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PREFACE

Although fifty years have passed since the invention of

Anharmonic Coordinates, no book, I believe, has hitherto

been written on the subject. The explanation of them

given by their inventor. Sir W. R. Hamilton, in his

Elements of Quaternions, is short; the space devoted to

them by Professor P. G. Tait and Mr. C. J. Joly in their

works on Quaternions is still shorter; and they are not

referred to at all in ordinary books on Coordinate

Geometry. Whatever value be assigned to them, we ought

not to allow a method devised by a great British mathe-

matician to be altogether forgotten. These considerations

may justify the publication of the present attempt to fill

in the details of Hamilton's outline.

The book lays no claim to originality, and confines itself

to the application of the method to well-known geometrical

theorems. Mistakes will no doubt be detected, but I trust

they will be few and unimportant.

19^^ June, 1910.

208548
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CONVENTIONAL SIGNS

1. A= any straight line.

2. A„ =the line at infinity in the plane (saves 27 letters).

3. AB^ etc., is occasionally used to distinguish the vector AB from the
Euclidean line AB.

4. AB'GD^\hQ cross of the line AB and CD.

5. ^2+^2+ yj2= 2?2. (^+^+ 7^)2= 22^.

6. Si = s — a, S2= ^~^> ^3= *~<^- Area of triangle= ^^55^5^ s^-^s^= a^

etc., etc.

7. ^ i^xyz)= (ji {x, y, z)= w^2^ ^2/-+ 1^^^+ 2u'yz+ 2?;'0^ 4- 'ifw'xy.

8. i^Cp^rr) = C^p2+ pr^2+ TFr2+ 2 C^'^r+ 2 F'/p+ 2 PT'p^.

9. A is the discriminant of ^{xyz).

10. Z) is the bordered discriminant of <^{pcyz).

11. -4, J5, (7 are the coordinates of the centre of cfi(a^z)= 0. In the
places in which they occur they cannot be confounded with the
corners of the given triangle, ABC.

12. Z^ is a certain function of the coordinates of a straight line.

13. 12^ is the tangential equation of the cyclic points.

14. The nine-points circle is occasionally referred to shortly as the
IX circle.

15. II, 5° means Chapter II, section 5. II, (5) means Chapter II,

equation 5. (5) alone means equation (5) of the chapter in

which the reference occurs.
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CHAPTER I

PLANE GEOMETRIC NETS

1". In framing his method of Anharmonic Coordinates,
Sir William Hamilton made use of a plane geometric net
constructed somewhat on the plan of Prof. Mobius.*
Regarding every point of the net as the term of a vector
drawn from the origin, he deduced a general vector expres-
sion which, by a suitable choice of certain coefficients,

would represent the vector of any one of these points,

which he called " the rational points " of the net. He then
proceeded to show how this general expression could be
very simply modified so as to represent any point in the
plane, not included in the net. These points he called " the
irrational points " of the net.

Let any four points. A, B, G and (fig. 1), no three of

which are collinear, be taken in the plane, and let the six

lines, OA, OB, OC, CA, AB, BG be drawn. Then if the
vectors OA, OB, OC be called a, /3, y, three scalars I, m, n
can always be found such that •

la-\'m^-\-ny = 0', .../. (1)

and if a, jS, y produced meet the sides of the triangle ABG
in A\ B\ a,

BG_± CA^_m ^_n, ,^.

Conversely, if three coinitial vectors a, ^, y, when pro-

**'It was by combining some parts of (Mobius' Barycentric) Calculus

with Quaternions that I happened to form the conception." MS. C, 1860,

64, Trinity College, Dublin, p. 51, kindly lent to the British Museum for

my use by Dr. Abbot, Librarian, T.C.D, A large part of this MS., which
consists of letters from Sir W. R. Hamilton to Dr. (Sir) Andrew Hart, is

devoted to the anharmonic treatment of cubic curves.

t Outlines of Qiiaternions, by the present writer, p. 14.

H.C. A



PLANE GEOMETRIC NETS

duced, cut the sides of the triangle formed by their terms
in points A\ B, C such that

Ba_l^ CA^__m AE_n,
CA^m' A'B~n' RC~l'

then ^a+ 7>i/5+ 7iy= (3)

0, A, B, C are the cardinal points of the net, and ABC is

the given triangle.

^ B' C
Pig. 1.

If lies without the triangle, two of the ratios of (2)
are negative. In this case we may take one of the three
scalars as negative and the other two as positive.

The values of I, m, n are subject to certain limitations.

First, all three of them must have an actual value. For
suppose that one of them, say n, is zero. Then, la+m^ = 0,

and since a and /? are not parallel vectors,

^ = 0, m = 0,

and the net shrinks to the point 0.

Secondly, we must have 2+mH-ti =1=0. For let



CHAPTER I

Then (&g. 2)

= ^a+m^-(^+m)y=^(aZ-0O)+m(a5-0a)
= lGA+mGB,

and ^ =^^
CA m

Therefore CB is parallel to CA,
or B lies somewhere upon the inde-
finite line CA, and the net shrinks
to the line CA.

Consequently, I, m, n must be actual scalars such that

l+m-\-n=\=0.

2°. The first construction is to draw the intersections
OA ' BC, OB ' CA, OC'AB. To find the vector of the point
OA'BC,ovA\

and

CA'=^OA'^OG=OA'^y) A'S^fi-OA')
CA' m
A'B n

and

Similarly,

Hence

{m-\-n)OA'= mfi-\-ny

7n-\-n

n+ L 64-m ,

.(4)

3°. The second construction is to draw the intersections

BC ' BV\ CA ' CA\ AB • A'B', OA • B'C, OB • CA', OC • A'B.
By pursuing the plan indicated in 2°, we get

m^n OC":
l— TYl

^ ~ 2l+m-\-n ' ~ ^+2m+7i '

OC la-{-7nl3-{-2ny

l-{-7ii-{-2n

.(5)

4°. A third construction would give 84 new points, and

the process might be carried on indefinitely—Hamilton

investigated some thousands of points ; but however far it



PLANE GEOMETRIC NETS

be continued the vectors of the rational points of the net
are all of the form :

•(6)
__ xla+ym^ -f zny_ l^xla

^~~ xl+ym+zn ~ Xxl'

where x, y, z are whole numbers (or proportional to whole
numbers) and the denominator is the algebraic sum of the
coefficients.

5°. Let R (fig. 3) be a rational point, the lines through
it from the corners of the triangle cutting the opposite

sides in -B^, i^g, -Kg. Thus, (6),

Qj^^ ^ xla-\-ym^-^zny
^ xl-\-ym-{-zn

'

and 0=^xl(a — p)-\-ym{/3—p)-hzn{y— p)

= xlRA +ymRB+znRG,

Therefore, (2),

BRo «^. CR^_ym^ AR^ zn
R^A ym' Rfi zn' Rfi xV .(7)

Fig. 3.

Now suppose R to be an irrational point whose position

in respect to the given triangle is given by the ratios

:

BR^^p. CR^^q. AR^^r
R^A q' R^B~r' Rfi~~'p

Then, (3), =pRA +qRB+tRG
=^(a-^)+ g(/3-p)+r(y-p),

and Oi2=p=^^±^^
'^ p+q+r (8)
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Comparing this expression with the standard form (6),

x=pl~^; y — q7n~^\ z= m~^.j

Substituting these values of x, y, z in (6), we get for the

vector of the irrational point i2,

^~ (2?^i)i+(gm-i)m+('r7i-i)7i ^ ^

The vector of any point in the plane may be thus

reduced to the standard form.



CHAPTER II

THE POINT

1°. The anharmonic function of any four collinear points,

A, B, G, D, is defined to be

(ABCD)^^^ W
Let OJ; ='^^"y^+^^y

,
(fig. 3). Then AB is cut in

C in the ratio I : m, and by R^ in the ratio xl : ym ; GA and
BG being divided in corresponding ratios. Hence

G' AOBR= {AG'BR.)=^^ ^=^-'^^ "^^
I ym y

A'BOGR==(BAVR,)=-^= ^
TYh zn z

B ' GOAR= {GEAR.) = i ^ = £.
^ ^^ n xl X

•(2)

The product of these three anharmonic functions is unity,

and any two of them suffice to determine the position of R
when the triangle ABG and the origin are given. Hence
the name Anharmonic Coordinates.

Definition. The three coefficients x, y, z, or any scalars

proportional to them, are the anharmonic coordinates of the

point R.

The point R is denoted by the symbol

R = {xyz).

2°. The 13 rational points shown in fig. 1 are symbolised
as follows.

The vector of the origin (from itself to itself) is zero.

Now the standard expression, I, (6), becomes zero when
x— y = z, since la+m^ -\-ny — ^. Consequently, = ( 1 , 1 , 1 ),

or any three equal numbers.
For the point A, p — a\ and to reduce the standard ex-

pression to this value we have merely to equate x to unity

(or any multiple of 1), 2/ to and 2; to 0. Consequently,



(3)

CHAPTEK II 7

A = (1, 0, 0). Similarly, B= (010) and (7= (001)—omitting
the commas.

For A\ we have, I, (4), ^^ ^Z^+^V Consequently
771' "^ ih

^'= (011). Similarly, ^' = (101), C'= (110).

For A'\ I, (5), ^=
^/^-^y

. and ^'' = (OlT)-the minus

sign being put above the line to save space. Similarly,
^'= (101), (7"= (110).

For A'", I. (5), .=^^15^; a,d ^^^^=(211).

Similarly, ^'^= (121), C"" = (112). And so on.

To recapitulate

:

= (111)

^=(100) 5= (010) (7= (001)
^'= (011) 5'= (101) (7' = (110)

^"= (011) ^"= (101) ^"= (110)
^"' = (211) 5'"= (121) C""= (112)j

3*". Irrational points are symbolised in a similar way.
For instance, let 31^ be the middle point of BG. Then,

^'(^^)' -mr _ |g+y _ (m-^)m/3+(^-^)^y

Hence M^= (om -% - ^) = (oTi^n). Similarly for the middle

point of GA,M^^ = (l-''on-'') = (nol) ; M^=-(l-^m-^o) = (mlo\
Again, lines through the incentre, /, cut BG in the ratio

a : b, etc., etc.

Therefore, I, (9), x = al-'^; y = bm-'^; z = cn-\ and

I=(al-'^, hm-'^, cn-'^).

The following are the coordinates of some irrational

points

:

Mean Point, M . (l~'^m-'^n~'^).

Incentre, / . . (a^"\ 6m -\ cn-'^).

6-excentre, /& . . (al-\ —hm~'^, cn-'^).

Symmedian Point, S (aH-\ ¥m-\ c^n''^).

Brocard Points-^ ^ . 0707 / 79 9 1 92 i\

Orthocentre, P \ (VHan ^ , m -Han 5, ti "Han C).

Circumcentre, Q . (V^sin 2A, m-^sin 25, n-'^ sin 2G).

Midcentre (IX circle) {
^
" ^ (tan A + X tans),

m-i(tan5+2 tans), {n-\ta>n (7+S tans)}.^

(4)



CHAPTEE III

THE STRAIGHT LINE

Let OA=p,^^ and OB=p,=U (fig. 4) be

two given constant vectors, and let a

third constant vector, OR= p= -yr-j-y

cut BA so that BR :RA=f: g. What
are the coordinates of the point R in

terms of A and B ?

By an elementary principle of

vectors,*

(f-^9)p=fpi+9P2

p=
{fx-^^-\-gx^x^)la 4-{fy^x^+gy^x^)m^-^ ...

{fx^x^-\-gx^x^)l^{fy^x^-\rgy^x^)m-^ ...

'

Tj . xla-i-ym^-^zny
X>Ut p — J— ; .

'^ xL+ y7n-{-zx

Therefore x —fx^x^+gx^x^, \

y=fy^x4.-\-gy^J.x^, \ (1)

z^fz^x4.-\-gz^x^, J

the sought coordinates.

Ex. 1. The coordinates of A', which cuts BG in the

ratio m : n.

a;i= 0, 2/1= 1, % = ; ^Ix^= m.

a52=^» 2/2= 0' 2^2= 1 ; 2^= n.

* Outlines of Qitatemions, p. 12.

(r = 0, 2/ = T/iTi, z= m'?i.

^'= (0,7^72,7X1^) = (011).
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Ex. 2. The coordinates of M^, the middle point of GA.

iCj = 0, 2/1 = 0, 01 = 1 ; ^lx^ = n.

M=^{nol)=^{l-\o,n-^).

Ex. 3. The coordinates of R, the term of /a= f y.

R= (n, n, 2l+2m+Sn),

051 = 1,2/1= 1,01= 1; 2^iCi= 2Z.

a^2= ^'2/2=^> 2^2=1; 2ia;2= '^-

/=l;sr= 2.

The following is a method of determining the co-

ordinates of a multiple or submultiple of a given vector,

^¥fl
' ^ being a proper or improper fraction,

or a whole number.

p , xla+ 2/^/3 -h ^tly_ t fla+ grm/3+/my
^^^

2SZ "^ Wl
*

Dividing across by z and eliminating y by means of the
equation la-^rrip-\-ny=0, we get an equation of the form

whence (M-P)a = (Q-N)^.
Therefore, since a and /? are not parallel,

if-P= 0; Q-i\r=o,
X y

two equations to determine the value of - and -.^ z z

It will be found ultimately that

x-.y.z

=(^j-\)yi+m (^j-i)vi+g^l
:

{~-l)2fl+h-2l. ...(2)

Ex. 1. Let l:m :n= S:l :2. To find the coordinates

of Ja.

Here/=l,^= 0,/i = 0; 2/^= 3; 21 = 6; |-1 = 2.

Therefore aj = 2x3+ 6; y= 2xS; = 2x3,

and x:y:z= 2:l:l.

^ ^, , 2^a4-m^4-'^2'y 6a+j8+ 2y
Consequently, ia= o;_^.,^^ = o

•

2l+ irb-\-n

Verification.

2la+ ml3+ny _ {la-\-m/3+ny)+ la _Sa _1
^

2l+m+n ~ 9 9 3^*
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Ex. 2. The coordinates of — a.

Let l:m:n=^\.

Here - —1=— 2 and a; : 2/ :2;= 1 : — 2 :--2.

Verificaticnt.
„+^^^^=?(2±|±V> = 0.— o o

Ex. 3. The coordinates of the unit-vector of a, Ua or -,

a being the tensor of a. Here - — 1 = a— 1 and

x:y :z= al-\'ra-\'n:{a—\)l :(a— 1)Z.

or if ^ :m:'r2,= l,

^7^^ (^+ ^)«+(^-l)i^+(«-l)y^ 2a-g-y^a
3a 3a a*

Similarly, f,(_„)=(jL:i2)£±(«+M±(^±l)y.

The coordinates of a point can only be obtained from
the expression of its vector when this expression is in the

standard form, I, (6).

2°. Instead of being a fixed point, let jR be a variable

point with the indefinite straight line AB for its locus.

In this case / and g may be any two scalars whatever, and
the coordinates of any and every point upon AB are of

the form _ / _i_ ^

y = ty^-\-vy^, - (3)

where t and v are arbitrary scalars.

Conversely, any point in the plane whose coordinates are

of this form is collinear with A=(Xiy^z^) and B= {x^y^z^.

By hypothesis,

^ (tx-^+ vx^la+ {ty^+ vy2)^^/3

+

(^^1+ '^^2)^7

^ (tx^+ vx^jl-^ (ty^ -\- ^2/2)^+ (^%+ ^^2)'^

__ t^^la+ v^xjLa
""

tJ^X-^l+ vI^x^l

(t^x^l+ v^Xcp)p— t1.x^a — vLxj^a — 0.
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But and P2
llxjia

(by n
Therefore {tlx^l+ vl.xj.)p- tp^ljcj,- vp^xj.= 0.

Now the sum of the coefficients of these three coinitial

vectors is zero. Therefore R, A and B are collinear *

3°. If t and v be eliminated from the three equations
of (3), we get

which may be written

px-\-qy-\-rz=^0,

or X

x^

Xa

0.

(4)

(5)

(6)

y ^

Vi ^1

2 2/2 ^2

Equations (4), (5) and (6) are the equations of a straight

line, since they express the condition that the variable

point (xyz) shall be always collinear with the two fixed

points J. =(iCj2/i%) ^^^ ^= (^22/2^2)- "^^^ coefficients of (5)

are the anharmonic coefficients of the line, and the line is

denoted by the symbol

4°. The equations and symbols of the lines of the net

(fig. 1) are as follows

:

BC passes through B= {010) and O=(001), II, (3).

Consequently, (6),

0;

X y z

1

1

or, x= Oy the equation of BC.

lines are similarly obtained.

The equations of the other

Lines. Equations. Symbols.

BC x= (100)

CA 2/ = (010)

AB z = (001)

OA y-z = (Oil)

* Outlines of Quaternions, p. 12.
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Lines. Equations. Symbols,

OB z-x= (101)

OC x-y=^0 (ITO)

AA" 2/4-^=0 (Oil)

BR' z+x=-0 (101)

CC' a;+2/ = (110)

A'^RV' x+y+z= (111)

RC y-\-z-x^O (in)
C'A' z-hx-y^O (111)

A'R x+y-z = (111)

R'V'' 2/+^-3a;= (311)
0"'^'" 04-a;~32/ = O (131)

A'^'B'"' x-hy-Sz= (113)

A« ia;^-m2/+ '?^2; = (Imn)

5°. If we have three vectors OA=a, 0B = /3, 0(7= y, as

in fis:. 2, and if i . rx

I and 771 being constant; then the point G lies on the

line AB, which it cuts in the ratio -.HI and m are

variables,
^

xa-\-yfi

^ x+ y

expresses that the locus of C is the indefinite line AB.*
In a similar way, when x, y, z are constants and the

denominator of I, (6) happens to be zero, the expression

is the vector of a point R which is infinitely distant ; and
when X, y, z vary, it implies that the locus of R is the

line at infinity, A^. Hence the linear equation

Ix+ Tny -i-nz^O (7)

is the equation of Aoo, being a constant relation between
the coordinates of every infinitely distant point.

To illustrate this geometrically: let the point P = (xyz)

recede to infinity (fig. 5). At the limit, AP2 and Pfi
become parallel, and

BP^_BA _ BP^'-AP^ _ BP^
P^G^AP' AP^ ~-PA

*See Outlines of Quaternions, p. 13.
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Therefore, I, (7),

and
ym~ ym '

lx-\-my-^nz= ^.

Fig. 5.

6°. The coordinates of the cross of two given straight
lines {p^q{r^) and {p^qc^r^).

The sought coordinates {tuv) must satisfy both the given
equations. Therefore

Consequently,

t _ u ^ V

Therefore the coordinates of the cross are the cofactors
of X, y, z in the matrix

X y z

Pi ^1 n
P2 92 ^2

Ex. The cross of (pqr) and A..

.(8)

X y z

p ? r

I m n

The cofactors of x, y and z and the coordinates of the

cross are {nq — mr, Ir—nr, mp— lq).

T. The coordinates of the cross of two given lines,

(i^i^'i'^i) ^^^ (p2?2'^2)' i^ust satisfy the equation of any
third line {p^q^r^ which passes through it. Therefore

^3(^1^2- ^2^1)+ ^3(^1^2- '^2Pl)+ ^3(:Pi5'2 -P29l)= ;

or, the condition that the three lines shall be concurrent is,

Pi <li

P2 ^2

Pz ^3

= 0. .(9)
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Ex, For BG= (100), CA = (010) and 00= (110), we have

= 0.

1

1

1 1

8''. The coordinates of a straight line passing through
the cross of two given straight lines.

Whatever loci be represented by the equations, X = 0,

X'= 0, both these equations are satisfied by the coordinates

of the points of intersection of X and X\ Therefore if k
be an arbitrary scalar, the equation, X-^kX' = 0, represents

a locus passing through all the points of intersection

common to X and X' ; for it is satisfied when X = and
X'= are simultaneously satisfied. Now two straight lines

intersect in one point only. Therefore the linear equation,

A 4-^A'= 0, represents a straight line passing through the

cross of A and A'. Let ^= t. Then
z

= A-\-kA'= tA+vA'

»=(^i>i+'?^i52)a;+(^^i+'yg'2)2/+(^^i+W2)2; (10)

Therefore the coordinates of any straight line passing

through the cross of two given straight lines, (PiqiTi) and

(P2^2^2)> i^ust be reducible to the form,

{tpi-\-vp2, tq^+vq^, tr-^+ vr^}.

And the converse.

Ex. If we take ^ = 1 and v = — 2, we find that one of

the lines passing through the cross of ^"-B'' = (lll) and
^-B=(001) (fig. 1) is x-^-y-zr^O, which is A'F.

9°. If ^i= (Piqi^i) and A = (pqr) are parallel, they concur

in Aao ={1^^.71). Therefore the coordinates of A^ must be

reducible in the form,

{tp+ vl, tq-{-vm, tr-\-vn},hy 8° (11)

Conversely, any two lines whose coordinates are of the

form (pqr) and {tp-\-vl, tq-^vm, tr+vn} are parallel.

If the line {tp+ vl, tq-\-vm, tr-{-vn] passes through a

known point, (fgh), we have

{tp+ vl)f-\- {tq -fvm)g+ (tr+vn)h= 0,
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and consequently,

t _ --(fl+gm-^hn)
v" fp-\-gq+hr

'

by means of which relation we can calculate the coordinates
of the parallel to (pqr) through (fgh).

Ex. 1. The equation of a line through B, parallel to CA
(fig.i).

Since the equation of CA is y — 0, any line parallel to it

must be of the form,

lx+{t+m)y+nz= (a)

In the present case this equation must be satisfied by
the coordinates of B= (010).

Therefore t+m — O,

and (a) becomes lx+nz=^ 0.

Verification. This parallel, CA and A„ are concurrent.

Therefore

I TYi n
1 =znl-nl= 0.

Ion
Ex. 2. The equation of a parallel through C to OA,

lx-\'{t+m)y+ (-t+n)z = 0.

This equation must be satisfied by the coordinates of

C=(001). Therefore

^t-{-n = and t= n.

Consequently, lx+(m-{-n)y = 0,

the required equation.

Cor. A„ is parallel to every straight line in the plane.

10°. The angle contained by two given straight lines

{^g. 6).

(a) Let the two lines be (par) and (pW), which pass

through the corner B of the given triangle. These lines

cut CA in P= (rop), and F = (ropy

Therefore pa^-jT^ PV-~W"
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Let the angles which BP and BF respectively make
with AB be B and 0'. Then

AP csin^ AF csinO'

PC a sin (B'-ey FCamniB-'e')'

B

Fig. 6.

Consequently,

. ^ anp sin B . ^, anp' sin B
tan 6= ^-^

J- ; tan = ,
^ ^ p-,

.

aTip cos B— clr anp cos i) — cLr

If ^ be the angle between the given lines, (jt — O'^O', and

. . J. //^ /i/x tan 0— tan 0'

Substituting in this equation the values of tan 6 and
tan 0' given above, we get

, . nacl sin Birp'— r'p) .-..
tanrf.= ±y2-2—7- 2-2 ^

7 p/ / , . v (12)7- t^c^rr -\-n^ayp —nlca COS B{rp +rp) ^ ^

If the two lines are at right angles, tan ^ = oo and

Pc^rr'+ n^a'^p'— nlca cos B{rp' -f r'p) = 0, ......( 13)

the relation between the coordinates of two straight lines

which intersect at right angles in B.

