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Abstract

A triangle relationship among alternative errors-in-variables (EV)

methods for estimating daily beta coefficients are investigated in

detail. It is shown that the well-known method proposed by Scholes and

Williams is not a consistent estimator. Daily data of Dow-Jones thirty

is used to demonstrate how these three EV methods can be used to

estimate the daily beta coefficients.





I. Introduction

The capital asset pricing model CCAPM) developed by Sharpe (1964)

and Lintner (1965) and Mossin (1966) has been received with great enthu-

siasm by the finance profession, and many attempts have been made to

test the validity of the model and the index proxies. Most empirical

studies tend to reject the two-parameter asset pricing model. Several

errors-in-variables problems are generally used to explain why the CAPM

generally fails to pass empirical tests. The main purposes of this

paper are to review and integrate several errors-in-variables beta esti-

mates and to re-examine capital asset pricing determination. The second

section of this paper reviews some possible problems associated with

the traditional CAPM. The third section reviews and integrates errors-

in-variables (EV) beta estimates. In the fourth section, daily data of

Dow Jones thirty during the period of 1975-1979 are used to show how

alternative EV estimates can be used to analyze capital asset pricing

determination. Finally, results are summarized and future research

efforts will also be outlined.

II. Plausible Explanations for Failure of Testing the CAPM

Levy (1978) proposed a theoretical explanation for the failure of

traditional capital asset pricing determination. According to the

traditional CAPM, all investors hold in their portfolios all risky assets

in the market, and the proportion of each asset held by each investor

is the ratio of its total market value to the total market value of all

assets. Little attention has been paid to the fact that most individual

investors do not diversify their portfolios as implied by the traditional

CAPM. Levy quoted a study by Blume and Friend (1975) which shows the
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average number of securities in a portfolio in 1967 was 3.A1. In other

words, limited instead of the unlimited diversification should be used

to derive the CAPM. Levy theoretically examined the impacts of limited

diversification on the beta coefficient. He found that the true risk

index of an individual security is somehwere between its variance and

the beta coefficient, depending upon how widely the security is held.

For securities that are widely held, beta will provide a better explan-

ation of the capital asset pricing behavior; whereas individiaal variance

will be a better indicator of risk and an appropriate factor in the equi-

libriiom pricing determination for securities which are not widely held.

All investors will hold some combination of the market portfolio,

M, and the riskless asset bearing interest rate r., if all the

underlying assumptions of the traditional CAPM hold (see figure 1).

Suppose limited diversification prevails because of indivisibility,

transaction cost, or some other reason, an investor can hold only

a fraction of assets in M, say K. In this case, his possible comr-

bination of risky and riskless assets will not be on r,MN, instead

he can only divide his portfolio between some risky portfolio K and

riskless asset bearing the rate r.. Using the return on the market

portfolio, R , in the pricing determination is incorrect when the

investors hold the portfolio K. R contains a measurement error when
m

in fact R. , the return on portfolio K, should have been used. To see
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Figure 1
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this, let the relationship between the return on a security and the

return on the market portfolio under complete diversification be

(1)
It i i mt t

With limited diversification, the proper relationship should be

(2)
'i^it = ^ -^ ^i\t -^ ^

If we assume that the relationship between R, and R be as follows

(3)
mt Kt t

then the commonly used equation (1) can be written as

(4)
^it

= \ -^
^i(\t-^"t) ^ S

This is different from the true relationship given by equation (2) under

the assumption of limited diversification. Using equation (A) in the

estimation of the beta coefficient when limited diversification prevails

obviously causes problems.
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According to Levy, to estimate beta given limited diversification

is difficult, since one has to know not only the number of assets in

each investor's portfolio, but also the size of his investment. As we

will show in the next section, the problems caused the measurement

error, U , might potentially be eliminated (or reduced) by alternative

errors-in-variables estimation techniques.

A more serious indictment of testing the CAPM was raised by Roll

(1977) when he greeted the finance profession by saying that: "(a) No

correct and unambiguous test of the theory has appeared in the litera-

ture, and (b) there is practically no possibility that such a test can

be accomplished in the future" C1977, pp. 129-30). One of his major

conclusions was: "The theory is not testable unless the exact compo-

sition of the true market portfolio is known and used in the tests.

