be interchanged on condition that both are denied&quot;.
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C. I.: &quot;If all a is
,
then all not-&amp;lt; is not-0, and conversely&quot;.

P. I: &quot;If a implies ,
not- implies not-# and conversely&quot;;

in other words, &quot;If a is true b is
true&quot;,

is equivalent to

saying, &quot;If b is false, a is false&quot;.

This equivalence is the principle of the reductio ad absurdum

(see hypothetical arguments, modus tollens, 58).

20. Postulate of Existence. One final axiom may be

formulated here, which we will call the postulate of existence .

(Ax. IX) i&amp;lt;o,

whence may be also deduced i+o.
In the conceptual interpretation (C. I.) this axiom means

that the universe of discourse is not null, that is to say, that

it contains some elements, at least one. If it contains but

one, there are only two classes possible, i and o. But even

then they would be distinct, and the preceding axiom would

be verified.

In the propositional interpretation (P. I.) this axiom signifies

that the true and the false are distinct
;

in this case, it bears

the mark of evidence and of necessity. The contrary

proposition, 1=0, is, consequently, the type of absurdity

(of the formally false proposition) while the propositions o= o,

and 1 = 1 are types of identity (of the formally true pro

position). Accordingly we put

(i
=

o)
=

o, (o = o)
=

(l
=

i)
= i.

More generally, every equality of the form

x = x

is equivalent to one of the identity- types; for, if we reduce

this equality so that its second member will be o or i, we find

(xx + xx = o)
=

(o
=

o), (xx + x x i)
=

(i
=

i).

On the other hand, every equality of the form

x = x

is equivalent to the absurdity-type, for we find by the same

process,

(xx + x x = o)
=

(i
=

o), (xx + xx = i)
=

(o = i).
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21. The Developments of o and of i. Hitherto we

have met only such formulas as directly express customary

modes of reasoning and consequently offer direct evidence.

We shall now expound theories and methods which depart

from the usual modes of thought and which constitute more

particularly the algebra of logic in so far as it is a formal

and, so to speak, automatic method of an absolute universality

and an infallible certainty, replacing reasoning by cal

culation.

The fundamental process of this method is development.

Given the terms a, b, c . . . (to any finite number), we can

develop o or i with respect to these terms (and their negatives)

by the following formulas derived from the distributive law:

o = aa,

o = aa + bb =. (a + b) (a + b ) (a + b) (a + b } ,

= aa-\-bb + cc = (a + b + c) (a + b + c) (a + b + c)

X (a + b + c) (a + b + c)

x (a + b + /) (a + b + c} (a + b + /);

1 = a + a,

i = (a + a) (b + b )
= ab + ab 4- ab + ab

,

i = (a + a) (b + b } (c + c) = abc + abc + ab c + ab c

+ abc + abc + a b c + a b c
;

and so on. In general, for any number n of simple terms
;

will be developed in a product containing 2&quot; factors, and

1 in a sum containing 2
H summands. The factors of zero

comprise all possible additive combinations, and the summands

of i all possible multiplicative combinations of the n given

terms and their negatives, each combination comprising ;/

different terms and never containing a term and its negative

at the same time.

The summands of the development of i are what BOOLE

called the constituents (of the universe of discourse). We may

equally well call them, with PoRETSKY,
1 the minima of dis

course, because they are the smallest classes into which the

T See the Bibliography, page xiv.
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universe of discourse is divided with reference to the n given

terms. In the same way we shall call the factors of the

development of o the maxima of discourse, because they

are the largest classes that can be determined in the universe

of discourse by means of the n given terms.

22. Properties of the Constituents. The constituents

or minima of discourse possess two properties characteristic

of contradictory terms (of which they are a generalization);

they are mutually exclusive, i. e., the product of any two of

them is o; and they are collectively exhaustive, i. e., the sum

of all &quot;exhausts&quot; the universe of discourse. The latter prop

erty is evident from the preceding formulas. The other

results from the fact that any two constituents differ at least

in the
&quot;sign&quot;

of one of the terms which serve as factors, i. e.,

one contains this term as a factor and the other the negative

of this term. This is enough, as we know, to ensure that

their product be null.

The maxima of discourse possess analogous and correlative

properties; their combined product is equal to 0, as we have

seen; and the sum of any two of them is equal to i, inasmuch

as they differ in the sign of at least one of the terms which

enter into them as summands.

For the sake of simplicity, we shall confine ourselves, with&quot;

BOOLE and SCHRODER, to the study of the constituents or

minima of discourse, i. e., the developments of i. We shall

leave to the reader the task of finding and demonstrating

the corresponding theorems which concern the maxima of

discourse or the developments of o.

23. Logical Functions. We shall call a logical function

any term whose expression is complex, that is, formed of

letters which denote simple terms together with the signs of

the three logical operations.
1

1 In this algebra the logical function is analogous to the integral

f^lnction of ordinary algebra, except that it has no powers beyond
the first.
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A logical function may be considered as a function of all

the terms of discourse, or only of some of them which may
be regarded as unknown or variable and which in this case

are denoted by the letters x, y, z. We shall represent a

function of the variables or unknown quantities, x, y, z, by
the symbol f (x, y, z} or by other analogous symbols, as in

ordinary algebra. Once for all, a logical function may be

considered as a function of any term of the universe of dis

course, whether or not the term appears in the explicit ex

pression of the function.

24. The Law of Development. This being established,

we shall proceed to develop a function f(x) with respect to x.

Suppose the problem solved, and let

ax + bx

be the development sought. By hypothesis we have the

equality

f(x) = ax + bx

for all possible values of x. Make x = i and consequently

x = o. We have

/(i) = a.

Then put x = o and x = i
; we have

/(o) - b.

These two equalities determine the coefficients a and b of

the development which may then be written as follows:

in which /(i), /(o) represent the value of the function

when we let x = i and x = o respectively.

Corollary. Multiplying both members of the preceding

equalities by x and x in turn, we have the following pairs

of equalities (MAC COLL):

xf(x) ax xf(x} = bx

Xf(x)
= Xf( i ) ,

xf(x)
= x f(o) .

Now let a function of two (or more) variables be developed
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with respect to the two variables x and y. Developing

f(x, y) first with respect to x, we find

/(*, y} =/(!, jO*+/(, y)x.

Then, developing the second member with respect to 7,

we have

This result is symmetrical with respect to the two variables,

and therefore independent of the order in which the develop

ments with respect to each of them are performed.

In the same way we can obtain progressively the develop

ment of a function of 3, 4, ......
,
variables.

The general law of these developments is as follows:

To develop a function with respect to n variables, form all

the constituents of these n variables and multiply each of

them by the value assumed by the function when each of

the simple factors of the corresponding constituent is equated

to i (which is the same thing as equating to o those factors

whose negatives appear in the constituent).

When a variable with respect to which the development is

made, y for instance, does not appear explicitly in the

function (/(x) for instance), we have, according to the

general law,

/(*)=/(*);&amp;gt;+/(*)/.

In particular, if a is a constant term, independent of the

variables with respect to which the development is made,

we have for its successive developments,

a = a x + a x\

a = axy -f axy + ax y + ax y ,

a = axyz + axyz + axy z + axy z + ax yz + ax yz + ax y z

+ axy z *

and so on. Moreover these formulas may be directly obtained

by multiplying by a both members of each development of i.

Cor. i. We have the equivalence

(a + x ) (b + x) = ax + bx + ab = ax + bx .

1 These formulas express the method of classification by dichotomy.
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For, if we develop with respect to x, we have

ax + bx + abx + abx = (a + #)# + (b + ab)x = ax + bx.

Cor. 2. We have the equivalence

ax + bx + c ==
(0 + &amp;lt;r)#

+ ( + ^) * .

For if we develop the term c with respect to x
} we find

ax + bx + ^# + # = (0 + )# + ( + *)# .

Thus, when a function contains terms (whose sum is

represented by c) independent of x
t
we can always reduce it

to the developed form ax + bx by adding c to the coefficients

of both x and x . Therefore we can always consider a

function to be reduced to this form.

In practice, we perform the development by multiplying

each term which does not contain a certain letter (x for

instance) by (x + x) and by developing the product according

to the distributive law. Then, when desired, like terms may
be reduced to a single term.

25. The Formulas of De Morgan. In any development

of i, the sum of a certain number of constituents is the negative

of the sum of all the others.

For, by hypothesis, the sum of these two sums is equal

to i, and their product is equal to o, since the product of

two different constituents is zero.

From this proposition may be deduced the formulas of

DE MORGAN:

(a + l&amp;gt;)

=a b
y (a bf= a 4- b .

Demonstration. Let us develop the sum (a + b}:

a + b = ab + ab + ab + a b = ab + ab -\- a b.

Now the development of i with respect to a and b contains

the three terms of this development plus a fourth term a b .

This fourth term, therefore, is the negative of the sum of the

other three.

We can demonstrate the second formula either by a correl

ative argument (i. e., considering the development of o by

factors) or by observing that the development of (a-\-b ) }
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a b + ab + a b
,

differs from the development of i only by the summand ab.

How DE MORGAN S formulas may be generalized is now

clear; for instance we have for a sum of three terms,

a + b -h c = abc 4- abc 4- ab c + ab c + a bc + a be + a b c.

This development differs from the development of i only

by the term a b c. Thus we can demonstrate the formulas

* + & + )
= a b c, (abc) = a + b + c,

which are generalizations of DE MORGAN S formulas.

The formulas of DE MORGAN are in very frequent use in

calculation, for they make it possible to perform the negation

of a sum or a product by transferring the negation to the

simple terms: the negative of a sum is the product of the

negatives of its summands; the negative of a product is the

sum of the negatives of its factors.

These formulas, again, make it possible to pass from a

primary proposition to its correlative proposition by duality,

and to demonstrate their equivalence. For this purpose it

is only necessary to apply the law of contraposition to the

given proposition, and then to perform the negation of both

members.

Example:

ab 4- ac + be = (a + b) (a 4- c) (b + c}.

Demonstration :

(ab -tac + be) [(a + b) (a + c) (b + c)],

(ab) (ac) (bc)
=

(a + b) + (a + c) + (b + c) 9

(a 4- b ) (a + c) (b 4- c) = a b + a c + b c.

Since the simple terms, a, b, c, may be any terms, we may
suppress the sign of negation by which they are affected, and

obtain the given formula.

Thus DE MORGAN S formulas furnish a means by which to

find or to demonstrate the formula correlative to another;

but, as we have said above ( 14), they are not the basis of

this correlation.
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26. Disjunctive Sums. By means of development we can

transform any sum into a disjunctive sum, i. e.
}
one in which

each product of its summands taken two by two is zero.

For, let (a + b -\r c) be a sum of which we do not know

whether or not the three terms are disjunctive; let us assume

that they are not. Developing, we have:

a + b + c = abc + abc + ab c + ati c + a be + a be + a b c.

Now, the first four terms of this development constitute

the development of a with respect to b and c\ the two

following are the development of a b with respect to c. The

above sum, therefore, reduces to

a + a b + a b c
)

and the terms of this sum are disjunctive like those of the

preceding, as may be verified. This process is general and,

moreover, obvious. To enumerate without repetition all the

fl s, all the s, and all the ^ s, etc,, it is clearly sufficient to

enumerate all the a s, then all the s which are not s, and

then all the * s which are neither as nor s, and so on.

It will be noted that the expression thus obtained is not

symmetrical, since it depends on the order assigned to the

original summands. Thus the same sum may be written:

b -\- ab -\- a b c
,

c + ac + abc, . . . .

Conversely, in order to simplify the expression of a sum,

we may suppress as factors in each of the summands (arranged

in any suitable order) the negatives of each preceding sum-

mand. Thus, we may find a symmetrical expression for a

sum. For instance,

a -\- a b = b + ab = a + b.

27. Properties of Developed Functions. The practical

utility of the process of development in the algebra of logic

lies in the fact that developed functions possess the following

property:

The sum or the product of two functions developed with

respect to the same letters is obtained simply by finding the

sum or the product of their coefficients. The negative of a
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developed function is obtained simply by replacing the

coefficients of its development by their negatives.

We shall now demonstrate these propositions in the case

of two variables; this demonstration will of course be of

universal application.

Let the developed functions be

a rxy + bixy + c^x y + d^x y ,

a2 xy + b2 xy + cz x y + d2 xy .

1. I say that their sum is

O t + a2)xy + (i H- bz)xy + (ct + *2 )#&amp;gt;
+ (d* + &amp;lt;/2)* /-

This result is derived directly from the distributive law.

