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PREFACE.

The course of algebra embodied in the present work is substantially

that pursued by students in our best preparatory and scientific schools

and colleges, with such extensions as seemed necessary to afford an

improved basis for more advanced studies. For the convenience of

;eacher3 the work is divided into two parts, the first adapted to well-

prepared beginners and comprising about what is commonly required for

admission to college ; and the second designed for the more advanced

general student. As the work deviates in several points from the models

most familiar to our teachers, a statement of the principles on which it is
'

constructed may be deemed appropriate.

One well-known principle underlying the acquisition of knowledge is

that an idea cannot be fully grasped by the youthful mind unless it is

presented under a concrete form. Whenever possible an abstract idea

rnust be embodied in some visible representation, and all general theorems

must be presented in a variety of special forms in which they may be

seen inductively. In accordance with this principle, numerical exam-

ples of nearly all algebraic operations and theorems have been presented.

For the purpose of illustration, numbers have been preferred to literal

symbols when they would serve the purpose equally well. The relations

of positive and negative algebraic quantities have been represented by

lines and directions from the beginning in order that the pupil might be

able to give, not only a numerical, but a visible, meaning to all algebraic

quantities. Should it appear to any one that we thus detract from the

generality of algebraic quantities, it is sufficient to reply that the system

is the same which mathematicians use to assist their conceptions of

advanced algebra, and without which they would never have been able

to grasp the complicated relations of imaginary quantities. Algebraic
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iv ^ PREFACE.

operations with pure numbem are made to precede the use of symbols,

and the latter are introduced only after the pupil has had a certain

amount of familiarity with the distinction between algebraic and numer-

ical operations.

Another, but, unfortunately, a less familiar fact is, that all mathematical

conceptions require time to become engrafted upon the mind, and the

more time the greater their abstruseness. It is, the author conceives,

from a failure to take account of this fact, rather than from any inherent

defect in the minds of our youth, that we are to attribute the backward

state of mathematical instruction in this country, as compared with the

continent of Europe. Let us take for instance the case of the student,

commencing the calculus. On the system which was almost universal

among us a few years ago, and which is still widely prevalent, he is con-

fronted at the outset with a number of entirely new conceptions, such

as those of variables, functions, increments, infinitesimals and limits.

In his first lesson he finds these all combined with a notation so entirely

diJOferent from that to which he has been accustomed, that before the

new ideas and forms of thought can take permanent root in his mind,

he is through with the subject, and all that he has learned is apt to vanish

from his memory in a few months.

The author conceives that the true method of meeting this difficulty is

to adopt the French and Grerman plan of teaching algebra in a broader

way, and of introducing the more advanced conceptions at the earhest

practicable period in the course. Accordingly, the attempt is made in the

present work to introduce each advanced conception, disguised perhaps

under some simple form, in advance of its general enunciation and at as

early a period as the student can be expected to understand it. In doing

this, logical order is frequently sacrificed to the exigencies of the case,

because there are several subjects with which a certain amount of famil-

iarity must be acquired before the pupil can even clearly comprehend

general statements respecting them.

A third feature of the work is that of subdividing each subject as

minutely as possible, and exercising the pupil on the details preparatory to

combining them into a whole. To cito one or two instances : a difficulty

which not only the beginner but the expert mathematician frequently

meets is that of stating his conceptions in algebraic language. Exercises

in such statements have therefore been made to precede any solution of
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problems. In general each principle whicli is to be presented or used is

stated singly, and tbe pupil is practiced upon it before proceeding to

another.

Subjects have for the most part been omitted which do not find appli-

cation either in the work itself or in subsequent parts of the usual course

of mathematics, or which do not conduce to a mathematical training.

Sturm's Theorem has been entirely omitted, and a more simple process

substituted. The subject of the greatest common divisor of two polyno-

mials has been postponed to what the author considers its proper place,

in the genaral theory of equations. It has, however, been presented in

Buch a form that it can be taught to pupils preparing for colleges where

it is still required for admission.

Thoroughness at each step has been aimed at rather than multiplicity

of subjects. It is, the author conceives, a great and too common

mistake to present a mathematical subject to the mind of the student

wi^out sufficient fulness of explanation and variety of illustration to

enable him to comprehend and apply it. If he has not time to master a

complete course, it is better to omit entirely what is least necessary than

to gain time by going rapidly over a great number of things. Some

hints to those who may not have time to master the whole work may

therefore be acceptable.

Part I is essential to every one desiring to make use of algebra. Book

YIII, especially the concluding sections on notation, is to be thoroughly

mastered, before going farther, as forming the foundation of advanced

algebra ; and affording a very easy and valuable discipline in the language

of mathematics. Afterward, a selection may be made according to cir-

cumstances. The student who is pursuing the subject for the sole

purpose of liberal training, and without intending to advance beyond it,

will find the theories of numbers and the combinatoiy analysis most

worthy of study. The theory of probabilities and the method in which

it is applied to such practical questions as those connected with insurance

will be of especial value in training his judgment to the affairs of life.

The student who intends to take a full course of mathematics with a

view of its application to physics, engineering, or other subjects, may, if

necessary, omit the book on the theory of numbers, and portions of the

chapter on the summation of series. Functions and the functional notation,

the doctrine of limits, and the general theory of equations will ' 'iim his
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especial attention, while the theory of imaginary quantities will be studied

mainly to secure thoroughness in subsequent parts of hiv course.

As it has frequently been a part of the author's duty to ascertain what

is really left of a course of mathematical study in the minds of those

who have been through college, some hints on the best methods of

study in connection with the present work may be excused. If asked

to point out the greatest error in our usual system of mathematical

instruction from the common school upward, he would reply that it con-

sisted in expending too much of the mental power of the student upon

problems and exercises above his capacity. With the exception of the

fundamental routine-operations, problems and exercises should be confined

to insuring a proper understanding of the principles involved : this once

ascertained, it is better that the student should go on rather than expend

time in doing what it is certain he can do. Problems of some difficulty

are found among the exercises of the present work; they are inserted

rather to give the teacher a good choice from which to select than to

require that any student should do them all.

It would, the author conceives, be found an improvement on our usual

system of teaching algebra and geometry successively if the analytic and

the geometric courses of mathematics were pursued simultaneously. The

former would include algebra and the calculus, the latter elementary

geometry, trigonometry, and analytic geometry. The analytic course

would then furnish methods for the geometric one, and the latter would

fiirnish applications and illustrations for the analytic one.

The Key to the work contains not only the usual solutions, but the

explanations and demonstrations of the less familiar theorems, and a

number of additional problems.

The author desires, in conclusion, to express his obligation to the many

friends who have given him suggestions respecting the work, and espe-

cially to Professor J. Howard Gore, of the Columbian University, who

has furnished solutions to most of the problems, and given the benefit of

his experience on many points of detail.

Note.—Answers to exercises, requiring calculation or written worTc^ are

published separately in pamphlet form, and will be supplied without

cha1;ge when applied for by teachers.
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BOOK I.

TUB ALGEBRAIC LANGUAGE.

CHAPTER I.

OF ALGEBRAIC NUMBERS AND OPERATIONS.

General Definitions.

1. Definition. Mathematics is the science which

treats of the relations of magnitudes.

The magnitudes of mathematics are time, space, force,

value, or other things which can be thought of as entirely

made up of parts.

3. Def. A Quantity is a definite portion of any
magnitude.

Example. Any definite number of feet, miles, acres,

bushels, years, pounds, or dollars, is a quantity.

3. Def. Algebra treats of those relations which

are true of quantities of every kind of magnitude.

4. The relations treated of in Algebra are discovered

by means of numbers.

To measure a quantity by number, we take a certain por-

>n of the magnitude to be measured as a unit, and express

ow many of the units the quantity contains.

Eemark. It is obviously essential that the quantity and

its unit shall be the same kind of magnitude.

o. Def, A Concrete Number is one in which the

kind of quantity which it measures is expressed or

understood
; as 7 miles ^ 3 days,, or 10 'pounds.
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6. Def. An Abstract Number is one in wiiii^ix Uv/

particular kind of unit is expressed ; as 7, 3, or 10.

Eemark. An abstract number may be considered as a

concrete one expressing a certain number of units, without

respect to the kind of units. Thus, 7 means 7 units.

Algebraic Numbers.

7. In Arithmetic, the numbers begin at 0, and in-

crease without limit, as 0, 1, 2, 3, 4, etc. But the

quantities we usually measure by numbers, as time

and space, do not really begin at any point, but extend

without end in opposite directions.

For example, time has no beginning and no end. An
epoch of time 1000 years from Christ may be either 1000 years

after Christ, or 1000 years before Christ.

A heavy body tends to fall to the ground. A body which

did not tend to move at all when unsupported would have no

weight, or its weight would be 0. If it tended to rise upward,

like a balloon, it would have the opposite of weight.

If we have to measure a distance from any point on a

straight line, we may measure out in either direction on the

line. If the one direction is east, the other will be west.

One who measures his wealth is poorer by all that he owes.

If he owes more than he possesses, he is worth less than

nothing, and there is no limit to the amount he may owe.

8. In order to measure such quantities on a uni-

form system, the numbers of Algebra are considered as

increasing from in two opposite directions. Those in

one direction are called Positive; those in the other

direction Negative.

9. Positive numbers are distinguished by the sign

+ ,
plus ; negative ones by the sign — , minus.

If a positive number measures years after Christ, a negative

one will mean years before Christ.

If a positive number is used to measure toward the right, a

negative one will measure toward the left.
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If a positive number measures weight, the negative one

will imply levity, or tendency to rise from the earth.

If a positive number measures property, or credit, the nega-

tive one will imply debt.

10, TBe series of algebraic numbers will therefore

Ibe considered as arranged in the following way, the

series going out to infinity in both directions.

-=©91 NEGATIVE DIRECTION. POSITIVE DIRECTION. ^T
Before. After.

Downward, Upward.

Debt. Credit,

etc. etc.

etc. -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5, etc.

Rem. It matters not which direction we take as the

positive one, so long as we take the opposite one as

negative.

If we take time before as positive, time after will be nega-

tive ; if we take west as the positive direction, east will be

negative; if we take debt as positive, credit will be negative.

11. Positive and negative numbers may be conceived

as measuring distances from a fixed point on a straight

line, extending indefinitely in both directions, the dis-

tances one way being positive, and the other way
negative, as in the following scheme :

*

etc. -7, -6. -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5, +6, +7 . etc.

I I I I I I I

I

I I I I I i I

In this scale, the distance between any two consecu-

tive numbers is considered a unit or unit step.

13. Def. The signs + and — are called the Alge-

braic Signs, because they mark the direction in which

the numbers following them are to be taken.

* The student should copy this scale of numbers, and have it before

^im in studying tlio present chapter.
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The sign + may be omitted before positive numbers, when
no ambiguity is thus produced. The numbers 2, 5, 12, taken

alone, signify +2, +5, +12. But the negative sign must

always be written when a negative number is intended.

13. Def, One number is said to be Algebraically-

Greater than another when on the preceding scale it

lies to the positive Cright hand) side. Thus,
— 2 is algebraically greater than — 7

;

" " " " _2;
5 " " " " — 5.

Alg^ebraic Addition.

14. Def. In Algebra, Addition means the combi-

nation of quantities according to their algebraic signs,

the positive quantities being counted one way or added,

and negative ones the opposite way or subtracted.

15. Def. The Algebraic Sum of several quantities

is the surplus of the positive quantities over the nega-

tive ones, or of the negative quantities over the positive

ones, according as the one or the other is the greater.

The sum has the same algebraic sign as the prepon-

derating quantity.

Example. The sum of

+ ^ and — 7 is ;

+ 9 '' -^7 ^^ 4-2;
4-5 ^^ -_7 ^^ _2.

The sum of several positive numbers may be represented

on the line of numbers, § 11, by the length of the line formed

by placing the lengths represented by the several numbers

end to end. The total length will be the sum of the partial

lengths.

If any of the numbers are negative, the algebraic sum is

represented by laying their lengths off in the opposite direction.

Example 1. The algebraic sum of the four numbers 9,

— 7, 1, —6, would be represented thus

:
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Here, starting from 0, we measure 9 to the right, then 7

to the left, then 1 to the right, then 6 to the left. The result

would be 3 steps to the left from 0, that is, — 3. Thus, — 3

is the algebraic sum of +9, —7, +1, and —6.

Ex. 2. If we imagine a person to walk back and forth

along the line of numbers, his distance from the starting-

point will always be the algebraic sum of the separate distances

he has walked.

Ex. 3. A man's wealth is the algebraic sum of his posses-

sions and credits, the debts which he owes being negative

credits*. If he has in money $1000, due from A $1200, due to

X $500, due to Y $350, his possessions would, in the language

of algebra, be summed up as follows :

Cash, , . ... + $1000

Due from A, . . . _ +1200
Due from X, . - . . — 500

Due from Y, ,. . . . — 350

Sum total, . . . . + $1350

[In the language of Algebra, the fact that he owes X $500

may be expressed by saying that X owes him — $500.]

16. Bef. To distinguish between ordinary and
algebraic addition, the former is called Numerical or

Arithmetical addition.

Hence, the numerical sum of several numbers
means their sum as in arithmetic, without regard to

their signs.

17. Rem. In Algebra, whenever the word sum
is used without an adjective, the algebraic sum is

understood.
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Algebraic Subtraction.

18. Memorandum of arithmetical defiyiitions and oijerations.

The Subtrahend is the quantity to be subtracted.

The Minuend is the quantity from which the subtrahend
is taken.

The Remainder or Difference is what is left.

If we subtract 4 from 7, the remainder 3 is the number of

anit steps on the scale of numbers (§ 11) from +4 to +7.
This is true of any arithmetical difference of numbers. In

Algebra, the operation is generalized as follows

:

19. Def. The Algebraic Difference of two num-
bers is represented by the distance from one to the

other on the scale of numbers.
The number from which we measure is the Subtra-

hend.

That to which, we measure is the Minuend.
If the minuend is algebraically the greater (§ 13),

the difference is positive.

If the minuend is less than the subtrahend, the dif-

ference is negative.

In Arithmetic we cannot subtract a greater number from a

less one. But there is no such restriction in Algebra, because

algebraic subtraction does not mean taking away, but finding

a difference. However the minuend and subtrahend may be

situated on the scale, a certain number of spaces toward the

right or toward the left will always carry us from the subtra-

hend to the minuend, and these spaces make up the difference

of the two numbers.

30. The general rule for algebraic subtraction may be

deduced as follows : It is evident that if we pass from the

subtrahend to on the scale, and then from to the minuend,

the algebraic sum of these two motions will be the entire space

between the subtrahend and minuend, and will therefore be

the remainder required. But the first motion will be equal to

the subtrahend, but positive if that quantity is negative, and

vice versa, and the second motion will be equal to the minuend.
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Hence the remainder will be found by changing the algebraic

sign of the subtrahend^ and then adding it algebraically to the

minuend.

EXAMPLES.
Subtracting + 5 from + 8, the difference is 8 — 5 = 3.

+ 8 ^^ + 5,
" " " 5 — 8 = — 3.

+ 8 ^^ — 5, ^^ " ^^_5_8 = — 13.

— 8 ^^ h, " " ^^ 5 H 8 = + 13.

+ 13 "
0,

" " -^ " ^ —13.
_ 13 ''

0,
" " ^ ^'

_l_ 13.

31. By comparing algebraic addition and subtraction, it

will be seen that to subtract a positive number ig*the same

thing as to add its negative, and vice versa. Thus,

To subtract 5 from 8 gives the same result as to add — 5

to 8, namely 3.

To subtract — 5 from 8 gives 8 + 5, namely 13.

Hence, algebraic subtraction is equivalent to the

algebraic addition of a number with the opposite

algebraic sign. Algebraists, therefore, do not consider

subtraction as an operation distinct from addition.

Algebraic Multiplication.

33, Memorandum of arithmetical definitions.

The Multiplicand is the quantity to be multiplied.

The Multiplier is the number by which it is multiplied.

The result is called the Product.

Factors of a number are the multiplicand and multiplier

which produce it.

23. To multiply any algebraic quantity by a posi-

tive whole number means, as in Arithmetic, to take it a
number of times equal to the multiplier.

Thus,' 4x3= 4 + 4 + 4=+ 12;
— 4x3=— 4 — 4 — 4= — 12.

The product of a negative multiplicand by a positive

multiplier will therefore be negative.
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34. If the multiplier is negative, the sign of the

product will be the opposite of what it would be if the

multiplier were positive.

Thus, +4 X —3 = —12;
-4 X -3 = + 12.

The product of two negative factors is therefore

positive.

35. The most simple way of mastering the use of algebraic

signs in multiplication is to think of the sign — as meaning

opposite in direction. Thus, in §11, — 4 is opposite in

direction to + 4, the direction being that from 0. If we mul-

tiply this negative factor by a negative multiplier, the direction

will be the opposite of negative, that is, it will be positive, A
third negative factor will make the product negative again, a

fourth one positive, and so on. For example,

-3 X -4= +12;
—2 X —3 X —4 = — 2 X +12 = —24;

—3 X —2 X -3 X -4 rrz -3 X -24 = + 72

;

etc. etc.

Hence,

36. Theorem, The continued product of an even

number of negative factors is positive ; of an odd num-
ber, negative.

Rem. Multiplying a number by —1 simply changes

its sign.

Thus, _|-4 X — 1 = — 4;
-4 X -1 = + 4.

EXERCISES.

Find the algebraic sums of the following quantities :

1. 4 — 6 + 12 — 1—18.
2. — 6 — 3 — 8.

3. _ 6 — 10 — 9 + 34.

4. Subtract the sum in Ex. 3 from the sum in Ex. 2.

5. Subtract the sum 5 — 6 + 3—1 — 16, from the sum
— 2 — 7-4 + 8.
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6. Subtract the sum 5 — 6+3-— 1 — 16, from the sum
7 _ 3 _ 8 + 4.

7. Form the product —7x8.
8. Form the product —8x7.
9. Form the product 6x— 5x7x — 4.

10. Form the product — 6x— llx8x— 2.

11. Form the product — Ix—-Ix— Ix— 1.

1 2. Subtract the sum in Ex. 1 from the sum in Ex. 3, and

multiply the remainder by the sum in Ex. 2.

13. Subtract 8 from — 3, — 3 from -1,-1 from 8, and

find the sum of the three remainders.

14. Subtract 7 from — 9 and the remainder from 2, and

multiply the result by the product in Ex. 7.

Algfebraic Division.

37. Memorandum of aritlimetical definitions.

The Dividend is the quantity to be divided.

The Divisor is the number by which it is divided.

The Quotient is the result.

38. Bule of Signs in Division, The requirement

of division in Algebra is the same as in Arithmetic
;

namely.

The product of the quotient hy the divisor must he

equal to the dividend.

In Algebra, two quantities are not equal unless they have

the same algebraic sign. Therefore the product,

quotient x divisor

must have the same algebraic sign as the dividend. From
this we can deduce the rule of signs in division.

Let us divide 6 by 2, giving 6 and 2 both algebraic signs,

and find the signs of the quotient 3

:

+3x+2=+6; therefore, +6 divided by +2 gives -i-3.

+3x—2=— 6;
'' —6 " ''—2 '' +3.

—3x+2=:— 6;
" —6 '' '' -\-2 '' —3.

— 3 X — 2 z= +6; " +6 " " —2 " —3.
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Hence, the rule of signs is tlie same in division as in mul-

tiplication, namely

:

Like signs in dividend and divisor give + . Unlike

signs give —

.

EXERCISES.

Execute the following algebraic divisions, expressing each

result as a whole number or vulgar fraction

:

1. Dividend, — 7 + 10 — 11 + 25 ; divisor, 20 — 3.

2. Dividend, 12 — 3 + 15 — 10 ; divisor, 3 — 10.

3. Dividend, 25 — 36 + 6 — 20 ; divisor, —3 + 8.

4. Dividend, — 7 x — 8
;

divisor, —8 + 4.

5. Dividend, 56 + 8 x — 3
;

divisor, — 4 — 4.

6. Dividend, — 24 x — 1

;

divisor, — 3 x — 3.

7. Dividend, —13 x —10 x — 8 ; divisor, —4x5x— 6.

8. Dividend, — 1 x — 1

;

divisor, — 3 x — 3.

CHAPTER II.

ALGEBRAIC SYM BOLS.

Symbols of Quantity.

39. Algebraic quantities may be represented by
letters of the alphabet, or other characters. 1

The characters of Algebra are called Symbols.

30. Def. The Value of an algebraic symbol is the

quantity which it represents or to which it is equal.

The value of a symbol may be any algebraic quan-

tity whatever, positive or negative, which we choose to

assign to the symbol.

31. The language of Algebra differs in one respect from

ordinary language. In the latter, each special word or sign
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has a definite and invariable meaning, which every one who
uses the language must learn once for all. But in Algebra a

symbol may stand for any quantity which the writer or speaker

chooses, and his results must be interpreted according to this

meaning.

33. The same character may be used to represent several

quantities by applying accents or attaching numbers to it to

distinguish the different quantities. Thus, the four symbols,

a, a', a", a'", may represent four different quantities. The
symbols ai, a.2, ^3, «4? «5? ^tc, maybe used to designate any

number of quantities which are distinguished by the small

number written after the letter a.

Si^iis of Oi)eratioii.

33. In Algebra, the signs +, — , and x are used,

as in Arithmetic, to represent addition, subtraction, and
multiplication, these operations being algebraic, not

numerical.

34. Signs of Addition and Subtraction. The com-
bination a-\-h means the algebraic sum of the quantities

a and 5, and a — h means their algebraic difference.

If « = + 4 and ^> = + 3

If a = + 5 and d

If « = — 6 and ^ = + 3,

If a = — 6 and h

The signs of addition and subtraction are the same as those

used to indicate positive and negative quantities, but the two

applications may be made without confusion, because the

opposite positive and negative directions correspond to the

opposite operations of adding and subtracting.

35. Sign of Multiplication. The sign of multipli-

I

cation, x , is generally omitted in Algebra, and when
different symbols are to be multiplied, the multiplier is

EXAMPLES.

f 3, then a-{-h = -\-'1, a—h = + 1.

— 7, then a-\-l = —'^, a—h = + 12.

f 3, then a-\-b =1 —^, a—h = — 9.

— 3, then «5+ ^ = — 9, «5— Z> = —3.
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written before the multiplicand without any sign be-

tween them.

Thus, 4« means « x 4.

ax " X X a.

Sahmy '* yxmxbxaxS.
If numbers are used instead of symbols, some sign of mul-

tiplication must be inserted between them to avoid confusion.

Thus, 34 would be confounded with the number thirty-four,

A simple dot is therefore inserted instead of the sign x

.

Thus, 3.4 = 4x3 = 12.

3.12-2 = 72.

1.2.3.4.5 = 120.

1.2.3.4.5.6 = 720.

The only reason why the point is used instead of x , is

that it is more easily written and takes up less space.

36. Division m Algebra is sometimes represented

by the symbol -^, the dividend being placed to the left

and the divisor to the right of this symbol.

Ex. a -7-b means the quotient of a divided by 5.

But division is more generally represented by writing

the dividend as the numerator and the divisor as the

denominator of a fraction.

Ex. The quotient of a divided by i is written %•

It is shown in Arithmetic that a fraction is equal to the

quotient of its numerator divided by its denominator ; hence

this expression for a quotient is a vulgar fraction.

37. Powers and Exponents, A Power of a quan-

tity is the product obtained by taking that quantity a

certain number of times as a factor.

Def. The Degree of the power means the number
of times the quantity is taken as a factor.

If a quantity is to be raised to a power, the result

mayf, in accordance with the rule for multiplication, be
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expressed by writing the quantity the required number
of times.

Examples. The fifth power of a may be written

axaxaxaxa or aaaaa
;

and the fourth power of 7, 7.7.7.? = 2401.

To save repetition, the symbol of which the power is

to be expressed is written but once, and the number of

times it is taken as a factor is written in small figures

after and above it.

Thus, aaaaa is written a^
;

7.7.7.7 " " 74;

XXX " " x^.

Dsf. A figure written to indicate a power is called

an Exponent.

Def. The operation of forming a power is called /^
Involution.

38. Hoots. A Root is one of the equal factors

into which a number can be divided.

Def. The figure or letter showing the number of

equal factors into which a quantity is to be divided is

called the Index of the root.

The square root of a symbol is expressed by writing

the sign y" (called root) before it.

Ex. I. V49 means the square root of 49, that is, 7.

Ex. 2. \/x means the square root of x.

Any other root than the square is represented by
writing its index before the sign of the root.

Ex. I. \^x means the cube root of ^.

Ex. 2. Vo: means the fourth root of x,

Def. The operation of extracting a root is called

Evolution.

39. The operations of Addition, Subtraction. Multi-

plication, Division, Involution, and Evolution, are the

six fundamental operations of Algebra.
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40. Bef. An Algebraic Expression is any combi-
nation of algebraic symbols made in accordance with

the foregoing principles.

EXERCISES.

In the following expressions, suppose «j = — 7, ^ = — 5,

c zz: 0, m = 3, ^ = 4, ^-^ = 9, and compute their numerical

values.

I. a + Z> + ^?z + 7J. 2. a + 7)1 + ?Z.

3. m — n — a — h. 4. 71 -{- p — m — a.

5- 3a — m + ^ — 271. 6. 2a — 7p-^2h — m
7. 3mnp. 8. 7nncp.

9- hm7i. 10. hup.

II. ahnp. 12. 2hih7ip.

13. am + In. 14. am — hi.

15- hp — «7Z. 16. 6p -\- an.

17. n^p + wi^Z^. - 18. 7)1^)1 — ap^.

19. a^ + R 20. a^ + h\

21. a^ - ¥, 22. ahn —- h^n.

23. aW — mhi^. 24. aW - ¥m\
25. aW- + a%. 26. ah^ — a%.

27.
ah + ^^?^

28.
ac — hp

hi — 7n2)

20.
2m%2 _ I0m3

^0.
ah — mp

p — hc7}i m — n

In the following expressions, suppose oj = 8, ^ = — 3, and

X to haye in succession the fifteen values — 7, — 6, — 5, etc.,

to f 7, and compute the fifteen corresponding values of each

expression

:

31. x^-\-hx-^a. 32.
• hx

Arrange the results in a table, thus :

x = -7; Expression 31 =: 78
;

Exp. 32 - -!!•
X — —6; " = 62

;
etc.

X — --6; " — 48.

etc. etc. etc.
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CHAPTER III.

FORMATION OF COMPOUND EXPRESSIONS.

Fundamental Principles.

41. The following are two fundamental principles of

the algebraic language

:

First Principle. Every algebraic expression, how-

ever complex, represents a quantity, and may be

operated upon as if it were a single symbol of that

quantity.

Second Principle. A single symbol may be used

to represent any algebraic expression whatever.

43. When an expression is to be operated upon as

a single quantity, it is enclosed between parentheses,

but the parentheses may be omitted, when no ambiguity

or error will result from the omission.

Example. Let us have to subtract h from a, and multiply

the remainder by the factor m. The remainder will be ex-

pressed hj a — h, and if we write the product of this quantity

by m, in the way of § 35, the result will be

ma — h.

But this will mean h subtracted from ma, which is not what

we want, because it is not a, but a — b which is to be multi-

plied by m. To express the required operations, we enclose

a — h in brackets or parentheses, and write m outside, thus :

m {a — b).

NUMERICAL EXAMPLES.

7(8 — 2) = 7-6 = 42; but 7-8 — 2 = 56 — 2 in 54
12(3 +4) = 12-7 = 84.

(6 -f3)(2 + 6) = 9.8 - 72.

(7 _ 4) (1 - 5) (2+ 7) = 3 X -4.9 = - 108.

2
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Example 2. Suppose that- the expression a — h-\-c is to

be added to 7n, subtracted from m, multiplied by m, divided

by 7n, raised to the third power, or have the cube root extracted.

The results will be written:

Added to 7n, 7n + {a — b + c).

Subtracted from m, m — {a — b + c).

Multiplied by m, m (a — ^ + c),

(a — b-i-c)

m
Cubed, {a--b-\-cY.

Cube root extracted, ^/(a — b-\~c).

There are two of these six cases in which the parentheses

are unnecessary, although they do no harm, namely, addition

and division, because in the case of addition,

771 -^ {a — b -^ c)

is the same as m -\- a — b -\- c.

[For example, 10 + (8 - 5 + 4) = 10 + 7 == 17,

and 10 + 8 — 5 + 4 = 17 also.]

Again, in the case of the fraction, it will be seen that it has

exactly the same meaning with or without the parentheses.

43. An algebraic expression having parentheses as

a part of it may be itself enclosed in parentheses with

other expressions, and this may be repeated to any
extent. Each order of parentheses must then be made
larger or thicker, or different in shape to distinguish it.

Examples, i. Suppose that we have to subtract a from

^, the remainder from c, that remainder from d, and so ouc

We shall have.

First remainder, h — a.

Second, c — {b — a).

Third, d-lc-ib- a)].

Fourth, e-\d---[c-^{b--ay\\.

Fifth, f^le-^\d-^[c^{b^a)^\\
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2. Suppose that we have to multiply the difference of the

quantities a and ^ by ^ and subtract the product from m. The
result or remainder will be

m —p{a— b).

Suppose now that we have to multiply this result by p+ q.

We must enclose both factors m parentheses, and the result

will then be written :

EXERCISES.
In the following expressions, suppose

a =z —1, b ^=2 3, m = 5. x =: — 3, — 1, + 1, -f 3,

and calculate the four values of each expression which result

from giving x the above four values in succession.

x{x — a) {x — 2a) {x — 3a)

[a{b — x) — b {a — x)f
m (b — x)-\-b {m — x)

3. \ax -^ b(x -^ aY + m (x — a)^^

4. [,y^{mx^ _f- ^) — ^(wx^ — b)] ^{fnb — a).

Note, When the square root is not an integer, it will be sufficient

to express it without computing it in full.

Thus, for X = —'dj we shall have

^{mx^ + 6) - ^^{mx^' - &) = V^S - ^^42,

This is a sufficient answer without extracting the roots.

Defiiiitionso

44. Coefficient. Any number which multiplies a

quantity is called a Coefficient of that quantity. A
coefficient is therefore a multiplier.

Example. In the expression 4,abx,

4 is the coefficient of abx,

ia " " " bx,

4:ab '' " " X.
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Def. A Numerical Coefficient is a simple ntiinber,

as 4, in the above example.

Def. A Literal CoefEicient is one containing one

or more letters used as algebraic symbols.

Kem. Any quantity may be considered as having

the coefficient 1, because \x is the same as x.

Reciprocal, The ReciprocaL of a number is unity

divided by that number. In the language of Algebra,

Reciprocal of JV = -^^

Formula, A Formula is an expression used to

show how a quantity is to be expressed or calculated.

Term, When an expression is made up of several

parts connected by the signs -h or — , each of these

parts is called a Term.

Example.—In the expression,

a -^-Ix -\- 3ma^,

there are three terms, a, bx, and dmx^.

When several terms are enclosed between parentheses, so

as to be operated on as a single symbol, they form a single

term.

Thus, the expression

{a^ bx + Zmx^) {a + h)

forms but a single term, though both numerator and denom-

inator are each a product of several terms. Such expressions

may be called compound terms.

Aggregate, A sum of several terms enclosed be-

tween parentheses in order to be operated upon as a

single quantity is called an Aggregate.

Algebraic expressions are divided into monomials

and polynomials.

A Monomial consists of a single term.
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A Polynomial consists of more than one term.

A Binomial is a polynomial of two terms.

A Trinomial is a polynomial of three terms.

Note. The last three words are commonly applied only

to sums of simple terms, formed of single symbols or products

of single symbols.

Entire. An Entire Quantity is one which is ex-

pressed without any denominator or divisor, as 2, 3, 4,

etc. ; a, &5 x^ etc. ; 2a6, 2mp, db {x — y\ etc.

A Theorem is the statement of any general truth.

45. Other Algebraic Signs. Besides the signs al-

ready defined, others are of occasional use in Algebra.

>, the Sign of Inequality, shows when placed be-

tween two quantities, that the one at the open end of

the angle is the greater.

Ex. I. a'yh means a is greater than 1).

Ex. 2. m <ix <^n means x is greater than m, but less

than n.

: , another Sign of Division, is placed between two

quantities to express their ratio.

Thus, ^ : ^ means the ratio of a to h, or the quotient of a

divided by 1).

.*. means Hence, or Consequently; as,

« + 2 = 5
;

.-. a = 3.

QO means a quantity infinitely great, or Infinity.

, the Vinculum, is sometimes placed over an

aggregate to include it in one mass, in lieu of paren-

theses.

Ex. a—h c — d is the same as {a — b) {c — d).

It is mostly used with the radical sign. We often write

Va i- b -\- c instead of V(a + b -\- c).
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CHAPTER IV.

CONSTRUCTION OF ALGEBRAIC EXPRESSIONS.

46. All operations upon algebraic quantities, however

complex, consist in combinations of the elementary operations

already described. The result of each single operation will be

an aggregate, a product, a quotient, or a root, and every such

result may, in subsequent operations, be operated upon as a

single symbol. There are only three cases in which an expres-

sion needs any modification in order to be operated upon,

namely

:

Case I. An aggregate must be enclosed in parentheses, if

any other operations than addition or division are to be per-

formed upon it. (§ 42.)

Case II. When a product is to be raised to a power, or to

have a root extracted, it may be enclosed in parentheses in

order to show that the operation extends to all the factors.

If we take the product ahc, and write an exponent, 2 for

instance, after it thus, ahc^, it would apply only to c, and

would mean a x h X c^. So with the radical sign ; A^ahc

might mean only yy/a xhxc. To indicate that the power

or root is that of the product as a whole, we may enclose it

in parentheses, thus :

Square root of abc = ^{abc).

Square of abc = {abcy.

But a root sign is commonly made to include the whole

product by simply extending a vinculum over all the factors

of the product, thus : Square root of abc = Vcibc.

Case III. If negative quantities are to be multiplied,

merely writing them after each other would lead to mistakes.

Thus, the product ax —bx—c, if written without the x
sign, would be a — b ^ c, and would not mean a product at

all. But, by enclosing —b and —cm parentheses, we have

a{-b){-c),
which would correctly express the product required.
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47. The following example will show how operations may

be combined to any extent.

The quantity a is to be subtracted from t, and the differ-

ence multiplied by y, forming a product P.* The quotient of

p — r divided by q is to be multiplied by m, and the product

subtracted from P, The difference is to form the numerator

iV^ of a fraction. To form the denominator, h is to be added

to a and subtracted from it, and the product Q of the sum and

difference formed. The quantity q is to be added to and sub-

tracted from p, and the product R of the sum and difference

formed. The quotient of Q divided by R is to form the de-

nominator of the fraction of which the numerator is P.

The quantity I subtracted from a leaves h — a.

Multiplying it by y, the product P is y {h — a).

Quotient of 2^ — r divided by q
— »

Multiplying it by m, m

[If instead of multiplying the fraction as a whole by 7??,

we had multiplied its numerator, we should have had to

enclose the jt? — r in parentheses, thus: —^ --• But

when the multiplier is written at the end of the line, between

the terms of the fraction, as above, it indicates that the frac-

tion, as a whole, is multiplied by m,~\

P — T
Subtracting the last product from P, it is y(b—a)—m —

Adding b to a, a -\- h
Subtracting h from a, a — h.

The product Q of the sum and difference, {a -{- b) (a — h).

The product R 0^ p -{- q hy p — q, {P + Q) {P — 5')-

The quotient of Q divided by R,
{a-hl?)(a-^
(p + q){p- g)

* In mathematical language, when a substantive is followed by a

symbol in this manner, the latter is used as a sort of proper name to

designate the substantive, so that the latter can be afterward referred to

by the letter without ambiguity.

In the present case, the capital letters are used in accordance with

the second general principle, § 41.
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The fraction having iV^for its numerator and this quotient

for its denominator is

(I. \ p — r
y\b ^ a) — m

(^ + ^) (^ — h)

48. By the second general principle, § 41, a single sym-

bol may be written in place of any algebraic expression whateverc

When several symbols indicating such expressions are com-

bined, the original expressions may be substituted for them,

ftnd be treated in accordance with the first principle.

EXAMPLES.

Suppose F z= a -{- bx; Q =: ;

T = X — y; V = mpq.

It is required to form the expression

PQ-TV

The answer is

(« + ^^) ^^ — (^ — y) m^q

{a + Ix) (x — y)— ^ ^/^ "^Pq

EXERCISES.
Form the expressions:

I. P—T, 2. T—P.
3. P-Q' 4. Q-V,
5. VP. 6. V(P + n
7. y^(p _ T). 8. P^T'.

9. V\ 10. T^V\
VP ^ QT PT

"• Qi-T^' '^-
QV'

(P+ T)(P—T) {3P — 2TY

pa- y 2(P+ r)^
^5- ^(^p_Tf

'^-
(2T-F)^'
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P2r2 PT-\-TQ

'^* {P-fTf '
^°' (F-r)(F+2^)'

F— (g2_ y)2 F- g^+ y

EXERCISES IN ALGEBRAIC LANGUAGE.

The following questions are proposed to practice the student in ex-

pressing the relations of quantities in algebraic language. Should any
of them offer difficulties, he is recommended to substitute numbers for

the algebraic letters, examine the process by which he proceeds, and then

apply the same process to the letters that he applied to the numbers. No
solutions of equations are required.

1. How many cents are there in m dollars ?

2. How many dollars in m cents ?

3. A man had a dollars in one pocket, and h cents in the

other ; how many cents had he in all ? How many dollars ?

4. The sum of the quantities a and h is to be multiplied

by m. Express the product, and its square.

5. A man having I dollars paid out m dollars to one per-

son and n dollars to another. Express what he had left in

two ways ?

6. How many chickens at h cents a piece can be purchased
for m dollars ?

7. A man walked from home a distance of m miles at 4
miles an hour, and returned at the rate of 3 miles an hour.

How long did it take him to go and come ?

8. A man going to market bought tomatoes at h cents per
peck and potatoes at k cents a peck, of each an equal number.
They cost him m cents. How many pecks of each did he buy ?

9. How many minutes will it require to go a miles, at the
rate of h miles an hour ?

10. A man bought from his grocer a pounds of tea at x
cents a pound, h pounds of sugar at y cents a pound, and^ c

pounds of coffee at z cents a pound. How many cents will

the whole amount to ? How many dollars ? How many mills ?

11. A man bought / pounds of flour at m cents a pound.
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and handed the grocer an i?;-dollar bill to be changed ? How
many cents ought he to receive in change ?

12. From two cities a miles apart two men started out at

the same time to meet each other, one going m miles an hcur
and the other n miles an hour. How long before they will

meet ? How far will the first one have gone ? How far will

the second one have gone ?

13. A man left his n children a bonds worth x dollars

each, and b acres of land worth y dollars an acre ; but he
owed m dollars to each of q creditors. What was each child's

share of the estate ?

14. Two numbers, x and y, are to be added together, their

sum multiplied by s, that product divided* by a-\-b, and the
quotient subtracted from h. Express the result.

15. The sum of the numbers ^j and q is to be divided by
the sum of the numbers a and h, forming one quotient. The
difference of the numbers p and q is to be divided by the dif-

ference of the numbers a and h, forming another quotient.

The sum of the two quotients is to be multiplied hj r-\-s.

Express the product.

16. The quotient of x divided by a is to be subtracted

from the quotient of y divided by h, and the remainder multi-

plied by the sum of x and y divided by the difference between
X and y. Express the result.

17. The number x is to be increased by 6, the sum is to be
multiplied by a-\-l), q is to be added to the product, and the
sum is to be divided by r — s. Express the result.

18. A family of brothers a in number each had a house
worth a thousand dollars each. What was the total value of

all the houses in dollars ? What was it in cents ?

19. A grocer mixed a pounds of tea worth x cents a pound,
and h pounds worth y cents a pound. How much a pound
was the mixture worth ?

20. x-{-y houses each had a-\-l) rooms, and each room
m-\-n pieces of furniture. How many pieces of furniture were
there in all ?

21. In a library were j^-f-^' volumes, each volume hadjf?+ ^
pages, each page p-\-q words, and each word on the. average
8 letters. How many letters were there in all the books of the
library ?

22. A post-boy started out from a station, travelling Jc

miles an hour. Three hours afterward, another one started

after him, riding m miles an hour. How far was the first one
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ahead oitEe second at the end of x hours after the second
started?

23. Two men started to make the same journey of in miles,

one going r miles an hour, and the other s miles an hour.

How much sooner will the man going r miles an hour make
his journey than the one going s miles an hour ? How much
sooner will the one going s miles an hour make his journey
than the one going r miles an hour ?

24. One train runs from Boston to New York in Ji hours,

at the rate of n miles an hour. How long will it take another
train running 5 miles an hour faster to perform the journey ?

25. If a man bought h horses for t dollars, and n yoke of

oxen for m dollars, how much more did one horse cost than one
yoke of oxen ? How much more did one yoke of oxen cost

than one horse ?

26. A train making a journey of 2m miles goes the first

half of the way at the rate of r miles an hour, and the second
half at the rate of s miles an hour. How long did it take it to

go ? What was the average speed for the journey ?

27. Two men, A and B, started to Avalk from Hartford to

New Haven and back,. the distance between the two cities

being a miles. A goes p miles an hoiir and B q miles an hour.
How far will A have got on his return journey when B reaches
Hartford ?

28. A man having h dollars bought h books at $6 each.

How many books at $4 each can he buy with the balance of

his money ?

29. A man going to his grocer with m dollars, bought s

pounds of sugar at a cents a pound, and r pounds of coffee at

b cents a pound. How many barrels of flour at q dollars a
barrel can he buy with the balance of his money ?

30. A man divided m dollars equally among a poor Chinese
and n dollars equally among h orphans. Two of the Chinese
and three of the orphans put their shares together and bought
X Bibles for the heathen. How much did each Bible cost ?

31. A pedestrian having agreed to walk the a miles from
Boston to Natick in h hours, travels the first k hours at the
rate of m miles an houi*. At what rate must he travel the
remainder of the time ?

32. A train having to make a journey of x miles in li hours,
ran for k hours at the rate of r miles an hour, and then made
a stop of m minutes. How fast must it go during the remain-
der of its journey to arrive on time ?



BOOK II.

ALGEBRAIC OPERA TIONS.

Creneral Remarks.
The algebraic expressions formed in accordance with the

rules of the preceding book admit of being transformed and
simplified in a variety of ways. This transformation is effected

by operations which have some resemblance to the arithmetical

operations of addition, subtraction, multiplication, and division,

and which are therefore called by the same names.

In performing these algebraic operations, the student is not,

as in Arithmetic, seeking for a result which can be written in

only one way, but is selecting out of a great variety of forms of

expression some one form which is the simplest or the best for

certain purposes. Sometimes one form and sometimes another

is the best for a particular problem. Hence, it is essential

that the algebraist, in studying an expression, should be able to

see the different ways in which it may be written.

Definitions.

49. Function, An algebraic expression containing

any symbol is called a Function of the quantity repre-

sented by that symbol.

Ex. I. The expression Zx^ is a function of x,

Ct -\- X
2. The expression is a function of x and also a

function of a.

When an expression contains several symbols, we may
select one of them for special consideration, and call the ex-

pression a function of that particular one. For instance,

although the expressions.
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a \-hx^ -\- cx%

tn + nV'^',

contain other symbols besides x, they are both functions

of X,

50. An Entire Function is one in which the quan-

tity is used only in the operations of addition^ subtrac-

tion and multiplication.

Example. The expressions

ax + y,

(«2 ^ ^2) ^ _ (Jji ^ y'jx^—X + d,

are entire functions of x. But the expressions

^.^+1 and 3V~x
ax — y

are not entire functions of x, because in the one x appears as

part of a divisor, and in the other its square root is extracted.

An entire function of x can always be expressed as a sum
of terms, arranged according to the powers of x which they

contain as factors. The form of the expression will then be

A + BX+ Cx^ j^ Dx^ + Ex^-^ etc.,

where A, B, (7, etc., may represent any algebraic expressions

which do not contain x.

51. Like Terms are those which are formed of the

same algebraic symbols, combined in the same way,

and differ only in their numerical coefficients.

Ex. The terms ax, 2ax, —6ax are like terms.

52. The Degree of any term is the number of its

literal factors.

Examples. The expression ahxy is of the fourth degree,

because it contains four literal factors.

The expression x^ is of the third degree, because the letter

X is taken three times as a factor.

The expression ah^x^ is of the sixth degree, because it con-

tains a once, h twice, and x three times as a factor.

When an expression consists of several terms, its

degree is that of its highest term.
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CHAPTER I.

ALGEBRAIC ADDITION AND SUBTRACTION.

Algebraic Additiou.

53. By the language of Algebra, the sum of any number

of quantities, positive or negative, may be expressed by writing

them in a row, with the sign + before all the positive quan-

tities, and the sign — before the negative ones.

Ex. A-^B—D—X-\- Y, etc., is the algebraic sum of the

several quantities A, B, —D, —X, Y, etc.

54. To simplify an expression of the sum of several

quantities,

1. AVhen dissimilar terms are to be added, no sim-

plification can be effected.

Ex. If we require the sum of the five expressions, «, —xy^

mp, nq, and —hits, we can only write,

a — xy -\- mp -\- nq — Ihs,

according to the language of Algebra, and cannot reduce the

expression to a simpler form.

2. If mere numbers are among the quantities to be
added, their algebraic sum may be formed.

Ex. The sum of the five quantities —8, ah, 5, mnp, —15,
is found to be — 18 + ah -f wnp,

3. When several terms are similar, add the coeffi-

cients and affix the common symbol to the sum.

When no numerical coefficient is written, the coefficient

4-1 or —1 is understood. (§ 44.)

EXAMPLES.
« 4- a r= 2^ [because 1 + 1 = 2].

2a — a :=z a [because 2 — 1 == 1].
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3a + 4(^ — 7« = [because 3 + 4 — 7 r::z 0].

a -{ 2x — 3a — 6x=z — 2a—3x [adding the a's and the x^s],

— 3axy + ibm — 2axy -}- bm = — baxy -f- bhm.

Add the expressions,

1. Ix + bhy\ 2x — 3by^ -- 4:X - bbyS 6x — by% x — %l
WORK.

For convenience, the several terms may be ry^
i Kj.y2

written under each other, as in the margin. The g/r '^hiJ^

coefficients of x are 7, 3, —4, 5, and 1, of which a ^jT^.i

the algebraic sum is 11. The coefficients of y'^
p- 7^2

are 5, —3, —5, —1, —1
;
the sum is —5. Hence A

the result. ^-

Stt7n, 11:?; — bby^

2. Sax — y — 2y + 6, 7ax—y— d-\-am, 2ax—y—3-\-6p,

Here 2x, am, and p, work.
all being different sym- g^^2 y '2x 4- b
bols, the terms contain- i*/^^2

^
g ,

^^^
ing them do not admit _ ^^2 — y — 3 -1-5;^
of simplification (§ 54, ^

1). The numbers 5, Smn, — 3y — 2x — 7 -f am + bp

—9. —3, are added by
the rule (§ 54, 2). The coefficients of ax^ cancel each other (8—7—1 = 0).

3. Add 6{x-{~ y\ 5 {x + ^) + a, 2 {x H- y) - 3a,

Here the aggregate, x-\-y, enclosed in

parentheses, is treated as a simple symbol. ,

'

Note. When the student can add b (x \- y)
^

the coefficients mentally, it is not neces-
^

"^
.^

sary to write the expressions under each "^

other. Nor is it necessary to repeat the Sum 13 (o; + ^) 2a
symbol after each coefficient.

EXERCISES.

1. 3a + 75 — 8^ +d,3a — 2bfc — e, ^a — b — c—d,

2. 7a — {x -\- y), Sa — {x + y)^ 3 {x -f y) — 16^.

3. 7oy^ — 2x — 5, 2x^ — 3:r -j- 8, — 9.^2 H- bx + 3.

4. x'^ •+ 2x — y, ix^ + 7.1' — 2y, — 2:1'^ + :r — 9^/, — 3x'-

^x -— y.

5. 9 (a- + by, 10 (a + b)% {a+ b)% 2 {a+ b)% ^x-y-z.
6. 2(m + n) + 3 (aj + ^>), (« + &) — (m + n), (a + b)

— (m -f n).

7. 7^3 — 2a2 ^ 3^^^ _ ^3 _ ^2 _ ^^^ _ 6^3 j_ 3^2 _ 2«i^;.
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8. (m + nf + X, 2 (m + 7iY — y, 3 {7n + nf — 2a;,

(m + 7i)^ -— y-

9. (i^ + ^Y - 6> (i^ + ^)' + ^^ (^+ ^)' + ^. (i^+ ^)H^.
10. 6a{x — y), ba(x — y), 2a{x — y), a{x — y),

11. 2 (m — 7^) a; 4- 2, 3 (m + t^) a; — 5, b{m + n)x — Q,

7 {m -{- n)x — 8.

^- ., ^^ 9^A.^y ^ y y ^ ^ ^

a a ha h' h 7 a 7

ir m ^x ^m ^x ^m .x ^ m
11. , 2 2 — , 3 3 — . 4 4—

y n y n y n y n

m -\- n m + n m + n m + n

15. Of two farmers, the first had 2x — dy acres, and the

second had x — y acres more than the first. How many acres

had they both?

16. A had 2x dollars, B had y dollars less than A, and C
had 2y dollars more than A and B together. How many had
they all ?

17. A father gave his eldest son x dollars, his second 5 dol-

lars less than the first, his third 5 dollars less than his second,

and his fourth 5 dollars less than his third. How much did

he give them all ?

55. Addition with Literal Coefficients, When dif-

ferent terms contain the same symbol, multiplied by
diiferent literal coefficients, these coeflScients may be

added and the common symbol be aflBixed to their

aggregate.

EXAM PLE S.

1. As we reduce the polynomial
' 6x -{- 6X'—2x
to the single term (6 + 5 — 2) ^ = 3a^,

so we may reduce the polynomial

ax \-hx -^ ex

to the single term, (a -^-h — c)x.

2. The expression

mx -i- ny — bx -{- dy -\- a + b

may be expressed in the form

{m —b) X -{- {?i 4- d) y + a -\-h
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EXERCISES.
Collect the coefficients of x and y in the following ex-

pressions :

1. ax -{-ly -\- mx + ny,

2. mnx + %by + lyqx — Aiy,

3. dx — 2y-\- 6bx -— 4^ + 7ax + m -{- n,

4. Sax -f 8^.-?; -}- by -{- 7x — 6y -{- x — by,

5. a:r + % + c;2 — r/7iC — ny — pz.

6. 2dx + 3ey + 4/2; — 2fx — 3<i^ + 4e;2;.

2 3
7. ~«y — 2:i; + j% + 6ax.

8. 2aa; — by — dbx — 4«r?/.

2 1
10. 4/wa; + 2^/ — 3«a; — 6cx -{- ay — -mx + -dx,

1 1. 6abx — 3m/^^/ — a^;r + 4:cdy — dx.

12. Say + 2bx — jdx + 2ay — ^bx,

1 3
13- ^(^y - 3a: + 2y — -«y — 52; + y.

14. 3wa. — «a: — -^y + a; + c/:c — y,

15. 3aZ>cr — my + 2(:a/^ — dy -\- Vx.
16. hm^y — 6a; + 4a/^ — 3A/a; — y + Vy.
1 7. 4^/0; — 6«/ + aVy + ex — Vy — 4aV^/ + Va:.

Algebraic Subtraction.

56. Def. Algebraic Subtraction consists in ex-

pressing the difference of two algebraic quantities.

jRule of Subtraction. It has been shown (§ 21) th^t

to subtract a positive quantity, &, is the same as to

add, algebraically, the negative quantity, —6. Also,

that to subtract — & is equivalent to adding +6. Hence
the rule

:

Change the algebraic sign of all the terms of the

subtrahend, or conceive them to be changed, and then

proceed as in addition.
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NUMERICAL EXAMPLES.
Min., 10+ 6= 16 10+ 6= 16 10+ 6= 16 10+ 6 = 16

Subt., _9 ^=_9 9— 4= 5 9— 8= 1 9— 12 = -3
Eem., 1 + 6= 7 1 + 10=11 1 + 14=15 1 + 18= I9

ALGEBRAIC EXERCISES.

I. From ^x — 4:ay + 5^ + c,

Subtract x — 7a2/ — 8b -i- d.

WORK.

Minuend, 3x — 4:ay + 5^ + c

Subtrahend with signs changed, — x -\- 7ay + Sb — d

Difference, 2x + Say + 13b + c — d

Next we may simply imagine the signs changed.

2. From 7x — Uxy — 12cy + 8& + 3ac

Take 2x + Ibxy + 8cy — 6b — 2d

Diff., 6x — 11^2:^ — 20cy + Idb + 3ac + 2d

3. From 8« + 9<^ — 12c — ISd — 4:X + 3cy

Take I9a — 7^ — Sc — 2hd H- 3a: — A:y

4. From 257;? + 20W + 92?/ + 35aa; — 6

Take 140^ — 82^^ + 20z/ + %2ax + 14

5. From 8a + 14*^ subtract 6« + 20^.

6. From a — J + c — J take — a-\-b — G-^d.

7. From 8« — 2^ + 3c subtract 4:a — Q>b — c — 2d,

8. From 2x^ — 8a; — 1 subtract bx^ — 6.t + 3.

9. From 42;4 ^ 3:z;3 _ 2^2 — 7a; + 9 subtract a;^— 2a;3--2a>

+ 7a? - 9.

^10. From 2x^ — 2aa; + 3a^ subtract x^ — ax + ri^l

11. From «3 _ 3^2^ ^ 3^^2 _ ^3 subtract — «3 ^ 3^2^.

12. From 7a:8 _ 2:?;2 + 2a; + 2 subtract 4a;3..,2a.^—2a;— 14.

13. From b{x — y) -\- 1 {x — z) + 9 (;>;— a;) take 9 (a; — y)
+ 7 (a; — 2;) + 5 (2; - a;).

14. From l2{a-'b) — 3(a^h)-{-'ia— 2b take 7 {a—b)
-- 5 (a + ^>).

15. From 7^-11^-15^ take -- 5- + 6 ^ - 7 - + 8 ^
y z X y z X b
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Clearing of Parentheses.

57. In § 42, 2y it was shown that an aggregate of terms in-

cluded between i)arentheses might be added or subtracted by

simply writing + or — before the parentheses.

When an aggregate not multiplied by a factor is to be added

or subtracted, the parentheses may be removed by the rules

for addition and subtraction, as follows:

58. Plus Sign he/ore Parentheses. If the paren-

theses are preceded by the sign +, they may be
removed, and all the terms added without change.

Example i. 27+(8-~5—4+ 7) = 27+8—5-4+ 7 = 33.

2. m-{-{a — X— y + z)=i7n-\-a^x — y-^z,

3. 22; + (— 3a; — by) + m—^a) + (2y— 26?)

— ^x — ^x — by-^^y — 4:a-\-2y — 2a
— — X — 6a.

The sign + which precedes the parentheses should also be

considered as removed, but if the first term within the paren-

thesis has no sign, the sign + is understood, and must be

written after removing the parentheses,

EXERCISES.
Clear of parentheses and simplify

1. x — y+ (x + y).

2. X -i- y -i- {y — x).

3. 3ab — %mp + {ah — ox — 2mp).

4. 2ax — 3by + {7nx — 2ax — pz -\- Sby).

'• 'f + (|-^3 + (5 + ^^)-

59. Minus Sign before Parentheses. If the paren-

theses are preceded by the sign — , they may be
removed and the algebraic sign of each of the included

terms changed, according to the rule for subtraction in

§ 56.
EXAMPLES.

I. 27-(8-5-4 + 7)=:27 — 8 + 5 + 4 — 7 = 21;
that is, 27 — 6 = 21.
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2. m — {— a— p-\-y + x) =:m-\-a-\-p — y--x.

3. 3« 4- X — (2a — bx) — {9x — a) =1 3a -{- x — 2a + 6x
— 9x -{- a.

Simplifying as in § 54, this reduces to 2a — Sx,

EXERCISES.
Clear the following expressions of parentheses and reduce

the results to the simplest form by the method of § 54.

1. ab — (m — Sab + 2ax) — 7a^.

2. X — {a — x) -{- {x — a).

3. 2b -i {b — 2c) — {b+ 2c).

4. ix — 3i/ -^ 2z — {— ^x -{ 6y — dz) — (x — y).

5. lax — 2by — {^ax -f 3by) — {^ax — 3by),

6. {a — x) ^ {a -^ x) -\- 2x.

7. — {a — b) — (b — c) — {c — a).

8. — (3m + ^n) — {3m — 2n) -f 9m.

60. We may reverse the process of clearing of parentheses

by collecting several terms into a single aggregate, and chang-

ing their signs when we wish the parentheses to be preceded

by the minus sign. The proof of the operation is to clear the

parentheses introduced, and thus obtain the original expression.

EXERCISES.
Eeduce the following expressions to the form

X — {an aggregate).

1. X — a — b. Ans. x — {a -\- b),

2. X — m — n.

3. a -\- X — 3x -{- 2y. Ans. x —
{
— a -\- 3x — 2y),

4. —3b-Yx-\-2c^ 6d.

5. 2x--2a -i- 2b. Ans, x — {— x -\- 2a — 2b).

6. 2x -^ a — b.

7. 3x — 2m + 2n.

8. 3x -\- ab — m — 3ab + 2m.

9. X — 2m — {3a — 2b). Ans. x — {2m -{- 3a — 2b)o

10. X -{- 3 — {a -}- b).

11. X -}- a — {b — c) -{ {m — n).

12. X — {am + b) — {]) — q) — {am — n).

13. x— {a -\- b) — {p — q) — {m — n).
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Coini>ound Parentheses.

61. When parentheses of addition or subtraction are en-

closed between others, they may be separately removed by the

preceding rules.

We may either begin with the outer ones and go inward^

or begin with the inner ones and go outward.

It is common to begin with the inner ones.

EXAMPLES.
Clear of parentheses:

1. f-[e-\d-[c-ib-a)]\l
Beginning with the inner parentheses, the expression takes,

in succession, the following forms:

f-[e- \d- [c-b + a]}']

= f—le— {d — c + b — afj

= f-le-d+ c-b i-a^

= f— e-i-d — c + b — a,

2. x^[— {a -^ b) +• {m + ^) — {^ — y)].

Eemoving the inner parentheses, one by one, we have,

X — [— a — b-\-m-]-n — x-\-y\

^x-{-a-{-b— m — 7i-{-x — y.

EXERCISES.
Kemove the parentheses in the following expressions, and

combine terms containing x and y, as in §§ 54 and 55.

1. m + [-(p-q) ^ (a-b) + {-c + d)l

2. m — [— {a — b) — {p + q) + {n — Jc)].

3. 7ax — [{2ax + by) — {3ax — by) + {— 7ax + 2by)].

4. a — [a — \a — [a — {a — a)]\^.

5. j>j — [a — ^> — (5 + / + ^) + (— m — n)].

6. 2ax — [Sax — by — {7ax + 2by) — {6ax — 3by)],

7. ax-{-by-\- cz + [2ax—3cz — {2cz-}-5ax) — C^by—Scz)],

8. x-^ \ 2x — y — [3x — 2y — {4x — 3y)] \.

9. ax — bz — \ ax -{- bz — [ax — bz — (ax + bz)] }.

10. 7ny — {x -^ 3y -\- [2my — 3 {x — y) — iab'] + 5 f.
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II

12

13

14.

IS

ax + 4icx — (mic + c^ — 2/) + [^^^ — (px 4- 2/)].

3^a^ _ Ux — (— 3a«/ — 'daz + 3%) — Uz,

Idax + 2:^y — d — [7ad f (a;?/ -f t?)] — 4:xy.

m -\- 4:X — [— 4?/ H- 2^ 4- (^^ — ^) + p]-

2aVy — 3m — [^Va; — 6^ + {Vy — 2a/^)].

CHAPTER II.

MULTI PLICATION.

63. The product of several factors can always be

expressed Iby writing them after each other, and enclos-

ing those which are aggregates within parentheses.

E X A \ T p L E S

.

The product ot a + b hj c =^ c {a + b).

The product of —^r-^ by x — y = {x — y) —^•
The product of a \- l hj c -\- d z= i^c -\- d) (a -\- b).

Such products may be transformed and simphfied by the

operation of algebraic multiplication.

General Laws of Multiplication.

63. Law of Commutation, Multiplier and multi-

plicand may be interchanged without altering the

product.

This law is proved for whole numbers in the following way.

Form several rows of quantities, each represented by the

letter a, with an equal number in each row, thus,

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a
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Let m be the number of rows, and n the number of a's in

each row. Then, counting by rows there will be

m X n quantities.

Counting by columns, there will be

n X m quantities.

Therefore, m x n = n x m,

or nm = mn,

64. Law of Association, When there are three

factors, m, n, and a,

771 {no) = {7nn)a.

Example. 3 x (5 x 8) = 3 x 40 = 120.

{3x5)x8 = 15 + 8 = 120.

Proof for Wliole Numbers. If a in the above scheme

represents a number, the sum of each row will be na. Because

there are m rows, the whole sum will be 7n (no).

But the whole number of «'s is inn. Therefore,

m (na) = {mn) a.

65. The Distributive Law. The product of an ag-

gregate by a factor is equal to the sum of the products

of each of the parts which form the aggregate, by the

same factor. That is,

711 {jo -\- q -{- r) = mj) -\- jnq + mr. (1)

Prooffor Whole Numhers. Let us write each of the quan-

tities p, q, r, etc., m times in a horizontal line, thus,

p ^ p -\- p -^ etc., m times = mj)*

q -^ q -{- q -\- etc., m. times = mq.

r + r + r + etc., 7n times = 7nr,

etc. etc. etc.

If we add up each vertical column on the left-hand side,

the sum of each will be ^ + §' + r + etc., the columns being

all ahke.

Therefore the sum of the m columns, or of all the quantt

ties, will be ,

m{p -\- q -\- r, etc.).
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The first horizontal line of ^'s being mp, the second mq,

etc., the sum of the right-hand column will be

7np + mq '\- mr, etc*

Since these two expressions are the sums of the same quan-

tities, they are equal, as asserted in the equation (1).

Multiplication of Positive Monomials.

66. Rule of Exponents. Let us form the product

X''^ X x\

By § 37, x"" means xxx, etc., taken m times as factor.

X" means xxx, etc., taken 7i times as factor.

The product is xxxxx, etc., taken {7n-\-n) times as factor.

Therefore, x"^ x x'' = x'''+\

Hence,

Theorem. The exponent of the product of like sym-

bols is the sum of the exponents of the factors.

67. As a result of the laws of commutation and
association, the factors of a product may be arranged

and multiplied in such order as will give the product

the simplest form.

68. Any product of monomials may be formed by
combining these principles.

Example. Multiply bniii^x^y^ by "Ihnx^y,

By the rules of algebraic language, the product may be put

into the form
6mn^x^y^7 bn x^ y.

By interchanging the factors so as to bring identical sym-

bols together,

b'Umn^noi^x^y^y.
|

Multiplying the numerical factors and adding the exponents,,

the product becomes
35 hmn^oi^ y^.

\
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69. We thus derive the following

Rule. Multiply the numerical coefficients of the

factors, affix all the literal parts of the factors, and give

to each the sum of its exponents in the separate factors.

E X E RC I s E s..

1. Multiply xy by oi^y. A7is, 'X^y\

2. Multiply ^ax by 2ahx^. 3. Multiply hm^y hy^m^x,

4. Multiply 21m?/ by 2«2m. 5. Multiply 2«m by 2ma.

6. Multiply 5x'^yh by xh/h. 7. Multiply dxyz by dxyz.

8. Multiply 2abm by 2mba. 9. Multiply Sab^x^ by Samv.

10. Multiply 2'6mpqr by 2'6pqrs,

11. Multiply 12axy by 12xyz,

3 2 3
12. Multiply -m^^ by -m^/, 13. Multiply -r /^^^ by 4m^.

7
14. M.u\tiip\j -abcdhj Mefy.

70. When we have to find the product of three or more

quantities, we multiply two of them, then that product by the

third, that product again by the fourth, and so on.

Ex. 2db X 2a^'b x '^aW' x ^bmxy = 36a^b^mxy,

Exercises. Multiply

1 5

.

mx X my x mz, 16. axxbxxcxx dx,

1 7. do?m X 4:Pn X m?i, 18. abx 2bc x ^ca,

19. %myi^ X hwp^ x 9;)m^

20. abxacxadx am3 xyx 2yz x zx,

21. amx X anx x amxy x anxy x amxyz,

22. a^x X a^y x ax^ x ay'^ x «V x a^y^ x x^y^,

23. 2am X San xa^x m^ x ^mx x 2nx,

Rule of Sig:ns in Multiplication.

71. It was shown in § 25 that a product of two factors is

positive when the factors have like signs, and negative when
they have unlike signs. Hence the rule of signs,

+ X + makes +?
+ X - " -,
- X + " -,
~ X — " +.
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Examples. The quantity a

Multiplied by 3 makes + 3a.

2 '' +2a.
u iC 1 u + a.

6i u Ci
0.

Ci a -1 66 — a.

U a -2 U — 2a.

The quantity — a

Multiplied by 3 makes — 3a.
u u 2 a — 2a.
u u 1 u — a.

(6 ii a 0.

iC u -1 u + a.

u u -2 6C + 2a.

72. Geometrical Illustration of the Rule of Signs, Suppose

the quantity a to represent a length of one centimetre from

the zero point toward the right on the scale of § 11.

Then we shall have

a = this line
\

r

The product of the line by the factors from -[-3 to —3
will be

a X 3, p

a X 2,

a X 1,

a X 0,

a X — 1,

a X — 2y

a X — 3,

1 T I

We shall also have

a z=z this line
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The products by the same factors will be

— a x^,
I I

I I

— ax%,
I I I

— ri? X 0,

— ax—1,
I I

— ax — 2,
I I I

— a X — 3, fI I I i

These results are embodied in the following two theorems :

1. Multiplying a magnitude by a negative factor,

multiplies it by the factor and turns it in the opposite

direction.

2. Multiplying by —1 turns it in the opposite direc-

tion without altering its length.

Note. When more than two factors enter a product, the

sign may be determined by the theorem, § 26.

EXERCISES.
I. am X ah x ac x ad. 2. ax x —bx x ex x dx.

3. X X —ax X —abx x —aicx.

4. dax X —^aW X — ba^mx,

5. —lm?y X —?tc^y^ x 6ax.

6. —2nzn x — 57i^x^ x —7i^yz — a^.

7. 2m X n X —a x —2b.

8. —3ax X —2km x —Hx x —4ibmx»

9. —ny X gy X —2yx Sbm,

10. xy X 2y^ x y^x x 2ayxK

11. by'^ X —^gy X —2z^ X —axh.
12. bax X anx x ^z x b'^xy.

13. —4J)z X —xz X —yz X agz,

14. 2c^n X 2xh X —z^ X —bgz\

15. —e^x X 3a: X eb^ x ay*
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i6. —2e X —2^ X a X Ix.

17. — 4a.r X ^ay x —2a?y x — i?^^.

18. a'^:r X — <^,V^ X ax^ x —x^y,

19. a:?;2 X _y2 X —1 X ^ax x —«V
20. wi^^ X —n^x X —mn^ x w.^ x — m^.

21. — a&2; X —ay'^ x ^^i-' x a^x^.

22. ^.^2 X ^^^ X xy X — flfiz:.

23. abc X — <:?^ x aa;^ x —1 X 'dax.

24. -ri^:?: x ^cx X — T^mx x — 4?/2 x 6m.
4 2

"^

2K, —6mx X —2n^x x -^ac x — -m^.DO
26. —a X ^c X — 1 X T X 3a2 X ^xy x y.

27. —1 X ax X a^x x a^x^ x hx x d,

28. —an X 2am^ x —dmn x 6n^y x —m,
29. —mx X nx X —mn x —xy x —1.

30. —2px X —dqx X -m^x x -^y^ x —1.bo
Products of Polynomials by Monomials.

73. The rule for multiplying a polynomial is given by the

disfcributive law (§ 65).

Rule. Multiply each term of the polynomial hy the

monomial, and talce the algebraic sum of the products.

Exercises. Multiply

1. dx^ — 4:xy — 6y^ by — 4ax,

Ans, — 12ax^ + IGax^y + 20axyK

2. 3.^2 — xy -\- y^ by 3.r.

3. x^ -\- xy -}- y^ by 3x, 4. ax -{- by + cz by axyz,

5. dax^—6ay^—7 by dabx, 6. 4m^ — 6nq by — 3mq.

7. o^y — 7«y — la'^y by Sab,

74. The products of aggregates by factors are formed

in the same way, the parentheses being removed, and
each term of the aggregate multiplied by the factor.



MULTIPLICATION, 45

Example. Clear the following expression of parentheses

:

am {a — h + c) —p \a — {Ji ^ h) — m {a — b)].

By the rule of § 73, the first term will be reduced to

ah7i — amd + amc. (1)

The aggregate of the second term within the large paren-

theses will be
a — h -\- k — m {a — V)

=: a — h -{- k — ma + mh^ (2)

because, by the rule of signs in multiplication,

— m{a—'b) = —m x a — m x —h = — ma + mb.

Multiplying the sum (2) by —p and adding it to (1), we

have for the result required:

a^m — atnb + amc — pa -^ pli — pk -\- pma —pmb,

EXERCISES.
Clear the following expressions of parentheses :

1. p{a -{- m — p) -{- q{b — c) —-r {b + c).

2. {rn — an) x — {m + an) y + {a7i — m) z,

3. a{x — y)c — b{x — y) d+f{x + y) cd.

Here note tliat the coefficient of ai — y in the first term is ac.

4. am [x — a{b -^ c)] — bn [ax -}- b{c + d)],

5. p [— a {m-\-n) + b{m—n)] — q[b {m—n)—a{m + n)],

6. dx (2q — 7ic) + 2y {6x — 3c)—z (2m + 7n),

7. am [m {a — b)c — 3h {2k — 4:d) + 4/^].

8. 2pq [da --^b — ec—pq (2m — 3^z)].

9. bn [—'7a — n{a-^c) — {3 — a — b)],

10. p{q — r)-{-q{r — p) + r{p — q).

75. The reverse operation, of summing several terms into

one or more aggregates, each multiplied by a factor, is of fre-

quent application. Thus, in § 65, having given

mp -{• mq -\- mr,

we express the sum in the form

7)2{p -i- q -{- r).
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The rule for the operation is

If the sum of several terms having a commjon factor

is to he formed, the coeffieients of this factor may he

added, and their aggregate he multiplied hy the factor,

Note. This operation is, in principle, identical with that of § 55.

EXAMPLES.
ahx — lex — ady -\-^dy— ohx i-4:ady-i- my—amy—dcmx+ hinx.

Collecting the coefficients of x and y as directed, we have

{ab — hc — dh — dcm + bm) x -\- {—ad-\-3d+4rad-}-m—am) y.

Applying the same rule to the terms within the parentheses,

we find •
ab — I}c — 3b = h{a — c — 3).

— 3cm + bm = m.(b — 3c).

— ad -\-M -\- 4:ad = Sad + 3d

= {3a + 3)d

= 3{a-}-l)d.

m — am = m (1 — a).

Substituting these expressions, the reduced expression

becomes

^h{a — c — 3)+ 771 (b — 3c)'\ X -^ \3 {a -{- 1) d + m(l — «)] y.

The student should now be able to reverse the process, and

reduce this last expression to its original form by the method

of § 74.

EXERCISES.
In the following exercises, the coefficients of y, z, and

their products are to be aggregated, so that the results shall

be expressed as entire functions of x, y, and z, as in § 55.

1. ax -\- bx — 3ax + 3bx + 6a: — 7:r.

Ans. (— '^a -^ ^b — l)x.

2. my -\- py — my — 2py —- 3gy.

3. mx — ny -^ px '-' gy H- rx — sy.

Ans, {7n -}- p -\- r) X -- (n + g + s) y,

4. 3az — y — 2az -\- z — az -\- y.
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5- abxy — Icxy -f- J^iz/.

6. d^abxy — 24rc — a^^; — 7a;jf.

7. ^y — ^y — ^^^^ — ^^^^ + ^'^«

8. «m«/ — Z>/wy + a7iy — hny.

9- prz — "Iqrz — ^ppz + Sqhz.

lO. cnx -{- b7ix — amy — 'Zhny.

76. An entire function of two quantities can be regarded

as an entire function of either of them (§§ 49, 50), and when
expressed as a function of one may be transformed into a func-

tion of the other.

Example. The expression

{U + 3) a;3 _ (4^2 _ ^a) x^ + {d^ -^2a + l)x — a^

has the form of an entire function of x. It is required to

express it as an entire function of a.

Clearing of parentheses, it becomes

2ax!^ -\- dx^ — 4oa^x^ + 2ax^ + a^x — 2ax -\- x — a^.

Now, collecting the coefficients of a^, a^, etc., separately, it

becomes

(_ 4:x^ ^x — 1) a^ + {2x^ + 2x^ — 2x) a + dx^ -}- x,

which is the required form.

EXERCISES.
Express the following as entire functions of y

:

1. {dy^—4.y)x^+ {y^—2y^-}-l)x^-{-{2y^-^6y^—7)x—y^—G.

2. {y^ — y^) x^ + {y^ — y)^ i- y^ — 1-

3. (\/5 — 2y^) x^ + (y4 _ 2y^) x^ + {y^ — 2y) x •{-
y'^ — 2,

4. {y' + 3^/2) ^ + (2/4 + 3f/3) x^ + (^3+ 32/) x^ + (^/2+ 3) x.

Multiplication of Polynomials by Polynomials.

77. Let us consider the product

{a-{-l)){p + q^ r).

This is of the same form as equation (1) of § 65, {a -{- h)

taking the place of m. Therefore the product just written is

equal to

(« + ^) ^ + (« + ^) ^ + {ct + h) r.
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But {a + l))p :=z np -{- bp,

(a -^ b) q = aq -{- bq.

(a + b) r =^ a?' + br.

Therefore the product is

ap -\- bp -\- aq -\- bq -{- ar + br.

It would have been still shorter to first clear the paren-

theses from {a + b), putting the product into the form

(^{P^ q -\-r) -\-b{p -\-q + r).

Clearing the parentheses again, we should get the same

result as before.

We have therefore the following rule for multiplying aggre-

gates :

78. Rule. Multiply each term of the inidtiplicancl

hy each term of the multiplier, and add the products

ivith their proper algebraic signs,

EXERCISES.
1. (a + b) {2a — bn^ — 2bn^),

2. [a — b) {^m -f 271 — bahnn),

3- (y)i^ — ^2) {2mn + ^^m + qn),

4. {p'^ + q^ -\- r^) {pq + qr -f- rp).

5. (2a — db) {2a f 2b).

6. {)72x — ny) {mx + ny),

79. It is frequently necessary to multiply polynomials

containing powers of the same letter. In this case the begin-

ner may find it easier to arrange multiplicand, multiplier, and

product under each other, as in arithmetical multiplication.

Ex. I. Multiply Ix^ —62:2 + 5^ — 4 by ^x^ — Ax — 5.

The first line under work.

tlie multiplier contains 7.^'^

—

6x^-j-6x—

4

the products of the sev- 0^2 A^^ 5
eral terms of the multipli-

candby3aj2 The second 21:^5— 18.^4 _|_ 15.^3_i2:z;2

contains the products by — 28^;^+ 24^;^— 20rt^2_j_i(5;;p

-4x, and the third by -5. _ 35^3 _^ 30^2_ 25^7;+ 20
Like terms are placed —

under each other to facil- 21x^—4:6x^+ 4:X^— 2x^-^ 92:+ 20

itate the addition.
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Ex. 2. Multiply m -\- nx -\- px^ hj a — hx,

a — hx

am + anx + a'px^

— hmx — hnx^ — hpoi^

am + {an — bm) x -f- {ap ~ hn) ^ — hpo?

In the following exercises arrange the terms according to

^.ne powers and products of the leading letters, a^ h, x, y, or z

Multiply

1. 3^2 + 5« + 7 by 2^2 _ 3a + 4.

2. a^ -\- ah + y^ hy a — K

3. a^ -\- a^ -\- ax^ + ^^ by ^ — x.

4. a^ — a^ '\- a — 1 by ^^ — a -\- 1,

5. x^ -\- ao^ -\- a^x^ + a^x \- a^ ]dj x — a.

6. a -\- hz -\- cz^ + f/2;^ by m — nz -\- pz\

7. 3«2 f 5« + 7 by 2«2 + 3^ — 4.

8. a2 _ ^^ ^ ^2 by ^ ^ J.

9; a^ 4- a^o; + ax^ -\- a^ hj a — x,

10. a^ — a^ + a — 1 hj a^ -^ a — 1.

11. x/^ -{- ao(^ -^ a^x^ + aH -^ a^ hj x + a.

12. a -\- Iz -{- cz^ -{- dz^ by m + ^^2; —pz\
13- (^ + ^''^) (^ + ^^)-

14. (a + Z^:c + c:?:2) i^'jfyi j^ fix ^ px^),

15- (y« - 3^ + 2) (*/2 - 2).

16. (2/8 + 2/3 + y + 1) (2/3 + y + 1)

17- («/' - 2«/3 + 3?/ - 4) (^3 + 22/2 + 3?/ + 4).

18. Sft^^a; — 3a2y + 2a2» by a^ — a"

19. a? + 6«5 + -5 by « — ~i.

20. (« 4- ^) 4- (a — i) by (« 4- ^) — (a — ^).

21. a2 — ^2 _j. (^ „ ^) by «2 ^ Z>2 ^ (a 4- Z^).

22. « 4- ^ -f- ^ by ^ — ^ 4- c.

23. ^2 + ^2 _ (3^2 _^ j2) by 2a + 2^ — 2 (aj — ^).

24. 2{a ^h) -\- X ~ y hy a '\- h — {x -{- y),

25. «:^"* 4- hx"* — «^^:c by aa;2 4- ba^,

26. «'" — b'' by a"* 4- ^".

4
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27. — Ibx^y + ^xy'^ — 12^^ by — hxy.

2 7 1
28. -x^ + 3«.?; — ~a^ by 20;^ — aj:?; — -al

3 D ^ 4

ISToTE. Aggregates entering into either factor should be

simplified before multiplying.

Special Fornis of Multiplication.

80. 1. To find the square of a binomial, as a -{-l. We
multiply « + ^ by a + Z>.

a {a -\- d) = a^ -\- ab

b{a + b) = ah + l^

{a + h){a^l)) = o? + "^ah + W'

Hence, {a + Vf = «2 + %ab + ^2 (1)

2. We find, in the same way,

{a — ly = a^ — 2ab + P, (2)

These forms may be expressed in words thus:

Theorem. The square of a binomial is equal to the

sum of the squares of its two terms, plus or minus twice

their product.

3. To find the product of a -f- ^ by a — b,

a{a -{- b) = a^ -{- ab

-^b(a + b) = -ab-W
Adding, {a + b) {a — b) = a^ — b\ (3)

That is

.

Theorem. The product of the sum and difference of

two numbers is equal to the diflference of their squares.

The forms (1), (2), and (3) should be memorized by the student, owing
j

to their constant occurrence. ^

When Z> = 1, the form (3) becomes

(a + 1) (a - 1) = 6^2 — 1.

The student should test these formulae by examples like

the following

:

(9 + ^f = 92 + 2.9.4 H- 42 = 81 + 72 -f 16 rrr 169.

(9 _ 4)2 =rr 92 — 2.9.4
-I-

42 =: 81 - 72 -f 16 = 25.



2. (m —- 2w)2.

4- (ix--5yy.
6. (3x + 1) (3x -!)•
8. (5a^5 - 3) (5a;3 + 3)
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(9 + 4) (9 — 4) r= 92 — 4- = 65.

Prove these three equations by computing the left-hand

member directly.

EXERCISES.

Write on sight the values of

I. {m -\- 2^)2.

3. {da - 2b)\

5. {%x + y) {%x - y).

7. {4ic2 + 1) {4rX'^ — 1).

81. Because the product of two negative factors is positive,

it follows that the square of a negative quantity is positive.

Examples. {— of — a^ =. {+ a)\

{b - ay = a^ — 2ab + b^ = (a - by.

Hence,

27ie ejopression a^ — 2ab + b^ is the square hoth of
a — b and of b — a,

83. We have ^ a x a := — a^.

Hence,

The pj^oduct of equal factors with opposite signs is a
negative square.

Example, — {a — b){a — b) = — a^ + 2ab — b%

which is the negative of (2). Because — {a — b) = b — a,

this equation may be written in the form,

{b — a){a — b) = — a^ + 2ab — i^,

which is readily obtained by direct multiplication.

EXERCISES.
Write on sight the values of

I. — {a -i- b) X — {a + b).

2. (^ — y){y — ^)- 3- {^ -\-y){-^ — y)-

4. {2a — 3b) (3b — 2a). 5. (3^ — 2a) {— 3b + 2a).

6. (am — bn) {bn — am). 7. {xy — 2) (2 — xy).
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CHAPTER III.

DIVISION.

83. The problem of algebraic diyision is to find such an

axpression that, when multiplied by the divisor, the product

shall be the dividend.

This expression is called the quotient.

In Algebra, the quotient of two quantities may always be

indicated by a fraction, of which the numerator is the divi-

dend and the denominator the divisor.

Sometimes the numerator cannot be exactly divided by the

denominator. The expression must then be treated as a frac-

tion, by methods to be explained in the next chapter.

Sometimes the divisor will exactly divide the dividend.

Such cases form the subject of the present chapter.

Division of Monomials by Monomials.

84. In order that a dividend may be exactly divisi-

ble by a divisor, it is necessary that it shall contain the

divisor as a factor.

Ex. I. 15 is exactly divisible by 3, because 3-5 =r 15.

2. The product a¥G is exactly divisible by ac, because ac is

a factor of it.

To divide one expression by another which is an exact

divisor of it:

EuLE. Remove from the dividend those factors the

product of ivhich is equal to the divisor. The remain-
ing factors luill be the quotient,

85. Rule of Exponents. If both dividend and divisor

contain the same symbol, with different exponents, say m and

fly then, because the dividend contains this symbol m times as

a factor, and the divisor yi times, the quotient will contain it

m — n times. Hence,



DIVISION. 63

In dividing, exponents of like symbols are to he sub^

traeted.

EXERCISES.

1. Divide 26.t«/ by 2^. Ans, l^x.

2. Divide 21^2^,^ by Ihc.

3. Divide o(^ by x^, Ans. x,

4. Divide ISa^ by 6«. Ans, 3a.

5. Divide 15a^m by 3^^. Afis. bam.

6. Divide 14«3m2 by 7fi^m.

7. Divide' 16^^^^ by Sahn^. 8. Divide 36a:i/22;3 by Qxyz.

9. Divide 40a2a;8^5 by lOa^:^^^. 10. Divide 3ba}p by Ta^'.

Rule of Signs in Division.

86. The rule of signs in division corresponds to that in

multiplication, namely

:

// dividend and divisor have the same sign, the quo-

tient is positive.

If they have opposite signs, the quotient is negative.

Proof.

\-mx -V- (+ m) = +x, because +x x {-\-m) = -\rmx. .

-\-mx -~ (—
'/^O = —^9 " —^ X (—^^0 = +^?^^-

^mx -=-
( + m) = —X, " —X X ( + W) = —mx.

—mx -^ {—m) = -\-x, " -\-x X (—m) = —7nx.

The condition to be fulfilled in all four of these cases is

that the product, quotient x divisor, shall have the same alge-

braic sign as the dividend.

EXERCISES.
Divide

I.. -\-a by -f- a. Ans. + 1.

2. + «5 by — a. Ans. — 1.

3. — a by + a. Ans. — 1.

4. —ah\ —a. Ans. + 1.

5. _ 33ahnx by llax. Ans. — dam.

6. — 24:X^yz by 12xyz. Ans. — 2x.

7. 21ani^x'" by -- 7amx"', A ns. — 3m.T"'~".
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8.

9

lO

II

12

13

14,

16

17

— ISa^p^ by — 6^^^. ^/is. 3a'^~'*jy'^-i.

— 16a^xiny^ by 4aa;2?/'*.

14^^^ by — 7by^,

— lUH^'lC^ by — ^lH^h\

V^Ka — Vfd' by 3(^-Z>)2c.

42 (2; — 2/)^ by — 7 (x — yy.
— 44a* {x — yY by lla^ {x — yy.
— 45^^ {a — Z>)^ by 9Z/^ {a — Z>)^.

— 48 {m + 7z)^ by — 8 (^7? + oi)^,

64 (a + ly {x — ij)^ by 4 (a + I) {x — y).

Ans. 4z{a — i) c^.

Division of Polynomials by Monomials.

8*7. By the distributive law in multiplication^, whatever

quantities the symbols m, a, b, c, etc., may represent, we have

:

{a + b -^ c -{• etc.) x m = 7na -\- mb -\- mc + etc.

Therefore, by the condition of division,

{ma + 7nb + mc + etc.) -^m=za-\-b-\-c-\- etc.

We therefore conclude,

1. In order that a polynomial may be exactly divisi-

ble by a monomial, each of its terms mnst be so

divisible.

2. The quotient will be the algebraic sum of the

separate quotients found by dividing the different terms

of the polynomial.

EXERCISES.
Divide

1. 2fl^2 _|. 6^3^ _ 8^5^2 }3y 2a\ Ans. 1 4- ^ax — 4a%
2. Qm^n — 12m^/^2 — ISmn^ by Qmn,

3. ^a%^ — 16^4^,4 + 8a5J3 by 4.aW.

4. ^xy^ — Sa^y^ + 4x^y by -— 4:xy.

5. 12abx — 24:abx^ by — Uabx,

6. 21am^x:^ — Ua^m^x^ + 2Sa^7n^x^ hy — 7amx!^,

7. '72a^x + 24^:^ + A8ax^ by 24^:?;.

8. a{b — c) -}- b (c — a) -{- c {a — b) \- abc by a^^c.

9. 27 (« - Z')5 _ 18 (« - by + 9{a~ by by 9 (a - b).

10. a^ {a — by — ci^ (« — by' by a'' {a — Z>)'^.
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11. {a + by {a - hf + {a-^-hf {a-hy by {a+ l) {a-h).

12. 10 (x + y)^{x -.yY-.^[x ^ yy (x — yf
by 6{x -\- y) (x — y).

13. (« + Z^) (a - Z^) by a^ - ^l

Factors and Multiples.

88. As in Arithmetic some numbers are composite and

others prime, so in Algebra some expressions admit of being

divided into algebraic factors, while others do not. The latter

are by analogy called Prime and the former Composite.
A single symbol, as a or x, is necessarily prime.

A product of several symbols is of course composite, and

can be divided into factors at sight.

A binomial or polynomial is sometimes prime and some-

times composite, but no universal rule can be given for dis-

tinguishing the two cases.

89. When the same symbol 01 expression is a factor of all

the terms of a polynomial, the latter is divisible by it.

EXAMPLES.
I. ax -{- dbx^ + c^GX^ ^=1 a (x -t- Ix^ -\- «c.t^).

c^h^x + c^Wx^ =r aWx {h + ax^.2

EXERCISES.
Factor

I. ax^ -f c^x, 2. a^'^cy + c^hc^y + ahh^y.

3. a^^ h^ + a'^ h'^'^. 4. a^^ x^ — a^^ x^^ + a^ x^^.

5. a^i^^c^^ -(- a^^b^^c^ + a^^b^c^^,

90. There are certain forms of composite expressions

which should be memorized, so as to be easily recognized.

The following are the inverse of those derived in § 80.

1. a^ + 2ab -^ b^ = {a -\- b)\

2. a} — 2ab -{- b^ =: (a — b)\

'

3. a'-b'^ = {a + b) {a - b).

The form (3) can be applied to any difference of even

powers ; thus,
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a^-b^=. {a^ + h^) (^2 _ ^2) .

and, in general, a^'^ — W^ — {a'' + l'^) (a'' — b"").

If the exponent is a multiple of 4, the second factor can be

again divided.

EXAM PLES.

a^-h^ ^ (a? + h^) («2 - ^2) ^ {d^j^W) (a-{-h) (a-b).

a?^¥ = {a' + ¥) {a^ - ¥) = {a'+ ¥) (a^+ b^) (a-^b) (a^b).

When b is equal to 1 or 2, the forms become

a^ — l =z {a + l)(a — 1).

a^-.4c = {a + 2) {a — 2).

a^-^2a + l = {a + 1)K

a^-2a + l = {a-lY = {1- a^.

a^ — 4^. + 4 = {a — 2)2 = (2 — ay.

By putting 2b for b, they give

a2 _ 4^2 = (a + 2b) (a — 2Z>).

^2 + 4a^ + 4Z>2 = (^ ^ 2b)\

EXERCISES.

Divide the following expressions into as many factors as

possible :

1. x^ — 16. Ans. (^2 4- 4) (a: + 2) (x — 2).

2. y^ — 16a;4.

3. a;2 + 6:r + 9. Ans. (:r + 3)2.

4. a;2 _ 6:r -f 9.

5. 4.a^x^ — Wy\ 6. lea^a;^ __ 1,

7. 9:^2 __ i2:r^ -f- 4^2. 8. ^2:^2 + 2«a;y + y\

9. 4fl^2^2 ^ ^^^bxy + 62i^^l 10. «4 + 4«2^ ^ 4J2.

11. x!^ — 2.Ty _|. ^4^ 1 2. a;4 _ 4^2^2 ^ 4^4^

13. ^4 _ 4^2^2 ^ 4^4; 14. a^--a%\
15. ^2/1 _ 2^w 4. 1. 16. x^ — 4aa;^ + 4:a\

17. 1 — 2/*-

18, 2:6^ + 2x^yh + t/^js;.

•

^725. Z{X^ + 2xhf + y^) = ^ (aj3 4. ^8)2.
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19.

21.

23-

25-

20.

22.

24.

26,

^2m _ ^»

4^^ — 9itY.

0^ _ i^;2^6^

2:4m „ 2:6^ ^ 1.

27. a;2 + a; + -• 28. ^2m ^ ^ ^
4
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91. By combining the preceding forms, yet other forms

may be found.

For example, the factors

(«2 + ah-\- b^) (a2 - aJ + b^), (1)

. are respectively the sum and difference of the quantities

Or + W- and ab.

Hence the product (1) is equal to the difference of the

squares of these quantities, or to

(«2 ^ 52)2 _ aW = a^ + aW + ¥,

Hence the latter quantity can be factored as follows

:

a* + aW \-¥ — {a^ + ab + b^) {a^ -^ ab \- b'^).

EXERCISES.
Factor

I. x^ + xY -\- y^' 2. a^ + 8«2^2 ^ iej4,

3. «4 + 9a2a;2 + Sla;^. 4. a^"" ^ d^^ b^^ -\- ¥^,

8. m^ — a^ _|_ 2a^ — ¥, Ans, {m — a -\- b) {m -\- a — b)*

Here the last tliree terms are a negative square. Compare § 82.

9. a^ — 4^2 _|_ 4^^ — ^^ 10^ ^8 — 4^j2 _|_ 4^j^ — fjf.2^

93. The following expression occurs in investigating the

area of a triangle of which the sides are given

:

(a ^ b -\- c) {a ^ b — c) {a — b -\- c) {(I — b — c), (1)

By § 80, 3, the product of the first pair of factors is

(a + Z>)2 — c2 =r a2 4- 2«& + Z>2 _ c2
;

and that of the second pair,
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By the same principle, the product of these products is

(^2 4- 2>2 _ ^2)2 _ ^aW,

which we readily find to be

^4 _|_ ^4 _!_ ^4 _ 2^2^ _ 2Z»%2 _ 2c^a\ (2)

Hence this expression (2) can be divided into the four

factors (1).

Factors of Binomials.

93. Let us multiply

x""-^ + ax""-^ 4- a^x^~^ + + a'^'^^x + a^-i by x — a.

OPERATION.

a; — a

it'« _j_ ax^-^ + «2^w-2 + a%^-3 4_ 4_ ^/^-i ^
— ax'^-'^ — a^a;'^-^ — ahf'-^ — .... — fl^^^-i^. — a^

Prod., ii;^ — a^

The intermediate terms all cancel each other in the product,

leaving only the two extreme terms.

The product of the multiplicand by .^; — a is therefore

x^ _ a'^. Hence, if we divide x'^ — a'^ by x — a, the quotient

will be the above expression. Hence the binomial x'^ — a^

may be factored as follows

:

x'>^ -^aP' = {x — a) {x'^-^+ ax'^-^-i-a^x^-^+ -\-a'^~^x-\-a^-^).

Therefore we have,

Theorem. The difference of any power of two num-
Tbers is divisible by the difference of the numbers
themselves.

Illustration. The difference between any power of 7

and the same power of 2 is divisible by 7 — 2 = 5. For

instance,

72 _ 22 ^ 45 ^ 5.9.

73 — 23 = 335 = 5.67.

74 -2^ = 2385 = 5.477.

etc. etc. etc
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94. Let us multiply

^71-1 _ axr^-"- + a^x^-^ — + (— «)'^-2^ + (— a)^-i

bj a; + a = i^; — (— ^).

Eem. This expression is exactly like the preceding, except

that — a is substituted for a. It will be noticed that the

coefficients of the powers of x in the multiplicand are the

powers of — a, because

{—ay = —a,

(_a)3 ^ ^a%
{-ay =: ^aS

etc. etc.

The sign of the last term will be positive or negative,

according as n — 1 is an even or odd number.

OPERATION.

xn-^—ax'^'^+ a^x'^-^—aH^'^-^...,-\-{-'aY-^X'\-{—ay-^

X -{- a := X — {— a)

xn — ax""-^ -h o?x^-^ — aH'^-^ . . . + {—ay-^

+ ax'^-^ — a^x^-^ + a^x^-^.,.. — {—a)^-^x — (— r/)^

Prod., :r^ — {—aY'

Ik
f^' The multiplier x -[- a is the same as x — {— a) (§ 59).

