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^ PREFACE

In the preparation of this book the author has tried to keep

in mind the twofold requirement of a text-book on Analytic

Geometry : to bring out clearly the fundamental principles and

methods of the subject, and to make it a natural introduction

to more advanced work. Since for most students of Analytic

Geometry the subject is quite as essential as a preparation for

the study of Calculus as it is valuable for its own methods and

body of facts, the method and notation of the Calculus have

been used in their application to tangents, normals, and maxima
and minima in the plane, and to tangent planes and lines in

space.

The conic sections have not been accorded as much space

relatively as in most text-books on the subject, but it is

believed that the student's time in the usual brief course can

be spent to greater profit in the study of such chapters as

those on Trigonometric and Exponential Functions, Parametric

Equations, Empirical Equations, Maxima and Minima, and

Graphical Solution of Equations, than upon a prolonged course

on the conies. Especially is this true for engineering students.

The answers to many of the problems have not been given.

Where the student can check the answer by graphical means,

it is best that he should thus test the correctness of his work,

and a complete list of answers tends to take away his incen-

tive for doing this.

The author is under many obligations to Professors D. F.

Campbell, Alexander Pell, C. W. Leigh, and C. I. Palmer, of

the Armour Institute of Technology, and to Mr. Paul Dorweiler
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of the Carnegie Technical Schools, for valuable criticism and

advice, and to Professors Leigh and Palmer for the answers to

many of the problems. The imperfections of the book are,

however, the author's alone.

For the drawing of. most of the figures the author is indebted

to Mr. John R. Boyd, and for the remainder to Mr. Edwin 0.

Kaul, students in the School of Applied Science, Carnegie

Technical Schools.

N. C. RIGGS.
Carnegie Technical Schools,

August, 1910.
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ANALYTIC GEOMETRY

CHAPTER I

GRAPHICAL REPRESENTATION OF NUMBERS. SYSTEMS
OF COORDINATES

I. POINTS ON A STRAIGHT LINE

1. Point and Number. On a straight line let a fixed point

be taken from which to measure distances, and let a definite

length be chosen as a unit. If this unit be laid off in succession

on the line, beginning at 0, other points of the line are obtained

whose distances from are 1, 2, 3, •••, etc. times the unit dis-

tance. It is convenient to think of these points as represent-

ing the numbers, or of the numbers as representing the points.

Thus a point 7 units from may be taken to represent the

number 7, and conversely the number 7 may be said to repre-

sent the point.

Since there are two points of the line at the same distance

from P, one to the right, the „ ^ ,. ,.
P P, P

other to the left, and since
^

there are both positive and -4-3-2-1 1 2 3 4

negative numbers, let it be ^^^" ^'

agreed that points to the right of shall represent positive

numbers and those to the left of negative numbers.

Thus a point 3 units to the right of represents the number

3, and a point 3 units to the left of represents the number
— 3. The numbers are also said to represent the points.

It can be shown that to every point of the line there corre-

sponds a real number, and conversely, to every real number

there corresponds a point of the line. The whole system of

real numbers may therefore be represented by points on a

B 1
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straight line with one number for each point and one point for

each number.

The point is called the origin. It represents the number
zero.

2. Notation. If P is any point of the line and is the ori-

gin, the symbol OP is used to denote the number which repre-

sents the point P.

E.g. if P lies 3 units to the right of 0, then OP is 3 ; while

if P lies 3 units to the left of 0, OP is - 3.

It is convenient to denote the number which represents a

point by a single letter, as x; thus OP=x. Then if P lies to

the right of 0, a; is a positive number, and if P lies to the left

of 0, cc is a negative number.

Different points on the line will sometimes be denoted by P
with different subscripts, and the numbers representing these

points by x with corresponding subscripts.

Thus, in Fig. 1, OP^ = x^ = 2, OP^= a^a = - 4.

3. Segments of the line. In speaking of any segment of the

line, as AB, the first letter named is called the beginning, and

the last letter the end, of the segment.

Thus A is the beginning, and B is the end, of AB, while B is

the beginning, and A is the end, of BA.

It is important to represent the value of any segment of the

line by a number, and this is done by defining the value of

any segment of the line to be the number which would repre-

sent the end of the segment if the beginning of the segment

were taken as origin.

Thus, in Fig. 2, with as origin,

P, P3 A P2 B
.

I I I

^5 = 6, 5^ = - 6,^30 = 5, 0Pi = -6, 0^=-2, P3Pi = -l,

P,0 = -2.
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From the definition of the value of a segment it follows that

the value of any segment read from right to left is negative,

while the value of any segment read from' left to right is

positive.

EXERCISE I

1. What numbers represent the points Pi, P2, P3, -4, B, in Fig. 2 ?

2. What are the values of P2P3, P1P2, P3P2, BP3, P3B ?

3. If A be taken as origin, what are the numbers that represent Pi, P2,

O, P3, P?
4. If the origin be moved two units to the right, how are the numbers

representing different points affected ? How if the origin be moved h

units to the right ? to the left ?

4. Change of sign of a segment. Since any segment AB of

the line contains the same number of units as BA, but is meas-

ured in the opposite direction, it follows that

BA = -AB, or BA +AB = 0.

5. Addition of segments. Let A, B, and C be any three

points on the line. Then

AC = AB + BC.

Proof. Three cases arise

:

(1) B between A and G, (2) A between B and C, (3) be-

tween ^ and B.

(^) A B C C B

(2)

(3)

Fig. 3.

In(l), AO=AB-\-BO',

in (2), AC=BC-BA = BC-hAB,hj Art. 4,

or AC=:AB-\-BC;

in (3), AC=AB-CB = AB-\-BO,

A B C

>
B A c

1^ A C B

C A B

B C A
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6. Subtraction of segments. By writing — CB instead of BC
in the equation of Art. 5, namely,

AC=AB-^BC,

that equation becomes

AC = AB-CB.

The results found in this and the preceding articles lead to the

rules for geometric addition and subtraction of numbers that

follow.

7. Geometric addition of numbers. Let P^ and P^ be two

points on the line represented by the numbers x^ and X2 respec-

tively. Then A = x^, OP^ = x^.

Three cases arise

:

(1) both numbers positive
; (2) one number, say x-^, negative,

the other positive
; (3) both

0) —I h! h^ 1 numbers negative.

rg) Pi O P Pg To represent geometri-

p p p Q cally the sum of x^ and x^ lay

^^^ ^ 1—

I

•— off from the end of x^ sl

^^^- *• segment, PiP, equal to X2

and measured from Pj in the same direction as x^ is measured

from 0. Then

0P=Xi-{-X2.

For, in each case, 0P= OP^ + P^P, by Art. 5,

= 0P,^0P2 M
— 37j ~}~ fl/g.

8. Geometric subtraction of numbers. Consider again the

three cases of Art. 7. To represent geometrically the differ-

ence Xi — X2 lay off from the end of Xi a segment PiP equal to

— X2, i.e. having the same numerical value as X2 but opposite

in direction.
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Then 0P= Xi-X2.

For, in each case,

0P= OP, + F,P= 0P-PP,= 0P^-0P, = x,-X2.

Another, and more important, expression of the difference is

as follows

:

x^ - X, = OP, - OP2 = OP, -\-PM
= P,0-{-0P,= P2Pi, by Art. 5,

or JP1-P2 = a52 — a?i.

Hence, the value of any seg-

ment of the line is equal to the

number that represents the end minus the number that represents

the beginning of the segment.

This principle will be of frequent use hereafter.

Illustration. In Fig. 6, if P„ P.>, P3 are three points on

P2
.

P4
. Pi Pa-—t

1 1 1 (——^!—I 1^

—

- 3 -
f Fig. 6. ^ ^

the line represented by the numbers 2, — 3, 4 respectively,

then

PiP2 = -3-2 = -5, P,Pi = 2-(-3)= 5,

P3P, =-3-4 = -7, PiP3 = 4-2 = 2, P3Pi = 2-4 = -2.

9. Relative position of points representing numbers. Let x^

and X2 be any two real numbers represented by the points P,

and Pa respectively.

By Art. 8, -P2A = x,— x^.

Now if Xi > 072 then x, — x^ is positive, and conversely.

Therefore, if x^^x^, P^P, is positive, and hence Pi lies to

the right of Pg ; if a^i < %, AA is negative, and hence Pi lies

to the left of Pg, and conversely.

Hence, of the two points which represeyit ttvo real numbers the

point which represents the greater number lies farther to the right.

E.g. in Fig. 6, P,, which represents 2, lies to the right of Pg,

which represents —3; P4, which represents —1, lies to the
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right of P^j which represents — 3. This agrees with the state-

ment that 2 is greater than — 3, and that — 1 is greater than

-3.

EXERCISE II

1. Represent geometrically the following pairs of numbers, their sum,

the first minus the second, the second minus the first

:

(a) 3, 2. (6) - 2, 3. (c) .4, - 3. (d) - 5, - 1.

2. In Fig. 5 express the following segments as the difference of the

numbers representing the points: P1P2, P2-P1, P2O, OPi, PiO, OP2.

vvk^ 3. In Fig. 5 what segments represent Xx — iC2, x^ — Xx^ iCi, X2, — Xi^

4. In Fig. 6, by means of the principle in Art. 8, find the values of

P2P1, P3P1, P4O, P4P3, P3P4, OP3, P3O, P3P2.

n. COORDINATES OF POINTS IN THE PLANE

10. Location of a point. To determine the position of a

point on a straight line one magnitude is sufficient; namely,

the distance of the point, right or left, from a fixed point of

the line. The number that represents a point on the line

determines the position of the point when the origin is given.

In the plane, however, two magnitudes are necessary to

determine the position of a point.

There are many ways of choosing these magnitudes. Two
simple methods, and the only ones used in this book, are to

consider the location of the point, (1) with reference to tw^

intersecting straight lines, (2) with reference to a fixed Lnv"

and a fixed point. A consideration of these two methods

leads to the definitions of (1) Cartesian Coordinates, (2) Polar

Coordinates.

11. Cartesian coordinates. Let two intersecting straight

lines, OX and OF, be taken as lines of reference and an arbi-
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trary length be chosen as a unit. Then to every point P in the

plane there can be assigned a pair of real numbers as follows

:

Through the point P draw lines parallel to OX and Y, meet-

ing OX and OY in M and JST

respectively. The pair of num-

bers which measure JSfP and

MP is taken to represent the

point P. To every position of

P there corresponds one, and

only one, pair of such num-

bers. In order that to every

pair of real numbers there may
correspond one, and only one,

point, some agreement in re-

gard to signs is necessary. To
the agreement already made that a segment measured from left

to right shall be positive, and one measured from right to left

shall be negative, let there be added the agreement that a seg-

ment measured upward shall be positive, and a segment meas-

ured downward shall be negative. With this agreement in

regard to signs there corresponds one, and only one, point in

the plane to every pair of real numbers.

The lines OX and OY are called the a?-axis and 7/-axis

repectively.

The segments NP and MP are called respectively the

abscissa and ordinate of P, and together are known as the

Cartesian coordinates of the point.

It should be carefully noted that, from the definition, the

abscissa of P is measured from the y-axis to P, and the ordi-

nate of P is measured from the x-axis to P.

The abscissa and ordinate are most frequently denoted by x
and y respectively, though other letters are sometimes used.

The point P is denoted by the coordinates inclosed in

parentheses and separated by a comma, thus, (x, y) or

P(x, y).
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Y/ To distinguish one point

from another, subscripts

are often used. Thus in

P^i^^^yO Fig. 8,

X2 = JSr2P2=03Io= -2,

y, =M,P,= 0^2 = 3,

x^= N^Ps= — 3,

'4 (2:4 » 2/4)

Fig. 8.
ys = MsPs = -S, etc.

M,M, = M,0+OM, = -x, + x„

M^Mi = M^O + 03fi = -x^-\- xi, etc.

EXERCISE III

1. Assume a pair of axes and locate the points (2, 3), (2, —3),

(-2, 4), (-5, -6), (0, 2), (4, 0), (-1, 0), (0, -3), (0, 0).

2. In Fig. 8 express as the dif-

ference of two abscissas, 3f2Ms,

M^Mi, MsM^, MoMi.

3. Express as the difference

of two ordinates, N2N3, iViiV4,

4. What segments represent

Xi — X2, X3 - Xi, Xi — Xi, X3 - res ?

5. What segments represent

y2 - Vu Vi - «/2, ys - 2/2, 2/1 - y* ?

6. Where do all points lie that

have the abscissa zero ; that have

the ordinate zero ?

7. Where do all points lie that

have the abscissa 2 ; that have the abscissa — 3 ; that have the ordinate

2 ; that have the ordinate — 4 ?

Fig. 9.
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8. In Fig. 9 express as the difference of two abscissas, PiB, P^^-, PzQi

IB, SN; and as the difference of two ordinates, TPs, PnV, BQ, TS,

P2B, PaS.

9. In Fig. 9 let Pi, Pg, Ps have coordinates (2, 3), (4, — 2), and

(-3, 2), respectively, and find the values of SN, P2S, BQ, BT, PiN,

SPs, P2P, QP3.

12. Segments not parallel to an axis. Segments of lines not

parallel to one of the coordinate axes will not have definite

signs given to them. They vi^ill generally be considered as

positive lengths, but where the two opposite directions along

the same straight line are considered, one of them will be

counted as opposite in sign to the other.

13. Rectangular coordinates. If the axes in the Cartesian

coordinate system are at right angles to each other, the system

is called the rectangular system of coordinates.

This system possesses the advantage of simplicity, in many
problems, over that of oblique axes, and as most of the proper-

ties and relations of figures to be studied do not depend upon

the system of coordinates used, the rectangular system will be

used except where otherwise indicated.

14. Polar coordinates. The position of a point in the plane

may be determined by the length of the line joining it to a fixed

point, and the angle which this line

makes with a fixed direction.

In Fig. 10 let be a fixed point

and OA a fixed line. Let P be any

point in the plane. Then the seg-

ment OP and the angle AOF deter-

mine the location of P. Fig. 10.

The segment OP is called the radius vector, and the angle

AOP the vectorial angle of P.

Together they are known as the polar coordinates of P. They

are usually denoted by r and 6, respectively, and the point

indicated by (i-, 6), or P(r, 6).
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The fixed point is called the origin, or pole ;
the fixed line

OA the initial line, or axis.

The line OP is called the terminal line of the angle AOP.
With these definitions it is easy to see that any point in the

plane may be represented by polar coordinates, both of which

are positive, and with the angle less than 360°.

In order, however, to represent both positive and negative

numbers by points, the following agreement in regard to signs

is made: Positive angles

will be measured in the

counter-clockwise direction

from the initial line ; nega-

tive angles in the opposite

direction. By a negative

radius vector will be meant

one laid off on the terminal

line of the vectorial angle

produced back through the

pole.

3

27r

3
and 5, would be as indi-Thus, the points (5,

Gated in Fig. 11.

With the above agreement in regard to signs it follows that

to every pair of coordinates

there is just one point in the

plane, but to every point in

the plane there corresponds an

indefinite number of pairs of

coordinates.

J^.gr. thepoint [2, -
J

may also

be represented by
[
— 2,

(-2,*f)(2,-f)
or b.
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any other pair of coordinates obtained by increasing the angle

of any of the above pairs by an integral multiple of 2 tt, the

radius vector being unchanged.

If d is restricted to being numerically less than 2 tt, the four

pairs of values written above are the only ones that represent

the given point.

Note. The student should remember that the unit of circular measure

of an angle is the angle subtended at the center of a circle by an arc equal

in length to a radius of the circle. This unit is called the radian.

From the definition it follows that tt radians= 180°, where tt =3.14159 •• •.

When an angle is represented by a letter or figure without

the degree sign (°), it will be understood that the unit of meas-

ure is the radian.

EXERCISE IV

1. Plot in polar coordinates (2, -30^), f-4, ^V ll, -^),
(tt, tt), (tt, 7r°), (3, 2).

2. Plot in rectangular coordinates (—3, 4), (0, —3), (0, 0), (a, 0),

(0,.),(.,-2f),(6,|).

HI. THE TRIGONOMETRIC FUNCTIONS

15. Definitions of the trigonometric functions.

given any angle, P'

assume a system

of rectangular
coordinates and

place the vertex

of the angle at

the origin, with

the initial line

coinciding with

the positive part

of the a?-axis

;

, ,

'

Fig. 13.
positive angles to

be reckoned counter-clockwise and negative angles, clockwise.
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Assume any point P on the terminal line ; let its coordinates

be X and y, and its distance from the origin be r, counted

always positive. Then, whatever the size of the angle, the

following definitions are given

:

sine of ^ = ordinate/distance = y/r^

cosine of ^ = abscissa/distance = x/r,

tangent of A = ordinate/abscissa = y/Xj

cotangent of ^ = abscissa/ordinate = x/y,

secant oi A = distance/abscissa = r/x,

cosecant of ^ = distance/ordinate = r/y.

16. Formulas and tables. A set of the more important

formulas connecting the trigonometric functions of angles,

and a table of sines, cosines, and tangents are given at the

back of the book.

17. The inverse trigonometric functions. The symbol sin*' £c,

read " anti-sine a?," is used as equivalent to the words, "an
angle whose sine is ic."

Thus one value of sin~^ (i) is - , or 30°; another value is —

.

6 6

In like manner the symbols cos~^ x, tan~^ x, etc., are used as

equivalent to " an angle whose cosine is a;," " an angle whose
tangent is ic," etc.

EXERCISE V

1. Find by the use of the table the sine, cosine, and tangent of each of

the following angles : 20^, 17*^ 20', 185°, 109° 40', 290°, 165^ .2 radian,

.72 radian,
(-J

radian.

2. Given A = sin-i .6, find a value of A in the first quadrant, and one

in the second quadrant.

3. Given A = tan-i .4563, find two values of A.

4. Find sin-i(tan25°}, sin(tan-i3.26), sin(sin-i ,35).

5. Show that sin (sin- 1 .5) = .5, and that sin-i(sin30°)= 30°, or 150'',

or 390°, etc.
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18. Relation between rectangular and polar coordinates.

Let the origin in the two systems be the same, and let the

initial line coincide with

the positive part of the pc^, y\

ic-axis.

Let P be any point in

the plane with rectangular

coordinates x and y and

polar coordinates r and

(Fig. 14), the polar coordi-

nates being so chosen that

e=Z. XOP and r = OP,

where OP is positive.
Fig. 14.

Then from the definition of sine and cosine.

- = cos ^, ^ = sin e,

r r

or

(1)
Qc z=r cos 6,

y =r sin 6.

These equations express x and y in terms of r and 0. From
the figure, or from these equations, r and 6 can be expressed

in terms of x and y. The resulting equations are

r = v^+ y%

9 = tan-^ (^y
(2)

EXERCISE VI

1. Show how to obtain eqs. (2) of Art. (18) from eqs. (1).

2. Show that if the polar coordinates of F be chosen so that d differs

from Z XOP by 180°, and r is the negative of OP, eqs. (1) still hold.

3. Find the polar coordinates of the points whose rectangular coor-

dinates are (3, - 7), (4, 3), (- 2, 1), (- 4, - 2).

4. Find the rectangular coordinates of the points whose polar coor-

dinates are (2, 30'^), (- 3, 45°), (4, - 60"), (- 2, - 15°).

5. In rectangular coordinates where do all points lie whose abscissas

are zero ; whose ordinates are zero ; whose abscissas equal any constant
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C ; whose abscissas equal their ordinates ; whose abscissas equal the nega-

tive of their ordinates ?

6. What is true of the polar coordinates of points which satisfy each

of the conditions of example 5 ?

7. In polar coordinates where do all points lie whose vectorial angles

are zero ; whose vectorial angles equal 30*^ ; whose vectorial angles equal

any constant ,- whose radii vectores equal 5 ; whose radii vectores equal

any constant C ?

8. What equation is true of the rectangular coordinates of the points

which satisfy each of the conditions in example 7 ?

9. Find the polar coordinates of the point whose rectangular coor-

dinates are (3.26, -2.67).

10. Find the rectangular coordinates of the point whose polar coor-

dinates are (6.34, 34° 16').



CHAPTER II

PROJECTIONS. LENGTHS AND SLOPES OF LINES. AREAS
OF POLYGONS

L PROJECTIONS

19. Projections by parallel lines. Through the beginning

and end of a segment AB let lines parallel to a given direc-

tion be drawn to intersect a given line MN in C and D respec-

tively. Then CD is called the projection of AB on MJ^, for

the given direction.

The beginning and end of the projection are to be read in

the same order as the beginning and end of the segment.

Thus CD is the projection of AB, while DC is the projection

of BA. (Fig. 15.)

The direction, parallel to which the lines AC and BD are

drawn, is called the direction of projection.

Evidently, the value of the projection depends upon, (1) the

length of the segment, (2) the difference in direction of the

segment and the line on which it is projected, and (3) upon

the direction of projection. It is evident, also, that the pro-

15
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jections of a given segment on parallel lines are equal, if the

direction of projection is the same.

20. Orthogonal projection. If the direction of projection is

perpendicular to the line on which the segment is projected,

the projection is called orthogonal.

B

Fig. 16.

Thus in Fig. 16 CD is the orthogonal projection of AB
on MN.

21. Projection in the direction of one coordinate axis on a line

parallel to the other axis.

Definitiox. The projection in the direction of the 2/-axis

of a segment on a line parallel to the a;-axis will be called the

ic-projection of the segment.

A similar definition is given for the y-projection of the seg-

ment.

Consider now the ic-projection of any segment P^Pi.

Let the coordinates of Pj and P., be {x'^, y^ and (x^, y^ re-

spectively. Three cases may arise : P^Pi may lie wholly to the

right of the ly-axis, may cut the ?/-axis, or may lie wholly to the

left of the 2/-axis. (Fig. 17.)

Let the projection in either case be M^M,, and let the line on

which P1P2 is projected meet the ?/-axis at N, Then, in either

case,

M1M2 = MiN+ NM2 = — Xi-\-x<> = X2— iCj.
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Therefore, the x-projection of a segment is equal to the abscissa

of the end of the segment minus the abscissa of the beginning.

Yi

In like manner it can be shown that the y-projection of a seg-

ment is equal to the ordinate of the end minus the ordi7iate of the

beginning.

Example. The a>projection of the segment from Pi(— 1, 3)

to P2(3, 2) is 3 — (— 1) = 4, and the ^/-projection is 2 — 3 = — 1.

EXERCISE VII

1. Prove that the ^/-projection of a segment is equal to the ordinate of

the end of the segment minus the ordinate of the beginning.

2. Find the x- and ^/-projections of the segments from the first to the

second of each of the following pairs of points: (2, 3), (—2, 6);

(-3, -1), (4, -5); (1, -2), (3,7); («,&), (c, d); (0, 1), (-2, 0);

(0,0), (3, -5); (u,v), (s,t).

Check the results by drawing the figure in each case.

3. If the axes are at right angles to each other, find the distance from
the origin to (3, 7) ; from the origin to (x, y).

c
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4. If the axes are at right angles to each other, find the distance

between (- 5, 3) and (2, - 6).

5. If the axes are rectangular, show that the distance between (iCi, yi)

and (X2, y-i) is V(a:i - x^y^ + {yi - y2)\

6. In rectangular coordinates the point (x, y) moves so as to keep at

the distance 5 from the origin. Express this by means of an equation.

What is the locus of the point ?

7. What is the a;-projection of a segment parallel to the y-axis ; the

t/-projection of a segment parallel to the x-axis ?

8. The vertices of a triangle are A, B, and G. Show that the sum of

the projections of AB, BC, and CA on any line is zero, and that the

projection of AC = the projection of AB + the projection of BC.

9. Show that the sum of the projections of the sides of any closed

polygon taken in order, i. e. so that the beginning of each side is the end

of the preceding, on any line is zero.

10. Show that if the sum of the projections of the sides of a polygon

taken in order on one straight line is zero, the polygon is not necessarily

closed ; but if the sum of the projections taken in order on two non-

parallel lines is zero, the polygon is closed.

II. LENGTHS AND SLOPES OF SEGMENTS. DIVISION
OF SEGMENTS

22. Distance between two points. Numerical examples.

Example 1. To find the distance between the two points

whose Cartesian coordinates are

(2, -4) and (-3, 5), the angle be-

tween the axes being G0°.

Let (2, -4) be P„ and (-3, 5)

be Pa-

Through Pi and Pg draw lines

parallel, respectively, to the x- and

?/-axes, intersecting in Q. (Fig. 18.)

jj,j^ ^g
By the law of cosines from trigo-

nometry,

P^l=QPl+ QPl- 2 QPi- W, cos P^QP^,
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Here QP^ = 2 - (- 3) = 5, by Art. 21,

cosPiQP2 = cos60° = i.

.•.P,P2 = V6i = 7.81 ... .

Example 2. To find the distance between the points whose

polar coordinates are [2, — j
and (5,

— '^

lPi

Fig. 19.

Let (2, ^\ be P„ (5, - 1") be P^

and let P^Po = d. (Fig. 19.)

By trigonometry,

d' = OPI + OPI - 2 OPi . OPa cos PiOP2

= 4 + 25-2. 2. 5cos^
6

= 4 + 25 + 20 cos^
6

= 29 + 17.32 ...
.

,'.d = V46.32 = 6.81 nearly.

EXERCISE VIII

1. If the angle between the axes is 45°, find the distance between the

points (-.3, 5) and (4, 1).

2. If the angle between the axes is 80°, find the distance between

(6, 2) and (-3, -4).

3. If the axes are rectangular, find the distance between (a, 6) and

(c, d).
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4. Find the distance between the points whose polar coordinates are

(6, 20°) and (4, 2('-)), where 2('-) means 2 radians.

5. In polar coordinates find the distance between ( — 3, -
] and

23. Distance between two points. General formula in rec-

tangular coordinates.

Let Pi(aaj 2/i) ^'^^ Pgfe V-i) be two points in rectangular

coordinates, and let d = PiPg- Through
^2 Pj and Pg draw lines parallel, respec-

tively, to the X- and 2/-axes to intersect

in M.

Fig. 20.

Then d = Vp^ii^f' + j/pf.

But PiM= X2 — a^i, JtfPa = 2/2 — 2/i-

.-. d= V(:«i- 0^27 + (2/1 -2/2)^

24. Distance between two points. General formula in polar

coordinates.

O2. ^2)

Fig. 21.

Let the two points be (rj, ^1) and (rg, dg)? and let the distance

between them be d. (Fig. 21.)
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There are two cases to consider : according as the difference

between the vectorial angles is less than or greater than 180°.

In the first case

d2 = rlfrl-2 r^r^ cos {0^ - O.),

and in the second case

d^ = rf-^rl-2 r.r^ cos [360° - (O^ - ^i)].

These reduce to the one form

d = Vrf + r| — 2 r^rg cos (^i — O2).

EXERCISE IX

1. Find the distance between (—4, 1) and (3, 5), in rectangular

coordinates.

2. Find the distance between (3, 2) and (— 4, — 5), in rectangular

coordinates.

3. From a certain point three other points, A, J5, and O, are located

as follows : A lies 3 mi. N. and 2^ mi. E. from 0, B lies 4 mi. S. and 1^

mi. E. from 0, and C lies 5 mi. W. and 1^ mi. N. from 0. Find the dis-

tances between the points A, B, and C, and the distance of each of the

points from correct to hundredths of a mile.

4. Find the distance between the points whose polar coordinates are

(4, 24°) and (-2, 40°).

5. Find the lengths of the sides of the triangle whose vertices are

(5, —2), (—4, 7)j and (7, —3), in rectangular coordinates.

6. Find the lengths of the sides of the triangle whose vertices are

(-2, 30°), (4, 25°), and (5, 115°).

25. The angle which one line makes with another.

Definition. The angle which one line, L^, makes with

another, L2, is the

angle, not greater than

180°, measured coun-

ter-clockwise from L2

to Li.

Thus, in Eig. 22, 6

is the angle which Li Fia. 22.
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makes with L^. The supplement of 6 is the angle which L^

makes with L^.

26. Inclination and slope of a line. The angle which a line

makes with the x-axis, or with any line parallel to the a>axis,

is called the inclination of the line.

This angle is to be measured from the positive direction of

the avaxis toward the positive direction of the ?/-axis.

In rectangular coordinates, the slope, or gradient, of a line is

the ratio of the change of the ordinate to the corresponding

change of the abscissa of a point moving along the line. It is

counted positive if the ordinate increases as the abscissa in-

creases ; negative if the ordinate decreases as the abscissa in-

creases.

Thus, if, as a point moves along a line, the ordinate increases

one unit to an increase of 3 units in the abscissa, the line has

a slope of i
; while if the ordinate decreases 1 unit to an in-

crease of 3 units in the abscissa, the line has a slope of — \.

The inclinations of these lines are, respectively,

6 = tan-^i = 18° 26',

and 6' = tan-^ (- i) = 161° 34'. (Fig. 23.)

3

Fig. 23.

From the definitions of inclination and slope it follows that

slope = tangent of inclination,

or, designating the inclination of a line by and its slope by m,

m = tan 0.

If the axes are not rectangular, the equation,

slope = tangent of inclination,

is taken as definition of the slope.
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27. Slope of a line through two points in terms of the rec-

tangular coordinates of the points.

Let the two points be Pj {x^, y^) and P^ (x.,, y^.

Through Pj and P^

draw lines parallel to

the coordinate axes to

meet in M. (Fig. 24.)

Then whether the slope

is positive or negative

its value is given by

slope

formula

MP, y. V\

PiM HC2 — oci

If Pi is the higher point, then slope = ^^^~'^-
, which is the

same as the above. ^^ ~ ^-

Therefore, in rectangular coordinates, the slope of a line through

two points is the difference of the ordinates of the points divided

by the corresponding difference of the abscissas of the points.

28. Point dividing a line in a given ratio.*

Example. To find the point which divides the line from

(- 1, 5) to (6, - 4) in the ratio 3 : 2.

Let (-1,5) be P^, (6, - 4) be P„ and

let the required point be P{x, y). Then,

by hypothesis,

PiP^3
PP2 2*

Through P, P^, and Po, draw lines

parallel to the axes as in Fig. 25.

Then, from similar triangles,

MP ^P.P^S
NP2 PP2 2'

* In this article and in several following articles the word "line" is fre-

quently used in the sense of " segment of a line," where there is no doubt of

the meaning.

Fig. 25.



24 ANALYTIC GEOMETRY

and

I.e.

and

MP^__^i^_ 3

NP ~PP2~^2'

x + l_ 3

6-x ^2'

5-y_ 3

jV + 4
~2'

from which x = 3^, ?/ = — f

.

Hence the required point is (3^, — |).

29. External division. The point Pis said to divide the line

P1P2 externally when it lies on the line produced. (Fig. 26.)

The segments into which P divides P1P2 are defined to be

PiP and PP2. The first segment is that from the beginning of

the line to the point of division,

and the second segment is that

from the point of division to the

end of the line. Since these

segments are measured in oppo-

site directions, they are opposite

in sign. Hence their ratio is

negative. The first and second

segments must correspond respectively to the first and second

terms of the given ratio into which P is to divide PiP2'

30. Example of external division.

To find the point which divides the line from (—1, 5) to

(4, 7) in the ratio — |.

Let (—1, 5) be Pj, (4, 7) be P2, and let the required point

be P{x, y).
'

Then P^=JL
PP. 3

Since P^P must be numerically less than PP^, P must lie

nearer to Pi than to Pg, i.e. P must lie on the portion of the

line extended through Pj.

Fig. 26.
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Project the segments so as to obtain their a> and i/-projec-

tions. (Fig. 27.)

Fig. 27.

Then
M^P P,P
PM^ PP^

2
~3'

and
M,P,_P,P_
P^M^ PP^

2
3*

-••
x^l 2

4-a; '3'

and
5-.y 2

from which if=-ll, v = 1

Hence the required point is ( — 11, 1).

EXERCISE X

1. Find the point which divides the line from (—3, 1) to (6, — 5) in

the ratio— |. Ans. (12,-9).

2. Show that the point which bisects the line joining (xu Vi) and

3. Find the ratio in which the line from (2, 0) to (6, 0) is divided by

(1, 0) ; by (5, 0) ; by (9, 0).

'A. The point P(2, k) is on the line joining Pi(— 2, 3) and Pa (4, — 7) ;

find the ratio into which P divides PiPa, and the value of k.
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31. General formulas for a point dividing a line in a g'ven

ratio.

Let the line from Pi(it'i, 2/1) to Pal^^a? 2/2) be divided by

P(x, y) in the ratio r : 1.

There are three cases to consider:

(1) P between Pj and P2,

(2) P on the line produced through P^

(3) P on the line produced through Pg.

In (1) r may have any positive value,

in (2) r is negative and numerically less than 1,

in (3) r is negative and numerically greater than 1.

M, M

Project PiP and PP^ on any two lines parallel to the axes.

(Fig. 28.) In either of the three cases,

¥iM-P^-r and ^^^-^^^-r

or

from which

- = r, and ^—^ = r,

^2 — ^ 2/2-2/

3C

EXERCISE XI

1. Find the point which divides the line from (- 1, 3) to (6, — £) in

the ratio 3:2.
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2. Find the point which divides the line from (3, |) to (- 5, 8) in the

ratio — f ; in the ratio — |.

3. Find the external point on the line joining Pi(a, b) and P2(c, d)

which is n times as far from Pi as from F2.

4. Find the points which trisect the line joining Piixi, yO and

P2(X2, y-z)'

5. The point P divides the line PiPz in the ratio r : 1 ; trace the varia-

tion in r as P moves along the line internally from Pi to P2, then on from

P2 to 00 , and then, changing to the other side of Pi, comes in from — go

to Pi.

32. Angle between two lines of given slopes.

Example. Let two lines L^ and L.2 have slopes

respectively ; to find the angle which Li

makes with ig-

Let Li and L2 make angles Oi and O2

respectively with the a>axis, and let the

angle which L^ makes with io he
<f>.

Through the intersection of the lines

draw a line parallel to the a;-axis. (Fig.

29.) Then it is seen that

(ft = 61 — do-

Hence tan <j> = tan (^1 — ^2)

tan ^, — tan Oo

Fig. 29.

But

1 -f- tan ^1 tan O2

tan <9i
= - 2, tan O2 = 3.

-2-3
. tan <^ 1-2.3

= 1.

33. The angle between two lines. General formula.

Let two lines, Li and L2, have slopes mi and mg respectively

;

to find the angle which Li makes with L^.

Let the angles which Lj and Lo make with the avaxis be Oi

and O2 respectively. Then m^ = tan O.1, m^ = tan O.2.
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Let <^ be the angle which Li makes with L^.

Through the intersection of L^ and L.2 draw a line parallel

to the a>axis. Then (Fig. 30),

case (i),

case (ii),

and in either case

Fig. 30.

6i > ^2J

<f)
= 0] — 62',

^1 < ^2>

tan (j> = tan (^1 — O2)

__ tan $1 — tan $2

1 + tan $1 tan 62

_ mi — m2

1 + miTJia

34. Condition for parallel lines, and for perpendicular

lines. If the two lines of the preceding article are paral-

lel, tan 61 = tan O2, and hence mj = mg. If the two lines are

perpendicular, tan <^ = tan 90° = 00 , and hence 1 + mimg = 0.

Conversely, if mi = ma, tan </> = 0, .
•

. </> = 0, and therefore the

lines are parallel.

If l4-mim2 = 0, tan<^ = oo, .'. <^ = 90°, and therefore the

lines are perpendicular.

Therefore, the condition that two lines of slopes mi and mg

be parallel is mi = m2 ; the condition that they be perpen-

dicular is 1 + Wjma 0, or mi = <



PROJECTIONS. LENGTHS AND SLOPES OF LINES 29

EXERCISE XII

For rectangular axes. Draw a figure in each case.

1. Show that the line joining (3, 2) and (— 2, — 13) is perpendicular

to the line joining (1, 3) and (4, 2).

2. Show that (— 1, — 2), (3, 2), and (—3, 0) are the vertices of a

right triangle. Find the other angles.

3. Where does a line cut the x-axis if it passes through (2, — 3) and

is parallel to the line through (—1, 5) and (4, — 2) ?

4. A line is drawn perpendicular to the line through Pi (— 2, 5) and

P2(4, — 3) at its middle point ; find a point P on this perpendicular

whose abscissa is 3, and show that P is equidistant from Pi and P^.

5. The vertices of a triangle are (7, 4), (— 2, — 5), and (3, — 10) ;

show that the line joining the middle points of two sides is parallel to the

third side, and is half as long, by using formulas for slope and distance.

6. Find a fourth point which with the three given in example 5 form

the vertices of a parallelogram.

7. Two lines, Li and X2, make tan-i 2 and tan-i — 4 respectively

wdth the ic-axis ; find the angle which Ly makes with L^.

8. The vertices of a triangle are Pi(— 1, 5), P2(3, —4), and

P3(6, 2) ; find the slopes of the sides and the angle at Pi.

9. Show by their slopes that the line joining (—3, 4) and (6, 1) is

parallel to the line joining (7, 2) and (5, |).

10. A line L makes an angle of 45° with the line through (1, 1) and

(6, 8) ; find the slope of L and the angle which it makes with the x-axis.

11. Li passes through (4, 5) and (6, — 3). L-2. is perpendicular to Li ;

find the slopes of Li and L^.

12. Zi has a slope m. The angle which L^ makes v\dth the a>axis is

double the angle which L^ makes with the a;-axis ; what is the slope of L^ ?

13. The slope of one line is 3.728 and of another — .324 ; find the

acute angle between them.

14. Find the slope of a line which makes an angle of — 42° with a line

of slope .4364.

15. A line passes through (6, —. 3) and has a slope .324 ; find a point

on the line with abscissa 1.2.

16. A line cuts the x-axis at (a, 0) and makes tan-i m with the ic-axis

;

find where it cuts the ?/-axis.

17. A line passes through (a, 0) and makes tan-^w with a line of

slope n ; find its slope, and where it cuts the y-axis.
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III. AREAS OF POLYGONS

35. Area of a triangle in terms of the coordinates of its

vertices.

Example 1. To find the area of a triangle whose vertices

in rectangular coordinates are Pi (—2, 3), P2{4:, —1), and

Ps(l,-6).
Through the lowest vertex, Pg (Fig. 31), draw a line parallel

to the ic-axis, and from the other vertices drop perpendiculars

to this line, meeting it

Y

Pi (-2, 3>

-1)

in 3/i and M^.

Then the area re-

quired is equal to

area of M^P^PiM^
— area of P.M2P2

— area of MiP^Pi
= i 3f,M2(M,P,-^ M2P2)

-\P,M2
-iM,P,

= 1.6(9 + 5)

5

M2P2
M,P,

-i-3
-i-3

= 21.

Fig. 31.

If P1P2P3

a triangular

9.

represents

field to a

scale of 1 space = n ft.,

then the area of the field is 21 n^ sq. ft.

Example 2. To find the area of the triangle whose vertices

in polar coordinates are (3, 60°), (-2, 125°), and (5, 215°).

The area required is the sum of the areas of the triangles

OP2P,, OPJ\, 0P,P2 (Fig. 32).

The area of a triangle is equal to one half the product of two

sides and the sine of the included angle.
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P, (3, 60°)

P, (-2, 125°)

Pg (5, 215°)

Fig. 32.

.*. the required area

= 10P,' OF, sin P.OPs+ iOPs' OP2 sin P3OP2

+10P2- OPisinP^OPi

= i . 3 . 5 sin 155° + 1 . 5 • 2 sin90° + i • 2 . 3 sin 115°

= i (15 sin 25° 4-10+6 cos 25°)= 10.89.

EXERCISE XIII

1. Find the area of the triangle whose vertices in rectangular coordi-

nates are (3, - 5), (— 8, 6), and (9, 2).

2. Find the area of the triangle whose vertices in polar coordinates are

3. Find the area of a triangle whose vertices in rectangular coordinates

are (0, 0), (xi, yi), and (x2, y^).

4. Find the area of a triangle whose vertices in polar coordinates are

(0, 0), (n, ^i), and 0-2, ^2).

5. Find the area of the quadrilateral whose vertices in rectangular

coordinates are (-2, 5), (7, 9), (10, -3), and (-6, -9).

36. Area of a triangle. General formula in rectangular

coordinates. Let Pi(.Ti, ?/i), P-zipo, 1/2), and P,{x.^, y,) be the ver-

tices of a triangle in rectangular coordinates ; to find the area

of the triangle.
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Through the lowest vertex (Pg in I'ig- 33) draw a line paral-

lel to the a^-axis, and from the other vertices drop perpendicu-

lars to this line, meeting it in M^ and M^. Then

M,P,

area of triangle P1P2P3

= area of trapezoid M^P-^P^M^

+ area of triangle P^P^M^

— area of triangle P2M^P^

= ^{M,P, + JW3P3) • M,M, + i P^M, . M,P, - 1 P^M,

= K (2/1 - :^2 + 2/3 - 2/2) (^-3 - a^i) + (a^i - ^2) (2/1 - 2/2)

-(^•3-a?2)(2/3-2/2)],

or, area P^P^P^ = J (a'12/2 + a^gl/s + ^32/1 — ^iVs — ^iVi — ^3^2)-

This may be written in the determinant form

i»i 2/1 1

1 a;2 2/2 1

^s 2/3 1

In Fig. 33 the succession of subscripts 1, 2, 3, is obtained by

going around the triangle counter-clockwise. If the points had

been so lettered that in following the above order it would be

necessary to go around the triangle clockwise, the area would

have been found to be minus the above expression.

This can be seen to be true by exchanging two of the sub-

scripts, say 1 and 2, in Fig. 33, and making the same exchange

in the formula. The change in the figure changes the order
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from counter-clockwise to clockwise, and the change in the

formula just changes the sign of the whole expression.

37. Area of a triangle. General formula in polar coordi-

nates. Let Pi(ri, $i), P^ir^, O^), and Pg^rg, ^3) be the vertices of

a triangle in polar coordinates ; to find the area of the triangle.

Two cases are to be distinguished, according as the pole lies

without or within the triangle. The second case will occur

only when the difference between the vectorial angles of two

of the vertices is greater than 180°.

Fig. 34.

In case (1) the area of the triangle P^P^P^ is equal to the area

of triangle OP^P-i -\- area of triangle OPzPs — area of triangle

OP1P3

= i r^u sin (02 - ^1) + i r^r^ sin (^3 -O^)-^ r^r^ sin (^3 - Oi)

= i [ri^o sin (^2 - ^1) rh r^r^ sin (^3 —^^2) 4 ^31-1 sin (^1 - ^3)].

In case (2) the area of triangle OP1P3 must be added to the

areas of the other two triangles, instead of subtracted from

them, as in case (1) ; but area of OP1P3 is here equal to

i ViV^ sin [360° — (^3 — ^1)] which is equal to — ^ ^Vg sin (^3— ^1).

The formula for the area of the triangle sought reduces there-

fore to the same as in case (1).

Just as in the case of the area in rectangular coordinates, the

above formula would give the negative of the area if the sub-
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scripts were so arranged that in following the order 1, 2, S, it

would be necessary to go around the triangle clockwise.

38. Area of a polygon. General formula in rectangular

coordinates. If the origin be one of the vertices of a triangle

whose other vertices are Pi (x^, y^ and

P2(x*2, 2/2), the. formula for the area of

the triangle given in Art. 36 becomes

provided that in going around the tri-

angle counter-clockwise the vertices are

passed in the order P^, P^, and 0.

This area of the triangle OP1P2 may be

thought of as generated by a line OP,

initially in the position OPi, turning counter-clockwise about

to the final position OP2, the point P moving along the

line PiP2- With this conception of the

area, it must be noted that it is the ab-

scissa, x^, of the initial position, Pj, of

P which comes first in the formula for

the area, ^(xiy2 — .T22/1).

If the line OP must turn clockwise

from the position OPi to the position

OP2, then the expression
-J

(a^iif/2 — ^^yi)

is equal to the negative of the area of

the triangle OP1P2.

Let ^(«i2/2 — ^22/1) b® den'oted by A. Thus

Consider now any polygon whose vertices in rectangular co-

ordinates are Pi(xi, y^), P2(x2, y^, ••• Pn^^m 2/n)j the vertices

being so lettered that in going around the polygon counter-

clockwise the vertices are passed in the order Pj, Po, ••• P„.

For definiteness let r? = 6, and let the polygon be as shown in

Fig. 37, the origin being outside of the polygon. Let a point P
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start at Pj, traverse the perimeter of the polygon counter-

clockwise, and return to P^. The line OP generates in order

the triangles OP^Pi, OP^P^,, ••• OP^P^. Now the area gener-

ated by OP which lies without

the polygon is generated twice,

with OP turning once clockwise,

once counter-clockwise; or else

is generated four times with OP
turning twice clockwise, twice

counter-clockwise ; but the area

within the polygon is generated

once, with OP turning counter-

clockwise; or else is generated

three times, with OP turning

once clockwise, twice counter-

clockwise. Therefore if the expression A be formed for each

of the triangles OP1P2, OP.Ps, ••• OP^Pi, and their sum taken,

all the area generated by OP will be cancelled out except that

within the polygon and that area will be counted just once.

Therefore the area of the polygon is equal to

i (^m - ^'22/1 + a?22/3 - X^V2 + ^sVi - ^42/3+ ^42/5 " ^oVa+ ^52/6 " ^sVs

4-a:a2/i-^i2/6)-

Fig. 37,

A convenient method of arranging the coordinates for the

computation of the area is as follows : Write down in succession

the abscissas of the vertices taken in order counter-clockwise around

the polygon, rejieating the first abscissa at the last; under the ab-

scissas write the corresponding ordinates

:

Xi X2 Xs x^ x^ Xq a?!

