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ANALYTICAL SOLUTIONS OF THE ONE-LINE MODEL 

OF SHORELINE CHANGE 

PART I: INTRODUCTION 

Background 

1. Mathematical modeling of shoreline change has proven to be a useful 

engineering technique for understanding and predicting the evolution of the 

plan shape of sandy beaches. In particular, mathematical models provide a 

concise, quantitative means of describing systematic trends in shoreline evo- 

lution commonly observed at groins, jetties, and detached breakwaters and 

produced by coastal engineering activities such as beach nourishment and sand 

mining. 

2. Qualitative and quantitative understanding of idealized shoreline 

response to the governing processes is necessary in investigations of beach 

behavior. By developing analytical or closed-form solutions originating from 

mathematical models which describe the basic physics involved to a satisfac- 

tory level of accuracy, essential features of beach response may be derived, 

isolated, and more readily comprehended than in complex approaches such as 

numerical and physical modeling. Also, with an analytical solution as a 

starting point, it is possible to estimate, rapidly and economically, charac- 

teristic quantities associated with the phenomenon, such as the time elapsed 

before bypassing of a groin occurs, percentage of volume lost from a beach 

fill, and growth of a salient (emerging tombolo) behind a detached breakwater. 

Another useful property is the capability to obtain equilibrium conditions 

from asymptotic solutions. Closed-form solutions for shoreline change can 

also be used as a teaching aid. However, the complexity of beach change 

implies that results obtained from a model should be interpreted with care and 

with awareness of the underlying assumptions. Closed-form mathematical models 

cannot be expected to provide quantitatively accurate solutions to problems 

involving complex boundary conditions and wave inputs. In engineering design, 

a numerical model of shoreline evolution would be more appropriate. 

3. The equations describing shoreline evolution fast become excessively 

complicated to permit analytical treatment if too many phenomena are described 



in one formulation. Therefore, to obtain a closed-form solution to shoreline 

change, a simple mathematical formulation has to be used, but one which still 

preserves the important mechanisms involved. The one-line (denoting the 

shoreline) theory was introduced by Pelnard-Considere (1956), and it has been 

demonstrated to be adequate in this respect. Considerable numerical modeling 

of long-term shoreline evolution (time-scale on the order of years) has been 

done on the basis of this work. However, not many analytical approaches have 

been published, probably because of their limited applicability for describing 

the finer details of shoreline change. Contributors in this field include 

Bakker and Edelman (1965), Bakker (1969), Bakker, Klein-Breteler, and Roos 

(1971), Bakker (1970), Grijm (1961, 1965), Le Méhauté and Brebner (1961), 

Le Méhauté and Soldate (1977, 1978, 1979), and Walton and Chiu (1979). 

One-Line Theory 

4. The aim of the one-line theory is to describe long-term variations 

in shoreline position. Short-term variations (e.g., changes caused by storms 

or by rip currents) are regarded as negligible perturbations superimposed on 

the main trend of shoreline evolution. In the one-line theory, the beach pro- 

file is assumed to maintain an equilibrium shape, implying that all bottom 

contours are parallel. Consequently, under this assumption it is sufficient 

to consider the movement of one line in studying the shoreline change, and 

that line is conveniently taken to be the shoreline, which is easily observed 

(Figure 1). 

5. In the model, longshore sand transport is assumed to occur uniformly 

over the whole beach profile down to a certain critical depth D called the 

depth of closure. No sand is presumed to move alongshore in the region sea- 

ward of this depth. If the beach profile moves only parallel to itself 

(maintaining its shape), a change in shoreline position Ay at a certain 

point is related to the change in cross-sectional area AA at the same 

point according to Equation 1: 

AA = AyD (1) 



where 

> 3S fl 
; . 2 

change in cross-sectional beach area (m ) 

Ay = change in shoreline position (m) 

oO Il maximum depth for sand motion (depth of closure) (m) 

6. The principle of mass conservation must apply to the system at all 

times. By considering a control volume of sand and formulating a mass balance 

during an infinitesimal interval of time, the following differential equation 

is obtained (see Figure 1): 

s+ St =0 (2) 

where 

Q = longshore sand transport rate Gio yieee) 

= cross-sectional area of the beach Ge) 

x = space coordinate along the axis parallel to the trend of the 

shoreline (m) 

t = time (sec) 

Weak A 
Q (egal ce uae 

Figure 1. Schematic illustration of a hypothetical equilibrium 

beach profile 

7. Equation 2 states that the longshore variation in the sand transport 

rate is balanced by changes in the shoreline position. If, in addition to 

longshore transport, a line source or sink of sand at the shoreline is con- 

sidered, Equation 2 takes the following form: 



eee il Para (3) 

where q denotes the source or sink of sand per unit length of beach 

ae m2) 6 The minus sign denotes a sink (loss of sand), and the plus sign 

denotes a source. 

8. In order to solve Equation 2, it is necessary to specify an expres- 

sion for the longshore sand transport rate. Longshore sand transport on an 

open coast is believed to bear a close relation to the longshore current which 

is generated by waves obliquely incident to the shoreline. A general expres- 

sion for the longshore transport rate is 

Q= Q, sin 20, (4) 

where 

OF = amplitude of longshore sand transport rate (Paes) 

Cae angle between breaking wave crests and shoreline 

In the generally accepted formula for longshore current, the speed of the cur- 

rent is proportional to sin 204, (Longuet-Higgins 1970a,b). 

9. The angle between the breaking wave crests and the shoreline 

(Figure 2) may be expressed as 

= Es oy on a arc tan (2) (5) 

in which 

a e angle of breaking wave crests relative to an axis set parallel 

to the trend of the shoreline 

dy/dx = local shoreline orientation 

10. A wide range of expressions exists for the amplitude of the long- 

shore sand transport rate, mainly based on empirical results. For example, 

the Shore Protection Manual (SPM) (1984) gives the following equation: 

= 28 42 ee 
eS 16 EoD C8, (0. - p)rA Me) 



where 

o = density of water (kg/m) 

g = acceleration of gravity (aeece) 

H = significant breaking wave height (m) 

Cg, = wave group velocity at breaking point (m/sec) 

K = nondimensional empirical constant 

0. = density of sand (keyme) 
s 
\ = porosity of sand 

xX 

Figure 2. Definition sketch for geometric properties at a 

specific location as related to shoreline change 

11. If Equation 5 is substituted into Equation 4, the sand transport 

rate can be written: 

= if _— ax) Q Qe sin a arc tan (3 (7) 

12. For beaches with mild slopes, it can safely be assumed that the 

breaking wave angle relative to the shoreline and the shoreline orientation 

are small. The consequences and validity of this assumption, which linearizes 

Equation 7, are discussed further in this report. Under the assumption of 

small angles, to first order in a Taylor series, 

10 



AS =o DY 
Ove a, (22, 2 ox (8) 

13. If the amplitude of the longshore sand transport rate and the inci- 

dent breaking wave angle are constant (independent of x and t) the follow- 

ing equation may be derived from Equations 1, 2, and 8: 

2 
LOnyaPS OY 
SINE (9) 

ox 

where 

2Q 
6 = = (10) 

14. Equation 9 is formally identical to the one-dimensional equation 

describing conduction of heat in solids or the diffusion equation. Thus, many 

analytical solutions can be found by applying the proper analogies between 

initial and boundary conditions for shoreline evolution and the processes of 

heat conduction and diffusion. The coefficient e , having the dimensions of 

length squared over time, is interpreted as a diffusion coefficient expressing 

the time scale of shoreline change following a disturbance (wave action). A 

high amplitude of the longshore sand transport rate produces a rapid shoreline 

response to achieve a new state of equilibrium with the incident waves. Fur- 

thermore, a larger depth of closure indicates that a larger part of the beach 

profile participates in the sand movement, leading to a slower shoreline 

response. 

15. If the amplitude of the longshore sand transport rate is a function 

of x , the governing differential equation for the shoreline position will 

take a different form: 

Ooh Gs Oy — oy 
Elmaneteae Gee eos as + (il) 

where it is assumed that the depth of closure is constant. Equation 11 makes 

it possible, in a simplified way, to account for diffraction behind a groin, 

where the wave height varies with distance alongshore. However, the 

11 



expression describing the variation in oh in a diffraction zone must be 

simple enough to allow an analytical solution. Otherwise, a numerical 

solution technique must be employed (Kraus and Harikai 1983, Kraus 1983, and 

Hanson and Kraus 1986). If the incident breaking wave angle OL, is also a 

function of the distance x , another term, eda, /dx » must be added to the 

right side of Equation ll. 

16. In summary, the assumptions which comprise the one-line model, in 

which breaking waves are the dominant sand-moving process, are as follows: 

a. The beach profile moves parallel to itself (assumption of 

equilibrium of the beach profile). 

b. Longshore sand transport takes place uniformly over the beach 

profile down to a depth D (depth of closure). 

Details of the nearshore circulation are neglected. 

| [0 The longshore sand transport rate is proportional to the angle 

of incidence of breaking wave crests to the shoreline. 

17. In addition, the following assumptions will be used to derive 

analytical (closed-form) solutions of the one-line model (Equation 9): 

a. The angle between the breaking wave crests and the shoreline is 

small (small-angle approximation). 

b. The angle of the shoreline with respect to the x-axis is small. 

18. In arriving at all solutions, it is tacitly assumed that sand is 

always available for transport unless explicitly restricted by boundary and/or 

initial conditions. 

Overview of Previous Analytical Work 

19. Pelnard-Considére (1956) was the first to employ mathematical 

modeling as a method of describing shoreline evolution. He introduced the 

one-line theory and verified its applicability with laboratory experiments. 

Figure 3 shows a comparison between experimental results and the analytical 

solution for the case of an updrift groin, as obtained by Pelnard-Considére. 

Pelnard-Considére derived analytical solutions of Equation 9, the linearized 

shoreline change equation, for three different boundary conditions: shoreline 

evolution updrift of a groin (with and without bypassing) and release of an 

instantaneous plane source of sand on the beach. 

20. Grijm (1961) studied delta formation from rivers discharging sand. 

In the transport equation discussed in his article, the sand transport rate 

72 



Initial Shoreline 

SCALE LEGEND 

Physical model 
(0) Im 
[MA ED es ——-—— Analytical model 

Figure 3. Comparison between experimental and theoretical shoreline 

evolution (after Pelnard-Considére 1956) 

is set to be proportional to twice the incident breaking wave angle to the 

shoreline. Only solutions which were similar in shape during the course of 

time are discussed. Two different analytical solutions are presented: one 

for which the incident breaking wave angle and the shoreline orientation angle 

are small and one for which the wave angle is small in comparison with the 

shoreline orientation. The governing equations (sand transport and mass con- 

servation) are expressed in polar coordinates and solved numerically. Grijm 

(1965) further develops this technique and presents a wide range of delta for- 

mations. Komar (1973) also presents numerically obtained solutions of delta 

growth under highly simplified conditions. 