In multiplying the first terms, we use + a, and in the last

ones — (— a), because the latter shows the form better.

Hence, reasoning as in (I), the expression x^ — (— a)^

admits of being factored thus :

a^^ — (— a)"" = {x + a) [x"^'^ — ax"^'^ + a^x^'^ —
.... + (— a)^-^x 4- (~ a)^-i].

If n is an even number, then (— a)^ = a% and

xn _ (— a)^ — x^ — a^.

If n is an' odd number, then {— a^) =z — a% and

xn — (_ aY = x^ + a^
Therefore,

Theorem 1. When n is odd, the binomial af'-^-a^ is

divisible by riJ+ a.
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Theorem 2. When n is even, tlie binomial x^—a"^ is

divisible 'by x-\-a.

Note. These theorems could have been deduced imme-
diately from that of § 93, by changing a infco — a, because

X — a would then have been changed to x -{- a, and x'^ — a^

to x^ -f- a'^ or x'^ — a^, according as 7i was odd or even.

The forms of the factors in the two cases are :

When n is odd, •

x'^ -\- a"" = {x + a) {x""-^ — ax'^-'^ + a^x^~^ — . . . . -f a^-i).

When n is even,

r^n __an — (x -{- a) {x^-^ — ax^-^ + a^x^'^ — . . . . -a^-^), (a)

In the latter case^ the last factor can still be divided, be-

cause x^ — a^ is divisible hjx — « as well as by x + a. We
find, by multiplication,

{x — a) {x""-^ + a^x^-^ -f
«4^-6 + .... + «7i-2)

— x''-^ — ax^-^ + a^x""-^ — aH""-^ + .... + oP'-'^x — oP'-K

Therefore, from the last equation {a) we have

:

When n is even,

x^ — oP z=L (x -\-a) (x—a) {x"^'^ -f a^x^-^-{- d^x^-^ — .... + op-'^).

EXERCISES.
Factor the following expressions, and when they are purely

numerical, prove the results.

Ans, (5 + 2) (5 — 2).

52 — 22 =r 25 — 4 = 21

;

(5 4_2)(5-2) = 7.3 rr: 21.]

I. 5^ — Jd^.

VProof.

(5

2. 53 - 23.

4. 55 — 25.

6. 73 + 23.

8. 7* — 2*.

10. o^-aK
12. x^ -—aK

14. x^ + ct\

16 %a^ __ 2753.

18. ^ + %y\

20. Sa^ + 27¥.

3. 5^ — 2*.

5- 56-26.

7. 73 — 23.

9- x^ — a\

II. x^ - a\

IS- x^ -\-a^

IS. a^ - 8^3.

17. 16^4 — ¥.

19. xi _ 162/4.

21. x^ — G4a6„
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Least Common Multiple.

95. Def. A Common Multiple of several quanti-

ties is any expression of which all the quantities are

factors.

Example. The expression am/^n^ is a common multiple of

the quantities a, m, n^ arriy amn, am^, m^n^, etc., and finally of

the expression itself, mn^nK But it is not a multiple of a^, nor

of X, nor of any other symbol which does not enter into it as a

factor.

Def, The Least Common Multiple of several

quantities is the common multiple which is of lowest

degree. It is written for shortness L. C. M.

KuLE FOR eii^di:n^g the L. C. M. Factor the several

quantities as far as possible.

If the quantities have no common factor, the least

common multiple is their product.

If several of the quantities have a common factor,

the multiple required is the product of all the factors,

each of them heing raised to the highest power which it

has in any of the given quantities,

Ex. I. Let the given quantities be

2ab, U\, 6ac.

The factors are 2, 3, a, h, and c. The highest power of h is

l^, while a and c only enter to the first power. Hence,

L. C. M. =: 6ab^c.

Ex. 2. a^ — b% a^ + 2ab + b^ a^ — 2ab + IP, a^ — ¥.

Factoring, we find the expressions to be,

(^ + b){a-^ b\ {a + bf, {a - bf, {a^+ b^' (a+ b){a^ h).

By the rule, the L. C. M. required is

(a + byia-^-bfia^ + V').
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EXERCISES.
Find the L. CM. of

I. xy, xz, yz, 2. d^i, ¥c, cH, d^CL

3. a, ah, abc, abed. 4. a^, a¥, Id^.

5. x^ — y\ X -^y, X — y.

6. ^2 _ 4^ ^ _ 4^ _l_ 4^ x^ + 4rX -{- 4.

7. 16a^x^ — 4:771% 2ax + m, 2ax — m,

8. ^2 _ 1^ ^2 ^ 1^ ics — 2a; + 1, x'^ -^-^x -\- 1.

9. 4a {h + c), h(a — c), 2aK

10. 2(^ — ^)2, 2(^ + ^)2, 2 (a — Z>)(« + Z>).

11. 3(:r + ^), ^{x-y), d{x^ + y%
12. a — ^>, ^2 __ ^2^ ^3 _ ^3^ ^4 _ ^4.

13- X -{-y, x — y, a -^1), a — K

14. o:^ — a^, ic^ + a^, rr^ — c^^ X -\- a,

15. 2^ — 64^6, x^ — 16aS x^ — 4^2.

16. a- + b, a^ + 2«^ + b% a^ — ¥,

Division of one Polynomial by another.

If the dividend and divisor are both polynomials, and entire

functions of the same symbol, and if the degree of the numer-

ator is not less than that of the denominator, a division may
be performed and a remainder obtained. The method of

dividing is similar to long division in Arithmetic.

96, Case I. When there is only one algebraic sym^
hoi in the dividend and divisor.

Let us perform the division,

3a;4 _ 4^3 + 2ir2 4- 3a: — 1 -f- x^ — x-\- 1.

We first find the quotient of the highest term of the divi-

sor x^, into the highest term of the dividend ^x^, multiply the

whole divisor by the quotient dx^, and subtract the product

from the dividend. We repeat the process on the remainder,

and continue doing so until the remainder has no power of x

so high as the highest term of the divisor. The work is most

conveniently arranged as follows

:
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Dividend. Divisor.

3^^ _ /^x^ _f 2.^'2 4- 3a; — 1 \x^ — x-i-l

3a;« X Divisor, '^X^ — Zx^ + dx^ 3a;2 _ ^ _ 2

First Remainder, — CC^ — X^ -{- 3x — 1

—X X Divisor, — iK^ + i^:^ — X

Second Remainder, — 2^;^ + 4:X — 1

-2 X Divisor, —2x^-{-2x — 2>

Third and last Remainder, 2^ + 1

63

Quotient.

The division can be carried no farther without fractions,

because x^ will not go into x. We now apply the same rule as

in Arithmetic, by adding to the quotient a fraction of which

the numerator is the remainder and the denominator the

divisor. The result is,

x^ — x-{-l x^—x-\-l ^
'

This result may now be proved by multiplying the quotient

by the divisor and adding the remainder.

There is an analogy between the result (a) and the cor-

responding one of Arithmetic. An algebraic fraction like (a),

in which the degree of the numerator is greater than that of

the denominator may be called an improijer fraction. As in

Arithmetic an improper fraction may be reduced to an entire

numler plus a proper fraction, so in Algebra an improper frac-

tion may be reduced to an entire function of a symbol plus a

proper fraction.

EXERCISE^.
Execute the following divisions, and reduce the quotients

to the form {a) when there is any remainder.

1. Divide x^ — 2x — \ by x -\-\,

2. Divide x? -\- 2x^ — %x — \ by i?:; — 1.

3. Divide x^ — Zx^ + 2a; — 1 by a;^ — ir.

2^:4 __ 2^:3 _|_ ^2 _ ^ _ 5
4. Keduce

x^ — x — \

5. Divide 24^3 — 38«2 — 32a + 50 by 2a — 3.

Ans. Qaot. = 12^2 — a——\ Rem. — —->
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6. Divide :r* — 1 by a: — 1.

When terms are wanting in the dividend, they may be considered rs

zero. In this last exercise, the terms in x^, x-, and x are wanting. But
the beginner may write the dividend and perform the operation thus :

a^ + Ox^ + Ox^ + Oaj - 1
|
x- 1

^ — ^ aj3 + a;2 + a; + 1
x^ + Ox'

x^ - X'

aj-^ + Ox

of' — X

x-1
Xj-1

The operation is thus assimilated to that in which the expression is

complete ; but the actual writing of the zero terms in this way is un-

necessary, and should be dispensed with as soon as the student is able

to do it.

7. Divide a^ — 2« + 1 by a — 1.

8. Divide x^ -{- 1 hj x -{- 1,

9. Divide Sa^ + 125 by 2a -+ 5.

10. Divide* ^^^ + 1 by a + 1.

1 1. Divide a^ + 2^2 + 9 by a^ -]- 2a -^ 3.

12. Divide a^ — 1 hj a^ -{- 2a^ + 2a + 1.

13. Divide x^ — 12a;4 + 36x^ — 32 by x^ — 2.

14. Divide {x^ — 2x-^ 1) {x^ — 12^' — 16) by x"^ — IG.

For some purposes, we may equally well perform the operation by
beginning with the term containing the lowest power of the quantity,

or not containing it at all. Take, for instance, Example g :

125 + Sa^
\
5 + 2a

^^^ + 50a 25 - 10a + AcC'

-60a
- 50a - 20a:'

20a'^ + 8a3

20a^ + Sa^

15. Divide 1 + 3:?; + 3x^ + x^ by 1 + x.

16. Divide 1 — 4:X -{- 4x^ — x^ hj 1 — x.

17. Divide 15 + 2« ~ da^ + a^ + 2a^ — a^ by 5+ 4<^ — a\

18. Divide 1—f by 1 -f- 2?/ -f 2^2 ^ y\

19. Divide 64— 64:^:+ 16:z:2_8^_l_4^_^ by —4+ 2:?;+ ^^.

20. Divide 64 — 16^^:^ j^ ofi by 4 — 4a; + x^.
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97. Case II. When there are several algebraic sym-

hols in the divisor and dividend.

Let us suppose the dividend and divisor arranged accordiug

to powers of some one of the symbols, which we may suppose

to be X, as in § 76.

Let us call A the coefficient of the highest power of x in

the dividend, and ^ the term independent of x^ so that the

dividend is of the form

Ax'^ + (terms with lower powers of x) + H.

Let us call a the coefficient of the highest power of x in

the divisor, and h the term of the divisor independent of x, so

,that the divisor is of the form

ax'^ + (terms with lower powers of x) + li.

Then we have the following

Theorem. In order that the dividend may be exact-

ly divisible by the divisor, it is necessary

:

1. That the term containing the highest power of x
in the dividend shall be exactly divisible by the cor-

responding term of the divisor.

2. That the term independent of x in the dividend

shall be exactly divisible by the corresponding term of

the divisor.

Reason, The reason of this theorem is that if we suppose

the quotient also arranged according to the powers of x, then,

1. The highest term of the dividend, Ax'^, will be given by

multiplying the highest term of the divisor, aaP', by the high-

est term of the quotient. Hence we must have,

Ax^
Highest term of quotient = —^•

2. The lowest term of the dividend will be given by multi-

plying the lowest term of the dividend by the lowest term of

the quotient. Hence, we must have,
TT

Lowest term of quotient = -j- •

Eem. 1. Since we may arrange the dividend and divisor

according to the powers of any one of the symbols, the above
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theorem must be true whatever symbol we take in the place

of X.

Eem. 2. It does not follow that when the conditions of

the theorem are fulfilled, the division can always be performed.

This question can be decided only by trial.

We now reach the following rule

:

I. Arrange both dividend and divisor according to

the ascending or descending powers of some coimnon
symbol.

II. Form the first term of the quotient by dividing

the first terjn of the dividend by the first term of the

divisor,

III. Multiply the whole divisor by the term thus

found, and subti^act the product from the dividend.

IV. Treat the remainder as a new dividend in the

same way, anfid repeat the process until a remainder is

found which is not divisible by the quotient.

Ex. I. Divide x^ + 3ax^ + Sa^x + a^ by x + a.

OPERATION.

x^ + dax^ + 3a^x + a^
\

x -{-

a

^+ ^^^ x^ + '^ax + a^

2ax^ 4- da^x

2ax^ + 2a^x

d^x + a^

cfix + a^

"O O"

Ex. 2. Divide x^ — ax^ -\- a (h -\- c) x — ahc—bx^—cx^+ hex

by X — a.

Arrang

x^ — (a-\-h-\-c)x^ -^ {al)-\-'bc-^ca)x — abc
\

x — a

I
Arranging according to § 76, we have the dividend as follows

:

|

^— O^ x^—{b^c)x-\-ic
— {b-}-c)x^-{- {ah-\-bc-\-ca)x

— {b-\-c)x^-\- (ah+ ac) x

hex — ahc

hex — ahc

~0
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EXERCISES,

1. Divide the dividend of Ex. 2 above by x — h.

2. Divide the dividend of Ex. 2 above by x — c.

3. Divide a^ + ¥— (^ + dabc hj a + b — c.

4. Divide a^ -^¥ + 3ab — l hj a + b — 1.

5. Divide u^I^ + 2abx^— {a^ -f I^)x^ by ab + {a — b) x.

6. Divide (a^ — bcf -f ^bV by o? + be,

7. Divide (a + 5 + c) (a2> -{• be -\- ea) — abe hj a + b.

8. Divide {a + b — e){b -\- c — a) {e -{- a — b)

by a^ — 52 — c2 H- 25c.

9. Divide a^ + 5^ + c^ — 3a5c })j a -\-b + c.

10. Divide a;^ -f- 4a^ by a;^ — 2^a; + "Ha^

1 1. Divide a^{b + x) — bf^ix — a) + {a — b)oo^ + abx

by ic + a + i

12. Divide 01^ — ax^ — 5^:^; -\- aW by (ic — t^) (a; + b),

13. Divide 12a%9 — 14^5^ + 6^^^ — a' by %a^7? — «3.

-

CHAPTER IV.

OF ALGEBRAIC FRACTIONS.

98. Bef. An Algebraic Fraction is the expression

of an indicated quotient when the divisor will not ex-

actly divide the dividend.

Example. The quotient of ;? -7- ^ is the fraction — •

Def. . The numerator and denominator of a frac-

tion are called its two Terms.

Transformation of Single Fractions,

99. Reduction to Lowest Terms, If the two terms

of a fraction are multiplied or divided Iby the same
quantity, the value of the fraction will not be altered.



68 ALGEBRAIG OPERATIONS,

CLCC

Example. Consider the fraction — If we divide both
ay

terms by a, the fraction will become -•
J

y
ax X
^'~

y

Corollary, If the numerator and denominator con-

tain common factors, they may be cancelled.

Def, When all the factors common to the two
terms of a fraction are cancelled, the fraction is said to

be reduced to its Lowest Terms.

To reduce a fraction to its lowest terms, factor hoth

terms, ivhen necessary, and cancel all the common
factors.

Ex. I. —̂ = —

.

acny'^ en

The factor ay^ common to both terms is cancelled.

-^ . aW a^

The factor aW common to both terms is cancelled.

Ex. 3. Keduce -1=--
aH

Here a^x is a divisor of both terms of the fraction. Di-

1 o^x 1
vidinff by it, the result is -^» Hence -^- = -*

° "^ (T (vx a^

-r, mu — nu (m — n)u u
Ex. 5. = ) ^ = -.

mx — nx (m -— n)x x

EXERCISES.
Reduce the following fractions to their lowest terms :

aWp^ am
I. —-^—* 2. •

a^¥p ahnx

lOpqr^ 12axy



FRACTIONS. 69

5-

7.

9-

II.

IS-

17.

72(6g— :r)(^-g)

o^y — 'by _

ax — hx

a"- W
•a^ — ^ah + l^

x^ + y^

~a{x-\-'y)

a^ U
a^ - V'^

f
x^ — y^

axm — axn

hym — hyn

10

12

14

16

20 {a + x){m — n)

24 {a^—'ilax+ x^){m—n)

ahf — b^y^

ay — by
'

a^ + 4:ax + 4:X^

a^ — 4:X^

a^ + 8Z^
3

ay + 2J?/ V

mx — nx

{a -\- b) {m — n)

100. Rule of Sifpis in Fractions, Since a fraction is an

indicated quotient, the rule of signs corresponds to that for

division. The following theorems follow from the laws of

multiplication and division

:

1. If the terms are of the same sign, the fraction is

positive ; if of opposite signs, it is negative.

2. Changing the sign of either term changes the

sign of the fraction.

3. Changing the signs of both terms leaves the frac-

tion with, its original sign.

4. The sign of the fraction may be changed by
changing the sign written before it.

5. To these may be added the general principle that

an even number of changes of sign restores the fraction

to its original sign.

1'~~irb- F"""~ ^=^'

a — a — a a

b b — a a — b h — a

Ex.

Ex.2. -% =

Ex. 3, m — n n — m m m — n
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EXERCISES.
Express the following fractions in four different ways with

respect to signs

:

X — y
I. -*

a

m

X -y
a

a

a -^ + c

a + m —'X

p-q
m — n

p -\- q — r "a — m + x

Write the following fractions so that the symbols x and y
shall be positive in both terms :

X — h ^ m — X
7. H 8.c-y

a -\- X — b
9' +

I

n --y
a — X

J-X
a + ^-— X

a — X -\- b

X — a -\-b
II. ^ • *«. ,

b — X a — b -\- y

101. When the numerator is a product, any one or

more of its factors can be removed from the numerator

and made a multiplier.

^ abmx ^ mx 7 ^ 7 1
Ex. = ab == abm =: abmx-

p -vq p + q p -\-q p -\- q

EXERCISES.
Express the following fractions in as many forms as possi-

ble with respect to factors :

pax ab abc
I. -—

•

2. —

.

3. —-T«mn c a -\-

X^ —iP- «4 _ J4 r^_ 16^4

^* a —b ^' X ' X + 2a

103. Reduction to Gimn Denominator. A quan-

tity may be expressed as a fraction with any required

denominator, i>, by supposing it to have the denomi-

nator 1, and then multiplying both terms by D.

For, if we call a the quantity, we have ^ = - = ^ •
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Ex. If we wish to express the quantity ab as a fraction

having xy for its denominator^ we write

ahxy

If the quantity is fractional, both terms of the

fraction must be multiplied by that factor which will

produce the required denominator.

Ex. To express t with the denominator nh^, we multiply

both members by n¥ -r-b := nb^. Thus,

a _ anV^

b
~~

nb^

This process is the reverse of reduction to lowest terms.

EXERCISES.
Express the quantity

1. a with the denominator b,

2. ax " " "

3. ab '' "

4. — " ^^ "

6

- 1 an u

a \-b

H ^ '^ y u cc a

^ — y

* X -\-l

a — l

Negative Exponents.

103. By the principle of § 85, we have

% = a^-K
a^

If we have hy n, the exponent of the second member of

the equation will be negative, and the first member, by can-'

n{x -y)'

X.

«2-l\

a2-f-

x^ + 3a; + 1.

a*-•1.
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celling n factors from each term of the fraction, will become

-^r—-• Hence -j~- = a^'K

By putting for shortness k — n=:s, the equation will be

1— = a'^
a'

Hence,

A ne£ativ6 exponent indicates the reciprocal of the

corresponding quantity with a positive exponent.

If in the formula a^'^ =r -^ we suppose h := n, it will

become a^ =z ~, or a^ -—1. Hence, because a may be any

quantity whatever,

Any quantity with the exponent is equal to unity,

Tliis result may be made more clear by suc-

cessive divisions of a power of a by a. Every

time we eftect this division, we diminish the ex-

ponent by 1, and we may suppose this diminution

to continue algebraically to negative values of

the exponent. On the left-hand side of the

equations in the margin, the division is effected

symbolically by diminishing the exponents ; on

the right the result is written out in the usual

way,

EXERCISES.
In the following exercises, write the quotients which are

fractional both as fractions reduced to their lowest terms, and

as entire quantities with negative exponents, on the principle.

d^ = aaa

a' = aa

a} = a

a^ r= 1

a-i = 1

a

a-2 = 1

aa

etc. etc.

a
ah-\

a:^

=: a%-\ etc.

Divide
.

I. x} by X. Ans. X.

2. x by x^, '

3. _ 2^^3 by l\

Ajis. - or x~'^.
X

-'^ov -%a-W.
a

. 4. ^aW' by — "^a^. Ans.
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5. — ^a% by 4:ad\ 6. \%a%^xy by ^abx.

7. 14«^4^V by — naWd^. 8, Uapqxy by 18a2»c.

9. — dQ>a^p^x^y by — 2^a^xy.

10. 486^2 (a; — 2/)2 by 36 (iz: — y).

11. 42^2^4'bj^Op-i^^y.
\x — yf '' \x — yf

12. 22 (a — V) (m — ^) by 15 [a -\-h)(m \- n).

13. 25 («2 — Z>2) ^^2 _ ^2) by 15 (^ __
5) (^^ ^ ^^),

14. (r^ - 1) (a2 - 4^) by (ir2 -!)(«+ 2^^).

15. i^:^ — 1 by a^ + 1.

16. a^¥x^y^ by a^b^x^y\

17. mhi'^yH by mn^y^A

18. 77i(m + l) (m+ 2) (m+ 3) by m (m— 1) (m— 2) (m— 3).

19. a^ by a**. 20. a^^c^ by ^J'^c'^.

Dissection of Fractions.

104. If the numerator is a polynomial, each of its

terms may be divided separately Tby the denominator,

and the several fractions connected by the signs + or —

.

The principle is that on which the division of polynomials

is founded (§ 87). The general form is

m mm m
The separate fractions may then be reduced to their lowest

terms.

Example. Dissect the fraction

d^aWx — l^amy + l^inz — I21^n^u

IQabx

The general form (1) gives for the separate fractions,

d2aWx __ 18am^ Ubnz _ 12Pn^u

IQabx IQabx 16abx 16abx

Eeducing each fraction to its lowest terms, the sum becomes

dmy Ibnz dbnho
""

Sbx 16ax 4:ax
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EXKRCISES.
Separate into sums of fractions,

abc + hcd + cda + dab

abed

— xyzu + x^yzu^ + xyh'^u — x^yhV
x^yh^v?

(m — n){n -^ q) — (m -\- n)(p — q)

{m — n) {]) — q)

(x — a){y — b)-j- {x ^y){a — b) + {x — b){y — a)
^

x^ — y'^

(a 4- b) {m — n) — {a — b){m -{• n)

Agg^regation of Fractions.

105. When several fractions have equal denomina-

tors, their sum may be expressed as a single fraction

by aggregating their numerators and writing the com-

mon denominator under them.

m m m m
^ a — b b — c , c — a
Ex. 2.

^ — y y — ^ ^ —

y

_ a — b c—b c — a_2c — 2b_2{c—'b)
~ X — y X — y X — y ~ x — y

~~ x — y
Hem. This process is the reverse of that of dissecting a fraction,

EXERCISES.
Aggregate

a ab abc a b

abc abc abc ' {a — by {a — b)^

^ — a
,
y— b a-{- b x — y

a^x a^x a^x a^x

c d
+a—b b — a a — b b — a

a — b a — c c — b c A- a
5. 1

±-—
m — n m — n n — 7n n — m
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106. When all the fractions have not the same denomina-

tor, they must be reduced to a common denominator by the

process of § 102.

Any common multiple of the denominators may be taken

as the common denominator, but the least common multiple is

the simplest.

To KEDUCE TO A COMMOi^ DENOMINATOR. CJlOOSe a
common multiple of the denominators.

Multiply both terms of each fraction by the multi-

plier necessary to change its denominator to the chosen

multiple.

Note 1. The required multipliers will be the quotients of

the chosen multiple by the denominator of each separate

fraction.

ISToTE 2. When the denominators have no common fac-

tors, the multiplier for each fraction will be the product of the

denominators of all the other fractions.

Note 3. An entire quantity must be regarded as having

the denominator 1. (§ 102.)

EXAMPLES.
I. Aggregate the sum

1
1^ _ J^ J\_

a ab cibc abed
in a single fraction.

The least common multiple of the denominators is abccL

The separate multipliers necessary to reduce to this com-

mon denominator are

abed, bed, cd, d, 1.

The fractions reduced to the common denominator abed are

abed — bed -\- ed — d +1
abed^ abed ' abed ' abed^ abed

^, . aled — bed -\- ed — d -\- 1
The sum is ^r-i »

abed

By dissecting this fraction as in § 104, it may be reduced

to its original form.
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2. Eeduce the sum
1 ah c

a T) c'~'^

to a single fraction.

The multipliers are. by Note 2, bed, acd, aid, ale.

Using these multipliers, the fractions become

led — a^cd a¥d — al(^

abcd^ alcd ' alcd^ alcd
'

from which the required sum is readily formed.

3. Eeduce the sum

1 X ^ 01?

"^ x — 1
"^

2^ + 1
^" ^-^*

The least common multiple of the denominators is x^ — 1.

The multipliers are, by Note 1,

x^ — 1, X -\-l, X — 1, 1.

The sum of the fractions is found to be

x'^ — 1 -{- X -{ 1 -{- x^ — X + x^ __ 3x^^

x^ — 1
~~

x^ — 1

EXERCISES.

Eeduce to a single fraction the sums,

3

5

7

9

10.

II

11 11
4. -,—z +

1 — i?;l + a; 1 —X 1 + X

ax x^ . a I
6.

a + X a + X 'a — I a -\- I

a X ^ 2x — 6 6 3

x(a — x) a{a — x) ' 4:X^ — 1 2a; — 1 x

1
I

gy 1

X -}- y x^ — y^ X — y
1 1

+ tT—- +a— I I — c c — a
fi. a

+ -—-; 12
a \-l a—

I

X \- y ' x — y
*"' a—'l^ a-Vl
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«2
-f. J2 I a

1 1_ 1
^4- ^{x-1) ^{x -{-1) x^

_a L ^\
^^'

a — b \ a — b/'

m -\- n ^ — y y m -\- y
m — n X -\- y m^ m {m — y)

^ ^ a x^

20. \a-b^ b-al

a — X c^ — x^

a — b 1) — c c — a {a — b) (b — c) {c — a)
'^' a~+~b

"^
b~+~c

"*"
c -{- a

"^
{a + b) {b + c) {c~^aj'

a

b

m — (x — a) m — (x -}- a)
21. ^ ^^ -»

X -{- y x — y
c ^ a h

22. -^ + — -^

ab be ac

a b c
^3-

(^ _ ^) (^ _ c) + (^ _ a) {b-c)'^ {c-a) (c-b)

X -\-l X — 1 ,

24. + ^x.
X — 1 X -\-l

ab a^ a {a^ + P)

26. 1

27. 1 —
X -\- a X — a

x^ — '^xy + y^

x^ + y'^

28 1 — ?—±-^^-Zl^l

1^ 1_ Jl
^9-

(^ _!_ j^y
+ (« - Z>)2

+ a2 - 6«

a2 _ <^ab + ^>2

3^- ^
+

4^1
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Factoring Fractions.

107. If several terms of the numerator contain a

common factor, the coefficients of this factor may be
added, and their aggregate multiplied by the factor for

a new form of the numerator.

EXAMPLES.

ax —- hx + ex + dx _ {a — b + c -\- d) x

m
~

m

=^{a-h + c + d)^^. (§101.)

dbx + hex + acy — dby __ {ab -\- he) x {ac — ah) y
ahn

~~
ahn ahn

= (a + c)^^ + ic-l)l-

EXERCISES.
Eeduce

ahy — hey — acy mnu + 7npu + pnu

3

4

5

6

8,

9

10

ahe
'

mn
ahq + hcq + ahr 4- her

ahe

ax — hy — dhx — 4:ay

2ma

4:7nx -i- 2y — dax — 6ex -f ay

xyz

a^ + ^a^h + al^ a^x — ^ahe — (3^/ — 4g) o?

xy
' '*

i? + S'

a;2y — [4a; -f a; {2h -- 4g) + 3^cg]

a-^h

ax^ — 4ca; — 3 \mx -\- m {a — x) — am]

2a — dh

4:aVx —- 2eV^ + 2hVx — 2 iif)in\/x — 4:Vx).
'~'

da — ^b
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Multiplication and Division of Fractions.

108. Fundamental Theorems in the Multiplication

and Division of Fractions

:

Theorem L A fraction may be multiplied by any
quantity by either multiplying its numerator or dividing

its denominator by that quantity.

Cor, 1. A fraction may be multiplied by its denominator

by simply cancelling it.

Cor. 2. If the denominator of the fraction is a factor in

the multiplier, cancel the denominator to multiply by this

factor, and then multiply the numerator by the other factors.

m
Ex. —-; TT X a^ {x^ — IP) == mn {x + h),

Ct \pC — 0)

because the multiplier «2 (^2 _ ^2^ = a{x — b)a {x + b).

Theorem 11. A fraction may be divided by either

dividing its numerator or multiplying its denominator.

Theorem IIL To multiply by a fraction, the multi-

plicand must be multiplied by the numerator of the

fraction, and this product must be divided by its de-

nominator.

Let us multiply t by —

We multiply by m by multiplying the numerator (Th. I),

and we divide by n by multiplying the denominator (Th. II).

Hence the product is y—

•

That is, tJxe product of the numerators is the numer-
ator of the required fraction, and the product of the

denominators is its denominator,

EXERCISES.
Multiply

ab \- y , ah ^ X
I. m X — a, 2, — by -•

X —' a '^ X ^ a

ab . «^ u 9 9
3. -zTx ^y ^y-

.

4. --::z^
by x^ - a\
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^ xhj -^ ^ x^ -^ x — m

7. ^Zl_*by^+ i. 8. « + !^by« + ^.

iz;

,

v—ab m -\- n . n — m
g. ab by ay + 10. by ,

^
y X 7n — n ^ 7n -\- n

Ti^ ii- 1
Ix ^ a h X

11. Multiply «+- by 3 + - + --

^ ^ / mn \ I mn \
12. Eeduce [m -\ ]\m — )•

v 711 — nJ \ m -\- n1

13. Eeduce \a -
"f)

(^ " y)*

14. Multiply ^ - ^ by ^.

Ans* —15. Divide — by p.

16. Divide 7 by a + J.
a —

17. Divide —— by x — 1.
iC + 1

18. Divide ^^ +
J
by 1 + xK

19.
^. ., — 2a — 3m , ,^
DiYide — T-~ by J'* — a^.

109. Reciprocal of a Fraction. The reciprocal of

a fraction is formed by simply inverting its terms.

Eor, let T be the fraction. By definition, its reciprocal

will be

1^

a

b

Multiplying both terms by b^ the numerator will be b and

the denominator z x b, that is, a.

Hence the reciprocal required will be -, or, in algebraic

language,

I
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a ^ a

b

110. Def. A Complex Fraction is one of which

either of the terms is itself fractional.

a

b
Example.

m A—
y

a OR

is a complex fraction, of which ^ is the numerator, and m + -

the denominator.

The terms of the lesser fractions which enter into the

numerator and denominator of the main fraction may
be called Minor Terms.

Thus, b and y are minor denominators, and a and x are

minor numerators.

To reduce a complex fraction to a simple one, multi-

ply both terms hy a multiple of the minor denominators.

am

Example. Eeduce
y2

Multiplying both terms by xy^, the result will be

amx
bxy + Jiy^*

which is a simple fraction.

EXERCISES.
Reduce to simple fractions :

X b
a ^ -

X
I. ^* 2.

1
-^i

1

a

X

— X

a -{-X

b
a

X

ab

mil

a -\- X ^' ~bd'

a-^x km
6
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1 +
^"'

n + 1

am -\

h
an

n

2ab

a^ + l + 2

a

a + 2b a

a -{- 2h a

b a -\-b

8.

II. 12.

^3. ^ , o.
1 14.

l-\-x 1 — X

1—x +
1 + X

1 -{- X 1 — X

1—x 1 + X

2x- 3
'

y
a -{- b — x

1
+

a

I + a 1 — a

1 a

1-a r+ a

1

a

a 1 1

b b
+

a

x-y
+ y + X

x^y f- x^

x-\-y x^- f
X — y x^ — y^

Division of one Fraction by Another.

a 711/

111. Let us divide t by — The result will be expressed

by the complex fraction

a

b

m
n

Reducing this fraction by the rule of § 110, it becomes

an

bm^

which is equal to t x — • That is,
b m '

To divide hy a fraction, we have only to Tnultiply by

its reciprocal.
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EXERCISES.

ab , a X -i- 1 , 2x

X ^ X a^ — ¥ , a^-[-db

5.

r + 1 , a; 4- 1 ^ « m , h n——T by -^ T- 6. y H by
X---1 "^ x^ — 1 n '' a m
a h c , m n p

7. -4--4.-by h--i---
* x y z ' x y z

a—- b a -\- b ^ a—b a \-

b

Reciprocal Relations of Multiplication and
Division.

113. The fundamental principles of the operations upon
fractions are included in the following summary, the under-

standing of which will afford the student a test of his grasp of

the subject.

1. The reciprocal of the reciprocal of a number is

equal to the number itself. In the language of Algebra,

1

T = ^-

a

2. The reciprocal of a monomial may be expressed

by changing the algebraic sign of its exponent.

3. To multiply by a number is equivalent to dividing

by its reciprocal, and vice versa. That is,

jy X a or — = aN,

a

and vice versa, iv x - = —
a a
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4. When the mimerator or denominator of a fraction

is a product of several factors, any of these factors may
be transferred from one term of the fraction to the other

by changing it to its reciprocal. That is.

, 7
- abc

abc DC p
par

~~
1

~~
qr^^ - par ^

etc.

^ abc Ic p~^dbc
Or, = -—j = , etc.

pqr a ^pqr qr

5. Mxdtiplicaticm by a factor

greater than nnity increases^

less than unity diminisJies.

Bivision by a divisor

greater than unity diminishes^

less than unity increases.

6. («) When a factor becomes zero, the product also

becomes zero.

{^) When a denominator becomes zero, the quotient

becomes infinite. That is,

Oxa==:«xO = 0.

- =: infinity.

Note. The following way of expressing what is meant by

this last statement is less simple, but is logically more correct

:

If a fraction has a fixed numerator, no matter how
small, we can make the denominator so much smaller

that the fraction shall be greater than any quantity we
choose to assign.

EXERCISE.
If the numerator of a fraction is 2, how small must the

denominator be in order that the fraction may exceed one

thousand? That it may exceed one million? That it may
exceed one thousand millions ?



BOOK III.

OF E QUA TIONS.

CHAPTER I.

THE REDUCTION OF EQUATIONS.

Definitions.

113. Def. An Equation is a statement, in the lan-

guage of Algebra, that two expressions are equal.

114. Def. The two equal expressions are called

Members of the equation.

115. Def. An Identical Equation is one which is

true for all values of the algebraic symbols which enter

into it, or which has numbers only for its members.

Examples. The equations

14 + 9 r= 29 — 6,

5 _l_ 13 _ 3 X 4 — 6 = 0,

which contain no algebraic symbols, arc identical equations.

So also are the equations
X = X,

X — X ^=1 0,

(x -{- a) {x — a) — x^ — a^,

because they are necessarily true, whatever values we assign to

X, a, and y.

Eem. All the equations used in the preceding two books

to express the relations of algebraic quantities are identical

ones, because they are true for all values of these quantities.
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116. Def, An Equation of Condition is one whicli

can Ibe trne only when the algebraic symbols are equal

to certain quantities, or have certain relations among
themselves.

Examples. The equation

:c + 6 = 22

can be true only when x is equal to 16, and is therefore an

equation of condition.

The equation
X -\- h =z a

can be true only when x is equal to the difference of the two

quantities a and h

Rem. In an equation of condition, some of the quantities

may be supposed to be known and others to be unknown.

117. Def. To Solve an equation means to find

some number or algebraic expression which, being sub-

stituted for the unknown quantity, will render the

equation identically true.

This value of the unknown quantity is called a Root
of the equation.

EXAMPLES.
1. The number 3 is a root of the equation

2a;2 _ 18 m 0,

because when we put 3 in place of x, the equation is satisfied

identically.

2. The expression is a root of the equation

"zcx — 4:a + 2b = 0,

when x is the unknown quantity, because when we substitute

this expression in place of x, we have

2c(^^^)^^a + 2b = 0,
^

or ^a — 2b — 4ca-{-2b = 0,

which is identically true.
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Eem. It is common in Elementary Algebra to represent

unknown quantities by the last letters of the alphabet, and

quantities supposed to be known by the first letters. But this

is not at all necessary, and the student should accustom him-

self to regard any one symbol as an unknown quantity.

Axioms.

118. Def. An Axiom is a proposition wMch is

taken for granted, without proof.

Equations are solved by operations founded upon the fol-

lowing axioms, which are self-evident, and so need no proof.

Ax. I. If equal quantities be added to the two

members of an equation, the members will still be equal.

Ax. II. If equal quantities be subtracted from the

two members of an equation, they will still be equal.

Ax. III. If the two members be multiplied by equal

factors, they will still be equal.

Ax. IV. If the two members be divided by equal

divisors (the divisors being different from zero), they

will still be equal.

Ax. V. Similar roots of the two members are equal.

These axioms may be summed up in the single one.

Similar operations upon equal quantities give equal

results,

119. An algebraic equation is solved by performing

such similar operations upon its two members that the

unknown quantity shall finally stand alone as one

member of an equation.

Operations ofAddition and Subtraction—Trans-
posing Terms.

130. Theorem. Any term may be transposed from

one member of an equation to the other member, if its

sign be changed.
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Proof. Let us put, in accordance with § 41, 2d Prin.,

t, any term of either member of the equation.

a, all the other terms of the same member.

h, the opposite member.

The equation is then

Now subtract t from both sides (Axiom II),

or by reduction, a ^= h — t.

This equation is the same as the one from which we started,

except that t has been transposed to the second member, with

ifcs sign changed irom + to —

.

If the equation is

b — t =^ a,

we may add t to both members, which would give

b = a + L

NUMERICAL EXAMPLE.
The learner will test each side of the following equations :

194.3_94-4 rr: 7+ 10.

Transposing 4, 194-3— 9 = 7 + 10— 4.

9, 19 + 3 = 7+ 10—4+ 9.

19, 3 = 7 + 10-4+ 9-19.

"3, = 7 + 10—4+ 9-19—3.

131. Rem. All the terms of either member of an

equation may be transposed to the other member,
leaving only on one side.

Example. If in the equation

b = a + t,

we transpose b, we have = a + t — b.

By transposing a and t, we have

b-^a^t = 0.

123. Changing Signs of Members. If we change the signs

of all the terms in hoth memhers of an equation, it will still

be true. The result will be the same as multiplying both
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members by — 1, or transposing all the terms of each member
to the other side, and then exchanging the terms.

Example. The equation

17 + 8 = 11 + 14

may be transformed into = 11 + 14 — 17 — 8,

or, = — 11 — 14 + 17 -f 8,

or, — 17 - 8 =z — 11 _ 14.

Operation of Multiplication.

133. Clearing of Fractions, The operation of multipli-

cation is usually performed upon the two sides of an equation,

in order to clear the equation of fractions.

To clear an equation of fractions

:

First Method. Multiply its members by the least

common multiple of all its denominators.

Secoi^d Method. Multiply its members by each of
the denominators in succession,

Eem. 1. Sometimes the one and sometimes the other of

these methods is the more convenient.

Rem. 2. The operation of clearing of fractions is similar

to that of reducing fractions to a common denominator.

Example of First Method. Clear from fractions the

equation

Here 24 is the least common multiple of the denominators.

Multiplying each term by it, we have,

Q,x-\-Ax + ^x = 624,

or 13:2; r= 624.

Example of Secokd Method. Clear the equation

X — a X '\- a X

Multiplying by x — a, we find

ax — a^ ex — ca
a A 1 = 0.

X \- a X
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Multiplying by rr -f- «,

ax -\- a^ -{- ax — a^ -\ = 0.
X

Keducing and multiplying by Xy

2ax^ + cx^ — ca^ = 0.

EXERCISES.
Clear the following equations of fractions :

/iX rt r\ XX ^_--6 = 0. .. 5-7 = ^^-

^^^_K X x^ _ b

2+3~i-^- 4- « + ««-«

1 .y>l - J-. 6 ?.^-?
ab^ a^ b~ aW " 3

"^ 4 ~ o'

II

13

cc — a X -\- a

X \- a

X — a

x^ 4- 2ax

X — a

^_y
y ^

a

X
. y -

10.

14.

a — ^ h — a
""

Here the second term is the same as

X -{- a X —h

X ^ a ^ x+ b

x — 2 x-^2
x — 6

~' X + b

X — a

X -f a

X -\- a

X — a

-y

a

a — X X — a

Reduction to the Normal Form. (

124. Def, An equation is in its Normal Form
when its terms are reduced and arranged according to

the powers of the unknown quantity.

In the normal form one member of the equation is expressed

as an entire function of the unknown quantity, and the other

is zero. (Compare §§ 50, ?6.)

To reduce an equation to the normal form

:

I. Transpose all the terms to one mewiber of the equa-

tion, so as to leave as the other mernber.
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II. Clear the equation of fractions.

III. Clear the equation of -parentheses hy performing
all the operations indicated.

lY. Collect each set of tains containing lihe powers

of the unhnown quantity into a single one.

V. Divide hy any common factor which does not con-

tain the unhnown quantity.

Eem. This order of operations may be deviated from

according to circumstances. After a little practice, the student

may take the shortest way of reaching the result, without re-

spect to rules.

EXAMPLES.
1. Eeduce to the normal form

(a; — 2) {x — 3) _ (x + 2) (a: + 4)

x — h
~^

i?; + 5

1 Clearing of fractions,

{x + 5) {x — 2) {x — Z)^(x — 5) (x + 2) {x + 4).

2. Performing the indicated operations,

^ _ 19^' _{_ 30 = ^3 _|_ ^2 _ 222; — 40.

3. Transposing all the terms to the second member and

reducing,

^ z=.x^ — ?>x— 70,

which is the normal form of the equation.

Kem. Had we transposed the terms of the second member
to the first one, the result would have been

~ a;2 + 3:^; + '^0 = 0.

Either form of the equation is correct, but, for the sake of

uniformity, it is customary to transpose the terms so that the

coefiicient of the highest power of x shall be positive. If it

comes out negative, it is only necessary to change the signs of

all the terms of the equation.

Ex. 2. Reduce to the normal form,

hmx^ 2ax ^mx^ ^
-„ z=^ 2mx — D«.

X — a X -{- a X? — ci'^



92 EQUATIONS.

1. Transposing to the first member,

^mx^ 2ax 3ma^
. __ 2mx -i- 6a ~ 0.

X — a X -\- a x" — a'^

2. To clear of fractions, we notice that the least common
multiple of the denominators is x'^ — a\ Multiplying each

term by this factor, we have,

6mx^{x+a)—2ax{x—a)—3mx^—2?nx{x^—a^) + 6a(x^—a^) = 0.

3. Performing the indicated operations,

6ma^+6amx^—2ax^+2a^x—dma^—2mx^-\-2a^mx+6ax^—6a^=0.

4. Collecting like powers of x, as in § 76,

{da + 6am) x^ + {2a^ + 2a^m) x — 6a^ = 0,

6, Every terra of the equation contains the factor a. By
Axiom IV, § 118, if both members of the equation be divided

by a, the equation will still be true. The second member
being zero, will remain zero when divided by a. Dividing

both members, we have

(3 + 6771) x^ + 2a{l+m)x^ 6a^ = 0,

which is the normal form.

EXERCISES.
Eeduce the following equations to the normal form, x, y,

or z being the unknown quantity

:

dy^ -\-2y __y -—1 x — a__^x-{-a

7 "~"2 ' X -j- a
~~

X

3-
a; — 7 2x-{-6

2x -h 10 4a; — 2

a^ ^ Za^x + 2^3 ^ ^ n^ — 6ax^

2x -\- a 2x — a

6. '^-^- + -±- = 0.a-\-bb-{'Z^a + z

7? z^ ah
a —z a^ — x^ ^ — c^
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7 + ^^S-^+i3=0.
y y^ y^

a a? ^^ _ 1

X — a x^ — a^ x^ — a^

I)^ ¥ h^
+

c — z c^ — z^ d^ — z^ c^ — Z""

a b mm
II. = 12. = -.

1 X — a n .1
nx X -^—

X X tX/

13. T +1 ' 1 ^ a^
a a'

-2

X x

14.

15.

16.

_3z__ _ 6z^ _ 1

I ^ 3 " z'

ax hx

1+ '

X -{- a X — a

a h

X a — x a

b
"" i

a
X X

Degree of Equations.

135. Def. An equation is said to be of the n^^ de-

gree when n is the highest power of the unknown
quantity which appears in the equation after it is re-

duced to the normal form.

EXAMPLES.

The equation Ax -{- B ^ is of the first degree.

Ax'^ + B =z " " second "

Ax^ + Bx-\- C =::
" " third

etc. etc.

An equation of the second degree is also called a

Quadratic Equation.
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An equation of the third degree is also called a

Oubic Equation.

Example. The equation

ax^ + hx^y^ -\- y^ -\- ah z:^

is a quadratic equation in x, because x^ is of tlie highest power

of x which enters into it.

It is a cubic equation in y.

It is of the first degree in z.

CHAPTER II.

EQUATIONS OF THE FIRST DEGREE WITH ONE
UNKNOWN QUANTITY.

136. Eemark. By thQ preceding definition of the degree

of an equation, it will be seen that an equation of the first

degree, with x as the quantity supposed to be unknown, is one

which can be reduced to the form

Ax-\- B = 0, {a)

A and B being any numbers or algebraic expressions which

do not contain x.

Such an equation is frequently called a Simple Equation.

Solution of Equations of the First Degree.

137. If, in the above equation, we transpose the term B
to the second member, we have

Ax = ^B.
If we divide both members by A (§ 118, Ax. IV), we have^

B

Here we have attained our object of so transforming the

equation that one member shall consist of x alone, and the

other member shall not contain x.
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To prove that j is the required value of x, we sabsti-

tute it for x in the equation {a). The equation then becomes,

or, by reducing, — ^ + ^ = 0,

an equation which is identically true. Therefore, — -^ is

the required root of the equation (a), (§ 117, Def.)

138, In an equation of the first degree, it will be unneces-

sary to reduce the equation entirely to the normal form by

transposing all the terms to one member. It will generally be

more convenient to place the terms which do not contain x in

the opposite member from those which are multiplied by it.

Example. Let the equation be

mx -\- a =1 nx -\- l, (I)

We may begin by transposing a to the second member and

nx to the first, giving at once,

mx — nx ^= h — a,

or (m — n)x =z b -— a,

without reducing to the normal form. The final result is the

same, whatever course we adopt, and the division of both

members hjm — n gives

h — a

7n — 71

139. The rule which may be followed in solving equations

of the first degree with one unknown quantity is this

:

I. Clear the equation of fractions,

II. Transpose the terms which are multiplied hy the

unhnown quantity to one member ; those which do not

contain it to the other,

III. Divide hy the total coefficient of the unhnown
quantity.
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Note. Rules in Algebra are given only to enable the beginner to go
to work in a way which will always be sure, though it may not always

be the shortest. In solving equations, he should emancipate liimself

from the rules as soon as possible, and be prepared to solve each equa-

tion presented by such process as appears most concise and elegant. No
operation upon the two members in accordance with the axioms (§ 118)

can lead to incorrect results (provided that no quantity which becomes
zero is used as a multiplier or divisor), and the student is therefore free

to operate at his own pleasure on every equation presented.

EXAMPLES.

^. ax .

1. Given ^ = 1.
hy

It is required to find the value of each of the quantities a,

h, X, and y, in terms of the others.

Clearing of fractions, we have

ax = hy.

To find a, we divide by x, which gives

III
a — —'

x

To find ^, we divide by y, which gives

ax _
~y
~

To find X, we divide by a, which gives

by

a

To find y, we divide by d, which gives

ax

Thus, when any three of the four quantities a, h, x, and y,

are given, the fourth can be found.

2. Let us take the equation,

x — 'i — ^^ + ^

^X-\- 10 "~ A:X — %

Clearing of fractions, we have

4t2 — 30.^ -j- 14 = 4:«;2 _|_ 32^^ 4. 60.
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»
Transposing and reducing,

— %^x — 46.

Dividing both members by •— 62,

_ 46 _ _ 46
"" ~ - 62 ~ ~

62

23
31'

This result should now be proved by computing the value of both

23
members of the original equation when — — is substituted for a*.

ol

X X __ax 1

^* m n~ h m
Proceeding in the regular way, we clear of fractions by

multiplying by mnh This gives

nbx + 7nl)X = amnx — nh.

Transposing and reducing,

{nd -f- md — amn) x =z — nh.

Dividing by the coefficient of x,

__ nh _ nb

nb -^ mb — amn aynn — mb — nb

These two values are equivalent forms (§ 100).

But we can obtain a solution without clearing of fractions.

ax
Transposing -y, we have

X X

m n

ax

T
which may be expressed in the form

/I 1 a\

\m n b!

1^

m
Dividing by the coefficient of x,

m
X ^=z —

1 ^_?
m 71 b

This expression can be redi ced to the other by § 110.

7



98 EQUATIONS OF THE FIRST DEGREE.

EXERCISES.
Find the values of x, y, or u in the following equations

:

b — ^x Sx — %
X. 3-3
3-

•^
4.

^' ^ ^ - 22
i + 2 + 3 - ^^•

S-
y ^y y -1a^ b c~

7-

U U tl-

3-4 + 5=='^-

9-
u u 1 1

2. — X := a.

4.
a; + 23 _

x-^1
-^•

6.
36 _ 45

u — b~ u

u — 2Q. 8. a— dx =: b -}- ax,

10. 3a; H — = X.

a c

c — x~~ a — X

12.
x — 1 x — 2 X — 6 X

x^2 x — d x — Q x — n

13- —y = a — h.

1 11 1
14.

x — 2 X — 4: x — Q X — 1

^5- l(^-i)-|("--I)+i(^-i) = <>-

tl u a
16. - +

a h — a h -\- a

X 1
17. ax -{- b = - + y

a b

u — a u — b u — c _ u — {a \- b -\- c)

b c a ~~ abc

711 (x -\- a) n (x -\- b)

X -\-b X -{- a

20. (.^—^)3 4-(.T_Z>)3 4. {x—cf =z 3 (:^;— «) (x—b) {x—c).

Find the values of each of the four quantities, a, b, c, and

d, in terms of the other three, from the equations

21. 7 h T -7 =0. 22. — + 1 =r: 0.
b — c b — d cd
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Problems leading to Simple Equations.

130. The first difficulty which the beginner meets with in

the solution of an algebraic problem is to state it in the form

of an equation. This is a process in which the student must

depend upon his own powers. The following is the general

plan of proceeding

:

1. Study the problem, to ascertain what quantities in it

are unknown. There may be several such quantities, but the

problems of the present chapter are such that all these quan-^

titles can be expressed in terms of some one of them. Select

that one by which this can be most easily done as the unknown
quantity.

2. Represent this unknown quantity by any algebraic sym-

bol whatever.

It is common to select one of the last letters of the alpha-

bet for the symbol, but the student should accustom himself

to work equally well with any symbol.

3. Perform on and with these symbols the operations re-

quired by the problem. These operations are the same that

would be necessary to verify the adopted value of the unknown
quantity.

4. Express the conditions stated or implied in the problem

by means of an equation.

5. The solution of this equation by the methods already

explained will give the value of the unknown quantity. It is

always best to verify the value found for the unknown quan-

tity by operating upon it as described in the equation.

EXAMPLES.
I. A sum of 440 dollars is to be divided among three people

so that the share of the second shall be 30 dollars more than

that of the first, and the share of the third 80 dollars less than

those of the first and second together. What is the share of

each?

Solution. 1. Here there are really three unknown quantities, but

it is only necessary to represent the share of the first by an unknown
symbol.
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2 Therefore let us put

X = share of the iSrst.

3. Then, by the terms of the statement, the share of the second will he

X + 30.

To find the share of the third we add these two together, which makes

2x + 30.

Subtracting 80, we have

2x — 50
as the share of the third.

We now add the three shares together, thus,

Share of first, x
" " second, x-^-Z^
" " third, 2^--_50

Shares of all, ^x — 20

4. By the conditions of the problem, these three shares must together

make up 440 dollars. Expressing this in the form of an equation, we
have

^x — 20 z= 440.

5. Solving, we find

x :=! 115 — share of first.

Whence, 115 -f 30 =r 145 = share of second.

115 + 145 — 80 =J^O =: share of third.

Sum = 440. Proof.

Ex. 2. Divide the number 90 into four parts, such that

the first increased by 2, the second diminished by 2, the third

multiplied by 2, and the fourth divided by 2, shall all be equal

to the same quantity.

Here there are really five unknown quantities, namely, the four parts

and the quantity to which they are all to be equal when the operation of

adding to, subtracting, etc., is performed upon them. It will be most

convenient to take this last as the unknown quantity. Let us therefore

put it equal to u. Then,

Since the first part increased by 2 must be eqaal to ?/, its value will

be u — 3.

Since the second part diminished by 2 must be equal to u, its value

will be \i + 2.

Since the third part multiplied by 2 must be \i, its value will be ^
•

Since the fourth part divided by 2 must make u, its value will be 2?i.
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Adding these four parts up, their sum is tbund i;o oe -- •

By the conditions of the problem, this sum must make up the num-

Iber 90. Therefore we have

? =

-

Solving this equation, we find

U = 20.

Therefore

1st part = u — 2 = IS.

2d '' =:u + 2 = 22.

^ dd '' =u-T-2 = 10.

4th " =2u = 40.

The sum of the four equals 90 as required, and the first part increased

by 2, the second diminished by 2, etc., all make the number 20, as re-

quired.

r
PROBLEMS FOR EXERCISE.

1. What number is that from which we obtain the same
result whether we multiply it by 4 or subtract it from 100?

2. What number is that which gives the same result when
we diyide it by 8 as when we subtract it from 81 ?

3. Divide 284 dollars among two people so that the share

of the first shall be three times that of the second and $1G

more.

4. Find a number such that ^ of it shall exceed \ of it

by 12.

5. A shepherd describes the number of his sheep by saying

that if he had 10 sheep more, and sold them for 5 dollars each,

he would have 6 times as many dollars as he now has sheep.

How many sheep has he ?

6. An iapplewoman bought a number of apples, of which
60 proved to be rotten. She sold the remainder at the rate of

2 for 3 cents, and found that they averaged her one cent each
for the whole. How many had she at first ?

7. If you divide my age 10 years hence by my age 20 years

ago, you will get the same quotient as if you should divide my
present age by my age 26 years ago. What is my present age ?

8. Divide $500 among A, B, and 0, so that B shall have
$20 less than A, and C $20 more than A and B together.
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9. A- father -left $10000 to be diyidecl among his five chil-

dren, directing thai each -should receive $500 more than the

next younger one. What was the share of each ?

10. A man is 6 years older than his wife. After they have
been married 12 years, 8 times her age would make 7 times
his age. What was their age when married ?

11. Of three brothers, the youngest is 8 years younger than
the second, and the eldest is as old as the other two together.

In 10 years the sum of their ages will be 120. What are their

present ages ?

12. The head of a fish is 9 inches long, the tail is as long

as the head and half the body, and the body is as long as the

head and tail together. What is the whole length of the fish ?

13. In dividing a year's profits between three partners, A,
B, and 0, A got one-fourth and $150 more, B got one-third

and $300 more, and C got one-fifth and $60 more. What was
the sum divided ?

14. A traveller inquiring the distance to a city, was told

that after he had gone one-third the distance and one-third

the remaining distance, he would still have 36 miles more to

go. What was the distance of the city ?

15. In making a journey, a traveller went on the first day
one-fifth of the distance and 8 miles more ; on the Second day
he went one-fifth the distance that remained and 15 miles

more ; on the third day he went one-third the distance that

remained and 12 miles more ; on the fourth he went 35 miles

and finished his journey. What was the whole distance

travelled ?

16. When two partners divided their profits, A had twice

as much as B. If he paid B $300, he would only have half as

much again as B had. What was the share of each ?

17. At noon a ship of war sees an enemy's merchant vessel

15 miles away sailing at the rate of 6 miles an hour. How fast

must the ship of war sail in order to get within a mile of the

vessel by 6 o'clock ?

18. A train moves away from a station at the rate of h
miles an hour. Half an hour afterward another train follows

it, running m miles an hour. How long will it take the latter

to overtake it ?

19. What two numbers are they of which the difference is

9, and the difference of their squares 351 ?

20. A man bought 25 horses for $2500, giving $80 a piece
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for poor horses and $130 each for good ones. How many of
each kind did he buy ?

21. A man is 5 years older than his wife. In 15 years the
snms of their ages will be three times the present age of the
wife. What is the age ofeach ?

22. How far can a person who has 8 hours to spare ride in
a coach at the rate of 6 miles an hour, so that he can return at

the rate of 4 miles ah hour and arrive home in time ?

23. A working alone can do a piece of work in 15 days,
and B alone can perform it in 12 days. In what time can they
perform it if both work together ?

Method of Solution. In one day A can do ^^ of the whole work
and B can do yi-. Hence, both together can do (xV+ tV) of it.

If both together can do it in x days, then they can do - of it in 1 day.
X

XT 111
Hence, - = — + —

X 13 15

is the equation to be solved.

24. A cistern can be filled in 12 minutes by two pipes which
run into it. One of them alone will fill it in 20 minutes. In
what time wotild the other one alone fill it ?

25. A cistern can be emptied by three pipes. The second
pipe runs twice as much as the first, and the third as much as

the first and second together. All three together can empty
the cistern in one hour. In what time would each one sepa-

rately empty it ?

26. A marketwoman bought apples at the rate of 5 for two
cents, and sold half of them at 2 for a cent and the other half

at 3 for a cent. Her profits were 50 cents. How many did

she buy ?

27. A grocer having 50 pounds of tea worth 90 cents a
pound, mixed with it so much tea at 60 cents a pound that

the combined mixture was worth 70 cents. How much did

he add ?

28. A laborer was hired for 40 days, on the condition that

every day he worked he should receive $1.50, but should for-

feit 50 cents for every day he was idle. At the end of the

time $52 were due him. How many days was he idle ?

29. A father left an estate to his three children, on the

condition that the eldest should be paid $1200 and the second

$800 for services they had rendered. The remainder was to be
equally divided among all three. Under this arrangement.
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the youngest got one-fourth of the estate. What was the
amount divided ?

30. A person having a sum of money to divide among
three people gave the first one-third and $20 more, the second
one-third of what was left and $20 more, and the third one-
third of what was then left and $20 more, which exhausted the
amount. How much had they to divide ?

31. One shepherd spent $720 in sheep, and another got the
same number of sheep for $480, paying $2 a piece less. What
price did each pay?

32. A crew which can pull at the rate of 9 miles an hour,

finds that it takes twice as long to go up the river as to go
down. At what rate does the river flow ?

33. A person who possesses $12000 employs a portion of

the money in building a house. Of the money which remains,

he invests one-third at four jier cent, and the other two-thirds

at five per cent., and obtains from these two investments an
annual income of $392. What was the cost of the house ?

34. An income tax is levied on the condition that the first

$600 of every income shall be untaxed, the next $3000 shall

be taxed at two per cent., and all incomes in excess of $3600
shall be taxed three per cent, on the excess. A person finds

that by a uniform tax of two per cent, on all incomes he would
save $200. What was his income ?

35. At what time between 3 and 4 o'clock is the minute-
hand 5 minutes ahead of the hour hand ?

2,6. One vase, holding a gallons, is full of water ; a second,

holding h gallons, is full ot brandy. Find the capacity of a

dipper such that whether it is filled from the first vase and the

water removed replaced by brandy, or filled from the second
vase and the latter then filled with water, the strength of the

mixture will be the same.

37. Divide a number m into four such parts that the first

part increased by a, the second diminished by a, the third

multiplied by a, and the fourth divided by a shall all be equal.

38. Divide a dollars among five brothers, so that each shall

have n dollars more than the next younger.

39. A courier starts out from his station riding 8 miles an
hour. Four hours afterwards he is followed by another riding

10 miles an hour. How long will it require for the second to

overtake the first, and what will be the distance travelled ?

If X be the number of hours required, the second will have travelled

X hours and the first (aj + 4) hours when they meet. At this time they

must have travelled equal distances.
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Problem of the Couriers.

Let us generalize the preceding problem thus :

131. A courier starts out from his station riding c

miles an hour ; h hours later, he is followed by another

riding a miles an hour. How long will the latter he in

overtaking the first, and wha/t ivill he the distance from
the point of departure.

Let us put t for the time required. Then the first courier

will have travelled {t-\-1i) hours, and the second t hours.

Since the first travelled c miles an hour, his whole distance at

the end of ^+ ^ hours will be (t+ Ji) c. In the same way, the

distance travelled by the other will be at. When fhe latter

overtakes the former, the distances will be equal ; hence,

at = c{t^ h). (1)

Solving this equation with respect to t, we find

t = -^. (2)
a — c . \ /

Multiplying by a gives us the whole distance travelled,

which is

Distance =
a — c

This equation solves every problem of this kind by substi-

tuting for a, c, and li their values in numbers supposed in the

problem. For example, in Problem 39, we supposed a = 10,

c=zS, h=^4:. Substituting these values in equation (2), we

find

t = 16,

which is the number of hours required.

To illustrate the generality of an algebraic problem, we

shall now inquire what values f shall have when we make dif-

ferent suppositions respecting a, c, and h.

(1.) Let us suppose a = c, or a — c=zO^ that is, the rates

of travelling equal. Then equation (2) will become

. _ ch
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an expression for infinity (§ 112, 6), showing that the one conriei

would never overtake the other. This is plain enough. But,

(2. ) Let us supipose that the second courier does not ride

so fast as the first, that is, a less than c, and a — c negative.

ch
Then the fraction will not be infinite, but will be nega-

it — c

tive, because it has a positive numerator and a negative denom-
inator. It is plain that the second courier would never overtake

the first in this case either, because the latter would gain on

him all the time
;
yet the fraction is not infinite.

What does this mean ?

It means that the problem solved by Algebra is more gen-

eral, that is, involves more particular problems than were

implied in the statement. If we count the hours after the

second courier set out as positive, then a negative time will

mean so many hours before he set out, and this will bring out

a time when, according to our idea of the problem, the horses

were still in the stable.

The explanation of the difficulty is this. Suppose S to be

the point from which the couriers started, and AB the road

alonfif which they travelled from
A S B

S toward B. Suppose also that i——....-^—
the first courier started out

from S at 8 o'clock and the second at 12 o'clock. By the rule

of positive and negative quantities, distances towards A are

negative. Now, because algebraic quantities do not commence
at 0, but extend in both the negative and positive directions,

the algebraic problem does not suppose the couriers to have

really commenced their journey at S, but to have come from

the direction of A, so that the first one passes S, without stop-

ping, at 8 o'clock, and the second at 12. It is plain that if the

first courier is travelling the faster, he must have passed the

other before reaching S, that is, the time and distance are

both negative, just as the problem gives them.

The general principle here involved may be expressed thus

:

In Algebra, roads and journeys, like time, have no begin-

ning and no end.
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(3.) Let us suppose that the couriers start out at the same

time and ride with the same speed. Then li and a — c are

both zero, and the expression for t assumes the form,

'=1-

This is an expression which may have one vahie as well as

another, and is therefore indeterminate. The result is correct,

because the couriers are always together, so that all values of

t are equally correct.

The equation (1) can be used to solve the problem iu other

forms. In this equation are four quantities, a^ c, h, and t, and

when any three of these are given, the fourth can be found.

There are therefore four problems, all of which can be solved

from this equation.

First Problem, that already given, in which the time

required for one courier to overtake the other is the unknown
quantity.

Secokd Problem. A courier sets out from a station,

riding e miles an hour. After h hours another follows

him from the same station, intending to overtake him
ill t hours. How fast must he ride ?

The problem can be put into the form of an equation in

the same way as before, and we shall have the equation (1),

only a will now be the unknown quantity. If we use the

numbers of Prob. 39 instead of the letters, we shall have, in-

stead of equation (1), the following :

16a =: 8 (16 + 4) = 8-20 = 160,

whence a = 10.

If we use letters, we find from (1),

.(^ + 70

and the problem is solved in either case.

Third Problem. TJxe second courier ca,n ride just a
miles an hour, and the first courier starts out h hours
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before him. How fast must the latter ride in order that

the other maij take t hours to overtake hiin ?

Here c, the rate of the first courier, is the unknown quan-

tity, and by solving equation (1), we find

at

Fourth Problem. The swiftest of two couriers can
ride a miles an hour, and the slower c miles an hour.

How long a start must the latter have in order that the

other m^ay require t hours to overtake him ?

Here, in equation (1), h is the unknown quantity. By
solving the equation with respect to /?, we find,

, at — ct
11 = —-,

which solves the problem.

PROBLEMS OF CIRCULAR MOTION.

40. Two men start from the same point to run repeatedly
round a circle one mile in circumference. If A runs 7 miles
an hour and B 5, it is required to know

:

1. At what intervals of time will A pass B ?

2. At how many different points on the circle will they be
together ?

We reason thus : since A runs 2 miles an hour faster than B, he c:ets

away from him at the rate of 2 miles an hour. When he overtakes him,
he will have gained upon him one circumference, that is, 1 mile. This
will require 30 minutes, which is therefore the required interval. In
this interval A will have gone round 8^ and B 2^ times, so that they will

be together at the point opposite that where they were together 30
minutes previous. Hence, they are together at two opposite points of
the circle.

41. What would be the answer to the preceding ques-

tion if A should run 8 miles an hour, and B 5 ?

42. Two race-horses run round and round a course, the

one making tlie circuit in 30, the other in 35 seconds. If

they start out together, how long before they will be
together again ?

Note. In x seconds one will make j^ circuit and the other jr^.
o\j 00

43. If one planet revolves round the sun in T and the

other in T' years, what will be the interval between their

coni unctions?



TWO UNKNOWN QUANTITIES, 109

CHAPTER III.

EQUATIONS OF THE FIRST DEGREE WITH SEVERAL
UNKNOWN QUANTITIES.

Case I. Equations with Two Unknown Qiian-
titles.

133. Def. An equation of the first degree with two
unknown quantities is one which admits of being re-

duced to the form

ax -{-by = 6*5

in which x and y are the unknown quantities and a, &,

and c represent any numbers or algebraic equations

which do not contain either of the unknown quantities.

Def. A set of several equations containing the same
unknown quantities is called a System of Simulta-

neous Equations.

Solution of a Pair of Simultaneous Equations
containing^ Two Unknown Quantities.

133. To solve two or more simultaneous equations,

it is necessary to combine them in such a way as to

form an equation containing only one unknown quan-

tity.

134. Def. The process of combining equations so

that one or more of the unknown quantities shall dis-

appear is called Elimination.

The term "elimination" is used because the unknown

quantities which disappear are eliminated.

There are three methods of ehminating an unknown quan-

tity from two simultaneous equations.
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Elimination by Comparison.

135. Rule. Solve each of the equations with respect

to one of the unhnown quantities and put the two values

of the unhnown quantity thus obtained equal to each

other.

This will give an equation with only one unhnown
quantity, of which the value can he found from the

equation.

The value of the other unhnown quantity is then

found hy substitution.

Example. Let the equations be

ax -{- hy ^^ c,
\

ax + h'y = c\ \

From the first equation we obtain,

(1)

.'. = ^-^.
(2)

(3)

a

From the second we obtain,

c' — h'y

a

Putting these two values equal, we have

c — hy _ c' — h'y

Eeducing and solving this equation as in Chapter II, we

find,

_ ac' — a'c

which is the required value of y. Substituting this value of y
in either of the equations (1), (2), or (3), and solving, we shall

find

_ Vc - he'

~~
ah' — a'h

If the work is correct, the result will be the same in which-

ever of the equations we make the substitution.
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Numerical Example. Let the equations be

^ + ^ = 28,)

3x -2ij ^ 29. j

^^

From the first equation we find

and from the second x = —
^,

o

from which we have 28 — y = —
-,

^ = 11.

Substituting this value in the first equation in x, it becomes

a: = 28 - 11 = 17.

If we substitute it in the second, it becomes

29 + 22 51
X = -3— - y - n,

the same value, thus proving the correctness of the work.

Elimination by Substitution.

136. Rule. Fijtd the value of one of the unknoivn

quantities in terms of the other from either equation,

and substitute it in the other equation. The latter will

have hut one unhnown quantity.

Example. Taking the same equations as before,

ax -^llj r:^ c,

a'x \- yij = c',

the first "equation gives x = —

—

-*

Substituting this value instead of x in the second equation,

it becomes
a'c — a'biJ 1, ,

a -^

Solving this equation with respect to y, W^ get the same

result as before.
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Numerical Example. To solve in this way the last nu-

merical example, we have from the first equation (4),

X = 2% — y.

Substituting this value in the second equation, it becomes

84 — 3y — 2y = 29,

from which we obtain as before,

84-^29
y = —^- := 11.

This method may be applied to any pair of equations in

four ways :

1. Find X from the first equation and substitute its value

in the second.

2. Find x from the second equation and substitute its

value in the first.

3. Find y from the first equation and substitute its value

in the second.

4. Find y from the second equation and substitute its

value in the first.

Elimination by Addition or Subtraction.

137. EuLE. Multiply each equation hy such a factor

that the coefficients of one of the unknown quantities

shall become numerically equal in the two equations.

Then, by adding or subtracting the equations, we
shall have an equation luith but one unknown quantity.

Rem. We may always take for the factor of each equation

the coefficient of the unknown quantity to be eliminated in the

other equation.

Example. Let us tako once more the general equation

ax -}- by = c,

a'x + b'y =z c\

Multiplying the first equation by «', it becomes

aa!x + a!hy = a!c.

Multiplying tho second by a, it becomes

aa'x + aVy = ad.
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The unknown quantity x has the same coefficient in the

last two equations. Subtracting them from each other, we

obtain
{ah — ah') y z=. a'c — ac\

a'c — ac'

y ah — ah'

Rem. We shall always obtain the same result, whichever

the above three methods we use. But as

last method is the most simple and elegant.

of the above three methods we use. But as a general rule the

Problem of the Sum and Difference.

The following simple problem is of such wide application

that it should be well understood.

138. Problem. The sum and difference of two num-
bers hein^ given, to find the numbers.

Let the numbers be x and y.

Let ,s* be their sum and d their difference.

Then, by the conditions of the problem,

x + y = s,

X — y =i d.

Adding the two equations, we have

'^x =1 s + d.

Subtracting the second from the first,

^y z=z s — d.

Dividing these equations by 2,

_ s -\- d __ s d
^ -* ~2"~ -2 + 2

__ s — d __ s d
y "" ~"2~ "^

2
" 2*

We therefore conclude

:

The greater number is found by adding half the dif-

ference to half the sum.
The lesser nuynber is found by subtracting half the

difference front' half the sum.
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This result can be illustrated geometrically. Let AB and

BC be two lines placed end to end, so that AC is their sum.

To find their difference, we

cut off from AB a length ^ ^\ ^\ ^
AC r= BC ; then C'B is the i

P
difference of the two lines.

If P is half way between C and B, it is the middle point

of the whole line, so that

AP = PC = iAC = i sum of lines.

CT r= PB = iC'B = i difference of lines.

If to the half sum AP we add the half difference PB, we
have AB, the greater line.

If from the half sum AP we take the half difference C'P,

we have left AC, the lesser line.

EXERCISES.
Solve the following equations

:

I. Zx — 2y = 33, 2x — 3y = 18.

2. 3x — 6y -=13, 2x + 7y = 81.

3- 7x-{- (jy = a, Qx-\-6y = b.

4- 2x + dy = m, 2x-'3y = n.

5- ax + by := p, ax — by = 5'-

6. 6"^
7
= 26,

X y

6
""7 = 2.

7. = 18,
^ .y
8
"^2 = 29.

8. 2^3 == a,
X y

2 3
= b.

9- 'i (*• + «/) + 3 {x - y) = 103,

Note. Solve this equation first as if aj+^ and x—y were single sym-

bols, of which the values are to be found. Then find x and y hy % 138

preceding.

lo. x-^y -\- {x-^y) = U, x + y ^ ^c - y) = 10.

^^'
x'^ y^ 12' x ^ ~ 12*
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Note. Equations in this form can be best solved as if - and - were

the unknown quantities. See next exercise. ^

^ ' X y 1^^ X y

Solution. If we multiply the first equation by 4, and the second by

8, we have

12_ 8 _ 44 _ 22

X y ~ 10
""

5
'

^1 + ^A = , = %X y 5

Subtracting the first from^he second, we have

23 __ 23

y
- b'

whence,

y = b.

Again, to eliminate - , we multiply the first equation by 5 a»d the

second by 3 and add. Thus,

15 __ 1 _ 11

X y ~ 2'

8 ^ 10 „ 12

whence,

23 _ 23^

X ~ 2'

X = 2.

2 3_^ ?_3___L
^^' x'^ y~ 12' X y~ 12

1 2 _ b_ 2_^_^
^^' x'^ y'' 12' X y~ 24'

5_3__1 3_1__1^
X y~ Q' X y ~ ^O'

5 _ 3 _ _ 1 _3 1_ _ 1^

x + 1 y — l~~ 6' x-i-l y — l'^SO'

2 3 _ 7 2 3 _ 1
^7- x + 2'^ y — d~' 12' x-i'2~y--d'~' 12

15.

16.
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^ a I a h ^

X y ^ y

Case II. Equatio7is of the First JDegree with
Three or More Unknown Quantities.

139. When the values of several unknown quantities are

to be found, it is necessary to have as many equations as un-

known quantities.

If there are more unknown quantities than equations, it

will be impossible to determine the values of all of them from

the equations. All that can be done is to determine the value

of some in terms of the others.

If the number of equations exceeds that of unknown quan-

tities, the excess of equations will be superfluous. If there

are n unknown quantities, their values can be found from any

n of the equations. If any selection of n equations we choose

to make gives the same values of the unknown quantities, the

equations, though superfluous, will be consistent. If different

values are obtained, it will be impossible to satisfy them all.

Elimination.

140. When the number of unknown quantities exceeds

two, the most convenient method of elimination is generally

that by addition or subtraction. The unknown quantities are

to be eliminated one at a time by the following method :

I. Select an unknown quantity to he first eliminated.

It is best to begin ivith the quantity which appears in

the fewest equations or has the simplest coejflcients.

II. Select one of the equations containing this un^
Icnown quantity as an eliminating equation.

III. Eliminate the quantitxj between this equation

and each of the others in succession.
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We shall then have a second system of equations less bj

one in number than the original system and containing a num-

ber of unknown quantities one less.

IV. Repeat the process on the new system of equations,

and continue the repetition until only one equation with

one unhnown quantity is left.

Y. Having found the value of this last unhnown
quantity, the values of the others can he found by suc-

cessive substitution in one equation of each system.

Example. Solve the equations

(1) 42: — 3y — 2; + ^ — 7 = 0,

(2) X— y -^2z-\-2u — 10 =zO

(3) 2a; + 2y — z-^^ti— 2 = 0,^ ^^^

(4) a; + 2y + ;$; + 2t — 19 = 0.

We shall select x as tlie first quantity to be eliminated, and take the

last equation as the eliminating one. We first multiply this equation by
three such factors that the coefficient of x shall become equal to the co-

efficient of X in each of the other equations. These factors are 4, 1, and 2.

We write the products under each of the other equations, thus :

Eq. (1), ^x-^^y — z-\- u— 1 = 0,

(4) X 4, 4:r 4- 8y + ^^ + ^u — 76 ^ 0.

Eq. (2), X— y -\-'^z-\-2ii — 10 = 0,

(4) X 1, :g -f 2y + ^ + ^^ — 19 rzz 0.

Eq. (3), 2x-^2y — z — 2u~- 2 = 0,

(4) X 2, 2a; + 4^/ + 2^ + ^u — 38 = 0.

By subtracting the one of each pair from the other, we obtain the

equations,

lly -f 5;^ + 3i^ — 69 = 0,
^

2y -{-dz-\- 4:11 — 36 = 0. )

The unknown quantity x is here eliminated, and we have three equa-

tions with only three unknown quantities. Now eliminating y by means
of the last equation, in the same way, and clearing of fractions, we find

the two equations,

232; + 38?^ — 258 = 0,

llz + 14?^ — 90 = 0,:

}

(^)
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The problem is now reduced to two equations with two unknown
quantities, which we have already shown how to solve. We find by
solving them,

u — %,

We next find the value of y by substituting these values of z and u

in either of the equations (b). The first of them thus becomes:

lly _ 10 + 24 — 69 = 0,

from which we find,

2^ = 5.

We now substitute the values of y, 2, and u in either of equations {a).

The second of the latter becomes

iT — 5 — 4 + 16 — 10 = 0,

and the fourth becomes,

o; + 10 — 2 + 8 — 19 = 0,

either of which gives

o: = 3.

We can now prove the results by substituting the values of a*, y, z,

and u in all four of equations {a)^ and seeing whether they are all satisfied.

EXERCISES.

1. One of the best exercises for the student will be that of

resolving the previous equations {a) by taking the last equa-
tion as the eliminating one, and performing the elimination

in different orders; that is, begin by eliminating u, then
repeat the whole process beginning with z, etc. The final

results will always be the same.

2. Find the values of x^, x^^ x^, and x^, from the equa-
tions,

i^l + ^2 + ^3 + ^4 = ^^>

X^ "T ^2 ' *^3 *^4 "~~ ^
iV -j

^"^ U^ n ~|~ %fj q "~~ »^ A ——— V,

This example requires no multiplication, but only addition and sub
traction of the different equations.

3a 2x+6y + 3z = 13,

2a; + 2^ — z = 12,

6x + 5y--2z = 29.
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dz + 2u-•hy = 18,

3x -\-y — Au - 9,

X -\-lz-.6y =z 33,

bz--2x--8y + 2u = 15.

X -{- y + z

y + z + u

6.
1 1

X y
1 1

= m

z -}- U + X

1^ + ^ + y

=z C, y~ z

1 1

-z^x

PROBLEMS FOR SOLUTION.

1. A man had a saddle worth $75 and two horses. If the

saddle be put on horse A he will be double the value of B, but
if it be put on B his value will be equal to that of A. What
is the value of each horse ?

2. What number of two digits is equal to 7 times the sum
of its digits, and to 9 times the difference of its digits increased

by 4?

Let X be the first digit, or the number of tens, and y the units. Then

the number itself will be lOar+y. Seven times the sum of the digits are

7aJ4-7^, and 9 times the difference is 9(aj—^ + 4).

3. A number of two digits is equal to 6 times the sum of

its digits, and if 9 be subtracted from the number the digits

are reversed. What is the number?

4. Find a number of two digits such that it shall be equal

to 6 times the sum, of its digits increased by 1, while if 18 be
subtracted from the number the digits will be reversed.

5. Find a number which is greater by 2 than 5 times the

sum of its digits, and if 9 be added to it the digits will be
reversed.

6. What number is that which is equal to 9 times the sum
of its digits and is 4 greater than 11 times their diifereYice ?

7. What fraction is that which becomes equal to f when
the numerator is increased by 2, and equal to f when the de-

nominator is increased by 4.

8. Two drovers A and B went to market with cattle. A
sold 50 and then had left half- as many as B, who had sold

none. Then B sold 54 and had remaining half as many as A.
How many did each have?
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9. A boy bought 42 apples for a dollar, giving 3 cents each
for the good ones and 2 cents each for the poor ones. How
many of each kind did he buy ?

10. Find a fraction which becomes equal to ^ when its

denominator is increased by 13, and to f when 4 is subtracted
from its numerator.

11. Find a fraction which will become equal to f by adding
2 to its numerator, or by adding to its denominator 3, will be-

come ^.

12. A huckster bought a certain number of chickens at

32 cents each and of turkeys at 75 cents each, paying $14 for

the whole. He sold the chickens at 48 cents each, and the
turkeys at $1 each, realizing $20 for the whole. How many
chickens and how many turkeys had he ?

13. An applewoman bought a lot of apples at 1 cent each,

and a lot of pears at 2 cents each, paying $1.70 for the whole.

11 of the apples and 7 of the pears were bad, but she sold the

good apples at 2 cents each and the good pears at 3 cents each,

realizing $2.60. How many of each fruit did she buy?

14. When Mr. Smith was married he was \ older than his

wife ; twelve years afterward he was | older. What were their

ages when married.?

15. A and B together can do a piece of work in 6 days, but
A working alone can do it 9 days sooner than B working
alone. In what time could each of them do it singly ?

16. A husband being asked the age of himself and wife,

replied: ^^If you divide my age 6 years hence by her age
6 years ago, the quotient will be 2. But if you divide her age

12 years hence by mine 21 years ago, the quotient will be 5.

17. The sum of two ages is 9 times their difference, but
seven years ago it was only seven times their difference. What
are the ages now ?

18. Two trains set out at the same moment, the one to go
from Boston to Springfield, the other from Springfield to Bos-

ton. The distance between the two cities is 98 miles. They
meet each other at the end of 1 hr. 24 min., and the train from
Boston travels as far in 4 lirs. as the other in 3. What was the

speed of each train ?

19. A grocer bought 50 lbs. of tea and 100 lbs. of coffee for

$60. He sold the tea at an advance of J on his price, and the

coffee at an advance of \, realizing $77 from both. At what
price per pound did he buy and sell each article ?

Note. If x and y are the prices at which he bought, then \x and |y
are the prices at which he sold.



INCONSISTENT EQUATIONS. 121

20. For p dollars I can purchase either a pounds of tea and
h pounds of coffee, or m pounds of tea and n pounds of coffee.

What is the price per pound of each ?

21. A goldsmith had two ingots. The first is composed of

equal parts of gold and silver, while the second contains 5 parts

of gold to 1 of silver. He wants to take from them a watch-
case having 4 ounces of gold and 1 ounce of silver. How
much must he take from each ingot ?

22. A banker has two kinds of coin, such that a pieces of

the first kind or h pieces of the second will make a dollar. If

he wants to select c pieces which shall be worth a dollar, how
many of each kind must he take ?

23. A has a sum of money invested at a certain rate of

interest. B has $1000 more invested, at a rate 1 per cent,

higher, and thus gains $80 more interest than A. C has in-

vested 1500 more than B, at a rate still higher by 1 per cent.,

and thus gains $70 more than B. What is the amount each
person has invested and the rate of interest ?

24. A grocer had three casks of wine, containing in all

344 gallons. He sells 50 gallons from the first cask; then
pours into the first one-third of what is in the second, and
then into the second one-fifth of what is in the third, after

which the first contains 10 gallons more than the second,

and the second 10 more than the third. How much wine did

each cask contain at first ?

Equivalent and Inconsistent Equations.

141. It is not always the case that values of two unknown
quantities can be found from two equations. If, for example,

we have the equations
a; 4- 2^ = 3,

2x -f 4^ r= 6,

we see that the second can be derived from the first by multi-

plying both members by 2. Hence every pair of values of x

and y which satisfy the one will satisfy the other also, so that

the two are equivalent to a single one.

If the equations were
a; + 2y = 5,

2x-\-4.y = 6,

there would be no values of x and y which would satisfy both

equation.s. ,
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For, if we multiply the first by 2 and subtract the second

from the product, we shall have,

1st eq. X 2, 2:^ 4- % = 10

2d eq., %x_^rj^y_j=_^

Remainder, 0=4,
an impossible result, which shows that the equations are incon-

sistent. This will be evident from the equations themselves,

because every pair of values of x and y which gives

2:c + % = 6,

must also give ic + 2^ == 3,

and therefore cannot give a; + 2^ = 5.

143. Generalization of the preceding result. If we take

any two equations of the first degree between x and y which

we may represent in the form

ax-\-ly — c, ) , .

dx + Vy =z c',
\

^^

and eliminate x by addition or subtraction, as in § 137, we have

for the equation in y,

{ad — ab') y =: a'c — ac',

Now it may happen that we have,

a'b — ab' = identically. (2)

In this case y will disappear as well as x, and the result

will be
a'c — ac' = 0.

If this equation is identically true, the two equations (1)

will be equivalent ; if not true, they will be inconsistent. In

neither case can we derive any value of y or x.

If we divide the above equation, (2), by aa' we shall have

b _ b^^

a
'~

a'

Hence,

Theorem. If the quotient of the coefficients of the

unknown quantities is the same in the tv^o equations,

they will be either equivalent or inconsistent.
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This theorem can be expressed in the following form

:

If the terms containing the unknown quantity in the

one equation can he multiplied by such a factor that

they shall both become equal to the corresponding terms

of the other equation, the two equations will be either

equivalent or inconsistent.

Proof, If there be such a factor m that multiplying the

first equation (1) by it, we shall have

ma = a\

mb =1 V.

Eliminating m, we find

a!b — aV = 0,

the criterion of inconsistency or equivalence.

143. When two equations are inconsistent, there are no

values of the unknown quantities which will satisfy both equa-

tions.

When they are equivalent, it is the same as if we had a

single equation ; that is, we may assign any value we please to

one of the unknown quantities, and find a corresponding value

of the other.

CHAPTER IV.

OF INEQUALITIES.

144. Def. An Inequality is a statement, in the

language of Algebra, that one quantity is algebraically

greater or less than another.

Def. The quantities declared unequal are called

Members of the inequality.

The statement that A is greater than B, or that A — B is

positive, is expressed by
A > B.
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That A is less than B, or that A — B i^ negative is

expressed by^ ^ A<B,
The form Ay B > G

indicates that the quantity^ is less than A but greater than Co

The form A^ B
indicates that A may be either equal to or greater than B, but

cannot be less than B,

Properties of Inequalities.

145. Theorem I. An inequality will still subsist

after the same quantity has been added to or subtracted

from each member.

Proof, If the inequality hQ Ay B, A — B must be posi-

tive. If we add the same quantity H to A and B, or subtract

it from them, we shall have A ±^ H — {B ± H), which is

equal to A — B, and therefore positive. Hence, if
j

A> B,

then A±H> B ±E.

Cor. If any term of an inequality be transposed

and its sign changed, the inequality will remain true.

Theorem IL An inequality will still subsist after

its members have been multiplied or divided by the

same positive number.

Proof. If ^ — i? is positive, then (m or n being positive)

m {A — B) or mA — 7nB will be positive, and so will

A -^ A B
or

n 71 n

Hence, if A> B,

then mA > mB,

and
n n
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It may be shown in the same way that if m or n is negative,

A B
mA — niB or will be negative. Hence,

n 01
^

Theorem III, If botli members of an inequality Tbe

multiplied or divided by the same negative number,
the direction of the inequality will be reversed.

That is, if A > B,

then — mA < — mB,

and <
n n

Theorem IV. If the corresponding members of

several inequalities be added, the sura of the greater

members will exceed the sum of the lesser members.

Theorem F. If the members of one inequality be
subtracted from the non-corresponding members of

another, the inequality will still subsist in the direction

of the latter.

That is, if Ay B,

then A — y y B — X.

The proof of the last three theorems is so simple that it may be sup-

plied by the student.

Theorem VI If two positive members of an in-

equality be raised to any power, the inequality will

still subsist in the same direction.

Proof, Let the inequality be

Ay B. {a)

Because A is positive, we shall have, by multiplying by A
(Th. II),

A^ > AB, (1)

Also, because B is positive, we liave, by multiplying (a)

AB y &. (2)
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Therefore, from (1) and (2),

A^ > B\ (3)

Multiplying the last inequality by Ay

A^ > AB\ (4)

Multiplying (2) by ^,

AB'^ > B\ (5)

Whence, A^ > B\

The process may be continued to auy extent.

Examples of the Use of Inequalities.

146. Ex. I. If a and h be two positive quantities, such

that
«2 + ^2 ^ 1^

Tve must have « + Z> > 1.

Proof, If a-\~h^l,

we should have, by squaring the members (Th. VI),

^2 _^ 2a& + ^>2 = 1

.

and by transposing the product 'Zah (Th. I, Cor.),

«2 + Z>2
= 1 _ <^ad.

Because a and ^ are positive, "Hah is positive, and

1 _ 2aZ> < 1.

Therefore we should have

a^ + y^ < 1,

and could not have a^ + 1)^ —1, as was originally supposed.

Ex. 2. If flj, Z>, w, and ^^ are positive quantities, such that

a ^ m , V

b > ^' ^«>

then the value of the fraction will be contained between
a + n

ct fH
the values of ^ and — ; that is,

n



(^)

(3)
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a a + m m
b ^ b-\-n ^ n' ^^

To prove the first inequality, we must show that

a a + m
b b -\- n

is positive. Keducing this expression by § 106, it becomes

an — hn
b~{b~+n)'

From the original inequality (a) we have, by multiplying

by the positive factor bn,

an > bm.

That is, an — bm is positive ; therefore the fraction (3)

with this positive numerator is also positive, and (2) is positive

as asserted.

The second inequality (1) may be proved in the same way.

EXERCISES.

I. Prove that if a and b be any quantities different from

zero, and 1 > ic > — 1, we must have

«2 _ 2abx + b^> 0.

(a + bV—-— ) > ab,

3. If 3a; — 5 > 13, then x > 6.

4. If 6a; > y + 18, then a; > 4.

5. If ^-^>|-3, thena;>5.

6. li m — nx y p — qx, then x >

7. If " < 1 ', and m and y of like sign : x < y.'my
8. If «2 _{_ J2 _^ ^2 _ 1^ and a, b, and c are not all equal,

then ab -\- be + ca <i 1.

Suggestion. The squares of a — byb — c, and c — a cannot be

negative.



BOOK IV.

RATIO AND PROPORTION.

CHAPTER I.

NATURE OF A RATIO.

14'7. Def, The Ratio of a quantity A to another

quantity j8 is a number expressing the value of A when
compared with B as the standard or unit of measure.

EXA.MPLES. Comparing ^
^ | | | |

| |
| | |

the lengths A, B, C, D, it j—i—

r

will be seen that '
' '

A is ^ times D] (^
1 \

~\
B 18 i of D; 2>

I I I I I

(7 is I of D,

We express this relation by saying,

9
The ratio of A to D is 2^ or -;

'' ^ to i> is ^; ) (1)

" '' C to D is ^'
4

148. The ratio of one quantity to another is expressed by

writing the unit of measure after the quantity measured, and

inserting a colon between them.

The statements (1) will then be expressed thus :

A:D = 2i=:l; ^'•^ = h ^ ' ^ = l
Def. The two quantities compared to form a ratio

are called its Terms.
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Def. The quantity measured, or the first term of

the ratio, is called the Antecedent.

The unit of measure, or the second term of the ratio,

is called the Consequent.

Eem. When the antecedent is greater than the consequent,

the ratio is greater than unity.

When the antecedent is less than the consequent, the ratio

is less than unity.

149. To find the ratio of a quantity ^ to a standard U,

we imagine ourselves as measuring off the quantity A with Z7as

a carpenter measures a board with his foot-rule.

There are then three cases to be considered, according to

the way the measures come out.

Case I. We may find that, at the end, A comes out an

exact number of times U. The ratio is then a whole number,

and we say that U exactly measures A, or that ^ is a

multiple of U,

Case IL We may find that, at the end, the measure does

not come out exact, but a piece of A less than U is left over.

Or, A may itself be less than U. We must then find what

fraction of U the piece left over is equal to. This is done by

dividing U up into such a number of equal parts that one of

these parts shall exactly measure A or the piece of A which is

left over. The ratio will then be a fraction of which the num-
ber of parts into which U is divided will be the denominator,

and the number of these parts in A the numerator.

Example. If we find that i
i ; i _.

jj

by dividing U into 7 parts, 4 of p^—^-—^-.
these parts will exactly make A, \ \ \ \ \

= ^
then ^ = 4 of U, and we have for the ratio of A to Z7,

A: U=^.

If we find that A contains U 3 times, and that there is

then a piece equal to 4- of Z7 left over, we have
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The 3 U^B, are equal to ^i}- of Z7, so that we may also say

A = ^j-oiU, or A:U=^.
which is simply the result of reducing the ratio 3f to an im-

proper fraction.

In general, if we find that by dividing U into n parts, A
will be exactly m of these parts, then

A : IJ = —,
n

whether m is greater or less than n.

When the magnitude of A measured by U can be exactly

expressed by a vulgar fraction, A and U are said to be com-
mensurable.

Case III. It may happen that there is no number or frac-

tion which will exactly express the ratio of the two magnitudes.

The latter are then said to be incommensurable.

150. Theorem. The ratio of two incommensurable

magnitudes may always be expressed as near the true

value as we please by means of a fraction, if we only

make the denominator large enough.

Examples. Let us divide the unit of measur-e into 20

parts, and suppose that the antecedent contains more than 28

but less than 29 of these parts. Then, by supposing it to con-

tain 28 parts, the limit of error will be one part, or ^V of the

standard unit.

In general, if we wish to express the ratio within 1 n^^ of

the unit, we can certainly do it by dividing the unit into n or

more parts, or by taking as the denominator of the fraction a

number not less than n,

Ilhcstration hy Decimal Fractions, The square root of 2

cannot be rigorously expressed as a vulgar or decimal fraction.

But, if we suppose

a/2 = 1.4 = \^, the error will be < yV ;

a/2 = 1.41 =\U, " " <T*o;
a/2 = 1.414 = iiJi, " " <y^.
etc. etc. etc. etc.
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Since the decimals may be continued without end, the

square root of 2 can be expressed as a decimal fraction with an

error less than any assignable quantity. This general fact is

expressed by saying

:

The limit of the error which we make by representing

an incommensurable ratio as a fraction is zero.

151 . Ratio as a Quotient. From Case II and the explana-

tions which precede it we see that when we say

we mean the same thing as if we had said,

^ is f of U, or A =L^ U.

If A and U are numbers, we may divide both sides of this

equation by U, and obtain,

A_^
U ~ l'

We therefore conclude that when A and U are numbers,

A ' TT — —.
That is,

^ .
u - ^

Theorem. The ratio of two numbers is equal to the

quotient obtained by dividing the antecedent term by
the consequent.