2/1 2/2 2/3 2/4 2/5 2/6 2/1

Then multiply each abscissa by the following ordinate and take

the sum of the terms obtained; multiply each ordinate by ihe fol-

lowing abscissa and take the sum of the terms obtained. The area

is half of the first sum minus half of the second.
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EXERCISE XIV

1. The vertices of a polygon taken in order are (6, 1), (9, —4),
(3, - 10), (- 3, - 5), (- 6, - 8), (- 12, 0) and (- 4, 6) ; find the area

of the polygon.

2. The distances north of a fixed east and west line of four points A^
B, C, D are respectively 32.6 ft., 65.1 ft., 80.3 ft., 51.7 ft., and their dis-

tances east of a fixed north and south line are respectively 25.3 ft., 48.2

ft., 94.5 ft., 106 ft.; find the area of the quadrilateral ABCD.
* 3. The distances of four points A, B, C, D from a point O are respec-

tively 120 ft., 216 ft., 320 ft., and 65 ft., and their directions from are

respectively E. 25° N., N. 32° W., S. 74° W., E. 67° S. ; find the area of

ABCD.

4. The vertices of a triangle are (3, — 2), (—4, 1), and (—8, ~ 5) ;

find (a) the area, (h) the lengths of the sides, (c) the slopes of the sides,

(d) the angles.

5. Show (a) by the lengths of the sides, (6) by the slopes of the sides,

that the quadrilateral whose vertices are (1, 2), (3, — 2), (— 1, — 3), and

(—3, 1) is a parallelogram. Find its area.

6. Show by means of the slopes of the lines that the line joining the

middle points of two sides of any triangle is parallel to the third side.

Show also that its length is half that of the third side.

7. The vertices of a triangle are Pi, P2, Ps ; find the point which di-

vides the line from Pi to the middle point of P2P3 in the ratio 2 : 1. Show
that, using either of the vertices in like manner, the same point is obtained,

and hence that the three medians of a triangle meet in a point.

8. In the formula for the area of a triangle in rectangular coordinates,

substitute the values of the rectangular coordinates in terms of the polar

coordinates and obtain the formula for the area of the triangle in terras of

polar coordinates.

9. The line joining (a, &) and (c, d) is divided into four equal parts
;

find the points of division.

10. Show analytically that the middle points of the sides of any quad-

rilateral are the vertices of a parallelogram.

11. Prove that the middle point of the line joining the middle points of

two opposite sides of any quadrilateral has an abscissa equal to one fourth

the sum of the abscissas of the vertices of the quadrilateral, and find the

similar relation for the ordinates. What conclusion can you draw ?
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12. The point (2, k) is equidistant from (— 5, 7) and (3, 4) ; find k.

13. The point (x, y) is equidistant from (2, — 1) and (7, 4) ; write

the equation which x and y must satisfy. What is the locus of (a;, y) ?

14. Express by an equation the condition that the point (a;, y) is dis-

tant 5 from (2, 3). What is the locus of the point (a:, y) ?

15. Show that the line joining (4, — 4,) and (— 2, — 1) is perpendicu-

lar to the line joining (3, 1) and (I, — 3).

16. Find the angle which the line whose slope is 6,324 nlakes with the

line whose slope is — .657.

17. Find the slope of a line which makes an angle of 30° with a line

whose slope is 3.

18. The line Lx makes an angle of 40° with the a;-axis, and the line L^

makes an angle whose tangent is 2 with Li ; find the slope of L^.

19. If Li makes tan-i a with the a;-axis, and L^ makes tan-^ h with Lx^

find the slope of L».

20. The angle from Lx clockwise to L^ is tan-i (|), and the angle from

L2 counter-clockwise to the x-axis is tan-i(— f) ; find the slope of Li.



CHAPTER III

GRAPHICAL REPRESENTATION OF A FUNCTION;
EQUATION OF A LOCUS

39. Function and variable. One quantity is said to be a

function of a second quantity when to every value of the

second there corresponds one or more values of the first.

Thus in the equation v = gt, which expresses the velocity of

a body falling freely in a vacuum in terms of the time, the

velocity, v, is a function of the time, t.

Again, in the equation pv = a constant, the formula which

expresses the relation between the pressure and volume of a

gas kept at constant temperature, either of the quantities p or

v is a function of the other one.

The quantity which may take, or to which may be assigned,

arbitrary values is called the independent variable, or often

simply the variable, and a function of this variable is often

called the dependent variable.

According to the above definition of a function any constant

may be regarded as a function which takes the same value for

all values of the variable.

Ii to every value of the variable there is just one value of

the function, the function is said to be a single-valued function

of the variable. If two, three, or more values of the function

exist for every value of the variable, the function is called re-

spectively a double-valued, triple-valued, or, in general, a

multiple-valued function of the variable.

Thus in v=32t, v is a single-valued function of t, and in

2/2 = 4 £c, y is a double-valued function of x. On the other

hand, a; is a single-valued function of y, if y be taken as the

independent variable.

38
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40. The graph of a function. It is not always possible to

express by means of an equation the value of a function in

terms of the variable. When, however, there are known
several pairs of corresponding values of two quantities, one

of which depends upon the" other, a graphical representation of

one of the quantities as a function of the other may be made
which will exhibit in an instructive way the dependence of one

of the quantities upon the other.

To illustrate this consider the following examples.

Example 1. It was found that when a certain rod of steel

was subjected to tension, the values of the extension of the rod

in terms of the tension were as shown in the following table,

in which T is the number of pounds of tension per square

inch of cross-section of the rod and e is the number of units of

extension per unit length of the rod, the initial tension being

1000 lb.

T 1000 5000 10,000 20,000 30,000 40,000 50,000 51,000

c .0003 .0009 .0019 .0030 .0040 .0053 .0056

T 52,000 54,000 56,000 58,000 60,000 70,000 80,000

£ .0058 .0064 .0075 .0089 .0113 .0272 .0500

Take the values of € as abscissas and the values of T as

ordinates and plot the points representing the corresponding

values of c and T. Then draw a smooth curve through these

points. On the assumption that as the tension changes grad-

ually, passing through all values between the first and last

values of the tension that are given, the extension also changes

gradually, the smooth curve through the plotted points may be

taken as a graphical representation of T as a function of c in

the sense that the coordinates of any point on the curve are

corresponding values of c and T.

In general the more points that are determined by known
values of the variables the more accurately will the curve

represent the function. Of course, too, these points should be

somewhat evenly separated.
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Outside the range of values given, no information can be

drawn from the curve concerning the values of the function

for a given value of the variable.

80,000

60,000

-20,000

jm .02 .03
elojigation injncheb

Fig. 38.

M .05

The curve does not give any information that is not con-

tained in the table, but gives the same information in such a

way as to bring out relations that are not readily observed

from the table.

From the curve it is seen that as long as T is less than

about 50,000 the extension is proportional to the tension, the

points of the curve lying on a straight line approximately, but

that when T passes through the value 50,000 the extension

increases more and more rapidly as T increases.

Also the value of T corresponding to an assumed value of c

may be found approximately from the curve by measuring the

value of the ordinate of the point of the curve which has the

assumed value of c as abscissa. Likewise the value of e corre-

sponding to an assumed value of T may be found.

Example 2. The following table shows the number B of
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beats per minute of a simple pendulum of length L centi-

meters for certain values of L

:

L 10 12 15 20 25 30 40 50 60 70 80 90 100

B 190 172 154 136 120 110 95 85 78 72 67 63 60

200
\

\
\
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>
\

\
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2

K
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50

25 50
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Fig. 39.

75

Take the values of L as abscissas and the values of B as

ordinates and plot the points representing the corresponding

values of L and B. The curve drawn through these points

shows graphically the manner in which B depends upon L.

It also enables one to pick out approximately the value of B
for a given value of L within the limits given, or the value of

L for a given value of B.

41. Equation of a locus. In each of the two preceding ex-

amples a curve was drawn such that the coordinates of all

of its points were corresponding values of the function and

variable, but no equation was found which expressed the

dependence of the function upon the variable.

In each of the examples to be next studied some simple

locus of points will be considered, and the equation which

expresses the dependence of the ordinate of any point of the
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locus Tipon the abscissa of the point will be derived. This

equation will be known as the equation of the locus.

Definition. The equation of a locus is an equation between

the coordinates of any point of the locus.

The locus, on the other hand, is called the locus of the equa-

tion.

42. Two fundamental problems. The two fundamental prob-

lems of Plane Analytic Geometry are :

(1) Having given a locus of points determined by certain

geometric conditions, to find the equation of that locus.

(2) Having given an equation in two variables, to find by a

study of the equation the form and properties of the locus

which it represents.

In this chapter some examples illustrating the methods of

finding the equation of a given locus will be considered, and

in the next, chapter some methods of obtaining the locus when

the equation is given will be studied.

43. Illustrations. Example 1. Consider the locus of a point

which moves along the straight line passing through the points

Pi (3, -1) and P^
Y

Pa (-5. 4) (-5, 4). If any

point P(x, y) be

taken on this line,

the value of the or-

dinate clearly de-

pends upon the value

of the abscissa of

the point. That is,

1?/ is a function of x.

To find the law,

or equation, which

expresses the depen-

dence of y upon X, draw through P, Pj, and P^ lines parallel to

the axes to form the triangles PM^P^ and PiM^P^ as in Fig. 40.

P(x, 1/)
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Then by similar triangles

M.Po

I.e.

M,P{

(_5)_ 4-(-l)
yx-3 -1

which reduces to 5 aj + 8 ?/ = 7. (1)

If P{x, y) is a point not on the line through Pj and P^, the

triangles PM^P^ and P^M^P^ are not similar, and equation (1)

does not hold. Hence equation (1) holds for all points, on the

line and for no others. It is therefore the equation of the line.

The equation may be solved for y and written

The equation is the law of the dependence of y upon x. It

may be stated as follows : The ordinate of any point on the

straight line jmssing through (3, —1) and (—5, 4) is equal to

— I of the abscissa of the point plus |.

Equation (1) might also be solved for x, which would ex-

press X as a function of y.

Example 2. Consider the locus of a point which moves so

as to keep always at a distance 6 from the point Pi (3, 2).

The locus is a circle with

radius 6 and with center at

(3, 2).

Here again the value of the

ordinate of any point on the

locus is a function of the ab-

scissa of the point. To find

the law that expresses the

ordinate as a function of the

abscissa, consider any point

P (x, y) on the circle. The con-

dition that Pmust fulfill is that Fig, 41.

PiP=6.
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Now P^P= -^{x- 3f + {y- 2)2.

0^^-3)2 4- (2/ -2)2= 36. (2)

Since eq. (2) is true for all points on the circle and for no

others, it is the equation of the locus.

If the equation be solved for y, the result is

2/ = 2± V36-(a;-3)2.

This equation expresses 2/ as a function of x.

Since there are two values of y for every value of a;, 2/ is a

double-valued function of x.

Equation (2) might be solved for x, and x be thus expressed

as a function of y.

Example 3. A point moves in the plane so as to keep equi-

distant from Pi(3, — 2) and Pii— 4, 7) ; to find the equation of

the locus.

To find the equation of the

locus, one must express by

means of an equation which

contains the coordinates of any

point of the locus that geomet-

ric condition which is satisfied

by all points of the locus and

by no others. This property

is expressed by the equation

P^P=P^P.

Expressed in terms of the co-

ordinates of the point P, this equation becomes

V(a^-3)2 + (2/ + 2)2= V(x' + 4)2 + (2/-7)l (1)

Squaring both members, cancelling, and collecting, there results

7a;-92/-+-26 = 0, (2)

which is the desired equation of the locus. For all values of x

and y that satisfy (1) also satisfy (2). In retracing the steps

from (2) to (1), a double sign is introduced which would give

Fig. 42.
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P^P= ± P^P. But as P^P and P^P are positive distances, the

equation containing the minus sign has no geometric signifi-

cance. Equations (1) and (2) therefore are satisfied by pre-

cisely the same points.

The locus is known from plane geometry to be the straight

line which is perpendicular to PiP^ at its middle point.

Example 4. A point moves so that the sum of its distances

from Pi (4, 0) and PgC— 4, 0) is always equal to 10
;
to find the

equation of the locus.

Let P (x,y) be any

point of the locus. The
geometric condition sat-

isfied by all points of

the locus and by no

others is expressed by

the equation

P2P+PiP=10.
Expressed in terms of

the coordinates of the point P, this becomes

V(a;-4y-f-2/' -f- ^{x-\-4:)\+f = 10.

When freed from radicals, this equation becomes

9 ar^-f 25 2/^ = 225.

This is the* equation of the locus. It will be shown in Art. 83

that no new points are introduced into the locus by squaring.

A point which moves so that the sum of its distances from
two fixed points is constant, describes an ellipse.

The above locus is therefore an ellipse.

Points of the locus may be obtained by describing arcs with

Pi and P2 as centers and radii whose sum is 10. The inter-

sections of two such arcs are points of the locus.

Example 5. A point moves so that the difference of its dis-

tances from Pi(5, 0) and P2(— 5, 0) is 8; to find the equation

of the locus.

Fig. 43.
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Fig. 44.

Let P(x, y) be any point of the locus.

The geometric condition satisfied by all points of the locus

and by no other

Y V points is then

This equation when
expressed in terms

of X and y and freed

from radicals re-

duces to

9a72_16/ = 144,

which is the equa-

tion of the given

locus. It will be

shown in Art. 87 that no new points are introduced into the

locus by squaring.

A point which moves so that the difference of its distances

from two fixed points is constant, de-

scribes an hyperbola.

The above locus is therefore an

hyperbola.

Points of the locus may be obtained

by describing arcs with P^ and P^ a-s

centers and radii whose difference is 8.

The points of intersection of two such

arcs are points of the locus.

Example 6. A point moves so that

it remains always equidistant from Pj

(6, 0) and the 2/-axis ; to find the equa-

tion of the locus.

Let P{x, y) be any point of the lo-

cus. From P draw PM perpendicular

to OY. Then the geometric condition to be satisfied by P is
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expressed by the equation

MP=PyP.

Expressed in terms of the coordinates of P{Xj y) this is

x = ^{x-Qf+ f, (1)

which on squaring reduces to

2/2 = 12aj-36. (2)

This is the equation of the' locus.

That no new points were introduced into the locus by squar-

ing eq. (1) may be seen as follows : Any values of x and y that

satisfy (1) also satisfy (2), but there are values of x and y that

satisfy (2) that do not satisfy (1). For in retracing the steps

from (2) to (1) a double sign is introduced ; i.e. given eq. (2),

there follows

x^±^{x-QY + y\

Now it is evident geometrically that no point can be equi-

distant from the ^/-axis and (6, 0) and have its abscissa negative.

Therefore only the plus sign can be used. Therefore all points

whose coordinates satisfy (2) also satisfy (1). No real values

of X and y could therefore have been introduced into eq. (1)

by squaring.

A point which moves so as to keep equidistant from a fixed

point and a fixed straight line describes a parabola.

The above locus is therefore a parabola.

44. Method of finding the equation of the locus of points

which satisfy a given condition. In finding the equation of

the locus of points satisfying a given condition, a certain

method was followed in the preceding examples. This

method will suffice for finding the equation of the locus of

points satisfying any condition, if that condition can be ex-

pressed by means of an equation. The method may be formu-

lated as follows

:
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To find the equation of the locus of points which satisfy a

given condition,

(1) Assume any point P on the locus.

(2) Write the equation tvhich expresses the condition that P
must satisfy.

(3) Express this equation in terms of the coordinates of P
and simplify the equation.

45. Intercepts of a locus on the axes. The abscissa of a

point where a locus cuts the a>axis is called an jr-intercept of

the locus. The ordinate of a point where a locus cuts the

2/-axis is called a /-intercept of the locus.

If the equation of the locus is known, the ic-intercepts may
be found by letting y equal zero in the equation and solving

the resulting equation for x. Likewise the ^/-intercepts may
be found by letting x equal zero in the equation and solving

the resulting equation for y.

EXERCISE XV

Derive the equations of the following loci. Find the intercepts of the

loci on the axes. Plot the loci.

1. A straight line through (1, 4) and (— 6, 7).

2. A straight line through the origin making an angle of 60*^ with the

aj-axis.

3. The X-axis. The y-axis. A parallel to the a;-axis through (5, 2).

4. A straight line through (.3, — 5) with slope 2.

5. A straight line through (a, 0) and (0, 6).

6. A straight line through (0, h) with slope m.

7. A circle with radius 5 and center at (2, — 4).

8. A circle with center at (- 6, 4) and passing through (3, 1).

9. A circle with the ends of a diameter at (5, - 6) and (3, 12).

10. A circle with center at (h, k) and radius r.

11. A circle with center at the origin and radius r.

12. A circle tangent to both axes and radius r.

13. A circle tangent to the ^/-axis at the origin and radius r.
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14. The locus of a point which moves so that the sum of its distances

from (0, 3) and (0, - 3) is 8.

15. The locus of a point which moves so that the difference of its

distances from (0, 3) and (0, — 3) is 4.

16. The locus of a point which moves so as to remain always equi-

distant from the point (0, — 4) and the x-axis.

17. The locus of a point which moves so that the sum of its distances

from (3, 2) and (- 6, 1) is 12.

18. The locus of a point which moves so that the difference of its dis-

tances from (2, 3) and (—5, — 1) is 6.

19. The locus of a point which moves so as to keep equally distant

from (—3, 4), and the line parallel to the y-axis through (8, 6).

20. The perpendicular bisector of the line joining (1, 7) and (8, 2).

21. A column of concrete 50 in. long was compressed longitudinally

and the following numbers obtained, in which P = number of pounds
compression per square inch of cross section of the column, and e = num-
ber of inches of compression, the initial load being 100 lb. per square

inch.

P 100 150 200 300 400 600 550

e .0007 .0015 .0034 .0057 .0080 .0093

P 600 600 650 700 800 900 1000 , - ., ,

e .0108 .0112 .0121 .0139 .0175 .0221 .0275 ^° "°^^ *^ ®

Make a graph which shows P as a function of c, and get what informa-

tion you can from the curve.

22. A steel rod of diameter .564 in., length 3 in., was subjected to a
tensile force. The following measurements were made, in which

P = number of pounds tension per square inch of cross section of the rod,

X = number of inches extension, the initial load being 1000 lb. per square

inch.

P 1000 5000 10,000 20,000 30,000 40,000 36,000 37,000

X .0003 .0008 .0018 .0028 .0039 .0058 .0072

P 38,000 39,000 40,000 41,000 42,000 44,000 46,000 50,000

X .0114 .0559 .0596 .0615 .0669 .0800 .0905 .1210

Make a graph which shows P as a function of X. What information do
you get from the curve ?

E
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23. The following measurements were taken in an experiment in

which an india rubber cord was stretched by hanging a weight to its end.

W= weight in kilograms, L = length in centimeters.

w .5 1.0 1.5 2.0 2.5 3.0 3.5

L 10 10.1 10.3 10.6 10.9 11.3 11.7 12.2

W 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

L 12.7 ia.3 13.9 14.6 15.3 16.1 16.9 17.9

Make a graph which shows TF as a function of L.

24. In Ex. 23 reduce W to pounds and L to inches, and draw the

graph. How does the curve compare with that of Ex. 23? By what

choice of scale units could you make the two curves coincide ?



CHAPTER IV

LOCUS OF AN EQUATION

46. The second fundamental problem. In the preceding

chapter some equations of simple loci were obtained from the

geometric conditions which the points of the loci satisfied. In

this chapter the converse problem of finding the locus when
the equation is given will be considered for some simple equa-

tions.

Illustrations. Example 1. To find the locus of the

equation y = 2x-\-l.

Any number of points whose coordinates satisfy this equa-

tion may be found; for any value may be assigned to x and a

corresponding value for y computed from the equation. A few

corresponding values so obtained are :

X 0, 1, 2,

1, 3, 5,

4, -3, --!/,

y 1, 6, 5, 9, -5, -12.

Plot the points determined by these pairs of values of x and y.

They seem to lie on a straight line.

That the locus of the equation is a straight line may be

proved as follows

:

Draw a straight line through two points

whose coordinates satisfy the equation, as Pj

(0, 1) and P,(2, 5). (Fig. 46.) Take any

point F(x, y) on this line and through it

draw a line parallel to the a^axis. Erom Pi
and P.J drop perpendiculars to this line,

meeting it in Jfj and M^.

Then from similar triangles, PM^P^ and
PM,P,,

M^P M,P' x-2 x-0'
51

V'

/p
/'
T

__i1

X

r/

^4f
ii._|m^-

1

Fig. 46.
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which reduces to

y = 2x + l.

This equation, therefore, holds for every point on the line.

Conversely, all points whose coordinates satisfy the equation

lie on the line ; for if a point P(x, y) be taken not on the line,

the triangles PM^P^ and PM^P^ are not similar, and hence the

above equation does not hold.

Hence the equation y — 2 x-\-l is satisfied by all points on

the straight line through (0, 1) and (2, 5) and by no others.

The line is therefore the locus of the equation.

Example 2. To find the locus of the equation,

This equation may be brought into a form like that of eq. (2)

of Art. 43, by completing the squares in the terms containing x

and in those containing y as follows,

a:^_ 6 aj 4". 9 + ?/2 + B y + 16 = 24 + 9 -f 16,

or (a;-3)2 + (y + 4)2 = 49.

Now the left-hand member of this equation is equal to the

square of the distance from

(x, y) to (3, —4), and the

equation therefore states

that this distance is equal

to 7. Hence (x, y) must

lie on the circumference

of a circle with center at

(3,— 4) and radius 7.

Moreover, the coordinates

of any point on this circle

satisfy the equation. Hence

the circle is the locus of the

Fig. 47. eqniation. (Fig. 47.)

Example 3. To plot the locus of

r 4 X.
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The following pairs of values of x and y are obtained by ar-

bitrarily assigning values to x and computing the corresponding

values of y.

X 0, 1, 1, 2, 3, 4, 5, 6, 10,

y 0, ±1, ±2, ±V8, ±Vi2, ±4, ±V20, ±V24, ±V40:

From the equation the following facts are readily seen to be

true:

(1) If X is negative, y is imaginary ; therefore no part of the

locus lies to the left of the y-Sixis.

(2) Every positive value of x gives two values of y which

differ only in sign ; there-

fore the points of the locus

lie in pairs such that the

X-axis bisects at right angles

the lines joining the pairs.

(3) As X increases, the

positive value of y also in-

creases, and as x becomes

infinite, y also becomes in-

finite ; the locus therefore

recedes indefinitely from

both axes as x increases in-

Y ^^-^^
^^^

^^
^^ '

/
z

X

^
s
\ ^
^:^ :

"^^^
'^^^

FiQ. 48.definitely.

(4) A small change in x makes a small change in y.

The part of the locus which lies in the first quadrant may,

therefore, be thought of as generated by a moving point which,

starting at the origin, moves along a curve gradually rising as

the point moves to the right and passing through the above

calculated points.

The part of the locus which lies below the a^axis could be

obtained from that above the a;-axis by folding the upper part

of the plane over upon the lower part, using the a;-axis as an

axis of revolution.

The locus is therefore approximately the curve of Fig. 48.
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EXERCISE XVI

Prove that the locus of each of the equations from 1 to 6 is a straight

line. Find the intercepts of the lines on the axes and draw the lines.

1. 3x-4y^6.
^ ^ + y-l

4. y = 7a; + 3.

2. 2x + 5y = 12.
'34~'

5. ix-Sy + 9 = 0.

Prove that the locus of each of the following equations is a circle, and
find the center. and radius.

6. x^-{-y^-4x = 0. 9. x^-\-y^-2ax-2by = r^-a^-b^.

7. x^-\-y2-8x \-2y = S. 10. x:^ + y^ + x -Sy = 1.

8. x^ + y^ = r^. 11. x2 + y^-2ax = 0.

Plot the loci of the following equations :

12. 2/2 = 4(x-2). 14. a;2 = 8(y-4). 16. x^=-y.

13. x^ = 6y. 15. y^ = -4x. 17. a:-3 = 2 (y + 1)2.

18. y^ = mx, letting m = j\, 1, 4, 16, 100, — 1, - 100.

19. x^ = my, letting w take different values.

20. x2 + 4y2 = i6. 21. x^-4y^=l6.

47. Symmetry. Before taking up more difficult problems

in loci it will be well to discuss briefly the subject of symme-
try of a curve with respect to a line 9,nd with respect to a point.

Two points are said to be symmetric with respect to a given

line when the given line bisects at right angles the line joining

the two points.

Two points are said to be symmetric with respect to a given

point when the given point bisects the line joining the two
points.

A locus of points is said to be symmetric with respect to a

given line when all points of the locus lie in pairs which are

symmetric with respect to the given line.

The line is then called an axis of symmetry.

A locus of points is said to be symmetric with respect to a

given point when all points of the locus lie in pairs which are

symmetric with respect to the given point.

The given point is then called a center of sjrmmetry

Illustrations, (a) The points (x, y) and (— x, y) are sym-
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metric with respect to the y-a,xis, the points (x, y) and (x, — y)

are symmetric with respect to the aj-axis, and the points {x, y)

and (— X, — y) are symmetric with respect to the origin.

(p) In 2/^= 4 X, if (Xj y) is a point of the locus, so also is

{x, —y)\ for if the coordinates of either point satisfy the

equation, so do the coordinates of the other. The locus is

therefore symmetric with respect to the ic-axis.

(c) In x^-\-4:y'^ = 16, if {x, y) is a point on the locus, so are

{—X, y), (x, —y), and (—a*, —y)', for if the coordinates of

the first point satisfy the equation, so do the coordinates of

each of the other points. The locus is therefore symmetric

with respect to the y-axis, with respect to the avaxis, and with

respect to the origin.

48. Tests for symmetry with respect to the coordinate axes

and the origin. If an equation is such that it is unchanged

by replacing a; by — x, the locus of the equation is symmetric

with respect to the ^/-axis. For, whatever value, say x^, be

given to x, the resulting equation which determines the cor-

responding value, or values, of y will be the same equation as

that obtained by substituting — x^ for x. Hence Xi and — ajj

give the same values of y.

Similarly, if replacing y hy — y leaves the equation un-

changed, the locus is symmetric with respect to the avaxis.

If replacing a; by — a; and y hj —y leaves the equation un-

changed, the locus is symmetric with respect to the origin.

In particular, if an equation contains only even powers of x,

the locus is symmetric with respect to the y-axis. If it con-

tains only even powers of y, the locus is symmetric with respect

to the avaxis. If the terms of an equation are all of even

degree, or are all of odd degree in x and y, the locus is sym-

metric with respect to the origin. (In applying this last test

a constant term must be considered as of even degree.)

49. Discussion of an equation. When it is desired to plot

the locus of an equation in two variables, it is well to discover
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as many properties and facts concerning the locus as one can

by a study of the equation. Some important things to look

for are

(1) Symmetry.

(2) Points where the locus crosses the axes.

(3) What values, if any, of one variable make the other

imaginary.

(4) What finite values, if any, of one variable make the

other infinite.

(5) How increasing or decreasing one variable will affect

the other.

(6) What value, if any, does one variable approach when
the other variable becomes infinite.

50. Illustrations. Example 1. To plot the locus of

ar^-f.4/ = 16. (1)

If the equation be solved for x and y, respectively, there

results

x = ± 2^/^-f (2)

and y=± iV16 - af. (3)

(1) Equation (1) shows the curve to be symmetric with

respect to both coordinate axes and the origin.

(2) If y = 0, x=±4:', if x = 0, y = ±2. Hence the curve

meets the axes at (4, 0), (-4, 0), (0, 2), and (0, -2).

(3) Equation (2) shows that if 2/^>4, x is imaginary. .*. y
cannot be greater than 2 nor less than — 2.

Likewise, eq. (3) shows that x cannot be greater than 4 nor

less than — 4.

(4) No finite value of either variable can make the other

infinite.

(5) From eq. (3) it is clear that as x increases gradually

from to 4, taking all values in that interval, the value of y

represented by the positive radical steadily decreases from

2 toO.
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(6) Values of x and y are excluded from becoming infinite

by (3).

The part of the locus that lies in the first quadrant may
then be thought of as generated by a point which, starting at

(0, 2), moves gradually to the right and downward, until it

reaches (4, 0). A few additional points through which the

curve passes will then suffice for a fairly accurate drawing of

the curve. A few points computed from eq. (3) are

X 1 2 3 3.5,

y 1.9 1.7 1.3 .96.

The curve is therefore approximately as shown in Fig. 49.

The curve is an ellipse, as will be shown later.

-Ip^^
^^ ir-

/ J^
^l

^ ^^
^^ y

''^-^ .^---^

(1)

Fig. 49.

Example 2. To plot the locus of

a^-4.y^ = l&.

Solving for x and y, respectively,

aJ=±2V/T4, (2)

2/=±iVar^-16. (3)

(1) Equation (1) shows the curve to be symmetric with re-

spect to both coordinate axes and the origin.

(2) If a; = 0, 2/ is imaginary; if ?/=0, x= ±4. Hence the

locus does not meet the 2/-axis, and meets the a;-axis in (4, 0)

and (-4,0).

(3) From eq. (2) it is evident that x is real for all real values
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of 2/, and from eq. (3) that y is imaginary for all values of A

between — 4 and 4, and is real for all other values of x.

(4) No finite values of either variable makes the other in-

finite.

(5) Considering the value of y corresponding to the positive

sign of the radical in eq. (3), and considering positive values

of X, it is evident that as x increases y also increases, a small

change in x making a small change in y.

(6) As X increases indefinitely, y also increases indefinitely.

Moreover, as x becomes larger and larger, Va?^ — 16 differs

less and less from x. This may be proved as follows :

The difference between x and Var^ — 16, i.e. x— \/x^— 16,

may be expressed as

(a;_Va^_16)(a;+Va^-16) _Vaj2-16
16

-l-Var^-16

01
^^

without limit to the value of \
Now, y — \x is easily shown to

Now, when x increases indefinitely, this fraction decreases in-

definitely and approaches the limiting value 0. Therefore as x

increases indefinitely, the value

of y approaches nearer and nearer

^x.

— 1
2

be the equation of a straight line

through the origin and the point

(2, 1). Let this line be drawn.

(Fig. 50.) The curve will then

come nearer and nearer without limit to this line as x becomes

infinite.

A few points through which the curve passes in the first

quadrant are

iK 4 5 6 7 10,

y 1.5 2.2 2.9 4.6.

The part of the locus which lies in the first quadrant may
then be thought of as generated by a point which, starting at

Fig. 50.
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(4, 0), gradually rises as it moves to the right, passes through

the above points, and approaches nearer and nearer to the

straight line whose equation is y = ^ x. (Fig. 50.)

The complete

locus is obtained

from the part in

the first quadrant

by considerations

of symmetry.
(Fig. 51.)

The curve is an

hyperbola, as will

be proved later.

The straight

line to which the

curve approaches indefinitely near as the point generating the

curve recedes indefinitely is called an asymptote of the curve.

Example 3. To plot the locus of

Fig. 51.

y

Solving for x,

(1)

(2)
3?/ + l

2,-2

(1) The locus is not symmetric with respect to either coor-

dinate axis or the origin.

(2) If 05 = 0, ?/ = — ^ ; if ?/ = 0, « = — i. .*. the curve meets

the axes in (0, — \) and {—\,^).

(3) No real values of either variable make the other imagi-

nary.

(4) If X = 3, y is infinite ; \i y = 2, x is infinite.

(5) By division, eq. (1) may be written

7
2/ = 2 + (3)

From this equation it follows that as x increases from a nu-

merically large negative number to 3, y steadily decreases from
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a value a little less than 2 to — oc. As a;, increases through 3,

y changes, from — to +, and as x increases from 3, y steadily

decreases and approaches the limiting value 2 when x becomes

infinite.

Y
""

p
~

\

\
'

\
\k.

""

^
"1^-^ X

\,

^

L \— _^ Lu_
Fig. 52.

4 6 10,

9 ¥ 3.

The following points are on the locus

:

x -5 -3 -2 1 2

^ 8" 6 5" 3^ 2

The curve may then be sketched as in Fig. 52. The lines

a? = 3 and y = 2 are asymptotes of the curve.

Example 4. To plot the locus of

y = x{x + l){x^2).

(1) The locus is not symmetric with respect to either co-

ordinate axis or the origin.

(2) The locus meets the axes in (0, 0), (— 1, 0), and ( — 2, 0).

(3) No real values of either variable make the other imagi-

nary.

(4) No finite value of either variable makes the other in-

finite.

(5) Let X take a numerically large negative value ; then y is

numerically large, but negative. As x increases from the value
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assigned toward — 2, each of the factors of y remains negative,

but decreases in numerical value; y therefore remains nega-

tive, but decreases in numerical value until a;= — 2, when y = 0.

As X passes through the value —2, the factor x-{-2 changes

sign and becomes positive, the other

factors of y remaining negative in

sign until ic= — 1 ; therefore y is

positive for all values of -ic between

— 2 and — 1. As a; passes through

— 1, 2/ passes through and remains

negative for all values of x between

— 1 and 0. Asa; increases through

0, y again becomes positive and

steadily increases as x increases and

becomes infinite when x becomes in-

finite.

The locus may then be generated

by a point which, starting indefi-

nitely far to the left and below the

origin, steadily rises as it moves to the right until, after cross-

ing the X axis at ( — 2, 0), it turns at some value of x between

— 2 and — 1, descends to cross the a^-axis at ( — 1,0), turns

again at some value of x between — 1 and and ascends to

cross the a>axis at (0, 0), and continually thereafter moves to

the right and upward, receding indefinitely from both axes.

The following points are on the curve

;

Y /

X

Fig. 53.

x -8 -6 -4 -3 -2 -f
y -336 -120 -24 -6 |.

X -1 - + 1 2 6,

y ~l 6 24 336.

The curve is shown in Pig. 53.

Example 5. To plot the locus of

f={x + 2)(x-l)(x-S).

(1) The locus is symmetric with respect to the a^axis.
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(2) The locus crosses the a^axis at (—2, 0), (1, 0), (3, 0),

and the 2/-axis at (0, + v'6) and (0, — VB).

(3) If X is less than —2, or is between 1 and 3, y is

imaginary.

(4) No finite value of either variable makes the other

infinite.

(5) Since ^^ = when x= —2 and when x=% and is posi-

tive for all values of x between — 2

and 1, therefore as x increases from
— 2 to 1, the positive value of y must
increase from when x= — 2 and

then decrease to when x=\*
As X increases from 1 to 3, y^ is

negative
; y is imaginary.

As X increases from 3, y"^ becomes

and remains positive and steadily in-

creases as X increases. The positive

value of ?/) therefore, increases as x

increases from 3.

(6) When x becomes infinite, y be-

comes infinite.

The curve then consists of a closed

portion between x= —2 and ic= 1, and

an infinite branch to the right of a; = 3.

The following points are on the curve

:

a;_2-f-l 013 4 5 6 7 10,

y ±2.4 ±2.8 ± 2.5 ±5.5 ±7.5 ±11±14.7±27.

The curve is shown in Fig. 54.

* At present the student has no means of telling that y does not change

from increasing to decreasing and from decreasing to increasing several

times as x increases from - 2 to 1 ; nor of telling where a change of this kind

takes place. The investigation of such questions will be the subject oJ a later

chapter.

Y Z

----------t--

- 7
=g==t==

X

t ^ ,

-----\---

fv

—

J-
Fig. 54.
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EXERCISE XVII

Discuss the following equations and plot the curves :

1. xy = 4:. 2. y = ix^. 3. y-=—x. 4. y= —x^.

5. y^ = xK 6. y=x(x-S). 7. y = -^. 8. ?/=(a;+5)x(x-3).

9. 2/2 ^ 4 a:^ = 4. 10. y^ _ 4 ^^2 _ 4. n. ^2 ^ 4 _ a;2,

12. y2^a;3. 13. y = xK 14. (x + 2) (y + 3) = 1.

15. y = 4x2 + 4. 16. i = ?i^.
y a;-2

17. a:V = 4. 18. 2/2=(a;-l)(ic-3)(ic-6).

19. y2=(a;-l)2(x-2). 20. 2/

^

(x-l)(x-4)

21 y= ^±2
. 22.

y=(^+2)(^-5)
^ (a;_l)(x-3) (x+l)(x-3)

23. y = g_(^ + 3) (x - 2)
^ ^^ »u = a constant.

(x + l)Cx-4)

25. i)vi-2 = 6. 26. v = 32«.

27. s=16<2. 28. y- 2 =
x-3

29. A light is placed at a distance h ft. above a plane surface.

Given that the illumination of the plane at any point varies inversely

as the square of the distance from the light, and directly as the cosine of

the angle between the incident rays and the perpendicular to the plane
;

prove that the illumination at a point in the plane at a distance x from

the foot of the perpendicular from the light to the plane is given by

I = —
, where O is a constant.

(X2 + A2)f

Plot the curves for A = 20 ft., 30 ft., and 40 ft.



CHAPTER V

TRANSFORMATION OF COORDINATES

51. Change of axes. The coordinates of a point in the plane

depend upon the position of the axes to which the coordinates

are referred.

A change of axes will change the coordinates. The equa-

tions connecting the coordinates of any point in the plane with

the coordinates of the same point

when referred to another system

will next be derived for certain

changes of axes.

52. Translation of axes. Assume
a set of axes OX and OY and a

second set O'X' and O'Y' parallel

respectively to the first axes. Let

Pj^ 55
0' referred to OX and OF be (A, A:).-

Take any point P in the plane

and let its coordinates referred to OX and OY he x and y, and

referred to O'X' and O'Y' be x' and y'. Then (see Fig. 55),

x= NP, x' = N'F, h = NN',

y = MP, y' = M'F, k = MM',

Kow iVP= ]^N' 4- A^'P,

and MP= MM' + M'P,

or
,

a? = 7* + a?'.

y = k + y'.

This transformation from one set of axes to the other is

called " Translation of the axes."

64

Y

N

Y'

N'

X

M
X'

^A' 0'
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53 Rotation of axes. Let the rectangular axes OX' and OY^
make an angle ^ with OX and Oy respectively. Let any point

Phave coordinates (x, y) referred to OX and OY, and {x\ y')

referred to OX' and OY'. Let OP=r and AX'OP= cf>'.

ThenZXOP=cl>' + e.

Then, Fig. 56,

Fig. 56.

x' = r cos <^',

y' = r sin
<f>',

x= r cos (<^' + 0)f

y = rsm(<f>' + e).

Expanding the last two equations,

x= r cos <^' cos ^ — r sin
<f>'

sin 0,

y = r cos
(f>'

sin ^ + r sin
<f>'

cos 0,

or x = ie' cos 6 — y' sin 0,

y = x' sin 6 + y' cos 9.

These equations hold for any point in the plane. They ex-

press X and y in terms of x' and y'.

To express x' and y' in terms of x and ?^, these equations may
be solved for x' and y', or the equations may be derived as

follows

:

InFig. 56, let ZXOP=<^,
then x = r cos <^,

y = r sin <^,
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a;' = r cos (<f>— 0) = r cos <^ cos $ -\- 7- sin cj> sin 6j

y' = r sin
(^<f>
— 6) = r sin <j> cos ^ — ?• cos <^ sin 6,

'

or x'= x cos ^ + 2/ sin ^,

y^ = y cos ^ — a; sin ^.

This transformation from one set of axes to the other is

known as " Rotation of the axes."

54. Applications. The formulas of translation and rotation

of axes may be used to simplify equations, thereby making the

construction and classification of the loci easier.

Example 1. Consider the equation

12 a;2- 48 ic+ 3 ^2 + 6 2/ = 13.

Let the axes be translated to a new origin (Ji, k), the formu-

las for which are

x = x' + li, y = y' -\-k.

Substituting these values in the equation, it becomes

12 ic'2 + 3 2/'2 + (24 7i - 48) oj' + (6 A; -f 6)2/' + 12 7i2 + 3 A:2 _ 48 ^

+ 6A;-13 = 0.

The quantities h and A; may have any real values assigned to

them. If they be so chosen that the terms of first degree in

x' and y' drop out of the equation, the equation will be simpli-

fied and the locus will be symmetric with respect to the axes

O'X' and 0' Y'. To accomplish this it is only necessary to let

24/1-48 = 0,

6 A; + 6 = 0,

from which 7i = 2, fc = — 1.

The equation then becomes

12 x" + Sy" = 64..

This, then, is the equation of the locus referred to the axes

O'X' and OT'.
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The equation is now easily discussed and the locus plotted.

Fig. 57 shows the locus and both sets of axes.

The student should discuss and

plot the locus.

Example 2.

y'-Sy-\-4.x-h6 0.

the newTranslate the axes to

origin {h, k) by means of

x = x'-{-h,y = y'-\-k.

The transformed equation is

2/ '2 + 2% ' + A;2 - 8 / - 8 A; + 4 «

'

+ 4^ + 6 = 0.

Here it is not possible to choose h

and k so that the terms of first de-

gree in x' and y' will drop out, since

the coefficient of x' is 4. They can, however, be so chosen that

the term in y' and the constant term will drop out. To ac-

complish this it is only necessary to let

2k-S = 0,

Fig. 57.

Y Y'

X'

/
0'

X^^^

'

and k'-Sk-\-4:h + 6-.

from which A* = 4, h =

The equation then

= 0,

= #•

be-

comes

y"-{-4.x' == 0.

The locus is now easily

constructed. (Fig. 58.)

Example 3.

lU-+24a;?/-f42/2=20. (1)

In equations of this

form, i.e. equations of

second degree in x and y containing a term in the product xyj

the term in xy may be made to drop out by a rotation of axes.

Fig. 58.
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Let x= x^ cos 6 — y^ sin 0,

y = ic' sin ^ + y' cos 6.

Substituting in eq. (1),

11 (»' cos B — y' sin ey + 21 {x^ cos O — y' sin ^) (x' sin $ \-y' cos ^)

+ 4 (a;' sin ^ + ?/' cos ^) ^ = 20. (2)

Expanding and collecting,

^'-^=20. (3)llcos^^

+24 cos ^ sin ^

+4sin2^

aj'2_22sin^cos^

+ 24cos2^

-24sin2^

+ 8 sin cos

a;y+llsin2^
-24 sin ^ cos (9

+ 4cos^^

It is now possible to choose 9 so that the coefficient of x'y^

will become zero ; for it is only necessary to have

or

or

24 (cos^ - sin2 6) = 14 sin 6 cos By

24cos2(9 = 7sin2^,

tan 2 (9
24

(4)

whose tangent is -^y*-

To satisfy eq. (4), let 2 ^ be the angle in the first quadrant

Draw the right triangle with sides 24

and 7 as in Fig. 59. The hypotenuse is then 2^.

.-. sin2^ = |i, cos2^ = -/5.

Now sin^ l9 = 1 (1 - cos 2 B), cos^ ^ = i (1 + cos 2 ^),

and

sin B cos ^ = J sin 2 ^.

sin2<9=2^^, cos2^ = ||, sin ^ cos ^ = If.

Substituting these values in eq. (3) and dividing the

resulting equation through by 125, there results

4 a;'2 - 2/'2 = 4.

Referred to the new axes the locus is much more

easily constructed. The discussion of the equation is very

similar to that of example 2, Art. 50.
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Fig. 60.

The locus and both sets of axes are shown in Fig. 60.

The angle through which the axes are turned is tan~^ |.

EXERCISE XVIII

Simplify the following equations by a translation of axes to remove

the terms of first degree where possible, and by a rotation of axes to re-

move the terms in xy. Plot the curves and all coordinate axes.

1. x2-6x+4?/2_^8?/ = 5.

2. 4a:2-4?/2 + a;-2?/ = 0.

3. 4a;2 + y2_i2ic + 2y-2=0.

4. ic2 + y-^-4a; + 2y-ll = 0.

5. ?/2-6
2/ + 8 = 4a;.

6. 2a;2-62/2 4.xy-5a; + lly = 3.

7. a;2-j-2a:2/ + «/2-12x + 2 2/ = 3.

8. a;2-a;?/-2«/2_x-4i/-2=0.

9. 3x2 + 2a:y + 3y2 = 8.

10. xy=4^.



CHAPTER VI

THE STRAIGHT LINE

55. Theorem. Every straight line has an equation of first

degree in Cartesian coordinates.

Two cases are to be considered

:

(1) The line parallel to a coordinate axis. If the line is

parallel to the a^axis, then all points of the line have equal

ordinates. .'. ^ = c, where c

is a constant, is true for all

points of the line and for no

others. It is therefore the

equation of the line.

Likewise, a line parallel to

the ,v-axis has an equation of

the form x — c.

(2) The line not parallel to

an axis.

Let the line cut the 2/-axis

at JV(0, h).

Let P(x, y) be any point of the line. Through P draw PM
parallel to the x-axis to meet the 2/-axis in M. Then as P

moves along the line, the ratio — will remain unchanged.

For if P is any other point of the line, then, by similar tri-

angles,

PM P'M''

Let this constant ratio be denoted by m.

MN

Fig. 61.

Then PM= m

is true for all points on the line, and for no others.

70
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From the figure the values of MN and PM are seen to be

h — y and — a; respectively. Therefore

h y

or

Fig. 62.

This is therefore the equation of

the line. It is of first degree in

X and y.

For a line passing through the

origin, the value of h is zero, and

the equation becomes

y = mx.

The relation between the lines

y = mx and y=mx + b is shown

in Fig. 62.

It is important to notice that if

the axes are rectangular, the constant ratio m, or ——, is thePM
slope of the line.

56. The equation of first degree. Conversely, every equation

of first degree in Cartesian coordinates^ with real coefficients, is

the equation of a straight line.

The general equation of first degree is of the form

Ax + By-^C=0. (1)

Here again two cases are to be considered

:

(1) When either ^ or 5 is zero. Suppose A= 0. Then
B^O, and the equation may be written

C
y = B

This equation is evidently satisfied by all points on a line

parallel to the ic-axis, and by no others
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Likewise, if B = 0, the equation represents a straight line

parallel to the ?/-axis.