2. I say that their product is

0r a2 xy + z 2 .*/ + ^ x ^r2 ^ 7 + dld2xy ,

for if we find their product according to the general rule

(by applying the distributive law), the products of two terms

of different constituents will be zero; therefore there will remain

only the products of the terms of the same constituent, and,

as (by the law of tautology) the product of this constituent

multiplied by itself is equal to itself, it is only necessary to

obtain the product of the coefficients.

3. Finally, I say that the negative of

axy + bxy + ex y + dxy
is

a xy + b xy + c xy + d xy.

In order to verify this statement, it is sufficient to prove

that the product of these two functions is zero and that their

sum is equal to i. Thus

(axy + bxy + cx y + dxy} (a xy + b xy + c x y + d xy}
= (ad xy + bb xy + cc xy + dd x y}

= (o xy + o xy + o x y + o x y )= o

(axy+ bxy + ex y + dxy) + (a xy+ b xy + cxy + d xy)
=

[(a + a) xy + (b + b } xy + (c+ c)xy + (d + /) x y}

=
(i -xy + i -xy -\- i-xy+ i-xy) = i.

3*



36 PROPERTIES OF DEVELOPED FUNCTIONS.

Special Case. We have the equalities:

(ab + a b ) ab + a b,

(ab -\- a b)
= ab + a b

,

which may easily be demonstrated in many ways; for instance,

by observing that the two sums (ab + a b } and (ab +db)
combined form the development of i

; or again by performing

the negation (ab-\-a b ) by means of DE MORGAN S formulas

(S 25).

From these equalities we can deduce the following equality:

(ab + a b = o)
= (ab + a b = i),

which result might also have been obtained in another way

by observing that ( 18)

(a
=

b)
= (ab + ab = o)

=
[(a + b ) (a + b)

=
i],

and by performing the multiplication indicated in the last

equality.

THEOREM. We have the following equivalences*

(a = be + b c)
=

(b
= ac + a c]

=
(c
= ab + a b).

For, reducing the first of these equalities so that its second

member will be o,

a(bc + b c) + a (be + b c)
= o

,

abc + ab c -\- a be + a b c = o.

Now it is clear that the first member of this equality is

symmetrical with respect to the three terms a, b, c. We may
therefore conclude that, if the two other equalities which differ

from the first only in the permutation of these three letters

be similarly transformed, the same result will be obtained,

which proves the proposed equivalence.

Corollary. If we have at the same time the three inclusions:

a &amp;lt;^bc -{- b c
, b&amp;lt;^ac-\-aC) c

&amp;lt;^
ab + a b

,

we have also the converse inclusions, and therefore the

corresponding equalities

a = be -{-b c, b = ac-\-a c, c = ab -\-ab.

1 W. STANLEY JEVONS, Pure Logic, 1864, p. 61.
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For if we transform the given inclusions into equalities, we

shall have

abc + ab c = o, abc-\- a be = o, abc + a b c = o,

whence, by combining them into a single equality,

abc + a^V+ a be + a b c = o.

Now this equality, as we see, is equivalent to any one of

the three equalities to be demonstrated.

28. The Limits of a Function. A term x is said to be

comprised between two given terms, a and
,
when it contains

one and is contained in the other; that is to say, if we have,

for instance,

#&amp;lt;&amp;gt;, *&amp;lt;,

which we may write more briefly as

O&amp;lt;.

Such a formula is called a double inclusion. When the

term x is variable and always comprised between two

constant terms a and
,

these terms are called the limits

of x. The first (contained in x) is called inferior limit
,
the

second (which contains x) is called the superior limit.

THEOREM. A developed function is comprised between the sum

and the product of its coefficients.

We shall first demonstrate this theorem for a function of

one variable,

ax + bx .

We have, on the one hand,

Therefore

abx + abx
&amp;lt;^

ax + bx
,

or

ab
&amp;lt;^

ax + bx.

On the other hand,

(a &amp;lt;
a + )&amp;lt; [ax &amp;lt; (a + b)x],

(b &amp;lt;
a + )&amp;lt; [# &amp;lt; (* + )* ].
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Therefore

ax + bx
&amp;lt;^ (a + b) (x + x ),

or

ax + bx &amp;lt;^a + b.

To sum up,

ab
&amp;lt;C

ax + bx
&amp;lt;^

a + b. Q. E. D.

Remark i. This double inclusion may be expressed in the

following form :

x

For

f(d)

But this form, pertaining as it does to an equation of one

unknown quantity, does not appear susceptible of generalization,

whereas the other one does so appear, for it is readily seen

that the former demonstration is of general application.

Whatever the number of variables n (and consequently the

number of constituents 2
H
] it may be demonstrated in exactly

the same manner that the function contains the product of

its coefficients and is contained in their sum. Hence the

theorem is of general application.

Remark 2. This theorem assumes that all the constituents

appear in the development, consequently those that are wanting

must really be present with the coefficient o. In this case,

the product of all the coefficients is evidently o. Likewise

when one coefficient has the value i, the sum of all the

coefficients is equal to i.

It will be shown later ( 38) that a function may reach

both its limits, and consequently that they are its extreme

values. As yet, however, we know only that it is always

comprised between them.

29. Formula of Poretsky.
2 We have the equivalence

(x = ax + bx) = (b &amp;lt;
x

&amp;lt; a).

1 EUGEN MiiLLER, Aus der Algebra der Logik, Art. II.

2 PORETSKY, &quot;Sur les methodes pour resoudre les egaliles logiques&quot;.

(Bull, de la Soc. phys.-math. de Kazan, Vol. U, 1884).
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Demonstration. First multiplying by x both members of

the given equality [which is the first member of the entire

secondary equality], we have

x = ax,

which, as we know, is equivalent to the inclusion

x
&amp;lt;^

a.

Now multiplying both members by x
,
we have

o = bx
,

which, as we know, is equivalent to the inclusion

b&amp;lt;x.

Summing up, we have

(x = ax + bx } &amp;lt;(&amp;lt;#&amp;lt;#).

Conversely,

(b &amp;lt;
x

&amp;lt; a)&amp;lt; (x = ax + bx) .

For

Adding these two equalities member to member [the second

members of the two larger equalities],

(x = ax) (o = bx) &amp;lt;C (x = ax + bx).

Therefore

( OO)&amp;lt; (#
= a# + bx },

and thus the equivalence is proved.

30. Schroder s Theorem. 1 The equality

ax + bx o

signifies that x lies between a and b.

Demonstration :

(ax + bx = o)
= (ax = o) (bx = o),

1 SCHRODER, Operationskreis des Logikkalkuls (1877), Theorem 20.
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Hence

(ax + bx = o)
= (b &amp;lt;

x
&amp;lt; a) .

Comparing this theorem with the formula of PORETSKY, we

obtain at once the equality

(ax + bx = o)
= (x = a x + bx } ,

which may be directly proved by reducing the formula of

PORETSKY to an equality whose second member is o, thus:

(x a x + bx }
= \x(ax + b x) + x (a x + bx) = o]

= (ax + bx o).

If we consider the given equality as an equation in which

x is the unknown quantity, PORETSKY S formula will be its

solution.

From the double inclusion

b&amp;lt;x&amp;lt;a

we conclude, by the principle of the syllogism, that

b&amp;lt;a.

This is a consequence of the given equality and is in

dependent of the unknown quantity
- x. It is called the

resultant of the elimination of x in the given equation. It is

equivalent to the equality

ab = o.

Therefore we have the implication

(ax + bx = o) &amp;lt;^ (ab = o) .

Taking this consequence into consideration, the solution

may be simplified, for

(ab= o)
=

(b
= ab).

Therefore

x = ax + bx = ax + a bx

= a bx -f- a b x + a bx = d b + a b x

= b + a b x = b + ax.

This form of the solution conforms most closely to common

sense: since x contains b and is contained in #
,

it is natural

that x should be equal to the sum of b and a part of a
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(that is to say, the part common to a and x). The solution

is generally indeterminate (between the limits a and ); it is

determinate only when the limits are equal,

r-j,
for then

x = b + tf a; b -\- bx =* b = a.

Then the equation assumes the form

(0# + # = o)
=

(a
= x)

and is equivalent to the double inclusion

(a &amp;lt;
x

&amp;lt;
# )

== (# = a ) .

31. The Resultant of Elimination. When ab is not

zero, the equation is impossible (always false), because it has

a false consequence. It is for this reason that SCHRODER

considers the resultant of the elimination as a condition of

the equation. But we must not be misled by this equivocal

word. The resultant of the elimination of x is not a cause of

the equation, it is a consequence of it; it is not a sufficient but

a necessary condition.

The same conclusion may be reached by observing that

ab is the inferior limit of the function ax + bx\ and that

consequently the function can not vanish unless this limit is o.

(ab &amp;lt;C
ax + bx ) (ax + bx = o) &amp;lt;^ (ab = o).

We can express the resultant of elimination in other equiv

alent forms; for instance, if we write the equation in the form

(a + x) ( + *) = o,

we observe that the resultant

ab = o

is obtained simply by dropping the unknown quantity (by

suppressing the terms x and x ). Again the equation may be

written:

ax + b x = i

and the resultant of elimination:

a + b = i .



42 RESULTANT OF ELIMINATION.

Here again it is obtained simply by dropping the unknown

quantity.
1

Remark. If in the equation

ax + bx = o

we substitute for the unknown quantity x its value derived

from the equations,

x = ax + bx
,

x = ax + U x
,

we find

(abx + abx = o)
= (ab = o),

that is to say, the resultant of the elimination of x which, as

we have seen, is a consequence of the equation itself. Thus

we are assured that the value of x verifies this equation.

Therefore we can, with VOIGT, define the solution of an equation

as that value which, when substituted for x in the equation,

reduces it to the resultant of the elimination of x.

Special Case. When the equation contains a term independent

of x, i.
.,
when it is of the form

ax + bx + c = o

it is equivalent to

(a + c)x + (b + c)x = o,

and the resultant of elimination is

(a + f) (b + c)
= ab + c = o,

i This is the method of elimination of Mrs. LADD-FRANKLIN and

Mr. MITCHELL, but this rule is deceptive in its apparent simplicity, for it

cannot be applied to the same equation when put in either of the forms

ax + bx o, (a + x ) (b

r

-j- x) == I.

Now, on the other hand, as we shall see
( 54), for inequalities it

may be applied to the forms

ax + **+ o, (a + x
) ( + *) + !.

and not to the equivalent forms - -

(a + x
) (b + x) =j== &amp;gt;

a x + # + I.

Consequently, it has not the mnemonic property attributed to it, for, to

use it correctly, it is necessary to recall to which forms it is applicable.
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whence we derive this practical rule: To obtain the resultant

of the elimination of x in this case, it is sufficient to equate

to zero the product of the coefficients of x and x
t
and add

to them the term independent of x.

32. The Case of Indetermination. Just as the resultant

ab = o

corresponds to the case when the equation is possible, so the

equality

a + b = o

corresponds to the case of absolute
^determination. For in

this case the equation both of whose coefficients are zero

(0
=

0), (
=

o), is reduced to an identity (o
=

o), and

therefore is
&quot;identically&quot; verified, whatever the value of x may

be; it does not determine the value of x at all, since the

double inclusion

b&amp;lt;x&amp;lt;a

then becomes

0&amp;lt;&amp;gt;&amp;lt;I,

which does not limit in any way the variability of x. In this

case we say that the equation is indeterminate.

We shall reach the same conclusion if we observe that

(a + b) is the superior limit of the function ax + bx and that,

if this&quot; limit is o, the function is necessarily zero for all

values of x,

(ax + /;*
&amp;lt;

a + b) (a + b =
o)&amp;lt; (ax + bx = o) .

Special Case. When the equation contains a term in

dependent of x }

ax + bx + c = o,

the condition of absolute indetermination takes the form

a + b + c = o.

For

ax + bx + c = (a + c) x + (b + c) x ,

(a + c) + (b + c)
= a + b + c = o.
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33. Sums and Products of Functions. It is desirable

at this point to introduce a notation borrowed from mathe

matics, which is very useful in the algebra of logic. Let/(V)

be an expression containing one variable; suppose that the

class of all the possible values of x is determined; then the

class of all the values which the function f(x) can assume

in consequence will also be determined. Their sum will be

represented by ^/(x) and their product by J^[/(#). This

is a new notation and not a new notion, for it is merely the

idea of sum and product applied to the values of a function.