21. Le Méhauté and Brebner (1961) discuss solutions for shoreline 

change at groins, with and without bypassing of sand, and the effect of sudden 

dumping of material at a given point. Most of the solutions were previously 

derived by Pelnard-Considére (1956), but they are more thoroughly presented in 

Le Méhauté and Brebner's work, especially regarding geometric aspects of the 

shoreline change. The decay of an undulating shoreline and the equilibrium 

shape of the shoreline between two headlands are treated. 

22. Bakker and Edelman (1965) modify the longshore sand transport rate 

equation to allow for an analytical treatment without linearization. The sand 

transport rate is divided into two different cases: 

13 



Q= Qk tan a (Sesh Ch S528! (12) 

Qn 0 cannon 1.23 < tan a, (13) 

where K, and Ky are constants. From these equations as a starting point, 

the growth of river deltas was studied. 

23. Bakker (1969) extends the one-line theory to include two lines to 

describe beach planform change. The beach profile is divided into two parts, 

one relating to shoreline movement and one to movement of an offshore contour 

(see Figure 4). The two-line theory provides a better description of sand 

Figure 4. Definition sketch for the two- 

line theory (after Bakker 1968) 

movement downdrift of a long groin since it describes representative changes 

in the contours seaward of the groin head. Near structures such as groins, 

offshore contours may have a different shape from the shoreline. The two 

lines in the model are represented by a system of two differential equations 

which are coupled through a term describing cross-shore transport. According 

to Bakker (1969), the cross-shore transport rate depends on the steepness of 

the beach profile; a steep profile implies offshore sand transport; and gently 

sloping profile implies onshore sand transport. Analytical solutions of the 

two-line theory are not included in the present report. However, an example 

of a two-line theory solution for a groin system is shown in Figure 5. The 

solution describes the stationary form of the shoreline for various groin 

spacings given in multiples of a nondimensional groin length Lo 5 

24. The two-line theory is further developed in Bakker, Klein-Breteler, 

and Roos (1971) in which diffraction behind a groin is treated. In this case, 

it became necessary to numerically solve the governing equations. Expressions 

for the coastal constant (diffusion coefficient €) for the one- and two-line 
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Figure 5. Two-line theory solution for a groin system 

(after Bakker 1968) 

theories are also presented. Bakker (1970) developed a phenomenological dif- 

fraction routine for one-line theory but numerically solved the problem. 

25. Le Mehauté and Soldate (1977) present a brief literature survey on 

the subject of mathematical modeling of shoreline evolution. Analytical solu- 

tions of the linearized shoreline change equation are discussed together with 

the spread of a rectangular beach fill. In Le Méhauté and Soldate (1978, 

1979) a numerical model is derived which includes variation in sea level, wave 

refraction and diffraction, rip currents, and the effects of coastal struc- 

tures in connection with long-term shoreline evolution. 

26. Until recently, the most complete summary of analytical solutions 

to the sand transport equation has been made by Walton and Chiu (1979). Two 

derivations of the linearized shoreline change equation are presented together 

with another approach resulting in a nonlinear model. The difference between 

the two approaches, which both arrive at the diffusion equation, is that one 

uses the Coastal Engineering Research Center (CERC) formula (SPM 1984, Chap- 

ter 4) for describing the longshore sand transport rate by wave action and the 
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other a formula derived by Dean (1973) based on the assumption that the major 

sand transport occurs as suspended load. Most analytical solutions then 

appearing in the literature were presented by Walton and Chiu (1979). Addi- 

tional solutions mainly concern beach nourishment in connection with various 

shoreline shapes. The new solutions derived by Walton and Chiu (1979) treat 

beach fill in a triangular shape, a rectangular gap in a beach, and a semi- 

infinite rectangular fill. Some data on the coastal constant are also pre- 

sented in the paper. 

27. Analytical solutions can be used conveniently to describe the be- 

havior of beach fill, as mentioned above. Dean (1984) gives a brief survey of 

some solutions applicable to beach nourishment calculations, especially in the 

form of characteristic quantities describing loss percentages. One solution 

describes the shoreline change between two groins initially filled with sand. 

The resultant shoreline evolution with time is shown in Figure 6. 

Figure 6. Shoreline evolution between two groins initially filled 

with sand (after Dean 1984) 

General Approach in the Present Work 

28. The simplified or linearized shoreline change equation (Equation 9) 

is a linear partial differential equation which is identical to the equation 

describing one-dimensional conduction of heat in a solid or to the diffusion 

equation. By specifying boundary and initial conditions in these areas which 

represent conditions prevailing in a specific shoreline evolution situation, 

the corresponding analytical solutions are directly applicable. Carslaw and 
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Jaeger provide many solutions of the heat conduction equation, and Crank 

(1975) gives solutions to the diffusion equation. 

29. The following paragraphs present a review of previously obtained 

solutions together with new solutions. The new solutions have been derived 

either from analogies with heat conduction or through the Laplace transform 

technique, a short outline for which is given in Appendix A. Carslaw and 

Jaeger (1959) provide a more comprehensive treatment. In order to present the 

solutions in an efficient and general format dimensionless variables have been 

used to a large extent although physical understanding may be obscured by the 

absence of dimensional quantities. Also, in many cases for which the solution 

is symmetric with respect to a coordinate axis, the solution for only one side 

of the symmetry line is displayed. The solutions have been divided into two 

groups based on the physical properties of the initial and boundary condi- 

tions, not on their mathematical properties, because the object of the report 

is to present solutions and not to describe details of their derivation. The 

first group of solutions describes shoreline change situations without coastal 

structures. Solutions describing shoreline evolution in these cases are 

applicable both to natural and artificial beach forms (nourished beaches) if 

similar types of wave conditions prevail. Also, several solutions describing 

river delta growth are presented covering the cases of a river discharging 

sand as a point source and a river mouth of finite length. 

30. The other group of solutions comprises configurations involving 

various types of coastal structures such as groins, jetties, detached break- 

waters, and seawalls. Since the equations quickly become complicated, the 

influence of coastal structures on shoreline evolution has to be idealized to 

a considerable extent. However, the essential features of the situation may 

still be preserved if this idealization is carried out in a physically reason- 

able manner. Some simple models to account for diffraction downdrift of a 

groin are shown also. 

31. Most of the analytical solutions are presented in the main text 

without derivation. Reference is made to the appropriate literature in case 

the reader is interested in deriving the solutions. Also, in Appendixes B-G, 

derivations are given for selected new solutions. 
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PART II: SOLUTIONS FOR SHORELINE EVOLUTION WITHOUT 

COASTAL STRUCTURES 

General Formal Solution 

32. The basic differential equation to solve is Equation 9, together 

with the associated initial and boundary conditions. An infinitely long beach 

is assumed to be exposed to waves of constant height and period with wave 

crests parallel to the x-axis (parallel to the trend of the shoreline). The 

shoreline will adjust to reach an equilibrium state in which the longshore 

sand transport rate is equal at every point along the shoreline. Since the 

wave crests are parallel to the x-axis, the equilibrium sand transport rate is 

zero. An initially straight beach is thus the stable shoreline form in this 

case. If the shoreline shape at time t = 0 is described by a function 

f(x) , the solution of Equation 9 is given by the following integral (Carslaw 

and Jaeger 1959, p. 53): 

co 

2 

wee) o fro ep a ee Siac (14) 
—oo 

ie) a] iu) ct 

imope ie Sy 0) eynal =e < Ke K EG 

The shoreline position is denoted by y and is a function of x and t 

The quantity & is a dummy integration variable. Consequently, the change in 

both natural and manipulated beach forms can be determined if Equation 14 is 

evaluated. Equation 14 may be interpreted as a superposition of an infinite 

number of plane sources instantaneously released at t = 0. The source 

located at point ¢€ contributes an amount f(é)dé to the system. Infinitely 

far away from such a single source no effect on the shoreline position is 

assumed (boundary condition). Equation 14 is used to derive most of the solu- 

tions dealing with various shoreline configurations in the following text. 
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Finite Rectangular Beach Fill 

33. The solution to this problem in connection with shoreline change is 

first mentioned by Le Méhauté and Soldate (1977). At time t = 0 , the shore- 

line has a rectangular shape of finite length 2a described by Equation 15 

(see Figure 7): 

Vig |x| <a 

ACA) S tC) (15) 

0 |x| >a 

The solution is 

y(x,t) = 5 y_lerf le = ,) i eye | GE *) (16) 
g 2vet 2vet 
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0.4 

SHORELINE POSITION (y/y,) 
0.2 

i) 0.5 1 1.5 2 
ALONGSHORE DISTANCE (x/a) 

Figure 7. Shoreline evolution of an initially rectangular beach 

fill exposed to waves arriving normal to shore 
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The symbol erf denotes the error function which is defined as 

y, 2 
erf z = ae dé (17) 

vn 0 

The error function is tabulated in standard mathematical reference books 

(e.g., Abramowitz and Stegun 1965). It is convenient to introduce the fol- 

lowing dimensionless quantities: 

VW y' = (18) 

Yo 

We eget x = (19) 

0 = Se t' = 5 (20) 

al 

The quantity used to normalize the time variable expresses half the time 

elapsed before a square beach fill of length a would completely erode at the 

constant transport rate OF . If the solution is expressed in dimensionless 

quantities, the resultant shoreline evolution can be displayed in compact 

form. Figure 7 illustrates how a rectangular fill spreads or diminishes with 

time according to Equation 16. It should be noted that the vertical scale of 

this and the following figures has been distorted for the sake of clarity. 

34. Dean (1984) discusses how the sand from two different beach nour- 

ishment projects spreads with time. The time for a certain percentage ie 
12 

P to be lost from the original rectangular beach fill is compared with the 

corresponding time toy for different conditions: 

a 2 € 
2 1 

tae Sat —} — (21) 
P2 Pl (2) Ey 

35. This formula is obtained by noting that the same percentage of 

beach volume is lost during the same dimensionless time. Consequently, a 
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rectangular beach fill which is twice as long maintains its volume four times 

as long if exposed to the same wave conditions. It is possible to calculate 

the time it will take for a certain percentage P to be lost from the initial 

rectangular fill. The following expression is obtained by integrating Equa- 

tion 16 and comparing the resulting volume at a specific time to the original 

fill volume: 

p= ver (ee - ierfc | (22) 

VT ve" 

where ierfc denotes the integral of the complementary error function erfc 

ierfc z = f ext E dé (23) 

erfc z= 1-erf z (24) 

Figure 8 shows the percentage of sand volume lost as a function of time. 

