

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

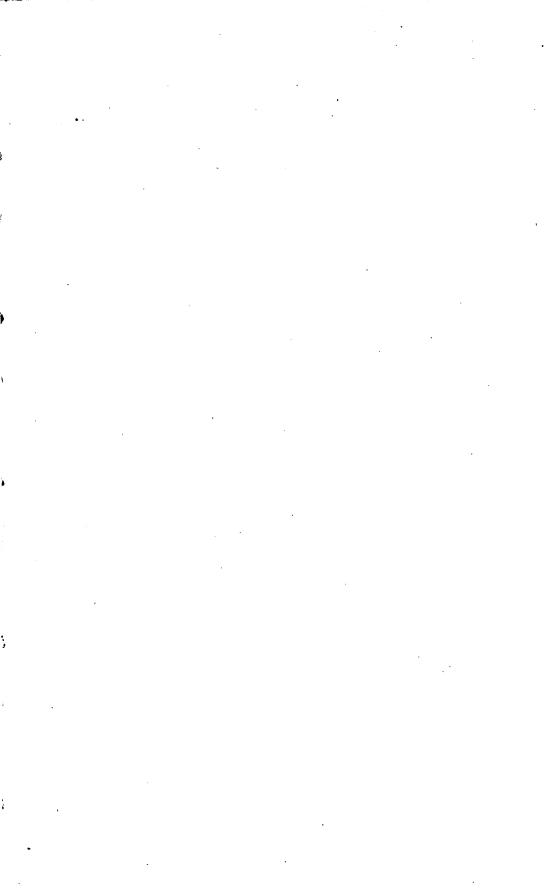
About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

JUN 25 1917

UNIV. OF MICH SUPPLEMENT TO THE AMERICAN EPHEMERIS, 1918

1,058,738


TOTAL ECLIPSE OF THE SUN JUNE 8, 1918

PUBLISHED BY THE NAUTICAL ALMANAC OFFICE, U. S. NAVAL OBSERVATORY, UNDER THE AU-THORITY OF THE SECRETARY OF THE NAVY, SOLD BY THE SUPERINTENDENT OF DOCUMENTS. GOVERNMENT PRINTING OFFICE, WASHINGTON, D. C. PRICE THIRTY CENTS PER COPY

WASHINGTON GOVERNMENT PRINTING OFFICE

. •

•

TOTAL ECLIPSE OF THE SUN JUNE 8, 1918

PUBLISHED BY THE NAUTICAL ALMANAC OFFICE,
U. S. NAVAL OBSERVATORY, UNDER THE AUTHORITY OF THE SECRETARY OF THE NAVY,
SOLD BY THE SUPERINTENDENT OF DOCUMENTS,
GOVERNMENT PRINTING OFFICE, WASHINGTON, D. C.
PRICE THIRTY CENTS PER COPY

WASHINGTON
GOVERNMENT PRINTING OFFICE
1917

U. S. NAVAL OBSERVATORY.

Capt. J. A. HOOGEWERFF, U. S. N., Superintendent.

ASTRONOMICAL COUNCIL.

Capt. J. A. HOOGEWERFF, U. S. N. Prof. A. HALL, U. S. N.

Lieut. Comdr. J. P. Murdock, U. S. N. Assistant Astronomer G. A. Hill.

Prof. W. S. Eichelberger, U. S. N. Assistant Astronomer J. C. Hammond.

Prof. F. B. LITTELL, U.S. N.

Assistant Astronomer H. R. MORGAN.

DEPARTMENT OF THE NAUTICAL ALMANAC.

Prof. W. S. EICHELBERGER, U. S. N., Director.

ASSISTANTS.

JAMES ROBERTSON.

WILLIAM T. CARRIGAN.

ARTHUR SNOW.

WALTER M. HAMILTON.

ARTHUR NEWTON.

PEREZ FISCH.

GEORGE F. CRAWLEY.

CLIFFORD S. LEWIS.

JOSEPH J. ARNAUD.

FRANK LANGELLOTTI.

REUBEN WEINSTEIN.

MORRIS LIFEROCK.

PIECEWORKERS.

Elizabeth B. Davis.

Janet McWilliam.

Hannah F. M. Hedrick.

Alfred Doolittle.

Henry B. Evans.

George B. Merriman.

Frank E. Ross.

Henry B. Hedrick.

Thomas E. Trott.

Louis Lindsey.

Isabel M. Lewis.

NOTE.—Those whose names are printed in italics devote only a small portion of their time to work of the Nautical Almanac Office.

January, 1917.

PREFACE.

The present Supplement has been prepared partly from the tables and data given in the American Ephemeris and Nautical Almanac for 1918 and partly from data furnished through the courtesy of Professor C. F. Marvin, Chief of the U. S. Weather Bureau. The Supplement is designed especially for use along the path of totality in the United States, extending diagonally from the State of Washington to the State of Florida.

In preparing the large scale drawings, Charts III and IV, the data have been entered directly upon the map of the United States issued by the U. S. Geological Survey.

J. A. HOOGEWERFF,

Captain, U.S. N.,

Superintendent Naval Observatory.

Washington, January, 1917.

CONTENTS.

PART I-METEOROLOGICAL DATA.	_
Table I—Average Weather Conditions in June for Various Stations in the United	Page.
States Along the Path of the Eclipse	g
Table II-Percentage of Sunshine During the First 15 Days of June for Various Sta-	
tions in the United States Along the Path of the Eclipse	10
Table III-Prevailing Direction from Which the Wind Blows During the First 15	
Days of June, for Various Stations in the United States Along the Path of the	
Eclipse	10
Table IV—Average Hourly Wind Velocity, in Miles, During the First 15 Days of June,	
for Various Stations in the United States Along the Path of the Eclipse	11
Table V—Mean Temperatures from June 6 to June 10, Inclusive, for Various Stations	
in the United States Along the Path of the Eclipse	11
PART II—ASTRONOMICAL DATA AND CHARTS.	
Explanation and Use of the Tables	15
Table VI—Elements and Circumstances	23
Table VII—Besselian Elements	24
Table VIII—Path of the Total Phase	25
Table IX—Path of the Total Phase in the United States	26
Table X-Reductions for Points Not on the Central Line, to Obtain Times of Contacts	28
Table XI-Reductions for Points Not on the Central Line, to Obtain Position Angles	30
Table XII—Local Circumstances at 78 Cities	31
General Chart of the Eclipse	Chart I
Chart of the Sky in the Vicinity of the Eclipsed Sun	Chart II
Chart Showing Path of Total Eclipse Across the Western States	Chart III
Chart Showing Path of Total Eclipse Across the Eastern States	Chart IV

PART I.

METEOROLOGICAL DATA FURNISHED BY THE U.S. WEATHER BUREAU.

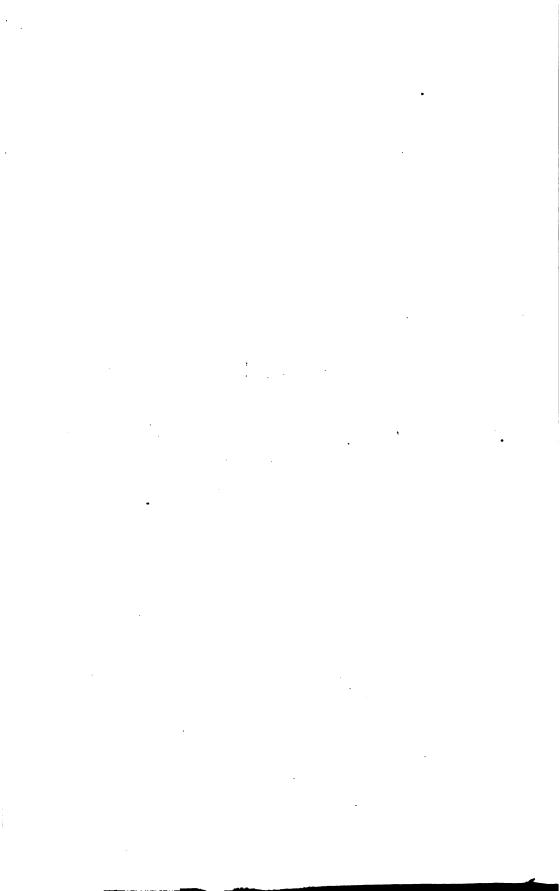


TABLE I. AVERAGE WEATHER CONDITIONS IN JUNE.

Station.	Eleva-	Temper- ature.	Precipi- tation.	Percent- age of Clear Days.	Percentage of Rainy Days.
Washington:	Feet.	•	Inches.		
Fort Simcoe	1427	64.5	0.45	63	7
Queets River	16	55.4	4.03	33	30
Seattle	248	60.1	1.72	27	- 33
Sixprong	1100	67.0	0.61	53	13
Tacoma	213	59.4	2.13	27	. 30
Oregon:					
Baker	3471	58.6	1.21	33	27
La Grande	2784	59.7	1.59	50	27
Pendleton	1070	64.3	1.01	47	20
Idaho:					
Boise City	2739	66.0	0.88	43	20
Cambridge	2739	63.6	1.09	53	23
Hailey	5347	58.9	1.00	33	23
Pierson	7000	50.9	1.19	50	17
Pocatello	4483	64.2	0.99	50	20
Wyoming:				ļ	
Afton	6200	55.0	1.51	27	27
Eden	6577	56.3	1.18	40	23
Encampment	7322	57.9	0.94	30	30
Colorado:		ļ			
Colorado Springs	6098	63.3	1.97	43	27
Denver	5272	66.4	1.47	40	27
Las Animas	3899	72.3	1.40	47	10
Pueblo	4734	69.0	1.47	43	23
Steamboat Springs	6701	55.8	1.62	70	27
Kansas:					İ
Ashland	1951	75.2	3.54	57	27
Coolidge	3348	72.1	2.21	50	20
Dodge City	2513	73.1	3.32	43	30
Oklahoma:					
Holdenville	900	75.5	4.36	80	20
Okeene	1194	76.9	3.79	73	30
Oklahoma City	1247	75.7	3.07	47	27

NOTE.—These averages are based upon observations for periods of 5 to 30 or more years. Days on which the rainfall amounts to one hundredth of an inch or more are regarded as rainy days.

10 TOTAL ECLIPSE OF THE SUN, JUNE 8, 1918.

TABLE II.

PERCENTAGE OF SUNSHINE DURING THE FIRST 15 DAYS OF JUNE.

		Local Standard Time.								
Station.	Tine.	A. M.			Р. Ж.					
		94-104	10-11-	111-124	12 % _1 b	11-24	2h-3h	3h_4h	4h_5h	5h-6h
Seattle, Wash.	Pacific	54	64	69	79	77	75	70	66	58
Baker, Oreg.	Pacific	81	84	86	84	80	70	61	51	44
Boise City, Idaho	Mountain	88	92	94	93	91	85	85	80	75
Pocatello, Idaho	Mountain	78	82	84	79	78	71	60	54	46
Denver, Colo.	Mountain	83	84	82	73	72	65	59	49	44
Pueblo, Colo.	Mountain	. 86	89	89	87	88	80	71	63	54
Dodge City, Kans.	Central	73	81	83	85	86	 86	83	77	67
Oklahoma City, Okla.	Central	81	84	85	83	83	81	76	74	59

Note.—These averages are based upon observations for the five years 1911-1915, except that those for Dodge City are based upon observations for the ten years 1906-1915.

