

Eighth Annual Report

OF THE

New York Weather Bureau

$$
\text { I } 896 .
$$

${ }^{\text {tI }}$ Under the Department of Agriculture and in Co-operation with the U. S. Weather Bureau.

Created and Organized under the Laws of the State of New York - (Chapter 148, Laws of 1889.)

Reorganized and Placed under the Department of Agricul-ture-(Chapter 338, Laws of 1893.)

Central Office at Cornell University, Ithaca, N. Y.

TRANSMITTEDTOTHE LEGISLATURE JANUARY15, 1897.

WYNKOOP HALLENBECK CRAWFORD CO.,
State printers. NEW YORK AND ALBANY, 1897.

$$
\begin{aligned}
& X A \\
& N 68726 \\
& 1896 \\
& \text { Vid }
\end{aligned}
$$

State of New York.

No. 11.

IN ASSEMBLY,

January 15, 1897.

EIGHTH ANNUAL REPORT

Director of the State Weather Bureau.

STATE OF NEW YORK:

$$
\left.\begin{array}{l}
\text { Department of Agriculttre, } \\
\text { Albany, January 15, 1897. }
\end{array}\right\}
$$

To the Honorable the Legislature of the State of New York:
In accordance with the provisions of the statutes relating thereto, I have the honor to herewith transmit the Eighth Annual Report of the Director of the State Weather Bureau.

CHARLES A. WIETING,
Commassioner of Agriculture.

TABLE OF CONTENTS.

Page.
Part I.--Report of the Director 9
Part II.-Financial Statement 24
Part III.-Meteorological Reports for each Month, 1896 31
Part IV.-Meteorological Report for the Year, 1896 319
$P_{\text {ART }}$ V.-Description of Stations 341
Statistical Table of Stations 384
Sample Crop Report 390
Part VI.--The Climate of New York State 403

PART I.

REPORT OF THE DIRECTOR

OF THE

New York Weather Bureau.

REPORT.

Ithaca, N. Y., January 1, 1897.
To the Honorable the Commissioner of Agriculture of the State of New York:

Sir.-I have the honor of transmitting to you an account of the operations of the New York Weather Bureau during the past year, together with a financial statement, summaries of weather and crop conditions, and a report on the climate of the State.

The routine work at the central office has been carried on efficiently and without breaks. The clerical employes of the State are the same as in previous years; and the National Weather Bureau has continued the detail of Mr. R. M. Hardinge as assistant to the director, which place he has occupied since 1890.

The maintenance of extensive systems of meteorological, crop and forecast-display stations has necessarily occupied nearly all the time of our clerical force; a fact which is to be regretted in view of the pressing need which exists for climatological investigation and experimental work in meteorology. The service now comprises 112 well distributed meteorological stations, 81 of which are equipped with thermometers and rain-gauges and 31 with rain-gauges only. Daily readings of self-registering maximum and minimum thermometers are made at all regular stations; and in addition, about one-half the number report the temperature at $7 \mathrm{a} . \mathrm{m} ., 2 \mathrm{p} . \mathrm{m}$. and $9 \mathrm{p} . \mathrm{m}$., which method gives a valuable check on the daily averages as obtained from the
maximum and minimum readings. Observations of wind, cloudiness and miscellaneous phenomena are included in the scheme of daily records throughout the State. The precipitation is registered at the close of each day, and also, when practicable, after each storm, with notes of the time of beginning and ending of rainfall.

Twelve new stations have been equipped with thermometers and rain-ganges this year, as follows: Canajoharie, Montgomery county; Catskill, Greene county; Dryden, Tompkins county; Elka Park, Greene county; Franklinville, Cattaraugus county; Little Falls, Herkimer county; Lockport, Niagara county; Lake George, Warren county; North Lake, Herkimer county; Primrose, Westchester county; St. Johnsville, Montgomery county; Straits Corners, Tioga county. In addition to these, the former special rainfall stations at Bolivar, Allegany county, and Ridgeway, Orleans county, have been provided with thermometers.

Special rainfall stations have been established at Niagara Falls. Niagara county, at Watkins, Schuyler county, and at the Intake Reservoir near Little Falls, Herkimer county.

The State is fortunate in securing the co-operation of voluntary ohservers at three points of the Mohawk valley and at the Adirondack station, North Lake, in view of the difficulty hitherto experienced in obtaining observations from these sections of the State.

Owing to a change of residence of observers, or to other causes, four regular stations have been discontinued this year, namely: Hamilton, Madison county; Turin, Lewis county; Malonc. Franklin county; and Varysburg, Wyoming county. The rainfall stations, Ellis and Attica, have also ceased to report to the central office.

Fifty-five thermometers and twenty rain-gauges, purchased from the State appropriation, have been issued to new stations, or to replace those rendered unserviceable by accidents. All State property is issued to observers on the agreement that a full account shall be rendered of any breakage or injury which may occur.

A tabulated summary of the observations at all stations is published each month, together with a general review of weather conditions and charts showing the average temperature and distribution of rainfall over the State. An edition of 800 copies of the monthly review is published; and of the more complete annual review, 1,000 copies.

A weather-crop bulletin was issued on Tuesday of each week during the farming season, or from April 25th to September 26 th. The list of correspondents contributing information to the bulletin includes ninety persons, representing forty important agricultural counties; so that a full and adequate account of agricultural interests, as affected by current weather, is presented week by week. In addition to the reports of observers and an editorial résume of general crop conditions, the bulletin also gives a brief review of the effect of current weather upon staple crops in other parts of the United States.

The crop-bulletin, which as a rule is furnished only upon application, is now mailed to over 700 addresses; and further, is given a very general circulation through the newspapers of the State, more than 100 of which publish it wholly or in part.

Display Stations.-A thoroughly organized system under supervision of the central office now distributes the daily weather forecasts to 700 cities and villages located in all the important commercial and agricultural regions of New York. The number of
stations receiving the telegraphic forecasts from Washington directly is about 100 ; but arrangements have been made whereby the messages are forwarded, in many cases by telephone, to neighboring points where the warnings are given publicity by flag or whistle signals.

Two years ago a very efficient and inexpensive plan of forecast distribution was generally adopted by the State weather services, whereby a number of selected telegraph stations print the forecasts immediately after their receipt, by means of a rubberstamping outfit, and forward them by rail or stage routes to the postmasters of neighboring farming communities. At these substations the bulletins are posted conspicuously, or are displayed by flag signals. In New York there are now thirty-five distributing centers which communicate the warnings daily to 570 villages.

Worle at the Central Office.- In addition to the usual observations of a roluntary station, continuous records are kept at this office of temperature, rainfall, the direction of the wind and its Velocity in vertical and horizontal directions, also of the duration of sunshine, the humidity of the air and amount of evaporation. An account of the instruments which automatically record these flements will be found in section V. Much of this apparatus is: complicaled, requiring constant supervision and frequent adjisitment. Nodifications of the original designs lof the makers have been found necessary in some cases, and such work has heren carried on under personal supervision in the shop of the Collecre of Engineering. It is hoped to publish hourly values from the records of the sereral instruments during the coming vear if time can be spared from the routine work of the service.

A large number of requests for special data have been received this year from state and municipal boards and for individual use.

The information called for has been gratuitously furnished in so far as it was obtainable from our records. In this and other directions the correspondence of our office is very large, and much of it is of a character requiring special research. More than 40,000 pieces of mail matter are sent out from our office annually, generally under the frank of the U. S. Weather Bureau.

The routine work of the central office includes the examination and repair of instruments issued to voluntary stations; the critical examination and reduction of reports rendered monthly by more than 100 observers; the preparation of tables and charts for publication, beside the extensive system of observations carried on here. In order to accomplish these necessary duties we have been obliged to restrict our field of work, especially in the direction of climatic investigation to a degree which I regret; but larger results cannot be expected unless another assistant can be employed for at least half of the year.

It was hoped that a monograph on the climate of New York, which was published in our annual report for 1893, might be reissued in a thoroughly revised form by the incorporation of the large mass of data recently accumulated from all parts of the State; but lack of time has made any material progress in this direction impossible. Meanwhile, a very large demand has nearly exhausted the first edition; and, in view of the urgent requests for the report which come to us almost daily, it is deemed necessary to reissue it at once, as a portion of the present annual report, although without the desired revision.

A consideration of the character of requests for the data contained in this monograph is instructive, as showing the variety of interests which are practically affected by weather and climatio conditions, beside confirming views which I have previously ex-
pressed as to the proper functions of a State weather serwice. Among the applicants for information are to be mentioned, firstly, the agricultural experiment stations, whose recently awakened interest in soil temperature and the movements of ground water, as subjects of practical importance to the farmer, calls for meteorological data upon which these elements are dependent. The interest of farmers in these questions is also evidenced by the fact that they contribute a large proporti.un of the most valuable reports received by this Bureau.

Secondly, frequent requests for information are received from the large class of persons interested in medical climatology, including State and municipal boards of health as well as private practitioners, and invalids with whom climate is a matter of primary importance in the selection of a place of residence. The remarkable diversity of climatic conditions to be found within the limits of this State, which will be referred to with more detail further on, renders it of more than usual importance that the peculiar characterictics of each region shall be fully determined and made accessible to the public.

Our data is also very frequently called for by engineers, in nearly all branches of their profession, but especially by those having in charge the supervision of State canals and waterways and the water supply and drainage of cities. City engincers have rendered this Bureau valuable aid in the establishment of voluntary stations, and (as in the case of the engineer at Little Falls) have entered on lines of special investigation promising to be of mutual benefit.

In addition to the above, our records are in constant demand in the law courts of the State, for cases involving, often, large sums for damages to individuals, corporations and cities; also,
rallway companies in the settlement of their disputes for injury to perishable material in transit over their lines; questions of inundation of lands by excessive rainfalls, or affecting the rights of cities to distract water from the lakes and streams of the State; various cases of disputes between riparian owners; damages to individuals during high winds; matter pertaining to the insurance of buildings, and injuries to stock or other property on account of fire, as affected by the direction and intensity of the wind ; claims upon town and city treasuries for injuries caused by slippery sidewalks, etc.

Lastly, the climatology of New York is found to be a valuable aid in teaching the subjects of meteorology and physical geography in the colleges and high schools of the State, in accordance with the growing tendency to seek illustrations of scientific facts in fields familiar to the observation of the student.

The urgent demand for more definite information regarding our climate than has been obtainable hitherto, is due, in a measure, to the remarkable diversity of meteorological conditions existing within this State. In the first place, we find the distinctife bracing influences of mountainous regions among the Adirondack and Catskill ranges, and on the spurs of the Alleganies in southern New York; while the shelter thus afforded to broad lowland districts renders it possible to cultivate successfully varieties of fruits and other crops which are generally raised only in more southern latitudes. The fact that our central and southern counties are subject to the tempering effects both of the ocean and the great lakes, is perhaps of even greater importance; for not only is the climate of these regions thus rendered more equable throughout the year, but also in case of severe cold waves in winter it is shown on page 370, section VI, that in western New

York the temperature is often maintained at a point fifteen to twenty degrees higher than occurs on the same parallel to the westward of Lake Ontario. The winters become much more rigorous in northern New York, where the air is, however, considerably dryer, the relative humidity in the Champlain Yalley being lower than in any other section. The contrast of climate between this region and that of the Atlantic coast is very marked; an arerage difference of more than sixteen degrees obtaining between the northern border and eastern Long Island in winter.

Divergencies even greater than the above are found in the distribution of rainfall, which however, occurs according to laws which are characteristic of the various climatic regions. The maximum precipitation over the central highlands, occurs in midsummer; on the greater part of Long Island in winter; while between these extreme epochs there is a definite gradation over the intervening territory. A remarkable uniformity of rainfall throughout the year is a characteristic of much of the Great Lake region. The total amount of precipitation for an average year also varies widely in different localities; the normal values at stations of Niagara county falling below thirty inches, while at some stations of the Mohawk and Hudson valleys aud the coast region the total is fifty inches or more.

The distribution of clouds over the State has been considered as fully as practicable, but this subject still urgently demands wider observation and study. An observer stationed high above the earth would frequently see the cloud formation beginning over the (ireat Lakes, and thence spreading across much of central and western New York and the St. Lawrence valley; but shading off toward the southeast, and to a considerable degree, disappearing near the coast. Under other and less frequent con-
ditions, another class of atmospheric movements obtain, the ocean being the source of cloud formation; and there are also additional local variations and developments in the general cloud-drift which have an important climatic walue.

Thunder storms have been studied and their frequency and characteristic manner of progression in the various regions are now known with a fair degree of accuracy. The study of these storms perhaps bears most practically upon the distribution of rainfall, since, fortunately, this State has so far been quite free from disastrous local storms, or tornadoes. It is desirable, however, to amplify the study of thunder storms on account of their direct effect upon many industries, espreially the preservation of milk, and in the complex operations of brewing.

RESUME OF THE CROP SEASON, 1895-1896.
A noticeable feature of the wintel of 1895 - $^{-9} 96$ was the warm period during the latter part of December. Considerable plowing was done during Christmas week; winter grains made visible growth, and buds started on the trees. On the other hand, March was particularly a cool and stormy month; more snow falling in the southeastern counties during the latter portion of March than during the preceding winter. Wheat, rye, grasses, and at the beginning, fruit also, seemed to have passed through the winter in good condition, but in the southeast it was thought that peaches were winter-killed. The results of the season demonstrated that this was true, not only of peaches in the southeast, but of peaches and small fruit-trees generally in other portions of the state. Apples and berries, however, yielded finely, and grapes developed well.

The crop season opened about the 12th of April, prior to which
date the weather was cold, and snow was still on the ground in the northern counties. At the begimning, the season was considered to be about ten days late, but unusually warm springlike weather, beginning on the 12 th and lasting until the 21 st, brought the frost out of the ground, dried the soil and fitted it for working, so that throughout the warmer sections farming operations were under way by the 15th. Plowing and seeding had become general by the 20th; vegetation had started rapidly, trees were budding, early gardens were being made in the southeast, and hops were uncovered in Madison county. Dry, cool weather followed, with frosts on the $23 d$ and 24 th, which formed ice in many plaecs, but did little or no damage to vegetation. The rainfall for the month had been light, and while crops in the ground were beginning to feel the drouth, the fine weather permitted spring work to be rushed; and at the close of the month the greater part of the oats, spring wheat and barley had been sown and many early potatoes were planted. (axardening had progressed satisfactorily, early vegetables being already up in the southeast. Maple-sugaring began early in the month, but progressed slowly until the warm period, making an unusually short season.

The warm, dry weather which prevailed from the 1st until about the 25th of May, while very favorable for plowing, planting and seeding, resulted in quite a serious drouth, injurious to growing crops: meadows and pastures being the chief sufferers; while winter wheat and rye were also somewhat affected. Work progressed rapidly, and usually was about ten days ahead of the season. Plowing for corn was general at the beginning of the month, and a limited amount had been planted. Hoppole setting was completed and peppermint roots were set out.

On Long Island, early asparagus was in the market at this time. By the 10 th wheat and oats were sown in most cases, and many potatoes had been planted. Fruits were in full bloom. Apples bloomed profusely; pears, plums, quinces, cherries, etc., rather lightly, while peaches seemed to have been killed by the February freeze. The copious and general rains of the 26 th and 28 th terminated the drouth which had prevailed up to that time, but the rains came too late to insure a good hay crop, and at the close of the month farmers were generally sowing fodder crops. Delayed plowing and planting started with renewed vigor after the rains, and soon after nearly all of the corn and potatoes were planted and growing rapidly. At the close of May bean planting was also well under way, tobacco setting had been commenced, and a fine crop of strawberries was in market. Hops were thriving, and were considered to be ten days ahead of the usual stage of growth. A light frost occurred on the 20th, but caused no damage.

The early days of June were dry, but the rainfall of the 6th and 10 th was copious, and generally sufficient, excepting in some northern sections, the weather also being favorable for farming interests in other respects during June. By the 20th, early haying was general, but with discouraging results. Wheat and other grains made good progress, oats especially promising a good yield. Garden truck was kept rather backward by cool nights.

A drouth was threatening at the beginning of July, but copious showers began on the 4 th, and were frequent during the remainder of the month. Phenomenally heavy rains occurred in the southeast on the 9th, and in the western section on the 20th. The weather continued rather cool through the first ten
days, after which higher temperature brought vegetation rapidly forward. In the first week some winter wheat and rye were cut, and oats headed. Much of the barley had been cut by the 18 th, and on the 30 th the oats harvest was commenced. Hops were in blossom by the 10th, and with tobacco and corn, made very satisfactory growth. Grapes and apples continued to thrive. The army worm made its appearance the first week in July, and by the 15th, its ravages were general throughout the state, although many localities escaped them entirely. Great destruction was wrought to green crops, and more especially to oats. The pests began to disappear about the 25 th.

Most unusually hot, muggy weather characterized the first half of August; and while late garden truck, corn, buckwheat, pastures and after-feed on meadows made wonderful growth during this period, harvesting was much delayed, especially in the southwest, where light showers occurred almost daily, so that the fine oat (rop threatened to become over-ripe before it could be cut, or after cutting became damaged in shock. Some rust also developed in oats, and there began to be much complaint of rot and blight among potatoes. During the first week corn was commonly in tassel and laid by; hops were nearly out of the burr and fruiting finely, and tobacco was very promising. Much fall plowing, also, was done during the first week, the soil being in fine condition. In some section of the sontheast the oat crop was damanod 201030 per cent. by the army worm, which, however, ceased its ravages entirely before the middle of the month.

The latter part of August was much cooler than the first half, and was grherally favorable for completing the harvests; but drouth in some northern and central counties semewhat de-
layed fall plowing. During the third week the second hay crop was partially secured, with prospects of its going far toward making up the deficiency in feed caused by the extremely light first crop; and it was often stated that the second cutting of clover was better than the first. Hops were being picked at this time, and much tobacco was housed. Apple trees were reported to be breaking with their load of fruit, which was, moreover, of excellent quality. Potato blight increased, aud the prospects of this crop began to decline. Corn made excellent growth, and cutting began about the 25th, which was said by some farmers to be the earliest date for this harvest since 1854. Dairy products were on the increase, owing to the improvement in pastures.

Fall plowing was delayed considerably by drouth, until the general rains of September 5th. During the first week hop picking was finished in many localities, giving a berry of rery good quality; but the yield was rather smaller than usual. The weather continued warm and fine throughout the month. enabling farmers to finish haying and late harvests, and to complete fall seeding under very favorable conditions. The sowing of winter grains was in many cases finished by the 10 th, beans were gathered during the first week, and much buckwheat was cut by the middle of September, proving to be well filled and a good crop generally. Potatoes were gathered during the second week; the crop showing a continued depreciation from blight and rotting. Apple picking became general about the 20th, giving so large a yield that a market was found with difficulty. The first killing frost occurred on the 23d, but was severe in only a few localities. A West India cyclone which passed over western New York on the 30th was accompanied by violent winds in that
section of the State, and large quantities of apples which had not yet been gathered were blown to the ground and damaged.

The first severe general killing frosts occurred on October 9th, but by that time crops were secured beyond injury.

Respectfully submitted,
E. A. FUERTES,

Director.

PART II.

FINANCIAL STATEMENT.

Crosscup \& West Engraving Co.

Financial Statement for the Fiscal Year 1895-96.- (Concluded).

For what purpose.		
各 0 0 0 0 0 0 0 0	(ove	
'səqunux		
$\stackrel{\text { ® }}{\text { ® }}$	 	

PART III.

METEOROLOGICAL REPORTS FOR EACH MONTH, 1896.

Meteorological Summary for January, 1896.

The arerage atmospheric pressure (reduced to sea-level and 32 degrees Fah.) for the State of New York during January was 30.18 inches, being the highest value yet recorded by this Bureau. The highest barometer was 30.68 inches at Number Four on the 6 th, and the lowest was 29.64 inches at Albany on the 3d, and at Erie and Buffalo on the 24th. The mean pressure was highest in eastern New York, and lowest in the Lake Region. The average pressure at six stations of the National Bureau was 0.08 inches above the normal, excesses occurring at all stations.

The mean temperature of the State, as derived from the records of sixty-nine stations, was 20.2 degrees; the highest local monthly mean being 28.2 degrees at Brooklyn, while the lowest was 11.7 degrees at Saranac lake. The highest general daily mean was 34 degrees on the 25 th; the lowest being 7 degrees below zero on the 6th, which is the lowest value which has occurred since this Bureau was established in 1889. The maximum temperature reported was 53 degrees at Madison barracks on the 24 th, and the minimum was 32 degrees below zero at Lowville and at Hamilton on the 6th._The mean monthly range of temperature was 58 degrees; the greatest range, 74 degrees, occurring at Canton, and the least, 39 degrees, at Appleton. The mean daily range was 15 degrees, the greatest daily range being 45 degrees at West Point on the 4 th, and the least 0 degrees at Gloversville and Buffalo on the 25th._The mean temperatures for the
various sections of the State were as follows: The Western plateau, 23.2 degrees; the Eastern plateau, 19.8 degrees; the Northern plateau, 14.7 degrees; the Atlantic coast, 27.2 degrees; the Hudson valley, 21.1 degrees; the Mohawk ralley, 20.6 degrees; the Champlain valley, 16.0 degrees; the St. Lawrence valler, 13.4 degrees; the Great Lake region, 23.1 degrees; the Central Lake region, 22.9 degrees.- The average of the mean temperatures at twenty-seven stations possessing records for previous years was 2.7 degrees below the normal value; deficiencies occurring at all stations excepting Angelica, Buffalo, Humphrey and Waverly. The deficiency of temperature was greatest in eastern and northern New York.

The mean relative humidity for the State was 79 per cent. The mean dew point was 18 degrees.

The average precipitation was 1.85 inches, as derived from the records of eighty-nine stations. The greatest general precipitation ranged from 2 to 4 inches in western New York and the western Adirondacks; the least being under one inch along the eastern border of the State. The maximum local amount was 4.42 inches at Turin, and the least was 0.75 inches at Easton.A list of the heaviest rates of precipitation will be found in the table of meteorological data. A moderate and quite general snowfall occurred on the 7th, 9th and 15th, and heavy rain, turning to snow, occurred on the 24 th, the maximum amounts falling in western New York and on the coast.- The arerage snowfall for the state was 12.2 inches, as derived from the reports of sixty-one well-distributed stations. The total amount was about 12 inches over the Eastern and Western plateaus, 20 inches on the Northern platead, 8 inches in the Hudson valley, 15 inches in the st. Lawrence valle: and Great Lake region, and 10 inches
in the Central Lake region. The greatest local snowfall was 40.0 inches at Turin.- The average precipitation at twenty-nine stations possessing records for previous years was 1 inch below the normal amount; deficiencies occurring at all stations excepting Plattsburg, Potsdam, Buffalo, Fort Niagara and Rochester. The amounts were the least shown for January by the records of Port Jervis, corering 13 years; Setauket, 11 years; Albany, 23 years; Honeymead Brook, 16 years; Boyds Corners, 26 years, and North Hammond, 19 years.

The average number of days on which the precipitation amounted to 0.01 inches or more, was 10.1 ; the number being above this average in western New York and below it in the eastern section. The average number of clear days was 7.0 ; of partly cloudy days, 8.9 ; and of cloudy days, 15.1; giving an average cloudiness of 51 per cent. The maximum cloudiness obtained in western and northerm New York.

The prevailing wind direction was from the northwest. The average total wind travel at six stations of the National Bureau was 7,788 miles; being below the usual values at all stations excepting New York city. The maximum relocity recorded at the above stations was 48 miles at Buffalo on the 1 st, and at New York city on the 24th.

Hail fell on the 3d, 23d, 24th and 29 th, and sleet on the 3d, 18 th, 19 th, $23 \mathrm{~d}, 24 \mathrm{th}, 25 \mathrm{th}, 29$ th and 31 st.

Solar halos were observed on the 17 th and 28th, and lunar halos on the 2 d and 22 d .

The weather of January was generally pleasant, with more sunshine and less rain and snow than usually obtain in the winter months. The average temperature was below the normal, a deficiency occurring throughout the period flom the $2 d$ to the

17th and an excess over the normal on nearly every day thereafter. 'The 6th was the roldest day which has occurred since this Bureau was established in 1889, and probably for a much longer period. The deficiency of precipitation was most marked in southeastern New lork, and ground water was reported as very low in several locialities of that section. The ground was generally free-from snow through the second decade and toward the close of the month: only ten days of thin sleighing being reported from Malone, while in the Great Lake region the duration was rather longer. Lakes and streams which were open during the warm period late in December, were frozen about the close of the first week, and a heavy ice harvest had been completed along the Hudson river and in other localities, before the warmer weather of the latter half of the month. Less than the usual wind travel was reported from the western and inland stations, the maximum relority being reached along the seacoast.

Eight areas of high pressure (approximately) passed eastward over the vicinity of this State in Jannary, the respective dates being the 2d, 6 th to Sth, 11th, 15th, 18th, 23d, 28 th and 31st. After the $2 d$ of the month a nearly permanent high pressure system became established over western British America, and the drifting anticyclonic areas generally originated in that region. Depressions of temperature accompanied all of these areas, but the only notable cold wave attended the serond area, which traversed nearly the entire United States between the $3 d$ and 7 th.

The low-pressure areas, nine in number, in most cases developed over the southern and central States, or over the ocean, and generally passed in the vicinity of New York. Depressions passed north of the State on the 1st, id and 13th; along the coast on the

10th, 17 th and 25th; and over the State on the 9th, 19th and 25th. The maximum wind velocities accompanied the coast storms, while heavy rains, changing to sleet and snow occurred during the passage of the eighth area from the central valleys over New York. The precipitation due to the remaining storms was in most cases light.

The rapid fall of temperature during the storm of the 24th caused a deposition of ice upon tree branches, and some damage to fruit prospects may have resulted, especially near the lakes.

Meteorological Data

Location of stations.			BAROMETER.						Humidity		Tempera			
STATION.	County.		$\begin{aligned} & \dot{⿷ 匚} \\ & \stackrel{y y y y}{\mid c} \end{aligned}$		$\stackrel{\dot{9}}{8}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{O}} \\ & \stackrel{\rightharpoonup}{E} \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$								®
Western Plateau..												23.2	51	29
Alfred...........	Allegany.	1824									21.6	215	45	29
Angelica.......		1340									22.	22.1	43	29
Friendship		1550	30.20	39.64	6	29.68	24	0.96			23.3	23.2	45	29
Humphrey.	Cattaraugus	1950									24.0	24.0	44	16
Arkwright...	Chautauqua	1260										+24.0	40	b
Jamestomin.......		1328										25.6	46	29
Elmira.	Chemung	863			-		.					24.6	45	29
ATOH.	Livingaton	58.5			-		.					21.8	40	18
Mt. Morris		525										249	45	29
Victor.	Ontario				--							22.4	41	18
Wedgewood	Schuyler.	1350			.		-				21.0	22.0		29
Addison....	Steuben..	1000							80	19	24.9	24.8	47	29
Sunth Canisteo.	Steuben.	1480			.		-				23.2	23.6	47	29
Arcade .-.........	Wyoming	1557			.		-				21.8	214	42	18
Varysburg........	"											21.8	47	17
Eastern Plateau..												19.8	49	27
Binghamton	Broome	870			.		.		\cdots		21.6	21.0	44	29
Oxford.	Chenango	550			.		.					201	40	
Cortland	Cortland.	1120			.		.					20.0	40	29
Bloomrille.......	Delatware	1550			-		.				19.0	18.1	48	27
South Kortright ..		1700			.-		-					17.9 $* 181$	49	25
Brooktield........	Madison	1350			.						18.1	*18 1		
Hamilton	Madison	1127			.							17.3	40	d
Middletown	Orange.	660			.		.					21.3	42	
Port Jervis.......		470			.							21.8	41	25
Conperstown.	Otsego	1300			.						17.3	17.0		2
New Lisbon		1234									184	17.2	37	f
Oneonta		1100									22.5	21.9	42	
Perry City	Schuyler	1038			.		-				21.4	20.7	40	29
Waverly	Tioga.	825			.		.				233	236	48	29
Mohonk Lake	Ulster	1600									20.3	20.3	41	3
Northern Plateau.							.					14.7	39	3
Saranac Lako.	Franklin											117	36	24
Gloversville	Fulton...	802			-						16.9	106	39	3
Lowville..........	Lewis											15.4	37	25
Number Four	Lew	1571	30.19	3068	6	2974	3	0.94					34	
Tum....... Remsen.	Oneida										\cdots	14.2		25
Allantic Coast.							.					27.2	47	25
Brooklyn	Kings.	107										28.2	45	h
Manlattan Boach.	Kings.													
New York City...	New York	314	30.19	30.55	6	29.69	24	0.86	75	20		28.0	47	5
Willers Point.	Queens...											26.6	4	
Setanket	Suffolk								72	20	28.0	27.8	46	3
Bediord..	Westchester	290										25.5	46	

for January, 1896.

ture - (In Degrees Fab.)								Sky.			Prectititation - (Inches).						
	$\stackrel{\dot{\Xi}}{\tilde{\sim}}$						$\begin{aligned} & \dot{\Delta} \\ & \stackrel{y}{\circ} \\ & \hline \end{aligned}$								$\stackrel{\oplus}{\stackrel{\oplus}{\sigma}}$		
-24										16.9	11.3	2.30					
-13	6	57	14	34	16		20	3	11	17^{18}	17	2.51	084		24	13.8	\%.w.
- 22	6	65	14	41	16	3	31	4	9	18	${ }_{18}^{18}$	\pm	0.68		24	13	
-23	6	68	17	44	16		$a \mathrm{a}$	4	6	21	12	2.03	0.60		24	10.3	
- 7	6		13	35	16	${ }_{3}$	20	3	6	2	12	243	0.8		24	17.0	W.
- 3	6	49	13	31	16	5	26	3	9	19	13	3.08	0.70		24	18.0	W.
- 5	6	50	11		29		24	6	11	4		1.56	9.50		4	5.5	S. E.
-13	${ }^{6}$	53	11	3	16		24			15	7	1.97	1.04				
0	6	55	17	31	10	7	ac.	24	5	2	9	2.50	1.00		15	c. 0	
-14	6	55	15	31	7		24	6	11	24	15	1.82	0.60		7		
-11	6	62	16	35	$\stackrel{29}{ }$	4				11	12	1.72	0.90		24		S. W.
-12	6	59	15	34	29		201	13	7	11.	10	1.47	0.84	20.00	24	3.6	s. W.
-15	${ }^{6}$	62	16	35	16	${ }^{6}$	25	,	4	18	13	\%.76	1.18		4		W.
-2	${ }_{6}^{6}$	6	14	31	${ }^{16}$	5	aa	1	7	${ }_{23}^{23}$	13	\cdots	0.87		24	12.5	
-24	6	7	17	44	17]	3		22	12	3.52	1.65		24	12.	
-32	6	61	17	42	16	2	ae	8.8	810.	12.	9.5	1.6	1.04				
-14 -21	${ }_{6}^{6}$	${ }_{61}^{58}$	16 20	34	12	${ }_{9}^{4}$	${ }_{19}{ }^{2}$	7	9	15	13	1.99	0.39		24	14.5	V.
-23	6	63	14	30	29	4	af 1	17	9	5	14	1.86	0.66		24		
	6	71	19	36	12		191	11	\pm	16	10	2.26	1.01	5.00	3	8.5	
			22	38	u			${ }_{9}$	17	5	6	1.50	0.40		13	15.0	W.
32	6			37				6				. 38	0.25		19	12.1	
	6	50	14	23	11		271	11	9	11		1.89	1.04		24	8.5	N. W.
-7	8	48	15.	28	12	5	191	10	14	7	6	1.65	0		24		N.W.
--21	6	57	14	41	12				4	13					7-24	12.0	s.
-26	${ }^{6}$	${ }^{63}$	18	38	12	5	$b d$	5	13	13	11	0.86	019	13.00	7	13.5	
-16	6	58	17)	35	12												
-20		60	17	33	29	5				19	10	1.68	0.44		24	10.9	N.W.
-12	6	60	18	42	16	${ }_{4}^{2}$				17	11	1.66	0.71		24-24	$9{ }_{7}{ }^{2}$	
-14	6	55	13	24	39	4	h 1	10	11	10	7	1.49	0.80	24.00	24-25	7.0	
-		65	15	38	16		25	5.6	69.0	16.	13.	2.47	1.30				
-31	5	67	19	36	${ }^{w}$	5	24	7			17	1.11	0.22		25	184	
-30	${ }_{6}^{6}$	${ }_{69}^{59}$	${ }_{18}^{14}$	$\stackrel{29}{38}$		${ }_{4}$	25	8	4	19	${ }_{12}^{13}$	${ }_{2}^{1.47}$	0.30		24	${ }_{33}^{13.9}$	${ }_{\text {N }}$. ${ }^{\text {E. }}$
-31	6				29		25	4									
-29	6	64	14	25	16	2	19	6	1	18	12	442	1.30		3.	40.	S.
7		48		33	12			13.6	68.6	8.8							
- 0	6	45.	11	20	2	3		15	10	c	5	1.54	0.95	8.	24	5.0	w.
										1		2.50	0.90		10	19.0	
-3	${ }_{r}^{6}$	${ }_{46}^{50}$	14	${ }_{25}^{22}$				12	8	11	${ }_{2}^{6}$	\| 1.25			24 24	${ }_{7}{ }^{3.0}$	N. W.
- 3	6																
- 1	6		10				251	13		10		1.48			24	4.5	
7	6	53	19	33	12		251	12	9	10	6	1.40	0.69	0	,		N. W.

[^0]for January - (Concluderl).

thermograph. || Report received two late to be used in compuring means. The means from \dagger Blank indicates that the duration is not shown in the original records, but is within twenty-
$3,8,26 ;(j) 18,25 ;(k) 1,26 ;(m) 2,3,12,25 ;(n) 2,3 ;(p) 2,3,29 ;(q) 2,3,25 ;(r) 5,6 ;(s) 6,7$;
19, 21; (ad) 20, 25; (ac) 1, 21, 27; (af) 10, 20; (bb) 19, 25; (bc) 1, 20; (bd) $1 \quad \vdots$; (be) 1, 19; (bf) 10, 25;

STATION.	1	:	3	4	\%		7	8	9	10	11		13	14
Hestern Pla	20	?	\because.	10		-	13	14	24	2	2	28	20	20
	19	36	36	13	-	9	21	19	28	"4	兑	3	21	4
Alf	14	1.	1:	\cdots	-10	-18	-	F	16	14	13	18	15	14
Angelica	\cdots	39	3:7	14	5	7	2	23	29	$\because 4$	$\because 7$	+39	23	21
Angelica	16	16	14	11	-12	22	5	\bigcirc	\cdots	16	15	ㄹ1	17	16
Friendship	- 13	199	41	1.7	9	11	24	23	33	28	28	37	$\because 4$	24
	19	37	34	16	-8	8	$\stackrel{2}{9}$	25	29	26	25	36	\%	16
Humphrey	13	16	13	-1	-5	-	-8	-	19	16	16	21	15	14
Arkwrig	18	36	3.5)	13	6	11	$2{ }^{2}$	23	$\because 9$	$\because 6$	32	33	20	20
	1.0	17	13	${ }^{6}$	3	-	10	10	21	21	\because	20	16	14
Jamestow	$\underline{23}$	37 17	37	t3	14	15	23	$\because 8$	31	28	30	38	$\because 4$	$\because 6$
Jamestow	16	17	13	0	0	-3	13	13	23	$\because 1$	20	20	17	16
	26	410	38	12	12	8	20	18	24	25	24	40	28	28
	19	20	19	7	-3	-5	4	11	15	20	17	28	19	$\because 0$
Avo	"3	37	23	13	7		20	19	30	24	$\because 9$	36	$2 \because$	23
	18	10	18		-2	-13		9	13	18	16	19	18	11
Mt. Morr	$\begin{array}{r}27 \\ 19 \\ \hline\end{array}$	$4 \pm$	40	30	10	10	24	20	44	42	30	41	32	29
at. Inorr	19	17	16	15	-1	-10	3	10	18	11	18	19	19	17
Victor	24	40	39	20	110	1	24	18	24	34	28	39	$\because 3$	24
,	18	20	17		-9	-14	--7	8	12	18	15	15	16	12
Wedgewoo	24	36	37	15	11	15	17	24	25	27	24	38	26	25
	15	14	12	1	-	-11	-1	5	11	14	12	15	16	15
Addison	35	41	41	$\because 0$	13	8	22	20	28	29	25	40	28	27
	20	17	17	5	-3	-12	4	10	12	19	18	20	20	21
uth Canist	$\because 3$	41	38	16	11	4	20	17	31	24	29	41	28	25
	15	17	16	11	-5	-15	\because	7	16	15	14	18	18	16
Arcade	20	36	34	11	1	6	24	20	29	24	29	34	20	21
	10	15	11	${ }_{17}$	-13	-20	0	4	$\because 0$	15	1.5	18	15	14
Farrsburgh	15	${ }^{9}$	13	${ }_{1}^{17}$	-21	-24	5	${ }_{3}$	$\xrightarrow{31}$	8	11	36 19	15	23
Eastern Plat	24	26	27	13	4	-8	$\stackrel{3}{2}$	$\stackrel{\square}{2}$	12	15	11	18	2	20
Bingham	30	38	37	16	8	${ }^{0}$	13	14	21	2	20	36	35	30
Bingham	20	12	16	8	-8	-14	-4	-1	12	4	0	10	13	13
	28	37	38	20	15	-	13	15	$\because 2$	25	$\because 4$	34	32	30
	18	13	17	.	-4	-21	-8	-14	2	3	-3	${ }^{1}$	16	12
ortl	$\underline{24}$	36	38	20	8	. 1	11	13	20	19	$\because 0$	33	32	$\because 0$
	19	15	18	8	-1	-23	-15	-8	10	15	8	10	19	15
Bloom	26	36	35	15	9	1	12	13	$\because 0$	24	17	31	29	25
Bloom	19	16	19	3	-6	-23	-10	-14	-3	-	-6	-5	16	11
outh	25	36	37	15	9	7	14	10	20	24	15	$3{ }^{\circ}$	27	44
	16	13	12	4	-6	-30	0	-15	4	-4	-8	-	- 7	11
Brookfield						.								
Hamilton	24	37	. 40	29	12	0	9	11	16	22	19	31	29	2
	19	0	11	4	-11	-32	-16	-21	5	3	-7	-6	14	8
Middletown..	42	42	38	21	11	9	6	10	11	28	30	31	$\because 9$	$\because 9$
	31	3:	21	10	-2	-8	-	-5	$\overline{3}$	0	5	10	17	16
Port Jervis........	4	35	40 3	17 13	13	10	7	17	17	30	27	30	28	29
	24	15	23	13	4	-6	1	-7	7	3	7	\because	12	12
Cooperstown	23	36	33	17	7	-4	4	10	12		15	31	28	22
	21	17	17	7	-10	- 1	-7	-12	3	2	-2	-10	16	14
New Lisbon	19	14	15	15	-88	-1	9 -12	${ }_{-15}^{8}$	18	24	16	-30	16	2
Oneonta	27	41	41	20	11	4	15	14	25	$\because 6$	21	35	$3 \times$	27
	2	19	18	,	-2	-16	-6	-7	7	9	0	0	2	18
Perry City.........	26	36	3.5	16	8	0	18	17	25	23	25	37	29	24
	16	12	16	\because	-4	- 20	-2	2	11	10	10	15	18	14
Vaverly...........	$\stackrel{8}{28}$	39	36	28	16	10	18	24	$\because 4$	32	26	37	26	30
	39	13	\because	17	-4	-12	0	9	15	18	15	13	14	12
Mohonk Lake	28	34	41	20	13	0	6	12	15	28	25	27	27	28
	22	18	19	8	0	-14	-8	-4	3	-2	5	7	17	16
Northern Plateau .	22	24	20	$\stackrel{2}{2}$	-12	-17	-4	-4	10	12	9	14	20	16
Saranac Lake......	24	84	28	-2	-10	-6	1	11	14	22	28	30	20	18
	18	18	-8	-21		-30	-19	-16	4	-5	0	17	12	22
Glorersville	29 21	33 18	39 17	17	$\left.\right\|_{-11} ^{5}$	-6	-10	-11	15	23 7	-19	${ }^{22}$	25 17	22

Temperature for January, 1896.

15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
16	18	25	29	32	30	30	26	30	34	34	29	20	26	31	34	30	23.2
:22	34	36	38	36	32	32	30	35	36	37	30	25	32	45	38	35	
2	1	13	16	28	28	24	20	24	30	30	24	13	16	19	28	20	21.5
20	34	37	38	37	34	32	30	36	38	35	32	28	25	43	37	38	
2	-7	9	8	28	30	26	21	25	32	29	23	16	17	12	30	35	221
24	38	37	41	39	36	35	34	38	40	39	34	28	35	45	41	40	
6	-6	8	9	31	18	27	21	23	33	31	26	16	17	16	31	27	23.2
21	44	39	38	39	33	33	35	35	38	36	31	26	39	43	38	36	
14	9	19	23	30	30	25	19	29	32	30	25	16	17	24	30	28	24.0
24	32	34	40	35	34	32	31	37	39	37	30	24	29	40	38	39	
16	14	24	29	26	25	27	20	25	34	30	24	16	21	26	33	32	240
24	38	38	40	36	36	34	36	39	43	39	31	30	36	46	39	45	25.6
12	7	10	24	29	28	28	20	32	37	31	26	12	19	24	33	33	25.6
25	25	33	36	39	35	36	32	34	38	41	37	28	32	45	40	37	
15	4	14	14	. 35	28	29	24	20	36	36	31	19	22	18	28	21	24.6
22	32	32	40	34	33	34	28	38	32	36		23	28	39	34	33	21.3
13	0	23	31	30	30	30	19	16	30	32		14	19	13	27	11	21.3
28	25	30	42	37	35	36	34	37	35	40	40	28	40	45	42	44	
14	10	4	18	30	23	29	19	21	11	31	20	15	27	21	20	22	24.9
23	34	37	41	35	38	35	28	37	33	38	33	28	29	39	37	33	
14	4	20	18	26	28	26	14	12	29	32	28	13	14	24	$\because 6$	14	22.4
-21	33	36	43	35	30	34	32	31	36	36	33	26	32	51	37	33	
9	5	20	18	29	26	26	14	17	29	32	26	11	15	16	2\%	13	22.0
25	35	36	39	37	34	35	34	36	38	41	38	33	36	47	39	37	24.0
11	2	12	13	33	31	30	24	24	32	34	30	17	16	13	28	22	24.0
32	37	36	44	40	36	36	39	35	38	40	34	28	36	47	42	38	23.6
7	2	12	12	32	29	28	21	20	29	34	27	14	13	13	34	20	23.6
20	33	33	42	37	34	31	29	35	37	36	30	24	31	40	36	38	
6	+	18	19	27	27	25	20	26	32	29	23	13	17	16	28	25	21.4
25	37	47	41	34	35	33	30	37	39	38	32	29	35	45	40	37	
1	-5	3	24	25	25	25	23	24	31	31	24	10	14	13	27	23	21.8
16	16	24	22	30	28	29	24	21	31	36	32	24	21	24	27	21	19.8
20	33	33	36	36	31	34	32	35	40	39	34	30	29	44	34	36	
9	8	9 9	5	28	26	26	13	18	30	32	30	18	15	12	25	20	21.0
27	32	35	38	35	36	40	36	37	37	40	37	32	32	40	35	32	
8	6	7	7	$\because 6$	24	93	21	4	25	30	$\because 5$	15	13	7	20	11	20.1
21	31	34	36	33	29	34	34	33	35	36	36	29	24	40	33	30	20.0
10	10	14	9	$\because 6$	25	27	22	12	27	30	28	15	14	10	25	5	20.0
20	28	34	35	33	36	34	30	35	40	48	35	29	24	38	33	32	18.1
8	-5	11	5	27	25	24	10	0	28	32	27	12	15	6	17	9	15.1
20	29	35	37	33	37	33	29	34	37	38	36	49	22	38	35	33	
9	-5	12	-1	25	22	23	9	0	25	30	25	11	10	11	19	7	179
																	*18.1
19	30	35	39	39	30	34	30	33	37	40	34	27	24	38	30	30	173
10	4	17	4	28	25	25	9	0	26	32	27	12	9	9	15	-1	173
29	27	32	34	33	31	33	36	31	31	42		30	33	30	31	31	21.3
14	9	11.	16	27	25	17	15	15	17	33		28	19	10	12	17	21.3
25	28	32	36	32	30	35	35	31	35	41	39	30	36	40	39	32	21.8
15	2	10	16	28	25	22	25	13	26	33	33	22	18	14	21	16	21.8
17	30	32	31	31	31	34	29	26	34	35	33	28	18	24	32	23	
12	4	17	10	22	21	24	15	4	24	32	28	12	10	14	15	6	17.0
18	28	33	35	32	30	33	29	35	37	37	34	28	23	37	31	30	17.2
10	1	8	5	26	23	24	14	2	25	32	28	13	11	7	21	0	17.2
23	32	35	37	35	38	38	34	36	39	41	39	33	26	42	36	-.	21.9
15	6	21	12	27	26	28	18	8	22	34	31	17	17	13	21	13	21.9
22	31	36	39	37	33	34	32	39	36	38	34	28	29	40	36	36	20.7
6	0	18	9	30	27	28	10	9	29	383	28	13	8	7	23	8	20.7
29	39	41	43	38	32	30	34	35	38	39	37	30	39	48	38	38	23.6
7	-3	7	8	31	28	28	18	13	31	35	29	16	17	10	27	15	-3.6
30	24	32	32	30	27	32	32	32	32	34	34	34	36	32	34	28	20.3
14	6	18	20	24	21	22	18	16	24	30	30	18	18	8	24	12	20.3
8	12	24	26	26	25	26	18	17	31	34	28	15	10	13	19	14	147
12	30	25	31	27	27	29	23	33	36	35	32	13	12	21	24	28	11.7
-3	0	18	17	17	17	19	-5	-3	31	29	13	0	-10	0	-5	-5	11.7
18	20	34	33	27	30	32	30	28	34	34	34	29	20	20	34	24	16.6
10	-3	9	14	24	22	22	16	2	24	34	29	13	12	4	18	2	

Tmiperattre - Janlary, 1896, Showing Daily Mhans for

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
North. Plat. (con'd)														
Lowville	18	33 15	34 20	-20	-23		-20	-19	18 2	16	14 -7	-9 -3	17	18
Number	${ }^{24}$	30	20	15	-6	-7	7	5	15	25	18	26	26	20
mbe	16	15	14	-7	-22	-31	-7	-13	5	5	-1	2	14	12
Turin.														
Remsen														...
Atlantic Coas	29	32	34	20	12	4	11	12	18	26	24	24	26	24
Brookly	31 28	44	43 29	23	18 8	12	18	19 8	145	31 19	32	37	${ }^{35}$	32
Manhattan Beach ..														
New York city ...	23	44	44	21	16	10	18	17	26	29	- 32	38	32	31
	20	22	27	15	7	-3	3	+	12	16	20	21	26	22
Willet's Point	33	45	42	34	21	10	19	19	25	33	29	37	31	33
	21	21	18	9	-1	-1	7	${ }^{7}$	16	21	14	17	19	21
Brentwood	35	44	43	24	15	10	18	18	26	29	31	37	32	32
	22	12	$\because 4$	18	6	-3	4	8	9	22	17	0	2	9
auket	35	43	46	27	18	11	23	21	25	30	31	39	32	30
Bedford.	29	22	27	16	11	-1	7	11	16	24	23	15	26	20
	33	40	46	26	20	12	13	22	22	36	31.	35	35	34
	25	20	26	13	6	-7	-1	1	6	15	14	2	11	8
Hudson Falley	28	28	32	16	11	-4	6	11	11	21	9	14	22	20
Albany	32 26	$\xrightarrow{39}$	40	17	13	${ }_{-14}^{2}$	6 -6	11	18	28	19	30	31	29
	28	36	36	20	12	-5	-8	-7	21	$\because 6$	16	24	29	${ }_{26} 6$
0 Sp	$\because 0$	15	20	3	-3	-18	-11	-14	-3	14	-2	7	16	,
Honeymead Brook.	31	35	43	21	17	0	9	8	21	25	19	30	30	31
	22	17	21	13	2	-18	-5	-2	- 5	17	2	-2	15	8
Poughkaopsie......	${ }^{33}$	36	44	24	22	10	14	14	17	27	22	27	30	32
Wappingers Falls.	32	42	40	25	20	-10	-4	11	18	${ }_{30}$	25	33	32	34
	$\because 2$	$\because 0$	$\because 4$	11	5	-10	-3	-9	5	24	0	-8	12	8
West Poin	35	31	49	47	34	15	-1	10	13	23	28	20	34	33
	29	13	2 2	2	5	-9	-8	2	3	8	11	2	10	18
Carmel	30	37	41	18	12	4	10	10	\bigcirc	28		30	26	28
	2	25	23	11	5	-9	-2	0	8	14	8	8	20	11
Mohawk	25	3:	12	4	-4	-5	4	6	15	17	14	21	25	20
	28	38	29	12	11	1	12	10	20	210	20	29	31	31
	2	26	-5	-3	-17	-11	-3	1	10	12	- 8	13	19	10
Utica														
Champlain Valley.	30	27	30	14.	-2	-8	-8	-3	9	14	7	7	29	22
Plattsb'gh Bar'aks.	37	30	36	36	5	4	-7	-1	10	19	13	12	29	26
Saratoga Sprivgs..		23	25	-1	-15	-20	-18	-10	-8	7	0	0	11	19
Glens Falls	33	33	35	15	7	-3	4	10	29	27	12	21	28	30
St, Lawrance)	24	20	22	5	-7	-14	-10	-10	5	${ }^{6}$	4	-4	20	14
	\cdots	2	23	${ }^{0}$	-15	${ }^{-14}$	-6	1	10	1	11	16	21	17
Malon	$\because 1$	$\because 0$	14	-12	-21	-27	-18	-10	1	4	\because	11	17	10
Madison Barracke.	3%	35	36	23	-7	-2	8	10	25	13	16	38	24	26
Madison Barracks.	21	16	23	-2	-14	-21	-14	-12	6	-4	4	7	10	11
Watertown														
Caiton	29	36	36	9	-11	-1	9	16	15	15	15	33	20	28
	$2-$	$\because 2$	9	-19	1-26	-14	-14	7	4	-4	4	4	16	8
Massena														
North IIammond..														
Ogdensburg	38 24	36 22	41	10	- $\begin{aligned} & -8 \\ & -20\end{aligned}$	-	11	10	15 8	24	20 5	33 5	15	12

the Regions, and Daily Maxima and Minima for the Stations.

Dally Means for the Regions, and Daily

STATION.	1	2	3	4	5	6	7	8	9	10	11.	12	13	14
St. Lave, Val. (Con). Potsdam	28	33	23	5	-13	-13	-3	7	13	13	14	33	26	25
	24	21	7	-14	-19	-23	-18	-13	5	3	1	7	15	9
Great Lakes	24	30	25	12	3	-2	10	15	22	22	24	30	22	22
Dunkirk														
Westfield..........	24 18	45 21	10 15	42 6	12	${ }_{3}^{22}$	35 3	38	30 25	-29	35 18	48 29	25 19	${ }_{20}^{26}$
Baffalo	27	40	31	12	9	9	23	21	30	24	29	38	20	24
Baffalo	21	23	16	7	1	-4	5	12	19	21	19	21	17	17
Pittsford	26	40	40	19						25	35	39	27	24
	19	20	15	4						19	17	21	18	18
Rochester .-......-	25	39	24	12	6	0	20	16	29	23	25	37	19	22
	19	20	16	7	-2	-10	-5	10	15	19	17	21	17	17
Appleton --........	${ }_{21}^{27}$	39 22	39	19	11	6 0	20	18	31	25	$\stackrel{29}{ }$	36	25	26
Fort Niagara......	36	34	40	20	12	12	22	20	29	26	29	38	${ }_{26}$	18
	20	22	18	9	2	-2	1	16	16	19	20	16	17	14
Baldwinsville......	27	39	39	2	10	-7	7	15	19	22	29	37	23	24
	21	25	8	-4	-22	-20	0	5	8	14	10	19	17	10
Syracuse														
Oswego.............	29	40	29	11	2	-5	10	12	19	18	22	36	21	25
	${ }_{27}^{22}$	21 37	$\stackrel{21}{35}$	7 18	-2	-20	-7	5	9	15	15	13	19	18
Palermo	$\stackrel{27}{20}$	19	35 18	18	- ${ }^{9}$	-5	-12	10	17 8	18	21	34 10	18	18
	28	40	40	17	10	-3	19	19	30	24	26	38	26	25
Erie, Pennsylvania.	21	22	17	9	-4	-14	-4	11	16	20	21	23	20	20
	22	39	22	12	12	16	32	24	23	31	31	40	22	25
	17	14	16	4	2	4	15	19	24	22	21	22	19	19
Oentral Lakes	24	28	28	14	4	-8	8	10	19	20	18	27	$\stackrel{24}{ }$	21
Fleming	$\stackrel{27}{21}$	38	39	20	9	0	17	17	24	25	23	35	27	24
Watkins	2	19	18	6	-1	-14	-1	3	13	16	15	18	18	16
	27		39		10	-1	19							
Romul	21	17	19	8	-1	-15	-1	$\stackrel{1}{2}$	13	16	16	18	17	17
Ithaca	27	40	39	18	9	1	16	14	24	23	21	84	29	25
Ithaca	21	18	18	7	-2	-15	-1	4	13	15	14	19	21	17
Mean	24	28	21	9	0	-7	3	6	15	18	15	20	22	20

*Mean of tri-daily observations. \ddagger Max. and Min. by the Draper Therma

Maxima and Minima for the Stations - (Concluded).

graph. † Mean includes values of adjacent stations for the blank dates.

Daify and Monthly Prectipi

STATION.	1	$\therefore \%$:	4	I	6	\%	8	3	10	11	1%	$1: 3$	14
Western Plateau.	0.05	T.	0.09	0.12	0.06	0.02	0.12	0.02	0.17	0.01	0.01	T.	0.02	. 14
Alfied...			. 20	-15	14		. 10	. 01	. 30	. 01			. 02	. 35
Auselica			. 20	-12	. 03		. 10		12	. 04			T.	. 20
Buliva			. 07	15		. 02	.09		. 26				- 01	. 02
Friendship	. 11		. 25	12	07		-10	T.	-22	T.			T.	. 15
Humphra			$\therefore 6$	35			03		. 20					0.5
Littie Talley														
Cherry Creek	. 13		. 23	. 52	. 40	. 10	. 10	03	. 26				02	. 24
Jamestown	. 15		25	. 30	. 35		T.		. 25	-10			T.	25
Elmira..									. 46					T.
Pine City			02	. 03	04			. 13	. 23	'			T.	
A kron..	T.		T.	T.	T.	T.	T.	. 23	T.	T.	. 18		T.	. 03
Avon	- 0^{2}				T.		. 11		. 13	T.			T.	T.
Mt Mort	. 05			-20.			. 50			. 05				100
Victor	. 10			. 10	. 05		. 60	T.	T.	T.	T.	. 05	. 15	. 20
Tyroue							. 06		. 19					
Werigewood			. 02	. 02	T		. 10	. 02	. 20				T.	01
Addison			. 02	. 04	T		-10		13	T				T.
Atlunta.						. 24						. 04		
Maskinrille			. 13	. 05.	. 04		. 12	08	. 14	02				. 02
South Canis			. 09	. 10	T.		.1]		.15	T.	T.	T.	T.	. 15
Arcade	01	T.	. 11	. 18	-10		. 13	T.	. 21	T.		T.	. 05	. 11
Attica														
Vatysburgh	. 46	10	T.	. 12	. 09	T.	- 10	T.	. 14				. 23	-11
Eastern Platea	T.	0.01	0.10	0.04	0.02	T.	0.14	002	0.19	0.01	T.	T.	0.03	0.03
Binghamton														
Chenango Forks														
Oxford.	T.		. 20	. 05	T.	T.	. 20	.15	. 25	. 05	T.	. 05	. 65	T.
Cortland			. 04	. 02		. 05	. 25	. 02	. 21	. 08			. 03	09
Blonmville	. 02		1.01	. 07			. 22		12					. 14
Derosit .-		20					. 20	. 20	. 30					
Soush Kortright														
Brookfield			10				. 20						. 40	
Hamilton				. 10	-20		. 20		.22	. 05			. 02	. 12
Apnlia														
Middletown				. 05			. 10		. 40					
Port Jervis			. 02				. 15		. 13					
Warwick			T.				. 05		.12					
Connerstown			, 10				. 33		. 22					. 02
Nor Lisbon			. 08	.02			.19		.10				\underline{T}	
Oneonta														
Perry City				. 21	. 07		. 33		. 22					. 10
Nowark							. 30		. 05			T		T.
Waverly			. 03	02	T.		. 10		. 25		T.	T		. 03
Ellia....														
Mohonk Lake							17		*	+. 07				
Northern Plateau.	029	0.01	0.32	T.	1.00	0.00	0.24	'1.	0.22	0.01	0.00	0.08	0.06	0.05
West Cbazy														
Elizabethtown														
Saranac Lake.	. 04	. 07	. 99				. 09	. 03	. 05			. 03	. 05	. 01
Gloversv	. 03		. 03	T.			. 21	T.	. 30	. 06		. 05	T.	. 07
Lowville	. 30		25				14		. 14			. 03	. 08	. 04
Number Four	. 82		25				. 20		. 28				t. 58	13
Tarin..	. 55		1.30				. 57		. 28			. 31	. 19	T.
Remsen														
Kings Station.....							. 20		. 20					
Coast Reg	0.00	0.00	T.	T.	0.00	0.00	0.08	0.17	0.21	0.16	0.00	0.00	0.00	
Bronklyn							. 10	. 10	. 25					T.
Manhattan Beach.								- 80		. 90				...
Now York City			T				. 06	. 02	. 18	T				

tation for Janeary, 1896 - Inches.

Dally and Monthly Precipi

STATIONS.	1	2	3	4	5	6	7	8	9	10	11	12	13	1	
Coast Region (Con.) Willet's Point.							I.		. 35						
Brentwood..															
Seatauket			. 02	T			-18	T.	.12	08					
Bedford				T.			. 15	. 10	- 38						
Hudson Talley	T.	T.	T.	T.	0.00	T.	0.21	T.	0.17	0.05	0.01	' ${ }^{\text {d }}$	0.00	T.	
Albany		T.	T.	T.		T.	$\because 6$	T.	. 27	. 10	.01	T.		T.	
Lebanon Springs			. 02	T.			$\because 3$. 08	. 14	' ${ }^{\text {' }}$			T.	
Honeymead Brook							-20	T.	-15	. 05		T.			
Poughkeepsio....							. 18			$\dagger .23$	T.	T.			
Wappingers's Fialls	T.		T.				-18	. 05	. 30	-. 09	. 05	T.			
West Point.								+.22		$\dagger .10$					
Boyds Corne							. 18		. 1.5						
Carmel 18		. 17						
Southeast Reserr'ir							. 28								
Eagle Mills.-	*				*			*	*	*				t. 10	
Mariborougl															
Easton.							. 18	28.							
Mohawk	0.00	0.14	0.09	0.03	0.00	0.00	0.18	0.38	0.10	0.00	0.00	0.12	0.13	0.06	
Rome		. 14	. 09	. 03			. 18	. 08	. 10			.12	. 13	. 06	
Utica															
Champlain Valley.	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.35	0.05	0.00	0.00	T.	T.	
Plattsburgh Bar'ks							T		. 65						
Saratoga springs..							15		15	10			T		
St. LawrenceValley	0.02	T.	0.03	T.	000	T.	0.05	0.06	0.04	004	0.01	0.16	0,19	0.04	
Malone-	. 13	T.	. 06	. 02			. 04		. 09	T.		. 03		. 10	
Madison Barracks.							. 15	. 06				. 36			
Watertown Canton				*			*		*	*	*	t. 40	1.10		
DeKalb Junction..			. 05				1.	. 04	. 83			. 07	. 05	. 02	
Masseua...........															
UNorth Hammond..							03		. 08				. 0		
Ogdensburg	T.		. 05			T.	. 05	. 20	. 10	T.	. 05	. 05		10	
Potsdam										20		. 30			
Grat Tak	0.04	'T.	0.10	0.16	0.08	004	0.16	0.07	0.11	0.01	T.	0.01	003	. 13	
Dunkirk.															
Westfield	50		. 28				T.		'1.				. 12	T.	
Buffalo	T.	T.	. 12	T.	. 02	T.	. 13	. 01	. 13	T.	T.	T.	. 01	. 01	
Adams Centre															
\ddagger Pittsford													T.		
Rochester	. 05		. 12	. 42	.16	. 02	.35	. 18	. 21	. 06	T.	T.	. 03	. 06	
Scottarille															
Appleton	T		${ }^{03}$. 06	. 03		. 12	. 02	. 12	T.		T.	T.	T.	
Fort Niagara			'T.	T.	T.	T.		. 30	. 06	T.		'T.		T.	
Baldwinsville		T.	. 40	. 50		. 10	. 30		. 20		T.		10	30	
Skaneateles				20			. 11		. 08	. 06		. 08	. 10	. 07	
Sугасияе .															
Ridgeway			T.	. 25	11		. 13	T.	. 11					. 01	
Dernster			08		. 13		. 16							. 40	
Fulton.				6	. 03	. 30	. 40		. 10		. 01		. 01	. 04	
Oswego	T.	T.	. 08	T.	.10	08	. 12	. 10	. 09	T.	T.	02	T.	40	
Palermo			. 03	. 02	. 10	T.	. 4	. 03	. 10			. 08	T.	. 50	
\|	Phomi				T.	25	. 03.	T.	. 18	T.	. 08				. 08
Lyous	T.	T.	20	. 10	20	10.	40	. 40	-10					T.	
Roso.			T.	.25		T.	- 10	-05	- 20	T.		02	02	-20	
Erie, Pennsylvani			. 18	. 07	. 05	T.	. 01		. 12				-06		

tation fur Jandary - (Continued).

15	16	1%	18	19	20	21	22	23	24	25	26	27	28	29	30	31	ت゙ّ
				T.					. 75								1.10
				$\begin{aligned} & .04 \\ & .05 \end{aligned}$	T.				1.04 .69	T.						$\stackrel{\mathrm{T}}{\mathrm{~T}}$	178 148 140
0.00	0.00	0.00	0.00	0.10 .09	T.	T.	T.	0.80	0.40 .12	$\begin{array}{r}0,03 \\ .08 \\ \hline\end{array}$	0.02 .05	0.01	0.00	0.00	0.0	T	
				. 06					. 28	. 02	. 04						098 0.87
				. 03			T.		. 48								0.91
					†. 06				. 32	. 09						T.	0.88
				. 20	$.05$. 38	* 06	$\dagger .80$	T.				T.	1.36 1.19
				. 05					. 57	. 07	. 07						1.09
				. 06					. 69								1.10
				. 05					. 75								1.30
				. 20						*		$\dagger 1.00$					1.30
				. 17						T.	T.	. 14					0.75
0.00	0.00	0.00	0.26	0.12	0.04	0.00	0.00	0.21	0.15	0.12	0.07	0.06	0.00	0.00	0.00	0.23	2.17
								. 21	. 15	. 12	. 07	. 06				. 22	2.17
0.00	0.00	T.	0.00	0.10	0.12	0.00	0.28	0.35	0.02	0.14	0.02	0.00	0.00	0.00	0.00	0.00	1.56
...		T.		T.	. 25		. 40	. 70	. 05		T.						2.05
				. 20			. 15			. 28	. 05						1.08
T.	T.	0.00	0.08	0.07	0.09	0.03	0.01	0.00	0.26	0.11	0.18	0.02	0.00	0.01	T	0.00	1.49
			T.	. 16		. 11			. 10	. 20	. 28	. 09		T			1.34
									\cdots	. 02	-..						1.05
					*	†. 25			.20	. 30	T.						2.25
T.	T.		. 01	. 1	. 02	. 04			. 69	. 02	. 20			. 05			1.40
T	${ }_{T}^{01}$			${ }^{80}$.10	. 04			. 05			1.06
	1.		. 10	T.	. 40	T.	. 05	-...	. 10		$\begin{array}{r}\text { t. } 20 \\ \hline\end{array}$			T.	. 02		1.09 1.80
0.03	T.	T.	0.07	0.20	0.03	T.	T.	0.19	0.82	0.13	0.05	0.02	0.03	T.	0.01	0.11	2.70
			. 31					. 07	. 55	. 11							200
. 01			. 05	. 26	. 12	T.		. 42	1.69	. 23	. 06	T.	T.	T.	T.	. 01	3.28
				. 25				. 65	. 74		. 03			T.		. 05	
. 08	T.	T.	. 03	. 23	. 04	T.	. 01	. 49	. 65	. 09	. 04	T.	. 11		T.	. 05	3.38
T			$.08$	$\begin{array}{r} .13 \\ +.26 \end{array}$			T.	.45	1.88	$\begin{array}{r} 12 \\ +2.18 \end{array}$	$\begin{gathered} .02 \\ \mathbf{T} . \\ \hline \end{gathered}$.01		T	..3	3.10 3.80
1.			. 20	. 20	. 10	T.	T.	. 36	. 27	. 03	. 10					. 37	3.53
. 03			. 05	. 26				. 12	. 62	. 06	. 04	. 03	. 08			. 09	2.08
			T.	. 17				T.	1.87	. 32	. 03					T.	3.80
				. 06		. 04			. 17	. 35	. 22						1.61
T.			. 01	. 25	. 08			${ }^{.09}$. 80	. 03	. 04	. 01	${ }^{\text {T }} 0$. 08	. 75	${ }_{2}^{3.93}$
			. 08	. 25	. 05	. 0	1.	$\stackrel{\text { T. }}{ }$.30	. 31	. 06	. 1	I.		. 01	. 03	2.04 2.00
				. 34	. 10	. 06			. 33			. 07	I.				152
.34			. 10	T.				. 03	1.14			. 20				. 38	357
. 10			. 03	. 25	. 03	. 01		.10	. 66	. 12	. 01		. 25		T.	. 03	2.63
			. 15	. 19				. 09	. 42	.04!	. 05	T.			T.	. 03	1.52

Daily and Montinly Prechi

STATIONS.	1	2	3	4	5	6	\%	8	9	10	11	12	13	14
Central Lakes	0.02	0.02	0.08	0.08	0.06	0.02	0.15	0.02	0.07	0.02	T.	T.	0.14	T.
${ }_{\text {Shersing }}$. 10	. 10	. 30	. 20	. 20									
Watkins...						. 04		. 05		. 10			15	. 02
Romalus..			T.	T.					. 23					
Ithaca				. 05	. 05	. 05	. 15	05	. 06	T.	T.	T.	T.	T.
Pean Ian														
Arerage	0.04	0.02	0.08	004	003	001	0.14	0.04	0.16	0.04	T.	0.04	006	0.04

* Amount included in next measurement. I Not used in computing the averages. \ddagger Record for
tation for Jandary - (Concluded).

the month incomplete. $\|$ Reports too late to be used in computing the averages. $T=$ Trace. 4

Statistics of Temperatore

and Precipitation- January.

MAP OF THE STATE OF NEW YORK

SHOWING

THE MEAN TEMPERATURES

MAP OF THE STATE OF NEW YORK

SHOWING
THE PRECIPITATION

Meteorological Summary for February, i8q6.

The average atmospheric pressure (reduced to sea level and 32 degrees Fahr.) for the State of New York during February, was 29.90 inches. The highest barometer was 30.70 inches at Ithaca on the 17 th, and the lowest was 28.70 inches at New York city on the 6 th. The average pressure was highest in southwestern New York, and lowest near Lake Ontario. The average barometer for the month at six stations of the National Bureau was 0.19 inches below the normal.

The mean temperature of the State, as derived from the records of 71 stations, was 22.8 degrees; the highest local monthly mean being 31.3 degrees at Setauket, and the lowest 13.9 degrees at Potsdam. The highest general daily mean was 40 degrees on the 29 th, and the lowest was 8 degrees below zero on the 17 th. The maximum temperature reported was 63 degrees at Erie on the 28th, and the minimum, 43 degrees below zero at Canton on the 17 th. The mean monthly range of temperature was 69 degrees, which exceeded the greatest value previously recorded by this Bureau by 8 degrees. The greatest monthly range was 04 degrees at Canton and Saranac Lake, and the least was 50 degrees at Fort Niagara. The mean daily range was 16 degrees; the greatest daily range being 50 degrees at Saranac Lake on the 18th, and the least 0 degrees at North Hammond on the 29th. The mean temperatures of the rarious sections of the State were as follows: The Western Plateau, 24.4 degrees; the Eastern Plateau, 23.4 degrees; the Northern Plateau, 18.1 degrees; the Atlantic Coast, 30.5 degrees; the Hudson Valley, 26.2 degrees; the Mohawk Valley, 20.4 degrees; the Champlain Valley, 18.4 degrees; the St. Lawrence Valley, 16.5 degrees; the Great Lake Region, 24.9 degrees; the Central Lake Region, 24.9
degrees. The arerage of the mean temperatures at 27 stations possessing records for previous years was 0.5 degrees below the normal; excesses generally obtaining in southern New York and deficiencies in the northern section.

The mean relative humidity was 79 per cent. The mean dew point was 20 degrees.

The arerage precipitation for the State was e.bo inches, as derived from the records of 92 stations. The greatest general rrecipitation exceeded 6 inches over considerable areas of northern and southeastern New York, while the least amount, ranging from 2 to 4 inches, obtained over portions of the central and western sections of the State. The maximum local amount was 9.51 inches at Bedford, the minimum being 2.50 inches at Itlanta. A list of the greatest local rates of precipitation will be found in the table of meteorological data. The heaviest rain and snow storms occurred as follows: On the 1st, general; on the $3 d$, heavy in the east, lighter in the northern section; on the 6 th, the maximum for the month, very heary in the southeast; on the 9 th, general; on the 13th, heavy in northern New York; on the 19th and 20th, heavy in northeastern sections; on the 30th, very heavy on the coast, lightest in western New York. The average total snowfall, as reported by 62 widely distributed stations, was 25.3 inches. The amounts for the various regions were approximately as follows: The Western Plateau and Champlain Valley, 35 inches; the Northern Platealu and St. Lawrence Valley, 40-45 inches; the Central Lakes and Eastern Plateau, 20 inches; the Great Lakes, 30 inches; the Hudson Valley, 15 inches; the Coast Region, 8 inches. The average precipitation at 29 stations possessing records for previous years, was 2.24 inches abore the normal; excesses occurring at all stations. The amounts were the greatest observed for February at the following stations, whose records cover the periods specified: Elmira, 16 years; Cooperstown, 4:3 years; Port Jervis, 13 years; Waverly, 15 years; Boyds Corner's, 2d years; Plattsburg Barracks, 38 years; Madison Barracks, 36 years; Oswego, 26 years; Ithaca, 18 years.

The average number of days on which the precipitation amounted to 0.01 inches or more was 14.2 ; the rain-frequency in northern New York and the Great Lake Regions considerably exceeding that over other sections. The average number of clear days was 6.7 ; of partly cloudy days, 8.4 ; and of cloudy days, 13.9; giving an average cloudiness of 57 per cent. for the State. The greatest cloudiness obtained over northern New York and the Great Lake Region.

The prevailing direction of the wind was from the west. The average total wind travel at 6 stations of the National Bureau was 10,147 miles; the totals being generally above the usual ralues in both the Coast and Great Lake Region. The maximum velocity recorded at the above stations was 65 miles per hour at New York on the 7th.

Lightning was observed in southeastern New York on the 6th, and a sharp thunderstorm also occurred in that section on the 28th.

Hail fell on the 3d, 4th, 6th, 13th, 23d, 24 th; and sleet fell on the $1 \mathrm{st}, 3 \mathrm{~d}, 4 \mathrm{th}, 6 \mathrm{th}$ and 29 th .

Lunar halos were observed on the 27 th and 28th.
The weather of February presented many exceptional features, the most prominent being, firstly, an abnormally low mean pressure over the State, and also, on the 6 th, the lowest actual barometer recorded in Central New Iork for 18 years or more; secondly, an excessive precipitation both of rain and snow, breaking many records of 20 to 43 years in extent for the month; and thirdly, as regards temperature, the minima of the 17 th in northern New York reached very nearly the lowest values ever observed in this State, while the arerage temperature of the day was the lowest yet recorded by this Bureau.

The first half of the month was marked by frequent storms of rain, snow and wind, the temperature throughout the period being above the normal. During the second half of February brighter and cold weather prevailed, the deficiency of temperature very nearly balancing the excess of the first period. The
closing days of the month, however, were mild and springlike, the snow disappearing rapidly in all sections, causing ice jambs and freshets in the southern rivers.

Twelve low pressure areas passed eastward in the vicinity of the State during the month; a number considerably in excess of the usual storm frequency for February. These disturbances were generally strongly developed, bringing high winds and a large precipitation, especially during the first half and at the close of the month. Storm centres passed to the north of our borders on the 1st, 5th, 10th, 24th and 28th, on all of which dates the temperature was above the normal. Severe storms moved along the coast on the 6th and 9 th, and a third of lesser strength on the 29th; while on the 13th, 15th, 19th and 24th depressions passed centrally within the borders of the State. The period from the 6th to the 13 th was an exceptionally stormy one, beginning with the hurricane and heavy rain due to the coast storm of the 6th. This was closely followed by the cyclone of the 9 th, which took a course nearly identical with the preceding, bringing heavy snow and continued high wind; and succeeding this, storms passing over Canada on the 11th and over southcastern New York on the 13th prolonged the gales and snowfall. Traffic was seriously impeded in all parts of the State during this period, and in some sections of northern New York and along the lakes, railways were blocked by snowdrifts for several days.

The number of well defined high pressure areas which influenced our weather in February was five, their maximum pressures in this vicinity occurring on the 3d, 8th, 17 th, 21 st, 2 th to 26th. The first and second highs were not strongly developed, but the latter brought a considerable depression of temperature, with fair weather on the 4 th and 5 th. The third anticyclone originated in the extreme northwest on the 12 th , and while remaining nearly stationary for three days gained rapidly in intensity. On the 16th it spread along the Canadian border, attended by intense cold, which was felt in New York on the morning of the 17 th. This area then moved to the northeastern coast,
and the weather became rapidly warmer with the advance of the severe cyclone of the 19th. Both the fourth and fifth anticyclones brought considerable depressions of temperature on the 21 st and 25 th to 26 th, but each was succeeded by a sharp rise due to approaching storm areas; and the month closed with a temperature about 15 degrees above the normal.

Meteorological Data

Location of Stations.			BAROMETER.						Humidity		Tempera			
STATION.	COUNTY.		$\begin{aligned} & \text { a } \\ & \text { x } \end{aligned}$		$\stackrel{9}{3}$	$\stackrel{0}{0}$ E 0 0	$\frac{\dot{4}}{\pi}$							¢
Western Plateau..												24.4	61	28
Alfred..........	Allogany	1824									21.7	22.4	53	28
Angelica.........		1340									23.2	23.5	54	2*
Friendship		1550	29.84	30.67	17.	29.01	6	1.66			23.9	25.2	57	28
Humplarey	Cattaraugus.	1950									24.1	24.2	58	28
Arkwright	Chautauqua..	1260										+23.0	53	28
Jamestown		1328										25.8	61	28
Elmira	Chemung	863										27.2	55	28
Avon	Liringston...	58.5										24.8	52	28
Mt. Morris.......		525										26.6	54	28
Victor.	Ontario											24.8	54	28
Werdgewood	Schuyler	1350			-						21.6	22.6	49	28
Addison...	Steuben.	1000					.		80	24	26.3	26.2	54	28
South Canisteo...	Steuben.	1480			.		.		80	18	22.9	24.2	51	28
Arcade.	Wy moming	1557									21.3	218	54	28
Varysburg							.					24.0	53	28
Eastern Plateau..							.					23.4	54	28
Binghamton	Broome	870			.		.				24.4	24.8	50	28
Oxford	Chenango	550			-							23.7	48	28
Cortland	Cortland.	1120			.		.					22.2	47	a
Bloomville....	Delaware.	1550			.		.				23.3	23.2	48	28
South Kortright.		1700			.							23.3	51	28
Brookfield	Madison	1350									21.7	23.2	45	28
Hamilton	Madison	1127			.		--					21.2	48	28
Middletown	Orange.	660			.		.					22.5	49	29
Port Jervia		470					.					26.6	50	29
Cooperstown	Otgego	1300			.		-				21.2	20.7	50	28
Now Lisbon	"	1234			.		.				21.8	21.2	50	28
Oneonta	"	1100			.		.				25.5	26.0	53	28
Perry City	Schupler.	1038					.				22.8	22.8	50	28
Warerly	Tioga	825			.		.				25.5	26.2	54	28
Mohonk Lake.	Ulster.	1600			.		.				23.7	23.8	48	29
Northern Plateau.					.		-					18.1	56	28
Saranac Lake	Franklin				.		.-					15.1	56	28
Gloversville .-....	Fulton.	802			.		.				20.6	20.1	44	29
Lnwrille	Lewis	1571										18.8	46	28
Number Four	" ${ }^{\prime}$......-	1240	29.91	30.65	17	28.85	6	1.80				17.5	51	8
Turin..............					.-							18.8	43	a
Atlantic Coast....					.		.					30.5	56	,
Brooklyn	Kings	107			.		.					31.0	54	15
Manhattan Beach.														
New I'ork City...	Norr York.	316	29.90	30.51	17	28.70		1.81	75	22		30.0	56	7
Willets Point	Queens....											30.4	56	27
Brentwood.	suftolk	75					-						54	29
Sotauket.	Suffolk	40							74		31.2	31.3	58	6
Badford.	Weatchester	290										29.9	53	c
Hudano Vall												26.2	Ti	6
Albauy	Albany	85	29.90	30.62	17	28.74	681	. 88	82	20		25.0	51	6

for February, 1896.

ture-(In Degrees Fah.).								Sky.			Precipitation-(Inches).						
	$\stackrel{\dot{\text { ® }}}{\stackrel{\text { ® }}{2}}$						$\stackrel{\oplus}{\check{\circ}}$		$\begin{gathered} \text { Number of partly cludy } \\ \text { deys. } \end{gathered}$			$\begin{gathered} \frac{5}{0} \\ \stackrel{y}{0} \end{gathered}$	W世世00U				
											\bigcirc						
-2														h.m.			
-18	17	71	16	37	16	6	6	${ }_{4} 6.9$	$11^{8.6}$	14	$2{ }^{14 .}$	3.28	1.00		9	29.1	
-20	18	74	16	43	18	6	,	5	10	14	15	4.16	1.10		9	30.5	
-14	18	71	17	41	18	5	,	4		19	14	3.23	1.00		9	22.8	W.
-16	17	75	16	33	18	5	m	2	8	19	18	4.83	1.01		11	38.6	W.
-14	17	67.	14	31	18	3	6										
-15	17	76	16	37	18	7	n	3	9	17	15	5.57	1.00	8.00	9	41.0	V.
-10	17	65	13	28	18	3	24	10	3	10	10	3.40	1.76		0	7.2	S. E.
-16	17	68	37	40	18.	7	8										
-12	18	66	17.	41	18	4	8.	22	7	0	9	5.35	2.00	7.00	6	25.0	
-14	17	68	16	34	18	3	6	0	10	10	15	4.72	1.00		9	35.8	
-17	17	66	18	35	22	5	6.	4	17	${ }^{6}$	15	5.02	1.97		6	28.2	S. W.
-13	171	67	17	41	16	6	6	13	5	11	12	3.18	1.40	18.00	0	15.4	
-17	18	68	20	39	15	8	p	6	4	19	13	5.62	2.20		6	33.9	N. W.
-18	17	72	16	32	18	5	P		7	19	16	3.86	1.00		6	32.5	
-24	17	77.	18.	39	18	2	5	5	14	10	19	4.93	1.10		6	35.3	
-32	18	69	18	46	18	1	29	5.2	9.6	14.2	12.5	4.94	2.55		,		
-19	17	69.	16	37	16	4	8	5	10	14	11	4.28	1.10	10.30	29	18.5	
-25	17	73	21	46	18	8	29	3	11	15	17	4.97	1.04		6	16.7	
-23	17	70	18	36	16	5		13	10	-	15	4.50	1.07		C		N. W.
-23	17	71	18	34	18	61	6	1	8	20	11	3.64	0.80	13.00	4	2.8	W.
-21	17	72	20	41	13	8	20				8	4.81	1.18		28		
-32	18	77	20	44	18	9	1	4	12	13	14	5.68	1.21		6	28.0	W.
-29	17	77	19	45	18	6	-	6	6	17	17	3.02	0.70		29	12.0	S. W.
-10	17	59	13	28	28	2	2	7	14	8	,	7.00				200	
-11	17	00	14	28	15	7	s	4	13	12	12	6.51	2.55		6	14.5	
-23	17	73	16	45	16	1	29	10	5	14	16	5.36	1.75		29	23.0	
-26	17	76	18	43	16	6	21	2	9	18	12	4.31	1.23		29	20.0	S. W.
-17	17	70	18	42	16	5	21				10	7.44	203		6		
-20	17	70	18	38	18	6	6	3	8	18	17	3.58	1.06		6	21.3	
-17	17	71	19	41	16	8	t	3	11	15	13	4.07	1.65		6	12.2	W
-13	e	61	17	40	16	6	u	6	8	15		4.89				22.0	N.
-38	16	79	18	50	18	2	9	4.0	9.2	15.8	182	6.39	1.55		29		
-38	16	94	20	50	18	3	5	4	10	15	16	4.28	0.87		6	40.2	
-25	17	69	17	44	16	4	9	8	3	18	19	5.90	1.55		29	29	N. E.
-31	${ }^{*}$	77	19	45	18	3	5	3	14	12	17	4.37	1.04		6	29.0	
-30	17	81	19	47	16	2	9	1	9	19	21	7.93	1.18		13	66.0	S. W
-29	17	73	16	35	18	5	v	4	10	15	18	9.11	1.20		11	77.7	S.
-8	17	60	16	37	16.	4	t	9.6	8.6	10.8	11.5	6.63	3.98	17.30	29		
-3	17	57	13	26	15	4	u	9	9	11	13	6.19	2.10	14.00	\bigcirc	8.5	W.
								12	8	9	11	4.12	2.08		7	6.6	YE, NW
- 8	17	62	16	37	16	5	5	9	8	12	13	5.50	1.63		6	8.8	W.
-4	16	60	17	35	16	5	w					7.98	2.95		6	0.7	N. W.
-5	17	59															
-5	17	61	14	27	16	4		9	8	12	10	6.46	2.36		29	7.0	W.
-8	17	61	18	34	18	8	x	-	10	10	13	9.51	3.98	17.30	29	17.7	W.
-21	17	67	17	44	16	5	29	7.2	8.8	13.0	13.0	5.53	2.71	23.00	6-7		
-16	17	67	16	44	16	5	29	7	\| 8	14	15	4.03	1.88		29	15.3	

Location of Stations.			Barometer.						Hemidity		Tempera			
STATION.	County		$\underset{\sim}{\tilde{0}}$		$\begin{gathered} \stackrel{\otimes}{\pi} \\ \underset{\sim}{0} \end{gathered}$		$\stackrel{\dot{s}}{\mathscr{\circ}}$			Dew point (degrees).				¢
HudsonVal.(Con.) Lebanon Springs.. Honeymead Brook	Columbia	930										24.	50	29
	Dutchess										25.8	25.2	54	29
Poughkeepsie. Wappingex's Falls West Point Carmel \qquad	Dutche	170										27.2	54	29
	Oravge	167										28.	59	7
	Y'utnam	500										26.8	52	29
												204	43	24
	Oneida	445										20.4	43	24
Ohamplain Valley Plattsburgh Bar'k Saratoga Springe, Glens Falls.												18.4	44	
	Clinton.	125					.					160	43	29
	Saratoga Warren	340									21.3	20.		\cdots
St. Lawrence Val. Malone \qquad												16.5	55	28
	Franklin	810					-				15.4	15.3	55	28
	Jefferson	266										19.7	51	28
Watertown	Jefferson	486												
Canton \qquad Massena. \qquad	St. Lawren	304					.				16.6	15.4	51	28
North Hammond. Ogdensburgh..... Potsdam.	St. Lawren	300												
	St. Lawren	258									176	17.3	50	
	"	300									14.4	13.9	45	a
Great Lakes Dunkirk Westfield												2.9	63	28
	Chautanqu	590												
												28.0	62	28
Baffalo Pittsford Rochester	Erie	690	29.90	30.66	17	29.38	19	1.28	79	20		25.0	58	28
	Monroe										25.4	25.2	54	28
		621	29.89	30.64	17	28.95	6	1.69	80	19		25.0	56	28
Anpleton Fort Niagara Baldwineville.	Niagara											24.9	53	28
		263			.		.					24.8	45	28
	Onondaga.	390									23.8	23.1	50	28
Syracuse. Oswego \qquad	Onondaga.													
	Oswego.	304	29.87	30.68	17	28.87	61	1.81	85	19		23.0	47	28
Palermo Lyons Falls Erie, P'a.		460									21	21.0	47	28
	Wayne -										25.5	25.8	50	28
	Erio.....	681	2993	30.64	17	29.12	61	1.52	80	20		28.0	63	28
Central Lakes....														d
Fleming Watkins.	Cayuga Schoyler	1000			.						24.4	24.6	50	d
	sebnyler	737												
Romulus. Ithsea	Seneca	719							80	17		24.9	51	28
	Tompkins	810	2900	30.70		2878	61	1.92	77	19	24.	25	51	15
Mean.........			29.90	30.70	17	28.70	61	1.71	79	20		228	63	28

[^1]for February - (Continued).

thermograph. \|Report received too late to be used in computing means The means from
\dagger Blank indicates that the duration is not shown in the original records, but it is within 24 hours.
18; (j) 16, 27; (k) 7, 9; (m) 7, 14; (n) 6, 8 ; (p) 6, 20; (q) 14, 20; (r) 8, 9; (s) 4, 5, 11; (t) $1,5,8$. (bb) $5,6,8$; (bc) 6, 21.

Temperature - Febrtary, 1896, Showing Daly Means for

STATION.	1	2	3	4	5	6	\%	8	9	10	11	12	13	14
Western Plat	38	30	26	33	34	31	30	29	26	28	23	18	28	22
Alfred	45	38	27	34	30	36	30	29	24	28	32	23	37	22
	33	28	19	27	27	30	24	21	18	18	16	6	17	13
	44	33	29	38	44	41	32	32	29	30	29	25	39	28
Augelic	35	22	21	29	28	30	26	25	23	19	17	12	21	16
Friendship	40	40	33	41	40	38	32	34	28	32	34	26	40	26
Friendship	34	24	22	30	31	31	26	24	19	19	16	8	20	14
	44	39	29	36	39	36	30	32	27	32	26	34	37	23
Hawp	32	24	22	28	30	30	25	23	19	22	14	7	19	18
	42	33	32	37	38	34	31	30	29	32	30	24	37	22
Arkwright	23	24	23	21	28	31	25	28	18	20	14	10	20	18
Jamestow	46	36	35	41	43	38	36	32	31	37	32	26	40	27
	35	27	26	32	30	31	26	25	21	20	18	9	20	19
	46	34	34	42	39	44	37	37	32	37	27	34	40	33
Elmir	33	26	22	31	33	33	30	30	23	26	21	14	20	21
Avon	43	35	28	40	45			30			34	25	37	31
Avon	31	26	19	28	30			23			17	11	19	19
Mount Morr	47	44	31	42	44	42	37	35	33	33	29	30	38	34
Hount morr	21	25	20	29	28	31	30	31	21	20	16	10	17	14
Victor	45	39	28	41	42	34	32	33	35	34	35	25	39	30
Victor	33	24	18	27	30	31	28	24	23	19	12	12	19	18
	41	39	25	32	35	35	33	34	35	34	30	33	35	28
Wedgewood	30	17	17	22	27	30	24	23	17	16	13	7	16	14
Addison	45	43.	31	37	41	39	36	36	31	35	30	27	38	39
Addison	33	25	21	25	29	33	28	28	22	21	18	9	18	19
South Cania	50	39	28	36	42	39	36	36	36	37	31	27	39	35
	33	20	18	26	25	31	27	23	20	19	17	7	17	12
Arcade	43	35	32	42	40	35	31	29	28	30	30	22	37	20
Arcade	34	17	18	28	27	29	24	22	18	18	10	8	18	15
Varysburgh	45	37	33	89	31	35	35	30	31	31	31	31	38	38
Warysburga	34	21	19	30	29	30	25	23	19	19	10	9	19	16
Eastern Plat	32	29	22	28	32	36	34	30	28	26	24	18	24	28
Bingl	40	41	33	34	38	45	40	32	35	32	34	22	38	29
Bing	32	22	20	25	30	33	29	28	23	19	18	10	16	20
Ozford	37	38	32	40	39	40	40	37	33	37	$3 \pm$	34	34	37
Oxford	26	18	14	22	28	30	25	24	21	11	15	1	13	17
Cortland	40	40	26	33	36	39	43	30	28	32	32	21	33	36
dortaua	28	90	15	21	26	28	25	25	23	17	20	11	13	17
Bloomville	40	39	34	39	38	42	40	34	31	34	31	25	38	37
-	27	17	14	23	30	26	27	26	23	15	12	${ }^{6}$		17
South Kortrig	40	39	32	38	41	44	41	34	32	33	31	24	49	39
South Kortrig	24	19	12	18	26	30	31	24	19	14	13	8	8	15
Brookfiol	43	34	32	34	39	43	42	42	43	32	26	34	41	39
rook	34	20	16	20	21	26	24	24	2.5	20	8	16	20	23
	37	37	27	$3: 3$	35	42	40	32	27	30	30	23	33	35
	27	18	9	19	29	30	25	24	21	15	15	11	7	13
Middletown	24	18	20	24	34	36	39	40	36	34	30	25	28	33
cradetowa	18	16	13	16	18	30	30	30	24	22	22	15	15	16
Port	34	40	31	31	36	45	40	38	34	35	30	28	30	38
Port	26	30	20	24	29	33	32	30	24	26	23	14	17	$\because 2$
Cooperstown	39	39	24	34	35	38	38	31	27	31	24	20	29	29
Cooperstown	20	18	15	18	25	32	29	27	23	16	15	12	13	15
Net Lisbon	36	38	26	34	35	41	40	31	28	29	32	22	34	26
New Lisbon	26	18	11	20	28	30	27	25	21	15	13	9	8	16
Oneon	43	43	28	38	40	44	43	36	31	34	37	28	40	41
Oneon	29	21	16	22	30	32	29	29	25	20	17	14	15	20
Perry City	42	38	30	41	41	39	33	33	30	35	28	25	40	30
Perry	34	17	16	2%	昂	33	26	25	19	17	10	8	15	16
Wave	41	41	${ }_{20}^{29}$	39	38	$4{ }^{42}$	38	36 28	34	39	34	36	38	34
Ware	33	22	20	24	:30	33	28	28	2.)	21	18	11	16	$1:$
Mohonk Lako	38	40	28	30	32	42	44	38	29	34	99	29	36	37
Mohonk Lako	20	22	14	18	26	28	28	26	23	18	17	13	14	19
Northern Plateau..	28	23	13	$\because 5$	30	34	3 3)	26	20	18	$\because 0$	14	18	18
Sarbac Lako.....	36	19	19	33	33	38	32	27	19	28	24	20	18	2
Sarbac Lako.......	19	- ${ }^{1}$	4	15	30	30	23	17	12	12	7	4	8	4
	33	37	23	29	33	33	40	33	25	29	29	32	28	29
Gloversville	17	18	8	19	27	31	28	23	21	14	17	14	15	12

the Regions, and Daily Maxima and Minima for tife Stations.

15	16	17	18	19	20	21	22	23	24	25	26	27	28	20	$\begin{aligned} & \text { ag } \\ & \text { an } \\ & 0 \\ & 0 \end{aligned}$
30	10	-5	6	16	8	8	20	33	30	15	21	35	46	36	
44	28	5	20	40	8	12	31	40	38	20	31	46	53	42	24.4
13	-9	-18	-11	6	-2	0	6	24	20	6	8	21	38	27	22.4
44	27	2	23	15	10	12	30	39	40	21	33	48	54	42	
12	-8	-16	-20	6	-1	-	6	22	21	5	5	23	37	29	23.5
44	28	6	27	25	10	15	36	42	39	29	35	52	57	46	
14	-6	-13	-14	7	0	4	8	26	29	7	9	24	37	29	25.2
44	26	17	23	19	15	15	34	37	36	21	33	53	59	47	
19	-5	-16	${ }^{-6}$	6	-3	1	7	23	20	10	7	21	40	28	24.2
42	20	3	26	20	10	13	25	35	32	17	30	47	53	43	
20	-4	-14	-5	10	0	0	8	23	17	5	3	25	43	25	23.0
48	22	6	28	24	9	18	32	38	40	26	36	54	61	42	
20	${ }^{3}$	-15	-9	9	0	2	7	26	19	5	16	26	42	27	25.8
51	15	1	23	28	18	17	38	44	40	19	33	44	55	38	
30	-4	-10	-6	15	${ }_{6}$	6	10	34	37	10	15	$\because 5$	37	33	27.2
40	28	4	25	29	19	14	31	41	40	34	35	45	52	47	
25	-1	-16	-15	13	8	5	9	24	25	9	6	21	38	30	21.8
33	23	3	29	30	20	18	40	45	41	29	42	47	54	46	
15	0	-10	-19	10	8	5	20	21	24	19	21	22	35	30	26.6
43	26	2	23	30	10	12	35	43	37	18	37	48	54	45	
16		-14	-11	10	-3	7	10	24	20	10	7	19	40	30	24.8
45	22	4	17	26	14	13	40	43	43	19	32	40	49	43	
12	-6	-17	-11	8	2	$\stackrel{2}{1}$	5	22	17	4	3	19	32	30	22.6
50	38	4	23	27	15	17	35	41	43	27	35	47	54	44	
16	-3	-13	-12	11	4	5	9	27	27	10	9	25	34	34	26.2
48	30	3	18	24	9	15	34	45	42	21	40	46	51	45	
9	-5	-15	-17	8	1	2	5	23	21	3	3	20	35	29	24.2
42	19	0	24	20	5	8	27	38	34	15	31	46	54	43	
18	-10	-18	-8	5	0	0	5	20	15	1	6	22	39	27	21.8
44	21	14	23	24	11	15	33	45	36	17	35	49	53	39	
20	-6	-24	-16	4	5	3	7	33	15		,	23	36	29	24.0
30	16	-10	1	18	12	12	18	29	32	15	12	28	38	40	
48	37	-	21	28	13	13	31	44	41	25	23	41	59	47	23.4
12	0	-19	-12	15	7	7	9	19	25	8	6	21	30	35	24.8
44	40	5	26	28	22	20	29	38	42	24	27	41	48	42	
6	2	-25	-20	7	5	5	15	22	20	5	-2	17	28	33	23.7
44	36	0	18	23	13	11	29	42	38	29	25	38	47	47	
11	0	-23	-19	-12	6	5	5	10	23	7	-2	18	31	30	22.2
43	37	-2	20	25	17	14	26	42	39	24	22	35	48	43	
16	9	-23	-14	10	5	7	9	12	23	4	-2	17	32	36	23.2
44	31	0	21	20	11	13	25	43	49	28	25	37	51	48	
12	-2	-21	-15	8	,	4	4	15	25	,	0	16	28	33	23.3
41	20	-10	12	31	34	33	38	37	26	28	25	37	45	43	
20	-16	-30	-32	1	8	5	12	13	0	6	10	19	30	33	23.2
42	32	-5	21	24	18	12	30	40	37	25	20	37	48	45	
10	-5	-29	-24	6	5	5	4	13	25	1	-3	17	26	31	21.2
43	24	3	14	32	22	26	26	43	39	20	21	36	48	49	
19	20	-10	-8	10	8	7	11	18	26	15	8	9	20	26	22.5
44	27	9	17	36	22	18	32	42	48	25	22	39	45	50	
16	14	-11	-7	12	8	9	9	16	35	12	8	17	23	39	26.0
41	35	-7	7	27	17	10	22	39	37	23	15	32	50	41	
16	-10	-23	-22	4	6	6	8	15	23	1	0	14	20	40	20.7
42	35	-6	19	27	16	11	27	39	38	24	20	36	50	47	
13	-8	-26	-22	5	5	5	6	10	24	3	-5	17	27	35	21.2
47	39	3	27	31	19	15	32	40	43	17	25	41	53	51	
20	-3	-17	-13	14	9	10	11	20	26	9	3	20	34	37	26.0
44	20	\rightarrow	21	25	17	17	30	41	37	19	35	40	50	43	
15	-4	-20	-17	10	5	4	6	21	19	1	-1	20	31	30	22.8
50	35	12	25	27	15	20	37	45	47	27	29	46	54	48	
15	-6	-17	-11	13		5	4	22	27	10		20	33	35	28.2
43	43	3	17	26	17	19	28	41	43	30	15	32	44	48	
17	3	-13	-13	10	5	7	6	23	29	8		14	24	38	23.8
21	3	-18	-2	16	10	2	12	25	23	4	0	22	36	40	17.8
83	5	-2	20	25	15	10	26	36	31	10	20	38	56	44	17.8
-6	-38	-35	-30	9	-5	-10	7	26	-7	-18	-8	8	28	38	15.1
42	34	-4	14	25	19	12	25	38	37	25	15	29	41	44	
18	-10	-25	-24	6	8	3	5	11	25	4	-6	9	16	37	20.1

Matma and Minima for the Stations.

Daily Means for the Regions, and Daily

[^2]Maxima and Minima for the Stations-(Concluded).

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	気
29	6	-4	8	19	12	11	22	33	28	15	22	34	44	36	24.9
\ldots	….	..	-...	--									
$\begin{aligned} & 45 \\ & 22 \end{aligned}$	-29 -5	-13	29 10	30 8	111	14 5	33 10	40 30	38 30 3	25 8	$\begin{aligned} & 35 \\ & 21 \end{aligned}$	52 25	62 36	39 27	28.0
40	15	-1	26	20	11	15	30	39	35	20	34	55	58	35	
16	-4	-9	-5	12	6	5	11	30	17	8	22	27	36	26	25.0
44	17	5	23	28	13	15	32	42	36	29	37	44	54	48	
15	-5	-12	-10	13	4	7	12	12	20	9	13	23	40	30	20.2
42	16	2	22	26	14	14	31	41	36	20	34	47	56	36	25.0
16	4	-8	-6	13	8	7	11	29	19	9	10	22	37	32	25.0
39	24	9	24	27	19	15	29	39	37	20	36	40	53	38	24.9
22	-2	-6	-12	13	9	8	11	27	20	9	12	22	33	28	24.9
40	20	13	24	25	24	25	30	38	38	24	35	43	45	44	24.8
21	-1	-5	-5	12	9	8	10	27	22	9	13	22	30	26	24.8
41	15	-3	20	29	17	15	36	40	36	25	22	40	50	45	23.1
5	-20	-20	-14	11	9	8	12	34	6	5	13	21	30	32	-3.1
38	10	-4	14	24	17	20	31	41	36	15	21	36	47	37	
12	-4	-18	-15	14	11	4	14	21	23	5	8	19	32	33	23.0
37	13	0	13	27	16	13	26	38	36	21	16	33	47	43	21.0
13	-9	-24	-20	8	9	4	12	12	21	4	6	17	29	34	
45	17	4	23	30	16	17	32	44	38	23	34	40	50	46	25.8
15	-4	-13	-9	15	10	10	15	29	22	8	12	24	39	33	25.8
48	17	5	30	22	10	18	37	43	40	25	40	59	63	${ }_{28}$	28.0
24	5	-7	-2	9		4	10	32	25	9	20	27	33	28	28.0
33	12	-8		21	12	10	21	34	32	16	18	30	43	40	24.9
48	30	-1	20	28	18	12	34	41	39	24	29	42	50 36	50	24.6
20	-4	-17	-7	15	7	6	,	29	22	7	5	19	36	33	24.6
47	20	2	21	30	15	1.5	33	42	40	26	32	41	51	47	
18	-1	-17	-7	14	8	7	11	27	23	9	8	20	34	31	24.9
51	25	0	21	25	15	15	33	44	41	24	30	41	50	$4{ }^{40}$	25.3
18	0	-18	-13	14	8	7	9	24	24	8	6	20	37	3*	2. 3
26	10	-8	3	16	13	10	17	31	30	15	14	26	38	40	22.8

values of adjacent stations for the blank dates.

Daili and Monthiy Prechita

ST，ION．	1	＊	3	1	＇	0	\％	s	9	10		12	1：3	14
Western P＇lateau．．	0.25	U．（1）	0.24	0.14	0.01	1.10	0．24	0.01	0.72	0.11	0.22	0.02	0.24	0.09
Alfred	． 15		． 20	．13－	． 01	． 51	－20		1.00	． 15	40		01	． 03
Angelica	． 34	． 04	$\therefore 5$	．08		8：2	25		110	． 15	． 20	． 10	24	．12
Buhatar	． 26		． 31	0.		． 79	． 04		© 0		． 19		24	． 06
Frtendship	．13＇		． 14	． 05		．62＇	． 33		1.00	． 03	．30		－ 18	－ 10
Himmprey	． 14		． 46	． 01		． 53	． 31		41	07	1.01		． 52	． 40
Little Valley														
Cherry Cueek	． 24	17	5：1	． 07		． 75	． 56	${ }^{10}$	． 70	． 14	． 21	． 19	58	20
Jamestowa	． 14		．7！	． 05		． 58	50	T．	1.00	． 10	． 70	． 10	． 55	40
Elmara．	． $08{ }^{\prime}$		． 01	． 19	． 03	1.76	.26		48				． $0: 3$	．．
Pine Cit	． 31		08	． 26		1.39	． 44		.61	． 06		． 05	T．	
Akron	． 52		T．		T				． 18	． 93	05	T．	． 70	03
\ddagger ¢ \dagger von	． 53		． 15	． 07						．．．．			． 23	． 03
Mt．Mor			． 10	． 45		2.00			1.60				． 35	． 10
Victor														
Tyroue														
Wedrewoo	． 23	T	． 10	． 10	． 02	1.97	． 10		． 90	10	． 20		10	． 02
Addisou	． 15	＇1．	． 12	． 23	． 01	1.40	． 06		． 64	T．	.05	T．	T．	－01
Atamta．				． 64		1.05	． 13		\cdots	． 09				
Haskinvil	． 24		． 24	． 15	． 05	1.35	． 20	． 05	． 50		． 20		． 08	－04
South Can	－08		${ }^{4 .} 3$	T 05		2.20	． 03	T．	1.20	.15	05		$\begin{array}{r}10 \\ \hline\end{array}$	
Arcade． Attica．．	． 50		． 38	T．		1.00	－ 28	T．	． 55	． 04	24	T．	30	． 05
Varysburg	． 80	． 15	24	$0 \pm$		1． 10	64		47	． 05	07		35	． 11
Eastern Plateau．．	0.44	0.01	0.34	0.21	0.04	1.16	0.12	0.02	053	0.10	0.04	0.06	0.21	0.06
Binghamton．．．．．．	． 68	T．	． 30	． 10		． 80	． 30		． 50	． 05	T．		． 0.5	． 10
Cheuango Forks．．														
Oxford．	． 70	． 08	． 25	． 17	． 08	1.04	．4．3	T．	． 50	． 10			． 05	． 13
Cortland	． 75		.29	． 10	.01	1.07	． 21			． 78	． 05		T．	． 07
Bloomvill	． 60		20	． 90		50			． 12		． 30		． 15	． 05
Deporit．	． 50			． 35	． 20	．25）	． 10		． 70	． 10		． 50		
South Kortright	1.28			†． 29		1．033			． 61					
Brookfield	． 51	． 05	． 60	． 40	T．	1.21	T．	40	． 60	． 40			． 10	． 20
llamiton	． 25	T．	． 22	． 20	T．	． 65	T．	T．	． 30	． 15		． 01	． 08	． 05
Apulia														
Midtletown	． 30		． 50	\ldots	＊	＋3．80					$\dagger .60$		1.20	T．
P＇ort Jervis	． 02			42	．13＇	2.55			． 68		． 06	． 32		
Warwich	． 35		． 37	． 20	． 04	1.65	0.		． 40				2	
Cooperator	． 301	． 10	． 35	．12	． 10	1.00	． 0.3		． 58		． 0		（6．）	． 02
Nuw Levbion	． 31.		． 22	． 19		89	． 50		． 37				． 40	． 01
Oneonta			1.17			2.03			． 97		． 18	34		． 41
Perty	11	T．	． 27	． 03	T	1.06	． 05	＇T．	． 93	． 05	． 08		． 07	． 08
Newakk Valley．．．	． 01		． 56	T．		1.25	． 20		．60）				\cdots	
川：atery	26		． 18	． 15	T．	1.55	08		． 60				． 10	1.
Whohonk Lake														
Mohonk Lake						$+3.05$			． 51				． 51	
Northern I＇bateau．	0.43	（1．20	0.10 .8	0.30	0.04	0.97	0.44	＇T．	0.68	0.07	0.36	0.01	0.60	0.17
Went Chazy ．．．．														
Elizabethtown														
Saranac liake	21	（1）		0.1	T	． 87	． 21		． 46	． 04	． 17		． 610	． 11
Cilowersvill	． 55	14	． 10	． 28	． 17	1.15	． 32	T．	． 79	．10	．02		． 48	． 03
L䙵wville	． 15	2.		． 20		1.01	． 95	． 02	． 46	07	．30）	． 07	． 24	． 16
Number Fior		1.54	\cdots	． 49		＊ 1	＋1．96		． 82		$\dagger .52$		1.18	． 10
Turin	． 8.3	61	． 25	． 55		． 48	． 70	T．	－85	． 13	1.20	T	． 80	． 62
に，mincr．														－．．．
Kingast：	． 35		15	2%	0.3	1.30			70		． 10		－ 30	
Allantic Coa	0.26	T．	0.28	0.14	0.18	2.10	0.37	0.00	0.40	0.04	T．	0.00	0.35	0.02
Brooklyn	． 13		2.5		． 25	2.10	． 06		－ 50				． 65	
Manhatlan Beach．	． 06	\cdot	$\therefore 26$	． 21		． 72	2.08		． 10	． 24				
Now lork City ．．．	． 25	．．．．	． 38	． 19	.16	1.63	． 02		42				． 60	． 03
W	． 40	． 02	． 02	． 03	． 45	2.93	－．		45					
Setankot	． 31	T．	43	． 16	． 11	2.00	T．		． 47				． 42	． 09
Sodford	． 44		． 32	． 23	． 08	3.17	． 04		． 44		T．		． 44	． 03

tion for February 1896 -- (Inches.)

15	16	17	18	19	20	21	22	23	2.1	25	26	か\%	23	29	-
0.06 05	0.03 04	0.02	'T.	0.05 .02	0.68	0.02 0.	0.00	$\begin{aligned} & 00 . \\ & \mathrm{T} . \end{aligned}$	$\begin{gathered} 0.02 \\ .01 \end{gathered}$	$\begin{array}{r} 0.02 \\ \hline .01 \end{array}$	$\begin{array}{r} 0.14 \\ .20 \end{array}$	0.01	T	0.23	4.14 3.28
T.	. 04				T.						. 18			-25	3.28 4.16
. 17				05	. 02			. 03	. 01		. 14			. 48	2.93
T	. 10		T.			T.		T.	T.		. 14	 03	3.23
. 18				20		. 10		. 08	. 08		. 20			$.12{ }^{\text {! }}$	4.83
. 06	13		T.	.11	. 28	. 09		27	. 08		.26			\because	5.62
0			T.	. 15	. 05	. 15		. 10	1. 15				5.57
....	T.										. 15			. 38	3.40
										T. ${ }^{8}$	T.	18	T.	. 68	4.04
	T.	. 31	T	T.		. 02		T.	T		. 11				3.02
. 15					. 50				T.				\cdots	. 10	535
...														4.72
	. 10								T		. 40			. 58	5.02
	. 01			T.				T.	T.	…	. 10			40.	3.18
. 14					. 15									. 30	$\underline{\sim} .50$
	04							. 01			13	\ldots	\cdots	13	3,41
T.	T.			. 10	T.	T.		T.	. 06	T.	. 10	...		1.00	5.62
. 14	02			. 10	0	T.		. 0.3	. 01	T.	. 20			'1.	3.86
.28	. 03			10	. 08	T.		.06	07		.29			T.	4.93
0.01	T.	0.00	T.	${ }^{0.07}$	0.01	T.	'T'.	004	0.02	T.	0.13	0.01	0.09	0.79	4.83
											. 00	-..		
				10	05	T.		.17	. 03		. 10			1 vo	497
				. 18	. 10.					. 02	.23			.63.	4.50
									. 08		10	9	. 10	. 64	3.64
-				33				.69			. 10			1.18	3.25 4.81
. 05				. 11									.	. 69	5.63
	. 02			10			T.	20	. 05	\ldots	. 62			. 60	3.02
			T.	. 20					T.		. 40				7.00
				. 13							.15		11.52'	. 53	6.51
				. 05							. 05		...	1.52.	4.97
. 08					. 02			. 16			. 6			1.75	5.36
				. 03				. 15			. 02			1.23	4.31
									21		. 07		1.07	. 9	7.44
-	. 07			. 04	, $1 \times$. 0			T.	. 06	. 30			. 31	3.58
			T.		T.	.-.			T.		.23)			. 871	4.55
. 02				. 03	T.					T.	. 30		. 05	. 55	4.87
											. 03				4.99
0.20	013	0.00	060	0.30	009.	T.	0.04	0.13	0.01	0.00	0.02	0.00	0.66	0.89	636
. 44	\because			10	. 10			08	T.				. 23	. 57	4.28
. 02				. 02	. 03	1.	. 01	. 12	T.		. 92			1.55	5.90
. 30				. 17	. 04			. 13						. 18	4.73
	. 79			. 60		+36	.24	16.			. 03			.181	7.93
. 45				40	30.			. 29	. 07 10	\cdots		46	9.11
				. 50									. 10	2.40	6.20
0.00		0.00	T.	0.07	0.00	$0 \cdot 00$	0.00	T.	T.	T.	0.10	0.04	0.28	1.98	6.63
...			T.	. 10					T. 25		1.90	6.19
	. 05			. 05								. 25		. 15	4.12
...	. 05		T.	. 07				T.	T.	\ldots	. 17	T.	..	1.53	5.50
	T.	\cdots		T.							T.		1.70	1.96	7.98
	. 03		T	T.						T.	. 08			2.36	6.46
	. 02			. 20				1.			. 12			398	9.51

Daily and Monthly Precipi

STATIONS.	1	2	3	4	5	6	7	s	9	10	11	12	13	14
Hudson Valle	0.42	T.	0.22	0.26	0.07	1.38	0.10	T	0.53	005	0.02	?	0.36	0.09
Alluany	. 33	. 02	. 08	. 39	-05	. 27	- 02	T	62	. 02	. 02		. 69	T.
Lebanon Springs..	. 50		. 08	.17	- 11	. 82	. 68	T.	- 40	. 10	. 05		7.22	
Honermead Brook	. 34		. 30	. 12	. 12	1.86			. 27	21	03		. 60	T.
Poughlseepsio 46		. 54	. 17	T.	1.46	03		62				. 55	T.
Wappinger's Falls	-25		. 60	-16	. 18	2.05			70	. 06	-10	-	+. 24	. 08
West Point.......		$\dagger .45$			+. 28		$\dagger 2.40$			1.24	T.			72
Boyds Corners														
Carmel ...-......-	-46				$\dagger .58$		$\dagger 2.71$. 56		.		. 59
So. Fast Reservoir														
Eagle Mills......	1.00			60	. 04	250			. 50				. 40	
Marlborough														
Easton..			18	20		74			. 57				. 30	
Mohazk lalley	0.26	0.00	0.29	0.27	0.31	1.00	0.26	0.25	0.50	0.10	0.20	0.29	1.00	0.05
Lome	26		. 29	. 27	. 31	1.00	26	. 25	- 50	. 10	. 20	2	1.00	. 05
U														
Champlain Falley	0.25	0.25	0.00	0.20	0.05	039	0.71	T.	0.40	0.38	0.00	0.00	0.09	0.64
Plattsb'h Barracks		50		T.	. 10	T.	1.35	T.	T.	. 76			T.	1.20
Saratoga Springs..														
Glens Fally 50			. 41		. 78	. 07		. 80				. 18	-08
St. Lawrence Val'y	0.26	0.07	0.00	0.09	0.06	106	0.47	0.05	0.58	0.03	0.34	0.07	0.41	0.32
Malone	.16	. 21		10	. 09	. 30	. 86	. 27	-47	. 17	- r 0	. 40	48	. 52
Madison Parracks. 16		03		1.46	. 50		. 85		. 26		...	1.20
Watertown.......														
Canton	. 42			. 20		1.53	. 40		. 60	--	. 30		. 60	T.
DeKalb Junction.	. 41			. 05		1.25	70		. 28		. 24		. 18	. 19
Massena.														
North Hammond	. 30			. 15	25	. 70	.36		. 50	T.	. 10		. 40	
Ogdensburgh														
Potsdam		$\dagger .32$		-		1.14		*			$\dagger 1.40$. 80	
Great La	0.35	0.03	0.20	0.06	0.06	0.92	0.47	0.09	0.62	0.12	0.07	0.10	0.35	0.16
Dunkir														
Westfit			82	T.		. 90		1.05	1.24	T.	. 04	12	. 21	
Buffalo	45	1.	. 31	. 06	. 04	1.20	25	T.	. 77	. 03	T.	T	. 89	. 11
Adams Centre					-		...						
Pittsford	. 55		. 10	T.		1.18			. 76	. 20	T.		. 26	. 36
Rochester	. 55	T.	. 09	. 13	. 03	1.15	. 28	. 01	1.00	. 20	. 01	. 04	. 36	. 28
Scottsrille														
Appleton	. 29		. 03	. 05		1.14	. 12	T.	. 50	. 02	T.	T.	. 47	. 02
Fort Nias	T.	. 17	. 30	'		1.08			38	T	T.	T.	. 10	. 08
Bahlwinavil	.42		. 30	. 10	. 43	1.62	. 20	T.	. 80	T.	. 20	. 20	. 20	. 10
Skancatele	. 21		. 25 03	. 68	. 30		. 70		. 02	. 03	.40	. 27
Syracuse														
Ridgeway	. 40		. 02	T.	T.	. 93	. 25		. 21	. 05	. 01	T.	. 26	. 03
Demater	. 53					1.20	. 70	. 02		. 40	. 04	. 54	. 07	. 06
Fulton	. 50		$\therefore 2$. 03	. 50	1.40	. 10	. 90	. 10	. 60	. 20	. 50	. 30
Oswego	. 32	. 03	. 10	. 08	T.	1.47	.83	T.	. 55	. 04	. 08	T.	. 51	. 12
Palerino	. 281		. 08	. 14	. 13	. 10	1.42	. 10	. 30	. 30	. 07	. 20	. 30	. 13
Phoenix	. 32	. 28		.12	. 06	. 37	1.50		. 17	. 53	. 05	. 23	. 20	. 50
Lroms	. 17.	'T.		. 20	25	. 90		.20	. 90			T.		. 15
Rose	. 961		. 08	. 03 92	. 72		. 70	. 03	1	12	. 32	. 22
Erje. Penua	.11		. 68	. 03	. 03	1.03	. 07	. 02	. 60	. 00	. 02		. 93	. 06
Cetnral I	0.40	T	0.22	T.	0.06	1.22	0.17	0.03	0.57	T.	0.03	0.00	0.30	T.
Fluminy	. 31	'	$\because 0$	' 1.		1.07	40		. 80				. 60	
Sherwoot 27		. 25	1.00	. 15	. 13	. 67		.10)		. 30	
Whatins			...											
Ro:nul	. 79		. 21		'T.	1.14	$\therefore 0$. 14	
Ithaca	. 50	. 01	. 22	'1.		1.65	. 04	T.	82	T.	. 03		. 17	T.
Pemn														
Ascrag	9.33:	0.063	0.19	0.17	0.09	1.13	0.34	0.04	0.55	0.10	0.13	0.06	0.39	0.16

* Amount included in next measurement. † Not used in compuling the averages. \ddagger Record
tation for February - (Concluded).

15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	寅
0.00	${ }_{\text {¢ }}^{\text {¢ }}$. 04	0.01	T.	0.09 .20	0.06 .02	T.	T.	${ }^{00.1}$	0.01	0.00	0.04	0.01 T.	T.	1.59 1.89	5.95 4.03
	T.			. 20	T.		.	. 01			T.			1.58	4.03 4.92
	T.		.T	. 05		. 02	. 01				. 04			1.50	5.47
	. 07			. 02				T.			. 09	-..	T.	1.80	5.98
			T.	15	. 05			. 04			. 10	\ldots		1.25	6.19
									.		…․	. 06		…'	4.46
				.06				.04		\cdots	. 12			2.56	8.41 7.69
															7.18
				. 05				. 04			-.		40	6.53
					. 38									2.24	4.61
0.30	0.00	0.00	0.00	0.28	0.08	0.20	0.00	0.30	0.00	0.05	0.00	0.00	0.55	1.05	7.59
. 30				. 28	. 08			. 30		. 05		.	. 25	1.05	7.59
T.	0.50	0.00	0.00	0.00	0.88	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	1.04	5.81
T.	1.00				1.00				. 05			 25	6.21
					.76									1.83	5.41
0.34	0.01	0.00	0.00	0.03	0.19	0.04	0.05	0.20	0.01	0.00	T.	0.00	0.00	0.08	4.82
. 64	. 07				. 36	. 12	. 10	.21	. 06					. 18	6.47
. 24							. 18	. 42						5.30
-. 50				. 10	.40									. 20	5.45
. 15					. 18		. 07	. 06	. 02					. 03	3.81
-. 20				. 03		.10	. 04	.01	T.		.02			. 04	3.20
. 40				*	$\dagger .10$. 50			.-.				4.6
0.18	0.08	0.02	T	0.03	0.21	. 08	0.01	0.08	0.01	0.01	0.13	T.	0.02	0.20	4.64
				. 11				. 16			-...				4.65
. 38	. 03	. 01		. 11	. 16	T.		. 04	. 01	T.	. 14	T.	. 03	T.	5.02
.T	. 09	. 04		. 02	. 04	. 08			. 01		. 32			. 28	4.29
. 09	. 32	. 15		.01	. 11	. 10		. 01	. 01	T.	. 36			. 08	5.37
. 17	T. ${ }^{-}$. 03		.06	. 04	. 02		. 02			. 26			. 01	3.25
. 30	. 04			. 03	T.	. 03		T.			. 20				2.71
. 30	T.			. 05	. 40	. 40		. 07		. 05	. 20		. 22	. 73	6.39
. 20		. 02		. 02	. 04	. 08		. 02		. 03	. 05			. 57	3.84
- 31	.10	. 03		. 05	.13	.06		. 01			. 10			T.	2.95
. 36					. 16			. 38			. 12			. 18	4.76
. 01	. 04				1.20			. 30						. 06	7.35
. 22	. 08	. 01		. 01	. 15	. 01	T.	. 11	. 01	T.	. 08			. 11	4.90
. 40	. 03				. 83			. 20			. 12			. 10	5.13
. 06	. 18			I.	1.	. 25	06		. 05		T.		T.	. 30	5.23
. 21	. 20			T.	. 20			. 03		. 10			. 07	. 80	4.28
. 05	. 15.			. 03	. 10	. 05		. 01		T.	. 20			. 18	4.87
. 09	. 07		. 01	. 05	. 03	T.	T.	. 06	Ta		. 02				: 6.97
T.	T.	0.00	0.00		0.05	0.04	0.00	0.00	T.	T.	0.36	0.00	0.17	075	4.41
				T.							. 50			-44	4.29
					. 14	. 17							. 68	1.35	5.09
														44	
T.	. 02			. 05	. 07	T.			1.	T.	.20		. 03	. 80	4.61
														
0.11	0.08	T.	T.	0.09	0.16	0.04	0.01	0.08	0.01	0.01	0.09	0.01	0.12	0.86	5.52

for the month incomplete. \|Reports too late to be used in computing the arerages. T=Trace.

and Precipitation - February.

MAP OF THE STATE OF NEW YORK

SHOWING
THE MEAN TEMPERATURES

MAP OF THE STATE OF NEW YORK

SHOWING

THE PRECIPITATION

Meteorological Summary for March, 1896

The average atmospheric pressure (reduced to sea-level and 32 degrees Fahr.) for the State of New York during March was 30.0^{2} inches. The highest barometer was 30.71 inches at Friendship on the 24th, and the lowest was 29.12 inches at New York city on the 11th, this being the lowest pressure for the month of March reported to this Bureau since its establishment in 1889. The average pressure at six stations of the National Bureau was about normal, the pressure in the western portion being generally in excess, and deficient in the eastern section.

The mean temperature of the State, as derived from the records of 72 stations, was 24.9 degrees, which is the lowest March value during the period covered by the operations of this service, and the lowest recorded, at stations having a longer record, since 1885 , in which year the arerage of the March means was about four degrees lower than that of March this year. The highest local monthly mean was 33.6 degrees at Brooklyn, and the lowest was 17.7 degrees at Saranac Lake. The highest general daily mean was 43 degrees on the 30 th, and the lowest was 12 degrees on the 13 th. The maximum temperature reported was 77 degrees at Jamestown on the $29 t h$, and the minimum wals 20 degrees below zero at Canton on the 24 th. The mean monthly range of temperature was 59 degrees, the greatest range, 77 degrees, occurring at Jamestown, and the least, 45 degrees, at Setauket. The mean daily range was 18 degrees, the greatest local daily range being 49 degrees at South Kortright on the 18 th, and at Angelica on the 21 st, and the least, 0 degrees at Avon on the 9th.

The mean temperatures of the various sections of the State were as follows: The Western Platean, 24.5 degrees; the Eastcrn Plateau, 24.5 degrees; the Northern Plateau, 19.9 degrees; the Atlantic Coast, 32.4 degrees; the Hudson Valley, 28.1 degrees; the Mohawk Valley, e4.2 degrees; the Champlain Valley, 23.2 degrees; the St. Lawrence Valley, 21.4 degrees; the Great Lake Region, õ. 4 degrees; the Central Lake Region, ar. 1 degrees. The average of the mean temperatures at 26 stations possessing records for previous years was 5.4 degrees below the normal ralue, deficiencies occurring in all sections, the greatest being orer the Northern and Eastern Plateaus and the least at Coast stations.

The mean relative humidity for the State was 76 per cent. The mean dew point was 20 degrees.

The average precipitation for the State was 4.92 inches, as derived from the records of 89 stations. The distribution of rain and snow over the State was comparatively uniform, excesses occurring in all regions but being heaviest in southeastern sections. The maximum local precipitation was 12.02 inches at West Point, and the least 1.5 n inches at Mt. Morris. A list of the heaviest rates of precipitation is shown in the table of meteorological data. The average snowfall for the State was 25.5 inches. as derived from the reports of 59 stations. The greatest local snowfall was 50.4 inches at Number Four, Lewis county.

The average precipitation at 27 stations possessing records rovering a period of ten years or more, was 2.02 inches above the normal amount, excesses occurring at all stations excepting Madism Barracks. The amounts were greatest for March during the period covered by the records at the following stations: Angelica, 10 years; Oxford, 26 years; Port Jervis, 13 years;

Honeymead Brook, 16 years; Poughkeepsie, 21 years; West Point, 49 years; Boyds Corners, 26 years; and Ithaca, 18 years.

The average number of days on which the precipitation amounted to 0.01 inches or more was 12.6 , the St. Lawrence Valley and Central Lake regions having the least number of rainy days and the Northern Plateau the greatest number.

The average number of clear days was 9.9 , of partly cloudy days 9.2 , and of cloudy days 11.9 , giving an average cloudiness for the State of 54 per cent. The maximum cloudiness prevailed over the northern, central and eastern portions of the State.

The prevailing wind direction was from the northwest. The average wind trarel at six stations of the National Bureau was 10.981 miles, the movement at Rochester being below the average; and at Albany, Buffalo and New York considerably in excess of the average for previous years. The maximum velocity recorded was 72 miles per hour at New York city, on the 4 th.

Hail fell on the 12th, 16 th , 19 th and 30 th. Sleet occurred on the $2 d$ and 16 th. Thunderstorms occurred on the $2 \mathrm{~d}, 6 \mathrm{th}, 7 \mathrm{th}$, Sth, 15th, 16 th, 19 th and 30 th.

Solar halos were observed on the 6 th, 14 th, $15 \mathrm{th}, 18 \mathrm{th}, 21 \mathrm{st}$, 22d, 25th and 30th. Lunar halos were observed on the 21st, 24th and 25 th. Auroras were observed on the $3 \mathrm{~d}, 4 \mathrm{th}, 12 \mathrm{th}, 14 \mathrm{th}, 30 \mathrm{th}$ and 31st.

March, 1896, ranks with February as a rough and windy month, presenting in its general features a series of seven strongly developed storms, bringing brief warm waves and heavy precipitation, alternating with longer periods of fair cold weather and high westerly winds. The average temperature was thus much below the normal.

The most frequent snow and rain storms and the maximum rloudiness obtained from the 1st to the 11th, after which time anticyclonic conditions and brighter but windy weather prevailed. Heary freshets due to the melting of the heary snowfall of Marel, and that which had accumulated through the wooded rplands in February, occurred sereral times during the month, (ansing much damage to properts along the banks of the Genesee, 'Hudson and other river systems.

Nine areas of low pressure, or about the usual number for Miarch, passed in the vicinity of New Iork during the month. Three well-dereloped storms passed centralle within the limits uf the State on the 1 st, 7 th and $19 t h$; the first and second of the series bringing high winds and heary rain turning to snow, while the snowfall accompanying the third storm was the heaviest of the season, and was badly drifted by westerly gales. A cyclone which passed northward along the coast on the 11th dereloped the lowest pressure of March in that region, and during its passage a serere blizzard was felt throughout the State. Three cnergetic depressions of a third class passed centrally orer eastern Canada on the 22d, 26th and 30th, bringing moderate rains for the State at large, high winds and warmer weather, especially on the 30 th, which was much the warmest day of the month. The above includes the principal cyclones of March, but in addition two broad and less sharply defined low areas appeared over the Central States and Lake Region on the 10th and 16 th, the former bringing a moderate and the latter a heavy snowfall in this State.

The high pressure systems, nine in number, generally took a northerly course toward the Atlantic coast, so that their maximum pressures were felt in the vicinity of New York. The dates
cf nearest approach were the 4 th, 10 th, 13 th, 18 th, 20 th and 21 st, 24 th, 27 th to 28 th, 30 th and 31 st. The maximum pressure and coldest weather were due to the first, third and sixth of the series, all of which followed the passage of severe cyclonic storms, thus giving steep pressure gradients and very high westerly winds.

Snow melted rapidly during the warm waves of the 7 th, 19th and 22d, but notwithstanding, the greater part of the State was well covered until near the close of the month, and even then much remained in northern New York, and in the wooded highlands of other sections, frequently making it difficult to carry on the maple sugar harvest.

Robins commonly made their appearance between the 26 th and 30 th, and blue birds were also seen at a few southern stations on the latter date.

Wedgwood reported a heavy deposition of ice upon tree branches on the 1st.

Meteorologioal Data

Location of stations.			Barometer.						Humidity,		Tempera				
STATION.	CoUnty.		$\begin{aligned} & \text { gix } \\ & . \end{aligned}$		$\stackrel{3}{a}$	$\begin{aligned} & \text { N } \\ & \text { R } \\ & \text { B } \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\substack{8 \\ \underset{\sim}{2} \\ \hline}}{ }$			Dew proint (degrees).				-	
Teatern Plateau... 24.2 77129															
Alfred	Alin many	1824									21.6	21.9		31	
Angelica		1340									23.3	233		29	
Friendship	"	1550	30.08	30.71	242	29.39	19	1.32			23.3	24.4			
Humphie	Cattaraugus	1950									24.6	249		31	
Arkwright	Chautauqua.	1260										244		29	
Jamestown		1328							...			26.6		29	
\|	Elmira	Chemung	863										28.2		30
A vou	Livingston	545			-							24.4		29	
Mt. Morris		525										26.7			
Victor.	Ontario						25.2		29	
Wedgewood	Schuyler	1350									23.2	23.9		30	
Addison....	Stenbea	1006							76		25.8	25.4			
Soutli Canisteo	Steuben	1480							72	16	231	234		30	
Arcaule	W joming	1557						--			214	214			
Eastern Plateau...												24.5			
Binghamton	Broome.	870			\because						24.7	244			
Oxford.	Chenango	550			.							$2+6$			
Cortlanid	Cortand..	1120										23.2			
Bloomville	Delawa	1550			\cdots				-..		22.7	22.4			
Soutb Kurtright... Brooktield	Madi	1740					.					24.6		26	
	Madison	1350									23.6	248	54		
Hamilton Midilletown Port Jervis	Martisou	1127					.					21.6			
	Orange	660					.					274		31	
												28.4	61		
Coopurstown........Niew Linbon........Onemta............	Otsego.	1300			-		.				22.7	223		30	
		1234					.				220	21.7			
		1100									25.7	27.3	70		
Perry City Waverly. Mohonk Lake	Schuyler.	1038					.				220	220	54	30	
	Tinga.	825			.		.				26.2	26.4	64		
	Ulster	1245									25.7	26.3	54		
Northern Plateau. Saranae Lake. Gloversville \qquad							.					199	54	30	
	Vranklin											17.7			
	Fulton	802									22.5	22.8	49		
Lowville Number Four Turin	Lewis	1240										21.0	49	30	
	"	1571	29.94	30.57		29.31	12	1.26				18.6	46		
									\ldots			19.5			
Atlantic Coast.....BrooklvnManhattan Beach.					.		.					32.4			
	Kings	107			\cdots		.					33.6	65	31	
	"														
New York City... Willets Point. Brentwood.	New York	314	29 ¢8	30.56		29.12	11	1.44	71	23		320		31	
	Qupens...											31.3		31	
	Suffolk.	75									32.0	32.4		31	
Setanket Bedford.	Suffolk	40					-		70	23	32.0	33.1	60	31	
	Westcheat	290										31.8		31	

for March, 1896.

Meteorological Data

Location of Stations.			Baroneter.						Hemidity		Tempera			
STATION.	COUNTY.		获		$\begin{aligned} & \dot{8} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\mid \stackrel{\Phi}{\tilde{u}}$			Dew point (degrees).				-
Iudson 「alley												28.1		31
Albany	Albany	85	30.00	30.66		29.23		1.43	80	21		27.0	58	31
Lebanou Springs..-	Columbia	930										25.7	50	b
Honeymead Bronk.	Dutchess	450						\cdots		27.4	26.4	57	31
Ponghkerpsie	Dutches	180			-		.					23.4		31
Wappinger's Falls.					.							31.2		31
West Point	Orange	167										29.5	54	1
Carmel	Putnam	50										28.6	58	31
Mohark Talle					-							24.2		31
Roure	Oneid	445			.							24.2	51	31
Ctica														
Champlain Falley.												23.2	58	31
Plattsb'h Barracks.	Clintou	125			.					-		21.5		31
Saratoga Springs..	Saratoga													
Glens Falls	Warren.	340			-						24.6	24.8		31
St. Laverence Tall'y					.							21.4		30
Malone	Franklin	810			19.5	196		30
Madison Barracks.	Jefferson	266			.-							23.1	55	30
Watertown	Jefferson.	486										24.7		30
Canton.	St. Lawrence	304			.-						21.0	19.6	51	29
Masseda					-									
North Hammond..	St. Lawrence	300			.						214	21.6	50	${ }^{\text {c }}$
Ogdensburg	"	258			.						22.2	23.5	51	${ }^{30}$
Potsdam......		300			.						19.4	19.1	47	30
Great Lakes					-							25.4	68	29
Dunkirk Westfield	Chautauqua	590			.				88	22		26.7	68	29
Buffalo		690	30.06	30.66		29.41			78	19		25.0		29
Pittsford	Monroe										25.6	25.0	58	28
Rochester		621	30.03	30.64	24	29.36		1.28	73	17		25.0	61	29
Appleton..........	Niagara				.		.					26.1	60	29
Fort Niagara......		263			--		.					26.4	61	
Baldwinsville......	Onondaga	390									25.6	24.1	52	d
Srracuse	Onondaga.													
Oswego.	Oswego..	304	30.01	30.67	24	29.28	19	1.39	76	19		240	50	30
Palitumo		460									23.4	22.6	49	31
Leyous	Wayne										26.4	20.2	53	a
Erie. Penosylvania	Erie..	681	30.07	30.63	21	29.44	19	1.19	79	21		28.0	67	29
Oentral Lakes.												25.1		30
Fleming.	Cayuga	1000					.				25.0	24.8	57	30
Watkins.	Schuyler.	737												.-
Romulus	Seneca	719							76	16		25.2	60	30
Ithaca.	Tompkins	810	30.03	30.66	24	2928	19	1.38	74	17	25.4	25.2	57	31
Mean		..	30.02	30.71	24	2912		1.33	76	20		248	77	29

[^3]for March, 1596-(Concluded).

ture-(In Degrees Falhr.).								SKY .			Precipitation-(Inches).						
	$\stackrel{\text { ® }}{\substack{2 \\ \multirow{2}{*}{}}}$	$\text { - oster. } \mathrm{S}_{[q 740 \mathrm{~L}}$			皆		$\stackrel{\Phi}{\underset{\sim}{8}}$	Number of clear days.				$\stackrel{\stackrel{\rightharpoonup}{E}}{\underset{\sim}{c}}$	䓜		¢		
-10	14	591	191	44	18	6	hh	11.8		11.7	13.4	6.88	3.80		1		
-3	14	61	16	30	14	6		11	9	11	15	4.66	1.12		19	23.8	W.
-8	14	58	1.4	35	18	7		11	6	14	12	5.22	2.26	11.30	19	21.5	N. W.
-10	14	67	18	37	18	7	kik	9	11	11	14	5.34	1.27,	15.00	19	17.4	N.
-7	14	70	22	43	18	10	11	12	7	12	11	6.20	1.97		19	230	N. W.
3	k	57	21	44	18	6	3	13	9	9	15	7.84	1.73	17.00	19	33.0	W.
7	24	47	18	S3	27	7	11				14	12.02	3.80		1		N. W.
7	25	51	17.	34	25	7	23	15	3	13	13	6.90	1.76	14.00	19	18.0	
-4	23	55	18.	33	26	3	28				14.0	4.74	0.68		6		
-4	23	55	19	33	26	9	28				14	4.74	0.68		6		
-8	14	58	17	4.7	23	7	20	5.0	10.0	160	13.0	6.52	2.40		19-20		
-5	f	53	16	47	23	7	20				12	?	1.25	12.00	2	28.4	S. 5.
-8	14	66	18	36	15	8	$i 1$	5	10	16	12	6.52	2.40		19-20	32.0	N. W.
-13	24	63	20	45	21	2	12	11.0	9.0	11.0	102	3.93	1.69		20		
-10	24	64	16	39	25	2	12	8	13	10	14	4.75	0.71	21.00	20	29.3	
-7	'24	62	19	33	28	6	19			5	1.96	0.62		26	14.0	S. W.
-5	24	65	24	43	24	5	1	7	16	8	13	5.23	1.69		20		S. W.
-20	24	71	21	45	24	6	12	10	8	13	10	4.49	0.96	18.00	1	28.0	S. W.
-81	24	58	18	40	25		8	7	10	14	10	3.34	1.17		1	125	W.
-8	24	59	20	33	v	8	19		5	10						18.2	S. W.
-13	24	60	19	35	24	5	12	18	2	11	9	381				24.0	S. W.
-10	24	56	15	35	w	2	2	10.2	9.4	11.4	12.0	4.02	1.20		11-19		
0	13	68	18	85	21	6	mm	19	2	10	7	2.58	0.71		6		E.
5	13.	54	14	30	6	5	19	6	16	9	12	3.61	0.21		26	13.4	W.
3	24	55	16	33	21	6	3	9	10	12	13	4.84	1.12		12		W.
4	13	57	15.	31	21	5	19	14	6	11	21	6.32	1.11		12	45.1	W.
8	14	52	14	29	m	3	19	10	8	13	9	2.65	0.80		7	115	N.W.
4	13	57	15	29	20	5	18				9	2.54					N.
-3	23	54	19	32	26	10	8	16	3	12	12	4.52	1.09		28	30.3	
3	24	47	13	28	21	2	2	6	10	15	15	4.79	1.09		19	18.2	N.W.
10	24	59	16	30	24	4	$n n$	7	13	11	11	3.67	100		19	28.0	S. W.
3	24	50	14	26	21	5		10	13	8	12	525	1.20		11-19	42.0	N. W.
8	24	59	15	35	28	4	10	5	13	13	11	3.41	0.96	26	W.
-3	24	58	16	36	21	5	$b b$	7.0	11.7	12.3	10.7	4.39	1.54	6.50	19		
2	24	55	17	30	21	7	8	3	18	10	7	3.95	1.30	11.00	19	31.0	N. W.
2 -3	24 24	58 60	16 16	27 36	x 21	5	26^{4}	8 10	7 10	16	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	4.47 4.75	1.54 1.33	$\begin{array}{r} 6.50 \\ 17.00 \end{array}$	19 19	24.0 27.4	$\begin{gathered} \text { N. W. } \\ \text { W. } \end{gathered}$
-19	23	59	18	49	q	0	9	9.9	9.2	21.9	12.6	5.02	4.00		1	25.5	N. W.

[^4]Temprenture - Marcit, 189G, Sinwing Daily Means for the

STATION.	1	2	3	4	5	6	\%	8	9	10	11	12	13	14
Western Plateau..	$\because 9$	20	14	12	17	29	34	25	24	24	30	13	10	13
	32	21	20	15	30	47	39	24	26	32	21	13	14	20
	20	10	6	4	4	10	23	19	13	10	12	7	-2	0.0
	34	24	17	13	26	47	40	25	26	30	21	16	16	25
Angelica	27	13	7	6	${ }^{2}$	7	25	20	19	14	16	7	0	3
Friendship	36	24	22	25	33	51	43	30	29	32	27	20	17	24
Friendship	24 34	${ }_{21}$	17	${ }_{16}^{2}$	37	10 45	24 45	20	13 30	14 39	14	$\stackrel{9}{15}$	17	${ }_{23}^{3}$
Humpbrey	21	13	7		4	14	22	14	17	15	12	7	3	9
Arkwright										
	35	25	19	22	39	40	43	25	27	33	99	18	12	24
Jamestown	22	15	9	7	0	32	25	20	18	21	17	6	4	10
	40	25	20	23	32	50	45	30	34	41	26	22	24	27
Elmira	31	19	13	12	12	19	32	24	22	23	22	13	4	${ }^{0}$
on	33	28	20	16	23	43	41	30	28	30	23	19	18	23
on	$\because 8$	18	12	8		10	28	23	28	19	18	12	0	0
Mount	37	36	32	20	32	42	43	32	33	33	31	20	23	22
Mount	13	14	12	9	10	18	29	18	19	17	12	11	0	0
	42	24	16	20	35	43	41	29	29	31	26	16	21	25
Victor	17	15	10	9	10	13	28	23	19	17	16	7	3	4
Wedgewood	33	25	23	16	31	40	39	31	29	33	21	16	25	27
	-3	12	8	6	5	13	25	20	17	15	13	6	-3	3
Addison	98	17	12	19	10	48	${ }_{28}$	${ }^{2}$	9	19	17	9	-8	-5
	35	21	20	18	26	49	44	28	31	33	25	17	31	26
South Can	24	13	8	8	¢	9	26	21	16	13	15	7	-8	-5
Arcade	32	18	9	11	21	48	39	23	24	27	17	11	15	20
	18	8	5	1	1	6	23	18	16	15	10	5	2	7
Varssburgh	32	32	18	18	30	50	44	27	30	29	$\because 0$	17	19	26
V arysburg	19	10	6	0	-3	4	25	20	19	10	12	6	-10	-9
Eastern Plate	34	22	16	12	17	25	34	26	24	24	22	15	10	10
Binghamton	35	30	20	16	25	43	43	27	25	31	30	20	18	\because
Bingham	29	15	13	7	10	13	28	17	18	18	20	10	-4	-10
Oxford	37	32	24	20	30	42	40	35	33	37	$\stackrel{9}{ }$	26	30	28
frord	28	15	10	5	${ }^{7}$	5	25	22	18	11	18	9	-4	-11
	31	29	20	16	23	40	41	30	25	30	26	21	17	28
Corti	26	16	10	8	8	7	30	21	18	17	19	9	-1	${ }_{24}^{8}$
	44	29	17	16	93	41	39	28	26	32	31	19	21	- $\begin{array}{r}24 \\ -14\end{array}$
	27	13	${ }^{9}$	14	5 24	4	26 40	20 30	16 97	14 35	6 28		-5	${ }^{-14}$
South Kortright..	43 28	32	13 6	14	24	4 4	40 22	30 18	27 14	35 10	111	$\stackrel{23}{9}$	19 -3	-11
	36	26	20	18	29	37	40	28	29	34	32	21	22	29
Brool	26	12	12	1	5	9	$\because 8$	18	19	20	18	7	0	11
	37	25	16	15	22	37	41	30	25	30	24	19	$\because 0$	21
	25	13	8	-8	-9	7	26	14	15	4	14		0	-3
Middletown	43	28	28	$\because 5$	36	40	46	35	46	35	28	23	24	$\because 6$
Miadletown	38	22	15	11	12	15	20	30	25	22	$\because 0$	14	5	5
	41	$\because 8$	26	27	35	44	49	36	34	34	28	24	20	28
Port	35	25	16	12	13	18	3:	31	24	22	$\because 7$	11	-1	-5
	40	27	15	12	18	35	40	28	25	30	21	18	19	22
Cooperstown	27	13	10	\because	3	1)	$\because 6$	20	16	10	18	8	2	0
Nerv Lisbon	41	28	15	14	$\because 2$	41	41	28	26	31	$\because 4$	18	19	21
Now Lisbon	26	14	8	3	5	5	26	20	15	13	17	8	-3	-15
	43	35	23	22	$\because 7$	46	46	32	29	35	30	24	25	25
O	30	10	12	7	9	11	30	25	20	19	19	12	5	
	35	25	18	13	23	43	39	29	29	$\because 8$	24	17	20	23
Perry City	25	11	,	8	$\stackrel{8}{8}$	5	25	22	18	15	12	${ }^{7}$	-7	-7
Waverly	35 30	30 17	123	11	31 13	45	43 31	${ }_{26}^{33}$	31	${ }^{33}$	30 21	21 10	- 28	- $\begin{array}{r}30 \\ -10\end{array}$
	48	$\stackrel{17}{3}$	4	118	13 36	${ }_{36}^{11}$	31 41	26 31	29	29	28	22	-12	25
Mohonk L	30	17	14	12	12	16	27	23	19	17	16	10	4	7
Northern Plateau.	34	18	11	6		21	31	22	10	12	14	9	6	6
	46	20	15	9	18	38	38	23	18	25	20	12	12	${ }^{18}$
Saranac Lake	16	7	-5	-2	-2	${ }^{7}$	23	11	-7	-8	4	-4	-17	-15
Gloversville	43	29	22	18	21	32	36 28	${ }^{29}$	24	28 9	25	19	19 4	24 -2
Groversvino	29	15	12	5	7	11	28	19	18					

Regions, and Daily Maxima and Minima for the Stations.

15	16	1%	18	19	20	21	2\%	23	¢4	25	26	27	28	29	30	31	
18	21	23	30	33	22	23	27	17	15	31	32	19	29	48	48	44	24.5
22	28	31	38	41	20	39	42	24	27	38	45	25	40	53	55	57	21.9
9	7	13	13	26	12	8	8		-6	14	15	10	11	36	35	31	21.9
29	30	33	43	40	29	44	35	24	30	47	42	25	44	58	56	57	
9	9	8	13	28	13	-5	15	5	-6	20	18	13	9	37	36	25	23.3
32	31	35	43	43	34	44	43	25	34	48	45	31	50	59	58	60	
11	8	6	13	28	14	-4	16	8	-7	18	19	1.3	11	39	38	29	94.4
26	33	35	33	39	-9	43	40	30	34	52	4.5	28	46	60	59	62	
12	13	13	28	27	12	7	17	9	4	20	16	10	16	35	40	31	24.9
		...	-		-..											24.4
30	34	33	40	40	32	39	42	26	30	50	47	26	50	77	56	60	
14	9	11	27	30	14	10	22	15	5	$\because 3$	18	15	18	40	41	31	26.6
32	28	38	40	40	26	50	41	23	27	42	45	32	52	58	65	60	
15	17	21	12	28	19	15	19	13	5	2.3	25	13	21	40	42	36	
35	33	31	43	32	42	42	25	28	47	44	$\because 4$	38	59	57	54	24.4
7	12	13	22		15	1	17	5	-2	13	21	13	13	31	36	30	24.4
32	36	37	48	39	33	48	35	44	33	5:	43	31	46	58	62	61	
6	10	15	20	29	15	5	10	9	3	19	21	11	15	35	38	36	26.7
38	34	33	44	40	29	45	42	25	28	45	46	26	39	58	55	56	25.3
9	16	13	22	26	11	10	13	7	4	10	20	11	15	35	37	30	25.3
22	32	36	41	42	31	37	40	24	39	38	42	28	39	48	64	60	23.9
9	12	16	16	$\because 5$	10	8	10	5	0	13	18	8	13	34	38	32	23.9
26	30	36	41	40	35	44	42	23	29	41	45	31	45	53	64	59	25.4
6	14	14	9	27	18	1	18	5	-3	15	26	14	15	34	37	27	5.
24	35	38	45	42	22	44	37	28	$\because 6$	47	48	27	42	55	59	56	
7	7	15	8	23	14	4	12	-2	-11	12	20	11	8	34	35	25	23.4
30	28	29	45	38	13	41	33	24	28	50	44	$\because 1$	43	56	52	53	21.4
10	4	13	15	26	9	G	14	5	-2	16	13	9	10	38	39	28	-1.4
31	39	36	45	36	98	45	43	23	32	51	47	27	47	59	57	61	23.2
0	-1	11	13	28	10	0	13	4	-3	13	16	8	8	38	35	30	23.2
16	24	26	24	36	26	24	31	17	10	25	36	21	27	38	46	42	245
24	28	32	43	48	40	38	42	22	25	40	48	24	45	49	59	56	24.4
4	20	11	6	28	10	8	18	8	0	12	22	13	15	37	38	29	24.4
32	35	40	47	48	40	42	4 4	27	30	42	50	26	40	45	55	53	
4	18	18	2	24	10	10	20	3	-7	5	23	12	9	27	34	25	26.6
26	30	33	42	42	33	36	40	23	23	40	40	23	38	45	55	56	
6	18	16	6	26	14	0	17	5	-5	13	32	11	9	34	33	25	23.2
28	35	31	42	45	39	36	40	25	22	37	47	23	38	45	52	50	22.4
2	20	5	-8	28	18	10	17	5	-7	5	22	11	16	34	33	28	22.4
31	35	34	43	49	46	47	45	27	26	51	59	39	39	45	55	51	24.6
0	11	17	-6	23	12	8	24	8	-6	21	30	10	11	27	38	25	24.6
28	25	34	43	44	38	39	37	40	22	30	50	30	42	43	52	54	24.8
10	3	12	23	28	18	15	12	16	4	8	20	20	20	27	34	34	24.8
24	33	34	40	44	35	35	36	24	22	37	47	31	40	43	56	55	21.6
7	15	18	5	24	14	10	20	2	-10	2	17	9	12	21	36	25	21.6
26	31	35	38	46	29	38	46	24	19	38	47	26	32	40	53	58	27.4
16	21	24	16	22	28	15	22	19	1	17	24	17	20	28	32	37	27.4
25	29	38	45	50	34	41	51	32	30	42	51	36	49	40	61	61	28.4
5	22	25	8	28	22	13	25	17	0	4	30	19	13	30	36	31	28.4
24	26	30	38	39	35	35	38	19	21.	40	49	25	36	49	52	50	22.3
10	18	18	5	25	14	14	19	4	-8	5	25	11	15	25	32	30	22.3
23	29	34	38	46	38	33	38	21	25	39	48	23	39	46	53	51	
3	18	15	-3	25	13	4	16	2	-12	3	23	10	11	26	33	25	21.7
29	33	36	44	50	44	49	44	29	30	49	54	± 7	45	50	70	58	27.3
9	20	21	5	27	17	13	21	10	-2	11	22	14	20	33	38	29	27.3
30	33	32	44	43	32	38	38	24	20	41	45	25	40	51	54	53	22.0
8	1	15	9	26	10	5	6	0	-9	5	17	10	9	31	32	26	22.0
27	37	39	45	46	35	40	45	28	36	40	48	30	45	52	64	62	26.4
1	20	19	2	29	17	5	21	8	-3	12	25	15	15	37	39	26	26.9
23	27	39	38	45	46	38	45	33	22	36	44	33	39	39	48	54	26.3
11	17	21	18	25	14	12	27	11	2	12	28	15	17	29	34	32	26.3
12	22	24	28	31	21	21	25	7	8	24	30	16	24	34	41	35	19.9
32	29	33	39	42	18	37	38	12	32	49	44	20	37	43	54	44	17.7
3	15	11	20	17	-6	11	-5	-19	-13	25	4	4	15	36	31	16	17.7
22	28	34	37	40	40	32	39	23	23	36	44	27	36	37	49	48	22. 8
4	17	19	15	25	17	10	18	5	-8	0	25	11	17	26	34	31	

Temperature - Marci 1896, Showing Dally Means for the

STATIONS.	1	2	3	4	5	6	$\%$	\boldsymbol{S}	9	10	11	12	13	14
North. Plat. (Con)	40	29	16	15	18	37	39	29	21		22	13	15	20
	29	13	9	1	$\stackrel{1}{2}$	6	28	19	16	(1)	\bigcirc	7	$\underline{2}$	-9
	43	26	14	9	16	42	37	25	18	22	26	15	14	18
Number	25	8	6	-3	-2	-1	24	14	12	-5	1	4	-2	-8
	42	25	14	10	15	33	35	26	21	21	20	13	18	19
Tario.	25	9	8	-1	0	8	25	16	14	1	4	5	2	-2
Atlantic Come	41	28	24	22	29	35	42	34	32	29	29	23	21	23
Brooklyn	47	32	32	30	42	44	52	41	41	35	33	32	30	34
Brool	27	19	17	18	25	34	31	27	28	29	22	14	15	1*
Manhattan Beach.								.		.	-	.	\cdots	
	46	34	29	28	39	40	51	37	37	33	34	28	23	30
New York City...	34	21	19	17	14	24	33	28	26	26	24	19	13	14
Willet's Poin	45	30	30	30	40	45	50	40	38	32	32	28	28	30
Willet s Poin	25	19	17	17	20	25	31	27	26	27	20	15	15	16
	51	37	31	28	41	46	58	46	39	35	34	28	28	
Brent	35	22	20	19	18	23	33	28	25	24	29	17	9	
	${ }_{36} 5$	37	29	33	33	43	47	40	36	32	33	30	26	29
Setau	36	26	22	19	19	25	35	31	28	27	30	21	16	15
	53	39	31	14	38	46	49	40	37	31	33	28	30	33
Bedford	37	23	19	14	16	23	31	29	25	23	24	18	10	7
Hudson Talley	43	28	22	20	22	29	38	33	29	27	26	21	16	13
	50	29	25	21	26	35	44	35	30	34	30	-	$\underline{6}$	$\because 7$
	29	20	14	10	12	17	34	24	23	20	17	16	6	-3
	50	32	23	19	24	38	39	33	38	34	29	29	24	25
Lebanon Springs	38	17	11	6	7	14	32	22	17	14	22	12	0	-8
	46	27	24	25	30	37	41	36	35	34	32	28	25	26
Honeymead Brook	31	20	16	9	12	17	31	27	22	17	19	13	-	-10
Poughkeep	54	34	31	33	36	46	49	40	38	32	30	27	26	30
	34	23	28	12 30	16	18 46	42	48	43	31	30	16 31	-4	$\square 7$
Wappingers Falls.	39	18	22	18	18	20	32	30	26	22	22	18	8	4
P	54	45	33	31	33	40	41	49	34	35	31	33	27	-8
est Poin	41	24	18	15	10	12	24	31	26	23	24	20	9	10
Carmel	45	31	29	30	31	40	45	36	32	33	34	27	95	26
Carmel	37	22	16	14	12	19	33	20	22	20	19	14	10	8
Mrohaw	28	18	14	11	15	26	30	24	18	20	20	15	15	20
	37	25	23	16	24	35	35	31	30	28	30	25	30	17
	18	10	4	6	6	17	25	17	6	11	11	5	0	12
Utica	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	.	.		
Ohamplain Valley	40	32	22	16	14	18	32	31	23	18	16	16	12	9
	43	47	27	20	17	27	34	40	29	21	21	19	15	23
Platts. Barrack	35	25	15	5	5	10	21	28	16	10	6	8	5	4
Saratoga Springs.				\ldots	
Glens Fall	44	36	31	26	25	25	40	33	28	$\stackrel{29}{11}$	23	23	29	18
Glens Falr	36	20	15	15	9	11	31	23	20	11	14		-2	-8
St. Lawrence Trab.	33	21	16	9	15	29	33	24	19	14	10	11	,	12
	14	33	17	15	17	33	39	28	15	15	13	8	10	17
Malone	33	10	10	-3	2	9	28	15	12	4	-1	6	1	1
Madison Barracka	39	22	18	21	34	40	37	34	27	28	19	21	17	30
dadison Barrack	32	12	10	5	4	13	29	21	19	8	6	9	2	1
Watertow	35	26	31	22	39	41	42	32	31	32	24	18	23	30
Watertown	30	14	10	3		9	28	18	17	4	8	14	-2	- ${ }^{2}$
Canton	$\begin{gathered} 42 \\ 29 \end{gathered}$	29	23 9	14	21	31	$\begin{aligned} & 39 \\ & 29 \end{aligned}$	30 18	$\stackrel{23}{11}$	20 1	-16	14	16 -5	22
Canton	29	12	9	1	1	3	27	18	11	1	-1	8	-5	-4
Massena.														
North Hammond.	36	28	20	18	34	32	38	28	98	28	12	12	16	18
	28	10	10	2	2	10	28	22	${ }_{9}^{18}$	8	20	18	-2	2)
Ogdensburg	45	34	30	19	25	30	38	45	25	\bigcirc	20	18	16	22
Ogaensbarg	27	10	10	0	0	12	26	36	12	5	${ }_{1}^{5}$	5	-1	${ }_{21}^{4}$
Potsdam	40 27	31 10	20 9	-15	20 2	28 5	38 25	17	21 12	19	-13	12	-14	21

Regions, and Datly Maxima and Minima for tee Stations.

15	16	17	18	19	20	21	22	23	24	25		27	28	29	30	31	
26	32	30	36	36	33	35	37	21	30	38	44	$\stackrel{2}{9}$	37	44	± 9	${ }^{43}$	21.0
-3	11	18	21	27	14	12	20	-5	-11	6	29	6	12	22	34	29	2.0
25	29	28	35	36	34	29	35	20	20	38	40	20	34	45	46	42	
-6	15	100	16	25	12	0	15	-5	-12	9	18	4	7	25	35	25	18.6
20	25	30	37	36	32	29	36	18	22	34	37	20	33	38	47	45	19.5
-3	15	16	19	26	14	12	17	3	-3	7	19	5	16	25	34	27	19.5
25	30	32	31	41	34	31	40	28	29	29	44	30	36	41	44	43	32.4
32	34	42	41	48	30	44	49	30	35	45	53	37	50	51	63	6.5	33.18
21	28	28	26	34	30	20	32	25	16	20	35	23	27	34	34	41	
30	34	37	40	13	41	39	47	29	29	40	53	32	4. ${ }^{2}$	5	58	62	320
21	26	27	26	33	22	20	33	19	13	21	30	22	27	35	45	44	320
32	33	33	41	50	32	42	50	34	29	42	55	37	47	50	50	63	31.3
22	27	19	22	35	20	21	27	16	15	21	23	$\because 4$	29	34	32	36	${ }^{2}$
32	35		44	54	48	42	49	40	28	44	60	38	46	48	55	64	32 4
11	27		11	25	25	18	30	26	14	5	32	20	20	21	32	30	
30	34	36	423	5:	50	41	46	36	30	42	58	43	46	50	45	60	33.1
20	26	29	22	33	25	21	32	25	19	18	34	24	27	$3 \pm$	35	35	
37	35	40	50	49	48	44	51	35	31	$4:$	57	4.	50	48	5	62	31.8
10	25	25	12	28	23	16	29	19	10	8	32	20	2	30	36	30	
19	26	29	26	36	32	25	36	$\because 2$	12	22	38	28	32	36	49	44	28.1
26	30	37	39	$4{ }^{4}$	42	38	44	$\because 0$	24	34	46	27	43	43	52	58	
7	22	24	12	29	$\stackrel{21}{1}$	16	24	10	4	10	27	18	23	30	35	38	27.0
26	31	37	43	45	37	36	43	31	2.	39	47	43	46	38	50	50	
4	21	$2 \because$	8	21	18	11	28	7	-6	5	31	14	18	25	35	30	25.7
33	33	35	43	46	36	37	46	25	21	39	51	${ }_{2} 27$	39	40 29	51	54 30	
5	20	21	6	29	20	5	28	10	0	3	31	20	18	29	35	30	26.4
29	28	41	43	49	47	40	51	29	24	41	52	33	45	41	51	63	
8	16	18	0	29	18	11	27	15	-1	${ }^{2}$	21	22	21	31	31	26 601	
34	32	4.4	47	49	50	42	50	36	25	46	55	$\stackrel{47}{29}$	${ }_{2}{ }^{2}$		5		31.2
10	22	18	4.	31	30	15	25	$5 \cdot$		5 28	32 41	22	29 34	30 49	34 43	51	31.2
31	30 20	31	4. 16	39 19	49 33	37 17	48	512	25	28	19	53 20	34	49	835	32	29.5
29	38	40	45	48	33	37	48	25	20	41	50	28	46	45	49	58	
17	20	22	12	27	17	14	20	18		7	33	15	24	32	33	32	28.6
24	28	24	37	28	18	31	24	12	20	34	28	26	32	36	38	38	24.2
30	35	37	48	36	29	37	40	29	30	40	45	35	36	43		51	24.2
18	20	10	26	20	6	25	8	-4	10	$\because 8$	12	16	27	30	20	25	
12	20	24	28	28	28	20	27	19	6	15	32	26	22	26	38	44	23.2
20	23	25	39	35	33	28	33	46	8	20	36	41	26	30	38	48	21.5
2	7	11	23	$2{ }^{2}$	26	9	20	-1	-5	-5	17	11	10	15	30	35	
32	30	38	39	35	35	37	43	23	25	36	46	35	36	40	50	58	24.8
-4	19	21	10	27	19	5	13	,	-3	9	30	17	17	21	34	33	
17	20	27	30	30	21	20	24	9	8	27	31	16	24	35	43	38	1.4
21	25	27	34	32	31	35	37	10	18	49	43	24	30	45	54	42	19
2	10	18	22	24	13	7	10	-3	-10	10	24	5	10	21	36	30	
33	34	41	36	33	27	34	$\stackrel{9}{ }$	21	25	42	41	25	46	50		51	23.1
1	10	19	12	27	16	4	14		-7	13		8	13 49	25	34 60	36 3.4	
42	40	42	44	36	33	41	40	31	38 -5	${ }_{12}^{42}$	40 22	28	49 10	54 22	60 34	34 30	24.7
4 30	0	10	22	26	17	6 38	${ }_{38}^{18}$	${ }_{12}^{2}$	-5	13	42	${ }_{2}^{8}$	10	$\stackrel{22}{51}$	34 48	43	
- 30	11	36	12	34 27	31 7	-38	38 6	-12	-25 -20	44 5	419	$2{ }^{2}$	+	19	35	30	19.6
32	32	34	36	36	24	34	34	26	24	50	40	28	34	50	50	48	21.6
8	14	22	28	24	10	4	10	0	-8	10	20	8	12	20	34	$3 \because$	-1.
26	30	35	37	37	41	35	45	19	25	42	44	30	38	48	51	${ }_{3}^{43}$	22.5
4	14	18	22	29	11	${ }_{34}^{2}$	12 37	3 21	-8	12	18	5 25	15 38			42	
25 3	21	31 19	${ }_{24}^{36}$	35 15	19 13	34 4	37 8	21 -6	22 -13	43 9	42	55 5	38 10	46 16	47 35	$\stackrel{41}{21}$	19.1

Temperature - Marcif, 1896, Showing Daily Means for

Maxima and Minima for the Stations - (Concluded).

Daily and Monthly Precipi

STATION.	1	2	3	4	5	6	7	8	. 9	10	11	12	13	14
Western Plateau	0.30	007	0.01	T.	T.	0.07	0.40	0.08	0.07	0.05	0.27	0.18	0.02	0.04
Alfred.	.16	. 15	T.	. 01		T.	. 88	. 15	. 25	. 05	. 50	. 17		T.
Angelica	. 20	. 25	. 08			T.	. 64	-10		. 10	. 36	. 22		T.
Bolivar	. 75	. 04					. 65	. 04	. 03	. 04	. 12	. 40		. 04
Frieudship	. 48	. 12	. 01			T.	. 48	. 10	T.	T.	.33	. 28	T.	T.
Humphrey	. 10	. 20				. 15	. 18	. 16		. 06	. 30	. 08	. 18	
Little Valley														
Cherry Creek	. 26	-13	. 09			. 09	. 69	. 16	. 11	. 10	. 21	. 38	. 07	. 08
Jamestorn	-20	. 20	- 05			- 30	-60	. 30	. 20	. 10.	. 30	. 20		
Elmira...	. 40					. 18		T.			. 36	. 47		
Pine Cit	T.	T.	T.			. 50	T.	T.	T	*	+1.15	T.	T.	T
Akron	. 46	T.			T.		$\dagger .85$	T.	. 04	${ }^{03}$. 09	T.	T.	21
Avon	. 73	T.		T.		T.	. 59			T.	. 40	. 18		
Mt. Morri							. 05			. 03	. 50			
Lockport.														
Victor														
Trroue														
Wedgewoo	. 32	. 05	T.	T.			. 32	. 10		. 05	.50	. 10		
Addison	. 20	T,					. 18	T.	T.	. 04	. 28	. 38		
Atlanta									. 60					-45
Haskinrill	. 30	. 02					. 50	04	. 02	. 03	. 12	15	10	
Sonth Cavis	T.	. 08					-40	T.	T.	. 10	- 50	T.		
Arcade	. 70	. 11	. 05			T.	. 28	.22	. 02	. 10	. 15	. 09	. 03	0.5
Attica														
Varysburgl	- 43	. 06					. 82	. 07	. 09	T.	. 22	. 28		T
Eastern Plat	0.81	0.15	0.04	0.01	0.00	0.07	0.28	0.10	0.05	T.	0.41	0.25	T.	T.
Binghamton	. 75	T.	. 05	T.			. 78	. 10	. 10	T.	. 10	. 30		
Chenango For														
Oxford	-87	. 15	. 05				. 58	. 25	-20	T.		. 80		
Cortland		\dagger - 96	. 05			. 10	- 04		†. 63		. 19	-34	. 02	
Blonmvil	. 25	. 10	. 09				. 30	. 26						
Deposit		. 05	. 10					. 15			10	. 90		
South Kortr	*	+. 35				. 33						†. 74		
Brookfield	. 20	. 60					. 28	. 50	. 30		. 40	. 60		
Hamilton	. 50	-10	. 05				. 41	. 10	. 05		. 15	. 10		
Apulia														
Middletown	2.60	0.40						T.			. 70			
Port Jervis	. 47							-32			. 69			
Warwick	. 54	. 15					. 18	T.	T		. 65			
Cooperstown	. 27	. 10	,05				. 62	. 04	. 05		. 75			
New Lisbon	. 41	. 33	. 05				. 55				. 18	. 14		
Oneonta	-20					. 88			. 08		. 87			
Perrs Cit	. 05	. 19	. 15	. 14			. 30	T	. 04	T.	. 30	.co		
Newark Valle	. 75		T.	T.			. 52	'	T.	. 02	. 60	. 10		
Wavorl	-40	05	. 01	T.			. 02	. 02	. 01	. 05	. 58	. 10		T.
Ellis.														
Mohonk Lake	4.70	. 18					. 45					11.50		
Northern Pla	064	0.12	0.02	T.	0.00	0.02	0.45	0.23	0.02	0.00	0.30	0.45	0.12	0.11
West Chazs...														
Elizabethtown														
Saranac Lake	. 15	. 20	. 05	T.		. 10	19	. 08	T.		. 58	. 11	T	
Gloversvi	1.16	. 15	T.			1.	. 87	. 08	T.		. 46	. 62		.
Lowvills	. 71						. 50	. 20			. 06	. 32		. 0
Number F	*	$\dagger .56$. 35	. 80					. 60	. 3
Turin.	-24	. 16				T.	-33	. 16	. 12			${ }^{7} .31$. 11	. 3
Kings Statio	. 95	. 05	. 10				.451	. 05			. 40	1.20		
Atlantic	0.66	0.38	0.00	0.00	0.00	0.00	0.20	T.	0.00	0.01	0.39	0.09	0.00	?
3rooklyn	. 19	- 87					27	T.		T	-40	- 20		
Manhattan Beac	1.55	. 116						$\dagger .10$			-0.0	- 20		
Now York City	. 13	. 92					. 12	T.		. 01	. 56	. 07		

tation for March, 1896 - (Inches.)

15	16	1\%	18	19	20	21	22	23	24	25	26	27	28	29	30	31	¢
0.06	0.04	0.01	0.06	0.92	0.27	T.	0.01	T.	0.00	0.00	0.27	0.01	0.01	0.16	0.03	0.00	3.52
-05	. 05	T.	T.	1.18	. 30						. 29			. 14			4.33
. 05	T.	. 02		1.10	. 30			T.			. 52		. 22		. 05		4.21
. 10				1.03							. 31			. 18	. 06		3.79
	T.			1.00	. 22		T.				. 25	T.		. 12	T.		3.45
. 10	. 02			. 95	. 37						. 37			. 11			3.33
. 08	T.	. 04		. 66	. 36	. 05	.06	I.			. 62	. 07					4.29
T.	-	T.		. 50	1.40						. 55		T.	. 31			5.21
	. 06			1.31	. 08						. 14			. 13			3.22
11	-20	T.	1.20	T.													3.16
T.	T.			. 58	. 52			1.			T.	T.	T.	1.07	10		3.95
				. 52	.14		T.				. 41			. 26	T.		323
				1.19							. 05						1.92
. 20	. 20			1.00	. 10						. 16	. 05		. 26	. 02		3.43
. 12	. 10	T.		1.55	. 05		T.	T.			.10			. 05			3.05
				1.05	. 20									. 11			2.41
. 03		. 04		. 80	. 10						12			. 16.			2.43
. 15	-08		T.	2.00	T.		T.				. 25			. 15			3.71
T.	T.	T.		. 65	. 50		. 05				. 40	.01		. 01	. 08		3.50
	T.			. 42	. 45		08	T.			.65	. 10		T.	.30		3.95
0.15	0.29	0.01	0.01	1.18	0.10	0.06	010	0.02	0.00	0.00	0.20	0.02	0.03	0.38	0.09	0.00	. 88
. 15	-40			. 60	. 40			. 05			. 19			. 41			4.68
10	.18	. 05		1.05	. 25			T.			. 23	05		. 45	1.30		5.56
T.	. 17			1.37	. 12						. 22	. 07			$\dagger .26$		4.54
. 20	. 15			1.04							. 20			. 25			2.84
. 10	. 50		. 10			1.00						. 10	. 50				3.60
.17				1.56										. 61			3.76
T.	. 05	. 02		1.10 .98	. 20						. 35	T. 10		. 48			4.23 3.52
	1.30			1.16			. 84	T.			. 25			80	.10		8.09
-50	. 57			1.88			. 99	. 15			. 24			. 79			6.60
. 28	. 60			1.31.			. 10	. 05			. 25 .			. 75			4.86
. 20	. 38			1.06	. 25	. 02					. 35			46	. 20		4.74
. 10	. 15	. 04		. 94	. 09			T.			. 27	. 02		. 46	. 23		3.96
. 35	. 17			. 90	.17\|						. 61			. 56			4.79
-10	- 10			1.19	. 16		T.				. 21			. 14	. 03		3.70
. 25	. 10			1.10	. 10		T.				. 14			. 30	T.		3.98
. 10	. 06	. 01		1.41	. 04		T.	. 06			. 12			. 32	. 04		3.40
	11.28			2.33				. 07							. 56		i1.07
0.08	0.20	0.02	0.01	1.36	0.48	T.	0.06	0.00	0.00	0.02	0.51	0.03	T.	0.31	0.07	0.00	5.56
	. 16	T.	0.5	1.22	. 35	. 02	IT			. 10	. 84	. 65	T.	. 06			4.31
. 06	. 36	. 13	T.	1.50	. 11		. 10 .				. 30	T.		. 52	. 15		6.59
				1.46	46		. 11				. 56	. 13		. 25	. 04		4.88
	. 25	T.		1.59	1.00		. 15				. 83			. 12			6.55
. 14	. 08			1.56	. 30		T.				. 28	T.		. 18	. 06		4.63
. 25.	- 35			. 80	. 65.						. 25			. 75	. 15		8.40
0.24	1.56	0.11	0.04	0.60	0.14	0.00	0.04	0.29	0.09	0.00	0.04	0.01	0.01	0.93	0.07	0.00	5.55
.$_{*}^{40}$	1.80	T.		. 51 .			. 03	. 04	.10		. 09	T.		. 76	. 12		6.14
		$\dagger .48$. 20			*	$\dagger .03$. 30			. 02		. 54			4.48
201	1.90	. 26 54	T.		. 04	. 25	.16		. 04	. 02 87	. 04.	.	6.13

Daily and Monthly Precipi

tation for March - (Continued).

Daily and Monthly Prectipy

\ddagger Record for the month incomplete.
tation for March - (Conciuded).

$\|$ Received too late to be included in the averages.

Statitics of Temperature

1) Received too late to be used in computing the average
and Precipitation - March.

for the month. \ddagger Record for the month incomplete.

MAP OF THE STATE OF NEW YORK

SHOWING

THE MEAN TEMPERATURES

MAP OF THE STATE OF NEW YORK

3HOWING

THE PRECIPITATION

SCALE OF MILES

Meteorological Summary for April, 1896.

The average atmospheric pressure (reduced to sea level and 32 degrees Fahr.) for the State of New York during April was 30.10 inches. The highest barometer was 30.62 inches at Buffalo and at Erie, Pa., on the Sth, and the lowest was 29.56 inches at Number Four, Lewis county, on the 3d. The average pressure at six stations of the National Bureau was 0.10 inches above the normal value, the departures being greatest at eastern stations.

The mean temperature for the State, as derived from the records of 74 stations, was 48.0 degrees, which is the highest April value for the State during the past seven years, and the highest at the following stations during the period covered by their records: Angelica, 14 years; Humphrey, 13 years; Elmira, 18 years; Waverly, 14 years; Baldwinsville, 20 years; Ithaca, 18 years. The highest local monthly mean was 54.2 degrees at Elmira, and the lowest was 40.2 degrees at Saranac Lake. The highest general daily mean was 68 degrees on the 17 th, and the lowest was 25 degrees on the 3 d and 4th. The maximum temperature reported was 93 degrees at West Point on the 19th, and the lowest was 8 degrees at Bolivar on the 5th. The mean monthly range of temperature was 66 degrees, the greatest range, 76 degrees, occurring at Angelica and Bolivar, and the least, 57 degrees, at Manhattan Beach. The mean daily range of temperature was 21 degrees, the greatest local daily range being 50 degrees at South Kortright on the 15th, and the least 3 degrees at Buffalo on the 10th.

The mean temperature of the various sections of the State Were as follows: The Western Plateau, 49.5 degrees; the Eastern Plateau, 48.6 degrees; the Northern Plateau, 43.3 degrees; the Ithantic ('oast, 49.4 degrees; the Hudson Valley 49.9 degrees; the Mohawk Valley, 48.5 degrees; the Champlain Valley, 45.2 degrees: the Nt. Lawrence Valley, 45.8 degrees; the Great Lakes, 49.0 degrees; the Central Lakes, 50.7 degrees. The average of the mean temperatures at 27 stations possessing records for previous years was 4.5 degrees above the normal value, the departures being greatest over the Western Plateau, Central and Great Lake Regions, and least over the Northern Plateau and Atlantic Coast.

The mean relative humidity was 73 per cent. The mean dew point was 40 degrees.

The average precipitation for the State was 1.22 inches, as derived from the records of 91 stations. The distribution of the rainfall over the State was quite uniform, deficiencies obtaining in all regions. The maximum local precipitation was 2.90 inches at Romulus, Seneca county, and the least was 0.39 inches at Newark Valley, Tioga county. The average snowfall for the State was 3.3 inches, the greatest local snowfall, 11.5 inches, oc'urrine at Malone. The arerage precipitation at 29 stations fossessing rerords covering a period of ten years or more, was 1.40 inches below the normal amount.
'The average number of days on which the precipitation amometed to 0.01 inches or more was 6.9 ; the average number of elear days was 11.4 , of partly cloudy dars, 10.4 , and of cloudy days, s.2, giving an arerage clondiness for the State of 48 per cent.

The prevailing wind direction was from the southwest. The average wind travel at six stations of the National Bureau was

7, 780 miles, the movement being in excess of the average for April at all stations excepting Rochester. The maximum relocity recorded was 54 miles per hour at Buffalo on the $\mathfrak{d d}$.

Thunder storms were reported for the following dates: 12th at Jamestown, 17th general over the State, 18th at a few isolated and widely separated stations, 19th general, 20th at stations in the Western Plateau, 21st general, 22d at New Lisbon and Brooklyn, 25th at Bloomville, 28th southeast of Bloomville.

Light frost was general over the State on the $23 d$ and in the northern regions on the 30th. Bedford and Binghamton reported killing frost on the 23d.

Hail fell on the 2d, 17th, 20th and 25th, and sleet occurred on the $2 \mathrm{~d}, 4 \mathrm{th}$ and 6 th.

Solar halos were observed on the 14th, 20th, 24th, 25th, 26th and 27 th. Lunar halos were observed on the $23 d$ and 26 th. Auroras were observed on the 4th, 22d and 24th.

But three well defined cyclonic storms passed in the vicinity of New York, the number being considerably less than the average frequency for April. The general action of the cyclonic movements was to diminish in energy, spread and dissipate in their progress eastward, accompanied by very moderate precipitation in New York. The first storm occurred on the 1st-2d, passing north of New York and developing considerable energy over the New England coast and causing heavy rainfall in that region. On the 14th a storm passed centrally well north of New York, accompanied by general but moderate rain in the St. Lawrence valley. The third storm passed centrally over northern New York on the 21st, bringing general and the heaviest rainfall of the month in this State on the 21st-22d.

The high pressure areas, like the lows, were few and of moderate intensity, the most marked being that of the 7th-8th lying over the lakes, spreading thence southeasterly to the coast on the 9th-10th. The maximum pressure in New York occurred on the Sth. On the 23 d an anticyclone passed centrally over Pennsylvania, moring eastward and remaining off the New England coast for several days, accompanied by a decided fall in temperature, causing general light frosts throughout New York on the 23 d .

The remarkable features of the month were the deficient rainfall and the high monthly mean temperature. The mean temperature of the first decade of the month was about 5 degrees below the normal; this period was followed by a rapid rise and protracted high temperature, giving for the second decade a mean about 15 degrees above the normal. The fall in temperature accompanying the anticyclone of the 23 d reached about the normal for this date, but the remainder of the month was warmer than usual, and the mean temperature of the last ten days of the month was about 5 degrees above the normal for the season.

Notes.-Jamestown, ice disappeared from Chautauqua lake on the 15th. North Hammond, ice breaking up in the St. Lawrence on the 11 th ; navigation opened on the 16 th . Glens Falls, Hudson river at high water mark on the 17 th-18th. Saranac lake, snow disappeared from clearings soon after the 5th. Turin, 15th. many show drifts is feet deep, thawing rapidly, streams high; 19th, only traces of snow remaining, hepatica in bloom. Wappingers Falls, swallows appeared on the 17th. Waverly, 14th, apple buds started. Wedgewood, 25th, swallows appeared. Humphreys, fith, wild geese flying north; 14th, blue-birds appeared; 18th, fruit and forest buds swelling. Brentwood,
peaches in bloom on the 25th; pears in bloom on the 30th. Cooperstown, since 1854, only 1870,1878 and 1886 have given as high mean temperature for April, and 1863, 1866, 1872 and 1884 less rainfall. Honeymead Brook, maximum temperature (87 degrees) for April in 16 years. New York city, maximum temperature (90 degrees) for April, dating from beginning of record in 1871. On the 18th ice went out of Lake Champlain and navigation opened on the 20th.

The crop season opened about the 12th of the month. Prior to this date the weather was cold, and snow still on the ground in the more northern counties. At the beginning the season was considered about ten days late. The unusually warm and springlike weather, beginning on the 12th and extending to the 21st, brought the frost out of the ground, dried the soil and rapidly fitted it for working. Throughout the warmer sections farming operations were general by the 15th. Plowing and seeding had become general by the 20 th; vegetation had started rapidly, trees were budding, Madison county hops were being uncorered, and in the southeast early gardens were made. Dry, cool weather followed, with frosts on the 23 d and 24 th, which formed ice in exposed places, but did little or no damage to vegetation. But light rains had occurred throughout the month and while crops in the ground were beginning to feel the lack of moisture, the absence of rain permitted spring work to be rushed, and at the close of the month most of the oats, spring wheat and barley had been sown, and many had planted early potatoes. Gardening had progressed satisfactorily, and in the southeast early regetables were already up. Sugaring began early in the month, but progressed slowly until the warm period,-the crop was practically gathered by the 25th.

Meteorofogicai. Data.

Location of Stations.			Barometer.						Humidity		tempera.			
STATION.	COUNTT.		$\begin{aligned} & \text { İ } \\ & \text { 馬 } \end{aligned}$		$\begin{gathered} \dot{9} \\ \underset{\Xi}{2} \\ \hline \end{gathered}$	B 0 0 0	$\frac{\dot{8}}{\stackrel{\circ}{5}}$						$\begin{aligned} & \stackrel{3}{z} \\ & \text { on } \\ & \text { ex } \\ & = \\ & = \end{aligned}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$
Western Plateaut.												49.5	89	b
Alfred..	Allegany	1824									47.3	4 C .2	84	16
Angelica		1310									48.2	48.2	85	16
Bolivar.	"											47.0	84	
Friendship	Allegany	1550	30.10	30.60		29.76		0.84			47.6	49.5	85	16
Humphrey.	Cattaraugus.	1450									49.3	49.0	85	18
Arkwright.	Chautauqua.	1260										+484	76	18
Jamentown		1328										50.8	82	16
Elmira.	Cbemung -	863										54.2	89	19
A wolli.	Livingston.	585										50.4	8.	17
Mt. Morris		525										50.6	-9	17
Lockport	Niagara											51.2	85	18
Victor	Ontario												8.5	17
Wedgewood	Schusler.	1350					-				47.9	49.3	87	16
Addison..........	Stenbea	1000							67	40	498	50.0	87	c
Sunth Canisteo.	Steuben.	1480							67	38	47.5	48.0	86	d
Arcade	W yoming	1557									47.0	478	80	c
- Varysburs												49.3	85	
Eastern Plateau..							.					48.6	92	18
Binghamton	Broome	870			.		.		-		49.5	49.8	87	18
Oxfurd	Chenango	550			.		.					472		
Cortland		1120										47.6	85	16
Bloomville	Delaware	1550			.						49.2	50.4	89	16
South Kortright		1700			.		.					45.8	86	15
Brooktield	Madison	1350									48.2	52.4	87	18
Hamilton .	Madison	1127			.							45.8	85	16
Middlerown	Orange	660										49.6	81	17
Port Jervis		470										51.3	92	18
Cooperstown.	Orsego	1300			.		.				45.7	46.3	81	16
Now Lisbon	(1)	1234			.		.				446	46.0	84	16
Onconta......-.--		11100					.				48.7	49.9	86	16
Perry City	Schuyler	1038									47.2	48.9	85	f
Waverlv....	'Tiogat...	825			,		-				49.9	61.0	90	18
Mohouk Lik	Ulster	1245			.		.					46.8	84	17
Northern Platcau.												43.3	82	
Saranac Lako....	Franklin											40.2	78	16
Gloversville	Fulton..	802									46.6	46.5	82	
Lowville.		900										44.4	78	
Number Four		11571	30.08	3044	8	29.56		0.88				42.5	79	19
'Turm.		1240										42.7	75	19
Attantic Coast												49.4	92	18
lirooklsa	Kings	107										53.0	90	16
Manhattan Bonch.	Kings.											46.8	79	19
New York City.	Now York	314	30.13	30.53		29.67		0.86	74	40.		50.0	90	18

for April, 1896.

turb-(Tn Dhgrees Fahr.)								Sky.			Precipitation-(Inches).						$\begin{aligned} & \dot{3} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & \dot{\theta} \\ & \stackrel{y}{*} \\ & \stackrel{y}{6} \end{aligned}$	$\stackrel{\oplus}{\stackrel{\oplus}{巴}}$				$\stackrel{\oplus}{\underset{\Xi}{5}}$		$\stackrel{\oplus}{\pi}$	Number of clear days.	Number of partly cloudy days.						$\stackrel{\oplus}{\tilde{\circ}}$		
8	5	70	22	44	20	5	a	a 10.0	13.1	6.9	90	1.37	2.05	2.00	24		
12	4	72	21	34	20	8	10	05	14	11	13	1.69	0.36	8.00	24	6.9	
9	4	76	25	42	16	7		311	10	9	9	1.58	0.48		24	5.5	
8	-	76	24	42	r	5	2				9	1.48	0.35		17		
15	4	70	25	41	r	9		3	17	7	10	1.58	0.41		17	2.9	W.
14	,	71	21	39	23	${ }_{6}$	${ }^{1} 4$	4	18	8	12	1.31	0.50	10.00	24	7.0	s. W.
17	3	59	14	28	2	6	10										
16	3	66	20	32	20	5	24	4	19	8	8	2.48	0.91	12.30	24	7.0	
19	3	70	18	30	r			18	4	8	5	0.77	0.42		10		S. E.
19	4	66	23	40	30	8		3.6	20	4	8	1.05	0. 34		17		
18	i	71	29	38	16	5		815	13	2	${ }_{6}$	0.46	0.25		21	10	N. W.
15	3	70	21	37	30	10	10	17	3	10	6	0.40	0.13		22	T.	
18		69						14	11	5	9	0.92	038		20	02	
13	i	74	22	32	s	9	10	, 5	21	4	10	252	2.05	2.00	17	1.5	N. W.
17	4	70	25	42	r	10		114	12	4	,	1.07	0.43	900	17	0.2	S. W.
12	4	74	27	44	20	11		16	,	5		125	0.35		24	2.5	W.
13	4	67	20	34	12	5		3. 7	10	13	13	1.36	0.36	12.45	17	2.5	
12	3	73	21	37.	15	10	10) 9	15	6	10	1.93	0.67		19	2.9	
10	3	70	24	50	15	4		212.6	9.6	7.8	6.4	1.22	0.87	9.30	6		
17	4	70	23	37	15	11	ab	11	11	8	-	0.63	0.82		2	10	S. E.
15	2	70.	20	41	t	17	ac	11	11	8	6	0.78	0.30		21	1.0	
13	7	72	25	41	r	10		416	7	7	8	0.93	0.36		22		N. W.
10		79	28	44	16	9	25	15	7	8	6	1.69	0.47	500	6	0.5	W.
11	8	75	28	50	15	13					6	1.48	0.44		7		
24	8	63	27	44	13	12		14	12	4	G	1.20	0.30		7	7.0	W.
14	3	71	24	40	16	,		10	10	10	8	0.90	0.34	11.50	21-22	1.8	W
17	,	69	20	42	16	9	ad	14	9	7	3	140	0.87	930	7	4.0	
20	k	72	26	46	13	8		12	12	6	5	1.63	0.71		7	0.5	N. W.
15	,	68	18	31	16	8	$a \mathrm{a}$	P12	12	6	6	1.25	0.49		21	6.0	S. W.
15	3	69	25	43	16	10		10	7	13	5	080	0.39		2	1.5	S. W.
16	3	70	26	41	16	11	4				7	1.39	0.36		6		
15	,	70	24	37	15	10		8	15	7	10	1.58	0.84	230	21	1.1	
15	3	75	26	49	13	9	10	9	12	9	8	1.18	0.35	345	2	30	
17	4	67	17	31	,	,		22	0	8						6.0	
10	3	66	21	44	30	6	25	11.2	110	7.8	9.6	1.29	0.65		3		
10	3	68	20	39	19	11		413	10	7	10	1.37	0.28		21	7.5	S. W.
17	4	65	22	39	v	8		413	9	8		0.96	0.33	600	,	1.4	S. E.
13	,	65	24	44	30	10		i 9	14	7	9	0.80	020		22	3.0	
11	,	68	23	35	w	7	28	11	7	12	11	1.84	1) 29	020	18	11.2	N. W.
13	4	62	18	33	30	6	25	10	15	5	9	1.48	0.65		3	9.1	S. W.
14	4	67	20	45	18	4	af	16.8	7.3	5.9	5.0	0.98	045	12.00	7		
24	4	66	20	34	18	4		20	4	6	6	$\cup 87$	0.30		21	3.0	
$\stackrel{22}{23}$	6	57	14	28	19	4	28	85	5	0	4			…..	\cdots		N. W.
23	4	67	16	38	18.	6		11	13	6	6	1.24	0.40		2	1.7	N. W.

Meteorological Data

for April， 1896 －（Continued）．

ture－（In Degrees					FAh．）			Sky．			Precipitation－（Inches）．						
$\begin{aligned} & \text { + } \\ & \text { 荡 } \\ & \text { E } \\ & \hline \end{aligned}$	$\stackrel{\oplus}{\check{E}}$	Mouthly rauge．			$\begin{aligned} & \dot{\text { ® }} \\ & \text { 甲. } \end{aligned}$		$\frac{\stackrel{D}{\check{c}}}{\stackrel{L}{\circ}}$		Number of partly cloud sdays．	Number of cloudy days.		$\begin{gathered} \text { ت゙ } \\ \text { Hi } \end{gathered}$			$\underset{\substack{2 \\ \hline \\ \hline}}{\substack{2 \\ \hline}}$		
24	m	67	21	44	18	6					4	1.13	0.45	$\text { h. } \quad \text { m. }$	．	4.5	
18	n	72	26	45	18.	7		20	2	8	5	0.73	0.30	5.00	1	0.3	s．W
24	${ }_{4}$	63	19	38	18	5		13	11	6	5	1.02	0.40		21		
14	4	78	25	40	18	6		12	9	9	5	0.91	0.31	11.30	7	4.8	S
18	p	68	23	41	t	5		12.5	92	8.3	5.9	1.31	1.10		8		
24	${ }^{2} 4$	66	20	38	18	8	4	13	9	8	7	0.98	0.34		7	3.2	
18	p	68	25	40	16	8		12	6	13	6	1.86	0.60	14.30	21－22	7.5	W
21	q	66	23	34	15	5	2	7	14	9	7	0.83	029	19.00	1－2	1.9	S．W
21	9	70	25	41	15	7		11	9	10	5	1．11	0.53		7	4.5	S．
21	4	69	26	41	13	10	ag	13	13	4	7	1.18	0.51	10.00	7	5.0	N.
21	4	72	23	40	18	7	8				3	1.98	1.10		8		E．
20	1	68	22	37	13	8	7	19	4	7	6	1.20	0.44	13.00	7	4.0	
18	3	62	22	33	x	15	$a h$				7.0	1.25	040		1－21		
18	3	62	22	33	x	15	$a h$				7	1.25	0.40		1－21		
19	i	68	21	41	r	9	bb	10.0	9.0	11.0	3.5	1．（\％）	0.54	24． 00	21－23		
19	i	69	19	40	y	10	$b c$				4	085	0.50		22	10	N．W
20	3	66	23	41	r	9	$b b$	10	9	11	3	1.20	054	24.90	$21-$		
10	4	65.	22	46	30	6	$b d$	10.0	10.8	9.2	8.0	1.43	1.03	2.00	17		
12	4	67	20	29	z	6		10	11	8	12	3.17	0.74	21.30	4	11.5	V
10	4	68	21	37	30	6	，				\because	0.38	0.27		18		
16	4	67	261	46	30	14	b_{1}	10	14	6	11	1.37	0.25		19		
15	4	64	22	34	27	8	$a^{\prime \prime}$	9	13	8	10	2.66	1.03	2.00	17	80	S．W
16	4	62	21	40	13	6	28	5	8	17	8	1.33	0.33		25	6.0	N
11	5	64	22	32	26	9		10	11	9	，	0.72	029	7.00	21	2.2	S．W
13	4	65	22	36	15	10	bf	16	8	－		1.37	0.50		25	5.0	s．W
17	14	63	18	45	12	3	10	10.5	10.8	8.7	8.6	088	0.58		24		
20	m	62	18	30	12	6		15	4	11	6	1.22	0.58		24		
18	4	60	18	32	30		10	5	11	14	10	0.93	0.27		21		S．W
20	－	64	20	35	30	6	3	9	13	8	7	0.89	0.25		23		N．W
19	4	63	17	29	30	7		13	12	5	12	1.09	0.38		21	1.0	S．
21	\％	61	20	41	13	6		11	8	11	8	0.43	0.16			T．	
18	3	68	22	45	12	9	，				14	051	0.18	1.00	17		N．
19	i	65	20	35	19	9	3	13	10	7	，	0.71	0.29		1	0.5	
18	4	62	16	32	19	5	3	10	7	13	7	1.08	0.35		3	5.0	S．${ }_{\text {E }}$（
17	14	63	20	33	27	6	3	15	12	3	3	0.41	0.30		2	0.0	S．
20	4	65	18	32	30	4	3	9	17	4	9	1.02	0.44		18	T．	S W
20	3	61	18	40	12	．	7	5	14	11	13	1.46	0.29		24		W．

Meteorological Data

*Mean of the tridaily observations. \# Mean of the maximum and minimum by the Draper the tri-daily observatious are derived by the formula ($\left.\bar{i} \mathrm{a} . \mathrm{m} .+{ }^{2} \mathrm{p} . \mathrm{m} .+9 \mathrm{p} . \mathrm{m} .+9 \mathrm{p} . \mathrm{m}.\right) \div 4$. four hours.
(a) 2. 21; (b) 17. 19; (c) 16, 18; (d.) 17, 18, 19; (c) 17,18 ; (f) 16,19 ; (g) 16,17 ; (h) $16,19,27$; (i) (t) 13,$15 ;(u) 17,23 ;(v) 13,16 ;(w) 16,30 ;(x) 13,21 ;(y) 17,20 ;(z) 13,11,27 ;(a a) 2,3,24,28$; (ab) (bd) 3, 7 28; (be) 3. 25; (bf) 1, 3; (bg) 4, 7 .
for April, 1896 - (Concluded).

ture - (In Degrees Fahr.).									Sty.		Precipitation - (Inches).						
	$\stackrel{\text { ® }}{\stackrel{I}{\circ}}$				$\stackrel{\oplus}{\square g}$	Least daily range	$\stackrel{\oplus}{\stackrel{\text { ®n }}{5}}$					$\begin{aligned} & \text { క్ँ } \\ & \text { Hi } \end{aligned}$		Duration.	$\stackrel{\text { ® }}{\boxed{E}}$		
18	4	66	20	35	15	8	3	9.3	12.3	8.4	5.7	1.77	1.30	h. m.	21		
19	-	65	18	28	30	9		4	22	8.	5.7	1.40	1.00	14.00	,	T.	N. W.
18	4	69	22	34	30			14	5	11	6	2.90	1.30	0.45	21	1.0	
21		65	20	35	15			10	10	10	9	1.02	0.42	4.30	1	1.	S E.
8	5	66	21	50	15	3	10	11.4	10.4	8.2	6.9	1.25	2.05	2.00	21	3.4	S. W.

thermograph. \|Renort receiced too late to be used in computing means. The means from tBlank indicates that the duration is not shown in the original records, but is within twenty-

3,$4 ;(1) 4,5 ;(k) 3,4,9 ;(m) 2,3,4 ;(n) 4,6,10 ;(p) 3,4,6 ;(q) 3,4,5,6 ;(v) 15,16 ;(\varepsilon) 15,16,20$; 3, 28; (ac) 2, 3; (ad) 3, 6; (ab) 3, 4, 7; (af) 7, 28; (ag) 2, 7; (ahu) 3, 20; (bb) 4, 21; (bc) 5, 6, 22, 29;

Temperature - April, 1896, Showing Daily Means for

the Regions, and Daily Maxima and Minima for the Stations.