36. It is possible to determine the rate of sand to be supplied to the 

fill in order to maintain the original shape. The boundary condition for this 

case is that the end of the rectangular fill is kept at the initial position: 

y(0,t) = y (25) 

Note in this case that the x-axis originates from the corner of the fill 

instead of from the middle of the fill as in Equation 16. The solution de- 

scribing the resultant shoreline evolution is (Carslaw and Jaeger 1959, 

p. 60): 

y(x,t) = y_ erfe x ) (26) 
S = 

for t >0O and x20 
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Figure 8. Percentage of sand volume lost from a rectangular 

fill as a function of dimensionless time 

Sand has to be added to the corner of the fill at the following rate: 

Q (27) 

The spread of the moving shoreline front (Equation 26) is illustrated in 

Figure 9. 

37. It is advisable to use the analytical expressions describing shore- 

line evolution for a rectangular fill with great care, even for rough estima- 

tions, because the linearization procedure (Equation 8) is based on small 

shoreline orientation angles, a condition which is violated on the sides of 

the rectangle. In fact, the linearized transport equation implies an infi- 

nitely large initial sand transport rate at the edges of the fill. However, 

the original transport equation (Equation 7) gives a zero transport rate at 

the corners; thus, a rectangular beach form is stable to parallel incident 

waves. In reality, sand transport occurs at the corners because of 
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1 

ALONGSHORE DISTANCE (x/y,) 

Figure 9. Shoreline evolution when sand is supplied at x = 0 

to maintain a specific beach width yA 

diffraction and refraction, but this realistic situation is not described by 

the linearized equation. Consequently, the linearization procedure artifi- 

cially increases the erosion of the fill, implying that the analytical solu- 

tion overestimates the speed of erosion. The error is, therefore, on the con- 

servative side. This problem is only an apparent one since it is a practical 

impossibility to create a perfectly rectangular fill in the field. 

Semi-Infinite Rectangular Beach Fill 

38. The initial conditions for a semi-infinite rectangular beach fill 

are 

y(x,0) = (28) 

Walton and Chiu (1979) give the following solution: 
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ie | 
y(x,t) = 5 y, exfe ( x ) (29) 

Qvet 

iene ie S> (0) ehoval Gd & se SCD 

The solution is antisymmetric about the y-axis, taking the constant value 

y,/2 at x =0 . If the shape of the shoreline for x 2 0 is approximated 

by a triangle having height y,/2 so as to conserve mass, the speed of prop- 

agation of the triangle's front is inversely proportional to the square root 

of elapsed time. This relationship is also valid for Equation 26. Figure 10 

illustrates the solution of Equation 29. The right side of Equation 29 for 

x > 0 equals half the solution of Equation 26. 

0.6 

SHORELINE POSITION (y/y,) 
0.2 

-2 -1 1 2 Lt} 

ALONGSHORE DISTANCE (x/y,) 

Figure 10. Shoreline evolution of an initially semi-infinite 

rectangular beach 

Rectangular Cut in a Beach 

39. The initial conditions for rectangular cut in a beach are formu- 

lated as 
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y(x,0) = (30) 

These conditions may represent an excavation or a natural embayment of rec- 

tangular shape. Walton and Chiu (1979) present the following solution: 

y(x,t) = 5 y,|erfe 2 = + erfc (=) (31) 
QVet Wet 

OG ts 0 land) =o < 5x lo 

This: solution may be obtained by superimposing Equation 16 with a negative 

sign on a beach of width sae In general, with due regard to the boundary 

and initial conditions, it is possible to derive new solutions simply by 

superimposing existing solutions since the governing differential equation 

(Equation 9) is linear. Equation 31 is symmetric with respect to the y-axis, 

and only half of the solution region is illustrated in Figure 11. 

0.8 

0.6 

0.4 

SHORELINE POSITION (y/y,) 
0.2 
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ALONGSHORE DISTANCE (x/a) 

Figure 11. Shoreline evolution of a rectangular cut in an 

infinite beach of width Ve 
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40. Since the present situation is the inverse problem of the rectangu- 

lar beach fill, Figure 8 can be used to evaluate the rate of infilling of a 

certain volumetric percentage of sand. 

Triangular-Shaped Beach 

41. The triangular-shaped solution is also mentioned by Walton and Chiu 

(1979). The original beach has the shape of a triangle according to the 

initial conditions as follows: 

a-x 
ye ( = ) O<x<a 

atx 
y(x,0) = ye ( = ) Al @ 5 < (0) (32) 

0 es] = & 

In this case the solution takes the following form: 

Yo a= xX ap > x 
WIESE) = OF (a - x) aati "55 (a + x) erf Ce - 2x erf — 

2vet Qet 2Qvet 

et #2) fast =n) fA t x Magt +2,/£-Je +e SF es DE (33) 
T 

toe (© s @ ema a5 <2 o 

A nondimensional illustration of the shoreline evolution from an initially 

triangular beach is shown in Figure 12. 

42. Depending upon the height-to-width ratio of the triangle, lineari- 

zation of the transport equation may reduce accuracy of the analytical solu- 

tion. However, even though the assumptions forming the basis for the lineari- 

zation procedure appear to be extremely limiting (particularly in requiring 

small wave angles), in practice the analytical solution is found to be appli- 

cable for angles as large as about 45 deg between the shoreline and the break-— 

ing waves. In order to estimate the effect of the linearization, a comparison 
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Figure 12. Shoreline evolution of an initially triangular beach 

was made between the analytical solution and a numerical solution with the 

original sand transport equation (Equation 7). Figure 13 shows the result as 

a function of the height-to-width ratio and elapsed time. 

43. It is quite clear that the analytical solution produces a higher 

rate of shoreline change by overestimating the longshore sand transport rate 

(since a> sina). Thus, if the analytical solution is used to estimate the 

time scale involved in beach nourishment problems, a higher rate of attenua- 

tion of the fill will always be obtained than is expected to actually occur. 

Trapezoidal-Shaped Beach 

44, A trapezoidal beach form is described by the following initial 

conditions: 

Voy 7 Yl YO) Ee? 
a se 3 Sp SAS x) Xa Xo 

oy) i 2 1 
y(x,0) = (34) 

0 x <X) > X > Xy 
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Here yy and y, denote shoreline positions corresponding to the longshore 

locations xy and Xo - The solution is 

d (= = =) et (9) Jeet ~(ep%)// +e ae 

oie je = 0) final DK KR KO, 

Analytical Soln: 

Numerical Solns —-—-——————————- 

2et t’ a2 

SHORELINE POSITION (y/y,) 
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Figure 13. Comparison between analytical solution with the 

linearized transport equation and numerical solution with 

the original transport equation for a triangular beach fill 

(for height-to-width ratios 1.0 and 0.5) 

The solution for the triangular beach form (Equation 33) can be obtained by 

superimposing two trapezoidal beach shapes which reduce to triangles. In the 

same way, in principle, the analytical solution for any arbitrary shoreline 

shape may be obtained by approximating the shoreline with a series of straight 

lines. Even though the sand transport at each boundary of the trapezoids in 
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such a case is overestimated (because of the large incident wave angle) super- 

imposition of the solutions eliminates these effects. In Figure 14 the solu- 

tion for a single trapezoidal beach form is shown. A representative length L 

has been chosen to normalize the shoreline position and the alongshore 

distance. 

SHORELINE POSITION (y/L) 

i 1.5 2 2.5 3 

ALONGSHORE DISTANCE (x/L) 

Figure 14. Shoreline evolution of an initially trapezoidal 

beach form 

0 0.5 

45. If an arbitrary-shaped shoreline is studied, it is most convenient 

to approximate it with a series of straight lines and then to superimpose the 

respective solutions. Consider a shoreline (see Figure 15) divided into N 

reaches, with each length described by a straight line connecting two 

neighboring points denoted by (x, ; y,) and (X54) ; Ya+p) for a certain 

reach (the fee reach). 
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x; Xi+] 

Figure 15. Shoreline of arbitrary shape approximated by N 

straight lines 

46. The shoreline position can be written, accordingly: 

7 ay ox Ge 

for t >0O and -~ <x<o, 

Semicircular-Shaped Beach 

47. In order to find an analytical solution for a beach formed in a 

half circle between -a < x < a , the circle is approximated by a polygon with 

a finite number of corners (Figure 16). 

48. The solution can be obtained using Equation 36 with proper expres- 

sions for the line segments. The following quantities are defined: 

xt = a cos [Ss22] (37) 

= = a cos (= =| (38) 



Lig F in 
yaa a sin (5 = ) (39) 

tan aieal 

The integer N is the number of corners in the polygon approximating the 

semicircle. For example, if N = 3 then a triangular beach form is obtained. 

The solution can be written with the previously defined quantities: 

N-1 R L 
x, -x Ke =) x 

y (x,t) -5 ») (Kx) + yy - Kx) erf NI (ee erfilo= 

fea 2vet 2vet 

2 2 
R I 

A -(«$-) 4et (x=) 4et 

BO. y= e =we (41) 

FOI {2 sv@) => eon ce co ¢ 

Figure 16. Semicircular-shaped beach approximated by a polygon 
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In the limit N+” the polygon coincides with a semicircle. The solution 

(N = 101) is illustrated in Figure 17 which shows the shoreline evolution as a 

function of time for an initially semicircular-shaped beach. 

t!=0 

SHORELINE POSITION (y/a) 

0 0.5 1 1.5 2 

ALONGSHORE DISTANCE (x/a) 

Figure 17. Shoreline evolution of an initially semicircular 

beach 

49. If the beach is formed as a circular segment, the solution may be 

derived by superimposing Equation 41 with the appropriate summation limits and 

Equation 16 with reversed sign. In Figure 18 a definition sketch is shown. 