In the case of magnitudes, the relation of a ratio to a quo-

tient may be shown thus :

Let us have two magnitudes M and F, such that M is

4 times V. Then we may write the relation,

Jf=4F.
Dividing by 4, we have

4 ~
Since F is not a number, we cannot, strictly speaking,

multiply or divide by it. But we may take the ratio of M to

F without regard to number, and thus find,

M \ F = 4.
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Eem. The theory of ratios the terms of which are magni-

tudes and not numbers, is treated in Geometry.

In Algebra we consider the ratios of numbers, or of mag-
nitudes represented by numbers.

153. Def. If we interchange the terms of a ratio,

the result is called the Inverse ratio.

That is, U: A is the inverse oi A : U,

If U ', A=-,
n

then U = —A,
n

Ttl.

and we have, by dividing by —

,

m

or A \ U — —m
Because — is the reciprocal of — , we conclude

:

Theorem, The inverse ratio is the reciprocal of the

direct ratio.

Properties of Ratios,

153. Theorem I. If both terms of a ratio be multi-

plied by the same factor or divided by the same divisor,

the ratio is not altered.

Proof. Eatio of ^ to ^ = 5 : ^ = 2*

If 7n be the factor, then

Eatio of mB to mA ==: inB : tyiA = —~, = -t^
niA A

the same as the ratio of ^ to ^.

154. Theorem IL If both terms of a ratio be in-

creased by the same quantity, the ratio will be increased
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if it is less than 1, and diminished if it is greater than 1

;

that is, it will be brought nearer to unity.

Example. Let the original ratio be 2 : 5 = |. If we repeatedly add

1 to both numerator and denominator of the fraction, we shall have the

series of fractions,
2 3 4 5 pf/»

each of which is greater than the preceding, because

* «-| = A; whence, f > |.

f - S-
= A-

;

whence, f > f

.

I - f == A ;
whence, | > ^

etc. etc.

General Proof, Let « : 5 be the original ratio, and let

both terms be increased by the quantity u, making the new

ratio a-\-u : &+ u. The new ratio mmus the old one will be

{h — a)u

If h is greater than «, this quantity will be positive, show-

ing that the ratio is increased by adding u. If ^ is less than a^

the quantity will be negative, showing that the ratio is dimin-

ished by adding u.

CHAPTER II.

PROPORTION.

155. Def. Proportion is an equality of two or

more ratios.

Since each ratio has two terms, a proportion must have at

least four terms.

• Def. The terms which enter into two equal ratios

are called Terms of the proportion.

\i a\h be one of the ratios, and p \ q the other, the pro-

poiiion will be,

a:h^p\q. •

(1)
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A proportion is sometimes written,

a \ h : : p : q^

which is read, " As <^ is to & so is p to g." The first form is to be pre-

ferred, because no other sign than that of equality is necessary, but the

equation may be read, " As a is to & so is ^ to g," whenever that expres-

sion is the clearer.

Def. The first and fourth terms of a proportion are

called the Extremes, the second and third are called

the Means.

Theorems of Proportion.

156. Theorem I. In a proportion the product of

the extremes is equal to the product of the means.

Proof. Let us write the ratios in the proportion (1) in the

form of fractions. It will give the equation.

Multiplying both sides of this equation by hq, we shall have

aq = b]), (3)

Cor. If there are two unknown terms in a propor-

tion, they may be expressed by a single unknown
symbol.

Example. If it be required that one quantity shall be to

another as jj to q, we may call the first px and the second qx,

because

px \ qx z=i p : q (identically).

15*7. Theorem IL If the means in a proportion be
Interchanged, the proportion will still be true.

Proof, Divide the equation (3) by pq. We shall then

have, instead of the proportion (1),

V'^ q

or a : p =1 h \ q.
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Def. The proportion in which the means are inter-

changed is called the Alternate of the original pro-

portion.

The following examples of alternate proportions should be studied,

and the truth of the equations proved by calculation :

1 : 2 rn 4:8; alternate, 1:4 =2:8.
2:3=6:9; " 2:6=3:9.
5 : 2 = 25 : 10

;

" 5 : 25 = 2 : 10.

158. Theorem IIL If, in a proportion, we increase

or diminish each antecedent by its consequent, or each

consequent by its own antecedent, the proportion will

still be true.

Example. In the proportion,

5 : 2 = 25 : 10,

the antecedents are 5 and 25, the consequents 2 and 10 (§ 148). Increasing

each antecedent by its own consequent, the proportion will be

5 + 2 : 2 = 25 + 10 : 10, or 7 : 2 = 35 : 10.

Diminishing each antecedent by its consequent, the proportion will

become,
5 - 2 : 2 = 25 - 10 : 10, or 3 : 2 = 15 : 10.

Increasing each consequent by its antecedent, the proportion will be

5 : 2 + 5 ^ 25 : 10 + 25, or 5 : 7 = 25 : 35.

These equations are all to be proved numerically.

General Proof, Let us put the proportion in the form

h q ^ ^

If we add 1 to each side of this equation and reduce each

side, it will give

^+ ^ _ p + q
~ I - ~q '

that is, a -^1) : h =: p -]- q \ q, (5)

In the same way, by subtracting 1 from each side, it will be

a — h \ h ^^ p — q : q. (6)
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If we invert the fractions in equation (4), the latter will

become

a I)

By adding or subtracting 1 from each side of this equation,

and then again inverting the terms of the reduced fractions,

we shall find,

Tlie form (5) was formerly designated as formed "by composition,"

and (6) as formed " by division." But these terms are now useless, be-

cause all the above forms are only special cases of a more general one to

bL^ now explained.

159. Theorem IV, If four quantities form the pro-

portion
a : b = c : d^ {a)

and if m, n^ p^ and q be any multipliers whatever, we
shall have

ma + nb : pa -\- qb — mc -\- nd \ pc-\- qd.

Proof, The proportion {a) gives the equation,

a

h
~ c

d'

Multiplyii

member,

ig this equation by - and adding 1 to each

qh qd

Keducing each member to a fraction and inverting the

terms.

qh _ qd

pa -^ qh pc -{- qd

Dividing both members by q,

h__ d___
pa -\- qh'~ pc + qd

The original proportion {a) also gives, by inversion,

(7)
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from^which we obtain, by multiplying by -, adding 1, etc.,

qh -\- pa _ qcl + pc

pa ~ pc

^_ ^ __J_ /g)
pa + qh pc -\- qd

(8) xm + (7) X w gives the equation,

ma -\- nh __ mc + 7id

pa -{- qh
'" pc -\- qd

^

or ma + nh : pa -\- qb := mc + nd \ pc + qd, (9)

which is the result to be demonstrated.

160. Theorem V. If each term of a proportion be

raised to the same power, the proportion will still

subsist.

Proof. If a : b = p : q,

a p
or T = y

b q'

then, by multiplying each member by itself repeatedly, we
shall have

Hence, in

l^" q^'

a^ p^

b^
"" q^''

etc. etc.

general.

a^ : b"' =z p^ : (p.

Cor. If a : b =^ p '
q^

then a^ \ a'' ±b^ — pi^ \ p'' ±(f' \

and a^±b^ \ If' = p^±q^ I ^».

Theorem VI. When three terms of a proportion

are given, the fourth can always be found from the

theorem that the product of the means is equal to that

of the extremes.
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We have shown that whenever

a : h =z 2^ : q,

then aq == hp.

Considering the different terms in succession as unknown
quantities, we find,

a J.

~ q'

I
_aq
- P'

P
aq

Q ~" a

Cor. 1. If, in the general equation of the first

degree
ax + l)y =^ c?5

the term c vanishes, the equation determines the ratio

of the unknown quantities.

Proof. If ax + by = 0,

then ax = — %,
X b

and - =
,

y a

or X : y =z — b : a.

Cor. 2. Conversely, if the ratio of two unknown
quantities is given, the relation between them may be
expressed by an equation of the first degree.

The Mean Proportional.

161. Def. When the middle terms of a proportion

are equal, either of them is called the Mean Propor-

tional between the extremes.

Tlie fact that b is the mean proportional between a and c

is expressed in the form,

a : b =^ b : c.
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Theorem I then gives, b'^ =z ae.

Extracting the square root of both members, we have

b = Vc^c,

Hence,

Theorem VIL The mean proportional of two quan*

tities is equal to the square root of their product.

Multiple Proportions.

163. We may have any number of ratios equal to each

other, as

a \ b ^=i c : d =: e : f, etc.

6 : 4 = 9 : 6 = 3 : 2 = 21 : 14. (a)

Such proportions are sometimes written in the form

6 : 9 : 3 : 21 = 4 : 6 : 2 : 14. {b)

In the form {b) tlie antecedents are all written on one side

of the equation, and the consequents on the other. Any two

numbers on one side then have the same ratio as the cor-

responding two on the other, and the proportions expressed by

this equality of ratios are the alternates of the original propor-

tions {a). For instance, in the proportion {b) we have,

6:9 =4:6, which is the alternate of 6 : 4 = 9:6.
6:3=4:2, '' " " 6:4=3:2.
6 : 21 = 4 : 14, " " " 6 : 4 = 21 : 14.

9 : 21 = 6 : 14, " " " 9 : 6 = 21 : 14.

163. A multiple proportion may also be expressed by a

number of equations equal to that of the ratios. Since

a \ b := c \ d z=z e : f, etc.,

let us call r the common value of these ratios, so that

a c ,

-^ = r, -^ = r, etc.

Then a = rb,

c = rd, (c)

c = rf,
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will express the same relations between the quantities a, 2>, c,

dy e, f, etc., that is expressed by

a I i ^=^ c : d =z e : f, etc., {a)

or a : c : e : etc. =z h \ d : f : etc. {h)

It will be seen that where r enters in the form (c) there is one more
equation than in the first form {a). [In this form each = represents an
equation.] This is because the additional quantity r is introduced, by

eliminating which we diminish the number of equations by one, as in

eliminating an unknown quantity.

164. Theorem, In a multiple proportion, the sum
of any number of the antecedents is to the sum of the

corresponding consequents as any one antecedent is to

its consequent.

Ex. We have - — --=-- = -—' Then
5 15 25 30

2 + 6 + 10 + 12 30

5 + 15 + 25 + 30 75'

which has the same value as the other four functions.

General Proof, Let A, B, C, etc., be the antecedents, and

a, I, c, etc., the corresponding consequents, so that

B : 1= \: c, etc. (1)

ion ratio A : a, B: b, etc.. so that

A = ra,

B = rh,

C = re.

etc. etc.

Adding these equations, we have

A + B -{- C+ etc. = r{a + b + c-^ etc.),

. A + B -{- C -\- efcc.

a -\- h -\- c -\- etc.
'

that is, the ratio A -\-B -\- C -\- eta, : a -{- d -{- c -\- etc. is equal to

r, the common value of the ratios A : a, B : b, etc.

PROBLEMS.
I . A map of a country is made on a scale of 5 miles to

3 inches.
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(1.) What will be the length of 8, 12, 17, 20, 33 miles on
the map ?

(2.) How many miles will be represented by 6, 8, 16, 20,

29 inches on the map ?

Rem. 1. If Xy y, z, u, v be the required spaces on the map, we shall

have
5 : 3 == 8 : aj = 12 : y, etc.

If «, b, c, etc., be the required number of miles, we shall have

S : 6 = 6 : a = S : b rzilQ : c, etc.

Rem. 2. When there are several ratios compared, as in this problem,

it will be more convenient to take the inverse of the common ratio, and

multiply the antecedent of each following ratio by it to obtain the conse-

quent: In the first of the above proportions the inverse ratio is f , and

X = iotS, y = f of 12, etc.

In the second, a =: f of 6, & = f of 8, etc.

2. To divide a given quantity A into three parts whicli

shall be proportional to the given quantities a, h, c, that is,

into the parts x, y, and z, such that

X \ a =1 y : t =^ z : c,

or X \ y : z ^=^ a '. h \ c.

Solution. By Theorem IV,

X y z X -\- y -\- z A
a~h~c~~a+h-\-c'~'a-\-h + c

Therefore,

_ aA _ ^^ _ ^^
^ "~

a + ^ + c' ^ ""
a + b -\- c' ^ ~ a -\- h + c

3. Divide 102 into three parts which shall be proportional

to the numbers 2, 4, 11.-

4. Divide 1000 into five parts which shall be proportional

to the numbers 1, 2, 3, 4, 5.

5. Find two fractions whose ratio shall be that of a:b, and
whose sum shall be 1.

6. What two numbers are those whose ratio is that of 7 : 3

and whose difference is 24.

7. What two numbers are those whose ratio is m : n, and
whose difference is unity ?

8. Find x and y from the conditions,

X : y = a : b,

ax — by = a -{- b.
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9. Show that if a : b = A : B,

c : d=i C : D,

we must also have ac : bd = AC : BD,

10. Having giveu x = ay, find the value of ^ "^ ^^.

x-2y
II. Having given

find the value of

x — 'Zy

x + y

'^ = 5,

x — y

12. If a : b ^= p : q,

a^ 2j3

prove a^ + b^ : 7 ^^ p^ \- q^ \
—^-—

,

a-\- b
^^'^

i^+S'

13. If
a -\- b -{- c -}- d a — b -{- c — d

a + b — c — d a — b — c + d^

show that a \ b =: c \ d.

14. A year's profits were divided among three partners, A,
B, and C, proportional to the numbers 2, 3, and 7. If

should pay B $1256, their shares would be equal. What was
the amount divided ?

15. In a first year's partnership between A and B, A had
2 shares and B had 5. In the second year, A had 3 and B had 4.

In the second year, A's profits were $3200 greater and B's were
$1700 greater than they were the first. What was each year's

profits ?

16. In a poultry yard there are 7 chickens to every 2 ducks,
and 3 ducks to every 2 geese. How many geese were there to

every 42 chickens ?

17. A drover started with a herd containing 4 horses to

every 9 cattle. He sold 148 horses and 108 cattle, and then
had 1 horse to every 3 cattle. How many horses and cattle

had he at first ?

18. If a bowl of punch contains a parts of water and b

parts of wine, what is the ratio of the wine to the whole
punch ? What is the ratio of the water? What are the sums
of these ratios ?
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19. One ingot consists of equal parts of gold and silver,

while another has two parts of gold to one of silver. If I

combine equal weights from these ingots, what proportion of

the compound will be gold and what proportion silver ?

20. What will be the proportions if, in the preceding prob-

lem, I combine one ounce from the first ingot with three from

the second ?

21. One cask contains a gallons of water and h gallons of

alcohol, while another contains m gallons of water and n of

alcohol. If I draw one gallon from each cask and mix them,

what will be the quantities of alcohol and water ?

22. What will be the ratio of the liquors in the last case, if

I mix two parts from the first cask with one from the second ?

23. What will it be if I mix p parts from the first with q
parts from the second ?

24. A goldsmith has two ingots, each consisting of an alloy

of gold and silver. If he combines two parts from the first

ingot with one from the second, he will have equal parts of

gold and silver. If he combines one part from the first with

two from the second, he will have 3 parts of gold to 5 of silver.

What is the composition of each ingot ?

Suggestion. Call r the ratio of the weight of gold in the first ingot

to the whole weight of the ingot ; then 1 — r will be the ratio of the sil-
*

ver in the first to the whole weight of the ingot. See the following

question.

Note. Problems 18-24 form a graduated series, introductory to the

processes of Problem 24.

25. Point out the mistake which would be made if the

solution of the preceding problem were commenced in the fol-

lowing way :

If the first ingot contains p parts of gold to q parts of silver, and the

second contains r parts of gold to 8 of silver, then

Two parts from the first ingot will have 2p of gold and 2q of silver.

One part from the second ingot will have r of gold and « of silver.

Therefore, the combination will contain 2p + r parts of gold, and

^q-\-s parts of silver.

Show also that if we subject p, q, r, and s to the condition

p-V-q = r + s,

the process would be correct.

26. Show that if the second term of a proportion be a
mean proportional between the third and fourth, the third
will be a mean proportional between the first and second.



BOOK V.

OF POWERS AND ROOTS.

CHAPTER I.

INVOLUTION.

Case L Involution of Products and Quotients.

165. Def. The result of taking a quantity, A^

n times as a factor is called the n*'*^ power of A^ and
as already known may be written either

^AJ., etc., 72, times, or A^.

Bef. The number n is called the Index of the

power.

Bef, Involution is the operation of finding the

powers of algebraic expressions.

The operation of involution may always be expressed by

the application of the proper exponent^ the expression to be

involved being inclosed in parentheses.

Example. The n^^ power of « + J is (aj + lY.

The iif'^ power of abo is {abcY,

166. Involution of Products. The n^^ power of the

product of several factors a^ h^ c, may be expressed without

exponents as follows

:

dbcahcahC) etc.,

each factor being repeated n times.
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Here there will be altogether n a's, n Vs, and n (fs, so

that, using exponents, the whole power will be a'^b^c^ (§ 6^, 67).

Hence, {abc)^ = aP'hH^

That is,

Theorem. The power of a product is equal to the

product of the powers of the several factors.

167. Involution of Quotients. Applying the same methods

to fractions, we find that the n^^ power of - is — • For

(xY' XXX
(-) = , etc., n times:V yyy

_ XXX, etc., n times .^ .
^

~"
yyy^ ^tc, n times ^^ ' '

__ x^

EXERCISES.
Express the cubes of

I. ahc, 2. — • 3. ahcK
c

mn a -\- h mn {a + 5)

pq a — h ' pq {a — b)'

Express the n^^ powers of the same quantities, the quanti-

ties between parentheses being treated as single symbols.

Case II. Involution of Powers.

168. Problem. It is required to raise the quantity a^ to

the n^^ power.

Solution. The n*^ power of a^ is, by definition,

a'^ X a^ X a^y etc., n times.

By § 66, the exponents of a are all to be added, and as the

exponent m is repeated n times, the sum

m -f m -h m 4- etc., n times,

is m7i. Hence the result is a^^, or, in the language of Algebra,

10
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Hence,

^eorem. If any power of a quantity is itself to be
raised to a power, the indices of the powers must be
multiplied together.

EXAM P LE S.

Note. It will be seen that this theorem coincides with that of Case I

when any of the factors have the exponent unity understood.

EXERCISES.

Write the cubes of the following quantities:

4.a
I. dxyl 2. 3- aP",

4. bx'. 5. 2ahn\ 6.
6a^

b

Write the 71^^ powers oi

7. a. 8. a^. 9- aWc,

10. a'^a^. II. 2p^q\ 12. {a-\-b) {c-^d).

^3. 0'^ + «/)(^--y)-
14. 7 {a + b — c){a--by.

Ans, 7^'{a-\-b- c)^ (a — b^P.

a
'5- r 16.

a2
17.

x-\-y

x-y

10. „ •

xy^
^'''' ~xnfn

•

ab {c - df
"9-

(^ _ ^) c3

•

Reduce

:

20. {^ab^n^f. 21. (— ^mnx^f.

22. 2a{—3b^m7i^)K 23. {IpqVy.

24. {ab^y^ 25- {2ah^)\ 26. {m^)\

Note 1. If the student find any of these exponential expressions

difficult of expression, he may first express them by writing each quantity

a number of times indicated by its exponent.

Note 3. The student is expected to treat the quantities in paren-

theses as single symbols.
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Eem. The preceding theorem finds a practical application

when it is necessary to raise a small number to a high power.

If, for example, we have to raise 2 to the 30th power, we

should, without this theorem, have to multiply by 2 no less

thf».n 29 times. But we may also proceed thus

:

2^ = 4,

2^ = 22.22 = 4-4 ^ 16,

28 = 24.2^ =16.16 = 256,

216 := 28.28 = 2562 ^ 65536^

224 ^ 216.28 = 216.256 = 16777216,

230 ^ 221.26 = 224.64 = 1073741824.

Case of IVegative Exponents,

169. The preceding theorem may be applied to negative

^^xponents. By the definition of such exponents,

g = aP5-.. (1)

Eaising the first member to the n^^ power, we have.

This is the same result we should get by applying the

theorem to the second member of (1), and proves the proposi-

tion.

EXERCISES.
Express the 6th powers of

I. alrK

3. a7np~K

Eeduce

:

II. {ab-^c-^)-^.

13. {x^y-i)-\

After forming the expressions, write them all with positive

exponents, in the form of fractions.

2. a^h'\

4. a-^h-\
6. {x-^yY{x-\-z)

Q
{a + h)-^

0.
{a - by

10. {ah-^c-'^y.

12. {m^n-J)-^,

14. \a%^c-''Y.
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Algebraic Signs of Powers.

110. Since the continued product of any number of posi-

tive factors is positive, all the powers of a positive quantity are

positive.

By § 26, the product of an odd number of negative fac-

tors is negative, and the product of an even number is positive.

Hence,

Theorem. The even powers of negative quantities

are positive, and the odd powers are negative.

EXAM PLES. '

(— of = a^ ; (— ay =: —a^; (— aY = a*, etc.

EXERCI SES.
Find the value of

I. (-3)^. 2. 1[— 3)'- 3- 4*.

4. (-5)^. 5- <
[- 6)3. 6. {-by.

7. {-a -by. 8. ([—mny.
. 9- i-pqy.

lO. (— «)2». II. [- 5)2»+>. 12. (_a_J)2«-i

13. (-1)^. 14. [_i)2n+t. 15- (- l)^->.

Case III. Involution of Binomials—the Bino-
mial Theorem.

1*71. It is required to find the n^^ power of a hinomial.

1. Let a + ^ be the binomial ; its n^^ power may be written

Let us now transform this expression by dividing it by «^,

and then multiplying it by «% which will reduce it to its orig-

inal value. We have (§ 167),

Multiplying this last expression by V, by writing this

power outside the parentheses, it becomes

«^^
(' - 'J. «
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preceding one, until we come to the s^^ or last, which will be

71 — 8 -{- 1.

Such a ijroduct is written,

n(?i — l){n — 2) (n — s + l).

The dots stand for any number of omitted factors, because

s may be any number. We have written 4 of the s factors, so

that s — 4 are left to be represented by the dots.

The denominator of the fraction is the product of the s

factors,

1.2.3.... 5,

each factor being greater by 1 than the preceding one, and the

dots standing for any number of omitted factors, according to

the value of s. Thus, the s^^ coefficient in the 7i^^ line will be

n{n- l)(n-2) (n - s + 1)

1.2.3 s
"

^"^^

If 5 is greater than ^n, the last factors will cancel some of

the preceding ones, so that as s increases from ^n to n, the

values of the preceding coefficients will be repeated in the

reverse order. Thus, suppose n = 6, Then, by cancelling

common factors,

= ^J = -•

1.2.3.4.5.6 ~ ^'

If we should add one more factor to the nul^erator, it

would be 0, and the whole coefficient would be 0.

The conclusion we have reached is embodied in the follow-

ing equation, which should be perfectly memorized

:

/-I , \*, -I . ,
n hi — 1) ^ ii(n — l) (n —2) .

(1 + x)n = 1 + iix 4- --^372— ^ + -^
iT^ ^

^ 1.2.3.4 ^ ^^*** ^-^'^

6.-5.4.3

1-2.-3.4

6.5.4.3.2

1.2.3.4.5

6.5.4.3.2.1
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EXERCISES.

1. Compute from the formula {d) all the binomial coeffi-

cients for ^ =: 6, and from them express the development of

(1 + xf.

2. Do the same thing for n = 8, and for n = 10.

173. To find the development of (a -f- b)^, we replace x

by - , and then multiply each term by a^,
(t

[See equations (1) and (2).] We thus have

^7 i/ll 1^
{a + hY z=i oP' ^ na^'-'^h + V -^ a'^-W + etc. to l^

The terms of the development are subject to the following

rules

:

I. The exponents of b, or the seeoncl term of the hiiio-

mial, are 0, 1, 2, etc., to n.

Because W is simply 1, a" is the same as W^V^.

II. The sum of the exponents of a and b is n in each

term. Hence the exponents of a are

n, n ~ 1, n — 2, etc., to 0.

III. The coefficient of the first term is unity, and of
the second n, the index of the power. Each following

coefficient may he found from; the next preceding one hy

multiplying by the successive factors,

n — 1 n — 2 n — d
""2~^ —3—, —J-. etc.

IV. // b or a is negative, the sign of its odd powers

will he changed, hut that of its even powers will remain
the same.

(Compare § 170.) Hence,

{a — hY — a^ — na^-^b

the terms being alternately positive and negative.

{a - hY =:a^- nan-^b + ^^.-Jil «7i-2^_ etc.,
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EXERCISE S— Continued.

3. Compute all the terms of {a + by, using the binomial

coefficients.

4. What is the coefficient of W in the development of

{a + ^)^«.

5. What are the first foui terms in the development of

{2am + 3^)8.

6. What are the first three terms in the development of

Vl8

? What are the last two terms ?

7. What are the first three and the last three terms of

8. What is the development of (a + -) •

9. What are the first four terms in the development of the

following binomials

:

(1 + a^)n
; (1 + 2x^Y ; (1 - "^^^Y ;

10. What are the sum and difference of the two develop

ments, (1 + xf and (1 — a;)^?

Case IV. Square of a JPolynoinial.

173. 1. Square of any Polynomial Let

a-}-b + c-{-d + etc.,

be any polynomial. We may form its square thus

:

a-{-b-i-c + d-{- etc.

a + b-\-c-\-d-{- etc^^

a^ -\- ab -\- ac -{- ad + etc.

ab -{-b^ -{-be -hbd + etc.

ac -}- be -{- €^ -}- cd -^ etc.

ad 4- bd -\- cd -{- d^ + etc.

a^ -j-b^ -\- c^ + ^^ + etc.

+ 2ab + 2ac + 2ad + etc.

+ 2bc + 2bd + etc. -f- 2cd + etc.
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We thus reach the following conclusion

:

Theorem, The square of a polynomial is eqnal to

the sum of the squares of all its terms plus twice the

product of every two terms.

2. Square of an Entire Function, Sometimes we wish to

arrange the polynomial and its square as an entire function of

some quantity, for example, of x.

Let us form the square oi a -\-1jx -{- cx^ + d^ + etc.

a -\- dx ^ cx*^ -\- dx^ + etc.

a -\- hx -^ cx^ -\- dx^ -f etc.

«2 -f adx + acx^ + adx^ + etc.

abx -f- ¥x^ + hcx^ -\- bdx^ + etc.

acx^ -h bcx^ + c^x^ + etc.

ada^ -\- hdx^ + etc.

a^ + 2al)x + {2ac + b^) x^ -^-J^ad + 2I)c) x^ + etc.

We see that

:

The coefficient of x^ is ac -\- hh -{- ca,

" " " c^ is ad-^lc -^ cb -\- da,

" " " ^ is ae -\- M -{- gg -\- dh -\- ea,

etc. etc.

The law of the products ae, hd, gg, etc., is that the first

factor of each product is composed successively of all the co-

efficients in regular order up to that of the power of x to which

the coefficient belongs, while the second factor is composed

successively of the same coefficients in reverse order.

EXERCISES.
Form the squares of

I. 1 + 2:i; + ^x\ 2, 1 -\- 2x + 3x^ + 4^.

3. l-\-2x-{- 3x^ + 4:0^ + 5a;5.

4. 1 + 2x + Sx^ + ^x^ + 5a;5 + (jx^

5. 1 — 2x + dx'^ — 4:X^ 6. a—b -\- c — d,

a
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CHAPTER 11.

EVOLUTION AND FRACTIONAL EXPONENTS.

174. Def. The it*'* Root of a quantity q is snch a

number as, being raised to the ii}^ power, will produce q.

When n = 2^ the root is called the Square Root.

When 72, = 3, the root is called the Cube Root.

' Examples. 3 is the 4th root of 81, because

3.3.3.3 = 34 = 81.

As the student already knows, we use the notation,

71^^ root oiq z=z ^^.

There is another way of expressing roots which we shall

now describe.

175. Division of Exponents. Let us extract the square

root of a^. We must find sach a quantity as, being multiplied

by itself, will produce a^. It is evident that the required quan-

tity is a^, because, by the rule for multiplication (§§ ^Q, 166),

a^ X a^ = a',

n
The square root of a'^ will he a^, because

n n IL^Vl
a^ X 0^ — a^ ^ = a^.

n
In the same way, the cube root of a^ is a^, because

n n^ n^

0^ X a^ X a^ = a^.

The following theorem will now be evident

:

Theorem. The square root of a power may be ex-

pressed by dividing its exponent by 2, the cube root by
dividing it by 3, and the n^^ root by dividing it by n,

176. Fractional Exponents. Considering only the origi-

nal definition of exponents, such an expression as n^ would
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have no meaning, because we cannot write a 1^ times. But
by what has just been said, we see that cfi may be interpreted

to mean the square root of a^, because
3 3

a'^ X a'^ — a\
Hence,

A fractional exponent indicates the extraction of a

root. If the denominator is 2, a square root is indi-

cated ; if 3, a cube root ; if n^ an n^^^ root.

A fractional exponent has therefore the same meaning as

the radical sign \/, and may be used in place of it.

EXERCISES.
Express the following roots by exponents only :

I. "s/m, 2. ^/(w^ + 7i). 3. a/(« + ^)^.

4. ^/{a + hY. 5. ^/mK 6. ^^^

7. \/a\ 8. ^/{a-\-bY, 9. ^/{a + h)^.

177. Since the even powers of negative quantities

are positive, it follows that an even root of a positive

quantity may be either positive or negative.

This is expressed by the double sign ± .

EXERCISES.
Express the square roots and also the cube roots and the

nf'^ roots of the following:

I. (a + If. 2. {a + hf. 3. a-^h

4. {x-\-yf. 5. (^ + #. 6. (:x + y)K

178. If the quantity of which the root is to be ex-

tracted is a product of several factors, we extract the

root of each factor, and take the product of these roots.

Example. The n^^ root of am^p is a^ni^p^, because

{Jirn^p^Y = arri^p, by §§ 168 and 176.

If the quantity is a fraction, we extract the root of

both members.
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Proof, (§§167,168.)

Because ~7 taken 7i times as a factor makes t 9 therefore,
^n

ct

by definition, it is the n*^ root of t-

EXERCISES.
Express the square roots of

I. 4:X\ 2. -—

Express the cube roots of

4. 27-64. 5. 27«3.

7. ab^(^d\

6. 64.27«35«'

8a^

125a;^^

Express the ^^^^ roots of

9. 7. 10. 4.7.

12. 6a^b^^,

II. 4.7.10.

6«2|^^
14.

15-

/^7W+l ^/J >^—

2

C^cln

dTnn J^

16. 35^ a-'^"" (a + Z>)4'^ (r?; — ^jY 4^ (5 — c + cZ)-^.

Eeduce to exponential expressions

:

17. v^^r=^. 18. ^^^^.

19. '^^^O^.

+ bY

20.

21
m/(a

bY

Powers of Expressions with Fractional Expo-
nents.

179. Theorem. The p^^ power of the n^^ root ig

equal to the n^^ root of the p^^ power.
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Ill algebraic language,

or (fl^-)" — (a^)",

Example. (v^s)^ =: 2^ == 4,

or, in words, the square of the cube root of 8 (that is, the

square of 2) is the cube root of the square of 8 (that is, of G4).

Gejieral Proof. Let us put :^; = the n^^ root of a, so that

x^ = a. (1)

The p^^ power of this root x will then be xp. (2)

Eaising both sides of the equation (1) to the 2^^^ power, we

have
af'P = aP = pi^ power of a.

The 71^^ root of the first member is found by dividing the

exponent by n, which gives

n*^ root ofp^^ power = x^,

the same expression (2) just found for the p^^ power of the

71^^ root.

This theorem leads to the following conclusion

:

1. The expression p

a/"

1

may mean indifferently the p^^ power of a^, or the ?ztli

root of 6i^, these quantities being identical.

2. The pov^ers of expressions having fractional ex-

ponents may be formed by multiplying the exponents

by the index of the power.

EXE RCISES.

Express the squares, the cubes, and the 7i^^ powers of the

following expressions

:

I. a^. 2. ak 3. ai

4. n'^i 5. ab^. 6. ab^c^.
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m m P Q

7. a^h^, 8. a^h v.

m
9. {a + hf{a — b)~^. 10. a-^h"".

II. a^h\ 12. ^ ^ ^-^

^

Reduce to simple products and fractions

:

^y ^) . 14. {cfih^c'i)^,

15. {aH^y^. 16. \a ^1 9,

(^:)
'^- \-A}

• '^- .^^ • .-R-

CHAPTER III.

REDUCTION OF IRRATIONAL EXPRESSIONS.

Definitions.

180. Def. A Rational Expression is one in which

the symbols are only added, subtracted, multiplied, or

divided.

All the operations we have hitherto considered, except the extraction

of roots, have led to rational expressions.

Def. An expression which involves the extraction

Oi a root is called Irrational.

Example. Irrational expressions are

Va, ^/{a + h), a/27;

or, in the language of exponents,

^4, . {a + ^)i, 27*.

In order that expressions may be really irrational.
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they must be Irreducible, that is, incapable of being

expressed without the radical sign.

Example. The expressions

^'cf^2ah + h^, a/36,
'

are not properly irrational, because they are equal to a -\- h

and 6 respectively, which are rational.

Def. A Surd is the root which enters into an
irrational expression.

Example. The expression a + hVx is irrational, and the

surd is Vx.

Def. Irrational terms are Similar when they con-

tain the same surds.

Examples. The terms ^30, 7^/30, {x + y) a/30, are

similar, because the quantity under the radical sign is 30 in

each.

The terms {a + h) ^/x -f- y, dVx + ^, fnVx + y are

similar.

Ag^gregation of Similar Terms.

181. Irrational terms may be aggregated by the rules of

§§ 54—56, the surds being treated as if they were single sym-

bols. Hence

:

WTien similar irrational terms are conneetecl hy the

signs -{-or — , the eoeffieients of the similar surds may
he added, and the surd itself affixed to their sum.

Example. The sum

aV{x + y) — W{x + ij) + dV(x + y)

may be transformed into (a — b + 3) V{x + y).

EXERCISES.
Keduce the following expressions to the smallest number

of terms

:

I. 7a/3 — 5a/2 + 6a/3 + 7a^A/2.
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2. W{x + y) + W{x -y) + 2{a + b) V{x + y)
— 3{a + b) V{x — y)'

4. {fl + y) a/^2/ + (a — Z>) Viz^^.

5. Vx {a — b)-\-(b — c) ^/x \- {c — d) Vx.

6. aVx — ^/x + "la^/x — {a -\- b) Vx.

7. - Vi?^ — aVx + QV^ — cVx + ^ v''^.

8. ^ "r Va: — GcV^ — "4~~ "^^ + ^^'

9. -Vx — Vx+ {a — h) Vx + ^^~
^ Vi«^.

10. a/^ — hVa — a/o; H 4-" '^^ ~ o '^^"

11. jv^— V^H—^—
o

—

-yx,

12. 4A/i?^ —• Q 'V'^^ + («^ — ^) Vi^.
o

Factoring Surds.

183. Irrational expressions may sometimes be transformed

so as to have different expressions under the radical sign, by

the method of § 178, applying the following theorem

:

Theorem. A root of the product of several factors

is equal to the product of their roots.

In the language of Algebra,

^/abcd, etc. = "s/a ^/h "s/c \^d, etc.

Proof, By raising the members of this equation to the

n^^ power, we shall get the same result, namely,

a X I? X c X d, etc.

Example. VsO = V^ a/S.

11
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EXERCISES.
Prove the following equations by computing both sides

:

a/4 V'49 = V4:.49 = Vl96.

Pm/. a/4: a/49 r:^ 2-7 = 14, and a/196 =: 14.

V4 a/9 = a/36.

a/4 ^25 rr a/4725.

a/9 a/16 = A/90L6.

V25 Vse = a/25^.

Express with a single surd the products

:

I. V{a + d) V{a — b).

SoLUTioi;r. V{a + b) V(a —b) = V{a + b){a — b)

V7V6. 3. V^Va.
Va V{a + y), 5. Va Vb V{a + b).

V{x + I) V{x - 1).

V{x^ + 1) V{x + 1) \/{x - 1).

l(a + ^)^ {a - b)ij.

183. If we can separate the quantity under the

radical sign into two factors, one of which is a perfect

square, we may extract its root and affix the surd root

of the remaining factor to it.

EXAMPLES.

Va^b = Va^ Vb — aVb.

Vab Vac = Vcf^bc = aVbc,

a/12 a/6 =: a/72 = a/36 a/2 = 6 a/2.

V{^a^ + 8a^J — \^ah^ = V^d^ {a ^2f^~iac)

— 2aV{ct + 25 — 4ac).

(x^— Ax^y -h Ax}/)^ = (a; — 2^) x^.
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EXERCISES.
Eeduce, when possible

:

I. a/8. 2. a/32.

3. a/128. 4. a/3 a/27.

5. ^'ab ^/'c~a ^/~hc. 6. a/2 a/72.

7. a/4 a/72.
•

8. a/(:z: + 1) a/(^ + 1).

9. a/175. ro. a/150c

II. a/108. 12. a/^^^T^T+T).

13. a/(«^^ + '^cbbx + ^2^).

Here the quantity under the radical sign is equal to

In questions of this class, the beginner is apt to divide an expression

like ^a + 6 H- c into /y/(X + ^Jh + y'c, which is wrong. The square

root of the sum of several quantities cannot be reduced in this way.

14. \^dhj At ^CLy •\- ^y- 15. ^/^mh + "^mz -f 4;$;.

Eeduce and add the following surds

:

16. 4a/2— 6a/8 + 10a/32. 17. a/12 + a/27 -f- a/75.

18. A/4a — 2a/«. 19. 125^ — 45^ — 80*.

20. 'v/81 — A^192. 21. {aWf^ + (aSc^ji

Mviltiplication of Irrational Expressions.

184. Irrational polynomials may be multiplied by com-

bining the foregoing principles with the rule of § 78.

The following are the forms :

To multiply a + h^/x by m + n^/y,

a (m + nVy) = (i^n x an^/y.

hVx {m -f nVy) = hm^/x + In^/xy,

The product is am + mWy -}- hnVx + In^/xy,

EXERCI SES.

Perform the following multiplications and reduce the

results to the simplest form (compare § 80)

:

I. (2 + 3 a/5) (5 —

3

a/2). 2. (7 + 2 a/32) (9 — 5 a/2).
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3. {a + ^/h) {a — V^). 4. {^/a-\-^/h-^Vc-{- \^d)\

5. (m + n^) (m + 2/1*). 6. («i — c^s) (a^ -f- a^),

7. (^ + «-^)^. 8. (a* -a-*)'.

9. [« + &\/(^ + y)'\ [a - 2>a/(^ + y)l

10. [m -|- /^V(«5 -f ^)] [w — /^a/(« — h)\

11. [a; + VCt'^ — 1)] \x — V(^2 _ 1)].

12. [(^2 + 1)4 + ^J [(^H- l)i - ^].

Expressions may often be transformed and factored by

combining the foregoing processes.

Example. To factor axi + bxi + cxi + dx~2, we notice

that 1 X a 5 i ^ ;

x-^ = x'^x^, x-^ =z x-^x% etc.

so that the expression may be written,

ax^xi 4- bx^x^ + cxxi + dxi = (ax^ + hx^ -{- ex + J) x^,

EXE RCISES.

Keduce the following expressions to products

:

13. 2 4-V2. 14. 3^ + 2-3*.

15. {a 4- Z>)2. 16. V^ + ay^ — %3,

17. X — y — ^/x — y.

Eeduce to the lowest terms

:

i». —

-

2 ^/a'^-h
20.

22.

ax^ + ho^

axi — bx^

a — X + Vcc — x Va^ - b^
21, *^.

a — .T — Vet — X a -jr b

185. Rationalizing Fractions. The quotient of

two surds may be expressed as a fraction with a rational

numerator or a rational denominator, by multiplying

both terms by the proper multiplier.

Example. Consider the fraction -—

•
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Multiplying both terms by a/7, the fraction becomes

—

—

, and has the rational denominator 7.

5
Multiplying by y'S, it becomes —— , and has the rational

numerator 5. ^ ^^

The numerator or denominator may also be made
rational when they both consist of two terms, one or

both of which are irrational.

Let us have a fraction of the* form

A -^dVB
P + Qy/R'

in which the letters A, D, P, Q, and R stand for any algebraic

or numerical expressions whatever. If we multiply both nu-

merator and denominator by P — Q^R, the denominator

will become
p2 _ Q^n,

The numerator will become

AP + PB^/B - AQVR - DQ^BR.

so that the value of the fraction is

AP + pdVb -^ AQVR - dqVbr
P' - Qm

EXE RCI SES.

Reduce the following fractions to others having rational

denominators

:

7a/3 2V18 . 5V24

9V5 3\/6 2a/^
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a + 2V(^ + y) 2a/3 + 7a/5
lO. :

• II.

a + V(x -\-y)
* V5 _ V3

12.
V^ - V(>^' + ^)

^^^
^

1 V^ + «^ + '\/x — a

«i + (a + 1)3 "s/x 4- a — V^ — a

Perfect Squares.

186. Def. A Perfect Square is an expression of

whicli the square root can -be formed without any surds,

except such as are already found in the expression.

Examples. 4/72^, 4^^ + 4^ + 1 are perfect squares^ be-

cause their square roots are 2m\ 2a + 1, expressions without

the radical sign.

The expression a + 2Vcib -\- b, of which the root is

Vet + Vb,

may also be regarded as a perfect square, because the surds

Vcc aad \^b are in the product 2\/ab,

Criterion of a Perfect Square, The question whether a

trinomial is a perfect square can always be decided by compar-

ing it with the forms of § 80, namely

:

a^ + 2ab -^ b'^ = {a -^ b)%

or «2 _ 2ab + ^2 — (^ _ ^)2.

We see that to be a perfect square, a trinomial must fulfil

the following conditions

:

(1.) Two of its three terms must be perfect squares.

(2.) The remaining term must be equal to twice the

product of the square roots of the other two terms.

When these conditions are fulfilled, the square root

of the trinomial will be the sum or difference of the

square roots of the terms, according as the product is

positive or negative.

The root may have either sign, because the squares of posi-

tive and negative quantities have the same sign.
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If the terms which are perfect squares are loth negative,

the trinomial will be the negative of a perfect square.

EXAMPLES.
^/W~^ab~^^ = a -\- b or — (a -{- b).

b OY b ~a.^/^2 _2ab -\- b^ = a-

— a^ + 2ab — b^= — {a of,

EXERCISES.
Find which of the following expressions are perfect squares,

and extract their square roots

:

I. 9 + 12 + 4. 2. r?:^ + 4^ + 4.

3. 4^
_l_ 2x^ + h 4. a2 ^ab — b\

5- 4:a^^ + 12a^Z»^^+ 9b'^^. 6. a^ + %ab — W.

7. x^ — ax^y + - a^y\ 8. aW — ^abccl + c^d^.

9- 771 + 2m^n^ + n. 10. a^ — 2ax + y\

II. a + 4a4z>i + 42>. 12. f^ — 2 + «-!.

IS- 25y + 9g2 — ^Op\ 14. ejim^n _^ 7^2 ^ 9^^^4;i,

IS- ^9xY + 9^2 _ 42:r?/^. 16. 9m^^ — 2m>g +^
To Complete the Square.

187. If one term of a binomial is a perfect square,

such a term can always be added to the binomial that

the trinomial thus formed shall be a perfect square.

This operation is called Completing the Square.

Proof, Call «^ the root of the term which is a perfect

square, which term we suppose the Jirsi, and call m the other

term, so that the giyen binomial shall be

a^ + m.

Add to this binomial the term —^ , and it will become

a^ + 7)7 +
4^2
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This is a perfect square, namely, the square of

m

thatis, a^ + m + ^, = [a + -).

Hence the following

EuLE. Add to the hinomial the square of the second

term divided hy four times the first tei^m.

Example. What term must be added to the expression

x^ — 4:ax (1)

to make it a perfect square ?

The rule gives for the term to be added,

4:X^

Therefore the required perfect square is

x^ — ^ax + 4r^2 ^ {-x — 2af.

We may now transpose 4:0?, so that the left-hand member
of the equation shall be the original binomial (1). Thus,

. x'^ — 4tax z=i {x — 2ay — 4^^.

The original binomial is now expressed as the difference of

two squares. Therefore, the above process is a solution of the

problem : Having a binomial of which one term is a ^perfect

square, to express it as a difference of two squares,

EXERCISES.
Express the following binomials as differences of two

squares

:

I

3

5

7

9

IT

13

x'^ + 2xy, 2. x^ -\- 4:xy,

x^ + ^ax. 4. 4a;2 -f ^xy,

4:X^ + 4:xy. 6. dx^ -\- ax,

IGx^ + S2mx, 8. x^ + 4.x,

a\r? + 2a^x, 10. Wx^ + 2.

m%2 + 1. 12. ^p^x^ + Ix,

4:X^
' 9a^x^
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Irrational Factors.

188. When we introduce surds, many expressions can be

factored which have no rational factors. The following

theorem may be applied for this purpose

:

Theorem. The difference of any two quantities is

equal to the product of sum and difference of thek

square roots.

In the language of algebra, if a and h be the quantities, we

shall have

which can be proved by multiplying and by § 80, (3).

EXERCISES.
Factor

I. m — n. 2. m — 1.

3. am — hn. 4- 4«2m _ 9,

5. x^ — m. 6. x^ — {m -f n\

7. {x — af -
1 ,

--{m--n). 8. x^ — (in — n).

9. {a + hf — (4;/ __ qy jq^ -^2 _j_ ^xy+ y^ — {m -f w)i

Find the irrational square roots of the following expressions

by the principles of § 186 :

11. a — 2 -f a~K Ans, a^ — a~^.

12. X — 2Vxy + y, 13. 4 -{- 4a/3 -f 3.

14. 9 + 5 — 6a/5. 15. 4a 4- ^ — 4tah^.

16. fl+ ^»+ 2(a4-Z^)ir(;-f 2:1 17. 3 + 2a/15 + 5.

18. 3 + 5 — 2a/15.

20. a — 2\/a + 1. ^

i 1
22. a + 2^3 4- 1.

a a a
24. 4 + 3 + 9-

26. ^5 _|. 2 -f a -5.

28. a -\- b — 4: -\-

19.
X y Vxy
4 "^4 2

21. « — 2a^ 4- ai

23.
7 . ai

25- - + - + -.
16 ^ 4 ^ 4

27. 4^:3 _ 8 -t- 4a;-8

a -\-h



BOOK VI.

EQUATIONS REQUIRING IRRA
TIONAL OPERATIONS.

CHAPTER I.

EQUATIONS WITH TWO TERMS ONLY.

189. In the present chapter we consider equations which

contain only a single power or root of the unknown quantity.

Such an equation, when reduced to the normal form, will

be of the form
Ax^ + ^ = 0.

By transposing B, dividing by A, and putting

B

the equation may be written,

x^ — a = 0.

or x^ =i a, (1)

Here n maybe an integer, or it may represent some fraction.

Such an equation is called a Binomial Equation, because

the expression x'^ — a is a binomial.

Solution of a Binomial Equation.

190. 1. When the exponent ofx is a ivhole numher. If we

extract the n^^ root of both members of the equation (1), these

roots will, by Axiom Y, still be equal. The n^^ ri8f6t of x'^ being

X, and that of a being a^, we have ^

X = a%
and the equation is solved.
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2. When the exjjonent is fractional. Let the equation be

m
^ — a.

Raising both members to the n^^ power, we have

x^ = aP',

Extracting the m^^ root,

X — a^.

If the numerator of the exponent is unity, we only have to

suppose m = 1, which will give

X = a^.

Hence the binomial equation always admits of solution by

forming powers, extracting roots, or both.

Special Forms of Binomial Equations.

Bef, When the exponent n is an integer, the equa-

tion is called a Pure Equation of the degree n.

When 71 = 2^ the equation is a Pure Quadratic

Equation.

When n = 3, the equation is a Pure Cubic Equa-
tion.

EXERCISES.

Find the values of x in the following equations

:

I.
P
x^

Ans. X = -'

2.
a -^ h

^ =c.
x^

3.

a h

xi — b xi — a

4.
9 x^

a;
"" 24' 5-

x — 2a 2x— b

X — a ~~ x—b

6
x^ — na nx^ — h

7-

9-

a At xa.

x^ — a ~ x^ — l

yi xi

^ "«-*

8.
\^x -\- a^ b — a

a + b ^x — a^
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In the last example, clearing the equation of fractions, we shall have

or {x^ - a'^)^ = 62 _ a\

We square both sides of this equation, which gives another in which

a*^ only appears.

lo. {x — a)i = h^. II. {x^ — a^p = mx.

12. (V^ — 'v/^)i = nx^.

Positive and Neg^ative Roots.

191. Since the square root of a quantity may be either

positive or negative, it follows that when we have an equation

such as

x^ z=z a,

and extract the square root, we may have either

X = + a^,

or X =z — a^.

Hence there are two roots to every such equation, the one

positive and the other negative. We express this pair of roots

by writing

X z=z ±a^,

the expression ± ^^ meanr.ig either + a^ or — a^.

It might seem that since the square root of x^ is either +ir or —x, we
should write

having the four equations,

± X - ±aK
X z= ai

X = — aK
— X = + ai,

— X = — aK

But the first and fourth of these equations give identical values of x

by simply changing the sign, and so do the second and third.

PROBLEMS LEADINO TO PURE EQUATIONS.

1. Find three numbers, such that the second shall be
double the first, the third one-third the second, and the sum
of their squares 196.

2. The sum of the squares of two numbers is 369, and the

difference of their squares 81. What are the numbers?



I

PROBLEMS. 173

3. A lot of land contains 1645 square feet, and its length

exceeds its breadth by 12 feet. What are the length and
breadth ?

To solve this equation as a binomial, take the mean of the length

and breadth as the unknown quantity, so that the length shall be as much
greater than the mean as the breadth is less.

4. Find a number such that if 9 be added to and subtracted

from it, the product of the sum and difference shall be 175.

5. Find a number such that if a be added to it and sub-

tracted from it the product of the sum and difference shall be

2a + 1.

6. One number is double another, and the difference of

their squares is 192. What are the numbers ?

7. One number is 8 times another, and the sum of their

cube roots is 12. What are the numbers ?

8. Find two numbers of which one is 3 times the other,

and the square root of their sum, multiplied by the lesser, is

equal to 128.

9. What two numbers are to each other as 2:3, and the

sum of their squares = 325 .^

Note. If we represent one of the numbers by 2x, the other will be ^x.

10. What two numbers are to each other as m\ny and
the square of their difference equal to their sum ?

11. What two numbers are to each other as 9 to 7, and the

cube root of their difference multiplied by the square root of

their sum equal to 16 ?

12. Find X and y from the equations

ax^ -f hy'^ = c,

a!x^ 4- Vy'^ = c'.

13. The hypothenuse of a right-angled triangle is 26 feet

in length, and the sum of the sides is 34 feet. Find each side.

Note. It is shown in Geometry that the square of the hypothenuse
of a right-angled triangle is equal to the sum of the squares of the other

two sides. In the present problem, take for the unknown quantity the

amount by which each unknown side differs from half their sum.

14., Two points start out together from the vertex of a
right angle along its respective sides, the one moving m feet

per second and the other 7i feet per second. How long will

they require to be c feet apart ?

15. By the law of falling bodies, the distance fallen is pro-

portional to the square of the time, and a body falls 16 feet

the first second. How long will it require to fall h feet ?
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CHAPTER II.

QUADRATIC EQUATIONS.

193. Def. A Quadratic Equation is one which,

when reduced to the normal form, contains the second
and no higher power of the unknown quantity.

A quadratic equation is the same as an equation of the second degree.

Def. A Pure quadratic equation is one which con-

tains the second power only of the unknown quantity.

The treatment of a pure quadratic equation is given in the preceding

chapter.

Def. A Complete quadratic equation is one which

contains both the first and second powers of the un-

known quantity.

The normal form of a complete quadratic equation is

ax^ -^ bx -\- c = 0. (1)

If we divide this equation by a, we obtain

(2)x^ + ^-x
a a

Putting, for brevity, - =--P^

c _
a
~-<1,

equation will be written in the form,

x^ -\-px + q =1 0. (3)

Def. The equation

x^ -^ px \- q -^^

is called the General Equation of the Second Degree,

or the General Quadratic Equation, because it is the

form to which all such equations can be reduced.
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Solution of a Complete Quadratic Equation.

193. A quadratic equation is solved hy adding such

a quantity to its two members that the inember contain-

ing the unhnoiun quantity shall he a perfect square,

(§187.)

We first transpose q in the general equation, obtaining

x^ + px =z — g.

We then add j- to both members, making

x^ -\-px+^ ='- — q.

The first member of the equation is now a perfect square.

Extracting the square roots of both sides, we have

= Wi,+l-^./«=
From this equation we obtain a value of x which may be

put in either of the several forms,

X =z -iwr-
X = p Vp^ — 4:q

2^ 2

1

If instead of substituting jt) and q, we treat the equation in

the form (2) precisely as we have treated it in the form (3), we

sliall obtain the several results,

_ --b± V{I^ -^ 4:ac)
"~

2a
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194. The equation in the normal form, (1), may also be

solved by the following process, which is sometimes more con-

venient. Transposing ^/and multiplying the equation by a,

we obtain the result

a^x^ + dbx = — ac.

To make the first member a perfect square, we add — to

each member, giving

a^x^ + ahx + — n^ ac,
4 4

Extracting the square root of both sides, ive have

^^ + o = ^ V(^^ — ^ac),

from which we obtain the same value of x as before.

195. Since the square root in the expression for x may be

either positive or negative, there will be two roots to every

quadratic equation, the one formed from the positive and the

other from the negative surds. If we distinguish these roots

with x^ and x^^ their values will be

_ — ^ — V{b^ — iac) '

^^ - 2a

We can always find the roots of a gi ven quadratic equation by sub-

stituting the coefficients in the preceding expression for x. But the stu-

dent is advised to solve each separate equation by the process just given,

which is embodied in the following rule

:

I. Reduce the equation to its normal or its general

fornh, as may he inmost convenient,

II. Transpose the terms which do not contain x to the

second member,
III. // the coefficient of x^ is unity, add one-fourth

the square of the coefficient of x to both manbers of the

equation and exti^act the square root,

IV. // the coefficient of x^ is not unity, either divide

by it so as to reduce it to unity^ or multiply all the terin^
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hy such a factor that it shall become a perfect square,

and complete the square hy the rule 0/ § 187.

EXAMPLE.
Solve the equation

• x-l _^

Clearing of fractions and transposing, we find the equation to become

2x^--4:lx + 1 = 0, (5)

, 41:?; 1
^4 — ,

2 - 2

Adding J the square of the coefficient of x to each side, we have

2 11 1681 _ 1681 1 _ 1673
^ " 2

'"^ "^
16 "^ 16 2

~"
16

'

Extracting the square root and reducing, we find the values of x to he

X, = ^(41 + V1673),

and

x^ = j(41-\/l673).

Using the other method, in order to avoid fractions, we multiply the

equation (5) by 3, making the equation,

4^2 _ 822; = -> 2.

Adding -j- ~ —7— to each side of the equation, we have

. o..
4:12 1681 1673

4a;2 — 82^; + -— ^ —j 2 = —;

—

4 4 4

Extracting the square root,

41 /1673 ^1673
2a;

/1673

2
" r 4 2 '

whence we find

41 ± \/l673

the same result as before.

EXERCISES.
Reduce and solve the following equations .

-^ + 2 _ 2; — 2 _ 6 ^ + 4 y — i _ 10^
^' ,T-.2 :^+~2 "^ 6' ^*

i^--.4 ^ ?/ + 4
*"* 3'

12
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1 2 _ 4

4. y^ — %ay + ^2 _ ^2 _ q.

1 1 1 1

X + a
1 +

^-'^ =3.
X — a

X -{- a

y
2 + 2/ 2/'-4'2-^v
y -{- a y — a _ 1 1

8- ^rfT-.-;r-- + ^r—. = 4.

« -f- iz; a — i?;

+ 3 = 0.

y — a y -\- ci y — ci' y^ — a^ V — (^

X X

PROBLEMS.
1. Find two numbers such that their difference shall be

6 and their product 567.

2. The difference of two numbers is 6, and the difference

of their cubes is 936. What are the numbers ?

3. Divide the number 34 into two such parts that the

sum of their squares shall be double their product ?

4. The sum of two numbers is 60, and the sum of their

squares 1872. What are the numbers ?

5. Find three numbers such that the second shall be 5

greater than the first, the third double the second, and the

sum of their squares 1225.

6. Find four numbers such that each shall be 4 greater

than the one next smaller, and the product of the two lesser

ones added to the product of the two greater shall be 312.

7. A shoe dealer bought a box of boots for $210. If there

had been 5 pair of boots less in the box, tlfey would have cost

him %\ per pair more, if he had still paid $210 for the whole.

How many pair of boots were in the box ?

Rem. If we call x the number of pairs, the price paid for each pair

must have been
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8. A huckster bought a certain number of chickens for

$10, and a number of turkeys for $15.75. There were 4 more
chickens than turkeys, but they each cost him 35 cents a piece

less. How many of each did he buy?

9. A farmer sold a certain number of sheep for $240. If

he had sold a number of sheep 3 greater for the same sum, he
would have received $4 a piece less. How many sheep did he
sell?

10. A party having dined together at a hotel, found the
bill to be $9.60. Two of the number having left before pay-
ing, each of tlie remainder had to pay 24 cents more to make
up the loss. What was the number of the party?

11. A pedler bought $10 worth of apples. 30 of them
proved to be rotten, but he sold the remainder at an advance
of 2 cents each, and made a profit of $3.20. How many did
he buy ?

12. In a certain number of hours a man traveled 48 miles
;

if he had traveled one mile more per hour, it would have taken
him 4 hours less to perform his journey ; how many miles did
he travel per hour ?

13. The perimeter of a rectangular field is 160 metres, and
its area is 1575 square metres. What are its length and
breadth ?

14. The length of a lot of land exceeds its breadth by
a feet, and it contains m^ square feet. What are its dimen-
sions ?

15. A stage leaves town A for town B, driving 8 miles an
hour. Three hours afterward a stage leaves B for A at such a

speed as to reach A in 18 hours. They meet when the second
has driven as many hours as it drives miles per hour. What
is the distance between A and B ?

Note. The solution is very simple when the proper quantity is taken

as unknown.

Equations which may be Reduced to Quad-
ratics.

196. Whenever an equation contains only two

powers of the unknown quantity, and the index of one

power is double that of the other, the equation can be
solved as a quadratic.
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Special Example. Let us take the equation

7^ + M + c =z 0. (1)

Transposing c and adding -Vi to each side of the equation,

it becomes

4 4

The first member of this equation is a perfect square,

namely, the square of a:^ + - J. Extracting the square roots

of both members, we have

^ + |S = /(jS^ - c) = ±
J
V(52 - 4c).

Hence, ^ = \[-i± V{V - 4c)].

Extracting the cube root, we have

x=z -\-h±V(P-4:c)'\^.

General Form, We now generalize this solution in the

following way. Suppose we can reduce an equation to the

form
ax^^ + hx^ + c = 0,

in which the exponent n may be any quantity whatever, entire

or fractional. By dividing by a, transposing, and adding
J

1 7»2

- -7, to both sides of the equation, we find
4a^ ^ '

a 4«2 4«^ a

The first side of this equation is the square of

Hence, by extracting the square root, and reducing as in

the general equation, we find
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Extracting the n^^ root of both sides, we have

X = -j—L
[—b± V(b^ — 4:ac)]K

""
\ 2a /

If the exponent ^ is a fraction, the same course may be

followed.

Suppose, for example,

axi + ix^ + c = 0.

Dividing by a and transposing, we have

4 . J 2 c
xt J x'^ =

a a

Adding —^ to both sides,

4 . & 2 . J^ W- c

a Aa^ 4:0^ a

The left-hand member of this equation is the square of

Extracting the square root of both members,

I _^ _ /^ _ c\* __ {b^ — ^ac)^
,

whence, a;^ =:_

Eaising both sides of this equation to the f power, w^have

2a
X = -]^

EXERCISES.
1. Eind a number which, added to twice its square root,

will make 99.

2. What number will leave a remainder of 99 when twice

its square root is subtracted from it.
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3. One-fifth of a certain number exceeds its square root

by 30. What is the number ?

4. What number added to its square root makes 306 ?

5. If from 3 times a certain number we subtract 10 times

its square root and 96 more, and divide the remainder by the

number, the quotient will be 2. What is the number ?

Solve the equations

:

6. \y^— 2^2 _ 15. 7. 3^ _ 7^2 _ 25.

8. 5«/4 — ^y^ = 13,mm-.
9. {x^ + a^Y" — 4:{x^ + a^)^ — «2 _ 2 + - •

€1

197. When the unknown quantity appears in the form

x^ -\—2, the square may be completed by simply adding 2 to
^

. 1 .

this expression, because x^ -\- 2 -\- -^ is a perfect square,

1
^

namely, the square of x + -* The value of x may then be
X

deduced from it by solving another quadratic equation.

3
Example. Zx^ + "2 "= ^^•

We first divide by 3 and add 2 to each side of the equation,

obtaining
, ,

^ 1 ^^
. o ^^

^+^ + ^2 = y + ^ = y
Extracting the square root of both sides,

,
1 2V7 2^/21 2 ..,

X ^^ 3 3

By multiplying by x, this equation becomes a quadratic,

and can be solved in the usual way.

Let us now take this equation in the more general form,

1
x-\-- = e, (a)

2
which reduces to the foregoing by putting e =

-^
^21. Clear*

ing of fractions and transposing,

x^ — ex -}- 1 =z ;
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which being solved in the usual way, gives

e ± V(e^ — 4)
X = -^

The two roots are therefore

""^
-

2 ~ '

_ e — V{e^ — 4)
^3 -

2

If in the first of these equations we rationalize the numer-

ator by multiplying it by e — \/{e^ — 4) (§ 185), we shall find

2 1
it to reduce to , that is, to — • Therefore,

e - V(e2 - 4) ^2

iCj r= — identically.

Vice versa, x^ is identically the same as —
This must be the case whenever we solve an equation of the

form {a), that is, one in which the value oi x + - is given.
X

50
Let us suppose first that e = — , so that the equation is

1 50

It is evident that a; = 7 is a root of this equation, because

;
when we put 7 for x, the left-hand member becomes 7 + ^r,

50 1
which is equal to —• If we put ^ for x, the left-hand mem-

ber will become

7^1 7 ^ '

Hence x and - exchange values by putting - instead of 7,
X i

so that their sum x -\- - remains unaltered by the change.



184 QUADRATIC EQUATIONS.

The general result may be expressed thus

:

Because the value of the expression x + - remains un-

altered when we change x into , therefore the reciprocal of

any root of the equation

1
X + - = e

X

is also a root of the same equation.

EXERCISES.

Find all the roots of the following equations without clear-

ing the given equations from denominators

:

1 17 1
I. iz;2 _|_ —

.

2. a^x^ + --^ = 7)1^ — 2.
x^ 4 a^x^

3. 16^/2 + ^3
= 28. 4. j,-{-y' = 2m^

5. Show, without solving, that if r be any roofc of the

equation • 1
^' + ^2 = «>

then — r, - , and will also be roots.

Factorings a Quadratic Equation.

198. 1. Special Case, Let us consider the equation

a;2_22;— 15 = 0,

or a;2 — 2a; + 1 — 16 = 0,

or {x - 1)2 _ 42 = 0.

Factoring, it becomes (§ 90),

(ic — 1 + 4) {x — 1 — 4) = 0,

or {x + 3) {x — 5) =: 0.

Therefore the original equation can be transformed into

(x + 3) (a; -~ 5) = 0,

a result which can be proved by simply performing the multi-

plications.
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This last equation may be satisfied by putting either of its

factors equal to zero ; that is, by supposing

a; + 3 = 0, whence a; = — 3
;

or ;c — 5 = 0, whence :r = + 5.

These are the same roots which we should obtain by solving

the original equation.

2. Factoring the General Quadratic Equation, Let us con-

sider the general quadratic equation,

x^ -\- px -\- q z= 0. {a)

!N'ow, instead of thinking of a; as a root of this equation,

let us suppose x to have any value whatever, and let us con-

sider the expression

x^ + 2^x -f qy (1)

which for shortness we shall call X, Let tis also inquire how
it can be transformed without changing its value.

First we add and subtract -^p^, so as to make part of it a

perfect square. It thus becomes,

X = x^ 4- 2^x + -;;2 _ _^2 + ^ .

.

or, which is the same tiling,

Factoring this expression as in § 188, it becomes

X = ^ + 2P +

The student should now prove that this expression is really equal to

x'^ + px + q, by performing the multiplication.

Let us next put, for brevity,

1
"2-Ip-i^f-gf.
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The preceding value ofX will then become,

X= {x-a){x-. (3), (3)

an expression identically equal to (1), when we put for a and

P their values in (2).

Let us return to the supposition that this expression is to

be equal to zero, and that x is a root of the equation.

The equation (a) will then be

{x -a){x-(3) z= 0. (4)

But no product can be equal to zero unless one of the fac-

tors is zero. Hence we must have either

X — cc = 0, whence x = cc-,

or X — P = 0, whence x = fi

Hence, a and ^ are the two roots of the equation (a).

The above is another way of solving tlio quadratic
equation.

To compare the expressions (1) and (3), let us perform the

multiplication in the latter. It will become,

X = x^— {a + P)x + ap. .

Since this expression is identically the same as x^-^px-^q,

the coefficients of the like powers of x must be the same.

That is,

cc + P = -p,) .

•
, .

which can be readily proved by adding and multiplying the

equations (2).

This result may be expressed as follows :

Theorem, When a quadratic equation is reduced

to the general form

x^ \- px \- q — ^^

the coefficient of x will be equal to the sum of the roots

with the sign changed.

The term independent of x will be equal to the

product of the roots.

The student may ask why can we not determine the roots of the

quadratic equation from equations (5), regarding a and /3 as the unknown

quantities ?
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We can do so, but let us see what tlie result will be. We eliminate

either « or /3 by substitution or by comparison.

From the second equation (5) we have,

a = ^--

a

Substituting this in the first equation, we have

a + P-

Clearing of fractions and transposing,

«2 + ^e« + ^ = 0.

We have now the same equation with which we started, only a takes

the place of x. If we had eliminated cc, we should have had the same
equation in /3, namely,

/32+^/3 + g^ = 0.

So the equations (5), when we try to solve them, only lead us to the

original equation.

199. To form a Quadratic Equation when the Roots are

given. The foregoing principles will enable us to form a quad-

ratic equation which shall have any given roots. We have

only to substitute the roots for a and /3 in equation (4), and
perform the multiplications.

EXERCISES.

Form equations of which the roots shall be

:

I, +1 and — 1.

3. — 3 and — 2.

5. 7+ 2a/3 and 7—2^3.
7. ~ 1 and + 2.

9. +1 and — 2.

II. - and -•
4 5

13. 2+ ^/2 and 2— ^/2. 14.

15- 5 + 7V5 and 5— 7^/5. 16

3 and 2.

3 + 2Vl0and 3-2^10.

+ 1 and + 2.

— 1 and — 2.

2 + a/S and 2 — ^/b,

7,9
2
"^^ 2-

9 + 2\/2 and 9 — 2a/2

a -\'h and a — h.

17. a + A/a^ — h^ and a — ^/a^ — l\
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Equations having Imaginary Roots.

300. When we complete the square in order to solve a

quadratic equation, the quantity on the right-hand side of the

equation to which that square is equal must be positive^ else

there can be no real root. For if we square either a positive

or negative quantity, the result will be positive. Hence, if

the square of the first member comes out equal to a negative

quantity, there is no answer, either positive or negative, which

will fulfil the conditions. Such a result shows that impossible

conditions have been introduced into the problem.

E X AMPLES.
1. To divide the number 10 into two such parts that their

product shall be 34.

If we proceed with this equation in the usual way, we shall

have, on completing the square,

x^ — lOiT + 25 = — 9,

or {x — 5)2 = — 9.

The square being negative, there is no answer. On con-

sidering the question, we shall see that the greatest possible

product which the two parts of 10 can have is when they are

each 5. It is therefore impossible to divide the number 10

into two parts of which the product shall be more than 25 ; and

because the question supposes the product to be 34, it is im-

'possible in ordinary numbers.

2. Suppose a person to travel on the surface of the earth to

any distance ; how far must he go in order that the straight

line through the round earth from the point whence he started

to the point at which he arrives shall be 8000 miles?

It is evident that the greatest possible length of this line is

a. diameter of the earth, namely, 7,912 miles. Hence he can

never get 8,000 miles away, and the answer is impossible.

In such cases the square root of the negative quantity is

considered to be part of a root of the equation, and because it

is not equal to any positive or negative algebraic quantity, it

is called an imaginary root. The theory of such roots will be

explained in a subsequent book.
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CHAPTER III.

REDUCTION OF IRRATIONAL EQUATIONS TO THE
NORMAL FORM.

201. An Irrational Equation is one in which tlio

unknown qnantity appears under the radical sign.

An irrational equation may be cleared of fractions

in the same way as if it were rational.

Example. Clear from fractions the equation

Vx + 6? -f Vx — a _ 2a

Vx -\- a — Vx — a Vx^ — a^

Multiplying both members by Vx^ — a^ = \/x+aVx—a,
we have

{x 4- a) Vx — a -\- {x — a) Vx -^ (^ __ ^

Vx -i- a — Vx — a

Next, multiplying by Vx -{- a ^ Vx — a, we have

{x-\-a) Vx — a -\- {x — a) Vx -\- a =: 2aVx-\-a — 2aVx — a.

Transposing and reducing, we have

{x + da) Vx — a -i- {x — 3a) Vx + « = 0,

and the equation is cleared of denominators.

Clearing of Surds.

303. In order that an irrational equation may be solved,

it must also be cleared of surds which contain the unknown
quantity. In showing how this is done, we shall suppose the

equation to be cleared of denominators, and to be composed of

terms some or all of which are multiplied by the square roots

of given functions of x.

Let us take, as a first example, the equation just found.

Since a surd may be either positive or negative, the equation

in question may mean any one of the following four:
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{x -f 3«) ^/x — a+ {x — 3«) Vx -\- a = 0, (1)

{x + da) "^x — a — {x — oa) ^/x + « = 0, (3)

— (x -\- ?id) ^/x — a -\- (x — ?>a) \/x -{- a = 0, (3)

— {x -\- 3a) "s/X — a — {x — 3a) ^/x + a = 0. (4)

But the third equation is merely the negative of the second,

and the fourth the negative of the first, so that only two have

different roots. Let us put, for brevity,

P — (x \3a)^/x — a-\- {x — 3a) \/x~^\^, )

Q = (x -\- 3a) Vx ^ a— {x — 3a) "s/x + r?, )

and let us consider the equation,

PQ = 0. (6)

Since . this equation is satisfied when, and only when, we

have either P = or § =: 0, it follows that every value of x

.which satisfies either of the equations (1) or (2) will satisfy (G).

Also, every root of (6) must be a root either of (1) or (2).

If we substitute in (6) the values of F and Q in (5), we

shall then have

{x 4- 3aY{x — a) — {x — 3a)^ {x -{- a) = 0,

which reduces to 6x^ — 9a^ = 0,

, . 3a
and gives x =: ± —— •

V5
It will be remarked that the process by which we free the

equation from surds is similar to that for rationalizing the

terms of a fraction employed in § 185.

As a second example, let us take the equation,

V^ -h 11 + Vx — 4: — 5 = 0. (a)

We write the three additional equations formed by combin-

ing the positive and negative values of the surds in every way:

•— a/S~+Ti + Vx — 4: — 5 r= 0,

Vx + 11 — a/S'^^^ — 5 = 0,

— Vx + 11 — Vx — 4: — 5 = 0.

The product of the first two equations is
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(^^/^Z^l^ 5)2 _ {x + 11) = 0,

or 10 — lOVi"^^ = 0. (1)

The product of the last two is

10 + l0\/^^"4 z= 0. (2)

The product of these two products is

100 — 100 (^ — 4) = 0,

which gives x =i b.

It will be remarked that (2) differs from (1) only in having

the sign of the surd different. This must be the case, because

the second pair of equations formed from [a) differ from the

first pair only in having the sign of the surd '^/x — 4 different.

Hence it is not necessary to write more than one pair of the

equations at each step. The general process is as follows

:

I. Change the sign of one of the surds in the given

equation, and multiply the equation thus formed hy the

original equation.

II. Reduce this product, in it change the sign of an-

other of the surds, and form a neiu product of the two

equations thus formed,
III. Continue the process until an equation without

surds is reached.

Example. Solve

A/8a; + 9 + V^x -{- 6 + Va? + 4 = 0,

Changing the sign of ^/x + 4,

^/Sx + 9 + ^/^x + 6 — v'o; + 4 = 0.

The product is

(VSx + 9 + \/%x + 6/ — {x + 4) = 0,

or, after reduction,

9:^ + 11 -!_ 2^y^x + 9 \/'lx + 6 = 0.

Changing the sign of ^/'ilx -f- 6, we have

^x 4- 11 — 2^/8^ + 9 V^x + G — 0.
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The product of the last two equations reduces to

17^2 _ QQx — 95 = 0,

which being solved gives x = —~
Remark. Equations containing surds may often reduce to the form

treated in § 196. In this case, the methods of that section may be fol-

lowed.

EXERCISES.

Solve the equations

:

1 1 2Va — Wx
'\/x + ^a Vx — ^/a X — a

Vx''-\-a X

"s/a^ —X ^

4. Vx + i-i + a/uj^^iT= 14.

5. (3 — x)i — (3 + x'^)i = 0.

6. Vet + ^x + Vet — ^x =. 2Vx + —

•

Vx-\-2 ^ - 4: Vx-2

V'Ex + 3 2 '

Vx -\- 3 — Vx--4: =:1,

9. Va^ — 2X +
Va^ — 2x

X + Vx X (x — 1)
10. — = .

X — Vx ^

Vr+a 1
31. ; =

,

Vx — a + yctx — 1 Vx — 1
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CHAPTER IV.

SIMULTANEOUS QUADRATIC EQUATIONS.

Between a pair of simultaneous general quadratic equations

one of the unknown quantities can always be eliminated. The
resulting equation, when reduced, will be of the fourth degree

with respect to the other -unknown quantity, and cannot be

solved like a quadratic equation.

But there are several cases in which a solution of two equa-

tions, one of which is of the second or some higher degree,

may be effected, owing to some of the terms being wanting in

one or both equations.

303. Case I. When one of the equations is of
the first degree only.

This case may be solved thus

:

KuLE. Find the value of one of the unhnown quan-
tities in terms of the other from the cquaMon of the first

decree. This value being substituted in the other equa-
tion, we shall have a quadratic equation from which the

other unhnown quantity may he found.

Example. Solve

2iz:2 + dxy ^ 6y^ — x -^ 6y i= 26, )

2x^^ =z 5. )

^^^

From the second equation we find

Whence, .^ = V + g^+jg.

Substituting this value in the first equation and reducing,

we find

4?/2 + 16y + 10 =r 26.

Solving this quadratic equation,

13
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^=:— 2±V'8=— 2± 2\/2.

This value of y being substituted in the equation {h) gives,

1 -{- sv^s — 1 ± 6a/2
X =z

2 ~ 2

The same problem may be solved in tbe reverse order by eliminating

4/ instead of x. Tlie second equation (a) gives

2x — 5

If we substitute this value oiy in the first equation, we shall have a

quadratic equation in x, from which the value of the latter quantity can

DC found.

Solve
EXERCISES.

I. x^ — 2xy + 4?/2 = 21.

2x -\- y = 12.

2. 3^2 _ 2^2 _|_ 5^ _ 2^ = 28.

2; + 2/ + 4 = 0.

3-

X -{-2y = 0,

4. 3x^ + 2^^ = 813,

7a; — 4^ = 17.

5. ^ + y = 7,

a: y _ '^

y~~x~ 12'

304. Case II. When each equation contains
only one term of the second deffvee^ and that term
''his the sayne 2>^oduct or square of the unknown
quantities in the two equations.

Such equations are

ax^ -{• dx -{- ey -{- f = 0,
|

, .

a'x^ + d'x + e'y +/ = 0, f

^^^

where the only term of the second degree is that in a^.

If we eliminate x'^ from these equations by multiplying the

first by a' and the second by a, and subtracting, we have
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{a'd — ad') x + {a!e — ae') y -\- a'f— af = 0.

Bui iving this equation with respect to x, we find

_ {ae'^a'e)y^ af - a'f^~
d'd-ad' ^^>

By substituting this value of x in either of the equations

(a), we shall have a quadratic equation in y. Solving the

latter, we shall obtain two values of y. Substituting these in

(b), we shall have the two corresponding values of x, and tlie

solution will be complete. Hence the rule,

Eliminate the term of the second decree by addition

or subtraction, and use the resulting equation of the first

degree with either of the original equations, as in Case I,

Example. Solve

2xy — 4:x-^6y-jzz 23, )

3xy + 7x + y = 41,)
^^^

Multiplying the first equation by 3 and the second by 2,

and subtracting, we have

— 26x + 13y = — 13
; (b)

whence, x = -y -\- -- (c)

Substituting this value in tl>e first equation, we find a

quadratic equation, which, being solved, gives

y = -2± V29.

Substituting these values in (c), the result is

The two sets of values of the unknown quantities are

therefore

''i^-l + l^^^' ^, = -l-lV29.

y^ = -2 + V2d, y^=: -2- a/29.

We might have obtained the same result by solving the equation (c)

with respect to y, and substituting in (a). The student should practice

both methods.
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EXKRCISES.

1. %x^ - dx — 4y = 25,
"' ^'

'

'''''

x^ -\-2x — 3y = 18.

2. 2y^ + y := 28,

^2 _|. ^r^ '-4:y = 18.

dxy ^2x -i- 6y = 70.

305, Case III. When neitliei^ equation €on°
tains a term of the first degree in oc or y.

EuLE. Eliminate the constant terms by multiplying

each equation by the constant term of the other, and
adding or subtracting the two products. The result ivill

be a quadratic equation, from luhich either unhnoivn
quantity can be determined in terms of the other. TJxen

substitute as in Case L

(1)
Example. Solve x^ •{- xy — «/^ = 5,

2x2 _ 3^^ ^ 2^2 -- 14.

14 X 1st eq., 14a:2 H- 14.xy — 14?/^ = 70.

5 X 2d eq.

,

10:^8 -^ Uxy -f 10^^ -. 70.

Subtracting, ix^ + 29xy — 24/ = 0.

This is a quadratic equation, by which one unknown quan-

tity can be expressed in terms of the other without the latter

being under the radical sign.

Transposing, 4:X^ + 2dxy — 24«/l (2)

841 1225
Completing square, 4,0(^ 4- 2^xy + 'T'^-y^ = ~T^^^*

Extracting root, 2x -\- -j-y :=^ :t-ry*

wi, — 29 ± 35 3 ^Whence, x — ~=-— y = jy or -— 8y.

Substituting the first of these values of x in either of the

original equations, we shall have

f = 16

;
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whence, ?/irr±4; 2;=±3.

SubstiiTuting the second value of x^ we have •

II'.
^2 ^

Whence, ^-±:^; "* ^ ^ 7lT
Therefore the four possible values of the unknown quanti-

ties are.

Each of these four pairs of values satisfies the original

equation.

A slight change in the mode of proceeding is to divide the

equation (2) by either x^ or y"^, and to find the value of the

quotient. Dividing by y^ and putting

X

y
the equation will become

4z^2 j^ 2du ^ 24 = 0.

This quadratic equation, being solved, gives

29 i: 35 _ 3

8
*~

4
IC =:: —^ — ^ - or — 5,

X
Putting - for ic, and multiplying by y,

3
X =: -y ov — Sy, as before.

EXERCISES.
Solve

1. x^ — xy + y^ — 3 = 0,

x^ — 2xy -f- 4y^ — 4: = 0.

2. 2x^ + 3xy — 1^2 _ 2 = 0,
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306. Case IV. When the expressUms contain-

inn tJte itnknown quantities in the two equations
have comnion factors.

Rule. Divide one of the equoMons which can he fac-

tored by the othe7% and cancel the common factors.

Then clear of fractions, if necessary, and we shall have
an equation of a lower degree,

EXAMPLES.
1. x^-\-y^ = 91, q: + y — 7.

We have seen (§ 94, Th. 1) that x^-\-y^ is divisible hy x-{-y.

So dividing the first equation by the second, we have

x^ — xy -\- y'^ =: 13.

This is an equation of the second degree only, and when
combined with the second of the original equations, the solu-

tion may be effected by Case I. The result is,

:r = 3 or 4, y = 4 or 3.

2. xy + 2/2 = 133, x^ — y^ z=z 95.

Factoring the first member of each equation, the equations

become
y{x + y) :=. 133, (x ^ y) {x - y) = 95.

Dividing one equation by the other, and clearing of fractions,

7
I2y = "ix, or y = —x.

The problem is now reduced to Case I, this value of y
being combined with either of the original equations.

307. There are many other devices by which simultaneous

equations may be solved or brought under one of the above

cases, for which no general rule can be given, and in which

the solution must be left to the ingenuity of the student.

Sometimes, also, an equation which comes under one of the

cases can be solved much more expeditiously than by the rule.

Let us take, for instance, the equations,

x% ^ y2 — 65, xy =z 28.

These equations can be solved by Case III, but the work

would be long and cumbrous. We see that by adding and
^
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subtracting twice the second equation to and from the first,

we can form two perfect squares. Extracting the roots of

these squares, we shall have two simple equations, which shall

give the solution at once. Each unknown quantity will have

four values, namely, ± 7 ± 4.

PROBLEMS AND EXERCISES.

The following equations can all be solved by some sliort and expe-

ditious combination of the equations, or by factoring, without going

through the complex process of Case III. The student is recommended
not to work upon the equations at random, but to study each pair until

he sees how it can be reduced to a simpler equation by addition, multi-

plication, or factoring, and then to go through the operations thus sug-

gested.

1. y^ + xy = 14, x^ + xy = 35.

2. 4:X^ — 2xy = 208, 2xy — y^ =r 39.

3. x^ '{- y = 4^, y^ -j- X = 4:y.

If we subtract one of these equations from the other, the difference

will be divisible by x — y.

4. .^3 _!_ y^ _|. 3^ _|. 3^ ^ 378^ :^ j^y^^Zx — Zy z=z 324.

5. x^ + ^2 ^ 74, x^y ^ 12.

6. x^ -^ xy =: G3, ,x^ — y'^ = 77.

^/x — yy
x^ -\r xy =: a, y'^ -{- xy ^ h,

x^ + xy"^ = 10, y^ + x^y =2 5.

X =z aV^ -\- y, y -=^ 'b\/x -f y,

x'^x + y r= 12. y^/x + 3/ = 15.

2x^ + 2y^ = X -{- y, x^ i- y^ = x — y.

5x^ — 5y^ = X -\- y, 3x^ — Sy^ = x — y.

x^+ y^-i-z^ = 30, xy-\-yz-\-zx = 17, x — y ^ z = 2.

7

8

9

10,

II

12

13

14

15

/x -\- y
x + y — 2\/ —'-^ = 8

-y
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1 6. A principal of $5000 amounts, with simple interest, to

$7100 after a certain number of years. Had the rate of inter-

est been 1 per cent, higher and the time 1 year longer, it would
have amounted to $7800. What was the time and rate?

17. A courier left a station riding at a uniform rate. Fiye

hours afterward, a second followed him, riding 3 miles an
hour faster. Two hours after the second, a third started at

the rate of 10 miles an hour. They all reach their destination

at the same time. What was its distance and the rate of riding ?

18. In a right-angled triangle there is given the hypothe-

nuse = a, and the area = Z>^; find the sides.

19. Find two numbers such that their product, sum, and
difference of squares shall be equal to each other.

20. Find two numbers whose product is 216; and if the

greater be diminished by 4, and the less increased by 3, the

product of this sum and difference may be 240.

21. There are two numbers whose sum is 74, and the sum
of their square roots is 12. What are the numbers ?

22. Find two numbers whose sum is 72, and the sum of

their cube roots 6.

23. The sides of a given rectangle are m and n. Find the

sides of another which shall have twice the perimeter and twice

the area of the given one.

24. A certain number of workmen require 3 days to com-
plete a work. A number 4 less, working 3 hours less per day,

will do it In 6 days. A number 6 greater than the original

number, working 6 hours less per day, will complete the work
in 4 days. What was the original number of workmen, and
how long did they work per day ?

25. Find two numbers whose sum is 18 and the sum of

their fourth powers 14096.

Note. Since the smn of the two numbers is 18, it is evident that

the one must be as much less than 9 as the other is greater. The equa-

tions will assume the simplest form when we take, as the unknown quan-

tity, the common amount by which the numbers differ from 9.

26. Find two numbers, x and y, such that

C(^^y^ : x^ — y^ :: 35 : 19,

xy = 24.

27. Find two numbers whose sum is 14 and the sum of

their fifth powers 161294.



BOOK VII.

PROGRESS/OA^S,

CHAPTER I.

ARITHMETICAL PROGRESSION.

308. Def. When we have a series of numbers each

of which is greater or less than the preceding by a con-

stant quantity, the series is said to form an Arithmet-
ical Progression.

Example. The series

7, 12, 17, 22, 27, 32, etc.
;

7, 5, 3, 1, —1, —3, etc.;

a -\- b, a, a — h, a — 2^, a — 3^, etc.,

are each in arithmetical progression, because, in the first, each

number is greater than the preceding by 5 ; in the second,

each is less than the preceding by 2 ; in the third, each is less

than the preceding by h.

Def, The amount by which each term of an arith-

metical progression is greater than the preceding one is

called the Common Difference.

Def. The Arithmetical Mean of two quantities is

half their sum.

AH the terms of an arithmetical progression except

the first and last are called so many arithmetical means
between the first and last as extremes.

Example. The four numbers, 5, 8, 11, 14, form the four

arithmetical means between 2 and 17.
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EXERCISES.
1. Form four terms of the arithmetical progression of

which the first term is 7 and common difference 3.

2. Write the first seven terms of the progression of which

the first term is 11 and the common difference — 3.

3. Write five terms of the progression of which the first

term is a — ^n and the common difference 27^.

Problems in Progression,

209. Let us put

a, the first term of a progression.

d, the common difference.

Uy the number of terms.

I, the last term.

2, the sum of all the terms.

The series is then

ay a-\-d, a-\-2d, ....?.

Any three of the above five quantities being given, the

other two may be found.

Pkoblem I. Given the first term, the cormnon differ-

ence, and the number of terms, to find the last term.

The 1st term is here a,

M " " a + d,

3d " " a + 2d.

The coefficient of d is, in each case, 1 less than the number
of the term. Since this coefficient increases by unity for every

term we add, it must remain less by unity than the number of

the term. Hence,

The i^^ term is a + {i — 1) d,

whatever be i. Hence, when i = n,

I = a + {n'^l)d. (1)

From this equation we can solve the further problems :

Problem II. Given the last term I, the common dif-

ference d, and the number of terms ^i, to find the first

term.
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The solution is found by solving (1) with respect to a,

which gives

a = l-{n^ 1) d. (2)

Problem III. Given the first and last terms, a and I,

and the number of terms n, to find the common differ-

ence.

Solution from (1), d being the unknown quantity,

d = ^. (3)71—1 ^ '

Problem IV. Given the first and last terms and the

common difference, to find the niimher of terms.

Solution, also from (1),

I — ct
^ ^ I — a + d ...

« = -^- + l = ^— (4)

Problem V. To find the sum of all the terms of an
arithmetical progression.

We have, by the definition of S,

2 = a -f («5 + cO -^ (« + ^^) + {l — d) + l,

the parentheses being used only to distinguish the terms.

Now let us write the terms in reverse order. The term

before the last is ? — d, the second one before it I — 2dy etc.

We therefore have,

^ =,1 j^ (l — d) -\- {l — '^d) -{ {a -\- d) -\- a.

Adding these two values of 2 together, term by term, we

find

22 = (« + ?) + {a + l) + {a+ l) + + («+ + («4-0,

the quantity {a+ 1) being written as often as there are terms,

that is, 71 times. Hence,

22 = 72 {a + l\

j: = 7i—-' (5)

Eemark. The expression —-— , that is, half the sum of

the extreme terms, is the mean value of all the terms. The
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sum of the n terms is therefore the same as if each of them
had this value.

310. In the equation (5) we are supposed to know the

first and last terms and the number of terms. If other quan-

tities are taken as the known ones, we have to substitute for

some one of the quantities in (5) its expression in one of the

equations (1), (2), (3), or (4). Suppose, for example, that we
have given only the last term, the common difference, and the

number of terms, that is, /, d, and n. We must then in (5)

substitute for a its value in (2). This will give,

^ =z nil —- d\ =z nl ^—- d. (6)

EXERCISES.

In arithmetical progression there are

1. Given, common difference, + 3; third term = 10.

Find first term. Ayis, First term — 4.

2. Given 4th term = d, common difference = — c.

Find first 7 terms, their sum and product.

3. Given 3d term z= a ^ h, 4th term = a + 2^.

Find first 5 terms.

4. Given 1st term =: a — h, 9th term =: 9^ + Ih.

Find 2d tprm and common difference.

5. Given, sum of 9 terms = 108.

Find middle term and sum of 1st and 9th terms.

6. Given 5th term =r 7^^ — by, 7th term = 9.r — ^y.

Find first 7 terms and common difference.

7. Given 1st term = 12, 50th term = 551.

Find sum of all 50 terms.

8. To find the sum of the first 100 numbers, namely,

1 + 2+3 +99 + 100.

Here the first term a is 1, the last term I 100, and the number of

terms 100. The solution is by Problem V.

9. Find the sum of the first n entire numbers, namely,

1+2 + 3 + n.
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10. Find the sum of the first n odd numbers, namely,

1 + 3 + 5 +27^ — 1.

Here the number of terms is n.

11. Find the sum of the first n even numbers, namely,

2 + 4 + 6 + 2/^.

12. In a school of m scholars, the highest received 134

merit marks, and each succeeding one 6 less than the one next

above him. How many did the lowest scholar receive ? How
many did they all receive ?

13. The first term of a series is m, the last term 2m, and

the common difiference d. What is the number of terms?

14. The first term is Ic, the last term lOh — 1, and the

number of terms 9. What is the common difference ?

15. The middle term of a progression is s, the number of

terms 5, and the common difference — K What are the first

and last terms and the sum of the 5 terms ?

16. The sum of 5 numbers in arithmetical progression is

20 and the sum of their squares 120. What are the numbers ?

Note. In questions like tins it is better to take the middle term for

one of the unknown quantities. The other unknown quantity will be

the common difference.

17. Find a number consisting of three digits in arithmeti-

cal progression, of which the sum is 15. If the number be

diminished by 792, the digits will be reversed.

18. The continued product of three numbers in arithmet-

ical progression is 640, and the third is four times the first.

What are the numbers ?

19. A traveller has a journey of 132 miles to perform. He
goes 27 miles the first day, 24 the second, and so on, travelling

3 miles less each day than the day before. In how many days

will he complete the journey ?

Here we have given the first term 27, the common difference —3, and
the sum of the terms 132. To solve this, we take equation (5), and sub-

stitute for 1 its value in (1). This makes (5) reduced to

a -{- a -^ (n — 1) ^ n(n — 1) d
^ — n ^ '— = na-\ ^

2, a, and d are given by the problem, and n is the unknown quan-

tity. Substituting the numerical value of the unknown quantities, the

equation becomes
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This reduced to a quadratic equation in n, the solution of which gives

two values of n. The student should explain this double answer by

continuing the progression to 11 terms, and showing what the negative

terms indicate.

20. Taking the same question as the last, only suppose the

distance to be 140 miles instead of 132. Show that the answer

will be imaginary, and explain this result.

21. A debtor owing $160 arranged to pay 25 dollars the

first month, 23 the second, and so on, 2 dollars less each

month, until his debt should be discharged. How many pay-

ments must he make, and what is the explanation of the two

answers ?

22. A hogshead holding 135 gallons has 3 gallons poured

into it the first day, 6 the second, and so on, 3 gallons more

every day. How long before it will be filled ? 1

23. The continued product of 5 consecutive terms is 12320

and their sum 40. What is the progression ?

24. Show that the condition that three numbers, p, q, and

r, are in arithmetical progression may be expressed in the form

q — r

25. In a progression consisting of 10 terms, the sum of the

1st, 3d, 5th, 7th, and 9th terms is 90, and the sum of the re-

maining terms is 110. What is the progression ?

26. In a progression of an odd number of terms there is

given the sum of the odd terms (the first, third, fifth, etc.)^

and the sum of the even terms (the second, fourth, etc.).

Show that we can find the middle term and the number of

terms, but not the common difference.

27. In a progression of an even number of terms is given

the sum of the even terms = 119, the sum of the odd terms =
105, and the excess of the last term over the first = 26. What

is the progression ?

28. Given a and I, the first and last terms, it is required to

insert i arithmetical means between them. Find the expres-

sion for the i terms required.
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CHAPTER II.

GEOMETRICAL PROGRESSION.

311. Def. A Geometrical Progression consists of

a series of terms of which each is fornied by multiply-

ing the term preceding by a constant factor.

All arithmetical progression is formed by continual addi-

tion or subtraction; a geometrical progression by repeated

multiplication or division.

Def. The factor by which each term is multiplied

to form the next one is called the Common Ratio.

The common ratio is analogous to the common difference

in an arithmetical progression.

In other respects the same definitions apply to both.

EXAM PLE s.

2, 6, 18, 54, etc.,

is a progression in which the first term is 2 and the common
ratio 3.

2 1 ^ ^ ^ etc
2' 4' 8^

is a progression in which the ratio is -•

+ 3, — 6, + 12, — 24, etc.,

is a progression in which the ratio is — 2.

Note. A progression like the second one above, formed by dividing

eadi term by. the same divisor to obtain the next term, is included in the

general definition, because dividing by any number is the same as multi-

plying by the reciprocal. Geometrical progressions may therefore be

divided into two classes, increasing and decreasing. In the increasing

progression the common ratio is greater than 1 and the terms go on in-

creasing ; in a diminishing progression the ratio is less than unity and

the terms go on diminishing.