(b) Let (Piq^i^i) and {P'^fl-f'^ intersect in any point in the

plane.

The equations of parallels to them through B are

{Iq^— mp^x-^ (nq^ — mr^)z= 0,

(Iq^- mp2)x+ (nq^- mr2)z= 0.

Substituting the coefficients of x and z in this equation
for r and p, r' and p' , in (12),

I 'ffi n
iTnnca sin B

tan0 = P2 92

— hnn { the cos A {q^r^+ qc{r^

+mca cos B(r^p2+ ''"2^1)

+ 7ia6 cos C^(jPi^2+i^29'i)}

.(14)
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If the two lines are 2/= and px-\-qy-\-rz = 0,

, J .
mc sin ^ (7109 — Cr) _.,tan0=± 7^ T[~i— T- (16)^ mna 008 Cp — nlhq-^lmc cos Ar ^ ^

(c) If the two lines are rectangular, tan ^= oo and

— lmn{lbc cos A (q^r^+ q^r^)+mca cos B{r^p^+ r^p^)

^nahco8C{p^q^-\-p^q^)}, (16)

which may be written

mna^{(mp— lq){np'— Ir')+ {mp'— lq')(np — Ir)}

+ nlh'^{{nq - mr){lq'— mp')+ (ti^''— mr'){lq - mj?)}

+ l7nc^{(lr— np){mr'— nq')+ (Zr'— np'){mr— nq)} = ;

or if the given triangle be equilateral and its mean point
the origin,

2pp'+ 2qq'+ 2rr'= qr'+ gV+ rp'+ '»"'p -\-pq'^pq-
It appears from these expressions that A«, is perpendicular

to every straight line in the plane.

Ex, Let lines be drawn from the corners A and G of the

given triangle to some point {x'yz'), with the condition that

these lines shall be at right angles. What is the relation

between the coordinates of ^X and GX under this con-

dition ?

The equations of the lines are

z'y — y'z= 0, and y'x—x'y — O^

and by (16)

— nH^y^z'x'— iTYinilhc cos Ax'y — mca cos By^

+nab cos Gy'z')= 0.

Suppose X to be a variable point, and omitting the

dashes, we have

m^ca cos By^—mnah cos Gyz— nlhhx— Imhc cos Axy= 0,

the equation of a circle with the line GA for a diameter.

11°. If a line {p'q'r), perpendicular to a given line {pqr),

passes through a given point (fgh), we have the equation,

2-fjf.^n-\.h= 0. Thecondition (16) gives another equation
r r

to determine the ratios^, K Solving these equations we get
r r
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'p'= l^(nq— mr)(7ng+ nh)hc cos A
— lm^g{lr— np)ca cos B—nHh(mp— lq)ab cos C,

q'=— l^mf{nq— mr) be cos A
-{'m^(lr-np)(nh-{-lf)caco9B} (17)
— 7nn^h{7np— lq)ah cos C,

r'= — nl^f(nq— mr)hc cos ^ — m^ng(lr— np)ca cos J5

+'M2(7?ip— lq)(lf+7ng)ab cos (7,,

the coordinates of a line which passes through the point
(/^A) and is at right angles to the line (pqr).

This equation holds good whether the point (fgh) lies on
or off the line (pqr).

Owing to the complexity of these expressions, which are
often wanted, it is frequently simpler to let fall a perpen-
dicular on (pqr) from one of the corners of the given
triangle and find the equation of a parallel to it through

12°. The connexion between Anharmonic and Trilinear

Coordinates (fig. 7).

Let ABG be the given triangle and the given origin.

/

Let P be any point in the plane \Jixyz) its anharmonic
coordinates; PP^= a, PP^= ^, PP^ = y, its trilinear co-
ordinates ; 00^= S, 00^= 6, OO3 = f, the trilinear coordinates
of the origin 0. Then

l:m:n= OBG:OGA:OAB= aS:b€:cn .^^.

and S:e:^=bcl:cam:abn. f

Again. Iximy: nz=PBG:PGA :PAB= aa:b/3:cy. ...(19)

Hence a : /3 : y= bclx : camy : abnz,\
x:y:z= ,^a:^SP:S€y. / .(20)



CHAPTER III 19

Ex. 1. The trilinear coordinates of the circumcentre are
a = Ja cot ^, /S= J6 cot -B, y= Jc cot G. By (20), we get

Q= (Jm?i<x2cot^, j7iZ62cotJ5, JZmc^ cot 0)

„ = (i-^acos-4, m-i6cos5, 'm-^ccosC)

„=(^isin2^, m-isin25, 7i-isin2a), II, 3°.

Ex. 2. The anharmonic equation of Ao„ is

and by (19) this equation becomes, aa+ 6/34-cy = 0, the

trilinear equation of the line.

E.X 3. The trilinear equation of the Brocard circle is

a6c(a2+)S2+y^)=o^^i3y+6V+c^«A

This is transformed by (20) into

hhHV 4- &d?w?"f+ o^hH^z^- a^mnyz- ¥nlzx- c^^majy = 0,

the anharmonic equation of this circle.



CHAPTEK IV

LENGTHS, AEEAS AND ANGULAR FUNCTIONS

V. To find the distance between any two given points in

the plane, P^ = (x^y^z^), Pg = (^22/2^^2) (% 8).

Fig. 8.

By I, (8), the lines drawn from A through the given
points cut BC in the ratios

GP^^my^, GP^_my^
P^B nz^' P^B" nz^'

Let the vectors BC= a\ GA=^\ AB= y;
so that, a'+ /5'+ y'= 0.

Then, III, r, ^P^-^^^iV^^^i/^^

But ^Pi _ my^-{-nz^

Therefore ^P,=m^n!^.

Similarly, ^P^^Z^^^^^^!^'.

LetP2Pi= ^. Then

S-^AP^-'AP^

^liX-t t^LXa
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Vi ^1

2/2 ^2

x^
2/1

x^
2/2

21

be as usual,

(1)

Let the minors of the matrix
in, r, (5),

2/1 ^1 =P\ % ^1 =g; X, V. =r.

^, g, r being thus the coordinates of the straight Hne
passing through the given points {x^y^z^} and {x^y^z^).
Then

y^YLx^- y^lx^ =:np-lT', z^llx^- z^llx^ = lq-mp;

and ^_ {mnp--lmr)y -{nlq-mnp)0'
^tX-t JLl/Xa

_mnp {^'+ y)— nlgj^'— Imry

_ —(mnpa-\-nlq/3'+ Imry)
2jLX-i2jLXn

+ 2lmn{lqr . S^'y +mrp . /S^y'a'+npq . >Sfa'/3')

Now
^2= _d2^ -Pg^i'; «'= -«'. etc.; S0y= bcco8 A, etc.*

Therefore

d^2Hx^XHx^ =m%2^y^ ^2^252^2 _^ /2^2^2^2

— 2l7nn(lqrhc cos ^ + Tnrpca cos 5

+

npqab cos 0)

„ = mna^(7np— lq)(np— Zr)

+

nlb'^(nq~ mr)(lq —mp)
+ lmc^{lr— np)(7nr— nq)..

Let the right-hand member, which occurs frequently

be Z^ and , -h7
^^ =2^, (3)

If ^ : 771 : '}^= 1 and a— h = c,

Z^=p^+ q^-{-r^— qr-'rp—pq = (p-{-coq'i-co^r)(p+w^q'\-oor),

where w and co^ are cube roots of unity.

Ex. 1. The distance from J5 to C (fig. 8).

Here p =1, ^ = 0, r= 0; 2Za;i = m, 'Zlx2= n; Z=inna;
and consequently, (iwi^i= mna, and, c?= a.

^aj. 2. The distance from to ^.

p = 0,q = l,r=-l; 11x^ = 1.1,21x^= 1:

Z^= ^2(72,252^ ^2^2^ 2m'yi6c cos^ )

;

Ti^b^+ TTi^c^+ 2'??i'?i?)c cos A

(2)

and 0^2.
XH

* 5/3'7' is the scalar of the quaternion ^'y' ; Outlines of Quaternions, p. 47.
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If / (incentre) be taken as origin, limm^aibiCf and

J. __ 26c cos JJ.
~ a+ h-hc

*

If Q (circumcentre) be taken as origin,

l:m:n=8m2A:sm2B : sin 2(7, and

^ .^_ 6^(cos^jB+cos^ (7+

2

cos ^ cos

^

cos G)_ ¥ _ pg
^ 4sinMsin2J5 "4sin25"" '

2°. The perpendicular distance of the comers of the

given triangle from a given line A= (pqr)= (fig. 9).

Produce AB, AG to meet A in B= {qfo) and C'= {rop).

Let the perpendiculars from A, B, G he d^, d^, d^, and let

the function of the coordinates of BG' be Z. By (3) we
get the following lengths

:

Fio, 9.

AR^f^^^; BR=r=I^' ^C'=^;
Iq—mp Iq^mp np — lr

GG'=
"^^^

' B'G'= ^^
np—lr' {Iq— Tnp)(np — Ir)'

d^ . B'G'= 2 area ABV =-AB' .AG\ sin A, and

^ mnphc sin A ,..

^1=—^— w
t>4. da BB J do GG ,

J _ '^^qcGb sin B
-J

Imrah sin G

3*. The distance from the origin, 0, to any given line,

(pqr)=-0.
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Since la-\-7n^-{-ny = 0, is the complex mean point of

the system of points A, B, C, weighted with the given
scalars, I, 7n, n. Consequently, the perpendicular distance

from to any line is the complex mean of the distances

oi A,B, C from it ; that is,

T _^ld^-\'7nd2-{-nd^_l7nnhc sin A^p .^.
"*"

Tl '" ZTl ^^^

Ex. The distance from to CA.
The equation of CA being y = Oj 22? = ! and Z=nlh.

Therefore mc sin A
d n

- „
.
, . , , . . , 6c sin ^

If the mcentre be origm, d=
, i

,

=y'

Ti? i.1- • i 1. . . , c sin ^
If the mean point be origin, a=—^—

•

r„, ,. . /. ^ . ..A/TV/ . Slmnhc sin A ^. ,,

The distance from to A"B' is
j^j^

. If the

triangle be equilateral and its mean point the origin,

this expression becomes ^=^-

But in this case Z=0; therefore cZ= oo

.

4°. The perpendicular distance between two parallel lines.

Let e^ and e^ be the distances of the two lines from 0.

Then whatever be the position of 0,

Let Z^ be the function of A^ and Z^ the function of Ag.

^, , ^ ^ Imnhc sin A I^p^
Then, (6), e^= ^^Z

Now, since A^ is parallel to Aj, its coordinates are of

the form
(tp^-{-l, tq^+'rn, tr^+n).

Consequently, Xp.^^tlp^-^^l, and it will be found

that ^2= ^-^1-

— 1 Imnhc sin A //»v

Therefore d^^e^'-e^^—^ ^ W
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Ex. Let the parallels be GA and lx^my-{-nz = 0, a

line which passes through (cmTTi), the midpoint of BG.
Then t = — 2m and Z^ = nib. Therefore

, _ 1 Imnbc sin A _c sin J.

""2771 -71^6
" 2

5°. The distance from any point to a given straight line.

Find the value of the factor t for a parallel to the given

line through the given point and apply (6).

Let the given point be (fgh) and the given line (pqr).

Then t=
^fP

Therefore ^^^. ^mn^n^
^^^

Ex, The distance of the symmedian point from BG.
q2 52 q2. q}

Here /=p 5r=- /i = -; p = l, g = 0, r= 0; 2/jp = j;
2/^ = 2a2; Z^^inna. Therefore

J
_ CI?' bnnhc sin J. _ a6c sin il

lHa'^ mnna ~ 2a'^

6°. The area of a triangle in terms of the coordinates of

its corners.

Let the corners of the triangle EFG be

E={x^y^z^), F= {x^y^z^), G = (x^y^z^),

and let the function of FG be Z^. The equation of FG is

(2/2^3- 2/32^2)^+ (^2^3- ^3^2)2/+ («^22/3- «^32/2)^= ^•

Therefore

^1 = 2/22^3-2/3^2; 5'i = 2;2a;3-03a;2; n =^22/3 -^32/2-

The length of i^^G^ is , ^ . For a parallel to i^G^

through £',

^^ -^K^ -llx^
.

spio^i i«^i2/2%r

and the perpendicular from E on i^(? is

, _ Imnbc sin A
\
x^y^z^

\^""
Z^ElXj^

*

A rtrtry ^ 7 n/^ Imnbc SlTi A .„.
Area^^(? = Jd.i'e= 22;^^^S;2Z^ «=, y, ., .

...(8)

X,
2/i 2^1

^2 2/2 ^2

a?3 2/3 ^3
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As verification, (8) becomes —^— when EFQ is the
given triangle.

V. The sine of an angle—the angle E of the triangle

EFG, 6°.

Let the functions of the coordinates of EQ and EF be

^2 and Z^.

Then the length of the perpendicular from F on EO is

_ Imnbc sin A
\

x^y^z^
\

The length of ^^ is ^1^^.
Therefore

p bnnhc sin A2lx^\x^y^s\ .

''^^=SF= zj, (^>
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THE GENERAL EQUATION OF THE SECOND DEGREE

1°. The general equation of the second degree,

ux^+ vy^+wz^+ 2u'yz+ Iv'zx+ 2w'xy = 0, (1)

represents in general a conic section, because it is cut in

two, and only two, points by every straight line in the

plane.

2°. Differentiating successively with respect to x, y, z,

(2)

^-^=nx-\'wy'\-vz=^4>^y

ldd>

1 d<f> / , / ,

:^'^= vx-{-uy+wz = <j>z.

Obviously, X(t>^-\-y(l>y+Z(l>;,= (l>{xyz) (3)

Multiplying the 3 equations of (2) respectively by x\ y\ z\

= {ux-\'w'y+ v'z)x'+ {w'x+ ^2/
+ 'W''^)^' •\-{vx-\- vJy+ wz) z'

„ = {nx!+ w'y' 4- v'z')x+ {yo'x!+ vy'+ v!z')y

+ {v'x'+ 'oJy'+ wz')z

» =x<l>^+y<Pv^Z(l>,, (4)

3°. Suppose that

(j>{xyz)= {]px-\-qy+rz){'p'x+ q'y-\-r'z)=^(),

the product of two straight lines. Then

<t>z=p ip'^+ q'y+ ^'^) +?' iv^ -^qy-^ '^^^

<t>y= q(p'x-^q'y-\-rz)+ q'ipx+ qy-^rz),

02 = r{p'x+ q'y+ r'z)+ r'(px+ qy+ rz).
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Hence the three equations, (p^= 0, ^y= 0, <pz= represent
three straight lines passing through the cross of (pqr) and
{p'qy)y III, 8°. Therefore the three straight lines (^^^t;V),

(w'vu'), {v'u'w) are concurrent, and consequently. III, (9),

u w V

w V u'

v' u w
.(5)

or, =uvw+ 2u'v'w'— uvf^— vv'^— ww"^.

.(6)

This determinant is the discriminant of (jiixyz), and
expresses the relation between the coefficients of the function

when it is the product of two linear factors. In future it

will be designated by A, and its minors will be designated

as follows

:

v'w'— uv!= V ; w'v!— vv'— Y' ; u'v'— ww'= TT',

YW- U'^= uA ; Y'W- UU'= u'^, etc., etc.

U W Y'

W Y U' =A2.

Y' U' W
4°. Given the coordinates of X' — {x'y'z'\ one point of

section of a conic by a straight line FX
(fig. 10); to find the coordinates of the

second point of section, X.
Let X— {xyz) be the second point of

section, and let F={fgh) be any point on

the given line. Then, III, (3),

x=x'+tf, y^y'+tg, z= z'+th. ...(a)

Since x is on the curve,

0^u{x'+tff+.,. 2w'(x'+tf)(y'+tg)

„ = 4>{fgh)t^+2{f<p^+g4>^+H,)+<l>{x'y'zy

Now since {x'y'z') is on the curve /F
^^^ ^^

ct>{x'y'z')— 0, and, consequently, one root

of the quadratic (corresponding to X') is zero. The other

root is

-2(/0^+5r0j^+ A0^)
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^^f<Paf'^9<Pv'-\-^^<px^ = o-, and we have from (a),

the sought coordinates.

5°. Were the line FX (fig. 10) to revolve to the left-hand

in the plane round X', at a certain moment X would coincide

with X'. At this moment

^=2/'; y=y'\ z=z\

and FX\ which then passes through two coincident points

of the curve at X', becomes the tangent at this point. Now
we obtain these three equalities from (7) when

When, therefore, this is the relation between the co-

ordinates of F and X\ FX' touches the curve at X\

By 4°, (a), /=^. s=^', h='-^.

Consequently, FX' touches the curve when

X(t>x'+ y(t>y+ z<t>r- ^(^Yz) = 0,

or since (f>{x'y'z') — {)

when ^Va;+ 2/Vy+ ^V2= ^ (^)

This is the equation of the tangent to the conic at {x'y'z'),

6". The condition that a straight line shall touch a given

conic. Let {pqr) be the line and {fgh) its point of contact.

The equation of the tangent at this point is, (7),

fl30/+2/^^+2^0A = O.

But 'px-^-qy-^-rz^O.

Therefore ^^=^= ^=:(say)-Aj.

Therefore u/+w'g+ v'h -^pk— 0,

w'f+vg-{'U'h-\-qk= Oy

v'f'\' u'g '\-wh+rk — 0.

Also 'pf+qg'\''^^=^*

since {fgh) lies upon the line {pqr).



CHAPTER V

Therefore

=

p q r

u w' v' p
w V u q

v' v! w r
+ 2V'rp-{-2W'pq ...(9)

==F(pqT)

is the condition for the tangency of the given line (pqr).

T. Let F={fgh) be a fixed point, and let a straight
line passing through it cut a conic in ^i= (x-^yiZj) and
-^2= (^22/2^2)- ^^^ tangents at these points are, (8),

^i<px+ 2/i0y

+

^i<pz= ; X2(px+ y2<l>y+ 2^20z= ;

and for their cross,

Vl^l-y^^l 2^1^2-2^2^! a^l2/2~^22/l

But since i^, Zj, Zg are collinear.

From (a) and (b),

f<t>x+g4>y+Hz= ^> (l(>)

the equation of the polar of {fgh) in respect to the conic

<p{Xy y, z). For this equation, being independent of X^ and
jTg, represents the locus of the cross of the tangents drawn
at the two points in which any straight line whatever,

passing through F, cuts the conic. Secondly, being of the

first degree, it shows that the locus of the cross of all these

tangents is a straight line. Thirdly, being identical in

form with the equation of the tangent, (9), it shows that

when the pole, F, is on the conic, i.e. when it moves
towards the curve along FX^ and ultimately coalesces with

Xj, its polar is the tangent at this point.

8°. Let the pole of px+qy^-rz^() be {fgh). Then, (10),

its polar is
^^+^^2^+ ^^^=

and px-\-qy+rz-0.

Therefore i^^is^h^^k,pqr
Hence uf+ w'g+ v'h+pk= 0,

wy+vg+u%+qk==0,

vy+u'g-hwh-^-rk^O.
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Consequently,

h --k

w' v' p u V p u w' p u w' v'

V u' q w' u' q w' V q w' V v!

vf w r v' w r v' u' r v' u w

...(11)

or, treating the constants p, q, r as variables,

f:g:h= Up-{- W'q-^ rr:W'p-\- Vq-^U'r: V'p+ U'q-\- Wr
„ =Fp\Fq: Fr.

9°. (a) If the point (fgh) lies on the polar of the point

{fg'h'), then (fg'h') lies on the polar of (fgh).

The polar of (fgh) is <l>fX-\-(Pgy+ (f>j,z = 0, (a>

» (/y^Ois ^f'X+ <l>g>y+ (j)h'Z = (6)

If (fgh) lies on (6),

= <Pff+ <t>^g+ ^n'^^ = 0//+ <l>gg'+ <t>Kh\

which is the condition that (fg'h') should lie on (a).

(fgh) and (f'g'h') are conjugate points.

(h) If a straight line (pqr) passes through the pole of the
line (p'q'r'), then (p'q'r) passes through the pole of (pqr).

Let (fgh) be the pole of (p'qV). Then the polar of

<t>/^+ (pgy+ (phZ =

p'x+qy+ r'z= 0.

pqr
uf-\-w'g-\-v'h-\-pk= 0,

wf-\- vg+u%+ q'k — 0,

vf-\- u'g \-wk-\- r'k= 0.

Also pf+qg+rh =0,

because the line (pqr) passes through (fgh), the pole of
(p'qV).

(fgh) is

and

Consequently,

Therefore

Therefore u w' V p
w' V u' ^'

v' llf w r'

V

=

is the condition that (pqr) should pass through the pole of

(p'cfr').
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But this matrix is identically equal to

w' V u' q
v' vJ w r
'p' q' t'

which for similar reasons is the condition that {p'q'r')

should pass through the pole of {'pqr). (pqr) and {pq^r) are
conjugate lines.

(c) The cross of two straight lines A^, Ag is the pole of
the join of their poles, A.

Since the pole of A^ lies on A, the pole of A lies on A^,
(b). Similarly, the pole of A lies on Ag. Therefore the
only point which A^ and Ag have in common, their cross,

is the pole of A.
{d) If a number of points are collinear, their polars are

concurrent. Let the points P^...Pn lie on A. Then {a)

since A passes through P^, the polar of P^ passes through
the pole of A. Similarly, the polars of P^..^ Pn pass

through the pole of A, which is the common cross of the

polars of these points.

(e) Conversely, if a number of lines are concurrent, their

poles are collinear. Let Aj . . . A^ concur in P. Then, by
(c), p, the polar of P, is the join of the poles of Aj and Ag,

Ai and Ag, Ag and Ag, etc. Or p is the locus of the poles

of the given lines.

10°. To find the ratios of the segments into which a given

finite straight line, FP, is cut by a conic.

Let F=(fgh), P= (pqr), and let the sought ratio be ^: L
Then the vector of the point of section is

_ tOF-\- OP_ tfla+ tgm/3+ thny pla+ qm/3+my
^~ <+l ~(t+ l)(fl+gm-^hn^(t+ l){pl-i-qm-\-my

_ (tflpl+p2fl)laHt9^pl+ qWl)'^I^Hth2fl-{-r'Efl)ny

(t-hl)lfllpl

Consequently, the coordinates of the point of section are

{(tflpl-^plfl), (tg2pl-\-q2fl), {th1pl+ryi)Y

Now this point lies upon the conic. Substituting its

coordinates in the general equation of the second degree^

we get

I,^l<ly(f,g,h)t^+21fl2pl(p<l>,+ qf„+ri>,)t
+ 2yi<}>(p, q,r)= (12)
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The roots of this quadratic are the values of t for the
two points X,,Xo, in which the line FP is cut by the conic,

. FX, , FX.
,,e.^ and ^.

