

TECHNICAL REPORT

AN ANALYSIS OF ENVIRONMENTAL FACTORS AFFECTING ICE GROWTH

ELLIOTT B. CALLAWAY
Applied Oceanography Branch
Division of Oceanography

SEPTEMBER 1954

```
GC
    l
    T43
    NTR-7
```

U. S. NAVY HYDROGRAPHIC OFFICE WASHINGTON, D. C.

ABSTRACT

This report describes efforts to evaluate the effects of various oceanographic and meteorological variables on the rate of sea ice growth, in an attempt to ascertain the most important parameters to consider from the forecasting standpoint. Work of Neuman and Stefan, as well as that of Kolesnikov, is utilized in the form of prediction equations. Results are applied to specific Arctic localities with good agreement. It is concluded that the most important factors affecting ice growth are air temperature, snow thickness, and snow density, with several other variables playing a lesser role.

The increasing importance of defense installations in northern areas has greatly increased the responsibilities of the U.S. Navy in supplying bases in Arctic waters, where sea ice is often an operating obstacle. The Hydrographic Office is charged with the responsibility of developing and testing techniques for observing and forecasting sea ice conditions. Standardized techniques for observing, charting, and reporting sea ice are now in operational use by the Navy, as described in publications issued by the Hydrographic Office. Heretofore, techniques for forecasting the formation, growth, and movement of sea ice have not been published by this Office. This publication describes in detail the factors affecting ice formation and growth.

It is requested that activities receiving this publication forward their comments to the Hydrographic Office.

DISTRIBU'TION LIST

CNO ($0 \mathrm{p} \sim 03,03 \mathrm{D} 3,31,316,32,33,332,04,05,533,55$)
BUAER (2)
BUSHIPS (2)
BUDOCKS (2)
ONR (Code $100,102,410,416,420,430,464,466$)
NOL (2)
NEL (2)
NRL (2)
COMOPDEVFOR (2)
comsts (2)
CODTMB (2)
AROWA
SUPNAVACAD (2)
NAVWARCOL (2)
NAVPOSTGRADSCOL, Montersy (2)
COMDT COGARD (IIP) (2)
USC\&GS (2)
CG USAF (AFOOP)
CGAWS (2)
CGNEAC (2)
USAF CAMBRSChiAb (2)
USWB (2)
CIA (2)
BEB (2)
SIPRIE (2)
ASTIA (2)
ARTRANSCORP
CE (2)
INTLHYDROBU, Monaco (2)
ARCRSCHLAB, COL, Alaska
ARCINSTNA (2)
WHOI (2)
SIO (2)
UNIV WASH (2)
TEXAS A\&M (2)
CBI (2)

CONTENTS

Page
Foreword iii
Distribution List. iv
List of Figures vi
A. Int roduction 1
B. Increase of Thickness with Time. 1
C. Kolesnikov's Equation and its Evaluation 8
D. Physical Constants used in Numerical Evaluation. 12
E. Effects of Changes in Meteorological and Oceanographic Parameters on Ice Thickness. 14
F. Practical Ice Thickness Forecasting. 23
G. Empirical Formulas for Ice Growth Prediction 25
H. Conclusion 30
Bibliography 31

LIST OF FIGURES

PAGE
Figure 1 Graphical Solution of Equation 19 5
Figure 2 Equivalent Temperature minus Air Temperature as a Function of Meteorological Variables. 11
Figure 3 Influence of Meteorological Conditions on the Freezing of Ice. 11
Figure 4 Effect of Snow Depth on Ice Growth. 15
Figure 5 Effect of Snow Density on Ice Growth. 15
Figure 6 17
Figure 7 Effect of Initial Ice Thickness on Ice Growth.Figure 8
Effect of Snow and Ice Thickness on Rate of Freezing. . 19
Figure 9 Effect of Wind Velocity on Ice Growth. 19
Figure 10 Effect of Salinity on Rate of Freezing. 21
Figure 11 Effect of Heat of Water Mass on Rate of Freezingo 21
Figure 12 Effect of Water Temperature on the Growth of Ice. 22
Figure 13 Effect of Thickness of Mixed Layer on Growth of Ice. 22
Figure 14 Effect of Cloudiness and Wind Speed on Growth of Ice (Freezing Time 14 hours) 24
Figure 14 a Effect of Cloudiness and Wind Speed on Growth of Ice (Freezing Time 14 hours) 24
Figure 15 Observed and Computed Ice Growth at Archangel, U.S.S.R. 26
Figure 16 Observed and Computed Ice Growth, Denmark Expedition Records, Nov. 1, 1906, to Feb. 8, 1907. 26
Figure 17 Observed and Computed Ice Growth at Padloping Island, N.W.T., January 1949 27
Figure 18 Observed and Computed Ice Growth at Padloping Island, N.W.T., January 1950 27
Figure 19 Empirical Formulae of Zubov's Type Compared with Observed Ice Growth at Archangel, U.S.S.R. 29

A. INTRODUCTION

Forecasting ice thickness can be separated into three problems: (1) determining the time required to reduce the temperature of the water mass to the freezing point by thermohaline convection; (2) forecasting the temperature, wind velocity, cloudiness, humidity, depth, and density of snow fall for the period for which the ice thickness forecast is required; and (3) computing the thickness of the ice accretion which will result from the predicted weather conditions. This study is restricted to the last phase of this problem.

The problem of ice thickness forecasting is' one of great complexity, expressible only in terms of a complicated system of differential and integral equations, the solution of which is not possible when the boundary conditions are not simple. The first physicist to present a complete mathematical theory of heat conduction was Joseph Fourier. The application of Fourier's heat conduction equations to the problem of ice formation was first undertaken by Franz Neumann (Weber, 1910) and Stefan (1889). More recently Fussian and Norwegian scientists have been active in this field, and it is with the description of the work of A. G. Kolesnikov (1946) and Olav Devik (1931) that this study is chiefly concerned.

After the derivation of a theoretical forecast formula the question arises as to the best practical method of its application. In this connection consideration should be given not only to the facility with which the results of the formula can be obtained but also to the accuracy of the evaluation.

There are two general methods for obtaining the required ice thickness from the formula: (1) by computation for each individual situation, and (2) by taking the required hickness from graphs consisting of parametric curves of ice thickness drawn with temperature and ice thickness as abscissa and ordinate, respectively, and with meteorological factors as parameters. Both of these methods will be derived and explained. To quickly obtain approximate results the graphical method is recommended, but for a more accurate determination in which all the parameters are given individual consideration, the computational method should be employed.