TABLE III.

PREVAILING HOURLY WIND DIRECTION DURING THE FIRST 15 DAYS OF JUNE.

		Local Standard Time.									
Station.	Time.	А. М.			Р. М.						
		9h-10h	10h-11h	113-124	12h_1h	1h-2h	2h_3h	3h_4h	1b-5h	5h-6h	
Seattle, Wash. Baker, Oreg.	Pacific Pacific	8. N.	NW. N.	NW. N.	NW. N.	NW. N.	W. NW.	NW.	N. NW.	N. N.	
Boise City, Idaho Pocatello, Idaho Denver, Colo. Pueblo, Colo.	Mountain Mountain Mountain Mountain	SE. SW. SE.	SW. NE. SE.	W. NE. SE.	NW. SW. NE. SE.	W. NE. SE.	SW. NE. SE.	SW. E. SE.	SW. SE. SE.	SW. NE. SE.	
Dodge City, Kans. Oklahoma City, Okla.	Central Central	S. S.	S. S.	S. S.	8. 8.	S. S.	S. S.	S. S.	S. S.	S. S.	

Norn.—These averages are based upon observations for the five years 1911-1915, except that that for Boise City is based upon observations for the five years 1882-1886.

TABLE IV.

AVERAGE HOURLY WIND VELOCITY IN MILES DURING THE FIRST 15 DAYS OF JUNE.

•		Local Standard Time.								
Station.	Time.		А. Ж.			P. M .				
		94-104	10-11-	111-124	124-14	11-24	2h_3h	34-44	4h_5h	5 h_6 h
Seattle, Wash.	Pacific	9	9	9	10	10	10	11	11	11
Baker, Oreg.	Pacific	6	6	7	8	8	8	8	8	7
Boise City, Idaho	Mountain	6	7	8	8	8	8	9	8	8
Pocatello, Idaho	Mountain	8	8	8	9	9	9	10	9	9
Denver, Colo.	Mountain	8	9	10	11	11	11	11	11	10
Pueblo, Colo.	Mountain	6	7	8	9	10	11	11	11	11
Dodge City, Kans	Central	14	14	14	14	14	14	15	15	14
Oklahoma City, Okla.	Central	16	16	16	16	16	16	16	16	15

NOTE.—These averages are based upon observations for the five years 1911-1915.

TABLE V. MEAN HOURLY TEMPERATURES FROM JUNE 6 TO JUNE 10, INCLUSIVE.

		Local Standard Time.							
Station.	Time.	Time. P. M.							
		125-15	11-2h	2h_3h	3h-4h	4h_5h	5h_6h		
			•	•		•	•		
Seattle, Wash.	Pacific	61	63	64	64	63	62		
Baker, Oreg.	Pacific	66	67	67	66	65	64		
Boise City, Idaho	Mountain	68	70	70	70	71	70		
Pocatello, Idaho	Mountain	69	70	69	69	68	66		
Denver, Colo.	Mountain	71	72	71	71	70	70		
Pueblo, Colo.	Mountain	74	75	76	76	75	74		
Dodge City, Kans.	Central	75	77	78	78	77	75		
Oklahoma City, Okla.	Central	81	82	83	83	83	81		

Note.—These averages are based upon observations for the five years 1911-1915.

.

PART II.

ASTRONOMICAL DATA AND CHARTS.

raman naman (ili arritan diferenza da arrita da ar Arrita

EXPLANATION AND USE OF THE TABLES.

The Elements of the Eclipse, given in Table VI, are for the moment of conjunction of the Sun and Moon in right ascension, but the remaining data and tables are computed for the exact positions of these bodies at the several instants referred to.

The Circumstances of the Eclipse, given in Table VI, are as follows:

The line entitled "Eclipse begins" gives the Greenwich mean time at which the Moon's penumbra first touches the Earth, together with the latitude and longitude of the point of contact.

The line entitled "Central eclipse begins" gives the time when the axis of the Moon's shadow first touches the Earth, together with the latitude and longitude of the point of contact.

The line entitled "Central eclipse at local apparent noon" gives the time when the axes of the Earth and of the shadow cone lie in the same plane, together with the latitude and longitude of the point where the axis of the shadow cone then cuts the Earth's surface.

The lines entitled "Central eclipse ends" and "Eclipse ends" give, respectively, the times when and the localities where these events occur, the phenomena being the converse of those denoted by the similar phrases for the beginning.

Table VII contains the Besselian Elements, or the data from which accurate times of the phases may be computed for any station whose coordinates are known.

Tables VIII gives the latitude and longitude of points along the central line, and also of corresponding points on the northern and southern limits of the path of total phase for which mid-totality occurs at the moment indicated in the first column. The final column gives the duration of totality at the points on the central line.

Table IX gives, for each degree of longitude from 80° to 125° west from Greenwich, the latitude of points on the northern limit, central line, and southern limit, of the path of total phase. It also gives for each of these points on the central line the Greenwich mean times of the four contacts, the position angles from the north point and from the vertex, the duration of totality, the Sun's altitude at mid-totality, and the shortest distance to the edge of the path.

Tables X and XI give reductions for obtaining the times of contacts and the position angles for points in the path of the total phase but not on the central line.

Table XII gives the local circumstances at 73 cities scattered throughout the United States, and at Honolulu, Juneau, Nome, Panama, and San Juan. Chart I gives a general outline of the whole eclipse.

Chart II gives the planets and stars in the vicinity of the eclipsed Sun.

))in

1,50

:h

tl

Charts III and IV give, on a much larger scale than Chart I, the path of total eclipse, the first in the Western States and the other in the Eastern States. This path is crossed by a series of straight lines, which terminate in the northern and southern limits of totality, each line being approximately the locus of all points for which mid-totality occurs at the moment of Greenwich mean time indicated thereon. These charts contain also two series of long curved broken lines, each of the one series including all points for which the beginning and each of the other series including all points for which the ending of partial eclipse occurs at the moment indicated. Chart III contains, in addition, symbols indicating the probable meteorological conditions at the time of mideclipse for eight stations situated in or near the path of totality.

RIGOROUS COMPUTATION OF THE TIMES.

An accurate determination of the several phases as visible at any particular station may be obtained from the Besselian Elements which are given in Table VII for every ten minutes of Greenwich time. Their geometric signification is as follows:

Let us imagine a plane passing through the center of the Earth, perpendicular to the right line joining the centers of the Sun and Moon. This latter line is the axis of the Moon's shadow, and the plane is called the fundamental plane or plane of xy. We take the intersection of this plane with that of the Earth's equator as the axis of x, and the center of the Earth as the origin of coordinates. The axis of y is perpendicular to that of x, and directed toward the north; x and y are then the coordinates of the point in which the axis of the shadow intersects the fundamental plane, and they are here expressed in terms of the Earth's equatorial radius as unity. The angle d, of which the sine and cosine are both given, is the declination of that point of the celestial sphere toward which the axis of the shadow is directed; or, in other words, it is the declination of the center of the Sun as seen from the center of the Moon. The angle μ is the Greenwich hour-angle of this same point of the celestial sphere.

The quantities l_1 and l_2 are the radii of the shadow cones upon the fundamental plane, l_1 , corresponding to the penumbra, and l_2 to the umbra. The notation is that of Chauvener's Spherical and Practical Astronomy, in which l_2 is regarded as positive for an annular and negative for a total eclipse.

The angles f_1 and f_2 , the tangents of which are given, are the angles which the elements of the respective shadow cones make with the axis of the shadow; or, they are the semiangles of the two cones.

In order to facilitate interpolation to any required moment, the logarithms of x', y', and μ' , which are the changes of x, y, and μ , in one minute of time, are given at the bottom of the table.

The method of computing an eclipse from its Besselian elements is based on the fact that the distance of the observer from the axis of the shadow cones is equal to the radius of the penumbra at the point of observation for the beginning and ending of the eclipse, and is equal to the radius of the umbra at the

point of observation for the beginning and ending of totality or of the annular phase. To find this distance and radius in each case, we proceed as follows:

- (1) The coordinates of the observer, ξ , η , and ζ , together with their variations in one minute, are computed for some assumed moment of Greenwich mean time, as near as practicable to the true time of the required phase.
- (2) The coordinates x and y of the axis of the shadow, together with their variations in one minute. are taken for the same moment from the tables of elements.
- (3) From (1) and (2) the position and motion of the observer relative to the axis of the shadow are found.
- (4) The radius of the penumbra or umbra at a distance from the fundamental plane equal to that of the observer is also computed.
- (5) Then, assuming the motions to be uniform, we determine the time required for the observer to be brought to a distance from the axis of the shadow equal to this radius.

The formulæ and directions for the several steps in the computation are as follows:

(1) Find ρ cos φ' and ρ sin φ' , which are the geocentric coordinates of the station referred to the Earth's equator, ρ being the distance from the center of the Earth and φ' the geocentric latitude. These coordinates may be computed from the following table based on the compression of the Earth adopted at the Paris Conference of 1911, 1/297, by the formulæ—

$$\rho \cos \varphi' - F \cos \varphi$$

$$\rho \sin \varphi' - \frac{\sin \varphi}{G}$$

φ being, as usual, the geographic latitude.

也也也

da-[be ich

ies in-

Table for Computing the Geocentric Coordinates of a Place.

φ	Log F.	Log G.
0° 5 10 15 20 25 30 35 40 45 50 55 60 65	0.00000 1 0.00001 3 0.00004 6 0.00010 7 0.00026 11 0.00037 11 0.00048 12 0.00060 13 0.00073 13 0.00086 12 0.00098 12 0.00110 10 0.00120 9	0.00293 1 0.00292 3 0.00289 6 0.60283 7 0.00267 11 0.00256 11 0.00245 13 0.00232 12 0.00220 13 0.00207 12 0.00195 12 0.00183 10 0.00173 9
70 75 80 85 90	0.00129 8 0.00137 5 0.00142 8 0.00145 1	0.00164 8 0.00156 5 0.00151 3 0.00148 2

For the assumed Greenwich mean time of computation, take from the table of elements the values of $\sin d$, $\cos d$, and μ . Then, with λ for the longitude west from Greenwich, the coordinates of the observer will be—

$$\xi = \rho \cos \varphi' \sin (\mu - \lambda)$$

 $\eta = \rho \sin \varphi' \cos d - \rho \cos \varphi' \sin d \cos (\mu - \lambda) = \eta_1 - \eta_2$
 $\xi = \rho \sin \varphi' \sin d + \rho \cos \varphi' \cos d \cos (\mu - \lambda) = \xi_1 + \xi_2$

and their variations in one minute of mean time will be-

$$\xi' = [7.63992] \rho \cos \varphi' \cos (\mu - \lambda)$$

 $\eta' = [7.63992] \rho \cos \varphi' \sin d \sin (\mu - \lambda) = [7.63992] \xi \sin d$
 ξ' is not needed.