15	16	17	18	19	20	21	22	23	24	25	26	8%	28	29	30	
61	67	70	69	70	60	61	46	48	49	54	56	58	60	59	59	49.2
76	84	82	82	81	75	66	55	63	51	60	69	64	69	68	70	
45	53	to	56	57	41	54	34	32	41	44	39	48	43	46	42	48.2
80	85	81	84	83	79	68	56	62	52	64	69	70	71	68	74	
44	43	51	55	50	39	54	37	27	42	37	37	44	50	41	40	482
78	84	$8{ }^{2}$	84	83	77	69	53	64	51	61	70	66	69	67	73	
36	42	49	48	53	37	53	36	$\because 6$	42	46	35	45	49	46	44	47.0
79	85	83	84	82	77	68	58	66	53	66	73	70	73	63	75	
38	44	53	51	54	39	53	37	29	41	47	38	43	49	49	41	49.5
76	84	83	85	80	75	64	53	69	49	68	73	65	72	67	73	
47	51	60	57	57	44	52	34	30	43	45	40	48	47	52	4	49.0
...																48.4
76	82	81	81	79	74	64	54	61	51	64	70	68	71	75	77	
45	54	59	55	56	42	52	36	32	46	50	49	52	49	54	53	50.8
80	86	83	84	89	80	75	59	65	60	66	74	72	70	73	76	54.2
50	56	63	60	68	55	61	38	41	48	49	51	56	54	55	54	54.2
80	84	85	80		75	67	53	61	58		64	74	72	63	76	
45	50	60	57		46	54	38	31	48		36	43	54	49	36	50.4
82	88	89	84	85	78	70	52	65	58	69	73	74	65	75	68	
45	50	63	53	62	49	52	38	36	30	38	41	44	60	60	58	50.6
77	80	81	85	80	73	70	55	64	60	64	65	79	73	64	82	1.2
47	56	58	56	64	39	53	37	33	47	51	41	56	56	50	44	1.2
76	80	85	84	81												
38	46	45	60	60												45.2
82	87	85	81	83	78	70	54	62	55	62	68	65	64	68	69	
50	55	59	56	61	46	52	36	34	40	42	43	48	48	45	42	49.3
81	87	85	87	86	79	74	57	65	54	63	71	66	85	71	71	
39	45	51	50	55	44	54	. 38	30	38	45	41	44	48	48	40	50.0
80	85	86	88	86	78	72	57	66	51	61	73	66	70	68	70	8.0
40	45	53	50	54	34	53	37	26	40	42	35	45	44	46	37	8.0
74	80	79	80	76	72	62	49	59	53	61	67	68	70	65	72	
46	55	59	56	54	45	48	34	30	44	45	. 38	49	50	46	42	47.8
80	84	85	85	77	75	65	55	65	65	63	70	70	70	68	79	
43	50	58	55	57	52	47	36	30	43	48	57	45	46	46	43	49.3
61	66	68	69	68	68	60	46	48	49	50	54	58	53	58	55	48.7
79	81	84	87	85	77	72	57	61	59	71	71	68	58	73	72	
42	51	52	52	57	50	55	38	30	35	41	41	49	47	43	41	49.8
78	77	85	85	76	73	63	62	64	58	68	69	64	72	73		
37	43	49	50	46	52	35	26	29	40	35	43	43	48	36		47.2
79	85	83	81	83	75	69	63	59	60	58	69	68	57	69	71	47.6
38	44	40	50	52	45	52	33	31	30	46	37	43	45	49	42	4.6
82	89	87	88	82	78	72	56	70	65	51	75	64	58	77	80	
42	45	51	53	51	49	51	38	32	34	41	42	45	44	53	38	50.4
86	81	73	72	82	73	67	59	58	64	55	69	68	60	70	68	
36	35	45	48	49	44	49	32	25	29	38	36	44	42	47	31	45.8
78	82	85	87	82	80	82	56	79	81	80	79	80	75	74	72	
54	56	51	53	58	52	50	38	38	47	42	45	46	42	44	46	52.4
18	85	81	80	83	72	69	58	58	61	55	66	47	60	76	72	
42	45	51	52	55	46	52	28	28	31	59 39	38	41	45	48	36	46.8
78	85	88	76	82	78	70	54	65	59	. 52	58	54	55	69	66	
40	43	60	61	43	57	58	40	39	41	$\stackrel{.}{40}$	39	41	40	44	42	49.6
88	90	91.	92	89	82	72	58	70	64	54	72	70	59	72	70	
44	50	54	56	59	58	56	46	34	36	43	38	41	44	50	42	51.3
3	81	80	79	80	68	59	48	54	57	53	63	67	63	59	63	46.3
50	50	55	60	58	52	18	34	32	3.5	42	42	45	48	45	43	46.3
77	84	83	82	83	72	70	52	59	60	52	67	67	59	68	70	
36	41	47	53	52	44	50	33	25	29	39	35	42	44	49	35	46.0
80	86	83	84	85	76	67	57	64	65	60	75	72	64	75	76	
41	45	52	60	55	47	52	36	31	33	42	40	46	40	52	36	49.9
78	85	84	83	85	76	71	57	60	60	62	65	71	62	69	73	48.9
41	58	60	52	56	41	51	34	32	33	43	40	43	48	46	46	48.9
83	89	86	90	88	81	77	62	69	61	59	75	69	63	72	73	
40	48	53	51	58	49	56	38	27	34	45	40	48	49	48	44	51.0
74	79	84	81	79	72	68	55	70	59	51	61	61	52	63	59	
44	60	53	58	56	54	50	41	39	40	40	39	42	40	39	38	46.8

Daily Means for the Regions, and Daily

Maxima and Minima for the Stations - (Comtinued).

Daily Means for the Regions, and Daily

StATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\overline{\text { St. Law.Val. (Con.) }}$														
Massena.							\cdots	\ldots			…		
	38	40	30	36	42	48	36	46	50	46	56	64	74	68
Norti	20	26	20	16	24	28	23	26	26	32	38	32	34	38
Ondeusburs	39	41	28	28	38	40	43	49	51	51	49	54	68	63
	-2	28	19	14	11	25	27	27	28	32	32	35	40	36
Potsilam	34	40	28	28	38	39	26	39	42	48	50	56	73	70
							24	-	2	23	29	33	40	40
Great Lakes	40	31	23	25	32	35	31	34	39	41	45	51	65	01
Daukirk.					\cdots	\cdots		- -		
	58	40	20	30	38	39	35	43	57	45	57	75	78	68
Westiel	38	20	20	20	30	29	25	25	32	35	40	45	60	58
Buffulo	55	34	24	31	35	35	35	44	54	38	51	75	71	57
Buftalo	32	22	19	18	23	28	25	28	31	3.5	33	44	53	40
	55	45	26	32	$\stackrel{41}{4}$	44	37	44	53	49	53	69	80	72
Pittsfor	80	21	20	20	25	$\because 8$	27	27	25	36	40	42	57	55
	5!	28	27	31	41	42	37	44	53	47	52	70	79	71
Rochester	31	21	20	19	25	$\stackrel{29}{ }$	27	29	32	37	40	44	58	57
	40	${ }^{46}$	27	32.	41	39	36	41	45	45	49	57	79	71
Appleton	31	24	21	21	28	26	28	26	27	37	37	37	38	55
	41	38	27	34	42	39	37	40	49	45	55	78	71	71
Fort Nia	31.	24	18	20	29	28	24	27	29	35	37	33	45	40
Bald winsville	42	41	28	29	37	46	39	44	53	50	52	64	80	72
Bald winsville	30	20	19	19	23	26	27	25	28	35	36	40	51	53
Stracuse			\cdots				\cdots				\ldots			
	42	38	24	28	34	44	35	38	47	47	48	62	79	70
Osmego.............	29	27	19	18	26	26	28	30	26	36	39	35	53	57
Palermo	44	37	24	24	35	47	36	40	45	48	48	58	77	69
Palermo	23	24	18	17	24	20	26	25	20	33	37	31	46	53
	48	45	25	32	40	47	37	44	52	50	54	66	82	71
Lyon	30	24	21	20	26	30	29	30	27	37	41	42	53	57
	81	40	30	33	43	38	${ }^{33}$	40	54	45	55	75	80	66
Erie, Pa	34	23	20	23	24	30	26	24	25	35	37	35	64	54
Cent	39	36	24	26	33	37	31	35	38	40	45	54	67	
Fleming	48	44	28	29	38	38	40	43	50	48	51	65	79	71
Femiag	30	33	19	19	22	26	24	23	25	35	38	41	54	60
Watkins.			\cdots		\cdots	.		-	...		
	49	46	28	33	44	54	38	47	54	47	54	68	84	73
	28	24	19	18	24	28	25	26	25	33	37	41	52	55
Ithaca	47	44	29	34	${ }_{21}^{41}$	49	35	45	5	44	52	65	82	75
	30	25	21	21	27	27	26	27	25	35	38	42	51	57
Mean............	38	33	25	25	31	34	32	34	36	39	43	50	60	59

[^5]Maxima and Mintma for the Stations - (Concluded).

15	16	1%	18	19	30	21	22	23	24	25	26	27	29	29	30	
74	76	78	70	76	64	50	66	60	66	54	68	74	60	58	64	
44	56	56	52	5	42	40	34	32	34	46	42	46	51	42	34	47.1
69	75	69	66	75	65	60	54	63	56	50	$7{ }^{7}$	5	67	61	59	45.2
44	47	45	48	44	43	34	32	36	38	39	40	45	45	40	37	40.2
75	77	73	69	78	66	58	56	6.3	56	58	64	7	63	${ }_{6}^{61}$	55	
39	45	47	46	45	46	31	31	3?	33	34	42	45	51	39	31	44.4
64	68	69	65	65	53	53	44	47	50	51	53	59	58	53	58	49.0
73	77	80	82	78	67	65	46	57	58	39	65	T2	73	67	77	
55	66	52	55	55	42	45	36	34	49	4	5.5	50	53	47	48	50.8
67	69	63	74	70	62	5_{0}	47	60	56	51	67	12	67	64	78	
48	52	46	48	38	37	39	36	35	48	37	44	5	50	49	40	47.0
80	$8 t$	± 2	T6	80	73	6.3	53	60	5	60	61	7	67	57	74	
51	57	64	60	55	47	4:	35	30	40	48	40	$4{ }^{\prime \prime}$	54	49	39	50.2
78	81	82	75	79	72	0.1	55	60	57	60	${ }^{61}$	31	66	57	74	
53	59	63	60	53	49	39	36	37	45	47	42	5	54	47	45	5). 0
78	82	8?	74	79	71	69	5.5	59	5	61	56	76	6.5	60	60	47.7
48	50	${ }_{85} 5$	53	4.	43	43	38	31	40	43	39	89	47	43	40	47.7
78	80	86	76 46	79 43	64	68	59 37	60 3 3	58	6.4 39	63 37	8	69 43	49	57	47.6
47	-40	80	46 76	8	${ }_{75}^{42}$	${ }^{42}$	${ }_{5}^{37}$	62	59	56	68	72	43	68	T2	
51	54	63	62	47	53	35	3.5	40	43	45	48	52	50	4	48	49.9
	.-	\cdots		.									
76	77	79	73	80	63	59	4	52	60	53	53	71	63	5	71	
52	54	(i)	48	48	43	41	34	37	42	46	41	48	50	45	46	47
77	80	75	72	80	67	67	50	59	59	63	64	71	61	63	72	
45	51	56	58	58	53	43	43	40	33	43	36	38	50	40	44	47.4
80	85	82	74	81	73	65	52	60	60	59	62	70	6.5	61	73	
5	54	67	60	60	51	43	35	38	41	49	42	46	54	46	41	50.7
73	78	79	81	78	75	64	48	54	64	49	65	72	70	53	73	
56	66	69	54	52	48	47	39	37	46	44	46	43	54	41	45	51.0
65	70	73	71	72	Gi^{2}	G0	4	47	50	52	53	58	56	39	57	50.7
79	84	80	78	81	72	6.7	34	89	01	57	6.7	69	61	67	73	50.4
54	58	67	62	62	49	B3	34	35	39	44	45	50	50	50	45	$50 . t$
82	. 7	84	84	85	76	70	56	62	60	61	66	70	62	71	74	
49	55	65	60	63	47	53	35	35	49	46	41	45	32	50	4.4	51.
81	85	83	82	82	\% 0	60	51	59	60	60	61	68	61	08	70	
46	52	58	57	61	50	52	36	34	39	46	43	48	50	49	43	50.4
61	67	68	68	66	¢1	56	45	47	50	49	53	55	54	55	54	48.0

the Draper Thermograph,

Daili and Monthly Precipi

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Western Plateau..	0.02	0.13	0.14	0.04	'i'	0.01	0.02	0.00	1.	0.09	0.6	0.03	T.	0.01
Alfied	. 05	次	1.			0	12			12'	.13'	T.		I.
Andelica		. 22	- ${ }^{\text {j }}$. 0.5		1.	. 10			. 20	. 20	. 04		
Solivar		$\therefore 1$.12						. 08			. 06		
Friendship	T.	.14	.26	. 01		.n2	T.	\ldots	T.	.12	. 17	T.	'1.
Itumphrey	. 0.5	25	.16	08		. 08	. 04				02	. 0.3		. 03
Little Valley.														
Cberry Creek	T	. 15	1.05	. 10		. 01	. 08		. 0	- 2	. 015	T.		. 03
Jamestown		. 19	. 30	. 30			I.	\cdots	T.	-20	. 10	. 13		. 05
Elmira.		$\therefore 0$.031			. 02				. 42	\ldots			.-.
Jine Cit	. 28	24	T.	T.	I.	T.	T.		T.	\therefore	T.			
Akron		.18	(2	T.		T	T.		T.	\ldots	.0:3	. 10	T.	-...
Aron		. 06	T.				T.			. 03				
Mt. Morris			. 1.5	. 03		T.					. 05			T.
Lockport	1.	T.	T.			T.		--		1.	. 06	.03		
Victor	. 01	.02	T.	1.		T.	T.	\ldots		T.		T.	\cdots	
Trione														
Wedgewood		. 15	T.	T.		. 03	. 01			.07				
Addison	L.	. 07	T.	. 01		. 01	. 01		\cdots	. 20	. 04			
Atlanta								-	...			\cdots		\ldots
Haskinrillt		.11	. $0: 1$.-	.19	. 05			
South Canisteo	T.	T.	.15	. 10		T.	T.				. 25			T
Aicade		. 10	. 09	. 03		T.	. 10			. 04	. 02	. 13		. 02
Attica...														T
Varysburgh		. 16	.10	. 03		T.	'T.			. 03	. 08	-14		T.
Eastern Plateau..	0.03	0.20	002	004	0.01	0.17	0.14	0.00	0.00	0.03	'r.	0.00	0.co	0.00
Binghamton 32	T.	T.		. 10				T.	\ldots			\ldots
(haruangotorks..											\ldots			
Oxford.	.122	-	. 10	T.		T.	T.				..			
Cortland	.02	. 18	. 18			. 10	. 11			- -	...			\ldots
miomemille.		114		39							\ldots			
Deporit											\ldots		...	
South Kortrimht.	*	+.31				. 44					...			
Brookfield		.-. 10	20	. 20	. 30					
Hamiloon		.23	.02'	. 02		. 02	. 02			\ldots	...			-
Apulia					\ldots					\cdots		\ldots		
Midilletown	*	$t .18$	…	T.		. 87					\ldots			
Port Jervi		. 20				. 0.5	. 71				...			
Warwick		13			\ldots	. 05	. 73			...	\ldots	\cdots	\cdots	\cdots
Cooperstown		. 38	, 08	. 07		\ldots	. 23			\cdots	\cdots	\cdots		
New Lixbon		. 39	1.	T.	\cdots
Onemma	. 29	. 16				. 36	. 13							
Perry Cit	. 03	. 29	T.	T.		. 03	(2)	.-.		. 09	...			
Nrwark	' I .	. 30	T.			T.	T.				T.			
Wavelly	T.	. 35	. 10	T.		. 06	' ${ }^{\text {', }}$. 34	T'.			
Eilis..											
Mohonk Lake														
Northern Plateau.	0.09	0.16	0,25	0.03	0.00	002	0.10	0.02	0.011	0.00	T.	0.00	$0 . c 0$	T.
West Chazy														
Flizaliethowrn.														
Saranac lake	T.	. 10	.17	. 08 14	T.		...	---	T.	-.	\cdots	T.
Gloversville	0.06	. 33	. 03	T.		\ldots	10				T.			' 1.
Low ville.		. 16	12	. 05			05				.-			
Number Four	.12	. 26		+.40			. 30							T.
Turin.	. 10	.11	. 65			T.	12				T.			'T.
Kingestation.	 301					10.						

tation for April, 1896 - (Inchis. $)$

Dally and Montiliy Precipi

tation for April-(Continued).

Daily and Minnthly Precipi

\ddagger Record for the month incomplete. 1 Reports
tation for April - (Concluded).

too late to be used in computing the arerages.

Statistics of Temperature

STATION.	COUNTY.	Temprratrire (Degrees Fait.).									
								extremes of monthly MEAN TEMPERATURE FOR APRIL.			
									它	+	-
Wostern Plateau.		43.9				50.5	$+6.6$				
Angelica	Allegany	42.8	14	1855	1896	48.2	+5.4	48.2	1896	35.9	1857
Humplirey	Cattaraugus	43.1	13	1884	1896	49.6	+5.9	49.0	1896	37.6	1884
Elmira....	Chemung ...	45.7	18	1851	1896	54.2	+8.5	54.2	1896	38.5	1857
Eastern Platcau		43.5				47.8	+4.3				
Oxford.	Chenan	44.0	29	1828	1896	47.2	+3.2	51.6	184	376	1838
Cortland	Cortland	42.0	33	1829	1896	47.6	$+5.6$	48.0	1840	34.6	1857
Hamilton	Madison	454	20	1827	1896	46.8	+1.4	51.5	1844	38.8	1836
Cooperstow	Otsego	41.0	43	1854	1896	46.3	$+5.3$	51.6	1878	33.6	1874
Waverly .	Tioga.	44.9	14	1883	1896	51.0	$+6.1$	51.0	1896	42.0	1885
Northern Platea						41.4					
Lowvillo	Lewis	42.9	31	1827	1896	44.4	+1.5	51.0	1833	34.3	1857
Atlantic Coast.						49.4					
New York City	New Y	48.0	26	1871	1896	50.0	+2.	536	1871	41.8	1874
Setauket......	Suffulk	47.2	11	1880	1896	48.7	+ +1.5	498	1891	44.7	1888
Hudson Valley						49.1					
Albany	Albany	46.1	23	1874	$189{ }^{\text {c }}$	500	+39	51.5	1878	36.6	1874
Honeymead Brook	Dutchess	45.6	16	1881	1896	48.9	+3.3	50.5	1886	40.4	1887
West Point....-	Oranse	47.9	67	1826	1896	50.3	+2.4				
Champlain Valley....		414				433	$+1.9$				
Plattsburgh Barracks.	Clinton	414	42	1839	1896	43.3	+1.9	48.2	1814	35.6	1841
St. Lisorence Valley..		425				45.6	+3.1				
Madinon Barracks....	Jefferson	42.3	35	1839	1896\|	46.0	+3.7	52.8	1878	34.1	1874
Caston	St. Lawrence..	42.5	35	1862	1896	4.8	$+2.3$	52.4	1878	33.7	1868
North Hammond		41.9	18	$18{ }^{\text {a }} 7$	1896	47.1	$+5.2$	488	1871	33.3	1874
Potsdam	"	43.3	29	1828	1896	4.4	+1.1	56.2	1839	37.0	1841
Great Lakes		42.8				48.6	+57				
Buffalo...	Erie	42.1	46	1×1	1896	47.0	+4.9	500	1878	34.5	1874
Rochester	Monroe	43.8	26	1871	1896	50.0	+6.2	52.5	1878	35.6	1874
Fort Niagara	Niagara	426	40	1842	1896	47.6	$+50$	499	1878	356	1874
Baldwimaville	Onondaga	436	$\because 0$	18.4	1896	499	+63	49.9	1896	38.6	1857
Oswego	Oswego..	41.7		1871	1896	47.0	+53	524	$187{ }^{*}$	38.8	1874
Palermo	"	416		1854	$18!16$	47.4	+5.8	50.0	1878	32.4	1874
Erie, Pennsylvania.	Erie	44.4	23	1874	1896	51.0	+6.6	51.0	1878	37.0	1874
Central Lakes.		44.4				50.4					
Ithaca..	Tompkins	444	18	1879	1896	50.4	+60	50.4	1896	41.8	1888
Average departure..							+ 45			

and Precipitation - April.

MAP OF THE STATE OF NEW YORK

SHowing
THE MEAN TEMPERATURES
FOR APRIL, 1896

MAP OF THE STATE OF NEW YORK

SHOWING

THE PRECIPITATION

Meteorological Summary for May, 1896.

The average atmospheric pressure (reduced to sea level and 32 degrees Fahr.) for the State of New York during May was 29.99 inches. The highest barometer was 30.43 inches at Albany on the 7 th, and the lowest was 29.54 inches at Rochester on the 28 th. The highest mean pressure, 30.03 inches, obtained at New York city, and the lowest, 29.96 inches, at Number Four, Lewis county. The average of the mean pressures at six stations of the National Bureau was very slightly above the normal value, the departure at Albany being the greatest.

The mean temperature of the State, as derived from the'records of 73 stations, was 61.0 degrees. The highest local mean was 65.8 degrees at Brooklyn and Wappingers Falls, and the lowest was j8.0 degrees at Oswego. The highest general daily mean was 73 degrees on the 10th, and the lowest was 55 degrees on the 20 th. The maximum temperature reported was 95 degrees at Middletown on the 9 th, at Poughkeepsie and Brentwood on the 10th and at Brooklyn and West Point on the 11th. The minimum temperature was 29 degrees at Varysburg on the 6th, and at Brentwood on the 8th. The mean monthly range of temperature for the State was 51 degrees, the greatest local range being 66 degrees at Brentwood, and the least 36 degrees at Oswego and Erie, Pa. The mean daily range was 23 degrees. The greatest local daily range was 50 degrees at Watertown on the 14 th, and the least was 2 degrees at Setanket on the 21st. The mean temperatures of the various sections of the State were as follows: The Western Plateau, 62.6 degrees; the Eastern Plateau, 61.0 degrees; the Northern Plateau, 58.1 degrees; the Atlantic Coast, 62.8 degrees; the Hudson Valley, 63.3 degrees; the Mohawk Valley, 60.4 de-
grees; the Champlain Valley, 58.8 degrees; the St. Lawrence Valley, 59.3 degrees; the Great Lakes, 61.2 degrees, and the Central Lakes, 62.7 degrees. The arerage of the mean temperatures at 27 stations possessing records for previous years was 4.8 degrees above the normal value, excesses being reported from all stations. The departures were greatest in the Western Plateau and Great Lake Region, and last in the St. Lawrence and Champlain Yalleys. At the following stations the temperature was the highest for May during the period covered by their records: Angelica, 15 years; Ifumphrey, 13 years; Elmira, 17 years; Cortland, 32 years; Waverly, 14 years; Setauket, 11 years; Honeymead Brook, 16 years; Baldwinsville, 20 years.

The mean relative humidity was 69 per cent. The mean dew point was 51 degrees.

The average precipitation, as derived from the records of 93 stations, was 2.52 inches. The maximum local precipitation was 4.70 inches at Bolivar, and the least was 0.80 inches at Eagle Mills. Generally the rainfall was evenly distributed over the State, amounts exceeding fonr inches being reported only from a narrow belt in southern Allegany and Steuben counties, and from Romulus, Sencea county. General rains occurred on the $3 \mathrm{~d}, \mathrm{Sth}, 15 \mathrm{th}$, 17 th to 19 th (excepting in the IIudson Valley and Atlantic Coast where rains occurred on the 19 th 1021 st) and from the 26 th to the close of the month. The heariest rainfall for the State oceurred on the 28 th. No snowfall was reported. The average precipitation at 29 stations possesssing records for previons years was 0.93 inches below the normal amount, deficiencies being reported from all stations excepting Ialermo. The greatest deficieney obtained over the Western Plateau.

The average number of days on which the precipitation
amounted to 0.01 inches or more was 9.3 . The number of rainy days was very uniform over the State. The arerage number of clear days was 10.4 ; of partly cloudy days, 13.4; and of cloudy days, 7.2 , giving an arerage cloudiness for the State of 48 per cent.

The prevailing direction of the wind was from the southwest. The average wind travel at six stations of the National Bureau was 8,242 miles, which amount is considerably in excess of the usual values for May. The maximum velocity reported was 5 miles per hour at Buffalo on the 29th, direction from the west.

Thunderstorms occurred on the $2 d$ and $3 d$ at a few stations in the Great Lake Region and Western Plateau; on the 4 th at one station each in the Western Plateau, Hudson Valley and Central Lake Region ; on the 5th in the Atlantic Coast Region and one station each in the Northern and Eastern Plateaus; on the 8th at four stations in the Western Plateau; on the 11th, at New York city; on the 14 th at five stations in the Western Plateau and at Brooklyn; on the 15th, at five widely separated stations; on the 17th, general over the State excepting in the St. Lawrence and Champlain Valleys; on the 19th, at six stations in the southeastern sections; on the 24 th at five stations in the Western Piateau; on the 25th, at four stations in the western sections; on the 26th, general in all regions excepting the St. Lawrence and Champlain Valleys; on the 28th, general excepting in regions north of the Mohawk Valley; on the 29th at four stations in the Eastern and Western Plateaus; on the 30 th, at seven widely separated stations; on the 31 st at seren stations in the southeastern sections.

Hail was reported on the $2 \mathrm{~d}, 3 \mathrm{~d}, 5 \mathrm{th}, 11 \mathrm{th}, 14 \mathrm{th}, 17 \mathrm{th}, 27 \mathrm{th}, 30 \mathrm{th}$ and 31 st.

Lunar halos were observed on the $19 \mathrm{th}, 21$ st and 22 d .
Auroras were observed on the $2 \mathrm{~d}, 3 \mathrm{~d}, 17$ th, 19 th and 20 th.

Light frosts occurred on the 1st, 2d, 3d, 6th, 7 th, 8 th, 12 th, 13 th, 14 th, 16 th and 20 th.

The weather of May was characterized by the deficient rainfall, the rapid and great changes in temperature and the high general monthly mean. From the 1st to the 19th the mean temperature was continuously above normal for the season, the average excess being about 9 degrees. The period of greatest departure was from the 9 th to the 11th inclusive, the warmest day being the 10th with station means ranging from 70 to 80 degrees and the general mean for the State of 73 degrees, or about 19 degrees above the normal for this date. A maximum temperature of 95 degrees occurred on the 10th and 11th. The principal depressions of temperature occurred on the 20 th, with general light frosts over the State, and on the 29th to 31st, the mean for the latter dates being slightly below normal. The general mean for the last third of the month was slightly in excess of the normal value.

The principal periods of rainfall were on the 17 th to 19 th and 26 th to the close of the month, accompanied by severe thunderstorms, destructive hail in restricted areas, and high winds along Lake Ontario and the St. Lawrence Valley. Though rain frequency was but slightly less than usual, the precipitation was generally very light until the latter part of the month.

About the usual number of cyclonic storms for May affected weather conditions in New York. With the exception of those which passed in this region on the 18th, 26th and 28th-29th, the storms were of very moderate intensity and all passed centrally north of New York State. The storm of the 28th moved rapidly from the southwest increasing in energy and passed centrally over the Great Lake Region and the St. Lawrence Valley, developing severe thunderstorms with general and the heaviest rains of the
month. The depression occupied the region north of New York, moving slowly northeastward with diminished energy ou the 30th, spreading thence southeastward over New England on the 31st, with general moderate rains and falling temperature throughout this State.

The warm, dry weather that prevailed until about the 26 th, while very farorable for carrying on plowing, planting and seeding, proved quite a serious drought to growing crops; meadows and pastures being the chief sufferers, and winter wheat and ree being somewhat affected. Work progressed rapidly, and was usually about ten days ahead of the season. Plowing for corn was general at the beginning of the month, and some was planted. Hop pole setting was completed, and peppermint roots set out. Early asparagus was marketed on Long Island. Wheat aud oats sowing was nearly completed by the 10th, and many potatoes had been planted. Fruits were in full bloom on the 10th. Apples bloomed profusely, pears, plums, quinces, cherries, etc., rather light, while peaches were extremely scarce, being killed by the February freeze. The serious drouth was thoroughly relieved by general and copious rains of the 26 th and 28 th, but too late to sare the grass crop. Meadows and pastures had suttered severely, and at the close of the mouth farmers were busy sowing fodder crops. Delayed plowing and planting started with renewed vigor after the rains, and at the close of the month nearly all the corn and most of the potatoes had been planted, and early planted potatoes were up. Bean planting was well under way; tobacco setting had begun; and a fine crop of strawberries was being picked. Hops were thriving, and considered ten days ahead. The last week was cool and windy. No damage was done to vegetation by the light frost of the 20 th.

Meteorological Data

for May, 1596.

ture - (In Deqrlies Fah.).								Sky		Prectipitation - (Inches).						
	$\stackrel{\Phi}{\stackrel{\pi}{\rightleftarrows}}$					Least daily range.	$\stackrel{\oplus}{\square}$				$\begin{aligned} & \text { 劵 } \\ & \stackrel{0}{0} \end{aligned}$			$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\Xi}}$		
29	6	48	24	45	14	6	$y 111$	115	4.3	9.2	2.94	19	h.m.	26		
36	7	48	22	35	1	10	28.5	${ }_{16}^{16}$	10	10	262	0.95	500	26		S. W.
35	7.	49	25	41	16	8	1814	15	2	11	1.99	- 8.8		30-31		
35	f	50	26	44	16	13				10	4.70	1.79		26		
36	7	51	27	42	r	17	2.10	18	3	9	3.09	1.00		26		
42	7	43	21	35	16	12	ab 6	17	8	8	3.35	1.14		30		W
45	20	34	13	21	20	6	26.									
40	16	45	21	36	r	8	$\boldsymbol{\alpha c} 4$	27	0	15	3.77	1.04	23.00	25-26		W.
43	7	48	22	37	9	11	219	3	9	11	214	1.30		26		N. W.
39	g	48	24	40	24	13	78	$\stackrel{29}{ }$	1	7	1.98	0.56		28		
39	24	53	28	45	14	6	911	11	9	7	166	0.39		19		s.
40	20	48	25	30	9	14	1:22	4	5	8	1.15	0.40		26		
							14	15	2	8	2.33	0.69	10.00	28		
39	20	47	23	35	*	13	24	25	2	11	2.98	145	9.00	28		IT.
39	7	49	25	41	16	12	$2{ }^{2}, 19$	9	3	8	4.50	1.37	5.00	28		W.
34	${ }^{1}$	53	28	41	t	16^{1}	2514	9	8	8	4.03	1.35		25-26		N. W.
38	20	44	21	35	20	13	ad 8	$2 \because$	1	8	2.48	0.58		28		
29	6	61	28	42	6	13	189	1	1	8	3.27	099		19		
31	20	52	26	45	13	7	23106	(13.8	66	109	2.74	1.18	12.00	28		
39	20	49	24	38	13	10	2112	15		11	311	1.01		26		W
34	20	54	0	44	17	16	${ }^{31} 17$	$\because 0$	4	12	3.53	1.18	1200	28		
35	26	51	24	41	13	14	19.3	12	6	15	2.73	0.50		19		W.
40	20	52.	28	42	${ }^{u}$	12	ae 11	! 9	11	10	2.76	1.11	21.00	31		W.
32	-	54	29	45	13	18	af			7	2.94	0.76		31		
34	20	48	31	40	13	21	17	16	8	11	1.54	0.78	8.00	27		
31	20	55	26	43	13	10	$a_{0} 8$	18	5	13	2.72	0.75	11.30	28		W
40	$\stackrel{2}{2}$	55	21	36	${ }^{7}$,	23, 10	12	9	1	2.861	1.16		28-29		
37	1	55	26	44	16	14	ah 15	12	4	11	2.88	1.12		28		W.
38	20	45	19	34	14.	8	ail 14	11	6	12	2.33	0.56		28		N. W.
31	20.	55	26	42	13	,	21	1.2	10	14	242	0.55	1200	28		N
39	20	52	27	42	13	13	21			9	2.25	0.54		28		
34	20.	52	26.	39	14	12	3114	10	7	10	3.81	1.63		28		N. W.
40	i	50	28	44	16	11	217	18	6	12	2.41	0.97	4.15	28		N. W.
31	28.	53	24	45	14	7	29.8 .6	17.1	54	10.4	2.47	1.35	8.45	26		
32	19	57	26	42	14	7	2910	18	3	,	1.98	0.83		25		V.
35	j	52	22	35	14	8	2911	11	-	14	3.19	1.35	8.45	26		
31	20	52	22	45	14	10	39	18	4	9	$2.03{ }^{\prime}$	0.77		26		
31	20	51	22	39	13	8	256	18		10	2.16	064		26		S. W.
33	20	50	19	32	14	11	aj 7	20	4	10	2.86	1.18		26		
29		58	21	48	1.	2	2112.8	9.7	8.5	83.	2.48	1.44	8.30	28		
40.	1	55	19	34	9	13	2011	10	10	12	2.31	0.59	17.00	${ }_{21}^{21}$		
40	1	52	15	35	12	4	$22: 0$	6	5	4	1.94	0.44		21		S. W.
43	1	48	17	38	9	4	2110	12	9	11	2.01	0.52		28		S. W.
38	7	53	22	40	11	7	21			6	2.66	0.75	3.30	28		N. W.
29	8	68	29	48	15	9	2116	4	11	7	2.18	$\begin{array}{ll}100 \\ 0 & 0\end{array}$	2.00	28		S. W.
3	1	54	20	35	9	2	21.9	14	8	8	3.10	0.76		28		W.
31	1	63	26	47	0	4	21,11	12	8	10	3.16	1.44	8.80	28		S.

[^6]for Mar, 1896-(Concluded).

ture-(In Degrees Fah.).								$\mathrm{S}_{\mathrm{KY}} \mathrm{F}$.			Preciritation - (Incies).						
	$\stackrel{\text { ® }}{\tilde{E}}$				$\stackrel{\text { ® }}{\text { ® }}$		$\stackrel{\underset{\sim}{ت}}{\substack{0 \\ \hline}}$					$\begin{aligned} & \text { ت゙́ } \\ & \text { B } \end{aligned}$					
33	j	54	25	42	14	6		11.2	9.5	103	8.3	2.57	1.50	h.m.	29		
42	20	49	22	34	9	6	21	8	16	$7{ }^{7}$	123	1.55	0.69		21		s.
33	j	54	26	40	14	12	21	15	4	12	7	1.50	0.88	6.00	31		W.
40	1	51	24	33	9	8	21	8	15	8	9	3.17	0.87	12.00	31		S. W.
35	1	60	28	39	a	8	21	9	11	11	6	2.50	0.85		28		N.
41	8	53	27	42	14	10	21	12	4	15	11	3.58	0.92		28		S.
35	1	60	26	41	20	8	22				6	2.89	1.5*		29		E.
39	25	51	24	38	13	14	24	15	7	9	7	2.79	1.31	11.00	28-29		
38	19	46	24	33	12	12	22				9.0	2.85	1.00		28		
38	19	46	24	33	12	12	22				9.	2.85	1.00		28		
35	k	57	23	40	14	10	ak	7.0	12.0	12.0	8.5	1.69	0.47		27-28		
35	1	57	5	32	,	10	al				8	1.85	0.40	3.30	31		S. W.
35	k	57	24	40	14	10	31	7	12	12	9	1.53	0.47		27-28		W.
32	m	48	24	50	14	4	29		13.3	8.0	7.0	1.98	1.65	8.25	28		
32	20	50	21	32	20	9	29		9	11	8	1.26	0.33		26		S. V.
39	n	40	23	40	14	13	26				5	2.41	0.63		25		S. W.
33	13	55	30	50	14	5			16	2	13	2.36	0.72		26		S. W.
32	13	54	24	38	13	5	29	11	14	-	3	1.51	0.84	4.00	28		S. W.
35	20	51	24	44	1	\pm	23	2	15	14	7	2.78	1.65	8.25	28		
40	1	48	20	32	14	9	6	10	13	8	7	210	1.22	12.15	28		S. ${ }^{\text {IV }}$
36	20	47	23	34	24	14	am	11	13	7	6	1.46	0.63		25		S W.
33	13	44	19	44	8	5	18	13.7	12.4	4.9	10.4	2.35	2.05		2\%-26		
43	20	41	18	28	16	10	$a n$	18	10	3	7	1.94	0.60	6.00	2		S. W.
43	3	40	15	25	20	,		11	11	9	12	251	0.92		26		S. W.
40	8	47	21	35.	w	11	29	12	13	0	9	2.05	0.91		28		W.
44	20	45	18	28.	24	10	19	21	-	1		1.64	0.79		26		S. W.
38	20	51	22	43	8	14	18	12	14	5	14	296	2.05		25-26		S. W.
37	p	53	25	44	8	13	29				9	2.36	1.36		25		N W.
43	12	43	20	30	13	8	29	14	10	7	11	2.70	0.85		18		
41																	
33	13	49	${ }_{22}^{16}$	39	13	6.	${ }_{29}^{29}$	11	11	9	10	2.46	1.00		28		
									12	0	7	2.58	-		26		
43	7.	44	18	30	x	6		11	14	6	11	2.27	1.05		28		N. W.
47	20	36	14	26	14	5	18	8	20	3	14	2.63	0.56		26		W
38	20	47	20	36	9	9	$a g$	8.7	17.0	5.6	9.0	3.19	1.30		28		
40	20	45	19	30	20	,	$a g$	6	24	1	,	242	0.70	9.00	28		N. W.
40.	20	48	22	36	u	13	29	10	13	8	9	450	1.30		28		
38	20	48	20	33	13	-	21	10	13	8	12	2.64	0.98	9.30	28		N. W.
29	9	51	23	50	14		21	10.4	13.4	7.2	9.1	2.53,	2.05		25-26		S. W.

[^7]\dagger Blank indicates that the duration is not shown in the original records, but it is within 24 hours.
(j) 1,$20 ;(k) 1,2 ;(m) 13.20 ;(n) 7,14,20 ;(p) 7,21 ;(q) 6,8 ;(r) 4,16 ;(8) 7,13 ;(t) 4,7 ;(u) 9$,

31; (ae) 19, 24; (af) 19, 31; (ag) 21, 31; (ah) 2, 31; (ai) 21, 24; (aj) 18, 21, 28, 29; (ak) 22, 29, 31;

Temperature - May, 1896, Showing Datly Means for

STATION.	1	2	3	4	5	6	7	8	9	10	11	1:	13	14
Western Platcau..	62	61	63	61	60	55	57	64	71	72	73	66	63	69
	68	64	71	77	67	66	71	8 i	84	84	81	71	76	81
	51	50	51	46	49	40	36	48	63	60	61	54	43	48
Angelica	71	70	70	78	68	67	71	80	81	83	82	76	78	83
Angelica	55	52	50	39	49	37	35	45	48	59	58	55	43	47
	71	67	72	78	69	68	72	81	85	85	83	75	78	82
	52	53	53	37	49	37	35	42	46	48	55	56	47	49
Friendship	72 53	69	72	81	69	69	74	$8{ }^{14}$	86	87	84	75	78	85
	67	${ }_{6}^{56}$	${ }_{71}$	39 76	48	38 69	36 70	74	50 85	57 83	60 82	76	45 79	47 83
Humphr	50	50	51	45	51	45	42	52	60	61	62	56	50	59
\# Arkwright														
Jamestomi	71	76	74	78	68	70	76	83	85	85	83	77	80	81
	52	53	52	42	50	44	42	49	52	57	60	60	52	57
Elmira	69 57	66	75	73 53	74 57	70 47	72	72	91	89	${ }_{6}^{87}$	72 59	78 52	78
	76	76	74	79	67	63	70	Ti	54	87	83	81	94	83
	53	53	54	50	45	42	57	39		62	6.3	54	39	48
Mt	80	80	80	81	82	83	82	$\varepsilon 2$	83	89	88	$\varepsilon 9$	88	90
Mt	63	60	68	60	56	53	46	64	77	77	76	58	62	45
	72	81	71	79	70	69	72	82	88	85	85	73	75	82
	51	52	50	47	41	46	44	53	52	55	57	53	47	53
Victor..............														
Wedgewood	67	62	74	78	72	69	76	75	86	85	83	71	80	80
	${ }_{6}^{47}$	${ }_{6} 6$	51	46 78	51	69	${ }_{74}$	52	59 88	${ }_{87}^{65}$	${ }_{8}^{65}$		${ }_{76}^{45}$	83
Addiso	51	50	52	41	50	42	39	46	50	53	63	56	44	80 56
South Canisteo.....	68	69	77	80	72	69	75	79	87	87	85	79	77	83
	48	52	52	39	48	36	34	46	49	54	61	54	40	49
	70	70	68	74	64	64	70	76	82	81	78	73	74	82
	53	51	52	43	49	41	40	48	60	62	64	56	50	54
Varssburgh	71	77 52	71 4	80 44	72	71 29	76 39	$\stackrel{83}{46}$	9	89 60	87 63	76	81 47	88 50
Eastern Plateau Binghamton	50	56	61	61	61	20	50	60	68	73	71	65	60	64
	70	63	2	80	30	70	30	75	86	¢8	84	74	81	80
	6	68	${ }_{-6}$	48	53	40	45	4	${ }_{50} 5$	84	8.	59	43	5
Oxford.............	42	47	50	43	47	37	38	40	44	80 50	54	!0	35	45
Cortland...........	63	63	74	56	76	68	68	74	84	86	81	75	78	81
	46	46	52	40	52	40	40	45	47	5.5	58	54	37	49
Bloomville.........	73	60	68	83	80	70	75	70	91	90	98	84	83	82
	42	45	51	46	50	4	43	48	49	56	57	53	41	48
South Kortright ...	${ }_{36}^{61}$	65	70	76	70	66	69	76	83	$\varepsilon 6$	83	74	79	82
Brookfield	81	34 80	78	40 7	78	30	32 73	78	43	81	55 78	476	34 77	77
	45	44	44	41	43	40	38	46	52	52	$4{ }^{6}$	42	37	48
Hamilton..........	72	64	73	76	70	68	66	75	84	86	81	70	75	83
	36	47	51	41	38	44	48	41	50	58	50	48	32	43
Middletown......	63	59	62	67	68	68	90	90	95	90	86	92	91	81
	46	40	48	50	50	54	54	57	¢8	70	68	67	C8	65
Port Jervis.......	63	61	63	82	80	69	68	72	92	92	69	81	80	79
	37	47	50	53	50	46	45	42	49	64	67	59	50	47
Comperstown.......	78	61 50	66	70	${ }_{6}^{67}$	40	61 4	69	82 52	83 58	78 62	68	68 40	80
	88	63	71	74	69	64	66	71	83	86	82	72	75	80
New Lisbon	40	45	51	41	48	38	37	39	48	52	52	48	33	42
Oneonta	71	71	78	79	72	$6!$	73	86	86	91	85	80	82	82
	44	47	53	45	50	12	41	47	50	\%2	58	53	40	44
Perry City.........	70	67	75	79	79	68	72	76	83	86	82	72	74	84
	45	49	52	41	46	4	35 70	44	50	63 90	63 85	50	${ }_{80}^{38}$	45
Waverly...........	49	51	53	44	41	41	40	44	50	5	60	55	44	43
Mohouk Lak														

the Regions, ańd Daily Maxina and Minima for the Stations.

Daily Means for the Regrons, and Daily

STATION.	1	\because	3	4	5	6	7	8	9	10	11	12	13	14
Northern Plateau..	57	58	60	61	56	53	50 ¢	62	70	72	67	57	54	58
Saran	76	72	72	72	62	64	73	79	87	89	76	70	75	80
	41	50	52	49	42	39	4	52	59	55	45	33	34	38
	69	62	68	75	71	66	64	72	86	87	so	75	71	74
Glorer	35	45	48	52	52	43	4.	46	56	61	64	55	38	39
	73	68	68	73	64	64	70	76	83	83	78	69	72	81
Lowrill	43	50	58	62	49	40	40	50	56	61	60	48	$\stackrel{3}{4}$	36
Number Four	72	68	${ }_{5}^{67}$	64	61	6^{66}	68	73	80	82	76	65	72	77
Number Four	44	51	52	44	48	44	40	49	51	53	53	44	33	40
	70	65	67	70	63	62	68	71	8.	83	74		68	75
Turin	43	48	52	48	50	46	43	50	\square_{6}	64	61		39	43
Atlantic Co	51	51	51	65	C_{6}	57	53	53	66	76	7.5	68	64	59
Brook	68	58	67	75	78	68	65	63	88	90	9.9	80	76	70
	49	47	49	57	60	${ }^{3} 2$	4.3	43	5	66	69	58	59	54
Manbattan Beach	52	52	51	59	${ }_{5} 6$	71	61	57 40	13 4 1	79	92	91	72	67
	60	52	63	76	80	62	59	63	91	91	89	81	70	53
New York City	43	46	46	57	59	47	45	44	53	71	60	60	57	56
	61	58	67	82	78	65	61	67	$8 t$	91	90	79	74	67
Willet's P	45	47	50	54	. 50	45	38	4.5	55	62	50	54	48	54
	62	61	60		77	62	70	71	80	95	90	80	81	72
Brent	3.3	44	43		5	46	35	29	41	59	59	48	42	40
Setauk	63	59	63	77	76	61	61	66	84	89	87	77	没	66
Setauk	35	41	4.7	56	56	47	4.3	37	49	64	53	49	53	46
Bedford	75	60	60	83	80	70	69	i4	93	94	91	84	80	77
Bedrord	31	44	44	54	54	49	44	$3 \pm$	46	64	64	51	50	41
Hudson Valley	55	56	57	63	67	is	57	58	70	76	75	67	${ }_{6} 1$	63
Alban	73	62	6.7	80	7.7	66	68	71	9 r	91	8.7	74	74	80
-	46	48	52	52	57	5	47	48	57	69	67	57	48	49
	69	66	6	75	34	${ }^{60}$	6.i.	70	85	87	73	75	72	80
Springs	33	39	43	90	50	42	39	43	48	56	57	54	36	40
Honermead 3rook.	70	64	64	37	8	62	64	72	88	91	87	55	74	79
Honeymead brook.	40	45	47	55	5	48	43	42	55	58	6:	55	45	47
Poughkeepsi	72	61	6.3	$8 \cdot$	83	66	68	71	92	95	92	77	78	79
	${ }^{3}$	48	47	52	818	4	45	40	${ }^{33}$	56	59 91	54	43	42
Wappingers Falls .	45	48	50	-	\%	. 50	47	+1	53	6 S	62	58	50	48
st Poin	63	70	60	6%	83	83	67	70	72	93	93	192	81	80
st Poin	3.	45	46	48	\%2	52	45	40	45	53	7.1	56	51	47
	74	65	6.4	78	78	70	69	75	¢9	90	88	7	81	80
Carmel	46	4.4	46	51	58	48	46	$4{ }^{4}$	59	\%,	61	53	43	59
Mohawk Valley	60	61	61	6.1	58	:9	5.6	61	66	${ }^{6}$	70	56	$6 ?$	68
	72	67	74	75	72	73	67	72	82	Su	81	73	75	78
	47	53	48	52	4	4.	50	50	50	50	55	40	48	58
Ctica..														
Champlain Valley	48	53	57	${ }_{6} 6$	61	5	38	515	63	79	71	64	56	55
Plattsiburgh Bar'ks	60	65	65	67	70	70	${ }^{619}$	64	70	90	9:	7 7	70	65
	\%)	67	fo	7	-	10	(ii)	4	80	9	\bigcirc	48	4	40
Glens Falls.	3.5	35	4.5	49	50	47	45	49	二1	60	60	5.5	40	38
St. Lawrence V'alley	58	6.3	61	59	56	5	55	61	68	81	68	39	5.5	88
Malone	69	73	70	70	6.3	55	616	73	82	82	76	64	04	71
Malone	41	49	53	52	50	38	40	53	60	66	57	47	42	37
Madison Barracks	73	71	76	70	67	64	67	71	-3	72	74	70	71	79
Mrison Barrrack	54	5.	44	46	41	41	39	43	53	56	53	51	16	39
	80	78	73	70	70	72	70	74	83	84	88	76	83	90
Wateromm	46	48	42.	43	40	4.5	42	44	50	56	58	50	3.5	40
Canton	70	75	71	71	8.3	58	69	it	815	85	78	70	71	71
Camon	40	48	52	47	47	42	40	54	57	59	57	45	32	35
Masseria.														
	84	84	74	72	63	70	73	${ }_{6} 8$	74	815	80	70	74	76
North Hamiuond...	40	. 4	50	56	46	44	40	56	50	$\therefore{ }^{\circ}$	58	50	33	38

Maxima and Minina for the Stations-(Continued).

Dally Means for the Reghons, and Daily

+ Maximum and Minimum by the Draper Thernograph.

Maxima and Minima for the Stations-(Concluded).

Daily and Monthly Precipi

STATION.	1	2	3	4	5	6	7	8	9	10	11	1\%	13	14
Western Plateau..	0.02	0.04	0.03	T.	T.	0.00	0.00	0.08	0.00	000	T.	T	T.	0.0
Alfred..	'T.		T.	 03				T.		
Angelica	...	T.	. 05	 10				'1.		T.
Bolisar			. 07					T.						. 07
Friendship	\cdots	T.	'T.	\cdots	\ldots	\ldots 12	\ldots		\cdots	T.	\ldots	. 0
Humphrey.		. 05	\ldots		\ldots			T.	\ldots					. 32
Litule Valley.														
Cherry Creok	. 11		. 40											. 07
Jamestown	11	. 50	. 11	. 05								. 07		25
Elmira..	'1.			. 05	. 01			. 38	\ldots					
Piue City														
Akron.	\cdots	. 05			T.			T.			'T.			
Aron....			T.	T	\ldots		T.			T.			
Lockpport								I.				T	T.	T
Victor			T.	T.				. 02				01		
Trione														
Wedgewood	. 01		1.					. 44						
Addison	T.	\cdots	T.	...	\ldots		\cdots	. 38				T.		. 01
Atlauta.				\cdots	-...	\cdots	\cdots	\cdots	\ldots	\ldots
Haskinville.	T.													. 20
South Caviste	T.	T.	T.	\cdots	...			10				T.		. 61
Arcade ..			T.	\ldots	\ldots			T.						T.
Attica....														
Varysburgh	\cdots	T.		.-.	\cdots			T.				1.		. 08
Eastern Plateau..	T.	T.	0.07	0.03	0.02	0.00	T.	0.05	0.00	0.00	T.	0.00	000	'r.
Bioghamton42 04						
Chenango Forks..														
Oxford.-				. 20	T.			. 15						
Cortland			12 08			. 05						
Bloomville.								. 03						
Deposit.														
South Kortright..										...				T
Brookfield			. 10	. 08			. 02							T.
Hamil			. 13	. 07				. 10						
Apulia.														
Midaletown														
Port Jervi	. 02		.13)											
Warwick	\cdots	. 10					\ldots			T.	\cdots		\cdots
Cooperstown			. 07	.12				1.						T
Ners Lisbo		. 04	. 0.3		. 20									
Oneonta	.04			. 02 03						
Perry City						\cdots		. ${ }^{2}$						
Newark Valle		T.	21			...		T.						
Waverly							\ldots	. 07			. 02			
Ellis.														
Molionk La														
Northern Plateau.	0.00	T.	0.02	0.01	0.04	0.00	T.	0.04	0.00	0.00	0.19	T.	0.04	0.00
West Chazy														
Elizabethtown														
Saranac Lake.	\ldots	T.			. 18		T	\cdots				\cdots
Gloveravis			. 06	. 04	. 0.3			T.				T.		
Lowvilla		.02						13					\cdot	
Numb			. 04	.02	T.			'T.						

tation for May, 1896-(Inches).

Daily and Monthly Precipi

tation for May-(Comtimued).

Daily and Monthly Precipi

\ddagger Record for the month incomplete. : Received
tation for May- (Concluded).

15	16	17	13	19	20	: 1	22	23	24	25	96	27	28	29	30	31	(\%
. 15			. 12	. 30	. 03		. 03			10	. 32	07		1.10	. 12		
		. 17 04		02			T.	. 34	. 02	. 09	1.05	T.	06	T.	2.27
. 04		.12		. 27			. 04		. 02		. 78	. 04	. 79	T.	01	09	3.04
. 01		. 12	. 06	. 44	T.				-.	02	56		. 12		. 32	. 22	2.63
0.26	0.00	0.12	0.13	0.40	0.00	0.01	0.00	0.00	T.	0.04	0.6	009	0.88	T.	009	0.28	3.15
. 36			T.	. 60							. 4		. 70	 21	2.42
. 10		. 1	. 23	. 26			\cdots		-		96	. 19	. 52	3.03
. 12		. 32	. 13	-49						1.	. 88	16	1.30	T.	I.		4.50
. 48		. 04	. 17	. 27		05			T.		. 25	T.	. 98	T.	02	. 27	2.64
8	I.	0.07	0.08	0.17												0.24	

too late to be included in the averages.
10

and Precipitation - May.

MAP OF THE STATE OF NEW YORK

SHOWING

THE MEAN TEMPERATURES FOR MÁY, 1896

MAP OF THE STATE OF NEW YORK

SHOWING

THE PRECIPITATION

FOR MAY, 1896

Meteorological Summary for June, 1896.

The average atmospheric pressure (reduced to sea level and 32 degrees Fahr.) for the State of New York during June was 29.98 inches. The highest barometer was 30.33 inches at Friendship on the 3 d , and the lowest was 29.52 inches at New York city on the 10th. The highest mean pressure obtained over southern New York, and the lowest near Lake Ontario. The average of the mean pressure at 6 stations of the National Bureau agreed closely with the normal value.

The mean temperature of the State, as derived from the records of 73 stations, was 64.7 degrees. The highest local mean was 68.8 degrees at Brooklyn, and the lowest, 59.0 degrees, at Number Four. The highest general daily mean was 75 degrees on the 2 ith, the lowest being $\check{5} 6$ degrees on the 1 st. The maximum temperature reported was 96 degrees at Mt. Morris on the Sth and at Watertown on the 9th; and the minimum, 31 degrees, at Arcade, South Canisteo and New Lisbon on the 3d. The mean monthly range of temperature for the State was 47 degrees, the greatest local value being 59 degrees at Waverly, and the least, 30 degrees, at Manhattan Beach. The mean daily range was 23 degrees. The greatest local daily range was 50 degrees at Friendship on the 3d, and the least, 3 degrees, at Brooklyn, on the 14th. The mean temperatures for the various sections of the State were as follows: The Western Plateau, 64.7 degrees; the Eastern Plateau, 63.9 degrees; the Northern Plateau, 61.6 degrees; the Atlantic Coast,
66.1 degrees; the Iudson Valler, (i.). 7 degrees; the Champlain Valley, $6 \frac{1}{4}$ degrees; the At . Lalwrence Valley, 63.9 degrees; the Great Lake Region, 65.t dearees; the Central Lake Region, 66.0 degrees. The average of the mean temperatures at 26 stations possessing records for previous years was 1.2 degrees below the normal, excesses being reported only from 4 stations of the western and central sections.

The mean relative humidity was 73 per cent. The mean dew point was 55 degrees.

The average precipitation, as derived from the records of 94 stations, was 3.19 inches. The maximum general rainfall exceeded 6 inches in portions of the southern tier of counties, while less than 2 inches were reported over considerable areas near Lake Ontario. The greatest local amount was 6.67 inches at Brooklyn, and the least, 1.in inches, at Rose, Wayne county. The principal rain period of the month rovered the dates from the 6th to the 9th, with a maximum amomnt of 0.56 inches on the Sth for the State. General showers were also reported on the 16 th, 21 st, 24th and 28th. The arerame mecipitation at 28 stations possess ing records for previous fears was 0.27 inches below the nomal amount. Excesses, which obtained at 9 stations, wre greatest in the Atlantic Coast Region.

The arerage number of days on which the precipitation amounted to 0.01 inch or mome was 9.2. The number of rainy days was least in western New York and greatest in the eastern and northern sections. The average number of clear days 12.1; of partly cloudy days, 10.9 ; and of efondy days. 7.9 ; wiving an arerage cloudiness of there cent. for the state. The cloudiness was very nearly uniform orer the State.

The prevailing direction of the wind was from the southwest. The average wind travel at six stations of the National Bureau was 6396 miles. The travel was generally in excess of the usual mileage for the month. The maximum felocity at the above stations was 42 miles per hour at Buffalo on the 26 th.

Thunderstorms occurred at Humphrey and Jamestown on the 4th; at 4 western stations and at Honeymead Brook on the 5th; at a few stations of all sections on the 6th and 7th; generally over the State on the 8 th and 9 th; at Atlantic coast stations on the 10th; at Gloversville on the 11th; at coast stations and at Humphrey on the 14th; at South Canisteo on the 15th; in western New York and at Lebanon Springs on the 16 th; in all excepting the northern sections on the 17th; at Gloversville on the 18th; at Wedgewood and Lebanon Springs on the 19th; in all but the northern section on the 21 st; at Jamestown and Bedford on the 26th; in western, northern and eastern New York on the 28th; at Lebanon Springs on the 29th.

Hail was reported on the 15 th and 18 th.
Light frosts occurred in some portions of the highlands on the $2 \mathrm{nd}, 3 \mathrm{~d}, 11$ th and 30 th.

The weather of June was generally pleasant, and for the most part favorable for farming interests. The average temperature was slightly lower than usual, the nights being especially cool. A warm ware occurred between the $3 d$ and 10 th, during which maxima of 90 degrees or more were obtained. This was succeeded by a period of deficient temperature lasting until the 17 th, but thereafter growing warmer until the mean maximum for the month was obtained on the 20 th. The average for the last week was slightly below the normal.

General rains were confined mainly to the first decade, the showers which followed being more local in character and rather insufficient in the east and north. About the usual percentage of sunshine obtained over the State. Thunderstorms occurred on 18 days, but generally were not very severe.

During June the weather of New York was influenced by seven areas of high and five areas of low pressure; the number of the latter being about the usual average for the month. The first and second depressions, which were broad and ill defined, passed eastward orer New York on the 6th and 10th respectively, bringing general rains over the State. On the 14th a storm of marked energy passed along the Atlantic coast, accompanied by heavy rain and gales. The succeeding low pressure areas, four in number, passed north of the State on the 20th, 21st, 26 th and 28 th, bringing thunderstorms and local rains, with rising temperatures, especially on and about the 20th.

The most important high pressure systems passed over New York on the 2nd, 24th and 30th; the accompanying depressions of temperature being sufficient to cause light frosts in the valleys of the plateaus.

The drouth which prevailed during a part of May, and early in June, was broken by the abundant rains of the 6th to 10th, and thereafter the rainfall was generally sufficient for vegetation, excepting in some northern sections and east of Lake Ontario. During the third week heavy showers in the south caused a considerable damage by flooding. Early haying was general on or before the 20th with discouraging results, owing to the early drouth. Wheat and other grains were in fair condition, oats, especially, growing well. Small tree fruits were scarce, excepting in the
northern counties, but apples and berries were abundant. Cool nights somewhat retarded the growth of garden truck.

Heavy rains occurring in southern New York on the 11th and 26th washed the soil badly in the hilly sections, and damaged bridges and other property along water courses. Four cows were killed by lightning near New Lisbon on the 8th.

Meteornlogical Data

FOR JUne, 1896.

ture-(In Degreys Fahr.)								Skr.			Precipitation-(Lnches).						
$\begin{aligned} & \text { 苟 } \\ & 0 \\ & 0 \\ & 0 \\ & H \end{aligned}$					$\stackrel{\oplus}{\Xi}$										$\begin{aligned} & \text { த் } \\ & \stackrel{\oplus}{\oplus} \end{aligned}$		
31	3	51	25	5	3	5	7	12.7	12.9	4.4	10.1	3.62	3.45	h.m.	16		
36	3	49	22	40	3	12	24	16	14	10	9	4.04	1.35	4.00	9		¢\%.w."
32	3	53	25	44	,	12		10	16	4	11	3.26					
23	3	53	26	45	3	12	9				11	4.29	1.58		8		
32	3	57	30	50	3	20	z	13	12	5	11	3.82	1.20		9		S. W.
38	2	43	22	32	30	10	$a b$	8	16	6	13	3.63	0.75		8		S. W.
43	- 2	37	14	25	3	J	ac										
40	2	45	20	35	3	8	act	8	20	$\stackrel{\sim}{*}$	9	3.39.	0.50	8.00	26		S.
45	l	45	22	35	30	5	ae	21	1	8	8	3.31	1.05		8		N. W.
3)	,	55	28	45	3	10		9	19	2	10	1.97	0.53		8		
$\because 4$	3	62	31	48	30	13	25	14	10	6	7	2.82	1.16		8		W.
43	3	50	26	40	3	14	af	22	7	1	8	1.43	0.36		26		W.
38	3	52	26	44	3	13		15	12	3	12	¢. 05	0.54		8		W.
41	3	51	24	38	30	8	24	6	22	2	12	6.23	3.45	5.00	16		W W.
36	3	51	25	42.	.	11	25	16	12	2	12	5.78	1.86	19.30	16		8. W.
31	3	55	28	45	3	15		16	9	5	12	6.22	2.47	6.30	9		W.
31	3	55	24	45	3	13		12	120	6	10	3.19	1.28	15.00	8		
35	3	55	25	49	3	9		14	12	4	7	3.06	1.10		8		
31	3	52	26	48	,	8		12.8	10.5	6.7	12.1	3.60	2.68		8		
: 86	3	5	21	40	3	13		14	11	5	10	2.61	1.12				S. W.
34	,	56	31	45	5	15	14	8	18	4	9	2.96	1.00	1.00	s		
34	3	55	24	42	4	10		21	3	6	12	3.44	1.15		9		W.
36	8	54	24	43	3	13	14	9	14	T	11	3.31	1.00	12.30	11		W
32	3	56	30	48	.	18	ag		\therefore.	9	2.\%5	0.86		17		
39	-	47	31	39	11	2	ah	8	16	6	8	275	1.22		9		S. W.
45	15	44	${ }_{21}^{21}$	39	14	9	28	13	11	${ }^{6}$	11	6.43	1.38	20.00	13-14		
43	3	46	27	36	3	9	$a i$	14	10	6	13	5.54	1.75		14		N. W.
38	3	47	19	35	3	8	25	15	8	7	10	4.70	2.68		8		N.
31	3	53	28	46	3	11	25	11	8	11	11	3.77	1.23		8		S.
36	8	54	28	45	3	14	25			10	3.39	1.10		8		
33	3	56	28	44		13		10				3.67					
233	3	59	26	43	3	10			11	8	12	2.85	1.03	2.15	8		S^{5}
48	16	37	2.	35	21	10	25	19	1	10	7	2.22	1.10		14		S. W.
${ }^{33}$,	49	24	40	S			10.0	13.2	6.8	11.0	3.03	1.51	1.34	18		
37	2	51	25	40	3.	10	25	1:2	13	5	9	3.70	1.22		6		S. W.
40	3	47	22	35	3	T		11	10	9	15	3.79	1.51	134	18		S. W.
36	3	48	24	40	3	8			15	4	10	1.83	0.41		9		W.
33	3	48	24	40	3.	12	aj	6	15	9	10	2.81	0.63		9		W.
40	m	40	18	41	4	3	14	13.3	7.2	9.5	9.0	5.37	2.86	13.00	14		
51	15	39	18	26	11	3		13	6	11	12	6.6%	2.86	13.00	14		S. W.
50	15	30	11	23	13	4		18	3	,	5	4.91	1.56		25		S. W.
51	15	36	15	22	15	7	28	10	13	7	11	6.38	2.59		14		N. W.
50	n	39	18	25	u		14				7	6.01	1.18	9.00	17		
40	4	51	24	41	4	12	ak	17	4	9	7	5.00					S. W.
4	p_{3}	35 49	16	24 36	v	5		10	9 8	111	11	4.10	2.74		14		S. w.
40	3	49	22	36	v	8		12	8	10	11	4.5%	1.54	14.30	14		
36	?	47	22	38	5	5		11.7	9.0	9.3	10.6	3.29	1.90	11.20	14.		
43	3	44	21	31 38	3	10		10	${ }_{13}^{13}$	7 9	10 9	2.49	0.66		10 10		S.

Metemological Data

Location of Stations．			Barompter．						Humidity		Tempera			
STATION．	County．		$\begin{aligned} & \text { E. } \\ & \text { ex } \end{aligned}$		$\begin{aligned} & \stackrel{2}{⿷ 匚} \\ & \stackrel{\sim}{⿷} \end{aligned}$									¢ ¢
HudsonVal．（Con．） Honeymead Brook Poughkerpie． Wappinger＇s Falls	Dutchess．．．．	450 180									64.3	64.3 64.5 67.6	87 90 91	21 j $i 1$
West Point．．．．．．．	Orange Putnam	16% 501			\because							66.4 67.3	91 90	$\stackrel{21}{h}$
Carmel．．．．．．．．．．．．	Putnam											67.3	90	
Mohawl Valley．．．												65.2	89	19
Rome ．．．．．．．．．．．．．．	Oneida．．．．．．．	440										65.2	89	19
Champlain Valley												61.4	92	20
Plattub．Barracks． Glers Falls．．．．．．．．	Clinton．	1340									64.5	${ }_{64.1}^{64.6}$	89 92	$\stackrel{20}{20}$
St Laurence Val．．												63.9	96	9
Malone．．．．．．．．．．．．	Franklin ．．．．	810			－	．	\cdots	．			6：2．8	（is．0）	82	5
Madison Barracks．	Jtfferson．．．．．	$25 i 6$										63.0	85	5
Watertown．	Jefferson．．．．．	4815												
Canton．．．．．．	Su．Lawrence．	304									62.6	$6: 6$	88	®0
Massena \qquad North Hammond．	St．Lawrence．	3001									65.5	66.5	92	20
Ogdensburg ．．．．．．．	St．Lawrence．	258					．	．．．．				64.8	86	5
Pitedam ．．．．．．．．．．	＂	3×16									05.8	6i2．${ }^{\text {a }}$	83	5
Great Lakes．．．												65.4	90	7
Dunhirk．．．．．	Chantauqua	5011												
													5	c
Buffalo	Erie	690	29.97	30.25		29．57	80	0.68	61	53		60.0	85	20
Pittiford	Monroe										64.8	65.4	8 \％	7
Rochester	Monroe	C21	29.97	30.26		29.60	90	0.66	6.4	53		66.0	88	7
Appleton．．．．	Nia－ara											61.1	88	7
Fort Niagara．	Ningara	26\％					－	\ldots				65.6	90	7
Baldwinsville．	Onondaga	390									66.0	67.6	88	7
Oswego	Oswego．	801	29.95	30.20	3	99.55	y0	0.71	69	53		633.0	81	21
Palermo		460									64.0	63.4	87	± 0
Lyons	Wayne	407									65.9	06.1	8π	7
Erie，Pa	Erie．．	6.1	20.95	30.26	62	29.611	S 0	0.66	\％	5		66.1	84	8
Central Lakes．												66.0	88	20
Flemine ．．．．．．．	Cayıga	1000									6\％ 6	66.1	S8	20
Pommas	Stneca	719							85			66.2	89	20
Ithaca	Tompkins	816	29.98	30.29		9.53	90	0.8	70		64.6	65.3	86	h
Mern．			20.98	30.33	33	－9．52	100	0． 11	73	55		64.7	96	k

[^8]For Junf， 1596.

ture－（ n Degrees Fahr）．								Stiv．			Precipitation－（Incems）．						
$\dot{0}$ 0 0 0	$\begin{aligned} & \dot{\Phi} \\ & \text { థ゙ } \end{aligned}$		\qquad		$\begin{aligned} & \dot{\oplus} \\ & \stackrel{\oplus}{む} \end{aligned}$	Least daily rangษ.	$\begin{aligned} & \text { ぎ } \\ & \stackrel{\text { ®̈ }}{0} \end{aligned}$	Number of clear days.		$\text { sfep } \Lambda, \text { no! jo лaqminn }$		$\begin{aligned} & \text { ت゙ } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	N	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { 䔍 } \\ & 0 \\ & \hline \end{aligned}$			
42	3	45	20	30	3	7		11	8	11	12	2.40	1.14	$\left\|\begin{array}{cc} h & m \\ 20 & 0.00 \end{array}\right\|$	14		S．W．
40	3	50	24	37	3	9	25	13	10	T	9	2.71	1.19		11.		
45	3	46		33	）	14		13	T	10	12	3.58	1．53	14	14		
42	16	49	22	33	6	5					11	4．07	1.90	11.20	14		S．E．
45	1	45	18	30	5	7		15	3	12	11	3.32	1．63	17.00	14		
40	2	49	27	36	28	10	8	8			$\% .0$	1.51	0.46		8		
40	2	49	27	36	38	10	8	8			\％	1.51	0.40		8		
4）	3	48	22	86	3	5		10.0	11.0	9.0	8.0	2.90	1.64		6－7		
45	$b b$	44	20	32	7	5	9	．			6	2． 80					S．W．
40	3	53	231	36	3	\sim		810	11	9	10	3.01	1.64		6－7		W．
3 T	29	4π	23	44	4	7.		｜0．7	13.0	6.3	7.1	2.92	2.12		9		
40	30	42	0	32	5	8	8	89	14	7	7	4.57	1.58		9		N．W．
37	29	48	22.	35	29	12	10				6	1.54	0.93		7		8．W．
40	r	56	32	43	5	19	9	8	19	3	12	3.24	1.18		8		．W
39	23	49	25	41	4	\％		${ }^{13}$	12	5	8	3.38	1.00		8		
44	s	48	24	44	4	$1 i$	ail	13	13	14	4	236	1．42	13.4	8		
44	4	42	19	$3{ }^{\circ}$	4	\uparrow	9	916	11	3	8	2.57	1.51	14.00	8		s．W．
41	30	42	22	34	4	10	${ }^{9}$	915	9	6	5	2.76	2.12		9		S．W．
38	3	43	19	37	3	6.	22	215.3	10．2	4.51	8.0	2.28	1.31		9		
40	2	45	19	36	：	10	am	20	5	5	7	2.90	0.96	5.15	8		
45	t	40	16	35	3	7	28	89	16	，	8	1.46	0.32		26		S．W
42	3	45	22	35	3	10	11	16	5	9	7	2.07	0.85				W．
44	3	44	21	36	3	12	17	719	7	－	8	2.80	1.31		9		S．W．
40	3	49	21	35	30	12	an	16	11	3	10	1.60	0.89		9		
41	3	49	20	30	18	10	10				8	1．79	1.30		8		N．W．
46	2	42	21	30	3	11	2.5	19	8	3	8	1.49	0.61		8		
43	，	41	17	25	19	8	22	216	7	7	，	1.57	0.69		8		
38	3	49	25	37	3	11	22	22	9	1	6	2.31	1.00	0.55	28		S．W．
45	3	42	20	30	3	9	$a p$	12	13	5	8	2.42	0.89		7		N．W．
47	2	37	14	22	30	6	22	2，11	16	3	11	4.67	1.02		26		N．E．
39	3	45	$\cdots 1$	37	3	7		0｜ 12.0	11.0	7.0	7.0	3.07	1.00	1.30	8		
46	30	42	20	29	x	8	10	0			6	2.41	0．85	3.00	8		N．W．
42	3	47	22	35	3	${ }^{7}$	10	011	$\stackrel{8}{0}$	7	4	2.43	0.89	1.30	8		W．W
						10	－	${ }^{13}$									
31	3	47	23	50	3	3	｜ 14	412.1	10.9	7.0	9.2	3.16	3.45	5.00	16		S．W．

granh．｜｜Ranort received tolate t＂，be used in computing means．The m ans from the + Blank indicates that the duration is not shown in the original records，but is within twenty－
（j）20，21；（k）8，9；（l）1，2；（m）3，4；（n）2，10；（p）3．4，11，15，16；（q）3，13，30；（r）1．2．3，14，30； （ac）22．24；（ad）34，26；（ae，24，25；（af）10，26；（ag）1t，25；（ah）1，28；（ai）25，28；（aj）9，10， 25.

Temperature - June, 1896, Showing Daily Means for the

STATION.	1	2	3	4	5	6	$\%$	8	9	10	11	13	13	14
Western Plateau..	53	55	58	67	71	72	\%	74	68	60	59	62	61	131
	60	65	75	74	80	is	85	82	74	65	$6 \times$	74	$\%$	68
	41	38	36	58	54	62	62	62	\%	5	48	50	4.5	48
	63	66	76	79	8	81	57	81	70	1.7	65	75	73	69
Angelica	43	37	32	57	53	56	2	61	58	$5!$	39	43	4	43
	6:	60	78	78	¢ 4	$8:$	86	84	75	${ }_{6} 8$	69	75	7	70
	36	39	33	53	5.5	54	58	60	$6: 3$	54	38	41	44	54
	67	34	82	8	87	85	9	85	5	71	$i 8$	83	73	73
Friendsuip	39	38	32	53	53	56	59	${ }_{8}^{61}$	57	49	43	47	44	49
	60	67	74	75	8	80	66	83	75	70	68	74	it	71
H	41	38	44	58	58	63	$6{ }^{2}$	61	co	51	46	48	51	3
\ddagger Arkwright.								.				\cdots		
	62	66	7x	if	84	80	85	31	75	63	67	7\%	74	70
Jamestorn.......	$4 \because$	40	43	60	59	64	64	63	61	5.5	47	49	55	51
	66	70	is	84	85	82	84	90	83	70	76	78	78	,
Elmira	45	45	$4 \times$	54	57	61	64	65	65	52	51	56	46	55
Aron	64	72	8	83	89	87	92	85	78	66	71	74		78
	45	44	37	53	53	${ }_{93}^{63}$	66	65	58	56	46	45		8
Mount Morri	16 50	13 41	34	81 49	-18	93	90 63	96	92	88 48	49	46	71 45	81 50
	66	7	$8 \cdot 3$	8.	87	90	93	91	75	67	74	80	81	81
Lock	46	4	43	57	59	65	65	65	57	53	50	51	53	49
	66	72	8	78	86	86	90	84	74	67	74	75	74	76
	45	47	38	54	51	64	67	(i.)	56	54	48	30	45	49
Wedgewood	64	${ }^{(68)}$	7	37	sii	84	88	85	77	67	71	76	78	75
Wedдewood	43	45	41	65	57	65	62	62	59	51	47	51	47	54
Addison	63 40	69	78	77	84	80	82	87	81	69	72	77	73	69
	40	${ }_{6}^{41}$	36 76	79	5.4 8.3	18 79	59 86	62 86	63	${ }_{6} 5$	43	47	45	45
South C	39	36	31	-1	51	57	54	58	6	48	38	42	4.	10
	59	62	if	81	83	84	85	83	73	63	67	71	72	69
	41	:39	31	$5{ }^{\circ}$	55	64	61	61	50	50	44	50	49	49
	63	71	$x!$	82	87	87	90	80	70	68	73	78	79	76
Vars	44	37	3.5	54	51	61	66	ci	61	55	57	58	47	44
Eastern Plateau..	54	56	58	64		69	69	72	71	63	58	$6{ }^{2}$	60	60
	62	65	76	$\checkmark 2$	87	8.	80	87	83	68	69	72	75	67
Binghamt	41	45	36	47	55	57	62	64	65	52	44	50	4	52
Oxford	67	68	7	80	87	83	83	89	83	71	74	77	75	67 59
Oxford	37	40	34	43	42	52	64	63	6.3	50	40	44	40	52
Cortlan	62 40	${ }_{4}^{65}$		89	83	80	\% ${ }^{2}$	81	81	68	68	72	74	68
	40	41	34 79	47 81	48	85	61	83	63 80	57	4.5	47	4	55
Bl	42	44	36	54	53	54	59	64	61	49	42	47	43	51
South Kortright..	6.3	6.7	80	83	86	84	76	88	83	69	68	73	72	64
South Kortipht..	37	40	32	39	46	48	57	63	60	49	30	40	36	48
	67	63	78	81	$\checkmark 6$	83	§3	81	76	77	79	78	T8	74
Brook	45	39	43	46	49	46	51	50	44	46	40	41	$4{ }_{4}$	50
Middletown	70	71	77	78	8	85	80	82	80	75	58	78	76	8
Midatown	54	56	57	56	54	60	60	62	58	53	51	56	58	5
Port Jorvis	70	73	79	78	84	88	76	84	84	76	75	79	70	68
Port Jervis	46	45	4.3	46	5.	53	59	64	66	${ }_{6} 1$	45	77	50	54
	62	61	73	7%	3	81	74	$8:$	78	67	63	67	69	62
Cooperstown	46	48	38	47	25)	57	5 sk	61	62	50	45	46	51	53
New Lisbon	63	64	77	79	81	82	77	84	80	68	68	70	7	61
ew hisbon	37	$\ddot{88}$	31	411	44	49	59	62	62	48	38	45	39	49
neo	67	70	81	8	48	84	80	± 8	8.	75	72	76	76	65
nco	41	43	36	4.5	51	54	61	533	64	53	43	49	43	50
	68	74	77	80 50	86	¢1	87	84	80	70	74	78	78	${ }_{6}^{66}$
ry	40	41	33	50	50	5.4	61	62	58	54	48	57	40	83
Waverly	65 38	69	76 33 3	$8{ }^{82}$	8.5	${ }_{51} 8$	85	87	84	70	73	77	18	78
	${ }_{6} 8$	${ }^{39}$	33	50	54	5	60	64	66	55	42	44	88	${ }_{5}^{57}$
Mohonk L	65 50	5	70 50	72 60	50	${ }^{79} 8$	74 50	73 50	50	12 50	50	${ }_{53}$	85 51	49

Regions，and Daily Maxima and Minima for the Stations．

15	16	1\％	18	19	90	21	2%	23	914	35	96	2	28	29	30	$\begin{aligned} & \text { 上. } \\ & \text { E. } \\ & \text { E. } \\ & \text { 臬 } \end{aligned}$
61	65	63	66	70	73	73	70	61	58	65	70	$6{ }^{6}$	67	6	59	64.7
71	69	72	79	81	83	78	78	70	$5{ }^{\text {s }}$	68	76	77	74	70	73	6） 1
44	5.5	49	4	53	59	64	51	43	46	5：3	58	． 1	56	\therefore	511	． 1
70	75	73	7R	8.3	85	78	78	75	71	73	77	74	79	73	78	6＊
49	52	49	58	57	87	60	57	50	48	54	4	5	50	45	3\％	62． 1
75	72	75	79	83	84	80	79	78	64	69	77	78	71	71	7.	（6）${ }^{3}$
4：	52	48	52	49	5.5	58	$6 \cdot 2$	4＊	46	514	61	41	51	？	：5	623
78	77	77	84	86	$\checkmark 7$	$8{ }^{2}$	79	79	66	7.	8	\cdots	7	74	$\therefore 3$	
4.3	3	47	47	48	57	62	59	41	43	54	57	48	49	$\frac{1}{4} 6$	$\therefore 7$	641
75	65	74	80	（i）	80	75	76	73	6	71	74	74	7.2	（is	73	629
44	55	49	49	58	33	58	5.5	47	52	51	60	¢1	5.3	4	± 1	6． 9
								．			－	．．．	\cdots			64．0）
74	70	73	79	81	$8:$	78	75	73	65	73	73	77	73	66	7.	
48	56	53	52	\％ 5	61	66	64	45	57	57	6.5	$5:$	二1	53	4－	6 ± 4
74	74	TK	8.	nis	91	83	86	79	$6 \frac{1}{2}$	69	84	81	78	73	x	67.7
50	56	50	56	55	62	74	6.5	56	59	$6:$	61	54	66°	56	42	0.1
76	82	72	8.3	87	9 1	86	$\therefore 5$	75	7	$\cdots 4$	79	85	－ 8	\％	40	670
47	0.5	58	51	54	（6）	$4{ }^{4} 5$	$6:$	4.5	4.5	56	64	512	S4	53	41	0.6
80	78	81	Ts	84	\cdots	90	$\times 3$	$\therefore 1$	80	73	81	$\therefore 1$	－ 0	78	\therefore	67.4
52	53	45	49	48	60	64	67	50	4 N	58	57	50	51	52	39	67.4
78	79	79	85	89	92	${ }_{6} 6$	81	81	81	8	81	86	84	$7 \because$	と0	634
53	58	57	54	57	67	$6:$	63	48	53	57	67	5.4	－8	． 4	45	031
78	77	75	84	87	90	8.7	80	74	7.7	74	$8 \cdot$	86.	83	74	81	6.
47	52	55	53	53	65	6 i	59	47	44	55	6	54	59	56	44	0.
78	74	74	83	85	42	8.5	81	80	59	68	81	81	79	77	$8:$	660
47	56	54	5.3	5 N	64	67	58	44	51	52	59	53	59	52	44	06
73	75	76	80	85	86	86	81	74	59	63	81	79	73	75	77	
45	54	55	56	53	53	62	62	48	4	54	61	51	56	51	41	640
75	75	7.7	80	85	St	S3	83	$7 \cdot$	57	67	79	78	78	76	75	6．） 1
43	55	51	49	50	5.5	59	53	41	44	51	59	46	5%	46	34	62.1
77	72	74	78	82	86	82	7.5	72	68	77	74	79	75	71	74	631
44	56	49	47	56	61	63	53	43	51	5.	61	50	53	49	39	63.1
78	75	76	8.3	85	87	79	78	79	66	81	79	83	78	74	78	
46	55	54	49	52	59	63	54	63	54	60	63	62	59	49	39	66.0
58	62	66	68	68	74	73	71	62	57	59	68	65	64	64	59	63.9
75	75	80	83	88	87	85	83	76	67	64	81	81	75	77	71	
43	57	59	57	53	63	62	60	50	46	51	61	47	57	53	43	64.6
75	85	80	84	88	90	89	84	73	76	82	83	82	77	83	75	
38	50	57	52	47	59	59	58	44	42	56	43	42	52	46	37	03.8
72	69	75	80	85	86	84	78	70	67	63	79	79	78	73	75	63.4
42	53	58	55	49	59	62	60	40°	45	53	60	48	55	50	41	63.4
74	76	75	85	84	90	86	85	80	68	64	84	83	70	79	77	63.2
52	40	51	54	53	62	61	65	58	45	50	53	47	45	52	44	63． 2
71	78	80	83	85	89	84	81	72	72	67	81	81	75	75	64	
37	57	53	51	45	64	51	60	41	38	49	56	42	45	47	39	616
75	81	82	86	84	85	84	83	74	71	70	79	82	78	76	75	
41	45	52	54	52	57	58	52	44	42	42	51	54	50	52	40	629
71	71	79	81	85	89	8.5	85	85	68	65	80	76	68	79	80	
45	52	58	56	57	65	67	68	58	52	53	59	58	59	58	59	678
75	6 S	75	86	86	89	88	86	75	68	62	82	80	69	80	82	
45	53	59	58	56	65	63	67	57	50	53	60	52	60	56	49	66
65	69	76	75	83	81	85	75	67	69	64	78	75	74	66	63	63.3
50	46	56	58	60	64	65	55	52	55	56	56	5.5	54	50	51	63.3
70	74	75	80	83	84	83	79	71	66	63	79	79	72	72	75	60.8
36	43	54	51	46	57	59	58	41	40	52.	50	42	50	51	37	60.8
76	74	83	85	88	90	86	82	76	72	68	84	84	79	77	80	65.0
41	45	56	55	51	61	62	64	47	44	54	60	48	54	54	43	65.0
77	71	77	85	85	89	85	79	76	65	71	81	86	82	78	81	64.5
45	53	5.1	49	50	58	64	57	45	44	43	56	49	54	50	41	04.5
77	75	80	84	86	92	86	85	78	55	65	83	80	74	78	75	65.0
47	57	53	55	52	60	62	65	48	45	54	62	49	55	50	39	65.0
66	68	69	78	80	85	85	82	78	67	62	80	76	71	75	71	69.7
49	48	49	49	50	51	50	49	54	53	52	53	53	52	54	51	02.7

Dally Means for the Regions, and Dally

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Northern Plateau.	53	53	58	63	67	67	66	99	66	58	54	55	57	57
Saranac Lake.	68	65	85	86	88	¢0	71	73	71	66	62	62	70	69
	45	37	45	47	51	59	59	61	51	43	47	39	41	41
Glorersville	64	66	75	$8{ }^{4}$	84	80	615	70	80	74	68	72	72	63
Gloversvilie	45	45	40	46	52	55	56	63	61	55	45	47	44	80
Lorrille	62	62	76	81	84	79	81	80	73	63	65	69	72	71
	46	43	36	43	45	53	61	64	60	55	47	48	40	48
Number Four	57	60	73	78	81	77	76	76	71	61	62	66	71	68
Number Four	40	42	33	4.5	49	55	59	62	59	49	35	40	44	46
Atlantic Coast	62	61	62	64	68	67	65	67	70	67	64	67	64	58
Brooklyn	75	77	78	80	81	81	75	83	83	77	80	81	75	57
	54	5.3	54	55	61	62	60	04	63	63	54	64	59	54
Manhatan Beach.	71	70	71	70	918	72	70	66	78	74	70	72	80	70
Mrabhatam Beach.	54	5.3	52	58	60	$6{ }^{6}$	58	69	64	65	61	60	57	57
	68	63	70	74	78	77	70	74	78	73	74	78	69	61
New York City...	53	53	55	57	60	59	57	63	61	59	55	60	57	53
Willet's Poin	\%0	70	73	78	83	73	73	73	83	75	75	78	72	58
	5	50	51	56	55	57	60	60	60	50	55	56	57	53
Bren	76	75		81	83	84	80	76	83	79	81	80	72	
Brentwood	52	47		40	57	46	57	64	62	59	46	51	49	
Setau	69	68	73	76	80	73	71	65	81	70	72	77	72	61
	53	5	54	52	$5{ }_{5}$	56	58	60	89	$!9$	52	57	56	53
dfo	70	72	76	79	81	88	68	71	80	80	75	77	78	63
Bedror	47	47	40	45	52	52	55	62	60	59	43	50	50	50
Hudson Valley	59	59	60	66	71	70	63	66	71	67	61	63	63	58
Albady	69	70	78	84	88	85	69	71	82	76	71	75	78	65
Albay	53	52	47	56	60	61	58	62	62	56	53	55	51	53
Lebanon Spri	69	98	73	79	86	83	65	68	86	73	70	72	63	63
Lebanon Sprim	41	44	36	48	48	52	55	56	56	52	41	47	52	47
Hogeymead Brook	67	66	72	78	82	82	65	71	79	70	71	72	93	64
Hodeymea Brook	44	44	42	49	54	55	58	62	61	61	51	49	47	50
Poughkeepsis	71	71	77	81	87	72	68	76	82	75	75	77	74	65
	74	72	78	8 \%	87	86	74	80	85	76		78	70	
Wappingers Falls.	48	$4{ }^{4}$	45	50	58	59	60	62	6.3	81	49	55	58	50
est	76	71	73	76	87	88	62	68	71	81	74	76	80	73
West	50	51	45	50	55	55	57	57	63	61	47	54	50	44
Carmel	71	79	81	80	90	83	68	74	81	70	70	77	75	58
Carmul	45	49	55	54	60	62	59	65	65	62	63	53	56	50
Mohawk	57	56	66	71	70	71	74	55	58	60	61	61	66	60
	67	72	83	83	82	80	84	60	72	75	75	75	80	75
	47	40	50	57	58	62	64	50	44	45	47	47	52	45
Champlain Valley	56	58 70	56	65	68 80	80	63	61 65	64	${ }_{6}^{60}$	58	59	59	57
Plattyburgh Bar's	50	50	45	55	5.5	55	50	50	55	56	5.4	50	45	48
	64	68	76	81	85	85	65	68	83	72	70	71	73	60
Glens Falls.	46	40	40	47	52	52	5	61	60	50	44	28	56	52
St. Lawrence Val	55	55	59	63	70	69	71	68	62	59	56	00	61	60
St. Lawrence Vat	62	61	74	78	82	80	73	70	66	60	61	64	6.5	68
Malone	47	45	43	48	50	55	61	62	5.	50	45	47	41	48
	59	61	64	73	85	83	80	79	¢9	6 ¢	66	71	75	64
Madison Barracks	40	43	48	4.3	60	62	64	60	48	53	42	48	57	45
	70	71	80	89	85	96	88	88	79	72	74	79	78	78
Watertorm	10	40	40	51	52	60	60	63	60	44	42	43	44	40
Canton	63	63	69	8.	83	69	82	78	66	68	69	74	70	69
	46	40	41	41	49	54	63	61	59	46	44	46	49	47
Mabsena					\ldots		\cdots			
North Hammond	68	36	76	88	88	80	84	80	66	78	70	80°	84	84
North Hammond.	50	41	44	44	54	64	64	65	56	50	50	50	50	50
Oedeusbura	$6: 3$	65	75	83	86	75	79	68	65	70	68	74	i0	74
Osdenshury	52	48	50	44	56	62	${ }^{62}$	60	58	53	48	50	55	50
Potsdam	66 43	64	79	78	83	80	74	72	${ }_{5}^{62}$	63 50	62	65	67	73

Maxima and Minina for the Stations-(Contimued).

15	16	17	18	19	20	21	22	23	24	25	26	27	28	20	30	
56	60	62	65	67	72	71	6\%	57	${ }_{60}$	58	68	6.5	6.9	60	56	61.6
72	78	75	88	82	8.5	80	75	72	7.5	67	80	78	78	68	73	
42	44	48	51	59	59	63	40	45	52	57	59	59	54	39	50	62
65	76	72	79	83	8.5	87	77	73	72	60	80	78	79	78	70	3.0
48	45	57	56	53	53	63	63	$4{ }^{4}$	46	49	58	52	54	55	45	3.0
72	¢9	34	81	83	84	82	74	74	78	64,	75	78	78	71	70	
43	41	50	48	50	65	59	61	40	$4!$	53	611	i4	5.5	54	39	62.4
67	72	68	78	79	$\stackrel{\square}{0}$	78	71	68	74	62	74	74	73	63	64	59.0
41	41	50	45	47	56	57	56	36	44	50	58	43	51	50	37	59.0
61	63	64	$6 i$	71	75	77	77	67	60	60	68	69	65	70	66	66.1
75	72	72	75	82	84	90	89	76	68	65	82	82	68	86	79	68.8
51	58	60	61	6il	68	70	71	65	57	55	61	6	63	6.3	59	68.8
58	68	64	64	66	70	78	76	78	73	6.3	64	71	73	66^{6}	78	64.5
50	54	59	60	60	65	67	66	63	58	54.	53	60	(i)	61	58	04.5
73	69	67	74	8.	85	86	87	79	65	63	77	79	65	78	74	66.0
51	58	58	61	66	68	. 70	63	63	53	54	tio	65	61	6.4	57	66.0
74	72	63	76	81	89	88	89	75	67	65	79	82	66	81	77	66.4
56	59	60	58	6.3	68	69	62	54	53	56	57	61	60	56	56	66.4
75	76	74	75	80	89	89	91	76	73	69	80		71	$8{ }^{5}$	71	
50	51	59	60	55	65	61	Gí	50	42	54	60		57	59	59	68.6
68	72	70	78	84	84	87	85	74	71	65	76	78	08	79	73	65.7
5*	52	59	60	60	67	67	¢9	tiu	54	55	$6{ }^{6}$	69	(i)	H0	59	05.7
70	74	66	81	86	86	$\bigcirc 9$	86	I4	17	6%	80	79	tis	80	75	64.9
50	50	57	61	58	63	63	68	5ヶ	46	53	58	53	60	58	50	04.9
59	61	$6{ }^{6}$	68	71	77	77	75	68	61	59	69	68	67	68	64	65.7
69	76	76	82	86	91	$\times 7$	85	76	74	66	85	83	78	82	75	68.0
51	52	59	62	61	68	69	ti6	$\therefore 5$	54	56	60	61	62	(i)	51	68.0
61	77	76	80	83	37	89	$\checkmark 2$	6^{4}	78	69	84	78	75	80	71	626
47	43	56	55	51	ti0	60	+11	46	43	49	58	4!	53	53	43	626
67	74	74	76	82	86	87	84	6.1	. 3	\$0,	c1	is	71	80	72	643
49	47	57	59	56	66	67	66	5	49	54	58	54	60	5.5	54,	643
69	73	73	86	87	90	90	$8 t$	74	71	63	81	74	74	73	80	
51.	47	57	54	53	65	$6: 3$	51	53	$4{ }^{\circ}$	54	50	58	58	55	56	645
71	76	74	¢1	*6	90	91	81	7-1	$7 t$	68	83	82	75	$\times 2$	78	67.6
51	52	58	59	${ }_{60}$	69	70	70	(i)	53	50	S4	5.7	50	58	53	67.6
65	73	72	68	83	90	91	90	59	75	67	65	$\checkmark 1$	80	69	$8: 3$	65.4
50	4:	14	49	58	64	64	68	59	50	53	5.5	58	tio	615	56	65.4
69	73	69	83	88	90	88	85	7.5	65	64	$8: 3$	80	72	81	76	67.3
53	5.5	$6{ }^{6}$	61	$6 b^{\circ}$	63	70	69	58	46	52	62	64	60	63	49	07.3
63	68	63	68	73	76	70	68	63	66	62	66	70	68	63	64	632
78	80	75	84	89	88	80	81	78	80	68	83	$\times 5$	86	78	80	65.2
48	57	51	52	57	64	60	54	48	52	55	30	55	50	48	49	65.2
60	63	66	68	73	78	74	72	6.3	62	60	70	71	67	68	60	64.4
70	65	82	70	85	89	87	80	80	72	75	77	87	7.	co	75	64.1
50	55	53	60	65	65	60	6.5	511	50	5.5	57	610	55	(i)	45	64.1
67	76	74	81	88	92	815	84	76	78	64	81	84	80	74	78	64.6
54	55	54	59	55	64	64	60	47	46	45	60	56	57	57	44	64.6
63	66	68	87	68	73	71	66	61	64	61	69	65	68	61	56	639
69	78	76	80	80	8)	80	73	69	71	75	77	75	79	68	69	62.0
46	53	59	54	58	65	59	56	42	45	49	61	55	59	50	40	62.0
75	78	79	73	79	84	78	81	78	$8:$	67	74	79	83	73	70	630
43	47	5:	48	57	65	60	61	47	49	49	60	54	60	37	44	030
80	8.5	84	78	80	81	86	83	79	87	70	\cdots	st	84	7 t	79	652
44	50	52	52	16	48	6.5	62	50	$4{ }^{4}$	51	$\therefore 0$	52	$4 \times$	54	40	652
76	83	82	84	83	88	80	70	79	75	7.5	83	79	80	+.9	71	62.6
46	50	51	54	55	62	61	48	39	46	48	56	50	55	52	40	62.6
- -								-.	\ldots		--			
$8{ }^{-7}$	80	88	78	86	92	78	80	72	80	68	76	80	78	70	7)	66.7
50	34	60	56	56	66	66	58	46	$5{ }^{2}$	56	66	56	58	58	45	66.7
78	83	78	81	80	$8+$	77	75	70	73	79	79	80	75	72	68	64.8
54	56	59	57	53	64	67	50	52	6.	54	58	57	60	55	48	64.8
74	78	77	81	80	8:	79	78	80	75	74	81	74	79	69	65	62.7
49	54	57	63	57	59	53	55	57	54	53	61	51	58	47	41	62.7

Showing Daily Means for tie Regions, and Daily

STATION.	1	2	3	4	5	6	\%	3	9	10	11	12	13	14
Great Lakes	54	53	60	66°	70	72	75	73	$6 \overline{0}$	${ }_{60}$	59	62	63	61
Dunkirk			-				\ldots							
Westfield	63	67	81	75	83	84	83	85	72	6	68	78	76	73
	41	40	45	60	61	. 61	63	61	${ }_{6}^{60}$	51	4	52	55	89
Buffalo	57 45	66 47	80 4.5	78 60	83	79 68	75 64	83 63	69 56	6	7% 0 50	70 56	75 58 58	83 59 5
	63	61	77	80	85	82	87	84	74	65	69	70	75	71
Pittsford	47	45	42	55	53	66	68	66	57	\therefore	48	51	48	56
Rochester	63	67	80	80	85	86	88	83	72	68	70	74	74	72
Rochester	48	45	44	59	59	66	68	65	58	54	50	53	$5{ }^{5}$	51
Appleton	64	68	65	71	75	78	89	80	69	66	71	75	71	70
	46	45	40	5	${ }^{50}$	60	63	63	57	It	50	5	51	48
Fort Niagara	65 46	70 45	70	${ }_{6}^{69}$	76 51	81 57	90 63	76 63	72 79 59	-68	74	77 5%	72	69
	66	67	80	82	$\varepsilon 6$	83	88	86	7	67	72	74	78	$\frac{49}{75}$
Baldwins	51	46	50	57	62	66	65	67	59	50	51	50	55	53
	54	58	68	74	78	79	80	80	64	61	58	63	71	65
Oswego	43	44	46	57	57	65	66	57	54	52	46	49	52	52
Palermo	65	67	75	80	83	84	86	8.5	72	67	68	70	73	70
Palermo	40	44	38	50	51	60	55	63	53	49	44	41	46	49
Ljons	64	64 49	75	79	85	80	87	$8{ }^{82}$	76	65	710	71	74	70
	${ }_{60} 6$	49	45	56	57	${ }_{-85}^{65}$	66	68	58	55	51	53	50	53
Erie, Penns'vania.	60 50	$6: 3$	74 53	73 61	80 64	78	81	84	72	67 58	67 55	73 57	72 58	69 56
Central Lakes	57	51	64	68	68	69	73	75	69	59	59	61	63	63
	71	78	86	84	72	79	85	85	\% 8	63	63	68	72	71
Fleming	55	60	61	55	49	50	56	$6 ;$	63	55	48	51	49	57
Romulus	65	67	77	80	87	77	87	83	78	63	72	76	79	71
nomutus	47	47	4.	53	57	65	65	65	58	55	49	49	54	53
Ithaca	61	65	76	80	86	80	84	85	80	64	69	72	77	70
	45	49	39	56	55	63	63	65	59	53	46	51	47	56
Mean	56	57	60	66	69	70	69	68	66	61	59	61	62	60

[^9]Maxima and Minima for the Stations - (Concluded).

15	16	17	18	19	20	21	28	23	24	25	26	27	28	29	30	
63	64	64	67	70	75	75	68	61	64	65	69	69	69	63	52	65.4
74	70	$7{ }^{-1}$	80	82	85	79	76	73	73	84	75	76	79	70	76	
53	58	55	55	55	67	69	59	50	57	60	65	66	59	51	45	5
74	68	72	78	76	85	75	if	75	$71)$	78	76	77	72	70	70	
53	59	58	58	62	67	67	61	52	56	60	65	64	65	58	54	66.0
74	77	74	80	-3	83	85	78	74	72	77	79	81	82	75	76	
50	54	58	53	56	65	c9	55	47	46	52	60	51	56	56	45.	65.4
73	74	72	81	82	84	81	76	76	72	79	79	83	80	72	77	66.0
54	57	60	56	60	66	69	59	50	56	58	58	56	57	50	46	66.0
69	70	72	81	84	83	83	75	T	76	72	75	83	$7 \times$	69	79	
52	53	53	52	55	64	67	6;3	46	51	55	62	52	58	52	44	64.1
68	69	73	84	87	86	84	79	73	77	71	82	83	75	77	78	65.6
52	54	51	54	59	68	72	64	48	56	58	62	56	65	57	47	65.6
77	74	75	82	87	87	85	77	77	78	71	81	85	81	76	77	67.6
56	60	57	57	61	69	67	51	51	56	60	56	61	57	48	55	67.6
69	73	68	72	83	81	84	66	68	75	69	72	78	80	71	72	
50	55	59	52	57	68	6.7	58	50	53	56	58	56	58	54	49	63.0
75	73	73	81	83	¢7	85	73	73	77	67	76	83	83	72	74	63.4
47	49	58	48	50	60	65	62	42	45	42	61	50	57	52	44	63.4
74	75	70	80	85	85	80	78	73	71	72	80	81	81	75	75	66.1
52	58	61	54	59	64	71	60	51	51	55	62	56	62	53	48	66.1
72	66	71	74	80	81	78	73	69	72	83	74	78	72	70	73	66.0
55	58	57	57	60	69	66	67	55	60	61	67	59	60	59	51	66.0
63	64	67	68	71	76	77	72	62	58	62	71	68	68	66	60	66.0
73	72	76	78	86	88	84	84	72	68	63	78	79	79	74	5	66.4
51	56	60	57	58	66	70	66	51	51	55	62	55	55	56	46	66.4
79	71	75	83	87	89	86	81	75	65	71	83	80	81	77	76	66.2
50	57	57	54	58	64	68	62	49	50	56	62	51	54	55	45	60.2
74	72	75	80	84	86	84	78	73	64	65	80	81	77	77	76	65.3
49	57	59	55	54	63	68	60	50	49	55	60	51	61	55	44	65.3
60	64	65	67	70	75	74	70	62	61	61	69	68	67	64	61	64.7

Dathy and Monthly Prectipi

STATION.	1	2	:	4	5	6	\%	8	9		11	12	$1: 3$	14
Western Plateau	T.	0.00	0.00	065	0.04	0.12	0.21	0.89	0.65	0.08	0.00	0.00	0.00	0.06
Alferl..				T.	T.	. 04	. 45	1.07	1.35	T.				'1.
Aurelica				. 16	-14	. 32			$\dagger 1.98$					T.
Bulivar.			\cdots		T.		. 11	1.58	. 99					. 12
Fioudship			\ldots	T.	T.		. 10	-68	1.20	02				. 15
Humplirey				. 05	. 20	\cdots	. 30	. 75	72	08				. 12
Litale Valley														
Cherry Creek				. 40	2	12	. 01	.46	.12					-22
Jamestown				. 38	. 01	. 31	T.	$4)$	48	T.				
Elmira							. 16	1.03	. 75	.22				
Pine City														
Akron							T.	45	118	. 09				\ldots
Avon						50		53.	. 46	. 15				
Mt Morris						. 15		116		.17				
Luckport					. 09		-15	. 17	34	11				\ldots
Victor	T.					. 23	30	. 54	. 46	.02				
Trrone								1.15	. 55	15				
Werigewood						. 02	46	1.35	.21	-15				. 03
Addison				T.		T.	. 50	1.20	. 44	. 031				. 23
Allanta.														
Haskinville.				T.		40	. 20	1.15	20	. 031				. 18
South Canisteo						-23	-61)	. 80	2.47	. 15				. 15
Arcade					.12		. 62	1.23	. 17	. 09				
Varysburgh					T		T.	1.10	. 22	$1 \times$				
Eastern Pla	000	0.00	0.00	0.01	0.00	0.03	0.21	0.84	0.44	(1.42	013	0.00	0.03	0.38
Binghamton							. 35		112	. 35				. 15
Chenango Forks														
Oxford.....				\cdots		T.	. 10	1.00	. 88	. 34			T.	. 10
Cortland.						. 03	. 18	. 64	1.15	. 29				
Blooniville							. 03	. 59	. 65	.$^{-1}$	1.00			
				\ldots										
South Kortright							. 14	. 57		. 30				. 23
Bronkfield							06	. 56	1.22	. 52				
Apulia														
Middletown			\cdots				. 03	1.10	T	100	10			1.38
Port Jervis								. 10	. 32	. 60	.62			*
Warwick.							05	100	.16	1.39				1.92
Comperstown							. 45	2.68	. 10	. 45	. 06			
New Lishon						. 04	. 37	1.23	. $70{ }^{\prime}$. 58	07			
Oneonta						35	. 27	1.10	31		. 27			
Perry Uity		\cdots				T.	. 53	. 34	. 21	10^{\prime}		\ldots		12
Newark Valley	\ldots						. 67	. 90	. 10	-10			. 45	. 28
Waverly				. 10			- 02	1.03	. 18	22				. 47
Mohonk Lake	-						08	. 03		. 43				1.10
Northern Plateau..	0.09	0.00	000	0.00	0.00	0.46	0.32	0.40	0.56	0.09	0.06	T.	0.00	0.05
West Chazy .														
Elizabotitown														
Saranac Lake	. 06					1.22	. 64	27	1.10					
Gloversville	T					. 10	. 13	. 51	. 68		. 19	01		. 08
Low ville.			 06	40	. 11	14	. 05			. 04
Number Four	25						. 51	. 29	. 63	. 15	07			
Kiugs Station.	. 15					1.00	. 28	-54		. 15				.12
Atlantic Coast.	0.00	0.00	0.00	0.00	0.00	0.08	0.01	0.06	0.12	0.41	T.	0.001	0.20	2.18
Bronklyn.							. 02	. 03	. 16	. 37				2.86
Manhattan Beach..							T.	. 15	. 01			* \dagger	1.05
New York City..							. 01	. 16	.28	. 46				2.59

tation for . Tene, 1896 - (Inohes.)

Daily and Monthly Prectpr

STATION.	1	2	3	4	5	6	7	8	9		11	12	13	14
Atten. Coast (Con.)								. 18	T					
Brentwood........	\ldots						\ddot{T}		. 10	1.01			1.00	1.17
Seatanket							T .	T.	. 0	. 23	T.			2.74
Bedford.							. 03	. 05	14	. 58	T.			1.54
Hudson Valley	0.08	0.00	0.00	0.00	0.00	T.	0.09	0.21	0.27	0.45	0.09	T.	0.00	1.28
Albany	T.					. 02	. 09	. 65	. 05	. 66	. 01			. 44
Lebanou Springs	T.						.30	62	T.	1.78	. 17			. 71
Honeymead Brook.	-...						. 11	. 01	. 13	13	. 05			1.14
Poughkeepsio.....	\ldots	...	\ldots	. 06	. 23	. 0	. 25	. 01			1.19
Wappinger's Falls.							- 02	. 03	. 10	.51	. 08			143
West Point..									. 45		. 60	. 02		1.90
Boyds Corner								. 07	. 36	.20				1.81
Carmel 04	. 28	23				1.63
Southeast Reserv'ir									. 30	. 4.5				1.57
Eagle Mills.	. 85						.35	. 45	1.00	. 36				1.00
Easton.													
Mohawk Valley	0.00	0.00	0.00	0.00	0.30	0.12	0.30	0.40	0.00	0.00	0.09	0.00	0.00	0.00
Ronse					. 30	. 12	. 30	. 40						
Champlain Valley.	0.02	T.	0.00	0.00	0.00	0.64	0.18	0.40	0.4	086	0.20	T.	000	002
Plattsburgh B'rcks		T.						. 40	21	1.50	. 40	T.		
Glens Falls........	. 05					1.27	.37	. 40	$\therefore 7$. 2				. 05
St. Lawrence Valley	0.07	0.00	0.00	0.00	0.00	0.38	025	1.05	0.55	0.07	0.01	0.00	0.00	0.05
Maloue ..						. 41	. 67	1.03	1.58			...		
Madison Barracks.	. 0.4					. 24	. 93	. 09						
Watertown	21					. 03	. 11	1.18	. 15	. 02	T.			. 37
Canton..						. 27	. 03	1.00	.77					
DeKalb Junction.	04					. 83	T.	1.09	. 99		. 03			
Massena...........														
North Hammond..	. 021					. 40		1.42		. 52				
Ogdensburg	. 07					-45		1.54	. 3.7		. 03			
Potsdam .-	. 17						$\dagger .14$		\ddagger 12					
Great Lak	T.	000	0.co	0.05	0.00	0.10	0.18	0.41	0.37	010	0.00	0.00	0.00	0.65
Dunkirk.				. 14						. 98				
Westitield				. 20		. 24	T.	96	. 09					
Buffalo							. 26	.28	. 11	. 11				
Adams Centre							1.02	. 07						
Pittsford						. 20		. 34	. 85	. 08				
Rochester	T.					.23		. 35	1.31	. 04				
Scottsrille	'			\cdots		50		. 85	. 31				
Appleton 11	. 11	. 86	. 18				
Fort Niagara							. 11	. 05	1.30,					. 04
Baldwinsrille......						T.	. 11	. 61	. 21					
Skaneateles.......						. 06	. 04	. 31	. 28	. 30				
Ridgeway							T.	. 56	. 48	. 11				
Demster							. 12	. 80	. 18	04	.-.			. 02
Fulton							. 10							. 75
(barego.	T					. 04		.69	.09					. 04
Paleruso							. 20	. 41						. 08
Phocuix							.09	. 19	62	09				
Lyous						. 08	. 89	. 42	42					T.
Rose.						17	. 31	.23	. 10	01				T.
Erio, Pennsylvania				61		410	22	. 93	. 18	. 03				...
Ceneral Lakes	0.00	0.00	0.00	T.	0.00	0.30	0.20	0.98	0.42	0.12	0.00	0.00	000	I.
Flaming								. 85	37	. 15				
Sherwo				...	\cdots	. 51	. 15	. 50	. 11		.-			\ldots
Romula						. 68	T.	. 89	52					
Ithati				T.		. 03	. 66	1.70	. 68	. 31				T.
Penn Via														
A cerage	0.03	T.	000	0.01	0.03	0.22	0.20	0.56	0.30	0.26	0.05	T.	0.02	0.40

tation for June - (Continued).

15	16	17	18	19	20	21	22	23	24	25	26	87	28	29	30	$\begin{aligned} & \text { H゙ } \\ & \stackrel{3}{3} \\ & 0 \end{aligned}$
		1.18				.67			1.13		. 12 15			6.01
		. 20					T.		1.00			. 50				5.00
		. 16				T.			. 35	. 25			. 35			4.10
		1.41				. 05			. 47	-10.	- 04	-.-.	.11	T.	-	4.52
0.01	0.03	0.41	0.02	0.02	0.00	0.30	0.02	0.00	0.02	0.13	0.02	T.	0.06	T.	0.00	3.52
		. 43	. 02	--		. 12				T.	T.	-..'	T.	T.		2.49
		. 26		. 17		-45				T.	'I.	. 03	T.		4.49
	. 05	. 25	. 10	. \cdot.		. 36		.-.	T.	T.	. 01		. 06			2.40
	T.	. 06				.79			. 06	T.		--.	'1.		..-. . .	2.71
'T.	23	. 28				.34			. 04	. 22	--		. 24			3.52
		. 31	06				. 22	 41	. 05		. 02	-02		4.07
. 07		. 50				. 11 04	. 25	. 06	.	- 0			3.47
		. 51		-...	.-	. 27 06	. 19	. 04	T.	. 07			3.32
		96				.27				. 24	----		. 21			4.00
		. 50	-.	. 30	--	.			--.	.-.				75
0.00	0.08	0.00	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	1.51
	. 08					. 25							.06			1.51
0.00	0.00	0.09	0.06	000	0.00	0.04	0.08	0.00	0.00	0.00	T.	0.00	0.00	0.08	0.00	2.90
		 15	- - -	-..-	T.	- 15		2.80
' 1.	0.00	0.49	T.	0.00	T.	0.08	0.00	0.00	0.00	T.	0.01	0.00	0.17	0.05	0.00	3.22
			T.			. 32					T.		. 31	. 25		4.57
		. 10				.13		 05			1.54
. 0.3		1.10			T.	. 05	-...		-..	T.	. 04 .		.16			3.28
		. 67					.		--.	 26	. 15		3.39
		2.06									. 02		. 25			5.31
		...	"T.			…		\cdots			\cdots	…	T.	T. ${ }^{-}$		2.36
						. 12					. 01					2.57
								-..		 33			2.76
T.	0.21	0.15	T.	0.00	0.01	0.18	T.	0.01	002	0.03	0.15	0.00	023	0.01	0.00	2.27
	. 92	. 08				. 23		. 15	\cdots	. 53	T.		. 06			3.09
	. 70	T.				29			T.		. 42					2.90
T.	28	. 06			T.	04			'T.	T.	.32		'I.			1.46
		. 74				- 03				. 02					1.88
T.	08					T.							45	. 01		2.07
T.	55	. 02			T.	'T'.					. 10		. 20			2.80
	95					. 07					. 18	-...	. 22			3.08
. 03	. 04	. 02				. 08		-...		''.	. 10		. 07	T.		1.60
	. 02					T.					. 19		. 08			1.79
	. 13	. 06				-07			T.	T.			.23	. 07		1.49
	. 02	.40			28	. 26			--		. 36			2.31
	. 15	22				T.					. 60		. 16			2.28
		. 20				. 57							-40			2.33
		. 44				. 50							. 70			2.49
	T.	. 26				. 23				T.			. 22			1.57
		.15				-47						1.00			2.31
. 05		. 21	. 06				. 10							. 13		1;54
	. 14	-..				. 05				05			. 34	. 03		2.42
	. 08	. 18 .				. 10				T.	. 02		. 11	. 02		1.32
	. 23				T.	. 67			. 30		1.02		. 08			4.67
'1.	0.11	0.08	0.00	T.	0.12	0.32	T.	0.00	005	0.02	0.00	0.00	0.15	0.16	0.00	3.04
		. 17		T.		. 40			 47		2.41
	. 24				. 14	. 75		 10			. 32	. 15	2.07
	T.	T.			.36	T.	T.						T.			2.43
T.	. 20	. 17				. 13			. 19	T.			. 28	01		4.36
0.04	0.11	0.26	0.05	T.	0.02	0.18	0.01	T.	0.13	0.05	0.05	001	0.11	0.04	T.	3.19

Statistics of Temperature

and Prectipitation - June.

MAP OF THE STATE OF NEW YORK

SHOWING

THE MEAN TEMPERATURES

MAP OF THE STATE OF NEW YORK

SHOWING

THE PRECIPITATION

FOR JUNE. 1896

SCALE OF MILES

Meteorological Summary for July, 1896 .

The average atmospheric pressure (reduced to sea-level and 32 degrees Fahr.) for the State of New York during July was 30.00 inches. The highest barometer was 30.40 inches at New York city on the 19th, and the lowest was 29.62 inches at Albany and Oswego on the 15th. The highest mean pressure, 30.03 inches, obtained at New York city, and the lowest, 29.98 inches, at Oswego and Number Four. The arerage of the mean pressures at six stations of the National Bureau was 0.03 inches above the normal; the excess being greatest in southern and eastern New York.

The mean temperature of the State, as derived from the records of 72 stations was 70.4 degrees. The highest local mean was 75.5 degrees at Brooklyn, and the lowest 65.0 at Number Four. The highest general daily mean was 76 degrees on the 12th, 29 th and 30 th, the lowest being 64 degrees on the 17 th. The maximum temperature reported was 96 degrees at Mt. Morris on the 6 th and 7th, and the minimum 40 degrees at Friendship on the 17 th and 18th, and at Saranac Lake on the 31st. The mean monthly range of temperature for the State was 42 degrees, the greatest local range being 51 degrees at Mt. Morris and Bloomville, and the least 28 degrees at Manhattan Beach. The mean daily range was 20 degrees. The greatest local daily range was 46 degrees at Bloomville on the 1st, and the least was 2 degrees at Port Jerris on the 24 th. The mean temperatures of the various section of the State were as follows: The Western Plateau, 69.6 degrees; the Eastern Plateau, 69.7 degrees; the Northern Plateau,
67.7 degrees; the Atlantic Coast, 73.0 degrees; the Hudson Valley, 72.7 degrees; the Mohawk Valley, 70.2 degrees; the Champlain Valley, 69.5 degrees; the St. Lawrence Valley, 68.9 degrees; the Great Lakes, 71.0 degrees; the Central Lakes, 71.4 degrees. The average of the mean temperatures at 26 stations possessing records for previous years was 0.6 degrees above the normal. Excesses generally occurred at western and southern stations, and deficiencies in the north.

The mean relative humidity was 75 per cent. The mean dew point was 61 degrees.

The average precipitation, as derived from the records of 93 stations, was 4.90 inches. The greatest general precipitation exceeded 6 inches over considerable areas of western, northern and southeastern New York, while in portions of the St. Lawrence and upper Hudson Valley and on eastern Long Island, less than 4 inches fell. The maximum local amount was 8.71 inches at Port Jervis, and the minimum, 2.43 inches at North Hammond. The rain periods covered the dates from the $3 d$ to the 9 th, with a maximum of 0.34 inches for the State on the 4 th; from the 13 th to the 15 th; from the 19 th to the 25 th, with the maximum general rainfall of the month on the 20 th, and from the 27 th to the 30 th. The average precipitation at 28 stations possessing records for previous years was 1.05 inches above the normal amount. The largest excesses generally obtained in western New York, while in the eastern and northern sections 10 stations reported deficiencies. The amounts at Angelica, Humphrey and Elmira were the greatest shown by the records of these stations for August.

The average number of days on which the precipitation amounted to 0.01 inch or more was 12.3 , which is considerably
greater than the usual rain frequency for the summer months. The maximum number was reported from the Eastern and Northern Plateaus, and the southeastern section. The arerage number of clear days was 10.3 ; of partly cloudy days, 12.3 ; of cloudy days, 8.4; giving an average cloudiness of 50 per cent. for the State. The cloudiness was greatest in northern New York, and least in the western and southern sections.

The prevailing direction of the wind was from the southwest. The average wind-travel at 6 stations of the National Bureau was 6,931 miles, the travel generally being greater than usual for the month. The maximum velocity reported from the above stations was 50 miles per hour at New York city on the 27 th.

Thunderstorms occurred at 10 stations on the 3 d ; at 10 stations on the 4 th; at 5 stations on the 5 th; at 8 stations on the 6 th; at 4 stations on the 7th; at 3 stations on the 9 th; at 3 stations on the 10 th; at 1 station on the 12 th ; at 10 stations on the 13 th; at 3 stations on the 14 th ; at 10 stations on the 15 th ; at 2 stations on the 16 th; at 7 stations on the 20 th; at 2 stations on the 21 st; at 9 stations on the 22 d ; at 3 stations on the 23 d ; at 2 stations on the 24 th; at 1 station on the 26 th; at 13 stations on the 27 th; at 12 stations on the 28 th; at 17 stations on the 29 th; at 13 stations on the 30 th; at 1 station on the 31 st.

Hail fell on the 3d.
A solar halo was observed on the 2 d .
The weather during July averaged slightly warmer than usual; hot waves during the second and fourth weeks alternating with brief cool periods about the 6 th, 17 th and 24 th; but few excessively high or unseasonably low temperatures occurred. There was an abundant rainfall, commonly in the form of local showers which were followed by bright pleasant weather; hence the
month was very favorable for the growth of crops, though less so for harresting operations. Thunderstorms occurred on 23 days being more frequent in southwestern New York than elsewhere. Phenomenally heavy rains occurred at some localities in the southeast on the 9th, and in the western section on the 20th.

During the month, the weather of New York was influenced by five areas of high and seven areas of low pressure, the number of the latter being about the usual storm frequency for July in this vicinity. Five low areas passed to the eastward over Canada on the 9th, 15th, 22d, 28th and 30th; while on the fifth and 24 th, depressions passed centrally within the borders of the State. The lows passing north of the State commonly spread over the Canadian provinces, moving slowly, and giving southerly winds and warm waves over the northeastern States, as occurred in the most marked degree with the depressions of the 9 th, 15 th , $22 d$ and 30th. The lows which passed centrally over New Yoris were of moderate energy, bringing general, but not excessive, rains.

The high pressure systems were generally large and well defined, but developed no central pressures much exceeding 30.3 inches. The first and third area, only, moved northeastward to the Atlantic; the remainder, after traversing the central or northern States, passed to the south Atlantic coast, where they became nearly stationary. The highs, with their accompanying cool waves, were most strongly felt in this vicinity on and about the $2 \mathrm{~d}, 8$ th, 14 th, 18 th and 24 th, the greatest depression of temperature occurring in northern New York on the 16th under the infivence of the fourth area; but no damaging frosts occurred.

An injurious drouth which prevailed in the eastern counties at the opening of the month was relieved by abundant rains
beginning on the 4 th. The weather continued rather cool for growth during the first decade after which higher temperatures and frequent showers brought vegetation rapidly forward. The reports of the first week showed oats as heading and barley and spring wheat ripening; winter wheat was cut and some rye harvested early in the month; by the 18th considerable amounts of barley had been cut and the oat harvest was commenced on the 30th; corn, tobacco and hops made satisfactory growth, the latter being in blossom by the 10th. Grapes promised well, and the apple crop was unusually good.

Local storms.- Near Honeymead brook, Dutchess county, lightning caused the loss of four barns, with contents, on the 3d; and one person was killed at Sharon Station. The storm was accompanied by destructive wind and hail, with a cloudburst and flood about Amenia. Lockport reports the heaviest rain on record at that point on the 20th. A local storm at Waverly on the 27 th prostrated trees, unroofed buildings, and laid flat the grain in many fields.

Meteorological Data.

for July, 1896.

Location of Stations．			Baroneter．						Humidry		Tempera			
STATION．	COUNTY．		䔍		$\begin{aligned} & \text { g } \\ & \stackrel{y}{x} \end{aligned}$		$\frac{\dot{8}}{8}$			Dew point（degrees）．			芗	$\stackrel{8}{\square}$
Atian．Coast（Con）． Wjllet＇s Point． Brentwood \qquad Setauket Bediord．	Queeus．．．．．．． Suffolk Westcherster We．．	75 40 290							78	66	720.7	73 73.6 72.8 71.5	92 94 88 89	13 12 13 29
Hudson Valley ．．． Albany Lebauon Springs	Albany Columbia		30.00	30.37	19	29.62	15	0.75	73	63		72.7 740 70.2	94 94 91	12 12 3
Honermead Brook Poughkeopsie Wappingers Falls	Datchess．	$\begin{aligned} & 450 \\ & 180 \end{aligned}$					－－				70.9	70.8 70.5 74	85 91 92	3 j 13
Catukill．．．．	Greene．．．．．．． Orauge	167			\cdots		\cdots				73.8	72.8 73.3	01 93	12
Carwel ．．．．．．．．．．．	Putnam	500			．．							73.3	30	h
Mohawk Valley．．． Rome．	Oneida	445			．							70.2 70.2	${ }_{96}^{96}$	22 22
Champlain Talley Plattsburgh B＇ks．	Clinton	125			\because			．．．				69.5 69.5	${ }_{9}^{93}$	3 3
Glens Fals ．－．－．．．	Warren													
St．Lawrence Tal． Malone \qquad	Franklin	810									． 8	68.9 67.6	94	k
Madison Barracks	Jefferson．	266											87	1
Watertowu	Jefferson．	486										688	94	
Cavton ．．．．．．．．．．．．．．．．．．．．．	St．Lawrence．	304									7．9	68.8	80	l
North Hammond． Ogdeusburg	St．Lawrence．	300 258					\cdots	…			68.8	70.7 69.8	88	m n
Potsdam．．．．．．．．．－	＂	300										67.8	88	2
Great Lakes ．．．．．．							．					71.0	93	2
Uunkirk Westfield．．	Chautauqua	590			\cdots		．．					71.6	90	
Buffalo	Erie ．．．	690	3000	30．30，	18	29.68	150	0.62	70	60	69	70.0	${ }^{86}$	29
Rochester	Monroe ．．．．．．	621	30.00	3032	18	29.64			70	59		72.0	91	2
Appleton．．．．．．．．	Niagara．．．．．．											70.2	90	p
Fort Niagara．．．．．	Niagara．．．．．．	263										728	93	12
Bahwiusville ．．．．	Ouondaga ．．．	390									71.3	72.6	92	12
Oswego	Oswego ．．．．．．	304	2998	30.35	18	29.62	150	0.73	73	60		69.0	86	q
Palermo											－			
$\underset{\text { Lrie，} \mathrm{Pa}}{\text { Lrons }}$	Wayne Erie．	${ }_{681} 80$	30.01	30.29		20.76		0.53	72	62		71.0	88	

for July, 1896 - (Continued).

Metenologicat. Data

*Mean of the tridaily observations. \ddagger Mean of the maximam and minimum by the Draper the tri-daily observations are derived by the formula ($7 \mathrm{a} . \mathrm{m} .+2 \mathrm{p} . \mathrm{m} .+9 \mathrm{p} . \mathrm{m} .+9 \mathrm{p} . \mathrm{m})$.-4 . four hours.
(a) 22, 24; (b) 6, 7; (c) 1, 2; (d) 2, 13; (e) 3, 29; (f) 2, 3, 13; (g) 2, 3; (h) 3, 30; (i) 12, 28; (1) 12, $20 ;(t) 1,26 ;(u) 7,8 ;(v) 1,24 ;(w) 5,8 ;(x) 18,31 ;(y) 1,18,26 ;(z) 17,19$; (ac) 16, 17; (ab) 16, 17. (aj) 15, 30; (ak) 20, 24; (al) 16 24; (am) 11, 20, 24; (an) 11, 20; (ap) 7 23; (aq) 23, 24; (ar) 4, 7; (as)
for July, 1896 - (Concluded).

lure - (In Degrees Fahr.).								Sky.			Precipitation - (Inches).						
$\begin{aligned} & \dot{W} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$	$\stackrel{\oplus}{\stackrel{\pi}{\pi}}$				$\stackrel{\text { ®i }}{\stackrel{\rightharpoonup}{\theta}}$		$\stackrel{\text { ® }}{\stackrel{\text { ® }}{2}}$		Number of partly cloudy dass.			$\begin{gathered} \text { Eت゙ } \\ \text { Hin } \end{gathered}$			$\stackrel{\oplus}{\stackrel{\sim}{5}}$		
43	18	43	19.			6	24	9.3	14.7	7.0	10.7	4.30	1.83	h. 17.00 17.00	20		
53	18	46	18	28	18	7	24	6	22	3	7	4.29	1.83	17.00	20		N. W.
							23					4.92			20		S. W.
49	18	41	19	$3{ }^{\prime}$	18	6	24	11	9	11	14	3.69	0.66	7.50	9		S E.
40	$\overline{a d}$	42	20	46	1	2	24	10.3	$\mid 12.3$	8.4	12.3	4.75	4.24		20		S. V.

thermograph. $\|$ Report received too late to be used in computing means. The means from tBlank indicates that the duration is not shown in the original records, but is within twenty-

13, 27; (k) 2, 29; (l) 2, 12, 22; (m) 11, 12, 22, 28, 29; (n) 2, 12; (p) 1, 2, 12; (q) 7,12 ; (r) 17, 18; (s) 16, 19 18. $24,25,26$; (ac) 15,17 ; (ad) $17.18,31$; (ae) 1,17 ; (af) 1,$18 ;(a g) 19,20 ;(a h) 1,2,18$; (ai) 1,16 ; 4, 13,19 ; (at) 7,20 ; (au) 14, 15, 24.

Temperature - July, 1896, Showing Daily Means for

STATION.	1	2	3	4	5	6	\%	8	9	10	11	12	13	14
Western Plateau	71	74	74	73	71	70	67	65	69	69	73	74	75	74
Alfred	84	86	85	80	74	82	66	72	77	79	82	82	85	79
Alfred	52	59	62	62	64	54	56	52	52	57	61	58	65	65
	87	88	89	80	78	83								86
Angelica	54	58	61	62	58	54								67
Bolivar	84	86	85	82	78	82	71	73	80	79	83	83	85	81
Bolivar	44	50	55	39	67	55	58	48	58	58	54	50	57	65
Friendship	90	90	89	84		85	72	78	84	82	88	86	88	84
	46	68	58	58		52	56	48	48	51	57	54	60	65
Humphre	82	85	84	77	73	78	66	74	75	77	80	$\stackrel{1}{1}$	84	80
Humphre	54	62	62	63	62	54	54	51	57	57	61	59	64	65
\pm Arkwright...										-..				
Jamestovn	83	86	85	78	76	80	70	75	80	78	82	83	86	81
Jamestown	54	58	64	66	65	56	57	52	60	58	62	60	66	67
E	87	92	93	85	82	84	77	74	81	86	90	92	91	86
	60	59	61	65	74	62	63	62	53	64	62	73	61	71
Aron	91	95	92	88	77	88	82	80	90		87	89	80	82
Avon	56	57	64	61	64	58	57	53	60		64	66	70	04
Mount Morris	87	90	95	92	89	96	86	84	85	86	87	89	88	89
Mount Morris	70	70	57	63	65	57	59	53	58	53	66	63	66	68
Lockpor	90	93	91	86	77	87	74	84	90	85	91	92	87	85
Lockpor	59	60	68	65	60	62	56	54	61	60	65	66	68	63
Victor	93	95	90	86	77	89	94	86	83	87	89	91	81	84
Victor	59	58	67	64	61	57	55	58	55	55	65	67	68	64
Wedgewood	91	91	92	82	79	82	72	79	78	81	88	90	85	85
Wedgemood	56	64	66	66	65	59	58	53	58	56	63	65	65	64
Addison	87	89	89	84	80	82	74	76	80	83	86	87	82	81
Adaison	49	55	60	64	68	60	58	56	60	53	58	56	61	67
South Canisteo	85	88	88	84	78	84	76	74	79	81	84	86	86	81
South Caniste	48	54	56	59	62	53	58	49	56	52	54	52	56	63
Arcade	84	87	89	84	73	81	67	73	78	79	81	84	85	81
Arcade	55	57	63	64	62	54	55	51	58	57	62	61	62	65
Yarssburgh	90	94	92	86	77	84	73	81	82	84	87	88	82	87
Yarssburgh	51	55	62	63	60	56	56	52	59	54	61	58	64	63
Eastern Platean	68	72	75	73	70	71	65	63	69	71	73	73	72	74
Binghamton	89	93	93	85	79	84	75	78	78	84	85	87	83	81
Binghamton	50	57	61	64	64	61	58	51	60	56	66	58	60	68
0	88	32	92	90	77	90	77	77	81	85	85	90	83	86
O	44	51	58	60	62	58	55	48	59	55	59	54	57	68
Cortland	87	90	88	85	76	83	73	75	78	83	85	88	79	81
Cortand	48	55	61	62	63	59	58	45	60	57	62	56	58	65
Bloomv	88	92	93	80	78	83	76	81	80	86	89	91	87	88
Bloomv	42	54	62	61	64	58	46	50	60	65	64	58	(6)	65
South Kortrigh	86	90	91	86	77	84	75	80	84	83	89	87	86	85
South Kort	44	47	59	57	60	52	46	48	50	62	55	55	56	62
Tika Par	82	85	82	76	76	76	74	72	76	78	78	83	80	78
Hka	54	65	64	62	59	58	54	50	51	\$54	$6{ }^{3}$	64	66	62
Brookfi	91	33	90	85	86	89	68	72	7"	84	79	93	83	82
Brookis	57	59	5s	61	60	61	47	47	51	62	59	61	64	62
Middletown	84	87	9.5	79	80	81	79	75	79	84	84	81	86	88
Midatetowa	56	58	58	68	66	65	68	56	69	62	63	60	62	64
Port Jervis	87	87	89	86	81	82	76	71	75	84	86	88	87	87
Fort Jerris	52	59	63:	68	76	62	63	56	61	60	66	68	64	68
Cooperstown.	80	83	85	80	68	79	67	70	80	78	80	83	74	76
Cooperstown..	50	62	63	CH	60	62	58	52	62	62	60	6^{2}	$6{ }^{6}$	58
New Lishon	84	87	89	83	74	81	7	76	80	81	83	87	79	81
New Lisbon	44	51	57	60	59	55	52	47	58	58	60	5.3	57	59
Oneonta	88	03	93	89	79	88	80	80	8.5	87	87	92	85	86
Oneonta	50	5.5	63	6.5	6.4	58	57	50	60	62	64	7	64	66
	88	93	92	86	$8:$	85	71	76	84	81	87	88	80	$8: 2$
Perry City.	51	58	61	63	63	56	55	52	59	53	57	63	67	62
Waverly	88	93	93	87	82	85	74	80	80	84	88	1	88	86
Waveriy	48	55	62	62	69	61	63	40	59	53	58	56	60	66
Molionk Lake	80	81	83	78	78	78	73	67	77	80	82	85	82	81
Mohonk Lake	52	51	51	52	50	51	51	50	03	63	64	65	64	64

the Regions, and Daily Maxima and Minima for the Stations.

15	16	1%	18	19	20	$\stackrel{1}{2}$	22	23	21	25	26	97	93	20	30	31	$\begin{aligned} & \text { 会 } \\ & \text { 霛 } \end{aligned}$
73	63	61	64	68	70	76	75	64	60	64	66	73	74	75	74	66	69.6
76	68	72	76	73	74	83	84	68	58	72	74	81	83	84	89	73	67.4
66	52	46	46	55	64	66	62	54	54	51	53	53	65	62	63	52	67.4
87	69	71	80	74	75	84	86	70	61	74	78	80	85	86	81	74	68.2
68	52	42	42	58	62	62	66	53	55	49	55	60	53	58	60	56	68.2
76	69	70	77	75	73	83	85	69	60	73	76	81	82	83	85	70	67.0
64	51	41	42	53	65	64	61	55	54	47	50	61	63	65	61	59	07.0
80	73	75	82	80	75	87	87	70	60	88	78	84	86	86	86	77	68.2
64	53	40	40	61	$6 t$	63	59	53	43	48	50	61	60	60	61	52	68.2
75	69	73	76	73	72	82	81	68	59	72	75	78	83	82	81	74	67.5
65	54	45	54	61	64	66	63	54	53	52	53	61	65	64	63	54	67.5
																	fi8 7
76	67	72	78	77	75	83	81	70	62	72	76	79	81	85	83	73	69.0
67	54	50	49	62	66	67	65	56	56	53	55	64	68	66	66	60	63.0
85	79	80	80	82	78	89	87	78	67	81	81	86	87	89	90	80	73.4
73	58	51	49	63	62	78	65	61	57	56	68	65	67	65	67	61	6.4
85	72	75	88	80	80	88	92	73	67	78	84	84	87	93	86	76	72. 0
65	63	47	46	64	67	64	64	57	56	52	54	62	63	63	60	57	12.0
87	85	87	89	87	87	84	90	90	86	84	80	84	88	91	89	88	73.3
64	45	50	52	45	45	65	63	55	52	50	53	65	63	65	57	55	13.3
85	72	78	89	82	81	88	92	75	73	80	85	84	88	94	90	77	73.2
59	53	52	52	65	66	66	67	56	57	54	57	68	67	67	66	57	13.2
83	96	78	85	78													
63	52	49	45	63													
84	76	73	81	74	75	88	90	74	59	81	82	86	89	87	89	76	71.0
62	52	51	51	60-	65	66	65	55	54	50	56	64	64	65	65	57	71.0
83	71	74	81	76	77	85	86	73	64	77	78	86	86	88	86	76	70.0
66	55	47	48	56	67	66	64	59	56	53	51	63	65	64	64	58	10.0
79	70	73	78	74	76	84	86	76	60	74	79	86	85	86	84	74	67.4
66	49	41	43	52	64	63	58	53	53	48	49	62	61	59	60	52	67.4
76	65	71	79	77	73	81	86	67	61	72	78	82	82	86	83	70	68.1
62	50	44	46	62	65	66	61	54	56	52	55	63	64	62	64	52	68.1
78	73	80	86	78	73	87	87	72	62	78	80	81	88	89	87	77	69.8
60	52	44	45	62	61	67	61	54	56	53	50	61	63	62	65	54	63.8
$7{ }^{\text {i }}$	66	64	66	68	69	75	72	67	58	65	65	73	74	75	76	67	67.7
83	78	70	83	80	75	86	S6	72	70	80	86	81	87	91	86	75	71.0
67	55	47	49	69	67	70	65	58	56	50	56	61	65	66	64	56	71.0
83	77	76	85	82	75	88	88	79	62	77	82	85	88	88	87	75	696
61	51	45	45	54	63	66	60	55	48	53	46	63	60	65	65	53	69
83	69	75	82	76	75	86	86	79	64	76	79	80	85	86	84	81	69.2
62	52	46	46	60	64	67	62	58	50	55	48	67	65	63	67	55	$6 . .2$
80	79	78	84	75	73	85	84	78	64	79	81	87	89	90	98	78	70.6
G3	56	51	49	59	64	68	62	59	51	55	49	65	63	62	70	57	10.6
89	71	76	81	79	74	85	84	73	62	77	79	85	88	88	86	78	6 6. 0
$5 \pm$	53	45	42	51	65	65	57	56	45	52	42	63	51	55	63	56	6n.0
78	68	70	74	73	71	81	78	70	57	68	76	81	82	80	83	74	672
62	53	47	50	54	62	68	62	56	48	51	53	65	64	62	62	53	6
86	89	89	88	82	87	91	90	70	65	71	74	87	93	91	90	88	72.2
63	63	64	62	62	59	61	66	60	55	55	56	59	63	65	66	66	7.-2
92	86	85	85	84	72	74	68	77	75	74	81	85	81	85	89	82	71.6
64	62	63	68	52	68	65	54	59	58	57	65	60	64	63	59	60	12.
83	76	74	77	80	80	82	82	80	60	70	80	80	86	88	88	74	72.2
67	64	51	53	55	64	70	68	65	58	57	52	66	66	68	70	67	82.2
74	68	70	75	75	70	84	80	72	61	70	72	76	79	81	82	70 59	67.8
60	50	56	55	65	65	68	66	60	50	52	55	60	65	66	67 85	52 71	
79	70	74	80	76	73	84	83	70	59	75	78	$8{ }^{82}$	83	86	85	71 50	66.7
58	49	44	43	52	62	67	59	54	46	53	43	63	60	57	64	50	
82	79	79	86	81	78	90	85	74	67	79	92	84	89	90	89 68	78	71.2
61	50	50	48	51	62	61	62	60	51	55	49	64	85	61	68 88	58	
86	71	78	82	76	78	87	87	72	62	79	84	86	85	90	88	76	70.1
61	52	58	53	55	63	66	61	56	51	54	50	64	61	60	63	55	10.1
84	77	77	83	83	75	77	88	75	70	80	$8{ }^{3}$	83	88	87	86	78	71.0
58	55	46	45	58	69	70	64	58	57	56	50	68	65	67	65	60	
80	79	72	77	75	73	79	80	78	65	75	79	80	82	83	84	80	67.0
64	63	53	53	54	54	55	55	54	63	54	54	54	54	54	55	54	.

Daily Means for the Regions, and Daitiy

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	1
Northern Plateau..	69	72	71	70	04	68	62	66	72	72	71	74	71	69
Saramac late	85	0	77	77	67	84	70	80	82	83	83	84	77	78
aramac lake.	55	55	54	59	55	59	53	54	65	60	59	62	62	53
G	85	90	90	80	74	84	32	77	81	85	84	88	82	82
	55	57	66	62	63	56	57	56	61	64	62	64	64	66
Lowville	85	88	85	84	73	4	69	80	91	83	82	87	80	79
Lowrine	55	57	58	56	60	57	56	56	58	62	62	67	66	63
Nomber Four......	80	85	84	79	67	68	64	76	78	78	78	89	73	76
Number Four......	55	55	54	62	53	53	53	49	57	62	61	55	63	58
Allantic Coast	70	72	75	70	75	72	72	68	71	76	76	78	80	78
Brookly	85	S8	89	82	83	80	82	74	81	88	89	91	91	88
Brookl	58	61	73	64	71	70	69	65	$6 t$	66	72	71	74	72
Manhattan Beach..	70	73	72	74	73	91	73	76	73	72	72	85	82	84
Mrohatan Beach..	60	64	66	65	66	67	67	64	64	66	68	69	71	69
New Tork city	${ }_{60} 8$	80	84	75	81	78	77	70	76	$8{ }^{8}$	86	86	87	83
	60	65	6.5	63	69	63	66	64	62	69	70	70	71	71
let's	85	82	87	85	85	75	81	72	8.	83	83	91	92	87
let 8	58	64	63	63	66	65	62	63	64	70	67	70	69	71
Brentrood	87 55	87 57	89	${ }_{8}^{83}$	87	81	78	70	${ }_{6} 6$	\cdots		94	93	91
	82	88	87	75	8.	74	78	71	80	83	85	87	88	89
Setauket	59	60	65	63	70	65	68	63	6.3	70	70	69	78	84 70
	84	86	88	75	82	75	76	71	83	85	85	88	87	84
Berto	52	58	60	62	67	64	60	58	61	70	65	01	67	69
Hudson Valle	70	75	77	72	74	72	71	66	73	77	77	77	79	75
Albany	87	${ }_{6} 90$	90	81	79	84	79	81	83	89	89	94	88	$\varepsilon 5$
	¢	8^{-}	91	${ }^{81}$	68	62	${ }_{78}$	58	60	71	83	89	\%	68
Lebanon Springs...	85 47	81 56	91	60	62	84 56	78 58	80 50	88	87 62	83 62	89	5	84
Hone	83	86	89	76	83	83	81	73	81	83	85	87	87	83
Hove	51	62	6.)	63	63	61	62	54	58	69	67	619)	65	66
Poughkeep	87	89	90	77	84	$8 \pm$	83	73	86	87	90	91	91	84
Pongrkeep	51	62	65	64	70	62	59	55	63	68	67	58	63	49
Tappingers Falls	87	89	91	81	84	85	83	76	8.5	87	91	90	92	88
	${ }^{56}$	${ }_{6}^{63}$	65	6.5	71	65	66	59	6.5	69	70	68	\%	68
Catskill	8	6,	90	6	8	8	*	-	\%	84	8	9	8	8
	i8	80	86	01	81	81	-9	80	$7{ }^{4}$	83	48	89	93	87
West Poil	54	613	62	(i3)	61	64	67	58	62	6 6)	68	6.5	78	64
Carmel	8.7	89	90	76	83	81	8.3	It	82	89	c6	48	89	\%
Carmel	62	64	69	66	C4	59	63	58	64	71	66	73	67	64
Mohawk Y	74	77	76	74	68	71	56	66	72	74	73	76	76	
If Fome	90	90	91	86	75	84	6^{65}	75	85	87	¢8	89	90	86
Champlain Valley.	64	70	75	61	63	63	66	65	66	68	77	78	78	69
Plattsb'gh Bar'a'ks	77	80	9.	70	67	68	72	75	76	i6	87	85	91	18
	50	60	5	-	57	58	60	55	54	60	67	70	(65	60
Glens Falls.														
St. Lawrence Tal'y.	72	76	66	64	66	69	64	67	70	72	73	7.5	71	69
Malone	79	88	75	70	6.5	75	70	77	80	81	80	86	78	74
Malone	61	63	52	53	57	59	58	54	56	68	62	68	64	59
Madison Barracks.	81	8.5	75	77	8	78	73	73	83	86	80	76	78	87
Manison harracks.	61	62	59	56	59	63	58	54	57	61	69	64	64	60
Watertown	83	${ }_{60}^{94}$	88	85	79	91	75	84	86	80	86	86	84	86
Watertown	60	60	58	62	60	59	58	52	54	56	45	56	54	55
Cantor	83 59	${ }_{60}^{90}$	75 53	71	73 85	84 57	71 54	83	83 57	${ }_{64}^{84}$	88	919	83 60	79 57

Maxima and Minima for the Stations.- (Contiuued).

15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	号品
66	59	61	64	68	67	73	72	62	57	64	66	68	71	72	72	62	67.7
78	62	75	81	79	70	84	86	67	67	77	80	75	82	83	83	70	66.8
46	52	46	58	63	64	60	58	45	53	51	61	52	58	65	50	40	66.8
83	70	74	80	79	73	84	85	71	64	75	80	80	84	87	85	72	
58	54	49	50	58	63	69	62	59	52	55	50	64	63	63	66	58	69.8
80	88	75	81	76	73	83	87	72	65	76	80	76	83	87	85	76	69.2
52	44	50	46	60	64	76	59	58	51	54	59	64	60	57	65	52	69.2
75	61	i2	75	72	69	79	81	72	62	72	75	71	79	82	79	79	
52	43	50	46	59	62	62	59	56	45	50	46	62	59	55	65	50	65.0
78	73	68	68	67	71	76	74	72	66	69	70	74	77	78	78	72	73.0
88	88	78	81	79	82	84	80	82	73	80	83	87	90	90	89	81	75.5
73	69	60	59	61	60	72	71	72	66	63	60	67	70	70	71	60	
85	85	79	75	70	70	74	78	76	77	69	78	74	74	87	80	86	1.
68	69	59	62	61	66	67	69	67	64	63	65	63	67	69	69	67	
83	77	75	75	73	$8:$	81	80	76	69	76	79	84	¢9	89	88	78	73.0
73	66	59	65	64	65	70	70	67	65	62	65	68	69	70	68	67	73.0
88	80	78	76	77	80	85	78	77	69	58	82	81	86	89	91	78	73.2
66	60	59	57	63	71	69	70	61	62	58	65	68	67	67	68	57	
93	80	84	84	79	87	90	84	79	79	82	84	89	90		91	.	73.6
65	65	55	51	48	56	70	64	65	54	56	50	65	67		68		
87	76	76	77	76	80	82	78	77	70	77	80	79	84	86	84	76	2.8
71	66	61	59	56	62	71	70	68	59	61	59	65	69	68	70	69	2.8
88	79	80	81	78	77	82	81	77	67	78	80	82	85	89	87	77	71.5
67	64	53	52	53	61	70	67	67	55	50	52	65	68	66	69	65	71.5
75	69	64	68	70	71	77	75	i2	62	66	70	75	77	77	78	72	32.7
85	76	79	84	80	76	88	86	76	68	80	86	82	90	91	92	76	74.0
64	60	56	58	62	67	72	70	65	57	58	57	68	70	68	67	61	7.0
86	72	80	82	84	73	87	88	76	72	76	84	83	80	:9	83	73	70.2
57	53	44	55	51	6	69	61	${ }^{63}$	48	56	47	53	66	61	66	61	
85	75	74	80	79	76	84	$8 \cdot \frac{1}{6}$	75	14	74	81	82	${ }_{8}^{8} 8$	85	85	75	70.8
64	62	50	52	50	63	71	67	64	53	58	52	66	67	66	6	56	
88	84	77	72	83	81	85	84	84	67	68	90	91	$\stackrel{8}{8}$	90	$\stackrel{89}{87}$	84	72.5
66	46	46	55	64	64	70	66	65	54	54	64	66	65	66	67	62	12. 5
85	80	i8	$8{ }^{82}$	80	80	87	83 69	80	68	80	85 56	88 67	88 89 68	89 80	88	87	74.4
85	78	${ }_{7}{ }_{6}$	8	¢0	75	84	8	78	68	78	8.	82	88	88	89	79	
66	60	56	55	50	65	71	67	68	57	59	56	68	69	61	70	66	
89	88	81	80	82	78	79	85	80	79	65	81	84	85	89	91	93	
67	64	51	54	56	63	66	68	69	57	57	54	67	68	66	70	71	73.3
84	77	75	81	82	77	85	84	76	65	76	81	84	85	88	90	79	73.3
66	63	53	62	61	64	67	68	63	53	60	58	56	69	71	73	67	
62	62	64	68	70	68	76	78	61	62	65	74	71	74	76	70	66	
78	75	80	85	80	74	87	96	70	72	80	84	80	86	80	81	82	70.2
46	50	49	52	61	62	64	60	52	52	50	65	62	62	65	55	51	10.4
65	69	61	${ }^{6} 5$	69	73	68	78	75	64	65	70	75	70	75	77	76	69 :5
75	81	67	75	79	80	71	90	85	72	70	80	8.5	75	80	$\underset{\sim}{*}$	88	69.5
55	51	55	55	59	(6.)	6.)	65	65	55	60	60	65	65	70	70	65	
68	58	67	67	70	69	74	74	66	62	67	98	70	73	74	74	64	88.9
77	64	74	80	79	75	82	84	73	70	76	80	75	79	83	81	72	7.6
55	47	54	50	64	65	6.3	62	58	51	5.3	60	64	61	62	65	50	\%
83	78	84	79	80	72	78	83	7.5	73	79	79	75	$\therefore 1$	86	81	77	69.1
57	53	52	49	$5{ }_{5}$	64	68	62	60	53	56	54	63	60	67	62	50	
74 55	71	84 50	82	75	78	${ }_{6}^{84}$	8	79	70 50	84	88,		c9 5	94 56 8	${ }_{60} 90$	80	68.8
55 83	45	50 81	48	56 83	78	60 85	$\stackrel{0}{9}$	58 74	52	8	${ }^{52} 8$	60 80	538	56 87	60 84	72	
54	42	51	52	61	60	60	62	52	52	57	53	52	81	59	63	50	8.8

Daily Mean for the Regions, and Daily

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
St. Lav. Val.-(Ct). Massena.														
Nortí Hammond..	88	88	84	68	74	86	70	84	88	78	90	90	78	80
	81	87	78	68	75	81	67	82	78	80	84	87	78	80
Ogdensburg	62	64	56	56	58	60	59	55	62	66	65	67	64	58
P	$\varepsilon 6$	88	70	69	70	69	71	78	80	81	83	87	79	74
	60	64	51	52	51	50	55	53	59	65	66	61	63	55
Great Lakes	74	77	74	73	68	72	64	67	72	73	68	78	75	72
Dunkirk...........														
Westfi	85	90	85	86	75	83	71	76	83	84	87	86	87	82
frest	62	66	67	69	63	58	58	53	63	6.3	68	69	72	68
Butfalo	78	84	82	80	70	76	68	79	$8{ }^{80}$	73	76	76	76	82
	6.	69	70	66	62	${ }^{63}$	56	58	60	65	68	70	69	65
Pittsford	88	91	83	81	71	85	72	78	84	85	$8:$	89	82	77
	60	62	67	61	61	60	52	$\overline{5} 5$	61	60	65	68	69	63
Rocheste	87	91	82	82	74	83	73	78	85	84	87	89	80	78
	61	64	67	63	62	62	57	56	62	63	66	71	67	$6{ }^{6}$
Appleton	90	90	82	71	74	86	72	76	88	8	88	90	83	75
	90	93	64 86	${ }_{83}$	57	85	57	54	60	59	${ }^{62}$	0	${ }^{6}$	63
Fort Niag	63	65	69	62	61	60	66	61	61	64	65	63	69	66
Baldrinsville.	89	91	86	90	74	87	71	80	84	87	87	92	82	82
	64	66	66	63	64	63	56	60	63	67	69	69	66	65
Oswego...........	84	86	74	75	70	78	64	71	82	84	80	86	79	74
	61	64	60	64	60	61	57	55	62	63	68	71	65	65
	85	92	82	¢	79	88	70	76	83	83	86	86	81	80
Palermo	50	54	59	61	60	56	58	50	58	63	65	63	63	62
Ljons	86	89	81 65	85	75 62	85 63	69 59	76 57	.-	\cdots	...	-.	\cdots	-
	5	683	85	65 79	62 69	63 76	59 69	57 74	78	78	91	83	84	is
Erie, Pennsylvania.	6.4	67	69	71	66	61	58	61	60	${ }_{6}$	67	70	${ }^{84}$	68
Central Lakes	i2	78	78	76	71	73	66	65	71	72	74	78	75	73
Frieming	\%	92	86	85	$\times 5$	8	73	75	79	84	85	88	79	77
		${ }^{61}$	\% 0	6is	63	64	59	56	64	63	63	69	71	67
Romulus.	89	92	90	85	77	87	74	77	83	83	87	89	80	8
Ithasa.	56	65 90	69 90	166 84	64 7.5	62 83 88	59 70	$\stackrel{55}{7.4}$	61 79	$\stackrel{61}{4}$	59	87	69 81	64 81
	55	65	66	67	63	61	60	5:	6 \%	61	64	65	69	66
Mran	70	74	74	70	69	70	66	66	70	72	74	76	75	73

[^10]Maxima and Minina for the Stations - (Concluded).

Daily and Monthly Precpi

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Western Ptateau.	T.	0.00	0.20	0.64	0.04	0.08	0.10	T.	0.53	T.	T.	0.01	0.31	007
Altred.			. 02	-81	. 02	. 01	.25		. 57				. 51	T.
Angelic			T.	. 75			*			*		*	+ 1.38	.12
Bolivar	\ldots		. 77	1.29			. 65		. 50		T.		. 37	. 19
Friendehip	T.		$\dagger .75$ 18		. 50 21	. 01
Homphrey	\ldots		. 15	. 96	\ldots		. 10		. 65				T.	
Little Valles	.-.													
Cherry Cree				. 42	17	. 05	. 10		. 60				T.	
Jamestown				1.40 10		. 50				. 27	. 05
Elmira			1.17	17			01		. 71				. 74	. 35
Pine City														
Akron				. 41	. 04				. 51	. 05			. 03	
A ron			. 34	. 62	. 10		. 04		. 05		\cdots		25	
Mrt. Morris			. 35	1.35	T.				. 54				T.	
Lockport				-18	T.				. 30		T.	. 17	-	
\%Victor			T.	. 15	. 17		. 08		. 47				. 08	
Tyrone	.-		. 10	.65	1.30			\ldots		\cdots		
Wedgewood			. 17	. 21		. 10	. 08		. 83	\ldots			1.25	. 01
Addison			. 40	. 43	. 02 08	04	. 92				. 01	. 60
Atlanta.													
Haskinvi	-10		. 03	. 40	. 06	. 10	. 18		. 64		\cdots	-.	. 10	. 10
South Canisteo			10	. 75	T.	T.	23	T.	. 32				1.00	T.
Arcade			. 34	. 46	. 06 10		41				. 41	
Attica.						...								
Varysburgh			\ldots	. 82	. 08 03		42				. 70	
Eastern Plateau...	0.00	0.00	0.06	0.42	0.10	0.13	0.25	0.03	0.68	0.00	0.00	0.00	0.30	0.11
Bingbamton.......			T.	. 28	. 04				. 35				. 11	. 90
Cheuango Forks.			\ldots											
Oxford.		 69	. 20		. 48		. 45	 20	. 02
Cortland.			. 02	. 27	. 05	. 03	. 06		. 35				. 32	
Bloomvill					11.95		104			 33
Deposit.												
Soutls Kortright				1.62	 34	-...
Elka Park			- 30	1.36		. 06	. 80	. 03	1.20					
Brookfield			. 04	. 06		. 09	. 60		. 10				. 68	
Hamilton														
Apulia.			\cdots											
Miduletort				*	1.62		. 35	. 17	. 89					
Port Jervis			-..		. 10	1.23	. 36	. 15	3.18				15	
Warwick				. 17	. 88		1.00	. 04	. 24				. 10	. 09
Cooperstown			\ldots	. 55		. 30			. 25				. 20
New Lisbon			--	1.25	. 06		. 40		. 28				. 08	
Oneonta				. 75		. 10		. 14	11					. 31
Perry 1ity				. 19	. 117	3)	03 71				. 35	
Newark Valle			. 50	. 05	02	 50				1.72	
Waverly			22	13	03				. 02				. 90	26
Elli4.							-						
Mohonk Lak				. 12			. 01		96					
Northern Plateau..	0.00	0.00	T.	0.75	0.13	0.21	0.04	0.00	0.17	0.02	002	0.00	0.11	024
West Chazy														
Elizabethtown														
Saranac Iake				1.23	. 15	. 48	'T.		45	.02			. 32	
Gloveravill			T.	. 34	. 10	T.	.18		. 18	. 08			. 05	. 08
I.owrille					. 08	. 16	. 03		.13		. 10		. 07	
Number Four				1.33 .20	. 30	43	. 09		. 18	. 02			. 10	1.02

tation for July, 1896-(Inohes).

Daily and Monthly Precipt

STATIONS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Atlantic Coast.	0.00	0.00	0.00	0.08	0.46	0.49	0.16	0.06	0.25	T.	0.00	0.00	0.02	01	
Brookisn.					.26	. 67	. 03		$\therefore 4$						
Manhattan Beach				T	. 03	. 28	. 23	T.	1:\%						
New York City....	\cdots				. 21	1.06	. 01	T	.11	T.			T.	1	
Willet's Point				T.	. 15	1.28	T.	. 40					. 13		
Brentwood:				. 30	T.	T.	T.		. 50						
Setauket				. 28	. 15	. 03	. 03	T.	. 50						
Bedford				T.	2.24	.06	. 84	T.	. 15.					. 02	
Hudson Falle	T.	0.00	0.27	0.17	0.27	0.02	0.21	0.01	0.13	0.04	0.00	0.00			
Albany ${ }_{\text {Lebanon Suringe. }}$			T.	. 02	.21	. 02	. 21		. 05	. 06			. 2.4		
Honoymead Brook.			2.62	. 47	. 24	T.	. $2 \times$	1.	05	. 07				. 07	
Poughkeepsie					$\dagger .68$	T.	. 10	T.	T.					
Wappinger's Falls				. 06	1.21	. 05	. 48	.02	T.	. 11				40	
Catskill			. 03	. 64 ${ }^{\text {a }}$. 41	. 02	1.00						
Weat Point.			 02	. 35	. 07	. 03	\ldots				10	
Boyds Corne											...				
Carmel					. 74	. 11	.12	\cdots	. 13					. 06	
Southeast Res'v'r						\cdots						
Eagle Mills.							05	 20			. 03		
Easton.	. 05				. 06			---	\cdots						
Mohawk Valley	0.00	0.00	0.00	0.50	0.00	040	0.00	0,25	0.06	0.00	0.00	0.00	0.26		
Rome				. 50		. 40 25	. 06				. 26		
Champlain Valley.	0.00	0.00	0.00	0.05	1.10	0.05	0.40	0.05	0.00	0.05	T.	0.00	0.00	1.50	
Plattsbargh Barks				. 05	1.10	. 05	. 40	. 05		. 05	T.			1.50	
Glens Falls.......				.	-	...					\cdots				
St. Lawrence Tal'y.	0.00	000	0.00	0.10	0.38	0.04	0.02	0.00	0.17	T.	0.01	T.	0.64	0.00	
Malone............				. 11	1.19	. 10	. 05	T.		. 06		. 74		
Madison Barracks.				. 06											
Watertown.				. 50	\cdots	. 10	. 02		. 05	'T.	. 05	. 03	. 14		
Canton					. 32			\cdots	. 10				. 58		
DeKalb Jnnction..					. 62				. 06				. 44		
Massena.				.-											
North Hammond					. 14	. 07			. 36				. 56		
Ogidensburg				. 01	. 34		. 02		. 70				2.10		
Potsdam					$\dagger .83$.30		. 10				. 51		
Great Lak	0.00	0.01	T	0.33	0.03	0.12	0.03	0.0.1	0.26	' I '.	0.01	0.00	0.29	0.61	
Dunkirk															
Weatfiel		10.		. 70			T.		28						
Buttalo				. 80	' 1				25		. 04		. 24		
Adams Conter				. 30	. 23	. 08		. 06					. 51		
l'ituford..				. 18		. 01	. 02		. 60				. 17		
Hochester				. 18	. 03	T.	. 02	\cdots	. 44	I.	T.		. 24		
Scottsville				. 42		. 05			. 57				. 18		
Appleton				. 26		T.			. 25	T.	. 04		. 36		
Fort Niagara.				. 14	\cdots	(1)2	-.	. 12 08		. 15		
Niagara Falls.															
Baldwiusvilio		T.		12		T.	. 05	. 24					. 47		
skaneateles.			\cdots	. 24		. 77	. 16 40				. 30		
Ridgeway.				.17	. 01				. 30	. 04	. 02		. 50		
Demster					. 10	. 30	. 07		. 16 37		
Fulton 40						. 12	
Oswego				T.	15	. 02	. 03		. 29		. 01		. 43		
Palermo			T.	T.	T.	.13	10		. 22				. 23		
\|	Mhenix..........		\ldots 09 24	. 04	.25	. 03				. 46

tation for Joly - (Continued).

Dally and Monthly Precipi

[^11]tation for July - (Concluded).

Statistics of Temperature

STATION．	COUNTY．	Templirature（Degrees Fabr．）．									
				O0000000000				Extremhs of Monthly Mean Temperatuhe for July．			
								枵	灾	菏	辰
Western Plateau		69.0					＋0．7				
Angelica．．	Allegany	67.8	15	1854	1896	68.2	＋0．4	72.7	1894	60.9	1891
Humphrey	Cattaraugus．．	67.8	14	1883	1893	67.5	－0．3	\％ 5.3	185%	62.8	1884
Elmira ．．．	Chemung．．．．	71.5	18	1851.	1896	73.4		\％ 5.6	1854	66.3	1851
Eastern Pluteau．．		67.8				66.9	＋1．5				
Oxford．．．．．．．．．	Chenaugo	68.2	29.	1828	1896	69.6	＋1．4	72.1	4	64.0	1829
Cortland	Cortland ．．．．．	66.4	35	1829	1×96	69.2	＋2．8	70.9	1834	63.2	1860
Hamilton．	Madison．	67．2	19	182i	1895			\％0． 8	18.31	63.9	1829
Cooperstown	Otsego	68.0	43	－ 1854	1896	${ }^{67.8}$	-0.2 +19	76.0	1868	68.7	1860
Northern Plateau		69.8									
Lowville ．．．．．．．．．．．．．．	Lewis	69.8	30	1827	1896	69.2	－0．6	71.8	184%	62．1	1891
Atlantic Coast		72.6				72.9	＋0．3				
New York City．．．．．．．．．	New York	73.4	26	1871	1896	73.0	－0．4	76． 7	1887	\％0．1	1881
Setauket．．．．．．．．．．．．．．．	Suffolk	71.8	12	1885	1896	\％2．8	＋1．0	75.4	1887	68.9	1891
Hudson Valley．		71.7				72.7	＋1．0				
Albany ．．．．．．．．．．．．．	Albany	T2． 5	23	1874	1896	74.0	＋1．5	76.6	1887	69.1	1891
Honeymead Brook．．．．	Dutchess	69.7	16	1881	1896	70.8	＋1．1	74.0	188 亿	66.8	1891
West Point．．．．．．．．．．．．	Orange	72.9	68	1826	1896	73.3	＋0．4				
Champlain Valley．．．．		69．${ }^{\text {r }}$				69.5	－0．2				
Plattsburgh Barracks．	Clinto	69.7	40	1833	1896	69.5	－0．2	73.8	479	65．2	1891
St．Lawrence Valley．．		70.1				69.1	－1．0				
Madison Barracks ．．．．	Jefferson．．．．	70.0	35	1839	1896	49.1	－0．9	78.2	1488	（65． 1	1884
Canton	St．Lawrence．	70.9	33	1862	1896	68.8	－2．1	78.2	1868	63.6	1865
North Hammond		71.4	18	1866	1896	70．7	－0．7	79.4	1868	65.1	1691
Potsdam		68.2	27	1828	1896	67.8	－0．4	73.6	1838	63.3	1833
Great Lakes		69.8				71.0	＋1． 2				
Buffalo．	Erie	69.9	26	1871	1896	70.0	$+0.1$	74．9	188\％	64.9	1884
Rochester	Mlonror	70.5	25	1871	1896	72.0	＋1．5	74．2	188i	65.11	1884
Fort Niagara	Niagara	\％0．8	$41)$	1842	1896	22．8	＋2．0	75.6	1887	$66_{1} .4$	1884
Baldwinsville	Onondaga．．．	69.5	19	1854	1896	72． 6	＋3．1	73.6	1894	64.6	1865
Oswego	Oswego	69.1	26	1871	1896	69.0	－0．1	\％ 7.5	1878	64.5	1884
Palermo．．．．．．．．．．．．．．．		${ }^{67} .7$	43	1851	1896	69.9	＋2．2	79.1	1868	62.9	1884
Erie，Pennsylvania．．．．	Erie	＇11．2	23	1874	1896	71.0	－0．2	76.0		66.0	1891
Central Lakes		69.8				${ }^{7} 0.9$	＋1．1				
Ithaca	Tompkins	69.8	18	1879	1896	\％0．9	＋1．1	\％4．8	1887	66.0	1884
Average departure．							40.6				

and Precipitation - July.

MAP OF THE STATE OF NEW YORK SHOWING
 THE MEAN TEMPERATURES

SCALE OF MILES

MAP OF THE STATE OF NEW YORK

SHOWING

THE PRECIPITATION

SCALE OF MILES

Meteorological Summary for August, 1806 .

The average atmospheric pressure (reduced to sea level and 32 degrees Fahr.) for the State of New York during August was 30.02 inches. The highest barometer was 30.40 inches at Erie, Pa ., on the 28 th, and the lowest was 29.70 inches at Oswego on the 30th. The highest mean pressure, 30.04 inches, obtained at New York city and at Erie, Pa., and the lowest, 30.00 inches, at Oswego. The average of the mean pressures at six stations of the National Bureau was 0.03 inches above the normal, excesses occurring at all stations.

The mean temperature of the State, as derived from the records of 72 stations, was 68.9 degrees. The highest local mean was 74.2 degrees at Brooklyn, and the lowest was 63.2 degrees at Xumber Four. The highest general daily mean was 79 degrees on the 9 th, 10th and 11th, and the lowest, 57 degrees, on the 19 th . The maximum temperature reported was 98 degrees at Bloomville, Delaware county, on the 6 th and 8 th, the minimum being 33 degrees at South Kortright and New Lisbon on the 29th, and at Friendship on the 20 th and 29 th. The mean monthly range of temperature for the State was 49 degrees, the greatest local range being 60 degrees. The mean daily range was 21 degrees. The greatest local daily range was 46 degrees at wouth Kortright on the 26th, and the least was 4 degrees at Eric, Pa., on the 23d. The mean temperatures of the varions sections of the State were as follows: The Western Platean, 67.5 degrees; the Eastern Plateau, 67.9 de-
grees; the Northern Plateau, 65.8 degrees; the Atlantic Coast, i2.3 degrees; the Mudson Valley, 71.4 degrees; the Mohawk Valley, 67.8 degrees; the Champlain Valley, 68.0 degrees; the St. Lawrence Valley, 68.0 degrees; the Great Lakes, 67.9 degrees; the Central Lakes, 70.2 degrees. The average of the mean temperatures at 24 stations possessing records for previous years was 1.3 degrees above the normal, deficiencies occurring at only three scattered stations. At Waverly, Setauket and Baldwinsville the temperature was the highest for August during the period covered by their several records.

The mean relative humidity was 74 per cent. The mean dew point was 59 degrees.

The average precipitation, as derived from the records of 97 stations, was 2.98 inches. Along the eastern border of the State, and over small areas of the western highlands and the St. Lawrence Yalley, the amount exceeded 4 inches; while a considerable territory near the southern border received less than 2 inches. The maximum local amount was 5.95 inches at Plattsburg Barracks, and the least was 0.72 inches at Appleton. The rain periods of the month were as follows: On the $2 d$ and 6 th to 7 th, general; from the 9 th to 12 th showers in western New York; and on the 13th, 14th, 16th, 18th, 22d to 23d, 26th to 27 th and 31st, general rains occurred.

The average number of days on which the precipitation amounted to 0.01 inches or more was 9.3 ; the rain frequency being least in central New York, and greatest in the northern section. The average number of clear days was 12.9 ; of partly cloudy days, $13 . \overline{5}$; and of cloudy days, 4.6 ; giving an average cloudiness of 41 per cent. for the State.

Thunderstorms were reported as follows: At 2 stations on the 1 st, 1 station on the $2 \mathrm{~d}, 4$ stations on the 4 th, 5 stations on the 5 th, 13 stations on the 6 th, 10 stations on the 7 th, 3 stations on the 8 th, 15 stations on the 9 th, 4 stations on the 10 th, 1 station on the 11 th, 5 stations on the 12 th, 5 stations on the 13 th, 4 stations on the 14 th, 17 stations on the 16 th, 1 station on the 17 th, 12 stations on the 18 th, 1 station on the 21 st, 2 stations on the $22 \mathrm{~d}, 8$ stations on the $23 \mathrm{~d}, 1$ station on the 24 th, 1 station on the 25 th, 4 stations on the 26 th, 1 station on the 30 th.

Hail fell on the 9th, 12th and 18th.
Light frost occurred in some of the colder sections on the 20 th, 25 th, 26th, 28th and 29th.

The most noteworthy feature of the weather this month over the greater part of the United States, as well as in New York, was the term of excessive heat covering the dates from the 4 th to the 14th. In the region of the upper Mississippi Valley some of the highest temperatures on record were obtained; while in New York where the temperatures were not so extreme, the prostrating effects of the hot wave was due more to its long duration and the high humidity which prevailed. During the second half of the month the weather was generally cooler than the seasonal average, light frosts occurring in exposed localities, as already specified. :

The rainfall was deficient over the greater part of the State, generally falling during frequent thunderstorms, alternating with bright weather. The cloudiness was rather below the usual average for the summer months.

Five areas of high and six areas of low pressure, approximately, passed in the vicinity of this State during the month. The depres-
sions, which in all cases passed over or beyond the northern border of the State, were broad and ill-defined, especially during the first half of the month, when the weather conditions were mainly determined by nearly permanent areas of low pressure over Canada, and of high pressure over the southern states, bringing a steady inflow of hot southerly and westerly winds. The most marked depressions were nearest New York on the 2d, 12th, 16th, $23 \mathrm{~d}, 26$ th and 30 th; the first, which traversed a portion of this State, giving the heaviest general precipitation of the month. The remaining lows were also accompanied by local electric and rainstorms.

The principal high pressure area of the month passed to the sontheastern and gulf states on the 2d, and remained in that locality for ten days following. During the latter, or cooler half of August all of the three highs passed over the northeastern states to the coast; the low temperature accompanying them being mainly felt on the 19 th, 25th and 28 th, when light frosts occurred in the valleys of the highlands.

The sultry weather and freruent showers of the first half of August bronght growing crops rapidly forwatd, grass and afterfeed being especially benefited; although in some sortions of the north and east the drouth still continued. Rust and rotting developed to a serious extent at this time, and hops were somewhat damaged by heat. Iaying was about tinished in southern New York at the end of July, and the seeond (rop) Was (at in the southeast about the thind week of Jugust. The oat harrest began on the 3d, beans and the Worden grapes were gathered on the 15 th, and at the end of the month hop picking was well under Way, and half of the tobacco was cut. The corn harrest began
unusually early. Apples were abundant and sound, while peaches were generally scarce excepting in the orchards of Long Island.

The observer at Humphreys reports several barns fired and 3 cows killed by lightning on the 10th. On the 6 th, 18 buildings were struck bey lightning near Lebanon Springs; and on the same date many trees were prostrated by high winds at New Lisbon.

Meteornlogical Data

for August, 1896.

[^12]for August, 1596 - (Continued).

Thermograph. I| Report received too late to be used in computing means. The means from the \dagger Blank indicates, that the duration is not shown in the original records, but is within twenty-
(j) $9,10,11,12$; (k) 10,$11 ;(m) 9.12 ;(n) 7,11,12 ;(p) 12,13 ;(q) 6,10,11 ;(r) 8,15 ;(s) 6,8,10$; (ab) 6, 9, 10; (ac) 7, 10, 31; (ad) 7, 31; (ae) 1, 15; (af) 29, 30; (ad) 16, 25, 27; (ah) 14, 15; (1 b) 3, 23 ; (cl) $14,22,23,24$; (ce) 18,27 ; (cf) 23,31 ; (cg) ${ }_{2}^{2}, 13,17$; (ch) 22,24 ; (dd) $2,24,25$; (de) 5,16 ;

the Regions，and Daily Manima and Minima for the Stations．

15	16	17	18	19	20		2	23	24	25	20	2%	28	29	30	31	
72	71	59	58	5%	56	63	6π	72	65	66	66	59	56	57	63	56	67.4
81	\％9	63	65	61	\％0	72	80	75	76	T6	is	69	68	13	79	67	
56	66	44	46	$4{ }^{4}$	38	53	50	66	54	44	54	42	41	88	52	\％2	66.0
83	S0	69	64	67	70	\％	82	79	\％6	75	80	66	$6{ }^{\prime}$	70	73	64	65.2
58	$\stackrel{58}{\sim}$	43	49	46	35	47	$5 ?$	57	58	42	47	43	46	36	44	48	05.
8	\％	70	105	65	70	T1	\％	7	75	菏	T9	63	6if	73	T	6，	f0．0
53	${ }^{610}$	41	4.	46	36	51	46	06	54	热	$4{ }^{4}$	40	4.	\％	43	55	fo．0
\％，	41	（1）	69	（6）	4．4	\％			8	4	\％	71 41 4	69 40	\％	A	${ }_{6}^{68}$	15.6
81	76	（i，	\therefore	（ii）	$\%$	湤	： 19	\％	12	it	\％	（；\％	6	\％	4	4.1	
（1）	（6）	45	49	45	35	$5 \geqslant$	54	63，	5	17	57	43	13	41	51	Sis	\％5．6
St	in		10．）	01	6	6．	74	$7{ }^{7}$	Ti＊	44	79	8 \％	65	\％			
（i）	（5）	is	\therefore	48	\＃	5	\％	（if）	5	49	5is	1\％	46	42	S．1）	－1	．
\％i	5	69	11	6	－19	π	7 il	\cdots	\％	79	81	73	\％ 0	76	4	？！	
心	it	25	5	¢1	47	51	\％${ }^{\text {\％}}$	促	6：	4.	60	55	48	42	\％	\％	
s	\therefore	T2	511	6．）	T3	π	$8{ }^{\text {\％}}$	\therefore	7	it	81	\because	is	73	81	i．	
（1）	89	51	4！	48	32	51	5	3	\％	416	5080	4	${ }_{8}^{16}$	49	111	i3	
9	86					81	86	83 58	80	85 53	86	86		84	8	97	． 4
$1 ;$	$4{ }^{4 \prime}$	7.3	\％	66	TS	\％98888	68 88	88	45	53 79	41	43 7 7	38 67	89	49 49	37	
60	69	51	52	51	45	58	55	70	56	48	58	46	48	46	53	53	i0． 1
		\％ 0	\％0	71	T 1	79	87	81	π			\％ 2	69	$\% 5$	82		
		${ }_{\sim}^{59}$		48	45	5	57	67	55			56	48	41	50		
（i）	i；	5	\％	4	\％	5	5	8if	5 \％	\％ 6	8	\％	\％	in	81	\％	
\％	si）	T1）	71	（fir）	\％ 14	i	\cdots	s：	81）	is	81	$7{ }^{2}$	69	73	s		
\％i	6：3	45	46	48	49	53	45	（1）	5%	47	51	19	45	4	4.	51	
\％	1	71	\％11	68	it	26	83	81	T1	78	\％9	71	71	71	81	T11	
\％	0	4	43	46	34	49	4	－4，5	55	41	50	42	39	：16	45	\％， 3	
\because	IS	Sis	0.5	13	18	71	51	73	72	73	80	6i）	（6）	5	i5	\％	
\％	29	$\underline{4}$	4	146	410	2\％	51	${ }^{14}$	8	14	52	43	42	$3: 1$	5）	415	
\because	\＄1	Tis	C9	69	π	IT	\％	79	79	68	9	管	75	？	4i）	（is	
\％	（i）	10	15	1.5	41	58	51	（i）	－1	41	51	4．3	42	3）	51	± 3	
80	T1	（\％）	59	58	5	61	6	r1	68	\％	64	6）	59	56	62	fil	
si	81	71	ris	（1in	is	i5	S	83	Nil	8）	81	i）	70	T5	75	T11	
50	61	59	47	41	41	51	52	67	（i）	515	，\％	34	45	9	47	53	
8%	81	it	\％1）	Gi	${ }^{2} 5$	T5	810	\％	S1）	7	80	T：	\％	13	管	5	
5	60	17	46	4	39	45	49	515	24	$1: 3$	44	55	4	37	$4: 3$	51	
85	81	\bigcirc	65 19 19	6	73 38	\％ 4	81	80	0	59	80 50	73	67	\％	sil	71	． 1
51	${ }^{66}$	78	19 88	519	$\begin{array}{r}38 \\ 80 \\ \hline\end{array}$	49	5	\％ 6	58	8.	5	538	49	315	is	${ }_{20}$	
5．）	59	5.5	45	55	44	47	52	6\％	59	45	44	52	45	40	46	55	$\ldots 0.0$
$8{ }^{7}$	7 R	T1	cs	64	\％	\％1	\％	80	T	79	$8{ }^{7}$	68	69	72	76	9	
${ }_{\sim}^{50}$	120	5）	45	4	34	42	4.	$6{ }^{6}$	56	33	41	53	35	$3: 3$	11	512	
$\begin{aligned} & 26 \\ & 56 \end{aligned}$	6					\ldots	5	6	6	${ }^{68}$	50	¢ 64	6	4	4	${ }_{5}^{60}$	
89	87	83	78	$\% 6$	\％9	$\stackrel{\square}{6}$	76	\％ 8	78	75	73	74	\％	69	71	69	
63	65	61	58	42	41	46	50	51	58	55	51	52	48	39	43	45	63.8
		\cdots								．．．							
84	\％	75	it	\％ 0	\％	71	（1）	7	7	7%	78	T5	\％．3	\therefore	\％ 6	68	
61	64	$5{ }^{2}$	51	49	45	50	58	65	65	52	51	50	48	42	48	50	9．6
81	80	\％0	60	65	70	72	7	81	75	75	\％6	6.5	66	68	75	${ }_{5}{ }^{6}$	
56	64	53	50	48	43	49	54	64	58	50	55	55	50	40	52	53	
8	77	71	68	65	71	T0	7	79	76	76	7i	68	67	\％0	77	70	64.8
50	57	49	4	46	36	40	47	64	52	89	43	$\stackrel{47}{7}$	42	33	39	47	64.8
86 56	${ }_{6} 78$	15 5 5		70 50	76	74	82 59	88	79 59	80 45	81 47	73	46	\％ 70	82 49	\％ 5	69.4
56	68	53	49	52	42	47	52	66	59	45	47	53	46	40	49	52	
85	84	70	66	65	70	$\% 6$	81	82	S	4	83	\％	1	1	79	69	66.8
50	63	$\stackrel{47}{75}$	45	43	39	51	50	66	53	${ }_{8}^{43}$	${ }_{51}^{52}$	49	45	35	46	53	66.
88	84	75	70	70	87	57	84	84	81	81	81	75	82	7% 39	80	75 58	70.2
56 86	64 84	47 69	45 67	45 65	37 72	53 76	48 83 88	70 88 8	60 77	${ }^{45}$	${ }_{81}^{47}$	54 70	43 67	39 71	44 79	58 68	．
62	61	55	48	46	38	58	55	$6{ }^{8}$	56	50	54	55	41	37	53	53	68.4
79	74	74	68	6π	68	67	69	75	76	74	73	73	71	69	71	69	
65	63	51	58	52	52	57	59	63	65	57	37	59	55	52	56	57	07．\％

Daily Meang for the Regions, and Daily

Maxina and Minma for the Stations - (Continued).

15	16	1%	18	19	20	21	22	23	24	25	26	27	98	29	30	31	
69	66	59	56	53	56	58	66	69	63	60	63	61	55	55	63	59	65.8
83	76	70	60	62	74	70	75	78	75	76	76	67	67	71	79	62	65.5
61	50	14	47	41	43	54	60	50	40	47	55	45	38	46	55	45	65.5
85	78	72	69	68	71	70	\%9	80	77	75	79	72	70	\% 0	80	\% 0	
54	59	54	49	43	43	45	52	62	60	48	45	55	48	39	43	51	67.7
85	\%9	70	66	64	71	73	81	79	75	76	79	78	67	70	78	72	c6. 6
49	59	52	49	42	39	43	52	64	53	43	49	51	44	40	48	54	66.6
80	7\%	66	62	61	68	68	75	75	72	71	75	68	64	66	74	67	163.2
53	56	45	45	41	36	44	52	62	50	43	49	52	41	39	48	51	103.2
74	74	70	65	62	64	64	67	73	72	70	69	68	65	64	63	64	72.3
81	82	77	74	74	73	74	71	80	75	81	80	77	76	75	75	73	2
70	68	66	60	57	56	57	63	68	70	62	62	65	59	58	56	58	2
78	77	77	75	74	78	72	70	70	77	75	78	72	76	74	71	70	71.8
70	71	65	59	51	56	61	65	64	69	62	63	64	56	56	58	62	71.8
79	77	74	73	70	78	71	69	80	76	77	75	75	73	73	71	73	\% 0
70	69	63	57	56	57	60	63	68	66	64	63	63	58	58	60	59	13.0
85	80	77	78	71	74	72	71	79	76	82	\%8	77	75	74	76	78	73.0
66	66	56	56	56	54	59	64	69	62	60	62	57	58	52	54	55	13.0
86	85	80	76	75	76	78	75	85	78	79	80	75	76	75	66	71.9
64	63	62	46	45	50	45	62	67	\cdots	57	64	54	51	45	43	45	11.9
80	80	76	76	71	74	75	68	79	76	76	78	77	73	73	70	7%	72.9
67	66	67	57	54	59	57	63	68	69	64	61	61	61	59	52	56	72.2
80	78	76	72	70	72	70	67	79	77	77	77	75	\%4	72	73	70	69.9
66	66	60	49	48	44	48	60	65	67	54	55	58	48	48	45	51	69.9
74	74	68	62	60	61	63	67	71	72	67	68	68	63	60	64	63	71.4
86	80	77	72	69	76	73	80	79	82	78	80	75	74	74	78	71	73.0
64	69	61	54	52	50	57	62	68	63	58	55	59	53	50	54	67	13.0
82	81	75	75	72	77	76	80	76	78	74	78	71	71	75	75	67	68.0
58	61	53	43	39	45	50	59	64	61	46	50	55	51	40	45	49	108.0
82	79	72	74	67	72	72	74	77	77	73	76	71	70	72	72	65	68.6
62	65	57	49	49	44	49	58	65	63	52	55	59	47	44	50	54	,68.6
-•.	\cdots	-•..	\cdots	\%2.4
86	84	80	74	72	74	75	77	81	80	78	80	7%	81	77	79	\%	73.6
66°	68	60	54	$5: 2$	48	53	63	60	64	66	64	61	59	42	51	52	73.6
81	78	77	73	69	75	71	77	77	83	78	78	77	76	74	78	72	71.6
62	66	60	52	51	51	54	61	65	66	57	54	67	53	48	52	57	1.6
83	88	88	79	76	72	76	72	70	79	80	82	80	77	76	77	77	73.0
67	65	62	55	32	47	53	60	63	67	57	57	62	50	51	51	53	73.0
85	83	79	72	70	71	70	72	80	82	78	80	72	73	75	76	64	71.1
66	60	53	50	50	45	48	49	58	61	60	62	61	48	48	53	55	. 1.1
74	72	62	58	56	62	64	70	68	64	65	68	61	58	61	61	56	67.8
85	75	74	8	68	73	74	\%8	78	80	80	80	74	73	74	75	67	67.8
64	50	49	48	44	50	54	63	58	47	50	55	48	43	48	47	45	61.8
69	72	66	60	55	58	61	65	70	70	62	61	63	60	58	59	62	68.0
82	85	75	72	65	65	72	73	76	80	79	69	78	70	70	69	75	'67.4
55	55	60	50	50	50	50	50	60	60	49	49	48	55	45	44	50	67.4
84	82	75	70	70	75	72	78	80	80	73	80	75	71	72	78	72	68.7
55	64	54	50	45	43	50	58	66	60	49	46	52	46	43	45	51	68.7
71	70	62	59	57	59	62	69	71	65	62	66	62	58	58	67	60	68.0
85	$\uparrow 4$	67	63	62	70	72	76	48	72	69	77	68	64	69	76	67	65.6
54	62	50	50	47	45	48	55	60	54	44	52	53	49	41	53	54	
89						,		\cdots						40	50	47	
53	56	60	54	45	44	52	59	64	57	45	54	54	48	49	50	47	
94	80	76	79	72	78	80	87	83	83	83	84	75	75	77	82	74	70.3
53	65	53	48	44	40	49	50	67	54	46	52	50	48	44	54	5.5	
88	78	72	62	65	75	74	82	82	76	75	80	70	65	73	80	65	66.7
51	64	50	47	47	41	47	57	65	49	40	52	50	45	41	54	49	
														
86	74	70	68	68	70	74	84	80	78	82	82	80	68	68	78	66	\% 0.0
50	60	54	54	50	48	56	56	68	56	54	56	56	58	50	56	56	10.0
85	75	74	68	65	73	71	83	78	74	79	82	70	67	69	79	67	69.0
59	68	56	55	50	48	52	58	70	58	51	55	52	50	45	59	50	
87	77	74	64	65	73	\%4	79	\% 8	77	76	79	68	67	71	78	66	66.6
54	62	54	50	44	45	51	56	55	52	44	46	52	48	43	55	51	

Showing Daily Means for the Regrons, and Daily

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Great Lak	67	69	71	75	$\therefore 0$	81	\% 8	78	80	S0	78	76	70	71
Dunkirk.														-
Westfield	80	\%5	\%8	86	87	93	82	90	${ }^{87}$	98	85	83	\% ${ }^{\circ}$	79
Westrield	57	64	62	${ }_{-6}^{6}$	81	74	71	66	T2	6 6s	(\%)	65	61	59
Buffalo	74	73	$7{ }^{7}$	79	81	${ }_{\sim}^{83}$	78	83	${ }_{\sim}^{8}$	8	T	81	76	81
Bufle	58	61	63	${ }^{7} 9$	73	74	${ }_{30}$	88	T~	80	\% 2	$6{ }^{6}$	64	${ }^{62}$
Pittsford	78	75	80	85	91	91	$\stackrel{86}{ }$	88	$8{ }^{\text {8 }}$	86	81	R4	75	78
Pittsiord	54	60	60	63	70	69	70	69	70	71	69	$6{ }^{6}$	62	60
Rochester	79	${ }^{4} 6$	81	86	92	92	85	90	87	$\stackrel{88}{8}$	86	85	75	81
Rochester	56	$\stackrel{61}{ }$	61	67	\%0	70	72	69	\%	\%3	8	68	64	60
Appleton	81 52	18 68 68	83 56	88	90 68	${ }_{73}^{90}$	86	8	$\stackrel{89}{88}$	$8!$ 7 7	88 68	81	88	80 59
	\%9	80	84	81	92	90	89	90	90	90	03	85	82	84
Fort Niaga	53	64	64	68	\% 0	73	73	63	\% 0	72	70	68	67	62
Baldwinsville	80	\%8	82	89	94	90	89	91	89	90	89	87	79	83
Baldwinsville	58	62	65	65	73	71	69	\% ${ }^{2}$	\%3	73	71	65	64	58
Oswego	77	70	78	81	90	89	82	81	82	84	81	80	76	77
Oswego	56	60	61	65	69	69	71	69	74	\%2	73	71	65	68
	76	75	80	87	93	93	87	88	87	87	86	85	\%	80
Lyons	55	62	65	63	70	71	72	50	\% 5	73	72	\%0	67	63
Erie, Pa	74	74	76	86	86	92	\% ${ }_{\sim}^{9}$	88	$\stackrel{\wedge}{0}$	8	-6	79	完	\% 6
Erie, Pa	61	64	60	67	72	73	72	72	\% 0	67	63	66	67	63
Central Lakes	6.5	67	70	75	81	81	80	80	81	80	79	78	71	71
Fleming.	\% 77	75	80	86	${ }_{7}^{93}$	89	87	89	87	$\stackrel{88}{\sim}$	88	88	\% 8	${ }^{78}$
Frmig.	${ }_{\sim}^{55}$	${ }_{7}^{62}$	68	65	71	74	${ }_{91}^{71}$	${ }_{21}$	85	\% 73	73	70	65	62
Romulus	54	58	${ }_{6} 6$	63	69	65	69	68	${ }_{73}$	${ }_{\sim}^{11}$	bis	91	¢3	84 60
Ithaca..............	\% 5	76	80	87	93	94	86	92	90	89	89	85	T3	83
	52	61	57	60	67	72	70	69	4	72	71	66	62	62
Mean.............	64	67	¢0	74	78	78	78	77	79	79	79	Ti	73	72

\ddagger Maximum and minimum by the Draper Thermograph.