(2) When neither A nor B is zero. Solve the equation for

''
A O

^ B B

Now this is of the same form as

y = mx 4- b,

which was found in the preceding article to be the equation

of a straight line, and since a straight line can be drawn so

that m and b will have any assigned real values, a line can be

C A AC
drawn so that b = , and m = — — . Th.eny — — —x——,

B B B B
or Ax -\-By + 0=0, is the equation of this line.

Hence Ax -\- By -\- C=

is the equation of a straight line.

The proofs given in this and the preceding article hold for

oblique as well as for rectangular coordinates. It is only in

rectangular coordinates, however, that m is the slope of the

line.

57. The conditions which determine a straight line. The

position of a straight line is determined when there are known

either,

(1) Two points on the line,

(2) A point on the line and the direction of the line,

(3) The length and direction of a perpendicular from a fixed

point to the line.

Considerations of these conditions lead to the following

special forms of the equation of the straight line.

58. The two-point equation. Let Pj (.x'j, y^) and Pg (x2, 2/2) be

any two points. To find the equation of the straight line

through them.
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Let P{x, y) be any point on the line. Through Pj draw a

line parallel to the ^/-axis to meet lines parallel to the ic-axis

through P and Pg ill ^ and

Jfg respectively. Then by sim-

ilar triangles,

MP,^MF
M^Pi M2P2

wnich is the same as

y-vi X — Xi

2/2 — 2/1 a?2 — OCi

This equation holds for Fig. 63.

every point on the line, and

for no others. It is, therefore, the equation of the line.

59. The intercept equation. In the last article let the two

given points be (a, 0) and (0, 6). The equation then becomes

y — _x — a

y ^h x —

Clearing of fractions, transposing,

and dividing by a6, the equation re-

duces to 7:+^=l-
a o

This is known as the intercept equa-

tion of the line, since a and h are the

Fig. 64. intercepts of the line on the coordinate

axes.

In this equation neither a nor b can be zero.

60. The point-slope equation. Let the line pass through

-fi(^i) 2/1) and have a slope m. Let P(a', y) be any point on the

line. The slope of the line joining Pj and P is ^ ~ ^^
, which

by hypothesis is equal to m.
X— Xi
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-—^ = m

is an equation which holds for all points on the line and for no

others. It is, therefore, the equation of the line.

Fig. 65.

Clearing of fractions, it may be written

y — Vi = m{x — a?i).

This equation does not apply to a straight line parallel to

the 2/-axis, for which m is infinite.

61. The slope equation. If in the last article the given point

is (0, 6), the equation reduces to

y = mx -|- 6,

which is the slope equation already considered. (Art. 6^.)

62. The normal equation. Let the distance from the origin

to the straight line be p, and let the angle which this perpen-

dicular makes with the a;-axis be a. The quantity p will be

considered positive always.

Let H be the foot of the perpendicular from the origin to

the line. The coordinates of H are then p cos a and p sin a.

The slope of OH is tan a. Therefore the slope of the given

line is — cot a.

Hence the line passes through {p cos a, p sin a) and has; a
slope equal to — cot ol
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The equation of the line is therefore, by Art. 60,

y —p sin a = — cot a(x — p cos a).

Y

75

Fig. 66.

Replace cot a by -, clear of fractions, and transpose ; the
sin a

equation then becomes

X cos a-\-y sina—p (cos^ a -\- sin^ a) = 0,

or 0? COS a 4- y sin a — 2> = 0.

63. Reduction of Ax -{- By -{- C =0 to the slope intercept,

and normal forms. The equation Ax -{- By -{- C= may be

reduced to the slope, intercept, and normal forms as follows

:

(a) To reduce Ax -{- By -\- C= to the slope form. Solve the

equation for y. There results

A C—x ,

B B'
y =

which is in the form y = mx -\- b, where m = — — , b
C

B' b'
The method fails when ^ = 0. The equation cannot then be

put in the slope form.

(b) To reduce Ax -\- By -\- C= to the intercept form.

Transpose C to the right-hand side of the equation, and divide
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by C; the resulting equation may be written

X
. y

C
A

+
C'

B

1,

7^

which is in the form - 4- " = 1, where a = — — , 5 = — —

.

a b ' A' B

The method fails if either A, B, or C is zero. If (7= 0, both

intercepts are zero. If either A or

B is zero, the line is parallel to an

axis of coordinates.

(c) To reduce Ax-\-By+C=0
to the normal form.

X Let X cos a-\-y sin a — p = be

the normal equation of the line.

The foot of the perpendicular from

the origin to the line is then

(p cos a, p sin a). The coordinates

of this point must satisfy.the equation Ax-\-By-{- (7=0.

Ap cos a + Bp sin a + (7= 0. (1)

Also the slope of the perpendicular is the negative reciprocal

of the slope of the line

;

J)
tana = — . [See («) of this article.] (2)

.JjL

cos a
A

± Vl + tan^ a ± VA' + B^

Substituting in (2),

sm a —

Substituting these values of sin a and cos a in (1),

-p = C

± VA^ + B'
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Substituting these values of sin a, cos a, and p in the normal

equation of the line, there results

Hence, the equation of a line is reduced to the normal form by

dividing the equation of the line through by the square root of the

sum of the squares of the coefficients of x and y. TJie sign of the

radical should be taken opposite to the sign of C so that p will be

positive.

64. Illustration. To reduce 2a; — 4?/ + 7 = to the slope,

intercept, and normal forms.

(a) Solving for y brings the equation into the slope form

in which ^ = i? & = |.

(&) Transposing the constant term, 7, and dividing by — 7,

brings the equation into the intercept form

-i i

in which a = — |, & = J.

(c) Dividing through by — V2^+ 4^ brings the equation into

the normal form

—-^ + —^y F = ^>

1.2 '^

in which cos a = , sin « = -^
, p

V5 V5 2V5

65. Applications of the formulas. By the use of the formulas

derived in this chapter the equations of straight lines which

satisfy certain conditions can be easily found.

Illustrations.

(a) To find the equation of a straight line which passes

through (3, — 5) and makes an angle of 30° with the avaxis.
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The slope of the required line is tan 30°, or —-. By sub-

V3
stituting iu the equation y — y^ = m{x — x^ there results

2^ + 5 = ^(^-3),

which reduces to

V3a;-32/ = 15-f 3V3,

the required equation.

(6) To find the equation of the straight line which passes

through (—3, 1) and makes

an angle of 60° with the line

4a;-9y = 12.

Let the angles which the

given line and the required line

make with the a>axis be O-^ and

6 respectively, and the slopes of

these lines be rrii and m re-

spectively. Then m^ = tan 0^,

m = tan 6. But mj = |^, and

^ = ^, + 60°. (Fig. 68.)

m = tan ^ = tan {O^ + 60°)

^ tan ^1 + tan 60°

1 - tan Oi tan 60°

- I+V^ _ 4 + 9V3
. 4V3 9-4V3

^a

Fig. 68.

^ 144 + 97V3
33

Therefore the required equation is

144 4- 97V3
2/-1

33
(a; 4- 3),

or approximately

2/-l = 9.450c+ 3).
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66. The point of intersection of two straight lines. Let the

two lines whose equations are

A,x-{-Biy+C, = 0, (1)

and A^ + ^22/ + C2 = 0, (2)

be denoted by Li and L2 respectively. In eq. (1) x and y
may be the coordinates of any point on L^, and in eq. (2) x

and y may be the coordinates of any point on L2, and hence x

and 2/ in one equation are not the same in general

as X and y in the other. If, however, the lines

intersect, there is one pair of values of x and y
that satisfy both equations; namely, the coordi-

nates of the point of intersection. Conversely, if

values of x and y can be found which satisfy both

equations, they are the coordinates of a point on

both lines, i.e. the point of intersection. Therefore, to find the

coordinates of the point of intersection of two lines, solve the

equations of the lines as simultaneous.

What if the lines are parallel ?

Illustration. To find the point of intersection of

Sx-\-2y = ll

and 4:X — 5y = T.

Solving the equations as simultaneous, the values of x and

y are found to be x = 3, y = l. Therefore the point of inter-

section is (3, 1).

Let the student plot the lines and check graphically.

EXERCISE XIX

By substituting in the formulas write the equations of the straight lines

which satisfy the following given conditions:

1. Passing through (2, 1) with slope — 2.

2. Passing through (- 3, 7) and (2, - 5).

3. With X- and ^/-intercepts 3 and - 8 respectively

k
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4. With 2/-intercept 6 and slope 2.

5. Passing through the origin with slope — |.

6. With a = SO'' and p = 4.

7. With j9 = 5 and m = — |.

8. Passing through (2, — 5) parallel to 3aj — 2/4-4 = 0.

9. Passing through (0, 0) perpendicular to ax + 6y + c = 0.

10. Passing through (a;i, y{) parallel to y = mx + &.

11. With y-intercept h and perpendicular X,o Ax-^ By \- C=0.

12. Passing through (/i, A;) parallel to iccos/S + ysin/3 = q.

13. Passing through (e, /) parallel to Ix + my + n = 0.

14. Passing through the origin and perpendicular to gx -\-fy = c.

Reduce, where possible, each of the following equations of straight

lines to the intercept, slope, and normal forms, giving the values of a, b,

m, a, and p.

15. Sx-4y = 6. 17. 2x-6y = 0. 19. y-25 = 0.

16. y+2x = 4. 18. -x + 2y = 9.

20. Obtain the equation of the straight line which passes through

(1, 2) and makes an angle of 60° with the line 2x — 6y = 8.

21. Two lines, Li and X2, intersect in (—3, — 2) ; Li has a y-inter-

cept equal to — 6 and makes tan-i | with L2 ; find the equations of the

two lines.

22. Find the equation of the straight line of slope — f which passes

through the intersection oi2y --x = b and x-~Sy = 1.

23. The vertices of a triangle are (1, 2), (4, — 6), and (—5, — 3) ;

find the equations of its sides.

24. Find the equations of the perpendiculars from the vertices upon

the opposite sides of the triangle in example 23, and prove that they meet

in a common point.

25. Find the equations of the medians of the triangle in exam,ple 23,

and prove that they meet in a common point.

26. Find the equation of the line through (h, k) making tan-^m with

y = lx-[-b.

27. A line passes through (2, 5) and is distant 3 from the origin ; find

its equation. How many solutions ?
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28. Show that Ax -\- By -\- C =
and Ax + By + K=
are parallel, and that

Ax + By+C = 0,

and Bx — Ay + K=0
are perpendicular.

29. What set of lines is obtained by varying b in the equation

y = mx + & ? What set of lines by varying m ?

30. Discuss the effect upon the line Ax -\- By + C = of changing

each of the constants, keeping the other two unchanged.

31. Find the equation of a straight line which passes through the inter-

section of2x— y-\-5 = and a; — 22/4-1=0, and makes an angle of 45°

with y = 2x.

32. Prove that ax -\- by -}- c +k(Ix -{- my -f- w) = is the equation of a

straight line which passes through the intersection of ax -\- by -h c = and

Ix + my 4- n= 0. What is the effect on the line of varying k ?

33. Using the fact expressed in example 32, find the equation of the

straight line which passes through (3, —1) and the intersection of

2ic + 4?/— 7 =0 and 7 x — 2 y -f- 13 = 0, by determining the proper value

of A:.

34. Find the equation of the straight line which passes through the

intersection of x -\-Sy —7 =0 and y — Sx = 2, and makes an angle of

135° with the a;-axis.

35. Find the equation of the straight line which passes through

the intersection of 2x ~ 9y = 18 and 7 y + bx = 21, and is parallel to

4x + 6y -S = 0.

36. Find the equation of the straight line perpendicular to Sy = 7

x

which passes through the intersection of x -\- 2y = 8 and 4 x = 13 y.

67. Change of sign of AiK -f- Bj/ + C. The expression

Ax -\- By + C is j^ositive for all points on one side of the line

Ax-\-By-{-C= Oy and is negative for all points on the other side

of the line.

Proof. I. Srippose\B ^ 0. The line is then not parallel to

the ^-axis. Let L be the line whose equation is Ax-\-By+ (7=0.
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For all points on this line

^ B B
Let (a?!, 2^1) be any point above the line. Since y^ is greater

than the ordinate of the point

on the line with abscissa Xi, it

follows that

or 2/1 4- - a^i + - > 0.
^ B B

This is true, then, for any

point above the line. There-

fore, for all points above the line,

Ax^ + By^-\-C>0,iiB>0,

and Ax^ + By^ + C<0/\iB<0.

In either case the expression has the same sign for all points

above the line.

If the point is taken below the line, the inequalities are all

reversed. Hence the expression has the same sign for all

points below the line, but that sign is opposite to the sign of

the expression for points above the line.

II. Suppose ^= 0. Then A^O. The expression becomes

Ax-\-C, and the equation of the line becomes Ax-^ C= 0.

CThe line is parallel to the ?/-axis. On this line x = To

C
the. left of the line aj< , and to the right of the line

x> C
A

Therefore Ax+ C has the same sign for all points

on one side of the line and has the opposite sign for all points

on the opposite side of the line. Hence the theorem is true

in all cases.
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An important special case of this theorem is the following

:

The sign of the expression Ax -\- By -{- G is the same as, or

opposite to, the sign of C according as the point (x, y) and the

origin are on the same, or opposite, sides of the line Ax-\-By-{- C=0.
This follows at once from the theorem, since the value of the

expression Ax -\-By-\- Cis C when the coordinates of the origin

are substituted. If (7=0 and A:^0, the student can easily

show that the sign of Ax + By is the same as, or opposite to,

the sign of A, according as (x, y) lies to the right or left of the

line Ax -\-By = 0.

68. Illustration. The expression 3x-\-7 y — S has the value

2 at (1, 1), which is opposite in sign to C, or — 8. Hence

(1, 1) and the origin are on opposite sides of the line

3x-\-7y-S = 0.

Also the expression 3x-\-7 y — 8 has the value — 1 at (2, ^),

which is the same in sign as — 8. Hence (2, I) and the origin

are on the same side of the line 3x-{-7y — S = 0.

69. Distance from a point to a line. A numerical example

will be first worked through. Let it be required to find the

distance from (6, — 3) to the

line 3x — 5y = 7.

Transform to parallel axes

through the given point

(6, —3), as a new origin, the

equations of transformation

for which are

x = x'-{-6, y = y'-3.

Substituting these values in

the equation of the line, it Fig. 71.

becomes

3x'-5y' + 26 = 0,

which is the equation of the line referred to the new axes.

Y
Y' ^

< X

^^ \// -

\
0' X'

- (6, -3)
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The distance from the new origin to the line is given by the

formula

C
P =

±^A'-irB'
(Art. 63),

which here becomes

26
p =—:::::: = 4.46 nearly.

V34

70. General formula for the distance from a point to a line.

Let the given point be Pq{xq, y^, and the given line

Ax^By-\-C=0.

Transform to parallel axes through Pq as a new origin, for

. which the formulas of transformation

are

x==Xq-\-x\ y = yo-{-y'.

x[ The equation of the line referred to

the new axes is then

A(x' + ^o) + B{y' + 2/o) + O = 0,

or Ax'-\-By' -{-Axo + Byo-^C=0.

In this equation x' and y' are the vari-

able coordinates, and the constant
Fig. 72. term of the equation is Axq -f ByQ 4- C.

Therefore the distance, d, from the new origin to the line is

^ ^ Axq + Bpo + C

This distance will be regarded as a positive quantity. The

sign of the radical must therefore be taken the same as the

sign of Axq + ByQ + O. But Axq -\- By^ -f C has the same sign

as C when {x^^ y^) and the origin are on the same side of the

line Ax-{-By-\-C=0, and has the opposite sign to C when

(xq, 2/o) and the origin are on opposite sides of the line (Art. 67).
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Therefore the sign to be taken with the radical is the same as

the sign of C when {xq, y^ and the origin are on the same side

oi Ax-\-By -\-C=0, and opposite to the sign of C when {xq, y^
and the origin are on opposite sides of the line.

If (7=0, the sign to be taken with the radical is the same as

or opposite to the sign of A according as {xq, 2/0) lies to the

right or left of the line Ax -\-By = 0.

EXERCISE XX

1. Find the distance from the point (3, — 6) to the line 7 x — 6y = 1S.

2. Find the distance from the intersection of 2x — 9y = 3 and

— by — 4:X = 12 to x—b=6y.

3. The vertices of a triangle are ^(1, 4), B(- 3, - 5), and (7(6, - 4);

find the area by finding the lengths of AB and the altitude from

C to AB. Check by using the formula for the area of a triangle. (See

Art. 36.)

4. The equations of the sides of a triangle are x-\-4y —7 = 0,

3x + y + l=0, and 2y — 6x-\-lS = 0; find the area of the triangle by

finding the length of one side and the length of the perpendicular from

the opposite vertex to that side. Check by using the formula for the

area of a triangle. (See Art. 36.)

5. Find the distance from the intersection of 2 x— 6y =S and

8x +y + 13 = to the line through (- |, 4) and (0, — 3).

6. Find the distance from (9, — 1) to the line through the origin with

slope — ^.

7. Find the distance from (xi, yi) to y = mx + 6.

8. Find the distance from (xo, 2/o) to x cos a -\- y sin a = p.

9. Find the equations of the bisectors of the angles formed by the two

lines 2x + y — 7 =0 and 4x — Sy — 5 = 0. Show by their slopes that

the bisectors are perpendicular to each other.

Suggestion. The distances from (xo, yo) to 2 x + y — 7 = and

4iX — Sy — 6 = are, respectively,

2 Xq -f yo - 7 ^^^ 4 Xq - 3 jj/o
- 5

±\/5 ±V25
Now the bisector of an angle is the locus of points equidistant from the

sides of the angle. Hence to obtain the equation of the bisector, place
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the above values for the distances equal to each other and remove the

subscripts to indicate variable coordinates. The proper signs of the

radicals must be chosen, as explained in Art. 70.

10. The three sides of a triangle have the equations 3 ic — 4 y = 7,

6x+12y + 8 =0, and 4x + 3y— 12 = 0; find the equations of the three

inner bisectors of the angles, and shov7 by their equations that they meet

in a point.

11. Find the equations of the three outer bisectors of the angles of

the triangle of example 10, and prove by their equations that two of the

outer bisectors and the inner bisector of the remaining angle meet in a

common point.

71. Equations of the straight line in polar coordinates.

(i) Equation of the straight line through two points. Let

f'lC*'!) ^i) ^nd ^2 0*2) ^2) t)e any two points in the plane. To
find the equation of the straight line passing through them.

Let P(r, 0) be a point on the line as shown in Eig. 73.

Then area 0PiP2 = area OPiP+area OPP2.

I.e. I i\r2 sin (O^— ^1) = i ^^1 sin {6 — 0^) + ^ rr^, sin {B^— 6),

or rjra sin (^o — ^1) + ^\^ sin {Q — 62) + rr^ sin (d^ — 0) = 0.

This equation holds for any position of P on the line be-

tween Pi and Pg. If P be so taken that Pg lies between P and

Pi, the equation that holds can be obtained from the above

equation by interchanging r

and ?*2, and and O2. But this

interchange only changes the

sign of the left member of the

equation, and since the right

member is zero, the equation it-

self is unchanged. If P be so

taken that Pi lies between P and Pg, it may be shown in the

same way that the same equation holds. Hence the above

equation holds for all points on the line, and clearly for no

others, and is tlierefore the equation of the line.

Fig. 73.
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The same equation may be derived at once by equating to

zero the area of the triangle whose vertices are P, Pj, and Pg.

(See Art. 37.)

(ii) Equation of a straight line in terms of the length of the

perpendicular from the origin to the line and the angle which

this perpendicular makes with the initial line.

Let the perpendicular from the origin to the line be of

length py and make an angle a with

the initial line. Let P(r, ^) be a ^
point on the line. Then (Fig. 74) /^S
r cos (a — 6)= p. Since cos (—A) c^:—lLu

= cos A, this may be written

r(ios{0-a)=p. ^i«-'^4-

The student should show that this equation holds for all

points on the line.

EXERCISE XXI

1. Write the equation of the line through (2, 30'') and (1, 60°).

2. Draw the line whose equation is r cos (0 — 60°) = 5.

3. Draw tlie line whose equation is r sin ^ = 4.

4. Find the intersection of the lines r cos ^ = 8, and r sin ^ = 4.

5. Find the intersection of the lines r cos [^ — sin-i (f)] =2, and

r cos [d - cos-i
(j\)] = 4.

6. Derive the equation r cos (0 - a) =phy substituting in

a; cos a + ?/ sin a = p, the values x = r cos 6, y = r sin d.

7. Derive the equation of the straight line through two points in polar

coordinates by substituting in

y — yi _ a^ — a:i

y2-yi xi-xx

the values a: = r cos ^, y = r sin ft



CHAPTER VII

STANDARD EQUATIONS OF SECOND DEGREE

CIRCLE, PARABOLA, ELLIPSE, HYPERBOLA

72. The circle. The equation of a circle of radius r and
center at (Ji, k) is

Proof. Denote the center by (7. Let P(x, y) be any point

on the circle. The condition that

P is on the circle is expressed

by the equation

(7P= r.

In terms of the coordinates of the

points it becomes

(x-hy^-{y-ky = r',

P (^. y) which is therefore the equation of

the circle, for it is an equation

which is satisfied by all points on

the circle and by no others.

If the center is at the origin, the equation reduces to

73. The equation ay^ + y^ -\- Doc -{- Ey -[- F= 0. (1

)

An equation of this form, by completing the square in the

terms containing x and in those containing y, can be thrown
88
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into the form of the equation of the preceding article as

follows:

Add ^J^^-Fto both sides of eq. (1). The result is

4 4

^ + Dx +^ + f+ Ey +^ =^ +^-F,
4 4 4 4

x+fj+(.+g^ ^-^^-^^- (2)

Now, if D^ -\- E^—4: F is positive, eq. (2) is, by the preceding

article, the equation of a circle with center at
[
— — , —-^] and

radius equal to ^VD^ ^E''-4.F.

If D^ + E'^-4.F=0, eq. (2), and hence eq. (1), is satisfied

bya;=— — ,
y= — — only ; for the sum of two terms, neither

of which is negative, can vanish only when the terms vanish

separately.

\iD'^-\-E'^-^F<^, eq. (2), and hence eq. (1), is satisfied

by no real values of x and y : for the sum of two quantities,

neither of which is negative, cannot equal a negative quantity.

Hence the equation .

represents

(1) a circle, center at (- ^,- ^\ radius = \ VZ^4-^'-4i^,

if D2-f J5;--4i^>0,

(2) apoint(^-|,-|^,ifi)^4--E^-4i^=0,

(3) no locus, if Z)2 _|_ ^ _ 4 2^ < 0.

74. The equation of a circle through three points. The
equation of a circle through three given points, not in the



90 ANALYTIC GEOMETRY

same straight line, can be found by use of the equation of the

preceding article as is illustrated by the following example

:

Example. To find the equation of a circle through (2, 1),

(-1, 3), and- (-3, -4).

The equation of the required circle is of the form

^+f+Dx-^Ey+F=0. (1)

The coordinates of each of the given points must satisfy this

equation. Therefore

5 + 2i)+ E+ F=0,
10- D + SE-{-F=0,

25-3D-4.E + F=0.

The values of B, E, and F, obtained by solving these equa-

tions, are D

Y

^ ^^.

/ \
1 \ X

\

\ /

V X
/

<~-

Fig 76.

the circle with center and radius as computed

VS E= l, F=-ii^.
Substituting these values in eq. (1)

and clearing of fractions, the re-

quired equation of the circle is

5(a.-2+ 2/2) -f 13 ic + 7 2/
- 58 = 0.

Using the formulas of Art. 73,

the center and radius of the circle

are found ta be (—1.3, —.7) and

r = 3.71. . . .

A check on the work is obtained

by plotting the points and drawing

(Fig. 76.)

EXERCISE XXII

Find the centers and radii of the circles represented by the following

equations. Draw the figures.

1. a;24.y2^25. 2. a;2 + 2/'^-4a; + 6y = 12.

3. a:2 + 2/2 + 8x-6y = 0. 4. 2a;2 f 2 y2 _ 7y + 3a; = 11.

5. (x - 1)2 + (y + 2)2 = 0. 6. (a; - /i)2 + (?/ - A;)2 = 0.

7. m2 + v2 4- M 4- 1> = 0. 8. x2 + y2 _ 4 a; + 6 y + 14 = 0.
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9. x^-{-y^-ix-\-Qy-lS = 0. 10. x'^ -2ax + y^ = 0.

11. x^-2ax-\-y^ -2ay = 0. 12. x'^ -{- y^ - ax - by = 0.

Find the equations of circles which fulfill the following conditions

:

13. Center at (- 1, 3), radius = 2.

14. Center at (a, 0) , radius = a.

15. Center at the intersection of y + 4ic+l = and 2x—y-\-6 = 0,

and passing through (2, — 3).

16. Center at (2, 5) and tangent to3x4-4y = ll.

17. Center on the line y = 2x and passing through (0, 5) and (6, 1).

18. Passing through (0, 2), (- 1, 3), and (5, 0).

19. Circumscribing the triangle whose sides are 5x + Sy — IA = 0,

ix — Sy + 6 = 0, and x + 6 ?/ +8 = 0.

20. Inscribed in the triangle whose sides are 5x + l2y — 2 = 0,

4ic + 3y + 5 = 0, and3x-4!/-15 = 0.

21. Tangent internally to the first two sides of the triangle mentioned

in example 20, and tangent externally to the other side.

22. Prove that if Pi(xi, yi) is any point without the circle

and T is the point of contact of a tangent drawn from Pi to the circle,

then, P^2 = (xi - hy + (yi - ky - r^.

23. Show that if the equation of the circle of example 22 is

x^ + y^ + Dx + Ey+ F=0,
then, KT^ = xi^ + yr^ + Dxi + Eyi + F.

24. Prove that the locus of points from which equal tangents may be

drawn to

'

a;2 + w2 -f Dix + E^y + Fi = 0,

and x'^ + y^ + D<ix + E<iy + Fg= 0,

is the straight line

(l>i - D2)x + (^1 - E^^y -\-Fi-F2 = 0,

or, in case the circles intersect, is that portion of the line not inside of the

circles.

This line is called the radical axis of the two circles.

25. Show that if two circles intersect, their radical axis passes through

their points of intersection.
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26. Find the equations of the radical axes of the circles of examples 1, 2,

and 3, and prove that they meet in a point.

27. Prove that the three radical axes of any three circles taken in

pairs meet in a common point.

28. Prove that the radical axis of two circles is perpendicular to their

line of centers.

75. The parabola. The parabola is the locus of a point

which moves so as to keep equidistant from a fixed point and

a fixed straight line.

The fixed point is called the focus, the fixed straight line the

directrix, of the parabola.

To obtain the equation of the parabola, let, at first, the direc-

trix be taken as the axis of y and the focus at the point (p, 0).

Let P(x, y) be any point on the locus. Join P and F{p, 0),

and draw MP parallel to the avaxis to meet the ^/-axis in M,
Then the condition that P is the point on the locus is expressed

by the equation

FP= MP, if MP is positive, and by

FP=- MP, if MP is negative.

P ix,yy

F(p,o)

PCx,y)

F(p,o)

Fig. 77.

Evidently MP is positive or negative according as (p, 0) lies

to the right or the left of the origin, i.e. according as p is posi-

tive or negative.

Now FP= -V(x-2)y-{-y^

and MP = x.

y/{x-pY-\-y^ = a;, if p > 0, (1)

and V(a;-p)2-f.2/2 = -x,\ip<0. (2)
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Squaring and transposing, either of these equations becomes

f' = 2px-p\ (3)*

This equation may be written

= 2,(.-|).

Let the axes be translated to (-^, j as a new origin. The

formulas of transformation are

a^ = ^' + |,2/ = y'-

The equation of the parabola referred to the new axes is,

therefore,

y'2 = 2px\ -
(4)

Dropping, primes,
y' = 2poc (5)

is therefore the equation of a parabola when the 2/-axis is paral-

lel to the directrix through a point halfway between the focus

and directrix, the avaxis passes through the focus and is per-

pendicular to the directrix, and the focus is at ( ^, ).

It is important to note that in eq. (5) the abscissas of points

on the parabola vary as the square of the ordinates.

76. The graph of 2/2=2 i>ic.

I. p positive.

* Equation (3) is not equivalent to both eqs. (1) and (2), but only to

(1) if p is positive, and to (2) if p is negative. For on retracing the steps

from (3) the eq. \/(x — p)'^ -\- y'^ = ±x\s obtained. Now the + sign can

only be used when x is positive, since the radical is counted positive. But
if p were negative when x is positive, then \/(x — p)'^ + y'^ would be greater

than X. .'. when x is positive, p is positive. Therefore the + sign of x can

be taken only when p is positive. Hence when p is positive, eq. (3) is

satisfied by precisely the same points as eq. (1).

In the same way it can be shown that eq. (3) is equivalent to eq. (2)

when p is negative.
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(1) The curve is symmetric with respect to the x-axis.

(2) When x = 0,y = 0', when y = 0,x = 0. The curve there-

fore meets the axes at (0, 0) only.

(3) All negative values of x make y imaginary. The curve,

therefore, lies to the right of the ?/-axis.

(4) No finite value of either variable makes the other infinite.

(5) As X increases, the positive value of y increases, a small

change in x making a small change in y.

(6) When x becomes infinite, y also becomes infinite.

The upper half of the curve may, therefore, be generated by
a point which, starting at (0, 0), moves ever to the right and
upward, receding indefinitely from both axes.

The following points are on the curve

:

xO 2 2
8 2

p 2p Sp 4tp Sp 50p 200p,

y ±^ ±p±pV2 ±2p ±pV6 ±2pV2 ±4.p ±10p ±20p.

The curve is shown in Fig. 78 for a certain value of p.

F(|,o)

p positive

Fig. 78.

p negative

II. p negative. This case differs from that in which p is

positive only in making the curve lie to the left of the y-axis

instead of the right. The curve is shown in Fig. 78, the values
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of p for the two curves being numerically equal, but opposite

in sign.

77. Axis of a parabola. Vertex. The straight line through

the focus perpendicular to the directrix is called the axis of the

parabola.

The point where the parabola crosses its axis is called the

vertex.

In both cases of Fig. 78 the a>axis is the axis of the parabola,

and the vertex is at the origin.

78. Parabola with axis on the ^/-axis and vertex at the origin.

If the vertex is at the origin and the focus at (0, ^ j,
the equa-

tion can evidently be obtained from that of Art. 76 by ex-

changing X and y. The equation is therefore

The two cases are shown in Fig. 79.

p positive. a;2 = 2py.

Fig. 79.

p negative.

79. The arbitrary constant of the parabola
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Definition. A constant which may have any vahie in an

equation is called an arbitrary constant, or a parameter, of the

equation.

In the equation of the parabola, if = 2})x, since p may have

any real value, it is an arbitrary constant of the equation.

Corresponding to each value of p there is a definite curve.

The curves which correspond to a few different values of p
are sketched in Fig. 80.

\ \i Y / ^
^^ \ // /^
\ \

UP A .<
\ \ / /^ <

\ \ / /
\ \j/

y

P = "10

p =
'"'

V = X

C -^^__

h
1'\^
T \"^

/ \ \7~
1 \ ^.

/ / \ ^\_
/
7 f \ ^V

/ 1 \
y2 _ 2 j3x.

Fig. 80.

80. The equations

C2/'+/>a?+^2/ + l^=0, C^O, JD^^,

Equations of these forms can by a translation of axes be

thrown into the forms x^ = 2py
and jf^^px

respectively. The equations therefore represent parabolas

with their axes parallel respectively to the y-axis and the

o^axis.
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A numerical example will make this clear.

Example. Sx^ -\-2x-\-5y -4. = 0.

Complete the square in the terms containing x, and trans-

pose the other terms to the other side of the equation

:

or (x + iy= -%(y-{i).

Translate the axes to (— ^, yf) as a new origin by means of

the equations

The transformed equation is

2/ = 2/' + tI-

''^--f2/'.

Y'

0'

Y

-1 X'

/^ \: >

/
\

Fig. 81.

This is the equation of a parabola with axis on the new y-axis,

vertex at the origin, and focus at (0, — -j^) referred to the new
axes.

Referred to the old axes, the vertex is (— \, |-f), the focus is

(— 1^, T5^), and the equation of the axis of the parabola is

x = -i.

81. The equation y = aoc^ + 6a? + c.

This equation represents a parabola with its axis parallel to
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the ?/-axis. For, it may be written

\ a 4 ay 4a

4 a \ 2aJ

Let a^ +

and this equation becomes

2a'

6^ — 4 ac

y\

which is the equation of a parabola with axis on the new i^-axis

and vertex at the new origin. Hence, referred to the old axes

the vertex is at f , ——^ ), and the axis of the pa-
V- 2a' 4a / ^

rabola is parallel to the 2/-axis.

The parabola extends upward or downward from the vertex

according as a is positive or negative. The sign of 6^ — 4 ac

determines whether or not the curve crosses the a;-axis.

Let the student show that the conditions are as stated in

Fig.' 82.

a positive

(1) 62_4ac>0.

Fig. 82.

y = a'3?' -\- h% -^ c.

(2) 62_4ac=0
a negative.

(3) 62_4«c<0.
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82. The parabolic arch. An arch of height ?i and span 2

1

is in the form of a parabola with vertex at the crown. It is

desirable to compute readily the heights of the arch at vary-

ing distances from the center of the span.

Choose the axes as in Fig. 83, counting y as positive down-

FiQ. 83.

ward. Since in a parabola, and with this choice of axes, the

ordinate varies as the square of the abscissa, therefore

This form of the equation enables one to compute readily

the heights at varying distances from the center.

E.g. the heights at distances from the center of -, -, and

3^ ^. T
15h 3/i , 7h— are respectively -—— — , and —— •

EXERCISE XXIII

Plot the following parabolas, finding the vertex of each and reducing

the equation to the standard form. In each case compute the value of

the discriminant, b^ — 4 ac.

1. y = 2x'^-Sx + 5. 2. y=-Sx^ + 4x-l.

3. y = x^-\-4:X + 4. 4:. 5y-2x^+4x-3 =0.

5. 2x^ + Sx + y = 4. 6. Sy'^-2y -\- 4x - S =0.
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7. Discuss the effect upon the position and form of the curve caused
by separately varying the quantities a, 6, and c in the equation

y = ax^ -\-bx + c.

8. Discuss the equation x = ay^ + by -\- c. (Compare Art. &1.)

9. A parabolic arch of 60 ft. span is 20 ft. high at the center. Com-
pute the heights at intervals of 5 ft. from the center.

10. Through how many arbitrarily assigned points can a parabola

with axis parallel to one of the coordinate axes be passed in general ?

Name some exceptions.

Find the equation of a parabola with axis parallel to the ?/-axis through

the three points (1, 0), (3, 2), and (6, 8). Draw the figure.

11. Find the equation of a parabola through the three points of

example 10 with axis parallel to the ic-axis.

12. Find the equation of a parabola through the points (— h, yi),

(0, 2/2), and (h, yz) with axis parallel to the ?/-axls.

13. Find the equation of a parabola through (1, 0), (3, 2), and (6, 5).

14. Find the equation of a parabola with axis parallel to the ?/-axis

passing through (- 20, 0), (0, ^V), and (20, 0).

Can a parabola with axis parallel to the aj-axis be passed through these

points ?

15. Show that any line parallel to the axis of a parabola cuts the

parabola in one and only one point.

83. The ellipse. The ellipse is the locus of a point which

moves in the plane so that the sum of its distances from two

fixed points in the plane is

Y constant.

The fixed points are called

the foci.

To obtain the equation

of the ellipse, let the a;-axis

be taken through the foci,

and the origin midway be-

tween the foci. Let the

distance between the foci

be 2 c. The foci -are then

P(:r,i/)

Fig. 84.

F(c, 0) and F\- c, 0).
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Call the given constant 2 a, where 2 a > 2 c.

Let P{x, y) be any point of the ellipse ; then

In terms of the coordinates of the points, this becomes

^(^x - cf + f 4-V (a^ + c)2 + / = 2 a. (1)

This is therefore the equation of the ellipse.

Equation (1) can be thrown into a more convenient form

free from radicals as follows : Transpose the second radical to

the right-hand member of the equation and square,

a^_2ca;+c2+.y2=4a2-4aV(a;-f-c)2+2/2+a^+2ca;+c2+/. (2)

Canceling, transposing, and dividing by 4,

cx + a^ = aV(x + cy + yK (3)

Squaring,

cV -f 2 a^cx + a* = a'x' -f 2 a'cx + aV -f ay. (4)

Canceling and collecting terms,

(a' -(^)x'-\- aY = a' ip? - c^). (5)

Dividing by a^(a^ — c^)j

t^^£- = X. (6)

All values of x and ?/ that satisfy eq. (1) also satisfy eq. (6),

but in obtaining (6) from (1) the operation of squaring was

twice performed, and in this process there are introduced

values of x and y which satisfy eq. (6) but do not satisfy

eq. (1). However, the values so introduced in this case are

imaginary, and hence there are no points on the locus of

eq. (6) that are not also on the locus of eq. (1). For, start-

ing with eq. (6), the steps may be retraced until eq. (4) is

reached, where, upon extracting the square root, a double

sign is introduced, i.e.

cx-\-a?= ± a^ix + cf -{- y^,

or —cx = a^ q: aV(x-\-cy + y^ (3')



102 ANALYTIC GEOMETRY

Multiply by 4 and add (x -\- cy + y'^ to both sides,

a^ + 2caj4-c2 4-?/2-4ca; = 4a2:f 4 aV(a; + c)2+ / + («;+ c)2 + /,

or {x-cy-{-y' = (2aTV(x-\-cy-j-yy. (2')

Extract the square root,

± V{x- cy -^ y' = 2 aT Vix-j- cy + y%

or ± V(« - cy + y'- ± V(a; + cy + y^ = 2a. (1')

Therefore, if (x, y) is denoted by P,

±PF±PF^ = 2a.

Now 2 a is a positive quantity ; hence both negative signs

cannot be used. Also FF' = 2c. The difference of PF' and
PFis therefore less than 2 c. (Fig. 84.) That difference can-

not therefore be equal to 2 a, which is greater than 2 c. Hence
the only allowable combination of signs for real values of x

and y is given in

+ PF-]-PF' = 2a.

Therefore all real values of x and y that satisfy eq. (6) also

satisfy eq. (1). Hence eq. (6) is the equation of the ellipse.

Replacing the positive quantity a^ — c^ in eq. (6) by 6*, the

equation becomes

84. Graph of ^' + ^' = 1.
a^ b^

Solving for y, y = ±- Va^ — x^.

a

Solving for x, a; = ± - V6^ — y^.

(1) The curve is symmetric with respect to both coordinate

axes, and the origin.

(2) It crosses the avaxis at (a, 0) and (— a, 0) and the y-axis

at (0, b) and (0, - b).
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(3) If X is less than — a or greater than a, y is imaginary.

If y is less than — 6 or greater than h, x is imaginary. There-

fore no portion of the locus lies to the left of x = — a ov to the

right of x = a; below y = — b, or above y = b.

(4) No finite value of either variable makes the other

infinite.

(5) In the first quadrant, as x increases from to a, y
steadily decreases from b to 0.

(6) By (3) neither variable can become infinite.

The following points are on the curve,

a a 3a 7^ 9a
4 2 T T To ^

X

y b .97 b .87 6 Mb
The curve is sketched in Fig. 85.

.48 6 .44 6

Fig. 85.

85. Axes, vertices, center of the ellipse.

Definitions. The chord of the ellipse which passes through

the foci is called the major axis of the ellipse; the chord at right

angles to the major axis and passing through its center, the

minor axis ; their intersection the center, and the ends of the

major axis the vertices of the ellipse.

Thus in Fig. 85, A'A = 2 a is the major axis, B'B = 2 6 is the

minor axis, is the center, A (a, 0) and A' {— a, 0) are the

vertices.
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In terms of a and b the foci are F(Va^ — b'-, 0) and

since — ^2G^ — & or c = V<: 6-.

86. The ellipse with major axis on the 2/-axis. In Art. 83

the equation — -j-^= 1 was found for the ellipse with center

at the origin and with major axis 2 a on the a;-axis. If the

major axis 2 a were taken on the ?/-axis, the equation would
clearly be obtained from that above by exchanging x and y..

It is therefore,

y" ,y?
,

^o + 1, where the major axis is 2 a.

If, however, the major axis is called 2 b and the minor axis

2 a, the equation becomes the same as that of Art. 83 ; namely,

-fi-'
This equation therefore represents an ellipse with major

axis on the a>axis or the ^/-axis according as a is greater than

Y

Y

a> h

Fig. 86.

a <b
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or less than b. In the latter case the foci are (0, Vb^ — a^)

and (0, - V6^^^-).

87. The hyperbola. An hyperbola is the locus of a point

•which moves in the plane so that the difference of its distances

from two fixed points of the plane is constant.

To find the equation of the hyperbola, as in Art. 83, let the

fixed points be F(c, 0) and F' (— c, 0), and let the constant be

2 a. Here, however, 2 a < 2 c, since the difference between two

sides of a triangle is less than the other side.

Let P{x, y) be any point of the locus, then (Fig. 87) either

FP-F'P=2a or F'P-FP=2a,

according as P is nearer to F^ or F.

FP-F'P=:±2a,

P(=r,2/)

Fig. 87.

Expressed in terms of the coordinates, this equation becomes

^{x-cf-^f--\/{x + cf^-y'=^±2a. (1)

This is therefore the equation of the hyperbola.

It is more convenient to have the equation free from radicals.

Transposing the second term and squaring,

a^-2ca;+c2+2/-=a^+2ca;+c2f/±4aV(a;+c)2+2/^+4a2. (2)

Canceling, transposing, and dividing by 4,

- (ex+ a^ = ± a^{x + cY-Jty\ (3)
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Squaring,

(fa^+ 2 a^cx + a* = aV + 2 a^cx+ aV + ay, (4)

Canceling and collecting terms,

(c2 - a^ x^ - ay = a\(?-a'). (5)

Dividing by a^((? — a^,

0? v^

C^ (? — (^
1. (6)

This is precisely the same form as eq. (6) in Art. 83, the only

difference being that here & — a^ is positive, whereas there it

was negative.

Every point whose coordinates satisfy eq. (1) also satisfy

eq. (6). That conversely all points which satisfy eq. (6) also

satisfy eq. (1) may be shown as in Art. 83. The steps by

which (6) was obtained from (1) can be retraced, but a double

sign must be used when the square root is extracted. Hence,

given eq. (6), there follows

±V(a;-c)2+ 2/'±V(a;+ c)2 +/ = ±2a. (1')

If P{xj y) is*any point on the locus of this equation, then

±FP±F'P=±2a.

The same sign cannot be used throughout, since the sum of

two sides of a triangle is greater than the third side, and

2a<2c.
The same signs for the terms on the left and the opposite

sign on the right cannot be used, since the sum of two positive

quantities is positive.

Hence the only combinations of signs left is that where the

signs of the terms on the left are different, which is equivalent

to

FP-rP=±2a.
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Therefore eq. (6) is satisfied by only those points which

satisfy eq. (1). Equation (6) is therefore the equation of the

hyperbola.

Letting the positive quantity c^ — a? = 6^, eq. (6) becomes

88. Graph of ^'-^'=1

Solving for 2^, y= ± - Var' — a\

Solving for a;, x= ±- ^/y^ + b\

(1) The curve is symmetric with respect to both coordinate

axes and the origin.

(2) It intersects the avaxis at (a, 0) and (—a, 0), but does

not intersect the 2/-axis.

(3) If X lies between — a and a, y is imaginary. All values

of y make x real.

(4) No finite value of either variable makes the other

infinite.

(5) In the first quadrant as x, starting at a, increases, y,

starting at 0, steadily increases.

(6) As either variable becomes infinite, so does the other.

The part of the curve that lies in the first quadrant may
therefore be generated by a point which, starting at (a, 0),

moves to the right and upward, receding indefinitely from

both axes.

The following points are on the curve

:

a
3 a

2
2a Sa 4a 10 a 100 a,

1.16 1.7 b 2.Sb 3.9 b 9.95 6 99.99 6.
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The curve is shown in Fig. 88.

The foci are (Va^ + h\ 0) and (-V«' + 6', 0).

89. The asymptotes of the hyperbola. By observing the

table of values of x and y in the preceding article, it may be

seen that the ratio of x to y comes nearer and nearer to - as
h

X increases.

Consider then the locus of the equation ^ = - , or
X a

by==- oc.

a

The locus of this equation is a straight line with slope - and
(X

?/-intercept (Art. 55); i.e. it is a straight line through the

origin and (a, b).

Let yi and yj^ denote the ordinates of the points on the line

and the hyperbola respectively, in the first quadrant, for the

same value of x. Form the difference

2/i
-

2/a = - (a^ - Var^- a^),
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which may be written

b{af-x''-\-a') ah

a (x H- Vic^ — a^) x +Va^ — d^

from which it is evident that, in the first quadrant, yi — y^ is

positive, decreases as x increases, and approaches the limiting

value as a; becomes infinite. The curve therefore comes

ever nearer to the straight line as x increases, and approaches

indefinitely near as x becomes infinite.

The line y = - a; is therefore an asymptote of the curve.

From symmetry the same line is an asymptote in the third

quadrant, and y= a? is an asymptote in the second and
a

fourth quadrants.

The asymptotes are shown in Fig. 88.

In plotting the hyperbola it is well to draw the asymptotes

first. They will serve as an aid in sketching the curve when
a very few points have been located.

90. Axes, vertices, center, of the hyperbola.

Definitions. The points of intersection of the hyperbola

and the line through the foci are called the vertices of the

hyperbola; the line joining the vertices the transverse axis;

the middle point of this line the center of the hyperbola ; and

the line through the center perpendicular to the transverse

axis, of length 2Vc- — a^, the conjugate axis.