- (2) For the same assumed moment of Greenwich mean time, take from the tables of elements the coordinates x and y of the axis of the shadow, together with their variations for one minute, which are equal to one-tenth of the differences of two consecutive numbers. These variations are represented by x' and y', and their logarithms are given beneath the tables of x and y.
- (3) The distance m and position-angle M of the axis of the shadow relative to the observer, and the relative motions, n and N, are computed by the formulæ— $m \sin M x \xi$

$$m \sin M = x - \xi$$

$$m \cos M = y - \eta$$

$$n \sin N = x' - \xi'$$

$$n \cos N = y' - \eta'$$

(4) Both for the umbra and for the penumbra, the radius L at the distance ζ from the fundamental plane is computed by the formulæ—

$$L=l-\zeta \tan f$$

l and f being taken from the table of elements, and ζ computed in (1).

(5) If the time chosen for computation is exactly that of the beginning or ending of the eclipse, we shall have—

$$m-L$$

But, as this condition will rarely be fufilled on a first trial, a correction τ to the assumed time is computed thus: Find the angle ψ from the equation—

$$\sin \psi - \frac{m \sin (M - N)}{L}$$

There will be two values for this angle; the one for which $\cos \psi$ is negative must be taken for the beginning of the eclipse, or for the ending of the total phase, but the one for which $\cos \psi$ is positive must be taken for the ending of the eclipse, or for the beginning of the total phase. The correction τ to the assumed time will then be found, in minutes, from—

$$\tau = -\frac{m \, \cos \left(\, M - N \right)}{n} + \frac{L \, \cos \psi}{n}$$

However, only in case the value of τ does not exceed a few minutes can the time thus corrected be considered even fairly accurate. Therefore it is best to commence the computation by assuming times near the phenomena wanted. The times for the beginning and the ending of an eclipse may be derived from Chart I with sufficient exactness, the time for the total phase may then be assumed as midway between the times assumed for the beginning and the ending of the eclipse; or, in case of a partial eclipse, this time midway may be assumed as that of the maximum eclipse.

The more accurate times resulting from the computation as outlined above and as illustrated in the example below may now be taken in place of those originally assumed, and the whole computation may be repeated, thus leading to a value of τ in each case, which should be very small, and which should give a very accurate time of the phenomenon. Such a repetition of the computation will be advisable, moreover, for the reason that it will enable one to locate and eliminate any accidental numerical errors that may have occurred in the first computation.

As a result of this last approximation the computed times of contact will be theoretically exact within less than a second, but the uncertainties of the solar and lunar tables are such that an unavoidable error of several seconds may exist in the prediction.

If the given station is found upon Chart III or IV, the times of beginning, ending, and mid-totality may be taken from the chart to the nearest minute, and a second computation will be unnecessary unless desired as a check upon the accuracy of the numerical work.

Position-angle of Point of Contact.—The position-angle P, of the point of contact, reckoned from the north point of the Sun's limb toward the east, is found by the formula—

$$P = N + \psi$$

where the results of the last approximation are used.

The position-angle V, of the point of contact, reckoned from the vertex of the Sun's limb toward the east, is found by the formula—

$$V-P-C$$

where C is obtained from

$$\tan C = \frac{\xi}{n}$$

sin C having the same algebraic sign as ξ , and again the results of the last approximation are used.

Time of Maximum Eclipse.—For a partial eclipse, or for a central eclipse at a point at which the eclipse is only partial indicated by $\sin \psi$ greater than unity for the umbra, the correction to the assumed time to obtain the time of maximum eclipse is given by the formula—

$$\tau = -\frac{m \cos(M-N)}{n}$$

Magnitude of the Maximum Eclipse.—This is given by the formula—

$$\mathbf{D^*-}\frac{L-\Delta}{2L-0.5446}$$

where $\Delta = \pm m \sin (M-N)$, always taken positive, and L is the radius of the penumbra. D is, in all cases, the ratio to the Sun's diameter of the straight line passing through the centers of the two disks and having for its extremities the Sun's limb that is nearest to the Moon's center and the Moon's limb that is nearest to the Sun's center. In a partial eclipse D is the fraction of the Sun's diameter covered by the Moon.

^{*}Since, in obtaining this formula, the angles of the two shadow comes are considered the same, the value obtained therefrom should be increased by 25th of itself.

Computation of the Solar Eclipse of June 8, 1918, for Denver, Colo.

The position of Denver is-

Latitude, $\varphi = + 39 40 36$ Longitude, $\lambda = +104 56 56$

and its geocentric coordinates are-

 $\rho \sin \varphi' = 9.80280$ $\rho \cos \varphi' = 9.88689$

From the eclipse chart we find the approximate times of the phases to be-

Beginning June 8 10 10
Middle 8 11 20
Ending 8 12 30
Greenwich Mean Time.

			0 14 0	~,
	Beginning.		Ending.	Beginning. Middle. Ending.
T June 8		11 ^h 20 ^m	12h 30m	$\log m \sin M$ 9.73830n 8.43807n 9.74607
	• • • • • •	• / //	• , ,,	log sin or cos M 9.99527n 9.99719n 9.99477
μ	152 48 30	170 18 24	187 48 24	$\log m \cos M$ 8.90956 7.49554 8.93962n
λ	104 56 56	104 56 56	104 56 56	log tan M 0.82874n 0.94253n 0.80645n
μ-λ	47 51 34	65 21 28	82 51 28	log n sin N 7.84609 7.89603 7.94699
$\log \rho \cos \varphi'$	9.88689	9.88689	9.88689	log sin or cos N 9.99567 9.99484 9.99510
$\log \sin (\mu - \lambda)$	9.87011	9.95853	9.99662	$\log n \cos N$ 6.99782n 7.08672n 7.12613n
log ξ	9.75700	9.84542	9.88351	log tan N 0.84827n 0.80931n 0.82086n
log cos d	9.96454	9.96453	9.96451	. • , ,, • , ,, • , ,,
log ρ sin 🖋	9.80280	9.80280	9.80280	M 278 26 16 276 30 43 98 52 31
log sin d	9.58899	9.58907	9.58915	N 98 4 18 98 49 4 98 35 24
log η ₁	9.76734	9.76733	9.76731	M-N 180 21 58 177 41 39 0 17 7
$\log \zeta_1$	9.39179	9.39187	9.39195	log m 9.74303 8.44088 9.75130
log sin d	9.58899	9.58907	9.58915	$\log n$ 7.85042 7.90119 7.95189
-				1 <u>-</u>
log ρ cos φ'	9.88689	9.88689	9.88689	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\log \cos (\mu - \lambda)$	9.82669	9.62008	9.09459	$\log \xi \tan f$ 7.52245 7.39565 7.18819
log cos d	9.96454	9.96453	9.96451	, ,
log η ₂	9.30257	9.09604	8.57063	l +0.54220 -0.00358 +0.54240
log 52	9.67812	9.47150	8.94599	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
η_1	+0.58525	+0.58524	+0.58521	L +0.53887 -0.00607 +0.54086
$-\eta_2$	-0.20071	-0.12475	~ 0.03721	log m 9.74303 8.44088 9.75130
ζ ₁	+0.24648	+0.24653	+0.24658	$\log \sin (M-N)$ 7.80549n 8.60459 7.69714
52	+0.47657	+0.29614	+0.08831	colog L 0.26851 2.21681 n 0.26691
\$	+0.72305	+0.54267	+0.33489	$\log \sin \psi$ 7.81703n 9.26228n 7.71535
$\log \rho \cos \varphi'$	9.88689	9.88689	9.88689	(-10 32 26)
$\log \cos (\mu - \lambda)$	9.82669	9.62008	9.09459	$\psi \qquad 180\ 22\ 34\ \left\{\begin{array}{c} 10\ 32\ 26\\ 190\ 32\ 26\\ \end{array}\right\}\ +0\ 17\ 51$
log const.	7.63992	7.63992	7.63992	(190 32 20)
log ξ	9.75700	9.84542	9.88351	$\log m/n$ 1.89261 0.53969 1.79941
$\log \sin d$	9.58899	9.58907	9.58915	$\log \cos (M-N)$ 9.99999n 9.99965n 9.99999
log €'	7.35350	7.14689	6.62140	log (1) 1.89260n 0.53934n 1.79940
$\log \eta'$	6.98591	7.07441	7.11258	log L 9.73149 7.78319n 9.73309
x	+0.02408	+0.67310	+1.32200	$\log \cos \psi$ 9.99999 $n(\pm)$ 9.99261 9.99999
ξ	+0.57148	+0.70052	+0.76473	colog n 2.14958 2.09881 2.04811
x-\xi	-0.54740	-0.02742	+0.55727	$\log (2)$ 1.88106n(\mp)9.87461 1.78119
y H_117	+0.46574	+0.46362	+0.46098	-(1) +78.090 +3.462 -63.009
7	+0.38454	+0.46049	+0.54800	$+(2)$ -76.043 ∓ 0.749 $+60.421$
y-7	+0.08120	+0.00313	-0.08702	m
x'	+0.009273	+0.009273	+0.009269	$\mathbf{m} (+2.713) \mathbf{m}$
ž′	+0.002257	+0.001402	+0.000418	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$x'-\xi'$	+0.007016	+0.007871	+0.000418	dhm dhm dhm
		•		T 8 10 10 8 11 20 8 12 30
y' .	-0.000027	-0.000034	-0.000041	dhm dhm
η'	+0.000968	+0.001187	+0.001296 -0.001337	T1 8 10 19 047 6 11 22.713 6 10 07 410
$y'-\eta'$	-0.000995	-0.001221	-0.001937	8 11 24.211 8 12 27.412
				•

Taking the four times just found, a new computation is made in each case. The times resulting from the new computation are—

		Green	wich Mean Time.	Local Mean Time.
Beginning of the eclipse		June	d h m s 8 10 12 2.7	h m s 3 12 15.0
Beginning of total eclipse			11 22 42.7	4 22 55.0
Ending of total eclipse .			11 24 11.4	4 24 23.7
Ending of the eclipse .			12 27 24.2	5 27 36.5

The values from the last approximation of the quantities needed in computing the position angles, and the computation of these position angles, are—

	1st Contact.	2d Contact.	3d Contact.	4th Contact.
log ξ	9.76048	9.84774	9.84899	9.88286
log n	9.58718	9.66626	9.66792	9.73612
log tan C	0.17330	0.18148	0.18107	0.14674
•	•	•	•	•
${m N}$	98.11	98.82	98.83	98.61
4	180.34	-10.62	190.54	0.27
$oldsymbol{P}$	278.45	88.20	289.37	98.88
. C	56.14	56.64	56.61	54.50
\boldsymbol{v}	222.3	31.6	232.8	44.4

The magnitude of greatest eclipse is obtained as follows:—

$oldsymbol{T}$	11 ^h 20 ^m	l	+0.5423	L – Δ	+0.5387
log ₹	9.7345	∫ tan f	+0.0025	2L-0.5446	+0.5350
log tan f	7.6633	L	+0.5398	D	1.007
log f.tan f	7.39 78	Δ	+0.0011	1/400 D	.003
- •	•			Magnitude	1.01

* :.