11°. Let the roots of (12) be real and their sum zero.

Then the coefficient of the second term vanishes and

which shows that the equation of the polar of the point F,

is satisfied by the coordinates of the point P. Therefore

P lies on the polar of F when the sum of the roots of (12)

is zero, and .^Ifi l<j,{p, g, r)

The line FP, then, is cut positively and internally by the

conic in X^, and negatively and externally in Xg in the

,. . FX, X,F
same ratio, ^.e. -vu— •— pv >

and ^i^=(J'XPZ,)= -1 (13)^^^=(^X,PZ,)=-1.

FP is thus the harmonic mean between FX^ and FX^y P
being a point upon the polar of F. Therefore a line

which passes through a given point and cuts a given

conic, is divided harmonically by the point, its polar and
the conic, whether the point lies without or within the

conic.

12^ Let ^g. 11 represent a central conic. Let F^...Fn
be points on Aoo and let Ai...A„
be their polars. Since the given
points are collinear, their polars

concur in K, the pole of A«„ 9° {d).

By (13) all chords drawn in the
An directions of the infinitely distant

points F^...Fn are bisected respec-

tively by Ai...A„. Consequently,

all chords passing through their

common cross are bisected in K, which is the centre

of the curve.
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Since the centre of the conic, K={xyz\ is the pole of
A«, by (11) its coordinates are

=^. (14)

X -y z

w' v' I u v' I u w' I

V u' m w' vf m w' V m
u' w n v' w n v' n' n

13°. The three matrices of (14) are the cofactors of I, m
and n in the matrix

I m n
u w' v'

w' V vf

v' iv' w

o

I

m
n

=A

which is the discriminant bordered by I, m, n. In future
this bordered discriminant will be called D, and its minors
(14) will be called A, B, C. The coordinates of the centre
of a conic may consequently be written

{x,y,z) = {A,B,G) (15)

If B be expanded, we get the determinant

D= {vw— vf^)l^+{wu— v'^)7n}+ {uv — w^)n^
+ 2 {v'w'— uu')mn+ 2 (w'u'— vv)nl+ 2 {u'v'— ivw')Im

„ = m^+Vm^+Wn^-h2U'mn-{-2V'nl+ 2W'lm (16)

The determinants oi A, B, C are

A=m-{-W'm-j-r7i; B=W'li-Vm+Un;
C^V'l^-U'm+Wn (17)

Evidently lA+mB^nG=B (18)

On expanding and arranging the function, it will be
found that <p(A,B,C) =AB (19)

14°. The value of B enables us to determine the species

of a conic. One of the three forms of the coordinates of

the two points in which (^(xyz) is cut by A„ is

X = vnl—ulm+ VTYi^— w'mn±7n\/— B,

y =umn -\- ul^— v'lm— w'nlT ^v
2= — {uTn?+ vl^— 2w'lin).

If D <; 0, the conic is cut in two real and distinct points

by Aoo and is a hyperbola. If D> 0, the conic is cut in

H.C. c

B, (20)



34 GENERAL EQUATION OF THE SECOND DEGREE

two imaginary points and is an ellipse or circle. If D= 0,

the conic is touched in two real and coincident points by
A« and is a parabola. Since the vector of the centre is

Ala+Bm/3^Gny
lA-^mB+nC '

and since, for the parabola,

= i)=U + mJ5+^0,
the centre of this curve is at infinity.

15°. Chords which pass through the centre are diameters,

the loci of the midpoints of parallel chords. If (x'y'z') be
any point upon a diameter, its equation is

{yV-z'B)x-\-(z'A-xV)y+(xB-y'A)z= 0. ...(21)

Conjugate diameters are such that either is parallel to

the tangents at the extremities of the other, and therefore

passes through its pole. Only central conies possess such
diameters, all diameters of the parabola being parallel

because the centre is at infinity.

16°. The equation of a diameter conjugate to a given
diameter, px-\-qy+rz = 0.

The sought diameter passes through the centre and the

pole of the given diameter. Its coordinates are therefore

given by the matrix

Up+W'q+Vr, W'p-^-Vq+Ur, Vp-[-U'q-\-Wr

Ul -f W'm+ Tn, W'l+ Vm+ U'n, V'l+ Urn+ Wn
On expanding and simplifying the determinants, it will

be found that the coordinates of the sought diameter are

X = u{nq — mr)+ v'{7np— Iq)+ w\lr— np), ^

y= v{lr— np)-{-w'(nq — mr)-{-u(mp — 7iq)\ .-.(22)

z =w{mp — Iq) 4- u'{lr— np)-\- v\nq — Ir).
j

Ex. Let the conic be the inscribed conic,

x^-hy^+z^-2yz'-2zx-2xy = 0,

with l:m:n = 2:S:2.

This conic touches AB in C" = (110), and its centre K is

(545). The diameter CK is consequently (551), and its

conjugate is, (22),

A = 10iK!+ 152/-322;= 0.
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This equation is satisfied by the coordinates of the pole

of CKy (320), and A is parallel to AB, a tangent at the
extremity of G'K. For (bearing in mind that the equation
of A«, is 2ic+ 32/+ 22;= 0)

10 15 -22
1

2 3 2

0.

Any two diameters, {jpqr) and (p'q'r), will be conjugate if

Upp'-{- Vqq'+ Wrr'+ U'(qr'-\-q'r)'\- VXrp'+r'p)
+ W\pq'+p'q) = 0..,.(2S)

17°. The polar of any point (fgh) upon a diameter is

parallel to the tangents at its extremities.

In this theorem we shall denote Aoo by the equation

A<l>^+B^y+C^^=0,

in its quality of polar to the centre of the conic.

Let one extremity of the diameter be {x'y'z'). The
tangent at this point is x'<px+y'^y+z'<pz= 0; the polar of

(fgh) is f<t>x^-g<t>y+Hz\ and A«, is J</)a;+50j,+(70^= O.

If the polar of {fgh) is parallel to the tangent at {x'y'z')^

the eliminant of these three equations must be zero, since the

three lines are concurrent. Expanding these functions, the

eliminant is

uf-^w'g-^v'h, ux'+w'y-\-v'z\ uA+w'B+v'C
wy+ vg+u% w'x' -{-vy-\- u'z\ w'A -^vB-\-uV
vf-\- v'g+ wh, v'x'+ n'y'+wz\ v'A + v!B+wG

=
f X A
9 y' B
h z' C

u w' v'

w' V v!

V v! w
= 0,

since the three points {fgh), {x'yz) and {ABC) are coUinear.

18°. {a) Let the roots of (12) be real and equal, and we
^^^^

Hf> 9, h)<l>{p, q, r)--(p<f>f+q<l>,-hr<l>,f=p (24)

Since the roots are equal, the points of section of FP
(fig. 12) are either both internal (as shown) or both external.

In either case the two values of t, ^^ and j-p, can only

become equal when the points X^ and X^ coalesce, which

happens when FP revolves in the plane round F until its
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direction coincides with FQ or FR, the tangents at Q and
R. When this occurs the two ratios are equal, whatever

be the position of P on the line FX^. Since the position of

Fig. 12.

P is immaterial, we may eliminate its coordinates from (24)

1 p ji i- x— f y— Q z— h
by means oi the equations p =—-^, q = ^ ^

, r= —j—.

Equation (24) then becomes

But 0{(a:-/), {y-g\ {z-h)}
= (p(x, y, z)-2{f(l>^-\-g(l,y^hcl>z)+ (l>{f, g, h).

Therefore

<p{f, 9. h)<p(x, 2/, ^)-(f(Px-^g<Py+h<p,y= 0, (25)

the equation of a pair of tangents from a point P to a

conic. Being a quadratic, (25) shows that only two
tangents can be drawn from any point to a conic. If the

point lies within the conic, the tangents will be imaginary.

Ex. The equation of a pair of tangents from G (001) to

the inscribed conic,

x^-{-y^+z'^— 2yz— 2zx— 2xy = 0.

Here, f=g = 0, h= l; u = v = iu==l; u' = v'= w'=—l;
^{lg,h)=:l; <pz = (-x-y-^z).
Hence (25) becomes

= x^-{-y^-^z^-2yz-2zx-2xy
- (x^+^H ^^- 2yz- 2zx+ 2xy)= - 4ixy.

(h) The separate equations of the two tangents from

(Jgh) may be obtained as follows. Let A = (pqr) be a
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tangent to the conic which passes through {fgh). Then
the values of ^, g, r in terms oi f, g, h are obtained from
the equations

^^^ qg+rh = 0,

Up^+Vq^+Wr^+ 2U'qr+2V'rp-\-2W'pq==0.

In order that the coordinates of the result may be
symmetric, we must add together the three equations

obtained by solvinsr successively for -, - and -. TheJ to '^

q r p
result is

p= VhQi-f)^ Wg{f-g)+ U'{hf+fg-2gh)- Tgjg-h)

+ Wh(g-h)±(g-hW-A<l>(fgh),

q= Wf{f-g)- Uh{g-h)+ Uy{h-f)+ vyg+gh-2hf)
- WXh-f)±(h-f)J-A<p{fgh\

r= Ug{g-h)- Vf{h-f)- UJ{f-g) + rg{f-9)

+ W\gh-^hf-2fg)±(f-g)J-Ai>{fgh).

Ex. Let the conic be yz-\-zx+ xy = 0, and the point (11 1 ).

Then f-g=-2, g-h = 0, h-f=2;

hf+fg-2gh=--4>', fg-\-gh-2hf= -2; gh-{-hf-2fg=^0.

U=V=W=-1; U'= V'= Tf '= 1.

A = 2; 9!>(Ill)=-2; x/-A0(Ill) = ^^ = 2.

Consequently, the coordinates of one tangent are

(-8, 0,-8) = (101),

and of the other, ( - 8, - 8, 0) = (110).

Therefore xy = is the equation of a pair of tangents

from G to an inconic as it ought to be, since the equations

of GA and GB are 2/ = and x = 0.

19°. Suppose F to be the centre of the conic. Then (25)

becomes ^(^^ ^ q^^^^^ y^ z)^{Acj>^+Bcl>y+Gcf>^f=^0.

Now (f,{A, B, G)= DA, and on expansion and rearrange-

ment it will be found that

A<p^+ B(Py-\-G^^ = {lx-^my+nz)^.

Therefore D^(x, y, z)-A{lx-\-my-^nzf= 0, (26)

the equation of the asymptotes.

*^ Of THE
it».ii\fcrD<%lTY



38 GENERAX EQUATION OF THE SECOND DEGREE

The asymptotes of the circle and ellipse are imaginary.

For the parabola, D= and (26) degrades to the equation

of A„, which has double contact with the curve.

20°. The rectangular hyperbola.

Let {pqr) and {p'qr') be the asymptotes of any hyperbola.

Multiplying the two equations together,

jpp'x^+ qq'y^+ ^2!2 -}- {qr'+ ^V)yz

'\-{rp' -\-rp)zx-\-(jpq' -\-p'q)xy = (a)

Expanding (26),

+ 2(Bu'-Amn)yz+ 2(Bv'- Anl)zx+2{Bw'- Alm)xy = 0. (b)

The coefficients of like powers of the variables in (a) and
(h) are proportional, since both equations represent the

asymptotes, and we may put

Bu— Al^ =pp' ... 2(Bu'—Amn)= qr'+q'r ... etc.

To find, therefore, the condition that the asymptotes
shall be at right angles, we have merely to substitute these

values ior pp\ qr'-\-q'r, etc., in III, (16), and on doing so,

=m^n^a^Bu- A^^)

+

nH^h^Bv- Am^)+ i^mV (Ai/;- An^)

— 2lmn { Ibc cosA (Bu'— Amn)+mca cos B{Bv'— Anl)

+ nab cos C{Bw'— Aim) }

.

The coefficient of A in this equation vanishes, and the

condition for rectangular asymptotes is

0=zul~^a^-\-vm-^b^+wn-^c^— 2u'm-'^n-'^bc cos A
''2v'n-H-^caco8B-2w'l-'^m-^abcosC....(2l)

Ex. 1. The equation of the conies circumscribing the

given triangle is yz+zx+xy^O.
Hence, u= v=w= 0', u'= v' = w'= l;

and in this case (27) becomes

=:m-'^n~'^bc cosA -^-n-^l-^ca cos B+ l-^m-^ab COS C
„=m-^7i-itan5tan C+n-^l-^ tan Gtai.nA

+ ^"^m-^ tan^ tan j5 (a)

Now (a), the condition for a rectangular hyperbola, is

also the condition that the orthocentre,

(Z'^tan^, m-^tanjB, n-^temC),
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II, 3°, shall lie on the circumconic. Therefore the ortho-
centre, P, lies on a circumconic when it is a rectangular
hyperbola.

Ex. 2. The equation of a polar conic (for which the
given triangle is self-conjugate) may be written

Here u=—l; v =w=l; u' = v' = iv'— 0;

and (27) becomes

-i-V+ m-262-f ^-2^2^,0 (J)

Now (6), the condition for a rectangular hyperbola, is

also the condition that the centres of the incircle and three
escribed circles,

(Ir'^a, m-'^h, n-'^c), {-l-'^a, m-'^b, n~'^c),

II, 3°, shall lie on the polar conic. Therefore the centres of
these four circles lie on a polar conic when it is a rectangular
hyperbola.

Ex. 3. By (14), the centre of a polar conic,

-x^+ y^-\-z^- = 0,

is ( — ^, 7n, n). Substituting these coordinates for the
variables in the equation of the circumcircle,

mna^yz+ nlb^zx+ Imc^xy= 0,

we get (6), the condition for a rectangular hyperbola.

Therefore the locus of the centres of polar rectangular

hyperbolae is the circumcircle.

21°. If the coefficient of one of the squares of the
variables in the general equation of the second degree

vanishes, the conic represented passes through one of the

corners of the given triangle. What is the consequence of

the vanishing of the coefficient of one of the products of

the variables ?

Let w' vanish. Then the coordinates of the two points

in which the curve is cut by the line ^ J5, 2; = 0, are easily

found to be

P=(^-^, ^u, 0) and F^{J-v,-Ju,0).
Now it will be shown in a future chapter that

laJ— v-\-7rhPJii , laj— v—m^Ju
lJ— v-\-mJu IJ—v—mJu
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are harmonic conjugates of a and /3. When, therefore, w'
vanishes in the general equation of the second degree, the
side AB oi the given triangle is cut harmonically by the
two other sides and the conic; with corresponding results

when u' and v' vanish.

When all three coefficients, u\ v', w, vanish, each side of

the triangle is cut harmonically by the two other sides

and the conic, and the triangle is self-conjugate in respect

to the conic.

22°. The equation of a conic in terms of a pair of

tangents and the chord of contact.

Let ^ = 0, u= 0, t' = 0, 1^= be the equations of four

straight lines, no three of which are concurrent, and let k
be an arbitrary constant. Then the equation

tu+ Iww = (a)

is the equation of a conic circumscribing the quadrilateral

of which t and u, v and w, are opposite sides.

First, being of the second degree, {a) represents some
conic.

Secondly, (a) is satisfied when ^ = and v^O are satisfied.

But these two equations are satisfied by the coordinates

of their cross. Therefore (a) is satisfied by the coordinates

of the point t • v. Similarly, it is satisfied by the coordin-

ates of the points t-w, u-v, u- w. Therefore (a) is the

equation of the conic circumscribing the quadrilateral of

which t and u, v and w are the opposite sides.

Now let w approach and finally coalesce with v. Then
(a) becomes tu+kv^= (6)

In this case t intersects the two coincident straight lines

represented by v^ = 0, in two coincident points whose co-

ordinates satisfy ^ = and v = 0, and consequently satisfy

(6). Therefore ^ = is a tangent to the curve at the cross

of t and v^. Similarly, t6 = is a tangent at the cross of u
and v^. Therefore the equation of a conic in terms of two
tangents and the chord of contact is of the form

= tu+ kv\ or v^-\-jtu = 0, (28)

where ^= and u = are tangents to the conic and -y = is

the chord of contact.

23°. A = {pqr) is a tangent to (l>(xyz). To find the co-

ordinates of the tangent parallel to A.
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Every parallel to px+qy-\-rz =

must be of the form

{tp+ l)x+ {tq+ m)y-\-(tr+ n)z = 0.

The condition that a parallel line should be itself a
tangent is obtained by substituting tp+ l for p, tq-\-'m for g,

and tT-\-n for r in the matrix of 6°, and the result is

F{fqr)f+ ^Ap-\-Bq-^Cr)t+ D=^Q (29)

Now F(pqr)=0, this being the condition that A should
be a tangent to the curve. One of the roots of (29) is

consequently intinite. But when t = oo, the distance be-

tween the parallels is zero, IV, (6) ; or every straight line

is parallel to itself.

If D= 0, as in the case of the parabola, the other root of

(29) is zero, and the distance between the two tangents is

infinite.

In other words, if an arbitrary tangent be drawn to a

parabola, the only other tangent parallel to it is A^o.

When D has an actual value, as in the case of central

conies, the second root of (29) is

t- ^ -

2(Ap +Bq+ Cry

and the coordinates of the tangent parallel to A are

{2l{Ap-\-Bq + Cr)-Dp, 2m{Ap+Bq + Cr)-Dq,

2n{Ap+Bq+ Cr)-Dr} (30)
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SPECIAL CONICS

V. The locus of the term of the variable vector

_ tHa+ u^m^ -\- v^ny
^ tH+ u^ra+ v^n

with the condition t-\-u-\-v — 0.

Comparing this expression with the standard form,

t^=x, v?= y, v^= z.

Eliminating t, u, v from these three equations and
<-f u+t; = 0, we get

x^+ y^-{-z^-2yz-2zx-2xy = (1)

2°.
(I>x
= x-y-z, <Py=-'X-{-y-z, <Pz=-x-y+z,

and the general equation of a tangent at {x'y'z') is

{x' -y' -z')x-\-{— x -^y' -z')y-\'{'-Qi^ -y' \-z')z^^,

which is satisfied by the coordinates of the points J['= (011),

j^ = (101) and (7'= (110). The conic consequently touches

the sides of the given triangle in A\ B', G\ whatever be
the position of with respect to the given triangle.

3°. If is inside the triangle, the ratios l:7n:n are all

positive and D— ^IXtyi is always positive. The conic

therefore is either an inscribed ellipse or circle.

4°. If is outside the triangle, two of the ratios l:m:n
are negative. 'Elm may consequently be negative, positive

or null, and the curve may be a hyperbola, ellipse or

parabola—in this case escribed to the triangle. Let

i>0, m>0, n<iO, m+7i>0, 7i+Z>0;
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on which suppositions llm may be = 0. For n (a negative

number) must be either greater, equal to, or less than ~ ^

--Im
l+m

If 7i>'T^7— , '?n7iH-tii>> — ^7)1, and 7nn-\-nl-\-lm'^0.

„ = „ , 7nn+nl-{-lm = 0.

„ < „ ,mn+nl<^ — lm,a,ndmn-^nl+lm<iO.
In the first case the conic is an ellipse or circle; in the

second a parabola ; and in the third a hyperbola.

Let the same condition be written, —r- =
—n < m+n

Draw

AE parallel to B'A' (fig. 13), and complete the parallelogram

BGAD. Then

—n

/ -x/ \
B' A C

Pio. 13.

AF EA\ n— =
CR

and

CA"
m+n_BA'+A'C_BC

AV'm
—n

Therefore —7- ==

AV
m+n

BA'
m~AV
GB AD
CA'^CA''

according as EA' = AD; that is,

I ^ 7n

the conic is an ellipse, a parabola or a hyperbola according

as the point D lies within A'BV, fig. (1), or on the line

A'B\ ^g. (2), or without A'BV, fig. (3). Hamilton.

5°. The locus of the term of the vector

^~
It-'^-^-mii-'^+ nv-'^

with the condition t+ u-k- v = 0.

Here a;= ^~^2/ = u~^2; = ^'"^ and we evidently have

yz-\-zx-\-xy = 0, (2)

a curve which passes through A, B, G since u= v =w= 0.
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Writing the equation to avoid fractions,

2yz+2zx-\-2xy = 0.

A = 2 and D — ^hn— {l+m— n)"^, the curve being a hyper-
bola, a parabola or an ellipse according as D is negative,

null or positive.

The centre is

{m+n— l, n-{-l— m, l+m — n}, (3)

and its vector, with the help of the equation,

can be reduced to

The centre of (1) is

{m+n, n-\-l, l+m), (4)

and its vector can be similarly reduced to the form

-(^^a + m^/3+^V)
^ ~ 2nm

Therefore jyfr' — ^ scalar and K, 0, K' are collinear.

The pole of a line {jpqr) in respect to (1) is

and the pole of the same line in respect to (2) is

P2'=(9-^'^—P> r-{-p-q, p + q—r).

Putting p+ q+ r= 2v, we get

F-^={2v—p, 2v— q, 2v — r],

P^={2v'-2p, 2v-2q, 2v-2r).

Therefore pp ^ _V^^ +^^P+ ^^yinereiore ur^- 2vn-np '

2- 2vn-21lp
OP

and -yp^ = a scalar. Therefore P^, 0, P^ are collinear.

Hence KK' and P^Pa intersect in 0.

6°. The term * circumconic ' is used to denote the family

of conies, of whatever species, represented by the equation

yz-{-zx-\-xy = 0.
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Similarly, the term ' inconic ' denotes here the family of
conies represented by the equation

x^-\-y^+ z^-2yz-2zx-2xy=^0, (a)

all of which touch the given triangle in A\ B\ C An
indefinite number of conies of all species, inscribed and
escribed, touch the sides of the triangle in other points, but
such conies are not represented by (a). For instance, the
ellipse ajH 92/2+4^2-1 22/^ ~40aj-6aj^ = O (6)

touches the sides,

BG in D= (023), GA in ^=(201), AB in i^=(310).

By taking the point (623), in which the lines AD, BE,
GF concur, for origin, (6) may be transformed into (a). In
this case, IX, (3),

x' \y' :z'=f-^x:g-^y :h-'^z==x:Sy: 2z;

and x = x\ y = iy\ z — \z.

Substituting the values for x, y, z in (6), we get

x'^+ y'^+ z"^- 22/V- 2zx'- 2x'y' = 0.

But at the same time the conic (a), which does not touch
the sides in the new A\ B\ G' (namely, D, E, F), becomes

36x'^ 4- 42/^2+ 9;2'2_ 1 2y'z'- SQz'x'- 2^x'y'= 0.

In a word, any conic represented by (a) is here called ' the

inconic,' while any conic such as (6) is called 'an inconic/

7°. It was pointed out in V, 21°, that when vf, v', w' do
not appear in the general equation, each side of the given

triangle is harmonically cut by the two other sides and the

conic. This may be illustrated by the curve

x'-y''-z^=:0 (6)

This equation represents a conic because A = 1.

and the conic is a hyperbola, parabola or ellipse according

as D is negative, null or positive. The ellipse is shown in

tig. 14.