This implies that the theory is not testable unless all individual assets

are included in the sample." In other words. Roll argued that the tradi-

tional CAPM cannot be tested unless someone can construct a market index

that includes all assets. It should be noted that the measurement error

problems associated with incomplete measurement has been previously

studied by Roll (1969) and Lee and Jen (1978). No one will deny the

fact that current market indices are incomplete and therefore defective

in some way, but this does not lead to the conclusions that the quality

of the estimated beta coefficient cannot be improved. In other words,

admitting that the market indices are imperfect does not preclude the

adjustment of the estimator used in the estimation of beta coefficient.

Roll's argument is very similar to Levy's in that the return on the

market portfolio used in CAPM testing contains measurement errors.
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According to Roll, the proper market portfolio should include human

capital, real assets and other non-traded assets. It can be inferred

from Roll's argiunent that the absence of human capital and non-traded

assets causes measurement errors in the indices commonly used. As

showed in the next section, the impacts of this kind of measurement

errors on beta estimates can be accounted for by using a proper estimator,

and the resulting estimate of beta will still be consistent.

So far two sources of errors in the market indices have been

identified. The third source of errors, recognized by Scholes and

Williams C1977) , may be a problem when daily data are used. This kind

of errors arises because many securities are traded infrequently and

prices are reported only at distinct and random intervals. As a

result, completely accurate calculation of returns over any fixed

sequence of periods is impossible. The nonsynchronous trading of

securities introduces errors into the market model.

All these kinds of errors can introduce bias into the estimate of

the beta coefficient if the estimation technique used is not designed

to capture the impacts of measurement errors. Without an unbiased esti-

mate of the beta coefficient, it is difficult, if not impossible, to

test the traditional CAPM empirically.

III. EV Beta Estimators - Review and Generalization

III. A. Basic Estimations

By now one should be convinced that measurement errors exist in

the estimated returns on the market portfolio. It remains to be shown

that the estimation of beta by ordinary least squares (OLS) , the commonly

used technique, is biased when the types of errors discussed before exist.

Before we proceed to suggest alternative estimating techniques, the
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problems of using OLS is examined first. The OLS estimate of beta

coefficient in equation (4) is

^^^ ^i
^^^(\t"*'"t''

Making the usual assumption that U is uncorrelated with any other

variable in the model, equation (5) can be reduced to

cov(R^ R ) 6*

(6)
" kt it _ X

^i var(R^^) + var(U^)
^ ^ var(U^)

This proves that the OLS estimate of beta is biased whenever returns

on the market portfolio are measured imperfectly due to one of the

three sources of errors suggested in the previous section.

Given the existence of errors in the market indices, the OLS esti-

mate is no longer unbiased and alternative estimators must be sought.

Three of the estimators designed to allow for measurement errors appear

to be good candidates for our purpose here. The first one involves the

use of instrumental variables. The second one was suggested by Scholes

and Williams (1977). The third approach to solve measurement errors

was developed by Kami and Weissman (1974). All three approaches will

be used here so that each technique will be checked by the outcome of

the others. The results of one technique can be reinforced by the

other two.

The idea of using instrumental variables is not new to econo-

metricians. All it takes to give us a consistent estimate of beta is

to conduct an instrumental variable Z which is uncorrelated in the

limit with U but highly correlated with R. , then use the following

2
estimator:
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^^^ ^i = cov(Z R J
t mt

The main difficulty in practice is to come up with the instrumental

variables that have the above correlation property. Karni and Weissman

(1974) suggested an instrumental variable that can be used to estimate

the beta coefficient consistently. Their instrumental variable

t mt-h mt-h+1 mt-1 mt+1 mt+h

can play the role of the instrimental variable. What is not clear in

their formulations is how to pick the optimal h which will minimize the

variance of the estimator. In this study, h is decided to take on the

values from 1 to 10. In other words, 10 instrumental variables are

created as follows:

^It " \t-l "^ \t+l

^2t = V-2 "* \t-l "^ \t+l "^ V+2

(9)