If the pitch height is denoted by p , then the width of the circle segment 

becomes 2¥p(2a — p) . Furthermore, the height of the rectangular fill is 

a- p., and the angle a (see Figure 18) is arc sin (1 - p/a) . Conse- 

quently, the summation of the solutions for the polygon stretches should start 

at angle a in the semicircle and end at angle t - a. The solution is 

32 



N-n-1 R by 
x, - x x, - x 

y(x,t) = ; > yy + K,(xi - ) erf Be erf el ae 

F 2vet 2vet 
i=mt+1 

2 2 

[ex (xf )/set -(x{- \/vee 
+ 2k, — |e -e 

i T 

Y¥p(2a =p) = :) “dare ae =0p) at =) (42) 

Qvet 

1 
- = (a - p)]| erf 

2 ( ovet 

for t >0QO and -- <x<o, 

Figure 18. Definition sketch for a circular segment-shaped beach 

The quantity N is, as before, the number of corners in the polygon, and m 

represents the number of corners minus one contained in the angle a. Fig- 

ure 19 illustrates the transformation of an initially circular segment-shaped 

shoreline. 

50. Since the tangent of the shoreline orientation (see Equation 5) is 

infinite at the corners of the semicircle (x = +a), the condition of small 
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Figure 19. Shoreline evolution of an initially circular 

segment-shaped beach (a = 45 deg) 

angles is violated. This condition implies, as previously discussed, that the 

sand transport is overestimated, leading to a faster dispersion process of the 

shoreline toward the stable condition (a beach parallel to the wave crests). 

An analytical solution for a circular segment-shaped beach, however, will show 

better agreement with the numerical solution of the original sand transport 

formula if the angle of shoreline orientation is small at the edges. A com- 

parison between an analytical and a numerical solution for a circular segment 

beach is illustrated in Figure 20. In this case the linearization approxi- 

mates the transport equation well; thus, the solution is accurate. 

Semicircular Cut in a Beach 

51. The situation of a semicircular cut in a beach is the antisymmetric 

analog of the case described in the previous section. A solution is obtained 

by superimposing Equation 41 with opposite sign for a beach of width a. The 

solution is displayed in Figure 21. 
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Figure 20. Comparison between analytical and numerical solu- 
tions for the case of a circular segment-shaped beach 
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Figure 21. Shoreline evolution of an initially semicircular cut 

in a beach 
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52. In the same way, shoreline evolution of a bay formed in a circular 

segment may be calculated. Equation 42 is superimposed with opposite sign on 

a beach of width p (pitch height). Figure 22 shows the solution. 

0.3 
t'=0 

SHORELINE POSITION (y/a) 

0.0 
0 0.5 1 1.5 2 

ALONGSHORE DISTANCE (x/a) 

Figure 22. Shoreline evolution of an initially circular 

segment cut in a beach (a = 45 deg) 

Rhythmic Beach 

53. A beach with a rhythmic shoreline in the form of a cosine wave at- 

tenuates with time but maintains its rhythmic character. The initial condi- 

tion is 

y(x,0) = A cos ox (43) 

where A represents the amplitude of the rhythmic form such as cusps along 

the beach, and o denotes the wave number of the shoreline oscillation or 

cusp. The quantity o can be expressed also as 21/L , where L is the 

beach cusp wave length. The solution to this case is found to be 
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y(x,t) = A cos ox en. Be (44) 

toe {6 S 0) Ehowel ays se 6 GG 

Le Mehauté and Brebner (1961) and Bakker (1969) give this solution. A non- 

dimensional diagram of the shoreline evolution of an initially cosine-shaped 

beach is shown in Figure 23. 
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Figure 23. Shoreline evolution of an initially cosine-shaped 

beach (a distance of one beach cusp height added to the 

shoreline position) 

Sand Discharge from a River Acting as a Point Source 

54. If a river mouth is small in comparison to the area into which it 

is discharging sand, the discharge may be approximated by a point source. The 

sand discharge from the river or the strength of the point source is denoted 

as and is a function of time. (The units of dp are at Jace.) A solu- q R 
tion may be obtained by considering the continuous sand discharge from the 

river to be the sum of discretely released quantities of sand at consecutive 
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times. If a certain volume of sand V is instantaneously released at a point 

> at time cs » the solution can be written 
S 

2 
—(x-x 4e(t-t_) 

y (x,t) = an ee ( .)/ rs (45) 
2DvTe(t —- t.) 

ROG ee and -~> <x < om, 

Equation 45 has been discussed by Le Méhaute and Brebner (1961) and by 

Le Méhauté and Soldate (1977). Accordingly, a superposition of an infinite 

number of such released quantities can be used to represent the sand discharge 

from a river. According to Carslaw and Jaeger (1959, p. 262), the solution 

for a point source with a continuous time variable sand discharge dp may be 

expressed as 

1 Y -(x-x,)"/4e(t-) dt 

y(x,t) = dp(&) e SS (46) 
2Dvre J viene 

for t >0O and -~ < x<om, 

If qp is constant and equal to q,° the solution is 

= — 2 Get = q t (x, x) € ae x 25 3 > 2S 

—e - (47) 
TE D € 

y(x,t) = 

for t >0QO and -~ <x<o, 

Equation 47 is identical to the solution describing a constant flux q,/2 on 

the boundary (x = 0) for a beach of semi-infinite extent. Figure 24 illu- 

strates the solution where L is used as a normalizing length, and the point 

source is located at Tt L . The nondimensional quantity containing the 

shoreline position is formed as the ratio between the amplitude of the sand 

transport rate and the sand discharge from the river. 
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Figure 24. Shoreline evolution in the vicinity of a river dis- 

charging sand and acting as a point source 

55. If the sand discharge has a periodic behavior, the function dp 

could take the following form: 

dp (t) =i qe + q, sin (wt + ) (48) 

where 

a xe steady sand discharge from river 

q_ = amplitude of periodic sand discharge 

; = angular frequency = 2n/T 

T = period of oscillation of sand discharge from river 

» = phase angle of periodic variation 

The solution consists of two parts, namely Equation 47 describing the shore- 

line evolution from a steady point source and the following solution which 

accounts for the periodic component: 
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The shoreline behavior is composed of one contribution that evolves roughly 

proportional to the square root of elapsed time and another contribution which 

is a periodic oscillation that damps out along the x-axis with a decay factor 

Yw/2e (both in the negative and positive directions). Consequently, beyond a 

certain distance from the discharge the periodic effect of Equation 49 can be 

neglected, implying that the solution may be approximated by Equation 47 only. 

Because of the periodic variation in the discharge, sand waves are generated 

from the river mouth. These sand waves propagate with a speed V2ew along 

the x-axis, and the time lag between the oscillation in sand discharge at the 

river mouth and a specific location is 1/4 + xV¥w/2e . In Figure 25 the 

shoreline evolution at specific locations in the vicinity of a point source of 

sand discharge with a periodic variation in strength is shown as a function of 
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Figure 25. Shoreline evolution in the vicinity of a river discharging 
sand with a periodic variation in strength as a function of time 

(wh? /e SA OS O 4 q,/Q, = 46/9, = 0.5) 
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time. The quantities in the figure are dimensionless, with the sand discharge 

from the river normalized by the amplitude of the sand transport rate Qe and 

the angular frequency of the oscillation normalized by =i a baeune eZ 

clearly shows how the superimposed sinusoidal-shaped variation damps out with 

distance from the source along the x-axis. 

Sand Discharge from a River Mouth of Finite Length 

56. If the river mouth has a finite width in comparison to the area 

into which it is discharging sand, an approximation by a point source is no 

longer accurate. Instead of supplying sand to the system via the boundary or 

initial conditions, the mass conservation equation in the full form of Equa- 

tion 3 is applied. The sand discharge from the river is considered a q R 

continuous function of x , varying along the river mouth. The river mouth is 

assigned a length 2a , and the sand discharge is measured per unit width. 

Mathematically, the situation is expressed as 

2 

oy SR My e—r tas OFS }xisia (50) 
ox 

ay, V5 
e Ta Tae Sd Be) (51) 

ox 

y, (x50) = y5(x,0) = (0 (52) 

ox ox arse 

ay) 
aa x = 0 (53) 

Mal = V9) x= a 
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57. The problem consists of two coupled partial differential equations 

with appropriate boundary and initial conditions. Since the configuration is 

symmetric with respect to the center of the river mouth (if qp is constant), 

only half of the problem domain has to be treated. The boundary conditions 

are no sand transport through the center of the river (symmetry), and mass 

conservation should apply between the two solution areas. Also, the beach 

must be continuous at all times over this boundary. Furthermore, the shore- 

line is unaffected by the river sand discharge as x approaches infinity. 

According to Carslaw and Jaeger (1959, p. 80) the solution is 

I 
qpt & 

y, (st) = — ilo 2” eeie G | — 2392 oe | (55) 

epee = (0) Evol (0) SS Sx IA rt) 

2q,t 

Yo (x5 t) = x 6° eete fe — ) ete sala“ z | (56) 

ioe jc S 0) Ehol Se S El 

58. The function ierfc is defined in Equation 23 and the superscript 

2 denotes a double integration. An exponent n represents n integrations 

of the complementary error function. The following recurrence relation holds 

ore il = I 9 

-2 
Qn i» erfc x = do erfc x - 2x jet erfc x (57) 

In Figure 26 the solution to Equations 55 and 56 is illustrated. 
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Figure 26. Shoreline evolution in the vicinity of a sand- 

discharging river mouth of finite width 

59. A nondimensional quantity describing shoreline change is defined 

according to 

y(x,t)eD 
su (Ge! 5 fe) a (58) 

4qpa 

The quantity used to normalize Equation 58 can be written by using Equation 10 

to arrive at 

2aqp 

Q 
oO 

a (59) 

This quantity can be interpreted as a ratio between sand discharge from the 

river and the amplitude of the sand transport rate produced by the waves. The 

solutions given by Equations 47, 49, 55, and 56 are also valid for the place- 

ment of sand (beach nourishment), provided the placement is made under the 

same conditions. Solutions with an opposite sign consequently represent 

43 



mining of sand. Equations 55 and 56 describe only the general features of 

delta growth since the river flow conditions within the delta formation are 

neglected in the present treatment. The time required for the delta to reach 

a certain distance ye from the original shoreline position is calculated 

from the following relationship 

t 

y_(t) = —]1- hee erfc ( g ) (60) 

e 2Vet 

i] j=) fom ot) >) 0) and) x 

Equation 60 is illustrated in the nondimensional diagram of Figure 27. For a 

specific wave climate, the above relation implies that an increase in the sand 
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Figure 27. Maximum delta growth from a sand-discharging river 

mouth of finite length 

discharge from the river has a proportional effect on the growth of the delta 

according to the following relation: 
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me han (61) 

Here the indices 1 and 2 refer to two different sand discharge conditions 

experiencing the same wave climate. 
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PART III: SOLUTIONS FOR SHORELINE EVOLUTION 

INVOLVING COASTAL STRUCTURES 

60. In the previous chapter, the incident wave crests were restricted 

to be parallel to the x-axis. In such a case, an initially straight beach 

will always remain straight, unless material is supplied in an irregular way. 