It is easy to show that the curve cuts AB in G' and G'\

and since ^^,Ja+rn^ QcJ'^-,

G' and G" are harmonic conjugates of A and B, VIII, (5).
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Similarly, the curve cuts GA in R and B", which are

harmonic conjugates of C and A, and it cuts BG harmoni-
cally in two imaginary points

(0, V^l) and (0, -V^l).
The tangents to the conic at these two imaginary points,

2/^^+ 2^= 0; -ys/'^-{-z = 0,

intersect in (2 sf^, 0, 0) = (100) = A.

Fig. 14.

Since the tangents from A to the curve are imaginary,
A lies within the curve; and since BG cuts the curve in

imaginary points, it lies wholly without the curve.

The lines BE, BB'\ GG\ GG" are tangents to the conic;

hence B is the pole of GA, G the pole of AB. Therefore,

V, 9°, (c), A is the pole of BG.
The triangle is consequently self-conjugate, or autopolar,

in respect to (5).

The coordinates of the centre are ( — ^, m, n).

If l— 7n— n = (), B"G' will be a diameter of the ellipse

(fig. 14), and if OA be produced to meet B'V" in X, OX
will be trisected in A.
When a parabola, the curve touches the lines M^M^,

M.^M^, M^M^ drawn through the middle points of the sides

of ABG,

8°. In general, if PQRS be any quadrilateral whose
internal diagonals meet in Y and whose opposite sides meet
PS and QR in X, and PQ and SR in Z; then the triangle

XYZ is self-conjugate to any conic whatever which passes

through P, Q, R and S.

As an illustration, let BA'OG' be the quadrilateral (fig. 1).

Then X is A, Fis R'' (121) and Z is G. The equations of
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OA' and OC being respectively y— z— ^ and a?— 2/ = ^» we
have for the equation of any conic passing through 5, A\

and 0',

z(y'-z)+ kx{x— y)= — kx^— z^-^yz—kxy.

The polar of A with respect to this conic is 2x— y = 0,

or £"'0
; the polar of R'' is y= 0, or (7J. ; and the polar of

Gi8y-2z= 0,OTAR'\



CHAPTEK VII

TANGENTIAL EQUATIONS

1°. By the principle of duality the equation,

px-\-qy+rz= 0,

admits of a double interpretation. When the set p, q, r
are constant and the set x, y, z are variable, as in the

preceding chapters, the equation means that a variable

point {xyz) lies somewhere on the fixed straight line {pqr).

When the set p, q, r are variable and the set xyz are

constant, the equation means that a variable line {pqr)

passes in some direction through the fixed point {xyz).

The hypothesis of a variable point and a locus are discarded

here and replaced by the hypothesis of a variable line and
an envelope.

2°. A straight line K=px-\-qy+ rz = (fig. 15) cuts the

sides of the given triangle in

D= {qpo)j E= {orq), F= (rop).

Then

{BEGA") = ^,

{CFAB")=^-.

The product of these

three anharmonic func-

tions is unity, and any
two of them suflace to

determine the position

of A with respect to the given triangle. The tangential co-

ordinates of A are , .

(pgr),

Fig. 15.
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which are the coordinates of its local equation. A line is

fully represented by this symbol and it has no equation.
The coordinates of BG are (100); of A"B'\ (111); of A«„
(JiTnn).

3°. As the local equation of a straight line is a relation

between the coordinates of a variable point which in every
position lies on the line, so the tangential equation of a
point is a relation between the coordinates of a variable

line which in every position passes through the point.

Thus the tangential equation

xp-\-yq+ zr= 0, (1)

where x, y, z are constant and _p, g, r are variable, is the

equation of a fixed point whose anharmonic coordinates are

(xyz). To obtain the tangential equation of any particular

point, we have merely to substitute its anharmonic co-

ordinates for X, y, z in (1). Thus, for

A, p = A", q-r= 0, p-\-q-\-r= 0.

B, q= B", r—p = MeabuVoint, mnp-{-nlq+ lmr=0.

C, r= C, p— q= Incentre, mnap+nlhq+lmcr^O.

4°. The tangential equations of the cyclic points are,

A-X.
,
(d),

j^ mnap -\- nl (ce*^^a)q— Imcre^^= 0.

J, mnap+ nl (ce~^^-a)q— Imcre ~ *^= 0.

Multiplying these two equations together, we get for

the two points

— 2lmn(lhc cos Aqr-\-mca cos Brp+nah cos Cpq)= 0,

„ =mna^(mp— lq)(np— Ir) -f-nlh\nq — mr){lq—mp)
-f Imc^(Ir—np)(mr— nq)= 0.,

These equations are identical in form with Z^, IV, (2)

;

but in the latter p, q, r are constant, while in the present

case they are variable.

When the triangle is equilateral and its mean point the

origin, (2) becomes

0=p^-^q^-\-r^— qr— rp—pq = (^+ wg+ uyh-)(p+ oo^q+tar). (3)

5°. Let {p'q'r) be a line which passes through the two

^iven points

x'p+y'q-\-z'r= and x"p-^y"q-\-z"r= 0.

H.C. D

K2)



80 TANGENTIAL EQUATIONS

Since the coordinates of the line must satisfy the equations
of both points a:y+2/Y+^V= 0,

Therefore -i-jr-—tti— , „
r

yzi' — yz; ysd' — z"x' x'y"— x"y'
'

or the coordinates of the join of two points are

{y'zf'^y"z\ z'x"'-'z"x\ xy-xY) (4)

6°. Let the equation of the cross of two given lines,

(p'gV) and {f(i'r"), be

x'jp-\-y'q-{-z'r=0.

Since this equation must be satisfied by the coordinates
of both lines ajy+2/Y+^V= 0,

x'f-\'y'q"+z'r"=^{).

Therefore ^ y
,»_"qr—qr rp—rp pq—pq

or the coordinates of the cross of two straight lines are

(qy'^q"r\ ry^rY, p^f-pY) (5)

7°. Let x'p-^y'q-\'Z'r=

be the equation of the point in which two parallel lines,

(p'qV) and {p"q"r"), concur with Aoo- Then, since this

equation must be satisfied by the coordinates of the three

^^^®®'
x'p'+ y'q'+zV= 0,

xy -f- y'<i'+ z'r"— 0,

x'l-\-y''m+z'n= (),

and p' p" I

q' q[' 7n =0.

r r" n

Therefore the coordinates of the parallel {p"q"v") are of the
form {tp'+ly tq'-i-m, tr''\-n), which satisfy this condition.

8°. The distance between a point (fgh) and a line (pqr)

is, IV, (7), ^2^ Z^mV6V sinful

If we suppose d to remain constant while p, q, r vary
under the condition of this equation, Z becomes Q, and

,2_ ^Vp l^^'fi^h^c^ sin^J. ,^.

~2V^ Q2
' W
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which, being a relation between the coordinates of a variable
straight line (pqr) at a constant distance from a fixed point,

is a tangential equation of a circle.

Ifc?= 0, weget fp-^-gq+hr^O,
the equation of the centre.

If d5= 00, we get Q^= 0.

Thus when the radius of a circle becomes infinite, its

equation is resolved into the equations of the cyclic points,

through which all circles pass, IX, 4°.

9*. The tangential equation of a curve is a relation be-

tween the coordinates of a tangent to the curve. Con-
sequently, the equation of the curve is satified by the

coordinates of any tangent to it, and any straight line

whose coordinates satisfy the equation of the curve is a

tangent to the curve.
" Whatever the order of a plane curve may be, or what-

ever be the degree of f(xyz), the tangent to the curve at

the point P= (ocyz) is the right line

A= {lmn\ if l= D^f, m=Byf, n= Dzf;

expressions which, by the supposed homogeneity of /, give

the relation, lx-\-my-\-nz= 0, and therefore enable us to

establish the system of the two following differential

equations

ldx+7ndy+ndz=0; xdl-{-ydm-{-zdn= 0.

If, then, by elimination of the ratios of x, y, z, we arrive

at a new homogeneous equation of the form

0=F(D,f, Dyf, B,f),

as one true for all values of a?, y, z which render the

function /= 0, . .
.

, we shall have the equation

as a condition that must be satisfied by the tangent 'A to

the curve, in all the positions which can be assumed by

that right line. And, by comparing the two differential

equations, dF{lmn)= 0, xdl+ydm+zdn= 0,

we see that we may write the proportion

x:y'.z^D^F:B^F:I),F,

and the symbol, P=^(DiF, D^F, B^F), if {xyz) be as above

the point of contact P of the variable tangent Ime {lmn\
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in any of its positions, with the curve which is its envelope.
Hence we can pass from the tangential equation i^= of a
curve considered as the envelope of a right line A, to the
local equation /=0 of the same curve considered as the
locus of a point P: since, if we obtain, by elimination of

the ratios l^ m, n, an equation of the form

0=f{D,F, D„F, D,F)

as a consequence of the homogeneous equation J^=0, we
have only to substitute for these partial derivatives, DiF,
etc., the anharmonic coordinates x, y, z, to which they are
proportional. And when the functions / and F are not
only homogeneous, but also rational and integral; then,
while the degree of the function /, or of the local equation,
marks the order of the curve, the degree of the other
homogeneous function F, or of the tangential equation
F= 0, is easily seen to denote . . . the class of the curve to
which that equation belongs."*

(a) To transform (j){xyz) into F(pqr), we have, as
explained by Hamilton, to eliminate x, y, z from the
equations ^^ . , ,

JJxj=(l>x=p = ux-{-wy+ vz,

J^zf= (pz = r= vx-{- vfy+ wz,

0=px-\-qy-{-rz,

where p, q, r are used instead of Hamilton's ly m, n, which
are otherwise required.

Hence

P
u w' v' p =Up^-^Vq^+Wr^-{-2U'qr+2V'rp

-\-2W'pq

= F(pqr),

(b) To transform F(pqr) into <l)(xyz), we have to
eliminate p, q, r from the equations

D^=Fp= x=Up-\- Tf'g+ FV,

D^F=F,==y= W'p+ Vq+ U'r,

D^F^Fr= z=- V'p-\- U'q+ Wr,

= xp-\-yq+ zr.

*Sir W. R. Hamilton's Elements of Quaternions, 1866, pp. 43-4.

p <1 r

u w' v' p
w' V v! <1

v' u' w r



CHAPTER VII 53

=

Hence

U
yw
V

z

Y'

TJ'

W
+ 2(W'U'--Vr)zx

= ^(ux^+vy^ ...-{- 2w'xy)

= (l>{xyz).

(c) The tangential equation of the incircle is

s^lqr+ s^mrp+ s^npq = 0.

To find its local equation we have the equations

Fp= x = s^nq-{-s^mr,

Fg= y= 8^np-\-8jlr,

Fr=z= s^mp+ sj^q,

=xp+yq+ zr.

=

Hence

X

8^n — ^s^s^TYinyz— 28^s{alzx— 28^8J,mxy,

y z

8^n s^m X

„ »i^ y
82m 8^1 Z

the local equation of the incircle.

The utility of the method depends mainly, as shown
above, on the equation, px-\-qy-{-rz= 0, "which may at

pleasure be considered as expressing, either that the variable

point (xyz) is situated somewhere on the given right line

(pqr\ or else that the variable line (pqr) passes in some
direction through the given point (xyz) " (Hamilton).

10°. As a local equation of the second degree may be

the product of the equations of two straight lines, so a

tangential equation of the second degree may be the

product of the equations of two points. The criterion in

the latter case is strictly analogous to that in the former.

The equation

Up^+Vq^-\-Wr^+2U'qr+2V'rp-h2W'pq=

will be the product of two equations of the first degree if

discriminant U W r
W V U'

T U' w
=0. •(7)
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11°. Since the coordinates of a tangent {p'q'r') drawn from
a given point to the curve, F(pqr)=:0, must satisfy the
equations of both the point and the curve, we can determine
the ratios of the coordinates of the tangent from these two

equations. If we solve for ^„ we obtain a quadratic

equation. Therefore the ratios p' :q' : r have two and only-

two sets of values, or, only two tangents can be drawn from
the given point to the curve.

12°. Let
^i
= (2?'?V) be a tangent to F{pqr)^^. Then,

p'Fp-\-q'F^-\rr'F^ — ^, and t^ evidently passes through some
point, P=pFp+ qFq.+ rF^= 0.

Let the second tangent from P to the curve be

t,= {p"q'y').

Since <2 passes through P,

p"Fp^q''F^^r''Fr = ^p'Fp,-\-q'F^..+ r'Fr'.

and <i passes through some point Q=pFp.,-\'qF^>-\'rFr"^0.
But since t^ is a tangent, p"Fp.'\-q"F^>-\-r"F^,=zO, and ^g

also passes through Q.

Since then t^ and t^^ both pass through P and Q, these
two points must be identical and

Fp- _ Fqt _ Fr
Fp-F^-p;.'

Consequently £.= 1. =£

,

p q r

that is, the two tangents are identical, and

pFp,-\-qFg,+ rFr--0 (8)

is the equation of the point of contact of the tangent
(p'qy).

13°. Let (PiqiTj) and (|?2^2^2) ^® tangents to F{pqr) at
the points in which it is"^ cut by any line (p'qV). The
points of contact of the two tangents are, (8),

pFp,+qFg^-^-rFr,=^0 and pFp^+qFg^-hrFr,=^0;

and since both these points lie on the line (p'qV),

PiFp,-^q^F^-{-r^Fr= and P2Fp>'hq2Fg'+r^r'=-0,
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Therefore both tangents, {Piqir-^) and (2>25'2^2)> P^^ through
the point pFj,-^qFg>+rFr.= 0, (9)

which is consequently the pole of {p'q'r).

It is immaterial whether (p'qV) cuts the conic in real

or imaginary points. For example, the line (Oil) lies

altogether outside the income, qr-\-rp+pq = 0. Here

F^=q'^r'= 2, i?',,= r'+p'= l, F^=:p'+q'= l',

and the pole of (Oil) is 2^+^+r= 0, a point which lies

inside the conic since the tangents from it to the curve are

imaginary.

14'. It follows from (9) that the pole of (Lmn), or A,, is

0==pF,-hqFrn-{-rF,

,,=(Ul+ W'm'\- V'n)p-\-{W'l+ Vm+ TJ'n)q

-\-{y'l-\-U'm-\-Wn)r

,,=Ap+Bq-\'Cr,

the tangential equation of the centre of the conic.

15°. Let {p'q'r') be the polar of x'p-\-y'q+2fr^(^.

For the pole of (p'q'r') we have the two equations

pFp^-^qFg^-^rFr^O,

x'p+ y'q+z'r=0.

(10)

Therefore,

or

Fp^_^ __^_
x'
" y'" z

Up'+ W'q'+ 7V

+

x'k= 0,

Fy+Fg'+CrV+^'A; = 0,

Tp'+ U'q'+ Wr'+zk= 0.

k\

Therefore

V
w T x'

V v y'

U' w z'

-q r'

U V x'

W U' y'

y F z

U
w V y'

U' z'

or, treating the constants x\ y\ z' as variables, the tangential

coordinates of the polar of x'p^-y'q-^z'r-^^ are

(^^, ^2/', M (11)



66 TANGENTIAL EQUATIONS

just as the local coordinates of the pole of pX'{-qy-\-rz =
are, V, 8^

^^^^ ^^^ ^^y

16°. In the preceding sections the following corre-

spondences have been established

:

Local.

The symbol of a point.

„ equation of a line.

» „ „ tangent.

The polar of a point.

„ pole of a line.

Tangential.

The symbol of a line.

„ equation of a point.

„ „ „ the point

of contact of a tangent.

The pole of a line.

„ polar of a point.

We may therefore, when convenient, transform expres-
sions in one system into corresponding expressions in the
other directly, without calculation. Take for example the
local equation of a pair of tangents drawn to a conic from
apoint^=(/^^),V,(25),

Let A be the chord of contact of the tangents.

Then (p(xyz) becomes F(pqr), the tangential equation of

the conic. f{fgh) becomes F(fgh); the local function of
the point (jgh) becoming the tangential function of the
line (fgh). f^x+g(t>y+^^<t>zy the local expression for the
polar of F, becomes the tangential expression for the pole
of A. Finally, the equation

F(fgh)F(pqr)^(fF^=gF,+hFry=^0 (12)

is the equation of the two points in which a conic is cut by
any straight line (fgh); for since the tangential equation
of the point of contact of one tangent corresponds to the
local equation of the tangent, the tangential equation of
the points of contact of a pair of tangents, i.e. the points in

which the conic is cut by the chord of contact, must corre-

spond to the local equation of a pair of tangents. For the
discriminant of (12), see XII, 7°.

Ex. 1. For (Imn), (12) becomes

(IFp -hmFq+nFrf-F(lmn)F{pqr) = 0.

The equation of the incircle is,

s^lqr -hs^mrp -f- s^npq= 0,

and lFp+mFg'\-nFr==mnap-{-nlbq-{-lmcr; F{lmn)= 2lm8.
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Therefore

— 2lmn{lbc cos Aqr-{-mca cos Brp+nab cos Cpq)= Q^

i.e. A« cuts the incircle in the cyclic points.

Ex. 2.

Local.

The equation of the pair of

tangents drawn to the inconic,

x^+^^+z^- %2 - 2zx -2^= 0,

from the point (22T), i.e. the pole

of (115), is

„ = 2^2

+

2i/'^ - 4:z'^ - 2i/z - 2zx - bxy

„=(a;-2y-2^)(2^-y+ 24
two tangents which touch the

conic in (411) and (141).

Tangential.

The equation of the pair of

points in which the inconic,

'iqr+ 2rp+ 2pq= 0,

is cut by the line (115), i.e. the
polar of (221), is

= I8(2qr+2rp+ 2pq)

+(-4p-4q+ 2rf
= 4p2+ 45^2+ ^2+ 5gr

+

brp+Vlpq
= {4p+ q-\rr){p+ 'iq+ r\

two points which locally are (411)
and (141).

17°. Since by definition the coordinates of a tangent

must satisfy the equation of a conic; to obtain the co-

ordinates of the two tangents which can be drawn from a

point to a conic, we have merely to determine the ratios

p:q:r from the equations of the point and the curve.

Let a5'p4-2/'g+2;V=0 be the point and F{pqr)= the

conic. Then solving for ^, we get

+

(

Uz'^+ Wx'^- 2 Vz'x')=

and ultimately, writing

X

U

.(13)

5=

v

y
w
V

z'

y
w
w

.(14)

the ratios of the coordinates are

^= - F;2V+ TJ'x'y'-- Vy^+ Wy/±y's/^:
g= - Uyz'- U'x'^+ Tx'y'-\- W'z'x^x' s/ -S,

r=^Uy'^'{-Vx'^'-2W'xy\

,.(15)
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Ex. The two tangents from ^— r= (J.") to

Here a;'=0, y'= \, ^'=-1;

Therefore ^ = 4or0; ^= 1; r=l, and the coordinates of

the two tangents are

(411) and (Oil).

18**. The value of 6 in the last section determines whether
a given point lies on a given conic or not. If the point lies

on the curve, the two tangents become one and the same,

and the roots of equation (13), which may be written

must be equal. Therefore

If then (5=0, the point lies on the curve.

Obviously, A" does not lie on the circumconic in the

preceding section, for <5 = — 4. Does the point p = ? It

will be found that ^= 1 — 1 = 0, and jp
— lies on the curve.

19°. The coordinates of the tangent at a given point on
the conic are given by (13), a^^ -1-26^+0 = 0. For in this

case the roots are equal and

r a

Ex. The tangent at the point

i5-f-5'+ 4r= to gr+rp-f^2= 0.

Here a;'= l, y'— l, s'= 4;

0'=F=Tf=0; W=^V'=W'^\; a=-2, 6= -4.

r r

and_ the coordinates of the tangent at the given point are

(221).

20°. If the point from which the two tangents are drawn
is the centre, (13) gives the coordinates of the asymptotes.

In this case, if 8 be positive the asymptotes will be

imaginary and the conic will be an ellipse or circle. If
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^ = 0, (13) will have equal roots and the conic will be
a parabola; and if S be negative the conic will be a
hyperbola.

Ex. The centre of the hyperbola

7p2^ 7^2

+

^2qr+2rp-\-S2pq= 0,

with the condition, l:m:n==2:l:2,

is p-{-2q+ r= 0,

and it will be found that the coordinates of its asymptotes

^^^ (113) and (311).

To calculate the equations of the asymptotes from the

local equation of this curve,

lQx^-Sy^+16z^-\'12yz-S2zx-\'12xy= 0;

hy V, (25),

S6(16x^'-Sy^+l6z^-{'l2yz-S2zx+l2xy)

-{{iex+6y-16z)+2(6x-Sy+ 6z)-\-{-l6x+6y+ iez)}^= 0,

which gives 0== -Sx^+y^" Sz^- 2yz+ lO^o;- 2xy

„=(a:+2/-32)(-3a;+2/+ 3).
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CROSS RATIO

1°. Let OX= X and ON=v he two vectors (fig. 16). If

a third vector OX= p cut LN so that

LX:XN=y:x,
xk-\-yv

then P= x-\'y
(1)

If Z' be another point on LN such that

LX''.X'N=y':x\

x'+y' .(2)

yThe ratio ^ will of course be positive or negative
X

according as the definite line LN is cut internally or ex-

ternally (as in fig. 16) by the point X\

Since LX=y^. XN=^-^.
x-\-y x+y

LT^y^Z^). TN^'^^;
x'-hy x+y'

LX LT LX.NT _yx'
XN''X'N~XN.X'L''xy''
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If we define the anharmonic function of any four collinear

points A, B, G, D to be, II, V,

i^B(^^)--BG'-UD^BC7DA^ (3)

where the cyclical order of the letters

—

Ay B, G, D and
B, G, jD, a—is preserved above and below, we have for

'""'
<™--=ii^.=0 <«

If {LXNX')= - 1, then —^ =^, and (1) and (2) become

xX+yv , xK-yv ,,,

P=^+y' P'^^^y-' w
the general expression for a pair of harmonic conjugates to

X and y.

AB.GD_BA.DG_GD.AB_nG.BA ,

^' BG.DA~AD,GB'~DA,BG~GB,AD'
that is, {ABGD)= {BABG) = {GDAB) =(DGBA)=

k

.p^^., J5a.i)^_J5a.j[)^__l__l . .

^^^^^^-GD.AB-AB,GD-(ABGD)-k ^""^

AG.BD {AB±BG){BG±GD)

_ BG{AB-\-BG-^GD) AB.GD
" ~ GB.DA ^GB.DA

BG.AD
,

AB.GD _^ , ...

" "GB.DA'^GB.BA'^"^ ^ ^

The reciprocal of a function, (a), is obtained by con-

tinuing the cyclic progression one stage: (BGDA) is the

reciprocal of (ABGD).
By reversing the order of the two central letters, (6),

we obtain a function which is unity minus the original

function

:

(AGBD)= l-iABGD).

1-^ ,AnJ,r^^,DnnA^ AG.BD BG. DA
-Y-=^^^^^^^^^^^^^GBTDAGD7AB
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Therefore {ACDB)=—~ and j^=^(CDBA).

If (ABCD) is harmonic, (DOBA) is harmonic; and all

the cyclic permutations of both are harmonic

:

- 1 = (ABGD)= (BCDA)= (GDAB)=(DABC)
= (DOBA)= (GBAD)= (BADG)= (^2)C5).