B. INCREASE OF ICE THICKNESS WITH TME

In approaching the problem of ice growth with time, it is desirable, initially, to formulate an expression in simple terms, that is, in the preliminary steps to neglect the meteorological factors of wind velocity, cloud cover, and humidity and to consider the ice as formed free from the blanketing influence of a snow. cover. Initially then, assume a surface of still water lowered by contact with air to some temperature T_{0} below the freezing point. There will then be formed a layer of ice whose thickness ξ is a function of the time t. A solution may be reached by equating the amount of heat carried up from the water below the ice sheet plus the heat set free per unit of time (dt) per unit area (as the ice increases in thickness by $d \xi$) to the total amount of heat that flows outward through
a unit area of the lower surface of the ice sheet. This heat budget equation must satisfy Fourier's heat transfer equations:

$$
\begin{equation*}
\frac{\partial T_{1}}{\partial t}=\alpha_{1} \frac{\partial^{2} T_{1}}{\partial x^{2}} \text { in the ice }(0<x<\xi) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial T_{2}}{\partial t}=\alpha_{2} \frac{\partial^{2} T_{2}}{\partial x^{2}} \text { in the water }(\xi<x) \tag{2}
\end{equation*}
$$

where:

$$
\begin{aligned}
T_{1} & =\text { temperature in the ice, } \\
T_{2} & =\text { temperature in the water, } \\
\alpha_{1} & =\frac{k_{1}}{c_{1} \rho_{1}} \text { is thermal diffusivity in ice, } \\
\alpha_{2} & =\frac{k_{2}}{c_{2}} \rho_{2} \\
t & =\text { time } \\
k_{1} & =\text { thermal conductivity in ice, } \\
k_{2} & =\text { thermal conductivity in water, } \\
c_{1} & =\text { specific heat of ice, } \\
c_{2} & =\text { specific heat of water, } \\
\rho_{1} & =\text { density of ice, and } \\
\rho_{2} & =\text { density of water. }
\end{aligned}
$$

The temperature of the boundary surface of ice and water (at $x=\xi$) must always be $0^{\circ} \mathrm{C}$ (under this simplified formulation) and there will be continual formation of new ice. If the thickness increased by $\alpha \xi$ in time $d t$, the re will be set free for each unit of area an amount of heat

$$
\begin{equation*}
Q=L p_{1} d \xi \tag{3}
\end{equation*}
$$

where L is the latent heat of fusion. This heat must escape upward by conduction through the ice, and in addition heat must be carried away from the water below, so that the total amount of heat that flows outward through a unit area of the lower surface of the ice sheet is

$$
\begin{equation*}
Q^{\prime}=k_{1}\left(\frac{\partial T_{1}}{\partial x}\right)_{x=\xi} d t \tag{4}
\end{equation*}
$$

of this amount the quantity

$$
\begin{equation*}
Q^{\prime \prime}=k_{2}\left(\frac{\partial T_{2}}{\partial x}\right)_{x=\xi} d t \tag{5}
\end{equation*}
$$

flows up from the water below. Hence the first boundary condition is

$$
\begin{equation*}
\left(k_{1} \frac{\partial T_{1}}{\partial x}-k_{2} \frac{\partial T_{2}}{\partial x}\right)_{x=\xi}=L \rho_{1} \frac{\partial \xi}{\partial t} . \tag{6}
\end{equation*}
$$

The other boundary conditions are:

$$
\begin{array}{ll}
\mathrm{T}_{1}=\mathrm{T}_{\mathrm{s}}=\mathrm{C}_{1} & \text { at } \mathrm{x}=0, \\
\mathrm{~T}_{1}=\mathrm{T}_{2}=0 & \text { at } \mathrm{x}=\xi, \text { and } \\
\mathrm{T}_{2}=\mathrm{C}_{2} & \text { at } \mathrm{x}=\infty . \tag{9}
\end{array}
$$

There are also three other boundary conditions derived from the fact that when $t=0, \xi$ is fixed, while T_{1} and T_{2} must be given as functions of x . T_{1} lies between 0 and ξ while T_{2} lies between ξ and ∞. As equation (6), containing the unknown function ξ, is not linear and homogeneous, a solution cannot be reached by the combination of special solutions. The method of solution then will be to find particular integrals of equations (1) and (2) and after modifying them to fit boundary conditions equations (7), (8), and (9) to find under what conditions the solution will satisfy equation (6). This will also determine the initial values of ξ, T_{1} and T_{2}.

Now the function $\Phi(x, \eta)$ (the probability integral) is a solution of such differential equations as (1) and (2). Consequently if B_{1}, D_{1}, B_{2} and D_{2}, are constants and $\eta \equiv \frac{1}{2} \sqrt{a_{1} t}$ and $\eta \equiv \frac{1}{2} \sqrt{a_{2} t}$,

$$
\begin{equation*}
T_{1}=B_{1}+D_{1} \Phi\left(x, \eta_{1}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{2}=B_{2}+D_{2} \Phi\left(x, \eta_{2}\right) \tag{11}
\end{equation*}
$$

are also solutions. Boundary condition (8) means that $\Phi\left(\xi, \eta_{1}\right)$ and $\Phi\left(\xi, \eta_{2}\right)$ must each be constant, which will be true if $\xi=0, \xi=\infty$, or if ξ is proportional to \sqrt{t}. The first two of these assumptions are evidently inconsistent with (8). Thus, there remains only the last which may be put into the form

$$
\begin{equation*}
\xi=b \sqrt{t} \tag{12}
\end{equation*}
$$

where b is a constant to be determined, together with B_{1}, D_{1}, B_{2}, and D_{2}.
From the properties of $\Phi(x)$ it is known that $\Phi(0)=0$ and $\Phi(\infty)=1$. Fitting boundary conditions (7), (8), and (9) in (10) and (11), with the use of (12), the following equations result:

$$
\begin{gather*}
B_{1}=C_{1} \tag{13}\\
B_{1}+D_{1} \Phi\left(\frac{b}{2 \sqrt{\alpha_{1}}}\right)=0, \tag{14}\\
B_{2}+D_{2} \Phi\left(\frac{b}{2 \sqrt{\alpha_{2}}}\right)=0, \text { and } \tag{15}\\
B_{2}+D_{2}=C_{2} \tag{16}
\end{gather*}
$$

while (10), (11), and (12) in connection with (6) give

$$
\begin{equation*}
\frac{k_{1} D_{1}}{\sqrt{\pi \alpha_{1} \uparrow}} e^{-\frac{b^{2}}{4 \alpha_{1}}}-\frac{k_{2} D_{2}}{\sqrt{\pi \alpha_{2} t}} e^{-\frac{b^{2}}{4 \alpha_{2}}}=\frac{L \rho_{1} b}{2 \sqrt{1}} \tag{17}
\end{equation*}
$$

Solving equations (13) to (16) for D_{1} and D_{2} yields

$$
\begin{equation*}
D_{1}=-\frac{C_{1}}{\Phi\left(\frac{b}{2 \sqrt{\alpha_{1}}}\right)} \quad, \quad D_{2}=\frac{c_{2}}{1-\Phi\left(\frac{b}{2 \sqrt{\alpha_{2}}}\right)} \tag{18}
\end{equation*}
$$

and substituting these values in (17) finally gives

$$
\begin{equation*}
\frac{k_{1} c_{1} e^{-\frac{b^{2}}{4 \alpha_{1}}}}{\sqrt{\alpha_{1}} \Phi\left(\frac{b}{2 \sqrt{\alpha_{1}}}\right)}+\frac{k_{2} c_{2} e^{-\frac{b^{2}}{4 \alpha_{2}}}}{\sqrt{\alpha_{2}}\left[1-\Phi\left(\frac{b}{2 \sqrt{\alpha_{2}}}\right)\right]}=-\frac{\sqrt{\pi}}{2} L \rho_{1} b \tag{19}
\end{equation*}
$$

This derivation is due to Neman.
This transcendental equation (19) can be solved for \underline{b} by plotting the curves

$$
y=-\frac{\sqrt{\pi}}{2} L \rho_{1} b \quad \text { and } \quad y=f(b)
$$

where $f(b)$ represents the left hand side of (19). Then \underline{b} is found as the abscissa of the intersection of the two curves.