TABLE VI.

ELEMENTS AND CIRCUMSTANCES.

ELEMENTS OF THE ECLIPSE.

Greenwich mean time of & in right ascension, June 8 10 7 24.2

Sun and Moon's R. A.	ь 5	m 4	39.9 8	Hourly motions 10.33	and 152.10
	•	,	"	5 V	' ' ''
Sun's declination	+22	50	23. 8	Hourly motion	+ 0 13.6
Moon's declination	+23	17	39.1	Hourly motion	+ 0 7.4
Sun's equa. hor. paralla	x		8.7	Sun's true semidiameter	15 45.3
Moon's equa. hor. paral	lax	58	39.4	Moon's true semidiameter	15 58.2

CIRCUMSTANCES OF THE ECLIPSE.

G		wic Tim	h Mean e.	Longitud Green	le from wich.	Latitude.		
•	đ	h	m	•	• .	•	,	
Eclipse begins June	8	7	29.0	-150	20	+16	22	
Central eclipse begins	8	8	32.2	-129	58	+25	41	
Central eclipse at local apparent noon	8	10	7.4	+152	10	+50	51	
Central eclipse ends	8	11	42.9	+ 74	31	+25	23	
Eclipse ends	8	12	46.2	+ 94	53	+16	3	

24 TOTAL ECLIPSE OF THE SUN, JUNE 8, 1918.

TABLE VII.
BESSELIAN ELEMENTS.

-1.55216 1.45946 1.36674 1.27403 -1.18132 1.08860 0.99588 0.90316 0.81044 0.71772 -0.62499 0.53227 0.43954 0.34682 0.25409 0.16137	+0.46880 0.46870 0.46860 0.46848 +0.46835 0.46821 0.46806 0.46773 0.46755 +0.46736 0.46716 0.46695 0.46673 0.46650 0.46650	+9.58880 9.58881 9.58882 9.58883 +9.58885 9.58887 9.58889 9.58890 +9.58891 9.58892 9.58893 9.58895 9.58896	+9.96458 9.96457 9.96457 9.96457 9.96457 9.96456 9.96456 9.96456 9.96456 9.96455 9.96455 9.96455	110 18.6 112 48.6 115 18.6 117 48.5 120 18.5 122 48.5 125 18.5 127 48.5 130 18.5 132 48.5 135 18.5 140 18.5 140 18.5 142 48.5	+0.54179 0.54182 0.54185 0.54188 +0.54191 0.54193 0.54199 0.54201 0.54203 +0.54206 0.54208 0.54210 0.54213 0.54215	-0.00410 0.00407 0.00402 -0.00399 0.00394 0.00391 0.00386 -0.00386 0.00387 0.00377
1.45946 1.36674 1.27403 -1.18132 1.08860 0.99588 0.90316 0.81044 0.71772 -0.62499 0.53227 0.43954 0.34682 0.25409	0.46870 0.46860 0.46848 +0.46835 0.46821 0.46896 0.46773 0.46755 +0.46736 0.46716 0.46695 0.46673	9,58881 9,58882 9,58883 +9,58884 9,58885 9,58887 9,58889 9,58890 +9,58891 9,58892 9,58893 9,58895 9,58896	9.96457 9.96457 9.96457 9.96457 9.96456 9.96456 9.96456 9.96456 9.96455 9.96455 9.96455 9.96455	110 18.6 112 48.6 115 18.6 117 48.5 120 18.5 122 48.5 125 18.5 127 48.5 130 18.5 132 48.5 135 18.5 140 18.5 140 18.5 142 48.5 145 18.5	0.54182 0.54185 0.54188 +0.54191 0.54193 0.54199 0.54201 0.54203 +0.54208 0.54208 0.54210 0.54213 0.54215	0.00407 0.00404 0.00402 -0.00399 0.00394 0.00389 0.00386 -0.00384 0.00382 0.00379
1.45946 1.36674 1.27403 -1.18132 1.08860 0.99588 0.90316 0.81044 0.71772 -0.62499 0.53227 0.43954 0.34682 0.25409	0.46870 0.46860 0.46848 +0.46835 0.46821 0.46896 0.46773 0.46755 +0.46736 0.46716 0.46695 0.46673	9,58881 9,58882 9,58883 +9,58884 9,58885 9,58887 9,58889 9,58890 +9,58891 9,58892 9,58893 9,58895 9,58896	9.96457 9.96457 9.96457 9.96457 9.96456 9.96456 9.96456 9.96456 9.96455 9.96455 9.96455 9.96455	112 48.6 115 18.6 117 48.5 120 18.5 122 48.5 125 18.5 127 48.5 130 18.5 132 48.5 135 18.5 137 48.5 140 18.5 142 48.5 145 18.5	0.54182 0.54185 0.54188 +0.54191 0.54193 0.54199 0.54201 0.54203 +0.54208 0.54208 0.54210 0.54213 0.54215	0.00407 0.00404 0.00402 -0.00399 0.00394 0.00389 0.00386 -0.00384 0.00382 0.00379
1.36674 1.27403 -1.18132 1.08860 0.99588 0.90316 0.81044 0.71772 -0.62499 0.53227 0.43954 0.34682 0.25409	0.46860 0.46848 +0.46835 0.46821 0.46806 0.46773 0.46755 +0.46736 0.46716 0.46695 0.46673	9.58882 9.58883 +9.58884 9.58885 9.58887 9.58889 9.58890 +9.58891 9.58892 9.58893 9.58895 9.58896	9.96457 9.96457 +9.96457 9.96456 9.96456 9.96456 9.96456 +9.96455 9.96455 9.96455 9.96455	115 18.6 117 48.5 120 18.5 122 48.5 125 18.5 127 48.5 130 18.5 132 48.5 135 18.5 137 48.5 140 18.5 142 48.5 145 18.5	0.54185 0.54188 +0.54191 0.54193 0.54199 0.54201 0.54203 +0.54208 0.54208 0.54210 0.54213 0.54215	0.00404 0.00402 -0.00399 0.00396 0.00391 0.00386 0.00386 -0.00382 0.00379
1,27403 -1,18132 1,08860 0,99588 0,90316 0,81044 0,71772 -0,62499 0,53227 0,43954 0,34682 0,25409	0.46848 +0.46835 0.46821 0.46806 0.46790 0.46773 0.46755 +0.46736 0.46716 0.46695 0.46673	9.58883 +9.58884 9.58885 9.58887 9.58889 9.58890 +9.58891 9.58892 9.58893 9.58895 9.58896	9.96457 +9.96457 9.96456 9.96456 9.96456 9.96456 +9.96456 9.96455 9.96455 9.96455	117 48.5 120 18.5 122 48.5 125 18.5 127 48.5 130 18.5 132 48.5 135 18.5 137 48.5 140 18.5 142 48.5 145 18.5	0.54188 +0.54191 0.54193 0.54196 0.54199 0.54201 0.54203 +0.54206 0.54208 0.54210 0.54213 0.54215	0.00402 -0.00396 0.00396 0.00391 0.00386 0.00386 -0.00386 0.00387
-1.18132 1.08860 0.99588 0.90316 0.81044 0.71772 -0.62499 0.53227 0.43954 0.34682 0.25409	+0.46835 0.46821 0.46806 0.46790 0.46773 0.46755 +0.46736 0.46716 0.46695 0.46673	+9.58884 9.58885 9.58887 9.58889 9.58890 +9.58891 9.58892 9.58893 9.58895	+9.96457 9.96456 9.96456 9.96456 9.96456 +9.96456 9.96455 9.96455 9.96455	120 18.5 122 48.5 125 18.5 127 48.5 130 18.5 132 48.5 135 18.5 137 48.5 140 18.5 142 48.5 145 18.5	+0.54191 0.54193 0.54196 0.54199 0.54201 0.54203 +0.54206 0.54208 0.54210 0.54213 0.54215	-0.00398 0.00394 0.00391 0.00388 0.00386 -0.00388 0.00387 0.00373
1.08860 0.99588 0.90316 0.81044 0.71772 -0.62499 0.53227 0.43954 0.34682 0.25409	0.46821 0.46806 0.46790 0.46773 0.46755 +0.46736 0.46716 0.46695 0.46673	9,58885 9,58887 9,58888 9,58889 9,58890 +9,58891 9,58892 9,58893 9,58895 9,58896	9.96457 9.96456 9.96456 9.96456 9.96456 +9.96455 9.96455 9.96455 9.96455	122 48.5 125 18.5 127 48.5 130 18.5 132 48.5 135 18.5 137 48.5 140 18.5 142 48.5 145 18.5	0.54193 0.54196 0.54199 0.54201 0.54203 +0.54206 0.54208 0.54210 0.54213 0.54215	0.00396 0.00391 0.00386 0.00386 -0.00386 0.00375 0.00375
0.99588 0.90316 0.81044 0.71772 -0.62499 0.53227 0.43954 0.34682 0.25409	0.46806 0.46790 0.46773 0.46755 +0.46736 0.46716 0.46695 0.46673	9,58887 9,58888 9,58889 9,58890 +9,58891 9,58892 9,58893 9,58895 9,58896	9.96456 9.96456 9.96456 9.96456 +9.96456 9.96455 9.96455 9.96455 9.96455	125 18.5 127 48.5 130 18.5 132 48.5 135 18.5 137 48.5 140 18.5 142 48.5 145 18.5	0.54196 0.54199 0.54201 0.54203 +0.54206 0.54208 0.54210 0.54213 0.54215	0.00394 0.00381 0.00386 0.00386 -0.00385 0.00371 0.00377
0.90316 0.81044 0.71772 -0.62499 0.53227 0.43954 0.34682 0.25409	0.46790 0.46773 0.46755 +0.46736 0.46716 0.46695 0.46673 0.46650	9,58888 9,58889 9,58890 +9,58891 9,58892 9,58893 9,58895 9,58896	9.96456 9.96456 9.96456 +9.96456 9.96455 9.96455 9.96455 9.96455	127 48.5 130 18.5 132 48.5 135 18.5 137 48.5 140 18.5 142 48.5 145 18.5	0.54199 0.54201 0.54203 +0.54206 0.54208 0.54210 0.54213 0.54215	0.00391 0.00386 0.00386 -0.00386 0.00376 0.00377
0.81044 0.71772 -0.62499 0.53227 0.43954 0.34682 0.25409	0.46773 0.46755 +0.46736 0.46716 0.46695 0.46673	9,58889 9,58890 +9,58891 9,58892 9,58893 9,58895 9,58896	9,96456 9,96456 +9,96456 9,96455 9,96455 9,96455 9,96455	130 18.5 132 48.5 135 18.5 137 48.5 140 18.5 142 48.5 145 18.5	0.54201 0.54203 +0.54206 0.54208 0.54210 0.54213 0.54215	0.00389 0.00389 0.00389 0.00379 0.00379
0.71772 -0.62499 0.53227 0.43954 0.34682 0.25409	0.46755 +0.46736 0.46716 0.46695 0.46673 0.46650	9.58890 +9.58891 9.58892 9.58893 9.58895 9.58896	9.96456 +9.96456 9.96455 9.96455 9.96455 9.96455	132 48.5 135 18.5 137 48.5 140 18.5 142 48.5 145 18.5	0.54203 +0.54206 0.54208 0.54210 0.54213 0.54215	0.00386 -0.00386 0.00376 0.00377
-0.62499 0.53227 0.43954 0.34682 0.25409	+0.46736 0.46716 0.46695 0.46673 0.46650	+9.58891 9.58892 9.58893 9.58895 9.58896	+9.96456 9.96455 9.96455 9.96455 9.96455	135 18.5 137 48.5 140 18.5 142 48.5 145 18.5	+0.54206 0.54208 0.54210 0.54213 0.54215	-0.0038- 0.00379 0.00379
0.53227 0.43954 0.34682 0.25409	0.46716 0.46695 0.46673 0.46650	9.58892 9.58893 9.58895 9.58896	9.96455 9.96455 9.96455 9.96455	137 48.5 140 18.5 142 48.5 145 18.5	0.54208 0.54210 0.54213 0.54215	0.00383 0.00373 0.00373
0.43954 0.34682 0.25409	0.46695 0.46673 0.46650	9.58893 9.58895 9.58896	9.96455 9.96455 9.96455	140 18.5 142 48.5 145 18.5	0.54210 0.54213 0.54215	0.0037 0.0037
0.34682 0.25409	0.46673 0.46650	9.58895 9.58896	9.96455 9.96455	142 48.5 145 18.5	0.54213 0.54215	0.0037
0.25409	0.46650	9.58896	9.96455	145 18.5	0.54215	
						0.0037
0.16137	0.46626	9.58897	0.00455			
			9.96455	147 48.5	0.54217	0.0037
-0.06864	+0.46601	+9.58898	+9.96454	150 18.5	+0.54219	-0.0037
+0.02408	0.46574	9.58899	9.96454	152 48.5	0.54220	0.0036
0.11680	0.46547	9.58900	9.96454	155 18.5	0.54222	0.0036
0.20952	0.46519	9.58901	9.96454	157 48.5	0.54224	0.0036
0.30224	0.46489	9.58903	9.96454	160 18.5	0.54226	0.0036
0.39496	0.46459	9.58904	9.96453	162 48.5	0.54227	0.0036
+0.48768	+0.46428	+9.58905	+9.96453	165 18.4	+0.54229	-0.0036
0.58039	0.46395	9.58906	9.96453	167 48.4	0.54230	0.0035
0.67310	0.46362	9.58907	9.96453	170 18.4	0.54232	0.0035
0.76581	0.46327	9.58908	9.96453	172 48.4	0.54233	0.0035
0.85852	0.46292	9.58909	9.96452	175 18.4	0.54235	0.0035
0.95122	0.46255	9.58911	9.96452	177 48.4	0.54236	0.0035
+1.04392	+0.46217	+9.58912	+9.96452	180 18.4	+0.54237	-0.0035
1.13662	0.46179	9.58913	9.96452	182 48.4	0.54238	0.0035
1.22931	0.46139	9.58914	9.96452	185 18.4	0.54239	0.0035
1.32200	0.46098	9.58915	9.96451	187 48.4	0.54240	0.0035
1.41469	0.46056	9.58916	9.96451	190 18.4	0.54241	0.0034
	+0.46014	+9.58917	+9.96451	192 48.4	+0.54242	-0.0034
4	0.85852 0.95122 +1.04392 1.13662 1.22931 1.32200	0.85852 0.46292 0.95122 0.46255 +1.04392 +0.46217 1.13662 0.46179 1.22931 0.46139 1.32200 0.46098 1.41469 0.46056	0.85852 0.46292 9.58909 0.95122 0.46255 9.58911 +1.04392 +0.46217 +9.58912 1.13662 0.46179 9.58913 1.22931 0.46139 9.58914 1.32200 0.46098 9.58915 1.41469 0.46056 9.58916	0.85852 0.46292 9.58909 9.96452 0.95122 0.46255 9.58911 9.96452 +1.04392 +0.46217 +9.58912 +9.96452 1.13662 0.46179 9.58913 9.96452 1.22931 0.46139 9.58914 9.96452 1.32200 0.46098 9.58915 9.96451 1.41469 0.46056 9.58916 9.96451	0.85852 0.46292 9.58909 9.96452 175 18.4 0.95122 0.46255 9.58911 9.96452 177 48.4 +1.04392 +0.46217 +9.58912 +9.96452 180 18.4 1.13662 0.46179 9.58913 9.96452 182 48.4 1.22931 0.46139 9.58914 9.96452 185 18.4 1.32200 0.46098 9.58915 9.96451 187 48.4 1.41469 0.46056 9.58916 9.96451 190 18.4	0.85852 0.46292 9.58909 9.96452 175 18.4 0.54235 0.95122 0.46255 9.58911 9.96452 177 48.4 0.54236 +1.04392 +0.46217 +9.58912 +9.96452 180 18.4 +0.54237 1.13662 0.46179 9.58913 9.96452 182 48.4 0.54238 1.22931 0.46139 9.58914 9.96452 185 18.4 0.54239 1.32200 0.46098 9.58915 9.96451 187 48.4 0.54240 1.41469 0.46056 9.58916 9.96451 190 18.4 0.54241