^lOt
"^ V-10 "^ \t-9 *••• \t-l "^ \t+l + • • • + \t+10

And the instrumental variable estimator given by equation (7) becomes

-TVi '^°''^^it^it^
^'-^ ^r =

cov(Z-^ R )

^=^'2 10
jt mt'

The subscript i here stands for the ith security, whereas the subscript

j stands for the jth instrumental variable. So the beta of a security

will be estimated using 10 different estimated variables.
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In addition to these 10 instrumental variables, an estimation

technique for resolving measurement errors suggested by Scholes and

Williams C1977) will also be used. They showed that beta coefficient

can be estimated consistently by

^+

(10) ;^ = h +h + b

^
1 + 2pm

where
cov(R ,R ^)

/in \ ™ mt-i
(10a) p

mt mt—

1

cov(R ,R )

(10b) b- 75-^^

. cov(R ,R )

(10c) b ^l fvar(R^^) .

^ cov(R ,R ^)
(lOd) b+ ^^ °'^t

The notation a(«) in the above expressions represents the standard

deviation of the variable in question.

The last approach used here to resolve the problem of measurement

errors was suggested also by Kami and Weissman (1974) . Their method

is especially useful when instrumental variables are not available.

They proved that the beta coefficient can be consistently estimated by

akw '^""^^it'^t^ - ^°"("^t'"\t>/^
^ ^ ^i var(R ) - var(AR )/2

mt mt

where

(11a) AR^=R^-R^,
mt mt mt-1

and

(lib) AR^^ = R.^ - R^^.^.
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III. B. The Relationship Among Three Alter EV Beta Estimators

Following Kami and Weissman (1974), substituting equations (11a)

3
and (lib) into equation (11) , we can obtain

. lT-^i\ . , + R ^..)i€. - 6*U ) + 0(1)
(11') 6^ = B* + -2 Silzi S2i±i ^ i_t

"
2 Z^ R R + 0(1)

/ m,t m,t—

i

where 0(1) represents the "end-effects," i.e., terms which correspond to

t=l and t=n.

Substituting Z = R ^ , + R ^ into equation (7a) , we obtain
1 m,t-l m,t ^ V /»

(7b) sr "^ = e* + ^ t It
^ ^ 2 e" R R _

2 m, t m,t-l

By comparing equation (7b) xjith equation (11'), we can conclude that 3.

'^IV2
is approximately equal to 6

''kw 'Vs
Now the relationship between 6. and B. is explored. Substituting

equations (11a) and (lib) into equation (11) and rearranging the terms,

4
it can be shown that

(11") e^ =
^"

t
^

m
A A +

where p , b and b have been defined in equations (10a) , (10b) and (lOd)

respectively. -

Substituting 6. = ;: into equation (10), we obtain '
"^^

^ 2pm

b + 2p B*^ * 2p

(10') Sf S^ = —^^+ Vs^
1 + 2p 1 + 2p 1 + 2pm mm. .__ j

^sw
Equation (10') implies that B is the weighted average of the OLS esti-

mated beta, b and the estimated beta obtained by the EV estimated proposed
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l

2pin

by Kami and Weissman (1974) . The weights are jr~ and ;—;

—

tt^
T , o 1 + 2p
1 + 2p m

'*sw ™
respectively. If p approaches to zero, the g approaches to the OLS beta

*sw
estimates. SW has shown that g. is an instrumental variable estimator

as indicated in equation (7) . The instrument used is Z = R - +
t mt—

1

mt mt+1

Since R ^ = R, ^ + U^ (see (3)), it is obvious that the Z will not be
mt Kt t ' t

uncorrelated with the measurement errors U as discussed in Section IIIA.

'^sw *
And therefore, S is not a consistent estimator for true beta g.. How-

*IV *kw * '^IV
ever, both g. and g. are consistent estimates for g.. Hence, g

*kw "^sw *
and g. instead of g should be used to estimate g..

In sum, three EV estimates discussed in this section are interre-

lated. In the following section, daily data of Dow Jones thirty will

be used to show how three alternative EV methods can be used to estimate

beta coefficients and draw some implications to capital asset pricing

determination.

IV. Empirical Results of Various Errors-in-Variables Estimators

*IV "kw
Both g and g are consistent estimators of the beta coefficient.

