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ABSTRACT 

Seasonal coastal currents on a continental shelf are modeled for use 

in Search and Rescue planning. The model considers a balance of Coriolis, 

pressure gradient,and frictional forces. Input parameters are the climatological 

wind and density fields. Comparison of results to currents depicted on 

climatological atlases for the New York Bight indicates the validity of the 

approach. In this light, one might extend this approach to other geographical 

regions where analogous oceanographic conditions prevail. 
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INTRODUCTION 

An analytical model was developed to determine the coastal ''sea current" 

as given in the National Search and Rescue (SAR) Manual (CG-308). In the SAR 

Manual, "sea current'' is characterized as the ''permanent'' large scale flow that 

one might determine from available current atlases. The model specifically 

describes the steady state non-tidal coastal current in the New York Bight 

where SAR cases are numerous and atlas data inadequate. 

The momentum balance considered is steady, non-accelerated, and hydrostatic. 

Longshore pressure gradients are neglected. The Coriolis parameter, f, and 

vertical momentum exchange coefficient, A, are assumed constant. The governing 

equations resemble the formulation of Welander (1957), with his limitation of 

constant density removed by including a constant cross-shelf density gradient. 

An analytical solution to the governing equation (essentially a second 

order differential equation) is found vy applying the appropriate boundary 

conditions. These conditions include assuming that the surface wind stress is 

proportional to the surface velocity shear, and that the velocity at the bottom 

boundary vanishes. The solution is a relationship between wind stress, cross- 

shelf density gradient, sea surface slope, and velocity. A form of the contin- 

uity equation is then used to obtain the sea surface slope in terms of the wind 

stress and cross-shelf density gradient. The solution is now a single relation- 

ship between wind stress, cross-stream mean density gradient, and velocity. 



FORMATION OF THE MODEL 

Consider coastal waters in which a balance between Coriolis, pressure 

gradient, and frictional forces are of primary importance such that the steady 

linear equations of motion reduce to 

i jae lp on () 

with the boundary conditions 
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In the above equations, (n,s) are horizontal Cartesian coordinates and (u, v) 

are the corresponding velocity magnitudes. Nn is positive toward the 

shelf-break(with n=o at the 10 meters isobath) and s is positive 90° to 

the left of n. Also, 2 is the vertical coordinate positive upwards. The 

free surface, issat 242) (n,ys) sand thesbottomyat 2—-he (na es) Chileem l)emeceeana 
n 

W 

Ss 

qE are the components of the wind stress acting on the sea surface. The mean 

density, 9, is considered constant in a vertical column, but allowed to changé 

at a constant rate in the cross-shelf direction (i.e., 88 = constant.) The 
on 

pressure, p, is hydrostatic. Lateral friction and non-linear acceleration terms 

are neglected. 



Fig. Il. Coordinate system 



It is now convenient to introduce a complex notation as follows: 
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Equation (1) can now be expressed as 
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Consider the case where the wind stress and the horizontal pressure gradient 

are prescribed in equation (3). The general solution to equation (3) is thus 
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where the pressure is linear in 2 

Pele 9g = 2) 
and g is the acceleration of gravity. 



The horizontal pressure gradient is given as 
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Appendix I) 
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Surface currents are now given from (5S) as 

iG | A - Te 
= + \/ CA 0 ) Vi 

Wo Gray Ed an tanly eh 

a ‘3 de by secl, (2’ |, 
fo an 4 

5 

(5) 

(c) 



Neglecting vertical velocities and mass input at n=o 

a condition for steady non-divergent flow is given by Gauss's divergence 

thecrem in the form 
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Applying the above condition to the u-component of (5) (See Appendix I1) gives 

(i ude: 4 sinh [£2 h sin (48h 

(Be SB MYO teoP [EE h -cshlFh cos EW) 

fash: (Bp ah HF) sinha Fh 
+ Ge 95, + Op gh 2 smh 

Oi 

The previous relationship, when solved for the sea surface slope, a 
n 

leads to an estimate of cross-shelf slope given as 
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The modeled longshore (v) and cross-shelf (u) current components can 

now be computed using equations (6) and (7) with the mean seasonal wind stress 

and density field as input parameters. 



APPLICATION OF THE MODEL TO THE 4 

NEW YORK BIGHT 

The region under consideration was divided into six sections normal to 

the coast (fig. 2). Along each section the mean wind stress data given by 

Hidaka (1958) was used to compute t. Climatological density data obtained 

from the National Oceanographic Data Center (NODC), in conjunction with 

specific oceanographic cruises, were used to approximate the mean density 

gradient oe , along the various sections. 
n 

The N.O.D.C. data were obtained by 1/4 degree squares for the region in 

question at various standard depths on a monthly basis. Seasonal density 

fields were then prepared by combining three months data. A weighted average 

density was then computed for each 1/4 degree square. These weighted average 

density data were combined with vertical average density fields from specific cruises 

to produce preliminary seasonal average density fields for each season (fig. 3). 