When the symbols ^ and J~[ are applied to propositions,

they assume an interesting significance:

means that /(x) = o is true for every value of x; and

that f(x) = o is true for some value of x. For, in order

that a product may be equal to i (/. ^., be true), all its factors

must be equal to i (i. e., be true); but, in order that a sum

may be equal to i (i.
&amp;lt;?.,

be true), it is sufficient that only

one of its summands be equal to i (i. e., be true). Thus we

have a means of expressing universal and particular propositions

when they are applied to variables, especially those in the

form: &quot;For every value of x such and such a proposition is

true&quot;, and &quot;For some value of x, such and such a proposition

is
true&quot;,

etc.

For instance, the equivalence

(a = b)
= (ac = be) (a + c = b + c)

is somewhat paradoxical because the second member contains

a term (c) which does not appear in the first. This equivalence

is independent of c, so that we can write it as follows,

considering c as a variable x

[(a
=

b)
=

(ax = bx) (a + x = b + x)],
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or, the first member being independent of x,

(a
=

1)}
=

Y[[(ax
= bx) (a + x = b + *)].

X

In general, when a proposition contains a variable term,

great care is necessary to distinguish the case in which it is

true for every value of the variable, from the case in which

it is true only for some value of the variable.
1 This is the

purpose that the symbols J [
and 2 serve.

Thus when we say for instance that the equation

ax + bx = o

is possible, we are stating that it can be verified by some

value of x\ that is to say,

2(0* + /;# = o),

X

and, since the necessary and sufficient condition for this is

that the resultant (ab = o) is true, we must write

^(ax + bx = o)
= (ab = o),

X

although we have only the implication

(ax + bx = o) &amp;lt;^ (ab = o) .

On the other hand, the necessary and sufficient condition

for the equation to be verified by every value of x is that

a + b = o.

Demonstration. i. The condition is sufficient, for if

(a + b = o)
=

(a = o) (b
=

o),

we obviously have

ax + bx = o

whatever the value of x\ that is to say,

+ bx o).

i This is the same as the distinction made in mathematics between

identities and equations, except that an equation may not be verified by

any value of the variable.
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2. The condition is necessary, for if

X

the equation is true, in particular, for the value x = a; hence

a + b = o.

Therefore the equivalence

Y[(ax + bx = o)
=

(a + =
o)

X

is proved.
1 In this instance, the equation reduces to an

identity: its first member is
&quot;identically&quot;

null.

34. The Expression of an Inclusion by Means of an

Indeterminate. The foregoing notation is indispensable in

almost every case where variables or indeterminates occur in

one member of an equivalence, which are not present in the

other. For instance, certain authors predicate the two following

equivalences

(a&amp;lt;)
=

(a
= bu) = (a + v = l\

in which u
t
v are two &quot;indeterminates&quot;. Now, each of the

two equalities has the inclusion (a &amp;lt;C b) as its consequence,

as we may assure ourselves by eliminating u and v respectively

from the following equalities:

1. \a(b -\- u) + a bu = o] = [(a& + a b)u + au = o].

Resultant :

[(a& + a b) a = o]
= (ab = o)

= (a &amp;lt; b).

2. [(a + v)b -\- a bv = o]
=

\b v + (ab ~\- a b)v = o].

Resultant :

[b (ab -\- ab) ==
o]
= (ab = o) + (a&amp;lt;b).

But we cannot say, conversely, that the inclusion implies

the two equalities for any vahtes of u and v, and, in fact, we

restrict ourselves to the proof that this implication holds for

some value of u and
z&amp;gt;, namely for the particular values

1 EUGEN MiJLLER, Op. tit.
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u = a, b ~ v;

But we cannot conclude, from the fact that the implication

(and therefore also the equivalence) is true for some value of

the indeterminates, that it is true for all; in particular, it is

not true for the values

21 = i
,

v = o
,

for then (a
= bu) and (a + v = b) become (a = b), which

obviously asserts more than the given inclusion (a &amp;lt;^ b).*

Therefore we can write only the equivalences

(a &amp;lt; b)
=

2&amp;gt;

= bu) = 2&amp;gt;
+ v = b),

-u v

but the three expressions

0&amp;lt;O),

are not equivalent.
2

1 Likewise if we make

u= o, v i,

we obtain the equalities

(
=

o), (=i),

which assert still more than the given inclusion.

2 According to the remark in the preceding note, it is clear that

we have

Y[ (a= l&amp;gt;u}=(a=:{&amp;gt;
=

o), Yl ( + s = J)
=

(
= J= l),

ty if

since the equalities affected by the sign T I may be likewise verified

by the values

u= o, it= I and v= o, v= I .

If we wish to know within what limits the indeterminates u and v are

variable, it is sufficient to solve with respect to them the equations

(*&amp;lt;)
= (a= 6u), (a&amp;lt;t&amp;gt;)

= (a + v= 6),

or

ab = abu
-j-

ab -\- au ,
ab = ab ~\- b v -j- abv ,

or

abu -j- a b u =. o, ab v -\- ab v = o,
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35. The Expression of a Double Inclusion by Means
of an Indeterminate. THEOREM. The double inclusion

b&amp;lt;x&amp;lt;a

is equivalent to the equality x = a u + b u together with the

condition (b&amp;lt;^a), u being a term absolutely indeterminate.

Demonstration. Let us develop the equality in question,

x(a u + b u } + x (au + bu } o,

(ax + ax }u + (& x + bx }u = o.

Eliminating u from it,

a b x + abx = o.

This equality is equivalent to the double inclusion

ab&amp;lt;x&amp;lt;a + b.

But, by hypothesis, we have

(b &amp;lt;
a)
= (ab = b)

=
(a + b ===

a).

The double inclusion is therefore reduced to

b&amp;lt;x&amp;lt;a.

So, whatever the value of u, the equality under consideration

involves the double inclusion. Conversely, the double in

clusion involves the equality, whatever the value of x may be,

for it is equivalent to

a x-\- bx = o,

and then the equality is simplified and reduced to

ax u + b xu = o.

from which (by a formula to be demonstrated later on) we derive the

solutions

u= ab -f- w (a -j- b
) t

v= ab -f- w (a -f- b),

or simply

// == a b -f- w b
,

v= ab -f- w a,

w being absolutely indeterminate. &quot;We would arrive at these solutions

simply by asking : By what term must we multiply b in order to obtain

a? By a term which contains a b plus any part of b . What term must

we add to a in order to obtain bl A term which -contains a b plus

any part of a. In short, u can vary between ab and a-\-b\ v between

a b and a -f- b.
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We can always derive from this the value of u in terms

of x, for the resultant (ab xx =o) is identically verified.

The solution is given by the double inclusion

b x
&amp;lt;^

u
&amp;lt;^

a -\- x.

Remark. There is no contradiction between this result,

which shows that the value of u lies between certain limits,

and the previous assertion that u is absolutely indeterminate;

for the latter assumes that x is any value that will verify the

double inclusion, while when we evaluate u in terms of x the

value of x is supposed to be determinate, and it is with

respect to this particular value of x that the value of u is

subjected to limits.
1

In order that the value of u should be completely deter

mined, it is necessary and sufficient that we should have

b x a -\- x,

that is to say,

b xax + (b + x) (a -\- x} = o

or

bx + ax = o.

Now, by hypothesis, we already have

ax + bx = o.

If we combine these two equalities, we find

(a + b = o)
=

(a
=

i) (b
=

o).

This is the case when the value of x is absolutely in

determinate, since it lies between the limits o and i.

In this case we have

u = b x = a + x x.

In order that the value of u be absolutely indeterminate,

it is necessary and sufficient that we have at the same time

1 Moreover, if we substitute for x its inferior limit b in the inferior

limit of
,

this limit becomes bb = o ; and, if we substitute for x its

superior limit a in the superior limit of u, this limit becomes a -J- a = I.

4
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b x o, a + x = i,

or

b x + ax = o,

that is

Now we already have, by hypothesis,

&amp;lt;#&amp;lt;#;

so we may infer

b = x = # .

This is the case in which the value of x is completely

determinate.

36. Solution of an Equation Involving One Unknown

Quantity. The solution of the equation

ax + bx = o

may be expressed in the form

x = a u + bu
,

& being an indeterminate, on condition that the resultant of

the equation be verified; for we can prove that this equality

implies the equality

ab x + a bx = o,

which is equivalent to the double inclusion

a b&amp;lt;^x&amp;lt;^d + b.

Now, by hypothesis, we have

(ab = o) = (a b = b}
=

(&amp;gt;
+ b = a).

Therefore, in this hypothesis, the proposed solution implies

the double inclusion

b
&amp;lt;

x
&amp;lt;

*
;

which is equivalent to the given equation.

Remark. In the same hypothesis in which we have

(ab = o)
=

(&amp;lt;O,

we can always put this solution in the simpler but less sym
metrical forms

x = b + a u, x = a (b + u).
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For

1. We have identically

b = bu + bu .

Now

(b&amp;lt;a }&amp;lt;(bu&amp;lt;au).

Therefore

(x = bu -\- a it]
= (x = b + a u).

2. Let us now demonstrate the formula

x = #
&amp;lt; + a u .

Now
* =-

.

Therefore

x = b -f # #

which may be reduced to the preceding form.

Again, we can put the same solution in the form

x = a b + u(ab + # ),

which follows from the equation put in the form

ab x + a bx = o,

if we no.te that

a+ b = ab + a b + a b

and that

ua b
&amp;lt;C

a b.

This last form is needlessly complicated, since, by hypothesis,

ab = o.

Therefore there remains

x = a b + ua b

which again is equivalent to

x == b -\- ua ,

since

a b = b and a = db + a b .

Whatever form we give to the solution, the parameter u

in it is absolutely indeterminate, i. e., it can receive all possible

values, including o and i; for when u = o we have

4*
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X = b,

and when u = i we have

x = a,

and these are the two extreme values of x.

Now we understand that x is determinate in the particular

case in which a = b, and that, on the other hand, it is

absolutely indeterminate when

b = o, a = i, (or a = o).

Summing up, the formula

x = a u + bu

replaces the &quot;limited&quot; variable x (lying between the limits a

and b} by the &quot;unlimited&quot; variable u which can receive all

possible values, including o and i.

Remark.* The formula of solution

x = ax + bx

is indeed equivalent to the given equation, but not so the

formula of solution

x = a u + bu

as a function of the indeterminate u. For if we develop the

latter we find

ab x + a bx + ab(xu + x u} + a b (xu + xu) = o,

and if we compare it with the developed equation

ab + ab x + a bx = o,

we ascertain that it contains, besides the solution, the equality

ab(xu + x u} = o,

and lacks of the same solution the equality

a b (xu -\- x &)
= o.

Moreover these two terms disappear if we make

u = x

and this reduces the formula to

x = ax + bx.

i PORETSKY. Sept lois, Chaps. XXXIII and XXXIV.
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From this remark, PORETSKY concluded that, in general, the

solution of an equation is neither a consequence nor a cause

of the equation. It is a cause of it in the particular case in which

ab = o,

and it is a consequence of it in the particular case in which

(a b = o)
= (a + & = i).

But if ab is not equal to o, the equation is unsolvable and

the formula of solution absurd, which fact explains the

preceding paradox. If we have at the same time

ab = o and a + b = i
,

the solution is both consequence and cause at the same time,

that is to say, it is equivalent to the equation. For when

a = b the equation is determinate and has only the one

solution

x = a = b.

Thus, whenever an equation is solvable, its solution is one

of its causes; and, in fact, the problem consists in finding a

value of x which will verify it, /.
&amp;lt;?.,

which is a cause of it.

To sum up, we have the following equivalence:

(ax + bx = o)
= (ab = o)(x = a u + bu }

which includes the following implications:

(ax + bx = o) &amp;lt;C (ab = o),

(ax + bx =
o)&amp;lt;[ C* s== a u

(ab = o)2(* = a u + bu) &amp;lt; (ax-\- bx = o).
u

37. Elimination of Several Unknown Quantities.
We shall now consider an equation involving several unknown

quantities and suppose it reduced to the normal form, /.
&amp;lt;?.,

its first member developed with respect to the unknown

quantities, and its second member zero. Let us first concern

ourselves with the problem of elimination. We can eliminate

the unknown quantities either one by one or all at once.
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For instance, let

(1) &amp;lt;f(x,y,
z)
= axyz + bxyz + cxy z + dxy z

-\-fxyz + gx yz + hx y z + kxy z = o

be an equation involving three unknown quantities.