Once the consistent estimate of the beta coefficient is obtained, the

validity of the CAPM can be re-examined by running the usual second-

'^sw
pass cross-sectional regressions. In addition, g is also estimated

for comparison purposes. '

Data used for this study were obtained from the CRSP data tape.

Daily returns adjusted for dividends and stock splits covering the

five year period from 1975 to 1979 were used. Securities chosen all

belong to the Dow Jones 30. The market index used is the valued-

weighted Fisher Index.



-11-

The results of applying the various errors-in-variables techniques

to Dow Jones 30 are given in Table 1. Asymptotic standard errors appear

in parentheses below the corresponding estimates. All estimates are

statistically significant.

There are four alternative beta estimates listed in Table 1, i.e.,

(i) OLS estiamtes, (ii) kw estimates, Ciii) sw estimates (iv) average

IV estimates. Results of Table 1 indicate that the magnitude of OLS

beta estimates are similar to those obtained from three EV estimators.

By the transaction volume definition of Scholes and Williams (1977) and

the size definition defined by Roll (1981) and Reinganum (198 2), the

thirty securities used in this study belong to volume and large firms

,

therefore, our findings are consistent with their findings about the

relationship between the OLS beta estimates and sw beta estimates for

large (or high volume) firms. In addition, this study has also in-

directly supported Levy's (1978, 1980) conjecture that the measure errors

associated with using R as a proxy for estimating betas of large firms

(or high volume firms) are negligible.

The second phase of this study involves the following linear

regressions

(12a) R^ = f(gi)

(12b) R. = f(S h
1 81

(12c) R^ = fCa^h

(12d) R = f(B,.S^,)
1 1 ex

(12e) R^ = f(6^,a^)
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where R. is the average daily return on the ith security over the period

covered, 6. is the systematic risk estimated from the time-series

"2
regressions given Table 1 , S . is the residual variance taken from the

" 2
time-series regressions, and a. stands for the estimate of the ith

security variance. Equation (12a) is the one often used in the second-

pass regression. According to the CAPM, the coefficient of 6 in

equation (12a) is different between the average market return and the

" 2
risk-free rate. The coefficients associated with S . and in equation

ei

(12d) should not be significant if the CAPM is indeed valid. Equation

(12e) is designed to capture the problem of limited diversification as

suggested by Levy (1978). According to Levy, the total risk of a

security rather than its systematic risk becomes an important factor

in pricing determination when limited diversification prevails. For

securities that are not widely held, one will expect the coefficient of

a. in equation (12e) to dominate the coefficient of 6 .

These five equations were run for each of the errors-in-variables

techniques, and the results given in Tables 3-15. Table 2 presents

the resxilts of the same five regressions using estimates taken from

the OLS regression. The t-ratios are given in parentheses below the

corresponding estimates, IVl to IVIO stand for various instrumental

variables which correspond to the ones given by equation (9).

Examining Tables 2-15, one will see that the coefficients of

equation (12a) are statistically significant in quite a few cases,

but the coefficients associated with 6,, except the one derived from

the Kami-Weissman technique, have wrong signs. This kind of strange

results is not unusual, as Lee (19 76) has reported similar results in

^2
his study. Moving to equation (12d), the coefficients of S . are in-

ex

significant in every errors-in-variables method used, which is implied
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by the CAPM. Judging from results relating 'to equation (12e), the

effects of limited diversification does not exist for these Blue Chip

firms. The coefficients of a would have been significant if limited

diversification has been true. Securities used in this study are most

popular Dow Jones thirty and they are widely held by investors. Hence,

one will not expect the total risk to play any role in pricing deter-

mination as predicted by the generalized capital asset pricing theory

derived by Levy (19 78).

V. Summary and Concluding Remarks

In this paper, we have theoretically reviewed different possible

sources of measurement errors and have proposed three errors-in-variables

techniques to reduce the impacts of these measurement errors on beta

estimates. It has theoretically shown that the popular method developed

SW is not a consistent estimator. The empirical results seem to be very

different from what one would expect. If we go back to arguments raised

by Levy (1978), and Scholes and Williams (1977), we can see that the

results reported in this paper are consistent with most of their findings.