Maxima and Minima for the Stations - (Concluded).

15	16	17	18	19	20	21			23	25	26	2%	58	29	30	31	
74	2	64	61	59	60	65	\% 0	\%3	67	61	\% 0	61	39	60	68	61	69.7
			67		68	71	S0	79	T3		89	68	65				
62	65	5\%	51	50	48	53	60	58	57	6	5	4	4π	40	80 53	75 55	69.0
85	78	69	66	6.5	\%	72	82	74	75	\% 5	78	67	66	71	74	66	69.0
67	63	54	51	53	52	60	61	69	61	56	54	50	50	50	62	52	\%.0
85	\%9	71	68	61	71	76	83	82	76	79	86	70	67	72	80	${ }_{68}$	
56	68	52	53	${ }_{5} 0$	46	55	55	69	5	49	52	49	47	44	55	53	68.8
89	\%9	71	69	66	72	74	84	81	76	80	84	71	67	T5	81	66	70.0
60	59	54	${ }^{53}$	51	46	58	49	66	60	52	56	50	49	46	56	48	
88	80	72	70	${ }^{67}$	69	75	77 53	\%9	T4	72	84	71	67 50	74 45	89	${ }^{67}$	69.2
55	69	59	58	51	44	56	53	68	56	46	55	47	50	45	54	56	69.2
90	53	78	¢1	70	51	\%6	83	$\stackrel{4}{4}$	T3	75	85	71	73	76	79	71	\%1.8
57	72	59	56	56	66	59	55	71	58	4.5	58	$\stackrel{58}{\sim}$	43	51	61	56	11.8
88	81	7:3	73	68	75	\%6	85	81	78	80	83	\%2	\%0	75	S2	69	71.1
66	56	56	53	52	56	57	59	63	52	54	57	53	47	57	59	49	11.1
86	80	70	67	63	68	7:3	81	82	72	74	81	87	86	71	81	63	
59	71	62	55	51	50	56	58	68	62	56	58	58	58	48	56	58	69.0
	82	71	69	65	71	74	82	81	rig	76	8	69	67	\%	81	69	
58	61	60	55	53	49	55	58	70	57	52	58	54	51	46	55	55	70.0
85	77	69	$6{ }^{2}$	64	69	71	77	74	\%2	73	81	69	64	\% 0	78	C6	
67	68	60	56	56	49	60	6 6	70	60	55	63	52	5%	55	58	59	69.0
71	74	63	61	58	60	66	\% 0	76	$\stackrel{70}{\sim 7}$	${ }_{\sim}^{65}$	71	64	611	fi_{2}	71	64	70.2
82	81	69	68	${ }^{63}$	73	73	84	80	\% 7	\%8	88	T5	6.)	74	8	55	\%0.4
59	65	54	55	5	49	57	57	69		5	${ }^{63}$	49	3	${ }^{16}$	57	58	
86	84	23	70	67	74	76	83	82	81	80	82	73	69	73	81	72	\%0.2
59	65	54	54	51	48	56	56	68	61	52	58	61	53	61	69	56	\%.
86	83	\%1	69	66	74	76	83	8.5	\% 8	80	81	71	68	74	82	69	69.9
55	65	56	52	51	43	59	56	69	60	48	59	55	51	41	55	55	
72	72	64	60	57	59	63	68	71	68	64	6 \%	63	59	59	64	61	68.9

|| Received too late to be ased in computing means.

Daily and Monthly Precipi

STATION.	1	2	3	4	5	6	\%	8	9	10	11	12	13	14
Western Platear.	0.01	0.39	0.00	T.	T.	0.14	0.12	0.00	0.31	0.08	0.01	0.24	0.03	T.
Alfred		. 38							24				. 06	
Angelic	T.	. 41				. 25				+1.10		. 18	. 08	
Bolivar.		. 11							. 37	. 03	. 05			
Frieudship	T.	. 42				T.	\ldots		. 40	. 01		. 20		
Humphrey		. 29				. 35			1.21	. 68		\cdots	. 04	
Little Valley														
Cherry Creek	T.	. 43			. 01	. 33	'T.		. 32	. 43	. 06	. 70	T.	
Jamestown	T.	. 01		. 05		. 05			. 83	. 27	. 13	. 26	. 05	
Elmira		12							. 61					
Pine City														
Akron	T.	. 39			. 09				. 13		T.	. 79		T.
Aron	T.	. 38				. 50	. 10			 13		
Mt. Morri		. 65			*	+. 70			T.	T.		T.	T.	
Lockport	T.					* 21			. 33			25		
Victor	*	+. 55				*	+1.4 ${ }^{7}$. 63			24	. 36	
Ty		. 35					. 40		. 40		. 01	. 10		02
Wedgewo	. 01	. 49					-05		. 31	. 01				
Addison.	T.	. 05							. 19					
Atlanta		. 84				. 09	. 82		. 17	T.		. 12	. 02	
Haskinvili 53				. 10	. 17	\ldots	. 25			. 12		. 06
South Ca	*	+. 28							T.			. 05	. 01	
Arcade	. 15	. 48				. 80	. 08		. 07	. 07	. 02	. 33	.0ir	. 02
Attica														
Varysbur	T.	1.00	\cdots			T.	. 73	\ldots	. 06			. 36	T.	
Eastern P	T.	0.73	0.00	0.00	0.01	0.14	0.33	0.02	0.08	0.01	0.00	0.03	0.11	0.03
Binghamton.		. 04					. 70							
Chenango Fo														
Oxford	T	1.10		\cdots		T.	. 47	.	T.	.				
Cortland	T.	1.10					. 16							. 02
Bloomvil 58	\cdots		. 06	. 09	. 35							. 08
Deposit.		51												
South Kortrigb		. 54 11 37	. 10					
Elka Park		. 65					. 12		. 02			-43	1.5	
Brookfiel		1.26				. 10	. 68							
Hamilto												
Apuli									\ldots					
Middletown														
Port Jervi		1.05							. 12					30
Warwick		. 63						. 12	. 15	. 13			. 3	
Cooperstow	..	1.28				. 75	. 07		. 07					
New Lisbo		1.10				. 12	. 14	. 10	. 05					
Oneonta		1.02				1.00	. 86							
Perry Cit	T.	. 88				. 02	. 27	15				T.	
Newark Vall	. 06	. 38			\ldots		. 12			\ldots	\ldots			
Waver		. 03				. 28	. 01		. 84			T.	T.	
Dryden		. 6					. 17		T.	T.				
Mohonk Lak							1.15							. 10
Northern Plateau..	0.08	0.51	0.00	T.	0.08	0.05	0.01	T.	0.05	0.00	0.00	0.66	0.00	0.02
West Chazy							
Elizabethtown...														
Saranac Lake	. 20			. 02	28	T.		. 01						
Gloversville.	T.	. 88				. 02			. 02					. 02
North Lak														
Lowville.		. 33	 16						...		
Number Fou		. 38				. 09			. 17					
Kings Station......	. 12	. 90			. 10		. 07		. 05			. 30		.0?
Atlantic	0.00			0.00	0.00	0.10	0.29	0.06	0.00	0.01	0.00	0.00	0.00	0.61
Brooklyn..		. 28	T.				. 43	. 12						1.63
Mauhattan Bea		. 15												. 15
New York City		. 35					2	.14						T

tation for August, 1896 -(Inches).

Daily and Monthly Practpi

STATION.	1	2	3	4	5		7	8	9	10)	11	12	13	14
Atlan. Coust-(Con.)														
Willet's Point 38					a							${ }^{.13}$
Setauket		. 73					. 25	.i2						1.13
Bedford		. ${ }^{\text {\% }}$. 53	. 14		. 10				. 50
Ifudson Valley.	0.00	0 \% 7	0.00	0.00	0.06	T.	0.40	0.00	T.	0.00	0.00	0.01	T.	0.57
Albary		. 88				T.	. 61		T.					. 18
Lebanon Springs		. 89					1.13						1.20
Honeymead Brook.	T.	. 65				\ldots	. 34				T.	T.	1.16
Poughkeepsie.		. 25					. 34 16
Wappinger's Falls.		. 45					. 45							. 06
Catskill.............		. 32					. 07					.13		1.05
West Point.		. 80												. 12
Boyds Lorners		\ldots	.	\ldots	\ldots	\cdots	\cdots			
Carmel.		1.13					52							1.47
Southeast Reserv'r.	\cdots													
Eagle Mills.......		1.00					T 50							. 02
Easton..............		1.26			. 56	T.	T.	\ldots				T.		$\therefore 0$
Mohawk Valle	0.00	0.45	0.00	0.00	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.00	000	0.00
Rome...		. 45				. 16								
Champlain Valley..	0.00	0.49	0.00	0.00	0.35	0.32	044	0.00	0.00	0.00	0.30	0.18	0.10	10.06
Plattsburgh Bar'ks.		. 20			. 70	. 65	. 8.3					. 35	$\therefore 0$	
Glens Falls.........		. 78		\cdots			. 04				61			. 11
St. Lawrence Val'y.	0.01	0.03	0.00	0.02	0.35	0.17	0.00	0.00	0.03	T.	0.00	0.03	0.00	0.00
Malone .		. 07		. 10	. 49	. 31			08	T.				
Madison Barracks.					.				. 04			. 21		
Watertown.	. 12				,	. 04			. 12					
Canton					. 71	. 14				...				
DeKalb Junction...					. 13	. 34				T.				
Massena......														
North Hammond...				. 01	. 50	43				T.				
Ogdensburg.......		. 08		. 02	. 55	T.				. 02				
Potsdam.		. 11			. 43	. 10								
Great La	T.	0.30	0.00	T.	T.	0.42	0.15	0.01	0.06	0.05	0.03	0.24	0.01	T
Dunkirk.														
Wesfifld		1.0:3					. 20		T	. 26	.12	$1.3{ }^{3}$. 07
Buffalo	T.	.42		T.			. 60		. 01.	. 02	. 16	. 31	T.	
Adams Cent						. 08			. 0.3					
Pitesford.	T.	$\therefore 28$				1.40			. 51					
Rochester	'T.	. 20				. 72			. 31	T.	'T.	. 01	T.	T.
Scotisvill		4				. 57			. 09		Vir			
Appleton..........	. 01	. 14							\cdots	T. 17		
Fort Niagara	${ }^{1} \mathrm{~T}$. 06		. 02		. 08			20			
Niagara Falls	T.	. 09		. 01			. 02		T.		. 02	. 39		
Baldwinsville		. 49						T.				. 29		
Skaneateles		1,0¢				. 20	. 38					. 50	. 62	
Ridgeway	. 03	. 07			. 04	. 03	...		T.			. 19		
Demster		. 20				27	$\therefore 0$. 13					
Fulton.		. 23				. 70								
Oswego.	'T.	. 14				. 92	.15)		. 02	T.				T.
11 Palermo	. 0					. 80	. 19							
Phwenix.		. 33		\cdots			. 58		. 08				. 15	
Lyous						1.59	仡	. 08			r.	T.	. 02	
Rose..	T.	. 26				. 81	. 09		. 04	T.		. 01		
Erie, l'ennsylvania. 32	 18	.02]		. 02	. 66	. 03	1.35	. 09	

tation for August - (Continued).

15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	永
			. 38				. 20	. 10	. 10							. 35	1.64
	T.		1.00				1.20									. 30	4.20
	T.		$.06$	T.			. 50	T.				T.				. 15	2.35
	. 10	. 03	. 19				. 83	. 05		T.						. 10	3.14
T.	0.27	T.	0.13	0.03	0.00	0.01	0.16		0.09	0.00	0.00		0.00	0.00	0.00		3.97
	. 08		. 15	. 03		T.	. 01	T	$.30$			$.02$. 01	- 2.25
	. 03		. 15													. 17	4.48
	- $8:$. 09				. 11	. 09	$.33$. 35				. 41	4.35
	*	+.61	. 02				. 08	. 11	.05			. 13				. 43	2.28
	. 72	T.				. 06	. 02	. 11	. 10			. 11					2. 46
	. 19		. 04	. 02		. 05		$\therefore 2$. 10				. 13	2.30
. 05			. 45	. 04				. 40	. 10								1.96
																	4.60
	. 47						. 23	. 27				T.				23	4.32
	. 15			.20			. 25	1.00									3.74
			. 51	. 04			. 90	. 09				$\stackrel{\text { T. }}{ }$. 10	3.17
0.00	0.43	0.00	0.00	0.00	0.00	0.25	0.10	0.02	0.00	0.00	0.46	0.00	0.00	0.00	0.05	0.90	1.92
	. 43					. 25	. 10	. 02			. 46				. 05		1.92
0.00	0.34	0.85	0.24	0.01	0.00	0.00	0.08	0.12	0.14	0.00	0.04	0.10	0.00	0.00	0.00	0.08	4.38
	-	1.70	. 40	- 15	T.	. 20	 40				15	5.95
0.00	0.94	T.	0.23	0.02	0.08	0.12	0.03	0.34	0.11	0.00	0.37	0.22	0.18	0.00	0.12	0.30	
	. 63		. 09	.02		. 39	. 26	. 34				. 65	. 08			. 12	3.63
	. 45				. 64				. 86				. 50			1.00	3.70
	1.05	. 01	. 65	. 02		. 16		. 32			. 50						3.26
	1.30		.12			. 08		. 36					. 87			. 31	3.89
	. 77		. 29	. 08		. 06		. 51				62				3	. 03
	1.10		. 14			. 12		. 33			. 16	. 53			. 64	. 10	4.06
	1.35		. 40			. 06		. 33			1.55				. 23	. 17	4.76
	. 84		. 15			. 07		. 55			. 76				. 12	. 18	3.31
T.	0.22	0.01	0.17	2.14	0.00	0.03	0.02	0.16	0.04	T.	0.23	0.22	0.00	0.00	0.05	0.08	2.17
.08			. 49					\cdots			. 43						4.05
	. 29	. 02	. 38				T.	. 32	T.		. 44	. 40			. 06	2	3.68
	. 45		. 26			. 20		. 55			75				. 20	. 08	2.60
	. 38		. 34			 07			T.	. 28			T.	. 08	3.34
	. 58		. 01	. 25		. 01		. 12			T.	. 38			. 04		2.71
	. 64		. 08					. 05				. 31				. 16	2.44
	. 02					T.	T.	. 09			. 18	. 07			. 05	. 09	0.72
			. 08					. 06			. 40				. 10		1.00
								. 11			. 41	. 17			. 20	. 19	2.11
	. 08		. 34	T.		4	. 16	T.			. 99				. 05	T.	3.06
	. 93		. 05	. 15				. 13				. 53				. 06	4.05
	. 01		. 08			T.		. 06				. 35			13	. 12	1.11
	. 06		. 22	35		. 09		. 33				. 44				. 18	2.47
	. 41								. 80	T.	. 59				\cdots	. 03	2.76
	. 04		. 10	. 83		. 12		. 20			. 03	. 39			T.	. 06	3.00
	.10		. 12	. 30		. 03		. 06				. 40				. 10	2.13
	T.	. 10		. 73				. 29				. 92				. 09	3.27
	. 06	T.	. 15				. 20				. 35	T.			. 09	. 03	3.05
	.11			T 4				.37			*	¢. 48				. 03	2.68
			. 1	T		T	T.	. 24			. 11						. 47

Daily and Monthly Precipi

\ddagger Record for the month incomplete. || Received too late to be included in the averages.
tation for August - (Concluded).

15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	\#30
0.00	0.27	T.	0.03	0.15	0.00	0.01	0.01	- 0.14	0.00	0.00	0.00	0.61 .60	0.00	0.06	0.02	T.	2.74
	T. 33	 25	.	. 01	. 0.3	. 02	.	…'.		. 50		.		\cdots	2.64
	\cdots		T														
	. 34	T.	${ }^{1} .13$.18 02 05				. 36			T.	. 01	2.43
0.01	0.33	0.12	0.17	0.04	0.01	0.05	0.07	0.18	0.05	T.	0.12	0.20	0.02	0.00	0.03	0.12	2.98

* Amount included in next measurement. +Not included in computing averages.

ann Precipitation - August.

MAP OF THE STATE OF NEW YORK

SHOWING
THE MEAN TEMPERATURES
FOR AUGUST, 1896.

MAP OF THE STATE OF NEW YORK

SHOWING
THE PRECIPITATION

Meteorological Summary for September, 1896 .

The average atmospheric pressure (reduced to sea-level and 32 degrees Fahr.) for the State of New York during September was 30.04 inches. The highest barometer was 30.39 inches at Friendship on the 23d, and the lowest was 29.14 inches at Ithaca on the 30th. The mean pressure was slightlyhigher in the eastern than in the central and western sections. The average of the mean pressure at 6 stations of the National Bureau was 0.04 inches below the normal, the deficiency amounting to 0.07 inches at New York, and to 0.03 inches near the lakes.

The mean temperature of the State, as derived from the records of 73 stations, was 59.4 degrees. The highest local mean was 65.6 degrees at Brooklyn, and the lowest 54.3 degrees at Number Four. The highest general daily mean was 74 degrees on the 11 th, and the lowest 44 degrees on the 23 d . The maximum temperature reported was 97 degrees at Waverly on the 11th, the minimum being 25 degrees at Number Four on the 23d. The mean monthly range of temperature for the State was 25 degrees, the greatest local range being 67 degrees at Waverly, and the least 39 degrees at Brooklyn. The mean daily range was 20 degrees. The greatest local daily range was 47 degrees at Friendship on the 2d, and the least 3 degrees at Erie, Pa., on the 15th. The mean temperatures of the various sections of the State were as follows: The Western Plateau, 58.8 degrees; the Eastern Plateau, 58.9 degrees; the Northern Plateau, 55.8 degrees; the Atlantic Coast, 63.9 degrees; the Hudson Valley, 61.1 degrees; the Mohawk Valley, 58.9 degrees; the Champlain Valley, 58.0 degrees; the St. Lawrence Valley, 58.0 degrees; the Great Lakes, 59.9 degrees; the Central Lakes, 60.9 degrees. The average of the mean temperatures at 26 stations possessing records for previous years was 1.0 degrees below the normal, excesses being reported from only 3 stations.

The mean relative humidity was 77 per cent. The mean dew point was 52 degrees.

The arerage precipitation, as derived from the records of 94 stations, was 4.63 inches. The heaviest general rainfall exceeded 6 inches over considerable aroas of eastern and southeastern New York, and was less than 4 inches in portions of the central section, and over smaller scattered areas elsewhere.

The maximum local amount was 8.12 inches at Warwick, Orange county, and the minimum 1.97 inches at Brookfield. Madison county. General rains, which were heaviest in northern New York, occurred on the $: 3 d$. On the 5 th and 6 th the precipitation was heavy in the southeastern counties, with lesser amounts throughout the State. On the 14 th light general rains occurred; on the 16th moderate, with the maximum over the Northern l'latean; on the 18 th the heaviest general rains of the month; on the 21st, 26th, 27th, 28th moderate general. The arerage precipitation at 27 stations possessing records for previous years was 0.8 inches above the hormal amount, deficiencies occurring at only 7 stations. The greatest excesses obtained in the Coast Region, the Central, Hudson and the Champlain Valleys.

The average number of days on which the precipitation amounted to 0.01 inches or more was 10.6 , the rain frequency being greatest in western and northern New lork, and least in the central and sontheastern sections. The arerage number of clear days was 10.8 ; of partly clondy days, 10.1 ; and of cloudy days 9.6, giving an average cloudiness of po per cent. for the State. The greatest cloudiness obtained in the St. Lawrence Valley, and the least near the Atlantic Coast.

The prevailing winds were from the southwest. The average wind travel at 6 stations of the National Bureau was 7430 miles, the values being generally greater than usual for the month both along the Itlantic Coast and the Great Lakes. The maximum velocity recorded was 57 miles per hour at Buffalo on the 19th.

Thunderstorms were reported at one station on the $2 d$, at 9 stations on the $3 d$, at 1 station on the 5 th, at $\overline{5}$ stations on the

12 th, at 1 station on the 13 th, at 2 stations on the 14 th and also on the 15 th, at 10 stations on the 17 th, at 3 stations on the 18 th, at 14 stations on the 19 th.

Hail fell on the 3d, 17 th and 19 th.
Light frosts were general in the interior from the 1st to the 5 th, and at a few stations on the 16 th , 18th and 20th. Killing frosts occurred in exposed localities on the 1 st, $2 d, 17$ th and 21 st, and were quite general in the interior on the $23 d$.

General features of the weather.-This month, although averaging slightly cooler than usual, embraced two warm periods; the first exteuding from the 9th to the 15 th, with the general maxima on the 11th when the temperature of the State was 10 degrees above the normal. The second, and lesser warm wave covered the period from the 25th until the end of the month. The most noticeable deficiencies of temperature oceurred during the first week, and between the 19 th and 25 th , with killing frosts, which, however, were severe and general only during the latter period.

The rainfall was slightly in excess over the greater part of the State. General rains were confined mainly to the first and third weeks and the closing days of the month, a heavy local precipitation being reported from various sections during each period. The cloudiness was rather above the average for September, and the wind velocity also higher than usual.

The tropical cyclone which passed over southwestern New York on the night of the 29th and 30th was notably severe, as indicated by the remarks at the close of this summary.

Seven areas each of high and low pressure, influenced the weather in the vicinity of this State during September. Generally the depressions were not strongly developed, and on approaching the coast assumed a trough or V shape, usually extending from the St. Lawrence Valley and Lakes to the southward. Storms of this class passed nearest this State on the 1 st, $3 \mathrm{~d}, 6 \mathrm{th}$, 11 th, 18 th, 20 th and 26 th. The hot ware, culminating on the 11th, accompanied the third depression, which extended from Canada to the Mexican Gulf. The succeeding area developed a
considerable energy over the lakes, giving the highest wind velocities of the month at some stations.

In addition to the above a storm moved northward off the Atlantic Coast on the 10th; and on the night of the 29 th-30th a cyclone of tropical origin passed from Pennsylvania to the Lake Region, giving the lowest barometer of the month, 29.14 inches at Ithaca.

The high pressure areas, which were generally large and of moderate intensity, were felt in this vicinity mainly on the 1st to $2 d$, 5th, Sth, 13 th to 14 th, 20 th, 23 d and 29 th. Those bringing a noteworthy reduction of temperature about the 5th and 23d were rery large systems which covered the greater part of the Cnited States in the eastward course. The winds generally passed to the Atlantic over the northeastern rather than the southern coast.

The cool, cloudy weather of the first week delayed the growth of late crops, but general rains on the 3 d were beneficial in relieving a partial drouth which especially affected pasturage at that time. Much corn was already cut, the second hay crop was partly secured, and in some localities, beans even gathered and potatoes dug. The tobacco crop was housed in good condition, while early varieties of hops were already being picked. The succeeding week of bright hot weather brought grapes to maturity, and was favorable to harvesting buckwheat. The weather continued warm and dry until the general rains of the 19th, which gave the early sown wheat a rapid growth. The frosts of the 21 st to 24 th came too late to do material damage. The apple crop was exceptionally large and fine, but much of the fruit was blown from the trees and injured by the storm of the 30 th. The crop was also damaged by high wind on the 19th along the lakes.

Ground water was generally low during the month.
Notes on the cyclone of September 29th-30th: Cortland, violent wind storm, 1 to $4 \mathrm{a} . \mathrm{m}$., buildings and trees blown down; Waverly, southeast gale on 30th, 2 a. m., blew down trees, buildings, etc.; Ithaca, large trees uprooted or broken, and buildings unroofed. Many barns demolished in vicinity; Bedford, very
heavy rain night of 30 th; Watertown, high south wind on the 30 th, much minor damage; North Hammond, heavy gale at daylight on the 30th, blowing down fences and trees. Nearly all fruit on the ground; Baldwinsville, very high wind, trees blown down, some buildings unroofed.

Local storms.-A small but violent tornado which occurred near Otsego Lake, Otsego county, on the 12th, is described by Mr. F. R. Van Horn. The storm began about 2 miles west of the lake, and moving eastward, tore dorvn 6 acres of timber, uprooted and scattered the buckwheat in a field, and tore up over 30 apple trees in an adjoining field. Passing thence through the woods, it uprooted large oak, hickory and chestnut trees and twisted others off 5 or 6 feet above the ground, in some instances carrying large trees over a field 200 to 300 feet wide and into the lake beyond. Much thunder and lightning preceded the tornado, which formed about $5: 30 \mathrm{p} . \mathrm{m}$. The path of the storm did not exceed one-eighth of a mile in width, and was sharply defined.

On the 12 th, also, one man was killed and four injured by lightuing, and property was destroyed to the extent of $\$ 600$. Property was also destroyed by lightning at Bloomville.

Meteorological Data

for Sertember, 1896.

Meteorological Data

Location of Stations.			Barometer.						Humidity		Tempera			
STATION.	COUNTY.		$\begin{aligned} & \text { 登 } \\ & \hline \end{aligned}$		$\stackrel{\oplus}{\square}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{\dot{9}}{\stackrel{9}{x}}$			Dew point (degrees).				-
Fudson Talley												61.1	92	11
Albany	Albanv	85	30.05	30.37	2	29.61	300	0.76	77	53		62.0	90	11
Lelanou Springs..	Columbia.....	930.										58.8	87	12
Honermead Brook	Datchess	450									60.0	59.7	85	11
Pongukeepsie....	,	180										60.7	92	11
Wappinger's Falls	"											60.6	87	11
Catskiil	Greene.										62.4	62.2	89	11
West Point	Orange......-	167										63.0	90	12
Carmel	P'utnam	500										62.2	90	11
Mrokauk Talley...												58.9	85	11
Rome	Oneida	445										58.9	85	11
Champlain Talley												580	89	11
Plattsburgh Bar'k	Clinton.......	125										57.1.	85	1
Glens Falls.......	Warren	310					..				58.3	58.8	89	11
St. Lawrence Fal.							.					58.0		11
Madison Barracks.	Jefferson	266					.					58.6	87	12
Watertown	Jefferson....	486										58.1	88	11
Canton....	St. Lawrence.	304			.						56.8	56.2	88	b
North Hammond.	St. Lawrence.	300									58.3	58.8	88	11
Ogdensburg.		258										59.1	86	11
Potsdam..........		300									57.9	57.3	85	11
Great Lakes												59.9	93	12
Duukirk	Chautauqua.	590												
Westfield												60.0	87	11
Baffalo	Erie	690	30.02	30.36	23	29.58	30	0.78	71			60.0	81	11
Pittaford	Mouroe......										58.7	58.6	90	11
Ruchester.	Monroe	621	30.03	30.34		29.55		0.79	73	50		60.0	92	11
Appleton.........	Niagara.											58.8	88	11
Fort Niagara.....	Niagara......	263										60.8	91	11
Baldwinsville.....	Onondaga....	390									59.9	60.3	89	11
Oswogo............	Oswego	304	30.02	30.29	23	29.52		0.77	74	50		60.0	90	11
P Palermo -.......		460									60.1	59.6	93	12
Lrons	Wayne	407									59.3	60.3	90	11
Eric, I'a.	Eric.	681	30.03	30.37	23	29.47	${ }^{29}$	0.90	75	52		61.0	87	11
Central Lakes.....												60.9	92	11
F'luming	Cayuga	1000									60.4	60.8	81	11
liomulus.	Seneca	719							83			61.2	92	11
Ithtara.	Tompkins....	810	30.03	30.30	23	29.14	430	1.16	71		159.5	60.6	${ }^{91}$	11
Mean		\ldots	30.04	30.39	23	29.14	430	0.73	77		2	59.4	$4{ }^{4}$	11

[^13]for September，1896－（Concluded）．

ture－（In Degrees Fahr．）．								SEy．			Precimitation－（Inches）．						
$\begin{aligned} & \dot{0} \\ & \text { E. } \\ & \text { E } \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\text { D }}{\sim}$				$\stackrel{\oplus}{\ddot{\Xi}}$		$\stackrel{9}{\Xi}$		条					范	$\stackrel{2}{2}$		
31	23	53：	21	34	2	5		$3 \mid 11.6$	9.4	90	7.8	5.65	4.28	$\begin{aligned} & \begin{array}{l} h . m . \\ 21.00 \end{array} \end{aligned}$	5－6		
40.	23	50	191	28	9	5		313	9	$\stackrel{8}{8}$	9	3.31	1.28		，		ir
31	23	56	23	34	2	－	$\because 0$	0.5	13	12	7	5.83	225		6		
33	24	52.	19	29	2.5	7		818	11	11	8	721	428	21.00	5－6		
33	24	59.	25	38	j	，		812	10	8	5	5.70	3.84	22.10	5－6		N
27	24	50	21	31	1	11		3，14	10	6	9	7.01	4.21	22.00	5－6		N．
40^{\prime}	e	49	18＇	27	2	10		810	12	8	8	5.24	2.36	22 （if）	6		
39	24	51	21	32	4	10	29	9.			7	5.74	2.40	17.00	5－6		E．
34	24	56	20	34	2	－		719	1	10	9	5.18	260	12.00	5－6		
30.	23	55	21	34	3	10	14	4			140	4.57	0.78		19		
30	22	5.5	21	34	3	10	14	4			14	4.57	0.78		19		
32	23	54	22	33	h	7		311.0	7.0	12.0	11.5	3.83	1.75		5－6		
34	24	51	21	42	2	10	bb				11	2.85	0.601	12.60	${ }^{6}$		
32	$\because 3$	57	22	33	h	－		311	7	12	12	4.81	1.75		5－1）		
2.7	23	57	21	34	m	9	－ 25	5） 6.5	11.8	125	113^{\prime}	4.83	1.66		19		
35	23	52	21	31	10	13	30	0		．．．．	10	5.84	1.23		19		
26	23	62	23	32	30	9					11	4.43	1.15		19		
25	23	61	22	41	10	10	19	97	15	8	12	5.46	1.66		19		
32	23	56	19	34	n	6		71	13	116	12	4.50	1.54		19		IV．
30	23	56	19	31	10	8	21	1） 9	9	112	13	3.64	1.22		19		V
$2 x$	23	57	22	31	23	7		9． 9	7	14	10	5.10	1.01	29.00	2－3		
31	23.	51	16	43	10	3		5109		10.0	1.3	3.99	1.66		29－30		
36	23	51	16	29	2	9		415	3		10	4.73	13 ？		19		
35	23	46	16	23	8	9		11	8		13	4.39	088		－ 31		IV．
31	23	59	19	36	26	－	$b d$	8	13	19	9	3.73	075		19		
34	23	58	18	31	10	9		38	11	111	11	3.50	0.76		19		
26	23	52	17	29	p	8		10	10	110	11	4.17	1.66		29－3		
44	23	47	18	43	10	10	cc				11	3.71	1.37		9		W
36	22	53	20	29	25	13		321	3	6	11	5.63	094		29		
41	23	49	14	28	25	6		910	6		13	4.05	0.82		19		－
40	23	53	15	28	12	6	15	5		．．．	10	2.51	0.63		30		
40	23	50	17	30	1	9	cd	－ 9	14		13	3.72	0.70		$\overline{7}$		
42	23	45	12	23	2	3		5.6	14	10	12	3.72	112		19		
36	23	55	19	42	10	8	5	8.0	13.71	83	9.0	4.62	1.34		19		
36	23	55	18	28	2	9	13	｜ 4	122	4	6	4.93	1．23	3.00	13		
36	23	56	19	42	110	8		512	6	12	9	510	1．31		19		，
37	－	54	20	37	10	｜		38	13		｜ 12	3.84	092	5.00	，		N．s．
25	23	55	20	47	2			5103	｜ 101	9.6	， 10.6	4.59	428	21.00	5－6		$\because \mathrm{W} .$

therwograph．\｜Report received too late to be used in computing means．The means from \dagger Blans indicates that the duration is not shown in the original records，but it within 24 hours．
（j） $4.26 ;(k) 2,2 \ell ;(m) 8,9,10,29 ;(n) 8,9,10 ;(p) 24,25 ;(q) 9,10 ;(r) 5.13 ;(8) 5.29 ;(t) 5,5,13$ ； 22,29 ；（ae） 28,29 ；（af） 17 ，20；（bb） 7,41 ， 15 ， 25 ；（bc） 13 ， 21,24 ；（bd） 1,30 ；（be） 13,27 ；（ce） 19,24 ，

Temperature - September, 1896, Showing Dally Meansfor the

STATION.	1	2	;	4	5	6	.	8	!	10	11	1:	13	14
Weste	51	57	63	53	51	fi0	59	59	(i2	68	74	74	65	70
	64	34	74	6.5	56	64	68	71	77	85	88	89	67	80
	36	39	50	36	40	53	51	41	43	49	6:	61	57	60
ugelic:	63	75	67	8:3	59	67	${ }^{6} 7$	31	79	84	83	88	73	80
gelic	32	33	48	36	40	53	49	40	38	5"	56	61	59	61
Bolivar														
Friendship	68	78	74	1 ij	59	66	70	78	79	87	90	\% 9	76	84
	32	31	31	31	39	${ }^{53}$	49	38	38	47	59	59	58	61
Humplirey	62 37	7	67 58	67 40	5.5 45	62 51	63 50 50	72 43	84	82 54	85	94	73 57	8
	6:	72	68	64	59	62	(is	72	75	82	86	8.5	76	79
Jamestown	41	40	57	46	54	54	53	44	48	62	${ }_{6}{ }^{3}$	63	68	61
Elmir	68	74	is	66	${ }_{6} 1$	76	71	75	78	86	91	$8:$	75	83
Elmir:	43	37	58	51	42	60	48	43	5	46	62	$6{ }^{6}$	65	$6{ }^{6}$
	64	68	74	65	64	62	70	73	75	85	90	85	70	80
	40	38	50	40	40	50	50	43	4	50	64	64	38	52
Mt. Morr	67	78 48	75	83	61	70	74	78		88	92	80	69	80
	37	48	54	38	39	55	50	41		49	${ }^{62}$	6	59	${ }_{80} 8$
Lockport	$\begin{aligned} & 65 \\ & 44 \end{aligned}$	$\begin{aligned} & 76 \\ & 44 \end{aligned}$	$\begin{aligned} & 67 \\ & 57 \end{aligned}$	65 43	$\begin{aligned} & 67 \\ & 46 \end{aligned}$	62 47	11 50	$\begin{aligned} & 74 \\ & 46 \end{aligned}$	$\begin{aligned} & 78 \\ & 50 \end{aligned}$	$\begin{aligned} & 84 \\ & 58 \end{aligned}$	$\begin{aligned} & 87 \\ & 65 \end{aligned}$	$\begin{aligned} & 79 \\ & 62 \end{aligned}$	76 60	80 56
Victor														
Wedgemood	72	75	76	T0	5	71	73	77	79	92	75	92	74	88
	4	44	51	43	42	53	50	48	48	53	ti6	6.	59	60
Addi	66	76	78	66	60	71	68	75	77	87	90	89	71	81
	38	36	56	$4{ }^{48}$	39 59	55	48	43	44	40	60 40	63	62	83
South Canisteo	32	37	51	36	39	52	48	37	49	44	58	57	59	59
Arcade	61	72	71	(6)	58	64	66	Tu	74	s0)	86	84	70	78
dras	35	41	51	37	45	53	47	4.3	46	52	tis	$6:$	58	59
Varysburmb	60	74	70	${ }^{67}$	60	67	71	77	81	87	91	ci	67	84
Varysourm	36	88	53	37	43	52	50	50	57	53	5	65	02	59
Eastern 1	54	53	67	54	50	61	58	57	59	67	14	74	67	67
	66	74	83	67	63	7	70	73	$\therefore 0$	87	94	93	77	83
	44	36	56	44	36	56	48	43	41	43	60	(6)	65	${ }^{63}$
Oxf	67	72	80	70	67	72	72	7%	77	84	92	40	73	75
	71	73	78	6	61	71	48	7-2	8	83	91	88	${ }_{7}^{63}$	61
Cortla	4:3	34	57	43	39	53	48	具	40	4.	57	60	60	60
	71	72	80	74	6:3	69	74	80	85	90	94	9.5	80	73
Bloon	43	3.5	56	44	37	53	46	44	4.5	52	55	(63	154	40
S	64	i2	80	64	i,	6.9	63	6is	7	81	88	As,	i4	73
	42	31	$\%$	80	32	50	43	:\%	:6	50	50	$\therefore 8$	60	56
Elka Park	57	64	72	60	58	68	64	6.5	\%	78	$8{ }^{8}$	$\times 2$	70	69
18,	4.7	39	5	42	42	50	49	4	47	60	b	66	56	54
		70	17	62	64	61	60	(6)	64	90	93	86	81	80
	42	:	42	38	40	41	40	\pm	411	54	61	48	49	50
Port Jervis	6	68	81	72	63	70	73	31	80	85	89	81	76	73
	45	39	53	45	42	55	47	4.	47	60	59	63	59	59
Cooperstown	60	64	7%	59	60	6.5	61	(is	70	77	85	83	70	69
	45	3.	28	42	3.3	50	47	41	4	52	56	63	63	58
New Liabon	63	70	69	63	61	311	69	70	75	Kt	89	89	72	71
	66	74	80	69	85	7.5	72	71	is	84	90	8	75	73
	47	36	57	42	38	St	49	$4:$	43	50	56	(i)	64	60
Perry	65	75	${ }_{6} 7$	61	60	71	69	71	7	83	91	86	74	78
,	42	34	54	43	35	53	46	. 39	39	44	59	59	58	6
	71	77	81	72	61	79	7.8	78	83	90	97	96	78	87
	36	$3: 3$	(6)	43	37	5	46	411	43	44	59	62	65	${ }_{6} 6$
Oryden.	¢;3	74	80	61	62	78	199	73	7.4	$8{ }^{2}$	90	88	72	78
	43	${ }^{3} 16$	56	45	41	5.5 66	51	48	-	53	${ }^{62}$	ก0	n5	${ }_{64}^{64}$
Mohonk Lake.	64 49	68 51	77 57	66 51	6.5 47	66 52	70 53	69 48	73 51	42 63	85 70	78 70	65 43	69 55

Regions and Daily Maxima and Minima for the Stations.

Daily Means for the Regions, and Daily

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Northern Platcau..	52	53	59	51	49	58	57	55	59	65	72	72	66	63
Saravac Lake.	59	70	64	61	61	71	67	71	77	83	86	80	67	71
	35	48	44	32	42	51	39	39	45	53	59	54	56	59
Glorersville	64	78	77	66	64	67	67	72	85	84	90	89	6.9	71
Glorersvile	46	38	55	41	36	49	50	40	44	55	59	62	59	56
North Lak	64	53	64	68	57	60	65	64	70	76	80	85	87	66
Norti Lak	44	47	50	44	38	48	51	40	44	49	55	59	6.7	58
Lowrille	62	67	68	59	61	70	67	73	75	82	87	81	73	72
Lowrile	44	35	53	39	33	51	54	38	43	46	58	62	58	56
	59	62	64	54	60	66	63	71	75	78	85	82	69	67
Number	46	36	48	42	30	50	48	40	40	45	56	61	(i0	57
Atlantic Co	61	60	68	61	59	66	64	65	65	73	74	70	69	65
	69	73	$\succ 2$	69	69	T2	72	71	73	84	81	80	76	72
Brookly	56	52	61	55	54	60	55	63	58	67	68	66	71	59
Manhattan Beach..	71	68	69	77	69	71	70	73	70	73	85	75	77	71
	68	40	${ }_{83}^{58}$	54 71	54 67	${ }_{6}^{62}$	57 74	57 70	57 72	60 86	${ }_{84}^{67}$	64 78	66 75	59
New York City	54	50	64	54	57	64	58	60	58	66	68	157	61	58
Willet's Poin	71	73	82	72	71	72	78	74	73	85	87	77	76	75
Willet's Point	48	54	56	50	43	54	56	60	62	64	63	66	59	59
Brentwood	77	75	77	72	74	76	71	74	76	87	85	84	80	77
Brentwoor	47	39	64	42	41	58	47	53	56	63	59	56	60	08
Setauket	68	71	79	68	68	74	72	70	70	80	84	76	73	68
Setauket	54	53	61	53	50	60	58	59	80	65	64	62	61	58
Bedford	68	70	80	70	69	71	74	71	72	84	86	77	72	71
Bentora	50	38	58	50	40	57	47	51	54	64	59	58	60	57
Hudson Valley	57	56	68	60	55	63	61	61	62	71	74	73	68	65
Albany	69	72	79	70	68	69	74	75	79	85	90	88	66	73
(basy	52	45	57	50	43	54	52	49	51	63	6.4	67	61	58
Leloanon Spring	65	70	78	64	68	73	72	71	72	81	85	87	76	75
	69	38 67	77	42	38 66	${ }_{71} 50$	4	71	43	89	56 85	83	60 69	55
Honermead Brook.	43	39	57	49	42	55	46	48	50	63	59	62	(60	57
	70	73	85	80	59	73	75	73	74	85	92	81	75	75
Porghkeepsio	42	36	55	42	38	56	45	47	46	66	56	60	64	46
Wappingers Falls	68	75	84	73	79	34	70	72	73	85	87	83	81	77
	49	44	57	47	43	8	52	50	51	57	66	62	66	61
Catsk	49	44	60	50	43	10	51	44	7	66	63	61	8.	75
	67	71	74	84	73	71	72	77	74	73	86	90	79	72
	50	43	47	52	44	.22	53	55	55	58	61	60	6.5	58
Carmel	68	72	80	69	68	71	75	74	73	82	90	81	70	74
	50	38	59	48	45	54	49	50	52	65	62	6.4	61	53
Mohawk Valle	54	60	60	52	57	¢9	54	57	66	66	74	72	74	67
Rome	65	74	77	65	$6 \pm$	70	65	69	74	78	85	83	84	72
	42	58	43	40	50	48	42	45	48	55	62	62	63	62
Champlain Talley .	56	58	66	55	52	54	54	58	\%9	66	71	75	65	64
Plattslurgh Bar'ks	6if	83	85	65	${ }^{65}$	¢9	65	70	70	73	79	84	75	${ }^{6} 8$
	66	70	$\stackrel{4}{9}$	96	68	44	72	4		8	89	8	60	58
Glens Falls.	44	37	56	45	38	50	46	41	46	58	60	64	59	58
St. Lewrence V'al..	56	20	58	53	53	62	61	60	${ }_{\text {(i) }}$	60	73	69	${ }^{68}$	63
Madison Barracks.			\ldots		71	70 4	7	78	$\stackrel{4}{59}$	87	79	74
Wotertown	69	72	69	$(88$	69	\cdots	75	70	75	\% 8	88	80	\%	75
rto	41	45	42	40	46	48	46	42	50	52	c)	60	65	60
('anton	65	\% 0	6,6	10	67	i2	68	73	74	86	86	76	69	72
fanon	42	40	49	40	36	54	49	43	45	45	59	56	58	51
Ma-sena.		.												
Noril Hammons	$6{ }^{6}$	66	$6{ }^{6} 1$	66	62	68	80	8.4	84	8.4	1.8	80	70	70
Nonth Hammont	50	48	56	46	44	5.4	50	50	50	, 0	(i)	60	58	54

Maxima and Minima for the Stations - (Continued).

15	16	17	18	19	20	21	22	$: 33$	24	25	26	27	98	29	30	
58	52	56	57	54	48	48	46	39	45	52	61	61	53	53	60	55.8
67	67	68	65	58	57	63	47	49	54	67	72	73	63	68	75	55.8
38	43	48	50	38	38	42	27	33	44	49	54	44	31	40	41	50.3
75	67	67	69	69	55	63	60	53	59	70	7.5	77	62	62	7.3	
55	45	46	48	52	43	35	45	32	38	35	48	52	46	43	54	58.2
60	03	64	.	64	63	50	58	50	44	55	67	71	70	63	61	
48	40	44		43	37	32	41	27	30	34	41	53	47	40	55	54.6
66	64	69	68	60	56	63	5.5	48	60	71	74	71	63	69	67	56.4
53	'3'	45	45	53	38	34	40	27	35	38	57	54	46	36	56	56.4
65	62	63	64	58	54	58	48	4.5	54	67	08	67	63	70	65	
48	36	42	44	49	36	39	38	25	33	37	5.5	52	42	38	52	$5 \pm .3$
68	C6	67	66	68	57	57	59	50	54	60	64	64	65	63	67	63.9
76	73	72	72	80	67	63	6\%	60	71	74	75	76	72	67	74	65.6
65	61	62	62	62	50	50	58	45	45	49	5.5	58	62	61	64	65.6
68	71	72	70	71	76	64	66	63	57	68	65	69	67	69	70	63.5
59	60	60	$6{ }^{4}$	6:	51	50	55	4.	44	48	52	57	59	60	60	63.5
75	74	72	74	81	63	65	63	56	67	70	73	72	69	66	72	65.0
64	59	60	61	57	51	51	50	43	41	54	58	57	61	58	63	05.0
77	77	69	76	83	66	77	64	56	70	74	74	76	71	71	71	64.8
62	61	61	60	51	46	47	45	43	45	51	55	58	58	59	57	64.8
79	76	73	74	83	$6:$	72	68	58	70	73	75	74	74	79	76	02.8
58	55	51	51	50	40	35	55	40	30	41	51	48	60	59	62	02.8
75	69	68	72	80	64	66	60	57	65	71	73	75	68	65	72	C3. 9
61	60	59	60	59	51	48	58	45	43	5:	56	57	62	59	63	03.9
77	74	65	73	80	65	66	62	56	67	7:	74	75	69	62	73	61.7
61	55	60	55	57	48	39	53	40	33	40	53	48	57	57	61	01.7
67	60	61	63	66	55	53	56	40	49	56	62	65	61	60	66	61.1
77	70	68	73	74	61	66	63	56	60	71	75	78	65	68	76	62.0
59	52	57	56	53	46	42	47	40	41	44	55	57	52	50	58	02.0
72	71	66	68	7\%	53	65	64	48	58	69	72	73	65	63	73	58.3
58	45	48	46	53	44	34	41	31	32	38	48	53	53	47	57	58.3
76	68	67	68	76	58	66	63	49	60	68	70	72	63	67	72	59.7
61	50	55	52	55	44	39	50	38	33	39	50	51	56	55	52	59.7
76	74	76	75	80	64	69	64	53	67	74	76	77	64	65	76	60.7
43	46	41	52	56	43	37	47	39	33	38	48	50	55	55	59	60.7
81	72	68	71	79	65	69	66	53	68	72	74	78	76	72	75	60.6
64	54	51	55	58	48	43	50	42	37	42	50	49	56	58	58	60.6
75	70	67	74	76	63	62	63	55	62	69	74	76	65	65	74	62.2
61	52	55	56	57	51	40	48	40	40	45	54	56	55	53	60	62.2
74	80	75	69	76	80	67	70	65	57	69	7%	75	75	66	71	63.0
59	55	55	56	57	49	42	52	42	39	45	51	51	56	56	57	63.0
80	74	66	74	78	64	68	65	52	64	70	74	80	68	65	76	69.2
57	5:	59	59	61	52	38	46	38	34	43	50	60	56	5.4	61	02.2
66	58	56	58	52	50	56	42	42	51	61	64	59	58	61	59	58.9
75	70	68	66	62	55	65	55	50	62	68	75	70	68	65	70	58.9
58	45	45	50	42	44	46	30	35	40	54	54	48	47	57	48	58.9
66	56	54	58	60	52	51	52	45	46	52	60	64	55	50	57	58.0
70	70	65	65	68	59	62	63	60	54	55	65	70	70	58	65	57.1
60	42	40	50	53	44	42	45	35	34	45	50	55	45	35	35	57.1
76	68	65	70	68	60	65	55	54	61	70	76	76	64	69	72	58.8
56	45	48	49	54	45	36	44	32	36	37	50	55	42	39	56	58.8
59	54	57	59	57	51	55	50	41	52	56	63	59	54	54	62	58.0
74	64	70	70	73	62	61	63	54	58	62	73	68	59	61	71	58.6
58	40	42	53	54	41	42	48	35	39	47	52	53	45	39	58	58.0
67	66	72	71	63	58	66	56	53	64	55	74	68	70	72	75	58.1
57	44	43	49	44	38	46	40	26	40	46	48	45	46	44	43	58.1
64	64	66	69	60	57	67	59	50	63	71	72	67	59	69	70	56.2
43	37	48	44	50	36	44	38	25	43	42	52	54	39	35	52	
												...				
66	64	64	70	62	56	66	$54^{-\prime}$	50	60	70	72	60	64	66	68	
50	44	52	50	54	40	42	42	32	46	46	56	54	46	46	54	58.8

Daily Means for the Regions, and Daily

Station.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
St. Lave.Val. (Con.) Ogdensburg \qquad														
	70 45	42	${ }_{5} 66$	60 43	65 41	70	70 52	79 50	79 54 1	83 53 2	$\begin{aligned} & 86 \\ & 65 \end{aligned}$	$\begin{aligned} & 76 \\ & 59 \end{aligned}$	70 60	72 54
	66	70	71	66	65	72	67	69	74	78	85	75	74	71
Potsdam	44	40	41	42	37	53	48	49	48	59	59	58	54	52
Great Lakes	50	59	65	55	55	62	60	60	63	68	77	71	65	67
Dunkirk.	\ldots	\ldots	-	--	\cdots	-.	\cdots	\cdots	...	\cdots	\cdots	\cdots	\cdots	.
Westficld..........	62	75	76	61	64	64	63	74	74	83	87	80	32	80
	45	46	56	47	48	54	52	50	55	62	62	62	61	58
Buffalo	64	71	72	63	66	67	67	75	78	74	81	<0	68	77
	48	49	54	48	48	56	54	52	58	62	68	64	59	57
Pittsford..........	54	73	73	60	62	70	68	73	75	84	90	75	70	77
	45	42	58	45	44	58	53	44	47	53	66	65	57	54
Rochester	64	72	70	61	62	69	69	75	77	86	92	73	70	76
	45	45	56	49	47	57	54	49	49	55	68	63	61	57
Appleton..........	65	69	72	62	61	65	66	66	70	82	88	72	68	76
	45	43	58	44	45	56	51	45	49	57	64	59	60	55
Fort Niagara......	71	72	74	64	65	68	70	69	72	88	91	80	72	79
	47	46	80	51	46	56	52	47	46	45	67	62	60	54
Baldwinsville......	67	74	74	64	65	74	71	75	76	76	89	83	75	79
	44	47	49	45	48	55	46	47	52	55	84	61	60	61
Oswego..	62	72	72	58	62	70	65	69	70	77	90	72	70	71
	55	45	60	52	44	54	54	49	50	53	64	66	61	57
Palermo	65	72	70	61	62	70	65	68	69	77	80	93	69	71
	50	45	61	53	43	54	54	48	50	53	66	65	60	57
Lyons	64 49	73 45	74	61	62	71 58	68	71	79	82	90	76	71	77
Erie, Pa	49	45	57	47	45	58	53	50	49	52	65	65	62	58
	63 51	74 51	76 61	${ }_{51}^{61}$	${ }_{64}^{64}$	63 55	64 55	72 53	73 58	81	${ }^{87}$	76 69	69	73
Central Lakes														
	57	61	67	50	55	66	62	62	64	65	77	74	67	70
	64	74	75	60	62	73	69	70	74	81	91	82	70	79
Fleming..........	48	46	57	49	45	60	55	48	52	53	69	65	61	${ }^{62}$
Romulus....	67	74	75	66	62	72	70	75	77	82	92	85	73	78
	50	60	57	50	54	63	55	58	59	40	54	65	63	58
Ithaca	65	74	78	64	62	72 58	69	73	75	85	91	84	71	78
	48	40	58	50	42	58	52	45	46	48	65	65	62	63
Mean	55	58	64	55	54	61	59	59	62	68	74	72	67	66

\ddagger Maximum and minimum by the Draper Thermograph.

Maxima and Minima for the Stations - (Concluded).

15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	等号
68	67	67	66	63	64	63	61	52	62	70	71	65	66	65.	71	
50	55	50	50	54	40	55	40	30	47	47	58	33	45	40	55	59.1
61	67	${ }_{6}^{66}$	66	59	67	63	58	59	61	69	72	65	68	${ }^{67}$	73	57.3
47	39	48	48	52	47	45	36	28	42	44	52	53	40	39	52	57.3
63	58	63	62	61	51	55	50	45	54	61	65	61	65	60	58	59.9
68	66	71	70	68	58	65	55	52	53	74	71	67	63	67	67	
58	48	58	52	48	44	45	44	36	44	49	59	54	48	53	49	60.0
70	68	70	69	60	58	62	56	53	62	73	68	66	61	71	67	60.0
55	51	55	54	45	41	53	40	35	53	54	58	51	48	51	52	60.0
68	66	74	73	63	58	64	S3	51	61	75	77	71	64	70	61	
55	49	54	49	45	41	42	41	31	41	46	41	53	49	49	52	58.6
68	67	71	79	59	58	64	54	53	68	74	76	68	61	70	66	60.0
56	52	53	52	46	42	45	40	34	42	46	61	53	50	52	43	
70	65	71	68	63	60	66	56	54	67	73	72	62	59	70	64	58.8
60	52	54	49	49	43	43	46	36	38	44	57	54	49	49	52	58.8
70	71	70	70	70	63	66	61	60	61	74	71	65	${ }^{61}$	60 59	62	60.8
57	54	53	50	60	45	48	44	45	51	57	57	52	50	59	48	60.8
71	66	74	71	61	60	66	56	52	68	74	79	73	65	70	67	60.3
48	52	52	54	48	44	48	36	39	43	45	58	51	50	54	50	60.3
65	60	70	69	60	56	61	53	50	62	74	76	68	60	69	70	60.0
59	50	54	59	54	44	44	46	41	43	46	58	56	50	51	53	
65	60	70	69	64	55	63	$5 i$	50	62	73	74	68	59	69	66	59.6
59	50	53	59	55	44	44	48	40	4.	46	58	56	50	51	56	59.6
68	65	72	71	63	58	64	57	51	67	73	76	67	61	69	66	60.3
54	49	55	53	47	45	43	44	40	50	45	58	56	52	$5 ?$	53	
67	66	68	69	61	58	64	56	$5{ }^{5}$	62	74	70	${ }_{56}^{66}$	60	69	54	61.0
64	52	60	53	50	45	47	46	42	46	52	62	56	49	56	50	6,
63	56	64	61	58	51	5.5	50	44	53	59	68	65	515	59	61	60.9
69	65	74	72	64	58	65	59	54	66	75	81	75	60	68	68	60.8
55	45	55	52	51	43	45	43	36	41	48	58	55	49	53	53	
70	69	73	72	65	59	66	57	52	68	73	80	72	64	68	67	61.2
56	43	55	50	$4{ }^{3}$	42	46	$4: 3$	36	39	43	56	54	49	48	53	61.2
70	68	74	72	72	39	66	55	50	69	74	78	77	${ }^{63}$	65	74	60.6
56	46	55	50	49	44	41	44	37	37	43	57	56	52	51	52	
64	58	60	60	59	52	54	50	44	51	57	63	62	58	58	61	59.4

$\|$ Received too late to be used in computing means.

Daily and Montiliy Preorip

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Western Plateau..	0.00	0.00	0.51	'T.	0.41	0.12	0.01	0.00	0.00	T.	0.00	T.	T.	T.
Altred.			. 51	...	45	1.0 01	
An_elica			. 33	...		+. 52								
Bolivar			\cdots											
Friendship			. 50 20	. 25							
Humphrey			. 43		. 40	T.								T
Litile Valley														
Cherry Cree			. 40		. 66	.12	${ }^{109}$							
Jamestown			. 54		. 81	. 09	T.	\ldots			.		\cdots	\cdots
Elmira.			. 25		. 31									
Pide Cit			. 60		.10	. 06								
Akron			. 93	T.	. 40	. 4.4					T.		
Aron			. 89 35	...						T	
Mt. Morris			. 34		. 30	. 26				. 03			. 02	
Lockport			. 41	\cdots	. 26	$\cdots 1$. 06	
Victor					5									
Tyrone		\cdots	. 53		. 65		\cdots	
Wedsewoo			. 56		. 58	. 06								
Addison			. 27		. 70	. 05								
Atlanta			. 40		. 23								T.	. 0
Haskiuville			. 45	\ldots	. 38	.22	\ldots	...	\cdots	\ldots	\cdots			
South Canis			. 40		. 55								T.	
Arcade			. 76		. 35	.09	. 08							
Attica.			\cdots	\cdots	.-.		\cdots			\cdots				
Varssbur			. 65		. 48	. 12	. 10							
Eastern Plateau..	0.00	0.00	0.37	${ }^{T}$	0.69	0.39	0.00	0.00	0.00	0.00	0.co	0.31	0.01	0.01
Binghamton .-....			. 42		. 13	. 06						. 80		
Cherango Eorks..														
Oxfind.			. 22		. 18	.09	\ldots			\cdots	\cdots	\cdots	. 10	
Cortlanal.			. 45	. 01	. 50	. 03								
Blowmvill			-	$\dagger .50$		+. 55							$\dagger .93$	
Deporit.														
South Fiortright..	 61	\ldots	.7121	
Elea Park			. 39		2.33	. 10								. 03
Brookfield			. 73		. 40									
Hamilton														
A pulia														
Mindletown				\ldots										
Port Jerri			. 14		*	+2.47,								
Watwick			. 10	\cdots	. 80	3.88								
Conjueratown......			. 32	\ldots	. 41			\cdots			\ldots	1.14		
New Lisbon			. 12		. 30	. 18						235	. 02	
Onernta			. 30			. 37						. 41		. 1
Perry City			. 44		. 50									
Newark Valley			. 26		25	25								
Waverly			. 47		. 39	. 04						. 01		
\ddagger Dryden			. 76		. 36									
Mohonk Lake			. 20		3.05	85								
Northern I'lateau.	T.	'T.	0.52	0.15	0.43	0.42	0.01	. 00	0.00	0.00	0.00	0.50	0.01	0.0
West Chazy										
Elizabethtown.														
Saramac Lak	'T.	'		. 89	-35	. 11						. 05	T.	. 0
Gloverswille	. 01		.45	-61	. 84						1.42	. 03	...
North Lake			. 70		. 58	. 11	. 05							
Number Tiour			. 87		. 30	. 16								
Kings Station.			. 56		.50	1.2						1.50	. 05	

tation for September, 1896 - (Inches.)

Dally and Monthly Precipi

STATION.	1	2	3	4	5	6	\%	8	9	10	11	12	13	14
Allantic Coast	0.02	0 (i)	0.62	0.01	0.50	1.35	0.00	0.00	T.	T.	0.00	T.	0.01	0.00
Brooklyn			94		. 50	1.58							
Manbattan Beach.	. 14			$\dagger .68$. 66	1.76								
New York city ...			48	.02	. 47	. 69						T	T.
Willet's Point			.95'		. 93	1.70						T.		\ldots
Brentrood														
Setankot			. 55		. 12	. 51			T.	'			. 02	
Bedford			. 16	. 02	.33	1.77						01	. 02	
Hudson Talley	0.02	0.00	0.18	0.11	0.17	2.64	T.	0.00	0.00	0.00	0.00	T.	T.	T
Albany ..			25	T.	. 10	1.28	. 02					T.	T.	T.
Lebauon Springs.--				+.71		+2.25						T.		
Honeymead Brook			.50		.31	397								
Poughkoepsie .-					.39	3.45						T.		
Wappinger's Falls			. 06		. 40	3.81						T.	. 03	
Catsbill			-30		*	$+236$						T.		
West Point				*	12.40								
Boyds Corners				\ldots			\cdots			\cdots			\cdots
Carmel			. 08			2.60					\ldots			
Southeast Reserv'r														
Eagle Mills				1.00	1.50								
Easton	. 16		. 44			1.76								
Mohawk Valley ...	0.00	0.08	0.30	0.00	0.76	0.co	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Kome		. 08	. 30		.76 04							
Champlain Valley.	0.00	0.00	0.16	0.26	?	-	0.05	0.00	0.00	0.00	0.00	?	!	0.00
Plattsh'h Barra'ka			T.	. 52		. 60	. 10							
Glens Falls 32		*	+1.75		...				*	+.65	
St. Lawrence Val..	0.04	0.02	0.94	0.06	0.26	0.15	0.01	0.00	0.00	0.00	0.00	0.00	T.	0.00
Madison Barracks.			t. 60			\cdots								
Watertown		*	$\dagger .08$. 46	. 57	. 05								
Cautou	. 10		1.28		19	-17	. 08							
DeKalb Junction	. 15		1.41		20	. 31								
Massena -......-.													T	
North Hammond.		. 01	-64		. 28	. 18							T.	
Ogdensburg.		. 05	42		. 32	. 10								
Potsdam.		*	11.01			$\dagger .26$								
Great Lakes	0.01	T.	0.39	0.02	0.43	0.19	T.	0.00	0.00	0.00	0.00	T.	T.	0.02
Dankirk														
Westfield			. 65		. 12	. 50								
Buffalo			. 56		30	. 41								
Adams Cent			. 70			$\dagger 56$								
Pittsford.			. 50		. 60	T.				-	\cdots	
Rochester		T.	. 50	'T.	. 51	. 05						T.		\ldots
Scottsvill			. 39		. 52									
Appleton		T.	. 16		. 33	38								
Fort Niagara			-13		. 50	*	†.08						. 03	
Niagara Falls.			. 26		. 34	47							. 02	
Baldwinsville 35	-	. 77	T.		\cdots						. 29
Skaneateles			. 52		40									
Riolgeway			. 26		. 26	. 24								
Demater			. 76	63	6	03								
Fulton.			. 40		82									
Orwego		T.	. 60 53	. 15								
Palermo		T.	. 10	 20	. 10							
Phonix	.09]	.	. 03	. 28 66							

TATION FOR SEPTEMBER - (Continued).

15	16	1%	13	19	20	21	22	23	24	25	86	27	28	89	30	¢
0.16	T.	0.10	0.06	0.70	0.18	0.00	0.05	T.	000	000	0.00	0.00	0.00	011	0.11	4.48
. 01		. 08	--	. 55			. 0.5	-	.-.					T.	. 78	4.49
. 02		' I .	. 02	. 03	. 84			. 02							. 20	4.37
T.	T.	.09		. 86	. 15		. 03	. . .						T.	. 25	3.04
. 13		.16	. 34	. 85			T.							. 62	-.--	5.68
\cdots		.12		. 92	T		. 06							T.	. 62	3.62
.12		. 13		. 99	. 10		. 17							. 06	1.81	5.69
0.04	0.00	0.21	'1.	1.08	0.11	0.00	016	T.	0.00	0.00	0.00	000	0.05	0.02	0.71	5.52
'1'.		. 25	T.	. 75	T. 34	T.	 14		.28	3.31
T.		. 61		* ${ }^{\text {c }}$	+1.68		. 02						03		. 53	5.83
T.		. 09		1.70			. 13	-.			T.	. 01	. 50	721
		T.		1.00			. 28							T.	. 58	5.70
. 16				1.10			. 40							. 02	1.03	7.01
. 05		. 35		1.05			. 06					\ldots		. 15	.93	5.24
. 11		. 09		1.15			. 05								194	5.74
. 07		. 11		1.10			. 32							*	¢. 90	5.18
																5.17
		. 02		. 10	100			--					.05)		. 37	4.04
'T		. 61		1.74			. 08	. .			\cdots		. 25		,26	5.30
0.41	0.22	0.60	048	0.78	0.00	0.00	0.04	0.00	0.00	0.00	0.10	0.53	0.00	015	0.08	4.57
. 41	. 22	. 60	. 48	. 78			. 04				. 10	. 53		.15	. 08	4.57
0.00	0.00	0.30	0.08	0.38	0.26	0.00	0.10	0.02	0.00	0.00	0.00	T.	040	0.00	0.31	3.83
		. 05	.17	. 11	. 5010	. 05			'1'.	.45		. 20	2.85
		. 56		. 65	.02		. 10						. 31		.42	4.81
0.09	0.22	0.07	0.13	1.26	0.06	0.00	044	T.	008	0.00	0.13	0.49	$(1.01$	0.32	0.39	4.94
	1.12		. 34	1.23			100		. 10		. 14	. 41		. 81	--	584
. 14	. 32			1.15			. 36		. 19			. 43			. 68	4.43
			26	1.66			.27			--	.12	. 68	03		.62	5.46
. 25		. 26		. 90	. 30		. 25		. 05			. 94	. 04		. 55	561
. 03		. 07		1.54	.10		.41		.07		. 21				$\dagger .96$	450
. 05	. 09		. 33	1.22			. 05	. 02			.39	. 50		*	†. 10	364
13		.15		1.10			. 67		, 14		*	$\dagger .79$. 74	. 11	5.10
0.16	0.01	0.40	0.05	0.74	0.14	0.00	0.18	T.	T.	'T.	0.02	0.23	0.16	032	0.73	4.20
.12		. 23		1.32			.39					.49		.78	.13	4.73
. 15		. 34	. 01	. 66			. 21	. 02				. 21	. 04	. 60	. 88	4.39
. 16		.22		. 50	1.02		-	. 06		. 03	. 04				. 37	3.66
		. 50		.75			. 35	T.	. 08	. 14	. 20	. 61	3.73
. 06		. 37	T.	. 76	T.	-...	. 18	...-	...		T.	.12	. 12	. 20	. 63	3.50
		. 29		. 70			. 32						. 24		. 90	3.36
. 05		.44	. 01	. 70			. 20			T.	T.	.12		. 36	14.	417
		. 48		. 62			. 10			. 04	. .	. 16	. .	1.37	. 20	3.71
-03		. 40		. 65			. 31					- 20			1.30	3.98
		. 68	. 36	. 80		-...	. 05	-	-.		.12	. 92		. 94	. 35	5.63
. 11		. 86		1.00	. 20		. 19					. 18	. 83	. 40	. 39	508
.10		. 36	-	-65	-		. 14				. 02	. 18	- - .	. 42	1.50	413
. 51		. 35		. 73	- 16		. 08				. 03	. 08	.15		-80	431
. 75		. 35		1.01	-	...	-15					. 78			1.62	5.88
. 36		. 33		. 82	. 09		. 07.		T.		. 02	. 06	. 16	.10	. 70	4.05
-36		. 30		. 44		--	06	T.	T.	T.	T.	-2:	. 10	. 63	2.51
. 29		. 161	. 09	. 46	. 9008 43	. 7692	5.15

Daily and Monthly Preciti

\ddagger Record for the month incomplete. '? Received too late to be included in the arerages.
tation for September-(Concluded).

15	16	17	18	19	${ }_{3}^{60}$	21	92	23	9. 4	25	26	¥\%	28	23	30	
	. 15	94	.46	. 39	. 05		26			T.	. 14	37		42	.31	3.72
. 09		. 63 67	. 33		. 17				12.	. 11	. 33	$\therefore 0$. 61	4.59
. 08		- 54	- 08	1.12			. 23				T.	.10	22	. 52	.40	3.72
0.05	0.02	0.30	0.12	1.07	T.	T.	012	0.110	0.00	0.00	002	0.81	0.40	0.26	0.52	4.55
		. 72	-..	1.23								1.20			. 65	4.93
	. 10	. 24	45	. 76			. 18				. 07			.70	. 25	4.33
. 14		. 14	T.	134			26					T.	89	'	89	5.10
. 06	T.	. 11	. 03	. 22	. 02	T	. 03.					. 03	. 69	. 35	. 30	3.84
012	0.06	0.31	$0.1 \geqslant$	0.87	0.14	T.	0.16	T.	0.01	T	0.04	0.20	0.17	0.19	0.50	4.63

* Amonnt included in next measurement. \quad Not included in computing averages.

16

Statistics of Temperature

and Precipitation - September.

MAP OF THE STATE OF NEW YORK

SHOWING

THE MEAN TEMPERATURES

FOR SEPTEMBER; 1896.

MAP OF THE STATE OF NEW YORK

SHOWING

THE PRECIPITATION

Meteorological Summary for October, 1896.

The arerage atmospheric pressure (reduced to sea-level and 32 degrees Fahr.) for the State of New York during the month of October was 30.06 inches. The highest barometer was 30.64 inches at Albany on the 10 th, and the lowest was 29.60 inches at New York city on the 24th. The mean pressure was highest in the central and southwestern parts of the State, and lowest in the northern section. The avenage pressure at six stations of the National Bureau was 0.02 inches above the nommal, excesses occurring alt all stations except Oswego.

The mean temperature of the State, as derived from the records of 70 stations, was 46.1 degrees, the highest local monthly mean being 52.9 degrees at Brooklyn, and the lowest, 41.7 degrees, at North Lake. The highest daily mean for the State was 67 degrees on the 30 th, and the lowest, 37 degrees, on the 19th. The maximum temperature reported was 79 degrees at Avon and Perry City on the 29th, the minimum being 17 degrees at New Lisbon on the 26 th. The mean monthly range of temperature for the State was 45 degrees; the greatest range, 58 degrees, occurring at Perry City, and the least, 34 degrees, at Potsdam. The mean daily range was 16 degrees; the greatest daily range being 45 degrees at Brentwood on the 21st, and the least, 2 degrees, at scatitered sitations on several dates. The mean tem. peratures of the several regions were as follows: The Western Plateau, 44.8 degrees; the Eastern Plateau, 45.4 degrees; the Northern Plateau, 42.7 degrees; the Atlantic Coast Region, 51.4;
the Hudson Valley, $48 . \overline{5}$ degrees; the Mohawk Valley, 45. 2 degrees; the Champlain Valler, $4 \pm .6$ degrees; the St. Latrence Valley, 44.6 degrees; the Grcalt Lake Region, $\pm \bar{\sigma} .1$ degrees; the Central Lake Region, $\frac{1}{x} 6.8$ degrees. The arerage of the mean temperatures at $2 \mathcal{G}$ stations possessing records for previous years was 2.5 degrees below the normal, deficiencies occurring at all stations:

The mean relative humidity for the State was 76 per cent. The mean dew point was 39 degrees.

The arerage precipitation for the State, as derived from the records of 96 stations, was 2.56 inches. The greatest general precipitation occurred to the southrest of the Central Lakes, exceeding 5 inches, while the least was under 1 inch over a considerable area bordering Lake Ontario. The mreatest local amount was 6.43 inches at South Canisteo, and the least 0.58 inches at Rochester. A list of the heaviest rates of precipitation will be found in the accompanying table of meteorological data. From the 1 sit to the 3 seattering showers occured; on the 4 th and jth moderate rains in the southeast; on the 6 th and 7 th, general, but heary only over the Western I'latean and Central Lakes; from the 12th to 14 th, the heaviest rains of the month, excepting in the St. Lawrence Valley; from the 16 th to 24 th, scattering showers, with a light snowfall in the colder sections; on the 29th to 31st, showers excepting along the coast, heaviest in the northern section. The arerage snowfall for the State amounted to only a trace. No snowfall was reported along the coast; but at six stations of the plateaus amounts varying from 1 to 2 inches were measured. The armage precipitation at 27° stations possessing records for prevous years was 1.00 inch below the normal; exersses bing reported from only is seattered sta-
tions. The rainfall was the least recorded for October by the Weather Bureau station at Rochester.

The average number of days on which the precipitation amounted to 0.01 inches or more was 8.9. The rain frequency was, as a rule, greatest in eastern New York, and least in the west. The average number of clear days was 8.4 ; of partly cloudy days, 9.0 ; and of cloudy days, 13.6; giving an average cloudiness of 58 per cent. Over the Western Plateau, the Great Lakes, the St. Lawrence Valley and the Atlantic Coast the cloudiness was below the general average.

The prevailing wind direction was from the northwest. The arerage wind travel at six stations of the National Bureau was 8,201 miles; with a maximum velocity of 48 miles per hour at Buffalo on the 20th.

Light thunderstorms or distant lightning were observed at 5 stations of western New York on the 29th, 30th and 31st.

Killing frosts occurred at some northern and highland stations on the Sth, and were quite general on the 9th, also frequently during the two following weeks.

Hail fell on the 3d, 7th, 8th, 18th and 21st; and sleet fell on the 21 st and 22 d .

A solar halo was observed on the 28th, and a lunar halo on the 19th.

General features of the weather.-The temperature was below the normal continuously from the beginning of October until the 27 th, the greatest deficiency occurring on the 9 th, when killing frosts were generally reported, being the first of the season at many stations. The weather was much warmer after the 27 th, and on the closing days of the month the excess of temperature amounted to nearly 15 degrees above the normal.

The precipitation was unevenly distributed, being quite heary in a few of the southern counties, while in areas bordering Lake Ontario, the St. Lawrence Valley and other scattered localities, it was umusually light. The wreatest rain freguency and cloudiness obtained during the first and a portion of the second decades, after which the weather was generally pleasant. The first fall of snow for the greater part of the State occurred on or about the 15th.

The serere frosts of the 9 th injured some garden truck, but crops were generally secured from damage. The rainfall was rather light for fall seeding in most localities, but the drouth was severe only in a few of the noxthwestern counties. Some damage to propenty was due to heary rains on the 13 th along the Oanisteo river.

On the 20th buildings were unroofed and other damage caused by high winds at Baldwinsville.

Five areas of high and nine areas of low pressure influenced our weather this month; the number of depressions being rather above the average for October. Four disturbances passed along the coast in a northerly direction about the $2 d$, 6th, 12 th and 18 th; the storm of the 12 th, which was of tropical origin, being the most energetic of this series. Disturbanees of a second class, originating to the westward, passed over the Northeastern States or Canada on the 6th to 8th, 21st, 23d to 24th; and a fourth low had moved eastward as far as the upper lakes on the 31st. No general storms of notable severity passed over New York this month.

The high-pressure systems were, in most cases, large and well defined, their general path being from the Northwestern to the

Central States and coast, and thence northeastward toward the Gulf of St. Lawrence. Their influence was mainly felt in this State on and about the 5th, 9th, 19 th, $22 d$ and 25 th, which dates also mark the principal cold periods of October. The fact that the low areas frequently passed off the coast, until the last week, in large measure explains the cool weather which was felt on the dates between the passage of the anticyclones.

Meteorological Data

Location of Stations.			Barometer.						HLMIDITY		\| Tempera			
STATION.	COUNTY.		$\begin{aligned} & \dot{\text { E. }} \\ & \text { नि } \end{aligned}$		$\begin{aligned} & \dot{3} \\ & \stackrel{3}{0} \\ & \text { an } \end{aligned}$	$\begin{aligned} & \text { + } \\ & \text { \# } \\ & \text { E } \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\substack{\tilde{n}\\}}{ }$	Monthls range.					$\frac{0}{x}$	$\stackrel{\text { ® }}{\text { ® }}$
Western Plateau..												44.8		29
Alfred...	Allegany	1824									42.6	43.7		29
Angelica	.	1340					-				42.4	43.0		29
Boivar ..	"											44.0		49
Friendship	Allegany	1550										43.6	75	99
Franklinville	Cattaraugus						.							
Humphrey Arkwright	Chautauqua.	1950					.				44	44.2	74	39
Jamestown	Chautauqua.	1328			.		.		. 4.			4.5		30
Elmira..	Chemung...	863			.							45		1
Avon	Livingston..	585										45.3		29
Lockport	Niagara				.						46.2	4.2	if	30
Victor	Ontario				.							44.	76	29
Wedgewood	Schuyler	1350			.						44.0	45	75	29
Addison...	Steuben.	1000			.		..		77		45.5	46.0	5	29
South Canisteo...	Steuben	1480			.				79		43.0	44.	76	29
Arcade	Wjoming	1707			.						12.2		71	29
Varssburg.					44.	7	$\because 9$
Eastern Plateau..					.							45	74	29
Binghamton	Broome	870			..						154	46.		29
Oxford.	Chenango	$55^{\circ} 0$..							43.	70	29
Cortland	Cortland.	1120 1550			.		.					44.	72	$\because 9$
Bloomrill	Delawar	1550												.
South Kortright..	Delaware	1700			\cdots							42.6	69	29
Brookfield.	Madison	1350			.		.				46.2	47	7	31
Middletown	Orange	660					.							
Port Jervis.......		470			-		.					47.7		31
Cooperstown......	Otsego.	1300			.		.				442	44.3	63	a
New Lisbon......		1234			.						42.4	42.8	68	29
Oneonta	" ${ }^{\text {c }}$	1100			.		.				46.4	47.3	72	31
Perry City	Schuyler	1038			.						43.5	43.6	79	$\because 9$
Straits Corners...	Tioga				.									
Waverly		825			.						45.	46.8	7	$\because 9$
I)ryden	Tompkins...				.		-							
Mohonk Lake	Uister	1245			.						47.1	47.2	69	b
Northern Platsau.					-							42.7	65	30
Saranac Lake	Franklin				.							418	64	
Glorersville.....	Fulton..	802			.						43.8	448	63	31
North Lake	Herkimer											41.7	62	d
Lowrille.....	Lewis	900										43.4	67	30
Number Four		1571	30.03	30.53	10	29.61		0.92	89	30		41.9	62	e
Atlantic Coast..												51.4	77	31
	King	107										52.8	72	31
Manhattan Beach.												51.2	70	1
N-w York City .	New York...	314	30.05	3053	10	29.60	24	(9) 9	79	44		22.0	72	31
Willet's Point	Queena,..... Suffolk	75									51.5	31.6 50.4		311
Setanket.	Suffolk.......	40							77		51.9	52.5		31
Bedford..........	Westchester	290			.							492		31

for October， 1896.

tere－（In Degrees Failr．）．									Sky．			Precipitation－（Inches）．					
	$\stackrel{\stackrel{8}{5}}{\stackrel{\text { ® }}{5}}$				$\stackrel{\text { 巳゙ }}{\text { ®. }}$		$\stackrel{\stackrel{\pi}{\dddot{Z}}}{0}$	感	Number of partly cloudy						$\stackrel{\stackrel{\rightharpoonup}{\pi}}{\underset{\sim}{0}}$	$\dot{\overline{5}}$ 0 0 0 0 0 0	
20	i	49	17	40	27	2	13.	9.5	8.7	12.	8.3	3.37	3．5		12		
24	19	49	16	31	10	5	5	7	7	17	14	5.02	2.9	2400	12－13	0.1	T
20	i	51	19	40	27	2			8	12	8	3.18	1.4		12－13	T．	
19	i	54	23	40	ee	2		12	6	13	7	4.03	1.70		12	T．	
22	23	53	19	39	10	6	12	9	11	11	8	4.03	1.5		12	T．	W．
25 32	23 9	48	16 10	31 23	17	${ }_{3}$	aa	7	8	16	8	300	10		13	1.5	W．
28	23	46	16	32	15	6	ac	8	8	15	8	2.17	0.6		12	1.0	
23	10	45	16	34	26	5	ad	13	5	13	5	4.86	2.95		13		W．
23	23	53	19	36	26	\checkmark	ae	7	9	15	6	1.48	0.4		14		
								12	6	13	5	1.41	0.80		13		N．
29	j	45	17	29	28	7		13	9	9	7		040	20.00	6－7		E．
25	k	51	18	34	26	4	13									T．	W．
24	19	51	18	33	26	5	14	6	15	10	11	4.42	29		13	T．	W．
23	26	52	18	38	27	4	$b c$	14	12	5	14	573	3.30	24.00	13－13	T．	N．W．
23	m	53	20	38	27	7		11	3	17	9	649	35		12	T．	∇.
23	19	48	16	30.	26	5	12	8	11	12	9	3.22	1.33	1400	12	1.0	
23	19	54	20	38	10.	5		10	7	14	4	2.63	1.00		12	T．	
17	26	49	18	44	26		af	9.7	7.8	13.5	9.7	2.99	2.78		13		
26	23	47	17	33	27	8	14	8	9	14	12	3.68	1.90		13	T．	E．
18	26	52	21	39	27	7	14	6	8	17	10	2.69	1.00		13	T．	
23	23	49	16	37	27	5	14	18	］	${ }^{6}$	13	3.32	1.61		13	T．	N．W．
	．．							10	2	19	9	3.25	1.15	3.00	30	．．．	
18	26	51	20	37	28	10	14				5	2.35	088		14		
21	23	49	20	30	22	14.	$b b$	4	16	11	12	1.37	0.38	12.00	13	1.5	W．
24	26	45	16	30.	26	5	7	10	13	8	10	${ }_{3}{ }^{3} 53$.	1.17		14	0	W．
23	26	40	12	29	26	3	14	9	2	20	9	223	0.88		13	T．	N．
17	26	51	19	38	27	7	14	7	5	19	9	2：09	0.90	11.00	13	T．	
24	26	48	18	36	27	5	14				8	2.26	0.91		13		
21	i	58	18	35	26	－	13	7	9	15	8	4.07	2.78		13		
21	26	56	21	44	26	3	13	7	10	14	11	4.90	2.28		13		W．
31	n	38	12	30	27	5		21	4	6	10	3.11	1.3		13		
20	19	43	17	35.	11	3	13	6.2	9.8	15.0	106	2.54	1.73		13		
22	25	42	18	32	28	6	8	8	10	13	9	1.31	0.51			0.5	N．W．
21	26	42	16	34	26	3	13	8	5	18	16	3.06			13	T．	S．W．
20	19	42	17	32	29	6	5				6	2.90	0.80		8	1.8	
21	26	46	18	35	11	7	7	6	11	14	13	2.15	0.57		7	0.1	N．W．
21	26	41.	16	33	15	5	8	3	13	15		3.44	1.05		7	0.2	N．W．
25		42	14	45	21	3	bd	9.8	8.9	12.3	8.7	2.40	1.50	12.00	23－24		
34	26.	38	12	33	20	4	$b e$	9	7	15	8	1.73	067	12.00	24		E．
35	19	35	11	23	22	4	bf	15	7	9	8	164	0.60	1580	24		N．E．
36	19	36	12	25	27	3	17	5	11	15	11	1.71	0.7	．．．．．	13		N．W．
31	25	45	15	36	27	5.	5				7 5	2.43 4.10	${ }^{0.78}$		${ }^{23}$		$\stackrel{\mathrm{N}}{\mathrm{~N} . \mathrm{E} .} \mathrm{F}$
25	p	47	20	45	21	6	13	11	$7 \quad 1$	13	5	4.10	1.50	12.00	23－24		N．W．
33	26	40		24	23	3		8	12	11	10	2.87	0.88		13		W．
26	26	51	17	39	27	3	13	11	－	11	12	2.35	0.98	23.10	13		N．

Meteorologrcal Data

Location of Stations.			Barometer						Humidity		Tempers			
STATION.	COUNTY.		勏				$\stackrel{\substack{\text { gin }\\}}{ }$							吅
Inudson Valley														1
Albany...-	Albany...	85	30.07	3064	10	29.62	24	102	81	41		480	67	31
Lebanou Springa.	Columbia...	930										45.2	67	30
Honermear Brook	Dutchess..	450							...		46.9	46.6	69	31
Ponghkeepsie.....		180										482	75	31
Wappinger's Falls	"									\cdots		500	72	f
Catskill.	Greene ...										48.8	490	71	31
West l'oiut.......	Orange.......	167 500										51.8	76	1
Carmel.	Putuam......	500										49.0	72	31
Mohawk Valley												45.2	64	12
Rome...	Oneida........	445										452	64	12
Ohamplain Valley												44.6	78	1
Platsburgh B'ks.	Clinton	125					.					43.7	78	1
Glens Falls......	Warren	340			-		\cdots				44.7	45.4	65	g
Lake George......														
										44.6	69	$2 R$
Madison Barracks	Jefferson.	266 486						46.3 45		29
Watertown- Canton..........		${ }_{3}^{486}$										45.6		${ }_{\text {2 }}$
Canton............	st. Lawrence	304									43.0	42.8		h
Massena. \qquad North Hammond	St. Lawrence.	300												
Ogdensburgh......	-	258									44.4	46.0	65	31
Potsdam.	"	300									40.8	41.9	59	15
Great Lakes												47.1	78	30
Dunkirk	Chautauqua..	530												
Westitield												47.5	77	30
Buftalo. -	Erie	690	3007	30.52	9	29.68		0.84	70	37		480	73	30
Pitaford.	Monroe										46.1	463	56	29
Rochester		621	30.06	30.52	10	29.68	24	0.84	74	38		47.0	76	29
Appleton	Niagaril											45.8	74	30
Fort Niagara.	Niagara.	263										476	75	30
Badw winmville	Onomdaga	390									46.6	47.5	73	29
Oswego	Oswego.		30.04	30.56	10	29.62	240	0.94	74	38		47.0	is	49
Palermo	Oswero	46									463	462	76	5
Lyous	Warne	407									47.2	47.4	73	29
Erie, Pa.....	Erio...	68 :	30.07	30.41	9	29.71	23	0.70	69	28		48.0	78	30
Central Lakes												46.8	7	29
Flemimy	Caynga ..	1000									46.8	46.5	75	29
Romulus	Soneca	719							80	38		47.1	74	29
Ithaca	Tompkins	810	30.07	3057	10	2063	24	0.94	76	39	46.1	467	74	29
Mean		...	30.06	3064	10	29.60	240	0.89	77	39	..	46.1	79	29

[^14]for October-Concluded.

TURE- (IN D			Degrees		Fahr.).			SKY.			Precipitation - (Inches).						
$\begin{aligned} & \text { B } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{8}{0}$				$\stackrel{\text { P }}{\Xi}$		$\stackrel{\oplus}{\square}$						를 B B 0 0 0 0 0		$\frac{2}{\pi}$		
20	26	46	16	36	26	3		; 81	6.5	164	10.9	2.62	1.40	h.m.	13		
29	23	38	15	28	27	4	13	8	4	20	14	1.53	1.01		13		.
20	26	47	16	30	26	5	27	4	7	20	11	3.07	1.20		13-14		W.
23	26	46	15.	28	x)		7	7	17	16	2.96	140		13		N. E.
23	26	52	20	36	26	3		6 9	9	133	7	$\because 66$	1.22		13		N.
28	$\because 6$	44	17	32	26	7	cc	8	8	15	13	3.34	0.92		13		N .
29	i	42	15	30	27	4		7	8	116	9	2.38	1.33		13		N. W.
28	26	48	12	27	28	-						2.36	090		15		S. W.
24	26	48	16	32	$\because 6$	5	be	14	3	14	0	2.63	1.02	10.00	22-23		
25	25	39	16.	22	21	2					8.0	1.90	075		13		
25	25	39	16	22	21	2	8				8	1.90	0.75		13		
22	26	46	16	32	27	\sim		90		16.0	11.0	2.66	1.70	22.00	12-13		
28	q	50	16	$\underline{29}$	16	2					9	1.68.	0.44		8		S. W.
22	26	43	17	32	27	4	14	9	6	16	13	3.65	1.70	2e.10	12-13		
18	20	41	18	37	15	4	18		13.6	9.4	63	1.37	0.70		6		
28	r	40	\because	33	12	11	21				4	2.24	0.70		7		S. W.
18	20	51	22	37	15	12	24	7	14	10	10	1.72	0.64		$\because 9$		N. E.
25	s	43.	19	36	15	7	$c d$	8	14	9	+	1.02	0.56		7	1.	N. E.
26	26	38	14	30	15	,	18	3	22	6	9	1.35	0.51		29	0.8	N.
27	24	38	16	27	15	6	ce	13	9	9	7	073	027	5.00	21	0.5	S. W,
25	t	34	19	28	10	10	3	9	9	13	+	1.14	0.40		29		N. E.
23	23	4.	14	31	26	2	24	89	85	18.6	8.8	149	1.00		7		
32	${ }^{2}$	45	16	30	26	3		14	6	11	0	1.40	0.10		${ }^{3}$	I.	S. IV.
34	10	39	11	27	10	4	13	7	7	17	0	1.90	0.56		13		
28.	k	48	17	31	26	5		9	13	9	7	1.19	1.10		7	T.	W.
30	19	46	14	$\because 9$	26	4	3	${ }^{6}$	8	17	8	0 \% 5	0.33		${ }^{7}$		S. W.
27	19	47	14	30	${ }^{2} 6$	5	of	10	5	16	7	115	0.64	16.40	6-7	T.	N. W.
29	19	46	15	29	15	6	7				7	1.37	0.55	$16.01{ }^{\prime}$	5-7		N. E.
30.	22	43	16	27	22	6	13	14	5	12	7	2.07	09.5		13	T	
30	26	43	11	30	26	5	5	7	5	19	13	1.45	0.43		7		E.
23	23	53	17	30	20°	7	18	0	13	12	14	2.02	0.45		14		IV
31	k	42	14	29	$\because 6$	4	13	6	14	11	9	1.26	053		13	T.	W
32	19	46	11	24	26	2	24	10	9	12	11	$\because .01$	0.58		12		N. W.
27	23.	45	14	31	26	4	dd	6.0	11.3	13.7	7.0	359	3.00	8.10	1.3		
29		46	14	29	26	5	be	1	19	11	5	3.10	2.00		1:3 14		N. W.
29	w	45	16	31	26	6		11	5	15	5	3.30	1.34		13		
27	23	47	13	29	y	4	de	6	10	15	11	437	3.00	8.10	13		N. W.
17	26	45	16	45	21	2	df	8.4	9.0	13.6	8.9	2.49	3.50		12.	T.	N. W.

original records, but is within twenty-four bours. \ddagger Mean of the maximum and minimum by means from the tri-daily observations are derived by the formula (7an. $+2 \mathrm{p} . \mathrm{m} .+9 \mathrm{p} . \mathrm{m}$.

26; (j) 19, 23; (h) 10, 23; (m) 19, 23, 29: (n) 25, 26, 27; (p) 20, 21; (q) 10, 20, 20; (r) 10, 11, 26; (s) 9, 1,12 ; (ac) 12, 13; (ad) 12, 14; (ae) 3,13 ; (af) 13 , 14; (bb) 10,12 ; (bc) $5,12,13$; (bd) $5,13,17$; (be) 4, 13, 24; (ee) 11, 26.

Temperatlre-October, 1896, Showing Daily Means for

the Regions, and Daily Maxima and Miniala for tife Stations.

15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	$\begin{aligned} & \text { 㤩 } \\ & \text { 而 } \\ & =3 \end{aligned}$
50	46	43	36	34	41	42	39	38	37	38	43	49	51	69	61	54	44.8
62	52	45	37	37	49	48	46	50	38	45	58	65	$6 t$	73	69	61	
35	36	34	30	24	31	33	27	25	30	27	$\because 7$	36	41	51	57	43	43.7
62	53	50	39	38	50	47	49	47	38	45	58	66	66	71	69	67	
27	41	37	31	23	29	33	$\because 7$	20	30	13	20	$\because 6$	28	\$1	48	41	43.0
C5	51	52	40	41	52	51	49	52	41	48	59	66	(6)	7.5	70	62	
31	39	36	31	23	32	34	28	22	28	27	$\underline{4}$	30	30	45	45	40	43.6
				39	46	54	47	50	47	45	57	0.5	67	73	72	64	
				34	29	34	32	21	$\because 9$	30	89	$\because 7$	31	. 30	50	41	
64	49	49	40	39	46	± 3	48	51	39	47	59	. 87	6.5	74	7	63	
33	33	34	30	31	31	32	31	25	32	$\because 8$	32	39	44	53	55	43	44.2
	-								
62	52	57	43	40	48	48	47	49	40	47	58	6	64	7	74	67	
32	41	$\because 7$	32	32	36	3.5	31	93	33	34	31	: 6	37	52	59	45	45.8
64	56	49	4%	46	53	5.)	50	53	4.5	4.5	(i)	6.5	(6)	64	66°	63	
39	41	39	32	29	33	41	3.5	28	34	30	26	3.3	34	51	49	51	43
63	56	53	$4 \cdot$	45	51	50	47	52	45	44	6)	64	69	-6	73	61	
30	42	40	34	24	35	36	26	23	32	$\because 15$	$\because 4$	30	34	54	51	45	453
63	55	49	45	49	53	46	48	50	46	50	59	64	68	73	74	18	
37	42	37	32	29	46	36	30	29	32	31	32	11	39	55	57	44	47.2
63	53	46	42	43	50	$\therefore 2$	46	52	52	61	60	63	6.8	76			
38	37	35	32	27	27	33	31	25	31	27	26	35	38	51			44.6
66	54	48	42	44	51	49	49	56	50	51	61	71	65	75	67	66	
34	36	33	28	21	28	35	98	28	26	25	28	40	42	. 1	53	46	45.1
65	55	49	43	43	53	53	3.3	53	48	48	60	68	4i.)	75	68	64	
35	37	38	32	26	31	39	31	$\because 4$	29	$\because 7$	23	30	33	47	45	45	46.0
64	55	48	45	42	5	52	50	$5: 3$	47	48	60	67	47	76	70	(i)	
28	36	35	29	23	28	34	28	23	27	28	23	29	33	48	49	41	$4 \dot{4}$
59	50	46	40	39	45	47	44	48	38	44	56	63	64	71	711	60	
30	37	35	30	23	33	33	28	26	32	27	$\underline{2}$	38	40	44	56	41	42.9
62	52	46	42	44	48	50	48	53	46	49	63	65	68	77	75	66	
29	34	34	27	23	34	31	28	24	32	28	42	33	35	45	47	± 1	44.3
49	45	42	40	38	40	45	39	38	40	36	40	45	48	58	55	57	45.4
61	55	49	44	43	50	58	48	53	45	43	59	6.5	64	73	65	65	40.4
38	33	37	35	27	33	38	32	26	32	30	27	32	35	53	50	$\bigcirc 0$	464
62	58	48	43	56	48	55	50	53	44	43	55	62	62	70	63	65	
32	31 59	30	32	22	28	32	34	19	27	21	18	$\underline{23}$	$\because 7$	45	38	46	438
61	59	45	41	42	51	52	46	53	46	40	58	64	64	72	65	62	
36	36	36	34	26	32	37	29	23	28	32	26	27	33	42	50	47	418
38	34	36	36	30	29	37	31	$\because 7$	34	30	25	30	32	45	42	44	
57	53	50	47	43	45	53	43	46	48	37	52	28	63	69	65	64	
31	19	30	\%2	27	28	31	26	24	30	25	18	24	26	35	39	52	42.6
59	61	64	56	58	59	57	58	49	60	57	63	64	66	68	69	70	
43	42	44	40	42	37	35	28	21	35	3.	39	40	42	43	43	45	47.8
62	61	55	50	50	48	57	50	54	50	44	54	57	59	68	63	70	
43	33	40	40	27	30	45	29	28	42	30	24	30	33	49	45	54	47.7
57	50	43	41	42	47	50	44	51	45	38	52	48	53	63	6.3	62	
35	36	34	36	31	35	38	28	24	32	32	23	30	32	48	48	54	44.3
59	53	44	43	47	47	53	47	53	46	37	54	62	62	68	63	63	
33	30	31	32	27	27	32	24	19	27	24	17	24	29	48	40	37	42.8
65	56	50	47	46	52	50	49	57	50	43	57	66	64	71	67	72	
38	36	36	38	31	33	40	32	25	33	31	24	30	33	50	45	52	47.3

Dally Means for the Regiuns, and Daily

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
East. Plat.-(Con.) Perry City.	59	54		56	52	58	49	44	45	52	56	47	45	49
	44	38	43	4	45	42	38	35	27	22	26	40	40	40
Strait's Corners....							-							
Wav	63	66	55	60	56	58	55	48	56	00	59	47	46	49
W	47	40	47	46	48	48	45	38	30	23	28	42	43	44
Dryden............				...	-		.	.						.
Mohonk Lake	62	58	56	52	52	53 48	55 44	48	48	50 35	48	53 41	42	51 44
Northern Plateau. Saranac Lake......	52	48	46	46	48	49	44	37	37	40	43	47	47	46
	52	46	47	49	58	61	45	37	46	48	59	48	55	56
	42	38	37	39	35	41	3.3	31	23	26	32	34	38	${ }_{51} 7$
Gloversville	62	56	55	53	54	62	59	45	49	5	53	59	50	51
	49	46	44	45	45	47	42	36	33	26	28	44	47	45
North Lake.........	62	61	50	49	50	53	58	44	44	44	55	58	61	51
	44	45	41	39	44	43	43	31	29	28	30	36	39	42
Lowrille...........	59	53	53	51	56	54	49	43	45	57	60	62	51	56
	48	40	41	41	43	38	42	33	32	23	25	35	38	38
Number Four......	56	50	49	50	58	55	46	36	44	56	58	58	54	55
	46	41	40	40	41	39	35	31	28	37	31	36	36	38
Atlantic Coast..... Brooklyu	62	58	57	5.5	52	54	55	47	45	46	49	58	48	51
	69	64	65	57	56	61	62	55	55	56	53	53	50	54
	57	54	52	53	51	51	50	42	38	40	45	47	46	48
Manhattan Beach..	70	65	69	62	57	54	59	61	52	52	54	53	53	49
	58	53	51	52	50	50	51	41	36	37	43	47	46 50	45 53
New Fork City....	63 55	61 53	61 51 51	57 50	54 49	60 50	59 47	50 $\$ 1$	53 38	43	52 4 4	52 46	50 4	53 46
Willet's Point.....	66	64	64	58	55	60	62	54	54	57	54	53	55	64
	55	51	54	52	50	50	42	38	39	42	47	48	47	43
Brentwoo	80	68	65	61	59	63	65	53		54	56	50	52	61
	53	53	51	53	49	49	48	36	27 51	$\stackrel{39}{56}$	46	49 56	46 52 8	48 54
Setauket...... ...	60 59	$5 \overline{3}$	53	52	51	50 50	51	45	39	39	48	49	45	49
Bedford	64	62	60	55	53	57	60	52	55	5.6	51	50	47	54
	56	52	49	47	48	49	48	40	$\because 9$	30	39	44	44	46
Primarose .-........		--	\cdots	...	-					\cdots	\cdots		\cdots	-
Hudson Yalley Allany	60	5 H	55	51	51	54	53	46	42 52	42 56	44	49	48 51 1	48 52
	66	57 47	58	55 46	48	59 48	58 45	50 41	58	56 30	56 33	62 46	51 47	46
Lebanon Springs...	65	66	66	53	54	56	56	46	45	52	49	50	51	50
	51	46	45	40	46	46	45	38	32	26	34	40	45	44
Honeymead Brook.	63	58	59	5:	52	58	60	48	47	53	53	55	5	51
	52	50	44	4.5	47	47	48	36	28	27	32	42	4*	44
Poughkeepsic....	67	67	62	56	5.7	58	62	55	23	58	53	56	51	54
	51	49	47	40	47	55	42	38	28	26	32	43	43	45
Wappingere Fialls..	73	72	66	56	55	59	60	56	51	50	48	55	54	54
	56	5	54	48	48	51	44	40	32	30	38	4	43	45
Catskill............	55	49	46	47	4	49	46	41	:9	30	34	44	44	47
+st l'oin	76	66	63	63	59	54	59	60	57	54	58	53	54	49
	52	53	4.3	49	47	48	50	39	31	31	38	43	43	42
	68	62	66	54	55	61	57	51	52	56	52	52	44 39	55 44
	53	50	49	49	48	50	49	38	31	34	40	42	39	44
Mohawk Valley.	i4	52	52	51	5	51	44	46	:	41	46	5	48	42
Himm.............	63	60	610	56	59	57	51	47	45	50	5	64	53	52
	44	44	44	415	4.	45	36	4.5	30	30	3 R	45	43	31
Champlain Ťalley. Plattsburgh Bar ks	62	51	47	48	46	51	89	4.5	41	38	41	48	47	44
	78	60	47	50 40	44	50	51	49	47 32	40	50 29	55 30	59	56 31
Glenm Falls.......	03	\% 5	5.5	56	8	60	59	50	50	53	. 5	61	49	47
	51	45	44	46	413	41	44	41	33	23	30	45	43	43
Lako (ieorge														

Maxima and Minima for the Stations - (Continued).

15	16	17	18	19	20	21	22	33	24	25	26	27	28	29	30	31	
60	52	46	40	42	55	46	47	51	42	42	56	63	64	79	66	62	
35	36	34	30	24	27	34	$\because 6$	21	$\because 6$	24	31	30	35	55	50	42	43.6
		42	42	45	49	54	50	52	48	4.4	55	64	62	71	63	67	
		38	34	${ }^{2} 3$	97	40	29	24	$\because 9$	24	22	29	33	46	45	45	-...
68	59	51	42	48	53	56	54	56	46	50	65	70	66	.77	66	63	
35	35	37	34	95	28	40	30	$\because 6$	31	-2	$\because 1$	$\because 7$	31	53	45	45	46.8
		-...		-				*-.					\cdots				
69	39	47	47	48	51	52	48	50	53	45	52	61	. 50	63	6.	69	
45	47	33	38	33	32	43	35	35	35	31	31	31	42	41	54	S8	47.2
46	42	37	37	33	37	42	35	35	35	31	36	43	44	51	52	53	42.7
63	50	43	46	40	48	53	42	5.3	44	33	52	57	64	59	44	59	
39	29	30	27	27	St	29	29	$\because 7$	26	2:	29	$\because 7$	3	47	49	39	8
64	52	44	45	41	49	52	43	5:	46	39	55	6	55	55	58	63	
36	34	35	37	30	29	36	30	23	32	$\because \mathrm{r}$	$\because 1$	37	32	45	40	44	4.8
57	60	47	41	43	36	45	43	48	47	38	36	49	147	82	55	62	
34	32	$\because 9$	31	24	$\because 6$	35	25	33	26	$\because 6$	$\because 1$	$\because 6$	$1-7$	30	40	47	41.7
61	53	41	43	43	46	50	41	4.7	42	39	5.7	$i 1$	63	60	67	61	
32	37	31	30	$\because 5$	30	35	31	$\because 8$	$\because 9$	\because	$\because 1$	30	30	49	42	47	43.1
62	45	39	41	39	4\%	48	39	47	37	$3 \cdot$	51	57	62	5.5	62	59	11.
29	33	28	31	24	29	32	28	$\because 9$	25	25	21	$\because 7$	32	48	48	46	11.9
53	53	50	48	43	47	\%\%	46	50	50	413	43	53	59	59	60	64	51.4
67	68	53	5%	53	(i)	0.3	38	61	55	50	3	66	60	67	69	72	
48	47	47	45	36	38	50	38	50	49	36	34	14	46	53	54	59	5.9
53	61	67	52	50	53	53	6	5.5	59	515	49	-s	(i3)	57	60	$6: 3$	51.2
48	49	45	45	35	38	50	39	41	50	36	:36	$: 8$	46	48	53	55	\%. 2
67	67	50	49	50	58	U4	5	5 s	54	49	. 77	70	57	69	69	72	
47	48	47	42	36	45	4.5	37	46	40	36	40	4.5	50	$\therefore 2$	56	60	52.0
50	60	51	54	52	60	61	56	(6)	57	51	56	72	til	68	69	76	51.6
44	46	37	45	35	10	$3 s$	37	48	$\because 6$	31	23	36	40°	52	52	48	61.0
62	58	62	55	54	56	70		63	58	53	55	65	61	68	68	72	
35	33	40	46	$\underline{4}$	$\because 5$	2.5		26	40	30	33	30	34	$5 \pm$	45	45	00.4
59	66	56	53	49	58	66	51	6	59	47	56	66	58	67	72	73	
47	43	48	47	39	3.5	48	40	38	44	33	33	43	44	52	54	58	52.5
62	62	52	47	49	57	61	5	57	57	43	57	7	63	70	71	77	49.2
46	33	40	40	33	87	45	35	-	40	80	26	32	34	50	45	53	49.8
52	49	46	42	40	48	47	43	41	46	40	40	48	48	56	57	61	48.5
63	59	49	47	47	51	55	49	$5 \frac{4}{4}$	53	44	57	64	60	63	66	67	48.0
43	38	40	40	34	34	40	34	$\because 9$	38	33	30	36	36	51	41	49	48.0
58	57	48	48	50	48	51	48	47	50	43	50	44	59	62	67	64	
40	30	31	31	29	23	37	30	24	36	27	20	39	33	44	44	51	45.2
61	61	49	45	47	52	51	50	53	53	46	48	61	58	65	68	69	
39	33	38	36	29	\%8	35	311	27	39	35	23	33	33	44	52	52	46.6
65	65	49	44	52	53	59	54	56	58	51	59	67	61	71	66	75	48.9
36	32	37	36	29	27	34	28	26	38	$\because 9$	23	33	32	49	48	48	48.2
64	63	62	46	49	52	60	55	59	55	50	60	65	62	68	ti7	72	
42	36	42	39	32	30	40	35	30	40	32	23	35	411	- 49	55	59	50.0
65	61	48	45	50	48	54	54	5:	$5 \cdot$	43	59	64	59	63	$6 \pm$	71	
46	39	39	41	34	31	46	35	29	39	3.5	29	34	37	$4 \times$	44	53	49.0
54	63	65	49	46	51	55	59	53	57	55	4.9	57	0.5	60	(i.)	68	51.8
45	39	41	40	33	30	43	34	30	40	33	兑	34	38	$41)$	50	I1	51.8
63	63	5	46	47	55	56	52	59	54	48	$51 ;$	6 s	54	68	66	72	49.0
47	41	39	40	30	$\because 8$	3"	40	: 4	38	34	$\because 4$	$3{ }^{\circ}$	40	47	43	5\%	49.0
46	44	42	86	36	45	41	36	38	38	34	41	46	$4{ }^{4}$	54	5	52	45.2
56	$5:$	47	43	43	52	5:	45	48	47	44	It	5.5	$\therefore 3$	6:	63	62	45.2
37	35	37	28	30	38	30	28	25	28	25	$\because 3$	$3{ }^{\circ}$	43	45	47	42	45.2
47	44	43	39	37	36	45	46	38	43	40	35	42	43	46	$5:$	56	41.6
56	59	54	41	44	44	51	54	46	51	53	:29	50	53	151	54	62	43.7
30	30	33	32	32	38	38	33	32	34	31	28	31	30	3	. 49	5%	43.7
62	55	49	44	45	45	53	44	51	51	45	51	60	37	, 58	61	65	45.4
41	30	35	39	26	28	36	30	23	35	:0)	22	≥ 8	32	46	43	43	4.4

Daily Means for the Regions, and Daily

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
St. Laverence Talley Madison Barracks.	53	49	50	47	47	46	44	41	10	42	44	46	44	49
	67	59	61	58	55	51	56	50	47	52	59	62	57	52
	47	40	49	38	40	3:	36	34	33	\because	28	29	36	37
Watertors	60	56	53	58	60	60	50	47	52	62	64	60	53	$6{ }^{6}$
Watertown	42	40	41	38	36	34	37	34	30	30	28	33	31	32
Canton--	57	52	49	52	51	53	45	43	46	53	54	55	53	60
	50	42	38	33	35	34	38	35	25	25	26	35	35	35
Massena...........														
North Hammond..	62	54	54	54	56	56	48	44	50	54	56	60	60	62
	48	48	46	46	44	44	40	38	32	30	28	38	38	44
Ogdensburg	58	40	42	45	53 43	52 40	54 38	${ }_{36}^{44}$	50 30	39	${ }_{3} 5$	36	56 36	48
Potsdam...........	56	55	57	51	56	57	53	55	57	53	55	57	55	58
	42	40	47	34	34	36	35	33	31	25	30	31	33	35
Great Lakes....... Dunkirk \qquad	54	49	49	50	50	50	46	43	41	45	47	48	48	49
		\cdots	\cdots	\cdots	.	.	\ldots	.	.	\cdots
Westfield	56	57	54	57	57	58	50	46	53	60	58	50	50	55
	53	37	38	35	38	38	40	41	32	35	36	39	43	35
Buff	57	55	53	53	55	57	47	45	49	61	57	49	49	54
Pittsford...........	59	54	52	55	53	57	49	43	47	56	57	52	49	55
	47	40	46	41	33	40	42	38	31	28	32	44	39	45
Rochester..........	58	53	52	55	51	58	48	43	47	57	58	52	52	55
	45	44	48	48	43	42	38	38	35	34	38	44	47	48
Appleton...........	57	53	55	56	55.	56	50	45	45	54	52	49	53	55
	48	42	40	43	41	35	43	40	34	32	33	43	45	14
Fort Niagara......	49	46	44	46	49	35	4	40	45	31	35	4	4	51
Baldwinsville......	62	58	54	56	56	59	52	46	49	55	58	58	51	54
	42	43	47	48	48	47	39	38	31	32	41	42	45	40
Oswego.............	58	53	52	54	53	53	51	45	44	54	56	55	50	54
	50	40	46	48	48	47	43	39	36	32	38	45	45	46
Palermo...........	68	55	55	70	76	62	55	51	54	54	57	57	58	55
	50	40	40	45	48	47	46	43	32	26	30	39	41	42
	61	55	52	55	55	58	51	47	44	56	57	53	50	55
Erie, Pennsylvania.	48	42	47	46	44	48	40	38	35	21	36	43	46	47
	55	54	54	54	56	56	46	49	48	58	55	49	50	56
	49	48	42	42	42	42	40	40	36	40	42	45	44	48
Central Lakes..... Fleming. \qquad	54	47	47	51	50	50	46	41	41	42	45	46	47	47
	58	54	50	52	53	53	51	45	45	56	50	50	49	51
	49	40	44	47	47	45	41	36	36	30	36	42	44	42
Romulus...........	61	55	53	55	53	54	51	45	50	51	59	52	50	53
	47	39	45	47	46	46	42	38	35	29	32	41	44	42
Ithaca	58	54	52	55	52	52	50	4.3	46	57	58	48	48	49
	49	42	46	48	48	47	42	39	34	29	35	44	44	44
Mean	56	51	50	50	49	50	47	43	40	42	45	48	47	47

[^15]Matima and Minima for the Stations - (Concluded.)

15	16	1\%	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
47	43	38	39	36	41	42	40	44	40	38	41	47	46	52	53	54	44.6
59	65	45	46	46	52	50	51	63	66	54	44	56	59	68	65	67	
29	39	32	32	34	38	39	37	41	39	30	28	37	34	42	41	50	463
66	58	52	46	45	46	52	48	53	44	56	59	64	69	07	67	65	
29	32	30	30	24	18	34	32	33	32	34	37	36	38	54	52	43	45.6
61		46	44	44	50	53	46	53	46	40	55	58	56	62	68	68	
25		27	31	26	33	32	$\because 8$	30	27	$\because 6$	29	38	31	42	42	43	42.8
					-	-							
62	44	40	38	44	44	42	46	50	44	42	54	56	60	60	64	60	
32	38	32	34	28	38	36	36	38	34	28	26	40	34	40	54	48	45.2
64	50	49	47	46	51	53	44	54	47	40	55	60	55	60	62	65	
37	30	29	33	29	38	38	33	34	27	34	32	40	35	45	52	47	46.0
59	45	44	45	43	56	49	45	53	43	42	44	45	50	55	54	50	
36	33	31	28.	27	30	31	28	30	31	25	29	30	32	$\because 9$	30	32	41.8
51	47	42	39	38	44	43	40	41	39	39	47	50	54	63	64	56	47.1
60	50	53	46	44	53	51	46	48	45	47	62	62	79	75	77	68	
46	40	38	33	33	35	35	35	34	38	35	32	43	49	58	60	45	5
59	51	44	43	43	52	49	45	47	46	45	55	60	67	67	73	57	
47	40	38	36	35	38	36	34	36	35	35	42	49	52	57	56	52	8.0
64	54	45	44	45	50	52	48	53	45	45	61	64	68	76	73	65	
38	37	37	32	30	35	32	32	28	33	32	30	37	38	56	53	45	46.3
66	52	45	43	42	50	51	47	51	43	44	61	64	67	76	74	66	
38	39	39	32	30	38	33	32	32	35	31	32	40	43	56	69	49	47.0
64	55	47	43	44	51	45	46	47	44	47	60	55	58	73	74	60	
35	42	38	38	27	38	38	31	30	33	33	30	36	37	52	52	45	45.8
68	58	48	46	47	54	46	49	51	45	48	61	57	55	73	75	70	. 6
39	43	37	36	29	36	39	31	34	31	34	35	40	37	49	54	50	47.6
62	50	46	43	47	52	53	57	55	46	45	60	62	64	73	68	65	
41	38	38	31	32	46	34	30	31	32	31	35	39	40	51	51	46	47.5
56	48	44	44	44	52	46	46	52	44	41	60	55	63	73	66	64	
45	42	36	38	35	34	38	36	31	34	34	30	39	43	54	55	50	47.0
57	50	45	43	40	48	50	45	51	41	41	58	59	64	63	63	63	46.2
31	39	34	36	32	30	35	33	23	31	30	28	30	39	50	50	46	46.2
64	54	45	44	45	49	50	49	53	45	45	61	62	64	73	67	64	
39	42	39	36	32	37	35	33	31	37	33	32	39	42	55	56	49	47.4
62	52	47	42	43	52	50	46	48	42	48	62	63	69	74	78	62	48.0
43	46	40	38	32	40	38	33	35	40	36	38	48	50	59	61	49	48.0
49	47	42	40	37	42	44	41	42	41	37	45	51	54	64	61	58	46.8
60	53	46	44	45	51	50	48	57	45	41	61	63	65	75	${ }_{5}^{67}$	68	46.5
34	40	36	34	29	29	35	33	30	33	32	32	41	46	54	57	53	40.5
64	54	47	45	45	52	50	49	56	56	45	60	65	66	74	69	67	47.1
38	41	36	36	29	34	38	32	29	36	33	29	38	47	52	49	46	47.1
61	52	47	43	43	53	52	47	53	44	42	59	64	65	74	${ }_{6}^{66}$	65	46.7
39	42	39	36	30	33	40	34	27	33	32	30	35	39	54	57	50	40.7
49	46	42	40	37	41	44	40	41	41	38	41	48	50	56	57	56	46.1

Q Received too late to be used in computing means.

Daily and Monthly Precipi

STATION.	1	2	3	4	5	G	7	s	9	10	11	12	13	14
Western Plaleau..	0.08	T.	0.02	'T.	'T.	0.14	0.31	0.04	0.00	000	0.00	1.00	1.40	0.30
Alired.	. 03		. 03		' 1	. 14	43	. 09				1.66	1.87	. 50
Angelica								†.62				1.17	. 72	32
Bo:ivar														
Friendsh	. 04		'T. 05	. 53	T.			\cdots	1.51	1.41	. 16
Franklinville														
Humpbrey.			T			. 47	.17 78	1.01	
Litile Valley.														
Cherry Creek....	11	10	T.			. 16	. 81	T.				. $3 \times$. 47	. 11
Jamestowh.......	. 24					28	. 33					. 69	. 30	. 03
Elmira			T.			. 31						1.14	2.93	. 12
Pine City	. 12		. 02			. 39						. 80	1.93	1.60
Akwn.	0	T		\cdots		.14	. 40						+. 89	T.
Aron..	.10				..		. 30	.13				T.	. 38	
\|lmt. Mo							35					. 03	. 80	. 13
Lookport	.12		10				$\dagger 40$	\cdots				${ }_{*}{ }^{\text {\% }}$.	${ }^{-39}$	
Victor.	. 15		. 10			. 19	T.							t. 42
Tyroue	.		. 04						.				1.40	1.23
Wedgewo	. 12		. 06	T	T	(17	$\because 4$	T.				6	$\underline{2.90}$	$\therefore 0$
Aldisan	. 0.5		. 01			. 01	. 36	. 04				1.2 .3	3.30	. 36
Atlanta	. 16		03				. 50	. 06				. 67	1.30	. 40
Haskiurille	. 10				T.	T.		. 48				. 80	1.60	. 32
South Canis			. 04	T.		T.	. 50					3.50	1.93	T
A rcade	05					30	. 39	T.				1.33	. 90	
Attica														
Varsaburgh	T.		T.			T.	. 70					1.00	. 50	
Eastern Plataau..	015	T	'T.	0.03	0.02	0.14	0.28	0.01	0.00	0.00	0.04	0.22	1.20	0.36
Bimghamton 04	. 04	. 02				. 30				45	190	. 35
Chenamg Forks..														
Oxford	. 13	. 13	\cdots	\cdots	1.	' 1	$\therefore 8$. 12				'T.	1.10	4.4
Cortland	.13						. 38	. 09				. 16	161	. 42
Bloomvillo					T.		. 25	. 20				. 65		. 15
Deposit..														
South Kortright.			-	. 22			4*-						*	+. 89
Brookfield	12			. 02		. 08	. 12	. 13			. 16		. 38	. 12
Hamilto														
Apulia.														
Middletown	\cdots			-			1.33	\cdots				. 15		. 88
Port Jervis					. 08						. 38		. 36	1.17
Wawick..				. 10	. 08		12					. 19	1.00	. 27
Conperstown	.17			. 03 27	. $0: 3$. 88	.32
New Lishon.	. 11					. 01	. 37						. 90	.25
Onombta						. 49							. 91	
Perry City			'1.			. 30	T.					. 36	2.7.4	. 26
Nowatk Valley...	12						.21					2	$\because 70$. 4
+Strait Corners..	...	-				\cdots								
Wave							. 30					1.20	2.28	. 40
Fllic														
Mohonk Lake				. 15	0.5	. 31					. 18	. 06	1.32	.31
Northern Plateau.	0.11	0.02	0.04	0.011	0.04	0.09	0.51	0.15	010	0.00	0.10	0.00	0.88	0.26
Wret Chazy ...														
Elizaththtown														
Saramar Lake.		. 04	.02			. 51	21	T					. 10	
Gloveravilla	r.	. 05		. 04	03	. 22	. 33	02					1.73	. 31
North Lake	. 10							. 81						. 71
Lowvilu	(15)						57	06					. 08	$\therefore 3$
Number Four	$\therefore 25$						1.115						. 27	
Kingen Station	. 15		.201		24		. 91						1.28	. 34

tation for October, 1896 - (Inches).

Daily and Moxthly Precipi

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Atlantic Coast	0.00	0.00	0.01	0.30	0.10	0.02	0.07	0.00	0.00	0.00	0.08	0.09	0.78	0.08
Bronklyn			T	. 09	 12				t.21		
Manhattan Beach.				. 02	. 10		. 10					†.20	. 32	. 25
Nert Fork City .			T.	.03	. 02		. 07				0.3	. 11	. 72	. 04
Willet's Point ..				. 15		. 12			.		28	. 20	. 78	T.
Brentwood.			T.	1.00	. 50								1.00	. 10
Setauket			. 96	. 63	. 08		. 15				. 08	T.	. 88	. 05
Bedfurd		20)	. 03	T.	. 07				. 02	. 15	. 95	. 93
Primrose													
Hudson Valley	004	T.	0.01	004	0.14	0.01	0.26	T.	0.00	0.00	T.	0.03	0.97	0.12
Albany	. 10	T.	T.	. 01	T.	T	. 04					. 03	1.01	. 08
Lebanon Springs			. 06		. 20	. 07	. 31	. 03				T.	1.20	. 15
Honeymead Brook	. 02	T.	T.	. 13	. 04	. 01	. 22					. 05	1.40	. 01
Poughkeepsie 20 22					T.	1.22	. 04
Wappinger's Falls	T.			. 21	. 06	T.	. 36				T.	.22	. 92	. 13
Catskill	. 05				. 17	'T.	. 15					T.	1.33	. 21
West Point					. 15		. 10						. 26	
Boyds Corners	\ldots					\cdots
Carmel	\ldots				. 28	\ldots	. 14		\cdots			. 21	. 98	\ldots
So. East Reservoir														
Eagle Mills.......	. 05						. 60						. 75	. 25
Easton.............	. 23				. 25		.47						. 67	. 33
Mohawk Valley	0.00	$0 . \oplus 0$	0.00	0.00	0.00	0.31	012	0.00	0.00	0.00	0.00	0.00	0.75	0.08
Rome..						. 31	. 12						. 75	. 03
St. Johnsville ...								-					
Champlain Talley	0.30	0.08	0.02	T.	0.04	0.00	0.52	0.22	0.00	0.00	0.00	0.00	0.52	0.32
Plattsb'h Barracks	. 35	. 10	. 05	'T.	T.		. 38	. 44						T.
Glens Falls 26	. 06			. 08		. 67						1.05	. 65
Lake George													
St. Lawrence Tal'y	0.04	0.01	0.00	0.00	0.00	T.	0.33	0.02	0.00	0.00	0.00	0.00	T.	0.00
Marlisou 13drracks.			 70					T.
Watertown							. 47	. 09						
Canton	. 16						. 56							
1)e Kalb Junction	. 13							\cdots						\ldots
Massena														
North Hammond..							. 21	. 04						
Ogdensburg.						. 02	. $0-$							
Potadam		. 05					*	$\dagger .30$						
Great Lakes	0.12	T.	T.	'1.	0.00	0.18	0.44	0.06	T.	0.00	0.00	0.09	0.27	0.11
Dunkirk														
Westfield						. 40	.20					. 30	.40	
Butfalo	. 08					. 13	. 30					.37	. 56	
Adams Ced	. 17					1.02								
P'ittsford	.13						1.00	. 02					. 01	
Rocliester	. 04		T.			T.	. 33	. 01					. 01	. 01
Scottsville	. 20											. 39		
Appleton	.02					. 13	. 51					T.	. 04	
Furt Niagara 20			. 03			1.55			\cdots	17	\ldots
Niagara Falls						45	. 63						. 43	
13dfwinsvill						. 59	. 15	'T.				-03	. 93	
skancateles	20	03					.is	. 46					1.06	. 78
İidgeway.	\ldots			. 03	. 49		--.			-	- 2	
Ifomiter	. 25						. 6.3	20					. 25	
Enlton	. 20						. 93						. 54	
Oswero	17						. 43		T				. 09	. 05
Palermo..........	. 35			\ldots 04	. 36	. 10 45

tation for October - (Continued).

Daily and Monthly Precipi

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Great Lakes (Con.)														
Phœonix	-33						72	. 08					09	. 79
Lrons.	T.	' T	'「.			. 25	. 25					. 08	. 53	
Rose.	. 10						- 30	${ }^{34}$	T.				. 19	. 16
Erie, Penn	. 09	 33	. 43	T.		-		. 58	. 14	
Opntral Lakes	0.10	000	T.	'T.	T.	0.14	0.43	0.05	0.00	0.00	0.00	0.08	2.25	0.25
Fleming	. 25 65	20				+2.00
Sherwood	04			. 01	T.	. 56	. 10				-..	. 11	2.42
+Watk	.-.				\ldots-..		\cdots		\cdots		
Romalus	. 10		T.		--		. 65					T.	1.34	. 60
Ithaca	. 03		. 02			T.	. 32					. 19	3.00	. 16
Peun Yan														
Arerage	0.08	0.01	0.01	0.04	0.05	0.13	0.33	0.06	T.	0.00	0.01	0.15	0.87	0.19

* A mount included in next measurement. † Not included in computing averages.
tation for October- (Concluded).

\ddagger Record for the month incomplete. \quad Receired too late to be included in the averages.

STATION．	COUNTY．	Temperature（Degrees Faim．）．									
		© $\underset{y}{\#}$ 霖						Extremes of Monthly Mean Temperatcre for October．			
								荗	年	\％	－
Western Plateau		47.3					－2．5				
Angelica．	Allegany	15.4	14：	1854	1846	43.0	－2 4	49.5	1894	39.6	1889
Humphres	Cattaraugus	46.8	14	1883	1896	44.2	－2． 6	51.7	1894	42.4	1895
Elmira	Chemung ．．．	49.7	18	1850	1896	47.2	－2．5	53.7	1894	45.0	1859
Eastern Plateau		46.8				44.9	－1．8				
Oxford	Chenango	46.2	28,	1828	1896	43.8	－2．4	54.1	1846	39.8	1836
Cortland	Cortland．	45.7	34	18：9	1×96	44.8	－09	51.2	1835	38.4	1836
Cooperstow	Otsego．	465	43	1854	$189{ }^{\circ}$	44.3	－2．2	53.3	1879	40.7	1865
Waverly ．－	Tioga．	48.7	15	1882	1896	40.8	－1．9	57.6	1888	42.9	1889
Northern Platcau．．．		45.7					－2．3				
Lowville．．．．．．．．．．．．．．	Lewis	45.7	30	1827	1896	43.4	－2．3	514	1835	40.6	1841
Atlantic Coast．．						52.	－1．9				
New York City．．．．．．	New York	55.1	$\because 6$	1871	1896	52 0	－3．1	60.1	1879	50.0	1876
Setanket．	Suffolk	53．2	12	1885	1896	52 5	－－0．7	55.9	1893	50.0	1838
Hudson Talley		51.2					-2.4				
Albany．．．．．．．．．．	Albany	50.7	23	1874	1896	4×．01	－2 7	55.8	1879	45.6	1888
Honeymead Brook．．	Dutchess	48.7	16	1881	1896	46.6	－2．1	53.1	1882	44.6	1895
West Point．	Orange ．	541	65	1826	1836	51.8	－2．3				
Champlain Talley．．．		46.9					－3．2				
Plattsu＇gh Barracks	Clinton	46.9	42	1843	1806	43.7	-3.2	53.6	1879	42.0	1888
St．Lawrence Valley．		47.6				44.0	－3．6				
Madison Barracks．．．	Jefferson	49.1	37	1839	1896	463	－28	59.6	1879	41.4	$18 \varepsilon 9$
Canton ．．．．．	St．Lawrence	47.2	34	1862	1896	42．8	－4．4	59.2	1874	40.2	1868
North Hammond		476	14	1866	1896	45.2	－2． 4	54.3	1870	41.5	1889
Potsdam	．	46.5	29	18：8	1896	41.9	－4．6	52.0	1835	36.9	1836
Great Lakes		49.8				47.3	－2．5				
Buffalo	Erie	50%	28	1871	1896	48.01	-2.2	583	1879	45.0	1888
Rochester	Sonroe	49.8	26	1871	1896	47.0	－2．8	57.6	1879	43.9	1889
Fort Niagara	Niagara	50.4	41	1842	1896	47.6	－2．8	59.1	1879	43.4	1856
Baidwinsville	（）nondaga	48.3	18	1854	1896	47.5	－0．8	524	1894	43.5	1865
Oswego．	Oswego	50.5	26	1871	1596	47.0	－3． 5	¢9．8	1×72	43.9	1889
Palermo		47.3	43	1854	1896	46.2	-1.1	53.9	1×79	41.8	1889
Erie，Pa	Erie		23	$18 ; 4$	1896	48.0	－4．1）	60.0	1879	46.0	＇89－＇95
Central Lakes		49.2									
Ithaca	Tomplins	49.2	18	1879	1896	46.7	－2．5	56.0	1879	42.9	1889
Arerage departure．						\cdots	－2．5				

and Precipitation - October.

MAP OF THE STATE OF NEW YORK
 SHOWING

THE MEAN TEMPERATURES

MAP OF THE STATE OF NEW YORK

SHOWING
THE PRECIPITATION

Meteorological Summary for November, 1806.

The average atmospheric pressure (reduced to sea-level and 32 degrees Fahr.) for the State of New York during the month of November was 30.17 inches. The highest barometer was 30.80 inches at Albany on the 23 d , and the lowest was 29.40 inches at Buffalo and Oswego on the 5th. The mean pressure exceeded 30.20 inches in southeastern New York, while along the lakes the average was about 30.14 inches. The arerage pressure at 6 stations of the National Bureau was 0.10 inches above the normal value, large excesses occurring at all stations.

The mean temperature of the State, as derived from the records of 74 stations, was 41.9 degrees; the highest local monthly mean being 48.7 degrees at Brooklyn, and the lowest, 35.8 degrees at Saranac Lake. The highest daily mean for the State was is degrees on the 27 th, and the lowest was 26 degrees on the 30 th. The maximum temperature reported was 78 degrees at Watertown on the 26th, the minimum being 1 degree below zero at Canton and Saranac Lake on the 22 d. The mean monthly rauge of temperature for the State was 53 degrees; the greatest range, 67 degrees, occurring at Canton, and the least, 40 degrees, at Setauket. The mean daily range was 17 degrees; the greatest daily range being 45 degrees at Canton, on the $23 d$, and the least, 2 degrees at Angelica on the 13th and at Primrose on the 28 th. The mean temperatures of the several regions were as follows: The Western Plateau, 42.3 degrees; the Eastern Plateau, 42.4 degrees; the Northern Plateau, 37.5 degrees; the Atlantic Coast Region, 47.2 degrees; the Hudson Valley, 43.4 degrees; the Mohawk Valley, 39.1 degrees; the Champlain Valley, 40.1 degrees; the St. Lawrence Valley, 39.6 degrees; the Great Lake Region, 43.1 degrees; the Central Lake Region, 44.2 degrees. The average of the mean temperatures at 26 stations possessing records for previous years was 4.7 degrees above the normal, excesses occurring at all stations. The values were the highest
recorded for November at 13 widely distributed stations; while at Oswego and Honeymead Brook equally high temperatures occurred only in November of the years 1877 and 1888, respectively.

The mean relative humidity for the State was 76 per cent. The mean dew point was 36 degrees.

The arerage precipitation for the State was $3.3 \pm$ inches, as derived from the records of 99 stations. The greatest general precipitation ranged from 4 to 6 inches or more over the northerncentral portion of the State, while the least was under 1 inch in - a small area southwest of the Central Lakes. The maximum local precipitation was 6.21 inches at North Lake, Herkimer county, and the least was 0.83 inches at Addison, Steuben countr. A list of the heaviest rates of precipitation will be found in the accompanying table of meteorological data. The first general rains, and the heaviest for the month, occurred on the 万̄th. On the Sth moderate rain or snow occurred, mainly in westerv and northern New York; on the 11th, general, heaviest near the Great Lakes; on the 13th, moderate general; snows from the 17th to the 20th, a light rainfall in western and central New York; on the 21st, moderate rain and snow, heaviest in the westeru and central sections; on the $22 d$, light general rain or snow; on the 24th and 25th, moderate rains over the northern and central sections; on the 28th, rain on the coast and Lake Regions; on the 30th a considerable snowfall along the coast, with lesser amount; in northern New York. The average total snowfall over the State was 2.9 inches. Appreciable amounts were measured at all stations, the maximum for northern New York being 13 inches at Lowrille, while the greatest value for more southerly stations was 9.9 inches at Humphrey. Generally, the lightest snowfall occurred in eastern New York north of the coast region; the storm of the 30th bringing the total for the latter section above the general average for the State. The average precipitation at 27 stations possessing records for previous years was 0.23 inches below the normal; excesses being reported from but 5 stations, generally located on the northern and eastern plateaus.

The average number of days on which the precipitation amounted to 0.01 inches or more was 10.8 ; the rain frequency being greatest, on the average, near the Great Lakes and over the northern plateau, and least near the Atlantlc coast. The average number of clear days was 5.9 ; of partly cloudy days, 9.5 ; and of cloudy days, 14.6 ; giving an average cloudiness of 62 per cent. The maximum cloudiness obtained over the Northern Plateau and the Great Lake Region, and the minimum in the eastern part of the State.

The prevailing wind direction was from the southwest. The average total wind travel at 5 stations of the National Bureau was 9,173 miles, the totals being in excess of the usual values for the month. The maximum velocity reported from the above stations was 72 miles per hour at Buffalo on the 6 th.

Thunderstorms or distant lightning were reported from 6 stations of eastern New York on the 5th; from 3 stations of southerncentral New York on the 6th; at Number Four on the 17 th; at North Hammond on the 17th; at Mount Morris on the 29th.

Hail fell on the 13th, 21st, 28th and 29th; and sleet fell on the 21 st, 25 th, 28 th, 29 th.

A solar halo was observed on the 20th, and a lunar halo on the 9 th.

General features of the weather.-This month ranks among the warmest Novembers on record in this State, the mean temperatures exceeding any previously obtained at one-half of the stations possessing long records, among them being Cooperstown, whose observations extend over 44 years. The fluctuations of temperature were notably large and frequent, especially during the latter half of the month. The values were from 3 to 10 degrees below the normal during four brief periods, central about the 10th, 14th, 20th and 30th. Between these dates warm wares were felt, the most marked occurring on the 17 th and 27 th, with excesses of 20 and 20 degrees respectively. It is also of interest to note that the mean temperature for the State on the 27 th reached the highest value which occurred during October preceding.

The precipitation, which averaged slightly below the usual amomit for the sitate was quite mevenly distributed, the amount in the worthern-central rounties and the southeastern highlands being abondant, while drouth conditions obtained in the region between the Central Lakes and the Genesee Valley. This distribution of rain is in marked contrast to that for October, when the heaviest fall occurred in the southwestern counties. In appreciable snowfall occured in northern New York and in Chautauqua county on the Sth and 9 th, but in the central section generally the first considerable snow storm was on the 13 th to 14 th; while near the coast the largest amounts were recorded on the 30th. The snow melted quickly, leaving the gromnd bare during nearly the entire month. The maximum depth reported was $\%$ inches at Lowrille on the 30 th.

The number of fair days this month was about the usual average for November. No disastrous wind storms were reported in the interior, although the total mileage regisitered was some what greater than usual. A severe gale occurred on Lake lirie on the (5 th, Buffalo reporting a relocity of $2 \boldsymbol{2}$ miles per hour on that date. The thunderstorms reported from several stations on the 5 th and (ith were in most cases of small intensity; but at Tivoli. Dutehess colinty, a storehouse, lumber yard and church were tired by lightning, the damage being estimated at four thousand dollars.

The month appears to have been favorable to farming interests, mild weather permitting plowing to be carried on until the $28 t h$. A'drouth prevailed in portions of the southern tier of counties, but apparently did not injure winter grains.

The atmospherir movements during November showed a decided increase in frequency and energy over those of preceding months. The mumber of high pressure areas which affereted our weather conditions was 7 , and of low pressure areas, 11; the latter number being in excess of the usual storm frequency for November. The common path of the depressions was from the Central States northeastward over thr Great Lakes and thence to the Gulf of St. Lawrence; the dates of nearest approach to New York leing the 1 st , 5th, $81 \mathrm{~h}, 11 \mathrm{~h}, 17 \mathrm{~h}, 1 \mathrm{sth}, 21 \mathrm{st}, \ddot{2}$ th and

27th. All of these disturbances, and especially the extensive areas of the 5 th, 17 th and 27 th brought southerly winds and increased temperatures; but a contrary effect was produced by a cyclone which passed northward over the Atlantic on the 13th. The sharply defined low which passed over Canada on the 5th, with a central pressure of 29.4 inches, gave the greatest average precipitation and wind velocity of the month. The storm of the 30th brought the first considerable snowfall of the season in the Atlantic Coast Region.

The anticyclonic systems were generally large and strongly developed. Their usual path was from the western to the central or southern States, thence spreading along the Atlantic Coast line. After the 14th a nearly permanent area of very high barometer was maintained in the extreme northwest; and from it the successive waves of high pressure passing eastward became detached. Owing to the southerly trend of the highs, they tended, as a rule, to reinforce the action of the cyclonic areas in giving warm southerly winds over this vicinity; but the cold wave of the 20th was due to a different condition; the high pressure in that case spreading along the Canadian border, and developing a pressure of 30.7 inches over northern New York. At the close of the month the high pressure system in the northwest developed great intensity, extending to the Atlantic coast, and bringing the coldest weather of the month in this vicinity.

Meteorological Data

for November, 1896.

[^16]for November－－（Concluded）．

ture－（In D			Degrees Fahr）．					Sky．			Precipitation－（Inches）．						
$\begin{aligned} & \stackrel{\rightharpoonup}{W_{0}} \\ & \Phi \\ & \pm \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\underset{\text { 玉゙ }}{\substack{\text { ® }}}$		Mean daily range．		$\begin{aligned} & \Phi \\ & \text { ※ } \\ & \text { ® } \end{aligned}$	- asurx א[trp 1Sea]	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\sim}}$	'sâep ォwəן รo ォהquiñ		俞	ED	｜＋－					
											\bigcirc						
											n						
													＝				
											\％		\％			－	
											－－		．			तु	
											－0．		尔	E		\％	
											$\hat{H}_{1}=g_{0}$			S		\％	
											0.		¢	－		क	
											픙	E	$\stackrel{\pi}{2}$	$£$	\pm	？	
												$\stackrel{\circ}{\circ}$	5	\square	む	$\stackrel{C}{6}$	
														h．m			
12	23	52	18	4.3	19	4	21	6.4	10.6	13.0	10.1	2.98	3.80		5^{5-6}		
20	＊3	¢	14.	29	19	6.	2.5	7	10	12	13	1.80	0.56		5	0.1	
12	231	5.3	18	29	16	8	18	3	9	18	9	3.15	1.45		5	$2.1)$	S．E
15	23	51	17	29	2		30	4	15	11	13	2.24	0.68		5	2.0	S．W．
16	23	55	20	37	2	6	30	7	110	13	6	1.45	0.86		5	T．	
20	23	57	20	43	19	4	21	7	12	11	13	3.17	0.883		5	0.8	N
20	23	47	16	26	$a \alpha$	5	4	4	15	11	8	3.46	2.56		5	0.8	S．E．
20	23	53	18	31	28	5	81				9	5.10	3.80		5－6	0.8	S．W．
17	23	53	18	30	15	7	21	13	3	14	9	3.43	1.93		4－5	2.0	
11	19	53	16	28	19	8	20				12．5	3.76	0.90		5		
											13	2.45	0.63		5	1.0	
11	19	53	16	28	19	8	80				12	5.06	0.90		5		
6	$2 \cdot 3$	56	17	38	$a b$	5	αc	8.5	5.5	16.0	11.0	4.31	3.05		5－6		
6	23	62	17	38	18	8	7				10	2.19	0.95		6	T．	W．
13	83	53	16	31	19	5	αc	6	5	19	11	5.55	3.05		5－6	1.0	W．
13	23	53	17.	38	19	5	25	11	6	13	12	5.18	2.62		5	2.0	S．W．
－1	22	61	18	45	2：3	4	ad	3.8	14.2	12.0	10.5	2.92	0.78		5－6		
12	23	57	18	34	27	5	11				9	2.96	0.73		$5-6$	6.1	S．W．
13	23	65	18	43	19	4	29	4	14	12	14	4.42	0.50		6		S．W．
-1	22	67	19	45	83		14	1	19	10	10	3.26	0.62		5	5.0	S．W．
12	23	52	15	44	23	4	ae	0	21	9	11	2.31	0.62		6	3.5	W．
11	23	59	± 9	37	18	6	21	8	10	12	12	2.58	0.35		11	4.4	S．W．
3	23	66	19	42	19	5	14	6	7	17	7	2.02	0.51		6	3.0	S．W．
13	30	51	15	39	19	3	$a f$	4.8	8．2	17.0	12.8	3.05	1.00		9		
20	30	50	16	35	19	3	20	4	3	23	9	4.81	1.00		9	3.5	S．W．
18	30	50	13	23	23	3	9	2	8	20	17	3.32	0.75		21	．．．．．	W．
18	30	53	18	38	19	8	29	6	7	17	12	2.281	0.62		21	4.0	S．W．
18	30	53	15	29	18	4	$\bigcirc 9$	3	12	15	18	2.49	0.53		21	5.5	S．W．
20	30	48	16	38	19	5	29	4	6	20	12	2.00	0.58		11	2.5	S．W．
20	30	50	18	36	19	8	25				9	1.86	0.50		11	2.4	N．W．
13	30	56	17	30	18	7	22	13	4	13	9	3.07	0.88		10	T ．	
20	20	50	14	27	18	5	12	2	7	21	15	3.95	0.87		11	5.6	S．
18	20	49	16	33	19	6	14	5	11	14	14	3.60	0.99		11	2.0	S．W．
21	301	49	16	89	19	5	29	5	14	11	11	3．24	0.93		10	1.5	S．W．
20	30	50	11.	24	5	3	13	4	10	16	15	2.90	0.59		11		S．－S．W．
18	30	50	16	39	19	5	bb	4.7	13.0	12.3	8.7	2.60	1.11	13.00	5		
18	30	52	16	37	19	7	27		21	9	5	2.88	1.11	13.00	5	2.0	N．W．
20	30	50	18	38	19.	8	c	10	5	15	8	2.92	0.71		21	3.2	S．
22	30	47	15	39	19	5	$b b$	4	13	13	13	2.00	0.88	14.30	5	T	S．E．
-1	22	53	17	45	23	2	$b d$	5.9	9.5	14.6	10.8	3.31	3.80		5－6	2.9	S W．

graph．\｜Report received too late to be used in computing means．The means from the ＋Blank indicates that the duration is not shown in the original records，but is within twenty－
（i） 8,29 ；（ j ）18， 27 ；（k） 23,30 ；（ m ） $5,17,27$ ；（ n ） 15,23 ；（p）$\tau, 15$ ；（q） 14,$15 ;(r) 15,19 ;(s) 27,30$ ； 18，19；（ac）8， $2 \mathfrak{3}$ ；（ad）14， $25,20,30$ ；（ae） 25,$30 ;(a f) 9,13,29 ;(b b) 13,14 ;(b c) 13,27,30 ;(b d) 13,28$ ．

Temperature - November, 1896, Showing Daily Means for the

Regions, and Daily Maxima and Minima for tie Stations.

STATION．	1	\sim	3	4	5	6	7	8	9	10	11	12	13	14
Northern Plateau．	47	41	39	46	52	44	42	40	33	31	40	38	32	${ }^{2}$
Saranac Lake	53	46	34	55	61	41	50	37	36	40	48	41	34	39
Saranac Lake	38	$\because 7$	29	41	39	35	36	30	29	32	：38	：1	20	20
Glorersville	58	5\％	54	50	61	60	53	46	41	4：	52	45	37	32
Glorersrille	3 k	3.1	30	34	48	40	38	34	31	2.	35	35	32	25
North I	57	33	46	59	5.5	59	38	50	37	34	38	45	38	32
North	35	31	29	30	44	35	34	36	27	2 n	－8	3.	30	19
	57	511	51	55	60	53	51	49	37	41	53	45	37	$\stackrel{29}{ }$
Lowvill	38	35	28	43	50	36	35	36	30	$\because 9$	34	37	29	21
Number	55	$4!$	62	24	59	48	50	47	33	39	4：3	38	：4	28
Number	37	33	30	44	47	3.4	35	31	26	27	33	34	26	19
Atlantic Coas	55	55	51	52	58	52	50	50	$4: 3$	42	47	51	42	35
	60	tis	60	（i）	63	54	58	55	48	$\therefore 10$	57	85	47	40
	53	47	45	49	58	45	4 i	49	40	35	39	40	39	32
Manhatan Beach．	71	59	70	56	69	62	54	56	54	48	if	58	54	46
Manhatan Beach．	52	49	44	46	54	46	＋4．	44	38	36	36	50	318	32
	611	70	56	58	61	59	62	5.5	49	51	co	5	4	38
New lork City	51	47	47	50	57	44	44	42	37	：3	4.5	45	3.5	31
Willet＇s I＇	60	78	82	60	（0）	59	（\％）	69	51	5.5	50	611	49	41
Winets	4＊	44	45	． 31	45	411	39	4．）	$3:$	33	30	46	3：	28
	68	70	60	66	fix	（i）	（3）	130	50	51	1；	6.4	$4{ }^{4}$	： 8
B	45	$\because 1$	： 2	45	\therefore ；	$!\cdot$	3 3	！．	： 2	\therefore	\because	1.7	：	\because
Setal	81	67	54	59	6.4	$6!$	（i）	5x	49	$4!$	（i）	E；	48	39
Setal	43	44	4 t	415	5.5	4.5	$4:$	48	42	3t	4	4	二．．）	\therefore ？
B	61	69	65	51	$6: 3$	63	6）	5	\％	\therefore	$\therefore 1$	5	$+!$	4.
	4.	33	33	17	5\％	43	11	44	39	\because	： 1	39	$\bigcirc 9$	\because
Primrose	6.3	$7 t$	5	37	Hi3	5	5	54	49	\％	St	1）	$\bigcirc 11$	41
Primrose	4：－	32	34	34	411	45	$\therefore 4$	41	37	$\because 6$	．．3	3	31	31
Hudson Talley－．．	52	51	47	42	\％	只	48	46	：0	37	4	4	38	32
	59	57	51	55	$6{ }^{6}$	万k	51	52	46	＋11	34	$4 \times$	4.8	36
	45	43	36	$4 \underline{1}$	51	47	44	3）	34	：31	± 2	411	： 4	38
	56	54	55	54	6	$6: 3$	\％2	6	4．	4.3	砣	5	$4:$	：3
Lebanon springs	40	32	28	37	47	± 1	$\therefore 9$	3	28	\because	：10	：3	\because	$\therefore 5$
	5x	86	5	if	iis	\％	\％${ }^{\text {\％}}$	49	24	$21 ;$	\therefore ：	4	I＊	33
Honesmead brook	43	：37	3.	35	47	$3{ }^{\circ}$	$\because!$	411	310	－ 4	：$\%$	？	$3 \times$	$\because 2$
	513	70	（1）	50	（i，），	58	62	$4!$	15	4	3）	48	45	40
Poughzecp	4）	33	31	40	72	41	3.5	31	28	$\because 4$	3：3	3.5	${ }^{2} 6$	$\because 3$
	62	68	7	\therefore	7，	74	69	54	48	$4 \hat{5}$	it	5.5	45	S8
Wappingers Fains	44	38	34	14	4	40	38	± 4	33	$\because 6$	$: 36$	319	34	28
Catskill	Sti	63	ix	51	6.5	4.4	5，${ }^{2}$	in	47	4	56	\square	17	37
Catskill	44	41		45	5u	A．	32	41	3．	：$!$	綡	34	34	38
West I	73	60	62	58	± 1	64	5	¢0	51	47	48	36	$4 \times$	41
West 1	48	46	38	42	50	4：3	41	45	：3	$\because 9$	3.5	4.3	3：	36
Carmol	ti_{2}	66	$6 \cdot$	5） 4	（i）	（i）	63	碞	46	49	3	50	44	37
Carmol	4＊	39	33	4：	45	34	44	34）	：	$\because 4$	89	29	26	24
Mohawk I	50	49	（1）	： 11	49	40	46	36	361	36	44	41	： 11	34
St．Johnsvillo													＋1	39 38
Rome	57	58	5.8	5	til）	45	51	43	43	4.3	\because	45	：36	40
rome	43	43	46	44	68	35	33	2x	2 x	： 2	：3	24	$\because 4$	$\because 4$
Champlain Tralle？	51	41	43	$4)$	51	5	46	4.3	37	3is	$4:$	41	39	31
Plattaburgh Bracks	63：	59	\＄1	49	5\％	57	$4{ }_{4}^{4}$	51	44	43	43	54	47	36
Platsom．ohkr	43	$4:$	$3: 3$	8	85	（i）	40	40	：311	32	i34	41	33	3
Gleas Falls．	411	56 $3!$	8if	50	60 4	61 4.3	5	48	4.3 27	4：3	U！	4.1 3.5	18 3	35
Lakerieorice	59	61	$\therefore 1.1$	\therefore	6.4	63	59	45	4．	$4{ }^{\text {i }}$	3	$\therefore 1$	4	36.5
H2kericore	42		$3: 3$	－	$4!3$	44	37	83	$\because 9$	$\because 9$	37	35	34	$\because 5$
St．Lawrence Val	80	47	44	18	56	46	43	40	37	38	44	43	36	29
Madison Barracka	6.3	61	52	61	01	（6：3）	$5 t$	45	4.5	47	46	51	\％	35
Makion Bartacke	47	4.3	3%	34．	49	10	38	34	38	35	41	4：3	33	24
Watertow	61	54	58	66°	¢is	4	55	48	39	43	52	43	4%	32
Watertow	44	40	33	$: 6$	$4 \times$	34	33	34	29	30	34	36	$: 9$	24
Canton	58	5			（i3）	50	54		43	40	$5 \underline{2}$	45	37	$\because 0$
Canton	43	34			39	39	35		30	30	35	36	27	26
Massena														

Maxima and Minima for the Stations - (Continued).

15	16	17	18	19	20	21	${ }^{28}$	23	21	25	26	3%	28	29	30	
34	45	51	49	37	20	23	23	20	36	34	46	55	4.7	28	21	375
45	59	59	63	32	25	30	22	45	45	45	61	65	42	25	25	35.8
34	45	$\because 9$	32	10	12	20	-1	2	30	25	43	41	22	21	14	30.8
50	60	62	57	63	30	32	37	34	48	38	46	65	58	36	29	39.6
24	34	53	42	30	18	17	20	10	33	31	33	38	36	27	20	39.6
35	43	55	55	59	34	24	35	24	39	42	46	54	61	48	24	36.0
19	28	32	45	84	10	12	21	6	11	28	31	46	38	22	18	36.0
49	60	60	64	54	${ }^{2} 8$	33	36	34	45	37	66	65	63	33	25	39.0
21	34	50	38	26	13	18	15	4	32	28	34	55	33	23	20	30.
44	56	63	61	60	26	35	35	35	43	35	61	63	59	29	21	37.2
20	32	45	38	18	9	11	11	7	31	28	34	54	39	$\stackrel{1}{1}$	17	31.2
40	51	57	56	50	38	38	41	35	48	44	51	61	56	40	31	47.2
52	62	69	61	60	53	46	46	4.	i4	50	0.3	7는	68	40	33	48.7
31	44	49	56	50	30	$3: 3$	41	2 N	45	40	47	53	$4{ }^{6}$	35	29	48.7
40	52	60	66	56	60	38	48	46	50	52	50	58	64	62	40	47.8
30	42	46	50	48	32	32	34	$\because 6$	30	$4{ }^{4}$	40	50	5%	38	28	47.8
52	64	70	62	58	37	46	46	48	59	49	59	70	67	40	31	48.0
35	43	49	52	37	32	31	33	29	41	43	47	54	40	31	$\because 7$	48.0
50	55	73	62	60	47	47	48	49	62	50	$5 \times$	72	58	49	10	471
36	40	48	45	34	迷	3 ?	30	$\because 9$	3x	39	4	53	34	29	$\because 3$	41
53	64	68	65	62	41	48	48	51	60	58	59	72		47	32	46.2
19	42	44	47	40	30	32	30	20	36	30	42	54		33	26	6.-
54	63	60	61	59	40	51	\% 48	43	59	51	60	68	6.5	44	36	48.4
29	43	51	51	40	:34	34	- 34	31	42	36	47	55	41	35	30	48.4
53	6 x	74	61	619	39	41	51	43	58	5:	55	70	(ti.)	4:	31	45.4
23	36	41	50	36	2.9	$2 \sim$	29	17	39	31	42	51	41	30	35	45.4
55	64	7:	呺	61	4.	89	4.5	41	58	46	. 77	70	$6{ }^{6}$	$4:$	35	45.8
2	33	35	47	4)	31	29	35	18	38	30	4.5	53	64	36	29	45.8
36	49	56	54	47	32	31	35	29	41	39	48	\%	51	37	29	43.4
50	63	67	59	60	31	40	42	41	ธ5	40	57	66	\%:3	8	32	44.0
30	40	50	43	31	22	24	25	$\because 0$	40	34	36	56	38	\%1	25	44.0
45	58	63	54	57	35	40	40	37	52	45	58	65	62	40	29	40.6
17	29	41	46	35	19	19	20	12	34	29	37	49	39	29	19	40.6
48	60	69	59	55	30	39	40	38	55	42	57	66	04	35	29	41.8
20	38	47	49	32	23	24	26	15	30	31	41	47	37	29	24	41.8
51	66	71	62	59	34	4:	45	42	60	43	$6 \times$	70	69	49	31	432
25	38	44	48	32	27	26	$\because 6$	16	40	29	42	44	39	$\because 9$	25	$43-$
54	63	31	63	77	38	33	45	42	50	47	58	68	64	41	34	
26	32	38	49	34	$\because 8$	29	28	$\because 0$	30	32	42	44	38	32	22	43.4
49	63	67	59	57	36	38	44	39	60	44	56	67	62	40	32	44.2
25	37	47	45	35	24	28	28	20	39	34	41	53	40	$3 \stackrel{ }{2}$	$\because 6$	44.2
37	55	63	70	61	61	33	47	46	45	58	52	59	69	65	39	44.0
26	34	40	45	42	40	28	28	$\because 0$	22	34	38	38	38	35	29	44.0
53	64	70	63	52	34	33	42	41	58	43	54	68	63	38	35	436
23	36	42	50	34	25	26	30	17	41	34	41	52	38	28	27	4.3
37	48	54	52	36	26	23	27	29	39	37	46	52	42	30	25	39.1
50	59	60	64	62	40	32	35	35	47	44	49	66	63	42	31	
24	34.	54	43	33	18	21	22	15	34	32	35	40	36	27	21	
48	55	62	64	39	28	35	33	45	46	42	60	64	43	30	30	39.1
25	42	39	39	11	20	23	18	20	30	31	40	40	27	21	17	39.1
36	43	53	47	42	24	23	27	22	37	35	38	53	52	38	29	40.1
35	47	6.4	68	60	38	2.5	39	27	41	47	38	53	64	52	34	39.0
25	31	30	30	30	14	14	25	6	10	27	23	36	48	30	25	39.0
50	58	65	53	59	27	32	35	34	48	35	49	65	60	40	34	40.2
25	33.3	46	38	28	18	15	15	13	33	30	30	47	40	30	22	40.2
53	57	66	55	55	29	34	36	38	54	37	53	66	61	43	36	41.2
25	34	47	39	17	17	17	19	13	33	32	34	48	39	30	22	41.5
37	44	50	49	41	22	27	23	24	41	33	40	55	48	31	26	39.6
42	51	62	62	67	38	34	38	29	47	46	38	68	61	50	38	41.2
26	32	49	34	34	14	17	24	12	24	29	26	35	43	28	21	41.2
48	61	62	68	68	31	33	31	40	50	50	78	67	65	$\stackrel{29}{ }$	$\because 6$	41.2
25	33	40	34	25	16	25	18	- 13	30	27	46	53	40	25	21	41.2
46	61	62	64	60	27	30	30	40	43	35	54	66	60	31	$\because 8$	37.0
30	33	34	28	16	12	22	-1	-5	32	22	26	53	30	23	19	37.0

Dally Means for the Regions. and Daily

[^17]Maxima and Minima for tie Stations－（Concluded）．

15	16	1\％	18	19	20	21	22	23	24	25	26	2%	\％8	29	30	$\begin{aligned} & \text { 上g } \\ & \text { 需 } \\ & \text { g } \end{aligned}$
46	56	60	60	60	28	34	36	56	60	36	54	（i）	56	36	28	
36	36	40	32	30	$\because 0$	$2:$	20	12	36	32	32	51	36	26	24	41.1
47	54	62	67	47	$\because 7$	36	32	39	50	50	39	70	58	40	30	
30	32	35	30	18	14	20	16	11	35	24	24	35	：30	23	20	398
45	58	52	60	59	23	29	$\because 6$	33	46	$\because 9$	35	64	69	32	41	
26	$\because 8$	39	44	17	11	21	7	3	33	$\because 1$	24	30	33	$\because 3$	19	37.1
44	59	55	57	41	29	34	33	37	45	42	57	58	$41)$	28	24	43.1
54	58	64	68	65	38	46	39	50	39	63	70	6\％	56	311	3	
34	52	50	\％2	30	35	23	33	29	$3 \times$	3.	58	53	28	3	30	44.8
51	60	59	64	43	31	44	36	50	it	52	68	68	46	27	24	
40	$5 \times$	48	45	$\because 5$	25	$\bigcirc 9$	27	$\because 7$	35	35	511	46	$\because 27$	21	18	430
54	6.	65	71	63	35	48	4）	47	52	43	69	69	55	32	28	
35	44	48	41	$\because 3$	\because	98	88	24	$3:$	32	41	56	30	$\because 4$	18	431
51	6．5	（6）	71	46	34	40	3.5	41	5	42	69	69	48	示	$\because 5$	
35	48	43	42	23	23	29	2 x	$\because 8$	35	：35	42	53	2 L	$\underline{4}$	1 N	42.0
55	if	6is	Bi8	64	36	37	36	50	44	4.	67	67	．19	31	26	
3：	$: 8$	49	4.	26	2．	2.5	39	$\because 4$	36	34	4：3	$\therefore ;$	29	25	3	4.6
55	43	（i）	138	¢7	48	$3+3$	40	． 50	57	42	70	69	－9	4.5	37	
35	45	48	43	31	23	96	：30	25	41	34	411	25	311	24	20	440
56	64	04	69	40	35	42	32	49	49	5	68	6.9	4．2	42	41	
42	49	46	34	22	23	：31	25	$\because 5$	35	39	46	41	บช	\because	13	42.6
52	64	62	718	52	32	$41)$	3.5	4.3	49	43	70	16	53	35	30	
34	42	44	4：3	27	\because	20	$\because 9$	$\because 4$	40	36	44	55	33	25	21	4：3．0
52	61	（62	67	6 6．	30	$\bigcirc 5$	3.3	411	47	：$\%$	196	64	㫙	$\because 3$	$\stackrel{7}{2}$	
26	34	45	44	29	18	22	26	21	38	3！ 1	34	515	33	$\because 4$	20	41.2
55	6．）	（6）	70	65	3：3	43	40	45	5）	49	＋8	6．4	59	31	≥ 9	13.8
35	4：	4.7	45	$\because 6$	23	$\because 9$	31	27	4：	36	46	\％	：1	$\because 4$	21	43.8
56	64	62	70	37	32	$4 t$	38	5：	51	（i：3	70	09	35	29	26	
36	5%	57	56	32	27	$\because 2$	35	31	42	39	59	48	31	$\because 4$	20	44.0
$4{ }^{\circ}$	Sis	57	610	415	29	36	37	34	44	44	5is	4i）	4	30	$\because 4$	443
56	67	62	70	63	81	4.	43	41	49	52	69	65	133	33	27	
27	45	53	49	25	19	$\because 5$	29	24	37	37	$51)$	¢8	31	24	18	4． 0
56	65	63	70	66	41	45	46	46	49	49	70	66	63	35	28	
27	43	50	$4 \times$	$\because 8$	30	26	28	25	35	35	42	58	32	35	20	44.2
56	6.3	（63）	69	66	31	45	45	40	51	54	68	66	63	34	28	
31	46	51	51	27	$\because 4$	30	31	26	40	37	51	57	34	27	28	$4+.7$
38	50	55	54	43	27	31	31	29	4.	39	50	58	48	31	$\because 6$	41.9

too late to be used in computing means．

Daily and Monthly Precipy

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Western Plateau.	0.00	0.00	T.	0.06	0.33	0.03	T.	0.02	0.01	'1.	0.59	0.01	0.11	0.04
Alfred..				' T	. 40	T.	. 01		01		49		. 09	. 10
Angelica					. 18			T.		. 86		. 20	
: Bolivar					. 53									
Friendship			T.	38	T.	'		T.		. 80		. 11
Frantlinvill				T.	. 27	T.	T.		. 04		. 90		. 12	. 01
Humphres					. 27	T.	T.		. 01		1.05		22	. 15
Little Valley														
Cherry Creek					. 25	08	T.		. 09		. 97		. 40	. 05
Jamestown				T.	. 36	T.		\ldots			. 86		. 20	- 10
Elmira.				65	. 35						. 28			
Pine City					. 10						. 18	11	${ }^{0} 2$. 05
Akron				. 08	. 10	. 30	T.	. 08	. 03	T.	--	1.	T.	
Avon					. 33 40		. 05	. 14
Mt. Morris.					. 40			'		\ldots	. 80		T.	10
Lockport				T.	. 13	. 12	.-.	25	T.		. 72		T.	T.
Victor.				\ldots	---		---		- .-.			
Tyrone						-				\cdots	...			
Wedgewood				. 03	. 97	---	T.				. 32		. 05	
Addison				T.	. 41	...	T.				.23		T.	. 01
Atlanta.			\cdots		. 45						. 55		12	
Haskinvil				T.	. 40	\ldots	'T.				. 50		. 05	\ldots
Sonth Cani				T	. 55		T.		T		. 40		. 11	
Arcade				T.	. 20	T.	T.		. 01 97		$\therefore 6$	T.
Attica.						---								
Tarysburgh														
Eastern Plateau	000	0.00	0.00	0.05	1.45	0.10	0.01	0.12	0.00	0.00	0.26	0.01	0.08	0.07
Binghamton (1).				. 06	1.32	' T .		06			. 14	. 04	. 10	
Binghamton (2).	\cdots	 05	. 81			T.			1:'	01	. 09	. 01
Chenango Forks...														
Oxford.............			\cdots	...	1.15	02	\cdots	. 06	\cdots		.		. 11	T
Cortland				. 03	1.12	-...		. 28		\ldots	. 60		. 08	. 06
Bloomville				1.48		---	. 25			. 57			. 05
Deposit.														
South Kortright					1.47			*	+. 53	\cdots	. 19		-10	--.
Brookfield														
Hamilton														
Apulia ...			--.	\ldots	-...		\cdots	\ldots	\cdots					
Middletown														
Port Jervis					1.85	1.16		. 33			14		. 17	
Warwick					1.40	40		. 32			10	. 07	. 03.	\ldots
Cooperstown					1.95			. 18			. 27		-08	
New Lisbon					1.78	...		08			$\because 1$. 15	
Oneonta				. 24	89		14	10			. 12			
Perry City					. 72		T.				40		. 15	. 55
Newark Valley.				. 10	1.20						. 35.	T.	. 02	T.
Straits Corners.					1.46	T.					. 38	' 1	. 11	. 14
Waverly.				. 16	1.30		. 01				. 18	. 02	. 05	-25
Dryden.				...										
Mobonk Lake					3.28						. 31			
Northern Plateau.	0.00	0.00	0.00	0.01	1.84	0.06	0.01	0.22	0.03	002	0.53	0.00	0.09	T.
West Chazy ..														
Elizabethtown														
Saranac Lake					55	. 06		29	06	T.	. 17		. 07	'T.
Gloseraville				. 02	2.56	13		. 18			. 38		. 01	. 01
North Lake					2.00	. 01					. 80			
Lowville				. 02	1.39	. 10	. 06		. 10		. 89		10	
Number F					1.06		†. 16	T.	...	14	. 60		. 16	
Kingsstatio				2.50 85			. 33		. 20	

tation for Nuvember, 1896-(Inches).

Dally and Monthly Prectipi

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Atlantic Coast.	0.00	0.00	0.00	0.07	1.37	0.01	0.00	T.	- 00	0.00	0.17	0.16	0.06	0.02
Brooklyn.					1.19	T. 22	. 11	. 02
Manhattan Beach..					-10	. 10						+. 22	20	
New York City					4.3	. 01		T.			15	. 08	T.	
Willet's Point.				54.	. 84							30	T.	--.
Brentwood					200						. 50	. 60	. 10	
Setauket				T.	1.40							0	-13	12
Bedford				'T.	329			01			. 12	02	'T.	
Primrose					1.71			T.			20	T.	T.	
Hudson Valley	T.	0.00	0.00	T.	1.25	0.18	0.00	0.29	T.	0.04	0.11	003	0.06	T.
Albany 56	. 26		. 36			. 08	. 01	. 03	T.
Lebanon Springs					1.45	49		20			. 09	T.	*	$\dagger .15$
Honeymead Brook				T.	68	25		18			16	. 03	20	
Poughkeeptie....					. 86 19			18	T.	T.
Wappinger's Falls	T.			T.	82	62		. 2 ?	. 04		18	02	. 14	
Catskill....					2.56			. 41			. 13	T.	. 08	
West Point						+3.80		\star	$\dagger .08$. 04 03
Boyds Corners														
Carmel					1.93						17	1.	. 08	
Southeast Reserv'ir													..	-..-
Eaglo Mills.					1.00			. 45			. 15			
Easton					1.36	--		56		26		. 16	1	
Mohawk Valloy	0.00	0.00	0.00	0.45	0.52	0.00	0.00	0.06	0.00	0.45	0.09	000	0.08	0.00
St. Johnsville					. 63			. 11			09		-18	
Rome				. 90	40					90	. 09		. 07	
Champlain Valley	0.00	0.00	0.00	0.00	1.93	041	T.	0.40	0.08	0.00	012	0.01	T.	T.
Plattsburgh B'rcks					. 11.	. 95	'1.		. 25		T.	. 02	T	'1.
Glens Falls........			-		3.05	.12		. 64			. 19			
Lake George					2.62	.16		. 57			.16		T.	T.
St. Lawrence Valley	0.00	0.00	T.	0.03	0.32	0.47	0.02	T.	0.10	0.11	027	T.	$0.0{ }^{*}$	T.
Madison Barracks.				22	-...	. 73			25		. 66		. 15	
Watertown					. 46	. 50			46	22	42		4	T.
Canton					62	. 12	T.			28		T.		T.
DeKalb Junction..					. 53	. 36					. 29			
Massena														
North Hammond.			 62	. 16	.02		. 27				
Ogdensburg			T.	.	*	+ 83					35		02	T.
Potsdam					*	$\dagger .51$. 20			1.
Grat Lakes	T.	0.00	0.00	0.08	0.35	0.04	T.	0.02	0.08	0.11	0.64		013	0.04
Dunkirk.														
Westfield				T			T.		100		1.00		T.	
Buffalo				. 06	29	. 07	. 01	13	. 09	T.	. 69		. 02	
Adams Cen									. 18		56			
Pittsford				\cdots	. 29	. 06				T.	60		1	. 34
Rochester				. 01	. 30	. 05	T.	T.	T.	T.	. 54		. 25	. 17
Scottsrille						.-.								
Appleton				03	. 03			02	T		. 58		14	
Fort Niagar					.10			T.		'T.	. 50		. 05	
Niagara Falls.				. 06	.11	10		10			. 49		. 04	
Baldwinsville				. 65	. 34					. 88	. 0.5		. 06	
skaneateles..					. 51						. 41		. 10	
Ridgeway ..		\cdots							 59		. 06	\ldots
Demster		\ldots									. 96		24	
Fulton					1.01						. 93		. 30	
Orwego.				T.	. 56	T.	I.				. 77		. 42	1.
Palermo	T			. 10	. 82		. 05				. 99		. 15	
Phoenix					1.12	. 40					. 85	. 05	. 03	16
Lyons				. 57	. 02					93	T.	T.	15	
Rose.				T.	. 64	T.					. 92		. 40	
Erie, Peunsylvania		 04	. 07	T.	. 01	T.	. 20	. 08	. 59		. 04	. 01

tation for November -- (Contimued).

Daily and Monthly Precipi

[^18]tation for November - (Concluded).

15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	シ
0.00	0.01	0.02	0.03	0.02	0.00	0.2*	T.	0.06	0.32	0.11	0.00	0.11	0.14	0.00	T .	2.32
						. 27			1.10	. 20						2.88
	--..	. 03	. 13			33		. 30	. 06	. 02 30	. 11			2.14
....	. 03	. 07 04	\cdots	. 0	. 03	. 05	\ldots14			1.67
		T.				71			. 39	21		.13				$\underline{2.92}$
		. 02		. 08		. 06	. 02	T	. 03	. 18		. 10	. 1			2.00
0.01	0.01	0.01	0.08	0.03	T.	0.33	0.04	0.06	0.20	0.15	0.07	0.12	017	0.06	0.05	3.34

* Amount included in next measurement. + Not included in computing averages.

19

and Precipitation－November．

gTATION．	COUNTY．	Precibitation－（Inches）．									
						8000000000000		Extremis of monthly PRECIPITATION FOR November．			
								Greatest．		Least．	
								ت゙ ह̈ 范	$\begin{gathered} \text { 㘳 } \\ \text { N } \end{gathered}$	$\begin{aligned} & \text { 范 } \\ & \text { O. } \end{aligned}$	誌
Western Plateau Angelica Humphrey Elmira		259					－0．46				
	Allegany	2.55	11	1871	1896	2.08	－0．47	4.27	189	1.64	$18 i 1$
	Cattaraugus	3.27	14	1883	1896	2.93	－0．34	6.23	1886	1．64	1894
	Chemung．．．	1.36	16	1851	1896	1.40	-0.56	4.19	1859	0.31	1861
Eastern Plateau．．．．．．						3.46	＋0．58				
	Chenango	2.76	26	1829	1896	2.66	－0．10	4.95	1852	0.91	1831
Cortland Cooperstown Port Jervis Waverly	Cortiand ．	3.21	19	1850	1896	3.17	－0．04	5.60	1851	1.91	1893
	Otsego	3.07	43	18.54	1896	3.56	＋0．49	5.38	18：8	1.45	1876
	Orange．	3.01	12	1880	1896	5.31	＋2．30	5.31	1896	1.12	1883
	Tioga．．	2.34	15	1882	1896	2.58	＋0．24	5.90	1859	0.91	1883
Northern Plateau Lowville ．．．．．．．．		3．30				4．78	＋1．18				
	Lewis	3.30	33	1827	1898	4.78	＋． 148	5.24	1830	1.40	1827
Atlentic Coast New York City Setauket		4.22				$\stackrel{7}{2} 6$	-1.55				
	New York	3.74	27	1870	1806	2.12	-1.62	9.82	1889	0.82	1530
	Suffolk	4.69	12	1885	1×96	3.21	－1．48	8.22	1892	0．74	1890
							－0．53				
Albany Honeymead Brook．	Albany	2.40	23	1874	1896	1.80	－1．10	5.40	1886	0.91	1893
	Dutche	3.00	16	1881	1896	2.24	-0.76	4.86	89 ＇02	0.80	1890
Honeymead Brook．．． Pougnkeepsie		3.11	21	1830	1896	1.45	－1．66	\％ 00	1830	0.80	1890
Poughkeepsie West Point． Boyds Corners	Orange	4.04	48	1840	1896	5.10	＋1．06	10.02	1816	1.05	1844
	Putnam	4.16	26	$18 \% 0$	1896	3.96	－0．80	8.45	1089	1.12	1890
Champlain Valley．．．． Plattsburgh Barracks．		2.38					－0．1．				
	Clinton	2.38	37	18.40	1896	2.19	－0．19	4.39	1885	0.51	1882
		2.82				2.43	－0．37				
St．Lantrence Valley．． Malone． Madison Barracks	Franklin	2.87	16	1830	1＋95						
	Jefferson．．．．．	2.95		1840	1896	2.96	＋0．01	10.02	1889	1.2π	1870
Madison Barracks ．．．． North Hammond．．．．． Potsdam	St．Lawrence．	3.26	18	1866	1896	2.31	－0．9．3	0.78	1866	1．72	1874
	＂،	2.18	28	1828	1896	2.02	－0．16	4.10	$1+89$	0.15	1836
Great Lakes ．．．．．．．．						3.02	－0．29				
Buffalo．．．．．．．．．．．．．．．．．	Erie	3.53	27	1870	1896	3.32	－0．21	6.05	1846	1.82	1894
	Monroe	2.83	27	1870	1896	2.49	－ 0.34	5.46	1877	0.80	1887
Fort Niagara ．．．．．．．．．	Niagara	2.39	41	1841	1896	1.86	-0.53	4.82	1842	0.54	188\％
	Oswego	3.39	26	1871	1496	3.95	$+0.56$	6.45	1880	1.78	1883
		3.62	37	1860	1896	3.60	-0.02	6.60	1566	1.01	1882
	Erie		24	1873	1896	2.90	－1．18	8.35	1879	1.90	1894
Central Lakes ．．．．．．．． Ithaca \qquad						2.00	－0．4．5				
	Tompkins	2.45	18	18.9	1896	2.00	-0.45	6.03	1886	1.25	1880．
Average departure．．							－0．23				

MAP OF THE STATE OF NEW YORK

SHOWING

THE MEAN TEMPERATURES

MAP OF THE STATE OF NEW YORK

SHOWING

THE PRECIPITATION

SCALE OF MILES

Meteorological Summary for December, $\mathbf{1 8 q 6 .}$

The average atmospheric pressure (reduced to sea-level and 32 degrees Fahr.) for the State of New York during December was 30.18 inches. The highest barometer was 30.36 inches at Albany on the 27th, and the lowest was 29.44, also at Albany, on the 9th. The highest mean pressure obtained over the eastern-central section, and the lowest in the vicinity of Lake Ontario. The average pressure at 6 stations of the National Bureau was 0.10 inches above the normal, the greatest excess being 0.13 inches at Albany.

The mean temperature of the state, as derived from the records of 75 stations, was 25.3 degrees; the highest local monthly mean being 32.8 degrees at Setauket, and the lowest 16.1 degrees at Saranac Lake. The highest daily mean for the State was 41 degrees on the 6 th and 13 th, and the lowest was 5 degrees on the 24 th. The maximum temperature reported was 69 degrees at Waverly on the 6th; the minimum being 20 degrees below zero at North Lake on the 22d, at Saranac Lake on the 25th, and at Wappingers Falls on the 26th. The mean monthly range of temperature for the State was 58 degrees; the greatest range, 80 degrees, occurring at New Lisbon, and the least, 44 degrees at Arkwright and Erie, Pa. The mean daily range was 15 degrees; the greatest daily range being 50 degrees at South Kortright on the 29th, and the least, 1 degree, at Brooklyn on the 23d. The mean temperatures of the several regions were as follows: The Western Plateau, 27.5 degrees; the Eastern Plateau, 25.9 degrees; the Northern Plateau, 19.3 degrees; the Atlantic Coast, 30.4 degrees; the Hudson Valley, 25.3 degrees; the Mohawk Valley, 24.1 degrees; the Champlain Valley, 21.8 degrees; the S t. Lawrence Valley, 21.8 degrees; the Great Lakes, 28.9 degrees; the Central Lakes, 27.9 degrees. The average of the mean temperatures at

26 stations possessing records for previous years was 1.7 below the normal; excesses being reported only from 4 stations located in western New York.

The mean relative humidity for the State was 76 per cent. The mean dew point was 21 degrees.

The average precipitation for the State was 1.43 inches of rain and melted snow, as derived from the records of as stations. The greatest general precipitation ranged from 2 to 4 inches to the east and southeast of Lake Ontario, in the extreme southeastern counties, and orer a small area of the highlands near Lake Erie; while over a narrow strip (xtending from Orleans to Chemung counties less than 1 inch fell. The maximum local precipitation was 3.82 inches at Demster, Oswego connty, and the minimum was 0.35 inches at Eagle Mills, Rensselaer county. A list of the heariest rates of precipitation will be found in the accompanying table of meteorological data. A moderate snowfall occurred notio the Great Lakes on the 1 st and $2 d$. but the first general precipitation of the month occurred on the Sth and 9th, falling as snow in northern New York, and generally as rain in the remainder of the State. A considerable snowfall occurred along the coast on the 16th; in western New York from the 18th to 21st, and throughout the state on the 23d. The ayerage total snowfall for the State was 8.6 inches. The maximum amount ranged from 10 to 17 inches in the coast region, and over a large portion of western New York and the Northern Plateau. The greatest local snowfanl was 17.7 inches at Bedford, and the least, 1.7) inches in the ('hamplain Valley. The arerage precipitation at 27 stations possessing records for previous rears was 1.39 inches below the normal, deficiencies occurring at all stations. The precipitation was the least on record for I erember at Humphrey, Elmira, Port Jervis and Buffalo.

The average number of days on which the precipitation amounted to 0.01 inches or more was 6.6 ; the maximum number occurring in the (ireat Lake Region and the least in eastern New York. The average number of clear days was 9.1 ; of partly

ness of 5. per cent. for the State. The greatest cloudiness obtained in western New York, and the least in the sontheastern section.

The prevailing wind direction was from the west. The arerage total wind-travel at 6 stations of the National Burean was 8.97? miles, being above the asual values at all stations. The maximum relocity reported from the above stations was mimiles per hour at Buffalo on the 9th.

No thunderstorms were reported this month.
Hail fell on the 6th, 9th, 10th and 15th, and sleet fell on the 15 th.

Lunar halos were observed on the 12th, 13 th, $14 t h, 15 t h, 16 t h$. 17th, 18th, 19th and 20th.

General features of the weather:- The arerage temperature for December was slightly below the nomal, sharply defined cold periods at the opening of the month, and from the 15th to the 2Sth, alternating with unseasonably mild weather. The total precipitation was exceptionally light, especially in westerncentral New York, and the ground was generally bare of snow for the greater part of the month, although in portions of the Western and Northern Blateaus a week to ten days of sleighing was reported during the latter half of December. The number of fair days was somewhat greater than usual for the winter months.

Five areas of high and nine areas of low pressure influenced our weather conditions this month. The number of low pressure areas was somewhat less than the usual storm frequency for December, and few of them attaned great intensity. Five depressions passed eastward beyond the northern border of the state on the 6th, 13 th, 19 th, 26 th and $30 t h$, on all of which dates a marked increase of temperature occurred; but the accompanying precipitation was light excepting at the time of passage of the third low, when a moderate showfall occurred in western New York. A cyclone passed northward far beyond the coast line on the $3 d$, coincidently with a decided fall of temperature in this vicinity. On the 9th to 10th a depression formed over New England, developing rapidly, and giving heary rain and high winds over New York. A second severe storm passed along the coast
on the 16th, giving a considerable snow fall which was badly drifted by high winds. Finally, a low area of moderate energy passed eastward over Pennsylvania on the 23d, giving an appreciable snowfall throughout the State, and cold northerly winds.
The most noteworthy anticyclones of this month, like those of Norember, were offshoots from nearly stationary areas over the western part of the continent. The first high moved eastward to the Great Lake Region on the 2d and 3d, bringing a severe cold wave of brief duration. The second high area was confined mainly to the southern States and coast, and tended to raise the temperature over the northern States. The third anticyclone dereloped to the northward of the Great Lakes on the 14th, bringing a decided depression of temperature which was continued by a series of waves of high pressure spreading eastward from a strongly developed high in the northwest. The pressure increased over nearly the entire continent until the 27 th, when the area mored off the coast, while a general rise of temperature occurred in its rear. The last anticyclone developed in central Canada, and the colder weather due to it was begiming to be felt in this vicinity at the close of the month.

Reports from 39 stations show that only on the Adirondack Plateau was there an appreciable covering of snow on the ground on the 15th. On the 31st the depth ranged from 1 to 6 inches over portions of the Northern and Eastern Plateaus and along the Atlantic Coast. Over the greater part of the State there was not sufficient snow for a week's sleighing during the month.

Reports on the closing of streams were received from the observers at Binghamton, Cooperstown, Wappingers Falls, Caldwell and North Hammond. The Susquehanna froze over ou the 4th, was clear on the 6th and closed again on the 18th. The Hud son closed on the 24th and the St. Lawrence on the 25th, teams crossing on the ice on the 28th, but opened again on January 1st. Lake George closed on the 24th. On the 1st to 3d, Otsego Lake was covered by ice for a distance of two miles from the foot of the lake.

The observer at Perry City, Schuyler county, states that winter wheat appeared in good condition at the end of the month.

The severe cold wave which occurred in southeastern New York on the 25th and 26th deserves special notice. The maximum temperature on both dates was not much lower in southeastern New York than elsewhere, but at night intense cold developed throughout a strip of territory about 30 miles in width. and extending along the eastern portion of the State from Rensselaer county to southwestern Connecticut, and beyond to central Long Island. The minimum 20 degrees below zero, at Wappingers Falls, was much the lowest temperature in the 太tate on the night of the 26 th .

Meteorological Data.

for December， 1896.

TURE－（IN		N Degrees Fahr．）					Sky．				Precipitation－（Inches）．					
	$\frac{\stackrel{\circ}{\pi}}{\square}$				$\stackrel{\oplus}{\underset{\sigma}{\sigma}}$									$\stackrel{9}{\check{\leftrightarrows}}$	\tilde{W} E 合 0 0	
－11	27	57	14	12	28	3	$z_{1}^{18.6}$	9.3	13.1	7.3	1.39	0.91	$\left\|\begin{array}{c} h . m .0 \\ 21.00 \end{array}\right\|$	9		
－6	27	60	14	31	27	3		11	16	$13{ }^{1.8}$	1.64	0.70		8－9	12.4	S
－7	28	60	15	42	28	5	16	12	13	7	1.23	0.50		9	60	
－4	g	59	16	38	$\because 8$	6	187	6	18	6	1.38	0.70		9	6.0	W
－7	27	62	17	40	28	，	$a \mathrm{a} 7$	16	8	8	1.40	0.57		9	5.9	W
－11	27	63	14	42	28	3	188	$\bar{\square}$	18	13	1.61	0.91	2100	9	9.3	W．
4	24	52	15	31	2 n	5	22.2	13	16	7	1.62	062		8	10.8	s．W．
8	24	44	9	20	28	4	$a b \ldots$									
0	24	54	12	27	28	5	ac if	8	17	10	2.03	0.83		10	18.0	S．W．
－1．	28	61	13	32	28	5	718	1	12	，	0.61	038		8		
－5	26	60	15	38	26	3	ad ${ }^{6}$	13	13	3	0.79	0.72		9		
							－． 9	${ }^{6}$	16	5	1.50	0.60	9.00	8－9	8.0	N．
7	24	47	12	22	28	4	3015	7	9	7	1.35	0.48	19.00	9－10	4.4	W．
－2	27	64	16	32	27	6	11.8	16	7	7	1．42	0.40		23	7.	W．
－4	28	61	16	36	28	${ }_{7}^{6}$	1116	5	10	${ }^{6}$	0） 88	0.49	17.00	8－9	5.7	V．
－5	27	61	18	33	27	7	1614	11	16	10	114	0.65		8	4.2	
－1	＊	52	12	26	7	6	$a e^{3}$	10	18	10	166	0.88	24.00	8－9	9.8	
－15	28	64	16	50	29	，	af 8.5	113	113	6.5	1.34	1.00	22.00	ce		
－6	h	64	16	35	28	6	210	11	10	8	1.20	0.52	23.00		6.3	
-7	28	63	20	37	28	4	194	${ }^{7}$	20	10	0.77	0.28		9		V．
-11 -9	27	6_{64}^{64}	16	37 32	28 28	10	ay ${ }^{6}$	13 8 8	112	9	1．72	（1） 56		9	6.2	N．W．
－9．	27	65	16	32,	27	5	3112			11	2.32			9		
－11	27	63	19	50	29	8				3	1.37	1.00		10		
－8	28	62	16	34	28	4	1918	11	\because	6	1.14	0.0	17	－	7.5	W．
－7	h	60	13	35	28	3	912		13	5	1.21	053		9	3.5	S．
－15	28	80	19	42	28	5	16.9	8	14		0.95	0.57		9	8.0	S．
－5		60	16	35	28	6	161.				0.96	1） 42		8		
－8	27	62	16	29	13	3	7.6	10	15	7	1.40	048		9	8.0	W．
－6	27	60	17	32	28	7	117	17	7	6	143	$07+$	14.09	8－9	0.5	
－10．	28	79	20	47	28	6	16	17	10	6	1.01	0.62	16.00	8－9	5.3	N．W．
0	g	51	14	31	27	5	164	16	11	4	1.90	1.00	2200	22－23	9.5	V．
－20	k	64	17	48	r	2	$a h$ 8.8	86.0	16.2	－ 8.2	197	1.10		8		
－20	26	66	19	48	r	4	98	7	16	6	1.44	074		8	14.8	
－9	28	63	15	31	29	4	1013	2	16	9	1.67	078	． 10	9		S．W．
－20	22	64	17	40	22	2	ath 10	6	15	8	2.76	1．10		8	16．t1	N．
－18	24	68	17	35	27	4	106	11	14	9	1.46	060		9 8	140	S．
－15	24	61	17	33	28	4	（b） 7	4	20	9	2.59	0.85		8	17.4	s．
－12	28	5.5	16	46	28	1	$23 \mid 15.3$	3.9	78	8． 4.6	171	1%	22.04	16		
$+6$	28	47	11	2	29	4	1513	11	7	5	1.70	0.87	20.00	16	12.0	W．
+6 ．	24	48	12	19	s	4	3120	1	10	－6	146	0.60		23	120	N．E．

Meteorologicar Data

for December, 1896 - (Continued).