Green		Log x'	Log y'	Log μ'	Log Tangents of Angles of Cones.					
Me Tir		for 1 Minute.	for 1 Minute.	for 1 Minute.	Penumbra.	Umbra.				
h	m.					•				
7	0	+7.9671	-4.8591	+1.1761	+7.66329	+7.66112				
8	0	7.9672	5.1261	1.1761	7.66329	7.66112				
9	0	7.9672	5.2907	1.1761	7.66328	7.66112				
10	0	7.9672	5.4103	1.1761	7.66328	7.66111				
11	0	7.9672	5.5041	1.1761	7.66328	7.66111				
12	0	7.9671	5.5813	1.1761	7.66328	7.66111				
13	0	+7.9670	-5.6472	+1.1761	+7.66328	+7.66111				

TABLE VIII.

PATH OF THE TOTAL PHASE.

Green-	Northe	ern Limit.	Cent	ral Line.	South	ern Limit.	Duration of Total
wich Mean Time.	Latitude.	Longitude from Greenwich.	Latitude.	Longitude from Greenwich.	Latitude.	Longitude from Greenwich.	of Total Phase on Central Line.
	• ,	• ,	• ,	• ,	• ,	• ,	m s
Limits.	+25 55	-129 47	+25 41	-129 58	+25 27	-130 9	
8h 35m	31 2.6	140 55.8	31 6.8	141 54.8	31 9.4	142 51.6	1 2.9
40	34 50.5	148 47.9	34 44.9	149 32.5	34 38.6	150 16.5	1 15.3
45	37 26.8	154 12.9	37 16.8	154 53.2	37 6.3	155 33.0	1 24.6
50	39 31.8	158 40.9	39 18.8	159 18.7	39 5.3	159 56.0	1 32.4
55	41 17.5	162 37.8	41 2.0	16 3 13.8	40 46.1	163 49.1	1 39.3
9 0	+42 49.2	-166 15.7	+42 31.6	-166 49.8	+42 13.7	-167 23.4	1 45.4
5	44 10.0	169 40.6	43 50.5	170 13.2	43 30.7	170 45.1	1 51.1
10	4 5 21.6	172 57.1	45 0.4	173 28.0	44 39.0	173 58.2	1 56.2
15	46 25.1	176 7.8	46 2.4	17 6 3 6.8	45 39.5	-177 5.1	2 0.8
20	47 21.4	-179 14.5	46 57.4	-179 41.4	46 33.1	+179 52.3	2 4.9
25	48 11.1	+177 41.5	47 45.9	+177 16.8	47 20.4	176 52.7	2 8.7
30	+48 54.6	+174 39.2	+48 28.3	+174 17.0	+48 1.7	+173 55.2	2 12.0
35	49 32.1	171 38.0	49 4.8	171 18.3	48 37.4	170 59.1	2 14.8
40	50 4.0	168 37.4	49 35.8	168 20.5	49 7.5	168 3.9	2 17.3
45	50 30.2	165 37.0	50 1.4	165 23.0	49 32.4	165 9.3	2 19.3
50	50 50.9	162 36.8	50 21.5	162 25.8	49 52.1	162 15.0	2 20.9
55	51 6.3	159 36.5	50 36.5	159 28.7	5 0 6.6	159 21.0	2 22.0
10 0	+51 16.2	+156 36.2	+50 46.2	+156 31.6	+50 16.1	+156 27.1	2 22.7
5	51 20.9	153 36.0	50 50.8	153 34.6	50 20.6	153 33.2	2 23.0
10	51 20.3	1 5 0 35.8	50 50.2	150 37.6	50 20.0	150 39.4	2 22.8
15	51 14.3	147 35.7	50 44.4	147 40.8	50 14.5	147 45.7	2 22.2
20	51 3.1	144 35.8	50 33.5	144 44.1	50 4.0	144 52.1	2 21.2
25	50 4 6.6	141 36.2	50 17.5	141 47.5	49 48.3	141 58.5	2 19.7
30	+50 24.6	+138 36.7	+49 56.1	+138 51.0	+49 27.6	+139 4.8	2 17.8
35	49 57.2	135 37.4	49 29.5	135 54.4	49 1.7	136 11.0	2 15.4
40	49 24.2	1 3 2 37.9	48 57.4	132 57.5	48 30.5	133 16.7	2 12.7
45	48 45.6	129 37.9	48 19.8	130 0.0	47 53.9	130 21.6	2 9.5
50	48 1.0	126 37.1	47 36.4	127 1.4	47 11.6	127 25.1	2 5.9
55	47 10.3	123 34.6	46 47.0	124 1.0	46 23.4	124 26.7	2 1.9
11 0	+46 13.1	+120 29.6	+45 51.2	+120 57.8	+45 28.9	+121 25.4	1 57.5
5	45 8.7	117 20.7	44 48.3	117 50.6	44 27.6	118 19.9	1 52.7
10	43 56.4	114 6.0	43 37.8	114 37.5	43 18.6	115 8.3	1 47.4
15	42 35.1	110 42.9	42 18.2	111 15.8	42 1.0	111 48.1	1 41.6
20	41 2.9	107 7.4	40 48.1	107 41.7	40 32.8	108 15.5	1 35.2
25	39 16.8	103 12.9	39 4.4	103 48.8	38 51.6	104 24.3	1 28.2
' 39	+37 11.7	+ 98 47.8	+37 2.2	+ 99 25.9	+36 52.4	+100 3.4	1 20.3
. 35	34 35.9	93 26.7	34 30.6	94 8.5	34 24.7	94 49.6	1 11.0
40	30 51.0	85 43.9	30 54.5	86 37.8	30 56.7	87 30.0	0 58.7
Limits.	+25 35	+ 74 20	+25 23	+ 74 31	+25 11	+ 74 41	

TABLE IX. PATH OF TOTAL PHASE IN THE UNITED STATES.