Density gradients, 3p, were then estimated from these diagrams along each 
on 

section. Depths, h, were estimated from charts of submarine topography. These 

Tis a and h values were then substituted into the component form of equation 

(6) (Appendix III) with A=100 [gm cn-1 sec-1]., The coastal "sea current" for 

the four seasons were then computed (fig. 4). 

The results indicate that the terms which contain the t dependence dominate 

the flow pattern in the winter months (December, January, February). In the 

summer months (June, July, August) the flow is dominated by terms that contain 

ad dependence. This indicates that winter flow is basically wind driven and 
n 

summer flow density driven. In this light, modeled summer flow more closely 

paralleled isopycnals then did winter. Additionally, in accord with the 

observations of Bumpus (1965), the flow along the Long Island coast during the 

winter season shows a slight off-shore tendency. 
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Figure 2. New York Bight Section Locations. 
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Figure 3. Preliminary Mean Seasonal Average Vertical Density Field in terms of Sigma—t as 

calculated from data bank files of National Oceanographic Data Center (NODC ) 

and specific oceanographic cruises. 
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During the fall (September, October, November) and spring (March, April 

May) seasons both the t and a dependent terms contribute equally to the 

flow pattern. Computed longshore velocity components, at the shelf-break 

during all seasons, approximate 20-30 cm/sec while cross-shelf values are in the 

2-5 cm/sec range. 

A comparsion between modeled and "observed" currents for the New York 

Bight was made for the summer season. The "observed" data was taken 

from available current atlases (such as shown in Fig. 8), drift bottle observa- 

tions (Fig. 6) and lightship data. A subjective combining of these data give 

a rough general picture of seasonal coastal currents in the New York Bight. 

These data were then compared against the model with t=0 and a 3x10-10 

[gm cm-4]. These input parameters roughly represent summer con¢itions. The 

result of this comparsion were favorable in that the model approximately splits 

the "observations" for all but the shallowest of depths (Fig. 7). 
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May ( After Bumpus and Lauzier, 1965 ). 
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CONCLUSIONS 

This simple model may be expected to give results limited in applicability 

by the validity of the assumptions used. In a small area the variation of the 

Coriolis parameter is insignificant as is assumed. Also, for shallow seas the 

lateral friction will probably become negligible in comparsion with vertical 

friction (Welander, 1957). The assumption of a constant coefficient of vertical 

friction, A, is not actually realistic. A constant frictional coefficient 

simplifies the mathematical treatment and may be considered to represent the 

"effective friction". Since equation (6) indicates that the solution increases 

with depth continously, the model must be limited to a range of depth over which 

the approach is valid. This depth limitation is connected with the validity of 

the assumptions that ae constant and that the water column density may repre- 

sented by p. Consequently the model is generally applied to depths between 10 - 

100 meters. 

This steady state formulation is possibly applicable to time periods 

of less than seasonal length. Thus, the approach has the possibility of being 

extended to model currents in the New York Bight that are in equilibrium with 

the mean local wind and density fields such that the steady linear equations 

of motion are valid. 

The proposed model may be considered an initial imporvement on the present 

state of the art for near-shore SAR planning. It augments existing velocity 

data and has the advantage of allowing increased detailed representation of 

the velocity field which cannot be done with present atlas presentations. 
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Appenaix I: Tne solution to the equation of motion. ‘The equation of motion takes 
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The boundary conditions thus yield 

c ey Je. als ah 
— + Vitah 

oye feed (ass a se ie ne a 
oe (eka 

Wah 

“7 Geae gash 

Ql : KG pees dp (<2) Veal 

2 ~ ~|¥TaA "wags a eal OW 2=-he 
\ + Cc ZiT ah , 

We may now write 

ae Coy ee) ier, 
“aA Vrapt Ze fl Sa) we 

ty 
& an 2Viah 

e 

Veah Vad Tet conte 

cole oN ee Wah ; 
or Ae one 

[eel Oe 



Thus it follows that 
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Appendix II: Calculation of the sea-surface slope from the solution for W 
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The non-divergence condition may now be applied to the real component of 

the previous anes such that 
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ane expression may now be solved for the sea-surface slope, 

where 

at , in terms of the surface stress components and density 

field as 
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Appendix III: Resolving of the cross-shelf (u) and longshore (v) components from 

the complex surface solution, Wo. 
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Using these definitions we find 
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Putting in the identities we have: 
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we now have the cross-shelf (u) component and longshore 

(v) component of the surface current: 
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and 
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