Eem. In a progression in which the ratio is negative, the

terms will be alternately positive and negative.
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Def. A Geometrical Mean between two quantities

is tlie square root of their product.

EXERCISES.

Form five terms of each of the following geometrical pro-

gressions :

1. First term, 1 ; common ratio, 5.

2. First term, 7 ; common ratio, — 3.

3. First term, 1 ; common ratio, — 1.

2 3
4. First term, - ; common ratio, -•

4 1
5. First term, - ; common ratio, -•

Problems of Geometrical Progression.

313. In a geometrical progression, as in an arithmetical

one, there are five quantities!, any three of which determine

the progression, and enable the other two to be found. They

are

a, the first term.

r, the common ratio.

Uy the number of terms.

I, the last term.

2, the sum of the n terms.

The general expression for the geometrical progression

will be
aJ ar, ar^^ a7% etc.,

because each of these terms is formed by multiplying the pre-

ceding one by r.

The same problems present themselves in the two progres-

sions. Those for the geometrical one are as follows

:

Problem I. Given the first term, the eommorv ratio,

and the nunider of terms, to find the last term.

The progression will be

a, ar, ar^, etc.

We see that the exponent of r is less by 1 than the number
of the term, and since it increases by 1 for each term added, it
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must remain less by 1, how many terms so ever we take.

Hence the n^^ term is

I =: ar'^-K (1)

Problem II. Given the last term, the cormnon ratio,

and the number of terms, to find the first term.

The sokition is found by dividing both members of (1) by

?'^~S which gives

Problem III. Given the first term, the last term, and
the number of terms, to find the common ratio.

From (1) we find r'^~^ = -•

Extracting the (n -^ ly^ root of each member, we have
1

=©"

[The sohition of Problem IV requires us to find n from

equation (1), and belongs to a higher department of Algebra.]

Problem V. To find the sum of all n terms of a geo-

metrical progression.

We have !> = a -{- ar + ar^ -\- etc. + ar^~K

Multiply both sides of this equation by r. We then have

rl = ai^ + ar"^ -\- ar^ -\- etc + ar^.

Now subtract the first of these equations from the second.

It is evident that, in the second equation, each term of the

second member is equal to the term of the second member of

the first equation which is one place farther to the right.

Hence, when we subtract, all the terms will cancel each other

except the first of the first equation and the last of the second.

Illustration. The following is a case in which a = 2,T = d,n — Q',

fe' 2 = 2 + 6 + 18 + 54+162 + 486.

32 r= 6 + 18 + 54 + 162 + 486 + 1458.

Subtracting, 32-2 = 1458 - 2 = 1456,

or 22 = 1456, and 2 r= 728.

14
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Returning to the general problem, we have

(r-l)l. — ar^' — a —a {r^ — 1) ;

whence, 2 = a — = a- (4)-
r — 1 1 — r ^ \'

It will be most convenient to use the first form when r > 1,

and the second when r < 1.

By this formula we are enabled to compute the sum of the

terms of a geometrical progression without actually forming
all the terms and adding them.

EXERCISES
3

1. Given 3d term =z 9, common ratio = -•

Find first 5 terms.

32 2
2. Given 5th term = — , common ratio = — --

Find first 5 terms.

3. Given 5th term = x^jj'^, 1st term z= yK

Find common ratio.

4. Given 1st term = 1, 4th term =: a^.

Find common ratio and first 3 terms.

5. Given 2d term = m, common ratio :=. — m.

Find first 4 terms.

6. A farrier having told a coachman that he would charge

him $3 for shoeing his horse, the latter objected to thq price.

The farrier then offered to take 1 cent for the first nail, 2 for

the second, 4 for the third, and so on, doubling the amount

for each nail, which offer the coachman accepted. There were

32 nails. Find how much the coachman had to pay for the

last nail, and how much in all. (Compare § 168, Rem.)

7. Find the sum of 11 terms of the series

2 + 6 + 18 + etc.,

in which the first term is 2 and the common ratio 3.

8. If the common ratio of a progression is r, what will be

the common ratio of the progression formed by taking

I. Every alternate term of the given progression ?

II. Every 71^^^ term ?
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9. The same thing being supposed, what will be the com-

mon ratio of the progression of which every alternate term is

equal to every third term of the given progression ?

10. Show that if, in a geometrical progression, each term

be added to or subtracted from that next following, the sums

or remainders will form a geometrical progression.

11. Show that if the arithmetical and geometrical means

of two quantities be given, the quantities themselves may be

'

found, and give the expressions for them.

1 2. The sum of the first and fourth terms of a progression

is to the sum of the second and third as 21 : 5. What is the

common ratio?

13. Express the continued product of all the terms of a

geometrical progression in terms of a, r, and 71 ?

Limit of the Sum of a Progression.

313. Theorem. If the common ratio in a geometri-

cal progression is less than unity (more exactly, if it is

contained between the limits —1 and +1), then there

will be a certain quantity which the sum of all the

terms can never exceed, no matter how many terms we
take.

For example, the sum of the progression

111^
^+j + g + etc.,

in which the common ratio is ~, can never amount to 1, no

matter how many terms we take. To show this, suppose that

one person owed another a dollar, and proceeded to pay him a

series of fractions of a dollar in geometrical progression,

namely, 1111
r 4' 8' 16' ^^^*

When he paid him the - he would still owe another -,

when he paid the j he would still owe another j? and so on.
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That is, at every payment he would discharge one-half the re-

maining debt. Now there are two propositions to be under-

stood in reference to this subject.

I. The entire debt ean never he discharged hy such
payments.

For^ since the debt is halved at every payment, if there was

any payment which discharged the whole remaining debt, the

half of a thing would be equal to the whole of it, which is

impossible.

II. The debt can he reduced helow any assignable

limit by continuing to pay half of it.

For, however small the debt may be made, another pay-

ment will make it smaller by one-half; hence there is no

smallest amount below which it cannot be reduced.

These two propositions, wliicli seem to oppose each other, hold the

truth between them, as it were. They constantly enter into the higher

mathematics, and should be well understood. We therefore present

another illustration of the same subject.

A B
I

-
I I I I I

Suppose AB to be a line of given length. Let us go one-

half the distance from A to B at one step, one-fourth at the

second, one-eighth at the third, etc. It is evident that, at each

step, we go half the distance which remains. Hence the two

principles just cited apply to this case. That is,

1. We can never reach B by a series of «uch steps, because

we shall always have a distance equal to the last step left.

2. But we can come as near B as we please, because every

step carries us over half the remaining distance.

This result is often expressed by saying that we should reach B by
taking an infinite number of steps. This is a convenient form of expres-

sion, and we may sometimes use it, but it is not logically exact, because

no conceivable number can be really infinite. The assumption that in-

finity is an algebraic quantity often leads to ambiguities and difficulties

in the application of mathematics.
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Def. The Limit of the sum 2 of a geometrical

progression is a quantity which s may approach so

that its difference shall be less than any quantity we
choose to assign, but which s can never reach. .

EXAMPLES.
1. Unity is the limit of the sum

2. The point B in tlie preceding figure is the limit of all

the steps that can be taken in the manner described.

The following principle will enable us to find the limit of

the sum of a progression

:

314. Principle. If r < 1, the power r^ can be made
as small as we please by increasing the value of n^ but

can never be made equal to 0.

Suppose, for instance, that

_ 3 _ 1
^ ~ 4

"~ 4'

Then every time we multiply by r we diminish r^ by

- of its former value ; that is,
4

4 4

3— ^a —

—

A»3

4 4^
etc. etc. etc.

Now let us again take the expression for the sum of a

series of n terms, namely,

1-r^
2 = a- ,

1 — r

which we may put into the form

1 — r 1 — r
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If r is less than unity, we can, by the principle just cited,

make the quantity r'^ as small as we please by increasing n

indefinitely. From this it follows that we can also make the

term -^ r^ as small as we please.
1 — r

Proof. Let us put, for brevity,

h 1-r'
so that the term under consideration is

If we cannot make hr'^ as small as we please, suppose 5 to

be its smallest possible value. Let us divide s by k, and put

^- k

No matter how small s may be, and how large k may be,

T, or t, will always be greater than zero. Hence, by the pre-
fc

ceding principle, we can find a value of n so great that y^

shall be less than L That is,

,» < _.

Multiplying both sides of this inequality by k,

kr'^ < s.

That is, however small we take s, we can take n so large

that kr"^ shall be less than s, and therefore s cannot be the

smallest value.

Since 2 =: kr^, I

1 — r

and since we can make kr^ as small as we please, it follows

Limit of 2 =
1 —

r

This is sometimes expressed by saying that when r < 1,

a -\- ar -{- ar^ + ar^ + etc., ad infinitum = ,

and this is a convenient form of expression, which will not lead

us into error in this case.
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EXERCISES.
Haying giyen the progression

1.1 .1.1 .etc

of which the limit is 1, find how many terms we must take in

order that the sum may differ from 1 by less than the follow-

ing quantities, namely

:

Firstly, .001 ; secondly, .000 001 ; thirdly, .000 000 001.

To do this, we must find what power of ^ will be less than .001,

what power less than .000 001, etc.

What are the limits of the sums of the following series

:

1. Q + To + Ts + ^t^v ctd infi^iitum.
o o o

2. q + Q + 97 + ^^C'j ^^ mfinitum,

3. Q — 02 + Q3 — etc., ad infinitum.

4 42 43

4. Q + Q2 + 93 + ^^^'^ ^^ infinitum.

5. j-p^ + ^ ^p + (Y+~^p + ^^^-^ ^^ infinitum.

6. ^-^ - W^f "^ W^Y' ~ ^^^'' ^^ infinitum.

7. 1
1 5 ^H ;: — etc., ad infinitum.m ni? m?' m* "^

8. What is that progression of which the first term is 12

and the limit of the sum 8.

9. On the line AB a man starts from A and goes to the

point c, half way to B ; then he re-

turns to d^ half way back to A ; then
1

1 1
I

turns again and goes half way to c,

then back half way to <?, and so on, going at each turn half

way to the point from which he last set out. To what point

on the line will he continually approach ?
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315. As an interesting application of the preceding theory,

we may e:5famine the problem of finding the value of a circu-

lating decimal. Such a decimal is always equal to a vulgar

fraction, which is obtained as in the following examples

:

1. What is the value of the decimal

.373737 ?

We find the figures which form the period to be 37. Dividing the

decimal into periods of these figures, its value is

_3j^ 37
, ^_ ,

.

100 "^
1002 "^ 1003

"^

= ^^(rJo + i4-2 + i4-3 + ^^4

The quantity in the parenthesis is a geometrical progression, in which

a — T-r^ , r = jjr^ • The limit of its sum is therefore — • Therefore the

37
value of the decimal is ^ •

This result can be proved by changing this vulgar fraction to a

decimal.

2. In the case of a decimal which has one or more figures

before the period commences, we cut these figures off, and

find the value of them and of the circulating part separately.

Thus,

56363 etc. = A + j^ +j^ + etc.

__ 5 63 /^ 1 , 1 , , \

- 10 + 1000 r "^
ro"o + Ioo~2 + ^^"^7

__ 5 63 100 __ ^ 63 _ 558 _ 31
~ To

"^ 1000'~99~ — 10
"*

990 "990 ~ 55*

EXERCISES.
To what vulgar fractions are the following circulating deci-

mals equal

:

I. .111111 ? 2. .2222 ?

3. .9999 ? 4. .09999 ?

5. .454545 ? 6. .2454545 ?

7. .108108 ? 8. 72454545 ?
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Compound Interest.

316. When one loans or invests money, collects the inter-

est at stated intervals, and again loans or invests this interest,

and so on, he gains compound interest.

Compound interest can always be gained by one who con-

stantly invests all bis income derived from interest, provided

that he always collects the interest when due, and is able to

loan or invest it at the same rate as he loaned his principal.

Problem I. To find the amount of p dollars for n
years, at c per cent, compound interest.

Solution. At the end of one year the interest will be

£--, which added to the principal will make p\l -{• tf^'

If we put p = -T-. = the rate of annual gain,

the amount at the end of the year will be ^ (1 + p).

Now suppose this whole amount is put out for another

year at the same rate. The interest will be p {1 + p) p, which

added to the new principal p{l + p) will make jt? (1 + p)^.

It is evident that, in general, supposing the whole sum
kept at interest, the total amount of the investment will be

multiplied by 1 + p each year. " Hence the amounfc at the ends

of successive years will be

^;(l + p), p{l-\-py, p{l-^p)% etc.

At the end of n years the amount will be

^ (1 + P)^

Problem II. A person puts out 2> dollars every year,

letting the whole sum constantly accumulate at com-
pound interest, WTiat will the amount be at the end of
n years?

Solution. The first investment will have been out at

interest n years, the second n — 1 years, the third n — 2 years,

and so on to the 7i^^, which will have been out 1 year. Hence,

from the last formula, the amounts will be

:
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Amount of 1st payment^ i^ (1 + pY-
2d a p(i + pY-\
3d Si p{i + pY-\
4th i( p(l+ p)»-K

5th a p(l + p)'^-*.

etc. etc.

The sum of the amounts is

:

p{l-\'P) + p{l + py + P{1 + pY -h , . , .p(l+p)^.

This is a geometrical progression, of which the first term is

p (1 + p), the common ratio 1 + p, and the number of terms w.

So in the formula (4), § 212, we put J)(l+p) for a, 1 + p for

r, and thus find,

2 =p{i4.o) (l+i^-i =^(l±£)!!L-^(i±p).
^"^'^l + p — 1 ^

p

EXERCISES.

I. A man insures his hfe for $5000 at the age of 30, pays

for his insurance a premium of 80 dollars a year for 32 years,

and dies at the age of 62, immediately before the 33d payment

would have been due. If the company gains 4 per cent, inter-

est on all its money, how much does it gain or lose by the

insurance p

Note. Computations of this class can be made with great facility by
the aid of a table of logarithms.

2. What is the present value of a dollars due n years hence,

interest being reckoned at c per cent. ?

Note. If p be the present value, Problem I gives the equation,

3. What is the present value of 3 annual payments, of a

dollars each, to be made in one, two, and three years, interest

being reckoned at 5 per cent. ?

4. What is the present value of n annual payments, of a

dollars each, the first being due in one year, if the rate of in-

terest is c per cent. ? What would it be if the first payment

were due immediately ?
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BOOK VIII.

RELATIONS BETWEEN ALGEBRAIC
QUANTITIES.

Of Algebraic Functions.

317. Bef. When one quantity depends npon an-

other in such a way that a change in the value of the

one produces a change in the value of the other, the

latter is called a Function of the former.

This is a more general definition of the word " function " than that

given in § 49.

Examples. The time required to perform a journey is a

function of the distance because, other things being equal, it

varies with the distance.

The cost of a package of tea is a function of its weight, be-

cause the greater the weight the greater the cost.

An algebraic expression containing any symbol is a func-

tion of that symbol, because by giving different values to the

symbol we shall obtain different values for the expression.

Bef. An Algebraic Function is one in which the

relations of the quantities is expressed by means of an
algebraic equation.

Example. If in a journey we call t the time, 8 the average

speed, and d the distance to be travelled, the relation between

these quantities may be expressed by the equation,

d = st.

Any one of these quantities is a function of the other two,

defined by means of this equation.

An algebraic function generally contains more than one
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letter, and therefore depends upon several quantities. But we

may consider it a function of any one of these quantities, se-

lected at pleasure, by supposing all the other quantities to

remain constant and only this one to vary. For example, the

time required for a train to run between two points is a func-

tion not only of their distance apart, but of the speed of the

train. The speed being supposed constant, the time will be

greater the greater the distance. The distance being constant,

the time will be greater the less the speed.

Def. The quantities between which the relation ex-

pressed by a function exists are called Variables.

This term is used because such quantities may vary in value, as in

the preceding examples.

Def. An Independent Variable is one to which we
may assign values at pleasure.

The function is a dependent variable, the value of which is

determined by the value assigned to the independent variable.

Def, A Constant is a quantity which we suppose

not to vary.

Eem. This division of quantities into constant and varia-

ble is merely a supposed, not a real one ; we can, in an algebraic

expression, suppose any quantities we please to remain constant

and any we please to vary. The former are then, for the time

being, constants, and the latter variables.

iLLUSTRATIOiq". If We put

d, the distance from New York to Chicago
;

s, the average speed of a train between the two cities

;

t, the time required for the train to perform the jour-

ney,

then, if a manager computes the different values of the time t

corresponding to all values of the speed 5, he regards 6? as a

constant, s as an independent variable, and ^ as a function of 5.

If he computes how fast the train must run to perform the

journey in different given times, he regards t as the independ-

ent variable, and 5 as a function of t.



FUNCTIONS. 223

When we have any equation between two variables, wo
may regard either of them as an independent variable and the

other as a function.

Example. From the equation

ax -\-hy =1 c,

we derive
by c

X
a

ax

+
a'

c

y — ""T + v
in one of which x is expressed as a function of y^ and in the

other ^ as a function of x,

218. Names are given to particular classes of functions,

among which the following are the most common.

1. Def, A Linear Function of several variables is

one in which each term contains one of the variables,

and one only, as a simple factor.

Example. The expression

Ax ^ By -\- Cz

is a linear function of x^ y, and z, when A, B, and C are quan-

tities which do not contain these variables.

A linear function differs from a function of the first degree

(§ 52) in having no term not multiplied by one of the varia-

bles. For example, the expression

Ax + By + C

is a function of x and y of the first degree, but not a linear

function.

The fundamental property of a linear function is this:

If all the variables he -multiplied hy a coimnoii fac-

tor, the function will he multiplied hy the same factor.

Proof. Let Ax -}- By -\- Oz be the linear function, and r

the factor. Multiplying each of the variables x, y, and z by

this factor, the function will become

Arx -{- Bry + Orz,

which is equal to r {Ax + By + Cz).
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Moreover, a linear function is the only one which pos-

sesses this property.

2. Def. A Homogeneous Function of several va-

riables is one in which each term is of the same degree

in the variables. (Compare § 52.)

Example. The expression ax^+'bx^y-\-cyh-\-dz^ is homo-

geneous and of the third degree in the variables x, y, and z.

Kem. a linear function is a homogeneous function of the

first degree.

Fui^DAMEKTAL PkOPERTY OF HOMOGENEOUS FUKCTIOi^S.

// all the variables he multiplied hy a common factor,

any homogeneous function of the ii*'^ degree in those va-

riables will be multiplied by the n*^ power of that factor.

Proof, If we take a homogeneous function and put rx for

.T, ry for y, rz for z, etc., then, because each term contains x,

y, or z, etc., n times in all as a factor, it will contain r n times

after the substitution is made, and so will be multiplied by r^.

3. Def. A Rational Fraction is the quotient of tvro

entire functions of the same variable.

A rational fraction is of the form,

a -\-'bx -^ cx^ -\- etc.

m -\- nx -\- px^ 4- etc.

Any rational function of a variable may be expressed as a

rational fraction. Compare § 180.

Equations of the First T^e^ee between Two
Variables.

319. Since we may assign to an independent variable any

values we please, we may suppose it to increase or decrease by

regular steps. The difference between two values is then

called an increment. That is,

Def. An Increment is a quantity added to one

value of a variable to obtain another value.
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Eem. If we diminish the variable, the increment is

negative.

Theorem, In a function of the first degree, eqnal in-

crements of the independent variable cause equal incre-

ments of the function.

Example. Let x be an independent variable, and call u

the function -^x'^ 11, so that we have

u = -x + 11.

If we give x the successive values —2, — 1, 0, 1, 2, etc.,

and find the corresponding values of the function u, they

will be

Values of ic, — 2, — 1, 0, 1, 2, 3, 4, etc.

" « u, 8, 9^, 11, 12|, 14, 154, ^"^y etc.

We see that, the increments of x being all unity, those of

y are all 1^,

General Proof. Let au -\- hx = c he any equation of the

first degree between the variable x and the function u. Solving

this equation we shall have

c — bx c b
u = = x.

a a a

Let us assign to x the successive values,

r, r -\- h, r -\- 27^, etc.,

the increment being h in each case. The correspondnig values

of the function u will be

c d c h h ^ c I %b -. ,

r, r n, r /^, etc.,
a a a a a a a a

of which each is less than the preceding by the same amount,

~h. Hence the increment of u is always h, which proves

the theorem.

230. Geometric Construction of a Relation of the First

Degree. The relation between a variable x and a function u
of this variable may be Shown to the eye in the following way .•

15
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\

el'*]

-X
-3 -8 ^^gi y

Take a base line AX, mark a zero point upon it, and from

this zero point lay off any values of x we please. Then at each

point of the line corresponding to a value of x erect a vertical

line equal to the corresponding value of %i. If u is positive, the

value is measured upward ; if negative, downward. The line

drawn through the ends of these values of u will show, by the

distance of each of its points from the base line AX, the values

of u corresponding to all values of x.

Let us take, as an example, the equation

hu \-dx = 10,

3
the solution of which gives u = 2 — -x.

o

Computing the values of u corresponding to values of x

from —3 to +6, we find :

X = -3, -2, -1, 0, +1, +2, +3, +4, +5, +6.

u= +3f, +3i 2|, 2, If, f, i, -I, -1, ^1|.

Laying off these values in the way just described, we have

the above figure. Wherever we choose to erect a value of u,

it will end in the dotted line.

We note that by the property of functions of the first de-

gree just proved, each value of u is less (shorter) than the pre-

ceding one by the same amount ; in the present case by -• It

is known from geometry that in this case the dotted line

through the ends of u will be a straight line.

We call this line through the ends of u the equation line.
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331, When we can once draw this straight line, we can

find the value of u corresponding to every value of x without

using the equation. We have only to take the point in the

base line corresponding to any value of x^ and by measuring

the distance to the line, we shall have the corresponding value

of u,

Now it is an axiom of geometry that one straight line, and

only one, can be drawn between any two points. Therefore,

to form any relation of the first degree we please between x

and u, we may take any two values of x, assign to them any

two values of u we please, plot these two pair of values of u in

a diagram, draw the equation line through them, and then

measure off, by this line, as many more values of u as we
please.

Example. Let it be required that for x=. -\-l we shall

have u^= -\-ly and for a; = +5, «^ = + 3. What will be the

values of w corresponding to a; =r — 3, —2, —1, 0, etc.

Drawing the base line AX below, we lay off from 1 the ver-

tical line +1 in length, and from the point 5 the vertical line

+ 3. Then drawing the dotted line through the ends, we
measure off different values of u, as follows:

X = -3, ^2, -1, 0, +1, +2, +3, +4, +5, +6, etc.

u = -1, -}, 0, +1 1, +li, +2, +21-, +3, +3i, etc.

EXE RCISES.

1. Plot the equation 2u -{- dx — 6.

2. Plot a line such that

for X = — 6 we shall have u = -f 4,

for a; rr: + 6 " " u = —4:,

and find the values of u for ^ == 1, 2, 3, 4, and 5,
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333. The algebraic problem corresponding to the con-

struction of § 220 is the following:

Having given two values of y corresponding to two

given values of x, it is required to construct an equation

of the first degree such that these two pairs of values

shall satisfy it.

Example of Solution, Let the requirement be that of the

equation plotted in the preceding example, namely,

for X ^=1 1 we must have t^ — 1,

for X — b " " u — Z,

The problem then is to find such values of a, d, and c, that

in the equation
ax 4- hit = 6', (1)

we shall have u =^1 for x '=: 1, and u = 3 for x =z 5. Sub-

stituting these two pairs of values, we find that we must have

axl + bxl = c,

ax5 + bxS = c;

or a -{- b =: c,

5a -\- dh = c.

Here a, ^, and c are the unknown quantities whose values

are to be found, and as we have only two equations, we cannot

find them all. Let us therefore find a and h in terms of c.

Multiplying the first equation by 3, and subtracting the

product from the second, we have

2« = — 2c or a =i — c.

Multiplying the first equation by 5, and subtracting the

second from the product, we have

2Z> = 4c or l = 2c.

Substituting these vahies of a and b in (1), we find the re-

quired equation to be
2c2i — ex = c.

We may divide all the terms of this equation by c (§ 120,

Ax. Ill), giving

2u — X = 1,

i
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thus showing that there is no need of using c. The solution

of this equation gives

from which, for x = —3, —2, —1, etc., we shall find the same

values of u which we found from the diagram.

EXERCISES.

Write equations between x and y which shall be satisfied

by the following pairs of values of x and y.

1. For X = 2, y =r 1 ; and for x == 5, ?/ =: — 1,

2. For X =^ — 2, y =: — 1 ; and for x = -\-2, y =z +1.

3. For X =z — 5, y =: + 2 ; and for x =: -{-5, y = — 2.

4. For X .= 0, y = — 7 ; and for x = lb, y = 0.

5. For X z= 26, y = 2 ; and for x = 30, y = 3.

333. Geometric Solution of Ttvo Equations with Two Un-

hnown Quantities, The solution of two equations with two

unknown quantities consists in finding that one pair of values

which will satisfy both equations. If we lay off on the base

line the required value of x, the two values of y corresponding

to this value of a: in the two equations must be the same ; that

is, the two equation lines must cross each other at the

point thus found. Hence the following geometric solution

:

I. Plot the two equations froin the same hase line and
zero point.

II. Continue the equation lines, if necessary, until

they intersect.

III. The distance of the point of intersection froin the

hase line is the value of y which satisfies both equations.

IV. The distance of the foot of the y line from, the

zero point is the required value of oc.

EXERCISES.
Solve the following equations by geometric construction

:

1. X — 2u = 3, 2x -\- u = 6.

2. 2u 4- '^.'^ = 4, Su -f X — 1.
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334. Geometric Explanation of Equivalent and Inconsist-

ent Equations, If we have two equivalent equations (§ 200),

each value of a: will give the same value of the other quantity

u or y. Hence the two lines representing the equation will

coincide and no definite point of intersection can be fixed.

If the two equations

au {• hx =: c,

a'u + i'x =z c\

are inconsistent we shall have (§ 142),

I V
\

a a' ]

If h be any increment of x, the increments of u in the two

equations (§219) will be A and ,h Therefore these^ ^*^
^ a a

increments will be equal, and the two equation lines will be

parallel. Hence,

To inconsistent equations correspond parallel lines,

ivhich have no point of intersection.

If the two equations are equivalent (§ 141, 143), their lines

will coincide.

I

Notation of Functions. ^

335. In Algebra we use symbols to express any numbers

whatever. In the higher Algebra, this system is extended

thus :

We may use any synvbol, having a letter attached' to

it, to express a function of the quantity represented hy

that letter.

Example. If we have an algebraic expression containing

a quantity x, which we consider as a function of x, but do not

wish to write in full, we may call it

F{x), or </> {x), or \x\ or Ax,

or, in fine, any expression we please which shall contain the

symbol x, and shall not be mistaken for any other expression.

In the first two of the above expressions, the letter x is enclosed in

parentheses, in order that the expression may not be mistaken for x mul-

tiplied by F, or 0. The parentheses may be omitted when the reader

knows that multiplication is not meant.
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The fundamental principle of the functional notation is

this:

When a syiyihol with a letter attached represents a
function, then, if ive substitute any other quantity for
the letter attached, the combination will represent the

function found by substituting that other quantity.

Example. Let us consider the expression ax^ + 5 as a

function of Xy and let us call it (j)(x), so that

{x) = ax^ + Z>.

Then, to form (p (y), we write y in place of x^ obtaining

(y) = af + ^.

To form (p {x -}- y), we write x-\-y in place of x, obtaining

(t){x-\-y) = a{x -\- yY + h.

To form (p (a), we write a instead of x, obtaining

(a) =: a^ -{- b»

To form {ay^)-, we put ay^ in place of x, obtaining

{ay^) = a {ay^f + & = ay + b.

The equation (p {z) z=zO will mean

az^ +d = 0.

EXERCISES.

Suppose {x) = ax^ — a^x, and thence form the values of

I. 0(^). 2. 0(^). 3. 0(%).

4. (a; + ^). 5. (.^' + 05). 6. (.T — «).

7. (ic + «?/). 8. (j){x — ay). 9. (:i^2)^

Suppose F (.^') = 0;^=^, and thence form the values of

10. FQj). II. F{^), 12. Fm).
13. i^(:^ + ^). 14. F{x-y). is^ F {1).

Suppose / {x) =z x% and thence form the values of

16. /(I). 17. f{x^). 18. /(.T«).

19. /(a^). 20. /(a,-=). 21. /(a;«).
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2 2. Prove that if we put </> (x) = a^, we shall have

(a; + ^) = </> {x) X (/> Cv), (:r/y) = [0 {x)\y = [0 (y)]^.

Let lis put (m) =. m{m — 1) (m — 2) (m — 3) ; thence

form the values of

23. 0(6). 24. 0(5). 25, 0(4).

26. 0(3). 27. 0(2). 28. 0(1).

29. 0(0). 30. 0(-l). 31. 0(-^)'

Functions of Several Variables.

336. An algebraic expression containing several

quantities may be represented by any symbol having

tlie letters v^hich represent the quantities attached.

Examples. AYe may put

{x, y) =z ax— hy,

the comma heing inserted between x and y, so that their

product shall not be understood. We shall then have,

{m, 7i) = am — hi,

{y, '^) =^ cty — bx,

the letters being simply interchanged.

(f>{x-{-y, x—y) z=i a{x + y)—l{x — y)
— (a— b) X + («5 4- Z>) y.

(P{a,b) = a^-P.
{d, a) = ab — da = 0.

^{a -\- b, ab) = a {a -\- b) — aP.

(a, a) = a^ — ba,

etc. etc.

If we put (^, b, c) = 2^ + 3Z> — 5c, we shall have

(:r, z, y) =^ ^x -\- ?fZ — by,

{z, y, x) := 2z + 3y — 6x.

(f)
(?/?., m, — m) — 2m -i- dm -{- 6m = 10m.

0(3,8, 6) = 2'd + 3.8 — 5-6 = 0.

EXERCISES.
Let us put (x, y) z= 3x — 4:y,

fix, y) = ax -^ by,

f{x, y, z) = ax -i- by — abz.
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Thence form the expressions

:

I. <p {y, x). 2.
<t>

{a, h). 3- «/>(3, 4).

4. <?(4, 3). 5. </.(10,l). 6. /(«, ^i).

7. f(b,a). 8. f{y,x). 9- /(7, -3).

lo. f{q, -p). II. f{z,x,y). 12. /(*, a, 3).

13. f{a,b,c). 14. f{a\1^.c^).

15. /(— «, —5, — «5).

T , , , X m(m — 1) (w -

Let us put (m, n) = —-. -^—
' ^ ' ' n(ti— l){n -

-2)
-3)

Find the values of

16. (3,3). 17. (4,3). 18. (5, 3).

19. (6,3). 20. (7,3). 21. (8, 3).

22. (2, -1). 23. (3, -2). 24. (4, -2).

Use of Indices.

2SOa. Any number of different quantities may be
represented by a common symbol, the distinction being
made by attaching numbers or accents to the symbol.

EXAMPLES.
1. Any n different quantities may be represented by the

symbols, p^, p^, p^, pn.

2. A producer desires to have -an algebraic symbol for the

amount of money which he earns on each day of the year. If

he calls q what he earns in a day he may put

:

q^ for the amount earned on January 1,

etc.
" " " " etc.,

^3 3 " " '' February 1;

and so on to the end of the year, when

^3 6 5 ^^^1 ^6 ^^^ amount for December 31.

Def. The distinguishing numbers 1, 2, 3, etc., are

here called Indices.

A symbol with an index attached may represent a

function of the index, as in the functional notation.
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EXERCISES.

Let us put at ^=^ t{t + 1). Then find the value of

1. ^0+^1+^2+ + <^io-

2. Prove the following equations by computing both mem-
bers :

«, + ^2 = 4

+ «2 + «3 = 5
3«3.

+ «3 + Ci = 6

If we put /Si = 1 + 2 + 3 . . . . + ^, we shall have

/Sg = 1 + 2 = 3.

>S3z=l + 2 + 3i=:6, etc., etc.

Using the preceding notation, find the values of the ex-

pressions :

3- S^-\- S^ + Sq + 8^. 4. ct^ -\- a^ + a^ -\- a^,

5. 2/S'5 — ag. 6. 2/S'g-^6.

337. Sometimes the relations between quantities distin-

guished by indices are represented by equations of the first

degree. The following are examples

:

Let us have a series of quantities,

Aq, A^, Aq} A^, A^, etc.,

connected by the general relation,

Am = ^i + ^i-i' W
It is required to express them in terms of ^^ and A^,

We put, in succession, ^ = 1, i = 2, i = 3, etc. Then,

when i = 1, we have from (a),

A^ — A^ +Aq.
When i = 2, A.^ — A^ + A^ = 2A^ + ^o-

i = 3, A^ = A^-{- Aq = 3A^ + 2^0-

i = 4, A^ =: A^ + A^ ^ 6A, + 3^0-

I = 5, A^ = A^ + A^ z= SA^ + 6Aq,

and so on indefinitely.
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EXERCISES.
1. If ^ifi = Ai — Ai^i,

what will be the values of ^3 . . . . ^lo, and in what way may
all subsequent values be determined ?

2. If Ai^i = 2Ai — Aq,

find A2 to Aq in terms of ^^ and A^,

3. If Ai^t = iAi H- Ai_\, find A^ to ^5.

4. If Ai = Ai_\ + Ji,

find the sum A^ -{- A^ -\- A^ + , , . . + An, in terms of A^^

n and n. (Comp. § 209, Prob. V.)

5. If ^zHi = rAi,

find ^1 + ^3 + ^3 + . . . . + ^n? in terms of J^, and n
6. If ^e+i = ^*^-4i + Ai^\,

find ^3, ^3, .... ^g, in terms of ^^ and A^,

Miscellaneous Functions of Numbers.

238. We present, as interesting exercises, certain elemen-

tary forms of algebraic notation much used in Mathematics,

and which will be employed in the present work.

1. When we have a series of synabols the number
of which is either indeterminate or too great to be all

written out, w^e may write only the first tw^o or three

and the last, the omitted ones being represented by a

row of dots.

Examples. a, h, c, . . . . t,

J., /^, (5, . . • • /vO,

1, 2, . . . . 7^,

n being in the last case any number greater than 2.

The number of omitted symbols is entirely arbitrary.

EXERCISES.
How many omitted expressions are represented by the dots

in the following series:

I. 1, 2, 3, n. 2. 1, 2, 3, n — 2.
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3. 1, 2, 3, n + 2.

4. n, n — 1, 71 — 2, , . , , n — s,

5. n, n — I5 7t — 2, , , , , ?i — s — 1.

6. n, n — 1, n — 2, , , . . n — s -{-1.

What will be the last term in the series

:

7. 2, 3, 4, etc., to 71 terms.

8. n, n — 1, n — 2, etc., to s terms.

9. 2, 4, 6, etc., to Jc terms.

2. Product of the First n Numbers. The symbol

n\

is used to express the product of the first n numberSj

1-2.3 n.

Thus, 1 ! = 1.

2! = 1-2 =3 2.

3! = 1.2.3 = 6.

4! = 1.2.3.4 = 24.

etc. etc.

It will he seen that 2 ! = 2. 1

!

3! = 3.2!

And, in general, ?^ ! = ^ (^ — 1)

!

whatever number n may represent.

EXERCISES.
Compute the values of

I. 5! 2. 6! Z' ^^-

_7j_ 8!
^* 3! 4! ^* 3! 5!

6. Prove the equation 2.4.6.8 .... 27z :=; 2'»w!

7

.

Prove that, when n is even,

^
^
_ ^ (^ — 2) (7^ — 4) . . . .• 4.

2

3. Binomial Coefficients, The binomial coefficient

n(ri — 1)(7^ — 2) . . . . to 5 terms

123 s

is expressed in the abbreviated form,
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©
the parentheses being used to show that what is meant

is not the fraction -•
s

(

EXAMPLES.

(?)
= ? = s.

©
7-6.5.4.3

~ 1.2.3.4.5
~ 21.

(f)

n

(1)

n (n — l){n-
~ 1-2-3

-2)

©
n{n — l).. ..2.1_j

~ 1.3-3... . ^

'» + 4\ _ (re + 4) {71 + 3) (w + 2)

1.2.3

EXERCISES.

Compute the vaUies of the expressions

:

- ©+(^(i)-©-©+(i)-(^©-
' (l)-e)-(^©+(D-
Prove the formulae

:

/5\ _ 5! (n\ __ nl
^* \2/

~" 2TF! "^^
\s/ ~ si {n - s) !

5. (•^^D = !^:(;)- ^- © + (l) =m'
' (i)+(i)=m-

«• (i)+(i)=m-



BOOK IX.

THE THEORY OF NUMBERS.

CHAPTER I.

THE DIVISIBILITY OF NUMBERS.

329. Def, The Theory of Numbers is a branch
of mathematics which treats of the properties of integers.

Def. An Integer is any whole number, positive or

negative.

In the theory of numbers the word nwnber is used to ex-

press an integer.

Def. A Prime Number is one which has no divi-

sor except itself and unity.

The series of prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, etc.

Def A Composite Number is one which may be
expressed as a product of two or more factors, all

greater than unity.

Kem. Every number greater than 1 must be either prime

or composite.

Def. Two numbers are prime to each other when
they have no common divisor greater than unity.

Example. The numbers 24 and 35 are prime to each

other, though neither of them is a prime number.

Eem. a vulgar fraction is reduced to its lowest terms when

numerator and denominator are prime to each other.
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Division into Prime Factors.

330. Every composite number may by definition be di-

vided into two or more factors. If any of these factors are

composite, they may be again divided into other factors.

When none of the factors can be farther divided, they will all

be prime. Hence,

Theokem. Every composite number may he divided

into prime factors.

Example. 180 rr 9-20,

9 z= 3.3,

20 = 4.5 = 2.2.5.

Whence, 180 = 2-2.3.3.5 = 22.32.5.

Cor, 1. Because every number, not prime is composite,

and because every composite number may be divided into

prime factors, we conclude: Every nitrnber is either prime
or divisible hy a prime.

Cor, 2. Every number, prime or composite, may be ex-

pressed in the form
p°-q^ry etc., (a)

where ^, q, r, etc., are different prime numbers

;

S ft y^ ^tc, the exponents, are positive integers.

Rem. If the number is prime there will be but one factor,

namely, the number itself, and the exponent will be unity.

EXERCISES.
Divide the following numbers or products into their prime

factors, if any, and thus express the numbers in the form {a) :

I. 24. 2. 72. 3. 260. 4. 169. 5. 225.

6. 256. 7. 91. 8. 143. 9. 360. 10. 217.

II. 3072. 12. 1.2.3.4.5.6.7.8.9.

kEEM.
In seeking for the prime factors of a number, it is

lever necessary to try divisors greater than its square root, for

f a number is divisible into two factors, one of these factors
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Coinmon Divisors of Two Numbers,

331. Theoeem I. // two mnnhers have a common
factor, tJieir sum will have that same factor.

Proof, Let a be the common factor
;

m, the product of all the other factors in the

one number;

n^ the corresponding product in the other

number.

Then the two numbers will be

am. and an.

Their sum will be a (m + ^).

Because m and n are whole numbers, m-^n will also be a

whole number. Therefore a will be a factor of am + an.

Theoeem II. // two numhers have a comm>on factor,

their difference will have the same factor.

Proof. Almost the same as in the last theorem.

Cor, If a number is divisible by a factor, all multiples will

be divisible by that factor.

Eem. The preceding theorems may be expressed as follows

:

// two nioinhers are divisible hy the saiiie divisor,

their sum, difference, and multiples are all divisihle hy

that divisor,

Eem. If one number is not exactly divisible by another, a

remainder less than the divisor will be left over. If we put

Z), the dividend;

d, the divisor;

q, the quotient;

r, the remainder;

we shall have, D := dq -\- r,

or D — dq =: r.

Example. 7 goes into QQ 9 times and 3 over. Heno
this means

66 = 7.9 + 3, or 66 --7.9 = 3.

I
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333. Peoblem. To find the greatest common divisor

of two numbers.

Let m and n be the numbers, and let m be the greater.

1. Divide m by n. If the remainder is zero, n will be the

divisor required, because every number divides itself. If there

IS a remainder, let q be the quotient and r the remainder.

Then m — nq = r.

Let d be the common divisor required.

Because m and n, are both divisible by d, m — nq must

also be divisible by d (Theorem II). Therefore,

r is divisible by d.

Hence every common divisor of m and n is also a common
divisor of n and r. Conversely, because

m =z nq + r,

every common divisor of n and r is also a divisor of m. There-

fore, the greatest common divisor of m and n is the same as

the greatest common divisor of /^ and r, and we proceed with

these last two numbers as we did with 7)1 and n,

2. Let r go into n q' times with the remainder r'.

Then n = rq -\- r\

or n ^rq' ^= r'.

Then it can be shown as before that 6? is a divisor of r\ and

therefore the greatest common divisor of r and r'.

3. Dividing r by r\ and continuing the process, one of two

results must follow. Either,

cc. We at length reach a remainder 1, in which case the

two numbers are prime ; or,

P, We have a remainder which exactly divides the pre-

ceding divisor, in which case this remainder is the divisor

required.

To clearly exhibit the process, we express the numbers m,

n, and the successive remainders in the following form :

16
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m = n-q + r, {r < n);

n = r-q' + r', (r' < r);

r = r'-q" -f->", (/' < r');

r' = r"'q"' + r"\ {r'" < r")
-,

etc. etc. etc.,

iinfcil we reach a remainder equal to 1 or 0, when the series

terminates.

EXERCISES.
I. Find the G. C. D.* of 240 and 155.

ividend . Div. Quo. Rem.

240 r= 155 .1 + 85.

155 Z=i 85 •1 + 70.

85 Z=l 70 1 + 15.

70 =: 15 4 + 10.

15 = 10 1+ 5.

10 — 5 2.

Therefore 5 is the greatest common divisor.

Note. Let the student arranf^e all the following exercises in the

above form, first dividing in the usual way, if he finds it necessary.

Find the greatest common divisor of

2. 399 and 427. 3. 91 and 131.

4. 8 and 13. 5. 1000 and 212.

6. 799 and 1232. 7. 800 and 1729.

8. 250 and 625. 9. 1000 and 370.

10. If p be a number less than n and prime to n, show that

n —p is also prime to n,

11. It p be any number less than ?i, the greatest common
divisor between 7i and p is the same as that between n and

n —-p.

12. If 7z is any odd number, —~— and —7^
— are both

prime to it.

Corollaries, 1. When two numbers are divided by their

greatest common divisor, their quotients will be prime to each

other.

* The letters G. C. D. are an abbreviation for Greatest Common Divisor.
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I

2. Conversely, if two numbers, n and n\ prime to each

other, are each multiplied by any number d, then d will be the

G. C. D. of dn and dn',

233. Gearing of Wheels. An interesting problem con-

nected with the greatest com-

mon divisor is afforded by a

common pair of gear wheels.

Let there be two wheels, the

one having m teeth and the

other n teeth, gearing into each

other. If we start the wheels

with a certain tooth of the one

against a certain tooth of the

other, then we have the questions

:

(1. ) How many revolutions must each wheel make before

the same teeth will again come together ?

(2. ) With how many teeth of the one will each tooth of the

other have geared ?

Let q be the required number of turns of the first wheel,

having m teeth.

Let^ be the required number of turns of the second, hav-

ing n teeth.

Then, because the first wheel has m teeth, qni teeth will

have geared into the other wheel during the q turns. In the

same way, pn teeth of the second wheel will have geared into

the first. But these numbers must be equal. Therefore,

when the two teeth again meet,

pn = qm.

Conversely, for every pair of numbers of revolutions 2^ and

q, which fulfil the conditions,

pn =. qm,

the same teeth will come together, because each wheel will

have made an entire number of revolutions. This equation

gives

p m
q~ n
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Hence, if we reduce the fraction — to its lowest terms, we
n ' ^

shall have the smallest number of revolutions of the respective

wheels which will bring the teeth together again.

To answer the second question :

After the first wheel has made q revolutions, qm of its teeth

have passed a fixed point. Any one tooth of tlie other wheel

gears into every n^ passing tooth of the first wheel. Therefore
QTYl

any such tooth has geared into -— teeth of the first wheel,

that is, into p teeth, because, from the last equation,

qm^— —p.
n

If d be the G. 0. D. of m and n, then

m = dp^

n := dq\

m

n

Therefore each tooth of the one wheel has geared into only

every d^ tooth of the other.

In the figure on the preceding page, m = 21 and /^ = 6.

Hence, ^= 3, and each tooth of the one will gear into every

third tooth of the other. The numbers on the large wheel

show the order in which the gearing occurs.

How long soever the wheels run, the same contacts will

be repeated in regular order. Hence, if each tooth of the

one wheel must gear with every tooth of the other, the

numbers m and n must he prime to each other.

EXERCI SES.

1. If one wheel has 40 teeth and the other 10, show how
they will run together.

Show the same thing for the following cases:

2. w? r= 72, w = 15. 3. m =1 24:, n = 18.

4. m = 36, 71 = 25. 5; m = 24, 7i = 7.

1
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Relations of Numbers to their Digits.

334. In our ordinary method of expressing numbers, the

second digit toward the right expresses lO's, the third lOO's,

etc. That is, each digit expresses a power of 10 correspond-

ing to its position.

Def. The number 10 is the Base of our scale of

numeration.

ISToTE. The base 10 is entirely arbitrary, and is supposed

to have originated from the number of the thumbs and fingers,

these being used by primitive people in counting.

Any other number might equally well have been chosen as

a base, but in any case we should need a number of separate

characters (digits) equal to the base, and no more.

Had 8 been the base, we should have needed only the

digits 0, 1, 2, etc., to 7, and different combinations of the

digits would have represented numbers as follows

:

1 = 1,

7 = 7,

10 = 1-8 + = eight.

17 = 1-8 + 7 = fifteen.

20 = 2-8 + = sixteen.

56 = 5*8 -f 6 r= forty-six.

234 = 2-82 + 3-8 + 4 = one hundred fifty-six,

etc.

Let us take the arbitrary number z as the base of the scale.

As in our scale of lO's we have

234 = 2.102 + 3.10 + 4,

so in the scale of ^'s the digits 234 would mean
2^2 + 3;^ + 4.

In general, the combination of digits abed would mean
az^ + dz^ + cz -\- d.

Divisibility of Numbers and tlieir Digits,

235. Theorem. If the sum of the digits of any num
her he subtracted from the nurriber itself, the remainder
will he divisible by z — 1.
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Proof. Let the digits be a, b, c, d. The number expressed

wiU be az^ j^ M j^ cz + d

Sum of digits =: a -\- h -{- c -\- d

Subtracting, rem. = a{z^—l) + h(f—l) + c{z—l).

The factors z^ — 1, z^ — 1, and z — 1 are all divisible by

2; — 1 (§ 93). Hence the theorem is proved. (§ 231.)

Theorem. Ijv any scale having z as its base, the sum
of the digits of any number, when divided by z — 1, ivill

leave the same remainder as will the number itself when
so divided.

If we put : n, the number ; s, the sum of the digits
;

r, r', the remainders from dividing by z—lj
q, q' , the quotients ; we shall have,

^Number, n =1 q{z — 1) -\- r

Sum of digits, s = q' {z — 1) + r'

Eemainder, {q — q') {z — 1) -\- r — r.

Because 7i — s and {q — q') {z — 1) are both divisible by

z — 1, their difference r — r' must be so divisible. Since r

and r' are both less than z — 1, this remainder can be divided

by ;2; — 1 only when r = r', which proves the theorem.

Zero is considered divisible by all numbers, because a re-

mainder is always left.

If a be any factor oi z — 1, the same reasoning will apply

to it, and therefore the theorem will be true of it.

In our system of notation, where z = 10, the above theo-

rems may be put in the following well-known form

:

If the sunt' of the digits of any number be divisible

by 3 or 9, the number itself ivill be so divisible.

These are the only numbers of which the theorem is true,

because 3 is the only divisor of 9.

Theorem. Iffrom any number we subtract the digits

of the even powers of z, and add those of the alternate

-powers, the result will be divisible by z -\- 1.

Proof. To az^ + bz^ + cz + d
Add a — b -\- c — d

Result, a (f^-\) ^b{z^—l) + c(z^\).
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The factors of a^ h, and c are all divisible by 2;+ l (§§ 93,

94), whence the result itself is so divisible.

Applying this result to the case of ^ = 10, we conclude:

// on suhtracting the sum of the digits in the place

of units, hundreds^ tens of thousands, etc., froin the sum
of the alternate ones, the remainder is divisible hy 11,

the number itself is divisible by 11.

If 771 be any factor of ^, it will divide all the terms of the

number
az^ + bz^ -\- c^ + d,

except the last.- Hence, if it divide this last also, it will di-

vide the number itself. Applying this result to the case of

z = 10, we conclude :

If the last digit of any number is divisible by a fac-

tor of 10, the number itself is divisible by that factor.

The factors of 10 being 2 and 5, this rule is true of these

numbers only.

It will be remarked that if the base of the system had been

an odd number, we could not have distinguished even and odd

numbers by their last figure, as we habitually do.

For example, if the base had been 9, the figures 72 would

have represented what we call sixty-five, which is odd, and 73

would have represented what we call sixty-six, which is even.

The use of the base 10 makes it easy to detect when a num-
ber is divisible by either of the first three prime numbers, 2, 3,

and 5. If the last figure is divisible by 2 or 5, the whole num-
ber is so divisible. To ascertain whether 3 is a factor, we find

whether the sum of the digits is divisible by 3.

In taking the sum, it is not necessary to include all tlie digits, but in

adding we may omit all 3's and 9*s, and drop 3, 6, or 9 from the sum as

often as convenient. Thus, if the number were

921642712,

we should perform the operation mentally, thus

:

Drop 9 ; 3 + 1 = 3, which drop ; 6, drop ; 4 + 2 = 6, which drop;

7 + 1 = 8 + 2 = 10, which leaves a remainder 1.

EXERCISES.
T. Prove that if an even number leaves a remainder 1 when

divided by 3, its half will leave a remainder 2 when so divided.
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2. If from any number we subtract the sum of units' digit

plus the product of the tens' digit by ^, plus the product of

the hundreds' digit by i% etc., the remainder will be diyisible

by 10 — i. (^ may be any integer, positive or negative.)

Note. When i — 1, this gives the rule of 9's and when ^ = — 1, the

rule of ll's.

Prime Factors of Numbers.

336. First Fui^damental Theorem. A product can-

not he divided hy a prime numher unless one of the fac-

tors is divisible by that prime number.

Note. This theorem is not true of composite divisors. For exam-

ple, neither 8 nor 9 is divisible by 6, but the product 8 • 9 = 72 is so

divisible. But if we take as many numbers as we please not divisible by

7, we shall always find their product to leave a remainder when we try

to divide it by 7.

To make the demonstration better understood, we shall first take a

special case

:

The product Q^a is not divisible by 7, unless a is divisible

byl.

Proof. Suppose . . . . 66^ di v. by 7

7 goes into 66 9 times and 3 over, because 7 • 9= 63, 63a di v. by 7

Therefore, by Theorem II, § 231, 3a div. byl'

2

3 goes into 7 2 times and 1 over. Multiply by 2, 6a div. by 7

Subtracting, 7a div. by 7

We have left, a div. by 7

Hence, if 66a is divisible by 7, then a is divisible by 7.

Gauss's Demonstration, If it be possible, let am be the

smallest multiple of m which is divisible by p, when neither a

nor m is so divisible. If a is greater than p, then let p go

into a b times and r over, so that

a := bp + r,

or a — bp z=z r.

Then, am div. by p.

Subtract bpm " "

Eemainder, (a — bp) m " "

Or r77i " "
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That is, if am. is divisible by p, so is ririy where r is less

than p.

Therefore the smallest multiple of m which fulfils the con-

ditions must be less than pm.

Therefore, let a <i p. Let a go into p c times and s over,

so that

p z= ca -\- s,

or p -^ ca =z Si

Then pm div. by p,

cam " " (by hypothesis).

Subtracting, (p — cd) m " "

Or, sm " "

Therefore, 8 being less than «, a is not the smallest multiple;

whence the hypothesis that a is the smallest is impossible.

General Demonstration, Suppose

jt?, a prime number
;

«, number not divisible by^;
am, a product divisible by p.

We have to prove that m must be divisible by p,

Letp go into a q times. Because a is not divisible byj9,

a remainder r will be left. That is,

a =: j)q -\- T, or a — pq =r r.

Let r go into p q' times and leave

a remainder r'. Then,

p = q'r + r',

and because ;?m and q'rm are both di-

visible by^, rm is so divisible.

In the same way, if r' goes into p
q" times, and leave the remainder r'\

r"m will be divisible by^. Since each

of the remainders r, r', r", etc., must r"m
be less than the preceding, we shall at

length reach a leniainder 1, which will give

m divisible by p. Q. E. D.

am div. hj p.

pqm a U

rm a u

q'rm iC iC

pm a a

r'm a iC

q'Vm a (C

pm a 6i
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Extension to Several Factors, If 7n is a product l x n^ and

d is not divisible by p, then we may show in the same way that

n must be so divisible. If 7i = cs, and c is not divisible, then

s must be divisible, and so on to any number of factors.

Hence,

Theoeem. If a product of any number of factors is

divisible by a prime number, then one of the factors

must be divisible by the same prime.

This theorem is the logical equivalent of the one just

enunciated as the first fundamental theorem.

Note. The student will remark why the preceding demonstration

applies only when the divisor p is a prime number. If it were composite,

we might reach a remainder which would exactly divide it, and then the

conclusion would not follow.

237. Second Fui^DAME:N^TAL Theoeem. A nimiber

can be divided into prime factors in only one way.

For, suppose we could express the number N in the two

ways (§ 204, Cor. 2),

JSf = p"- q^ ry,

JV = af^b"" C",

where jt?, q, r, etc., a, h, c, etc., are all prime numbers. Then

p<^q^ry = a^lfC",

If common prime factors appeared on both sides of this

equation, we could divide them out, leaving an equation in

which the prime factors ^, ^, r, etc., are all different from

a, b, c, etc.

Then, because a, h, c, etc., are all prime, none of them are

divisible by^. Therefore, by the first fundamental theorem,

their products cannot be so divisible. But the left-hand mem-
ber of the equation is divisible by p, because p is one of its

factors. Therefore the equation is impossible.

Eem. This theorem forms the basis of the theory of the

divisibility of numbers.

The preceding theorems enable us to place the definition

of numbers prime to eacli other in a new shape.
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Two nnmbers are said to be prime to each other

when they have no common prime factors.

Example. If one number is p'^q^ry, and the other is

a^h^'c^ {p, q, r, etc., and a, h, c, etc., being prime numbers),

then, lip, q, r, etc., are all different from a, h, c, etc., the two

numbers will be prime to each other.

Elementary Theorems.

338. The following general theorems follow from the two

preceding fundamental theorems, and their demonstration is

in part left as an exercise for the student.

I. JVo power of an irreducible vulgar fraction can he

a ivlhole number,

Note. An irreducible vulgar fraction is one which is re-

duced to its lowest terms.

II. CoKOLLAEY. JVo root of a whole number ca^n be a
vulgar fraction.

III. // a number is divisible by several divisors, all

prime to each other, it is also divisible by their product.

Cor, To prove that a number N is divisible by a number

B ^zp'^q^ ry, it is sufficient to prove that it is divisible sepa-

rately by p% by ^^, by rv, etc.

Example. If a number is divisible separately by 5, 8, and

9, it is divisible by 5- 8- 9 = 360. Hence, to prove that a num-

ber is divisible by 360, it is sufficient to show that 5, 8, and 9

are all factors of it.

I IV. // the numerator and denominator of a vulgar
^ fraction have no common prime factors, it is reduced to

its lowest terms.

Binomial Coefficients.

239. Theorem. The product of any n consecutive

numbers is divisible by the product of the numbers
1-2-3 . . . . ?z, or 71

!



252 BINOMIAL COEFFICIENTS.

Eem. The theorem implies that all binomial coefficients

are whole numbers, because they are quotients formed by di-

viding the product of n consecutive numbers by n !

Proof, 1. We have first to find the prime factors of the

product
1.2.3.4.5.6 n = n\

beginning with the factor 2.

I. The numbers divisible by 2 are the even numbers 2, 4,

6, etc., to n or n — 1, the number of which is

Note. The expression here means the greatest tvJiole

n — 1
number in - , which is ^ itself when 7i is even, and

when n is odd.

The quotients of the division are

1, 2, 3, 4, .• . . .

are divisible by 2, leaving theOf these quotients,

second set of quotients,

1, 2, 3, ... .

The next set of quotients will be

1, 2,

The process is to be continued until we have no even num-
bers left.

Therefore, if we put a for the number of times that the

factor 2 enters into n ! we have,

+ etc.

II. The numbers in the series n ! containing 3 as a factor are

3, 6, 9, 12, etc.,

n

2
+

n
4

+
5]
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of which the number is

Tiding them by 3 are

The quotients obtained by di-

1, 2, 3, .

Of these quotients,
[1]

are again divisible by 3, and so

on as before. Hence, if we put (i for the number of times n\

contains 3 as a factor, we have

^ = n
+

n

9
+

71

+ etc.

In the same way, if k be any prime number, n ! will con-

tain yb as a factor

\V\ + [I] + [1] + '^- *™^'-

Note. This elegant process enables us to find all the prime

factors of n\ without actually computing it, and thus to ex-

hibit n ! as a product of prime factors. If we suppose n = 12,

we shall find,

12! = 1.2-3 12 r= 210.35.52.7.11.

2. Next let us find the prime factors of the product

(^ + l)(« + 2) (a + n),

which contains n factors. Dividing su^ccessively by 2, 3, 5, 7,

etc., it is shown in the same way as before that the prime fac-

tor ji; is contained in the product at least ,

+
p^

-(- etc. times,

whatever prime factor p may be. Therefore the numerator

(a+ l) (a+ 2) . . . . (a+ n) contains all the prime factors found

in n\ to at least the same power with which they enter nl

Hence (§ 238, III), the numerator is divisible by n !

Cor. If the factor ^+ ^ in the numerator is a prime

number, that prime cannot be contained in n ! because it is
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greater than a. Hence the binomial factor will be divisible

by it.

5«6«7
Example. - is divisible by 7.

We may show in the same way that the binomial coefficient

is divisible by all the prime numbers in its numerator which

exceed n.

Divisors of a Number.

340. Def, The expression

(/)(m)

is used to express how many numbers not greater than

m are prime to m.

Example. Let us find the value of (9).

1 is prime to 9, because their G. C. D. is 1.

2 a a a (( a a

3 is not prime to 9, because their G. C. D. is 3.

4 is prime to 9.

5 " "

6 is not, because 6 and 9 have the G. C. D. 3.

7 is.

8 is.

9 is not.

Therefore, the numbers less than 9 and prime to it are

1, 2, 4, 5, 7, 8,

which are six in number. Hence,

(9) ^ 6.

The numbers less than 12 and prime to 12 are 1, 5, 7, 11.

Hence,

9 (12) = 4.

,
We find in this way,

0(1) =1, 0(2) = 1, 0(3) =2,
0(4) =2, 0(5) =4, 0(6) =2,

(7) — 6, etc., etc.
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Cor, 1. The number 1 is prime to itself, but no other

number is prime to itself.

Cor. 2, If m be a prime number, then

[m) z=z m — 1,

because the numbers 1, 2, 3, . = . . ^?2 — 1 are then all prime

to m.

The following remarkable theorem is associated with the

functions (m).

241. Theorem, If N be any number, and d^^ d^^

d^^ etc., all its divisors, unity and iV^included, then

{d^) + 0(^2) + ^(^3) + etc. -^ N.

Example. Let the number be 18.

The divisors are 1, 2, 3, 6, 9, 18. We find, by counting,

. - 0(1) - 1

</>(2) = 1

0(3) = 2

0(6) ^ 2

0(9) = 6

(18) = _6

Sum, 18.

To show how this comes about, write down the numbers

1 to 18, and under each write the greatest common divisor of

that number and 18. Thus,

Num., 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18.

G.C.D., 12321612921612321 18.

Necessarily the numbers in the second line are all divisors

of 18 as well as of the numbers over them.

The divisor 1 is under all the numbers prime to 18, so

that there are

(18) = divisors 1.

If n be any number over the divisor 2, then - and -^, or

9, must be prime to each other. (§ 232, Cor. 1.) That is, the
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numbers n are all those which, when divided by 2, are prime

to 9. So there are

(f> (9) divisors 2.

The divisor 3 marks all numbers which, when divided by 3,

18
are prime to — = 6. Hence, there are

o

(6) divisors 3.

In the same way there are (3) divisors G, (2) divisors 9,

and (j) (1) divisor 18.

The total number of these divisors is both 18 and (p (18)

+ </) (9) + etc. Hence,

0(18)4-0(9) +0(6) +0(3) + 0(2) + 0(1) = 18.

General Proof. Let m be the given number;

^1, d^, ^3, etc., its divisors;

0)1- 77Z

Qiy ^2^ C's' ^^^^ quotients -^, -^, etc.

J 3

The quotients q^, q^, etc., will be the same numbers as d^,

c?2, etc., only in reverse order. The smallest of each row will

be 1 and the greatest m. We shall then have

m = d^q^ = d^q^ z=z d^ q^, etc.

From the list of numbers 1, 2, 3, ... . m, select all those

which have d^ (unity) as the greatest common divisor with m,

then those which have d^ as such common divisor, then those

which have d^, etc., till we reach the last divisor, which will

be m itself, and which will correspond to m.

The numbers having unity as G. C. D. will be those prime

to m, by definition. Their number is (m).

Those having d^ as G. C. D. with 7n will, when divided by

771

cZg, give quotients prime to -r- or to ^g. Moreover, such quo-

tients will include all the numbers not greater than ^g and

prime to it, because each of these numbers, when multiplied

by ^g, will give a number not greater than m, and having d^

as its G. 0. D. with m. Hence the number of numbers not
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greater than m, and having d^ as its G. C. D. with m will

be 0(^2).

Continuing the process, we shall reach the divisor m^ which

will have m itself as G. C. D., and which will count as the

number corresponding to (1) = 1 in the list.

The m numbers 1, 2, 3, .... m are therefore equal in num-

ber to

0(m) + 0(^,) + (/)(^3)+ ..-. +^(1);

or, since the quotients and divisors are the same, only in re-

verse order, we shall have

343. Fermat's Theorem. // p he any prim^e num-
ber, and a be a number prime to p, then a^-^ — 1 will be

divisible by p.

Examples. «* — 1 is divisible by 5 ; a^ — 1 is divisible by 7.

Proof, Develop aP in the following way by the binomial

theorem,

«*=[! + («- 1)]^

= 1 +pia -1) + {l)ia-iy + . .. . + {a- 1)".

Because p is prime, all the binomial cocflficients.

p,
(I),

etc., to
(^^^y

are divisible by^ (§ 239, Cor.). Transposing the terms of the

last member of the equation which are not divisible hj p, we
find

a^ — (a — ly — 1 = a multiple of p.

or a^ — a — \{a — 1)^ — («^ — 1)] = a multiple of p.

Supposing a = 2, this equation shows that 2^ — 2 is a

multiple of p ; then, supposing a = 3, we show by § 231,

Th. II, that 3^ — 3 is such a multiple, and so on, indefinitely.

Hence, oF — « == a multiple of p^

whatever be a. But a^ — a =z {aP~^ — 1) a, and because this

product is divisible by p, one of its factors must be so divisible

(§ 236). Hence, if a is prime to p, aP~^ — 1 is divisible hy p,

17
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CHAPTER II.

OF CONTINUED FRACTIONS.

243. Any proper fraction may be represented in the form

-;- , where x^ is greater than unity, but is not necessarily a whole

number. If a ^ be the greatest whole number in a; j, we can put

where x^ will be greater than unity. In the same way we
may put

_ 1_
X2 — ^2 + ,

_ 1
X^ — ^3 + ":>

etc. etc.

If for each x we substitute its expression, the fraction —
will take the form

,

*

1 11
X. 1 1

'"^
«3.-j , etc., etc.

x^

If the substitutions are continued indefinitely, the form

will be 1

1

«i +- 1
«2 +-

1
«3 +-

Such an expression is called a continued fraction.

Def. A Continued Fraction is one of which the

denominator is a whole number plus a fraction ; the

denominator of this last fraction a whole number plus

a fraction, etc.
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A continued fraction may either terminate with one of its

denominators or it may extend indefinitely.

Bef. When the number of quotients a is finite, the

fraction is said to be Terminating,

344. Problem. To find the value of a continued

fraction.

We first find the value when we stop at the first denomina-

tor, then at the second, then at the third, etc. *

Using only two denominators, the fraction will be11 Xc>F z=.

1 a.x^ + 1'

Xn

F being put for the true value of the fraction.

To find the expression with three terms, we put, in the

preceding expression, a^ \ in place of x^. This gives
x^

1

rp ^3 __ ^2^3 + -*-

."
n n O-^l J- 1

~ (^1^2 +1)^3 +«1*
^1^3 + — +-•-

To find the result with the fourth denominator, we substi-

tute x^i=lcu A The fraction becomes:
3 ^ ' x^

^ ^ (^2^3 +1)^:4 +^a , X

\{a^ac^ + 1) «3 + ^1] ^4 + ^1^2 +1

To investigate the general law according to which the

successive expressions proceed, we put

P, the coefficient of :c in any numerator;

P', the coefficient of x in the denominator

;

Q^ the terms not multiplied by x in the numerator
;

§', the terms not multiplied by x in the denominator
;

and we distinguish the various expressions by giving each P
and Q the same index as the x to which it belongs.
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Then we may represent each value of F in the form,

where i may take any yalue necessary to distinguish the frac-

tion. Comparing with the fractions as written, we see that

:

P, =0, Q, =1, P^, =1, Q\ =0;
F, =1, Q, = 0, P; = a,, (?; - 1 ; (6)

To show that this form will continue, how far soever w^e

carry the computation, we put in the expression (b) the general

value of Xi,

1
Xi =z ai -i ,

I.- 1, • jjy
{ctiPi-\- Qi) n+1 + Pi f..wh.chg..es, F = ^^p-^-^^^-^r (,)

To show the general law of succession of the terms, let us

compare the general equation (b) with (d). Putting ^+ l for

i in (b), it becomes,

Comparing this with (d), we find

Fi+t =z aiFi -\- Qi,

Qibl = Pi\

whence, Qi = P^^i.

Substituting this value of Qi in the equation previous, it

becomes
P,+i = ^^P^ + Pi_i. (/)

Working in the same w^ay with the denominators, we find

Q'i.t = P'v

By supposing i to take in succession the values 1, 2, 3, etc.,
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these formulae show that the successive values of P may be

computed thus

:

pUiJ ^'""'^'

Pg = a,P, + P„
P, = a,P, + P^,

etc., to any extent.

Also, P; = 1,

p; = «!,
^

. -P 3 =^ tt^Ps + Pi,

P^ = ^S-^S + -f*2»

etc. etc.

Since each value of Q is equal to the value of P having the

next smaller index, it is not necessary to compute the $'s sep-

arately.

If the fraction terminates at the n^^ value of a, we shall

have
Xn = an, exactly.

If it does not terminate, we have to neglect all the denom-

inators after a certain point ; and calUng the last denominator

we use the n*^, we must suppose

Xji "=. dn*

In either case, the expression (Z>) will give the value of the

fraction with which we stop by putting i =:n and Xn = an-

Therefore, F = "^^r ^ ^f ,

Ctn Pn + Qn

or, substituting for Q'^ and Q'^ their values in (^),

p ^n I^n "T" I^n—1

But the general expressions (/) and (g) give
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(^n 't^n "f" ^n—\ "^^^ -^n+h

(^n Pn + Pn-\ = Pn+1*

Therefore, F=^'
Pn+l

Therefore, to find the value of the fraction to the n^^

term, we have only to comjjute the values of Pn+i and
Pn+h without tahing any account of Q,

Example. Take the fraction,

1

i + i

2 4-i

3 + i

4 +
^

5 etc.

Here, a^ =1, CI2 = 2, a^ = 3, , . , . ai z= i.

We now have, by continuing the formulae (c) and (/), and

using those values of a^, a 2, etc.

:

Pi =0,
P2 = 1.

Ps ^^ ^3-^2 + Pi =^2=2^
P4 = «3^3 + Pg = 3.2 + 1 = 7,

P, =a^P^ + Pg =4.7 + 2 = 30,

Pe = a,P, +Pi = 5.30 + 7 = 157,

etc. etc. etc.

p; = i,

P'a = «i = 1,

p; = a,P', + P\ = 3-1 + 1 = 3,

p; = (jjp; + p; = 3.3 + 1 = 10,

p', = «4^4 + K = 4-10 + 3 = 43,.

p; = a,P', + P; = 5.43 + 10 = 225.

Therefore, supposing in succession, n = l, n — 2, n = d,

etc., we have, for the successive approximate values of tlie

fraction,

•.
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For n = l,

2

For ^ = 2, ^« P\ - 3

For n = 6, ^ ~ P'~ 225'

263

These successive approximate values of the continued frac-

tion are called Converging Fractions, or Convergents.

345. The forms (/) and {g) may be expressed in words as

follows

:

The numerator of each convergent is formed by mul-
tiplying the preceding numerator by the corresponding

a, and adding the second numerator preceding to the

product.

The successive denominators are formed in the same way.

Example. The ratio of the motions of the sun and moon
relative to the moon's node is given by the continued fraction

:

1

12 + -^

i + i

2 + i

1+^
4 +

^

3 + etc.

Let us find the successive convergents. We put the de-

nominators «>t
= 12^ ^2 = 1, etc., in a line, thus:

a = 12, 1, 2, 1, 4, 3.

P = J^ J^ 3 4 19 61

P' = 1' 12' 13' 38' 51' 242' 777*

Under a^ we write the fraction -, whicli is always the one

with which to start, because P^ = and P\ = 1 (§ 244, c).

Next to the right is — , because Pg = 1 and Pg = a. After

this, we multiply each term by the multiplier a above it, and
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add the term to the left to obtain the term on the right.

Thus, 2.1 + 1 = 3, 2.13 + 12 = 38, etc.

Ex. 2. To compute the convergents of

1

^+
1

^ + 4 etc.

a = 3, 4, 2, 4, 2, 4,

Numerators,

Denominators,

1 4 9 40

1' 3' 9' 20' 89'

89

198'

etc.

etc.

EXERCISES.
Reduce the following continued fractions to vulgar frac-

tions :

3 + ^. 3 +
^

^ + 4- 2 +
^

3 +
1

3

4-
1 ^1

3 + —— 3 + a +
1 .1 '1

1+ 5 + -. b + -.

3 +^ "^ '

1 + r
346. Problem. To express a fraetional quantity as

n eontinued fraetion.

Let R be the given fraction, less than unity. Compute x^

from the formula,

_ 1

^1 - ^•

Let a^ be the whole number and R' the fraction of ^^j.

Then compute

__ 1
^2 -^-
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Let a^ be the whole number and R" the fraction of x^.

We continue this process to any extent, unless some value

^f X comes out a whole number, when we stop.

26
Example. Express ^ as a continued fraction.

1 73
^'^ ^ :^ "^ 26 ^ ^ + 26 '

R'

Jl_

R"

26

21

21

1 +

21

21^

5 ~^ + 5^

So the continued fraction is

1_

2 + 1-

^1 = 2

ttg = 1

«3 = 4

^4 = 5

R'

R"

21
26*

21*

R'" — -.

R" = 0.

It will be seen that the process is the same as that of find-

ing the greatest common divisor of two numbers.

EXERCISES.
Develop the following quotients as continued fractions

:

113 1049 628
^' 925*355

2.
3326

347. The most simple continued fraction is that arising

from the geometric problem of cutting a line in extreme and

mean ratio. The corresponding numerical problem is

:

To divide unity into two such fractions that the less

shall he to the greater as the greater is to unity.

Let r be the greater fraction. Then 1 —r will be the

lesser one. We must then have

1 — r I r : : r : 1,
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which gives r^ = 1 -- r,

or r^ 4- r = 1,

or r (r + 1) = 1,

1
or r z=z

1 + r

Now, let us put for r in the last denominator the expression

, and repeat the process indefinitely. We shall have.
1 + ^

1
r z=z -

i + i

i + i

1 +
^

1 etc., ad infiniUim,

Now we may form the successive convergents which

approximate to the true value by the rule. As all the denom-

inators a are 1, we have no multiplying, but only add each

term to the preceding one to obtain the following one. Thus

we find:

011235^132134
1^ 1' 2' 3'' 5' 8' 13' 21' 34' 55' ^*'''

The true value of r may be found by solving the quadratic,

y2 -f r = 1,

. . , . -1± a/5
which gives r = ^r •

The positive root, with which alone we are cOYiCemed, is

r =:
"-^j" ^^ = 0.61803399.

The values of the first nine convergents, with their errors.

are:
1:1= 1.0, error = + 0.382.

1:2= 0.5,
" —0.118.

2:3= 0.666...., " +0.0486.

3:5= 0.600, '' -0.0180.

5:8= 0.625, '' +-0.00697.
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8 : 13 = 0.61538....

,

error = — 0.00265.

13 : 21 = 0.61904....

,

" + 0.00101.

21 : 34 = 0.617647....

,

" - 0.000397.

34 : 55 = 0.618182...., " + 0.000148.

etc. etc. etc.

Relations of Successive Convergents.

348. Theorem I. The successive convergents are

alternately too large OMid too small.

Proof, The first convergent is — The true denom-

inator being a^ -\ , the denominator a^ is too small, and

therefore the fraction is too large.

In forming the second fraction, we put — instead of —
a.2 x^

Because ^2 < i?:^3, this fraction is too large, which makes the

denominator a^ -\ too great.

The third denominator a^ is too small, which will make
the preceding one too large, the next preceding too small, and

so on alternately.

171 7Yi!

Theorem II. // — and —, he any two consecutive

convergents, then
mn! — m'n = ± 1.

Proof, We show :

(«) Thatthe theorem is true of the first pair of convergents.

{p) That if true of any pair, it will be true of the pair next

following.

{a) The first pair of convergents are

J_ 1 _ ^2

""^^^

which gives 7nn' — m'n = 1, thus proving («).
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\p) Let — , —7, —77,
^ ^ n n n

be three consecutive convergents, in which

7nn' — m'n =. ±1, (1)

By (/) and {g) we shall have

^" = an' + ^.

Multiplying the second equation by m' and subtracting the

product of the first by n', we have *

m'n" — m"n' r= m'71 — mn',

Avhich is the negative of (1), showing that the result is =F 1-

The theorem being true of the first and second fractions,

must therefore be true of the second and third ; therefore of

the third and fourth, and so on indefinitely.

Corollaries, Dividing (1) by n7i\ we have

m w!
. 1 T_r

; = ± —-,- Hence,
n n nn

I. The difference between the two successive converge

ents is equal to unity divided hy the product of the

denominators.

Because the denominator of each fraction is greater than

that of the preceding one, we conclude

:

II. T]^e difference between two consecutive convergents

constantly diminishes.

Combining these conclusions with Th. T, we conclude :

III. Each value of a convergent always lies between

the values of the two preceding convergents.

For if R^, R^, R^ be three such fractions, and if R^ is

greater than R^, then R^ will be less than R^. But it must

be greater than R^, else we should not have R^ — Rq numer-

ically less than R^ — R^. Hence, if we arrange the successive

convergents in a line in the order of magnitude, their order

will be as follows

:

-"'4^ -^^e^ -*^8' • • • • ^9? Ri9 R^9

each convergent coming nearer a true central value. Hence,
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IV. The true value of the continued fraction al-

ways lies between the values of two consecutive con-

vergents.

Comparing with (I), we conclude

:

V. The error which we mahe hy stopping at any con-

vergent can never he greater than unity divided hy the

product of the denominators of that convergent and the

one next following.

EXAM PLE.

Referring to the table of values of |-(\/5 — 1) in § 247,

we see that

:

Error of 2 :^^<3-5' (for .0486 < 1).

Error of 3 ;^^<5'8' (for .018 <!).

etc. etc.

Hence, in general, continued fractions give a very rapid

approximation to the true value of a quantity. Their princi-

pal use arises from their giving approximate values of irrational

numbers by vulgar fractions with the smallest terms.

EXAMPLE.

Develop the fractional part of ^2 as a continued fraction,

and find the values of eight convergents.

Because 1 is the greatest whole number in V^^ we put

V2 = 14-^; (1)

whence, oc

a/2 — 1

Eationalizing the denominator, § 185,

X = V2 + 1.

Substituting for V2 its value in (1),

a; = 2 + -.
X
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Putting this value of x in (1) and again in the denominator,

and repeating the substitution indefinitely, we find

V3 = 1 + i

. + i

2 + i

^ + 2 etc.

Forming the convergents, we find them to be

12 5 12 29 70 169 408
2' 5' 12' 29' 70' 169' 408' 985'

etc.

3 7 17 41 99 239 577 1393
3' 5' 12' 29' 70' 169' 408' 985

Adding unity to each of them, we find the approximate

values of ^2

:

17 4.1 QQ 9,?JQ .^77 I.^Q.^ |
etc.

I

Rem. The square root of 2 may be employed in finding a

right angle, because a right angle (by Geometry) can be formed

by three pieces of lengths proportional to 1, 1, ^2. If we
make the lengths 12, 12, 17, the error will, by Cor. V, be less

than zt^wt:, or less than -— of the whole length.

EXERCISES.
Develop the following square roots as continued fractions,

and find six or more of the partial fractions approximating to

each

:

I. V3. 2. ^5. 3. \/6. 4. VlO.

5. Develop a root of the quadratic equation

x^ — ax — l=^0,

commencing the operation by dividing the equation by x.

Periodic Continued Fractions.

349. Def, A Periodic continned fraction is one in

which the denominators repeat themselves in regular

order.
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Example. A continued fraction in which the successive

denominators are

2, 3, 5, 2, 3, 5, 2, 3, 5, etc., ad infinitum,

is periodic.

A periodic continued fraction can be expressed as

the root of a quadratic equation.

I.

EXAMPLES.
1

i + i

2 +^
1 +

^

2 + etc.

If we put X for the value of this fraction, we have

1
X =

1+'
2 + a;

We find the value thus:

1, 2-{-x.

1 2 + a;

1' 1' Z^-x

Because this expression is x itself, we have

^ -^
3 + 0?^

which reduces to the quadratic equation

a;3 + 2a; — 2.

2. Let us take the fraction of which the successive denom-

inators are 2, 3, 5, 2, 3, 5, etc., namely,

1
X =

a+i
s + l

^ 1
5 + -

2 +
^

3 + etc.^
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or. JU —
.+'

,

^ + 5 + .-

We compute thus:

2, 3, a; + 5.

1 3 dx + lQ

1' 2' 1' 72; + 37'

Hence we have, to determine x, the quadratic equation.

Zx + 16
or W + 34:t^ = 16.

7a; + 37

350. Development of the Root of a Quadratic Eq^iation,

A root of a quadratic equation may be developed in a continued

fraction by the following process. Let the equation in its

normal form be (§ 192),

mx^ + nx + p =1 0, (1)

m, n, and p being whole numbers. We shall then have

_ — n ±: Vn^ — ^mp
'

"^
2m

Let a be the greatest whole number in x, which we may
find either by trial in (1) or by this value of x. Then assume

1
X = a -\ •

^1

and substitute this value of x in the original equation. Then,

regarding x^ as the unknown quantity, we reduce to the nor-

mal form, which gives

{ma^ + na +p)x^'^ + {2ma -{- n)xi + m = 0. (2)

It a^ is the greatest whole number in x^, we put

and by substituting this value of x^ in (2), we form an equa-

tion in x^. Continuing the transformations, we find the

greatest whole number in x^, which will be called a^^ and so on.

The root will then be expressed as a whole number a plus

the continued fraction of which the denominators sltg a^, a^,

a^, etc.
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THE COMBINATORY ANALYSIS.

CHAPTER I.

PE R M U TATI N S.

351. Def. The different orders in which a number
of things can be arranged are called their Permuta-
tions.

Examples. The permutations of the letters a, h, are

ab, ha.

The permutations of the numbers 1, 2, and 3 arc

123, 132, 213, 231, 312, 321.

Problem. To find how many pei^mutations of any
given nu7)^her of things are possible.

Let us put

Fi, the number of permutations of i things.

It is evident from the first of the above examples that there

are two permutations of two things. Hence,

To find the permutations of three letters, a, b, c,'vie form

three sets of permutations, the first beginning with a, the sec-

ond with b, and the third with c.

In each set the first letter is to be followed by all possible

permutations of the remaining letters, namely

:

In 1st set, after a write be, cb, making abc, acb.

" 2d " " b "
ac, ca, " bac, bca.

" 3d " "
c " ab, ba, " cab, cba.

18
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Hence, Pg = 3-2 = 6.

The permutations of n things can be divided into sets.

The first set begins with the first thing, followed by all possi-

ble permutations of the remaining n — 1 things, of which the

number is Pn-i* The second set begins with the second thing,

followed by all possible permutations of the remaining n — 1

things, of which the number is also Pn-i, and so with all n

sets. Hence, whatever be n, there will be n sets of Pn-i per-

mutations in each set. Therefore,

Pfi = nPn~i.

This equation enables us to find P^ whenever we know

Pn-h and thus to form all possible values of Pn, as follows

:

It is evident that P, =1.
We have found Pg =: 2.1 = 2!

(( 6C Pg = 3.2.1 =. 3! =:: 6.

Putting ^ = 4, we have P^ =: 4P3 = 4! == 24.

71 = 5, '' '' P5 =r 5P4 r= 5 ! = 120.

etc. etc. etc.

It is evident that the number of permutations of n things

is equal to the continued product

1.2.3.4 n,

which we have represented by the symbol n ! so that

Pn = n\

EXERCISES.*

1. Write all the permutations of the following letters :

bed, acd, abd^ abed.

2. What proportion of the possible permutations of the

letters a, e, m, t, make well-known English words ?

3. Write all the numbers of four digits each of which can

be formed by permuting the four digits 1, 2, 3, 4.

4. How many numbers is it possible to form by permuting

the six figures 1, 2, 3, 4, 5, 6.

* If the student finds any difficulty in reasoning out these exercises,

he is recommended to try similar cases in which few symbols are involved

by actually forming the permutations, until he clearly sees the general

principles involved.
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5. At a dinner party a row of 6 plates is set for the host

and 5 guests. In how many ways may they be seated, subject

to the condition that the host must have Mr. Brown on his

right and Mr. Hamilton on his left ?

6. Of all numbers that can be formed by permuting the

seven digits, 1, 2 .... 7

:

{a) How many will be even and how many odd ?

(l) In how many will the seven digits be alternately even

and odd?

{c) In how many will the three even digits all be together ?

{d) In how many will the four odd digits all be together ?

7. In how many permutations of the 8 letters, a, i, c, d, e,

/, g, h, will the letters d, e, /, stand together in alphabetical

order ?

8. In how many of the above permutations will the word

deaf be found ?

9. In how many of the permutations of the first 9 letters

will the words age and hid be both found ?

10. A party of 5 gentlemen and 5 ladies agree with a math-

ematician to dance a set for every way in which he can divide

them into couples. How many sets can he make them dance ?

11. In how many of the permutations of the letters a, h, c,

d, e, will d and no other letter be found between a and e,

12. In how many of the permutations of the six symbols,

a, h, Cy d, e,f, will the letters abc be found together in one

group, and the letters def in another ?

13. How many permutations of the seven symbols, a, h, c,

d, e, /, g, are possible, subject to the condition that some per-

mutation of the letters abc must come first ?

14. The same seven syjnbols being taken, how many per-

mutations can be formed in which the letters abc shall remain

together ?

Permutations of Sets.

352. Def, When permutations are formed of only

s things out of a whole number n, they are called Per-

mutations of n things taken ^ at a time.
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Example. The permutations of the three letters a, h^ c,

taken two at a time, are

ab, bUy aCy ca, Ic, cb.

The peimutations of 1, 2, 3, 4, taken two at a time, are

12, 13, 14, 21, 23, 24, 31, 32, 34, 41, 42, 43.

Pkoblem. To find the number of permutations of

n things taken s at a time.

Suppose, first, that we take two things at a time, as in the

above examples. We may choose any one of the n things as

the first in order. Which one soever we take, we shall have

n — 1 left, any one of which may be taken as the second in

order. Hence, the permutations taken 2 at a time will be

n{n — l).

[Compare with the last example, where 7i = 4.]

To form the permutations 3 at a time, we add to each per-

mutation by 2's any one of the n — 2 things which are left.

Hence, the number of permutations 3 things at a time is

n{n — l){n — 2).

In general, the^ permutations of 7i things taken 5 at a time

will be equal to the continued product of the s factors,

n {n — 1) (^ — 2) {n — s -\-l),

n\
which is equal to the quotient -,

(n

—

s)\

It will be remarked that when 5 = /z, we shall have the

case already considered of the permutations of all n things.

EXE RCI SES.

1. Write all the numbers of two figures each which can be

formed from the four digits, 3, 5, 7, 9.

2. Write all the numbers of three figures, beginning with

1, which can be formed from the five digits, 1, 2, 3, 4, 5.

3. How many different numbers of four figures each can

be formed with the digits 1, 2, 3, 4, 5, 6, no figure being re-

peated in any number ?
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4. Explain how all the numbers in the preceding exercise

may be written, showing how many numbers begin with 1,

how many with 2, etc.

5. In how many ways can 3 gentlemen select their partners

from 5 ladies ?

6. How many even numbers of 3 different digits each can

be formed from the seven digits, 1, 2, .... 7 ?

7. How many of these numbers will consist of an odd

digit between two even ones ?

Circular Permutations.

353. If we have the three letters a, d, c, arranged in a

circle, as in the adjoining figure, then,

however we arrange them, we shall find

them in alphabetical order by beginning

with a and reading them in the suitable

direction. Hence, there are only two

different circular arrangements of three

letters instead of six, namely, the two

directions in which they may be in al-

phabetical order.

Next suppose any number of symbols, say a, I, c^d, e,f, g^

h, and let there be an equal number of positions around the

circle in which they may be placed. These positions are num-
bered 1, 2, 3, 4, 5, 6, 7, 8.

For every arrangement of the sym-

bols we may turn them round in a body

without changing the arrangement.

Each symbol will then pass through all

eight positions in succession.

By performing this operation with

every arrangement, we shall have, all

possible permutations of the eight things

among the eight positions, the number
of which is 8

!
, which are therefore eight times as many as

the circular arrangements.
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Hence the number of different circular arrangements is

8?—
'
, which is the same as 7

!

o

In general, if we represent the number of circular arrange-

ments of n things by Gn, we shall have

Gn = {n-1)\

The same result maybe reached by the following reasoning.

To form a circular arrangement, we may take any one symbol,

a for example, put it into a fixed position, say (1), and leave it

there.

All possible arrangements of the symbols will then be

formed by permuting the remaining symbols among the re-

maining positions. Hence,

On = Fn-1 = {n - 1)

!

as before.

EXERCISES.
1. In how many orders can a party of 7 persons take their

places at a round table?

2. In how many orders can a host and 7 guests sit at a

round table in order that the host may have the guest of high-

est rank upon his right and the next in rank on his left?

3. Five works of four volumes each are to be arranged on

a circular.shelf. How many arrangements are possible which

will keep the volumes of each set together and in proper order,

it being indifferent in which direction the numbers of the

volumes read.

4. In how many circular arrangements of the 5 letters a, d,

c, d, e, will a stand between h and d ?

5. If the 10 digits are to be arranged in a circle, in how
many ways can it be done, subject to the condition that even

and odd digits must alternate ? (Note that is even.)

6. The same thing being supposed, how many arrange-

ments are possible, subject to the condition that the even digits

must be all together ?

7. In how many circular arrangements of the first six let-

ters will the word deaf he found? What will be the difference

of the results if you are allowed to spell it in either direction?
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Permutations when Several of the Thing^s are
Identical.

254. If the same thing appears several times among the

things to be permuted, the number of different permutations

will be less than when the things are all different.

Example. The permutations of aahh are

aahl, abab, ahha, baab, haba, bbaa, (1)

which are only six in number.

Problem. To firul the number of permutations when
several of the things are identical.

Let us first examine how all 24 permutations of 4 things

may be formed from the above 6 permutations of aabb. Let

us distinguish the two a's and the two ^'s by accenting one of

each. Then, from each permutation as written, four may be

formed by permuting the similar letters among themselves.

For example, taking abba, and writing it abb'a', we have, by

permuting the similar letters,

ab'ba!, a'b'ba. abb'a', a'bVa, (2)

In the same way four permutations, differing only in the

arrangement of the accents, may be formed from each of the

6 permutations (1), making 24 in all, as there ought to be.

(§ 251.)

Generalizing the preceding operation, we reach the follow-

ing solution of our problem. Let the symbols to be permuted

be a, b, c, etc.

Suppose that a is repeated r times,

etc. etc. etc.

and let the whole number of symbols, counting repetitions, be

n, so that

n = r'j-s-\-t-\- etc.

[In the preceding example (1), tz — 4, r = 2, .9 = 2.]

Also put Xn, the required number of different permutations

of the 71 symbols.
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Suppose these Xn different permutations all written out,

and suppose the symbols which are repeated to be^distinguished

by accents. Then:

From each of the Xn permutations may be formed Pr=^r\
permutations by permuting the «'s among themselves, as in

(2). We shall then have r ! Xn permutations.

From each of the latter may be formed s\ permutations by

permuting the Z>'s among themselves. We shall then have

5 ! r ! X Xn permutations.

From each of these may be found t ! permutations by in-

terchanging the d^ among themselves.

Proceeding in the same way, we shall have

Xn X r\ X s\ X t\ X etc.

possible permutations of all 7i things. But this number has

been shown to be n\ Therefore,

Xn X r\ X s\ X t\ X etc. = n !

By division, X„ = ^^j^^----, (3)

which is the required expression.

We remark that if any symbols are not repeated, the for-

mula (3) will still be true by supposing the number correspond-

ing to r, s, or t to be 1.

EXAMPLES.
I. The number of possible permutations of aabl are

z=z —— =r 6, as already found.
2! 2! ~ 2-2

2. The possible permutations of aaahhcd are

7

!

5040

3! 2! 6-2
420.

EXERCI SES.

Write all the permutations of the letters:

I. aaah, 2. aabc, 3. aaabc.

4. How many different numbers of seven digits each can

be formed by permuting the figures 1112225 ?
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5. If every different permutation of letters made a word,

how many words of 13 letters each could be formed from the

word Massachusetts.

The Two Classes of Permutations.

255. The n\ possible permutations of n things are divisi

ble into two classes, commonly distinguished as even permu-

tations and odd permutations in the following way:

We suppose the 7i things first arranged in alphabetical or

numerical order,

a,d,Cyd,,,., or 1, 2, 3, 4, ... . n,

and we call this arrangement an evmi permutation.

Then, having any other permutation, we count for each

thing how many other things of lower order come after it, and

take the sum.

If this sum is even, the permutation is an even one ; if odd,

an odd one.

EXAMPLES.
1. Consider the permutation 265143.

Here 2 is followed by 1 number of lower order, namely, 1.

" Q " " 4 " " " " 5,1,4,3.

" 5 " " 3 " " '' " 1,4,3.
a \ " ^* Q '' '*• ^<

a 4 ^^ " 1 '' '' '^ ^^ 3

Then 1+4+ 3+ + 1 = 9. Hence the permutation is odd.

2. Consider cdbea.

Here c is followed by 2 letters before it in order, namely, ba,

'' d ," " 2 " " " " la.

6i Jj ii 6i 1 (< 66 66 66 ^
66

Q
" '' 1 ^^ ^^ ^^ ^^ n

Then 2+ 2+ 1 + 1 = 6. Hence the permutation is even.

Def, The total number of times which a thing less

in order follows one greater in order is called the

Number of Inversions in a permutation.
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Example. In the preceding permutation^ 265143, the

number of inversions is 9. In cdhed it is 6.

Eem. It will be seen that the class of a permutation is

even or odd, according as the number of inversions is even or

odd.

Theorem I. If, in a perinutaUon, two things are

interchanged, the class will he changed from even to odd,

or from odd to even.

Proof. Consider first the case in which a pair of adjoining

things are interchanged. Let us call

:

ilc, the two things interchanged.

A, the collection of things which precede i and Jc.

C, the collection of things which follow them.

The first permutation will then be

AikC.'^ {a)

After interchanging i and k, ifc will be

AUG. \b)

Because the order of things in A remains undisturbed, each

thing in A is followed by the same things as before. In the

same way, each thing in G is preceded by the same things as

before.

Hence, the number of times that each thing in A or G is

followed by a thing less in order remains unchanged, and,

leaving out the pair of things, i, k, the number of inversions

is unchanged.

But, by interchanging i and k, the new inversion ki is in-

troduced. Therefore the number of inversions is increased

by 1.

* This form of algebraic notation differs from those already used in

that the symbols A and C do not stand for quantities, but mere collec-

tions of letters. It is an application of the general principle that a single

symbol may be used to represent any set of symbols, but must represent

the same set throughout the same question. A and C are here used to

show to the eye that in forming the permutations of (5) from {a), all the

letters on each side of ik preserve their relative positions unchanged.
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If the first arrangement is Id, this one inversion is removed.

Hence^ in either case the number of inversions is changed by

1, and is therefore changed from odd to even, or vice versa.

Illustration, In the permutation

265143,

the inversions, as already found, are the following nine :

21, 65, 61, 64, 63, 51, 54, 53, 43.

Let us now interchange 5 and 1, making the permutation

261543.

The inversions now are
^

21, 61, 65, 64, 63, 54, 53, 43,

the same as before, except that 51 has been removed.

Next consider the case in which the things interchanged

do not adjoin each other. Suppose that in the permutation

h a d e h c f
we interchange a and h. We may do this by successively in-

terchanging a with d, with e, and with h, making three inter-

changes, producing
I d e h a c f

.