Figure 1 shows a graphical solution of (19) by this method, using the following values for the constants involved:

FIG. 1. GRAPHICAL SOLUTION OF EQUATION 19.

$$
\begin{aligned}
k_{1} & =.0053 \\
c_{1} & =-20^{\circ} \mathrm{C} \\
\alpha_{1} & =.0118 \\
k_{2} & =.00143 \\
c_{2} & =-1^{\circ} \mathrm{C} \\
\propto_{2} & =.00143 \\
L_{1} & =80.0 \\
\rho_{1} & =0.92
\end{aligned}
$$

Using the value of b found from Figure 1 , the equation relating the thickness of ice to the time, for an ice surface temperature of $-20^{\circ} \mathrm{C}$., and water temperature of $-1^{\circ} \mathrm{C} .$, is

$$
\begin{equation*}
\xi=0.0531 \sqrt{\uparrow} \tag{20}
\end{equation*}
$$

where $\xi=$ ice thickness in cm . and $t=t i m e$ in seconds. An evaluation of (20) for 14 hours gives an ice thickness of 12 cm . as compared to 8 cm . from the practical forecast curves of Figure 12. The differences may be due to the different values of constants used, i.e. $V=20, N=0$.

Stefan in a similar fashion derived an expression for the ice thickness as a function of time. He made a further simplification by assuming the water temperature to ba $0^{\circ} \mathrm{C}$. This is merely a special case of Neumann's solution and can be obtained from it by making $\mathrm{C}_{2}=0$ in equation (19). To a first approximation Stefan's equation is
where

$$
\begin{equation*}
\xi^{2}=-\frac{2 c_{1} c_{1} \alpha_{1} t}{L} \tag{21}
\end{equation*}
$$

$$
\begin{aligned}
\xi & =\text { ice thickness, } \\
C_{1} & =\text { temperature of the ice surface, } \\
L & =\text { latent heat of fusion, } \\
c_{1} & =\text { specific heat of ice, } \\
\propto 1 & =\text { themal diffusivity of ice, and } \\
t & =\text { time. }
\end{aligned}
$$

(∞_{1} is available from tables but is equal to the thermal conductivity divided by the product of specific heat times density--all available from tables).

Equations (19) and (21) are not suited for practical application, since the effects of initial thickness of ice, thickness and density of snow cover, wind velocity, cloud cover, humidity of the air, and salinity of sea water are neglected, and in addition such a long and tedious computation is not suited for practical use. To take the meteorological conditions into account, it is necessary to form heat budget equations.

Consider first the sunlight and daylight radiation. At a low sun altitude of from 5 to 10 degrees, for example, a water or ice surface will reflect a considerable part of the sun's rays. A fraction will enter the water and be gradually absorbed, while the transmitted radiation will be practically all absorbed by the lower layers of the water body. At a sun altitude of 5° one square centimeter of water surface will receive 0.6 calorie per square centimeter per hour. This is only 0.5 percent of the amount of solar radiation reaching the atmosphere.

Under these conditions and with a clear sky, the diffuse daylight from all parts of the sky will give a greater input, namely $3 \mathrm{cal} / \mathrm{cm}$. per hour. If the sky is clouded, the diffuse daylight absorbed by a water surface will be less but will still represent $1 \mathrm{cal} / \mathrm{cm}_{0}^{2} / \mathrm{hr}$, which is more than the direct radiation would give at the low sun altitude.

These figures of heat gained are small compared to heat losses in winter. But when the sun's altitude increases, the incoming radiation direct and diffused will contribute more and more to the heat absorbed; and in the summer the relation will be reversed, as the heat received will exceed the heat lost.

Restricting the problem to winter conditions, next consider the loss of heat by infrared radiation at a representative air temperature of $-10^{\circ} \mathrm{C}$. With a clear sky and air temperature $-10^{\circ} \mathrm{C}$. the heat radiation from a water surface at $0^{\circ} \mathrm{C}$. will be about $14 \mathrm{cal} / \mathrm{cm}^{2} / \mathrm{hr}$.

Nearly all surfaces will absorb almost completely infrared radiation of the type radiated from objects of moderate temperature, and with respect to these rays, water is a black body. This is also the case with snow. This means that infrared radiation falling on a water or snow surface is completely absorbed in the uppermost layers in a very thin sheet some hundredths of a millimeter thick. On the other hand the same layer emits infrared radiation of the same wavelengths to the atmosphere.

The next process to consider is the loss of heat by convection. This loss is due to the difference in temperature between the water surface and the air above, but it is also modified by the wind. It is well known that a body is much more rapioly cooled when a wind is blowing than when it is calm. The figures relating to a water surface are: heat loss by convection $2.8 \mathrm{cal} / \mathrm{cm}^{2} / \mathrm{hr}$. with an air temperature of $-10^{\circ} \mathrm{C}$. and calm air, and heat loss by convection $11.5 \mathrm{cal} / \mathrm{cm}^{2} / \mathrm{hr}$. with a wind of 5 meters per second.

Another heat loss to be considered is the loss caused by evaporation. The evaporation depends first upon the dryness of the air above the water surface, or more exactly upon the vapor pressure, and secondly upon the wind. With an air temperature of $-10^{\circ} \mathrm{C}$., a vapor pressure of $3.5 \mathrm{milli-}$ bars, and calm air, the loss by evaporation from a water surface at $0^{\circ} \mathrm{C}$ 。 is $1.7 \mathrm{cal} . / \mathrm{cm} .{ }^{2} / \mathrm{hr}$., but if there is a wind of 5 meters per second it will increase to $7.7 \mathrm{cal} . / \mathrm{cm}^{2} / \mathrm{hr}$.

Adding all the heat losses and subtracting the heat gain, the net loss under the first set of meteorological conditions, i.e., air temperature $-10^{\circ} \mathrm{C}$., vapor pressure 3.5 mb ., wind velocity 0 meters/second, cloudiness 0 多, sun altitude 5°, and water temperature $0^{\circ} \mathrm{C}$., will be $14.7 \mathrm{cal} / \mathrm{cm}$? $/ \mathrm{hr}$. In the second set of meteorological conditions, i.e. air temperature $-10^{\circ} \mathrm{C}$., vapor pressure 3.5 mb . s wind velocity 5 meters/ seconds, cloudiness 100% (overcast), surn altitude 5° and water temperature $0^{\circ} \mathrm{C}$., the net loss will be $23.1 \mathrm{cal} / \mathrm{cm}^{2} / \mathrm{hr}$. These figures are equivalent to the production per hour of a sheet of ice of thickness 2.0 and 3.2 mm . respectively.

The above briefly outlined analysis forms the basis for the calculation of the actual growth of an sheet ice under conditions existing in nature. The method could be appliec dirently if the surface of the ice retained the temperature of $0^{\circ} \mathrm{C}$. and had the same physical properties as water with regard to heat exchange. The first condition is not true, however, as the surface temperature of the ice will be lower when the ice is thicker, if the air temperature is low.

The flow of heat through the sheet ica takes place In accordance with Fourier"s heat conduction oquation (1), and the heat budget equations outlined above must be solved in accordance with this equation.