As Levy has pointed out, limited diversification generally affects only

securities which are not widely held. According to Scholes and Williams,

nonsynchronous trading of securities has greater impacts on securities

trading of low volume relative to those of high volume. It is not un-

reasonable to conclude that measurement errors are not serious in the

sample of securities used in this study. One logical extension of this

study is therefore to try out the same techniques on securities that

are not widely held to examine the size effect and the limited diver-

sification effect. This extension will be undertaken in the near future.



-14-

Another contribution of this paper is that the triangle relation-

ship among three EV beta estimates are mathematically analyzed. Impli-

cations of these findings to Dimson's (1979) aggregated method of esti-

mating beta coefficients will also be investigated in the future.

,;»,.: >tI. 'tot:'



Table 1: Eatiaiated Betas of Dow Jones 30 Using OLS and Various Errors-In-Variables Techniques

Allied Chemical

Alcoa

Acierican Brands

American Can

AX&I

Bethlehem

Chr/sler

DuPoQC

Eastman Kodak

Esfflark

Encon

General Electric

General Foods

General Motors

Goodyear

Idco

Intematlanal Harvester

Int'l Paper

Johns Hanvllle

Hlnn. Mining

Ovens Illlnoia .

Procter i Caable

Soars

Standard Calif.

Tesaco

Union Carbide

U.S. Steel

Doited Tech.

Westinghcuse

Wooluorth

OLS

1.275

(.040)

1.183
(.041)

.715

(.030)

.570

(.026)

.588

(.018)

1.252

(.039)

1.413
(.064)

1.175
(.028)

1.459

(.033)

1.001
(.040)

.920

(.025)

1.270
(.030)

.911

(.038)

1.051

(.029)

1.054

(.037)

1.037
(.039)

1.142
(.036)

1.228
(.035)

1.025
(.046)

1.136

(.029)

.895

(.038)

.913

(.026)

1.158
(.030)

1.111
(.034)

.943

(.034)

1.276

(.031)

1.09?

(.036)

1.117

(.041)

1.337

(.054)

1.063
(.044)

„2

.353

.314

.241

.205

.359

.363

.212

.489

.516

.255

.432

.503

.240

.427

.304

.276

.352

.347

.218

.450

.231

.399

.444

.374

.295

.468

.341

.286

.253

.239 ,

Kami-Welssinan

1.209

(0.023)

.934
(0.025)

.827

(0.012)

.795

(0.086)

.532

(0.049)

.904

(0.024)

.724

(0.064)

.829

(0.014)

.659

(0.024)

1.201
(0.021)

.853
(0.089)

1.077
(0.014)

.973

(0.019)

.748

(0.013)

.368

(0.021)

.901

(0.022)

1.138
(0.018)

1.134
(0.018)

1.246

(0.027)

1.084
(0.012)

.992

(0.019)

.801

(0.010)

.944

(0.014)

1.069
(0.016)

.895

(0.016)

1.041

(0.015)

.376

(0.019)

1.017
(0.024)

1.083
(0.042)

1.155
(0.026)

Scholes-Wtlliams

1.255
(0.023)

1.102
(0.033)

.756

(0.024)

.648

(0.021)

.570

(0.015)

1.132

(0.031)

1.174
(0.052)

1.056
(0.022)

1.185

(0.027)

1.070
(0.032)

.898
(0.020)

1.203
(0.024)

.933

(0.031)

.947

(0.023)

.989

(0.030)

.990

(0.032)

1.142
(0.029)

1.196
(0.028)

1.101

(0.036)

1.116
(0.023)

.929

(0.031)

.874

(0.021)

1.083
(0.024)

1.099
(0.027)

.927

(0.027)

1.196
(0.024)

1.024
(0.029)

1.087
(0.083)

1.249
(0.043)

1.094
(0.035)

Average Estimated
Beta of 10

Instrumental Variables

1.462

1.265

0.771

0.571

0.544

1.225

1.294

1.151

1.526

0.945

0.882

1.351

I.OOS

0.996

0.999

0.987

1.017

1.208

0.889

1.134

0.889

0.947

1.189

1.0S6

0.836

1.346

1.077

1.070

1.194

0.998
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Table 2: Second-pass Regression Using OLS