Then we interchange h with e ^and with d, making two

interchanges, and producing

h h d e a c f

,

which effects the required interchange of a with h.

The number of the neighboring interchanges is 3-|-2 r= 5,

an odd number. Because the number of inversions is changed
from odd to even this same odd number of times, it will end
in the opposite class with which it commenced.

Theorem II. I7^e possible permutations of n things

are one-half even and one-half odd.

Proof, Write the n ! possible permutations of the n things.

Then interchange some one pair of things {e.g., the first

two things) in each permutation. We shall have the same
permutations as before, only differen ]y arranged.



1 3 odd.

1 -i even.

2 3 even.

3 1 odd.

3 2 odd.

3 1 even.
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By the change, every even permutation will be changed to

odd, and every odd one to even.

Because every odd one thus corresponds to an even one,

and vice versa, their numbers must be equal.

Illustration. The permutations in the second column fol-

lowing are formed from those in the first by interchanging the

first two figures :

12 3 even, 2

13 2 odd, 3

2 13 odd, 1

2 3 1 even, 3

3 12 even, 1

3 2 1 odd, 2

EXERCISES.
Count the number of inversions in each of the following

permutations

;

I. hcdagef. 2. Magdef. 3. 325941.

4. 5432. 5. 82917364. 6. 82971364.

S56 Def. A Symmetric Function is one which is

not changed by permuting the symbols which enter into it.

An Alternating Fuhction is one which, when any two

of its symbols are interchanged, changes its sign without

changing its absolute value.

EXERCISES
Show which of the following functions are symmetric and

which are alternating

:

I, a + 6 + c. 2. ahc.

3. ^ (6 + c) -f 5 (c + a) + c (a + 6),

4. a^ (b - c) + h' (c-a) + c' {a - b).

5. a' {b + c) + b' (c+a) -he' (a + 5).

6. (a-b) {b - c) (c - a),

7. ab -\- be -{- oa.
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CHAPTER II.

COMBINATIONS.

357. Def, The number of ways in which it is pos-

sible to select a set of .^ things out of a collection of n
things is called the Number of Combinations of s

things in n.

Ex. I. From the three symbols a, h, c, may be formed the

couplets,

ah, acy he.

Hence there are three combinations of 2 things in 3.

Ex. 2. From a stud of four horses may be formed six dif-

ferent span. If we call the horses A, B, C, J), the dijBFerent

span will be
AB, AC, AD, BC, BD, CD.

Rem. 1. A set is regarded as different when any one of its

separate things is different.

Eem. 2. Combinations differ from permutations in that,

in forming a combination, no account is taken of the order of

arrangement of things in a set. For instance, ah and ha are

the same combination. Hence, we may always suppose the

letters or numbers of a combination to be written in alpha-

betical or numerical order.

Notation, The number of combinations of s things in 7i

is sometimes designated by the symbol,

c»

Problem. To find the ninnher of combinations of s

things in n.

If we form every possible set of s things out of n things,

and then permute the s things of each set in every possible

way, we shall have all the permutations of n things taken s at

a time (§ 252). That is,

Cg X Is
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express the number of permutations of n things taken 5 at a

time. But we have found this number to be

n (n — 1) (m — 2) . . . . (m — s + 1).

We have also found

P, = .s! = 1.2-3-4 s.

Hence, Cf xsl = n{n — l) {iu— 2) .... (re -- s + 1),

, n _ M (« - 1) (w - 2) {n --s + 1)
^' - 1.2.3. 4.... s

= g) (§ 228, 3)

;

C^= .
,^' ...

which is the required expression.

Rem. For every combination of s things which we
can take from n things, a combination ot n— s things

will be left.

Hence, Cf = Cls.

This formulae may be readily derived from the expression

for the number of combinations. For, if we take the equation

pn _ ^
^^ -

s\ {n-s)V

this formula remains unaltered when we substitute n — s for

s, and therefore also represents the combinations of 7i — s

things in n.

Def. Two combinations which together contain all

the things to be combined are called two Complement-
ary combinations.

EXERCISES.
1. Write all combinations of two symbols in the five sym-

bols, a^ h, Cy d, e.

2. Write all combinations of three symbols in the same

letters, and show why the number is the same as in Ex. i.
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3. A span of horses being different when either horse is

changed, how many different span may be formed from a stud

of 3 ? Of 7 ? Of 9 ?

4. If four points are marked on a piece of paper, how many
distinct lines can be formed by joining them, two and two ?

How many in the case of n points ?

From each one of the points can be drawn 7i -—1 lines to

other points; then why are there not 71 {n — 1) Hnes?

5. If five lines, no two of which are parallel, intersect each

other, how many points of intersection will there be ? How^

many in the case of n lines ?

6. If n straight lines all intersect each other, how many
different triangles can be found in the figure ?

7. In how many different ways may a set of four things be

divided into two pairs ?

8. In how many ways can a party of four form partners at

whist?

9. In how many ways can the following numbers be thrown

with three dice

:

{a) 1,1,1; {d) 1,2,2; {c) 1,2,3.

10. A school of 15 young ladies have the privilege of send-

ing a party of 5 every day to a picture gallery, provided they

do not send the same party twice. How many visits can they

make?

Combinations with Repetition.

358. Sometimes combinations are formed with the liberty

to repeat the same symbol as often as we please in any set.

Example. From the three things a, h, c, are formed the

six combinations of two things with repetition,

aa, ah, ac, hh, he, cc,

Pkoblem. To -find the ninnhcr of comhinations of s

things in n, wheiz repetition is allowed.

Solution. Let the n things be the first 71 numbers,

1, 2, 3, 4, ... . u.
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Form all possible sets of s of these numbers with repetition,

the numbers of each set being arranged in numerical order.

Let Rs be the required number of sets. Then, in each set,

Let the first number stand unchanged.

Increase the 2d number by 1.

" " 3d " " 2.

'' '' 4th " " 3.

We shall then have Bs sets of s numbers, each without rep-

etition.

Example. From the numbers 1, 2, 3 are formed with repetition,

11, 12, 13, 22, 23, 33.

Then, increasing the second numbers by 1, we have

12, 13, 14, 23, 24, 34.

The greatest possible number in any set after tlie increase

will be n -{- s — 1, because the greatest number from which

the selection is made is n, and the greatest quantity added is

5—1. Hence all the new sets will consist of combinations of

s numbers each from the n -\- s — 1 numbers,

1, 2, 3, 4, .... :?^ .... :^ + 5 — 1. {a)

No two of these combinations can be the same, because then

two of the original combinations would have to be the same.

Hence the new sets are all different combinations of s numbers

from the n -[- s — 1 numbers {a). Therefore the number of

combinations cannot exceed the quantity (7/^.

Conversely, if we take all possible combinations of s differ-

ent numbers in n -{- s — 1, arrange each in numerical order,

and subtract 1 from the second, 2 from the third, etc., we

shall have different combinations from the first n numbers

with repetitions. Hence the number of combinations in the

second class cannot exceed those of the first class.

Hence we conclude that the number of combinations of s

things in n with repetition is the same as the combinations of

s things in n -{- s — 1 without repetition, or
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»7i j-iTh^s-i In -{- s — 1\

__ n{n + l){n -\-2) {n-\- s — 1)
""

1.2.3.4 s

EXERCISES.
1. Write all possible combinations of 3 numbers with repe-

tition out of the three numbers 1, 2, 3 ; then increase the second

of each combination by 1 and the third by 2, and show that

we haye all the combinations of three different numbers out of

1,2,3,4,5.

2. How many combinations of 4 things in 4 with repeti-

tion ? Oi n things in tz ?

In the last question and in the following, reduce the result to its

lowest terms.

3. How many combinations of 7^ + 1 things m. n—l with

repetition ?

Special Cases of Combinations.

359. It is plain that

because each of these combinations consist simply of one of the

n things. Hence, also,

Cl-i = n,

because in every such combination one letter is omitted.

It is also plain that

because the only combination of 7i letters is that comprising

the n letters themselyes. Hence we write, by analogy,

G^ = 1,

although a combination of nothing does not fall within the

original definition of a combination.

360. The formulae of combinations sometimes enable us

to discover curious relations of numbers.

1. Let us inquire how we may form the combinations of
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s -\- 1 things when we have those of 5 things. Let the n

things from which the combinations are to be formed be the

letters

a, d, c, d, e,f, g, etc {n\n number).

Let all the combinations of 5+ 1 of these n letters be writ-

ten in alphabetical order. Then

:

1. In the combinations beginning with a, the letter a will

be followed by all possible combinations of s letters out of the

71 — 1 letters d, c, d, etc., of which the number is Cf'^.

2. In the combinations beginning with h, the letter h is

followed by all combinations of s letters out of the n — 2 let-

ters c, d, e, f, etc. Therefore there are G'^'^ combinations

beginning with h,

3. In the same way it may be shown that there are C'^~^

combinations beginning with c, C^~^ beginning with d, etc.

The series will terminate with a single combination of the last

s+ 1 letters.

Since we thus have all combinations of s+ 1 letters, we
find, by summing up those beginning with the several letters

a, b, c, etc.,

or' + cr' + or' + .... + ci = c»+i. («)

Substituting for the combinations their values, we find

By the notation (§ 228, 3), all the terms of the first member
have the common denominator s ! , while the numerators are

each composed of the factors of s consecutive numbers. Mul-

tiplying both sides by s ! and reversing the order of terms in

the first member, we have

1.2.3 5 + 2-3.4 5 + 1 + etc.

etc. etc.

+ (n — s — l) (^ _ 3) (^ — 2)

+ {n — s) {71 — 2) {71 — 1)

_ {n — s) . , , , {n — 2 ) (n — 1) ^_ ____

\
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The student is now recommended to go over the preceding process

with special simple numerical values of n and s which he may select for

himself.

EXAMPLES.
If ^ = 5 and s = 2, we have

1.2 + 2.3 + 3.4 = ^.
6

If II = 7 and 5 = 3.

1.2.3 + 2.3.4 -f 3.4.5 -f- 4.5.6 = i:^!^-.

If iz =2 7 and s = 4,

1.2.3.4 + 2.3.4.5 -f 3.4.5.6 = ^-—^.

5

If w =: 9 and 5 = 3,

1.2.3 + 2.3.4+ 3.4.5+ 4.5.6+ 5.6.7 + 6.7.8 =. ?1^-.

Prove these equations by computing both members.

261. Another curious example is the following:

Let us have p + q things divided into two sets, the one

containing p and the other q things. Then, to form all possi-

ble combinations of s things out of the whole p -{- q, we may
take :

Any s things in set p ;

Or any combination of 5 — 1 things in set^ with any one

thing of set ^

;

Or any combination of s — 2 things in set p with any com-

bination of 2 things in q ;

Or any combination of 5 — 3 things in p with any 3 out

of g, etc.

We shall at length come to the combinations of all 5 things

out of q alone. Adding up these separate classes, we shall

have

:

c? + cu ci+cua + .... + C1 CU + Gl

This sum makes up all combinations of s things in the

whole p-\-q, and is therefore equal to 6'^^^. Putting the

numerical expressions for the combinations, we have the

theorem

:
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p-^')=©-(A)(f)-(A)©--

If, as an example, we put 5 = 3, ^ = 4, g — 5, tliis theo

rem will give

9^7 _ 4.3»2 4^5 4 5 -^ 5-4.3

1-2.3 ~ 1.2.3 "^ 1-2*1 "^ 1*1.2 "^ 1-2^^

the correctness of which is easily proved by computation.

EXERCISES.

1. Write all the combinations of three letters out of the

five, a, Z>, c, d, e, and show that C^ of them begin with a, CI
with h, and 0% with c, according to the reasoning of § 260.

2. Prove that C| = 6^t + C^,

Cl = Cl + CI,

and in general, C^ = C^ -{- C^s-i-

In the following two ways

:

(1.) Let all combinations of s letters in the n letters

a, b, c, , . . . n

be formed, their number being (7^. Then suppose one letter

added, making the number n -\- 1. The combinations of s

letters out of these n -\- 1 will include the Cg formed from

the ^ letters, plus each combination of the additional (w + 1)*^

letter with the combinations of ^ — 1 out of the first n letters.

(2.) Prove the same general result from the formula,

c^ = (g.

3. If we form all combinations of 3 things out of 7, how
many of these combinations will contain a 7, and how many
will not ?

4. If we form all the combinations of s letters out of the n

letters

a, h, c, . , , , n,
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how many of these combinations will contain a, and how many

will not ?

5. In the preceding case, how many of the combinations

will contain the three letters a, d, c ?

363. Theoeem I. The total number of comhination$

ivhich ean he formed from n things, including 1 zero

combination, is 2^. .

In the language of Algebra,

c^ + c^+c^ + .... + Cl-t -\-cl = t.

Proof, Let ns begin with 3 things, a, h, c, and let us call

the formal zero combination, 1 = C^, Then we have

d, blank, Number = 1

(7i, a,d,c. " =3
C\, ah, ac, be, " =3
Cl, abc, " =J_

Sum m 8 = 23.

Now introduce a fourth letter d. The combinations out of

the four things, a, h, c, d, will consist of the above 8, plus the

8 additional ones formed by writing d after each of the above

eight. Their number will therefore be 16.

In the same way, it may be shown that we double the pos-

sible number of combinations for every thing we add to the

set from which they are taken. We have found, for

n = 3, Sum of combinations = 8 = 2^;

71 =z 4.,
" " =2-8 = 24;

n — ^,
" " = 2-24= 25;

etc. etc.

which shows the theorem to be general.

Theorem II. If the signs of the alternate combina-
tions of n things be changed, the algebraic sum will be

zero.

In algebraic language,

Cl _ Cl -^Ct-Cli- etc. ± Cl ^ 0. {a)
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Proof. If in the formula of § 261, Ex. 2, Dumely,

^ S ^ S -T ^ 8-ly

we put n — 1 for n, it becomes
pn pn~\

, /^^~}
L/ s — ^ S "T" ^ s—1*

Putting s successiyely equal to 0, 1, 2, ... . n, we have

ri^ p^'' 1 .— f 7i — i
?

Cl— Co +Ci =1+Gl ,

C3=02+03;

O w-1 — O 7i-2 + O/^-i — O 7i_3 + 1.

Substituting these values in the expression (a), it becomes

1 _ (1 + or') + {cr' + en - (er' + or') + . . .

.

^ 1 _ 1 _ cr' + cr' + c^r' - or' - cr' + etc.

How far soever we carry this process, all the terms cancel

each other except the last. Therefore, if we con tin ae the addi-

tions and subtractions until we come to Cn-i ? the sum will be

Cl -C'ii-Cl- etc ± CU = ± OVi =±1.
The last term will be + C'JI; === =F 1? and will therefore

just cancel the sum of the preceding terms.

Note. Theorem I may be demonstrated by these same formulae,

since the sum of all the terms taken positively will be duplicated every

time we increase ti by 1.

363. Independent Comlinations. There is a system of

combinations formed in the following Avay :

It is required to form a comhinatioTi of s things, by

taking one out of each of s different collections. How
many combinations can be formed' ?

Let the 1st collection contain a things,
u 2d '' " b "
" 3d " '' c' "

etc. etc.
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Then we may take any one of a things from the first col-

lection.

With each of these we may combine any one of the h things

in the second collection.

With each of these we may combine any one of the c things

of the third collection.

Continuing the reasoning, we see that the total number of

combinations is the continued product

ahc .... to cS factors.

If the number in each collection is equal, and we call it a,

the number of combinations will be a^.

This form of combinations is that which corresponds most

nearly to the events of life, and is applicable to many questions

concerning probabilities. For example, if any one of live dif-

ferent events might occur to a person every day, the number
of diiferent ways in which his history during a year might turn

out is 52^, a number so enormous that 255 digits would be re-

quired to express it.

EXERCISES.

1. A man driving a span of horses can choose one from a

stud of 10 horses, and the other from a stud of 12. How
many different span can he form ?

2. It is said that in a general examination of the public

schools of a county, the pupils spelt the word scliolar in 230

different ways. If in spelling they might replace

ch hj c ov Tc\

by au, mu, or 00
\

1 by II',

a by e, 0, u, or ou;

r hj re;

in how many different ways might the word be spelt ?

3. If a coin is thrown n times in succession, in how many
different ways may the throws turn out ?

4. If there are three routes between each successive two of

the five cities, Boston, New York, Philadelphia, Baltimore,

Washington, by how many routes could we travel from. Boston

to Washington ?
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The Binomial Theorem when the Power is a
Whole Number.

364. The binomial theorem (§ 172), when the power is a

positive integer, can be demonstrated by the doctrine of com-

binations, as follows

:

Let it first he required to form the product of the n

hinomial factors,

To understand the form of the product, let us first study the special

case when /?. = 3. Performing the multiplication of the first three fac-

tors, the product will consist of eight terms

:

' ^2'^'i^3 ~T (t^X^X-2 -f- X^X^X^

This product is the expression {a) developed when 7i = 3.

IS''?*

We conclude, by induction, that the entire product (a)

when developed in this same way, will be composed of a sum
of terms, each term being a product of several literal factors.

When (a) is thus multiplied out, we shall call the result

the developed expression.

The developed expression has the following properties :

I. Each term contains n literal factors, a's and x's,

and no more.

For, suppose x^r=i a^, x^ ^ a^, to Xn — cfn- Then the

expression (a) will reduce to

%^a^a^a^ , , , , an, {V)

and the developed expression must assume the same value

;

that is, it must consist of terms each of which reduces to the

expression

a^a^a^ .... an, {c)

when we change x into a. Now if it contained any term with

either more or less than n factors, it could not assume this

form.
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II. The factors of each term have all the n indices

1, 2, 3, n.

For, the index figure of no term is altered by changing x

into a^ as in I. Hence, if in any term any index figure were

missing or repeated, that term would not reduce to the form

(c), whence there can be neither omission nor repetition of

any index.

III. Because each term has n factors^ it Tivust either

have
n factors a;

n — 1 factors a and one factor x;

n — 2 factors a and two factors x

;

In general, a term may ha^ve the factor a repeated

n — i times, and x repeated i times.

IV. In a term which contains i factors x, these / factors

must be affected with some combination of i indices out of the

whole number 1, 2, 3, .... ^ ; and the n — i «'s must be

affected by the complementary combination of n — i indices.

We next inquire whether there is a term corresponding to

every such combination. Let

1, 3, 4, 7, ...

.

be any combination of i indices, and

2, 5, 6, 8, ... ,

the complementary combination of ^ — / indices.

Since the developed expression must be true for all values

of a and x, let us put in (^),

a^ -— 0, ccg = ;

«3 = % ^'6 = ^;

«4 = 0, x^ —^\ {d)

a^ =0, x^ z=^ Q'y

etc. etc.

The product {a) will then reduce to the single term,

x^a^x^x^a^a^x^a^ {e)

By the same change the developed expression must reduce

to this same value, and it cannot do this unless the expression

(c) is one of its terms.
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Hence the developed expression must contain a term
corresponding to every combination.

V. Since every combination of i figures out of 1, 2, 3, .... :^

will, in this way, give rise to a term like (e), containing the

symbol a i times, and the symbol x n — i times, there will be

C'i such terms.

Now suppose a^ =1 a^ := a^ =1 , , , , cin =^ ci'

/y — /y /y — /v» /y
*t/

-|
-^— «^2 " '^ ^ ~~~~ • • • • *^n «^»

The expression (a) will then reduce to {a -f x)^.

In the developed expression, all the Cf terms containing x

i times and a n — i times will now be equal and their sum
will reduce to 0^ a'~^ x.

Hence, putting in succession i = 0, ^ = 1, etc., to i = n,

we shall have

{a-\-xY = a^+ Cia'^-^x+C^a'^'^x^ + +Cl tax^-^-^:^.

Substituting for Ct its value, we shall have

{a+xY = a«+ naP'-'^x+ (^L^-2^2+ . . . . + (

—^ Xix'^-'^ + l-jx'^,

which is the Binomial Theorem, enunciated, but not demon-

strated, in Book V, Chapter I.

Note. If the studeAt has any difficulty in understanding the steps

of the preceding demonstration, he should suppose 71 = 3, and refer the

demonstration to the developed expression (aO.
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CHAPTER III.

THEORY OF PROBABILITIES.

365. Bef, The Theory of Probabilities treats of

the chances of the occurrence of events which cannot be

foreseen with certainty.

Notation, Let a bag contahi 4 balls, of which 1 is white-

and 3 black. If a ball be drawn at random from the bag, we
should, in ordinary language, say that the chances were 1 to 3

in favor of the ball being white, or 3 to 1 in favor of its being

black.

In the language of probabilities we say that the probability

1 3
of a white ball is -r. and that of a black one -•

4^ 4

In general, if there are m chances in favor of an event, and

n chances against it, its probability is Hence,

Bef, The Probability of an event is the ratio of

the chances which favor it to the whole number of

chances for and against it.

Illustrations, If an event is certain, its probability is 1.

If the chances for and against an event are even, its prob-

ability is --•

If an event is impossible, its probability is 0.

Cor, 1. If the probability that an event will occur

is^, the probability that it will fail is 1—p,

Cor, 2. A probability is always a positive fraction,

greater than and less than 1.

266. Method of ProbaMUties, To find the probability of

an event, we must be able to do two things

:
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1. Enui7ierate all possible ways in which the event

may occur or fail, it being supposed that these zuays

are all equally probable.

2, Determine how many of these zuays will lead to

the event.

If n be the total number of ways, and m the number which

lead to the event, the probability required is — •

EXERCISES.
1. A die has 2 white and 4 black sides. What is the prob-

ability of throwing a whifce side ?

2. A bag contains n balls numbered from 1 to n, the even

numbers being white and the odd ones black. What is the

probability of drawing a black ball when n is an odd number?

What, when n is an even number ?

3. A bag contains 3w-f-2 balls, of which numbers 1, 4, 7,

etc., are white; 2, 5, 8, etc., are red; 3, 6, 9, etc., are black.

What are the respective probabilities of drawing a white, red,

and black ball ? ,
.

Rem. In tlie last example tlie probabilities are all less than ^ ;
tli^re-

fore, should one attempt to guess the color of the ball to be drawn, he

would be more likely to be wrong than right, no matter what color he

guessed. This exemplifies a lesson in practical judgment to be drawn

from the theory of probabilities. If there are three or more possible re-

sults of any cause, it may happen that the best judgment would be more

likely to be wrong than right in attempting to predict the result. Thus,

if there are three presidential candidates with nearly equal chances, the

chances would be against the election of any one that might be named.

Gamblers of the turf are nearly always found betting odds against

every horse that may be entered for a race, though it is certain that one

of them will win.

Hence, if a naturaj. event may arise from a number of causes with

nearly equal facility, it is unphilosophical to have any theory whatever

of the cause, because the chances may be against the most probable

cause being the true one.

Probabilities depending: upoi?! Combinations.

267. Problem i. Two coins are thrown. What are the

respective probabilities that the result will be : Both heads ?

head and tail ? both tails ?
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At first sight it might appear that the chances in favor of

these three results were equal, and that therefore the probabil-

ity of each was ^- But this would be a mistake. To find the

probabilities, we must combine the possible throws of the first

coin (which call A) with the possible throws of the second

(which call B), thus :

A, head
;

B, head.

. A; head

;

B, tail.

A, tail

;

B, head.

A, tail

;

B, tail.

These combinations are all equally probable, and while

there are only one each for both heads and both tailsVthere are

1^1 1
two for head and tail. Hence the probabilities are 7, -, ^^

The sum of these three probabilities is 1, as it ought always

to be when all possible results are considered.

Proh. 2. Five coins are thrown. What are the respective

probabilities: q heads, 5 tails?

1 head, 4 tails? .^m- ^,^^

2 heads, 3 tails?

etc. etc.

Let the several coins be marked a, 1), c, d, e. Coin a may
be either head or tail, making two cases. Each of these two

cases of coin a may be combined with either case of b (as in the

last example), making 4 cases.

Each of these 4 cases may be combined with either case of

coin c, making 8 cases.

Continuing the process, the total number of cases for five

coins is 5^ ±= 32.

Of the^e 32 cases, only one gives no head and 5 tails.

There fare 5 cases of 1 head, namely: a alone head, I? alone

head, etc.,' to e.

2 heads may be th ^wn by coins r/, b; a, c, etc. ; b, c ; b, d,

etc. ; c, d, etc. ; that is, by any combination of two letters out

of the five, a, b, c, d, e. Hence the number of cases is

Ol = 10.
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In the same way the number of cases corresponding to 3,

4, and 5 heads are, respectively,

Gl = 10, Cl = 6, Cl = 1.

Dividing by the whole number of cases, we find the respec-

tive probabilities to be

32' 32' 32' 32' 32' 32*

The following general proposition is now to be proved by

the student

:

Theorem. If there are n coins, the prohahility of
throwing s heads and n — s tails is

From this result we may prove the theorem in combina-

tions of § 262. If we suppose, in succession, s = 0, 8 = 1,

s =: 2, etc., to s =: H, the respective probabilities of iiead,

1 head, 2 heads, etc., will be

' Cl G^ Cl
'

- Cl
2^' 2^' 2^*' 2^'

Because the sum of all these probabilities must be unity,

we find

C^ + ^5l + C'l + .... + a;: =:: 2^

Prol, 3. Two dice are thrown at backgammon. What are

the respective probabilities of throwing 5 and 6 and two 6's ?

If we call the dice a and h, any number from 1 to 6 on «

may be combined with any number from 1 to 6 on Z>. There-

fore, there are in all 36 possible combinations.

In order to throw two 6's, a must come 6 and h also.

Therefore there is only one case for this result, so that its

probability is --•

To bring 5 and 6, a may be 5 and Z> 6, or ^ 5 and a 6. So

there are two cases leading to this result, and its probability is

A _ _L
•'

36
""^ 18'
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Note. That 5 and 6 are twice as probable as a double 6 may be

clearly seen by supposing that the two dice are thrown in succession. If

the first throw is.either 5 or 6, there is a chance for the combination 5, 6,

but there is no chance for a double 6 unless the first throw is 6.

Proh 4. If three dice are thrown, what are the respective

probabihties that the numbers will be

:

1, 1, 1? 1, 1, 2? 1, 2, 3?

The solution of this case is left as an exercise for the

student.

Proh. 5. From a bag containing 3 white and 2 black balls,

2 balls are drawn. What are the respective probabilities of

Both balls white?

1 white and 1 black ?

Both black?

Since any 2 balls out of 5 may be drawn, the total number

of cases is Cg.

Only one of these combinations consists of two white balls.

C\ of the cases bring both balls black.

A w^hite and black are formed by combining any one of the

three white with any one of the two black.

The respective probabilities can now be deduced by the

student.

EXERCISES.

1. It takes two keys to unlock a safe. They are on a

bunch with two others. The clerk takes three keys at random

from the bunch. What is the probability that he has both the

safe keys?

2. A party of three persons, of whom two are brothers, seat

themselves at random on a bench. What are the probabilities

{a) that the brothers will sit together, {h) tliat they will have

the third man between them ?

3. If two dice are thrown at backgammon, what are the

probabilities

{a) Of two aces ?

{h) Of one ace and no more ?

4. In order that a player at backgammon may strike a cer«
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tain point, the sum of the numbers thrown must be 8. What
are his cliances of succeeding in one throw of his two dice ?

5. A purty of 13 persons sit at a round table. What is the

probability that Mr. Taylor and Mr. Williams will be next to

each other? (See § 253.)

6. An illiterate servant puts two works of 2 volumes each

upon a shelf at random. What is the probability that both

pair of companion volumes are together?

7. A gentleman having three pair of boots in a closet^ sent

a blind valet to bring him a pair. The valet took two boots at

random. What are the chances that one was right and tlie

other left ? What is the probability that they were one pair ?

8. If the volumes of a 3- volume book are placed at random

on a shelf, what is the probability that they will be in regular

order in either direction ?

9. A man wants a particular span of horses from a stud

of 8. His groom brings him 5 horses taken at random. What
is the probability that both horses of the span are amongst

them ?

10. From a box containing 5 tickets, numbered 1 to 5,

3 are drawn at random. What is the probability that numbers

2 and 5 are both amongst them ?

1 1. The same thing being supposed, what is the probability

that the sum of the two numbers remaining in the box is 6 ?

12. Of two purses, one contains 5 eagles and another 10

dollar-pieces. If one of the purses is selected at random, and

a coin taken from it, what is the probability that it is an

eagle ?

13. From a bag containing 3 white and 4 black balls

2 balls are drawn. What is tlie probability that they are of

the same color ?

14. The better of two chess players is twice as likely to win

as to be beaten in any one game. What chance has his weaker

opponent of winning 2 games in a mateli of 3 ?

15. From a bag containing m white and n black balls, two

balls are drawn at random. What is the probability that oii'.'

is white and the other black ?
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1 6. From a bag containing 1 white, 2 red, and 3 black

balls, 3 balls are drawn. What is the probability that they are

all of different colors ?

17. If ^ coins are thrown, what is the chance that there

will be one head and no more ?

18. From a Congressional committee of 6 Republicans and

5 Democrats, a sub-committee of 3 is chosen by lot. What is

the probability that it will be composed of two Eepublicans

and one Democrat ?

Compound Events.

368. Theorem I. The probability that tiuo independ-

ent events will both happen is equal to the product of

their separate probabilities.

Proof, For the first event let there be m cases, of which

p are favorable; and for the second ?2 cases, of which ^ are

favorable. Then, by definition, the respective probabilities

will be — and - •

m n

When both events are tried, any one of the in cases may be

combined with any one of the n cases, making in all in x n

combinations of equal probability.

The combinations favorable to both events will be those

only in which one of the p cases favorable to the first is com-

bined with one of the q cases favorable to the second. The
number of these combinations is p x q.

Therefore the probability that both events will happen is

P >< q ^ Z X 2
m X n m n^

which is the product of the individual probabilities.

If there are three events of which the probabilities are ^, q^

and r, and we wish to find the probability that all three will

happen, we may by what precedes regard the concumng of the

first two events as a single event, of which the probitbility is

pq. Then the probability that the third event will also con-

cur is the product of this probability into r, or

pqr.

20
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Proceeding in the same way with 4, 5, 6, ... . events, we
reach the general

Theorem II. The -probability that any number of in^

dependent events will all occur is equal to the continued
product of their individual probabilities.

Eem. This theorem is of great practical use as a guide tcj

our expectations. It teaches that if success in an enterpr

requires the concurrence of a great number of favorable cil

cumstances, the chances may be greatly against it, although

each circumstance is more likely than not to occur.

This is illustrated by the following

Example i. A traveller on a journey by rail has 8 connec-

tions to make, in order that he may go through on time.

There are two chances to one in favor of each connection.

What is the probability of his keeping on time ?

The probability of each connection being - , the probabil-
o

ity of successfully making the first two connections will, by the

preceding theorems, be ( -
1

, the first three I -
1

, and all eight

/2\8 _ 28

\3/ ~" 38

28 256 1
3-8== 6561

^2:6'^^"^^^-

Therefore there are 25 chances to 1 against his going-

through on time.

On the other hand, if, instead of any one accident being

fatal to success, success can be prevented only by the concur-

rence of a series of accidents, the probability of failure may
become very small.

Ex. 2. A ship starts on a voyage. It is an even chance

that she will encounter a heavy gale. The probability that

9
she will not spring a leak in the gale is ^n* ^^ ^ ^^^^ occurs,

9
there is a probability of — that the engine will be able to

3
pump her out. If they fail, the probability is j that the com-
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partments will keep the ship afloat. If she sinks, it is an even

chance that any one passenger will be saved by the boats

What is the probability that any individual passenger will be

lost at sea ?

The probability that

the ship will meet a heavy gale is ^

the ship will spring a leak in the gale is
To

the engines cannot pump her out is . .
—

the compartments cannot keep her afloat is -

the boats cannot save the passenger is . :
-

The continued product of these probabilities is
^Tuio^

which is the probability that the passenger will be lost.

369. The preceding theorem as enunciated supposes that

the several events are independent, that is, that the probability

of the occurrence of any one is not affected by the occurrence

or non-occurrence of the others. To investigate what modifi-

cation is required when the occurrence of one of the events

alters the probabihty of another of the events, let us distinguish

the two events as i\\Q first and second. We then reason thus

:

Let the total number of equally possible cases be m, and let

p of these cases favor the first event. Its probability will

then be —

•

ra

It is certain that the events cannot both happen unless the

first one happens. Hence the cases which favor both events

can be found only among the p cases which favor the first.

Let q of these p cases favor the second event. Then the prob-

ability of both events will be — •

In case the first event happens, one of the p cases which
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favor it must occur, aud the probability of the second event

will then be ^. Then
P

Probability of both events = — = — x -• Hence,
•^ m 7)1 p

Theokem. The probability that two events will both

oceur is equal to the probability of the first event mitlti-

pliecl by the probability of the seeond, in case the first

occurs.

By continuing the reasoning to more events, we reach the

general

Theokem. The probability that a nuT)%ber of events

will all occur is equal to the product

{X Prob. of second in case first occurs.

X Prob. of third in- case first two occur.

X Prob. of fourth in case first three occur,

etc. etc. etc.

Example. From a bag containing 2 white and 3 black

balls, 2 balls are drawn. What are the probabilities (1) that

both balls are white, (2) that both are black ?

This problem has already been solved, but we are now to

see how the answers may be reached by the last theorem. It

is evident that we may suppose the two balls drawn out one

after the other, and the probabilities of their being white or

black will be the same as if. both were drawn together.

I. Both balls white. The probability that the first ball

2
drawn is white is -• If it really proves to be white, there will

o

be left 1 white and 3 black balls. In this event, the probabiliti^

that the second also will be white is -
4

Hence the probability that both are white is

2 1 _ 2.
5 ^ 4

"" 10*
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II. Both halls hlach. Applying the same reasoning, we
find for the probability of this case,

3 1 _ ^
5

'"^

2
~" 10*

EXERCISES.

I. Two men embark in separate commercial enterprises.

The odds in favor of one are 3 to 2 ; in favor of the other, 2

to 1. What are the probabilities (1) that both will succeed ?

(2) that both will fail?

-2. The probability that a man will die within ten years is

-, and that his wife will die is —• What are the respective

probabilities that at the end of ten years,

(a) Both are living ?

(/3) Both are dead ?

(y) Husband living, but wife dead?

{6) Husband dead, but wife living ?

2
3. The probability that a certain door is locked is - • The

o

key is on a bunch of 4. A man takes 2 of the four keys, and

goes to the door. What are the chances that he will be able or

unable to go through it ?

4. Two bags contain each 4 black and 3 white balls. A
jDerson draws a ball at random from the first bag, and if it be

white he puts it into the second bag, mixes the balls, and then

draws a ball at random. What is the probability of drawing

a white ball from each of the bags ?

5. If a Senate consists of m Democrats and 71 Eepublicans,

what is the probability that a committee of three will include

2 Democrats and 1 Eepublican?

6. A bag contains 2 white balls and 5 black ones. Six

people, A, ,B, 0, D, E, F, are allowed to go to the bag in alpha-

betical order and each take one ball out and keep it. The
first one who draws a white ball is to receive a prize. What
are their respective chances of winning?

Note. A's chance is easily calculated, because lie has the draw from
all 7 balls.
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In order that B may win, A must first fail. Therefore, to find B's

probability we find (1) the probability that A fails, (2) the probability that

if A fails then B will win. We then take the product of these probabili-

ties.

In order that C may gain the prize, (1) A must fail, (2) B must fail,

(3) C himself must gain. So we find the successive probabilities of these

occurrences.

Continuing to F, we find that he cannot win unless the 5 men before

him all miss. He is then certain to gain, because only the two white
balls would be left.

7. Two men have one throw each of a coin. X offers a

prize if A throws head, and if he fails, but not otherwise, B
may try for the prize. If both fail, X keeps the prize himself.

What are the respective chances of the three men having the

prize ?

8. A and B are alternately to throw a coin until one of

them throws a head and becomes the winner. If A has the

first throw, what are their respective chances of winning ?

9. A crowd of 71 men are allowed to throw in the same way
for a prize, in alphabetical order, the game ceasing as soon as a

head is thrown. What are the respective chances of the con-

testants?

10. Three men take turns in throwing a die, and he who
first throws a 6 wins. What are their respective chances ?

11. If 4 cards are drawn from a pack of 52, show that the

probability that there will be one of each of the four suits is

39 26 13
51*50*49'

12. One purse contains 5 dimes and 1 dollar, and another

contains 6 dimes. 5 pieces are taken from the first purse and

put into the second, and after being mixed 5 are taken from

the second and put into the first. Which purse is now most

likely to contain the dollar ?

13. Of two purses, one contains 4 eagles and 2 dollars, the

other 4 eagles and 6 dollars. One being taken at random, and

a coin drawn from it, what are the respective probabilities

that it is an eagle or a dollar ?
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Cases of Unequal Probability.

370. Def. If two or more possible events are so

related that only one of them can happen, they are

called Mutually Exclusive Events.

Theorem. The prdbahility that some one of several

exclusive events, we care not which, ivill occur, is equal

to the sum of their separate probahilities.

Proof, Let there be m possible and equally probable eases

in all; let p of these cases be favorable to one event, q to the

P Q T
second, r to the third, etc., so that — , —., — , are the re-

,,.,.,. m m m
spective probabilities.

Since only one of the events is possible, the p cases which

favor one must be entirely different from the q cases which

favor the second, and these cases p-\-q must be entirely differ-

ent from the r which favor the third, etc.

Hence there will be j9+ ^^+ r+ etc. , cases which favor some

one or another of the events. Hence the probability that some

one of these events will occur is

p -\- q -^^ r -\- etc.

m '

which is equal to the sum of the probabilities,

par,— + — H h etc.m m m

Eem. If the concurrence of some two events, say the first

and second, had been possible, some one or more of the p cases

which favor the first would have been found among the q cases

which favor the second. Then the whole number of cases

which favored either event would have been less than p-{-q,

and the probability that one of the two events would happen

less than the sum of their respective probabilities.

3*71. General Problem. To find the probahility that

an event of ivhich the proiahility on any one trial is p,

will happen exactly s tiines in n trials.
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This problem is at the basis of some of the widest applica-

tions of the theory of probability to practical questions, espe-

cially those associated with life and fire insurance. The con-

ditions which it implies are therefore to be fully comprehended.

We may conceive a trial to mean giving the event an opj^or-

hmity to happen. The simplest kind of trial is that of throw-

ing a coin or die. At each throw, any side has an opportunity

to come up. Then, if we throw 50 pieces, or which amounts

to the same thing, throw the same piece 50 times, there will

be 50 trials; and we may inquire into the probability that a

given side will be thrown exactly 9 times in these trials.

The same conception occurs in another form if we have 50

men, each of whom has an equal chance of dying within

5 years. Waiting to see if any one man will die in the course

of the 5 years is a trial, so that there are 50 trials in all, and

we may inquire into the probability that 9 of the men will die

during the trials, just as in the case of 50 throws of a die.

Let us distinguish the several trials by the letters

a, h, c, d, e, , , , . ii,

which must be ?^ in number.

1. In order that the event may not happen at all, it must
fail on every one of the n trials. The probability of this

(§ 268, Th. II) is (1 —pY. This is therefore the probability

that it will not happen at all.

Because the probability of tlie event happening on any one

trial is }), the probability of its failing is 1 — p. We now
compare the possible results.

2. The event may happen once on any one of the n trials,

«, h^ c, etc. In order that it may happen only once, it must
fail on the other /z. — 1 trials. The probability that it will

happen on any one trial, say e, and also fail on the remaining

n — 1 trials is, by the same theorem,

p (1 —py-'^.

Because there are 7i trials on which it may equally happen,

the probability that it will happen once and only once is

np (1 — pY-\
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3. The event may happen twice on any two trials out of the

n trials. In order that it may happen twice only, it must fail

on the other ^ — 2 trials. Taking any one combination, say

Happen on d, d\

Fail on a, c, e, , , . , n,

the probability is p^ (1 — pY~'^,

But it may happen twice on any combination of two trials

out of the n trials, a, h, c, , , , . n. Because these combina-

tions are mutually exclusive (§ 270), the total probability, of

happening twice is

4. In general, in order that the event may happen just s

times, it must happen on some combination of s trials, and fail

on the complementary combination of n — 5 trials. The

probability on any one combination is p^ (1 — pY~^ and there

are (7? such combinations. Hence the general probability of

happening s times is

C^,ps{l-p)n-s, {a)

If there is on each trial an equal chance for and against

the event, then p = -. and 1 —p = -- The probability of

the event happening s times then becomes

2n'

This case corresponds to that already treated in § 267,

Problem 2, and the result is the same there found.

HXERCISES.

I. A die having two sides white and four sides black is

thrown 5 times. What are the respective probabilities of a

white side being thrown 1, 2, 3, 4, and 5 times?

Note. Here p, tlie probability of a white side on one throw, is ^ , and

2
1 — p = - • The number n of trials is 5.

o
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2. Of 6 healthy men aged 50, the probability that any one

will live to 80 is J-
What is the probability that three or

more of them will live to that age ?

3. A chess-player whose chances of winning any one game

from his opponent are as 2 to 1, undertakes to win 3 games

out of 4. What is the probability that he will be able to do it?

Note. It would be a fallacy to suppose that the probability required

is that of winning exactly 3 games, because he will equally win if he

wins all four games.

3*73. Events of Maximum ProhaUlity. Keturning to the

general expression {a), let us inquire what number of times

the event is most likely to occur on n trials. The required
' number is that value of s for Avhich the probability

is the greatest.

If we call Ps the probability that the event will happen

exactly s times, and if s is to be the number for which the

probability is greatest, we must have

Pa > Ps-U

Ps> Ps^^l^

Substituting for these quantities the corresponding forms

of the expression (a), which is equal to Ps, we have

C'sP'ii -pY-' > otip'-'ii -pY-'^\
(7?iJ^(i -pY-' > c^+tp'^'ii-pY-'-'^

The general formula for (7? in § 257 gives

(b)

Og — ^ s-h

cS + 1

w

Hence we have, by dividing both terms of the first in-

equality (Jb) by C^-ip'-^ (1 —pY~'^

1
p > 1 — /?.
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Multiplying by s, tiiis becomes

np — sjj -\- 2^ > ^ ~ "^i^-

Interchanging the members and reducing, we have

s < p (n + 1). (d)

Now divide the second inequality (b) by C^ p^ (1 — ^j)^~^^

and reducing by the second equation (c), we have

-I ^ n — s

Multiplying by 5 + 1 and reducing, we find

s > p {n + 1) - 1. {e)

Comparing the inequalities (d) and (e), we see that s lies

between the two quantities p {n -{- 1) and p {n -|- 1) — 1

;

that is,

s is the greatest whole number in p (n -\- \),

If the number of trials 7i is a large number, and ^ is a small

fraction, p{n -\- 1) and pn will differ only by the fraction p.

We shall then have, very nearly,

6^ z=i pn.

That is

:

Theorem L The most probable number of times thai

an event will happen on a great number of trials is the

produet of the number of tibials by the probability on

eaeh trial.

Example. If a life insurance company has GOOO members,

and the probability that each member will live one year is on

tlie average — , then the most probable number of deaths

during the year is 100.

Eem. It must not be supposed that in this case the num-
ber of deaths is likely to be exactly 100, but only that they

will fall somewhere near it.

There is a practical rule for determining what deviation

must be guarded against, the demonstration of which requires

more advanced mathematical methods than those employed in

this chapter. It is:
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Theokem II. Deviations from the most probable num-
ber of deaths, equal to the square root of that number,
will be of frequent oeeurrenee.

Deviations mueh greater than this square root will

be of infrequent occurrence, and deviations more than
twice as great zvill be rare.

Examples. In a company of which the probable annual

number of deaths is 10, the actual number will commonly fall

between 10 — VlO and 10 + V 10, or between 7 and 13. It

will very rarely happen that the number of deaths is. as small

as 4 or as large as 16.

If the company is so large that the most probable number
of deaths is 100, the actual number will commonly fall between

100 — VlOO and 100 + VlOO, or between 90 and 110.

If the most probable number of deaths is 1000, the actual

number will commonly range between 968 and 1032.

We now see the following result of this theorem:

The greater the number of deaths to be expected, the

greater will be the probable deviation, but the less ivill be

the ratio of this deviation to the whole number of deaths.

Examples. The reductions of the cases just cited are

shown as follows

:

Expected number Probable Ratio of deviation
of deaths. deviation. to expected number.

10 3 0.33

100 10 0.10

1000 32
'

0.03

Application to Life Insurance.

373. At each age of human life there is a certain proba-

bility that a person will live one year. This probability di-

minishes as the person advances in age.

It is learned from observation, on the principle described in

the preceding section, that events in a vast number of trials

are likely to happen a number of times equal to the product of

their probability on each trial, multiplied by the number of

trials.
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Therefore, by dividing the whole number of times the event

has happened by the whole number of trials, the quotient is

the most probable value of the probability on one trial.

Example. If we take 50,000 people at the age of 25, and

record how many of them are alive at the end of one year, this

is making 50,000 trials whether a person of that age will live

one year.

If 49,650 of them are alive at the end of the year, and 350

are dead, we would conclude

:

ProbabiHty of living one year, .... 0.993

Probability of dying within the year, . , 0.007

The probability for all ages may be determined by taking a

great number of infants, say 100,000, and counting how many

die in each year until all are dead. If n are living at the age

y, and n' at the age ^ + 1, then the probability of dying

within one year after the age y will be , and that of

livinsr will be — •

^ n
It is not, however, necessary to wait through a lifetime to

reach this conclusion. It is sufficient to find from observation

what proportion of the people of each age die during any one

year. Suppose, for instance, that the census of a city is taken,

and it is found that there are 2500 persons aged 30, and 2000

aged 50. At the end of a year another inquiry is made to

ascertain how many are dead. It is found that 20 of the 30

year old people, and 30 of the 50 year old people have died.

This would show

:

At age 30, probability of dying within 1 year = 0.008.

" 50,
" " " " — 0.015.

This saine probability being obtained for every year of life,

the probability of living 1 year at all ages would be known.

Then a table of mortality could be formed.

A table of mortality starts out with any arbitrary number

of people, generally 100,000, at a certain age, frequently 10

years. It then shows how many of these people will be living

at the end of each subsequent year until all are dead. The

following is a specimen of such a table.
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Table of Mortality.

Ages. Living. Dying.
Prob. of
surviving

Prob. of

within
Ages. Living. Dying.

Prob. of
surviving

Prob. of
dying
within

10 442

a year.
the year.

a year.
the year.

1 00000 .99558 .00442 60 58373 1677 .97127 .02872

II 99558 407 .99591 .00408 61 56696 1760 .96895 .o3io4

12 99i5i 385 .99611 .00388 62 54936 1849 .96634 .03365

i3 98766 376 .99619 .oo38o 63 53087 1936 .96353 .03646

14 98390 379 .99614 .00385 64 5ii5i 2014 .96062 .03937

i5 98011 396 .99595 .00404 65 49 '37 ^080 .95766 .04233

i6 97615 426 .99563 .00436 66 47057 2i38 .95456 .04543

n 97189 469 .99517 .00482 67 • 44919 2186 .95133 .04866
i8 96720 .525 .99457 .00542 68 42733 2224 .94795 .o52o4

19 96195 58

1

.99396 .oo6o3 69 4o5o9 2268 .94401 .05598

20 95614 621 .99350 .00649 70 38241 233i .93904 .06095
21 94993 645 .99321 .00679 71 35910 2401 .93313 .06686
22 94348 653 .99307 .00692 72 33509 2469 .92631 .07368
23 93695 65i .99305 .00694 73 3 1 040 253i .91846 .08154

24 93044 647 .99304 .00695 74 28509 2567 .90995 .09004

25 92397 647 .99299 .00700 75 25942 2542 .90201 .09798
26 91750 65

1

.99290 .00709 76 23400 2476 .89418 .io58i

^^
91099 668 .99266 .00733 77 20924 2369 .88678 .11321

90431 686 .99241 .00758 78 18555 2247 .87890 .12109

29 89745 703 .99216 .00783 79 i63o8 21 10 .87061 .12938

3o 89042 718 .99193 .00806 80 14198 1969 .86i3i .13868
3i 88324 726 .99178 .00821 81 12229 1823 .85092

.83932

.82573

.14907
32 87598 733 .99163 .00836 82 10406 1672 .16067
33 86865 743 .99144 .00855 83 8734 l522 .17426
34 86122 754 .99124 .00875 84 7212 i36o .81142 .18857

35 85368 768 .99100 .00899
.00932

85 5852 1186 ,79733 .20266
36 84600 789 .99067 86 4666 1014 .78268 .21731

ll
838ii 811 .99032 .00967 87 3652 849 .76752 .23247

38 83000 83o .99000 .01000 88 2803 689 .75419 .24580

39 82170 844 .98972 .01027 89 2114 548 •74077 .25922

40 8i326 854 .98949 .oio5o 90 1 566 435 .72222 .27777
41 80472 860 .98931 .01068 91 ii3i 336 .70291 .29708
42 79612 869 .98908 .01091 92

It
247 .68930 .3 1 069

43 78743 888 .98872 .01127 93 181 .66970
.643o5

.33029

44 77855 913 .98827 .01172 94 36-1 i3i .35694

45 76942 948
198698

.01232 95 236 86 .63559 .36440
46 75994 989 .oi3oi 96 i5o 56 .62666 .37333

H 75oo5 1029 .98628 .01371 97
fo

44 .53191 .46808
48 73970 1067 .98557 .01442 98 33 .34000 .66000

49 72909 1102 .98488 .oi5i 1 99 17 II Vs %
DO 71807 ii33 .98422 .01577 100 6 4 H %
5i 70674 1167 .98348 .oi65i 101 2 2

52 69507 1204 .98267 .01732 102 ....
53

54
683o3
67052

I25l

i3o4
.98168

.98055

.oi83i

.01944
Note. The abo\ e table is that of

55 65748 1358 .97934
.97804

.02065 the English Institute of Act iiaries,

56

57
58

59

64390 1414 .02195 prepared between 1862andl86S , from
62976
6i5o5

59974

147

1

i53i

1601

.97664

.97510

.97330

.02335

.02489

.02669

the

lea

continued expei

ding life insuranc

'ience of t

le compan
wenty

ies.
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Pkoblem. To find the probability that a person of age a

will live to age y.

Solution. We take from the table the number living at

age y, and divide it by the number living at age a. The quo-

tient is the probabiUty.

374:, The principle on which the value of a contingent

payment is determined is the following

:

Theorem. The value of a -prohdble payiiieut is equal

to the sum to he paid, multiplied hy the pi^ohahility that

it will he paid.

Proof, Let there be n men, for each of whom there is a

probability p that he will receive the sum s. Then by § 272,

Th. I, pn of the men will probably receive the payment, so that

the total sum which all will receive will probably be /j?k^. Now,
before they know who is to get the money, the value of each

one's share is equal. Therefore, to find this value, we divide

the whole amount to be received, namely, pns, by the number

of men, n. This gives ps as the value of each one's chance,

which proves the theorem.

Note. In this proof it is tacitly supposed that the pns

dollars are as valuable divided among the pn men as divided

among all n men. But this, though supposed in mathematical

theory, is not morally true. Morally, the money will do more

good when divided among all the men than when divided

among a portion selected by chance. All gambling, whether

by lotteries or games of chance, is in its total efiects upon the

pecuniary interests of all parties a source of positive disadvan-

tage. This disadvantage is treated mathematically by more

advanced methods in special treatises.

EXERCISES.
. Find from the table th e probabilities5 that a person

a. Aged 30 will live to 70.

I,
i6 30 6i (i

80.

c.
ii 50 (i i( 60.

d.
(C 60 (( ii

70. .
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e. Aged. 70 will live to 80.

/.
a 80 " " 90.

9-
66 90 " " 95.

h.
a 95 " " 100.

2. What age is that at which it is an even chance whether

a person aged 40 will be living or dead ?

3. Show that the probability that a person aged 30 will live

to 70 is equal to the product of the probability that he will live

to 60 multiplied by the probability that a man aged 60 will

live to 70. (Apply the theorem of § 269.)

4. What premium ought a man of 65 to pay for insuring

his life for $7000 for 1 year ?

5. Ten young men of 25 form a club. What is the proba-

bility that it will be unbroken by death for ten years ?

6. The probability that a planing mill will burn down

within any one year is -• What ought an insurance company
o

to charge to insure it to the amount of $3000 for 1 year, for

2 years, for 3 years, and for 4 years, respectively ?

7. If the probability that a house will burn down in any

one year is ^, what ought to be the premium for insuring it

for s years to the amount of a dollars ?

Note. In cases like the last two, it is assumed that only one loss

will be paid for.

8. What is the probability that if a man aged 25 marry a

wife of 20, they will live to celebrate their golden wedding?

9. A company insures the joint lives of a husband aged 70

and a wife aged 50 for $5000 for 5 years, the stipulation being

that if either of them die within that time the other shall be

paid the money. What ought to be the premium, no allow-

ance being made for interest ?

10. A man aged 50 insures the life of his wife, aged 35, for

$10,000 for 20 years, with the promise that the money is not

to be paid unless he himself lives to the age of 70. What
ought to be the premium ?

Note. In computations relating to the management of life insurance,

it is always necessary to allow compound interest on all paym(;nts. But
the above exercises are intended only to illustrate the application of the
theory of probabilities to the subject, and therefore no allowance for in-

terest is expected to bu made in the answers.



BOOK XI.

OF SERIES AND THE DOCTRINE OF
LIMITS.

CHAPTER I.

NATU RE OF A SERIES.

275. Def. A Series is a succession of terms follow-

ing each other according to some general law.

Examples. An arithmetical progression is a series deter-

mined by the law that each term shall be greater than the

preceding one by the same amount.

A geometrical progression is a series subject to the law

that the ratio of every two consecutive terms is the same.

These two progressions are the simplest form of series.

A series may terminate at some term, or it may continue

indefinitely.

Def, A series which continues indefinitely is called

an Infinite Series.

Def. The Sum of a series is the algebraic sum of

all its terms. Hence the sum of an infinite series will

consist of the sum of an infinite number of terms.

276. The law of a series is generally such that the n^^

term may be expressed as a function of n.

For example, in the series

1.1.1.1
2+3+4 + 5 + '*"-

the n^^ term is r«
/J + 1

21
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In the series --^ + ^-^ +-3."4 + ^^^'^

the 'nP^^ term is
n {n + 1)

_Z>(g/; The expression for the n^^ term of a series as

a function of 7^ is called the General Term of the

series.

EXERCISES.

Express the n^^ term of each of the following series :

'• 3^+4^ + 5^ + ^*"-

2. 1-3 + 3-4 + 5-6 + etc.

3- 1 + ra + r?. 3
+ '^^^^

IX ft. i)u ^

Write four terms of each of the series having the following-

general terms

:

4^^2 _ X
5. The n^^ term to be —-r, 7-^

47i^ + 1

6. The i^^' term to be «: (i. -j- 1) (^ + 2) ^.

(^ + 3) (/^ + 4) 2:^+1

7. The (^ + ly^ term to be

8. The {n — ly^ term to be

{n + 5) (^ + 6)

1-2 ^
1

277. The most common nse of a series is to enable us to
j

compute, by approximation, the values of expressions which it

is difficult or impossible to compute directly. Suppose, for

1 -{- X
example, that we have to compute the value of when x

is a small fraction, say — , and to have the result accurate to

eight decimals. We shall see hereafter that when x is less than

1, we have



CONVERGENCE OF 8EIUES. 82c

= 1 -\- 2x -}- 2x^ -i- 2x^ + etc., ad infaiitum.1—x

50
Suppose X z= — =z ,02. We compute this series thus:

1

2 X .02 =: .04

Multiplying by .02, .0008
a (e .000016
i( <£ .00000032

^ 1.02
Sum = -^ = 1.04081632

.098

which IS much more expeditious than dividing 1 02 by .98.

It will be seen that every term we add makes the quotient

accurate to one or two more decimals, so that there is no limit

to the precision which may be attained by the use of the series.

If, however, x had been greater than unity, the series would
give no result, because the terms 2x, 2x% 2x% would have gone

on increasing indefinitely, whereas the true value of the frac-

1 -{- X
tion would have been negative.

This example illustrates the following two cases of series

:

I. There may he a certain limit to ivhieh the sum of
the series shall approach, as we increase the numher of
terms, hut which it can never reach, how great soever the

number of terms added.

For example, the series we have just tried,

2 2 2 2
^ + 50 + 50-^ + 50-3 + 505 + "*''-'

1 02
approaches the limit tt-^t., but never absolutely reaches it.

II. As we increase the numher of terms, the sum
may increase without limit, or may vihrate hach and
forth in consequence of some terms heing positive and
others negative.

These two classes of series are distinguished as convergent

and divergent.
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Def, A Convergent Series is one of whicli the sum
approaches a limit as the number of terms is increased.

Refer to § 213 for an example of infinite series in geometrical pro-

gressions whicli have limits.

Def. A Divergent Series is one of which the sum
does not approach a limit.

Examples. The series 1-f 2-f 3 + 4-f etc., ad iJifaiihirn,

IS divergent, because there is no limit to the sum of its terms.

The series 1 — 1+ 1 — 1 + 1— etc., is divergent, because

its sum continually fluctuates between +1 and 0.

Rem. When we consider only a limited number of terms,

the question of convergence or divergence is not important.

But when the sum of the whole series to infinity is to be con-

sidered, only convergent series can be used.

Notation of Stims.

378. The sum of a series of terms represented by
common symbols may be expressed by the symbol 2,

followed by one of the terms.

Example. The expression

^a

means "the sum of several terms, each represented by «."

When it is necessary to distinguish the different

terms, different accents or indices are affixed to them,

and represented by some common symbol.

Example. The expression

means the sum of several terms represented by the symbol a

with indices attached ; that is, the sum of several of the quan-

tities a^y ^3, «3, a^, etc.

When the particular indices included in the summa-
tion are to be expressed, the greatest and least of them

are written above and below the symbol 2.
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Examples. The expression

i=15

i=5

means :
" Sum of all the symbols ai formed by giving i all in-

tegral values from i = 5 to i= 15." That is,

e=15

lai=zas + ^6 -r ^7 + <^8 + «9 + ^10 + «^ii + ^12 + ^13+^14 + ^15'

i=5

i=5
l^irn means + m +- 2m +- 3/>2 + 4//z +- 5/^..

i=0

's (i,y) means (1,/) + (2,7) + (3,/) + (4,^).
%-\

'~Hhj) = {t, 2) + {h 3) + (^, 4) + (^, 5) + {i, 6).

''i?^! — l! + 2!+-3! + 4! = 1 + 2 + 6 + 24 = 33.

'~2^ = 7 + 8 + 9 +- 10 + 11 = 45.

'
2^2 = 22 + 32 + 42 + 5^ = 54.

i=2

EXERCISES.

Write out the following summations, and compute theii

values when they are purely numerical

:

i=7 n=Q n=6
I. ^j\ 2. ^nin-^l), 3. 2^(^+ 1).

i=8 n=7 «=6
4. 2wi. 5. 2n>fc. 6. l:(7^+l)(y— 1).

i=4 ?i=5 «=5 ^ 2
7. ^imi, 8. 2/^%2^ 9. 2 ——-•

i=2 w=2 71=0 ^ + 1

Express the following sums by the sign 2

:

10. h^+lH+h^+h^+h^. lu 13 + 23 + 33 + 48.

12. 1.2 + 2.3 + 3.4 + 4.5. 13.
I
+

I
+

I
+

J
+ I
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CHAPTER II.

DEVELOPMENT IN POWERS OF A VARIABLE.

379. Among the most common series employed in math-

ematics are those of which the terms are multiplied by the

successive powers of some one quantity.

An example of such a series is

1 -\- ^z -\- dz^ -{- 4^3 + 5;2^ + etc.,

in which each coefficient is greater by unity than the power of

z which it multiplies.

A geometrical progression, it will be remarked, is a series

of this kind, in which the terms contain the successive powers

of the common ratio.

The general form of such a series is
j

in which the successive coefficients a^, a^, a^, etc., are formed

according to some law, but do not contain z.

Such a series as this is said to proceed according to the

ascending powers of the variable z,

Eem. The sum of a series is often equal to some algebraic

expression containing the variable. Conversely, we may find a

series the sum of all the terms of which shall be equal to a .

given expression.

Def. A series equal to a given expression is call<

the Development of that expression.

e^

To Develop an expression means to find a series

the sum of all the terms of which are equal to the ex-

pression.

The most extensively used method of development is that

of indeterminate coefficients.
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Method of Indeterminate Coefficients.

380. The method of indeterminate coefficients is based

upon the following principles :

Let us have two equal expressions, each containing a varia-

ble z, and one or both containing also certain indeterminate

quantities^ that is, quantities introduced hypothetically, and not

given by the original problem, the values of which are to be

subsequently assigned so as to fulfil a certain condition.

The condition to be fulfilled by the values of the inde-

terminate quantities is that the two expressions containing z

and these quantities shall be made identically equal.

Then, because the equations are to be identically equal, wo

can assign any values we please to z, and thus form as many
equations as we please between the indeterminate quantities.

If these equations can be all satisfied by one set of values of

these quantities, then by assigning these values to them in the

original equation, the latter will be an identical one, as required.

The student should trace the above general method in the following

examples of its application.

281. Theorem I. // a series proceeding according

to the ascending -powers of a quantity is equal to zero for

all values of that quantity, the coefficient of each sepa-

rate term must he zero.

Proof, Let the several coefficients be a^, a^, ^g, etc., and

z the quantity, so that the series, put equal to zero, is

a^ -f- a^z + (^2^2 -f a^z^ + etc. = 0.

Because the equation is true for all values of z, it must be

true when z=zO. Putting z = 0, it becomes

a^ = 0.

Dropping a^, the equation becomes

a^z + a2Z^ + a^z^ -f- etc. = 0.

Dividing by z, a^ + a2Z + a^z^ + etc. = 0.

From this we derive, by a repetition of the same reasoning,

a^ = 0.
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Continuing the process, we find

«2 = 0, ^3 = 0, etc., indefinitely.

Theoeem II. // two series proeeeding hy ascending
powers of a quantity are equal for all values of that
quantity, the coefficients of the equal powers must he

equal.

Proof, Let the two equal series be

aQ-\-a^z-\-a^z^-\-eiG, = Z>o+^i^+^2^^+ ^^c. {a)

Transposing the second member to the left-hand side and
collecting the equal powers of z, the equation becomes

^0 — ^0 + (^1 — ^i) ^ + (^2 — ^3) ^^ + etc. = 0.

Since this equation is to be satisfied for all values of z, the

coefficients of the separate powers of z must all be zero.

Hence,

^0 "" ^0 = ^9 a^ —b^ = 0, a^ — lc^ = 0, etc.

or a^ =: h^, a^ = b^, a^ = h^, etc.

ExEECiSE. Let the student demonstrate these last equa-

tions independently from (a), by supposing 2; = 0, then sub-

tracting from both sides of {a) the quantities found to be equal

;

then dividing by z ; then supposing ^ = 0, etc.

Rem. The hypothesis that {a) is satisfied for all values of

z is equivalent to the supposition that it is an identical equa-

tion. In general, when we find different expressions for the

same functions of a variable quantity, these expressions ought

to be identically equal, because they are expected to be true

for all values of the variable.

Theorem III. A function of a variable can only he

developed in a single way in ascending powers of the

variahle.

For if we should have

Fz = A^-\- A^z + A^z^ + A^z^ + etc.,

and also Fz = B^ -{- B^z + B^z^ + B^z^ + etc.,



INDETERMINATE COEFFICIENTS. 329

these two series, being each identically equal to Fz, must be

identically equal to each other. But, by Th. II, this cannot be

the case unless we have

Aq =z Bq, J-i = B^, A^ = B^, etc.

The coefficients being equal, the two series are really one

and the same.

383. Expansion ly Indeterminate Coefficients, The above

principle is applied to the development of functions in powers

of the variable. The method of doing this will be best seen

by an example.

1. Develop in powers of x,
JL "Y" X

Let us call the coefficients of the powers of x a^, a^, etc.

The series will be known as soon as these coefficients are

known. Let us then suppose

—-— = a^ + a^x + a^oG^ + a^o(^ + etc.
J- -J— X

Here we remark that, so far as we have shown, this equa-

tion is purely hypothetical. We have not proved that any

such equation is possible, and the question whether it is possi-

ble must remain open for the present. We must find whether

we can assign such values to the indeterminate coefficients, a^,

a^, a 2, etc., that the equation shall be identically true.

Assuming the equation to be true, we multiply both sides

by 1 -^ X. It then becomes

I = a^ -^ {Gq + a^) X -\- (a^ -}- a^) x^ + etc.

;

or transposing 1,

= t?o -r- 1 + {aQ-\-a^)x + {a^-\-a2)x^ + {a2+a^)a^ -\- etc.

By Theorem I, the coefficients must be identically zero.

Hence,

a^ — 1 =0, which gives

a^-\.a, = 0,

a^ -I- a, = 0,

a^^a^ = 0,

etc.

«o = 1;

^1 =: -«« := — 1;

«2 := — «i = 1;

«3

etc.

= — 1;
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Substituting these values of the coefficients in the original

equation, it becomes

= 1 — x-\-x^^a^-\-o(^--- etc.
1 + ^

This same method can be applied to the development of

any rational fraction of which the terms are entire functions

of some one quantity. Let us, for instance, suppose

m -\- nx -\- im^
o i ^ .

Multiplying by the denominator of the fraction, this equa-

tion gives

a + 1)X ^^ mA^ + (nA^-^mA^ x + {^^pA^-^nA^ +mA^)x^

+ (pA 1 + /^^ 2 +mA s)x^ -{ etc.

We now see that when i > 1, the coefficient of x^ in this

equation is mAi + nAi_t + pAi-2'

Equating the coefficients of like powers of x,

mAr. = a, whence Ar. = ~;

mA^ + tiAq = h,
"

mAc^ + nA^ +P^o = ^^
"

VIA ^ 4- nA^ +pA^ = 0,
^^

We have from the general coefficient above written, when

Ai= Ai-t — ^Ai-2.m m
That is, each coefficient after the second is the same

linear function of the two coefficients next preceding.

Such a series is called a Recurring Series.

EXERCISES.
Develop by indeterminate coefficients

:

1 _1^' 1 — x ^'
1 — 2^'

^1 — m
— ""a

?

^2 = — P.

m ^0- m ^^

^3 = — L
m ^1- m ^
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1—X 1 -\- X

1 + X

1 + x

4.

6.

8.

1-x
1-x

1 4_ 2a: -f 3^:2

1 — 2^ + S^^

l — 2x-\-x^

1-x
1 + 2:z; + dx^ I ^x — x^

383. The development of a rational fraction may also be

effected by division, after the manner of §§ 96, 97, the opera-

tion being carried forward to any extent.

Example. Develop j-^—
-L — X

1+X \l — x

1—X
2x

2x — 2x^

1 + ^^ + 2x^ + 2x^ + etc.

2a;2 +
2x^ — 2x^

2x^, etc.

EXERCISES.
Develop by division the expressions

:

1 — 2^ 1 -\-x
I.

1 -\- X 1 —X -\- x^

384. Elimination hy Undetermined Multipliers, There is

an application of the method of undetermined coefficients to

the problem of eliminating unknown quantities, which merits

special attention on account of its instructiveness. Let any

system of. simultaneous equations between three unknown
quantities be

ax -\- ly -\- cz =^ Ji, (1)

a'x -h h'y + cz = 7i', (2)

a"x + b^'y + c'^z = It", (3)

Can we find two such factors that, if we multiply two of

the equations by them, and add the results to the third, two of

the three unknown quantities shall be eliminated ?
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This question is answered in the following way

:

If there be such factors, let us call them m and n. If we
multiply the first equation by m, the second by 7i, and add the

product to the third equation, we shall have

{am + a'ji + a") x )

+ {b7n + b'n + b") y ^ = hn + h'71 + h'\ (b)

+ {cm 4- en + c") z )

In order that the quantities ^ and ^ may disappear from

this equation, we must have

hn + b'n + b" = 0,

cm + c'n -j- c" = 0.

Since we have these two equations between the quantities

m and n, we can determine their values.

Solving the equations, we find

:

h'c" - b"c'm

n =

Id -Vc '

Vc - he"

be' - b'c

'

These are the required values of the multipliers. Substi-

tuting them in the equation {b), we find that the coefficients

of 2/ and 2; vanish, and that the equation becomes

['
a{b'e" — b"e') -i-a' {b"e - be")

bd^ b'c
"^ "^

k {b'c" - b"e') + It' {b"e - be") ^ ^„

Clearing of denominators and dividing by the coefficient of

X, we find

__ h {b'c" - b"e') + h' {b"c - be") + li" {be' - b'e)

^ - a {b'e" - b"c') + a' {b"c - be") + a" {be' - b'e)

EXERCISES.

I. Find the values of y and z by the above process for

finding x.
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For this purpose we may begin with the equation (&) and find values

of m and n such that the coefficients of x and z in (p) shall vanish. These

values will be different from those given in {c). By substituting them in

(6), X and z will be eliminated, and we shall obtain the value ofy.

We then find a third set of values of m and n^ such that the coeffi-

cients of X and y shall vanish, and thus obtain the value of z.

2. Solve by the method of indeterminate multipliers the

exercise 3 of § 140.

Multiplication of Two Infinite Series.

284a. Problem. To express the product of the two
series

and Iq + d^x + Ic^x^ + h^x^ + etc.

The method is similar to that by which the square of an

entire function is formed (§ 173, 2).

We readily find the first two terms of the product to be

The combinations which produce terms in x'^ are

a^b^x^ + a^l^x^ -f a^h^x^.

Those which produce terms in x^ are

^0^3^ + ct'J)^x^ + ^2^1^ + a^l^x^.

In general, to find the terms in x'^ we begin by multiplying

Gq into the term InX^ of the lower series, and then multiplying

each succeeding of the first series by each preceding term of

the second, until we end with anb^x'^. Hence, if we suppose

Product = Aq -\- A^x -\- A^x^ -]-.,, , + AnX"^ + etc.,

we shall have, for all values of n,

An = a^bn + a^bn-i + a^bn-% + ....+ anb^.

By giving /I all integral values, we shall form as many values

as we choose of J^, and so as many terms as we choose of the

series.
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EXERCISES.

1. Form the product of the two series:

^ x^ oc^ ofi ,

^ "~
2! + 4!

~
6l + ^^""'^

/y»3 /y^ '^-1
tAj tlU >Aj .

^ ~~
3~! "^

5l
"~

7l
"^

2. Form the square of each of these series.

3. Can you, by adding the squares together, show that their

sum is equal to unity, whatever be the value of ir?

To effect tins, multiply each coefficient of x'^ in the sum of the squares

by n\ , substitute for each term its value CT given in § 257, and apply

§ 262, Th. II.

385, Series proceeding according to the Powers of Two
VariaUes. Such a series is of the form

in which the products of all powers of x and y are combined.

By collecting the coefScients of each power of x, the series will

become

+ (^0 + (^\y + ^2^^ + <^3^^ +— )^^

+ etc.^ etc., etc., etc.

Hence, the series is one proceeding according to the powers

of one variable, in which the coefficients are themselves series,

proceeding according to the ascending powers of another

variable.

Let us have the identically equal series proceeding accord-

ing to the ascending powers of the same variables,

+ etc., etc., etc.

Since these series are to be equal for all values of x, the

coefficients of like powers of x must be equal. Hence,
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«o + f^iV + «s^^ + etc. = ^0 + ^iV + -^32/^ + e^c-

^0 + ^1^ + ^3^^ 4- etc. = ^0 + ^1^ + B^y^ + etc.

etc. etc.

Again, since these series are to be equal for all values of y,

we must have

«o — ^0^ «i == A^, (^2 = ^3^ etc,

d, = B,, h = ^1, ^, = B,, etc.

etc. etc. etc.

Hence, in order that two series proceeding according

to the ascending powers of two variables may he identi-

cally equal, the coefficients of every liJce product of the

powers must he equal.
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CHAPTER III.

SUMMATION OF SERIES.

Of Figiirate Numbers.

386. The numbers in the following columns are formed

according to these rules :

1. The first column is composed of the natural numbers,

1, 2, 3, etc.

2. In every succeeding column each number is the sum of

all the numbers above it in the column next preceding.

Thus, in the second column, the successive numbers are

:

1, 1 + 2 = 3, 1 + 2+ 3 = 6, 1 + 2+ 3 + 4 = 10, etc.

In the third column we have
j

1, 1 +3=4, 1+ 3+ 6 = 10, etc.
'

1

(^)

1

3
3

1

1

3 4 1

G 5 1

4 10 6

10 15 7
5

15

20
35

21

6

21
35

7 etc. etc. etc.

It is evident from the mode of formation that each number
is the difference of the two numbers «
next above and below it in the col- ^ ^
umn next following. # • •

The numbers 1, 3, 6, 10, etc., in • • • •
the second column are called trian- • • • • •
gular numbers, because they repre- iv'^ 1+2+3+4+5.
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sent numbers of points which can be regularly arranged over

triangular surfaces.

The numbers 1, 4, 10, etc., in the third columns are called

pyramidal numbers, because each one is composed of a sum
of triangular numbers, which being arranged in layers over

each other, will form a triangular pyramid.

All the numbers of the scheme are called figurate num-
bers.

The numbers in the i^^ column are called figurate numbers

of the i^^^ order.

387. If we suppose a column of I's to the left of the first

column, and take each line of numbers from left to right in-

cUned upward, we shall have the successive lines 1, 1 ; 1, 2, 1

;

1, 3,3, 1, etc. These numbers are formed by addition in the

same way as the binomial coefficients in § 171, 2. We may
therefore conclude that all the numbers obtained by the pre-

ceding process are binomial coefficients, or combinatory expres-

sions. This we shall now prove.

Theorem. Tlie n^^ nuinher in the i^^ column is equal

to CT'~' or to

y^(7^4-l)^^ + 2) (^ + / - 1)

1.2-3.... I

* ^^

Proof. Because the com.binations of 1 in any number arc

equal to that number, we have, when i — 1,

n^^ number in 1st column =: 7^ = Ci,

which agrees with the theorem.

When i = 2, we have, by the law of formation of the

numbers,

n^^ number in 2d column = 6'i + Ci + (7i + . . . . + Ci,

which, by equation (a) (§260, 3), is equal to Cg^ .

Therefore the successive numbers in the second column,

found by supposing 7^ = 1, 7^ = 2, etc., are

Cl G%, G%,.... (fl'\

33
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Since the n*^ number in the third column is equal to the

sum of all above it in the second, we have

n^^ number in 3d column ^ Cl^-Cl+G\+ CV^ = C^^

which still corresponds to the theorem, because, ^hen i =: 3^

n -\- i — 1 z=z n -^ 2-

To prove that the theorem is true as far as we choose to

carry it, we must show that if it is true for any value of t, it is

also true for a value 1 greater. Let us then suppose that, in

the r^^ column the first n numbers are

j^r ryr+1 ryr+2 pT+n—l

Since the n^^ number in the next column is the sum of

these numbers, it will be equal to ^ I

which is the expression given by the theorem when we suppose

i = r -^ 1.

Now we have proved the theorem true when i = 3; there-

•fore (supposing r = 3) it is true for i = 4. Therefore (sup-

posing r = 4) it is true for i =: 5, and so on indefinitely.

If in the general expression (1) we put i = 2, we shall

have the values of the triangular numbers ; by putting i = 3, ^

we shall have the pyramidal numbers, etc. Therefore,

71 {n + 1)
The n^^ triangular number

The n^ pyramidal number

1.2

Qi {n + 1) {n + 2)

1.2-3

By supposing ^ = 1, 2, 3, 4, etc., in succession, we find

the succession of triangular numbers to be

1-2 2.3 4.5

1.2^ 1.2' 1.2'
^^^''

and the pyramidal numbers,

1.2.3 2.3.4 3.4.5

1.2.3' 1.2-3' 1.2.3' '

which we readily see correspond to the values in the scheme (A).
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Enumeration of Triangular Piles of Shot.

388. An iuteresting application of the preceding theory is

that of finding the number of cannon-shot in a pile. There

are two cases in which a pile will con-

tain a figurate n umber \

I. Elongated projectiles, in which

each rests on two projectiles below it.

II. Spherical projectiles, each rest-

ing on three below it, and the whole

forming a pyramid.

Case I. Elongated Projectiles, Here

the vertex of a pile of one vertical layer will be formed of one

shot, the next layer below of two, the third of three, etc.

Hence the sum of n layers from the vertex down will be the

n^^ triangular number.

It is evident that the number of shot in the bottom row is

equal to the number of rows. Hence, if 7i be this number,

and N the entire number of shot in the pile, we shall have,

_ n {n + 1)

2 '

If the pile is incomplete, in consequence of all the layers

above a certain one being absent, we first compute how many
there would be if the pile were complete, and subtract the

number in that part of the pile which is absent.

Example. The bottom layer has 25 shot, but there are

only 11 layers in all. How many shot are there?

25*26K the pile were complete, the number would be —-—
There being 14 layers wanting from the top, the total number

14*15
of shot wanting is —^— Hence the number in the pile is

til

_ 25-26 — 14-15 _ (14 + 11)(15 + 11) — 14-15

2
~

2

= ^m^ + i^ + n) ^ ^^^^
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Note. This particular problem coald have been solved more briefly

by considering the number of shot in the several layers as an arithmetical

progression, but we have preferred to apply a general method.

EXERCISES.

1. A pile of cylindrical shot has 7i in its bottom row, and r

rows. How many shot are there ?

2. From a complete pile having h layers, s layers are re-

moved. How many shot are left ?

3. A pile has n shot in its bottom row, and m in its top

row. How many rows and how many shot are there?

4. A pile has p rows and Tc shot in its top row. How many
shot are there ?

5. Explain the law of succession

of even and odd numbers in the se-

ries of triangular numbers.

6. How many balls are necessary

to fill a hexagon, having n balls in

each side ?

Note. In the adjoining figure,

389. Ca^se II. Pyramid of Balls, If a course of balls

be laid upon the ground so as to fill an equilateral triangle^

having n balls on each side, a second course can be laid upon

these having n — \ balls on each side, and so on until we

come to a single ball at the vertex.

Commencing at the top, the first course will consist of 1

ball, the next of 3, the third of 6, and so on through the tri-

angular numbers. Because each pyramidal number is the

sum of all the preceding triangular numbers, the whole num-

ber of balls in the n courses will be the n^ pyramidal number,

or
n{n + \)(n + ^)

^
~"

1.2.3

EXERCISES.
I. How many balls in a triangular pyramid having 9 balls

on each side ?
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2. If from a triangular pyramid of n courses Jc courses be

removed from the top, how many balls will be left ?

3. How many balls in the frustum of a triangular pyramid

having n balls on each side of the base and m on each side of

the upper course ?

Sum of the Similar Powers of an Arithmetical
Progression.

390. Put «!, the first term of the progression

;

di the common difference;

n, the number of terms

;

m, the index of the power.

It is required to find an expression for the sum,

< + («i + d)"^ + (^1 + ^^)'^ + + [«^i + (^ - 1) clY",

which sum we call Sm-

Let us put, for brevity, a^, a^, a^, a^, , . , . an for the sev-

eral terms of the progression. Then

«2 = ^1 + ^^

a^ =: a^ + 2d =.^2 + ^^

an = a^ + (^^ — l)d=z an-i + d.

Raising these equations to the (m+ iy^ power, and adding

the equation an^ =z an + d, we have

am+i ^ «m+i
-I- (m + 1) a^d + ^H^+^lHl af-H^ + etc

^^+1 =: a^+i + (m + 1) afd + ^^^^^^ af-^d'^ + etc.

^m+i- ^ ^m+i + (^ 4. 1) a^d 4- ^^+^)^ ^m-1^2 4. etc.

«m^j ^ ^m+i ^{m + 1) ay + l^i+il^ ^m-i^ + etc.

If we add these equations together, and cancel the common
termSj a^+i + a^+^ + . . . . -\- a^+^, which appear in both

members, we shall* have
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.
(^ + 1 ) m (m - 1) ,30. .

i 172^^ '(^^m-2, etc.

From this we obtain, by solving with respect to Sm^

C:i-«r' m m{m-l)

which will enable us to find Sin when we knoAv Si, S2, » * - -

Sm-h that is, to find the snm of the n^^ powers when we know
the sum of all the lower powers. It will be noted that S^

means the sum of the arithmetical series itself, as found in

Book VII, Chap. I ; and that Sq = n, because there are 71

terras and the zero power of each is 1.

By § 209, Prob. V,

</

To find the sum of the squares, we put m =z2, which gives

3d ^^'
3

391. The simplest application of this expression is given

by the problem:

To find the sum of the squares of the first n natural

ninnbers, namely,

12 + 22 + 32 + 42 + +n\
/yi I'll _1_ 1

I

Here 6? = 1, an = n, etc., /S^ = 1 + 2 + /^ = —-,

so that (3) gives

_ {71 + 1)^ — 1 __ n{n-\-l) _^ n
^ ~

8 2
3*

Noting that ;^ + 1 is a factor of the second member, we

may reduce this equation to

^^^ n{n + l)(2n ±t)^
(4)

which is the required expression for the sum of the squares of

the first n numbers.

S^ = -^:7 dS^—-^ Sq, (3)
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393. To find the sum of the cubes of any progression,

we put m = 3 in the equation (2), which then gives

^Li — ^f 3 1
^^ == 4^ -

i
^'Sf, - d^S, -

I
<P8,. (6)

Applying^ this as before to the case in which a^, a^, ct^,

etc., are the natural numbers, 1, 2, 3, etc., we find

_ (^ + 1)4-,! 3 1

^z — 1 2 2
~" ^1 — 4 ^0

_ {n + 1)^ — 1 _ n{n + l) {2n + 1) __ n{n + l) _ n
""

4 4
""

2 ~" 4'

Separating the factor n + 1 and then reducing, this equa-

tion becomes
2

(5)

But —^-

—

- is the sum of the natural numbers

1 + 2 4- 3 + etc.,

and S^ being the sum of the cubes, we have the remarkable

relation,

13 4. 23 + 33 + 4. ^^3 _ (1 _|. 2 + 3 + + nf.

That is, the sum of the cubes of the first n numhers is

equal to the square of their sum.

We may verify this relation to any extent, thus :

When 71^2, 13 + 23:= 1 + 8 = 9 = (1 + 2)^

When yi^3, 13+23 + 33 = 1 + 8 + 27 = 36 == (1 + 2 + 3)2.

When n = 4., 13+ 23 + 33+ 43 = 1+8 + 27+ 64 = 100 = (1 + 2 + 3 + 4)2.

etc. etc. etc. etc.

393. Enumeration of a Rectangular Pile of Balls, The
preceding theory may be applied to the enumeration of a pile

of balls of which the base is rectangular and each ball rests on

four balls below it. Let us put p, q, the number of balls in

two adjacent sides of the base.
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Then the second course will have p —1 and q — 1 balls

on its sides ; the third p — % and ^ — 2, and so on to the top,

which will consist of a single row of j» — §' + 1 balls (suppos-

ing p > q). The bottom course will contain jjq balls, the next

course {p — 1) (^ — 1)> etc. The total number of balls in the

pile will be

i\rz:.;,^+ (j,->l)(g-l)+(^-2)(^-2) + ....+(p-^+ l). (6)

To find the sum of this series, let us first suppose p^=^q,

and the base therefore a square. We shall then have

N' = q^ -^ {q -If + {q -2f + . . . . -{-1,

which is the sum of the squares of the first q numbers.

Therefore, by § 291, (4),

^, ^ ^(^-fl)(2^+ l)
^^^

Next let us put r for the number by which p exceeds q in

the general expression (6). This expression will then become

]V= q{q + r) + {q-l){q-l-^r) + {q-2){q-^2-{-r) +
+ (1 + r)

== ^' -f (^ - 1)' + (^ -2)2 + . . . . + 22 + 1

+ [^ + (^-l)+(^-^) + .... +1]^

= l(lill)^.±i) + iil±l) , (§ 291, 4.)

_ q{q-{-l) (3r -{- 2q + 1)~
6

EXERCISES.
1. Find the sum of the first 20 numbers, 1 + 2+3+ ... .

+ 20, then the sum of their squares, and the sum of their

cubes, by successive substitutions in the general equation (2).

2. Express the sum and the sum of the squares of the first

r odd numbers, namely,

1 + 3 + 5 +.... + (2/- - 1),

and 12 -f 32 + 52 + + (2r - 1)2.

3. Express the sum of the first r even numbers and the

sum of their squares, namely,

2 + 4 + 6 + . . . , + 2r,

and 22 + 42+62 + +(2r)2.
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4. A rectangular pile of balls is started with a base of p
balls on one side and q on the other. How many balls will

there be in the pile after 3 courses have been laid ? How
many after s courses ?

5. Find the value of the expression

S (a + Z>a; + cx%

6. Find the value of

2 (a + te + cx^),
x=l

294. To find the sum of n terms of the series111 1

1-2 ^ 2.3 ^ 3.4
^ ^ n{n H- 1)

Each term of this series may be divided into two parts,

thus

:

J___l_l 1 _ 1 1

1-2 ""
1 2' 2.3 ""2 3'

1 11
n{n -{- 1) n n -\-\

Therefore the sum of the series is

in which the second part of every term except the last is can-

celled by the first part of the term next following. Therefore

the sum of the n terms is

If we suppose the number of terms n to increase without

limit, the fraction will reduce to zero, and we shall have
^^ + 1

jT^ + 273 + 3T4 + ^^^"> ^^ i'y^finU'iim — 1.

This is the same as tlie sum of the geometrical progression, s + 7 + o
<o 4 o
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4- etc., ad infinitum. It will be interesting to compare the first few terms

of the two series. They are

3t i 1 Jl Jl i.
2

"^
6

"^
12

"^
20

"^
30

"^ 42

'

1 i 1 Jl i_ Jl
2"^ 4^ 8

"^ 16"*" 32"^ 64'

We see that the first term is the same in both, while the next three

are larger in the geometrical progression. After the fourth term, the

terms of the progression become the smaller, and continue so.

395, Generalization of the Preceding Result, Let us take

the series of which the n^^ term is

_P
{i \- n — 1) (y + ^ — 1)

The series to n terms will then be

I . I , I ,

a ^ {i + 1) u + 1)
^ (^' + ^) (y + 2) ^ • • •

•

{i -{-n — 1) (y + 7^ — 1)

If we suppose j > i, and put, for brevity,

h =zj — i,

the terms may be put into the form

ij h \i jrij ic \l J/

P_ P /JL L\-
jc \i + 1 _/ + ir{^ + 1) U + 1) ^ Vi* + 1 y +

etc. etc.

P ^li—1 1_).
k\i 4- n — 1 1 -^n—V(i -\- n — 1) (y + /^ + 1) k\i -\- n — 1 j -{- n

When we add these quantities, the second part of each term

will be cancelled by the first part of the ¥^ term next follow-

ing, leaving only the first part of the first k terms and the

second part of the last k terms. Hence the sum will be

PJl + J_ + +^_ _ J: ^!__.... L__).
Ic\i i-^1^ ' y+1 i-hn i+n—1 j+ n—1/
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Example. To find the sum of n terms of the series

1 1 1.1.
.

1

2.

1 1/1

3-6

2-5 ' 3.6 ' 4.7 • 5-8 (n-\-l){n + 4:)

Each term may be expressed in the form

2-5 3\2 5/'

!\3 6/'

4.7 3 \4 7/'

__!__= 1(1 1_)
TC (w + 3) 3 Vw w + 3/'

1 = 1 (_i ^v
(?z + 1) (^ + 4) 3 \/^ + 1 ?^ + 4/

Therefore, separating the positive and negative terms, we
find the sum of the series to be

1/1111 1 1

3\2 3 45 n n -\-l

11 111_ __1 l\
5 6 n n + 1 n-{-2 n + 3 ?^-f4/'

or, omitting the terms which cancel each other.

1(1 + 1 + 1 1 i_
3\2^3^4 2^ + 2 u -\- 3 n -]-

y-
When n is infinite, the sum becomes

3\2 ^3^4/ 3 12 36

EXERCISES.

What is the sum of n terms of the series

:

'- 3^ + 4^ + 5^ + ^*'^-

j_ j_ j_ 1

3.5 ' 5.7^7-9^ ^ {2n + l)(2n + 3)
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2
3-

4-
1-3 ' 2-4 ' 3-5^

5- Sum the series

1 1

•
(w + 1) (;^ + 4)'

7^ (?i + 2)

^J^T) + (« + 1) (a + 2) + (a + 2) (a 4- 3) + ^^'' ""^ ^^^'

396. To sum the series

^ = 1 + 2r + 3r2 + 4r3 + etc.

Let us first find the sum of n terms, which we shall call

8n^ Then

^^ == 1 4- 2r + 3r2 + A.r^ + /^r~-l.

Multiplying by r, we have

r8n = r -^^ 2r2 + Sr^ + 4r4 + . . . . + ^ir'*.

By subtraction,

{l — r)8n = l-]-r-\-r^-\-7^ + r^^-i — nr^

= 3 :^ir'* (§ 212, Prob. V).
1 — r ^Q y /

Therefore, Sn = j.
(1 ^ry 1 — r

Now suppose n to increase without limit. If r > 1, the

sum of the series will evidently increase without limit.

If r < 1, both 7'^ and nr^ will converge toward zero as n
increases (as we shall show hereafter), and we shall have

1
S =

(1 - ry

EXERCISES.

Find in the above way the sum of the following series to n
terms and to infinity, supposing r < 1

:

1. G5 -f Sar -h 5ar^ -f 7ar^ .... + (2/i — 1) ar^-~^»

2. 2fl5 4- 4ar -f- 6ar^ + Sar^ -f 2nar'^--\

3. {a + J) r -f (^ -f 2^) r2 + . . . . + (a + /^&) r^.
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397. Sum the series

r^ + ark + ra + '*''•' <«)

of which the general term is _^_j-J^—^-.

Let us find whether we can express this series as the sum
of two series. Assume

n{n-\-l){n -\- 2)
^ n{n-\-l) "^ (n -}- 1) {n + 2)

'

where, if possible, the values of the indeterminate coefficients

A and B are to be so chosen that this equation shall be true

identically.

Keducing the second member to a common denominator,

we have

1 {A + B) n-\-2A

n {n + 1) {n -f- 2)
~ n {n -\- 1) {n -{- 2)'

In order that these fractions may be identically equal, we

must have
{A -]- B) n + 2A =z 1, identically

y

which requires that we have (§ 281),

A -{- B = 0, 2A = 1.

This gives A = -, i5 == — -•

Therefore,

1 1111
n{n + l){n-\-2) 2n{n-\-l) 2 {n + 1) {n + 2)'

60 that each term of the series (a) may be divided into two

terms. The whole series will then be

We see on sight, that by cancelling equal terms, the sum of

n terms is ^^ 1 1
On = -J

4 2{n + l){7i + 2)'

and the sum to infinity is j*
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398. Consider the harmonic series

1 1 1 X
1 + ^ + 3+j + etc.,

of which the oi^^ term is — This series is divergent, because

we may divide it into an unlimited number of parts, each

equal to or greater than -, as follows:

1st term = !,>-;

2d term = ^;

3d and 4th terms > ^

;

etc. etc.

In general, if we consider the n consecutive terms,

the smallest will be ^ , and therefore their sum will be greater

than :r- X ^, that is, greater than -•
Zn Z

]^ow if in {a) we suppose n to take the successive values,

i, 2, 4, 8, 16, etc., we shall divide the series into an unlimited

number of parts of the form {a), each greater than ^- There-

fore, the sum has no limit and so is divergent.

Of Differences.

299. When we have a series of quantities proceeding ac-

cording to any law, we may take the difference of every two

consecutive quantities, and thus form a series of differences.

The terms of this series are called First Differences.

Taking the difference of every two consecutive differences,

we shall have another series, the terms of which are called

Second Differences.

The process may be continued so long as there are any dif-

ferences to write.
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Example. In the second column of the following table

are given the seven values of the expression

^ _ 10a;3 ^ 30^2 _ 40:c + 25 = (px,

for X = 0,1, 2, 3, 4, 5, 6.

In the third column a' are given the differences,

6 — 25 = — 19, 1 — 6 :^ ~ 5, — 14 — 1 = — 15, etc.

In column a" are given the differences of these differences,

namely,

_ 5 _ (_ 19) r= + 14, _ 15 — (- 5) = — 10, etc.

X (j>X A' A'' A"' Aiv Av

+25
— 191+6 +14
— 5 —242+1 —10 +24
— 153—14 —10 +24
— 25 +24

4 _ 39 +14 +24
— 11 + 48

5 _ 50 +62
+ 51

6 '+ 1

The process is continued to the fourth order of differences,

* which are all equal, whence those of the fifth and following

orders are all zero.

It will be noted that the sign of each difference is taken so

that it shall express each quantity 7ninus the quantity next

preceding. We have therefore the following definitions :

300. Def. The First Difference of a function of

any variable is the increment of the function caused by
an increment of unity in the variable.

The Second Difference is the difference between

two consecutive first differences.

In general, the n*^' Difference is the diflference be-

tween two consecutive {n — ly diflferences.
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To investigate the relation among the differences, let ua

represent the successive numbers in each column by the indices

1, 'Z, 3, etc., and let us put A^, Ag, A3, etc., for the values of

^x. We shall then have the following scheme of differences,

in which

a; = Aj — Ao, a; = Ag - Ai, a; = A3 - Ag ;

a; = a;-a;, a';=:.a;-a;, a; = a;-a;;

a: = a;-a;, a- = a;-a';, a;:=a;-a-
etc. etc. etc.

the w'* order of differences being represented by the symbol A

with n accents.

Ao

Ai A';

^3 • a;

A' A"'

^2 ^1 ^0
///

1

An-1

Let us now consider the following problem

:

To express Ai in teriJis 0/ Aq, Aq? Aq? etc.