Thus in Fig. 88, A and J' are the vertices, A'A= 2 a is the

transverse axis, the origin is the center, and B'B =2 6 is the

conjugate axis.

91. The conjugate hyperbola. The equation of an hyper-

bola with foci on the iz-axis at the points (0, Va^ + b^) and

(0, — Va^ 4- ^^) and transverse axis 2 a is obtained from the

equation of Art. 87 by interchanging x and y. The equation

is therefore y^ _^' — i

a'~b'~ '
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If, however, the transverse axis is 2 6 and the conjugate

axis 2 a, the equation is ^ = 1, or

05^ y^
1.

a'

This hyperbola is called the conjugate of ^ — ^ = 1.
ft

It is easily shown that the conjugate hyperbola also has the

lines y — — and y= for asymptotes. The proof is left
ft ft

as an exercise.

The curve is shown in Fig. 89 together with the hyperbola

Fig. 89.

Since the equations of the asymptotes can be combined into

the one equation — — ^ = 0, therefore the three equations

a'
= 1,

« _ IT_ _

a' 6^ ^'

1,
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represent respectively an hyperbola, the conjugate hyperbola,

and the asymptotes.

92. The equilateral hyperbola. If 6 = a, the hyperbola is

called the equilateral, or rectangular, hyperbola.

The equation is

05^— 2/2 = c^.

The asymptotes are y — nc and yzz^—ocj and are therefore

at right angles to each other.

93. The equilateral hyperbola referred to its asymptotes as

axes. In the equation of the equilateral hyperbola of the pre-

ceding article, let the axes be rotated through an angle of

— 45°. The asymptotes then become the axes. The formulas

of transformation are

« = ic' cos ( - 45°) - y' sin ( - 45°),

2/ = a;' sin ( - 45°) + y' cos (- 45°),

V2

Fig. 90.
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Substituting these values of x and y in the equation of tha

equilateral hyperbola

there results

i{x" + 2 x'y' + y") - i(a:'^-2 ^^ + 2/'^) =a\

or, dropping primes, xy = ~.

This is, therefore, the equation of the equilateral hyperbola

referred to the asymptotes as axes.

From the above it follows that if two variables change in

such a way that their product remains constant, the curve

which represents the equation connecting them in rectangular

coordinates is an equilateral hyperbola. E.g. the equation

pv—Gi% represented by an equilateral hyperbola.

94. The equation Aor -\- Ct/"' -{- nx + Ey -{- F= 0, A ^ 0,

C¥=0.
An equation of this form can, by a translation of axes, be

transformed into one in which the terms of the first degree

are lacking. For, completing the squares in the terms con-

taining X and in those containing y, the equation becomes

Letting. = .'-^^, , =y- A, and£ +^-^=n
the equation becomes

Ax" -{- Cy" = F'.

The locus of this equation depends upon the values of A, C,

and F'.

Suppose I. F' = 0.

(1) Then, if A and G are of the same sign, no real values of

x' and y' except (0, 0) will satisfy the equation. Hence the

locus is a point.
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(2) If A and C are opposite in sign, Ax'^ + Cy'^ = can be

factored into two factors of first degree in x' and y', and there-

fore the locus is two intersecting straight lines.

11. F=^0. Divide by ii^',

X '2 ^,12

A G

(1) If — and — are both positive, the locus is an ellipse.

(A circle itA=C.)
77" 77''

(2) If — and _ are both negative, no real values of x' and
A C

y' satisfy the equation. Hence there is no locus.

77" 77''

(3) If — and— are opposite in sign, the locus is an hyper-A C
bola.

95. Illustrations.

Example 1. 3 x^ — 4: y^ — 7 x -\- 5 y -{-2 = 0.

This may be written

H
Ix
3 ^36;^ V 4 ^64; 12

25
~16 -2,

or Z(x-lf-4.{y-iY = H.
Let ^=^'+hy = y'+h

then 3^r2_4y2^ 25^

or ^ 1%

This is the equation of an hyperbola with center at the new

origin, transverse axis on the new a;-axis, with a=A, h =—

^

12?
24
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Referred to the old axes the center is at (J, |). (See Fig. 91.)

Y Y'

Fig. 91.

Example 2. x'-d y"" + 7 x + 9 y -^10 = 0.

This may be written

^-\-7x+ ^-9(f-y + i) = ^-i--10,
or (a,+ i)2_9(2/-i)2 = 0.

Let X = X'-^, y=,y'^l.

Then, x"-9y"=0,
which may be written

{x' + 3y')(x'-^Sy') = 0.

This equation is satisfied by all values of x' and y' that

Y' Y

Fig. 92.
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make either x' — 3 y' = 0^ ov x' -^ S y' — 0, and by no other values.

The locus is therefore two straight lines through the new origin,

with slopes J and — -^ respectively.

Referred to the old axes the point of intersection of the

lines is (- |,
i).

96. The equation Ax^ + Bxy -{. Cy^ ^ Dx -^ Ey -\- F=0. An
equation of this form can by a rotation of axes be reduced to

one in which the term in xy is lacking. (Compare Art. 54,

example 3.) The resulting equation can then be treated as in

the preceding article.

Usually, where the xy-teTm and terms of the first degree

appear in the equation, it is easier to first remove the terms of

first degree by a translation of axes, and then remove the term

in a^ by a rotation of axes. It is not, however, always possible

to remove the terms of first degree.

EXERCISE XXIV

Reduce, where possible, the following equations to a standard form of

this chapter. Determine the axes, position of centers, vertices, and foci

of ellipses and hyperbolas ; asymptotes of hyperbolas ; and foci, vertices,

and directrices of parabolas. Sketch the curves.

1. (c2-6ic-4i/ + l=0.

2. 9x2 + 4y2_36a;-24y + 36 = 0.

3. 9x^-y^ + S6x + 2y + S6 = 0.

4. 16a;2_y2_80a;-6i/ + 75 = 0.

5. 3x^ + y^ + 6x + 7y-8 = 0. 7. 3a;2 + 4a;-y + 7 = 0.

6. 5a;2_4^,2_^10a;-16?/ = 0. 8. 29x^ + lQxy + Uy^^4S = 0.

9. 21 a;2 + 52V2a;y- 68 2/2-324 = 0.

10. 16a;2-24a;y + 9y2_i80x+10y-75 = 0.

11. xy = S. 12. xy-x2 = 5.

13. Sx^-^xy-\-6y^-{-6x-Sy = 0.

14. 14x2 + 45a;2/-142/2_i2a; + lly-2=0.

15. xy-\-2x + y+l=0.
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16. Prove that the equation of a parabola with vertex at (h, k) and
axis parallel to the x-axis is

What is the equation if the vertex is at (h, k) and the axis is parallel

to the ?/-axis ?

17. Prove that the equations of an ellipse and an hyperbola with center

at (h, k) and axes parallel to the coordinate axes are, respectively,

ni ^ m ~
'62

and {x-hY _ (y-lc)^ ^^^

18. What are the equations of the asymptotes of the hyperbola in

example 17 ?

19. Prove that xy = ax + hy -\- c is the equation of an equilateral hyper-

bola with asymptotes parallel to the coordinate axes, if — c =5^ ah. By a

translation of axes reduce the equation to the form xy = k.

20. What are the equations of the asymptotes of the hyperbola in

example 19 ?

21. Prove that y = ^^
is the equation of an equilateral hyperbola,

ex + d

if ad =^ be, and that the asymptotes are x = , y = -•
c G

22. In the equation of example 21 let a = 1, b = 2,d = S, and plot the

curves for the following values of c: c =2, 1.6, 1.4, 1, .1. Show that these

curves all pass through the same two points on the axes.

If c be allowed to approach the limiting value 0, what limiting form

does the hyperbola approach ? What limiting form if c approaches f ?

23. An hyperbola has the lines x = 2 and y = 4 as asymptotes. It

passes through the point (4, 2) . Find its equation.



CHAPTER VIII

GRAPHS OF TRIGONOMETRIC, EXPONENTIAL, AND LOGA^
RITHMIC FUNCTIONS. GRAPHS IN POLAR COORDI-
NATES

97. The sine curve. Consider the graph of the equation

y = sin X.

Let X be the radian measure of an angle. Let x and y be

taken as rectangular coordinates of points in the plane, the

abscissa of any such point being the number of radians in

the angle, and the ordinate being the sine of that angle.

The following properties of the locus follow from the prop-

erties of the sine of the angle.

1. The locus is not symmetric with respect to either axis,

but is symmetric with respect to the origin, since

sin (— ic) = — sin x.

2. The locus cuts the a;-axis where x = 0, it, 2 it, •••; — tt,

— 27r, •••, i.e. where x^kir, k being any positive or negative

integer, or zero. It crosses the ?/-axis only at the origin.

3. All real values of x make y real. All real values of y
between and including — 1 and 1 make x real ; all other values

of y make x imaginary.

4. No finite values of either variable makes the other

infinite.

5. As X increases from to -. y increases from to 1,
2

As X increases from - to tt, ?/ decreases from 1 to 0,

As X increases from tt to —, y decreases from to — 1,

117
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As X increases from -^ to 2 tt, t/ increases from — 1 to 0.
2

6. As a; increases from 2 tt to 4 tt, 2/ takes in succession the

same set of values that it takes when x increases from to 2 tt.

In general, since sin {A-\-2 hir) — sin A, where k is any positive

or negative integer, it follows that if x is increased or de-

creased by any whole multiple of 2 7r, sin a;, or y, is unchanged.

Hence if the curve be plotted through an interval of length

27r on the a;-axis, other portions, of the curve may be obtained

from this portion by moving it to the right or left through the

distance 2 tt, 4 tt, 6 tt, etc.

A few corresponding values are shown for x ranging from

to TT, and the curve is drawn to pass through the points so

determined. For x ranging from tt to 2 tt the values of y are

those given below changed in sign. (Fig. 93.)

IT IT TT TT 2 TT 3 TT 5 TT

6 4 32TX~6''^'
1 V2 V3

1
V3 V2 1

2 2 2 2 2 2
0.

. 1 ^ MIU____
1 .__ _._

-ft+ff-—
1

u u^yjiil^-O'V ^jLU^^^^^^^^^^^^^^^^
UlfHI MliiU

:---:::: ::---i z^ J "s 3?
::,.|=:: = :=:i = ::::: = :::v? = = = : = ::t:::::::^.| = :=::::==!: = :::=: =g = ::|

;:^^^;=:"::=:"="::=;i^|===":!"|"
^::: : :: -z':: : '5 ::+ :;? ::::;::--, . . , ,

:::::::: ^5; :::::;;?:::::::::::::::::::::::::::::::::: 1:5+ ::::,^^f=*-=
^yTTri :

::: = :::=:::4:t==±:=:::;,0.-1,^: = ::::::::: = ::::=:==:==:::4=:- =--= = ::--

Sf= SIN a)

Fig. 93.

98. Periodic functions. A periodic function of a variable is

a function whose value, for any value of the variable, is not

changed by increasing the variable by a definite constant

quantity. The least positive constant quantity by which the

variable can be increased without changing the value of the

function is called the period of the function.
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Thus sin a; is a periodic function of x, since sin (x-^^tt) =sina;.

Since 2 tt is the least positive constant value by which x may-

be increased without changing the sine, 2 7r is the period of

sinx.

Again, tan ^ is a periodic function of d, since tan(^+7r)=tan^.

The period is tt.

Also cos {ax+ 6) is a periodic function of x with the period
,y 9— , since increasing xhj ~ increases ax+ h by 2 7r, and this
a a

leaves the cosine unchanged.

99. Graph of y = sin (a? + a). Let a;' = a;+ a, or x = x' — a.

This change of variable means geometrically a translation of

axes to. the new origin (—a, 0). The equation referred to the

new axes is y' = sin x'. Figure 94 shows the curve and how it

is located with respect to the axes.

>7;--->7-' -^—

1

. - - _ ^^xt? - 3^ - . - _ . - ,_

:::fs^:::::::::_::::^?^:.:::::j^: :::::::::::: S-: ::::::::::: ::-zh:::

:

±::::h;:::::::i::i??-::: ::::::1:=:::::::::::::?^. -,"-

:^^ «;' - _t *» -^

1

y= 8IN (x+a)

Fig. 94.

100. Graph oi y = sin nx^ where n is positive. Let ic' = nx,

or x= ~' The equation then becomes y = sin x\ the locus of
n

which is shown in Fig. 93. Now the substitution of a; = ^ can
n

be interpreted as shortening the abscissas of all points in the

ratio 1 : n without changing the ordinates. If, then, the curve

2/ = sin a; be drawn, the curve y = sin nx can be obtained from it

by shortening the abscissas of all points on the curve y = sin x
in the ratio 1 : n. This is equivalent to compressing uniformly
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in the direction of the x-axis any portion of the curve y == sin st

which begins at the origin into - of its original space, the end
n

of the curve at the origin to remain at the origin.

It is also equivalent to choosing a unit on tlie ic-axis equal to

- of the unit on the 2/-axis and then plotting the curve y — sin x.

n.

If n is less than 1, the contraction of the curve becomes in

fact an expansion.

Graphs of 1/ = sin 3 a; and of y = sin
(
—-

]
are shown in

rig. 95, together with y = sin x. ^

2x

-y-.
gu::i-:=:=;=::::|

iTrNTmiTrrKM ml
l:l^lZ:t^^}i:V::-:-:::

i-i==±^:l=±!:
y— SIN X J

= sm 3X

Fig. 95.

i;= siN^

m
101. Graph of y = sin (nx + m). Letting x = x' , the

n
equation becomes y = sin nx'. Hence translate the axes to the

new origin ( , ] and construct the curve y = sin nx. Com-
\ n J

pare Arts. 99 and 100.

Figure 96 shows the locus of ?/ = sin (nx+ m) for n = 2,

m= — 1.

Fig. 96.
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102. Graph of y =p8m(nx-\-rn). The graph of this

equation can be obtained by multiplying each ordinate of

y = sin {nx + m) by p. The curve is shown in Fig. 97 for p and

71 both positive.

y^p sinC«xh-w)

Fig. 97.

103. The exponential curve, y = a'', where a is positive.

(Only positive values of y are considered.)

(1) The locus is not symmetric with respect to either coordi-

nate axis or the origin.

(2) It intersects the ?/-axis at (0, 1), but does not meet the

a;-axis.

(3) For every real value of x there is one real and positive

value of y. Only this value is considered.

(4) No finite value of x makes y infinite.

(5) lia < l,y approaches zero as ar becomes infinite positively.

If a > 1, i^ approaches zero as x becomes infinite negatively.

(6) If a > 1, 2/ increases always as x increases.

If a < 1, y decreases always as x increases.

If a = 1, the curve becomes the straight line y = 1.

Figure 98 shows a few curves whose equations are of the

form y = a'', for certain values of a.

Values of y may be computed by logarithms.

E.gAi a = e = 2.718 •••*

* The quantity 1 + 4-+- +^-
\1

' \1' li^."*"!! \1
by e and is called the natural base of logarithms,

in more advanced mathematical work.

— = 2.71828 — is denoted

It is of much importance
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Iogio2/ = a5logio2.718 ...

= .4343 a;.

Y
r
1

1

1
/

1

/

u o

t
11 ij

?
\ /
\

1 /

\
1

1

\ ,

1 /

t 0^\__

Urjy^ _
X

Fig, 98.

The following points are on the curve y — e*,

a; _5 _3 _2 -1 1 2 3

y .007 .05 .14 .37 1 2.7 7.4 20

5,

148.

After a few points on the curve have been obtained, other

points are easily found by noticing that when x is doubled,

y is squared ; when x is tripled, y is cubed ; etc. This follows

at once from the law of exponents, a"* = (cu^y.

104. The logarithmic curve, y = \o^a^. This curve is the

same as that oi y = a' with x and y interchanged. The curves

for y = logio X and y = logg x are shown in Fig. 99.
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Since log^ x = log^ x log^ a, when the curve y = log^ a; has

been constructed for

any value of a, the

curve y = logf, x can

be easily obtained from

it by multiplying all

the ordinates of the

first curve by logj a.

E.g. the ordinates of

y = log,x are 2.3026

times the correspond-

ing ordinates oi y = logi6 a;, since

log. 10= ^
1

logio e .4343

Fig. 99.

= 2.3026.

105. Graph of y=e ""% where

Y I]

i_

r
I
I
3
t
1

\

V
5
V\
\
^^^

""^ Z±I X

1

L

e = 2.718 ••• and a is positive.

Since e""* = (e-")' —

this curve is of the©
form

Fig. 100.

same lorm as y = a%

where a^ is less than 1.

The curve is therefore

as shown in Eig. 100.

(Compare Art. 103.)

The rapidity with
which the curve falls

as the tracing point

moves from left to right

depends upon the value

of a.

106. Graph of

y = he~'^ sin {nx + m).

This graph is easily ob-

tained by plotting sep-
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arately the graphs of y = e~"* and y = b sin (nx 4- m) and multi

plying together the corresponding ordinates. The form of the

curve is shown in Fig. 101. This is an important curve in the

theory of alternating currents.

y = b e~^^ SIN {nx+m)y where a= —.4, 6=1.5, ii =2, m= ~3.

Fig. 101.

EXERCISE XXV

Plot the following curves. (The letters i, q, t. are variables.)

1. y = cos X.

2. y = tan x. (Divide ordinates of sine curve by those of cosine curve.

3. y = CSC X. (Obtain from sine curve.)

4. y = sec X.

5. y = -^^ • (Examine carefully near x = 0.)
sin ic

S. y = cos 2 X.

8. y = tan 2 x.

7. 2/ = cos3x.

d. y = tan 3 x.
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10. y = sin (3x— 1). 11. y = cos (x -\- a)

.

12. y = cos (nx). 13. y =cos(nx-\-m).

14. Show that the graph ot y = cos x is the same as the graph of

y = sin a; moved parallel to the ic-axis the distance - in the negative

direction.

15. By what change in position can the graph of y = cot x be made to

coincide with the graph of y = tan x ?

16. I = 6e-«'.

17. i = 6(1 — e"«') . (Combine the graphs of i = b and i = &e-«'.)

18. i = bte-"^. 19. gz=6 + c(l + A;Oe-«\

20. q = asinnt + b sin 3n^ 21. y =x + &mx.

22.

24.

y = sin a; + cos x.

y = sin2 X.

23. —a)-
26. y = sinii X. 25. ?/ = sin^ X.

28. y = smx-\- sin 2 x. 27. yii = sin X.

30. y^^ = sin X. 29. y = sini*^ X.

32. y = sin a; + sin 3 X + sin 5 x. 31. y = sin" X.

34. q = e-' sin 2 «. 33. ?/ = e-2a:sjnjc^ -

36. y = sin-ix. 35. I = e ""' sin w^.

38.
y^sin-ix.

cos-ix

37. y = tan~i x.

39. y = sin X -f ^ sin 3 X +
^sin5x + |sin7x.

107. Plotting in polar coordinates. The methods used in

plotting a curve in polar coordinates do not differ essentially from

those used in plotting curves in rectangular coordinates. The
difference comes mainly in the manner of locating the points.

The following examples will sufficiently illustrate the methods.

Example 1. To plot in polar coordinates the curve whose

equation is r = a cos 6.

The following pairs of values of r and 6 may be at once

written, using approximate values of r

:

6 0° 30° 45° 60° 90° 120° 135° 150° 180°

r a .S7 a .71a .5 a —.5 a —.71a —.87a —a
210° 225° 240° 270° 300° 315° 330° 360°

r —.87a —.71a —.5 a .5 a .71a .87 a a
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An examination of the variation in r as 6 increases from 6

to 360° shows that as 6 increases from to 90°, r decreases

from a to ; as ^ increases from 90° to 180°, r is negative and
decreases from to— a, the point (r, B) tracing out apart of the

curve in the fourth quadrant ; as $ increases from 180° to 270°,

r remains negative and increases from— a to 0, the point {r, 6)

tracing over again the part of the curve already traced in the

first quadrant; as 9 increases from 270° to 360°, r increases

from to a, the point

p (r, 6) tracing over again

the part of the curve

already traced in the

fourth quadrant.

If 6 is allowed to

increase beyond 360° or

to take negative values,

P cos takes on the

r = a cos e. same series of values

Fig. 102. already obtained, since

cos {6 ± 360°) = cos 0, and no new points are obtained. The
curve is therefore as represented in Eig. 102.

The curve appears to be a circle. That it is so in fact may
be proved as follows : Take any point P{r, 0) on the curve

;

then r = a cos or cos $ = — Therefore Z OPA must be a
a

right angle. Therefore the curve is a circle.

Example 2. To plot in polar coordinates the curve whose

equation is r^ = a^ cos 3 6.

For ev^ry value of which makes cos SB positive there are

two values of r which differ only in sign, and for every value

of B which makes cos 3 B negative the values of r are imaginary.

In order then for r to be real, 3 B must be an angle in the first

or fourth quadrant.

Let the positive value of r be taken for discussion first.
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The following table shows the changes that take place in r as

6 increases from to 2 tp.

e oto;. '!:to '^

6 2 i-T 3 6

se Oto'^
2
^to^
2 2

^to2. 2.to^-

r a toO imag. Oto a a to

5 TT , ^ 7 TT— to
6 6

6ir .Irr— to —
2 2

— — to — — toe
6 3

i^to§^
3 2

ie ^to4. 4.to
2̂

r
to a a too

IItt

6

11 TT

2 2

11 TT

imag.

to 2

11
to6 7r

to a

The second column is to be read, as 6 increases from to ^, 3 d

increases from to -, and hence r decreases from a to 0, and

similarly for the other columns.

A few intermediate values of r and 6, computed from a table of

natural cosines, are shown for values of ranging from to J-
6

?*2 = a"^ cos 3 8

Fig. 103.
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6 5° 10° 15° 20° 25° 30*

r .98 a .93 a .84 a .71a .51a

Since cos 3 6 takes the same values, either in the same order

or in the reverse order, when 6 increases through the other

intervals for which r is real as it does when increases from

to —, the values of r are the same in those intervals as in the
6

iirst.

The curve is shown in Fig. 103. The dotted portion is the

part corresponding to the negative values of r.

If 6 is allowed to increase beyond 2 tt, or to take negative

values, cos 3 d takes the same set of values over again, and the

same points of the curve are again obtained.

EXERCISE XXVI

Plot the following curves in polar coordinates.

1. r = a sin 6. (Prove it is a circle.) 2. r = d.

3. r = a tan 0. 4. r = 2 <?. b. r = a cos 2 d,

6. r- cos ^ = a. (Prove it is a straight line.)

7. r sin = a. (Prove it is a straight line.)

8. r ^ = C. (Called hyperbolic spiral.)

9. r—a^. (Called logarithmic spiral.)

10. r = a (1 — cos ^). (The cardioid.)

11. r = a (1 + cos &). (The cardioid.)

12. r — f X • (Prove it is a parabola by transforming to rec-
U — cos Q)

tangular coordinates.)

4
13. T = , = (Prove it is an ellipse.

)

1 — .5cos0 ^

4
14. r =- . (Prove it is an hyperbola.)

1 — 2 cos ^ ^

15. r =a sin 2 6. 16. r = a sin Sd. Vt. r =a cos 3 0.

18. r =a cos 4 d. 19. r"^ = a^ cos 2 d. 20. r^ = a^ sin 2 0.

21. r2 = a2sin3^. 22. r^ = a^sm(^- 23. r = 8 cos
^|y

24. r =asin[— ]. 25. r = 1 - 2 cos 5. 26. r = 2 - cos ^.

27. r = 2 a cos ^ -f b, where b takes the values 0, a, 2 a, 3 a.



CHAPTER IX

PARAMETRIC EQUATIONS OF LOCI

108. Parametric equations. A single equation connecting

two variables, which can be solved for one of the variables,

may always be replaced by two equations which express the

value of each of the variables of the original equation in

terms of a third variable. Moreover, one of the two equations

may have any form whatever.

Thus in the equation of the circle, m? -\-y'^=r^, a third vari-

able, t, may be introduced by letting x be equal to some func-

tion of t ; substituting this value of x in x^-\-y- = r^ the value

of y may be found in terms of t. E.g. ii x = r cos t, then

y = ± r sin t.

It often happens that it is easier to obtain the values of

coordinates of points on a given locus in terms of some third

variable than it is to obtain an equation directly connecting

the coordinates of the points, and in some cases the two equa-

tions can be obtained where it is not possible to obtain the

equation directly connecting the coordinates of the points.

The third variable in terms of which the coordinates of the

points are expressed is called the parameter, and the two

equations are called the parametric equations of the locus.

Frequently the parameter may be given an interesting

geometric interpretation.

109. The parametric equations of the circle. Let the center

of the circle be at the origin and let the radius be r. Let $ be

the angle which the radius to the point (x, y) on the circle

makes with the ic-axis. Then

oc = r cos 9, y = r sin 0.

K 129
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These equations hold for every point on the circle and hence

represent the circle completely. They are parametric equa-

tions of the circle.

Y

Fig. 104.

If be eliminated from the equations (by squaring and

adding), the ordinary equation, ot? -\-y^ = r, is obtained.

110. The parametric equations of the ellipse. Let the equa-

tion of ellipse be

^ +^= 1.

Draw a circle with center at origin and radius a. Through

any point P{x, y) of the ellipse draw a line parallel to the

?/-axis to meet the circle in P' on the same side of the ic-axis

as P. Draw OP' and let the inclination of OP' be 6. Then

a;= a cos 6. Substituting a cos 6 for x in the equation of the

ellipse, there results 2/ = ± 6 sin ^. Since it was agreed to take

P' and P on the same side of the aj-axis, the plus sign must

be taken in the value of y. Hence

a? = a cos 0, 2/ = b sin 0,

are the parametric equations of the ellipse.

The angle 6 is called the eccentric angle.



PARAMETRIC EQUATIONS OF LOCI 131

Y

Fig. 105.

111. Construction of the ellipse. To construct an ellipse of

semi-axes a and &, a>b, take the center of the ellipse as a

center and describe circles of radii a and b. Draw any radius

making an angle with

the major axis. Through

the points where the ra-

dius cuts the inner and

outer circles draw par-

allels respectively to the

major and minor axes.

Their intersection is a

point of the ellipse.

Proof. Taking the

a;-axis along the major

axis of the ellipse the

point of intersection P
is at once seen to have

the coordinates x = a cos 6,y = b sin 6, and is therefore a point

of the ellipse from the preceding article.

Exercise 1. Construct an ellipse by this method.

Fig. 106.
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Exercise 2. Prove that, for the same values of x, the

ordinates of the ellipse and circle in Fig. 105 have a constant

ratio, -.

a

Exercises. The sun's rays fall vertically upon a plane;

prove that the shadow on this plane of a circular hoop not

parallel to the plane is an ellipse.

112. The cycloid. The curve traced by a fixed point on the

circumference of a circle as the circle rolls in a plane along a

fixed straight line is called the cycloid.

The circle is called the generator circle and the point the

generating point.

To derive the equations of the cycloid : Let the fixed line

be taken as icaxis and the point on this line where the gen-

erating point touches it as the origin. Take the y-axis per-

pendicular to the ic-axis.

Let Pix, y) be any position of the generating point, the

angle, measured in radians, through which the radius through

Phas turned since the generating point left the origin, and a

the radius of the circle. Then (Fig. 107)

M
Fig. 107.

x=OM=OH+HM.
y = MP=HC+CN.

Now 0H= arc HP= aO,

HM= - PN= - a sin ^,
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HC= a,

CN= — a cos 6.

.'. oc = a^ —a sin 0,

2/ = a — a cos 0.
(1)

(The student should make sure that these equations hold

for either position of the generator circle shown in Fig. 107,

and should draw other positions of the generator circle and

prove that the same equations hold.)

Equations (1) give the values of x and y in terms of a third

variable Q. By assigning values to ^, values of x and*?/ may
be computed and thus points on the curve located.

It is usual to take the two equations (1) as representing the

cycloid, but a single equation connecting x and y may be ob-

tained as follows

:

From the second equation, 1 — cos ^ = ^ , or vers ^= ^ •

a a

.-. ^=:vers~^^,
a

and sin B = Vl-cos2^= ^1 - f^^~^X= ^ V2ay-y\

Substituting these values of 6 and sin $ in the first of eqs.

(1), there results

x = a yers"^ - if V2 ay — y\ (2)

113. Construction of the cycloid. Besides the method of

locating points on the cycloid by computing values of x and y
from eqs. (1) of Art. 112, the following method may be easily

employed : On a straight line lay off a distance OA equal to

the circumference of the generating circle. At the middle

point B of OA draw a circle equal to the generating circle

tangent to OA. Divide OB into a number of equal parts by

the points Bi, B,,, -Bg, etc., and the semi-circumference BC into

the same number of equal parts by the points (7i, Og, Cg, etc.,
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obtained by use of the protractor. Through Ci, Cg, Cg,

draw lines parallel to OA.

-Pi-
C

C^ -"

O B2 B, B

Fig. 108.

As the circle rolls back, the point P, now at the top of the cir-

cle, generates the cycloid, the point P descending to the level

of Ci when the point of tangency moves back to Bi. Hence
the point Pj may be obtained by using Ci as a center and BBi
as a radius to describe an arc cutting the line through Ci.

Similarly with radius equal to BBo and center C2 the point

P2 is obtained, etc.

Other methods of constructing the cycloLl are employed by

draftsmen.

Exercise 1. Construct a cycloid by the method explained,

dividing the circumference into twelve equal parts.

Exercise 2. Construct a cycloid by computing values of

X and y by eqs. (1), Art. 112.

114. The hypocycloid. The hypocycloid is the curve traced

by a fixed point on the circumference of a circle which rolls

internally along the circumference of a fixed circle.

To derive the equations of the hypocycloid : Let the radii

of the fixed and rolling circles be a and b respectively. Take

the center of the fixed circle as origin, and the line through

this center and the point of contact of the generating point

with the fixed circle as a;-axis. Let P(x, y) be any position of

the generating point, d the angle through which the line

of centers has rotated, and <^ the angle through which any
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radius of the generator circle has turned since the generating

point left the x-axis. Then (Fig. 109),

X = 0M= OH-{-NP=OC cos e+CF cos
<l>

= (a — b) cos6-\-b cos
<f>,

y = MP= HC-NC={a- b) sinO-b sin <^.

Fig. 109.

Now arc PB = arc AB, and therefore b(<f>-{-0) = aO,

, a — b
9 = -or 0.

.'. 0?= (a — 6)cos0 + b cosi— -0);

115. Construction of the hypocycloid. From the above

equations as many values of x and y as desired may be com-

puted by assigning arbitrary values to 6. By this means a

sufficient number of points may be obtained, through which

the curve may be drawn.

Another method is as follows : Draw two concentric circles,

K and K', with radii a and a — b respectively. Let <^'= ^ -|- <^

;
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then ad= b<l>'. Compute the value of 6 which makes cf>' = 360°

i.e. = - 360°. Let AOB be this angle, constructed by use of
a

the protractor. Then B is the second point of contact of the

generating point with the fixed circle. Divide AOB into any

number, n, of equal parts and draw radii to intersect the circle

K' at Ci, Co, Cs, etc., and the circle K at Bi, B2, B^, etc. With

Ci, C2, •" as centers draw circles of radius b.

Fig. 110.

The position of the generating point on the first of these

circles is obtained by drawing an angle B^C^P^ equal to -th of
n

360°; the point on the second circle by drawing an angle

B^C^P^ equal to ?ths of 360°, etc. See Fig. 110, where n = 8.

116. The hypocycloid where a = 2 6. Letting a = 2 6 in the

equations of Art. 114, there is obtained

a? = a cos 0,

The latter equation shows that the generating point moves

along the a>-axis, and the former that it is at any time in the

same vertical as the point of contact of the circles.
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Hence, if a circle rolls within a Jixed circle of double the diam-

eter, every point of the rolling circle moves hack and forth along

a diameter of the fixed circle. Moreover, if the circle rolls with

uniform angular velocity, every point of it moves with simple

harmonic motion.*

117. The four-cusped hypocycloid. The points where the

generating point reverses its direction of motion are called

cusps. Thus the points of contact of the generating point and

the fixed circle are cusps.

If a = 4 5 there are four cusps. The curve in this case is of

interest because it is possible to eliminate between the equa-

tions of Art. 114 and obtain a simple equation connecting x

and y.

Substituting - for b in eqs. (1), Art. 114, they become

a; =— cos^ + |cos3d= |(3cos(9-f cos3^),

2/ =— sin ^- - sin 3 (9 = -(3 sin - sin3 ^).
4 4 4

By trigonometry,

cos 3 ^ = 4 cos^ ^ — 3 cos 0,

sin3(9 = 3sin^-4sin3d.

Substituting these values, there result

jc=acos^^,

y = asm^O,

from which

cos^=f-] >

a,

sm6/ =

* When a point moves with uniform velocity along the circumference

of a circle the projection of the point on any diameter is said to have

simple harmonic motion.
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Squaring, adding, and clearing of fractions,

118. The epicycloid. The epicycloid is the curve traced by
a fixed point on a circle which rolls externally on the circum-

ference of a fixed circle.

Fig. 111.

Let the student show from the figure that the equations are

ac = (a + 6)cos 6 —ft cos

2/ = (a + 6)siii e - 6 sin

b

a-\-b,

Notice that the equations differ

from those of the hypocycloid only

in having — b take the place of b.

119. The cardioid. The epicy-

cloid for which the rolling and fixed

circles are equal is called the car-

dioid. Its equations are obtained by

letting 6 = a in the equations of the Fig. 112.
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Fig. 113.

preceding article. They then become

a? = 2 a cos — a cos 2 9,

2/ = 2 a sin — a sin 2 e.

120. The involute of the circle. If a thread is wound around

a circular form and then unwound, kept always stretched, any

point of the thread traces a

curve called the involute of the

circle.

To derive its equations:

Choose the axes as in Fig. 113.

Let a be the radius of the

circle, P(x, y) the position of

the generating point at any

time, and 6 the angle through

which the radius to the point

of tangency has turned during

the unwinding. Then

x= 0M= 0N+ NM= 0N+ TP sin 0,

y = MP= NT- JST=NT- TPcos 6.

Now TP= arc ^r= aO.

.*. a? = a cos + a sin 0,

2/ = a sin e — a cos 0,

are the equations of the involute of the circle.

EXERCISE XXVII

1. Trove that if a circle of radius a rolls along a straight line, a point

on a fixed radius of the circle at a distance h from the center describes a

curve whose equations are *

jc = a^ — & sin ^, y = a — hco&d.

Plot the curve for 6 < a ; for ?) > a.

These curves are called trochoids.

2. Devise a method of constructing the cycloid similar to the method
of constructing the hypocycloid in Art. 115.
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3. Carefully construct on coordinate paper a cycloid by the method
you have described.

By counting the squares between the cycloid and the line on which the

circle rolls and the squares in the generating circle, what idea do you get

of the area of the cycloid ?

4. By combining the equations of the cardioid (Art. 119) and trans-

forming to polar coordinates, show that the polar equation of the cardioid

is r = 2 aCl — cos 0), where the pole is the point of contact of the gen-

erating point with the fixed circle.

Fig. 114.

Suggestion. Square and add the equations of Art. 119, move to new
origin by letting x = x' + a, y = y' ; substitute x' = r cos^, y' = rsin 6

;

complete the square in the terms in r, and extract the square root. Also

derive the polar equation independently from the figure. (Fig. 114.)

5. Taking the origin at the point of the cycloid farthest from the

line on which the circle rolls, and the ic-axis parallel to that line show that

the equations of the cycloid are

X = ad + a sin 0, y z=— a -\- a cos 6,

where 6 is measured from the positive direction of the y-axis to the radius

of the circle through (a;, y), clockwise rotation being counted positive.

6. Construct a hypocycloid where a = Sb.

7. Devise a method for constructing the epicycloid and apply it to

the case where a = 4b.
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8. Construct the involute of a circle.

9. A circle rolls along a straight line, and a line through the center of

the circle turns about a point of the fixed line. Find the equations of the

locus of the point of intersection of line and circle, and plot the curve.

Ans. x = a (cot 6 + cos ff)
,

y = a{\ + sin ^) for outer point,

X = a(c,otd — cos^),

y = a(\ —simd) for the inner point.

and

Fig. 115.

10. Show that the polar equations of the curves of example 9 are

r = a (esc ^4-1) and r = a (esc ^ — 1) respectively.

11. A circle moves with its center always on a straight line, and a

second straight line passes

through the center of the circle

and a fixed point. Find the

loci of the pointp of intersection

of the second line and the circle.

Ans. Using the notation of

Fig. 116,

X = b tan -{ asm 6,

y = acos 6, for P.

X = b tan d — a sin 0,

Fig. 116. y =— acos0, for P'.

12. Plot the curves of example 11 for 6 < a, 6 = a, & > a.



CHAPTER X

INTERSECTIONS OF CURVES. SLOPE EQUATIONS OF
TANGENTS

121. Intersections of curves. It has been seen that an
equation in two variables can be represented graphically by a

curve, every point of which has coordinates which satisfy the

equation. Two different equations in the same two variables

will then in general represent two different curves. If these

curves be plotted on the same diagram they may or may not

intersect. The coordinates of the points of intersection, if any,

must satisfy both equations, and no other points will have

this property. ISTow the values of the variables which satisfy

two equations are obtained by solving the two equations as

simultaneous. Hence to find the points of intersection of two

curves, solve the equa-

Y tions of the curves as

simultaneous. The real

values of the variables

so obtained which sat-

isfy both equations are

the coordinates of the

points of intersection of

the curves.

Example. To find

the points of inter-

section of the circle

ic2 -f 2/2 = 16 and the pa-

rabola x^ = Qy. Elimi-

nating X from the first

Fig. 117. equation by substitut-

142
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ing the value of x from the second, there results

from which y = 2 or — 8. Substitutmg the first of these values

of y in the second equation, there is obtained x= ± 2V3.

The substitution of — 8 in the second equation gives imaginary

values of x. Hence the points of intersection are (2v^, 2)

and (-2V3, 2), or approximately (3.46, 2) and (- 3.46, 2).

On plotting the curves these results are seen to be approxi-

mately correct.

EXERCISE XXVm

Find the points of intersection of the following pairs of curves. Check

graphically by plotting the curves and measuring the coordinates of the

points of intersection.

1. y? + yp- = 5, y^ =i\x.

2. y = 3 ic + 7, x2 + ?/2 := 9.

3. (a) y = 2 a; + i, y2 = 4 a;. Ans. {\, 1) (Tangent)

.

(6) y = 2a; + .49, y'^ = ^x. Ans. (.326, 1.141), (.184, .859).

(c) y = 2a; 4- -51, y^ = \x. Ans. No intersection.

4. a;2 + 4 ?/2 - 16, a;2 + y = 0.

5. 3 a; - y = 1, 16 a;2 + 9 y^ = 144.

6. a; +2/ = 5, 9 a;2 + 16 2/2 = 144.

7. a;2 -I- ?/2 = 16, a:2 - 2/2 = 9.

8. For what values of6isz/ = 2a; + 6 tangent to a;2 + y2 =; 9 ?

9. For what values of 6 is y = wa; + 6 tangent to a;2 -f- y2 _ ,.2 9

10. For what value of p is y2 = 2 px tangent to?/ = 3a;4-l?

11. Prove that the two segments of any line which cuts xy — O in two

points, included between the curve and its asymptotes, are equal.

122. Graphical solution of simultaneous equations. It fre-

quently happens that when two equations containing two

variables are given it is not possible to eliminate one of the

variables, and so obtain an equation with only one variable
;

or, if the elimination is possible, the resulting equation may
be very difficult or impossible of solution by ordinary methods.
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In such cases, if the coefficients are numerical, an approximate

solution may be obtained by carefully plotting the curves and

measuring the coordinates of the points of intersection. More
accurate solutions may then be obtained by methods illustrated

in the following examples.

Example 1. To find the intersection of the curves

and

y = sin X

y = 2x + l.

(1)

(2)

Plot the curves carefully on coordinate paper.

From the figure the abscissa of the point of intersection is

seen to be about — .9. Substitute this value in equations (1)

and (2), remembering that .9 radian = .9 of 57°.3 = 51°34', and

there results,

from (1) y = sin(- 5r34')= - .78,

from (2) 2/ = - -8.

Y

Fig. 118.

This shows the assumed value of x to be too small, but very

near to the correct value. (Compare Fig. 118.)

Try next a = - .88.

Then, from (1), y = sin(- 50°25')= - .771,

from (2), 2/ = - •'J'^.

This shows the assumed value of x to be too large, so n^xt try

x=- .89.
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Then, from (1), y = sin(- 51°)= -.777,

from (2), y=- .78.

Hence, correct to two significant figures, the solution is

x=- .89, y=- .78.

Example 2. To solve the equation

a^_2a;2 + 4a;-7=0. (1)

Let ?/ = a^-2a^ + 4a;-7. '

(2)

Then the solution of (1) is the same as the simultaneous solu-

tions of (2) and the equation

2^ = 0. (3)

Plot the curve of eq. (2). (Figure not shown.)

The following are corresponding values of x and y:

X 1 2 3 4 -1 -2 -3
y -7 -4 1 14 41 -14 -31 -64

The curve, is seen to cross the a^axis between 1 and 2, at

about 1.8.

Try this value of x in eq. (2)

;

y = 5.832 - 6.48 + 7.2 - 7 = - .448.

Hence the value of 1.8 for x is too small.

Try next a; = 1.9 ; then y = .239.

Hence the value of 1.9 for x is too large.

Plot now on an enlarged scale the points representing x and

2/ for a; = 1.8 and 1.9, and join the points by a straight line.

Since the interval is small, the curve probably differs but

slightly from a straight line in the interval. The line is seen

to cross at about .65 of the distance from 1.8 to 1.9. Then

1.865 is probably a close approximation to a root of eq. (1).

Substituting this value of x in eq. (2), there results ?/= — .0094.
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The work of computation, arranged according to Horner's

method of synthetic division, is as follows

:

1-2 4-7 )1.865

1.865 -.2518 6.9906

- .135 -3.7482 - .0094

By the Remainder Theorem from Algebra, the value of 2/ is

the last remainder, — .0094.

Since y comes out negative, it shows that in this case the

assumed value of x is too small. Try then x = 1.866.1-2 4-7 )1.866

1.866 - .2500 6.9975

- .134 3.7500 - .0025

Hence y=- .0025.

Try next x = 1.867

:

1-2 4-7 )1.867

1.867 -.2483 7.0044

.133 3.7517 .0044

Hence y = .0044.

The root therefore lies between 1.866 and 1.867 and is nearer

to the former. Hence, correct to four significant figures, a root

of eq. (1) is 1.866.

Evidently one could by this method obtain a root correct to

any desired degree of accuracy.

Example 3. To solve the equation

<^2 _ sin 2 <^ = 0. (1)

This may be treated as in the last example, or it may be

more easily solved as follows : Plot separately the curves

y = ^' (2)

and 2/ = sin 2 <^ (3)

on the same diagram. Then a value of <^ at a point of inter-

section of the curves of eqs. (2) and (3) is a root of eq. (1).
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The figure shows that a value of <^ at the intersection is a

little less than 1. Try then <^ = .9.

Then from (2) y= M
and from (3) y = .974

Difference =—.164.

Y

Fia. 119.

Substitute
<f>
= ^f

then from (2) y = 1

and from (3) y = .909

Difference = .091

Plot on an enlarged scale the difference for <^ = .9 and <^ = 1,

using <^ as abscissa and difference as ordinate, and connect the

points obtained by a straight line. This straight line is seen

to cross the axis at about .65 of the distance from .9 to 1. On
substituting <^ = .965 there results

from (2) y = .931

and from (3) y = .936

Difference =— .005

Let the student show that when
<f)
= .966 and .967 the differ-

ences computed as above are — .0022 and .0004, respectively,
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and that hence the solution of eq. (1), correct to three significant

figures, is <^ = .967.

EXERCISE XXIX

Solve the following pairs of equations :

cos X, 1/2 = 4:X. 2. 10y = x, y = \ogiox.

4. X = ^ — sin ^, x = l — cos3. s == sin 3 ?, s = tan 2 1.

5. y = x^, y = 2^.

Solve the following equations by graphical methods :

6. x8 + 5 = 0. 7. a;8 _ X + 7 = 0.

8. 2 61 - cos 2 (9 ^ 0. 9. 1 - $ - tSiU d = 0.

10. 2=^ - X + 1 = 0.

123. Slope equations of tangents. Tangent to the ellipse.

Let a line of slope 7/1 be drawn tangent to the ellipse

(1)^ + ^ = L

To derive its equation.

Any line of slope m has an equation of the form

y = mx 4- k. (2)

If eqs. (1) and (2) be solved as simultaneous, the points of in-

tersection of the loci

will be obtained.

These intersections

may be real and dis-

tinct, real and co-

incident, or imagin-

ary, depending upon

the value of 7c. It

is evident from the

figure that there are

two values of k for

which the line is tan-

gent to the ellipse.Fig. 120.
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Substituting the value of y from eq. (2) in eq. (1) and collecting

terms, there results

(52 4- a?m')x' + 2 a'mkx+ aXlc" -b')=0. (3)

The roots of eq, (3) are the abscissas of the points of intersec-

tion of the line and the ellipse. In order that the line be

tangent to the ellipse these values of x must be equal ; and

conversely, if they are equal, so also are the values of y obtained

by substituting these values of x in eq. (2), and hence the line

is a tangent. Now the condition that the roots of the equation

ax^ -\-bx-{-c = be equal is 6^ = 4 ac. Hence, the roots of

eq. (3) are equal if

4 aWli^ = 4 a^ (A;2 _ 52^^ q,2 _^ ^2^2^^

which reduces to

Therefore the equations of the tangents to the ellipse

s^.y^

with slope m are

y = mac ± Va^m^ + b^.