We can eliminate z by considering it as the only unknown

quantity, and we obtain as resultant

(axy + cxy -\rfxy + hxy) (bxy + dxy + gx y + kx y) = o

or

(2) abxy + cdxy -\-fgxy-\-hkxy = o.

If equation (i) is possible, equation (2) is possible as well;

that is, it is verified by some values of x and y. Accordingly

we can eliminate y from the equation by considering it as

the only unknown quantity, and we obtain as resultant

(abx +fgx} (cdx -\- hkx} = o

or

(3) abcdx -\-fghkx = o.

If equation (i) is possible, equation (3) is also possible;

that is, it is verified by some values of x. Hence we can

eliminate x from it and obtain as the final resultant,

abed .fghk = o

which is a consequence of (i), independent of the unknown

quantities. It is evident, by the principle of symmetry, that

the same resultant would be obtained if we were to eliminate

the unknown quantities in a different order. Moreover this

result might have been foreseen, for since we have ( 28)

abcdfghk &amp;lt; cp (x, y, z} ,

(p(x, 7, z) can vanish only if the product of its coefficients

is zero:

[rp(x,y, z)
=

o] &amp;lt; (abcdfghk = o).

Hence we can eliminate all the unknown quantities at once

by equating to o the product of the coefficients of the

function developed with respect to all these unknown quantities.

We can also eliminate some only of the unknown quantities

at one time. To do this, it is sufficient to develop the first
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member with respect to these unknown quantities and to

equate the product of the coefficients of this development

to o. This product will generally contain the other unknown

quantities. Thus the resultant of the elimination of z alone,

as we have seen, is

abxy + cdxy -\-fgx y + hkoiy = o

and the resultant of the elimination of y and z is

abcdx^rfghkx o.

These partial resultants can be obtained by means of the

following practical rule: Form the constituents relating to the

unknown quantities to be retained; give each of them, for a

coefficient, the product of the coefficients of the constituents

of the general development of which it is a factor, and equate

the sum to o.
.

\

&quot;

&amp;lt;

38. Theorem Concerning the Values of a Function:

All the values which can be assumed by a function of any number

of variables f(x,y, z . . .) are given by the formula

abc . . . k + u (a + b + c + . . . + /),

in which u is absolutely indeterminate, and a, b. c . . ., k are

the coefficients of the development of f.

Demonstration. It is sufficient to prove that in the equality

/O, y, z . . .)
= abc . . . k + u (a + b + c + . . . + k)

u can assume all possible values, that is to say, that this

equality, considered as an equation in terms of u, is in

determinate.

In the first place, for the sake of greater homogeneity, we

may put the second member in the form

u abc ...k + u(a + l&amp;gt; + c -\- . . . + ),

for

abc . . . k = uabc . . . k + u abc . . . k,

and

uabc . . . O(0 + + c+ ... + &).

Reducing the second member to o (assuming there are

only three variables x
t y, z)



56 VALUES OF A FUNCTION.

(aocyz + bxyz + cxy z 4- . . . + kx y z )

X [ua b c . . . k + u (a + b +/ + ... + k }}

+ (a xyz + b xyz + c xy z 4- . . . + k x y z )

X[u(a + + , + ... + ) + z/tf^ . . . k]
=

o,

or more simply

( + 3 + ^+ . . . + ^) (a xyz + b xyz + if tf/s+ . . . -f k xy z)

+ u (a + b +/ + ... + / ) (^^2T+ ^*&amp;gt;* + . . . + kxy z) = o.

If we eliminate all the variables #, j, 2:,
but not the in

determinate ^, we get the resultant

u(a + b + ^ + . . . + k)d b c . . . //

+ u(a+ b + /+... + k )abc . . . /
= o.

Now the two coefficients of & and ^ are identically zero;
1 iff

Ij^llp^l j^|JK
is absolutely indeterminate, which was to be

proved.
1

From this theorem follows the very important consequence
that a function of any number of variables can be changed
into a function of a single variable without diminishing or

altering its
&quot;variability&quot;.

Corollary. A function of any number of variables can

become equal to either of its limits.

For, if this function is expressed in the equivalent form

abc. . .& + u(a + b + c + .. . + k),

it will be equal to its minimum (abc ... k) when u = o, and

to its maximum (a + b + c + . . . + k) when u = i.

Moreover we can verify this proposition on the primitive

form of the function by giving suitable values to the

variables.

Thus a function can assume all values comprised between

its two limits, including the limits themselves. Consequently,

it is absolutely indeterminate when

abc . . . k = o and &amp;lt;z-M + r+... + = i

at the same time, or

abc .../& = o a b c ... k .

1 WHITEHEA.D, Universal Algebra, Vol. I, 33 (4).
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39. Conditions of Impossibility and Indetermination.

The preceding theorem enables us to find the conditions

under which an equation of several unknown quantities is

impossible or indeterminate. Let f(x, y, z . . .) be the first

member supposed to be developed, and a, b, c . . ., k its

coefficients. The necessary and sufficient condition for the

equation to be possible is

abc . . . k = o.

For, (i) if f vanishes for some value of the unknowns,

its inferior limit abc . . . k must be zero; (2) if abc . . . k is zero,

f may become equal to it, and therefore may vanish for certain

values of the unknowns.

The necessary and sufficient condition for the equation to

be indeterminate (identically verified) is

For, (i) if a + b + c + . . . + k is zero, since it is the

superior limit of /, this function will always and necessarily

be zero; (2) if / is zero for all values of the unknowns,

a + b-\- c + . . . + k will be zero, for it is one of the values

of/.

Summing up, therefore, we have the two equivalences

H [/(*, y, *&amp;gt;
=

o]
=

(a + b + c. . . + k = o).

The equality abc . . . k = o is, as we know, the resultant

of the elimination of all the unknowns; it is the consequence
that can be derived from the equation (assumed to be veri

fied) independently of all the unknowns.

40. Solution of Equations Containing Several Un
known Quantities. On the other hand, let us see how
we can solve an equation with respect to its various un

knowns, and, to this end, we shall limit ourselves to the

case of two unknowns

axy + bxy + exy + dx y = o.
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First solving with respect to x,

x = (ay + b y) x + (cy + dy) x .

The resultant of the elimination of x is

a cy + b dy = o.

If the given equation is true, this resultant is true.

Now it is an equation involving y only; solving it,

y= (a + /) y + bdy .

Had we eliminated y first and then x, we would have

obtained the solution

y = (ax + ex } y + (bx + dx) y

and the equation in x

abx + ^a; = o,

whence the solution

x = (a + ) jp + (T^^.

We see that the solution of an equation involving two

unknown quantities is not symmetrical with respect to these

unknowns; according to the order in which they were elim

inated, we have the solution

x = (ay + by ) x + (cy + dy) x
,

y = (a + c) y + bdy,

or the solution

x = (a + b ) x + cdx,

y = (ax + c x) y + (bx + dx } y .

If we replace the terms x, y, in the second members by
indeterminates u, v, one of the unknowns will depend on only

one indeterminate, while the other will depend on two. We
shall have a symmetrical solution by combining the two formulas,

x = (a + b ) u + cdu
,

y=(a +c)v-\-b dv ,

but the two indeterminates u and v will no longer be inde

pendent of each other. For if we bring these solutions in

to the given equation, it becomes



PROBLEM OF BOOLE. 59

abed -f ab cuv -f dbd uv + a cd uv + bV du v = o

or since, by hypothesis, the resultant abcd = o is verified,

ab cuv + a bduv + a cdtiv + b cduv = o.

This is an &quot;equation of condition&quot; which the indeterminates

u and v must verify; it can always be verified, since its

resultant is identically true,

ab c . a bd . a cd . b c d = act . bb . cc . dd =
o,

but it is not verified by any pair of values attributed to u

and v.

Some general symmetrical solutions, i. e.
} symmetrical

solutions in which the unknowns are expressed in terms of

several independent indeterminates, can however be found.

This problem has been treated by SCHRODER J

, by WHITE-

HEAD 2 and by JOHNSON. 3

This investigation has only a purely technical interest; for,

from the practical point of view, we either wish to eliminate

one or more unknown quantities (or even all), or else we seek

to solve the equation with respect to one particular unknown.

In the first case, we develop the first member with respect

to the unknowns to be eliminated and equate the product of

its coefficients to o. In the second case we develop with

respect to the unknown that is to be extricated and apply

the formula for the solution of the equation of one unknown

quantity. If it is desired to have the solution in terms of

some unknown quantities or in terms of the known only, the

other unknowns (or all the unknowns) must first be eliminated

before performing the solution.

41. The Problem of Boole. According to BOOLE the

most general problem of the algebra of logic is the follow

ing^:

1
Algebra der

Logik&amp;gt;
Vol. I, 24.

2 Universal Algebra, Vol. I, 3537-
3

&quot;Sur la theorie des galites logiques&quot;, Bibl. du Cong, intern, de Phil.,

Vol. Ill, p. 185 (Paris, 1901).

4 Laws of Thought, Chap. IX, S 8.
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Given any equation (which is assumed to be possible)

/(#, y, *,v..) o,

and, on the other hand, the expression of a term / in terms

of the variables contained in the preceding equation

/=9 (xt y, *, ...),

to determine the expression of t in terms of the constants

contained in f and in cp.

Suppose f and cp developed with respect to the variables

x,y, z . . . and let / I? /&amp;gt;
2 ,/3 ,

. . . be their constituents:

/(*, j&amp;gt;, *,...) = A/x + B/2 4- C/3 + . .
.,

cp (x,y, *,...)= /x + /2 + */3
+ . . ..

Then reduce the equation which expresses / so that its

second member will be o:

(tcp + t cp
=

o)
=

[(a pi + b p2 + c ps + . . .) /

Combining the two equations into a single equation and

developing it with respect to t\

[(A + d}p^ + (B + b )p2 + (C+ /)/3 + ...]/

+ [(^ + fl)/x + (^ + ^)/2 + (C + ^)/3 + . .
.]

t = O.

This is the equation which gives the desired expression

of t. Eliminating /, we obtain the resultant

Api + Bpz + C/3 + . . .
=

o,

as we might expect. If, on the other hand, we wish to

eliminate x, y, z, . . . (z. e., the constituents / x , p2 , /3
. . .), we

put the equation in the form

(A^dt-\- at)p^ + (B+b t+bt}pz +(C-\-ct+ct}pz + ...= o,

and the resultant will be

(A + at+at ) (B + b t+bt} (C + ct + ct} . . .
=

o,

an equation that contains only the unknown quantity / and

the constants of the problem (the coefficients
of/&quot;

and of 90).

From this may be derived the expression of / in terms of

these constants. Developing the first member of this equation
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The solution is

t=(A + a) (+&) (C+c)... + u(4a + b + C c + ...}.

The resultant is verified by hypothesis since it is

ABC... = o,

which is the resultant of the given equation

/ (#, y, z,
. . .)

= o.

We can see how this equation contributes to restrict the

variability of /. Since / was denned only by the function
qr&amp;gt;,

it was determined by the double inclusion

abc . ..&amp;lt;/&amp;lt;# + b + c +

Now that we take into account the condition f= o, /is

determined by the double inclusion

(A + 0) (B + J) (C+ *)...&amp;lt;/&amp;lt; (A a + b + C c+...}^

The inferior limit can only have increased and the superior

limit diminished, for

abc...&amp;lt; (A -{-a) (B+b) (C + c) . . .

and

A a + B b+ C c . . .
&amp;lt;

a + b + c

The limits do not change if ^ = ^=C=... = o, that

is, if the equation f= o is reduced to an identity, and this

was evident a priori.

42. The Method of Poretsky. The method of BOOLE

and SCHRODER which we have heretofore discussed is clearly

inspired by the example of ordinary algebra, and it is summed

up in two processes analogous to those of algebra, namely

the solution of equations with reference to unknown quantities

and elimination of the unknowns. Of these processes the

second is much the more important from a logical point of

view, and BOOLE was even on the point of considering de

duction as essentially consisting in the elimination of middle

1 WHITEHEAD, Universal Algebra, p. 63.
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terms. This notion, which is too restricted, was suggested

by the example of the syllogism, in which the conclusion

results from the elimination of the middle term, and which

for a long time was wrongly considered as the only type

of mediate deduction. 1

However this may be, BOOLE and SCHRODER have exag

gerated the analogy between the algebra of logic and ordi

nary algebra. In logic, the distinction of known and unknown

terms is artificial and almost useless. All the terms are in

principle at least known, and it is simply a question, certain

relations between them being given, of deducing new

relations (unknown or not explicitly known) from these known

relations. This is the purpose of PORETSKY S method which

we shall now expound. It may be summed up in three

laws, the law of forms, the law of consequences and the

law of causes.