The foregoing results are collected for convenience.

When

1. iABCD)=(BADC)==(CDAB)^{DCBA)=L

2. (ADCB)=(BCDA)^(CBAD)=(DABC)=^^.

3. (ACBD)=(BDAC)=(CADB)=(DBCA)= l-k.

4. (^Z)5(7)=(ig(7.1Z))=((75i)^)=(Z)^(7J?)=^.

5. {ACDB)={BDCA)=(CABD)={DBAC)=^.

6. (ABDC)=(BACD)==(CDBA)=(DCAB)=j^.

= -1

= 2

= 2

= i

3°. (a) li A, B, Gy D are any four collinear points, and
if ^ =(iCj2/i^i) ^^d ^=(^32/3^3) ;

then, III, (3), the coordinates

of J5 and D must be of the form

{tx^+ux^, ty^-^-uy^, tz^+uz^)

and {t\+u%, <'2/i+^'2/3» ^'^i+'W-'^?,),

or, for shortness, {t, u) and (t\ vf). Let

^aj
J
+ m2/i+ ti^j= 2^1= a-^ , S^iCg= 0-3

.

Then

AB=OB--OA
_(tx^+ux^)la-\-(tyi+uy^)m/3+etc. xJ,a+ y{inP'{-etc ,

_u{(x^(r^'-Xj(T^)la'i-(y^ar^-y^(r^)mp+{z^(ri'-z^(r^)ny}

o-iita-i+ ua-^)

uO

Similarly,

te

0-3(^0-1+ 14^3) o-^ittr^+ ^c^s) ^i(^<^i
+
"^s)
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Therefore m^-iABOI))^^, (6)

Ex. Let the row be (Til), (100), (211), (322). Calcu-
lating from the coordinates of the first and third points the
values of t and u for the second and of f and u' for the
fourth, we get

^= T-' ^= 3' ^=3' ^=3'

and (ABCD)==^,

(b) The cross ratio of pencils is strictly analogous. If

two rays, VA and VC, be (PiqiT^) and (p^q^r^), the co-

ordinates of the second and fourth, VB and VD, must be of

the form (t, u) and (f, u'), III, 8^
Let (pqr) be any transversal. Its intersections with the

rays are

:

for VA^{qr^'-q^r, rp^-r^p, Pqi^Piq) H<^Aci)>

„ VC-lqr^-q^r, rp^-r^p, pqz-p£}-={afi^c^),

„ FB— {toj-f-'M^g, tb^+uh^, tCj^+uc^},

Hence for the four points of intersection, K, L, M, N,

F.^5OT=(irZilfi^=^=[£ii4!^ (7)

(c) If the four lines cut by the transversal are not

concurrent, equation (7) still holds true.

Let the lines (Piqiri) ...(Piq^Ti) be cut by (pqr). Then
the coordinates of the cross of (pqr) and (2>i2i^i) are

(\qr^\, |rpi|, \pqi\), with corresponding results for the

remainder. Calculating the values of t and u for the

second point, and of f and u' for the fourth, from the co-

ordinates of the first and third points, we get

t^lqr^Wrp^l-lqr^Wrp^l^rlpq^r^l

u= \qr^\\rp^\-\qr^\\rp^\==r\pq^r^\,

f=-\qr^\\rp,\^\qr^\\rp^\=r\pq^r^\,

u'=\qr,\\rp^\-\qr^\\rp^\^r\pq,ril

a„d ^JPM2\\PMa\
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Ex, The four lines,

no three of which are concurrent, are cut by y= ; to find

the cross ratio of the intersections.

Here (pgr)= (010), (Mi^i)= (001), {m,^.}= {\^1\

(M3^3)= (321), (M4n) = (100);

and |p^ir2| = l; lF9'2^3l = 8; |pg3r4| = l; |pg4nl=-l-

Consequently, the cross ratio is
~1
8

'

4°. (a) The cross ratio of a pencil in terms of the vertex,

^=(^o2/o^o)» ^^^ ^^® points in which the rays are cut by a
transversal, p^= (a,^y^,^)...p^= («,^2/^^^).

P P P P
•^ -t 1-t 2-' 3-^ 4~~\''^1-' 2-^ S^i/^p p PP

_ sinP,FP,.smP3FP;_- sin P,FP3 . sin P,FP,
- ''°''^'*"*

(6) The cross ratio of a pencil in terms of its vertex V
and any four points upon its rays, P^, P^, P^,P^,

Fig. 17.

Let the pencil be V-P^PJP^P^ (fig. 17); V={x^y^z^)\

A= (a^i^/i^i) • .
.
-P4= (^42/4^4)-

The transversal PJP^ cuts FPg and FP^ in F^ = {t, u)
and P'4= (f, u').
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Then 4°, (a), V-P^F^^F,^ ut'

tvf'

Now, since F, P2, P\ and also F, P^, P\ are collinear,

= '-t\x^y^z^\-\-u\xQy^z^\

OCq 01/2 ^X't ~t~ UOCn

^=12/0 2/2 ^2/1+ ^2/3

Xq x^ fx^-^u'x^
I

and 0= 2/0 2/4 i'Vi^'^'y^ M'|a5o2/4%|-'M''ko2/32'4|.

Therefore ^= F.P,P,P3P,= p^i^^
1

1

^0^3^^
(9)

^02/2^3
1 Fo2/4%l

(Hamilton.)

It may be observed that if the points {x^y^z^ and {x^^^,
or {x^y^z^ and (a;42/42^4) coincide, the anharmonic function
vanishes. If {x^y^^) and {x^y^z^\ or (0542/4^4) and (a?i2/i2^i)

coincide, the function becomes infinite ; and if {x^y^z^ and

{^zHz^z)^ o^ {^^J'f^ a^^ (^42/4^4) coincide, it becomes unity.

5°. (a) If two homographic pencils,

Y'A'Bai) (tig. 18) (a), have
different vertices and a cor-

responding ray in common,
the crosses of the remaining
rays are collinear.

Let the common ray be

yBY'\ let the first and third

rays meet in A and G ; and
let the two remaining rays

meet the line AG va. D and
D', their cross E not lying

on the line AG, Then, by
hypothesis,

AB,GJ)

and

Fig. 18 (o).

BG.DA

and

Therefore

UABA
D'G~ DG'

H.C.

A'E. G'U
BG'.UA'

A'F. G'D

B'G'.DA'

9A.
HG' %'. DV=DG; D'G-DG^D'D^O.
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Therefore D' is D, a point on the line AC.
(b) If two homographic rows have a corresponding point

in common, the joins oi the

remaining points are concur-

rent (fig. 18) (b).

Let B be the common
point, and let A A' and G'C
meet in F, through which
D'D does not pass.

By hypothesis,

Fxa. 18(6). (ABGD)= {A'ECU),

and since AG and A'G' are transversals of V'ABGD,
by 4° (a),

(ABGD)={A'BV'E).

rp, f EA' D'A' C'A' G'A'
Therefore ^,= 5^; ^^ =^.5

EG'=D'G') EG'-UG'=EU^O.

Therefore iy= E, and JLJ.', G'G and D'i) are concurrent.

6°. (a) When 05'= hx and 2/'= Aj'2/, h and ^' being constants^

equation (4) of 1° becomes

{LXNX')=
^,

(10)

When, therefore, - varies under the conditions of
X

equations (1) and (2) of 1°,

_x\-\-yv ,_hx\-\-k'yv
^~ x-\-y ' ^ ~ hx-\-k'y

the points X and X' form two homographic divisions

on the indefinite line XiV", L and N being the double points

of the system.

For let the successive positions of X and X' be A and A\

B and B, etc.; the successive values of ^ being ^ for A^
'

' x ^ x^
*

^ for 5, etc. Then

^,=(LANA') = (LBNR)=(LGNG') = etc (11)
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Now

AB=OB 0,1= ^2^+^2^ ^i^-^Vi^^ l^^iVzK^-^)

^2+ y2 ^l+ 2/l (^l+ 2/l)(i»2+ 2/2)*

Writing out the values of the four segments,

(a;i+2/i)(«2+ 2/2)' («3+2/3)(^4+2/4)'

^+ ^2)^+2/3)' (aJ4+2/4)(^i+ 2/i)'

(A;a;i+ k'y^){hx^+^g)

'

/^/<^'
1 0:32/4 1

(^- X)

^/^.^ (A^2+%2)(^3+^3) . 2)-^!^^ ^^^^'1a;^yil(»^-^)

Therefore {ABGD)J^^^^^^^^\^{A'EG'U) (12)

ih) Let the given equations be

_xk'\-yv ,_kx\'+ k'yv

^~
a;+ 2/

' ^
"~ kx+h'y

where X— OL\ v=ON' (fig. 19); the variable points Z
and X' now moving on different lines LN and L'N\

Fig. 19.

As - varies, X will assume on LN successive positions
X

A, By etc., such that

^^^^^^-\x,y,\\x,y,y

and at the same time X' will assume on UN' successive

positions A\ B\ etc., such that
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7°. From the ratios given in 6° (a),

«l+ 2/l
' «3+ 2/3

Combining these values with those of -45 and BG, A'B'

and EC, given in the same section,

{LABG)= :^yilM^ = (LA'EG').
y^\^iy2\ I (13)

Similarly, {NABC)=^^ImA= {NA'EG').

Since (LAGB)==(LA'G'B') and {NAGB)= (NA'G'E),

LA.GB_LA'.G'E

AG.BL^A'G'.EL'

NA.GB_NA'.G'E
AG,BN~A'G'.B'N'

LA.BN LA'.EN LA.NB LA'.NE
Dividing,

NA.BL~NA'.EL' AN.BL~ A'N.EL'
(LANB)= (LA'NB') (14)

8°. If two homographic rows have no common point, and
if all the points which do not correspond are joined

—

A and

Fig. 20.

B', A' and B, and so on—the joining lines intersect on a
straight line, the directive axis, A (fig. 20).

Let the points A, B, C on A be
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and let the corresponding points on Ag be

Let |2//il = ai
1 2/^3 1

= ^i 1 2/3^'i I

= ^i It/s^'sh^i-

l^yil = «^3 la^i^/'sh^s \Xzy\\ = Gz Ns/sh^s-

It will be found in the usual way that the equation of

the line through L= AR'A'B and M=AC'A'G is

{tw\—uvc^x+{tw\—uvc^y+ (^^63

—

uvc^z= 0. . . .(15)

This is the directive axis, A. If any fourth arbitrary

point D be taken on A^ and joined to any one of the three

points on Ag, say C, cutting A in T; the point corre-

sponding to D on A2 is found by drawing a line from G
(corresponding to C) through T. The point D' in which
it cuts A2 corresponds to D.

For let D be {tx^-^u'x^, ^Vi+'^Vs* ^'^i+'W-'s^g), and let any
point whatever on Ag be

P— {v'x\'\-iv'x'^y v'y\-\''^'y'zy v'z\-\'W'z'^.

It will be found that the intersections of A'B and AF
with A are

-{iw
I

a^^ \'-twY\ 62C3 l+uv
I

CgOtg
I,

tW
I
^361

l

— tW-p-l ^3<^l \
+ '^v\ Cs^i I,

r w'
e= U'M;|a263|-iw^|62Cs|+'?^'v|c2a3|:

tw
1 ^361 1

— ut;—
1
63C1 1 -f^v

I

Cja^
|,

<ii;|ai62|-'«^'y-^l V2l+'^^ki*2l} W
Since — may have any value whatever, let it be ^^.

On substituting this value for —r in (6), it becomes (a).
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Therefore the lines A'D, AP and A are concurrent when

^'=^„ that is when {ABCD)^{A'B'CDy This proves

the proposition.

It will be observed in ^g. 21 that

X on Aj corresponds to ^ on Ag,

and Y „ A^ „ „ Z „ Ai-

9°. It may be shown in a precisely similar manner that

if two homographic (flat) pencils have no common ray,

V'ABGD and V'-A'BVD' (fig. 21), and if the intersections

of rays which do not correspond are joined, VA-V'B' and
V'A'-VB, VB'V'C and VE-VG, and so on; all the con-

necting lines concur in a point

L={twf^-uvgT^y twf^-^uvg^, twf^^uvg^} (16)

Fig. 21.

The rays of the two pencils are

:

for F, (i^i^i^X (^' '^)> ilPzWz\ (^^ '^')
5

and /i = k/3l 9i=^\qz^\\

/2 = klip's I S'2=k3/ll

fz= \Viq'z\ 9z= \Pb9\\

L is the directive centre.
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If VA, VB, VG are given rays of the F-pencil and the
-corresponding rays of the F'-pencil are V'A\ V'B\ V'G\
and if an arbitrary fourth ray of the first, FD, be drawn

;

the corresponding ray of the second is found by joining
the point VC'-VD to the directive centre. The point in

which this join cuts VG is the cross of VG with the sought
ray TD\

Ex. Let there be 2 pencils of 3 rays each in which

F^=(211)^ jF'^'= (lTl)

F5= (Tll)[ correspond to
|
V'E= {121)

Fa=(199)J i F'(7'==(131)

From these data we find that

/i = 4. /2 = 3, /3 = 5;

and the directive centre is (7, 7, 24).

Now let a fourth arbitrary ray, VD==(011), be drawn to

the first pencil. VD cuts V'C in (411); the join of (411)
and the directive centre cuts VG in (279, 75, —44); and
the fourth ray of the second pencil, V'D\ is (15, —47, 15).

The two pencils will be homographic ; for

— 1 2
i'^-jf' ^'""17' '^="~^' w=16

, uf w v'
and I—?

= >•

I'd V w
Given three corresponding pairs of points or rays, if we

select a fourth point or ray in one system we are enabled

to draw the corresponding point or ray of the other system

by means of the directive axis or centre. But we can

calculate the coordinates of the fourth corresponding point

or ray, without the assistance of either, by the equation

For since (ABGD)=^(A'B'GD), t-,=—> and — = -—
-„^ ' ^ ' tu vw w twu

which gives the sought point or ray. Let the two rows be

(111), (100), (211), (322) and (Oil), (Oil), (031).
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— 1 115
Then for the first row, t = -^, f^^^y ^ =o' '^'= oJ ^^^

— 2 —1
for the second, v= —^, w= -k-. Consequently

-y' _ uvf _ — 2

tt;'
~ twu' ~ 5

and the fourth point of the second row is (0, 15, 3)= (051).

The directive axis, however, enables us to find easily the
point on one axis which corresponds to infinity on the other.

10°. The point on Ag (fig. 20), corresponding to the point

at infinity on A^, is obtained in the same way as any other
corresponding point. Let / and J (not used in this con-

nexion as symbols of the circular points) be the points at

infinity on A^ and Ag respectively. Draw a line from A'
to / (that is, parallel to A^), cutting A in (say) X, and the
line AX will cut A., in /', the point corresponding to /
on Aj.

Ex. Let the two axes be the sides AB, AG oi the given
triangle, and let the points C\ B, G" on AB correspond to

B\ C E' on AG (fig. 22).

Fio. 22.

Since BE and GG' cross in and EG" and G'E' in A\
the directive axis is 0A\

uIjB cuts Aoo in (m, — Z, o) = J;

-40 cuts A„ in {— n, o, l) = J;
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Therefore

EI= (I, m, - 1) and Bl^ OA' = {l-^m, I, I)= M,

Similarly,

G'J= (I, - 1, n) and CV- OA'= {l-'n, I, I)= N,

C'M={l,-l,m) and G'M-AC=(-m, o,l)==r,

RN={1, 71, - 1) and B'N-AB= {n, -1,0)= J\

Since {G'BJ'I)={RGJn 2^=S=S (1^>

To verify this

:

C'B= ^^^~")
• BJ'=^^^"^ ^ •

l-\-m
' m— 71 '

/;fD/^ ^(«~y) . D.^._ 7i(^+m)(a-Y)
71+ ^ ' (71+0(^-^)*

Therefore S|=^^™^=^.

11°. Given two homographic rows on an axis, to de-
termine the double points, L and N.

By (13), {LBGD) ={LECU\

and RG\ GD .LB.LIX^BG . CD'. LR. LD.

Let AL = x, and assuming that L lies to the left of A
(fig. 16),

LB=AB-x, LU^AU-x, LR=AB'-x, LD=AD-x.

Hence

B'G\GDiAB-x)(AD'-x) = BG.G'D'(AR-x){AD-x). (20)

This quadratic will give two values for AL. One will

be the value of AL, the other the value of A^; for not

only is (LBGD)=(LRG'D% but {NBGD)={NRG'U\ {ny

Ex. Let AB= 1, BG=2, GD= 4>, DD'= 10, DV' = 4>,

C'R= 8, RA'= 16.

Then 8x4(l-a;)(l7-a;) = 2x4(29-aj)(7-a;),

and a;2_ 12a; -45 = 0.

Therefore a;=—3 or 15;

L being 3 units to the left, iV 15 units to the right of A.
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Verification.

(LANB) = \i^^-„ (X^'i\rF) = f tV=iV,

and {LANB):={LA'NB').

12°. Given four fixed points, no three of which are

collinear, P^, P^, P3, P^ (fig. 23); to find the locus of a

fifth point P= {xyz\ subject to the condition

P • P^F^F^F^—
—J-

>

a constant.

Let Pi = (flJi2/i^i) . .
.
P4= (^^42/42^4)-

-»^^» -r^^^l <«>

/ 1 «'2/i2=2 1 1 ^Vz^i I+ ^
I
^2/2^3

1 1 ^V^^x I

= 0>

which is evidently an equation of the second degree. The
locus of P therefore is a conic, and it passes through

Pi, P2, P3, P^; for if we
substitute for the variables in

this equation the coordinates

of any one of the four points,

say P3, the second and third

matrices vanish and the equa-

tion becomes identically, = 0.

This theorem shows that a
conic must pass through any

%N^ arbitrary points, no three of which are collinear. A
sixth point, P\ will only lie upon it if equation (a) remains

true when the coordinates of P' are substituted in it for

those of P. From a geometric point of view, P' will lie on
the curve if the intersections

PP^-P^F, P,P,-P^„ PP,-P,F

are collinear, as shown in fig. 23.

It follows that the cross ratio of any four points on a
conic is constant.

13°. Given four fixed lines, Aj, Ag, A3, A4, no three of

which are concurrent; to find the envelope of a fifth line

A = {pqr), such that the cross ratios of its intersections

with the four fixed lines is constant, -^.
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Let Ai= (^igiri)...A4= (^4^4r,). Then, by 3° (c), the
cross ratio of the intersections for some fixed position of A is

Now let p, q,r vary under the condition of this equation,

and we have a tangential equation of the second order,

which consequently represents a conic. The four fixed

lines touch the curve ; for if the coordinates of any one of

them, say {p^fl^'r'^, are substituted for those of the variable,

the equation becomes identically zero.

Ex. Let the four given lines be (2T2), (001), (010), (100),

and let ^=L Substituting these values for the constants

above, the equation becomes

g'r+rp4-j5g = 0,

the tangential equation of the inconic.

It follows that the cross ratio of the intersections of a
variable tangent to a conic with four fixed tangents is

constant.

14°. Every triangle which circumscribes the inconic

x^+ y'^+ z^'-2yz''2zx-2xy =

is inscribed in the circumconic yz-^zx-\-xy= (fig. 24).

From any point D on the circumconic draw two tangents

to the inconic cutting BC in d,

CA in c and AB m. b. From E,

the point in which Dh cuts the

circumconic, draw a tangent cutting

BC in e and meeting Dd in F.

Then F lies on the circumconic.

It will be observed that the four

fixed tangents, AB, AG, FD, FE,
cut the tangent BC in d and e, and the tangent DE in b

and c. Therefore, 13°,

(BCde) = (bcDE)= const.

F'BCDE= A 'BCDE= con8t

Therefore, F lies on the circumconic, 12^
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This proposition only holds good for conies which are

represented by the equation x^ ...— 2xy= 0, i.e. inscribed

or escribed conies which touch the sides in A\ B', (J. For
example, the ellipse

x^+9y^-^4>z^-12yz-4!zx-exy =

touches the sides of the given triangle, and on this curve
lie the points (24, 2, 3), (683) and (316). If tangents be
drawn at these points, it will be found that they cross in

the points (12, 4, 3), (323) and (613) ; and the coordinates

of the two latter points do not satisfy the equation of the
circumeonic. Consequently the triangle of which these

three points are the corners is not inscribed in the circum-
eonic.

15°. The points in which a circle is cut by conjugate

chords form a harmonic group.

Let L and iV be any two points upon a circle (fig. 25),

and let the tangents at these

points meet in M. Then LN
and any secant MA A' are

conjugate chords, V, 9° (6).

Let LN and MA cross in E.
Let P be any point on the
circle and join it to L, A,
N, A'. Since M is the pole of

LN, {MAEA')^-\, V, ir,
and consequently

L-MANA'^^-'-X.

lMLA = lLFA, lNLA'^ lNFA\
lALN= lAPN, lA'LM= lATL.

Therefore L'MANA'=P'LANA'= -1,

and {LANA')=-1.

The points in which a circle is cut by any diameter form
a harmonic group with / and J. For / and / lie on every
circle and IJ and any diameter are conjugate chords, either

passing through the pole of the other.

If a number of secants be drawn through M cutting the
circle in B, B ; (7, C" ; D, jy, etc. ; we have

{LANA')= {LBNE)= {LONG)= etc.= - 1,

and MA.MA'= MB.MR^MC.MCr==etc.=^LM^.
Pairs of points thus related form a system in involution.

Fio. 25.

But



CHAPTER VIII 77

16°. It was shown in 1" that the harmonic conjugates of
X and V are .

^~ x+ y ' ^ ~ x--y

Let M be the centre of LN (fig. 16). Then

^ 2 ' aj+ 2/ 2 2/+a5 2 '

j^j^,^
x\-yv X-hv^ y+ x v-\
x^y 2 2/""^ 2

Therefore jgZ . FZ'= ('^)'= ^^^^.

If ^> 1, Z and X will lie to the right of if ; if < 1,
X

both points will lie to the left of M.

Let the successive positions of X and X\ as ^ varies,

be ^, ^' ; 5, B\ etc., and ^

MA.MA'= MB:MB'= etc.==MN^ (21)

Thus the variable points form divisions in involution on
the indefinite line LK The points L and iV are the foci of

the involution, and M (the conjugate of the point at

infinity) is the centre.

17°. Given two pairs of points, A, A' and B, B' on a
straight line ; to find a point M such that

MA,MA'=MB.MB'

Fxo. 26.

Draw a circle through AA\ as in fig. 26, and draw
another circle through BB' and any point P on the first
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circle. The cross of PQ (the radical axis of the two circles)

and the axis is the sought point M\ for

MP.MQ=MA.MA'=MB.ME.

To find the conjugate of any fifth point C; draw a circle

through P, Q and G and it will cut the axis in G\ the

conjugate of G.

18". The position of the radical axis, PQ (fig. 26), with
respect to the axis, or the position of M on the axis,

depends upon the relative position of the points A, A'
',

B, B\ etc. M may lie {a) outside the circles ; or (6) it may
coincide with Q on the axis; or (c) it may lie within the

circles.