If the waves arrive at the same angle to the shoreline everywhere, the beach 

will also be stable if it is initially straight. However, if an obstacle on 

the beach disturbs the equilibrium transport conditions, a change in shoreline 

position occurs in order to achieve a new steady-state configuration. Exam- 

ples of such obstacles are groins, jetties, detached breakwaters, and sea- 

walls. In order to treat such complex cases analytically, the situation has 

to be idealized to a large degree. Properties which generally vary continu- 

ously along the shoreline (breaking wave angle, amplitude of the sand trans- 

port rate, etc.) usually must be approximated by means of a series of coupled 

solutions of simpler problems.. Within each solution area the properties are 

held constant but are allowed to vary from one area to another. 

Shoreline Change at Groins and Jetties 

61. The analytical solution for beach change at a groin or any thin 

shore-normal structure which blocks alongshore sand transport was first ob- 

tained by Pelnard-Considere (1956). Initially, the beach is in equilibrium 

(parallel to the x-axis) with the same breaking wave angle existing every- 

where, thus leading to a uniform sand transport rate along the beach. At time 

t = 0 a thin groin is instantaneously placed at x =0 , blocking all trans- 

port. Mathematically, this boundary condition can be formulated as (see 

Equation 7) 

OY = tan a x = 0 (62) 
x fo) 

This equation states that the shoreline at the groin is at every instant 

parallel to the wave crests. The wave crests make an angle ay with the 

x-axis according to Figure 28, giving rise to longshore sand transport in the 

negative x-direction. 
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GROIN 

Figure 28. Definition sketch for the case of a groin 

62. A groin interrupts the transport of sand alongshore, causing an 

accumulation at the updrift side and erosion at the downdrift side. The solu- 

tion describing the accumulation part is 

Cee) SY een ty vet ierfe ( =) (63) 
QVvet 

coe te > O zal sx S 0 

The solution can also be written as follows: 

et 5 here x 
e vist) = 2) tan! — - = erfc ( z ) (64) 

oO TT 2 Wet 

This expression is obtained by integrating the function ierfc by parts. A 

nondimensional plot of the shoreline evolution updrift of a groin is shown in 

Figure 29. 

63. The shoreline position has been normalized with a characteristic 

length (the groin length) and the tangent of the incident breaking wave angle. 
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Figure 29. Shoreline evolution updrift of a groin which is 

totally blocking the transport of sand alongshore 

For a specified amplitude of the sand transport rate and the depth of closure, 

the ratio of shoreline positions at a given point for two different incident 

breaking wave angles is proportional to the following ratio of respective 

tangents of the angles: 

Se Oe (65) 

64. Equation 64 is valid only until the shoreline has reached the tip 

of the groin, after which time bypassing of sand is assumed to take place. 

This bypassing happens when y = L (length of the groin) at x = 0 , which 

occurs at time t% 8 

ST L t_ = z 7) (66) 
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The above relationship for a fixed wave climate reveals that if the groin 

length is doubled, the time required for the shoreline to reach the end of the 

groin will increase fourfold. 

65. If bypassing of a groin occurs, the boundary condition at x = 0 

changes into y=L. A correct solution to this situation should fulfill 

this boundary condition and use as an initial condition the shoreline shape 

just before bypassing occurred, according to Equation 64. An approximate 

solution was presented by Pelnard-Considere (1956) who used the solution for a 

shoreline with fixed position ye at x = 0 (see Equation 26) and matched it 

against Equation 64 by equating sand volumes. With this criterion, the 

following relationship between the time elapsed before bypassing occurs to 

(in Equation 64) and the actual time in the matching solution ty » which 

makes the sand volumes equal, is obtained: 

== (67) 

66. Thus, in the case of bypassing, it is possible to use Equation 26, 

iiasthewtime | tags ereplaced sby aut es=sti— (ila 1” /16)t, for t > to . The 

rate of sand bypassing the groin for t >t is calculated according to 
G 

Equation 8 to produce the following relationship: 

(68) 

Here 2Q 095 is the sand transport rate at equilibrium (straight beach) under 

imposed incident breaking wave angle - andthe asthe modititedetime in 

the matching solution using Equation 26. 

67. Formally, the solution downdrift of a groin is the same as that in 

Equation 64 but with opposite sign. However, if the groin or jetty extends 

far outside the wave breaker line, diffraction will occur behind the groin 

altering the breaking wave height and angle; thus the transport capacity 
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(Equation 9) does not provide a complete description of the shoreline evolu- 

tion if diffraction is significant. 

68. Bypassing may occur immediately after construction of a groin and 

not start just at the time when the groin is completely filled. If the by- 

passing sand transport rate grows exponentially to a limiting value Q, the 

boundary condition at the groin will be 

Q 2 
al sie i) x = 0 (69) 

69. In Appendix B a derivation is given. The quantity y is a rate 

coefficient describing the speed at which the bypassing sand discharge grows 

toward the limiting value Q . The solution downdrift of a groin may be 

written (for an initially straight beach) as 

Q 12 iL 3 et -x /4et x x 
y(x,t) - -2f 32) —e - Forte ( ) 

Co) 2 oy T 2 oVet 

| 

ele al 
-yt i gee He a eye! IES Wale (70) 

[o} 

fore ff 20) Amal xs SO , 

Employing the two dimensionless parameters, Q,/Q, and yl? /e » the solution 

is illustrated in Figure 30. 

70. The parameter YL? /e describes the rate at which the sand bypassing 

increases in comparison to the size of the coastal constant (€). In Equa- 

tion 70 the second term is a transient which decays with elapsed time. Ac- 

cordingly, after sufficient elapsed time, Equation 70 will be identical to the 

solution given by Equation 64 with a modified incident breaking wave angle 

ae Se = 0) Cee ae ee vo Equation 70 may be used also to describe shoreline 

change updrift of a groin (with reversed sign) if bypassing occurs immediately 

after construction of the groin. If, in Equation 70, Q,/9, = ae » the 
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Figure 30. Shoreline evolution downdrift of a groin with 

bypassing described by Q,(1 - a Vy @jO, = Oi 5 

a, = 0.4 rad , le fe 2 ®) 

bypassing sand discharge will equal the transport rate alongshore behind the 

groin at equilibrium conditions. Consequently, the initially eroded area 

downdrift of the groin will fill when the bypassing sand rate reaches its 

maximum, and the beach will become straight again. 

71. In order to investigate the effects of the linearization of the 

governing equation (Equation 9) on the solution for a groin, numerical simula- 

tions were carried out with the original sand transport equation (Equation 7). 

Selected results are displayed in Figures 31 and 32. From the two figures it 

is seen that the linearization procedure degrades the solution if the incident 

breaking wave angle is about 30 deg. However, the analytical solution has 

surprising accuracy, considering the approximations made. 
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Figure 31. Comparison between analytical and numerical 

solutions of shoreline evolution updrift of a groin 

with incident breaking wave angle 20 deg 

0.8 Analytical Solns ——_—_——— 

Numerical Solns -—--—-—-—-—---——— 

Da eas te 

SHORELINE POSITION (y/L) 

0 0.5 1.5 2 1 

ALONGSHORE DISTANCE (x/L) 

Figure 32. Comparison between analytical and numerical 

solutions of shoreline evolution updrift of a groin 

with incident breaking wave angle 45 deg 
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Initially Filled Groin System 

72. Dean (1984) presents an analytical solution for shoreline evolution 

between two identical groins which define a compartment initially filled with 

sand. The distance between the groins is denoted by W , and the groin length 

is L. At time t =O , the shoreline is exposed to the action of waves 

breaking with angle aos The solution is 

2 tan oe = 2 

y(x,t) =L- w(i - x) tan ao BS 2 ane + ee 

(71) 
<6 (Ome) “7 CRIA E + 22] 

e cos ra OW 

core © > © emul 0) Soe Sy 

The boundary conditions for this configuration are no sand transport at x = 0 

(ay/ox = tan a) and a constant shoreline position of y=L at x=W. 

Consequently, bypassing occurs at the boundary x = W , whereas no sand enters 

the system at x = 0 . This occurrence means that the solution is unsuitable 

for application to a groin system of more than one compartment. Otherwise, 

bypassing must be accounted for in the boundary conditions at the updrift 

groin (left) in each compartment leading to a coupled problem. The last term 

in Equation 71 approaches zero as t + ~ and causes a shoreline parallel to 

the wave crests to be created between the groins. In Figure 33 the analytical 

solution is presented in dimensionless form. All distances have been nor- 

malized with the compartment width W. 

73. The final percentage loss of sand from the groin compartment is 

W 
L tan a (72) 
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Figure 33. Shoreline evolution between two groins initially 

filled with sand (L/W = 0.33 , ON 0.25 rad) 

From Equation 71, the sand bypassed (discharge rate) at x = W can be 

obtained. The sand transport rate as a function of time can be written (if it 

is assumed that tan a =a) 

- 2 2 2 

ue) He, D GU eee ie - 
+ 1)T 

n=0 

for t > 0O and x=W. 

In Equation 73, the quantity 205% is the sand transport rate along a 

straight beach exposed to the incident breaking wave angle ao (This is the 

transport initially existing when the groin compartment is completely filled.) 

If Q in Equation 73 is normalized with this quantity, the bypassing sand 

discharge at the downdrift end groin is conveniently displayed in dimension- 

less form. Figure 34 shows such a curve. 
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Figure 34. Bypassing sand transport rate at the downdrift end 

of a groin x =W asa function of time 

Shoreline Change at a Detached Breakwater 

74. A detached breakwater reduces the wave height behind it and pro- 

duces a circular wave pattern at each tip, thus decreasing the longshore sand 

transport rate. The actual effects are quite complex to describe and involve 

diffraction and the current field resulting from spatial changes in wave 

height and direction. However, it is possible to find an analytical solution 

if the situation is idealized. 

75. It is assumed that the incident breaking wave crests are parallel 

to the x-axis and to the detached breakwater. When the waves reach the break- 

water, they are assumed to be diffracted at a constant angle behind the break- 

water (shadowed region) and remain parallel to the x-axis outside of the 

breakwater (the illuminated region). The diffraction behind the breakwater is 

symmetric about the center of the breakwater and, accordingly, only half of 

the problem domain needs to be considered. In Figure 35, a definition sketch 

is shown. 

a) 



DETACHED 
BREAKWATER 

-2L =L N50 
Figure 35. Definition sketch for the problem of shoreline change in 

the vicinity of a detached breakwater 

76. Since the incident breaking wave angles and the amplitudes of the 

sand transport rates Qo1 and Q02 » respectively, are different in the 

shadowed and illuminated regions, a coupled problem arises. The boundary 

conditions for this case are as follows: 

a. No sand should be transported across the line of symmetry 

behind the breakwater. 

b. The sand transport rate out of the area on the right side of 

the breakwater should be equal to that into the area behind the 

breakwater. 

c. The shoreline is continuous over the boundary between the two 

areas. 