	Leti	tude of Points	on-	Data for Points on Central Line.									
Longi- tude West from				First	Contact.	Second	Contact.	٠.					
Green- wich.	Northern Limit.	Central Line.	Southern Limit.	Greenwich Mean Time.	Angle East from N. Point. Vertex.	Greenwich Mean Time.	Angle East from N. Point.	Angle East from Vertex.					
80 81 82 83 84	28 8.8 28 36.6 29 4.7 29 33.0 30 1.4	27 49.3 28 16.7 28 44.3 29 12.1 29 40.1	27 30.2 27 57.1 28 24.3 28 51.6 29 19.2	h m s 10 44 14 43 32 42 48 42 0 41 9	279 213 280 213 280 213 280 213 280 213 280 213	h m s 11 41 57 41 42 41 25 41 5 40 42	99 99 99 99	37 37 37 37 37 37					
85 86 87 88 89	30 30.0 30 58.8 31 27.8 31 56.8 32 25.9	30 8.3 30 36.6 31 5.0 31 33.6 32 2.3	29 46.9 30 14.7 30 42.6 31 10.8 31 39.1	10 40 15 39 18 38 18 37 15 36 8	280 214 280 214 280 214 280 214 280 215	11 40 17 39 50 39 19 38 46 38 10	99 99 99 99	37 37 38 38 38					
90 91 92 93 94	32 55.1 33 24.3 33 53.6 34 22.9 34 52.2	32 31.1 32 59.9 33 28.8 33 57.6 34 26.5	32 7.5 32 35.9 33 4.3 33 32.7 34 1.2	10 34 59 33 47 32 31 31 13 29 52	280 215 280 215 280 216 280 216 279 216	11 37 32 36 51 36 7 35 21 34 32	99 99 99 99	38 38 38 39 . 39					
95 96 97 98 99	35 21.4 35 50.6 36 19.7 36 48.7 37 17.6	34 55.4 35 24.2 35 52.9 36 21.5 36 50.0	34 29.7 34 58.1 35 26.4 35 54.6 36 22.8	10 28 27 27 0 25 30 23 58 22 23	279 217 279 217 279 218 279 218 279 218 279 219	11 33 40 32 46 31 49 30 49 29 47	99 99 99 99	39 39 40 40 40					
100 101 102 103 104	37 46.3 38 14.7 38 42.9 39 10.9 39 38.6	37 18.4 37 46.5 38 14.4 38 42.1 39 9.5	36 50.8 37 18.6 37 46.2 38 13.6 38 40.7	10 20 45 19 6 17 24 15 40 13 53	279 219 279 220 279 220 279 221 279 222	11 28 43 27 36 26 27 25 16 24 2	99 99 99 99	40 41 41 41 42					
105 106 107 108 109	40 6.0 40 33.0 40 59.7 41 26.0 41 51.8	39 36.6 40 3.4 40 29.9 40 56.0 41 21.6	39 7.5 39 34.1 40 0.4 40 26.3 40 51.7	10 12 5 10 15 8 24 6 30 4 36	279 222 278 223 278 224 278 225 278 226	11 22 46 21 29 20 9 18 47 17 24	99 - 99 - 99 - 99 - 98	42 42 43 43 44					
110 111 112 113 114	42 17.2 42 42.2 43 6.7 43 30.7 43 54.2	41 46.9 42 11.7 42 36.1 43 0.0 43 23.4	41 16.8 41 41.4 42 5.7 42 29.5 42 52.8	10 2 41 10 0 44 9 58 47 56 49 54 50	278 227 278 228 278 229 277 230 277 231	11 15 59 14 32 13 4 11 35 10 4	98 98 98 98 98	44 45 45 46 46					
115 116 117 118 119	44 17.2 44 39.6 45 1.4 45 22.7 45 43.4	43 46.3 44 8.6 44 30.4 44 51.6 45 12.3	43 15.6 43 37.9 43 59.6 44 20.7 44 41.3	9 52 51 50 52 48 52 46 53 44 53	277 232 277 233 277 235 276 236 276 238	11 8 32 6 58 5 24 3 49 2 12	98 98 98 97 97	47 47 48 48 49					
120 121 122 123 124	46 3.5 46 23.0 46 41.9 47 0.2 47 17.9	45 32.4 45 51.8 46 10.7 46 29.0 46 46.7	45 1.4 45 20.8 45 39.7 45 58.0 46 15.7	9 42 53 40 54 38 55 36 56 34 59	276 239 276 241 276 242 275 244 275 246	11 0 36 10 58 58 57 19 55 40 54 1	97 97 97 96 96	50 51 51 52 53					
125	47 34.8	47 3.8	46 32.9	9 33 1	275 248	10 52 21	96	54					

TABLE IX. PATH OF TOTAL PHASE IN THE UNITED STATES.

				Data for Points	on Centre	l Line.			
Longitude West from	Third (Contact.		Fourt	h Contact.			Sun's	Shortest
Greenwich.	Greenwich Mean Time.	Angle East from N. Point.	Angle East from Vertex.	Greenwich Mean Time.	Angle East from N. Point.	Angle East from Vertex.	Duration.	Altitude at Mid- Totality.	Distance to Edge o Path.
80 81 82 83 84	h m s 11 42 46 42 32 42 16 41 58 41 37	279 279 279 279 279 279	217 217 217 217 217 217	h m s	•	•	8 49.0 50.4 51.8 53.3 54.7	5.6 6.6 7.7 8.7 9.8	Miles. 19.6 20.0 20.4 20.8 21.2
85 86 87 88 89	11 41 14 40 47 40 18 39 47 39 13	279 279 279 279 279 279	217 218 218 218 218 218	12 35 44 35 41 35 35 35 27 35 17	99 99 99 99	42 42 42 42 42 42	56.3 57.8 59.3 60.8 62.5	10.8 11.9 13.0 14.0 15.1	21.7 22.1 22.5 22.9 23.3
90 91 92 93 94	11 38 36 37 57 37 15 36 30 35 42	279 279 279 279 279 279	218 218 218 219 219	12 35 4 34 50 34 33 34 13 33 52	99 99 99 99	42 42 42 42 42 42	64.2 65.8 67.4 69.1 70.8	16.2 17.3 18.4 19.4 20.5	23.7 24.1 24.5 24.9 25.3
95 96 97 98 99	11 34 52 34 0 33 5 32 7 31 7	279 279 279 279 279 279	219 219 220 220 220	12 33 28 33 2 32 34 32 3 31 30	99 99 99 99	43 43 43 43 43	72.4 74.0 75.7 77.6 79.5	21.6 22.7 23.8 24.8 25.9	25.7 26.1 26.4 26.8 27.1
100 101 102 103 104	11 30 4 28 59 27 52 26 42 25 31	279 279 279 279 279	221 221 221 222 222	12 30 56 30 19 29 40 28 58 28 15	99 99 99 99	43 43 44 44 44	81.2 83.0 84.8 86.6 88.4	27.0 28.1 29.1 30.2 31.2	27.4 27.8 28.1 28.4 28.7
105 106 107 108 109	11 24 17 23 1 21 43 20 23 19 2	279 279 279 279 279 278	222 223 223 223 223 224	12 27 30 26 42 25 58 25 2 24 10	99 99 99 99	44 44 45 45 45	90.2 92.0 93.8 95.8 97.6	32.3 33.3 34.4 35.4 36.4	29.0 29.3 29.6 29.8 30.1
110 111 112 113 114	11 17 38 16 14 14 47 13 19 11 50	278 278 278 278 278 278	224 225 225 226 226	12 23 15 22 19 21 22 20 23 19 22	98 98 98 98 98	45 45 46 46 46	99.4 101.2 103.0 104.6 106.3	37.4 38.4 39.4 40.4 41.3	30.3 30.6 30.8 31.0 31.2
115 116 117 118 119	11 10 20 8 48 7 15 5 42 4 7	278 278 278 277 277	227 227 228 228 229	12 18 20 17 17 16 12 15 6 13 59	98 98 98 98 98	46 47 47 47 48	108.0 109.7 111.2 112.9 114.5	42.2 43.2 44.1 45.0 45.8	31.4 31.6 31.8 32.0 32.2
120 121 122 123 124	11 2 32 11 0 55 10 59 18 57 41 56 3	277 277 277 276 276	230 230 231 232 233	12 12 51 11 42 10 32 9 21 8 8	98 98 97 97 97	48 48 48 49 49	116.0 117.5 119.0 120.5 121.9	46.7 47.6 48.4 49.2 50.0	32.4 32.5 32.7 32.8 32.9
125	10 54 24	276	234	12 6 55	97	50	123.1	50.8	33.0

TABLE X.

REDUCTIONS FOR POINTS IN THE PATH OF THE TOTAL PHASE, BUT NOT ON THE CENTRAL LINE, TO BE APPLIED TO CENTRAL LINE DATA TO OBTAIN TIMES OF CONTACTS.

For points north of the central line the reductions are negative. For points south of the central line the reductions are positive.

(a) To obtain Greenwich Mean Time of First Contact.

Diff. of Lat.	oʻ	2′	4′	6′	8′	10′	12′	14′	16′	18′	20′	22′	24'	26′	28′
80 85 90 95 100	8 0 0 0	*2 % % % %	5 5 5 6	8 8 9 9	9 10 11 12 12	12 13 14 14 15	14 15 16 17 18	8 16 18 19 20 21	8 19 20 22 23 24	21 23 25 26 27	23 26 27 29 30	26 28 30 32 33	28 31 33 35 36	30 33 36 37 38	33 36 38 40 41
105 110 115 120 125	0 0 0 0	3 3 2 2	6 5 4 3	9 8 8 7 5	12 11 10 9 7	15 14 13 11 8	18 17 15 13 10	21 20 18 15 12	24 23 21 18 14	27 25 23 20 15	30 28 26 22 17	33 31 28 24 19	36 34 31 26 20	38 37 34 29 22	41 39 36 31 24

(b) To obtain Greenwich Mean Time of Second Contact at points north of Central Line, or of Third Contact at points south of Central Line.

Diff. of Lat.	oʻ	2′	4'	6′	8′	10′	12′	14′	16′	18′	20′	22′	24'	26′	28′
80 85 90 95 100	8 0 0 0	2 2 2 3 3	8 4 4 5 5	5 6 7 7 8	6 7 8 9	8 10 11 12	7 9 11 12 13	9 12 13 15	8 9 12 14 16	8 12 14 17	5 11 14 17	8 13 16	8 10 15		5
105 110 115 120 125	0	າ	5 6 6 5 5	8 8 8 8 7	10 11 10 10 9	12 13 12 12 12 10	14 14 14 14 13 11	16 16 16 14 12	17 17 17 15 13	18 18 18 16 13	18 18 18 16 13	18 18 18 15 12	17 18 17 14 10	15 16 15 12 7	11 12 12 12 8 2

(c) To obtain Greenwich Mean Time of Second Contact at points south of Central Line, or of Third Contact at points north of Central Line.