C. KOLESNIKOV'S EQUATION AND ITS EVALUATION

Kolesnikov has recently (1946) derived an expression for the thickness of ice as a function of time which involves all of the meteorological factors. This was accomplished by setting up heat budget equations in volving these parameters and solving in connection with Fourieris heat conduction equation.

$$
\begin{align*}
& \Delta \xi^{2}+\left\{\frac{1.32}{P_{0}^{2}} \delta+\frac{90}{1.75 \times V_{0}^{0.656}+5.23 \times 10^{-12} T_{0}^{3}}+2 \xi_{1}\right\} \Delta \xi \\
& =\frac{9.73}{1-\frac{S_{1}}{S_{T}}+\frac{T \lambda}{80}\left(C_{2} \frac{P_{2}}{\rho_{1}}-C_{1}\right)} \int_{H_{1}}^{1+\frac{T \lambda-8}{1+\frac{C_{1}}{2 K_{1}}\left(T_{\lambda}-\theta\right)}} .
\end{align*}
$$

where $\xi_{1}=$ initial ice thickness in cm. ,
$\Delta \xi=$ increase in ice thickness in $\mathrm{cm} . s$
$S_{I}=$ salt content of the ice,
$S_{T_{\lambda}}=$ salinity of salt water sclution at temperature of freezing,
$P_{1}=$ density of ice,
$K^{1}=K+T_{\lambda}\left(C_{2} \frac{\rho_{2}}{\rho_{1}}-C_{1}\right)_{s}$
$\rho_{2}=$ density of sea water
$\delta=$ snow thickness in cm.,
$\rho_{0}=$ snow density,
$\mathbf{v}_{0}=$ wind velocity in $\mathrm{m} / \mathrm{sec}$.,
$\mathrm{T}_{0}=$ air temperature in ${ }^{\circ} \mathrm{C}$,
$\mathrm{C}_{1}=$ specific heat of sea ice,
$\mathrm{T}_{\lambda}=$ temperature of freezing in ${ }^{\circ} \mathrm{C}$.,
$\theta=$ equivalent temperature in ${ }^{\circ} \mathrm{C}$,
$\mathrm{C}_{2}=$ specific heat of sea water, and
$K=$ latent heat of crystallization of salt water ice $80\left(1-\frac{S_{1}}{S_{T_{\lambda}}}\right)$
The equivalent temperature Θ is a resultant temperature which takes into account the effects of (1) radiation, (2) convection, (3) evaporation and condensation, (4) wind velocity, (5) humidity, (6) cloud cover, and (7) insolation. It is defined by the following relation

$$
\begin{equation*}
\theta=T_{0}+\sum \frac{q}{\alpha_{c}} \tag{22a}
\end{equation*}
$$

where $\Theta=$ equivalent temperature in ${ }^{\circ} \mathrm{C}$. .
$\mathrm{T}_{\mathrm{O}}=$ air temperature in ${ }^{\circ} \mathrm{C}$.,
$\mathrm{q}=$ total heat exchange represented by the seven meteorological factors enumerated above,
$\alpha_{c}=\alpha_{n}+\alpha_{k}$,
$\propto_{n}=5.23 \times 10^{-12} \times \mathrm{T}_{0}{ }^{3}$,
$\propto_{k}=1.75 \times \mathrm{v}_{0} 0.656 \times 10^{-4}$, and
$v_{0}=$ wind velocity in $\mathrm{m} / \mathrm{sec}$.
The total heat loss g is determined as the sum of the individual
heat exchanges as follows:
radiation loss $=1.307 \times 10^{-12} \times \mathrm{T}_{0}^{4}\left(0.255+0.322 \times 10^{-.069 \mathrm{P}_{0}}\right)\left(\xi-\mathrm{c}_{0} \mathrm{n}_{0}\right)$, convection loss $=1.75 \times \mathrm{v}_{0} 0.656 \times 10^{-4}$,
evaporation-condensation $=145.4\left(e_{w}-e_{a}\right) w_{a} / 1440$,
insolation: taken from Meteorological Tables,
where
$\mathrm{P}_{\mathrm{o}}=$ vapor pressure in mbs.,
$c_{0}=$ cloud coefficient defined as follows: .86 for Nb , St, and Sc, .77 for Ac, and
. 20 for Cs.,
$n_{0}=$ cloud cover in tenths,
$e_{\mathrm{a}}=$ vapor pressure in inches,
$e_{w}=0.98 e_{a}$, and
$\mathrm{w}_{\mathrm{a}}=$ wind velocity in knots.

The combined effect of various meteorological factors on the ice thick－ ness is shown in Figure 2．Approximate average values of $\Sigma q / \alpha_{c}$ for Arctic latitudes are listed in Table I ．These values，in the form of heat gain and loss，are tabulated by months during which ice formation occurs．

TABLE I

```
Heat Gain or Loss（ \(\Sigma q / \alpha_{c}\) ） for the Arctic Regions
```

Month	Heat Loss	Heat Gain	Net Gain（t）or Loss（－）
Nov．	$-5.2{ }^{\circ} \mathrm{C}$ 。	$0.2^{\circ} \mathrm{C}$ 。	$-5.00^{\circ} \mathrm{C}$ 。
Dec。	$-5.4{ }^{\circ} \mathrm{C}$	$0.76^{\circ} \mathrm{C}$	$-5.24^{\circ} \mathrm{C}$ 。
Jan。	－5．90 ${ }^{\circ}$	$0.49^{\circ} \mathrm{C}$ 。	$-5.41^{\circ} 0^{\circ}{ }^{\prime \prime}$
Feb。	$-6.0^{\circ} \mathrm{C}$ 。	$1.85{ }^{\circ} \mathrm{C}$ ．	$-4.15{ }^{\circ} \mathrm{C}$
Mar．	$-6.5{ }^{\circ}$ 。	$5.95{ }^{\circ} \mathrm{C}$ 。	$-0.55^{\circ} \mathrm{C}$ 。
Apr．	$-6.6{ }^{\circ} \mathrm{C}$ 。	$9.60^{\circ} \mathrm{C}$ 。	$+3.00^{\circ} \mathrm{C}$ ．

By the proper choice of parameters and physical constants，the following equation for the practical determination of ice thickness in fresh water is derived：

$$
\begin{aligned}
& h_{1}^{2}+\left[1.49 \frac{\delta}{\rho_{0}^{2}}+\frac{100}{1.75 \times v_{0}^{0.656}+5.23 \times 10^{-12} \times T_{0}^{3}}+2 h_{0}\right] h_{1} \\
& \quad=12 \sum \frac{\theta}{1+0.0033 \theta}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{h}_{1} & =\text { increase in ice thickness in } \mathrm{cm} \mathrm{~m}_{\mathrm{g}} \\
\delta & =\text { snow thickness in cm, } \\
\rho_{0} & =\text { snow density, } \\
\mathrm{v}_{0} & =\text { wind velocity in knots, } \\
\mathrm{T}_{0} & =\text { air temperature in }{ }^{\circ} \mathrm{C}_{0}, \\
\mathrm{~h}_{\mathrm{O}} & =\text { initial ice thickness in } \mathrm{cm}_{0}, \text { and } \\
\theta & =\text { equivalent temperature in }{ }^{\circ} \mathrm{C}
\end{aligned}
$$

While equation（23）looks complicated and clunsy，it can be evaluated easily by substituting the given meteorological parameters into the numerator and denominator and dividing．

FIG. 2. INFLUENCE OF METEOROLOGICAL CONDITIONS ON THE FREEZING OF ICE.
D. PHYSICAL CONSTANTS USED IN NUMERICAL EVALUATION

In the practical numerical evaluation of Kolesnikov's formula (22) for a given set of meteorological conditions, the following values for the physical constants involved were used.

1. Density of Sea Ice

Utilizing the investigations of Malmgren (192\%), which indicate the independence of the ice density from the salinity, the value of the ice density was taken as $\rho_{1}=0.916$.