Furthermore, the shoreline should be undisturbed (y = 0) far from the struc-— 

ture. With yy denoting the shoreline position in solution area number 1 

(shadow region) and Yo denoting the shoreline position in solution area num- 

ber 2 (the illuminated region), the mathematical formulation of the situation 

is 
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r) yy ay 

ox 

ay, V5 

E5 5) = ae x >0 (75) 

ox 

y, (x,0) = Y (x,0) = 0 (76) 

oY) 

aie = tan on x = -L (77) 

— —ta x = 0 (78) 
ox ox oo ol 

Ym xs FO 

77. The derivation of this solution is presented in Appendix C. The 

quantities Orr and v9 are the amplitudes of the longshore sand transport 

rate in the respective areas, and OO1 is the diffracted breaking wave angle 

behind the breakwater. The angle a) is zero since the wave crests in this 

area are parallel to the x-axis throughout time. The solution is, with 

Bo |-S5 | (80) 

57 



6a) — _ 
y, (x,t) = - 2ve,t ierfc 
l 6 + 1 i (se) 

n 

+ tan or » (; = r) 2ve,t ierfc (n+ DL +x 

n=0 2ve,t 

n+l 

+ (; = +) 2ve,t ierfc (2n + DL =x 

S : 2ve,t 

n 

(3 1) 2ve st ierfc Aone ln ies 

n=0 2ve,t 

aINGL MG = Who = + (; t) 27 ene ierfe | ———————_— (81) 
2ve,t 

Fore 2 SO ema Gh Sx < @ 

ei 6 
Yo (x,t) Tie SEESI 2ve,t ierfc x 

2ve,t 

540 zs . n 

-2— 5 ( - 7) 2ve,t ierfc | “$+ 204 DE 
(CRE) ee, 2ve,t 

6 tan a = n 
+ 2 a > (; = t) 2ve,t jerfce | SX + Cn + DL (82) 

n=0 2ve,t 

fore 2 = @ amd x S © , 

58 



78. The distance L is half the length of the detached breakwater. If 

Equations 81 and 82 are plotted, the following behavior will be noticed. When 

the breakwater is placed in front of the initially straight shoreline at time 

t = 0 , erosion of the shoreline starts at points in line with the corners of 

the breakwater. Simultaneously, the shoreline grows to form a salient about 

the line of symmetry behind the breakwater. Because of the gradient of the 

shoreline outside the shadow of the breakwater, material is transported 

toward the breakwater in order to achieve a state of equilibrium with the 

waves. The shoreline behind the breakwater also approaches an equilibrium 

configuration which is parallel to the wave crests diffracted at the angle 

The final shoreline will be inclined at an angle a behind the 
@l ~ ol 

breakwater and be straight outside the breakwater. However, the straight 

a 

portion of the shoreline will at all times be displaced landward a small 

distance, controlled by the volume of sand that has accumulated behind the 

breakwater. Figure 36 illustrates the solution in dimensionless form for 
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Figure 36. Initial shoreline evolution in the vicinity of a 

shore-parallel detached breakwater (6 = 0.5 , a1 7 0.4 rad , 

a, = 0) 
o2 

short elapsed times, and Figure 37 shows the features of the solution after a 

long elapsed time. The length of the salient behind the breakwater increases 

in time toward a maximum value of 
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L tan a, (83) 
1 

The elapsed time is normalized by the quantity te li . Although mass is 

conserved across the boundary between the two solution areas, the gradient of 

the shoreline is not continuous at this point. 
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Figure 37. Final shoreline position in the vicinity of a shore- 

parallel detached breakwater (6 = 0.5, a = 0.4 rad , 
al ol 

262. 8) 

Shoreline Change at a Seawall 

79. The function of a seawall is to prevent the shoreline from retreat— 

ing along a specific coastal reach. If the shoreline remains well seaward of 

the seawall, there will be no influence of the seawall on the shoreline evolu- 

tion. If the shoreline retreats to the seawall, the location of the seawall 

determines the minimum allowable shoreline position. If erosion takes place 

beside a seawall (flanking), various changes in the shoreline position might 

occur depending on the characteristics of the seawall and the incident waves. 

If flanking of the seawall is not possible (see Figure 38), the solution for 

the plan shape of an eroded shoreline will be the same as for erosion 

downdrift of a groin (Equation 64, with opposite sign). In this case, the 

seawall is functioning as a semi-infinite structure. 
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Figure 38. Definition sketch for a semi-infinite seawall for 

which no erosion occurs behind the seawall 

80. Figure 39 illustrates the case of erosion at the side and behind a 

seawall, i.e., flanking of the seawall. This must be solved as a coupled 

problem. The incident breaking wave angle is a) outside the seawall and 

OO behind it. Wave energy is transported behind the seawall by the process 

of diffraction. 
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Figure 39. Definition sketch for a semi-infinite seawall 

for which erosion occurs behind the seawall 
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81. The ratio between the amplitudes of the longshore sand transport 

2 
rate in the two solution areas will be denoted as 6 (= Q51/9%52)* Mathemati- 

cally, the situation is formulated as 

2 

Oy 
e 7 oe - 
! ox 

2 
Pe) Yo 975 

€ == > 
2 9x2 ot 

y, (*,0) = y,(x,0) = 0 

ails Felli 1 oY 4 
ox ol 52 02 62 ox 

Tal Yo x = 0 

Sa = 0 x > © 

Vg = 0 x > © 

It is assumed that the border between the two solution areas at me) alg 

stationary in time, although it moves somewhat in the x-direction as time 

evolves. The solution is (for details, see Appendix D) 

ol 2 od e,t -x’ fact 

y, (x,t) = Ser ee 2 TS. + x erfc 

for t > 0O and x<0O. 
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The quantity aol represents a mean diffracted wave angle behind the seawall. 

The solution in nondimensional form is presented in Figure 40 (expressed in 

terms of the coastal constant E,)- 
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Figure 40. Shoreline evolution in the vicinity of a seawall 

where erosion and flanking may occur behind it (a = 0.2 rad , 
ol 

O = 0.4 rad , 6 = 0.6) 
02 

82. A characteristic length L is chosen to normalize the shoreline 

position. In Figure 40 the time has been normalized by use of the quantity 

2 
L/e, - 

Shoreline Change at a Jetty, Including Diffraction 

83. In the shadow zone of a long groin or jetty, it may be an 
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oversimplification to neglect the process of wave diffraction. Consequently, 

although Equation 64 (with reversed sign) may give a satisfactory description 

of shoreline evolution at some distance downdrift of a jetty, in the vicinity 

of the jetty this solution does not represent what is commonly observed. Ero- 

sion just behind the jetty will be overestimated if diffraction is neglected 

since the wave height is assumed to be constant alongshore. Accordingly, by 

allowing a variation in wave height (and thus in the amplitude of the sand 

transport rate) in the shadow zone, a more realistic description of shoreline 

change will be obtained. 

84. There are a number of ways to account for a varying amplitude in 

the longshore sand transport rate (resulting from varying wave height). One 

way is to assume that, outside the shadow zone, the incident breaking wave 

angle and the amplitude of the sand transport rate are not influenced by the 

jetty. In the vicinity of the jetty, Equation 11 may be used to account for a 

variation in the amplitude of the sand transport rate. An alternative way is 

to divide the shadow region into distinct solution areas, each having a con- 

stant amplitude of the sand transport rate. The incident breaking wave angle 

may also be varied from one solution area to another. With this procedure, a 

coupled system of equations is obtained which involves intensive calculations 

for even a small number of solution areas. If the simple case of two solution 

areas (one inside the shadow zone and one outside) is considered, the mathe- 

matical formulation is the same as for a detached breakwater. However, the 

incident breaking wave angle outside the shadow region is not zero (in which 

case no sand transport would occur) but has a finite value. Therefore, the 

boundary condition on continuity in sand transport across the border between 

the two solution areas takes the following form: 

(92) 

where 8 is the ratio between the amplitudes of the sand transport rate in- 

side and outside the shadow region. The analytical solution to this problem 

is formally identical to Equations 81 and 82, except that certain constants 

are different. The following substitutions should be made in order to apply 

Equation 81 and Equation 82 to the diffracting jetty case: 
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So Ie is zero, the expressions on the right side reduce to those 
o2 

on the left side. As can be seen from Equations 81 and 82, even though the 

description involves only two solution areas, the governing equation is 

already quite complex. Generalization to an arbitrary number of solution 

areas is straightforward, in which case the situation is mathematically ex- 

pressed for the en area as follows (see Figure 41): 
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_ 

SOLUTION 

Figure 41. Definition sketch for shoreline evolution 

downdrift of a jetty for which a finite number of 

solution areas is used to model diffraction 

For the first and last solution areas, other conditions prevail on the outer 

boundaries, such as no sand transport at the jetty, and y=0O as x+t>, 

86. Extremely complex algebraic manipulations are associated with the 

analytical solution of coupled systems with several solution areas. In Fig- 

ure 42 the solution is presented for two areas, with a = -0.1 rad , 

= -0.4 rad , and 6 =0.5. 

ol 

a 
02 

87. The solution for an arbitrary number of distinct areas is outlined 

in Appendix E. In Figure 42 are plotted shoreline positions normalized with 

the length of the shadow region. The length of the geometric shadow region is 

B = L tan (a5) » where L is the jetty length and a is the incident 

breaking wave angle in the illuminated region. 

88. If the amplitude of the longshore sand transport rate is considered 

to be a continuous function of x in the shadow zone, Equation 11 is appli- 

cable. However, this equation is quite complex, and it is difficult to find 

analytical solutions even if very simple functions are employed. The related 

case, in which the incident breaking wave angle is a continuous function of 
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Figure 42. Shoreline evolution in the vicinity of a groin 

for variable sand transport rate conditions (two solution 
AReAss © S205 5 @ = -0.l rad , a = -0.4 rad) 
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x , is easier to treat analytically and provides interesting solutions. Under 

these circumstances, Equation 11 will take the following form: 

dey Wey oe 
ToS Oe Ge (ae) 

ox 

in which oo is a function of x only. This is formally the same equation 

as that describing heat conduction in a solid containing a finite source. 