TURE- (IN L			Degrees		Fiar.).			Sky.			Prectitation - (Inches).						
$\begin{aligned} & \stackrel{\rightharpoonup}{z} \\ & \stackrel{y}{*} \\ & \stackrel{y}{*} \end{aligned}$												$\frac{\pi}{3}$		动	$\stackrel{ \pm}{\square}$		
	21	50	13	20	25	5		13	8	10	4	1.70	() 88	h. m.	16	12.6	s. W.
6	23	51	17	29	23	7	19				\%	0.90	0.36		8		N. E.
-9	25	62	23	40	28	8	be	18	5	8	4	2.70	1.20	22.00	16	17.0	N. W.
8	24	48	13	21	t	4		17	7	7	5	1.62	0.52	2.45	15	11.0	
-22	28	70	21	46^{1}	28	8		18	9	4	.	218	(1) 90	21.25	22-23	17.7	N. W.
-9	$\because 8$	63	19	39	28	4	2	8	14	9	3	1.47	0.70		16	140	
-20.	25	60	17	44	25	5	16	11.3	10.7	9.0	45	1.47	0.94		2		
-7	28	57	14	30	29	5	16	6	13	12	3	0.73	050		23	5.0	
-11	28	59	18	37	h	9	$b d$	8	10	13	4	0.91	0.50	21.30	9	7.5	N. W.
-11	25	60	16	34	u	6		9	13	9	5	1.47	0.90	17.00	8-9	5.7	s. W.
-8	29	60	18	35	29	6		14	10	7	5	1.67	0.68		8	6.5	
-20	25	70	20	44	25	8	$b d$	13	12	6	6	1.93	0.94		23	12.5	S. W.
-9	28	58	16	28	v	6	16	3	13	9	$\stackrel{2}{2}$	1.35	0.70	16.00	9	6.5	N. W.
-2	28	55	16	29	w	8	be				5	1.63	0.65		17	10.7	s W..
-. 7	28	58	16	29	x	6	$b f$	20	4	7	6	2.10	0.69	14.00	16	130	
-10	28	58	15	29	29	6	$b g$	80	15.0	8.0	11.0	119	0.57		9		
-10	28	58	15	29	29	6	bg	8	15	8	11	1.19	0.57		9	5.5	W.
-10	23	60	17	22	26	6	30				9	2.53	1.21		8		
-6	24	53	15	35	27	5	$b h$	13.5	4.5	13.0	3.0	1.07	0.90		9		
-5	24	55	15	3.2	27	5	c				3	0.87	0.81		9	T.	
-6		52	15	27	31	7		14	4	13		1.29	0.90		9		N. E.
-4	m	52	15	26	31			13	5	13	3	1.06	0.83	13.30	9	1.5	S. W.
-17		61	16	38		2	17	58	13.4	11.8	6.5	1.13	0.93		10		
-10	24	60	16	38	27	5	17				6	1.61	0.76	8.30	14	4.7	
-10	24	61	16	34	${ }_{28}^{27}$	5	23	3	25	3	9	1.48	0.93		10	2.4	S. W.
-17	g	66	18	38	28	6	cd	8	11	12	6	0.80	0.20	12.00	20	8.0	S. W.
-8	n	58	14	30	19	4	ce	-	6	25	7	1.02	0.56		9	4.7	
-12	24	62	18	33	26	7	cf	14	12	5	8	1.06	0.49	9.00	9	9.3	S. W.
-12	24	61	16	32	18	5	cg	4	13	14		0.83	0.49		18	6.0	S. W.
-10	27	50	12	35	26	2	19	4.5	7.5	19.0	10.4	1.69	0.86		8		
8	27	48	14	32	29	$\stackrel{2}{3}$	19	7	5	19	1	1.36	0.62		20	13.5	$\mathrm{S} \text { W }$
8	24	49	11	24	28	3	30	0	9	22	11	0.84	0.23		8		
3	28	52	13	32	28	5	ch	3	12	16	8	2.04	0.74		23	10.0	
8	24	47	12	25	28	4	19	4	5	22	15	2.21	0.72		23	139	S. W.
8	j	45	11	25	28	4	15	1	9	21	11	1.11	0.36		8-9	11.0	S. W.
10	24	46	11	29	28	4	15				4	056	0.27		8	1.0	N. E.
-3	26	59	15	35	26	,	7	13	2	16	8	1.72	0.86		8	3.3	
-1	24	54	13	$\because 3$	26	6	11		7	21	19	3.16	0.70		9	19.6	S. E.
-10	27	59	14	27	$\stackrel{3}{4}$	4		7	7	17	12	2.36	0.60	19.00	9	11.8	s. W
,	27	51	11.	23	28	4	7	5	10	16	10	1.64	0.70		8	7.6	N. W
14	23	44	a	21	28	1	7	2	9	20	11	1.56	0.44	.	8		S. W

Mereorological. Data

[^19]for December， 1896 －（Concluded）．

ture－（In Degrees fahr．）．									Sky		Precipitation－（Inches）．						
吾	$\stackrel{ே}{\Xi}$				$\stackrel{\oplus}{\tilde{\#}}$		$\stackrel{\text { É }}{\Xi}$					范	$\stackrel{\text { 范 }}{\stackrel{y}{y y}}$	$\stackrel{\text { B }}{\stackrel{8}{\pi}}$	$\underset{\sim}{2}$	岩	
	27	60	14	32	28	5	11		13.0		4.3	1.16	1）． 96	$k, \quad m .$	9		
0	h	59	14	32	28	5	11	6		8	1	0.40		．	23	4.11	W．
	27	60	15.	29	27	7	11	\checkmark		11	3	208	0.96		9	5.0	
	27	61	13	$\because 5$	28	5	ck	5		116	9	1.01	0.64	17．019	8－9	3.6	$\therefore \mathrm{E}$ ．
－20	p	58	15.	50	29	1	23	9.1	98	12.1	6.6	1.41	1.20	22.00	16	8.6	S．W．

thermograph．
Report received too late to be used in computing mears．The means from \dagger Blank indicates that the duration is not shown in the origival recorts，but is within twentr－
（k）22，26；（l）24，25；（m）25，27；（n）21，22，24；（p）22，25，26；（q）17，28；（r）26，28；（8）5，8，9；（t）4，
 30；（cf）10．30；（cg） 5,30 ；（ch）2，14；（ck）7，11；（ec）10，32， 23 ．

Temperature - December, 1896, Showing Dally Means for

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Western Plate	18	15	16	23	35	43	38	38	37	39	37	42	44	32
Alfrod	18	21	22	29	41	51	39	42	44	43	36	52	54	35
Alfr	12	0	0	11	24	34	32	33	32	33	33	82	35	22
Angelica	18	21	24	33	43	51	40	44	43	43	42	53	52	38
Angolica.	13	4	-2	122	27	30	30	32	33	33	32	32	38	24
	23	22	26	32	45	53	44	43	39	44	42	55	55	34
Bo	13	12	3	10	2 L	$\because 9$	29	33	31	31	33	29	26	25
ond	23	24	27	34	45	53	44	44	4.	44	41	55	55	43
ond	13	8	3	10	27	30	$\because 9$	34	32	35	33	33	35	22
Frankl	19	$2 \cdot$	24	32	4.	50	40	40	44	45	43	4	53	40
Frankid	12	9	-9	4	$\because 9$	40	36	34	32	32	33	34	37	27
	$\because 2$	27	32	30	42	54	43	41	41	46	39	55	56	35
Kump	11	11	5	13	22	37	33	33	30	34	32	32	34	24
Arkwright..			-	\ldots		\cdots		.	\cdots		-	.	\ldots	
	20	23	36	34	44	49							31	37
	15	15	12	17	31	31							37	30
mi	25	23	29	31	41	59	40	4.5	43	49	42	54	60	35
mir	18	14	9	14	27	37	35	33	37	38	35	34	42	28
	25	25	28	32	$\begin{array}{r}34 \\ 3 \\ \hline 18\end{array}$	41	40	4	40	43	45	55	53	50
	13	8	10	25	28	38	30	32	30	30	31	32	37	33
Mount Morris			.								\ldots	\cdots	\ldots	
ckpo	25	29	31	$\therefore 6$	47	49	40	44	40	45	45	54	47	38
ckp	14	12	15	20	32	35	32	3:	34	36	2.5	35	34	26
Victor.	\cdots		...		\ldots	\ldots	\ldots-.	
Wedg	22	21	30	30	39	62	39	410	42	40	38	50	60	38
Weds	12	6	\%	13	24	33	32	30	31	3:	32	30	36	18
dis	24	$2 \div$	28	32	43	\$6	43	43	45	47	42	53	57	38
Addiso	18	10	8	12	28	3.5	31	33	36	37	34	27	30	28
S	24	21	$\because 8$	32	46	54	41	43	46	47	42	56	56	39
Sound	13	2	1	-	$\stackrel{9}{4}$	32	29	32	32	32	30	30	33	22
Arcad	18	21	21	32	42	46	41	41	40	42	38	5	49	34
	12	4	-1	13	30	36	34	34	31	23	32	32	34	22
Eastern Plateav	20	${ }^{16}$	17	21	33	43	36	36	40		35	38	48	34
Binghamton	23	21	25	31	39	55	42	45	49	45	40	50	58	42
	13	15	27	34	74 41	54	$\stackrel{29}{4}$	41	34 50	43	39	52	36 56	40
Binghamton	15	14	10	11	30	36	32	32	34	33	33	31	39	22
or	24	20	27	30	40	50	39	40	45	41	39	48	53	47
	13	10	5	$\stackrel{8}{8}$	号	30	27	30	32	26	25	23	27	20
Cortland.	20	20	26	$\because 9$	39	54	44	38	46	40	39	53	56	55
Cortand.	14	11	6	12	28	37	32	31	33	33	30	29	38	29
Bloomville				\cdots										
South Kortri	21	17		29	40	49	44	44	42	38	39	45	52	46
		9		6	25	32	26	25	31	- 6	25	25	37	21
Brookfield						\cdots		...				
Middletown					\cdots			\ldots		\cdots	.
	26	24	27	34	42	48	49	41	4.7	45	41	48	54	43
	16	14	1:3	9	22	25	25	$\because 8$	3\%	:38	32	24	28	32
Cooperstown	$\because 3$	18	29	30	38	49	38	38	38	38	35	4	53	40
Cooperstown	17	11	5	14	30	35	32	30	3.5	30	30	36	35	22
New Lisbon	24	19	25	30	38	5 29	42	40	6.5	37	37	48	54	41
New Lisbon	14	10	-	7	28	33	29	26	31	27	27	24	25	17
	31	24	28	35	43	53	45	46	50	4	41	51	5.5	45
	19	15	10	14	3:	38	33	31	35	34	32	30	39	25
Perry City	23	22	25	30	40	53	35	41	45	43	39	49	54	38
			3	10	23	32	32	:310	31	29	26	27	25	18
Strail's Corner	25	23	26	29	37	51	35	40	44	4.	39	48	54	37
Straits Cornera	14	11	6	10	11	27	20	32	33	32	$3 \times$	25	29	24
Waverly.	27	25	33	33	41	69	46	44	47	50	$4{ }^{4}$	53	61	43
			3)	${ }_{9}^{9}$	25	35	32	34	35	38	35	27	35	25
Mohonk Lake	18	19 8	8	98 10	42 32	42	45 34	35 27	42 36	${ }_{36}^{42}$	40 31	41 32	51 33	49 30

the Regions, and Dally Maxima and Minima for the Stations.

Daliy Means for the Regions, and Daily

STATION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Northern Plateau..	16	7	8	17	39	38	33	28	32	32	30	32	35	26
	18	14	20	31	41	46	33	33	32	32	32	41	42	25
Sarauac lake	-3	-3	3	13	31	30	14	19	28	26	21	22	18	2
	23	22	24	30	36	54	43	33	:99	37	41	44	50	40
Gloversville	17	9	3	16	25	31	33	25	32	33	31	27	27	24
	23	19	15	17	30	36	4	34	39	32	33	30	35	4
Nort	12	-1	-6	0	5	30	28	22	25	29	25	\because	$\because 1$	22
	23	15	22	27	36	43	39	35	36	37	34	43	50	$41-$
Lowville	15	-15	-11	7	25	33	28	18	29	33	26	30	32	20
	18	16	16	26	34	4*	43	35	35	33	31	40	46	35
Number	12	-7	-1	2	24	34	25	23	27	29	27	27	35	12
Atlantic Coas	26	22	22	25	35	40	43	40	46	44	40	39	44	41
Brookly	31	25	27	38	42	47	53	47	49	50	46	48	53	46
	$\because 3$	13	13	20	30	34	39	34	43	42	38	34	40	38
Manlatt	31	29	22	26	41	43	49	53	51	50	52	46	48	54
Manlatt	23	$\bigcirc 0$	18	18	22	32	40	34	34	42	38	36	38	- 38
New York Cit	33	24	30	39	45	49	54	49	51	54	45	48	55	48
New York	22	19	18	23	29	38	40	36	41	$4{ }^{2}$	36	34	40	35
Willet's Poi	33	29	28	38	48	50	51	52	50	51	46	50	49	57
Wiltet ${ }^{\text {a Poil }}$	22	20	10	17	29	36	32	32	42	36	30	32	30	29
	33	32	28	38	48	49	51	51	53	52	47	51	51	50
Breut	15	21	6	3	20	22	30	25	43	27	26	20	35	31
Setauket	31	26	29	39	45	53	59	50	56	49	47	49	55	48
Setauket	26	22	20	18	31	35	36	35	4	35	39	31	41	38
	32	92	31	38	46	54	54	46	50	49	50	50	58	49
Bedfor	16	14	14	7	21	28	26	26	41	31	32	22	34	30
Primros	32	23	27	36	45	49	53	42	50	50	43	49	54	48
Prinurose	14	19	17	9	21	22	26	26	41	41	29	21	27	15
Hudson Valley	24	21	17	22	33	37	37	34	41	41	36	36	40	37
Albauy	29	23 14	25 10	34 18	43	50	48	40	46	44	41	44	48	44
	27	19	19	30	40	48	42	39	47	47	40	42	48	48
Lebanon Spring	10	10	4	6	25	25	28	24	34	34	$\because 6$	$\because 3$	30	26
	31	19	24	34	41	49	45	39	47	46	40	44	49	41
Honeymead	15	13	9	8	22	29	26	25	36	35	27	25	33	28
	32	$2{ }^{23}$	27	34	45	32	47	39	48	48	45	49	52	46
Poughkeepsi	20	16	10	9	24	25	25	27	35	30	20	22	31	25
Wappinger's Falls.	32	24	25	35	40	50	45	40	48	48	45	47	49	45
	20	16	12	12	27	26	25	28	32	35	28	25	28	26
Catskill	35	27	24	33	45	43	46	37	46	45	47	45	49	46
	19	16	11	11	27	33	33	27	35	37	33	$\because 6$	34	28
West Poi	32	29	22	25	35	51	47	45	48	50	45	43	46	53
	20	18	14	14	14	22	29	$\because 9$	30	41	33	27	28	36
Carmel	27	$\because 1$	24	34	44	48	46	42	40	47	43	48	51	44
	16	15	12	9	23	25	26	$\because 9$	40	36	25	38	33	30
Mohawk Valley	22	17	14	24	33	41	38	34	36	35	33	36	37	38
St. Johnsville.	28	23	24	32	37	50	43	39	39	38	39	43	48	45
	16	11	4	16	29	32	34	30	33	22	27	29	26	30
	37	20	25	35	42	48	40	40	44	40	45	50	48	31
Rome.	8	5	9	18	21	31	28	20	33	30	30	28	28	10
Ohamplain Valley.	23	13	13	20	31	38	38	32	34	36	33	34	35	34
Plattsb'gh Bar'a'ks	31	24	10	26	38	41	50	35	35	38	37	33	39	48
Plattsb'gh bar akw	16	3	3	5	14	34	30	22	20	30	28	28	24	25
Glens	26	16	33	30	38	46	40	36	42	41	38	41	43	43
Glens	15	9	4	11	26	29	$3:$	27	32	33	28	29	20	20
Lake George	34	18	24	31	38	48	39	38	45	41	38	43	44	45
Lake George.	16	8	4	15	29	33	34	31	31	31	28	32	31	22
St. Lawrence Tal'y.	19	11	16	2.5	36	38	34	30	34	34	34	38	42	28
Madison Barracks.	26	22	24	29	38°	46	$4 \cdot 1$	35,	:8	38	40	39	50	49
Makison Barracko.	19	4	7	14	20	34	32	21	31	32	28	30	36	22
W aterto	23	21	23	30	46	46	40	38	42	39	46	48	51	40
Waterto	16	2	5	8	24	25	28	22	30	29	26	26	30	17
Canton	25	13	24	33	49	45	38	38	35	36	35	44	49	39
					34			20	29	30	29	32	35	14

Maxima and Minima for the Stations.-(Continued).

15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
17	16	17	23	17	11	11	4	2	-4	7	15	2	12	27	33	24	19.3
19	20	29	35	9	14	11	11	10	7	21	28	14	32	: 5	39	25	16.
4	-2	0	8	2	2	-5	-5	-12	-12	2	-20	-18	-16	30	19	0	16.1
27	27	32	32	33	26	24	17	18	10	22	29	13	$\because 0$	3.5	40	41	
14	18	9	16	11	11	12	6	0	-8	6	13	-6	-9	4	34	19	23.3
29	31	94	31	30	12	20	$\because 0$	15	16	5	18	2.5	30	33	35	26	
9	9	9	11	7	1	8	$\bigcirc 0$	-19	-16	1-1.5	1	-1\%	$\because 8$	30	-	24	18.4
20	20	32	32	33	20	19	11	9	0	21	30	$\because 2$	25	37	40	40	
10	9	7	18	9	2	5	-9	-4	-18	-6	$\because 0$	-13	-9	14	32	$\because 0$	20.2
26	18	30	32	30	21	18	14	11	-1	18	27	13	28	32	36	37	
8	8	1	16	6	0	1	-10	-7	-15	-6	5	-14	-5	16	32	13	18.5
31	26	29	31	30	23	$\because 6$	26	21	15	19	25	19	16	2.7	35	40	30.4
33	30	34	42	32	32	33	31	26	$\because 0$	29	32	20	27	36	42	45	317
29	21	23	25	27	24	29	24	19	7	12	20	14	6	14	33	30	317
42	32	30	31	42	32	32	35	31	23	20	31	32	19	29	36	48	
28	20	22	22	26	34	\because	20	$\because 2$	6	8	18	14	10	12	21	34	30.4
35	30	36	44	34	$3:$	38	34	29	20	32	32	29	$\because 9$	34	41	47	
26	20	22	28	$\because 3$	24	22	24	9	5	'12	18	10	10	19	33	34	32.0
38	31	42	36	30	35	35	37	35	34	38	36	31	33	38	36	46	
24	16	29	24	23	19	21	22	6	8	15	15	11	10	21	20	26	31.6
35	32	34	44		34	38	35	29	19	29	34	33	32	40	48	49	
27	24	21	16		12	1	12	15	0	-9	16	-3	-8	4	31	30	28.6
38	33	33	45	39	31	34	32	30	17	29	34	34	30	39	43	44	
28	25	25	27	25	$\because 3$	21	22	17	S	112	20	16	9	29	34	36	32.8
30	28	34	40	36	37	39	27	$\cdots 4$	18	33	37	31	34	37	42	50	
21	18	20	15	21	15	7	12	14	0	$\stackrel{3}{2}$	15	3	-12	10	27	30	28.5
32	31	34	42	33	34	35	32	28	${ }^{2} 0$	32	36	$\because 0$	30	38	44	46	
22	20	24	14	26	15	7	13	19	4	10	11	10	-9	3	30	$\because 9$	28.2
24	21	23	37	37	$\because 3$	23	17	16	5	10	20	11	8	19	31	34	253
26	22	32	38	39	31	$\because 4$	20	18	12	24	34	16	17	34	44	44	
18	17	16	19	14	15	18	11	4	-10	6	12	-2	-7	4	30	20	26.0
29	25	26	36	35	25	30	22	20	10	24	28	128	26	$\because 9$	40	41	
10	16	14	12	14	10	11	4	10	-7	-4	-3	-9	-11	8	30	26	23.6
27	24	28	32	29	28	30	23	19	8	23	33	9	24	35	41	41	
16	15	14	16	16	14	13	6	7	-3	-11	13	-5	-10	18	22	23	24.2
29	25	33	37	36	33	35	24	21	19	27	24	22	33	27	21	42	
18	18	15	17	20	15	13	11	13	-3	-7	11	13	14	-8	-1	22	23.2
31	26	32	36	35	35	36	26	22	12	24	35	33	26	37	45	43	
18	18	16	18	22	18	18	6	10	-12	-20	2	-10	, -16	4	$\because 9$	24	25.6
29	25	30	38	36	34	32	26	29	15	21	35	25	' 19	30	411	47	
19	19	16	19	19	17	17	10	8	-3	0	8	-1	$1-9$	5	28	25	266
44	33	28	31	38	30	31	33	26	26	21	29	35	, 26	26	36	46	
20	18	19	20	24	21	15	15	18	1	3	15	6	$1-2$	9	18	31	27.6
30	21	31	42	31	30	31	28	20	14	25	30	- 12	22	36	42	44	
20	14	16	18	16	14	8	10	10	-1	\because	9	-	-7	-	25	31	25.8
24	22	21	26	25	17	20	15	12	2	10	22	4	2	16	34	34	24.1
33	25	29	33	34	24	25	26	21	12	20	29	18	14	31	37	39	1
16	19	13	19	16	10	16	4	4	-7	0	15	-9	-10	2	30	30	. 1
26	25	27	30	20	25	25	23	13	10	25	28	10	20	35	34	31	
13	10	12	15	7	10	10	5	-10	-3	10	-5	-4	0	15	28	15	22.2
19	17	16	23	22	16	13	10	7	2	6	20	6	5	18	33	31	21.8
27	14	13	25	36	16	14	8	9	4	8	28	31	7	25	35	44	
9	8	8	8	10	5	0	-1	-2	-5	-4	5	-4	-4	2	23	21	19.2
24	24	25	36	32	26	20	17	16	6	19	30	16	16	31	39	43	
15	18	10	14	11	10	12	8	3	-6	-6	16	-4	-5	5	27	16	22.4
25	22	27	35	35	28	20	19	15	16	20	30	15	19	29	44	43	
16	16	12	17	10	9	14	9	3	-4	-4	14	-4	-4	13	28	17	23.8
16	18	17	28	22	13	6	1	1	-4	12	19	4	15	29	35	27	21.8
30	23	10	35	38	23	22	9	11	9	11	32	30	23	35	37	40	
10	8	8	10	15	5	4	-3	-3	-10	-9	9	-8	6	11	33	22	22.
21	32	34	30	28	18	18	10	5	5	28	36	26	28	38	40	40	
9	18	22	22	8	10	5	-5	0	-10	5	8	-8	20	28	22	18	23.0
23	20	21	40	34	15	9	8	4	2	26	34	7	29	36	40	36	
9	9	4	20	8	$1-1$	-10	-11	-13	-17	2	1	-17	-9	26	34	12	19.8

Daily Mean for tie Rfgions, and Daily

STALION.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
St. Law. Tal. (Con.) Massena............														
North Mammond..	26	20	24	36	40	48	38	36	36	38	38	46	50	34
	20	10	10	18	36	36	32	28	32	34	32	32	34	16
Ogdensburg	31	$\because 6$	24	33	40	49	45	42	48	40	40	50	49	40
	8	4	10	15	30	28	28	25	30	33	30	33	34	13
Potsdam...........-	20	10	34	40	37	44	36	37	35	34	36	41	49	39
	9	-4	3.	30	32	25	24	21	22	28	29	32	36	12
Great Lakes Dunkirk	20	19	22	28	39	42	36	36	38	40	39	45	44	32
												-		--.
Westfield..........	25	25	30	36	45	48	41	45	45	48	42	57	56	40
	15	17	18	19	33	32	33	34	35	37	36	36	38	26
Buffalo	22	32	30	38	48	47	38	43	43	46	45	57	51	35
	14	15	16	23	33	38	34	34	34	38	36	40	33	24
Pittsford	25	22	29	35	45	50	45	42	43	45	42	55	53	42
	14	17	14	20	32	35	32	33	32	36	35	33	35	37
Rochester	24	24	29	35	46	48	39	43	12	44	42	55	51	35
	15	15	10	18	34	36	33	34	34	36	36	36	35	25
Appleton..-.......	$\because 4$	26	29	36	40	46	39	4.	41	45	43	53	47	40
	16	13	13	20	32	39	33	33	36	38	35	32	37	26
Fort Niagara......	28	28	32	37	49.	48	40	43	41	44	45	56	50	40
	14	14	$\because 0$	22	40	38	30	34	34	37	37	36	38	26
Baldrinsvillo......	42	24	28	35	45	5\%	38	40	40	43	39	51	56	41
	14	13	15	22	36	33	33	33	33	32	32	33	31	19
Oswego..............	24	20	28	33	40	48	40	40	42	42	40	48	53	38
	15	8	12	20	33	40	32	32	34	35	34	34	38	21
Palermo	22	18	$\because 6$	30	37	42	36	38	39	37	45	49	45	40
	16	2	-1	16	29	35	32	31	34	32	31	37	31	20
Lyons	25	25	30	35	44	52	38	42	43	44	43	52	53	38
	17	14	18	22	33	36	34	35	33	38	34	35	38	21
Erie, Pennsylvania.	2.	24	28	37	47	48	40	42	40	49	42	58	53	37
	17	17	20	19	30	40	37	37	34	36	38	42	37	28
Central Lakes	21	19	18	23	34	47	40	37	39	38	37	43	46	33
iog	26	22	28	31	41	55	41	41	44	40	38	52	59	43
	15	13	12	17	18	39	33	33	33	34	33	34	10	23
Romulus............	25	27	31	22	42	56	53	41	45	42	40	50	58	43
	15	14	13	18	29	36	40	32	32	34	33	34	37	$\because 1$
Ithaca	24	23	27	32	40	56	39	4.3	45	42	40	51	58	42
	18	14	8	16	31	38	34	34	35	35	35	34	41	23
Mean	21	16	16	23	34	41	37	34	38	38	35	38	41	34

[^20]Maxina and Minima for the Stations - (Concluded).

used in computing means. (1) Voluntary observer. (2) U. S. Weather Bureau.

Daily and Monthly Precipi

tation for Decmiber - (Inches.)

15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	¢
T.	T.	T.	0.04	0.03	0.03	0.10	0.21	0.12	0.02	002	T.	0.00	T.	T.	T.	' ${ }^{\text {c }}$	1.38
	T.		T 05	T 01	01	. 20	. 30	. 07	T.	. 02	. 01			T.	T.	T.	1.64
	T.		T.	T.	. 03	. 12	. 25	. 08	T.	T.					1.23
	T			T	\cdots	. 19	. 22	.05			T						1.38
	T.		. 04		T.	. 12	. 20	. 10 05	T.	\cdots		T.			1.40
			. 01	. 02	T.	7	. 17	. 16	T 02	. 01	T.			T.			1.61
			. 06	. 20	. 10	. 15	-24							T.	...		1.62
			. 12	. 11	. 04	. 30	. 32	. 22	.06	. 12	\because			т.			2.97
T.			. 20	. 10	T.	40	. 40	. 20	. 19	. 10	T.			T.	T.		263
	T.			T		10	-05	T.	T.	T.			T				0.61 0.88
			. 11		. 03	. 02	.11	-22	...				T.				1.26
			T.	T.	T.	05	. 02	T.		.-							0.79
			T.	T.	T.	T.	. 50	. 30			T.						1.50 1.35
			. 2 02	. 02	. 20		. 20	T.							1.35
								. 35									1.08
			T	T.		. 05	.30 -20	- 40	T.		T						1088
							. 10	 07							0.85
				T.		. 05	. 11	. 10			T.			T.			0.99
	T.	T.	T.		T.	. 32	. 30	T.			T.						1.14 1.66
	\ldots		05	T.	. 05	. 20	.13	. 10	T.	. 04	T.						1.66
0.00	003	000	0.103	002	0.02	004	011	0.27	0.04	T.	T.	0.00	0.00	0.00	0.00	0.00	132
			. 05	$\mathrm{T}_{.01}$	T.	. 08	. 08	40 .21	\cdots	T.	T.						1.20 0
			. 10	. 05	T.	T.	. 05	. 40			T.						1.72
			. 08	. 13	. 22	. 15	. 09	. 39	. 47	. 07	.						232
						. 18		.19	\ldots								1.27
							\cdots							
	12						. 32	. 18									1.14
	. 37						. 14	. 20									1.22
			. 08	-		 30									1.21
			. 03				T.	26									095
				-06			. 32	. 45	. 04								0.96 140
			.	T.		.02	.10	$\times 30$.					1.22
			. 03.		\ldots	. 15	. 15	.30									1.43
	T.		T.			T.	. 15	15	. 05								1.01
						...		+1.00									1.90
0.00	0.00	0.00	0.10	0.05	0.08	T.	T.	0.15	0.01	0.06	004	0.00	0.00	T.	T.	000	184
				...		\cdots										
			. 07			T.		T.	. 01		. 08			I.	T.		1.44
			. 03	. 12	T.	. 03	T.	. 31	..-	T.	. 03						${ }_{1}^{1} 67$
						\ldots	\ldots	\cdots	\cdots		.						
									.07	. 03	. 04				\ldots		1.46 2
				†. 58 \|				. 25	. 17		. 09						

Daily and Monthin Precipi

STATIONS.	1	2	3	4	5	6	\%	8	9	10	11.	19	13	14	
Atlantic	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.39	0.02	0.06	T.	0.00	0.00	
Brookly								T.	. 30	--	. 03	. - -			
Manbaitan Beach.									. 20	02	04				
New Sork City....					...			T.	. 32	--	. 02	--.			
Willet's Point.	...			-..	-...			.36		. 10		.01			
Brentwood		80		.20				
Setauket									. 40		. 17				
Bedford								.101	. 40					...	
Primrose	-..							,	.37	-					
Hudson Valley	T.	0.00	000	'T'.	T.	0.00	0.01	0.10	046	T.	0.02	0.00	000	0.00	
Albany								07	. 16	T.					
Lebanon Springs..	T.								. 50	. 02	---				
Honeymead Brook.					I.			. 20	. 70		. 07				
Poughkeepsie				T.				. 68	.30					- .	
Wappinger's Falls				T.					- 06		. 02				
Catskill	T				T.				. 70		T.				
West Point									. 53 03			--.	
Boyds Corner		\ldots						-...-		-..-		--*	
Carmel									. 62		11				
Southeast Res'v'r.														- . .	
Eagle Mills.		...		---			. 10							-	
Easton.............									1.02	
Mohawk Talley	0.01	0.00	0.00	0.00	0.01	0.01	000	0.00	0.57	0.13	0.02	0.00	0.00	0.00	
St. Johnsville.....-	. 01		 01	. 01			. 57	-13	02			
\|	Rome.				. 04	. 03			1.21	.44					- - .
Champlain Valley.	1.	T.	T.	0.08	''.	T.	T.	0.04	0.85	0.02	T.	0.00	0.00		
Plattsburgh Bar ks		'I'.				. 01	T.		. 81	. 05				T.	
Glens Fialls.	 25			T.		. 90					
Lake George .-....	T			'I.	'I'		T.	. 12	. 83	1.	'1.				
St. Lavorence Val'y.	T.	T.	0.01	T.	0.02	?	0.07	0.02	0.34	0.05	0 (12)	0.00	0.05	0.11	
Madison Barracks.											. 16		.34	. 76	
Watertown.			. 04		. 12		. 10		*	$\dagger .93$. . .	
Cantou	T.	.		T.			. 10	. 10	---	. 20				--	
DeKalb Junction..							. 04		. 82					-	
Massena															
North Hammond							.05		. 56	.10					
Ogriensbur	. 02		\ldots	T	*	$\dagger 09$. 01		. 40	.10					
Potsilam.			.				.20		.23						
Great Isa	0.13	002	0.01	0.02	T.	T.	0.06	0.30	0.38	0.05	0.04	'1.	T.	T.	
Dunkirk															
Weatield	. 06	T	1.					. 53							
Buifalo	${ }^{\prime} \mathbf{I}$.	T.	'T.	T.	.01		.01	. 23	.21	T.	T.		T		
Arams Cen	. 06	02				. 03	. \cdot.	.67	. 04			. 02			
Pistaford.		 10	. 25	. 43	. 03					
Rochester	'T.	. 05		1. 06	25	. 42	. 03	08			'I'	
Scottsiblle															
Appletou..	. 03	'I'.	'1'	T	'1'.		. 18	. 23	.13	' T .	.04				
Fort Niagara			T.	'1.				27		. 13					
Niafrara Fills					'1'.		.16	.11'	. 40						
Baldwiusville.	.10				'1'.	. 03 86	.35	. 15	\cdots				
Skaneatele's					12	.98		. 05			\cdots	
Rudigewas		. 03		T.	. 03		. 11	- 04	. 41		. 07				
Deminter	1.00	-		. 30		 10	1.00	. 0 s	. 11				
Fultor			 21	. 38	. 68	. 19					
Onwego......... ..	.70		. 5	. 10	T.		.10	.20	. 70.	. 03	. 15				
Palermo.... 45	. 20	. 14	,			. 10	.10	. 60	.					

tation for December - (Continued).

Daily and Monthly Precipi

\ddagger Record for the month incomplete. \|Received too iate to be iucluded in the averages.
tation for Dhcember - (Concluded).

*Amount included in next measurement. † Not included in computing averages.

Statistics of Temperature

and Precipitation - December.

MAP OF THE STATE OF NEW YORK

SHOWING

THE MEAN TEMPERATURES

FOR DECEMBER. 1896

MAP OF THE STATE OF NEW YORK
SHOWING

THE PRECIPITATION

SCALE OF MILES

PART IV.

METEOROLUGICAL REPORT FOR THE YEAR I896.

Meteorological Summary for the Year 1896.

The average atmospheric pressure (reduced) for the State of New York during 1836 wals 30.0 inches; the highest monthly mean pressure, 30.18 inches, occurring in January and December, and the lowest, 29.90 inches, in February. The highest barometer was 30.96 inches at Albany on December 27th, and the lowest was 28.70 inches at New York city on February 6th, giving a range of 2.26 inches within the State. The highest local monthly mean pressure was 30.22 inches at Albany in January, the lowest being 29.57 inches at Oswego in February. The greatest local annual range was 2.23 inches at New York city, and the least was 1.45 inches at Buffalo. The mean anmual range for all stations was 1.93 inches. The greatest departures of mean pressure over the State from the normal were +0.10 inches in April, November and December, and - 0.19 inches in February.

The mean annual temperature of the State was 46.1 degrees, as derived from the records of 70 stations; the mean temperature for July, the warmest month, being 70.4 degrees, and of January, the coldest month, 20.2 degrees. The highest local anmual mean was 52.4 degrees at Brooklyn, and the lowest, 40.5 degrees, at Saranac Lake. The highest local monthly mean was Th. 5 degrees at Brooklyn in July, and the lowest was 11.2 degrees at Potsdam in January. The maximum temperature reported during the year was 98 degrees at Bloomville, Delaware county, on August Gth and Sth, and the minimum, 43 degrees below zero at Canton on February 17th; giving an annual range of 1 ± 1 degrees within the State. The average daily range for the jear was 19 degrees; the greatest local ralue being 25 degrees at Oxford, and the least 12 degrees at Arkwright. The mean annial temperature of the State, as derived from the records of 26 stations possessing records for previous years was 0.7 degrees above the normal. The values were generally in excess in the southern and central sections and below the normal in northern New York.

The average total precipitation over the State for the year was 39.13 inches, as derived from the records of 112 stations. The maximum local precipitation was 51.87 inches at Bedford, Westchester county, while the minimum was 24.98 inches at Fort Niagara. The greatest monthly arerage for the State was 5.52 inches in February, the least, 1.22 inches in April. The greatest local monthly precipitation was 12.02 inches at West Point in March, and the least was 0.38 inches at Madison Barracks in April. The total amount and distribution of rainfall over the State are shown in detail by the fourth chart of this report, and the average daily amounts by the sixth chart. The average precipitation for 1896 at 27 stations possessing records for previous years was 0.67 inches below the normal amount. Deficiencies occurred at 14 stations, being greatest on the Atlantic Coast. The average total snowfall at 49 well distributed stations was 78.2 inches. The snowfall exceeded 100 inches at 5 stations on the highlands near the Great Lakes, and at Rochester and Canton; the maximum amount being 184.9 inches at Number Four, Lewis county. The least snowfall reported was 22.9 inches at Fort Niagara.

The average number of days on which the precipitation amounted to 0.01 inches or more was 124 ; the greatest storm frequency obtaining on the Northern Plateau, and the least along the eastern border of the State, in the coast region and the St. Lawrence valley. The average number of clear days, for the State, was 117 ; of partly cloudy days, 121; of cloudy days, 128 ; giving an average cloudiness of 53 per cent. The distribution of cloudiness is shown by the fifth chart of this report.

General Features of the Weather.-The averages of temperature, precipitation and cloudiness for the year 1896 were very nearly normal; but nevertheless, the current conditions were remarkable for extreme ranges and large fluctuations, especially during the colder months of the year. The lowest average daily temperature over the State yet recorded by this Bureau, 8 degrees below \%ero, occurred on February 17 th, on which date also a minimum temperature of 43 degrees below zero was reported from Canton,
this being, with one exception, the lowest value ever recorded in this State. A cold wave of notable severity also occurred on January 6th. Periods of abnormal warmth obtained during April and May, the maxima for the former month being among the highest recorded for April. The hot wave of the first half of August will be long remembered, both for continuously high temperatures and the great humidity which prevailed.

Large fluctuations of pressure occurred, corresponding to those of temperature. On February 6th the remarkably low pressure, 28.70 inches, was recorded at New York city; and on December 27th the highest value yet recorded by this Bureau was registered.

The temperature was generally above the normal from January 16th to February 16th, a cold period following until April 10th. This was succeeded by unseasonably warm weather, continuing till May 10th. With the exception of the hot wave of August, the temperature conditions of the summer were equable and pleasant. Scptember, October and Dccember were cooler than usual, while November rauks as an exceptionally warm month.

The weather of January was generally bright and pleasant, with a light precipitation and little sleighing. February and March were rough and windy months, with a large excess of rain and snow. Heavy freshets on several occasions caused considerable damage along the southern river systems; and a severe blizzard about March 11th, blockaded traffic for several days in the southern and western sections. Robins and blue birds commonly appeared about the 26th to 30th of the month.

April, May and June gave a light average rainfall, and a large percentage of bright weather. Navigation opened on the St. Lawrence river on April 16th, on Lake Champlain on the 20th, and on Chautauqua lake on the 15th. Snow disappeared from the clearings early in the month, and the farming season began about the 12 th, and progressed rapidly, plowing and seeding being general by the 20th. The warm weather brought vegetation rapidly forward, and by May 10th fruit trees were in full bloom. The drouth, beginning in April and continuing until the latter part of May, injured grains and had a disastrous effect
upon the hay crop. Thunderstorms were severe and frequent during May, causing a considerable loss of property.

The summer rainfall occurred largely in the form of local showers, alternating with bright weather; the conditions thus being farorable for growth, but less so for harvesting. Early haying began before June 20th. By the first week of July oats were heading and barler and spring wheat were ripening. Winter wheat and some ree were harvested early in the month. Barley cutting began about the 1sth, and the oats harrest on the 20th in a few cases. Severe local storms occurred on July 3d and 27 th, and flooding rains fell in portions of the Lake Region on the 20 th.

The hot, muggy weather of the first half of August brought corn and other crops rapidly forward, but also developed rust and rotting among grains and potatoes. The second hay harvest was commenced during the third week, and in many cases was larger than the first crop. Corn cutting began toward the close of the month, at a date much earlier than usual, and the tobacco harvest was also well under way. Heary thunderstorms caused a serious loss of property in scattered localities on the 10th and 18th.

September and October brought an increase of cloudiness and wind relocity, and a deficiency of arerage temperature which was rery marked during the latter month. Killing frosts occurred in the colder parts of the State on september 19th and more generally on the 25th; but sheltered localities were not visited by severe frosts until October 9th, when nearly all crops had been secured against damage. General rains during the latter part of September started early fall seeding, but the rainfall for October was quite deficient, except in portions of the southern counties. The harvesting of corn, potatoes, beans and tohaceo was completed under very farorable conditions in September. Cirajes, also, were generally secured without damage from frost. The first snowfall of the season was commonly reported on October 12th.

A severe cyclone of tropical origin passed over western New York on September 30th, causing widespread damage to property. A small but violent tornado occurred near Otsego lake on the 12 th.

November was characterized by large fluctuations of temperature, with an unusually high average value, a deficiency of precipitation and much cloudiness. Although a drouth prevailed in portions of the southern section, the month was generally favorable for farming interests, the mild weather permitting plowing to be carried on until the 2sth.

The weather of December was generally pleasant, the precipitation for the month being very light, and the cloudiness less than the usual arerage. The temperature of the month was slightly deficient, two cold periods during the first and third weeks alternating with unseasonably warm weather. Rirers and lakes were generally closed to navigation by ice about the 24 th. The ground was bare of snow during the greater part of the month.

Meteorological Data

Location of Stations.			Barometer.						Tempera		
STATION.	COUNTY.				范						\#
Western Plateau..									46.6	69.6	July,
Alfred	Allegrany	1224							44.9	67.4	Jaly
Angelica		1340							45.1	68.2	July
Bolisar..										67.0	July
Friendship	Allegany ...	1550							46.1	682	July
Humplirey	Cattarangus.	1950							46.0	67.5	July
Arkwright	Chautauqua.	1260							46.1	68.7	July
Elmira	Chemung	863							49.7	73.4	July
A von	Liringston.	585							17.1	72.0	July
Mt. Morris.	¢	525								73.3	July
Lockport	Niagara.									73.2	July
Werlgewood	Schurler	1350							46.8	71.0	July
Addison...	Steuben.	1000							47.5	70.0	July
Sonth Canisteo...	Steuben.	1480							45.7	67.4	July
Arcade...........	W yoming.	1707							44.7	68.1	July
Varysburg										69.8	Juls
Eastern Plateau..									46.0	69.7	July
Binghamton	Broome .-	870							46.9	71.0	July
Oxtord	Chenango	550							45.2	69.6	Juls
Cortland...........	Cortland	1120							45.5	69.2	July
Bloomville..	Delaware	1550								70.6	July
South Kortright. -	"	1700							44.0	68.0	Jul
Brookfield........	Madison	1350								72.2	Joly
Middletown	Orange	660								71.6	July
Port Jervis	Orange.	470							48.3	72.2	July
Cooperstown	Otsego.	1300				.-.			44.1	67.8	July
New Lisbon......		1234							43.1	66.7	July
Oneouta		1100							47.9	71.2	July
Perrs City........	Schusler.	1038					45.3	70.1	July
Warerly	Tioga	825							48.1	71.0	July
Mohonk Lake....	Ulster	1245							46.2	67.2	Ang.
Northern Plateau.									42.0	67.7	July
Saranac Lake ...	Franklin....								40.5	66.8	July
Gloversville	Fulton	802							44.3	69.8	July
Lowville	Lewis.	1240							43.0	69.2	July
Number Four....		1571	30.03	30.19	Jan.	29.91	Feb.	1.83	40.8	65.0	July
Atlantic Coast...									50.6	73.0	Juls
Brooklyn	King	107							53.4	75.5	Julr
Manhatan Beach.	Now York	314	30.06	30.21	Now.	2990	Feb	2.28	51.1	730	Jul_{6}
Willet's Point...	Queen								50.7	73.2	July
Brentwool.......	Suflolk	7.5								73.6	July
Setninket.	W"	40							50.9	72.8	July
Budtord.	W'estchester	290							49.3	71.5	July

for the Year 1896.

Location of Stations．			Barometer．						Tempera		
STATION．	COUNTY．			皆	寻		$\stackrel{ \pm}{ \pm}$				号
Hudson Talley									48.1	72.7	July
Aıbany ．．．．．．．．．．．	Albany	85	30.06	30.22	Jın．	29.90	Fel．	2.22	48.4	74.0	July
Lebanon Springs．	Columbia	930 4.50							45.2	70.2	July
Honeymead Brook．	Dutchess	450							46.6	70.8	July
Poughkerpsio ．．．．．	Dutchess	180							47.8	72.5	July
Wappinger＇s Falls．	＂- －								49.8	74.4	July
West Point．．．．．．．．	Orange	167							49.4	73.3	＇July
Carmel ．．．．．	Putuam	500				．			48.7	73.3	July
Mohawk Talley									45.3	70.2	July
Rome．．	Oneida	445				－．．．．			45.2	70.2	July
Champlain Falley－									44.0	69.5	July
Plutsb＇h Barracks．	Clinton	125							42.8	695	July
Glens Falls ．．．．．．．	Warren．	340									．．．．．
St．Lawrence Vall＇y									43.4	68.9	July
Malone－．i．e．．．．．	Franklin ．	810									
Mallison Barracks．	J efferson	266								69.1	July
Watertown ．．．．．．．．	Jefferson．	486								70.3	Aug．
Canton	St．Lawrence	304							421	68.8	July
North Hammond．．	＂	340							44.8	707	Jaly
Ogdensburg ．．．．．	＂	258							44.2	69.8	July
Potsdam．．．．．．．．．．．		300							41.7	67.8	July
Great Lakes									47.4	71.0	July
Westfield	Chautauqua．								49.0	71.6	July
Buffialo．	Erio	690	30.05	30.19	Dec	29.90	Feb．	1.45	47.2	700	July
Pittsford	Monr									70.4	July
Rochester	Monroe	520	30.04	30.17	Dec．	2989	Feb．	1.89	477	72.0	July
Appleton ．．．．	Niagara	330							46.9	70.2	July
Fort Niagara．．．．．－	Onondaga	263 390							48.1 47.3	72.8 72.6	July
Oswego．	Oşwego	304	30.03	30.18	Dec．	29.87	Fel．	2.02	45.0	69.0	
Palermo	O．teg	460							45.2	69.9	July
Lyons ．．．．．．．．．．．．．	Wayme	407									
Erie，Pennsylsania	Erie．．．	631	30.06	30.19	Dec．	29.93	Fell	1.68	49.0	71.0	July
Central Lakes									47.8	71.4	Julv
Fleming	Cayuga．	1000							47.7	71.7	July
Romulns	Suntea．	719							48.1	71.5	July
Ithaca．．．．．．．．．．．．．．	Tompkins		30.05	30.18	Dec．	29.90	Feb	2．12	47.7	70.9	July
Mean			3005	30.18	a	29.90	Feb．	1.93	46.1	70.4	July

（a）January，December；
（b）July，August；
Note．－The annual mean temperatures and arerage total precipitation，also the extremes table．
for the Yeár 1896 - (Concluded).

ture-(In Degrees Fabr.).						Sky.			Precipitation-(Incies).						
	$\begin{aligned} & \text { B } \\ & \text { 荷 } \end{aligned}$		$\begin{aligned} & \text { g } \\ & \text { g } \\ & \text { n } \end{aligned}$							$\begin{gathered} \text { Hy } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$		荷			
21.1	Jan.	97	-21	118	20	131	110	12.5	114	41.98	6.14	Mar.			
20.0	Jan.	95	-16	111	18	118	128	120	130	27.88	4.66	Mar.	1073	Dec	54.5
18.8	Jan.	93	-21	114	21	97	111	158	104	40..i6	5.83	Sept	087	Jan	61.0
20.6	Jan.	91	-18	109	19	93	146	127	129	43.95	7.60	July	0.83	Apr...	47.3
21.0	Jan.	96	-11	107	22	144	110	112	87	36.47	6.21	Mar	0.88	Jan	63.3
22.4	Jan.	96	-20	116	21	137	123	106	137	46.98	7.84	Mar.	1.18	Apr	85.2
22.8	Jan....	97	-11	108	19				98	45.91	12.02	Mar..	1.19	Jan. .	
21.9	Jan....	93	-10	103	18	198	139	129	110	44.20	7.69	Feb.	1.10	Jan ...	54.4
28.4	Feb...	96	-19	115	20				139	40.26	7.59	Feb.	1.25	Apr...	
20.4	Feb...	96	-19	115	20				139	42.12	7.59	Feb.	1.25	A pre..	
16.0	Jan..	95	-25	120	18			.	104	40.51	6.52	Mar..	1.02	Apr...	
14.4	Jann..	95.	-25	120	18			..	104						85.5
17.7			-16							41.38	6.52	Mar		Jan...	68.8
13.4	Jan...	96	-43	139	20	101	135	130	89	34.62	4.94	Sept	1.10	Dec...	
16.1	Ja	87	-10	127		\ldots			75	33.01	5.84	Sept	038	Apr...	80.2
132	Jan...	92	-43	135	21	104	153	109		37.43	5.46	Sept	0.80	Dee...	107.0
15.3	Jan	92	-36	128		38	148	180	111	29.74	4.50	Sept	1.02	Dec...	68.7
14.2	Jan.	91	-28			129	138	99							733
112	Jan	89	-31	120	20	134	102	130	82	31.39	5.10	Sept	0.83	Dec...	97.0
23.4	Jan....	98	-30	128	16	113	109	144	136				0.89		
26.7	Mar...	98	-12	110	17	168	73	12.5	(1)	34.71	4.73	Sept.		Apr...	
25.0	d	86 91	-9	95	14	61	137	168	152	37.29	6.35	July		Dec.	
23.0	Jan....	92	-10	102	16	122	121	123	173	36.84	6.32	Mar.	0.58	Oct ...	127.0
24.3	Jan...	90	-12	102	16	48	108	160	133	28.41	5.27	July..	0.43	Apr...	56.4
24.4	Jan..	93	-5		18				104	24.98	3.77	$\mathrm{d}_{\text {uly }}$	0.51	Apr...	22.9
19.5	Jan.	94	-22	116	18	172	75	119	126	39.23	6.39	$\mathrm{F}^{\prime} \in \mathrm{b}$	071	Apr...	91.1
21.0	Jan....	90	-20	110	14	91	93	182	166	38.32	5.89		1.6		83.2
184 242	Jan..	96	-30	120	18		...		124	33.57	5.13	Feb	0.41	Apr...	88.0 90.0
27.0	Ja	92	-14 -7	99	13	76	157	133	152	36.81	5.50	July	146	Apro.	
22.9	Jan....	95	--18	113	17	112	115	139	147	37.37	4.58	July..	1.12	Dec...	
22.8	Jan....	93	-17	110	17				68	34.59	4.93	Sepit.	044	Dec.	80.0
23.2	Jan..	95	-17	112	18	131		142	83	41.59	5.10	Sept	2.68	Dec.	49.9
22.8	Jan	94	-18	112	17	93.	137	136	143	36.17	4.75	Nar	1.00	Ie	59.5
20.2	Jan..	98	- 43	14!	19	117	121	128	124	39.13	5.52	Feb.	1.22	Apr...	78.2

(c) January, March; (d) January, Feloruary, March.
for the regions and for the State, are derived from the monthly values as shown in the succeeding

Montiliy and Annual Temperature

Location of Stations．		Temperatube－							
STATION．	COUNTY．		感	亲	要	感	$\stackrel{\oplus}{\Xi}$	$\underset{y}{\vdots}$	＋
Western Plateau．		23.2	24.4	24.2	49.5	62.6	61.7	69.6	67.5
Alfred．	Allegany	21.5	2.2 .4	219	48.2	61.0	62.1	67.4	66.0
Angelica		22.1	23.5	233	48.2	608	62.7	62.21	65.2
Bolivar	＂				47.0	61.0	622	67.0	66.0
Friendship	1	232	252	24.4	49.5	62.0	64.1	68.2	65.6
Franklinville．	Cattaraugus								
Humphrey		24.0	24.2	24.9	49.0	620	62.9	67.5	65.6
＋Arkwright Cherry Creek	Chautauqua	24.0	23.0	24.4	48.4	60.7	64.0	68.7	66.0
Jamestown	Chantanqua	25.6	25.8	26.6	50.8	63.0	64.4	690	66.9
Elmira	Chemung	24.6	27.2	28.2	51.2	65.2	67.7	73.4	71.6
Pine City									
Akron．．．	Erio							．．．	．．．．
A von	Livingston	21.8	24.8	244	50.4	63.1	67.0	72.0	68.8
Mt．Morris		24.9	26.6	20．7	50.6	70.0	67.4	73.3	704
Lockport	Niagara				51.2	63.2	67．4	73.2	70.4
Victor	Orleans	22.4	248	25.2			66.2		．．．
Tyrone．	Schuyler								
Wedgewood		22.0	22.6	239	49.3	62.5	（6．0	71.0	70.3
Addison．	Steuben	24.8	26.2	25.4	500	62.4	6 ± 0	70.0	68.4
Atlanta			．．．	．．．	．．．．	．．．．		．．．．	－－．
Haskinville．	Steuben								
South Canisteo		23.6	24.2	23.4	48.0	61.3	62.1	67.4	65.9
Arcade．	W yoming	21.4	21.8	21.4	478	r0．9	63.1	68.1	65.2
Varysburg		21.8	24.0	23.2	49.3	620	66.0	69.8	68.0
Eastern Platean		19.8	23.4	245	48.6	61.1	63.9	69.7	67.9
Binghamton（1）	Broome	21.0	24.8	24.4	49.8	62.2	64.6	71.0	68.1
Binghamton（2）	Cbena								
Oxford．	Chenango	20.1	23.7	24.6	47．2，	60.0	63.8	69.6	67.4
Cortland．	Cortland	20.0	22.2	23.2	47.6	60.2	63.4	69.2	67.6
Bloomvil	Delaware	18.1	23.2	22.4	50.4	62.3	63.2	70.6	70.0
Deposit．									
South Kortright		17.9	23.3	24.6	45.8	58.4	61.6	680	65.8
Elka Park	Greene							67.2	67.1
Brookfield	Madison	18.1	23.2	248	52.4	59.2	63.9	72．2	69，8
Hamiltou．		17.3	21.2	21.6	46.8	59.0			
Middletown	Orange	21.3	225	27.4	49.6	65.7	67．8	71.6	
Port Jervis		21.8	$\because 6.0$	28.4	51.3	640	62：	72.2	69.6
Warwick	．								
Cooperstown	Otsego．	17.0	20.7	22.3	46.3	59.5	63.3	67.8	66.6
New Lisbon		17.2	21.2	21.7	46.0	576	60．8	66.7	61.8
Oneonta	＂	21.9	26.0	27.3	499	62.6	65.0	71.2	69.4
Perry City	Schuyler	20.7	22.8	22.0	48.9	61.1	64.5	70.1	66.8
Newart Valley	Tioga								
Straits Corners									
Waverly	Tioga	23.6	26.2	26.4	51.0	62.8	65.0	71.0	70.2
Dryden	Toupkins								68.4
Mohonk Lake	Ulster．．．．	20.3	23.8	26.3	46.8	61.6	62.7	67.0	67.2
Northern Plateau		14.7	18.1	19.9	43.3	581	61.6	67.7	65.8
Saranac Lake．	Franklin	11.7	15.1	17.7	40.2	58.5	620	60.8	65.5
Gloversville	Fulton．	16.6	201	22.8	46.5	59.4	63.0	60.8	67.7
North Lake．	Herkimer．								

and Precipitation, 1896.

Degrees (Fatr.).
Precipitation-(Inches

	$\begin{gathered} \stackrel{0}{0} \\ \stackrel{0}{0} \\ \stackrel{0}{0} \\ 0 \end{gathered}$	$\begin{aligned} & \dot{4} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			Jannary.			E	突	$\stackrel{\oplus}{\underset{\Xi}{\underset{~ B}{\Xi}}}$	$\stackrel{\vdots}{亏}$	$\begin{aligned} & \stackrel{+}{\infty} \\ & \stackrel{y}{E} \\ & \underset{\sim}{3} \end{aligned}$		$\begin{gathered} \text { § } \\ \frac{0}{0} \\ 0 \end{gathered}$	$\begin{aligned} & \text { D. } \\ & \text { है } \\ & 0 \\ & 8 \\ & 8 \end{aligned}$		
586	448	42.3	27.5	46.6	2.31	4.14	3.52	1.36	2.79	3.48	5.64	2.48	4.59	3.49	2.19	1.38	37.37
57.7	43.7	- 41.1	25.5	44.9	2.51	3.28	4.33	1.69	2.62	4.07	449	1.11	5.04	5.02	2.15	1.64	37.95
56.9	43.0	41.6	25.7	45.1	2.31	4.16	4.21	1.58	1.99	3.26	5.66	2.63	4.96,	3.18	2.08	1.23	37.28
56.4	44.0	41.5	26.8		1.9\%	2.93	3.79	1.48	4.70	429	7.75	125	4.86	003		1.38	
58.2	43.6	422	27.4	46.1	2.03	3.23	3.45	1.58	309	3.22	454	1.83	5.651	4.03	2.20	1.40	36.34
		41.8	26.6												3.18	1.61	
57.4	44.2	41.6	28.2	46.0	2.43	4.83	3.	1.31	3.35	3.63	7.50	4.49	505	3.00	293	1.62	43.47
57.5	45.1	42.1	28.8	46.1													
					3.60	5.62	4.29	2.69	3.22	2.93	5.22	3.63	4.64	2.54	4.09	2.97	45.44
58.8	45.8	42.8	26.6	47.2	3.08	5.57	5.21	2.48	3.77	3.29	7.96	3.46	5.48	2.17	3.70	2.63	48.80
61.8	37.2	45.2	30.0	49.7	1.56	3.40	3.22	0.77	3.14	3.31	5.55	0.84	2.73	4.86	1.43	061	31.49
					1.82	4.04	3.16	0.97					3.35	5.04	0.93	0.88	
					3.08	302	3.95	1.04	1.96	2.32	5.45	3.29	6.03	1.80	2.53	1.26	35.73
58.8	45.3	412	27.8	471	197		323	1.05	1.98	1.97	4.87	3.92	3.82	1.48	1.82	0.79	
60.4					2.60	5.35	1.92	0.46	1.66	2.82	4.91	1.85	3.94	1.41	2.60	1.50	31.02
60.0	47.2	42.6	30.3					0.40	1.15	1.43	6.50	1.36	4.45	1.27	2.15	1.35	
	446				1.82	4.72		0.92	2.33	2.05		4.29		1.61			
					1.67				1.90	3.30	4.73	2.18	3.78	4.02		1.08	
60.8	451	422	26.4	46.8	1.72	5.62	3.43	232	2.98	6.23,	5.02	1.54	5.02	442	2.03	1.42	41.85
59.7	46.0	44.3	28.8	47.5	147	3.18	3.05	1.07	4.50	5.78	4.45	077	3.67	573	0.83	0.88	35.38
					2.13	$\because .50$	2.41			...		2.61	2.66	3.12	1.82	0.85	
					2.06	3.41	243	068	1.72	3.19	5.46	1.86	4.84	3.80	1.46	0.99	31.86
58.0	44.6	430	27.1	45.7	2.76	5.62	3.71	1.25	403	6.22	5.01	1.62	510	6.49	1.82	1.14	4477
56.9	49.9	41.2	25.8	44.7	235	3.86	3.50	1.36	2.48	3.19	639	3.77	5.18	3.22	3.68	166	41.64
59.0	443				3.25	493	3-45	193	3.27	3.06	5.71	3.79	5.15	2.63			
58.9	454	42.4	25.9	46.0	1.54	4.83	4.88	1.17	2.71	3.72	5.41	2.42	4.44	3.08	3.10	1.32	38.62
60.4	46.4	43.6	269	469		4.28	4.68	0.63	3.11	2.64	3.85	1.42	4.62	3.68	2.66	1.20	
		440	270												1.78	0.77	
58.2	43.8	40.1	24.0	45.2	1.99	4.97	5.56	0.77	3.55	296	5.37	2.71	2.15	2.69	2.66	1.72	7.08
59.3	44.8	42.8	29.2	45.5	1.86	4.50	4.54	0.93	2.73	3.44	4.36	2.15	3.70	332	3.17	2.32	3702
61.4		430			2.26	3.64	2.84	1.69	2.76	3.31	582	2.49	4.06	3.25	3.86		
					1.30	3.25	3.60										
57.1	42.6	39.8	23.6	44.0		481	3.76	1.48	2.94	2.75	5.50	2.12	3.68	2.35	2.83	1.37	
56.8											7.12	3.62	7.42				
56.7	47.8				1.50	5.69	4.23	1.20	1.54	2.75	3.29	2.82	1.97	1.37			
					1.38	3.02	3.52	0.90	2.72								
					1.89	700	8.09	1.40	2.86	6.43	5.07			352			
61.4	47.7	43.3	27.4	48.3	1.55	6.51	6.60	1.63	2.88	5.54	8.71	2.51	5.43	3.53	531	1.14	51.34
					0.97	4.97	4.86	1.49	2.83	6.21	6.05	2.19	8.12	2.66	3.67	1.22	45.24
565	44.3	41.1	24.0	44.1	1.48	5.36	4.74	1.25	2.33	470	4.60	3.49	433	2.23	3.56	1.21	39,28
562	428	39.6	23.0	43.1	0.86	4.31	3.96	0.80	2.42	3.77	5.12	2.45	507	2.09	2.96	0.95	34.76
606	47.3	45.4	28.5	47.9		7.44	4.79	1.39	2.25	3.39	7.02	361	3.13	2.26	220	0.96	
57:0	43.6	41.0	25.4	453	1.68	3.58	3.70	1.58	3.81	3.67	4.18	2.54	3.97	4.07	244	1.40	36.62
					1.30	4.55	3.98	0.39	2.95	3.00	5.71	1.08	3.24	4.26	2.21	1.22	33.89
		41.2	25.0												2.95	1.43	
61.6	46.8	44.4	28.6	481	1.66	4.07	3.40	1.18	2.41	2.8	5.81	1.57	3.57	4.90	2.58	1.01	35.01
60.2												1.72					
60.8	47.2	43.8	27.2	46.2	1.49	4.99	1.07		2.11	2.22	4.32	2.70	6.64	3.11	4.79	1.90	
55.8	42.7	37.5	19.3	420	2.25	6.36	5.56	1.19	2.63	2.87	4.80	2.58	5.24	2.85	5.09	1.84	43.26
55.3	41.8	35.8	16.1	40.5	1.11	4.28	4.31	1.37	1.98	3.70	4.19	2.78	4.75	1.31	2.80	1.44	34.02
58.2	44.8	39.6	23.3	44.3	1.47	5.90	6.59	0.96	3.19	3.79	4.95	2.01	6.21	3.06	5.37	1.67	45.17
54.6	41.7	36.0	18.4									5.59	2.90	6.21	2.70	

Monthit and Annual Temperature

and Precipitation, 1896 - (Continued. .)

(Degrees Faitr.).					Prectpitation - (Inctes).											
						苞		岳		$\stackrel{\check{y}}{\rightrightarrows}$			$\begin{aligned} & \text { g} \\ & \text { y } \\ & \text { g} \\ & 0 \\ & 0 \end{aligned}$			
56.4	43.4	33.0	20.2	430	2.3%	4.73	4. 28080	2.03	1.83	3.50	2.4	3.199	2.15	5.23	1.46	3447
543	41.9	37.2	18.5	40.8	3.04	7.93	655184	2.16	2.81	7.05	347	5.01	3.44	4.75	259	50.64
					1.15	6...10	0.400 .70	3.47	2.21	4	2.19	6.79	4.25	6.17	1.17	. 00
63.9	51.4	47	30.4	50.6	1.54	6.63	$5.551 .12{ }^{\prime}$	2.48	5.37	4.68	2.8 .3	4.48	$2.41:$	3.29		4210
65.6	529	48.7	31.5	524	1.5 t	619	6.14087	2.31	667	4.23	32	499	173	3.06	1.70	42.15
63.5	51.2	478	30.4		\because	412	4.48193	1.94	4.91	3.59	292	435	164	2611	1.46	36.46
6.50	52.0	48.0	32.0	51.1	125	5.50	6131.24	2.01	6.38	4.45	246	304	1.71	2.12	1.70	3799
64.8	51.6	47.1	31.6	50.7	1.10	7.98	7.41.1.13	2.66	6.01	5.79	164	5.68	2.4.3	2.62	0.90	45.35
62.8	504	46.2	28.6				2.820 .73	2.18	5.00	470	4.20		4.10	5.10	2.6	
63.9	52.5	48.1	32.8	509	1.48	6.46	4.811 .02	3.10	t. 10	274	2.35	3.62	2.87	3.21	1.62	37.38
61.7	49.2	45.4	28.5	49.3	1.40	9.51	7.080 .91	316	4 52	7.29	3.14	5.69	2.35	$4 \cdot 69$	2.18	51.87
		458	28.2											2.91	1.47	
61.1	48.5	43.4	25.3	481	1.10	5.93	6141.34	2.52	3.5ิ-	4.38	397	5.52	2.63	3.13	1.81	41.98
62.0	48.0	44.0	260	48.4	098	4.03	4.6t'0 98	1.55	2.49	3.57	2.25	3.31	1.53	1.80	0.73	27.88
58.3	45.2	106	23.6	5.):	087	4.92	5.221 .86	1.50	4.49	426	448	5.8:	3.07	3.15	0.91	40.56
597	46.6	41.8	24.2	468	0.91 .	547	5.340 .83	3.17	2.40	7.60	4.35	7.21	$\because .96$	224	1.47	4395
60.7	48.2	43.2	232.	47.8	0.85	598	6201.11	2.50	2.71	3.33	2.28	570	2.66	1.45	1.67	36.47
60.6	50.0	45.4	2 2 .6	498	1.36	6.19	7.8. 1.18	3.58	3.52	5.40	$\because 46$	7.01	334	3.17	193	16.98
62.2	49.0	41.2	26.6							5.09	2.35	524	2.35	3.54	1.35	
63.0	51.8	44.0	27.6	494	1.19	4.46	2.021 .98	289	4.07	2.51	1.96	5.74	236	5.10	1.ti3	45.90
					109	841	8.30, 1.19	3.48	3.47	3.98	4.60	6.54	2.21	3.96	2.72	4989
622	49.0	43.6	25.8	48.7	10	7.69	6.9011 .20	2.79	3.32	3.54	4.32	5.18	2.63	343	2.10	4420
					1.30	7.18	6.r1) 1.48	2.93	4.00	4,28	3.74	5.17	$\underline{2} .89$	338	2.03	44.18
					130	6.53	2.601 .60	0.80	4.75	3.23	3.17	4.04	283	$\stackrel{3}{2} 00$	0.35	33.20
					0.75	4.61	4.52			5.76	3.78	5.30	3.17	4.30	1.20	
58.9	432	39.1	23.2	$4{ }^{5} .3$	2.17	7.59	4.74 125	2.85	1.51	6.04	1.92	457	1.90	3.86	1.86	40.26
			-4.1		217	7.53	4-195	2.8		6.04	19			2.45	1.19	
58.9	40.				21.			2.8	1.5	6.04	1.92		1.90		¢5	1
580	44.6	40.1	1.8	440	1.56	5. $\times 1$	(6.521.12	1.69	$\bigcirc 90$	476	4.38	3.83	2.66	4.31	1.07	40.51
57.1	437	390	192	42.8	205	6.21	10.85	1.85	2.80	5.00	5.95	2.85	$1.6 \times$	2.19	0.87	
58.8	45.4	40.3	22.4		1.08	541	6.52 1.20	1.53	3.01	4.53	2.80	4.81	3.65	5.55	1.29	41.38
		41	238											5.18	1.04	
58.0	44.6	39.6	21.8	43.4	1.49	4.82	3.84141	1.96	322	3.8 .5	376	4.91	1.3:	2.96	1.10	34.62
					1.34	6.47	4.752 .17	1.26	4.57	5.71	3.6:3					
. 6	46.3	41.2	22.2		1.05	5.30	1.960 .38	$\because 41$	1.54	4.02	3.70	5.84	224	2.96	1.61	3301
58.1	456	41.2	23.0				5.231.37	2.36	3.28	3.11	3.26	4.43	1.72	4.42	1.48	
56.2	42.8	37.01	19.8	42.1	295	5.45	4492.66	1.51	339	3.25	3.89	546	1.02	3.26	0.80	. 43
					140	3.81	3.30128	1.81	5.31	4.56	3.03	5.61	1.08	$\stackrel{3}{2 .} 76$	0.91	34.89
58.8	45.2	41.1	22.8	44.8	1.06	3.20	334133	2.78	2.36	2.43	4.06	4.50	1.45	2.31	1.03	2974
59.1	46:0	39.8	22.9	44.2	109		0.72	2.10	2.57	3.98	4.76	3.64	0.73	3.01	1.06	
57.3	419	37.1	20.2	41:7	1.50	4.66	3.811 .37	1.46	2.76	3.13	331	5.10	1.14	202	0.83	31.39
59.9	47.1	43.1	28.9	$4^{7} .4$	2.70	4.64	4.000 .89	2.36	2.27	4.91	2.71	4.20	1.71	3.13	1.72	35.24
600	47.5	448	31.9	49.0	2.00	465	2.581 .20	1.94	3.09	3.07	4.05	4.73	1.40	4.81	1.36	34.71
60.0	480	43.0	30.0	47.2	3.28	5.02	3.610 .93	2.51	1.46	6.3.3	3.68	439	1.90	3.32	0.84	37.29
								1.90	1.88	4.33	260	3.66	1.77	2.89	1.65	
58.6	46.3	43.1	29.0			4.29	$4.81^{\prime} 0.89$	2.05	2.07	5.04	3.34	3.73	1.19	2.28	2.04	
60.0	47.0	42.0	29.0	47.7,	3.38	537	6321.09	1.64	2.80	4.75	2.71	3.50	058	4.49	2.21	36.84
							0.90	144	308	4.24	2.44	3.36	0.59			
48.8	45.8	42.6	29.6	48.9	310	325	2.65043	2.96	1,60	5.27	072	4.17	1.15	2.00	1.11	28.41
60.8	47.6	44.0	31.0	48.1	2.80	2.71	$\because 540.51$	2.36	1.79	3.77	1.00	3.71	1.37	1.86	0.56	24.98
											2.11	3.98	2.03	2.66	109	
60.3	47.5	42.6	26.3	47.3	3.53	6.39	4.52, 0.71	2.70	1.49	4.34	3.06	5.63	2.67	3.07	1.72	39.23

Monthly and Annual Temperature

Location of Stations．		Temperature－							
STATION．	COUNTY．	范	它	$\begin{aligned} & \text { تٌ } \\ & \text { تٌ } \\ & \text { تِ } \end{aligned}$	苍	豆	－	家	$\stackrel{+3}{*}$
Great Lakes（Continu									
Ridgewas ．－．．．．．．．．．	Orleans．．．．．．．．．．								
Demoster．	Oswego．								．．．．．
Fultod．．									
Oswego	＂	21.0	23.0	24.0	47.0	58.0	63.0	69.0	69.0
Palermo	Oswego	18.4	21.0	22.6	47.4	59.5	63.4	69.9	694
Phœoix．									
Lyons	Wayne	24.2	25.8	262	50.7	63.3	66.1	\cdots	70.0
Erie， Pa	Eric	27.0	28.0	28.0	51.0	63.0	66.0	71.0	69.0
Central Lakes		22.9	24.9	25.1	507	62.7	660	71.4	702
Fleming	Caşuga	22.8	24.6	24.8	50.4	62.6	66.4	71.7	70.4
Sherwood．．．．．									－．．．
Watkins	Schuyler								
Romulus．	Seneca．	23.2	24.9	25.2	51.3	63.4	602	71.5	702
Ithaca．	Tompkins	22.8	25.2	25.2	50.4	62.4	65.3	70.9	69.9
Mean		20.2	22.8	24.8	48.0	61.0	64.7	70.4	689

[^21]and Precipitation, 1896 - (Conchuded).

rised from maximun and mininum by the Draper thermorraph. (1) Toluntary observer. mum and minimum by the ordinary self-registering thermometers.
derived from the monthly values for the region.

Statistics of Thmperature:

* One month interpolated in mean for 1895

and Precipitation-Annual.

[^22]
MAP OF THE STATE OF NEW YORK
 SHOWING

THE MEAN TEMPERATURES

MAP OF THE STATE OF NEW YORK

SHOWING
THE TOTAL PRECIPITATION

50
Erie
FOR THE YEAR 1896.
Toronto
\qquad

SCALE OF MILES

MAP OF THE STATE OF NEW YORK

SHOWING

the relative cloudiness

FOR THE YEAR 1096.

AVERAGE DAILY TEMPERATURE

		January			February				March				Apri！					May				June		
		5	15	25	4		14	24		$5 \quad 15$	5	25		4	14	24		4		14	24	3	3	13
		－－		－	－			－		！														
	80															！								
	70																							
				－			－																	
$\underset{L}{4}$																								
	00	－		－			－																	
$\begin{aligned} & w \\ & \text { u } \end{aligned}$																								
$\begin{aligned} & \text { ü } \\ & \end{aligned}$																			2					
$\frac{\pi}{0}$	\cdots			\square																				
吕				＋			－－																	
	40																							
	40																							
แ																								
	30				IHI																			
に																								
I							L			O								－1	1					
\pm	20																							
\square																								
\sum								－	$\underline{1}$	－														
$\stackrel{\rightharpoonup}{\mathrm{L}}$	10																							
	0								－															
			of Y	ear	30		45		60		75		90		105			20		135		150		105
	2.0	－																						
L	1.8																							
エ	1.6																							
	\％																							
运	1.2																							
＝	1.0																							
	0.8																							
䂞	0.6	6																						
	0.	4																						
$\frac{\alpha}{\alpha}$	0	2																						
		0 ．																						

ECIPITATION OVER THE STATE 1896.

PART V.
I. Description of Stations.
II. Statistical Table of Stations.
III. Sample Cror Refort.

Description of Stations.

WESTERN PLATEAU - ALLEGANY COUNTY.

Station, Alfred - In Charge of Mr. Laurence La Forge at Alfred University.

Established in 1889; latitude, 42 deg. 15 min . north; longitude, 77 deg. 55 min . West; elevation, 1,824 feet.

The town of Alfred is situated near the upper limit of a valley which opens, in a northeasterly direction, toward the Alfred station of the New York, Lake Erie and Western Railroad, 2 miles distant. The station is located in the town, half-way up the eastern slope of the valley, on both sides of which the hill rises to the heights of from 100 to 200 feet.

Until the latter part of 1895, the observatory was equipped as follows:

A standard Green barometer was hung in a room (heated in winter) on the first floor of a house on Sayles street. The maximum, minimum, wet and dry thermometers, with a Draper thermograph, were located in a louvred shelter of a pattern of the United States Weather Bureau standard. The shelter is 7 feet above the ground, and 35 feet from any buildings.

The rain-gauge was 28 inches above the ground, and 30 feet from buildings.

The station has been very recently completely equipped with an anemograph and anemometer, a thermograph and a sunshine recorder, also soil thermometers; and systematic observations for the determination of the climate of the locality are being made.

WESTERN PLATEAU - CATTARAUGUS COUNTY.

Station, Humphrey - Mr. Charles E. Whitney, Observer.

Equipped (by Signal Service) 1885-1886; latitude, 42 deg. 12 min . north; longitude, 78 deg. 34 min. west; elevation, 1,950 feet, as determined by aneroid readings; no data have been previously obtainable, and consequently the height given in the report of 1889 is very much in error.

The station is about 10 miles northeast of the Great Valley station of the New York, Lake Erie and Western railroad. It is near
the summit of a ridge of hills, 350 feet above, and on the northwest side of a stream which flows into the Allegany River at Great Valley station. The hills in this section rise to an average height of 1,900 or 2,000 feet above tide, and are intersected by numerous deep valleys.
Mr. Whitney's station is situated between two knolls, toward the east and west respectively, whose summits are from 50 to 80 feet above the station.
The dry and wet bulb and the maximum and minimum thermometers are placed under the roof of a piazza facing toward the south, in an angle formed by the main portion of the house and a wing on the eastern side. The height of the thermometers above the ground is about 7 feet; above the floor of the piazza, $5 \frac{1}{2}$ feet, and below its roof, 3 feet. The width of the piazza is 4 feet. The thermometers are hung several inches away from the wall of the building.

The rain-gauge is situated about 45 feet north-northwest of the main portion of the house. Two or three dwarf fruit trees are at a distance of 12 or 15 feet, and are the only obstacles to a free circulation of air in the vicinity. The top of the gauge is 4 feet above the ground.

An anemometer placed at this station is mounted on the south gable of the house, 7 feet above the ridge and about 30 feet above the ground.

WESTERN PLATEAU - CHAUTAUQUA COUNTY.

Station, Arkifright - Miss Etta L. Wilcox, Observer.

[^23]This station is situated about 6 miles east southeast of Dunkirk, on the range of hills which borders the shore of Lake Erie. The writer's observations of an aneroid barometer give the elevation of this station as approximately 68 fect above the level of Lake Erie. The thermograph is located at the house of Mr. E. I. Wilcox, which stands on the northern slope of a ridge rising above the
general level of the hills to a height of 200 or 300 feet, half a mile in the rear of the station. The ground falls away from Mr. Wil. cox's house toward the porth and west, so that there is an unob structed view toward Buffalo plains and over Lake Erie. The station is somewhat sheltered from the south winds by the ridge mentioned, but air currents from all other directions have a free circulation about it. The shelter of the Draper thermograph is placed at the eastern end of a northern piazza, at a height of $4 \frac{1}{2}$ feet above the floor and 7 feet from the ground. The eastern and western ends of the piazza are formed by wings projecting about 7 feet from the body of the house; the thermograph being placed about 1 foot distant from the outer side of the piazza. The rays of the sun are excluded from the shelter and its vicinity at all times, excepting possibly for an hour in the late afternoons of summer.

Western plateau - CEAUTAUQUA COUNTY.

Station, Jamestown - Mr. N. D. Leifis, Observer.

Established in November, 1895; latitude, 42 deg. 06 min. north; longitude, 79 deg. 16 min. west; elevation, 1,321 feet.

This station is situated in the city of Jamestown, on the crest of a hill extending in an easterly and westerly direction. The surrounding country is hilly, mainly a moraine formation, intersected by short valleys.

Maximum and minimum thermometers are exposed on the eastern side of the house, at a height of 15 feet from the ground, and are protected by a piazza roof. They are exposed to the sun's rays only at sunrise in mid-winter.
The rain-gauge stands on a level surface, and is 15 to 20 feet from the nearest tree or buildings. Its top is 9 feet above the ground.

WESTERN PLATEAU - CHEMUNG COUNTY.

Station, Elmira - Messrs. W. S. \& C. R. Gerity, Observers.
Established November, 1888 ; latitude, 42 deg. 06 min. north; longitude, 76 deg .56 min . west; elevation, 863 feet.

The city of Elmira is located upon the broad valley bottom of the Chemung river, at its point-of intersection with a deep depression exteuding northward from Pemsylvania to the valley of Seneca lake. Beyond the city limits the hills rise abruptly from the flat lands to the higher levels of the Western Plateau.

The meteorological station is located near the center of the city at the business house of Messis. Gerity, on the southeast corner of Lake and Carrol streets. The thermometer shelter projects from a window on the north-northwest side and second story of the brick building. Its dimensions are approximately 3 feet in width, 2 feet in depth and 3 feet in height, the thermometers being secured near its center at a distance of 18 inches from the window, which is always closed. The sides and front of the shelter are closed, the provision for ventilation consisting of an open bottom and air spaces betreen the top and sides. The thermometers are 18 feet above the parement.

WESTERN PLATEAU - LIVINGSTON COUNTY.

Station, Avon - Mr. W. G. Markham, Observer.
Established in August, 1895; latitude, 42 deg. 55 min . north; longitude, 77 deg .47 mln. west; elevation, 585 feet.

This station is located in open country of the Genesee Valley bottom, 23 miles south of Lake Ontario, and is about 100 rods east of the Genesee river and 25 feet above its highest level. At high water the valley is carried over an area 11 miles in breadth. The surface is gently undulating to the east, while westward, hills rise to a considerable elevation. The valley is broad and open toward the south.

Maximum and minimum thermometers are attached to the north end of a buildirg, their height above the ground being 5 feet. They are protected by a hood 6 inches deep, open toward the north, and the rays of the sun are excluded at all hours.

The rain-gauge is mounted upon a post, its top being 4 feet 8 inches above the ground. The surface near by is quite level, and the gauge is at an ample distance from obstructions to free air circulation.

WESTERN PLATEAU - LIVINGSTON COUNTY.

Station, Mount Morris - Mr. J. Kiappenberg, Observer.
Established June, 1890; latitude, 42 deg. 42 min. north; longitude, 77 deg. 56 min. west; elevation, 535 feet, (approximately).

Mt. Morris is situated in the valley bottom, on the borders of Dansville creek. The course of the stream in this vicinity is toward the north, hills of moderate elevation rising on the eastern and western sides. The general surface of the neighboring country slopes rapidly from the high hills, further south, toward the plains of the Great Lake region.

The maximum and minimum thermometers are exposed on the north side of Mr. Kuappenberg's harn, and are said to be sheltered from sunlight at all hours, and also from moisture. The rain-gauge stands freely exposed in the yard.

WESTERN PLATEAU - SCHUYLER COUNTY.

Státion, Wedgewood - Mr. O. F. Cortwin, Observer.
Equipped with standard instruments in December, 1889; latıtude, 42 deg. 25 min. north; longitude, 76 deg. 56 min. west; elevation, 1,350 feet.

This station is situated on the high hills which rise abruptly from the valley of Seneca lake, and is about three-quarters of a mile west of Wedgewood depot of the Fall Brook Coal Company's railroad. The ground rises gradually to the west and south of Mr. Corwin's house, where the instruments are located, but slopes away from it in all other directions. The temperature and rainfall at this station should fairly represent the climatic features of the highlands near the central lakes.

The thermometer shelter is about 30 feet west of the house, and is supported on posts at a height of 4 feet above the sod. Its
dimensions are about $3 \frac{1}{2}$ by $2 \frac{1}{2}$ feet at the base and 3 feet in height. The sides are of board (unpainted), with a door of the width of the shelter on the east side. Ventilation is obtained by spaces about one-eighth of an inch in width between the boards, and by a large number of holes bored in the sides at such an angle that rain is excluded. The top double, with an air space, and has a slight slope. The thermometers are hung near the center of the shelter. The rain-gauge is placed on a post $4 \frac{1}{2}$ feet above the ground, that it may be above snow-drifts. The only obstacles to a free circulation of air in the vicinity of the gange is a hedge of shrubs 20 feet distant and about 12 feet in height.

WESTERN PLATEAU - STEUBEN COUNTY.

Station, South Canisteo - Mr. James E. Wilson, Observer.
Equipped November, 1889; Jatitude, 42 deg .12 min. north; longitude, 77 deg .34 mln . west; elevation, 1,480 feet.
This station is situated in the valles of a creek, 5 miles southsoutheast of the town of Canisteo. The hills rise abruptly from the valley at distances ranging from 100 to 200 feet on the eastern and western sides of the station. The high ridges of the surrounding country are separated by deep valleys similar to the one in which the station is located, opening northward toward the Canisteo river. The highest point in the neighborhood is the."Swale," about 3 miles east of the station.

The dry and wet and the maximum and minimum thermometers are exposed under a piazza of Mr. Wilson's house, 5 feet in width and facing the northeast. The thermometers are secured to a window of the house with air space between. Canvas is spread along the front of the piazza to exclude the rays of the morning sun from the instruments and also from the piaza floor. The thermometers are 5 feet above the ground.

The rain-gauge is 20 feet distant from the nearest building 10 or 12 feet in height, and about as far from a few small fruit trees. The height of the top of the gange above the ground is 2 feet.

WESTERN PLATEAU - WYOMING COUNTY.

Station, Arcade - Mr. J. D. Tate, Observer.
Established April, 1890; latitude, 42 deg .32 min . north; longitude, 78 deg .26 min . west; elevation, 1,707 feet.

This station is located near the eastern side of a ridge of hills which lie west of a valley extending from Arcade to Sandusky. The valley of Arcade is about 2 miles west-northwest of the station. Toward the north the ground slopes gently from the station to the valley bottom, 140 feet below; while toward the west and southwest the ridge rises to a height of 100 to 200 feet above the station. The surrounding country is very hilly, some of the higher summits reaching an elevation of more than 2,000 feet above tide.

The dry and wet bulb, maximum and minimum thermometers are exposed out of the north window of an unheated one-story wing of Mr. Tate's house. The sides of the shelter are the window blinds, which are secured in a position at right angles to the wall of the house by a wide board forming the top of the shelter. The thermometers are 9 feet above the ground, and facing outward, are reached by steps. The front of the shelter is open, while a wide board at the bottom cuts off radiation from the ground.

The rain-gauge is about 40 feet northwest of the house. There are no trees or other obstructions to a free air circulation in its vicinity. The top of the gauge is 26 inches above the ground.

WESTERN PLATEAU - WYOMING COUNTY.

Station, Varysburgh - Mr. H. C. Orr, Observer.

Equipped with maximum and minimum thermometers in February, 1893; latitude, 42 deg. 45 min.; longitude, 78 deg. 20 min.; elevation not known.

The town of Varysburgh is situated in the Tonawanda valley, which extends nearly north and south through western Wyoming county. The station is located within the limits of the village.

The thermometer shelter is built substantially after the specifications of the United States Weather Bureau, having lourred sides and a sloping shingled roof. It is 24 feet southeast of the nearest building (a barn) and is not affected br any artificial heat. The thermometers are $5 \frac{1}{2}$ feet above the ground.

The rain-gauge stands on level ground, 30 feet south of Mr. Orr's house and 12 feet south of a small fruit tree. The top of the gauge is 2 feet above the ground.

EASTERN PLATEAU - BROOME COUNTY.

Station, Binghamton - Superintendent of State Hospital; Mr. J. J. Eastman, Observer.

Established (by Signal Service) October, 1889; latitude, 42 deg .07 min . north; longitude. 75 deg. 55 min. west; elevation, 870 feet.

The instruments are located on the grounds of the pumping station of the State hospital water-works, on the northern bank of the Susquehanna river. North of the station the ground rises abruptly to the hospital grounds, over 200 feet above, and beyond the hospital the ground continues to rise to a much greater eleration. The station is at the outskirts of the city of Binghamton, which lies on the broad plain toward the south and west.

The dry bulb and maximum and minimum thermometers are exposed in a louvred shelter, built after the signal service specifications, and is supported at the height of 12 feet from the ground on a skeleton platform. It is 90 feet west of the pumping station, 100 feet north of the river bank, and about 30 feet above mean water level of the river.

The rain-gauge is 90 feet west of the water-works, and there are no obstructions nearer than this to interfere with a free air circulation. The top of the gange is 8 feet above the ground.

EASTERN PLATEAU - CHENANGO COUNTY.

Station, Oxford - Mr. John P. Davis, Observer.

Latitude, 42 deg. 26 min . north; longitude, 75 deg .40 min . West; elevation, 1,000 feet; location changed to Oxford village in 1893.

This station is located at Mr. Davis' residence in the town of Oxford, on the western side of the Chenango river valles; the surface being nearly level in the vicinity of the station.

The maximum and minimum thermometers are secured 6 feet above the sod, to the north side of a barn. They are protected by louvred wings at the sides, and by a closed board roof.

The rain-gauge is situated in the garden, about 25 feet distant from the barn. Its top is 2 feet above the ground.

EASTERN PLATEAU - DELAWARE COUNTY.

Station, South Kortright - Mr. D. C. Sharpe, Observer.
Established (by Signal Service) in 1888; equipped by State Service, February, 1890; latitude, 42 deg. 20 min . north; longitude, 74 deg .43 min . west; elevation, 1,700 feet.

This station is located in a deep valley of the Catskill mountains through which the western branch of the Delaware river flows in a southwesterly direction. On the southern side of the valley the mountains rise to a height of about 1,000 feet, and to a somewhat less elevation on the northern side. The valley at this point is about one-half mile wide, the station being located near its center.

The maximum and minimum thermometers are exposed in a doorway about 2 feet deep, on the north-northwest side of Mr. Sharpe's house.

The instruments face toward the northeast, and are never reached by the direct sunlight. The hall into which the door leads is unheated. The walls of the building are of wood. The thermometers are about 8 feet above the sod.

The rain-guage is 20 feet distant from the south side of the house. The top of the gauge is 2 feet above the ground.

EASTERN PLATEAU - DELAWARE COUNTY.

Station, Bloonyille - Mr. F. J. Campbell, Observer.
Established in August, 1895; latitude, 42 deg. 20 min . north; longitude, 74 deg .49 mln. west; elevation, 1,550 feet.

Bloomville station is situated on the flat lands lying on the western side of the Delaware river; and is one-fourth of a mile from the terminus of the U . and D . railway. It is surrounded by high hills, excepting toward the north and northeast.

The maximum and minimum thermometers are placed, at a height of $5 \frac{1}{2}$ feet above the ground, on the northern side of the house. They are sheltered by a hood 3 feet wide and 4 feet long. Neither the thermometers nor the adjacent walls are subjected to the sun's rays or to artificial heating.
The ran-gauge stands on level ground 50 feet from the nearest building (which is about 20 feet high). The top of the gauge is 4 feet 3 inches above the ground.

The winter climate is not considered severe in this vicinity, the ground seldom freezing to a greater depth than 1 foot.

EASTERN PLATEAU - MADISON COUNTY.

Station, Brookfield - Mr. D. B. Stillman, Observer.

Established December, 1889; latitude, 42 deg. 4 Smin . north; longitude, 75 deg .20 mln . west; elevation, 1,350 feet.

The town of Brookfield is situated in the deep valley of Beaver creek, a small stream flowing southward into the Unadilla river. The hills rise abruptly on the eastern and western sides of the town to heights ranging from 200 to 800 feet.

The meteorological station is located at Mr. Stillman's house which stands a few hundred feet east of the creek, the ground in its vicinity rising gradually toward the eastern hills.

The dry and wet bulb, and the maximum and minimum thermometers are supported by a horizontal board facing the north window of an unheated hallway in the second floor of the building.

The roof of the house projects orer the thermometers, affording a partial shelter from rain. The walls of the building, with the high eastern hills, shade the instruments until late in the afternoons of summer, when they are exposed to the rass of the sun for about an hour. The thermometers are about 12 feet above the ground and 1 foot distant from the window.

The rain-gauge is located about 40 feet from the western side of the house, its top being 2 feet above the ground.

EASTERN PLATEAU - MADISON COUNTY.

Station, Hamilton, at Colgate Acadenif - Prof. W. F. Langworthy, Observer.

Established June, 1894; latitude, 42 deg. 49 min . north; longitude, 75 deg. 35 min . West; elevation, 1,000 feet.

Colgate academy is situated at the outskirts of the village of Hamilton and has practically the free exposure of the open country. The station is located on the broad valley-bottom; hills of a moderate elevation beginning at a considerable distance from the academy.

Dry and wet, maximum and minimum thermometers are placed in a louvred shelter of standard dimensions and construction, which is supported at a height of 2 feet above a board platform, and 12 feet above the ground. It is about 100 feet distant from the academy in an open field, and there are no obstacles to a free air circulation.

A rain-gauge is secured to a corner post rising above the platform and is about 13 feet above the ground.

EASTERN PLATEAU - ORANGE COUNTY.

Station, Middletown - In Charge of Selden H. Talcott, M. D., Dr. Allen and Mr. Efer, Observers. At the State Hospital.

Established January, 1890 ; latitude, 41 deg .25 min . north; longitude, 74 deg .25 min. west; elevation, 700 feet.

The State hospital is located about 1 mile southwest of Middletown, and is about 50 feet above the city. The ground slopes rapidly away from the station toward the north and east, but southward the country is nearly level with the station, or rises slightly above it.

The dry and wet, maximum and minimum thermometers are exposed on the northern side of a wing of the hospital, one and onehalf stories in height. The instruments are secured to framework facing the window, 2 feet distant from it, and 10 feet above the ground. The thermometers are about 4 feet below the roof, which, extending 4 feet beyond the wall, is utilized as a shelter. The rays of the sun are entirely excluded from the instruments and the sod bencath, in the morning by the high wall of the main building, which extends for 170 feet or more toward the north, and in the afternoon by a northern extension of the wing. The window is only opened for the purpose of moistening the wet-bulb thermometer. The room within is unheated but the corridor in the basement beneath is warmed by steam during the winter. The thermometers are about 40 feet distant from the main building.

The rain-gauge is exposed on a lawn east of the main building and about 100 feet from it. There are no obstructions to a free air circulation in the vicinity of the gauge, other than a few ornamental shrubs 30 or 40 feet distant.

EASTERN PLATEAU - ORANGE COUNTY.

Station, Port Jervis - Professor Joun M. Dolph, Observer.
Established November, 18S9; special temperature station; equipped with a thermograph in December, 1890; latitude, 41 deg. 21 min . north; longitude, 74 deg .40 min . west; elevation, 470 feet.

Port Jervis is situated between the Delaware and Neversink rivers, at a short distance north of their point of junction. The valley of the Delaware makes an abrupt turn at this point, from the southeast to the southwest, the Neversink river entering from the northeast at the bend. The surface rises gradually toward the north in the vicinity of the station, which is about 50 feet above the river surface. But beyond the city limits high hills rlose in abruptly about the valley.

The thermometers and thermograph are exposed in a louvred shelter built substantially after the pattern employed by the United States Weather Bureau. The shelter is about 20 feet from the northeastern side of the house, and 3 feet above the ground.

The rain-gauge is placed upon a post at a height of 4 feet 8 inches above the ground, between two low buildings whose roofs rise above the gauge to a height about equal to their distance from it.

EASTERN PLATEAU - OTSEGO COUNTY.

Station, Cooperstown - Mr. G. Pomeroy Keese, Observer.
Established 1854; latitude, 42 deg. 41 min . north; longitude, 74 deg. 57 min . west; elevation, 1,300 feet.

Cooperstown is situated in the valley at the southern end or foot of Otsego lake, hills rising abruptly on the eastern and western sides of the town. The stream flowing south from the lake through a narrow valley, forms one of the principal sources of the Susquehanna river. The meteorological station is 200 feet southwest from the shore of the lake, and is sufficiently isolated from the buildings of the town to admit of a very free air circulation. The hills on the eastern and western sides of the valley are respectively one-half and three-fourths of a mile from the station.

The dry, wet, maximum and minimum thermometers are secured to the side posts of a northern piazza of Mr. Keese's residence; their distance from the ground being about 9 feet, and from the piazza roof, 5 feet. The sun reaches the piazza only near the hours of rising and setting, and at these times one-half of the piazza is always in the shade of a projecting doorway; hence by moving the thermometers from one side of the piazza to the other, they are kept shaded for several hours preceding the time of observation. The walls of the house are of brick, from which the instruments are separated by at least several inches of air space.

The rain-gauge is 60 feet south of the house, and has no obstacle to a free air circulation in its vicinity. The top of the gauge is 4 feet above the ground.

Mr. Keese's record of temperature was kept during 36 years from readings of a Green standard thermometer, with which the instrument furnished by this service early in 1890 was found to agree closely. The rain-gauge in use for 36 years was the Pike "conical" form, which, as compared with the gauge of the New York Bureau, is found to give a slightly deficient registration. The exposure of the instruments has been substantially the same during the entire period of the record.

EASTERN PLATEAU - OTSEGO COUNTY. Station, Nef Lisbon - Mr. G. A. Yates, Observer.

Established November, 1892; latitude, 42 deg. 35 min. north; longitude, 75 deg. 13 mln. west; elevation, 1,234 feet.

This station is situated in the open country on the rolling lands of the Butternut Creek valley, which is here about three-fourths of a mile wide, the adjacent hills being of moderate elevation.

Maximum and minimum thermometers are exposed in a louvred shelter of Unitcd States standard form and dimensions; their height from the sod being 6 feet. The shelter is 30 feet northeast of Mr. Yates' house, and is near, but not directly under, a fruit tree.

The rain-gauge is supported by a fence post at a height of 6 feet from the ground. A barn 40 feet away is the nearest building.

EASTERN PLATEAU - OTSEGO COUNTY.

Station, Oneonta - Messrs. Ford and Ford, Observers.
Established August, 1894; latitude, 42 deg. 27 min . north; longitude, 75 deg. 6 min. west; elevation, 1,000 feet.

The town of Oneonta is situated in a valley of the eastern highlands, at the junction of the Susquehanna, Charlotte and Schenevus rivers.

The maximum and minimum thermometers are exposed in front of the drug store of Messrs. Ford, on the north side of Main street. The instruments are 6 feet above the sidewalk. Direct sunlight is excluded by an awning; but the pavement is liable to become heated in the early morning and the late afternoon.

The rain-gauge is mounted at the center of the flat tin roof of the business block, at a height of about 40 feet from the ground; the bottom of the gauge resting upon the roof.

EASTERN PLATEAU - SCHUYLER COUNTY.

Station, Perry City - Mr. W. H. Jeffers, Observer.
Equipped with standard instruments in December, 1889; latitude, 42 deg. 03 min. north; longitude, 76 deg. 44 min . west; elevation, 1,038 feet.

This station is located about 4 miles west-southwest of Trumansburgh, on the hills west of Cayuga lake, from whose shore it is about 6 miles distant. Mr. Jeffers' house is situated on the west bank of a brook which, after flowing southward 50 rods, meets a larger stream emptying into Cayuga lake; the ground rising gradually from the valley of the creek toward the northwest and south. At a distance of 8 miles to the south is the range of Newfield hills, whose summit reaches an altitude of 2,100 feet; and a similar high tract of land lies to the west of the station near Seneca lakr. The valley in which the station is situated, with others opening out of it, form an irregular depression extending through this western range of hills.

The maximum, minimum, wet and dry bulb thermometers are exposed in a shelter built on the north side of a low wing of Mr. Jeffers' house. The bottom of the shelter, which is about $4 \frac{1}{2}$ feet above the ground, is constructed of slat work, which cuts off radiation from the sod. The sides are lourred in the manner adopted by the Signal Service, and a slanting roof and a door opening toward the north are provided.

The rain-gauge is about 80 feet east of the house and about 30 feet south of a corn house. The gauge is 2 feet 9 inches above the ground.

EASTERN PLATEAU -TIOGA COUNTY.

Station, Waverly - Mr. T. P. Yates, Observer.
Established by Signal Service in August, 1887; latitude, 42 deg. 01 min. north; 'longitude, 76 deg. 34 min. west; eleration, 824 feet.

This station is near the northeastern limits of the village of Waverly, and its surroundings are more like an open country than might be expected from its proximity to the village. The station is about two-thirds of the distance between the gradual slope from the Susquehanna river and the hills a mile away, which form the northern boundary of the valley. The elevation of the hills in this vicinity, on either the north or south side of the valley, probably does not exceed 300 to 500 feet.

The dry and wet bulb and the maximum and minimum thermometers are exposed in a shelter 40 feet east of Mr. Yates' house. The shelter consists of a double unpainted box open at the bottom having an air space 1 inch in width between the sides, and with slat work at the top opening to the ventilators in the ridged roof. Some additional ventilation is also obtained through a few spaces from one-eighth to one-fourth of an inch in width between the boards at the sides of the shelter. The dimensions of the shelter (outside) are 2 by 3 feet at the base and $2 \frac{1}{2}$ feet in height, exclusive of the roof. The thermometer supports are secured to a board near the back or south side of the inner box, and the door of the shelter opens toward the north. The height of the thermometers above the sod is $4 \frac{1}{2}$ feet.

The rain-gauge is 6 feet north of the shelter, 45 feet from the house (which has two stories and an attic), and about 35 feet from the branches of a large fruit tree. The top of the gauge is 6 feet above the ground.

EASTERN PLATEAU - ULSTER COUNTY.
Station, Mohone Lake, at the Mountain House - Mr. A. K. Smiley, Observer.
Established in November, 1895; latitude, 41 deg. 47 min . north; longitude, 74 deg .09 min . west; elevation, 1,235 feet.

This station is situated about 12 miles west of the Hudson river upon a mountain ridge separating the Shawangunk and Wallkill valleys. Immediately east of the station the ground falls away precipitously for several hundred feet to the valley lands, and thence, more gradually, to the Wallkill river, between which and the Hudson the surface is comparatively flat. There is also a sharp descent from the Mountain House to the ralley on the northwestern side. The summit of the range is a ridge of rocks rising a hundred feet or more from the eastern border of Mohonk lake; the Mountain House being situated in the northwestern side, and commanding an unobstructed view over the valley in that direction.
The drr, wet-bulb, maximum and minimum thermometers are exposed on the southeastern piazza of a small building belonging to the hotel, and fronting toward the lake. The instruments are secured to the side of the house, and are protected by the piazza roof, which is about 17 feet wide. They are exposed to the rays of the sun between the hours 8 and $9 \mathrm{a} . \mathrm{m}$. Their height above the ground is 10 feet, and abore the water surface 18 feet.

The rain-gauge stands on a floating boat whare at a distance of 150 feet from the nearest building or woods. The top of the gauge is 3 feet above the lake.

Northern plateau - Franklin county.

Station, Saranac Lake - Edwin R. Baldwin, M. D., Observer.

Established November, 1893; latitude, 44 deg .19 min. north; longitude, 74 deg .08 min. west; elevation about 1,500 feet.

This station is situated in the village of Saranac Lake, oneeighth mile from the Saranac river, and 75 or 100 feet above its surface; the ground about the station being vers nearly level. A hill rises about 100 feet above the station toward the northeast, and at a considerable distance north and northeastward is a range of the Adirondack mountains.

Maximum, minimum, dry and wet-bulb thermometers are placed in a shelter haring lnurred sides, its dimensions being 26 inches in length, 18 inches deep and 28 inches high. The shelter has a peaked shingled roof, and is painted white. It is located in the rear of Mr. Baldwin's house, over turf, and is 50 feet from the nearest building. The thermometers are $4 \frac{1}{2}$ feet from the ground.

The rain-gauge stands near the shelter, and is 2 feet above the ground.

NORTHERN PLATEAU - FULTON COUNTY.

Station, Gloversville - Mr. L. W. Chamberlain, Observer. Established (by Mr. Chamberlain) December, 1883; latitude, 43 deg. 5 min. north; longitude, 74 deg. 30 min . West; elevation, 850 feet.

The city of Gloversville is situated on the southern slope of the Adirondack Plateau, near the upper limits of a valley tributary to the Mohawk; the city being about 600 feet above the Mohawk river. The station stands on the city hospital grounds, which slope sharply upward at the eastern border of the city.

The instrument shelter stands on the slope west of and below the hospital building, 38 feet distant; and there are no objects nearer than this to obstruct the air circulation. The shelter, containing a full set of thermometers, is constructed after the specilications of the Weather Burean, and stands 5 feet above the sod.

The rain-gauge is located on the same slope 20 feet north of the shelter, and at about the same level.

Mr. Chamberlain has made careful and systematic observations upon the weather for the past 15 years.

NORTHERN PLATEAU - LEWIS COUNTY.

Station, Number Four - Mr. Charles Fenton, Observer.

> Established by the National Service in December, 1888; equipment completed by the State in December, 1889 ; latitude, 43 deg .50 min . north; longitude, 75 deg .12 min . west; elevation, 1,571 feet.

The station, Fenton's Number Four, is 18 miles east of Lowville, near the western limits of the Adirondack wilderness. The station stands on a plateau which commands a view of Beaver lake, about one-half mile distant, and also a considerable range of the surrounding country in all directions. Since the hills in this section are much lower than the peaks of the eastern Adirondacks, the air circulation about the station is nearly unobstructed.

The dry, wet bulb and maximum and minimum thermometers are exposed near the northwest corner of Mr. Fenton's main building in a single-louvred shelter of the Signal Service pattern. The shelter is about $\mathbf{1 1}$ feet above the ground, and is reached by a narnow platform extending out about 10 feet from the piazza of the house. It is exposed to the rays of the sun until about 9 in the morning; but during the remainder of the day the shelter is shaded by the main building.

The rain-gauge is situated on open ground, free from obstacles to a favorable exposure. The height of the funnel is about 3 feet from the ground. The barometer (by Schneider Bros.) is hung near the window of an unheated room on the first floor of the building.

NORTHERN PLATEAU-LEWIS COUNTY.

Station, Turin - Mres R. T. Church, Observer.

$$
\text { Established by the State Service in October, 1890; latitude, } 43 \text { deg. } 38 \text { min. north; longi- }
$$ tude, 75 deg. 25 min. west; elevation, 1,240 feet.

This station is located on the same terrace of "Tug Hill" range already described with reference to Constableville; but the plateau is not so wide as at the latter place, and the hills rise much more abruptly westward from Turin toward Gomer Hill (the highest point of the range) whose summit is 2,100 feet above tide. A consideration of the very heavy rains or cloud bursts which have
occurred during past years in this section, as well as its exceedingly severe winter climate and deep snows, indicate the existences of peculiar meterological conditions well worthy of further investigations.

This station is situated about one-fourth of a mile west of the village of Turin, and is but a few hundred feet from the base of the steep hills of the range.

The dry and wet bulb thermometers, and the maximum and minimum, are exposed out of a north window on the first floor of Mr. Church's house. The afternoon sun is excluded by wings from the eastern and western sides of the window; and over these a slanting board cover is placed, forming a shelter from rain and snow. The windows are always closed and the rooms are unheated. The sod immediately beneath the instruments is protected at all hours by the house and a fir tree at its northwestern corner. The dwelling is a frame house.

The rain-gauge is located in an open field 100 feet distant from the house. The height of the mouth of the gauge is 5 feet above ground.

COAST REGION - SUFFOLK COUNTY.

Station, Brentwood - Mr. W. H. Ross, M. D., Observer.

Established February, 1891; latitude, 40 deg. 45 min. north; longitude, 73 deg .14 min. west; elevation, 75 feet.

This station is situated 1 mile northeast of Setauket post-office, at a distance of one-fourth mile from the Hotel Austral.

The maximum and minimum, dry and wet bulb thermometers are exposed on the north side of Dr. Ross' residence, about 6 feet above the floor of a veranda, whose roof acts as a shield from the sun and weather. Their height above the ground is 7 feet. The rain-gauge has a favorable exposure upon an open plat of ground.

COAST REGION - SUFFOLK COUNTY.

Station, Setauket - Mr. Selah B. Strong, Observer.
Equipped with State instruments in January, 1890; latitude, 40 deg. 57 min . north; longitude, 73 deg. 05 min . west; elevation, 40 feet.

This station is situated 1 mile northeast of Stauket post-office upon a neck of land projecting into estuaries of Long Island sound. The Oldfield light, a prominent point of the northern coast of Long Island, is about 1 mile distant toward the northwest.

Mr. Strong's house stands on ground 40 feet above sea-level, with an open exposure on all sides excepting the northeast, where a cedar grove stands on a slight elevation.

The instrument shelter, containing a full equipment of thermometers, is fastened to a window casing on the north side of the house. It is louvred on three sides, with slat work at the bottom; the side facing the window being open. The dimensions of shelter are: Width, 20 inches; height, 24 inches; depth, 10 inches. Its height above ground is 6 feet, and the distance from the window 4 inches.

The roof of an open piazza prevents the rays of the afternoon sun from reaching the shelter, while a grove toward the east has a similar effect in the morning.

The rain-gauge stands upon nearly level ground, and is well removed from obstructions to a free air circulation. Its height above ground is 12 inches.

Observations upon temperature and rainfall have been made continuously at this station since 1885, Signal Service instruments being used until 1890 .

COAST REGION - WESTCHESTER COUNTY.

Station, Bedford - Mr. William A. Hyde, Observer.
Established in March, 1894 ; latitude, 41 deg .11 min . north; longitude, $73 \times \mathrm{deg} .39 \mathrm{~min}$.
west; elevation, about 290 feet.
Mr. Hyde's residence is situated in the hamlet of Bedford Centre. having practically the exposure of the open country, which is a rolling plateau in this vicinity.

The maximum and minimum thermometers are located under the roof of a porch, on the south side of the house. They are se cured to a post, at an elevation of 6 feet above the ground, and 5 feet above the piazza floor. Rays of the sun are excluded fiom the instrument by maple shade trees and by a screen over the thermometers.

The rain-gauge is mounted about 4 feet above the ground, ou the fence of an open lot. The exposure is very satisfactory.

HUDSON VALLEY - COLUMBIA COUNTY.
Station, Lebanon Springs - Mr. Arthur K. Harrisox, ObSERVER.

Established in March, 1892; latitude, 42 deg. 29 min. north; longitude, 73 deg. 20 min. west; elevation, 930 feet.

This station is located on the eastern side of a narrow valley which runs nearly north and south through the high hills of eastern Columbia county.

The maximum and minimum thermometers are exposed on the northern side of a building under a "hood;" their distance from the walls of the building being 5 or 6 inches, and from the ground 5 feet.

The raingauge is exposed in a slightly sloping, open meadow. Its height above ground is 1 foot 4 inches.

HUDSON VALLEY - DUTCHESS COUNTY.

Station, Wappinger's Falls - Mr. II. C. Townsend, Observer.
Equipped with rain-gauge May, 1850 , with maximum and minimum thermometers in February, 1893; latitude, 41 deg .35 mln. north; longitude, 73 deg .56 min. west.

This station is located at the eastern edge of the town of Wappinger's Falls, in the valley of Wappinger's creek. The surrounding country is broken, one of the higher hills rising about 300 feet west of the station. The station stands on a point of land extending into Wappinger's lake, a body of water 1 mile long and about half a mile wide.

The maximum and minimum thermometers are exposed on the northwestern side of a small wing of Mr. Townsend's house, and in a shallow angle formed by the wing and the main portion of the house. They are protected by a shelter 3 feet high, 3 feet wide and 1 foot deep; its top and back being of solid wood, and the front and sides of lattice work. During the summer the sun reaches the shelter for about an hour in the morning and afternoon, but at other seasons it is entirely shaded. The thermometers are 5 feet 2 inches above the ground and 8 inches from the wing wall. The room within is not heated.

The rain-gauge is 50 feet from the house, and at ample distance from trees and buildings. Its top is 7 feet 4 inches above the ground.

HUDSON VALLEY - DUTCHESS COUNTY.

Station, Honeymead Brook - Dr. James Hyatt, Observer.

Equipped April, 1890 ; latitude, 41 deg .51 min. north; longitude, 73 deg .42 min . west;
elevation, 450 feet.
This station is situated about 1 mile southeast of the village of Stanfordville and is about 4 rods distant from the track of the N. D. and C. R. R. The valley through which this road passes opens toward the south-southwest into the Hudson valley; hence it is thought that the meteorological conditions of the station are similar to those of the Hudson valley north of the Highlands. The general surface rises for several miles east and southeast from the station to the high hills west of the Harlem valley, while in its immediate vicinity the ground is broken by numerous irregular hills having a comparatively small elevation.

The dry and wet bulb, and the maximum and minimum thermometers are placed at the angle formed by the northeast side of the main portion of Mr. Hyatt's house and the northwest side of a wing projecting about 4 feet from the main building, the instruments thus fronting toward the north. The thermometers, excepting the maximum, are sheltered by board sides and bottom, and a sloping roof, the front being wholly open to the northwest,
and the batk half open. The maximum thermometer is placed near by, outside the shelter. The wings of the house exclude the sun at all hours.

The rain-gauge, which was constructed by Mr. Myatt, is 70 feet southeast of the house. Its top is $1 \frac{1}{2}$ feet abore the ground. Its readings agree well with the gauge of the State service.

HUDSON VALLEY - DUTCHESS COUNTY.

Station, Poughkeepsie, Vassar College Observatory.

Latitude, 41 deg. 41 min . north; longitude, $73 \mathrm{~d} \in \mathrm{~g} .53 \mathrm{~min}$. west; elevation, 180 feet.
This station is located on a plateau 180 feet above the Hudson river and about 2 miles from its eastern bank. The country is rolling and quite flat in the immediate vicinity, giving an open exposure.

The thermometers are placed in a louvred shelter of standard pattern, about 50 feet from the college observatory, and not far from a clump of evergreen trees. The shelter is exposed to sunlight excepting in the early morning and late afternoon. The thermometers are 5 feet above the sod.

The rain-gauge is a copper bucket, 10 inches in diameter, mads by Badger © A Sons, furnished by the New England Weather Service. It is about 40 feet distant from the observatory.

HUDSON VALLEY - PUTNAM COUNTY.

 Station, Carmel - Mr. Thomas Manning, Observer.Date of establishment not known; latitude, 41 deg. 25 min. north; longitude, 73 deg. 40 min . west; elevation, 500 feet.

This station is ahout 1,000 feet east of the village of Carmel, near the foot of a gradual descent from the village. The surrounding country is much broken by abrupt, irregular hills, probably not exereding ? 30 or too feet in height above the general surface.

The station is equipped with a maximum and minimum thermometer, owned by Mr. Manning, and a rain-gauge of the pattern used in the Croton aqueduct system. The thermometers are exposed on the northern piazza of Mr. Manning's house, at the height of 5 feet above the floor, and at about the same distance below the roof. The instruments are about 15 feet from the western or nearest end of the piazza, the roof of which (8 feet in width), with the hill westward, probably shields the thermometer from the direct rays of the sun at all hours.

The rain-gauge is on level ground, about 100 feet south of the house, and has an unobstructed air circulation about it. The funnel of the gauge is about 12 inches in diameter, and its height above the ground is 12 inches.

HUDSON VALLEY - SARATOGA COUNTY.

Station, Stillwater - Rev. R. G. Thompson, Observer.
Established May, 1893; latitude, 42 deg .57 min . north; longitude, 73 deg .45 min . west.
This station is located in the town of Stillwater, in the Hudson river valley, which at this point is about 1 mile in width, high hills rising on each side. The river is about 40 rods distant from the station.

The maximum and minimum thermometers are exposed on a northern piazza, on the northeastern side of the house in summer, and on the northwestern side in winter. They are 5 feet from the brick wall of a room heated throughout the year; being mounted on a backing of inch board, with screens of the same material at the top and sides. In winter the sun strikes the back and end of the shelter for a short time in the afternoon, but in its summer position the shelter is shielded at all hours by the house and by large elms near by. The thermometers are $7 \frac{1}{2}$ feet above the ground.
The rain-gauge is placed on level ground 25 feet from buildings, and 10 feet from a small fruit tree. The top of the gauge is about 14 inches above the ground.

MOHAWK VALLEY - ONEIDA COUNTY.
 Station, Rone - H. C. Sutton, M. D., Observer.
 Date of establishment not known; equipped by the State Service in October, 1890; latitude, 43 deg. 11 min , north; longitude, 75 deg .28 min . West; elevation, 445 feet.

Rome is situated at the western extremity of the Mohawk valley near the summit of the water shed separating the Iudson river system from that of the great lakes. The valley at this point is broad and flat, opening westward toward Oneida lake and the great lake region. The exposure of instruments has been changed several times during the two years past; but at present the maximum and minimum and dry and wet bulb thermometers are secured to the northern post of an open summer house, whose roof affords a protection from rains, and, with buildings towards the east and west, excludes the sun at all hours.

The rain-gauge is located south of the summer house at an ample distance from buildings. Its top is 12 inches from the ground.

CHAMPLAIN VALLEY - SARATOGA COUNTY.

Station, Saratoga - Mr. W. H. Hall, M. D., Observer.

[^24]The general surface in the vicinity of Saratoga is a plain, bordered on the west by the Palmerstown range of hills, and on the east ridges of lesser height separate the plain from the Hudson river. The station is, no doubt, subject to the conditions of both the Champlain and Hudson valleys; but the character of the topography of Saratoga county indicates that the prevailing air currents are from the north rather than the south. There are no records of previous systematic meteorological observations for Saratoga covering a period longer than one year.

The thermograph was removed in May, 1892, from the location described in the report of 1890 , and is now exposed out of the north window of the tower of the Migh School building, at a height of 50 feet from the ground.

CHAMPLAIN VALLEY - WARREN COUNTY.

Station, Glens Falls - Prof. C. L. Williams, Observer.
Established October, 1891; latitude, 43 deg. 19 min. north; longitude, 73 deg .40 min. west; elevation, 340 feet (approximately).

Glens Falls rillage is at the southern border of Warren county, on the bank of the Hudson river, which at this point flows eastward through a broad valley. The country is nearly flat toward the south, and also northward as far as the French mountain range on the eastern shore of Lake George.

The station is located at the Glens Falls academy, No. 60 Warren street. The shelter is secured to the northern side of a wood building, 10 by 10 feet, which is built against the brick school building. The shelter is 30 inches high by 18 inches deep by 24 inches wide. Its sides are of wood, free air circulation being obtained by slits at all the edges, and through the wire screen in front. The height of the thermometers (dry, wet, maximum and minimum) is 4 feet from the ground.

The rain-gauge is placed 2 feet above an open plat of ground and 60 feet from any buildings.

ST. LAWRENCE VALLEY - FRANKLIN COUNTY. Station, Malone - Mr. A. B. Johnson, Observer.

Established in the town in November of 1889, and discontinued in the summer of $\mathbf{1 8 9 0}$; the present station was established in November, 1890; latitude, 44 deg. 57 min. north; longitude, 74 deg. 19 min . west; elevation, 810 feet.

The town of Malone is at the base of the lower foot hills of the Adirondacks, from which the ground slopes gradually and uniformly to the St. Lawrence river, 18 miles distant. The station is located on the summit of a rise of ground $1 \frac{1}{2}$ miles south-southwest of the town, and about 200 feet above the tracks of the Vermont Central railroad. The station commands a very extensive view of the St. Lawrence valley toward the north and west, and of the Adirondack mountains to the southward.

The dry, wet, maximum and minimum thermometers are exposed about 15 feet from the northern side of Mr. Johnson's residence, in a shelter built after the specifications of the United States standard.

The rain-gauge stands in an open space 90 feet distant from the nearest buildings and 3 feet above the ground.

ST. LAWRENCE VALLEY - JEFFERSON COUNTY.

Station, Watertown - Mr. F. M. Porter, Observer.

> Established October, 1890; transferred to Mr. Porter in July, 1894; latitude, 43 deg. 57 min . north; longitude, 75 deg .54 min . west; elevation, 580 feet (approximately).

This station is located at Mr. Porter's residence, 154 State street, about 1_{2}^{1} miles southeast of the business center of Watertown, its exposure being practically that of the open country. The station stands near the summit of a ridge, being about 100 feet higher than the former station in the city.

The thermometers hang in a shelter 2 feet 8 inches long, 12 inches deep and 3 feet high, with lourred windows and a glazed door in front. The roof is sloping, the bottom and back are closed, the door opening toward the northeast. The shelter is situated midway between a low wing of the house and the barn, 30 feet distant from each. It is secured to a post at a height of 5 feet above the sod.

A barometer located in a room on the first floor of the bouse was found to be out of adjustment and was returned to the central office for correction.
The rain-gauge is fastened at the back of the shelter, its top being well above the roof and 7 feet from the ground.

ST. LAWRENCE VALLEY - ST. LATVRENCE COUNTY.

Station, North Пammond - Mr. C. A. Wooster, Observer.
Established (by the National Service with a standard thermometer) in November, 1888; and completely equipped by the State Service in December, 1889; latitude, 44 deg. 30 min . north; longitude, 75 deg. 40 min . west; elevation, about 340 feet.

The station is situated in the open comerty 6 miles north of the Hammond depot of the Rome, Watertown and Ogdensburg railroad, and about 1 mile from the St. Lawrence river. Northwestward from the station the surface of the country is nearly flat, with a gradual slope toward the river; whilst toward the east, and 300 feet from the station, the general surface rises some 30 or 40 feet. There are no high hills in the vicinity of the station.

The dry, wet and maximum and minimum thermometers are exposed on the northwestern side of a wing of the observer's house, and under the roof of a piazza 5 feet wide. The instruments are secured to the wood work of the wing 6 feet above the floor and 9 feet above the ground. The room within is heated throughout the year; but as a check, a standard thermometer located in a shaded position away from the veranda is read at each observation and thus far the results have agreed very closely. The sun's heat is excluded from the piazza until late in the afternoon, when the floor and the walls are liable to radiate their heat to the instruments. Efforts have been made to remedy this defect.

The rain-gauge is located about 35 feet west of the wing of the house ($1 \frac{1}{2}$ stories in height), and a distance from a low outbuilding equal to the height of the latter. The top of the gauge is about 5 feet above the ground.

ST. LAWRENCE VALLEY - ST. LATVRENCE COUNTY.

Station, Potsdam - Mr. G. W. F. Sihte, Observer.
Established December, 1889; latitude, $44 \mathrm{deg}, 40 \mathrm{~min}$, north; longitude, 75 deg .01 min . west; elevation, 300 feet.

This station is situated on Leroy street. Potsdam, at a distance of 1 mile north from the center of the town, and well removed from other buildings. The station is about 100 feet above the tracks of the Rome, Watertown and Ogdensburg railroad, on the summit of a knoll which is the highest point within a radius of a mile. The ground slopes gradually away from the station in all directions. The surrounding country is flat as far as the Adirondack foot hills, nearly 10 miles distant.

The dry and wet bulb and maximum and minimum thermometers are exposed in a shelter which is built out from the window on the north side of a low, unheated building attached to Mr. Smith's residence. The shelter is louvred at the sides and front, and in the rear a small door gives access to the instruments from the interior of the building. The dimensions of the shelter are about 3 by $2 \frac{1}{2}$
feet at the base, and 3 feet in height. It has a slanting double roof and slat bottom. The rass of the sun touch the top of the shelter at noon, but are excluded from it at other times by the walls of the building, and also by a pine tree west of the house. The walls adjacent to the shelter are of wood. The height of the thermometers above the ground is 6 feet.

The rain-gauge is located 70 feet north of the house, and about 25 feet frem a few small fruit trees. The top of the gauge is 5 feet above the grourd.

ST. LAWRENCE VALLEY - ST. LAWRENCE COUNTY.

Station, Ogdensburg, at the St. Lafrence State Hospital.
Established December, 1889; latitude, 44 deg. 43 min . north; longitude, 75° deg. 30 min . west; elevation, $258 \mathrm{f} \in \mathrm{et}$.

The State Hospital is situated on a broad, open plain, within 100 rods of the St. Lawrence river, and about 2 miles from the center of Ogdensburg. The thermometers (which belong to the hospital) are located on a third-story balcony of the administration building opening towards the west-southwest. They are exposed in a shelter 24 inches broad by 30 inches decep, and 6 fect in height, lourred from top to base (which rests on the piazza floor). The shelte: is painted brown. The dry and wet bulb and maximum and minimum thermometers are located midway between its sides, being 5 feet above the floor and 36 feet above the ground. The piazza becomes heated from the direct rays of the sun in the afternoon; and hence the maximum temperatures indicated may be somewhat too high.

The rain-gauge is located 75 feet southeast from the nearest building, upon a lawn. Its top is 9 inches above the ground.

ST. LAWRENCE VALLEY - ST. LATVRENCE COUNTY.

Station, Massena - Mr. A. J. Nelson, Observer.

Established in 1890; re-established July, 1894; latituđe, 44 deg. 55 min. north; longitude, 77 deg. 54 min. west; elevation, 200 feet (approximately).

Massena is situated at the extreme northern border of the State, on the broad and nearly level country adjacent to the St. Lawrence river, which is 3 miles distant from the village. The maximum and minimum thermmeters are located at the store of Mr. Nelson, on Harrowgate street. The instruments are secured to the rear or western wall of a shed 12 feet high at the back of the store; the height of the thermometer abore the ground being 8 feet. The shed is rather loosely boarded on all sides excepting the south, which is open. The temperatures indicated may be somewhat too high, owing to the heating of the adjacent unpainted wall by the sun.

The rain-gauge is placed at the rear of Mr. Nelsnu's residence on Glenn street. Its distance from the house is about the same as the height of the building.

The present location of the thermometers is one-fourth mile north of the former station.

ST. LAWRENCE VALLEY - ST. LATHRENCE COUNTY.
Station, Canton - Mr. C. W. Bolton, Observer.
Established November, 1889; instruments transferred from Prof. Henry Priest to present observer in March, 1894. Latitude, 44 deg. 35 min . north; longitude, 73 deg .12 min . west; elevation, 304 feet.

The meteorological station is located at the summit of a slope on the north side of the Grasse river, which is about 300 feet distant. Although within the limits of the village, the station has a very open exposure.

The thermometers are secured to the northern wall of a frame building, at a distance of 3 feet from the northwest corner. A screen toward the west cuts off all direct rays of the sun; but to prevent direct radiation to the thermometers from the ground in
the afternoon, a shelter having louvred sides and front, with a solid top and bottom, was to be placed around the instruments. These are now placed about $5 \frac{1}{2}$ feet above the ground.

The rain-gauge is located about 30 feet from the house, and is also about the same distance from the barn. The height of portions of these buildings adjacent to the gauge is about equal to their distance from it.

GREAT LAKE REGION - CHAUTAUQUA COUNTY.

Station, Westfield - Mr. G. Schoenfeld, Observer.
Established in October, 1895; latitude, 42 deg. 21 min . north; longitude, 79 deg. 37 min. west; elevation, 758 feet.

This station is situated in the open country, 2 miles from Lake Erie, toward the north, and 2 to 3 miles from the main ridge of the Chautauqua county hills toward the south. The surface is a plain slope from the lake toward the hills.
The thermometers are exposed on the north side of a building, 2 feet from its walls and 8 feet above the ground. They are protected by a hood or roof and by lattice work sides; the dimensions of the shelter being $2 \times 2 \times 3$ feet. They are not exposed to direct sunlight or other source of heat.

The rain-gauge stands on level ground, 35 feet from the nearest building. Its top is 8 feet above the ground.

This locality is not subject to autumn frosts or very severe winter weather, a week of continuous sleighing being rare. There is less rain and dew than on the highlands. Brisk winds are frequent.

great lake region - monroe county.

Station, Pittsford - Rev. G. H. Gomph, Observer.
Established in June, 1895; latitude, 43 deg. 05 mln . north; longitude, 77 deg .34 min . west; elevation, 515 feet.

The land about Pittsford is slightly rolling, with a general slope in a northerly direction into the Irondequoit basin and Lake Ontario. The station is situated at the western end of the village.

The maximum and minimum thermometers are exposed in a shelter built out from the north window of an unused second-story room, their distance from the ground being 15 feet. The shelter is built of window blinds, and is about 18 inches deep, 2 feet 6 inches wide in front and 3 feet 6 inches at the rear. The bottom and top are open, but the cornice of the house, 6 feet above, affords partial protection from weather. Direct rays of the sun are excluded at all hours.

The rain-gauge stands on nearly level ground, and is 60 feet distant from any trees or buildings. The top of the gauge is 6 feet above the ground.

Interesting notes as to the course of thunderstorms in this vicinity are furnished by the observer.

GREAT LAKE REGION - NIAGARA COUNTY.

Station, Appleton - Mr. H. A. Van Wagoner, Observer.

Established, August, 1889; latitude, 43 deg .20 min . north; longitude, 78 deg .41 min. west; elevation, 270 feet.

This station is situated in the open country, on the broad plain of northern Niagara county, at a distance of 1 mile from Lake Or:tario.
The dry and wet bulb, maximum and minimum thermometers are mounted, under a hood, at the northern end of Mr. Van 'Wagoner's house. They are shielded from the sun's rays at all hours; in the morning by a wing of the house and also by a canvas screen, and in the afternoon by a building a dozen feet to the west. The instruments are about 5 feet from the ground.

The rain-gauge stands between the house and barn, being about 50 feet distant from each. Its top is 4 feet nine inches above the ground.

GREAT LAKES - OSWEGO COUNTY.

Station, Palermo - Mr. E. B. Bartlett, Observer.

Observations commenced in 1854; equipped with standard maximum and minimum thermometers (by Signal Service) in July, 1887; fully equipped by State Service in February, 1890; latitude, 43 deg. 24 min. north; longitude, 76 deg. 20 min . west; elevation, 460 feet.

This station is situated in the open country about 6 miles southsouthwest of the town of Mexico, Oswego county. The surface of the surrounding country is rolling; the ridges, which are generally low, extending from northwest to southeast. A hill, said to be the highest point in Oswego countr, lies $3 \frac{1}{2}$ miles southeast of the station, but no marked rise of ground occurs until within half a mile of the summit. The station is situated on the northern slope of one of the ridges mentioned. The ground rises rapidly for a short distance at the rear or south side of the station, but falls away from it on the eastern and northeastern sides, thus giving a free circulation of air from the east, north and west.

The thermometers are exposed in a shelter of the dimensions and pattern used by the United States Weather Bureau. This shelter is 6 feet abore the ground and 17 feet from the north side of Mr. Bartlett's house.

The rain-gauge is 50 feet from the northeast corner of the house in a clear space. The bottom of the gange is 1 inch above the ground.

Details as to the manner in which long records of temperature and rainfall were obtained by Mr. Bartlett may be found in the report of this bureau for the year 1890 .

GREAT LAKES - WAYNE COUNTY.

 Station, Lyons - M. A. Veeder, M. D., Observer.[^25]Mr. Yeeder's house is on or near the summit of the gradual slope on which the town of Lyons is situated. The ground falls away gently from the station to the northeast and south, but toward the west is nearly level for a quarter of a mile, to the base of an abrupt
ridge, extending in a north and south direction, and 75 to 100 feet in height. The general character of the surrounding country is that of a plain, broken by numerous isolated low hills. The thermometers are exposed in a single-louvred shelter about $3 \frac{1}{2}$ feet in width by 3 feet in height, which is placed out of the window of an unheated room on the second floor and north side of the house. The shelter has a sloping roof and its bottom is closed. 'line front and sides are of single-louvred work, while at the back the raising of the window-sash gives access to the thermometers. In the early summer the shelter is exposed to the sun up to about 9 a. m., but is shielded from solar rays during the remainder of the day.

The rain-gauge is placed on a roof having a southeastern exposure, and is 12 feet above the ground. A second roof rises about 6 feet above the gauge, at a distance of 18 feet from it, and 16 feet toward the northwest a roof also rises about 10 feet above the gauge.

> CENTRAL IAKES - CAYUGA COUNTY.

Station, Fleming - Mr. Robert Waritick, Observer.

Established December, 18S3; latitude, 42 deg. 51 min . north; longitude, 76 deg. 36 min . west; elevation, 1,000 feet.

This station is situated in the open country, on the ridge of land lying between Cayuga and Owasco lakes, its distance from the latter being about $2 \frac{1}{2}$ miles, and from the city of Auburn 4 miles. The surface in the vicinity of the station is quite flat, but with a general slope downward toward the north.

The thermometers have recently been removed from the shelter described in the report of 1890 , and are now exposed in a cornhouse, whose north side is of open lattice work. The thermometers are suspended on the north side of the house, 3 feet from the lattice and 6 feet from the ground.

The rain-gauge is located about 100 feet west of Mr . Warwick's house, and is well removed from obstructions to a free air circulation.

CENTRAL LAKES - SENECA COUNTY.

Station, Romulus - Mr. J. H. Coryell, Observer.

Instruments transferred from Mr. B. E. Hicks September 7, 1891; latitude, 42 deg. 43 min. north; longitude, 76 deg .56 min . west; elevation, 719 feet.

This station is situated in the western part of the village of Romulus, near the summit of the ridge separating the basins of Cayuga and Seneca lakes. The high southern plateau terminates in a somewhat abrupt descent at Orid, 6 miles south of Romulus, north of which a comparatively flat country extends to Lake Ontario.

The thermometers are exposed in a single-louvred shelter 20 inches wide, 36 inches long, and 30 inches high, with a hinged bottom, and a drop-door in front facing the west. The shelter is located at the eastern side of the house, and is exposed to the direct rays of the suu only from 10 to $12 \mathrm{a} . \mathrm{m}$. The instruments are hung in the center of the shelter at a height of 5 feet 6 inches above the ground.

The rain-gauge is 30 feet distant from any buildings or trees, the nearest of the latter being small shrubs 8 feet high. The gauge is 30 inches abore the ground.

CENTRAL LAKES - TOMPKINS COUNTY.

Station, Ithaca - At the College of Civil Engineering, Cornell University.

Established 1874; latitude, 42 deg. 27 min . north; longitude, 76 deg. 29 min . west; elevatlon, 810 feet.
This station is situated on the hill bordering the eastern side of Cayuga Lake ralley, its distance from the head of the lake being about 1 mile and its clevation above the lake level 400 feet. South of the city of Ithaca, which lies immediately below the station, the valley divides into two branches, the first and main branch extending through the hills toward the southwest, while the second forms the narrow channel of Six Mile creek, which flows from the highlands southeast of the city into Cayuga lake. The meterological station has an open exposure toward the main valley on the west,
while eastward, after a slight rise near the station, the surface is nearly flat along the course of the Fall creek; but numerous hills arise to heights varying from 300 to 500 feet above the general level, at distances of a mile or more to the southeast of the station.

The instrumental equipment of the station is as follows:
Barometers.-These instruments are placed in the basement clock room of the engineering college.

1. The standard, a Fuess normal siphon barometer, is so constructed that any error due to the presence of air at the top of the mercurial column may be detected and approximately corrected by varying the capacity of the cistern, and so making the column occupy more or less of the vacuum chamber at the top. The pressure of any gas in the vacuum chamber will increase as the space is diminished, so that, under these conditions, the readings will not agree.
2. A Draper barograph furnishes a continuous record of pressure. The cistern of this instrument is suspended upou long spiral springs, while the main tube is fixed. The proportions of the various parts are such that a rise of pressure forces the mercury up into the tube from the cistern, which then rises; and a decreasing pressure produces a contrary effect. The record is made by a pen attached to the cistern, which bears against a record sheet moved horizontally by clock work. Since this barograph acts by balancing the weight of the mercurial column against the weight of the atmosphere, the correction for the temperature of the mercurial column is very small, falling within the limits of other errors of the instrument. The latter seldom amount to 0.01 inch.
3. A Green's Fortin barometer of the ordinary pattern, having a fixed zero point, to which the level of the cistern is adjusted, is used for purposes of current comparisons.
Thermometers.-1. Standard dry bulb and maximum and minimum thermometers are mounted in a shelter of the Weather Bureau pattern. The shelter stands about 40 feet east of the college building, upon a grass plot sloping downward toward the west; the height of the instruments above the sod being about 6 feet.
4. A continuous record of temperature is furnished by a Richard thermograph placed in the shelter. The pen tracing the record is attached to an arm whose position is governed by the expansion or contraction of a metal tube filled with alcohol. The recording sheet is carried by a crlinder, revolved by clock-work, at the rate of one turn per week. This thermograph, which is very accurate when properly adjusted, is checked by comparison with the adjacent standard thermometer.

Hygrometers.- The shelter also contains a hair hygrometer (Richard's), whose registering mechanism is similar to that of the thermograph; but in this case the pen arm is moved by the expansion and contraction of a bundle of hairs which are rendered very sensitive to the action of moisture by a special process of the makers. The index or datum of this hygrometer is liable to change somewhat during prolonged wet or dry periods; but gives very satisfactory results when adjusted from time to time to agree with the values of humidity indicated by the whirled psychrometer. (See "Instructions to voluntary observers" for full information regarding the latter instrument.)

A Richard dry and wet bulb recording hygrometer has alsu been used at this station, but thus far has not proved as satisfactory as the instrument just described. In principle it consists of two Richard thermographs, one of which has its alcohol tube moistened constantly by muslin dipping into a reservoir, while the other tube is kept dry. The instrument is so constructed, however, that the records of both dry and wet bulbs are traced upon the same cylinder.

Evaporometer.-An evaporometer (Richard's) is located beneath the shelter at a height of 2 feet from the ground; direct sunlight and driving rain or snow being excluded by lourred sides. The evaporometer consists, essentially, of a pair of scales, one pan of which carries the water, whose evaporation is to be measured, and a pen attached by suitable mechanism to the scale arm, which records on a rotating cylinder the rise or fall of the scale beam as the quantity of water is diminished or increased.

Actinometer.-An actinometer or sunshine recorder (Richard's) is mounted on a shelf out of a south window of the college. The intensity of solar heat is measured by the difference in temperature between two glass bulbs 4 inches in diameter, placed side by side, one of which is coated with lamp-black while the other is silrered. The two have the same temperature (nearly) when the sky is overcast, but the black bulb absorlos the heat of solar rays more rapidly than the bright under a clear sky. Each bulb contains a coil of copper tube filled with alcohol, and communicating with separate tubes similar to those of the thermographs, each of which has its recording lever and pen, whose tracings are made on a cylinder rotating once in two days. The differences between the temperatures traced by the two levers indicate the intensity of the solar radiation.

Wind Registers.- Two sets of wind registers are in use at the central station, each set furnishing an automatic record both of velocity and direction. Firstly, the instruments provided eighteen jears ago by the director, and whose records have since been maintained, are mounted about 8 feet above the ridge of the engineering building and 75 feet above the ground. The wind rane has for its axis a rod which is brought down through the roof, and carries at its lower extremity a cylinder about 3 inches in diameter and $:$ inches long. A pencil held in a suitable carriage mores vertically down the length of the cylinder in 24 hours; and since the cylinder turns with the vane, the pencil tracing upon a sheet of paper which is wrapped around the cylinder, furnishes a continuous record of the wind direction.

The anemometer, which is of the Robinson pattern, has four hemispherical cups earried on spokes radiating from a vertical axis. Rotation is caused by the greater force which the wind exerts upon the concave over that upon the conrex sides of the cups; and when the number iof revolutions indicates 1 mile of wind travel, an electric contact is made by a mechanism attached to the axle of the anemometer. Wires attached
to the instrument transmit the current to a Gibbon register located on the first floor of the building. A screwthread is cut upon the axis of the recording cylinder of this register, and as it is rotated by clockwork at the rate of one turn in 6 hours, the screw also gives it a motion lengthwise with the axis, so that a pen in a fixed position would trace a spiral line around its surface. In fact, the recording pen is attached to the pole piece of an electro-magnet in circuit with the anemometer, and hence, at every mile-contact, a notch is made in the spiral line traced by the pen upon the recording sheet, and the number of miles of wind travel for any given time is found by counting the number of these notches. It is necessary to replace the recording sheet each day.

A second wind vane and pair of anemometers are mounted on the tower of McGraw hall, one of the University buildings, standing on the crest of the hill and overlooking the Cayuga valley. These instruments are 12 feet above the roof of the tower, and 140 feet from the ground, being thus more exposed to the full force of the wind than those just described. The anemometer for measuring horizontal wind currents is of the Richard's construction, consisting of a small wind-mill with 6 inclined vanes radiating from a horizontal axis, which axis, extending into a metal case, makes an electric contact with each hundred revolutions by means of suitable gearing. The entire apparatus revolves freely about a vertical axis in the same manner as an ordinary wind-mill, and is made to face the wind by a broad, wedge-shaped tail at the rear. The vertical axis, which is tubular, passes down into the interior of the tower, and within it are carried the wires which transmit the measurements of wind velocity.
As the instrument was furnished by the makers, the cylinder upon which the record of wind direction is traced, was fixed to the lower end of the axis of the wind-wane; but since the registers at the central station are located in the Engineering building, 600 feet distant from the anemometers, a different arrangement was necessary. The present device consists, firstly, of a fixed metallic ring (a) 3 inches in diameter,
through the center of which the lower end of the wind-vane axis passes. This ring is divided into four segments or quadrants, each being connected with a wire passing to the corresponding quadrant of a similar ring (b) on the register in the distant build ing. A metallic contact piece secured to the wind-rane axis bears against the quadrants of (a), passing from one to the other as the direction of the wind changes. The ring (b) also has its contact piece, which is secured to the axis of the recording cylinder, said cylinder being rotated uniformly by clock work at the rate of one turn in 6 minutes. Its contact piece is in circuit with one pole of an electric battery, the other pole being grounded; and the contact piece of (a) is also grounded through the wind-vane axis. Hence, when the contact piece of (b), in its steady rotation, passes over the quadrant corresponding to that upon which the wind-vane contact is resting, a current is allowed to pass through (b) and its connecting wire to (a) and thence to the ground. This current actuates an electro-magnet in the register, thus pressing a pen against the cylinder until its contact piece, by rotation, passes off from the quadrant corresponding to the wind direction, when it is released. The pen falls vertically the length of the cylinder once in 24 hours, and, in the manner explained above, at every revolution of the cylinder, leaves a trace upon that part of its circumference which corresponds to the direction of the wind at the time.

The register, as thus described, records the wind direction only to four points; but by broadening the contact piece of (a) so that it can bear upon portions of two quadrants at the same time, as, for example, upon the north and west quadrants, for a northwest wind, both north and west are recorded upon the cylinder, and such a tracing is read northwest.

As previously stated, the wires of the velocity register pass through the hollow axis of the vane; and at the lower extremity of the latter are connected through mercury cups with wires running to the Engineering building. At every hundredth revolution of the anemometer, corresponding to 100 meters of wind, a circuit is made through an electro-magnet of the register; and this turns the proper recording cylinder through one one-thousandth part of
a complete revolution. The recording pen (which is attached to the same carriage with that of the direction register), traverses the length of the cylinder in 24 hours, and thus leaves upon the tracing sheet a spiral line, every complete turn indicating 100 kilometers of wind.

In addition to the hundredth meter contact, the anemometer is also provided with a second contact, which is made at every revolution of the anemometer wheel, and the circuit thus established is transmitted to a Richard's anemo-cinemograph, devised to register the details of the wind movement, and to show its maximum force during gusts. In this instrument an electro-magnet and mechanism operated by it, raise the pen arm of the cinemograph about one-thirty-second of an inch at every contact; while a clockwork depresses the arm at a rate proportionate to its distance from the zero position. With a given wind velocity, therefore, the arm takes a position such that the rate at which it is being raised by the anemometer contacts exactly balances that at which it is being depressed by the clock morement; and in this position is quickly changed to correspond with variations in the wind velocity. As in the other instruments, the height of the pen above the zero point is registered upon a band of paper carried by a uniformly rotating cylinder. As the cinemograph is needed chiefly to record the force of violent gusts, a mechanism has been devised which puts it in operation only when the wind velocity exceeds 30 miles per hour.

A Richard's anemometer for measuring the force of vertical air currents (or their vertical components), is also placed on the tower of Mchraw hall. This anemometer has four inclined blades or fans, rotating about a vertical axis, upward and downward currents turning it in opposite directions. Two sets of contacts are provided, one of which is operated by upward and the other by downward currents. The number of turns of the anemometer is registered upon a cylinder in the manner employed for recording horizontal velocities, excepting that the cylinder is made to turn to the right by downward currents, and in the opposite direction by upward currents. The movement of the cylinder is also ten fimes more rapid than in the case of the horizontal register for winds of the same velocity.

Rain-gauges of three kinds are in use at the central station. 1. An ordinary 8 -inch gauge of the Weather Bureau pattern, which is the standard. 2. A Ferguson self-registering gauge, which weighs the water or snow in the receiver by means of a spring-balance, and automatically records the amount upon a strip of paper wound around a cylinder placed beneath the gauge. 3. A Wild-Fuess electric recording gauge, whose registering mechanism is inside the Enginecring building. The guage has a funnel about 14 inches in diameter at the top, which discharges through a small tube into tilting buckets beneath. The buckets are balanced in such a manner that when one is filled it tips downward and empties, while the second bucket is brought under the tube from the fumnel, and in its turn is filled and tipped. Each time this operation is completed, an electric circuit is made through wires comnected with the register in the building. The record is made upon a strip of paper hanging vertically from a roll at the top of the case, and weighted at its lower end. The electric circuit, operating an electro-magnet and ratchet-wheel, drops the strip of paper about one-fiftieth of an inch at each tilt of the bucket, so that the distance through which the weight and strip of paper falls measures the amount of rainfall. The time register is made by a pen-arm moving horizontally across the paper strip (about $1 \frac{1}{2}$ inches wide) each hour, and sliding rapidly back to its initial position at the end of the hour. When no rain is falling, these horizontal hour lines are separated by the making of a contact within the clock, which mores the paper downward through the same space due to a tilt of the bucket. In dry weather, therefore, the paper is ruled with parallel horizontal lines about one-fiftieth of an inch apart; but a rainfall separates the lines by an amount corresponding to the amount of water falling in an hour.
Fromi

			：6090	co			\％
兑0000	saznuic	字寺转贺 \％			¢ ¢ ¢ ¢	20885\％	
	＇รววปภึว【				ceser	¢asicis	2080
	＇səวnu！ik					¢i88	8889둑
	＇รวว．1タəd						称等緊

December, 1889 May; 1890.	Eastern Plateau. Northera Plateau.
May. 1890	Northern Plateau.
December, 1890	Chawiplain Valley.
-. 1839.	Champlain Valley.
January, 1892.	Hudson Valley.
January, 1892........	Eastern Plateau.
August. 189	Eastern Plateau.
May, 1890	Eastern Plateau.
$\{\bar{\square}, 18 \times 8$.	Eastern Plateau.
April, 1890	n
$\text { May, } 1890 .$	Hudson Valley.
	Hudson Valley.
$\{$ May, 1890......... $\}$	Hudson Valley.
\{ February, 1892.... $\}$	Huason Valley.
Drceniberr, 1859.....	Great Lakes.
$\begin{aligned} & \text { Maj, } 1890 . \\ & -18 \% 0 . \end{aligned}$	Western llateau. Great Lakes.
January, 18	Great Lakes.
May, 1s! ${ }^{\text {J }}$	Northern Plateau.
Juner, 1895	Northern Plateau.
Novembrr, 1889	Northern Plateau.
April, 189\%.	Champlain Valley.
December, 1885.	Northern Plateau.
Novemuber, 1sit?	Northern Plateau.
November, 1890	St. Lawrence Valley
Novermbur, 1493....	Northern Plateau.
April, 189?	Northern Platean.
April, 1800	Western Plateau.
May, 1890	Western Plateau.
	Western Plateau.
August, 1896	Indson Valley.
Felornary, 16s9.	Eastern Plateau.
May, 1-9\%	Northern Platesu.
Oetober, 1888	Mohawk Valley.
December, 189	Mohawk Valley.
December, 1896......	Northern Plateau.
May, 1890............	Great Lakes.
February, 1893......	Northern Plateau."
	St. Lawrence Valley.
October, 1890.	St. Lawrence Valley.

Clinton Chenango	Oxford	John P. Davis
Clinton	West Chazy	W. H. Robinso
nton	Platsburgh ${ }_{\text {Par }}$	Prof. G. H. Hudson.
Columbia	Lebanon Spring	Arthur $\mathrm{K}^{\text {H }}$ H
Cortland.	Cortl	Prof. D. L. Ba
Delaware	Bloo	${ }_{\text {F }}^{\text {F }}$ J. Campbe
Delaware	Sourh Kortright	D
	Sor	D. C. Slarpe
Dutchess	Honeymead Broo	Dr. James Hyat
Dutchess	Poughkeepsie	Vassar College
dutchess	Wappingers Fall	H. C. Townsen
Erie	Eden Centre.	w. P. Hı
	Akron.	H. A. Wilder.
	Fort Porter	
	${ }^{\text {Ausable Fo }}$,
	Keene Valley	ITH Baile
Sssex	Port Henry	C. W. Lansing
Franklin	Ampersand	Otto Ruhl.
Franklin	Hi	Charles H. Wardn
	Lake	
Ful	ille..	
Genesee.	Alabama	S. S. Parker
	Le Roy	Wi. E. Alin
Catakill	Greane	
		Henry Stud
im	Litule Fali	bab
Herfersor.:	Little Falls (Reserv	
Jefferson..	C	

Statistical Table of Stations Established，Etc．，from 1889 to Date－（Continued）．

9 asd ‘uoḷdịos							
						Cocie	
品曷003	＇sə⿰丿⺄u！				或を成ち8	87\％	
	＇ธəәฉனึว【		枵				パになった
	＇soznu！iv		か in ¢ ¢ ¢ ¢	\％	郘品枵乐第		
	＇รэ๐．18อ（I	乐我寝等 \％		贸贸等等	采穼유웅욱		
Name of observer．							
Station.							$\stackrel{ \pm}{8}$
	E 3 0 0						

		$\begin{array}{r} \vdots \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$					
： $\because-$			：	\％	820．	： 0^{8}	＋
			128980：		29898	がき品等ず	뜩앙ㅇㅇ
R0000	以心だざ			と号ごされ	1－19？\％		
G年こ留品					解 ${ }^{3}$		
等罂守空緊		子子竽等皆	皿学筞ツ筞		尔子戸न	枵相家宗号	示出む゙ずす
		$\begin{aligned} & \vdots \\ & \text { 台 } \\ & 0 \\ & 0 \end{aligned}$					

Statistical

COUNTY.	Station.	Name of observer.	Latitude.		Longitude.				Established.	Region.
St. Lawrence...	Ogdensburg	State Hospital.	44	43	75	30	258		January, 1891	St. Lawrence Valley.
St. Lawrence...	Potsdam	G W. F. Smith	44	40	75	01	300		December, 1889.	St. Lawrence Valley.
Saratoga	Galway	J. P. Crouch	43	01	74	03			June, $1890 . .$.	Northern Plateau.
Saratoga	King's Stat	R. E. Kronkite	43	10	73	47	588		May, 1890.	Northern Plateau.
Saratoga	Stillwater	Rev. R. J. Thompson	42	57	73	40	110		May, 1893.	Hudson Valley.
Saratoga	Saratoga	W. H. Hall, M. D	43	05	73	48	270		October, 1890.	Champlain Valley.
Schenectady	Quaker Street	William Weaver	42	44	71	12	973		November, 1889	Eastern Plateau.
Schoharie .	Hyndsville.	C. P. Bouton	42	40	74	35	1,162		June, 1890......	Eastern Plateau.
Schoharie	Middleburgh	F. X. Straub	42	30	74	20	640		July, 1888.....	Eastern Plateru.
Schuyler	Perry City.	W. H. Jeffer	42	33	76	44	1,038		December, 1889	Eastern Plateau.
Schuyler	Tyrone	A. C. Weller	42	24	77	05			June, 1895	Western Plateau.
Schuyler	Watkins.	Chas. W. Ingalls.	42	22	76	55	600		February, 1892.	Central Lakes.
Schuyler	Wedgewood	O. F. Corwin.	42	25	76	56	1,350		December, 1859	Western Plateau.
Seneca	Romulus	J. H. Coryell	42	43	76	5	719		August, 1891	Central Lakes.
Steuben	Addison	H. A. Ainsworth, M. D	42	07	77	16	1,000		December, 1890	Western Plateau.
Steuben	Atlanta	Wheeler Clason	42	56	7%	31	1,325		May, 1890.	Western Plateau.
Steubrn	Corning	Dr. H. M. Darling	42	08	\% ${ }^{\text {\% }}$	05	912			Western Plateau.
Steuben	Hammondsport	H. O. Fairchild	42	25	77	09	800		June, 1890	Central Lakes.
Steuben	Haskinsville.	W. G. Collins.							June, 1895	Western Plateau.
Steuben	Savona	M. S. Collier, M D.	42	17	77	15	1,053			Western Plateau.
Steuben	South Canisteo.	James E. Wilson	42	12	77	34	1,480		November, 1889	Western Plateau.
Suffolk..........	Brentwood	W. H. Ross. M. D	40	46	73	14	T5		February, 1891	Coast Region.
Suffolk...... ..	East Hampton	J. F. Bell, M. D.	40	58	72	11	16		January. 1890	Const Region.
Suffolk..........	Set +uket	Solah B. Strong	40	57	73	05	40		-. 1885.	Coast Region,
Sullivan..........	Liberty..	Ed. Tarbell. .	41	46	T4	46	1,467		May, 1890.	Eastern Plateau.
Tioga	Apalachin.	Frank B. Tracy	42	04	\% 6	10	822		-, 1889	Eastern Plateau.
Tioga	Newaric Valley	M. D Clinton.	42	14	76	12	956		May, 1800.	Eastern Plateau.
Tioga	Nichnis.	F. C. Lowman	42	01	76	21	800		May, 1890	Eastern Plateau.
Tioga	Straits Corners	W. E. Elmendor	42	09	76	24			October, 1896	Eastern Plateau.
Tioga	Waverly.	T. P. Yates	42	01	76	34	825		January, 188	Eastern Plateau.

Eastern Plateau. Eastern Plateau. Central Lakes.
 Eastern Plateau.

 Champlain Valley.
Hudson Valley.告
 Coast Region.
Coast Region. s.
0
a
0
0
0
0
0
0

 Western Piateau.
Central Lakes.
 February, 1894.
August, $1896 .$.
November, 1892 May, $\begin{aligned} & \text { October, 1892... }\end{aligned}$ October, 1892....
May, $1891 . . .$.
July, $1890 . .$.
November, 1882

 ∞
0
∞
2
2
$\vdots 8$
0
0
0
0
0
2
 April, 1895.
November, 1593 November. 1889 Octuber, 1896.
April, $189 . \ldots .$. May, 1890.....

 Apr. $15 \pi 3$. Great Lakes.

Tompkins	Caroline.	J. W. Reed
Tompkins	Dryden	J. Giles Foid
Tompkins	Ellis	Oscar Snyder
Tompkins	Ithaca	College of Civil Engin'g
Tompkins	McLean	Newton Baldwin
Tompkins	Newfield Summit	Iuther Lennard
Tompkins .	Trumansburgh.	Loren P. Smith
Ulster	Marlborough	E. E. MeNamee
Ulster	Minnewaska	E. A. Smiley
Ulster	Mohonk Lake.	A. K. Smiley
Ulster	Rondout	H. A. Stone
Warren	Glens Falls	Prof. C. L Williams
Warren	Lake George	Galloway C. Morris.
Warren	Queensbury.	DeWitt C. Jenkins
Washington .	Easton	H. Tabor.
Washiogton	Whitehall	Prof. W. W. Howe
Wayne	Lycns	M A. Veeder. M. D
Wayne	Palmyra	L D. Cummings.
Wayne	Rose	George Smart.
Westchester	Bedford	WV. A. Hyde.
Westchester	David's Island	Post Surgeon, U.
Westchester	Peekskill	John Ň. 'itilden. M. D.
Westchester	Primrose	W. A. Cornelius.
Westchester	White Plains.	Prof. O. R. Willis
Wyoming	Arcade	J D. Tate.......
Wyoming	Attica	H. T Bramer................
Wroming	C'astile	W. E. Pratt .
Wyoming	Varyshurgh	H.C.Orr
Yates	Italy Hill	Mrs. J. Pulver
Yates..	Penn Yan	Hollowell \mathbb{C} Wise
Erie, Pa	Erie	U. S. Weather Bureau . . .

Abstract

SAMPLE COIY OF THE CROP BULLETIN OF THE NEW YORK STATE WEATHER BUREAU, ISNUED WEEKLY DURRING THE CROP SE. SON, LN CO-OPERATION WITH THE UNITED STATEA DEPARTMENT OF AGRICULTURE WEATHER BUREAU.

Vol. VIII. For the week ending Saturday, June 6, 1896. No. 7.

Cornell University,

 Ithaca, N. Y., June 9, 1896.The following information is condensed from the reports of crop correspondents for the week ending Saturday, June 6, 1896:

Albany County (Albany).- Home strawberries in market. Some injury to grapes by insects. Rain, 0.69.

Allegany County (Bolivar).-Grass looks better since the rains, but crop will be very light. Old meadows very light. Apples looking well. Rain, 1.11.

Broome County (Chenango Forks).- I majority of old meadows have been plowed up and sown to com and millet. Pasturage very poor.

Cattaraugus Country (Humphrey).- Oats on fall plowing look fine, but on spring plowing rather weak and uneven. Worms working in oats in places. Corn looks pale and sickly. Grass nearly all daisies and weeds. Frosts and the recent drouth killed nearly all old meadows. New seeding rather thin. Rain, 1.19. Little Valley - Light hay crop even with farorable weather, as drouth, frosts and grasshoppers of last two years have permanently injured all old meadows and most pastures. Some new seeded will be good. Rain, 0.20. Olean - Apples good. Not many dherries or plums. Grain never looked better. Grass is variable; high land meadows and old meadows generally very poor, and much new seeding is also very light, but some well cared for and top dressed after last cutting will produce excel: lently.

Cayuga County (Cascade).-Grass very light; clover and timothy heading* out and not a foot high. Pastures fair. Barley and oats improved; corn fair. No fruit except apples. All berries promising. Rain, 0.33. Sherwood - Many meadows very short' for this time, while others are good. Stock does well, as the grass is very nutritious. New meadows very light. Clover so short and thin it will be hard to gather, but timothy may grow under favorable conditions. Rain, 0.35.

Chautauqua County (Cherry Creek). - New seeding of clover and timothy doing nicely; old meadows poor. Grapes much damaged by high winds. Not in many years have oats, barley, corn, etc., looked so vigorous as at this time. Cut worms damaging some late planted crops. Rain, 1.21. Dunkirk-The drouth has affected the grass crop. More frequent rains back in the country will cause a better crop than along the shore. Rain, 0.50. Poland Centre - Strawberies ripening finely. Timothy heading short and thin.

Chenango County (New Berlin Centre). - Oats, and potatoes low well. Rain, 0.15.

Columbia County (Canaan Centre).-Rye in blossom and doing pretty well. Grass very short, and hay thin and weedy. Very dry. Lebanon Springs - Soil dry and idusty. Meadows look badly; grass thin and short; some are plowing up grass lands and sowing tof forage crops. Corn lookis worse. Rain, 0.88.

Clinton County (West Chazy).- No rain, and very much needed. Poor prospects for hay unless rain comes soon, and then it will be light. Some new seeding was winter killed.

Dutchess County (Bangall).- Pastures and meadows will be deficient. Unusual large sowing of fodder corn and grass seeding in progress. Troublesome pear and apple blight, and plant lice. Rain, 1.01. Wappingers Falls - Grass and hay improving on the lowlands. Uplands very thin; little or no clover. Quality is unusually good. Upland grains of little good. Oats extra fine. Hops to top of poles; potatoes very good. Rain, 0.46.

Erie County (Buffalo).- Rain is badly needed in this vicinity. Rain, 0.14.

Franklin County (Malone). - Showers not as beneficial as expected on account of cold, dry winds, which checked growth. Potato planting finished; cultivating corn begun. Hay crop in critical condition, and if rain does not come soon crop will be light. Pastures getting short. Rain, 0.17.
Jefferson County (Adams Centre). Early sown grain looks well but late sown is spotted and weak. Barley and oats is hardly fair. Winter grains are in very poor condition. Pastures very short. Many meadows being plowed up and sowed to corn and millet. Peas never looked better. Very dry; no rain. AntwerpMeadows making slow growth. On clay ground grains are poor and uneren. General outlook bad. Corn grows slowly. Car-thage-Copious rains of last week refreshed pastures and meadows, but hay as a crop is very poor and weedy. Red clover in blossom two weeks earlier than usual. Orchard grass is heading and June grass will be ripe during the week.

Lewis County (Lowville).- Large part of last year's grass seeding plowed up, and what is left is generally thin. Old meadows not recovered from last year and are very poor. Pasturage short and milk decreasing. Rain, 0.06.

Livingston County (Avon).-Grass and hay are light and brown. Timothy will not head out unless we have more rain. Oats fair and good; corn good; wheat fair. Rain, 0.55.

Madison County (Bouckrille).-Grass growing slowly, and under most farorable conditions cannot be other than a very poor crop. Much corn and some millet drilled in to supplement the hay crop. Corn makes little progress; potatoes doing well. Strawberries just beginning to ripen. Rain, 0.25. MamiltonCultivating corn and potatoes the main work. Grass improves little and is very poor.

Monroe Comity (littsford).- Clover is short and light; timothy is headed out and is less than one-half the usual height, and is rusty at the bottom. Pastures turning brown, and being plowed for sowed corn. Rochester - Rain, 0.25.

Montgomery County (Canajoharie).- Hay is injured beyond recovery and the crop will be very poor. Many meadows sowed
to fodder corn. Hops, grains and potatoes are looking well, but rain badly needed.

New York City.-Rain, 0.33.
Niagara County (Appleton).-All crops need more rain, hay and grass especially. Hay is quite por, but may be improved by timely rains. Beau planting underway. Some corn rotting. Rain, 0.05.

Oneida County (Deansboro).- Meadows in poor condition, the recent rains being too late to improve them. Pastures short. Hops, corn and oats in fair condition. Wheat indicates small yield; many fields showing considerable smut.

Onondaga County (Baldwinsville).-No rain, and very dry. Spring crops looking well, but little improvement in grass. Clover is scarce. Several pieces of tobacco set this week. Oran - No rain, and soil very dry. Wheat heading very short; meadows are beyond much help. Some corn and potatoes reported as dried in the hill. Some potatoes yet to plant.

Ontario County (Phelps).- Potato planting mostly finished. Most spring grains begiming to look weak and yellow, and is not stooling well. Old meadows going back every day; some not as good as ordinary pastures should be. Clover blossomed out so short that little could be raked if cut. Rain needed.

Orange County (Chester).-Grubs and wire worms and the drouth playing havoc with onion fields. Acres plowed up and seeded to carrots, potatoes, etc. The onion grub has made its appearance in every kind of a vegetable patch. Early cherries an entire failure. Hay is a failure, so reply farmers. Low meadows will cut some hay, but high grounds will not make a cutting growth. Pasturage is good now and milk a surplus.

Orleans County (Ridgeway).-Grass in very poor condition. Last year's seeding nearly all killed by the drouth. Rain, 0.06 .
Oswego County (Demster).-No rain. Oswego - Fine growing week. Strawberries and string beans in market much earlier than usual. Rain, 0.07. Palermo - Many acres of last year's seeding have to be plowed up as there is scarcely a clover plant to be seen. Corn, oats and potatoes doing well, but pastures have begun to fail. Rain, 0.07. Parish - No rain. Much sweet corn
rotted and will have to be replanted. Meadows very poor, and much of last year's seeding mostly sorrel. Pastures are pretty fair.

Otsego County (Cooperstown).-Another dry week. The hay crop must be light; many meadows sowed to corn. All crops doing well except grass. Rain, 0.02.

Rensselaer County (Eagle Mills).-Rye is heading very short, a large per cent. winter-killed. Oats small, but growing. Grass and pastures very short. Rain, 0.85.

Saratoga County (Kings Station).- Crops need rain. Rain, 1.15.

Schayler County (Perry City).-All spring grain looks very well. Meadows improved but still in poor condition. Wheat improved but a large per cent. killed in spots by ice smothering. Some blight on apple trees. Rain. 0.27. Wedgewood - Grass light, short and thin, an occasional piece fairly good. I'astures short. First clover cutting on the 5th. Rain, 0.31 .

Schoharie County (Hyndsville).-Very dry. Hops grow fast. Grain very short, especially winter grains. Oats in very poor condition. Some plowing for buckwheat.

Steuben County (Addison).-Rain too late to orercome effects of drouth on hay. Rain, 0.15. Atlanta - Last year's clover seeding very thin and short. Old meadows very short and light. Rain, 0.77. Haskinville - Potato planting well under way. Frost of 3 d slightly damaged strawberries. Rain, 0.70 . South Canisteo - Some early oats quite foul. Corn doing finely. It now looks as if not much more than half the meadows would be cut. On uplands meadows seem to be thimning instead of taking on growth. Rain, 0.75.

St. Lawrence County (DeKalb Junction). - Timothy heading and only about eight inches high. Rain, 0.60. North HammondVegetation has progressed finely, but meadows will be light. Grain looks very promising. Planting all done. No rain, and much needed.

Suffolk County (Setauket).- P'astures in fair condition, but rain too late to give a good hay crop. Strawberries fine. A few early peas in market. Corn looks good. Rain, 0.34 .

Tioga County (Newark Valley).- Pastures and meadows very short. Dairymen feeding grain; and sowing corn for fodder. Oats doing well; cut worms damaging corn. Rain, 0.50. Wayerly - Wheat winter-killed, and injured by the drouth. Rye in poor condition. Late rains cannot help the grass, which is very poor. Rain ,0.47.

Washington County (Whitehall).-Oats, grass and pastures much improved by rains of 1 st. Grass however is very short and a very light hay croop expected.

Westchester County (Bedford).- Meadows and grass improved by recent rains but still short and thin. Newly seeded meadows better than old. Oats much improved, and look fine. More rain is needed.

Wyoming (Arcade).-Plowing is suspended for want of rain. Cutting rye is begun. Hay crop in extremely poor condition; clover being the worst. Rain, 0.56.

General Remarks.

The showers of the past week were rery unevenly distributed, many sections getting none at all. Consequently there is much complaint of drouth again. The fore part of the week was quite cool, with light frosts on the $3 d$ in the exposed localities which in parts of Steuben county slightly damaged some strawberries and nipped tender garden regetables, but the weather rapidly warmed up and, with the exception of a few extremely dry calities, the week is reported as a good growing one.

Notwithstanding the dry weather spring grains as a rule continue to grow nicely, but the protracted drouth has seriously affected winter grains and the hay crop, especially the latter. Wheat and rye are heading very short, and possibly are ripening prematurely. Some rye has already beeu cut in Wyoming county. Under the most favorable conditions hay cannot be other than a poor crop. Clover is in blossom, and some has been cut, but like timothy, etc., it is extremely short and thin, and in some places the fields seem to be sowed with siorrel instead of grass seed. Throughout the state but few report even some lowland meadows as in fair coudition, while many upland meadows and clover fields are hardly worth cutting.

Farmers everywhere are plowing up many old meadows and sowing to forage crops, usually corn. In many sections, but principally in the eastern Ontario Lake vicinity, last year's seeding also is of little value. Pastures are in much better condition than meadows, but are short, and in some places dairymen are obliged to feed grain.

Farm work is well advanced, and with but few exceptions corn and potato planting is finished. Early garden truck is coming to market in the more favored localities. Hops are vigorous, and newly set tobacco seems in good condition.

Berry bushes of all kinds set unusually full, and fine strawberries are being picked. The fruit prospects remain unchanged. The onion crop of Orange county is greatly reduced by insect pests, combined with the drouth. The onion grub, which heretofore has confined its ravages to that tuber, is particularly numerous and has attacked other regetables as cabbages, carrots, etc. Many acres have been plowed and re-seeded to potatoes.

The following is extracted from the national bulletin for week ending Monday, June 1st:

Corn planting is now.practically finished in the more northerly corn States, except in North Dakota, where it is still in progress. In the central corn belt the crop has made rapid growth during the week and is generally in excellent condition.

Winter wheat harvest is well advanced in Texas and Oklahoma, and has begūn as far north as the southern portions of Kansas, Missouri and Illinois, and wheat is ripening rapidly in Indiana and Ohio.

Spring wheat seeding has been finished in North Dakota, but some remains tw be done in extreme northern Minnesota, where seeding has been retarded by wet weather.

The week has been exceptionally favorable for transplanting tobacco which has been nearly completed in Kentucky and Virginia, and has begun in New England and New York.

> E. A. FUERTES,
> Director.

R. M. Hardinge,

List of Stations in Nef York Displayivg the Official Forecastr.

STATION.	County.	Name.	
Coeymans.	Albany	S. H. \& E. J. Sherman.	
South Bothlehem	"	G. H. Vianleghten.	
Andover	Allegany	Audover State Bank.	
Belfast	6	W. Inglebs.	
Cuba.	،	Undermood Bros.	
*Fillmore	"	Postmaster.	
Rusbford	${ }^{6}$	W. W. Thomas.	
*Vellsville	"	E. W. Barnes.	
*Binghamiton	Broome	Postmaster.	
Olean	Cattaraugus	H. D. sibley.	
Randolph	6	Wm. Rathbone.	
Versailles	'6	W. L. Brown.	
Auburn	Casuga	W. H. Meaker.	
Moravia.	:	Stanton \& Ballard.	
$\\|$ Port Byron	6	Theo. Billiuger.	
Jamestown	Chantanqua	Y. M. C. A.	
* Jamestown	، ${ }^{\text {d }}$	Postmaster.	
Silver Creek	،	F. L. smith.	
Elmira	Chemung	Gerity Bros.	
\\|New Berli	Chenaugo.	John Conery.	
Norwich	"	Reed Camphell.	
*Plattsburgh	Clinton	IV. A. Crooks.	
Chatham.	Columbia	John Streeter.	
$\\| K i n d e r b o o k$	6	J. S. Hasford.	
\|	Kinderhook	،	(xeo. W. Wilkins.
Cortland	Cortlaud	W. H. Clark.	
*Cortland	"	Postmaster.	
Little York	"	Dr. E. M. Santee.	
Truxton.	"	Muller Bros.	
* Grand Gorge	Delaware	Postmaster.	
South Kortright.	"	D. C. Sharpe.	
\|Bangall	Dutchess	Dr. James Hyatt.	
*Rbinebeck.	"	Postwaster.	
* Wappingers Falls	6	Postmaster.	
Black Rock	Erie	Pratt \& Letchworth Co.	
Ebeuezer	16.	John J. Metzger.	
Eden Center	6	L. E. Bouttrell.	
Gardeuville	،	Ed. Obertrifter.	
Lake Vien	"	F. WV. Cook.	
Port Henry	Essex	C. W. Lansing.	
*Port Henry	"	Postmaster.	
Whallonsburgh	6 ...	G. H. Whyland.	
*Malone.	Franklin	Posimaster.	
North Bangor	،	A. E. Russell.	
*Gloversville	Fulton	Postmaster.	

List or Stations, Etc.- (Comlimued).

Station.	County.	Name.	
\|le Roy. .	Geneseo..	Geo. E. Marcellus.	
Catskill.	Greene .	A. D. Wilbur.	
West Coxsackic		J. H. Witheck.	
Adams ...	Jefferson	Preston \& Fish.	
Alexandria Bay		C. W. Crossman.	
Evans Mills.	"	W. Rulison.	
Pierrepont Manor.	" .-.	S. J. Audrus.	
Dansville	Livingstou	A. H. Plimpton.	
* Dansville		Postmaster.	
Mt. Morris	"	N. A. Seymour.	
*Canastota.	Madison. .	Postmaster.	
*Oneida.		Postmaster.	
$\\|$ Perryville	"	W. T. Cross.	
Brockport.	Monroe ..	Dr. F. A. Wiune.	
*Anisterdam	Montgomery	Postmaster.	
New York.	New York	J. C. Summers.	
New York		Grammar School No. 46.	
New York.	"	University City of New York.	
Lockport.	Niagara.	Daily Journal.	
Niagara Falls		Daily Cataract.	
Sanborn.	"	Postmaster.	
*Blossvale	Oneida.	Postmaster.	
*Rome		Postmaster.	
* Baldwiusville	Onondaga	S. C. Suydam.	
Fairmount		Geo. B. Cotton.	
$\\|$ Fayetteville..	" .	E. L. Parker.	
Kirkville.	"	Dr. M. A. Curtiss.	
Syracuse	"	The Herald Co.	
*Syracuse	"	D. McCarthy \& Co.	
\|	Warners	"	Dr. A. G. Antheny.
Woodward	"	R. B. Knapp.	
Geneva	Ontario	Agricultural Exp. Station.	
\dagger Geneva.	'،	Pateut Cereal Co.	
$1 \mid$ Naples	، .	Postmaster.	
tShortsville	,	Empire Drill Co.	
Victor	"	Postmaster.	
Chester	Orange.	W. W. Bodle.	
Goshen.		E. L. Roys.	
Newburg	"	Cily Hall.	
*Newburg. ...	"	Postmaster.	
Albion	Orleans	Prof. F. Λ. Greene.	
*Albion.	"	Postmaster.	
Mexico.	Oswego	Oswego County Asylum.	
North Scriba	،	E. J. Lawton.	
Pluærix	" ...	C. J. Fuller.	
$\\|$ Pulaski	"	L. Mitchell.	
Cooperstown	Otsego	G. Pomeroy Keeso.	
Oneonta	"	Editor "Star."	
Far Rockaway	Queens.	S. J. Ellsworth.	
*Hoosick Fallis	Rensselae	Postmaster.	

List of Stations, Etc.- (Contimued).

STATION.	County.	Name.	
*Troy	Rensselaer	A. M. Church Co.	
* Canton	St. Lawrence	Postmaster.	
Gouverneur	"	H. C. Rogers.	
Massena	"	A. J. Nelson.	
\|	Ballston Spa	Saratoga ..	Frank Jones.
*Mechanicville	"	Postmaster.	
*Schenectady	Schenectady	Reeves-Vedder Co.	
Jeffersou	Scholarie.	Geo. M. Proper.	
North Hector	Scbuyler	Geo. Predmore.	
Odessa		F. J. Prentice.	
Ovid	Seneca	L. C. Pitcher.	
Waterloo	"	Woolen Mills.	
Hornellsville	Steuben	The Times.	
\dagger Rheims.	${ }_{6} 6$	H. E. Lobeck.	
Woodhull	،	R. C. Park.	
Greenport	Suffolk	Fred. Terry.	
Mauhausett House	"	H. K. Motley.	
Sayville.	"	Francis Hoag.	
*Waverly	Tioga	Posimaster.	
Owego		The Record.	
* Owego.	"	Postmaster.	
Ithaca	Tompkins	Cornell University.	
Ithaca	6	Treman, King \& Co.	
\dagger Jthaca	${ }^{6}$	D., L. \& WV. Car Shops.	
*Ithaca	'6	Rothschild Bros.	
\#Kerhoukson	Uister.	J. J. \& M. Wilkinson.	
Saugerties	6	Dawes Brothers.	
Glens Falls.	Warren	R. W. Sherman.	
Taylors on Schroon	"	H. V. Parsell.	
*Warreusburg. .	6	Geo. W. Davison.	
*Salem	Washington	Postmaster.	
Lyous.	Wayue	Zimmerlin Bros.	
*Lyons.	6	Postmaster.	
*North Rose	"	Posimaster.	
$\\|$ Ontario	"	J. C. Howk.	
Rose	،	I. L. Wright.	
\\|Walcot.	'6	J. C. Seaman.	
Fieldhome	Westchester.	C. DeP. Field.	
*Irvington	6	Postmaster.	
\\| Moutrose.	6	J. F. Bushuell.	
Peekskill	"	F. A. Smith.	
Tarrytown	6	C. H. Curtiss.	
Youkers.	"	P. A, Deyo \& Son.	
\\|Arcade	Wyoming	Frank P. Hulette.	
Attica.	"	Ed. Volckens.	
Silver Springs	"	J. M. Duncan.	
Warsaw.	${ }^{6}$	L. E. Lounsberry.	
Varysburg	6	H. C. Orr.	
Peun Yan	Yates	Hallowell \& Wise.	

[^26]List (lf Crop Corirespondents and Sifecial. Rain Fall Observers of the New York State Weatifer Bureau - 1896.

STATION.	County.	Name.
Albany	Albany	U. S. Weather Burean.
Angelica	Allegany	Prof. J. P. Slocum.
Bolivar	-	*1)r. Dorr Cutler.
Frientship	'6	H. J. Davie.
Binghamton	Broome	F. H. Haskins.
Chenango Forks.	Broome	${ }^{*}$ Dr. Z. A. Spendley.
Conewango	Cattarangus	O. H. Phillips.
Hnmphrey	'6	Chas. E Whitney.
Little Valley	'6	*E. Sweetland.
Olean.	،	F. N. Godfrey.
Cascade	Cayuga	Alton E. Banks.
Sherwood	،	* W. F. Searing.
Cherry Creek	Chantanqua	*W. S. Blaisdell.
Dunkirk	${ }_{6}$	Maxwell scott.
Poland Centre	'6	Mrs. Ellen CLoney.
Pine City	Chemung	*H. M. Darling, M. D.
Brishen	Chenango	Geo. W. Lenderson.
New Berlin Centre	،	W. H. Bager.
West Chazy	Clinton	* W. H. Rohinson.
Canaan Centre	Columbia	C. P. Cadalso.
Lebauon Springs	Columbia	Arthur K. Harrison,
Cortiand	Cortland	*Frank Donegan.
Little York	"	M. H. Gites.
Deposit	Delaware	*M. R. Hulce.
Boviua Centre	'6	*F. J. C'ampleell.
Honesmead Brook.	Dutchess	James Hyatt.
Wappingrer's Falls.	'6	H. C. Townsend.
Akron	Erie.	*H. A. Wilder.
Buffalo	"	U. S. Weather Bureau.
Elizabethtown	Essex	M. IB, Davis.
Malone	Framklin	Albert 13. Johnson.
Johustown	Fulton	IV. S. Comrie.
Corfu	Gemesee	C. W. Carrier.
Adams Centre	Jefferson	* A. E. Cooley.
Antwery	"	II. N. Howard.
Carthage	J.ffelsoll	C. P. Mclomald.
Leyden	Lewis	Dwight W. Miller.
Lowville	'.	Charles S. Rice.
Mt. Morris	Livingston	J. Kwappenburg.
Callastota	Madison.	Fred M. Keenty.
Buackville	Madison	I. W. Criswold.
Hamilom	"	* A. J. Tracey.
Pitteford.	Momine	lhov. G. IH. Gompls.
Rochester	"	U. S. Weather Burean.
Scottsville	"	*satac Butlong.

List of Crop Correspondents, Etc.- (Concluded).

STATION.	County.	Name.
Canajoharie	Montgomery	Willis Bullock.
New York City	New York. .	U. S. Weatber Bureau.
Appleton .-....	Niagara.	H. A. Van Wagoner.
Niagara Falls		*Geo. W. Whitney.
Chuckery ...	Oneida	W. G. Comstock.
Deansborro	Oneida	H. E. Miller.
Taberg -	'6	B. Frank Ranuey.
Westernville	"	Stauley Warcup.
Skaneateles	Onoudaga	${ }^{*}$ Edward Conron.
Shortsville	Outario..	J. Hart Latting.
Port Jervis	Orange	Prof. J. M. Dolph.
Warwick		*John WV. Sly.
Chester	:	W. W. Bodle.
Ridgeway	Orleans .	*M. E. Weld.
Demster	Oswego .	*F. W. Squires.
Fulton	Oswego	*Prof. B. G. Clapp.
Oswego	"	U. S. Weather Bureau.
Palermo	'6	E. B. Bartlett.
Parish	${ }^{6}$	H. E. Boorn.
Pennelsville	6	R. Sutton.
Phanix	Oswego	*C. J. Fuller.
Cooperstown	Otsecro	G. Pomeroy Keese.
Eagle Mills.	Rensselaer	*M. Weatherwax.
De Kalb Junction	St. Lawrence	${ }^{*}$ C. A. Hallegas.
Massena		W. H. Padrlock.
North Hammond	St. Lawrence	C. A. Wooster.
Kings Statiou.	Saratoga	${ }^{*}$ R. E. Cronkhite.
Perry City	Schuyler.	W. H. Jeffers.
Trrone...	"	* H. E. Jones.
Wedgewood	"	O. F. Corwin.
Addison	Steuben	Dr. H. R. Ainsworth.
Atlanta	6	* Wheeler Clason.
Haskinville	'6	*W. G. Collins.
South Canisteo	6	James E. Wilson.
Setauket	Suffolk	S. B. Strong.
Newark Valley	Tioga	*M. D. Clinton.
Waverly .		T. P. Yates.
Faston.	Washington	${ }^{*}$ H. Taber.
Whitehall	"	W. J. Spink.
Lyous.	Wayne	Dr. A. F. Sbeldon.
Rose	Wayue	*George Smart.
Beaford	Westchester.	*Merritt M. Clark.
Mount Kisco		Benjamin Durham.
Arcade.	Wyoming	J. D. Tate.
Varysburg		H. C. Orr.
Penn Yan	Yates	Ralph W. Eastmav.
Erie, Pa.	Erie, Pa	U. S. Weather Bureau.

PART VI.

THE CLIMATE OF NEW YORK STATE.

The Climate of New York State.

By E. T. Turner, C. E., Meteorologist to the New York Weather Burfau.

The first edition of this monograph, published in the Annual Report for 1893, is nearly exhausted, and immediate and pressing demands require its reissue at this time, pending a thorough revision which is not now possible, owing to pressure of routine work at the Central Office.

E. A. FUERTES,

Director New York Weather Bureau.

PREFACE.

During the past seventy years a very large amount of data has accumulated, bearing upon the climate and weather of New York; the efforts of the Smithsonian Institution and the New York Board of Regents having awakened a general and practical interest in these subjects early in the century. The system of observations organized by the Regents in 1826 at more than fifty schools and academies in the State is noteworthy as being the first important attempt made in this country toward the investigation of local climate. The general scheme of work adopted at the outset was very similar to that developed within recent years by the local weather services of the various States; while the methods of observation were approved by competent meteorologists of the time. The Regents' system was finally discontinued in 1863; but thereafter records of the weather were maintained at several Military Posts as well as by numerous independent observers; and between the years 1871 and 1874 five stations were established in New York by the United States Signal Service. The State Meteorological Bureau, which was organized in 1889, has also furnished valuable data from more than sixty well distributed stations.
The preparation of this report required a criticism of nearly all of the voluminous records thus obtained, and which have apparently been accepted withont question hitherto. This feature of the work is described in some detail in section VI, and the considerations are there given which led to the exclusive use of recent observations wherever practicable, especially as regards temperature. The results of the Regents and other early observations have been, in part collated and summarized in the valuable essays of *Hough and \dagger Coffin, and are aiso represented in the

[^27]treatises of *Schott and †Blodgett. The statistics of climate in the ricinits of New York city were consolidated and employed in special inrestigations by Dr. Daniel Draper, Director of the New York Meteorological Observatory.

The accompanying tables and charts are intended to give in themselves a fairly complete account of the climate of the State, the text dealing mainly with the caluses of the more important features thus shown. The relations of climate to plant growth and to sanitary conditions are barely touched upon, as results of value can be expected onls from a thorough treatment of these subjects br specialists. Some topics which properly belong to a description of local climate are also necessarily omitted, or but briefly considered. Thus, no satisfactory account could be giren of the irregularities to which rainfall is subject or of the rates of flow during storms, since the work of several years will be required to collect and properly discuss such data for the entire State.

The writer desires to express his indebtedness to Professor E. A. Fuertes, Director of the State Meteorological Burean, for the use of records and results on file at the Central Office, and also to many persons named in the body of this report who have contributed valuable data in response to inquiries. Special acknowledgment is due to Mr. I. W. Brewer, who provided copies of a large number of manuscript records used in this investigation while on duty as an officer of the State Bureau.

I. GENERAL CLIMATIC INFLUENCES.

Before proceeding to deal with the climate of the State proper it may be of interest to glance briefly at certain general meteorological influences to which our local conditions are mainly due.

The prevalence of westerly winds is the most obvious and permanent feature of the atmospheric circulation in the middle latitudes of the globe. This movement of the air masses in a measure communicates the conditions of the continental interiors to the

[^28]eastern coasts, while in the same manner the influence of the ocean is extended well inland along the western coasts. During the winter heat is lost from large land surfaces by radiation much more rapidly than it is gained from the oblique rass of the sun, and consequently in high latitudes regions of intense cold are found within the continents. Over the ocean, on the other hand, radiation proceeds slowly as compared with the rate on land surfaces, while vast quantities of heat are gained from equatorial currents.
In summer the increased heat received from the sun is absorbed more rapidly by land than by water, so that the thermal relation between continents and oceans is the reverse of that which obtains in winter.

The result of these conditions, so far as temperature is concerned, is shown plainly in the following:

$$
\begin{gathered}
\text { Table } 1 . \\
\text { Average Temperature in Degrees Fahrenheit. } \\
\text { West Coast of America. }
\end{gathered}
$$

STATION.	North latitude.	Temperature.	
		January.	July.
San Francisco, Cal.	$\mathrm{Deg}_{37} \mathrm{Man}_{48}$	Degrees.	Degrees.
Portland, Or	453	38	68
Olympia, Wash	$47 \quad 37$	38	62
Sitka, Alaska......	5703	27	54

North Interior of America.

East Coast of America.

Norfolk, Va.	36	51	40	79
Washington, D .	38	53	32	77
New York, N. Y	40	43	30	74
Boston, Mass...	42	21	25	71
Portland, Me	43	39	22	69

West Coast of Europe.

Toulouse, France	43	37	39	70
Paris, France	48	50	36	65
London, England	51	33	38	64
Christiana, Norway	59	55	23	63
Hammerfest, Finland	\%0	42	23	54

From this table it will be seen that the westerly winds from the interior of America give the northeastern States about the same mid-winter temperature which prevails in western Europe at the arctic circle, while at our latitude the mid-summer heat of the two coasts is nearly equal on the same parallels. In general, north of latitude 40 degrees the annual temperature of land surfaces is less than that of the oceans.

A more delailed account of the character and climatic effect of prevailing winds requires some consideration of the distribution of atmospheric pressure. Air masses are forced out from regions of high toward those of low barometer, and, owing to a deflecting force due to the earth's rotation, these outflowing winds in the Northern Hemisphere also tend to circulate about the center of high pressure in the direction in which the hands of a watch move. The winds flowing toward a center of low pressure revolve about it in a direction opposite to the morements of watch hands.

The principal permanent high pressure system to be considered in conuection with our own climate is the rast area stretching across the Atlantic between latitudes 20 and 40 degrees, moving somewhat northward from the average position in summer and autumn and to the south of it in winter. This area forms part of a belt of high mean pressure which extends around the globe near latitude 30 degrees north.

A permanent area of low barometer is found over the north Atlantic, with a minimum pressure of 29.5 inches to the east of Greenland in January. The depression is much less intense during the summer, but nevertheless controls the winds of the northern Atlantic and northeastern America throughout the greater portion of the year.

Thirdly, the intense winter cold of the land surfaces in the interior of the continent causes a contraction of the lower air strata and consequently an inflow at higher levels from surrounding warmer regions. Thus the mass of air becomes greater over the cold area and the barometric pressure increases. In summer the oceans become, relatively, cold areas, and hence a
reversal of the above process takes place at that season, making the pressure over the continents lower than over the oceans.

Lastly, there is the very important class of shifting areas of low and high pressure known as cyclones or storms and anticyclones, respectively, and to these are due the abrupt weather changes common over the central and easteru States. Areas of this class present all gradations of size and intensity, in some cases controlling the winds and weather over the greater part of the continent. while in others their courses are barely traceable. Cyclones and anticyclones alike have a general eastern motion across the continent from their point of origin; the former usually bearing northward to the vicinity of the Great Lakes and the St. Lawrence ralley and Gulf, while the arerage course of the latter is southeastward toward the general high pressure region of the Atlantic which has already been referred to. The rate at which cyclones traverse the continent ranges from 600 to 900 miles per day; while the arerage velocity of anticyclones is slightly less.

The climatic effects of the several pressure systems mentioned may now be considered; and first with reference to the conditions which obtain in winter. At that season the high pressure area of the centralAtlantic extends also over the southern States, and is joined to the "high" which develops in winter over the interior of the continent, and whose maximum pressure of 30.2 inches is found over the northwestern States. On the other hand the low pressure area of the north Atlantic has reached its greatest central depression of 29.5 inches, while the borders of the system cover the great water areas which indent the eastern coast of British America; and, acting with the continental high pressure, gives strong northwesterly winds along the entire northeastern portion of America. The frequent passage of cyclonic storms over the lower lakes and the St. Lawrence valley also brings these regions into the low pressure system; the line of demarcation between which and the high pressure system of the Atlantic and southern States is found to pass in the vicinity of this State. Thus, although our prevailing
winter winds are northwesterly, a moderate variation in the intensity of the southern high or the northern low pressure area is sufficient to modify their direction very materially. For example, in January, 1830, the average pressure over the southeastern States was 0.2 inch above the normal value, while to the north of this State there was about an equal deficiency; and consequently the prevailing winds were southerls, raising the mean temperature for the month 10 degrees to 12 degrees above the normal.*

Every cyclonic storm which passes over or north of the State causes an increase of temperature, due, in part, to the southerly winds which flow towards the depressed area. Such events occur, on an average, five or six times during each of the winter months; so that by platting the temperature of the State for each day, a curve is obtained similar to that shown in plate 1 , which represents the actual condition of pressure and mean daily temperature which obtained during the year 1893. The cyclonic systems give northwesterly winds in the rear of the storm centers, so that a considerable fall of temperature usually occurs after their passage; and this effect is frequently increased by the anticyclonic areas which follow, bringing masses of cold dry air from the interior of the continent to the eastern coast. The average difference between the extremes of mean daily temperature occurring in advance and in the rear of winter storms passing north of New York is about sixteen degrees, as determined by an examination of fifty individual cases; the variation being greatest in the northern and least in the southern section of the State. Storms passing to the southward of New York are also usually preceded by an increase of temperature in the region of the Great Lakes, and the southern and southeastern sections; while north of the Mohawk valley only northerly winds are felt, and therefore no rise of the temperature results. A depression which passes eastward over the center of the State may cause a great difference between

[^29]AVERAGE DAILY TEMPERATURE AN

ATMOSPHERIC PRESSURES RECORDED AT

IINFALL OVER THE STATE, 1893.

SA DURING 1893. (REDUCED TO SEA LEVEL.)

the temperature in the northern and southeru sections. A remarkable case of this kind occurred on January 11, 1890, when the mean daily temperature of stations in the St. Lawrence valley was fiftythree degrees lower than that obtaining near the Pennsylvania border.

During the average winter month two or three storms pass northeastward along the Atlantic coast. These are usually preceded by an increase of temperature in the southeastern sections, and by a decrease in the western and Great Lake regions.

There exists an intimate relation between the character of the air circulation and the precipitation of moisture over the State. Our northwesterly winds are essentially dry, owing to the lack of moisture in the continental interior, and also, in winter, to the coldness of the air, which gives it a very small vapor carrying capacity. Hence precipitation during the winter occurs almost entirely in connection with storm areas passing in the vicinity of the State, and which mainly derive their supply of vapor from the inflow of moist air induced by them from the Atlantic, or from the region of the Gulf of Mexico. The heaviest precipitation accompanies the Atlantic storms and those passing up the Mississippi and Ohio valleys to the Great Lakes; both of these classes of storms being characteristic of the autumn and winter rather than of the summer months. Hence, while the winter is the dryest season of the year over the greater portion of New York, it brings a heavy precipitation of rain and snow in the vicinity of the Atlantic coast, the southrestern highlands of the State, and the region of the Great Lakes. Over the Canadian provinces of Ontario and Quebec, the winter precipitation is exceedingly small; and this characteristic is shared by the St. Lawrence, Hudson and Champlain valleys and the central plateau of New York. The supply of moisture from the region of the Gulf of Mexico appears to be nearly exhausted before reaching the Canadian provinces and the St. Lawrence valley, although the southwestern Adirondack highlands receive a considerable rain and snow fall from southwesterly winds; while the moisture from the Atlantic is largely precipitated over the mountains of New England and northern New York.

During the winter months elongated depressions, or "troughs" of low pressure, are frequently formed over the eastern States; their longest diameter commonly extending from the region of the Gulf of Mexico to the Great Lakes, and including portions of the Ohio and Mississippi valleys. Such systems often derive their moisture both from the Mexican gulf and the Atlantic; and many of the heariest rain and snow storms of the winter are due to conditions of this nature, especially in the ricinity of the lake region and on the highlands adjacent to the Atlantic coast.

The character of our winters depends very largely upon the number and general course of the anticyclones. As previously stated, the usual course is somewhat south of the east across the States toward the permanent Atlantic "high;" but in many cases the intense cold wares originating in British America move directly eastward along the Canadian border to the coast, and thence pass southward. Under such conditions the northern part of New York experiences the full effects of the cold waves, their severity in the more southern sections being usually somewhat decreased by the influence of the Great Lakes. Statistics as to the relative frequence and amount of temperature changes in rarious parts of the State will be fom on pages $463, \frac{4}{4} 4$.

In the spring, and especially during April and May, the increased amount of heat received from the sun brings about a rapid modification and shifting of pressure systems, which are then less sharply contrasted than at other seasons. The winds decrease greatly in velocity, and their direction is variable, although the southerly component which is characteristic of summer becomes well defined during May. The pressure conditions of March are essentially those of a winter month, the high pressure systems over central British America and the southern Atlantic coast being still in force, while the eyclone of the north Atlantic continues to give northerly winds over eastern Canada and the adjacent States. In April and May the pressure has decreased over nearly the whole extent of North Imerica, the barometer being relatively higher over the central and southeastern States, thus giving a condition similar to that described
below for the summer season. A marked decrease in the number of cyclonic storms occurs from March to April and May; and the frequent showers which commonly occur during the latter months appear to be, more than at any other time, the effect of admixture of air currents having different temperatures.

An inspection of pressure charts for the summer months shows an area of low pressure over the northern interior of the continent in place of the anticyclonic area which was present there during the winter. The depression orer the north Atlantic has decreased in intensity, while the high pressure system of the central Atlantic has become stronger, controlling the winds orev. the ocean and on both the European and American coasts, between parallels 10 degrees and 50 degrees north. A western branch of this area also covers the southern and central United States as far as the Mississippi valley, and thus the southerly wind system of the western Atlantic is extended well into the interior of the continent, increasing to a marked degree the summer temperature of the northern States. (In southwestern Europe the Atlantic "high"produces an opposite thermal effect, since that region is on the eastern side of the anticrelonic center and hence is subject to northerly winds.) In summer, as in winter, any increase of pressure over the southern States tends to raise the temperature in the region to the northward, and when such an increase occurs in conjunction with a dimunition of pressure over Canada, a "hot wave" usually occurs in the northern States. The average path of cyclonic storms is more northerly than in winter, and comparatively few depressions pass to the southward or eastward of New York until August.

The Gulf of Mexico and the Atlantic Ocean contribute large supplies of moisture to the air currents which more northward over the States in summer. Hence, although crelouic depressions are less frequent than at any other season, the rainfall accompanying each storm is apt to be heary, and over the greater part of the country the maximum total precipitation for the year occurs in the summer months. The local showers and thunderstorms characteristic of the season usually accompany the passage of low pressure areas near the State; but such a condition is
not necessary to their occurrence, especially in mountainous sections, where only a moist air and the convectional currents produced ly high temperature appears to be necessary to local thunderstorm formation. The relative frequency of local showers in different parts of the State, as bearing upon the distribution of summer rainfall, will be referred to later.

Considering now the pressure conditions of autumn, we find that in September the anticyclonic area of the Atlantic has moved northward and that the maximum pressure, 30.1 inches, extend westward over the central Atlantic States, maintaining southerly winds along our coast. The western limits of the antiryclonic system are found beyond the Mississippi valley, and during October the pressure remains high over the central and southeru States, while diminishing over the ocean. The transient anticyclones of October and the early days of November show a strong tendency to drift very slowly over the region of average maximum pressure extending from the middle States to the central coast; and under such conditions the fwarm southrwesterly winds and bright weather of "Indian Summer" prevail in the northern States.

The rainfall of September is usually light in the region east of the Upper Lakes, although no marked variation from the normal distribution of pressure characteristic of the month is required to bring about a heavy precipitation. For example, in September, 1890. the anticyclones moved to the northeastern rather than to the central part of our coast; and in one case, such an area, acting with a depression to the westward, gave casterly winds and phenomenally heavy rains over Central New York for several days; the pressure over the State being meanwhile unusually high (30.4 inches).

The maximum general rainfall of the autumn season occurs in October, accompanying the shifting of prevailing winds and a decided increase of storm frequency which obtains during the month. The northern winter commences soon after the middle of November; at which time the continental high pressure area ard the depression of the North Atlantic are strongly developed, and northerly winds again prevail over the eastern States.
Fin

MAP OF THE STATE OF NEW YORK

SHOWING

elevations of the surface

ABOVE SEA LEVEL.
FROM OATA OF GEOLOGICAL ANO STRTE SURVEYS ANO RAILROAD LEVELS.

[^30]

II. PHYSICAL FEATURES OF NEW YORK.

The following outline of the orography of New York is substantially as given by Professor Arnold Guyot. Further details are exhibited by the accompanying relief map.