We have, by the mode of forming the differences,

Ai =z Ao + a;, a; = a'o + Ao, Ai = A^ + a'o, etc. {a)

Ag = Ai + a;, Ag =: Ai + Ai, Ag = Aj + a''' etc.

If in this last system of equations, we substitute the values

of A^, Ai, etc., from the system (a), we have

Ag = Ao + 2a; 4- a;, a; = a; + 2a; + a';, etc. (h)

Again,

A3 ::=. Ag -h a;, a; = a; + a';, a; = a; + Ag, etc.
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Substituting the values of Ag, Ag, etc., from (5), we have

A3 = A„ + 3a'o + a;

+ a; + 2a; + a;

or A3 = A„ + 3a; + 3a; + a;' (c)As = A„ + 3a; + 3a; + a;'

A's = a; + 3a:+ a;

+ a; + 2a;'+a'j

a; = a; + 3a; + 3a7 + aj

Forming A^ = A3 + A3, etc., we see that the coefficients

of Aq, Ao, etc., which we add, are the same as the coefficients

of the successive powers of x in raising 1 + a; to the rf^ power
by successive multiplication, as in § 171. That is, to form A^,

A'^, etc., the coefficients to be added are

13 3 1

1 3 3 1

14 6 4 1

and these are to be added in the same way to form A 5, and so

on indefinitely. Hence we conclude that if i be any index, the

law will be the same as in the binomial theorem, namely,

Ai = Ao + ^'a'o +
(I)

a; +
(I)

a;' + etc. )

A;-A;+tA; + (|)A: + (|)A- + etc.)

To show rigorously that this result is true for all values of

1, we have to prove that if true for any one value, it must be

true for a value one greater. Now we have, by definition,

whatever be ^,

Ai+i = Ai + Ai, Ai^i = A^ + Ai', etc.

Hence, substituting the above value of A^ and Ai,

Ai+i = Ao + (i + 1) a; +
[(I)

+ ^j a;

23
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We readily prove that

(i)--=m.

(i)+(i)=m.
etc. etc.

Substituting these values in {e), the result is the same given

by the equation {d) when we put ^ + 1 for L

The form {c) shows the formula to be true for i = 3.

Therefore ifc is true for i = 4.

Therefore it is true for i =z 5, etc., indefinitely.

EXAMPLES AND EXERCISES.

I. Having given Aq = 7, A^ = 5, Aq = — 2, and A'", A'",

etc. =: 0, it is required to find the values of A^, A^, A3, etc.,

indefinitely, both by direct computation and by the formula (d).

We start the work thus:

The numbers in column A'' are all

equal to — 2, because A''' = 0.

Each number in column A' after

the first is found by adding A'' or — 2

to the one next above it.

Each value of Aj is then obtained

from the one next above it by adding

the appropriate value of A^

.

This process of addition can be

carried to any extent. Continuing it

to i = 10, we shall find Ajo = —38.

Next, the general formula (d) gives, by putting A^ = 7,

A'jj = 5, A'^ = — 2, and all following values = 0,

A, = 7 + 5^-3^1),
and the student is now to show that by putting i — 1, i = 2,

etc., in this expression, we obtain the same values of Ai, Ag,

A3, .... Aio, that we get by addition in the above scheme.

It is moreover to be remarked that we can reduce the last

equation to an entire function of i, thus

:

Ai = 7 + 6^* - i\

% Ai Ai At

7

+ 5
1 + 12

+ 3

-%

2 + 15

+ 1

— 2

3 etc.

— 1

— 2

4
etc.

-2

etc. etc.
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2. Having given A^ — 5, A'^ = —20, A'^ = —30,

A'^' = + 9, it is required to find in the same way the values

of Aj to A5, and to express Ai as an entire function of i by

formula {d).

3. On March 1, 1881, at Greenwich noon, the sun's longi-

tude was 341° 5' 10". 9 ; on March 2 it was greater by 1° 0' 9".0,

but this daily increase was diminishing by 2" each day. It is

required to compute the longitude for the first seven days of

the month, and to find an expression for its value on the n^^^

day of March.

4. A family had a reservoir containing, on the morning of

May 5, 495 gallons of water, to which the city added regularly

50 gallons per day. The family used 35 gallons oh May 5,

and 5 gallons more each subsequent day than it did on the day

preceding. Find a general expression for the quantity of

water on the n*^ day of May ; and by equating this expression

to zero, find at what time the water will all be gone. Also ex-

plain the two answers given by the equation.

Theorems of Differences.

301. To investigate the general properties of differences,

we use a notation slightly difibrent from that just employed.

If u be any function of x, which we may call ^Xy so that

we put
U = (j)X,

then A^ = (a; -f 1) — <t)X, {a)

Here the symbol A does not represent a multiplier, but

merely the words differeiice of.

The second diJfference of ic being the difference of the dif-

ference, may be represented by AA?^.

For brevity, we put
A% for AA^,

where the index 2 is not an exponent, but a symbol indicating

a second difference.

Continuing the same notation, the n^^ difference will be

represented by A'^.
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EXAMPLE.
To find the successive differences of the function

u = ax^ + Ix^,

By the formula {a), we have

m — a(x •\- If ^ h {x + 1)2 — ax^ — Ix^
;

and, by developing,

l\u — Sax^ + (3« + 2b)x -]- a -j- b.

Taking the difference of this last equation,

^^u = 3a {x + 1)2 + {da -{. 2b) {x -i- 1) + a + b

— dax^ — {3a-{-2b)x--a-'b
= 6ax -i- 6a + 2b.

Again taking the difference, we have

A% = 6a{x -\- 1) — 6ax = 6a.

This expression not containing x, A%, A^u, etc., all vanish.

EXERCISES.
Compute the differences of the functions

:

I. x^ + mx^ -ir nx -\- p. 2. 2x!^ + 3x^ + 5.

3. hx^ + lOx^ -t- 15.

4. In the case of the last expression, prove the agreement

of results by computing the values of C^u^ /iht, etc., for x=:0,

X = 1, and a; = 3, and comparing them with those obtained

by the method of § 299. The latter are shown in the follow-

ing table

:

u := 5a^ + lOx^ + 15.

X u ^u 6?u A^i*

15
1 15

30 50
2 65 30

95 80
3 145 30

240 110
4 255

495
5
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5. Do the same thing for exercise 2, and for the function

tabulated in § 299.

303. It will be seen by the preceding examples and exer-

cises, that for each difference of an entire function of x which

we form, the degree of the function is diminished by unity.

This result is generalized in the following theorem

:

The n^^ differences of the function x^ are constant

and equal to n !

Proof. If u = x^, we have, by the definition of the sym-

bol ^,

C^u — {x -\- lY — x%

or ^u =z 7ix'^-'^ + (1)^''"^ + ^^^*

That is, in talcing the difference, the highest power of
X is multiplied by its exponent and the latter is di7}%in-

ished hy unity.

Continuing the process, we shall find the n^^ difference

to be .

n{n — l){n — 2),,,.l = nl

Cor, If we have an entire function of x of the degree n,

ax^ + Ix^-^ + cx^-'^ -f- etc.,

the (n — \Y^ difference of hx^-^, the {n — 2)^ difference of

c;r^"2, etc., will all be constant, and therefore the n^^ difference

of these terms will all vanish. Therefore, the n^^ difference of

the entire function will be the same as the n^^ difference of

ax^ ; that is, we have

A^ [ax^ + Ix^-"^ + etc.) = an !

Hence, the n^^ difference of a function of the n^^ de-

gree is constant, and equal to n ! multiplied hy the eoeffv-

dent of the highest power of the variable.
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CHAPTER IV.

THE DOCTRINE OF LIMITS.

303. The doctrine of limits embraces a set of principles

applicable to cases in which the usual methods of calculation

fail, in consequence of some of the quantities to be used van-

ishing or increasing without limit.

We have already made extensive use of some of the princi-

ples of this doctrine, and thus familiarized the student with

their application, but our further advance requires that they

should be rigorously developed.

Axiom I. Any quantity, however small, may Ibe

multiplied so often as to exceed any other fixed quan-

tity, however great.

Ax. II. Conversely^ any quantity, however great,

may be divided into so many parts that each part shall

be less than any other fixed quantity, however small.

Def, An Independent Variable is a quantity to

which we may assign any value we please, however

small or great.

Theoeem I. // a fraction have any finite numerator,

and an independent variable for its denominator, we
may assign to this denominator a value so great that

the fraction shall he less than any quantity, however
small, which we may assign.

Proof, Let a be the numerator of the fraction, x its de-

nominator, and a any quantity, however small, which we may
choose to assign.

Let 71 be the number of times we must multiply a to make
it greater than a. (Axiom I.) We shall then have

a < na.

Consequently, - < «.
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Hence, by taking x greater than n, we shall have

a ^- < cc.

X

Example. Let a = 10. Then if we take for a in succes-

'^"^' m^ To;5oo' imm^ ^^"-^ ^' ^"^' "^^y ^^ ^"^^

aj > 1,000, X > 100,000, X > 10,000,000, etc.,

to make — less than a,
X

In the language of limits, the above theorem is expressed

thus

:

The limit of - , when x is indefinitely increased, is

zero.

Theorem II. If a fraction have any finite numerator,

and an independent variable for its denominator^ zve

may assign to this denominator a value so small that

the fraction shall exceed any quantity, hoivever great,

which we may assign.

Proof. Put as before - for the fraction, and let A be any

number however great, which we choose to assign.

Let 71 be a number greater than A. Divide a into n parts,

and let a be one of these parts ; then

a = na.

Consequently,
a

Therefore, if we take for x a quantity less than a, we shall

have

^>n> A,
X

or i>'-
Eem. If we have two independent variables, x and y:

We may make x any number of times greater than y.
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Then we may make y any number of times greater than

this value of x.

Then we may make x any number of times greater than

this value of y»

And we can thus continue, making each variable outstrip

the other to any extent in a race toward infinity, without

either ever reaching the goal.

Theorem III. // h he any fixed quantity, however
great, and a a quantity ivhieh zve may mahe as small

as lue please, lue may mahe the product ha less than any
assignable quantity.

Proof, If there is any smallest value of ha, let it be s.

Because we may make a as small as we please, let us put

Multiplying by h, we find

ha < s.

So that ha may be made less than s, and s cannot be the

smallest value.

Def, The Limit of a variable quantity is a value

which it can never reach, but to which it may approach

so nearly that the difference shall be less than any
assignable quantity.

Rem. In order that a variable X may have a limit, it must

be a function of some other variable, and there must be certain

values of this other variable for which the value of X cannot

be directly computed.

EXAMPLES.

I. The value of the expression

^ x^ — a^

X — a

can be computed directly for any pair of numerical values of x

and a, except those values which are equal. If we suppose

x^=ia, the expression becomes
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a — a 0'

which, considered by itself, has no meaning.

2. The sum of any finite number of terms of a geometrical

progression may be computed by adding them. But if the

number of terms is infinite, an infinite time would be required

for the direct calculation, which is therefore impossible.

3. The area of a polygon of any number of sides, and hav-

ing a given apothegm, may be computed. But if the number

of sides becom.es infinite, and the polygon is thus changed into

a circle, the direct computation is not practicable.

EXERCISE.

^x 8
If we have the fraction, X = ~

, show that we may

7 1
make x so great that X shall differ from - by less than -—

,

less than _-^, lesss than j^-^-, and so on indefinitely.

Notation of the Method of Limits.

304. Put X, the quantity of which the value is to be

found

;

X, the independent variable on which X de-

pends, so that Xis a function of ic;

«, the particular value of x for which we can-

not compute X;
X, the limit of X, or the value to which it

approaches as x approaches to a.

Then the limit L must be a quantity fulfilling these two

conditions

:

1st. Supposing X to approach as near as we please to a, we
must always be able to find a value of x so near to a that the

difference L -— X shall become less than any assignable quan-

tity.

2d. X must not become absolutely equal to L, however

near x may be to a.



362 ' LIMITS.

Eem. The quantity a, toward which x approaches, may be

either zero, infinity, or some finite quantity.

Example i. Suppose

Y — ^ '^ ^
^ X — a

By § 93, this* expression is equal to

x^ + ax + dj^, {a)

except when x:=za. But suppose ^ to be the difference be-

tween x and a^ so that
a; = « + (J.

Substituting this value in the expression (a)^ the equation

becomes
/TflS __ /y3

z=z 3a2 + Sad + ^2.

x — a

Now we may suppose 6 so small that daS -\- 6^ shall be less

than any quantity we choose to assign. Hence we may choose
ry'S /vS

a yalue of x so near to a that the value of shall differ
X — a

from 3^2 by less than any assignable quantity. Hence, if

^ _ x^ — a^

x — a
^

then L =z 3a%

oj3 __ ^3
or Sa^ is the limit of the expression as x approaches a.

X —• Ctr

X
Ex. 2. The limit of -, when x becomes indefinitely

great, is unity.

For, subtracting this expression from unity, we find the

difference to be
1

X + 1

By taking x sufficiently great, we may make this expression

less than any assignable quantity. (§ 303, Th. I.) Therefore,

X
approaches to unity as x increases, whence unity is its

X -p J.

limit.
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Notation, The statement that L is the limit of X as x

approaches a is expressed in the form

Lim. X(a..=.a) = L.

The conclusions of the last two examples may be ex-

pressed thus

:

^3 qZ rt*

Lim. ix=a) =z Sa^, Lim. (x=^) = 1.

.

X — a X -\- 1

Rem. This form of notation is often used for the follow-

ing purpose. Having a function of x which we may call X,
the form X(x=a) means, " the value ofX when x:= a."

EXAMPLES.
(x^ + a)(x=:a) = a^ -\- a. {x^ — a^)(x=^a) = 0.

If we require the limit of a fraction when both terms be-

come zero or infinite, divide both terms hy some commorb
factor which hecomes zero or infinity.

Rem. If the beginner has any difficulty in understanding the pre-

- ceding exposition, it will be sufficient for him to think ofthe limit as

simply the value of the? expression when the quantity on which it de-

pends becomes zero or infinity.

For instance, Lim. ~ (a; = oo ),

the value of which we have found to be unity, may be regarded as simply

the value of the expression, oo

GO + 1*

Although this way of thinking is convenient, and generally leads to

correct results, it is not mathematically rigorous, because neither zero

nor infinity are, properly speaking, mathematical quantities, and people

are often led into paradoxes by treating them as such.

EXERCISES.
Find the limit of

I. when X approaches infinity.

Divide both terms by x.

2. -—-— when X approaches infinity.

uix?
3. —

^

when X approaches infinity.
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\ X
4. z.

— when X approaches infinity.

/v2 r^

5.
' when X approaches a,
X — €t

6. when x approaches infinity.
a — x ^^

Properties of Limits.

305. Theorem I. // tivo functions are equal, they

must hajve the same limit.

Proyf. If possible^ let Z and L be two different limits for

the respective functions. Put

SO that L and V differ by 2^;.

Because Z is the limit of the one function, the latter may
approach this dmifc so nearly as to differ from it by less than z.

In the same way, the other function may differ from L
by less than z. Then, because L and L differ by %z, the func-

tions would differ, which is contrary to the hypothesis.

Theorem II. The limit of the sum of several func-
tions is equal to the sum of their separate limits.

Proof. Let the functions be X, X', X", etc.

Let their limits be L, L\ L'\ etc.

Let their differences from their limits be a, a', a'\ etc.

Then X = L — a,

X' = L' -- a\

X" = Z" - a",

etc. etc.

Adding, we have

.X+X'+X" + etc. = L-{-L' + r'-{-etc.-{a+ a'+ a''+ etc.)

The theorem asserts that we may take the functions so near

their limits that the sums of the differences a -\-
a'

-\- a" -^ etc,

shall be less than any quantity we can assign.
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Let h be this quantity, which may be ever so small

;

n, the number of the quantities a, a', a", etc.

;

a, the largest of them.

Because we can bring the functions as near their limits as

we please, we may bring them so near as to make

k
a < - y or 7ia < h

n

Then «+«'-j-a"4-etc. < na (because a is the largest)

;

whence, «+ cc' + «" 4- etc. < h.

Therefore the sum X+X'+ JT^+ etc. will approach to

the sum L -\- L' + L" -^ etc., so as to differ from it by less

than L Because this quantity Jc may be as small as we please,

L-{-L'-^L"-{- etc. is the limit of X+ X'+X"+ etc.

Theorem III. The limit of the product of two func-
tions is equal to the product of their limits.

Proof, Adopting the same notation as in Th. II, we shall

have
XX' = LL' -aU -a'L + aa'.

Because L and L' are finite quantities, we may take a and
«' so small that aL' -^a'

L

— aa shall be less than any quan-

tity we can assign. Hence XX' may approach as near as we
please to LL', whence the latter is its limit.

Cor. 1. The limit of the product of any number of
functions is equal to the product of their limits.

Cor. 2. The limit of any power of a function is equal

to the power of its limit.

Theorem IY. TJ%e limit of the quotient of tiuo func-
tions is equal to the quotient of their limits.

Proof, Using the same notation as before, we have for the

quotient of the functions,

X' L' — a

u
while the quotient of their limits is -^-^
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The difference between the two quotients is

L' U — ex! La — La
L L — a L{L — a)

If L is different from zero, we may make the quantities a

and a' so small that this expression shall be less than any

quantity we choose to assign. Therefore, - is the limit of

L — a . ^ A.
—p , that IS, OT ^^'
L — a X

jQn qti

306. Problem. To find the limit of as x
7 X — a

approacries a.

Case I. When n is a positive whole number.

We have from § 93, when x is different from a, A

x^ a"' ^

x — a

Now suppose X to approach the limit a. Then x'^-'^ will

approach the limit a^"'^, x^~^ the limit a^~% etc. Multiplying

hy a,a^, etc., we see that each term of the second member
approaches the limit a^~K Because there are n such terms,

we have
^. x^ — a^
Lim. ——:

— (x=a) = na^~\
X — a

Case II. WJien n is a positive fraction.

Suppose n =i~, p and q being whole numbers. Then

x^ — a'^ x^ — a^

x — a X — a

Let us put, for convenience in writing,

x"^ =z y, (f =z h'^

then X = 'f, a — 1)^\

x^ — a^ _y^ — If _ y — b

1^^^^ ~ '"f^^^^
~ "FEZ

'

y-b
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As X approaches indefinitely near to a, and consequently y
to b, the numerator of this fraction (Case I) approaches to

pl)p~^ as its limit and the denominator to ql)Q~^. Hence, the

fraction itself approaches to

phP-^ _ p
qb^-^ q

bP-^,

Substituting for b its value a^, we have

Lim. —^^ ix^a) = ^ bP-Q = ^-a? = ^ J~'
X — a q q q

Hence the same formulae holds when n is a positive fraction.

Case III. When n is negative.

Suppose n = —p,p itself (without the minus sign) being

supposed positive. Then

\ X ^ a /
= = x-P arP

— — x~P a'P -

X — a

When X approaches a, then x~p approaches arP, and

a^ — a^
approaches ^a^~^ Substituting these limiting values,

X d

we have
X^ nj^

Lim. {x=a) z=z — a'^PpaT^^ = — parP^K
X — a ^ ^

Substituting for —p its value /^, we have

/jfjfl /77l

Lim. (cc=a) = na^~^.
X ^ a

Hence,

Theorem. The formulce

x^ — oP- ^ .

Lim. ix=d) = naP''^
X -- a

is true for all values of n, whether entire or fractional,

positive or negative.
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CHAPTER V.

THE BINOMIAL AND EXPONENTIAL THEOREMS.

i

The Binomial Theorem for all Values of the
Exponent.

307. We have shown in §§ 171, 264, how to develop

{l-\-xY when ^ is a positive whole number. We have now to

find the development when n is negative or fractional. Assume

(1 + xY = -^0 + B^x + B^x^ + B^a^ + etc., {a)

Bq, B^y etc., being indeterminate coefficients. Because this

equation is by hypothesis true for all values of x, it will remain

true when we put another quantity a in place of x. Hence,

(1 -{-aY = B^ -i- B^a + B^a? + B^a^ + etc. {b)

Subtracting {V) from (a), and putting for convenience

X =Z 1 -{- X, A = 1 -\- CCy

the difference of 'the two equations (a) and (b) will be

X''-A'' = B^ {x - a) + B., {x^ - a^) + B^ {x^ - a^) + etc.

The values we have assumed for Xand A give

X— A =: X — a.

Dividing the left-hand member by X -- A, and the right-

hand member by the equal quantity x — a, we have

-X^TX- = ^1 + ^. -^ZTa + ^3 ^—^ + etc.

Now suppose X to approach a. The limit of the left-hand

member will be nA^'K Taking the sum of the corresponding*

limits of fche right-hand member, we shall have

nA%-^ = B^ + 2B^a + dB^a^ -f 4.B^a^ + etc.

Eeplace A by its value, 1 + a, and multiply by 1 + a^
We then have
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^(1 + aY = ^1 (1 + «) + 2^3«(1 + «) + 3Z?3a2(l + a)

+ 4i?4a3 (1 _|. ^) + etc.

= J5i + (^, + 2i?2) a + i2B, + 3^3) a^

+ (3^3 +4i?Ja3 4-eto.

Multiplying the equation (b) by ^, we have

/2 (1 + a)^ = Ti^o + ^-^1^ + ^^2^2 + iiB^a^

Equating the coeflBcients of the like powers of a in these

equations (§ 281), we have, first,

B^ = 7iB^.

By putting a = in equation (&), we find Bq = 1, whence

Then we find successively,

2B^ = (n-l) Bj, whence B^ = -^ B^ = !i(^ll.

3B, = in-2)B,, " S3='^'^.=^^^|='-^.

Substituting these values of Bq, B^, B^, etc., in the equa-

tion {a) and using the abbreviated notation, w^e obtain tho

equation

(1 + xY = l + nx-\-(^'^)x^ +
(I)

x^ + etc., (c)

which equation is true for all values of n,

308. There is an important relation between the form of

this development when niQ a, positive integer, as in §§ 171 and

264, and when it is negative or fractional. In the former

case, when we form the successive factors n — 1, n — 2,

u — 3, etc., the ?i^^ factor will vanish, and therefore all the

coefficients after that of x^ will vanish.

But if n is negative or fractional, none of the factors

n — 1, 71 — 2, etc., can become zero, and, in consequence, the

series will go on to infinity. It therefore becomes necessary,

in this case, to investigate the convergence of the development.

If i«; > 1, the successive powers of x will go on increasing

indefinitely, while the coefficients (-), (^), etc., will not go

24
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on diminisliing indefinitely in the same ratio. For, let us

consider two successive terms of the development^ the (^+ 1)*^,

and the {i 4- 2)"^, namely.

The quotient of the second by the first is

(n \ /n\ n — i

As I increases indefinitely, tliis coefficient of x will approach

the limit — 1 (§ 304), while x is by hypothesis as great as 1.

Therefore, by continuing the series, a point will be reached

from which the terms will no longer diminish. Therefore, |

The development of {I + xy^ in powers of x is not con-

vergent unless a; < 1.
j

In consequence, if we develop {a -f b)^ when n is negative

or fractional, we must do so in ascending powers of the lesser

of the two quantities, a or b,

EXAM PLES.

I. Develop (1 + x)^, or the square root of 1 + a;.

Putting 7Z = ^, we have

© = r

(1)
=

2V2-') M1/1

2_

1.2 ^ ""2.4'

1.2.3 ~" 2.4.6'

- ^- 1.1.3.5in\ __ 2 /^\ _ _ llW ""
4 \3/

"" 2T4.6.8

etc. etc. etc.
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Whence,

/. ,

^i 1,1 1-1^
.

1-1-3
,

1-1-3.5
, , ^

If iz; is a small fraction, the terms in x^, a^, etc., will be

much smaller than - x itself, and the first two terms of the

series will give a result very near the truth. We therefore

conclude

:

Tl%e square root of 1 plus a small fraction is approxi-

mately equal to 1 plus half that fraction.

2. To develop a/10.

We see at once that VlO is between 3 and 4. We put 10

in the form

3^ + 1=^32(1 +
1),

when VlO = 3 (l + ^^

Then, by the development just performed,

l28""9^ + ^^''-(l+J) -l + 2'9-. 1-4- 1
8.92 16-93

We now sum the terms :

1st term. 1.0000000

2d " = 1st ~ 18, ... . + .0555556

3d " :::3 2d ^ - 36, . . . - .0015432

4th " := 3d -^ 18, . . . + .0000857

5th " = 4th X — 5-r-72, . — .0000060

6th " = 5th X —7-^90, . + .0000005

Sum = (1 + ^ = 1.0540926

lence, VlO r= 3 X sum = 3.1622778

which may be in error by a few units in the last place, owing

to the omission of the decimals past the seventh.
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3. To develop VS.

We see that 3 is the nearest whole number of the root. So

we put

V8 = V(3^-l)=^3^(l-J-)=3(l-J)*,

from which the development may be effected as before.

EXERCISES.

1. Compute the square root of 8 to 6 decimals, and from, it

find the square root of 2 by § 183.

2. Develop (1 — x)^.

3. Develop (1 — x)~^y and express the term in xK

^ 1 1-3 , 1.3.5 ,

• ^+2^ + 2:4^+2:4:6'^^ +^^^-

Term in cc* =
2.4.6 M

4. Develop y and express the general term.
(1 + xy

5. Develop (1 + -) and express the general term.

6. Develop (1 — xf, and express the general term.

7. Develop the m^^ root oi 1 -{- m,

8. Develop (a — b)~% when a <C b,

9. Develop (1 — x)-^, when x y 1,

Because the development will not be convergent in ascend-

ing powers of x when x > 1, we transform thus

:

!-.= _. (l-l),

/ IV
and so put (1 — x)-^ = (— x)~^ (1 1

xt

10. Develop the wP^ power of 1 H

11. Compute the cube root of 1610 to six decimals.
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12. Develop {Va + Viy,

13. Using the functional notation,

(m) = 1 + (^):, + (1)^ + g),,3 + etc,

multiply the two series, (m) and (^), and show by the for-

mulas of § 261 that the product is equal to (m + n).

The Exponential Theorem.

309. Let it be required, if possible, to develop a^ in

powers of a;, a being any quantity whatever. Assume

a"" = Cq + C^x + C^x^ + C^x^ + etc. (1)

to be true for all values of x. Putting any other quantity y in

place of x^ we shall have

ay = G, + C^y + C,y^ + G^y^ + etc. (2)

By the law of exponents we must always have

a"" X av =: tt-^+y.

Now the value of a^'^v is found by writing x -{- y for x in

(1), which gives

a^^y= C, + G^{x+y) + C^{x+yf+C^{x^yY^QtQ. (3)

On the other hand, by multiplying equations (1) and (2),

we find

a^av = G,^ + G^G^y + G^G^y"^ + G.G^f + etc.

+ (7o6> + G^^xy + 6\ (72^^ _|_ etc

+ (7o^2^' + C^i^2^^^ + etc. ^ ^

+ ^0^3^^ + etc.

By § 285, the coefficients of all the products of like powers

of ir and y must be equal. By equating them, we shall have

more equations than there are quantities to be determined,

and, unless these equations are all consistent, the development

is impossible. To facilitate the process of comparison, we
have in equation (4) arranged all terms which are homogeneous

in x and y under each other.
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By putting x — in (1), we find

aO ::::, Q^^ wlienCG C^ = 1. (§ 103.)

Comparing the terms of the first degree in x and y in (3)

and (4), we find

Coefficient of x, C^ — Cq C-^
;

"
y, C, - C,G,.

These two equations are the same, and agree with C^ = 1

;

but neither of them gives a value for C\, which must therefore

remain undetermined.

Comparing the terms of the second degree, we find, by de-

veloping [x + yY,

C^ {x^ + 2xy + 2/^) == C,x^ + G^'xy + C^y\

which gives ^^2 = ^V^

whence (7o =z -— (7.^.
^ 1-2 ^

Comparing the terms of the third order in the same way,

we have

C^{x^^^x^y+ Zxy^+ y^) = C,a^-\-C,C^x^y + C^C^xy^+C,y^

which gives ^0^ =: 0^0^ z= -C^^;
<i

whence G^ = j-^- C^^

If the successive values of C follow the same law, we shall

have

and in general, C^ = —^ C.^. (5)
n\

Let us now investigate whether these values of C render

the equations (3) and (4) identically equal.

Let us consider the corresponding terms of the n^^ degree,

n being any positive integer. In (3) this term will be

Cn {x -f- yy.



EXPONENTIAL THEOREM. 375

Expanding, it will be

(^n x^ + nx^-'^y + f

I)
x^-'^f' + i^\ x'^-^'f + etc. (6)

In (4) the sum of the corresponding terms will be, putting

CnX^^G^ Cn-1 ^-^y-^ G^ Gn-%x^-^y^-\- G^ Gn-^x^-^y^-^-^ia, (7)

The first terms in the two expressions are identical.

The comparison of the second terms gives

G
nGn — G.Gn-v, whence Gn — -^ Gn-i.

n

This corresponds with (5), because (5) gives

and if we substitute this value of Gn-\ in the preceding ex-

pression for Gn, it will become

n _ ^___^^''-- n{n-l)\~ 7i\

which agrees with (5).

The third terms of (6) and (7) being equated give

G2 Gn-2-(1)^'.

Substituting the values of Gn, G^, and Gn-^ assumed in the

general form (5), we have

and we wish to know if this equation is true.

Multiplying both sides by n\ and dropping the common
factor Gu it becomes

(n\ n\

2) - 2! (^-2)1'

which is an identical equation.

In the same way, the comparison of the following terms in

(6) and (7) give

ln\ __ n\ hi\
___

7z!
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all of which are identical equations. Hence the conditions of

the development, namely, that (6) and (7), and therefore (3)

and (4), shall be identically equal, are all satisfied by the values

of the coefficients C in (5). Substituting those values in (1),

the development becomes

ax^l^ C^x +~ C,^x^ + ^-i-^ C^hc^ -f etc. (8)

This development is called the Exponential Theorem,
as the development of {a + hY is called the binomial theorem.

310. The value of (7^ is still to be determined. To do

this, assign to x the particular value -^ • Then the equation

(8) becomes .

^

«^. ^ 1 + 1 + -1^ + _1_ + _l^- + etc., ad inf. (9)

The second member of this equation is a pure number,

without any algebraic symbol. We can readily compute its

approximate value, since dividing the third term by 3 gives

the fourth term, dividing this by 4 gives the fifth, etc. Then

1 + 1 = 2.000000

l-^1.2:rr .500000

1^1.2.3= Ammi
1 _^ 1.2.3.4 = .041667

1 ^ 1.2.3.4.5 =: .008333

1 -T- 1.2.3.4.5.6 = .001389

1 ^ 1.2.3.4.5.6.7 = .000198

1 -^ 1.2.3.4.5.6.7.8 = .000025

1 ^ 1.2.3.4.5.6.7.8.9 = _J0OOOO3

Sum of the series to 6 decimals, 2.718282

This constant number is extensively used in the higher

mathematics and is called the JSfaperian hase.^ It is repre-

sented for shortness by the symbol e, so that e = 2.718282....

The last equation is therefore written in the form

a^^ — e,

* After Baron Napier, the inventor of logarithms.
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Eaising to the C^^^ power, we have a = e^\ Hence :

The quantity G^ is the exponent of the power to which
we must raise the constant e to produce the jiumher a.

We may assign one vahie to a, namely, e itself, which will

lead to an interesting result. Putting « =: 6, we have G^ =1,
and the exponential series gives

+ etc. (10)

If we put x=:l, we have the series for e itself, and if w(?

put X z=: —1, we have

^=^ = ^-^ + 172-1:273 + iT2:3:4-^^^-

We thus have the curious result that this series and (9) are

the reciprocals of each other.

EXE RCI SES.

1. Substitute in the first four or five terms of the expres«

sions (6) and (7) the values of G2, G^, Gn-2, etc., given by (5),

and show that (6) and (7) are thus rendered identically equal.

Note. This is merely a sliprht modification of the process we have
actually followed in comparing the coefficients of like powers of x and y
in (6) and (7).

2. Compute arithmetically the values of 2.71832, 2.7183-^

and 2.7183~2^ and show that they are the same numbers, to

three places of decimals, that we obtain by putting x = 2,

x=: —1, and X z= — 2 in (10), and computing the first eight

or ten terms of the series.

3. Since e^+* = ee^, the equation (10) gives, by substituting

the developments of e^^^ and e^,

, , (1 + xY (1 + xY (1 -{-xV ^

='(
x^ x^ x^

^ + "^ + 2! + 3! + 4! + ''^-

It is required to prove the identity of these developments

by showing that the coefficients of like powers of a; are equal
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CHAPTER VI.

LOGARITHMS.

311. To form the logarithm of a number, a constant num-

ber is assumed at pleasure and called the base,

Def. The Logarithm of a number is the exponent

of the power to which the base must be raised to pro-

duce the number.

The logarithm otx is written log x.

Let us put a, the base
;

X, the number

;

I, the logarithm of x.

Then d z=z x,

Eem. For every positive value we assign to x there will be

one and only one value of /, so long as the base a remains un-

changed.

Def. A System of Logarithms means the loga-

rithms of all positive numbers to a given base. The

base is then called the base of the system.

Properties of Logarithms.

313. Consider the equations,

aO= 1;
I

Hogl =0;
a^ z=z a\ \ whence by definition, \ log «j = 1

;

a? = d?',) ( log a^ = 2.

Hence,

I. The logarithm of 1 is zero, whatever be the base,

II. The logarithm of the base is 1.

III. The logarithm of any number between 1 and the

base is a positive fraction.

IV. The logarithms of powers of the base are integers,

but no other loga^rithms are.
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Again we have

«~^ = -
; \ / log - = — 1

;

a~^ = -^ ; > whence by definition, ( lo2r -„ = — 2

;

1 I 111

Hence,

V. The logarithm of a nujnher between mid 1 is

negative.

Again, as we increase ?^, the value of a'^ increases without

limit, and that of — approaches zero as its limit. Hence,

VI. The logarithm of is negative infinity.

VII. Theorem. T1^e logarithm of a product is equal
to the sum of the logarithm's of its factors.

Proof. Let p and q be two factors, and suppose

h = log p, k = log q.

Then a^ =^ P^ a^ =: q.

Multiplying, a^a^ = a^^^ = pq.

Whence, by definition,

h + k = log (pq),

or log p + \ogq z= log (pq).

The proof may be extended to any number of factors.

VIII. ' Theorem. The logarithm of a quotient is found
by subtracting the logarithm of the divisor from that of
the dividend.

Proof. Dividing instead of multiplying the equations in

the last theorem, we have

-, — a^-^ = -•
a* q
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Hence, by definition, h — k=z\og^y

or logj;— log^ = log^.

IX. Theorem. The logarithm of any power of a num-
her is equal to the logarithm of the numher multiplied
by the exponent of the power.

Proof. Let h = log
ij, and let n be the exponent.

Then ofi' =: p.

Raising both sides to the n^^ power.

Whence nh = log^'^,

or n logp •=. log p^,

X. Theorem. The logarithm of a root of a numher
is equal to the logarithm of the numher divided hy the

index of the root.

Proof. Let s be the number, and let p be its n^^ root, so

that

p = \^s and s = p^.

Hence, log s = log p^ = 7i log p. (IX.)

logs
Therefore, log^ =

n

, n/ lo2r s
or log Vs = —--—

Note. We may also apply Th. IX, since p = A Con-

sidering - as a power, the theorem gives

^ogp = -logs.

EXERCISES.

Express the following logarithms in terms ol hgp, log g^

log X, and logy, a being the base of the system

:

1
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1. Log p% Arts. 2 log^ + log q,

2. Log 2^^^'

3. Log^Y- 4- l^og pqVy^.

5. Log - = log xp~\ and explain the identity.

6. Log|| = logxyp-^q-\

Ans. Log X + log y — logp — log ^.

7- Log^,. 8- Log ^^3-

9. Log \/ic. 10. Log Vx Vy*

II. Logy|. 12. Log V«.

13. Logaa;. 14. Log-.

T ^
IS. Log-.

|yj.
I^^^g («^ + ^) + log (« — aj)

17. Log '\/a^ — x\

18. LogVl-«^. 19. Log (a^ — ^-2),

Logarithmic Series.

313. Rem. The logarithm of a number cannot be deyel-

<!/ped in powers of the number. For, if possible, suppose

log X := Cq + C^x + Cc^x^ + etc.

Supposing a; = 0, we have

Co = log 0,

which we have found to be negative infinity (§ 312, VI).

Hence the development is impossible.

But we can develop log (1 + y) in powers of y. For this

purpose, we develop (1 + yY hy both the binomial and expo-

nential theorems, and compare the coefficients of the first

power of x. First, the binomial theorem gives

/-. . \^ -. x(x — l)^ x(x—l)(x—'^)^^,
(1 -^y)x^i + xy-\^ 172" y + "^—172^3 ^2/Hetc.



382 LOGARITHMS.

If we develop the coefficients of if, y^, etc., by performing

the multiplications, we have

Coef. of if = —f-i^

;

part in :?; r= — -.

In general, in the coefficient of y^, or

x{x-^l)(x-2),.\.{x-n-\-l),
.^

the term containing the first power of x will be

±1>2 »3 {n — l)x _ X

1.2.3 n ~^ ^n
Hence,

(l + y)^ =il+x\^y — I + I
— |-+ etc.j + terms in x\ a^, etcJ

On the other hand, the exponential development, § 309, (8),

gives, by putting 1 + ^ for c^. ,

(1 + y)^ = 1 + C^x -\- terms in x% a^, etc. ^

Equating the coefficients of x in these two identical series

we have

^i=2/-f + |'-^+etc. (1)

The value of C^ is given by the theorem of § 310, putting

1 -^'y ioY a] that is, C^ is here defined by the equation

6^- =il -\- y.

Hence, if we take the number e (§ 310) as the base of a

system of logarithms, we shall have

G, = log (1 + y).

Comparing with (1), we reach the conclusion:

Theorem. Assuming the J^aperian base e as a base,

we have

log (1 + 2/) = 2/ -
f-
+ I

- |- + etc., ad inf. (2)
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Def. Logarithms to the base e are called Naperian
Logarithms, or Natural Logarithms.

The appellation " natural " is used, because this is the simplest system

of logarithms.

Kem. The series (2) is not convergent when y "> 1, and

therefore must be transformed for use.

Putting — y for y in (2), we have

log(l--y) = -^-| -| -^tc-

Subtracting this from (2), and noticing that

log (l+y)- log (1 - 2/) = log^ (Th. VIII),

we have log ^^ = 2y +^ +^ + etc. (3)

Now n being any number of which we wish to investigate

ippose y = ^_

1-y n '

whence log ip-^- = log = log (^^ + 1) — log n.

Substituting these values in (3), we have

log {n + 1) -log.. ^^ + 3^-iy3 + ^p^-iy5

+ etc. (4)

This series enables us to find log {n + 1) when we know
log n. To find log 2, we put ^ = 1, which, because log 1

= 0, gives

log2 = 3g + 3^3 +
A3 +^ + etc.)

Summing five terms of this series, we find

log 2 =. 0.693147

the logarithm, let us suppose y = -——— • This will give
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Putting ^^ =r 2 in (4), we have

log3=:log2 + 2g + 3l3 + J^ + J^ + etc.), ^

which gives log 3 — 1.098612.

Because 9 = 32, log 9 := 2 log 3 = 2.197224.

Putting ^ = 9 in (4), we have

log 10 = log 9 + 2 (1 + 3i-3 + ^~ + etc.),

whence log 10 = 2.302585.

In this way the [N^aperian logarithms of all numbers may be

computed. It is only necessary to compute the logarithms of

the prime numbers from the series, because those of the com-

posite numbers can be formed by adding the logarithms of

their prime factors. (§ 312, VII.)

314, Definitive Form of the Exponential Series, We are

now prepared to give the exponential series (§ 309, 8) its defi-

nite form. Since the coefficient 0^ is defined by the equation

e^i = a,

the quantity G is the Naperian logarithm of a. Hence, the

exponential series is

«. = 1 +
^l2g^

+ (^«1 + (^M^V etc.,

which is a fundamental development in Algebra.

By putting « = e, we have log a = 1, and the series be-

comes that for e^ already found.

By putting x=il, we have an expression for any number

in terms of its natural logarithm, namely,

Comparison of Two Systems of Logarithms.

315. Put e, the base of one system
;

a, the base of another;

riy a number of which we take the logarithm

in both systems.
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Putting I and V for the logarithms in the two systems, we
have

^ =1 n, d' = n^

and therefore e^ = d', (1)

Now put h for the logarithm of a to the base e. Then

e^ — a,

and raising both members to the V*^ power,

e^^' = d'.

Comparing with (1), I = kV,

or ^' = ^ X
i-

(2)

This equation is entirely independent of 7i, and is therefore

the same for all values of ii. Hence,

Theoeem. // ive multiply the logarithm of any
nuTThber to the base a by the logarithin of a to the base e,

we shall have the logarithin of the number to the base e.

316. Although there may be any nnmber of systems

of logarithms, only two are used in practice, namely

:

1. The natural or Naperian system, base = ^ =
2.718282

2. The common system, base — 10.

The natural system is used for purely algebraic

purposes.

The common system is used to facilitate numerical

calculations.

Assigning these values to e and a in the preceding section,

the constant k is the natural logarithm of 10, which we have

found to be 2.302585.

Therefore, by (2), for any number,

nat. log = common log x 2.302585,

, , nat. lo2r.
and common log -

^^^^i;;;^
=: nat. log X 0.4342944..,.

Hence,

25
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Theoeem. The comnion logarithm of any ninnher

vianj he found by multiplying its natural logarithm by

0,4342944 .... or by the reciprocal of the JS^aperian loga-

rithm of 10.

Def, The number 0.4342944 is called the Modulus
of the common system of logarithms.

EXERCISES.
1. Show that if a and h be any two bases, the logarithm of

a to the base b and the logarithm of b to the base a are the re-

ciprocals of each other.

2. What does this theorem express in the case of the natu-

ral and common systems of logarithms ?

Common Logarithms.

317. Because

102 -- 100,

101 ^ 10^

100 ^ 1^

_ 1 ) we have to base 10,
^^ - 10^

10-2 _ __
^^ - 100'

etc. etc.

The following conclusions respecting common logarithms

will be evident from an inspection of the above examples

:

I. The logarithm of any number between 1 and 10 is

a fraction between and 1.

II. The logarithm of a number ivith two digits is 1

plus some fraction.

III. In general, the logarithm of a number of i digits

is i — 1, plus some fraction.

IV. The logarithmj of a fraction less than unity is

negative.

V. Tlie logarithms of two numbers, the reciprocal of

each other, are equal and of opposite signs.

\

log 100 = 3,

log 10 = 1,

log 1 = 0,

log
1

To
~ -1,

log
1

100
~ -2,
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VI. // one number is 10 times another, its logarithm^

will he greater by unity.

Proof. If 10^ = n,

then 101+^ = 10 X l(y = lOn,

Hence, if I = log n,

then ? + 1 = log 10^.

318. To give an idea of the progression of logarithms^ the

following table of logarithms of the first 11 numbers should be

studied.

The logarithms are not exact, because all logarithms, ex-

cept those of powers of 10, are irrational numbers, and there-

fore when expressed as decimals extend out indefinitely. We
give only the first two decimals.

log 1 = 0.00, log 7 = 0.85,

log 2 =: 0.30, logs =: 0.90,

log 3 = 0.48, log 9 = 0.95,

log 4 = 0.60, log 10 = 1.00,

log 5 = 0.70, log 11 = 1.04.

log 6 =r 0.78,

It will be noticed that the difference between two consecu-

tive logarithms continually diminishes as the numbers increase.

For instance, the difference between log 20 and log 10 must

by § 312, YIII, be the same as between log 1 and log 2.

319. Gomjmtation of Logarithms, Since the logarithms

of all composite numbers may be found by adding the loga-

rithms of their factors, it is only necessary to show how the

logarithms of prime numbers are computed. We have already

shown (§ 313) how the natural logarithms may be computed,

and (§ 316) how the common ones may be derived from them
by multiplying by the modulus 0.4342944.... It is not how-

ever necessary to multiply the whole logarithm by this factor,

but we may proceed thus:

We have, putting M for the modulus,

com. log n =z Mneii. log n,

com. log {n i- 1) zzz M nat. log {n -j- 1)

;
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whence, by subtraction,

com. log {n+ 1) — com. log n =:^ M [nat. log {n -f 1)— nat. log n]
;

and, by substituting for nat. log (^ + 1) -— nat. log n its

yalue, § 313,

com. log {n + 1) = com. log n + 2m[-^^ +
372]^-VI?

1
+ T-JK ^Tr + etc.

By means of this series, the computations of the successive

logarithms may be carried to any extent.

Tables of the logarithms of numbers up 100,000, to seven places of

decimals, are in common use for astronomical and mathematical calcula-

tions. One table to ten decimals was published about the beginning of

the present century. The most extended tables ever undertaken were

constructed under the auspices of the French government about 1795, and

have been known under the name of Les Grandes Tables du Cadadre.

Many of the logarithms were carried to nineteen places of decimals.

They were never published, but are preserved in manuscript.

330. It may interest the student who is fond of computa-

tion to show how the common logarithms of small numbers

may be computed by a method based immediately on first

principles.

Let 7Z be a number, and let - be an approximate value of

its logarithm. We shall then have,

n = 10^,

or, raising to the q^^ power,

flQ — lOP.

Hence, could we find a power of the number which is also

a power of 10, the ratio of the exponents would at once give

the logarithm. This can never be exactly done with whole

numbers, but, if the condition be approximately fulfilled, we

shall have an approximate value of the logarithm.

Let us seek log 2 in this way. Forming the successive

powers of 2, we find

210 _ 1024 = 103 (1.024). (1)
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Hence, 3 : 10 = 0.3 is an approximation to log 2. To
find a second approximation, we form the powers of 1.024

until we reach a number nearly equal to 2 or 10, or the quo-

tient of any power of 2 by a power of 10. Suppose, for instance,

that we find
1.024^^ = 2.

Because 1.024 = 2^^-r- 10^, this equation will give

' 2^^\^= )i, or Z''^^^ = ^.lu

dx

)x
= 2, or 210^^ = 2. 103^, or 2io^-i = lO^a^,

which will give log 2 =
lOic-

If we form the powers of 1.024 by the binomial theorem,

or in any other way, we shall find that x is between 29 and 30,

from which we conclude that log 2 = 0.301 nearly.

To obtain a yet more exact value, we form the 30th power

of 1.024 to six or seven decimals, and put it in the form

1.02430 = 2 (1 + a),

where a will be a small fraction.

Then we find what power of 1 -\- cc' will make 2. Let y be

this power. Kaising the last equation to the yth power, we
have

1.02430y = 2^(1 + a)y = 2y+K

Putting for 1.024 its value, 2^^ -r- 10^, this equation becomes

2^1/

10902/
2^+1, or 2299y-i = 1090y,

whence,. log 2 = g^|^.
By a little care, tlie value of y can be obtained so accurately

that the value of log 2 shall be correct to 8, 9, or 10 places of

decimals.

The power to which we must raise 1 + cc to produce 2 will

be approximately ———~— , when a is very small.



390 LOGARITHMS.

EXERCISES.

1. In the common system {a = 10) we have

log 2 = 0.30103, log 3 =z 0.47712.

Hence find the logarithms of 4, 5, 6, 8, 9, 12, 12^, 15, 16,

16|, 18, 20, 250, 6250.

Note that 5 = ^ , 12J = if^, 16| = if^, and apply Th. VIII.

2. How many digits are there in the hundredth power of 2?

3. Given log 49 = 1.690196; find log 7.

4. Given log 1331 = 3.124178 ; find log 11.

5. Find the logarithm of 105 and 1.05 from the above data ?

6. Find the logarithm of 1,06^^,

7. If $1 is put out at 5 per cent, per annum compound

interest for 1000 years, how many digits will be required to

express the amount? (Compare § 216.)

8. Prove the equation

log X = ^ log (:?; -f- 1) + ^ log {x--l)

+ M + o /o^9 '-1 \.q + K /o^5! iTs + ^^^'
_2x^ _ 1 ^ 3 (2:r2 — 1)3 ^ 5 {2x^ — 1)'

9. lty = log 71, of what numbers will y -i- ly y + 2, y — 1

and «/ — 2 be the logarithms ?

10. Find X from the equation cP^ =:lu

Solution. Taking the logarithms of both members, we have

X log c = log h

;

whence, x = :r^— •

logo

1
11. c^ = n. 12. (^ = —>

m

13. b^ = -. 14. h-^ = p.

Show that the answers to (13) and (14) are and ought to be identical.

15. a^^ z=z m, 16. bc^ = h
17. Find X and y from the equations

]



BOOK XII.

IMA GINARY QUANTI TIE S.

CHAPTER 1.

OPERATIONS WITH THE IMAGINARY UNIT.*

331. Since the square of either a negative or a positive

quantity is always positive, it follows that if we have to extract

the square root of a negative quantity, no answer is possible,

in ordinary positive or negative numbers (§§ 170, 200).

In order to deal with such cases, mathematicians have been

led to suppose or imagine a kind of numbers of which the

squares shall be negative. These numbers are called Imagi-

nary Quantities, and their units are called Imaginary
Units, to distinguish them from the ordinary positive and

negative quantities, which are called real.

332, The Imaginary Unit, Let us have to extract iJie

square root of — 9. It cannot be equal to + 3 nor to — 3,

because the square of each of these quantities is + 9. We
may therefore call the root V— 9, just as we put the sign \/

before any other quantity of which the root cannot be extracted.

But the root may be transformed in this way :

Since — 9 = +9 x —1,

it follows from § 183 that •

* It is not to be expected that a beginner will fully understand tliis

subject at once. But he should be drilled in the mechanical process of

operating with imaginaries, even though he does not at first understand

their significance, until the subject becomes clear through familiarity.
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Def, The surd V— 1 is the Imaginary Unit. Tlie

imaginary unit is commonly expressed by the symbol 1

This symbol is used because it is easier to write i than

The unit Hs a supposed quantity such that, when squared,

the result is — 1.

That is, i is defined by the equation

%^ = — 1.

Theoeem. Tl%e square root of any negative quantity
may he expressed as a number of imaginary units.

For let — ^ be the number of which the root is required.

Then V— n =z V -\- n V— 1 = VnL
Hence,

To extract the square root of a negative quantity

,

extract the root as if the quantity were positive, and
affix the symbol i to it.

333. Complex Quantities, In ordinary algebra, any num-
ber may be supposed to mean so many units. 7 or a, for

example, is made up of 7 units or a units, and might be writ-

ten 7-1 or al.

When we introduce imaginary quantities, we consider them

as made up of a certain number of imaginary units, each repre-

sented by the sign i, just as the real unit is represented by the

sign 1. A number h of imaginary units is therefore written hi,

A sum of a real units and h imaginary units is written

a + hi,

and is called a complex quantity. Hence,

Def. A Complex Quantity consists of the sum of

a certain number of real units plus a certain number of

imaginary units.

Def. When any expression containing the symbol

of the imaginary unit is reduced to the form of a com-

plex quantity, it is said to be expressed in its Normal
Form.
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Addition of Complex Expressions.

334. The algebraic operations of addition and subtraction

are performed on imaginary quantities according to nearly the

same rules which govern the casQ of surds (§ 181), the surd

being replaced by L Thus,

aV— 1 + b^/— I = ai -\- U = {a -\- b) i.

Hence the following rule for the addition and subtraction

of imaginary quantities

:

Add or subtract all the real terms, as in ordinaj^j

algebra. Then add the coefficients of the imaginary
unit, and affix the symbol i to their sum.

Example. Add a -t- bi, 6 + li, 5 — 10/, and subtract

^a — 2bi + z from the sum.

We may arrange the work as follows:

a + bi

6 4- W
5 — lOi

— z — da -{- 2bi (sign changed).

Sum, —z — 2a-{-ll + {3b — 3) i.

EXE RC I S E S.

1. Add dx + ^yi + m, 2m + 6ni, 6m — 62/i.

2. Add 4a^, 17i, 3a + 6bi, x + yi.

3. From the sum a -{- bi -\- m — ni — ;^ + qi subtra<)t the

sum \- yi — z — ui.

Reduce to the normal form

:

4. ' a -{-bi — {m — ni) — {x + yi),

5. 7n{a — bi) — n{x — yi).

Multiplication of Complex Quantities.

325. Theorem. All the even powers of the imagi-
nary unit are real units, and all its odd powers are

imaginary units, positive or negative.
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Proof. The imaginary unit is by definition such a symbol

as when squared will make — 1. Hence,

^2 = - 1.

Now multiply both sides of this equation by i a number of

times in succession, and substitute for each power of i its value

given by the preceding equation. We then have

i^ = — ^2 =rr -f 1 (because v^ =. — 1),

i^ — _«4 — -f ^2 — — 1,

etc. etc. etc.

It is evident that the successive powers of i will always

have one of the four values, % — 1, — i, or + 1.

iy i^, ^^, etc., will be equal to i;

t\ ^^ i^o, etc., '' " —1;
^, P, P-\ etc., '' " - ^;

^^ ^8,
^l2^ etc., " " \- 1.

We may express this result thus : >

If n is any integer, then:

To multiply or divide imaginary quantities, we proceed as

if they were real and substitute for each power of % its value as

a real or imaginary, positive or negative unit.

Ex. I. Multiply ai by xi.

By the ordinary method, we should have the product,

axi'^. But i^ = — 1. The product is therefore — ax.

That is, ai x xi =: — ax,

Ex. 2. Multiply a -f bi by m + ?ii,

ni (a + hi) = ani — dn (because ni x M = —hn)

m {a -f M) = hmi + rt??z

(77i + ni) {a + ^i) = «77z — ^^^ + {an + Z>w) i,

which is the product required.
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EXERCISES
Multiply

I. X -\- yi hy a — b. 2, m -\- 7ii by ai,

3. m — ni by M. 4. 1 + ^ by 1 — i.

5. a; — y^ by ^ + M. 6. a; — «/* hy x -\- yi.

7. a — «^^ — M by a + ai + M.

Develop

8. (flj + My. 9. (7?z + 7^^)3.

10. (1 + ^)2. II. (l — iy.

336. Imaginary Factors. The introduction of imaginary

units enables us to factor expressions which are prime when
only real factors are admitted. The following are the princi-

pal forms

:

a^^b^ = {a + M) {a — bi),

a^-W± Ubi = {a± bif.

The first form shows that the sum of two squares can

always be expressed as a product of two complex factors.

For example, 17 = 4^ + 12 = (4 + i) (4 — i).

EXERCISES.
Factor the expressions

:

I. x^ -\- 4.. 2. x^-\-2.

3. ^^^^x + b =1 (x — 1)2 + 4.

4. x^ — 4:X -}- 13. 5. a -\- b.

6. a2 ^ 2an + 5^^2. 7. x^ + 2xy + 2y\

337. Fu:n^damental Prin'ciple. A complex quantity

A -\- Bi cannot he equal to zero unless zve have hoth

A :=zO and B = 0.

Proof. If ^ and ^ were not zero, the equation A-\-Biz=zO

would give

A

that is, the imaginary unit equal to a real fraction, which is

impossible.

Cor. If both members of an equation containing imagi-
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nary units are reduced to the normal form, so that the equation

shall be in the form
A-\-Bi = M-^Ni,

we must haye the two equations,

A = M, B =z N,

For, by transposition, we obtain

A^M^{B-N)i = 0,

whence the theorem giyes A — M=iO^ B — JSF=0. Hence,

Every equation hetween complejo quantities involves

two equations hetween real quantities,formed by equating

the numhers of real and imaginary units.

Reduction of Functions of i to the Normal
Form.

338. 1. If we have an entire function of i,

a -\-M -\- ci^ + di^ -f ei^ -{-fi^ -f etc.,

we reduce it by putting

i^ = — 1, i^ = — i, i^ = 1, etc., etc.,

and the expression will become

{a — c -^ e — etc.) + {b — d +/— etc.)^;

which, when we put

X = a — c -\- e — etc, y = h — d -i-f— etc,

becomes x + yi, as required.

2. To reduce a rational fraction of i to the normal form,

we reduce both numerator and denominator. The fraction

will then take the form
a -\- bi

m + 7ii

Since this is to be reduced to the form x -f yiy let us put

a -^-bi—-—
-. = X -\- yi,m -}- m ^

X and y being indeterminate coefficients.

Clearing of fractions,

a -\- bi = mx — 7iy + (my -f nx) i.



IMAOINAB7 Q UANTITIES, 397

Comparing the number of real and imaginary units on

each side of the equation, we have the two equations

7nx — ny^ztty nx + my = 5.

Solving them, we find

ma -\- nb _ mb — na

*,, ^ a -\- hi ma + nh ml) — na .

Therefore, —^—. = —^——^ -\ ^——^ t,

771 4- ni m^ + w- 7)1^ + 11?

which is the normal form.

EXERCISES.

Eeduce to the normal form :

2. 1 + i — i^ + i^ — i^ — 1*5 + i\ ''' i^i
6 + 5i 1 + ^*

^ ^2^* (^ — c^i)
A, —-—:• q. ——;• 6. ^^ -'
^

(j — 6i ^ 1 — ^ X -\- ai

1 — i a -\-U (a-\-M) {a—hi)
7- 2~T5' • 'a^Yi

^'
(^^i)2~-"

10. What is the value of the exponential series which gives

the development of e^? We put x = i in § 310, Eq. 10.

11. Develop (1 + xiY hj the binomial theorem.

12. What are the developed values of

(1 + UY + (1 — uy
and (1 -i^biY — {l — UY^

13. Write eight terms of the geometrical progression of

which the first term is a and the common ratio t.

14. Find the limit of the sum of the geometrical progres-

sion of which the first term is a and the common ratio -•
z

339. To reduce the square root of an imaginary expres-

sion to the normal form.

Let the square root be ^a + bi.

We put X + yi z= ^Ja + bi.

Squaring, x^ — y'^ -\- %xyi = «5 + bi.
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Comparing units, x^ -— ?/ = a,

Solving this pair of quadratic equations, we find

_ V{Va^-\-^ + a)

V2
'

\/(V^3+ I)' -a)

Therefore,

'=
V2

EXERCISES.
Eeduce the square roots of the following expressions to the

normal form

:

I. 3 + 4^. 2. 4 + di. 3. 12 + 5^.

4. Find the square roots of the imaginary unit i, and

of — i, and prove the results by squaring them.

Note that this comes under the preceding fomi when a = and

6 = ±1.

5. Find the fourth roots of the same quantities by extract-

ing the square roots of these roots.

330. Quadratic Equations loith Imaginary Roots, The
combination of the preceding operations will enable us to solve

any quadratic equation, whether it does or does not contain

imaginary quantities.

Example i. Find x from the equation

x^ -^ 43: + 13 = 0.

Completing the square and proceeding as usual, we find

x^ -^ 4cx-^ 4. = — 9,

whence a; + 2 = a/— 9 — ±3/,
and X =z _ 2 ± 3^.

Ex. 2. x^ + Ixi — c = 0.

Completing the square,

X^ + OXl — — := C — —'
4 4
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Extracting the root,

hi _ VJg^^g
^^

2 " 2 '

1 hi
whence x = ±,- a/(4c — h^) — —

•

EXERCISES.

Solve the quadratic equations:

I. a;2 -f- a; + 1 = 0. 2. 2;2 — a; + 1 — 0.

3. a;2 + 3^2; -f 10 r= 0. 4. :zj2 _|_ iqo; + 34 = 0.

Form quadratic equations (§ 199) of which the roots shall be

5. a + hi and a — hi. 6. ai + h and ai — h,

331. Exponential Functions. When in the exponential

function a^ we suppose z to represent an imaginary expression

X + «/i, it becomes

This expression could have no meaning in any of our pre-

vious definitions of an exponent, because we have not shown

what an imaginary exponent could mean. But if we suppose

the effect of the exponent to be defined by the exponential

theorem (§§ 309, 314), we can develop the above expression.

First we have, by the fundamental law of exponents,

f^x+yi — a^avK

Next, if we put c = Nap. log a, we have

a — e<^;

whence, ay^ = ePVK

K we put, for brevity, cy = u, we shall now have

The value of a^ being already perfectly understood, we
may leave it out of consideration for the present, and investi-

gate the development of e^*. By the exponential theorem

(§ 310, 10),
. ^ .

. ii^ij^ u^i? tiH^ uH^
e«i = 1 + m + -p + -3

J

+
-J-

+
-J-

+ etc.
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Substituting for the powers of i their values (§ 325),

.» = 1 -
-J
+ jj

-
gj
+ etc. + ^M - ^ + gj

- etc.) I.

These two series are each functions of u, to which special

names have been given, namely

:

Def. The series 1 — ^, + ji — ^. + 51 — etc., is called

the cosine of if, and is written cos u,

Def. The series '^ — 07+^7 — 7"^ + ^^ — ^^c-? is called

the sine of u^ and is written sin u.

Using this notation, the above development becomes,

QUI — COS u + i sin u, {a)

which is a fundamental equation of Algebra, and should be

memorized.

Remarks. These functions, qo& u and sin u, have an ex-

tensive use in both Trigonometry and Algebra. To familiarize

himself with them, it will be well for the student to compute

their values from the above series for u = 0.25, u = 0.50,

u=zl, u=:2, to three or four places of decimals. This can

be done by a process similar to that employed in computing e

in § 310. If the work is done correctly, he will find

:

For u = ~,
4

" - = l'

" U =zl,

" u = 2,

333. Let us now investigate the properties of the functions

cos u and sin u, which are defined by the equations,

u^ ii'^ u^
cos^. = l-^ + jj--^ + etc.

^ ^ 7 / (^)
U^ VP w ,

^

miu — u — — Ar -^^— -^ + etc.

1
COS -7 =

4
0.969, sin \ =. 0.247

4

cos| = 0.878, sin 1 = 0.479.

COS 1 = 0.540, sin 1 = 0.841

COS 2 = - 0.416, sin 2 — 0.909.
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Since cos ti includes only even powers of u, its value will

remain unchanged when we change the sign of u from + to

— 5 or vice versa. Hence,

cos {^u) =z cos ti. (1)

Since sin u contains only odd powers of u, its sign will

change with that of u. Hence,

sin (— -w) = — sin u, (2)

If in the equation {a) we change the sign of Uy we have,

by (1) and (2),

or e""^* = cos u — I sin u,

Now multiply this equation by {a). Since

1^m X e-'^^ =: e^* X -rr = 1,

we have 1 = (cos ?^)^ — i^ (sin -2^)2,

or 1 = (cos uj^ + (sin uy.

It is customary to write cos^ u and sin^ u instead of (cos uf
and (sin uY, to express the square of the cosine and of the

sine of u. The last equation will then be written

cos^ u + sin^ u == 1. {c)

Although we have deduced this equation with entire rigor,

it will be interesting to test it by squaring the equations {V),

First squaring cos u, we find (§ 284),

C0S2 ^ = 1 -^ ,,2 + ,,4 (i. ^ _i__ + _) « etc.

The coefficient of u"^ is found to be

1 1 1^ 1

n\ +2! (?z — 2)! "^4!(7^— 4)!
"^ ^ 7i\

when ^ is double an even number, and to the negative of this

expression when n is double an odd number.

Again, taking the square of sin u, we find

sm'* u

26

^. + ,,4(__l^j^-J-^--) + etc.
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the coefficient of u'^ being

1 1 1

1 ! 0* — 1) ! 3 ! (/i — 3) ! 5 ! (^ — 5)

!

(^-1)! 1!'

or the negative of this expression, according as ;^ ^ is even or

odd.
^

Adding sin^ i^ and cos^ u, we see that the terms u^ cancel

each other, and that the sum of the coefficients of w* can be

arranged in the form

^ 1_ _1 1_ 1

4! 1! 3! "^2! 2! 3! l!
"^4!*

Let us call this sum A, If we multiply all the terms by

4
!

, and note that by the general form of the binomial coeffi-

cients,

n\ _ ln\

wefind 4!^ = l^g)+g)-(3^)+g),

which sum is zero, by § 2G2, Th. 11. Therefore the coefficients

of u^ cancel each other.

Taking the sum of the coefficients of u'^, we arrange them

in the form

n\ 1! 0^-1)! "^2! (?^-2)! 3! (^^ - 3)! + ^ ^'^

which call A, Then multiplying by n\, we have

»^^=i-©+(i)-(i)+--+e).
which sum is zero. Therefore all the coefficients of u'^ cancel

each other in the sum sin^ u + cos^ u, leaving only the first

term 1 in cos^ u, thus proving the equation (6) independently.

This example illustrates the consistency which pervades all

branches of mathematics when the reasoning is correct. The
conclusion (c) was reached by a very long process, resting on

many of the fundamental principles of Algebra ; and on reach-
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ing a simple conclusion of this kind in such a way, the mathe-

matician always likes to test its correctness by a direct process,

when possible.

Let us now resume the fundamental equation {a). Since

u may here be any quantity whatever, let us put nu for u.

The equation then becomes,

^nui _ cos nu + i sin nu.

But by raising the equation {a) to the n*^ power, we have

Hence we have the remarkable relation,

(cos u -\- i sin u)^ := cos nu + i sin nu.

Supposing n=z2, and developing the first member, we
have

cos^ u — sin^ u + 2i sin u cos tc =z cos 2u -f i sin 2u.

Equating the real and imaginary parts (§327, Cor.), we have

cos^ u — sin2 to = cos 2u,

2 sin u cos i^ = sin 2u,

relations which can be verified from the series representing

cos u and sin u, in a way similar to that by which we verified

sin^ 2c + cos^ u = 1.

EXERCISES.
1. Find the values of cos^ u, sin^ u, cos* u, and sin* u by

the preceding process.

2. Write the three equations which we obtain by putting

u =. a, u =z b, and u =i a -\- h in equation [a). Then equate

the product of the first two to the third, and show that

cos {a -{- h) =. cos a cos h — sin a sin Z>,

sin (a 4- ^) = sin a cos h + cos a sin ^.

3. Eeduce to the normal form,

{x — i) {x — 2i) {x — 30 {x — U).

4. Develop (a^ + U)^ by the binomial theorem, and reduci

the result to the normal form.

"
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CHAPTER II.

THE GEOMETRIC REPRESENTATION OF IMAGINARY
QUANTITIES.

333. In Algebra and allied branches of the higher raaUie-

maties^ the fundamental operations of Arithmetic are extended

and generalized. In Elementary Algebra we have already had

several instances of this extension, and as we are now to have

a much wider extension of the operations of addition and mul-

tiplication, attention should be directed to the principles

involved.

In the beginning of Algebra, we have seen the operation of

addition, which in Arithmetic necessarily implies increase, so

used as to produce diminution.

The reason of this is that Arithmetic does not recognize

negative quantities as Algebra does, and therefore in employ-

ing the latter we have to extend the meaning of addition, so as

to apply it to negative quantities. When thus applied, we
have seen that it should mean to subtract the quantity which

is negative.

In its primitive sense, as used in the third operation of

Arithmetic, the word JnuUiplij means to add a quantity to itself

a certain number of times. In this sense, there would be no

meaning to the words " multiply by a fraction.^' But we ex-

tend the meaning of the word multiply to this case by defining

it to mean taking a fraction of the quantity to be multiplied.

We then find that the rules of multiplication will all apply to

this extended operation.

This extension of multiplication to fractions does not take

account of negative multipliers. In the latter case we can

extend the meaning of the operation by providing that the

algebraic sign of the quantity shall be changed when the mul-

tiplier is negative. We thus have a result for multiplication

by every positive or negative algebraic number.

Now that we have to use imaginary quantities as multi-
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pliers, a still further extension is necessary. Hitherto our

operations with imaginary units have been purely symbolic

;

that is, we have used our symbols and performed our operations

without assigning any definite meaning to them. We shall

now assign a geometric signification to operations with imagi-

nary units, subject to these three necessary conditions :

1. The operations must be subject to the same rules as

those of real quantities.

2. The result of operating with an imaginary quantity

must be totally different from that of operating with a real one,

and the imaginary quantity must signify something which a

real quantity does not take account of.

3. If the imaginary quantity changes into a real one, the

operation must change into the corresponding one with real

quantities.

334. Geometric Represenfatmi of Imaginary Units. Cer-

tain propositions respecting the geometric representation of

multiplication have been fully elucidated in Part I, and are

now repeated, to introduce the corresponding representations

of complex quantities.

I. All real numbers, positive and negative, may be arranged

along a line, the positive numbers increasing in one direction,

the negative ones in the opposite direction from a fixed zero

point. Any number may then be represented in magnitude

by a line extending from to the place it occupies.

We call this line a Vector.
II. If a number a be multiplied by a positive multiplier

(for simplicity, suppose +1), the direction of its vector will

remain unaltered. If it be multiplied by a negative multiplier

(suppose — 1), its vector will be turned in the opposite direc-

tion (from — a to -\- a, or vice versa). Compare § 72,

where the coarse lines are the vectors of the several quantities.

—a +«
1 I I

III. If the number be multiphed twice by — 1, that is, by

(—1)2, its vector will be restored to its first position, being

twice turned, and if it be multiplied twice by + 1, that is, by

(-[- 1)% its vector will not be changed at all. Its vector will
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+ia

therefore be found in its first position, whether we multiply it

by the square of a positive or of a negative unit; in other

words, both squares are positive.

IV. To multiply the hne + a twice by the imaginary unit

i, is the same as multiplying it by i^ or — 1. Hence,

Multiplying by the iiivaginary unit i must give the

vector such a motion as, if repeated, will change it from
-\- a to — a.

Such a motion is given by turn-

ing the vector through a right angle,

into the position + ia, A second

motion brings it to the position __^

— a, the opposite of -h «. A third

motion brings it to — ia, a position

the opposite of -f ia, A fourth

motion restores it to the original

position + a.

If we call each of these motions multiplying hy i, we have.

-ia

la, i^a a, i^a ta.

_4 -3 —2 —1
! \ [ L_

+4i

from the diagram, a = a, ia

ikt = a, which corresponds exactly to the law governing the

powers of i (§ 325). Hence

:

// a quantity is represented hy a vector extending

from a zero point, the multiplication of this quantity hy

the imaginary unit may he represented hy turning the

vector through 90°.

V. In order that multiplier

and multiplicand may in this op-

eration be interchanged without

affecting the product, we must

suppose that the vertical line

which we have called ia is the

same as ai, that is, that this line

represents a imaginary units.

We have therefore to count

the imaginary units along a
vertical line on the saine system that we count the real

units on a horizontal line.

+ i
1 2

^-2i

3i

U
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'«+6i

U U
7>^

bi

\
^bi

835. Qeoinetric Representation of a Complex Quantity,

We have shown (§ 15) that algebraic addition may be represented

by putting lines end to end, the

zero point of each line added be-

ing at the end of the line next

preceding. The distance of the

end of the last line from the zero

point is the algebraic sum.

On the same system, to repre-

sent the algebraic sum of the real

and imaginary quantities a + Ji,

we lay off a units on the real (horizontal) line, and then h

units from the end of this line in a vertical direction. The
- end of the vertical line will then be the position corresponding

to flj -f hi.

It is evident that we should reach the same point if we
first laid off h units from on the imaginary line, and then a

units horizontally. Hence this system gives

})% j^ a =^ a -\- hi,

as it ought to, to represent addition.

If « or J is negative, it is to be laid off in the opposite di-

rection from the positive one. We then have the points cor-

responding to — a -\-l)i, — a — hi, and aj — hi, shown in the

diagram, which should be carefully studied by the pupil.

The result we have reached is the following

:

Every complex quantity a -f hi is considered as be-

longing to a certain point on the plane, namely, that

point which is reached by laying off from the zero point

a units in the horizontal direction and h units in the

vertical direction,

R

336. Addition of Com-

plex Quantities, If we have

several complex terms to

add, as a + hi, m — ni,

p + qi, we may lay them
off separately in their ap-

propriate magnitude and di-
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rection, as in the figure, the last line terminating in a

point K.

If we first add the quantities a -\- U, etc., algebraically

(§ 324), the result will be

a + m -\- p -\- {b — n -\- q)i.

We may lay off this sum in one operation. The sum a-hm-

-\-p will carry us from to M, and the sum {b ^ n -\- q) i

from M to R, because MU=b — n + q. Therefore we shall

reach the same point R whether we lay the quantities off sepa-

rately, or take their sum and lay off its real and imaginary

parts separately.

337. Vectors of Complex Quantities, The question now
arises by what straight line or vector shall we represent a sum

of complex quantities ? The answer is

:

T]^e vector of a sum of sev-

eral vectors is the straight line

from the heginning of the first

to the end of the last vector

added.

For example, the sum of the

quantities OX == a and XP = bi is the vector OP.

It might seem to the student that the length of the vector represent-

ing the sum should be equal to the combined lengths of all the separate

vectors. This difficulty is of the same kind as that encountered by the

beginner in finding the sum of a positive and negative quantity less than

either of them. The solution of the difficulty is simply that by addition

we now mean something different from both arithmetical and algebraic

addition. But the operation reduces to arithmetical addition when the

quantities are all real and positive, because the vectors are then all placed

end to end in the same straight line. Therefore there is no inconsistency

between the two operations.

Two imaginary quantities are not equal, unless both their

real and imaginary parts are equal, so that their sum shall ter-

minate at the same point P. Their vectors will then coincide

with each other. Hence

:

Tivo vectors are not considered equal unless they agree

in direction as well as length.
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In other words, in order to determine a vector com-
pletely, we must know its direction as well as its length.

This result embodies the theorem of the preceding chapter (§ 327),

that two complex quantities are not equal unless both their real and
imaginary parts are equal. It is only in case of this double equality that

the two complex quantities will belong to the same point on the plane.

Because OXP is a right angle, we have by the Pythagorean

theorem of Geometry,

(length of veetor)2 = a^ _|_ j2^

or length of vector = ^/d^ -j- b\

We are careful to say length of vector, and not merely vec-

tor, because the vector has direction as well as length, and the

direction is as important an element as length.

To avoid repeating the words " length of," we shall put a

dash over the letters representing a vector when we consider

only its length. Then OX will mean length of the line OX.

Def. The length of the vector, or the expression

Va^ -f b% is called the Modulus of the complex ex-

pression a 4- M.

The modulus is the absolute value of the expression, con-

sidered without respect to its being positive or negative, real

or imaginary. Thus the different expressions,

— 5, +5, 3 + 4/, 4 — 3i, 5^,

all have the modulus 5 (because Vs^ 4- 4^ =: 5). The points

which represent them are all 5 units distant from the zero

point, and so lie on a circle, and their vectors are all 5 units in

length.

The German mathematicians therefore call the modulus

the absohite value of the complex quantity, and this is really

a better term than the English expression modulus,

Def. The Angle of the vector is the angle which it

makes with the line along which the real units are

measured.

If OA is this line, and OB the vector, the angle is AOB.



2. 4 - 31 3- — 4 + Si.

5- 3 + 4^. 6. 3 — 4^.

8. — 3 — 4:1. 9- 5 + 7i.

II. 5 + 6i, 12. 5 + 4i.

14. 3 + i- 15. S^i.

nta"I and vertical line ; mark several
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EXERCISES.

Lay off the following complex quantities, draw the vectors

corresponding to them, and find the modulus both by measure-

ment and calculation :

I. 4 + U.

4. — 4 — 3^.

7. — 3 -f U.

10. 5 + 6i.

13. 3 + 2i.

16. 3 — 2^.

17. Draw a he

points on the plane of these lines, and find by measurement

the complex expressions for each point. Also, draw the sev-

eral vectors and measure their length. Continue this exercise

until the relation between the complex expressions and their

•points is well apprehended.

I^OTE. The student may adopt any scale he pleases, but a

scale of millimeters will be found convenient.

338. Geometric Multiplication. The question next arises

whether the results we obtain for multiplication of complex

quantities follow, in all respects, the usual laws of multiplica-

tion, especially the commutative and distributive laws.

I. To multiply a vector hy a real factor.

Let the vector he a -\- hi and the jf

factor m. The product will be ^ ,-^'1

ma + mhi.

In the geometric construction, let

OK = a and Al^^U. We shall O-

then have, by the rule of addition.

Vector OB =: a + U.

"When we multiply a by m, let OA' be the product ma, and

A'B' the product mhL Because the lines OA and AB are both

multiplied by the same real factor m to form OA' and A'B', we

shall have
OA : AB : OB = OA' : A'B' : OB'.
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Therefore the triangles OAB and OA'B' are similar and

equiangular, so that

angle A'OB' = angle AOB.

This shows that the lines OB and OB' coincide, so that

BB' is the continuation of OB in the same straight line. More-

over, the above proportion gives

OB' = 7??0B,

or, from (1), vector OB' = m vector OB.

Therefore, multiplying a vector hy a real factor

changes its length without altering its direction.

II. To multiply a vector hy the imaginary unit.

Multiplying a + hi by i, the ^q

result is

— b + ai.

The construction of the two '^'

vectors being made as in the fig-

ure, we have p _y
OB = a + M,

OQ. = — /^ + ai.

Because the triangles OPQ and OAB are right-angled at P
and B, and have the sides containing the right angle equal in

length, they are identically equal, and

angle POQ = angle OBA =z 90^ — angle BOA.

Hence the sum of the angles POQ and BOA is a right

angle, and because POA is a straight line, therefore,

angle BOQ .-= 90°.

Therefore, the result of multiplying the vector OB by
the imaginary unit is to turn it 90° ivithout changing
its length.

We have assumed this to be the case when the vector represents a
real quantity, or lies along the line OB ; we now see that the same thing
holds true when the vector represents a complex quantity.

If instead of the multiplier being simply the imaginary

unit, it is of the form ni, then, by (I), in addition to turning

the vector through 90°, we multiply it by n.
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III. To multiply a vector by a complex quantity,

m + ni.

This will consist in multiplying separately by m and ni^

and adding the two products. Put OB = a + 6^, the yector

to be multiplied ; ON =
m + ni, the multiplier.

To multiply OB by m^

we take a length OC, deter-

mined by the proportion,

OC : OB = m : 1, (I)

whence by (I),

OC = m-OB
= w (a + hi).

To multiply OB by ni, we take a length CD determined

by the condition,

length GY) — n length OB,

CD : OBor nil;
and to multiply by i, we place it perpendicular to OB. (II)

We then have,

CD = OB X ni.

In order to add it to OC, the other product, we place it as

in the diagram, and thus find a point D which corresponds to

the sum
OC + CD = OBxm + OBxm';

that is, to the product

{m + ni) (a + hi).

Now because OC == OB x m and CD = OB x n, we have

OC" : CD = m:n=zOM : MN,

and because the angles at M and C are right angles, the tri-

angles OCD and OMN are similar. Therefore,

angle COD = angle MON.

Hence the angle AOD of the product-vector is equal to the

sum of the angles of the multiplier and multiplicand.

For the length OD of the product-vector we have,
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length 0& = 00^ + CJ?

= (m2 + n^) OBl

Extracting the square root,

length OD = Vni^+n^ • OB

Therefore the length of the product-vector is equal to the

products of the lengths of the vectors of the factors.

Combining these two results, we reach the conclusion:

The modulus of the produet of two coinplex factors is

equal to the product of their moduli.

The angle of the product is equal to the sum; of the

angles of the factors.

339. TJie Roots of Unity. We f?
have the following curious problem

:

|

Ny>

Given, a vector A, which call «

;

i
\

it is required to find a complex factor i \
X, such that when we multiply a n ¥ 70 A
times by x, the last product shall be a /
itself. That is, we must have /

o^a = a.
/C

The required factor must be one

which will turn the vector round without changing its length.

Let us begin with the case of n=:3.

Since three equal motions must restore OA to its original

position, the condition will be satisfied by letting x indicate a

motion through 120°, so that OA shall take the position OB
when angle AOB = 120°. Then, P being the foot of the per-

pendicular from B upon AO produced, we shall have angle

POB = 60°, and angle PBO = 30°. Therefore,

FO = la, PB = ^^a,

and vector OB =: xa =z — -a + --;-aL
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Because the factor x has not changed the length of the line,

the modulus of x is unity, and because it has turned the line

through 120°, its angle is 120°. Therefore its value is

-OP-fPBi
on a scale of numbers in which OB = 1 ; that is,

1
, a/3.^==--2 +-2-^-

Eeasoning in the same way with respect to the product x^a,

which, produces the vector OC, we find

^ - ~
2
~

2 '^

an equation which we readily prove by squaring the preceding

value of X and reducing.

Multiplying these values of a: and x^, v/e find

x^ = 1,

which ought to be the case, because x^a = a. Hence,

1 a/S
- The complex quantity — ^ H

—

\y- i ^s a cube root of
unity.

But the vector 00, of which the angle is 240°, also repre-

sents a cube root of unity, if we suppose 00 = 1, because

three motions of 240° each turn a vector through 720°, or two

revolutions, and thus restore it to its original position. This

also agrees with the algebraic process, because, by squaring the

above value of x^, we have

^^
^ -^ a/3. 1

. a/3

2
^=-2 + -2-^ = ^^V2 2 7~4 4+^

and by repeating the process we find

Since 1 itself is a cube root of unity, because 1^ = 1, we

conclude

:

•

There are three cube roots of unity.
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We readily find, by the process of § 334, IV, that

i, — 1, — i, and 1,

are all fourth roots of unity.

By a course of reasoning similar to the above for any value

of n, we conclude :

The n^^ roots of unity are 7i in number.

EXERCISES.

1. Form the first eight powers of the expression

V2 + V3 '

show that the eighth power is 1, and lay off the vector corre-

sponding to each power.

2. Form the first twelve powers of

a/3 1.

and show that, the twelfth power is +1.

3. Find the fifth and sixth roots of unity by dividing the cir-

cle into five and six parts, and either computing or measuring

the lengths of the Hnes which determine the expression.

Note. The student will remark the similarity of the gen-

eral problem of the n*^ roots of unity to that of dividing the

circle into n equal parts (Geom., Book VI).
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777^ GENERAL THEORY OF EQUA^
TIONS.

Every Equation has a Root.

340. In Book III, equations containing one unknown
quantity were reduced to the normal form

Ax'' + Bx"^-^ + Gx^-'^ + . . . . + i^ = 0.

If we divide all the terms of this equation by the coefficient

A^ and put, for brevity,

B
Pi = J.

C

etc. etc.

F
Pn = 3,

the equation will become

X^ + p^X^-^ +i?2^"^ + -i-Pn-l^ -{-Pn = 0. (a)

This equation is called the General Equation of the
fith Degree, because it is the form to which every algebraic

equation can be reduced by assigning the proper values to n,

and to j^i, P2, Ps7 etc.

The n quantities Pi, P29 * » » * Pn are called the Coeffi-

cients of the equation.

We may consider pn as the coefficient of xf^ = 1.

341. Theoeem I. Every algebraic equation has a root,

real or imaginary.

That is, whatever numbers we may put in place o^ p^, P2,

^3, . . . . Pn, there is always some expression, real or imaginary,

which, being substituted for x in the equation, will satisfy it.
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Rem. The theorem that every equation has a root is demonstrated in

special treatises on the theory of equations, but the demonstration is too

long to be inserted here.

If we suppose the values of the coefficients p^p^} etc., to

vary, the roots will vary also. Hence,

Theorem II. ITie roots of an algebraic equation are

functions of its coefficients.

Example. In Chapter YI we have shown that the roots

of a quadratic equation are functions of the coefficients, because

if the equation is

x^ + px -^ q ^= 0,

the root is x = —-—-— -,

which is a function of p and q.

342, Equations tvliich can de solved. If the degree of the

equation is not higher than the fourth, it is always possible to

express the root algebraically as a function of the coefficients.

But if the equation is of the fifth or any higher degree, it

is not possible to express the value of the root of the general

equation by any algebraic formulae whatever.

This important theorem was first demonstrated by Abel in

1825. Previous to that time, mathematicians frequently at-

tempted to solve the general equation of the fifth degree, but

of course never succeeded.

This restriction applies only to the general equation, in

which the coefficients p^, p^, p^, etc., are all represented by

separate algebraic symbols. Such special values may be

assigned to these coefficients that equations of any degree shall

be soluble.

343. The problem of finding a root of an equation of the

higher degrees is generally a very complex one. If, however,

the equation has the roots — 1, 0, or + 1, they can easily be

discovered by the following rules

:

I. If the algebraic sum of the coefficients in the equa-

tion vanishes, then -\-lis a root.

27
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II. // the sum of the coeffieients of the even powers of
X is equal to that of the eoeffieients of the odd powers,

then — 1 is a root

III. // the absolute term p^ is wanting, then is a
root.

These rules are readily proved by putting «= +1, then x— —1,
then a; — in the general equation {a) and noticing what it then reduces

to. The demonstration of II will be a good exercise for the student.

Number of Roots of General Equation.

344. In the equation (a), the left-hand number is an en-

tire function of x, which is equal to zero when the equation is

satisfied. Instead of supposing an equation, let us suppose x

to be a variable quantity, which may have any value whatever,

and let us study the function of x,

^ -{-p^x!>^-^+PzX^-^ + +Pn^lOC +pn,
which for brevity we may call Fx,

Whatever value we assign to x, there will be a correspond-

ing value of Fx,

Example. Consider the expression

Fx = x^ — 7^2
-I- 36.

Let us suppose x to have in succession the values — 4,

— 3,-2, — 1, 0, 1, 2, etc., and let us compute the corre-

sponding values of Fx, We thus find,

X = — 4, — 3, — 2, — 1, 0,

Fx=z — 140, — 54, 0, + 28, + 36,

xz=z 1, 2, 3, 4, 5, 6, 7, S.'^

Fx= -\- 30, + 16, 0, - 12, — 14, 0, + 36, + 100.

We see that while x varies from — 4 to +8, the value of

Fx fluctuates, being first negative, then changing to positive,

then back to negative again, and finally becoming positive once

more.

We also see that there are three special values of x, namely,

— 2, +3, and + 6, which satisfy the equation Fx = 0, and

which are therefore roots of this equation.
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345. Representation of Fx ly a Curve. In Book VIII ifc

was shown how a function of a variable of the first degree might
be represented to the eye by a straight line. The relation

between a variable and any function of it may be represented
to the eye in the same way by a curve, as shown in Geometry,
Book VIL We take a base line, mark a zero point upon it,

and lay off any number of equidistant values of x. At each
point we erect a perpendicular proportional to the corresponding
value of Fx at that point, and draw a curve through the ends.

The fluctuations of the vertical ordinates

of the curve now show to the eye the corre-

sponding fluctuations of Fx,

When Fx is negative, the curve is below

the base line. When Fx is positive, the curve

is above the base line.

The roots of the equation Fx^=.^ are shown by the points

at which the curve crosses the base line. In the present case

these points are — 2*, 4-3, -f- 6.

In order to distinguish the roots from the variable quantity

Xj we may call them «, (3, y, d, etc., or x^^ x^, x^, etc., or a^,

^2, ^3, etc., the symbol x being reserved for the variable.

The distinction between x and the roots will then be this:

X is an independent variable, which may have any value

whatever.

Fx is a function of x of which the value is fixed by that of x,

a, ft y, etc., or a; 1, a; 2, 3^3, etc., are special values of x which,

being substituted for x, satisfy the equation

Fx = 0.

Theorem. An equation' mith real coefficients, ofwhich
the degree is an odd number, must have at least one real

root.
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Proof. 1. When n is odd, x'^ will have the same sign (4-

or — ) as X.

2. So large a value, positive or negative, may be assigned to

X that the term x'^ shall be greater in absolute magnitude than

all the other terms of the expression Fx, For, let us put the

expression Fx in the form

= ^(i+^+5+....+|). 1)

If we suppose x to increase indefinitely either in the posi-

tive or negative direction, the terms — , ^, etc., will all° X x^

approach as their limit (§ 303, Th. I). Therefore the expression

\ ^-tl ^(^ j^ etc. will approach unity as its limit, and will

therefore be positive for large values of x, both positive and

negative. The whole expression will then have the same sign

as the factor x'^, and, n being odd, will have the same sign as x,

3. Therefore, between the value of x for which Fx is negative

and that for which it is positive there must be some value of x

for which Fx = 0, that is, some root of the equation Fx = 0.

For illustration, take the preceding cubic equation.

Cor. An equation of odd degree has an odd numher
of real roots.

For, as Fx changes from negative to positive infinity, it

must cross zero an odd number of times.

346. Theorem I. // we divide the expression Fx by

X — a, the remainder will he Fa, or

Kemainder = a^ -^ p^a^~^ + p^oP''^ + . . . . + ptf

Special Illustration, Let the student divide

^-^bx^ -{- dx H- 1

by x — a, according to the method of § 96. He will find the

remainder to come out

a^-^ba^ -\-Za + 1.
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General Proof, When we divide Fxhy x^ a, let us put

Qy the quotient

;

R, the remainder.

Then, because the dividend is equal to the product, Divi-

sor X Quotient+ Remainder,

{x — a)Q + R= Fx.

Two things are here supposed:

1. That this equation is an identical one, true for all values

of X, This must be true, because we have made no supposition

respecting the value of x,

2, That we have carried the division so far that the remain-

der R does not contain x.

Because it is true for all values of x, it will remain true

when we put x = a on both sides. It thus reduces to

R = F{a),

which is the theorem enunciated.

The value of x being still unrestricted, let us in dividing

take for a a root a of the general equation Fx = 0. Then,

by supposing x = a, the equation (a) will be satisfied, or

Fa z=z 0.

Therefore if we divide the general expression Fx hy x -— a,

the remainder Fa will be zero. Hence.

Theorem II. If we denote by a a root of the eqitation

Fx = 0, the expression Fx will be exaetly divisible by
X— a.

Illustration. One root of the equation

a;3 _ ^2 _ 11^ _|. 15 _.

is 3. If. we divide the expression

7^ — x^ — ll:r + 15

by X — 3, we shall find the remainder to be zero.

347. When we divide Fxhj x — a, the highest power of

X in the quotient will be x^~K Therefore the quotient will be

an entire function of x of the degree n — 1.
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Illustration, The quotient from the last division was

x^ + 2x- 5,

which is of the second degree, while the original expression was of the

third degree.

If we call this quotient F^x, we shall have, by multiplying

divisor and quotient,

Fx =z (x -— a) F^x,

Now suppose (i a root of the equation

i^i« = ;

then F^x will, by the preceding theorem, be exactly divisible

hj x — (i.

The quotient from this division will be an entire function

of X of the degree n — 2. This function may again be divided

by x — y, representing by y the root of the equation obtained

by putting the function equal to zero, and so on.

The results of these successive divisions may therefore be

expressed in the form

Fx :=: {x — a) F^x .... (Degree ^ — 1),
^

F^x — {x — P) F^x (Degree ti — 2), >- (1)

F^x = {x — y) F^x .... (Degree n — d),)

etc, etc. etc.

Since the degree is diminished by unity with every division,

we shall at length have a quotient of the first degree in x, of

the form
x-^e,

^
e being a constant. I

Then, by substituting in the equations (1) for each func-

tion of x its value in the equation next below, we shall have ^
I

Fx = (x — a){x — P){x-'y) {x -- e),

the number of factors being equal to the degree of the original

equation. Hence,

Theorem I. Every entire function of x of the nth

degree may he divided into n factors, each of the first

decree in x.
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Since a product of several factors becomes zero whenever

any of the factors is zero, it follows that the equation

Fx —
will be satisfied by putting x equal to any one of the quantities

€c, P, y, , . » . e, because in either case the product

{x — a)(x — P) [x — y) . , , , {x — e)

will vanish. Therefore the quantities

«, /3, y, £,

are all roots of the original equation Fx = 0. Hence,

Theorem IL An algebraic equation of the n^^ degree

has n roots.

We have seen (§ 195) that a quadratic equation has two

roots. In the same way, a cubic equation has three roots, one

of the fourth degree four roots, etc.

Moreover, a product cannot vanish unless one of the factors

vanishes. Hence the product

Fx or (x — a)(x ^P){x — y^ , . , , (x^ e)

cannot vanish unless x is equal to some one of the quantities,

«, i3, y, . . . . e. Hence,

An equation of the rfi^ degree can have no more than
n roots.

348. We may form an equation of which the roots shall

be any given quantities, a, Z>, c, etc., by forming the product,

(x — a)(x — h) {x — c), etc.

Example. Form an equation of which the roots shall be

— 1, -f 1, 1 + 2i, 1 — 2/.

Solution, We form the product

{x+l)(x^l){x-^l- 2i) {x-^l + 20,

which we find to be

x^ — 2a^ -i- ^x^ -{- 2x -- 5.

Therefore the required equation is

x^ — 2:i^-\- 4t2 -^2x — 6 = 0.
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EXERCISES.

Form equations with the roots

:

1. 2 + V3, 2 ~ \/3, — 2, +1.

2. 3 + V5, 3 - ^5, - 3.

3. 2, -2, 4 + V7, 4-V7.
4. 1 + V3, 1 - V3, 1 + V5, 1 - V5.

349. When we can find one root of an equation, then, hy

dividing the equation by x minus that root, we shall have an

equation of lower degree, the roots of which will be the remain-

ing roots of the given equation.

Example. One root of the equation

x^ — x^ — 11.T + 15 =:

is 3. Find the other two roots.

Dividing the given equation by a: — 3, the quotient is

x^ j^^x — 5.

Equating this to zero, we have a quadratic equation of

which the roots are

— 1 4- V6 and — 1 — a/6.

Hence the three roots of the original equation are

3, — l+VO, — 1 — V6.

EXERCISES.
1. One root of the equation

x^ _ 32;2 — Ux + 12 =
is— 3. Find the other two roots.

2. Find the five roots of the equation

a:5 _ 4^ _^ I2x^ ^ 4^2 __ 13^ _-
0.

(Compare § 343.)

350. Equal Roots, Sometimes, in solving an equation,

several of the roots may be identical.

For example, the equation

2;3 _ 6^2 _|. 12^ _ 8 =
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has no root except 2. If we divide it by x — 2, and solve the

resulting quadratic, its roots will also be 2. Hence, when we

factor it the result is

{x -2)(x — 2) (x-2) = 0.