"
^2^ei +Yq + Y^B,

0.0008 -0.0005
(3.295)* (-2.290)*

0.0004
(3.274)*

0.0004
——-^

(3.415)*

0.0008 -0.0005
(3.216)* (-1.998)

0.0008 -0.0005
(3.102)* (-1.654)

-0.5021
(-0.984)

0.0392
(0.070)

^3'^i

-0.6177
(-1.478)

0.0007
(0.001)

*significant at 5% level

Table 3: Second-passing Regression Using IVl

^0 ^l^i
+ ^A.

"2

^3^i

0.0004
(1.596)

-0.0001
(-0.595)

* ,

"

-0.0016
(-1.152)

7.7995
(1.344)

0.0004
(3.415)*

- -0.6177
(-1.478)

-0.0030
(-1.194)

0.0003
(0.677)

12.6690
(1.366)

0.0005
(1.773)

-0.0000
(-0.093)

-0.6026
(-1.323)

*significant at 5% level.
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Table 4: Second-pass Regression Using IV2

\ = Yo + Y,6i + 72^3^ y,o.

0.0005 -0.0002
(2.405)* (-1.216)

-0.0014 6.8975
(-1.287) (1.534)

0.0004 -0.6177
(3.415)* (-1.478)

-0.0012 -0.0000 6.4696
(-0.632) (-0.077) (0.899)

0.0006 -0.0002 -0.4980
(2.599)* (-0.750) (-1.105)

*significant at 5% level.

Table 5: Second-pass Regression Using IV3

\ = YO ^^^-. \K *•
^2^ei ^3^1

0.0004 -0.0002 -
I

(2.049)* (-0.801)

-0.0007 4.0963
(-0.686) (0.940)

0.0004 -0.6177

(3.415)* (-1.478)

-0.0005 -0.0000 3.4471
(-0.270) (-0.120) (0.493)

0.0005 -0.0001 -0.5711
(2.285)* (-0.254) (-1.253)

*significant at 5% level.
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Table 6: Second-pass Regression Using IV4

^0 Vi ^2^ei ^3^i

0.0006
(2.452)*

-0.0003
(-1.345)

N

-0.0009
(-0.790) •

4.8824
(1.025)

0.0004
(3.415)*

-0.6177
(-1.478)

-0.0010
(-0.398)

-0.0003
(-0.858)

-1.4870

(0.168)

0.0006
(2.510)*

-0.0002
(-0.749)

-0.4527
(-1.952)

*significant at 5% level.

Table 7: Second-pass Regression Using IV5

^0 Y^S,
^1 "2

^3^i

0.0007
(3.221)*

-0.0004
(-2.126)*

'

-0.0011
(-0.980)

5.8594
(1.212)

0.0004
(3.415)*

-0.6177
(-1.478)

-0.0027
(1.172)

-0.0007
(-1.896)

-6.982
(-0.851)

0.0007
(3.136)*

-0.0004
(-1.504)

-0.1975
(-0.399)

*significant at 5% level.
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Table 8: Second-pass Regression Using IV6

^0 ^l^i
+

^2=;i ^3^i

0.0007 -0.0004 it -

'

(3.076)* (1.994)
* ''

-0.0013 6.6536 -

(-1.098) (1.321)

0.0004 -0.6177
(3.415)* (-1.478)

-0.0020 -0.0006 -4.6203
(0.809) (-0.519) (-1.522)

0.0007 -0.0004 -0.2430
(2.996)* (-1.363) (-0.491)

*significant at 5% level.

Table 9: Second-pass Regression Using IV7

\ -
'0

0.0007
(3.195)*

-0.0004
(-2.108)*

^.^L
~2

Vi

-0.0015 7.3164 .„

(-1.176) (1.389)

0.0004 -0.6177
(3.415)* (-1.478)

-0.0019 -0.0006 -4.3145
(0.783) (-1.588) (-0.482)

0.0007 -0.0004 -0.1943
(3.101)* (-1.478) (-0.389)

*significant at 5% level.
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Table 10: Second-pass Regression Using IV8

:2 "1

^0 y,6. ^2^:1
.