2. Latent Heat of Fusion

The latent heat of fusion depends upon the salt content of the ice. Malmgren's investigations give the following value fork, the latent heat of fusion:

$$
k=80\left(1-\frac{S_{1}}{S_{T_{\lambda}}}\right)
$$

where S_{1} is the salinity of the ice and S_{T} is the salinity of the sea water. The formula indicates that the value of \mathbb{K} decreases with increase in salinity and increases with increase of sea water salinity for a given salinity of ice.

3. Specific Heat of Sea Ice (C1)

The specific heat of sea lee is dependent upon the salinity. However, this dependency is well marked only for small negative temperatures, i.e., in the vicinity of $0^{\circ} \mathrm{C}$. For large negative temperatures the dependency of the specific theat upon salinity is greatly decreased. Kalmgren's observations indicate that after the initial stages of ice formation, for temperatures between -8° and $-14^{\circ} \mathrm{C}$. and for salinities of from 4 to 6%, the speciric heat varies between 0.57 and 0.88 . Therefore, by using small time intervals in the forecast, the specific heat may be considered as a constant.
4. Thermal Conductivity of Sea Ice $\left(\lambda_{1}\right)$

As between the one actually observed determination of the thermal conductivity of sea ice by Malmgren of $.0051 \mathrm{cal} / \mathrm{cm}_{2}^{2} / \mathrm{sec}$, and the value of . 0045 found by three Fussian scientists, Kolesnikov considers this latter value the more reliable.
5. Thermal Conductivity of Snow (λ_{0})

Abels' (1892) formula for the thermal conductivity of snow is used:

$$
\lambda_{0}=0.0068 \varepsilon_{0}^{2}
$$

where ρ_{0} is the density of snow.
6. Convective Heat Loss

For the coefficient of heat loss through convection, Frank's (1929) formula is used:

$$
\alpha_{k}=1.75 \times v_{0}^{0.656} \times 10^{-4}
$$

where v_{0} is the wind velocity in $\mathrm{m} / \mathrm{sec}$.
7. Density of Sea Water

For purposes of evaluating the formula, sea water density is considered as constant and equal to 1.000 throughout the whole period.
8. Specific Heat of Sea Water

As it varies but little with salinity, the specific heat of sea water $\left(C_{2}\right)$ is considered a constant and equal to 0.975.
9. Effective Radiation of a Black Surface

From Angstrom's formula for the effective radiation of a black body,

$$
R e_{0}=1.376 \times 10^{-12} \times T_{0}^{4}\left\{0.255+0.322 \times 10^{-0.069 P_{0}}\right\}
$$

where $T_{0}=$ air temperature and
$P_{0}=$ pressure of water vapor in mb.
Taking from Falkenberg (1928), the emissivity of the snow, a, as 0.995, it follows that

$$
a R e_{0}=1.307 \times 10^{-12} \times T_{0}^{4}\left\{0.255+0.322 \times 10^{-0.069 P_{0}}\right\}
$$

Therefore the heat lost through radlation is

$$
\alpha_{n}=5.23 \times 10^{-12} \times \mathrm{T}_{0}^{3} .
$$

Devik (1931) found by means of the above formula that for air temperatures between 0 and $-20^{\circ} \mathrm{C}$. and for relative humidities close to saturation, the magnitude of $\mathrm{aRe}_{\mathrm{o}}$ does not vary much. Therefore it can be taken as a constant equal to 30.6×10^{-4}.

10. Effect of Cloudiness on Radiation

This is calculated by means of the following relation:

$$
a R e=a R e_{0} \times\left(1-c_{0} n_{0}\right),
$$

where c_{0} is a coefficient taking into account the diminution
in the total radiation due to the mean cloudiness, and n_{0} is the average cloudiness in percentage. Assigned values of c_{0} are . 86 for nimbostratus, stratus and stratocumulus clouds, . 777 for altocumulus, and . 20 for cirrostratus clouds, from the study of Efimov (1939). The reflection coefficient is taken as a constant equal to 0.65 .
E. FFFEOT OF CHANGES IN METEOROLOGICAI AND OCEANOGRAPHIC PARAMETERS ON ICE THICKNESS

1. Snow Thickness

The factor having the most pronounced influence on the rate of ice growth is the blanketing effect of a layer of snow on the ice surface. A quantitative graphical evaluation of this effect is presented in Figure 3. The parameters have been given the following values:

> Initial ice thickness $\left(\xi_{1}\right)=15 \mathrm{~cm}$
> Snow density $\left(\rho_{0}\right)=0.3$
> Wind velocity $\left(v_{0}\right)=4.5 \mathrm{~m} / \mathrm{sec}$
> Air temperature $\left(T_{0}\right)=-20^{\circ} \mathrm{C}$
> Equivalent temperature $(\Theta)=-25^{\circ} \mathrm{C}$

The rate of growth of the ice for snow thickness δ of $0,10,20,30,40$, and 50 cm . is indicated. The following facts are evident from the figure:

The most rapid ice growth takes place with an lce surface free from snow. For this surface the most rapid growth takes place with the lesser ice thicknesses. Here a decreasing rate with increasing ioe thickness is evident. Upon reaching a thickness of approximately 50 cm . the rate of growth becomes essentially linear but at a much lower rate than in the initial stages. To add this 50 cm . of ice requires about 18 days with an average temperature of $-20^{\circ} \mathrm{C}$. From this point on, the rate of growth is essentially linear at the rate of about 10 cm . in 8 days.

A snow layer only 10 cm . thick makes a marked change in the characteristics of the rate of growth. To reach a thickness of 50 cm . now takes about 48 days. The ice thickness increase is essentially linear with time, requiring approximately 8 days to produce an increase of 10 cm . in thickness.

With increasing thickness of snow, the ice thickness increase remains essentially linear but with progressively decreasing slope; with 20 cm . of snow it requires about 14 deys to add a thickness of 10 cm. with 40 cm . of snow about 20 days are required to add $10 \mathrm{~cm} . ;$ and with 50 cm . of snow about 32 days are needed to add 10 cm . to the ice thickness.

FIG. 3. EFFECT OF SNOW DEPTH ON ICE GROWTH.

FIG. 4. EFFECT OF SNOW DENSITY ON ICE GROWTH

2. Snow density

The factor next in importance to snow thickness in determining ice thickness growth with time is snow density. In Figure the initial Lee thickness is $45.7 \mathrm{~cm}_{\mathrm{o}}$, the iee inerement, 22.8 cmog , snow thickness 7.6 cm . and snow density varies from 0.2 to 0.8 . Curve (1) ar Figure 4 shows the time required to add this ice thickness increaent of 22.8 cm. with varying snow density. The time diminshes rapldy ot a nonm Inear rate up to a density of 0.5 , where it becomes more nearly Inear and diminishes slowly up to the maximum density of $0.8_{\text {a }}$ In going from a denslty of 0.2 to one of 0.5 the time dininjshes 1 yorn about 35 days to 16 days to add on the ice increment of 22.8 cm . When the density changes from 0.5 to 0.8 , the time drops only abott 2 days, Erosi 16 to 14 days.

Curve (2) shows the amount of time that is added by the gnow layer alone. This curve shows that the snow contributes a much higher percentage of the total time at low snow densitios than at high densities. At low snow densities the snow layer cont xibutes about 63% or the total time while at high snow densities it contributes only about 10% of the total time.