In this case the equation is said to have three equal roots.

Hence, in general,

TJte n roots of an equation of the n^^ degree are not all

necessarily different from each other, hut two or more of
them may he equal.

Relations between Coefficients and Roots.

351. Let us suppose the roots of the general equation of

the n^^ degree

x^ + p^x^-^ + 2h^~^ + .,..+ pn-\ ic + jt?» =
to be «, ^, y, . . . . €.

We have shown (§ 341) that these roots are functions of

the coefficients p-^, p,^, . . . . pn-. To find these functions is to

solve the equation, which is generally a very difficult problem.

But the coefficients can also be expressed as functions of

the roots, and this is a very simple process which we have

already performed in some special cases by forming equations

having given roots (§ 348).

If we form an equation with the two roots, a and i3, the

result will be

. = {x — a){x-^(i) = x^—{a + p)x + af).

Comparing this with the general form,

x^ -{- p^x 4-i?2 = ^>

we see that p^ = — [a ^ (3)^

P2 = ^P,

a result already reached (§§ 198, 199).

Next form an equation with the three roots, a, P, y.

Multiplying {x — a) (x — (3) by x — y, we find the equa-

tion to be

a^— {a + 13 + y)x^ + {ap -\- Py + ya)x — aPy = 0.
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So in this case, p^ = — (« + /^ + y),

;?2 = «3 + Py + ya,

Vz = — «/^r-

Adding another root (5, we find the result to be

Pi = - (« + ^ + y + ^),

;?2 = «/3 + c«y + «(5 + i3y + /3(y + yd, (2)

Ps = — ccpy — apd — ayd — jSyd,

p^ = €cpy6.

Generalizing this process, we reach the following conclu-

sions :

The coefficient p^ of the second term of the general equa-

tion is equal to the sum of the roots taken negatively.

The coefficient i^g of the third term is equal to the sum of

the products of every combination of two roots.

The coefficient p^ of the fourth term is equal to the sum
of the products of every combination of three roots taken

negatively.

The last term is equal to the continued product of the neg-

atives of the roots.

353. Symmetric Functions, It will be remarked that the

preceding expressions for the coefficients p^, pc^, etc., are all

symmetric functions of the roots a, p, y, etc, (§ 256.)

The following more extended theorem is true :

Theorem. Every rational symmetric function of the

roots of an equation may he expressed as a rational

function of the coefficients.

Example. From the equations (2) we find

p,^ - 2p^ = C.2 4. /32 + ^2 + ^^

^PiP2 -Pi^ _ 3j93 = «3 + i33 + y3 + ^.

We thus reach the curious conclusion that although we
may not be able to find any individual root of an equation, yet

there is no difficulty in finding the continued product of the

roots, their sum, the sum of their squares, of their cubes, etc.

The general demonstration of this theorem, and the methods by which

any rational symmetrical function of the roots may be determined, are

found in more advanced treatises.
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Derived Functions.

353. Def. If in the expression

we substitute x^Ti for x^ and then develop in powers

of Ti^ the coefficient of the first power of Ti is called the

First Derived Function of oc.

Tofind the First Derived Function. Putting x -{-h for x,

the result is

F{x-\-Ji) = {x+h)^-{-p^{x+ h)^-^+ ,...+pn-i{^+Ji)+Pn' (a)

Developing the several terms of the second member by the

binomial theorem, we have

n in —— 1

1

{x + hy = ^'^ + nx^'-^n H
^-- -x^-'^W + etc.,

{x + Tif-^ = x"^-^ + {n — 1) x'^-^h + etc.,

{x + ny-'^ = x^-^ + (n — 'Z) x^-^h H- etc.,

etc. etc. etc.

Substituting these expressions in the equation {a) and

leaving out the terms in h^, h% etc. (because we do not want

them), we have

F{x + h) = x^ + p^x'^-^ + p^^x^''^ + + Pn-i ^ + Pn

+ [nx^'-^^{7i—l) p^x'^-^-]-{n—'Z)p^x^-^-\- -\-pn-i\ h

+ omitted terms 7nultiplied ly li^, W, etc, (b)

We see that the first line is here the original Fx, while the

coefficient of A in the second line is by definition the derived

function. So, if we put

F'x, the derived function of Fx,

we have F{x + h) = Fx + 7i F'x + terms x h^, h% etc.

Let the student, as an exercise, now find the derived function of

^4 + 30^3 _ 5:^2 + 7^. _ 9

by the process just followed, commencing with equation (a).

Examining the coefficient of h in (Z>), we see that the de-

rived function is formed by the following rule :
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Multiply ecwli term by the exponent of the variable in

that term, and diminish the exponent by unity.

The last or constant term disappears entirely from the ex-

pression.

EXERCISES.

Form the derived function of the following expressions :

1. ^5 _!_ 5^ _l_
8^ _ 2a;2 _ ^.

_l_ 1.

Ans. bx^ + 20.^•3 + 24:^:2 _ 4^. __ 1,

2. x^ — 2x^ — 2.^3 _ %x.

3. i^ + 12:^:5 _ 242;3 -f x^ + 7.

4.
r^ — 2ax^ + 3¥x^ + a^x.

5. x^ — ^mx^ + lOma^ — 16m.x\

Rem. The student shoald obtain the result by substituting x-^h toT

X in each equation and developing, until he is master of the process.

3o4, Second Form of the Derived Fmiction, If, as be-

fore, we put a, f3, y, 6, etc., for the roots of the equation

Fx =z 0, we shall have

Fx = {x — a) (x — P) {x — y) . , . , {x — e). (c)

Let us form the derived function from this expression.

Putting X -\- h for x, it will become

{h -i- X — a) {h + X — p) {h + X — y) {h -^ x — e).

Studying this expression, and forming the products which

contain h when three or four factors only are included, we see

that the coefficient of the h in the first factor is (x—p) {x—y)

. . . .
, in the second factor (x—a) (x—y) . . .

.
, etc. That is,

the total coefficient of h will be

(x — p) {x — y) . . . , {x — e), omitting first term

;

^ i^x — cc) (x — y) . . . . {x — e), omitting second term

;

etc. etc. etc.

+ {x — a) (x — P) {x — y) . . . , omitting last term.

But comparing with (c), we see that the first of these

Fx Fx
products is , the second is ——^ , etc., to the last,

X — cc X — p
Fx

which is Hence,
X — e
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X— ax — [3x — y X — E ^
'

Illustration, Let us take once more the expression of

§ 344,
Fxz=zQ^^nx^ + 36,

of which the three roots are —2/3, and 6. Its derived func-

tion, by method (1), is

Zx^ — Ux.

Expressing Fx as a product of factors, it is

Fx = {x -i- 2) {x — 3) {x — 6).

By (d) the derived function is

(x -3){x^6) + (x + 2){x-6) + {x + 2) {X - 3),

which reduces to dx^ — Ux,

the same value as by the first method.

355. Theorem I. When the derived function is posi-

tive, the original function increases with x; when it is

negative, the function decreases as x increases.

Proof, When we increase x by the quantity h, Fx is

changed to F{x -{- 1i), and is increased by the difference

F{x -\-h) — Fx.

But, by {h) and (&'), we have

F {x -\- h) — Fx =z h F'x + ¥ x other terms

=z h {F'x + A X other terms). {e)

Now we may take the increment h so small that h x other

terms shall be less than F'x, and then F'x -^ hx other terms

will have the same sign (+ or — ) as F'x.

Then, supposing h positive, the increment

F{x -\- h) — Fx

will be positive when F'x is positive, and negative when it is

negative.

Theorem II. If an equation has equal roots, such root

will also he a root of the derived function.
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Proof. Let be the root which Fx =:0 has in duplicate.

Then when Fx is factored, it will be of the form

Fx =: {x — a) {x - P){x--P){x — y) {x - e).

Now when we form F'x by method (2), the factor {x — |3)

will be left in all the terms. Therefore x — fi will be a factor

of F'x, Therefore, when x = 13, then F'x = 0, so that P is

a root of the equation F'x = 0.

356. If the equation Fx = contains no equal roots, and

if we suppose x = a in equation (d), all the terms except the

first will vanish, because the common numerators Fx contain

X — a as a factor.

In the case of the first term, both numerator and denomi-

nator vanish when x = a; therefore we must find the limit of

when X approaches «. This is easy, because

Fx-—- = {x-(i){x-y) (z- e).

Therefore, by supposing x to approach a, we shall have

Fx
Lim. (x=a) = (a — p) {a ^ y) , , . , [a — e).

Therefore, by changing x into a in (d), we find

F'a = {a-ti){a-y) (a - e).

Hence

The derived function of a root which has no other

root equal to it is the continued product of its difference

from all the other roots.

Significance of the Derived Function.

357. Theokem. The derived function expresses the

rate of increase of the function as compared with that

of the variable.

Proof, The equation {e) may be expressed in the form

F(x -f li) = Fx-\-n {F'x + Bh),
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where Bli^ is the sum of the remaining terms of the develop-

ment in powers of h.

We then have
Increment oix =z h.

Corresponding increment of Fx = F{x -\- h) ^ Fx
=: h {F'x + Bh).

Eatio of these increments, —'^ -— = F'x + Bh.

If we suppose the increment h to approach zero as its

limit, the product Bh will also approach zero, and the ratio will

approach F'x as its limit.

But this ratio of the increments may be considered as the

ratio of the average rate of increase of the function F to that

of the variable x.

Hence, when we plot the values of Fx by a curve, as in

§ 345, the derived function shows the slope of the curve at

each point.

When the derived function is positive, the curve is running

upward in the positive direction, as from x=i—d to ^ = 0,

and from x=i -f5 to x=z +oo.

When the derived function is negative, the curve slopes

downward, as from a; = to x =z +4.
When the derived function is zero, the curve at the corre-

sponding point runs parallel to the base line, as at and +4f.
If this point corresponds to a root of the equation, the curve

will coincide with the base line at this point, and will there-

fore be tangent to it. Hence, from § 356, Th. II,

A pair of equal roots of an equation are indicated hy
the curve touching the base line without intersecting it

Forms of the Roots of Equation.

358. Theorem I. Imaginary roots enter an equation
with real coefficients in pairs.

That is, \i a + hi be a root of such an equation, then

a — bi will also be a root.
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Proof. Let

X^ -^p^X^-^ + PzX^''^ + + Pn-\X -{- pn = ^ (1)

be the equation with real coefficients, and let us suppose that

a + hi is a root of this equation. If we substitute a + hi for

X, we shall have

a;« = a« + na^-^ hi — !Ll!^lJ ^/i-2 ^,2 _ ^ ^n-3 ^,3^-4. etc.

p^x^-^ = p^a'^~^ + p^ (n—l)a'*""% — etc.

If we substitute all the terms thus formed in equation (1),

and collect the real and imaginary terms separately, we shall

have a result

A + Bi =
(§ 324), A signifying the sum of all the real terms,

a^ ^^ ^ «^-2 yi^ p ^
(^n-i^ etc.,

and Bi the sum of all the imaginary ones.

In order that this equation may be satisfied, we must have

identically

A =zO, B z=0 (§ 327).

Next let us substitute a — hi for x. Since the even powers

of hi are all real, and the odd powers all imaginary, this

change of sign will leave all the real terms in (1) unchanged,

but will change the signs of all the imaginary terms. Hence

the result of the substitution will be

A - Bi.

But if « + hi is a root, then, as already shown, ^ =
and ^ = ; whence

A- Bi=zO

also, and therefore a — hi is also a root.

Def, A pair of imaginary roots v^hich diflfer only

in the sign of the coefficients of the imaginary unit are

called a pair of Conjugate Imaginary Roots.

Theorem II. In the expression Fx every pair of conju-

gate imaginary factors form a real product of the second

decree in x.
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Proof. If in the expression

Fx — {x — a) {x — (^){x ^y) . . , . {x — s),

we suppose a and i3 to be a pair of conjugate imaginary roots,

which we may represent in the form

a =1 a -^ hi, (3 = a — hi,

then the product of the terms {x — a) {x •— h) or of

{x — a — hi) {x — a + hi),

will be {x — of 4- b\

or x^ — '^ax -\- a^ + }^,

a real expression of the second degree in x.

Cor, Since Fx can always be separated into factors of the

first degree, either real or imaginary (§ 347, Th. I), and since

all the imaginary factors enter in pairs of which the product

is real, we conclude

:

Every entire function of x with real coefficients may
he divided into real factors of the first or second degree.

Decomposition of Rational Fractions.

359. Def. A Rational Fraction is one whicli may
Ibe reduced to tlie form

ax>^ + hxi^-^ + cx!^-^ + ....+/
X^ + p^X^-^ + p^X^-^ + . . . . -{- pn

If the exponent m of the numerator is equal to or greater

than the exponent n of the denominator, we may divide the

numerator by the denominator, obtaining a quotient, and a

remainder of which the highest exponent will not exceed

71-^1. If we put

fx, the numerator of the above fraction

;

Fx, its denominator

;

Q, the quotient;

(px, the remainder

;

"^x d)X
we shall have, Rational fraction r= 4t- — (^ -f -^* f§ 96.)

Fx ^ ^ Fx ^^ '

28
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Q will be an entire function of x, with which we need not

now farther concern ourselves.

The problem now is, if possible, to reduce the fraction

•^ to the sum of a series of fractions of the form
Fx ABC E

x — a X ^ 13 X — y ' ' * ' ~ x — e'

A, By C, etc., being constants to be determined, and a, p, y,

etc., being the roots of the equation Fx — 0. Let us then

suppose

Fx'~x — a'^X'--li'^x — y'^ '^ x -• e ^^

Multiplying both sides by Fx, we have

AFx BFx CFx EFx
X — a X — P x — y x — E ^ '

We require that this equation shall be an identical one,

true for all values of x. Let us then suppose a; = «. Then
because by hypothesis cc is a root of the equation Fx = 0, we
have Fa = 0, and the terms in the second member will all

vanish except the first. If there is only one root «, we have

(§ 357),

^. Fx ^,Lim. {x=a) = Fa.
X — a

Therefore, changing x to a, we have

(pa = AF'a,

which gives A = ~j—

In the same way we may find

B--^ (c)

etc. etc.

Sttbstittttiiig these values of A, B, etc., in tlie equation {b),

it becomes
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_0X _ (Pa (t>? _ (t>y ,

i^o;
~ \x - a) Fa ^ {x ~ fi) F'[3

'^
{x - y) F'y

"^ '^•

Note. The critical student should remark that in the

preceding analysis we have not proved that the expression of

the rational fraction in the form ih) is always possible, but

have only proved that if\i be possible, tlien the coefficients A^

B, G must have the values (c). To prove that the form is

possible, the second member of Q)) may be reduced to a com-

mon denominator, which common denominator will be Fx,

and the sum of the numerators equated to (px. By equating

the coefficients of the separate powers of x, we shall have n

equations to determine the n unknown quantities A, B, G,

etc. Since n quantities can, in general, be made to satisfy n

equations, values of J, B, G, etc., will in general be possible.

It will be instructive to solve the following exercises, both

directly and by the comm.on denominator.

I. Decompose

EXAMPLES.

2a;2_ 3a; + 5

a^^^x^j^ 36

We have already found the roots of the denominator to be

- 2, 3, and 6. Using the formulas (c), we find

(t>x = 2x^ — dx-\-5,

Fx = x^— 7x^ H- 36 = {x-{- 2) {x — 3){x^ 6),

F'x = Sx^ — Ux;

(pa = 19, (pp = 14, 0y = 59

;

F'a = 40, F'P = - 15, F'y = 24.

2x^ — 3x + 5 19^ 14 59

x^ — W + 36
""

40 (x + 2)
'~

\h{x — 3)
"^

24 (a; — 6)'

_ 2^3 — 7^ + 3 2x^ — lx-^3
2. Decompose — '

x^ — 2x^ — X -^2 (^+1) (^—1) {x—2)

Here the roots of the denominator are — 1, 1, and 2. Let
us effect the decomposition by the following method. Assume
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2:^2-7^ + 3 A ^ B G
{x + l){x — \){x-'2) x-\-l^ x — 1^ x — ^

Reducing the second member to a common denominator,

it becomes

A {x^ — 3a; + 2) + ^ (^^ — ^ — 2) + {x^ — 1)

{x J^l)(x — l){x — ^)~

Since both members now have the same denominator, their

numerators must also be equal. Equating them, after arrange

ing the last one according to powers of x, we have

{A^B-^C)x^- {dA-\-B)x-^^A—'^B--C— 2.7:2.-7^ + 3.

Since this must be true for all values of x, we equate the

coeflBcients of a; in each member, giving

A -\- B -^ C = ^,

'dA-\- B = 1,

2A-2B- C= 3.

These equations being solved give

A = 2, B z=l, (7 =: — 1.

Substituting in (d),

2a;2 — 7a: 4- 3 2 1 1

(a: + 1) (a; — 1) (a; — 2) a; + 1
"^

a: — 1 x — 2

EXERCISES.
Decompose

:

a^jMO

2a^ — 12a^ — 8ar + 12
^*

x^-^ox^^fl

2a

x^ 4- Sx -\-4:

x^ -{. x^ — 4.x — 4:

X

x^-^a^

aW
(a;2 _ «2) {^ - h^)x^ — w^

360. When the equation Fx =zO has two or more equal

roots, the preceding form fails, because all the terms of the

second member of {h') will then vanish when we suppose x

equal to one of the multiple roats. In this case we must pro-

ceed as follows

:
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If Fx = {x — a)^ {x — 0)^ (x — y)P,

we suppose

iric (:^ _ a)^ '^ {x— cc)^-^
'^

(x — «)'^-2
"^ "^

o; — €«

+ (^ _ /3)^
+ J^'^yi^i + + ^z:^

+ ^ + ^-1 4- 4. _^^.^ {x — y)P ^ {x-^ y)P-i ^ *
* ' ^ ^ — y

etc. etc. etc.

In the case of m, n, or p = 1, this form will be the same

as (b), as it should.

By reducing the second member to a common denominator,

and equating the sum of the numerators to (px, we shall have,

as before, a number of equations the same as the degree of x

in Fx.

EXAMPLE.

^ Sx^ — 9x^ — 2:r — 1
Decompose

x^ _ 2x^ — 2x^ -^ 4:X^ -^ X — 2'

of which the roots of the denominator are — 1, — 1, 1, 1, 2.

Solution. Because of the roots just given, the expression

to which the fraction is to be equal is

A A, B B. G
(x^lf^x--l^(x-{-lf^x-\-l^x — 2

Eeducing to a common denominator, and equating the co-

efficients of the powers of x to the coefficients of the corre-

sponding powers in the numerator 8::^^ — 4cX^ — 2a: — 1, we

have
A^-{-B^-{-C= 0,

— Ji + ^ -3^1 + ^ = 8,

— 3J[i + ^1 - 4^ — 2C = — 9,

2A^ —2A^2B^-\-2B+C=—l.
Solving these equations, we find,

A = 1, B = 2, 0=3.
A, =-2, B,=.-l,
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The given fraction is therefore equal to

{x — iy x — l'{x-\-lY x-j-1 ' x^ 2

EXERCISES.

Decompose ^^^- ^ns.^ +
j;J-jy,.

x-1 x^-2
3-

• {X + 1)2
'^'

x^ — X^-X + 1

x -^2
'^'

cx^ -\-~x^ — x — 1

Greatest Common Divisor of Two Functions.

361. When we have two equations, some values of the

unknown quantity may satisfy them both. They are then said

to have one or more common roots. Such equations, when

factored as in § 347, will have a common factor or divisor for

each common root. Hence,

Theorem. The common roots of two equations majj

be found frovv their greatest comjmon divisor.

Problem. To find the greatest cowymon divisor of two

equations.

This problem is solved by dividing the two polynomials by

the methods of §§ 96, 97, and 232.

Example i. To find the greatest common divisor of the

two polynomials,

and x^—2x^ + 4:X^ + 2:^; — 5.

FIRST DIVISION.

a;5 _ 4^ ^ 12a;3 ^ 4^2 _ 13^
I

x^ — 2a^ + ^x^ + 2x — 5

a;5 _ 2x^ + 4a^ + 2x^ -- 6x
\ x —2

— 2a;4+ 8.^3+ 2x^ — Sx

— 2x^ 4- 4:X^ — Sx^ — 4a; + 10

4:X^ + 10^:^ — 4:X — 10 = first remainder.
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SECOND DIVISION.

- 4t -10
x^ + I-

^^ — i?:2 _ 1^ i^ -1
-^x^+ 6x^-{-%x-6

^:^;2 «_^ — second remainder;

or, 5^(:r2 — 1) = second remainder.

In the next division, we may omit the fractional factor ^-,

because every value of x which satisfies the equation x^— 1 =z

will also make -^ {x^ — 1) ~ 0, so that these two equations

have the same roots. In this process we may always multiply

or divide the terms of each remainder by any factor which will

make their coefficients entire.

THIKD DIVISION.

4:X^ + 10:^2 — 4:X — 10 x^-1
4,0? ^4,x 4.x +10

10a;2 — 10

10a;2 — 10

Hence, the G.C.D. of the two functions is x^ — 1, and

their common roots are +1 and —1.

This result may also be reached by factoring the given

equations, and multiplying the common factors, thus

:

a^ -_ 4^4 _|_ i22;3 + 4a;2 — 13a;

= X {x — 1) {x + 1) {x -' 2 — di) {x — 2 + 30,

x^^2x^-\- 4a;2 + 2:^; — 5

= {x — l){x + l){x^l-- 2i) (a; - 1 + 2i),

We see that the common factors are

(x -~ 1) (r^; + 1) = a;2 - 1.
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The rules for throwing out factors from divisor or dividend

are as follows

:

I. If both given polynoTnials contain the same factor

in all their terms, re7)%ove this factor, and after the

G. C. D. of the remaining factors of the two polynomials

is found, multiply it by this factor.

Proof. If a be such a factor^ and X and Y the quotients

after this factor is removed from the two polynomials, the lat-

ter, as given, will be

aX and a Y.

Since a is now a common divisor of both given polynomials,

if we call D the G.O.D. of Xand Z, it is evident that aD will

be the G.C.D. of aX and aY.

II. Any factor common to all the terms of any divi-

sor, and not contained in the dividend, ma;y be thrown
out.

Proof. If this factor were any part of the G.C.D. sought,

it would, by § 232, be a factor of each dividend. Since the

only factors we require are those of the G.C.D, factors In a

divisor only may be rejected.

EXERCISES.

Find the G.C.D. of the following polynomials:

I. x^ — 1 and ^ — 1.

2

3

x^ — 1 and x^ — 1.

«5 _ 2a^ — ^3 + 3«3 _ 2a— 15 and a^^a^—^a^—a+ 6.

26x^ -j-6x^ — x — l and 20a;4 -\-x^ — l.

a^ +2^2 + 9 and a^ + 2a^ _ 6a — 9.

m^ -\- 3m^ + 3m + 1 and m^ — 1.

xi^Sa^ + 21.^2 _ 20:r + 4 and 2c(^ — 12a;2+21i2^~10.

a^ -{- a^ — a — 1 and a^ + a^ — a — 1.

363. The given polynomials may be functions of two

or more symbols, as in § 97. We then arrange them accord-

ing to the powers of one of the symbols, and perform the divi-

sions by the precepts of § 97. I
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Ex. Find the greatest common divisor of

q:^ —- ax^ + a {b -{- c) X — ahc — hx^ — cx^ + hex

and 01? — ax^ — a{b + c)x — abc + hx^ -\- cx^ + hex.

The quotient of the first division will be unity, so we write

the two functions under each other, thus

:

a? — {a + h -{- c)x^ -^ {ah -\- he -^ ca)x — ahc

a? + {— a -^h -^ e)x^ — {ah — he -\- ca) x — ahe

— 2{h + e)x^+ 2 (a^ + ae) x = 1st rem.

Dividing this remainder by —2{h+ e), we have the next

divisor. We then perform the next division as follows

:

a? + {—a-^h+ e)x^ — {ah—he+ea) x — ahe

x^ — ax^

x^ — ax

X -V^b^rc)

{b-\-G) x^ — {ah—hC'\-ca) x — ahe

{h -\-e)x^ — {ah + ca) x

hex — ahe = 2d rem.

Dividing this by the factor he, which is contained in all its

terms, we have x — a for the next divisor, which we find to

divide the last divisor, and therefore to be the G.C.D. required.

'EXERCISES.

Find the G.C.D. of

a^ + Shcx-h ¥ — €^ and a? 4-{c-^h) x^-i-{P'i-he+(?) x,

a? + Sax -\- a^ — 1 and x^ — {a^ — 2a) x -{- a — 1.

{a-{-h-{- c) {ah+ ^c+ ca) — ahe and a^ -j- ah — ae — he,

x^ + 4a^ and x^ — 2a^x -f- 4:aK

x^— ax^ — ¥x + ah^ and x^ — a^,

x^ -\- a^ -^ ¥ — dahx and x^ + 2ax + a^ — 5^.

^4 _ 2a;2 + 2 - -, + ^ and 0:4 __ 2^:2 + -o - 1^.
X^ X^ 0^ 7^

x^ — x^y + xy^ — y^ and x^ -\- x^y^ + y^.
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Traiisformation of Equations.

363. Def. An equation is said to Tbe Transformed
when a second equation is found whose roots bear a
known relation to those of the given equation.

Rem. Sometimes we may be able to find a root of the

transformed equation, and thence the corresponding root of

the original equation, more easily than by a direct solution.

Problem I. To change the signs of all the roots of an
equation.

Solution, By changing x into — ic in a given equation,

the signs of the terms containing odd powers of x will be

changed, while those of the even powers will be unchanged.

Hence, if a be any root of the original equation, — a will be

a root of the equation after the signs of the alternate terms are

changed. Hence the rule

:

Change the signs of the alternate terms, of odd and
even degree, in the equation.

Problem II. To diminish all the roots of an equa-

tion hy the same quantity h.

Solution, If the giyen equation is .

x^ + p^x^-^ + p^xP'-^ + -\-pn = 0,

and if y is the unknown quantity of the required equation, we

must have

y =. X -- h.

Therefore, x :=: y -{- h.

Substituting this value of x in the equation, it will become

?/''-i-(i?i+^/02/''"H ^,^ + (^_l)^^7, + g)/,2 l^^-2
+ etc. {a)

When h, n, and the ^'s are all given quantities, the coeffi-

cients of y become known quantities.

I
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EXERCISES.

1. Transform the equation x^ — ^x — ^ z=z into one in

which the roots shall be less by 1.

2. Transform x^ — dx^ -\- blx — 1 = into one in which

the roots shall be greater by 5.

364:, Removing Terms from, Equations, The quantity li

may be so chosen that any required term after the first in the

transformed equation shall vanish. For, if we wish the second

term of the equation {a) to vanish, we have to suppose

j)^ + nil =z 0,

which gives ^ = — ^.

We then substitute this value of Ji in the equation {a),

which gives an equation in which the second term is wanting.

If we wish the third term to vanish, we must determine h

by the condition

which requires the solution of a quadratic equation. Each
consecutive term is one degree higher in the unknown quan-

tity h, and the last term is of the same degree as the original

equation.

This method is principally applied to make the second

term disappear, which requires that we put

n

Example. Make the second term disappear from the fol-

lowing equation,

x^ \- px -^ q •=: 0,

Solution, Hence, w = 2 and p^ = p, so that

;. = -|.

P
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f-P +g = 0,

Making this substitution, the equation becomes

4

which i« the required equation.

Eem. This process affords an additional elegant method of

solving the quadratic equation.

The last equation gives

/p2 1

The value of x, being equal to i/ + h, then becomes

which is the correct solution.

EXERCISES.

Eemove the second term from the following equations :

1. x^—%X^-\-^X—l=: 0.

2. ii;4 _ 4^3 _|_ 3^2 _ 8 zz: 0.

3. ^ -^ 5^4 + 2a;3 _!_ 2^2 _ 3^ __ 0,

4. x^ — 12^5 4- 2:^2 — X =z 0.

Eem. The theory of the above process will be readily com-

prehended by recalling that the coefficients of the second term

is equal to the sum of the roots taken negatively, or if a, P, y,

etc., be the roots,

It is evident that if we subtract the arithmetical mean of

all the roots, that is, — — , from each of them, their sum will

vanish, because

ec4-^ + /J+^ + y + ^ + etc. = ~i?i +n^ = 0.
n n ' n ^^ n

Hence, when we put «/ — — for ic in the equation, the sum

of the roots, and therefore the second term, vanish.
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365. Problem. To transform an equation so that the

roots shall he mivltiplied by a given factor m.

Solution, Since the roots are to be multiplied by m, the

new unknown quantity must be equal to mx. So if we call

this quantity y, we have

y z= mXy

which 2jives x ^=l —*

Substituting this in the general equation, it becomes

^ + Pi —^1 + P2 —^2 + • • • • +2Jn = 0,

Multiplying all the terms by m% the equation becomes

yn _^ 7np^y^~^ + m^p^y^-^ + .... + yn'^pn = 0.

Hence the rule,^

Multiply the coefficient of the second term by m, that

of the thii^d by m^, and so on to the last term, which will

be multiplied by m^.

If the roots are to be divided, we divide the terms in the

same order.

EXERCISES.

1. Make the roots of ri;^ — 2a; + 3 = four times as great.

2. Divide the same roots by 2.

366. Problem. To transform an equation so that its

roots shall be squared.

Solution. Let the given equation be

a;4 + PxX^ + p^x'^ + l^x + p^ =: 0.

If ^ be the unknown quantity of the new equation, we
must have

y — x\

which gives x =: ±2/^.

If we substitute a; = ^/^ in the given equation, It may be

reduced to the form

y'^ 4- P%y + ^4 + {PiV + Pz) r - 0.
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If we substitute a; = — y^, the result will be

y'^ + ihv -^-v^ — {Piy + p-i) r = 0-

Since the value of y must satisfy one or the other of these

equations, it must reduce their product to zero ; we therefore

multiply them together. Considering them as the sum and

difference of a pair of expressions, the product will be

{y^ -^p^y + V4I - {Piy ^ p^Yy = 0,

or

y'+{^P2-Pi')y'+{P2'+^P4-^PiP3)f+(^:P2P^'-Pz')y+p,'
= 0.

EXERCISES.

1. Transform the quadratic,

x^ — 5x -\- 6,

of which the roots are 2 and 3, into an equation in which the

roots shall be the squares of 2 and 3, using the above process.

2. Transform in tlie same way

^3 ^ 12:^2 _!_ 44^. _!_ 43 _ 0,

3. Transform

x^ — 4:X^ — 10ir3 + 40a;2 -{. dx — 36 = 0.

Generalization of the Preceding Problems.

367. Problem. Given, an equation of any degree

in an unhnoivn quantity x

;

Required, to transform this equation into another of
which the root shall he a given function of x,

Solution. Let ?/ be a root of the required equation, and fx
the given function. We must then have

f^ = y'

Solve this equation so as to obtain x as a function of y.

Substitute this value of x in the original equation, and form as

many equations as there are values of y.

The product of these equations will be the required equa-

tion in «/.
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EXERCISES.
1. Transform

iC2 _ 7x + 10 =:

SO that the roots of the new equation shall be '^x\

2. Transform x^ — ^x^ + 2cc =
so that the roots shall be ax + h.

3. Transform x^ — ^x -\- 1^ =:

so that the roots shall be ^x^' — 3.
o

Resolution of Nvimerical Equations.

368. Convenient method of computing the numerical value

of an entire function of x for an assumed value of x.

If we have the entire function of x,

Fx = ax^ + bx^ + cxP -^ dx + e,

we may put it in the form

Fx =1 "^[^(^ax -\- l))x -{ c'\x + d\ X -\- e.

Therefore^ if we put

ax -\-h ^ V

,

h'x -\- c =: c\

c'x + c? =: d', d'x -{- e =^ e\

we shall liave Fx = e\

Numerical Example. Compute the values of

Fx = 2qP — ^x!^ — 6a;3 + 82) — 9

for a; =: 3 and a; = — 2.

We arrange the work thus

:

Coefficients,

Prod, by {x=^),
2 -3 -6

+ 6 +9
~+3 +3

+ 9

+ 9

+ 8

+ 27

+ 35

- 9

+ 105

+ 96

Hence, F^ = 96.

For 2: = — 2,

2 -3 - 6

—4 +14
-7 +8

—16
—16

+ 8

+ 32

+ 40

— 9

—80
-89

Hence, F(~2)^ - 89.
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This, it will be noticed, is a more convenient process than that of

forming the powers of x and multiplying and adding.

369. Having an entirefunction of x, and jMtting x:=.r-\-li^

it IS required to develop the function in poiuers of lu

It will be remarked ihat this problem is substantially identical with

that of § 362, and the solution of this will be the solution of the formero

But in the former case h was supposed to be a given quantity, whereas it

is now the unknown quantity corresponding to y in the former problem.

Example of the Problem. If we have the expression

Fx — 2x^ + 3a;2 + 4,

and put X = 2 -\- h, it will become, by developing the sepa-

rate terms,

F {2 -\-h) = 2¥ + loh^ + 367^ + 32.

Ge:n"eral Rule for the Process. First compute the

value of Fr by the process employed in § 366.

Then repeat the process, using the successive sums ob-

tained in the first process instead of the corresponding

coefficients, and stopping one term before the last. The
result will be the coefficient of li.

Repeat the process with the new sums, stopping yet

one terin sooner. The result luill be the coefficient of W.

Continue the repetition until ive have the first term
only to operate upon, which will itself be the coefficient

of the highest power of h,

Ex. I. The example above given is performed as follows:

Coefficients, + 2 + 3 + 4
Product by r, 4 14 28

First sums, 7 14 32
Second products, 4 22

Second sums, 11 36
Tliird product, 4

15

Result, F{2 + h)1 ^ 2h^+inm+mh+ 32.

Ex. 2. In the function^

Fx = 2x^ —7x^ + 52^ — 2x^ ^ Qx — 8,

let us put X =1 3 -{- Ji, and express the result in powers of y^.
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CoefEcients, 2
Products by 3,

First sums.
Second products,

-7
6

-1
+ 6

+ 5
-3
+ 2

+ 15

-2
+ 6

+ 4
+ 51

+ 6

+ 12

+ 18
+ 165

-8
+ 54

+ 46

Second sums,
Third products,

+ 5
6

+ 17
33

+ 55
150

183

Third sums. 11
6

17
6

23

50
51

101

205

Result, F{^-]-h) = 2h' + 237^^ + lOl/i^ + 205^^ + 183^+ 46.

EXERCISES.
1. Compute 2A5 _^ 23/^4 _|_ 101/^3 _^ 205/^2 -f 183^ + 46, when

h = x — d.

2. Compute a^ — "^/x + 7 for i^; = — 4 + 7^, — 3 + k, etc.,

to +3 4- h.

Proof of the Preceding Process. If we develop the ex-

pression

a{h+ r)'' -\-'b{n-\-rY-^ + c(7i + r)^-2 _^ d{7i-^rY-^ + etc.,

and collect the coefficients of like powers of h, we shall find

Coef. of 7^^ — a,

li^-^ r=r nar + h,

nn-'i = {^\ ar'^ H- {n -\)lr -\- c, {A)

in-^ =
[|]

ar^ + (--^) br^ + (^^ - ^) cr + d,

Now examining Ex. 2 preceding, it will be seen that we can

make the computation by columns, first computing the whole

left-hand column and thus obtaining the coefficient of h^~^,

then computing the next column, thus obtaining the coeffi-

cient of h^~% and so on. Commencing in this way, and using

the literal coefficients, a, b, c, etc., and the literal factor r, we

shall have the results

:



450 GENERAL THEORY OF EQUATIONS.

ah c
j

ar ar^ + br

ar -\- b ar^ -{- hr -{- c

ar 2ar^ + br

2ar + b dar^ + 2br + c

ar 3ar^ + br

3ar + b 6ar^ + 3br + c

nar -^ b (9)
^^^ + {n —l)br-[- c.

If n is the degree of the equation, then, by the preceding

process, we shall add the product ar to b n times, the n sepa-

rate sums being

ar-\-b, 2ar-\-b, 3ar-\-b, .... nar-{-b.

To form the second column, we multiply each of these

sums except the last by r, and add them to the coefficient c.

The terms in ar added being ar^, 2ar^, 3ar% etc., the sum

will be (1 + 2+3 + -\-7i— l) ar^. The coefficient is a figu-

ni (^ __ '^\

rate number equal to —^^-^r (§§ 286, 287). The sum of
2

the coefficients of br is n — 1, because there are n — 1 of

them used, each equal to unity. Therefore the final result is

( - j ar'^' + {n — l)br -\- c, -

which we have found to be the coefficient of /^^~^.

In this second column the partial sums or coefficients of

ar'^ are ^

1, 1 + 2 = 3, 1 + 2 + 3=: 6, etc., to 1 + 2 + 3 + .... +(/^— 2)=

Therefore the numbers successively added to form the co-

efficients of ar^ in the third column are 1, 1 + 3 = 4, 1 + 3 + 6

= 10, etc. The coefficients of br'^ will be the same as those of

ai^ in the column next preceding.

Continuing the process, we see that the coefficients uro

formed by successive addition, as in the following table, whero

each number is the sum of the one above it plus the one on its
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^ y. |.2 ^ y.4 ^ y.8 q\^q^

w 1 1 1 1 1 1 etc.

h 2 3 4 5 6 etc.

A2 3 6 10 15 etc.

h^ 4 10 20 etc.

U 5 15 etc.

¥ 6 etc.

h^ etc.

etc. etc.

left. We have carried the table as far as nz=z% and the ex-

pressions at the bottom of each column will, when 7^ = 6, be

formed from the numbers in this table, taken in reverse order,

thus

:

Column under hy Qar + b
;

^' " c, 15ar^+ hh* -f- c;

« '' d, 20ar^+ lObr^ -{-4:cr + d;
" '' e, 15ar^+ 10br^-\-dcr^+3dr + e;

'' ''
f, 6ar5+ 5Z»r4+ 4cr3 4-3^r2+ 26r+/;

" " g, ar^-j- br^-i- cr^-\- dr^+ er^ +//•+?/.

IS^ow the numbers of the above scheme are the figurate

numbers treated in § 287, where it is shown that the n^^ num-
ber in the i^ column after the column of units is

n(n + 1) (^^ + 2) (n -{- i — 1) _ /nj-i-^n
1.2-3 i

"~
\ i

/'

Comparing with the coefficients in the equations (A), we
see that the two are identical, which proves the correctness of

the method.

Sao. Application of the Preceding Operation to the Ex-
traction of the Roots of Numerical Equations* Let the equa-

tion whose root is to be found be

a^ + Ix^-'^ + cx'^-^ 4- . . . . -^ g — 0.

We find, by trial or otherwise, the greatest whole number
in the root x. Let r be this number. We substitute r-]-h for
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X in the above expression, and, by the preceding process, get

an equation in /?, which we may put in the form

ali^ -f Vli^-^ + cVi^-^ + d!li'^-^ + 4- ^' = 0.

Let /be the first decimal of li. We put r' + /^' for 7^ in

this equation, and, by repeating the process, get an equation

to determine h\ which will be less than 0.1. If r" be the

greatest number of hundredths in li\ we put li! = r" -\-h", and

thus get an equation for the thousandths, etc.

371. The first operation is to find the number and approx-

imate values of the real roots. There are several ways of doing

this, among which Sturm's Theorem is the most celebrated,

but all are so laborious in application that in ordinary cases it

will be found easiest to proceed by trial, substituting all entire

• numbers for x in the equation, until we find two consecutive

numbers between which one or more roots must lie, and in

difficult cases plotting the results by § 345.

It is, however, necessary to be able to set some limits be-

tween which the roots must be found, and this may be done

by the following rules

:

I. An equation in which all the coefficients, including

the ahsoliite term, are positive, can have no positive real

root.

For no sum of positive quantities can be zero.

II. If in computing the value of Fx for any assumed
positive value of x, hy the process o/ § 366, we find all the

sums positive, there can he no root so great as that

assumed.

For the substitution of any greater number will make all

the sums still greater, and so wdll carry the last sum, or i^^*,

still further from zero.

III. If the sums are alternately positive and nega-

tive, the value of x we employ is less than any root.

IV. // two values of x give different signs to Fx, there

must he one or some odd numher of roots hetween these

values (compare § 345).
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V. Two values of x which lead to the same sign of Fx
iiicliule either no roots or an even number of roots be-

tween them.

Let us take as a first example the equation

2;3 _ 72: -h 7 = 0.

Let us first assume 2; = 4. We compute as follows :

Coefficients, 1 —7 +7
Products, 4 16 36

Sums, +1 T^ T43

So F {i) rrz +43, and as all the coefficients are positive,

there can be no root as great as 4.

Putting 2; = — 4, the sums, including the first coefficient

1, are 1, —4, +9, —29. These being alternately positive and

negative, there is no root so small as — 4.

Substituting all integers between —4 and -j-4, we find

i^(-4) = -29, F{0) :=: + 7,

F{-^)= + 1, F{1) = + 1,

F{-2) = 4-13, F{2) = + 1,

F{—1) = +13, i^(3) = +13.

If we draw the curve corresponding to these values (§ 345),

we shall find one root between —3 and —4, and very near

—3.05, and the curve will dip below the base line between +1
and +2, showing that there are two roots between these num-
bers ; that is, there are two roots of the form l-\-h, li being a

positive fraction. Transforming the equation to one in A,

by putting 1 + A for .r, we find the equation in h to be

7^3 ^ 3/^2 _ 47^ ^ 1 :3:: 0. (1)

Substituting 7^ = 0.2, 0.4, 0.6, 0.8, we find that there is

one root between 0.3 and 0.4, and one between 0.6 and 0.7.

Let us begin with the latter.

If in the last equation we put 7^==0.6 + ^', we find the

transformed equation in li^ to be

Fli! = h'^ + 4.87/2 ^ 0.687/ - 0.104 = 0. (2)

If we substitute different values of h' hi this equation, wo

29
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shall find that it must exceed .09, and as it must be less than

0.1, we conclude that 9 is the figure sought, and put

h' =z .09 + h".

Transforming the equation (2), we find the equation in h"

to be
h"^ + o.07A"2 + 1.5683//' - 0.003191 = 0. (3)

Since h" is necessarily less than 0.01, its first digit, which

is all we want, is easily found, because the two first terms of

the equation are very small compared with the third. So we
simply divide .003191 by 1.5683, and find that .002 is the re-

quired digit of h". We now put

h" = .002 + h'",

and transform again. The resulting equation for h'" is

jr^ + 5.0767z'"2 + 1.588592y^'" - 0.000034112 = 0. (4)

The digits of x, h, Ji', and h" which we have found show

the true value of a; to be ,

X = 1.692 + h'".

By continuing this process, as many figures as we please

may be found. But, after a certain point, the operation may
be abbreviated by cutting off the last figures in the coefficients

of the powers of h.

The work, so far as we have performed it, may be arranged

in the following form (see next page).

The numbers under the double lines are the coefficients of

the powers of h, h', h", etc. It will be seen that for each digit

we add to the root, we add one digit to the coefficient of li^,

two to that of h, and three to the absolute term. We have

thus extended the latter to nine places of decimals, which, in

most cases, will give nine figures of the root correctly. If this

is all we need, we add no more decimals, but cut off one from

the coefficient of h, two from that of h^, and so on for each

decimal we add to the root.

We shall find the next figure after 1.692 to be zero ; so we

cut off the figures without making any change in the coeffi-

cients. The next following is 2, so we cut off again for it, and

multiply as shown in the following continuation of the process

:
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-7
+1 + 1

+1 -6
+1 +2
+ 2 -4.00
+ 1 + 2.16

+ 3.0 -1.84
+ .6 + 2.52

+ 3.6 + 0.6800
.6 + 0.4401

4.2 + 1.1201
6 + .4482

+ 4.80 + 1.568300
9 10144

4.89 + 1.578444
9 10148

4.98
9 + 1.58859^

+ 5.070
2

5.072
2

5.074
2

+ 7
-6

1.692

+ 1.000
-1.104
- ,104000

+ .100809

- .003191000

+ .003156888

-34112

+ 5.076

CONTINUATION OF FROCESS.

+ 15.076 + 1.5885|9!2
1

-34112
31774

1.5887

1

-2338
1589

1.5|8|8|8
— 749

636

—113
111

-2

I

021471

It will be seen that from this point we make no use of the

coefficient 1 of /^^, and only with the second decimal do we use

the coefficient of JiK After that, the remaining four figures

are obtained by pure division.

There is one thing, however, which a computer should

always attend to in multiplying a number from which he has

cut off figures in this way, namely

:

Always carry to the product the ninnher ichich would

have been carried if the figures had not hceri cut off, and
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increase it hjj 1 if the figure following the one carried

would have been 5 or greater.

For instance, we had to multiply by 7 the number 151888.

If we entirely omit the figures cut oif, the result would be 105.

But the correct result is 1111216; we therefore take 111 in-

stead of 105.

Again, in the operation preceding, we had to multiply

158|88 by 4. The true product is 635|52. But, instead of

using the figures 635, we use 636, because the former is too

small by |52, and the latter too great by |48, and therefore the

nearer the truth. For the same reason, in multiplying 1.58818

by 1, we called the result 1589.

Joining all the figures computed, we find the root sought

to be 1.692021471.

Let us now find the negative root, which we have found to

lie between — 3 and — 4. Owing to the inconvenience of

using negative digits, and thus having to change the sign of

every number we multiply, we transform the equation into one

having an equal positive root by changing the signs of the

alternate terms. The equation then is 2;^ — Ix — 7 =: 0.

The work, so far as it is necessary to carry it, is now ar=

rammed as follows:

3^

3
3

6
oo

4

9.04

_4
9.08

_^
9120

8

9.128

8
9.136

^
(9l|44

-7

2
18

-7
'I

3.0489173395

6

20.0000
.8616

20.3616
.3632

20?724800
73024

20.7978-M
73088

20.87091 12

823 1

20.87914|2
823

20T8873J7

9

20|.8|8|7|5

-1.000000
814464

-0.185536000
.166882592

- .19153408
18791228

-862180
2088': 5

^53305
146213

-7092
6266

627

-199
188

-11
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The negative root of the equation is therefore

— 3.0489173395.

EXE RCI SES.

Find the roots of the following equations:

1. a;s _ 3^2 ^ 1 _ (3 real roots).

2. x^ — Zx -\-l — (3 real roots).

3. x^ — 4^^ -^ 2 =2 {% positive roots).

4. ^;2 + ,^; _ 1 — 0.

5. Prove that when we change the algebraic signs of the

alternate coefficients of an equation, the sign of the root will

be changed.

372. The preceding method may be applied without

change to the solution of numerical quadratic equations, and

to the extraction of square and cube roots. In fact, the square

root of a number ^ is a root of the equation x^ — ^ = 0, or

x^ -^ Ox — n =z 0, and the cube root is a root of the equation

a^ -\-0x^ -\-()x — n = 0,

Ex. I. To compute a/2.10 -2
1 1.4142135a

1 1

1 -1.00

1_ .96

2:0

0.4

-.0400

281

24 -11900
4 - - 11296= -60400

2.80 56564

2.81

—J- -1008
2.820 849

1 -159
2.824 JM

-18

2.8280 IZ
2 1

2.8282
2

2|.8|2|8|4
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Ex. 2. To compute the cube root of 9842036.

2 4

2 4
2 8

4 1200
2 61

60 1261
1 62

.—--

61 132300
1 2536

62 134836
1 2552

630 137388.00
4 192.69

634 137580.69
4

638
192.78

137773.47
1.93

642.0

.3
1317|7175|4

642.3

3

642.6

3

-9842036
I
214^30303242

8

-1842
1261

-581036
539344

41692000
41274207

-417793
413326

4467
4133

276

58
55

8

:64^i^



APPENDIX,

SUPPLEMENTARY EXERCISES.



Note. The following additional exercises and problems are of the

same general character with those in the body of the book. They are

partly original, and partly selected from the best recent German col-

lections of problems. They are arranged under the section numbers

to which they pertain, so that the teacher, on arriving at those sections,

will be able to select as many of them as he deems necessary for the

drill of his class.



SUPPLEMENTARY EXERCISES.

Algebraic Addition and Subtraction.

§15.

Supposing one to start from a certain point on the scale

of numbers, and then move over positive and negative spaces

as follows, it is required to find his stopping-point in each

of the following cases:

1. Starts from + 4, and moves through + 2 — 3 + 9 — 7

— 2 units.

2. Starts from + 9, and moves through — 1 — 6 — 9 + 5

+ 8 units.

3. Starts from — 1, and moves through + 2 — 3 + 4 — 5

+ 6 units.

4. Starts from — 8, and moves through — 1 + 3 — 5 + 7

— 9 units.

5. Starts from — 12, and moves through —9-6 + 8 + 5

+ 8 units.

§31.

I. How far is A from B (positively or negatively) when

they have severally made the following motions from the same

point on the scale of numbers:

, A . , B .

a. -2-3-5 + 7. +1 + 2 + 3 + 4 + 5.

2>. -5 + 5-6 + 6. +5 + 6-2-4 + 12.

0, -2 + 7 + 8 + 9 + 10. -7-3 + 4-5-6.
a, _i-2 + 6-2-l. +3 + 4 + 5-8-3. Ans.-l.
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2. What is the meaning of the following expressions :

That man is — 6 years older than his wife ?

Kichmond is — 70 miles north of Washington ?

You are — 3 inches taller than your brother ?

3. The Autocrat of the Breakfast Table tells of a Parson

Turrel who, dying in the last century, bequeathed a noted

chair to the oldest member of the Senior class in Harvard

College, which was to be passed down from class to class

indefinitely. The first Senior who got it was to pay 5 crowns,

but each succeeding one was to get it at a price 1 crown less

than that paid by his predecessor. How would the require-

ment of the will work at the end of 7 and of 100 years?

§34.

I. Find the value oi a — h and of b — a when a and b have

the following sets of values :

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

a= +2, +7, -9, -5, -17, + 8, -33, -18, +12, +22
b= -3, -9, -3, +8, -29, +14, +13, -19, -12, -22

a-b= +5
b—a— —5

2. Compute the values of 1 + 3^ and of 1 — 3:^; for the

following 11 values of x :

:^ =- 5, - 4, - 3, - 2, - 1, 0, + 1, + 2, + 3, + 4, + 5.

3. Compute the values of a -\-2b and ot a — 2b for each

of the 10 sets of values of a and b in Ex. 1.

§56.

1. How much is a -\- 2x greater than a — 3x, and vice

versa 9

2. How much \s a — b greater than b — a?

3. How much is greater than a — 2b?

4. How much is greater than — x? Than -\- x?
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5. A party of 9 boys were formed into a solid square of

3 rows, with 3 boys in each row. The rear left-

hand boy B was t inches tall. Every other boy

was X inches taller than the boy next behind him,

and 2/ inches shorter than the boy on his left. Ex-

press the height of each boy, and the sum of the heights of

all the boys.

6. During six successive days a man earned m cents more

every day than he did the day before, and paid out n cents

less. On the first day his earnings were h cents, and his pay-

ments h cents. How much had he left at the end of the

sixth day?

7. Of two travellers, X went east h miles and then returned

h miles toward the west ; Y went west x miles and then

returned y miles toward the east. If they started together,

how far was X east of Y when they stopped ? How far was

Y east of X ?

8. There were three travellers on the same road, B being

X miles west of C, and C y miles west of A. A went m miles

toward the east ; B went twice as far as that toward the east;

and C went 4??i miles toward the west. How far was each

west of the two others when they stopped ?

9. Of two men, A and B, A had a dollars and B had x

dollars on Monday morning. On Monday evening A paid B
d dollars, and B returned y dollars of this to A. Each fol-

lowing evening during the week A paid B g dollars less

than before, and B returned A z dollars less than he did the

evening before. How much had each on each morning from

Tuesday to Saturday?

10. Four casks, marked A, B, C and D, each containing r

gallons of water, stood at the corners of a square. Then m
gallons were poured out of A into B, 71 gallons out of B into

C, p gallons out of into D, and q gallons out of D into A.

How much was then in each cask ? Prove the result by

showing that the sum of the quantities in all the casks is 4r.

II. The same four casks at first contained a, h, c and d

gallons respectively. Then x gallons were poured out of B
into A. Then a quantity equal to what was left in B was
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poured from C into B ; a quantity equal to wliat was left in C
was poured from D into ; and, finally, a quantity equal to

what was left in D was poured from A into D. How much
was then left in each cask ? Prove as before.

12. Three traders, A, B and 0, had a, 1) and c dollars

respectively. A bought c dollars' worth of goods from B ; B,

a dollars' worth from C ; and C bought I dollars' worth from

A. When each paid the other for the goods, how much
money had each left ? What was the sum-total of money
possessed by the three ?

13. Given a quadrangle the lengths of whose sides are a,

l, c and d respectively. Enough
of the side b is cut off and added
to a to double the latter; the re-

mainder of I is then doubled by
cutting off from c ; and the re-

mainder of c is doubled by cutting

off from d. How long will each side then be ?

14. Of two men starting out from the same point, A
walked m miles west the first day, and h miles more each fol-

lowing day than he did the day before ; B walked p miles

west the first day, and x miles less each day than ho did the

da^ before. How far was A west of B, and how far was B
west of A, at the end of the first, second, third and fourth

days respectively ?

15. If, on this line, we suppose the point B to be at the

East. ^ ? ^^West.

dislance h west of A, and C to be at the distance c west of A,

then, ill alirebraic language:

How fjir is A west of B ?

How far is A west of ?

How fjir is west of B ?

How for is B west of C ?

How far is the middle point between B and west of A ?

How far is the middle point between C and A west of B ?
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How far is the middle point between A and B wesb of ?

What is the algebraic sum of these last three distances ?

Note. Should the student find any difficulty in this or the next

question, he should begin by expressing the distances a and h in num-
bers, and noticing the processes by which the measures are found.

1 6. The three points A, B and C are at the respective

M A B C
I ill

distances a, h and c west of a fourth point, M. Express alge-

braically the three distances

B west of A ; A west of C ; west of B,

and take their sum. Express also the distances

A west of the middle point between M and B,

B " " " M and C,

C '^ " " MandA,

and find the sum of these three distances. Then express

A west of the middle point between B and 0,

B " " " C and A,

C " " " A and B,

and find the algebraic sum of tlie three distances. Express

also the three mutual distances !)ct\veeu tbe middle points of

lines AB, BO and CA respectively—that is :

Mid. point betw. A and B west of mid. point betw. B and 0,

etc. etc. etc.

§61.

Clear the following expressions of parentheses, and com-

bine the terms by addition:

1. 3 m — [A — 2m — {Ji -\- m) — (h — m)\
2. (ct — y) ~ (a '\- V) -^ (a — m) — {a — m).

3. (a + h)-{a-^h)^ \_{a ^ h) ^{a + ^)].

4. Vi — {37^ — [4A — {bh — m) + m] + 2m}.

5. 3c- 'M-(2d-'dc) + [- [c- d) - (3c + 2^?)]'

6. A:h - In - (4.h + In) - [3A + (4m - a) - (5m + h)].
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7. x-\- {x — a— {2a — 2x) + [a — {a ~ x)] },

8. 6a+ {6a -~ 2x+[4a - Sx - {3a - 4.x)]\.

9. {a+ b - c)+ {a- b + c)+{- a + b + c)-{a+ b + c).

10. a+ dx— {2a+ 2x) — {da + x) — [a — {a — x)].

11. b + [-2b-dc-{dc-b)-3b].
12. -[- (3w-27i)+ (2m-3/i)] + [{5m-A7i)-{3?i~4:m)].

Multiplication and Addition.

§74.

Clear the following expressions of parentheses:

1. b { a{c — x) -\-b{c-\-x) -{- ax[b ~ c{x — a)]},

2. m [x — n {b — y) -\- b {n -\- y) -\- y {n+ b)\

.

3. a?i [an (1 — a7i) -\- a'^n'' (1 — an)\,

4. h{l-Vh[l + h{l + li)^\.

5. x{l-x\l-x{l-x)']}.
6. X {2) -{- x\_q~\-x (r + ^)] },

7. a; {;? — ir [^ — a; (?' — a;)]}.

9. a
I
[(a:c — Z>) ic — c] 2: — 6?}.

10. i>i[(;?^+/).'?^+/]a:+y}.
11.

{
[{7nx — nt") X — m^] .t — ^m^ } mx,

12. [a' (^ - c) + b' {c - «) +c=^ {a - b)] abc,

13. m [a' {x + y) + b' {x-y)- x{a' + ^'^J + {a' - b') ym.

14. a {« — ^ [rt — c («^ — d)]},

.15. « |aZ> — c [a^^— c^ (a''^ — (i')]}.

16. (^ + a;)(^-.v) + («^-a;)(^+2/)-

17. {m -\- n) {x -\- y) — {m — n) {x — y),

(§ 76.)

Arrange the following expressions according to powers

of x:

1. {x'-x'+l)a' + {x'--'X+l)a'+a\
2. 1 -{-X — x^ "-x^ — a{l -{-X — X*) -\-a'^{l — x) — a^»

3. 7na^—-na^{x — l)--ma''(^'^— a:+ 1)"~ ^i<:i^{^'— ^''+i^ — 1).

4. « — a; { ^ — :?; [c — c?; (^ — a:)] }

.
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5. { {ax — h) {ax -\-h) — {bx — a) {hx+ a)
]
{a^ + h'')x.

6.
I
{mx -\- ay -[- (mx — aY] (mV — a^),

7. { {inx + ccY — [mx — ay
\
(m — nx) {m + fix),

8. a + X {b + X [c + X {d + x)]\

~ a \x -^^ I \x -\- c {d -^ x)\\.

§80.

Write out the results of the following powers and pro-

duets on sight:

I. {ax-\-lyy. 2. {ax — hyy.

3. {ay + lxy. 4. {ay — bxy.

5. {ax-^2byy. 6. {ax-2byy.

7. {ax + dbyy. 8. {ax-dbyy.

9. (m + ny X. 10. (771 -j- ^^)'^ ^.

II. ir(a;+.v)*- 12. ic (:?; — ?/)'.

13. a(a: — ,?/)
(:r+ ^). 14. ax'' {a ~ x) {a-}-x).

15. 7??/^ (2m + n) {2m — 7^). 16. mW (3m + ^?.) (3m — n).

17. (^ + by + {a- by. 18. (6j + by -{a- by.

Form the values of the following quantities, and arrange

according to powers of x, y and z\

19. {ax-\-byy -\-{bx — ayy.

20. {ax -\- byy ~ {bx — ayy
21. {2mx — nyy -\- {mx — 2nyy.

22. {2mx — nyy — {mx — 2nyy,

23. {x -\- ny) {x — 7iy) {x^ — n'y^)

— (y + nx) {y — nx) {y^ — n^x^).

24. {ax -\- by -{- cz) {ax + by — cz)

{ax — by -\- cz) {ax — by — cz).

Division.

§(85.)

1. Mx^'bc^ -^2ax^b.

2. 24«':r"?/ -V- 6fl^'^V-

3. 12a^icy -^ 4a'icV.

4. a'^o; (c + ^ ) -^ ax{c-\-d).

5. a C^-y) -^a(ic~-2/).
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6. 'bc{x+ y)-^h{x-^y).

7. x^'y {a — h) -^ X {a — Z>),

8. 10.T^ (a-V)-^ ^x^ {a'\'V)-^x.

10. 10 {a + Vf - 15 {a + ^)^ ~ 10 (^ + Z>) ~ 5 (a + Z>).

12. (a+a;r(a+2/r-(«+^r(^+2/r.
13. —V^oTl'^-^^a^h'^,

Factoring.

§89.
Factor the following expressions:

2, X — ax^ + ^^^- 3- — ^' + m^?i — m^n^.

4. «m — «'^/i^ + a%^ 5. c"Z>'" — c^'^Jf'.

6. — abc-\-if)fabc, 7. ft"^^^** — a^:c" " \

8. ahVy"^ — a'lfx^y, 9. m/z-^jf?^ — S7n^7i^p.

10. 2a"ic'" - 7a'":c^ 11. 8a^c - 12aWc\

§91.

In the following exercises, first take out all monomial

factors common to the several terms, as in § 89, and factor

the remaining terms by the rules:

1. a^ — aV^. 2. mW — w*.

3. ^ififx — ^yi^x. 4. mx^ — m.

5. aV - a\ 6. ax^ — ax.

7. rrfx^ — m*x. 8. 9X' - 4:X\

9. aV - 4:a'x\ xo. 7n''y^ — 7/iy.

II. 16my - 2bmY' 12. 4.9aV - ma'x.

13. am^ -a^ + ^a^h - ab\ 14. a.V - 4bV + 4hcx^ — c'x\

15. «ic'" - 4a'2:" + ^a\ 16. a'h - 4.a'F + 4.ah\

17. 4yx' - 12xY + 9x'y\ 18. ^xY + 12^:^' + ^^Y'

§93.

1. 2 {x' +y* + z*) -4: {xY + y'z' + zV).

2. a' + 16b' + c'- Sa'F - SFc' - 2cV.
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3. 2 (xY + y'^z' + z'x') -x' - f - z\

4. 8a^Z>V+ Z%Ve + 8cV - ^* - 16^^ - 16c*.

§94.

In the following, begin by removing all factors common
to the two terms as in § 89:

1. «^ + 4aV + 4aV. A71S, a' {a + 2^;')'.

2. a^ — aV. Ans, a'' {a -\- x) {a — x) {a* + ^^^^ + ^*)-

3. «V — x". 4. ay' — ay .

5. (a - S)^ - c\ 6. (« + ^)^ - c^\

7. a;' (a; - yY - a;^ 8. :c* + 8a:^/^

9. {a + by + a\ 10. a{a + ly + a\

II. a;' + /. 12. a'+ aZ>'.

13. a" + 64mV. 14. m' + Um'x'.

IS. a;= + ^'. 16. a' + 8.

17. «' + 216. 18. 64:^'' + 125cl

19. a;^ + /- 20. ic' — a'.

21. Sa' - 27b\ 22. 64m' - M\
23. .-K' + l. 24. 64a' + Z^^

25. a' + ab'. 26. a - 27a\

27. ab'-b\ 28. a' - 243.

29. 32a'° + l. 30. 16a' — a.

31. 3a;'+ 16. *32. 27a^ + 8a2:^

33- (2^ + 2/)'- (a;--yy 34. {x + f/)' + (^ - 2^)'.

35- {x + yy-{x~-yy 2,6, 1 — a^ + 2aa; — x".

Factoring Trinomials. A trinomial of the form

x' -\- ax -\-h

can always be factored when we can find two numbers whose

sum is a and whose product is Z>. For if m and n are these

numbers, the trinomial is

x^ -\- {m -\- n) X -{- mn,

which is equal to

(x -\- m) (x -\- n).
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Factor:

1. x" -{- {a-\- h) X + ah. Arts, {x -{- a) {x -{- h),

2. y'+^ + 2. Ans. {^ + l)(y + 2).

3. 2/^ + 4«^ + 3. 4. cr^ + 5.T + 4.

5. n" + 5yi + 6. 6. t^'^ + i5n + 8.

7. a' + 7«^ + 10. 8. a' + 8a + 12.

9. m' + 7m + 12. 10. m'* + 8m + 15.

II. x' + Ix" + 10a;. 12. y' -\- 6y' + 8y.

13. x' + 7x' + 12a;^ 14. a' + Sa' + 15a'.

15. x' -f 19^;^ + 88. 16. a' + 12a' + 35.

17. x'"" + 9^:^ + 20. 18. y'"" + by'"" + 6.

19. ir'' + (^ "" ^^) ^ "" ^^- ^^s. {x + m) (a; — 7i),

From this last example it is seen that when the quantities

m and n have opposite signs the last term of the trinomial

will be negative^ while the middle term will have the sign of

the greater of those quantities, being equal to their algebraic

sum or numerical difference.

20. x^ — X — 6, Ans. {x — 3) (x -{- 2).

21. x' -x'- 12. 22. y* - 2y' - 15.

23. a' + a — 30. 24. a^ —a — 30.

25. m* + 2m — 8. 26. m"^ — 2m — 8.

27. 7i' - dn' - 40. 28. m' + 3m' - 40.

29. a;^ + {2a — db) x — 6ab, 30. x'' — dax — 4td'.

31. a;* + ao;' - 6a\ 32. a:''* - Ux'' - 12b\

If the quantities m and 7i are both negative, the sum
m + n will be negative and the product positive, because

{x — m) (x — n) = x^ — {m -\- n) x -\- mn.

ZZ- x" - {a-^b)x + ab. 34. y' - oy + 6.

35. f-^ + ^' 36. x-" - nx + 10.

37. x" - IZx + 40. 38. x" - 8.T + 15.

39. ax" — dax + 2a, 40. ax^ — Qax"" -{- Sa,

41. 7n^x^ — bmx -j- 4. 42. m.Y — 5ma: + 4.

43. ml'?;^ — dmx + 2. 44- ^^^^ — 4:ma: + 4.

45. aV — la^'x -\- 12a, 46. mV — 7mV + 12m*.

47. Tiy - 7/^y + 10n\ 48. ry - 7r'?/' + 12ry.
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In the following exercises trinomials of all the preceding

classes are contained:

I. x^ + 10^ + 24. • 2. x^ -Qx + 8.

3. x''-\-^x- 20. 4. x' + 3:r' + 2.

5. a;' - 7:?:" + 12. 6. :cy - ^Ixy + 26.

7. a'c' - Uabc + 396'^ 8. a'b'' - Ma'hx + 143:r^

9. a' - 12a + 20. 10. x' + 5O2; + 49.

II. a;' + 4a: -32. 12. a^- 7a -18.
13. a' + a' - 132. 14. a'^^V + Wb^d" - 22.

15. a* + 17a' - 390. 16. a" - 7a -^ 12.

17. x' + x- 72. 18. a;^ - 12a; + 27.

19. x" — 39x + 108. 20. a;' — a; — 12.

21. a;'* - 7a; - 60. 22. 15a;* - 17a;^ + 4.

23. (a + by - lie (a + b) + dOc\

24. a;^ + 4a; - 77. 25. a;' + 6a; - 135.

26. a;' — 14a; + 48. 27. a;' + 12a; + 35.

Miscellaneous Exercises in Factoring.

I. ax' — 2bx -\- ex. 2. ax — 2^a;+ dcy — ex -\- 2y.

3. a^x — 2eay — 4:X — y + x. 4. a^x + a^^'o;^ — 3a^"'a;'.

5. ax'— 2bx^~\- ex\ 6. tx'— pqx^ -{-px"".

7. ex' — abx^ — 2y -\- Say'. 8. aexy + 20-^ — dx'y*.

9. 2c'x'y' — x^y"^ + dx'y'. 10. 4:x'y — 3a;^?/'^+ 2x^y'.

II. (a;* - 4).

13. {x' - 81a;'').

15. o;^ -a; + i.

17. a^Z^'^ - a^Z>^ +^.
19. ia' -\-l — 4:a.

21. a;' + 2a;'y + xy'.

23. 25aV - 30aa;^.V + 9a;y

.

28. a'

x'
^5.-4-

3y ^ 9^"-

x' a;

6y' 18,«/'

12. (o;' - 9a;).

14. 4.x' -12x'y+ 9y'.

16. a'x' - y'.

18. 9a' - 1.

20. a;^^ + a;*" + i.

22. 16a*^ - 1.

24. 12a* - 36a'xy + 27x'y\

26.
a' «

,
1

8 6^
"^

ISb''
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29. %4.a'h - na'V + b4.ah\ 30. x'* - y'\

31. (4 — gij- 3-- mV + 2mV + mV.

33. 289a'^Z^^c' + 102a;>^c'^J + 9^V^.

34. 121a' - 2^Qa'¥ + 169Z>\ 35.. 98a''Z>^ - b^ahx + 8:c\

36. 16^;^ + ^x' + ^^ 37. fK - 2/".

38. d^a'h^e - bVc\ 39. j-« + l.

40. 16a^ {^aF - lObc) + 20c {6c - 4:aFy

41. — — Sax''. 42. 2^xy — Id^xyz".

43. (a - by - (a + by. 44. (3« - 5)" - (« + 2*)'-

45- ^^^^- - ^^y. 46. (« + 5)= - K -2«& + J^).

47. (a - 5)' - (4a'' — 12ab + 9b'}.

48. {a + if - (4a' + 12ab + 9b').

49- i - 2 + J. SO- «' - 2««/" + 2/^
X tl>

51. ^'^ -4a;^^^ + 4^^. 52. a'^*'^ - 2^c& + c\

53. a^'^—y^^ 54. 16a' — 4c'.

57. 4a;' - 4.x' + i?;\ 58. 4.aV - {a' + b' - cy,

59. {2x + yy-^{x + yy.

Products of Two Binomials.
We have

{a + i) {x + y)=ax+bx + ay + by.

Hence a polynomial of four terms may sometimes be ex-

pressed as a product of two binomial factors. We can do this

when, two terms of the polynomial {ax -}- bx for example)

being divided by a common factor {x), and the two remain-

ing terms by a common factor {y), the quotients are equal.

We can thus factor the following:

1. ax — bx -\-ay — by, Ans, {a — b) {x -}- y).

2. ax -{-bx — ay — by, 3. ax -- bx — ay -}- by.
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4. nv" + mn -{-71^ + n, 5. mn — m^ -\- if — tfm,

6. l + a + a" + a\ t. l-x-x' + x\

8. l-\-x — x'' — x\ 9. a' + fl^^c?: + ax" + a:'.

10. (a — ?i:r) {a + ^za;) — (w —- ax) {n + a^).

11. h^ - Wx + hx' - dx\ 12. a^ + «^ - a^ - a\

13. m^ — 3m' + m' — 3m'. 14. m' + 3m' — m' — 3m.

Division by Polynomials.

§97.

1. a" + 4:ax + 4a;' ~ a + 2x.

2. 6a' - 6b' -f-2a'^ - 2b\

3. «^ - da'b' + 3a'b' - b' -^ a' - da'b + Sab' - b\

4. a' - 9«' + 27a - 27 -f- r? - 3.

5. 48a'' - Hea'b - 64:ab^ + 106b' ~ 2a - 3b.

6. ^a' + a'+^a + i^ia+l.
7. dSa'b' - 77a^b' + 121a'b' ~- Sa'b - 7a¥ + llab\

8. 100«* - UOa'b + 2d5aW - dOa'b' ^ ba' - 2a''Z^.

9. 37a'Z>' - 26a''Z> + 3a' - Uab' -- 3«'* - 6ab'+ 2b\

10. 0^" + ^ + x'^y + a:?/"* + ,^"* + ^ -h :z;"* + y*".

11. a^ + a^'^'W'' + Z>*» -^ a^^ + a"Z>" + b^,

12. 10a' - 27a'^ + 3Wb' - 18«Z>' - 8^' -^ 2a' - 3fl^ + UK
13. 4a:;l — 3o(^y^ — y -7- x^ — «/i

14. 8al -— 6a^ -\- a^ -- 2a^ — a^.

15. 9a-2+ 12a-^^-4-^3a-^+2.
16. 4a; - 10.Tt - 62:«;i - 30^^:1 -f- 2:^:* + 5.

17. a;^y~^+ ^~y ^ ^~V + ^^~^'

18. x^"" — f"" -^ x"" - «/".

19. 4:?;^ + 6 - 3bx'+ 58a;* - 70a;' - 23a; -f- 6a;' - 5a; + 2 - 7a;'.

^ 19 2 2a^x a' . a'
20. a;* — — a a;' + -^ + ^

-^ ^' — 2aa; + -

.

21. {a' - 2ab + b' - c') {a + b+ c) -^ a - b - c.

22. {ax + byY + {ay - bxy -^ a' + b\

23. 12a;' - 14a;' - llo:' + 19a; - 6 — 3a;' - 5a; + 2.

24. 4:a'F - 3b\ + llaF + 12a' -^ 34 a'^ -^ ^' + 6a' - hah.

25. 6aZ>c' - 9Z>'6'' + ^a'Z^' - a'c' -=- 3^c - ac + 2ab.

26. 2Z>c; - 1 + a' + 2c - Z^' - 2^ - c' -V- a + c - 1 + ^.
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29. 12 {x - yf -3x{y -z)- 2y {x + z) - 20z {y + 3z)

-r-6{x+ 2z)-3y,

30. {4.x' - 9y') {Sx' - 27y') -~ {2x - Zy)\

31. 12 + 82^' + 106^' - 70^' - 112a' - 38 -r- 3 - 5« + 7a'.

32. a^ (1) + c) + y' (^ - c) + c" {a — I) -\- ale -^ a -^l -^ c.

33. a' + V-\-c'-Mhc-^a + l)-\-c.

34. x^ — (a +^) i^"" + (5^ + (^P) X — aq -^ X — a, \

35. a* - 13a' + 36 -^ a' + 5a + 6.

36. x'' + x'y"" -\-y^ -T-x"^ — Q:y+ ^/^

37. 3a^ - 8a'^' + 3aV + 61' - W& -v- a' - l\

Z'^.
y' - 3^V + 3z/V - 2;' -^ ,^' - 3y'cc + 3yx' - x\

39. 16aV— 7ate — c'— ^^a^lx — ^a'h'' -^^acx -^ Sax — 6ab — c.

40. x' + (a' - 2b') x' - {a' - h') x'-a'- 2a'b' - a'b'

-x' -a' - y"'

41. 6 {x^-^y^) + {V^xy - 4) (x-^y) -%{x'-\- y') - 16xy - 120
-^'*+^' + 2.T(l+^) + 2,y + 6.

42. a' -b' ^a^- U.

43. a'b'"^ + 2acZ?^ + " + 2a:z:Z>^ + c'V''+ 2^;^^;'* + .t'

-V- aZ^'" + cZ>" + X.

44. (^"-^^)(^^-^^)-^^ + /.

45. 20a'^Z>^ - ^OSa'b'' - 121a''¥' + 132a'"^' + 245a^^Z>^'

-^ 9a'^^ - 16a^' + lla^Z^'.

46. 1 + 34 a;*^ - 20x' + 20.t' - 4a;' + 12:?;' - 31^;^

-f- 2a; + 4a;' - 3a:' + 1.

47. 2a;3^ — 6a;2^^" + Qx^y^"" — 2^/^'^ -v- a:" — y"".

48. a (a - 1) a;' + (a' + 2a - 2) a:' + (3a' - a') x - a'

-i- aa;' — 2a; — a'.

49. a'^' — ^ (a' + Z>) 2/ + ^^^ -^ ay — b.

50. (a + J) (a + 6') — (a + Z>) (^ + c) -^- a — d
51. a;' + (4a^ - J)'^) x ^ {a - 2b) (a' + db') ^ x - a + 2h

52. a;' — ^~^^ o:^ + j^"^'

53. * - 6^' + 27^^ ^ i + 2^ + 3z\

54. a^'^-^^'W^c — a2'^ + '^-^^^"^6'^ + a-''^"^c"* + a^^-'*Z>^^ + ^c'*
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Fractions.

§ 108.

Execute the following multiplications of fractions by entire

quantities by dividing the denominators:

X a—h. 2.
3 7^ X «+ ^.a-h'^ a' - ¥

m^ jf -\- Q^

a^ — ¥
,

, „ 7)1" -\-n''

a -\-ab m — m n ^ '

9. z
\

^3
4 X 1 — m'. 10. —-— 3 x\-\-x.

Execute the following multiplications by dividing the

denominator by one factor of the multiplier, when denomi-
nator and multiplicator have a common divisor, and then

multiplying the numerator by the other factor of the multi-

plier:

Here the denominator is {a — by, and the multiplier is

(a — b) {a + b). We multiply by (a — b) by dividing the

denominator, and by a-{-b by multiplying the numerator,

m ( « 4- b)
Hence the product is

a — b

-5 X m^ — n^.

3. —^—
-; —7-^ X m^ — 4:n^.

m' — 4:7nn -\- 4:n

6. —^

—

\-T-nr X «' - *'•

ax + a?/ -\- ox -\- by
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1
Xa' + h\

*' ax — ay -\- Ix — ly

1
8. X mx + mil — nx — nil.mx — nx — my -\-ny ^ ^

Execute the following divisions by dividing the numerator

by as many factors of the divisor as possible, and multiplying

the denominator by the remaining factors:

ax . X my
~ ar. Ans, . 2. -~- -r- mq,

mn mnr Zpr ^

3

5

7

9

II

ah ^ a" -\-al) ^ ^^

mn a —

m -{-p
-^ X ~ 2xy -\- y

cx-\- cy 2 2 o ^^ ~~ ^y t \2

ax — ay ^ ox-\-oy^ ^

'

—'--rr- -^ (« + ^hy. 10. '—- -^ a" — h\
a — zb ^ ' a —
ac — he

ax -\- Ix
h\

Execute the following indicated multiplications or divi-

sions, and aggregate each product or quotient into a single

fraction:

la ,'b\la_h\
2 fl __ i") 1.

wi nl \m nj' ' \a h ) c'

3

5

7

9

II

m \ m
-\- X \' l — mJl-\-m

\a-{-b a — hi a ^ ^ \a — h J

\m nJ \m nJ \ ml

f1
4. Z _ V!}:\

f1 _ Z _ !?_^

\ m pJ \ m pj'
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13

14,

16

21

\ ^ ml \7n / ' J \^^' my

(m + n)
( h -) — (^^ — ^0 •

^
^ ^ \m nJ ^ \m nl

(-^ +-^ + -^) {x + y^z).
\x —yy — zz — xj^

^- 771 + ^.w n
17. m — 71,

a + l

a + b

c' + h:'

a — b ' a
19

a b , a' + b'

' a+ b a — b ' a — b

'^x'^ x'~^ x' ' x'^ x''

Factor th^ following fractional expressions:

c X
' x^ c^'

^' ¥ ~^ xy ~^ y''

1 + a'

^'
2c' Sx''

9. S--3I + 2.
h' h

2.

a' V
4.

x' /
/;

m ip' + q')

n{f-^n^<t)'
8.
m , m®

4-3-.
71 n^

10, 4 + 5< + 4^.

110.

Reduce the following complex fractions to simple ones:

a^ b
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c . d X
15+- + ~ 1 + m
d X c

1_

abc

r — s

r -\- s r — s

1'

1.1,1 1 +
c d X

a a

T e. 1.
C

m
1.1.11,1,1' _ + _ + .—r 7- + - m n p

a c ^

r -\- s r

1+-^
.+'

r -{- s r — s r

r -\- s
1

m +itl
1

^h H-
mnp

1 1

m n
b ^ a 14. 2 3.

1 -- -r- m n

Equations of the First Degree with One
Unknown Quantity, x.

§ 139.

n m
(IX ox ex 2 1 72 I 9

DC ac ah '
'

3. {^a — x) {h-\-x)-=zx{h — x).

hx . ax
a , xa

5- C5'a;--- + ca; = -- + (a+ c)a!-c.
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he cfx

= 1.
' a — h a -\-h

_^ GX CX U/X _

'• 7 + T + T-^ = ^'-

9. — ao+ — ac — — ca; = — ac+ 2ao — bcx.
o o 4

II.
ah _ hc + d+-,

X

12.
3ri +

X X

,
m(a — x)

1 X 4- a
14,

-

15.

X -\- a X — a a^ — x^'

.7; — 1
~~

r?; + 1 x'^ — 1

16. — •

-\ = 0.
X — 4: X — Q X — "Z

dahc aW {2a + b) Fx _ ^
'^* a-\-h'^ {a + hf^ u{a + by

-^^^+
a'

18. (a + a:) (Z^ + :r) - 6^ (Z^ + c) =r ^ + a;\

19. 7 h- h^ = 0.
6? 6> c

X -\- a X 4- a^ , X -\- a^ x -\- a^

a a^ ' a^ a^

21. [ax + ^) (Z>.^' — a) — {ax — Z>) (Z^.-r + «) = (i^ -f Z>,

« + a; Z^ + a;

22. ^''^ =— — ah .

a

1 ,7)1 — 71 1
, 771 -\- n

23. = —

.

m — 71 x 711 -{-n X
1 p

24. -
{771 -\- Olf 771-^71 2 {7)1 + 71)'

o
1p X p
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25. I =

26. m —

27
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nx

1 -- 7nx

P_±J^^
q + x q-\-x'

1

:
+

m.

ah — ax he — hx ac — ax'

28. (m + nV = 3m' + ?i' — -'^ —

.

X

30. ^^ = ^^~g^ ^6?(^ + c)

771 m
1 + :^ l-x

31. = 1.
n n

m-\—
X

32. = 2/w.

1 + ic 1 — a;

1 +
^-^

ZZ-
X -\- a

m

1 +
= ^. 34.

X -\- a
1 +

= 2^.

Equations of the First Degree witli Two
Unknown Quantities.

§§137-140.

j mx — ny — 0.

^ + y = a.

I
fl^o; + a^y = ap,

[

hx -j- h'^y = ^^.

\px + qy = a.

\ X — y=-h.

4. <

y

h -{- y 3a -\- x'

ax + '^hy — d.

1

x-\-y^3'

-^=3.
y

^ \hx^ y-a.
\ X -\-hy •= 2a.
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X _ y

x-\-y:=s.

a
,

h- + - = c.

X y

--{-- z=zd.
^x y

12.

a h __

X y

\,x y

b {x — a) -\- a {y — h)

X — a : y — b = b : a.

13. iix-{-b = my -{- d = c. 14. mx = ny —p = x -\- qy.

15. m{x + y) = 71 {x — y) = r.

X ^ _ 1

16.

la + b a — b

a — b a-\-b'

y _ 1
6'

*7- 1
x-\-y
1

+
1

1-x-
1

L 1 — ic+ .V

2
3*

4
3*

Equations with Three or More Unknown
Quantities.

[x-{-y-^z = a.

mx = ny.

[py =qz.

( X -\- y = a.

}y-\-z = 2a.

[z~i-x = da-\-b.

i ¥ = iy-

iiz=ix + l.

(x — z = am.
)y-^z = bm.
(^x — y= cm.

(x = t/ — 2z.

\y = '3z- 2x.

(z=y + l.

6.

x+y+z=i
X _y _z
a b c'

m n- - - _ ^.
X y z'

^ + y + ^ = S'

a; + ^ + ^ == 30.

8a; + iy + 2z = 50.

272; + '9y + 3z= 64.

''x-\-y -\- z = au.

x-}-y = bu.

X— = m.

7ix + y -{- z = a.

X -|- ny -j- z =^ b.

X -{- y -{- nz = c.
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II. <

IS-

IS-

f 2; + 2?/ = 8.

^ + 2^ == 12.

z -{-u = 8.

( «^ + ^^ + cz — d.

\a^x-\-¥y-^ez=d\ 14.

17. i

19. i

2a; + 3^/ + 52; =: 67.

2a; + 3^ 4- 4^ = 35. 16.

2^ - 3«/ + 5^ = 13.

a; 4- ^ = fl^.

y^z^l,
]

z^ — X =^ d,

-hx -\-ay _ a — l

{b—c){a—cy
h — ccy

c

+ hz

az

a

+ ex

{c--a){b—ay
c — a

[a-b){c-b)'

a a — r a — s

^
"^

^ - r
"^

Z^ - ;^

c c — r c — Si

X y a

.- + - = -•
^y z c

3^ + 2/ + ^ = 3.

X -\- 4:y -\- z = 4t.

X -\- y + 6z = 5,

= 1.

= 1.

b+ c

y

+

+

y
c ~ a

z

a + b.

a -\- a ' a — b

z X

a + b

:=b + C,

— c -\- a.

PROBLEMS LEADING TO EQUATIONS WITH ONE
UNKNOWN QUANTITY.*

1. A capitalist earned 4 per cent interest fi*om f of his in-

vestment, and 5 per cent from the remaining \, making a

total annual interest of $2940. What was tlie amount invested?

2, What quantities must be added to each term of the

TYl

fraction — that it may take the following series of values:

* Although only one unknown quantity is really necessary in these

problems, the student may often find it convenient to use two or more.



niOBLEMS. 483

AVhat qiifintities musfc be subtracted from each term to pro-

duce tlie same results ? Explain the relation between the

answers in the two cases.

3. A man is 40 years old, and his wife is 36. In how many-

years will the sum of their ages be 5? Explain the results

when Ave put, in succession,

s = 100; s = 76; and s = 50.

4. A railway train passed a station at" the speed of m miles

an hour. Then k hours later another passed in the same

direction, going n miles an hour. Supposing the speeds

uniform, at what distance and at what time did they meet?

Explain the relation of the answers when m > n and when
7)1 < 71,

5. If, in the preceding problem, the second train went in

the opposite direction, what would the answer be? Explain

the relation between the answers.

6. A ship sailed from port with a speed Ic knots per houi*.

In 7i hours after sailing she was followed by a steamer, who
overtook her in 7i hours. What was the speed of the steamer?

7. An oarsman who pulls 6 miles an hour rows from his

house down a river whose current is 2 mi.les an hour, and re-

turning gets back 3 hours after he started. How far did he

go?

8. On the same stream one rower pulling 6 miles an hour
going down stream, and another pulling 7 miles an hour
going up stream, started out at the same moment; but the

starting-point of the second was 5 miles below that of the

first. At what point and in what time did they meet?

9. A steamer goes down the Rliine from Mayence to Co-

logne, 117 miles, in 8^ hours, but requires 14 hours f6r the

return journey. What is the speed of the current?

10. On an ocean the crests of the waves are y^ of a mile

apart, and are moving at the rate of 40 miles an hour. If a

ship steams 15 miles an hour, how many times an hour will

she pitch when going with the waves, and how many times

when goinsr aarainst them?
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11. A number is divided into three parts, of which one is

30 less than a half, a second 10 less than a third, and the re-

maining part 8 greater than a fourth. Find the number and

the three parts.

12. From a line was taken J its length and 2 feet more,

and from what was left ^ its length and 2 feet more, leaving

^ the whole line and 2 feet more. What was the length of

the line?

13. A team performed a journey in 8 hours, going one

third the way at the rate of 25 miles an hour, and the remain-

ing two thirds at the rate of 40 miles an hour. What was the

disitance?

14. A grocer has 60 pounds of tea worth 75 cents a pound,

formed by mixing one kind worth 80 cents a pound with

another worth 50 cents a pound. How many pounds of each

kind were in the mixture?

15. Divide a line of length / so that | of one part shall be

equal to f of the other part.

16. A man is 6 years older than his wife. Ten years

hence the sum of their ages will be 7 times the age of the wife

14 years ago. What are their ages?

17. A man who must be back in 1 hour starts in a coach

going m miles an hour, and walks back at the rate of n miles

an hour. How far can he go and be back in time?

18. The earth performs a revolution round the sun in 1

year; Mars, in 1| years. What is the mean interval between

conjunctions; ihafc is, between the times at which the earth

passes Mars?

19. The periodic time of Jupiter is 11-f years; of Saturn,

29|- years. At what intervals will the earth be in conjunction

with each of them, and at what intervals will they be in con-

junction with each other?

20. Two persons, A and B, were mounting a tower, B be-

ing always 24 steps behind A. When A was half way up he

said to B, " When I reach the top, you will be 8 times as high

as you are now." What was tlie height of the tower?

21. The circumference of the front wheels of a carriage is

9 feet; of the hind wheels, 12 feet. How far has the carriage



PBOBLEMS. 485

driven when the front wheels have made m turns more than

the hind ^wheels?

2 2. The members of a club have to raise a certain sum of

money. If each member contributes $2, there will be $28 too

much; if $1.25, there will be $32 too little. How many mem-
bers are there, and what is the amount to be raised?

23. If a dealer sells a piece of cloth at 7n cents a yard, he

gains d dollars; if at 7i cents a yard, he loses c dollars. What
is the length of the piece, and the purchasing price per

yard?

24. A merchant by the profits of trade increases his capi-

tal each year by 20 per cent of the amount at the beginning,

but takes out $1000 at tlie end of each year for his board. At
the end of the third year he has increased his capital by $200

more than -| of its original amount. With what amount did

be start?

25. A boat which steams 12 miles an honr makes her (rip

in 3 kours going down stream, and in 5 houi-s going up stream.

W^hat is the speed of the current and the length of the trip?

26. A number is increased by n, and the sum multiplied

hyn\ this product is then increased by 71, and the sum multi-

plied by n, with the result 2?^.^ What is the numbei'?

27. A number is diminished by n, and the remainder multi-

plied by n ; the same operation is repeated on the product,

and again repeated on the second product, with the result

— w^ What is the number?

28. What number is that whose fourth part exceeds its

sixth part by 2?

29. If you add 4 to a certain number, the sum is 2 less

than twice the number. What is it?

30. Divide $520 among three people so that the first may
have $20 less than the second, and tlie second $10 more than

one fourth the share of the third. What must each receive?

31. Divide c dollars among three people so that the first

may have a dollars less than the second, and the second m
dollars more than one fourth the share of the third. What
must each receive?

32. A left a certain town at G miles an hour, and in 8
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hours after was followed by C at 8 miles per hour. In how
many hours did overtake him?

33. A left a certain town at b miles an hour, aud in n
hours after was followed by D at c miles per hour. In how
many hours did D overtake him?

34. A farmer said, if he had 5 more sheep, and sold them
at $4 each, he would have 5 times as many dollars as he now
has sheep. How many sheep has he?

35. A farmer said, if he had a more sheep, and sold them
all at n dollars each, he would have c times as many dollars as

he now has sheep. How many sheep has he?

36. If you divide my age 10 years hence by my age 10 years

ago, you will get the same quotient as if you should divide

my present age by my age 15 years ago. What is my present

age?

37. If you divide my age c years hence by my age a years

ago, you will get the same quotient as if you should divide

my present age by my age d years ago. What is my present

age?

2,^, Divide $415 among A, B and C so that A shall have

$40 less than B, and C $20 more than half as much as A and

B together.

39. Divide %a among C, D and E so that C shall have $m
less than D, and E %7i more than one third the share of and

D together.

40. A can do a piece of work in 20 days, B in 24 days, and

C in 30 days. In what time can they together do the work?

41. A, B and can do a piece of work in 4 days, A alone

in 12 days, and B alone in 10 days. How long would it take

C to do it?

42. A, B and can do a piece of work in 6 days, A alone

in 9 days, and B alone in 12 days. How long would it take C
to do it?

43. A can do a piece of work in a days, B in Z> days, and

C in c days. In what time can they together do it?

44. A man is 12 years older than his wife; four years ago

8 times her age was 5 times his. What arc their present
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45. A man is a years older than his wife; b years ago c

times her age was m times liis. What are their present

ages?

46. Divide $1200 profit so that A may have one fourth

and $100 more, B $5*0 less than one third, and $'^50 moro

than one sixth.

47. The interest on -^^ of a certain capital at 5 i)er cent

added to the interest on the remainder at 6 per cent is equal

to $1680. What is the capital?

48. A person, asking the distance to a certain city, was

told that after he had gone one fourth the distance and two

thirds the remaining distance, he would still have 20 miles to

travel. What was the distance?

49. How far can a person who has 5 hours to spare ride

at 6 miles per hour so as to walk back in time at 4 miles per

hour?

50. How far can a person who has n hours to spare ride

at 1) miles per hour so as to walk back in time at c miles per

hour?

51. A man bought 15 horses for $1665, paying $120 for

each good horse, and $75 each for the poor ones. How many
of each did he buy?

52. The difference of the squares of two consecutive num-

bers is 15. What are the numbers?

53. The difference of two numbers is 2, and the difference

of their squares is 28. What are the numbers?

54. The sum of two numbers is 12 ; the square of the

greater is 48 more than the square of the less. What are the

numbers?

55. The product of two consecutive numbers is 4 more

than the square of the less. What are the numbers?

56. Divide 60 into three such parts that one third of the

first, one fourth of the second, and one fifth of the third shall

be equal to each other?

57. Divide 80 into four such parts that if the first be in-

creased by 3, the second diminished by 3, the third multiplied

by 3, the results shall be equal.

58. The greater of two numbers is 4 times the less; if each
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be increased by 3, the greater will be 3 times the less. What

are the numbers?

59. A man is 10 years older than his wife; in 10 years

twice the sum of their ages will be 6 times her present age.

What is the age of each?

60. A man bought a certain number of sheep for $1200;

he reserved 80, and sold the remainder for $960. How many
did he buy?

61. A father aged 48 years has a son aged 12. In how
many years will the age of the father be three times that of

the son?

62. A merchant has two kinds of tea; one cost $1.50 a

pound, and the other $2. He wishes to mix them so as to

have 50 pounds worth $1.80 a pound. How much of each

must he use?

67,, In a certain quantity of mortar the sand was 15 pounds

more than f of the whole, the lime 9 pounds less than ^ of the

whole, and the plaster-of-paris 6 pounds less than \ the sand.

What was the amount of the mortar?

64. A laborer agreed to work 50 days on the condition

that he should receive $1.50 for everyday he worked, and for-

feit $0.75 for every day he was idle. At the end of the time

he received $48. How many days did he work?

65. A grocer having 60 pounds of coffee worth 15 cents a

pound mixed it with so much coffee at 18 cents a pound

that the mixture was worth 16 cents. How much did he use?

66. The interest on a certain capital at 5 per cent is $20

less than the interest on $900 more at 1 joer cent less. What
is the capital?

67. A woman bought 200 apples at 5 for 3 cents, and sold

part at 2 for a cent, and part at 5 for 4 cents, thereby making

10 cents. How many of each kind did she buy?

68. A and B play at cards. A begins with $120, and 13

with $180 ; when they stop playing B has four times as much
as A. How much did B win?

69. From a cask of wine one fourth leaked out, then 20

gallons were drawn, when it was found to be 10 gallons less

than half full. How much did it hold?



PROBLEMS. 489

70. An estate of $4680 is to be divided among 4 sons and

3 daughters. Each son is to receive $40 more than the next

younger; the eldest daughter is to have $20 less than the

eldest son. and each of her sisters $20 less than the next

older. What did each child get?