The mass of the State is a triangular table-land, elevated 1,500 or 2,000 feet above the ocean, and may be considered the northtastern extremity of the plateau which, in this latitude, forms th: western half of the Appalachian system. The natural limit of this belt toward the west and north is the large depression of Lakes Erie and Ontario, and which continues down the course of the St. Lawrence river to the ocean. In the east the table-land is terminated by the deep valley occupied by Lake Champlain and the Hudson river; while sonthward the highlands extend without interruption into Pennsylvania. The eastern edge along the Hudson and Champlain valless is formed by a series of mountain chains more or less isolated from each other, and bearing the highest summits in the State. They are: The Highlands which cross the Hudson at the limit of the coast region; the Shawangunk and Catskill mountains on the western bank of the river; and the system of the Adirondacks covering the territory between the St. Lawrence and Champlain valleys. Within this eastern wall the true mountain chains cease; but the remainder of the plateau is indented by numerous valleys, the bottoms of which are generally several hundred feet below the common level, and which are separated by high ridges. A remarkable feature is the deep transversal cut which forms the raller of the Mohawk and Lake Oneida, opening a channel from the low country of the Lake Region to the Hudson valley, and thus dividing the main plateau into the distinct masses of the Appalachian and Adirondack systems.

A subdivision of the central or Appalachian highlands is due to the deep channel of Seneca lake, extending from the plains bordering Lake Ontario southward to the valley of the Susquehanna. The two sections of the highlands thus separated are here designated as the eastern and western plateaus; the former extending from the central lakes to the Hudson valley, and the latter westward from the central lakes to the depression of Lake Erie.

TABLE 2.-Average Monthly and Annual Tempera

STATIONS.	County.			From-to	-
Western Plateau.................		1,287			22.0
Sherman	Chautauqua.	1,570		$1890-92$	22.0
Humphrey	Cattaraugus	1,950	8	1884-92	22.0
Alfred Cent	Allegavy .	1,824	4	1889-92	\% 21.5
Angelica		1,340	4	1889-92	¢ 21.5
South Canisteo	Steuben	1, 180	4	1884-92	21.5
Addison .	"	1,000	3	1888-92	24.0
Elmira	Chemung	860	7	1851-60	23.0
Wedgerood	Schuyler	1,350	4	1889.92	21.5
Arcade....	Wyoming	1,570	3	1890-92	20.5
Alabama	Genesee	648	2	1890-91	22.5
Pendleton Centre and Lockport...	Niagara	580	4	1889-92	21.5
Eustern Platecu.		1,07\% 0			21.3
Middletown.	Orange	640	3	$1890-93$	26.0
Minnewaska	Uister	1,800	3	1890-92	22.0
Liberty.	Sullivan	1,500	7	1854-60	20.5
South Kortright	Delaware	1,700	3	1890-92	20.0
Quaker Street.	Schenectady	973	3	1890-92	19.0
Middleburgh .	Schohario	641		1859-91	24.0
Cooperstown.	Otsego.	1,234	22	18:1-92	20.5
Oxford.	Chenang	1.250	39 3	1854-92	20.3 20.0
Binghamton	Broome	870	3	1899-92	
Waverly..	Tinga...	825	10	18:3-92	$\}^{23.0}$
Ifomar.	Cortiand	1,100	10	1851-83.3	20.0
Brookfield.	Mradison	1,350	3	1890-92	20.0
Perry City.	Schuyler	1,038	4	1889-92	21.0
Northern Plateau		1,578			16.0
Lyon Mountain	Clinton	1,917	2	1890-92	15.5
Number Four.	Lewis.	1,571	4	1859-92	16.0
Constableville	،.	1,246	4	1889-95	16.5
Atlantic Coast.		82			30.5
Block Island, Is. I.		2π	12	1-80-92	31.2
Setauket...........................	Suffolk	40	7	1886-92	30.5
Central Park........................	New York	9 T	22	1871-92	29.8
New York city......................	*	164	21	18i1-92	30.6
Hudson Dalley		221			21.5
Garrisons or Ardenia.............	Putnam	1.5	20	1871-90	27.0
Stanfordville or Honeymead Brook	Dutchess	425	9	1883-92	24.2
Mountainville	Orange	218	4	188,3-86	26.3
Albany ...	Albany	85	7	1836-92	23.0
Chamzlain I'alley		? 186			16.3
Plattsburgh Barracks.	Clinton	? 186	13	1880.92	16.3
St. Lawrence Valley		431			15.9
Gouverneur ...	St. Lawrence	400	10	1861-70	15.1
North Hammond		? 340	4	$1859-93$	18.0
Caiton..	\because	304	4	1549-92	16.0
Potsdrm	Frankin	300	4	1889-92	15.5
Malone.....	Franklin....	810	2	1890-92	15.0
Great Lakes...		484			33.4
Madison Barrucks	Jefferson	266	2	1871-92	19.0
Oswego .	Oswego	304	9	1884-92	22.5
Palermo		460	22	18\%1-92	20.2
lyochester	Maynee..		2	$1889-92$ $1871-92$	24.0 24.1
Hess Roads	Niagara	330	4	1889-92	23.1
Buffalo.	Frie	690	19	1874-92	$\stackrel{3}{3} .1$
Dunkirk	Chautauqua.	610	5	1890-92	${ }_{27}^{27.0}$
Erie, Pennsylvania		681	5	1885-92	27.0

perature．

tures，Reduced to the 22 Years Period，1871－1892．

	$\begin{aligned} & \text { dig } \\ & \text { 范 } \end{aligned}$	荮	$\underset{\underset{\sim}{\Xi}}{\stackrel{y}{*}}$	$\stackrel{g}{\Xi}$	$\stackrel{\Delta}{\Xi}$			シ̈̈ 0. 0 0 0	$\begin{aligned} & \dot{5} \\ & \text { D } \\ & \text { By } \\ & \text { B } \\ & \text { 号 } \end{aligned}$		宽
23.6	28.5	41.7	54.8	64.3	68.6	66.6	59.3	47.3	3.5 .5	26.7	44.8
24.0	28.0	40.0	53.0	63.0	66.5	64.5	58.0	47.0	350.5	27.0	44.0
24.0	29.0	42.0	56.0	61.0	63.0	66.0	59.0	4 T． 0	35.2	26.6	45.1
23.0	28.0	41.0	55.0	6.4 .5	67.5	65.0	57.5	46.0	35.0	26.0	44.1
23.0	28.0	41.5	54.5	63.5	68.0	66.5	58.5	46.5	35.0	26.0	44.1
26.0	30.0	44.0	56.0	66.0	70.0	68.0	60.5	48.5	37.0	23.0	46.5
24.8	31.5	45.0	58.0	67.0	\％2．0	69.0	62.0	49.0	36.5	27.5	47.2
23.0	28.0	41.5	51.5	63.5	68.0	66.0	58.5	46.5	85.0	26.0	44.1
22.0	26.5	39.5	54.0	640	68.0	65.5	58.0	47.0	31.5	2.5	43.6
23.5	29.0	42.0	5.3 .0	64.5	63.0	68.0	61.0	48.5	36.0	27.0	45.4
22.5	27.5	40.0	53.0	63.0	69.0	67.0	60.0	48.0	35.5	27.0	44.4
22.5	28.6	42.0	55.6	64.8	68.6	66.3	61.5	$4 \pi .2$	356	25.3	44.7
28.0	． 34.0	46.0	59.0	¢8．0	72.0	70.0	63.0	51.0	39.6	29.0	48.8
23.0	30.0	42.0	5.0	64.0	68.0	86.0	60，0	48.0	36.0	25.5	45.0
21.3	27.4	41.2	55.4	64.5	68．2	66.4	59.0	46.9	34.7	25.4	44.1
21.0	27.0	41.0	55.0	64.0	67.0	65.0	58.0	46.0	\％ 3.0	26.0	43.8
20.0	27.0	41.0	55.9	61.19	68.0	65.0	58.0	46.11	350	21.0	43.5
25.0	31.0	45.0	59.9	68.0	70．4	65.0	61.0	$59.1)$	38.0	28.0	47.2
21.3	27.3	41.2	5 5 .3	64.6	6 6 .1	66.4	58.9	46.9	31.7	25.3	44.1
21.2	27.4	40.8	54.5	64.0	68.1	65.6	58.2	46.5	－31．9	24.8	43.8
21.0	23.0	41.0	55.0	64.0	68.0	65.0	58.0	46.0	36.0	25.0	43.8
25.0	31.0	44.0	$5 \% .0$	66.0	80.0	¢S． 0	61.0	49.0	37.0	23.0	46.6
22.0	27.0	41.0	54.0	63.0	68.0	65.0	57.6	45.0	31.0	25.0	
21.0	27.0	41.6	55.0	64.0	68.0	66.0	59.0	46.0	31.0	25.0	43.8
23.0	28.0	－ 41.0	54.0	64.0	68.0	66.0	58.0	46.0	35.0	26.0	44.1
16.8	24.0	36.8	51.8	60.3	63.8	62.5	55.0	43.3	31.0	81.0	40.3
16.0	21.0	36.0	50.0	59.0	62．0）	61.0	51.6	4 4.0	31.0	21.0	39.6
17.0	24.0	87.3	52.3	6.0 .3	6.4 .0	62.5	55.0	43.0	30.5	21.0	40.3
17.5	24.0	37.0	53.0	61.5	65.5	64.0	56.0	41.0	31.5	21.5	41.0
31.6	35.9	46.7	57.6	67.0	72.3	71.1	65.3	55.1	43.9	34.5	${ }_{5} 0.8$
31.5	35.0	43.8	52.3	61.6	$6 \mathrm{S.8}$	68.1	62.1	51.3	45.7	37.2	49.1
32.0	36.2	47.0	$5 \times .0$	67.0	22．0	71.0	66.0	56.0	4.4 .0	34.5	51.2
31.2	36.1	48.3	60.7	70.9	\％ 5.0	72． 9	66.4	54.6	42.4	33.4	51.8
31.7	26.3	47.9	59.3	68.8	73.5	22.4	66.0	55.3	43.4	34.0	51.6
26.9	33.2	46.2	58.8	68.1	\％2．0	69.6	62.8	50.8	39.0	285	48.4
28.8	34.7	48.2	60.2	69.2	73.2	71.4	63.6	51.6	40.6	29.5	49.8
26.4	32.8	45.1	57.6	66.8		68.3	61.9	50.0	37.9	38.0	47.3
$2 \pi .9$	33.2	45.3	57.4	67.1	71.0	68.5	62.9	50.3	38.6		48.0
24.5	32.0	46.0	60.0	69.5	73.6	71.1	63．${ }^{\text {\％}}$	51.6	39.1	28.0	48.4
17.5	25.9	40.8	55.2	64.7	69.9	67.5	58.6	46.9	24.5	21.8	43.2
17.5	25.9	40.8	55.2	64.7	69.9	97.5	58.6	46.9	34.5	21.8	43.2
17.3	26.5	40.4	55.5	6i4．2	68.2	65.9	584	45.7	33.2	20.2	42.8
18.0	26.0	40.0	55.0	61.0	$68.1)$	66.0	59.1	46.0	34.0	22． 5	42.8
19.0	28.0	41.5	56.5	65.0	69.0	67.0	60.0	47.0	34.5	$\bigcirc 1.0$	44.1
17.0	26.5	40.5	56.0	64.0	68.0	65.7	58.0	45.5	33.0	23.0	42.6
16.5	26.0	40.0	55.5	64.0	65.0	65.5	57.5	45.0	$3: 2$	21.5	42.3
16.0	26.0	40.0	55.5	64.0	68.0	65.5	57.0	45.0	$3 \cdot .0$	21.0	42.0
24.3	29.9	42.0	54.8		69.8	68.1	61.1	49.3	37.3	28.4	46.0
19.5	28.0	40.5	55.0	66.0	\％ 0.0	68.0	61.0	48.0	35.0	25.0	44.6
23.4	29.0	40.8	53.8	62.6	6.5	68.0	61.0	49.5	37.0	$2 \pi .5$	44.8
22.0	26.8	39.7	54.6	64.5	68.4	66.4	58.9	46.5	31.5	24.7	43.9
24.5	30.0	43.0	56.0	65.0	70.0	68.0	61.10	49.0	31.0	25.5	46.3
25.0	30.3	43.3	56.4	65.9	\％0．5	68.8	63.0	49.8	37.5	23.5	46.8
23.5	29.5	42.0	52.5	64.5	68.5	67.0	59.5	48.0	87.5	28.5	45.3
24．7	300	41.3	53.7	64.3	69.9	63.6	62.0	50.2	38.0	29.2	46.3
27.6	32.5	43.5	55.6	65.5	71.0	69.1	62.5	51.4	$39 . \%$	31.9	48.0
$2 \pi .6$	32.6	43.5	55.6	63.5	71.0	69.1	62.5	51.4	39.7	31.9	48.0

III. Tem

TABLE 2.-Average Monthly and

Note.-Foran account of the method by which averages are reduced to the 22 years period, see possible. *Normal taken from "Monthly Weather Review."

perature．

Annual Temperatures，etc．－（Conclinded）．

$\begin{aligned} & \text { 鬲 } \\ & \text { 若 } \\ & \text { D } \end{aligned}$		$\frac{\pi}{4}$	俞	Ξ_{Ξ}^{\oplus}	$\underset{3}{3}$			2 0 0 0 0 0 0	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 8 \\ & 0 \\ & 0 \\ & Z \end{aligned}$	过	光
25.8	30.6	44.2	57.3	66.0	70.8	68.7	61.6	49.6	$3 \pi .1$	28.3	47.0
26.5	31.1	44.4	57.5	66.1	70.7	68.5	61.2	49.2	37.2	25.5	47.1
25.0	30.0	44.0	57.0	66.0	$\pi 1.0$	69.0	$6 * .0$	50.0	37.0	88.0	47.0
22.8	28.8	42.8	55.8	65.0	69.2	67.3	50.0	19.0	35.9	25.8	45.8
22.5	29.0	42.0	56.0	65.0	69.0	67.5	60.0	48.0	35.0	26．0	45.2
23.0	28.5	42.5	55.5	65.0	69.5	67.5	60.0	$4 \mathrm{4}, 0$	35.0	25.5	45.1
2：5	29.0	43.0	56.0	65.0	69.0	$6 \% .5$	60.0	48.0	35.11	$\because 6.0$	15.8
22.9	29.2	42.3	55.7	65.0	09.3	$6 \% .4$	60.4	48.3	36.3	26.3	4．5． 4

section IV．Averages have been corrected for hourly variation by McAdie＇s tables when

III. TEMPERATURE.

The temperature conditions which prevail in the vicinity of New York, and the general influences to which they are due, have already been referred to in section I. The local variations of temperature and their effects within the State itself are shown in detail by the accompauying tables and charts, as regards both arerage and extreme conditions, dates of frost, and periods of narigation in lakes and rivers.

In refewing special features of temperature distribution (as exhibited by the tables), to their proper causes, the effect of altitude alone upon the normals of the various stations should, in the first pace, be eliminated by reducing the temperatures at all stations to sea-level. The results of such a reduction are shown by means of isothermal lines drawn for the months of January and July respectivele, in diagrams 1 and 2. For reasons which will appear further on, it has been assumed that the temperature is lowered at the rate of 0.3 degrees F. per 100 feet of increased altitude in Jamuars, and 0.4 degrees per 100 feet in July. The rate of decrease is probably not perfectly constant for the entire State, but must be assumed to be so for purposes of comparison.

The first point to be considered is the variation of climate which mayproperly be attributed to differences of latitude within the state. The arerage temperature of the globe at the latitude of New York's southern boundary (40 degrees 40 minutes north) is for the year 50.6 * degrees; for mid-winter (January) 38.9 degrees, and for mid-summer (July) 72.5 degrees. Selecting the normals of New York city and Malone as representing the actual ronditions which obtain at the northern and southern boundaries of the State respectively, the following deviations from strictly average conditions are shown:

At New York city the temperature (reduced to sea-level) for
The year is 4.0° below the average of Lat. $40^{\circ} 40^{\prime}$.
Janaary is 9.0° below the average of Lat. $40^{\circ} 40^{\prime}$.
July is 1.5° above the average of Lat. $40^{\circ} 40^{\prime}$.

[^31]At Malone the temperature (reduced to sea-level) for
The year is 5.2° below the average of Lat. $45^{\circ} 00^{\prime}$.
January is 14.2° below the arerage of Lat. $45^{\circ} 00^{\prime}$.
July is 1.3° below the average of Lat. $45^{\circ} 00^{\prime}$.
These departures, although considerable, are not greater than might be expected between restricted local conditions and an average which includes the widely different thermal states of oceans and continents. A better idea of the relation which temperature bears to geographical position is obtained by tracing over the Northern Hemisphere the thermal belt in which this State is included. It is to be noted that for this purpose continental temperatures have in all cases been reduced to sea-level.*

The isothermal line of 70 degrees, which will be observed on the chart for July to pass from the Great Lakes over northern New York, extends thence eastward through New England to the vicinity of the coast, where it again turns toward the southwest, meeting the line of 70 degrees which appears orer eastern Long Island. This isothermal then passes directly eastward over the Atlantic near parallel 40 degrees, intersecting the coast of Europe in northern Spain. Reaching the warmer land surface, it tends somewhat north of east through central France, Austria, central Russia and Siberia. Near the eastern coast of the latter country it turns southward through 20 degrees of latitude and passing to the Pacific over the island of Japan, continues nearly eastward, meeting the coast of America in central California. Thence it follows the meridian of 120 degrees west well northward into British America before again turning to the southeast in the direction of the Great Lakes and northern New York.

The line indicating 74 degrees in July passes from New York directly southward over the ocean until opposite Virginia; thence slightly south of east to Morocco in north Africa, where it turns northward to France; thence passes through southern Europe (north of the Italian peninsula) to the Black sea through central Asia at latitude 50 degrees, and near the coast turns southward to Japan. Diverging somewhat from the isotherm of 70 degrees,

[^32]in its course over the Pacific, it touches America in southern California, follows the Rocky mountains northward to British America and thence takes a southeasterly direction to the Great Lakes and New York.

In January, New York is to be classed with quite different regions of the globe from those named above. The isotherm of 15 degrees, which appears near the northern boundary of the State, passes thence over Labrador, the southeasteru coast of Greenland and the Arctic Ocean. When well to the northward of Scandinavia it turns southeastward through Central Russia (passing north of St. Petersburgh) to the northern border of the Caspian Sea. Proceeding eastward to northern Japan and northeastward over the Pacific it reaches the southern coast of Alaska, when it again trends southward to South Dakota and finallý passts north of the Lake Region to the St. Lawrence valley.

The mean January temperature of 30 degrees (that of New York city) is found also in southern Newfoundland, Iceland and northern Norway. This isotherm turns sharply southward in the latter region and passes to eastern Germany, Austria and the northern border of the Black Sea, when its course becomes eastward to the Pacific. Like all the preceding lines it intersects Japan and thence passes northeastward to the Aleutian Islands. Following the American coast line to the border of the United States, it turns southeastward to Missouri and thence passes to the southern shore of the Great Lakes.

As may be seen by the table on page 422, there are but few regions of the globe in which the cold gains so rapidly with increase of latitude as in the vicinity of New York, especially in the winter This condition is due to the influence of the Great Lakes, which affect central and southern New York much more than the northern section, and also to the fact that the path of low pressure areas lies in close proximity to the State.

From the forms of the isothermals of charts 1 and 2 it is apparent that, after eliminating the differences of temperature due to elevation above sea-level, there remain three important sources of local
variation in the climate of the State; namely, the ocean, the Great Lakes, and certain prominent irregularities of the land surface which modify the direction and force of the prevailing winds.

Thermal Influence of the Ocean.

Atlantic Coast Region:-Owing to the general eastward drift of the atmosphere throughout the year, the effect of the ocean upon the temperature of the Atlantic States is, under normal conditions, derived almost entirely from a restricted portion of the water surface contiguous to the coast. The air flowing toward low area storms over the land may, however, occasionall Γ be drawn from the region of the Gulf Stream, whose warmest axis is about 300 miles from the coast of this State. The stream at this point has a total width of 300 miles (the width at the surface is considerably less); a mean temperature for the year of over 73 degrees; and summer and winter temperatures of about 80 degrees and 70 degrees respectively, in the latitude of New York. Notwithstanding the fact that cold or polar currents exist on the landward side of the stream, it is stated by Captain J. E. Pillsbury, U. S. N., that " if the prevailing winds in New England in winter were southeast instead of northwest, the climate would be equal to that of the Azores Islands, mild and balmy. The current is in its place, ready to give off heat and moisture to the air, but the erratic movement of the winds may deliver this heat and moisture at unexpected times and seasons, and thus give rise to the erroneous belief that the Gulf Stream itself has gone astray." The writer has met with no investigations of the meteorological side of the question, and only the general statement can be made, that, with a special distribution of pressure, extensive easterly wind systems may bring from the Gulf Stream to the coast quantities of heat sufficient to modify our climate considerably during very brief periods.

The temperatures of portions of the sea surface near the coast line are shown approximately by the following averages of ob-
servations made at Sandy Hook and Block Island，from 1881 to 1886：

		$\begin{gathered} \text { B } \\ \text { 岂 } \\ \text { 芯 } \\ \text { H } \end{gathered}$	$\stackrel{\text { ジ }}{\underset{\sim}{y y}}$	苍	$\stackrel{\leftrightarrow}{a}$	$\stackrel{\oplus}{E}$	$\frac{8}{3}$	$\begin{aligned} & \text { 烒 } \\ & \text { E00 } \\ & \stackrel{E}{4} \end{aligned}$			$\begin{aligned} & \text { D. } \\ & \text { H } \\ & \text { B } \\ & 0 \\ & 4 \end{aligned}$	
Sands Hook．．．．．．	37.8	36.1	38.6	44.4	53.3	63.3	70.9	73.3	70.3	61.4		41.8
Block Island	37.1	34.6	36.5	42.5	49.8	58.4	65.5	67.2	64.5	57.7	49.8	41.7

The very considerable differences here shown between the tem－ peratures of February and August，especially at Sandy Hook，are in part due to making the observations in very shoal water；but allowing for this，the annual range is large as compared with that of the open ocean（usually between 5 degrees and 10 degrees）， showing the effect of the land winds upon the temperature of the water．

The nearest approach to a true maritime climate within the territory of New York is to be found at the eastern extremity of Long Island．The temperature conditions of this region may be represented without much error by the average monthly values obtained at Block Island（see table 2），twenty miles due east．

These temperatures，although obtained at a distance of but fif－ teen miles from the mainland of New England，will be found to follow quite closely the water temperatures previously given for Block Island，and to share their moderate annual range．The midsummer mean is，very nearly，that of Malone，at the northern boundary of the slate，while the temperature for Janary is be－ tween those of New York city and Washington．The equalizing fffect of the water is thus very appreciable，alhough far below that exerted in the open ocean，or on the western shores of the continents．A few examples of true maritime climates in various latitudes are given for comparison．

Table 3.

STATIONS.	North latitude.		Average Temperature.			
			Jan.	July.	Year.	Range.
	Deg.	Min.	Degrees.	Degrees.	Degrees.	Degrees.
Bermuda Islands		23	61	$\xrightarrow{79+}$	69.6	18
Madeira.		38	60	73	66	13^{*}
Guernsey (Channel Islands)	49	28	43	62	51	15
Monach (Hebrides)	57	32	42	57	49	15^{+}
Dublin, Ireland ...	54	36	40	60	49	20
Block Island, U. S		10	31	69	49	38

The following places, on or near the mainland of the western shores of the continents, have a partially maritime climate:

STATIONS.	Latitude.		Temperature.			
			Jan.	July.	Year.	Rauge.
	Deg.	Min.	Degrees.	Degrees.	Degrecs.	Degrees.
Brest, France ...		23		6.4	53	31*
Londou, England	51	33	:88	64	51	26
Edinburgh, Scotland..	55	56	37	58	47	21
San Francisco, California	37	48	50	co	56	10
Olympia, Washington	47	4	38	62	51	\cdots
Sitka, Alaska		03	27	54	42	27

[^33]For the interior of the American continent, on the other hand, table 1 shows aunual ranges of monthly mean temperature varying from 64 degrees to 77 degrees. The greatest aumual range of monthly mean temperature in New York State is 53 degrees at stations in the St. Lawrence Valley.

A comparison of the normal temperatures of Block Island for the spring and autumn with those of stations in New York plainly shows the effect of the ocean in retarding the progress of the seasons. The harmonic analysis applied to the monthly mean temperatures of New York State and also to those for Block Island shows the epoch of the principal component for Block Island to exceed that for the State by 12 degrees (of arc), so that, on an average for the year, the progress of thermal conditions on

Block Island and eastern Long Island is 12.2 days later than in the main portion of New York. (Ferrel shows the average retardation of maritime, as compared with truly continental climates, to be from twenty to twenty-five days.)

A gradual modification of these conditions is found in passing from the eastern to the western extremity of Long 'Island. At East Hampton the annual range is already increased to 39.5 degrees, and at Setauket on the sound, about midway between Brooklyn and Montauk Point, the range is 41.5 degrees.

The sea breeze is an important feature of the summer weather along the south shore, tending to reduce the range of temperature by moderating the midday heat; but details as to its effect can not be giren, as the writer has met with no systematic observations upon the phenomena for this section of the coast. The researches of the New England Meteorological Society, confined mainly to the coast of Massachusetts, show that on warm, fair days the sea breeze " reaches the shore commonly between eight and eleven o'clock in the forenoon, with a velocity of ten or fifteen miles per hour, its velocity rapidly diminishing inland. It produces a distinct and agreeable depression of temperature on the coast, but the effect is not carried inland as far as the wind extends."

The breeze commonly penetrates inland about ten miles, but, naturally, to a greater distance when acting with the prevailing southwesterly winds of the coast, while it may be wholly overcome if opposing them. Thus the south shore of Long Island is favorably situated to receive the full benefit of the sea breeze, which should penetrate well into the interior, although gaining considerably in warmth beyond the immediate shore line, as stated above.

The sandy plains of southern Long Island rise gradually toward a ridge of low hills extending through the center of the island nearly from the western to the eastern extremity and which bear a considerable growth of pine timber. The northern side of the island is therefore somewhat sheltered from the force of strong sea winds, which meet with but little obstruction on the southern shore.

The effect of the ocean upon the portion of the state lying north of the coast line mainly results from the passage of high and low pressure areas over the eastern part of the continent, as has already been mentioned. The prevailing northwesterly winds of winter, if uninterrupted, would maintain the severe cold of the continental interior quite to the coast line, while the normal southwesterly circulation of summer brings to New York land rather than sea winds. In reality, the State is subject to an alteration of maritime and continental climates, following each other at intervals of a few days in conjunction with cyclonic and anticyclonic morements; the continental type prevailing during the winter and the maritime during the summer. The entire State may be subject to the ocean winds or only a few of the southeastern counties; and hence no very sharp line of deniarcation can be expected between climatic conditions adjacent to the coast and those inland. The flat country, which extends from Long Island Sound to northern Westchester county, is, however, most fully exposed to sea influences, the ridge of the highlands which passes in a northeasterly direction from Rockland into Putnam county offering the first obstruction to their penetration inland. No reliable observations covering a long period are available to show the precise effect of the highlands upon temperature; but results furnished by a few new stations during the past three years indicate that the conditions are more distinctly maritime on the southern than on the northern side, a result which receives some confirmation from the character of the rainfall in the vicinity, as will appear later. The isothermal charts accompanying this report accordingly show the section south of the highlands to have a smaller annual range, cooler springs and warmer autumns than the remainder of the State.

Some special notes upon the climate of New York city are given on page 500.

Theryal Influence of the Great Lakes.
Referring again to the charts of sea-level temperature, it will be obserred that the Great Lakes cause a deflection of the isotherms similar to that due to the ocean. The temperature of the lake waters, and consequently of the air over them, follows the seasonal changes more rapidly than does the ocean, owing to the smaller mass of the former; but the situation of the lakes upon the western side of the State gives them a greater effect upon the prevailing winds, at least during the autumn and winter, than is derived from the Atlantic. The absolute effects of these inland seas upon the air temperature may be better studied in the interior of the continent than in New York, where a rariets of other influences are also at work. For comparison, Moorhead and Duluth, Minnesota and Marquette, Michigan, are chosen; the three stations having approximately the same latitude and elevations. Moorhead represents a nearly pure continental climate; Duluth, 220 miles to the east, is upon the western border of Lake Superior; and Marquette, still 230 miles east of Duluth, is upon the southern shore of Lake Superior. The following table shows a modification of temperature which may be attributed to the influence of the lake.

STATIONS.	Monthly Mean Temperature.			
	January.	July.	Year.	Fange.
Moorhead	-1.5°	$67.9 \bullet$	$36.8{ }^{\circ}$	$69.4{ }^{\circ}$
Duluth....	$+8.6$	66.7	39.2	58.1
Marquette	$+14.3$	66.0	40.6	41.7

The winds of summer are land winds for Duluth and Marquette and hence modify the temperature less than the lake winds of winter.

The extremes and annual averages of monthly mean temperature for cities of both the upper and lower hake Regions are given in the following table; and those for eastern New York are also added for comparison.

Table 4.

	STATIONS.	Average Temperature.			
		Januars.	July.	Year.	Range.
Lower Lakes..............	Oswego	Degrees. 22.5	Degrees.	Degrees.	Degrees.
	Roehester.....	24.1	68.5 70.5	46.8	46.4
	Buffalo	24.1	69.9	46.3	45.8
	Erie. ...	27.0	71.0	48.0	44.0
	Cleveland.	25.5	71.5	48.8	46.0
	Detroit......	25.1	72.0 698	48.1	46.9
Upper Lakes...............	Port Huron	21.1 24.1	69.8 72.3	44.8 48.5	49.7 48.2
	Milwaukee......	18.6	72.3 69.4	48.5 44.9	48.2
	Duluth.........	8.6	66.7	39.2	58.1
Eastern New York........ $\{$	New York city...	30.6 23.0	73.4	51.6 48.4	42.8 50.6

Thus the cities of the Upper Lakes (excepting Duluth) do not differ greatly from those of the Lower Lakes in annual temperature, but the annual range of the former is somewhat larger, owing in part to their greater distance from the ocean.

The only observations upon the temperature of the Lower Lakes, off shore, which the writer has met with, are those made by Professor Dewey in 1838 and quoted in the report of Professor Coffin. "The temperatures are the averages of observations made at intervals of six or eight miles across Lake Ontario, from the Genesee River to Coburgh, Canada (not including those made near the shore), about a foot below the surface." For comparison, the mean temperature at Albany for the several half months during which the observations were made is also given here.

DATE OF OBSERVATION.	Temperature.	
	Lake.	Albany.
May 14 and 15...	Degrees.	Degrees. 51.0
May 21 and 22.	39.0	61.0
June $19 \ldots .$.	47.5	73.0
August 7.......	66.0	73.0
September 4 .	60.5 53.1	63.0 42.0
October 16 November $13 . .$.	${ }_{45.7}^{53.1}$	42.0

The low temperatures recorded in May are attributed to the melting of ice in Lake Erie, Professor Dewey stating that the lake frequently is not clear of ice until about the middle of the month. "Owing to its shallowness, Lake Erie is frozen over to a large extent nearly every winter from December to March or April, whereas the main body of Lake Ontario is sufficiently free from ice to permit navigation even in the severest seasons."

Local southwesterly winds prevail throughout the year on the southern shores of both lakes and over much of the territory between them, a result due in part to the deflecting influence of the hills of southwestern New York, as will be made apparent by an inspection of the accompanying relief map. The southerly component is especially prominent in summer, giving lake winds at Buffalo and land winds at Rochester, with a slightly lower temperature at the former than at the latter place. Thus, Buffalo may properly be selected to determine the maximum thermal effect due to the Lower Lakes, and for this purpose its monthly averages were analyzed by the method referred to in connection with the temperatures at Block Island. The results are given, together with those for St. Louis, as an example of a continental climate; Cooperstown as equidistant from the lakes and the ocean; Block Island and the state for the purpose of extending comparisons.

STATION.

Probably somewhat more than the difference in epoch here shown between Buffalo and Cooperstown may safely be attrib-

[^34]uted to the influence of Lake Erie, owing to the greater distance of Buffalo from the ocean. The retarding influence of the lake will exceed the average value in the spring and autumn and will fall below it after the formation of ice in winter.

Lake Ontario exerts its principal thermal effect in tempering the cold waves of winter, which usually approach the State from the northwest. A single example will serve to illustrate this. On January 19, 1892, an anticyclonic area passed eastward over Canada, giving northerly winds and very cold weather over the northeastern States. The following temperatures were obtained on the northern and southern shores of the lake, respectively:

The winds were northerly throughout the observations.
Here the lake appears to have maintained the temperature at Rochester from 14 to 28 degrees above the point to which it would otherwise have fallen; and thus the very moderate annual minima shown by tables 9 and 10 are explained. The frequent occurrence of conditions similar to the above give to the south shore of Lake Ontario an average mid-winter temperature 5 degrees higher than that of the north shore.

The effect of the Great Lakes, although appreciable in nearly all of the western and central New York, is most prominent over the land surfaces which slope toward them. Thus at Arcade, thirty miles from Lake Erie and wine hundred feet above its level, the temperature of May is reduced and that of October is raised about 1 degree, as compared with the ralues at Alfred Centre and Angelica, a few miles distant to the southwest of

[^35]Areade, but situated beyond the slope of the lake. Areade, in fact, appears to mark the limit of distance at which the thermal effects of the lakes can be distinguished from those of the ocean.

The most temperate climate of the Great Lake Region is that of the Chautauqua county " Grape Belt," which extends from the southern shore of Lake Erie up the lower slopes, of the Chautauqua county hills; its length being about sixty miles, and its width from two to six miles. This section, represented by the stations Erie and Dunkirk, has the same annual midsummer and midwinter temperatures as Mountainville, in the Lower Hudson valley, but differs from the latter in its cooler sping and wamer autumn seasons. As will be seen further on, the date of autumn frosts is unusually late in the grape belt, and the minimum temperatures of winter are less severe than in any other portion of the State excepting the Atlantic coast region. The characteristic features of the climate are due to the lake and to the high hills, which rise on the easern side, somewhat in the form of a half ellipse or oval, approaching the lake most closely at the northern and southern extremities of the county, and leaving a large extent of sheltered territory in the center. The highest altitude of the arape belt is found in the vicinity of Prospect, about 1,200 feet above tide, and 700 feet above Lake Erie. Assuming the decrease of temperature to be 0.4 degrees per 100 feet of altitude, as for the main portion of the State, the midsummer temperature of this upper limit is about 6is degrees.

The highlands of southwestern New York subside gradually toward the north, leaving a nearly level fract of country streteliing between northern Lake Erie and the southern shore of Lake Ontario. The temperature of this region is manly determined by the southwesterly winds from Lake Erie; but in the northern pari a tract extending eastward from the Niagara river through Niagara and Orleans counties is subject to westryly land winds which blow over the isthmus between the two lakes, and hence are but little affected by the temperature of the water. The winter cold is therefore greater than in the adjacent territory on the northern
side, while in summer the temperature is about one degree in excess of that on the border of Lake Ontario.
The final descent from the Western plateau of the State to the level of Lake Ontario is found in the "Limestone Ridge," an abrupt declivity extending cast ward from the Niagara river nearly parallel with the lake shore at a distance of about ten miles. This ridge breaks the force of southwesterly winds to some degree, and with the added effect due to the convex form of the lake shore in this locality, causes a more moderate winter climate in the northern portions of Niagara and Orleans counties than obtains in their central and southern sections.

The lowlands included in the system of the Oswego river, lying to the eastward of the Central Lakes, are more exposed to the winds of the Great Lakes than to those from other directions, and hence may properly be included in the region of the Great Lakes. The low and sheltered position of this tract gives it a high temperature relatively to the surrounding country, as shown by the few observations of temperature which have been made at Syracuse and other points within the region; and also by slatements received as to the short duration of snow in winter, and the rapid advance of vegetation in the spring.

The Valleys of New York.
The principal regions requiring mention here as deriving peculiar climatic conditions from the form of adjacent land surfaces are the Hudson, Champlain, St. Lawrence and Mohawk Yalleys, and the region of the Central Lakes.

The Hudson and Champlain vallers, taken together, form a deep channel, extending nearly northward from the Atlantic coast to the lower St. Lawrence valley; the total length of the depression from the highlands of Rockland county to the northern border of the State, being 270 miles. The valley is bordered on the east by the Green Mountains of Vermont, and their southern branches in western Massachusetts and Comnecticut ; and on the west by the

Adirondack system of northern New York, the Helderberg hills, the Catskill and Shawangunk Mountains and the Highlands. A broad ralley which opens out of the Hudson toward the southwest through Orange county, separating the Shawangunk ridge from the liighlands, is here included as part of the Hudson valley.
The prevailing winds of the Hudson valley blow nearly north and south throughout the year; southerly winds predominating in the vicinity of Albany from May to October, inclusive, and northerly winds during the remainder of the year. Toward the southern limit of the valley the periodicity of the winds appears to follow that of the Atlantic, changing from south to north in September. No long records of the wind direction in the Champlain valley were procurable in a form suitable for comparison; but a five years' series observed prior to $\mathbf{1 8 J 0}$ indicates substantially the same conditions as at Albany.

The high temperature of the sheltered section of the lower Hudson ralley is represented by the normals of Ardenia, while Honeymead Brook and Mountainville, although located within the valley slopes, are exposed much more to the conditions of the highlands. The annual ranges at the three stations vary but little from 46 degrees, which is below the average of the interior of the State, probably owing to the tempering influence of the ocean, although the adrance of the spring and autumn seasons appears to be but little retarded by maritime influences. Proceeding northward to the comparatively open country stretching from the vicinity of Albany toward Lake Champlain, it is found that the summer temperatures are not reduced, while the winters are considerably colder. This increase of the annual range of temperature indicates that in summer southerly winds carry the warmth of the lower valley well to the northward and possibly even over the region of Lake Champlain, while a reverse direction of the winds of winter practically extends the limits of the Champlain valley climate below Albany, probably to the ridge of the Cats-
kills on the western side and below them on the eastern side of the river. The river itself has little effect upon temperature during the winter, since it is frozen over, on an arerage, from December 16th to March 20th at Albany, and is also closed by ice during a portion of the winter below the northern Highlands. Tables showing the dates of opening and closing of navigation in Lake Champlain and the Hudson river for a long period of vears will be found on pages 471, 472.

The northern portion of the Champlain valley, represented by Plattsburgh, is exposed to the northerly winds of winter, and hence its temperature then differs but little from that of the same latitude of northern New York generally. The summer temperature is slightly higher than at any other stations in northern New York, owing to the shelter afforded by the mountains on the eastern and western sides. The annual range is exceeded only by that of Gouverneur.

The St. Lawrence Valley.

The long records obtained at Potsdam and Gourerneur prior to 1850 show that at the former station southwesterly winds prevail throughout the year and at the latter during all months excepting November, December and April, when the direction is northwesterly. That the winds of the Great Lakes are mainly of the same character has been already shown; and these find their natural outlet through the channel of the St. Lawrence valley, as will be made apparent by an inspection of the relief map. Hence, in summer when the southerly component is at a maximum, this section may be included in the region of the Great Lakes, as regards its temperature conditions. In winter there are no obstructions to the northwesterly winds from the plains

of Canada, and even the southern component is then frequently due to the deflecting influence of the Adirondack plateau upon winds blowing directly from the west.*

Abstract

* The following table by Professor Cofin, giving the thermal effects of winds from various directions, gives additional ground for the above statement. Local southwesterly winds in which the southerly component predominates may be considered as lake winds, and those in which the westerly component predominates as true westerly or even northwesterly winds. The second column shows the number of days, hours and minutes that the wind blew from each point of compass during the year; and the third, the average rise or fall in the temperature per hour during each wind, expressed in decimals of a degree. + denotes a rise, and - a fall.

COURSE OF WINDS.	Duration of winds.			Variation in temperature per hour.
-		Hours.	Minutes	
North	\%		15	-0.197
North by east.	5	22	15	-0.165
North-northeast.	8	0	15	-0.144
Northeast by north	10	15	15	-0.063
Northeast.	14	1	52	-0.015
Northeast by east	16	12	30	+0.094
East northeast..	13	4	38	+0.115
East by north	4	21	30	$\div 0.077$
East	2	15	15	$+0.103$
East by south	2	8	15	$+0.162$
East-southeast.	2	15	45	$+0.146$
Southeast by east	2	13	15	$+0.114$
Southeast....	2	17	29	+0.140
Southeast by south.	4	3	8	+0.145
South-southeast.	7	4	14	+0.138
South by east.	8	7	31	+0.161
South	20	40	0	+0.314
South by west	21	4	45	+0.177
South-southwest.	22	6	45	$+0.162$
Southwest by south	22	16	30	$\div 0.065$
Southwest	29	12	15	\bigcirc
Southwest by west.	25	21	30	-0.055
West-southwest.	16	23	45	-0.018
West by south	13	6	0	-0.081
West........	17	5	45	-0.063
West by north	11	14	7	-0.069
West-northwest.	8	19	8	-0.252
Northwest by west	9	8	53	-0.281
Northwest.	8	20	38	-0.322
Northwest by north	9	15	37	-0.306
North-northwest.	8	$\stackrel{2}{9}$	15	-0.276
North by west	6	9	46	-0.236

Note.-The broad surface of the St. Jawrence River somewhat modifies the temperature in its immediate vicinity, and its influence is especially beneflcial in preventing early frosts in autumn. The coldest part of the region, on the other hand, appears to be that near the foothills of the Adirondack mountains, as in the case of Gouverneur, Watertown and Madison Barracks, which stations probably owe their extremely low minimum temperatures the the nightly down-flow of cold air from the highlands.

The following table furnishes a comparison between the temperature of northern New York as a whole, and other points of the globe having similar conditions:

Table 5.

| | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The Mohatie Valley.
The prevailing winds of this deep depression between the highlands of northern and central New York are almost exclusively easterly and westerly, following the general course of the valley. Its temperature conditions are but little known from obserration, excepting at Utica, which represents the cold section of the region. The winter temperature is here considerably below that at points of the Lake Region to the westward having substantially the same latitude and elevation, and differs but little from that of the highlands toward the south. The explanation of this peculiar condition lies partly in the exposure of Utica and its vicinity as far west as Palermo to northerly winds which have not passed over any portion of Lake Ontario; and also in part to the nocturnal downflow of air from the adjacent hills, to be referred to later. The summer temperature of Utica is, very nearly, that of the Lake Region.

Statements which the writer has received from persons familiar with the region of the Mohawk show that, in passing eastward, no substantial variation from the above conditions is met with until the ralley broadens out in the central or eastern part of Montgomery county. Here the temperatures are similar to those of the adjacent portion of the Hudson valley; the latter being apparently rather the cooler region in summer, owing to its greater exposure to northerly winds.

It may be remarked, as Coffin has already noted, that the temperature of the upper Mohawk ralley is very near the average for the State as a whole throughout the year.

The Central Lafe Region.

From a climatic standpoint this region may be taken to include Canandaigua, Keuka, Seneca and Cayuga Lakes; the lesser dimensions and greater clevation of Owasco and Skaneateles Lakes classifying them more properly with the plateau region. The basins of Keuka and Seneca Lakes are prolonged in nearly open channels, extending through the central highlands from the plain of the Great Lakes on the north to the valley of the Susquehanna on the south; the valleys of Cayuga and Canandaigua, on the other hand, being closed by high hills toward the south. The winds follow quite closely the direction of the valleys, especiaty in their southern portions, and hence must traverse a large extent of the lake surfaces.
The average annual temperature of the Central Lake region does not differ materially from that of the section bordering the southern shore of Lake Ontario, the annual range also being nearly identical in both regions.

The temperature conditions of Seneca and adjacent lakes were closely studied several years ago by W. D. Wilson, D. D., of Hobart College, Genera, whose conclusions are as follows: In comparing the influence of the lakes upon Ithaca and Geneva, respectively, "Ithaca has the adrantage of about half a degree of latitude and fifty feet of eleration, which, combined, make scarcely so much as one degree of temperature in its favor. * * * The lakes are much the same in size, about forty-five miles long, with an average widh of two or three miles. Cayuga Lake, however, is much the shallowest and freezes over more extensively than Seneca."
"The point of contrast, however, is chiefly this: The one (Ithaca) is at the south end and the other (Geneva) at the north end of a long body of standing water. * * * In winter, while the water is warmer than the air and is also giving out heat by
the formation of ice, the prevailing winds are the polar winds from the north; consequently they are warmed by the lake before they reach Ithaca, while these cold winds pass only over the land to convey the heat away from Geneva. But in summer, when the prevailing winds are the return current from the equator, those winds for Ithaca come from off the land and are not cooled by the lake until after they have passed the town." Observations are then quoted, showing that "the influence is quite manifest in winter, producing a difference of 3.3 degrees in favor of Ithaca, their average being 29.4 degrees, ours 26.1 degrees. In summer the difference is slight and is in their favor until the last half of August. For the first half of September their average is 62.9 degrees, ours 63.3 degrees. For the last half theirs is 56.1 degrees, ours 57.6 degrees."
"During the whole of summer Ithaca's return current comes from over' a tract of land which is quite uneven in surface and has a mean temperature considerably lower than Ithaca itself. During the first part of the summer, until about the middle of August, our return current comes, not from the lake at all, but from a point of the compass too far west of south to have been influenced by the lake. After the first of August we have a much larger proportion of southwest winds, and then we begin to feel the influence of the lake, and while the influence is in the direction of cooling during the day it effects a retardation of the process of cooling during the night, and thas, as I presume, while the average for the twenty-four hours is greater than theirs, our days are cooler and our nights are warmer than at Ithaca."

Making due allowance for the cooler exposure of the present University Station at Ithaca, which is four hundred feet above that referred to by Dr. Wilson, the normals given in the general table of this report are in substantial agreement with the above statements, which will also hold true of the Central Lake region as a whole.

The Mighlands or Plateaus of Nef Yorif.

The rate at which the average anmal temperature decreases with altitude is usually given as 1 degree to 300 feet of elevation, the rate being somewhat below this value in winter and above it in summer. The rule is subject to considerable local variation, however, and it was deemed best to make an approximate determination for this State. Owing to the rariety of local influences which had also to be considered it was found necessary to make a trial of various factors of reduction and draw isotherms representing the results, accepting those which reduced the effects of altitude to a minimum. The rates of decrease in this case are 0.3 degrees per hundred feet of elevation for the winter and 0.4 per hundred feet for the summer, agreeing well with the usual values. For the mountains of Northern New York however, a factor much smaller than 0.3 desrees appears to hold for the winter months; but the latter was adhered to thronghout in constructing the sea-level isotherms of plates 1 and 2.
The highland districts of Central New York are substantially alike in their temperature conditions, as these are shown by obserration and also by the character and seasonal development of vegetation, and hence only a general account of their climate is required. The Adirondack Plateau has some distinctive features needing a separate statement.

In computing the temperature normals of the eastern and western plateaus, it was found that closer comparisons could be made between Cooperstown (chosen as the standard of reference) and nearly all other stations of the plateaus, than between the latter and low level stations of the coast and lake regions. In fact, the thirty-eight year normal of Cooperstown may, without much error, be taken to represent the temperature of the plateaus at the altitude of 1,000 to 1,500 feet throughout the central portion of the State. The western plateau shows, in winter, a slight excess of temperature (about one degree) over that of the eastern region, which may be attributed in part to the influence of the Great Lakes, and in part to the gradual mamer in which the surface
declines toward the north; Dr. Hann having shown that the prevailing air currents are generally less cooled when passing up a gradual incline than when the vertical gradient is large.

It has already been stated that the thermal influence of Lake Erie is distinctly noticeable in the spring and autumn over the large tract which slopes toward its surface; and that a difference of about one degree is thus brought about between western Wyomirg county and adjacent stations in Allegany county. After the freezing of Lake Erie, the coldest region of the plateau appears to be the ridge separating the system of the Genesee river from that of Lake Erie. Lake Ontario, remaining open throughout the year, can not fail to temper somewhat the winter climate of the region as a whole.

It may be noted that Humphrey, in central Cattaraugus county, has a higher temperature than might be expected from its elevated position and the character of the surrounding country. This station belongs to the upper limit of the Ohio valley, and it seems possible that special climatic conditions may thus be introduced here. Southerly winds are found to occur at Humphrey more frequently that at adjacent stations to the northward; but whether these belong to a general system, or are merely local, must be decided by further observation.

The general equality of temperature over the eastern plateau is rather remarkable when the extent and irregular surface of the region are considered. The sea-level isotherms in the southeastern portion show the influence of the ocean to a small degree; but in fact this effect is masked by the high altitude and mountainous character of the section, excepting at Minnewaska, which overlooks the plains toward the southeast, and is fully exposed to air currents from that direction. Middletown, which oceupies a sheltered position still further southward, may for climatic purposes be properly classed as a station of the Hudson valley, to whose influence it is mainly subject.

The narrow valleys of the highlands are found to vary but little in average temperature from the adjacent hills; while in case of the broader depressions more heat is gained during the day than
is lost at night br the flow of cold air down the slopes. Thus the mean temperatures of Binghamton, Waverly, Elmira and Addison, in the main branches of the Susquehanna valley, are but little over a degree lower than those of the Central Lake region, although the difference is greater in the spring and fall, owing to the retarding influences of the lakes.

No statement can be made here as to the climate of the Catskill mountain region, owing to the lack of any adequate data.

The Adirondack Platean is subject mainly to the same influences which determine the climate of the St. Lawrence valley, excepting that the central and eastern portions of the highlands are not reached by the lake winds. A very broken and heavily timbered surface offers great obstructions to the circulation of air currents, and hence the summer temperature, although the lowest in the State, is somewhat higher than would otherwise be, due to the elevation of the region.

The normals given in the general table can not be considered to be fully established, depending as they do upon a few brief series of observations. If even approximately correct, however, they represent a true anomaly of temperature during the winter, since the arerage ralues at some of the mountain stations are then higher than those recorded at stations of the St. Lawrence Valley, more than a thousand feet below. In order to investigate more fully the existence of such a condition, several dates were selected when the region was subject to anticyclonic areas and their accompanying cold waves. An inversion of temperature was found to exist in a considerable number of cases, but most decidedly on December 8,1890 . The isotherms of the accompanying chart represent the arerage temperatures for that day in northern New York, as reduced to sea level by applying the factor 0.3 degrees for each 100 feet of elevation of the various stations, the accompanying figures showing the actual (unreduced) temperature at each station. Keene Valley, whose temperature (- 0.5 degrees) was the lowest of the series, is located at the bottom of a deep mountain valley or gorge in a fosition to receive the downfall of cold surface air from a large

Isothermal Lines show the mean daily temperature as reduced to sea level by deducting 0.3° from the actual temperature for each 100 feet of elevation. Small figures show actual temperatures. [The mean temperature at Keene Valley was-6.5 ${ }^{\circ}$.]

FLUCTUATIONS OF NORMAL RAINFALL. 1.

Annaal Flictuation of Temperature in New York state.
[The vertical lines represent the middle days of the respective months.]

Continental Fluctuation of RainfallCooperstown.

Manitime Fluctuation of RainfallBlock Island.

Combined Types.-Palermo, (Lake Region.)

Monthly storm Frequancy in percentages of the total yearly namber.

area in the vicinity. The distribution of temperature at the remaining stations, and especially at Canton, Lyon Mountain and Plattsburgh, is such as would be due to a rather rapid gain of warmth with increased elevation in the mass of the cold wave itself. Evidently, no very frequent recurrence of such a condition would be required to equalize the average monthly temperature of the valless and highlands.

So far, then, as present records show, the whole of northern New York has substantially the same average winter temperature, excepting as certain deep ralleys are subject to a local cooling through an accumulation of the colder and denser air. In summer the warmth of the highlauds decreases at about 0.3 degrees per hundred feet of elevation above sea level; and the arerage temperature of the Adirondack region at that season is thus reduced to nearly the same value which obtains on the sea coast of northern Maine; the days, however, being warmer and the nights cooler than in the coast region.

The New England Green Mountains.-A third highland region of the State is that belonging to the system of the Green Mountains of New England, and extending over the New York border in Rensselaer, Columbia and northern Dutchess counties. The climate here appears to be colder than in the highlands of central New York at the same latitude, but no definite statements can be made, as observations representing this section are lacking at present. Some data which have been obtained upon frosts will be found on page 470.

Extremes of Monthly and Fort Columbus. Record

Potsdam. Record of 21 Years, 1828-1848,

Burlington, Vt. Record

[^36] +The coldest July at Philadelphia since 17 Fi .
6.

Annual Mean Temperatures．
of 70 Years，1822－1891．

Jtıl．		August．		September．		October	November．		December．		ANNOAL．	
	芦		范					宸		$\begin{aligned} & \text { ざ } \\ & \text { 历ix } \end{aligned}$		
	${ }^{18}{ }_{25}$	76.8	${ }^{18}{ }_{63}$	T4． 5	${ }^{18}{ }_{77}$	$61.5{ }^{18-}$	51.1	${ }^{18-}$	41.3	${ }^{18}{ }_{29}$		${ }^{18}{ }_{25}$
75.3	30	76.5	28	73.2	81	$59.660,61,81$	48.6	70	41.1	89	54.0	28
78.4	22，68	76.4	31	71.1	65	59.1 2\％	48.4	22	40.4	52，91	54.0	30
78.2	76	76.2	77	71.0	22	57.8 30	48.2	46，49	40.2	81	53.6	65，80
77.3	72	76.0	45	T0．2	84	58.6 78	46.7	81	39.3	48	53.5	78
＋69 5	37	67.9	36	611． 7		45.9 36	38.2	23	22.2	31	47.2	36
708	84	68.6	${ }^{37}$	62.2	37， 71	50.3 88	38.8	73	25.9	76	49.2	37，75
71.4	88，91	${ }^{69.8}$	35	63.0	87	50.8 －66	39.2	42	27.4	51	49.6	35
72.2	46，71	70.4 70.6	24，55	63.4 63.8	52，59	51.6 69 51.9 41	39.4 39.7	75	28.3 28.4	80 35	49.9 50.0	56，68
62.3	40	${ }^{\text {c }}$（ 6	33	63.8	52，59	51.9 41	39.7	27	28.4	35	50.0	88

of 62 Years，1830－1891．

76.2	68	73.7	76	71.4	81	58.0	79	46.7	49	36.5	89	49.8	78
74.9	56	73.0	64	66.4	65	54.7	31	46.6	30	36.2	81	49.2	30
74.3	78	72.3	81.	66.0	9 T	54.1	39	42.7	46	36.1	77，91	49.1	54
74.2	87	71.6	53	65.7	46，${ }^{7} 4$	54.0	82	42.3	55，58．	34.6	－52	48.8	77，80
74.1	38	71.4	77	65.0	84	53.6	71	42.2	50	34.4	48	48.7	46，81，91
65.4	84	62.5	66	56.2	45	41.4	36	27.0	73	16.2	31	43.8	85
65.5	43	63.3	36	56.3	60	43.8	38，89	32.1	38	18.5	67	44.1	36
65.6	60	64.3	85	56.7	35，71	44.1	－88	33.0	39	19.7	76	44.2	75
66.8	41	65.5	39	57.0	71	445	41	33.1	71	20.5	72	44.5	88
96.9	42	65.8	69	57.2	63	45.1	69	33.7	65，80	22.6	86	45.0	38

and Gouverneur，Record of 13 Years，1861－1873．

74.2	68	70.4	45，54	63.0	46	52.0	35	40.4	301	32.1	29	46.0	28
73.6	38	70.3	40	62.2	55，65	49.7	39	39.8	46	25.8	48	45.8	46
73.0	40	69.0	38	60.4	41	49.5	54	38.9	28	23.4	47	45.7	48，54
72.6	55	68.4	28，4i	60.3	84，69	49.1	29	38.1	65	26.4	30，73	45.4	39
71.3	47	67.6	67	59.7	54	48.2	55	38.0	47	26.1	43	44.7	30
63.3	33	60.5	33^{\prime}	51.4	71	36.9	36	25.1	73	11.7	i2	40.8	36，62
64.3	62	61.8	61	53.1	42	40.4	41.	26.1	71	12.2	31	41.4	37，61
64.4	61，71	62.5	36	53.8	48	41.6	43	29.0	＇27	14.5	67	41.5	68
645	43	62.8	69	54.0	29，35	41.7	65	30.0	43	14.7	35	42.0	67
65.9	29	63.8	73	54.2	2，68	41.8	68，69	30.5	41	15.4	45	43.0	66

of 52 Years，1840－1891．

76.7	87	72.5	40	66.0	91	54.7	79	43.3	49	34.8	91	48.5	91
74.0	68	71.6	90	65.4	81	53.3	82	41.3	46	34.7	81	47.6	89
73.2	78	70.5	41，88，91	65.2	84	52.7	78	40.4	50	31.3	89	47.5	78
72.7	49	70.4	45	65.0	89	51.1	45，51	40.0	89	30.3	52	46.2	77
72.5	70	70.1	42	64.7	46	50.6	81	39.8	47，60，77	30.0	48	46.1	84
63.8	60，65	60.1	66	53.1	71	40.8	65	28.0	73	14.5	67	42.0	68
$\} 64.2$	43	63.0	55	54.0	64	41.3	89	28.6	71	14.8	90	42.1	66
65.1	59	63.1	56	54.5	60	41.9	76	29.4	75，80	15.9	76	42.3	67
65.5	67	63.5	69，74	54.8	63	42.2	59	31.6	69	17.3	54	42.4	56，62
65.7	62	64.2	57	55.2	59	42.5	64	31.7	68	17.8	45	42.5	65

and Annual Temperature．

11.8	8.9	12.5	15.6	12.9	19.1
10.8	11.2	15.2	16.6	19.7	20.3
10.9	9.9	11.6	15.1	15.3	20.4
12.9	12.4	12.9	13.9	15.3	20.3

Extremes of Monthly and Annual Temperature.

The accompanying table shows the warmest and coldest months and years which have occurred during a long period at four representative localities of the State.
At Fort Columbus, in New York harbor, the observations of the entire series have presumably been made under conditions which would not cause discrepancies exceeding a degree in the mean values, so that the differences shown may be attributed to actual variations of weather. At Rochester the records 'were kept by voluntary observers prior to 1871, and at the Weather Bureau station thereafter; but the normal dericed from the two series do not differ by so much as $\mathfrak{2}$ degrees for any month, while the variation for the year is but 0.3 degrees. There is some local variation between the conditions at Potsdam and Gouverneur, and a small percentage of the differences shown in the table may be attributed to this fact. The record at Burlington, Vt., has been maintained without change of melhod or exposure of instruments for fifty-two years. The thermometers, although selected |with care, were not standardized, and it seems probable that an increase in the mean values for the summer months observable during the latter part of the record may be due in part to instrumental error.

In cases where the extreme values did not depart very widely from the arerages, a considerable diversity was found even among adjacent stations as to the seasons of greatest heat and cold, and the best that could be done under these circumstances' 'was to examine several records in each section of the State, selecting the dates in which there was substantial agreement. The values given for these dates are, however, those observed at the standard stations of the table, excepting in a few cases where these were found to be obviously in error, when the average was interpolated from adjacent stations.

It may be of interest to compare the extreme conditions in the vicinity of New York city with the normal temperature of quite different climates.

The warmest January at Fort Columbus $=40$ degrees
The average January at Norfolk, Va. $=40$ degrees.

The average January at Atlanta，Ga,$=43$ degrees．
The average January at Jacksonville，Fla．，$=55$ degrees．
The average January at San Francisco，Cal．$=$＝50 degrees．
The average January at Portland，Ore．,$=38$ degrees．
The average January at Paris，France,$=36$ degrees．
The average January at London，England，＝ 38 degrees．
The coldest January at Fort Columbus，$=20$ degrees．
The average January at Portland，Me．，$=20$ degrees．
The average January at Chicago，Ill．，$=25$ degrees．
The average January at Milwaukee，Wis．，$=19$ degrees．
The average January at Spokane Falls，Wash．$=20$ degrees．
The average January at Christiana，Norway,$=23$ degrees．
The average January at St．Petersburgh，Russia，$=16$ degrees．
The warmest July at Fort Columbus，-81 degrees or 79 degrees．
The average July at Baltimore，Md．$=73$ degrees．
The average July at Jacksonville，Fla．，$=83$ degrees．
The average July at St．Louis，Mo．$=79$ degrees．
The average July at Alexandria，Egypt $==80$ degrees．
The average July at Madrid，Spain，$=76$ degrees．
The average July at Rome，Italy $=77$ degrees．
Notes descriptive of seasons of extreme heat and cold which have occurred in the vicinity of New York are given in section V．

Dally Fluctuations of Temperature．

The following average daily amplitudes or ranges of temperature are given by Mr．A．Mc．Adie in his work on＂Mean Temperatures and their Corrections in the United States＂：

Table 7．Daily Amplitudes of Temperature．

	$\stackrel{\dot{\circ}}{\stackrel{\leftrightarrow}{y}}$	$\begin{aligned} & \text { en } \\ & \frac{5}{5} \\ & \frac{5}{0} \\ & =0 \end{aligned}$	送	药	$\begin{aligned} & \dot{\text { B }} \\ & \text { 合 } \end{aligned}$	$\underset{\Xi}{\text { E }}$	\％					
	Deg．	Deg．	Deg．	Deg．	Deg．	Deg．	Deg．	Deg．	Deg．	Deg．	Deg．	Deg．
Albany	7.0	8.0	8.4	12.2	14.2	13.6	14.6	14.4				
New York city ．．	6.8	7.5	9.5	11.0	11.2	11.5	11.0	10.2	10.0	9.8	8.2	6.7
Buffalo ．．．．．．．．．．．	3.8	4.8	5.8	7.9	9.0	8.1	8.0	10.3	9.9	7.3	5.4	3.7
Rochester	4.4	5.4	6.3	10.0	11.6	12.5	12.0	11.4	11.2	9.5	6.8	4.0

At each of the stations, with the exception of Albany, the daily amplitude is decreased by proximity to the Great Lakes or the ocean; the effect being most marked at Buffalo, where the prevailing winds come from the lake. The large percentage of cloudy weather which obtains in the Lake Region also tends to reduce the ralues at both Buffalo and Rochester, while New York city is less affected by this cause. The absence of large bodies of water near Albany, its position on the lower slopes of a broad valley, and a lesser degree of cloudiness than obtains in the Lake Region combine to make its range larger than at the three remaining stations.
But one determination of amplitude has been made for this state in addition to the above. This is for the station Mohawk, situated in the deeper portion of the Mohawk valley, and hence representing conditions somewhat different from those at any of the Weather Bureau stations. The amplitudes, as given by Schott; are:

Jan.	Feb.	March.	$\Delta \mathrm{pril}$.	May.	June.	Joly.	Aug.	Sept.	Oct.	Nov.	Dec.
$\begin{array}{r} \text { Deg. } \\ 7.2 \end{array}$	$\begin{array}{r} \text { Deg. } \\ 9.3 \end{array}$	$\begin{aligned} & \text { Deg. } \\ & 10.5 \end{aligned}$	$\begin{gathered} \text { Deg. } \\ 13.7 \end{gathered}$	$\begin{gathered} \text { Deg. } \\ 16.1 \end{gathered}$	$\begin{aligned} & \mathrm{Deg} . \\ & 18.0 \end{aligned}$	$\begin{gathered} \text { Deg. } \\ 15.1 \end{gathered}$	$\begin{aligned} & \text { Deg } \\ & 15.8 \end{aligned}$	$\begin{gathered} \text { Deq. } \\ 14.9 \end{gathered}$	$\begin{aligned} & \text { Deg. } \\ & 11.0 \end{aligned}$	$\underset{6.5}{\text { Deg. }}$	$\operatorname{Deg}_{6} .$

The cloudiness is at a decided maximum in winter at Mohawk, and hence the range does not then differ greatly from that of Albany. The large range which obtains in summer is such as would be expected to result from the rapid heating of the quict air of the valley during the day, alternating with a downflow of chilled air from the highlands at night.

As shown by MeAdie's tables, the time of the maximum temperature at the Weather Bureau stations does not vary substantially from $3 \mathrm{p} . \mathrm{m}$. during the year. At Mohawk the maximum occurs, by the tables, at 4 p. m. during April, May and June, and varies but little from $3 \mathrm{p} . \mathrm{m}$. during the remainder of the year. For the State generally, the minimum temperature may be expected to occur at about the time of sunrise during the summer, and from one to two hours before sumrise in winter. At Mohawk, however,
the lowest temperature is not reached until the time of sunrise in winter, owing to the later hour at which the rays of the sun penetrate into the valley.

Observations have recently been made within this State at a few stations located on hill or mountain tops, whose results as regards daily amplitude of temperature it would be of interest to compare with the foregoing. The records do not, however, much exceed a year in length, and hence can not give even approximately correct values of daily variations. The mean daily ranges are given herewith (page 452) for three of these stations, in connection with the values for the same months at points in adjacent valleys. These ranges are not, like the abore, freed from the effects of unperiodic variations from day to day, and hence are much in excess of the true amplitudes, the excess, howerer, being approximately the same for the stations of each pair.
TABLE 8.

The effect of the elevated position and open exposure of the hill tops in decreasing the daily range is here apparent．

For comparison with the above the following mean daily ranges at stations of the National Service are given，the means embrac－ ing the five－year period，1881－1885．

STATIONS．	$\begin{aligned} & \text { B } \\ & \text { 苛 } \\ & \text { a } \\ & \text { B } \end{aligned}$			苍	芸	$\stackrel{\dot{\text { ® }}}{\square}$	\％			Li 0 0 0 0 0		㐫
Albany．．．．．．．．．．	15.8	16.1	13.9	16.8	17.5	17.9	16.7	16.7	16.3	16.2	13.1	12.9
Block Psland	13.9	12.8	11.9	11.8	11.2	11.7	11.5	10.1	10.1	11.0	11.3	12.4

It will be seen that at Block Island the mean daily range owes its principal component to the irregular temperature changes which takes place from day to day，since the range is at its maximum during the months of greatest temperature vari－ ability，when，on the other hand，the small amplitude proper is at its minimum．

The fact that the instrument shelters at National Weather Bureau stations are located at a considerable distance from the ground（the average height in this State being over 100 feet）may in part explain the lesser range at these stations as compared with some of the ralues obtained by the State Bureau．

Valley Winds and Inversions of Temperature．

During clear nights，both in winter and summer，the ground loses heat rapidly by radiation，and the air，in contact with it， becoming cool and dense，flows down the slopes towards the lower levels of the valleys．In central Europe this phenomenon appears to be most noticeable in winter，being greatly strength－ ened by the intense anticyclonic conditions which often occur during that season；while in New York the rapid radiation which is necessary to the process is usually checked by clouded skies during the colder part of the year．

At Ithaca, in the Central Lake Region, the night wind usually commences from one to two hours after sunset, blowing from the south down the channels of the two principal streams flowing into Cayuga lake. At first a light breeze, it increases in force during the night and attains a maximum velocity probably not less than eight miles per hour. The current in the main valley at the head of the lake (as observed by means of small balloons) is from 50 to 100 feet in depth before midnight, and no doubt becomes greater before morning. This volume of cold air gradually increases until sufficient to overcome the heating effect of the lake waters, reaching the northern extremity of the valley toward morning.

The essential features of the night wind, as thus outlined, are common to all highland districts, although the contour of the land surfaces near Ithaca (and also the presence of the lake) give it rather unusual strength. As an additional instance, the case of Utica may be mentioned; the phenomenon being there more marked than would at first be expected from the character of the surrounding country. The relief map accompanying this report shows the valley to open both eastward and westward from Utica; the highlands, however, rising mainly towards the northeast and southeast of the city. The following observations upon the winds during the winters and summers of two years were found in the report of the Board of Regents (second series).

DIRECTION OF SEASONAL WINDS.	Hours and Number of Observations.		
	$6 \mathrm{~A} . \mathrm{m}$.	2r.m.	$10 \mathrm{P} . \mathrm{M}$.
In summer:			
Number of observations of easterly winds	116	44	47
Number of observations of westerly winds..	93	160	59
In winter:			
Number of observations of easterly winds	9 ir	93	π
Number of observations of westerly winds.	81	10%	108

The prevailing westerly winds at midday，while mainly due to the general atmospheric circulation，must be considerably strengthened by the updraught of air on the heated hill slopes． At night，when the motion of the upper currents is mo－longer imparted to the surface air by conrectional action，the downflow from the hills proceeds unchecked；but，owing to the distance of the city from the highlands，the easterly wind does not become fully established there until after the evening observation，and is much more apparent in the early morning．The large per－ centage of cloudiness in winter evidently tends to decrease the frequency of easterly winds at that season．

The valley winds have a considerable climatic importance， since they，bring a cool and refreshing air at night which is not felt on the plains or upper hill slopes．Also，in the autumn and winter the same condition gives earlier frosts and lower noc－ turnal temperatures in the ralleys than obtain on the hills or plains，as long as the skies remain clear．

The following temperature readings were obtained at hill and valley stations of central New York during the clear weather accompanying anticyclonic conditions in Jauuary and February， 1892：

LOCATION．	范	Temperature（Famrenheit）．														
		Jandary 9.			JANUARY 10.			JANUARY 20.			JANUARY 21.			FEBRUARY 6.		
		$\begin{aligned} & \dot{1} \\ & \text { 空 } \end{aligned}$	送		$\stackrel{\dot{x}}{\underset{\sim}{x}}$	㕠	$\begin{aligned} & \text { © } \\ & \text { E } \\ & \text { E } \\ & \text { Min } \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { g } \end{aligned}$	Ė		$\begin{aligned} & \dot{4} \\ & \text { 合 } \\ & \vec{F} \end{aligned}$	录		$\begin{gathered} \text { 㭡 } \\ \underset{y y y y}{*} \end{gathered}$	棠	
Oxford（Hill）．	$1,250$	21	4	17	17	-8	25	11	－24	35	21	-10	31	22	-3	25
Brookfield（Va．）．．	1，350	24	－3	¢7	17	－16	33	6	－28	34	21	-17	35	30	－16	46

Nots．－The rapid rise of the general surface of the eastern plateau brings the valley bottom at Brookfield above the level of Oxford．The distance between the stations is about thirty miles．

The inversion of temperature which occurred in northern New York on December 8，1891，has already been described（page 444）． In that case there was apparently a cold stratum of surface air and a slight increase of temperature with vertical height within the mass of the anticyclone itself．Such a condition must be less likely to occur south of Lake Ontario，as the surface air for the time being loses its intense cold in passing over the water．

TABLE
Records of Maxinum

9.
and Minimum Temperatures.

Table
Records of Maximum

year．	Atlantic Coast．						hudson Vatley，				Eastern Plateau．				CentralLakes．		Western Plateau．	
	$\begin{aligned} & \text { Fort } \\ & \text { Colum- } \\ & \text { bus. } \end{aligned}$		$\begin{aligned} & \text { Contral } \\ & \text { Park, } \\ & \text { Newr } \\ & \text { York. } \end{aligned}$		$\begin{aligned} & \text { New } \\ & \text { York } \\ & \text { City. } \end{aligned}$		Bangall or Hon－ eymead Brook．		Albany．		Pom－ pey．		Hamil－ ton．＊		Ithaca．		Hum． phrey．	
	$\begin{aligned} & \hline \dot{4} \\ & \stackrel{\ddot{A}}{3} \\ & 94 \\ & 91 \\ & 91 \\ & 97 \end{aligned}$	$$	$\begin{aligned} & \text { 荷 } \\ & \text { 1 } \\ & 96 \\ & 91 \\ & 98 \\ & 98 \end{aligned}$	äa 0 0 3 7 9	$\begin{aligned} & \text { é } \\ & \text { 总 } \\ & 96 \\ & 90 \\ & 95 \\ & 94 \end{aligned}$	$\begin{array}{\|c} \text { g } \\ \text { B } \\ 2 \\ 2 \\ 2 \\ 6 \\ 9 \end{array}$	¢ ¢ ¢ 96 98 92 92 92	$\begin{array}{r} \text { g } \\ -14 \\ -14 \\ -7 \\ -7 \\ 0 \end{array}$	$\begin{array}{\|} \hline \stackrel{y}{e} \\ 92 \\ 92 \\ 92 \\ 98 \\ 95 \end{array}$			家	茯	送		g 最 -15 -12 -3 -2	4 嶌 90 98 80 92 92	景
Means．	94	3	95	1	94	1	94	－10	893	\＄11		－11	93	-20	＋94	＋11	90	－11
Extremes．		－12	101			－ 5		$\left.\right\|^{-19}$	\＄98		91	－18		－34	＋96	＋20	95	-24

＊In the town of Hamilton，Madison Co．，to be distinguished from the station Hamilton College of and extremes derived from second series，1800－1873．§Means and extremes derived from second following were obtained from self－registering instruments，and under standard conditlons．B Rec
$9-($ Concluderl $)$.
and. Minimum Temperatures.

the general tables. Heans and extremes derived from second series, 1459-1591. \# Means series, 1874-1891. $\|$ Means and extremes derived from second series, $16 \hat{i}$-1881. A Records ords from self-restistering instruments.

Maximun and Minimum Temperature.

Table 9 presents the statistics of temperature during long periods at several points representing the prominent climatic region of New York, and also exhibits the highest and lowest values which have been recorded in the State.

The accuracy of the maximum temperatures (excepting as marked with the reference A) can not be vouched for, especially as regards the records kept prior to the establishment of Signal Service standards and methods in 1870. Maxima of 100 degrees or more within this State are to be accepted with caution. Even in cases where the values appear to be systematically too high, however, they may give relative results of value when compared with others of the same series.

While a slight defect in the exposure of the thermometer may cause too high a maximum reading, the minimum reading is not likely to be too low excepting as the result of defects in the scale of the instrument; and hence the minimum values given in the table are subject to less error than the maxima. The lowest value (-46 degrees) does not appear improbable, in view of the minimum of - 35 degrees obtained under standard conditions in 1889. Mercury is several times reported to have been frozen at points not usually so subject to extreme cold as the station in question. (See page 50t.) The lowest temperatures in New York. have thus for been obtained near the urper limit of the St. Lawrence valley, between the north castern shore of Lake Ontario and the Adirondack highlands. Owing to the fact that the instruments of Weather Bureau stations are usually located on the roofs of high buildings, suclu stations are not credited, in table 9 , with the standard conditions of exposure used by the stations of the State service.

In table 10 will be found the maxima and minima observed at a large number of stations provided with the standard thermometers of the National and State Weather Bureans. Although the observations extend over only four years, the results are valuable for purposes of comparison. The maxima in a few cases appear to be affected by an imperfect exposure of the thermometers.

STATIONS.	Counties.	1889.		1890.		1891.		1892.*		Remaris.	
		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Elevation above tide.	Situation of Station.
Western Platean. Alfred Centre. Allegany				90	--6	88	-10	92		Feet. 1,824	
Angelica	Allegany	89	-	91	-14		-14	2	-22	1,310	Valley.
Humphrey	Cattaraugus	r9	-16	92			-1	90	-8	1,950	Hill.
Mt. Morris.	Livingston .					98	1	95	-11	525	Valley.
Lockport.	Niagara..			93	1	93	0	92	-3	616	Plain.
Wedgewood	Schuyler	93	-12	97	1		,	96	-6	1,350	Mill.
Addison.......	Steuben	90	\cdots	${ }^{-1.93}$	\cdots	98	-10	93	-14 -14	1,000 1,480	Slope.
Arcade	Wyoming				86	-9	59	-18	1,55\%	Slope.
Italy Hill.	Yates. .					90	1			2,080	Hill.
Eastern Plateau.											
Binghamton.	Broome		\ldots			93	-4	94	-1%	870	Valley.
Oxford.	Chenango		89	-14	90	- 8	N	-24	1.2F1)	
South Kortright	Delaware.		-14	4,	- 20	!	-14	9	-12	1, ${ }^{\text {, }} 10$	Valley.
Prookfield.	Madison		91	- 15	91	-15	95	-23	1,350	Valley.
Port Jervis.	Orange		\cdots	92	- 11	94	1	9	- 4	470	Valley.
('ooperstown	Otsego	N6	-15	88	-15	5	-2	! 10	-18	1,300	Valley, near lake.
Quaker Street	Schenectady			90	- ${ }^{-1}$	90	-6	93	-12	933	Hill.
Perry City	Schuyler	91	- 14	${ }^{97}$	-	93	-9	91	-15	1,0**	Valley.
Middleburgh	Schoharie	91	- 22	96	-11					${ }^{6} 919$	Valley.
Waverly.	Tioga.	89	-13	93	-15	95	$-\ddot{\sim}$	9	\bigcirc	${ }_{1}^{8} 805$	Valley.
Minnewaska	Ulster	94	-29		45	-2	93	-11	1,800	Hill.
Northern Platecte.											
Constableville...	Lewis	89	-25	89	-14	89	-18		-24	1.246	Slope.
Number Four	Lewis	88	-2\%	si	-17	46 87	-193	${ }_{86}^{86}$	-23	1.551	Hill.
Turin. Keene Valley	Lewis Essex	\ldots			87	-16 -12	86	- 17	1,240	Slope.
Keene Valley	$\underset{\text { Ersex }}{\text { Esalin }}$			-1	85	-12	\cdots	1,015	Salley.
Saranac Lake..	Franklin		-34					1,540	Valley, near lake.
Corst Region.											
New York City...	New York	90	-	95		94	$1 \stackrel{?}{3}$	96 94	8		Plain. Hill near L, I. Sound
Slock Island, R.	Suffolk	88	-5	85	10	85	$1 \underset{0}{12}$	8	${ }_{3}^{6}$	27	Hill near L. 1. Sound.

Maximum and Minimia Temperatures During Four Yeates, 1889-1892-(Concluded).

An unbroken record of temperature has been kept at Cooperstown, N. Y., since 1842; a standard thermometer favorably exposed being used after 1853. Mr. (7. Pomeroy Keese, the observer, gives, as the highest temperature of the entire period, 96 degrees on July 3, 1868, and as the lowest, -30 degrees on February 7, 1855, and January 24, 1857.

Variability of Temperature.

This important climatic element may be measured by the average difference which obtains between the mean temperature of successive days, a method which eliminates the nearly constant diurnal variation. General A. W. Greely gives in "American Weather" the values thus derived for representative stations in New York and other States during January, the month which in most cases has the maximum variability:

Table 11. Variablefty of Temperature.

For the Great Lake Region the mean variability in January is

7.4 degrees.

For the eastern central section the mean variability in January is 7.6 degrees.

- For the Atlantic const region the mean variability in January is 6.5 degrees.

During the same month the variability on the coast of California is 2 degrees; on the south Atlantic and Gulf coasts 6 degrees; in the central states of the Mississippi valley from 8 degrees to 9 degrees; and in the region of the upper Missouri valley from 9 degrees to 10 degrees. The greatest variability which has been found within the United States is 11 degrees at Portland, Me.

The following table exhibits the variability of temperature in various parts of the State in a somemilat different manner from the above:

TABLE 12.
Differences Between the Mean Temperatures of Consecutive Days for an Average Winter Month.

STATION AND SECTION OF STATE.	Degreeb Difference Between Consecutive Days.				
	$\begin{gathered} \text { Degrees. } \\ 5-10 \end{gathered}$	$\begin{gathered} \text { Degrees. } \\ 10-15 \end{gathered}$	$\begin{gathered} \text { Degrees. } \\ 15-20 \end{gathered}$	Degrees. $20-25$	Degrees. Orer 25
	Number of times of occurrence per month.				
Canton (St, Lawrence Valley)..	7.0	6.0	4.0	2.0	2.5
Hess Roads (Great Lakes)....................	11.0	5.0	2.5	0.5	0
Honeymead Brook (Lower Mudson Valley)	8.0	45	3.5	1.5	0
Setauket (Long Island).	10.9	6.0	2.0	0.5	0.2

These values are derived from a total of nine winter months observations at each station. A longer series might be expected to modify the averages somewhat, while changing the relative values but little. The mean values were, in each case, computed from tri-daily observations.

The most obvious feature shown here is the excess of large ranges in the St. Lawrence valley as compared with the remainder of the State. The tempering effect of the Great Lakes is lacking in that region; and moreover, there appears to be a general increase of variability in the direction of the Eastern Canadian Provinces.

A graphic representation of the variability of temperature in New York will be found in plate 1.
TABLE 13
Frosts.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{STATION.} \& \multirow[t]{2}{*}{County.} \& \multirow[t]{2}{*}{Authority.} \& \multirow[t]{2}{*}{} \& \multicolumn{3}{|l|}{Last Killing Frost of Spring.} \& \multicolumn{3}{|l|}{First Killing Frost of Autumn.} \\
\hline \& \& \& \& Average date. \& Earliest date. \& Latest date. \& Average date. \& Earliest date \& Latest date. \\
\hline \begin{tabular}{l}
Western Plateau. \\
Humplrey
\end{tabular} \& Cattaraugus \& C. E. Whitney \& 10 \& June 24 \& May 28 \& July 26 \& Sept. 24 \& Sept. 11 \& Oct. \\
\hline Eastern Plateau. Cooperstown........ Waverly or Factoryville \& Otsego Tioga... \& Weather Review, 1888. Weather Review, 1888. \& 30
20 \& \& \& \& \[
\begin{aligned}
\& \text { Sept. } 27 \\
\& \text { Oct. }
\end{aligned}
\] \& \[
\begin{array}{lr}
\text { Sept. } \& 3 \\
\text { Aug } \& 24
\end{array}
\] \& \[
\begin{array}{ll}
\text { Oct. } \& 28 \\
\text { Oct. } \& 30
\end{array}
\] \\
\hline Coast Region. New York City...... \& New York........ \& Signal Office Reports \& 18 \& April 13 \& March 15 \& May \(\sim^{*}\) \& Nov. 5 \& Oct. 7 \& Nov. \(\sim\) \\
\hline Hudson Valley. Albany \& Albany \& Signal Office Reports \& 18 \& April 13 \& \& \& Oct. 23 \& Sept. 26 \& Nuv. 21 \\
\hline St. Lawrence Valley. North Hammond ... \& St. Lawrence..... \& C. A. Wooster................. \& 14 \& \& \& \& Oct. 10 \& Sept. 1 \& Nov. 13 \\
\hline Great Lakes. Oswego ... \& Oswego \& Signal Office Reports \& 18 \& April 24 \& March 26 \& May 27 \& Oct. 15 \& \& Nov. \\
\hline 1alarmo* \& Oswego \& E. B. Bartlett \& 33 \& Ap....... \& \& \& Oct. 12 \& Sept. 21 \& Nov. \\
\hline Rochester \& Monroe. \& Signal Office Reports \& 18 \& May 5 \& April 11 \& May 27 \& Oct. 15 \& Sept. 26 \& Nov. \\
\hline \({ }_{\text {Brie }}\) Puff \& Erie \& Signal Office Reports \& 18 \& April 30 \& March 30 \& May 29 \& Oct. 15 \& Sept 23 \& Nov. 12 \\
\hline Amberst, Mass \& \& Signal Office Reports , ., \(1888 .\). \& 18
47 \& April 23 \& March 26 \& May \& \(\begin{array}{ll}\text { Oct. } \& 30 \\ \text { Sept. } \\ \end{array}\) \& Oct.
Aug.

10 \& Dec.

\hline Middletown, Conn \& \& U. S. Weather Review, 1888.. \& 29 \& \& \& \& Oct. ${ }^{\text {a }}$ \& Sept. 10 \& Oct.

\hline Dyberry, Pa...... \& \& U. S. Weather Review, 1888.. \& 26 \& \& \& \& Sept. 23 \& Aug. 30 \& Oct. 21

\hline
\end{tabular}

* The date, September 19th, given in the U. S. Weather Review, 1888, is that of first light frost. Date of first killing frost newly computed.

TABLE 14.

Dates of Frost as given in Regents Report.

STATION.	County.	ت	First Iillling Frost of Autumi.					
			Average date.		Earliest date.		Latest date.	
Western Plateau.								
Dale or Middlebury..	Wyoming	17	September	23	August	27	October	15
Prattsburg	Steuben........	10	September	20	september	9	October	16
Eastern Plateau.								
Montgomery	Orange	8	September	24	August	30	November	2
Hartwick	Otsego	13	September	22	August	3	October	21
Cherry Valley	Otsego	12	September	17	August	20	October	7
oxford.......	Chenango.	16	September	15	September	3	September	30
Cazenovia	Madison.	19	September	13	August	3	(retober	3
Hamilton.	Madison.	15	September	11	August	2	October	13
Pompey	Onondaga	15	September	20	September	3	October	15
Onondaga	Onondaga	15	September	21	September	6	October	19
Homer.	Cortland	1%	September	29	August	3	October	16
Northern Plateau.								
Fairfield....	Herkimer	18	September	13	August	28	October	12
Lowville	Lewis.	17	September	16				
Coast Region.								
East Hampton.	Suffolk	15	October	20	September	28	November	27
Flatbush......	Kings............	24	October	4	September	13	October	26
Jamaica	Queens.........	24	September	29	September	2	October	23
Mt. Pleasant	Westchester....	9	September	28	August	\checkmark	November	3
North Salem	Westchester...	19	September	19	August	3	October	11
Newburgh.................	Orange.........	15	October	9	September	23	October	23
Kingston...	Ulster	15	September	28	September	9	October	17
Poughkeepsie............	Dutchess........	14	October	1	September	10 10	October	16 20
Hudson.....	Columbia.......	17	October September	26	September	10	October	10 9
Albany	Albany	19	October	9	September	9	October	28
Cambridge	Washington...	8	September	27	August	24	October	13
Salem	Washington...	9	September	21	September	8	October	1
Granville	Washington...	12	September	27	September	12	Octoluer	26
St. Latorence Valley. St Lew								
Potsdam...	St. Lawrence...	22	September	7	August	4	October	7
Gouverneur	St. Lawrence...	12	Soptember	16	August	24	October	1
Great Lakes.								
Auburn.	Cayuga.........	20	September	30	August	4	October	23
Rochester	Monroe........	18	September	26	September	11	October	24
Lewiston.	Niagara........	17	September	25	August	3	October	11
Fredonia.................	Chautauqua....	16	September	29	August	28	October	25

Frosts.

Table 13 exhibits the average and extreme dates of the last killing frost of spring and the first of autumn at nine places in New York and at Erie, Pa. The date for Palermo,* Humphrey and North Hammond were furnished by Messrs. E. B. Bartlett, C. E. Whitney and C. A. Wooster, and for the remaining localities

[^37]were derived from the reports of the Signal Service. Some data hitherto published have not been included in the table, owing to uncertainty as to the severity of the frosts reported.

The dates of table 14 have been computed from the observations of frosts which were obtained under the first portion of the New York Regents' system (1826-1850). No information could be obtained by the writer as to the severity of the frosts reported; but, from the evidence of the records themselves, it appears probable that both light and killing frosts were included in many cases. The results have a value, however, in fixing the earliest average date on which killing frosts may have occurved during the periods which they represent.

Efforts to obtain records of frosts from numerous additional points in the State were mainly unsuccessful; but several of the persons applied to kindly forwarded general information which may properly be included here.
The Hudson Valley.- Dr. James Hyatt, of Honeymead Brook, central Dutchess county, states that "injurious cold waves and late spring frosts likely to damage fruits and crops are those which, for the most part, in this locality, come in May. In April a cold wave or frost is not liable to do so serious injury. June frosts are extremely rare and August frosts perhäps equally so. In 1816 there were frosts every month in the year. The crops of Indian corn were all destroyed, and seed for the next year's planting had to be brought from a great distance. * * * Serious damage here is unlikely before September 15th, while after October 1st frosts are generally harmless, since the crops are secured before that date. During the past nine years we have had several injurious or killing spring frosts, but no autumnal ones of a disastrous nature." It is stated that a very unusually late and injurious spring frost on May 30th, 1884.

Mr. H. C. Townsend, of Wappingers Falls, Dutchess county, furnishes a list of killing frosts during seven years, 1886-1892. The average date of the last killing frost of spring was May 9th, the earliest date being April 30th and the latest May 20th. The average date of the first killing frost of autumn was October 12th,
being three days earlier than at Palermo for the same period. The earliest date of the record is September 7 th and the latest October eath. These frosts were observed in the valley of Wapfingers creek and are probably earlier than the average of the region.

Immediate proximity to the river moderates the severity of frosts considerably, according to the observations of Mr. H. A. Stone, of Rondout.

The Cextral Lafe Region.

In the absence of adequate observations upon frosts the folloming dates of begiming and ending of freezing weather at Ithaca may be found useful. During the past fourteen years the last freezing temperature (32 degree) of spring has, on an average, occurred on May 6th, the earliest date for the period being April 9th and the latest May 29th, The average date of first freezing temperature in autumn was October 10th; the earliest occurrence being September 26 th, while in one case 32 degrees was not recorded until October 31st. Temperatures of 32 degrees in October or even the latter part of September are not likely to be injurious to crops then exposed, while considerably higher air temperatures in May do not preclude the possibility of great refrigeration and disastrous frost near the surface of the ground or in ralley bottoms. Dr. J. Hyatt, previously quoted, notes cases in which injurious frosts occurred late in May, while the temperature registered 40 and 41 degrees at a point 12 to 20 feet above the general level.

Data from the grape region of Keuka lake were furnished by Mr. H. O. Fairchild. From. 1880 to 1892 May frosts damaged grapes somewhat in four cases, in three of which the injury was confined mainly to the valleys. The earliest instance of a killing autumnal frost was on September 22d, and in three years some damage was sustained on October 11th and 12th. The only case of October frost in addition to these occurred on the 27 th. Mr. Fairchild istates that a temperature of 28 degreest is usually injurious only to the foliage of grape vines.

The Great Lake region is very fairly represented in table 13 by five stations well distributed over the region. It will be seen that the conditions are here very favorable as regards the occurrence of frost, and especially so in the section of the Chatauqua grape belt represented approximately by the record of Erie, Pa. The following information conceming this regiou is given by Mr. S. S. Crissey of Fredonia:
"The first killing frost of autumn for the past twenty-five years has not occurred until the last week in October or after October 25th. The one notable exception was the autumn of 1891, when it occurred on October 12th. In several years it has not occurred until in November. I now speak of a frost or freeze of sufficient severity to injure ripe grapes exposed on the rines. I have had a Concord vineyard in beariug since 1869, and have nerer (until last year) had a pound injured in autumn."
"As to the danger from spring frosts: The rine begins to leaf out here May 10th, and we rarely have a severe frost after that time. I have never suffered in my locality, which has a high airy exposure; but some vineyards unfavorably located were injured in 1889 and 1891 by frosts about May 17 th. Where lands lie facing the lake or with a northern slope they rarely, or almost never, suffer from frosts after May 15th. Of course, frosts before May 10th would dor no injury." * * *
"The most serious injury to rineyards in this section during the past twenty-five years occurred in two cases when winter came on with the ground in unusually dry condition, giving a 'dry freeze.' * * * To guard against this condition, which occurs about one year in ten, vineyardists in the dryer localities have abandoned fall plowing of their ground."

Mr. J. Ryckman of Brockton furnishes statements substantially similar to the above, adding that the total extent of grape vineyards in the Chautauqua belt is now about 30,000 acres.

The Central Plateau. - The early dates of frosts at Cooperstown and Humphrey, as compared with those of other stations of the table, are explained by the high elevation of the general land surface in their vicinity, which is also intersected by deep
vallers very farorable to the occurrence of low nocturnal temperatures, and hence the dates at these stations may be considered to represent nearly, or quite, the earliest occurrence of frost in the central plateau region. Wraverly, on the other hand, is situated in a very broad depression where, as has already been seen, the effect of nocturnal cooling is much less marked.

Mr. A. K. Harrison of New Lebanon, in N. E. Columbia county, states: "We often hare frosts in August, and a few years igo (in 1889 or 1890) there was frost during every month excepting July." The data furnished, although not sufficient to establish an arerage, makes it apparent that frosts occur earlier in the eastern highlands than in the main portion of the Central Plateau.

Northern New York.-In commenting on the dates of autumnal frosts at North Hammond, in the St. Lawrence valles, Mr. C. A. Wooster states that their late occurrence (as given in the table), is in part due to close proximity to the St. Lawrence River, two miles wide at that point, as well as to several other local conditions. At Hammond, six miles from the river, frosts occur somewhat earlier.

So far as can be learned, frosts occur in the southern portion of the Adirondack region proper about three weeks earlier than in the Mohawk valley. Mr. C. A. McCoy of Sageville, who furnished this estimate as the result of many years of observation, places the arerage date of the last killing frosts of spring between May 25th and June 5th, and that of the first of autumn between September 1st and 15th.

In the mountainous section of the northeastern Adirondacks the last frost of spring occurs near the close of May and the first of autumn about September 20th, as stated by Mr. J. H. Bailey of Keene Valley, Essex county.

Periods of Navigation in Lakes, Rivers and Canais.

TABLE 15.

Dates of Opening and Closing of Navigation in the Hudson

 River at Albany.[Dates from 1648 to 1888 were obtained from the "Climate of New Jersey," by J. C. Smock. The recorde from 1888 to 1892 were furnished by the Stato Engineer, Albany.]

YEARS.	hiver open.	River closed.		YEARS.	River open.	River closed.	
1616.		November 25		1811	March 24	December 19	270
1675-6.	February 26			1842	Tebruary	November 99	298
1788.	March 】3			1513	April 18	December y	210
$\begin{aligned} & 1789 . \\ & 1790 . \end{aligned}$	March	Feb. 3 (190) December	,	$\begin{aligned} & 1814 \\ & 1815 \end{aligned}$	$\begin{array}{ll}\text { March } \\ \text { February } & 14 \\ 24\end{array}$	December ${ }^{11}$	288
1791.	March 17	December 8	26	$1-46$	March 15	December 15	5
1792.		December 12		1845	April 6	December 24	263
1793.	March	December 26	295	18.	March 22	December 27	(120)
1794	March 1it	Jan. 12 (1795)	301	1849	March 19	December 25	281
1795.		Jan. 23 (1796)		1850	March	December 17	283
1796		November 28		1851	February 25	December 13	91
1797.		November 26		18	March 28	December 22	263
1798.		November 23		185	March 21	December 21	275
1799		Jan. 6 (1800)		185	March 17	December 8	26\%
1800		Jan. 3 (1801)	310	18	March 20	December 50	5
1802.		December 16		18.	April 10	December 16	2303
1803.		Jan. 12 (1804)		1858	March ${ }^{2} 0$	December 18	273
1804.	April	December 13	251	185	March 13	December 10	2 ก2
1805		Jan. 9 (1806)		186	March	December 14	283
1806	February 20	December 11	201	1861	March	December 23	29.3
1807.	April	Jan. 4 (1808)	$2 \pi 1$	1865	April	December 19	259
1808.	March 10	December 9	20.1	18	April	December 11	252
1809.		Jan. 19 (1810)		186	March 11	December 12.	276
1810		December 14	\ldots	186.	March 20	December 16.	263
1811		December 20			March 20	December 15	270
1812.		December 21		18	March 26	December 8	257
1813.	March 12	December 92	285		March 24	Jecember 5	256
1814.		December 10		18	April	December 9	$\stackrel{24}{28}$
1815		December ${ }^{2}$		1870	March 31	December 17	261
1816		December 16		1871.	March 12	November 29	263
1817		December ${ }^{\text {\% }}$		187	April	December 9	$\stackrel{46}{ }$
181	March 25	December 14	264	1873	April 16	November ${ }^{2}$	20
1830.	March 25	November 13	233	18.5	April 13	November 29	230
1821	March 15	December 13	$2{ }^{3} 3$	1876	April 1	December 2	245
1822	March 15	December 24	294	$18 \% 7$	March 30	December 31	$2 \sim 6$
1823.	March 24	December 16	267	187	March 14	December 20	281
182	March	Jan. 5 (1825)	308	1879	April	December 20	260
1825	March	December 13	282	1880	March	November 25	265
1826	February 26	December 24	301	1881	March 21	Jan. 2 (1882)	287
1827	March 20	December 25	208	188\%.	March 8	December 4	273
1828	February 8	December 23	319	1883.	March 29	December 15	≈ 61
1829.	April	Jan. 11 (1830)	285	1881	March 25	December 19	269
1830	March 15	December 23	283	1885	April 7	December 13	250
1831.	March 15	Decomber 5	265	1886.	March 80	December 3	248
1832.	March 25	December 21	2\%1	188	April	December 20	255
1833.	March 21	December 13	267		April 5		
1834.	Webruary 21	December 15	297		March 19	Not closed...	$\stackrel{486}{ }$
1835.	March 25	November 30	${ }_{2}^{250}$		Entire winter	December 3	${ }^{337}$
18836.	$\begin{array}{ll}\text { April } & 4 \\ \text { March } & 28\end{array}$	December ${ }^{7}$	247		March 22	December 4	77
1838	March 19	November 25	251				
1839.	March 21	December 18	272	Averages	March 20	December 16	271
1810.	February 21	December 5	288				

Note.-The Report of the New York Regents (1850-1863) gives a record of dates of closing of navigation at Hudson city during 54 years, 181\%-\%0. The average date of closing computed from the series is December 18th.

TABLE 16.

Hate of freezing over of Luke Champlain at its widest part npposite the city of Burlington, Termont; also, date of opening of the lake, with duration of ice each year from 1816 to 1892.
[From memoranda kept by John Johnson, Joseph D. Allen and Charles E. Allen of Burlington, Vt. (Width of lake at point of observation is ten miles.)]

TABLE 17.

Time of arrival of first boat at Plattsburgh, 1843 to 1891.
[Record of the "Plattsburgh Republican," furnished by C. F. Bixby, Editor and Proprietor.]

YEAR.	Arrival.		YEAR.	Arrival.	YEAR.	Arrival.	YEAR.	Arrival.	
1843	April	27	1856	April 22	1869	April 26	1882......	April	5
1844	April	19	1857	April 10	1870	April 19	1883......	April	24
1845.	A pril	1	1858	April 7	1871	March 17	1884	April	28
1846	April	7	1859	March 31	1872	April 24	1885	April	25
1847	May	11	1860	April ${ }^{1}$	1873	April 18	1886	April	19
1848	April	11	1861	April 15	1874	April ${ }^{\circ}$	1887	April	30
1849	April	8	1862	April 30	1875	May 1	1888	April	25
1850	March	25	1863	April 27	1876	April 25	1889	Apri?	12
1851	April	3	1864	April 18	1877	April 13	1890	April	18
1852.	April	24	1865	April	1878	April 1	1891	April	
185	April	12	1866	April 12	1879	April 28	1892		
18	April	${ }_{23}^{19}$		April 17	1880	$\begin{array}{ll} \text { April } & 1 \\ \text { Anril } \end{array}$			
		23			1881		verage.	April	15

TABLE 18.

Record of sleighing across Lake Champlain on the ice, between Plattsburgh and Burlington, from 1868 to 1883, inclusive.
[From the "Plattsburgh Republican."]

YEAR.	First trip.	Last		YEAR.	First trip		Last trip	
1868.	January 9	March	17	1876.	February	4	April	3
1869	January 23	March	2π	1877	January	$\stackrel{\square}{9}$	March	26
1870.	February 10	March	30	1878.	February	9	March	${ }^{6}$
1871	January 23	March	8	1879	January	27	April	7
1872....	January 9	March	9	1880	February	17	February	26
1872-1873	December 30	April	5	1881	January	1%	February	19
1874.	February 4	March	14	1882	February	1	March	2
1875.	January 6	April	1	18こ3	January	23	April	10
Average..\| January						23\| March		19

TABLE 18A.
The following table of water levels of Lake Champlain is furnished by Mr. Bixby from the records of the Plattsburgh Republican.

TABLE 19.
Dates of opening navigation in the St. Lawrence river, at Ogdensburgh, from 1832 to 1892, and dates of closing navigation from 1832 to 1870. Records from 1832 to 1870 from New York Regents' Reports. Remaining records from the Collector of Customs, Ogdensburg.

YEARS.	Navigation opens.	Navigation closes.	YEARS.	Navigation opens.	Navigation closes.
1832		December 20	1863	April 14	December 11
1833	April 12	December 21	186	April 18	December 16
1834.	April 2	December 17	186	April 3	December 16
1835	April 4	November 28	186	April 11	December 17
1836	April 20	December 7	1867	April 17	December 10
1837	April 20	December 20	1868	April 1	December 19
183	April 12	December 7	186	April 14	December 23
1839	April 11	December 26	1870	April 11	December 20
1810	April 1	December 9	1871	March 21	
1811	April 16	December 8	1872	April 17	
1842	March 24	December 1	1873	April 15	
1843	May ${ }^{3}$	December 20	1874	March 31	
1844	April 6	December 16	1875	April 27	
1845	April 1	December 15	1876	April 14	
1846	April 6	December 25	187\%	April 10	
$184{ }^{\text {Tin }}$	April 20	December 8	1878	March 21	-..............
1818	April 4	December 25		April 19	
1849	April 14	December 21	1880	April 1	
1850	March 30 April	December ${ }^{12}$	188	March 26
1851	April ${ }^{5}$ April 	December 18	$\begin{aligned} & 1882 \\ & 1883 . \end{aligned}$	March 28 April 13
1853.	April 4	December ${ }^{1}$	1884	April 7	
1854	April 13	December 13	1885	April 23	
1855	April 21	December 17	1886	April 10	
1856	April 29	December 22	1887	April 15	
1857	April 25	December 29	1888	April 11	
1858	April 8	December ${ }^{7}$	1889.	April 1	
1859	April 12	December 17	1890.	April 1	
1860	April 9	December 18	1891	April	
1861	April 12	December ${ }^{9}$ December 13	1892	April April 8	
1862	April 11	December 13	Average	April 10	December 16

TABLE 20.

Dates of opening navigation on Lake Erie, at Buffalo, from 18017 to 1890, and dates of closing navigation from 1871 to 1890. Records from 1807 to 1871, from New York Regents' Reports. Remaininy records from reports to the Chief Signal Officer.

$\begin{gathered} \text { 艺 } \\ \cline { 1 - 2 } \end{gathered}$	Navigation opened.	淢	Navigation opened.		Navigation opened.		Navigation opened.	Navigatio closed.	
1807	June	1828	April	1849..	March 25	1871..	April	December	27
1808.		1829.	May	1850..	March 25	1872..	May	December	18
1809.	May 26	1830..	April 11	1851.	April $\quad 2$	1873..	April 29	November	28
1810	April 30	1831..	May 8	1852.	April 20	1874..	April 18	December	5
1811.	June 4	1832.	April 28	1853..	April 14	1875..	May 12	December	11
1812.		1833.	April 24	1854..	April 29	1876..	May 10	December	17
1813.		1834..	April 6	1855..	April 21	18? $7 .$.	April 20	December	13
1814.	April 19	1835..	May 8	1856..	May ${ }^{2}$	1878..	March 16	December	7
1815.		1836..	April 27	1857..	Aprll 27	1879..	April 24	December	14
1816.	May 16	1837..	May 5	1858..	April 15	1880.	March 19	December	8
1817.	April 29	1838..	March 31	1859..	April ${ }^{7}$	1881..	May 1	December	30
1818.	April 21	1839..	April 11	1860..	April 17	1882..	March 26	December	1
1819.	May 6	1840..	April 24	1861..	April 13	$1883 .$.	April 25	December	7
1880.	May 1	1841..	April 14	1862..	April 15	1884..	April 22	December	6
181.	May 13	1842.	March 7	1863..	April 3	1885.	May ${ }^{2}$	November	9
1822.	April 15	1843.	May 6	1864.	April 13	1886.	April 15	December	7
1823.	May 3	1844..	March 8	1865.	April 26	1887..	April 17	December	14
184.	April 28	1845..	April	1866.	April 28	1888..	April 28	December	6
1885.	March 12	1816.	April 4	1867.	April 21	1889.	April 12	December	14
1826.	May 23	1817.	April 23	1868.	April 19	1890.	March 31		
1827.	April 21	1848..	April	$1869 .$. $1870 .$.	May April 16	Av'ge	April 7	December	9

TABLE 21.

Dates of opening of navigation on Lake Ontario at Oswego, from 1835 to 1892, and dates of closing navigation from 1871 to 1892. Records from 1835 to 1871, from New York Regents' Report. Remaining records from the collector of customs, Oswego.

YEARS.	Navigation opens.		YEARS.	Navigation opens.		Navigation closes.	
1835.	April	2	1863.	April	$\stackrel{2}{2}$	
1836.	April	16	1864.	April	5	
1837.	April	1	1865.	April	1		
1838.	April	6	1866.	March	17	
1839	April	3	1867.	April	6		
1840	April	4	1868.	April	1	- . . ${ }^{\text {a }}$	
1841.	April	6	1869.	April	10		
1842.	March	7	$18 i 0$.	April	6	December	19
184.3	April	8	1871.	March	20	December	13
1844	March	15	1879.	April	13	December	12
1845	March	28	1873.	April	7	December	6
1846	March	24	1874.	March	31	December	4
1847	March	25	18.5.	April	13	December	9
1848.............	January	8	1876.	April	5	December	28
1848...................	April	5	1877.	April	14	Decmber	26
1819....................	March	28	1878.	March	11	December	10
1850.	March	21	1879.	April	9	December	16
1851.	March	20	1880.	Mareh	10	January, '81	24
1852.	April	1	1881.	April	2	December	5
	March	12	1882.	March	22	November	30
1853..................	January	19	1883..	April	${ }^{\text {b }}$	December	11
	January	18	1×81.	April	5	December	12
1854..................	February	27	1885.	May	2	December	15
	January	3	1886.	April	1	December	7
1855...................	February	13	1887.	April	9	December	6
1856.	April	19	1888.	April	14	December	11
1857.	April	6	1889.	April	4	December	18
1858.	April	1	189\%.	March	2%	Januars, '91	17
1859.	April	1	1891.	April	4	Decrmber	$\stackrel{\sim}{8}$
1860.	March	9	1892.	April	5	December	21
1861.	Aprıl	1					
186:\%.	April	\%	Average	March	28	December	16

TABLE 22.

Dates of the opening and closing of Erie Canal. Records to 1871 obtained from the New York Regents' Reports. Later records furnished by State Engineer.

YEARS.	Canal opened.		Canal closed.		YEARS.	Cana open		Canal closed.	
1824	April	30	December 4	219	1860.	April		December 12	232
182.5	April	12	December 5	238	1861	May	1	December 10	224
18\%	A pril	20	December 18	243	1862	May	1	December 10	224
1827	April	22	December 18	241	1863	May	1	December 9	223
$18: 8$	March	27	December 20	269	1861.	April	30	December 8	223
1829	May	2	December 17	230	1865.	May	1	Decomber 12	226
1830	April	20	December 17	242	1866.	May	1	December 12	226
1831	April	16	December ${ }^{1}$	230	1867	May	6	December 20	229
1832	april	25	December 21	241	1868	May	4	December 7	217
1833	April	19	December 12	238	1869.	May	6	December 10	218
1834	April	17	December 12	240	1870	May	10	December 10	214
1835	April	15	November 30	230	181	April	24	December 1	220
1836	April	25	November 26	216	$18{ }^{\text {T2, }}$.	May	13	December 1	202
$18: 37$	April	20	December 9	234	1873.	May	15	December 5	205
$18: 38$	April	12	November 25	228	1874	May	5	December 5	215
1439	April	20	December 16	241	1875.	May	18	November 30*	197
18	April	20	December 3	228	1876	May	4	December 1	211
1811	April	24	November 30	221	1877	May	8	December 7	214
18 住	April	20	November 28	222	1878	April		December 7	237
1813	May	1	November 30	214	1879		8	December 6	212
1814	April	18	November 26	222	1880	April	16	November 21*	220
1815	April	15	November 29	228	1881	May	12	December 8	211
1816	April	16	November 25	224	1888.	April	11	December 7	241
154%	May	,	November 30	214	1883.	Miay	\%	December 1	208
1818.	May	1	December 9	223	1884.	May	6	December 1	209
1×14	May	1	December 5	219	1885.	May	11	December 1	205
18.50	April	22	December 11	234	1886	May	1	December 1	214
1851	April	15	December 5	235	1887	May	7	December 1	208
18.52	April	20	December 16	239	1888.	May	10	December 3	207
1853.	April	20	December 20	245	1889.	May	1	November 30	214
1851.	May	1	December 3	217	1890.	April	28	November 30	216
1955	May	1	December 10	224	18	May	5	December 5	215
1856	May	5	December ${ }^{4}$	214	18	May		
185%	May	28	December 15	${ }_{205}^{223}$		April		December 6	224
1859	April	15	December ${ }^{\text {Devember } 12}$	225	Average				

TABLE 23.
Date of disappearance of ice from Otsego lake, furnished by Mr. G. Pomeroy Keese.

XEAR.	Date.	YEAR.	Date.	YEAR.	Date.	YEAR.	Date.
1811	April 25	1855	April 24	1869.	April 21	1882.	April 6
1842	March 30	1856	April 26	1870*	April 16	1883.	April ${ }_{2} 6$
1843.	April 26	1857	Aprib 6	$1871+$		1882.	April 2:
1844.	April 13	1858	April 5	1872.	April 27	1885.	April 26
1815.	April 1	1859.	March 30	1873	May 4	1886.	April ; 4
1846	April	1860	April 7	1874	May 5	1887.	Aprill 28
1817.	April 25	1561	April 14	1875.	May 7	1888.	April 30
1848.	April 10	186%.	April \%z	1876.	April 26	1889.	April 11
1849.	April 7	1468.	April 23	1877	April 27	1890.	April 8
1850.	April 24	1864	April 21	1878.	April 1	1891.	April 15
1851.	March 30	1805.	April 5	1879.	April 80	1892.	April
1852.	April 26	1866......	April 14	1880.	April 7		
1853.	April 9	1867.......	April 15	1881..	April 25	Average.	April 17
1854.	April 20	1868.......	April 16				

Cazenoria lake.-Average date of opening, April 12th, and of closing, December 12th. From a record of thirty-six years, 1835 to 1870 , published in reports of New York Regents. Earliest date of opening, March 20, 1859; latest date, April 26, 1843, 1847, 1856. Earliest date of closing, November 30, 1838, and (partly) November 26, 1869. Latest date of closing, December 27, 1818.

Canandaigua lake.-Average date of opening, March 31st, and of closing, February 18th. From a record of sisteen years, 18061871, in reports of New York Regents. In 1857, 1859, 1862, 1867, the lake did not freeze over.

The following general statements are given in cases where no statistical tables could be obtained:

Cayuga Lake.

Ice forms over the shallows at the head and foot of the lake, closing navigation, on an average, early in December and breaks up at the close of March or early in April. The lake is said, on good authority, to have frozen solidly over its entire length twice in the past twenty-five years. The greatest depth of the lake is, from the Cornell University surveys, 435 feet, opposite Sheldrake.

Seneca Lake.
The pamphlet of Dr. W. D. Wilson, previously quoted, states that "Seneca lake never freezes over far from the shore." Ice usually forms, however, to some extent in the shallow section near the foot of the lake. Mr. W. B. Dunning, of the Seneca Lake Navigation Company, informs the writer that the company's steamers run throughout the year. The surveys made by the college of civil engineering, Cornell University, give the greatest depth of Seneca lake as 618 feet, opposite North Hector.

Keuka Lake.

Mr. W. W. Eastman, superintendent of the Keuka Lake Navigation Company, furnishes the following statement: "Our lake usually freezes at this end (near Penu Yau) about the 24th or 25 th of December, but only from $\check{5}$ to 10 miles up. The west branch, at the Branchport end, freezes about the same time, but seldom further than Pultney, about 5 miles. The upper end, from Hammondsport to Gibsons and Keuka, and usually down as far as Ogoyago, as a rule, is open; but I have known it to be closed the entire length. We have run a boat from Penn Yan to Hammondsport as late as the 11th of February and have run in January quite often. We usually run a boat on the upper end all winter." The greatest depth of Keuka lake is 186 feet, about midway up the west branch, according to University surveys.

Chautauqua Lake.

Mr. C. E. Grandin, superintendent of the Chautauqua Steamboat Company, states that " the ice came last year (1891) about December 20th and went out March 24th. This would be a fair average for this lake. However, during January, 1876, steamers made regular trips for four days, beginning with the 1st, an unusual occurrence."

Lake Pleasant

and others of the same chain, in the southern Adirondacks, usually become frozen between November 15th and December 10 th, as observed by Mr. G. A. McCoy, of Sageville.

TABLE
 Precipi
 Average Monthly,

STATIONS.	County.			From-To.		岂	岂
Western Plateau		Feet. $1,307$	Yrs.		2.52	2.23	2.51
Hunuphrey ${ }_{\text {¢ }}$	Cattaraugus	1,950	7	1884-91	3.07	2.60	2.70
Middlebury (or dale)	Wyoming	1,190	17	1826-48	1.46	1.77	2.26
Little Gevesee ${ }^{\text {\% }}$	Allegany	1,500	7	1866-73	3.22	2.58	3.34
Nile \ddagger		1,600	\%	1876-89	3.16	2.66	2. 50
Prattsburgh	Steuben.	1,491	9	18:9-45	1.90	1.94	2.00
Mit. Morris \ddagger	Living-ton	525	8	1885-92			
Elmira...	Sbemung.	863	10	1850-62	2.34	1.82	2.28
Eastern Plateau.		1,056			3.52	2.34	2.46
Goshen	Orang	425	10	1834-49	2.50	2.42	$\stackrel{\text { 2. }}{ }$ - ${ }^{\text {a }}$
Montgons	Orang	380	11	1830-42	2.61	2.22	2.24
Port Jersis \ddagger	"	450	9	1880-92	4.05	3.20	3.16
Liberty	Sullivan	1,500	12	185063	2.69	3.14	$\stackrel{2}{2.78}$
Cooperstown	Otsego..	1,300	39	1851-92	2.61	${ }^{2.29}$	${ }^{3.59}$
Cherry Valle	"،	1,3:0	13	1830-51	2.66	2.57	2.80
Hartwick	" .	1.100	10	1880-49	2.35	1.74	2.25
Oxford.	Chenango	980	20	1830-52	2.47	2.21	2.27
Waverly	Tioga...	825	10	1883-92	2.20	1.91	2.50
Homer.	Cortand	1,100	14	1850-63	2.81	2.59	2.89
Cazenovia	Madison	1,200	27	1830-\% ${ }^{\text {¢ }}$	2.86	2.52	3.15
Hamilton	4	1,127	18	182\%-49	2.25	2.65	2.27
Pompey	Onondaga	1,800	16	1830-52	1.69	1.60	1.26
Onondag		1,260	11	1832-43	2.01	1.49	1.82
Northern Platean		973			3.11	2.78	3.06
Constableville \$	Lewis	1.246	4	1889-92	6.16	5.64	3.90
Lowrille		817	22	1827- 72	2.38	2.54	2.12
Fairfleld.	Herkimer	1,185	17	1828-72	2.62	1.79	${ }^{2} .33$
Johnstown	Fulton.	660	12	1830-45	3.14	2.72.	${ }^{3.78}$
Pottersville*	Warren	870		1873-83	1.80	1.80	2.50
Elizabethtown	Essex.	600	4				
Keene Valley		1,015	5	1879-81	2.10	2.10	3.00
Dannemorat	Clinto	1,356	5	1880-91	3.50	2.90	3.80
Cotat Regrion		132			3.4%	3.22	3. T^{4}
Brock Island, R. I		2π	13	1880-92	4.42	4.53	4.07
East Hampton.	Suffol	16	16	1823-52	2.93	2.30	2.54
Setauket+....			7	1886-92	4.40	3.90	5.10
Firt Columbu	New	25	49	1836-90	2.30	3.33	3.69
New York cit		164	23	1870-92	3.96	3.65	4.12
Mit. Pleasant	Westch	125	13	1830-44	2.16	1.50	2.85
Tarrytown.		152	12	1860-72	3.07	3.20	9.84
White Plains	,	273	30	1862-91	4.58	4.41	4.24
Croton Darn	"	136	12	1860-72	2.99	$\stackrel{2}{2} .99$	4.20
North Saler	'	361	20	1830-56	2.93	2.40	3.04
Hudson Valley		230			2.89	2.26	2.68
Ardenia.	Putnam	157	22	1860-90	2.63	2.65	3.70
TVest Point	Orange	16%	47	1810-92	3.57	3.32	3.60
Niewhurgh		65	25	1830-71	2.73	$\stackrel{2}{2} .46$	${ }^{2.53}$
PoughkrepsiA	Dutchess		15		3.34		3.28 2.81
Iloneymead Brook		425	9	1881-92	${ }^{3.93}$	2.66	${ }_{2}^{2.81}$
Real Hook	"		11	1830-42	2.86	1.54	${ }_{\text {- }}^{\text {2. }}$. 89
Kingston.	Ulster	188	19	1830-49	2.92	1.93\%	2.74
Hudson	Columb	150	15	1830-70	2.37	1.97	3.22
Kind ${ }^{\text {reho }}$		125	1%	1830-46	$\stackrel{2}{2} .21$	${ }^{1.53}$	2.48
Albany	Albauy	85	19	1874-92	3.07	2.60	2.87
Tr ${ }^{\text {y }}$ Water-works	Rensselaer		65	1826-90	2.55	2.19	$\stackrel{\sim}{2} \cdot 48$
Cambridge....	Washington	500	13	182\%-39	2.55	2.19	2.48
Champlain Valley		262			1.73	$\bigcirc .35$	
1 lattsburgh	Clinton	125	32	1810-92	1.7\%	1.48	~. 05
Burlington, Vt.		400	15	187\%-91	1.69	1.23	1.82
St. Lawrence Valley		414			2.19	2.15	2.49
Giotwerneur	St. Lawrenc	400	27	1837-74	2.80	1.92	2.16
Nurth Hammond	St. Lawrence	$\bigcirc 340$	15	1866-92	2.93	2.64	${ }^{2} .61$
Potsdam.	"	394	20	1828-48	1.40	${ }^{1.06}$	
Oglensbur	" ${ }^{\circ}$	233	5	1850-60	$\stackrel{\sim}{2.10}$	$\stackrel{2}{2.60}$	- ${ }_{\text {3. }}^{\text {a }}$ - 54
Malona.	Franklin	703	11	1830--	2.24	2.46	~.54

24.

tation．
Annual and Seasonal Precipitation．

$\underset{\sim}{e}$		星	空			$\begin{aligned} & \dot{0} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{⿺ 辶 ⿱ 丷}{0} \end{aligned}$		$\begin{aligned} & \stackrel{.}{\Phi} \\ & \stackrel{0}{\Delta} \\ & \stackrel{0}{\circ} \\ & 0 \end{aligned}$	$\frac{\tilde{E}}{E}$	$\stackrel{e}{E}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\Phi} \\ & \stackrel{E}{E} \\ & \stackrel{U}{E} \end{aligned}$	药	害
2.68	3.36	4.23	3.25	3.13	2.90	3.28	2.76	2.73	35.58	8.55	10.61	8.94	7.48
3.31	4.90	5.15	3.60	4.60	4.50	3.83	3.60	3.28	45.14	10.91	13.35	11.93	8.95
2.46	2.92	3.40	3.30	2.81	2.83	2.88	2.56	1.79	30.44	7.64	9.51	8.27	5.02
2.24	2.26	3.53	4.31	2.81	2.89	3.22	2.95	3.11	36.46	7.84	10.65	9.06	8.91
1.90	3.02	5.14	3.10	2.15	2.24	3.14	2.99	2.72	34． 22	7.42	10.39	8.37	8.54
2.25	3.00	4．20	3.00	3.00	2.56	3.38	2.36	2.82	32.41	7.25	10.20	． 30	6.6
		3.52 4.67	2.37	3.45 3.08	2.38	3.20	2.11	2.66	35.56	10.25	9.34 10.80	（i）	6．82
2.80	3.54	4.16	4.04	3.50	3.13	3.	2.	2.	37.	8.81	11.	26	68
2.14	3.30	3.53	2.98	2.55	2．74	2.95	2.27	3.40	33.30	7.96	9.06	7.96	8.32
2.32	3.05	4.06	3.36	2.62	2.53	3.28	2.74	3．1：2	34.18	7.61	10.04	8.55	7.98
2.60	4.1 T	3.79	5.52	483	3.20	2.86	2.30	3.10	42.78	9.93	14.14	8.36	10.35
4.62	4.28	5.18	4．82	4.00	3.08	3.11	3.7 T	4.34	45.81	11.68	14.00	9.96	10.17
2.63	3.55	4.23	4.29	4.02	3.22	3.31	3.07	2.6π	38.58	8.77	12.51	9.50	7.57
3.0 ）	4.04	4.35	4.24	3.45	3.55	3.90	3.18	3.0%	40.84	9.87	12.04	10.63	8.30
4.45	3.52	3.65	3.80	2.87	2.18	3.72	3．17	2.62	36.32	10.22	10.32	9.07	6.71
2.52	3.60	4.2π	$3 . \mathrm{T}$	3.34	3.35	3.36	2．73	2.47	36.36	8.39	11.38	9.44	7.15
1.91	3.20	3.75	3.57	4.25	2.94	2.74	2.31	2.16	33.31	7.64	11.57	7.09	6.11
4.12	4.15	5.55	4.92	3.78	4.00	4.06	3.66	3.23	45.96	11.16	14.25	11.78	8.83
3.65	3.50	4.41	4.19	3.63	3.49	3.65	23.90	3.05	40.48	9.70	12．：8	10.04	8.46
1.93	2．933	3.48	3.79	2.70	3.64	3.12	2.51	2.78	34.12	7．13	9.97	9.34	7.68
1 is	3.08	4.21	4.12	3.19	2.93	3.23	2.10	1．5í	30.76	6.12	11.52	8.26	4.86
2．12	3.20	3.74	3.12	3.62	2.76	3.10	2.66	1.99	31.63	7.14	10.48	8.52	5.49
2.66	3.45	3.28	4.09	8.50	3.19	3.47	3.48	2.90	38.97	9.17	10.87	10.14	79
3.21	4.80	3．51）	5.60	4.50	4.00	4.00	5.00	5.30	56.	11.90	13.60	13.90	1.10
2.11	2．73	3.48	3.52	3.04	9．82	3.21	3.03	2.51	33.55	6.96	10.04	9.09	7.46
2.49	3.13	4．29	4.21	3.65	3．03	3.56	2.46	2.71	$3{ }^{3} .31$	7.91	12.15	9.10	\％．12
2.63	3.34	4.35	4.12	3.35	2.72	3.36	3.54	3.89	40.37	9.75	11.82	9.65	3.15
2.10	2.80	1.90	3.00	2．${ }^{2} 0$	3.00	2.70	2.50	1.90	$\because 9.00$	7.80	7.60	8.80	5.50
		1.90	3.00	2．70	3.00	－${ }^{\text {\％}} 10$	2．50	1.30	29.00		7.60	8.20	
2.9 .1	3.30	2.50	3.50	3.20	3.40	3.10	3.00	2．2）	34.30	9.20	9.20	9.50	． 40
2.90	4.00	4.30	5.80	4.90	3.50	5.00	4.90	3.40	48.90	10.70	15.00	13.44	80
3.50	3.90	3.53	4.20	4.54	3.59	3.33	3.87	3.41	44.93	11.16	32.27	11.37	13
3.013	3.81	2.96	3.12	3.41	3.24	4.16	4．22	3．8．2	41．79	1091	9.49	11.62	12.57
3．8：	3.66	2.98	2.60	3.22	3.24	3.65	3.16	3.17	$3 \% .30$	10．02	8.80	10．cs	R． 40
4．21）	3.20	3.40	4.00	5.10	4.00	5.10	$4.71)$	3.70	50.50	12.50	12.50	13.80	12.00
3.15	3.93	3.6π	4.07	4．72	3.50	3.32	3.45	3.45	43.74	10.67	12.46	10.30	10.31
3.35	3.10	3.39	4.56	4.81	3.83	3.3 \％	3.86	3.14	45.14	10.54	12.76	11.00	10.75
3.57	3.63	3.33	4.31	3.83	3.03	3.27	2.14	2．vi	36.29	9.75	11．$\frac{1 \pi}{}$	8.14	6.33
3.20	4.56	3.80	5.03	5.41	3.69	4.22	4.23	3.26	47.58	11.66	14.24	12.11	9.54
3.76	3.32	3.70	5.10	4.56	3.41	3.18	4.25	4.86	49.37	11.32	13.36	10.84	13.85
3.78	5.65	4.66	5.22	6.16	4.78	4.79	5.20	9．83＇3	53.34	13.66	16.04	14．63	8.81
3.14	4.06	3.37	4.03	4.15	3.14	4.21	3.16	3.33	40.96	10.51	11.55	10．$\because 1$	
2.82	3.53	3.68	4.24	3.69	2.90	3.52	3.15	2.89	38.46	9.	11.62	0.58	8.04
3.72	3．78	3.29	4.41	3.92	3.09	3.81	3.93	3.04	42． 04	11.20	11.63	10．sit	8.36
$4.5{ }^{\text {1 }}$	4.96	3.60	4.55	4.84	3.12	3.81	3.95	3．62	47.45	13.16	13.10	10．	11.51
2．103	4.51	3.65	3.50	3.55	2.74	3.51	3.09	2.43	30.85	9.13	10.73	9.35	\％．62
2.8	3.60	3.66	4.09	4.41	2.54	3.94	3.35	3．23	40.33	9.69	12.16	9.83	8.65
$2.1 t$	3.19	289	5.90	488	3.50	3.29	3.28	2.95	41.44	8.14	13.67	10． $10{ }^{17}$	9．56
3.15	3.03	3.99	4.31	2.83	2.45	2．75	2.46	2.36	34.15	8.60	11.18	7.676	6.76
2.15	3.43	3.49	3.72	2.81	2.26	3.11	3.37	3.17	35.10	8.82	10.02	8.74	8.02
2.22	3.09	3.60	3.66	2.60	2.23	4.51	2.67	3.09	35.29	8.59	9.86	9.41	\％． 43
2.97	3.41	4.55	4.35	3.35	2.94	3.25	2.69	2．in	，0． 20	8.46	12.25	8.88	6.49
2.49	3.08	3.81	4.28	4.03	3.53	3.25	3．02	2．53	3．79	8.41	12．12	9.85	8.40
2.71	3.16	3.85	4.06	3.52	3.17	3.49	2.93	2.68	36.78	8.34	11.43	9.65	36
2.70	3.16	3.85	4.06	3.52	3.17	3.49	2.93	2．62	36	8.31	11.43	0.65	
1.8	2.63	3.16	3.24	3.39	3.09	3．12	2.61	1.92	30.06	6.44	9．\％9	8.83	5.00
1.86	2.51	2.90	3.32	3.11	2.85	2.98	2.35	1.88	29.01	6.42	9.33	8.18	5.08
1.89	2.75	3.41	3.15	3.68	3.33	3.27	2.8 r	1.37	31.10	6.46	10.24	9.	． 93
2.21	2.82	3.54	3.39	2.55	3.26	3.44	2.71	2.57	33.52	7.52	9.68	9.41	6.91
1．71	2.37	2.60	2.56	1.99	3.13	3.34	2．7）	2.28	29.06	6.24	\％．15	9.17	6.50
2.00	3.27	3.12	3.62	3.58	3．72	4.95	3.33	2.74	38.57	7.91	10.32	12.00	8.31
Tu	3.02	3.31	4.03	2.81	3.11	3.34	1.93	1.44	28.63	6.20	10.15	8.38	3.90
3.00	2.40	5.00	3.40	3.40	2.69	2.30	3.30	3.70	37.50	9.10	11.80	8.20	$\stackrel{8}{8.40}$
2.59	3.00	3.61	3.35	1.96	3． T_{1}	3.23	2.27	2.71	33.70	8.13	8.95	9.21	\％．41

TABLE $2 t$-Average Monthly

STATION.	County.			From-'To	cis		通
Great Lake Region		Feet. 494	Yrs.		2.63	2.38	2.55
Madison Barracks.	Jefferson	$26 \cdot$	34	1840-92	2.38	1.92	2.53
Pierrepont Manor		617	23	1849-71	2.25	2.10	2.30
Oswego	Oswego	250	35	1856-92	3.19	2.76	3.10
Oswego (U. S.) \dagger		304	22	1870-92	3.01	2.50	2.75
Palermo.	" .	460	33	1860-92	3.20	2.95	$\bigcirc .69$
Syracuse*	Onondaga	407	9	1840-52	2.26	2.10	2.68
Auburn	Cayuga	650	28	18\%\%-89	2.56	2.20	2.24
Rochester	Monroe	500	60	1831-92	2.69	2.63	2.67
Fochester (U. S.) \dagger		621	22	1870-92	3.21	2.68	3.02
Millville \ddagger.	Orleans.	6 CO	6	1842-47			
Lewiston	Niagara	200	14	1830-50	1.38	1.30	1.54
Fort Niagara		262	36	1841-9:	2.02	2.01	2.13
Buffalo (U. S.) t	Erie	690	22	1870-92	2.95	2.79	2.64
Buffalo		600	39	1832-92	2.79	2.56	2.91
Fredonia	Chautauqua.	\%15	16	1830-64	2.04	1.84	1.99
Erie, Pa. (U. S.) †		681	20	1873-92	3.61	3.40	2.91
Central Lake Region		690			2.25	2.05	2.24
Ithaca (University).	Tompkins	800	14	18\%9-93	2.28	2.09	2.23
Ithaca (city).......		417	19	1830-74	1.81	1.76	2.51
Geneva.	Ontario	567	20	1841-68	1.60	1.12	1.76
Waterburg	Tomplins	800	9	1874-82	3.22	2.41	2.87
Penn Yan	Yates.	740	58	1829-83	1.59	1.60	1.77
Canandaigua	Ontario.	813	7	1830-37	3.00	3.43	2.31
Mohawk Valley		745			3.20	3.70	3.54
Utica	Oneida	500	38	1826-92	3.34	3.10	3.07
South Trenton		835	10	1863-74	3.90	5.90	4.94
Hamilton College	,	900	11	1850-60	2.35	2.11	2.60
Mean of the ten Regio		630			2.65	2.45	2.74

* A series consolidated from observations at Troy, Lansingburgh and Albany. Investigation
U. S. belong to the
\ddagger Averages for stations having less than ten years observations are cor

Annual and Seasonal Precipitation－（Concluded）．

$\begin{gathered} \tilde{L} \\ \frac{0}{0} \end{gathered}$		号	$\stackrel{B}{\Xi}$	$\begin{aligned} & \text { 萢 } \\ & \text { 感 } \end{aligned}$		！ 0 0 0 0 0				$\begin{aligned} & \dot{80} \\ & \dot{B} \\ & \dot{B} \end{aligned}$		号	岕
2.26	2.97	3.29	3.19	2.91	3.24	3.61	3.24	2.88	35.17	7.78	9.36	10.11	7.89
1.80	2.51	2.57	3.01	2.63	3.14	5.44	3.19	2.49	33.51	6.81	8.21	11.67	6．$\% 9$
2.60	3.36	2.66	3.42	3.14	3.66	4.05	3.60	3.06	36.20	8.26	9.22	11.31	\％． 41
2：61	3.12	3.42	3.53	2.88	3.20	3.56	3.70	3.56	38.63	8.83	9.83	10.46	9.51
2.04	2.65	3.61	3.33	2.54	2.79	3.33	3.33	3.29	35.16	7.44	9.48	9.45	8.80
2.11	2.56	3.20	3.31	2.63	3.18	3.54	3.70	3.70	37.06	7.56	9.14	10.42	9.85
2.81	3.16	3.66	3.53	2.53	3.62	3.91	3.39	3.10	36.75	8.65	9.72	10.92	7.46
2.23	3.36	3.59	3.59	3.37	3.14	3.41	3.01	2.72	35.42	7.83	10.55	9.56	7．48
2.53	3.02	3.19	3.21	2.81	2.95	3.24	2.95	2.69	34.49	8.22	9.21	9.14	7.92
2.46	3.07	3.40	3.04	3.04	2.34	3.04	2.95	2．\％5	35.00	8.55	9.48	8.33	8.64
1.64	－．19	2.72	2． 27	2.10	－68	2.41	1．69＇	1.15	23.10	5.37	7.09	6.81	3.83
1.87	2.39	2.48	2.71	2.41	2.94	2.30	2.47	2.02	27.75	6.39	7.60	7.71	6.05
2.37	3.30	3.53	3.37	3.28	3.28	3.73	3.61	3.30	38.15	8.31	10.18	10.62	9.04
2.30	2.90	3.18	3.26	3.03	3.20	3.58	3.49	3.17	36.37	8.11	9.47	10.27	8.52
1.93	3.32	3.83	3.34	3.78	4.46	4.31	3.27	2.93	37.04	\％．24	10.95	12.04	6.81
2.57	3.73	4.27	2.87	3.45	4.10	4.21	4.35	3.20	42.72	9.11	10.36	12.90	10.35
2.56	3.47	3.65	3.43	3.13	2.86	3.16	2.39	2.22	33.41	8.27	10.21	8.41	6.52
1.98	3.88	3.81	3.85	3.45	2.76	3.40	2.59	2.41	34.65	8.09	11.11	8.75	6.69
3.00	3.54	3.83	3.31	2.99	3.40	3.25	2.87	2.27	34.54	9.05	10.13	9．52	5.84
3.45	3.36	3.18	3.05	3.39	2.72	2.99	2.17	1.87	30.40	8.37	9.56	7． 88	4.59
2.41	2.23	4.00	4.25	2.60	2.98	3.60	1.80	2．42	34.79	7.51	10.85	8.38	8.05
2.32	2.90	3.39	2.81	2.88	2.51	2.58	2.11	1.77	28.23	6.99	3.08	7.20	4.96
2.42	4.91	3.74	3.30	3.47	2.83	3.13	2.82	2.56	37.92	9.64	10.51	8.78	8.99
3.64	3.88	4.62	4.85	4.03	4.04	4.21	4.10	3.76	47.62	11.05	13.55	12.35	10.66
2.83	3.63	4.28	4.62	3.71	3.54	3.44	3.85	3.68	43.09	9.53	12.61	10.83	10.12
3.66	4.22	4.69	5.46	4.63	4.29	4.73	4.23	4.05	51.70	12.82	14.78	13.25	13.85
4.42	3.78	5.04	4.47	3.76	4.29	4.46	4.23	3.55	45.06	10.80	13.27	12.98	8.01
2.70	3.36	3.71	3.79	3.47	3.22	3.50	3.11	2.81	37.52	8.80	10.96	9.84	7.91

shows that the series may practically be considered as continuous．† Stations designated U．S．Weather Bureau．
rected by comparison with adjacent stations possessing longer records．

IV. PRECIPITATION.

Annual Fluctuations of Rainfall.

The fluctuations in the arerage or normal amount of rainfall from month to month do not occur in a uniform manner over the entire area of New York, but must rather be classed under sereral quite distinct types depending upon atmospheric conditions which have already been summarily described in section I. The character of various types and their important modifications are shown in considerable detail by plates 2 and 3. It may be noted that the irregular lines in the diagrams have no meaning other than as comnecting the points on the ordinates or verticals representing the average monthly rainfall.

A close approach to the continental type of rainfall, with its early summer maximum, is found over the central plateau regions (including the eastern and westerni plateans and the southern Adirondack region) as represented by Cooperstown. Proceeding castward to the central Hudson valley, a July maximum is found which extends through the Champlain valley and over the Proviuce of Quebec. In the southern Hudson valley the maximum varies from July to August, while south of the Highlands the August maximum obtains ahmost exclusively; also extending over Long Island to Setauket, but disapuearing at East Hempton and Block Island. The Great Lakes aid St. Lawrence xalley show a June or July maximm, which, howerer, is secondary to that of autumn.

Lulumn ruins.-Over the state, generally, a large precipitation obtains in October, as comprared with the months immediately preceding and following. This constitutes the principal maximum of the year at several stations of the St. Lawrence valler; the central part of the Great Lake Region, central Long Island and beyond the limits of New York, in New Brunswick, Nova Scotia and Ontario. Within this State and October minimum is found only in the vicinity of New York city, but is a feature common to the coast south of that point, and also obtains at several places in the interior of New England. A rela-
tively light rainfall during September is characteristic of the State at large, whereas in the Upper Lake region the general autumn maximum occurs during that month. Erie, Pa., shows a November maximum, which feature also prevails in the Ohio valley.

Over the greater part of the interior of New York the precipitation during the winter is the least of the year. Block Island on the contrary has its annual maximum at that season, while the coast stations generally appear to be about equally subject to continental and maritime influences, showing but slight seasonal variations. This is also true, in even a greater degree, of the region bordering the Lower Lakes, and Rochester may be taken as an example in which an annual fluctuation is almost" wholly lacking. Oswego has a principal maximum in June, and a secondary in autumn and early winter, but the latter becomes predominent at Palermo a few miles to the eastward, and attains a remakable intensity along the ridge ruming parallel to the lake in Lewis county.

In the spring a March maximum is very pronounced at the Atlantic coast stations, and is also observable inland in a lesser degree. A diminution again occurs in April, after which the curves of the continental type rise towards their summer maximum, corresponding to the change of prevailing winds from northerly to southerly which occurs in May.

The distinction between a continental and maritime rainfall may admit of the following summary statement: Since precipitation is largely the result of an upward motion and consequent cooling of air masses, it will occur on the continents in summer when a high temperature renders diurnal convectional processes most actire, and the prevailing winds also are such as to afford an abundant supply of rapor. Orer or near large bodies of water, on the other hand, the daily conrectional process is weak, and hence such regions are mainly dependent for their rainfall upon the powerful updraught of air within cyclonic storms, which are most numerous in winter. These conditions are sufficiently illustrated by the accompanying figures in which Cooperstown repre-
souts, approximately, the continental type, Block Island the maritime, and Palermo, in the Great Lake Region, a maritime type raried by a secondary summer maximum.

The Amounts of Annual Rainfall

in different sections of the State are mainly determined, first by proximity to: sources of rapor, rapor-laden air currents; and secondary, by the character of local topography. In the case of New York State a more definite and substantially correct form of the latter statement is that, under similar conditions, the precipitation is roughly proportional to the altitude of land surfaces. This rule does not apply to the central and southern Atlantic States, whose mountain ridges are parallel to the prevailing direction of vapor bearing winds.

Is has been stated, the Atlantic Ocean furnishes the principal vapor supply of the northeastern States. While passing inland with easterly winds the moisture is, in the first place, largely precipitated over the mountains of New England, as is rendered apparent by the extraordinary rainfall on Mount Washington, areraging over 90 inches per annum. A similar effect is no doubt due to the Green Mountain system near the New York border; and hence the lowlands to the westward, including the Champlain and upper Hudson valleys receive a somewhat deficient supply as compared with that of the State as a whole. A marked increase of rainfall is again found in the Adirondack highlands, and beyond these .a decrease in the St. Lawrence valley.

Sea-winds from the southeast find no obstruction on the immediate coast of New York; but passing inland meet the abrupt hill ranges of the southeastern counties, and probably give to each a conious rainfall as compared with that of the intervening valleys. Very few observations of rainfall have been made on the eastern side of these ridges; and the above statement rests mainly upon a two years' record of the mountain station Minnewaska, which during that period obtained an excess of fourteen
inches over the largest value at any low level station in the vicinity. Liberty, in the mountainous region of Sullivan county, also shows the direct influence of the sea wind both by its large annual precipitation and by a pronounced secondary maximum in winter; the latter feature disappearing at stations further northward.

Western New York receives an appreciable portion of its rapor supply from the Gulf of Mexico, judging from the frequent southwesterly direction of the rain-winds; and also from similarities existing between the rain types of the Lower Lakes and those of the Gulf and the Mississippi and Ohio valleys. The total precipitation over the depressed area occupied by the lakes is rather below the average for the State; but wherever the surface rises ahruptly from their shores the amount rapidly increases and considerably exceeds that common to equal altitudes in the interior. The winter maximum appears prominently in a large snowfall over the southwestern highlands and still more so through a section including the hills of Lewis county, the uppre Mohawk valley and an adjacent spur of the eastern highlands in Madison county.

The rainfall in central New York is generally abundant, although somewhat less than that of the southeastern and southwestern highlands. A deficiency, as compared with the average for the State, exists in the principal valleys of the Susquehanna system and also into the depression of the Central Lakes.

No records exist to establish, even approximately, the amount of rainfall in the central Adirondack region. The brief series of observations obtainable from points near the eastern and western limits of the plateau have been carcfully analyzed by comparison of indiridual monthly values with those of the adjacent stations in the Champlain and St. Lawrence valleys, the highlands showing a marked excess in all cases. The amounts of rain in the interior shown by the accompanying charts were estimated from the data of border stations, somewhat modified by the character of local topography.

Thunderstorms.

Summer rains in New York occur to a large extent as thundemstorms, and generally the regions showing pronounced summer maxima are rery subject to these electrical disturbances.

The summer of 1892 was remarkable for the frequent o:"urrence of thunderstorms orer the northeastern States, and an inrestigation which was then undertaken with the aid of numerons roluntary observers has furnished information of value as bearing upon the distribution of rainfall over New York. A preliminary study of the data has shown, first, that thunderstoms develop most frequeutly in the broken or mountainous seciins of the State, and especially in the highlands near the Pennsylrania border and Lake Erie, the Catskill and adjacent mountain ranges, and in the eastern portion of the Adirondack platerau. Regions of less frequent origination are found near the shore of Lake Ontario, in the St. Lawrence valley and on the Atlantir: coast.

In all parts of the state the storms move in a generally eatsterly course, showing, however, considerable divergencies from his direction which are in some degree characteristic of different regions of the State. Thus, in western New York and the St. Lawrence valley the usual morement is toward the north of east, in the central part of the State nearly east, while in the Hudson and Champlain valless, a southerly component is more frequently found. The arerage rate of motion of thunderstorms in this State is about thirty miles per hour; the maximum velocity thas far observed being about fifty miles per hour.

The stoms which originate in the southwestern section appear in most cases to die out on the middle slopes of the western platean, and do not often continue their course to the region of Lake Ontario. Irenre, the region stretching from northern Erie county eastward to the lowerends of the Central Lakes is one of minimum stiom frequency, and has a light amual rainfall. The central fart of the eastern platean, on the other hand, appears to derive a considerable proportion of its storms from the section south of the Central Lakes and near the Pemsylvania border.

Disturbances originating in the Catskill and adjacent mountains usually move across or down the lower Hudson valley, which is therefore a region of great storm frequency; and similarly the storms of the eastern Adirondacks often pass to the St. Lawrence valley. The whole of the interior of the Adirondack region, with its high mountains and numerous streams and lakes, also appears very favorable for the development of thunderstorms, although a sufficient number of observations are still lacking.

Syowfall.

The data upon snowfall are very meagre for the State as a whole, and only the most general facts relating to the subject can be given here.

The following measurements of the total depth of snow falling each month during the three past winters are derived from the report of the New York Meteorological Bureau.

TABLE 25.
Total Snowfall During Three Winters.

STATION.	County	Depthin Incies and Tenths.		
		1889-90.	1890-91.	1891-92.
Western Plateau.				
Humphrey......	Cattaraugus.	59.5	94.7	119.8
Alfred Centre	Allegany....	28.7	*60.0	\%3.8
South Canisteo.	Steuben....	47.2	85.7	80.5
Eastern Plateau.				
Cooperstown.	Otsego......	37.2	110.0	59.5
Brookfield..	Madison		145.0	83.5
Quaker Street	Schenectady		73.0	60.0
Waverly	Tioga.......	31.5	88.0	51.9
Northern Plateau.				
Constableville ...	Lewis	92.0	148.7	170.7
Number Four.	Lewis	95.0	90.1	141.2
Saranac Lake	Franklin.	* 65.0	
Atlantic Coast.				
Hudson Valley.				
Honeymead Brook.	Dutchess	25.8	72.8	40.6
Champlain Valley. Plattsburgh.	Clinton.		61.9	62.1
St. Lawrence Valley.				
Canton..............	St. Lawrence.	63.8	47.3	79.5
North Hammond	St. Lawrence.	57.3	.	59.8
Great Lakes.				
Palermo.	Oswego .	38.0	40.5	54.7
Hess Roads.	Niagara......	30.2	49.3	60.3
Mohawk Valley.				
Central Lakes.				
Ithaca.	Tompkins	34.2	57.1	50.3
Geneva	Ontario.	41.4	52.9	53.4

The average values for the three years indicate that substantially the same snow fall obtains over all of the highland regions of the State, with some exceptional cases of very heary local amounts. The latter are found in the southwestern counties, especially in the vicinity of Lake Erie and in the tract which has previously been described as including portions of Lewis, Oneida and Madison counties, where the total snow fall is generally the greatest to be found east of the Rocky Mountains. As stated in the preceding pages, the southeastern highlands are subject to a heavy precipitation in winter, and owing to the low mean tem-
perature of the region this must fall largely as snow. The winter maximum in the vicinity of the Atlantic coast is manifested in a larger percentage of heavy rains, as is true also in a lesser degree of the Great Lake region. The precipitation in the main portion of the Hudson and Champlain valleys is at a minimum in winter, as already stated, giving only a moderate snow fall for those regions.

The following table exhibits the average and extreme dates of the first snowfall at several representative points in New York. The data were obtained from the first series of Regents' observations, 1826 to 1850 , excepting in the case of Signal Service stations.

TABLE 26.
First Snowfall. Avrrage and Extreme Dates.

STATION.	County.		Average Date.		Earliest.		Latest.	
			Month.	Day.	Month.	Day.	Month.	Day
Atlantic Coast. East Hampton	Suffolk	16	Dec...	3	Nov...	14	Dec...	29
New York City (U. S. ${ }^{\text {co... }}$	New York......	13	Nov...	16	Oct...	15	Jan....	
Jamaica.................	Queens.........	22	Nov...	24	Nov...	4	Dec...	18
North Salem	Westchester ...	19	Nov...	16	Oct...	4	Dec...	2
Hudsom Valley.								
Kingston	Ulster..........	18	Nov...	19	Oct...	12	Dec...	15
Poughkeepsie	Dutchess	10	Nov...	20	Oct...	12	Dec...	17
Albauy (U. S.)...........	Albany	12	Nov...	3	Oct...	11	Nor...	22
Great and Central Lakes. Auburn	Cayuga	20	Nov...	2	Sept..	28	Dec...	17
Oswego (U.: S.	Oswego	13	Oct.	25	Sept..	19	Nov...	13
Rnchester (U. S	Moaroe	13	Oct	29	Oct...	5	Nov...	13
Butfalo (U S.)	Erie	13	Oct...	25	Oct...	6	Nov...	13
Fredonia.	Chautauqua....	17	Oct.	30	Oct...	14	Dec...	4
Erie, Pa. (U. S.)..........		13	Oct.	25	Oct...	6	Kov...	13
Ithaca.....	Tompkins	15	Nov...	3	Oct...	5	Dec...	16
Mohawh Valley. Utica	Oneida	21	Nov...	1	Sept..	28	Dec...	3
Central Plateau.								
Middleburs or Dale	Wyoming	17	Nov...	1	Sept..	27	Nov...	29
Hamilton.....	Madison	18	Oct	15	Sept...	23	Nov...	12
Cazenovia	Madison........	19	Oct...	26	Sept..	29	Nov...	23
Northern New York.								
Fairfreld	Hewkimer	19	Oct...	18	Sept...	15	Dec...	19
Potsdam	St. Lawreace.	20	Oct...	30	Sept..	27	Nov...	26

Note.-Records designated (U. S.) were obtained at Signal Service Stations after $18 \% 3$. Other records were obtained between 1826 and 1850.

Frequexcy of Rainy Days．
The accompanying table shows the arerage frequency with which a rain or snow fall amounting to one one－hundredth of an inch or more occurs，during each month，at six stations in New York and also at Block Island，R．I．，and at Erie，Pa．：the former station representing，approximatels，eastern Long Island and the latter southwestern New Fork．The rainy days are here expressed in percentages of the total number of days is each month，following the method of the Signal Service charts， from which the values at all stations excepting Ithaca were derived．The period of obserration covers eighteen years at Buffalo，Rochester，Oswego and New York city，sixteen rears at Erie，Pa．，fifteen years at Albany，thirteen rears at Ithaca and eight years at Block Island．

TABLE 27.
Peroentage of Rainy Dats．

station．			$\begin{array}{\|c} \text { gid } \\ \text { d } \\ \hline \end{array}$	首	过	息	家	$\begin{aligned} & \dot{u} \\ & \stackrel{\rightharpoonup}{u_{0}} \\ & \stackrel{y}{4} \end{aligned}$		亳			嶴	㜢
$\begin{aligned} & \text { Block Island, R. I } \\ & \text { New York city... } \\ & \text { Albany............. } \\ & \text { Oswego.......... } \\ & \text { Rochester........ } \\ & \text { Buffalo........... } \\ & \text { Erie, Pa.......... } \\ & \text { Ithaca............. } \end{aligned}$	78 89 45 55 65 59 65 50	$\begin{aligned} & \mathbf{4 4} \\ & 39 \\ & 39 \\ & 49 \\ & 58 \\ & 58 \\ & 58 \\ & 58 \\ & 58 \end{aligned}$	$\begin{aligned} & \text { 39 } \\ & 38 \\ & 38 \\ & 40 \\ & 47 \\ & 57 \\ & 57 \\ & 57 \\ & 47 \\ & 46 \end{aligned}$	$\overline{35}$ 37 39 39 42 41 41 37 37	38 $3+$ 80 37 37 39 39 39 46 46	32 35 31 36 36 39 39 31 40 40	36 36 39 39 3π 37 35 38 43 43	29 39 32 31 26 32 31 31 32 37					.41 36 34 45 5. 61 59 65 60 50	

The probability of rain for all portions of the State may be fairly estimated from the arerages at these stations，although some local rariation must be expected，especially in summer． when local rains and thunderstorms are found to be quite unequally distributed over the State．It will be observed that precipitation occurs most frequently during the winter months at all stations，but，making due allowance for this general tendency， the number of rainy days is found to follow in a general way the fluctuations of the rain curves shorm in plates 3 and 4，which fact may aid in the estimation of rain probability for various
special localities. Thus, in the hilly regions of southern New York, the lower Hudson valley and the Adirondack highlands, summer rains are more frequent than at any station giren in the table. Points at the eastern border of the region of Lake Ontario unite the summer with the winter maximum, and the station North Yolney in this section has the unusual number of 1 s9 rainy days during the average year, as stated by General A. W. Greely in "American Weather."

Cloudiness.

The arerage or normal values of cloudiness for the State, like the estimates of rain probability, must be based mainly upon the observations of the National Weather Service. A vast amount of data upon the subject was collected under the Regents' system of observation, from 1826 to 1863 ; and during the last decade of the series five of the records given in the accompanying table were obtained, by means of tri-daily observations. The methods used prior to 1850 were radically different from those employed in recent years, and hence the results of the two systems do not admit of comparison.

The accompanying table show: (1) The average percentages of cloudiness (over-cast $=100$ per cent.) which obtain at eight National and five Regents' stations, during each month; and (2) the number of clear, partly cloudy and cloudy days at the same National stations, with the exceptions of Burlington, Yt.
TABLE 28.

	2015000000000 HT
－ләфष्гәәәб	
＇лөquшлал	
＇دа¢оұ00	
＇دวquəə ${ }^{\text {das }}$	
7 7 ¢ ${ }^{\text {a }}$（	
$\cdot^{1} \mathrm{Sf}^{\mathrm{nc}}$	
－ unf	
－KeIt	
＇undy	
＇YParic	
－Sxeniga	
－S．anue ${ }^{\text {a }}$	
－рдозas 	
$\begin{aligned} & \text { 落 } \\ & \text { 菏 } \end{aligned}$	
$$	

TABLE
Number of Clear, Partly Cloudy (Far),

STATION.	County,	January.			February.			March.			APRIL.			May.		
		C	F	0	C	F	0	C	F	0	C	F	0	C	F	0
Block Island, R. 1....			14.2	8.4	9.0	14.0			13.6	7.4		11.6	6.8	10.4	13.6	3.0
New York city....	New York......		12.1						13.8	9.9		12.0	9.8	9.3	13.2 ${ }^{\text { }}$	
Alvany	Albany		12.7	12.6	7.2	10.8	10.2			11.6	8.1	11.3	10.6	9.2	13.3	
Oswego.	Oswego.........				3.1		16.6	3.9	11.1	16.0	6.7	10.6	12.7	9.1	12.3	
Rochester	Monroe.........			20.9	3.1		14.1	3.7		15.7	7.4	10.3	12.3	8.7	18.0)	9.3
Buffalo	Erie		9.4	20.3						13.4	6.5	11.7	11.8	9.1	12.2	9.7
Erle, Pa.			10.1	18.8		10.8			12.3			13.3	9.8		12.4	7.9

NOTE.-Periods of observation three years less
29.
and Overcast Days at National Stations.

	UnE.		July.			August.			SEftember.			October.			November.			December.			AnNuAL.		
C	F	0	C	F	0	C	F	0	C	F	0	C	F	0	C	F	0	C	F	0	C	F	0
134	12.0	4.6	12.4	14.6	4.0	9.6	16.8	4.6	12.0	12.3	5.7	11.0	11.7	8.3	8.8	12.5	8.7	6.8	14.7	9.5	124	161	80
8.3	14.9	6.8	7.9	15.8	7.3	9.8	12.5	8.7	10.1	11.7		10.4	12.7	7.9	8.8	11.4	9.8	6.0	13.5	11.5	101	155	109
9.3	12.8	7.9	9.2	14.7	7.1	11.5	12.7	6.8	9.9	11.8		7.9	12.3	10.8	4.4	11.1	14.5	3.8	11.3	15.9	92	148	125
8.6	12.4	8.6	9.1	14.9	7.0	9.7	13.3	8.0	7.5	12.0	10.5	5.3	10.3	15.4	1.3	6.4	22.3	0.7	5.5	24.8	66	125	174
8.2	12.3	9.4	8.6	15.0	7.4	10.1	13.4	7.5	8.4	13.0	8.6	6.5	11.1	13.4	2.4	9.0	18.6	0.9	6.7	23.4	66	136	163
8.4	13.6	8.0	9.1	15.7	6.2	10.3	14.0	6.7	8.7	12.6	8.7	6.7	10.3	12.6	2.3	9.2	18.5	0.7	8.2	22.1	73	141	151
9.9	13.2	6.9	10.4	15.3	5.3	11.3	13.8	5.9	9.3	12.2	8.5	7.5	9.2	14.3	1.9	8.6	19.5	1.4		22.8	80	138	147

than those given in table of percentages.

Chart $1 t$ exhibits, approximately, the annual percentage of cloudiness for all sections of the State; the values for the Adirondack Region, however, being somewhat uncertain, as they depend wholly upon observations at border stations.

The main features of the map are based upon the averages given in the table, with such modifications as lave been suggested by comparing and charting the results obtained by numerous voluntary observers during the past three years. The first series of Regents' observations were also found useful when compared among themselves.

The nearly uniform cloudiness over the State in summer is substantially the same in amount as that of the Great Lake Region and the north eastern States in general. It is about five per cent. below the average of the middle Atlantic coast, and from ten to fifteen per cent. above that of the Central States. In winter there is a general increase of cloudiness from the Gulf of Mexico northward, and especially in the region of the Ohio valley. The Great Lakes also become an important source of cloud formation at this season, the entire region from Lake Huron to western New York being subject to more than seventy per cent. of overcast skies, which is the maximum amount for the United States, if a small portion of the northern Pacific coast be excepted. Eastward and southward from the Central Lakes the cloudiness decreases, and on the Atlantic coast the amount is over twenty per cent. below that of the Great Lake Region.

There are many interesting and peculiar features of cloud distribution within New York; but local observations, still inadequate in most cases, have not been sufficiently discussed for publication.

Humidity.

The following values of Relative Iumidity (or percentage of moisture relative to saturation) were derived from observations at seven stations of the Signal Service from the opening of the stations (in 1871 in most cases) to 1886.

TABLE No． 30.
Relative Humidity（Fer Cent）．

STATION．			走	范	茳		$\stackrel{\text { 合 }}{\substack{2}}$		E E E 0 0 0 0	$\begin{aligned} & \dot{H} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{0} \\ & 0 . \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { : } \\ & \text { E } \\ & \text { EU } \\ & \stackrel{0}{0} \end{aligned}$	－
Block Island，R．I	\％ 6	78	75	76	83	83	82	82	¢ 2	79	78	79	79
New York city．．．	74	$i 3$	68	65	66	69	71	72	72	\％0	70	73	70
Albany ．．．．．．	\％ 5	74	71	63	62	66	67	68	72	72	i4	76	70
Oswego	74	71	73	68	67	70	71	71	71	71	71	76	71
Rochester	80	\％ 7	\％ 6	67	64	67	68	68	70	72	76	80	72
Buffalo．	80	78	75	71	68	71	72	71	\％2	T3	76	79	74
Erie，Pa	79	75	76	\％0	66	70	70	70	T2	72	75	\％9	73

Although the absolute amount of moisture in the air is least during the winter，the percentage relatively to saturation（the relative humidity）is then generally at a maximum．At Block Island，however，the northerly winter winds have traversed a lesser expanse of water surface than the southerly or ocean． winds of summer，and this circumstance，with the more moderate degrees of heat and cold to which the island is subject，reverses the rule applying to inland stations，causing the maximum humidity to occur during the summer．This is the case also along the south shore of New England and probably over the greater part of Long Island．

The maximum humidity at the Weather Bureau Stations within the State is found at Buffalo，which is subject to prevailing winds from the Lake．The region of least moisture，on the other hand，appears to be the Champlain valley，as shown by a two years＇record at Plattsburgh．The conditions are here very dis－ similar to those of stations at the same latitude in the St． Lawrence valley，the latter region showing substantially the same humidity which obtains near the Great Lakes．

Definite values of the relative humidity at stations of the State Service are omitted here，owing both to the brevity of their records and to the fact that the hours and methods of observation generally employed by volunttary observers give results which can only be compared with those of the National Service by tak－
ing full account of the manner of observation in each case. In the course of preparation of this paper a careful examination was made of the records of humidity published by the State Bureau; but, aside from the facts mentioned regarding the Champlain and St. Lawrence valleys, no local peculiarities in the distribution of moisture were found of a sufficiently marked character to warrant publication until more extended observations can be obtained. In geueral, there appears to be the usual slight increase of humidity with altitude over the plateau regions, in summer; but otherwise, the values given for the Signal Service stations may be considered to hold true also throughout the adjacent territory.

GENERAL CLIMATIC DATA AND NOTES.

Resumé of Climatic Elements at New Yori City. (Values derived from U. S. Weather Bureau records, unless otherwise specified.)

Normal Temperatures: Annual, 51.6°; January, 30.6°; July, 73.4°.

> Maxima: Average of annual maxima, 94°; highest. $\left\{\begin{array}{l}100^{\circ} \text { in } 1881, \text { U. S. station. } \\ 101^{\circ} \text { in } 1881, \text { Central Park. }\end{array}\right.$ $\left\{\begin{array}{l}101^{\circ} \text { in 1881, Central Park. } \\ 104^{\circ} \text { in 1825, Fort Columbus. }\end{array}\right.$

Minima: Average of annual minima, $+1^{\circ}$; lowest. $\left\{\begin{array}{l}-6.0^{\circ} \text { in } 1875 \text { and } 1880, \text { at U. S. station. } \\ -6.0^{\circ} \text { in } 1880 \text { and } 1883^{2} \text {, at Central Park. } \\ -12.0^{\circ} \text { in } 1866, \text { at Fort Columbus. }\end{array}\right.$
Daily variations: Mean daily range: Greatest, 17.0°, in Juno; least, 13.2°; in December. Daily periodic change, or amplitude, greatest. 11.5°, in June; least, $6 . \tilde{r}^{\circ}$, in December. Average variability of successive daily means, in January, 6.5°.

Precipitation: Aperage annual, 45.31 inches; greatest average monthly, 4.77 inches, in August; least average monthly, 3.05 inches, in May.

Number of rainy days: Greatest, 39 per cent, in January and February; least, 31 per cent, in September and October.

Cloudiness: Annual percentage, 50.5 , greatest, 57 per cent, in January; least, 46 per cent, in Soptember.

| No. clear days, year . . 101.0 | No. p'tly cl'dy d'ys, year. . 155.0 | No. cloudy days, year .. 109.0 |
| :--- | :--- | :--- | :--- | :--- |

No. clear days, Jan.. 7.6 No. p'tly cl'dy d'ys, Jan.. 12.1 No. cloudy days, Jan... 11.3
No. clear days, Sept.. 10.1 No. p'tly cl'dy d'ys, Sept.. $11.7 \mid$ No, cloudy days, Sept... 8.2
Mean relative humidity: Annual, $\% 0$ per cent; greatest, 74 per cent, in January; least, 65 per cent, in April.

Average date of first snow, November 16th; average date of first killing frost, November 5th; average date of last killing frost of spring, April 13 th.
Average velocity of the wind in miles, per hour:

Jan.	Feb.	Mar.	April. May.	June. July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.		
11.0	11.4	11.6	8.9	7.9	7.7	7.4	7.3	8.0	9.5	10.1	10.9.	9.30

Rescmé of Climatic Elements at Albant.

Normal Temperatures: Annual, 48.4°; January, 23.0 ${ }^{\circ}$; July, 73.6°.
Ma.cima: Average of annual maxima, 93°; highest......... $\left\{\begin{aligned} & 98^{\circ} \text { in } 1890, \text { U. S. station. } \\ & 100^{\circ} \text { (?) in } 1820, \text { private record. }\end{aligned}\right.$
Minima: Average of annual minima, -11°; lowest... $\left\{\begin{array}{l}-18{ }^{\circ} \text { in } 18 i 5 \text { and } 1878, \mathrm{U} . \mathrm{S} . \text { station . } \\ -23^{\circ} \text { in } 1840 \text { Reqents' }\end{array}\right.$ Daily variations: Mean daily range, greatest, 17.9°, in June; least, 12.9°, in December. Periolic change, or amplitude, greatest, 14.6°, in July; least, 5.3°, in Decembar. Average variability of successive daily means in January, 7.6°.

Precipitation: Average annual, 38.80 inches; greatest average"monthly, 4.18inches, in July; least average monthly, 2.54 inches, in February.

Number of rainyJdays: Greatest, 45 per cent, in ${ }_{3}^{\circ} J a n u a r y ;$ least, 31 per cent, in?August.
C/oudiness: Annnal percentage, 56.0; greatest, 70 per cent, in December; least, 48 per cont, in June and July.

No. clear davs, year.. $92.0 \left\lvert\, \begin{aligned} & \text { No. p'tly cl'dy d'ys, year.... } 148.0 \\ & \text { No. clondy days, year... } 125.0\end{aligned}\right.$
No. clear days, Dec... 3.8 No. p'tly cl'dy d'ys, Dec.... 11.3 No. cloudy dass, Dec ... 15.9

Mean relative humidity: Annual, 70 per cent; greatest, ${ }^{\circ} 6$ per cant, in Decembar; least, ${ }^{3} 62$ per cent, in May.

Average date of first snow, November 3d: average dato of first killing frost, October 23d; sverage date of last killing frost of spring, April 13th.

Average velocity of the wind in miles. Pper hour:
Jan. Feb. Mar. April. May. Juue. July. Aug, Sept. Oct. Nov. Dec. Year.

6.7	7.1	7.8	6.7	6.2	5.5	5.6	5.0	5.2	6.1	7.0	7.0	6.35

Resumí ff Climatic Elements at Rochester.

Normar Temperature: Annual. 46.8°; January, 24.1°; July, ${ }^{2} 0.5^{\circ}$.
Maxima: Average of annual maxima, 92°; highest $\left\{\begin{array}{c}98^{\circ} \text { in } 1881 \text {, U. S. Record. } \\ 102^{\circ} \text { in 1855. Regents'and }\end{array}\right.$
Minima: Average of annual minima, -6°; lowest. $\left\{\begin{array}{l}-12 \circ \text { in } 1873 \text { and } 18 \pi 5 \text {, U. S. records. } \\ -14^{\circ} \text { in } 1861, \text { Regents' and private records. }\end{array}\right.$
Daily variations: Mean daily range, greatest. 19.5°, in June; least, 14.5°, in January. Daily periodic change, or amplitude, greatest. 12.5°, in Jine: least, 4.0°, in December. Average variability of successive daily means in January, $\boldsymbol{\tau} .4^{\circ}$ (approximately).

Prgcipitation: Average annual, 35.06 inches; greatest average monthly, 3.32 inches, in June; least average monthly, 2.43 inches, in September.

Number of rainy days: Greatest, 65 per cent, in January; least, 32 per cent, in August.
Cloudiness: Annual percentage, 61.0 ; greatest, 83 per cent, in December ; least, 44 per cent, in August.
No. clear days, year .. 66.0 | No. p'tly cl'dy d'rs, year... $136.0 \left\lvert\, \begin{aligned} & \text { No. clondy days, year. } 163.0\end{aligned}\right.$ No. clear days, Dec... 0.9 No. p'tly el'dy d'ys, Dec.... 6.7 No. cloudy dass, Dec.. 23.4 No. clear days, Aug... 10.1 No. p'tly cl'dy d'ys, Aug.... 13.4 No. cloudy days, Aug. 7.5
Mean relative humidity: Annual, 72 per cent; greatest, 80 per cent, in January and Docomber; least, 64 per cent, in May.
Average date of first snow, October 29th; average date of first killing frost, October 15th; average date of last killing frost of spring, May 5th.
Average velocity of the wind in miles, per hour:

| Jan. | Feb. Mar. | April. May. | June. | July. | Aug. | Sept. | Oct. | Nov. | Dec. | Year. | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13.8 | 12.7 | 12.2 | 11.2 | 10.0 | 8.8 | 8.0 | 7.9 | 9.4 | 10.4 | 11.8 | 12.1 | 10.68 |

Resumí of Climatic Elements at Buffalo.

```
Norsal Temperatere: Annual, \(46.3^{\circ}\); January, \(24.1^{\circ}\); July, \(69.9^{\circ}\).
    Maxima: Average of annual maximn, \(88^{\circ}\); highest, \(94^{\circ}\), in \(185 \%\).
    Minima: Average of annual minima, \(-4^{\circ}\) : lowest, \(-16^{\circ}\), in 1875 .
```

 Daily variations: Mean daily range, greatest, \(15.4^{\circ}\), in May; least, 12.2ㅇ, in December.
 Daily periodic change, or amplitude, greatest, 10.5°, in August; least, 3.7° in December.
Average variability of successive daily means, 7.4° (approzimately \%.
Prfcipitation: Average annual, 38.14 inches; greatest average monthly, 3.93 inches, in
October; least average monthly, 2.48 inches, in April.

Number of rainy days: Greatest, 59 per cent, in January and December ; least, 31 per cent, in August.

Cloudiness: Annual percentage, 62.4 ; greatest, 81 per cent, in December; least, 44 per cent, in August.
No. clear days, year . . $73.0 \mid$ No. p'tly cl'dy d'ys, year... $141.0 \mid$ No, cloudy days, year. 151.0
No. clear days, Dec... 0.7 No. p'tly cl'dy d'ys, Dec.... $8 . \sim$ No. clouiy days, Dec.. 22.1 No. clear days, Aug... $10.3 \mid$ No. p'tly cl'dy d'ys, Aug.... 14.0 No. cloudy days, Aug. 6.7

Mean relative humidity: Annual, 74 per cent; greatest, 80 per cent, in January; least, 68 per cent, in May.

Average date of first snow, October 25th; average date of first killing frost, October 15̈th; of last killing frost of spring, April 30th.

Average velocity of the wind in miles, per hour:

Jan. Feb. Mar. April. May. June. July. Aug.	Sept.	Oct.	Nov. Dec.	Year.								
14.8	13.5	11.8	9.7	9.1	8.6	8.3	8.6	9.1	10.6	13.5	14.0	10.98

V. HISTORICAL NOTICES OF THE WEATHER IN AND NEAR NEW YORK.

The following statements are derived mainly from Blodgett's Climatology of the United States; and from the statistics presented by Mr. J. C. Smock in the Climate of New Jersey. (Data from the former source are designated by the reference (B.) and from the latter by (S.).)
1717. In 1717 the "great snow" occurred, which is ofteu mentioned in New England history of that date. It continued for several days, February 19th to 24th, and remained five or six feet deep on a level at Boston, and over all the settled parts of New England. This winter is the most conspicuous, if not the only one noted for extreme cold prior to 1740 . (B.)
1740. The winter of $1740-11$ was distinguished both in the United States and Europe for intense cold. Jefferson speaks of it as having been in Virginia only less severe than that of 1779-80. The Boston News Letter of March 5th says: "We hear from Stratford, Conn., that the Sound is frozen over three leagues
across, so that people ride erery day thence to Long Island." In a subsequent number a certificate of several persons appears, testifying that they had crossed the Connecticut river on the ice and with horses, on the 1st of April. (B.)

The following is from the diary of Col. A. Hasbrouck, of Fingston, N. Y., extracts from which were published in a recent issue of the New York Times: "In the year of our Lord 1740-41, that winter began the beginning of December, and continued to the last of March, 1741, and we rode over Hadson's river with horses and sleighs * * * to the 20th of March."

1754-5. Winter unusually mild. Troops sailed from New York to Albany in January and February. (S.)
1780. In 1780 the most signal and severe depression of temperature occurred belonging to our entire history, excepting, perhaps, that of 1856. * * * Webster remarks an immense snowfall in New England; " for six weeks no snow melted. The Sound was entirely covered with ice between Long Island and the main, and between New York and Staten Island." (B.)
"The winter began the beginning of December, 1779, and continued to the latter end of March, 1780. A very' deep snow, above three feet and more, and driven up in heaps, in many placess six and seven feet high * * * and so severe a cold for most part of the winter that the like has never been known by the oidest living in this country, and continued to mear the latter end of March, 1780." "People did ride with horses land sleighs from New York to Staten Island, * * * and from/New York to Paulus Hook and Bergen and also to Long Island, and did ride upon the ice from New York to Albany, and further, and also crossed the Sound upon ice from New London to Long Island with carriages of burden, which has never been known to have been done before. The snow was not as deep as in the hard winter, so called, in the years 1740-41, but much colder and of longer continuation." (Hasbrouck.)

1784-5. "The winter began about the middle of December, 1784, and continued to the 15th of April, 1785, so that the fields were yet covered with snow and people rode across the Hudson river at
the mouth of Rondout kill the 5th day of April, 1785, with horses and sleighs upon the ice, and men walked across upon the ice until the 9th of April." (Hasbrouck.)

1805-6. An open winter; Hudson river free from ice February 20th. (S.)
1810. Hudson river open until January 19th. (S.)

1812-16. From May to September, 1812, each month was from 3.6 degrees to 7.2 degree below the average (at Cambridge, Mass.) * * * a refrigeration equaled for two months only, June and Juls of 1816, which were 5 degrees and 5.8 degrees below. In the Northern States smows and frosts occurred in every month of both summers; Indian corn did not ripen; fruits and grains were greatly reduced in quantity or wholly cut off. * * * In England, 1816 was almost as extreme as in the United States. (B.)

1820-21. In New York the winter of 1820-21 was also " one of the four during a century in which the Hudson between Paulus Hook and New York was crossed on the ice. (Caldwell.) " (B.)

1826-35. "On February 22d, 1826, mercury solidified at Plattsburgh, N. Y., a condition requiring a reduction to $-40 \frac{1}{2}$ degrees, and in January, 1835, mercury froze at Lebanon, N. Y." (Hildreth.) "In the winter of 1835-36 the thermometter was below zero on twenty-six days." (Fisk.) In many parts of New England snow remained uninterruptedly from December until May.

* * * Long Island Sound was closed by ice. "The summer months of 1835 were nearly as severe as those of 1812 and 1816." (B.)

1852. In January the East River at New York was closed and crossed on the ice on the 20th and for three days following. (B.)
1853. A warm year * * winter of 1852-53 one of the warmest on record and very wet, the winter rainfall at Newark having been 15.85 inches. (S.)
1854. In 1856 a period of serere cold continued for nearly three moniths, the greatest refrigeration occurring between the 25th and 28 th parallels. Long Island sound was closed to navigation from January 25th to February 27 th and the harbor
of New York was much obstructed by ice, which several times made temporary communication across the East River. (B.)
1855. An excessive cold January and summer. On January 24 th the temperature at Troy was -33 .
(It has been remarked that it is impossible to use the state of the rivers and harbors at the present time as any measure of the relative strength of cold, when compared with early records, owing to the breaking up of the ice now effected by steam craft.)

Mr. John Hulburt, of Arkport, Allegany county, N. Y., has kindly furnished the writer with extracts relating to the weather from a journal kept by him continuously since 1846. The following notes will be of interest here:
1841. The first fall of snow for the year was on April 20th21st.
1842. An open winter and early spring. * * * Frost June 1st, killed all fruit.
1843. Snow fully three feet deep in woods.
1844. A very prolific year.
1845. May 30th, ice three-fourths inch thick.
1846. Winter very cold, deep snow which lay on till March. Killing frost May 22d; corn replanted, giving a fine crop.
1847. A very cold and backward year. Not a leaf to be seen on May 1st. A fine fruit year.
1849. On the 28th of December two feet of very wet snow fell. blockading all roads. Sleighing remained until March.
1850. Hard snow storm May 28th, and very cold. * * * From July 14th to August 9th, rain fell every day. All the wheat sprouted in shock. No such harvest weather known about here lbefore or since.
1851. Cold and fair; sleighing all winter.
1852. June 5th corn all cut down by frost; ice one-quarter inch thick.
1853. The summer of 1853 was noted for the " great drought;" no rain to speak of for three months, May, June and July. No frost from April to September 29th. The winter of 1853-4 was remarkably mild, with only two weeks sleighing.
1854. For twelve days in July the mercury stood at 95 degrees and orer in the shade, and for eighteen days it was over 90 degrees. That was the hottest summer I ever knew, * * * It was followed by a cold fall and early snow.
1855. The "heated term" of '54 was followed by a remarkably cold February, the mercury falling below zero fourteen mornings out of the trenty-eight, and fine sleighing till March 6th.
1856. Opened cold and kept it up all winter and well into April. Sleighing good from January 5th to April 3d. On the latter date I find this record "south wind and rain, the first drop in 100 dars." Several times that winter the mercury was 30 degrees below zero; the 14th of February, 32 degrees below. It was a winter long to be remembered for extreme cold. August was very cool and September very warm till the 29 th.

1857-58. Plows ran in January, in fact some farmers about here plowed every month that winter.

18ã9. January and February were noted for absence of snow and mild weather; roads very dry all through March and much plowing done. On April $23 d$ I find this record: "Snowed hard all day, and wind blew a hurricane-more snow fallen to-day than all winter-and plump eight inches deep to-night." May 7 th, 90 degrees at $2 \mathrm{p} . \mathrm{m}$., a remarkably warm month. June 4 th, cold, with rain and snow; June 5th, ice one-quarter inch thick. The forest leaves were almost full size, and before noon were a butternut color. Early wheat and corn cut down. Another hard freeze on the 11th and a still harder one on the 12th, but nothing left to kill.
1860. A mild wintter, plowing all done in April.
1861. August $2 d$, thermometer at sumrise 80 degrees, 94 degrees at noon, 100 degrees at $2 \mathrm{p} . \mathrm{m}$.; the warmest day I ever saw. A remarkably warm fall; December 9th and 10th thermometer at 80 degrees." Sheep in pasture till December 21 st, which is unprecedented.

[^38]1862. The record of April 1st is: An immense body of heary snow on ground two feet deep; three months good sleighing.
1863. Very hot and wet summer; fine crops.

1S64. Very hot and dry in July.
1865. Cherries in full bloom April 27th. A warm and dry summer.

1865-6. No snow to make sleighing.
1867. One foot of snow January 20th remained till March. Rain fell on twenty-eight days in May. Summer months fine for grain-wheat never better.
1868. The average temperature for July the highest I ever knew. No rain to reach potatoes till August 20 th.

1868-9. Good sleighing all winter, and until March 24th. Coldest summer and most rain I ever knew. The coldest November on record.
1870. Thermometer at 0 degree but three mornings all winter. Only ten days sleighing. A very warm spring and summer. Plowing till December 16th.
1871. February 5th, 30 degrees below zero at 6 a. m. and 10 degrees below all day. Eatly spring.
1872. Great drouth in May, and very hot and dry all through June.
1874. A rery open winter, with but little snow. Temperature below zero. several days in April. A hot summer followed.
1875. Begins with thermometer at zero and keeps very cold all winter. Ice-houses all filled after March 20 th with ice over two feet thick. Year closed with the thermometer at 80 *degrees.
1876. New Year's day the warmest on "record. No snow till February 15th, and then only a flurry. Tery warm in July and up to August 21st.
1877. January 14th: "Scarcely a day since Christmas that it has not snowed; snow four feet deep in the woods, and very solid. A great many roofs falling in." A fine year for corn.
1878. A very warm March. Cherries in bloom April 23 d.

[^39]1sis. Cold winter and good sleighing. Cold, backward spring. 18:8. Cold until the middle of April. Very dry until October, and then very wet and warm balance of year.
1882.83. Heary snow storm November 26th, lies on all winter; very cold and backward spring.
1884. From August 4th till 21st the themometer was 90 degrees and over every day. December closes very warm.
1885. April 1st: "My thermometer has marked zero and below forty-five times since January 1st." May was a warm, lovely month.

1485-6. A remarkably mild winter; plowing mostly completed in March.
18.7. Fine, open winter; no sleighing. A hot July on an average but winter clothing necessary on the 10th. Very open weather until the middle of December.

18:8. A very mild winter; severe blizzard on March 12th and 13 th.
1589. A mild January and rery changeable weather in February. Crain all sowed in March. May 29th, thermometer 26 degrees; grass, garden stuff and potatoes all cut down. June 1st, water two feet higher than I ever saw it on the Canisteo riser and another flood June 17th.
1890. The year opens warm, and January closes with a temperature of 68 degrees (the temperature obtained also at the Wrather Burcau station at Erie, Pa, Ed.). The warmest and wettest winter on record; not a sleigh seen all winter.
1891. A winter of frequent rain and snow.
1892. Good sleighing nearly all winter. A remarkably fine year for farmers.

The following remarks of Dr. J. Hyadt, of Dutchess county, have a bearing upon the question, "Is our climate changing?" " It is important to note that killing frosts and all sorts of quick or extensive ranges of temperature or precipitation (including, perhaps, in a lesser degree, pressure changes have greatly increased within my own adult experience of fifty-five years, and that these injurious effects have adranced in full proportion, if
not more, with deforestation. In this locality there is not more than one-half the tree and forest growth standing, compared with what existed fifty-five years ago."

VI. DERIVATION OF TEMPERATURE AND RAINFALL NORMALS.

The temperature and rainfall data given in the preceding pages were derived from the following sources:

1. Observations taken at various academies of the State between the years 1826 and 1868, under the supervision of the Board of Regents of New York. The results were publi:hed iu two volumes, the first covering the period $1826-1850$ and the seeond from 1850-1868.
2. Monthly and annual normals given in Nos. 277 and 353 of the "Smithsonian Contributions to Knowledge," published in 1876 and 1881. The data presented in these works were derived by Mr. C. A. Schott from all available sources, including the first series of New York Regents' reports, the records taken under the supervision of the Smithsonian Institution, the U. S. Amm and the U. S. Patent Office.
3. Records of stations of the National Signal Service and Weather Bureau.
4. The reports of the New York State Meteorological Bureau, issued monthly, 1889-1892, from Cornell University.
5. Miscellaneous records published in the United States Weather Review or furnished to the writer by independent observers.

Temperature Normals.

Owing to the large differences which obtain between the temperature of the same month in successive years, reliable average or normal values can be derived only from records extending over a long period. Such records are not numerons in this State; and few of those which exist have been obtained under precisely the same circumstances from first to last. Satisfactory
values can, however, be determined for a few points in various sections of the State and the normals of adjacent stations may be derived from these by comparing the shorter with the longer records month by month, since the differences between the temperatures at adjacent stations are much more constant than the temperatures themselves. But before using this method it is necessary to ascertain the limits of distance within which the temperatures have a similar variation, especially in a region situated, like New York, near the usual path of storms. For example, a cyclonic depression passing south of this State may give a warm wave over the southern counties, while anticyclonic conditions and extreme cold prevail in the northern section. Further, the inversion of temperature, or decrease with height, occurring within anticyclonic areas, is frequently the source of deviation from the usual thermal relations between highland and valley stations.
New York Weatuer Bureau．
TABLE No． 31.

Variability of Monthly and Annual Mean Temperature．													
STATIONS．	$\begin{aligned} & \text { Latitude } \\ & \text { N. } \end{aligned}$	$\begin{gathered} \text { Longitude } \\ \text { W. } \end{gathered}$							Probable Error of Mean or normal．				
				突	䔍	$\stackrel{\dot{3}}{5}$	菏	䔍	莍	寅	$\stackrel{\stackrel{\rightharpoonup}{亏}}{\stackrel{y}{5}}$		
	$\mathrm{Deg.}_{49} \mathrm{Min}_{40}$	$\mathrm{Deg} . \mathrm{Min}$		Deg．	Der．	Deg．	$\mathrm{Deg}_{2.1}$	${ }_{\text {Deg．}}$	Deg．	${ }_{\text {Deg }}$	Dea．	${ }_{\text {Deg．}}^{\text {Deg }}$（	Deg．
2．Lowrille．	${ }_{43}^{43}$	$\begin{array}{ll} 2 \pi & 01 \\ \pi & 30 \\ 70 \end{array}$	20	${ }_{4.3}^{4.3}$	4.0	${ }_{1}^{2.8}$	－ 1.4	0.8	0.80 0.80	－${ }_{0}^{0.80}$	0.40 0.30	0．38	O．${ }^{0.20}$
3．Rochester．	430	กi 42	21	3.8	3.8	1.2	1.6	1.4	0.71	0.70	0.23	0.32	0.27
${ }^{\text {4 }}$ 5．Cazenovia．．．．	43	59	17	3.5	3.6	2.0	1.8	1.5	${ }_{0}^{0.73}$	0.74	0.41	0.37	0.31
6．Cozperstown	42 42 48	$\underset{74}{75}$	20 38 38	3.7 4.4	4.0	${ }_{2}^{1.6}$	1.3 2.3	1.0	0． 51	0．76	${ }_{0}^{0.31}$	0．25	0.19
7．Fredonia．．．．．	${ }_{42}^{48}{ }_{2 \tau}^{41}$	${ }_{79}^{48}$	18	3.4	$\stackrel{4.5}{4.5}$	$\stackrel{2}{2.0}$	8.2	1.0	0.74	${ }_{0} 0.53$	${ }_{0}^{0.41}$	0.45	0.10
8．Flatbush．	$40 \quad 40$	$73 \quad 56$	24	3.4	37	1.4	1.4	1.1	0.57	0.63	0.24	0.24	0.19
9．Central Park	$40 \quad 44$	${ }^{2} 400$	23	3.7	3.2	1.8	1.9	1.1	0.68	0.58	0.33	0.35	0.20
Mean of 3,6 and 9			\ldots	4.0	3.7	1.8	1.9	1.2	．．．．．	．．．．	．．．．．		．．．\cdot

Variability of Temperature Differences.

In order to obtain a numerical expression of the reliability of the normals as derived both from independent records and by comparison with adjacent stations, a method developed and extensively used by Dr. J. Haun was employed, the results of the computations appearing in tables 31 and 33 . The mean rariability of temperature, as shown in table 31, is the arerage difference between monthly or annual normals and the individual values from which the normals are derived. In the same way, table 32 gives the average variability to which the temperature differences between several pairs of stations are subject.

To determine the probable error of the means or normals obtained from data subject to the given degrees of variation, the following modification of Peters' formula* is used: $1_{m}=.845 \frac{\mathrm{~V}}{\sqrt{ }^{\mathrm{n}-1}}$; where r^{m} is the probable error of the mean of normal, V is the average deviation from the mean value, or the variability, and n is the number of years covered by the record.

The maximum variability of means was found by a trial of several records to be fairly represented by the values for January and February, and the minimum by those of July and August. The character of the variation of differences is also best indicated by the midsummer and midwinter rates, and hence only the above four months and the year are included in the tables. It will be seen that the normal of Cooperstown, whose record is the longest of the series, is liable to errors, amounting to 0.6 degrees in winter and 0.4 degrees in summer, while at the remaining stations the uncertainty is considerably greater than at Cooperstown during the winter months. In several cases, however, errors of observation, or in the published records, undoubtedly affect the results to some degree; hence the average variability at the foot of the table is derived from three stations whose data were known to be reliable, rather than from the entire number. For the same reason, only the pairs of stations in table 32 num-

[^40]bered $3,4,5,6,7,8,11$ and 12 can be fully relied upon as determining the variability of actual temperature differences. The results of pair Nc. 13 are also undoubtedly reliable for the winter months.

A glance at the tables suffices to show the great stability of differences between regions as widely separated as the Atlantic Coast and the Great Lakes, or the Coast and the lower Champlain valley; and also, in the case of Cooperstown and Central Park, proves the effect of differences of altitude to be small in Central New York. Thus, while a single normal derived from a record of thirty-eight years is subject to a probable error of 0.6 degrees, a system of concurrent observations extending over twenty years would suffice to reduce the uncertainty of differences between eren remote stations to about half of that amount.

The case may also be stated thus: Adopting 4.0 degrees as the average variability for January, a record of forlf-five years is found necessary to reduce the probable error of the normal to 0.5 degrees; whereas, with a variability of differences as great as 1.6 degrees between Central Park and Burlington, only ten years are required to reduce the relative error to the same amount.*

In view of the advantages thus to be derived from the use of a series of records embracing the same years at a large number of stations, an effort was made at the beginning of this investigation to deduce the normals from the first series of Regents' obserrations at the arademies of the State during the period 18261850. All of the longer records were examined and compared, month by month. and in this manner a large number of errors (many of which are systematic) were detected in the published tables. In a few cases the records proved to be quite satisfactory (notably those of Albany, Kinderhook, and in a lesser degree, Rochester). It is a jeculiarity of these early observation, not sasily explained, that the mean temperatures for January are

[^41]almost uniformly too high, in a large number of cases exceeding the values for February. Many of the defects are, no doubt, due to the difficulty of making the first observation precisely at sunrise, and to the variable hour of the last observation, one hour after sunset.*

In the second period of the Regents' system of observations, between 1850 and 1868 , fixed hours were employed to advantage, and several valuable records have been obtained from this series.

It was finally decided to base the system of normals upon recent observations, in which standard instruments were employed under known conditions of exposure. Continuous records at the stations, Central Park, Cooperstown and Rochester, each covering the period 1871-1891, were used as the standards of the system. All shorter records were compared with these, month by month, and the relation between the temperature conditions of the standard and secondary stations thus determined. The normals in the table are then to be considered as applying to the twentyone year period, even for observations made prior to 1870, as it was istill possible to compare these with the record of Cooperstown.

Several records of great merit are not credited in the table of normals with the full periods over which their observations extend, since the continuity of the series was broken loy important changes in the location of thermometers, as became apparent at once upon comparison of successive monthly and annual valnes with the records of adjacent stations. In nearly all cases of this nature the means given in the table were derived from the later portions of the records.

The results of table 31 show the mean of a twenty-one years' period to be liable to a maximum deviation of 0.8 degrees from the true normal. The record of Cooperstown might be considered to afford a basis for the reduction of the whole system to a thirtyeight year period, with a maximum error of 0.6 degrees; but it was deemed best not to attempt this upon the authority of a single record. The twenty-one and thirty-eight years' averages for

- In many cases, irregularities in the temperature records appear to be due to a change of observers.

Cooperstown in general show a fairly close agreement; the maximum deviation being 0.9 degrees in May, and that of the annual mean 0.3 degrees.

It will be seen, finally, that a thoroughly satisfactory determination of normals for the entire State can not yet be made. Many important localities are represented by but four years of observation, giving an average relative error of from 0.5 degrees to 1 degree for the State at large. The observations now being carried on at numerous stations by members of the State Weather Service may be expected to supply the needed data in the course of a few years.

Average Rainfall.

The average values of rainfall given in table 14 were derired from nearly all arailable records of a length sufficient to subordinate accidental to permanent features. The monthly and annual totals for each station were examined, and a few obviously incorrect values were omitted from the computations; while records having large systematic differences from those of neighboring stations were rejected altogether, unless all of the conditions attending the observations were known to be satisfactory. In most cases however, the records show a general agreement as to the characteristic features of rainfall distribution over the State and also conform to definite types of annual fluctuation; from which it is concluded that accidental errors are not so numerous as to very materially affect the averages. In the majority of cases the observations were made under the direction or general supervision of the Board of Regents or the Smithsonian Institution, and observers were supplied with gauges of a satisfactory pattern.

An estimate of the reliability of permanence of the averages of table 24 will be of value here. As the result of an extensive investigation of many hundreds of records obtained from all parts of the world, Mr. A. Binnie of the Institute of Civil Engineers of Great Britain gives the following probable errors of annual rainfall averages covering various periods:

The probable error of a 35 years record is 1.78 per cent. of the annual amount.

The probable error of a 30 years record is 2.26 per cent. of the annual amount.

The probable error of a 20 years record is 2.75 per cent. of the annual amount.

The probable error of a 20 years record is 3.24 per cent. of the annual amount.

The probable error of a 15 years record is 4.75 per cent. of the annual amount.

The probable error of a 10 years record is 8.22 per cent. of the amnual amount.

These values were generally found to include both irregular and possible secular variations of rainfall. As the uncertainty of monthly arerages is not given, a rough estimate is here attempted by the method of rariability, as explained in the case of temperature normals. The average deviations of the single monthly ralues from their means were found to be as follows for the thirty-eight years record of Cooperstown

The arerage variability of rainfall for January $=34$ per cent. of the total.

The average variability of rainfall for February= 42 per cent. of the total.