3. Air and Equivalent Temperatures

The next meteorological factor to consider $20 \theta=T_{0}+\Sigma \% / c_{c}$ which is the sum of the air temperature and the net teraparature change due to the heat exchange at the surface of the snow or loe. The quantity $\sum 9 / \alpha_{c}$ is analyzed and derived above. Figure 5 shows the effect on a change in θ, both for ice formation in selt water (curvo 1) (equatien 22) and In fresh water (curve 2). Curve 3 indicates the chamge in thme for ice growth in fresh water due to changes in snow thiskmes. The vertical scale indicates the time in days required to add leo thickness increments of 2 centimeters.

Curve 1 indicates the nonlinear geturs of the variation of time with ice thickness for different values of snow thickness on salt water ice. The slope shows a definite increase with increasing thickness of ice. It requires approximately 35 days to add H_{4} cm. of ice under the indicated conditions with $\Theta=-10^{\circ} \mathrm{C}$, and approximately 12 days with $\Theta=-30^{\circ} \mathrm{C}$ 。 Curve 2 indicates the variation for frech water under the same conditions. It is seen that the growth of ice in fresh water rempres sllghtly less time than in salt water undor the same condithons. 3 urve 3 indicates the variation in time for ice growth in fxesh weter for ifferent snow thicknesses.

4. Initial Ice Thickness

The next parameter to consider is that of initial lee thickness (ξ_{1}). Figure 6 shows that the variation in ice thichoss growth with time is linear for constant volnes of initial ice thickness. Greater values of ice increment result from lower inithal ice thicknesses, the relative

FIG. 5. EFFECT OF EQUIVALENT TEMPERATURE AND SNOW DEPTH ON ICE GROWTH.

FIG. 6. EFFECT OF INITIAL IGE THICKNESS ON ICE GROWTH.
importance of initial ice thickness and snow cover thickness is clearly shown in Figure 7, where curve 1 indicates the pariation in time to freeze 5 cm . of ice for different initial ice thicknesses and curve 2, the time required to freeze the sare amount of ice with varying snow thicknesses.

5. Wind

Figure 8 shows the effect of wind velocities of 20,30 , and 40 miles per hour on rate of ice growth for $\Delta \xi=1 \mathrm{~cm} \mathrm{~cm}_{2}, 53 \mathrm{~cm}$ and
$\delta=10 \mathrm{~cm}$. Under these conditions a change of 10 miles per hour in wind velocity has very little effect on ice growth. However, for lower values of wind velocity the effect is marked

6. Salinity

The effect of sea water sajinity is indicated. in Figure 9 Under the conditions indicated on the figure a slightly greater ice thickness accumulates for the length of tine in fresh water than accumatates in salt water. However, the two curves do not show such difference in growth rate of ice due to the salinity.

7. Effect of the Heat of the Water Mass

None of the formulas so far considered has attempted to evaluate the effect of the heat of the water mass itself on the growth of the ice sheet. In the presence of warm currents or where the thickness of the layer subject to convectional cooling is great, the effect of the heat of the water mass is appreciable. By taking the heat of the water mass into consideration, a formula can be developed which is identical with Equation 22 with the exception of an additional term which represents the heat of the water mass.

The form of this additional term is as follows:

$$
\begin{equation*}
\frac{162 C_{2} p_{2}\left(\bar{T}_{2}-T \lambda\right) H_{m}}{k^{1} p_{1}\left[1+\frac{C_{1}}{2 k^{i}}\left(T_{\lambda}-\theta\right)\right]} \times \sum_{n=1}^{\infty} \frac{\exp \left[-A_{2}\left(\frac{\pi}{2} \times \frac{2 n-1}{H}\right)^{2} t_{1}\right]-\exp \left[-A_{2}\left(\frac{\pi}{2} \times \frac{2 n-1}{H}\right)^{2}+_{2}\right]}{(2 n-1)^{2}} \tag{24}
\end{equation*}
$$

where: $C_{2}=$ specific heat of sea water,
ρ_{2} - density of sea water,
$\bar{T}_{2}=$ average temperature of the layer in ${ }^{\circ} \mathrm{Cog}$
$T_{\lambda}=$ freezing point of sea water in ${ }^{\circ} \mathrm{C}_{\text {s }}$
$\mathrm{H}_{\mathrm{m}}=$ thickness of layer expressed in meters,
$\rho_{1}=$ density of ice,
$C_{1}=$ specific heat of ice,
$\Theta=$ equivalent temperature in ${ }^{\circ} \mathrm{C}$.,
A_{2} - turbulent heat conductivity of sea waters

FIG. 7. EFFECT OF SNOW AND ICE THUCKNESS ON LEATE OF FREEZING

$t=$ time, and

$$
K^{1}=K \div T_{\lambda}\left(C_{2} \frac{P_{2}}{P_{1}}-\dot{C}_{1}\right)
$$

From this equation, it appears that the lamger the depth to which winter vertical convection reaches, the higher the moan temperature of the layer, and the smaller the coefficient of turbulont heat conductivity, the more important this term becones. The relative efiect of the heat of the water mass is decreased by an increase in the thickness of the snow and ice layers. This effect could be foreseen intuitivelys ainco both the Lee and snow layers act as excellent insulators and conslderably decrease the flow of heat from the water mass outwards, thus keeping the latter from cooling.

Taking a resultant temperature of $-20^{\circ} \mathrm{C}$, , the freezing point of sea water (T_{λ}) as $-1.8^{\circ} \mathrm{C}$ 。, the average temperature of the layer T_{2} as $0.5^{\circ} \mathrm{C}$. and the turbulent heat conductivity of see water (A2) as 8 , the following expression results:

$$
\begin{equation*}
2.76 H_{m} \sum_{n=1}^{\infty} \frac{e^{-0.47 \times 10^{3}\left(\frac{\varepsilon}{H}\right)^{2}(2 n-1)^{2}}}{(2 n-1)^{2}} \tag{25}
\end{equation*}
$$

The evaluation of the infinite series of (25) is not particularly difficult, as it is rarely necessary to carry the computation to more than 3 or 4 terms to secure the required degree of accuracy. Carrying out the evaluation of equation (2n) by using the parametax values as in equation (25) and multiplying by $\Delta \xi^{6}$ and dividing by the right hand side of equation (22) evaluated for an air temperature of $-20^{\circ} \mathrm{C}$. yatelds the resultz shown in Figure 10, where the horizontal scale is in days of freering time added for an cir temperature of $20^{\circ} \mathrm{C}$. and the vertical scale is ice thickness in cra. Each isoline of mean water temperature indicates the freezing time added by mean temperatures ranging from -1.5° to $0.5^{\circ} \mathrm{C}$. in the water layer, which is assumed to be 100 m . thick, and the freezing point of sea water $T \lambda^{1} s$ taken as $-1.8^{\circ} \mathrm{C}$. The figure shows that the heat of the water mass adds to the freaning time least when the water temperature is lowest. At a mean temperature of $-1.5^{\circ} \mathrm{C}$. the heat of the water mass increases the time for freezing 10 cm . of ice from an initial thickness of 15 cm . by about 1.1 days, and to the time for adding a thickness of 70 cm . to an initial thickness of 15 cm . by about 7.6 days. The variation between these two points is essentially linear. At the warmest mean water temperature of $0.5^{\circ} \mathrm{C}$. , the heat of the water mass adds about 10 days for the 10 cm . addition (to the initial thickness of 15 cm .) and about 54 days for the 70 cm . increment of ice thickness. At this water temperature the vaxiation is nonlinear, showing a slower rate of tins increase at high lee thicknesses than at lower ones. Figure 11 shows the total freezing time for ice thickness increm ments varying from 10 to 70 cm. . including the time added by the heat of

FIG. 9. EFFECT OF SALINITY ON RATE OF FREEZING.