•
-^3'!

0.0008 -0.0005

(3.459)* (-2.365)*

-0.0014 6.9457

(-1.081) __ (1.289)

0.0004 -0.6177

(3.415)* (-1.478)

-0.0031 -0.0008 -8.5358 ;
_

(1.297) (-2.155)* (-0.971)

0.0008 -0.0005 -0.1106

(3.360)* (-1.762) --., (-0.223)

*signifleant at 5% level.

Table 11: Second-pass Regression Using IV9

^0 Y^e,
"2 ^2

^3=^1

0.0008
(3.550)*

-0.0005
(-2.438)*

'

'

-0.0014
(-1.087)

6.983
(1.295) .

0.0004
(3.415)*

-0.6177
(-1.478)

0.0029
(1.269)

-0.0007
(-2.203)*

-7.7122
(-0.921)

0.0008
(3.444)*

-0.0005
(-1.837)

-0.0499
(-0.099)

*<!-isignificant at 5% level.
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Table 12: Second-pass Regression Using IVIO

R.
1 ^0

0.0008
(3.369)*

-0.0014
(-1.056)

0.0004
(3.415)*

Y,6,

-0.0005
(-2.285)*

6.9332
(1.260)

'2

^3'^i

-0.6177
(-1.478)

0.0027
(1.143)

-0.0007
(-2.016)*

-7.1097
(-0.817)

0.0008
(3.242)*

-0.0005
(-1.657)

-0.0802
(-0.154)

*significant at 5% level.

Table 13: Second-pass Regression Using Kami-Weismann Technique

^i = ^0
"

^l^i
+

Y2^ei ^3^i

-0.0002 0.0005
(-0.790) (1.760)

0.0004 -0.7385
(3.947)* (-1.626)

0.0004 -0.6177
(3.415)* (-1.478)

-0.0001 -0.0006 -0.8446
(-0.407) (2.064)* (-1.951)

-0.0001 0.0007 -0.8618
(-0.473) (2.360)* (-2.148)*

*significant at 5% level.



-22-

Table 14 : Second-pass Regression Using Scholes-Williams Technique

^0 Vi +
^2^ei ^3^1

0.0006 -0.0003
(1.678) (-0.895)

0.0004 -0.5187

(3.318)* ^ (-1.024)

0.0004 -0.6177
(3.415)* (-1.478)

0.0005 -0.0002 -0.3995

(1.566) (-0.522) (-0.711)

0.0005 -0.0000 ;- -0.5944

(1.35 7) (-0.077) ., , ;
.-• : (-1.141)

*significant at 5% level.
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Footnotes

For some examples of testing CAPM empirically, see Blume and Friend
(1973), and Black, Jensen and Scholes (1972), Roll (1977, 1978), Roll
and Ross (1980)

.

2
For a description of instrimient variables and their asymptotic

properties, see Johnston (1972), pp. 278-291.

3
See equation (3.2) in Kami and Weissman (1974)

A
See Appendix A for the derivation.

The formulas for computing the various asymptotic standard errors
are given in the above mentioned references.

Both Dimson's (1979) and Sholes and Williams' (1977) beta esti-
mates have been used by Reinganum (1982) to test Ross's conjecture on
the firm size effect.
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Appendix A: Derivation of Equation (11')

^, Cov(R.^,R J - Cov(AR.^,AR ) /2
kw _ It' mt It mt

^i Var(R J - Var(AR Jjl
mt mt

Cov(R,,.R^,) - Cov(R.,.,.R,,.,) •*• Cov(R,,.,.R^,) ^ Cov(R^^^R^^.^)

Var(R^^) - Var R^^_^ + 2Cov(R^^.R^^_^)

if Cov(R.^,R^^) = Cov(R.. .,R^^ .) and Var(R^^) = Var(R^^ .) then
xt mt xt—1 mt—i mt mt—

1

^, Cov(R.^ i,R *.) + Cov(R.^,R ^ .)
^kw _ xt-1' mt xt mt-1
i 2 Cov(R ^,R ^ -)

mt' mt-1

2Pm
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