These equations are called the slope equations of the tangents

to the ellipse.

124. Tangent equations for reference. The student should

derive the following equations of tangents to the given curves.

TangentCurve

(1) a?2 + V^ =:r2,

(2) â^ 62
1,

(3) a2 62
1,

(4)
y2

62
-1,

y = tnx ± rwrrtP' + 1.

y = tnsc ± Va^n^ + 62.

y = mx ± Va'hn^ — 62.

y = mx ± V62 — a'^m'^
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(5) 2/2 = 2j>x,
2, = m^ + -^

(6) oo^^^py, y = fna^-:i^l^.

2fn

2

(7)xy = c, y = mx± ^yZ—cm.

EXERCISE XXX
(Use the above formulas in solving these exercises.)

1. Find the equations of tangents to ic^ -\-y^ = \Q which have a slope

equal to V3. Check graphically.

2. Find the equations of tangents to 9 a;2 + 16 y"^ = 576 which are

parallel toy = x. Check graphically.

3. Find the equation of a tangent to ?/2 = 6 x which is perpendicular

to2x— y — 3 = 0. Plot the lines. Where do they intersect ?

4. Write the equation of a tangent to y- = 2px and the equation of a
line through the focus perpendicular to the tangent, and prove that they

intersect on the ?/-axis.

5. Obtain the slope equation of a tangent to the circle from the equa-

tion of the tangent to the ellipse.

6. Find the equations of tangents to y^ — Qx from the exterior point

(2, 4). Check graphically.

7. Find the equations of tangents from (7, 1) to x^ + 2/2 _ 25. Check
graphically. Ans. 3a; + 4y — 25 = 0, 4a; — 3y — 25 = 0.

8. Find the equations of tangents to 9 x^ _ 25 y'^ = 225 which pass

through (— 1, 3). Check graphically.

Ans. X — ?/+4 = 0, 3x + 42/— 9 = 0.

9. Find the equations of tangents to 12 x^ + 5 ?/2 = 30 which intersect

in (—3, —2). Check graphically.

10. Show by the use of formula (7), Art. 124, that no tangent can be

drawn to xy = 8 which has a positive slope.

11. Find the equations of all lines that are tangent to x^ + y2 = 25 and

x2 + 4?/2 = 36. Plot. Ans. 11 y =±4\/ll x ± 15V33.

12. Find the equation of a common tangent to y"^ = 2px and x^ = 2py.

Check graphically.

13. Find the equation of the common tangent to y^ = 6 x and x^ = 48 y.

Check graphically.
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14. Find the equations of tangents to h^x"^ — a^y^ = a%^ that intersect

in the origin. Ans. The asymptotes, hx — ay — 0, hx + ay = 0.

15. For what value of m\^y = mx + 8 tangent to y"^ = ix^ Plot.

16. A line is tangent to x^ -\-y'^ = 16 and y'^ = Qx; find its equation.

How many solutions ? Plot.

17. Find the equations of lines of slope 2 which are tangent to

a:2 4.y2_4^_l_6y_l_5,3 0. Plot.

18. Prove that y — k = m^x — h) ± r\'l -\- m- '\^ tangent to

Suggestion. Move the origin to (h, k) ; use formula (1), Art. 124, and

then translate the axes to the original position.

19. Find the equations of tangents to x^ + ?/2 — 4 x + 6 1/ — 12 = 0, with

slope 2, by using the formula of Ex. 18.

20. Prove that y — k = m{x — h) + -^ is tangent to
2m

(y-ky = 2p{x-h)'

21. Find the equation of a tangent to ?/2 — 2?/ — 4x = with a slope

equal to 3.

22. Find thp slope equation of a tangent to ^^ ~ ^^^ + ^^ ~ ^') = 1.

a^ 62

23. Find the equations of tangents to 4x2 + 9y2-|-8x-36i/ + 4 =
with slope equal to — 3.

24. Find the equations of lines with slope equal to 2 which are tangent

to aj2 - y2 = 1.

25. Prove that a line with slope numerically less than - cannot be
a

tangent to 62^2 - a'^y'^ = a%\

26. Prove that any two tangents to y^ = 2px which are at right angles

to each other intersect on the line x = —^, the directrix.
2'

27. Show that any two tangents to the ellipse h'^x'^ + ci^y^ = a%^ which
are perpendicular to each other intersect on the circle ^2 -\-y'^ = «2 -\. ^2^

Suggestion. The equations of two tangents to the ellipse which are

perpendicular to each other are

y = mx-{- y/m'^a^ + 6^, (1)

and y = -^- + A/-,+ &'- (2)
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If these equations be regarded as simultaneous, the values of x and g

that satisfy thera are the coordinates of the intersection of tlie two tangents.

If then m be eliminated between the two equations, an equation will be

obtained which is satisfied by the coordinates of the intersection of any

two perpendicular tangents.

In this case the elimination is easily made as follows ; Eqs. (1) and (2)

may be written

y — mx— y/m'^cfi + h^t

and my -\-x= y/d^ + rri^h^.

Then square and add,

28. Prove that the locus of foot of the perpendicular from the focus upon

a tangent to the ellipse V^x'^ + a^y'^ = d^lP- is the circle aj^ + y2 _ ^^2^ Check

graphically.

29. Show that any two tangents to the hyperbola hH^ - a?-y'^ = a^W'

which are perpendicular to each other intersect upon the circle

a;2 _|_ ^2 _ Q,2 _ yi^ if a>h, but that there are no perpendicular tangents

if a < &. What if a = & ?

30. Prove that the locus of the foot of the perpendicular from the focus

upon a tangent to V^x'^ — aV = «^&"^ is the circle x^ + 2/2 = (fi^ Check

graphically.

31. Find the equation of the locus of the foot of the perpendicular from

the center upon the tangent to W-x^ + a^y^ — a^W-.

Ans. (x2 + !/2)2 = a2x2 + 62^,2,

32. By transforming to polar coordinates reduce the equation of Ex. 31

to the form r^ = oP- cos2 + IT- sin2 Q.

Construct the curve by use

of the circles r = a cos 6^ and

r=.hsva.d. (See Fig. 121.)

33. Find the equation of

the locus of the foot of the

perpendicular from the cen-

ter upon a tangent to the

equilateral hyperbola x'^ — y^

= a? Ans.

(x^ + y-^y = a^Cx^-y^).

Yjq 121 ^^- Show that the equa-

tion of the locus of Ex. 33 in

polar coordinates is r^ = a^ cos 2 d. Plot the curve. This cui-ve is called

the lemniscate.



CHAPTER XI

SLOPES. TANGENTS AND NORMALS. DERIVATIVES

125. Introduction. In this chapter methods will be derived

of finding the direction of a curve whose equation is known in

rectangular coordinates at any point of the curve ; of finding

the equations of tangent and normal to the curve at any point

;

and some general methods established which will shorten the

work of computing the slopes of curves. These methods will

be shown in their application to some numerical cases.

126. Increments. In an equation connecting x and ?/, e.g.

42/ = aj2-2a;+ 4, (1)

if a value be assigned to x, y takes a value to correspond ; and

if X is given a different value, y will in general take a different

value.

Thus, if x = 0, then 2/ = 1 ; if a? = 1, then y = %\ if x = — 1,

then 2/= J ; if 'ic = 2, then y = l.

Any change in x in general brings about a change in y.

These changes are most easily seen by referring to the curve

which eq. (1) represents.

As the point {x, y) traces

the curve, both x and y
change, and the amount

that y changes depends

upon the amount that x

changes, and also upon

the point of the curve from

which the change is reck-

oned. Thus, if X increases

by 1 from the value 1, y
increases from J to 1, or

163
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the increase in ?/ is J ; while if x increases by 1 from the value

2, y increases from 1 to J, or the increase in y is f . Again, if x

increases from — 3 to —2,y decreases from -L^- to -^-j or it may-

be said that the increase in y\^—\.
Suppose now that some definite value of x is chosen, and a

study made of the changes brought about in y by increasing

X by small amounts from this definite value. Let the increase

that is given to x be denoted by the symbol Aa?, read " delta oc^

or " increment oo " ; and let the increase brought about in y by

this change in ic be denoted by Ay, read "delta 2/," or "incre-

ment yP
The following table shows values of a;, ?/, Aa;, Ai/, and the

ratio —^, the value 2 being chosen for x from which to reckon
Aa;

the increments. The values of Ax are arbitrarily assumed.

^y=.y? — 2x-\-^.

a? y Aa, Ay
Aa?

2 1

3 1.75 1 .75 .75

2.5 1.3125 .5 .3125 .625

2.1 1.0525 .1 .0525 .525

2.01 1.005025 .01 .005025 .5025

2.001- 1.00050025 .001 .00050025 .50025

2 + Ax i+f-? Aa;
2 4 .a.f

An examination of this table shows that as the increment in
'

X is made smaller and smaller the corresponding increment in

y becomes smaller and smaller, and approaches the limiting

value zero when Aa; approaches the limiting value zero. The

ratio —^, however, does not approach zero, but approaches the
t^x

limiting value .5 when Aa; approaches the limiting value 0.
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Fig. 123.

127. Slope of the curve at any point. Look now at the geo-

metric meaning of these facts. If P and P' denote the points

(2, 1) and (2 -\- ^x,l + A?/)

on the curve, then Aa; and

A?/ have the values shown
in the figure, and the ratio

—^ is the slope of the
Aa;

^

secant line through P and

P'. As Aa; approaches the

limiting value zero, the

point P' moves along the

curve to the limiting posi-

tion P, and the secant line through P and P' turns about P to

the limiting position defined to be the tangent to the curve at

P. Hence the slope of the tangent line at (2, 1) is .5.

Definition. The slope of a tangent to a curve at any point

is called the slope of the curve at that point.

The method here employed is a general one. By it one can

compute the slope of the curve at any point. The table of

values need not be computed, as in the preceding article, for

this purpose.

E.g. to find the slope of the curve at the point where a; = 3

one may proceed as follows

:

Substitute a;= 3 in the equation ; then 2/ = J-

Take a point on the curve near P(3, ^). It may be repre-

sented by P' (3 + Aa;,
-J
+ A?/).

Since this point is on the curve, its coordinates must satisfy

the equation of the curve.

.-. 4(J + A2/)= (3 + Aa^)2- 2(3 + Ax)4-4,

or y4-4A2/ = ^ + 6Aa!-f-A«^ — ^ — 2Aa;-|-^,

or 4 A^/ = 4 Ax -f- Aa;

.

^ — 1 I

A^.
* *

Aa; 4
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As Ax approaches the limiting value zero, i.e. as P' moves

along the curve to coincide with P, the ratio —^ approaches
Ax

the limiting value 1, which is, therefore, the slope of the tan-

gent line to the curve at the point (3, J).

EXERCISE XXXI

1. Compute the value of Ay when Ax = .01 for x = .5, 1, 10, respec-

tively, iny = x^.

2. Compute the slope of the curve 4 y = x^ — 2 x + 4 at the points

where x=— 1, x = 0, x = 4.

3. Find the slope of the curve 8 y = x^ + 1 at the points where x = 1,

3, 0,-2.

4. Write the equation of the tangent line to the curve of eq. (1), Art.

126, at the point (3, |).

128. Equation of the tangent to a curve at any point. As a

second example let it be required to find the slope of the tan-

gent line to the curve

40^ + 2/^=4 (1)

at any point (xq, y^) on

the curve, and the equa-

tion of the tangent line

at that point.

Let P(xq, 2/o) be any

point of the curve and Q
(xq 4- Ax, 2/o + Ay) a point

of the curve near P. For

convenience Ax is taken

positive, and then Ay
will be positive or nega-

tive according as the

curve rises or falls to-

ward the right from P.

In the figure, for either position shown, PM= Ax, MQ = Ay.

^/

Q

/r \
M

r
M \

I/
\

XA

1

\ i
/
Q

\V^p M
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Then —^ = slope of the secant line PQ, and hence the limit-

ing value of —^, as Aa; approaches the limiting value zero, is

the slope of the tangent line to the curve at {xq, y^.

Since (a^o, ?/o) and {xq + Ax, y^ -\- Ay) are points on the curve,

the coordinates must satisfy eq. (1).

.-. 4«o^ + 2// = 4, (2)

and 4(a-o + Ax)2-f-(yo + A2/)2=4. (3)

Expanding eq. (3) and subtracting the corresponding mem-
bers of eq. (2), there results

SxoAx + 4:Kx-\-2 y^Ay + A^^= 0. (4)

Every term of this equation contains either Ay or Aa; as a fac-

tor. Take to the right member all the terms containing Aa;

and factor the two members of the equation. Then

Ay(2 2/0 + A2/)= - Ax (8 ;Bo + 4 Aa;),

or
A^^_8^_+4A^^ ,^.

Aa; 2 2/0 + Ai/

As Q moves along the curve to the limiting position P, both

Aa; and Ay approach the limiting value zero, and the right

member of eq. (o) approaches the limiting value,

2/0

Hence is the slope of the tangent line to the curve at
2/0

{^0, 2/o).

Since the equation of a line of slope m through (a^o, 2/0) is

y-y^ = m(x-XQ),

therefore the equation of the tangent line to the curve at

(a^o, 2/0) is

y-yo =—^(x-xo). (6)
2/0
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This equation may be put into a simpler form as follows

:

Clear of fractions

:

y^y - 2/0^ = - 4 aroo; -h 4 x^^,

or 4«oaJ + 2/o2/ = 4a;o2 + ?V-

The right member of this equation is, by eq. (2), equal to 4.

Therefore 4 X(flc -f- ?/o2/
= 4 (7)

is the equation of the tangent to

4a;2 + 2/^ = 4,

at («o, 2/0).

Since in eq. (7) (xq, 2/0) may be any point on the curve, the

equation of the tangent line at any particular point may be

written by substituting for a^o and 2/0 the coordinates of that

point.

Thus the tangent at (^, V3), which is a point on the curve,

is 2x+V32/ = 4.

The student must not fail to recognize the fact that in eq.

(7) Xq and 2/0 are the coordinates of a fixed point, the point of

tangency, and that x and y are the variable coordinates of any

point on the tangent line.

129. The normal. The normal to a curve at any point is

the line perpendicular to the tangent at that point.

Since its slope is the negative reciprocal of the slope of the

tangent, the equation of the normal to the curve of the pre-

ceding article at (xq, y^ is

2/-2/o= -r^(a5-a;o)-

EXERCISE XXXn

Find the equations of tangents and normals to the following curves at

the points assigned. Check graphically by plotting the curves and the

lines whose equations are found.

1. ?/2 = 4a;at (1, -2).

2. a;2 + 2/2 ^ 25 at (- 3, 4).
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3. 2/2 = a;3 at (x^, yo) ; at (0, 0), (1, 1), (4, 8).

4:. y = mx + & at (Xq, yo).

5. y = x^-\-4:X— bsit the points where the curve crosses the a;-axis.

6. x^-y^= 16 at (5,3).

7. a;y = 8at (2, 4).

8. At what angles does the line y = 3x-\-2 cut the parabola

y = x^ + x— 6? (By the angle between two curves is meant the

angle between their tangents at the point of intersection.)

9. Find the angles at which x^ 4- y'^ = 25 and ix^ = 9y intersect.

10. Find the point on the curve of example 5 where the slope is zero.

11. Find the point- on the curve y=— x^ — Sx-\-2 where the slope is

zero. Find also the point of the curve where the slope is 1. Where 2.

130, Tangent equations for reference. By the method used

in Art. 128, the student can show that the following are the

equations of the tangents to the given curves at the point

(^0, 2/o).

Equation of Curve Equation of Tangent

y,^ = 2poo.

^<pc=p{y + yo^'

a?2 2/2

a2 h^ a' 62

nay = c. i^oV + 2/oi» = 2c.

The student can more easily derive these equations after

reading the remainder of this chapter.

DERIVATIVES. FORMULAS OF DIFFERENTIATION

131. Definitions and Notation. In the preceding articles the

limiting value of —^ as Ax approached the limiting value at

any point of the curve was found to represent the slope of the
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tangent to the curve at that point. This limiting value of —

^

Ax
is of great importance in much advanced mathematical work, as

well as for the study of curves. It is therefore worth while

to assign a special name to this limiting value, and to develop

short methods for computing it in given cases.

Definition. Given a function y, of a variable x, and a

pair of corresponding values of x and y ; if then an increment

Ax be given to x, bringing about an increment Ay in y, the

limiting value of — , as Ax approaches the limiting value zero,
Ax

is called the derivative of y with respect to a? for that value of x.

Notation. The symbol -J^ is used to denote the derivative
dx

of y with respect to x. The symbol -^
(XX

means the value of

that derivative for the value x^ of x.

Thus in Art. 128, in the equation 4 a;- + / = 4,

dy

dx
__ 4a;o

2/0

dy

dx

_ 2

132. Geometric meaning of the derivative. A function y, of

a variable x, may be represented

graphically by a curve.

Let Xq and 2/0 be a pair of cor-

responding values of x and y.

They are then the coordinates

of some point on the curve. If

an increment Ax be given to x,

— then y takes an increment Ay,

as illustrated in the figure,

Fig. 125. where FM= Ax, MQ = Ay.
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Then -^ is the slope of the secant line through P(xq, y^
Ax

and Q (x^ + Aa;, yo + A?/).

Let Q move along the curve to the limiting position P ; Aaj

and Ay both approach the limit 0, and the secant line ap-

proaches the limiting position of the tangent to the curve at P.

Hence the limiting value of —^, as Ax approaches the limit
Ax

0, is the slope of the tangent to the curve at P{xq, y^). There-

fore,

doc
= the slope of the tangent to the curve at (a?o, y^.

The process of obtaining the derivative is called differen-

tiation.

133. Continuity of functions. In the foregoing it was as-

sumed that 2/ is a single-valued, continuous function of x for

all values of x under discussion. The meaning of this is ex-

plained in the following definition.

Definition. A function y, of a variable x, is said to be

a single-valued and continuous function for all values of x

within an interval, if for each value of x in that interval there

is a single, real, finite value of y, and if y changes gradually

as X changes gradually, i.e. such that the change in y caused

by a change in x, anywhere within the interval, can be made
small at will by making the change in x small enough.

If y becomes infinite as x approaches a certain value as a

limit, y is said to have an infinite discontinuity at that value

of X.

If, as X passes through a certain value, y changes suddenly

from one finite value to another, y is said to have a finite

discontinuity at that value of x.

Example 1. In ?/= as x approaches the limit 2 from
X— 2
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either side, y increases indefinitely in numerical value. Hence

y has an infinite discontinuity at a; = 2.

2* — 1Example 2. In y = —^ if x is negative, but numerically

J

2^ + 1

very small, 2* is very small and y is very near — 1. Again,

_i

1 — 2 ^

y may be written y = ^, from which it is evident that y is

1-f
2~^

very near 1 when x is positive and very small. Hence as x

passes through from negative to positive, y changes suddenly

from —1 to +1. Therefore y has a finite discontinuity at

x = 0.

All, or nearly all, of the functions with which the student

ordinarily deals are either continuous or have infinite discon^

tinuities at definite points separated by finite intervals, and it

will be assumed in what follows that the functions dealt with

are finite and continuous for the values of the variable con-

sidered.

134. Formulas. In the following articles some general for-

mulas of differentiation will be developed which will shorten

the work of differentiation in certain cases.

135. Derivative of a constant. The derivative of a constant

is zero

:

^= 0.
due

Proof. Let C be any constant. Since C does not change

as X changes by any amount Aa;, the increment in C is zero

:

i.e. AO=0.

^ = 0.
Ao;
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AC
Therefore the limiting value of — is zero,

Ax
dC

f.or —- = 0.
ax

This may also be seen geometrically by letting y = C. This

is the equation of a straight line parallel to the a^axis. The

value of -^ at any point of this line is zero. (Art. 132.)

Hence ^= 0, or since y=C, — = 0.
dx dx

136. Derivative of a variable with respect to itself. The
derivative of a variable with respect to itself is 1

:

dx

Proof. -^ = 1.
Aa;

Therefore the limiting value of— is 1.
i^X

dx _ ^

dx

The student should illustrate this geometrically.

137. Derivative of a constant times a function. The deriva-

tive of a constant times a function is equal to the constant

times the derivative of the function

:

d(Cu) _ ^du
d3c dx

where C is any constant and u is any function of x.

Proof. Let y = Cu.

Let X take a particular value Xq. Then u and y take corre-

sponding values Uq and y^, such that

2/o = Cuq.
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Let X take an increment Aa; ; then u and y take increments

Aw and Ai/ such that

yo-\- /^y= C (uq + ^u).

By subtraction, ^y = G > Au.

Am
Divide by Aa;

;

^=0
Ax Ax

As Aa; approaches the limit 0, —^ and— approach the limits

dy

dx ~»0

. dy

dx

Since Xq is any value of x, then

dy _ ^1 dxi

dx ~ dx

or, since y = Cu,

c

Cu) _ p du

Ix dx

138. Derivative of a sum. The derivative of a sum of func-

tions with respect to any variable is equal to the sum of the

derivatives of the functions with respect to that variable

:

^^u + v + w-)=^p +^ +^ + -.
doc doc doc due

Proof. (For two functions.) Let ii and v be two functions

of X.

Let y = u -{- V.

Let X = Xq, then 2/0 = Uq -\- Vq.

Let x = Xq -}- Ax, then

yQ + Ay = Uq 4- Am + Vo + Av.

Subtracting, Ay = Au + Av.
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Divide by Ax,
At, ^ A» ^ A«
Ax Ax Ax

Let Ax approach the limit ;

dy

dx

du

^r dx

dv

dx dx dx
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A similar proof holds for any number of functions.

139. Derivative of a product. The derivative of the product

of two functions is equal to the sum of the products of each

function times the derivative of the other

:

d(uv)
dx doc doc

Proof. Let u and v be any two functions of x.

Let y = uv.

Let X = Xq, then 2/0 = ^o'^o-

Let x = Xq -\- Ax, then

yo + Ay = (uo + A?^) (vq + Av).

Subtracting, Ay = (uq -f Au) (vq + Av) — Uq Vq

= Uq Av + Vq Au -\- Au • Av.

Dividing by Aic, J
Ax

Av , Au , Au
J.Uo—- + '^0-7- + -— • Av.

Ax Ax Ax

Let Ax approach the limit 0; then Au, Av, and Ay each

approaches the limit 0, and the limiting values -^, — , and
Av

. .

^^ ^^
^^ are, respectively, the derivatives of y, u, and v with respect

to x for the value Xq.

dy

dx
= Uq

dv

dx
+ V(i

. du

dx
0,
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or, since Xq is any value of x, and y = uv,

d(uv) dv . du

dx dx dx

In a similar way a formula may be derived for tlie derivative

of the product of three or more functions. However, one may
make use of the formula just proved to obtain the derivative

of the product of more than two functions. Thus,

d(uvw) d(vw) , , .du

dx dx dx

[dw
,

dv~\
V \-w—
dx dxj

,
du

dx

dw
, dv . du= uv f- uw \-vw •

dx dx dx

140. Derivative of a quotient. The derivative of the quo-

tient of two functions is equal to the denominator times the

derivative of the numerater, minus the numerator times the

derivative of the denominator, divided by the square of the de-

nominator: ^du_^dv
€lQC dued fu\ (Ix

dx\vj~ v'^

u
Proof. Let y = -i

V

then, vy = u.

Differentiating, using the formula of the preceding article,

dy ,
dv du

v-^-{-y—=—-
•

dx dx dx

du dv

Solving for ^, f^dc^Jj^,
dx dx V

Eeplacing y by -,
V

du dv
V u —

d fu\ dx dx

dx\v) v^
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141. Derivative of the power of a function. The derivative

of the nth power of a function is equal to n times the function

to the power w — 1, times the derivative of the function

:

^^^^ = lii***-!— , where n is constant.
dx^ doc

Proof. (1) n a positive integer.

Let y = w".

Let X = Xq, then y^ = Uq\

Let x= Xq + Ax, then yQ-\-Ay= (uq + Aw)'*.

Expanding (uQ-\-Auy by the binomial theorem and sub-

tracting,

Ay = niiQ^'-^Au -f
^
^f
~^^

i^o""'^ • ^+ ••• + Aw".
1 • ^

Every term on the right after the first contains Au to a power

higher than the first. Set out the factor Au and divide both

members by Aaj

:

Ax [_ 2
-\-Au P--

Ax

Now as Aa; approaches the limit 0, so do Au and Ay. The

limiting value of the quantity in the parenthesis is therefore

nV'.
dy

***

dx

or ±(y^^r^^n-.du^
dx dx

(2) n a negative integer. Let n = — my where m is a posi-

tive integer.

Let y= u'* = u~"' =— •
^

u"^

Differentiate, using the formula for the derivative of a

quotient, «^ _ i
dju"")

dy _ dx dx

dgo
~~

w^**
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But — = 0, by Art. 135, and since m is a positive integer,
dx

^L(<l = mu'^-'—, by part (1) of this article.
UX (tX

dy __ — mu'^~^ du

dx u^"" dx

-m-l ^^

dx

„_i du= nw" ^— , since n = — m.
dx

(3) n a rational fraction. Suppose n = ^, where 79 and q are

integers, either positive or negative.

p

Let y = u^=u^.

Raise both members of this equation to the gth power;

Since both p and q are integers, the formula of this article

may be applied.

.-. qy^

Now

dx'
= p?/P"

dx'

dy._pu^-^du

dx QV-1 dx'

p P-^
y'-= (u^)i«-i = u \

, dy^p uP-^du
dx q P- ^dx

u 1

p I.-\du

f»' dx

1 du
ww~- 1

dx'
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Hence -^—^ = nu*"-^— if n is an integer or the ratio of two
dx dx

integers.

The proof can be extended to inchide irrational values of n,

such as v2, TT, etc., but it is not sufficiently elementary to be

given here.

142. Summary. The above formulas are here collected and

numbered for convenience of reference.

I.

II.

III.

doc doc doc doc

y d(UV) ^^dV^^^dM
doc due doc

dC
doc

-O.

doc

doc
1.

d(Cu) _

doc
-Cdu

doc

VI. a(n^ V du ^dv
doc doc

doc

yjj
d(un) ^^^n-ldM
doc doc

143. Ulustrations. Example 1. To find the derivative of

y? -\-^x^-\-o with respect to x.

A(a^ +3^ +5)=^+<f^ + |^, by IV,
dx dx dx dx

= 3iB2^ + 3 . 2a^^+ 0, by I, III, VII,
dx dx

= 3 a^ 4- 6 a;, by II.

Example 2. Given z = 4.f-\- V^^ 4- 1 ; to find ^.
(XL

dZ^ djAf) djf+l)-- , jy
dt dt dt '

"^
'
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= 4 . 3 «2 . - +1 0'+ 0"^ ^i?^±i), by III and VII,

= 12 f + ^ if + ir\2 1 1 + 0), by II and IV,

= 12^2.^
y/e+ 1

Example 3. GiYenpv = 4; to find t"-

Differentiate both members of the equation with respect to v,

.
d(pv) ^cl(4:)

dv dv
*

dv ,
dp ^or p 1-^-^ = 0,

dv dv

or p^v^ = 0.
dv

• ^_ _^
' ' dv v'

Example 4. Given the ellipse 4 a;^ + 2/^= 16 ; to find the

slope of the tangent line at (1, 2V3).

The slope of the tangent line required is the value of -^ at
dx

the point (1, 2V3). (Art. 132.)

Differentiating both members of the equation with respect too?,

dx^ ^^^ dx

, Q dx
, c dy /^

dx dx

. ^_ _i£
' ' dx y

'

o
Hence the slope of the tangent at (1, 2V3) is — •

V 3
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The student should draw the ellipse and the line through

(1, 2V3) with slope -~
V3
EXERCISE XXXIII

Find the derivative of each of the following functions with respect to its

variable. The quantities a, &, c, m, n, are constants. All other letters

represent variables.

2. y = ax'' + b + -'

3. y = Vx^ + a^.

4. s=^-±^.
t — a

5. y = xVx^ + 1.

7. Z = t^- «-2.

8. -V^l-
9. y = (x + a)"(a;+6)"'.

10.

11. y=(ax^ + b)\

12. H^S- '6. q = VW-cfi^i.

Find the equations of the tangents to the following curves at the given

points. Check by drawing the curves and the lines.

13. y = wx + 6 at (xo, 2/o). 18. xy = 8 at (2, 4).

14. y = 4 x2 at (1, 4). 19. 4x2 + 16 ?/2 :^ 16 at (VS, i).

15. y2 ^ 4 x at (1, 2). 20. y =
^

at (2, 1).
(x— 1)

16. x2 + i/2^25at(-4, 3). 21. y = ax2 + 6x + c at (xo, ^o).

17. x2 - y2 = 9 at (5, 4). 22. x = ay2 + 6y + c at (xq, yo) •

23. Carefully construct the curve pv = 4, and by drawing tangents

(approximately) at various points and measuring their slopes, verify the

result found in example 3, Art. 143, viz. ii? = — "•
' dv V

24. Derive the equations of the tangents to the curves of Art. 130.

25. Show that the equation of the tangent to a3i^^-[-hy'^+cx-{-dy+e=0

at (xo, yo) is

axox + byoy + ^(x + Xo) -\-^(y + yo)+ e = 0.

26. Show that the equation of the tangent to y = «' at (xo, 2/o) is
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27. Show that the equation of the tangent to y = ax^ at (xq, yo) is

^—'-^ ^^ = axo'*-^x.
n

28. Show that the equation of the tangent to

ax^ + bxy + c'y^ + dx-{-ey +/= at (xo, yo) is

axox + - (xoy + Vox) + cyoy + - (a; + a^o) + ^ («/ + l/o) +/= 0.

144. Limit of the ratio of a circular arc to its chord.

In Fig. 126 let BD and AD be tangents drawn at the ends of

the circular arc AB. Then, since the arc of a circle is greater

than its chord and less than any line

B which envelops it and has the same

extremities,

chord AB < arc AB<2 BD.

^ arc AB BD
***

chovd AB MB'

Now let the point A move along

the circle to the limiting position B.

The line through A and B approaches the limiting position as

tangent at B, and hence the angle MBD approaches the limit 0.

Hence , which is equal to sec MBD, approaches the

limit 1.

Therefore the ratio —^ approaches the limit 1 as the
chord ^IB ^^

arc approaches the limit 0; for it lies between 1 and a quan-

tity whose limit is 1.

145. Circular or radian measure of an angle. The radian is

defined to be the angle at the center of a circle whose arc is

equal in length to the radius. Hence if the length of an arc

of a circle be divided by the length of the radius, the quotient

is the number of radians in the angle subtended at the center

Fig. 126.
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by the given arc, or

arc

radius
angle (in radians).

Hence in a circle of radius 1, " the arc equals the angle."

That is, the number of linear units in the arc is equal to the

number of radians in the subtended angle at the center.

146. Limit of In Art. 144 if the circle has a radius
sine

equal to 1, and if the angle MOB is called 6, then chord

AB = 2 sin 0, and arc ^4jB = 2 6.

arc AB ^ e

chord AB sin

Q
Therefore the ratio ——- approaches the limit 1 when ap-

sin^

proaches the limit 0.

147. Derivative of the sine.

Let y = sin u, where u is sl function of x.

In a circle of radius 1, let AOP be an

angle at the center whose measure in radians

is u. (Fig. 127.)

Then MP= sin it. .-. MP= y.

Let X take an increment Ax, bringing

about an increment Au in u, represented by
the angle POQ.
Then arc PQ = Au, and SQ = Ay.

In triangle P/SQ,
'

Ay = chord PQ - sin SPQ.

chord PQ
arcPQ

or, since arcPQ = Au,

Ay

Fig. 127.

^=smjSPQ
Ax

arcPQ
Ax '

Ax
= sinSPQ chord PQ

SLTCPQ

Au
Ax
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Now as Ax approaches the limit so also do Aw and Ai/;

the line through P and Q approaches the limiting position of

the tangent at P, and hence the limiting value of SPQ is - — w.
2

Also the limiting value of
^^^^^^^

is 1.^ arcPQ
dy . fir \du

.'. -^ z= sm (
— u

]
—

,

dx \2 Jdx'

die dx

148. Derivative of the cosine. In Fig. 127 let

Z = cos Uj

then 0M= z, NM= - A2.

.-. - A2;= cos >SPQ . chord PQ.

.-. =^ = Go^SPq .

^1^2£dPQ
. ^,

Aa; arc PQ Ax

Therefore, letting Aa; approach the limit 0,

_dz^_ /tt _ \^
dx \2 Jdx'

dx^ dx

149. Derivatives of sine and cosine of an angle not in the

first quadrant. The foregoing proofs have assumed the angle

to be in the first quadrant. Proofs could as easily be given for

the other quadrants, or they may be made to depend upon those

above.

E.g. to find — ^ for a value of u in the second quadrant.
dx

Let w=5 + v; then sin w= cos-y, cosw=— sinv, and — = —

.

2 '

'
' dx dx

c2(sin u) c?(cos v) . dv ^ ,. , ^mq
/. -^^ ^ = ^ -^ = — sm v— , by Art. 148,

dx dx dx

= 008% — , as before.
dx
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Analytic proofs of the above formulas which are independent

of the size of the angle are given in text-books on the Calculus.

150. Derivative of the tangent.

Let y = tan u.

sinw
.*. y =

cos^^

Differentiating by the formula for a quotient,

^^^ d(sin u) . d(cos u)
cos u -^ ^ — sm u -^ ^

ay _ dx dx

dx cos^ u

du ' / . .du
cos u COS u sm u {— sm u)—

dx 'dx

(cos^u-{- sin^i^)

—

dx= 2 *

^^ d(tan u) ., du

151. Derivatives of cotangent, secant, cosecant. The student

can show that the following formulas hold

:

dicotu) ^^o du dCsecu) . du~^——- = — csc^ u— ,
-^^ ^ = sec u tan u—

,

ax dx dx dx

c?(csc u) , du-^-—^ = — CSC w cot w—
dx dx

152. Summary. The formulas for the differentiation of the

trigonometric functions are here collected and numbered con-

secutively with those of Art. 142.

VIII ^^^m^ = cost*^.
doc doc

IX ^^^^^^> = -sini^^.
doc doc
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dx doc

XT
^(cot^^) ^_csc2^J^.^

ddc doc

XII ^^^^^^ = sect* ton t*^.^
cix doc

XIII ^i^f«^=-csci*cott.^.
rfic dx

163. Illustrations. The foregoing formulas, together with

those of Art. 142, enable one to find the derivative of any alge-

braic expression involving trigonometric functions. The fol-

lowing examples will help to make this clear.

Example 1. Given y = sin^ 2 a;; to find ^•
dx

By formula VII, ^ = 3 sin^ 2 x I^^IA.
dx dx

By VIIIandII,iii5iEM=cos 2c. ^^M
dx dx

— 2 cos 2 x.

.'. -^ = 6 sin^ 2 X cos 2 a;.

^^
Example 2. Given 2; = Vl + 2 tan^ 3 s; to find -77'

By VII, ^=i (1+2 tan^ 3 .)-^ ^a+2tan^38)
^

' dt 2^ ^
dt

By IV, I, III, VII, and X,

d(l + 2 tan^ 3 s) . , o ^2 o „ o ^«
-^—! L = 4 tan 3 s • sec^ 6s ' 6

dt dt

clz 6 tan 3 s sec^ 3 g (^s

' 'di^-Vl+2 tSiu'Ss'dt'

154. Other derivative formulas. Formulas for the derivatives

of the inverse trigonometric functions, sin~^t*, etc.; the logar
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rithmic functions, log„ u ; and the exponential functions, a", w",

are derived in text-books on the Calculus.

The foregoing formulas will be sufficient for use in showing

the application of derivatives to the study of curves, which is

given in the next chapter.

EXERCISE XXXIV

Find the derivative of each of the following functions with respect to

its variable :

11. y = sec2 X — csc2 x.

12. y= ^

1. y = a cos2 rK + 6 sin2 x.

2. y = 4 tan3 2 x.

3. z = sin^ t.

4. s = cos^x — sin^a;.

5. ?/ = cos2(a» + 6).

6.
sec^x,

CSC2 X

7. y = sec* 3 x.

8. ^ _ tan 2 «

1 + sin «

9. y = sin2a;\/secic.

10. y = tan" mx.

Vsin X

13. z = ^ tan3 ^ - tan ^ 4- ^.

14. y = X sina;.

15. y = X ta.nx.

16. y = (sin x)x — l.

17. y = cot 4 X CSC 4 x.

18. z = m cot" qx.

19. ?/ = a;(sina;— cosic).

20. q = a sin" bt.



CHAPTER XII

MAXIMA AND MINIMA. DERIVATIVE CURVES

155. Maximum and minimum points of a curve. In the

discussion that follows the curves are supposed to be such

that the ordinate is a single-valued, continuous function of

the abscissa. If the curve as a whole is not single valued, it

can be divided into portions each of which is single valued.

For convenience, such a curve, or portion of a curve, may
be thought of as generated by a point moving from left to

right.

If, as the curve is so traced, the generating point rises to a

certain position and then falls, that position is called a maxi-

mum point of the curve, and the ordinate at that point is

called a maximum ordinate. If the generating point falls to

a certain position and

C then rises, that position

is called a minimum
point of the curve, and

the ordinate at that

point a minimum ordi-

nate.

Thus A, C, and E are

maximum points, and 2/1,

2/3, and 2/5 are maximum ordinates, while B and D are minimum
points, and 2/2 and y^ are minimum ordinates of the curve in

Fig. 128.

According to the above definition a maximum ordinate is

not necessarily the greatest ordinate of the curve. The defini-

tion requires only that a maximum ordinate shall be greater

than the ordinates immediately to the right and left of it.

178

Fig. 128.
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At a maximum point the curve is said to change from rising

to falling, and at a minimum point to change from falling to

rising.

156. Determination of the maximum and minimum points of

a curve. The location of the maximum and minimum points

of a curve whose equation in rectangular coordinates is known
may be determined by use of the derivative. The method

employed is a general one, but the solution of the equations

is sometimes impossible. In the case of equations with nu-

merical coefficients, however, an approximate solution can

always be obtained.

It was shown in Art. 132 that -^ for any point of the curve

is equal to the slope of the tangent to the curve at that point.

Then if -^ is positive for a given point of the curve, the tan-
da;

gent line at that point makes with the ic-axis an angle less

than 90°, and hence the curve rises toward the right from that

point. If -^ is negative for a given point of the curve, the
dx

tangent at that point makes with the a>-axis an angle between
90° and 180°, and hence the curve falls toward the right from

that point.

Of course this rising or falling may continue for a very

short distance only.

Figure 129 illustrates points of the curve for which -^ is

respectively positive, zero, and negative.

dx

T^^^X" -^
dy. ^ (Jy dy
ite>o ii=° dl<o

Fig. 129.
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It follows from the above that if a point, in moving along

the curve from left to right, passes through a position for

which -^ changes from positive to negative, the curve changes
dx

at that point from rising to falling, and hence that position is

a maximum point of the curve ; while if a point, in moving

along the curve from left to right, passes through a position

for which -^ changes from negative to positive, such a posi-
(XX

tion is a minimum point of the curve.

The derivative -^ usually changes sign by passing through
ClX

the value zero, so that the tangent at a maximum or minimum
point of the curve is usually parallel to the avaxis. However,

it may change sign

by becoming infinite.

^ ^ Y I^ such a case the

J\ tangent is parallel

to the ^/-axis at a

— maximum or mini-

Maximum Points. Minimum Points. mum point. A point
^^«- 1^- of this kind is called

a cusp-maximum, or a cusp-minimum. (Fig. 130.)

It does not follow, conversely, that if the tangent at a given

point of the curve is parallel to one of the coordinate axes, the

point is necessarily a maximum or minimum point. The curve

may cross the tangent at that point. (See Fig. 129.)

The above discussion applies to only those parts of a curve

for which neither coordinate becomes infinite. It frequently

happens that as x passes through a certain value, -^ changes

sign, but neither a maximum nor minimum point of the curve

corresponds to that value of x, because y there becomes infinite.

157. Illustration. To find the maximum and minimum
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points of the curve

6y= 2a^-3a^-S6x-12, (1)

Difeerentiating, 6^ = 6 a.-^ - 6 a; - 36.
dx

... ^ = a^_a;_6 (2)
dx

= (x-\-2)(x-3).

From this it is seen that if x has any value less than — 2,

both factors of -^ are negative, and hence -^ is positive. The
dx dx

curve therefore rises toward the right at all points for which

x<-2.

If X is greater than — 2 but less than 3, one factor of -^ is
dx

positive and the other negative, and hence -^ is negative. The
dx

curve therefore falls toward the right for all values of x be-

tween — 2 and 3.

If a;>3, -^ is positive, and hence the curve again rises
dx

toward the right for all values of a; > 3.

As X passes through — 2 from left to right, -^ changes from
dx

positive to negative, arid hence the point of the curve for which

a; ^ — 2 is a maximum point ; i.e. (—2, 5^) is a maximum point.

As X passes through 3 from left to right, — changes from
dx

negative to positive, and hence (3, — 15i) is a minimum point.

Figure 131 shows the curve plotted from these considerations

and a few additional points through w^hich it passes.

The meaning of the dotted curve is explained in the next

article.



182 ANALYTIC GEOMETRY

158. The first derivative curve. The faqts of the preceding

article are clearly brought out graphically by plotting the curve

of eq. (2), using x as abscissa and

-^ as ordinate.
dx

dy

¥m. 131.

Eor convenience let -^ be rep-
dx

^

resented by z. Then eq. (2) be-

comes „ _

Z = Qr — X—K).

This curve, being a parabola,

is easily plotted. It crosses the

a;-axis at — 2 and 3, has its vertex

at (|-, — -2^), and its axis parallel

to the 2/-axis (Art. 81). The locus

is the dotted curve in Fig. 131.

The original curve will be re-

ferred to as the primitive curve,

and the curve just described as

the first derivative curve.

From the relations established

in the preceding article, it follows

that for those values of x for

which the first derivative curve

dy
is above the a^axis, that is, 2;, or --^, is positive, the primitive

dx

curve rises toward the right; for those values of x for which

the derivative curve is below the a^-axis, the primitive curve

falls toward the right; for a value of x at which the first de-

rivative curve crosses the a^-axis from above, in going from left

to right, the slope of the primitive curve changes from positive

to negative, and hence the primitive curve has a maximum
point ; and for a value of x at which the first derivative curve

crosses the avaxis from below in going from left to right, the

primitive curve has a minimum point.
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Moreover, the value of the ordinate of the first derivative

curve gives one a good idea of the rapidity with which the

primitive curve is rising or falling. Thus, if for a certain

value of Xj the ordinate of the first derivative curve is positive

and numerically large, the primitive curve is rising rapidly

toward the right for that value of x ; while if the ordinate of

the first derivative curve is negative and numerically small,

for a certain value of x, the primitive curve is falling slowly

toward the right for that value of x.

This is at once evident on remembering that the ordinate of

the first derivative curve is equal to the slope of the primitive

curve for the same value of x.

159. Concavity. Suppose that for x = Xq the first derivative

curve has a positive slope.

Let Zq, %, and z^ be the ordinates of points on the derivative

curve for the values Xq, Xq — Ax, and Xq + Aa; respectively, and

let Ax be chosen small enough so that Zi<. Zq <. Z2*

Then, since the values of z are equal to the slopes of the

primitive curve for the same values of x, the tangent to the

primitive curve must have turned counter-clockwise as x in-

creased through Xq from Xq — Aa; to Xq -\- Ax. This *is true

whether Zq be positive, negative, or zero. (See Fig. 132.)

Exercise 1. In the curve y = a^ }- 2 x -\- 4: draw the deriva-

tive curve, measure the ordinates at a; = 1^, 2, 2^, and draw

the tangents to the primitive curve at points corresponding to

the selected values of x. How would the tangent to the prim-

itive curve turn as x increases through 2 ? Do the same for

aj = -2i., -2, -11.

* This is possible since the slope of a curve at any point is the limiting

value of the slope of a secant line through that point and a neighboring point

of the curve. The secant line, cutting either to the right or left of the given

point, can then be brought near enough to the tangent to have a positive slope,

since the slope of the tangent is positive. The ordinates of the curve are

therefore greater just to the right and less just to the left than the ordinate

at the point of tangency.



184 ANALYTIC GEOMETRY

a Derivative Curve. b Primitive Curve.

Fig. 132.

Exercise 2. Prove that if the derivative curve has a nega-

tive slope for X = Xq, the tangent to the primitive curve turns

clockwise as x increases through Xq.

Exercise 3. Illustrate the law stated in exercise 2 by using

the curve y — — x^-{-2x — 3.

Definitions. If the tangent to a curve turns counter-

clockwise as the point of tangency moves to the right through

a given point, the curve is said to be concave up at that point

;

while if the tangent turns clockwise as the point of tangency

moves to the right through a given point, the curve is said to

be concave down at that point.

A point on the curve where the curve changes from concave

up to concave down, or vice versa, is called a point of inflexion.

As the point of tangency passes through a point of inflexion,

the tangent line changes the direction of rotation. The curve

crosses the tangent at a point of inflexion.

Slope increasing

toward the right.

Curve concave up.

Slope decreasing

toward the right.

Curve concave down.

Fig. 133.

Point of inflexion.
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The results of this article may be stated as follows: For all

values of x for which the first derivative curve is rising toward

the right, the primitive curve is concave upward ; for all values

of X for which the first derivative curve is falling toward the

right, the primitive curve is concave downward ; for a value

of X for which the first derivative curve has a maximum or

minimum point, the primitive curve has a point of inflexion.

160. The second derivative. The derivative of a function

of a variable is itself a function of that variable. This de-

rivative may then also be differentiated.

Thus, if 2/ = 2ar3 + sin 2a;,

^=6a;2 + 2 cos 2a;,
dx

and —(^\= 12 a; - 4 sin 2 a;.