THME (DAYS)
FIG. 10. EFFECT OF HEAT OF WATER MASS ON BATE OF FREEZING.

FIG.11. effect of water temperature on the growth of ice

FIG.12. EFFECT OF THICKNESS OF RIXED LAYEM ON OROWTH OF ICE
the water layer, This figure indioates, that gt a mean water temperature of $-1.5^{2} 6$. and for an ace thichnesu increment of 70 cinn. the water mass adds only approxfrately 18% of the total tine, whlle at a mean water tomperature of $0.5^{\circ} \mathrm{C}$. the heat of the watore mase adds about 63% of the total time.

Figure 12 shows the inerease in the freezing time for 10 cm of fee Por differing initial thicknesses ranglae trom 25 to 85 cma, when the mater Iayer Ancrases in dopth from 10 to 100 motors. At an initial thiokress of 25 cm and a layer depth of 10 mog no appreciable time is added to the time noeded to fraeze 10 din . of lee when the meteorological conditions aye as indicated on the diagram。 However, when the warm layer depth is increased to 20 rim., the tima znaressas by about 0.5 day. The vardation from this point to a layer depth of 100 m . is essentially linear. At the 100 m . layer depth the the added for an initial thickness of 25 can is about 10.2 days. itle of these valwes are computed for a mean layer temperature of $0.5^{\circ} \mathrm{C}$. At the upper linit of initial ice thickness, 85 cm . the increase of freeaing time added by a layer depth of 40 meters is practically zero: at 100 -meter depth it is about 5.2 days.

F. PRACTICAL ICE THICKNESS FORECASTING

The obove analysis is mainly concernod with the development of theoretical formulas expressing ice thickness as a function of time. In order to take up the problem of the proctical predieting of ice thickness there are two main avenues of approach, (1) the graphical method, and (2) the computational method.

The graphical method consists in the utilization of a diagram showing the ice thickness as a function of time and the meteorological parameters. For this purpose the diagrams coastituting Figure 13 are suitable. In these diagrame the loe thickness ts on the vartical acale, the air temper ature on the horizontal acsle, and the wind velodity lines findicate the growh curves for varying velocities. The fighras is divided into three parts for cloud coverages of 0,50 and 100% and shows ice Erouth over a period of 14 hours. Now, for example, it it is required to know the thicknebs of ice which will result from a temperathre of $-1^{\circ} 5^{\circ}$., wind velocity of $5 \mathrm{~m} / \mathrm{sec}$, cloud cover 0 , for a period of H_{1} hours, the recputred walue taken from Figure $13 \mathrm{a} 2 \mathrm{a} \quad 6.0 \mathrm{~cm}$. If the cloud cuver had been 50% instead
 cloud cover were 100品, the thickness taken from Figure ba waid be 4.8 cm . To determane the ice thicknese for a langer period theal 14 hours it is only nocossary to know the avexago walue of the paranetexs over each 14 hour pertod and make a cumulative sua of the thickness for integral multiplios of 14 hours plus the fractional parto This diagrams, however, has a definite weakness in that it does not teke into account the snow cover or the intitial thickness of tho $1 e_{0}$ both of which are important factors in determining the rate at which 100 is fowned. This is a, weakness inherent in all diagrams of this type, because of the fact that it is impossible to include all of the important parametexs on the diagram. For this reason,

FIG.13. EFFECT OF CLOUDINESS AND WIND SPEED ON GROWTH OF ICE (FREEZING time 14 HOURS

FIG. 13a, EFFECT OF CLOUDINESS AND WIND SPEED ON GROWTH OF ICE (FREEZING TIME 14 HOURS)
then, where greater accuracy is required than is available in Figure 13a, recourse must be made to computation. This is not a difficult process, however, using equation (22). As pointed out previously, it is only necessary to evaluate first the left and then the right sides of the equation by means of the given meteorological and oceanographic factors, and then divide the left by the right side of the equation to find the time expressed in units of a 24-hour day.

That this process yields accurate results can be shown by the following examples: The observed growth of the ice at Archangel averaged over a l2-year period is shown in Figure 14 and the computed growth for the same period in the same figure. The close agreement is immediately evident. It is to be noted that the meteorological parameters used in the computation of Figure 9 are the same as the observed values and that the air temperature was $-20^{\circ} \mathrm{C}$. and the effective temperature $-25^{\circ} \mathrm{C}$.

Similarly, the observed ice thickness growth observed on the Denmark Expedition from November 1, 1906, to February 8, 1907, is shown in Figure 15 and the ice growth computed by equation 22 is shown on the same figure. Complete meteorological data including humidity, cloud cover and type of cloud, and snow density were not available from the records, but probable, reasonable values were used which resulted in good agreement with the observed ice thickness data.

More recent ice observation data is that for Padloping Island showing the observed and computed ice growth for January 1949 and January 1950. The observed ice thickness data for this station is shown in curve 1 on Figures 16 and 17. This station is located off Baffin Island, Davis Strait at about $67^{\circ} \mathrm{N}$. The weather data for this station were obtained from the Padloping Island Ice Observer's Log, and the snow and ice data from the weather summary. The computed ice growth is indicated in curve 2. The agreement betwon the observed and computed ice thickness is quite close. The weather, snow and ice data from which the computations were made are indicated on the figures.

G. EMPIRICAL FOFMULAS FOR ICE GRONTH PREDICTION

Perhaps one of the best known empirical formulas for ice accretion as it varies with time is that of Zubov (1938). It is of the form:

$$
\begin{equation*}
\xi^{2}+50 \xi=8 \Sigma T_{0} \tag{26}
\end{equation*}
$$

where $\xi=$ ice thickness and
$\mathrm{T}_{0}=$ air temperature.
This expression was obtained by the use of observed data from a particular location with particular average values of the various parameters involved.

Comparing the results obtained from the use of this equation with observed results obtained at Archangel, averaged for a 12-grear period, the

FIG.14. OBSERVED AND COMPUTED ICE GROWTH AT ARCHANGEL, U.S.S.R.

FIG.15. OBSERVED AND COMPUTED ICE GROWTH, DENMARK
EXPEOITION RECORDS, NOV. I,1906,TO FEB. 8,1907.

FIG.16. OBSERVED AND COMPUTED ICE GROWTH AT PADLOPING ISLAND, N.W.T., JANUARY 1949.

FIG.17. OBSERVED AND COMPUTED ICE GROWTH AT PADLOPING ISLAND, N.W.T., JANUARY 1950.
curves of Figure 18 were obtained. Curve i shows tho observed time required for the accretion of ice. Curve 2 shows the lee accretion computed by ovaluating Zubov's formuld with the ifist constant doternined so that the initial value of time was equal to the observed value. Cuxve 3 is the same when the constant is determined to make the final ralue the same as the final observed value. Curve 4 is found by using an everage of the two constants in curves 2 and 3. A secondmogree polynandal of the form of Zubor's equation can be determined by a siatistical analygis of the observations. An equation of this type will yield a curve with a comparam tively close fit to the observed data. Howevar, in all those cases the value of the constants depende upon the average valu of the parametere involved. Thus, this expression of Zubov's as whth other empirical relations of this form, is valid only for observations obtained under similar conditions to those for which they are derlved and is not generally applicable to 2.11 locations and all reteorological and oceanographic conditions.