43. The Law of Forms. This law answers the following

problem: An equality being given, to find for any term

(simple or complex) a determination equivalent to this equal

ity. In other words, the question is to find all the forms

equivalent to this equality, any term at all being given as

its first member.

We know that any equality can be reduced to a form in

which the second member is o or i; i.
&amp;lt;?.,

to one of the

two equivalent forms

7^=0, N = i.

The function N is what PORETSKY calls the logical zero

of the given equality; N* is its logical whole. 2

1 In fact, the fundamental formula of elimination

(ax -|- bx = o) &amp;lt; (ab= o)

is, as we have seen, only another form and a consequence of the prin

ciple of the syllogism

(*&amp;lt;*&amp;lt; )&amp;lt;(*&amp;lt; )

2 They are called
&quot;logical&quot;

to distinguish them from the identical

zero and whole, i. e.
t

to indicate that these two terms are not equal to o

and I respectively except by virtue of the data of the problem.
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Let U be any term; then the determination of U\

U= N U + NU
is equivalent to the proposed equality; for we know it is

equivalent to the equality

(NU + NU =
o)
= (N= o).

Let us recall the signification of the determination

U= N* U + NU .

It denotes that the term U is contained in N and con

tains N. This is easily understood, since, by hypothesis,

N is equal to o and N to i. Therefore we can formulate

the law offorms in the following way:

To obtain all the forms equivalent to a given equality
r

,
it

is sufficient to express that any term contains the logical zero

of this equality and is contained in its logical whole.

The number of forms of a given equality is unlimited; for

any term gives rise to a form, and to a form different from

the others, since it has a different first member. But if we

are limited to the universe of discourse determined by n

simple terms, the number of forms becomes finite and de

terminate. For, in this limited universe, there are 2* con

stituents. Now, all the terms in this universe that can be

conceived and defined are sums of some of these con

stituents. Their number is, therefore, equal to the number

of combinations that can be made with -2
n

constituents,

namely 2
2H

(including o, the combination of o constituent,

and i, the combination of all the constituents). This will

also be the number of different forms of any equality in the

universe in question.

44. The Law of Consequences. We shall now pass to

the law of consequences. Generalizing the conception of

BOOLE, who made deduction consist in the elimination of

middle terms, PORETSKY makes it consist in the elimination

of known terms (connaissances). This conception is explained

and justified as follows.
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All problems in which the data are expressed by logical

equalities or inclusions can be reduced to a single logical

equality by means of the formula l

(A=*o) (= o) (C= o)... = (A + B+ C... = o).

In this logical equality, which sums up all the data of the

problem, we develop the first member with respect to all

the simple terms which appear in it (and not with respect

to the unknown quantities). Let n be the number of simple

terms; then the number of the constituents of the develop

ment of i is 2. Let m
(&amp;lt; 2) be the number of those

constituents appearing in the first member of the equality.

All possible consequences of this equality (in the universe

of the n terms in question) may be obtained by forming all

the additive combinations of these m constituents, and equat

ing them to o; and this is done in virtue of the formula

(A + B = o)&amp;lt; (A = o).

We see that we pass from the equality to any one of its

consequences by suppressing some of the constituents in its

first member, which correspond to as many elementary equal

ities (having o for second member), i. e., as many as there are

data in the problem. This is what is meant by &quot;eliminating

the known terms&quot;.

The number of consequences that can be derived from

an equality (in the universe of terms with respect to which

it is developed; is equal to the number of additive com

binations that may be formed with its m constituents; /.
&amp;lt;?.,

2m . This number includes the combination of o constituents,

which gives rise to the identity o = o
;
and the combination

of the m constituents, which reproduces the given equality.

Let us apply this method to the equation with one un

known quantity

ax + bx = o.

i We employ capitals to denote complex terms (logical functions) in

contrast to simple terms denoted by small letters (a, b, c, . . .)
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Developing it with respect to the three terms #, b
t
x:

(a b x + a b x -{-abx -\-abx =0}
= [ab (x + x) + 0^ a: + a bx = o]

= (ab = o) (a # = o) (a bx = o).

Thus we find, on the one hand, the resultant ab = o,

and, on the other hand, two equalities which may be trans

formed into the inclusions

But by the resultant which is equivalent to b
&amp;lt;C

a
,
we have

a + b = a
,

a b = b.

This consequence may therefore be reduced to the double

inclusion
^ i

that is, to the known solution.

Let us apply the same method to the premises of the

syllogism

(&amp;lt;

Reduce them to a single equality

(&amp;lt;)
= (ab

f

o), (^ &amp;lt; c)
=

(bc = o), (fl^ + bc=* o),

and seek all of its consequences.

Developing with respect to the three terms a, b, c\

abc + ab C -r ab c -\- a be = o.

The consequences of this equality, which contains four

constituents; are 16 (2
4
) in number as follows:

1. (abc = o)
= (ab &amp;lt;C c)-,

2. (allc
=

o)
=

(ac&amp;lt;^ b};

3. (*V o) ;(&amp;lt;* + ^);

4. (dbc = o)
=

(^ &amp;lt;
a +

&amp;lt;r);

5. (^^/ + 0^ ==
o)
=

(0 &amp;lt;C
^^ 4- ^ )j

6.
(0&amp;lt;r + 0^ ^ = o)

= (ac = o)
=

(a &amp;lt;C )
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This is the traditional conclusion of the syllogism.

7. (abc + a be = o) = (be = o)
=

This is the second premise.

8. (ab c + ab c = o)
= (ab = o)

This is the first premise.

9. (# * + &amp;lt;* / = o) = (# &amp;lt;r

&amp;lt;&amp;lt;

b
&amp;lt;&amp;lt;

a +
&amp;lt;:);

10. (ab c + &amp;lt;// = o)
= (ab + a

&amp;lt;C &amp;lt;r);

11. (abc + a ft c + ab c =o)= (ab -\- ac =
12.

(#&amp;lt;: + ^^ ^ + ^/ = o) = (ab c + be = o)

13. (abc + 0#Y + a ^/ = o)
= (ac + ^/ = o)

=
(a + b&amp;lt;c);

14. ftf^v + ab c + 0W = o)
= (^^ + a be = o)

=
(^&amp;lt;^&amp;lt;^ + ^).

The last two consequences (15 and 16) are those ob

tained by combining o constituent and by combining all; the

first is the identity

15.
=

0,

which confirms the paradoxical proposition that the true

(identity) is implied by any proposition (is a consequence
of it); the second is the given equality itself

16. ab + be o,

which is, in fact, its own consequence by virtue of the

principle of identity. These two consequences may be called

the &quot;extreme consequences&quot; of the proposed equality. If

we wish to exclude them, we must say that the number of

the consequences properly so called of an equality of m
constituents is zm 2.

1 It will be observed that this is the only consequence (except the

two extreme consequences [see the text below]) independent of b; there

fore it is the resultant of the elimination of that middle term.
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45. The Law of Causes. The method of finding the

consequences of a given equality suggests directly the method

of finding its causes, namely, the propositions of which it is

the consequence. Since we pass from the cause to the

consequence by eliminating known terms, i. e., by suppressing

constituents, we will pass conversely from the consequence

to the cause by adjoining known terms, /. e., by adding con

stituents to the given equality. Now, the number of con

stituents that may be added to it, i.
e., that do not already

appear in it, is 2 n m. We will obtain all the possible

causes (in the universe of the n terms under consideration)

by forming all the additive combinations of these constituents,

and adding them to the first member of the equality in virtue

of the general formula

(A + B = o)&amp;lt; (A = o),

which means that the equality (A = o) has as its cause the

equality (A + B = o), in which B is any term. The number

of causes thus obtained will be equal to the number of the

aforesaid combinations, or 2 Zn -m.

This method may be applied to the investigation of the

causes of the premises of the syllogism

(a&amp;lt;b) (b&amp;lt;c),

which, as we have seen, is equivalent to the developed

equality

abc + ab c + ab c + a be = o.

This equality contains four of the eight (23) constituents

of the universe of three terms, the four others being

abc, abc, abc, abc.

The number of their combinations is 16 (2*), this is also

the number of the causes sought, which are:

1. (abc + abc + ab c + a b c + abc = o)

=
(a + be = o)

=
(a
=

o) (b &amp;lt; c)\

2. (abc + ab c + ab c -\- abc + abc = o)

= (abc + ab + ab = o)
=

(ab&amp;lt;^c) (a
=

b);

5*
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3. (a be + at) c + al&amp;gt; c -\- a be + a b c = o)

=
(bc + b c + aY = o)

=
(
=

^)

4. (abc -\- ali c -\- a be + ,i* + #V/ ==
o)

=
(c + at = o)

=
(*
=

i) 0&amp;lt;O);

5. (a^f + fc# + a&c + 6-f&amp;lt; + abc -\- abc = o)

=
( + =

o)
=

(a
=

o) (3
=

o);

6. (03^ -\- abc -\- al&amp;gt; c -\- ab
f

c + a b c -\- a b c = o)

= (a + / + y^r = o)
=

(a = o) (^
=

^);

7. (a&amp;lt;^&amp;lt;:
+ abc -\-abc-\-abc + a b c -\- a b c = o)

= (a+ /= o)
=

(a
=

o) (c=* i)
1

;

8. (^^^r -\-abc-\-abc -{-abc-\-abc + ab c = o)

= (ac + a ^ + ate + ^^/ = o)

==
(
=

^) (ac &amp;lt; &amp;lt;
a + c)

=
(a
= b = c)-t

9. (abc -\- ab c -\- ab c -\- a b c -\- a b c -\- a b c = o)

= (/ + + a 3 = o)
=

(c
=

i) (
=

^);

10. (tf^ + a b c + # ^ ^ + abc + tt^ + abc = o)

= (^ + / = )
=

(b ^ = i).

Before going any further, it may be observed that when

the sum of certain constituents is equal to o, the sum of

the rest is equal to i. Consequently, instead of examining

the sum of seven constituents obtained by ignoring one of

the four missing constituents, we can examine the equalities

obtained by equating each of these constituents to i :

1 1. (a b c = i)
=

(a + b + c = o)
= (a = b = c = o);

12. (a b c = i) =(a + b + /= o) = (a
= b = o) (c

=
i);

13. (abc = i)
=

(a + + /= o)
=

(a
=

o) (^
= c = i);

14. (#&amp;lt;:
=

i)
=

(
= b = c = i).

i It will be observed that this cause is the only one which is inde

pendent of b; and indeed, in this case, whatever b is, it will always

contain a and will always be contained in c. Compare Cause 5, which

is independent of c, and Cause lo, which is independent of a.
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Note that the last four causes are based on the inclusion

The last two causes (15. and 16.) are obtained either by

adding all the missing constituents or by not adding any.

In the first case, the sum of all the constituents being equal

to i, we find

15. i = o,

that is, absurdity, and this confirms the paradoxical prop

osition that the false (the absurd) implies any proposition

(is its cause). In the second case, we obtain simply the

given equality, which thus appears as one of its own causes

(by the principle of identity):

16. ab -f- be = o.

If we disregard these two extreme causes, the number of

causes properly so called will be

46. Forms of Consequences and Causes. We can

apply the law of forms to the consequences and causes of a

given equality so as to obtain all the forms possible to each

of them. Since any equality is equivalent to one of the two forms

each of its consequences has the form 1

and each of its causes has the form

=
o, or N X

1 In 44 we said that a consequence is obtained by taking a part

of the constituents of the first member JV, and not by multiplying it by
a term X\ but it is easily seen that this amounts to the same thing.

For, suppose that X (like N] be developed with respect to the n terms

of discourse. It will be composed of a certain number of constituents.

To perform the multiplication of N by X, it is sufficient to multiply

all their constituents each by each. Now, the product of two identical

constituents is equal to each of them, and the product of two different

constituents is o. Hence the product of N by X becomes reduced to

the sum of the constituents common to N and X, which is, of course,

contained in N. So, to multiply N by an arbitrary term is tantamount

to taking a part of its constituents (or all, or none).
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In fact, we have the following formal implications:

(7VT+ X= )&amp;lt;(JV

F=
o)&amp;lt;CATAr=o),

(fifX* = i)&amp;lt; (X = i)
= (X + AT

7

i).