)dx\dx

The derivative, ~ -, is called the first derivative of y with re-
dx

spect to X, and — ( — ) is called the second derivative of y with
CLX \CIXJ

respect to x.

The symbol ^^ is used to denote the second derivative of

y with respect to x, thus -^ = ^( ^).^ ^ '

dx" dx\dxj

Similarly, —^ means — — f -^
doif dx\jXx\dx

161. The second derivative curve. The second derivative is

related to the first derivative in precisely the same way as the

first derivative is related to the primitive function. But it

also has an interesting and important relation to the primitive

function, now to be explained.
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Suppose the second derivative to be represented by a curve,

using X for abscissa and -^ as ordinate. This curve is called
dmr

the second derivative curve.

Then, for all values of x for which the second derivative

curve is above the a7-axis, the primitive curve is concave up

;

for the ordinate of the second derivative curve is equal to the

slope of the first derivative curve for the same value of x, and

where the slope of the first derivative curve is positive, the

primitive curve is concave up. (Art. 159.)

In like manner it is proved that for those values of x for

which the second derivative curve is below the i»-axis, the

primitive curve is concave down.

For a value of x at which the second derivative curve crosses

the ic-axis, the first derivative curve has either a maximum or

minimum point, and hence the primitive curve has a point of

inflexion. (Art. 159.)

162. Summary. The results of the foregoing discussion of

this chapter may be summarized as follows

:

For all values of x for which the first derivative curve is

above the a;-axis, the primitive curve rises toward the right

;

for all values of x for which the first derivative curve is below

the a>axis, the primitive curve falls toward the right; for a

value of X at which the first derivative curve crosses the a^axis

from above in going from left to right, the primitive curve has

a maximum point ; for a value of x at which the first deriva-

tive curve crosses the a^axis from below in going from left to

right, the primitive curve has a minimum point.

For all values of x for which the second derivative curve is

above the avaxis, the primitive curve is concave up; for all

values of x for which the second derivative curve is below the

flj-axis, the primitive curve is concave down ; for a value of x

at which the second derivative curve crosses the aj-axis, the

primitive curve has a point of inflexion.
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163. Illustrations. Example 1. Given

then

and

-^= cos X,
dx

dx"
— sm X.

The curves are shown in Fig. 134, and the relations established

above are seen to hold.

Y

y
\^ V y

IfN >\
4

y
X

s

^^^ ;x'
y

TT

Fig. 134.

The student should make a careful study of the figure.

Example 2. As another illustration, study the curves of

Fig. 131. The straight line in the figure represents the equa-

tion ^'y ^2x 1
dx^

Example 3. A circular cistern is to be built to have a

given capacity ; to find its dimensions in order that the

amount of lining required will be a minimum.
Let H = depth, D = diameter, and S = area of inner surface.

4
Then S -\-TrDH.

But vol. =

i)2 +

= C, where C is constant.

40
D
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Here S is expressed as a function of the variable D. From
the equation it is at once evident that if D is very small the

surface is very large, and is again very large

when D is very large ; while for intermedi-

ate values of D the surface has smaller

values. The curve which represents the

equation between S and D therefore falls

and then rises as D increases from 0, as in

Fig. 135. There will therefore be a mini-

mum point, which may be found by equating

to the value of ^.
t dD

Equating this expression to 0, and solving for D,

i.=^"8(7

The relation between D and H is most easily obtained by

replacing (7 by ^^—— in the expression for — , and equating
^ CHJ

the result to 0. Then

2 4Z)^
"^'

or B = 2H,

EXERCISE XXXV

Sketch the following curves, first sketching the first and second deriva-

tive curves. Locate maximum and minimum points and points of

inflexion.

1. y = a;2-4rc + 5. / ^\
5 y = cos [x

I

•

2. y=_x2-rr + 3.
"^

\ 6/

3. 3 2/ = x8- 12«+ 6. 6. 6?/ = 2x3-3a;2_12x-6.

4. y = sin2x. 7. 10 y = 2 ic^ + 9a;2 - 24 a; + 20.
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8. 20ij = x'^ -^9x'^ + l5x- 20. 13. ?/ = sin x + a.

9. y = x^-Sa'^x + b^. 14. y - l=(x- 2)3.

10.y = xK ^^^ ,3

11. 2/ = a-(a — a:). x - 4

12. y = ax^ + hx + c. IQ. Zy = x^ -^x'^ + Qx - 1.

17. 12 y = 3 x'' - 8 a:^ - 30 ic2 + 72 a; + 24.

18. 8 ?/ = ic^ _ 6 ic2 + 8 a; + 16.

19. In y = ax^ -{hx + c^ where a t^ 0, show that there is a maximum
and a minimum point if h and a are opposite in sign, hut that there is

neither maximum nor minimum if a and h are of the same sign, or if

6 = 0.

Compare the curves obtained by using the following values of a, h, and

c. (1) a = 1, 6 = - 3, c = 2
; (2) a = 1, 6 = - .03, c = 2

; (3) a = 1,

J) = — .0003, c = 2. If a > 0, and a and c are held fast while h is made

to approach the limit from the negative side, what becomes of the

maximum and minimum points ? If 6 then becomes positive, how is the

tangent at the point of inflexion affected ?

20. It\ y — ay? -\- hx'^ -{ ox -\- d show that there is a maximum and a

minimum point if 62_3Qrc>0, but not otherwise. How does the case

where h"^ — 3 ac = differ from that where &2 _ 3 ^c < ?

31. The equation of the path of a projectile, fired at an angle a to the

horizontal with an initial velocity F, is

y = x tan a ^ •

^
2 r2 cos2 a

Find the maximum height to which the projectile rises. Ans. ^^^ "
.

22. Letting B = the range on the horizontal of the projectile described

in ex. 21, show that B = ZI^RA^.
g

Letting a vary, plot the curve which represents JR as a function of

a. For what value of a is i? a maximum ? Ans. ^

.

4

23. Prove that the greatest rectangle of a given perimeter is a square.

24. A cylindrical tin can, closed at both ends, is to be made to have a

certain capacity. Show that the amount of tin used will be a minimum
when the height equals the diameter.

25. Show that the rectangle of greatest area that can be inscribed in a

circle is a square.
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26. Given that the strength of a rectangular beanj of given length

varies as the product of the breadth and the square of the depth, find the

ratio of depth to breadth of the strongest beam that can be cut from a

cylindrical log. Ans. h = V2 • b.

27. Given that the deflection, under a given load, of a rectangular

beam of given length, varies inversely as the product of the breadth and

the cube of the depth, find the ratio of depth to breadth of the beam of

least deflection that can be cut from a cylindrical log. Ans. h = VS • &.

Suggestion. Make the reciprocal of the deflection a maximum.

28. A rectangular piece of tin of vyidth b is to be bent up at the sides

to form an open trough of rectangular cross section. Find the width of

the strip bent up at each side vv^hen the carrying capacity is a maximum.

Ans. ^.
4

29. Find the dimensions of the greatest right circular cylinder, the

sum of the length and girth of which is 6 ft.

Ans. H=2tt., Diam. = - ft.

IT

30. Find the dimensions of the greatest rectangular box of square base,

the sum of the length and girth of which is 6 ft. Ans. Length = 2 ft,

31. Find the ratio of altitude to radius of base of the conical vessel, of

open base, which requires the least amount of material for a given capacity.

Ans. Alt. = V2 rad.

32. A point moves along a straight line. At the time t its distance

from a fixed point of the line is s : at the time t + At, its distance is

As
s + As. Then ^ is the average velocity of the point for the time At.

As
The limiting value of ^ , as At approaches as a limit, is defined to be

the velocity, v, at the time t. Hence v = —.
dt

Given s = 16 «2, find the velocity at any time t.

33. The average acceleration, during an interval of time, of a point

moving in a straight line, is the increase in velocity during that time,

divided by the length of the interval of time.

Make a definition for the acceleration at any instant, and show that

the acceleration is

dv ^^^
dt dt^

Find the acceleration if s = 16 t"^.
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34. Plot the curves representing the space, velocity, and acceleration,

in terms of the time, if s = 16 t^.

35. Given s = at^ -\- ht + e, where a, 6, and c are constant, show that

the velocity in terms of the time is represented by a straight line, and that

the acceleration is constant.

36. The formula for the space traversed by a body projected vertically

upward, with velocity Vq, is

s z=VQt — 16 «2 (s in ft., t in sees.)

Find, by differentiation, the velocity and acceleration of a bullet fired

upward with initial velocity of 1000 //s.

Plot the curves representing space, velocity, and acceleration in terms

of the time. How high does the bullet go ?

37. A point moves back and forth along a diameter of a circle of radius

a, with simple harmonic motion (Art. 116), making n complete oscilla-

tions per unit of time. If s is the abscissa of the point referred to the

center, and the point is at the end of the diameter when « = 0, show that

s = a cos(2 irnt).

Find also the velocity and acceleration at any time, and plot the curves

for space, velocity, and acceleration.

38. Since —(x^ + C) is the same as —(x2\ how many primitive
dx dx

curves are there whose first derivative curve is

-^ = 20.?
dx

Sketch some of the derivative curves. How are they situated with refer-

ence 'o each other ? What is the equation of the primitive which passes

through (2, 6) ?

39. Find the primitives of which — = cos x is the first derivative
dx

curve.

d^v
40. Find the primitive of which Jl = ^ is the second derivative curve,

and which passes through (4, 1) with a slope equal to 3.

d^v
41. Show that for the second derivative curve^ =^ ^' ^ primitive may

be obtained which passes through any given point in any given direction.



CHAPTER XIII

THE CONIC SECTIONS

164. Definition of the conic. A conic section, or simply

conic, is the curve of intersection of the surface of a right cir-

cular cone and a plane. It can be shown, however, that the

following definition is equivalent to the one just given.

Definition. A conic is the locus of a point which moves

m a plane so that the ratio of its distance from a fixed point

in the plane to its distance from a fixed straight line in the

plane is constant.

This definition will be adopted here.

The fixed point is called the focus, the fixed straight line the

directrix, and the constant ratio the eccentricity, of the conic.

165. Construction of conies. Let F be the focus, DD' the

directrix, and e the eccentricity. Let P be any point on

the conic, and M the foot of the

perpendicular drawn from P to

the directrix. Then, by defini-

tion of the conic,

FP ^
MP

(The lines FP and MP are to be

counted as positive, whatever

their direction.)

This suggests the following

method of locating points of the

conic : Through F draw a line

FB perpendicular to DD\ intersecting DU in B. Through B
draw a line BL, making an angle 6 with BF such that

192

Fia. 136.
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tan = e. Take any pointH on BF, and let the perpendicular to

BF through H meet BL in K. Then, ^^ = tan ^ = e. With

F as a center and a radius equal to HK, describe an arc of a

circle cutting HK in P and P', The points P and P' so ob-

tained are points on the conic.

In this manner, as many points as desired may be obtained,

and the conic sketched by drawing a smooth curve through

them.

Evidently, they lie in pairs which are symmetrical with FB
as an axis of symmetry. This line FB is called the axis of

the conic.

166. Vertices of a conic. The points of the conic which lie

on the line through the focus perpendicular to the directrix

are called the vertices of the conic.

To obtain these points, draw lines through F inclined 45°

and 135° to the line BF. From the points of intersection of

these lines with BL drop perpendiculars to BF. The feet of

these perpendiculars are the vertices, as the student can easily

show.

If e = 1, there is only one vertex, but if e ^it 1, there are two
vertices.

The figures on the following pages show conies constructed

for e = I, e = 1 , and e = f

.

EXERCISE XXXVI

1. Plot in different figures the conies for e = |, e = 1, e = ^.

2. Plot in the same figure, using the same directrix and focus for all

the curves, the conies for e = .9, e = 1, e = 1.1.

3. Assume a unit of distance, and taking the distance from focus to

directrix to be 1, 2, .4, 20, respectively, construct the conies for e = 1.

4. Same as example 3 for e = f

.

5. Same as example 3 for e = |.

6. Prove that the conic is tangent to the line BL at the intersection of

BL and a line through F parallel to the directrix.
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167. Classification of conies. From the constructions already

made, it is evident that the general shape of the conic depends

upon the value of e, and that the conies may be divided into

three classes, according as e < 1, e = 1, or e > 1.

A conic whose eccentricity is less than 1 is an ellipse ; one

of eccentricity equal to 1, a parabola;
^ and one of eccentricity greater than 1,

u\ pP an hyperbola. (See footnote, Art. 171.)

168. The equation of the conic in rec-

tangular coordinates. Let the directrix

„ be taken as ?/-axis and the line through

"^fTTo) t^^ focus perpendicular to the directrix

as the fl?-axis. Let the distance from the

directrix to focus be p. Then the coor-

dinates of F are {p, 0). Let P{xy y) be

any point on the conic, and MP the distance from P to the

directrix. Then, from the definition of the conic,

^^^ = e, or FP=eMP.MP '

But FP=:V{x-py+ y% and MP=x.
. •. (x—py-\-y^ = e^y?^

or (1 - e2)a?2 _ 2 j^a? + 1,2 4.^2 ^ 0.

This is, therefore, the equation of any conic when the 2/-axis

is the directrix and the a^axis is the line through the focus

perpendicular to the directrix.

169. The parabola, e = 1. In the equation just found let

e = 1. The conic is then a parabola. The equation reduces to

y^ = 2px—p^.

This equation of the parabola was obtained in Art. 75, and

from the same definition as here used. The equation was dis-

cussed in that place. The student should review Arts. 75-78

at this time.
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170. The centric conies. e=^l. In the equation of Art. 168,

divide by the coefficient of a^ and then complete the square in

the terms containing x,

x^ - ^P X + ^'
4-

y' - -P' _ P^ _ -P'^'

1 _ e2
'

(^1 _ g2)2 ' 1 _ e2 (^l_ g2^2 1 _ g2 (J^ _ g2^2'

or f p \^
I

y^ P'^

Substitute x' = x — --^—, y' = y,
1 — e-

which transforms to parallel axes through (

^
.

)

(Art. 52.) The equation then becomes

x" + _ p^€^

1-e^ (1-ey

Dividing by the right-hand member brings the equation into

the form
x'^ ^'2

(1 _ e2)2 1 _ g2

Since this equation contains only even powers of x and y,

the curve is symmetric with respect to both coordinate axes,

and hence with respect to the origin. The origin may there-

fore be called the center of the conic, and the conic called a

centric conic.

Also, since the conic is symmetric with respect to the center,

rotation of the conic in its own plane through 180° about its

center will bring the conic back into its original position, hav-

ing merely interchanged the points. Let the conic, together

with its focus and directrix, be thus rotated. The focus and

directrix are brought into new positions which are symmetric

with respect to the center. They have remained focus and

directrix of the conic, however, and since the new position is
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the same as the old position they must be focus and directrix

of the conic in its original position.

Therefore every centric conic has two foci and two direc-

trices.

They are respectively symmetric with respect to the center.

171. The ellipse. e<l. In eq. (A) of the preceding article,

the divisors of x'^ and 2/'^ are both positive if e < 1. For con-

venience let

Substituting these values in eq. (A) and dropping primes, it

becomes

This is known as the standard form of the equation of the

ellipse.*

172. Axes of the ellipse. Letting y = 0, the intercepts of

the ellipse on the a^axis are found to be a and — a. The

intercepts on the ?/-axis are b and — b.

The length 2 a is called the major axis, and 2 b the minor

axis.

The relation connecting a, b, and e is found from eq. (1) of

the preceding article to be

a\l - e2) = b^

This equation shows that a>b.

* In Art. 83 the ellipse was defined in an altogether different way. The

equation of the ellipse derived from that definition and that just derived

are, however, the same, which proves that the two definitions are equiva-

lent. The property of the ellipse used in Art. 83 as a definition will be

shown in a succeeding article to follow from the definition used in thia

chapter.

A hke remark applies to the hyperbola.
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Fig. 139.

The abscissa of the new origin referred to the old in the

transformations of Art. 170 is —

^

1 — e^

I.e.

Now a= pe

l-e^

A BO =
e

Also FO =BO-BF=:^
or FO = ae.

The relation a\l-e^) = b^ may be written a^e^= a^-^b^f

from which

ae= y/aP' - &2.

Therefore if the end of the minor axis be taken as a center

and an arc described with the semi-major axis as a radius, this

arc will cut the major axis in the focus.

173. Summary. In an ellipse whose major axis is 2 a,

minor axis 2 6, and eccentricity e, the following relations hold

:

a-^C* a^ 62.

ae = distance from center to focus,

— = distance from center to directrix.
e
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174. The hyperbola, e > 1. In eq. (A), Art. 170, the divisor

of ^'^ is negative if e > 1. Let then

a" = . ft^

e^~l

Then both a and h are real.

Substituting these values in eq. (A) and dropping primes, it

becomes

^ - ^ = 1.

This is known as the standard form of the equation of the

hyperbola.

(See also Art. 87, and the footnote to Art. 171.)

175. Axes of the hyperbola. Letting y = 0, the intercepts

on the a^axis are seen to be a and — a. If a? = 0, 2/ is imaginary.

Fig. 140.

Hence the curve does not cross the y-axis.

The length 2 a is called the transverse axis, and 2 b the con-

jugate axis.
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The relation connecting a, b and e is 6^ = a^ (e^ — 1), or

a^e^ = a' + b\

This shows that 6 = a according as e = V2.

As in the ellipse, the abscissa of the center referred to the

d origin, (

since e > 1.

old origin, on the directrix, is ^
^ , , which is here negative,

1 — e'^

1 — e^

Now a =
., ^ .

e^ — 1

.-. OB = -.
e

Also OF=OB+p

e^ — 1

— P^^~
e^ - 1

= ae.

Since ae = Va^ + 6^, the focus may be obtained by using the

center of the conic as a center and the hypotenuse of the right

triangle whose sides are a and 6 as a radius and describing an

arc to cut the major axis produced.

176. Summary. In an hyperbola of transverse axis 2 a, con-

jugate axis 26 and eccentricity e, the following relations hold:

ae = distance from center to focus,

- = distance from center to directrix.
e

Compare Art. 173.
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EXERCISE XXXVII

1. Derive the equation of the parabola whose directrix is the line aj = 6,

and whose focus is (2, 3).

2. Derive the equation of an ellipse whose directrix is the line ?/ = 4,

focus at (0, 2), and center at (0, — 1).

3. Derive the equation of the hyperbola of eccentricity 2, with focus

at (0, 4) and the line ic = 2 as directrix.

4. What is the eccentricity of the equilateral hyperbola ?

5. Keeping the major axis unchanged,plot ellipses with eccentricity .1,

.5, .9.

What limiting position do the foci approach as the eccentricity ap-

proaches the limit ? What is the limiting form of the ellipse ?

177. The equation of the conic in polar coordinates.

(a) Origin at the focus. Taking the origin at the focus and

the initial line perpendicular to the di-

rectrix, the polar equation of the conic

is easily written.

Let P(r, 6) be any point on the conic

and MP the length of the perpendicu-

lar from P to the directrix. Then, by

the definition of the conic,

FP=eMP,
or r = e(p -f r cos $),

from whichFig. 141.

ep
1 — c cos 8

If the focus lies to the left of the

directrix, then

PM=p — r cos $.

.'. r = e(p — r cos 6)j

from which

^- ep
1 4- c cos 6 Fig. 142.
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(b) Origin at the center. For the centric conies the equa-

tion in rectangular coordinates is

the upper sign being for the ellipse, the lower for the

hyperbola.

Change to polar coordinates by means of

x = r cos 6,

y = r sin 6.

Substituting and clearing of fractions,

T^b^ cos^^ ± ?%2 sin2^= a^b%

from which

a'b'
r2=

62 cos^^ ± a' sin^^

This equation may be expressed in a somewhat simpler

form in terms of the eccentricity and 6. For convenience con-

sider separately the equation of the ellipse. It is

or

since

62cos2^ + a2sin2^ b'^co^'^O + a2(1 - C0S2^)

62

a'
C0S2^,

^._ h'^

l-e^cos^e'

e^-(«^-^r

Similarly for the hyperbola the equation is
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EXERCISE XXXVIII

Determine the nature of the following conies and sketch them:

1. r =

3. r =

5. r^ =
2+3 sin2d

7. r^ = ""
8. r = a sec2.^

16-20sin2(9 2

9. Show that if the vertex of a parabola is taken as origin and the

axis of the parabola as the initial line, the equation in polar coordinates is

2 p cos d
r = ^. ^

sni2^

4

1-- 1 cos e

5

2-- 2 cos

3

2 - C0S2 d

64

2 r =
3

2 + 4 COS ^

4. r'2

-6
1 - 4 cos20

a ^2 20



CHAPTER XIV

PROPERTIES OF CONICS

178. In this chapter a few of the more important properties

of the conies are derived.

I. PROPERTIES OF THE PARABOLA

179. Subtangent of the parabola. In Art. 130 the equation

of the tangent to the parabola 7f==2px at (iCo, y^ was found to be

Letting ?/ = in this equation, there results x = — Xq,

i.e. 0T= -a-oCFig. 143).

.-. TO = Xq.

.'. TM==2xo.

The line TM is called the

subtangent.

180. The subnormal of the

parabola. The slope of the nor-

mal to the parabola y^ = '2px

at the point {xq, y^) is the

negative reciprocal of the slope

of the tangent at that point;

i.e. the slope of the normal is
?h

P

Fig. 143.

The equation of the

normal is therefore

^0,

205
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To find where the normal cuts the a;-axis, let y = 0. The
result is

I.e. in Fig. 143. OiV= o^o +jp.

MN=p.
The line MN is called the subnormal.

Hence, in the parabola the suhnormal is constant and equal to p.

181. Property of reflection of the parabola. In Fig. 143,

Art. 179, from the definition of the parabola,

z

Also TF= TO-\-OF = x, +|. (Art. 179.)

FP=TF.
Z.FPT = ^FTP=Z.TPH.

Let PL be drawn parallel to the axis of the parabola. Then

AFPT=ZLPQ.
Hence, if the parabola were a reflector, any ray of light from

the focus striking the parabola and reflected so as to make the

angle of reflection equal to the angle

of incidence would be reflected along

a parallel to the axis of the parabola.

A concave reflecting surface in the

form of a surface generated by re-

volving a parabola about its axis

would therefore reflect all rays from

a source at the focus in lines parallel

to the axis of the reflector.

Definition. The chord of a conic

which passes through the focus, per-

pendicular to the axis of the conic, is

Fig. 144. called the latus rectum.
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EXERCISE XXXIX

1. By means of the result found in Art. 179, show how to draw a tan-

gent at any point of the parabola.

2. Prove that the tangents at the ends of the latus rectum meet at the

intersection of the directrix and the axis of the parabola, and are at right

angles to each other.

3. Prove that the distance from the focus of a parabola to a tangent is

half the length of the normal from the point of tangency to the axis of the

parabola.

4. Prove that any point P of the parabola and the intersections of the

axis of the parabola with tangent and normal at P are all equidistant

from the focus.

5. Prove that the tangent at any point of a parabola meets the directrix

and latus rectum produced at points equally distant from the focus.

6. Show that the normal at one extremity of the latus rectum of a

parabola and the tangent at the other extremity are parallel.

7. Show that the directrix of a parabola is tangent to the circle described

on any chord through the focus as a diameter.

8. Show that the tangent at the vertex of a parabola is tangent to the

circle described on any focal radius as a diameter.

9. Prove that the angle between two tangents to a parabola is equal to

one half the angle between the focal chords drawn to the points of contact.

10. Prove that the tangents at the ends of any focal chord of a parabola

meet on the directrix.

11. Prove that the length of the latus reetum of the parabola y^ — Ipx
is 2 p.

12. Prove that if from a point (a;o, 2/o) two tangents are drawn to the

parabola, the equation of the line through the points of tangency is

2/oy =p{x +Xo).

13. By means of the preceding example prove that if tangents are drawn

to the parabola from any point on the directrix, the line through the points

of tangency passes through the focus.

14. Prove that in the parabola if- = 2 pa;, the ordinate of the middle

point of a chord of slope m is — , and hence that the locus of the middle
m

P
points of a system of parallel chords of slope m is the straight line y = —

m
Draw the figure.
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Definition. The straight line which bisects a system of parallel

chords of a parabola is called a diameter of the parabola.

15. Find the equation of the diameter which bisects all chords of slope

m in the parabola x^ = 2py. Ans. x = mp.

16. Transform the equation of the parabola y^ = 2 px to the tangents

at the extremities of the latus rectum as axes.

Suggestion. First, moving to parallel axes through ( — ^, 0), the

equation becomes
y^ = 2px- p^.

Next, rotating the axes through — 45°^ the equation becomes

a;2 -2xy-\-y^- 2V2p(x + y) + 2p^ = 0,

which becomes a perfect square on the left by the addition of 4 xy.

Then extract square root, transpose, extract square root again, and

obtain

Vx±Vy = ± yp\/2,

or Vx ±Vy = ± Va,

where a=pV2.
17. Plot the curve

x^±y^ = ± a\

"What portions of the curve correspond to the different combination of

signs ?

II. PROPERTIES OF THE ELLIPSE AND OF THE
HYPERBOLA

182. Focal radii of the ellipse. Let P(xo, y^ be any point of

the ellipse of semi-axes a and 6, and let r and r' be the radii

from the foci F and F^ to P.

Through P draw a line parallel to the major axis of the

ellipse, meeting the directrices in M and M\ Then from the

definition of the ellipse, using the left-hand focus and directrix,

M'P

or r^ =^eM'P=e[--\-XQ\= a + exQ.
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Similarly, using the right-hand focus and directrix,

r = ePM=ef- — XQ\=a — exo.

Adding, r-{-r' = 2a.

Hence the sum of the focal radii of a point on the ellipse is

constant, and equal to the major axis of the ellipse.

Fig. 145.

183. Focal radii of the hyperbola. In a manner similar to

the above the student can show that in the hyperbola the focal

radii are r = exo -\- a and r' = exo — a, and hence

r — r' = 2 a.

184. Property of reflection of the ellipse. The focal radii to

any point of an ellipse make equal angles with the normal to

the ellipse at that point.

Proof. In Art. 130, the equation of the tangent to the ellipse

at (xq, 2/o) was found to be

yvo
1.

The slope of the normal at (xq, y^) is therefore J^, and the
b-XQ
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equation of the normal is

2/-2/o = ||(«'-^o).

In this equation let y = and solve for x,

x = Xo f = -— Xq = e'xQ.

I.e. in Fig. 145.

0N= e%.

F'N= ae + e^XQ = e(a-\- ex^),

and NF= ae — s^Xq = e (a — gxq) .

gJ^=^ + ^^o = ^(Art.l82).
NF a — exQT

Therefore by plane geometry, Z F'PN = Z NPF, which

proves the theorem. Hence if the ellipse served as a reflector,

a ray of light, or sound, emitted at one focus would be reflected

to the other.

It is on this principle that whispering galleries are some-

times constructed.

185. Property of reflection of the hyperbola. In the hyper-

bola the focal radii to any point of the curve make equal

angles with the tangent at that point.

The proof is left to the student.

186. If a line is drawn to cut the hyperbola in two points,

the two segments of the line included between the hyperbola

and its asymptotes are equal.

Proof. The equations of the hyperbola, its asymptotes, and

any line are, respectively,

b^x'-ay^a^ (1)

b''x'-aY=0, (2)

and y=mx-\-c. (3)
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Let the points of intersection of line and hyperbola be

A(^ij 2/1) ^^^ A(^2) 2/2); and of line and asymptotes be Qi(xi', y^)

and Q.lx.J, yJ).

Substituting the value of y from eq. (3) in eqs. (1) and (2)

respectively, and collecting terms, there results

(62 _ a'nv^x' - 2 a^mcx - a'ic' + W)= (4)

and (6 — a?m^)x^ — 2 ahncx — oj^c? = 0. (5)

The roots of (4) are x^ and x^, and of (5) are x-^ and x^.

Now in any quadratic equation the sum of the roots is equal

to minus the coefficient of the first power of the variable

divided by the coefficient of the second power ; and since the

first two terms in eqs. (4) and (5) are the same, therefore

Ju\ ~p" Ct/o — *vi -y" iCo •

/y» I rp rp '
|

rp '

But zLX_2 and ^ "^ ^ are respectively the abscissas of the

middle points of P1P2 and Q1Q2.

Fig. 146.

the middle points of P1P2 and Q1Q2 coincide.

Q.E.P.
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EXERCISE XL

1. Prove that the length of the latus rectum of an ellipse or an hyper-

bola is .

a

2. Prove that the tangents at the extremities of the latus rectum of

an ellipse or hyperbola intersect on the directrix.

3. Prove that the line drawn from the focu^ to the intersection of a

tangent and the directrix of an ellipse or hyperbola is perpendicular to

the line from the focus to the point of tangency.

4. A circle is drawn on the major axis of an ellipse as a diameter.

A perpendicular to the major axis meets the ellipse and circle in P and

Q respectively. Prove that the tangents drawn at F and Q intersect on
the major axis. Hence show how to construct a tangent to an ellipse at

a given point.

5. Show that' the distance from the focus to an asymptote of an

hyperbola is equal to b.

6. Prove that the product of the perpendiculars from any point of an

hyperbola upon the asymptotes is constant, and equal to — •

7. Prove that the product of the perpendiculars from the foci upon a

tangent to the ellipse is equal to the square of the semi-minor axis.

8. State and prove a like property of the hyperbola.

JW.2 oi2

9. Prove that if tangents are drawn to the ellipse — + f- = 1 from an

exterior point (Xq, ?/o), the equation of the line through the points of tan-

gency is ^ +^ = 1

.

10. Prove the statement in example 9 to be true for the hyperbola,

with proper changes of sign.

11. Prove that if tangents are drawn to an ellipse or hyperbola from

any point on the directrix, the line joining the points of tangency passes

through the focus. (Use examples 9 and 10.)

12. Through a fixed point within a given circle, a circle is drawn tan-

gent to the given circle
;
prove that the locus of its center is an ellipse.

Draw the figure.
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13. A line y = mx }- c cuts the ellipse b^x^ + a^y^ = a^b^ ;
prove that

if (xi, yi) is the middle point of the chord, then

a^mc
,.

b'^c

b'^-\-a^m-^ b^ + a^m^

14. From the preceding example, by eliminating c, prove that the

locus of the middle points of a system of parallel chords, with slope m, of

the ellipse is the straight line

&2
y = X.

This line is called a diameter of the ellipse.

Prove that any line through the center of an ellipse is a diameter.

15. Show that if two lines through the center of the ellipse

6^x2 + a2y2 = ^252

have slopes m and m' such that mm' = , then each line bisects all

chords parallel to the other.

Draw two such lines.

Two such lines are called conjugate diameters.

/y2 o<2

16. Prove that in the hyperbola ^ = 1 the equation of the locus

of the middle points of a system of parallel chords of slope m is

y=—zx.

17. Through the point (xq, yo) on the ellipse b^x^ + a^y^ = a262 a

diameter is drawn
;
prove that the coordinates of the extremities of its

conjugate diameter are a: = ± ^^, y = T—

.

b a

18. If a' and 6' are the lengths of two conjugate semi-diameters of

the ellipse, prove that a'^ -\- b''^ = a^ + b^. (Use example 17.)

19. Prove that the tangent at any point of the ellipse is parallel to the

diameter which is conjugate to the diameter through the given point

;

and hence that the tangents at the extremities of two conjugate diameters

form a parallelogram.

20. Prove that the area of the parallelogram formed by the tangents

at the extremities of two conjugate diameters of an ellipse is constant,

and is equal to 4 ab.

Suggestion. The area in question is 8 times the area of the triangle

whose vertices are (0, 0), (xo, yo), and (^ - ^\ . (See example 17.)



CHAPTER XV

THE GENERAL EQUATION OF SECOND DEGREE IN TWO
VARIABLES

187. In the preceding chapters certain equations of second

degree in two variables have been studied. It will now be

shown that every equation of second degree in two variables

with real coefficients is the equation either of one of the conies,

a circle, a pair of straight lines, one straight line, a point, or

else the equation has no locus.

Moreover, the conditions which the coefficients must satisfy

in the different cases will be established.

188. The general equation of second degree in x and y is

aa?2 + hocy -\^ cij^ + dijc-\- ey + f= 0. (1)

Let the origin be moved by a translation of axes to the point

(h, k) by means of the formulas

x = x' -{-hj

y =y' -{-k.

Equation (1) then becomes

ax'^ + bx'y' + cy" + d'x' + e'y' +/' = 0, (2)

where d' = 2 aJi + bk + d, (3)

e' = 6/i + 2 cA; -f e, (4)

/ = ah^ + bhk -f ck^ + dh + ek -\-f. (5)

Equation (2) will be simplified if h and k can be so chosen

that d' = and e' = 0. Putting d' = and e' = and solving

for h and k,

J, _2cd—7}e 7. _ 2 ae - bd /n\

214
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These values of li and k are definite finite values unless

6^ — 4 ac = 0, in which cases there are no values of h and h

that make d' = and e' = 0.

Hence there are two cases to consider, I, 6^ — 4 ac ^ 0, and

II, h^-4.ac = 0.

Case I. h^-^ac^(i,

189. Removal of the terms of first degree. Consider first

the case where b^ — ^ac^O. Then if Ti and k have the values

shown in eq. (6), d' and e' are both zero, and eq. (2) becomes

a«'2 + 6xy + c?/'2 +/ = 0. (7)

The value of /' can be obtained by substituting the values of

h and k from (6) in (5), but more easily as follows : Multiply

eq. (3) by h, eq. (4) by k, and add. The result is

dli + e'A: = 2 ah'' + 2 hhk -\-2ck' + dh + ek.

To both members of this equation add dh -\- ek -\- 2/. Then

d'h+ e'k+ dh + eA: + 2f=:2{ah^ -f bhk + cF + d/i + ek-\-f)=2f

or 2f' = dh-\-ek-\-2f, since d' = e' = 0.

Substituting the values of h and k from eq. (6),

f _ — (4 acf-]- bde — ae^ — cd^ —fb^ /on

The quantity in the parenthesis is of importance in what fol-

lows. For convenience let it be denoted by a single letter, H;
H= 4 acf + bde - ae^ - cd^ - fh\

Also let I> = h^-^.ac.

190. Removal of the term in ocy. Equation (7) may be re-

duced to one lacking the a^y-term by a proper rotation of the

axes.

Let a;' = oj" cos 6 — ly" sin ^,

2/' = a?" sin -f y" cos 0.

Substituting these values in eq. (7), it becomes

a!x'''' + b^x'Y + cy" + /' = 0, (9)
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where

a' = a cos^ 6 -\-b cos ^ sin ^ + c sin^ 6^ (10)

6' = - 2 a cos ^ sin ^ -f 6 (cos^ - sin^ ^) + 2 c cos ^ sin 0, (11)

c' = a sin2 ^ _ 5 sin ^ cos ^ + c cos^ d. (12)

Now let be so chosen that b' = 0, i.e. let

b (cos^ $ — sin^ ^) = 2 (a — c) cos 6 sin ^,

or & cos 2 ^ = (a — c) sin 2 ^,

or tan 2 - —^. (13)
tt — c

Since the tangent of an angle may have any real value, it is

always possible to choose so that b' = 0.

With this value of 6j eq. (9) becomes

a'i€"' + c'y"'^+f' = 0. (14)

191. Locus of the equation. The nature of the locus of eq.

(14) depends upon the signs of a', c', and/', and these signs

depend upon the original coefficients of eq. (1).

To determine the signs of a' and c' one may proceed as fol-

lows: Using the relations

2 sin ^ cos ^ = sin 2 Oy

2 cos^ ^ = 1 4- cos 2 ^,

2 sin2 ^ = 1 - cos 2 ^,

eqs. (10) and (12) may be written

2a' = a + c + ?> sin 2^ + (a - c) cos 2^. (15)

2c' = a + c - 5 sin 2^ - (a - c) cos 2^. (16)

Adding, a' + c' = a -[- c. (17)

Subtracting, a' — c' = 6 sin 2 ^ -f- (a — c) cos 2 0.

From equation preceding (13),

6 cos 2 ^ - (a - c) sin 2 ^ = 0.
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Square and add

& sin 2 (9 + (a — c) cos 2 ^ = a' — c',

and 6 cos 2 ^ — (a — c) sin 2 ^ = 0,

and there results

62 + (a _ cf = (a' - c^.

Erom (17) (a + cf = (a' + cj.

Subtracting, 4 a'd = 4.ac- b\ (18)

Since 4.ac — b^ =^0, neither a' nor c' can be zero. Eq. (14)

may therefore be written, since from eq. (8),/' = ,

no f^2^ = 1, HH^O, (19)
// ' H
a'D c'D

or a'x"' + c'y"' = 0, itH=0, (20)

Two cases must here be considered.

(1) Z)<0, ^.e. 4ac-&2>0.

Then neither a nor c can be zero, and a and c must be of like

signs. It follows also from eq. (18) that a' and c' must be of

like signs, and hence of the same sign as a and c, by (17).
TT

Therefore, if — < the locus of (19) is an ellipse if a' =^ c',

and a circle if a' = c'.

TT
If — > 0, eq. (19) has no locus.

Equation (20) is satisfied only by the point x" = 0, y" = 0.

(2) 2»0, i.e. 4ac-62<o.

It follows from (18) that a' and c' are of opposite signs.

Equation (19) is therefore the equation of an hyperbola

whether H is positive or negative.

Equation (20) can be factored, and its locus is therefore the

pair of intersecting straight lines

^s/¥x" + V^^y" = 0, -VaJx" - ^^7y" = 0.
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192. Condition that eq. (1) represents a circle. It was shown

in the preceding article that the locus of eq. (1) is a circle when
TT

D <0,— < 0, and a' = c'. The third of these conditions can
a

be expressed in terms of the original coefficients of eq. (1) as

follows : In (17) and (18) put a' = c'. Then

2 a' = a + c,

and 4a'^ = 4ac — 6^.

Substituting in the second of these equations the value of a'

from the first, there results

(a - cf + 6^ = 0.

This can be satisfied by real values of a, b, and c when and

only when a = c and b = 0.

Hence the conditions that eq. (1) represents a circle are

I)<0, — < 0, 6 = 0, and a = c.

a

Case II. b^-4:ac = 0.

193. Pass now to the case where 6^ — 4 ac = 0. In this case

not both a and c can be zero, for then b would be zero and eq. (1)

would be only of the first degree. Moreover, a and c must be

of the same sign if neither is zero. Assume at first that sign

to be positive. Then eq. (1) may be written

asc^ ± 2^acxy -\- cy^ + dx -\- ey -^f= 0,

or (Vaa: ± -VcyY -{- dx -\- ey +f= 0, (21)

the ± sign being chosen according as b is positive or negative.

In this formula Va and Vc are real and positive.

Choose now an angle such that

Va =kcos 0, ± ^c = 7c sin $, (22)

Squaring and adding,

k = V^+^, A; > 0. (23)
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Then Vaic ± -yjcy =k(xcos 6 + y sin 0).

Transform now to axes which make the angle with the axes

X and 2/j for which the formulas of transformation are

X = x' cos 6 — y' sin 9,

y = x' sin 6-{-y' cos 0.

Then x cos O + y sin 6 = x', and eq. (21) becomes

kV+ d'x' + e'y' +/= 0, (24)

where d' = d cos + e sin ^, (25)

e' = — dsmO + e cos ^. (26)

If e' =^ eq. (24) may be written

This is of the form

yf^-^x"-^x'-l. (27)^
e' e' e' ^ ^

y = aa^ -j- 5a; -|- c

which in Art. 81 was seen to be the equation of a parabola.

If e' = eq. (24) becomes

kV + d'x' +/= 0. (28)

This is a quadratic in x' alone. It is satisfied by

^,_ -d' ±^d"-Ak^f
X — •

2 k'

Hence eq. (28) is the equation of two parallel lines, one line, ot

has no locus according as

d'^-4:k'f=0.
<

194. Evaluation of e' and of d'^ — 4 F/. The quantities e'

and d'^ — 4:kyof the preceding article may be expressed in

terms of the coefficients of eq. (1) as follows : From (26) and (22)

.'=-c^(±^^)+ff» = l(«VST<iVc). (29)
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Now since Z> = ;
6^ = 4 ac, and H becomes

H= bde — ae^ — c(P

= ± 2Vac • de — ae^ — cd^

= _(eVaT(^Vc)2,

or, from (29), il= -k^e'^. (30)

.'. e' vanishes or does not vanish according asH does or does

not vanish.

Again, from (25) and (22)

d' =-(dVa ± eVc),

and hence d'^ - 4 A^y= \{dVa± eVcf - 4 hj

= i iad"" ± 2 deVac + e^c - 4/(a+ c)^].

But if e' = 0, then eVa = ± ^a/c, from eq. (29).

/. d'2_ 4 ;t2y._
1 L^2 4_ 2 ^2^ + !^' _ 4/(a + c)2l

^ (g + cf ^ d'-iaf
k^ a

a-\-c
(d'-4:af).

Hence the sign of d'^ — 4 k^f is the same as the sign of

d^ — 4: af. Therefore if /) = and a is positive, the locus of

(1) is a parabola if H=^0, and is two parallel lines, one line,

or there is no locus according as

d^-4:af= 0,iiH=0.
<

If a is negative, eq. (1) may be divided by — 1 and then the

above conditions hold if each coefficient in H and d^ — A af is

changed in sign. This, however, only changes the sign of H
and does not affect at all d^ — 4 af. The above conditions hold,

therefore, whether a is positive or negative.



THE GENERAL EQUATION OF SECOND DEGREE 221

If a = 0, then 6 = 0, and c=^0. Eq. (1) then reduces to

c/ + da; + e2/+/=0, (31)

or dx= — cif — ey —f.

This is a parabola if d ^fc 0.

When a = 6 = 0, H becomes — ccZ^, and since c=^0, H van-

ishes or does not vanish according as d does or does not vanish.

If H=0 eq. (31) becomes

c/+ e2/4-/=0,

which is satisfied by

„ _ — e ± Ve^ — 4 c/
'

^~
2~c

"'

the locus of which is two parallel lines, one line, or there is no

locus according as

e2_4c/=0.
<

195. Summary. The nature of the locus of the general

equation of the second degree

ax^ 4- bocy + cy^ -^dx-^ey +/=
is shown in the following table, in which

H= 4 acf+ bde - ae^ - cd^ -fh\

(aH< ellipse, reducing to a circle if 6 = ana a = c,

aH > no locus,

^ = a point.

jj^^\ il 9^0 hyperbola,

I H =0 two intersecting straight lines,

H=^ parabola,
' a :^ two parallel lines, one line, or no locus

D =

H=0
according as d^— 4 a/= 0,

a = two parallel lines, one line, or no locus

according as e^ — 4:cf = 0.
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EXERCISE XLI

Apply the above test to determine the nature of the loci of the follow-

ing equations.

1. x^-2xy-{-Sy^ + 2x-y + 3 = 0.

2. Sx^-4:xy + y^-x + 2y-l = 0.

3. Sx^ + 6xy-2y^-'Sx-{-y = 0.

4. 9x^-6xy + y^-Sx-\-y-2 = 0.

5. x2-4x?/ + 4 2/2 + 2a:-4?/ + l = 0.

6. x2-xy + y2 + 2a; + y + 2 = 0.

7. 3x^-Sxy+3y^ + 6x + Zy+'7 = 0.

8. ^x^-4:xy + y^ + ix-2y + 2 = 0.

9. Ax^ - 12 xy + 9 y^ + x - y + 1 =0.

10. 3 x^ - xy - y^ -\- X -2 y -{- 1 = 0.

11. Show that the locus of 2x^ — 2xy + y^-Sx + y+f=0 is an

ellipse, a point, or there is no locus, according as / is less than, equal to,

or greater than f

.

12. Show that the locus of ax^ + bxy -\-cy^ = is two intersecting

lines, one line, or a point, according as 6^ _ 4 ac is greater than, equal to,

or less than zero.

13. Show that the locus of icy + dx + ej/ + /= is an hyperbola except

when /= de. What is the locus then ?

14. In the equation {Ix -\-my + ny + px + qy-\-r = Q show that 2) = 0,

and that H= — {mp — IqY, and hence that the locus of the equation is a

parabola except when - = — . What is the locus then ?
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EMPIRICAL EQUATIONS

196. Statement of the problem. It is sometimes desirable to

find an equation of a curve drawn through points determined

by pairs of corresponding values of two variable quantities.

Frequently these values are found by experiment, and the

general law which they satisfy may be known or suspected.

The following illustrations will show how, in some of the

simpler cases, the law may be tested and the constants of the

equation determined.

The more difficult problems of this nature can be treated by

the use of Fourier's series, a method of wide application, but

too diffi,cult to discuss here.

197. Points lying on a straight line. The simplest case that

occurs is that where the points whose coordinates are the two

measured quantities lie on, or approximately on, a straight

line. In this case one has only to select the straight line

which seems to best fit the points, and write its equation.

The equation of this line is then the equation connecting the

variables if the same scale has been used throughout. In

plotting the points, however, any convenient scales may be

used, and the equation of the line written with any other scale

that is desired. The two coordinates in the equation of the

line must then be expressed in terms of the two variables be-

tween which an equation is sought. The substitution of these

values in the equation of the line gives the desired equation.

Example. The extension of a certain wire when loaded

223
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was observed to be as shown in the following table, where E is

the elongation in inches, and W is the load in pounds.

TT 1 2 3 4 5 7 10 12 15 18

E .12 .23 .34 .46 .58 .80 1.16 1.39 1.74 2.09

^ ^ ..-.".- .1 .11 .11 ..... ."Z'- - ...
" <<\\

O . . . . . . . . .;»'
f L>rT
" ::::::::::: :: i?^: ::: ::: :: :::
^ '.".'.".'. '.2' " " " '

j^Pn

'it*
' ' " - - - -

-^f S :..::::.:..::::::::::::::
5 10 15

w. 2 spaces to 1 lb.