Consequently, if oe grows linearly with x (e. = xa_/B) the situation will 

be identical to the one describing a river mouth of finite length which dis- 

charges sand at a constant rate. Equations 55 and 56 are the solutions to 

this case, with reversed sign and qp replaced by a /B . The solution is 

presented in Figure 26 in dimensionless form. 

89. If an is different from zero at the jetty, but still grows lin- 

early along the x-axis in the shadow zone, the variation in breaking wave 

angle will be 

x 
a = oT + (x - =) 3 (101) 



in which a is the incident breaking wave angle at the jetty, and Oh is 

the angle in the illuminated region. The mathematical description for this 

case is almost the same as for a river mouth of finite length which discharges 

sand but with a modified source term. This is a coupled problem containing 

two solution areas but with a boundary condition at the jetty given by 

ia = iCan on (102) 

The analytical solution to this problem is (see Appendix F) 

(a. - a jet 

y, (x,t) = ee 212 erte (2 = ) +) 2 q? erfc le a _ - 1 

2Vet 2Vet 

2 

- tana 2 fl ens ee - x erfc ( x ) (103) 
Vv T 

2Vet 

for t >0O and OS x<S<B 

(a. - a )et 

Yo (x,t) egal "7 x 2i erfc e a “| - 2 i erfce (5 — >) 
2Vet Qvet 

) (104) 

for t >0O and x?B. 

The quantity B is the geometric length of the shadow zone as before. In 

Figure 43, the dimensionless shoreline evolution is presented for the specific 

case of o = -0.1 rad and hy = 0.4 rad . Shoreline position has been 

normalized by the length of the shadow region. 

90. Another case that allows a fairly easy analytical solution is ob- 

tained by assuming that the incident breaking wave angle varies exponentially 

with distance from the jetty according to 

68 



a. = a (1 2 oe) (105) 

Here, the quantity Y is a coefficient describing the rate at which the 

breaking wave angle approaches the undisturbed value Oh along the x-axis. 
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Figure 43. Shoreline evolution behind a jetty with linear 

variation in breaking wave angle in the shadow zone 

(c, = -0.1l rad , Oy = 0.4 rad) 

The derivation of the analytical solution is presented in Appendix G. The 

solution is 

ay 2 

yoo) «B= NEE Ms 2 § onto (A) 
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- 4 ales tae erfc ( x + fe) + al ies ( a! et) (106) 

Y avet 

for t >0O and x20. 
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If a dimensionless quantity yL is introduced, the solution may be displayed 

efficiently in dimensionless form (Figure 44). For large values of y , Equa- 

tion 106 approaches Equation 64, which is valid for a jetty and constant 

oblique breaking wave angle. 
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Figure 44. Shoreline evolution behind a jetty with 

exponential variation in breaking wave angle 

(a, = 0.4 rad , yL = 1) 

91. The solution obtained for a variable breaking wave angle over- 

estimates the rate of erosion behind the jetty since it is assumed that the 

amplitude of the longshore sand transport rate is everywhere the same (and 

thus that the wave height, in principle, is constant). In reality, diffrac- 

tion reduces the wave height in the shadow region and, accordingly, the ampli- 

tude of the longshore sand transport rate there. Despite this reduction, 

Equations 103 and 104 provide a better description of the actual situation 

than the commonly used solution (Equation 64) for which maximum erosion will 

always appear immediately adjacent to the jetty or long groin. 
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APPENDIX A: A SHORT INTRODUCTION TO THE LAPLACE 

TRANSFORM TECHNIQUE 

1. The Laplace transform is a powerful technique for solving linear 

partial differential equations. This technique allows the target partial dif- 

ferential equation to be converted to an ordinary linear differential equation 

in the transformed plane for solving one-dimensional problems in space. The 

Laplace transform of a function y is denoted as L{y} and is defined by the 

operation: 

L{y} = y - [veo ely usdit (Al) 

The over bar denotes the transformed function. The transform of a derivative 

of a function with respect to time is 

oy Se 
eu = sy - y(x,0) (A2) 

This relationship may be derived by performing a partial integration of Equa- 

tion Al. The term y(x,0) represents the initial conditions for the system. 

Accordingly, the transform of the diffusion equation may be written (if, with 

the convention y(x,0) = 0 , that is, a shoreline which is initially parallel 

to the x-axis): 

ioe ae ye 0 (A3) 
x 

O10 

The general solution of this homogeneous linear differential equation is 

y Ss Ase! & ha (A4) 

where 

Al 



2. The coefficients A and B are determined by the transformed 

boundary conditions and are, in general, functions of the parameter s . To 

obtain a solution in the time domain, Equation A4 has to be inverse trans- 

formed. This can be accomplished using tables of known transforms (see, for 

example, Erdelyi et al. (1954) and Abramowitz and Stegun (1965))* or the 

Fourier inversion theorem which states 

Gate jo 
Rll Situ 

y= oer i enn y (s)) ds (A5) 

Bale 

The integration is performed as a line integral in the complex plane, for 

which ¢ is taken sufficiently large to have all singularities of the func- 

tion y(s) lying to the left. Equation A5 is normally evaluated by means of 

the residue calculus. If several solution areas are used, the solution within 

each area is of the form of Equation A4. The solutions are dependent upon 

each other through their common boundaries (as an example see Appendix E) by 

the prevailing boundary conditions. 

3. Table Al presents a short summary of selected applicable transforms 

useful for solving the diffusion equation. 

* References cited in the Appendix can be found in the References at the end 

of the main text. 
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Table Al 

Short Table of Laplace Transforms of Functions Often 

Encountered in Solving the Diffusion Equation 
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APPENDIX B: SHORELINE EVOLUTION DOWNDRIFT OF A GROIN WITH 

BYPASSING REPRESENTED BY AN EXPONENTIAL FUNCTION 

1. Sand is transported past the groin according to the following 

relationship: 

Q=Q(1-e%) (B1) 

Here Q denotes the maximum bypassing sand transport rate which occurs at 

the groin, and y is a rate coefficient describing the rate at which the 

limiting value Q is approached in time. Using Equation 8, the boundary 

condition at the groin is written: 

) x = 0 (B2) 

Consequently, the mathematical statement of this case is, together with the 

above boundary condition: 

2 
Suter Oy: 

e— == (B3) 
are ee 

y(x,t) = 0 X + © (B4) 

y(x,0) = 0 (B5) 

2. By using the Laplace transform technique, an ordinary linear differ- 

ential equation is obtained: 

<y-2y¥=0 (B6) 

where y denotes the transformed function of y . The transformed boundary 

condition is 

Bl 



a. ee ee 
dx Ss 2 ve Ss GaP 47 

Solving Equation B6 together with Equations B4 and B7 yields 

Q Q —qx 
B\e ih 1 “B e (B8) a l 

y = _ Qa —_——_—_—_ — —— 

2 Os qs 2 OR q(s + y) ie] 

where a = = 

3. The inverse Laplace transform of the first term in Equation B8 is 

found to be (Appendix A) 

Q 2 
o So Ge s = 2 Ae ent [Eee x erfe — (B9) 

) w 2vet 

The second term is evaluated by applying Duhamel's theorem (Carslaw and Jaeger 

1959, p. 301) which reads 

t 

L i £ (1), (t = dtp = Lif, (e)} L{e,(€)3 (B10) 
oO 

in which L{} represents the Laplace transform operation. The second term of 

Equation B8 yields, after some rearranging, 

Dijae 2 
als xX /4eé dé (B11) 2p oe IE aaa 

Y/ Q 7 

Accordingly, the complete solution is 

Sy 

B2 



Vt 
Q 22: D) 

ie) Ne sidaiafost” “x /4ek dé (B12) 
[@) 

(e) 

4. The last term on the right side of Equation Bl2 describes a tran- 

sient which disappears with time. After the effect of the transient term has 

vanished, the solution for shoreline change downdrift of a groin will be the 

same as the solution obtained without bypassing but with a modified breaking 

wave angle. If Q& < 25% erosion will take place; whereas if Q > 205% 

there will be accretion. 

B3 



f / i 
ps 

r - = > = &, 

may TN Oe % 
\ 4 ‘ a . fi ; oP 6 

\ a. 
\ ; hi) ou 

iw) a yy : 

ve @ ci ba qarpt Sr hell BAe atl ite ree teak wht 

7 a Peay aie Yes mils “nee? Wat a) +e ii netitn 

i) a ee ov" #, Re 4 ebrbereeity nner ik sudo f met wo hctul dew wt? hind 

sen Ftd iat ‘. wiciine-a ren a oabel will aden i fram: i tits prac res . 

tt in i bhocuiten wil. eal ete 5 ; aw sieieoerah : why ‘bs- | ie. - olaytn * 

me 

ings mo 



APPENDIX C: SHORELINE EVOLUTION BEHIND A DETACHED BREAKWATER 

1. In Figure 35 (in the main text) a definition sketch is shown for the 

case of a detached breakwater and normal incident waves. The shoreline 

evolution is symmetric about the centerline of the detached breakwater; thus, 

only half of the problem domain needs to be considered. Since the amplitude 

of the sand transport rate Qe and the incident breaking wave angle a, are 

different behind the breakwater and outside the breakwater, two solution areas 

are required. Mathematically, the shoreline evolution is described by Equa- 

tions 74-79. After the Laplace transform technique is applied, the following 

system of ordinary linear differential equations is obtained: 

2-— 

d yy 

-—y, =0 -L<x<0O (C1) 

ask ey 4 

ay, s= 
pate oe a = 0 x > 0 (C2) 

dx 2 

dy tan a 
jee ol je 
"a See ee 

Y5 = 0 x > 0 (C4) 

Vy 2 Va x = 0 (C5) 

dy Q dy (o} 
1 o2 2 ol (C6) 
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in which yy and Y5 denote the transformed shoreline position corresponding 

to the regions behind and outside the breakwater, respectively, and L is 

half the length of the breakwater. Solving the system of equations subject to 

the boundary conditions yields 

q,x 

- So) e ; 
i aie Sl a5 ar ° cosh (a,x) — sinh (a, )| 

@ a - ol sd) 
ol 6 + 1 

q,s(6 sinh q,L + cosh qb) i e-2 0 (7) 

6a -q,L -q,x 
-q,x a ol 1 2 

2g. Ste oe hie ee OM eas) 
sy) § +1 qs q,s(6 sinh q,L + cosh q,2) 

where 

Q 2 1 2 2 
6 Sieg att a q5 => (C9) 

02 al 2. 