Applying the law of forms, the formula of the conse

quences becomes

U= (N
1

+ X ) U+ NXlf
,

and the formula of the causes

/= N X U + (N + A3 /;

or, more generally, since ^sf and X are indeterminate terms,

and consequently are not necessarily the negatives of each

other, the formula of the consequences will be

U=* (N
1

+ X) U + NYU
,

and the formula of the causes

v = JSTxu + (jy+ Y}U .

The first denotes that U is contained in (N + X) and

contains N Y\ which indeed results, a fortiori, from the hypoth
esis that U is contained in N&quot; and contains JV.

The second formula denotes that U is contained in JV X
and contains N* + Y whence results, a fortiori, that U is

contained in N and contains ./V.

We can express this rule verbally if we agree to call

every class contained in another a sub -class, and every

class that contains another a super-class. We then say:

To obtain all the consequences of an equality (put in the

form U= N1 U -\- N U }, it is sufficient to substitute for its

logical whole N all its super-classes, and, for its logical

zero N, all its sub-classes. Conversely, to obtain all the

causes of the same equality, it is sufficient to substitute for

its logical whole all its sub -classes, and for its logical zero,

all its super-classes.

47. Example: Venn s Problem. The members of the

administrative council of a financial society are either bond

holders or shareholders, but not both. Now, all the bond-
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holders form a part of the council. What conclusion must

we draw ?

Let a be the class of the members of the council; let b

be the class of the bondholders and c that of the share

holders. The data of the problem may be expressed as

follows :

a
&amp;lt;^

b c + ti c, b
&amp;lt;^

a.

Reducing to a single developed equality,

a(bc~bc) = o, a b = o,

(1) abc + ab c + abc-\-a be = o.

This equality, which contains 4 of the constituents, is

equivalent to the following, which contains the four others,

/ \ z , -L L T.

(2) abc + ab c + a b c + a b c = i.

This equality may be expressed in as many different forms

as there are classes in the universe of the three terms

Ex. i . a = abc-\-ab c + a bc-\- a b /,

that is,

b
&amp;lt;^

a
&amp;lt;^

be + b c,

Ex. 2. b = abc + ab c = ac
;

Ex, 3. c = a b c + a b c + ab c + abc

that is,

a b + a b
&amp;lt;^

c
&amp;lt;^

6 .

These are the solutions obtained by solving equation (i)

with respect to a, b, and c.

From equality (i) we can derive 16 consequences as

follows:

1. abc = o;

2. (a J) c = o) = (a &amp;lt;&amp;lt;

b + c) ;

,3. (a bc= o)
=

(^&amp;lt;a);

4. (ab c = o)
=

(&&amp;lt;a + c);
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5. (abe + ab e = o) = (a &amp;lt;&amp;lt;

/ + # *) [it premise];

6. (0^ + a be = o) (
=

o);

7. (abc -{- a be = o}
=

(b &amp;lt;^ae -\-a e};

8. (ab c + dbc= o)
=

(be&amp;lt;ia&amp;lt;^b + &amp;lt;:);

9. (ab e -\-a be = o)
= (ab +a b

&amp;lt;^e);

10. (a be -\- abe = o) = (0 = o) [2^ premise];

11. (abe-\- ab c + a be = o) = (fc+afa *=
o);

12. abe+ ab c +abe= o;

13. (0# + &amp;lt;2

7

^&amp;lt;r + abe = o)
=

(^r + a ^/) = o;

14. ^ &amp;lt;: + ^^^r -}- a be = o.

The last two consequences, as we know, are the identity

(o = o) and the equality (i) itself. Among the preceding

consequences will be especially noted the 6 th (be = o), the

resultant of the elimination of a, and the io th
(a b = o),

the resultant of the elimination of c. When b is eliminated

the resultant is the identity

[(a + e} ae = o]
= (o = o).

Finally, we can deduce from the equality (i) or its equiv

alent (2) the following 16 causes:

1. (abc = i)
-= (a = i) (b

=
i) (c - o);

2. (ab c = i)
=

(a = i) (J = o) (^
=

i);

3. (a ^V = i)
= (a = o) (b

=
o) (^

=
i);

4. (^^/ = i)
==

(a
=

o) (= o) (r
= o);

5. (a^/ + ^^V = i)
=

(a
=

i) (b
*=

f) f

6.
(&amp;lt;2^/ + a b e = i)

=
(a = b = c );

7. (abc-\-db c = i)
= 0= o)

=
^);

8. (a& c+ a b e = i)
=

(b
=

o) (r
=

i);

9. (ab e-\- a ti c = i)
=

(
=

o) (0
=

^);

10. (

7

y^- + a b e =-
i)
=

(a
=

o) (^
=

o);
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11. (abc -\- ab c + a b c = i)
=

(
= /) (/&amp;lt;C );

12. {abc -^ ab c -\-a b
/

c = i)
=

(be = o) (a = + ^);

13. (abc + ab c+ a b c = i)
=

(&amp;lt;w

=
o) (0

=
3);

14. (ab c + a b c+ a b c = i)
=

(
=

o) (0 &amp;lt;&amp;lt; &amp;lt;:).

The last two causes, as we know, are the equality (i)

itself and the absurdity (i
=

o). It is evident that the

cause independent of a is the 8 th (b == o) (c = i), and the

cause independent of c is the io th
(0 = 0) (b = o). There

is no cause, properly speaking, independent of b. The most

&quot;natural&quot; cause, the one which may be at once divined

simply by the exercise of common sense, is the 12 th
:

(be = ) (a = b + c).

But other causes are just as possible; for instance the 9
th

(b
=

o) (a = c), the ;tli (c
-= o) (a

=
b), or the 13^

(ac = o) (a b}.

We see that this method furnishes the complete enumera

tion of all possible cases. In particular, it comprises, among
the forms of an equality, the solutions deducible therefrom

with respect to such and such an &quot;unknown quantity&quot;, and,

among the consequences of an equality, the resultants of the

elimination of such and such a term.

48. The Geometrical Diagrams of Venn. PORETSKY S

method may be looked upon as the perfection of the methods

of STANLEY JEVONS and VENN.

Conversely, it finds in them a geometrical and mechanical

illustration, for VENN S method is translated in geometrical

diagrams which represent all the constituents, so that, in

order to obtain the result, we need only strike out (by

shading) those which are made to vanish by the data of the

problem. For instance, the universe of three terms a, b
} c,

represented by the unbounded plane, is divided by three

simple closed contours into eight regions which represent the

eight constituents (Fig. i).
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afb c

Fig. i.

To represent geometrically the data of VENN S problem we
must strike out the regions abc, ati c

,
a be and abc-

} there

will then remain the regions abc, ab c, a b c, and a b c

which will constitute the universe relative to the problem,

being what PORETSKY calls his logical whole (Fig. 2). Then

a/b c

Fig. 2.

every class will be contained in this universe, which will give

for each class the expression resulting from the data of the

problem. Thus, simply by inspecting the diagram, we see

that the region be does not exist (being struck out); that the

region b is reduced to abc (hence to ab}\ that all a is b

or c, and so on.
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This diagrammatic method has, however, serious incon

veniences as a method for solving logical problems. It does

not show how the data are exhibited by canceling certain

constituents, nor does it show how to combine the remaining

constituents so as to obtain the consequences sought. In

short, it serves only to exhibit one single step in the argument,

namely the equation of the problem; it dispenses neither with

the previous steps, /.
&amp;lt;?., &quot;throwing of the problem into an

equation&quot; and the transformation of the premises, nor with

the subsequent steps, i. e., the combinations that lead to

the various consequences. Hence it is of very little use,

inasmuch as the constituents can be represented by algebraic

symbols quite as well as by plane regions, and are much

easier to deal with in this form.

49. The Logical Machine of Jevons. In order to

make his diagrams more tractable, VENN proposed a me
chanical device by which the plane regions to be struck out

could be lowered and caused to disappear. But JEVONS

invented a more complete mechanism, a sort of logical piano.

The keyboard of this instrument was composed of keys in

dicating the various simple terms (a, b, c^ d], their negatives,

and the signs + and = . Another part of the instrument

consisted of a panel with movable tablets on which were

written all the combinations of simple terms and their neg

atives; that is, all the constituents of the universe of dis

course. Instead of writing out the equalities which represent

the premises, they are
&quot;played&quot;

on a keyboard like that of

a typewriter. The result is that the constituents which vanish

because of the premises disappear from the panel. When
all the premises have been

&quot;played&quot;,
the panel shows only

those constituents whose sum is equal to i, that is, forms

the universe with respect to the problem, its logical whole.

This mechanical method has the advantage over VENN S geo

metrical method of performing automatically the &quot;throwing

into an equation&quot;, although the premises must first be ex

pressed in the form of equalities; but it throws no more light

than the geometrical method on the operations to be per-
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formed in order to draw the consequences from the data

displayed on the panel.

50. Table of Consequences. But PORETSKY S method

can be illustrated, better than by geometrical and mechanical

devices, by the construction of a table which will exhibit

directly all the consequences and all the causes of a given

equality. (This table is relative to this equality and each

equality requires a different table). Each table comprises

the zn classes that can be denned and distinguished in the

universe of discourse of n terms. We know that an equality

consists in the annulment of a certain number of these

classes, viz., of those which have for constituents some of

the constituents of its logical zero N. Let m be the number

of these latter constituents, then the number of the sub

classes of JV is 2 m which, therefore, is the number of classes

of the universe which vanish in consequence of the equality

considered. Arrange them in a column commencing with

o and ending with N . (the two extremes). On the other

hand, given any class at all, any preceding class may be

added to it without altering its value, since by hypothesis

they are null (in the problem under consideration). Conse

quently, by the data of the problem, each class is equal to

2 m classes (including itself). Thus, the assemblage of the

2 classes of discourse is divided into 2 n ~m series of 2^

classes, each series being constituted by the sums of a certain

class and of the z m classes of the first column (sub-classes

of N}. Hence we can arrange these 2 m sums in the

following columns by making them correspond horizontally

to the classes of the first column which gave rise to them.

Let us take, for instance, the very simple equality a = b,

which is equivalent to

+ a b o.

The logical zero (N) in this case is ab -f- a b. It com

prises two constituents and consequently four sub-classes:

o, al)
,
a b, and ab + a b. These will compose the first

column. The other classes of discourse are ab^ a b
,
ab -\- a b

,
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and those obtained by adding to each of them the four

classes of the first column. In this way, the following table

is obtained:

o ab a b ab + a b

ab a b a + b

a b b a a + b

ab + a b a + b a + b i

By construction, each class of this table is the sum of

those at the head of its row and of its column, and, by the

data of the problem, it is equal to each of those in the

same column. Thus we have 64 different consequences for

any equality in the universe of discourse of 2 letters. They

comprise 16 identities (obtained by equating each class to

itself) and 16 forms of the given equality, obtained by

equating the classes which correspond in each row to the

classes which are known to be equal to them, namely

o = ab -\- a b, ab a + ,
a b = a + b

,
ab + a b = i

a = b, b = a
,

ab a b, a + b = a + b.

Each of these 8 equalities counts for two, according as it

is considered as a determination of one or the other of its

members.

51. Table of Causes. The same table may serve to

represent all the causes of the same equality in accordance

with the following theorem:

When the consequences of an equality N = o are ex

pressed in the form of determinations of any class U, the

causes of this equality are deduced from the consequences
of the opposite equality, JV = 1

1 put in the same form,

by changing U to U in one of the two members.

For we know that the consequences of the equality N= o

have the form

u = (X + x) v+ NYU ,

and that the causes of the same equality have the form

U = N*X U + (N + Y) U .
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Now, if we change U into U in one of the members o

this last formula, it becomes

/-= (N + X*) U + N* Y U
,

and the accents of X and Y can be suppressed since these

letters represent indeterminate classes. But then we have

the formula of the consequences of the equality N = o or

This theorem being established, let us construct, for in

stance, the table of causes of the equality a = b. This will

be the table of the consequences of the opposite equality

a = //, for the first is equivalent to

ab + a b = o,

and the second to

(ab + a b = o) = (ab + a b = i).

o ab a b ab + a b

ab a b a + b

/
7
f ,/ / / /

a b b a a -\- b

ab + at a + b a + b i

To derive the causes of the equality a = b from this table

instead of the consequences of the opposite equality a = b
,

it is sufficient to equate the negative of each class to each

of the classes in the same column. Examples are:

a + t = o, a + b = a b
,

a + b = ab + a b
,

a + & = a, a + = b
,

a + b = a ^ b
; . . . .