71. A sum of $2880 is to be divided among A, B and C.

Five times A's share is to be equal to three times C's, and B is

to have twice as much as A and C. What does each receive?

72. Six plasterers, 8 journeymen and 12 apprentices re-

ceive at the end of a certain time $387.50. The plasterers

receive $2 a day, the journeymen $1.25, and the apprentices

75 cents. How many days did they work?

73. In the above problem, what should each class of work-

men receive if each plasterer worked 3 days more than the

journeymen, and the apprentices 6 days less?

74. A man wished to give 10 cents each to some beggars,

but found he had not enough of money by 14 cents; he then

gave each one 8 cents, and found that he had 10 cents re-

maining. How many beggars were there?

75. A post is 6 feet more than J in the mud, 2 feet less

than ^ in the water, and 4 feet in the air. What is the length

of the pole?

76." A and B begin trade. A has $1000, and B $1210.

The former gains a certain per cent on his investment, and

the latter loses the same per cent, when their capitals are found

to be equal. What was the amount lost and gained?

77. A person in play lost ^ of his money, then won $60,

after which he lost \ of what he then had, when he found he

had but $350 remaining. Wliat had he at first?

78. In a camp of 3294 soldiers there were 3 cavalry to

every 26 infantry, and half as many artillery as cavalry.

What was the number of each?

79. The right-hand digit of a certain number is 2 less than

the second; and if the number be divided by the sum of the

digits, the quotient will be 7. What is the number?

80. The length of a town lot exceeds its width by 12 feet.

If each were 3 feet greater, there would be an increase of 645

square feet in its dimensions. What is the length?
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8 1. A house was sold for $0800, by which there was a cer-

tain gain. If it had been sold for $1000 less, 3 times the

resulting loss would liave been twice the present gain. What
was the cost of the house?

82. A can do a piece of work in 12 days, and B in 15.

After A has worked 4 days B comes to help him. In what

time can they both finish it?

St,, a tank has two filling and one emptying pipe. One
can fill it in 12 hours, the other in 24 hours ; and the third

can empty it in 18 hours. If tliey are started at the same

time, how long will it take to fill the tank?

84. In the preceding problem, suppose the third can

empty it in 8 hours. How long will it take to fill it?

85. Suppose it is full already, and the third can empty it

in 6 hours. How long will it take to empty it?

S6, A person travelled 168 miles, of which he went 3 by

boat and 4 by coach to every 6 by rail, and walked one third

as far as he went by boat. How many miles did he travel by

each?

87. The sum of two numbers is 42. If the less be divided

by the greater, the quotient will be less by ^ than when the

less is divided by half the greater. What are the num-
bers?

2>S, A and B are of the same age. Three times A's age

6 years ago is equal to twice B's age 9 years hence. What is

the age?

89. In tossing pennies, A threw heads 3 times out of 5,

and B 4 times out of 7. In all they get 41 heads. How many
times did they toss?

90. What two numbers are those whose sum is 13, and

whose product added to the square of the less makes 50?

91. A tank has five pipes. No. 1 can fill it in 6 hours, No.

2 in 8 hours, and No. 3 in 12. No. 4 can empty it in 9 hours,

and No. 5 in 18. If they begin at the same time, how long

will it take to fill the tank?

92. A starts from a certain place, and travels at the rate

of 17 miles in 5 hours. One hour and 53 minutes after, B
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starts at the rate of 19 miles in 4 hours. How far will thoj

travel before B overtakes A?

93. Two persons start from the same place at the same

time^ going in the same direction. One travels 2 miles

an hour faster than the other. After they had gone as many
hours as tlie slower goes miles per hour, their distance apart

was equal to half the distance travelled by the faster. How
long did they travel?

94. Two men travel in opposite directions; the rate of

one is 1 mile ntore than two thirds the rate of the other.

When they had gone 4 hours the distance apart was equal to

44 miles. What were their rates?

95. An officer in arranging his men in the form of a square

found that he needed 5 men to complete the square, and by

increasing the file by 6 and diminishing the rank by 5 he had

5 men too many. How many men had he?

96. A coach that travels 6 miles an hour starts 50 minutes

after another that goes 5 miles an hour. How far will the

first-named travel in order to be 11 miles ahead of the other?

97. A merchant withdrew from his capital $500 at the end

of each year for current expenses; his profits each year were

33^ per cent of his unexpended capital. In 3 years his

original stock was doubled. What was his original stock?

98. What fraction is that whose denominator is 2 more

than the numerator, and if 3 be subtracted from both numer-

ator and denominator the fraction will be f ?

99. Divide 40 into two such parts that the greater dimin-

ished by 4 and divided by the less increased by 6 shall

be 1| ?

100. On a note interest is paid at 6 per cent. At the end

of the first year $200 is credited on the principal, and the rate

of interest is reduced to 5 per cent, when the annual interest

is diminished by one fifth. What was the face of the note?

loi. The difference between the simple and compound in-

interest of a certain principal during the second year at 5 per

cent is $10. What is the principal?

102. The fore and hind wheels of a carriage have circum-

ferences of 12 and 16 feet. How far will the carriage have
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gone when the sum of the revolutions made by the wheels

is 287?

103. During the first 3'ear a broker gains 20 per cent on

his capital, the second year he gains 30 per cent on his in-

creased capital, and the third 25 per cent on his re-increased

capital, when he finds that his capital is $4910 more than

what he began with. What was his first capital?

104. A man sold a house and furniture for $6400; f of the

price of the house was $200 less than f the price of the furni-

ture. What was the value of each?

105. A purse contains 65 coins, i)art cents and part dimes.

How many of each are there if the total value is $2?

106. Each member of a base-ball club subscribes as many
cents as there are members. If there had been 10 more

members, each subscription would have been 9 cents less.

How many members were there?

107. A man purchased a number of lemons at 2 cents

each, and f as many at 3 cents each; he sold them all at the

rate of 2 for 5 cents, and gained 25 cents. How many of

each kind did he purchase?

108. A boy in flying his kite lost | of his string, then

added 65 feet, and found that it was just f of its original

length. What was the length at first?

109. A and B start from two towns that are 133 miles

apart and travel towards each other. They meet at the end

of 10 hours, and find that A has travelled 1^ miles an hour

more than B. How many miles had each travelled?

no. A man owning a cow and horse found that 4 loads of

hay would keep them both 6 months. Having disposed of

his horse, ho found that the same quantity of h-ay would last

the cow 14 months. How long would 1 load last each?

111. A has $647, which is $33 loss than 4 times what B
has; is worth twice as much as A and B together, lacking

$72. How much have B and C?
112. A boat which could move 14 miles in still water was

accelerated 2^ miles per hour going down stream, and retarded

the same returning; it was 10 hours longer coming up a cer-

tain distance than going down. What was the distance?
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113. A and B have i\\% same income. A spends |- of liis,

and B by spending $200 a year more than A finds himself at

the end of 5 years $450 in debt. What was their income?

114. A farmer bought 22 cows at a certain price; had he

paid 8 per cent less he could have purchased 1 more cow and

had $21 left. What was the price of each cow?

115. A son is -|- the age of his father, and 11 years ago lie

was f of his age. How old is each ?

116. A man rows 5 miles an hour in still water. How far

can he row up a stream and back in 3 hours, the stream

flowing a mile an hour?

1 17. A man bought some sheep for $94. Having lost 7 of

them, he sold J of the remainder at first cost for»$20. How
many did he buy?

118. The pei-imeter of a rectangle is 28 feet; if 2 feet be

taken from its length and added to its breadth, its area is in-

creased by 12 square feet. Find its original breadth?

119. A man can row 9 miles an hour with the stream,

and 3 against it. How far can he go so as to be back in

6 hours?

1 20. The first digit of a certain number exceeds the second

by 5, and if the digits be* inverted the new number will be f
of the original number. What is the number?

121. Divide $900 in two such parts that the interest on

one part at 4|- per cent may exceed that on the other at 3|^ per

cent by 50 cents.

122. How much foreign brandy at $8 a gallon and whisky

at $3 a gallon must be mixed together so that the compound
may be sold for $9, and the merchant thereby gain 30 per cent.

123. A person has two kinds of coins. Four pieces of one

make a dollar, or 10 pieces of the other. How many of each

must be taken so as to have 7 pieces equal a dollar?

124. Find two numbers whose product is 72, and whose

difference multiplied by the greater is found by subtracting

the product from 18 times the greater.

125. A person after spending $200 more than ^ of his in-

come had remaining $75 less than ^ of it. What was his in-

come?
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126. Divide 77 into two such parts that the quotient of

the first divided by 8 added to tlie quotient of the second

divided by 9 shall be 9?

127. The sum of three numbers is 155. If the second be

divided by the first, the quotient is 2, and 2 for a remainder,

and the third divided by the second gives 3 for a quotient and

3 for a remainder. What are the numbers?

128. At a ball there were twice as many gentlemen as

ladies. When 8 couples danced there were remaining three

times as many gentlemen as ladies. What was the number of

each?

129. A can build 7 cubic yards of wall in 4 days, B 12

yards in 5 days, and C 9 yards in 2 days. How long will it

take all three to build 850 yards?

130. Each of the three digits of a certain number is greater

than the next folloAving by 1; when the digits are inverted,

the new number will be 18 more than ^ the first number. What
is the number?

131. A farmer bought 30 sheep and 10 calves for the same

sum. If the sheep had cost 25 per cent more and the calves

35 per cent less, 7 sheep would have cost $3 more than 4

calves. What did each sheep cost?

132. Upon withdrawing from the business A takes J of

the capital and $100 more, B ^ of the new remainder and

$100 more; gets $300. What was the capital?

133. What number is that which gives the same continued

product when divided into 3 equal parts as when divided into

4 equal parts?

134. Find a number of two digits, the first of which is 4

times the second, and the number is 2 less than 3 times the

number formed by inverting the digits.

135. In going from one town to another a traveller found

at a certain place that the distance travelled was -| the whole

distance, and when he had gone 11 miles further he had f of

the whole distance yet to go. What was the distance?

136. A wine-merchant has wine in casks of two sizes. One

containing 2|^ gallons he charges $8.50 for; the other, 3^
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gallons, is priced at $10.90. Wliat is the price of the casks,

supposing them to cost the same?

137. A miin's income was $800 the first year, and increased

$50 each succeeding year. Afc the end of 3 years he had

L.ived $15.75. What were his annual expenses?

138. If A gives B $10 he will liave twice as much as B;

but if B gives A $10 he will have '^ as much as A. How much
had each?

(§ 140.)

PROBLEMS INVOLVING EQUATIONS WITH TWO OR
MORE UNKNOWN QUANTITIES.

1. It is found that when a ship steams 12 knots (sea-miles)

an hour with the waves she pitches 1 in 15 seconds, and

steaming at the same speed against them she pitches 1 in G

seconds. What is the speed of the waves, and how many
w Jives are there in a sea-mile?

2. Two men start at the same time to miike the same

journey. The first goes 10 miles the first day, and goes a cer-

tain fixed distance more every following day than he did the

day before. He overtakes the second at the end of the 8th

day,,and finishes his journey at the end of the 11th, while the

second finished at the end of the 12th. What is the length

of the journey, and how far did the second go each day?

3. A cannon being fired while a heavy wind was blowing,

it was found that the sound required 4|- sec(>nds to go a mile

with the wind, and 4|- seconds to go a mile against the wind.

What was the velocity of the wind, and what time would have

been required for the sound to go a mile in still air?

4. The greatest distance between Venus and the earth ij

160 millions of miles; the least, 22 millions. What is the dis-

tance of each from the sun, supposing that each moves around

the sun in a circular orbit having the sun in its centre?

5. A brother and sister being asked how large the family

was, the brother replied, "1 have as many brothers as

sisters." The sister replied, ^' I have twice as many brothers

as sisters." How many boys and girls were in the family?
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6. Find that fraction whose value becomes ^ when n is sub«

tracted from each of its terms, and ^ when m is added to each

of its terms.

7. Find two nunit)ers such that their difference is 153,

and the lesser goes into the greater 9 times and 1 over.

8. One number divided by another gives the quotient 4,

with 3 as a remainder. Increasing divisor and dividend by

10, the quotient is 2 and the remainder 23. Find the numbers.

9. Find two quantities such that half their sum added to

half their difference shall make a, and half their difference

subtracted from half their sum shall leave the remainder h,

10. Find two quantities whose sum and quotient are each

equal to m.

11. Find two numbers of three digits of which one is

formed by simply reversing the order of digits in the other,

and which fulfil the following conditions: (1) the sum of the

digits in each is 15; (2) the sum of the first and last digits is

3 greater than the second one; (3) the difference of the num-
bers is 99.

12. Each of two vessels, A and B, was partly filled with

water. A man poured from A into B as much ms was already

in B, then from B into A as much as was left in A, then from

A into B as much as was left in B, when each vessel con-

tained 8 quarts of water. How much did each contain at first?

13. Find two quantities the sum of whose reciprocals is 5,

and ^ til J one added to \ the other is equal to twice their

product.*

14. For $6.60 one can buy either 20 pounds of coffee and

25 of sugar or 14 of coffee and 34 of sugar. What is the

price of ejich per pound?

15. A river stermier can run 90 miles down stream and

back again in 15 hours; but if she runs 120 miles down,

she can only get back 70 miles on her return journey at the

end of 15 hours. What is her speed and the flow of the

river? *

16. Cn a river were two steamers, the speed of the swift

* Compare with Exercises 11 to 20, § 138.
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one being 3 miles an hour greater than that of tlie slow one.

A man who went 58 miles down the river on the slow boat

and 30 miles back on the swift one found that he had been

9 hours on the water. But when lie went 87 miles down on

the slow boat and 90 miles back on the swift one, he found

that it took 18 hours. What was the speed of each boat and

the flow of the river?

17. A quadrilateral has four sides, a, I, c and d. If \ of

a be added to h, then \ of the extended J) be added to c, and

then ^ of the extended c to d^ the four sides will each be

equal to m. What was the length of each side at first?

18. Three pedestrians started on a journey. The first

performed it in a certain time; the second, going 1 mile an

hour slower, took 12 hours longer; the third, going 2 miles

an hour slower than the first, took 33 hours longer. What
was the distance, and the speed of each?

19. The perimeter of a triangle whose sides are a, h, c, is

771 feet. If
I"
the side a be added to b, then ^ of the prolonged

h be added to c, and then \ of the prolonged c be added to a,

the sides will be equal. What is the length of each side?

20. Divide 232 into three parts. A, B and C, such that,

whether we subtract A from the sum of B and C, B from ^
the sum of A and C, or C from J the sum of A and B, the

remainders shall all be equal.

21. Find two quantities whose difference and product are

each equal to n,

22. The quotient of two numbers is 2, and 2 times their

sum is equal to 6 times their difference. What are the num-
bers?

23. A man has a saddle, worth $50, and two horses. If the

c:idule be put on horse A, he will equal B in value; but if put

on B, his value will be double that of A. What is the value

of each horse?

24. What number of two digits is equal to 4 times their

sum and 12 times their difference?

25. What number of two digits is equal to 4 times their

sum, and when the digits are reversed equal to 7 times their

Gum?
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26. Find a number of two digits that is equal to 4 times

the Slim of its digits increased by 3, and if 9 be added to the

number the digits will be reversed.

27. Find a number which is greater by 2 than 6 times the

sum of its digits, and if 9 be subtracted from the number the

digits will be reversed.

28. What number is that which is 4 times the sum of its

digits, and is 3 greater than 11 times their difference?

29. What fraction is that which becomes \ when 2 is added

to the denominator, and ^ if 5 be subtracted from the numer-

ator?

30. Two drovers went to market with sheep. A sold 90

and then had left ^ as many as B. Then B sold 72, and had

f as many as A remaining. How many did each have?

31. A woman bought 60 apples for a dollar, giving 3 cents

for every 2 bad ones and 2 cents each for the good ones. How
many of each did she buy?

32. Find a fraction that becomes ^ when 4 is added to its

denominator, or 2 subtracted from its numerator.

T,T^, A marketman had 4 more ducks than chickens. He
sold the chickens for 30 cents apiece and the ducks for 40

cents apiece, gaining 40 cents more than if the prices had

been reversed. How many of each had he?

34. A boy bouglit a number of apples at 2 cents each and

peaches at 3 cents each, paying $4.36 for the wliole; 12 of the

apples were bad and 9 peaches were rotten. He sold the good

apples at 2 for 5 cents and the peaches 3 for 10 cents, receiv-

ing $4.50 for the whole. How many of each fruit did he buy?

35. When I was married I was ^ older than my wife; 10

years after her age was f of mine. What were our ages when
we were married?

:^6. A and B can do a piece of work in 12 days; but if A
worked twice as fast they could do it in 8^- days. In what
time could eacli of thorn do it singly?

37. B and C can do a piece of work in 12 days; with the

assistance of A they can do it in 9 days. In what time can A
do it alone?

38. A farmer sold 60 fowls, a part tujkcys and a part
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chickens; for tke turkeys he received $1.10 apiece, and for

the chickens 50 cents apiece, receiving for the whole $51.60.

How many were there of each?

39. A tank has 4 pipes, A, B, C and D. A, B and C can

fill it in 6 hours; B, C and D, in 8 hours; C, D and A, in 10

hours; D, A and B, in 12 hours. How long will it take each

and all to fill it? Explain the negative result for D.

40. A tank has two pipes, of which one may be made to

run either in or out. If both run in the tank is filled in 2

hours; if one in and the other out, in 5 hours. In what

times would the separate pipes fill it?

41. A grocer bought 50 pounds of sugar and 100 pounds

of coffee for $26. He sold the sugar at an advance of 25 per

cent and the coffee at a discount of 10 per cent, receiving

$25.50 for the whole. What was the buying and selling price

of each?

42. Find the sum of two numbers the difference of whose

squares is equal to the difference of the numbers.

43. Divide 168 into three such parts that the second divi-

ded by the first gives 5 as a quotient and 10 for a remainder,

and the difference between the third and second multiplied

by 3 is equal to 4 times the first.

44. A father is 5 times as old as his son. Six years hence

he will be only 3 times as old. What are their present ages?

45. The sum of the ages of two persons is f of what it

will be 12 years hence. The difference between their ages

is ^ of w^hat it will be 24 years hence. What are their

ages?

46. A farmer sold to one person 40 bushels of oats and 30

bushels of wheat for $44.50, and to another the same amount
of oats, at 10 cents a bushel more, and wheat, at 5 cents a

bushel less, for $57. What was the price per bushel of each?

47. There is a number of 3 digits whose sum is 10. The
first and second is 4 times the third, and if 29? be added the

digits will be reversed. What is the number?

48. There is a number of 3 digits whose first and third

digits are 6 more than the second. Four times the first is

14 more than the difference between the second and third; and
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if 97 be added to the number the digits will be reversed.

What is the number?

49. A certain number of 3 digits is 34 times the sum of

its digits, and also 102 times the difference between the first

and second; and if 36 be added to the number the second and

third will exchange places. What is the number?

50. An oarsman who can row 20 miles and back in 7

hours finds that he can row 10 miles with the current in the

same time that it takes him to go 4 miles in the contrary

direction. Find the rate of the current.

51. A merchant has two kinds of sugar; one cost 8 cents a

pound, and the other 11 cents. How much of each must be

taken to make 120 pounds worth 9 cents per pound?

52. A grocer mixed tea that cost $1.10 a pound with tea

that cost 95 cents per pound. The cost of the mixture is

$101. He sells it at $1 a pound and gains $2. How many
pounds of each did he use?

53. A, B and C can earn $25 in 5 days; B and C, $28 in 7

days; A and C, $22 in 8 days. What does each man earn in 1

day?

^4. A and B can do a piece of work in 2 days; A and C, 4

times as much in 9 days; A, B and C, 11 times as much in 18

days. In how many days could each do it alone?

55. A sum of money at simple interest amounted in 5 yeais

to $1500, and in 8 years to $1680. What was the principal

and rate?

56. A ]icrson has $1200 invested at a certain rate and for

a certain time; had the rate been 1 per cent less and the time

2 years more, he would have had $24 more interest; while

with a rate 2 per cent less and a time 1 year more he would

have had $144 less interest. Eind the rate and time.

57. A sum of money at simple interest for c years

amounted to t dollars, and the same for h years amounted to

a dollars. What was the principal and rate?

58. In a race over a course 4000 feet long A gives B 300

feet start, and wins by 1 minute and 20 seconds. In a second

trial A gives him 40 seconds start, and wins by 900 feet.

What was the rate of each?
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59. A, B and C promised to give $1000 to a church. A gave

one third less than he agreed to, so B increased his by one

fourth, which left $55 more for C. Now if B had given one

fifth less than promised, and C $70 more, A's share would

have been his original subscription. What was the amount
of the first pledge?

60. The fore wheels of a carriage are 10^ feet in circum-

tVreiice, and the hind wheels 13. in going a journey tlie

fore wheels make 2500 more revolutions than the hind wheels.

What was the distance?

61. A coach has 2 more outside passengers than inside.

Six outsiders could travel at an expense of $1 more than 4 in-

siders. The fare of all amounted to $20.50. At the end of

half the journey 2 were added to the outside and 1 inside,

Avhich increased the total fare by $2.50. What was the num-
ber and fare of each class?

62. A person has two creditors; at one time he ])ays them

$680, giving to one f of the sum due him, and to the other

$40 more than ^ of his debt; at another time he pays them
$580, giving to the first f of what remains due to him, and to

the other
-f-

of what remains due to him. Wiiat was the

amount of each debt?-

63. If a certain croquet-ground were 5 feet longer and 3

feet broader it would contain 320 more feet; but if it were 3

feet longer and 5 feet broader it would contain 310 more feet.

What is its present area?

64. The sum of two numbers is 12, and the difference of

their squares is 24. What are the numbers?

65. Two boats, 320 and 360 feet long respectively, are

moving with uniform speed. If they go in opposite directions

it requires 10 seconds to pass each other; but if they go in the

same direction it takes 90 seconds for them to pass. What is

the speed of each boat?

66. A train runs a certain distance at a uniform rate. If the

rate be increased by 5 miles an hour the distance would be

travelled in f of the time; but if the rate be diminished by 5

miles an hour the time Avould be increased by 3 hours. Wliat

is the rate and distance?
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67. What number of 3 digits is greater by 99 when its

digits are reversed; greater by 270 than the sum of its digits;

and greater by 45 than when the second and third are trans-

posed ?

6^, A and B could have completed a certain piece of work
in 12 days; but after both had worked 4 days B was left to

finish it alone, which he did in 24 days more. How long

would it have taken each to do it alone?

69. A number consists of 2 digits whose sum is 12, and if 15

be subtracted from the number, and the remainder be divided

by 2, the digits will be inverted. What is the number?
70. A boy spent his money in oranges. If he had bouglit

5 more, each orange would have cost a half-cent less; if 3 less,

a half-cent more. How much did he spend, and how many
did he buy?

71. A person bought apples at 4 cents a dozen, and 1|
times as many peaches at 12 cents a dozen; after mixing them
he sold them at 8 cents a dozen, losing 4 cents on the whole.

How many dozen of each did he buy?

72. Fi»nd a fraction that becomes f when 2 is added to

its numerator, and ^ when 4 is added to the denominator.

73. Five pounds of tea and 12 pounds of sugar cost $7.44.

If tea were to rise 10 per cent and sugar fall 25 pe: cent, 8

pounds of tea and 6 pounds of sugar would cost $11.10. What
is the price per pound of each?

74. A^s income is half as much again as B% while his ex-

penses are twice as great as B's. A spends $60 more than his

income, and B $60 less than his. What is the income of each?

75. A invested some money at 5 per cent, and B at 6 per

cent, both receiving the same amount of income. If A had
invested $1000 more than he did, his income would have been

11 per cent on B's investment. What did each invest?

76. An oarsman can row 9 miles up stream and 13 miles

down in 4 hours, or 13 miles up and "9 miles down in 5 hours.

What is the rate of the stream and of the rowing?

77. Six years hence the product of two people's ages will

be greater by 348 than it is now. What will then be the sum
of their ages?



PROBLEMS, 503

78. A invests money at 4 per cent, B at 5 per cent, and C
at 6 per cent. A and B together receive ^560, B and C $520,

and A and C $360. How much does eacli invest?

79. Find the quotient of two numbers whose sum is n

times their difference.

80. A and B can finish a job in 12 days. A worked 2 days,

and B 3. How long will it take C to finish it if he could have

done the whole in 15 days with B^s assistance, and in 10 days

with A's?

81. A cai'penter and apprentice received $16.80 for 7 days'

wages, the carpenter getting 20 cents more for 2 days' work

than the boy for 3 days'. What was the daily wages of each?

82. A man paid $50 for 7 photographs and 12 prints; if

he had paid $1 more he could have had 7 prints and 15

photographs. What was the price of each?

Ratio and Proportion.

§164.

1. Divide 126 into three parts that shall be proportional

to the numbers 3, 4, 7.

2. Find two fractions that shall be to each other as 3 : 4,

and whose sum shall be f.
•

3. Divide .0444 into three parts that shall be to each other

as i : i : |.

4. Find two numbers which are to each other as 4 : 3, and

whose difference is ^ of the less ?

5 If 0- : ^ :: 6 : 8 and 4a; — 3^ = 7, what is the value of

X and y'^

6. A year's profits were divided among two partners in the

proportion of 3 : 4. If the second should give $425 to the

first, their shares would be equal. What was the amount

divided?

7. In a first yearns partnership A had 3 shares, and B 4.

In the second, A had 1, and B 2. In the first year A gained

$300 more than he did the second, and B gained $200 less

than he did the second. What were the profits each year ?
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8. In a farm-yard there are 4 sheep to every 3 cattle, and

5 cattle to 6 hogs. How many hogs are there to every 20

sheep?

9. A drover started to market with a herd of 7 horses to

every 5 mules. He sold 27 horses and bought 3 mules, and

then had 3 horses to every 4 mules. How many of each had

he at first?

10. Find two quantities whose sum, difference and product

are proportional to 5, 1 and 12.

11. What number is that to which if 2, 6 and 12 be sever-

ally added, the first sum shall be to the second as the second

is to the third?

12. What two numbers are to each other as 3 to 4, and if

4 be added to each the sums will be as 4 to 5?

13. What quantity must be taken from each term of the

ratio m : n that it may equal the ratio c \ d?
14. If a : Z> be the square of the ratio of a -\- c : b -\- c,

show that c is a mean proportional between a and b,

15. If a : Z> == Z>. : c, show that a:a-{-b=^a — b\a — c,

16. And under the same conditions show that

{a' + ¥) {V + c') = {ab + bc)\

17. li a : b — c : d, show that

a {a -{- b -{- c -{- d) = {a'\-b) {a -\- c).

18. In a milk-cUn, the quantity of milk is to the entire

contents (milk and water) as 5 : 6. Five gallons are sold, and

1 gallon of water is added; then the ratio of the milk to the

whole is 4 : 5. How many gallons of each were there at first?

19. In a two-mile race between a bicycle and a horse, their

rates were as 5 to 6. The bicycle had 1 minute start, but

was beaten by 312 yards. What was the rate of each?

20. A line is divided by one point into two parts in the

ratio of 3 : 5, and by another point into two parts in the ratio

of 1 : 3. The distance between the points of division is 1

inch. What is the length of the line?

21. The sum of the two digits of a number is 6, and the

number is to the number expressed by the same digits reversed

as 4 : 7. What is the number?
22. One ingot contains two parts of gold and one of silver,
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and anotlier two parts of gold and three of silver. If equal

parts are taken from each ingot, what will be the proportion

of the gold to the silver in the alloy?

23. If two ounces be taken from the first and three from

the second, what will be the ratio of the gold to the silver?

24. A cask contains 4 gallons of water and 18 gallons of

alcohol. How many gallons of a mixture containing 2 parts

water and 5 parts alcohol must be put in the cask so that there

may be 2 parts of water to 7 of alcohol?

25. Which is the greater I'atio, 1 -\- a \ 1 — a or 1 -\- a^ :

1 — a^, a being positive and less ihan 1?

26. AVhicli is the greater ratio, a^— ah -{-If : a^ -\- ab -\- F
or a* — a^'b'' + ^* : a* + a^b^ + ^\ ^ '^^^ ^ having like signs?

27. What number must be taken from the second term of

the ratio 2 : 34 and added to the first that it may equal 5:6?
28. What number must be taken from each term of the

ratio 19 : 30 that it may equal the ratio 1:2?

29. It a :b = c : d, show that a^ : b"" = a" -\- c" : F + d\

30. A bankrupt owed two creditors $1800. The sum of

their credits is to the less as 3 : 1. What did he owe each?

31. Discuss the general problem: To divide a given quantity

iVinto parts proportional to the given numbers m, n, p, etc.

32. Divide the number iV^into three parts, x, y and z, such

that X shall be to t/ as 2 : 3, and z to the difference between x

and y as 3 : 2.

2,2,' The speed of the steamship Servia is to that of the Both-

nia as 13 to 10, and the first steams 5 miles farther in 8 hours

than the second does in 10 hours. What is the speed of each?

34. The speed of two pedestrians was as 4:3, and the

slower was 5 hours longer in going 36 miles than the faster

was in going 24. What was the rate of each?

35. A chemist had two vessels, A, containing acid, and B, an

equal quantity of water. He poured one third the acid into

tlie water,.and then poured one third of this mixture back into

the acid. What was then the ratio of acid to water in A?
2)6. If 24 grains of gold and 400 grains of silver are each

worth one dollar, what will be the weight of a coin containing

equal parts of gold and silver and Avorth a dollar?
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37. AVluit common quantity must be subtracted from the

four quantities m, n, x and y that the remainders may form

a proportion?

2,^. A cliemist has two mixtures of alcohol and water, the

one containing 90 per cent, of alcohol, the other 50 per cent.

How much of the first must he add to 1 litre of the second to

make a mixture containing 80 per cent, of alcohol?

39. It is a law of mechanics that the distances through

which heavy bodies will fall in a vacuum in different times are

23roportional to the squares of the times. If a body fall 48

feet fai'ther in 2 seconds than in 1 second, how far will it fall

in 1 second? How far in t seconds?

40. Find an expression snch that if yon subtract m + n

and 711 — 71, the ratio of the remainders shall be n : m.

41. On a line are two points whose distance is a. The
first point divides the line into parts whose ratio is 2 : 3; the

second into parts whose ratio is 5 : 7. What is the length of

the line?

42. If a line is divided into two ])arts whose ratio is m : n,

what is the ratio of the length of the whole line to the distance

of the point of division from the middle point?

43. A line is divided into three segments propoitional to

the numbers m, p and q. What is the ratio of the parts into

which the middle point of the line divides the middle segment?

44. Divide $285 among tlii'ee persons, A, B and C, so that

the share of A shall be to that of B as 6 . 11, and that of C
shall be $30 more than those of A and B together.

45. A sailing-ship leaves port, and 12 hours later is fol-

lowed by a steamship. If the ratio of the speeds is 3 : 8

how long will it take the steamer to overtake the ship?

46. A courier started from his post, going 7 miles in 3

hours. Two hours later another follow'ed, going 7 miles in 2

hours. How long will the second be overtaking the first?

47. The areas of the openings of two water-faucets are in

the ratio 3 : 5; the speeds, of flow of the water through the

openings are in the ratio 3:4. At the end of an hour 1221

gallons more have flowed through the second than through the

first. What was the flow from each?
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48. Tlie flows from two faucets into two equal vessels is in

the ratio 4 : 7, and both vessels were placed under them at

the same moment. When the vessel under the larger faucet

was full, it was removed and the other put into its place. In

80 seconds from the time of beginning both vessels were filled.

How long would it take each f;iucet to fill one of the vessels?

49. Three numbers, a, b and c, are so related that

a : h -\- c — m : n,

b : c -\- a = p : q.

Find the ratio c : a -{- b. Find a, h, and then a -\- h, in terms

of c,

50. If, in the preceding problem, the &\\m a -{- h -\- c =^ X,

express each of the numbers a, h and c in terms of N.

51. The speeds of two trains, A and B, are as m : ti, and

the journeys they have to make as ^ : 5'. It took train B t

hours longer to make its journey than it did train A. What
was the time required by each train for each journey?

52. A street-railway runs along a regular incline, in conse-

quence of which the s})eeds of the cars going in the two direc-

tions are as 2:3. The cars leave each terminus at regular

intervals of 5 minutes. At what intervals of time will a car

going up hill meet the successive cars coming down, awdivicG

versa'^

53. The same thing being supposed, two cars starting out

simultaneously from the termini meet at the end of 30 minutes.

How long in time is the journey for each car?

54. The same thing being again supposed, a rider gallops

up hill at such a rate that he passes the successive cars going

up hill at the same time that they meet the successive cars

coming down, so that every time he passes a car going up he

meets one coming down. What is the ratio of his speed to

that of each of the cars?

55. Give the algebraic answers to the three preceding

questions when the ratio of the speeds is m : w.

56. Three given points. A, B and X, lie in a straight line.

A and B are taken as base- ^ y b x
points from which distances '

ill
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are measured. Having given

Distance AB = b,

Distance AX = x,

it is required to find the jDositioii of a fourth point, Y, between

A and B, such that we shall have

AX :YB = AX :BX = X : X - h.

Do this by finding the distance of Y from A in terms of h

and X.

57. Show that in the preceding construction we have

AY ' AX AB*

58. Show that, in the preceding problem, the product of

the distances of X and Y from the middle point of the line

AB is \h\

59. If, instead of the point X, the point Y is given, find

the distances AX corresponding to the following values of

AY, in order that the same proportion may hold true, and

explain the results when negative:

(«) AY = i J. Ans. X = !»• {e) KY = \ A.

(^)AY = |s. (,?) AY = ^ A.

(;/) AY = i 6. (V) AY =. 1 A.

{d) AY = (i + «)^>. (e)AY = ^A.

I1p:mark. When four points on a strnight line fulfil the preceding

proportion, they arc called four harmonic points, and the line AB is

said to be divided harmonically.

60. It is a theorem of mechanics that, in order that two

masses, V and AV, at the ends of a lever, AB, may be In equi-

librium, the distances of their points of suspension, A and B,

from the fulcrum, F, must be inversely j^voportional to their

weights; that is, we must have

Weight V : weight W = FB : FA.
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iNow, if the leiigtli AB of the lever is I, and the weights of

A F B

V and W are respectively m and n, express the lengths AF
and FB of the arms of the lever.

6 1. The weights at the end« of a lever are 8 and 13 kilo-

grammes, and the fulcrum is 3 inches from the middle of the

lever. What is the length of the lever?

62. The sum of the two weights is 25 pounds, and the

ratio of the distance of the fulcrum from the middle point to

the length of the lever is 2 : 9. What are the weights?

6:^, The weights are m and n {in > 71), and one arm of the

lever is h longer than the other. Express the length of the

lever.

64. A lever was balanced with weights of 7 and 9 kilo-

grammes at its ends. One kilogramme being taken from the

lesser and added to the greater (making the weights 6 and 10

kilogrammes), the fulcrum had to be moved 2 inches. What
was the length of the lever?

65. A line is divided into three parts proportional to the

numbers 3, 4 and 5. What is the ratio of the parts in which

the middle point of the line divides the middle segment?

66. To 300 pounds of a mixture containing 2 parts of zinc,

3 of copper and 4 of tin was added 200 pounds of another

mixture of the same metals, when it was found that the pro-

portions were now as 3, 4 and 5. What Avere the proportions

in the mixture added?

67. Find two numbers whose sum, difference and product

are to each other as the numbers 5 : 1 : 18.

6S, Find two numbers in the ratio 7 : 3, the ratio of

whoso difference to their product is 1 : 21.
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69. Find fcAvo numbers such that the first sliall be to the

second as their sum is to 3^, and as their difference is to 2f

.

70. Find three numbers whose sum is 73, and such tliat if

2 be subtracted from the first and second their differences will

be to each other as 1 : 2, and if 2 be added to the second and

third their sums Avill be to each otlier as 4 : 5.

71. Two boats start in a race. The second boat rows 25

strokes to the first's 28, but 10 strokes of the second are equal

to 12 of the first. If the distance between the boats at starting

is 30 strokes of the second boat, how many strokes will it:

make before reaching the first?

72. One cask contains 18 gallons of wine and 6 gallons of

water; another contains 12 gallons of wine and 18 gallons of

water. How much must be taken from each to form a mix-

ture containing 8 gallons of wine and 8 gallons of water?

73. Two mixtures of wine and water contain respectively

\ and I wine. How much of each must be taken to form 44

gallons of a mixture of which the wine is to the water as 5 : 6?

74. A and B ran a race in 6 minutes. B had a start of

20 yards; but A ran 5 yards while B ran 4, and Avon by

10 yards. What was the length of the race, and the rate o'f

running?

75 . A jeweller has three ingots of metal. A pound of the

first contains 7 ounces of gold, 3 ounces of silver and 6

ounces of copper; a pound of the second contains 12 ounces

of gold, 3 ounces of silver and 1 ounce of copper; a i^ound

of the third contains 4 ounces of gold, 7 ounces of silver and

5 ounces of copper. He wishes to form an alloy weighing 1

pound, which shall have 8 ounces of gold, 3f ounces of silver

and ^\ ounces of copper. How much must be taken from

each ingot?

76. The king of Syracuse gave a goldsmiih 10 pounds of

gold with which to make a crown. When it was finished the

king gave (lie crown to Archimedes to ascertain if it was pure

gold. The philosopher knew that gold weighs .948 as much
in water as in air, and silver .901. When the crown was

weighed in water he found it lost 10 ounces. What was the

quaniity of gold and silver in the crown?
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Irrational ExpressionSc

§179,

Execute tlie following divisions:

1

.

x^^ -f- or^.

2. )llx^h^^ci ~ 9a^Wc.

3. 12^Wi -^4aW.

4. x^^^-yz^ -V- x'^y^z~l.

5. a-'b-'-^a-'h-K
6. x-\i~^z~'^ -, x^yz^.

7. a-^"^-^c-^^-«w.

9. 24:cy^ + 15:c-y;s' - '^xy-' H- B.^-y.

10. ^hx'yz-' - ^Wy-^z' + ly-'z' ~ - IxY^-'.

1 1

.

20a;
V - 'z' - 4.y'z' -12x-'y-'-^4:X-'y- 'z\

12. 28%^-' + l%xy-''z^ — 12x-^y-'z-' -^ 4x-hj-'z-\

13. ai —a^U -^ «i

14. X^ — xW -\-X^ -^ Xh.

15. 12at -36at -^ l-^ftl

m
16. 2a;« - 60;-^-^ 2a;'.

17. 80;^ —4:xi -^ 2.T~i

183.

Express the following ])rodacts of irrational qnantities

with a single fractional exponent by reducing the fractional

exponents to a common denominator, and then reversing the

process of §182:

X y z 1

I. Prove the equation" «w^«c« = {d^b^c^Y,

2/ aWck Ans. a^bk'^ = {a^b'c)i.

3- m^n^pK 4. 2m. AllIS. 12i

5. 2i3i 6. am. 7. MrisK

8.

1 1

x^y^^. 9- d2iam. 10. vrvvvi
II. ami. 12. cm. 13. 7^ . 5i

14. h-m 15- 2-^3^. 16. 8^12-

i
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§183.

Keduce the following expressions to monomials:

1. Vbi+ V2i+ '/K Alls. ¥6{Vd+ V4t-]-i)= oVif,

2. VT2 + V27 + i^i^. 3. V6- V80 + VlTo.

4. V2- Vis + V32, 5. V76 + 4/48 - VS,

6. 1^2 + 2 ^27"+ 3 fT5 - 9 1^48.

7. V4^ - Vda + V2da. 8. V'^- + Vb^- V7^.

Eeduce the following to their simplest form and factor:

9. Vl^^F + VbUa^\ 10. {4:a'by - {a'dy.

11. {2''a''b'c)^ - {4..b'a'b'c')i + {4..6'ah'c)l

12. {64.a'^ + 'F)h - {Ua'^-Wy^ + {2a*"* + ^)i + {2a'^cy.

13. Kc^ + ^W. 14. [{ci + ^y{x + y)]K

,5. iL+i l/^^ZJ. x6.
7)1 — 11

f
mp

- -

q 2^ -{- q
'

7ri-\- h\ni'— 2m)i-{- if J
'

§184o
Multiply:

I. {c + b V7) {c - a V7). 2. (m + Vji) {vi - VJi).

3. {am -\- n Va — z) {n — m Va — z).

4. (4 _[_ 3 |/2) (4-3 V2), 5. (5 - Qn V2) (5 + ijn ^2).

6. Mi-(^ - \m^ + 2(i^iw.
7. ( i^i? + ^

+
'^/^ - ^) ( ^/^ + ^ - ^^^ - ^)-

8. {a + x^ + yi){a~'0^-\-y^.^

I
Vvi Vn UVm _ Vn\

^' ^Vn VmJ^Vn VnJ'
{x+a) ^

\ \
{x-aY

{x - ay \\{x+ ay ^

Aggregate the following fractional expressions and sim-

plify when possible:

ri . a^ {c-\-xy (c-x)^

a r {c — xp [c -\- xy
ml

,
m^

,
m

, .
^' + ^

' ^3* —T -^ r -^—

•

14. 7- — t -\ ; .
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Equations of the Second Degree.

§§ 195-302.
I. ^x' + nx = 1 1.0. 2. 2.r + 8a; = 64.

3. a;^ - llx + 6 == 57. 4. ^' - 37a; = - 320.

5. a;' + 6.T ==: 7. 6. a;' - %x = - 12.

7. x — mx — — n, Z. X ^ — — --.
2 2^/'

15 72 - 6a; ^ , , ^
Q. --^— = 2. 10. a; — ax — bx := — ao.

X 2x

II. V'V — 1 = a; — 1. 12. a;^ — ofa; = 18.

13. 3a;^ + a; = 7. 14. 4.i' ^^ == 46.

40 , 27 ,,, ^48 165

19. (a; — fl^) (x — h) = 0,

20. (a; + 4) (a; + 1) = 6 (x' + 1) - 8a;^

21. 3 (a;' - 1) - 24 = 4 (a: + 5) {x - 3).

22. {x - 2) (3a; + 1) = 10 - (2a; + 1) (^ _ 3).

X a; — 3 a; — 8 x — 1

2 (a; - 3) x - I'
^'

a; + 2 2a; + 10*

5 29 _ _ 3

2 — X 4 — 5a; 2a;*

a; + 2 _ 3 16a;

32- (2a: - 1)
~" ^ "^

4a;' - 1*

X — 1 2a; — 3 a; — 8 ^ a x + b
2*7, =

, 28. = '—

.

'x a; — 1 a; — 9' ' x — b %x — a

3 2 1

^5-

26.

29.
?>a — a; 2« — a; a — 3a;*

30. 6 |/.i; + -^ == 37. 31. |/3i^; - 5 + |/a; + 6 3^ 9.

32. \^x — 2 + 1/4 — a; = 4/0 — a;.
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a-x 9 --3.7;
, ,

33. 10 -^- = ---- + 00;.

X + 3 ,16 --- -^x __ 26

35. 14 + 3.T - ^;^^---- = yx H ^—

.

X H- 19 _ 4 _ 9.7; - 8

^ *
'

3 a;
~

;<i '

^ ,
^T + 1 13

iz; + 1 ^ a; 6
*

^ .-?; + 6

^9- --3 9"~ - V^Z ~ ^•

,; 4. 11 9 + 4:^

4c. ==7
i
—

.

x X

41. (3.T + 1 )
(4:t' - 2) ^ (13.T + 7) (5^- - 3).

;^ + 2a;^ + 8

x' 4- ^' — G
42. -X—-.^ ^x^^x-^^.

43- (2: - ]) (:r - 2) + (^ - 2) (.T - 4) = 12^; - 30.

10 H)_ _ 3 82: _ ^ ,

20

8 — 2: 2^— ll_:r — 2

4 • —

^

a; - 3 ~ 6 *

3.T - 3 ,
,

3a; - 6
47. ^---^—3- = 4^ + -T—

2:r + 3
, J_ _ 1 ,

-,
5a: + 3 2.t - 3 _

^°'
2a; + 1 + 2a;^

~
a;
+ • ^'^

2; - 1 + 2ar^-2 " ^•

52. |/4"+V+ |/:^ r= 3.

53. 2a: - a:' + 1^0^^ — 12a: + 7 = 0.

54. f'a:'!^ + \^x + 8 = 5 l^i.

55. 4/2a^+ 1 + \/'lx-'ri r= |/3.i; 4- 4;
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3a; — 5 5a; — 3

2^ 4 6
~ _ 2a; - 4

^ • "3" "^
4a; - 3 2a; - 5 ~ 3 '

57. a; + '^^^^^ — Viiix" + a;'' = l^w.

58. Va; + 17 + i/a; - 4 = ^ V^

r a; — 4 oa; + 1
'

2

61. y^^ + 3 + V3a;-3 = 10. 62. Vx -{- V4+^ = -4^.

2 2
63. ; ; = m.

x+V-Z + x' X- V2 + x'

, 3 2_ ^
^*

a;^ - 7a; + 3 a;^ + 7a; + 2

^' + V^ _ a;^ — a;

^^ 2a;^ .
,

5a;^ 51
66. --6+- = -^-~^«.

8a;^ + 10 _ x' + 4: __ 3^
^' 21 5a;^ - 4

""
8

•

16
68. Vi6 +x + Vx =

69,

4/a;-5

4^ + 3 _ Vx + 6

Vx + 1 Vx + 2

70. ^a; + Vx — ^x — Vx = a y x+VX
m -\-nx a + ex 4 + 3a; a; + 2

71.
J

Z= ; . 72 ~ '

73

mx -\- n~ ax + c ' ' S + x ~
2a; — 19*

a;'' — 2a; + 1 __ :r + 3
• x' + 5a; + 6

~
a; + 2*

74. V4a; + 1 - i^lO -a; = Vx + 3.

12 8 6
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2
77. 6x' — 7x = - — 4:X. 78. {x — 3) (^ — 4) = 2.

81.

82.

84.

86.
a; — 1 X — 6

1 4a;ir — 5_^ 4;y + '^

^^*
2x + 6 3 (:r+ 2)

~ 20' ^' T + F+1 "" "^lo"'
2:^^ — 3 , 13 _ 1-52:

^°'
4:c - 1

"*" ¥ ""
2^ + 3'

91. ^x'' — X- 6 Vx' + 42^+4 — 42; + 7,

92. x' - 6x + 12 + y:r' + 6a: + 9 = 5.

93. 2a;' - 2a:+ 6 Vx' - x + 7 = 22.

94. 3a; — 2 Va;^- 3a: + 9 = 26 - a:'.

95. 2a:* + 7a: - 31 == a; + 4/0;^ + 3a; + 7.

96. y'2a;+ 3 - Va; - 7 = 3.

t^2^T^ - -/a:* - 3 _ 1^

^^'
|/2,,;- 4- 1 + Vo:^ - 3 ~ ^'

98. V2a; - 3 + l/4a: + 1 = >^/6^+78.

99. 3 Va;' + 5 - V9^~+4^~+~5 ~ 2.

100. 4/0:' + 3a: + /a;' + a: + 2 = 4.

§ 198.

Factor the following expressions by adding such a quan-

tity as will make the trinomial a perfect square, and subtract-

ing the same quantity.

a"^ — 2ah — ZW. Add 4Z>^ and subtract it; then

a^ - 2ah + Z>' - ^y = {a- by - W
= [{a -b)- 2b] [{a -'b) + 2h].
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'

I. a' + '^a'h' - %\ 2. x' - 2ax - 3a^

3. x" - 4cX + 3. 4. 2:' + 82:?/ -- 9y\

5. a' - 20abc + 64^V. 6. 2;^;' - ^x + 3.

7. ^'^ + 2% - 8b\ 8. 4^^ - 4.ab - Ub\
9. :?;' + 6x + 5. 10. 6a' + bab - 6b\

II. - x' + x' + 12. 12. a' + 9«^<^^ + S\b\

13. 2a' - 2ab + b\ 14. a' + 4.ab + 3b\

15. x' - 6x' - 16. 16. x' + a^y.

17. x' — Qx'y' + Dx'f, 18. 12^' -f 24a:y + %'.

19. ia' - 37a' b' + 9>.

(§3O70 Simultaneous Quadratics.

Two Unknovvk Quantities.

I. X -\- y = 7, 2. X — y = 5.

x' +y'= 25. x' - 2xy = 21.

3. 22; — 3?/ = 1. 4. 2a: — 2?/ = 5.

3x^— 4cxy = 15. 5a;' — 3a:^ —
v''
— 161-

5. a;' + ^' = a'. 6. a; + y = 28.

x" - y'' = b\ xy = 147.

7. x' + If/' = 169. 8. o;^ + y^' =: 224.

^^ = 60. xy = 12.

9.x + y= 8. 10. -- = --.

x'+ y'= 224. 3a;y + 2x + y = 485.

II. a; + y + 4/^y = 19. 12. lOa; + ^ = 3^:?/.

x' + y' = 97. .V = ^ + '^^'

13. ^' = ia;y. 14. X + 2y =: 30.

cc - 7/ = 15. .V'
- 10^ == 1^^ + ^6-

15. 2a; + 3?/ = 17. 16. 3a; + by = 31.

xy = 12. xy + y'= 18.

17. 5a; — 3y = 1.

2^' - a;' - 3a:f/ + 10a; - 5^ = 1.

18. 4a; — 5^ = 1.

lly' - 6x' - 9xy + 22a; - 7y' = 20.

19. 7a:^ - 13xy + 5/ = - 5. 20. 3a;' - lla;y + 7y' = 7.

6x^ - 9xy + 4:t/ = 6. 5a;' - 17a^^ +11/ - 1*^-
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21. S^r'' - nxy + 7^/' = 5. 22. Zx" - 2^xy + ty' = 15.

Qx' - Ihxy + 9^/^ = 15. 7^' - 48^'^ +19/= 11.

23- X + y = ij. 24. a; + ^ = 8.

X + ;?/ = 72. 2:^ + y' = 3368.

25- X + y = 5. 26. .t' — 2/' = 56.

^' + .' = '7- ^^ (^ -- ^) = 16.

27. X J^ y ^xy. 28. xy + a.y = 18.

xy = x' - y\ X -{- xy^ =: 27.

29. x' +y' + x + y^l^. 30. :z;^ + ^^ - a; - ?/ = 78.

xy = 6. ^y + ^' + .V = ^^'

31- 1 + i = ^.
^ ^ 6

32. 3y^ - 2a;' = 19.

r?; + ^ = 5. / + a;?/ = 15.

33- x\-\-y\ =z 6. 34. 2.r'' + ?^xy = 26.

:rf + ^1 .= 126. 3?/' + )lxy = 39.

•^

36. ^'^^^ - 'ixy = 24.35- "^^y -x-y
820

a;^ 4- ^'^ =
. a:i/ - 2.?/' =4.

37.
, a; 5

^•^ + .^-3- 38. ^ + .y = ^+2.

1 4. ^ - io
~T~ "~~ •

^ + ^ = ^5:
xy X 3 y ^

39- ^x' + 3/ = 27. 40. 4.x' - 57/' = 16.

^x" - .^'^ = 15. ^x' + 2^^^ = 35.

41. x' -^y' =45. 42. Zx - 2y = 6.

a: =2y. :r?/ ~ .1; =8.

43- xy =12. 44. 4cX^ — 5y = 4:xy.

3a; — 2.y = 1. 5x + 3y = 37.

45. X -\- xy = 24. 46. ^' + ^' + ^ + ^ =- 36.

y 4- 2:?/ = 21. ^^ - 2/' + ^ - 2/ = ^4.

47. x' + xy=zd5. 48. x' + xy + f = 7.

y'' -f o;^^ = 14. x'-xy + y' = 3.

49. x' ~ 2i:«/ + ^' =7. 50. ^ + ^y + y = 11-

x' - Zxy + 2^^ = - 2. ^' + ^y + y" = 19.
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52. x"" + y =. ^{x-y).

X +y=4(a;-,v).

^y. 54. x^ — xy^^l^,

x^ J^y' = 74.

56. x'' - ^xy + 2y^ = 1.

x"^ + 2.T^ — 4y'^ = 5.

58. i^+ Vy =z 5.

ic V.'c -f- ^ '^.V = 35.

60. 4:x' - 9y' = 7.

2x +^ =7.
62. a:' + y^ = 25.

X +y = 7.

64. X — 2y = 2.

x' + 4y' = 100.

Three or more Unk:n^ovvn Quantities.

I. xy = 24. 2. x"" + .T2; = 24.

{7 -y)z = 8. ,-z' + XZ = 12.

(3 -x) {z- 11) = 3. y' + yz + z' = 28 - 3?/.

3. :/;?/2; = 3 (.t^ + 4) = 12 (2; + ^) = 4 (o;^ + ;^ - 10).

4. :z:' + .y' + ^' = 84. 5. ^ + ^Z + ^ = 14.

•^ + .V + ^ = 14. a:' + y' + z' = 84.

:r7/ = 8. xz = y\
X -\- y _b

6. a: + f/ + 2; =r 12. 7- —^ - g

.

5^.
x + 2 _ ^

x'+ 2 19

53.

55.

^+2" 3*

2-{-y = 40 — X

:. + 2^ =- 7.

x^ — xy = 35.

^^_ ^^ = 10.

57. .T^' + ^:y = 18.

2;?/^ + a; = 27.

59- X -y = 8.

rr^ - ?/^ = 80.

61. 4 (.r + 2^) = 12.

rr'^ - 4//*^ := 33.

(>z- X — y = 2.

ic^ 4- 2/^ = 34.

^y -\- yz -}- zx = 47.
a;+ ^ 3

xz 4'

^•' + 2/' - ^' = 0. y + ^ ^ _7

y^ 12*

8. 2x' + 2.T^y + y' = 49. 9. :x^ -
^^y + 2^ = 2.

x' — .T2; + ;a^' = 28. x' + f + / = 49.

// + 2yz + i^' = 25. xy — z-\-y — 3.

:^ + ?/ + 2; = 9. II. a; + ^'zy + 2; = 10.
" + y/'^ + ;2;^ = 29. x^ +'^« + ^' =- 38.

^' = 4^ + 1. ^^ _|_ ^2; = .t'.

10.

.7;



520 QUADRATIC EQUATIONS,

12. x-{- y =1, 1^, X -\- y = 9.

II J^ V = 1. u -\- V = ^,

X + u' ^ S, x' + u' = 52.

y + v' := 4. y' + v' = 41.

14. xii = yv. 15. xy = 35.

a; -[- y =14. tcv = 18.

^^4-^=7. x + u = 13.

~+^= 4. ^ + i; =9.

Problems Leading to Quadratic Equations.

1. A principal of $6000 amounts with simple interest to

17800 after a certain number of years. Had the rate been 1

per cent, higher and the time 1 year longer, it would have

amounted to $720 more. What was the time and rate?

2. A courier left a town riding at a uniform rate. Three

hours afterwards another followed, going 1 mile an hour

faster. Two hours after the second another started, going 6

miles an hour. They arrive at their destination at the same
time. What was the distance and rate of riding?

Ans. Dist. = 60 or 6. Speeds, 4, 5 and 6 or 1, 2 and 6.

3. In aright-angled triangle the hypothenuse is 5 and tlie

area 6. What are the sides?

4. Find two numbers whose product is 180, and if the

greater be diminished by 5 and the less increased by 3, the

product of the sum and difference will be 150.

5. Find two numbers whose sum is 100 and the sum of

their square roots 14.

6. Find two numbers whose sum is 35 and the sum of

their cube roots 5.

7. By selling a horse for $130 I gain as much per cent, as

the horse cost me. What did I pay for him?

8. What is the price of apples a dozen when four less in

20 cents' worth raises the price 5 cents per dozen?

9. The sum of the squares of three consecutive numbers is

149. What are the numbers?

10. If twice the product of two consecutive numbers be

divided by three times their sum the quotient will be f . What
are the numbers?
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11. A womnn bought a number of oranges for 3G cents.

If she had bought 4 more for the same money she would have

paid i of a cent less for each orange. How many did she buy?

12. In mowing 60 acres of grass, 5 days less would have

been sufficient if 2 acres more a day had been mown. How
many acres were mown per day?

13. A broker bought a certain number of shares (par $100

each) at a discount for $6400. When they were at the same
per cent, premium, he sold all but 20 for $7200. How many
shares did he buy, and at what price?

14. If the length and breadth of a rectangle were each in-

creased by 2, the area would be 238; if both were each dimin-

ished by 2, the area would be 130. Find the length and

breadth.

15. Twice the product of two digits is equal to the number
itself; and 7 times the sum of the digits is equal to the number
formed by the same digits reversed. What is the number?

16. The sum of two numbers is ^ of the greater, and the

difference of their squares is 45. What are the numbers?

17. The numerator and denominator of two fractions are

each greater by 2 than those of another, and the sum of the

two fractions is 2-|; if the denominators were interchanged,

tlie sum of the two fractions would be 3. What arc the frac-

tions?

18. A man starts from A to go to B. During the first half

of the journey he drives \ mile an hour faster than the other

half, and arrives in 5f hours. On his return he travels a mile

slower during the first half than when he went in going over

the same portion, and returned in 6f hours. What was the

distance and rate of driving?

19. .A person who has $8800 invests a part of it in one

enterprise and the rest in another; the dividends differ in rate,

but are equal in amount. If the sums invested liad exchanged
rates of dividends, the first would have yielded $200 and the

other $288. What were the rates?

20. Divide 50 into two such parts that their product may
be to the sum of their squares as 6 to 13.

21. A company at a hotel had $12 to pa}^ but before set-
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tling 2 left, when those remaiiiiiig had 30 cents apiece more

to pay than before. How many were there?

2 2. A drover bought a nnmber of sheep for $180; after

keeping 10 he sold the rest for $200, and gained 33^ cents

apiece. How many did he buy?

23. Two partners, A and B, gained $140 in speculation;

A's money was 3 months in trade, and his gain was $60 less

than his capital; B's money, which was $50 more than A's,

was in 5 months. What was each man's capital?

24. Divide 30 into two such parts that their product may
be 36 times tlieir difference.

25. A aiid B set out from two towns which are 126 miles

apart, and travelled until they met. A went 8 miles an hour,

and the number of hours they travelled was 3 times greater

than the number of miles B travelled an hour. What were

their hourly rates? A^is.y in part. B's rate, VoS — 4.

26. In a purse containing 28 pieces of silver and nickel,

each silver coin is worth as many cents as there are nickel

coins, each nickel is worth as many cents as there are silver

coins, and the whole are worth $1.50. How many are there

of each?

27. Find two such numbers that the product of their sum
and difference may be 7, and the product of the sum and dif-

ference of their squares may be 144.

28. A grocer received an order for 12 pounds of sugar at

12 cents a pound. If he should have none for that price, he

was to send as many pounds more or less than 12 as the sugar

cost less or more than 12 cents a pound. The bill amounted

to $1.35. How many pounds had he sent, and what was the

price per ]>ound?

29. A grocer sold 50 pounds of pepper and 80 pounds of

ginger for $26; but he sold 25 ])ounds more of pepper for $10

than he did of ginger for $4. What was the price per pound

of each?

30. A and B's shares in speculations together amounted to

$675. A had his money invested 5 months and B 4^ months,

and each receives in capital and profits $455. What did each

be2:in with?
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^ 31. A person rents a certain number of acres of land for

$120; he retains 10 acres, and sublets the rest at 20 cents an

acre more than he gave, and receives $12 more than he pays

for the whole. How many acres were there, and how much
per acre?

32. A person bought a certain number of shares for as

many dollars per share as the number he buys; after they rose

as many cents per share as he had shares, he sold them and
gained $4. How many shares did he buy?

2,2,. The income of a certain railway company would justify

a dividend of 5 per cent, of the whole stock; but as $150,000

of the stock is prefei-red^ guaranteeing 6 per cent., the divi-

dend for the remaining stock is reduced to 4f per cent.

What is the whole amount of stock?

34. The length of a rectangular farm is to its width as 4

to 3; f is in grass, and the remaining 45 acres is cultivated.

What are the dimensions of the field?

35. If a straight line be divided into two such parts that

the rectangle contained by the whole line and one part is equal

to 6 times the square of the other part, what will be the ratio

of these two parts?

2,6, Out of a sphere of clay whose diameter is 16 inches,

two spheres are formed with radii of 3 and 5 inches respec-

tively. If the volumes of spheres vary as the cubes of their

radii, what will be the radius of the sphere that can be made
of the clay that remains?

37. The two digits of a certain number differ by 1, and

their product is i of the noxt higher number, what is the

number?

38. Find five numbers having equal differences, and such

that their sum shall be 40, and the sum of their cubes 3520.

39. A merchant bought a barrel of wine for $60; he re-

tained 12 gallons for his own use and sold the remainder at

an advance of 80 per cent, on each gallon and gained 20 per

cent, on the whole. At what price per gallon did he sell it?

40. Find two numbers that are to each other as 9 to 7;

and the square of their sum is equal to the cube of their dif-

ference.
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41. The panel in a door is 12 by 18 inches, and it is to be

SRiTouiided by a margin of uniform width and equal surface

to the panel. How wide must the margin be?

42. The fore wheel of a coach makes 6 more revolutions

than the hind wheel in going 160 yards; but if the circumfer-

ence of each wheel be increased by 4 feet, the fore wheel will

make only 4 more revolutions in 160 yards. What is the cir-

cumference of eacli wheel?

43. The sum of three numbers is 15; the difference between

tlic first and third is 3 more than the difference between the

second and third, and the sum of their squares is 93. What
are the numbers?

44. Tiie product of two numbers is 15, and if their differ-

ence be added to the difference of their squares the sum will

be 18. What are the numbers?

45. A certain number consists of two digits; the number
is 4 times the sum of its digits; and 3 times the number is

equal to twice the square of the sum of its digits. What is

the number?

46. Find two numbers whose sum is 14, and if their prod-

uct be added to the sum of their squares the result will be

148.

47. Two brokci's begin business with a joint capital of

$10,000. A withdraws at the end of 12 months and receives

$4960 in capital and profits. B remains 3 months longer and

receives $7800 stock and gain. What was the original capital

of each?

48. Find five equal numbers whose sum is equal to their

continued product.

49. A jockey bought a horse and sold it at a certain per

cent, profit; with the money he bought another horse and

sold it at the same per cent, profit, and with the proceeds he

was able to buy 2 horses each costing 2 per cent, less than the

first. What per cent, did he make on each transaction?

50. Two travellers start from the same place at the same

time, one goes due north 16 miles a day, and the other due

east 21^ miles a day. How long must they travel in order to

be 160 miles apart?
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51. What is the length of a side of a square whose area is

increased by |of its amount when 4 feet is added to each side?

52. Find the length of the side of a square such that the

number of square feet in its area exceeds the number of linear

feet in its perimeter by 12.

53. The perimeter of a rectangle is 34 feet; if its length

were increased by 4 feet, while its perimeter remained the

same, the former area would exceed the double of the second

by 6 feet. What were the original dimensions?

54. If 3 feet be taken from one side of a rectangle whose

perimeter is 14 feet and added to the other side, the area

would be doubled. What were the first dimensions?

55. A man invests his money at a certain rate of interest

for two years, and finds that he will get 1 per cent, more for

it if he reckon by compound interest compounded annually

than by simple interest. What is the rate of interest?

56. A person bought a certain number of shares when they

were at a discount and sold them when they rose to a premium
of the same rate per cent. His profit on the first investment

was A percent, more than the common value of the premium
and discount. What was the latter and the rate of profit?

57. A regiment of 2196 soldiers is formed into two squares,

one having 6 more men on a side than the other. How many
men are there on a side of each square?

58. Find two numbers whose product is twice their sum,

and the sum of their squares 45.

59. Find two numbers whose product is 8 times their dif-

ference, and the difference of their squares 48.

60. Find two numbers whose difference is 6, and | of their

product is equal to the square of the less.

61. Find two numbers such that their product added to

twice the square of the greater is 65, and the product added

to the square of the less is 24.

62. Find two numbers such that their sum multiplied by

the sum of their squares is 715, and the difference multiplied

by the difference of their squares is 99.

6^, Two trains start at the same time from two towns and

run at a uniform rate towards the other town. When Ihcy
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meet it is found that one train has travelled 90 miles more
than the other, and that if they continue at the same rates

they will finish the journey in 6 and 13|- hours. What are

the distance and rates?

64. A man receives $2200 a year interest. If he had in-

vested his capital at ^ per cent higher, he could have lessened

his investment by $4000 and received the same income as be-

fore. How much had he invested?

Progressions.

Note.—Tlie abbreviations A. P., G. P., C. D., and C. R. are but for

Arithmetical Progression, Geometrical Progression, Common Difference,

and Common Ratio, respectively.

1. If the first and last terms of an arithmetical progression

are a and I and the number of terms n, express the sum of

all the intermediate terms.

2. If the first and last terms of an A. P. are 4 and 28

respectively, what possible values may the sum of the inter-

mediate take?

3. Sum to n terms distinguishing the cases when n is even

and odd, when necessary:

1-3+5-7+
4. 2-4+6-8+
5. p,p + n,p+2n,
6. If the square of the fourth term of an A. P. is equal to

the product of the first and sixth, show that the tenth term

must vanish.

7. If the square of the second term of an A. P. is equal to

the product of the first and fourth, show that tlie square of

the sixth is equal to the product of the fourth and ninth.

8. Generalize the preceding result by showing that, in

order that the square of tlie nth. term may be equal to the

product of the first and n'ih, and the square of the mth to

the product of the ^^'th and m'th, it is necessary and sufficient

that m, m', n and n^ fulfil the conditions

m' = 2 {m — 7i) +1; 2u^ = ni + n

9. Find three quantities in A. P. whose sum shall be 3«

and the sum of whose squares shall be ll«^
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10. Find 7 terms of an A. P. such that their sum shall

be 14 and the sum of their squares 84.

11. In an A. P. the product of the first and eighth terms is

less by h than the product of the second and seventh. How
much less is the product of the third and sixth than that of

the fourth and fifth?

12. Express the sum of n terms of an A. P. in terms of

the first term and the CD.
13. If a and h are the first two terms of an A. P., express

the last term and the sum of n terms.

14. Prove that if the sum of m terms of an A. P. be n,

and the sum of n terms be m, we shall have

2 (m + ^0 + ^^^ — ^•

15. If a^, If, & be ill A. P., then,
a-\-V c -\-a' h -\- c

will also be in A. P.

16. The sum of the first three terms of an A. P. is 15 and

the sum of their squares is 83. What is tlie sum of n terms?

17. In a progression of 9 terms, the third term is 10 and

the sum 153. Find the first term and common difference.

18. In an A. P. a certain term is h\ there are 2n terms

before k and n terms after it, and the sum of all the terms is

3^ + 1. Find the 0. D.

19. Two men start simultaneously from the same point in

the same direction. The one walks m miles the first day,

and diminishes his walk by h miles each day; the other walks

n miles the first day, and increases his walk h miles each day.

How far will the latter be ahead at the end of i days?

20. Express the sum of the G. P.'s:

.

^n _(_ ^2n _|. ^3n _|_ _ _ _^ ^lOn.

^n _(_ ^2n ^ ^3n _|_ _ _ _|_ ^mn.^

1 + |/3 + 3 + + 3^

21. The sum of the first and seventh terms of a G. P. is

A, and the sum of the second and eighth is h. Find the first

term and the C. K.

22. The sum of the first and fifth terms of a G. P. being
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added to twice the third term gives a sum which is 9 times

the first term. Find the C. R.

23. The fifth term of a G. P. exceeds the first by 16, and

the fourth exceeds the second by 4 1^3. Find the first term

and 0. R.

24. In a G. P. the sum of n terms is S and the sv> WjI 2n

terms is 6S, Express the 0. R. and first term.

25. In a G. P. of 271 -f 1 terms, whose first term is 5, the

sum of the first and last terms is 125 greater than twice (he

middle term. Find the C. R.

26. The first term of a G. P. is 2, and the continued

product of the first 5 terms is 128. What is the 0. R. ?

27. Find that G. P. of which the product of the first and

second terms is 3, and that of the third and fourth terms is 48.

28. A person who each year gained half as much again as

he did the year before, gained $2059 in 7 years. What was

his gain the first year?

29. A man who had a principal out at 5 per cent, per

annum compound interest for 4 years found that the interest

gained during the second and fourth years was greater by

$84.10 than that gained during the first and third years.

What was the principal?

30. Show that \ia,h,c,d, , . . ^, ? be in G. P. we shall have

(a + ^ + c + -{-k) {h -^ c^ d-\- + /)

= ^(^ + ^ + ^ + .... + 0^

31. If a, h, c, d be in G. P. prove that

(^« J^V" -\- c') {V + c' + d') = [ah + ic + cd)\

{h - cy + (c - ay -\- {d- by =: (a- dy.

32. Generalize the first of the preceding results by show-

ing that if we multiply the sum of the squares of the first n

terms of a G. P. by the sum of the squares of the n terms

following the first term, the product will be equal to the

square of the sum of all the products formed by multiplying

each term from the first to the ^th by the term following it.

33. Sum to 71 terms

(^_Ly+(,«»_i,y+(,«^-i,)V....
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34- I^^ *i Cr- P- <^f ^ terms are given:

The sum of all the terms except the first = 33;

The sum of all the terms except the last = — 22.

Find the series.

35. Find two quantities of which the arithmetical mean is

a and th. geometrical mean is g, and prove the result.

2,6. In a G. P. of 8 terms the product of the four alternate

terms beginning with the first is 1, and the product of tlie

four alternate terms from the second to the eighth is 16.

Find the progression.

37. A party of m persons have s dollars unequally divided

among them. Each simultaneously divides his money equally

among his m — 1 fellows. If one of the party had a dollars

in the beginning, how much will he have after 1.2, and p
such divisions?

' 7)1 m — l\m J m (m — l)\m /

m {m — 1)^ \m )

Find the limits of the sums of the progressions:

38.1 + 1 + 1+....

39.
- + ! + «+....
n m

7171^'

43..1 + (r + i)"'+(r+3-)"%....

43. l-(r +9"V(r + i

44. r+{l+ay+{l+a+a'y+{l+a+a''+a'y+

r and ar being each less than unity.

45. r+{l-ay+{l-a+a'y+{l~a+a''~ay+
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46. r-{l-aY+(l-a+a'y-{l-a+a'-a'y-\-
. X[.

^''' n + l {n+ ly "^
(^n + ly

Functional Notation.

Prove:

1. {2n)l = 2^{l.d.5. . . . 2/^-l) .nl

2. (2^) ! = 2^^ (1.3.5 15) (1.3.5.?) (1.3).

Using the notation [m] = 1.3.5.7 . . . . m
y^ = 2«

Show that we have

3. ^! = 2''-[^-l][|-l][|-l]. ... [3].

[2u - ly
,j

5. If S{)i) represent the sum of the first n terms of a --

geometrical progression whose 0. R. is r, show that

S{2n) = (r^ + l)S{?i).

6. What will be the last factors in the numerators and

denominators of the following expressions:

m- i"^)-- ^"^y- (^D^ c^i)^ (^')-

«-e)+c-ii)=(:^>.
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Sn represent the sum of the first n natural numbers,

^hat s,

/y,= l + 2 + 3 + +n,
aow that:

10. /S'n : Sn + 1 = n : n + 2.

11. ^2X /S', X /5i = 3! [7].

12. .^2 X ^S', X >S; X >^2n = nl [2n + 1].

13. S,XS,XS, X .%n+i - (^ + 1)! [2n + 1].

14. S,X S,X S, X S,n = {2n + 1) (t^!)^ [2^ - l]^

15. /S'i+.?,+ ^8+ +^2.
= 4.{V + 2' + d' + 4:'+ + 7i').

6. S,+ S,+ S,+ + S,r^ + ^

== 1^ 4_ 3« + 5« + . . . . 4. (27^ + ly.

17. IlCi=^h + sCi^i find the values of 0^, C3, Ci, and Of

terms of A, 5 and Co, and find the value toward which 6^

oaches as i increases indefinitely, assuming 5 < 1.

1 8. Apply the preceding notation to the following problem

:

A. person having a full and an empty cask pours half the con-

tents of the full one into the other; then half of this last one

back again. He repeats this double operation an indefinite

number of times. Find what fraction of the liquid will re-

main in the first cask after 1, 2, 3, 4, and i such double opera-

tions.

To do this assume that d and 1 — d represent the fractions of the

. aid in the two casks after the ^th operation, and then find the fractions

after the {t + l)st operation.

19. A vintner has one cask containing a gallons of wine

and another containing b gallons of water. He pours half the

wine into the water, then half that mixture back into the

wine, and so on indefinitely. Find an expression- for the

quantities and proportions of wine and water in each cask

after 2n and also after 2n -\-l such operations.
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Permutations and Combinations.

1. A regular cube is to have its sides numbered 1, 2 .... G.

In how many ways may the numbering be done?

2. In how many ways might the numbering be done in

the last problem if only three of the six sides were to be

numbered ?

3. A party of 3 boys and 4 girls has to walk in single file,

the boys ahead. In how many ways can they be arranged?

4. What would be the number of aiTangements in the last

problem if the only condition were that the boys must be to-

gether in one group and the girls in another?

5. If the combination of auy three different letters in any

, order made a word, how many words of three letters could be

formed from the 26 letters of the alphabet?

6. If in the last problem the words thus formed were

divided into sets such that the different words of a set should

be formed of the same letters, how many sets would there be,

and how many letters in a set?

7. Six men with their wives are to stand in a row. In

how many ways may they be arranged subject to the condition

that each man must remain alongside his wife?

8. What would be the answer to the last problem in case

each man had to keep his wife on his right?

9. A boy has the letter blocks which form the words you

are mad. In how many of the arrangements will all three

words be recognized, supposing that any word may be recog,

nizedwhen its first letter stands first, and its other letters fol-

low it in any order?

10. If every permutation of two or more letters made a

word, how many words could be formed from 10 letters?

11. In how many permutations of n letters will the first

letter retain its place? The second letters retain their second

places? The last letter retain the last place?

12. If we write under each other all possible permutations

of the first n numbers 1, 2, 3 .... ^^ what will be the sum
of each column? Ans, ^{n -\-l)\
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13. What will be the sum of each column if the possible

permutations of the figures 1 2 2 3 3 3 4 are all written under

each other?

14. From a collection of 5 capital letters and 7 small ones

how many combinations of 1 capital with 2 small ones can be

formed?

15. The driver of a four-horse coach can choose his horses

from a stable of 6 white and 8 black horses, but he must not

pair 2 horses of different colors. In how many different ways

may he choose his 4 horses?

16. How many of the possible combinations of 3 letters

in the first 10 will contain the letter c? How many will con-

tain both the letters c and e??

17. Of the possible combinations of s things in n, how
many will contain a designated thing? How many 2 desig-

nated things? How many h designated things?

18. A party of 6 meet for whist, 2 waiting while the other

4 play. Each 4 must play one game with each possible ar-

rangement of partners. How many games will be played in

all; how many will each person play, and how many times

will any two designated persons have met as partners?

19. From a collection of 5 letters and 6 numbers how
many combinations, each consisting of 1 letter and 2 num-
bers, can be formed? How many consisting of 2 letters and

3 numbers? Of 5 letters and 4 numbers?

20. From a collection of m letters and n numbers how
many combinations of r letters with s numbers can be

formed?

21. In how many ways may a pile of 20 balls be divided

into two piles, the one having 15 balls and the other 5 ?

22. How many different signals may be made with 4 flags

of different colors, it being assumed that each different order

of each combination forms a different signal, but that the

signal remains the same when the order is reversed?

23. What would be the answer to the preceding problem
if each combination of several flags could be arranged either

horizontally or vertically, and an inversion of each vertical

arrangement made a different sig,nal?
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24. How many different signals can be made with 10 flags,

of which 2 are white, 3 red, and 5 blue, all hoisted together

in a vertical row?

25. How many different arrangements can be made of a

base-ball " nine," supposing that only one man can pitch, and

only two can catch ?

26. Supposing that, in a game of chess, the first player

always has a choice of two good moves and the second player

of three, how many games of 20 moves each are possible?

27. If the 8 pieces at chess could be arranged in any order

on the 8 squares of the first rank, how many different arrange-

ments would be possible?

28. In how many different ways can 4 pawns be arranged

upon the 64 squares of a chess-board? How many different

arrangements can be made with a king, queen, knight, and

rook? Explain the relation of the two answers.

29. In how many ways may 12 balls be divided into three

piles, containing, the one 3 balls, the second 4, and the thirds?

30. In how many ways may n balls be divided into 3 piles,

containing, the one p, the second q, and the third r balls

{p+q + r^^n)?

31. What must be the value of r in order thai

(1'"' /7W ?

32. The ratio of the number of combinations of 2n things

in 4:71 to that of the combinations of 71 things in 2/1 is

{271 + 1){271 + S) , . . . {4:71 ~ 3) {4:71 - 1)

1.3.5 . . . . (2/^-l)

33. Show that the sum of the 7i\ different numbers that

can be formed by permuting any 71 different digits is divis-

ible by {71 — 1) times the sum of the digits, and that the

quotient is 111 ....
34. If we define a magic square as an arrange- 6 18

ment of ?i' numbers in a square such that the sum
of every line and every column is equal to the same '2' 5 3

quantity; show that if one such arrangement is pos- 004
sible with given numbers, then {niy are possible.
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See margin for example of square when ti = 3, and note that we
leave out of consideration the diagonal lines of numbers.

35. Given m different letters and n different numbers,

find the number of different permutations each containing r

letters and s numbers.

2t(i, Given n unequal straight lines; how many non-identi-

cal rectangular parallelopipeds may be formed, each of whose

edges must be equal to some one of these lines in the two

cases
; (1) When the same line cannot be repeated in a

figure and (2) When it can be repeated without restriction.

37. The same thing being supposed and case (1) taken;

how many different parallelopipedons may be built upon the

same horizontal plane as a base, with their vertical faces

toward the four points of the compass ; two figures being

regarded as different when they cannot be brought into coin-

cidence without turning them around or over.

38. Given n—1 sets containing respectively 2^^, 3« . . . . na

different things; show that the number of combinations com-

prising a of the first set, 2a of the second, etc., is
^

^>1'.

Series.

Indeteeminate Coefficients.

Develop the following expressions in powers of x by the

method of indeterminate coefficients:

I.
1 + nx

1-x' 2.
1 + x

1 — nx'

3-
1 +mx
1 +nx'

4.
x + a

C — X

5-
a{a + x)

a' + x''
6.

a' + x'

a-\-x'

•7.
x' + a'

x" + a'*
8.

(i^x){i^hxy

9.
X

10.
x^

(1 ^ ex) (1
-

CJ
l + ic*"

1
12.

1

a" -\- ax-\' x^* 0^ — ax-^ x^'



536 SERIES.

Products of Series.

Form the products:

1. (1 - a; + x'- x'+ . . . .){l + x+x'+x'+ . . . .)•

2. (l+2^+3^'^+4a;^+ . . . .) {l-^x+^x'-^x^+ ....).

, (,j y\y' y\ \{^j^y\y\y' jl. \

4. {i+ax+ av +— ) (i+|+|; +|;+ . . . .).

5.(i-..+av-....)(i-i+i;-:-;+....).

6. (1 + 2a; + 3a:'' + 4a;' + . . . .)\

7. (1 - 2a; + 3a;'' - 4a:' + . . . ,)\

Carry the products as far as x^ and express the 7i^^ term

of the product in terms of n in each case for which you can

form it.

FiGURATE Numbers.

1. Enumerate an incomplete pile of cylindrical shot (§ 288)

haying n shot in its bottom row, and as many in its top row

as there are rows.

Show that in this problem the number n must be odd.

2. The top and bottom rows of an incomplete pile of cylin-

drical shot, having 8 rows in all, contain 9 shot less than one

third the pile. How many shot are in the pile?

3. In an incomplete pile of 63 cylindrical shot 35 are in

the interior of the pile, so as to be completely surrounded by

others, and 28 form the top, bottom and sides. Describe the

pile, and show that two piles may be formed which fulfil the

conditions.

4. In a triangular pyramid of balls the ratio of the whole

number of balls to the number in the bottom layer is 14 : 3.

How many balls form the pile?

5. In a triangular pyramid having n balls on each edge,

how many balls form the four faces?

6. If 20 balls in a triangular pyramid are completely sur-

rounded by others, how many form the entire pyramid?
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^ 7. A rectangular pile has 15 balls in its top row and its

lesser side has 10 balls. Enumerate the balls in the pile.

8. If one side of the base contains m balls and the other n
(m > n), how many balls will the pile contain; how many
layers, and how many balls in the top row?

9. If 495 balls form a complete rectangular pile, having

10 balls on one side of the base, how many will the other side

comprise?

10. How many balls in a square pyramid having 12 balls

on each side of the base?

11. A rectangular pile has 84 shot in its bottom layer and

66 in the next layer. How many in the whole pile?

Prove:

12. 1.2 + 2.3 + 3.4+ .... +7i{n + l)

_ n{n + l){n + 2)~
3

•

13. 17^+ 2(72,-1) + 3 (^-2)+ , . , . + n[n-{7i-l)]

__ n{n + l) {n + 2)"
3!

14. 1.2 + 2.4 + 3.6+ .... +n.2n
_ n{n + l) (271+ 1)""

3

15. 1 (2 - ^) + 2 (4 - w) + 3 (6 - 7^) + . . . . + n'

_ n{n + l) {n + 2)~
3!

16. If we multiply the corresponding terms of the two

progressions:

a, a + Ji, a + 2hy , . , , a + ih,

i, 1) — h, h — 2h, , , , , h — ill,

the s.um of the products will be

(^•+1) \ai> +'^^^y -i^i±^\

.

17. Find the sum of the products when, in the second

series, the C. D. is + li instead ot — h.
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Express the values of

i8. ai + ia^ h) {h + k) + (a + 2A) {h + 2k) -\- . . . .

to n terms.

19. 1.3 + 3.5 + 5.7+ .... +^(^ + 2).

20. 1^ + 3 (a — 3) + 5 («5 — 6) + . . . .to n terms.

21. l.tt + 3 (a + 3) + 5 (nj + 6) + . . . ,ton terms.

22. Prove the equations:

4 5 6 7
1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 = 1^1.1

by subtracting from the second member the successive terms

of the first member, beginning with the last.

23. Generalize the preceding result by proving in the same
way the general equation:

_ (n + 1\

Note that the first operation will be"to deduce

By means of the preceding formulae write, on sight, the

values of:

24. 1.2.3.4 + 2.3.4.5 + 3.4.5.6 + 4.5.6.7

1.2.3 2.3.4 3.4.5 4.5.6 5.6.7
^^*

1. 2. 3
"*"

1.2.
3 + 1.2. 3 "^1.2. 3 "^1.2. 3*

26. 1.2. 3. 4+ 2. 3. 4.5 + . . . .+ ?^(^ + 1) (^+2) (w+3).

27. Show that the sum of the products of the first n natu-

ral numbers taken by 2's is ^^ ^-—^ 7^ -^
^ —\

28. In the following scheme we start with a column of ar's

on the left, and with the top line a, ft, y, d, etc. Then, each

number following, in each column, is formed by adding the

number above it to the number on the left of the latter. It
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is now required to write the general expression for the ni\i

number in the 2d, 3d, 4th, and iih. columns.

1 2 3 4

a P 7 d

a P^- a r^V ^ ^^h r
a /5 + 2a yj-215- - a 6 - -2y- - ^
a y5 — 3a: yj-3/i- -3a 6- -3r- -3/i+ a
a y^ + 4a r -h4/^Hh6a 8 + ir-\- 6/i + 4a

29. A trader starts with a capital of a dollars; he gains,

and adds to his capital, h dollars the first year, and c dollars

more each year than he did the year before. Express his

accumulated capital at the end of n years in terms of n.

SuMMATioiT OF Series.

Sum to infinity:

1. 1 + 7^ + (1 + 2?z) a:+ (1 + Zn) x^-\- (1 + ^n) 2:'+ ....

2. 1 + 3a; + ^x^ + 10^'+ .

3-

4.

5-

6.

7.

8.

1 + 4a; + ^x^ + 16a;' + . +n'x'"'^-i- . . . .

1.3

1

2.4 3.5

1

2.5 + 5.8"'"8.11 +

2.4^4.6^6.8^

2.3.4

1

1.3.5

1

+

+

+

3.4.5

1

2.4.6

1

+

+

+

4.5.6

1

3.5.7

1
+^ 1.4.7 ' 2.5.8 ' 3.6.9

10. l-i^{a+l+a-^) r+ {a'+ a + 1 + a-^-{-a-y''+

11. {71 + lyx +{n + 2)V + {71 + 3)V + . . . .

12. - + -i + -:^ + -4 + . . . .
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Sum to n terms:

13. a'J^{a + iy + {a + %Y+
14. 3 + 5 + 9 + 14 + . . . . + M!i+i).

z

15. 3 + 8 + 15 + 24 + . ,,,-]- 71 {n + 2).

16. 1 + /^ + 2 (2 + y?;) + 3 (3 + ^) + . . . , J[-n{n + r
16a, Show that the series:

2^3 4^5
may be transformed into eitiier of the three forms:

Jl_ 4. _1 _1 .

1.2^3.4^5.6^ * * •
•

. _ J ^ ___^ _^^
2.3 4.5 6.7 •

• •
•

.. 1 1
,

111
^^

2 "^1.2.3"^ 3.4.5 "^5.6.7"^7.8.9"^****

17. How do two of the preceding results enable us to sum

r~2
"^ 2~3 "^ 3~4 + * • * * ^^ wfinitum?

18. What number is equal to the continued product:

2^. 4i.8T's. 16^^.32^5 .... ad infinitum?

19. To what limit approaches the indefinitely continued

product:

1 ?_ ?_ i_

a^.a'^^a^^a»** . . . . ?

Limits.

Find the limits of

{x - by

x"

as X increases indefinitely.

2.
ax

ax
3- -.-
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4. '^—~ as X approaches a indefinitely.
X — a

X a

x' -a'
x' -a'
a X

X a

12.

X — a

(x+ a)'' — (x — ay . • -, ^ .^ 1
7.

-^^ n^ ^s X increases indefinitely.

(1 + axY
•

(1 + bxy

(1 - axr ,, ,, ,,
^*

(1 - bxy

10. ^ as n increases indefinitely.

„ r + r + 3'+.... + n' ,,,, ,.

in^ 4- 2^ + 3"^ + 4^ + . . . . + ^^ ^^

13. The first term of a series is —, the second — tt, and
o 6

each succeeding term one half the sum of the two which pre-

cede it. To what limits will the nth term and the sum of

the series approach as n increases indefinitely?

14. Find the limit toward which the nth term approaches

when

First term = a-{-2b; second term = a — b;

cc u ^ 1. .. <c ^ 1.

each, term after the second being half the sum of the two

preceding terms.

15. The first term of a series is a, the second b, and each

following one the geometrical mean of the two preceding it.

Show that, as ^increases indefinitely, the ^th term approaches

the limit albk
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Binomial Tlieorem.

Develop:

I. (1 - x)-\ 2. (1 ~ xy^

7. (a + l)K 8- {a - i)K

g. (a + b)-i. lo. (a - b)-i.

13. (c.-^f. ^4. (.• + ^f.

In the six last developments arrange the result in the form

A + B [x±l) + C{x^ -^^ +etc.

Develop as far as x^ and arrange in powers of x:

17. {1 + X + x')\ 18. (1 - a: + ^y.
19. (l + x- ir')-^ 20. (1 - a; - a;')-^

21. Write the development of (1 — x)-^ in such a form

that the denominator of each term shall be 3 ! and express the

tth term as the product of 3 factors.

22. Write the development of (1 — x)"^"" in such a form
that all the terms shall have the common denominator

{2n — 1)! and show that, putting for brevity, p = n-{-i — 1,

the ^th term may be written in the form

{2n-l)l
•

23. Show that, if n be an odd number, and if we put

p = n -{- 2i — 2, the ith. term in the development of (1 — a;)~"

may be expressed in the form

(y - 1') (y - y) if - 5') [f-jn- 2)']

3.4.6 . . . .2{n-l)
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24. Show that the ratio of the ni\\ term to the (71 — l)th

in the expression of (1 — x)"^ is 2a;.

Of what quantities are the following series the develop-

ments?

2 ' 2.4 2.4.6 ' •
• •

•

25. 1-i-g ^6.12^6.12.18^ • • •
•

Express the general term of the following developments:

29. (1 + 2^; + ^^. 30. (1 + 2a; + a;')-^

31. (1 - 2a; + a;y. 32. (1 - 2:?; + a;')-^

33. (1 + ^ + ^'^'^ + ^' + • • • • ^^ infi7iitumY.

34. (1 - a; -+- o;^ - a;' + . . . .
" '^ )^

35. \l-2x + 2V - 2V +...." " )-".

36. Prove that

2- _
^^^

2—^+
(1)

2—2 - + (_ 1)-= 1.

37. If, in the development of (1 + ^Y we call the second

term a and the third 1), express n and x in terms of aj ana b.

Of what expressions are the following series the develop-

ments?

38. 3" + (^') S™-' + (1)
3-^ +....+ 1.

39. 3-
-(f)

3"'-+ (1)3---....

, , , ,

4 ,4.5 ,
4.5.6

,

40. 1 + 1+- + -- + ^-^-+....

2^t 2?i.dn

42. If ^y be the rth term in the expansion of (1 -+ ^)**+*'

show that

h + t,+h+ ==(l-^)-<«+«).
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Exponential Theorem.

1. Find two expressions each for the coefficients of x^, x^,

and a;" in the development of e'^e^, and show their identity.

2. Develop e"*^ in powers of x to six terms.

3. What is the coefficient of x^y^ in the development of

6^+^? In that of e^-^?

4. Multiply the two developments:

X^ x^
e— r=:l-a;+— --J+

and show by what relations among the coefficients the x>rod-

uct reduces identically to unity.

5. Show by what relations the development of e^^ becomes

identical with the square of that of e^.

Logarithms and Logarithmic Series.

I. Express the logarithm of the continued product of all

tlio terms of a geometrical progression.

Calling h the arbitrary base of the system of logarithms,

ve the following equations so as to express x in terms of y:

2:

4.

6.

8.

10.

log X = y, 3. log X = ay,

log 2x = y, 5. log 7}ix — a -\- y,

log ax = my, 7. log x^ = y,

logx"" := my. g, y — V''«'^.

Eeciuce to their simplest form the expressions:

12.

Prove the identities:

^log aj^log y ? £

14. m^^^ = ^yloemx - _^^_ "^ _. ^losmy^ogn.

/
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16. If a, h, and c be the mth, ^th and ^tli terms of a geo-

metrical progression show that

{P — q) log a-\-{q— m) log h + (m — p) log c = 0.

17. Prove that the value of the expression

is independent of n and equal to log a,

18. Prove the equation:

2 log X — log {x -\- a) — log {x — a)

_^.^j a'
,

1 ^^ ,1 «"
,

)

-'^^]2a;^ _ ^^+3 ' (2x'-a'y~^ 6 (2x'-ay^ ' ' ' ' ]'

19. If a, J and c are three consecutive numbers show that

21og*-log«-log.= 3Jf]^-+3^J-p^, + ....[.

20. Prove:

Nap. log4 = 1 + j-|^ +^+^+ ....

21. If a, I, Cy d, etc.y are in geometrical progression, then,

in order the equations1111^
a-^ =M = cp = d^= . . . .

may be satisfied, the quantities m, n, p, q, etc., must be in

arithmetical progression.
1 1

22. If 2/ = IQi-iog^, and z^K^^-'^^sv^ show that

23. Prove the development

and by making the development in another form and com-

paring the coefficients of x^ prove the identity

2"-g_o.-. «-3g„_,
I

(w-4)(«-5)

the series terminating with tlie last exponent which is not

negative.



HINTS ON A COURSE IN ADVANCED ALGEBRA.

For the benefit of students wlio may contemplate a course of reading
in the various branches of Advanced Algebra, the following list of sub-
jects and books has been prepared. As a general rule, the most extended
and thorough treatises are in the German Language, while the French
works are noted for elegance and simplicity in treatment.

To pursue any of these subjects to advantage, the student should be
familiar with the Differential Calculus.

I. THE GENERAL THEORY OF EQUATIONS.—In English, Tod-
hunter's is the work most read.

Serret, Algehre Superieurey 2 vols., 8vo, is the standard French work,
covering all the collateral subjects.

oToT?T»A^^ Theorie des Substitutions et des Equations Algefyriques, 1 vol., 4to,

s the largest and most exhaustive treatise, but is too abstruse for

my but experts.

_-. -.i^PERMINANTS.—Baltzer, Theorie der Beterminanten, is the

standard treatise. There is a French but no English translation.

A recent English work is Robert F. Scott, The Theory of Deter-

minants and their Applications in Analysis and Geometry.

III. THE MODERN HIGHER ALGEBRA, resting on the theories of

Invariants and Covariants.

Salmon, Lessons introductory to the Modern Higher Algebra^ is the

standard English work, and is especially adapted for instruction.

CLEB8CH, Theorie der lindren Algebraischen Formen^ is more exhaustive

in its special branch and requires more familiarity with advanced

systems of notation.

IV. THE THEOKi. OF NUMBERS. There is no recent treatise in

English. Gauss, Disquisitiones Arithmeticm, and Legendre,

Theorie des Norribres, are the old standards, but the latter is rare

and costly. Lejeune Dirichlet, Vorlesungen uber Zahlentheorie,

is a good German Work. There is also a chapter on the subject in

Serret, Algehre Superieure.

V. SERIES.—This subject belongs for the most part to the Calculus, but

Catalan, Traite eUmentaire des Series, is a very convenient little

French work on those Series which can be treated by Elementary

Algebra.

VI. Q JATERNIONS.—Tait, Elementary Treatise on Quaternions^ is

prepared especially for students, and contains mfiny exercises. The

original works of Hamilton, Lectures on Quaternions and Elements

of Quaternions, are more extended, and the latter will be found

valuable for both reading and reference.
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