The average variability of rainfall for June $=36$ per cent. of the to al.

The arerage variability of rainfall for $\mathrm{July}=32$ per cent. of the total.
Mean for the four months $=35$ per cent. of the total.
From the mean variability, 35 per cent., the following probable errors of the average monthly values are found by the formula of page 513 :

For a 40 years record the probable error of monthly means $=6$ per cent.

For a 30 years record the probable error of monthly means $=6$ per cent.

For a 20 years record the probable error of monthly means $=8$ per cent.

For a 15 years' record the probable error of monthly means $=10$ per cent.

For a 10 years' record the probable error of monthly means $=12$ per cent.

As stated, these values are but rough approximations, since the departures from rainfall arerages do not fully meet the definition of residuals as employed in the method of least squares.

All records under ten years in length were corrected for the genemal excess or deficiency of rainfall during their period by comparison with the nearest station having an established normal, no correction being attempted, as a rule, for longer series. A few four and five years' averages have been admitted when longer records were lackiug, in case the deviation from neighboring stations was of a somewhat constant character, as, for example, in comparing the rainfall of the Adirondack plateau with that of the Champlain valley, an excess in the rainfall of the former over the latter region was almost uniformly noted in the case of individual months.

INDEX TO PART VI.

The Climate of New York.

A. PAGE.
Adiroudack region described 417, 444
formation of ice in lakes of 479
frosts in 470
raiufall of 486, 487
temperature of 444
Albany, general climatic data for. 501
Altitude, effect of, upon temperature 417, 444
effect of, npon rainfall 486
Amplitudes of daily temperature 449
America, temperatures on castèrn and western coasts of 409
Annual march of temperature 432
Anomaly of temperature 444
Auti-crclones, general account of. 411
efiect of, upon temperature 414
Appalachian system in New York 417
Atlantic coast region, temperature of 425
Atlantic Ocean as source of vapor 413, 485
temperature of 125
Atmospheric pressure (See pressure).
Asia, temperature of 23
Autumn, rainfall during. 416, 484
temperature during 416
B.
Blodget, Lorin, climatology by 408, 502
Brewer, I. W. 408
C.PAGE.
Canaulaigua Lake, opening and closing of navigation 478
Cayuga Lake, duration of ice in 478
Cazenovia Lake, duration of ice in 478
Central Lake Region, described. 417, 440
frosts in. 468
temperature of 440
Champlain Lake, dates of freezing 472
water levels of 473
Champlain Valley described 417
temperature of 436
rainfall of 413, 486
Chautauqua county grape belt, temperature of 434, 469
Chautauqua Lake, opening and closing of navigation 479
Cities, general climatic data for 500
Climate, relation of to forest growth 509
Cloudiness, average over New York 494
Coasts, temperature of continental 409
Coftin, J. H., investigation of climate by 407, 438
Cold waves tempered by Great Lakes 433
Coutinents, temperature of interior and coasts 409
Cyclones, effect of upon temperature 411, 510
D
Daily fluctuations of temperature 449
Days, frequency of clear, fair and clondy 496
frequency of rainy 493
Draper, Dr. Daniel, climatic work of 408
Drouths in past years. 502-509
E
Eastern Platean described 417
Elevation, decrease of temperature with 417, 444
of stations, tables 418, 480
Erie Canal, periods of navigation in 477
Lake, periods of navigation in 475
temperature of 432
Europe, temperatures in 423
Extremes of monthly and annual temperature 446

Index to Part VI.

 521F PAGE.
Forests, climatic effect of 509
Freezing of lakes and rivers, dates of 471-479
Frosts in New York 465-470
occurrence of in former years 502-509
Fuertes, E. A., letter of transmissal 405
director of State Bureau 408
G
Gradient of temperature 417, 444
Grape belt of Chautauqua county 434, 469
Great Lakes, thermal influence of 430
Great Lake region, frosts in 469
topography of 417
variability of temperature in $46 t$
Green mountains, effect of upon climato 413, 486
Gulf of Mexico, as source of moisture 413, 487
Gulf Stream, effect of upon temperature 425
H.
Harmonic analysis of temperature 430
Highlands of New York, described 417
thermal conditions of 442
rainfall over 480, 491
Historical notice of weather 502-509
Hough, F. B., essay on climate 407
Hudson River, dates of freezing 471
Hudson Valley, described 417, 435
frosts in 467
temperature of 435
rainfall of 486
Humidity 498
Hurlbut, J., climatic data by 505
Hyatt, Dr. James, climatic notes 509
I.
Ice, formation of, in lakes and rivers 471-479
J.
Japan, temperature in 423
K. page.
Keuka Lake, ice in 479
L.
Lakes, periods of navigatiou in 472-479
Lakes Erie and Ontario, water temperature 431
Latitude, variation of temperature with 422
Long Island, temperature of 426, 464
Rainfall over 484
Somnd, notes on freezing of 502
M.
Maritime temperatures 426
Maximum and minimum temperatures in New York 456
Meteorological records, criticism of 408, 509
Mohawk Valley, described 417
temperature of 439
Moisture of air 480-500
supplied by ocean aud Mexican Gulf. 413, 487
Mountain chains of New York 417
N .
Navigation, periods of, in lakes and rivers 471-479
New England Meteorological Society on sea-breezo. 428
New England, temperature of eastern 413-486
New York city, general climatic data for 500
Nocturnal cooling and valley winds 453
Normals of temperature and precipitation 418, 480, 509
Northern or Adirondack Platean described 417
Northern Now York, temperature of 437, 444
O.
Ocean as source of rainfall 413, 487
thermal influence of 425
Ohio Valley, upper limit of, in New York 442
Ontario, Lake, periods of navigation in 476
thermal effect of 431433
Otsego Lake, duration of ice in 478
Index to Part VI. 523
P. page.
Physical features of New York 417
Plateaus, dates of frosts in 470
description of. 417
thermal conditions of 444
rainfall upon 486, 487
Precipitation, general account of 413, 484
normal values of 480
related to forest growths 509
Pressure, atmospheric, general account of 410
(See, also, cyclones and anti-clyclones)
R.
Raiufall. (See precipitation.)
Rainy days, average frequency of 493
Rainy and dry seasons, historical notices of 502, 509
Ravges of temperature, account of normal 449
Regents, New York Board of 407, 509
Relative humidity, account of normal 498
Rochester, general climatic data for 501
S.
St. Lawrence River, dates of freezing 474
St. Lawrence Valley described 417
rainfall of 413, 484
thermal conditions of 437, 444
Schott, C. A., meteorological tables of 408
Sea-brecze, general account of 428,509
Sencea Lake, duration of ice in 479
thermal effect of 440
Smithsonian Institution 407
Smock, J. C., climatic rotes by 502
Snowfall, general account of 489
historical notices of 502-509
Summer, climatic conditions of 415
raiufall during. 484
Susquehanna Valley, temperature of 444
T. PAGE.
Temperature, effect of altitude upon 417, 444
effect of latitude upon 422
annual march of 432
anomaly of 444
normal daily amplitudes of 449
normal daily ranges of 453
extremes of, monthly and annual, in previous years 446
related to forest errowth 509
harmonic analysis of 430
historical notes of extreme 502-509
maxima and minima 456
normals, methods of deriving 509
normals, table of 418
variability of daily meaus 463
effect of pressure systems on 411, 510
of central lake region 440
of Chautauqua grape belt 43!, 469
of highlands 442
of eastern New England 413, 480
of the Mohawk Valley 439
of northern New York 437, 444
of St. Lawrence Valley 437
of highland valleys 455
of maritime regions 426
Thermal influence of the ocean 425
Thunderstorms 415 , 488
Topography of New York 417
Turner, E. T., 405
V
Valleys, thermal conditions of 435
Vapor, sources of 413, 484
Variability of temperature 463
W
Water temperaturos 425, 431
Weather, historical notices of 502

Index to Part VI. 525

PAGEC.
Western Plateau described 417
Winds, general systems of 408-416
nocturval, in valleys 453
relation of, to precipitation 413-434
Winter, climatic features of 411
precipitation during 485
historical notice of remarkable 502
Wilson, W. D., climatic studies by 440

WA！13 THI：STMTE いF NEW YORK

\＆HけWIぶ
THE NORMAL TEMPERATURES．
FOR JANUARY，

SCALE OF MILES

NAP OF THE STMTE OF NEW YORK

THE NORMAL TEMPERATURES.
FOR APRIL,

SCALE OF MILE

MAP OF THE STATE OF NEW YORK

SHOWING
THE NORMAL TEMPERATURES.

MAP OF THE S'TATE (OF NEW YORK showing
 THE NORMAL TEMPERATURES,

FOR THE YEAR.

SCALE OF MILES

MAP OF THE STATE OF NEW YORK

 SHOWING
THE AVERAGE PRECIPITATION

SHOWINC

THE AVLAAGE PRECIPITATIUN

NAH WF THT SHYTEOF NHW YORK

SHOWING

THE AVERAGE PRECIPITATION

MAP OF THE STATE OF NEW YORK

SHOWING

THE AVERAGE PRECIPITATION

SCALE OF MILES

MAP OF THE STATE OF NEW YORK

SHOWING
THE AVERAGE PRECIPITATION

SCALE OF MILES

MAP GF THE STATE NEW MORK
 SHOWING

THE AVERAGE CLOUDINESS.

NINTH ANNUAL REPORT

OF THE

Agricultural Experiment Station.

ITHACA, N. Y.

I 896.

State of New York

No. 11.

IN ASSEMBLY

Jandary 15, 1897.

NINTH ANNUAL REPORT

OF THE

Agricultural Experiment Station of Cornell University.

STATE OF NEW YORK:

$$
\left.\begin{array}{l}
\text { Department of Agrictlture, } \\
\text { Albany, January 15, 1897. }
\end{array}\right\}
$$

To the Honorable the Legislature of the State of New York:
In accordance with the provisions of the statutes relating thereto, I have the honor to herewith transmit the Ninth Annual Report of the Agricultural Experiment Station at Cornoll University.

CHARLES A. WIETING, Commissioner of Agriculture.

R E PORT.

Ithaca, N. Y., Jomualy, 1897.
To the Commissioner of Agriculture, Albany, N. Y.:
Sir.-I have the honor to transmit herewith the ninth annual report of the Agricultural Experiment Station of Cornell University, in accordance with the act of Congress of March 2, 1887, establishing the Station.

In addition to the general report of the director and the special reports of his scientific coadjutors, this document includes two appendices, one of which contains the bulletins published by the Station during the year and the other a detailed statement of the receipts and expenditures.

The Experiment Station of Cornell University is supported by an annual appropriation from the Federal treasury. But under chapter 437 of the Laws of New York for 1896 an appropriation of $\$ 16,000$ was made to the Station to be expended in horticultural investigations, experiments and instruction in the Fourth Judicial Department. This work has been the leading feature of the year, and the staff have been greatly encouraged by the growing interest which it has awakened in the rural population. The labors of the staff have been unusually arduous, and some of them have suffered in health in consequence. If it is the desire of the State that this work of university extension in agriculture be continued, the authorities of Cornell University stand ready to undertake it, though some improvements in the organi-

Agricultural Exphriment Station, Ithaca, N. Y. zation of the Station staff will be necessary in order to meet the constantly increasing demands which the work of the Station has already called forth.

I have the honor to be your obedient servant,
J. G. SCHURMAN, President of Cornell University.

Report of the Director.

To the President of Cornell University:

Sir: I have the honor to transmit herewith my ninth annual report, with those of the treasurer, the chemist, the botanist and the plant pathologist, the entomologist, the agriculturist, the horticulturist and that of the assistant professor of dairy husbandry and animal industry; together with an appendix of eighteen bulletins, covering the year ending December 31, 1896. Also a detailed statement of the receipts and expenditures for the fiscal year ending June 30, 1896.

The reports and bulletins give, in brief, an outline of the work undertaken and accomplished, with suggestions as to future operations, together with the results of the year's work, so far as they have been published. In addition to results reached by experimentation, much valuable information has been secured by studying the condition of various branches of agriculture in many localities throughout the State. In so large a State as New York the conditions as to climate, soil and tillage vary so widely that only by a study of growing crops in various localities, and where serious damage to plants occurs, can the most satisfactory results be secured.

Chapter 437 of the Laws of 1896 provided funds to be expended in the Fourth Judicial Department in "Conducting investigations and experiments in horticulture; in discovering and remedying the disease of plants, vines and fruit trees; in ascertain-
ing the best means of fertilizing vineyard, fruit and garden plantatious, and of making orchards, vineyards and gardens prolific; in disseminating horticultural knowledge by means of lectures or otherwise, and in preparing and printing for free distribution the results of such investigations and experiments, and such other information as may be deemed desirable and profitable in promoting the horticultural interests of the State." The Federal law, known as the "Hatch Act," passed March 2, 1887, has a much wider scope and permits investigations to be carried on in all subjects related to Agriculture.
The funds provided by the State for carrying on this work have been expended, in part, in publishing information believed to be both desirable and profitable, though such information was not secured entirely by our own scientific investigations.

An effort has been made to awaken an interest in rural pursuits by imparting instruction to both young and old by means of schools and lectures at central points. The value of this woris has been so heartily appreciated by the people, and so many have joined the agricultural science reading courses, that provision should be made for continuing the work. To do this a special corps of instructors and investigators will have to be provided, as the work has outgrown the provisions which have been made for carring it forward. The present force can direct and simplify the work, supervise the expenditures and the publications, and select expert assistants to perform the major part of the work, but the staff, as now constituted, is unable to meet the demands which are made and which are increasing day by day.

Never before has there been such an awakening or such an earnest desire for instruction in rural affairs. The people of the State are calling for help in all lines of Agriculture; they de-
mand facts which may serve to give direct help, and instruction as to the best methods whereby desired results may be reached most economically.

Within the past few years much has been done, and well done, to instruct the rural population in those subjects which are directly related to the production of animals, the cultivation of plants and the betterment of rural homes. Thousands of publications are sent out by the Station annually, and we have reason to believe that they are read with pleasure and profit. Hundreds of letters are at hand which give eridence that the publications are highly appreciated.

It is found that many persons residing in the cities and villages own land which they either farm or control. These persons hare shown unusual interest in the investigations which have been conducted and in the Station publications. It is believed that the interest shown by this class, who have a natural love for rural pursuits, is stimulating the country people, who have had fewer opportunities for study and research.

The eighteen bulletins published during the year contain 522 pages. About 12,000 copies of each issue have been sent out, or more than six million pages, embodying the results of investigations and observations made by the Station staff. In addition, some 700 bound copies of the complete transactions of the year are forwarded to other stations and to libraries.

Herewith appended is a list of the bulletins published since the organization of the Station under the Federal act of March 2, 1887, a copy of which is hereunto attached, and also chapter 437 of the Laws of the State of New York, passed May 9, 1896.

Bulletins of Cornell University Agricultural Experiment Station, 1888 to 1897.

* 1 Experimental Dairy House.
* 2 Feeding Lambs for Fat and Lean.
* 3 Insectary of Cornell University. Wireworm.
* 4 Growing Corn for Fodder and Ensilage.
* 5 Lean Meat in Mature Animals.
* 6 Fodders and Feeding Stuffs.
* 7 Influences Affecting Sprouting of Seeds.
* 8 Different Rations for Fattening Lambs.
* 9 Windbreaks in their Relation to Fruit.
*10 Tomatoes.
*11 Saw Fly Borer in Wheat.
*12 Apparatus for Drying in Hydrogen and Extracting Fat.
*13 Leaching of Farm-yard Manure.
*14 Strawberry Leaf Blight.
*15 Sundry Investigations of 1889.
*16 Growing Corn for Fodder and Ensilage.
*17 Cochran's Method for Testing Milk.
*18 Experiences in Spraying.
*19 Condition of Fruit Growing in Western New York.
*20 Cream Raising by Dilution.
*21 Tomatoes.
*22 Grain for Cows at Pasture.
*23 Insects Injurious to Fruit.
*24 Clover Rust.
*25 Sundry Investigations of 1890.
"थ́ Egg IPlants.
*27 Farm Manures.
"28 Forcing Tomatoes.
*29 Cream Raising by Dilution.
*:3) Influence of Electric Light on Green-house Plants.

[^42]
*31 Forcing English Cucumbers.

*32 Tomatoes.
*33 Wireworms.
*34 Dewberries.
*35 Combination of Fungicides and Insecticides.
*36 Grain for Cows at Pasture.
*37 Sundry Investigations of 1891.
38 Native Plums and Cherries.
39 Creaming and Aerating Milk.
40 Removing Tassels from Corn.
41 Steam and Hot Water for Heating Green-house.
*42 Electro Horticulture.
*43 Trouble of Winter Tomatoes.
*44 Pear Tree Psylla.
*45 Tomatoes.
*46 Mulberries.
*47 Feeding Lambs and Pigs.
*4S Spraying Apple Orchards.
49 Sundry Investigations of 1892.
*50 The Bud Moth.
*51 Four New Types of Fruit.
*52 Cost of Milk Production.
53 ※dema of the Tomato.
*54 Dehorning.
55 Green-house Notes.
*56 The Production of Manure.
*57 Rasberries and Blackberries.
58 Four-Lined Leaf-Bug.
59 Does Mulching Retard Maturity of Fruits.
*60 The Spraying of Orchards.
61 Sundry Investigations of the Year.
*62 The Japanese Plums in North America.
*63 Coöperative Test of Sugar Beets.
64 On Certain Grass-Eating Insects.
*65 Tuberculosis in Relation to Animal Industry.

[^43]＊iti Tent of Oremm Acparntore．
＊ia some levent Chimene Vequdatome
＊is The Cultivated Poplase．
＊（i）Ithera on the Ilanting of Orolumedet．
＊ 70 ．＇Thr Nalle Dwat＇Ohowlea．
il Apricot Growthg in Iradern Now York，
is The Cultivation of Owehater．
©is láa＇（oul amd Plam Pocketa．
it lmpressione of the beach lmdustey in Now York．
75 Vench Yellowa．

\％The Comtthe of Crapes．
is The Chbhage lowot Magzot．
Z！V＇atides of sitawhery leat litight．
Sill The gumbe in Wentern Now Sotk．
At lilark ketof of llams amd（herved．
si：Sxpertments with T＇口herentin．
sia A Vlam Sishb in Westown New Vork．
Sit The liereat Apple Fiatheres lat New Sotk．
＊Sit IVhey lintlox．

s\％lwaty Lima liedtr．
sis Latly Lamb linistag．

（1）The Chima Anter．
（O）Licerut Chrymathemuma，
0：F Ferling lat fo Down

di Whitev Munkmetome．

8？L゙んtomogenous Pungi．
bs Cherres．

100 Siaporated lianplomite in Now Vork．

[^44]101. The Nopraying of Trees and the Cink Wey Worm.

104 Climbing Cutworms in Wostorn New Yosk.
10% 'Jent of Cresam Meparatorn.
100 Jevised Opisiomen of the diphabese Jlasmas.
107 Wirewommen sud the liud Moth.

110 Extension Worls in Jorticultare.
111 tiweet Jesin.
JI2 The 18:⿳ \% Ohrysinthemuman.
11: Jiseasem of the Jotato.
114 Fipriximas Cixlendar.

116 J)worf Applow.
117 Irrust sirevition.

119 Texture of the Hosh.
120 Mofsture of the Foil sud Jin Conservition.

12: Sxtension Work in Honticublume, Dd Report.
$12: 3$ (ircen Fryit Worms.
 MENJ \&゙JATJONM,

An Acr to astablish agrofoultural oxporiment stations in connere

Be it enacted by the Semate ard I/ouse of heporsemtotires of the Inited states of America in Congress assembled, That in ofdop to asd in acequiring and diffusing amon: the groghle of the l'nitod

[^45]States useful and practical information on subjects connected with agriculture, and to promote scientific investigation and experiment respecting the principles and applications of agricultural science, there shall be established, under direction of the college or colleges or agricultural department of colleges in each State or Territory established, or which may hereafter be established, in accordance with the provisions of an act approved July second, eighteen hundred aud sixty-two, entitled "An act donating public lands to the several States and Territories which may provide colleges for the benefit of agriculture and the mechanic arts," or any of the supplements to said act, a department to be known and desiguated as an "agricultural experiment station:" Provided, That in any State or Territory in which two such colleges have been or may be so established the appropriation hereinafter made to such State or Territory shall be equally divided between such colleges, unless the Legislature of such State or Territory shall otherwise direct.

SEc. 2. That it shall be the object and duty of said experiment stations toconductoriginal researches or verify experiments on the physiology of plants and animals; the diseases to which they are severally subject, with the remedies for the same; the chemical composition of useful plants at their different stages of growth; the comparative advantages of rotative cropping as pursued under a varying series of crops; the capacity of new plants or trees for acclimation; the analysis of soils and water; the chemical composition of manures, natural or artificial, with experiments designed to test their comparative effects on crops of different kinds; the adaptation and value of grasses and forage plants; the composition and digestibility of the different kinds of food for domestic animals; the scientific and conomic ques-
tions involved in the production of butter and cheese; and such other researches or experiments bearing directly on the agricultural industry of the United States as may in each case be deemed advisable, having due regard to the varying conditions and needs of the respective States or Territories.

Sec. 3. That in order to secure, as far as practicable, uniformity of methods and results in the work of said stations, it shall be the duty of the United States Commissioner of Agriculture to furnish forms, as far as practicable, for the tabulation of results of investigation or experiments; to indicate from time to time such lines of inquiry as to him shall seem most important; and, in general, to furnish such advice and assistance as will best promote the purpose of this act. It shall be the duty of each of said stations annually, on or before the first day of February, to make to the governor of the State or Territory in which it is located a full and detailed report of its operations, including a statement of receipts and expenditures, a copy of which report shall be sent to each of said stations, to the said Commissioner of Agriculture, and to the Secretary of the Treasury of the United States.

SEc. 4. That bulletins or reports of progress shall be published at said stations at least once in three months, one copy of which shall be sent to each newspaper in the States or Territories in which they are respectively located, and to such individuals actually engaged in farming as may request the same, and as far as the means of the station will permit. Such bulletins or reports and the annual reports of said stations shall be transmitted in the mails of the United States free of charge for postage, under such regulations as the Postmaster-General may from time to time prescribe.

Sec. 5 . That for the purpose of paying the necessary expenses of conducting investigations and experiments and printing and distributing the results as hereinbefore prescribed, the sum of fifteen thousand dollars per annum is hereby appropriated to each State, to be specially provided for by Congress in the appropriations from year to year, and to each Territory entitled under the provisions of section eight of this act, out of any money in the Treasury proceeding from the sales of public lands, to be paid in equal quarterly payments, on the first day of January, April, July, and October in each year, to the treasurer or other officer duly appointed by the governing boards of said colleges to receive the same, the first payment to be made on the first day of October, eighteen hundred and eighty-seven: Provided, however, That out of the first annual appropriation so received by any station an amount not exceeding one-fifth may be expended in the erection, enlargement, or repair of a building or buildings necessary for carrying on the work of such station; and thereafter an amount not exceeding five per centum of such annual appropriation may be so expended.

Sec. 6. That whenever it shall appear to the Secretary of the Treasury from the annual statement of receipts and expenditures of any of said stations that a portion of the preceding annual appropriation remains unexpended, such amount shall be deducted from the next succeeding annual appropriation to such station, in order that the amount of money appropriated to any station shall not exceed the amount actually and necessarily required for its maintenance and support.

Sec. 7. That nothing in this act shall be constructed to impair or modify the legal relation existing between any of the said colleges and the government of the States or Territories in which they are respectively located.

Sec. 8. That in States having colleges entitled under this section to the benefits of this act and having also agricultural experiment stations established by law separate from said colleges, such States shall be authorized to apply such benefits to experiments at stations so established by such States; and in case any State shall have established under the provisions of said act of July second aforesaid, an agricultural department or experimental station, in connection with any university, college, or institution not distinctively an agricultural college or school, and such State shall have established or shall hereafter establish a separate agricultural college or school, which shall have connected therewith an experimental farm or station, the Legislature of such State may apply in whole or in part the appropriation by this act made to such separate agricultural college or school, and no Legislature shall by contract express or implied disable itself from so doing.

Sce. 9. That the grants of moneys authorized by this act are made subject to the legislative assent of the several States and Territories to the purposes of said grants: Provided, That payment of such installments of the appropriation herein made as shall become due to any State before the adjournment of the regular session of its Legislature meeting next after the passage of this act shall be made upon the assent of the governor thereof duly certified to the Secretary of the Treasury.

Sec. 10. Nothing in this act shall be held or construed as binding the United States to continue any payments from the Treasury to any or all the States or institutions mentioned in this act, but Congress may at any time amend, suspend, or repeal any or all the provisions of this act.

Approved, March 2, 1887.

An Act making an appropriation for horticultural investigations. by the Cornell University Experiment Station.
The People of the State of New York, represented in Senate and Assembly, do enact as follows:

Section 1. The sum of sixteen thousand dollars, or so much thereof as may be necessary, is hereby appropriated out of any money in the treasury not otherwise appropriated, to be paid to the Agricultural Experiment Station at Cornell University, to be expended in the fourth judicial department, in conducting investigations and experiments in horticulture; in discovering and remedying the disease of plants, vines and fruit trees; in ascertaining the best means of fertilizing vineyard, fruit and garden plantations, and of making orchards, vineyards and gardens prolific; in disseminating horticultural knowledge by means of lectures or otherwise, and in preparing and printing for free distribution the results of such investigations and experiments, and such other information as may be deemed desirable and profitable in promoting the horticultural interests of the state. Such experiment station may, with the consent and approval of the Commissioner of Agriculture, appoint horticultural experts to assist such experiment station in the fourth judicial department. Such experts may be removed by such experiment station in its discretion, and may be paid for their services such sum as may be deemed reasonable and proper, and as shall be approved by the Commissioner of Agriculture. All of such work by such experiment station and by such experts shall be under the general supervision and direction of the Commissioner of Agriculture. The sum appropriated by this act shall be paid by the treasurer of the state upon the warrant of the comptroller, to the treasurer of Cornell University, upon such treasurer filing
with the comptroller a bond in such sum and with such sureties as the comptroller may approve, conditioned for the faithful application of such sum to the purposes for which the same is hereby appropriated. Such sum shall be payable by the treasurer of Cornell University upon vouchers approved by the officers or agents of such university having charge of such experiment station, and such vouchers shall be filed by the treasurer of Cornell University in the office of the comptroller of the state.
I. P. ROBERTS.

Report of the Treasurer.

The Cornell University Agricultural Experiment Station in account with the United States Appropriation, 1895-6.

Dr.

Abstract

To receipts from treasurer of the United States as per appropriation for fiscal year ending June 30, 1896, as per act of Congress approved March 2, 1887. $\$$. $\$ 13,50000$

Cr.

By salaries .. $\$ 8,40598$
Labor. 1,09829
Publications... 79374
Postage and stationery................................ 25746
Freight and express.................................... 3220
Heat, light and water................................. 536
Chemical supplies 31265
Seeds, plants and sundry supplies................. 60073
Fertilizers. 14874
Feeding stuffs ... 15713
Library... . 8094
Tools, implements and machinery................... 9646
Furniture and fixtures............................... 39413
Scientific apparatus..................................... 27618
Live stock ... 2000
Traveling expenses $\$ 14645$
Contingent expenses 1000
Building and repairs 66356
$\$ 13,50000$

We, the undersigned, duly appointed auditors of the corporation, do hereby certify that we have examined the books and accounts of the Cornell University Agricultural Experiment Station for the fiscal year ending June 30,1896 ; that we have found the same well kept and classified as above, and that the receipts for the year from the treasurer of the United States are shown to have been $\$ 13,500.00$, and the corresponding disbursements $\$ 13,500.00$, for all of which proper vouchers are on file and have been by us examined and found correct, thus leaving no balance on hand.

And we further certify that the expenditures have been solely for the purpose set forth in the act of Congress approved March 2, 1887.
H. B. LORD,
R. H. TREMAN,
Auditors.
[L. s.]
Attest:
Emmons L. Williams,
Custodian.

Report of the Chemist.

To the Director of the Cornell Cniversity Agricultural Experiment Station:

Sir.-One hundred and eighty-four samples were analyzed in the chemical laboratory of the Experiment Station during the year 1896, as follows:

Five samples of milk, for fat; four samples of manure leachings, for fertilizing value; fifteen samples of manures, ditto; fourteen samples of grain, straw and chaff, ditto; six samples of soil, for nitrogen, phosphoric acid and potash; six samples of clover, for nitrogen; complete analyses of eleren samples of straws, grain and chaff; sixteen samples of corn and five samples of beans, for fodder value; sixty-seven samples of soils, for moisture; nincteen samples of grapes, for sugar and acid; three samples of Paris green, for arsenic; four complete analyses of fertilizers; four samples of sugar beets, for sugar; one sample of corn, for moisture; and one sample of "Callerine," a food preservative.

Investigations are in hand on the urine of the horse, the re lation of the composition of celery to its quality and the estimation of the pentosans.

G. C. CALDWELI.

Report of the Botanist.

To the Director of the Cornell Cniversity Agricultural Experiment

 Statinn:Sir.-Since the presentation of the last annual report from the Botanical Division several changes have been necessitated in the organization of the staff of the department, owing to the resignation of Professor Albert Nelson Prentiss on account of prolonged illness, during last February. Professor Prentiss has since died and it seems fitting here to call attention to his long service in the University, and to his continued interest in the advancement of the work of the Experiment Station by promoting the investigations of these botanical subjects which are peculiarly related to Agriculture.

In the reorganization of the Division the Cryptogamic Botanist was appointed Botanist. Dr. E. J. Durand, the Assistant Cryptogamic Botanist, being transferred to the instructing staff of the University, Mr. B. M. Duggar was appointed Assistant Cryptogamic Botanist of the Experiment Station.

During Dr. Durand's connection with the Division of Botany ${ }^{\circ}$ he made a special study of a serious disease of current canes which had been called to our attention from various localities in New York. These investigations have occupied considerable time owing to the desirability of tracing the life history of two different but closely related fungi which are parasitic on the canes. This has been done by the aid of pure cultures in arti-
ficial media. The bulletin is now ready for publication. It treats of the general character of the disease, the structure of the fungus, its development, and suggestions for treatment. The fungus belongs to a genus which contains several very injurious parasites of plants.

During the last year I have given considerable time to the investigation of the diseases of timber trees, and a bulletin on this subject is nearly ready for publication. Also a bulletin on anthracnoses of plants which is the result of several years study will be ready for publication before very long.

Mr. B. M. Duggar, the Assistant Cryptogamic Botanist, has conducted a number of investigations with remarkable vigor and has already accomplished a considerable amount of important work, though he has been connected with the department for ouly six months. Besides the work which he did in the Horticultural Schools of the State during the summer and autumn, I would call attention to the following investigations by him. He has nearly ready for publication a bulletin dealing with a serious trouble of stored celery. This rot of celery is caused by a species of Septoria, which during the summer is the cause of the so-called spot of celery. He has been able to demonstrate that the same fungus carried into the houses in the autumn in storing the celery spreads there on the plants with entirely - different appearances and effects. He has also in progress an investigation on several different kinds of rot of celery grown in houses during the winter. This will in the future be presented as a second bulletin. Another very important piece of investigation is that of the pear and quince leaf spot, which owing to the long period required for the complete development of the parasites connected with it, will require a longer time for
its completion, but there is scientific evidence now on hand to indicate that important information can be published concerning these diseases when the investigations are completed. Besides these definite lines of investigation Mr. Duggar has others in progress on several other plant parasites, all of which in the future will contribute to the knowledge of the life histories of these low forms of plant life, which it is desirable to know in order to determine rational methods of treatment. Mr. Duggar has also conducted considerable of the correspondeuce, answering the letters of inquiry about plant diseases.
I cannot close without acknowledging the important aid which Professor Rowlee of the Botanical Department has given in attending to the correspondence upon subjects with which he is familiar.

Considerable additions have been made to the apparatus in the department which aids materially in the prosecution of the work.

GEORGE F. ATKINSON.

Report of the Entomologist.

To the Director of the Cornell University Agricultural Experiment Station:

Sir.-As the carrying out of the Entomological work of the Station has been performed during the past year almost entirely by the Assistant Entomologist, I have requested him to prepare a report on it, which I hereby transmit.

JOHN HENRY COMSTOCK.
To the Entomologist of the Cornell University Agricultural Experiment Station:

Sir.-The year 1896 has been an exceedingly busy and interesting one for the Entomological Division of the Station. So far as insect pests are concerned, the year has been rather a remarkable one in New York State. The codlin moth, plum curculio and other insects which can usually be depended upon to harass the fruit-grower every year were noticeably much less. destructive. But the year was marked by the appearance in injurious numbers of several insects that had not attracted serious attention anywhere in our State for more than a decade; they were thus new pests to many farmers and fruit-growers. The army worm (Leucania unipuncta), the green fruit worms (Xylina sp.), the pistol-case-bearer (Coleophora malivorella), and the peach twig-worm (Anarsia lineatella) were these apparently " new" insect pests that have ravaged New York crops during the past year. Our notes contain considerable new information
about all of the above insects and several others, and this knowledge is being put into the form of bulletins as fast as possible.

The following bulletins were issued from this Division during the year:

No. 107. Wireworms and the Bud Moth.
No. 108. The Pear Psylla and the New York Plum Scale.
No. 123. Green Fruit Worms.
Another on the pistol-case-bearer is ready for publication, and our investigations in 1896 resulted in sufficient material for at least three more bulletins which we hope to have ready for publication before next spring. In these three bulletins we expect to discuss the army worm in New York State, a currant stem-girdler and a new raspberry cane-magot, and the codlin moth. The first will contain many new figures, the second much new information, accompanied by new illustrations, and the third will embody some very important, as well as new, facts regarding that apparently best-known of all fruit pests-the apple worm or codlin moth.

Some important results have been obtained in our extensive peach borer experiment, and new ideas suggested by these are now being tested. We shall continue the experiments another year at least.

Considerable work has been done by this Division under the auspices of the so-called Experiment Station Extension or Nixon bill. The investigations undertaken resulted in material for Bulletin 123 and for the bulletin on the pistol-case-bearer, just completed. The Assistant Entomologist spent over a month in giving instruction in the horticultural schools held in different parts of the Fourth Judicial District.
The correspondence of the Division continues to increase rap-
idly, and now occupies a large share of our time. But, believing that this is one of the most valuable and important phases of our work, we continue to cheerfully give to every correspondent the latest and best information at our command. Nearly 800 letters of inquiry regarding insects and their injuries were answered during the year; 125 of these answers were prepared for publication and have appeared in the columns of agricultural journals. Several technical articles have also been written for entomological journals.

M. V. SLINGERLAND.

Report of the Agriculturist.

To the Director of the Cornell University Agricultural Experiment Station:

Sir.-I submit herewith the report of the Agricultural Division of the Cornell University Experiment Station for the year 1896. The larger part of the work has been along the lines of determining the effects of introculture upon the production of farm crops and investigations with reference to the conservation of soil moisture. That there is need for investigation and dissemination of knowledge along these lines is shown by the low average yield of the staple crops throughout the State compared with what might be secured were better methods of tillage more generally practiced.

Interesting and valuable results have been secured with reference to potato culture and the production of forage crops. A comparative study of some leguminous plants to determine their nitrogen storing capacity has been commenced and will be continued during the coming year.

The hay crop and the permanent pastures throughout the State have been so affected by droughts during the past few years that it has become a serious question with many farmers as to what they shall provide in their place or to supplement them. To throw light on this subject experiments have been inaugurated with the view of determining the best crops for green soiling and how silage may best be preserved under different meth-
ods of treatment. Many experiments commenced in former years have been duplicated and results verified. The subject of the leaching of manures has received considerable attention and there is now material at hand for the publication of several bulletins upon the subjects which have been under investigation.

Lime and its action upon acid soils, its value as a conserver of moisture and the beneficial action it exerts on the physical condition of soils are all questions now under investigation and to be investigated during the coming year. It is proposed to commence a series of coöperative culture experiments. Such marked results have been obtained at the Station by improved conditions and by increased tillage of farm crops that in order more fully to verify the results obtained and awaken interest in the work among farmers, an extensive coöperative experiment in potato culture will be inaugurated.

In general, the work of the Division will be largely along the lines of securing increased crop production by better methods of tillage.
L. A. CLINTON.

Report of the Horticulturist.

To the Director of the Cornell Lniversity Agricultural Experiment Station:

Sir.-The past year has been altogether a most prosperous one for the Horticultural Division of the Experiment Station. Its endeavors, however, have been somewhat dismembered, owing to the experiment extension work which has been asked of it by the Legislature. The work might be roughly divided, there-" fore, into the two categories of home work, or station work proper, and the extension or itinerant work. The later has consumed by far the greater amount of our time and energies during the past year, as, in fact, it did in the two preceding years. In reporting the condition of my Division to yourself early in 1894, I took occasion to suggest that one of the means by which the Experiment Station could help the people was through State aid, which should give us facilities for publishing more information and which should allow us also to hold horticultural meetings or schools for the purpose of popularizing and disseminating the horticultural knowledge of which experimenters are now possessed. At that time I had not anticipated that the recommendation would find such complete and speedy fulfillment. It was in that very year that we were asked to undertake the extention of our horticultural work, and this endeavor has now been prosecuted consecutively for three years. The full results of this work, so far as they can be indicated at the present time,
are set forth in Bulletins 110 and 122. I need, therefore, say nothing more respecting the extension feature of the work of my Division.

At the present time I am as anxious that the Horticultural Division of the Station may return to its original type of labor as I was three years ago that it depart therefrom. My reason for this feeling is the fact that this extension work has now grown to be such a large and responsible enterprise that it should no longer be confined to one division of the Experiment Station. It should be placed under the management of a separate division, and there is every reason to believe that it would be more useful to the State if applied to other branches of rural effort that to horticulture. In the home Station itself, there have been comparatively few changes, and these have not all been for the betterment of the Division. One of the Experiment Station forcinghouses has been entirely rebuilt and is now an ideal house for certain lines of experiment. The orchards have now come to bearing age and have occupied so much of our small area that we have very little left for conducting experiments in vegetables and other annual crops. A year ago, a considerable area of my Division was demolished by changes in the grounds of the University, and the entire collection of grapes, of native plums and many small fruits, to all of which we had given much attention, were entirely obliterated. In order to repair this damage in part, we have, during the past year, fitted up a new piece of land and have set thereon a small experimental vineyard. The loss of the native plum orchard is practically irreparable, howerer, because it contained many varieties and seedlings which are not in the market; and the same remark will apply to some of the small fruits Considering the limitation of our area, and the variable
character of the land, we can not make extensive studies of fruit plantations, and we must give increasingly greater attention to subjects of intensive gardening. The greatest needs of the home Division at present are still greater facilities in the forcing of plants and extension of the experiments in ornamental plants and decorative gardening. The extensive commercial fruit plantations of New York State afford ample facilities in which to study the question of fruit-growing in its fulluess, with the simple exception of the testing of varieties, an enterprise which, however, we have never undertaken as a leading role in our experiment work. But in some of the finer and intenser kinds of horticultural work, as the forcing-house industry and others, there is a great need, it seems to me, for iucreased facilities right here. One of the next lines of effort which we must undertake, and which is yet new to the experiment station research of the country, is a line of studies in the forcing of fruits. Our experiments in the forcing of vegetables, whilst not yet concluded, have, nevertheless, reached the point at which we are able to give rather definite advice respecting the commercial aspects of the subject.

It gives me the greatest pleasure to express my gratitude to yourself and to all my associates for the most generous help which has been given the work of my Division during the trying responsibilities of the past three years.

L. H. BAILEY.

Report of the Assistant Professor of Husbandry and Animal Industry.

To the Director of the Cornell University Agricultural Experiment Station:

Sir.-I have the honor to transmit a brief report upon the work of the Dairy Division of the Agricultural Experiment Station for the year 1896.

The work of the Division has progressed along the lines pursued in former years. The most extensive experiments for the past year have been in relation to the quantity of milk as effected by changes in the food of the animal, and in this work I have had the assistance of graduate students in the College of Agriculture. Material is now in hand that will be ready for publication at no very distant date.

The records of the production of our herd that were begun some five years ago have been continued during the year and have added materially to our facilities for work. We have also been able to test the weekly production of several herds of thoroughbred cattle in various parts of the State.

In conclusion I can not refrain from again calling attention to the need for an assistant in this Division who shall give his whole time to the work of the Agricultural Experiment Station.

H. H. WING.

BULLETTIN 106-January, 1896.

Cornell University-Agricu1tural Experiment Station, ITHACA, N. Y.

HORTICULTURAL DIVISION.

REVISED OPINIONS

OF THE

JAPANESE PLUMS.

Burbank. Page 46.
By L. H. Bamey.

ORGANIZATION.

Board of Control--The Trustees of the University.

STATION COUNCIL.
President, JACOB GOULD SCHURMAN.

OFFICERS OF THE STATION.

I. P. ROBERTS Director.
E. L. WILLIAMS Treasurer.
H. W. SJHTH Clerk.
ASSISTANTS.
M. V. SLINGERLAND
G. W. CAYANAUGH. . Chemistry.
E. G. LOIEMAN Horticulture.E.J. DURAND Botany.

Office of the Director, 20 Morrill Hall.
The regular bulletins of the Station are sent free to all who request them.

In 1895, the following Bulletins were issued:
84. The Recent Apple Failures in Western New Yoik.
85. Whey Butter.
86. Spraying of Orchards.
87. The Dwarf Lima Beans.
88. Early Lamb Raising.
89. Feeding Pigs.
90. The China Asters.
91. Recent Chrysanthemums.
92. Feeding Fiat to Cows.
93. The Cigar-Case-Bearer.
94. Damping Off.
95. Winter Muskmelons.
96. Forcing-Honse Miscellanies.
97. Entomogenous Fungi.
98. Cherries.
99. Blackberries.
100. Evaporated Raspberrios in Western New York.
101. The Spraying of Trees; with remarks on The Canker-Worm.
102. Genoral Observations Respecting the Care of Fruit Trees; Weeds.
103. Soil Depletion in Respect to the Care of Fruit Trees.
104. Climbing Cutworms in Western New York.
105. 'Tests of Cream Separators.

Cornell University, Itbaca, N. Y., January 1, 1896. $\}$

Honorable Commissioner of Agriculture, Albany:
Sir.-The following account of the Japanese plums is submitted for publication under the Experiment Station Extension bill (chapter 230, Laws of 1895). There is a universal interest in the Japanese plums amongst the fruit growers of western New York and it, therefore, seems to be wise to publish this bulletin, as a sort of report of progress, even though the subject is very much coufused. It is hoped that the bulletin may tend to check further confusion, by bringing into one report an account of all the varieties which are now before the public. In making these studies of Japanese plums, I have depended quite as much upon the information which I have gathered in many plantations about the State as I have upon our own tests.

L. H. BAILEY.

[^46]
1.-Abundance, from Daniel Roberts, Keyport, N. J. (See page 41.)

Revised Opinions of the Japanese Plums.

Two years ago this station published an account (Bulletin 62, "The Japanese Plum in North America") of the Japanese plums as they were then known in this country. Our knowledge was very fragmentary and imperfect at the time, and it was not expected that final conclusions could lee reached respecting most of the questions which were uppermost in the public mind. Yet the confusion in which the whole sulbject lay was so great that it was thonght better to publish such conclusions and facts as we possessed rather than to allow the perplexitios and the entanglements of nomenclature to increase. Many of the varieties which were passing under indefinite class names were renamed, and the new nomenclature has been widely adopted by nurserymen.

The interest in Japanese plums is unabated, and it now seems to be wise to again report upon the subject, adding the experiences of the two past seasons. It will be many years yet before the difficulties of nomenclature can be wholly cleared up, but au occasional report of progress may be expected to hasten the final outcome. A few varieties are now fairly well understood, and descriptions of these are printed in large type in this paper. I have attempted to add descriptions of all other varieties, in smaller type, for the purpose of bringing our scattered knowledge together for convenient reference; but many of these varieties I have not yet seon in fruit and I cannot, therefore, vouch for the accuracy of the descriptions.

In my former report, I said that "altogether, the Japanese plums constitute the most important type of fruit introduced into North America during the last quarter of a century, and they should receive careful tests in all parts of the country." I am now more fully convinced of the truth of this statement than I was at that time; but some persons seem to have read it so carelessly as to have obtained the idea that I recommend the Japanese plums as superior to the old domestica or European types and to the
natives. The latter classes were already well established a quarter century ago, when the Japanese sorts first came into the country, and their value is not lessened by the introduction of the Japanese type. Wherever the common domestica plums will succeed, they are still the most valuable types, but some of the Japanese sorts can be added for variety with profit. The Japanese type is adapted to a much wider range of our country than the domestica plums are, and they introduce certain features which are invaluable everywhere. The peculiarly desirable features presented by many of the Japancse plums, in various degrees, are earliness, great productiveness, almost complete freedom, so far, from black-knot and leaf-blight, long-keeping qualities and beauty of fruit. In quality they are generally inferior to the domesticas, although several of them compare favorably in this respect with the Lombard. The only other foreign species of fruit which has been lately introdnced into this country and which approaches the Japanese plums in importance, is the kaki or Japanese persimmon; but this fruit is confined to the fig belt, whilst the plum thrives from Canada to the Gulf. A third Japanese fruit _ introduced over a quarter century ago - the Japanese pear, is also important, and a report on it may be expected from this station within the present year.

It is yet too early, in my judgment, to recommend the extensive planting of the Japanese plums in this State, yet such varieties as Red June, Aloundance, Burbank, and Chase seem to be safe to plant: and to this lot may no doubt be added, as a second-choice list, Georgeson, Maru, Chabot, Ogon, Berckmaus, Satsuma. For very early, we might add Berger and l'osebe, and Willard. The first two are very small, and the last is very poor in quality. The experiences of one or two more seasons may modify this list considerably, but it represents the best information which I possess at the present moment, for New York.

Those who desire a fuller exposition of the history and characteristics of the Japanese plums, may consult our Bulletin 62.*

[^47]It may be said that the fear expressed in that bulletin that these plums may be found to bloom too early for safe cultivation in western New York, has proved to be unfounded. Farther south, however, and even in Ohio and Indiana, the habitual early bloom of some varieties renders them unsafe. The winters are more uniform in character here than they are farther south, and the "warm spells" of early spring are rarely pronounced enough to start the blossoms. It is probable, also, that the many large bodies of water in and about western New York exert a considerable influence in retarding the fitful variations of early spring. I have yet to hear of any serious loss of Japanese plums through late spring frosts. There was an abundant crop of them in many parts of western New York in 1895, notwithstanding the hard frosts of May.

Abundance (Lovett, Catalogue, 1888). Figs. 1, 2.
Botan, of some.
Medium to large, globular to globular-oblong, generally with a distinct but minute point at the apex, often unequal-sided; stem $\frac{3}{4}$ in. long; under-color yellow, overlaid with coppery red or with very bright pink-red on the exposed side, in well-colored specimens the entire surface reddened and the under-color almost completely obscured or showing through only in dots and small flaky patches; flesh firm, yet rather elastic and very juicy, sometimes slightly stringy, light amber-yellow, sweet and fully as good as
place and turned orer his acquisitions to other parties. He seems to have pulled up stakes in Vaca valley between his enlistment of the United States officer in Japan in getting the trees, and the arrival of the trees in San Francisco, and therefore he turned over the stock to John Felsey. D. E. Hough died about twelve years ago."

Mr. Burbank wrote me as follows, in 1894, respecting his first importation: "My collector whom I sent to souther'n Japan about ten years ago for the Satsuma-of which, two years before, I had found a description in a book in the Mercantile Library of San Francisco, written by a sailorsent me about half or more of the Japan plums now in general cultivation. All collectors inform me that there were no nurseries until lately, and when an order was given, the collector secured a few here and there, wherever they could be found. This accounts for the confusion of the names."

Lombard when well ripened, although sometimes having a slight musky flavor, the skin rather sour; cling.

The above description is drawn from specimens received from Daniel Roberts, Kerport, New Jersey, and from many New York samples which were indistinguishable from Roberts' specimens. I wrote to Mr. Lovett for fruits from the original tree of Abundance: he replied that the tree is not standing, but referred me to Mr. Roberts, whose trees were propagated from the original stock.

2.-Abundance tree, 6 years old.

Mr. Roberts sent me excellent samples, some of which I then sent to Mr. Lovett, who wrote that the fruit "arrived in perfect condition, and is the true Abundance." I was thus particular about the matter, becanse there appear to be two if not three things sold in the country as Abundance ; or else the varioty is wonderfully modified by climate and local conditions. This exact type of Abundance is much planted in western New York. It is the same variety which I described and figured in Bulletin 62.

The Abundance makes a hardy, thrifty, upright-spreading tree, (Fig. 2). It is very productive, and the fruit generally needs
thimning to bring it to perfection. Abmudance ripened at Ithaca in 1895 the first week in Augnst, over two weeks ahead of Lombard, a week ahead of Burbank, three weeks later than Yosebe, two weeks later than Willard, and a week to ten days later than Red June.

I do not know if the Yellow-fleshed Botan is identical with Abundance. This name was given by P. J. Berckmans to distinguish a variety received by him from Luther Burbank under the name of Botan. There were two varieties in the batch, and the other, with a lighter-colored and sweeter flesh was named, by Mr. Berckmans, Sweet Botan. This latter is now called Berckmans. When Mr. Lovett sent out his Abundance, it was pronounced to be identical with Yellow-fieshed Botan by Mr. Berckmans. "I have seen trees that were received from Lovett," Mr. Berckman writes, "whose fruit was identical with Yellow-fleshed Botan." The Yellow-fleshed Botan fruits which Mr. Berckmans has sent me several times, seem to difier from the Abundance, as grown here, in the yellower color, less prominent point at the apex, and shorter stem, but these differences may all be due to climate or other local environments. I often notice that plums may be shorter-stemmed when grown in the south than when grown in the north. In specimens which I have received from Berckmans, the Yellow-fleshed Botan has a lighter-colored flesh than the Berckmans. We have trees of the Yellow-fleshed Botan growing, and shall soon be able to determine its relationship to Abundance.

Babcock (Bailey, Cornell Bull. 62, p. 19, 1894).
Botankio and Botan, of some.
" Medium to large ($1 \frac{1}{2}-1 \frac{3}{4}$ in. diam.), round-conical ; skin yellow overlaid with purplish red, rather thick; flesh deep orange and solid, a little coarse, sweet, of good flavor and quality; cling; rather late, ripening about with the Burbank, or about a week earlier than Chabot in the south.
"Imported in 1885 by Luther Burbauk. Now named for Col. E. F: Babcock, a well-known nurseryman of Little Rock, Arkansas, and among the first to grow and recommend the variety." Bulletin 62.

I have never seen a fruit which I could refer to this variety. I substituted the name Babcock for the loosely applied Botankio,
drawing my description very largely from notes furnished me by Colonel Babcock. Our orr variety bought as Botankio turns out to be Abundance.

Bailey (J. L. Normand, Catalogue, 1891).
"Large, nearly globular, with only a slight tendency to become conical; ground-color rich orange, overspread with light and bright cherry red, and showing many minute orange dots; flesh thick and melting, yellow, of excellent quality; cling. Tree strong and upright, productive. Closely related to Burbank, but rounder and mostly larger, and a week or more later.
"Imported by J. L. Normand, Marksville, Louisiana, and by him named and introduced in 1891. Figured in American Gardening, xiii. (1592), p. 700 . There appears to be another Bailey plum of the domestica type. I know it only from a plate made by Dewey of Rochester, and who declares that it 'has not failed to bear for twenty-five successive years.' The Ruchester Lithographing Co., successors to Dewey, write me that this plate was in Dewey's stock before 18S6, but that they know nothing further abont it."Bulletin 62.

I have not yet fruited this variety, but I have received it from several sources. Mr. Berckmans regards it as identical with Chabot. It is also remarkably like the Chase and Iloyo Smomo. It is prossible that all these for names belong to the same plum. It is evidently a good plum, whatever its proper name may be found to be.

Berckmans (Bailey, Cornell Bull. 62, p. 20, 1594).

True Sweet Botan.

Sweet Botan.
White-fleshed Botan.
Botan, of some.
Medium (or slightly above if thimed), broadly and obtusely conical and somewhat angular in cross-section; dull deep blood red if ripened in the sun, sometimes with yellowish patches on the shaded side; flesh very sweet, moderately juicy or dry; cling or semi-cling; ripens with Abundance or just ahead of it. Becomes too dry when very ripe.

Introduced by Luther Burbank in 1887, from imported stock. The variety does not appear to be a true Botan, and its nomenclature is so confused and indefinite that I renamed it for Mr. Berckmans, who, to distinguish it from another variety which was also received under the name of Botan (see remarks on Yellowfleshed Botan, under Abundance), called it White-fleshed Botan. Mr. Berckmans considers it poor in quality, but as it is grown in the north it compares well with Abundance; and even the specimens which Mr. Berckmans has sent me seem to me to be superior in quality to the Abundance which he has sent. Deeper and duller red than Abundance, lacks the point characteristic of that variety, and the flesh is much drier. Very productive. Figured in Bulletin 62.

Berger (Munson ; Bailey, Cornell Bull. 62, p. 20, 1894).
Fruit very small and globular, bright uniform red, with a firm, meaty and sweet yellow flesh and a very small free stone, ripening the middle of July in New York.

There has been much confusion respecting this plum. Mr. Berckmans once sent it to me without a name, saying that it came from H. H. Berger \& Co., of San Francisco, as Red Nagate. N. S. Platt sent it from Connecticut as Satsuma, the name under which it was received from Berger. It came from the south (also originally from Berger) as Shiro Smomo. I also have it from western New York, unnamed. T. V. Munson, Texas, sent specimens which he called the Berger, and I adopted his name and published it in Bulletin 62. He writes as follows of it: "The Berger plum is an upright, cherry-like tree. It bears a purple fruit about the size of the Black Tartarian cherry, with meaty flesh, nearly free stone which is as small as the pit of the common Black Morello cherry and much the same shape." It falls from the tree as soon as ripe, leaving the stem on the tree. An interesting little fruit for the home garden, but too small for market. There is a picture of it in Bulletin 64. See Yosebe.

[^48] -P. J. Berckmans, Catalogue, 1895.

Bloon Piem No. 4.
"This corresponds with the description of Honsmomo of the Agricultural Bureau of Tokio. Fruit medium, dark red flesh; July 10th to 25 th ; tree of erect growth."- P. J. Berckmans, Catalogue, 1895.

Botan : See Abundance, Babcock, Berckmans, Willard.
Botankio: See Abundance and Babcock.
Burbank (Van Deman, Rept. Dept. Agric., 1891, p. 392.)
Fig. on title page and Nos. 3 and 4.
Medium, to rather large upon thimed trees, conical to oblong in form, the point generally blunt; ground color orange-yellow mostly

3.- Burbank From I.uther Burbank, Santa Rosa, Cal.
rather thinly overlaid with red and showing many yellow dots, often more or less marbled, in the sun becoming rather dense red; flesh firm and meaty, yellow, not stringy, rich and sugary; cling. As compared with Abundance, it is a week or two later, more oblong and lacking the peculiar point of Abundance, flesh firmer and not inclined to be stringy, and sweeter, lacking the slight muskiness of Abundance. Builank is shaded and splasherl with dull maroon-red and is much spotted, the yellow under-color being conspicnous. Abundance is a vivid pink-red, the yellow ground conspicuous only on the shaded side. In 1895 , the Burbank on our gromids was less than a week later than Abundance, but the very dry season may have ripened it ahead of its nsual season.

A specimen of the Burbank sent ly Luther Burbank, Santa Rosa, Cal., is shown natural size in Fig. 3. It is very molike the Burbank
as grown in the east. The size is greater, and the color a deep claret red with minute golden dots. The flesh was very thick, firm and meaty, and of excellent quality.

The variety is a most sprawling, flat-topped or even drooping grower (Fig. 4); and this habit distinguishes the variety from all other Japanese plums which we have grown. The tree should probably be headed-in when young, to keep it within bounds. The fruit generally needs thinning, for the tree is enormously productive.

The Burbank was imported by Luther Burbank, Santa Rosa, California, late in 1885, and named for him by H. E. Van Deman.

See Rept. Dept. Agr. 1891, p. 392, where it is also given a good colored plate. Generally introduced in 1890.
The Russian plum 20 M , sent me by Professor Budd, is indistinguishable from Burbank. We have two trees of, it, and they bore two or three bushels of plums this year.

Burbank No. 1.
Said to resemble Berckmans. I do not know it.

Burbank No. 2.

"Described as of medium size, regular and globular in shape. yellow over-spread with purplish carmine, with a yellow very juicy flesh which is fine-grained and of good quality; pit nearly free. Very early. This variety is not reported in any recent tests."Bulletin 62.
"Burbank No. 2, from, Berckmans, fruited in 1592 and since; no apparent difference betreen it and our Abundance."-Stark Bros., 1895.

> Burbank No. 3: See Late Plood.

Burbank No. 4: See Meikes.
Berbank No. 11.
I know this only from specimens received the past summer from Stark Pros, Louisiana, Missouri. It looks very much like • Willard.

5.-Chalot.

Freestone or very nearly so. Drops easily. Season of Red June, and said by Stark Bros. to be not worth propagating.

Сhabot (Burbank). Fig. 5.

Medium to large (size of Purbank), ohlong-conical ; under-color orange, deeply overlaid with light cherry-red, the smmy side dark red, and many minute golden dots showing through the red orercolor; tlesh yellow, rather soft, not stringr, sweet and of excellent quality, with no almond flavor; skin scarcely sour; cling. An excellent plum, ripening early in September in this latitude.

Imported from Japan by Mr. Chabot, of Berkeley, California, lout introduced to the trade by Luther Burbank in 1886. See Chase.

Chabot Blood.

"A novel and remarkable addition to our fruits. The size is medium, stem very short, and of a brick red or cinnabar color; flesh firm, fine brick red color; very juicy and sweet, and with a peculiar aromatic flavor."-Catalogue California Nursery Co., Fourth Edition (recent: no dute).

Chase (R. G. Chase Co., Cataloque, 1893). Fig. 6.
Hattonkin, of some.
Yellow Japan, of some.
Medium to large, heart-shaped; under-color yellow (like Abundance), deeply overlaid with dull red and showing many golden dots, finally becoming uniformly dull red all over; bloom thick; flesh yellow, firm, rather juicy, sweet and good; skin rather tough; cling. The coloring is that of the Burbank, but the plum is more pointed and it is two or three weeks later, ripening in this latitude the first or second week in September.

This very excellent plum was bought by the Chases for Abundance, but is about a month later than that variety. It is of the Chabot type and may not be distinct (see remarks under Bailey). The tree is a strong upright-spreading grower, and productive. It is considerably disseminated in New York under the name of Yellow Japan, although it is a red plum. Chase Co. speaks of the tree as "a good grower" and blooming "two weeks later than Abundance, thus escaping the spring frosts."

Delaware (Burbank, Catalogue, 1893).

"Roundish, conical, medium in size, purplish bronze in color with a white bloom; flesh wine-color, juicy, combining many flavors. Trees semi-dwarf, very productive. Catalogued amongst Luther Burbank's novelties, 1893. Said to be a cross of Satsuma and Kelsey."-Bulletin 62.
Douglas (R. H. Price, Bull. 32, Texas Eup. Sta., 1. 488, 1894).
Munson, of Bailey, Bull. 62, p. 27.
Hytankayo, of Whitaker.
Hattankio, of some.
"Size rather large, conical, yellow with purple tinge; skin tough; flesh firm, flavor very good. Tree upright vigorous grower,
hardy and very productive. Nearly free from attacks of insects and fungi."-Dr. Whitaker, Tyler, Texas, in Bull. 32, Texas Exp. Sta.

Imported and introduced by Dr. Whitaker. The name Munson which I proposed for this plum in Bulletin 62, is antedated by another Munson plum of the Chickasaw type.

> Earliest of All (Stark Bros.).
> Yosebe, of some.
"Small to medium, globular; color a solid dark red; quality good; pit small, free. Fully ten days earlier than Red June. It drops as soon as colored. Our idea in growing this variety for market would be to shake the fruit on a sheet and market in quart berry boxes. Very productive. Leaf very narrow, conduplicated and somewhat smaller than the Red June."-Stark Bros. See Uchi-Beni.

Engre.

Fruit small, globular, red, almost exactly like Willard and of same season; poor. It seems to differ from Willard in foliage, however. The leaves are short and elliptic, whilst those of Willard are long and obovate. Little known. Two varieties seem to be passing under this name.

Excelsior (Cherokee Nupsery Coo.).

"A seedling of the Kelsey. Fruit large, round, $1 \frac{1}{2}$ inches in diameter; color reddish purple, with heavy blue bloom, flesh sweet, juicy, melting and of excellent quality. Ripens early in June. The trees of this variety had more fruit last year than any other variety, either native or foreign. It is undoubtedly a cross between the Kelsey and some variety of the Chickasaw type. The tree is a very strong grower, symmetrical and handsome; a valuable variety."-Catalogue, Cherokee Nursery, Co., Waycross, Ga.

The fruits which I have seen were an inch and a half in diameter, round-conical, with a distinct small sharp point; stem slender; color very loright dark red with many minute gold dots; flesh soft and watery, sweet; cling. The fruit and foliage suggest only the Wild Goose type (Prumus horlulan(I), but the pit suggests Kelsey.

Furugiya.

Name given, without description or comment, by J. L. Normand, Marksville, La., in "Special Circular of New Japan Plums and Rare Novelties," 1895-6.

Georgeson (Bailey, Cornell Bulletin 62, p. 23), Figs. 7 and 8.
Hattonkin, No. 1.
Hattonkin, of some.
Hattankio, of some.

7.-Georgeson.

Medium in size, or fairly large when thinned, variable in shape but usually irregularly globular with a flattened apex but sometimes obscurely conical; color a clear rich uniform yellow, with a thin white bloom and minute whitish dots in the skin; flesh very firm, not juicy nor stringy, sweet and good; skin sour; strong clingstone. Ripe at Ithaca in 1895 the last days of August and first days of September, one or two weeks later than Burbank. I had it from Niagara county, New York, however, early in Augnst. A very long keeper. Fairly productive.

Tree (Fig. 8) a sprawling, forked grower, intermediate in form between Abundance and Purbank. The variety is well distributed in Western New York, under a variety of names. Inported by II. II. Berger \& Co., San Francisco, and brought to notice chiefly by J. L. Normand, Marksville, La.

Golden (Burbank Catalogue, 1893).
Said to be a cross of Robinson (a Chickasaw) and Kelsey.

> Hale (G. H. and J. H. Ilale, 1895).
> "J," of Burbank.
> Prolific, of Burbank.

A very handsome, large round-cordate plum, usually lop-sided; orange, thinly overlaid with mottled red, so as to have a yellowish red appearance, or, in well-colored specimens, deep cherry-red with yellow specks; flesh yellow, soft and juicy (not a good keeper', not stringy, with a very delicious, slightly acid, peachy flavor; skin somewhat sour; cling. Very late. I know the fruit only from specimens sent at two or three different times by Luther Burbank. To my taste, these specimens lave been the best in quality of all Tapanese plums, although Mr. Burbank remards it as inferior in this respect to Wickson (which see). Seedling of Satsuma.

Hatifanimo: Sce Douglas, Georgeson, Kerr.
Hatronkin No. 1: See Georgeson.
IIAtponkin No. 2 : See Kerr.

Helkes (Bailey, Comell Bulletin 62, p. 23, 1894). Burbank No. 4.

Much like Late Blood, but rather more flattened on the ends, or oblate, mostly darker in color, the flesh acid. Little known.

Named for W. F. Heikes, of the Huntsville Nurseries, Huntsville, Ala.

Housmono.

Name inserted in "Special Circular" (1895-6) by J. L. Normand, without note or comment. (Misprint for Honsmomo? See Blood No. 4).

Hovo Samo.

Apparently identical with Bailey, which see. Hptankaro: See Douglas.

Juicy (Burbank, Catalogue, 1893).

Cross of Robinson (a Chickasaw plum) and Kelsey.

> Kelsey (IV. P. Mammon de Co., Oukland, Cal.).

Very large (2-3 in. diam.) and long-pointed, tapering gradually from a heart-shaped base, usually somewhat lop-sided, with a deep furrow-shaped suture ; color, bright red-purple on a yellow ground, more or less marked with dots, very showy; flesh light yellow and rather firm, rich and pleasant in flavor, free or only slightly clinging to the small stone, more or less hollow above the pit.

The first Japanese plum introduced into this comentry, but it did not attract much attention outside of California, until ten or twelve years ago. It was figured by Mr. Vau Deman in Department of Agriculture Report for 1886, plate X., and again (colored) in report for 1887, plate I.; in Wickson's California Fruits, p. 351 ; and in my Bulletin 62. Its behavior is not uniform in different years. F. M. Ramsay, of Lampasas, Texas, writes me that in 1888 his Kelsey ripened in September, in 1889 in July, and in 1890 in June. L. A. Berckmans, Georgia, says* that in 1887 the Kelsey did not mature until October 1; in 1889 it ripened in July; in 1890 it "began to ripen the latter part of July and continued for eight weeks," and on October 1 perfectly green specimens were on the trees. It has a more or less prolouged indefinite season of bloom.

Luther Burbank (Santa Rosa, Cal.) writes: "Kelsey blooms here all winter, from December to March." In California the tree is said to be nearly evergreen.

There are still the most conflicting reports respecting the hardiness of Kelsey. Some persons declare that it fruits in New York; but every report, when run down, shows that the party is mistaken in the variety. The furthest north that I have known Kelsey to fruit is in extreme southern Delaware. J. Yan Lindley says" that in 1893 in North Carolina his Kelsey trees "were loaded with fruit, large and tine, quality of the very best." It ripened from the first to the last of Angust. "The Kelsey," he continues, "stands at the liead for caming and preserving, and sells in any market at fancy prices, but it comes into competition with other fruits grown north." Kelsey has been killed by cold in northern Texas; on the other hand, the trees are said to have come through the winter with little injury in Iowa. My first experience with the Kelsey was at Lansing, Michigan, where the trees killed to the snow line the first winter. Professor Tamari, of Tokio, says that the variety is too tender for the northern plum sections of Japan. Mr. H. E. Van Deman, formerly pomologist of the Department of Agriculture, wrote me upon the hardiness of Kelsey, in 1892, as follows: "My present opinion is that it is about as hardy as the fig. All reliable information that has come to this office up to this date is to the effect that it is not suitable to the northern states because of its tenderness. I know from personal observation that between here [Washington] and Baltimore trees have been seriously injured by winter-killing. Occasionally I have heard of Kelsey plum trees withstanding severe cold, but in every case yet followed up, it has been found that the trees were not correctly named." I am inclined to think, however, that the Kelsey will sometimes endure a New York winter if the wood has been well ripened ; but I doubt if it will ever bear in this state.

The following correspondence to the Culiforniat Fruit Grower (Sept. 1t, 185.5) still further explains the vagaries of the Kelsey:
"The Kelsey Japan plum is surely erratic in disposition, - more or less reliable.
"My experience teaches me, however, that it hears much more regularly when in close proximity to some other variety of plum.
"This is very marked, not only in outside rows, but in the center of the block. Wherever I have an old tree of Satsuma, immediately surrounding that tree the Kelseys bear well.
"It does better with rery little pruning.
"It must be sprayed with a good fungicide once or twice a year to keep in check the shot-hole fungus.
"It succeeds best iu heavy, moist land, and preferably in the coast or bay counties.
"In marketing it, great care must be taken as to when the fruit is picked. Some seasons it colors much more than others, hence the danger of waiting for color.
"I pick mine the very hour (if possible) that the slighest color is apparent. They will color up afterwards in the boxes before they reach destination - referring, of course, to the eastern markets.
"My trees are picked over seven or eight times.
"When the fruit sets very thickly it must be well thinned.
"The prices have been very satisfactory to me. I am well repaid for the extra labor, the fruit netting me four cents to eight cents per pound.
"Conditions and surroundings vary so much that I would not advise one way or the other. Almost any variety of plum or prune could be grafted on Kelseys, where they are not profitable. Why not use Robe de Sargent, especially if the root is peach?
"A double-worked Robe de Sargent tree is best, as it makes a larger tree, and larger fruit as well as more of it.
"It will not unite directly on the peach, as is generally known, hence the suggestion to double work, using the Kelsey on peach root.

:LEONARD COATES.

"N NAPA, Cal., September 9, 1895."

George S. Higby, Poway, San Diego Co., California, writes as follows of the Kelsey: "I had the honor, I believe, of exhibiting the first specimens of Kelsey in San Diego county. The Kelsey is fast becoming a popular fruit in this county, and is adapted both to the sea-coast and inland valleys. I think that in the near future it may take a position equal to the French or California prune as a dried fruit. A well ripened Kelsey has very few superiors."

Kerr (Bailey, Cornell Bulletin 62, p. 25, 1894).
Hattonkin No. 2.
Hattonkin, of Berckmans and others.
"Medium to large, generally". very strongly conical with a deep suture; color orange-yellow, with a creamy bloom; flesh juicy and sweet, good in quality; cling; early.
"An excellent variety, but not tested in the north. It varies considerably in shape, even on the same tree, occasional specimens occurring without the point. Mr. Berckmans writes me that in 1890 the round form seemed to predominate, while in 1892 the pointed or normal form alone was produced. Imported from Japan by Frost \& Burgess, Riverside, California. Named for J. W. Kerr, of Denton, Maryland, one of the most intelligent plum growers of the central states." - Bulletin 62.
"Kerr is not the earliest of the large-sized plums, but most excellent in quality. It partakes more of the Green Gage flavor than any other of the group." - P. J. Berckmans, 1895.

Figured in Bulletin 62.

Late Blood (Burbank, in eurly lists).

Hale, of Bailey, Bulletin 62.
Burbank, No. 3.
Medium in size, globular or slightly flattened, scarcely if at all pointed, rather light bright uniform red; flesh red, firm and sweet, tightly clinging to the pit.

Imported by Luther Burbank in 1885, together with Heikes, which see. Mr. Burbank writes me that he disposed of this and No. 4 after they had fruited in the nursery row, and that he now has no knowledge of them. Very much like Satsma, but a few days later and appears to bloom earlier; also less pointed, and somewhat different in leaf. Little known.

Late Hattankio (Cherokee Nursery Co., Waycross, Ga., in letter, 1894).
"Color pale orange yellow, heavily covered with a white bloom. Suture very slight. Flesh dark yellow, very firm and somewhat dry with a slight astringency. Gencrally of poor quality and irregular shape. Ripe with us Jine 15 th to 20 th."

Long Frutt (Burbank).
Very small, roundish in shape, red, early and said to be a shy bearer. Thonght by some to be the same as Engre. Others say that it is the same as Red June. Possibly two things are propa-
gated under this name. Stark Bros. write of it: "Equally small or smaller than your cut of Berger [in Bull. 62], and very acrid." Imported by Luther Burbank in 1885, but very little known.

> Maru (Burbank). Fig. 9.
> Masu and Massu.

Medium in size, depressed globular with an obtuse point; very dark uniform maroon-red with numberless minute golden dots;

flesh deep yellow, rather soft, with a musky flavor which is not disagreeable, sweet, but quality only medium, skin sour; cling to half cling. Often acid in flavor. Season of Abundance. Said to be very hardy in bud.

Imported by Luther Burbank in 1885. Maru is Japanese for round.

Mikado.

"It is a large, golden yellow plum when ripe, and samples measured seven and one-quarter inches in circumference. It is considered now as the most profitable variety that is propagated in the valley, ripening early, the trees good bearers and the fruit bringing very high prices. Last season they brought as high as $\$ 11$ per box in the eastern markets, or over fifty cents a pound, and this season bringing from $\$ 5$ to $\$ 7$ per box."-Vacaville (Cal.) Reporter, quoted in California Fruit Grower, xiii. 198 (Sept. 2, 1893).
"A very large plum, of greenish yellow color, nearly round, very little suture, a very rapid grower, more so than any other. This is the most remarkable of all plums for its enormous size, beauty and good quality. It is probably the largest plum in existence; ripens fifteen days after Yeddo. I have had specimens of it larger than any Kelsey, or as large as any common•size Elberta peach."-J. L. Normand, Marksville, La., Special Circular, 1895-6.

Munson: See Douglas. Nagate no Botankyo.

"Early."-J. L. Normand, Special Circular, 1895-6.

> Normand (J. L. Normand, Catalogue, 1891).
> Normand Yellow.
> Normand's Japan.

Medium to large, obtusely conical with a heart-like base and short stem ; color clear golden yellow ; flesh firm and meaty, yellow, of high quality; the small pit free. Very prolific, and ripens just after Berkmans and Abundance. Allied to Georgeson and Kerr; less conical than the latter.

Imported by J. L. Normand, Marksville, La., and by him disseminated under the name of Normand's Japan in 1891. Figured in Bull. 62.

October Purple (Burbank).

A very large black-purple heart-like plum, with no splashes of lighter color; flesh amber-yellow, red beneath the skin, very juicy, but yet firm, somewhat stringy, very sweet and good; skin sour ; cling. Very late.

Ogon.

Fruits medium in size, flattened at the ends or tomato shaped, not at all conical, the suture prominent; color clear lemon with a light creamy bloom giving the fruit a whitish appearance; flesh thick and very meaty, not juicy, firm and keeping long, of second or third quality, entirely free from the stone. Tree only moder-

ately productive in New York, or in some regions even shy. Early, ripening in New York from late July to the middle of August. Excellent for canning.

Imported by H. H. Berger \& Co., San Francisco. One of the best known varieties, but evidently not increasing in popularity in this state. Figured in Bulletin 62.

O-Hatankyo.

"Said to be early."-J. L. Normand, "Special Circular," 1895-6.
Orient (Stark Bros., Catalogue, 1893).
Red Nagate, of some.
"Large, broadly conical; red, very highly colored; flesh yellow, of high quality. Ripens soon after Burbank. Introduced in the

fall of 1893 by Stark Bros. Lonisiana, Mo. Figured in American Gardening xiv. (1893), p. 363."-Bulletin 62.

Possibly the same as Chabot.
Red June (Starth Bros., Catalogue, 1893). Figs. 10 and 11.
Red Nagate, of some.
Shiro-Smomo, of some.
Nerlium to nearly large size, cordate and very prominently elongated at the apex, the suture deep, generally lop-sided, deep vermil-ion-red all over, with a handsome bloom, very showy; flesh light
lemon-color or whitish, firm and moderately juicy, not stringy ; very slightly subacid to sweetish, the skin slightly sour, of good pleasant quality although not so rich as some; cling to half cling; pit small.

A very handsome plum, ripened at Ithaca in 1895 from July 28 to August 1, nearly a week later than TVillard, and a week earlier than Abundance. By all odds the best Japanese plum ripening before the Abundance which I have yet tested. Tree (Fig. 11) up-right-spreading, rigorous and hardy, about as productive with us, so far, as Abundance. I thought that the quality of our specimens last season were nearly or quite equal to that of Abundance.

Imported by H. H. Berger \& Co., San Francisco. The nomenclature of the variety here described is much confused. H. H. Berger \& Co. write me that the true Japanese Red Nagate has red flesh, which this has not. The name Red Nagate is applied to such different varieties, and there is such an abseuce of opinion as to what the true Red Nagate is, that I have adopted Red June as the only tenable name.

This is the variety to which the name Shiro Smomo is oftenest applied, but it is neither a Smomo plum nor is it white (Shiro means white), thus affording a curious instance of the utter confusion of the American application of the names of the Japanese plums. Professor Georgeson tells me that the Shiro Smomo of the Japanese is a small white early plum with yellow flesh, somewhat cling and of medium season. I do not know if it occurs in this country; and it is probably not worth while to endeavor to fit the name to any variety. The Ogon is probably the nearest to it of any variety in this list.

Sagetsuna.

Name given in J. L. Normand's "Special Circular'," 1895-6, without comment.

Satsuma.
Blood.
Yonemomo.
Size medium to rather large, broadly conical with a blunt, short point, suture very deep; color very dark and dull red all over, with greenish dots and an under-color of brown-red ; flesh blood-red, rather coarse and acid, fair to good in quality, tightly clinging to the pit; midseason; productive.

Imported by Luther Burbank in 1ss6. Figured in Pomologist's Report, Rept. Dept. Agr. 1nst, Plate I. (colored), and also in Wickson's ('alifornia Fruits, 351, the latter copsied from the former. I have never seen a Satsuma with such a small pit as represented in these cuts, nor of the same shape. The froit appears to be uniform in shape and markings, and it is figured from life in Bulletin 62. The Satsuma is hardy in the northern states. Stark Brus., Louisiana, Mo., write that it blooms too early with them and is not so hardy as some others. This belongs to the Beni-Smomo group of Japanese, which is characterized by red flesh. Season about with Burbank. Usually too sour to be agreeable, and the color is such that the market will probably object to it. Very long keeper.

Sea-Egg (Burbank).

Mr. Burbank sends me a very handsome and well-marked Japanese plum under this name, which is globular heart-shape in outline, and mottled-red; flesh very thick and meaty, orange-yellow, sweet and excellent, with a slight muskiness; cling.

Sarro Smomo: see Red Nagate and Berger. Shipper (Burbank).
Fruit oval, light red with a white bloom; flesh very firm, yellow, sweet and juicy; long keeper. Tree sturdy, but a moderate grower. Described with Burbank's Novelties, 1893. Scedling of Satsuma.

Shira pa Bene.

"Similar to Satsmm, lat much enrlier, ripening in July; fruit blood-red through."--J. II. Ilamnes (Indiana) in Prairie Farmer, Dec. 21, 1895, 8.

> Strawberky: see Uchi-Beni.
> Sweet Boran: see Berekmans.
> True Shefer Botan: See Derckmans.
> Uchi-Beni.
> Ura-Beni.
> Honsmomo.
> Strawberry.

Medium in size, heart-shape and somewhat pointed, bright carmine red; flesh red and fine-grained, somewhat acid, rather poor in
quality; cling; rather early. Little known. Uchi-Beni means inside red.

Stark Bros. write me as follows, under date of August 12, 1895 "This is a small plum, similar to the variety you describe as Berger, and is the variety we called Strawberry when we propagated it; but we discarded it two years ago. Ripens a few days after the Earliest of All, but is not so large nor so good quality and is not at all productive, while the Earliest of All is remarkably productive."

White-Fleshed Botan : See Berckmans. Wasse Botonkyo.

Name given, without comment, in J. L. Normand's "Special Circular," 1895-6.

Wabse Smomo.

"Said to be very early."-J. L. Normand, "Special Circular," 1895-6.
$W_{\text {assu. }}$
Name only, in J. L. Normand's "Special Circular," 1895-6.

Weeping Blood.

"This is a valuable acquisition, said to produce a blood-red plum of good quality. The tree must be seen to be appreciated. I have them here on my experimental grounds, growing finely; I budded them at different heights on straight peach stock four to eight feet from the ground, with slender limbs curving down gracefully like the Tea's Weeping mulberry. Single trees set out on the lawn look grand."-J. L. Normand, "Special Circular," 1895-6.

White Kelsef.

"This is a duplicate in size and shape of the common Kelsey, except it is of a pale, creamy color, almost white when ripe; does not rot before maturity like the Kelsey, and much earlier to ripen and later to bloom than it; delicions in flavor."-J. L. Normand, "Special Circular," 1895-6.

> Wickson (Burbank, Catalogue, 1894). Perfection, of Burbank.

A remarkably handsome and very large, deep maroon-red plum of the Kelsey type. Long cordate or oblong pointed ; flesh firm,
deep amber-yellow, clinging to the small pit. There is apt to be a hollow space about the pit, as there is in Kelsey. I have had the plums from Burbank three times, all of them in good condition, and have tested them when in prime condition; but each time the fruit has had such a pronounced musky-ahmond flavor that I could not enjoy it. Mr. Burbank, however, regards it as superior to Hale in quality. Excellent keeper. Cross of Burbank with Kelsey, Burbank furnishing the sced.

Staik Bros. report that nursery stock of this variety has stood 22° below zero at their place without injury.

Willard (IF. F. Heikes, 1893). Fig. 12.
Botan No. 26.
Medium in size, spherical to oblong in general outline, but prominently cornered or angled, never pointed, the sinus very slight but stem cavity deep; color bright claret-red with many minute yellow dots; flesh rather firm, whitish, of poor quality ; freestone. A strong, vigorons and hardy tree, productive and one of the earliest plums yet tested in the north, ripening in Central New York late in July. In appearance the fruit is remarkably like some of the improved types of I'rumus Americana. The fruit is handsome when well ripened, and keeps two to three weeks if picked when it begins to color, but the quality is almond-like and poor-so poor that I can not recommend it. Fruit picked in 1895 on July 16, when it just began to color, kept until Angust 6, the specimens shriveling rather than rotting.

Cions procured from California six or seven years ago by S. D. Willard, Geneva, N. Y., and nameel for him by W. F. Heikes in Practical N'urseryman, June, 1893. It was undonbtedly imported from Japan, but the history of it is lost. Mr. Burbank writes: "I had the Willard sixteen years ago. Not valuing it very highly, I discarded it many years ago, althongh it may prove valuable as an early variety; but I would prefer Stark Bros.' Red June, which ripens at the same time, but even that variety, though handsome, is poor in quality."

Yedio.

"Mnch like White Kelsey, which it resembles in some respects, but it is of a deeper yellow color and ten days later to ripen, and
very attractive and finc-flavored plum."-J. I. Tormand, "Special Circular," 1895-6.

$$
\begin{aligned}
& \text { Yellow Japan: See Chase. } \\
& \text { Yonemomo: See Satsuma. }
\end{aligned}
$$

A small short-oblong-pointed fruit, with slender stem and almost no suture; deep purple-red all over; flesh dark yellow, soft, subacid, with a pronounced almond flavor; pit small and free. A handsome very early plum, but the quality poor. Falls from the tree as soon as ripe, leaving the stem on the tree. Ripe here a week earlier than Willard.

Tree an upright grower, with reddish twigs and light-colored foliage. Leaves comparatively surall and rugose, somewhat conduplicate, very prominently serrate, yellowish green. Stipules conspicuous. Tree very unlike other Jamuese phons, when in leaf.

There are two or three varieties passing as Yosebe, and nobody knows which one is "entitled to the name. Neither do I know
whether the proper orthography of the name is Yosebe or Yosobe. It is probable that all the varieties have been given separate names, which can be used as soon as the characteristics of the varieties are understood.

Apt to be confounded with Berger. The Berger is small and nearly or quite globular, with a smooth circular cherry-like pit; Yosebe is distinctly cordiform and a half to twice larger, with a roughish and lenticular pit. The two are also very unlike in foliage.
L. H. BAILEY.

BULLETIN 1O7-January, 1896.

Corne11 University-Agricu1tural Experiment Station, ITHACA, N. Y.

ENTOMOLOGICAL DIVISION.

WIREWORMS

AND

THE BUD MOTH.

By M. V. Slingerland.

ORGANIZATION.

Board of Control-The Trustees of the University.

STATION COUNCIL.
President, JACOB GOULD SCHURMAN. 3
Honorable A. D. White. Trustee of the University.
Professor I. P. ROBERTS President State Agricultural Society.
Professor I. P. ROBERTS Agriculture.
Professor G. C. CaLDIVELL Chemistry.
Professor James Law Veterinary Science.
Profersor A. N. PRENTISS Botany.
Professor J. H. COMSTOCK. Entomology.
Professor L. H. Bailey Horticulture.
Professor H. H. Wing Iairy Husbandry.
Professor G. F. ATKINSON Cryptogamic Botany.
OFFICERS OF THE STATION.
I. P. ROBERTS Dircctor:
E. L. Williams Treasurer.
H. W. SMITH Clerk.
ASSISTANTS.
M. V. SLINGERLAND Entomology.
G. W. CAVANAUGH Chemistry.
E. G. LODEMAN Horticulture
L. A. CLINTON syricuture.
E. J. DURAND Botany

Office of the Director, 20 Morrill Hall.
The regular bulletins of the Station are sent free to all who request them.

BULLETINS OF 1896.

106. Revised Opinions of the Japanese Plums.
107. Wireworms and The Bud Moth.

EXPLANATORY NOTE.

In Bulletin 33, issued in November, 1891, Professor J. H. Comstock and the writer gave a detailed account, occupying 80 pages, of nearly three years of experimentation with wireworms. The bulletin embodied the results of our efforts to discover a practicable method of preventing the ravages of these pests, and a study of the life-history of several common species.

In Bulletin 50, issued in March, 1893, the writer devoted 26 pages to a detailed discussion of the bud moth, one of the most destructive insect pests in the orchards of western New York. Our two years' study of the insect enabled us to correct several erroneous statements regarding its habits and life-history which had a very practical bearing on the method of combating it.

Wireworms had long ranked anong the worst insects pests of the general farmer; the bud moth threatened to "nip in the bud" many a prospective crop of fruit; and unfortunately what little definite and accurate knowledge has been published regarding these insects was widely scattered and inaccessible to the farmer or fruit grower. Therefore, as our bulletins combined these previously ascertained facts with many new ones, the results of much original investigation, the demand for the bulletins was so great that the entire edition of each was exhausted in less than a year. So that during the past two or three years that these bulletins have been "out of print," the information they contain has been inaccessible to the hundreds of correspondents who have desired information regarding wireworms and the bud moth.

Although but few observations have since been made on these insects, it seems advisable, in consideration of the above facts, to again discuss them. In the following pages we, therefore, give, in a condensed form, the information contained in Bulletins 33 and 50 ; what few new facts we have seen recorded are also included in their proper connection, thus bringing the information up to date. Several new figures enliven the pages.

M. V. SLINGERLAND.

CONTENTS.

Wireworms. Pages 73-91.
I. Introduction. Page 73.
II. Methods of experimentation. Page To.
III. Experiments. Pages 75-85.
A. Protection of seeds. Pages $76-78$.

1. By a coating of Paris green and flour. Page 76.
2. By a coating of tar. Page 76.
3. By soaking it in a solution of salt. Page 77.
4. By soaking it in a copperas solution. Page 77.
5. By soaking it in a chloride of lime and copperas solution. Page 77.
6. By soaking it in kerosene oil. Page 77.
7. By soaking it in turpentine. Page 78.
8. By soaking it in a strychnine solution. Page 78.
9. By soaking it in other poisonous substances. Page 78.
B. Destruction of the larvæ. Pages 78-83.
10. By starvation. Page 79.
a. By clean fallow.
b. By supposed immune crops, like buckwheat, mustard and rape.
11. By insecticides, as kerosene, crude petroleum, poisoned dough, bisulphide of carbon, salt, kainit, muriate of potash, lime, chloride of lime, and gas lime. Page 80.
C. Destruction of pupæ and adults. Pages 8:3-85.
12. Fall plowing. Page 83.
13. Trapping. Page $8 t$.

General summary of the methods of combating Wireworms. Page 85.
IV. The transformation of several species of Wireworms. Pages 85:-91.

1. The wheat wireworm (Ayriotes mancus). Page S6.
2. Asaphes decoloratus. Page 87 .
3. Melunotus communis. Page 88.
4. Drasterias elegans. Page 39.
5. Cryptolypmus abbreviatus. Page 90.

The Bud Mote (Tinetocera ocellana). Pages 92-101.
Its history and distribution. Page 93.
How it is spread. Page 93.
Its name and classification. Page 93.
How its presence is indicated. Page 94.
Its appearance. Page 94 .
Its life history. Page 95.
Its appearance and habits in the spring. Page 95.
Pupation. Page 97.
Habits of the moth. Page 97.
Egg-laying. Page 97.
Summer habits of the caterpillar. Page 98.
Ilibernation. Page 98.
Number of broods. Page 99.
Its natural enemies. Page 99.
Methods of preventing its ravages. Page 100.

Wireworms.

RESULTS OF EFFORTS TO DISCOYER A PRACTICABLE METHOD OF PREVENTING TIIE RAVAGES OF THESE PESTS, AND A STUDY OF THE LIFE HISTORY OF SEVERAL COMMON SPECIES.

I. Introduction.

Among the most prominent of the pests that infest field crops are the insects commonly known as wireworms. These are long slender grubs of a yellowish-white color and with unusually hard bodies. Their wire-like form and the hardness of the body has suggested the common name. Two wireworms are shown, natural size, among the roots in figure 10 ; one is represented enlarged in figure 14. Unfortunately the term wireworm has been misapplied to certain animals-the millipedes which are not true insects but belong to a different class in the animal 14.-A wireworm, twice natural size. kingdom. Figure 15 represents a millipede. The following pages do not treat of millipedes.

The true wireworms are the joung of click-beetles, or snappingbugs as they are more commonly termed. Our common kinds of
 click-beetles are mostly small or of medium size; a few are larger. Two are shown on the corn plant in figure 16, and figures 17 and 18 represent others. They are usually of a uniform brownish color; some are conspicuously spotted. More than five hundred kinds of click-beetles have been described from North America. "There is hardly a country child that has not been entertained by the acrobatic performances of these long, tidyappearing beetles. Touch one of them and it at once curls up its legs and drops as if shot; it usually lands on its back, and lies there
for a time as if dead. Suddenly there is a click, and the insect pops up into the air sereral inches. If it comes dorn on its back, it tries again aud again until it succeeds in striking on its feet, and then runs off. We remember well carrying these creatures into the old district schoolhouse, where all lessons had to be learned from books, and where nature was never given a chance to teach us anything. Here with one eye on the teacher and one on this interesting jumper

17.-A clickbectle.
 laid on our book behind the desk, we found a most fascinating occupation for the tedious moments. But the end was always the same; the beetle jumped so high that it betrayed us and was liberated, and we were disgraced." (From Comstock's Manual for the Study of Insects, p. 543).
Many species of wireworms are not at all injurious to agriculture, but certain others live in the soil and feed on the roots of plants, and on seeds. The lattor species are f ten 18, The Eyed Elater (and ingly injurious; and as they work 16. - A corn-plant growing in a ruot-cageinfested in the ground out of sight, they by wireworms and click-becties (from a are vely difficult to combat.
specimen in the Cornell Insectary). are
During three years $(1889,1890$ and 1891) we made numerous experiments to ascertain a practical method of preventing the ravages of these pests. Unfortunately our eflorts were not attended
with that degree of success for which we had hoped, and thus the chief object of our investigations was not accomplished. But we did succeed in proving the futility of many methods that have been very generally recommended for the destruction of these pests; and it seemed worth while to publish the detailed results of our experiments, as given in Bulletin 33, for they might save farmers from making expensive efforts that would surely bring no adequate returns.

Much has been written upon how to combat wireworms. And yet, at the time Bulletin 33 was written (November, 1891), there had not been published the results of a single extensive series of carefully conducted experiments. Professor Forbes has recently published some results he obtained in 1888 and 1891 (Seventh Report, p. 48-49), and these will be noted in connection with the discussion of our experiments. Most writers on this subject have reasoned and written, but have not tested their theories.

II. Methods of Experimentation.

Under this heading in Bulletin 33, we described and figured the different kinds of cages used in our experiments. As they are of general interest to the working entomologist only, we will not again discuss them. Suffice it to say in this connection that every precaution was taken to keep the wireworms under as nearly natural conditions as possible, and the experiments were conducted in a systematic and careful manner. To eliminate possible sources of error, comparative or check cages were used in each experiment; in these check experiments the cages were the same as the others, only they remained untreated. So far as practicable, every method was applied as it would be in the field.

III. Experiments.

Both defensive and offensive measures were used in our experiments. Thus we tried to protect seed from the ravages of the wireworms, and we also tried to destroy the insects in each of three different stages of their existence - as wireworm or larva, pupa, and adult; no eggs were obtained upon which to experiment. The scope of our experiments was necessarily large as they embraced nearly all the methods that we found recommended in the literature of these insects. Only the general results can be given here; they
were published in much detail in Bulletin 33. Nost of them were made in 1890 and 1891, while some were begun in 1889. The results of Professor Forbes' recently published experiments will also be included in their proper connection in this discussion.

A. PROTECTION OF SEEDS.

The most conspicnous of the injuries cansed by wireworms, and the one most keenly appreciated by the farmer, is the destruction of the seed. Thus farmers have given more attention to protecting their seeds than to any other method of combating wireworms. Seeds have been coated with various substances in the effort to render them distasteful or poisonous to the insects, and several methods are strongly recommended. But as none of the recommendations were based on carefully ascertained facts, we tested each one.

1. Protection of Seed by a Coating of Paris Green and Flour.

This method promised to be a most desirable one; for, if it resulted as we confidently expected, not only would the seed be protected but the wireworms would also be killed.

We coated kernels of corn with varying amounts of Paris green and flour (in one case sugar was added), and carried on a large number of experiments corering a period of nearly two years. The only apparent result of the coating was to retard the sprouting of the seeds. We saw wireworms destroy several of the coated seeds without apparent injury to themselves.

In 1888, Professor Forbes found that corn which "was covered with a coating of the green poison, was eaten freely by some of the wireworms without killing them." In 1855, he also mixed Paris green with the soil in which the corn was planted without any injurious effect on the wireworms, but the corn failed to grow.

It is thus evident that it is useless to try to protect seed from the attacks of wireworms by coating it with a Paris green mixture.

2. Protection of Seed by a Coating of Tar.

It has long been a common practice anong farmers to coat their seed corn with tar to prevent its being attacked by wireworms. However, no one has demonstrated that they will not attack corn thus coated.

Our results from two years of experimentation show that sometimes larve will attack seed corn even when it is completely coated with tar. In actual practice, but ferw of the kernels would get a complete coat; it requires considerable disagreeable labor to apply the coating; germination is considerably retarded, even when the kernel has been previously soaked in water; and corn thus treated cannot be readily used in a planter. From these considerations it can be seen that this method of protection does not afford that degree of certainty and practicability which is desired.
3. Protection of Seed by Soaking it in a Solution of Salt.

This method was' quite commonly practiced many years ago among farmers in western New York. Our series of experiments, extending over a period of nearly a year, made it evident that corn soaked in a saturated salt solution is as readily eaten by wireworms as if not thus soaked, and no iujury results to the wireworms.
4. Protection of Seed by Soaking it in a Copperas Solution.

In 1876 an Illinois farmer reported favorable results from soaking his seed corn before planting in a solution of copperas (sulphate of iron), to protect it from the attacks of wireworms.

After two seasons of experimentation with the solution, we got no results which indicated that wireworms would not eat and destroy seed soaked in it as readily as any other, and receive no injury therefrom.

5. Protection of Seed by Soaking it in a Chloride of Lime and Copperas Solution.

Our experiments during two seasons gave conclusive evidence that a solution of chloride of lime and copperas will not protect seed corn which has been soaked in it from the attacks of wireworms.
6. Protection of Seed by Soaking it in Kerosene Oil.

In our experiments with this substance made in the spring of 1891 the wireworms destroyed nearly every kernel of corn we planted; there were no indications that this food disagreed with them.
7. Protection of Seed by Soaking it in Spirits of Turpentine.

The soaking of seed corn in turpentine has been frequently recommended as a preventive against attack from wireworms. All of the kernels of corn we thus soaked were destroyed, before germination began, by the wireworms and they were unaffected by the meal.
8. Protection of Seed by Soaking it in a Strichnine Solution.

The idea of soaking seed corn in a solution of strychnine was suggested to us by the fact that seed thus soaked is used to poison sparrows and gophers. Our results from experiments made in 1891 showed that although seed corn be soaked in a very strong solution of strychnine, it is rendered neither distasteful nor destructive to wireworms. Prof. Forbes has recently reported similar results from experiments made in Illinois in 1888 and 1891.
9. Protection of Seed by Soaking it in Other Poisonous Subbtances.

In 1858 and 1891, Professor Forbes fed to wireworms corn that had been soaked in the following:

A mixture of Paris green and water.
Fowler's solution, diluted with an equal quantity of water.
An alcoholic solution of arsenic.
A solution of arsenic in boiling water.
An alcoholic solution of corrosive sublimate.
A saturated solution of potassium cyanide.
In almost every case the wireworms fed upon the kernels without injury to themselves. Thus, Professor Forbes says, "that it is not practicable to protect corn by means of these substances, even were it possible to use them without retarding or preventing the germination of the seed."

B. DESTRUCTION OF THE LARV A.

The various methods that have been proposed for the destruction of wiretworms fall under two heads: First, destruction by starvation; second, destruction by the use of insecticides.

1. Destrdction of Wireworms by Starvation. a. Starvation by Clean Fallow.

It has been the general belief that the wirerrorms which infest our fields could live but a short time in soil in which no vegetation was allowed to grow. No experiments were recorded, however, to show how long the worms could live in such soil.

We kept several experiment cages in "clean fallow" for nearly a year, and more wireworms remained alive (many of them passed through the transformations to the beetle stage) in these cages than in similar cages in which grass was kept growing. Therefore, we would not advise the farmer to lose the use of his land for a season and the labor necessary to keep it free from all vegetation in the hope that he may thus starve out the wireworms.

b. Starvation by the Growth of Supposed Immune Crops.

It is supposed there are certain crops so distastefal to wireworms that when these crops are grown the worms will either perish from hunger or leave the field, and thus the succeeding crops be spared from the ravages of these pests. The crops usually recommended for starving out the wireworms are buckwheat, mustard and rape.

BCCKWHEAT.

In this country more atteution has been directed to buckwheat as a supposed immune crop than to any other.

By a series of experiments extending over a period of two years, we proved that wireworms will attack and cut off roots of buckwheat; and that they can live for many months and undergo the transformations necessary for the continuance of the species, in soil in which only buckwheat is growing. Therefore as wireworms have lived as long and thrived as well in cages of buckwheat as they have in cages of timothy and clover, we cannot regard buckwheat as an immune crop.

MUSTARD.

In Europe, mustard has long been regarded as a crop that clears the soil of wireworms by starving them out. We experimented with both the Chinese and brown mustard, and wireworms lived in cages containing no other vegetation but these plants for from one to two years; we have never been able to keep them alive so long
in cages containing clover and timothy. Thus our experiments do not indicate that a crop of mustard will render the soil so free from wireworms that the succeeding crop will escape their ravages.

RAPE.
Another crop, upon which it is said wireworms will not feed, is rape. It is but little grown in America, but is considerably grown in England to provide pasture that will fatten sheep readily.

Wireworms lived as long and thrived as well in our breeding cages on roots of rape as in soil in which clover and tinothy were grown. Thus, it woald seem that rape can no more be regarded as an immune crop than any other crop cultivated at the same time.
2. Destrection of Wireworms by Means of Insecticides.

As the species of wireworms which infest growing crops live during their whole larval life beneath the surface among the roots, it is a more difficult matter to reach them with insecticides than those pests which feed exposed on the plants. A substance must have great peuetrating and killing power to be of any ralue. Most of the sulstances that have been recommended were first applied merely as fertilizers, but in later years their insecticidal properties also have been much diseussed.

(a) Substances that act merely as Insecticides.

Most of the insecticides which we used are well known and have been used successfully against other underground insects.

KEROSENE, PURE AND AS AN EMULSION.

In 1885, Professor Forbes found that "applications of these substances made to wireworms in the earth were found practically ineffective, any strength sufficient to lill them killing regetation also." Our experiments corroborate Professor Forbes' conclusion. We found that wireworms could be killed by using either substance in sufficient guantities, but this amount would destroy all vegetation and would be too expensive an application.

CRUDE PETROLEUM, PURE $\triangle N D ~ A S ~ A N ~ E M U L S I O N . ~$
On the whole our results with the crade petroleum emulsion and with the crude petroleum were not as promising as those obtained with the kerosene oil emulsion.

POISONED DOUGH.

In our experiments in 1888, poisoned sweetened dough was used with some success to attract and destroy the click-beetles. (See Bulletin No. 3, Nov. 1888, p. 38). As the wireworms in our breeding cages readily came to the surface to eat wheat scattered thereon, it was thought that many might be attracted by srrectened dough placed on the surface.

A few experiments soon made it evident that the wireworms could not be thus attracted to the poisoned dough.

BISULPHIDE OF CARBON.

This substance has been quite extensively used against certain subterranean insects. Our experiments showed that it would kill wireworms when poured into a hole near infested plants; but as it had to be used at the rate of about 150 gallons per acre, its cost would be excessive.

(b) Substances that act also as Fertilizers.

There are several substances now in common use as fertilizers which possess some insecticidal properties. Dealers in the potash fertilizers, especially kainit and muriate of potash, claim that the ravages of wireworms are effectually checked by the use of their fertilizers. In 1890 and 1891 we carried on a large series of experiments with salt, kainit, muriate of potash, linue, chloride of lime, and gas-lime to determine whether they might be effectually used against wireworms.

$$
\mathrm{SALT}
$$

Many farmers assert that salt either destroys wireworms, drives them deeper into the soil beyond the roots, or renders the soil so obnoxious that the worms leave.

1. Will salt kill wireworms? From a large series of experiments we found that to destroy wireworms, salt must be used at the rate of about eight tons to the acre, or orer one per cent. of the soil to a depth of four inches must be salt. This amount would be very destructive to vegetation.
2. Will salt drive wireroorms deeper into the soil?-In 1891 we thoroughly tested this supposed action of salt upon wireworms by
means of special apparatus devised for the purpose (see Bulletin 33, p. 230 , for detailed description and figures).

The results of this experiment indicated that salt applied at the rate of 1000 pounds per acre (a heavy dressing) interfered with the germination of wheat, and neither drove the wireworms deeper into the soil, nor caused them to migrate any appreciable distance.

K $A I N I T$.

This is a German potash salt which is now much used as a fertilizer in this country. We made many and varied experiments with kainit on wireworms. The results obtained indicate that kainit has but little, if any, effect on wireworms in the snil even when applied in very large quantities, as from four to nine tons per acre.

It should be noted that these results are diametrically opposed to those obtained by Professor J. B. Smith of the New Jersey Experiment Station (Insect Life, Vol. 4, Nos. 1 and 2, p. 45 ; Bull. 85, N. J. Exp. Sta., p. 5 ; An. Rept. N. J. Exp. Sta. for 1891, p. 42). However, none of the statements yet made by Professor Smith are supported by sufficient evidence to lead us to modify the conclusions derived from the results of our experiments. Professor Forbes says of the experiment upon which most of Professor Smith's evidence is based: " It is evident from the context that this experiment had been made some years before, apparently not under the inspection of an entomologist." Mr. F. M. Webster, entomologist of the Ohio Experiment Station, in discussing the methods of fighting the wireworms, says (Bull. 51, Ohio Expt. Sta., p. 137): "There may be some virtue in the application of kainit, although this has not as yet been thoroughly and clearly demonstrated."

MURIATE OF POTASI.

This is a product of German mines, and is our principal potash fertilizer.

After many experiments extending over a period of more than nine months, we were forced to conclude that it has to be used at the rate of from four to six tons per acre to have any effect orr the larve, and then it is not so effective as the cheaper kainit or the much cheaper common salt. Its use in such large quantities would
also be very destructive to vegetation. Although a valuable fertilizer, it is too expensive an insecticide to use against wireworms.

LIME.
Lime has long been used as a fertilizer, and many report good results from its use on fields infested by wireworms. However, our experiments covering a period of over seven months showed that lime applied at the rate of even 200 bushels per acre, either slaked or unslaked, or as lime water, had no effect upon the wireworms.

OHLORIDE OF LIME.

Several experiments made with this substance showed that it will kill wireworms in the soil, but must be used at the rate of nearly six tons per acre. It is thus impracticable and too expensive.

```
GAS LIME.
```

This is the refuse lime thrown out at gas works. When fresh it smells strongly of ammonia and sulphur, but becomes nearly odorless after exposure to the air for a few days. We thoroughly tested it; and our experiments indicate that the killing properties of the gas lime soon pass away, and it has to be used fresh in such great quantities (twenty to forty tons per acre) to be even partially effective that, notwithstanding its cheapness, it is hardly practicable on large areas.

C. DESTRUCTION OF PUPA AND ADULTS. (CLICK-BEETLES).

1. Fall Plowing.

It is with pleasure that we turn from the discussion of measures that give little or no promise of practical use to one that we believe is of great importance. For the results of our experiments convince us that much can be done towards checking the increase of wireworms by fall plowing.

The explanation of the beneficial results that will follow fall plowing we believe to be found in the following facts, which were brought out in our studies of the life history of our more common species of wireworms: Wireworms live for at least three years in the worm or larval state. In this state they cease feeding about

November 1st, and hibernate until spring. When the worms are fully grown they change to soft white pupe which resemble the beetle in form. This change takes place in the species that commonly infests field crops during the month of July. The pupa state lasts only about three weeks, the insect assuming the adult form in August. But, strange to say, although the adult state is reached at this time, the insect remains in the cell in the ground in which it has undergone its transformations till the following April or May, nearly an entire year.

We found that in every case where we disturbed the soil so as to break these earthen cells, the insects within perished.

This experience clearly indicates that if infested fields are plowed after July 20th and thoroughly pulverized and kept stirred up, many of the little earthen cells may be broken and the tender pupr or beetles within destroyed. After three or four weeks of this thorough cultivation, wheat or rye may be sown.

In comnection with this fall plowing and cultivation we earnestly recommend the method of short rotation of crops to farmers having land badly infested with wireworms. Do not keep fields in sod for more than a year or two at a time. No doubt it will require several, at least three years by this method, to render the soil comparatively free from the pests as only the pupae and adults are killed each fall, while most of the one and tro-year-old wireworms will escape injury. Those farmers who practice the method are not troubled with wireworms.

2. Trapping.

Our experiments on preventing the ravages of wireworms by trapping were carried on in 1888 and 1889. Two methods were employed, trapping by baits, and by lanterns.

On trapping bybreits.-This method has been discussed in detail in Bulletins 3 and 33 of this Station, so that only the general results will be given here. The baits, which consisted of sliced potatoce, wads of green clover, and sweetened and unsweetened commeal dough were placed under boards in various parts of a badly infested corn field. Instead of attracting the wireworms, as was expected, their parents - the click-beetles - came to the baits in large numbers; the clover attracted by far the larger number (65 per cent).

It was found that the beetles were the most active at night, and that they seek their food chiefly by rumning over the surface of the ground.

When it was found that they were so readily attracted to the baits, poisoned clover baits were used with the result that most of the click-beetles were destruyed, proving that they fed upon the baits and thus suggesting a practical method of combating them. Where the insects are very numerous over a limited area, many of the beetles can be killed with the expenditure of a very little labor in distributing these poisoned baits.

On trapping by lanterns. - A series of six trap-lanterns were kept lighted every night here on the University farm from May 1st to October 1st, 1889. During the whole five months only eighty click-beetles were captured. Thus the method has no practical value in fighting wireworms.

General Summary of the Methods of Combating Wireworme.
When we began our experiments in 1889, we confidently expected to be able in ạ short time to tell farmers how to protect their seed and their growing crops from these pests. We thought that the greatest part of our work would be to determine which of several ways is the most practicable, the easiest used, or involved the least labor or expense. For three years we did our best; and we failed to discover a single satisfactory method of protecting seed, or of destroying immature wireworms in the soil.

We did learn, however, why fall cultivation will destroy the wireworms ready to pupate, the pupae, and the beetles; the beetles can also be trapped and killed in large numbers with poisoned clover baits. We also learned that many commonly recommended plans are useless.

Such a short rotation of crops as will include a period of thorough cultivation in the fall will prove the best method of fighting these pests yet suggested.

IV. Notes on the Transformations of Several Species of Wireworms.

We used nearly 10,000 wireworms in our experiments. They were collected by correspondents in Lewis county and forwarded to
us in invoices of a thousand or more at a time. We were easily able to distinguish five different species among those sent. The species were kept in separate cages, thus enabling us to make many observations on the habits, etc., of each during the course of our experiments upon them.

1. The Wheat Wireworm.

Agriotes mancus, Say.

This species is probably the most numerous and most destructive kind of wireworm in our State; it constituted 91 per cent. of the 10,000 with which we experimented.

The beetle (Fig. 21) was described in 1823, but nothing was known of its life until 1867 when Dr. Fitch described the wireworm (Fig. 19) and added a few other notes. It is widely distributed and has been reported as destructive in Canada and some of the Western States.

12.-The wheat wireworm, back and side view, enlarged flve diameters (after Forbes).

Its life-history.--It is not known where any species of click-beetle lays its eggs. It is the general opinion that they are laid in the spring in the earth close to the roots of the plants.

We never found any of the wheat wireworms less than 4 mm . in length; they measure when full grown from 16 to 19 mm . They are of a waxy-yellow color; their general appearance is well represented in figure 19 (a detailed description was given in Bulletin 33, p. 257). The eye-like depressions (Fig. 20, c) on the sides of the last segment render it easily distinguished from most other wireworms. How long this insect remains in the wireworm state, we failed to learn. We found that one cannot draw accurate conclusions as to their age from their size. Our observations indicated that this wheat wireworm may trouble the farmer at least three years
before assuming the beetle state; it grew only about 2 mm . during six monṭhs.

The wireworms cease feeding in the fall before November 1st, and descend into the soil for several inches where they remain in a torpid condition all winter. With appetites sharpened by their long fast, they come toward the surface in the spring and do more damage than at any other time.

When they become full grown, which occurs about July 1st, these wheat wireworms prepare for

20.-The wheat wireworm. a, b. c. d, details of mouth parts, onlarged ; e, caudal segment, enlarged. pupation by forming a little earthen cell in the soil, usually less than six inches from the surface. The pupa is of a pure white color, very soft, and about one-fourth longer than the beetle which it resembles in general appearance. The pupal stage lasts about three weeks, and by September 1st all The beetles (one is shown, enlarged seven times, in figure 21, and natural size on the upper part of the corn plant in figure 16) are of a dark brown color. They remain in the little earthen cells, made by the wireworms, all winter, and work their way to the surface during April. They fly well and can run quite rapidly; when disturbed they "play possum" for a time. They will eat clover leaves and we saw one at work on a kernel of wheat. They lived but a few days after emerging in our cages. When and where they lay their eggs still remains one of nature's secrets.
2. Asaphes decoloratus, Say.

This click-beetle is widely distributed over the northern states

21.-Agriotes mancus, the adult, en'arged \% diameters (after Forbes). east of the Mississippi river, and occurs in both cultivated and grass
lands. It has not yet occurred in sufficient numbers to be injurious; only about five per cent. of the wireworms we have examined belonged to this species.

Its life-history.-Our specimens of the wiremorms ranged in length from 7 mm . to 25 mm . They are of a dark, waxy-yellow color; their form and characteristic features are well shown in figures 22 and 23 (a detailed description is given in Bulletin 33, p. 261). What little data we have indicates that the duration of the wireworm period is at least three years.

22.- The wireworm of Asaphes decoloratus. enlarged three and three fourths dianceters (after Forbes).

Unlike the wheat wireworm, this wireworm matures in May. The change to a pupa takes place in little earthen cells in the soil. We have not seen the pupa; this stage lasts about three weeks. Most of the beetles emerged in our cages in June. In Professor Forbes' experiments in Illinois they emerged as early as May 25th.

23. - Caudal segment of the wire. worm of Asaphes decoloratus, much enlarged (after Forbes).

The bectle varies from 9 mm . to 15 mm . in length, and is of a shining blackish color with brown legs. Its characteristic features are well shown in figure 24. All the beetles emerge before fall, but of the further life of this insect we know nothing.
3. Melanotus communis, Gyll.

This species of wireworm is very common in cultivated lands, especially in corn

21.- Asaphes decoloratus, the adult, enlarged fourand one-fifth diameters (after Forbes).
fields, in our State; Professor Forbes found an allied species

26.-The corn wireworm (Melanotus cribulosus), enlarged $4 \frac{1}{2}$ diameters (after For. (after for. pap $\begin{array}{ll}\text { (after } \\ \text { bes). } & \text { cor characteristics of the slena- }\end{array}$ er, glossy, dark brown beetle are well shown in figure 27. They remain in earthen cells in the soil all winter, emerging in May. The secret of the rest of their life remains with nature.

4. Drasterias elegans, Fabr.

This species of wireworm is widely distributed over the country, and has
 been reported as exceedingly abundant 27.- Melanotus communis. the adult, and injurious to young wheat in Forbes).
Indiana. We have found it quite abundant in sod land here.
Its life-history. - Notwithstanding its abundance, comparatively little is known of the life of this insect. It is one of the smallest of
the wireworms, measuring from 9 mm . to 12 mm . in length when full grown. Its body is considerably flattened and of a light waxy-yellow color. Figures 28 and 29 well illustrate its characteristic features. (It is described in detail in Bulletin 33, p. 268). They undergo their transformations in earthen cells in the soil, the change to a beetle taking place about July 1st. The beetle is of a general rusty-brown color with black markings; it is shown natural size and enlarged in figure 30. We were unable to determine whether they emerged in the fall or passed the winter in the earthen cells. Professor Forbes has recorded considerable data on this point which leads him to conclude that it seems probable that they emerge in the summer and early fall, probably laying their eggs in part the same season; that it hibernates in sheltered places and continues abundant until June of the following year, doubt. less breeding meanwhile;
 28. - The wiresrorm of and that it lives two seaDrasterias elerans - 29. - Caudal serment of the wire. enlarged seven dian : Sons in the earth as a twire- worm of Drasterias elegans, much meters (after Forbet).
worm.
5. Cryptohypnus abbreviatus, Say.

We met with a few wireworms of this species in old sod land. The beetle has been known since 1823 , and it is not uneommon throughout North America. It is a robust beetle, about one-fourth
 of an inch in length and of a brownish-black color with a greenish-bronze lustre. (For detailed descriptions see Bulletin 33, p. 270, of Trans. Am. Ent. Soc., 1891, p. 7).

The wireworms are from 7 mm . to 9 mm . in 30. - Drasterias ele- length when mature, and closely resemble the $\underset{\substack{\text { grans, } \\ \text { natural } \\ \text { the } \\ \text { size } \\ \text { adult } \\ \text { and }}}{\text { young worms of Asuphes decoloratus (Fig. 22). }}$ enlarged.

They are of a dark waxy-yellow color and consid-
erably flattened in form. The caudal seqmont and some details of the mouth parts are shown in figure 31. (For a detailed description see Bulletin 33, p. 271).

31. - Wireworm of Cryptohypnus
abbreviatus. a, b, c, details of the mouth-parts; e, the caudal segment -all enlarged.

The Bud Moth.

Tinetocera ocellena.

This bud moth has come to be recognized by many of the most extensive apple growers of westem New York as the most injurious and hardest to fight of any insect now present in their orchards. It works in the opening leaf (Fig. 32) and flower buds

32 -Work of the bud moth in opening leaf buds.
(see frontispiece), and often nearly the whole crop on many trees is destroyed while yet in the bud. It is also especially destructive when it attacks recently budded or grafted trees and nursery stock. Besides apple, it also feeds upon pear, plum, cherry, quince and peach trees and blackberry buds.

Thus, fruit growers have to fear in the bud moth a pest which is capable of literally "nipping in the bud" a prospective crop of fruit, a graft, or a budded stock.

Ite History and Distribution.

As the insect has been known in Europe for more than half a century before it was recorded in this country, it is, therefore, no doubt an imported species. It attained economic importance in Europe about 1840, and was first discovered in this country in 1841 in Massachusetts, where it was doing considerable damage ; by 1869 it had become to be "the most injurious enemy of the apple-tree, next to the canker-worm, in the State." The same year it did some damage in Pennsylvania, and in 18.0 , plum trees were attacked by it in Canada. The first record of the occurrence of the insect in New York State is, in 1880 in a Union Springs nursery. The previous year it was found at Washington, D. C., and by 1885, it had reached Nova Scotia. In 1887, it was quite injurious near Rochester, N. Y., and in 1888 and 1890, apple and blackberry buds were injured in Maine. Throughout Massachusetts, New York and Canada the insect appeared in very destructive numbers in 1891, and in Michigan in 1892. It has been found in Missouri, and two or three years ago was introduced into Idaho.

The bud moth is thus widely distributed over the New England and Middle States and Canada ; it occurs as far south as Washing. ton, D. C., and as far west as Idaho.

How It is Spread.

The active moths doubtless fly readily from orchard to orchard and thas the pest may slowly spread. But a much more fruitful source of infestation is to be found in nursery stock. We have seen the insect at work in several uurseries, and it is claimed that it was introduced into [daho on stock received from one of our New York nurseries. Its manner of hibernating makes its distribution very easy on nursery stock.

Its Name and Classification.

The bud moth is closely allied to the codlin moth, and resembles the latter in size and form, but differs in structure, in coloring and in its habits and life-history.

A spot, somewhat eye-like in appearance, on each front wing of the moth suggested its name - ocellana - which was given to it in

Austria in 1776. The popular name - eye-spotted bud moth first, used by Dr. Harris in 1841, is now in common use. The moth has been described under five different names, and has been placed in six different genera. The genus Tmetocera ("cuthorned," from the notched appearance of the base of the antennæ of the male moth) was established in 1859 for the reception of this insect which still remains its only representative.

How Its Presence is Indicated.

The caterpillars of the bud moth are astir early in the spring, usually about May 1st, and soon begin their destructive work on the swelling and opening fruit and leaf buds. They eat into the buds, and often so check and disfigure a small tree as to spoil its symmetry. More often the caterpillar does not begin its work until the buds are nearly half opened. It then feeds upon the central expanding leaves or flowers, tying them together with silken threads (see the frontispiece, and figure 32). Some of the partly eaten leaves soon turn brown and thus render the work of the insect quite conspicuous; one correspondent wrote that his trees looked as though a fire had swept quickly through them, as so many leaves had turned brown. This tying together of the opening leaves and flowers and the brown appearance of many of them, are the most characteristic indications of the presence of the insect.

Its Appearance.

The caterpillar.-It is in this stage that this insect is familiar to fruit-growers. It appears on the buds in the spring as a little brown caterpillar, about .16 of an inch

33.-Caterpillar of the bud moth about threo times natural size. long, with a black head and thoracic shield. In June, when the caterpillars are full-grown (Fig. 33) they are about half an inch in length and are of a cinnamon brown color; the head, thoracic shield, and true legs are black. The body is sparsely hairy, and bears five pairs of pro-legs.

The pupa.-This quiescent stage of the insect is passed in the nests in the latter part of June in a tube of dead leaves. Two
views of a pupa are shown in figure 34. It is about 27 of an inch in length and of a light brown color; the dorsum of each abdominal segment bears two transverse rows of small troth-like processes directed caudad.

The moth.-The moth (Fig. 3ŏ) measures about three-fifths of
 an inch across its expanded wings. It is of a general dark ash-grey color with a broad cream white band across the front wings. Dr. Harris saw the resemblance to two eye-like spots in the arrangement of two short horizontal black dashes fol. lowed by
a vertical 34.-Pupa of the bud moth; a, ventral
view; b, dorsal view-enlarged. lead blue near the anal angle of the front wings,
 and in the three or four similar black dashes, also followed by a streak of lead 35 .-The bud moth-the adult blue, near the apex of these wings.

Its Life-History.

©: Although the caterpillar and pupa of the bud moth were known more than eighty years ago, its true life-history, as observed by Mr. J. Fletcher, the Canadian Goverment entomologist, and the writer, was not recorded until 1892 (Report of Entomologist for Dept. Agr. Canada, 1891, p. 195).

Its appearance and habits in the spring.-The date of the emergence of the little brown caterpillars from their winter retreats varies considerably in this state. They seem to time their appearance by the date at which the buds begin to open. Thus the earliness or lateness of the season or of the variety of the tree infested will vary the time from two to four weeks, ranging from April 15 to May 15.

In some cases the caterpillar appears before the bud has opened sufficiently for it to readily enter. It is then forced to eat its way into the bud. Once within the bud it revels in the very ten-
der growing leaves or flower buds, tying them together with its silken threads, and thus forming for itself a well protected nest within which its destructive work goes on (Figs. 32 and 36). It does not confine its work to one or two leaves or $r_{\text {den }}^{2 t}$ flowers, but seems to delight in devouring a part of a leaf here or one side of a developing flower there. So that nearly every leaf or flower in the opening bud is forced to contribute to the greed of the little creature, thus greatly increasing its destructiveness.

It is especially destructive on young trees or nursery stock as it then most often attacks the terminal buds, sometimes burrowing down the shoot for two

36.--Characteristic nest of the bui moth cnterpillnr: and swveral of the curious eggs, greatly malarged, laid by the moth. or three inches causing it to die, and thus greatly marring the syminetry of the tree.

The later work of the caterpillars in the opening leaves has been well described by Professor Comstock as follows:
"The larva settles on one of the more advanced leaves, of which it cuts the petiole half through either near its base or close to the leaf so that it wilts. Of this half dead leaf it forms a sort of tube by rolling the edge of one side more or less down and fastening it with silken threads and then lining the inside sparsely with silk. If the leaf which it has selected as its final home should become too weak at the place where it has been cut so that there may be danger of its falling to the gromnd then the larva goes to work and either strengthens it with silk which is fastened to the twig and petiole or ties the apical portion of the tule to another leaf or cuts that part
of the leaf which contains its tube from the rest of the leaf, so that either the whole or only that portion which contains the tube hangs suspended from another leaf." The larva lives in this tube most of the time, only coming forth to feed; when disturbed it retreats into the tube out of sight. In feeding it drairs other leaves, one after another, toward it and fastens them with threads of silk, thus forming a nest (Fig. 36). Some of these partially devoured leaves soon turn brown and die, thus rendering the nest quite conspicuous.

The caterpillars continue to feed in the spring, mostly at night, for six or seven weeks, and probably shed their skin three times during this time.

Pupation.-Within a tube, usually formed in the nest by rolling up one side of a leaf or by bringing together two or three half devoured leaves and securely fastening everything with silken threads, the full-grown caterpillar retreats and lines the interior with "a "thin closely woven layer of silk. This forms the cocoon within which the caterpillar is soon to undergo its wonderful change to a pupa. The date of this change varies in this State from June 1st to 25th. About ten days are spent as a pupa, then by the aid ${ }^{\text {so }}$ of the tooth-like hooks on its back, it works its way nearly out of the cocoon, and its skin splits open to allow the pretty little moth to emerge.

Habits of the moth.-The moths begin to appear as early as June 5th in our State, and often all have not emerged by July 10th. They are most active during the night, remaining quiet during the day on the trunk and limbs of the tree, with wings folded roof-wise; in this position they closely mimic the bark. They probably live about two or three weeks.

Egg-laying.-Three or four days after emerging, the moths begin to lay eggs, working mostly at night. They are laid on the leaves singly or in small clusters slightly overlapping each other. They are curious objects (Figs. 36 and 37). In fact they so closely resemble minute drops of water or a fish's scale on the leaf as to necessitate the use of a lens to determine the egg characteristics. They are very trausparent and will reflect the prismatic colors like a drop of water.

They are disc-like, very much flattened,
 usually oval in outline, a few are circular, and measure .8 mm . by . 7 mm . A flat outer rim .2 mm . wide adheres closely to the leaf, leaving a central slightly elevated rounded dise in which the larva develops. About nine days after the eggs are laid the developing greenish caterpillar Fic. $37-$ Egro of lud moth
showing
de developing lying curled up in the central portion can be caterpillar withingreatly enlarged. plainly seen through the shell. The egg-stage lasts from seven to ten days.
Summer habits of the caterpillar.-Soon after emerging through a hole near the edge of the central portion of the egg-shell, the little greenish caterpillar begins to feed upon the skin of the leaf, usually upon the underside. A few hours later it makes for itself a tube of silk open at both ends and usually made alongside the mid-rib. From these silken homes the caterpillars sally forth to feed upon the surrounding tissues, protecting themselves as they go by a thin layer of silk spun over their feeding grounds (Fig. 38). They feed upon one epidermis and the inner tissues of the leaf, leaving the net-work of veinlets; the opposite epidermis forms the floor of its feeding grounds. The veinlets and the epidermis soon turn brown, thus
 rendering the summer work of the insect quite conspicuons. Ravely more than one caterpillar works on a leaf.

The caterpillars continue to feed in this manner during July and August, and a part of September. Soom after the third or fourth moulting of the skin, they cease feeding and seem to know instinctively that they have reached that point in their development when it is necessary for them to make preparations to go into winter quarters, even thongh it he several weeks yet before the leaves become unfit for food, or fall from the trees.

Hibernation.-Oarobservations in 1891 and 1892 definitely showed that the bud moth passes the winter as a half-grown caterpillar
snugly hidden in a silken case on the tree. Figure 39 represents a t wig, natural size, bearing three of these hibernacula at a, a, and b. These little winter homes are very inconspicuous objects as they are scarcely more than an eighth of an inch in length, and are covered with bits of dirt from the bark or are sometimes made under some convenient piece of dead leaf or bud-scale. One must be very familiar with these hibernacula to be able to find them, even on a badly infested tree. The caterpillars begin to go into winter quarters early in August and all are snugly tucked away before the leaves fall. They instinctively build their winter homes near the winter buds on the twigs so they may be at hand to nip the bud upon its showing any signs of opening in the spring. The life-cycle is completed with the opening of spring and the appearance of the little brown caterpillars

39.-Twig showing the position of the winter homes of the caterpillar at a, a, and b, natural size. on the buds.

Number of broods.-There is but one generation of the insect in a year in this and more northern latitudes. The moth appears and lays her eggs in June or July, and the caterpillars feed upon the leaves until half-grown, in which stage they hibernate. Possibly two broods may occur further south.

Its Natural Enemies.

In Europe, five parasites are recorded at work upon this insect. Three parasites (Phytodictus vuldgaris, Pimpla sp. and Microdus laticinctus) have been reared from it in this country; the latter species seems to be quite common in some localities.

Besides these parasitic enemies, the bud moth is sometimes eaten by birds in Canada, and we also found a large wasp (Odynerus catskillensis) storing its cell with the caterpillars which must furnish delicious morsels for the grub of the wasp when it hatches.

Doubtless all of these foes aid considerably in keeping the pest in check, but it has now become so numerous and wide spread that its enemies are insufficient and the devices of man must be called into action.

Methods of Preventing its Rayages.

This insect is proving an exceedingly hard one to combat. It cannot lo effectively and practicably fonght white in the adult or egg stages, and there is but little hopes of reaching the caterpillars in their hibernacula during the winter. Although the caterpillars work under a silken covering on the undersides of the leaves during the early part of the summer, it may be possible to kill some of them with a Paris green spray, but we doubt it. The pupae can be reached only by hand-picking the nests during the ten days in June which the insect passes in this stage. Thus, so far as we now know, the most vulnerable period in the lifecycle of the bud moth is during the last half of its caterpillar life when it is at work upon the opening buds, leaves and flowers.

We once saw a case where hand-picking could have been profitably practiced. A block of young pear trees had become badly infested and each caterpillar's nest was rendered conspicuous by one or two brown dead leaves. All of the then nearly full-grown caterpillars could have been quickly killed by collecting and burning their nests; this would have effectually prevented the appearance of the insect another year One man could have thas exterminated the pest in that block of a thousand or more young trees in a very short time. This method may prove practicable in many cases where nursery stock becomes infested. The nests should be gathered before June 1st.

Although hand-picking is the surest method of checking the insect, it is impracticable on large trees, and besides, by the time the work of the caterpillar has progressed far enough to render its nest conspicuous, it has done most of its damage. Fruit growers cannot afford to wait until after the developing fruit and new growth are "nipped in the bud" hefore placing any obstacles in the way of this insect.

We believe the pest can be reached with an arsenical spray applied frequently and thoroughly. It will necesitate at least two thorough applications before the flourom opul If possible keep the swelling and opening buds coated with Paris green so that the little caterpillar's first meal in the spring will be a poisonons one. In order that the spraying shonld be thoronghly dome at this time, fruit growers should realize that if the insect is not killed before
the blossoms open they will not have another chance to do it nearly so effectively until the next spring.

If the trees are usually badly infested with the apple scab or other fungi it would be well to combine the Paris green with the Bordeaux mixture, and in this case using about one pound of the poison to one hundred gallons of the fungicide; the poison will adhere longer if applied with the fungicide. If Paris green only is applied, use about one pound to two hundred gallons and always add two or three pounds of freshly slaked lime to prevent the burning effects of the free arsenic in the Paris green. Take especial pains to thoroughly wet the buds on the smallest twigs. With at least two thorough applications of Paris green before the flowers open we believe this insect can be effectively checked for the season. Do not spray when the trees are in bloom as many honey-bees may be killed.

The limited time during which this bud moth can be reached by sprays renders it an especially hard insect to fight. - It will require thonghtful, intelligent, and persistent work early in the spring to hold it in check.

MARK VERNON SLINGERLAND.

BULLETIN 108 - January, 1896.

Corne11 University-Agricu1tural Experiment Station, ITHACA, N. Y. ENTOMOLOGICAL DIVISION.

THE PEAR PSYLLA
and

THE NEW YORK PLUM SCALE.

By M. V. Slingerland.

ORGANIZATION.

Board of Control-The Trustees of the University.

STATION COUNCIL.

President, Jacob GOULD sChURMAN.
Hon. A. D. White
Trustee of the University.
Professor I. P. ROBERTS President State Agricultural Society.
Profassor I. P. ROBERTS.. Agriculture.
Professor G. C. CALDWELL... Chemistry.
Professor JAMES LAW....-... Teterinary Science.
Professor A. N. PRENTISS Botany.
Professor J. H. COMSTOCK. ... Entomology.
Professor L. H. BAILEY.........-..

Professor G. F. ATKINSON... Cryptogamic Botany.

OFFICERS OF THE STATION.

I. P. ROBERTS Director.
E. L. WILLIAMS Treasurer.
H. W. SMITH Clerk.

ASSISTANTS.

M. V. SLINGERLAND .. Entomology.

E. G. LODEMAN. .-. Horticulture.
L. A. CLINTON Agriculture.
E. J. DURAND Botany.

Office of the Director, 20 Morrill Hall.
The regular bulletins of the Station are sent free to all who request them.

BULLETINS OF 1896.

106. Revised Opinions of the Japanese Plums.
107. Wireworms and the Bud Moth.
108. The Pear Paylla and tho Now York Plum Scale.

I. The Pear Psylla.*

Psylla pyricola Förster.

During the past five years this minute insect has inflicted such severe losses upon pear growers in various parts of the country that it threatens to seriously interfere with the successful cultivation of this fruit.

Its History, Distribution and Destructiveness.

The insect is an old offender, and like most of our other imported insect pests, it has wrought much more destruction here than in Europe, its native home. It was probably first introduced into this country upon young pear trees imported from Europe in 1832 by Dr. Ovid Plumb, of Salisbury, Comn.; \dagger during the next five years he lost several hundred trees from its ravages. By 1848, it had spread into Massachusetts and into Dutchess and Columbia counties in New York. It is not again recorded as injurious until 1871, and then in Illinois; this State seems yet to be the western limit of its range. In 1879, it was destructive at Ithaca and at Saratoga, N. Y. A dozen years passed without any record of its injury. Then, in 1891, it suddenly appeared in enormous numbers in restricted localities in quite widely separated portions of this and other States, and thousands of dollars worth of fruit and many valuable trees were ruined by its ravages. Pear orchards at Fitch-

[^49]burg, Mass., Meriden, Conn. and Pomona, Md., were devastated. In this State, it was especially destructive, orchards in the eastern, central and western portions suffering severely; many trees ultimately dying. One orchard near Ithaca promised 6010 bushels of fruit, but less than 50 matured; and, Mr. G. T. Powell, at Ghent, had an estimated yield of 1,200 barrels reduced to less than 100 barrels of marketable fruit.

At the time we wrote Bulletin 44 (1892), the insect was known to occur only in .Connecticut, Massachusetts. New York, Illinois and possibly in Michigan; its occurrence in Maryland, noted above, was not recorded until 1894.

In 1892, it was found abundant in Ohio. In 1893, it was discovered in New Jersey, and we also received it from Thomaston, Me. In 1894, it was found to be quite generally distributed over New Jersey, and had appeared in Canada (Freeman, Ont.) and Virginia for the first time. The same year it invaded a Maryland orchard (Chestertown, Md.) of over 20,000 trees in overwhelming numbers, and was quite destructive to several orchards in western New York. This year (1895) we have learned of no serious outbreaks of the pest. We have, however, received it from Clinton, Mich., where it did considerable damage in 1894.

We believe the insect is now present in alarming numbers in most of the pear orchards in New York State. We have not failed to find it in any orchard examined for this purpose in western New York, especially in Niagara county and in the vicinity of Rochester. Specimens have been sent us from Coxsackie, Pavilion, Milton, Carlton and Dansville, N. Y.; and it has been recorded from Athens, Menands, Catskill and Baltimore, N. Y.

Thus, the range of the insect has been greatly increased since 1892. It now ranges from Maine southward through Massachusetts, Connecticut, New Jersey, Maryland and into Virginia, and westward through New York, Canada, Ohio and Illinois to the Mississippi river, beyond which it has not yet been recorded.

How it Spreads.

In spite of its wide distribution, it seems to be rather a local insect, and its spread from orchard to orehard rather slow. Some of Coe Jrothers' orchards at Meriden, Conn., have been badly
infested for 15 years, and, yet, it had not appeared (in 1892) in one orchard set in 1881 only half a mile distant.

Our New York nurserymen are reported to be responsible for its introduction into Maryland, Virginia, New Jersey and Canada. In nearly every case it is claimed the source of infestation can be directly traced to pear stocks bought of New Iork nurserymen in 1890 or 1891 , or about the time the pest was so numerous in this State. It is supposed that the hibernating form of the insect is thus distributed.

Its Classification and Name.

This pear pest is one of the true bugs and belongs to the family $P s y l l i d a e$, commonly known as jumping plant-lice from the leaping habit of the adult insects. Thirty-four species of Psyllids have thus far been described from the United States.

Psylla pyricola, although it was observed in this country in 1833, received its name in Europe fifteen years later. Previous to 1848, European writers had referred to the species as Psylla pyri, not distinguishing it from that species. Psylla pyricola sometimes attacks the apple-tree in Europe, but it seems to confine its attacks to the pear in this country,

Lndications of its Presence.

During severe attacks of this pest, old trees put forth but little new growth, new shoots of ten droop and wither in May, the leaves turn yellow and the fruit grows but little, and in midsummer the leaves and half-formed fruit often fall from the trees. The insect also indicates its presence by secreting large quantities of a sweet, water-like, sticky liquid called "honey dew" which often covers all parts of the tree; it has literally rained from the leaves in some cases and smeared the backs of horses during cultivation*. A black fuigus soon grows all through this honey-dew and thus gives the tree a disgusting blackish appearance as if treated with a thin

[^50]coat of black paint or soot. Pear trees of all varieties and ages are attacked in this State.

Although the indications of the presence of some enemy is so conspicuous, the depredator is so small at to be easily overlooked.

Its Appearance.

The immature insect.-These curious, minute, oval, immature forms are called nymphs. The newly-hatched ones (Fig. 43) are

40.-Full-grown nymph of the pear psylla, ventral view, greatly enlarged. yellow in color, with crimson eyes, and can scarcely be seen with the unaided eye. During their growth they gradually acquire the black markings, shown in the frontispiece and in figure 40 , and become tinged with red. A very conspicuous feature in the full-grown nymph is the large black wing-pads on each side of the body.

The adult insect.-In this form (Fig. 41) the insect strikingly resembles a cicada or dog-day harvest-fly in miniature. Its general color is crimson, with broad black bands across the abdomen. Its thickened femora enable it to jump like a flea. In the male insect the abdomen terminates in a large troughshaped segment from which project upward three narrow copulating organs; the end of the abdomen of the female resembles a bird's beak.

Its Life-History.

But little was known of the life-history of the ${ }^{41-\text { Pesyllan pricola, }}$ the pear psylla, either in Europe or in this country, previous to the publication of our Bulletin No. $4 t$ in 1892.

How it passes the winter.-The insect hibernates in the adult stage, hidden in the erevices under the loosened bark on the trunk and large limbs of the pear trees; a favorite liding place on some trees is in the cavity formed by the bark growing about the sear of a severed limb. During warm days they often crawl about on the
branches and trunk. They are not easily seen as they are so small and their color so closely imitates the bark.

Eyg-laying of the winter broorl.-During the tirst warm spring weather the adults come from their hiding places, copulate, and egg-laying soon begins. In this State, most of the eggs are usually laid before April 25. They are placed in the creases of the bark or in old leaf scars, about the bases of the terminal buds of the preceding year's growth; some occur about the side buds, near the terminal ones. They are usually laid singly, but rows of eight or ten sometimes occur. The eggs (Fig. 42) are scarcely visible to the unaided eye; it would take eighty of them placed end to end 42 -Erg of pear psylla, to measure an inch. They are elongate pyriform in shape, smooth and shining, and of a light orange-yellow color when first laid, becoming darker before hatching. A short stalk on the larger end attaches the egg to the bark, and a long thread-like process projects from the smaller end.

The temperature conditions in the spring influence the time of oviposition and the duration of the eggstate. In 1892, the eggs were from seventeen days to three weeks in hatching. Hatching usually begins about May 10. By the 18th most of the nymphs are out and their parents have disappeared.

Habits of the nymphs.-Immediately after emerging, which usually happens about the time the leaves are expanding, the minute nymph (Fig. 43) seeks its favorite feed-

43. --Newly-hatched nymph of pear psylla, rentral view, giratly enlarged. (Reduced from figure by U.S. Dept. of Agr). ing place, the axils of the leaf petioles, and later on stems of the forming fruit. When these axils become full they gather on the leaves. Their food consists entirely of the sap of the tree, which they suck through a short, sharp beak. Unless disturbed, they move about but very little, sometimes becoming covered with their own honey-dew. They stop feeding only when their skin gets too small, and they cast it off for a new elastic one that they grow just bencath the old one.

Habits of the adult.- The strong legs and wings of the adult enable it to spring up and fly away with surprising quickness upon the slightest unnatural jar. The hibernating forms are not as
active and are readily captured. The adults also feed upon the sap by means of a sharp beak, but seem to have no favorite feeding place.

Egg-luying and habits during the summeri-In about a month after emerging from the egg in the spring, the nymphs become full grown and at the last casting of the skin the aduit insects appear.

This first brood, appearing about June 10, and all subsequent summer broods of the adults, differ strikingly from those that hibernate. The winter forms differ in size, being nearly one-third larger, in their much darker coloring, and especially in the darker coloration of the front wings. Thus, in this pear psylla, we have a case of true dimorphism; the winter form had been described as a distinct species, Psylla simulans.

In about a week after their transformation from the nymph stage, the summer adults copulate and begin laying eggs for another brood. These eggs do not differ from those laid by the winter forms, but they are laid singly or in groups, not on the bark of the twigs, but on both sides of the leaves, tucked in among the hairs along the midrib or adroitly placed in the notches of the toothed edge of the leaf. They hatch in from eight to ten days.

A careful study was made of one generation of the insect in 1892 and the many interesting details theu learned have been recorded in Bulletin 44. It was found that the nymphs cast their skin five times, at intervals of from three to seven days, the adult insect appearing at the fifth or last moult. So life-like were some of the cast skins as they were left on the leaves by the nymphs that it often required close examination with a lens to determine if the object was alive or only a nymph's cast-off garment. In each stage the nymphis secreted globules of honey-dew several times larger than themselves. Although the adults feed, they do not grow nor do they seem to seerete any honey-dew, but void considerable quantities of a whitish excrement. The summer adults probably live for less than a month, while those that hibernate remain alive for at least six months.

Number of broods.-Our observations indicate at least four broods in this State; the adults were the most numerous on or about June 15, July 20, August 20 and September 25, or a brood
appeared about once a month. Apparently a fifth brood appeared in Maryland in 1894. The adults emerging in September and later were the hibernating form.

Honey-deu, and excrement.-The honey-dew occurs in such immense quantities that it seems almost impossible that it is all secreted by the nymphs, and yet such is the fact. We found that one nymph secreted at least four drops (i. e. four minims) before it became an adult. In the case of the nymphs most of the food is elaborated into honey-dew ; some is assimilated, and the waste matter voided as excrement. The adults, however, seem to secrete no honey-dew, and consequently they void considerable quantities of excrement.

The honey-dew and excrement are very different substances. The former is a clear water-like liquid and forms into globules when secreted. The excrement, however, is a whitish semi-solid substance which is voided in long cylindrical strings, or minute whitish balls which roll from the anus like quicksilver globules. The honey-dew seems to be secreted from the anus with the excrement.

Its Natural Enemies.

When we wrote in 1892, no enemies of the pear psylla had been recorded; we had heard rumors that a lady-bug beetle was destroying them in some localities, but there was nothing definite.

However, during the ontbreak in Maryland in 1894, at least two predaceous insects were found feeding on the psyllas, one of which did very efficient work. As both of the insects are common in our State, pear-growers should learn to know them. One is a common lace-winged fly, Chrysopa oculata. Its various stages are well illustrated in figure 44. It is such an interesting creature and proved such an efficient foe of the psylla in Maryland that we give a brief sketch of its life.

The adult (Fig. 44, b) is a beautiful dainty creature with its wings and body of a pea-green color, and with a pair of large eyes that shine like melted gold. It is a very helpless creature, does not feed at all, and remains concealed in low grass during the day, becoming active and depositing its eggs in the evening. It emits a very disgusting odor when handled. "The lace-wing is a prudent mother; she knows that if she lays her eggs together on a leaf the
first aphis-lion (as the young are called) that hatches will eat for its first meal all his unhatched brothers and sisters. She guards against this fratricide by laying each egg on the top of a stiff stalk of hard silk about half an inch high (Fig. 44, a). (ìroups of these eggs are very pretty, looking like a tiny forest of white stems bearing on their summits round glistening fruit. When the first of the brood hatches, he scrambles down as best he can from his egg perch to the surface of the leaf, and runs off, quite unconscious that the rest of the family are reposing in peace high above his head." (Comstock's Manual for the Study of Insects, p. 181).

Mr. Marlatt, who observed its work in Maryland, says of the young aphis-lion: "On approaching the egg or young psylla nymph, it immediately grasps it between its long, curved, man-dible-like organs, which amount to two sucking tubes, between the tips of which the egg or young nymph is held and rolled one way and the other, as between thumb and finger, the juicy contents being in the meantime rapidly extracted; the dry shell is cast aside, the whole operation frequently taking less than a minute. The aphis-lion is an extremely hungry one and is always feeding. It eats anything that comes in its way, is totally fear-

44.- Chrysona oculata. a, eggs'; b, full-zrown larra or aphis-lion; d, larva devouring an adult psylla; e, cocoon; f, adult insect; f, front view of the head of the adult-all enlarged. (Reduced from figure by U. S. Dept. of Agr.)
less, and is also, unfortunately, camibalistic, eating its own kind with great readiness. It is a safe estimate to say that one aphislion will destroy several hundred eggs and nymphs of the psylla in addition to the adults which it will destroy (see d in figure 44) in its later larval growth." In about ten days the aphis-lion becomes
fully grown (Fig. 44, b) and rolls itself up into a tiny ball and weaves around it a glistening, white cocoon (e in figure 44), which looks like a seed-pearl. Possibly while sechuded in this pearly cell the aphis-lion repents its greedy, murderous ways, and changes in spirit. In from ten to fourteen days, a neat lid is cut from the upper end of the cocoon (see e in figure 44) and an active pupa* wriggles out, from which in an hour or so the dainty lace-wing emerges. There are several broods of this predaceous enemy of the psylla during the year.

It is to be hoped that this lace-wing may see fit to include the pear psylla in its menu in New York State, where there is abundant opportunity for it to do our pear growers as efficient service as it has rendered in Maryland.

The other insect enemy of the pear psylla is the very common red lady-bug (Adalia biprunctatu) with a black spot on each wingcover (Fig. 45 e). It is so common that if it can be induced to feed freely upon the pear pyslla it will prove a very efficient aid in the
 warfare against the pest. It is predaceous in
45. - Adalia bipunctata. a, larvæ; d, pupa; e, adult-all enlarged. (Reduced from figure by U. S. Dept. of Agr.)
both its larval
(Fig. 45, a) and adult stages. Mr. Marlatt saw a beetle with an adult psylla in its mandibles in the Maryland orchard; and he says one of the bectles cleaned the eggs from the leares of a young pear tree in his breeding cage about as fast as upwards of 50 to 75 psyllas laid them. He reared from the egg state a brood of the lady-bug

[^51]beetles on the eggs and nymphs of the pear pyslla. Our correspondent in Clinton, Mich., writes that he has "noticed the common lady-bug feeding on the nymphs of the pyslla."

Birds have been seen picking the adult psyllas out of their winter retreats in Niagara county; so industrious were the birds that but few pysllas were left on some trees.

How to Combat Pear Psrlla.

The eggs. - Although the eggs laid carly in the spring are freely exposed on the bark to the action of insecticides, yet we were surprised to find that many of them hatched after they had been dipped in kerosene oil, turpentine, benzine, and several of the washes used for killing scale insects. Mr. Marlatt reports that in July he killed many of the eggs laid on the leaves, by spraying with a kerosene or whale-oil soap emulsion diluted with from seven to nine parts of water. However, as many of the eggs cannot be killed in this way and as the insect can be combated much more effectively in another stage, we do not consider it advisable to fight it in the egg-stage.

The nymphs.-Our experiments in 1892, showed that the nymphs in all stages were quickly killed by kerosene emulsion.* Others who have tested it thoroughly report success.

Usually most of the damage is done in this State by the first brood of nymphs before June 15. It is therefore very important that the insect should be checked early in the season. We now advise using the emulsion diluted with about fifteen parts of water, instead of with twenty-five, as it is more effective against the nymphs, and it will also kill the adult insects. As the nymphs begin to hatch just as the leaves are expanding, then is the time to

[^52]begin spraying; about May 15 is usually the time in this State. Where they are numerons, a second or third spraying will be necessary. The emulsion must be applied liberally and thoroughly; it will not injure the tree in the least. It is much more difficult to fight the insect later in the summer, when the tree is in full foliage and many of the nymphs are covered with honey-dew. Watch for their appearance on the unfolding leaves in the spring and act promptly. Spray two or three times in a week if necessary; make every effort to prevent the development of a second brood.

The adults.-In Bulletin $4 t$ we suggested that a thorough washing of the trunks and larger branches of the trees in winter with kerosene emulsion (at least five per cent. kerosene), or a strong soap solution, would destroy many of the adults in hibernation in the crevices of the bark. It is reported that a whale-oil soap solution has been thus used very effectively in New Jersey. We believe it is a practical method, and should be practiced in infested orchards.

We once saw hundreds of the hibernating adults congregated on the smooth trunks of a large block of young standard pear trees. There were twenty-five or more on each tree, and all of them on the same sides of the trees. It was a short job with a rag or mitten to grasp the tree at the base, draw the hand up the trunk and thus crush the psyllas.

Is it practicable to fight the adults in summer? They are then often very numerous but are very shy and active, and fly from the tree the moment the spray strikes it. It would thus seem that "spraying has practically no value against the adults during their active summer existence" (Mr. Marlatt). However, several of our

[^53]New York pear growers have demonstrated the practicalility of fighting the adult insect. In 1894, the presence of the pest in destructive numbers was not suspected in one Niagara comnty orchard until the leaves began to drop off in July. The kerosene emulsion spray was at once directed against the enemy with the result that it at once brought down millions of the adults, their dead bodies being thickly strewn about the spraying apparatus. Although the insect had gotten such a star't in the orchard, it was so effectively checked with the emulsion that but few psyllas were found in 1895. Mr. Geo. T. Powell, who has had more practical experience with this insect than any other fruit grower in the State, also sends us the following brief, yet graphic, account of his fight with the insect in 1894:
"May 10th. Eggs began to hatch and we sprayed with kerosene emulsion, diluted 1 to 20 .

May 15th. The nymphs began to get out in full force, when we began spraying with great thoroughness. When the wind blows hard, the spraying is not done so effectively, especially in the tops of quite tall trees.

May 16th. Sprayed a second orchard. The day is clear and still. The work is very much more effective, killing the young psyllas quickly and in all parts of the tree.

May 17th. Sprayed the first orchard again. Many insects alive, the emulsion not having hit them thoroughly on account of high winds. Unless the insect is destroyed the fruit will be worthless.

June 5th. After several rainy days, sprayed pear trees again and for the last time as the psylla seems to be pretty well knocked out by this time; only a few nymphs are feeding, but quite a number of adults about the tree.

June 11th. Fiuding a fow nymphs still coming out and working, we sprayed again and at the same time bringing down millions of the adults that escaped former sprayings. The day is very still and warm. The greatest possible force is given the spray, which goes over the tops of the highest trees. The stones on the ground and the platform of the machine are covered with dead adults. A sheet is placed under a small troe, and after spraying but ten sceonds, 150 adults fell upon the sheet and in five minutes 90 per cent of them were dead.

After discovering the extent to which the adults were being destroyed, the entire orchards were gone over, extra force heing given to the spray to bring down as many adults as possible, thereby lessening largely the number to multiply next year.

We used a hand-pump on the Phillip's spayer and stopped at each tree, spraying very thoroughly before leaving it. There is no power machine that will do this work thoroughly enough as yet;
for pressure on the pump cannot be kept on strong enough or long enough to do the work effectually.

Results. -Notwithstanding a very long and severe drouth, we brought through a very good crop of pears of excellent quality, the first good crop in four years. The trees made growth and have quite rallied from an almost hopeless condition of decline.
June 18, 1890. I very thoroughly annihilated the psylla last year. My pear orchard is improving remarkably. Sprayed only once this season, they were so few."

Disheartened pear growers cannot fail to find much encouragemont in the above account of how the ravages of this pear phyla were checked in one of the worst afflicted orchards in our State.

II. The New York Plum Scale.

Lecanium juglandis? Bouché.

This insect (Fig. $\ddagger 6$), which suddenly appeared in overwhelming numbers in many of the largest plum orchards in western New York in 1894, was

46.- Plum branches badly infested with the full-grown scales, natural size. discussed in detail in our Bulletin No. 83, December, 1894. The bulletin is not yet out of print and can be obtained by addressing the Director of the Experiment Station. Several new and important facts have been learned about the insect since the bulletin was published, and these are included in the following notes which aim to give fruit-growers the latest news about this scrious pest.

Extent of its dam. age in 1894.- The serions picture we drew in Bulletin 83) of the ravages of the insect did not tell half the truth. Before the winter was far advanced, it was found that the strain
on many trees from so many millions of little pumps sucking out their vital fluid - the sap-had been too great. In one orchard three hundred of the oldest bearing trees had succumbed in January, and three hundred more died before spring.

Effect of the winter of 1894-'95 on the sacles.-When winter set in, each one of the 50,000 of the best plums trees in western New York harbored millions of the little scales, thus threatening the entire destruction of thousands of these trees in 1895. The situation was exceedingly serions. However, in January it was reported at the meeting of the Western New York Horticultural Society that "a large percentage of the insects were being killed by the winter." We at once made a careful examination of many infested branches sent in by correspondents in different localities, and found that the report was well founded ; the good news was fortunately true. From 50 to 75 per cent. of the scales were then dead, and evidently more succumbed later for we believe that in most orchards less than 25 per cent. of those that went into hibernation in the fall were alive in April, 1895. Apparently those most exposed died first, indicating that weather conditions of some sort may have caused their death. But whether it was due solely to low temperature, or to the sharp, dry, chilling winds that prevailed, we cannot say.

Extent of damage in 1895.-So far as we have learned, all those who suffered so severely from the insect in 1894, are unanimous in their opinion that but very little damage has been done by it in their orchards this year; and it has not been numerous enough to attract particular attention except on a few trees. This general exemption from injury this year was due to three principal causes. First, a majority of the scales died from some cause during the winter, thus greatly checking the future development of the insect. Second, most of those having infested trees carried on a vigorous warfare against the pest with the kerosene emulsion, both in the fall and early spring. Third, thousands of the scales were killed by minute parasites in the spring, and the lady-bug beetles which feed upon the scales were unusually numerous and active during the summer.

However, a few orchards suffered considerably from the insect this year; we learned of one apple orchard in Niagara county that was
quite badly injured. On the whole, the insect did rery little damage in 1895 compared with the destruction wrought in 1894.

The future outlook:- What little information we have indicates that the insect is ging into hibernation in considerable numbers on some trees, but the outlook for 1896 is encouraging. Nevertheless, it will not do to be too sanguine. Every tree known to harbor the pest should be carefully examinel this fall, during the winter, and especially early in the spring.

Previous to last year, New York orchards had never suffered from the attacks of this or any other Lecanimm scale, and they may not be threatened so seriously again for many years to come. But we can never tell when to expect most of our insect foes to appear in alarming mumbers, so that our fruit growers must be continually on the alert and watch this plum pest closely every year.

Its name.-Experts are not yet agreed upon the name this Lecaniun should bear. It has lately been decided by Mr. Newstead, of England, that it is identical with the Europen insectLecanium prunustri. Messrs. ('ockerell and Maskell conclude that it is probably identieal with Lecanium juglandis which Bonché found on black walnut in Germany over fifty years ago.*

Its history and distribution.-The fact that isolated specimens of this insect can be fomd on almost any larye plum tree in certain portions of the State, indicates that it has been with us for many years. The fow years preceding 159t, happened to offer the conditions most favorable for its multiplication in excessive numbers in western New York; and it then forced itself upon our attention by its destructive work.

Mr. L. O. Howard, U. S. Entomologist, reports (Yearbook of U. S. Dept. of $\Lambda \mathrm{gr}$. for 1894, p. 272) that there are two other distinct kinds of Lecanimus affecting phom trees in the United States. One of these passes the winter in the same stage as does our New York species, while the other hibernates as a nearly full-grown, rounded female. Our New York species has

* Mr. Maskell writes us on October (6,1895 : "I have examined your insects, and agree with Mr. Cockerell that on the whole they are nearest to Lecentium juglandis. I don't quite see how your insect can be L. pronastri which has yery marked epidermal puncta. I don't think you will go far wrong in calling it L. juglendis."
recently appeared in destructive numbers in Canada. It is also more generally distributed over our state than was suspected when we wrote Bulletin 83. We have received it from Aquetuck, Hector, Schoharie (on Prunus simoni), Eastwood and Penn Yan, N. Y.

Its food-plants.-The insect still remains par excellence a plum pest, yet several quince and apple trees lave been serionsly injured by it. A possible source of infestation for some of the orchards near Geneva was found to be an ash grove which was very badly injured in $189 \pm$ by a Lecaniun which is apparently the same as the one working on the plum trees. The grove was also badly injured this year, the leaves all dropping off during the summer.

Probably the Lecaniums found in such large numbers on maple and other forest trees in different parts of the State are distinct from the plum Lecanium.

Its natural enemies.-The small, black, elevated, smooth, parasitized scales described in Bulletin 83 , p. 693, were very numerous last spring, and we bred many of the minute four-winged flies. Mr. L. O. Howard has determined them as Coccophagus lecanii Fitch, a Chalcid which is common in many parts of the country and attacks several different kinds of Lecaniums. This little foe proved a valuable ally of the fruitgrower last spring, as we found a considerable percentage of the scales parasitized.

From several different sources we have learned that the twice-stabbed lady-bug beetle was very numerous in

47.-Spiny larval skins of lady-bug beetles, natural size. the infested plum trees this year. Several groups of the spring skins (Fig. 47) shed by, their larva when they prpate, have been sent in by plum growers. Protect these little lady-buge, as they are doing valiant service in the extermination of this pest.

Results of spraying.-All who sprayed with the kerosene emulsion (diluted with 4 parts of water) according to the directions given in Bulletin 83, report general success. Thore is no longer any question about its killing the scales hit by it.

During the summer we saw infested trees that had been sprayed with different substances to kill the young scales then on the leaves. Some of the scales had been killed, but as it was evident that a great majority, over 75 per cent., were uninjured, the applications were far from a success. The liquids had also injured the bloom on what little fruit there was. What results we saw fully confirmed our opinion, expressed in Bulletin 83, that the insect cannot be effectually and practicably checked by sprays while it is on the leaves during the summer and early fall.

Spray infested trees once after the leaves fall in autumn, and at least twice in the spring before the buds open. Use kerosene emulsion diluted four times, and the application cannot be done too thoroughly; each little scale must be hit.

MARK VERNON SLINGERLAND.

BULLETIN 109-January, 1896.

Cornell University-Agricutural Experiment Station, ITHACA, N. Y. HORTICULTURAL DEPARTMENT.

GEOLOGICAL HIST0RY

OF THE

CHAUTAUQUA GRAPE BELT.

> By R. S. Tarr.

O R G A N I Z A T I O N.

Board of Contro1-The Trustees of the University.

STATION COUNCIL.
President, JACOB GOULD SCHURMAN.
Hon. A. D. WHITE Trustec of the University.
Professor I. P. ROBERTS President State Agricultural Society.
Professor I. P. ROBERTS Agriculture.
Professor G. C. CALDIVELL Chemistry.
Professor JAMES LAW Veterinary Science.
Professor A. N. PREN'TISS Botany.
Professor J. H. COMSTOCK Entomology.
Professor L. H. BaILEy Horticulture.
Professor H. F. WING Dairy Husbandry.
Professor G. F. ATKINSON Cryptogamic Botany.
OFFICERS OF THE STATION.
I. P. ROBERTS Director.
E. L. WILLIAMS Treasurer.H. W. SMITHClerk.
ASSISTANTS.
M. V. SLINGERLAND Entomology.
G. W. CAVANAUGH Chemistry.
E. G. LODEMAN Horticulture.
L. A. CLINTON Agriculture.
E. J. DURANDCryptogamic Botany.

BULLETINS OF 1896.

106. Revised Opinions of the Japanese Plums.
107. Wireworms and The Bud Moth.
108. The Pear Psylla and the New York Plum Scale.
109. Goological IIstory of the Chantanqua Grape Belt.

Sir: One of the most obvious circumstances comected with the cultivation of many fruits is the fact that the most successful plantations of them are confined within somewhat narrow areas or in well marked geographic regions. This circumstance is emphatic in the grape belt of Chautauqua county. It becomes a matter of great importance to determine the reasons for the existence of these fruit belts, and to ascertain how far their limits may probably be extended with profit. A study of the surface geology and topograply of any of these belts may be expected to afford most interesting and valuable facts for the pomologist, for this type of investigation is yet practically untouched by scientific inquiry. In Chautauqua county there is a particular reason for such an inquiry because of the fact that the entire Erie slope is not equally adapted to the grape, although vineyards have been almost promiscuously planted upon it. It is necessary that the true grape belt be delimited and charted. In seeking to take up this investigation, we have been fortunate to secure the services of R. S. Tarr, Professor of Geology in Cornell University. It is a happy circumstance that Chautauqua connty, which originated and matured the movement for Experiment Station extension work, should now be the scene of the first specific attempt in this country, on the part of an Experiment Station, to analyze the physical geography of a fruit belt.

L. H. BAILEY.

CONTENTS.

Page.
Introduction 127
Topography 128
The Bed Rock 129
The Soils 130
General Description of the Soils 130
The Hillside Soils 132
The Gravel Ridges 134
The Lake Clay Soils 136
Shale Gravel 138
The Relative Value of the Soils 138
The Modern Beaches 139
The Ancient Beaches 144
The Gravel Ridges 145
Variations in the Gravel Ridges 147
Irregularities and Level of Gravel Ridges 148
Interpretation 149
Résumé of the Geological History 150
Climatic Conditions 155
Most Favorable Places for the Location of Vineyards 156
Influence of the Gravel Ridges 157

Geological History of the Chautanaua Grape Belt.

Introduction.

This study was made primarily for the purpose of ascertaining the natural conditions which favor fruit growing in the grape belt of the Erie shore of New York. It became immediately evident that these conditions had to do both with the soil and the climate. Concerning the latter, little detailed information of value could be obtained ; for in order to gain this information, meteorological observations must be carried on for a series of years at stations located in different places. In order to find out how the soil varies, a rather careful study of characteristics and distribution was made, and the satisfactory study of these involved the question of origin. Since the origin is a question of some interest, it will be included in this paper.

In general, it may be said that the two factors of soil and climate have conspired to make the grape belt a district admirably adapted to fruit raising. While each is of importance, it is evident that the climatic peculiarities are of more importance than the soil. Both the characteristics of climate and soil are due to the topographic peculiarities and the geological history of the region included within the grape belt and in its immediate neighborhood.

The time occupied in the field study has amounted to only about three weeks - two in June, one in September and two days in November - and therefore a great amount of detail cim not be expected. Although a little work was done east of Silver Creek, the study was practically limited to the region between this town and the state line. During the study, I have received many courtesies from the residents of the grape belt, and I am particularly indebted to Mr. J. W. Spencer, of Westfield. In September I was aided by Mr. T. L. Watson, of Cornell University. In rumning the three lines of levels, Mr. M. D. Tennant, of Westrield, did the leveling and the writer acted as rodman.

Topugraphy.
The situation of the grape belt is peculiar. From Lake Ontario sonthwarl, toward Niagara Falls or Lockport, there is a nearly level plain extending to the base of the Niagara escarpment, known

locally as "the mountain" (Fig. 49), which raises quite abruptly to a height of two or three hundred feet. This escarpment is well seen at Lewiston, where the basal plain stretches away toward the lake with scarcely any diversity to break the monotony. All of this plain is less than 500 feet in elevation above the sea, and it borders the entire southern shore of Ontario.

South of the Niagara escarpment, toward Batavia or Buffalo, there is another plain, which beyond Buffalo narrows down to a width of only one or two miles as the state line is approached. It is nowhere below 500 feet, nor above 800 feet in elevation. This narrow strip which borders the Erie shore is the true grape belt. Everywhere the southern margin of this plain is backed by an

50.-Location of the grape belt.
escarpment or ridge (Fig. 50), which quickly raises to a height of 500 or 600 feet above the plain, and in some places is over 1,000 feet above the lake. Therefore, the grape belt (in New York) is a narrow plain extending north-eastward from the Pennsylvania state line, and bounded on the nortli by the lake, on the sonth by a high range of hills. East of silver (reek the phain widens and the bounding escarpment loses in elevation. This narrow plain is only a small fragment of the real plain; for the waters of Lake Erie cover the greater part of it. As is shown in the profile (Fig. 50), the plain deseends beneath the lake waters
and ascends on the Canadian side. Not merely is a part of the plain now submerged, but at a recent geological period more of it, and that part now occupied by the most flourishing vineyards, was covered by the lake waters. Lake Erie now plays an important part in modifying the climate of the grape belt; it formerly did important service in modifying the soils.

The Bed Rock.

As revealed along the lake shore, and in the remarkable gorges which cut the escarpment and the plain, the bed rock is entirely upper Devonian shales and sandstones above the horizon of the Hamilton, which does not extend farther west than Evans. Both plain and escarpment are made of these; but it is probable that the latter owes its elevation to the protective effect of some harder layers of upper Devonian rock now removed.

51.-Section of the grape belt.

On the northern face of the escarpment the soil is prevailingly thin and the plongh frequently reaches the bed rock; but on the plain, the bed rock is rarely seen at the surface, excepting in the stream beds and in the shale ridges, which are found mainly east of Dunkirk. Still the bed rock plays an important part in the soils; for fragments of shale are commonly present in all the soils of the district.

The Soils.

General desoription of the soils.- If we should make several north and south sections across the grape belt, from the middle of the escarpment to the lake shore, they would be found to vary in details according to the location of the line, but to be quite the same in general features. The average condition would be as follows (Fig. 51). Commencing on the hillside with a thin soil of clayey nature, and with an abundance of pebbles, (Fig. 53) and perhaps boulders, at the base of the hill, when at the elevation of about 250

feet above the lake, we come to a gravelly soil in which the pebbles are well rounded (Fig. 57) as if by water action. North of this there is a steep slope of twenty or thirty feet, at the base of which the soil becomes clayey, and this continues usually for several hundred feet, or possibly as many yards, when gravelly conditions are again encountered, somewhere in the vicinity of the main Buffalo and Erie turnpike. One or two gravel terraces are found here, and at the base of the northernmost of these clay again appears. Here, as in the case of the first gravel ridge, there are springs at the junction of the gravel and clay, so that, where not artificially drained, this place is continuously indicated by swampy conditions. From the top of the upper (southernmost) gravel ridge to the spring line at the base of the lowest the descent is about ninety feet, and the distance anywhere between two and three huudred yards and a mile or even more, though usually not far from a quarter of a mile.

From this point lakeward, a distance of one or two, and in some places even three miles, the plain is somewhat irregular, with a general descent toward the lake, which is some 150 to 160 feet below the gravel ridges. The soil is usually a clay, though it is often of a sandy nature. The immediate shore line is commonly a bluff, either of shale or of clay (Figs. 48, 59 and 61), though at times it is in the form of a beach, without any well-developed bluff (Fig. 58).

As has been said, this will hold in general for any north and south line, whether at the state line, Fredonia, Silver Creek or any intermediate point. If, however, we make our section nearly parallel to the lake shore, remaining at the same elevation above its surface, we find a remarkable uniformity of conditions. Thus we may pass from Erie, Pa. (and indeed from far to the west of this), to Hamburg, N. Y., without leaving a belt of gravel, excepting where the road crosses a stream; or, if on the hillsides, one may pass over the same distance upon a boulder-bearing clay; or, if near the lake, upon a fine clay soil, usually free from boulders. These differences are constant and they are due to definite causes. Since the result is of importance to the fruit grower, the cause must at least be of interest. Before considering the cause, we will examine the conditions in a little more detail.

The hillside soils.-Above the upper gravel (see map, Fig. 52), which usually lies but a short distance south of the main road, the ground generally commences to rise more rapilly and the escarpment is soon reached. On this hillside there is considerable grape raising, but the soil is altogether different from that in the region to the lakeward, which is the main grape belt. The base of this soil is a clay of very fine texture; but there are some local variations from this. In some cases the soil is a loam and in places it is even sandy, while on the other extreme it is often a dense hardpan; but nearly everywhere the bulk of the soil is clay, whether it is

53.-Section in the boulder clay on Mayrille and Westfield road.
hard and compacted into hardpan or is a louse and relatively friable loam. When fresh, the color is blue; but since the soil is generally somewhat disintegrated, the color ordinarily seen is a yellov, which is due to iron rust leached from the soil fragments.

Next in inportance to the clay is the presence of pebbles. These are very numerous, and at times they are of considerable size. It is important to note the form of these. They are angular, and if rounded at all, this is usually on only one or two of the sides, so that angular corners are almost invariably to be found. Moreover, the sides of these often bear numerons grooves and scratches. While many of the pebbles are fragments of shale rock,
like that which forms the bed rock of the region, a careful examination shows that there are many which are foreign to this part of New York. .Thus granites, sandstones and limestones are found in a region which from the bed rock fields only shales and sandy shales. If we could examine the soil particles with a microscope, we should find them to be composed of minute rock particles, fresh and unchanged, as if worn or ground from the rock by some strong force. The eritire mass is put together without arrangement, and there are no distinct layers such as those found in the lower gravel soils. We say it is unstratified, though sometimes (as in figure 53) there is a partial stratification, never very distinct.

This soil varies greatly in thickness, being usually several feet deep; but while sometimes, particularly in the stream valleys, it attains a depth of several hundred feet, in other places on the hillsides it forms a very thin veneer orer the shale rock. Near the crest of the escarpment there is another belt of soil of morainic origin; but as this is not in the true grape belt, it need not be considered here.

This clay soil is the same as that which covers the greater part of the area of New York and New England, and of Canada to the north of these districts. Its characteristics and origin are well understood by geologists, to whom it is known as till or boulder clay. In the first half of this century its origin was in dispute; but we now know that it is a deposit from a great continental glacier which occupied northeastern North America, and extended outward in all directions from a center near Hudson Bay or Labrador, behaving like the present ice sheet of Greeuland, or the Antarctic. Slowly moving across New York State, toward the south, with a depth certainly as great as a mile (for it covered the highest mountains of the east), it ground down the rocks, reducing them to a fine clay, which is often called rock flour, and caused a mingling of pebbles from various sources. Thus the granite from the Canadian highlands is stranded on the hillsides of Chautangua county and is there mingled with the shale. The grouved and scratched pebbles show that this process of grinding was in operation.

Much of this material was dragged beneath the ice; and owing to variations in the topography of the land, in currents or in supply,

in some places it accumulated to a depth of several hundred feet, while in other places it was not so extensively deposited, just as in some places a river scours its channel clear, while elsewhere it is building a bar. Finally the ice disappeared from these hillsides and all of the material that was in or under it was left to form the present hillside soils.

The hillside soils are somewhat difficult to work, partly because of the roughness of the surface, partly because of the irregularities of the texture and composition, which, even in the same field, may very differently affect capillarity and drainage. Moreover, it is often a dense hardpan which is difficult to till. Still it is a strong, sturdy soil, which, when properly cultivated, furnishes good crops. However, it is not so well adapted to grapes as the more sandy soils of the valley.

The gravel ridges.-Throughout the entire grape belt (Fig. 54), there are three distinct gravel areas, extending approximately parallel to the Erie shore. On one of the two northernmost of these the main road to Buffalo is generally located, while the third is south of this, at distances generally varying from one or two hundred yards to more than a half mile. Between these distinct ridges there are sometimes one or two less distinct gravel beds; but most of the space between them is occupied by a clayey soil. In some places, particularly near the larger streams, the entire belt is gravelly.

The surface of the gravel ridges is typical. Each one is remarkably level-topped (Fig. 55), and the roads that follow them often extend for miles almost on a dead level. There are distinct terraces, and when viewed from the north they present a bold face which rises quite abruptly to a height of from fifteen to thirty feet (Fig. 56), beyond which a nearly level plain is usually encountered (Figs. 54 and 55). Near the streams the terrace is broader than elsewhere; and in some cases it is a true
ridge with a nearly level top but with a slope both to the north and the south (Fig. 65).

The soil of these gravel ridges is peculiar, and it is upon them that many of the best vineyards are located. Wells and natural sections show that the gravel soil varies in depth from one or two feet near the edge, to ten or fifteen feet. Beneath the gravel is found clay or shale. The gravel soil consists of pebbles and sand

55. - Round the crest of a gravel ridge just east of Fredonia.
with scarcely any clay, excepting that which has come from the disintegration of some of the fragments. After plowing it does not form clotted bunches, but is loose, friable and porous. Water readily passes through it, and for this reason, forms of vegetation whose roots do not extend deep into the soil are in danger of suffering in times of drought.

When examined in a fresh section, it is found that the gravel is often very pebbly, and that the pebbles are sometimes very large.

Compared with those of the hillside, the pebbles are found to be well rounded and smoothed (Figs. 57 and 66), as if by water action. There are few if any angular corners, and no grooves or seratches. The clay element is practically absent, and the pebbles are bound together by sand instead. The pebbles and sand are in layers, or are stratificd (Fig. 57), so that there are several important differences between the soils of the two zones.

A comparison with the beaches of the present lake shore shows a striking resemblance, not only in texture but in the surface outline. In both cases there are many romided pebbles and much sand; and in both cases, also, the surface form is that of a flat-topped

50. - Upper terrace southeast of Sheridan.
terrace. However, in the beach there is almost no clay, while in the gravel ridges the decay of some of the pebbles and sand particles has furnished some clay; and also the action of vegetation and cultivation has somewhat modificd the gravel ridge soil. The meaning of this resemblance will soon be shown to be similarity of origin. As many who have tilled the gravel soil have conjectured, the ridges are true lake beaches now stranded on dry land.

The lake clay soils.-In the present lake, gravel beaches are being formed along the shore line; and each time that there are strong waves, the washing action of the water moves the pebbles backward and forward, rounding them by grinding off tiny particles of clay. The force of the waves and currents is capable of carrying
the beach sand and gravel only to a very short distance from the shore line; but the clay that is worn away by the waves passes in suspension for a considerable distance from the shore line before settling to the bottom. During windy days the waters immediately off shore are clouded with sediment. Fishermen know that at a distance of only a few yards from the shore the lake bottom is almost everywhere covered with clay or sandy clay. The soundings made by the United States Engineers, who have surveyed the bottom of Lake Erie, show that a muddy bottom is the prevailing feature.

When the lake waters reached to the height of the gravel ridges, the region below this was naturally a place for the deposit of clay.

5\%.-Section through the upper beach at Westfield, showing stratification of pebbles and sand.
While some pebbles may have been drifted away by the ice, and dropped to the bottom away from the shore, the clay was in most places free from large fragments. In some places, particularly opposite the mouths of streams, the clay might be replaced by sand for a considerable distance from the coast. An examination of the soil between the northernmost gravel ridge and the lake shore, shows that these features exist.

A layer of clay, varying in depth from a few inches to several feet, is spread over most of the region west of Silver Creek and north of the gravel ridges. Oftentimes it rests on the bed rock, barely covering it: in other cases it is found above the true boulder clay, and in some stream cuts one may often see a bed of dense boulder clay upon which rests a foot or two of clay, which
is often quite sandy. In such places, one has the opportunity of studying the differences between the two kinds of clay soil, one of which is characteristic of the hillsides. The lake clays are found to be in layers, as if deposited in water, and the clay is usually less dense than the boulder clay, while pebbles are relatively scarce.

Shate gravel.--Between the lake shore and the true gravel ridges, in some places there are low ridges of shale, on which the soil is so thin that deep plowing reaches the friable shale bed rock. The soil is then made up of a mixture of fragments of shale and clay, forming what is known as shale gravel. These deposits are not

58. - Modern beach at Barcelona, showing the crest in the background.
very extensive, and they merely represent rock hills which have not been deeply covered by glacial or lake deposits. They are less common west of Silver Creek than they are east of that town.

The relative culue of the suils.- Of the three important kinds of soil in the grape helt. the gravel is distinctly the hest for fruit raising, and the hillside soils of the least value. That the fruit growers have generally recognized this, is shown ly the fact that in the belt of gravel there is a much greater percentage of vineyard than in either of the other belts. While it is so readily permeable to water that plants whose roots do not extend deep into the ground may suffer from droughts, it rests upon a much less permeable rock or clay, over which water is constantly percolating; and those forms of vegetation whose roots are able to reach down to this zone are
not endangered. The depth of this permanent water zone is variable, but it is usually several feet.

The width of this gravel belt is very variable, as indeed are the details of its composition. Near the mouths of large streams, as at Silver Creek, Fredonia, Westield and the state line, the zone broadens so that a sandy soil extends from the base of the true gravel ridge across the plain, nearly, if not quite, to the lake. Between the streams the gravel ridges become narrower terraces, and the lake clay soil commences at their very base. Therefore, in different parts of the grape belt, the area in which the soil features are especially adapted to grape raising is somewhat variable; but there is a certain uniformity, and the importance of this to the question of origin is sufficient to call for a more detailed statement of the features of the gravel ridges, or, as we may now call them, the ancient beaches.

The Modern Beaches.

Let us first take a glimpse at the present shore line features of Lake Erie. There are two separate kinds of shores, the rock or clay bluffs (Fig. 48) and the gravelly or sandy beaches (Fig. 61). Oftentimes the bluff is faced by a beach (Figs. 48 and 61). Where the larger streams enter the lake, the width of the beach is increased, and the waves are not cutting at the base of the shale bluffs. The cliffs need not delay us, for it is the beaches with which we have to do in particular. The beaches consist of sand and gravel thrown by the storm waves to a height of several feet above the reach of the ordinary waves. In time of strong waves the water dashes over the top of the beach, moving the pebbles to and fro, although they are situated fully ten feet above the present lake surface (measured at Barcelona) (Fig. 58). This is the crest of a terrace whose width varies, sometimes being a narrow strip at the base of a bluff (Fig. 59), sometimes, especially near the mouth of a stream, broadening out to quite an extensive plain. At Silver Creek and at the mouth of Cattaraugus Creek, the beach deposits are very extensive; and in the latter, the action of the wind by building sand dune hills has raised the level above the reach of the highest waves. In these places also, bars are being built opposite the mouth of streams (Fig. 60).

59.- Crest of modern beach at Barcelona with a clay bluff in the background.

The reason why these beaches are being built is that the supply of gravel is greater than the waves are able to remove. In some cases the supply comes mainly from the rocky headlands, in others

60.- Present bar formation at Silver Creek.
from streams. Where it can not all be ground down to a fine clay, that can be carried off shore and dropped to the bottom, it accumulates as beach gravel ; and so, year by year, the beaches encroach

61.-Present beach of Lake Erie, north of Dunkirk.
upon the lake. The crest of the beach, which may be ten feet above the lake level, represents the highest point to which the lake waves can reach and bear gravel : in other words it represents the
height reached by the violent storm waves. Since this varies with the exposure, the crest of the beach may vary in height, as we have seen that it varies in width. This variation amounts to only a few feet, the beach being higher on exposed than on sheltered coasts.

Generally the top of the beach is nearly level (Figs. 59 and 61);

but where accumulations are made off shore, as they sometimes are where streams bring considerably more gravel than the waves can dispose of, a bar is built, and this slopes both ways (see Figs. 60 and 62B. Also compare with Figs. 62A and 65).

Therefore the top of the true beach is a plain of varying width, whose elevation is nearly uniform, both along the shore and at

right angles to it. If it is in the form of a bar, the elevation remains nearly uniform in the direction of the length of the bar, but at right angles to this it rapidly descends in both directions. In the beach, the flat topped plain is faced on the lakeward side by a rapidly sloping front; and this descent continues beneath the lake waters. (Fig. 63).

Therefore on the shore of the present lake we have a terrace plain of a nearly uniform level, and the terrace slope (Figs. 58, 59 and 61), the whole being composed of well rounded and water-worn

64.-Pebbles of the modern beach at Barcelona.
gravel and sand (Figs. 58 and 64). We also find numerous wavecut cliffs either in the clay (Fig. 61) or in the rock (Fig. 48) ; and opposite the mouths of the streams there are often formed bars (Fig.

65 -Section through a bar. Midway between Sheridan and Fredonia. Beach to be seen in the background in the gap cut through the bar.

60) which are welded at their base to the beach, and stretch more or less completely across the stream mouth. Sometimes there are

144 Agricultural Experiment Station, Itidica, N. Y.

spits of gravel; and there are numerous other minor details of shore line features.

Tife Ancient Beaches.

Most of the features just described are found also in the gravel ridges. They usually have all of the characteristics of beaches (Figs. 56 and 66), and near the streams they are often transformed to bars (Fig. 65). The resemblance is so close that even the most casnal observers have noticed it and formed the theory that the ridges

66.-Photograph showing pebbly nature of old beach terrace near sheridan.
were made by the lake waters. So far no fossils of lake shells have been found in the gravels, though some have been reported by residents of the region. It would be of great importance to find these* for they would determine beyond question whether the gravel ridges are lake or ocean beaches. There is little reason for believing the latter, although this explanation has been suggested by some.

* If any reader should know of the existence of fossil shells like those now living in the lake, I should be very glad to be informed of the occurrence.

The gravel ridges.-In passing from one end of the district to the other, numerous differences are found in the gravel ridges. Perhaps the most important change is in the number of beaches (Fig. 67). From the base of the lowest to the crest of the highest, there is a vertical range of from 85 to 100 feet* in a distance which is often less than a half mile. In this distance there are always two distinct ridges or beach terraces and usually several. There seem to be five beaches, though it is rare to find all developed in the same section. In thirty-one sections whose elevations were measured with the aneroid barometer, only one (Number 17) clearly exhibited five ridges. In section 1 there are six gravel ridges, but one or two of these may have been bars opposite the stream mouth.

67.-Diagram to show the elevation of the different terraces (in thirty-one sections) above the base of the lowest terrace. 1, at State Line ; 30, just east of Silver Creek.

There are four beaches in section 10 , in which the upper beach was not measured; and there are also four in Section 31 where the upper beach is absent. In several places (nine sections, $8,11,12$, $13,22,25,28,29$ and 30) four heaches appear in the same north and south line. On the other hand there are places where the three lower beaches are merged into one terrace, or in which one or two of the beaches are so indistinct as to be scarcely noticeable (notably section 16).

From State Line to Sheridan the upper beach is quite distinct ; but east of that place this beach begins to lose distinctness and it disappears just east of Silver Creek. The lower beaches extend eastward, one

[^54]disappearing just south of Hamburg, the others extending to the vicinity of Crittenden where they also die out. Without analyzing my measurements here, it may be said that the crest of the first or lowest beach ranges from $15-20$ feet above the base of the terrace; the second beach ranges between $10-15$ feet above this; the third from $10-15$ feet higher; the fourth also $10-15$ feet higher; and the fifth between 30-40 feet above this. As one drives along the main road to Buffalo, the face of the upper terrace is frequently visible, while the road itself is usually upon either the lowest, or, more commonly on the second level. From just west of Silver Creek to within three miles of Fredonia, it follows the lowest; but west of this is more commonly on the upper level, though at times descending to the lower. When visible, the third and fourth beaches (measured from the base) are indicated by slight gravel ridges. There is so much variability in these respects that to make the feature entirely clear it would be necessary to describe the region in much detail. From figure 67 one will obtain an idea of the irregularity of level, throughout which, however, there is considerable uniformity.

Below the upper terrace there is usually a bench or plain which slopes quite uniformly up to the base of the terrace and on the northern margin ends in a steep descent; but in a number of places this plain is diversified by slight benches of gravel, marking some of the intermediate beaches. From the crest of the upper terrace toward the south there is also a plain, which is usually very narrow, but is sometimes gradually merged into a broad till-covered plain (Fig. 54).

From the lake shore to the base of the first gravel ridge, near the main road, there are no beaches of a distinct character, although in one or two places there are indications of wave action. Over this plain, which is often one or two miles in width, the soil is mostly of clay, as has already been noted. However, north of the town of Portland there is an ancient sand dune region, in which the sand is no longer in movement, having probably had its features introduced immediately after the lake water left the land. The sand is fine in texture, quite like moulders' sand, and it is heaped into the typical conical peaks with enclosed craters, which characterize sand dune belts. Here the topography is very rough ; but elsewhere the prevailing condition is that of a plain, sloping lakeward.

Tariations in the gravel ridges.- Not only do the number of the gravel ridges vary, but there is a considerable difference in their characteristics from one point to another. Generally the slope of the terrace front is abrupt (Fig. 68), and the top quite level; but, as has already been noted, it may be in the form of a ridge or bar instead of a beach. There is also a variation in width, which in some cases is very marked. Notably opposite the mouths of streams the width of the gravel is greatly increased, the deposit there being in the nature of a delta. Here the steep front of the terrace disappears and is replaced by a gravel slope, crossed by numerous gullies and traversed by ridges of gravel; and this gravel extends for a considerable distance toward the

68.-Front face of lower beach terrace just west of Portland. East of section line No. 2, Fig. 67.
lake, gradually becoming a sand, and then, near the lake, a clay. The best delta in the area studied is that upon which the town of Fredonia is situated; but there are other similar deposits near the mouth of nearly every stream of considerable size.

Just as in the modern beach, there is also a variation in texture in any single gravel ridge. But quite unlike the modern beach, the material is always a gravel. In the entire region studied I have found no considerable part of either terrace made of sand. In small areas there is often much sand; but nearly everywhere there are layers of rounded pebbles in close association.

On the present shore there are many wavecut cliffs of shale; but in the entire region occupied by the gravel ridges, from State

Line to Llamburg, I have not found a single rock cliff. In some cases wells have reached rock near the front edge of the gravel terrace, suggesting the possibility of such cliffs veneered over with gravel which has slipped down from above. This would be possible only with low rock cliffs; and we may therefore conclude that in this part of the shore line there are no wave-cut cliffs which are at all comparable in size to those of the present lake shore. Whether there are any wave-cut cliffs of gravel I am not so certain. There are places where the lowest terrace may be of this nature; but this could not be proved, for beach gravel covers the face and base.

In any event, it may be concluded that the prevailing feature of these ancient shore lines is the wave-built, instead of the wave-cut terrace. In this respect there is a marked difference in the features of the present lake shore, and a resemblance to such coasts as the sandy shores of New Jersey and the Carolimas. This is a feature which needs to be explained and will be discussed in later pages.

Irregularities of level of gravel ridlyes. - When formed by the lake waters, these ridges were essentially horizontal. That is to say, leaving out of question certain minor variations from place to place, such as we see on any beach at present, the average crest of each beach from one end of the region to the other, was a horizontal line, just as is the case on the present lake shore. Still, at present, these ridges are not horizontal. As determined by careful lines of levels, and by numerous elevations obtained by other means, they are tilted so that the eastern end is higher than the western. This necessarily records a change in the level of the land since the beaches were deposited. Along the line of beaches from Cleveland to Silver Creek the change amounts to over 90 fect. Therefore, since the distance is about 150 miles, the change in level amounts on the average to about three-fifths of a foot per mile. The levels made in the grape belt are not of decisive value for the distance between them is not great. Still in the profiles (Fig. 69) one sees that very nearly the same change is recorded.*

[^55]Interpretation. - For a long time we have known more or less concerning elevated lake beaches which seem to nearly surround the

Great Lakes. Different geologists have studied different sections and so we have many scraps of knowledge; but these are not suf-
ficiently complete to allow of any full statement of their meaning. Indeed, one of the needs of North American geology is to have some one person follow this subject to an end by tracing the beaches not only to the States, but also through Canada. There is much yet to be learned, though we are in a position to state the more general facts of the history.

It cannot be doubted that these ridges were formed in water. Their resemblance to the shore lines of the lake is so perfect, in almost every particular, that the conclusion is almost forced upon us that the water in which they were formed was lake water; and this conclusion searcely admits of a reasonable doubt. No other explanation than beach origin can be admitted, for no other possible cause can be found, and if of beach origin, then the beaches were formed either in lake or ocean. In support of the latter hypothesis no single fact can be found which does not equally apply to the theory of origin in lake waters; and against the ocean theory there are facts which seem to entirely exclude it. If these were formed in the ocean they should be continuous; but the beaches end quite abruptly, the upper one just south of the town of Silver Creek, the next south of the town of Hamburg, and the others and lower ones near Crittenden. There is no known reason why ocean beaches should thus terminate, while, as we shall see, there is an excellent reason why lakes should cease to build beaches at these points.

Everything then points to lake origin, and all the observed facts may be accounted for by this theory, while no known fact opposes it. Therefore we may consider it more than a theory; it is a proved fact. There remains to be explained (1) why ${ }_{a}^{2}$ Lake Erie should have been so much higher than now; (2) why the beaches end so abruptly, and (3) why they are no longer horizontal. These facts can best be explained in the course of a brief statement of the geological history of the region.

Rísumé of the Geological History.

Before the last geological period, the northern part of New York had valleys and hills, plains and escarpments, very much as at present, though the details of topography were quite different. Among the more important differences was the absence of the great lakes, which occupy valleys that have been transformed to lakes largely
by the action of the glacier. Over this country the glacier ice slowly advanced until practically the whole of New York was covered, and for a time this ice sheet ground its way over the rocks, carrying fragments southward and wearing down the valleys and the hills as it passed. All life was of course exterminated from the region and the land was transformed to a dreary icy plateau like that of central Greenland. Why it came or how long it remained are questions which the geologists of the future must answer, if we ever learn. That it came and worked, performing certain tasks we of the present century have determined.

At last, by some change in the condition of the climate, the ice sheet began to melt away and to uncover the buried land. It seems to have done this quite rapidly, though somewhat intermittently. That is, it would stand for awhile with its front along a certain line, then quite rapidly melt away and transfer its front to a distance of a dozen or so miles to the north, where it would again take a stand. This is indicated by the moraines, which are irregular hills of glacial deposits that were accumulated at the front of the ice. The glacier was carrying a load of rock materials, and when these reached the front they were dropped from the melting ice and therefore accumulated. If the ice stood long enough a moraine was built along the margin ; if its stand was brief no morainic accumulations were made. One of these moraines passes through Jamestown, another past the northern end of Lakes Chautauqua, Bear and Cassadaga, and in a general east and west line back of the crest of the escarpment. Another line passes just east of Silver Creek, one near Hamburg, and another through Crittenden.

Beueath and in the ice was a load of rock fragments which were moving southward. They were being ground over one another and over the bed rock, so that they were being reduced to clay by the scouring action of the ice, which worked somewhat like a great sandpaper. When the glacier disappeared, this material was left where it happened to be, and so a soil was deposited which was composed of clay and pebbles derived from various sources to the north. This till or boulder clay was dragged into many of the old valleys, either wholly or partially filling them, so that the streams have often been obliged to cut new channels in the shale. Sometimes these rock gorges end abruptly where the stream crosses or
flows in the old drift-filled valleys and then the shale wall is changed to one of till, in which the boulder clay is sometimes one or two hundred feet deep, as is the case in parts of the gulf near Westfield.

As the ice withdrew, with a south-facing front, it naturally interfered with all north-flowing streams. It formed a dam and caused many reversals of drainage. The St. Lawrence valley was necupied by the ice when the front had retreated north of the escarpment which partly encloses the grape belt. Therefore these north-flowing streams could not drain by the present outlet, but were pounded back and forced to take another place of outflow, and this was of course the lowest point in the enclosing hills, a point which was naturally higher than the present outlet. While the lake was held at its upper place of outflow it was building the upper beach, which has been called Sheridan beach. The outflow of this lake was then at Fort Wayne, Ind., into the Wabash, and the beach may be traced continuously to this outlet. However, in the east this beach comes to an end just south-east of Silver Creek; and near its eastern end there is a tract of moraine.*

To the southward of the town of IIamburg, on the road to New Boston, there is another morainic belt, and a second beach, which can be quite continuously traced from west of Silver Creek nearly to Hamburg, begins to disappear as this town is neared. The last place at which it could be distinctly determined is near Eden Church, southwest of Hamburg; but a third beach from the top passes directly through Hamburg, and has been found to disappear near Crittenden. In each case, as the moraine is approached, the beach becomes less distinct and finally can be traced no farther.

This shows that while these beaches were being built at their respective levels, the ice was standing at different places and was bringing materials which were being laid down at its front in the form of moraines. At first the ice front passed near Silver (reek and then the upper beach was made, while the outtlow of the lake was past Fort Wayne. Then the edge of the ice withdrew for a distance until some lower outlet was formed, and again to a still lower, more northern point, when another and still lower outlet was

[^56]established. One of these last two outlets was past Chicago ; but we know too little about the sulbject to state which one represents this stage, or to tell where the third outlet was.