(a) When M lies without the circles we have the hyper-
bolic involution of 16° and fig. 26, where k^ is positive.

Since the points and their conjugates lie on the same side

of M, and since A' moves towards M as A moves from M,
one pair of conjugates must ultimately meet in a point F
such that, MP . MQ=OF\ OF is therefore equal in length

to a tangent from M to any of the circles of fig. 26 ; all

such tangents being equal because M is a point on their

common radical axis PQ. To find F, we draw a circle

through P and Q, touching the axis. Two such circles can
in general be drawn, one of which touches the axis in P,

the other in F' (fig. 26). Obviously, MF=F'M.
In a hyperbolic involution we have, 16°,

(F'AFA')={FBFR)= etc. = - 1,

in addition to the general equation of involution, (21).

(6) If Q happens to lie

on the axis, M must co-

incide with it, as also must
F\ P and A, B, G, and in

this case (fig. 27)

MP.MQ==MA.MA'
^MB.ME^B^O.

This is parabolic involu-

tion.

pjo 27. (^) When M lies within

the circles the foci are

imaginary; algebraically, because ¥ is negative, the points
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and their conjugates lying on opposite sides of M (fig. 28)

;

geometrically, because the foci are the points of contact in
which circles through P and Q touch the axis, and in the
present case these circles are imaginary.

Fig. 28. Pio. 29.

This is elliptic involution and

MP .MQ=MA .MA' =MB .MB^ = etc.= -kK

(d) When the radical axis is bisected at right angles by
the axis we have circular involution (fig. 29), in which the
segments AA\ BB\ etc., subtend right angles at P and Q.

As in (c),

MP.MQ= MA.MA'=^MB.MB'=^QtQ.=^^k\
The peculiar property of this species is, that each ray of

the pencil P'ABA'E is at right angles to its conjugate,

whatever the number of points. It also enables us to

introduce the imaginary focal rays; for, 15°,

p. lAJA'= p. IBJR= etc. = - 1.

It will be observed that in elliptic involution the

segments AA\ BB\ etc., overlap, that in parabolic invo-

lution they have one point in common, and that in hyper-

bolic involution they lie wholly within or without one
another.

An involution may have, (a), two real and distinct foci,

or, (b), two real and coincident foci, or, (c) and (d), two
imaginary foci. Every involution has a centre, and in all

cases the product of the distances of any two conjugate

points from the centre is constant.

This distance is

MF^=MA.MA'= k\

„ = „ =0,

for hyperbolic involution.!

„ parabolic „ r(22)

„ elliptic „ J
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19°. To calculate the position of the centre of involution

M, given the distances between four collinear points (a)

and (6) (fig. 30).

(h) ^J^ K 1—5'

Fig. 30.

Since the segment BB' lies wholly within AA\ (a) is a
case of hyperbolic evolution; while (6) is elliptic, the
segments overlapping one another.

Let AM= X. Then, since MA.MA' = MB. MB\

^x{AA'-x)=^{AB'-x){AF --x)

, AB.AB' ,«Qx

In (a) let AB=^1, AB'= Q, AA'= ^ andaj=-3.

In (6) let ^5= -1, AF= \2, AA'= 15 and x= Z.

MA.MA'= MB.MB'=±S6.

If y be the distance from the centre to either focus in (a),

we have, 16°,

y^=MA,MA'= S6 and 2/= ±6.

20°. We have now to draw certain deductions from the
general equation

MA . MA'=MB.MB'=MG, i/0'= etc. = constant.

Since

MA_MB^ MA-MB_ MB'-'MA' , AB _BM
MB ~ MA' ' MB ~ MA' A'B'~MA"

BG
with corresponding expressions for r,,^,, etc.

B G

Again,

MA MB MA -MB' MB-MA' , AB' MR
andMB'~MA" MB' ~ MA' BA' MA"

BC
CB'

BC
with corresponding expressions for 77^7 > ®^
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Writing out the two series for clearness and convenience:

(1)

(2)

(3)

(4)

AB
A'E
BG
B'C
CD
G'U
DA

BM\
MA"
CM
MB"
DM
MC"
AM

.(a)

D^A'~MD"I

(5)

(6)

(V)

(8)

AF
BA''

BC
CF'
CD'

DC
DA'
AD

MB' \

MA"
MC^
MB"
MD'
MC"
MA'

' MD"/

.(6)

The product of the first and third expressions of (a)

divided by the product of the second and fourth is

AB.CD.B'C'.UA' MB.MB'.MD.MU
BC.DA. A'B'. CD'"MC . MC.MA . MA'

~

Therefore (ABCD==(A'B'CD') (24)

Multiplying together the left-hand expressions of (6),

and also the right-hand expressions,

AB'. BC. CD'. DA' MB'. MC. MU. MA'
1

.(25)

A'B . B'G . CD . D'A ~ MA'. MB'. MC. MD'

and AB'. BC. CD'. DA'= A'B.B'C. CD . D'A.

By (1) and (3) of (a),

AB.CD'MB.MC
CD.A'B'~MD.MA''

By (6) and (8) of (6),

BC. D'A -MC. -MD'_ MB .MC
EC. DA'" MA'. MB' "MD.MA''

Therefore

w^=wutSz'' ^" (^50T')=(^'^aD)....(26)

By (1) and (4) of (a),

AB A'B'.MB.MD'
DA

By (6) and (7) of (h),

CD CU.MF
BC

B.C.

D'A'. MA.MA

FC.MD'
F
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AB . CTD A'E. CD'. MB .ME
Therefore

BG\ DA ~ B'C . D'A\ MA . MA"
and {ABG'D^{A'B'Gn) (27)

21*. The connexion between the coordinates of a system
of points in involution.

Let {ABCD)={A'EG'U) and {AFGD)={A'BG'D').

AB,GD A'E.G'U
BG.DA~RG\D'A''
AE.GD _ A'B,G'U
EG.DA" BG\D'A''

By division,

AB.EGA'E.BG' A'B.GE AE.G'B
BG . AB' ~ EG'. A'B ' BG.EA'~ EG'. BA'

and {A'BGE)= (AB'G'B).

Therefore (A'GBB') = (AG'B'B),

A'G.BE AG'. BE
and

Therefore

GB.B'A'" G'B'.BA'

Let A = (x^ViZ^) and A'= (x^y^^^)
;

„ ^= (^3,^3); G'= (t^, u^). Then if wejjcalculate the
values of the various vectors AB ... G'A, we get, (28),

^3t^4 1^1^2 1

which may be more conveniently written

p^=l, (29)

as the condition that the six points shall be in involution.

Ex. The transversal, cc— 42/+ 22; = 0, cuts the sides and
internal diagonals of the quadrilateral AG'A'G (fig. 1)
as follows

:

G'A' in (213), GA in (201), AG' in (410),

CC in (211), AA' in (223), A'G in (012),
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and connecting these coordinates with the letters of (28),

A, B, (7, C\ R, A\

(213) (201) (410) (211) (223) (012)

Calculating the values of t and u for 5, G, R, G\ from
the coordinates of A and A\ we get,

for jB, <i=— 1, ^1=1; ioY E, ^3=— 1, u^— ^.

„ C, ^2= -2, -^^2=3; „ G\ ^4=-l, u,=2.

Here ^A^.hJ^^^

and the system is in involution.

22°. It follows from V, 9°, (c?), that if a variable point P
forms a row on a line g, ^, the polar of P, will form a

pencil with Q, the pole of q, for vertex. And the converse.

What is the connexion between the row formed by P and
the pencil formed by p ?

Let four of the positions occupied by P on g^ be

A=^{x^y^z^, B=(tu\ G==(x^y^z^), D={t'u').

Then (ABGD)= '^,. Let the polars of A and G be

respectively,

ax -{-by -{-02= 0, and a'x-{-b'y+c'z= 0.

On forming the equations of the polars of B and D in the

usual way, it will be found that the polar of

B= (ta+ua\ th-{-ub\ tc-\-uc'),

Consequently, the cross ratio of the pencil of polars is,

tu''

Therefore the cross ratio of any four coUinear points is

the cross ratio of the pencil formed by their polars.

Let A\ B\ G', jy be the points in which the polars of

A,B,G,D cut the axis. Then the two homographic rows,

A, B, G, D and A\ B\ (7, 1)\ form a system in involution.

For since the polar of A passes through A', the polar of

A' passes through A ; V, 9°, (a); and {A'BGD) ={AFCU)
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for the same reason that {ABGD)= {A'B'G'D'), namely,

because A, B ^ C, D' are the points in which the polars of

A\ B, G, D cut the axis. Since, then, {ABGD)MA'B'G'D')
and (A'BGI))= {AB'CD'), the system is in involution.

If the axis cuts the conic the involution is hyperbolic.

„ „ touches „ „ parabolic.

„ „ lies without „ „ elliptic.

In the last case, when the involution happens to be
circular, the axis becomes the directrix and its pole (the

point Q) is a focus of the conic.
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TRANSFORMATION OF COORDINATES

1**. The coordinates of the various points of a net with
ABG for the given triangle and any new origin 0' are
obtained in exactly the same way as those of the corre-

sponding points of the old net, and the symbols of

corresponding points are identical. Thus (Oil) is the
symbol of the new A'\ as it was of the old A'\ but in

general old A" and new A" are not the same point in the
plane. In both cases A" is the cross of the lines BG and
BG'\ but in changing the origin from to 0' we shift

the position of EG\ and the new B'G' will not cut BG in

the same point as the old B'C. In changing the origin

from to 0\ then, we generally change the position of

every point in the net except A, B, G, although the symbols
of corresponding points remain unaltered. At the same
time a, ft y become a, l3\ y, and I, m, n become l\ m\ n',

scalars such that Va+m'^'-\-n'y=0.
To save space, the lines drawn from the corners of the

triangle through any point to the g
opposite sides will be called the rays

of the point. OL

2°. The relation between the ratios

in which the rays of two points cut the

sides of the given triangle (fig. 31).

Let the old origin be as usual,

and let the new origin be a rational

point of the net, 0'= {fgh\ whose rays cut the sides as

V '.TTh' : n\ Then,

Fio. 31.

forO,

„ 0',

Bo\_n
0\A

GO\^gm^
0\B hn

'

A0\
0\G

hn

V'
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Therefore I' :
m' :n' =fl :

gm : hn, (1)

and l:m:n=f'H':g-'^m':h-'^n\ (2)

3°. Let P— (xyz) be any rational point of the net
(fig. 32). To find its coordinates {x'y'z') to a new rational

origin, 0' = (/^;i).

^ ^^ Imy

^ ^^ mnz ^

Therefore x' -.y' •.z'= mfn'lx : nTmy : I'm'nz,

and(l). „ =f-h>:g-^y:h-^z. (3)

Conversely, x\y\z—fx'\gy'\}iz' (4)

4°. The commonest case is that in which the new origin

is irrational.

Let (y^\^,—,—\ its rays cutting the sides as f:g:K

Then (^(7'BP3)=||=-'; (B^'CP,)=^=2/';

d \y' \z' —f-Hx •.g~'^my :h-'^nz, (5)

x:y :z= l-'^fx' :m-'^gy' :n~%z' (6)

Ex. 1. To transform the equation of the circumcircle

mna^yz+nlbhx+lmc^xy= (a)

from origin to origin 8, the symmedian point, ( -r, — , — ).

^""^
\r m' n) '' r^Pr^«^^^<i by [v m' n> ^^^ ^^ (^>'

x:y :z==-tX : — y : -z.
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Consequently,

= mna?yz+ nlWzx+ Imc^xy= mnaP' y'z'+nlW—r- z'x'

q2})2

^lmc^^x'y\

In fact we have merely to substitute a^, b\ c^ for I, m, n
in (a).

j&a;. 2. Let the converse problem be considered: to
transform to origin the equation

yz+zx+xy= 0,

which represents the circumcircle when S is origin.

As S is irrational in respect to 0, the symbol of when

S is origin is f-g, Ti> -z)- These coordinates now represent

\j, — , — j above, and we have, (6),

Ix' my' nz'

Therefore

0=^yz-{-zx+xy=^^yz -¥^^zx ^-^^^y

,

„ = „ = mna^y'sf+ nWz'x'+ Imc^x'y'.

5°. In the foregoing sections the origin only was changed,

the triangle remaining the same. We have now to con-

sider the case in which both the origin and the triangle are

changed.

Let any point 0' be chosen for the new origin and any
three points A^.B^^C^ for the corners of the new triangle

;

and let their old coordinates (for the triangle ABG and
origin 0) be

0'^{x^y^z^\ A^= (x^y^z^\ B^^ix^y^z^), G^ = {x^y^z^).

Let P be any point whose old coordinates are {xyz) : it is

required to find its new coordinates (x'y'z') with respect to

the new triangle A^Bfi^ and the new origin 0'.
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By II, l^ -,= {C^'Afi'B^P\ and by VIII, (9), the value of

this pencil is

{G,.Afi'BJ>)=^

H Vz ^z ^3 VS ^Z X y z ^0 Vo ^0

^1 Vi ^1 <^2 2/2 2^2 ^2 y2 ^2 ^3 2/3 %
^0 Vo ^0 X y z ^S 2/3 % a^i 2/1 ^1

^z Vs H ^Z 2/3 H X y z a^o 2/o «o

^0 Vo ^0 X y z a^3 2/3 ^8 a'2 2/2 2^2

^2 2/2 ^2 ^1 2/i ^1 «i 2/i 2^1 ^S 2/3 %

or,

V |a52/3^il|a'o2/22^3l

Similarly,

y'^I^MiJiMifd. ^^^ l^2/i^2ll^o2/2^3

2^' |a52/22^2ll^02/32^ir ^'^ |a'2/22^3ll«'o2/l2^2

From these three ratios we have

.(7)

05=^2/2^3
I Fo2/3^i I Fo2/l^2 2/=F2/32^i

z'= \xy^z^\

^oyi^2\\^oy^s

aJo2/2^3 11^02/32^1

(Hamilton.)

;}(8)

6°. Let the point (xyz) be C= (112) (fig. 1); let the
points chosen for the comers of the new triangle be (121),

(Oil), (1X0) ; and let the new origin be (131). Here

aj= l Xq= 1 fl?i= l x^= x^= l

2/= l 2/0= -3 2/1= 2 2/2 = 1 2/3= -1
z= 2 00=1 -1 0o=-l

Substituting these values in (8) we get, aj'= — 4, 2/'= 8,

— 2
s;'= -o- ; and putting these numbers in continued proportion,

x':y':zf= 6: -12:1,

or the new coordinates of P are (6, —12, 1).

We may verify this result without any reference to the
equations of (8).

The points taken for the new triangle are

D^RC'GR'' =(121), ^"= (011) and (7"= (lT0)

(fig. 33), an extension of fig. 1. For the new origin, an
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auxiliary point H=BG'AD= (021) was determined, and the
point BB'-G"H= (131) was chosen for 0\

FxG. 33.

The old is chosen so that

l\m'.n= l : 5 : 2.



so TEANSFORMATION OF COORDINATES

It will be found that O'D, 0'A'\ OV" cut the sides of

I)A"G" in the ratios

A''E l-\'2m-n 3

ED~ m--n "1'

C"F m- n 1

~4'
DG
GO"'

4

FA"'--3(^-m) "3*

V:m'',',n'= 3:1 :4.Hence

Lines drawn from G"' through D, A" and C meet the

opposite sides of

DA'V' in r^=^(lS4>), F2= (152), P'3= 5'= (101).

Mence
p,^^ "my" -2(m-7i)- -2'

C'P'i my 4(m-^) -3.

DF\ n'z' 2

or ZV:my:7iV= 9:-6:2.

But i':m':%'= 3:l:4.

Therefore, aj' : 2/' :
0'= 6 : — 12 : 1, as before,

or ^= (6, -12,1).

7". We may somewhat simplify Hamilton's equations.

Let the nine minors of \x{ij^^ |, in the usual terminology,

and let
|

x^y^z^
\

\ x^y^z^ \^\,

I «'o2/2% 1
1^02/3^1

1

= ^3-

Then the equations of (8) become

x'= h^{L^x-\'M^y^-N^z\\

y'^k^{L^^M^y^N^)\ (9)

z'= \{L^-JtM^y-\-N^z).]
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nerefore,

; y= ^^ ^> 1
; 2^=

M, N,
1 ^^ ^^ 1

M, N,
1 ^3 ^3 1

91

4 ^3 1^

Evidently,

But

Consequently,

x=\M^,\^+\MsN,\l+\M,N,\^.
/Cj /Cg A/j

^3^ll = «'2|a'l2/2^3l; |-^l-^2l = «'3ki2/2^3l-

AJj /Cg A^g

2;.

Similarly, 2/ = r' ^'+f-' 2/'+f-'^',/Cj /Cg /Cg
.(10)

/Cj /tg /Cg

For the triangles of fig. 28,

A:,= 3; 0^1= 1; y^= 2; ^,= 1; Zi= T; ifi= T; N^= l.

k^=S; 0^2=0; 2/2=!; 2^2= !; 4=1; ^2=1; ^2=3.

A;3=l; a;3=l; 2/3=!; 2^3=0; Z3= T; if3=l; i\r3= l.

Equations (9) and (10) consequently become

x'= S{X'\-y-\-z); x—'-^x^-^-z'— x'— Zz'. \

y=-3(l+ 2/+ 30); 2/=~K-"i2/'-^'= 2a;'+y'+30'.Hll)

From these equations we get the new coordinates of the

corners of the old triangle

^ = (331), J?= (331), C=(391), = (9, 15,1).

From the value of aj', it is clear that the equation of the

side G"A" of the new triangle, x'— 0, is in the old coordinates
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the axis of perspective of the old triangle, according to

construction.

The axis of perspective of the new triangle in the old

coordinates is
, k /^

A circumconic of the old triangle, yz+zx-^xy= 0, in the
new coordinates is

x^-\-y^-\-9z^-{-Syz-{-Szx-^Sxy==0.

S°. The matrix formed from the coefficients of the

transformed values of x, y, z,(ll),

1 3

2 1 3

1 1

is the modulus of transformation, and the invariants of two
conies are calculated in the same way as in other systems
of coordinates. Let the equations of two conies be

-8y^-\-2yz+4>zx+2xy = 0,

2yz-^2zx-^2xy= 0.

The invariants of these equations are

A= 36, 9= 42, e'=16, A'= 2.

The transformed equations are

Sex^-\-10y^-\-dOz^+4iSyz+96zx+4iOxy= 0,

2x^'\'2y^-hl8z^-}-6yz-{'6zx-\'6xy=0;

their invariants are

Ai= 1296, 91= 1512, 9'i= 576, A'i= 72;

, Ai 9i e\ A\ o«^^^ A=9=9^=A^= ^^ =
1 3

2 1 3

1 1
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THE CIRCLE

1°. The condition that the circumconic, yz-\-zx-^xy= Oy

shall be a circle (fig. 34).

Br T,
"~— —» •——.«• m^ ^.m'-y^"Tv^"--/

'<'-'^cRy•X 1 / V \ f

^>.JK 1

' \^KM-^
A^^

Fig. 34.

The tangents to the curve at Ay B and C meet in

Ti = (lll), T2= (lll), T^= {lll\ and K the centre of the

curve is (m+'?i— ^, ^i+^— tti, ^-f'^— '^).

Therefore the equations of KT-^, KT^, KT^ are

(m— 71)0;+ 7711/ --nz— 0,

— ?ic

+

(ti— i^) 2/+ 712;= 0,

^aj—my+ (i— m)0= 0.

These lines cut the triangle respectively in {onm), (not),

{mid), the middle points of the sides, and when the conic is

a circle they are perpendicular, KT^ to BG, KT^ to GA,
KT^ to AB.

Applying the condition of perpendicularity, III, 10°, (c),

we get
i(62-c2)-ma2+^a2= 0,

^62+m(c3~a2)-7i62= o,

whence l:m:n= a^:h^:c^ (1)
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Therefore the equation yz+zx-^-xy^O represents a circle

when the symmedian point is origin.

Changing the origin from the symmedian point to 0,
we get, IX, 4°,

mna^yz-\-nlb^yZ'\'lmchx= (2)

as the equation of the circumcircle.

2°. The coordinates of the points in which A« cuts (2)
have three forms

:

(1) x:y :z=mna : 712(06^*^— a) : ^lmce'^*^.\

(2) „:„:„=- mnae^'^ : nib : Imiae^^^^- h)X . . .(3>

(3) „:„:„= mn{he^^^ - c) : -nlhe^^"^ : Imc. J

These are the Cyclic Points at infinity, / and J.

If an angle of the given triangle, say A, happens to be
90°, the lines AI and AJ will be found to be the harmonic
conjugates of AB and AG.

Ifa=6= c= l and l:m:n:lf the 1^* form becomes

(., -i.^. -i.^} <«

three of the cube roots of unity, which will be as usual
written (loooo^) and (Iw^oo). It will be observed that

3°. A metric equation of the circle may be obtained as

follows.

Let d be the constant distance of a variable point (xyz)
from a fixed point F—(fgh). Then the given triangle

being equilateral and its mean point the origin, the distance

between the points is

d^l^f.H^x^^p^+q^+r^-qr-rp-pq

= FI.FJ,

because ^ =%— 2/^, q^fz—hx, r^gx—fy.

Consequently, FLFJ-'d^I.^.I^^x^O (5)

is the equation of a circle with (fgh) for centre and d for

radius.
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The tangential equation, VII, (6),

72_2^ (Imnhc sin Ay

corresponds to the local equation (5),

.^_ FI,FJ

If c?= 0, the local equation becomes FI,FJ=0, the pro-
duct of the equations of two imaginary lines ; the tangential
equation becomes Ifp= 0, the equation of the centre, which
is the cross of these two imaginary lines. If d= oo , the
tangential equation becomes 0^ = 0, the product of the
equations of two imaginary points ; the local equation
becomes 2ic= 0, the equation of the (analytically) real line

Aoo , the join of these two imaginary points.

4°. Equation (5) represents a circle, and its form shows
it is in terms of two tangents, FI=0, and FJ=0, which
touch the curve at I and / respectively, and the chord of

contact aj-|-2/+2^= A„ = 0, V, 22°. Since the pair of tan-

gents are drawn from the centre and touch the curve at

infinity, they are the (imaginary) asymptotes of the circle.

The value of d and the position of F being arbitrary,

the general conclusion is that all circles pass through the

two cyclic points / and J.

5°. The circle is the only conic which passes through both
/ and ./. Every parabola meets Aoo iu two real and co-

incident points : every hyperbola is cut by it in two real

and distinct points. No ellipse can pass through both.

The coordinates of the points of intersection of two conies

are derived from two quadratic equations, and consequently

have four, and only four, sets of values; or, two conies

intersect in four points only. Suppose a certain ellipse to

pass through I and J. Let any three points P, Q, R be

taken on the curve and let a circle be drawn through them.