Fig. 147.

20

On plotting the points whose coordinates are the correspond-

ing values of E and W, they are seen to lie approximately on a

straight line. The line which seems to best fit the points

passes through the origin and the point (38, 22). The equa-

22
tion of this line is therefore i/ =— a?. But in the scale used,^38
x = 2Wyy = 10E, and hence the equation connecting E and

TFislO^ =— TT, or

E = .116 W.

This equation therefore holds approximately' for the particular

wire used and within the limits of the observed values.

Exercise. From the following corresponding values of u

and V determine the equation connecting them.

u 1 1.5 2.3 3.1 3.8 4.2 5.0 5.8 6.5 7.2 8.0

V 5.5 6.4 8.2 9.7 11.0 11.9 13.5 15.0 16.5 18.0 19.5
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198. The curve y = Cac\ A number of curves obtained

from physical measurement follow the law y = Cic**.

If the logarithm of both sides of the equation be taken, there

results

log y = log C-\-n log x.

If now u = log Xj v = log y, b = log C, then

v = b-\- nu.

This is an equation of first degree in u and v. Hence if u and

V be taken as coordinates and the points representing corre-

sponding values plotted, these points will lie on a straight line.

Conversely, if the points (log x, log y) do lie on a straight

line, the equation of the line is of the form

v=:nu-\-b, where u = log x, v = log y ;

i.e. log 2/ = w log X + log (7, if 6 = log C,

or log y = log (Ca?**).

y= Cx^.

2.S00

2L000

1.600

1.400

L200

^^

^^^

1.00 L20

Fia. 148.
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The following illustration will show how the constants C
and n may be determined when the points lie on a curve of

this kind.

Illustration. The following represent pressure p and vol-,

ume V oi Si gas

:

V 3 4 5.2 6.0 7.3 8.5 10

p 107.3 71.5 49.5 40.5 30.8 24.9 19.8

Let X = log V, y = logp. Then the values of x and y are

X ATT .602 .716 .778 .863 .929 1.000

y 2.031 1.854 1.695 1.607 1.489 1.396 1.297

The points determined by x and y are seen to lie on a straight

line, approximately, Fig. 148. The slope of this line is found

by measurement to be — |f, or — 1.40. Then, since the line

passes through (1, 1.297), its equation is

y - 1.297 = - 1.40 (x-1),

or 2/ = -1.40 a; + 2.697.

But 2.697 = log 497.7.

Therefore, since y = logp, x= log v,

logp + 1.40 log V = log 497.7,

or i)?;i''« = 497.7,

which is therefore approximately the formula connecting p
and V.

The correctness of this formula should be tested by substi-

tuting some or all of the values otp and v in the given table.

E.g. if V = 5.2 and p = 49.5,

then log 'y=.7160,

which multiplied by 1.40 gives

log 5.2i'«>= 1.0024

log 49.5 = 1.6946

logpvi«=: 2.6970

pvi*^ = 497.7,

which checks the result already found.
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Where the points do not lie so accurately on the line as in

this example, it would be better after obtaining the slope of

the line to write pv" = C, and having n, substitute the given

values of p and v to find C. Make this computation for each

pair of values given, and take the average of the values found

for C.

Exercise. Find the equation connecting Q and Ji from the

following observed values.

h .583 .667 .750 .834 .876 .958

Q 7.00 7.60 7.94 8.42 8.68 9.04

199. The curve y = ab^, or y = ae^% where e = 2.71828 ....

Certain physical quantities are connected by an equation of

the form y = ah' where a and h are constant. If it is thought

that two quantities for which several corresponding values are

known obey this law, they may be tested, and, if the law is

fulfilled, the values of the constants determined as follows:

Plot the points whose abscissas are x and whose ordinates are

log 2/. If they lie on a straight line, the supposed equation is

correct, otherwise not. This follows from the fact that if

y=ah% (1)

then log 2/ = log a + a; log 6,
'

(2)

and the converse.

Suppose the points («, logiy) lie on a straight line. The

slope of this line is then the value of log h (see eq. (2)), from

which h may be found. Also the intercept of the line on the

axis of ordinates is log a. From this intercept a may then be

found. However, it will be more accurate to obtain a from

the average of the values of ^ after h is determined from the

line.

In some cases a is 1, and this will be indicated by the

straight line passing through the origin.

If it is desired to express y = ah'' in the form y = ae^, one
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has only to let h = e^, for then 6*=(e*)'= = e*''. To determine h^

log6_ log&

log e~.4343*
log h = k log e, or k

Example. The values of x and y of the following table are

thought to be connected by an equation of the form y = ah'.

X 2 3.2 4.7 8.5

y 7.086 12.64 26.07 163.0

Form then the following table

:

X 2 3.2 4.7 8.5

logy .8504 1.1017 1.4161 2.2122

Plot the points (a?, log y). They are seen to lie on a straight

line.

10.3 12.6

388.4 1178

10.3 12.6

2.5893 3.0711

A
/.

^
y

Q^

^

-^ ^-
/

^ ^"^
-

y

1 J^ -

J^T
/

5 , 10 15

Fig. 149.

The slope of this line, computed by using the extreme values

of X and log y in the table, is

Hence

3.0711 - .8504 ^ 2.2207

12.6-2 10.6

log h = .2095,

b = 1.62.

.2095.
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To determine a, a = ^ •

log a = logy — x log b

= log 2/
- .2095 X.

Using X and logy from the table of values, the following

values of log a are obtained.

.4314, .4313, .4314, .4314, .4314, .4314.

The average of these is

log a = .4314.

.-. a = 2.70.

.-.2/ =2.70(1.62').

200. Some special substitutions. In some other cases, if the

law connecting the variables is suspected, the correctness of

the supposition may be easily tested by a substitution which

will reduce the problem to that of the straight line.

For example, if it is thought that the relation is y = a-\-—,
of

plot the points ( -^j 2/
) • If these points lie on a straight line,

the assumed equation is correct, and the quantities a and b can

be found from the graph.

In like manner the equation xy = ax-\- by, an hyperbola,

may be written

y = a-\-by., (1)
X

or

or

x = b + a'^, (2)
y

1 = - + -, (3)
X y

and these may be reduced to the straight line form by using

u for ^ in (1), u for - in (2), and u and v for = and - in (3).
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ExERcise. Prove that the following points lie on a curve

of the form xy = ax + by, and determine a and b.

X 1.59 1.96 2.27 3.12 5.00 7.15 16.7

y .885 1.11 1.28 1.85 3.24 5.10 22.0

201. The curve y = a-^bac + cx^ + da^ + • + kx\ When
no other equation can be found to fit the given points the

equation

y =: a -\- bx -^ cx^ -\- dx^ +•••-!- Jcx""

may be assumed, and by substituting the coordinates of the

given points enough equations can be obtained for the deter-

mination of the constants a, b, c, • • • 1c.

The number of terms to assume will depend upon the num-
ber and location of the given points. If the curve on which
the points lie diverges only slightly and in one direction from

a straight line, it will usually be sufficient to assume three

terms on the right. This, of course, makes the curve a pa-

rabola. But each case must be settled on its merits, and the

construction of the curve from the equation which Is found

will be the test of the accuracy with which it fits the given

points.

Example. To find the equation of a curve through the fol-

lowing points:

X 8 23 39 53 63

y 10 19 27 33 36

These points when plotted are seen to lie on a curve which

resembles a portion of a parabola with axis parallel to the

2/-axis. It is worth while then to try

y = a-{-bx-\- coi?.

Take the two extreme points and the middle point for the de-

termination of the coefficients. The equations obtained are

10 = a-|- 86+ 64c,

27 = a-}-39&-f-1521c,

36 = a + 63 6 + 3969 c.
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Solving these equations,

a = 4.63, 6 = .697, c= -.00315.

Hence the approximate equation is

y = 4.63 + .697 x - .00315 a^.

The substitution of the intermediate values of x not used in

the computation of a, 6, and c give,

for a; = 23, y = l^M,

forx = 53, 2/ = 32.72,

which are reasonably close to the values of 19 and 33.

If greater accuracy is desired, four or five terms may be

assumed on the right and then four or five of the given points

used to determine the constants.

Again, different seta of the given points might be used to

determine the constants and average values of the constants so

found used.

EXERCISE XLH

1. In an experiment to determine the deflection of a beam of varying

length the following measurements were made :

Length (in.) 12 16 20 24 28 32 36 40

Deflection (in.) .017 .043 .085 .145 .220 .342 .512 .713

Prove that the deflection d and the length L are connected by an

equation of the form

d = CL»,

and find the values of m and C.

2. Find an equation connecting x and y to fit the following values :

X .6 1.2 1.6 2.2 2.8 3.4 4.3 6.0

y .801 1.70 2.54 3.98 5.58 7.32 10.17 16.22

3. Prove that the following values of x and y satisfy an equation of

the form

1 -\- bx

and find the values of a and 6.

x .5 1.2 2.0 3.4 4.1 5.3

y 1.08 2.41 3.71 5.56 6.33 7.46
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4. The following numbers are taken from a table :

X 1.1 1.4 2.0 2.6 3.4 4.1 6.3 7.8 9.8

y .095 .336 .693 .956 1.224 1.386 1.841 2.054 2.282

Find the equation connecting x and y.

Suggestion. Plot the points (log x, y').

5. Prove that the following values of u and v satisfy an equation of

,the form v = a -\ , and find the values of a and 6:

M

V

6. Find an equation to fit the following values ot p and y;

(Trypv" = C.)

V 4.2 4.7 5 5.5 6.2 7 8 9

p 105 92 86 78 68 60 53 46

.5 1.1 1.7 2.3 5.1 6.4

13.6 4.00 2.37 1.84 1.33 1.28
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CHAPTER XVII

COORDINATES IN SPACE

202. Rectangular coordinates in space. As on a straight

line one quantity was required to determine the position of a

point, and in the plane two quantities, so in space three quanti-

ties are necessary. One way of choosing these quantities is

the following : Through any point 0, chosen as an origin, draw

three mutually perpendicular lines OX, Y, OZ. These lines

determine three mutually perpendicular planes XY, XZ, YZ.

From any point P in space let perpen-

diculars be drawn to the three planes.

Then the distances measured from the

planes to the point are called the rec-

tangular coordinates of the point P.

Let distances measured in the direc-

tion of OX, OY, and OZ, i.e. to the

right, forward, and upward, be counted

as positive, and distances in the oppo-

site direction, i.e. to the left, backward,

and downward, as negative. Then to

every set of three real numbers there corresponds a point in

space and conversely.

The distances SP, QP, and NP (Fig. 150) are called respec-

tively the Qc, 2/, and s of the point P, and the point is denoted

t>y (x, y, z), or by P(x, y, z).

The plane containing OX and 01^ is called the a?2/-plane, and

similarly for the others.

The three planes containing the axes are known as coordi-

nate planes.

233

z

Q

/ /
p

M X

/ /
N

Fig. 150.
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The eight portions of space separated by the coordinate

planes are called octants.

Two points are said to be symmetric with respect to a plane

when the line joining the points is perpendicular to the plane

and is bisected by it.

EXERCISE XLin

1. Locate the points (1, 3, 2), (-1, 3, 4), (1, - 2, 4), (1, 3, - 2),

(2, - 3, - 4), (- 1, - 2, - 3), (- 1, - 2, 3), (- 1, 3, - 2), (0, 1, 2),

(2,0,0), (0,0,0).

2. Show that the line OP in Fig. 150 is the diagonal of a rectangular

parallelopiped of which the numerical values of x, y, and z are the lengths

of the sides.

3. Show that OP = Vx^ + y'^ + z'^-

4. Find the distance from the origin to each of the points, (1, 3, — 2),

(3,-1,4), (2,-1, -3).

5. Find the point symmetric to each of the following points with

respect to each of the coordinate planes, (2, 3, 4), (—3, — 1, — 2),

(3, - 1, 2).

6. Find the point symmetric to each of the following points with

respect to the origin, (2, 3, 5), (- 2, 4, 3), (3, - 4, - 1).

7. Prove that (a, &, c) and (—a, — 6, — c) are symmetric with

respect to the origin.

8. What is the value of x for any point in the i/sj-plane ? What
therefore is the equation of the y^-plane ? What are the equations of the

other coordinate planes ?

9. Where do all points lie that have a; = and y = 0? What are

the equations of the coordinate axes ?

10. Find the locus of points which satisfy the following sets of

conditions

:

(a) x = y,z = 0. (/) x = 2,y = 3.

(b) x = y,z = 2. (g) x^ + y^ = 16, ^ = 0.

(d) x = y = z.
^^^ a^-^b^- '''-

'

(e) —x = y,y = z. (i) y^ = 4x,z = S.



COORDINATES IN SPACE 235

203. Distance between two points in rectangular coordi-

nates. Let the points be Pi(xi, y^, z^ and P2(^2j 2^2? ^2)-

Through P^ and P^ pass planes parallel respectively to the

three coordinate planes. These three planes form a rectan-

gular parallelopiped of which P1P2 is the diagonal, and the

edges are respectively the differences of the coordinates parallel

to the edges.

Thus, in Fig. 151, PiiV= x^ — x-^, NM= y^ — 2/1, MP^ = z^— z^.

But P^P\= PiAt' 4- nm" -{-MPI

', d= r,r, = V(p,, - ^,Y+ (2/1 - 2/2)' + («i - «2)'.

Fia. 151.

If the two points are the origin and the point (a;, y^ 2), this

formula becomes

204. Point dividing a line in a giveii ratio. If the point

(a;, y, z) divides the line from (a^j, 2/1, z^ to (a^g, 2/2? ^2) i^i the ratio

r : 1, then

^^^H-r^^ y^ih±nh ^^ ^i + yg2

1 H-r ' 1 -t-r*
' \-\-r

The proof is left to the student.
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EXERCISE XLIV

1. Find the distance between (3, 4, — 2) and (— 6, 1, — 6).

2. Prove that the center of gravity, i.e. the intersection of the medians

of tlie triangle whose vertices are (xi, yi, Zi), {X2, 2/2, ^2)* and (0:3, y^, z^),

x^ + xs yi + yo-h y3 £i_±_52_±£i\
3

'

3
'

3 j'

3. Show that the lines drawn from the vertices of a tetrahedron to the

intersection of the medians of the opposite faces meet in a common point

which is I the distance from each vertex to the opposite face.

4. Write the equation which expresses the condition that (x, y, z)

shall be equidistant from (0, 0, 0) and (3, 5, 1). What is the locus of

(x, y, z) ?

5. Write the condition that (x, y, z) shall remain at the distance

4 from (0, 0, 0) . What is the locus of (x, y, z) ?

6. Find the equation of the surface of a sphere with center at

(2, 1, — 3) and radius 5.

205. Polar coordinates. A point in space may be deter-

mined, by its distance from the origin and the angles which the

line from the origin to the point

makes with the rectangular coordi-

nate axes.

Thus, let OX, OY, OZ,he a set of

rectangular axes, and let P be any

point in space. Then OP and the

angles a, jS, y, between OP and the

axes of X, y, and z, respectively, de-

termine the position of P. If
Fig. 152. ^ ^ ,

,

. , 1 j - j
OP=:r, the point may be denoted

by (r, a, p, y). The four quantities r, a, fB, y are sometimes

called the polar coordinates of P.

It is convenient to restrict r, a, ^, y to positive values, and

to further restrict the angles to values not greater than 180°.

Any point in space may be represented by such values of

r, a, ^, y.
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The angles a, jS, y are called the direction angles of OP, and

the cosines of these angles the direction cosines of OP.

206. Relation between rectangular and polar coordinates of

a point. From Fig. 153, if the rectangular coordinates of P
are x, y, z, then the following rela-

tions are seen to hold:

0? = r cos a,

2/ = r cos p,

z = rco»y.

Since r = Vic^ + 2/^ + ^^ the above

equations may be solved for the

direction cosines and the following

values obtained:

a = cc

V^ + z^

v^ + 2/'^

z

+ z^

Fig. 153.

cosp =

COS 7 =

207. Relation between the direction cosines of a line.

Definition. The direction cosines of a given directed line

are the direction cosines of a line drawn from the origin in the

same direction as the given line.

If the three equations of the preceding article,

a? = r cos a,

y =rG0s/3f

z — r cos y,

be squared and added, there is obtained

x^ -\-
y"^

-\- z^ = T^ (cos^ a + cos^ ^ + cos^ y).

But ar'+ y^ + ^^^r^.

.-. cos2 a + cos2 p + cos2 7 = 1.
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Hence, the sum of the squares of the direction cosines of any

straight line is 1.

208. Direction cosines of a line joining^ two points. Let

^i(^ij 2/ij ^i) aiid P2(^2> 2/2? ^2) be any two points in space and

consider the line as directed from P to Pg-

Fig. 154.

Let the direction cosines of PjPg ^6 cos a, cos p, cos y.

Then cos a _ a?2 —oci^.-P=^^--v ^2 — gl

where d =V (a^ - aja)^ + (2/1 - 2/2)' + (%- 2!2)^-

These relations are evident from Fig. 154.

209. Spherical coordinates. Again, take the three mutually-

perpendicular axes OX, OY, OZ.
Let P be any point in space. Then the position of P is

determined by the distance r, or

OP, and the angles ^ and <^, where

6 is the angle between OP and the

positive OZ, and <^ is the angle be-

tween the positive OX and the

orthogonal projection of OP upon

the a72/-plane.

The point is denoted by (r, 0, <f>).

The quantities r, 6, and <^ are

called the spherical coordinates of

P.

Fig. 165. The student can easily show
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that if P has rectangular coordinates {x, y, z), then the relations

between the rectangular and spherical coordinates of the point

are

ac = r sin 6 cos <|),

y = rsmQ sin <j),

z = rcosQ.

Spherical coordinates are useful in some surveying and as-

tronomical problems.

EXERCISE XLV

1. Find the direction cosines of the line from the origin to (2, —1,3).

2. Show that if any three real quantities, a, 6, c, be chosen, a line

With direction cosines proportional to these quantities can be found, and

that the direction cosines are -, -, - , where d = Va^ + &2 _^ ^2^

d d d

3. Find the direction cosines of the line from (3, 1, — 2) to (— 1, 4, 3).

Draw the figure.

4. Given cos a = ^, cos jS = ^, find cos 7.

5. Find the rectangular coordinates of a point whose polar coordinates

are (2, 30°, 45°, 7). How many solutions ?

6. Find the spherical coordinates of a point whose rectangular coordi-

nates are (3, 2, 4).

7. Find the spherical coordinates of a point in terms of the rectangular

coordinates of the point.

8. Show that reversing the direction of a line changes the sign of each

direction cosine.

9. Write the direction cosines of each coordinate axis.

210. Projection of a line upon another line.

Definition. From the extremities A and 5 of a line AB
drop perpendiculars upon a line MN, meeting it in C and D
respectively. Then CD is called the orthogonal projection of

AB upon MN. (Fig. 156.)

Only orthogonal projection will be used in what follows,
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and projection will be understood to mean orthogonal pro-

jection.

Definition. The angle between two non-intersecting lines

is defined to be the angle between two intersecting lines drawn

in the same directions respectively as the given lines.

D N N C

Fig. 156.

If a is the angle between AB and JOT", and I is the length of

ABy then

? cos a = projection ofAB on M'S'.

Proof. Through B pass a plane perpendicular to MN and

through A draw a line parallel to MN to cut this plane in E.

(Fig. 156.)

Then AE=CD.
But AE = I cos a.

.'. CD = I cos a.

(If a>90°, CD is negative, i.e. is opposite in direction to

211. Projectioii of a broken line. The projection on any

axis of a straight line joining two points is equal to the sum of

the projections on the same axis of the sides of any broken

line connecting the two points, if the parts of the broken line

are directed so that the beginning of each side after the first is

at the end of the preceding.

This is evident from the definition of projection.
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Thus in Fig. 157,

241

Fig. 157.

ab = ac -\- cd -^ de -\- ef+ fb,

or proj. AB = proj. AG -\- -proj. CD + proj. DE + proj. EF
+ proj. FB.

If I, li, I2, "• ?5 are the lengths of AB, AC, CD, ••• FB, respec-

tively, and a, a^, a^, ••• a^ are the angles between these lines

and MN, then

I cos a = Zi cos «! + ?2 cos a^-\- • •• + Z5 cos ag.

212. The angle between two lines in terms of their direction

cosines. Let two lines have direction angles «i, ySi, yi, and rtg?

Aj 72) respectively, and let be the angle between them. To
find the value of Q.

Through the origin draw two lines OPj and OP2 having the

same directions respectively as the two given lines.

Let the coordinates of Pi be {x^, y^, z-^ and let OP^ = i\.

On OP. project OP^ and the broken line OM-^MN-\-NP^
(Fig. 158). Since

proj. OPi=proj. Oitf+ proj. JOT+ proj, iVPj,

therefore,

7*1 cos d = X]^ cos a2 + 2/1 cos /Sa + «i cos y^
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Xi = riCosa., 2/1 = ^1 COS ySu 2;i
= riCosyi.

fi cos = riCCa Ui cos 02 + ^1 cos I3i cos p2 4- ^1 cos yi cos yaj

cos 6 = cos tti cos a2 + cos pi cos P2 + cos ^i cos 'yg*

_/^
yf

^
X

..H

xYi M

t w k
Fig. 158.

(Notice that if one, or more, of the coordinates x^, y^, z^ is

negative, e.g. y^, then — ?/i is the length of MN, but 180° — ySj

is the angle between MN and OP2 ; hence the middle term is

— 2/1 cos (180° ~ ^2)? which is the same as 2/1 cos ft-)

EXERCISE XLVI

1. Find the projection of the line from (2, 1, — 3) to (3, — 4, 5) upon
each of the coordinate axes.

2. The direction cosines of a line are proportional to 2, 3, and — 4.

Find their values.

3. Express in terms of the direction cosines of two lines the condition

that the two lines be parallel. The condition that they be perpendicular.

4. Find the angle between two lines whose direction cosines are

respectively proportional to 2, — 1, 3 and 1, 3, —2.



CHAPTER XVIII

LOCI AND THEIR EQUATIONS

213. Certain straight lines and planes. The student has

already considered some simple equations of straight lines and

planes. For example, a; = a is the equation of a plane parallel

to the 2/2-plane.

The two equations y — h, z = c, represent a straight line par-

allel to the ic-axis, the intersection of the two planes y = b and

z = c.

The two equations x = y, z = c, represent a straight line, the

intersection of the plane z = c and a plane bisecting the dihe-

dral angle between the iC2;-plane and the yz--p\sine.

214. Cylinders with elements parallel to a coordinate axis.

Consider a circular cylinder with the 2-axis for its axis and

with radius r. (Fig. 159.)

If any point P be taken on the sur-

face of this cylinder, the x and y of

the point are the same as the x and

y of the projection of the point on the

ic?/-plane. But these latter values

satisfy the equation of the circle

x^-\-y^ = 7^. Hence the coordinates

of P satisfy the same equation.

The equation of the surface of the

cylinder is therefore

of -\-y^z= T^,

In like manner it may be shown
that if a straight line, kept always parallel to the 2;-axis, is

moved along any curve in the aji^-plane, a cylindrical surface is

243

z
X

\^

?
X X

kw
Fig. 159.
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generated which has the same equation as the equation of the

curve in the xy-^\sine.

Thus the equation y^ = 4:X, interpreted as an equation of a

locus in space, is the equation of a cylindrical surface generated

by a straight line parallel to the 2;-axis, moving along the curve

y^z=4:xin the a^^z-plane.

Likewise an equation of the form y = f(z), read "1/ equals/

of 0," i.e. ?/ is a function of z, is the equation of a cylindrical

surface generated by moving a line parallel to the ic-axis along

the curve y=zf{z) in the 2/2-plane.

The student should describe the locus in space of the equa-

tion z=f(x).

EXERCISE XLVII

Describe and sketch the loci in space of the following equations

;

1. ic2 + 02-25. 5. x^ = 2pz.

2. (x - ay +(2/ - &)2 = r2. Q ^^t=l,
3. ic cos a + ?/ sin a =p, «" ^'^

7 w2 _ ^2 _ 0,2

^ = 1.

8. ?/ = mz -f- c.

215. Surfaces of revolution. If the equation of a curve in

one of the coordinate planes is

known, the equation of the sur-

face formed by revolving this

curve about one of the coordinate

axes can be obtained from it.

As an illustration, consider

the surface formed by revolving

about the aj-axis the parabola

2/2 = 4 a;.

Let P{x, ?/, z) be any point on

this surface. Then (Fig. 160)

x=OM,y= MN,z = NP.

Since MP= MR, it follows from the equation of the parabola
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that

But Mp = MN^'-^Np^f^-^.

This is therefore the equation which is true for any point on

the surface, and clearly for no other points, and hence is the

equation of the surface.

The process of obtaining the equation of the surface from

that of the curve in the xy-^\di,nQ consists in replacing y by

In general, if any curve in the a;i/-plane, F(x, y) = 0, be re-

volved about the aj-axis, the equation of the surface formed is

F(x,Vy'-bz')=0.

EXERCISE XLVin

1. Find the equation of the surface generated by revolving the curve

y^ = 4:X about the y-axis. Sketch the figure in one octant.

2. Find the equation of the surface generated by revolving the circle

x^ -j-y^ = r^ about the ic-axis ; about the y-&xis.

3. Find the equation of the surface of the spheroid generated by re-

volving the ellipse —\-^ = 1 about the y-axis. The spheroid is said to be

oblate if a > 6, prolate if a < 6.

4. Find the equation of the surface of a cone generated by revolving

the line y = mx about the x-axis.

216. Nature of locus determined by plane sections. It is

frequently useful, in trying to determine the nature of a locus,

to find the intersection of the locus by a plane. Generally the

planes parallel to the coordinate axes, or else containing a

coordinate axis, are the simplest ones to use.

Example 1. As an illustration, consider the locus of the

equation

^+-!^+^=i- (1)
a^ 1/ & ^ '
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If in this equation z be set equal to zero, the resulting equa-

tion represents the part of the locus which lies in the plane

2; = 0, i.e. in the ic^Z-pl^-ne.

is the equation of the intersection of the locus of eq. (1) and

the a72/-plane.

This intersection is called the trace of eq. (1) in the cciz-plane.

It is an ellipse with semi-axes a and h lying on the axes of x

and 2/, and with center at the origin.

Likewise the equations of the locus in the xz- and the 2/2;-planes

are shown to be respectively the ellipses

To find the trace of the locus of eq. (1) in a plane parallel to

the 2/2;-plane let x be held constant in eq. (1) and y and z be

allowed to vary. Letting x = li. in eq. (1), the resulting equa-

tion is

1.2

in which the constant term — is transposed to the right side of

the equation.

This equation may be written

.s>. 2

This is the equation of an ellipse, if li^ < a^, with axes in the

planes of xy and xz, the values of the semi-axes being

^,^6Va'-fc^^^^^,^cV«'-fc',
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Hence any section of the locus of eq. (1) by a plane paralle tctiie

yz-plsine, and distant less than a from the origin is an ellipse with

axes in the planes of xy

and xz. As k changes

gradually from to a,

the semi-axes of the

ellipse change gradually

from b and c to 0. The
locus of eq. (1) may then

be thought of as gener-

ated by an ellipse of

gradually varying di-

mensions moving with

its axes in the planes

of xy and xz. The locus is therefore a surface.

Since all sections parallel to three mutually perpendicular

planes are ellipses, the figure is called an ellipsoid (Fig. 161.)

Example 2. To find the locus of

x^-{-2y^ = Az. (2)

If z is held constant, z = k, the equation may be written

Fig. 161.

4:k 2k
= 1,

which is the equation of an ellipse if A; > 0, but has no locus if

fc < 0. When A; = 0, the equation is satisfied only by the point

(0, 0). Therefore a section of the locus of eq. (2) by a plane

parallel to the a;?/-plane is an ellipse if the plane is above the

fljy-plane, but there are no points below the a^^z-plane which

satisfy the equation.

If x= 0, eq. (2) reduces to y^ = 2 z, which is the equation of

a parabola in the 2/2-plane.

If y = 0, eq. (2) reduces to a;^ = 4 z, which is the equation of

a parabola in the iC2-plane.

The locus of eq. (2) may therefore be -thought of as a surface
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generated by an ellipse, moving in a plane parallel to the xy-

plane, its center on the 2;-axis, and so changing in size that the

ends of its axes are always

Z . on the curves y^= 2z and
x' = 4:z. (Fig. 162.)

The figure is called an

elliptic paraboloid.

217. Locus of an equation

in three variables. In gen-

eral an equation in three

variables represents a sur-

face. For if any one of the

variables be held constant,

an equation between the

other two variables is ob-

tained, which in general represents a curve, as was found in the

study of loci in two variables. The locus of the equation in

three variables is then such that in general its intersections by
planes parallel to the coordinate planes are curves. Therefore

the locus of the equation is in general a surface.

Fig. 162.

EXERCISE XLIX

Discuss and sketch the loci of the following equations

:

1. a;2 + y2 4. ^^2 = ^2.

% y'^' = x + z.

3. x + y -\- z = l.

4. a;2 ^ y'2 + 4;^2 ^ 1.

5. ic2 + ?/2 _ ;52 _ 0.

6. a;2 + 4^2 = ^2.

7. a; + y = sin «,



CHAPTER XIX

THE PLANE AND THE STRAIGHT LINE

L THE PLANE

218. The normal equation of the plane. Let p be the length

of the perpendicular from the origin upon a plane, and let the

direction angles of this perpendicular be a, y8, y.

io,o,c)

H N^^

vX^P ^
'^'y^^^"^"""'^

M \. X

-^ N\/^^^^(a,o,o)

,b,o)

Fig. 163.

Let P (x, y, z) be any point in the plane. Project the

line OP and also the broken line OM -\- MN -\- NP upon the

perpendicular. (Fig. 163.) These projections are equal.

(Art. 211.)

.*. a; cos a + ?/ cos /8 + 2 cos y = proj. of OP on OH, (Art. 211)

or a? cos a + 2/ cos p + 2! cos y =P-

Since this is true for any point in the plane, and for no

other points, it is the equation of the plane.

249
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It is known as the normal equation of the plane.

219. The intercept equation of the plane. If the above

plane meets the axes in {a, 0, 0), (0, b, 0), and (0, 0, c), then

cos a = -^ , cos i8 = ^, cos y = ^

.

a be
Substitute these values of cos a, cos p, cos y in the equation

of the plane and there results

a b c

220. The general equation of the first degree in x, y, and z.

The general equation of first degree in x, y, and z is

Ax + By + Cz + I) = 0. (1)

Consider the point Q whose coordinates are the coefficients

of X, y, and z ; i.e. the point {A, B, C). (Fig. 164.) Let OQ
have direction angles a, fi, y. Then

Fig. 164.

COS« = A,cOS^=^,COBy = ;^,

where OQ = -VA' + B'+0'.

Dividing eq. (1) through by ± V^' + -B^ + C% it may be
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written in the form

± -^A^ + B' + C' ± ^A^ + B'+G' ± V^'+ ^' + C^

-D
± VA" + B' + C (2)

Let the sign of the radical be chosen so that
± V^' + ^'+O^

is positive, and let p = = . Eq. C2) may then

be written

X cos a' -\- y cos P' -\- z cos y' = i?,

in which a', ^', y', are the same as a, fi, y, or are the direction

angles of the line from the origin to (— ^, — B, — C), accord-

ing as the positive or negative sign of the radical is chosen.

In either case the equation is the equation of a plane by

Art. 218. Therefore the equation

Ax-\- By + Cz + D = 0,

in which A, B, C, D, are real quantities, is the equation of a

plane. If p is the length of the perpendicular from the origin

to the plane, and a, ft, y, are the direction angles of this per-

pendicular, then

cos a = cos p =
± \/A-' + B' + C-' ± VA^ + B^ + €'^

COS 7 =
^ P =

. the same sign

of the radical being used throughout, and so chosen that p is

positive.

221. Distance from a point to a plane.

(The case where the point and the origin are on opposite

sides of the plane is the only one discussed here.)
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Let d be the distance from (x^, y^, Zi) to the plane whose

equation is

X cos a + y cos (3-\-z cos y=p.

Through (x^ yi, z^ draw a plane parallel to the given plane.

Since the perpendicular from the

origin to this plane is in the same
•(a;i,?/i,2i) direction as that from the origin

to the given plane, the equation of

the second plane is

X cos a + 2/ cos P-\-z cos y = p\

Since (iCj, 2/1, ^i) is on this plane,

«i cos a + 2/1 cos /8 + 2^1 cos y =p'.

But d=p' —p.

.•. c? = a?i cos a + 2/1 cos p + «! cos y—p.

The student should show that if the point and the origin

are on the same side of the plane, the above formula gives the

negative of the distance from the point to the plane.

From the above it follows that the distance from (xu 2/1, ^i)

to the plane Ax -\- By -\- Cz -\- D =

Fig. 165.

is d =
Aoci + By I -\-Czi + jy

222. The angle between two planes. Since the angle be-

tween two planes is equal to the angle between the normals to

the planes, it follows that the angle between the two planes

X cos «! + 2/ cos fti-hz cos yi =Pi,

and X cos % H- 2/ cos Pi-{-z cos y, =P2
is given by

cos 6= cos «! cos ttg 4- cos /81 cos ^2 + cos yi cos y2,

and that the angle between the two planes

A,x-\-B,y+C,z + D, = Oy

and ^2» + ^22/+C'22 + i>2=



THE' PLANE AND THE STRAIGHT LINE 253

is given by

cos 6 = ±
A1A2 + B1B2 + C1C2

y/A{' + B{' + Ci^ V^22 + B2' + C22

EXERCISE L

Find the lengths and direction cosines of the perpendiculars from the

origin upon each of the following planes. Reduce each equation to the

normal form.

1. 2x-3i/ + 40 = 6. 2. 3x-6y-2z = 0.

3. Sx-\-4:y=:2. 4. x + y-{-z = l.

Find the distance from the following points to the planes

:

5. From (3, 1, 2) to 2x-3?/ + 7;s = 2.

6. From (-1, 3, 2) tox + 2y-0 = 5.

7. From (0, 0, 1) to 2 x - y = 4.

8. Find the angle between the two planes of example 1 and example 2.

9. Find the angle between the two planes of example 3 and example 4.

II. THE STRAIGHT LINE

223. The equations of a straight line through two points.

Let the two given points be Pi(xi, y^, z^) and 1*2(^2} 2/2> ^2)- I^6t

P(x, y, z) be any point on the

line through Pj and P^. Pro-

ject PiP and P1P2 upon the

a>axis. Then, by plane geom-

etry,

M^M ^ PiP
M^M^ P1P2'

X-Xi ^PiP
X2 — Xi Xir2

In like manner it is shown that

and ^_^ = AP.
Z2-Z^ P1P2

...
a? - xi _ y - yi _ g - jgi" X2-OC1 2/2-2/1 «2 - Zl

Fig. 166.
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These equations are therefore the equations of the straight

line.

224. The equations of a straight line through a given point

and with given direction cosines. In the preceding article if

the line makes angles a, y8, y with the axes, and ii d = P1P2,

then

3^2 — ^ o V2 — V1 ^2— ^1
cosa = ^^ -, cos3 = ——^, cos 7 = -^^ -•

d d d

Substituting the values of ajg — ajj, 1)2 — Vn 2:2— 2:1 obtained from

these equations in the equation

X2-Xy_ 2/2-2/1 ^2-Zi

there results, on dividing through by d,

cos a cos p cos
"Y

Hence these are the equations of a straight line through

(^1) 2/i> z^ with direction angles a, /3, y.

Any equations of the form

ag-a^i _ y-Vi _ z-zi
I m, n

are the equations of a straight line through (01^, 2/ij ^^i) with di-

rection cosines proportional to /, m, n. For these equations

have only to be multiplied by V/^ -\-m^-\-n^ to bring them

into the form

x — Xx _ y — Vx _ Z—Zx
I m n

which are the same as eqs. (2), since the denominators in

these equations are the direction cosines of a straight line.

(Art. 206.)

225. The general equations of a straight line. Since a

straight line is the intersection of two planes, the equations
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of two planes may be taken as the general equations of a

straight line. Thus

and A<p; + JB22/ + Og^ +A = 0,

are the equations of a straight line.

Since one straight line is the intersection of an indefinite

number of pairs of planes,

the same straight line may-

correspond to an indefinite

number of pairs of equa-

tions of first degree.

A line not perpendicular

to the a;-axis may be repre-

sented by equations of the

form

y = mx + b,

and z = nx-{-c. (Fig. 167.)

If it is perpendicular to

the ic-axis, but not to the 2/-axis, its equations may be written

z = my-^b. (Fig. 168.)

If it is perpendicular to both

the X- and iz-axes, i.e. is parallel

to the g-axis, its equations may
be written

x = a,

y = b.

EXERCISE LI

1. Find the direction cosines of
Fig. 168.

the line

5

-3_s+l
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2. Find the direction cosines of the line

y = Sx + 5,

z = 2x + l.

3. Prove that the direction cosines of the line

y = mx-{-b,

z = nx -\- c

are proportional to 1, m, n.

4. Prove that the line

_^ _ y-yi _ g-gj
I m n

is perpendicular to the plane

lx + my +nz-\-p = 0.

5. Find the angle between the line

x — S _y _ z — 1

2 ~4~ - 1

and the perpendicular to the plane

3ic-22/ + 4^ = 0.

- 6. Find the angle between the lines

y-2_z-Z
""-T- 3

and ^±i = ^.ll^^^ + 2.3-2
7. Find the angle between the lines

3x-2?/ = 4,

4?/-20 = l;

and a; = 2y + 3 = 40— 1.

8. Find the equations of the line through (1, — 1, 2) which makes

equal angles with the axes.

9. Find the equations of a line through (3, 4, 1) and (—2, 1, 3).

10. Find the equations of a line through (3, 1, - 2) perpendicular to

the plane 2aj— 3?/ + 42 = 0.

11. Find the equation of a plane through (2, 1, 3) parallel to the line

jc = 2i/ + 4 = 3 — 1. Also the equation of a plane perpendicular to the

given line and passing through the given point.
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THE QUADRIC SURFACES

226. Definition. The quadric surfaces, or conicoids, are

surfaces whose equations are of the second degree in rectangu-

lar coordinates of space.

Certain standard forms of equations of second degree, formed

by analogy to the standard equations of second degree in two

variables, will be studied in the succeeding articles.

227. The ellipsoid.

This equation has already been discussed in Art. 216. Only
the figure is shown here.

Fig. 169.

If two of the quantities, a, 6, c, are equal, e.g. if 6 = c, the

equation reduces to that of the spheroid,

^' +^ +^ = 1, prolate if 6<a, oblate if 5>a,

8 267
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If a = 6 = c, the equation reduces to that of the sphere

a?2 + 2/^ + «^ = a^-

228. The hyperboloid of one sheet.

a^ h^ <f' '

Sections of the surface represented by this equation by planes

parallel to the a?2/-plane are of the form

£f 4-^-1+!!

^^ ' 2/^2 , ^2\ + T2 ^'2 . ..'n — 1-

If z is held constant, this is the equation of an ellipse.

Sections parallel to the iC2!-plane are of the form

^_ 2^ _ b^ — y^

W b'

If y is held constant, this is the equation of an hyperbola with

major axis parallel to the ic-axis if y^ <, b^, and with major axis

parallel to the 2;-axis if y^ > b^.

For y = b,ov y = —b, the equation represents two intersect-

ing straight lines

- + - = 0, and--? = 0.
a c a c

The hyperboloid of one sheet is sketched in Eig. 170, and

a few sections parallel to the ic^-plane are indicated.

Sections parallel to the yz-plane are also hyperbolas, and

have their major axes parallel to the y- or 2;-axis according as
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the distance of the section from the origin is less than oi

greater than a. The two sections parallel to the 2/2;-plane at

the distance a from the origin

are each the pair of straight

lines

2 + ?= 0, and 2^-?=0.be bo
229. The hyperboloid of two

sheets.

a2 ^2 c2
1.

Any section of the surface

parallel to the a^^z-plane is an

hyperbola with major axes par-

allel to the a.'-axis, the major

axis and conjugate axis both in-

creasing as the distance of the

cutting plane from the «?/-plane

increases, but their ratio re-

maining equal to -•
b

A like remark applies to sec- yig. 170.

tions of the surface made by

planes parallel to the a;2;-plane, the major axis being parallel to

the a^axis and the ratio of the axes being equal to -•
c

Sections of the surface parallel to the yz--pla,n.G are of the

form

^ ,z^ _a^
1

b- c^ a^

or +
2

= 1.

This is the equation of an ellipse if a;^ ->^ ^2^ )^^^ there is no
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locus if a^ < a^. When a; = ± a, the locus is a point (a, 0, 0),

or (- a, 0, 0).

Since this hyperboloid consists of two separate parts, it is

called the hyperboloid of two sheets. Only one part is shown
in the figure. The other part is symmetric to the part that is

shown with respect to the yz-iglsme. (Fig. 171.)

Fig. 171.

230. The elliptic paraboloid.

The trace in the fl??/-plane is the origin — -|-^ = 0. The

trace in the a;2;-plane is the parabola x^ = — z. The trace in the

2/2;-plane is the parabola y^= —z. Sections of the surface

parallel to the a;?/-plane are of the form

and are therefore ellipses if h and c are of the same sign, but

there is no locus if k and c are of opposite sign. Sections of
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the- surface parallel to the a^^i-plane are the parabolas

261

k'

with vertices at , and axes parallel to the 2;-axis.

a'

[o, K f
Sections of the surface parallel to the i/^-plane are the parabolas

ckn
with vertices at [M,f , and axes parallel to the 2;-axis.

The locus is sketched in Fig. 172, for c positive.

Z

i Fig. 172.
I

231. The hyperbolic paraboloid.

^ _ ^ — ?

The trace in the a^y-plane is the pair of straight lines

a b ah
The trace in the a^^^-plane is the parabola x^ =i — z. The trace

c

in the i/^-plane is the parabola y^ = z. Sections parallel to
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the iC2/-plane are the hyperbolas

Sections parallel to the xz-iglane are the parabolas

s^_z k^

Sections parallel to the 2/0-plane are the parabolas

l^_z If

W c a''

The locus is sketched in Fig. 173 for c positive.

Fig. 173.

232. The cone.

a?2
,

y^ «2

r.+ 6^ c2
= 0.
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Let this surface be cut by the plane y = x tan $. Let »' be

the distance from the 2-axis to any point P on the intersection

of surface and plane. Then

y — x^ sin B, a; = «' cos 0, (Fig. 174),

and

or

a;^^cos^^ a;'^sin^l9

a?
"^

h^

62cos^+ a^sin^^
,,

^ = 0,

- = 0.

Fig. 174.

This is the equation of the intersection of the plane and sur-

face referred to rectangular coordinates in the cutting plane.

The equation can be factored into two real factors of first

degree in a;' and z, and is therefore the equation of two straight

lines. Since ic' = and 2 = reduce both of the factors to

zero, the two lines pass through the origin.

Hence any plane containing the 2;-axis intersects the surface

in two straight lines through the origin.

Moreover any plane parallel to the a;?/-plane, 2 = A;, intersects

the surface in the curve

an ellipse.
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Hence the locus of

ic^ y^ z^ _
-2 + -- =

6^ (?

is a cone with vertex at (0, 0, 0), and

with the section

at the distance c from the a;?/-plane.

(Fig. 175.)

233. The right circular cone. In

the equation of the preceding article

if a = b, the cone becomes a right

circular cone.

If - be replaced by m, the equa
c

tion of the right circular cone be-

FiG. 175. comes

If x= 0, then y^± mz. Therefore the straight lines

y = ±mz are the intersections of the cone and the y2;-plane.

Hence the quantity m is the

tangent of the angle between an

element of the cone and its axis,

m = tan if>, in Eig. 175.

234. The conic sections. In

the equation of the cone

a:^ 4- 2/^ — mh^ = 0,

let the y- and z-axes be rotated

through the angle $ to the new

axes OY' and OZ'. The old

coordinates y and z of any point

in terms of the new coordinates

y' and / of the point are then Fig. 176,
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given by

2 = 2' cos d — y^ sin 0,

y — z^ sin B -\-y^ cos Q.

The ^-coordinate does not change. (Fig. 176.)

Substituting in the equation of the cone, and collecting terms,

the equation of the cone referred to the new axes is

Q^ + (sin2 ^ _ ^2 gQs2 0^
^t2 ^ 2 sin ^ cos ^ (1 + w?) y'z'

+ (cos^ e-m'' sin2 6) y'^= 0.

If in this equation y' is held constant, the intersection of the

cone and a plane parallel to the a;2;'-plane is obtained. Since

the X and z' of points in this plane are the same as their pro-

jections on the ajg'-plane, the equation of the curve of intersec-

tion is of the form

x'-{-az'^-hdz'+f=0,

where a — sin^ 9 — m^ cos^ 6,

c? = 2 sin ^ cos ^ (1 + m})y\

f=(cos^e-7rv' sin' 0)y'^

A discussion of this equation shows that

(1) If y' = 0, then both d and / are zero, and the equation

becomes

x^-\-az'^ = 0.

This is the equation of a point if a > 0, i.e. if tan^ 6 > m^; of

two intersecting lines if tan- < 7n'; and of one straight line

if tan^ = m^.

(2) y'^0.

(a) If tan^ = m^, the equation is of the form

x' + dz'-\-f=0,

which is the equation of a parabola.

(&) If tan^ ^ m% the equation is of the form

x'-\.az"-\-dz'+f=0,
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which is of the type of an ellipse or hyperbola according as a

is positive or negative, i.e. according as tan^ 6 is greater than

or less than m^.

If ^ = 90°, i.e.

the cutting plane

is perpendicular to

the axis of the

cone, the equation

reduces to

which is the equa-

tion of a circle.