At last the ice retreated far enough for the Erie basin to take its present outflow past Buffalo; but the valley of the St. Lawrence was still ice dammed, and Ontario was raised to the level of the overflow of the Mohawk valley. Thus temporarily the several Great Lakes had their level raised by ice dams; and during this time distinct shore lines were formed.

There are some differences from the present shore lines still to be accounted for. Why, for instance, are there no rock cliffs, but everywhere a series of beach gravels, a condition of so mach importance to the grape grower? It would have been a serions disadvantage to have had the vineyards traversed by tro or three rock escarpments like that of the present lake shore. In the first place, the question whether the waves and currents shall ent or build depends upon whether they are able to remove all of the material that they obtain by one cause or another. That is the reason why beaches are not built on some of the exposed head lands of the lake, while they are commonly present in the enclosed bays, and why the gravel accumulations opposite the mouths of the streams are more extensive than elsewhere.

There are various reasons why the waters of the ancient lake were less able to remove the materials furnished them than is the case with the present lake. As the ice was learing the land, there was at first a time when no vegetation covered the clay soil, and when the whole surface was attacked by the rain just as a plowed field is to-day. Therefore the streams were given more materials to carry to the lake. In the second place, the rains must also have been heavier when the cold ice wall was melting and furnishing vapor to the air. Besides this, the streams entered the lake at the base of the hill, while now they flow for a mile or two over a plain. Another important reason is the fact that the shores were gradually rising. Therefore, for various reasons, the lake was given more materials than the waves and currents could dispose lof, and hence they accumulated in the gravel ridges which we find.

A second important difference between the old shores and the present ones, is the fact that they are no longer horizontal. This is

due to a tilting of the land since the beaches were formed. There is abundant evidence that the land is now and has been in the past in a state of motion. Actual historic record proves this in several places, and geological study proves it in many more. Since the glacial period the movement in this part of the land has been that of tilting, with greater elevation in the northeast. Therefore these beaches do not show so great a change as they would if they extended in a more nearly north and south direction. The amount of tilting varies from place to place, but in the Chautauqua grape belt averages not far from one foot per mile.

A final question that we may ask, is how long ago this happened. To this no definite answer can be returned. A study of Niagara gorge, which has been formed siuce Lake Erie fell below the lowest gravel ridge, seems to show a period between 4,000 and 15,000 years. There is some reason for believing that the first is nearer to the truth than the last, and that it may even be a shorter period than this. Otherwise it would be difficult to account for the fact that these gravel ridges have resisted destruction so well. Nor can we state any more definitely how long it took the lake waters to build the beaches. They probably do not represent a great length of time, for materials were apparently rapidly supplied.

Climatic Conditions.

While the soil is a very important element in the value of the grape land, the climate is of even greater importance. Hence, while this study was not made primarily with the object of determining the climatic peculiarities of the belt, some features of a general nature were so pronounced that they attracted atteution. The lake is a great modifier of climate. In the spring, by reason of the low temperature of its waters, it holds back the vegetation and this tends to keep it behind the ordinary frosts. Its very presence checks frost by moderating the temperature of the neighboring air. In the summer, the water tends to cool the air of the day and to keep the nocturnal temperature fairly high. During the fall, the water has been warmed by the summer sun, and the influence of this warm body of water lengthens the growing season and tends to keep off the early autumn frosts.

There are many other influences, but nothing of importance
can be stated excepting on the basis of a careful study extending orer several years. The lake breeze of the day must moderate the daytime temperature; and the land breeze of the night may in some cases so keep the air in motion as to prevent frosts. That there is a marked influence upon climate as a result of the peculiar conditions of topography and neighborhood of water, is evident at the very first. The sketch maps (Figs. 70 and 71) show that the mean annual rainfall is greater on the escarpment than on the lake plain, and that the mean annual temperature of the hills is lower than that near the lake. During the disastrous frost of May, 1895, the vineyards in the grape belt, taken as an average, suffered less near the lake, while those farthest from the water were most injured. Still there were cases of rineyards near the lake that suffered considerably, while some on the escarpment were scarcely tonched.*

Most Favorable Places for the Location of Vineyards.

As has been said, there are two factors in the problem which deals with the reason for the conditions in the grape belt, one climatic the other geologic. The climatic features are dependent upon the location near a large lake, and the presence of the bounding escarpment, which confines this influence to a narrow limit. In the eastern part, where the escarpment is relatively low and far from the lake, the influence of the lake is much less distinct. \dagger

[^57]This is the main reason why the grape belt does not extend far east of Silver Creek. Even in the distance of a few miles, from the lake to the crest of the hill, where grape raising practically ceases, there is much variation in climate, as has already been pointed out.

Considering the three belts of soil from the standpoint of their adaptability to grape raising, the hillside soils are of least value, the climate is least favorable, and the surface contiguration of the land is least adapted to this industry. The lake clay soils are of poorer grade than the gravel soils, but the climate is in favor of this belt. The defect of soil texture, which is against most of the lake clay soils, can be readily overcome by a very little intelligent study of the conditions; and so there seems to be no reason why the vineyards should not extend from the base of the hill to the lake. Indeed, the favorable climatic conditions make this industry possible even on the hillsides for a considerable elevation above the plain.

Influence of the Gravel Ringes.
One of the most striking influences of the gravel ridges is upon the roads. For the greater part of the distance, each of the two main gravel strips is occupied by a road which is remarkable for its levelness and for the gravelly material which makes the excellent roadbed. Travelling is therefore extremely easy, and it is very probable that this natural roadway was the site of an Indian trail. Even the position of the towns is often determined by the gravel ridges. Several of the villages and towns, east of Silver Creek, are (including Hamburg) on the gravel; and west of this town, in New York, every place of any size on the Erie shore (excepting Dunkirk, which is so situated because of its port) is located on the gravel ridges. This is true of Sheridan, Fredonia, Brockton, Portland, Westfield and Ripley.

Another important influence is upon the water supply. The gravel furnishes a reservoir through which the water percolates along the junction with the clay; and at the base of the gravel ridges, springs occur where the line of junction nears or reaches the surface. So important is this underground reservoir that not only are the houses on the ridges casily supplied with water, but houses below the beaches are in some cases furnished with water from this source.

Of course the most important influence is upon the fruit industry, and this has already been discussed in sufficient detail. Two or three suggestions may, however, be in place. There is no reason Why the fruit district should not extend beyoud Silver Creek. For several miles beyond that town the conditions are favorable, though they become less and less so as the distance increases. Another point is the feasibility of increasing the range of crops. The climate and soil are well adapted to all kinds of fruits which are common to this latitude; and one would suppose that even the tobacco plant might be profitably grown in a region so peculiarly favored. Almost all conditions have conspired to make this one of the most favored spots in the state.
R. S. TARR.

BULLETIN 110-January, 1896.

Corne11 University-Agricultural Experiment Station, ITHACA, N. Y.

HORTICULTURAL DIVISION.

Extension Work in Horticulture.

By L. H. Balley.

ORGANIZATION.

Board of Control - The Trustees of the University.

STATION COUNCIL.
President, JaCOB GOULD sCHURMAN
Hon. A. D. WHITE Trustee of the Eniversity.
Professor I. P. ROBERI'S Prexident State Agricultural Society.
Professor I. P. ROBERTS Agriculture.
Professor (i. ('. CALDWELI Chemistry.
Professor James Laiv Teterinary Science.
Professor A. N. PRENTISS Botcu!.
Professor J. H. COMSTOCK Entomology.
Profescior l. H. BAILEX LIorticultwe.
Professor H. H. WING Dairy IIusbandry.
Professor G. F. ATKINSON Cryptogamic Botumy.
OFFICERS OF THE STATION.
I. P. ROBERTS Director.
E. L. WILLLAMS Treasurer.
H. W. SMITH Clerk.
ASSISTANTS.
M. V. SLINGERLAND Entomology.
G. W. CAVANAUGH Chemistry.
E. G. LODEMAN Morticulture.
L. A. CLINTON. Agriculture.E. J. DIRRNDBotany.

Office of the Director, 20 Morrill Hall.
The regular bulletins of the Station are sent free to all who request them.

BULLETINS OF 1896.

106. Reviser Opinions of the Japanese Plums.
107. Wireworms and the Bud Moth.
108. The Pear Psylla and the New York Plum Scale.
109. Geological History of the Chantauqua Grape Belt.
110. Extension Work in Horticulture.

Extension Work in Horticulture.

The Honorable Commissioner of Agriculture, Albany:
Sir.- A report of progress of the work which has been undertaken by the Cornell University Agricultural Experiment Station in pursuance of the requirements of the Experiment Station Extension bill, is herewith submitted.

At the outset, it is proper to say that this bill originated entirely with the people. The beginnings of it occurred in 1893, when certain Chautauqua county persons asked the Station to undertake some experiment work in their vineyards. We replied that while we should like to take up the investigations, our funds were insufficient to meet the expense without endangering work in which we were already engaged; and this lack of funds would be keenly felt if other sections of the State should also, following the Chautauqua example, ask for help. We suggested to them, therefore, that if their local horticultural society could raise sufficient funds to meet the expense of fertilizers, traveling and incidentals, we should try to detail a man to look after the work. The matter dropped here; but the next winter we heard of a movement on foot amongst the Chautauqua people to obtain a small State appropriation to pay for experiment work in their vineyards. The movement was placed in the hands of S. F. Nixon, assemblyman from Chautauqua county, who early in 1894 , obtained a grant of $\$ 16,000$, one-half of which was to be expended by the Cornell Experiment Station in work in horticulture in the Fifth Judicial Department of the State, an area comprising sixteen counties of western New York. This is the only instance, so far as I know, of a movement for experiment station work which has been initiated and pushed to a final passage wholly by a farming community. The laws upon which our landgrant colleges and the agricultural experiment stations are founded were conceived and completed almost wholly by a comparatively small body of educators and experimenters, aided by persons in the
varions professions. But at last, the people themselves, whom these foundations are intended to benefit, have felt the touch of the new spirit and the quickened life, and have demanded additional funds to be expended more immediately under their own direction. It must be gratifying to every citizen of New York to know that this State is the pioneer in this experiment station extension movement.

The clause in the law of 1894 which appropriated money to the Cornell Experiment Station, is as follows: "The sum of eight thousand dollars, or so much thereof as may be necessary, is hereby appropriated out of any moneys in the treasury, not otherwise appropriated, to be paid to the agricultural experiment station at Cornell university for the purpose of horticultural experiments, investigations, instruction and information, in the fifth judicial department, pursuant to section eighty-seven of the agricultural law." The law also provided that "such experiment station may, with the consent and approval of the commissioner of agriculture, appoint horticultural experts to assist such experiment station in the fifth judicial department, in conducting investigations and experiments in horticulture; in discovering and remedying the diseases of plants, vines and fruit trees; in ascertaining the best means of fertilizing vineyard, fruit and garden plantations, and of making orchards, vineyards and gardens prolific; in disseminating horticultural knowledge by means of lectures or otherwise; and in preparing and printing, for free distribution, the results of such investigations and experiments, and such other information as may be deemed desirable and profitable in promoting the horticultural interests of the State. * * * * All of such work by such experiment station and by such experts shall be under the general supervision and direction of the commissioner of agriculture." This bill became a law by the Governor's signature, May 12, 1891. In the Lesislature of 1895, Mr. Nixon introduced a bill to continue the work, but increasing the amount given to Cornell Experiment Station to $\$ 16,000$. This second bill became a law on the 4th of April, 1895.

Upon taking up the work asked for by the bill, in the early summer of 1894, the Cornell Experiment Station placed the immediate prosecution of the enterprise in the hands of a chief
${ }^{46}$ horticultural expert," in the language of the law, and the present writer was elected to that office. with the expectation that most or all of the work should be completed during the summer vacation. In entering upon his duties, this ofticer laid out three general lines of work, as specified in the law,--" conducting investigations and experiments." "disseminating horticultural knowledge by means of lectures or otherwise," and "preparing and printing" the results of the work. In other words, the work was to be divided between research, teaching, and publication. The enterprise was new and untried ; the territory to be covered is large, the interests varied, and the demands numerous; and the promotors of the bill had large expectations of the results. The responsibility of inaugurating the enterprise was keenly felt, for a mistake in the hegiming might be expected to exert a serious and baneful inthuence upon future legislation designed to improve the conditions of rural life. The officer in charge has been extremely fortunate, however, in having the hearty support of his colleagues, the free coüperation of the commissioner of agriculture, and, above all, the kindly and intelligent interest of scores of horticulturists in his territory. It was conceived that, in the beginning, a comparatively small and well digested enterprise prosecuted by a few carefully chosen men would be productive of better results than any bold attempt, with a large force, to carry the work into every part of the fifth judicial department. Inasmuch as the original grant was obtained through the exertions of the grape-growers of Chautanqua county, it was designed to undertake careful studies of the vineyard interests at the outset. The immediate charge of this work was placed in the hands of my assistant, E. G. Lodeman, who, to fit himself more specifically for certain problems which were presenting themselves. went to Europe (at his own expense) and visited the vineyards of the Rhine, of Italy and Southern France. The entomological inquiries were placed in the hands of M. V. Slingerland, assistant entomologist of the Experiment Station. Certain lines of investigation made at Ithaca were placed in immediate charge of Michael Barker, who was secured from the Botanic Gardens of Harvard University. We also associated with us for a time in certain tield work, Mr. Harold G. Powell, a senior in agriculture in Cornell University, and one who has had much experience in pomological matters.

In 1895 the work was placed in the hands of the director of the station (mho was absent the previous year) and the writer, but the immediate charge of it was given, as the year before, to the latter officer. Some additional help was secured because of the larger work which was demanded by the larger appropriation ; but in general the enterprise went forward upon the same lines as in 1894.

1. Research or Experiment.

There are two types of experiment work which the people seemed to require of us. One type is a demand for more exact knowledge upon many rural problems; and in order to obtain this knowledge it was thought best to prosecute the inquiries at the Station at Ithaca where there are facilities for scientific work and where the experiments can be given that personal attention which is absolutely essential to truthful results. The other type of experiment is a demand for actual tests of fertilizers, spraying, methods of tillage, and the like, which shall be made upon the farms in various parts of the territory, and where they may be seen by the farmers themselves. These experiments are rather more object lessons than scientific research for they are largely cuncerned with problems which are already well understood, and their results are not capable of such exact analysis as are those which are obtained from painstaking and long continued experiments at the home station. This latter category comes rather more directly under the head of teaching than of experiment.

Arrangements were at once made to take up certain lines of experiment at Ithaca which the fifth judicial department seems to need; and several lines of inguiry which had been already undertaken by the station and had been discontinued because of lack of funds, were again taken up, since they were capable of yielding ruicker results, and with much less expenditure of money, than experiments which should he newly started. Some of the inquiries which were completed and published from this state fund in this way are: Apricot Growing in western New York; The Cultivation of Orchards; The Grafting of Grapes; The Native Dwarf Cherries; Black-Knot of Plums and Cherries, and Methods of Treatment; The Spraying of Orchards; Winter Muskmelons; Forcing-IIouse Miscellanies (comprising accounts of
heating glass houses, lettuce growing under glass, celery under glass, cress, forcing egg-plants, winter peas, bees in greenhouses, methods of controlling greenhouse pests, treatment of carnation rust); Revised Opinions of Japanese Plums. Several other lines of experiment, tonching the horticultural interests of our territory and which had already been carried to a certain point by our own funds, are now gring forward at the home station, and the results may be expected in bulletin form, as they mature.

Certain wholly new investigations have also been undertaken at the home station for the benefit of western New York, most of which, howerer, are not yet ready for publication. Certain of these studies have been prosecuted in part upon the farms in western New York, particularly those relating to insects. The bulletins of this type which have already been published are as follows: A Plum Scale in Western New York; The Climbing Cutworms in Western New York; The Cigar-Case-Bearer in Western New York; The Dwarf Lima Beans; Recent Chrysanthemums; The China Asters, with remarks npon Flower Beds; The Spraying of Trees, with remarks upon the Canker-Worm; Soil Depletion in Respect to the Care of Fruit Trees. A half dozen other investigations of this type are already completed and awaiting publication.

Another type of research work which we have undertaken under the auspices of this bill is the investigation of the conditions of certain horticultural interests in westeru New York. In the interest of these particular inquiries, we have traveled no less than 25,000 miles in western New York and have visited and examined many hundreds, if not thousands, of plantations. We have attempted in these investigations to learn the actual state of the industries and to suggest means for their improvement. They are really the beginning of a horticultural survey which can be much extended with great profit. Some of these inquiries have already matured, and the results are published in the following bulletins: Hints on the Planting of Orchards; The Peach Industry in Western New York; Peach Yellows; Some Grape Troubles in Western New York (with a particular account of the "rattling" of grapes in Chautauqua county) ; Varieties and Leaf-Blight of the Strawberry; The Quince in Western New York; The Recent Apple Failures of Western New York; Cherries; Blackberries; Evaporated Raspberries in

Western New York; General Observations Respecting the Care of Fruit Trees; Geological History of the Chautanyua Grape Belt. Various other investigations of this type have been completed, for the time, and the reports may be expected soon. Some of these are currant growing, gooseberries, the Japanese pears, and dwarf apples. Other inquiries which have been under way for the past two seasons still need one or two more years' work before they are ready for publication. Some of the most promising of these are the bean industry, dwarf pears. standard pears, plums, strawberries, raspberries. Many other horticultural industries, some of which are sadly in need of investigation, we have not yet been able to touch. Some of the most pressing of these untouched problems are connected with the growing of various vegetable crops for the canning trade, some of the forcing-house industries, and the nursery business.

The experiments which are now in progress in western New York are chiefly concerned with the fertilizing of fruit lands. There are, for example, experiments under way in fertilizing peach lands at Youngstown, Niagara county, and near Morton, Monroe county; in fertilizing apple orchards near Lockport, and in Wayne county; in fertilizing and managing nursery lands at Dansrille; and several tests upon grape lands in Chautauqua county. Aside from these definite experiments, we are keeping close run of the experiments which are making by various farmers in our territory.
At the present time every intelligent farmer is an experimenter. We are in a transition period as respects the methods and objects of farming. But the greater part of all this experiment is lost unless it is carefully studied and collated by a specialist, and the summary results of it given to the world. Much of this cumulative body of experience of the best farmers is capable of yielding better results than similar work which might be undestaken at an experiment station. In fact, there are many lines of investigation touching rural economy, or farm management, which can be undertaken in no other way than by a study of actual farm conditions. An experiment station, which is necessarily constituted for scientific research, cannot touch many of the most vital problems of farming. The only ideal station is that which adds the farm of every one of its constituents to its own resources.

2. Teaching.

One of the distinctive marks of the last decade, in educational lines, is the extension of mniversity teaching to the people. Probably no movement of the latter part of the century is destined to exert a greater influence upon the form of our institutions and civilization than this attempt to leaven the entire lump of citizenship with the inspiration of higher motives. The agricultural experiment station movement is itself a part of this general desure to carry the new life to every person, whether college-bred or not. But this movement, beueficent as it is, still lacks some of the means of making itself felt. It must have a closer vital connection with the people. The penple must be made to hear, even though they desire to be deaf. Good citizenship has a right to demand that every person live up to the full stature of his opportunities. The establishment of the experiment stations upon a federal grant ensures stability and removes them beyond the reach of petty and local jealousies and criticisms; but the addition of a state grant to the federal grant brings them home to the people and awakens a personal interest in them in the rural communities which can be obtained in no other way. If this state aid asks for extension teaching, still more will be gained towards spreading the influence of the stations. The results of the experiment station work must be carried to every farmer's door ; and if he shuts the door, they must be thrown in at the window.

The greatest good to be derived from this experiment station extension bill was conceived, therefore, to be teaching. So meetings have been held and attended - nearly fifty of them in the last two years - in which something has been said of the new teaching of science and the new demands of the times. This teaching has not only been cordially met by the rural communities, but it has been eagerly sought by them. The rural population is ready for instruction, and by far the greater part of those who receive it endeavor to protit by it. The derision of "book-farming," of which we have heard so much, has all gone, because the teaching is now worth being received. In the light of our present knowledge it is easy to see that most of the agricultural teaching of a generation ago was wholly unsuited to the conditions which it desired to reach, and it had, for the most part, a most meager foundation both of
fact and of inspiration. If "book-farming" came to be a by-word, it was because the epithet was desersed. It is true that the agricultural industries are the most difficult to all industries to reach with the educational motive, but this is because of the inherent difficulties of the subjects and not because farmers are unwilling to learn.

The truth of these remarks is attested by the large attendance at many of the meetings which have been held under the auspices of the bill, by the eager questioning of the attendants, and by the enormous correspondence which pours into the Experiment Station offices. An instance of the awakening interest may be citcd. The writer met about twenty fruit growers at Hotel Richmond, Batavia, in early spring. The work of the year in Genesee county was talked over. On the 14th day of May an orchard meeting was held at South Bethany at which 300 to 400 people were present; on the 1Sth of July, at a potato-spraying contest at Stafford, 500 or 600 people were in attendance; on the 22 d of August, at Nelson Bogue's, near Batavia, the turnout was estimated at 1,501 to 2,000 . Yet, large as this number is, the writer has addressed a western New York farmers' audience of twice this size during the past season! Surely the time is ripe for sowing the seed of the new agriculture!

Some of the teaching under the auspices of this bill has been done by sending a man to attend horticultural and grange meetings, when such a favor was requested. Last spring we inaugurated a series of "spring rallies," which were brisk, active meetings of one or two days' duration. For the most part, two or three persons took part in these meetings - the officer in charge of the work, Mr. Lodeman and Mr. Slingerland. It was the purpose of these meetings to send the farmer into the season's work with such an initial velocity that he could not stop himself before the harvest time. There were plain direct talks about the philosophy of tillage, fertilizing the land, conservation of moisture, and the like, instructions about spraying, and sometimes talks about insects. An orchard was generally sprayed for the purpose of explaining the operation. These meetings were miformly well attended. Some of the best of them were held at Morton, Clyde, Dundee and Youngstown.

The most exact work which has heen done in extension teaching, however, is in the holding of certain meetings which we have called "horticultural schools." These are designed to carry the most useful features of university extension methods to the aid of the rural communities. The instruction is designed to be somewhat fundamental in character, of such a nature that it interests the listener in the subject because of its intellectual relish, and thereby sets him to thinking. If the farmer thinks correctly, he then does correctly. In the treatment of insects, for example, the listener is asked to consider the anatomy, physiology, natural history, and habits of insects, and little is said about the means of destroying noxious kinds. He can read current literature the more intelligently and with keener interest, for having eren a little of the fundamental knowledge, and he is very likely to carry the new habit of thought directly into the field with him. Another feature of these schools which has met with much favor is the training of the powers of obsercation by placing specimens of twigs, fruits, flowers, or other objects, in the hands of the participauts, asking that they explain what they see. It is true that most persons do not see what they look at, and still fewer persons draw correct conclusions from what they see. It has been our habit to enroll those persons who signify a desire to attend all the sessions of a school, in order that they may feel themselves to be intimately identified with the movement; and the roll is generally called at the opening of each sessiou. An average attendauce of forty or fifty persons is sufficient for a successful school. The first school was held at Fredonia in the holidays of 1894. The enrollment was about 60 ; but the effect of the teaching was felt throughont a wide constituency. It is generally only the most influential persons who attend such schools, and they spread the instruction far and wide; and the teaching is perhaps all the better for being second-hand and for being worked over into more assimilable shape. The high-water mark in these schools was reached at Jamestown, where over 100 persons were enrolled, and where the interest was at high tension from start till finish. Other persons than those eurolled attend the exercises, and the evening lectures draw a larger audience.

The instructors in these schools were mostly teachers in Cornell University, and each one provided printed synopses of his lectures
for the use of his hearers. At the first Fredonia school, the last day, by request of the promoters in that ricinity, was given over to local speakers upon "practical" questions: hut we were requested, in arranging the program for the second school, to omit all local talent in order that the exercises might "not fall below the university standard." Five of these schools have been held. The character of them can best be understood by a display of the announcements and the synopses:

CONSPECTUS

OF A

SCHOOL OF HORTICULTURE

TO BE HELD AT
FREDONIA, CHAUTAUQUA CO., N. Y.,
Dec: 26-29, 1894,
Under the auspices of
The Experiment Station Extension, or Nixon, Bill.
Conducted by L. II. Bailey, and a committee of Chautauqua Horticulturists, consisting of John W. Spencer, S. S. Crissey, I. A. Wilcox, G. Shoenfeld, U. E. Dodge, E. K. Hough, F. W. Howard, L. Roesch, F. M. Southwick, G. Jaarda, J. C. Thies, S. G. Bartlett.

Day sessions will be held in Temple of Honor Hall and evening sessions in the large Normal Hall.

$$
\text { Wednegday, Deoember } 26 .
$$

2.00 р. м.

1. Announcements.
2. Observation upon Twigs.
3. How Plants Live and Grow. With demonstrations with the microscope. W. W. Rowlee, Assistant Professor of Botany in Cornell University.
7.00 p. м.
4. An Analysis of Landscapes, with stereopticon views. L. H. Baluey.

Thursdat, December 27.

9.30 А. м.
5. Observations upon Fruit Buds.
6. The Nursery. Discussion upon the propagation of plants, illustrated with the operations and nurserygrown specimens. Nelson C. Suith, Geneva.
2.00 P. M.
7. Observation upon Seeds.
8. A Brief of the Evolution of Plants. Origination of varieties. Philosophy of domestication and pruning. L. H. Baleey.
7.00 Р. м.
9. The Geological History of Soils. With stereopticon views. R. S. Tarr, Assistant Professor of Dynamic Geology and Physical Geography in Cornell University.

$$
\text { Friday, December } 28 .
$$

9.30 А. м.
10. Observation upon Leaves.
11. Chemistry of the Grape and of Soil. G. C. Caldwell, Professor of Chemistry in Cornell Univer. sity.
2.00 p. M.
12. Observation upon Flowers.
13. Theory of Tillage and Productivity of Land. I. P. Roberts, Director of the College of Agriculture, Cornell University.
7.00 Р. M.
14. What are Fungi? Considered with special reference to the grape, with stereopticon views. E. G. Lodeman, Instructor in Horticulture in Cornell University.

$$
\text { Saturday, Decenber } 29 .
$$

9.30 А. М.
15. Observation upon Fruits.
16. Commercial Grape Culture in Chavtauqua County. Considered in various aspects, by S. S. Crissey, Fredonia; G. Schenfeld, Westfield; J. A. Tennant, Ripley.
2.00 P. M.
17. Observation upon The Apple.
18. Continuation of No. 16.
19. General Question Box.
20. Final exercises.

This is probably the first school of its kind devoted to horticulture in this country. With no precedents to guide us, we shall probably make mistakes, but we shall all do our best. It will always be a pleasant memory that we have participated in a pioneer movement.

The day exercises will aim at specific instruction in particular subjects. The evening exercises will be popular illustrated lectures.

Everyone is invited to attend the various exercises. Persons have the privilege of enrolling themselves as students for the purpose of receiving personal aid upon the points under discussion. At the close of each day's exercise the students will be questioned upon the subject. This questioning is not pursued for the purpose of ascertaining the student's knowledge of the exercise, but to elucidate the subject under discussion. During this exercise, also, the student has the privilege of freely asking questions upon the topic under consideration. It is expected that the instructors will not be interrupted with questions during the course of the exercise.

Each day session will be opened with a lesson upon olservation. Students will be given specimens, as indicated in the program, and ten minutes will be allowed for examination of them. The students will then be questioned as to what they have seen.

Students should provide themselves with note-book and pencil.
Roll will be called immediately upon the hour set for meeting.
Printed synopses of all the day lectures will be distribated to students.

While most of the instruction deals with fundamental principles, special applications will be made to the grape whenever possible.

Roster of the first Fredonia School :
J. R. Adams, Fredonia.
L. S. Allnott, Fredonia.
S. G. Bartlett, Fredonia.
F. A. Beekwith, Fredonia.
A. J. Blodgett, Fredonia.

Newell Cheney, Poland Center. Mrs. Newel Cheney, Poland Center.
II. B. Clothier, Forestville.
T. W. Clute, Fredonia.
E. L. Colvin, Fredonia.
I. E. Cowden, Fredonia.
S. S. Crissey, Fredonia.
U. E. Dodge, Fredonia.
Mi. M. Fenner, Fredonia.
G. H. Green, Fredonia.
E. A. Guest, Fredonia.
G. C. Guthrie, Fredonia.

Sam'l Hall, Fredonia.
Geo. T. Haminond, Fredonia.
F. D. Hardenburg, Brocton.
W. W. Harris, Brocton.

Mrs. W. W. Harris, Brocton.
E. K. Hongh, Fredonia.
F. W. Howard, Fredonia.
G. Jaarda, Fredonia.
F. M. Kidder, Fredonia.
C. I. Mason, Fredonia.
A. Matthews, Portland.
J. A. Miller, Fredonia.
R. E. Morris, Brocton.
A. F. Newton, Fredonia.
O. Ostrander, Fredonia.
J. N. Palmer, Fredonia.

Dr. William Parks, Fredonia.
J. J. Parker Fredonia.
J. M. Pettit, Fredonia.

Dr. A. P. Phillips, Fredonia.
J. A. Powers, Portland.

Dr. N. Y. Richmond, Fredonia.
L. Roesch, Fredonia.
P. L. Saxon, Fredonia.
G. Schœufeld, Westfield.
J. W. Skinner, Laona.
C. L. Snow, Forestville.
F. M. Southwick, Dunkirk.
J. W. Spencer, Westfield.
A. M. Tennant, Westfield.
J. A. Temnant, Ripley.

Carl Thatcher, Fredonia.
D. M. Thayer, Fredonia.

Mrs. D. M. Thayer, Fredonia.
John C. Theis, Fredonia.
M. J. Tooke, Sheridan.
E. I. Wilcox, Fredonia.
I. A. Wilcox, Portland.
C. W. Wilson, Fredonia.
E. P. Wilson, Fredonia.
H. M. Wolbur, Fredonia.

- 58 Students.

CONSPECTUS
of a
SCHOOL OF HORTICULTURE
TO BE HELD AT
YOUNGSTOWN, NTAGARA CO., N. Y.,
Friday and Saturday, August 16 and 17, 1895,
Under the auspices of the
Experinent Station Extension, or Nixon, Bill.

Fridif, August 16.
Morning Session-10 A. m.

1. Music.
2. Observations on Buds and Branches.
3. The Soil-Its resources and management.
I. P. Roberts,

Professor of Agriculture, Cornell University.

Afternoon Session-2 p. m.
4. Music.
5. Observations on the Peach.
6. The Orchard.-Management of land and trees.

> L. H. Balley,
> Professor of Horticulture, Cornell University.

Evening Session-7.30.
7. Music.
8. The Science of the Weather.--Illustrated by charts and diagrams.

> | R. S. TARr, |
| :--- |
| Professor of Geology and Physiography, |
| Cornell University. |

Saturday, August 17.
Morning Session-10 A. M.
9. Music.
10. Observations on the Apple.
11. Insects Injurious to the Peach.--Illustrated by actual specimens. M. V. Slingerland, Entomologist in the Experiment Station, Cornell University.
Afternoon Session-2 р. м.
12. Music.
13. Observations on the Apple-scab.
14. The Spraying of Orchards.-Lessons of the year.
E. G. Lodminan, Assistant Morticulturist, Cornell University.

The meeting will be held in the Opera House.
The school is free to everybody, and every one interested in horticulture is invited to attend.

Come with note-book and pencil.
Be on hand promptly at the opening hour. The observations will be the most interesting exercises.

Bring in specimens of fruits, Hlowers, insects, and whatever else interests you.

Come with the determination to learn all you can about the subjects under discussion.

A SCHOOL OF HORTICULTURE
will be held in
UNION GRANGE HALL, JAMESTOWN, N. Y., October 31, November 1 and 2, 1895,

Under the auspices of
The Nixon, or Experiment Station Extension, Bill.
Conducted by L. H. Bailey, Cornell University. Free to All.

Thursday, October 31.
2.00 p. м. Lesson in observation upon Bark.

Outline of the Nutrition of Plants. With Examples. E. J. Durand, Instructor in Botany, Cornell University.
7.30 p. m. Address on Evolution in the Vegetable Kingdom. L. H. Bailey, Professor of Horticulture, Cornell University.

Fridat, November 1.

10.00 А. м. Observation on Insects.

Insects and Insect Enemies. M. V. Slingerland, Entomologist in the Experiment Station, Cornell University.
2.00 p. м. Observation on Flowers.

Plows and Plowing. I. P. Roberts, Director of the College of Agriculture, Cornell University.
7.30 р. м. The Geological History of Jamestown Region. With lantern slides. R. S. Tarr, Professor of Geology, Cornell University.

Saturdat, November 2.

10.00 A. м. Observation on the Apple.

How can the Farmer tell what Fertilizer his Soil Needs? G. C. Caldwell, Professor of Chemistry, Cornell University.
2.00 р. м. Observation on Fungi.

Fungi and Fungous Enemies. E. G. Lodeman, Instructor in Horticulture, Cornell University.
Let every one who is interested in agriculture and horticulture come and take part in the sessions.

Bring in all specimens of plants, insects, fruit, and the like, concerning which you wish to ask questions.

Come with note-book and pencil.
Read up on the subject under discussion before you come. You will then get more out of the instruction.

Be on hand promptly at the opening hour.
This is an opportunity for every one to renew his school days.
Roster of the Jamestown school:
R. Adams, Jamestown.

James S. Aiken, Fluvanna.
Mrs. Geo. L. Ames, Gerry.
Miss NettieJ.Armstrong,Jamestown.
B. B. Bissell, Gerry.

Mrs. K. M. Bissell, Gerry.
Flint Blanchard, Jamestown.
Mrs. Flint Blanchard, James. town.
L. G. Brainard, Ellington.

Mrs. Mary Brainard, Ellington.
MissEllen A. Breed,Jamestown.

Simeon Brownell, Dewittville.
Mrs. Simeon Brownell, Dewittville.
W. O. Brownell, Bemus Point.

Miss Callahane, Jamestown.
A. M. Cheney, Jamestown.

Mrs. A. M. Cheney, Jamestown.
Asa Cheney, Bemus Point.
J. Cheney, Jamestown.

Mrs. J. Cheney, Jamestown.
Mrs. KateCheney, Bemus Point.
Lewis Cheney, Kaintone.
Miss Martha Cheney, Bemus Point.

Newel Cheney, Poland Center. R. T. Hazelton, Frewsburg. Mrs. Newel Cheney, Poland Jared Hewes, Stedman.

Center. W. L. Hyde, Jamestown.
Amos Colburn, Ellington.
Miss Minnie Comstock, Jamestown.
F. A. Crandall, Falconer.
J. W. Creal, Kaintone.

Thos. W. Crouch, Jamestown.
Chas. M. Dow, Jamestown.
Edwin Durand, Frewsburg.
F. E. Durand, Frewsburg.

Mrs. F. E. Durand, Frewsburg.
Mrs. O. J. Felton, Falconer.
C. C. Fisher, Stow.
F. A. Fitch, Randolph.
L. D. Gale, Steadman.

Miss Louise E. Geer, Jamestown.
C. D. Gifford, Jamestown.

Mrs. C. D. Gifford, Jamestown.
T. H. Gifford, Jamestown.
W. C. Gifford, Jamestown.

Mrs. W. C. Gifford, Jamestown.
G. A. Gladden, Napeli.

Mrs. G. A. Gladden, Napoli.
A. L. Gleason, Open Meadow.

Miss Gertrude Green, Ashville.
Miss Ophelia Griffith, Jamestown.
Mrs. Daniel Griswold, Jamestown.
Miss Bertha Gron, Jamestown.
E. A. Harvey, Fluvanna.

Mrs. E. A. Harvey, Fluvanna.
W. Haskin, Ellery.

Miss Lottie C. Landon,Jamestown.
Miss E. E. Leet, Jamestown.
G. F. Leet, Point Chantaqqua.
C. H. Love, Frewsburg.
N. D. Lewis, Jamestown.
R. R. Lord, St. Clairville.
S. A. Markham, Ellington.

Mrs. S. A. Markham, Ellington.
O. D. Mitchell, Busti.

Mrs. Anna A. Mills, Jamestown.
S. M. Morley, Stow.

Mrs. L. Morgan, Jamestown.
Mrs. Florence Morton, Stow.
W. Palmeter, Jamestown.
V. E. Peckham, Jamestown.

Mrs. V.E. Peckham, Jamestown.
Miss Clara Phillips, Bemus Pt.
George A. Phillips, Bemus Pt.
Mrs. J. Phillips, Bemus Point.
Mrs. Mary Phillips, Jamestown.
Mrs. L. J. Pierce, Jamestown.
H. Pike, Jamestown.

Mrs. Josephine Price, Jamestown.
David Rider, Levant.
Mrs. David Rider, Levant.
Mrs. L. S. Robertson, Ashville.
D. F. Rose, Jamestown.

Mrs. D. F. Rose, Jamestown.
E. H. Sample, Kennedy.
S. J. Sample, Jamestown.

Mrs. S. J. Sample, Jamestown.
W. H. Seymour, Kennedy.

Miss Laura F. Sheldon, Jamestown.
A. Hazeltine, Jamestown.
D. Sherman, Jamestown.

Mrs. D. Sherman, Jamestown. S. O. Smith, Busti.

Mrs. L. T. Stafford, Kennedy. W. J. Staples, Frewsburg. Mrs. S. M. Stewart, Ashville.
E. A. Stone, Poland. Mrs. E. A. Stone, Poland. C. N. Taylor, Frewsburg.

Lawrence Taylor, Frewsburg. F. D. Thompson, Boomertown. Mrs. N. R. Thompson, Jamestown.
S. W. Thompson, Jamestown.

Samuel Townsend, Frewsburg.
A. A. VanVleck, Jamestown.

Mrs. A. A. Van Vleck, Jamestown.
M. B. Wample, Jamestown.

Mrs. M. B. Wample, Jamestown.
T. H. Welch, Stow.
R. I. Weld, Sugar Grove, Pa.

Mrs. Mary Wheeler, Ellington.
J. W. Whitford, Stow.

- 113 students.

A SCHOOL OF HORTICULTURE

WILL BE HELD IN
THE COURT HOUSE, LOCKPORT, N. Y.,
November 29 and 30, 1895,
Under the auspices of
The Nixon, or Experiment Station Extension, Bill.
Conducted by L. H. Bailey, Cornell University. Free to All.

Fridar, November 29.
2.00 P. M. Lesson in observation upon Seeds.

The Soil. What there is in it and how to get it out.
I. P. Roberts, Director of the College of Agriculture, Cornell University.
7.30 p. m. Address, Landseape Art. With lantern views. L. H. Bailey, Professor of Horticulture, Cornell University.

Saturday, Noventber 30.
9.30 А. м. Observation on Insects.

Insects and Insect Enemies, with specimens and models. M. V. Slingerland, Entomologist in the Experiment Station, Cornell University.
11.00 a. m. Black-Knot and Potato Blight, with drawings and specimens. E. G. Lodeman, Instructor in Horticulture, Cornell University.
2.00 P. m. A session with the growers. "How Science-teaching Looks to a Farmer." John W. Spencer, Westfield, Chautauqua Co.
"Is Orchard Culture Going to Supplant Mixed Husbandry?" Albert Wood, Carlton, Orleans Co.

Roster of the Lockport school:

Asa Baldwin, Lockport.
E. M. Baldwin, Lockport.
R. A. Barnes, Lockport.

George Bebe, Lockport.
Lewis T. Bell, Lockport.
F. M. Bradley, Lake Road.

Jones W. Brown, Lockport.
H. H. Bugbee, Gasport.

Wm. Bugbee, Gasport.
Ellis S. Button, Gasport.
Fernando Capen, Warren's Cor's.
Merritt H. Carl, Lockport.
W. B. Cook, Lockport.
E. E. Crosby, Lockport.
I. N. Crosby, Pekin.
J. R. Crosby, Lockport.
F. Day, Hartland.
L. S. De Wolf, Gasport.

Ralph G. DeWolf, Gasport.
Wm. L. Dysinger, Lockport.
Chas. Oedes, Lockport.
Wm. H. Outwater, Oleott.
M. B. Reed, Medina.

Wm. Scism, Lockport.
W. E. Shafer, Lockport.
E. Ashley Smith, Lockport.

John W. Spencer, Westfield.
H. L. Taylor, Cambria.
E. Terry, Ridge Road.

Geo. P. Tower, Youngstown.
H. B. Tower, Ransomville.

Mrs. H. B. Tower, Ransomville.
A. G. Eighme, Lockport.
A. Flanders, Lockport.
E. G. Gafla, North Ridge.

Almon Gallup, Lockport.
C. Gaylord, Lockport.
T. Greiner, La Salle.
W. T. Hall, Lockport.
T. J. Hastings, Ridge Road.

Geo. W. Haynes, Lockport.
Geo. W. Hildreth, Lockport.
T. Hough, Lockport.

Orman S. Jaques, Wright's Cor's.
W. T. Mann, Barker.
G. E. Manning, Ransomville.

Daniel McCarthy, Lockport.
Chas. H. MeClem, Newfane.
A. Merlen, Gasport.
F. R. Montgomery, Johnson's Creek.
Franklin Moore, Ransomville.
Luke Tower, Youngstown.
B. Treadwell, Lockport.
A. E. Van Dusen, Hickory Cor's. John Walker, Ridge Road.
A. J. Wheeler, Cheboygan, Mich.
E. V. Wheeler, Lockport. P. B. Wilson, Kuckville. Albert Wood, Carlton. Miss E. A. Wood, Pekin.
J. S. Woodward, Lockport.
A. D. Tripp, North Ridgeway.

PROGRAM

OF A
SCHOOL OF HORTICULTURE, to be held at

FREDONIA, CHAUTAUQUA CO., N. Y.,
December 30 and 31, 1895, and January 1 and 2, 1896.
Under the auspices of
The Experiment Station Extension, or Nixon, Bill.
Conducted by L. IH. Bailey.
Day Sessions will be held in Temple of Honor Hall and Evening Sessions in the Large Normal Hall.

Monday, Decenber 30.
2.00 Р. м.

1. Observation upon Pollen.
2. Pollen: What it is and what it does. By E. J.

Durand, Instructor of Botany in Cornell University. Illustrated by charts, and pollen under the microscope.
7.30 г. м.
3. Address: How Plants Obtain their Nitrogen. By George F. Atkinson, Professor of Cryptogamic Botany, Cornell University. With lantern views.

Tuesday, December 31.
$10.00 \mathrm{~A} . \mathrm{m}$.
4. Observation of Insects.
5. Insects: How they live, grow and multiply. By M. V. Slingerland, Assistant Entomologist to the Experiment Station, Cornell University. Illustrated by specimens, charts and papier maché models.
2.00 р. м.
6. Observation upon Soils.
7. Stock, Silos and Soiling for Fruit Growers. By I. P. Roberts, Director of the College of Agriculture, Cornell University.
7.30 р. м.
8. Address: The American Boy. By Professor Roberts. New Year's Day.
10.00 д. м.
9. Observation upon" Knot-holes.
10. The Philosophy and Practice of Pruning. By L. H. Bailey.
2.00 Р. м.
11. Observation upon Black Currants of the Shops.
12. Flower-Growing for Amateurs. By Ernest Walker, Florist, New Albany, Indiana.
7.30 р. м.
13. Address: History of Grape-Growing in America. By L. H. Bailey. With lantern views.

Thursday, January 2.

$10.00 \mathrm{~A} . \mathrm{m}$.
14. Observation upon Figs.
15. Vegetable Gardens under Glass. By W. M. Munson, Professor of Horticulture, Agricultural College of Maine. With photographs and samples of the vegetables.
2.00 р. м.
16. Observation upon Potatoes.
17. Potato Blight and Potato Rot. By E. G. Lodeman, Instructor in Horticulture, Cornell University. With specimens.

Everyone is invited to attend the various exercises. Persons have the privilege of enrolling themselves as students for the purpose of identifying themselves intimately with the extension movement. At the close of each day's exercise the students will be questioned upon the subject. This questioning is not pursued for the purpose of ascertaining the student's knowledge of the exercise, but to elucidate the subject under discussion. During the exercise, also, the student has the privilege of freely asking questions upon the topic under consideration. It is expected that the instructors will not be interrupted with questions during the course of the exercise. Discussion and questions asked for the purpose of eliciting information are always welcome; but there is no time for mere argument and contention.

The day exercises will aim at specific instruction in particular subjects. The evening exercises will be popular illustrated lectures.

Each day session will be opened with a lesson upon observation. Students will be given specimens, as indicated in the program, and ten minutes will be allowed for the examination of them. The students will then be questioned as to what they have seen.

Students should provide themselves with note-book and pencil.
Roll will be called immediately upon the hour set for meeting.
Printed synopses of all the day lectures will be distributed to students.

Read up on the subject under discussion before you come to the meeting. You will then get more out of the instruction.

Roster of the second Fredonia School:
(On account of the bad weather and the interruption of New Year's Day, the attendance was smaller than it otherwise would have been.)
S. M. Aldrich, Fredonia.
F. Baldwin, Fredonia.
W. T. Benjamin, Fredonia.
P. G. Cate, Fredonia.
H. B. Clothier, Forestville.
R. C. Clothier, Silver Creek.
T. W. Clute, Fredonia.
E. L. Colvin, Fredonia.
L. E. Cowden, Fredonia.

> S. S. Crissey, Fredonia.
> Eliza Denton, Fredonia.
> U. E. Dodge, Fredonia.
> Elbert A. Guest, Fredonia.
> George Hammond, Fredonia.
> F. W. Howard, Fredonia.
> G. Jaarda, Fredonia.
> F. M. Kidder, Fredonia.
> J. N. Larder, Fredonia.

John C. Theis, Fredonia. A. W. Tuttle, Fredonia. W. H. Van Scoter, Fredonia. H. F. Weaver, Fredonia. E. I. Wilcox, Fredonia. R. D. Luther, Fredonia. S. T. Lyne, Fredonia. C. J. Mason, Fredonia. Thos. Moran, Fredonia. E. J. Oakes, Fredonia. Dr. Wm. Parks, Fredonia.
Dr. A. P. Phillips, Fredonia.
Dr. N. Y. Richmond, Fredonia. Lewis Roesch, Fredonia.

Mrs. M. H. Sackett, Fredonia.
David Scott, Fredonia.
Henry Smith, Fredonia.
Miss L. Smith, Fredonia.
Mrs. L. E. Southwick, Fredonia.
John W. Spencer, Westfield.
J. Spink, Fredonia.
N. A. Tambling, Fredonia.

Karl A. Thatcher, Fredonia.
I. A. Wilcox, Portland.

Mrs. I. A. Wilcox, Portland.
E. P. Wilson, Fredonia.
L. I. Young, Fredonia.
———45 students.

The synopses which have been used in the various meetings are as follows:

Theory of Tillage and Productivity of Land. (Given at first Fredonia School.) (By Professor Roberts.)
I. Plant food in the soil.
II. Its availibility. Objects of cultivation:

1. To promote capillarity.
2. To bring fertility to the plant.
3. To set free the mineral plant food.
4. To hasten nitrification.
5. To aerate the soil, or to prevent too free aeration.
6. To present new surfaces to the rootlets.
7. To induce new root growth.
8. To conserve moisture.
9. To facilitate the drying of the land.
10. To form a mulch.
III. Treatment of the land.

How to cultivate.
When to cultivate.
Crimson clover.
Phosphoric acid.
Potash.
(Students should consult Bulletin 72, Cornell Experiment Station.)

Plows and Plowing.

(Given at Jamestown School.)
(By I. P. Roberts.)
I. Why we plow.

Effects of plowing on moisture.
Drying and warming the land.
Conservation of moisture.
Preventing hard-pan.
Increased storage capacity.
Aeration of soil.
To promote nitrification.
To bury trash.
To prepare a home for plants.
II. When to Plow.
III. How to Plow.
IV. When and How not to Plow.

Stock, Silos and Soiling for Fruit-Growers. (Given at the Second Fredonia School.)
(By I. P. Roberts.)

1. Importance of the animal in the rotation. Manure. The animal enforces a change of cropping. The ideal farm is selfsustaining, making its uwn fertility. Gives continuous employment. Value of the stock itself.
2. How stock may be kept without permament pastures or meadows.
a. Silage. The value of silage, and how to use it. Crops which may be made into silage. Silage rations for various animals,-horses, milch cows, steers, sheep, hogs, poultry.
How to make the silo.
How to fill it.
b. Soiling. What it is, and what are its uses. Crops which may be grown for soiling purposes. Yield of soilage crops. Soiling in catch crops. Soiling in the rotation. Can soiling be substituted for pasturage ?
3. What stock, and how many, can the fruit-grower with 80 acres of land keep with profit? How to procure good stock.

Chemistry of the Soil and of the Grape.

(Given at first Fredonia School.)
(By Professor Caldwell.)
I. The Chemistry of the Soil.
(a) An arable soil in its best condition for producing crops contains seven essential parts:
(1) Clay; (2) sand; (3) assimilable plant food; (4) moisture; (5) humus; (6) air; (7) micro-organisms.
(b) Clay furnishes the substantial mediun required by the plant as a root-hold, and is also a storehouse for preserving some of its food from waste.
(c) Sand is required to make more friable and porous the too stiff and compact soil that clay alone would yield.
(d) The most important part of the food of the plant that is in the soil consists of nitrogen, lime, potash and phosphoric acid forming a very small part of the soil, and mostly insoluble, or unassimilable.
(e) Plant growth involves unceasing chemical change in the soil as well as in the plant itself, and this cannot go on without water, nor can plant food be taken up without it.
(f) Humus or decaying vegetable and animal matter is, as it decays, a source of carbonic acid, which is an important solvent of plant food; humus also itself contains plant food, and it is a loosener of the soil.
(g) Air is necessary in the soil for its oxygen, without which the humus is not formed, and cannot decay.
(h) An important feature of this decay is the progress of nitrification ; this does not go on without the assistance of microorganisms.
II. The Chemistry of the grape.
(a) The vine as a whole is composed of three parts: Water, combustible matter, and incombustible matter.
(b) The largest part of the dry plant is combustible, consists of what is called carbonaceous matter, and is derived from the air.
(c) The rest of the combustible matter, forming but a small portion of it, contains nitrogen, and is called nitrogenous matter or proteids. Though small in proportion it is very important. The nitrogen for it must come from the soil.
(d) The production of starch, sugar, cell-walls and acids is the chief work accomplished in the growth of the vine and its fruit.
(e) The quality of the grape for eating depends largely on the relative proportions of sugar and acid. The ripening of the grape consists largely in changes in these proportions.
(f) Can the grape grower modify these proportions by fertilizing or other treatment of the plant?
(g) The fermenting of the grape juice depends on its sugar, the access of air and the assistance of micro-organisms.

How can the Farmer tell what Fertilizer his Soil Needs?
(Given at the Jamestown School.)
(By G. C. Caldwell.)
Nitrogen, phosphoric acid and potash, are the only plant foods that need any special looking after in the management of manuring the soil.

The old-time management compared with more modern methods. In some respects the modern method better, in others not. Neither method is based on any real knowledge of what any particular crop growing on any particular soil requires. No royal road to this knowledge. The chemical analysis of the soil will not give a reliable answer to the question in hand, becanse the soil of a field cannot be fairly sampled. A recent striking illustration of the difficulty.

The question must be put to the soil and crops together in each case, by plot experiment. The difficulties of this method discussed.

How the experiment should be conducted,-
a: Selection and preparation of the tield.
b: Size, shape and arrangement of the plots.
c: Fertilizers to be used, and when and how to be applied.
d : Cultivation of the crop.
e : Harvesting and measurement of the crop.
f : Corrections that may be made to even up the results.
The use of the results as an answer to the question put. Concerning the repetition of the experiment.

The Nutrition of Plants. (Given at first Fredonia School.)
 (By Professor Rowlee.)

1. Nutrition is one of the two primary functions of all organisms. The other is reproduction.
2. There are different methods of taking food. Amoeba absorbs its food through the walls of its body. In higher forms a body cavity is developed and food is absorbed only through its walls. The culmination of complexity of structure is reached in the highly complicated respiratory and digestive systems of the higher animals.
3. To understand the relation of nutrition in plants to nutrition in animals, one mnst go back to primitive methods of taking food.
4. There are two great operations going on in living beings, one a building up process (constructive), the other a tearing down process (destructive).
5. These processes may be distinguished,-(a) by the materials used as food, (b) by the structure of the operating organs, (c) by the product of the operation.
6. There is no hard and fast line separating animals from plants. The method of nutrition prevailing among plants is one of the most decisive characters.
7. The chlorophyll function (photosyntbesis).
8. The content of the vegetable cell is primarily protoplasm. This in active cells is differentiated in two parts,--the nuclens, at the center, and the ectoplasm, the lining membrane of the wall. The former displays greater activity in the process of reproduction, the latter, in those of nutrition.
9. The green pigment, chlorophyll, which gives the green color to plants is fixed in minute differentiated masses of protoplasm, called chlorophyll bodies.
10. Various forms of chlorophyll bodies,-Oscillaria,-Spi-rogyra,-Chara,-Coleus.
11. Movement of the cllorophyll bodies occurs in all plants so far as known. It is rapid in Elodea and Vallisneria.
12. Couditions best suited to activity of these workers. Importance of sunlight. Pruning to avoid waste of energy.
13. Plants without chlorophyll.
14. General conclusions.

Outline of the Nutrition of Plants.
 (Given at the Jamestown School.)

(By E. J. Durand.)
All plants built up of cells.-Various forms of cells in different parts of the plant.

The green coloring matter of plants (chlorophyll).
The essential elements of plant food.-These are obtained (1) from the soil, (2) from the air. The food of the seedling; of the mature plant.

What is sap? -Water and certain soluble portions of plant food are absorbed from the soil by the root hairs. Forced up through the sap-wood or inner bark by root pressure. Most of the water is evaporated from the leaves through the stomates. The constant current of water from the roots to the leaves. Some of the water combined with the carbon dioxide of the air forms starch.

Assimilation.-This process can take place only in the presence of chlorophyll and light. Parasitic plants containing no chlorephyll cannot assimilate carbon dioxide.

The diffusion of the assimilated food.-It may be used at once; or stored up, usually (1) roots, e.g., carrot, maple, or (2) underground stems, e.g. potato-This stored up material forms the food of many plants in spring before the leaves start.

Respiration, the breaking down of tissue and its burning up with oxygen.

> Pollen: What it is, and what it does.
(Given at the second Fredonia School.)
(By E. J. Durand.)

1. Stamens and Pistils.-The essential part of a flower; their sexual function.
Pollen.-The floury mass of minute grains borne in the anther, the sack at the upper end of the stamen.
2. The pollen-grain cousists of a rounded lit of fluid, protoplasm, surrounded by two membranes. Some of the forms of pollen. After being scattered by the anther, the pollen is carried by the wind or by insects, or other agencies, to the pistils of other plants of the same species.
3. Office of the pollen.-The pollen-grain germinates by sending out a minute tube, which grows down through the pistil, finally entering the ovary to fertilize the egg-cell. How fecundation takes place.
4. Close-fertilization and cross-fertilization.-The most healthy and hardy seed is borne by the plant whose flowers have been fertilized by pollen from a different plant.
5. Some devices of plants to insure cross-fertilization.-The stamens and pistils may be borne in different plants, e.g. Maples and Willows. The stamens may mature before the pistils on the same plant, e. g. Sunflower. Pollen may be impotent when applied to the pistil of the same plant, or of the same variety, as in some varieties of fruits. The case of Pears. Special devices to insure fertilization.
6. The agency of insects in cross-fertilization.-Why flowers are colored. The office of nectar (honey). Importance of bees in orchards. Some flowers fertilized by special insects, e. g. clover. Some adaptations of insects for carrying pollen.

Fungi and Fungous Diseases. (Given at the Jamestown School.)
(By E. G. Lodeman.)
I. Bacteria.

What are they?
Some of their characters.
Effects upon plants. Pear-blight.
Methods of treatment.
Methods of study in the laboratory. Illustrated by specimens and photographs.
II. Fungi Proper.

The principal groups, respecting their habit of life:

1. Feeding upon living tissues (Parasites).
2. Feeding upon injured or dying tissue.
3. Feeding upon dead tissue (Saphrophytes).

Consideration of the first group (Parasites).
How they injure plants; 1, by growing on the surface of host plant; 2, by growing within the tissue of the host.

External indications of their presence. Illustrated by examples and photographs.
How they pass the winter.
Conditions favoring their development.
Methods of dissemination.
Methods of study in the laboratory. Illustrated by specimens.
Methods of treatment.

Potato Diseases.

(Given at the second Fredonia School.)
(By E. G. Lodeman.)
A. Scal.- Due to a fungus (Oospora scabies).

Nature of the fungus. It lives both in the tubers and in the soil.
Treatment of the tubers; of the soil.
Where it is worst; effects of much stable manure; often worse where lime or ashes have been used, probably because these materials modify the acidity of the soil.
Clean seed, clean land, and rotation are the soverign remedies. There is a scab which is produced by insects.
B. Etcrly Blight.- Caused by a fungus (Nacrosporium Solani).

Features of the disease; appears early in the season, in small spots, and causes the leaf to shrivel as if suffering from drought ; spreads slowly; tubers do not rot. It is the commonest disease of potato tops.
The flea-bectle and its relation to the disease.
The remedy. Spraying with Bordeaux mixture.
C. Late Blight, Rot.-Caused by a fungus (Phytophthora infestans).

This is the potato disease of history, and it once caused a famine in Ireland. Known for a half century.
Usually appears after the middle of July; attacks large areas of the leaf; spreads rapidly, causing vines to wilt down; tubers contract a dry rot.
How it is treated. Bordeaux mixture is a specific. Treatment of tubers in the cellar; lime and plaster; heating.

Insects and Insect Enemies.

(Given at the Jamestown, Lockport and the second Fredonia Schools.)
(By M. V. Slingerland.)

Illustrated by large models, diagrams and specimens.

1. What is an insect?

Its near relatives.
How many insects are known?
2. How they are built.

External features. Appendages of the body and their use.
Internal structure ; muscular system; how they breathe; the blood and its circulation ; their nerves.
3. How they feed.

Striking differences in their mouth parts.
4. Their sensations.

The five senses, their form, location and range in insects.
5. The story of their life.

How it begins. How they grow. Their wonderful transformations.
6. Injurious insects.

Questions answered, and discussion of any specimens which may be brought in.

The Nursery ; from the Seed to the Setting of the Plantation. (Given at the first Fredonia School.)
(By Nelson C. Smith, Geneva.)
I. Cuttings.-The kinds: hardwood, softwood, long, short, single eye, root cuttings. How and when they are taken. How stored and how planted. What plants are thus propagated. Commercial propagation of currants, gooseberries, grapes.
II. Layers.- How made and when. Tip layering. The raspberry. Mound or stool layering. The English gooseberry and quince.
III. Budding.- The method: the stock, cutting the cions, setting the buds, tying, subsequent treatment. What plants are budded, and when.
IV. Grafting.- The kinds: root, top, crown, cleft, whip. Uses of each. What plants are grafted in the nursery, how and when.
V. General nursery practice.- Lands and fertilizers. Method of cultivating. Raising the stocks. Importing them. Transplanting. Trimming. Stripping. Double-working.
VI. Advice to purchasers.-Age of trees and vines to plant. Points of first-class stock. Trimming the young trees at planting time. How to plant. When to buy and plant.

The whole to be illustrated with operations and specimens. (Students are referred to Bulletins 69 and Mr, Corneil Experiment Station.)

Definitions.-Cutting.-A severed portion of a plant which is inserted in soil or water with the intention that it shall grow. A softwood or herbaceous cutting is often called a slip, Layer.-A shoot or portion of a plant bent down and covered with earth with the intention that it shall take root at the covered part, when it can be severed from the parent plant. Mound layer (or stool layer) is an erect stool or sucker with earth heaped about its base. Stock.A plant or part of a plant upon which a bud or cion is set. Graft-ing.-The operation of inserting a cion in a stock. Cion.-A portion of a plant bearing one or more buds and a piece of stem, which is inserted into a plant (the stock) with the intention that it shall grow. Budding.-The operation of inserting a bud, with little or no wood attached, in a plant with the intention that it shall grow.

Vegetable Gardens Under Glass.

 (Given at the second Fredonia School.)(By W. M. Munson.)
Illustrated with photographs and specimens of regetables.

1. Why vegetables are grown under glass.

The nature and extent of the markets.
Who may engage in the business.
The profite.
2. What vegetables are grown under glass.

1. Lettuce. 2. Tomato. 3. Cucumbers (two types). 4. Asparagus. 5. Rhubarb. 6. Beans. 7. Radish. 8. Cauliflower. 9. Melon. 10. Pepper. 11. Eggplant. 12. Miscellaneous, as cress, sweet herbs, etc.
2. The houses which are used for winter gardens.
a. The lean-to house.
b. The uneven span honse.
c. The even span house.
d. How they are made:-foundations, sides, roof, ventilators, glass.
e. How much they cost.
f. How they are heated:-flues, steam, water.
g. How hot they must be :- the cool house, for lettuce and the like; the warm house, for tomatoes and cucumbers.
h. How the sunlight is managed:-clear roofs and shaded ones.
3. Internal arrangement, and general management.
a. The beds or benches.
b. The soil.
c. The water.
d. Insects and fungi.
e. It all depends upon the gardener.

Flower-Growing for Amateurs; or Flowers in and Around the House.
(Given at the second Fredonia School.)

(By Ernest Walker.)

1. Propagation of plants.
(a) By seeds. Seed pans or trays. Soil. The conditions of germination. Soaking seeds. Filing. Depth to sow. Watering. Temperature. Light. "Drawing up." "Damping off."
(b) By buds, Tuhers, Corms, Scales, Root-cuttings, Budding, Grafting, Layers, Leaf-cuttings, Head-wood cuttings, Soft-wood cuttings, Saucer-system, Close-system.
2. Transplanting plants.

Potting soil.
Seedlings and cuttings, potting, boxing, larger plants shifting, "Setting out."
3. Window Gardening.

Difficulties, selection of plants, unsuitable plants, preparation for winter bloom. Bulbs, potting, rooting. Watering plants. How roots absorb. Loss of water. How roots behave in pots. How often to water. Leaf surface. Size of pots. Pots in saucers. Sickly plants. Dust. Insects.
4. The Yard.

Lawn. Concealing the unsightly objects. Foliage. Flowers. The location and planting of borders, and beds. Vases. Simplicity. Shrubs. Trees. "Come 'round and see my back yard."

Commercial Grape Culture in Chautauqua County.
(Given at the first Fredonia School.)
(By S. S. Crissey and G. Schoenfeld.)
I. Modern Methods an Outgrowtr.-Examples; pruning and training ; distances for planting ; varieties; culture ; extent of acreage.
II. Modifying Influences.-Varieties modified by climate; cultivation modified by extent; the educational work of societies and institutes.
III. Physical Topography.-Natural superiority for grapes due to climate; theory of thermal strata; formation of northern Chautauqua; land and lake air currents; freedom from fungi ; exemption from frosts; high summer temperature; dryness of the atmosphere.
IV. Pruning.-Philosophy of ; physiolugical effects; grape vine periodically extends its structure; evil effects of improper methods.
V. Green Mayurive.-Plant food available by nitrification; green crops in fall and spring prevent loss of nitrogen; improvement of mechanical condition; comparative value of fertilizers furnished by green manuring ; effect on cultivation.

Picking and Packing Grapes.

(Given at the first Fredonia School.)

> (By J. A. Tennant.)
I. Time to pick; what to pick in; how to pick; how to remove to packing house; how to store; when to pack; how to
pack; what to pack in; how long to keep when packed, before marketing.

Above applying to common methods of marketing.
II. Suggestions as to shipping-crates.
III. New scheme concerning handling and marketing grapes.

A Brief of the Evolution of Plants.

(Given at the first Fredonia School.)

(By L. H. Batley.)

1. Conception of an organic evolution. Its relation to philosophy, history, sociology, theology.
2. Reasons for the belief in evolution. Struggle for existence. Constant changes in the external world.
3. Explanations of evolution. Lamarckism. Darwinism. NeoDarwinism or Weismannism. Neo-Larmarckism.
4. Divergence of the animal and plant. Individuality. Theory of the phytomer. Bud variation. Philosophy of pruning.
5. Variants of domestication. Climate. Food supply: (a) character of soil; (b) thin planting; (c) fertilizing; (d) tillage. Change of seed. Greenhouses.
6. Philosophy of sex. It exists for the purpose of making variable off-spring. Crossing and hybridizing amongst plants.
7. Selection as a means of contemporaneous evolution.

Defintitions:-Family, Order in botany.- A group of genera and species; as Cupulaferce, the oak family, Rosacer, the rose family.

Genus (plural, genera). - A group or kind comprising a greater or less number of closely related species; as A cer, the maples, Fragaria, the strawberries.

Speoies (plural, species). - An indefinite term applied to all individuals of a certain kind which come or are supposed to come from a common parentage. A perennial succession of normal or natural similar individuals perpetuated by means of seedage. "All the descendants from the same stock."-Gray.

Variety.- A form or series of forms of a species marked by characters of less permanence or less importance than are the species themselves.

Sport.-A variety or variation which appears suddenly and unaccombtably, either from seeds or buds.

Cross. - The offspring of any two flowers which have been crossfertilized.

Hybrid.- A cross between two distinct species.
Environment.- The conditions or circumstances in which an organism lives, comprising climate, soil, and all other external conditions.

The Philosophy and Practice of Pruning.
(Given at the second Fredonia School.)
(By L. H. Bailey.)
A. Why we prune.

1. To produce larger and better fruit.
2. To keep the plant within manageable shape and limits.
3. To change the habit of the plant from more or less woodbearing or fruit-bearing.
4. To remove superfluous or injured parts.
5. To facilitate spraying.
6. To facilitate tillage and to improve the convenience of the plantation.
B. The philogopiy of prening.
7. The argument from philosophy.

The struggle of existence amongst the branches.
2. The argument from physiology.
3. The argument from experience.
4. How nature prunes.
C. How and when to prune.

1. The position of the fruit bud.
2. How wounds heal. ${ }^{3}$
(a) The cork cells and their mission.
(b) The cambium and its office. The tension in stems. The callus.?
(c) The form of the wound in relation to the healing process. The wound parallel to the parent branch. The wound at right angles to the severed branch. The shoulder. The direction of the wound. The length of the stub. The edges of the wound.
(d) The time to prune, with reference to the healing of the wound. More depends upon the position of the wound than upon the season in which it was made.
(e) Dressing for wounds. The vegetable parasites of the wounds; bacteria; toadstool-fungi; punkfungi.
3. Pruning for wood and pruning for fruit.
4. Practical considerations. Allow the tree to take its habitual form. How much and how often it is advisable to prune. Heading-in. Tools.

The Management of Orchard Lands.

(Given at the Youngstown School; also followed essentially in meetings at Dickensonville, Morton, Dansville, Clyde, Ridgeway, Williamson, Palmyra, Lyndonville, Dundee and other places.)
(By L. H. Bailey.)

1. The soil.

Its origin. Its mechanical texture and physical characters.
Soil moisture. Its source. Its importance. Movements. How conserved. Its relation to vegetable covers. Mulches. Tillage. Spring or fall plowing. The harrow. Management of clay lands.
2. Fertility.

Amount of fertility in the soil. Where it comes from. Tillage and fertility. Nitrification. Humus. Loams.
Manuring. Feed the plant rather than the soils Nitrogen. Potash. Phosphorus. Stable manures. Green manures. Commercial fertilizers.
How to tell what the land needs. Ask the plant not the chemist.

At the first Fredonia School, an eight-page folder was printed for the use of the participants, containing extracts and abstracts of various local essays touching the grape-growing of the Chautauqua region. There are so many suggestive things in this circular, not only to Chautauqua County, but also to many other parts of Western New York, that an abstract of it is published here:

Grapes: Development of Methods on Large Areas. (Used at the first Fredonia School.)

INTRODUCTION.

Modern methods in vineyard management are an outgrowth or development. Consider, for example, proning and training. We began with stakes; first one stake per vine, then two stakes per vine, then post and wire trellis. At first, we used posts six and one-half feet and two wires, then posts seven and eight fcet and three wires, and now in some instances posts nine and ten feet and four wires. Distances of planting are also an outgrowth. In an early day, Concord rineyards were in some few cases put as close as six feet each way. Thousands of acres have been set eight feet by eight, and later, thousands of acres more at the now commonly received distance of nine feet between the rows. The developument in varieties is equally marked. For many years Catawba and Isabella were the standard, then came Clinton and Delarare, then the Concord and its well-known seedlings ; then Brighton, Niagara, Diamond, Moyer, Vergemes, Jessica, and last some new early varieties not yet fully disseminated but from which much is expected. Methots of cultivation are a development. The first cultiration was in small garden plantings, tilled by hand or the one-horse cultivator, and in a slow, laborions and comparatively costly way.

The grape industry las outgrown the garden period and has become a farm crop. Methods of cultivation which are well enough for a quarter acre, are too slow and costly for twenty-five acres. Vineyardists have been obliged to widen the rows, put on two horses, use the gang plows and the latest improved spring tooth harrows and horse hoes. We have introduced this line of thought, which is perfectly familiar to all of you, and which might be extended to many other branches of the industry, for the purpose of calling your attention, in this introductory part of to-day's study, to some of the causes which have led to this rapid development.

As we study the philosophy of vineyard management, we are impussed with the intertependence and modtlying intluence of one branch or condition upon others. T'o illustrate: the species and varieties we can profitably grow are determined by our climate. Attempts to raise varieties grown exclusively in Europe and Cali-
fornia have been repeated failures. Again, the production of grapes on the large scale now demanded, has greatly modified the entire farm economy. As we have said, the grape has become a farm crop. We can with as equal propricty speak of grape farms, as we say dairy farms, stock farms or grain farms, and the question of boarding houses, packing houses, machinery, spraying apparatus, etc., becomes a legitimate and necessary branch of our farm study.

The development of modern methods in grape growing has not been carried forward independently of the principles involved. The men who first began extensive vineyard planting were men who had already had, many of them, years of experience as fruit growers and market gardeners. They had long been members of farmers' clubs and leaders in its discussions. August 28, 1886, the present Horticultural Society was formed. This society had in its beginning a membership from the best fruit growers. Its first president, Ira Porter, deceased, had for years been the president of the Pomfret Farmers' Club. Lincolu Fay, originator of the Fay currant, was a charter member. This society has persistently, and as we think, wisely, adhered to its original mission as stated in section second of article first: "Its object shall be the advancement of its members in a knowledge of the theory and practice of horticulture." From the first, we have kept to the original mission, "talking it out winters and working it out summers," along the line of advancement in the knowledge of the theory and practice of horticulture. We have held our meetings, discussing old questions, and, as fast as they came to the front, new questions, eagerly sending for and reading all the bulletins of the experiment stations, reports of the department at Washington, transactions of horticultnral societies, and standard fruit journals. In twenty years there has been rapid progress, here and in other fruit growing centers, not only in making history but in the development of the fundamental principles of scientific managenent. It has become a broad field. The Chautaurua grape belt has to-day 26,000 acres of rines, and the crop for 1894 was 3,600 cars, or $10,500,000$ nine pound baskets. The special papers brought before the class for to-day's study will be one on "Topographical formation and its relation to climate" (reprint), "Conditions of climate favoring the grape" (reprint), "Why I sow rye in the vineyard" (reprint), "Pruning," by Mr.

Shoenfeld, "Picking and packing," l,y Mr. Tenmant, and perhaps other papers. The reprints are made to save time and for the convenience of the class.

Grape Growing in Northern Chantauqu, by E. S. Burtholomew.
The question is often asked, why it is that the valley lying along the south shore of Lake Erie, within the border of Chautauqua county, is so much better for grape growing than very many other sections of the United States, for it is a fact that the grape vine is found growing wild in almost every part of the country, and the cultivated varieties have been tried almost everrwhere.

I will answer, first, negatively, that it is not in the soil, neither is it in the fact that the valleys of Chautauqua and Bear Lakes lie elevated and south of Lake Erie at a distance of seren to eight miles. Then why do not the vines perfect fruit as well in so many other locations, and as regularly as in this valley? It is the climate. This peculiar condition of the climate is the result of two prominent causes: the great body of water of Erie on the north, furnishing by its evaporation just the necessary hygrometrical condition of the atmosphere; and the lake helps to form a thermal belt, or stratum of warm air, furnishing a more even temperature during the night, thus aiding the early and perfect maturing of the grape, and affording immunity from frost. * * * Thus we have a more uniform temperature during the 24 hours, so essential to the earlier maturing of the fruit.

This thermal stratum is intensified by the peculiar topographical formation of the earth forming the sonth boundary of the valley. The northern end of the Alleghany monntains forms a ridge of high land of a somewhat circular form, with its highest point nearest the lake, about two miles west of the sorse of Chatitauqua creek, at an altitude of about seven humdren feet above the lake and about two miles from it. From this point westward it rounds off from the lake, and legins to break down in its altitude until it is lost in the great plain of the Ohio and Mississippi rivers. Eastward it retains its nearness to the lake to a point about three miles east of the village of Westfield, when it begins to recede from the lake, and to slowly reduce its altitude, until south of Frelonia it is from five to six miles from the lake. In the towns of Sheridan and Hanover
its trend is changed to the east. As soon as its altitude decreases, and the distance from the lake increases, the thermal stratum thins by widening, and much of its benefits are lost to the grape grower.

It will be found by careful olservation that the soil of almost the entire United States is as favorable for the growth of the grap vine as is that of this location, and the success in grape culture would be just as remunerative if the same climatic conditions existed as with us. Hence it is found that the peculiar influence we have is worth to us four times as much per acre as the soil is.

Conditions of Climate Favoring the Grape.

[From the Transactions of the Chautauqua Horticultural Societs.]

1. Exemptions from frost, especially in the fall months. The vine begins to leaf about May 10th; it is in blossom June 15th to 20 th; in 90 days from the blossoming the early, and in 120 days the late grapes are ripe. In southern Chantauqua and in parts of Cattaraugus and Allegany counties the vine will grow, but three years ago in all that section there was a killing frost on September 24. In this lake shore section, with one exception, there has not been a damaging frost before October 20 in twenty-five years. In 1887 the first killing frost did not occur until after the first week in November.
2. The high mean temperature of the summer months. In the fierce heat and drought of mid-summer, the surface vegetation of the garden suffers, the pastures are scorched as by fire, but the vine, sending its roots three, four and even five feet into the earth, is able to withstand the severe trial if the tillage is good.
3. Conditions securing dryness of the atmosphere and perfect circulation of air. Lake Erie is by far the most shallow of the five great lakes, having an average depth of only 70 feet. In consequence, it is sooner affected by the summer heat. In mid-summer we have in the latter part of the day a constant lake breeze blowing inland, and during part of the night a contrary current. Going back from the water, the land gradually rises in a succession of terraces. June, July and August are the dangerous months for disease, and just then is experienced this climatic condition of dryness and high temperature. Bulletin Ňo. 7, Botanical Division, Department of Agriculture, 1888, says: "At Saudusky, on the shore of

Lake Erie, the loss from black rot in 18s? was only four or five per cent.; the same was true at Fredonia, Dunkirk and Brocton in New York, and in all these places tha absence of dews or fogs during this year was marked. In Tennessee grape culture is really not remunerative except above the limit of fogs. 'Thus, upon the plateaus of the Cumberland there is a Swiss colony that cultivates the vine successfully, and upon the lower hills of Ashland county, Ives seedling gives moderately good crops, although black rot is more frequent; but upon the Cumberland river, where thick morning fogs are frequent, and where the temperature is high, vine products amount to almost nothing."

In the discussion which followed, Mr. Christy, of Hanover, said that wherever the lake breeze strikes the inland without any interruption, we do not have serious frosts.

Mr. Rathbun, living near Smith Mills, said he planted a Delaware vineyard in 1863. Delawares have never failed to produce a crop and have never been injured by the frosts.

Mr. Ryckman, of Brocton, said that Hanover is a larger town than Portland, and there is much good land for grapes in it. I should select the land back upon the foot hills, even if it should be, as much of it is, very poor for ordinary farming. On the foothills, the Salem does well. In planting, he preferred grass or sod ground to stubble. You need not hesitate to set a vineyard because the land is not broken up.

* * * * * * *

From the address of Hon. R. P. Marvin (late Justice of the Supreme Court in the Eighth District) at the meeting of the society in Brocton :
"In 18\%), before grape growing had started much, while holding court in Cattaraugus county, I met young Mr. Deverame, the son of a prominent Utica man, who to my great surprise told me that we had in northern Chautauqua a great grape country. He had traveled through all the great grape regions of Europe. I asked him why he considered the lake region good for grapes. IIe said that Lake Erie is a shoal lake and consequently in winter freezes over. The ice in the spring keeps vegetation back and gives a later spring than farther west around deeper lakes. Thus we avoid late spring frosts. During the summer, owing to its shallowness, the lake
becomes warmer than either of the other lakes, and this warm water gives to this section a long, beautiful autumn with plenty of time to ripen the grape to perfection."

Why I Sow Rye in the Vineyard, by G. Shoenfeld.
In the months of July and August, when the vineyards should be clean and exposed to the sunlight the organic matter in the soil is broken up, and nitrification proceeds rapidly. Nitrogen being the most valuable and costly as well as the most subtle element of plant food, is then easily lost by leaching during our fall and spring rains. To prevent this, in the latter part of August I sow rye in the rows of the grapes. The rye will thoroughly penetrate the ground with its roots during the wet season, take up and store available plant food for the next season, when the vine will appropriate it, besides putting the land in just that mechanical oondition, when plowed under, to make the plants thrive. The plants want organic matter to work upon and plenty of heat, a moderate amount of moisture, just the right conditions in which the vineyard should be during June and July to the middle of August.

By adding potash and phosphoric acid, if not in abundance already in the soil, the plant food for the vines is complete. I consider such a course better and safer than using stable manure instead. The valuable parts of manure are precisely the same as in fertilizers, viz., nitrogen, potash and phosphoric acid. Its value over commercial fertilizers lies in its fiber, or vegetable substance; but this fibre can be added by the rye.

Following this paper Mr. Shoenfeld read a statement of a vineyard of one and one-half acres, which, before being improved by plowing under rye for a term of years, produced a crop hardly worth harvesting. In 1892 the yield was 1,184 nine pound baskets.

3. Publication.

The character of the publication which has been made under the auspices of the Experiment Station Extension Bill has alreaty been discussed. After conferring with the Commissioner of Agriculture, it was decided to number these extension bulletins consecutively in our regular series, thas avoiding the complications which would arise from two independent series. Fifteen bulletins (comprised
between Nos. 69 and 85, inclusive) were published from the first grant (1894). Fifteen bulletins have also been published from the second fund, but several more, for which the work is already completed, are awaiting publication from the mexpended funds now in our hands. The complete list of these bulletins to date is as follows:
No. Title. Author. Engravings. Pages.
69. Hints on the Planting of Orchards. L. H. Bailey.... 7 16
70. The Native Dwarf Cher- ries L. H. Bailey 6 12
71. Apricot Growing in west- ern New York L. H. Bailey 12 28
72. The Cultivation of Or- chards L. H. Bailey 4 22
74. Impressions of the Peach Industry in western New York............ . L. H. Bailey 16 30
75. Peach Yellows L. H. Bailey 8 20
76. Some Grape Troubles in western New York.... E. G. Lodeman. 46
77. The Grafting of Grapes.. E. G. L8deman. 22
79. Varieties and Leaf-Blight of the Strawberry..... L. H. Bailey 11 26
80. The Quince in western New York L. H. Bailey 13 28
81. Black-Knot of Plums and Cherries, and Methods of Treatment E. G. Lodeman 7 24
83. A Plum Scale in western New York. M.V. Slingerland. 24
84. The Recent Λ pple Failures of western New York. L. II. Bailey 11 34
(1 colored)
86. The Spraying of Orchards,
Apples, Quinces, Plums. E. G. Lodeman. 9 34
87. The Dwarf Lima Bean.. L. H. Bailey 15 24
90. The Ohina Asters; withRemarks upon FlowerBedsL. H. Bailey1224

This report is necessarily but the merest outline of the work which has been undertaken in fulfillment of the requirements of the bill. A large part of such work lies in the visiting of farms and communities where some difficulty demands attention, in the
giving of advice everywhere by person and by letter, and of sending an entomologist, botanist, or other expert to investigate such dangers as seem to threaten any horticultural interest. The bill has virtually carried the experiment station to every horticulturist's plantation, and every constituent has been at liberty to call for personal aid whenever his troubles are of such a character that others, as well as himself, are interested therein. All this work does not admit of publication, and its value is all the greater for being done in a quiet, unostentatious way, with no thought of public recognition.

A word should be said respecting the attitune of Cornell University towards this grant of funds for extension work. The reader will already have noticed that the movement originated wholly with the people. If the movement has value to the people of western New York, the advantage must necessarily be in proportion to the public desire and demand for it. It is in every sense a popular movement. Its prosecution has imposed great burdens upon the officers who have had it in charge, and it has demanded important changes and considerable sacrifice in the accustomed work of the university. On the other hand, the university exists to serve the people of the state, and if the people desire that it undertake or continue such an enterprise and are satisfied that it can help them, then the university, on its part. stands ready to lend its men, equipment and influence to assist the rural population, so far as such undertakings do not jeopardize its more legitimate work. But it must be distinctly understood that this is not a grant to Cornell University, but a grant to the people to be administered by Comell University, and that the university has refuser, and must continue to refuse, to take any part, directly or indirectly, in forwarding any legislation connected with the work.

Respectfully submitted,
L. H. BAILEY.

January 10, 1896.

BULLETIN 111-February, 1896.

Cornell University—Agricu1tural Experiment Station, ITHACA, N. Y.

HORTICULTURAL DIVISION.

By L. H. Bailey and A. P. Wfman.

ORGANIZATION.

Board of Control-The Trustees of the University.

STATION COUNCIL.
President, JACOB GOULD SCIIURMAN.
Honorable A. D. White. Trustee of the University.
Professor I. P. ROBERTS President Siate Agricultural society.
Professor I. P. Roberts dyriculture.
Professor G. C. Cald dvell Chemistry.
Professor James Lay. Veterinary Science.
Professon A. N. Prentiss Botany.
Professor J. H. COMSTOCK. Entomology.
Professor L. H. Balley. Horticulture.
Professor H. H. Wing Dairy Husbandry.
Professor G. F. ATKINSON Cryptogamic Botany.
OFFICERS OF THE STATION.
Y. P. ROBERTS Iirector.
E. L. WILLIAMS Treasurer.
H. W. SMITH Clerl:。
ASSISTANTS.
M. V. SLINGERLAND Entomology.
G. W. CAVANAUGH Chemistry.
E. G. LODEMAN Horticulture.
L. A. CLINTON Agriculture.
E. J. DURAND Botany.

Office of the Director, 20 Morrill Hall.
The regular bulletins of the Statiou are sont free to all who request them.

BULLETINS OF 1896.

106. Revised Opinions of the Japanese Plum.
107. Wireworms and The Bud Moth.
108. The Pear Psylla and The New York Plum Scale.
109. Geological History of the Chantanqua Grapn Bolt.
110. Extension Work in forticulture.
111. Street Peas.

Honorablé Commissioner of Agriculture, Albany:
Sir.-A good friend once wrote us that.it might be well enough to make a bulletin on chrysanthemums for florists, hut that what the people really want is a bulletin on cabbages. We replied that if we make a bulletin on cabbages, the florist will write that such literature may be allowable, but that the people want a bulletin on sweet peas. And the florist may add, with much force, that whilst there are bulletins enough on cabbages, there are none whatever on sweet peas. All this simply means that the constituencies of a government experiment station are exceedingly various, and that all, alike, help to support it. There are probably more persons in this state who grow sweet peas than there are who grow cabbages; at least, such ought to be the case. There is a wide-spread feeling that flower-growing is not a commercial occupation, but simply a sentimental one; yet people who buy and sell flower seeds and cut flowers and flower plants, have reason to hold a contrary opinion. Flower-growing, both for home and for market, is rapidly increasing in the east; and of all horticultural occupations, this has received the least scientific attention in this country. We shall be sorry to offend our correspondent a second time, but we shall lay the blame upon the sweet pea. The plant is so attractive that we cannot help it.

In this study of the sweet pea, I hare associated with me one of my students, who is fitting himself to be a landscape gardener. Mr. Wyman has made a faithful record of our varieties during the season, and I am convinced that he has good taste in matters of flower-growing. All the detail work in Part II, is his.

The bulletio is submitted for publication under Chapter 230 of the Laws of 1895 .

L. H. BAILEY.

72. Comeses of Radnor. One of thepopmlar sueerpeay; lavender puple. Notural Aize.

Sweet Peas.

I. General Sketch of the Sweet Pea.

The improved sweet peas hold a leading place in the returning tide of the good old flowers. The varieties now number many over a hundred, where but a ferr years ago they were less than a dozen. The sweet pea has long been a favorite, for it has beauty of form and color, attractive habit, and delightful perfume; it needs only a variety of colors, shapes, sizes and seasons to perfect it for the amateur's aud florist's use, and all this has now been added to it. The sweet pea is one of those fortunate flowers which can never be developed into stiffness and formality, for the shape is irregular and the plant is a free and random grower. However much the desire for oddity or formalism may conduce to the popularizing of other flowers, it can effect little with the sweet pea. It is unique and wayward, and if it once loses its old-time freedom, it is no longer a sweet pea.

Yet there is a tendency to develop the sweet pea beyond its characteristic limits of simplicity and daintiness. The most apparent fault with some of the novelties, if one may judge from the pictures of them, is their arrogant size; but, fortunately, I have never seen such peas in the garden. If I were really assured that I should raise such amazing flowers as I see in the catalogues, I should certainly never buy the seed of them. I should still gire my affections to the modest Painted Lady, whose presence still graces the unconventional old gardens. But I do not desire to complain of the trade cuts, for I know what a powerful magnifier a silver dollar is when it is placed behind a flower; and I simply "make allowances," and buy. If I get the color and the shape and the texture, the degree of bigness is a trifling matter. Another heresy in sweet peas is the desire for a double flower. The form of the pea flower is its peculiar beauty. The broad trim standard is the most perfect surface for the display of color, and an effective shield and foil for the contrasting pigments of the wings and keel.

When that simple standard is displaced by two or three, and the shield becomes shapeless and contorted and contrary, the flower is no longer the sweet pea of the dear old gardens, but is apt to be a musey and impudent thing. We want not bigger flowers and more petals, but we want more sweet peas. That is, we want more productive plants-if that is possible-and more flowers in the cluster. We need, also, more very early and more very late parieties, a still greater range in color, and some improvement in the texture of the flowers. But let us keep to the sweet pea type. Those contrary indiriduals who are always trying to grow tomatoes on potato plants and strawberries on blackberry bushes, would leave the world a better legacy if they were to grow more tomatoes on tomato plants and better strawberries on strawberry plants.

My reader wants to know how these new sweet peas are obtained. The process is simple enough, but, like most simple things, it is hard to learn and harder to perform. The most important part of the process is a well laid plan of action on the part of the operator. He must determine what improvement the plant needs. Then he must study the plant closely to learn its babit of variation, and how it adapts itself to the different conditions in which it is grown. He will then put himself in sympathy with the plant, simply trying to improve or augment the little differences which appear, and not set himself squarely against the line of evolution of the plant by attempting the impossible. He has a picture in his mind of a deep clear pink flower. Very well; he goes through the rows of his pink-flowered varieties and marks those plants whose flowers are nearest his ideal. The seeds of these plants are separately saved, and sorn. Amongst the offspring, he again selects, and he again sows, taking care that his stock does not become crossed with some other type. Presently, his new color is obtained, the seeds have got in the habit of "coming true," and the brood is given a new name and introduced to the trade. More often, however, the operator has no distinct ideal in his mind, but he watches his plants carefully and every marked departure or "sport" from the type is saved and sown. From such sports the greater part of our novelties, of all annual plants, have come. The sports are frequent enough, but it requires rare judgment to distinguish those which will likely perpetuate themselves, and to carry on the subsequent selection by
means of which they are freed of their impurities or the tendency still to sport. If desired variations do not appear, then the operator may endeavor to start it off by a radical change of soil or treatment, or possibly by crossing. All this means that the caltivator must become intimately familiar with his subject before he can expect to make much headway in the origination of novelties. So it has come that the modern improred plants owe their development largely to one or two careful and patient persons in each generation.

The sweet pea has had but one genius. He is Henry Eckford, who for twenty years has given his attention to this plant upon his

garden-farm at Wem, in Shropshire, England. IIe has given us the greater number of our best improved varieties. "When I first took up the sweet pea," he writes, "there were six or eight distinct varieties in cultivation, and experts in the art, as far as I could learn, had come to the conclusion that it conld not be further improved, and in the first two or three generations of the work it appeared a fair conclusion; but I should say that I had been for many years working on the improvement of various florist flowers, and which had proved so eminently successful that a tirst rebuff did not deter me from further attempts." In our own country, the
work has now been taken up by Rev. W. T. Intehins, of Indian Orchard, Massachusetts; and it has remained for him to make the first important attempt to write any account of the modern sweet pea. His booklet, "All About sweet Peas," appeared in 1894; and he has been and is still the most devoted grower and champion of sweet peas upon this side of the Atlantic. This is not saying that he is the largest grower, for this honor is held by C. C. Morse \& Co., of California, whose crop of sweet peas covered 250 acres in 1895 , and this firm has also produced a number of excellent varieties. But Mr. Hutchins is an amateur sweet pea critic, whilst Mr. Morse grows the seeds for market. W. Atlee Burpee © Co., of Philadelphia, were amongst the first retail seedsmen to take up the sweet pea. The first sweet pea show of any note in this country was held under the inspiration of Mr. Hutchins at Springfield, Mass., in 1893.

Although this great inprovement in the sweet pea is so recent, the plant has been long in cultivation. It is native to Italy, and was introduced into England about 1700. Its Latin name, Lathyrus odoratus, was given by Linnæus in 1753 . In 1754, Philip Miller, a famous English garden-botanist, speaks of two distinct varieties in the fourth edition of his "Gardener's Dictionary": "One of these has pale-red Flowers, which is commonly called by the Gardeners, Painted-lady Peas; the other hath intire white Flowers: both these may be allowed a Place in the Borders of the Flower-garden, for the sake of Variety." William Curtis had a colored plate of a purple form in his "Potanical Magazine" in 1788 , and speaks as follows of the plant: "There is scarcely a plant more generally cultivated than the Sweet Pea, and no wonder, since with the most delicate blossoms it unites an agreeable fragrance. Several varieties of this plant are enumerated by authors, but general cultivation extends to two only, the one with blossoms perfectly white, the other white and rose-colored, commonly called the Painted Lady Pea. * * * They have both been introduced since the time of Parkinson and Evelyn."

In America, M'Mahon mentions the sweet pea amongst his "hardy annual flower-seeds," in his "Gardener"s Caleudar," in 1806. He knew five varieties, as follows:

Var. albis (white).
Var. carnen, old Painted Lady.

Var. roseo, new Painted Lady or Scarlet.
Var. cæruleis (blue).
Var. atropurpureo (dark purple).
Thomas Bridgeman, in his "Young Gardener's Assistant," 1838, mentions "Sweet Peas, of various descriptions and colors. Lathyrus odoratus, var. alba, purpurea, rosea, striata, etc." Edward Sayers, in "American Flower Garden Companion," 1838, speaks of sweet peas, " purple, scarlet, white, pink, pink and white or painted lady." Buist, of Philadelphia, writes that they are "well deserving of culture," and says that there are "many varieties," in his "Flower Garden Directory," 1845. Yet they could not have been very widely grown at this time, for Eley's "American Florist," which appeared in the same year at Hartford, does not mention them. In 1851, Breck writes in his "Book of Flowers" that sweet peas are "deservedly one of the most popular annuals which enrich the flower-garden. The varieties are white, rose, scarlet, purple, black and variegated. Every variety should be sown by itself in circles about a foot in diameter, three or four feet from any other plant." The custom of giving designative personal or descriptive names to varieties of annual flowers was scarcely known forty or fifty years ago, and we do not know just what types were then in cultivation. The loose vernacular or Latin names were used rather more for groups or strains of color than for any particular minor variation as the names are in these days, when we have so greatly refined the choice and descriptions of garden plants. The first distinct note of the recent popularizing and diffusion of named sweet peas in this country came in 1889 with the introduction of the Blanche Ferry, which is an improvement of the old Painted Lady, and which is still one of our best varieties when grown from carefully selected seeds. This variety was found in a garden in northern. New York by W. W. Tracy, of the firm of D. M. Ferry \& Co. C. L. Allen writes as follows of its evolution, in "American Agriculturist," for September 7, 1895: "The farmer's wife had for years been in the habit of saving her own seeds, starting with the old and well-known Painted Lady. In the heavy loam of her garden, and with the much shorter season of growth there than in Europe, this made a more rapid growth, and annually became more dwarf in habit. At the same time it became a 'cropper,'
that is, all the flowers, that in other climates wonld have a much longer period in which to develop, here appeared nearly all at the same time if not cut. Thus in a few years a dwarf and very free

flowering type was established, which remains constant in our comentry. The suecess that ereeted the introduction of this variety, and the fact of its having been developed here, stimulated our growers to extra exertion, not only to grow sweet peas as a crop,
but to watch for variations which a change of climate is sure to produce. The result is we have found that sweet peas can be about as cheaply grown here as the common field pea. But more important still is the fact that all our well-known sorts are more prolific when the seeds have been grown here. The introduction of new varieties, as well as new types, is one of the marked features of our industry."

Before going further, the reader should be reminded that there are two other closely related species of peas in cultivation for their flowers, and one of them, the Tangier Scarlet, is even called a sweet pea. This Tangier pea is Lathyrus Tingitanus (Fig. 74). It has been in cultivation longer than the sweet pea, having been introduced into England as early as 1680. Curtis figures it in the "Botanical Magazine" in 1790, and speaks of it as follows: "The Tangier Pea, a native of Morocco, cannot boast the agreeable scent, or variety of colors of the sweet pea; nor does it continue so long in flower; nevertheless there is a richness in the color of its blossoms, which entitles it to a place in the gardens of the curious." It bears an attractive purple flower, with a large standard and small wings, and blooms earlier than the true sweet peas. It is also known for its very narrow and long leaflets, generally 2 -flowered peduncles, and long, flat, hairless pods.

The other pea to which 1 wish to refer is Lathyrus latifolius (Fig. 75), the perennial or everlasting pea. This plant,
 a native of Europe, has been long in cultivation, although it appears never to have received special attention, since there are only three
or four well marked varieties of it. Its leading forms are simply known as the red and the white. It is at once distinguished from the sweet pea, aside from its perennial nature, hy the many-flowered clusters, the very large standard, the thick and stiff texture of the scentless flowers, the broad and strongly veined leaflets, and the broad hairless pods. It is an excellent hardy plant for a mixed border or for clambering over rocks"or other low objects. I have several plants of it growing against a temnis screen, and they bloom most profusely in late spring and early summer. It is a profuse seeder, and the pods should not be allowed to form if continued bloom is desired. It propagates readily by seeds and by cuttings.

Where and How to Grow Sweet Peas.

The sweet pea is such an unconventional and domestic flower that it is unsuited to formal beds.or to an obtrusive position on the lawn. It is one of those flowers which we enjoy the more if it is somewhat hidden from the public view, and is restricted to the more private and personal parts of the grounds. It is preëminently a flower for the back yard. A rear or side border, against a fence or other background, is a good position for it. The plant is always attractive when seen clambering over bushes, but it rarely thrives well when planted close under shrubbery muless it is grown in a box or large pot of rich earth plunged into the ground, to remove it from the competition of the roots. If one is to raise a considerable quantity of sweet peas, they may be planted in rows and allowed to run up a screen of chicken-wire; or, if one can take the pains to tie them occasionally, a trellis may be made of four or five strands of fence-wire, like a half-size grape trellis. (on good soil most varieties will reach a height of four or five feet.

If sweet peas are to continue to bloom throughout the season, the soil must be rich and capable of holding moisture. A thin, dry soil will not grow grood peas. In light soils it is well to apply a liberal dressing of manure to the soil in the fall, plowing it under very early in the spring; and in addition to this, a dressing of some concentrated fertilizer in the spring will be useful. But the chicf thing is moisture. The land must be well and deeply fitted, to increase its water-holding capacity. It is ordinarily adrised to till the soil frequently after the peas are planted until they
begin to bloom, at which time all cultivation should cease. I do not believe that this is safe advice. The land becomes hard by constant tramping of visitors when the plants are in bloom, and the evaporation from the soil is thereby greatly increased. A heavy mulch of straw or litter may be placed on the soil when the plants begin to bloom, to conserve the moisture; but if the rows are far enough apart to allow of it, a frequent stirring of the soil all through the season with a horse or hand cultivator will be found to be the most efficient conservator of moisture. The plants also endure dry weather better when thinly planted. We like to have the plants six or seven inches apart in the row. Our own test in 1895 comprised four rows each 150 feet long, and three feet asunder, in heavy clay loam. The vines were trained on five horizontal wires, making a trellis three or four feet high. The land was stirred with a horse and cultivator about evesy week all summer long. The result was, that althongh we had a prolonged drought, we had sweet peas in abundance from early July until October.

Deep planting also enables the sweet pea to resist dry weather. It is a good plan to make furrows four or six inches deep, drop the peas in the bottom and cover an inch or so. Then, as the plants grow, the earth is gradually filled in about the plants, until the furrow is full. If there is danger that these furrows will fill with water, and hold it for some time, the peas should be planted more shallow and the furrows filled at once. Early planting is also desirable. In this latitude we can plant as early as the first of April, on warm soil,-that is, a month before hard frosts have ceased. The sweet pea is a hardy plant, and the seed is not injured by much cold weather. I have known good results from planting seeds in the fall, but this practice is unreliable in the northern states. I doubt if it can be recommended with full confidence north of Norfolk. But even if the seeds are got in late and shallow, the plants may be carried through by a little extra attention to tillage. Our test of 1895, of which I have spoken, was inaugurated so late that we thought it inadvisable to delay matters by deep planting. So we planted the seed about two to three inches deep, on the last day of April, and our sweet peas were the admiration of the community. If there are any secrets in the growing of sweet peas, they are these: A rich, well-prepared
soil, early and rather deep planting, picking of the poils as soon as they form, and the judicions selecting of seed and varieties.

There is some inquiry as to the forcing of sweet peas. Our experience in this matter is very limited. It is generally thought to be best to sow the peas early in winter in a cool house amongst other things - as carnations - and let them take their time for growing. When the sunny days come in March and April, they may be expected to bloom.

The Varieties of Sweet Peas.

All the foregoing requirements are easy enough to meet save the last - the selection of varieties. The kinds are now so numerous and so various that the amateur may be perplexed in the choice. Of course much depends upon the taste of the grower. One should always be sure, also, to have enough. The beauty of flowers lies largely in the generosity and profusion of them.

The grower should also have a good variety in color and shape, and this is best obtained by purchasing the best named rarieties, and making the mixture to suit. If I were confined to six varieties, I think that I should choose the Improved Painted Lady or a pure type of Blanche Ferry, Apple Blossom, Emily Henderson, Mrs. Gladstone, Butterfly and Countess of Laadnor. But there are twenty varieties which even the average flower-lover may grow with great satisfaction. F. Schuyler Mathews, in his " Beautiful Flower Garden" (1894), speaks as follows of his method of growing sweet peas and his choice of varieties. I am glad to transcribe his account, becanse Mr. Mathews regards the subject from the artist's standpoint. "My own method of arranging sweet pea vines is confined to a fence or hedge row, which I create out of chickenyard wire and rustic posts. This fence serves the double purpose of a thing of beanty, and a barrier against the roaming cow, who by the way, frequently takes toll in the shape of a fine bunch of my favorite Boreattons. The varieties which are most attractive in color are:

Boreatton, red-purple and violet.
Mrs. Sanky, white.
Lottie Lekford, white, blue-edged.
Orange Prince, scarlet pink and rose pink.
Blanche Ferry, pink and white.

Cardinal, red-crimson and red-scarlet.
Grand Blue, ultramarine-purple and purple crimson.
Primrose, cream-ryellow.
With all deference to a perfect harmony of color, I may add that there is really very little discord to be found in an indiscriminate mixture of all varieties."

A more detailed account of the merits of the various sweet peas which we have grown will be found in the descriptive list in Part II. But, after all, it does not matter so much, as I have said, what varieties one plants as it does that he plants, and plants generously. One can scarcely obtain such a profusion of color and fragrance throughout the season from any other flower. Mr. W. N. Craig contributes to "Garden and Forest," the following record of the productiveness of sweet peas: "We have never tested individual plants, but last year we kept a record of the spikes cut from a row sixty feet long, partly composed of the Eckford varieties and partly of good mixed sorts. The first Howers were cut on June 11th, and the last on October the 20th. The number gathered for each month was as follows: June, 2,000; July, 17,600; August, 18,000; September, 6,400; October, 3,500; total, 47,500. Besides this, large numbers went to seed, and probably the row would have yielded 60,000 spikes if it had been carefully picked over."

The varieties of sweet peas with which Mr. Eckford began his work, as given by Mr. Hutchins, are seven, as follows: Light Blue and Purple, Painted Lady, Common White, Scarlet, Scarlet Striped, Dark Striped, Black. Most or all of these Mr. Hutchins would now discard; and he also adds (1894) the following to the list of those which are superseded by better varieties: Adonis, Crown Prince of Prussia, Vesuvius, The Queen, Carmen Sylva, Queen of England, Empress of India, Isa Eckford, Bronze Prince, Black, Purple Brown Striped, Scarlet Invincible. Yet several of these varieties are still favorites with us; and for myself, I should place Empress of India in a list of my second or third half-dozen. This simply illustrates the old aphorism that there is no accounting for tastes. So long as one likes the varieties which he grows it does not matter what names they bear.

76.-The Sweet Pea flower.

Before going further the reader should stop long enough to notice the architecture of the sweet pea flower (Fig. 76). The broad orbicular upper petal, s, is the standard, banner, vexillum, or shield; the tro mid-sized pieces, w, are the wings, and these close over the smallest central portion, comprised of two connivent parts, called the keel, k . When the sweet pea attempts to become double the duplication usually appears in the standard, which, instead of comprising but a single piece, may be formed of two or three or four petals. This is well shown in Fig. 77 , in which the expanded flower is seen to have three standards. There is no double variety

77.-Double pea. The Splendor.
of sweet pea, but most of the improved types tend to duplicate the standard, and some varieties will give from 20 to 50 per cent. of these monstrosities, when grown upon strong soil. In other words, there is a general and cumulative tendency towards doubling, as the species is improved, but the seeds of double flowers of any particular variety do not necessarily produce double flowers. There is every reason to expect, however, that the time will soon come when double peas will reproduce themselves as reliably as many other annual flowers do ; but unless the product is more shapely than any thing which I have yet seen, I shall be ready to quit sweet peas when I am obliged to grow double ones.

Another word may be said upon the size of the sweet pea flower. The accompanying engraving (Fig. 78) shows three types of peas, exactly natural size. All illustrations of objects which have depth and rotundity in them, look smaller than the objects which they represent, until the eye becomes trained to see the perspective and the solidity in the picture. The small flower, on the left, is the Rising Sun. It is about the size of the sweet peas of the last generation. The flower on the right is Etna, and is of good size, as sweet peas go. The middle flower is Dorothy Tennant, and is one of the modern grandiflora type. The flower is large enough for a good sweet pea, in my opinion, although it might be somewhat enlarged without losing its daintiness. Yet this flower measures only an inch and a quarter across, whilst a catatalogue illustration before

78.-Three typical sizes of sweet pea flowers.
me has them two inches across. I do not deny that such peas are possible, with high culture and pruning, but it is a fair question if they are desirable. The Apple Blossom, Fig. 80, is one of the grandiflora type, a development from the old Painted Lady, but the illustration is the merest trifle oversize. All the other pictures of varieties in this bulletin, except Fig. 74, are exactly natural size, and are made from flowers grown in ordinary conditions, in too thick planting.

Along with the increasing tendency towards doubling of the flowers, the sweet pea has also developed a tendency to enlarge the flower cluster. This often comes as a result of fasciation or abnormal broadening of the stem. As many as eight perfect flowers were developed in some clusters of Apple Blossom in our planta-

ger Agricultural Experiment Station, Ithaca, N. Y.

tion last year, with no diminution in the size of the flowers, whilst the normal number is only three. Fig. S0 shows this augmentation of the flower cluster. Like the doubling, this enlargement of the cluster is not perpetuated by seeds, but it is not too much to expect that a permanent modification in this direction may come in the future.

Another interesting development of the sweet pea is the recent appearing of dwarf or non-climbing forms. These have appeared

79 -Two types of flowers. Alba magnifica (above), and Emily Henderson (below).
in Germany, England and California. This is one of those peculiar accumulative effects of domestication which is apt to appear somewhat simultaneously in widely separated regions, evidently largely because an equal degree of domestication tends to produce similar effects in any number of regioms. The same thing is illustrated in the dwarf Lima beans (see our Bulletin 87), and it transpired long ago in the common garden beans. The Caifornia dwarf, which is introduced this spring (18960 hy Burpee as Cupid, was found in a field of peas in C. C. Morse it (\%,'s plantation in 1ヶ93. There was a single plant of it. This original plant was
strong and apparently normal in every way except in its diminished size. In 1895, Morse \& Co. grew seven acres of this Cupid, and all the plants came true to seed. We have not grown the plant, but Burpee pulled up two entire full-grown plants and sent them to us last year. One of them measured seven inches high, and the other eight inches. The flowers were of mediun size, pure white, and of good form.

It is difficult to construct any classification of the varieties of sweet peas. The best scheme for popular use is thought to be one founded on the color of the flowers. Yet there are various wellmarked types of form in the sweet pea flower, which should be recognized in classifying them. The old-time type has a broad plane standard, as in Apple Blossom (Fig. 80), and Countess of Radnor (Fig. 72). In many of the recent varieties, the standard is variously curled or rolled. One of the best of these newer forms is that in which the standard is inrolled or hooded. This is shown to perfection in the dainty and exquisite Butterfly (Fig. 82, best seen in the central flower and in the uppermost flower at the right), An opposite form of standard is the reversed or revolute, well shown in Imperial Blue (Fig. 83). The form of the flower also varies when seen sidewise. Consider Fig. 79. The upper flowers are Alba Magnifica, in which the standard and wings stand nearly at right angles to each other, and, therefore, present a want of connection and homogeneity which is displeasing to many persons. In the lower spray, which is Emily Henderson, this fault does not exist. and the flowers present a more united and shapely effect.

A Seedman's Account.

The reader will be interested to know something of the methods and trials of seed-growers in growing and breeding varieties. The following account is written by Mr. Waldo Rohnert, one of my former students, who is associated with C. C. Moore \& Co., of California:
" Eight or nine years ago the sweet pea was little known as a garden flower. It then had little merit to attract public attention. At that time, Mr. Eckford had done considerable work and his efforts and perseverance were becoming apparent. From. the ordinary type and colors he has improved the flower to its
present high standard. Cross-fertilization and selection, keeping the size, form, substance and color constantly in mind, have had a wonderful effect. We depend somewhat upon sports for new varieties, however. As each variety is brought up to the grandifloral type, its liability to sport is also increased.
"As the six new rarieties of C. C. Morse \& Co. have resulted from sporting and selections, you may be interested in their history. America is a sport of Queen of the Isles. It was selected to a deep crimson-scarlet upon a white ground, large size, good substance, bold and upright standard. It runs about ninety-five per cent true. Its deep and contrasting color gives it a striking appearance. Ramona is a selection out of Blushing Beauty. It is a delicate pink stripe upon creamy-white ground, perfectly hooded form, good substance and grandiflora size; very effective. Oddity was found in a mixed lot, so its parentage is unknown. It is odd because wings and standard are peculiarly hooded, a feature new in the sweet pea. It comes perfectly true from seed. Juanita is a selection out of Countess of Radnor. It has a delicate appearance and as its parent is a back-slider, only a part of it comes true. Grey Friar also adds a departure. Both wings and standard are peculiarly shaded or marbled-purplish maure. It is a selection out of Senator and has taken some time and critical selection to bring it to its present standard. The vine is vigorous, and, as a rule, has four flowers to the truss.
"The profesional growers of sweet pea seed have a good deal of trouble to contend with in the matter of keeping their stock pure. Some varicties are very hard to keep true to type, while other rarieties almost take care of themselves. As a rule, nearly all small-flowered varieties come true. while the grandiflora types run off more or less.
"Countess of Radnor and Dorothy Temnant are very hard to keep true. Two years of careless work in growing these varieties will run them into stripes and poor forms. Her Majesty reverts to Princess Victoria; Duke of Clarence rmus into Mer Majesty and Dorothy Tennant; Mrs. Eckford runs into Primrose and poor whites, while Primrose will lose its primrose effect; Mrs. Sankey runs into poor Lemon Queen; Mrs. Joseph Chamberlain passes into Ovid and weak stripes; Stamley goes into Boreatton and to

Boreatton with purple wings; Peach Blossom varies into Isa Eckford; Blanche Burpee into Mrs. Eckford; Mrs. Gladstone into pink stripes; Emily Henderson has strong light blue and purple and Blanche Ferry tendencies; Apple Blossom runs into Splendor; Royal Robe into Ovid and delicate pinks; Captain of the Blues into Monarch and stripes; Monarch into Duke of Clarence and stripes; Waverly into Apple Blosom.
"There are now about one hundred distinct varieties of sweet peas, and the question arises if the limit of improvement in color and form is not already reached. In what direction are the growers working to keep the public interested in this flower? In the first place, all the present varieties could be improved by having four flowers on each truss. The clear blue, lemon-yellow and fiery scarlet varieties are still to come. A flower having a blue standard with white wings, to correspond with Blanche Ferry, would be a decided acquisition. Such varieties as Meteor, Lady Beaconsfield and Blanche Ferry should be brought up to the grandiflora type. New ranges of colors, as the apricot shades, are not out of the question. Even the size of the present grandiflora type could be increased to a larger and bolder flower. Our work with the sweet pea is really only fairly begun.
"One feature which should be impressed upon the public is that there are types of form in the sweet pea. We should classify the varieties into forms, not into colors. When we speak of a certain color we convey but a vague meaning. From a description of color, no two persons receive the same impression.
" In my experience, crossing has produced some unlooked for results. Cupid on Venus produced a weak Painted Lady of no value. Penzance on Venus has produced an exceptionally fine pink of solid color and good form. It corresponds with Royal Robe, but is larger and holds form and color better. Ovid on Venus had the same result, except that the color was a trifle stronger. Stanley on Venus produced a Boreatton; Ignea on Venus produced something close to Princess Victoria; Bronze King and Primrose on Venus made a weak pink or no value; Beaconsfield on Venus produced Beaconsfield. The conclusion from these crosses is that the stronger color predominates in the cross. We cannot foresee what the result will be.
"Of Eckford's 1895 novelties, Blauche Burpee certainly takes the lead. It is the finest white to date. While Emily Henderson may be considered a little purer in color, and, on account of its free blooming habits, a better variety for florists, yet it does not possess the size or gracefulness of the Banche Burpee. The stiffuess or formality has always been against the Emily Henderson. Eliza Eckford comes second in value of Eckford's 1895 novelties and possesses considerable merit. Mrs. Joseph Chamberlain is also a decided acquisition. Meteor is a decided improvement on Orange Prince, but will not be appreciated until it is brought up to the grandiflora type. Duke of York, Novelty and Duchess of York come next in order of value."

A Student's Opinion of the Suceet Peas.

Mr. Wyman, who has studied our sweet peas in the field day by day, has given me the following impressions of their merits and adaptabilities: "There is much to interest the careful observer in the different types of sweet peas. In the flower only three colors appear, white, red and blue, or rather purple, although the bud is always yellow. While the habit of the plant is much the same in all varieties, the various colors and forms of the blossoms present a series of transitions throughout the species. One type, represented by the Improved Painted Lady, seemingly the foundation of many of the improved sorts, is widely known. It has pink wings and a peculiar pink-reddish banner, upon both of which numerous changes have been wrought. The pink wings may become whiter and whiter, until only the slightest tinge of pink is apparent, while the banner retains most of its lurid hue. The type, on the other hand, may run to deep colors, the wings pasing into purple and the banner also becoming darker. When both banner and wings become strongly jurple, another type is obtained, of which Cardinal Wolseley is an example. Here the banner is crimson and the wings maroon. The darkest and purplest flowers belong to this class, and are, also, the least beautiful. In other cases the flower retains the purple, but it assumes a distinctly lighter cast. Still anothre formi of the Painted Lady type is a red-purple, blotehed with lavender, like the Countess of Radnor. Going back to our original type of the pink and
red, we may start again in the first direction, towards a loss of color. When both banner and wings become very light, as in the Empress of India, we have a beautiful salmon, one of the softest shades in the species:
"While the greatest variations of the blossoms appear in the color, there is also, though in a lesser degree, a variation in form. One type spreads out a broad, rigid banner; another, more fragile, folds its banner together slightly, while another bends it backward. Still another class, perhaps the most remarkable, folds over the lateral edges of its banner and forms a hood. The student loves to contemplate the flower and attempt to construct some hypothesis of the means by which these variations are brought about. Here a delicate fibre has strengthened itself, and holds a petal rigidly in place. In another flower the fibre is less sturdy, and allows its banner to curl and plait itself. In another a notch is taken from the side of the banner, weakening the rigidity of the structure. Of necessity the edge then curls forward and we have the hooded form. One can imagine a change in color, too, by a cell losing or retaining its characteristic pigment; and even in health there may come the deathly purple which is always sure to appear as the blossom fades.
"There are so many attractive varieties that it is difficult to say which are the leading ones. If a flaming color is wanted, one may choose the Apple Blossom, of the old pink and red type, which surpasses all in brilliancy and uniformity of color. It gives the prettiest mass to be found in all the varieties which we have grown. Another form of the same type, the Improved Painted Lady, combines much of the brilliancy of the Apple Blossom with a softer and much more pleasing finish. It is also earlier and more profuse in its bloom. The Empress of India gives a delightful salmon which, in the beauty of its mass, approaches the Apple Blossom, and at the same time is one of the prettiest varieties for cutting for single specimens. The Countess of Radnor is an expression of a dark lilac color and a hooded form. Notwithstanding its remarkable characteristics, it is by no means a beautiful flower, because the color seems to lack character. The Butterfly, of a much lighter type of azure, is perhaps the most charming of all. It is pale lilac and delicate.

Its single flower is effective, and in mass it gives a shade of which one never tires. It, too, is an early and profuse bloomer. Of the whites, Mrs. Langtry is, perhaps, the most pleasing, but is surpassed in earliness and productiveness by the Fairy Queen. Of the purples, Cardinal Wolseley stands foremost both in richness and harmony of color. Nevertheless, it has a rival in earliness and bearing qualities in the Imperial Black, but it is not equalled in quality. The Orange Prince, while only a moderate bloomer, must not be overlooked. It approaches the Painted Lady type, but is characterized by its orange banner and rosepink wings. It is pretty, but not the best. It is different from all the rest, and the collection would be incomplete without it. As to which sweet pea is best of all, the Improved Painted Lady seems to me to be most satisfactory, and I am willing to cast our lot with it.
" It is a common practice to show together a number of varieties and to call them mixed, but when one tries it, he finds that it does not give the satisfaction which comes of a single variety. Although the colors may be related, the mixtures do not produce the harmony which is essential to the best effects. If there must be a mixture, it is much better to follow the pattern of a single flower by giving a decided tone to the mass with some one characteristic variety, of a profuse bloom, as the Invincible Scarlet, and then touch it up slightly in the two directions of light and shade,-with a light pink, as Mrs. Gladstone, and a white, as Fairy Queen, and perhaps with a moderately dark pink and pur-ple,--the less purple the better,-as the Captain of the Blues, discarding lilacs-which may be good in themselves,-and also all striped purples, which seem to be inappropriate to any ornamentation whatever.
"The use of the sweet pea in ornamental work can be best understood by considering its natural character and adaptability. It is a common and rather cheap plant. It seems to have something in common with weeds as well as with refined exotics. It is naturally modest and retiring. It is not improved by the society of other flowering plants. It is beantiful when growing by itself in masses in half-secluded places, but does not bear great prominence. I remember to have seen one place where it looked
uncommonly well, and that was on a rough wooden trellis, surrounded by half-grown grass, a few feet from a dingy uninteresting wooden house, on the side where no one ever came. In an ordinary well-kept flower-garden, where the beds are laid out by themselves, it may sometimes appear to advantage, but it seems wholly out of place in a strictly formal bed.

80.-Apple Blossom. An abnormal 4-flowered truss.
"All that has been said refers to the growing plant and flower. More properly, the use of the sweet pea bloom is in the bouquet. No place then is so exalted but that it adds an extra light, and none is so humble that it is not at home."

II. Varieties Grown at Cornell in 1895.

An attempt was made the past season to obtain all the sweet peas which were offered by American seedsmen. Nearly all of them were planted April 30th, but a few later arrivals were sown
in the first days of May. The soil was a stifi clay loam. The area was about 150 feet long, and one end of it was naturally more moist than the other, yet this difference in soil did not appear to exercise a great influence upon the season of bloom. The entire area was well tilled throughout the season (as explained on page 219). The vines were tied up as they grew to a trellis of five horizontal wires, and the pods were removed as they formed. The plants continued to bloom throughout September, and even on the 8th of October, when the last notes were taken, several of the varieties were still producing good flowers.

In rating the merits of the flowers in this list, we have called those varieties "good" which rise to the accepted standard of excellence of the modern improved sweet peas. A variety which rises above this level, or has some superlative merit, is desig. nated "very good." Varieties which fall below this level are variously designated, usually as "fairly good." These are varieties of indifferent merit. Below these are the varieties which were distinctly poor. The reader should remember, however, that these opinions are founded solely upon the behavior of the varieties upon our own grounds last year. They are not intended to serve as a general or infallible estimate of the varieties. The accounts of these varieties are all made directly from the plants as they grew on our grounds, uninfluenced by published descriptions.

One who is sensitive to inelegant or pretentious expressions must deplore many of the names of the sweet peas. Ambitious names are always in bad taste, but nowhere more so than in the sweet pea, of which the most pronounced characteristic is modesty and indifference. We cannot expect to control the names which come to us from abroad, but our own originators should exercise a care to give names at least worthy the plant which is to bear them.

The name in parentheses in the following list is that of the dealer who suplied us with the seed. The varieties marked with an asterisk (*) were originated by Mr. Eeckford, and to some of these the date of introduction is added. Several dealers have kindly contributed to this test of varieties, and Mr. Hutchins sent us a grood collection of seeds "for the good of the cause."

1. Adonis. (Gardiner.)

Very good. Flowers small. Standard convex, apex rounded, base wedge-shaped. Color, rose-pink, soft. Bloom profuse.

Began to bloom July 17.
Continued until September 1.
Profuse July 29.
2. Alba Magnifica. (Burpee.) Fig. 79, top.

Good. Flowers small. Standard flat, notched. Color, pure white. Bloom somewhat profuse.

Began to bloom July 17.
Continued throughout the season.
At best August 5.
3. American Belle. (Burpee.)

Good. Flowers large. Standard hooded to almost flat. Color, rose-pink. Bloom medium, uniform the whole season.

Began to bloom July 19.
Continued throughout the season.
4. Apple Blossom. (Gardiner.) ${ }^{*}$ Fig. 80.

Very good. One of the best. Flowers above medium size. Standard slightly hooded. Color, rose-pink. Bloom profuse. Beautiful growing in a mass.

Began to bloom July 22.
Continued throughout the season.
At best August 12.
5. Black and Brown Striped. (Breck.)

Fairly good. Flowers medium size. Standard flat, notched. Color, standard white striped with pink, wings white striped with rose. Bloom profuse.

Began to bloom July 29.
Continued throughout the season.
At best August 12.
6. Black Purple. (Breck.)

Not a success. Flowers medium size. Color, standard dark pink, wings reddish purple. Bloom sparse.

Began to bloom July 23.
Continued throughout the season.
7. Blanche Burpee. *1894.

Received from two dealers. The seed from one source did not
grow; that from the other was received so late that the plants failed to bloom.
8. Blanche Ferry. (Gartiner.) Fig. S1.

Very good. Flowers medimm size. Standard conrex. Color, scarlet, the wings with large white blotches. Somewhat brilliant. Bloom profuse.

Began to bloom July 13.

81. - Blanche Ferry.

Continued throughout the season.
Profuse from July 29.
9. Blue Bell. (May \& Co.)

Not a success. Flowers small. Standard convex, wedgeshaped. Color, standard pink, wings parple-rose. Bloom sparse.

Began to bloom August 9.
Continued throughout the season.
10. Blue Bird. (C. B. Strong.)

Fairly good. Flowers medinm size. Standard hooded. Color, dark purple-red. Bloom medium.

Began to bloom July 22.
Continued throughout the season.
At best August 12.
11. Blue Edged. (Vick's Sons.)

Good. Flowers large. Standard hooded, with two sinuses at the sides. Color, purple lilac. Bloom profuse. Evidently the same as Butterfly.

Began to bloom July 15.
Continued throughout the season.
At best July 29.
12. Blue Invincible. (Childs.)

Same as Imperial Blue.
13. Blushing Beauty. (Hutchins.) *1893.

Good. Flowers small. Standard convex, notched. Color, soft, pure salmon. Bloom always sparse.

Began to bloom August 12.
Continued throughout the season.
14. Blushing Bride. (Childs.)

Fairly good. Flowers large. Standard flat. Color, standard pink, wings white blotched with purple-rose. Cheap. Bloom profuse. Evidently a strain of Painted Lady.

Began to bloom July 13.
Continuel throughout the season.
15. Boreatton. (Gardiner.)*

Very good. Flowers medium size. Standard convex. Color, standard crimson, wings maroon, deep and rich. Bloom profuse.

Began to bloom July 16.
Continued throughout the season.
Profuse from July 22.
16. Bronze King. (Burpee.)

Good. Flowers medium size. Standard flat, stiff, notched. Color, standard light pink, wings white. Bloom medium.

Began to Bloom July 16.
Continued until September 15, quite uniformly.
17. Bronze Prince. (Burpee.)*

Good. Flowers large. Standard flat. Color, purple-red, the wings the more purple. Bloom medium.

Began to bloom July 22. ,

Continued throughout the season.
At best August 12.
18. Butterfly. (Burpee.) Fig. 82.

Very good and dainty. Flowers medium size. Standard hooded, with two sinuses at the sides. Color, purple-lilac, one of the prettiest. Bloom profuse.

Began to bloom July 17.
Continued throughout the season.
Profuse from August 5.

82.-Butterfly.
19. Captain Clarke. (Burpee.)*

Poor quality, but prolific. Flowers small. Standard flat, stiff. Color, standard white merging into pink and purple, wings white with a purplish cast. Bloom profuse. Far from being beautiful.

Began to bloom July 16.
Continued throughout the season.
At best August 5 .
20. Captain of the Blues. (Gardiner.)*

Very good. Flowers large. Standard flat. Color, purple-red, the wings more purple. Bloom profuse.

Began to bloom July 18.
Continued throughout the season.

At best August 12.
21. Captain Sharkey. (Breck.)

Flowers small. Standard flat. Color, standard pink, wings dark rose. Bore only one flower. Eridently not a fair test.

Bloomed August 8.
22. Cardinal Wolseley. (May \& Co.)

Very good. Flowers large. Standard flat, slightly wedged. Color, standard crimson, wings maroon, rich. Bloom somewhat profuse. Same as Cardinal?

Began to bloom July 19.
Continued throughout the season.
At best August 12.
23. Carmen Sylva. (Hutchins.)

Not a success. Flowers medium size. Standard convex, notched. Color, standard pink, wings dark rose-purple. Bloom very sparse.

Began to bloom August 5.
Bloom of short duration.
24. Countess of Radnor. (Gardiner.)* Fig. 72.

Very good, unique. Flowers large. Standard hooded. Color, lavender blotched with red-purple. Bloom medium in quantity.

Began to bloom July 17.
Continued throughout the season.
At best August 12.
The same from Hutchins, except that the bloom was profuse, beginning with July 22.
25. Crown Princess of Prussia. (Burpee.)

Good. Flowers medium size. Standard convex. Color, standard pink, wings rose-pink. Bloom profuse.

Began to bloom July 15.
Continued throughout the season.
At best August 12.
Cupid: See page 182.
26. Dark Red. (Childs.)

Same as Painted Lady. 27. Delight. (Breck.)*

Good. Flowers small. Standard concare, stiff. Color, white. Bloom medium.

Began to bloom July 24.
Continued throughout the season.
At best August 12.
Same from Burpee, but bloom very profuse.
28. Dorothy Tennant.* 1892. Fig. 78, center.

Good. Flowers large. Standard hooded. Color, red purple, the wings more purple, somewhat heavy. Bloom medium.

Began to bloom July 22.
Continued throughout the season.
At best August 12.
29. Duchess of Edinburgh.* (Burpee.)*

Good. Flowers small. Staudard flat, stiff. Color, standard pink, wings rose pink. Bloom profuse.

Began to bloom July 19.
Continued throughout the season.
At best August 5.
30. Duchess of Marlboro. (May \& Co.)

Ter'y good. Flowers small. Standard flat. Color, standard pink, wings rose-pink. Bloom profuse.

Began to bloom July 22.
Continued throughout the season.
At best August 5.
31. Duke of Clarence. (Hutchins.)* 1893.

Fairly good. Flowers large. Standard somewhat hooded, with two sinuses in the sides. Color, purplish red, the wings strongly purple. Bloom profuse.

Began to bloom July 22.
Continued throughout the season.
At best August 12.
32. Duke of Kent. (May \& Co.)

Good. Flowers sinall. Standard flat, wedge-shape. Color, rose-pink. Bloom medium.

Began to bloom July 27.
Continued throughout the season.
At best August 5.
33. Emily Eckford. (Hutchins.)* 1893.

Good quality. Flowers medium and large. Standard hooded. Color, red-purple, bright. Bloom always sparse.

Began to bloom July 15.
Continued throughout the season.
34. Emily Henderson. (Burpee.) Fig. 79, bottom.

Very good. Flowers medium size. Standard flat, notched.
Color, pure white. Bloom profuse, early.
Began to bloom July 13.
Continued throughout the season.
At best July 22.
35. Empress of India. (Burpee.)*

Very good. Flowers large. Standard flat, stiff. Color, salmon, soft, bright, one of the most beautiful. Bloom medium.

Began to bloom July 17.
Continued throughout the season.
Profuse from August 12.
36. Etna. (Hutchins.) Fig. 78, right.

Good. Flowers medium size. Standard flat, wedge-shaped. Color, standard pink, wings rose, brilliant. Bloom medium.

Began to bloom July 13.
Continued until September 1.
At best August 5 .
37. Fairy Queen. (Burpee.)

Rather poor. Flowers small. Standard flat, stiff. Color, white, streaked or shaded with pink, the soft color almost pure.
Bloom very profuse.
Began to bloom July 11.
Continued throughout the season.
At best August 5.
38. Firefly. (Hutchins.)* 1893.

Good in quality. Flowers small. Standard flat, stiff, spreading. Color, standard, crimson, wings rose-pink.

Bloom very sparse.
Began to bloom August 7.
Continued throughout the season.
39. Flesh-Coloved. (Caldwell and Jones.)

Of no great value. Flowers small. Standard flat, notched. Color, standard pink, wings rose-pink. Bloom sparse. Much like Painted Lady.

Began to bloom July 17.
Continued throughout the season.
40. Gaiety. (Hutchins.)* 1893.

Fairly good. Flowers medium size. Standard slightly convex. Color, white, heavily streaked with pink, bright and somewhat fickle. Bloom profuse.

Began to bloom July 20.
Continued throughout the season.
At best August 12.
41. Grand Blue. (Gardiner \& Co.)

Same as Imperial Blue.
42. Her Majesty. (Hutchins.)* 1892.

Good quality. Flowers medium size. Standard flat. Color, rose-pink. Bloom always sparse.

Began to bloom July 31.
Continued throughout the season.
43. Ignea. (Burpee.)*

Good. Flowers large. Standard flat. Color, standard pink, wings, rose-pink, brilliant, one of the richest colors. Blooms sparse.

Began to bloom July 15.
Continued throughout the season.
At best August 12.
44. Imperial Blacl. (Perry Seed Store.)

Fairly good. Flowers large. Standard hooded with two sinuses at the sides. Color, purplish red. Bloom profuse. Probably same as Imperial Blue.

Began to bloom July 20.
Continued throughout the season.
At best August 5.
45. Imperial Bluc. (Burpee.)* Fig. 83.

Not a success. Flowers medium. Standard somewhat rolled. Color, purple-red. Bloom medium.

Began to bloom July 18.
Continued throughout the season.
At best August 12.
46. Improved Painted Lady. (Landreth \& Sons.)

Very good. Flowers medium size. Standard flat, somewhat wedge-shaped. Color, standard pink, wings light pink, or white blotched with rose-pink. Bloom profuse.

Began to bloom July 13.
Continued profuse from July 22.
47. Indigo King. (Burpee.)*

Fair quality. Flowers large. Standard hooded with two sinuses at the sides. Color, standard, dark purple-red, wings, dark plum. Bloom medium.

Began to bloom July 22.
Continued throughout the season.
At best August 12.
48. Invincible carmine. (Burpee.)

Not a success. Flowers small. Standard flat, wedge-shaped.

83.-Imperial Blue.

Color, standard dull pink, wings rose-pink. Bloom always sparse.

Began to bloom July 31.
Continued until September 1.
49. Invincible Scarlet. (Gardiner.)

Good. Flowers small. Standard conrex, base wedge-shaped. Color, scarlet. Bloom profuse. Brilliant, but somewhat cheap, from becoming white about the edges as it fades.

Began to bloom July 15.
Continued throughout the season.
Profuse from August 5.
50. Invincible Striped. (Burpee.)

Fairly good. Flowers medium size. Standard slightly con-
vex, notched. Color, white streaked with pink, rather cheap. Bloom profuse.

Began to bloom July 20.
Continued throughout the season.
At best August 12.
51. Isa Ecliford. (Burpee.)*

Very good. Flowers medium size. Standard sometimes hooded. Color, light rose-pink, delicate. Bloom profuse.

Began to bloom July 19.
Continued throughout the season.
At best August 12.
52. Joanna Theresa. (Breck.)

Good. Flowers medium size. Standard flat, stiff, notched. Color, standard dark pink, wings reddish purple, rich. Bloom profuse.

Began to bloom July 19.
Continued throughout the season.
At best August 12.
53. Lady Beaconsfield. (Hutchins.)* 1894.

Not a success. Flowers small. Standard convex, wedgeshaped. Color, standard dull pink tinged with lavender, wings lavender and a very light yellow. Bloom medium.

Began to bloom July 13.
Continued until September 1.
At best August 12.
54. Lady Penzance. (Hutchins.)* 1894.

Good. Flowers large. Standard slightly hooded. Color, cherry. Bloom moderately profuse.

Began to bloom July 24.
Continued throughout the season.
At best August 12.
55. Lemon Queen. (Burpee.)* 1892.

Very good. Flowers medium size. Standard flat, stiff. Color, white with a slightly pinkish cast, soft, bright. Bloom medium.

Began to bloom July 13.
Continued throughout the season.
Profuse from August 5.
56. Light Blue and Purple. (Burpee.)

Not wholly a success. Flowers small. Standard convex, stiff, notched. Color, standard dark pink, wings purple. Bloom sparse.

Began to bloom August 3.
Continued throughout the season.
57. Lord Derby. (May \& Co.)

Fairly good. Flowers small. Standard slightly concave, wedge-shaped. Color, standard pink, wings purple-pink. Bloom medium.

Began to bloom July 17.
Continued throughout the season.
At best August 5.
58. Lottie Eckford. (Burpee.)*

Not a success. Flowers medium size. Standard hooded. Color lilac. Bloom sparse.

Began to bloom July 29.
Continued until September 1.
See also New Lottie Eckford.
59. Madame Carnot. (Hutchins.)

Same as Imperial Blue.
60. Minnie Keepers. (May \& Co.)

Good. Flower large. Standard Hooded. Color, standard pinkish lilac, wings lilac. Bloom medium.

Began to bloom July 19.
Continued throughout the season.
At best August 12.
61. Miss Hunt. (Burpee.)*

Good. Flowers medium size. Standard flat, slightly wedged. Color, light cherry. Bloom medium.

Began to bloom July 13.
Continued throughout the season.
At best August 12.
62. Mixtures-

Alneer's Invincible. (Alneer.)
A fairly good mixture. The lilac and pink do not harmonize any too well. Bloom medium.

Began to bloom July 19.

Continued throughout the season.
At best July 29 .
Boston Beauties. (Rawson.)
A fairly good mixture. Bloom somewhat profuse.
Began to bloom July 23.
Continued until September 10.
Breck's Mixture. (Breck.)
Almost all white, though the combinations are good.
Bloom medium.
Began to bloom July 20.
Continued throughout the season.
At best July 12.
Eckford's Gilt Edge or Surpassing. (Burpee.)
Not a good combination, but better than some others.
Began to bloom July 17.
Continued throughout the season.
At best August 12.
Eckford's New Mixed. (Burpee.)
Not a good combination, the contrasts of color too strong. Bloom profuse.

Began to bloom July 13.
At best August 12.
Fine Mixed. (Burpee.)
A mixture of the darker colors, giving a heavy effect.
Bloom very profuse.
Began to bloom July 13.
Continued throughout the season.
At best August 5.
Huckins' Bouquet. (Geo. A. Muckins.)
None too good. Bloom profuse.
Began to bloom July 18.
Continued throughout the season.
At best August 5.
Invincible Mixture. (Vick's Sons.)
Not a good mixture. Too dark. Bloom profuse.
Began to bloom July 18.
Continued throughout the season.
At best August 5 .

New Varieties Mixed. (Burpee.)
Combination poor; too great contrasts. Bloom profuse.

Began to bloom July 15.
Continued throughout the season.
Profuse from August 5.
Special Colored Plate Mixture. (Burpee.)
Good, but for the presence of an objectionable striped purple.

Profuse August 12. Out of bloom September 1. Splendid Hybrid. (Perry Seed Store.)

Evidently consisted mainly of one pink variety. Bloom profuse.

Began to bloom July 13.
Continued throughout the season.
At best August 5.
63. Monarch. (Burpee.)*

Not a success. Flowers medium size. Standard flat. Color, light rose pink, soft. Bloom always sparse.

Began to bloom July 22.
Continued throughout the season.
64. Mrs. Eckford.* 1892.

Not a success. Flowers small. Standard flat, stiff. Color, white. Bloom always sparse.

Began to bloom August 6.
Continued throughout the season.
65. Mrs. Gladstone. (Gardiner.)* Fig. 84.

Very good. Flowers medium size. Standard convex, rounded apex. Color, a light rose-pink, soft and delicate. Bloom profuse.

Began to bloom July 13.
Continued throughout the season.
Profuse from July 29.
66. Mrs. Langtry. (May \& Co.)

Fairly good. Flowers medium size. Standard flat, notched. Color, pure white, rich. Bloom medium.

Began to bloom July 30.
Continued until September 15.
At best August 12.

246 Agricultural Experiment Station, Ithaca, N. Y.

67. Mrs. Sankey. (Burpee.)*

Fairly good. Flowers medium. Standard flat. Color, light pink. Bloom rather sparse.

Began to bloom July 22.
Continued throughout the season.
At best August 12.

84.-Mrs. Gladstone, One of the best pinks.
68. Nellie Jaynes. (Barteldes \& Co.)

Same as Painted Lady.
69. New Lottie Eckford. (Hutchins.)

Good. Flowers large. Standard hooded. Color, lilac. Bloom medium.

Began to bloom August 3.
Continued until September 1.
At best August 12.
70. Orange Prince. (Burpee, Breck.)*

Good, unique. Flowers small. Standard convex. Color, standard bright orange-pink, wings light rose. Bloom sparse.

Began to bloom July 29.
Continued throughout the season.
71. Ovid. (Hutchins.)*1894.

Good quality. Flowers large. Standard slightly hooded. Color, a bright reddish pink, brilliant, well diffused. Bloom always sparse.

Began to bloom July 20.
Continued throughout the season.
72. Painted Lady. (Burpee.)

Good. Flowers medium size. Standard nearly flat, slightly notched. Color, standard rose-pink, wings light pink, or else dark pink blotched with white. Bloom profuse. Bright.

Began to bloom July 13.
Continued until September 15.
At best August 12.
See Improved Painted Lady.
73. Peach Blossom. (Hutchins.)* 1894.

Grew to a height of forty inches, but did not bear a single blossom, although it produced buds at various times throughout the season.
74. Primrose. (Gardiner.)*

Good. Flowers medium size. Standard quite convex, notched, base wedge-shape. Color, white with a slightly yellowish tinge. Bloom sparse throughout the season.

Began to bloom July 22.
Continued throughout the season.
75. Princess Beatrice. (Burpee.)

Not a success. Flowers medium size. Staudard concare, stiff. Color, soft pink. Bloom sparse.

Began to bloom July 22.
Continued throughout the season.
76. Princess Louise. (Burpee.)

Same as Violet Queen.
77. Princess May. (Hutchins.)

A failure. One blosom August 5.
78. Princess of Wales. (Gardiner.)*

Good. Flowers large. Standard flat, apex round. Color, drab strongly streaked with purplish red, dull. Bloom profuse.

Began to bloom July 17.
Continued throughout the season.
Profuse from July 29.
79. Princess Victoria. (Burpee.)*

Good. Flowers medium size. Standard flat. Color, standard pink, wings rose-pink. Bloom medium.

Began to bloom July 18.
Continued throughout the season.
At best August 12.
80. Purple. (Price \& Read.)

Grew thirty-six inches high. First flower August 9. Did not bloom again.
81. Purple Brown. (Caldwell and Jones.)

Not a success. Flowers large. Standard somewhat hooded. Color, standard purple-red, wings purple. Bloom sparse.

Began to bloom July 23.
Continued throughout the season.
82. Purple Prince. (Burpee.)*

Not a success. Flowers large. Standard flat, stiff. Color, standard dark pink, wings purple. Bloom sparse.

Began to bloom July 30.
Continued until September 15.
83. Purple Striped. (Burpee.)

Good. Flowers medium size. Standard flat. Color, purplishred streaked with lilac. Bloom medium.

Began to bloom July 13.
Continued throughout the season.
At best August 12.
84. Purple Striped. (Caldwell and Jones.)

Not like Purple Striped (Burpee), but like Black and Brown Striped (Breck).

Of little value. Flowers large. Standard flat. Color, white striped with rose-purple. Bloom scarcely any.

One blossom appeared August 5.
85. Queen. (Gardiner.)*

Good. Flowers medium size. Standard convex, base wedgeshaped. Color, standard light pink, wings a pink-purple. Bloom profuse.

Began to bloom July 17.
Continued throughout the season.
At best August 5.
86. Queen of England.*

Medium quality. Flowers medium size. Standard convex, notched, base wedge-shape. Color, white. Bloom medium.

Began to bloom July 18.
Continued throughout the season.
At best August 12.
87. Queen of the Isles. (Burpee.)

Fairly good. Flowers large. Standard flat, stiff, wings at right angles to it. Color, white striped with pink. Bloom somewhat sparse.

Began to bloom July 25.
Continued throughout the season.
At best August 5.
88. Red and White Striped. (Breck.)

Poor. Flowers medium size. Standard convex. Color, white strongly streaked with pink. Bloom sparse.

Began to bloom July 23.
Continued until September 15.
89. Rising Sun. (Burpee.) Fig. 78, left.

Thrifty but not beautiful. Flowers small. Standard flat, slightly notched. Color, standard white streaked with cherry, wings white and cherry; brilliant. Bloom profuse.

Began to bloom July 13.
Continued throughout the season.
At best August 5.
90. Royal Robe. (Hutchins.)* 1894.

Fair quality. Flowers large. Standard slightly hooded. Color, pink, not well diffused.

Began to bloom July 20.
Continued throughout the season.
Blossoms always sparse.
91. Senator. (Burpee.)*

None too good. Flowers large. Standard flat. Color, lilacstreaked with purplish red. Bloom medium.

Began to bloom July 23.
Continued throughout the season.
At best August 12 .
92. Scarlet. (Vick's Sons.)

Fairly good. Flowers medium size. Standard flat, notched. Color, standard pink, wings purple-rose. Bloom somewhat sparse. Probably same as Invincible Scarlet.

Began to bloom July 24.
Continued throughout the season.
93. Scarlet Striped. (Burpee.)

None too good. Flowers large. Standard flat, wedge-shape. Color, white strongly streaked with pink, cheap. Bloom medium.

Began to bloom July 20.
Continued throughout the season.
At best August 12.
94. Scarlet Winged. (Vick's Sons.)

Did not grow.
95. Snowflake. (C. B. Strong.)

Did not bloom.
96. Splendid Lilac. (Burpee.)

Good. Flowers medium. Standard convex, slightly notched. Color, standard pink edged with red purple, wings lilac. Bloom profuse.

Began to bloom July 17.
Continued throughout the season.
At best August 5.
97. Splendor. (Burpee.)* Fig. 77.

Good. Flowers medium size. Standard flat. Color, bright pink.
Bloom sparse.
Began to bloom July 22.

Continued throughout the season.
98. Stanley. (Hutchins.)* 1894.

Good quality. Flowers large. Standard flat. Color, standard, dark pink, wings, rose-purple. Bloom always sparse.

Began to bloom August 2.
Continued throughout the season.
99. Tangier Scarlet. (Price \& Reed.) Fig. 74.

Very good at a distance from the sweet pea. If both are together, the sweet pea is smothered, this species maturing very much the earlier. Flowers medium size. Standard, sometimes flat, stiff, obcordate, pointed, at others closely hooded so as to overlap itself and enclose the wings. Wings very small. Bloom profuse. A strong grower.

Began to bloom July 1.
Continued through most of the season.
Profuse from July 13.
A variety of Lathyrus Tingitanus. See p. 174.
100. Venus. (Hutchins.)* 1893. Fig. 85.

Good to very good. Flowers large. Standard slightly hooded.
Color, soft pink, delicate. Bloom rather sparse.
Began to bloom July 19.
Continued throughout the season.
Blossoms always scattered.
101. Vesuvius. (Burpee.)

Good. Flowers small. Standard flat, stiff, notched. Color, standard pink with a shade of purple, wings reddish purple. Bloom somewhat profuse.

Began to bloom July 18.
Continued throughout the season.
Profuse from August 5.
102. Victoria Regina. (May \& Co.)

Not a success. Flowers medium size. Standard flat, broad. Color, standard white heavily blotched with pink, wings blotched with purple-rose, cheap. Bloom mediụm. Much like Invincible Striped.

Began to bloom July 24.
Continued throughout the season.
At best August 12.

252 Agricultural Expermient Station, Ithaca, N. Y.
103. Violet Queen. (Burpee.)

Fairly good. Flowers small. Standard flat, wedge-shaped. Color, standard light pink, wings pink-rose. Bloom medium. (Princess Louise.)

Began to bloom July 26.
Continued throughout the season.
At best August 12.
104. Waverly. (Burpee.)* 1892.

Good. Flowers small. Standard flat, wedge-shape. Color,

85.-Venus. Soft and delicate pink.
standard light pink, wings light purple-pink. Bloom somewhat profuse.

Began to bloom July 22.
Continued throughout the season.
At best August 12.
105. White. (Burpee.)

Fair. Flowers medium. Standard, shightly convex, notched. Color, pure white. Bloom always sparse.

Began to bloom July 18.
Continued until September 1.

Same from another dealer. Not a success. Flowers medium size. Standard flat, deeply notched. Color, pure white. Bloom sparse.

Began to bloom July 30.
Continued throughout the season.
At best August 12.
106. White Invincible. (Childs.)

Fairly good. Flowers small. Standard flat, stiff. Color, white. Bloom medium.

Began to bloom July 22.
Continued throughout the season.
At best August 5.
The superlative ("very good ") varieties in this test are the following:

Adonis,
Apple Blossom,
Blanche Ferry,
Boreatton,
Butterfly,
Captain of the Blues,
Cardinal Wolseley,
Countess of Radnor,
Duchess of Marlboro,
Emily Henderson, Empress of India, Improved Painted Lady,
Isa Eckford, Lemon Queen, Mrs. Gladstone, Tangier Scarlet.
A. P. WYMAN.
L. H. Bailey.

BULLETTIN 112-February, 1896.

Corne11 University-Agricultural Experiment Station, ITHACA, N. Y.

HORTICULTURAL DIVISION.

THE 1895

CHRYSANTHEMUMS.

J. E. Lager. See page 282.

By L. H. Bailey, Wilhelm Miller, and C. E. Hunn.

O R G A N I Z A T I O N.

Board of Control-The Trustees of the University.

STATION COUNCIL.
President, JACOB GOULD SCHURMAN.
Hon. A. D. WHITE Trustee of the University.
Professor I. P. ROBFRTS

\qquad
President State Agricultural Society.
Professor I. P. ROBERTSAgriculture.
Professor G. C. CaldwwellChemistry.
Professor JAMES LAW Teterinary Science.
Professor A. N. PRENTISS Botany.
Professor J. H. COMSTOCK Entomology.
Professor L. H. BAILEY Horticulture.
Professor H. H. WING Dairy Husbandry.
Professor G. F. ATKINSON Cryptogamic Botany.
OFFICERS OF THE STATION.
I. P. ROBERTS Director.
E. L. WILLIAMS Treasurer.
H. W. SMITH Clerk.
ASSISTANTS.
M. V. SLINGERLAND Entomology.
G. W. CAVANAUGH Chemistry.
E. G. LODEMAN Horticulture.
L. A. CLINTON Agriculture.E. J. DURANDCryptogamic Botany.

Office of the Director, 20 Morrill Hall.
The regular bulletins of the Station are sent free to all who request them.

BULLETINS OF 1896.

106. Revised Opinions of the Japanese Plums.
107. Wireworms and The Bud Moth.
108. The Pear Poylla and the New York Plum Scale.
109. Geological History of the Chantanqua Grape Belt.
110. Extension Work in Horticulture.
111. Sweet Peas.
112. The 1895 Chrysauthemums.

Honorable Commissioner of A!riculture, silbany:

Sir.-This account of our cultivation of chrysanthemums in 1895, is submitted for publication under Chapter 230, of the Laws of 1895.

In our former report (Bulletin 91) of chrysanthemums, made nearly a year ago, we took the opportunity of a fly-leat to explain our position upon the vexed question of the testing of novelties. We made the following statement: "We refuse to test varieties simply because they are new. Our basis of study is the monograph-the investigation of a particular subject, rather than the indiscriminate growing of things which chance to be put upon the market in a given year, and which have no relationship to each other aside from a coincidence in date. When we take up a certain group of plants for study, we endeavor to secure every variety of it, old or new. These varieties are studied not only in the field, but botanical specimens are invariably made of every one, so that the experimenter has specimens before him for leisurely study when the hurry of field work and the excitement of bug-catching are done. We are always glad to receive the seed novelties of any year, but we do not agree to report upon them or even to grow them. If we were to attempt to grow them all, we should simply be making a museum of curiosities, and we should have no time left for investigation and experiment."

This seems to be plain enough to allow of no mistake as to our position, yet we have been half accused of an unwillingness to aid dealers and buyers in the determining of synonyms and the discarding of duplicate and unworthy varieties. This is exactly the opposite of the truth. We are so desirous of aiding in this direction that we have refused to make any effort except when we believed that we could really accomplish the purpose. We are free to say that we have no sympathy with the ordinary "variety test," which simply grows a lot of things and then sets down a few unrelated measurements of them. One must make a comprehensive and detailed and prolonged study of his subject, with all the factors before him, before he is able to judge of such an apparently simple thing as the merits of varieties. All estimates of varieties must be comparative. One can not grow an onion, and then say that it is or is not the same as others, nor can he likely give any accurate measure of its comparative merits. for he has no other rarieties with which to compare; and he can not carry even such emphatic subjects as onions in his mind from year to year. One can not file away specimens of all garden varieties, as they grow in all soils and all seasons, as he can dried plants and bugs. If the station officer is to be able to identify and to judge all varieties sent to him, he must attempt to grow every variety of plant every year. And even if he should grow them all, he would likely gain little, save experience, from his effort, for the subject is too large for instant study. In 1896 we expect to make a study of Brussels sprouts, dahlias, sweet corn, chrysanthemums, cannas and tuberous begonias, and any person who has varieties of these things which he wants tested may send them to us. Of these things, especially the ornamentals, we should receive the novelties in adrance of their general introduction, if possible.

In this chrysanthemum study, I have been fortunate in my associates. Mr . Miller is a special student in horticulture, a graduate of the University of Nichigan, and has given most enthusiastic attention to our chrysanthemum test. Mr. Hunn is a gardener of much experience, well known for his long and earnest connection with experiment station work.
L. H. BAILEY.

The i895 Chrysanthemums.

I. Sundry Remaris upon the Subject.

It is charged that the rapid popularization of the chrysanthemum is mere fashion. It may be so; but if fashion were henceforth always to produce so many beauties as it has in the chrysanthemum, it might be forgiven its endless record of follies. The transcendent merit of the chrysanthemum lies in its almost limitless variety of form, texture and color of flowers. There is no plant known to American gardens which approaches it in these respects, not even the rose. Such variety of form is possible only in compositous flowers, in which each floret is a distinct element and capable of independent development. One cannot feel the truth of these remarks until he has an opportunity to study a large collection of varieties growing together. He will then see that almost every form of compositous flower which the mind can picture has here arisen.

Yet, various as the chrysanthemums are, there are limitations to the development of the species in certain directions. For example, it is idle to ${ }^{2}$ look for a blue chrysanthemum. This is not because of any assumed or theoretical incompatibility of the blue and yellow series of colors, but simply because no true blue varieties have ever yet appeared, to our knowledge. The only guide in the breeding for particular characters is experience, or the observed behavior of the species. The chrysanthemum has been cultivated for some thousands of years, but amongst all its departments it has given no blue flowers. It is reasonable to expect that if no hint of such variation has occurred in all this eventful evolution, we can have little hope for its appearing in the future. The same remark will apply to the much-coveted but ever-evasive blue rose. It is a fundamental tenet of plantbreeding that the operator must put himself in line with the natural tendencies of the plant and work harmoniously along
with nature, rather than to set himself against her. Man's power lies more in improving or augmenting tendencies which already exist than in creating new tendencies. There is a tradition, to be sure, that a blue chrysanthemum was once produced, under political pressure, in the orient, but there is no exact knowledge of the matter; and if the King of Japan really did receive such a tribute, I am willing to believe that some one connected with the transaction forestalled the modern flower "artist" and dyed the flower. It is possible, of course, that a blue chrysanthemum may appear, but the probabilities are all against it; and if it does come, it will probably originate as a sport

87.-'Mum cutting. Half size. or bud-variety rather than as a definite attempt thereat on the part of the operator.

One must remember, too, in this connection, that the heavy colors of chrysanthemums are nearly always associated with heaviness and gracelessness of habit. We have no pure deep red with the cut of Mrs. Rand, for example. But even the same form, particularly if it inclines strongly to regularity, has a heavier appearance in dark colors than in light ones. There is no more fertile field for the development of new types than in the combining of light and graceful forms with dark colors. :

A word about the culture of chirysanthemums.Our own tests of chrysanthemums have been made for the purpose of obtaining specimen or exhibition blooms. The plants are, therefore, trained to a single stem and a single flower. Fig. 86 shows our house as it looked last November. When so many varieties are grown, the house is not at its best at any one time, but there is a progressing exhibition. The house therefore, lacks the full appearance of an ordinary commercial house. These plants were made from cuttings taken the previous spring, the plants laving been grown in pots until late July, when they were taken from the pots and sot in the bed.

This growing of the plants to a single hoom does not produce the most decorative or satisfactory results. It simply gives large specimen hlooms. I much prefer to grow from three to six
blooms on a plant, and shall do so this year. The plants may be flowered in pots, or in a solid soil bench. Very good small plants may be brought to perfection in 6 -inch pots, but the best results, in pot plants, are to be obtained in 8 -inch or 10 -inch pots. If the plants are to be used for decoration, they should, of course, be grown in pots, but the best results for cut flowers are usually obtained by growing in the earth. In any case, the cuttings are made from the tips of basal or strong lateral shoots, late in February, to May. One form of cutting is shown in Fig. 87. It is inserted in the soil to the point C. If the plants are to be flowered in pots, in which case they usually mature earlier, the cuttings may be started as late as April, or even June; but if they are grown in the soil and large plants are desired, the cuttings should be taken in February or March. The plants which are flowered in the soil are generally grown in pots until July. The grower must decide how many blooms he desires on a plant, and then train the plant accordingly, bringing up the different branches so that they will all bloom at the same time. A wellgrown chrysanthemum, in an 8 -inch pot and bearing five or six perfect blooms, is one of the most decorative plants which the florist can produce.

Reflections upon nomenclature, classification and variation (Mr. Miller).-There is need for reform in three important matters relating to chrysanthemums-nomenclature, synonomy and classification. New varieties of chrysanthemums often bear absurd, bombastic and vulgar names. Many are named after society leaders and prominent persons. There are always practical reasons why novelties are named after popular men and women, and these reasons are often unworthy ones. The poor quality of cigars named after election candidates is notorious. Those who buy new flowers, because of the attractive names, usually feel defrauded of their sympathies. The criticism is often made that our monthly magazines are dealers in attractive titles; that the matter is rarely as spicy as the caption. The disseminators of new horticultural varieties take advantage of waves of popular enthusiasm. They name flowers after actors, base-ball players, barons, saints and society leaders. Almost is realized one of Dean Swift's dissonant combinations, "lords, fiddlers, judges, and dancing
masters." The only consistent course is to aboiish the whole system of naming varieties after living persons. So long as this system continues, the element of disappointment and bad taste will persist. It is a constant reproach to horticulture that the art lacks dignity. Need it also be pointed out that we seem to be deficient in imagination?

The reform would be sweeping if made all at once, but there is a preliminary step in this direction that can easily be taken. All such titles as Mr., Mrs., Miss, General, Judge, Count, Baron, etc., should be dropped. These titles cause endless confusion. What makes the case peculiarly hopeless is that the National Chrysanthemum Society of England, in its Official Catalogue, has set the example of indexing rarieties according to these titles, in defiance to the established rules adopted by librarians, indexers and cataloguers. It frequently happens that the pater familias is not the only popular member of the family. In verifying varieties by English catalogues (whose methods have been tamely copied in America) it is often necessary to remember which is Miss Blank, and what are the first names of the other daughters. Label-writers are usually careless, and their " II " may stand for Mr., Mrs., Miss, Monsieur or a Christian name. According to the trade journals it is not uncommon to order a "Miss" and get a " Mr." The use of titles ought to be discontinued.

There are other problems of nomenclature which are coming up constantly. Many of them have been considered by societies devoted to other flowers or to fruits. The only real attempts to solve any of these problems have been made by the American Pomological Socicty, and, for vegetables, by a committee of Experiment Station horticulturists. The I'omological Society has drawn up a set of rules, but, unfortunately, the other societies do not follow them. What is really wanted for progress is a national horticultural society in which professional growers of plants, amateurs and botanists may work together. The societies devoted to the culture of a single flower could coöperate with the national society. Of course, a society, as such, might not deal with prohlems of synonomy and classificalion, but its members could do so either as committees or as individual students. Records of hybridization are worth keeping, as well as many other
data for a study of the botany of cultivated plants. It is a pity that we have no horticultural society of the dignity of the Royal Horticultural Society. The American genius for organizing ought to be able to create a better society than this for our own needs. Commercial men could supply materials for history and science, and botanists could instruct plant-breeders at almost every point of their work.

There is this distinction between botanical classification and horticultural classification: The world can wait for the first; the second has a daily practical bearing. Prizes often do harm in this-that they encourage production of flowers that conform to arbitrary and fallacious standards and discourage informality and freedom. This is strongly illustrated in the case of the Mrs. Alpheus Hardy chrysanthemum. The hairiness of that variety was no novelty in the western world. It had repeatedly appeared in England and had been patiently, if not sorrowfully, repressed. The florists did not want a hairy flower, nor was it absolutely new, and the success of the florist who sold it for $\$ 1,500$ and the dealer who is supposed to have made $\$ 10,000$ out of it in one year, must be explained in some other way. The lesson of this is that conventional standards and horticultural classifications are often tyrannical. It is certain that in 1886 no hairy chrysanthemum could have won a prize before the National Chrysanthemum Society of England. If florists want a good example of the tyranny of classifications they can examine the centenary catalogue of that society and see the ten artificial sections that the English have made and Americans too often follow. The English have more rigid classifications, a more severe system of scoring by points, bigger prizes and less individuality in their flowers.

The danger of suppression of individualism can be arerted for the present, so far as the American Chrysanthemum Society is concerned, by a more liberal interpretation of what "incurved" and "Japanese" may mean. The Japanese section should be made broad enough to include most types which do not fit elsewhere. The English "incurred" chrysanthemums are compact, round, formal and regular. The florets are carefully arranged in mathematical order by means of forceps. The "dressing" of

Floret incurved, 13,
Floret reflexed, : 2 ,
Margin incurved, ĩ, 10,
Margin revolute, 2,15,
Ligulate, 1,6 ,
Tubular, 12, 13,

Incurved and cupping, 4,
Incurved and hooded (cuculate), 5 ,
Laciniate, or cut, 13, 14,
Twistel, 15, 16,
Hairy, i, 5,
quilled, 11,

Various degrees of tubularity, $7-13$,
I) oubly curved (i.e., twice curved, not "recurved"), 3.
petals is unpopular in this country. The guard petals of exhibition carnations in England used to be pasted down on cardboards. There are perfectly estimable people who still take pleasure in the stiffest incurved chrysanthemums. Indeed, it is the wonder and the glory of the chrysanthemum that it can be varied to suit all tastes. This variability is a thing inherent and essential. It is the peculiar genius of the composites. Asters have it, dahlias have it, and chrysanthemums most of all. It is capable of reflecting the fleeting frivolities and fashions of the age as well as certain deeper and dearer things. Chrysanthemums can be formal as well as fanciful, but we have plenty of other formal flowers. Incurved chrysanthemums were popular in a hoop-skirt age, but the Japanese are truly fin de siecle. They are informal, fanciful, quaint, odd, individual, and, therefore, a more complete expression of the times than single, incurved, anemone or pomponflowered sections.

Descriptions of the florets (Mr. Miller).-The greatest confusion exists in commercial catalogues as to descriptive terms for chrysanthemums. For example, the word "recurved" is used by some dealers to mean twice curved or doubly curved, i.e., the second curve being in a direction opposite to that of the first. (See No. 3 in the plate illustrating different types of florets, Fig. 88.) Botanists, however, use " recurved" to mean a single curve of greater extent that that expressed by "reflexed." Descriptive catalogues are hard to write and harder still to order from. Illustrations are preferable in this day of cheap mechanical processes of engraving. A "half-tone" gives one an idea of the bloom which no words can convey. Sometimes, however, the individuality of the floret needs special notice, and it is often impossible to tell from the loose description of florists whether they are describing the blossom or the floret. Illustrations are needed to give general effect, and botanical terms to describe particular effects. No descriptions can convey the idea of the form, compactness or looseness, regularity or irregularity of the blossom so well as a picture does. The floret, however, can sometimes be described by words that are helpful to the imagination. "Ostrich plume" is a fanciful and attractive name, but it has no place in botany. "Hairy" is the proper term. A head of florets
like No. 13 (Fig. 88) gives the gencral edtom of haminess, and it takes a second look to determine that the individual florets are irregularly cut, but do not hare hairs on trichomes. as do florets 4 and 5.

Cataloguers should distinguish betwern a floret and its margin. For example, a reflexed floret may also have its margins reflexed

(No. 2); an incurved floret may be ligulate (No. 6), tubular (No. 13), or have its margins incurved (No. 7). Unfortunately, it is impossible to indicate such various degrees of tubularity as are successfully presented by the florets No. 1: to 7. Nos. 12 and 13 are properly called tubular and No. 11 quilled. The ligulate form of petal is conceived to have been originated by the splitting
of a tubular form. This theory is well illustrated by florets 13 to 6. In No. 9, half of the floret shows the tubular origin, and half is ligulate. Whether the opposite tendency for ligulate to produce tubular forms exists, is a question. Possibly Nos. 7, 15 and 16 might be regarded as transitional forms from the ligulate to the tubular. It is often important to distinguish whether a floret is ligulate or whether the margins are incurved. For example, single, intense, vivid colors are probably best displayed by a ligulate floret. Crimsona (No. 6) is a case in point. The color of Miss Helyett is a similar shade, but the general effect is ruined (for some at least) by a distracting element: the margins of the florets are turned in so much that florists would say, "it shows the under side."

Various types of chrysanthemum florets are shown, natural size, in Fig. 88. No. 1 is a ligulate floret which was incurved in the bloom; No. 2 stood reflexed in the flower, margins revolute; No. 3, floret doubly curved, is cupped at base and top and high in the middle; No. 4, incurved as it stood in the flower, hairytipped, cupped, but the character not showing well in the cut (Mrs. Higinbotham); No. 5, incurved in the flower, hooded and hairy-tipped; No. 6, ligulate floret (Crimsona); No. 7, tubular below, broadly ligulate above, the margin incurved; No. 8, greater part of the floret tubular; No. 9 , to be compared with No. 7 ; No. 10, a partially tubular floret, with very slender base and strongly involute blade; No. 11, quilled floret; No. 12, tubular, straight (Iora); No. 13, tubular and curved or hooked, the apex cut or laciniate (Mrs. R. W. E. Murray); No. 14, deeply cut or laciniate (Mrs. W. H. Rand); No. 15, broad at base, twisted above (Ezeta); No. 16, floret twisted throughout (Shavings).

Color problems (Mr. Miller).-In consulting catalogues of chrysanthemums for the purpose of verifying new varieties, some very perplexing color problems were encountered. Much of this confusion can never be straightened out, because color is a subjective phenomenon. It exists in the minds of men, rather than in nature. But there are certain practical suggestions which can be made to flower dealers, and it is to be hoped that some general principles can be educed. Cataloguers of new varieties should not attempt to make very fine and subtle distinctions, nor should

they use such seductive phrases as "soft dove colored," "fawn colored," etc. Men who write of colors. should be examined for color blindness, so that they may know their own limitations. The great practical reason against using words expressing fine shades of color is that these words wean very different things to different persons. It is hard enough to get people to agree on such staple colors as red, blue, green and yellow. What the florists of the country need is a cheap chart of colors, containing simply the common names and the common colors. This matter has been agitated for several years. Mr. F. Schulyer Mathews, a well-known artist and colorer, prepared a chart for the use of florists, which was published as a supplement to the American Florist of August 17, 1895. It is an excellent and worthy attempt, and is a distinct gain to the profession; but it has the fault of containing too many uncommon and unimportant colors and names of colors. "Dull ultramarine (blue, grayish)" is too long for ordinary use. Even if the florist were capable of distinguishing between Mr. Mathews" "salmon," "salmon pink" and "reddish salmon," these names would never be attractive names for the description of flowers. It is very doubtful whether people would care to distinguish lilac and light lilac. Horticulturists ought to agree upon twenty or thirty common names of colors and then secure the preparation of a chart to correspond with these common names. We need colors for the names in common use.

People must not expect too much of color charts. They should realize (as Mr. Mathews does) that pigments cannot compete with the colors of nature. Pigments are dead, petals are alive. Moreover, neither pigments nor petals correspond with the colors of the solar spectrum. It is doubtful if Mr. Mathews is warranted in calling his colors "absolutely true." They may be correct from the pigmental or chemical standpoint, or from the standpoint of technical or trade nomenclature, but it is a question if these are to be the standards of absolutely true colors. The fact is that there is no absolute standard of color. Lapis lazuli and bichromite of potash may furnish very stable and constant pigments, but these materials and all others have decided limitations. These limitations must be understood, or there will al-
ways be disappointment, no standard in commom use, and the consequent mutual charges of dishonesty and color blindness.

There are one or two suggestions which I offer in the hope that they may be of some practical help to those selecting varieties. The first suggestion is intended for those who grow chrysanthemums on a small scale, who wish the best of the new

varicties, and cannot afford to experiment with many. This suggestion is that such growers select of new varieties only those which have a single color. It is early enough to get those varieties containing combinations of two or more colors after they have stood the test of a year's experience with the market. People like strong, vivid and highly individualized single colors in
chrysanthemums. There are only two sides to the question when a single pure color is considered. People either like or dislike it. But when two colors are combined there are infinite possibilities for difference in taste. For example, here is a list of eight recent chrysanthemums, all of which have combinations of only two colors-Fred Walz, Mme. O. Mirabeau, Mis. Potter Palmer, Genevieve, Sunset Pink, Mrs. A. Harmon Payne, Edith Smith and Burt Eddy. Now, who is to decide which oue of these is an inharmonious mixture and which a happy combination? But the problem is even more complicated than this. Let us suppose that the variety Burt Eddy contains seventy per cent. of red (to avoid confusion I shall not attempt to describe the shade) and thirty per cent. of white, on each floret. Do you suppose that this proportion can be maintained year after year? Florists know that combinations of colors are very unstable. I do not mean to condemn these varieties out of hand. Some of them may prove stable as to their proportions, and artistic in effect, but the ordinary florist can afford to wait a year. The point is, that these are typical of a class which it is safer for him not to buy while they are new.

Other mixtures of doubtful value are Gilt Edge, Evening Star, Miss Sylvia Shea and Mrs. Moses Wentworth.

To illustrate how variable the amount of color is, the case of the new variety, Miss M. M. Johnson, may be cited. This is advertised as a pure yellow, but some of the many blossoms grown this year showed varying amounts of red. Radiance is another yellow that should be made "red proof" before being sent out as a pure yellow. Secondary colors appear with age in many new varieties that have only one color at their best. The pink that comes with age to Crystallina (white) is attractive, but that which spreads over Miss Georgiana Pitcher (yellow) makes a melancholy spectacle. Often there is a chance for difference of opinion. In any case, would it not be well for disseminators in their introductory notices to state the fact of secondary color appearing with age? An analogous case is that of varieties which show the center. Mrs. J. M. Parker, Jr., and Mme. Carnot are two of many new examples of this latter class. The center is objectionable in one; not objectionable in the other. It is a mat-
ter of dollars and rents to cut the flowers of the former and sell them before the center shows. But such judgments are essentially personal. What buyers want is the fact. If the center shows, the disseminator should state the fact.

A blue chrysanthemum is not impossible. It was formerly tanght that rerl, sellow, and blue flowers comblnever be gotten in the same species. Scientists no longer believe in the incompatibility of the cyanic and xanthic series of colors. A blue chrysanthemum may arise either from seeds or "sports." As far as seedlings are concerned, one would naturally be tempted to sare the seeds of varieties approaching purple. Blne is perhaps most easily reached through parple, but when the blue is once olbtained the difficulty is to keep out the purple. Probably we shall never have an azureblue chrysanthemum. Even the fringed gentian, which is the standard for azure-blue among wild flowers, is not always free from purple. The tendency among chrysanthemums is to sport towards white, instead of away from it. Of course, sports, like men of genius, have a way of disregarding prophecies, but the tendency is worth pointing out. The story is often repeated that in the year 386 A. D. the King of Corea had to pay to the Japanese Emperor a tribute consisting of red, white, yellow, blue and black chrysanthemums. Even granting that the tribute was actually paid, what proof have we that the Japanese word for blue has meant the same thing for fifteen centuries? Moreover, how does the average person know that the Japanese word is properly translated? If those who are striving to produce a blue chrysanthemum, are also cherishing hopes of selling it for $\$ 1,500$, they should be reminded that the public may not care for it when it is obtained. A green chrysanthemum was very rare, but when the two plants of the pink variety Viviand-Morel sported to a green simultaneonsly in different parts of England, the coincidence was barely mentioned in a British horticultural journal.

Fragrance (Mr. DFiller). - Can chrysanthemums be made fragrant? Yes and no. Nymphea is fragrant, but it is a small-flowered variety. There are at leäst half a dozen others. How much these can be developed is a question. At any rate, the largeflowered varieties will certainly never all be frasrant. They are valued for other things. If odor is associated with hereditary constitution, the chances are small for making the genus chrysan-
themum a fragrant one. People are not looking to the chrysanthemums for odor, but simply for form, color, and texture. Fragrance would have to be very emphatic to make any impression beside a Hower six or eight inches in diameter. And besides, whatever odor the flower might have would be overpowered by the heary scent of the foliage. Yet there is nothing really incompatible with the development of odor in the large chrysanthemums. Nymphra has been forced to grow flowers four inches across.

II. Test of Novelties.

In judging new varieties, we have this year divided all the chrysanthemums into very good, good, poor, and intermediate. The word intermediate does not appear in the list, however, because it was thought best not to try to describe the shades of merit between "good" and "poor." When, therefore, there is no comment upon the merit of the variety, it is to be understood that, in our test, the variety seemed to be only intermediate or indifferent in quality. There are so many good and very good chrysanthemums on the market that it is necessary to measure new varieties by a high standard. If the present judgments seem to imply a rigorous standard, it is certainly not so severe as the test of time. It is safe to prophecy that most of the new varieties of 1895 will not be for sale five years from now.

The most complete adaptation to current wants is found among white and yellow chrysanthemums. There is great room for improvment in pinks and dark shades. There are plenty of quilled and hairy pinks, but the Japanese incurved section possesses no pink of the size and beauty of Mrs. Henry Robinson (white) or a dozen yellows that could be named. The trouble with delicate shades of pink is that the color is rarely evenly diffused and it often fades out. The lack of single, pure colors other than white, yellow and pink, is very noticeable. Dark reds are very popular, and yet there is no section in which so little improvement has been made as that represented by Cullingfordii, Geo. W. Childs, John Shrimpton, and Mrs. J. H. White.

In the description of varieties below, the name in the parentheses following the name of the variety signifies the dealer who sent us the cuttings; the name at the end of each description is that of the introducer, so far as we are able to determine from the current
literature. The varicties are arranged alphabetically according to the customary rules of library catalogueing, except that whenever a name consists of two words, the first of which is an adjective, the variety is indexed according to the first letter of the adjective, - e. g., Latest Fad is put under "L" and "Autumn Leares" under "A." Varieties named for persons are catalogned under the sur-

name. All those varieties which were first introduced to the trade last year are marked " 1895 ." Those few without dates are such as we have been mable to trace to the introducer; but they are all very recent.

There are several matters of great practical importance which an experiment station cannot determine for the forcing-house industry. Florists must decide amongst themselves the shipping.
qualities of different chrysanthemums and the length of time cut flowers will last. These matters are of great practical and momentary value, but of little scientific or permanent importance. The depot for such information should be the trade journals. It is surprising that greenhouse men do not supply these lists to their trade papers with greater frequency instead of going on year after year making avoidable mistakes, and purchasing experience dearly.

The following varieties described in Bulletin 91 have been grown again this year with results similar to those recorded last year. Elizabeth Bisland, Georgienne Bramhall, Charlotte, Maud Dean, Golden Wedding, Mrs. Chas. Lanier (better than we said), L'Enfant des deux Mondes, Mrs. Geo. J. Magee, Mayflower, Mutual Friend, Niveus, Mrs. Howard Rinek (worse than we said) and Miss Florence Pullman.

Some of the older varieties, not mentioned in Bulletin 91, have been grown again. Of these the following have done well :

Callendrear, Dr.-Similar to Miss Georgiana Pitcher.
Comley, Jas.-A very good late variety, dark red, changing to carmine and white.

Iora.-See Fig. 93, and page 234.
Lippincott, Mrs. Craig.
Queen, The.-Midseason, white.
Shrimpton, John.-Type of Cullingfordii, and the best red 'mum.

Sunderbruch, F. L.-Early yellow.
Viviand-Morel.-The standard pink of its class, and still to be excelled.

The following were intermediate in merit: John Bunyan, Geo. S. Conover, Miss Heylett, Eva Knowles, Sautel's White.

The following were poor or bad: Mrs. Jas. Eadie, John M. Kupfer, Mrs. C. H. Payne, Sylvia Shea, Yellow Queen.

The following descriptions and estimates of varieties are made up from notes taken by Mr. Hunn, Mr. Miller and myself.

The dates in the descriptions indicate when the flowers were at their best.

1. Abbott, Marion (Smith*)—Flower 6 inches wide, pink, "color of La France rose," incurved, and slightly hairy. Stem 46 inches, long jointed. Nov. 20. (Spaulding.) 1895.

[^58]2. A.tor, II. II. (Smith)-Good. (See Fig. 89.) Flower medium sized. The single row of ray florets white, edged with pink; disk flowers yellow, forming a high compact centre. Stem 36 inches, leares small, deeply cut. Claimed to he an improvament in size. This belongs to an unpopular class. Considered by gardeners as of no value for commercial purposes. Keeps well. (Rob't Owen, Maidenheati, Eng. Introduced in America lỵ IIill and Smith, 1895.)
3. Atkins, F. L. (Smith)-Flower 6 inches. Florets reflexed. Stem 40 inches, close jointed, leaves long aud pointed. Considered by our gardener a good midseason white for commercial purposes. November 16. (Pitcher and Manda.) 1895.
t. Autumn Leaves (Smith)-Flower (i inches wide; a combination of white, red and yellow, the yellow being confined to the tips of the florets. Habit half dwarf, stem. close jointed, foliage thick and leathery. The combination of color is considered a pleasing one by our gardener. At best December 12. (Spaulding.) 1895.
5. Bigelow, E. M. (Dorner*)—Good. Flowers 5 to 7 inches, with general appearance of a red dahlia. Florets stiff, a few outer ones reflexed. Stem 50 inches, close jointed; leaves large, heavy, deeply cut. Considered by our gardener a tine, showy variety of a color that is scarce among chrysanthemums. Late. (Dorner.) 1895.
6. Biron, M. Georges (Beckert†)—Good. (See Fig. 90.) Flower 6 inches in diameter, bizarre, showing chiefly the reverse side of florets which are strongly whorled. Inner sides of florets maroon, reverse amber-colored. Stem 42 inches, habit slender, leaves long and deeply cut. This eccentric appearance may be incident to development or confined to rare cases, as the flower is advertised to belong to the Viviand-Morel type. This is recommended chiefly for its oddity and the attention it attracts. November 16. (Calvat.) 1895.
7. Black, Miss Louise D. (Beckert)-Flower 4 to 5 inches in diameter, regular and globular, orange-red. Florets small, semitubular and tending to incurve. Stem 36 inches, habit slender. A good variety for its type and color. 1895.
s. Bloodyood, IHelen (Hill \ddagger)-Good. Flower 7 to 8 inches, pink. Florets mostly incurved, the outer ones irregularly reflexed. Stem

[^59]52 inches, stout and short jointed; leaves deeply cut. An improvement in pinks. The shade is pure, and the color is quite evenly spread over the florets. November 10. (Spaulding.) 1895.
9. Borel, Pres. (Smith)-Flower 8 inches wide, loosely arranged, a striking combination of purple and silver. Stem 56 inches, long jointed, leaves long and narrow. Nov. 18. A French novelty. The colors are either liked or disliked at first sight. (Calvat.) 1895.

93.-Iora. Four-fifths natural size.
10. Brigand (Smith) - Flower 6 inches wide, deep crimson, slightly reflexed. Florets show yellow reverse. Stem 34 inches, close jointed, foliage large and light green. At best Dec. 12. (Spaulding. Raised by Hill.) 1895.
11. Bronze Giant (Smith) - Flowers 6 inches, compactly incurved. Florets yellow, shaded and splashed with dark red. Stem

30 inches, long jointed, foliage seant. At best Dec. 5. (Spaulding.) 1895.
12. Bryunt, Mrs. TV. A. (Pitcher \& Manda*) - Flower 7 inches, yellow. Habit very tall and slender; stem 5 to 6 feet, long jointed, and strong though very thin; leaves small and very unhealthy. The color and form of the flower is similar to that of $I I$. L. Sunderbruch. Nov. 27. (Pitcher \& Manda.) 1895.
13. Carnot, Madam (Smith). Very good. (See Fig. 91.) Flower very large (8 inches wide), loose and free, the florets being very limp and graceful and ligulate, pure white. Outer florets reflexed or hanging, the inner ones variously placed. Very tall (4 ft . or over) , the stem long jointed, and foliage rather scant. A long keeper and a. most graceful and excellent white. Nov. 10. (Calvat, 1894. Introduced in America by Smith.)
14. Carnot, Mademoiselle (Becker). Good. Much like the last, fully as large or larger, but shows the center, although this defect is not greatly objectionable in a flower of this class. White. Stem 40 inches, long jointed, the foliage rather scant. Nov. 27. Variation of No. 13?

Burt, Eddy. (See Eddy, Burt.)
15. Chipeta (Smith)-Flowers 7 inches wide, closely incurved, showing only the reverse side of the florets, the color of which is compared to that of ripened oak leaves. Stem 46 inches, close jointed, leaves large. At best Nov. 16. (Smith.) 1895.
16. Compton, Miss Georgie (Spaulding \dagger)-Flower in color and shade suggesting a double yellow tulip. Stem 40 inches, close jointed, leaves deeply cut, held well from stem. Nov. 10. (Spaulding.) 1895.
17. Crimsona (Beckert)—Very good. (See fig. 92.) Flowers 6 inches wide, dark crimson, the intense color well displayed by the ligulate florets. Stem 40 inches, close jointed, leaves large and deeply cut. Remarkable for the vividness of its deep color and the velvety flnish of the florets. Reverse light colored. At best Nov. 27. (W. Jarvis Smith, Pittsburg.) 1895.
18. Crosby, Emma N. (Smith)-Flower 5 inches wide, golden. Florets slightly hairy, the outer ones reflexed back to the stem. Habit dwarf. Nov. 20. (Spaulding.) 1895.

[^60]19. Crystallina (Smith). Very good. Flower 5 inches in diameter, globular and distinct in form, pure white. Florets are crisp, firm, and stand out radially. Stem 36 inches. At best Nov. 10. This is recommended for its earliness, purity of color, distinctness of form and keeping qualities. A secondary color appears with age, the pink being evenly diffused, and not displeasing. (Vaughan.) 1895.
20. Darville, Camille (Smith)-Flower 5 inches in diameter, same form as Ezeta, pure whitg. Stem 42 inches, short jointed, foliage light green. At best Nov. 10. (Spaulding.) 1895.

De Galbert (see Galbert).
21. Diavola (Smith)_Flower 6 inches wide, dark red, white and light yellow. Reverse of florets silvery red. Florets very wide and thick. Stem 40 inches, close jointed, foliage very thick, and dark green. At best Dec. 12. (Spaulding.) 1895.
22. Dinsmore, W. B. (Pitcher \& Manda) - Flower 6 inches in diameter, regularly incurved, golden. Stem 40 inches, close jointed, leaves deeply cut. November 16. Midseason. (Pitcher \& Manda.) 1895.
23. Eddy, Burt (Smith) - Flower 6 inches wide. Florets ligulate, purple and white. Stem 28 to 30 inches, very close jointed, foliage small. At best Nov. 16. (Vaughan.) 1895.
24. Egyptian, The (Hill) - Same as Nellie Elverson with us. (Hill.)
25. Elverson, Miss Nellie (Hill) - Good. Flowers 6 inches, incurving, showing the reverse. Inner side of florets dark red, reverse bronze. Stem 44 inches, close jointed, leaves large. Nov. 25. A good exhibition flower. (Hill.) 1895.
26. Evening Star (Beckert) - Flower large, 6 inches across. Outer florets reflexed, the inner ones spreading and whorled, showing the center, semi-double; color old gold and salmon. Stocky, 30 inches high. Nov. 16. Odd.
27. Experiment (Smith.) Flowers 6 inches wide, white, very loose and spreading. Florets narrow and twisted at the apex. Stem 46 inches, leaves small. Adrertised "delicate shrimp pink." Dec. 23. (Spaulding.) 1895.
28. Ezeta (Smith.) Good. "An improved Rohaillon." Flowers 5 inches in diameter, pure yellow, and distinct in form. Stem 50 inches, close jointed, leaves large and thick. At best Nov. 16. The form of the flower head is globular, the general effect is one of
regularity. (See Fig. 88 floret No. 15.) Recommended for carliness. purity of color, distinctness of form, and lasting qualities. (Smith). 1895.
29. Falconer, Jennie (Smith) Flowers 6 inches in diameter, lemon yellow, globular. Florets broad, margins incurved and cupped. Nov. 25. Considered by our gardener a very good midseason yellow. (Spaulding.) 1895.

94. - Northern Lights. Three-fifths natural size.
30. Fitzwygram, Lady (Beckert) - Poor. Flower 4 inches, white. Half dwarf. Not equal to advertised merits. (H. J. Jones.) 1895.
31. Gulbert, Mlle. M. A. de (Beckert) - Flowers 6 inches, pure white. Florets broad, incurved, a few onter ones reflexed. Stem 40 inches; foliage scant. Nov. 19. (D. Calvat.) 1895.
32. Gardiner, Mrs. John (Beckert) - Flowers 5 inches, yellow, incurved. Stem 32 inches, long jointed, leaves small. Early. Nov. 3. (H. J. Jones.) 1895.
33. Genevieve (Vaughan) - Flower medium in size, 5 inches across. Florets straight or slightly reflexed, the inner ones white and the outer ones splashed with pink. Stem 30 inches, weak, the foliage small. Nov. 10. (Vaughan.) 1895.
34. Gilt Edge (Smith) - Poor. Flowers medium in size, 5 inches across, the florets very narrow. Color yellow tipped bronze. Stem 30 inches, close jointed. Nov. 19. (W. Jarvis Smith, Pittsburgh, Pa.) 1895.
35. Gold Dust (Smith) - Flower 8 inches wide, pure yellow. Inver florets incurved, outer ones reflexed, and somerwhat hairy. Stem 28 inches, short jointed, leaves deeply cut and of rank growth. Not as hairy as L'Enfant des deux Mondes. Nov. 20. (Hill.) 1895.
36. Haggard, Rider (Smith) -- Good. Large-flowered anemone. Flower 9 to $10 \frac{1}{2}$ inches. Ray florets light pink, disk florets a darker pink, the inner ones tipped with yellow. Habit very tall. Stem 60 inches, leaves small. Nov. 10. Recommended for its striking oddity. Mrs. F. Gordon Dexter. (Picture on title page of Bulletin 91 gives an idea of the form.) This is not a new variety, but the size has been greatly increased. Attracted universal attention among visitors and much dislike. (H. J. Jones.) 1895.
37. Hallowe'en (Smith) - Very good. Flower head 7 inches wide and flat. Florets incurved and quilled, the tubular portion a lighter pink than the ligulate portion. This variety has as much individuality as Northern Lights, which has similar colors, but a somewhat different development. Nov. 25. (Hill.) 1895.
38. Heacock Esther (Smith) - Flower incurved, yellow. A sport from Ada Spaulding. Stem 30 inches, close jointed, foliage good. Nov. 10. (Spaulding.) 1895.
39. Hersylea (Sunset Seed and Plant Co.) - Flower large, 6 inches across. Outer florets slightly reflexed, the imner ones upright and cupped. Color good golden yellow. Growth rather slender : foliage oak-leaved. Stem 40 inches. Nov. 16. (Sunset Seed and Plant Co.) 1895.
40. Higinbotham, Mrs. (Smith) - Good. Flower 9 inches wide, incurving, showing the center, hairy, pink. Florets incurving, cupping, and even more hairy than those of Louis Boehmer. Stem 40
inches, close jointed, leaves large and very dark green. A gain in size over L. Boelomer. Nor. 16. (Spaulding. Iaised by Hill.) 1895.
41. Hole, Dean (Smith) - Flower 8 inches, white and pink. Stem 3 f to 40 inches, foliage large, drooping to stem. Nov. 26. (May.) 1895.
42. Hurley, Mrs. Wm. II. (Beckert)-- Poor. Flower large, 6 inches across; florets slightly reflexed. Color buff. Growth slender, the stem 20 inches high. Nov. 10. (Graham.) 1895.
43. Iora (Smith) -- Very Good. (See Fig. 93.) Not a new variety. Flower 6 inches in diameter. Florets tubular, pink. The color is a delicate shade evenly diffused throughout. Recommended for exhibition and pot culture. Nov. 16. (Smith.) 1894.
44. Jayne (Smith) - Flower 4 inches wide, dark rose color, the shade of Mrs. Murdock. Stem 30 inches, long jointed, leaves nearly entire. Nov. 27. (Vaughan.) 1895.
45. Johnson, Miss M. M. (Hill)-- Very good. Flower 5 inches in diameter, loosely incurved, gobular, golden yellow. Florets wide, incurved. Stem 24 inches, foliage good. Recommended for purity of color, earliness, and dwarf habit. Nov. 5. (Hill.) 1895.
46. Lager, J. E. (Smith) —Good. (See title page.) Flower 6 inches wide, bright yellow, irregular in general form, and irregular as to florets, which show varying degrees of tubularity and are irregularly reflexed. Stem 40 to 45 inches and stont, leaves good. Recommended for earliness, and keeping qualities. This is not as good as Mrs. W. IF. Rand (see Fig. 95), an early yellow of the same class. Nov. 23. (Pitcher \& Manda.) 1895.
47. Latest Fad (Beckert) -- Flower 8 inches wide, yellow. Florets tubular, the outer reflexed. Stem 30 to 36 inches, close jointed, leaves small. Dec. 5. Considered by our gardener a good variety for growing single blooms in pots. (Spaulding.) 1895.
48. Leech, Katherine (Beckert)-(iood. Flower very large, 7 inches across. Florets loosely reflexed, the central ones erect or spreading. Color clear buff. Strong, short-jointed grower, 25 to 30 inches high. Nov. 16. (Graham.) 1895.
49. Masse, Murime (Beekert)--Flower medium in size, the florets reflexed. Color pink, with a purple tinge. Very early and dwarf. Stem 12 inches. Oct. 20. English.
50. Meige, La (Beckert)-Flower 5 inches wide, white. Florets
broad, waxy. Stem 28 inches, close jointed, deeply cut. Very late. Dec. 26. (Calvat.) 1895.
51. Millbrook (Dorner)-Very good. Flower 7 inches, tubular. The ligulate portion of florets a bright red, tubular portion a salmon bronze. Stem 40 to 55 inches, close jointed, leaves large and held well to flower. The combination of colors is unique and attractive. Nov. 20. (Dorner.) 1895.
52. Mirabeau, Mme. Octavie (Beckert)—Good. Flower rather large. Florets long and loose, color a delicate shade of silvery pink. Stem 30 inches high, long jointed. Nov. 28. Very attractive and odd.
53. Molin, Mme. C. (Beckert)-Flower \& inches, loosely arranged, pure white. Outer florets reflexed. Stem $4(1$ inches, close jointed, leaves light green, long. Nov. 25. (Calvat.) 1895.
54. Mortillet, M. de (Beckert)-Flower 5 inches wide, incurved. Outer florets red, inner bronze and yellow, reverse buff. Stem 44 inches, foliage unhealthy. (Calvat.) 1895.
55. Murdock, Mrs. S. T. (Dorner)-Flower 6 to 7 inches, incurved, pink. Stem 36 to 40 inches, very short jointed, leaves large, deeply cut, dark green. Nov. 25. (Dorner.) 1895.
56. Nurray, Mrs. R.W. E. (Beckert)—Very good. Flower 5 inches wide, t inches deep, white, loosely incurved showing centre. Florets are cut or toothed in such a manner as to give the general effect of hairiness. (See Fig. 88, No. 13.) Stem 46 inches, close jointed, leaves small. A good late exhibition variety. Recommended for purity of color, individuality of form, and lateness. Centre not objectionable. Stands test of close scrutiny as well as that of general effect. Not to be confused with Mr. R. W. E. Murray. (Syn. Mrrs. Geo. W. Pullman.) (II. J. Jones, England.) 1895.
57. Noisette, Paul (Vaughan*)-Flower of medium size, 4 inches across. Outer florets reflexed, the inner ones incurved. Color dull yellow. Dwarf (15 inches high). The foliage small. Nov. 10. (Vaughan.) 1895.
58. Northern Lights (Beckert)-Very good. (See Fig. 94.) Flower 8 inches in diameter, quilled, pink. Stem 46 inches, close jointerl, foliage very good. Midseason. Nov. 25. Recommended for distinctness of form, and keeping (qualities. The spiral condi-

tion of development shown in Fig. $9 \pm$ is succeeded by stages of growth that are perhaps even more attractive. (W. Jarvis Smith, Pittsburg.) 1895.
59. Nyanza (Smith)-Good. Flower 6 inches in diameter, high built. Florets incurved, cherry red, reverse golden, very broad and strong. Stem 45 inches, close jointed; leaves finely cut. Suitable for cutting Nov. 20. In fine condition Nov. 27. Striking form and color. Keeps well. (Smith.) 1895.
60. Oakland (Dorner)-Good. Flower 6 inches in diameter, dark red or terra cotta, very double and spherical. Outer florets reflexed, inner ones slightly incurved, the margins revolute in every case. Stem 50 to 60 inches. At best Nov. 5. Good Nov. 25. Recommended for distinctness of form and color, earliness and keeping qualities. (Dorner.) 1895.
61. Octoroon (Smith)—Flower resembles Nellie Elverson. Stem 40 inches, close jointed; leaves dark green, think and stiff. Dec. 5. (Smith.) 1895.
62. O'Farrel, Miss Elma (Dorner)-Good. Flower medium sized, very evenly reflexed, magenta red. Stem 36 to 40 inches, close-jointed, leaves deeply cut and drooping to stem, held well up to flower. Dec. 12. Recommended for those who desire a dark red, late in the season. (Dorner.) 1895.
63. Orange Child (Beckert)-Poor. Flower medium in size, 4 inches across, zinnia-shaped. Color dull yellow. Half-dwarf; foliage small. Nov. 16. (W. Piercy, Forest Hill, London.)
64. Palmer, Mrs. Potter (Hill)-Flower 7 inches wide. Florets incurved of heavy texture, rose pink with silver reverse. Stem 46 inches, long-jointed, foliage dark green. A show variety with good keeping qualities. Nov. 16. (Walz.) 1895.
65. Parker, Jr., Mrs. J. M. (Hill)-Flower 6 inches wide, pink, showing the centre. Outer florets somewhat tubular. Stem 30 inches. Must be cut early as the centre is a decided disadvantage. The shade of pink is equal to that of Viviand-Morel, but scarcely better. Very early. At best Nov. 8. (Spaulding.) 1895.
66. Pauckoucke, M. (Beckert)-Flower 10 inches, lemon colored, loose and sprawling, the outer florets drooping to the stem; inner florets twisting toward centre. Stem 44 inches, very stocky, closejointed, leaves large. Nov. 10. (Calvat.) 1895.
67. Pauckoucke, Mlle. Theresa (Beckert) - Flower 8 inches wide, pure white. Stem 46 inches. Dec. 12. (Calvat.) 1895.
68. Philadelphia (Hill)-Good. Flowers 6 to 8 inches in diameter, light yellow, loosely incurved and whorled. The color changes with growth toward creamy white, the tips of florets being somewhat darker. Stem 36 inches, stiff, close-jointed. Nov. 16. Recommended for its class. (Graham.) 1895.
69. Pitcher, Miss Georgiana (Pitcher and Manda)-Very good. Flower 6 inches in diameter, globular, loosely incurved, bright yellow. Type of Golden Dragon. Stem 36 inches, unusually stout, foliage broad, thick and rank. Nov. 10. (Pitcher and Manda.) 1895.
70. Radiance (Hill)-Poor. Flower 6 inches in diameter, goldeu, loosely incurved. Florets wide. Habit dwarf. Stem 24 inches. Early. Keeps well, but is by no means pure yellow as advertised. Much red is irregularly distributed. Nov. 10. (Hill.) 1895.
71. Rand, Mrs. W. M. (Hill)—Very good. (See Fig. 95.) Flowers 8 inches wide, pure yellow, looking like a mass of tangled yellow thread. Florets show much irregularity especially in the degree of laciniation and tubularity. Stem 24 to 30 inches, leaves small. Recommended for earliness, purity of color, individuality of form, and remarkable keeping qualities. Comments on the form ranged from "informal," "free," "pleasing," and "irregular," to "odd," "fantastic" and "eccentric." It is worth noticing that the individual florets are far more irregular than the flower head in its general effect. Compare J. E. Lager, title page. Nov.10. (Vaughan.) 1895.
72. Reynolds, Maude D. (Smith)—Flower 9 inches, high built, canary yellow. Outer florets reflexed irregularly. Stem 38 inches, close jointed. Nov. 25. (Spaulding.) 1895.
73. Robinson, Mrs. Menry (Beckert, Smith)-Very good. (See Fig. 96.) Flower 7 to 9 inches in diameter, globular, incurved, pure white. Florets wide. Stem 30 inches, foliage good. Nov. 10. Recommended for great size, purity of color, earliness and leeping qualities. A popular vote of visitors would probably have given this the first place over the entire collection. (Pitcher and Manda.) 1895.
74. Rieman, W. II. (Hill) - Flower 6 inches in diameter, incurved, very high built. yellow. Outer tlorets often tubular. Stem 30 inches, close jointed, foliage well up to tlower. Nov. 24. (Hill.) 1895.
75. Shavings (Smith) - Good. (See Fig. 97.) Flowers small, only 3 inches in diameter, unique in form. Florets twisted and curled, inner side" reddish, outer bronze or straw colored. Stem 36 inches, close jointed, foliage good. Midseason. Nov. 16. Recommended solely for its novelty and oddity. (Vaughan.) 1895.
76. Smith, Mrs. A. W. (Beckert) - Flower rather large. Florets reflexed. Color shell pink. Of Viviand-Alorel type of color. Four feet high, close jointed, the foliage deeply cut. Nov. 19. (W. Jarvis Smith, Pittsburg.) 1895.
77. Spaulding, Mrs. Gladys (Hill) - Good. Flower 4 to 6 inches in diameter, high built, white, incurved. Stem 32 inches, long jointed, leaves small. At best Nov. 10. Good Nov. 25. (Spaulding.) 1895.
78. Starin, Mrs. J. H. (Smith) - Good to very good. Flower large, about 6 inches across and 5 inches high. A few outer florets reflexed, the remainder incurved. White. Stem nearly 4 feet, strong. Nov. 25. One of the best midseason and long-keeping whites. (Pitcher \& Manda.) 1894.
79. Sunrise (Smith)-Flower 9 inches wide, showing centre. Florets broad, of heavy texture, terra cotta, reverse old gold. Stem 40 inches, close jointed; leaves large and thick. Nov. 10. Same class as Eva Knowles. (May.) 1895.
80. Sunset Pink (Sunset Seed \& Plant Co.) - Flower large, 7 inches across. Outer florets horizontal, the inner incurved and making a ligh center. Color pink. Stem 40 inches high, short jointed. Nov. 19. 1895.
81. Thalia (Smith) - Flowers 6 to 7 inches in diameter. Florets lavender, opening loosely, but incurving to a firm head. Stem 40 inches, very close jointed, foliage large, drooping, completely covering the stem. Nov. 10. (Smith.) 1895.
82. Trilby (Smith) - Flower 6 inches wide, pure white. Florets of very heavy texture, the outer reflexed, Stem 36 inches, close jointed, foliage large, dark green, drooping to stem. Dec. 10. (May.) 1895.
83. Troy, J. H. (Smith) - Flower 5 inches in diameter, incurved Japanese, pure white. Stem 40 inches, close jointed, foliage scant. (Advertised to be ready for cutting Oct. 5 to 9.) This would rank very high among the early, pure white, incurved varieties if it were not so much exceeded in size and form by Mrs. Henry Robinson. Nov. 10. (Pitcher and Manda.) 1895.
84. Talleau, Marie (Smith)-Flower 6 inches in diameter, globular, light pink, slightly hairy. Florets broad, heavy texture, the outer reflexed. Stem 40 to 45 inches, short jointed, leaves large, deeply cut, and held well from the stem. Nov. 20. (Spaulding.) 1895.