Then the two conies intersect in P, Q, R and also in

I and J, that is, in five points ; which is impossible. There-

fore no ellipse can pass through both / and J.*

6°. It follows from the foregoing that if A represent

any straight line, S any circle, and if k be an arbitrary

constant, AA^-^kS=0 (6)

* Whitworth, Modem Analytic Geometry, p. 289.
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represents some other circle, &. First, being of the second
degree, (6) represents some conic. Secondly, S' passes
through the two points in which 8 is cut by Aoo and the
two points in which it is cut by Q, But >Sf is cut by A^o in

/ and J. Therefore 8' is a circle, the only conic that passes
through these two points. Since 8 and 8' are cut by A in
the same two points, A is the radical axis of 8 and 8\

T. The condition that ^(a?, 2/1 2;)= shall represent a
circle.

Let A=^a;+gi/+r2;= 0, and let 8 represent the circum-
circle in (6). Then,

(^ 4- gy

+

rz){lx+my+nz)+kimnahfz-\-nlWzx-\' lm<?xy)=

is the general (graphic) equation of the circle, and to this

form the general equation must be reducible when it

represents a circle. Equating the coefficients of the squares
of the variables in the two equations.

u=pl, v= qm, w= rn, and p= jt q— —, ^=u V w
n

The general equation must therefore be reducible to the
form

+h(mna^yz+nl¥zx+ Imc^xy) =0. . . .(7)

Expanding this equation and equating the coefficients

of yz, zx, xy to those of the same quantities in the general

equation, we get

2u =— i?H

—

w-^kmna^,m n

7YL L

I m

\

.(8)

Eliminating h from these three equations, we get

V^hh\nH+m^w- ^mnvf)=mVa^{Pw+n^u- 2nlv')

=nH%\m^u+l^v^2lmw'l ...(9)

the condition that <p{x, y,z)= shall represent a circle.
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8°. Equation (7) may be written

+ k(mna^yz+nWzx+ Imc^xy)= 0, (10)

which enables us to find the equation of a circle passing

through any three given points. For substituting the

coordinates of the given points in (10), we get three equations

of the form
a^u+ h^v+ c^w+ djc— O,"!

a2U-{-h^v-\-c^W'\-dJc= o\ (11)

a^u+ h^v 4- c^w+ djc= O.J

Therefore

u — v w
\ ^1 CZ, a. ^1 ^1

K ^2 ^2 a^ ^2 C^2

K ^3 d. «3 ^3 C«3

«! fci d. «: 6i Cl

a^ &. d. "2 6^ Cj

Oj h d. tta 6s «8

(12)

Having obtained the proportional values of u, v, w
and k from these three matrices, u\ v' and w' are obtained

from (8).

Ex. The Brocard circle passes through the Brocard

points Qi and Q^ ^^^ ^^^ symmedian point,

Substituting successively these values of the variables

in (10), we get

c^a^ + a%^ —. 4- h^c^ —.+ o^b^c'k= 0,

a%^ '^+ 6V—„+ c%2^

+

a%''c%= 0,
^2 ' ^2 ' ^2

a2 ^ 2^2+ 62 -^ Sa2+c2^ 2a2+3a26VA;= 0.

Consequently,

u= a26V
a2 62 1

c2 a2 1

2a2 2a2 3

= a2&V(2a*- 62c2- c2a2- a^fe^).

H.C.
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Similarly,

I

~.2

Hence, suppressing common factors, we have

u = b^cH^; v = cVm^; w= a^bV; k== ^{a^+ b^+ c^).

Substituting these values of u, v, w and k in (8),

'2u = — a*mn ; 2v'= — ¥nl ; 2w' = — 2cHm.

Consequently the equation of the Brocard circle is

y^cHV+ c^a^Tti^y^+ oRP-nH'^— ahnnyz — ¥nlzx
-cHmxy = 0, (13)

or,

(b^cHx+ c^a^my+ a%'^nz){lx+ mny+ nz)
— {a^+ 6^

+

c^)(mna^yz+ nlb^zx+ Imc^xy)= ;

this second form showing that the line

b'^cHx+cVmy+ a^b'^nz =

is the radical axis of this circle with respect to the circum-
circle.

When S, the symmedian point, is taken for origin, the

equation of the Brocard circle assumes the simple form

a^x^+ b'^y^+cV— a^yz— b^zx— c^xy = (14)

9°. The inconic touches the sides of the given triangle

in the points A', B', C. When the conic is a circle, we
know that BC^^s, CA;^^8^ AB' _s,

G'A s,' A'B Sg' B'G s^'

In words, the equation x^-\-y'^-\-z^— 2yz — 2zx— 2xy —
represents a circle when

that is, when the Gergonne point is the origin.

Transforming the equation to the general origin 0,

= s^lV+ s^rn}y^+ s^nH^— 2s^s^nyz— 2s^s-^nlzx

— 28^sj,mxy. ...(15)
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10°. The IX or nine points circle passes through the
middle points of the sides of a triangle (onm), (nol), (mlo).
Applying the principles of 8°, its equation is found to be

= bc cosAIV+ ca cos Bm^y'^+ ah cos In^z^— o?mnyz
— Wnlzx— cHmxy (16)

11°. The condition that

shall represent the polar circle (fig. 35).

Fio. 35.

By (9),

a2 : 62 : c2 = I^tyi^+ n^) : m^P'- v?) : n\V-- m^),

whence P' :m^:n^=-^ tan A : tan B : tan G.

Consequently the conic is a circle when the point

P =(±^— tan^, ±v^tan5, di^tanC)

is the origin. In order that this point shall be real, the

angle A must be obtuse ; and in this case, taking the square

roots as all positive or all negative, the origin lies within

the triangle.
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To transform the equation to the general origin 0.

Since is irrational to P, its symbol is

/ I m '^ \

\^ -tarn A' Jta>nB' Jtsm 0/

Therefore, IX, (6),

_ Ix' ^ my' ^ nz'
^'^ '^~ J-ioxiA' ^tanB ' ^tan C

Consequently,

-ajH2/H^2= cot-4^V2+cot5mY2+cota7^V2= 0, (17)

which is real when A is obtuse.

rtM, A. £ i 1. • 1 • /tan A tan B tan G\ , ,

Ine centre oi the circle is —j—, , ), the

orthocentre, which lies outside the triangle because A is

obtuse and tanA negative.

Equation (17) may be written, 6ccosu!lZV+etc. = 0, and
can be thrown into the form

Aoo (he cos Alx-\-ca cos Bmy+ ah cos Gnz)— /Sf= 0,

where B represents the circumcircle. Now the equation of

the IX circle, (16), may be written,

Aoo (he cos Alx-\'Ca cos Bmy+ ah cos Gnz)— 28=0.

Therefore the polar and the IX circles have the same
radical axis in respect to the circumcircle; or the three
circles intersect each other in the same two points.

12^ Since

a= S^+ 8^y 6= S2+ Si, C = Si-^S2y BJldC08A=C08^A^8iD!^iA,

the equation (a) of the IX circle may be written,

Aoo {(s^i— s^s^lx+ (ssg— s^s^my+ (ssg— s^s^nz} — 28=0.

The equation of the incircle in the same form is

Aoo {s-^Hx 4- S2^my+ s^^nz} — 8=0.

Now, if two circles are given,

a=AooA+A;^=0 and G'= A^A'+ k'8^0,

then (7= Aoo (a-1 A')+1 C\
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k .

where A—p A'= is the radical axis of G and C, Applying

this result to these equations of the in- and IX circles, we

5^^^„+^= (18)

as their radical axis.

Let the Gergonne point, (SgSg, s^s^, s^s^), be taken for

origin. Then this equation of the radical axis becomes

^
' -0; (a)

and at the same time the equation of the incircle become^

Now, for this equation, U= V=W=0] U'=T= W'= 2.

Therefore the condition that (a) shall be a tangent to the

incircle is, V, 6°,

Si(b— c)+S2(c— a)+ 8^(a— b)= 0.

But this equation is identically zero. Therefore the

radical axis (18) is a tangent to the incircle, and consequently

to the IX circle. The point of contact is

{8,%h-cy, si{c-af, s,\a-hf} (19)

to the Gergonne point as origin, and to origin 0,

isjy-cf 8^{c-af 8^{a-hf\
I

—

I ' ^r~' n J
^^">

These results may be reached more easily as follows.

The tangential coordinates of the radical axis of the IX
and incircles are, (18),

/ I m n \

\6— c' c— a' a— hJ

and the tangential equation of the incircle is

Is-^qr+ ms^rp+ ns^'pq = 0.

For the Gergonne point as origin, these expressions become

/ ^2^3 ^3^1 ^1^2 \

\h— c^ c— oJ a— hi

and gr+'>l>+M = ^-
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Substituting the coordinates of the radical axis in the
equation of the circle, we get

Si(6— c)+S2(c— (x)+ S3(a— 6) = 0,

which is identically zero. Therefore the radical axis is a
tangent to the incircle and consequently to the IX circle.

13°. If X'— {x'y'z) be any point without a circle with
centre F— (Jgh) and radius r, the length of a tangent from
X' is, (5), f'^FX'^^rK If we regard FX' as the radius

FI FT
of another circle with F for centre, FX'^= (P= •^' ^^ .

Therefore <2=g^_^2_ (21)

the length of a tangent from any external point to a circle,

with the conditions, a= h = c, and l:7n:n= l.
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THE FOCI OF A CONIC

1°. Let A = be the equation of a fixed line and
S=0 the local equation of a conic. Then the equation,

/Sf— A^ = 0, represents a conic S' which has double contact

with S in the two points in which it is cut by the chord
of contact A, whether A cuts 8 in real or imaginary points.

Consequently S' and S have two common tangents, which
are real in the first case and imaginary in the second.

Let >S^ be a circle with a fixed point F=(fgh) for centre

and an arbitrary radius r^ ; and let A be (pqr), the function

of its coordinates being Z^ as usual, IV, (2).

Let a= b = c and l:7n:n = l. Then the equation,

>Sf-A2 = 0,

may be written, X, (5),

Now by X, (21), the first term in brackets is the length

squared of the tangent drawn from any point, X = (xyz)

on S' to the circle S, say r^ ; qv2/ ^® ^ constant, say e^ ;
and

the second term in brackets is, lY, (7), the perpendicular

squared from X to (pqr), say a^. Hence, r and cr being

variables, for every point on S\

T2=eV (2)

In words, if a circle S have double contact with a conic

S\ the tangent drawn to the circle from any point X on
the conic is in a constant ratio to the perpendicular from
the point to the chord of contact.
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2°. Let A cut S in imaginary points and let r^ approach
zero. At the limit (1) becomes

^"SyS^a; ^ ^Z^^^x
^^

The first term now represents the distance squared from
X to ^, say p^, and the equation may be written

= p2_g2^2^ (4)

the known equation of a conic section, p being the distance

of the variable point from a fixed point (Jgh) and o- its

perpendicular distance from a fixed line (pqr). According

as 6 = 1, the curve is an ellipse, parabola or hyperbola.

The focus (fgh), then, may be considered as an infinitely

small circle which touches the conic in the two imaginary
points in which it is cut by the directrix.

3°. Substituting for e^ its value oy2/' equation (3) becomes

0==FI.FJ-^^x (6)

Now the form of this expression shows that it is the

equation of a conic in terms of two (imaginary) tangents,

FI and FJ, and their (real) chord of contact. Consequently
a focus, still regarded as an evanescent circle, is the cross

of two imaginary tangents to the conic, the one from /,

the other from J. But four such tangents may be imagined
as drawn, two from / and two from J, intersecting in four

points which form a quadrangle. Therefore a conic has
four foci. In the case of the parabola two of these

imaginary tangents, one from I and one from J, coincide

with Aoo , which is itself a tangent to the curve.

Since FI and FJ remain the same in (5) whatever
(pqr) may be, it follows that all conies which have a
common focus have two common imaginary tangents ; and
if they have two (real) foci in common, they have four

common imaginary tangents.

4°. We have now to enquire into the nature and position

of the four foci.

In V, 18°, (6), were given the separate coordinates of the

two tangents from a point (fgh) to a conic. If we suppose

that {fgh) becomes successively I={lcio(a^) and J=(l(o^w), the
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first set will contain the quantity s/ — ^^(Iwa)^) and the
second v — A0(lo)2ft)), which it is necessary to expand.

Let u+2u' = a, v-\-2v' = b, w-{-2w' = c.

Then

^/i 2\ . z. 2 .
2a— b— c .(6— c),^3

0(10)0)2)= a4-t>f«>+ CO) = ^ ^^ 9~'

0(lo)^O)) = a+ OO)+ CO)2 = ^ f-^^ n '

Therefore

__. /V(a^+6^+c2-6c-ca-a6)-(2a-6^

= s/P-WQ' Similarly, V0(1^'«)=V^+VQ-
Consequently,

>v/-A0(lo)O)2) _ ^Q^+ ^VPA,

V-A0(lo)2o))= -^QA4-iV?A.

The coordinates of the two tangents from /, when
reduced, are,

p = 6(- D"+ r+ F0H=2VaPA
+i^S{4^V-4>W+2r-2W'±2s/QA},

-^i^S{2U-2W-2U'-^6W-4^W'i^(JSPA+ ^QA)},

r= 6(- U+ V- U'+ F0±(V3PA-3VQA)
-^iJ^{-2U+2V^-2U'-\-^T-QW'±{JWK-jQA)}'

The two tangents from / are

/= 6(-£7'+F'+F')±2V3PA
-V3{4F-4r+2r-2F'=F2VQA},

g'= 6(F-Cr-£^'+r)+(>v/3PA-3VQA) __
-V3{2[7-2Tf-2f^'+6r-4Tr'±(V3PA+ ^QA)},

^'= 6(- U+ F- ^'+ Tr')+(N/3PA-3VQA)

-V3{-2i[7+2F+2(7'+ 4F'-6F'+(x/3PA->v/QA)}.
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The coordinates of the four tangents may be written

:

From I 1^1 = (^+ ^'^' f'^^^^ ^+ ^^)' ^

' \t^= {d'+e'i, f+g\ h'-^k'i).
(6)

(8)

From /,
[t,= {d'-e'i, f^g\ h'^k'i),

\t^ = (d— ei, f—gi, h— ki).

It is evident from these expressions, that

F=t^-t^= (gh-fk, dk-eh, ef-dg\ \ .^.

F' =zt^.t^ = {g'h' —fk\ d'k'— eh\ ej'— d'g'.]

(fK-fh+gk'-g'k+i{gh'+g'h-fk'--fk),
Y=t^'t^=\M -h'd+ke' -k'e+ i{dk' -^d'k-ehf -e'h\

\df- d'f-\- eg'- e'g -{-iief+e/~ dg'- d'g)
;

[fh' -fh+gh'- g'k- i(gh'-{-g'h -fk' -fk),
F= ^2-h = \hd'- h'd+ ke'- k'e- i{dk+ dik+ eh!- e'h),

[df-d'f-^eg'-e'g-i{ef+ey-dg'-d'g). )

It appears from the equations, (7), that F and F' are real

points, and from (8) that Y and Y' are imaginary. But
the line YY' is real, as is evident from the form of the
coordinates of F and Y\

(p + qi, r+si, t-\-vi),

(p— qi, r—si, t— vi).

These are general conclusions, and F, F' may be any two
points in the plane. Let, then, F={x{y^z^, F' — {x^^z^\
the equation of FF' being as usual,

px-{-qy-{-rz= 0, (a)

where p-={y^z^-y2^i\ q^{Zv^2-^2^i)> ^= (^1^2- ^Jg^/i).

Forming the equations of FI, F'J^ etc., we get

FI={z^u>-y^w^, x^aP'-z^, y-^-x^w),

FJ={z^(£>^— y^(ay x-^w— z^, y^^x^(£p-)y

FJ=^{z^w^-y^(a, x^w-z^, y^-^z^^)*
F'I={z^w-y^w^, x^ui^-z^, y^-x^w).

From these equations,

F=FLFJ^ {( _ 2p+ g+ r) ^i{x^(r^+ a'2^i)>v/3,

(^- 2^+ r)+ ^(2/10-2+ 2/2^1)V3,
{p-\-q-'2.r+ i{z^(r^-\-z^(T^)J^).
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where cr^ = x^-\-y^-[-z^ and o-^^x^+ y^+ z^.

Let '-2p+ q+ r= a, p— 2q + r= h, pi-q — 2r= c,

«1<^2+ ^2<^1 = ^1' 2/1^2+ 2/2^1 = ^2' %0-2+ 02^1 = ^/3;

and the equation of YY' will be the real line

(bM^-cM2)x-\-(cM^-aM^)y-^(aJ\^^-.hM^)z = 0. ...(b)

Now III, 1°, the middle point of the line FF' is

(i/i, ifg, -^3), and

Therefore the real line YY' bisects FF\
Again, since the given triangle is equilateral and its

mean point the origin, the condition of perpendicularity,

III, 10°, is

2pp'-\-2qq'-^2rr'-(qr'+q'r-\-7p'-\-rp'}-pq'-^p'q)= 0.

Applying this test to (a) and (6), the equations of FF'
and YY\ we get

= 2p(bM^- cM^)+ 2q{cM^~ aM^)+ 2r{aM^- bM^)

- q{aM^- bM^- r{cM^- aM^)- r(bM^- cM^)

—p{aM^— bM^ —p{cM^—xM^— q{bM^—cM^
„ = (6if3- cM^){2p- g- r) 4- {cM^- aM^){ -p-\-2q- r)

-{-(aM^-bM^)(-p-q-\-2r)

„ = - a(bM^- cM^) -b(cMi- aM^)- ciaM^- bM^)= 0,

identically.

The two imaginary foci, then, are situated on a real line

which bisects at right angles the line joining the two real

foci.

5°. The coordinates of the foci given in 4** are ill-adapted

for calculation, and we have now to consider other methods
which will give these coordinates in a less complicated form
The following method of finding the coordinates of the

foci, in the case when the given triangle is equilateral and
its mean point the origin, is given by Sir William Hamilton.
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Writing for (p(xyz), I for <f>x,
m for <j)y, n for ^2, and

{lOQ^) and (l^^^) for the cyclic points: the equation for a

pair of tangents to a conic from a point {fgh) is, V, (25),

If I and / be chosen successively for {fgh), we have

0(1, 0, 02)0-(^+me+^07 = 0,1

0(1, e\ 0)0-(^+m02+^O)2= Oj

Now 0(1, Q, e^) =u 4- 2u'+ (v+ 2v') e^-^{w+ 2w') 0,

0(1, 0^ e)=u+2u'-h(v-\-2v')e+(w-h2w')e^

(I+mO^+nef= P-^ 2mn+(m^+ 2^1^ + ('^H 2lm) 01

Let u4-2u'= (X, v-\-2v' = h, w-\-2w' = c,

l^-\-27nn= \, 7n^-{-2nl — iuL, n^-\-2l7n— Vt

and we have (a+ 50'^+ c0) - A - yuO^- ,;0 = 0,\

(a+60+ c02)0-X_^e-j/02 = o,J

whence a(j)— X= b(l> — /uL — C(i)
— v (9)

By means of these three equations we can determine the

four points in which the two pair of tangents from / and /
intersect.

Let^, g, r be any three constants such that p+g+r= 0.

^^^"^
p(a0~X)+ g(60-^)4-r(c0-.) = O (10)

represents a conic passing through the four foci.

Let p — b — c, q = c— a, r= {a— h),

and this equation becomes

(b-c){P+2mn)+ (c-a)(m^-^2nl)

+(a-6)(7i2+2^m) = 0, (11)

where a, h, c are known and real constants (the given conic

being real by hypothesis), and I, tr, n represent real and
homogeneous functions of 0(a?, y, z).

This equation breaks up into two real straight lines.

For let h^= a^ -{-b^+ c^— be— ca— ab, which is real since the

conic is real, and (11) is equivalent to

= {{b-c)l+(a+b)m+ (c-a)n+h(m-n)}
X {(b-'c)l-\-(a-b)m-^(c-a)n+ h{n-m)}, ...(12)
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the product of two real and distinct straight lines on which
the foci are situated. These two lines are consequently the
axes of the conic ; their cross is the centre ; their inter-

sections with (10) are the four foci ; and their intersections
with <p(x,y,z) are the four vertices of the conic (Hamilton).

Ex. Let the conic be

,

8^/2— 2yz— 4!zx— 2xy = 0.

Here a= u-\-2u'= —2; 6 = f+ 2i''= 4; c= w-\-2w'=: —2,

h^ = 36, and h may be taken as 6.

l= <f>x=-y-^z; m= 0j,= -a;+ 82/-0; n= <f>,= ~2x-'y,

X = 4a;2- 1 52/2+ 4^2+ 62/0

+

4>zx- SOxy^

luL = x^+6ey^+z^-12yz+10zx-12xy,\
V= 4£C2— 14^/2 _J.

42;2_ ^()yz+ ^ZX+ Qxy.)

Substituting the above values of a, h, c in (12), we get

= (l-n)(l-2m-\-n)= y{x-'z).

The axes of the conic are therefore y = and a;— = 0.

The cross of these lines (101) is the centre.

The foci are the intersections of the axes with (10).

Let p= 2, q= —1, r= —1, and we ultimately get for this

equation x^-lly^+z^+ Uyz-10zx-22xy = (13)

The intersections oi y = with this conic will be found

^^
(1 + -^/f . 0, 1 - VI) and (1 - VI, 0, 1 + Ji).

These are the real foci. The imaginary foci are the

intersections of ic— = with (13), namely

(11,6^/^-4,11) and (11, -(6V^+ 4), 11).

The intersections of 1/= with the conic give two of the

vertices, (100) and (001). The intersections ofa;— 2; =
with the conic give the other two, (111) and (212). The
conic is an ellipse since it has four real vertices.

Since G and A are two opposite vertices and CA = 1 by
hypothesis, the length of one semiaxis is J. The distance

of the centre (101) from either of the other vertices is
^^

—

-7=,

the length of the minor semiaxis. From the lengths of

the semiaxes, the eccentricity is found to be ^^f.
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6°. When the given triangle is scalene and l\iyi\ n=\=l,

we may transform the coordinates by selecting an equilateral

triangle for the new triangle and taking its mean point for

the new origin. If, as generally happens, the figure under
consideration contains no equilateral triangle, we may
construct on the base of the given triangle an equilateral

triangle ADC, the points B and D lying on the same side

of GA. The reader will find little difficulty in proving
that the coordinates of D are given by

x:y \z

= mna(smG—cosG^S) : nlh^S : ^mc(sin^ — cos A ^3), (14)

and that the coordinates of M, the mean point of ADG, are

x:y :z

=mna(sm G^S — cos G) : nib : ^mc (sin A^3 — cos A). (15)

We then proceed to Hamilton's equations, 5°.

This transformation of coordinates, owing to the form of

the coordinates of D and M, is tedious, and the following

method is in general preferable.

7°. If T—0 be the tangential equation of a conic and
u — and v = the equations of any two points, then

T+kuv= (16)

is the equation of a conic T' so related to T that two of

their common tangents pass through u and the other two
through V. For if (pqr) be either of the tangents from u
to T, its coordinates must satisfy the equations of both

u and T, and consequently satisfy (16), the equation of T\
Therefore (pqr) is a tangent to T\ YII, 9°. In like manner
the coordinates of the other tangent from u and those of

both the tangents from v to T satisfy (16), and all three

of them are consequently tangents to T\ Therefore T and
T' are both inscribed in the quadrilateral formed by the

intersections of their common tangents from u and v.