Among the 64 causes of the equality under consideration

there are 16 absurdities (consisting in equating each class of

the table to its negative); and 16 forms of the equality (the

same, of course, as in the table of consequences, for two

equivalent equalities are at the same time both cause and

consequence of each other).

It will be noted that the table of causes differs from the

table of consequences only in the fact that it is sym
metrical to the other table with respect to the principal diagonal
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(o, i); hence they can be made identical by substituting the

word &quot;row&quot; for the word &quot;column&quot; in the foregoing state

ment. And, indeed, since the rule of the consequences con

cerns only classes of the same column, we are at liberty so to

arrange the classes in each column on the rows that the

rule of the causes will be verified by the classes in the

same row.

It will be noted, moreover, that, by the method of con

struction adopted for this table, the classes which are the

negatives of each other occupy positions symmetrical with

respect to the center of the table. For this result, the sub

classes of the class N* (the logical whole of the given

equality or the logical zero of the opposite equality) must

be placed in the first row in their natural order from o to N
;

then, in each division, must be placed the sum of the classes

at the head of its row and column.

With this precaution, we may sum up the two rules in the

following practical statement:

To obtain every consequence of the given equality (to

which the table relates) it is sufficient to equate each class

to every class in the same column; and, to obtain every

cause, it is sufficient to equate each class to every class in

the row occupied by its symmetrical class.

It is clear that the table relating to the equality N = o

can also serve for the opposite equality N =
i, on condition

that the words &quot;row&quot; and &quot;column&quot; in the foregoing statement

be interchanged.

Of course the construction of the table relating to a given

equality is useful and profitable only when we wish to

enumerate all the consequences or the causes of this equal

ity. If we desire only one particular consequence or cause

relating to this or that class of the discourse, we make use

of one of the formulas given above.

52. The Number of Possible Assertions. If we regard

logical functions and equations as developed with respect to

all the letters, we can calculate the number of assertions or

different problems that may be formulated about n simple
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terms. For all the functions thus developed can contain only

those constituents which have the coefficient i or the coef

ficient o (and in the latter case, they do not contain them).

Hence they are additive combinations of these constituents;

and, since the number of the constituents is 2*, the number

of possible functions is 2
2

&quot;. From this must be deducted

the function in which all constituents are absent, which is

identically o, leaving 2
2 &quot;

i possible equations (255 when

n = 3). But these equations, in their turn, may be combined

by logical addition, * .
&amp;lt;?., by alternation; hence the number

of their combinations is 2 22// l
i, excepting always the

null combination. This is the number of possible assertions

affecting n terms. When n = 2, this number is as high as

32767.
1 We must observe that only universal premises are

admitted in this calculus, as will be explained in the follow

ing section.

53. Particular Propositions. Hitherto we have only

considered propositions with an affirmative copula (i. e., in

clusions or equalities) corresponding to the universal prop
ositions of classical logic.

2
It remains for us to study prop

ositions with a negative copula (non inclusions or inequalities),

which translate particular propositions
3
; but the calculus of

1 G. PEANO, Calcolo geometrico (i 888) p. x; SCHRODER, Algebra der

Logik, Vol. II, p. 144148.
2 The universal affirmative, &quot;All a s are 3

s&quot;, may be expressed by
the formulas

(a&amp;lt;b)
=

(a = ab) = (ab = o) = (a -f b = 1),

and the universal negative, &quot;No a s are
s&quot;, by the formulas

(a &amp;lt;
b

)
= (a = ab

)
= (ab

=
o) ==

(a -f b = i).

3 For the particular affirntfytive,
&quot;Some a s are &amp;lt;

s&quot;, being the negation

of the universal negative, is expressed by the formulas

(&amp;lt; )
= (a + ab

)
= (ab 4= o) = (&amp;lt;z -j- =f i),

and the particular . Negative, ^bme a s are not 3
s&quot;, being the negation

of the universal affirmative, is-, expressed by the formulas

(a &amp;lt; 6)
=

(to =f ab) = M + o) = (a -f- b 4= I).
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propositions having a negative copula results from laws al

ready known, especially from the formulas of DE MORGAN
and the law of contraposition. We shall enumerate the chief

formulas derived from it.

The principle of composition gives rise to the following

formulas:

whence come the particular instances

From these may be deduced the following important im

plications:

(a + o)&amp;lt; (a + b + o),

From the principle of the syllogism, we deduce, by the

law of transposition,

(a&amp;lt;b) (b +i)&amp;lt;(+ i).

The formulas for transforming inclusions and equalities

give corresponding formulas for the transformation of non-

inclusions and inequalities,

(a &amp;lt; b)
= (a*+ o) =

(a + b 4= i),

(a + ^)
== (^^ + &amp;lt;/ -ho), (a^ + flV+ i).

54. Solution of an Inequation with One Unknown.
If we consider the conditional inequality (inequation) with

one unknown

ax + bx f o,

we know that its first member is contained in the sum of

its coefficients

ax 4- bx&amp;lt;^ a + b.

6
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From this we conclude that, if this inequation is verified,

we have the inequality

a + b 4= o.

This is the necessary condition of the solvability of the

inequation, and the resultant of the elimination of the un

known x. For, since we have the equivalence

Yl (&amp;lt;*x
+ bx = o)

==
(a + b = o),

X

we have also by contraposition the equivalence

^ (ax + bx + o)
= (a + b 4= o).

x

Likewise, from the equivalence

^ (ax + bx = o)
= (a b = o),

3C

we can deduce the equivalence

which signifies that the necessary and sufficient condition for

the inequation to be always true is

and, indeed, we know that in this case the equation

(ax -\- bx = o)

is impossible (never true).

Since, moreover, we have the equivalence

(ax + bx = o)
= (x = ax + bx ),

we have also the equivalence

(ax + bx 4= o)
= (x 4= # x + bx}.

Notice the significance of this solution:

(ax + Jjc + o) = (** + tf) + (J# =Ho) = (x&amp;lt;$ia) +

&quot;Either x is not contained in a
,
or it does not contain &quot;.

This is the negative of the double inclusion

b&amp;lt;x&amp;lt;a.
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Just as the product of several equalities is reduced to one

single equality, the sum (the alternative) of several inequalities

may be reduced to a single inequality. But neither several

alternative equalities nor several simultaneous inequalities can

be reduced to one.

55. System of an Equation and an Inequation. We
shall limit our study to the case of a simultaneous equality

and inequality. For instance, let the two premises be

(ax + bx = o) (ex + */# =f=o).

To satisfy the former (the equation) its resultant ab = o

must be verified. The solution of this equation is

x = ax + bx .

Substituting this expression (which is equivalent to the

equation) in the inequation, the latter becomes

(ac + ad)x + (be + b d)x^o.

Its resultant (the condition of its solvability) is

(a c + ad + be + b d^ o)
=

[(a + b) c + (a + #
)&amp;lt;/+ o],

which, taking into account the resultant of the equality,

(ab = o)
=

(a + b = a) = (a + b = $ )

may be reduced to

ac -\- b d^r o.

The same result may be reached by observing that the

equality is equivalent to the two inclusions

(*&amp;lt;* ) (*&amp;lt;b \

and by multiplying both members of each by the same term

(ex &amp;lt; ac) (dx &amp;lt;
b d) &amp;lt; (ex + dx

&amp;lt;
ac + b d)

(ex + &amp;lt;/# + o) &amp;lt; (ac + b d^ o).

This resultant implies the resultant of the inequality taken

alone

c +

so that we do not need to take the latter into account. It

6*
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is therefore sufficient to add to it the resultant of the equality

to have the complete resultant of the proposed system

(ab = o) (a c + b d^* o).

The solution of the transformed inequality (which conse

quently involves the solution of the equality) is

56. Formulas Peculiar to the Calculus of Propositions.

All the formulas which we have hitherto noted are valid

alike for propositions and for concepts. We shall now

establish a series of formulas which are valid only for prop

ositions,, because all of them are derived from an axiom

peculiar to the calculus of propositions, which may be called

the principle of assertion.

This axiom is as follows:

(Ax. X.) (*=!)=* a .

P. I.: To say that a proposition a is true is to state the

proposition itself. In other words, to state a proposition is

to affirm the truth of that proposition.
1

Corollary:

a = (a = i)
= (a

=
o).

P. I.: The negative of a proposition a is equivalent to the

affirmation that this proposition is false.

By Ax. IX (S 20), we already have

(a
=

i) (a
= o)

=
o,

&quot;A proposition cannot be both true and false at the same

time&quot;, for

(Syll.) (a = i) (a
=

o)&amp;lt; (i
=

o)
= o.

1 We can see at once that this formula is not susceptible of a con

ceptual interpretation (C. I.); for, if a is a concept, (a = I) is a prop

osition, and we would then have a logical equality (identity) between

a concept and a proposition, which is absurd.
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But now, according to Ax. X
;
we have

(a
=

i) + (a
= o)

= a + a = i.

&quot;A proposition is either true or false&quot;. From these two

formulas combined we deduce directly that the propositions

(a = i) and (a = o) are contradictory, /.
&amp;lt;?.,

(a + i)
= (a = o), (a + o)

= (a = i).

From the point of view of calculation Ax. X makes it

possible to reduce to its first member every equality whose

second member is i, and to transform inequalities into

equalities. Of course these equalities and inequalities must

have propositions as their members. Nevertheless all the

formulas of this section are also valid for classes in the

particular case where the universe of discourse contains only

one element, for then there are no classes but o and i. In

short, the special calculus of propositions is equivalent to the

calculus of classes when the classes can possess only the

two values o and i.

57. Equivalence of an Implication and an Alternative.

The fundamental equivalence

(a &amp;lt; b)
=

(a + b i)

gives rise, by Ax. X, to the equivalence

(*&amp;lt;*)-= (a + b\

which is no less fundamental in the calculus of propositions.

To say that a implies b is the same as affirming &quot;not-0 or

b&quot;, i. e., &quot;either a is false or b is true.&quot; This equivalence

is often employed in every day conversation.

Corollary. For any equality, we have the equivalence

(a = b}
= ab + a b .

Demonstration :

(a = b)
=

(a &amp;lt; b) (&amp;lt;)
= (d + b} (b + a) = ab + a b .

&quot;To affirm that two propositions are equal (equivalent)

is the same as stating that either both are true or both are

false&quot;.



86 IMPLICATION AND ALTERNATIVE.

The fundamental equivalence established above has im

portant consequences which we shall enumerate.

In the first place, it makes it possible to reduce secondary,

tertiary, etc., propositions to primary propositions, or even

to sums (alternatives) of elementary propositions. For it

makes it possible to suppress the copula of any proposition,

and consequently to lower its order of complexity. An im

plication (A &amp;lt;C .#), in which A and B represent propositions

more or less complex, is reduced to the sum A + B^ in

which only copulas within A and B appear, that is, prop

ositions of an inferior order. Likewise an equality (A = B}
is reduced to the sum (AB + A B ) which is of a lower

order.

We know that the principle of composition makes it

possible to combine several simultaneous inclusions or equal

ities, but we cannot combine alternative inclusions or equal

ities, or at least the result is not equivalent to their alter

native but is only a consequence of it. In short, we have

only the implications

(a&amp;lt;c) + (b&amp;lt;c)&amp;lt;(ab&amp;lt;c\

(c&amp;lt;a) + (c&amp;lt;b)&amp;lt;(c&amp;lt;a + b),

which, in the special cases where c = o and c = i, become

O = o) + (J
=

o)&amp;lt;(a
=

o),

(= i) + (b= i)&amp;lt;(a + b= i).

In the calculus of classes, the converse implications are

not valid, for, from the statement that the class ab is null,

we cannot conclude that one of the classes a or b is null

(they can be not-null and still not have any element in

common); and from the statement that the sum (a + b} is

equal to i we cannot conclude that either a or b is equal

to i (these classes can together comprise all the elements of

the universe without any of them alone comprising all). But

these converse implications are true in the calculus of prop

ositions

(ab&amp;lt;c)&amp;lt;(a&amp;lt;c) + (b&amp;lt;c),

(c &amp;lt;
a + b)&amp;lt; (c &amp;lt; a) + (c &amp;lt; b}-
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for they are deduced from the equivalence established above,

or rather we may deduce from it the corresponding equal

ities which imply them,

(1) (ab &amp;lt;c}
= (a &amp;lt; c) + (b &amp;lt; c\

(2) (c&amp;lt;a + *)-*(r&amp;lt;J) + (c&amp;lt;b).