Diff. of Lat.	o'	2′	4'	6′	8′	10′	12′	14′	16′	18′	20′	22′	24'	26′	28′
80 85 90 95	8 0 0 0 0	8 2 2 3 3	5 5 5 6	8 7 8 9	\$ 10 11 12 13 13	\$ 14 15 16 16 17	\$ 18 19 20 21 22	22 23 24 25 26	\$ 27 28 28 30 31	34 34 34 35	8 41 40 40 42	8 48 47 48	55 55		s
100 105 110 115 120 125	0 0 0 0	3 3 3 3 3 3 3	7 7 7 6 6	10 10 10 10 10 9	13 14 14 14 14 13	18 18 18 18 18 17	22 23 23 22 21	27 27 28 27 26	32 32 32 32 32 30	36 37 38 38 37 36	43 44 44 43 42	49 50 50 50 48	56 57 57 56 55	64 65 65 65 63	75 74 74 74 74 73

TABLE X.

REDUCTIONS FOR POINTS IN THE PATH OF THE TOTAL PHASE, BUT NOT ON THE CENTRAL LINE, TO BE APPLIED TO CENTRAL LINE DATA TO OBTAIN TIMES OF CONTACTS.

For points north of the central line the reductions are negative. For points south of the central line the reductions are positive.

(d) To obtain Greenwich Mean Time of Fourth Contact.

Diff. of Lat.	oʻ	2'	4'	6′	8′	10′	12′	14'	16′	18′	20′	22'	24′	26′	28′
80 85	0	2 2	8 4	5 6	8 7 8	9 10	8 11 12	13 14	8 14 16	16 18	18 20	20 22	22 24	8 23 26	8 25 28
90 95 100	0	2 2 3	4 4 5 5	7 7 8	9 10 11	11 12 13	13 15 16	16 17 19	18 20 21	20 22 24	22 24 27	24 27 29	27 29 32	29 32 35	31 34 37
105 110	0	3	6	9	11 12	14 15	17 18	20 21	23 24	26 27	29 30	31 33	34 36	37 39	40 42
115 120 125	0 0 0	3 3 3	6 6 6	9 9	12 13 13	16 16 16	19 19 19	22 22 22	25 25 25	28 28 28	31 32 31	34 35 35	37 38 38	41 41 41	44 44 44

TABLE XI.

REDUCTIONS FOR POINTS IN THE PATH OF THE TOTAL PHASE, BUT NOT ON THE CENTRAL LINE, TO BE APPLIED TO CENTRAL LINE DATA TO OBTAIN POSITION ANGLES AT SECOND AND THIRD CONTACTS.*

For points north of the central line the reductions are negative for second contact and positive for third contact.

For points south of the central line the reductions are positive for second contact and negative for third contact.

Diff. of Lat.	0′	2'	4'	6′	8′	10′	12′	14'	16′	18′	20′	22′	24'	26′	28′
•	•	•	•		•	•	•		•	•	•		•	•	•
80 -	0	6	12	18	24	31	38	46	56	69					١
85	0	5	11	16	22	28	34	41	48	57	68			١	١
90	0	5	10	15	20	25	30	36	42	49	57	68			
. 95	0	4	9	13	18	23	28	33	38	44	51	58	68		۱
100	Ó	4	8	12	17	21	26	30	3 5	40	46	52	60	70	
105	0	4	8	12	16	20	24	29	33	38	43	49	55	63	73
110	0	4	-8	11	15	19	23	28	32	37	41	47	53	59	68
115	0	4	7	11	15	19	23	27	31	36	40	46	51	58	65
120	0	4	7	11	15	19	23	27	31	36	40	45	51	57	65
125	0	4	7	11	15	19	23	27	31	36	40	45	51	57	65
				L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L	l	<u> </u>		<u> </u>	l	

^{*}Note.—The reductions for first and fourth contacts never exceed one degree.

The Duration of the Total Phase for points not on the central line is given by the formula—

 $D-T\sqrt{1-\frac{b^2}{a^2}}$

where

T-duration at nearest point of central line;

b-distance in miles from central line;

a-one-half the width of path through given point (last column, Table IX).

USE OF TABLES X AND XI.

The vertical argument is the longitude of the given place, the horizontal argument the distance of the given place north or south of that point of the central line of which the longitude is the same as that of the given place.

Example.—Find the times and position angles of the contacts for Jackson, Miss., whose position is—

Latitude 90 11.1-90.185 west of Greenwich. Latitude +32 20.0-16.'4 south of central line.

		1st Contact. h m s	2d Contact. h m s	3d Contact.	4th Contact.
Table IX (Central Line Data)		10 34 46	11 37 24	11 38 29	h m s 12 35 1
Table X		+ 23	+ 29	+ 12	+ 18
Greenwich Mean Time		10 35 9	11 37 53	11 38 41	12 35 19
		•	•	•	.•
Table IX (Central Line Data)		280	99	279	99
Table XI, and Note		0	+43	-43	0
Angle from North Point .	٠.	280	142	236	99
		•	•	•	•
Table IX (Central Line Data)		215	3 8	218	42
Table XI, and Note		0	+43	~43	0
Angle from Vertex		215	81	175	42

TABLE XII.

LOCAL CIRCUMSTANCES.

	В	eginning.		Midd	le.	Ending.			
Place.	Greenwich Mean Time.	Angle from North Point.	Angle from Vertex.	Greenwich Mean Time.	Magni- tude.	G reenwi ch Mean Time.	Angle from North Point.	Angle from Vertex.	
	h m	•	•	h m		h m	•	•	
Albany, N. Y.	10 30	256	206	11 23	0.64	12 14	118	74	
Allegheny, Pa.	10 30	263	208	11 27	0.74	12 20	113	66	
Amherst, Mass	10 30	256	205	11 24	0.64	12 13	119	75	
Ann Arbor, Mich	10 26	263	210	11 25	0.74	12 20	113	66	
Appleton, Wis	10 21	263	212	11 22	0.75	. 12 18	113	66	
Atlanta, Ga	10 36	274	212	11 36	0.92	12 32	103	49	
Augusta, Me	10 29	252	204	11 20	0.58	12 8	122	80	
Austin, Tex	10 34	288	220	11 40	0.87	12 39	92	30	
Baton Rouge, La	10 37	283	216	11 40	0.95	12 38	96	37	
Berkeley, Cal	9 49	290	240	11 10	0.79	12 22	86	27	
Bismarck, N. Dak	10 7	266	219	11 14	0.81	12 16	109	62	
Boise City, Idaho	9 51	278	233	11 8	0.99	12 18	97	45	
Buffalo, N. Y	10 28	259	207	11 24	0.69	12 16	116	71	
Cambridge, Mass	10 31	255	205	11 23	0.63	12 12	119	76	
Carson City, Nev	9 52	286	237	11 11	0.85	12 22	90	32	
- ·	1		i					ļ	
Charleston, W. Va	10 32	266	210	11 30	0.80	12 24	110	60	
Charlottesville, Va	10 33	265	208	11 30	0.77	12 23	111	62	
Cheyenne, Wyo	10 10	276	222	11 21	0.97	12 25	101	48	
Cincinnati, Ohio	10 29	267	211	11 30	0.81	12 24	110	60	
Cleveland, Ohio	10 28	2 62	209	11 26	0.74	12 20	113	. 66	
Columbia, Mo	10 25	272	215	11 29	0.89	12 28	105	53	
Columbia, S. C	10 37	272	211	11 36	0.88	12 30	105	52	
Columbus, Ohio	10 29	265	210	11 28	0.78	12 23	111	62	
Denver, Colo	10 12	278	222	11 24 1	1.01 1	5 1	99	44	
Des Moines, Iowa	10 20	269	215	11 25	0.85	12 24	107	57	
Dover, Del	10 33	262	207	11 28	0.72	12 20	114	67	
Evanston, Ill	10 24	265	212	11 25	0.78	12 22	111	63	
Flagstaff, Ariz	10 11	289	227	11 26	0.83	12 32	89	29	
Geneva, N. Y	10 28	258	207	11 24	0.67	12 15	117	72	
Greencastle, Ind	10 28	268	212	11 29	0.82	12 25	109	59	
Hanover, N. H	10 29	254	205	11 22	0.61	12 11	120	77	
Harrisburg, Pa	10 31	261	207	11 27	0.72	12 19	114	68	
Helena, Mont	9 54	272	229	11 8	0.92	12 15	103	55	
Honolulu, Hawaii	9 1	331	61	9 45	0.09	10 30	23	203	
Iowa City, Iowa	10 22	268	214	11 25	0.83	12 23	108	59	
,			1					1	
Ithaca, N. Y	10 29	258	206	11 24 11 38 ²	0.67	12 16	117	72	
Jackson, Miss	10 35	280	215		1.00 ²	i .	98	42	
Juneau, Alaska	9 15	258	254	10 29	0.77	11 40	108	79 51	
Kansas City, Mo	10 23	273	216	11 28	0.91	12 28	104	51	
Little Rock, Ark	10 30	278	216	11 35	0.99	12 33	100	45	
Louisville, Ky	10 30	269	212	11 31	0.84	12 26	108	57	
Madison, Wis	10 22	265	212	11 24	0.78	12 20	111	63	
Minneapolis, Minn	10 16	265	214	11 20	0.78	12 18	111	64	
Montgomery, Ala	10 37	277	213	11 38	0.97	12 34	101	45	
Mount Hamilton, Cal	9 51	290	238	11 12	0.78	12 23	86	26	

¹ Duration of totality 1=.5.

TABLE XII.

LOCAL CIRCUMSTANCES.