Now the equation of T' possesses this property, that

when, for certain values of the constant k, it breaks up
into the equations of pairs of points, these points are

the opposite corners of the quadrilateral in which T and
T' are inscribed.

This may be illustrated simply. The lines BA and BG
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of the given triangle (fig. 36) are tangents to the inconic,
qr-^rp+pq = 0, and B''A is also

a tangent. The second tangent
from 5'' cuts jB(7 in Z) = 2g+ r=
and BA in E= p+ 2q = 0. For
the conic which has four tan-

gents passing through B and B''

in common with the inconic,
fiq. se.

we have

= qr-\-Tp-\-pq-\-kq(r—p) = (l-\-k)qr-\-rp-\-(l—k)pq.

To obtain the values of k for which this equation breaks
up into pairs of points, we must equate its discriminant
to zero and solve for k.

, 1-k

1 , l-\-k,

2(1— ^2) = 0, the roots of which are ± 1.

For k = l, the given equation becomes

= 2qr-\-rp = r{p-{-2q) = CxE.

ForA:=— 1, = rp-^2pq=p(2q-\-r) = AxD.

8°. To obtain the equations of the foci, I and J are taken
for u and v, and we deduce the values of k from the dis-

criminant of the equation

equated to zero. This discriminant is

1/+ kmhi^a^ , W - Mmn^ab cos C, V - klmHca cos B
W - Umn^ah cos C, F+ hiH%^ , U'- kl^mnhc cos ^ = 0. ( 1 7)

V — klrri^nca cos B , U' — kPmnbc cos A , W+ kl^m^c^

(a) {h) {c) (d) (e) if)

This matrix can be resolved into eight matrices of the

third order, formed from the columns of the above which
have been lettered for ease of reference.

The matrix (ace) = A^, A being the discriminant of the

local equation of the conic, (p(xyz)= 0.

The matrix (bdf), which involves the third power of k,

vanishes.
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The matrices {adf), (bcf) and (bde) involve k\ and their

determinants are

(adf)= Pm^n^Ah^c^ sm^Ak\

(bcf)= Pm^Ti^Bbh^ sinMyb2,

{bde)= Pm^n^C¥c^ sin^Ak^

Consequently the coefficient of k^ is

l^m^n^b^c^8inU{lA -\-7nB+nG)= l^m^nWbh^8m^A. (18)

The matrices (bee), {ode) and {aef) involve k.

{bee)= Ak{u7n^nV— v'lm^nca cosB— w'lmn^ab cos (7),

{ade)= Ak{vnH^b^— w'lmn^ab cos G—u'l^mnbc cos J.),

(ac/)= Ak{wl^m^c^— u'Pmnbc cos -4 — v'lm^nca cos 5).

Therefore the coefficient of A: is

A {urn?n^a^+ vnH^b^+ wl^m^c^

— 2lmn{ulbe cos J. + v'mca cos jB+ w'nab cos C)} (19)

= A [mtia^ {umn '-l{ — u'l-\- v'tyi -\- w'tyi)]

+ 71^6^ {'y-y^i— 7n{u'l— -v'm+ tt;^)}

+ Imc^ {wlm— 7i(it7+ v'm— ty'm)}]

= Ae', (20)

0' being the ordinary invariant symbol.

Consequently the complete determinant of the original

matrix is

l^m^nWb^c^8m^Ak^-\-A&k-\-A^= 0. (21)

In this equation A is the discriminant of <f>{xyz)= Q, the

local form of the tangential equation T=F{pqr)= 0. D is

the bordered discriminant of <j){xyz)= 0, and 9' is the

ordinary invariant symbol whose value is given at length

in (19).

9°. Fx. 1. The foci of the ellipse

8y^ — 2yz— 4>zx— 2xy = 0, (a)

a= b= c; l:m:n=l

have been already calculated from this, its local equation,

example of 6°.



CHAPTER XI 113

They will now be calculated from its tangential form,

Since Q^= rn?n^a^p^ ... - 2lmnHh cos Cpq

T-hkQ^= (k-'l)p^-^{k-4>)q^-]-(k-'l)r^-{k-4>)qr

-(k-S4>)rp-(k-4>)pq = 0. (h)

From (a), A =-36, D= S6, sin^ =^.
9'=um^nV ... — 2w'lmn^ah cos G

Therefore the equation for k is, (21),

= 36xp2-12x36A;+36 = A;2-16A;+48;

and A;=4 or 12.

Substituting 4 for k in (6),

0=p24.r2+10r29={(l + VS)i>+(l-V*M

The two real foci are therefore

(l + Vf)2>+(l->v/l>= and (l-Vt)i>+(H-x/f)^= 0,

or locally, (1 +Jh 0, 1 - Vf) and (1 -Vf, 0, 1 + Ji).

Putting 12 for k in (6),

= ll_p2+8^2^11r2-8gr-22rp-8^g,

r . 6x/^^-4 ,
\r 6V^=^+4 ^ \

" =F+"^1— ^+^||i^ 11— ^+7'

or locally, {11, 6x/^-4, 11}{11, -6^/^-4, 11},

the focoids.

^oj. 2. The foci of the conic

the triangle being scalene and l:m:n = a^ :¥ :c^, or the

origin being the symmedian point S.

For this curve,

A=-4, and D = Ha%^-\-h^c^-hcV) = 4^i:a^b^.

H.C. H
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Since B is positive the conic is an ellipse. Its tangential

equation is ^^ 4^^ _^ 4^^^^^ ^ ^

0' = aWc\la%^

+

4a2&c sin B sin G)

= a26V(2ct2624.46V sin^^).

Let 2^262= 0-, and 6Vsin2^=4(triangle)2= 4^l

Then the equation for k, (21), is

' 4a*6V^VA;2- a^b^c'-{(T+ 16^^)^+ 4 = 0,

^""^
^^^a%\H^ """^ ^2cv-

Q2= ^26*6*2^2 _|. ^^452^4^2^ C6*6*cV2- 2a*63c^ cos ^qr

— 2a^6*c^ cos 5rp — 2aWd^ cos (Tpg
;

and taking the second value of /c, T-\- ^Q^ ig

6Vp2+ cVg2+ a26V2

+

{h\^+ a*)gr

+

{cV+ 6*)rp

+ (a262+ c*)^g = 0,

that is, (62p+ c\+ aV) (c^^+ oJ^q+ ^V) = 0.

The tangential equations of the foci therefore are

h^'p-\-c\-\-a^r= and c^p + a'^g + 6V= 0,

and their local coordinates are (to origin 8)

(62, c\ a2) and (c2, a2, h'').

To origin these coordinates are

/a262 62^2 g2^2\ /c2^2 ^2^2 52^2v

V-T' ^' ^) ^^^ V-T' -^' -^J'

which are the Brocard points. The given conic is the

Brocard ellipse; an inconic which touches the sides of

the triangle in the points in which they are cut by lines

drawn from the corners through the symmedian point.

Ex. 3. x^-\-y'^-{-z^-'2yz-2zx-2xy-=0,

^:'m:'^ = 3: -2:6; a = 6 = c= l.

This equation represents a conic because A = — 4 is actual

and a parabola because D= 0. It is a 6-escribed conic, and
its tangential form is

T= 4gr'+ 4-)^+ 4pg = 0.

Q2_ 77^2^2^2p2 _ 2lmn^ah cos C
„ =lUp^-\-S24>q^-\-S6r^-hl0Sqr+72rp-\-2l6pq = 0.
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Therefore

r+M2^A;(144pH324g2+36r'2)+(4+ 108A;)gr+(4-72/o)rp

+ (4+216%g (a)

Since D= 0, one root of (21) is infinite, and for the other

9'=umH^ ..." w'lmn^ = 7x36, and k=-^.

Therefore (a) becomes

= (p-\-q-^r){4>p-^9q+r).

One focus therefore is ^+^+r= 0, the origin.

The local symbol for the other is (491), and its vector is

_ 4>la-^9ml3+ny _ 2a-'Sl3-\-y
^~ U-\-9m-\-n ~ 2-3+ 1 *

Since the denominator is zero, the second focus is at an
infinite distance, although real.

The axis of the parabola, which passes through the two
foci, is (853) and its vertex is (16, 1, 25). The directrix,

the polar of the focus (111), is the axis of perspective of

the given triangle, x-]-y-\-z = 0.

Since the given triangle is a triangle of tangents to the

curve, its orthocentre (231) lies on the directrix, and the

circumcircle passes through the focus.

The axis cuts the directrix in P= (2, 13, 11). Con-
sequently the distance from the focus, P=0= (111) to P
ought to be twice the distance from to the vertex,

V= (16, 1, 25) or 20V= OP.

To ascertain the coordinates of 20F we may employ the

method III, l^ (2),

x:y :z

= (|-l)2/^+/2^ : g-l)2/i+^Si : (j-l)2fl+hlL

Here

E/^= 196.

- = 2 and ^-l=-i; 2^= 3-2+ 6 = 7 ;/=16,^= l,;i= 25;
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Therefore x:y :z= 2: -IS.U
and

^•^p. ^ 16Za+m^+257iy_ 2^a~13m^+ llr^y ^^zuv-z i6i+m+25^ ~ 2^-13m+ll'ri
~^^'

Ex. 4. x^+ 9z^- 202/0- lO^^a;+ 4aJ2/ = 0,

with l:m:n= l:2:S and a= 5, 6= 4, c = 3.

This equation represents a conic because A = 64 is actual

and a hyperbola because D=— 3x64 is negative. Its

tangential form is

T=- 100^2_ 16^2_ 4^2_ 40^^^ Q4,pq = o,

Q2= 25 X 36jp2+9 X 16g2+4 x 9r2- 24 x 9rp-m x I6pq = 0,

-(54/c+ 10)rp-16(9^-l)2?g = 0. (a)

0'= 32 X 36. Therefore the equation for k is

=fc^-Afc__l^, and k= l or :=^.

For k= ^, equation (a) becomes

= r2), or r= 0'and p= 0.

Therefore the real foci are the corners G and A of the

given triangle.

Fork =^,

,,
= {(3~4x/^)2?+2^V^+r}

{(3+ 4>v/^i?-2g>v/3I+r}.

The hyperbola cuts d in if=(901) and M'= (101), the

vertices of the curve.

Since GA = 4 and i : m : 'W-= 1 : 2 : 3, the length of the

transverse axis, MM\ is 2. It will be found that the

eccentricity is 2.

The equation for the asymptotes,

A {Ix+my+nzy— D<f> (xyz)= 0,

gives = x^-\-y^-^9z^— l2yz— 600?+ 4a;2/,

„ = {a;+(2+ V3)y-30}{a;+(2-V3)2/-3«}.
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Ex. 5. The conic, x^— y^— z^= 0, with the conditions

For this conic A = 1, 2) = — 7, and consequently the curve
is a hyperbola.

9 = 24, and A; is ^r^r or -=^ ; the first beinej the value for

the real foci. ^^ ^^

Q2= 16 x8|)2+16g2+16r2+ 16 x4r^+ 16x4^)^ = 0;

and T=p2_g2_^2^0.

Therefore

!r+W2= 9^2^4^^^4^^= 0=p(92)+ 4g'+4r);

and the equations of the foci are

^9= 0; 9pH-4g'H-4r= 0;

or locally (100); (944).

The centre is (122) and the asymptotes are

{(2+ 2^7), -(4+ V7),3} and {(2-2^7), -(4-^7X3},
or locally — Saj^+ g^/^+ ^z^— Syz — 4>zx— 4!xy= 0.

The given triangle being self-conjugate to the conic, the

side BG is the polar of the focus A, and is consequently a

directrix.
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MISCELLANEOUS THEOREMS

1°. The harmonic properties of a plane net (^g. 1).

^^m^ 0F=^^; Oa =^±^, (1)

m— -ji ' 7^— 6 ' 6—

m

Therefore

-4' and A'' are the harmonic conjugates of B and (7,

B „ J5" „ „ C „ -4,

0' „ C „ „ J. „ 5;

or {ACBC")= (BA'GA")= (GRAB')= - 1 (2)

Again, let OA/= a, 0F==l3\0a= y. Then

-^-^ 2^a+ m/3+ '^^y^ (/^g+ m,8)+ ('yiy+ ^«)

^ ~ 2^+m+ti (^+m)+(w+

(l-\-m)+(n-hl) '

m/3—ny (la-\-m^)— (ny±la)
^ ^ 7/1— '}^ (^4-'m/)— ('yi+O

(l-{-m)-(n-i-l)

Therefore

^''' and -4'' are the harmonic conjugates of B' and G\

Similarly,

B'" and B'' are the harmonic conjugates of G' and J.',

0'" „ (7" „ „ A' „ 5';

or {A'G"'EG") = (^^'"C"^")

=

{G'B^A'F')= - L . . .(3)



CHAPTER XII 119

Since {B'-AG'BC'') = (B''AA"VA), AO is cut harmonically
in A'" and A'; while BV is cut harmonically in A"' and
A'' (8), and CB is cut harmonically in A' and A'' (2).

Therefore each of the three diagonals of the complete
quadrilateral ACOB' is cut harmonically by its two other
diagonals.

Let B'B be produced to meet ^"C" in D, Then A"G"B"
is the harmonic triangle, and F'B'^D the diagonal triangle,

of the quadrilateral A'EG'B.

2°. A theorem by Roger Cotes.

If a straight line revolve in the plane round a fixed

point 0, cutting the sides of a given triangle in R^, R^, R^,

and if a point R be taken on this transversal such that

0R~ OR^"^ ORi^ OR^'

then the locus of i^ is a straight line.

Let be the origin, let the triangle be the given triangle

ABC, and let the transversal be px-\-qy-\-rz = 0. Since the

line passes through the origin

p+q+r= (1)

It will be found that R^= {orq), Rc^ = (rop), R^=(qpo).

Then by the aid of (1) and la-\-m0-^ny= O, we get

1 rm — qn

^P ^rla+pny_rmp— qny
^~ pn— rl pn— rl

3~ ql—pm ~~ ql—pm

Let rm^— qny= 6. Then

3 rm—qn pn—rl ql—pm
OR" e "^""e"""*" e

(q — r)l-\-(r-p)m+{p— q)n
- e

'

3 (rml3— qny)
and OR

(q-r)l-\-(r-p)m-\-{p-q)n

{q-r)la+(r-p)mp+(p-q)ny
(q-r)l+{r-p)m-h{p-q)n
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Comparing this expression with the standard form, we
'^^^^

q— r— x, r—p — y, p— q = z,

and since (5' — '^)+ (^ ^1^)+ (p— ^) = 0,

x-\-y-\-z = 0,

the equation of the axis of perspective, or polar, of the

given triangle.

3°. Let Q and R (fig. 37) be the isogonal and isotomic

conjugates of the rational point P = (fgh). Then the ratios

of the various segments of the sides of the triangle are

Fig. 37.

P^A mg
BQ^ _ mna^gh
QgZ" nlh%f

BR^ _^mngh
R^A^ nlhf

Consequently,

mg
nh

9Ei
P,B

CQ^^ nlbVif

Q,B Imcjy

GR^^nlhf
R^B ~ Imfg

AP. nh

"~lfP^G

AQ,^ Imcjg

Qfi mna^gh

AR^^ Imfg

RjJ TYingK

Q, the isogonal conjugate of P, is (—7*1-, —^, ^t^)» |

\

isotomic
(gh hi fy\
\l^' m2' nV'

If P be an irrational point, (7, — , - ),^
\6 m n/

r._(^gh mf c^\^
'*^~\

I ' m ' n J'

j._{gh hf fy\

(1)

.(2)
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Ex. 1. The isogonal conjugate of the symmedian point,

/a2 62 c2\ . (a^h^c^ h^c^a^ cVh^\ , , , .

\l m nJ \ I m n / ^

the mean point.

Ex. 2. The Gergonne point of the triangle is

-^, -^, -^
j, the point in which

concur the lines drawn from the points of contact of the

three escribed circles to the opposite corners of the triangle.

Ex. 3. Any two lines whose equations are of the form
px+ qy-^rz= 0, and p-'^x-\-q-'^y-\-r~'^z= 0, cut the sides of

the triangle isotomically.

Ex. 4. The Brocard points, II, (4), are isogonal con-

jugates, as also are the orthocentre and circumcentre.

4°. The isogonal conjugate of every point upon the

circumcircle is at infinity. Let the point be P— (pqr).

Since P is on the circumcircle,

mna^qr-\-nlh^rp+l7nc^pq= and p= \_^^^^2g^
'

The point P may therefore be written *

/ —mna^qr \

\l(nb^r+mc^qy ^' V'

the isogonal conjugate of which is, (1),

^ f
— (n¥r+mc^q) nb^r mc^q\

The vector of Q consequently is

— (nh^r+mc^q)a+ nh^r/3+mc^qy
OQ — {nb^r 4- mc^q)-{- nWr+ mc^q

which is infinitely long because its denominator is zero.

Therefore the isogonal conjugate of every point on the

circumcircle is at infinity.

* See * Conventional Signs ' at the beginning of the book.
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5°. Pascal's Theorem.
The crosses of the oppo-

site sides of a hexagon
inscribed in a conic are

collinear (fig. 38).

6°. Brianchon's theorem.
The joins of the opposite

corners of a hexagon circum-
scribed to a conic are con-

current (fig. 38).

Let ABC be the given
triangle, and

let D=(x^y^z^),

» ^=(a'32/3^3)-

The equation of the conic
IS

yz-\'ZX-\-xy = 0.

The condition that the
points D, E, F shall lie on
the conic is

1 1

^1 2/i

1 1

^2 2/2

1 1

^Z 2/3

Pig. 38.

Let ABC be the given
triangle, and

let D^x^'p+ y-^q-^-z^r^O,

„ E=x^]p+ y^q-)rZc^r==0,

„ F=x^p-hy^q-i-z^r=0.

The equation of the conic is

p^+q^+T^- 2qr - 2rp - 2pq=0.

The six points, A ... F are

the points of contact of six

tangents, the sides of the
circumhexagon. The coordin-

ates of these six tangents are

a= (011), 6= (101), c= (110);

^= (2/i+%. Zi+x^, a;i+2/i)>

e= (2/2+^2> 2;2+«'2> ^2+y2)>

/=(2/3+ 2;3' ^3+ «^3> <^3+ ys)'

The condition that the lines

d, e, f shall touch the conic is

1

= 0.
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If the three crosses of the
opposite sides be calculated,

it will be ultimately found
that the condition that they
shall be collinear is

If the three joins of the
oppositecornersbe calculated,

it will be ultimately found
that the condition that they
shall be concurrent is

x^
2/i

1 1

x^ 2/2

1 1

2/3

= 0,

which is the condition that

the hexagon shall be in-

scribed in the conic.

which is the condition that

the hexagon shall be circum-
scribed to the conic.

7°. To express a homogeneous equation of the second

degree,
F(Jgh)= Uf+...+ 2W'fg^Q,

in terms of its derived functions, i^, Fg, F^.

F(fgh)=fF,+gF,+hF„
F,= Uf+W'g+V'h
F,= W'f+Vg+U'h
F,= V'f+U'g+Wh.)

Eliminating /, g and h from these four equations, we get

F,, Fg, F„ F(fgh)

0= U, W\ r, Fy =(VW'U'^)F^...

W\ V, U\ Fg J^2{WV'-W W')FyFg - A^F(fgh) ;

r, U\ W, F, A^F(fgh)= A(uF/... + 2wT,Fg);

AF(fgh) = <p{F„Fg,F,).

Similarly, A<p(fgh)= F(<Py, tp^, </>„).

The first of these two equations is met with in calculating

the discriminant of the equation

F(fgh)F(pqT)--(pF,-{-qFg+rF,f= 0,

in order to verify the conclusion drawn in VII, 16°, that

this is the equation of two points, not of a conic.



124 MISCELLANEOUS THEOREMS

Putting F(fgh)= k, Ff=a, Fg= hy Fj,= c, we have

A:( C72)2 . + 2 Tr>g)-(ay. . . + 2a6??g)= 0,

the discriminant of which is

kU-a\ kW'-ab, kV'-ca
A= kW'-ab, kV-b\ kU'-hc

kr-ca, kU'-bc, kW-c^

Four of the matrices of the third order into which this

matrix resolves are zero. The determinants of the remaining
four give

A = ^^A2- ak^A{ua+ w'h+ v'c)- h¥A {yda+ v6

+

u'c)

— cl^bk.(y'a+ v^h+wc)

„ =BA{kA'-<t>i^hc)} = AF\fgh)
x{AF(fgh)^<l>(F,,F„F,)} = 0.

In conclusion may be quoted the opinion of M. Laissant

about the Quaternion method, which seems to be applicable

to Anharmonic Coordinates :
" la methode d'Hamilton n'est

pas d'une application universelle, non plus qu'aucune autre
;

mais elle me semble presenter dans des cas nombreux de
reels avantages. ... Ce serait un tort, a mon sens, de se

priver de ressources nouvelles, sous pretexte que ces

ressources ne sont pas d'un usage constant." *

* Applications Mecaniques du CcUcul des Quaternions, Paris, 1877.
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methods, 92.
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segments of, 31.
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ratio of, 63.
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stant cross ratio, 74.

Modulus of transformation of coor-

dinates, 92.

Nets, Construction of geometric, 3.

Harmonic properties of, 118.

Origin, Change of, 86.

02, 49.
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Some properties of, 41, 115.

Parabolic involution, 78.

Parallel lines, Relation between the
coordinates of two, 14.

Parallel lines, Distance between two,
23.

Parallel tangents, 41.

Pascal's theorem, 122.

Pencil, Cross ratio of a flat, 63.

Pencils, Property of two, with one
common ray, 65.

Perpendicular lines, Relation between
the coordinates of, 17.

Point, Anharmonic coordinates of a, 6.

conjugate to a point at infinity, 72.

Equation of a, 49.

Points, Coordinates of certain, 7.

Coordinates of the join of two, 49.

Distance between two, 20.

Rational and irrational, 1.

Polar, Coordinates of, 55.

Equation of, 29.

circle, 99.

conic, 45.

Pole, Coordinates of, 55.

Equation of, 29.

and polar, Some properties of, 30.

Quadrangle, Conic circumscribed to a,

40, 47.

Quadrilateral, Conic inscribed in a,

110.

Quadrilateral cut by a tranversal in

involution, 82.

Radical axis, 96.

Row, Cross ratio of a, 61.

Rows, Property of two, with a com-
mon point, 66.

Tangent, Equation of, to conic, 28.

Length of, from a point to a circle,

102.
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Tangents, Equation of a pair of, 36.

Four fixed, cut by a variable tan-

gent, 74.

Parallel, 41.

Tangential equation. General, of the
second degree, 52.

Transformation of anharmonic and
trilinear equations, 18.

Transformation of local and tangential

equations, 51.

Transformation, Modulus of, of co-

ordinates, 92.

Triangle, Area of a, 24.

circumscribed to the inconic is

inscribed in the circumconic, 75.

Given, Change of, 87.

Self-conjugate, 46.

Vector, Coordinates of term of mul-
tiple or submultiple of a, 9.

Vector, Standard form of, 4.
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