Demonstration :

(1) (ad&amp;lt;c)
= a

f

+ b + c,

(a&amp;lt;c) + (b&amp;lt;c)
= (a + c) + (b +

c)=&amp;gt;
a + b + c;

(2) (c&amp;lt;a + b)
= / + a + ,

(/ &amp;lt; a) + (*&amp;lt; 3)
= (/ + *) + (/ + b)

-= / + + .

In the special cases where * = o and c = i respectively,

we find

(3) (a = o)
= (a

=
o) + (b = o),

(4) ( + b = i)
= (a

=
i) + (^ =-

i).

P. L: (i) To say that two propositions united imply a

third is to say that one of them implies this third proposition.

(2) To say that a proposition implies the alternative of

two others is to say that it implies one of them.

(3) To say that two propositions combined are false is to

say that one of them is false.

(4) To say that the alternative of two propositions is true

is to say that one of them is true.

The paradoxical character of the first three of these state

ments will be noted in contrast to the self-evident character

of the fourth. These paradoxes are explained, on the one

hand, by the special axiom which states that a proposition

is either true or false; and, on the other hand, by the fact

that the false implies the true and that only the false is not

implied by the true. For instance, if both premises in the

first statement are true, each of them implies the conse

quence, and if one of them is false, it implies the conse

quence (true or false). In the second, if the alternative is

true, one of its terms must be true, and consequently will,

like the alternative, be implied by the premise (true or false).
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Finally, in the third, the product of two propositions cannot

be false unless one of them is false, for, if both were true,

their product would be true (equal to i).

58. Law of Importation and Exportation. The funda

mental equivalence (a &amp;lt;^ b)
= a + b has many other inter

esting consequences. One of the most important of these

is the law of importation and exportation, which is expressed

by the following formula:

&quot;To say that if a is true b implies c, is to say that a

and b imply c&quot;.

This equality involves two converse implications: If we

infer the second member from the first, we import into the

implication (b&amp;lt;^c) the hypothesis or condition a; if we infer

the first member from the second, we, on the contrary,

export from the implication (ab&amp;lt;^c) the hypothesis a,

Demonstration :

(ab &amp;lt; c)
= (ab) + c = a + b + c.

Cor. I. Obviously we have the equivalence

\a&amp;lt;(b&amp;lt;c)]
=

\b&amp;lt;(a&amp;lt;c)l

since both members are equal to (ab&amp;lt;^c], by the commu

tative law of multiplication.

Cor. 2. We have also

[a&amp;lt;(a&amp;lt; b)}
=

(a&amp;lt; b\

for, by the law of importation and exportation,

If we apply the law of importation to the two following

formulas, of which the first results from the principle of

identity and the second expresses the principle of contra

position,
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(a &amp;lt; b}&amp;lt; (a &amp;lt; b\ (a&amp;lt;b)&amp;lt; (b &amp;lt;
a ),

we obtain the two formulas

(a&amp;lt;b)a&amp;lt;b, (a&amp;lt;b)b

f

&amp;lt;a,

which are the two types of hypothetical reasoning: &quot;If a

implies ,
and if a is true, b is true&quot; (modus ponens); &quot;If a

implies &amp;lt;,

and if b is false, a is false&quot; (modus fattens).

Remark. These two formulas could be directly deduced

by the principle of assertion, from the following

(a&amp;lt;b) (a= i)&amp;lt;(= i),

(a &amp;lt; b) (b
=

o)&amp;lt; (a
=

o),

which are not dependent on the law of importation and

which result from the principle of the syllogism.

From the same fundamental equivalence, we can deduce

several paradoxical formulas:

i. *&amp;lt;(&amp;lt;*), a &amp;lt;(a&amp;lt;b).

&quot;If a is true, a is implied by any proposition b] if a is

false, a implies any proposition &quot;. This agrees with the

known properties of o and i.

a&amp;lt;[(a&amp;lt;b)&amp;lt;bl a&amp;lt;[(b&amp;lt;a)&amp;lt;b }.

&quot;If a is true, then
la implies b* implies b\ if a is false,

then b implies a j

implies not-.&quot;

These two formulas are other forms of hypothetical reason

ing (modus ponens and modus fallens).

3. [(*&amp;lt;&amp;lt; *]
=

, [(b&amp;lt;a}&amp;lt;a]
= a,

&quot;To say that, if a implies b, a is true, is the same as

affirming a; to say that, if b implies a, a is false, is the

same as denying a&quot;.

Demonstration :

[(a &amp;lt; )&amp;lt; a] (a + b
&amp;lt; a) = ab + a = a,

[(b &amp;lt; )&amp;lt; a] = (b

f

+ *
&amp;lt;

a )
= 0^ + * = .

i This formula is BERTRAND RUSSELL S &quot;principle of reduction&quot;. See

The Principles of Mathematics, Vol. I, p. 17 (Cambridge, 1903).



9O INEQUALITIES REDUCED TO EQUALITIES.

In formulas (i) and (3), in which b is any term at all,

we might introduce the sign ]~J with respect to b. In the

following formula, it becomes necessary to make use of this

sign.

4- r
X

Demonstration :

{[*&amp;lt;(* &amp;lt;*)]&amp;lt;*}

=
{[*

+
(*&amp;lt;*)]&amp;lt;*}

=
[(a + b + x) &amp;lt;&amp;lt; x\

= a bx + x= a b + x.

We must now form the product J J (# + #), where x
X

can assume every value, including o and i. Now, it is

clear that the part common to all the terms of the form

(ab + x) can only be ab. For, (i) ab is contained in each

of the sums (ab + x) and therefore in the part common to

all; (2) the part common to all the sums (ab + x) must be

contained in (ab + o), that is, in ab. Hence this common

part is equal to ab 5

-,
which proves the theorem.

59. Reduction of Inequalities to Equalities. As we

have said, the principle of assertion enables us to reduce

inequalities to equalities by means of the following formulas:

(a + o)
= (a = i), (a + i)

=
(a = o),

(a + b)
=

(a
= b \

For,

(a 4= b)
= (ab + ab =H o)

= (ab + ab = i)
=

(a = b ).

Consequently, we have the paradoxical formula

1 This argument is general and from it we can deduce the formula

Y[ (&quot; + x) = a,

X

whence may be derived the correlative formula

2 **-*
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This is easily understood, for, whatever the proposition &amp;lt;,

either it is true and its negative is false, or it is false and

its negative is true. Now, whatever the proposition a may

be, it is true or false; hence it is necessarily equal either to

b or to & . Thus to deny an equality (between propositions)

is to affirm the opposite equality.

Thence it results that, in the calculus of propositions, we

do not need to take inequalities into consideration a fact

which greatly simplifies both theory and practice. More

over, just as we can combine alternative equalities, we can

also combine simultaneous inequalities, since they are redu

cible to equalities.

For, from the formulas previously established ( 57)

(ab = o)
= (a = o) + (b

=
o),

(a + b = i)
=

(a = i) + (b
=

i),

we deduce by contraposition

These two formulas, moreover, according to what we have

just said, are equivalent to the known formulas

( i) (b= i) -.(**- i),

(0 = 0) (b
=

o)
=

(a + b = o).

Therefore, in the calculus of propositions, we can solve

all simultaneous systems of equalities or inequalities and all

alternative systems of equalities or inequalities, which is not

possible in the calculus of classes. To this end, it is necessary

only to apply the following rule:

First reduce the inclusions to equalities and the non-

inclusions to inequalities; then reduce the equalities so that their

second members will be i, and the inequalities so that their

second members will be o, and transform the latter into equal
ities having i for a second member; finally, suppress the

second members i and the signs of equality, *&quot;.

&amp;lt;?.,

form the

product of the first members of the simultaneous equalities and

the sum of the first members of the alternative equalities,

retaining the parentheses.
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60. Conclusion. The foregoing exposition is far from

being exhaustive; it does not pretend to be a complete
treatise on the algebra of logic, but only undertakes to make
known the elementary principles and theories of that science.

The algebra of logic is an algorithm with laws peculiar to

itself. In some phases it is very analogous to ordinary al

gebra, and in others it is very widely different. For in

stance, it does not recognize the distinction of degrees; the

laws of tautology and absorption introduce into it great

simplifications by excluding from it numerical coefficients.

It is a formal calculus which can give rise to all sorts of

theories and problems, and is susceptible of an almost in

finite development.

But at the same time it is a restricted system, and it is

important to bear in mind that it is far from embracing all

of logic. Properly speaking, it is only the algebra of

classical logic. Like this logic, it remains confined to the

domain circumscribed by Aristotle, namely, the domain of

the relations of inclusion between concepts and the relations

of implication between propositions. It is true that classical

logic (even when shorn of its errors and superfluities) was

much more narrow than the algebra of logic. It is almost

entirely contained within the bounds of the theory of the

syllogism whose limits to-day appear very restricted and

artificial. Nevertheless, the algebra of logic simply treats,

with much more breadth and universality, problems of the

same order; it is at bottom nothing else than the theory

of classes or aggregates considered in their relations of in

clusion or identity. Now logic ought to study many other

kinds of concepts than generic concepts (concepts of classes)

and many other relations than the relation of inclusion (of

subsumption) between such concepts. It ought, in short, to

develop into a logic of relations, which LEIBNIZ foresaw,

which PEIRCE and SCHRODER founded, and which PEANO and

RUSSELL seem to have established on definite foundations.

While classical logic and the algebra of logic are of

hardly any use to mathematics, mathematics, on the other

hand, finds in the logic of relations its concepts and fun-
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damental principles; the true logic of mathematics is the logic

of relations. The algebra of logic itself arises out of pure

logic considered as a particular mathematical theory, for it

rests on principles which have been implicitly postulated and

which are not susceptible of algebraic or symbolic expression

because they are the foundation of all symbolism and of all

the logical calculus.
1

Accordingly, we can say that the al

gebra of logic is a mathematical logic by its form and by
its method, but it must not be mistaken for the logic of

mathematics.

1 The principle of deduction and the principle of substitution. See

the author s Manuel de Logistique, Chapter I, 2 and 3 [not published],

and Les Principes des Mathematiques, Chapter I, A.
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4, 86, 91; Contradictory,

24; Formulas peculiar to

the calculus of, 84; Implica

tion between, 92; reduced

to lower orders, 86; Un
iversal and particular, 44,80.

Reciprocal, 7, 21.

Reductio ad absurdum, 27.

Reduction, Principle of, 89 n.

Relations, Logic of, 92.

Relatives, Logic of, ix.

Resultant of elimination, 40,

41, 57, 72, 73&amp;gt;
82

;
Rule

for, 43, 55-

Russell, B., vii, viii, 8911, 92.

Schroder, vi, viiif, xiii, 5, 2 in,

29, 41, 59, 6162, 8on,

92; Theorem of, 39.

Secondary proposition, 6, 21.

I Simplification , Principle of,

II 12, 21.

Simultaneous affirmation, n,

20, 24.

Solution of equations, 5053,
57-59, 61, 73; of in

equations, 8 1, 84.

Subject, 7.

Substitution, Principle of, 93.

Subsumption, 5.

Summand, 4.

Sums, and products of func

tions, 44; Disjunctive, 34;

Logical, 10.

Syllogism, Principle of the, 8,

15, 62n; Theory of the, 92.

Symbolic logic, iii, v; Devel

opment of, viii.

j

Symbolism in mathematics, iv.

| Symbols, Origin of, iv.

|

Symmetry, 7, 20, 24.

j

Tautology, Law of, 13, 92.

\

Term, 4.

Theorem, 7.

Thesis, 7.

Thought, Algebra of, v; Alpha

bet of human, v; Economy

of, iii.

Transformation of inclusions

into equalities, 15, 2526;
of inequalities into equal

ities, 85, 91; of non-in

clusions and inequalities, 81.

Universal characteristic of

Leibniz,v viii; propositions,

80 n.



INDEX.

Universe of discourse, 18, Viete, iv.

23 n, 27. Voigt, 42.

Unknowns, Elimination of, 53,

57, 59, 61.

Variables, Functions of, 56.

Venn, John, iii, viii, ix; Geo

metrical diagrams of, 7 3 -7 4 ;

Mechanical device of, 75;

Problem of, 71 73-

Whitehead, A. N., viii, xiii,

5611., 59, 6in.

Whole, Logical, 62.

Zero, Definition of, ix, 1720;

Logical, 62, 76.
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