Hence, if a right

circular cone is cut

by a plane

:

(1) passing
through the vertex,

the intersection is

a pair of lines, a

single line, or a

point, according as

the angle which

the plane makes

with the axis of

the cone is less

than, equal to, or

greater than the

angle between the

axis and an element

of the cone

;

Fig. 177. (2) ^^^* passing

through the ver-

tex, the intersection is an hyperbola, a parabola, or an ellipse,

according as the angle between the plane and the axis of the
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cone is less than, equal to, or greater than the angle between

the axis and an element of the cone.

In the special case where the plane is perpendicular to the

axis of the cone, the intersection is a circle. (See Fig. 177.)

EXERCISE Ln

Describe and sketch the loci of the following equations :

1. x^ + y^ + ^ z^ = 4:. 2. x2 + y2 _ 4 ^^2 _ 4.

3. z^-\-y'^ = 4:X. 4. a;2-4(y2 + 2;2) =0.

5. x^-\-2z^ = y. 6. z-x^ = y^.

y2 «2 3.2

7. ^—-—s = !• S. pv = Bt, B constant
; p, v, t, variables.

62 c2 a2

9. ^4-?l = by. 10. x^-z^ = 2y.
a^ c2

11. (X - 1)2 +(y + 2)2 +(0 + 1)2 =16.

12. x^ + y^ + z^ = ai 13. x^ + y^ + z^ = a^.



CHAPTER XXI

SPACE CURVES

235. Introduction. In this chapter a few curves in space,

which do not lie in a plane, will be considered, and the equations

derived.

236. The helix. The helix is a curve traced on the surface

of a right circular cylinder

by a point which advancies

in the direction of the axis

of the cylinder at the same

time that it rotates around

the axis, the amount of ad-

vance being proportional to

the angle of rotation.

To find the equations of

the helix, let the axis of %

be the axis of the cylinder

on which the helix is traced,

a the radius of the cylinder,

h the amount of advance

along the axis to each radian

of rotation, and let the a;-axis

be chosen to pass through

a point of the helix. Then,

if Q is the angle of rotation

around the axis, the values

of a;, 2/, and z of any point on

Fig. 178. the curve are

x= a cos ^,

y = a sin ^,

z^hB, (Fig. 178.)

268
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237. The curve of intersection of two cylinders of unequal

radii, with axes intersecting at right angles.

Let the axes of the cylinders be the x- and ^/-axes respectively,

the radii a and h respectively.

(Fig. 179.) The equations of the

surfaces are then

and

f + z' = a\

0? + Z^=z h\

These equations, regarded as simul-

taneous equations, are therefore

the equations of the curves of in-

tersection.

The equations of the curve may
be written in the parametric form, /
as in the case of the helix, by let-

ting z equal some arbitrary function of another variable and
then solving the equations for x and y. E.g. if

Fig. 179.

then

and

z — a sm 6,

y = ± a cos 0,

x= ± V^^ — a' sin^ 0.

Or z itself may be considered the parameter, and the equations

written in the parametric form

x= ±-Vb^.- z\

2/ = ± Va^ — z^^

z = z.

238. The curve of intersection of a sphere and circular

cylinder.

Let the sphere have its center at the origin and radius a,

and let the cylinder have its axis parallel to the x-axis, cutting

the 2;-axis at 2; = c, and radius h.
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The equation of the sphere and cylinder are then respectively

y? -\- if-
\- z^ = o?i

and / + (2; - cf = h\

These equations, regarded as simultaneous equations, are there-

fore the equations of the curve of intersection.

The student should sketch the figure.

The coordinate z may conveniently be considered the inde-

pendent variable and have arbitrary values assigned to it, the

corresponding values of x and y being then computed from the

equations. Corresponding to one value of z four points are

obtained, in general.

Exercise. Letting a = 5, 6 = 2, c = 3, find four points on the curve

corresponding to ^ = 2. How many points of the curve are there having

z=\^ How many having 2 = 5 ?

239. General equations of a space curve. If the equations

of two surfaces are known, these equations, regarded as simul-

taneous equations, are satisfied by all points common to the

two surfaces, and by only those points. The equations of the

two surfaces are therefore together the equations of the curve

of the intersection of the two surfaces.

EXERCISE LIII

1. A screw has 8 threads to the inch. The diameter of the screw is \

inch. What are the equations of the edge of the threads ?

2. A point starts at the base of a right circular cone and traces a curve

on the surface, advancing in the direction of the axis of the cone propor-

tional to the angle of rotation about the axis. Find the equations of

the curve.

3. Similar to example 2, using a hemisphere instead of a cone.

4. Find the polar equation of the projection of the curve of example 2

upon the plane of the base of the cone. Trace the curve of projection.

5. Find the polar equation of the projection of the curve of example 3

upon the plane of the base of the hemisphere.



CHAPTER XXII

TANGENT LINES AND PLANES

240. Introduction. In the plane a knowledge of derivatives

was found to be important in obtaining the equations of tangent

lines to curves. In space, also, derivatives play an important

part in the deduction of the equations of tangent planes to sur-

faces and of tangent lines to curves. But in space a somewhat

extended conception of derivatives is necessary, for the number

of variables has increased from two to three.

241. Partial Derivatives. Consider an equation which ex-

presses 2 as a function of two independent variables, x and y.

E.g. z = 2x^^Zxy^ + ^f. (1)

If y is regarded as a constant and the derivative of z taken with

respect to x, the result is

4.x^Sf.
This result is called the partial derivative of z with respect

to Xj and is denoted by the symbol — . Thus,

ax

Similarly, -— = 6xy + 15 y\
dy

In eq. (1) let x and y take the values Xq and y^ respectively.

Then z takes a corresponding value, Zq. Then

z^ = 2x^ + 3 Xoyo^ 4- 5 2/o^

Let X take an increment. Ax. Then z takes a corresponding

increment. Let this increment, which is due to the change in

X only, be denoted by A^z. Then

Zo + A,2 = 2(xq + Axy + S{xq + Ax)yJ^ + 5 y^^

271
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From the definition of a derivative, it follows that the value

of
dz

dx
is the limiting value of -^ as Ax approaches zero.

Ax
The student can easily check this by computing the value of

-^ from the above equations and finding the limiting value.
i^X

In general, if f(x, y), read "/ of x and 2/," is used to denote

any function of x and 2/, then, if

^ =f(^, y),

the values of
dz

and

If

then

dx

dz\

dz
are defined byand

0. ^0 oy

= iimif./(^o+ Ax, yp) -f(xo, yo)

dx\x^,y^Ax = Ax

x„ y,Ay = Ay

u = F(x,y, 2),

du
is defined by

dx xo-yo'^o

du ^ i-jjj.^
Fjxp + Ax, 1/0, gp) - F(xq, yo, gp)

dx x^, y^, Zf, Ax = Ax

and similarly for the other partial derivatives of u.

EXERCISE LIV

1. Find the partial derivative of z with respect to x and y for the values

x = 2,y = 3,ilz = '6x^- 5xy^ + 2f.

2. In the equation of example 1, letting x = 2, i/ = 3, compute the

increment in z due to an increment of . 1 in x. Also the increment in z

due to an increment of .1 in y.

3. If u = Sx^ -\-2xyz -\- y^ + 5 x^z + yz^, find the partial derivatives of

u with respect to each of the variables x,y,z.

4. In z = 2x^ ^Sxy + y, find the value of —
, (1) by differentiating,

dx.

regarding y as constant
; (2) by giving x an increment, Ax, computing

A z
AgZ, and finding the limiting value of —^ .

Ax
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242. The tangent plane to a surface. Let

F{x,y,z) = ()

be the equation of a surface. ' Let P(iCo5 2/oj ^^o) be any point on

this surface, and let the surface be cut by a plane parallel to

the 2;-axis and passing through P. (Fig. 180.) The equation

of such a plane is

y = mx + h.

Fig. 180.

Let P\xq + \x, yo-\-Ay, Zq + A^:) be any other point on the

intersection of the surface and plane. Then

yo + Ay = m(.ro+ Ao;) + b,

and
?/o
= 7)iXq + b.

.*. Ay = mAxj

Ay
Ax

The equation of the line through P and P' is

x-x^ ^ y-y^ ^ z-z^

Ax Ay

x-Xq y-yo

or

or
Ay
Ax

Az

Zj-Z^

Az

Ax

(Art. 223)
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Let P' approach the limiting position P. The line through P
and P' approaches the limiting position of tangency at P to

the curve of intersection of the plane and surface, and hence

of tangency at P to the surface. The equation of this tangent

line is therefore

1 711 n

Az
where n is the limiting value of—^ as P' approaches P.

Ax
To find the value of n, let F(x, y, z) be represented by u

;

u = F(x,y,z).

Since P' and P are both on the surface, therefore

F(xq + Ax, ?/o + Ay, Zo 4- Az) = 0,

and F {xq, yo, Zq) = 0.

^.^
F(xq + Ax, yo + Ay, Zp + Ag) - F{xq, yp, Zp) _ ^

Ax

This equation may be written

Fjxp + Ax, j/o 4- Ay, Zp + Az) — F(xq, y^ + Ay, Zq + Az)

Ax

I

F{xp, yp + Ay, Zp + Az) - F(xp, y^, Zp + Az)
^
Ay

Ay Ax

,

F(xp, yp, Zp 4- Az) - Fjxp, yp, Zp)
^
Az ^^^

Az Ace

If Ay and Az were held constant, and Aa; allowed to approach

zero as a limit, the first term of this equation would approach

the limiting value

du

Since, however, as P' approaches P, Ax, Ay, and Az all

approach zero, the limiting value of the first term is

du

dx
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Likewise the second and third terms approach the limiting

values

dum

and

By

du

dx

*0' ^0' *0

*o' 2'o» "o

du , du , du
\-m 1- w—

dx dy dz
0, (2)

the values of the partial derivatives being taken at (xq, y^, z^.

Equation (2) expresses the value of n in terms of m. If

eq. (2) were solved for n, and the value substituted in eqs. (1),

the equation of the tangent at P to the curve of intersection of

the plane and surface would be obtained. The elimination of

m between the eqs. (1) would then result in an equation be-

tween the coordinates of points on any tangent line to the sur-

face at P, i.e. the equation of the locus of all tangent lines that

can be drawn to the surface at P.

The elimination of m and n is most easily affected by solving

eqs. (1) for m and n and substituting their values in eq. (2).

The result is

/ \ du{x-x^)--
dx

+ (z-Zq)
'^O' ^0' ^0

0.

*0' ^0' *0

Since this is an equation of first degree in x, y, and z, it is the

equation of a plane.

Hence all tangent lines to a surface at a given point lie in a

plane. This plane is called the tangent plane to the surface at

that point.

Since u = F{x, y, z),

the symbol —— may be used instead of —
dx dx

Hence, if F{x,y,z) =
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is the equation of any surface, then

+ (2/-2/o)-T- + (^-^o)f =
*0> 3/0) ^0

is the equation of the tangent plane to the surface at (xq, 2/0, Zq)

243. Illustration. Consider the ellipsoid,

Here

and

H^,y.^)=^,-^
y + ^— 1,
h'

'

c"

dF^2x §F^2y dF^2_z
dx a^ ' dy b^ ' dz (?

'

and hence the equation of the tangent plane at (a^o, 2/0? ^0) is

(^-«^o)^4-(y-2/o)^«H-(^-^o)^^ = 0.

Since
^2

-f-
52

-^
c2

1,

the equation of the tangent plane becomes

a^'^ b^^ & '

244. The normal to a surface. A line perpendicular to a

tangent plane to a surface at the point of tangency is called a

normal to the surface at that point.

If the equation of the surface is

F(x,y,z)=0,

the equation of the tangent plane has been found to be

dF
(X-Xo)

dx
+ (2/-2/o)^-

«o' ^'o' ^0 ^y "O- ^0'

= 0.

"^0' ^0' ^0

The equations of a line perpendicular to this plane and passing

through (xq, 2/0, Zq) are therefore

X—Xn
dF
dx 'qi Vq) ^q

y-yow
Z — Zq

dF
dz

(Arts. 220, 224.)

*0' ''o' "0
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If the equation of the surface is given in the form

then F(x, y,z)=z- f(x, y),

and ^ =-^ =-^ M! = _3£ =_^ Ml
dx dx dx^ dy dy dy^ dz

The equations of the normal then become

1.

y-Vo
60

dx "^0' ^0' ''o

dz^

dy

Z — Zq

-1
"O' 2'0' ^0

245. The tangent line to a space curve. Let P(xo, y^, Zq) and

P' (a^o -f Ax, 2/0 + ^y, ^0 + ^^) be two points on a curve. The
equations of the line through these points are

^ — ^0 y — yo ^ — ^0

Ax Ay Az
(Art. 223.)

p/^A2

r /Ay

X

Fia. 181.

If x, y, and 2; are functions of some independent variable, t

(compare the equations of the helix, Art. 236), Ax, Ay, and Az

will depend upon A^. Let the above equations be multiplied

by At. Then

x-Xo y-yo z — Zo

Ax
At

Ay

At

Az

At
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As P' approaches coincidence with P, the ratios ^^^
Ai' A«' A«

approach the values of the derivatives of x, y, and z respectively

at {xq, 2/0, z^. The line through P and P' approaches at the

same time the limiting position as tangent to the curve at P.

Hence the equations of the tangent to the curve at {xq, y^^ z^ are

x-X(, y-yo z-Zq
dx dy dz

— K^)

dt #0 dt t, dt <0

If the equations of the curve are the simultaneous equations

two surfaces,

f(x,y,z)= 0,

<f>{x,y,z = 0, ..

dx dii dz
the values of — > — >

— may be obtained as follows: Since
dt dt dt ^

P' and P are on the surface /(^j, y, z)= 0, therefore

/(xo -+ A«, ?/o + A?/, Zq + ^z) = 0,

and /(i»o, 2/0, 2;o)= 0.

. /(a^o + Aar, yo + Ay, ^p + Ag) -/(a?o, yp, gp) ^ q
Ai

Treating this expression as was done in Art. 242, there results

dfdxdfdy §fdz_r.

dx dt dy dt dz dt

Similarly,
d±dx d^dy d^dz^^

^'
dxdt dy dt dzdt '

the values of all the derivatives being taken at the point

From these equations there result

^ (% ^
dt _ dt _ dt

^d^ _d_f^d^'~ dfd^_dfd^'~ d^d^_dfd^'
dy dz dz dy dz dx dx dz dx dy dy dx
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Multiplying the members of eq. (1) by the corresponding

members of this equation, there result as the equations of

the tangent line at (xq, y^, z^ to the curve whose equations are

f(x,y,z) = 0,

and
<f>

(x, y, z)= 0,

« - ^0 y-Po

By Bz

_BfB_^\ ~
fBf B<t> _ Bf Bct>\

\Bz Bx BxBzJ,^,y^,,^

Z-Zo

/BfBcl>_BfB<f>\

\BxBy ByBxJ,^,y^,,^

246. Illustrations. Example 1. To find the equations of

the tangent to the helix at any point.

The equations of the helix are

x = a cos 0,

y= a sin 0,

z = be. (Art. 236.)

dx . ^

-^ = a cos 6.

dO
'

— — h
de~

Hence the equations of the tangent to the helix at a point

where 6 = 6^ are

x— a cos Op _ y — a sin Oq _ z — bOp

— a sin 6q a cos $q b

Example 2. To find the equations of the tangent to the

curve of intersection of the cylinders

y^-\-z^ = a%

aP + z^r^bK
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Let f{x,y,z)= y''-\-z^~a%

1 = 0, g=2„ 1= 2,

?.-'- ?= «' t = ^^-

Therefore the equations of the tangent at {xq, yo, Zq) are

x — Xq ^ y — yo ^ z — Zq
^

2/02^0 ^6^0 — i»o2/o

EXERCISE LV

Find the equation of the tangent plane to each of the fol-

lowing ten surfaces:

1. a;2 + y-2 -\- z'^ = r^.

3.
a;2 ,/2 ^2

a2 6-2 c2 '

5.
X_2 y_2_£.

a2^&2 c

7. ^+?-!-^! = o.

2.
a2 62 ^ c2

4. x2+y2=2pX.

6.
a-.2 y2_

a2 62 •

8. i}v = EL
62

9. xyz = c. 10. = 3 a; + 2!/.

11. Prove that the direction cosines of the tangent to the helix are

— a sin 00 a cos do 6

vV + 62 Va2 + 62 Va2 + 6^

(Note that the angle between the tangent and the ^-axis is constant.)

12. If the point generating the helix advances in the direction of the

axis of the cylinder j^^ of the radius of the cylinder at each revolution,

find the angle between the tangent to the helix and an element of the

cylinder.

13. Find the equations of the tangent to the helix at the point where

d = 30°.

Find the equations of the tangent to the curve of intersection of each

of the following pairs of surfaces.
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14. 1/2 + ^2 = 1^ x^ + 2 y^ -\- 4: z'^ = 4, Bit a, point where z = \.

15. z + 2 2/2 = 4, x2 + ?/2 _ 2 = 0, at (1, 1, 2).

16. 02 4. 2 2,2 = 4^ a;2 + 2/2 _ ^2 = 0, at (1, 1, V2).

17. Prove that the direction cosines of the normal to

F{x, y,z) =
at any point (x, y, z) are

dF dF
dx By

<m<fyy-m m^m^m
dF

18. Prove that the direction cosines of the normal to the surface

z =f(x, y)

at any point {x, 2/, z) are

dz dz _ J
dx 5y ^

M%y^{%f v-(ir-(ir' v^w^^'



TABLES

TEIGONOMETRIC FORMULAS

sin^A -\- cos^A = 1 sin (
- — ^ ) = cos^

sin J. CSC^ = 1

cos J. sec^ = l

tan ^ cot ^ = 1

tan J.= sin^
cos^

(iotA = cos^
sin^

sm(--A) = — sin^

cos(--A) = cos J.

tan(--A) = — tan A
cot(--A) = — cot^

sec(--A) = sec^

csc(--A) = — CSC J.

sec^^ — tan2^ = l cos( ^— ^ j
= sin^

csc^ J. — cot^ J. = 1 tanf ? — ^ l
= cot^(1-")=

sin
(
- + ^

J

= COS ^

cos l-4-A]= — sin A

tan
(
- + ^^ = — cotA

sin (tt — A) = sinA
cos (tt— A) = — cos A
tan (tt — A) = — tsLuA

sin (ir-^ A) = — sinA
cos (tt 4- J.) = — cos A
tan (Tr-\-A)= tan^

sin (^ + 2 mr) = sin ^
cos (^ + 2 wtt) = cos^
tan (A -{-2 mr) = tanA
(n a pos. or neg. integer)
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sin {A± B) = sin A cos B ± cosA sin B
cos (A±B) = cos ^ cos -B T sin A sinB

tan ^ ± tan B
t8i.Ji(A±B) =

1 q: tanA tan 5

sin 2 ^ = 2 sinA cos ^ 2sin2ft= l-cos^

cos 2 J. = cos^^ — sin^A
= l-2sin2J.
= 2cos2J.-l

2cos2— = l + cos^
2

, ^ 1 — cos A
tan — = —,——

-

2 sm A

tan 2^ = 2 tan^ sin^

l-tan^^
sin 3 ^ = 3 sin ^ — 4 sin^^
cos 3^ = 4 cos^A — 3 cos^

. . , . T5 o • A-^B A — B
sin ^ + sm ^ = 2 sin—^— cos—-

—

2 2

sin^ - sin^ = 2 cos ^ "^ ^ sin i^—-^

1 + cos ^

A , DO A-hB A — B
cos ^ -|- cos B = 2 cos—-— cos

2 2

A-BAA-B
cos^ — COS J5 = — 2 sin—'^— sin

A 0° 30° 45° 60° 90° 180° 270° 360°

sin^
1

2

V2
2

V3
2

1 -1

cos^ 1
V3
2

V2
2

1

2
-1 1

tan^ V3
3

1 V3 QO GO
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LOGARITHMS OF NUMBERS

N O 1 2 3 4 5 6 7 8 9

lO 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374

11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0766

12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106

13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430

14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732

15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014
16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279
17 2304 2330 2355 2380 2405 2430 2455 2480 2604 2529
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989

20 3010 3032 3064 3075 3096 3118 3139 3160 3181 3201
21 3222 3243 3263 3284 3304 3324 3345 3365 3386 3404
22 3424 3444 3464 3483 3502 3522 3641 3660 3579 3698
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784
24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962

25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133
26 4150 4166 4183 4200 4216 4232 4249 4266 4281 4298
27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757

30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900
31 4914 4928 4942 4955 4969 4983 4997 6011 6024 5038
32 5051 5065 5079 5092 6105 5119 5132 5145 5169 5172
33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428

35 5441 5453 5465 5478 5490 5502 5514 5527 5639 6551
36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670
37 5682 5694 5705 5717 5729 6740 5752 5763 5775 5786
38 5798 5809 5821 5832 5843 5855 5866 6877 5888 6899
39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010

40 6021 6031 6042 6053 6064 6075 6086 6096 6107 6117
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325
43 6335 6345 6355 6365 6375 6385 6396 6406 6415 6425
44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522

45 6532 6542 6551 6561 6571 6580 6590 6699 6609 6618
46 6628 6637 6646 6656 6665 6676 6684 6693 6702 6712
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981

50 6990 6998 7007 7016 7024 7033 7042 7060 7059 7067
51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235

j54
7243 7251 7259 7267 7275 7284 7292 7300 7308 7316
7324 7332 7340 7348 7356 7364 7372 7380 7388 7396
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N o 1 2 3 4 5 6 7 8 9

55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474

56 7482 7490 7497 7505 7513 7620 7528 7536 7643 7551

67 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627

58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701

59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774

60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846

61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917

62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8056
64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122

65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254
67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319
68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382
69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8446

70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506
71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567
72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627
73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686
74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8746

75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802
76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8916
78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025

80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238
84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289

85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390
87 9395 9400 9405 9410 9415 9420 9425 9430 9436 9440
88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538

90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586
91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633
92 9638 9643 9647 9652 9657 9661 mm 9671 9675 9680
93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727
94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773

95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818
96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863
97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908
98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952
99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996
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NATURAL SINES, COSINES, AND TANGENTS

Deg. Eau. Sin. Cos. Tan. Deg. Rad. Sin. Cos. Tan.

1.0000 45 .7864 .7071 .7071 1.0000
1 .0175 .0176 .9998 .0175 46 .8029 .7193 .6947 1.0355
2 .0349 .0349 .9994 .0349 47 .8203 .7314 .6820 1.0724
3 .0524 .0523 .9986 .0624 48 .8378 .7431 .6691 1.1106
4 .0698 .0698 .9976 .0699 49 .8552 .7647 .6561 1.1504

5 .0873 .0872 .9962 .0875 50 .8727 .7660 .6428 1.1918
6 .1047 .1045 .9945 .1051 51 .8901 .7771 .6293 1.2349
7 .1222 .1219 .9925 .1228 52 .9076 .7880 .6167 1.2799
8 .1396 .1392 .9903 .1406 53 .9250 .7986 .6018 1.3270
9 .1571 .1564 .9877 .1584 54 .9426 .8090 .6878 1.3764

lO .1745 .1736 .9848 .1763 55 .9699 .8192 .6736 1.4281
11 .1920 .1908 .9816 .1944 56 .9774 .8290 .5592 1.4826
12 .2094 .2079 .9781 .2126 57 .9948 .8387 .5446 1.5399
13 .2269 .2260 .9744 .2309 58 1.0123 .8480 .5299 1.6003
14 .2443 .2419 .9703 .2493 59 1.0297 .8672 .5150 1.6643

15 .2618 .2588 .9659 .2679 60 1.0472 .8660 .5000 1.7321
16 .2793 .2756 .9613 .2867 61 1.0647 .8746 .4848 1.8040
17 .2967 .2924 .9563 .3057 62 1.0821 .8829 .4695 1.8807
18 .3142 .3090 .9511 .3249 63 1.0996 .8910 .4540 1.9626
19 .3316 .3256 .9455 .3443 64 1.1170 .8988 .4384 2.0603

20 .3491 .3420 .9397 .3640 65 1.1345 .9063 .4226 2.1446
21 .3665 .3584 .9336 .3839 66 1.1619 .9135 .4067 2.2460
22 .3840 .3746 .9272 .4040 67 1.1694 .9205 .3907 2.3569
23 .4014 .3907 .9205 .4246 68 1.1868 .9272 .3746 2.4751
24 .4189 .4067 .9136 .4452 69 1.2043 .9336 .3584 2.6051

25 .4363 .4226 .9063 .4663 70 1.2217 .9397 .3420 2.7475
26 .4538 .4384 .8988 .4877 71 1.2392 .9456 .3256 2.9042
27 .4712 .4540 .8910 .5096 72 1.2566 .9511 .3090 3.0777
28 .4887 .4696 .8829 .6317 73 1.2741 .9563 .2924 3.2709
29 .6061 .4848 .8746 .5643 74 1.2916 .9613 .2756 3.4874

30 .5236 .5000 .8660 .5774 75 1.3090 .9659 .2588 3.7321

31 .5411 .5150 .8672 .6009 76 1.3266 .9703 .2419 4.0108
32 .5585 .5299 .8480 .6249 77 1.3439 .9744 .2250 4.3316
33 .6760 .5446 .8387 .6494 78 1.3614 .9781 .2079 4.7046
34 .6934 .5692 .8290 .6745 79 1.3788 .9816 .1908 5.1446

35 .6109 .5736 .8192 .7002 80 1.3963 .9848 .1736 5.6713

36 .6283 .5878 .8090 .7266 81 1.4137 .9877 .1664 6.3138

37 .6458 .6018 .7986 .7536 82 1.4312 .9903 .1392 7.1154

38 .6632 .6157 .7880 .7813 83 1.4486 .9926 .1219 8.1443

39 .6807 .6293 .7771 .8098 84 1.4661 .9945 .1045 9.5144

40 .6981 .6428 .7660 .8391 85 1.4836 .9962 .0872 11.4301

41 .7156 .6561 .7547 .8693 86 1.5010 .9976 .0698 14.3007

42 .7330 .6691 .7431 .9004 87 1.6184 .9986 .0623 19.0811

43 .7506 .6820 .7314 .9326 88 1.5359 .9994 .0349 28.6363

44 .7679 .6947 .7193 .9667 89 1.5533 .9998 .0175 57.2900

1

90 1.6708 1.0000 CO



ANSWERS TO PROBLEMS

Exercise V
2. 36° 53', 143° T. 4. 27° 46', 152° 14', etc. ; 9560 ; .35i

3. 24° 31', 204° 31'.

Exercise VI

3. (7.62, -66° 44'), (5, 36° 52'). 8. y = 0; x = yVS
; y = cx]

4. (1.73, 1), (- 2.12, - 2.12). x^ -\- y^ = 25; x^ -{-y^= c\

6. ^ = 90°;^ = 0; rcos^ = c; 9. (4.21, - 39° 19').

^ = 45°
; d = 135°. 10. (5.24, 3.57).

Exercise VII

3. 7.62, VxH^. 4. 11.40. 6. x'^ + y'^ = 25.

Exercise Vni

1. 6.04. 2. 11.65. 3. V(a-c)'^+(6-d)2. 4. 7.47. 6. 5.

Exercise IX

1. 8.06. 2. 9.90. 4. 5.95.

3. AB = 7.07, BC = 8.36, 6. 12.73, 14.87, 2.24.

CA = 7.70, OA = 3.91, 6. 5.99, 5.54, 6.40.

OB =4.27, 00 = 5.15.

Exercise X
3. - 1 : 5, 3 : 1, - 7 : 3. 4. r = 2, A: = - V.

Exercise XI

1- (¥>-!)- 3 (
a-nc b-nd \

2. (-29, 27.5), (27, -18). '\l-n' 1-n)
. fxi + 2x2 yi + 2 y2\ f2xi+_X2 2 yi + yg N

[ S ' 3 J' V 3 ' 3 j*
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Exercise XII

2. 26° 34', 63° 26'.
. ^q _ 6, 99° 25'. 12.

^^
3. (-^,0). ^-m^
6. (12, - 1), or (- 6, - 19), 13. 87° 4'. 14. - .3332.

or (2, 9). 15. (1,2, - 4.56). 16. (0, - am).

7. 139° 24'. 8. 42° 60'. ^^ m -\-

n

^ /Q^
-a(m + w) \

' 1 — ?w« \ ' 1 — mil )

Exercise XIII

1. 71.5. 2. 22.56. 4. ^ nrg sin (^2 - ^i)-

3. i(xiy2- XiVi). 5. 160.

Exercise XIV

1. 185. 2. 1842 sq. ft. 16. 114° 19'. 17. - 4.871.

3. 60305 sq. ft. 18. - 4.186.

4. (d) 41° 3', 38° 27', 100° 30'.
^g a + b

^0. 3.154.

12. 13.5. IZ. x + y = Q. ' 1 - ab

14. a;2 + y2 _ 4 a; _ 6 y = 12.

Exercise XV
1. Sx-{-7y = Sl. 12. x^-\-y-2±2rx±2ry-\-r^=0.

4. 2x- 2/- 11 = 0. 14. 16x2 + 7 2/2 = 112.

g ^ . y^l 15. 4x2 -5?/2 + 20 = 0.

a 6 * 16. x2 + 82/ + 16 = 0.

6. y = mx + b. 17. 63x2 + 143 y'^ -\Sxy + 216 x

7. x2 + i/2_4a; + 8y =5; Inter- — 456 1/ — 1728 = 0.

cepts, X = 5 or - 1

;

y = .58 18. 52 x2 - 80 y^ + 224 x?/ - 68 x

or -8.58. + 496 !/- 1343 = 0.

10. (X - 70^ -f (2/ - A;)2 = r2. 19. 2/2 + 22 x - 8 y - 39 =0.

11. x^ + y^ = r^

Exercise XVIII

1. x2 + 42,2=l8.
. ^ x2=-^y, e = 45°, new

2.64x2-64^2 + 3 = 0. 2 origin (1.77, .93).

3. 4x2 + 2/2:^=12.
g Lines x-2 2/=0, and x+2/=:0,

6. Lines x + 2 y = and
referred to If axes through

2 X — 3 2/ = 0, referred to ,q _ -j^n

II axes through (1, 1). ^ 2 ^2 _^ ^./^ 4^ ^ ^ 450^

^ = 45°.
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Exercise XIX
1. 2x + y = 5. 22. 3x + 4y+75=0.
3.

7.

8a;-3.y = 24.

3x + 2y±5\/l3 = 0. ^•^-^=i'-rj^-''>
8. 3x-y = n, 27. - .5642 X + .8257 y = 3,

9. bx— ay = 0. .9780 X + .2088 y = S.

10. y -yi =m(x-x{). 31. 3x4-^+10=0.
11. Bx -Ay + Ab = 0. 33. 107 a; + 134 y - 187 = 0.

20. y-2 = 6Mix-l). 34. _5x + 5 2/= 12.

21. Li,ix + Sy + 18=01; 35. 'll8x + 177y = 486.

Za, 11x-6y-hS9 = 0. 36. 63 a; + 147 y = 536.

289

Exercise XX
1. 3.84. 2. .383. 5. 1.06. 6. 3.13.

w mxi — y\ + b a . .

7.
^'——

• 8. Xq cos a + 2^0 sm a —p.
± Vw2 +

1

Exercise XXI
1. 1.23 r sin - .134 rcos0 = 1. 6. (4.91, 102° 50').

4. (8.94, 26° 34').

Exercise XXII

1. (0, 0),r = 5. 13. x^ + y^-h2x-6y + 6 = 0.

2. (2, -3),r = 5. 16. x^ + y^ + 2x-6y = 36.

4. (-.75, 1.75), r = 3.02. 16. a;2 _|. 2/2-4x - lOy +20 = 0.

6. (1, -2),r = 0. n. x^ + y^ + 6x-\-12y = 85.

7. (-.5, -.5),r=.707. 18. x^ -{-
y^ -llx -17 y -h S0=0.

8. No locus. 19. 27 (x^ + y^)- 66x -\- 16y
9. (2, -3), r=5.10. -250 = 0.

12. («, ^V r = iV^M::P. 20. (x-H)2+(, + |)2=(H)«.
V2' 2/' 2 ^ 21. (X -^«-)H (!/ + ¥)'=(¥)'•

Exercise XXIII

1. x2 = ^y, F(|, V).
'

9- 19-44 ft, 17.78 ft., 15ft.,

3. x2 = y, F(-2, 0). 11.11 ft., 6.11 ft.

4. x2 = f y, F(l, i). 10. 5 y = x2 + X - 2.

6. i/2 = -tx, F(f,^).
12. 2 A2y = (yj ^. yg _ 2 y2)x« + /i(y3 - yi)x + 2 ^2^2-

u
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Exercise XXIV

1. x2=4y, F(3, -2). 12. (V2-l)x2-(V2 + l)y2=10,

2. ?? + l^' = 1,0(2,3). ^=67° 30'.

4
9'^^

13. 8 x-2 + 28^2 = 13,

3. The lines Sx-y + 'J = 0, c^- 1, 1), ^ = tan-i ^.

3a; + «/ + 5 = 0. 14. The lines 2 x + 7 ?/ = 0,

4. ^^_l!-l of- -3V 7x-2y=0, referred to

1 16 ' V2' / II axes through (-3^, it).

8. ^^y!^l .^tan-12. 15- x^ - t,2 = 2, 0(- 1, - 2),If ^ = 45°.

9. 9%-i>''' = ''°'"- ".-* = 4(-^)-
10. i/2=4x, = tan-if

; 19. x = 6 and y = a.

F(-3,-3). 23. xy-4x-2y + 12=0.
11. x2-y2 = i6, ^ = 45°.

Exercise XXVIII

8. ±3V5. 9. ± rVl + m2. 10. 6.

Exercise XXX

1. y = VSx±S. 16. y = :^a; + 3V2,
2. y = x±10. ^

3. x + 2y + 6 = 0.
y = _^2^_3V2.

6. x-2«/+6=0,3x-2y + 2 = 0. 4

12. 2x + 2y+P = 0. 17. y = 2x-7±2VlO.

Exercise XXXI

1. .007651,.030301, 3.003001. 3. f , 3f , 0, f

.

2. -1, -hh 4- 4x-4y = 5.

Exercise XXXII '

1. x + y + 1 = 0, x-y = 3. 2. 3x-4y4-26=0,4x+3y=0.
3. Tangents, 2?/oy- 3xo2x + Xo^ = 0, y = 0, Sx-2y=l, Sx-y=A.
6. Tangents, 6x-i/ = 6, 6x + y4-30 = 0.

8. 12° 6', 36° 52'. 9. 73° 41'. 10. (-2, - 9).
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Exercise XXXIII

2. 2aa;-^. 6.
'

4-1.

4.
-^«

8
^^ -^

9. (x -f ay-^(x + 6)«-i[rc(n + m) + ma + w6].

10 ~ ^^
.

14. 8 a; — y = 4.

s"+i
*

15. x-y+1 =0.
11. 2 anx(ax^ + b)^-\ 16. 4a; - Sj^ + 25 = 0.

12. -2 an- ^^-^^^^^- 21. l(y+yo) = axoa;+^(x+a;o) + c.

(x — a)"+i 2 2

13. y = mz+b. ^ i(=c+^„) = «y„,+| (,+,„)+<.

Exercise XXXIV
1. (6 - a) sin 2 x. 5. — a sin 2 (ax + 6)

.

2. 24tan2 2x(l+tan2 2a-0. g 2sinx - 12 sin 3 a;

3.

4.

1 cos « Vsin t.

- 2 sin 2 X.

cos^ a; ' cos^ 3 x

8
2(1 + sin t) sec2 2 « - cos t tan 2 t

(1 -f sin 0^

9. .-^l5^(l + 3cos2x). 1*- a^cosx + sinx.

2 cost X 15.x sec^ x -f tan x.

10. wm(tan«-imx + tan«+iwx). ^6. siux + xcosx.

2(sin4x + cos4x) 1^. 4csc4x (1 - 2 csc24x).
11.

12.

13. tan4^.

sin^xcosSa; 18. — mng ^*^^"~ ^^

»

cosx sin»»+igx

3 19. (x + 1) sinx+ (x— 1) cosx

20. abn sin «-i 6« cos bt.

Exercise XXXVII
1. y^-6y + Sx = 23.

2 ?!+(y±I)!^l
3. 3 x2 - 2/2 « 16 X -f 8 2/ = 0.

'6 15
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Exercise XLI

1. No locus. 2. Hyperbola. 3. Two intersecting lines.

4. Two parallel lines. 5. One line. 6. Ellipse. 7. A point.

8. No locus. 9. Parabola. 10. Hyperbola.

Exercise LIII

2. x=~(h- be) cos e, y =^{h- bd) sin 0, z = bd.

h h

3. a; = y/a^ - b'^ff^ • cos 6, y = Va^ — 6^^ • sin 0, z = be.

A. r = ^{h-b0). 6. r = VcF^^W\
h

Exercise LV

1. x^-^-y^y + z^z^r"^. 8. p^p+v^p = B{t + Q.

•

a2 5-2
"^

c-2 14 2a;-V6 ^ 2y-V3 ^2g-l
4. a;oic + 2/oy =P(^+^o).

* 2V3 V6 --3V2

g ^ , |/oy

_

g + gp three other answers.

a2 ft2 2c '

^g x-\^ y-\ ^ z-2
a ^(y^_M = l 3 -1 4

*

a2 52 •
.
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The numbers refer to the pages.

Abscissa, 7.

Addition of segments, 3.

Angle, between two lines, 21, 27, 241.

between two planes, 252.

Area, of a triangle, 30, 31, 33.

of a polygon, 35.

Asymptote, 59.

of the hyperbola, 108.

Axes, of the ellipse, 103, 198.

of the hyperbola, 109, 200.

.Axis of the parabola, 95.

Cardioid, 138, 140.

Center, of ellipse, 103.

of hyperbola, 109,

Change of sign oiAx + By + C, 81.

Circle, equation of, 88.

through three points, 89.

Circular measure of an angle, 172.

Concavity, 183.

Cone, 262.

Conic Sections, 192, 264.

classification of, 196.

polar equation of, 202.

rectangular equation of, 196.

Conjugate diameters, 213.

Conjugate hyperbola, 109.

Continuity of functions, 161.

Coordinate planes, 233.

Coordinates, Cartesian, 6.

rectangular, 9.

polar, 9.

rectangular, in space, 233.

polar, in space, 236.

spherical, 238.

Cycloid, 132, 140.

construction of, 133.

Cylinders, equations of, 243.

Derivative curves, 182, 185.

Derivatives, 159.

partial, 271.

Diameter, of parabola, 208.
of ellipse, 213.

conjugate, 213.

Differentiation, 161.

formulas of, 162, 169, 175.

Direction cosines of a line, 237.
Directrix, of parabola, 92.

of conic, 192.

Discontinuity, 161.

Distance, between two points, 18,

20, 235, 236.

from a point to a line, 83.

to a plane, 251.

Eccentric angle of ellipse, 130.

Eccentricity of a conic, 192.

Ellipse, definition of, 45, 100.

construction of, 131.

Ellipsoid, 247, 257.

Elliptic paraboloid, 248, 260.

Empirical equations, 223.

Epicycloid, 138.

Equation of a locus, 41.

Exponential function, 123.

Focal radii, of ellipse, 208.

of hyperbola, 209.

Foci of ellipse, 100.

Focus of a parabola, 92.

Function and variable, 38.

General equation of second degree,214.

Graph of a function, 39.

Graphical solution of equations, 143.

Helix, 268.

Hyperbola, definition of, 46, 105.

equilateral, 92.
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Hyperbolic paraboloid, 261.

Hyperboloid, of one sheet, 258.

of two sheets, 259.

Hypocycloid, 134.

construction of, 135.

of four cusps, 137.

Inclination of a line, 22.

Increments, 153.

Intercepts, 48.

Intersection, of lines, 79.

of curves, 142.

Involute of circle, 139.

Latus rectum of a conic, 206.

Limit of ^—:, 146.
sin

Locus of an equation, 51.

Logarithmic curve, 122.

Maxima and minima, 178.

Normal, to a curve, 158.

to a surface, 276.

Ordinate, 7.

Parabola, 47, 92, 97.

parameter of, 95.

Parabolic arch, 99.

Parallel lines, condition for, 28.

Parametric equations of loci, 129.

Periodic functions, 118.

Perpendicular lines, condition for, 28.

Plane, equations of, 249, 250.

Plotting in polar coordinates, 125.

Projections, 15, 239.

Propertyof reflection, of parabola, 206.

Property of ellipse, 209.

of hyperbola, 210.

Quadric surfaces, 257.

Radical axis of circles, 91.

Ratio into which a point divides a line,

23, 26, 235.

Rotation of axes, 65.

Sine curve, 1 17.

"

Slope, of a line, 22.

of a curve, 155.

Space curves, 268.

Standard equations of second degree,

88.

Straight line, equations of, 70-74,

86, 253.

Subnormal of parabola, 205.

Subtangent of parabola, 205.

Subtraction of segments, 4.

Surfaces of revolution, 244.

Symmetry, 55.

Tangent plane to a surface, 273.

Tangents, slope equations of, 148, 149.

contact equations of, 156, 159.

to space curves, 277.

Transformation of coordinates, 64.

Translation of axes, 64.

Trigonometric functions, 11.

Variable, dependent and independent,

38.

Vertex of a parabola, 95.

Vertices, of ellipse, 103.

of hyperbola, 109.

of conies, 193.
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First Course in

Differential and Integral Calculus

By WILLIAM F. OSGOOD, Ph.D.
Professor of Mathematics in Harvard University

Revised Edition. Cloth, xv + 462 pages, $2.00

The treatment of this calculus by Professor Osgood is based on

the courses he has given in Harvard College for a number of

years. The chief characteristics of the treatment are the close

touch between the calculus and those problems of physics, including

geometry, to which it owed its origin; and the simpHcity and

directness with which the principles of the calculus are set forth.

It is important that the formal side of the calculus should be

thoroughly taught in a first course, and great stress has been laid

on this side. But nowhere do the ideas that underlie the calculus

come out more clearly than in its appHcations to curve tracing

and the study of curves and surfaces, in definite integrals, with

their varied applications to physics and geometry, and in

mechanics. For this reason these subjects have been taken up

at an early stage and illustrated by many examples not usually

found in American text-books. From the beginning the book

has been a favorite with the academic classes, and it has now

been adopted by some of the best-known and best-thought-of

engineering schools in the country.
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Applied Mechanics for Engineers

A Text-book for Engineering Students

BY

F. L. HANCOCK
Professor of Applied Mechanics, Worcester Polytechnic Institute

Illustrated, cloth, i2mo, xii-hjSS pages, $2.00

A new edition with typographical corrections

In the preparation of this book the author has had in mind the

fact that the student finds much difficulty in seeing the applications

of theory to practical problems. For this reason each new prin-

ciple developed is followed by a number of applications. In

many cases these are illustrated, and they all deal with matters

that directly concern the engineer. It is believed that the

problems in mechanics should be practical engineering work.

The author has endeavored to follow out this idea in writing the

present volume. Accordingly, the title "Applied Mechanics for

Engineers " has been given to the book. The book is intended

as a text-book for engineering students of the Junior year. The
subject-matter is such as is usually covered by the work of one

semester. In some chapters more material is presented than can

be used in this time. With this idea in mind the articles in these

chapters have been arranged so that those coming last may be

omitted without affecting the continuity of the work. The book

contains more problems than can usually be given in any one

semester. An appendix giving tables for the use of the student is

of importance. These tables include the following : Hyperbolic

Functions, Trigonometric Functions, Logarithms of Numbers,

Squares, Cubes, etc., and Conversion Tables.

THE MACMILLAN COMPANY
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COLLEGE ALGEBRA
BY

SCHUYLER C. DAVISSON, Sc.D.

Professor of Mathematics in Indiana University

Cloth, i2mo, igI pages, $1.50

A discussion of those parts of algebra usually treated in the

first year's course in college. The author aims that the student

shall acquire not merely a comprehension of algebraic processes,

but the abiHty to use without difficulty the language of algebra—
to express in his own language conclusions ordinarily expressed in

symbolic form, and thus gain the ability to generahze easily.

A characteristic feature, developed in the course of several

years of teaching college freshmen, is the introduction early in the

course of the fundamental laws of algebra. When the student

once recognizes these foundations and the continuity of the sub-

ject is pointed out to him, there will be a higher degree of interest

in the facts of algebra accompanying a more intelligent compre-

hension of their relations, and, in consequence, they will be more

readily retained and more easily applied in later work.

PUBLISHED BY

THE MACMILLAN COMPANY
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Trigonometry

By DAVID A. ROTHROCK, Ph.D.

Professor of Mathematics in the University of Indiana

Cloth, 8vo, xi + 140 pages, $1.40

In this work the author has prepared a text-book which will

serve as a basis for courses in plane and spherical trigonometry

as ordinarily presented in advanced, secondary, and elementary

college courses. The book is not particularly different from a

number of other text-books on trigonometry in its plan, but the

author has placed special emphasis upon drill work in the trigo-

nometrical identities, upon the applications of trigonometry to

practical problems, and upon approximate calculations by means

of natural functions.

For the benefit of those who may wish to pursue advanced

courses in mathematics a brief discussion of analytical trigo-

nometry is presented in chapter 10. In Part II the elements of

spherical trigonometry are developed in so far as to include the

ordinary formulae necessary in the solution of right and oblique

spherical triangles. Especial attention, too, has been given to

the preparation of a really satisfactory set of tables which are

included in the back of the book. These tables have been so

arranged as to emphasize in the student's mind the advantage

of an orderly arrangement of trigonometrical calculations.

The book will be found a very satisfactory introductory course

in the subject.

THE MACMILLAN COMPANY
64-66 Fifth Avenue, New York
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