2. The inverse transform of Equations C7 and C8 may be obtained by use 

of the Fourier inversion theorem (Appendix A) or by expanding the denominator 

in a Taylor series and finding the inverse transform of each term in the 

series. The latter method will be used here. The denominator may be 

rewritten as 

1 ane Sel wae 
q,8(6 sinh q,L + cosh q,1) =7 4,5 e (6 + 1)]1 - (: = *) e (C10) 

The last term in Equation C10 is expanded in a Taylor series according to 

ihe @ - L ae Re YS a - aT a be Gis 
§ +1) ° 5 +1 
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3. Only the inverse transform of Equation C8 will be obtained here to 

illustrate the procedure. The inverse transform of the first term in 

Equation C8 is (noting that ao = 6q,) 

1 OE RE 6x 
Vo = 2 Soa Z ierfc (C12) 

in which the function ierfce is defined according to Equation 23. The second 

part of Equation C8 is rewritten by using Equation Cll: 

6a -q,L sete a -2q,nL 

Soe = (ea - oF ors! Spek hae 2 (Ss ae i (C13) 1 é +1 “ol 6 + 1 

Rearranging Equation C13 by moving terms inside the summation gives 

SERA a, co -q, [L(2nt1)+6x] 

er ip) ae V9 Ties eae q,s 

© -q, [2L(nt+1)+6x] 

5 ae ow 2.9) See See eee 
(8 + ae ® ap il q\s 

n=0 

This expression is inverse transformed term by term (Appendix A). The solu- 

tion is 

6 tan os n 

v5 = 2 ———— = € — t) 2ve,t ierfc Sesae Wein a IW) 

Sa re n 
269) wats » (3 S t) 2ve,8 terfe 6x + 2L(n + 1) (C15) 

(Gone a car, 2ve,t 
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The complete solution to Equation C8 is written as 

6a n 
2) 1 - » (s z +) ave,t Temae ox + 2L(n + 1) (C16) 

(Si Wa ae 2ve,t 

In the same way, Equation C7 may be inverse transformed, resulting in 

Equation 81 (main text). 
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APPENDIX D: SHORELINE EVOLUTION IN THE VICINITY OF A SEAWALL 

WHERE FLANKING OCCURS 

1. Two solution areas are employed to describe flanking of a semi- 

infinite seawall, one area behind the seawall and the other away from the sea- 

wall. The amplitudes of the sand transport rate are denoted as Ol and Qo9 

in the respective solution areas, and the corresponding incident breaking wave 

angles are denoted as aT and Qo ° The incident breaking wave angle 

oy behind the seawall (solution area 1) should be interpreted as a repre- 

sentative mean value related to the sand transport rate. Equations 84-89 

(main text) constitute the mathematical formulation of shoreline evolution in 

the vicinity of a seawall subject to flanking. The Laplace transformed system 

of equations and the boundary conditions are 

dy A 

~- 23, =0 x <0 (D1) 
dx eI 

ay, Si 
OF ee 0 xe = (0) (D2) 

dx 2 

i > 0 x > -@ (D3) 

Y5 = 0 xX > © (D4) 

Iq 2 Yo x= 0 (D5) 
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2 Solving the system of ordinary linear differential equations subject 

to the boundary conditions yields 

= bol Tyee) coe ale 
y, = x <0 (D7) 
: ee aie 5 

a x = 6 

afi! Lol Ai oils 
y = SEE x > 0) (D8) 
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3. The inverse transforms of Equations D7 and D8 are (Appendix A): 
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APPENDIX E: SHORELINE EVOLUTION DOWNDRIFT OF A JETTY IF AN ARBITRARY 

NUMBER OF SOLUTION AREAS IS USED TO MODEL DIFFRACTION 

1. The area downdrift of a jetty is divided into N distinct solution 

areas of assumed different sand transport properties. In an arbitrary solu- 

tion area j , the amplitude of sand transport rate is denoted as 265 and 

the incident breaking wave angle as ood - The shoreline evolution is denoted 

as y, in the solution area bounded by the shoreline coordinates Eg and 

ae Equations 95 to 99 (main text) mathematically describe the shoreline 

evolution in one solution area. Using the Laplace transform technique, the 

governing equations take the following form: 

a’y, ie 
Fa a OO (El) 

dx” q J 

¥4 7 Yet ene Ez) 
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where 

(0). 
Roe WE (E6) 
J oj+l 

The solution to the ordinary linear differential Equation El is 

Sans j j = A.e + B.e (E7) 
y jj J 

where 

qo = (E8) 

in which Hs and 8 are constants to be determined through the boundary 

conditions. Since the shoreline evolution in each solution area is connected 

via the boundary conditions with the neighboring areas, an equation system 

with 2N unknowns (two constants for every solution area) is obtained. The 

boundary conditions E2 and E3 give the following relationships: 

q.X. -q.x. @a 98s Ga ohn 

Rete awed en atten a dos (E9) 
j j goul sj 

q.X. -q.X. Gane —q.,,X. 
j jt+l Pedal jt+l jt+l j+l jt+l 

A.e + ec y+ + Bel (E10) 

2. Furthermore, Equations E4 and E5 give 

q.x -q.x @la 38 Gla 92S. B. 
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3. Equations similar to E9 to E13 may be written from solution area 2 

to solution area N-1l . In the first and last solution areas, two other con- 

ditions prevail at the outer boundaries, namely, no sand transport in the 

first solution area (area 1) and no shoreline change as x->» in the last 

solution area (area N). The Laplace transforms of these boundary conditions 

are 

dy, 
as x = 0 (E14) = tan a 

4. Equation E15 implies that the constant Ay is zero. The resulting 

system of equations to be solved in order to determine the value of the con- 

stants is conveniently written in matrix form. A general system of N_ solu- 

tion areas gives rise to 2N - 1 equations as follows: 
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It is seen that the solution corresponding to even a small number of solution 

areas involves intensive algebraic calculations. Furthermore, the inverse 

transformation is difficult to perform, necessitating use of the Fourier 

inversion theorem. 
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APPENDIX F: SHORELINE EVOLUTION BEHIND A JETTY FOR 

LINEARLY VARYING BREAKING WAVE ANGLE 

1. In the case of shoreline evolution behind a jetty for lineraly 

varying breaking wave angle, the amplitude of the sand transport rate is 

regarded as constant downdrift of the jetty, and the incident breaking wave 

angle varies linearly from the jetty (with value a.) to the value hey in the 

region undisturbed by the jetty. Two solution areas are needed for describing 

shoreline change, one in the shadow region and the other outside the shadow 

region (illuminated area). Equation 101 (main text) describes the variation 

in breaking wave angle in the shadow region which is of length B . The 

Laplace transformed equations and boundary conditions are 
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2. The solution to this system of ordinary linear differential 

equations is 
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3. Equations F6 and F7 are easily transformed term by term (see 

Appendix A) to yield Equations 103 and 104 (main text). 
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APPENDIX G: SHORELINE EVOLUTION BEHIND A JETTY FOR EXPONENTIALLY 

VARYING BREAKING WAVE ANGLE 

1. The breaking wave angle varies exponentially with the distance be- 

hind the jetty from zero at the jetty to the undisturbed value ce far from 

the jetty. The mathematical formulation of the boundary condition at the 

jetty is expressed by Equation 105 (main text). A varying breaking wave angle 

along the x-axis is described in terms of the diffusion equation by a distrib- 

uted sink with a decaying strength with distance. The transformed equation 

and boundary conditions are 
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The solution to Equation Gl is 
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Equation G4 may be written as partial fractions: 
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In Equation G5, the last term may be inverse transformed to yield 
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2. The first part of the first term is inverse transformed according to 

Appendix A and gives 
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In the same way, the inverse transform of the second part of the first term in 

Equation G5 gives 
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3. The complete solution consists of Equations G6, G7, and G8 as given 

by Equation 106 (main text). 
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APPENDIX H: NOTATION 

Length (m) 

Amplitude of periodic beach cusps (m) 

Cross-sectional periodic beach area (m2) 

Constants in general functions of the Laplace transform variable 

Length of shadow region downdrift of a groin (m) 

Wave group velocity to breaking point (m/sec) 

Depth of closure (m) 

Error function 

Arbitrary initial shoreline shape (m) 

Acceleration of gravity (aafaee) 

Constant 

Significant breaking wave height (m) 

Integer number 

Integral of the error function 

Slope of a line segment 

Nondimensional constant 

Geometric length (m) 

Laplace transform of a function y 

Nondimensional groin length 

Integer number 

Integer number 

Number of solution areas or reaches 

Pitch height of a circle segment (m) 

Loss percentage from a beach fill 

Sand transport rate per unit length of beach from a source or sink 

Ge faveae) 

Constant sand discharge from a river acting as a point source 

eee) 

Time variable sand discharge from a river acting as a point source 

Glee) s constant sand discharge from a river with a finite mouth 

(ae Jalloce) 

Amplitude of sand discharge from a river acting as a point source 

Ge face) 

s/e 
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Longshore sand transport rate Gases 

Maximum value of bypassing sand transport rate GOs) 

Amplitude of longshore sand transport rate (meee) 

Laplace transform variable 

Time (sec) 

Dimensionless time 

Time when bypassing of a groin starts (sec) 

Time (sec) 

Time (s) 

Time in the matching solution when groin bypassing starts (sec) 

Modified time in matching solution (sec) 

Time period of an oscillation (sec) 

Volume of sand released from an instantaneous source Ge) 

Distance between two groins (compartment length) (m) 

Space coordinate along axis parallel to trend of shoreline (m) 

Dimensionless alongshore distance 

Distance alongshore (m) 

Laplace transform of a function y 

Shoreline position (m) 

Dimensionless shoreline position 

Geometric length 

Integration variable 

Angle 

Angle between breaking wave crests and shoreline 

Angle between breaking wave crests and coordinate axis 

Constant 

Rate coefficient (a or aa) 

Ratio between the amplitudes of longshore sand transport rate in 

two neighboring solution areas 

Change in quantity 

Coastal constant (diffusion coefficient) GE linee) 

Integration limit in the complex plane having all singularities of 

the integrated function to the left 

Porosity of sand 

Integration variable 

Density of water Gale) 
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fe) Density of sand (coy) 

i Wave number of periodic beach cusps (rad/m) 

T Integration variable 

b Phase angle 

W Angular frequency (rad/sec) 

Subscripts: Denoting various specific values of a variable or various 

solution areas 

Ibn By Boa 

akg Sp im 

H, v 

Superscripts: Denoting various specific values of a variable or various 

solution areas 
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Ro Ib 

Mathematical symbols 

d Differentiation 

e) Partial differentiation 

| | Absolute value 
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