~	В	eginning.		Midd	le.	Ending.			
Place.	Greenwich Meen Time.	Angle from North Point.	Angle from Vertex.	Greenwich Mean Time.	Magni- tude.	Greenwich Mean Time.	Angle from North Point.	Angle from Vertex.	
Mount Wilson, Cal	h m 10 3	294	233	h m 11 21	0.74	h m 12 29	84	21	
Nashville, Tenn	10 32	273	212	11 34	0.90	12 30	105	52	
New Haven, Conn	10 31	258	206	11 25	0.66	12 15	117	73	
New Orleans, La	10 38	283	216	11 41	0.95	12 38	96	37	
New York, N. Y	10 32	259	206	11 26	0.68	12 16	116	71	
Nome, Alaska	8 49	246	265	9 55	0.63	11 2	111	111	
Oklahoma City, Okla	10 26	280	218	11 33	0.99	12 33	98	42	
Omaha, Nebr	10 19	271	216	11 25	0.88	12 25	106	5 5	
Orono, Me	10 29	251	203	11 19	0.56	12 7	123	82	
Oxford, Miss	10 33	277	214	11 36	0.96	12 33	101	46	
Panama, Panama	11 8	308	226						
Philadelphia, Pa	10 32	261	207	11 27	0.71	12 18	115	6 8	
Phoenix, Ariz	10 13	292	228	11 28	0.79	12 33	87	25	
Pierre, S. Dak	10 11	269	219	11 18	0.86	12 20	107	58	
Portland, Oreg	9 38	277	243	10 58	0.99	12 11	96	46	
Poughkeepsie, N. Y	10 31	258	206	11 2 5	0.66	12 15	117	70	
Raleigh, N. C	10 36	268	209	11 33	0.82	12 26	109	58	
Richmond, Va	10 34	265	208	11 31	0.77	12 23	111	62	
Sacramento, Cal	9 50	288	239	11 10	0.82	12 22	88	30	
Salt Lake City, Utah .	10 1	280	228	11 17	0.97	12 24	96	42	
San Juan, P. R	10 52	284	213					• • • •	
Santa Fe, N. Mex	10 17	285	223	11 29	0.91	12 33	94	35	
Seattle, Wash	9 37	273	243	10 56	0.98	12 8	99	52	
Springfield, Ill	10 26	269	213	11 28	0.85	12 25	108	57	
St. Louis, Mo	10 27	271	. 214	11 30	0.88	12 27	106	54	
Syracuse, N. Y	10 28	258	206	11 23	0.66	12 14	118	73	
Tallahassee, Fla	10 40	279	213	11 40	0.99	12 35	99	43	
Topeka, Kans	10 22	274	216	11 28	0.93	12 28	103	50	
Tuscaloosa, Ala	10 35	277	214	11 37	0.97	12 34 12 20	101	46 30	
Ukiah, Cal	9 46	288	242	11 7	0.82		87		
Urbana, Ill	10 26	268	212	11 28	0.83	12 25	108	58	
Washington, D. C	10 33	263	208	11 29	0.74	12 21	113	65	
Williams Bay, Wis	10 23	265	212	11 24	0.78	. 12 21	111	63	

 \neg

Endin

wich from Noris Poin.

No. 201 Sec. 20.

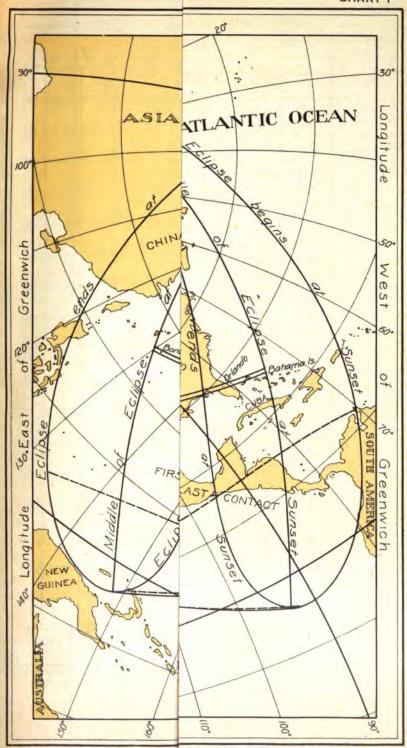
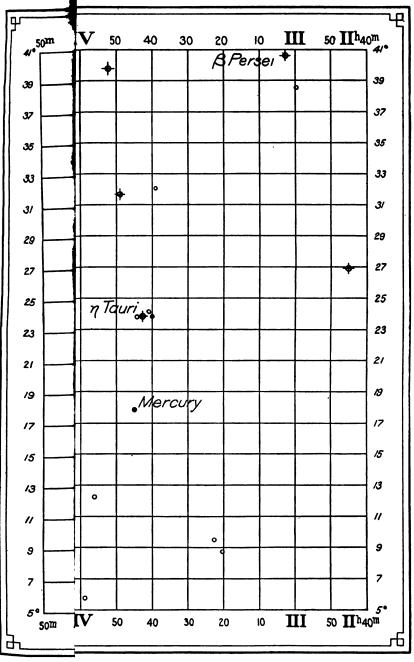
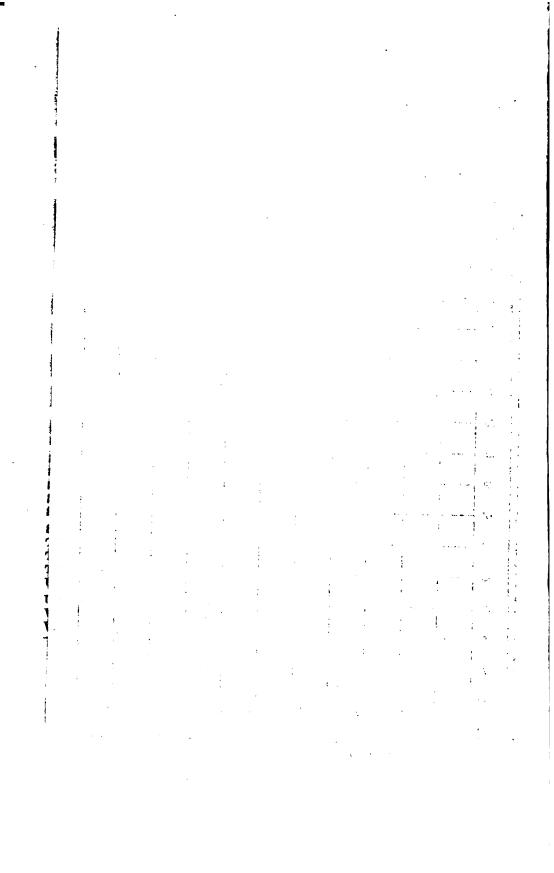
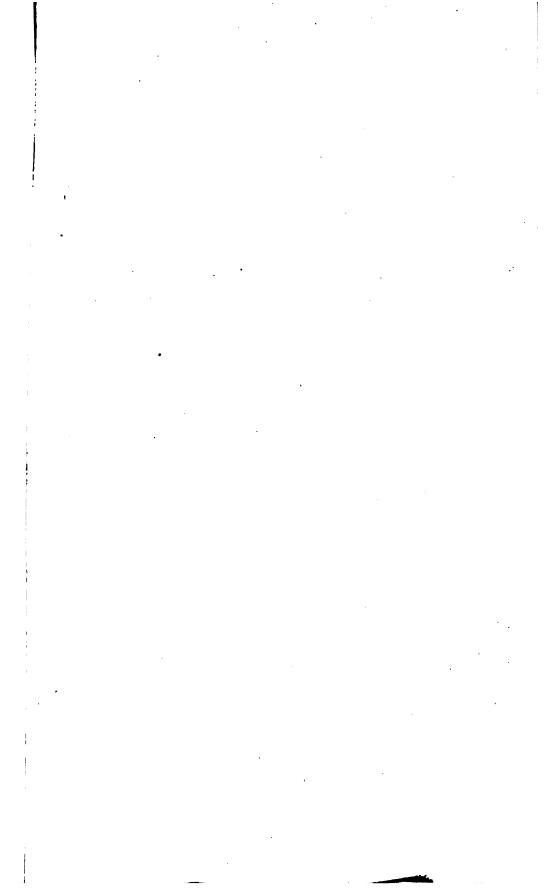
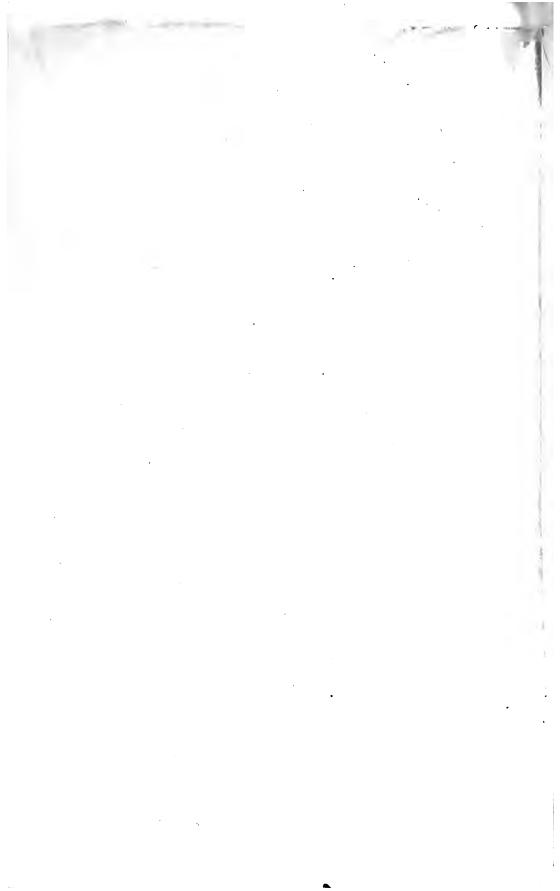




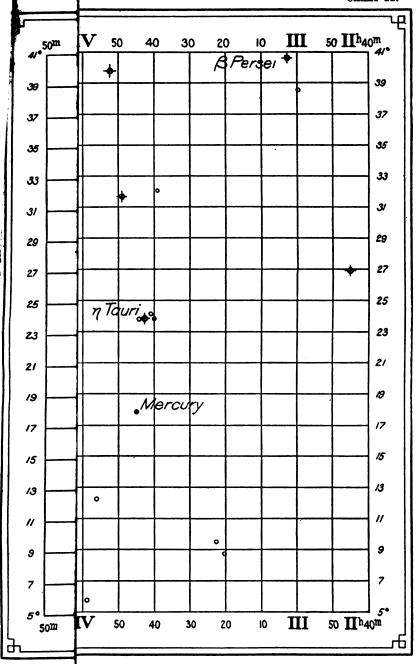
CHART II.




79597°—17.


•

• .



79597°—17

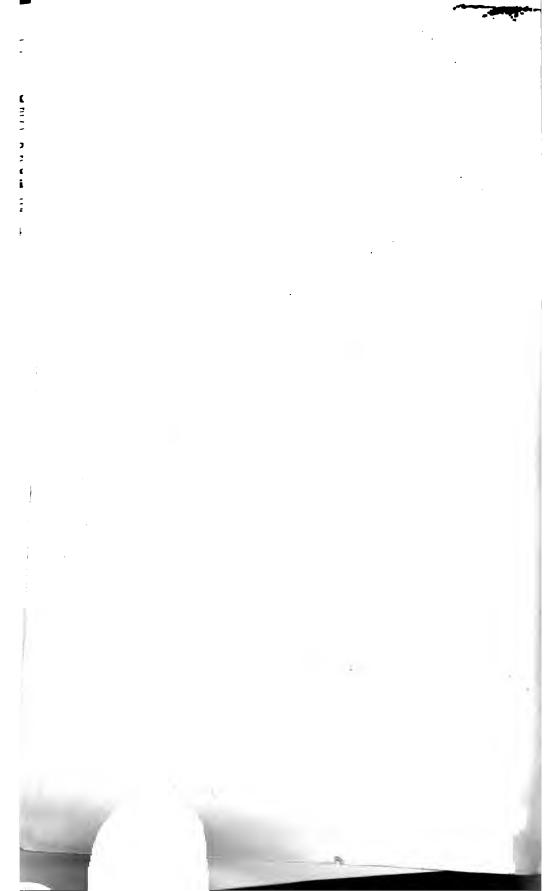
....... : . •

.

rc

10 C IT

201 CO PO C | . . | 889 E 1 1111:


 \boldsymbol{e}

14

li e

1

.