Another empirical equation of this type is that of Barnes (1928), Which is of the form:

$$
\begin{equation*}
\xi^{2}+2 \xi=\frac{2 \lambda}{k^{\prime} \rho_{1}} \Delta T_{0} x+ \tag{27}
\end{equation*}
$$

where $\xi=$ ice thickness,

$$
\begin{aligned}
\lambda_{1} & =\text { conductivity of ice, } \\
K^{\prime} & =k+T_{\lambda}\left(C_{2} \frac{P_{2}}{\rho}-C_{1}\right) \\
k & =\text { Iatient heat of crystallization, } \\
T_{\lambda} & =\text { Ireering point of sea water, } \\
c_{1} & =\text { specific heat of ice, } \\
c_{2} & \text { specific heat of sea water, } \\
\rho_{1} & =\text { density of ice, } \\
\rho_{2} & =\text { density of sea water } \\
T_{0} & =\text { diference in temperature between the top and bottom of the } \\
& \text { ice, and } \\
t & \text { time }
\end{aligned}
$$

This expression evaluates theoretically the constant which Zubov secures empirically. No account, however, is taken of snow thickness, which is of paramount importance in determining the rate of aceretion of ice thickness.

FIG. 18. EMPIRICAL FORMULAE OF ZUBOV'S TYPE COMPARED WITH OBSERVED ICE GROWTH AT ARCHANGEL, U.S.S.R.
H. CONCLUSION

From the foregoing discussion it is avident that for the degree of accuracy necessary under ordinery conditions, the use of oquation(23) with a value of taken from Table I is adequate for forecasting ice thickness when there is a snow cover on the ice surface and when the loe has considerable initial thickness. With no snow cover and neglecting the initial ice thickness, the graphical method of Figure 13 furnishes an adequate solution. Only for a greater degree of accuracy is lit necessary to make an individal computation of θ taking account the particulax coefficients of radiation, convection, evaporation, condensation, humidity, and reflection.

BIBLIOGRAPHY

ABELS, G. Measurement of the snow density at Ekatorinbuxg duxing the winter of $2890-1891_{8}$ Academia Nank, Memoirs. vol. 19, 1892.

BARNES, H. T. Ice Engineoring Montreal: Renouf. 1928.
DEVIK, O. M. Thermische und Dynaische Bedingungen der Eisbildung, Wasserlaufen aug Norwegische Verhaltnisse Angewandt. Oslo, 1931.

EFIMOV, N. G. Magnitudes of the total incident radiation for certain points of the U.S.S.R., Metoorology and Hydrolozy, No. 5, 1939.

FALKENBERG, G. Absorptionskonstanten Einiger Metearologisch Wichtiger Korper fur Infrarots Wellen, Meteoralagisshe Zeftschrift, No. 334, 1928.

FRANK, H. Die Waxmeabgabe Fbener Flachen an Freaio Lupt. Gesimdh. Jnd. 52, 1929.

KOLENSNIKOV, A. G. On the theory of inc accretion on the sea surface, Problems of Marinc Hrdrological Procasts. Leningrad, 1946.

MALMGREN, F. On the Properties of seamice, The Norwegian North Polar Expedition with the MAUD, 1918-lca?, vol. l_{9} no. 5. Bergen, 1927。

WEBER, H. Differential Gloichungen. Braunschweles 1910.
STEFAN, J. Uber die Theorie der Fisbildung, Tsbesondere ubex die Eisbildung im Polameere, Akademie der Wisseanchaftens Wifens Mathematischnaturwissenschaftliche Klasse, Sitwungsberichte. Band 98, Abt. 28, 1889.

ZUBOV, N. N. Marine water and ice, Gidrometeoizdat. Moskva, 1938.

1. Ice Growth
2. Sea Ice Forecasting
3. Sealce Poiential
4. Ice - Environmenta!
Factors
5. Ice - USSR
6. Ice - Baifin Bay
7. Heat
8. Convection
i. Jifle: An Analysis
of Envirnmental
Factors Affecting
Ice Growth
ii. author: Elliot B.
Callaway
iii. H. O. TR-7

$$
\begin{array}{lll}
\text { U. S. Navy Hydrographic Office } & & \text { 1. Ice Growth } \\
\text { AN ANAL YSIS OF ENVIRONMENTAL FACTORS } & \text { 2. Sea fre Forecasting } \\
\text { AFFECTING ICE GROWTH, by Elliot B. Caliaway, } & \text { 3. Sea Ice Pofential } \\
\text { September 1954. 31p. } 19 \text { graphs. (H. O. TR-7). } & \text { 4. Ice. Environmental } \\
\text { Discusses experimental evidence of effect of } & \text { Factors } \\
\text { environmental factors on growth of fresh. and salt- } & \text { 5. lce. USSR } \\
\text { water ice. An equation relating these factors develop- } & \text { 6. Ic. . Baffin Bay } \\
\text { ed by Kolesnikov is evaluated ond the results applidd } & \text { 7. Heat } \\
\text { po forecasts in specific areas in USSR and Baffin Bay. } & \text { 8. Convection }
\end{array}
$$

$$
\begin{aligned}
& \text { U. S. Novy Hydrographic Office } \\
& \text { AN ANALYSIS OF ENVIRONMENTAL FACTORS } \\
& \text { AFFECTING ICE GROVITH, by Elliof B. Callaway, } \\
& \text { September } 1954 \text {. } 31 \mathrm{lp} \text {. i9 grophs. (H. O. TR-7). } \\
& \text { Discusses experimenial evidence of effect of } \\
& \text { environmental factors on growth of fresh. and salf- } \\
& \text { water ice. An equation relating these factors develop- } \\
& \text { ed by Kolesnikov is evaluated and the resulis applied } \\
& \text { to forecosts in specific oreos in USSR and Baffin Bay. }
\end{aligned}
$$

1. Ice Growth
2. Sea fce Forecasiing
3. Sea tce Pofential
4. Ice - Environmental
Factors
5 Ice - USSR
5. Ice- Baffin Bay
6. Heat
7. Convecion
i. sitle: An Analysis
of Environmental
Foctors Affecting
Ice Growsh
ii. author: Elliot 8.
Callaway
iii. H. O. TR-7

$$
\begin{aligned}
& \text { AFFECTING ICE GROUTH, by Eilio: B. Callaway. } \\
& \text { September 1954. } 3 \mathrm{i} p \mathrm{C} 19 \mathrm{grophs} \text { (M, O. TR-7). }
\end{aligned}
$$

environmensal factors or growith of fresti- and salt-
ader ice. An equation relating these faciors develop-
to forecasts in specitic areas in USSR and 8 affin Bay.
;otuewisainul ;o

ii. Guthor: Eliiot 3 . L-ð1 ${ }^{\circ} \mathrm{O}$ 'H '!!!

Ise Growth
Sea lco Forecosting
Sen tee Petential
 aciors

 HoatConv
title: An Andysis Ef Environmental 6u!soaytu sajan41, $\times 2$ 29 931
ii. ouitur: Eilios 3.
iii. H. O. TR-7

[^0]

[^0]: 6S!H1O د!
 Soptentu 1954.3 in. 19 graphs. (H. O. TR-7)

 Discusses experimentol きvidencz of effect of जrviranmentiol icesors on growth of irash and saltod by Kolesnikov is evaluated and the results applied to forecosis in spacific areas in USSR and Bafin Bcy.