96.-Mrs. Henry Robinson. Hale size.
85. Wakeley, Dr. A. W.(Smith) - Flower 6 inches in diameter. Florets wide, incurved, loosely arranged, light red, with light pink reverse. Stem 24 inches; leaves small. At best Nov. 20. (Spaulding.) 1895.
86. W'alz, Fred (Bock) - Flower 5 inches wide, pink and white. Reverse and tips of imner florets silvery. Stem 30 inches. Nov. 16. (Bock.) 1895.
87. White, Mrs. J. H. (Hill) - Flower 6 to 7 inches, reflexed, crimson. Stem 30 to 40 inches, short jointed, foliage very thick. It seems doubtful whether this is any improvement is the much desired dark shades of which Cullingfordii in the historic example. There was considerable variation among the specimens as to time and manner of blooming, color and stature. Neither was "extra dwarf." 1895.
88. Wynne, Rose (Smith) - Flower very large, 7 inches across, loose, silvery pink. Stem 3 feet, very stout and close jointed, and of distinct appearance. Nov. 16. (Rob't Owen, Maidenhead, Eng., 1894. Introduced in America by Hill, 1895.)
89. Zipangi (Smith) - Flower 6 inches wide, very high built. Outer florets reflexed showing dark red, inner ones incurved showing buff reverse. Stem 48 inches; leaves large. Nov. 16. (Smith.) 1895.
90. Zulinda (Smith) - Flower similar to that of Hollowe'en, but smaller. Stem 34 inches, very close jointed; leaves large, very dark green. Dec. 5. (Smith.) 1895.

Mr. Miller's synopsis of varieties.-The names of the varieties in the following selection are not arranged in a fashion that is designed to be complete or systematic, but simply helpful. The arrangement aims to save persons of limited time the labor of reading through a long list of new varieties alphabetically arranged. Florists, gardeners and others who visited our forcing-houses were constantly asking such questions as these: "Where is your biggest blossom?" "Have you any good pink varieties?" "What new colors are there in hairy varieties?" "Will you give me the names of some good quilled sorts?" The following list attempts to answer just such questions:
Varieties of great size.-Mrs. Henry Robinson, Rider Haggard, Mrs. Higinbotham, Helen Bloodgood, Mrs. W. H. Rand, Northeru Lights.
Varieties of single, strong colors.-
White.-Mrs. Henry Robinson, Chrystallina, Mrs. R. W. E. Murray.

Yellow.-Mrs. W. H. Rand, Miss Georgiana Pitcher, Ezeta, Miss M. M. Johnson.
Pink. - Helen Bloodgood, Mrs. Higinbotham.
Crimson.-Crimsona.
Dark red.-Miss Elma O'Farrell, Oakland.

Good combinations of colors.-W. W. Astor, Millbrook.
Early varieties.-
White.-Mrs. Henry Robinson, Chrystallina.
Yellow.-Mrs. W. H. Rand, Miss Georgiana Pitcher, Miss
M. M. Johnson.

Light yellow.- Philadelphia.
Pink.-Mrs. Higinbotham, Marie Masse.
Dark red.- Oakland.

Midseason varieties.-
White.-F. L. Atkins.
Yellow.-Ezeta.
Crimson.- Crimsona.
Late varieties. -
White.-Mrs. R. W. E. Murray.
Red. - E. M. Bigelow, Miss Elma O'Farrell.
Tall. - Rider Haggard, Oakland.
Dwarf. - Miss M. M. Johnson, Marie Masse, Paul Noisette.
Hairy. - Mrs. Higinbotham.
Quilled. - Hallowe'en, Northern Lights, Millbrook.

Tubular. - Iora, Mrs. R. W. E. Murray.
Keeping qualities. - Crystallina, Ezeta, Oakland, Mrs. W. H. Rand, Mrs. J. H. Starin.
Good for exhibition blooms. - W. W. Astor, M. Georges Biron, Crimsona, Crystallina, Mrs. Higinbotham, Millbrook, Mrs. R. W. E. Murray, Miss Georgiana Pitcher, Mrs. Henry Robinson, Mrs. W. H. Rand, Northern Lights, Shavings.
Strong individuality of form. - Crystallina, Ezeta, Shavings, Mrs. W. H. Rand, W. W. Astor, Hallowe'en, Northern Lights, Millbrook.
Large Anemone. - Rider Haggard.
Varieties showing the reverse colors. - Miss Nellie Elverson, M.
Georges Biron.
Velvety finish of florets. - Crimsona.
Odd, striking, fanciful, eccentric, etc. - W. W. Astor, M. Georges
Biron, Rider Haggard, Mme. Octavie Mirabean, Mrs. W. H. Rand, Shavings.

Mr. IIunn's choice of varieties.-It is a difficult matter among so many varieties of exceptional merit to name those possessing the greatest number of valuable points, as different methods of growing and varied soils will often so change the character of a variety that one is compelled to constantly revise his opinion.

The following list is not an arbitrary selection, but it simply gives the results obtained here in 1895 :

White.

Early.
Mrs. Henry Robinson,
Madame Carnot, Crystallina, Miss Gladys Spaulding,

Iora,
Helen Bloodgood, Mrs. Potter Palmer, Mrs. J. M. Parker, Jr.

The Queen, Mlle. Carnot, F. L. Atkins, Mrs. J. H. Starin, Mrs. R. W. E. Murray,

Pink.

Northern Lights, Mrs. S. T. Murdock, Marion Abbott, Marie Valleau.

Yellow.

Mrs. W. A. Rand,
J. E. Lager, Miss Georgiana Pitcher, Louise A. Black, Mrs. M. M. Johnson.
M. Georges Biron, Mrs. J. H. White.
W. B. Dinsinore,

Jennie Falconer,
Ezeta,
W. H. Rieman.

Red.

E. M. Bigelow, Nyanza, Crimsona, Miss Nellie Elverson, Millbrook, Diavola, Hallowe'en.

Mr. Bailey's choice of six.-

1. Mrs. Henry Robinson (Fig. 96).
2. Mrs. W. H. Rand (Fig. 95).
3. Crimsona (Fig. 92).
4. Iora (Fig. 93).
5. Madame Carnot (Fig. 91).
6. Miss Georgiana Pitcher.

In this test of 90 novelties, we thought that the following twelve showed superlative ("very good") merits (excluding the varieties which are simply odd or curious) . Madame Carnot, Crimsona, Crystallina, Hallowe'en, Iora, Miss M. M. Johnson, Millbrook, Mrs. R. W. E. Murray, Northern Lights, Miss Georgiana Pitcher, Mrs. W. H. Rand, Mrs. Henry Robinson.

L. H. BAILEY, WILIIELM MILLER, C. E. HUNN.

BULLETIN 113-February, 1896.

Cornell University-Agricu1tura1 Experiment Station, ITHACA, N. Y.

HORTICULTURAL DEPARTMENT.

DISEASES OF THE

By E. G. Lodeman.

ORGANIZATION.

Board of Control-The Trustees of the University.

STATION COUNCIL.
President, JACOB GOULD SCHURMAN.
Honorable A. D. WHite. Trustee of the University.
Professor I. P. ROBERTS President State Agricultural Society.
Professor I. P. ROBERTS Agriculture.
Professor G. C. CaLDWELL Chemistry.
Professor James Law Veterinary Science.
Professor A. N. PRENTISS Botany.
Professor J. H. COMSTOCK Entomology.
Professor L. H. BAlLEY. Horticulture.
Professor H. H. WING Dairy Husbandry.
Professor G. F. ATKINSON Cryptogamic Botany.
OFFICERS OF THE STATION.
I. P. ROBERTS Director.
E. L. WILLIAMS Treasurer.H. W. SMITHClerk.
ASSISTANTS.
M. V. SLINGERLAND Entomology.
G. W. CAVANAUGH Chemistry.
E. G. LODEMAN Horticulture.
L. A. CLINTON Agriculture.E. J. DURANDBotany.

Office of the Director, 20 Morrill Hall.
The regular bulleting of the Station are sent free to all who request them.

BULLETINS OF 1896.

106. Revised Opinions of the Japanese Plum.

107. Wireworms and The Bud Moth.
108. The Pear Psylla and The New York Plum Scale.
109. Geological History of the Chantauqua Grapn Belt.
110. Extension Work in Horticulture.
111. Sweet Peas.
112. The 1 ع 95 Chrysanthemums.
113. Diseases of the Potato.

Cornell University, Ithaca, N. Y., February 20, 1896.
Honorable Commissioner of Agriculture, Albany:
Sir. - For a number of years the farmers of western New York have been asking for light upon the insidious and serious diseases of the potato crop. A special effort has been made during the past season to study these troubles, and although the season was unusually dry and therefore not very productive of some diseases, the results of the investigations seem to be so useful that they are submitted for publication and distribution under Chapter 230 of the Laws of 1895 .

L. H. BAILEY.

SYNOPSIS.

Part I. Fungi. Pages 297 to 321.
A. Descriptions of the fungous diseases, 297 to 312.

1. Potato rut, late blight, or downy mildew, 297.
2. Early blight, or leaf-blight, 302.
3. Potato scab, 309.
B. Treatments of the fungous diseases, 312 to 321.
4. Potato rot or late blight, 312.
5. Early blight, 312.
6. Potato scab, 318.

Part II. Insects, 322 to 324.

1. Potato beetle, 322 .
2. Flea-beetles, 323.

Part III. Machinery for spraying potatoes, 325 to 328.
Summary, 329.

Historical Notes on the Potato Disease.

"The most easy way to scourge the land, and force it to yield speedy returns, was by growing crops of potatoes, which are largely productive, but at the same time specially exhaustive of the mineral wealth of the soil. An average crop of potatoes robs the soil of the seed constituents of between three and four average crops of wheat. The tenants were too poor, and if they bad been rich had no inducement, by the tenure of their land, to restore to the soil, through adequate manuring, the heavy demands which had been made on its fertility. At the time of the famine in 1846, nearly one-fourth of the land undercrops was devoted to potatoes. And even now, out of every 100 acres devoted to green crops in Ireland, 71 are still given to potatoes - a proportion nearly three times greater than that in Scotland, and six times greater than that of England.
"The striking deterioration of the potato produce in Ireland deserves much more attention than it has received, but cau ouly be slaghtly alluded to in the present essay. From 1601, when Raleigh introduced it into Ireland, the crop grew steadily in favor with the Irish peasantry until 1845, in which gear the largest amount of acreage was devoted to it, and fine crops of six and seven tons to the acre were habitually and persistently attained. The famine came, and, as Irish agriculturists assert, the nature of the potato was altered by the disease of 1846, and its productive power was lessened; at least this is given as the explanation of its present low position among Irish crops. It is no longer the potato which is the farmer's chief source of profit in Ireland." ("Recess Studies," edited by Sir Alexander Grant, pp. 250-251.)
"If, then, the loss to Ireland is $£ 3,500,000$, we should be glad to know how mucb the total loss will bave been when the destruction in England, Wales and Scotland is taken into account. To place the latter at $£ 1,500,000$ is no very extravagant assumption; and if so, this country has lost five millions of money by the potato murrain." (Gardeners' Chronicle, 1846, pp. 217.)
" Copper Smoke a Preventive of Potato Disease.-In the district about Meath and Swansea 'wherever the copper smoke prevails,' was the expression of au intelligent inhabitant with whom I fell into couversation, the potatoes are sound, and the same person informed me it was also the case last year. I can verify the fact so far as the present appearance of the crop, as seen from the mail-coach roof can be considered a verification; but I state it with a view of inducing more particular inquiry into it. You are, I dare say, aware the district I speak of is crowded with copper smeltiug furnaces."-(Gardeners' Chronicle, 1846, p. 582.)

Part I. Fungi.

A. DESCRIPTION OF FUNGOUS DISEASES.

1. Роtato rot; late blight; downy mildew (Phytophthora

 infestans, DeBary).-The fungus causing the common potato rot is an old offender. It was undoubtedly introduced into Europe with some of the early importations of the potato, and has in certain years proved so destructive that famines have resulted from the entire loss of the potato crop. Such occurrences eventually lead to thorough study of the organism. As early as 1846 , the fungus causing the trouble was very carefully described in an English. publication,* and since that time other observers have given the disease much attention. It has spread to all regions in which potatoes are extensively grown, so that both scientists and farmers are very familiar with many of its characteristics.The most interesting feature connected with the fungus is undoubtedly the wonderful energy which it exhibits, under favorable conditions, in the destruction of the potato plants. It sometimes spreads with such rapidity that a crop may be ruined in one or two days; and unfavorable conditions, or the total destruction of the plants, formerly appeared to be the only effectual agents in preventing or checking the spread of the dreaded disease. This rapid decay of both the foliage and tubers is perhaps the most distinctive of those characters which are commonly bronght forward for the identification of the disease. It is almost invariably accompanied by a strong, disagreeable odor which is easily recognized by all who have once experienced it. When large ficlds have been attacked, the smell is particularly strong; it then arises entirely from the foliage, and is not produced by the tubers.

The conditions which favor such rapid decay are, as a rule, not generally present throughout this state. The fungus makes its

[^61]most rapid growth in a temperature of about $70^{\circ} \mathrm{F}$. when much moisture is present in the atmosphere. Cloudy days, with occasional showers, and a close damp air are especially favorable to its growth; and if such periods occur during August and September, the disease may appear at any time. But, on the contrary, if the season is dry and hot the fungus is unable to develop, and little or no injury of this nature can appear. It is for this reason that the potato rot is not a regular visitor in most parts" of the state, but is more generally confined to certain localities. These are found in the more northern potato districts, in the regions near the sea const, and in some parts which have a high altitude. In such places the fungus may develop regularly every year, and the severity of the attack will be modified chiefly by abnormal atmospheric conditions.

The fungus causing the late blight of potatoes passes the winter in two forms. The mycelium, or vegetative portion of the parasite, may retain its vitality until the following spring, when growth may again begin and further attacks of the fungus take place. These are followed perhaps by less serious results than those which result from the other form. This second method of surviving the winter is effected by means of a small fruiting body known as an oospore. It is surrounded by a comparatively hard covering and is able to resist considerable extremes of temperature and moisture. The spores are produced in the fall within the tissues of the potato plant, and here they remain until the following spring or summer. By the gradual decay of the surrounding tissues these spores become liberated and when dry may easily be spread over wide areas by means of winds and other natural agencies. Those which eventually rest upon potato foliage soon germinate under proper conditions, and reproduce the fungus at the new point of infection. Here the development of the parasite takes place so fast that in a very short time such places become centers from which the disease is rapidly disseminated.

The manner in which the germ tube of a spore penctrates the tissues is interesting. It is now generally believed that the ends of the tube secrete a ferment which has the power of dissolving the walls of the cells comprising the outer layer of leaf tissue. When such an opening has been made, the small thread of the parasite enters and it then rapidly extends to other cells, and soon
the entire"destruction of the leaf may be accomplished. A stoma, or breathing pore may also serve as a point of entrance.

The rapidity with which the fungus advances within the leaf tissues depends very largely upon external conditions, and the appearances of the affected parts is also modified to a very considerable extent. Unfavorable conditions frequently render the identification of the parasite a difficult matter without the aid of a glass, but under such circumstances the disease may be fairly widespread and still cause little injury. In serious attacks, however, many characteristic symptoms may be easily recognized.

The colored plate represents a leaf which has been entered in several places by the fungus causing late blight, or potato rot. The growth of the parasite has been rapid, and the illustration may be considered as a typical example in which the normal development of the disease has taken place. The following points should be noted :

The diseased areas are of considerable extent, and possess a rich brown color. They may be situated in any part of the leaf, but the edges appear to suffer more from new infection than the more central portions of the leaflets. This is probably due to the fact that in case of rains these portions remain moist for a longer period than the center, since the water drains to the lower parts of the leaflets, and collects there in the form of drops of greater or less size. It is to be expected that under such conditions a fungus could gain an entrance more easily than in drier places. The decayed portions are inclined to droop; this is especially true in cases of rapid invasions, for at such times the parts do not dry so fast as the parasite advances. The rapid decay also prevents the edges of the leaflets from curling, although this takes place when the air becomes warm and dry.

The distribution of colors over the affected leaf is very suggestive. Under normal conditions, the unaffected parts retain a deep green color, while the diseased area may be yellowish-brown, dark brown, or nearly black. But whatever the color, each area is sharply outlined. There is no gradual merging of one into the other, but a distinct change of color marks the progress of the disease. Occasionally another peculiarity may be noticed. If the leaves are closely examined it will be found that the green and the brown areas are not directly in contact with each other; they are
separated by a narrow strip in which the green has been destroyed, and the brown has not yet appeared. It consists of a colorless or at most a very pale yellow line in which the growth of the fungus is probably very active. But during periods which are unfavorable to the development of the parasite this line cannot be discerned, and the green and brown tissues are apparently in contact. Under such circumstances the identification of the disease without the aid of a microscope is an exceedingly difficult matter. Let us suppose that the fungus has succeeded in gaining an entrance, and that it has advanced a limited distance in the leaf tissues. If at this time the weather should turn dry and hot, the development of the parasites would be checked, and the result would be the formation of a small brown spot or area perhaps near the edge of the leaflet, and if several such spots exist the injury might be ascribed, without careful examination, to what is commonly known as the early blight fungus.

The name "downy mildew" has been given to the potato rot disease from the fact that there appears, under favorable circumstances, a downy or mouldy growth upon the under surface of the leaves. This is white in color and may be of considerable density. The upper surface of the foliage does not show it, but whenever this frost-like growth appears on the under side, it is almost certain that the potato rot fungus is present, especially if the other conditions mentioned above are also present. This external growth consists of spores and of the parts bearing them. The spores, or conidia, mature very quickly, and have the power of immediately propagating the fungus. They are small and light, and may be carried long distances by winds. It is largely owing to these bodies that the progress of this potato disease is so rapid. They are produced in countless numbers and are very energetic in attacking healthy tissuc. It appears to be very probable, also, that these conidia, or summer spores, are the cause of the rotting of the tubers. After maturing upon the leaf, some fall to the ground and by means of water and other mechanical agents they are brought in contact with the tubers growing underneath the surface of the soil. Here they germinate and effect an entrance in the same manner as occurs above ground. The color of the affected parts also changes, a brown, dry rot taking the place of the normal white color (see Fig. 98). The more showly the tubers decay, the less is the amome of moisture
present; the contrary is also true. The decay does not take place in a uniform manner, but its progress varies in different tubers. In some it is mostly the parts near the surface that are affected, while in others the disease may advance rapidly towards the center of the tuber, causing the exterior to show a much smaller amount of disease than is actually present. The discoloration, however, generally presents a uniform appearance. Although it is by no means impossible for the mycelium to reach the tubers from the leaves by means of the stems, still it is the generally accepted opinion that infection does not take place in this manner. This belief was was held many years ago, for in some of the earlier writings recom-
 mendations may be found in which very high hilling is adrocated so that the spores may be washed past, the tubers and away from them, and not through the soil directly to them.

There is still another feature of the late blight which it is well to bear in mind. The disease generally appears during August and September, although earlier and later attacks are not very rare. Coming so late in the season, all the earlier varieties are comparatively free from attack, but the later ones are especially
subject to the disease. This, however, is not necessarily due to the foliage of such varieties being more susceptible, but rather to the habits of the fungus. I have not observed that the age of the potato plants has a marked influence upon the spread of the disease; nor that the young foliage of the plants is less subject to the disease. It appears as if the parasite is able to thrive upon all potato foliage which is in a healthy condition at the time of the germination of the spores, and that old and young foliage or plants suffer practically to an equal extent. This matter is here emphasized because it will be considered again in connection with the early blight of potatoes.
2. Early blight; Leaf-blight (Macrosporium Solani, E. \& M.).-It is only within the past five or six years that the early blight of potatoes has been recognized by scientists and farmers as a distinct disease.* The trouble has been known during a longer period, and its general character fairly well understood. But the attention which in former years was given to the potato rot fungus caused this second disease to be overlooked, or at least to be regarded as perhaps a peculiar condition resulting from the attacks of late blight, or from certain conditions unfavorable to the growth of the potato plant. But since 1891 the fact has been clearly established that two distinct evils have preyed upon potato foliage, and since that time the second trouble, or, as it has been popularly called, the "early blight," has received considerable study.

The one character which was probably the most valuable in distinguishing the two diseases is the fact that plants having the early blight do not necessarily have rotten tubers, but on the contrary these are almost invariably perfectly sound, although small. The slow progress of the disease, and the peculiar discoloration and shriveling of the plants also made it apparent that there were two distinct diseases affecting the crop.

But the real cause of this trouble has not been found with equal readiness and certainty as was the case with the potato rot. Although at first it appeared as if the entire trouble could be laid at

[^62]the door of the fungus Macrosporium Solani, yet later investigations have shown that the matter is not so simple as at first appeared. It is true that this fungus is almost invariably found in plants affected by this blight, and that the life of the plants is shortened perhaps to a considerable extent by the fungus, yet it may be doubted whether the whole trouble should be ascribed to the one organism. But, before entering into detailed discussion concerning the cause of the early blight of potatoes, it may be well to define as clearly as possible the trouble which is generally designated by this term.

Upon referring to the plate it will be seen that the leaf upon the right differs considerably from the one which has thus far been considered. This illustration also was made from a typical leaf in order that the more essential features of the trouble might be the more clearly brought out. It will of course be understood that many variations occur, and that these are so great that frequently it is impossible to distinguish with the naked eye whether the phytophthora or the macrosporium is present. Such cases are by no means rare, and I have seen a single leaflet suffering from the attacks of both fungi, as was proved by cultures, yet the two diseased areas were practically indistinguishable. Nevertheless, the following characters will be of assistance in determining which of the two fungi is responsible for the trouble.

Perhaps the most striking differences between the two leaves lie in the size, form and position of the diseased areas. In the leaflets affected with the early blight, it will be seen that these areas are small as a rule, and that they are almost circular in outline except where several have coalesced, in which case the entire area is of irregular outline; but all inequalities have rounded outlines. It appears as if infection occurred at a great number of points, instead of in a few, as shown in the other figure. And it is also interesting to notice that these many points of infection are, with but comparatively very few exceptions, placed along the outer edges or periphery of the leaflets. Although the same is to a certain extent also true with the other disease, still the fungus causing the potato rot does not confine itself nearly so persistently to the edges, but as soon as it is established it extends rapidly to all the softer tissues of the leaflets regardless of whether these are in
one part of the leaflet or in another. It may also be stated of the early blight that frequently the leaf tissue situated along the larger veins succumbs to the disease more slowly than do those portions which are further removed from the reins.

If these diseased areas are very carefully examined, it will be found that it is a very common occurrence to find numbers of slight elevations or ridges arranged in circles about a common center. These may vary slightly in color, but they are perhaps most noticeable on account of their apparent elevation. Since such ridges are absent, so far as my observations go, in areas affected by the late blight, their presence is of considerable value in determining the character of the disease, the more so since the general color of the parts destroyed is very similar in the different cases.

When the colors of the green and apparently unaffected tissues in the figures are compared, another marked difference will instantly appear. The leaf affected with the late blight shows sound healthy tissues up to the region penetrated by the parasite. The leaflets appear to suffer only in those parts actually invaded by the mycelial threads of the fungus. Yet what is the meaning of the yellow color which pervades almost all parts of the other leaf? No parasite appears to have reached these portions, and yet they are manifestly unhealthy. Two explanations might be advanced; first, that the presence of the fungus has an injurious action extending beyond the parts in which it is growing, a supposition which may be said to have but very little support; and second, that the yellow color is due to a natural weakening or maturing of the plant, this in turn being brought about by untoward circumstances or by age. This point will be touched upon more fully under the causes of the early blight.

In the illustration, the edges of the leaflets are shown as having curled to a very marked degree. Such curling is not necessarily an indication of early blight, since whenever the leaf tissue dies, especially at the outer extremities of the leaflets, the tendency seems to be for the leaf to roll upon itself, as shown in the figure. Yet this character possesses a certain significance. In order that a leaflet should assume the position of those here represented, it is necessary that the death of the tissue shall occur more or less
slowly, and that the change shall take place from the outer portions toward the center. As already stated, such conditions may or may not appear during an invasion of the late blight, and for this reason the curling of leaflets affected by early blight is of considerable value in identifying the present disease.

In addition to the characters above mentioned, there are several other factors which appear to be clearly connected with the early blight of potatoes. As the popular name of the disease implies, its appearance may be expected earlier in the year than the late blight; but from this it does not follow that later attacks may not take place as well. The growth of the fungus does not seem to depend so much upon the season as it does upon the condition of the plants exposed to infection. The writer has occasionally seen potatoes of the same variety growing side by side, but which were planted at different times, but were unequally affected by disease. The earlier plantings invariably showed much more injury than the later ones. In some cases the difference was so marked that it would scarcely be exaggerating to say that the younger plants were entirely free from disease, while the older plants, or those first set out, had lost about 50 per cent. of their foliage area. Other modifying conditions were sought, but no other conclusions could be drawn than that in these cases at least, the entrance of the fungus depended upon the plants having reached a certain age.

A similar circumstance has frequently been noted in various parts of the state, with this difference, however, that the plants growing side by side were not of the same varieties. The effect was especially marked when late and early varieties were grown in the same field. The earlier the potato the sooner did it show the effects of disease, the later rarieties remaining free for a long time; or, in case of late plantings, the foliage may have escaped the trouble to a marked extent. A large number of fields have been examined with these points in mind, and such observations have led to the conclusion that young, vigorously growing plants are practically free from the disease, while those which have almost completed their growth of foliage, and are rapidly forming tubers, are much more subject to attack.

The time of the appearance of early blight may, therefore, depend upon questions of plant physiology fully as much as upon the season, or even more so. Since fully developed plants, regardless of variety, are more subject to disease than the younger and more vigorously growing ones, it would seem reasonable to conclude that conditions which would cause the plants to ripen prematurely, or that will check the normal growth, will at the same time favor the appearance of the early blight. Facts tend to support this view of the case.

It has been my observation that plants grown upon dry soils, those which are naturally warm and "quick," are more subject to the disease than those grown in moister places in the same field. That is, the early blight appeared first upon the high and dry knolls, and it is here also that the tubers mature the earliest. Seasons of protracted drought, therefore, might be supposed to have a similar effect, and the testimony of all observers bears out the supposition. It is in dry weather that the early blight progresses most rapidly, the late blight requiring a moist atmosphere for its best development. The falling of rain upon a field in which the tops are gradually yielding to the invasion of early blight has a tendency to freshen the plants and apparently to give them a new lease of life. Water seems to be the one thing most needed. Upon lower land the conditions are different, and, as a rule, such lands suffer less from drought, and the potato crops less from the early blight.

A curious exception to the above may here be noted. I have many times seen potatoes growing under trees in dry fields where all the potato plants were suffering severely from the early blight except those protected by the foliage of the trees. As a rule the thicker the foliage upon the tree, and the nearer the branches came to the ground, the less was the injury from blight to the potatoes below. This may be explained by supposing that the spores of the fungus (assuming it to be the sole exciting cause of the trouble) are unable to reach the plants, a scarcely warrantable belief; or, that the spores which do succeed in reaching the potato foliage are unable to germinate on account of lack of moisture. There are several arguments forming the second supposition, for, with the exception of the more or less complete absence
of direct sunlight and rainfall, the plants growing under the trees are in practically the same condition as those growing within the area occupied by the feeding roots of the tree. They have about the same amount of soil moisture and of heat, and they also suffer to nearly the same extent from injurybyinsects. But they escape the moisture of light showers, and they are also free from dew. It appears probable, therefore, that the secret of their immunity from disease lies in this fact.

Although the character of the season exerts a great influence upon the prevalence of early blight, it is not the only great factor which has the power of seriously reducing the vitality of potato plants. A second agent is a small organism which often appears in countless numbers. It is generally known as the flea-beetle, on acount of its quick movements when disturbed. The injury done to the foliage by these little beetles is greater than was formerly supposed. They feed upon the tissues of the leaves, taking out small amounts at different points. Very frequently sufficient material is removed to cause the formation of small holes which extend through the leaf. The diameters of these holes are scarcely larger than that of a pin, yet a leaf is often riddled to such an extent that its vitality is seriously affected. In the plate the leaf affected with early blight shows the results of the work of these insects, get only the more serious part of the injury could be represented. If a fresh leaf is closely examined it will be found that there are many places in which the beetles have begun to feed, yet when the epidermis of the leaf has been penetrated, and only a few of the cells underneath have been destroyed, the insect changed its base of operations, leaving scarcely a trace to bear witness of its presence. It is true that often when a leaf has been partially pierced, the color of the spot becomes much lighter, but the intensity of the color depends rery largely upon the amount of injury done, and in certain cases the change can scarcely be distinguished.
The results of such repeated attacks of the flea-beetle cannot be otherwise than disastrous to potato foliage, and I hare heard several growers maintain that the work of the flea-beetle is more to be dreaded than that of any other organism which injures the plants. In localities where these beetles are numerous, such
statements do not exaggerate the matter, for the vigor of the entire plant is frequently much reduced by these insects.

From what has already been said regarding the physiological effect of other injurious influences, it would seem very probable that the work of the flea-beetle may also be considered as being a means of reducing potato plants to a condition which renders the development of the early blight fungus possible. This supposition is supported by facts. If a potato leaf is examined when the first traces of early blight appear, it will probably be found that the first browning of the tissue occurs about the edges of holes made by flea-beetles, or in places in which the tissues have been but partially injured. This is perhaps not always the case, but it has proved to be so in the vast majority of the leaves which I have examined. A reddish-brown zone of varying width is formed about a central point (see plate) and this gradually enlarges until other similar discolorations are met, and the gradual uniting of several of these originally distinct areas, causes the more or less continuous destruction of the tissues at the edges of the leaflets. When the discolorations start nearer the center of the leaf, they generally remain isolated for a longer period.

The later stages of the disease are well known to potato growers. The entire leaves gradually assume the brown and shrivelled appearance, and the stems in turn become yellow, dry and brown, so that nothing remains of a formerly green and flourishing plant except a few withered remnants of foliage and a number of small, partially developed tubers. These do not rot, but owing to the death of the tops they remain small from want of nourishment.

It follows from the preceding remarks on the early blight, that the fungus which is commonly held responsible for the injury is not a true parasite; that is, it will not attack healthy tissue, but only succeeds in obtaining a foothold after the potato foliage has become weakened by age, by unfavorable climatic conditions, or by mechanical injuries chief among which is probably the fleabeetle. This places the most effective lines of treatment upon a different basis from that generally followed with other fungous diseases; instead of preventing the entrance of the organism by means of protective substances, the constitution of the plant

itself is to be strengthened, and the removal of as many injurious influences as posible is desired.

There appears to exist another trouble which is generally confounded with the early blight; in fact it is very difficult to distinguish the two without the aid of laboratory methods. This disease, which is entirely of a physiological nature, has been thoroughly discussed by Sturgis.* It has been found only to a limited extent in New York, for almost invariably cultures made from affected leaves freely developed the early blight fungus. According to Sturgis the same conditions which produce the early blight also bring about the death of certain parts of the leaf tissue in a manner almost identical with that of the macrosporium. He says: " Both classes of injury appeared in connection with the marks of the flea-beetle. Both were exhibited as brown spots and blotches marked with concentric rings; but in specimens characterized by the presence of the fungus, the spots were more sharply defined and darker in color. This difference was sufficiently marked to enable a close observer to distinguish either one in the field after a little practice, but a comparison between the two produced the impression that both classes of injury might have been caused by the same agency, and that the slight difference in appearance might be due to the fact that in the one case a fungus had ocupied the injured tissue, and in the other had not done so."

It seems, therefore, that the causes which lead to the appearance of these two diseases are the same, and the same lines of treatment are consequently indicated.
3. Potato scab (Oospora scabies, Thaxter).-This disease is one which is well known to potato growers. Figure 99 represents affected tubers. The uneven, warty growths upon the surface of the potatoes are composed of material produced by the tubers in consequence of the irritation of parasitic organisms which live upon the substance of the potatoes. Under farorable circumstances these injuries are very extensire, for the entire surface of the tuber may be affected, and although the affected parts do not always penetrate very deeply, the blemished appearance of the tubers and the actual loss of material may become very serious.

[^63]The causes of potato scab have been discovered only within recent years. The disease was carefully studied in $1889-90$ by H. L. Bolley, who was then assistant botanist of the Indiana Experiment Station. The results of his work appeared in Agricultural Science, 1890, Nos. 9 and 10.* He ascribed the cause of the trouble to a certain bacterium which had the power of injuring tubers while they were in active growth, but later caused little injury. The injuries produced by the microbe are generally rather shallow, not extending deeply into the tissues of the tubers.

99.-Scab on potatoes.

Later in the year 1890 , Dr. R. Thaxter, of the Connecticut Experiment Station, read a paper upon potato scab in which it was stated that potato scab is due to the work of a fungus. \dagger More recent investigations have verified the work of Thaxter, and it is now the generally accepted belief that practically all the injury which is commonly known as scab is due to a fungus (Oospora scabies, Thax.). This frequently enters deeply into the potato, especially if the infection occurs early in the season when

[^64]the tubers are small. When older tubers become affected, the injury generally assumes the form of a corky crust upon the surface.

The conditions which favor the growth of the potato scab fungus are dampness and an alkaline condition of the soil. It is a common experience that scab is more prevalent in soils rich in organic matter, and abundance of air and moisture allow a more vigorous growth of the parasite to take place.

The fact that an alkaline soil causes more severe attacks of potato scab has an important practical bearing. A soil may be made alkaline in a number of ways, especially by the addition of certain fertilizers. Lime has a very strong tendency in this direction, and stable manure exerts a similar influence. This fact has undoubtedly given rise to the popular belief that stable manure will increase the amount of scab upon potatoes. The appearance of the fungus may be favored merely by the alkaline condition of the soil, or it may actually be applied to soil which is free from the disease, and thus an entire field be infected by the fertilizer. If both the soil and the manure are free from disease, no scab will appear, unless it exists upon the tubers used for seed. All fertilizers which have a tendency to produce an acid condition of the soil may check the growth of the fungus, and by the proper selection of fertilizing material sometimes a very marked effect may be produced upon the crop.*

During 1894, a third cause for the injury generally known as scab was advanced by A. D. Hopkins, entomologist of the West Virginia Experiment Station. The first account of his investigation of this disease was read before the West Virginia State Horticultural Society April 6. \dagger In this paper it was said that the larvæ of one or two species of insects (Epidapus scabies, Hopkins, and Sciara sp.) disfigure potatoes in a manner very similar to that of the scab fungus. In the more northern states, however, these insects do not appear to be so troublesome, and the methods

[^65]of treatment recommended for the destruction of the fungus are generally very effective in controlling the disease.

B. TREATMENT OF FUNGOUS DISEASES.

1. Potato Rot or Late Blight. - Bordeaux mixture is the sovereign remedy for the rot or late blight. It was first successfully used by the French in 1886 and since that time innumerable experiments have been made with this fungicide in checking the trouble. Success has followed whenever the applications have been properly made, and it is no longer a question whether the mixture will prevent the blight; it is now entirely a matter of judgment and skill on the part of the grower. If the Bordeaux mixture is properly made*, and thoroughly applied at the right time, scarcely a decayed tuber should appear in the field. It is impossible to state when the first applications should be made, nor how many times the plants should be treated, for the conditions vary so much in different localities. As a rule it is unnecessary to begin spraying before the middle of July, and the first of August will prove none too late in the majority of cases. The character of the season, and the prevalence of the disease in former years must serve as guides as to the best time to begin spraying. In certain localities the late blight appears with considerable regularity, and in such cases it is well to spray about ten days before the period in which the trouble is generally first noticed.

Later applications may be made at intervals of one to three weeks, depending upun the weather. Eren in years favorable to blight, three applications should be sufficient to protect the plants ahmost perfectly. The foliage should be thoroughly covered from abore, and if the spray may be conveniently applied from below also, so much the better. A fine and abmedant spray will be found most satisfactory (see page 325 for report upon spraying machinery).
2. Eardy Bugift. The successful treatment of the early blight is by no means an easy matter, as appeared in the discussion of its probable canses. It was shown that the early blight does not appear

[^66]until the period of active growth is passed, or until the plants have become weakened by some mechanical agency.
The first step towards checking the trouble, therefore, is to maintain the plants in as vigorous condition as possible. Proper fertilization, abundant cultivation, and close attention to the welfare of the plants become matters of prime importance. The selection of suitable land in favorable localities, and its thorough preparation will also prove of material benefit. This disease is an excellent example of the theory that disease in plants is not the prime cause of injury, but rather only an indication or symptom of weakness which existed before the injurious organism could gain an entrance, and which in fact must exist before such an entrance can be effected. The idea, however, does not apply so aptly to all cases of the disease.

The mechanical injuries to potato vines are mostly brought about by insects, and chief among these is the flea-beetle. The methods of treating this pest will be found on page 323 .
The bolk of the injury done by the early blight has been ascribed to a fungus (Macrosporium, Solani) which unduly hastens the destruction of plants that are already on the down-hill side of life. The fungus is widespread and is undoubtedly responsible for much of the injury done to potato crops.

During the summer of 1895 the writer endeavored to control the early blight by means of thorough application of the Bordeaux mixture. Four plots were selected for the work, I and II being upon the University farm where Professor Roberts kindly allowed me the use of certain portions of the potato field, and materially assisted in carrying on the work; plots III and IV were upon the farm of H. R. McNair, Dansville, N. Y. By distributing the plots in this manner it was hoped that more accurate and convincing results might be obtained.

Plot 1.-The land selected for the experiment was divided into four sections, each covering an area of a little more than three square rods. Burbank potatoes were planted May 16 in rows $3 \frac{1}{4}$ feet apart, the pieces being put in at intervals of 14 inches. At this rate it was estimated that about 10 bushels of seed would be used per acre.

Notes taken July 5 show that the plants were growing vigorously, and were scarcely troubled by flea-beetle. The first application was made at this time, the four sections receiving the following
treatments: 1. Bordeaux mixture made May 18, it having been allowed to stand since that time and receiring only an occasional stirring; 2. Bordeaux mixture freshly prepared;* 3. No treatment; 4 . Copper chloride mixture. \dagger The materials were applied with a knapsack pump and Vermorel nozzle. It was found that the application could be made very satisfactorily in this manner with the exception of section 1, which received the old Bordeaux mixture. The sediment settled so fast that it was mostly applied before one-half of the required amount of liquid had been used, in spite of repeated shaking of the tank by the operator. This necessitated a second treatment immediately after the first, the work being started at the opposite end of the section.

On July 23 the above treatments were repeated with the exception that section 1 received but one application, the distribution being still more uneven than the first time. There was some indication of early blight, yet not enough to distinguish whether the treatments had been of value.

August 28, however, showed a marked difference in the appearance of the sections. The third, which was untreated, had fully 50 per cent of its leaves badly affected; the first was as bad as the check where little of the sediment had been applied, but where the spraying had commenced, and consequently upon that part which received most of the solid contents of the knapsack pump the foliage was much better, scarcely 10 per cent of the leaves showing serious injury. Section 2 also appeared very thrifty, since the foliage averaged fully as well as the best parts of section 1. Section 4, the one which was treated with the copper chloride mixture, appeared to have fully 25 per cent of its leaves seriously attacked. Section 2 was again sprayed with fresh Bordeaux mixture, the other sections remaining untreated.

Other observations were made September 12. At this time the relative amounts of early blight appeared to be about the same as two weeks previous. The part of section 1 which had received most of the sediment was in as thrifty condition as section 2 , which

[^67]had received the extra treatment. From this it would seem that the last application made to section 2 was of minor importance. The vines at that time had practically completed their growth, so that there was little new foliage exposed to the disease. The rainfall had also been slight, and the Bordeaux mixture could still be plainly seen upon all sections treated with it.

The potatoes were dug September 26 . Since the sections varied somewhat in size, the yield of each has been estimated upon the proportionate yield per acre, this furnishing a more convenient basis for comparison. The result was as follows:

Section 1. Old Bordeaux mixture, 332 bushels per acre.
" 2. Fresh Bordeaux mixture, 350 bushels per acre.
" 3. No treatment, 284 bushels per acre.
" 4. Copper chloride mixture, 297 bushels per acre.
The apparent gains from the treatments of the sections were accordingly, 1-48 bushels; 2-66 bushels; 4-13 bushels. The advantage derived from the copper chloride mixture is so slight that it promises little practical value. The results obtained with the Bordeaux misture, however, are more encouraging, and seem to indicate that it may be possible to spray for the early blight, although the margin may at times be close.

To what extent these gains were due to the prevention of injury to the flea-beetle it is difficult to say. The vines which were most thoroughly sprayed with the Bordeaux mixture did not escape the attacks of this insect, as could be seen by the many pits which remained as witnesses of its presence. Untreated plants suffered more severely, as they did also from the early blight. The probable action of the Bordeaux mixture thus appears to be two-fold. In the first place it prevents to a very considerable extent injury from the flea-beetle; in the second place it prevents the entrance of the macrosporium iato tissues which have suffered from the work of the insect, and also protects those which are made susceptible to the disease in other ways. It is certain that the fungus was very abundant in the foliage of untreated plants, and it seemed probable that the value of the mixture was just as great in preventing injury from this sumrce as it was in protecting the leaves from the attacks of insects.

Plot $I I$. This plot was also upon the University farm. It contained just one-third of an acre, and was planted to several varieties of potatoes, some of which were considerably earlier than others.

The field was divided into two nearly equal parts, the line of division running across the rows so that each part should contain the same proportionate amount of each variety. One portion was sprayed with the Bordeaux mixture, the other part remaining untreated. Applications were made July 13 and August 12, fresh Bordeaux mixture being used each time.

At the time of the second spraying a remarkable difference could be seen between the two parts. The untreated portion showed fully 50 per cent of badly blighted foliage, while that of the sprayed part scarcely exceeded 5 per cent. This difference was especially marked in case of the earlier varieties, and it could be distinguished a considerable distance from the field. The untreated vines perished earlier in the season, and when scarcely a vestige of green could be found in the check section, the other portion was fairly green, at least the tops appeared to possess a decided ability to nourish the tubers which were dependent upon them for support. At this time the very late varieties, such as the Orphan, were all of a deep green color, apparently unaffected either by flea-beetles or by blight. Their turn came later in the fall, although the difference was never so clearly defined as in the case of the earlier varieties.

These potatoes were dug during the last days of September, and yielded at the following rate:

Section 1. Fresh Bordeaux mixture, 311 bushels per acre.
" 2. No treatment. 272 "
This represents a gain of 49 bushels per acre, a result apparently due more to the prevention of the macrosporium than to the destruction of the flea-beetle, for the latter was not conspicuous by its absence. The fungus was very prevalent, and the vines appeared to succumb rapidly when it had once gained a foothold.

Plot III. The figures relating to the experiments in plots III and IV were obtained from Mr. McNair, who very kindly looked after the work in such a thorough manner that the results are here published in full. The McNair farm is situated near the head of the famous Genesee Valley, upon the bottom lands. The potato rot is an occasional visitor, but during the summer and fall of 1895 practically no rot was discovered, as was also the case upon the University farm, so that the beneficial results of all applications must be due to the prevention of other troubles, these being commonly summed up in the term early blight.

Mr. McNair grew a number of acres of White Star potatoes, and in his field the plots and sections were laid out so that four rows extended from one end of the plantation to the other. Only the two central rows were considered when the yields were measured. The potatoes were planted May 28, and were sprayed with the Bordeaux mixture July 19 and August 5. This mixture was made of different strengths.
a. The most concentrated form contained 6 pounds copper sulphate, 4 pounds quicklime, and 40 gallons of water.
b. This mixture contained 5 pounds copper sulphate, with lime in the above proportious, in 40 gallons of water.
c. The amount of copper sulphate was reduced to 4.3 pounds in 40 gallons, with lime in proportion.
d. Only 3.5 pounds copper sulphate were used to 40 gallons, the amount of lime being likewise reduced.

Five sections were selected, each having four rows and containing 24 square rods. One section remained untreated, but the remainder were sprayed with the different mixtures. This was done by an efficient power sprayer which Mr. McNair had made. Vermorel nozzles were used, and very satisfactory work was done, although the amount of liquid applied might perhaps have been increased to advantage.

When the potatoes were dug in the fall the following yields were obtained, the figures again showing the proportionate amounts per acre :

Section 1,	Untreated,	209	bushels.		
""	2,	Mixture	a,	227	"
"	3,	$"$	b,	234	$"$
$"$	4,	$"$	c,	221	$"$
"	5,	$"$	d,	191	"

These figures are not altogether encouraging for the sprayer. Sections 2, 3 and 4 on the average yielded an increase of only 18.3 bushels per acre, while section 5 produced 18 bushels less than the untreated one. These figures appear to represent the actual gains, yet no apparent reason exists for the decreased yield of section 5 . Probably local conditions of the soil exerted this influence.

Plot 1V. This plot was situated in another part of the field. Only two sections were made, these being still larger than in the preceding experiment. The most concentrated Bordeaux mixture above mentioned was applied to one, the other remaining untreated.

The plants were sprayed at the same time as in the preceding case, and the same machinery was used. When the crop was harvested it was found that

Section 1, untreated, yielded 252 bushels per acre.
" 2, Bordeaux.mixture, yielded 293 bushels per acre.
In this plot, the gain was 46 bushels per acre. Apparently the conditions were exactly the same, and as this result corresponded fairly well with the results obtained in Ithaca it may be stated that spraying for the early blight is of advantage, and if the applications are properly made, the operation should be profitable.

In summing up the gains obtained by spraying with fresh Bordeaux mixture for the early blight, omitting section 5 in plot III in which an actual loss occurred, it is found that the average increase in the four plots is 44.8 bushels, by no means an insignificant amount. [n order that such results may be obtained, it is essential that very thorough work shall be done, and that the operation shall take place at the proper time.

Mr. McNair also kindly furnished me with some interesting data regarding the value of having plants sufficiently thrifty to withstand early blight, a subject already discussed upon page 260 . He found that in a certain portion of his field the addition of 10 loads of barnyard manure per acre produced an increased yield of 19 bushels. When there were also added 100 pounds of sulphate of potash and 100 pounds of Carolina rock, and the plants were in addition well cultivated and sprayed, the actual increase in yield was 100 bushels per acre, as was shown by an adjoining plot.

The early blight, therefore, should be treated by growing vigorous plants, and by protecting the foliage against the work of insects and fungi by the use of the Bordeaux mixture.

The early blight may also be avoided to a certain extent by planting carly varieties, as these frequently mature before the blight does much harm ; and also by planting late, for in this case the plants will be in active growth during the season when the blight is most prevalent, and it has already been shown that such plants are practically free from the disease. During the fall, when the plants are maturing, there is less danger of attack.
3. Potato Scab.-The remedy proposed by Bolley* may be considered as almost a specific for this disease. His first recommenda-

[^68]tion was to soak the seed in a solution of corrosive sublimate for one and one-half hours. The solution was made by dissolving 2 ounces of the poison in 15 gallons of water. Potatoes treated in this manner are practically free from the scab fungus, as the latter is usually destroyed, unless the potatoes used for seed are very badly injured. In such cases it appears that some of the germs of the disease may escape and serve as sources of infection in the field. In order to overcome this defect the use of stronger solutions have been recommended, or the immersion of the tubers during a longer time. Bolley's latest recommendation is to dissolve 10 ounces of corrosise sublimate in 60 gallons of water, and the general tendency among experimenters is to use stronger solutions than the ones first recommended. The period of immersion also varies from one and one-half to three hours. Probably the period of treatment may vary with the amount of scab upon the tubers, and with the depth to which the tissues are diseased. The germinating power of potatoes is sometimes impaired if they are treated with the strong solutions for the long periods recommended. It is advisable, therefore, to get as clean seed as possible, but if the potatoes are scabby, to treat them with solutions whose strength increases with severity of the disease on the tuber, at the same time lengthening the period of immersion.

It has been my experience that it is fully as important to have clean land as it is to have clean seed. The fungus causing the trouble appeared upon potatoes which were grown from clean seed upon laud that had not been used for this crop during five years, although two crops of beets had been grown upon it during this period. How long the disease may persist is not known, but it was sufficiently severe during the comparatively dry season of 1895 to obscure the results of several experiments designed to show the value of various treatments of Burbank potatoes for the destruction of the scab fungus. The soil selected is a moderately moist gravel loam.

Another portion of the field had not grown potatoes for eighteen years, and the land proved to be entirely free from the disease. The portion selected for the experiments is a comparatively dry gravel loam in a high state of cultivation. The attempt was here made to lessen the disease by means of copper and brass shavings, these being mixed with the soil in the drills. No beneficial results from the treatment were observed, however, even when enormous
quantities of the shavings were used. It was evident that too small an amount of the metals entered in solution to affect the growth of the scab fungus, although the spores of other fungi are unable to germinate in water which has passed through a copper pipe only a few feet in length.

An attempt to increase the amount of scab was, however, entirely successful. A small handful of air-slaked lime was scattered in the drills where the pieces of potato were planted, and when these potatues were dug it was found that the number of scabby potatoes was more than twice as great as in the rows which received no treatment ; the individual tubers were also more seriously affected. Airslaked lime, therefore, appears to have a decidedly favorable influence upon the growth of the fungus.

An alkaline or an acid condition of the soil becomes a serious matter in certain potato growing regions. This question has been very thoroughly studied by the Rhode Island experiment station* and several of the conclusions obtained are here given.
"Wood ashes (which, like air slaked lime, consists largely of calcium carbonate), pure calcium carbonate, calcium acetate and calcium oxalate, promote the scab in a high degree.
"Calcium chloride injured the potato plants but entirely prevented scab, although an abundance of germs was probably introduced.
"Calcium sulphate (known as land plaster and gypsum) is the only form of lime employed which has not injured the growth of the crops, and which has at the same time failed to promote with certainty the development of the scab.
"Upon our acid soil, which has been partially neutralized by airslaked lime, the use of ammonia sulphate has, under otherwise like circumstances, resulted in producing tubers less scabby than where the same amount of nitrogen in form of sodium nitrate was used.
"Common salt has reduced the percentage of scab.
"Sodium carbonate acts in the same way as calcium carbonate, though perhaps not in the same degree, and promotes decidedly the development of disease.
"Barnyard manure, owing to its alkalinity or the production of carbonate from it, has probably in and of itself increased the scab.

[^69]"Oxalic acid seems to have a tendency * * * to reduce the percentage of scab.
"By the use of ammonium sulphate and probably muriate and sulphate of potash, Kainit and common salt in comnection with dissolved phosphate rock, dissolved bone, or dissolved bone black, soils which now tend to produce scabby tubers, would probably become less favorable to the disease. It is possible that a rational system of rotation of crops which would include no beets or other root crops, and perhaps no cabbages, would also help to alleviate the condition in such soils."

Part II. Insects.

1. Ротato beetle. (Doryphora decemlineata, Say.) This insect is too well known to require description. During the past twenty-five years it has leen very generally destroyed by the use of Paris green, and in more recent years also by London purple. These poisons were first applied in dry form, being mixed with flour, plaster, air slaked lime, and similar powders. The proportions of the ingredients varied greatly, one part of the poison being added to from one to fifty parts of the diluent. The mixture was then dusted upon the plants by means of perforated boxes, or bags made of coarse material. In recent years very effective machines have been invented for the purpose of making uniform applications of powder with great rapidity, and these have largely supplanted the older devices. The powder is driven forcibly from the machines by means of an air blast; when applied in this manner it is well to mix one part of poison with one to three parts of air-slaked lime. The lime makes the powder visible as it leaves the machine, and it also prevents injury from the poison; for these reasons it is probably the best diluent to use. One and one-half pounds of these arsenites per acre is sufficient for each application.

The more popular methods of applying arsenites at present is to mix them with one hundred and fifty to two hundred gallons of water. An equal weight of quicklime should be added to the mixtures, first slaking the lime in water. This prevents the caustic action of the arsenites, and yet does not interfere with the machinery. When poisons are applied in water with proper machinery, rapid applications may be made at all hours of the day, and with but little regard to the weather.

Paris purple* is another form of arsenic which has been sold during a number of years for the destruction of potato beetles. It resembles London purple, but is of a deeper color and mixes with

[^70]much greater difficulty with water. In our experiments it proved effective when used at the rate of one ounce to four gallons of water.

Withiu the past few years another form of arsenic, known as English purple poison,* has been offered for sale in this country. The results of various trials of the poison upon potato foliage show that when used at the rate of one ounce to four gallons of water it is effectual in destroying the insects. But it also possesses the serious objection of mixing slowly with water.
2. Flea-beetles - The most serious insect enemy of potatoes is undoulstedly the flea-beetle. The insects are scarcely a tenth of an inch in length; they are nearly black in color, and the quickness of their morements has caused them to receive their popular name. There appear to be several broods each season, so their work is more or less continuous during the growing season.

Many remedies have been suggested for the destruction of this pest. Among them may be included the following: Paris green; London purple; decoction of tobacco; kerosene emulsion; airslaked lime; land plaster; wood ashes; tobacco powder; Bordeaux mixture.

With the exception of the last named remedy, all the above appear to be without practical value for potatoes. I have tried Paris green, London purple, kerosene emulsion, tobacco powder and air slaked lime with no apparent benefit; and as others have failed in obtaining satisfactory results with these as well as with all the others except the Bordeaux mixture, their use cannot be recommended.

The Burdeaux mixture, however, appears to be a promising remedy. Jones has tested the material very thoroughly and the following is his opinion of the value of his treatments.t "The actual number of holes per leatlet, from the unsprayed row was found upon counting to be 262 , which from the sprayed row the average was but $12 . * *$ These results bear out completely the conclusions of last year, and justify the claims that the Bordeaux mixture is the best practical remedy known for the flea-beetle as it occurs upon potatoes." The leaves examined by Professor Jones

[^71]appear to have been sprayed with the mixture June 16 and July 17, and the results obtained by him are decidetly encouraging. His work indicates that these eanly treatments are essential for obtaining the most thorongh protection, but as applications of Paris green are generally made at this time for destroying potato beetles, sery little extra work is required for treating the rines with the Bordeaux mixture also.

The results of my work during 1895 do not show such marked differences as those quoted above. The foliage of all the plants mentioned in the preceding pages was several times examined with particular regard to the work of the Hea-bectle. The number of holes in the leaves was not counted, but the independent estimates of different observers practically agreed with those of the writer, and they may be considered as representing fairly well the amount of protection afforded by the Bordeaux mixture. Upon the university farm it was estimated that the amount of injury upon the sprayed foliage was from sixty to seventy per cent as much as upon untreated vines. The section which was treated with the old mixture showed less injury where the greatest amount of sediment was applied, and more at the other end where the mixture was much diluted.

The potato foliage on the farm of Mr. McNair was also protected, but to a less degree. His plants were treated the first time July 19. The foliage already showed considerable injury from the insect, but no blighting of the foliage was apparent. Five weeks later we estimated the amomen of flea-beetle injury upon the section which received the most concentrated mixture to be about cighty-tive per cent of that upon untreated vines. In the other sections the difference was still less marked. It would seem that in order to derive the greatest benefit from the Bordeaux mixture in preventing the attacks of flea-beetles, the applications must be made during June and July, and a strong mixture should be used.

Part III. Spraying Machinery.

A trial of machinery suitable for the spraying of potatoes was made July 18 upon the farm of J. S. Coombs, Stafford, Genesee Co., N. Y. All manufacturers were invited to be present and to exhibit machines, for the field which Mr. Coombs kindly placed at their disposal was particularly well adapted for such a trial. The land was perfectly level, well cultivated, and the plants only about one-third grown. The farm is accessible from three railroads, and no more favorable conditions could have been desired. The circular letter addressed to the manufacturers stated that the normal Bordeanx mixture (see page 312) would be applied, as this would give them an opportunity to work their machines under actual field conditions.

Upon the appointed day, the following manufacturers were represented: Aspinwall Mfg. Co., Jackson, Mich.; Deming Co., Salem, O. ; W. \& B. Dunglas, Middletown, Conn. ; Excelsion Co., New Haven, Conu. ; Leggett \& Bro., 301 Pearl St., New York; F. E. Meyers \& Bro., Ashland, O.; Potter \& Ware, Batavia, N. Y. (exhibited a machine made for their own use) ; Seth K. Samms, Byberry, Philadelphia, Pa.; J. R. Steitz, Cudahy, Wis.; Studebaker Mfg. Co., South Bend, Ind. The machines shown by these ten exhibitors were of very varied nature; small bucket pumps, barrel pumps, power sprayers, gravity sprayers, and powder guns were to be found among them. Twenty machines were exhibited, and most of them were tried in the field, each manufacturer having at his disposal an acre of land.

Before the field work was commenced, a committee of local potato growers was appointed ; this committee was to judge of the merits of the various machines, considering them from the standpoint of practical growers. The men selected by the local Grange were as follows: J. G. Fargo, E. D. Rumsey, J. H. Potter, C. E. Shepard, all of Batavia ; and J. Lathrop, of Morganville. Following is the report of the committee:
"The first machines in the field were those in which no pumps were used for forcing the liguid. The only power used was the force of gravity, the fluids passing downward from the tank to the outlet orifices. The Steitz potato sprayer was soon found to be working under disadvantage. The agitator broke almost at the moment of starting. The machine is designed to spray two rows at once; the liquid runs over two broad pieces of galvanized iron, one being over each row, and then it is broken up into a tive spray by means of rapidly revolving brushes. The holes through which the liquid passed upon the iron were too small, so that ${ }_{\mathrm{a}}^{\text {ethe plants }}$

100.-An excellent home-made potato sprayer, treating four rows.
were not properly covered. Another objection to the machine was found in the tank; this was too small, and it could be increased two or three times its present capacity to advantage.
"The Studebaker machine was built on the pattern of a streetsprimkler. The mechanism-forming the discharge was designed to be ao constructed that any desired amount of liquid could be thrown in a fairly fine spray. The machinc could not be made to work satisfactorily, as too much or too little liquid was thrown, and the spray was altogether too course for efficient and economical work. Even clear water was not thrown satisfactorily.
"The Aspinwall sprayer was then tried, the result being somewhat similar to that produced by the preceding machine. It
clogged repeatedly, and proved to be unsuited to throwing Bordeaux mixture.
"A change was introduced with the appearance of Samms' machine, this being known as 'Roberts' Improved Atomizer.' It is designed to spray four rows. Three small streams of liquid left the machine over each row, but immediately upon leaving the discharge pipes, they were broken by blasts of air into an exceedingly fine spray which was well distributed over the plants. The machine worked admirably, and demonstrated its capability of spraying 4 rows of potatoes as fast as a walking team could draw it. The amount of liquid leaving the discharge pipes was found to be too small, but this defect could be easily remedied. Another objection was the cost of the machine, the price being $\$ 65.00$.
"Power sprayers were represented by Deming's 'Monarch.' This is constructed so that five rows may be sprayed at once. A double-acting brass pump is worked by gearing, and it is sufficiently powerful to supply the nozzles, which are held over each row, with the required amount of liquid. The work of this machine was also very satisfactory. The spray was produced continuously, it was forcibly applied to the plants, and the amount of liquid thrown conld be varied by the use of different nozzles. The 'Monarch' was one of the most useful machines exhibited ; but its high price, $\$ 75.00$, is an item which may discourage some from using it.
"The greatest sensation of the day, however, was occasioned by the appearance of the home-made sprayer of Potter and Ware. Figure 100 represents the appearance of the outfit. An ordinary barrel spray pump was fastened to a barrel having a capacity of about fifty gallons. The liquid was pumped into a gas-pipe which was supported upon a light frame at the rear of the wheels. This pipe was fitted with four discharges to which nozzles could be attached. Four rows were sprayed at once, the work being fairly well accomplished as the horse walked across the field. Mr. Ware drove and pumped at the same time, and the machine worked without a break. The plants were uniformly although rather lightly"covered, and the machine was pronounced a decided success by the four or five hundred people who saw it in operation. It should serve as a model to potato growers who desire this lind of an outfit.
"The Douglas and the Deming knapsack pumps were then brought into the field and both worked well. The pumps are sufficiently strong to force the Bordeaux mixture through Vermorel nozzles, and a very thorough application could be made. But the severe labor, and the slow rate of progress will prevent this type of machine from becoming popular for potato spraying. Myers' 'Fountain Knapsack spray Pump' is a gravity sprayer, the liquid being forced through a perforated disk by means of a rubber bulb situated immediately behind it. Bordeaux mixture could not be applied with this device, as the holes in the disk clogged continually. When clear water is used, good work may be done.
"The powder guns of Leggett and of the Excelsior Co., did excellent work. They are easily worked and efficient. The only objection to them is that they treat but one or two rows at a time and this becomes a serious fault when large areas have to be treated. This objection is the more weighty when one considers that the most efficient applications of powders can be made only on a still day and when the foliage is wet.
"The other pumps which were exhibited were not tested in the potato field. The Deming and the Donglas pumps were found to be very strong, serviceable, and apparently durable, and with the proper attachments they could be made of service in spraying potatoes.
"In conclusion, it is the opinion of the committee that as a rule the best machines are those in which a pump forces the liquid through nozzles, so that a uniformly fine spray may be produced. Gravity machines, with the exception of 'Roberts' Improved Atomizer,' proved to be unsatisfactory, although the Steitz machine, if slightly modified, could be made serviceable.

"Signed	J. G. FARGO, Chairman.
	E. D. RUMSEY.
	J. H. POTTER.
	C. E. SHEPARD.
	JAY LATHROP."

SUMMARY.

1 Potato rot, or late blight, is caused by a fungus which may develop with extreme rapidity under favorable circumstances; it may cause the decay of all parts of the potato plant, including the tubers. (Page 297.)
2. The conditions favoring the growth of the parasite are a temperature of about $70^{\circ} \mathrm{F}$. and a moist atmosphere. Few sections of New York are every year serionsly troubled by the disease. (Page 298.)
3. A leaf affected by late blight normally shows distinct brown and mostly large areas of varying form, but usually not circular spots; these may eularge very rapidly, the under surface of the leaf showing a frost-like growth in the parts first attacked. Unaffected portions of the leaves retain their healthy green color. (Pages 299, 300.)
4. Tubers affected with potato rot assume a dark color where the fungus is found. Where decay takes place slowly, the dead portions become dry and shrivelled; during rapid invasions considerable moisture may be present in the rot. (Page 301.)
5. The early blight of potatoes does not cause the tubers to rot. A more or less rapid drying and curling of the leaves and stems mark the presence of the disease. The edges of the leaves are first visibly affected; the color changes to yellowish brown, while the central parts of the leaflets gradually become lighter green or even yellow and more or less spotted. Eventually all portions above ground turn brown. (Pages 302,305 .)
6. Young, vigorons potato plants do not appear to suffer from early blight. (Page 306.)
7. The probable causes of early blight, as found in New York, are the following: A fungus, this having the power of attacking only such tissues as have become weakened to a certain extent; unfavorable conditions of soil or atmosphere; mechanical injuries to the foliage, commonly prodnced by flea-bectles or other insects. (Pages 307, 309.)
8. Potato scab, as commonly found upon the tubers, is due to the presence of a fungus. Similar blemishes have also been ascribed to the work of bacteria, and to insect injury. (Pages 309, 312.)
9. The late blight of potatoes may be successifully treated by spraying the rines two or three times with the Bordeaux mixture. The first application should be made during the latter part of July; it may be repeated at intervals of one.to three weeks. (Page 312.)
10. The early blight of potatoes may be treated with partial success by means of the Bordeaux mixture. The vines should be sprayed when about two-thirds grown, and the application should be repeated as necessary, the foliage at all times being well covered with the mixture. (Pages $312,313$.)
11. Proper methods of fertilization and cultivation have also proved to be of much value in reducing injury from early blight, as was shown by greatly increased yields. (Page 313.)
12. The apparent increased yield per acre of potatoes sprayed with the Bordeanx mixture was 44.8 bushels. (Page 318.)
13. The increased yield per acre of potatoes well fertilized and cultivated, as compared with partially neglected plants, was 100 bushels per acre. (Page 318.)
14. Seed potatoes affected with scab may be cleaned and made fit for planting by soaking them in a solution of corrosive sublimate. (Pages 318, 319.)
15. An alkaline condition of the soil favors the growth of the scab fungus; an acid condition checks it.
16. Land in which the fungus causing potato scab is known to exist should not be used for growing potatoes or beets except at in tervals of several years. Fertilizers which tend to produce an acid condition of the soil should be applied. Even treated seed will produce scabby potatoes, if the scab fungus is in the soil. (Pages 319,321 .)
17. Potato beetles may easily be destroyed by means of the arsenites. Paris green and London purple are the safest insecticides to use. (Pages 322, 323.)
18. Flea-beetles cannot he controlled satisfactorily. Bordeaux mixture thoroughly applied, appears to be the hest practical remedy against these insects. This material probably does not kill the beetles, but simply keeps them away. (Pages 323, 324.)
19. In a comparative trial of many kinds of machines designed for spraying potatoes, it was found that those machines were unsatisfactory in which liguids are distributed wholly by the force of gravity.
20. Gravity sprayers are of value when the liquids are broken
into a spray after leaving the discharge pipes. This may be done by means of air blasts or by revolving brushes.
21. Pumps for driving the liquids through nozzles are on the whole most satisfactory. They can be arranged so that several rows may be sprayed at once.
22. Horse-power sprayers can be recommended for spraying potatoes. 1 If the plants are sprayed for the potato beetle, one nozzle over each row is sufficient; for flea-beetles and for fungus diseases it is better to have two nozzles for each row, that a more thorough application may be made.
23. Powder guns are very satisfactory when insecticides are to be applied to potatoes, although wind and dry foliage may lessen the value of the treatment.
24. Fungicides should usually be applied in liquid form, using machinery which will treat the vines thoroughly as fast as a man or a horse can walk.
E. G. LODEMAN.

BULLETIN 114-February, 1896.

HORTICUL'TURAL DIVISION

OF
CORNELL AGRICULTURAL EXPERIMENT STATION.
I. P. ROBERTS, Director, Ithaca, N. Y.

SPRAY CALENDAR.

By E. G. Lodeman.

ORGANIZATION.

Board of Control-The Trustees of the University.

STATION COUNCIL.

President, Jacob Gould schurman.

Hon. A. D. WHITE.. Trustee of the University.
Professor I. P. Roberts President State Agricultural Society.
Proffissor I. P. ROBERTS Agriculture.

Professor JAMES LaW... Veterinary Science.
Professor A. N. PRENTISS... Botany.
Professor J. H. COMSTOCK... Entomology.

OFFICERS OF THE STATION.
I. P. ROBERTS Director.

H. W. SMITH... Clerk.

ASSISTANTS.
M. V. SLINGERLAND ... Entomology.

Office of the Dicector, 20 Morrill Hall.
The regular bulletins of the Station are sent free to all who request them.

BULLETINS OF 1896.

106. Revised Opinions of the Japanese Plums.
107. Wireworms and the Bud Moth.
108. The Prar Psylla and tho Now York Plum Scalo.
109. Geolocriral History of the Chantauqua Grape Belt.
110. Extresion Work in Horticulture.
111. Sweet Peas.
112. The 1895 Chrysanthemums.
113. Diseases of tho Potato.
114. Spray Calendar.

Spray Calendar.

In the preparation of this calendar the most important points regarding sprays have been selected and arranged in such a manner that the grower can see at a glance what to apply and when to make the application. The more important insect and fungous enemies are also mentioned, so that a fairly clear understanding of the work can be obtained by examining the table below. When making the application advised, other enemies than those mentioned are also kept under control, for only the serious ones could be named in so brief an outline. The directions have been carefully compiled from the latest resultsobtained by leading horticulturists and entomologists, and they may be followed with safety.

Notice.- In this calendar it will be seen that some applications are in parentheses and these are the ones which are least important. The number of applications given in each case has particular reference to localities in which fungous and insect enemies are most abundant. If the crops are not troubled when some applications are advised, it is unnecessary to make any. It should be remembered that in all cases success is dependent upon the exercise of proper judgment in making applications. Know the enemy to be destroyed ; know the remedies that are most effective; and finally, apply them at the proper season. Be prompt, thorough, and persistent. Knowledge and good judgment are more necessary to success than any definite rules. See Bulletin 101.

Apple.

Scab. (1. Copper sulphate solution before buds break); 2. Bordeaux mixture when leaf buds are open, but before flower buds expand; 3. repeat 2 as soon as blossoms have fallen ; 4. Bordeaux mixture 10 to 14 days after the third; (5,6 , repeat 4 at intervals of about two weeks). See Bulletin 84.--Canker-worm. 1. When first caterpillars appear apply Paris green very thoronghly ; 2. repeat 1 after 8 to 10 days; (3,4 . repeat every 10 days if necessary.) See Bulletin 101.-Bud-moth. 1. As soon as leaf tips appear in buds,

Paris green; repeat 1 before the blossom huds open; (3. repeat 2 when blossoms have fallen). See Bulletin 10T.--('ocllim-moth. 1. Paris green immediately after blossoms have fallen ; 2. repeat 1 , 7 to 10 days later; (3,4 , Paris green at intervals of 1 to 3 weeks after 2, especially if later broods are tronblesome). Paris green may be added to the Bordeanx mixture and the two applied together with excellent effect.-Case-bearer. As for bud-moth. See Bulletin 98.

Bean.

Anthracnose, Pod-rust. Bordeaux mixture, when first true leaf has expanded $; 2,3$, etc., the same, at short iutervals to keep the foliage covered by the mixture.

Beet.

Leaf spot. 1. When 4 or 5 leaves have expanded, Bordeaux mixture ; 2,3 , etc., the same every 10 to 14 days.

Cabbage and Cauliflower.
Aphis. 1. Upon young plants, kerosene emulsion or arsenites, when worms are first seen ; 2. if plants are not heading repeat 1 when necessary; 3. when leginning to head, hot water $\left(130^{\circ} \mathrm{F}\right.$.) or hellebore; 4. repeat 3 when necessary.--Cubluge-vorm. 1. If plants are not heading, kerosene emulsion or arsenites; 2 . repeat 1 at intervals of 7 to 10 days; 3. if plants are heading, hellebore, or water at 130° to $135^{\circ} \mathrm{F}$. ; 4, 5, ete., repeat 3 when necessary.Plusia. 1. Make very thorough applications as recommended under cablage-worm. For Root-maggot, see Bulletin 75.

Carnation.

Anthracnose, Rust, Spot. 1. At first appearance of disease, Bordeaux mixture thoroughly applied in fine spray; 2,3 , etc., if plants
are not blooming, Bordeanx mixture ; ammoniacal copper carbonate to avoid staining the flowers. Keep foliage covered with a fungicide. Red spider. Syringe freely with clear water; kerosene emulsion.

Celery.

Leaf blight, Rust. 1. Ammoniacal copper carbonate at first appearance of disease; repeat 1 to keep foliage protected.

Cherry.

Black-knot. See Pluni. - Rot. 1. When buds break, Bordeaux mixture ; 2. when fruit has set, repeat $1 ; 3$. when fruit is grown, ammoniacal copper carbonate. - Aphis. 1. Kerosene emulsion when insects appear ; 2, 3, repeat at intervals of 3 to 4 days if necessary. - Slug. 1. When insects appear, arsenites, hellebore or air-slaked lime ; 2, 3, repeat 1 in 10 to 14 days if necessary.

Chrysanthemum.

Leaf-spot. 1. Bordeaux mixture, or ammoniacal copper carbonate at intervals of 10 to 14 days, to keep foliage protected.

Cranberry.

Fire-worm, Fruit-worm. 1. When larvæ first appear, arsenites, kerosene emulsion, or tobacco water ; Σ, after 10 to 14 days repeat 1 ; 3 , repeat if necessary.

Currant.

Leaf-blights. 1. When injury first appears, before the fruit is harvested, ammoniacal copper carbonate, to avoid staining the fruit; 2. After fruit is harvested, Bordeaux mixture freely applied; 3, repeat 2 when necessary. - Worm. 1. When first leaves are nearly expanded, arsenites; 2. After 10 to 14 days, hellebore; 3, repeat 2 if necessary.

Eggrlant.

Leaf-spot. 1. As soon as plants are established in the field, Bordeaux mixture; 2, 3. repeat 1 at intervals of 2 to 3 weeks till first fruits are $\frac{1}{2}$ grown; 4. ammoniacal copper carbonate, repeat when necessary.

Gooseberry.

Mildew. 1. Before buds break, Bordeaux mixture; 2, when first leaves have expanded, Bordeaux mixture or potassium sulphide;

3,4 , etc. repeat 2 at interrals of 7 to 10 days, if necessary thronghout the summer. Avoid staining the fruit. - Currant-worm, see under Currant.

Grape.

Anthracnose. 1. Before buds break in spring, sulphate of iron and sulphuric acid solution; 2. Repeat 1 after 3 or 4 days to cover untreated portions. - Black-rot. (1, as soon as first leaves are fully expanded, Bordeaux mixture). 2. after fruit has set, Bordeaux mixture; 3. repeat 2 at intervals of 2 to 3 weeks until fruit is $\frac{3}{4}$ grown; 4. ammoniacal copper carbonate when fruit is nearly grown. 5, 6 , etc. repeat 4 at intervals of 7 to 14 days as required. - Downy mildew, Powdery mildew, the first applications recommended under Black-rot are of especial importance. See Bulletin 76.-Ripe-rot, apply very thoronghly the later applications recommended under Black-rot. - Steely-bug. 1. As buds are swelling, arsenites; 2, after 10 to 14 days, repeat 1 .

Hollyhock.
Rust. 1. In spring, when foliage expands, Bordeaux mixture; 2,3 , etc., apply a good fungicide at short intervals to keep new growths covered.

Nursery Stock.

Frungous.s diseases. 1. When first leaves appear, Bordeaux mixture ; 2,3 , etc., repeat 1 at intervals of 10 to 14 days to keep foliage well covered.

Peach, Nectarine, Airicot.
Brown-rot. 1. Before buds swell, copper sulphate solution; (2. Before flowers open, Bordeaux mixture); 3. When fruit has
set, repeat 1 ; 4. Repeat after 10 to 14 days; 5. When fruit is nearly grown, ammoniacal copper carbouate; 6,7 , etc., repeat 5 at intervals of 5 to 7 days if necessary. For Yellows, see Bulletin 75.

$$
P_{\text {Ear. }}
$$

Leaf-blight or Fruit-spot. (1. As buds are swelling copper sulphate solution); 2. Just before blossoms open, Bordeaux mixture; 3. After fruit has set, repeat $2 ; 4,5$, etc., repeat 2 at intervals of 2 to 3 weeks as appears necessary.-Leaf-blister. 1. Before buds swell in spring, kerosene emulsion, diluted 5 to 7 times- Psylla. 1. When first leaves have unfolded in spring, kerosene emulsion diluted 15 times; 2,3 , etc., at intervals of 2 to 6 days repeat 1 until the insects are destroyed. See Bulletin 108.-Slug. See under Cherry.

Plum.

Brown rot. See under l'each.-Leaf-blight. (1. When first leaves have unfolded, Bordeaux mixture); 2. When fruit has set, Bordeaux mixture; 34 , etc., repeat 2 at intervals of 2 to 3 weeks, use a clear fungicide after fruit is $\frac{3}{4}$ grown.- Black-knot. 1. During first warm days of early spring, Bordeaux mixture; 2. Repeat 1 when buds are swelling; 3. During latter part of May, repeat 1; 4. Repeat 1 during middle of June (5. Repeat 1 in July). See Bulletin 81.-Curculio, spraying is not always satisfactory ; jar the trees after fruit has set, at intervals of 1 to 3 days during 2 to 5 weeks.-Plum Scale. 1. In autumn when leaves have fallen, kerosene emulsion, diluted \pm times; 2 and 3. In spring before buds open, repeat 1. See Bulletin 10s.-San José Šcale. Thorough applications of kerosene emulsion as recommended under Plum Scale may prove effective if followed later in the season by others, diluting the emulsion to avoid injuring foliage.

Potato.

Early blight. 1. When vines are $\frac{2}{3}$ grown, Bordeaux mixture; 2 and 3 , repeat 1 at intervals of z to 3 weeks (only partially success-ful).-Rot. 1. During middle of July, Bordeaux mixture; 2 and 3, at intervals of 1 to 3 weeks, repeat 1.-Scab. Soak uncut seed potatoes $1 \frac{1}{2}$ hours in solution of 1 ounce corrosive sublimate in 8 gallons water.-Potato beetle. 1. When beetles first appear, arsenites. 2 and 3, repeat 1 when necessary. See Bulletin 113.

Quince.

Leati-hight, or Fruit-spot. (When hlossom buds appear, Bordeaux mixture); 2, when fruit has set, repeat $1 ; 3,4$, ete., repeat 1 at intervals of 2 weeks until fruit is $\frac{3}{4}$ grown; if later treatments are necessary, ammoniacal copper carbonate. See Bulletin 80.

Raspberry, Blackberry, Dewberry.

Anthracnose. 1. Before buds break, copper sulphate solution, also cut out badly infested canes; 2, when growth has commenced, Bordeaux mixture ; 3, 4, etc., repeat 2 at intervals of 1 to 3 weeks, avoid staining fruit by use of clear fungicide. (Partially success-ful.)-Orange-rust. Remove and destroy affected plants as soon as discovered. See Bulletin 100.-Saw-fly. 1. When first leaves have expanded, arsenites; 2 , after 2 to 3 weeks repeat 1 , or apply kerosene emulsion (unsatisfactory).

Rose.
Black-spot. Spray plants once a week with ammoniacal copper carbonate.-Mildew. Keep heating pipes painted with equal parts lime and sulphur mixed with water to form a thin paste. Spray with copper fungicides.-Aphis, Leuf-hopher. Kerosene emulsion or tobaceo water applied to the insects' bodies at short intervals, is effective.-Rerl spider. Spray as for Armis, or with forcible streams of clear water.

Leaf-bligitr.

Leaf-blight. 1. When growth begins in spring, Bordeaux mixture; 2. when first fruits are setting. repeat 1; 3. during fruiting season, ammoniacal copper carbonate; 4. after fruiting, or on nonbearing plants, Bordeaux mixture at intervals of 1 to 3 weeks. See

Bulletin 79.-Sarv-fly. Spray plants when not in bearing with arsenites, repeating application if necessary.

Tomato.

Leaf-blight. 1. As soon as disease is discovered, Bordeaux mixtur or a clear fungicide. 2,3 , etc. repeat 1 at intervals of 7 to 10 days.-Rot. Spray as directed under leaf-blight (unsatisfactory in many cases).

Violet.

Blight ; Spot. 1. When disease is first seen in summer or fall, Bordeaux mixture ; 2, 3, etc., repeat one at intervals of 1 to 2 weeks, using ammoniacal copper carbonate to avoid staining blossoms. (Not always satisfactory as good culture must also be given.) Remove affected leaves.

Formulas.
Paris Green.
Paris green . 1 pound
Water... . . 150-300 gallons
If this mixture is to be used upon fruit trees, 1 pound of quicklime should be added, and repeated applications will injure most foliage, unless the lime is used. Paris green and Bordeaux mixture can be applied together with perfect safety. Use at the rate of 4 ounces of the arsenites to 50 gallons of the mixture. The action of neither is weakened, and the Paris green loses all caustic properties. For insects which chew.

London Purple.

This is used in the same proportion as Paris green, but as it is more caustic it should be applied with two or three times its weight of lime, or with the Bordeaux mixture. The composition of London purple is variable, and unless good reasons exist for supposing that it contains as much arsenic as Paris green, use the latter poison. Do not use London purple on peach or plum trees unless considerable lime is added. For insects which chew.

Normal or 1.6 Per Cent. Bordeaux Mixture.

Copper Sulphate. 6 pounds
Quicklime.. . . . 4 pounds
Water... . . $40-50$ gallons

Dissolve the copper sulphate by putting it in a bag of coarse cloth and hanging this in a vessel holding at least 4 gallons, so that it is just covered by the water. Use an earthen or wooden vessel. Shake the lime in an equal amount of water. Then mix the two and add enough water to make 40 gallons. It is then ready for immediate use. If the mixture is to be used on peach foliage it is advisable to add two pounds of lime in the above forumla. When applied to such plants as carnations or cabbages it will adhere better if about a pound of hard soap be dissolved in hot water and added to the mixture. For rots, moulds, mildews, and all fungons diseases.

Iron Sulphate and Sulphuric Acid Solution.

Water (hot) 100 parts Iron sulphate, as much as the water will dissolve. Sulphuric acid (commercial) 1 part

The solution should be prepared just before using. Add the acid to the crystals, and then pour on the water. Valuable for grape anthracnose, the dormant vines being treated by means of sponges or brushes.

> Potassium Sulpinde Solution.

Potassium sulphide..... $\frac{1}{2-1 ~ o z ~}$
Water... . . . 1 gallon
This preparation loses its strength upon standing, so should be made immeliately before using. Particularly valuable for surface mildews.
Copper carbonate.. . . . 1 oz.Ammonia, enough to dissolve the copper.Water

9 gallons
Before making the solution, the ammonia should be prepared as follows: Use 26° ammonia, and dilute with 7 to 8 volumes of water. Then gradually add the necessary amount to the copper carbonate until all is dissolved. It is best treated in large bottles, and in them it will keep indefinitely. Dilute as required. For same purposes as the Bordeaux mixture.

Copper Sulphate Solution.

Copper sulphate 1 pound
Water 15 gallons
Dissolve the copper in the water, when it is ready for use. This should never be applied to foliage, but must be used before the buds break. For peaches and nectarines use 25 gallons of water. For fungous diseases.

Heilebore.

Fresh white hellebore.................. 1 ounce
Water.. . . 3 gallons
Apply when thoroughly mixed. This poison is not so energetic as the arsenites, and may be used a short time before the sprayed portions mature. For insects which chew.

Kerosene Emulsion.
Hard soap.. . . 1 . pound
Boiling water.. . . 1 gallon
Kerosene.. 2 gallons
Dissolve the soap in the water. add the kerosene, and churn with a pump for $5-10$ minutes. Dilute 4 to 25 times before applying. Use strong emulsion for all scale insects. For such insects as plant lice, mealy bugs, red spider, thrips, weaker preparations will prove effective. Cabbage worms, currant worms, and all insects which have soft bodies, can also be successfully treated. It is advisable to make the emulsion shortly before it is used.

Tobacco Water.

This solution may be prepared by placing tobacco stems in a water-tight vessel, and then covering them with hot water. Allow to stand several hours, dilute the liquor from 3 to 5 times and apply. For soft bodied insects.

BULLETIN 115-February, 1896.

Cornell University-Agricu1tural Experiment Station, ITHACA, N. $\overline{\text {. }}$

HORTICULTURAL DEPARTMENT.

the pole lima beans.

By L. H. Bailey.

ORGANIZATION.

Board of Control-The Trustees of the University.

STATION COUNCIL.
President, JACOB GOULD SCHURMAN.
Hon. A. D. WHITE. Trustee of the University.
Professor I. P. ROBERTS President State Agricultural Society.
Professor I. P. ROBERTS Agriculture.
Professor G. C. CALDWELL. Chemistry.
Proflessor James Law Veterinary Science.
Professor A. N. PRENTISS, Emeritus. Botany.
Professor J. H. COMSTOCK Entomology.
Professor L. H. BAILEY. Horticulture.
Professor H. H. WING Dairy Husbandry.
Professor G. F. ATKINSON. Cryptogamic Botany.
OFFICERS OF THE STATION.
I. P. ROBERTS Director.
E. L. WILLIAMS Treasurer.
H. W. SMITH Clerk.
ASSISTANTS.
M. V. SLINGERLAND Entomology.
G. W. CAVANAUGH. Chemistry.
E. G. LODEMAN Horticulture.
L. A. CLIN'TON Agriculture.E. J. DURANDBotany.

Office of the Director, 20 Morrill Hall.
The regular bulletins of the Station are sent free to all who request them.

BULLETINS OF 1896.

106. Revised Opinions of the Japancse Plums.
107. Wireworms and the Bud Moth.
108. The Pear Psylla and the New York Plum Scale.
109. Geological History of the Chautanqua Grape Belt.
110. Extension Work in Morticulture.
111. Sirect Peas.
112. 'The 1895 Chrysanthemums.
113. Dispases of the Putato.
114. Spray Calendar.
115. The Polo Lima Beans.

Cornell University, Ithaca, N. Y., February 29, 1896.
Honorable Commissioner of Ayriculture, Albany.
Sir.- The following paper - a complement to No. 87, upon the Dwarf Lima beans - is submitted for publication and distribution under Chapter 230 of the Laws of 1895.

L. H. BAILEY.

SYNOPSIS.

I. Types and Varieties, pages 349 to 350.

A. The Sievas
350
B. The large, flat Limas . 353
C. The potato Limas.................................. . . 357
D. Varieties not tested................................... 361
E. The Horticultural Lima............................ . . 361
F. The Chickasaw Lima or Jack bean................. 362
II. Remarks on the Growing of Lima beans, pages 365 to 372.

1. Methods for New York 365
2. The California practice 368
III. Index.................... 372

102.- New Extra Early Lima Bean. Natural size. See page 355 .

The Pole Lima Beans.

I. Types and Varieties.

About a year ago we tried to say something (Bulletin 87) about the dwarf Lima beans. We found that those beans are all modern developments from the pole Limas, and that they represent each of the three types or tribes of Lima beans, - the Sieva, Flat and Potato Lima types. A discussion of the botanical features and the history of these groups was then given, and it is therefore unnecessary to repeat the account here. We need only recapitulate the leading marks of the groups.

The Sieva or Carolina bean is a small and slender grower as compared with the large Limas, early and hardy, truly annual, with thin, short and broad (ovate-pointed) leaflets, numerous, small papery pods which are much curved on the back and provided with a long upward point or tip and which split open and twist when ripe, discharging the seeds; beans small and flat, white, brown, or variously marked with red. This, like the true Lima, is a native of South Anerica, and was early cultivated by the aborigines of North America and countries to the southward. It is the plant which Linnaus meant to designate by the name Phaseolus lunatus. The distinguishing marks of the pods of the Sieva beans may be seen in Figs. 102 and 103 ; and the beans of two of the varieties are shown in Fig. 101. The reader may consult Bulletin 87 for fuller information of the botany and history of the Lima beans.

The true Lima bean is distinguished from the Sieva by its tall growth, lateness, greater susceptibility to cold, perennial in tropical climates, large thick often ovate-lanceolate leaflets, and fewer thick fleshy straightish (or sometimes laterally curved) pods with a less prominent point and not readily splitting open at maturity; seeds much larger, white, red, black or speckled. The botanical name of this plant is Phaseolus lunatus var. macrocarpus. Of this true or large Lima there are two types in cultivation :

The Flat or Large-seeded Limas, which have large, very flat and more or less lunate and veiny seeds, very broad pods with a distinct point and broad ovate leatlets. See Figs. 107 and 109 for foliage ; 106, 108 and 110 for pods; and 101 for the beans.
The Potato Limas, with smaller and tumid seeds, shorter and thicker pods with a less prominent point, and long ovate leaflets tapering from a more or less angular base into a long apex. See Figs. 112 for foliage ; 111 and 113 for pods ; and 101 for the beans.

101. -Types of Lima beans. Natural size.

A. The Sievas.-

There are four dwarf varieties of the Sieva type, the Henderson, Jackson, Dwarf Carolina, and Northrop, Braslan and Goodwin Dwarf Lima. The Sievas are valuable chiefly because of their earliness. The beans are not so rich as those of the large Limas, and seem to us to be scarcely worth the growing where the latter can be successfully raised.

Last year we made an effort to grow all tall Lima beans. The sceds were all started in good garden soil on the 31st of May, and kept in very clean cultivation throughout the season. Amongst the pole or ruming Limas, the following in our test, are Sievas:

1. Sinall Carolina or Sieva Lima.- An early variety which began to bloom July 29, and ripened its crop before frost. Green beans were ready for the table late in Λ ugust. The beans are
small, clear white, three or sometimes four in the small and profuse papery pods. It is a heavy grower, a tall climber and very productive. Heuderson Dwarf is like this except in stature. Seeds from Burpee.
2. Black or Early Black:-(Figs. 101, 102) - Differs from the last chiefly in the color and shape of the beans, which are black (or

3. Black Lima. Natural size.

4. Willow-Leaf. Full size.
deep purple black) blotched and stained with white near the ventral edge, more or less angular or irregular in shape. Ripened its crop well. Very productive. The beans are in every way as good in quality as the white Sievas. Sent out for trial by Burpee in 1892 and introduced by him in 1893. Various purple spotted Sievas have long been known. Seeds from Thorburn and Burpee.
5. Willow-Leaf (Figs. 101, 103, 104, 105).-L Later than No. 1, with which it is practically identical in the beans and pods. The
distinguishing feature of this interesting bean is the very curious foliage. The typical form of leaf is shown in Fig. 104, but the bean is not well fixed, and many plants bear leaves as shown in Fig. 105 or even as broad as those of the ordinary Sieva. The Willow-

Leaf Lima is a very ormamental plant, and is worth growing for its attractive foliage and habit. It is a tall grower, and if given a moist soil would make an effectual sereen until frost comes. We have grown it two or three years, but have never prized it greatly
for the vegetable garden. It is a sport or offshoot of the common Sieva type. It was introduced in 1892 (but distributed for trial in 1891) by Burpee, who received it from the south. Seeds from Burpee.

B. The large flat Limas.

Of the large white or flat Limas there are several important varieties. This type of bean is the one which chiefly represents the spe-

105. Willow Leaf. Half size.
cies in the gardens. It is much superior to the Sieva type in bearing larger and much richer beans. The earlier strains mature most of their crop in central New York, if properly grown. The filled green pods which remain whenjfrost comes yield excellent green beans for the table. Burpee Dwarf is an offshoot of this type of Lima.
4. Large White. - The old stock of Lima bean, from which most other varieties have sprung. It was catalogued by Dreer as long ago as 1838. It has probably been somewhat improved in the meantime, however. As we grew it last year, it had little value. The growth was short or medium (not climbing strongly), and it was late and unproductive. Although it began to bloom as early as the Sievas, it had ripened very few beans by the first of October.

107. New Extra Early. Half size.

The pods were medium large, flat and curved, with a short tip. Beans flat, clear white, two to three in a pod. Of a variety which has been so long cultivated, there are certain to be strains of varying merit. Very likely the exact type cultivated twenty years ago is now unknown. Seeds from Burpee.
5. Jersey. - A good carly strain of the Large White Lima, usually a week or ten days earlier. A strong, tall grower. Pods medium size, much curved when ripe, and strongly tip-pointed.

Beans medium size, flat, greenish white, averaging two or three in a pod. Seeds from Landreth.
6. Bliss (Bliss's Extra Early, Extra Early, Extra Early Jersey) Fig. 106. - A good early bean, fully as early as No. 5, and

109.-Mammoth Kidney-Shaped. Half size.
more productive. Tall, bearing broad pods of medium length with three to five large flat greenish white beans in each. One of the very best of the early strains of the large Limas. Introduced by B. K. Bliss \& Sons, 1878. Seeds from Rawson, and May.
7. New Extra Early (Figs. 107, 108). - A low plant (2 to 4
feet high), mostly not disposed to climb, with large pods, each containing three or four rather large white beans. Began to bloom the 19 th of July, but was not so early in maturing fruit as No. 6. It is probably the same as No. 6, however, the difference being due to seeds or other incidental circumstances. Seeds from Burpee.
8. Platt, or Platt's King of the Garden (also called King of the Garden). - A very large podded bean, late, producing very large and excellent white kidney-shaped beans. A short and slender grower, and not very productive with us last year. Sent out by Frank S. Platt, New Haven, Conn., as early as 1886, and said to be a cross of the Large White Lima and Dreer Improved. Seeds from Burpee, and Perry (Syracuse).
9. Mammoth Kidney-Shaped (Figs. 109, 11(1).- A good selection of the Large White Lima, the strain we gren being a medium tall grower, bearing broad and short-tipped pods of medium size, and white, flat, kidney-shaped medium sized beans. Productive, and ripens most of its crop before frost. A kidneyshaped form of the Large White Lima was catalogued as carly as 18 ± 6 by Coates. Seeds from Livingston's Sons.
10. Kaightn, or Kiaighn's Improved (Fig. 101). - The best large Lima on our grounds last year. Medium strong grower, bearing heavily of very large curved and pointed pods. Beans three or four to the pod, very large and flat, white, of most excellent quality. Ripened well before frost. The variety is a selection out of the Long White Lima by John M. Kraighn, Camden, N. J. Seeds from Landreth.
11. May Champion.-An extra good strain of Large White Lima, with very large and broad curved tip-pointed pods, and large white very broad kidney-shaped white seeds, of which there are two or three in each pord. A large part of the crop ripened up before frost. A tall, strong grower, and altogether a good bean. Seeds from May.
12. Spechled Lima (Fig. 101).-An early form of Lima, with handsome, medium sized flat beans which are speckled and blotched with very dark red-brown. Pods rather long and slender, tipped, containing three or four beans. A tall grower, ripening about all its crop before frost. A good bean, but the enlor is objectionable to most persoms. The speekled Lima originated in 1867, and is said to be a cross of the common Lima with Red-Seeded Giant Wax Pole lean, but I fail to diecover any evidences of hybridity. It is
possible that there are different breeds of this Speckled or "striped" bean, and that our strain is not a direct descendant of the form introduced in 1867. Seeds fromThorburn. Red Lima is evidently the same.

110.-Mammoth Kidney-Shaped. Full size.

111. -Dreer Improved. Full size.

C. The Potato Limas-

The Potato Lima type was represented in our text by two kinds. The Kumerle, Thorburn or Dreer Dwarf Lima belongs to this type. The beans are perhaps the richest in quality of all the Limas.
13. Dreer Improved (Figs. 101, 111).- A most excellent bean, producing almost straight pods of medium size, lacking the tip, thick and without the thin edges of the common large Limas. Beans three to four in each pod, of medium size, irregular in shape, turgid and rounded on the edges, dull or greenish white, of best quality.

This bean was offered first time in Dreer's Garden Calendar of 1875. This is the description then given: "This bean is the product of the green wrinkled variety obtained from Mr. H. Kimber, of Kimberton, Chester County, Pa , about thirty years ago. Selections of the best specimens were annually made for seed until the bean has increased in early maturity and size, and established the present standard character.
"The distinctive features of this sort are early maturity, prolificness and extra quality of bean ; containing more saccharine matter and producing one-third more shelled beans to the pole than the Large Lima, while the shelling becomes an easy matter, from the fact of the pods being entirely full of beans, forming one against the other like peas in a pod.
"The American Agriculturist of November 1874, says: 'In these beans the pods are not only full, with no spaces between, but are as full as they can stick, the seeds so crowding one another that the ends of the central beans are square ; the bean is also much thicker than the ordinary kind. A vine of this kind bearing the same number of pods as one of the ordinary variety would, we should judge, yield nearly if not twice as much in shelled beans. The pod being so completely filled, the shelling becomes an easy matter, and the beans when cooked are much superior to the ordinary ones, as the amount of skins is much smaller in proportion to the enclosed nutriment.
""We regard the improving of this bean as one of the most important of the recent contributions to horticulture.'"
14. Challenge or Challenger (Figs. 112, 113). -- So like Dreer Improved that I cannot distinguish any constant differences, but the pods are perhaps shorter. Introduced some years ago by J. M. Thorburn \& Co. Seeds from Livingston's Sons.

John W. Kumerle, Newark, New Jersey, a well known Lima bean grower and the originator of the Kumerle or Thorburn dwarf Lima, writes me as follows respecting this bean: "I have sold this variety for a number of years under the name of Hedden Lima bean. It is the same as J. M. Thorburn \& Co. of New York City sell as Challenge. I receive my supply from V. J. Hedden, Esq., of East Orange, N. J. This bean has been in the Hedden family for at least eighty years and they have been very particular in selecting them every year for seed until they have succeeded in producing a bean that yields from five to six beans in the pod."

113. Challenger. Full size.

114. : Horticultural Lima. Full size.

D. Varieties not tested.-

Other varieties of true Lima beans which were catalogued last year but which we did not grow, are the following:

Ford's ILammoth podded-"Selected by James Ford of Philadelphia from Large Lima, with reference to five and six beans in pod of large size; the pod is also very and monecessurily large."

Salem Mammoth-A greenish Lima, similar to the Ford, from Salem Co., New Jersey.

Stokes' Evergreen or MLammoth Green Jersey-"A very large green seeded lima. Valuable becanse it retains its green color even after ripening." Our seeds of this variety failed to grow.

Washington MIarket.-We know is only by name (catalogued by Perry Seed Store, Syracuse).

E. The Horticultural Lima.-

There are tro other species of beans which are sometimes known as Limas, which should be mentioned in this connection. The Horticultural Lima (Fig. 114) is one of these. This is not a Lima bean at all, but simply a form of the common garden pole bean (Phascolus culgaris). It is not a vigorous climber, reaching only three or four feet bigh, ripening its slender pods very early. The beans are dun-colored with pretty brown markings. A good and early bean (maturing before any of the Limas), valuable either for a "shelled " bean or for use when fully ripe. A Horticultural Lima was raised some years ago by O. H. Alexander, Charlotte, Vermont, and I suppose that the current stock passing under this name is the same bean. Mr. Alexander describes the variety as follows: "This is a cross from the Boston Horticultural bush beau on Dreer's Extra Early Lima, and I find it, after testing it several years, to be the best of all pole beans. In color and foliage it resembles the Horticultural ; in form it resembles the Lima. The quality I find is superior to either of its parents. It is very prolific, and throws out handsome green pods from five to six inches long." It is also known as Child's Horticultural Lima. We grew the variety last year from seeds obtained from Burpee and from Childs. The two stocks were identical, and neither of them gave the least suggestion of a cross with the Lima. I have never yet seen any evidence of hybridity between Phaseolus lunatus and P. vulgaris.

F. The Chickasaw Lima.-

The Chickasaw Lima, Jack Bean, or Horse Bean (Figs. 115, 116) is a curious bean which I mention here only because it is sometimes called a Lima. It is Canavalia ensiforis, a tropical species which is widely cultivated. It has become generally distributed in the southern states during the past few years, where it is generally known as the Jack Bean. I have not been able to trace its

115. The Chickasaw Lima or Jack Bean (Canavalia ensiformis). One-third size.
introduction into this country, nor have I found any recent American literature describing it. It has probably come into the United States from the West Indies or Mexico. Griesbach and others speak of its cultivation in Jamaica, and we are growing it from there at the present moment.

The Jack Bean will probably not ripen in the north. We have grown it under glass, where it makes a twining vine four to eight
feet high. In warm countries, it is a bushy plant with little tendency to climb. The pods reach a length of ten to fourteen inches, the walls being very hard and dense when ripe. The halves of the pod, when split apart, roll up spirally, often into an almost perfect cylinder. The large white turgid beans, bearing a very prominent brown seed-scar, are packed crosswise the pod, imbedded in a very thin white paper lining. The flowers are small and light-purple, resembling those of the Cow-pea (though larger), and of various species of dolichos. The leaflets are three, large and broad (5 to 8 inches long and half or three-fifths as broad), strong veined and dull dark green, abruptly pointed and smooth.

This Canavalia seems to be a rather coarse bean when fully matured, but some of my correspondents commend its culinary qualities when green. Naudin and Müller in "Manuel de l'Ac

116. Chickasaw Lima. Full size.
climateur," remark that "it is said that the seeds, whilst not poisonous, are digested with difficulty by those persons which are not accustomed to using them." Mr. John Dehoff, Tabor Lake, Florida, sends specimens for determination and writes: "The bean makes a large bush two and a half to three and a half feet high and broad. It stands all kinds of weather except frost, and blooms and bears unremittingly. The beans are quite acceptable as a 'snap bean,' when the pods are not more than four or six inches long." Alex. Raff, Orange Grove, Mississippi, who sent me the seeds for a name says: "The plant is a bush about thirty inches in height. The blossom is pink, and the seed pods average about twelve inches in length, containing from twelve to fourteen beans. They were grown this season on poor piney-wood sandy soil, fertilized with a little barnyard manure, and I think would
average in yield from twenty to twenty-five of these large pods to the plaut. In quality for table use, we think it is fully equal to the Lima bean." A. Jones Taylor, Ternon, Texas, sends the bean to me under the name of Chickasaw Lima. It is said to be cultivated by the Chickasaw Indians. Professor Georgeson describes and figures it as one of the economic plants of Japan in "American Gardening," for February, 1893.

Professor S. M. Tracy, of the Agricultural College of Mississippi, wrote me as follows about this bean in August, 1895: "I know very little about Jack beans. I suppose thom to be Canavalia ensiformis. A few Mexicans who have sent them say that they are common in that country, where they are used for food. One of my assistants saw them at a county fair in the southern part of this state five years ago, and brought a couple of pods home with him. I grew them on small plots three years, and last year had about half an acre, which yielded at the rate of twentythree bushels per acre. A neighbor claims to have had thirty bushels, which I think is reasonable, as my crop of this year appears as though it would be even hearier. I have eaten the beans, and find them quite edible, though rather coarse. I have not fed them to cows, but chemical analysis shows them to be fully equal to other beans. We have ten acres this year, and propose to give them a thorongh test in feeding next winter. I do not know any one who has used them, or who has grown them in any quantity."

The result of this last crop, Professor Tracy now reports, this month, as follows: "The Jack Beans yielded thirty to forty bushels per acre. We have used the beans this winter in feeding steers, cows and hogs, and I am greatly surprised to find them of almost no value. Cattle soon learn to eat the meal made from the beans, but it appears to be very difficult of digestion. We have used it constantly for ten weeks until yesterday, when I decided that there was no occasion for any further work. Next week I shall commence feeding the cooked meal, and if I get satisfactory results from that, shall try cooking some of the beans also."

I have grown this Jack lean only as a curiosity and have not tested its culinary qualities. It fruits freely under glass. I report it here because there is considerable inquiry concerning it and because there is no accessible literature of it.

II. Remarks on the Growing of Jima Beans. 1. Methods for New York.

The Lima beans are amongst the most delicious of all our garden vegetables. There are no beans grown in this climate which approach them in richness. They are excellent either when used green as "shelled" beans, or when used ripe and dry during the winter season. The merits of the green or shelled Limas are nearly everywhere known and appreciated, but comparatively few people seem to understand that the ripe beans are just as excellent in the winter time as the green beans are in the summer. At the present time, the writer is using the ripe Lima beans in the same way that the common field beans are cooked for the table, and they are the most satisfactory of any beans which can be served. These beans may be shelled in the fall after the pods are fully ripe, or they may be put away in the attic or other dry rom in the pod and shelled as occasion requires. If they are stored,in the pod the only caution is that these pods should be thoroughly dried and cured.

The Lima beans are natives of warm countries. The large flat Limas are perennials, or at least plur-annuals, in their native coun tries. They therefore require a long season, and one who expects, to grow them in the north should endeavor in every way to shorten the period of growth. This may be done, in the first place, by planting the earlier varieties; and, in the second place, by exercising great care in the selection of soil and in giving particular attention to cultivation. Light and so-called "quick" soils are best. Soils which are naturally sandy and loose, but which have been euriched in previous years by the addition of manure, are excellent for Lima beans, especially if they have a warm exposure. The soil should also be dry. Coarse, raw manure should be avoided on Lima beans, because it teuds to make too rank and too late growth. If any fertilizer is applied the year in which the beans are planted, it should be such as will become available very quickly and therefore tend to lasten the maturity of the crop. We prefer, therefore, to use some of the concentrated fertilizers, especially those which are rich in potash and phosphoric acid, and avoid those which contain very much nitrogen. If nitrogenous fertilizers are used at all, they should be applied in comparatively small amount and be of such kind that they will give up their fertility early in the season. If ordinary
stable manure is used, it should be applied in the fall in order that it may become thoroughly incorporated with the soil and be ready for use at the earliest moment in the spring.

We had an excellent chance last year to study the effects of moist soil upon Lima beans. Our experimental plantation ran through a low place on to a dry, sandy elevation. The soil was the same formation thronghout the plantation, but in the sag it had become somewhat enriched by the washings of the higher lands. This sag was so dry and so well drained that it never held water, and the season was characterized by a prolonged drought; yet, in spite of these facts, the beans in this sag were at least three or four weeks later than those upon the dryer end of the plantation, and some varieties did not ripen a single pod in this spot. It should be said, however, that the soil throughout this plantation was very thoroughly tilled all during the season so that the moisture upon the high land was conserved to the greatest possible extent. Lima beans delight in hot, dry weather, if only they have an opportunity of getting their roots deeply into the soil before dry weather comes on, and if they are given frequent shallow tillage for a time.

Whilst it is essential that the Lima beans should be given the longest season possible, it is nevertheless futile to plant them before the weather is thoroughly settled; for, even though the seeds may germinate, the young plants will be seriously checked by inclement weather. We prefer to plant them a week or ten days after it is safe to plant the ordinary bush garden beans. We have our ground very thoronghly prepared, plant them about an inch deep in about twice the quantity which we desire to bave them stand, and then expect to keep them growing rapidly until they have reached the tops of the stakes or trellis. If we use stakes, we plant the beans in hills about three feet apart and the rows about four feet apart, dropping seven or eight heans in each hill. When the beans are well up, and danger from bad weatber and cut-worms is past, we pull out all but three or four. The poles should not be more than six feet high. If they are taller than this, they are not only expensive to procure and hard to keep in place, but the beans will run too high and grow too late. When the beans reach the tops of poles which are tive or six feet high, the ends of the vines swing out horizontally and the growth is checked, and the setting of fruit is therehy, no doubt, hastened. It is the practice of many persons to clip back the ends of the
vines when they have reached a certain height. For myself, I doubt the efficiency, or at least the necessity, for this practice. It seems to me that it is better to prevent too rapid growth by withholding the strong fertilizers and then by the use of comparatively short poles. Some persons prefer to grow the beans upon a trellis, and this is the most economical of room. In this way the beans can be planted more or less continuously, so that the vines will eventually stand about a foot apart. The trellis can be made very cheaply by placing a very strong braced post at each end of the row and then running a strand of fence wire from one post to the other about eight or nine inches above the ground, and another strand about five feet above the ground. These wires can be kept from slacking by placing stakes at intervals of ten or fifteen feet. Ordinary wool twine is then run from the bottom to the top wire and thence to the bottom wire again, and so on, in a zigzag fashion, throughout the length of the row, placing it in such manner that the strands of string will be no more than a foot or fifteen inches apart. This makes a very cheap and serviceable trellis and is, no doubt, better than stakes.

Our Lima beans were"planted in 1895 on the 31st day of May. They might have been planted a few days earlier, no doubt, with perfect safety. If one desires to get his beans ahead very early, he can plant them in a forcing-house or cold-frame in pots or on inverted sods, or in refuse berry boxes, about two weeks in advance of the time they are to be set out of doors. From these receptacles they can be transferred easily to the ground. One of our constituents says that he always greases his Lima beans thoroughly with lard when he plants them and is thereby able to plant his crop a week or ten days ahead of the usual time, because the grease preserves the beans from rotting. We have not tried this method and do not know what value it has. It is an easy matter to transplant Lima beans, even when they are not grown in pots or boxes, if the ground is moist when they are taken up so that a large lump of earth adheres to the roots and if the weather is somewhat humid following the transfer. But, in spite of all that can be done, nearly every variety of the large Lima beans will fail to mature its full crop in the north before frost. If half the pods which the vines have set should mature before frost comes, the grower may feel that he has been very successful. The green pods which remain at frost
time, if the beans are partially grown, can be picked, the beans shelled out and dried, and these can be used in the winter time to as good advantage as if they were thoronghly ripe. If these dried heans are sonked in water some time before they are cooked, they are scarcely inferior to groen beans directly from the vine.

It is generally considered that the richest of all the Lima beans are those of the Potato Lima type, like Dreer's Improved and Challenge. This type of beans makes a smaller and less showy pod than many of the large white Lima type, but the pods are usually closer packed with turgid seeds. To the person who buys Lima beans in the pod, these are much the more economical, whilst the one who sells beans in the pod would secure a larger bulk by growing some of the very large-podded flat lima type, like Kaighn, Jersey, May Champion and the like. For ripe beans, the large white flat Limas usually sell the best, but there are many persons who prefer a green Lima. A number of the varieties are greenish even when they are fully ripe, and therefore have the appearance of being more fresh and tender. The red and speckled Limas are in every way as good in quality, as the white or green ones, but most persons do not like this dark color. In dur own test of last year, we thought that the best six beans, cousidering earliness, productiveness and quality, were the Jersey, Extra Early or Bliss, Kaighn, May Champion, Dreer Improved and the speckled Lima.

It is difficult to state what the yield of Lima beans may be. As a rule they are not grown much for market in the dry state in the east, for the California product can be grown with more certainty and more cheaply and is shipped east in very large quantities. Mr. C. J. Pennock, of Kennett Square, Pa., one of our former students, writes that upon a half acre he gets a yield of about $120 \frac{5}{8}$-bu. basleets of porls, and the price runs about fifty cents per basket. He uses poles seven feet long, stuck three and one-half by four and one-half feet apart, and he caltivates twice hefore setting the poles, hoes the heans about once, and trains the vines to the poles by hand.

2. The California Practice.

In the East, the Lima bean is much grown in New Jersey, but sonthern California is undoubtedly the largest producer of Sima beans in the world. The following estimates show the enormous output of Lima beans from this region:

| | Ventura County. | Santa Barbarba County.
 $1893 \ldots \ldots$ |
| :--- | :--- | :--- | :--- |
| $1895 \ldots \ldots$ | 1,500 car loads. | 250 car loads. |

A car load is about ten tons.
It is a question if Lima bean seed which is grown continuously in the long seasons of California is as reliable for our short seasons as home grown seed is. For myself, if I were expecting to grow Limas for market in central New York, I should prefer to select and grow my own seed or else be sure, if it were California grown, that the "stock" were annually grown in my own geographical region.

A most instructive account of the interesting Lima bean industry of southern California was printed in the "American Florist," for December 28, 1895, written by L. B. Hogue, Santa Paula,California, J. C. Vaughan, of Chicago, who has given considerable attention to this western bean interest, writes me commending the article. In order to complete the contemporaneous history of the Lima bean as well as to instruct our own people in some of the essentials of the cultivation of these plants, I append the larger part of the article:
"More than twenty years ago a farmer in the Carpenteria valley experimented with the Lima bean. None of them had been grown on this coast for market at that time. The experiment proved a perfect success. Every requisite for producing this variety in its perfection seemed to be supplied here. A remunerative price was readily obtained for the mature bean. From this time others began to grow them. The demand grew with the increase of the product. The profits became much greater than were those of any other farm crop, which proved a great stimulus to improved methods. Something like exact science was finally reached in the matter of the preparations and cultivation of the soil. The primitive way of harvesting by hand, where one man could cut one acre per day by hard work, was superseded by a simple horse power device, with which one man could cut fifteen acres per day. Also implements were invented for cultivating the land before planting, which facilitated the work in like manner. To the credit of these farmers let it be said that the machinery for the successful cultivation and harvesting of this crop was invented by them.
"As a matter of course the success of the industry in the Carpenteria soon attracted wide attention, and farmers in other parts
of the state began to make trials to grow the Lima bean. Their efforts, though, proved to be failures. Onr section, however, that of the Santa Clara valley of the south, in Ventura county, and only about twenty miles from the Carpenteria, would see 11 to pussess nearly all the requirements in soil and climate. liut some way the bus:ness did not 'pan out' right as the 'forty-niner' would say. Carpenteria farmers had their eyes on the operations in Ventura county, however. They noticed that their own farms were usually from ten to twenty acres, while the Ventura farms averaged at that time about one thousand acres to each farmer. They noticed also that the farming was done in a slipshod out-of-season fashion that would not succeed even in their own section. Finally some of them rented small tracts of land in the Santa Clara valley and instituted their methods of farming. When lo! Dame Nature smiled upon them. Ye rancher on a thousand acres came around to see how it happened that the despised 'small farming' had resulted in as much clear gain from a few acres as he had received from his thousand. Other practical bean growers settled in the valley and the shipments of Limas from southern California doubled, trebled, and quadrupled - when finally improved facilities had rendered large farming practicable. However, the average yield per acre, about one ton, continues larger in the Carpenteria valley than in most other places. Althongh numerous attempts are made to grow the Lima bean in other sections of the state the fact remains that nearly all of this variety shipped from California came from the extreme southern part of Santa Barbara county, and from the valley of Ventura county lying near the coast. The little valley of the Carpenteria sends out about one hundred car luads, and those of Ventura about twelve hundred car loads annually. (Estimate of 10 tons each.)
"The methods adopted here in growing and harvesting the Lima bean conld not be pursued in countries where rain falls during the summer season. The cultivation proper is all done during the winter and spring and before the beans are planted. The cultivation is very thorough and by the best of implements.
"After all danger of rain is passed in the spring, say from the 1st to 2nth of May, the seed is put into the ground in rows about forty inches apart and from six to fourteen inches in the row with machines that plant from two to fur rows at a time. After the crop is well up and growing, some weeds will have started too.

These are destroyed by using a horsepower weed knife, which passes just under the surface of the ground, killing the weeds in one or two rows at a time without disturhing the soil, which is by this time perfectly dry on top. As the season advances the plants send out their vines over the dry surface, until the ground is finally hidden from sight, and thus, all through the latter part of our rainless summers, thousands of acres may be seen covered with beautiful light green foliage.
"In the latter part of September the beans are all cut loose from the ground a little below the surface and are forked into piles conveuient for pitching onto wagons. They are then allowed to dry in the sun for about two weeks before threshing. Formerly all threshing was done in the following manner: A round space on the ground sixty to eighty feet is made quite wet, then it is wagoned over. packed and smoothed down and allowed to dry hard. Two or three big wagon loads are placed in a ring on this floor during very dry clear weather. Formerly horses attached to light wagons were driven over the beans (usually two or three teams at a time), till they were all shelled from the pods. The vines are then thrown off and more beans from the field placed on. This process is continued until there are many tons of beans on the floor under those that are being threshed out. After this the whole mass of chaff and beans is run through winnowing and screening machines and the beans placed in sacks of seventy-five to eighty pounds each and are ready for market. Of late years the teams on the floor are attached to dise machines instead of wagons, which greatly facilitates the work.
"The process of threshing by large steam machines which clean up from fifty to seventy-five acres of beans per day, has more recently been adopted by most of the large growers. It is a singular fact, however, that while the expense to the farmer who employs the steam thresher is usually five dollars per ton, the work is done by the first named method at about four dollars per ton. The machine threshed beans have also to be recleaned before they are marketed, and are broken so much that they are never fit for the seed trade. Yet there is ove great advantage with the steam thresher. The rainy season, so called, is approaching and a shower is liable to fall in October while the threshing process is in full blast, so that any beans that are caught on the floor are ruined if they do not manage to cover them in some way, while by the machine process all beans are sacked as they are threshed.
"Nineteen years ago an eastern seed firm haring learned of the successful culture of the Lima bean in this section, made arrangements to have a small lot grown, to be used in his business. The project proved to be a feasible one. Other wholesale seedsmen gradually came into this field and made contracts for seed. Some of them were at first unfortunate in dealing with careless farmers, the business proving unsatisfactory. The demand upon careful seed growers, however, increased until they virtually held a monopoly of that branch of the seed business in the United States, the writer having had contracts with eastern seed houses amounting to nearly one hundred and fifty tons in a single year. Within the past two or three years the extensive wholesale dealers in beans for all purposes have heen securing the contracts of seed houses and farming them out to whoever would grow them for the lowest price, with the result that an inferior grade for less money is now being supplied, while the careful and successful seed growers have mostly gone out of the business into other horticultural pursuits which promise better returns for their skill.
"For the benefit of some readers it might be well to state even at this late date in the history of agriculture in California that these crops are grown without irrigation and without any rain from the time the seed is planted till the beans are harvested, unless it be that an unwelcome shower is liable to come in the harvesting season in the month of October."

III. Index.

For the choice of varicties in our last years test, see page 368 . The Sievas are described on pages 350 to 353 : the large flat Limas on pages 353 to 357 ; the potato Limas on pages 357 to 359 ; the horticultural Lima on page 361 ; the Chickasaw Lima or Jack bean (Cenavalia ensiformis) on pages 362 to 364. The methods of culture recommended for New York are detailed on pages 365 (uses), 365 (woils and fertilizers), 366, 367 (planting and training), 365 (choice of varicties). The California operations are expounded on pages 368 to 372 .
J. H. BAILEY.

BULLETIN $116-\mathrm{May}, 1896$.

Cornell University - Agricul!ural Experiment Station, ITHACA, N. Y.

HORTICULTURAL DIVISION.

DWARF APPLES.

See page 391
By E. G. Lodeman.

O R G A N I Z A T I O N.

Board of Contro1 - The Trustees of the University.

STATION COUNCIL.

President, JACOB GOULD SCHURMAN.
Hon. A. D. WHITE.. Trustee of the University. Professor I. P. ROBERTS..................... President State Agricultural Society.

Professor G. C. CALDWELL ... Chemistry.
Professor JaMES LAW.. Veterinary Science.
Professor A. N. Prentiss, Emeritus ... Botany.
Professor J. H. COMSTOCK... Entomology.
Professor L. H. BAILEY.. . Horticulture.
Professor H. I. WING .. Dairy Husbandry.
Professor G. F. ATKINSON ... Botany.

OFFICERS OF THE STATION.

I. P. ROBERTS

Director.
E. L. WILLIAMS... Treasurer.
E. A. BUTLER ... Clerk.

	ASSISTANIS.
M. V. SLINGERLAND	Entomology,
G. W. CAVANAUGH	Chemistry.
E. G. LODEMAN.	. Horticulture.
B. M. DUGGAR.	. Cryptogamic Botany.

Office of the Director, 20 Morrill Hall.
The reqular bulletins of the Station are sent free to all who request them.

BULLETINS OF 1896.

[^72]Honorable Commissioner of Agriculture, Albany.
Sir.- The interest in dwarf pears continues to be unabated in this State, and one of the questions which comes to us very frequently is a request for information as to why dwarf apples may not also be a source of profit. Unfortunately, we are unable to answer these questions from any American experience, for dwarf apples have been grown in this country chiefly as single or specimen trees and not in plantations of commercial extent; and even as specimen trees, they are comparatively little known. Yet the inquiry concerning them is so great that we have thought it wise to collect and publish as much as possible of the scattered experiences of New York people. The Experiment Station Extension Law, under the auspices of which this bulletin is published, has for one of its leading objects, as we interpret it, the collecting and publication of the very valuable experiences of horticulturists in the Fifth Judicial Department of the state, which experiences are commonly lost to the public, but which are intrinsically as valuable as similar work which may be taken up by the station. In fact, they may be more valuable. The law is designed to promote the spread of information amongst the horticulturists of its territory. Its motive is distinctly educational. We have, therefore, no hesitation in presenting this average of experiences as a bulletin, even though it is not all founded upon experiments actually made at the station at Ithaca. To wait for the maturing of experiments would mean the delay of publication and a refusal to satisfy inquiry for several years to come. The reader must bear in mind, however, that we make no recommendation respecting the setting of dwarf apples for commercial purposes. We have simply given the gist of what evidence we have been able to collect in a two years' inquiry, and the reader must draw his own conclusions. The present writer has been more or less familiar with dwarf apples for twenty years, and has known some good commercial results to be obtained; but he is of the opinion that if dwarf apples are to be planted at all for market they should comprise only those varieties which are suitable for a very fancy or dessert trade.

The bulletin is submitted for publication under Chapter 230 of the Laws of 1895.

L. H. BAILEY.

Opinions of Dwarf Aipples by American Writers.

Patrick Barry: "The apple, worked on the Paradise, makes a beautiful little dwarf bush. We know of nothing more interesting in the fruit garden than a row or a little square of these miniature apple trees, either iu blossom or in fruit. Those who have not seen them may imagine an apple tree four feet high and the same in width of branches, covered with blossoms in the spring or loaded with magnificent golden and crimson fruit in the autumn. They began to bear the thirl sear from the bud, and the same variety is always larger and fiser ou them than on standards." - Fnuit Garden, New Edition, 1883.

IT. C. Strong: Dwarf apples are "well adapted for garden culture, giving the advantage of early fruitfulness, an increase in the number of small trees, and consequently in the uumber of varieties, when this is desired
Coustant watchfulness will be required in the culture of dwarfs to give annual supplies of food, to preserve the form by pruning, and also to prevent rooting above the dwarf stock and thus destroying its character." - Fruit Cuiture, 1885.

John A. Warder: "Such are very appropriate for the small garden, or for the specimen grounds of a nursery establishment, and they sometimes make beautiful objects on the lawns or among the shrublery, but thes are wholly unsuited for orchard planting." - Apples, 1867.

John J. Thomas: "For summer and autumn sorts, dwarf apples are valuable in affording a supply to families. They begin to bear in two or three years from settivg out, and at five or six years, if well cultivated will afford a bushel or so to each tree. A portion of a garden as large as the tenth of an acre, may be planted with forty or fifty trees, without crowding. All the different varieties of the apple may be made dwarfs by working on the Paradise or Doucin stock - the former are smaller and bear soonest; the latter are larger and ultimately afford the heaviest crops. Among the handsomest growers as dwarfs, are Red Astrachan, Jersey Sweet, Porter, Baldwin, Dyer, Summer Rose, Benoni, and Bough." - The American Fruit Culturist, Revised Edition, 1885.

George Jaques: "No one, we suppose, will attempt to cultivate these little trees in this country, excepting for ornamental purposes. They are very pretty garden pets in the midst of a flower-bed, or at the corners of alleys, or elsewhere where fancy may locate them. They seldom bear more than a dozen or twenty apples, and therefore the economical orehardist, looking to profit alone, ought not to consider them as worthy of his attention There is nothing

- very peculiar in the management of the dwarf apple. Its place is the garden, not the field; still less will it answer to put these little trees in grass-ground, or to subject them to rough usage." - A Practical Treatise on the Management of Fruit Trees. Worcester, Mass., 1849.

Dwarf Apples.

I. Dwarfing in General.

Effect of checking the movement of sap.- All fruit trees are prorided with certain well-defined courses through which the sap passes to every part of the plant. After the roots have taken in the water with its freight of dissolved plant food, the crude sap, as it may then be termed, enters a definite course which erentually brings the nourishment to the parts in which the materials are used for constructing plant tissue. There is no circulation of sap in plants in the sense in which there is in animals, no definite tubes through which it flows. It passes through the plant tissues by a process of absorption. The regions in which this transfer takes place will become apparent upon consideration of a few common facts.

Let us suppose a very common case. Labels are frequently secured by means of a wire which surrounds either a branch or the trunk of the tree. It is no unusual occurrence that such labels are neglected, and as the stem increases in size, the wire beromes imbedded in the bark. This forms a constriction about the stem, and the connection between the parts above and below the wire is more or less effectually destroyed, especially in the outer portions. As the wire becomes more deeply buried, an unequal growth takes place in the adjoining tissue. The stem immediately abore the wire becomes abnormally enlarged, while the rate of growth below is greatly lessened or almost entirely checked. If the wire is not remored, union of the tissues separated by the wire may take place, and the tree will be little the worse for the check. More frequently, however, young trees are so severely cut that the increased weight of the top forces the stem to break where it is surrounded by the wire, causing a total loss of this portion.

Another familiar example may be named. When the trunk of
a plant has been entirely girdled, as frequently occurs with orchard trees, and as is sometimes purposely done with grapevines when particularly large fruit is desired, it is interesting to note that the plant makes little attempt to cover the wound from below, but the healing takes place from above. At the same time the foliage does not wilt as if suffering from water, unless the cut has been made very deep, but it frequently remains green and apparently healthy for a long time.

The above facts lead to but one conclusion: the sap upon entering the plant rises through the inner tissues to the extremities of the branches, or to the leaves; from here it descends, choosing for its path, however, the tissues which lie between the outer bark and the wood. The part through which the sap rises is well known under the name sap-wood. In many plants this wood is very conspicuous in sections of the stem on account of its light color. The sap descends through what for convenience may be loosely termed the inner bark, which consists of the soft tissues that lie directly underneath the hard, corky covering of the stem.

Endogenous plants, such as the palm, corn, and others, do not have these tissues separated from each other as above described. The tissues which correspond to the sap-wood and to the inner bark are arranged in the form of long, slender, threadlike bundles which are readily distinguished as coarse fibers, thinly scattered in the pith as seen in corn stalks, and more thickly at the edges of the stems. The sap rises and descends in each of these many bundles of fibre, so that the girdling of this class of plants is not followed by such abnormal growths as occur on our fruit trees; the primary result of such injury is that the amount of sap which reaches the foliage is reduced in proportion to the number of these fibres which are cut.

The reason why the sap passes directly to the foliage before it returns to the growing parts of the plant is obvious; in the tissues of the leaves the crude sap is acted upon by various agents, with the result that the nourishment which was carried to the leaves is made available for use by growing cells. The process of changing the unavailable food to that which is of use to the plant is known as assimilation; the green portions of the plant are the only parts in which this change can take place, aud it can pro-
ceed only in the presence of light. The leaves may, therefore, be considered as one of the most important factors in the nourishment of plants. An injury to them is not merely a local matter, but it affects the entire plant economy.
After the sap has been elaborated by the foliage, it is in proper condition for nourishing any of the growing cells of the plant. It passes to the growing tips and there assists in lengthening the shoots, in forming new leaves, and in producing buds - some of which may be fruit-buds - which remain dormant until the following year. It passes to the main branches and the trunks of the plant, and supplies the cells which are forming wood and those which are forming the tissues of the inner bark with the materials necessary to their support and growth. It passes down into the root system of the plant and furnishes the roots with the food required for their proper growth; but if an insufficient amount of food is present the roots are the first to suffer, for it peems that only the part which is not needed by the parts above kround is allowed to go as far as it may towards the nourishment of the roots.

Wie are now prepared to consider the effect upon a plant of any injury or other abnormal modification. When a plant is girdled, the uourishing sap is prevented from returning to the roots; these must sufier and eventually die. But when only a part of the top of a plant is girdled, the roots need not necessarily be deprived of their proper amount of food, since the remaining brauches may perform their duty without the aid of the girdled portion. This part, however, may show very marked effects of the treatment. The sap is allowed to enter the branch freely; but when it is returning from the foliage it cannot pass the point of injury and we, therefore, find the abnormal growth of tissue which so commonly results from such mutilation. Yet all the food is not deposited at the girdle. Girdled brauches are frequently the most fruitful ones; in fact, they may be the only ones upon a tree which produce fruit. The branch may be said to be congested with food, and relief from this condition is sought in the production of fruit.

Girdling may have other effects than to promote fruitfulness. Grapes are girdled not in order to make them more fruitful, but
that the frut may be larger, and that it shall mature a little earlier. These are results which naturally follow from the abundance of the food supply.

The girdling of trees has been considered in connection with dwarfing berause the two subjects appear to be closely connected. The results of checking the flow of sap are very pronounced in gilded trees. Figure 117 represents a union of a Fallawater apple upon the dwarf Paradise stock. The stock was budded about 22 years ago, and an enormous swelling has been

117.--Union of Fallawater apple upon Paradise stock. The swelling, in which the knife is placed, is of the cion. The earth is removed in order to show the malformation.
formed at the point of union. The slow growth of the stock, as compared with that of the cion, prevents the free passage of sap from the foliage to the roots. The stock in such cases may be said to form an obstruction to the desernding salu, much as the wire does upon improperly labeled fress. If in spite of such an obstacle, the roots receive all the framred sap which they require, the tree should prove to be very fruitful.

Dwarfong a tree is done primarily for the purpose of growing a certain variety of fruit upon a slow-wrowing stock so that the top may never attain its normal size. ()ther things being equal, this dwarfing nerd not necessarily cause if to be more precocious or more fruitful. Jet dwarf trees do, as a rule, bear earlier than
standards; this is especially true in the case of apples. Fruitfulness depends largely upon a proper food supply. The reason that a tree bears earlier when it is dwarfed may probably be ascribed to the fact that it comes to an earlier maturity, and that certain buds receive better nourishment than when growing as standards. A dwarf tree never makes a rank growth, so in this respect it may be said to be at all times more inclined to bear fruit than the standard. If, in addition, the stock serves as a check to the return passage of sap, we have the condition which we suppose will produce fruit in standard trees.

In the case of pears, there is less difference between the bearing periods of standards and dwarfs than there is in apples. The difference that does exist may be cansed by the same conditions which were advanced above as causes for the earlier fruiting of apples. Dwarf pear trees are also supposed to produce larger and handsomer fruit than standard trees, but I know of no experiments which have shown this to be the case, although the truth of the statement is highly probable. All pear growers seem to agree that dwarf trees bear more regularly than standards, and it is the general impression that they bear more abundantly in proportion to their size.

The entire subject of plant dwarfing is an extremely intricate one. Directly connected with it are all the questions relating to the formation of leaf and fruit buds, the effects of more or less active vegetative growth upon fruitfulness, the kinds and proportionate amounts of food which are most influential in producing a desired effect, the influence of certain mechanical disturbances which were advanced above as causes for the earlier fruiting of important points still require investigation. Laws controlling such behavior of plants undoubtedly exist, but continued observation and wide experience must be had before these laws may be formulated with any degree of certainty.
Fruits grown as dwarfs.- The pear is the fruit most commonly dwarfed. It might be said that in the eastern states fully 50 per cent. of the trees are grown in this manner. The quince is used for stock. Such trees are very productive and under proper treatment they are long lived. One interesting point to consider in connection with dwarf pears is the fact that some varieties do
not grow well upon the quince, while others behave better when dwarfed than when grown upon free stocks. Apple varieties, howerer, are supposed to grow with equal readiness upon Paradise or upon Doucin stock.

Cherries may also be grown as dwarfs. The stock most generally used in such cases is Prunus Mahaleb, but the top must be kept severely pruned, otherwise large trees will be formed; but the dwarf trees are rarely grown in this country.* In Europe, however, the small cherry bushes have the reputation of being exceedingly productive, the fruit at the same time being of very fine quality. These plants are grown mostly by amateurs.

Plums have long been dwarfed by pruning the roots severely every year or two, so that the top growth of the tree may be checked. Such trees bear regularly and abundantly; cherries may be treated in a similar manner with the same result.

II. Dwarfing the Apple.

Apples are at present regularly dwarfed by grafting or budding the desired variety upon some small form of the common apple species, Pyrus Malus. The species is extremely variable, having produced the bulk of the varieties now in cultivation (all save the crabs are of this species) as well as the dwarf forms, the Doucin and Paradise apples, which at present serve as stocks to check the growth of the more vigorous sorts. These dwarf apples were originally seedlings, the same as our present varieties are; and no doubt similar varieties appear at the present day, but we do not look for them and save them. Gardeners have known the dwarf varieties of apples for many centuries, and the introduction of these forms into cultivation can no longer be traced with certainty. The subject is made the more difficult because of the repeated transfer of the same name to different varieties of apfles; this has been done so frequently that the term "Paradise apple" may more properly be considered to refer to a class of apples rather than to a single variety.

[^73]The Paradise apple.- Early botanists considered as different species many forms of apples which are at present recognized as mere varieties of one species. The Paradise apple, as now known, is probably similar to the plant described by Bauhin as Malus pumila, "whose fruit is the apple of Adam."* It was said to bear both red and white fruits. Linnæus classed it as Pyrus Malus, var. Paradisiaca, \dagger while Roemer called it Malus Paradisiaca. \ddagger The plant is distinguished, aside from dwarfness, according to Koch, by its smooth, shiny branches, both the old and the newly matured wood having a dark brown color. The leaves are finely serrated and taper at both ends. One of the most important characters of this apple as well as other dwarf forms, is the production of underground stems, and of stolons by means of which the plant may be rapidly propagated. These forms are also easily grown from cuttings, in which they differ from most strong growing varieties. In southern Europe, and especially in France, the roots are said to be extremely brittle, although in northern Germany this character is not always very marked. The fruit as a rule is small with a yellow skin and white flesh; it generally ripens during late summer or early fall.

Bauhin mentions two explanations for the origin of the common names of this variety. $\|$ They are not entirely satisfactory, but the first probably contains a hint of the truth. He says: "Tragus, who describes the Argentinæ, describes certain kinds of apples from Germany. Some are sweet, white, oblong, etc., and are called Paradise apple. It is seen that Tragus, according to the common opinion, believed that this apple is from the tree

[^74]whose fruit the great Jehovah forbade our first parent, Adam, to eat.
" Hieron Brunsch calls that apple the Paradise in which the bite of Adam and Eve can be seen." * * *
"Gesnerus * * * says there are two kinds of dwarf apples, one of which is called the Paradise apple. This variety, * * * is similar to that which Matthir Curtius calls the Paradise. It is white, and ripens late in July. The plant is a bush not more than 4 cubits [6 feet] high, propagating itself from the roots."

Parkinson describes the Paradise apple in the following brief terms:*" The Paradise apple is a faire, goodly yellow apple, but light and spongy, and of a bitterish sweet taste, not to be commended."

No single variety can, therefore, have been considered as the true apple of Paradise, or Adam's apple, by those early writers. Their descriptions include those apples which grow upon bushes or low trees, these having the power of propagating themselves rapidly by suckers or underground stems, and whose fruit is light colored, often tinged with red on the sunny side. Even in more modern times, the name Paradise has been very loosely used. Koch speaks as follows regarding its present significance in Germany.†"By the name Paradise apple we now designate, as was formerly done by the Italians especially, a considerable number of different varieties, all of which are especially handsome. In northern Germany the name applies to Pyrus spectabitis. The pomologolist Henne considered it as belonging to the White Winter Kalvill, while the Red Fall Kalvill was called by Diel the Red Paradise. In the Netherlands, the Eiser also bears the name of the Double Sour Paradise. We also have a yellow Paradise; and the Red Stettine is frequently termed Paradise. Many other cases might be mentioned." \ddagger

These examples will suffice to show with what freedom the name Paradise was applied to apples which possessed such beauty that their beholders were brought under the same spell as

[^75]that once exerted by the forbidden fruit of the Garden of Eden.
Three forms of apples which are suitable for stocks are mentioned by Philip Miller in his Gardener's Dictionary.* They are all included under Malus pumila. They are as follows:
" The Crab [Malus sylvestris, acido fructo albo, Tourn.], which is the first sort here mentioned, has been generally esteemed as the best stock for grafting apples upon, being very hardy, and of long duration; but of late years there have been few persons who have been curious enough to raise these stocks, having commonly sown the kernels of all sorts of cider apples for stocks without distinction, as these are much easier to procure than the other; so the gardeners generally call all those crabs, which are produced from the kernel, and have not been grafted; but were the kernels of the crabs sown, I should prefer those for stocks; because they are never so luxuriant in their growth, as those from apple-kernels; and they will continue longer sound; besides, these will preserve some of the best sorts of apples in their true size, color and flavor; whereas the other free-stocks produce larger fruit, which are not so well tasted, nor will they keep so long.
"The Paradise-apple hath, of late years, greatly obtained for stocks to graft or bud upon; but these are not of long duration; nor will the trees grafted upon them ever grow to any size, unless they are planted so low as that the Cyon may strike root into the ground, when it will be equal to no stock; for the graft will draw its nourishment from the ground, so that it is only by way of curiosity, or for very small gardens, that these stocks are proper, since there can never be expected any considerable quantity of fruit from such trees.
"These trees have been much more esteemed in France, where they were frequently brought to the table in the pots growing with their fruit upon them; but this being only a curiosity, it never obtained much in England; so that the gardeners do not propagate many of them here at present.
"There is another apple which is called the Dutch Paradiseapple, much cultivated in the nurseries, for grafting apples upon in order to have them dwarfs; and these will not decay or canker
as the other, nor do they stint the grafts near so much; so are generally preferred for planting espaliers or dwarfs, being easily kept within the compass usually allotted to these trees.
"Some persons hare also made use of Codlin-stocks, to graft apples upon, in order to make them dwarf; but the fruits which are upon these stocks are not so firm, nor do they last so long; therefore the winter fruits should never be grafted upon these."

The Dutch Paradise mentioned by Miller is at present unknown in England under that name. From the description given above it would appear that this variety, or class, is the same as the stock now known as Doucin (see page 387). His Paradise apple, on the other hand, is very similar to that which at present is more definitely termed the French Paradise. The following extract will indicate clearly what the nature of this variety is:
"At the same time will be forwarded to that gentleman 500 specimens of 'the duarf apple of Armenia.' They are all much past the age of puberty, though only 18 inches high. I received them two years ago from Armenia, and they do not appear to have grown at all. They increase slowly in thickness. I have often seen them planted in pots and cases on the terrace in the city of Meppo, of 40 and 50 ycars' growth, never exceeding 2 feet in height, nor in the thickness of their stems, that of your forefinger, without their ever having been pruned. To test the fact that their diminutiveness was not caused by their being always kept in pots and boxes, I planted out three of full 15 years' growth, and after keeping them 18 years in the open ground, found they had made no perceptible progress. I remarked that they bear best when their roots are cramped. They are very easily propagated, as they make abundant offsets, and take remarkably well from cuttings. Among the trees now sent, there are seventeen which were made from cuttings two years ago; and 10 budded, at the same time, with the Ribston pippin, and other sorts."* By the use of such stocks, plants could easily be grown in pots and set upon the table, as stated by Miller; but they can possess little practical value.

The French Paradise was known in France as early as the beginning of the 15 th century. \dagger It was considered as one of the

[^76]most highly flarored varieties then grown, and according to Champier, who lived about a hundred years later, it was identical with two of the best varieties grown in his day. The first puhlished account of the fruit, according to Koch, appeared in Jean de Ruelle's "De Natura stirpium, libri tres." This fruit was of a red color on the side exposed to the sun,* and for this reason could not have been identical with other forms classed in the group.

The Doucin apple.- The introduction of the Doucin stock can be traced with more accuracy than that of the Paradise. According to Koch, \dagger "It appears that the Doucin is of Italian origin and was first brought to notice by A gostino Gallo during the first century following the middle ages [probably the 16 th century.] He mentioned two forms, Dolciano nano and Dolciano Mezzano, meaning the dwarf and the semi-dwarf sweet-apple. We do not know when the Doucin was brought to France, but it was probably introduced soon after it became known in Italy." The time of its first use in England is also a matter of doubt, and judging from the writings of Philip Miller, it does not appear to have retained its original name. (See page 386.) Yet Parkinson briefly mentions it: "The Deusan or apple John is a delicate fine fruit, well relished when it beginneth to be fit to be eaten, and endureth good longer than any other apple."

The Doucin is a stronger growing stock than the French Paradise, forming a bush or small tree intermediate between the latter and a standard tree. It also is said to have the power of throwing out underground stems or suckers, although it does not have stolons, and it may be propagated from cuttings of ripened wood. The wood is more or less covered with fine hairs, or tomentum. The fruit rescmbles the Paradise in size, but the color is more red, especially on the sunny side. The sweet llavor has caused it to receive its common name, Doucin.

Koch states!! that the plant apparently grows wild in southeastern Russia, where it forms thickets, especially in the regiou of the lower Don and Danube rivers. It was called Pyrus prae-

[^77]cox by P'alas, and may be identic 1 with P. Sieversii of Ledebour, who found a similar plant growins in southern siberia. As the botany of the apple is as present unbrstood, however, the Doucin and Paradise, as I have already san, are held to be simply forms of the common apple.

The Rennette apple (Pommier nain de Rennette)-A third stock, one mentioned by Duhamel,* is rarely named is horticultural writings. Duhamel compared it with the two more common forms: "The Doucin apple forms but a large shrub, the Paradise rises to a less height, while the Rennette apple scarcely exceeds a gilly flower in size; and thus it is that the size and the habit of apples vary with the different forms."

The Rennette of Duhamel seems to resemble the Paradise, and also the "Apple of Armenia" mentioned on page 386 . The characters which distinguish the Paradise from the Doucin, the Doucin from the Codlin, the Codlin from the Crab, and the Crab from our named cultivated varieties, are by no means satisfartory or reliable. One form gradually approaches another as re'gards stature, and seedlings which are more or less dwarf have ${ }^{3}$ undoubtedly been referred to the class which they most closely: resembled. All who have observed the height reached by seedling apples will have seen that they vary exceedingly. Some plants grow slowly and remain small; others start off from the beginning and make a clean rapid growth. As all such seedlings are generally the offspring of vigorous sorts, it is rather surpris. ing that some should remain as small as they do. If the seed of smaller varieties were to be planted, undoubtedly still more dwarf forms would appear, and eventually the small French Paradise stock might be reproduced.

The power of producing offsets and stolons, which has been emphasized by some of the writers mentioned above, need not necessarily be considered as an essential character of the dwarf forms at present grown. Local conditions prohably exert considerable influence upon this habit, for we have a plant of the soralled Paradise apple which has been growing upon the station

[^78]grounds for six years, and it has as yet failed to produce a single creeping or under ground stem which could be used in forming an independent plant. Neither is the power of growing from hard wood cuttings, limited to dwarf trees. Some of our orchard varieties may be propagated readily in this manner, even with little care, so that this character also may be considered as possessing only relative importance.

Propagation of dwarf apple stocks.-When the stock plants sucker freely, the suckers may be detached with a certain amount of root system, and then be transplanted and grown as independent plants. A very common nursery practice, however, is to subject the plants to mound-layering. This is performed by srowing the plant or "stool" until it has become well established. It is then cut off within a few inches of the ground and all the shoots which are thrown out are allowed to grow. These shoots are made to root by heaping the earth about their bases, thus burying their lower half. This may be done the first year and rooted plants will be formed by fall, especially if the shoots have been partially cut or injured near the stock; such plants, however, are weak, and it is better to allow the shoots to grow unmolested during the first year, the mound being formed in the spring of the second.

The rooted shoots are removed in the fall of the second year, and if sufficiently vigorous they may be grafted with the desired raricty during the following winter, or budded the next summer. Small stocks should be grown on in the nursery until they have reached the desired size for working.

Pruning.-Dwarf apple trees should be very thoroughly pruned from the time they are set. The object of this pruning is threefold: the wood which is capable of bearing fruit will be more freely produced, the fruit spurs will be distributed evenly over all the lower parts of the trecs as well as the top, and the tree will be kept in a dwarf habit. These results may not be obtained if too little wood is removed. Each year's growth, if vig. orous, should be cut back at least one-half or two-thirds, and generally more may be removed with perfect safety. Occasion-
ally, dwarf trees will be found in which the natural vigor of the cion seems to have stimulated an undue growth of roots, so that the tree, instead of remaining small, increases rapidly in size,

118.-Dwarf Ben Davis six years from planting ; before pruning.
and soon it bears little resemblance to the plants frequently illustrated in books to show how a dwarf apple tree ought to appear. The annual growths may be from one to two feet in
length, and at this rate good sized trees are formed in a short time.

Figure 118 represents a Ben Davis apple upon Paradise stock; the tree has been growing in the Cornell plantation six years and although it is considerably smaller than a standard tree of the same age, still it can scarcely be considered as more than a half dwarf. A true dwarf tree, as described in most writings, would have a top hardly one-third as large. In past years this tree has been pruned with but moderate severity, so that it reached a height of fully eight feet. In this case, no material disadvantage resulted from such treatment, for an abundance of fruit spurs may be found distributed in all parts of the tree. A Maiden Blush dwarf which received similar prunings was affected differently; the buds which were near the point at which the annual growth was cut back were the only ones that started, and their growth was so rapid that practically no fruit spurs were formed during the first two or three years, and those which have appeared since that time are so high up in the tree that the lower' parts of the main branches are bare and therefore unproductive. This defect frequently becomes exaggerated as the tree grows older. An excellent example of the ruinous effect of continually removing the lower branches from a dwarf apple is shown in Fig. 120. This tree, an Early Joe, was planted in its present position fully thirty years ago (not upon the Cornell plantation). It has been pruned gradually higher until at present the lowest fruiting branches are at least five feet from the ground, and a total height of practically twelve feet has been reached. This is not an ideal dwarf! The tree shown on the title-page represents a much better type. The original from which the drawing was made was five feet in height, the lowest leaves being but eighteen inches from the ground. The top has been allowed to assume its natural spreading form, but a firm control has continually been exercised over any too ambitious efforts of the branches. The tree has practically the same form and size which it will retain during its entire existence. The main branches will increase in circumference, the outer limbs will
gradually lengthen, and the fruit spurs will become more crooked, yet the tree will always be low and spreading. The one criticism which might be made is that the lowest fruiting branches are still too high. The foliage of the ideal dwarf apple tree almost touches the ground; it has all its main branches

113.-Same as Fig. 118, after pruning.
well studded with smaller ones, or with fruit spurs, so that, when in full leaf, it shall appear "feathered "from bottom to top.

The tree represented in Fig. 118 is worthy of careful study. The bower branches spring from the trunk at a height of less than ten inches from the ground. Several large branches rise
in an upward and outward direction, and these form an almost perfect framework for supporting the smaller limbs, which bear the fruit. The wood is well distributed, and its amount is more than ample for clothing the entire top with an abundance of leaves; it is well that this should be so, for it allows a greater choice of branches when the tree is being pruned.

The same tree is shown in Fig. 119, after having been pruned. The pruning has been severe, as the tree has already reached such size that further increase should be made slowly. Much wood is allowed to remain near the ground and in the center of the tree, for it is always easier to remove superfluous branches than it is to insert them where they are wanted. The form of the pruned tree is that of a rather broad vase, this being the shape which the tree naturally assumes. During the coming season, it should be well provided with foliage so that none of the main branches shall be exposed to the full glare of the summer sun. 'The fruit produced will also receive proper shade and the specimen as a whole may be considered as a good type of dwarf apple tree which has not been forced to assume a form which is unnatural to it.

The summer pruning of dwarf apple trees is, as a rule, unnecessary when the plants are grown as above described. If branches are desired in certain parts of the tree, a more or less severe pruning during early summer will have a strong tendency to force growth to appear from dormant or adventitious buds. It will cause the appearance of "water-sprouts," which, if checked in turn, may be converted to useful purposes. Another advantage of summer pruning is that it probably induces the formation of fruit-buds, but as dwarf trees rarely possess the fault of bearing too little fruit for their size, this end need seldom be sought.

The study of the fruit-buds of an apple tree is an interesting one, the more so on account of the mystery which will be found connected with their formation. One who studies fruit-buds, will not conduct his investigations very far before he is puzzled first by one question, then by another, and eventually he may feel lost in a sea of doubt. Dwarf apple and pear trees are ex-
cellent subjects for the inquisitive to begin with; later speculacions may include all the other fruits. The method in which fruit-buds are formed is illustrated in Fig. 121, the spurs having been taken from a dwarf Ben Davis tree.

The twig a in the figure shows a stem which is nearly all two

120.-Neglected dwarf apple about 30 years from planting.
years old. The growth of the past year may be seen only near the top, starting just above the upper spur. The terminal bud of the shoot, therefore, grew straight on and may have reached a length of 12 or 15 inches. But it was not so with the lower side buds. These made a growth of scarcely half an inch, yet they are perfectly strong and healthy. What they would have done had
no fruit been borne the following season may be discovered by examining b. The two spurs upon the twig are each two years of age, the twig being three years, for it made one year's growth before the spurs broke from the buds. These spurs average scarcely over half an inch in length, and their diameters are probably but little larger than they were the year before. In d, in the center of the plate, we also find two-year-old spurs, but one became ambitious during the second year of its existence, and grew outward, probably in search of more light. The portion e represents a spur which has seen four summers. The small irregular line at its base shows where the first year's growth stopped; those an inch higher mark the increase of the second year; the third year added about an eighth of an inch and the fourth applied the top story to the structure. The spurs of e on the lower side of the plate, have the same age, but the amual growths are of more uniform lengths.

By examining the buds upon these spurs, it will be found that some are smaller than others and that they vary also in form. Such buds as are borne at the ends of the long spur upon d, e and the two upou b are pointed and they have a diameter which is less than that of the twig upon which they are borne. Larger and more spherical buds may be found upon a, c, and d. These are what are generally termed fruit-buds, as they contain minute blossom buds which, with the coming of spring, will develop flowers as well as leaves. No blossom buds will be found in the smaller buds, but only leaves, and during the coming season a leafy shoot will be produced, and the terminal bud may prepare for flowering the next year.

Young fruit-bearing wood, therefore, appears as shown in the illustration, and such wood should be well distributed thronghout the entire tree. Its removal means the removal of fruit, although the fruit may not appear for a year or two or three; still it will appear sometime upon spurs, and such small branches should always be remored cautiously. The same remarks apply also to standard trees, and these should never have their branches pruned so that they resemble long-handled brooms, the
brush of which projects from certain parts of what should be a symmetrical tree.
III. Commercial Value of Dwarf Aprles.

Field of duarf orchards.-The first thought which naturally arises when the commercial value of dwarf apples is considered,

[^79]
121.-Spurs of Ben Davis apple showing leaf buds upon $b, c, c l$ and e; blossom buds are upon a, and also upon c and d.
is the amount of fruit produced by such trees. The statement is generally accepted that such fruit is larger, handsomer, and perhaps a little earlier and of better quality than that produced by standards. The extent to which this is true has not yet been rosily defined, and careful investigation may modify the force of
the assertion; but even granting its entire truth, there still remains the consideration of the ultimate yield of fruit, in bushels, per acre. The question is, unfortunately, answered with difficulty. There are at present extremely few dwarf apple trees growing in New York, and those which do exist are mostly of different varieties so that comparative rields can not be made with entire satisfaction. Methods of pruning, or of not pruning, as well as differences of soils, location, etc., also enter as modiİying circumstances. Nevertheless, some data are available for estimating approximate yields.

The following remarks refer entirely to trees grown on Paradise stock; they do not include such trees as have taken root above the point of union of cion and stock. Dwarf trees which have been set so that the union is sereral inches below ground, are apt to form roots at the lower end of the cion, and then more active growth takes place. Such trees are no longer dwarfs, but they must be considered as standards or at least as half-dwarfs.

The first estimates here given are based largely upon actual observation of dwarf apple trees, and also partly upon theoretical grounds. The printed descriptions for growing dwarfs almost invariably state that the trees should be set at intervals of about six feet each way for ordinary culture. In Thomas' American Fruit Culturist the distance named is eight feet for roundheaded trees upon Paradise stock; and "for pyramids or dwarf standards on Doucin stock, ten feet." Doucin stock is at present neither grown nor used in this country except to a very limited extent, and I hare as yet beeu unable to find a bearing tree growing upon it. Practically all trees now sold by New York nurserymen are upon Paradise stock, and the trees scattered about the State are also said to be growing upon this variety. The Doucin stock must therefore be omitted from this discussion; only the plants growing unon the so-called Paradise stock can be considered in detail, the value and characters of plants growing upon the Doucin resting upon the statements of correspondents (see page 402).

I am lead to believe that even eight feet is too close for dwarf
apples when grown in a closed vase form, or when allowed to assume their most natural shape, as shown in the frontispiece, these two methods being the only ones followed to any extent in New York. Upright growing varieties are trained according to the first system, while those of spreading habit are allowed to grow in their natural form. Ten feet appears to be none too much for either form of tree, and probably twelve feet would frequently be preferable. On rich soils and with vigorous varieties, a distance between the trees of fifteen feet will prove advantageous, and it thus appears that the number of trees which may profitably be planted upon an acre depends largely upon the habit of the variety, and upon the character of the soil; similar rariations occur also in the case of standard trees. Assuming, howerer, an arerage distance of twelve feet between the trees, there may be set 300 trees per acre. During the first five years of their growth, these trees may yield some fruit, or they may not: the dwarf apples growing upon the Cornell grounds have been set six years, and none of the trees have borne over a dozen apples during any one season. The fruit which was produced was in no particular extraordinary; size, color, and quality were apparently identical with fruit from standard trees. Thus far, therefore, our dwarfs have not distinguished themselves as possessing superiority of any kind, except possibly early fruiting, yet we have several standard trees of other varieties which have borne more fruit than these.*

When dwarf apples have reached the age of ten or fifteen years, they hecome more useful. Such trees seem to average in this State from three to four peeks of apples annually. Assuming the arerage ammal yield of these trees to be three pecks per tree, about seventy-five bareels of fruit would be obtained from each acre of orchard, every year, by no means a poor yield. But after a tree has passed its twentieth year still larger returns may be expected. I have seen dwarf trees over thirty years of age which were bearing from three to four bushels of fruit, but

[^80]such trees are rare exceptions. From four to six pecks may be stated as representing approximately the amual yield of mature trees of naturally productive varieties which are grown as dwarfs, and which have been well fertilized and pruned. It will be found that the apples must be borne with considerable regularity that such an average shall be maintained; one year's partial failure, and such do occasionally occur, means a heavy crop for the succeeding year or two, and that in turn leaves an exhausted tree. A yield of about one hundred and twenty-five barrels per acre would be obtained from a uniform plantation, at the rate here assumed, and I believe this amount represents the present production of dwarf trees which have been well grown.

Yield of standard orchards.- In estimating the yield of standard apple trees, the same difficulties are eucountered as in the case of dwarfs, but the uncertainty of the crop is here even more pronounced. The natural fruitfulness or barrenness of a variety expresses itself unequivocally, for the modifying circumstance of dwarfing does not obscure these characters. Soil and location are also free to exert a direct influence, and methods of cultivation, differing widely from each other, also play an important part. In considering standard orchards, the two extremes in their powers of bearing must be avoided, as has also been done in the discussion of dwarf trees.

An apple orchard which is composed of vigorous-growing rarieties should be set so that the trees shall be at least forty feet apart each way. This allows twenty-seven trees upon an acre. If the varieties are but moderately productive, and the trees have been fairly well culticated, a yield of about three barrels may be expected as the arerage annual crop per tree while the orchard is from 15 to 25 years of age. From this period until the trees begin to fail from old age, an arerage yield of five barrels per tree is more than is generally obtained. At this rate, the total returns from an acre would be about 135 barrels, a crop which exceeds the estimate of the dwarf trees by only 10 barrels. When orchards are composed of the less vigorous varie-
ties of apples, the trees may be set closer together; the yield per tree will be less than that of the larger growing sorts, but the greater number of trees may bring the average for standards to practically the same figure.

It would appear, therefore, that the jields from well grown standard and dwarf trees do not differ essentially, but such difference as does exist is in faror of standards. Definite data of undoubted accuracy are extremely difficult to obtain. The above figures, however, are founded mainly upon my own observation. Fortunately the estimates of others are also at hand, and a comparison of these conclusions should be made.

Other estimates of yields and profits.-Rivers writes* as follows regarding the returns from a plantation of 100 trees of Cox's Orange Pippin grown as bushes upon Paradise stock: "These trees will this season (1864), the third of their growth in their present quarters, and the fourth of their age, give an average of a peck from each tree, so that we might have from 4,840 [set 3×3 feet], growing on an acre of ground, 302 bushels of fine arples, worth 5s. per bushel, or $£ 7$. 5 . In 1866, the trees then averaging half a peck each, would double this sum, and make an acre of apple trees a very agreeable and eligible investment." It was the plan of this writer constantly to renew certain rows of trees so that the orchard should continue in regular bearing coudition.

Another interesting account is that of Cheal. The yields cited by him were actually attained by one of his friends. The name of the stock is not mentioned. The tree was a Warner's King, of pyramidal form, and was planted at Ramsden, in Essex, in November, 1871:

1872 Crop, 3 large apples. Pecks.
1873 Crop.. 1雨 $^{\frac{1}{1}}$
1874 Crop.. 2
1875 Сrop. 4
1876 Crop... ${ }^{6}$
1877 Crop... 7

[^81]1878 Crop, 2 or 3 apples. Pecks.
1879 (rop 6
1580 Crop 5
1881 Crop 4
1882 Clop 3
"Thus the average crop for 10 years was 4 pecks per year. These he sold in Chelmsford market at an average of 1s. 6d. per peck.
"The tree occupies a space of not more than 3 square yards; and calculating an acre of such trees 8 feet apart, or 681 per acre, the gross return would be $£ 204$ per acre yearly." ${ }^{\circ}$

A valuable series of tables has been furnished me by P. Pederson, Huntingdon Valley, Pa. The figures refer to Danish orchards, not to experience in America; nevertheless, they sarve to indicate what may be errected in this country where the conditions in many localities do not differ very materially from those existing in Denmark:
" Distauces of planting:
Staindard apples, $30 \times 30 \mathrm{ft}$, (quincunx, $27 \times 30 \mathrm{ft}$.).
Apples on Doucin, $10 \times 12 \mathrm{ft}$., or 12 x 12 ft .
Apples on Paradise, $6 \times 8 \mathrm{ft}$., or $8 \times 10 \mathrm{ft}$.
"Expected longevity of trees:
Standard apples, 50 to 60 years.
Apples on Doucin, 30 to 35 years.
Apples on Paradise, 20 to 25 years.
"Yield per tree and per acre:
Standards, 30 x 30 ft ., extra good, per tree, 6 bus.; per acre, 270 to 290 bus.
Standards, 30 x 30 ft ., good, per tree, 4 bus.; per acre, 180 to 190 bus.
Standards, 30x30 ft., medium, per tree, 2 bus.; per acre, 90 to 100 bus.
On Doucin, 12x12 ft., extra good, per tree, 1 bus.; per acre, 290 to 310 bus.

[^82]On Doucin, 12 x 12 ft ., good, per tree, 3 pks.; per acre, 210 to 230 bus.
On Doucin, 12 x 12 ft ., medium, per tree, 2 pks ; per acre, 100 to 120 bus.
On P'aradise, 8 x 10 ft ., extra good, per tree, 2 pks.; per acre, 250 to 270 bus.
On Paradise, $8 \times 10 \mathrm{ft}$., good, per tree, 1 pk ; per acre, 120 to 140 bus.

On I'aradise, $8 \times 10 \mathrm{ft}$., medium, per tree, $\frac{1}{2} \mathrm{pk}$.; per acre, 60 to 80 bus."
Probably the most interesting feature of the above figures is the general uniformity in the yield of trees of an equal grade, regardless of the method of growth. The Doucin stock invariably shows greater fruitfulness than either of the others, but still the differences are not great. When the above yields are considered in connection with the condition existing in this country, one is involuntarily lead to the statement that methods of culture, pruning, etc., have more to do with the yield of an acre of apple trees than does the method of propagation; and it is by no means impossible that experience will prove the truth of the thought.

An extended correspondence with many American growers of dwarf apples has resulted in the receipt of letters which frequently express somewhat contradictory opinions. Upon one point, however, all the writers agree fairly well, viz.: that apple trees grown upon Paradise stock are unprofitable. A variety of causes for this opinion are advanced, chief among these may be mentioned unproductiveness, short life, amount of care required, want of uniformity in the stock, and that only few varieties (of which one is Gravenstein) do well upon it.

Even greater variety of opinion exists regarding the Doucin stock. The majority agree in saying that the Doucin is in no marked degree an improvement over our ordinary free stocks. The trees do not bear earlier, they grow equally large, and for these reasons they have no particular value. On the other hand, some who have had experience with these trees say that they pos-
sess value, perhaps not so great as that of standards, but that if properly grown they will produce good crops.

The general opinion is that all dwarf trees are more regular in bearing than standards, although the total yield is not so great. They also have advantage of being more easily pruned and sprayed, and the picking of the fruit is also more easily performed; and the fruit upon such trees should therefore be more uniform and of better quality than that ordinarily obtained from standards. Evidently the true value of dwarf apples has not yet been thoroughly investigated and proved in this country, and hefore the trees are wholly condrmond for commercial plantings they should be carefully grown in some quantity.

Tarictics suitable for dwarfing.-There appears to be much less difficulty in growing all varieties of apples upon dwarf stocks than is the case with pears. No variety appears to have shown itself useless for this purpose, although some are recommended above others. It may probably be said that varieties which are baturally shy bearers will do better when dwarfed; naturally prolific sorts may be better as standards.

Cheal has published* a list which includes the varieties most suitable in Fngland for dwarfing:

1. "Dessert Apples. Red Astrachan, Duchess of Gloucester, Worcester Pearmain, Lady Sudeley, King of Pippins, Margil, ('ox's Orange, Mother, Scarlet Nonpareil, Bradick's Noupareil, Court Pendu Plat, Ross Nonpareil, Mannington's Pearmain, Duke of Devonshire, Sturmer Pippin.
2. "Kitchen Apples. Keswick Codlin, Professor, Lord Suffield, Duchess of Oldenburg, Ecklinville, Lord Grosvenor', Mank's Codlin, Pott's Scedling, Cellini, Stirling Castle, Frogmore Prolific, Mawthoruden, New, Schoolmaster, Cox's Pomona, Lord Derby, Prince Albert, Striped Beaufin, Wellington, Northern Greening."

American varieties have not been sufficiently tested to allow very definite statements to be made. The firm of Ellwanger $\mathcal{\&}$ Barry, Rochester, N. Y., has been most energetic in growing

[^83]dwarf apples, and the following list given by Barry* is probably the best now available:
"Red Astrachan, Large Sweet Bough, Primate, Beauty of Kent, Alexander, Duchess of Oldenburg, Fall Pippin, Williams Farorite, Gravenstein, Hawthornden, Maiden Blush, Porter, Menagère, Red Beitigheimer, Bailey Sweet, Canada Reinette, Northern Spy, Mother, King of Tompkins County, Twenty-ounce, Wagener." To this list might also be added Jonathan and Ben Davis, both doing well when dwarfed.

SUMMARY OF THE EVIDENCE.

The eridence shows that dwarf apple trees have been so little and so carelessly grown in this state that no definite evidence of their value can be obtained. Nearly all writers and correspondents agree in saying that they are unprofitable for commercial planting, although they are equally ready to admit that the trees may be satisfactory as single specimens or as ornaments in the garden. It is a general and apparently well founded opinion that apples grown on dwarf trees are handsomer and of better quality than those grown upon standards. This suggests that dwarf trees may be profitably employed for growing varieties which are suitable for very fancy or dessert uses. Dwarf trees can be easily sprayed and tended, and the fruit can be carefully thinned. They may be planted as close as eight feet apart each way, although a greater distance is probably preferable. A mature dwarf tree, which has been well grown, may average two or three pecks of apples each year. The Paradise is evidently the best stock to use, but this stock is not perfectly uniform in habit of growth or in the size which it may attain. In short, the name Paradise belongs rather to a class of very dwarf-growing apple trees than to any single and definite variety. These Paradise stocks are grown from layers, chiefly in France whence our nurserymen obtain them. From all the evidence which I have been able to collect, therefore, I cannot advise the planting of dwarf apple trees for commercial rewards, but it seems to me, nevertheless, that they are worth experimenting with for this purpose.

> E. G. LODEMAN.

```
BULLETIN 117-May, 1896.
```

Corne11 University-Agricu1tural Experiment Station, ITHACA, N. Y.

HORTICULTURAL DIVISION.

ORGANIZATION.

Board of Control-The Trustees of the University.

STATION COUNCIL.

President, JACOB GOULD SCHURMAN.
Honorable A. D. WHITE...................................... Trustee of the University.
Professon I. P. ROBERTS .-................. President State Agricultural Society.

Professor G. C. CALDMVELA... Chemistry.
Professor JAMES LAH... Veterinary Science.

Professor J. H. ('OMsTOCK.-... Eutomology.
Professon L. II. BAlLEY... Horticulture.
Professor H. H. IVING... Inairy Husbandry.

OFFICERS OF THE STATION.
I. P. ROBERTS Director.
E. I. WILLIAMS.. Treasurer.
H. W. SMITH Clerk.

ASSISTANTS.

M. V. SLINGERLAND Entomology.

GEO. C. WATSON .-... A!riculture.
G. W. CAVANAUGH. ... Chemistry.

L. A. CLIN'ION Agriculture.
E. J. DURAND Cryptogamic Botany.

Office of the Director, 20 Morrill Hall.
The regular bulletins of the Station are sent free to all who request them.

BULLETINS OF 1896.

106. Revised Opinions of the Japanese Plums.
107. Wireworms and The Bud Moth.
108. The Pear Psylla and The Now York Plam Scale.
109. Geologiral History of the Chantanquat Grape Bett.
110. Extension Work in Hortientture.
111. Swert Peas.
112. The 1×95 Chrysanthemums.
113. Dineases of the Potioto.
114. Spray Calondar.
115. The Pole Lima Beans.
116. Dwatf Apples.
117. Fruit Brevities.

Cornell University, Ithaca, N. Y., May 20, 1896. Honorable Commissioner of Agriculture, Albany:

Sir: This bulletin is submitted for publication under the Experiment Station Extension Law (Chapter 437, Laws of 1896), which appropriates funds, "for the purpose of horticultural experiments, investigations, instruction and information, in the fifth judicial department" of the state, and for "disseminating horticultural knowledge by means of lectures or otherwise." The papers herein contained are incidents to our main lines of research, but they seem to be worth permanent record. The information contained in the first article is much called for by the fruit-growers of our district and the apparently increasing prevalence of root-galls on fruit trees is a subject of much apprehension. It is hoped that the remarks upon the treatment of win-ter-injured trees may be timely.

L. H. BAILEY.

CONTENTS.

I. Packing-houses for fruit. (Page 409).-There are two types of packinghouses for fruit in use in western New York. One is a combined packing and storing house, and an excellent example is figured in cuts 112 and 123 . The other is a packing-house only, withont cellar, and is cheaply built. A good style of this trpe of building is shown in Figs. 124 and 125. These houses were built for grape packing, but they could be easily adapted to other fruits. The sorting and packing of grapes by Keuka and Chautanqua methods are illustrated in Figs. 126 and 127 respectivels. The methods of handing apples on a large scale in sheds, are represented by Fig. 129. The value of these figures and descriptions lies less in the direct information which thes give than in the emphasis which they place upon the importance of careful handling and packing of fruit.
II. History of the Ohio Raspberry. (Page 420). -The Ohio raspberry of western New York, which is the leading variety used in the extensive evaporating industry, is not the Ohio Everbearing of the books. The latter was the first variety to introduce black raspberry culture. It is probably lost to cultivation. The present Ohio came into cultivation about thirty years ago, presumably coming from Obio.
III. The Mistletoe Disease of the Blackberry. (Page 424). -The account describes an injury to blackberry canes caused by the blackberry psylla or flealouse. Spraying with kerosene emulsion and burning the deformed clusters, if they appear, are the proper remedies.
IV. Root-galls. (Page 425).-There is much complaint of the presence of rootgalls in orchards aud unrseries. So far as we know, these galls are not due to the work of any organism. They appear to be the result of some injury, or of some untoward condition of the soil or the treatment. Wheu numerous, they may seriously interfere with the vitality of the tree. Galls should be removed from all trees before setting (Page 426).
V. Are Dewberries worth growing? (Page 435).-The Lucretia dewberry is earlier than the standard blackberries, and the fruit sells for a blackberry. If properly grown aud trained on stakes or a wire trellis, it is capable of being made a profitable fruit.
VI. The Goumi. (Page 442).-This bush, a native of Japan, is a most desirable shrub for ornament, and its fruit is edible and gives promise of much usefulness if improved by cultivation and selection.
VII. The Winter Injuries. (Page 441), -The past winter was excessively severe upon vegetation. The injuries were no doubt augmented by the unusual drought and the dryness of the soil. Suggestions are given for the pruning and treatment of winter-injured trees.
VIII. Crimson Clover for Orchards. (Page 451). -The recent experience shows that crimson clover is often useful in orcharis, but that we have not set fully learned how to grow it. If sown in late July or early August on a well prepared seed-bed, it is about as reliabie as red clover.

Fruit Brevities.

I. PACKING-HOUSES FOR FRUIT.

There is much demand for instruction upon the style of houses which are best suited for the packing and handling of fruits. The subject is one which cannot be treated specifically for each grower, from the fact that every person has a different ideal, and he may grow fruits for a market which demands particular treatment of the products. The packing-houses most frequently seen in western New York are those used by the grape men; and if one studies the question, he will find that there are two distinct types of packing-houses in use in the grape regions. One type is a combined packing and storage house, and is used very largely in the central lake region, where Catawbas are grown and where the grapes are often stored for some time before they are marketed. The other type of house is that which is used in Chautauqua County and which is simply a half-way station between the field and the railway station,-a shelter place for the packing of grapes,- and is not used for the storage of the fruit.

In the lake region, as about Keuka and Seneca lakes, the grape interest developed at a very early period, before the market could take large quantites of fruit, before the Concord was known, and the Catawba is still the dominant variety. This variety is a good keeper; so it has come that the packing-houses of this district are very largely such as have cellars or cool rooms connected with them, and in these cellars the grapes may be kept until winter or even until spring. One of the best of this type of packing-houses which I know is that of George C. Snow, at Branchport, on Keuka Lake. This house is illustrated in Figures 122 and 123. It is built on a side hill, and the basement or cellar is used for the storage of grapes, the first floor is used for packing, and the second floor or attic for the storage of baskets, crates, and the like. This building measures 25×60 feet over all.

122.-Packing-house of George C. Snow, showing the packing-room entrance.

123.-Packing-house of George C. Snow, showing the basement entrance.

The foundation walls are 24 inches thick, and the cellar is provided with ample means of ventilation by ontside windows, and also by means of a chimney which runs from near the middle of the cellar up through the roof. The floor is of dirt. By means of careful attention to ventilation, this cellar can be kept to 50 degrees or below during September and October, and is frostproof during the winter. The windows are provided with closefitting sereens to keep out rats and squirrels. This cellar will easily hold fifty tons of grapes in the picking trays. The first floor is divided into two rooms, the front one being a packingroom 25 feet square, and the back room being a storage and shipping department 20xbor feet. This packing-room is provided with heat and is lighted by seven large windows. The floor above the cellar is donble and made of 11 inch matched pine, with an abundant air space between the two layers. This, therefore, protects the cellar from sudden fluctuations of temperature. The building is also shaded, especially from the afternoon sun, by large trees. This building can be erected for about $\$ 1,200$. It has 18 foot posts, a tin roof, the two rooms in the first floor ceiled with pine, but the top floor not ceiled.

The requisites for keeping grapes during the winter are given as follows by Mr. Snow in the Rural New Yorker for Feb. 1, 1896: "Any good building in which the temperature can be held even at about 3 n degrees, with ventilation as may be required, this to be determined by noting how the fruit is keeping, will be fommex available for grapes. No positive rules can be laid down. A cooling room, in which the fruit can be first cooled, is a necessity; be detrmined by noting how the fruit is keeping, will be found to be raised rapidly by placing a quantity of warm fruit in the room. As even a temperature as possible is much the best. Grapes should not be packed in haskets for shipping before being stored. They should be ripe, as grapes do not mature after picking. Niagara or any other rariety can be held only for a limited time, some varieties longer than others.

The Chautauqua type of packing-house is admirably illustrated by Figures 124 and 125 , which are pictures of the house

124.-Packing-house of W. W. Pettit, Brocton, N. Y.

125.-Plan of Mr. J'ettit's packing-house.
of W. W. Pettit at Brocton. In this case there is no cellar, for the grapes are not to remain in the house more than a day or two at the farthest; and they ordinarily pass directly through it on their way to the railway station. This is a house which can be built for about $\$ 500$. The main floor of the building is 24×40 feet in size, and aside from this there is a driveway under the same roof and which measures $11 x 30$ feet. This driveway connects with the main floor by two doors. The front room, which is lighted by four windows in the front and one upon the side

126.-Mr. Snow's packing -table.
and is 12×24 feet in size, is the packingroom. In the rear of this is a store-room for the grapes. The half-story above is used for baskets and crates, and these are delivered into the packing. room by a shute. This building will accommodate ten packers and will easily handle the grapes from fifty acres of land. The main floor is ceiled, but the half story above is unfinished.

In the packing of grapes the greatest care is required to keep the fruit clean and fresh, to prevent the bunches from being broken, and to preserve the bloom upon the fruit. It is very es-

sential that the house should be kept thoroughly clean and sweet at all times. It is especially important that the storage-room for the baskets and crates should be dry and airy, in order that the baskets may not become moldy or musty; and this room should also be kept darkened to prevent the baskets from coloring. Figure 126 shows a packing table in Mr. Snow's packingroom. This is a circular revolving table about which the packers sit. The packer holds the basket in her lap and takes the grapes off the table, which is turned as fresh fruit is put upon it. Figure 127 shows the packing-room in Mr. Pettit's house. In this case, the picking trays are set before the packers upon an inclined table, and the packer handles the grapes from this tray into a basket which she places at her left. When the basket is filled, it is placed upon a flat ledge in front of her, and is taken off by an attendant who places the baskets on a truck and rolls them into the back room, from which they are delivered to the wagon. When the tray is empty, it is slid through an opening just in front of the packer and underneath the flat ledge upon which she places her finished baskets. A quantity of empty baskets are kept upon a shelf just above this ledge and these are replenished by an attendant, as necessary.

Another type of packing-house is shown in Figure 128, which is a picture of a peach-house upon the farm of James Austin, at Morton, N. Y. The illustration shows one-half of the house. In the middle of the house is a driveway extending completely through it, which is closed by rolling doors. The fruit from the orchard is driven into this driveway, and is unloaded upon either side. The two ends of the house are opened by doors which are hinged at the top and the packed fruit is delivered through these doors or to the wagons in the driveway. This is a very convenient cheap type of house which may be used for peaches or apples during the fruit season, and for the storage of tools and barrels during the winter.

There is the greatest difference of opinion concerning the best ways of handling apples. These differences arise very largely from local conditions. If the apple grower sells his crop to the
traveling buyer in the fall, he will handle his fruit in the manner which this buyer prescribes. Ordinarily, the fruit is handled from the trees into piles, from which the barrels are packed as opportunity offers. In other cases, the apples are placed directly upon a sorting-table and the barrels are filled immediately. In still others, the apples are placed directly from the picker's basket into the barrel without being sorted. Every grower must decide for himself how he shall handle his crop. If he desires to market his crop himself and to hold it for some time, awaiting the movements of the market, he will find it essential to have some temporary storage place for his fruit. For myself, I am

128.-Packing-house of James Austin.
convinced that apples can generally be packed better and will keep longer if they are stored for a time after they are picked, in a cool building. This will allow the natural sweating process: and the shrinkage to take place, all the inferior fruit will show its blemishes, and the apples can be packed at leisure. If it should happen that the market will not pay for the handling of the fruit in barrels, it is in convenient shape for selling in bulk or for use in evaporators. Figure 129 shows a storage house for apples upon the fruit farm of T. G. Yeomans \& Sons, of Walworth, Wayne County, N. Y. In this case the apples are picked in bushel baskets, and from these baskets they are turned into bins in a shed which has an open front. In these apple
sheds it is important that the roof be well shaded in order to keep the building cool; or if that cannot be done, then there should be a story or half-stery above the apples to keep the heat of the sun from the storage room.

I have been so much pleased with the thorough and systematic way in which the Yeomanses handle their fruits, that I have asked Mr. L. T. Yeomans to give me an account of their practice and which now follows: "We long ago found that it economized labor in the hurry of the gathering season, if we could put our apples under cover, where we could keep them much later than in the open orchard, and could work on rainy or very cold days, thus prolonging the season, for both the workman and ourselves, at the time when it is most difficult to secure plenty of help. We think it a great adrantage, when it is desired to keep apples late, that they be packed in the barrels as late as possible. Allow them to sweat in the pile rather than in the barrel, and any which are disposed to decay early will have begun to show signs of decay and can be thrown out. The weather is also colder than when they are picked from the tree, especially where one has large orchards and must begin picking as early as possible.
"In gathering quinces and pears, we send all the packing force to the orchard during the latter part of the day, and by spreading the fruit thinly, on a little clean straw on the ground under the open shed, they become cooled during the night, and are in good condition for putting up the next morning; when, if left on the trees, they would be so wet from the dew that we could rarely pick them until they had become warmed by the sum and in an undesirable condition for packing.
"For a packing-house, we prefer an open shed, opening to the east, adjaceut to a building in which the barrels can be stored. These barrels should have one head nailed and marked with the grower's brand, and the other taken ont and placed in the open barrel before passing it out into the shed for filling. We use a ground floor covered with a little clean straw. Our shed is 20 feet in depth, in bents of 14 feet. Planks 2×10 or 12 inches are placed across the front from post to post as desired when filling,

129.- Packing-shed of T. G. Yeomans $\mathcal{\&}$ Sons.
and are readily taken out as the packing progresses. When filling with apples, we use a plank for the man to walk on as he carries the fruit to the back of the shed. The empty barrels are set on one or more planks, which are not quite as wide as the heads of the barrels, where one person faces the bottom (which is to be the head), by placing the first course of fruit; the same person empties the half-bushel round baskets (in which we sort all of the No. 1) into the barrels in order as they stand on the plank, giving the barrel a vigorous shake for every basket, while the packers work constantly sorting from the piles, the apples rolling down to them. These half-bushel baskets should be of such shape and size that they can be readily turned over in the barrel in emptying, to avoid bruising the fruit as is done when poured into the barrel. All rejected fruit is put into bushel baskets and taken away. Each sorter uses a separate basket, so that it is easy to detect poor work when the baskets are emptied into the barrel. One man heads, nails and rolls out the barrels; another faces, and empties baskets. As far as possible, each person has his particular kind of work, and, if not satisfactorily done, the responsibility is readily located. We expect to pack our apples early in November. The first heads of the barrels are nailed on rainy days during the summer or early fall. When the barrels are packed, they are piled up outdoors, and if weather is dry, we sprinkle them thoroughly to prevent the barrel from absorbing the moisture of the fruit, thereby causing it to shrink and to rattle in the barrel.
"It is important that the quality shall be the same all through the barrel, and, as far as possible, that one barrel shall be a fair sample of a car load or more. Great care should be taken in all the stages of gathering and packing never to needlessly bruise the fruit. For picking, which for winter apples begins about October 1st, each man uses a half-bushel handle basket, which he empties when filled into one holding one and one-fourth bushels, by capping the latter over the former and inverting to avoid bruising in emptying the first basket. We use these bushel baskets in which to draw all of our fruit to the packing-house,
drawing forty-six at a load, as illustrated. The wagon is a broad tire half-truck, with springs which raise the rack only about four inches above the bolster, and carries 4,500 pounds. When shipping, we draw 20 barrels on end on such a rack."

II. HISTORY OF THE OHIO RASPBERRY.

Confusion has arisen concerning the history of the Ohio raspberry which is so extensively grown in New York for the evaporating industry (see Bulletin 100), because of the fact that the Ohio raspberry of the books is a distinct variety. The history of this Ohio raspberry of New York is given in the report of the Iowa Horticultural Society for 1886 (page 88), but some of the details seem to be inaccurate. I now put on record the true history of this invaluable berry, as written for me by Dr. H. P. VanDusen, of Rochester, N. Y.:
"Some where in the sixties, my grandfather, Hiram VanDusen, of Palmyra, N. Y., bought a lot of Doolittle plants of Mr. Purdy, of same place, enough to plant something less than an acre. When these plants were getting old and nearly worthless, he discorered a plant which was apparently as good as new. He also knew from previous observation that it ripened later, was firmer and always loaded. He took pains to get tips down, and secured a few plants, and from these still more, until he had two rows a few rods long. At this time, my father bought this stock of him, and my father and myself increased the stock rapidly. We had also Mammoth Cluster, Seneca Black Cap, Doolittle and others. Its value was more and more impressed upon us until about 1876 , when I sent out a circular offering plants for sale. The circular increased in size from year to year, and in 1882 or 1883 I received orders for more than a million plants, nearly three times the stock I had on hand. The Doolittle plants amongst which this variety was found, came from Ohio, and to distinguish it from the Doolittle, grandfather called it the Ohio. Some years later another berry under the name of Ohio came to our notice, but it was worthless and never came into general eultivation."

Mr. A. M. Purdy, of whom the stock of Doolittle plants was obtained, writes me that this Ohio raspberry which the eldest VanDusen propagated was "precisely identical with what I grew at that time as the Miami, obtained from Ohio, and it was so decided by John J. Thomas and Patrick Barry, who saw them on my grounds."

All the true Ohio raspberry which is now grown in western New York seems to have come from this VanDusen stock, and the variety is now widely distributed in other states. Mr. L. T. Yeomans gives me the following note:
"There are two distinct kinds of the Ohios; one is a dead black berry, more prolific and sweeter, and the plant a stronger grower; the other a firm berre, and slightly reddish. The latter is much more common here. The former is by some supposed to be the same as Johnston's Sweet."

The Ohio Everbearing raspberry of the books, with which this New York Ohio has been confounded, is probably no longer in cultivation. It will be worth our while to inquire into its history, however, for we shall thereby recall how recently it was that the wild raspberry began to be impressed into cultivation. This Ohio Everbearing, or Monthly Black-Cap, was, so far as I know, the very first cultivated native black raspberry. It was brought to notice by Nicholas Longworth of Cincinnati, to whose enlightened and prophetic efforts American fruit-growing owes so much, particularly in the cultivation of the grape and strawberry. The earliest record of the variety seems to have been made in the Gonesee Farmer, but I know this reference only by the following entry in Hovey's Magazine of Horticulture, 1837, page 154:
"Ererbearing Raspberry.-The Genesee Farmer states that a new kind of raspberry has been found in New York state, near Lake Erie, by the Shakers residing there, and that it produces its fruit throughout the summer and autumn. It is also stated to be really a valuable variety, and worthy of extensive cultivation. The fruit in appearance is longer than the wild black raspberry, and approaches near, in size and excellence, to the White Antwerp, but is not so high flavored. The habit of growth is
somewhat similar to the common purple raspberry, the shoots of which are very rigorous, bending over and touching the ground, and take root, by which mode it is rapidly increased. Its mode of producing its fruit is as follows: In the spring the old shoots throw out their new branches, as in other sorts upon which the first crop appears, but soon the new shoots begin to grow, and when they have attained a good size, which is generally just before the first crop is gone, they produce the second crop; to this latter circumstance it owes its name, and its peculiarity. The fruit of the second crop is considered the best. It is grown by Mr. Longworth, of Cincinnati, and by the Shakers near Lebanon, but has not yet found its way into any of our Atlantic cities."

The next account I find of this berry is in the Magazine of Horticulture for 1842:
"The Everbearing Raspberry.- In our Vol. III, p. 154, under our Miscellaneous Notices, we gave an account [quoted above] of this fruit which had then just been brought into notice: since then, we have heard very little of it till the past year. It is now attracting more attention, and as it is deemed a valuable acquisition, we have copied a further description of it below, which we find in the American Agriculturist:
"The Ohio Everbearing raspberry was first discovered some fifteen years ago, in the northern part of the state, near Lake Erie, but in what particular part is unknown. Mr. Longworth, of Cincinnati, introduced it into his garden in 1832, at which period he was driven into the back country by the cholera, where he found it growing. It has been little known, however, in Cincimnat, until within the last two years, but there is now great effort made by the gardeners to cultivate it for the market of that city. The fruit resembles the wild native raspberry, but is much larger, more fleshy, and of a much finer flavor, and is always a very profuse bearer. In Cincinnati, the wood of the previous year bears one crop in June, after which it soon dies; the goung shoots then come into bearing, and continue doing so into October, till the frost cuts them off, when may be seen buds
and blossoms, and the fruit in every stage from green up to full ripe, on the bush, stayed by the hand of nature in the midst of their productireness. The fruit is preferred by many to the Red Antwerp. and with its large erect clusters of flowers, presents a beautiful appearance.
"Mr. Longworth, in a communication describing this fruit, in the Gardener's Magazine, states that the plants, in light dry soils, are not very productive in the autumn crop; but if grown on a stiff loam, on a clayey subsoil, bear profusely till destroyed by frost. From all that has been said in relation to it, it appears a desirable fruit, and we hope soon to test its qualities ourselves."

One is not quite sure, after reading the above extracts, whether this rariety came from New York or Ohio. It is first said that the plant was "found in New York state, near Lake Erie," but it was growing only in the garden of Mr. Longworth and with the Shakers at Lebanon, which is thirty miles from Cincinnati. In the second extract it is said that the plant was found "in the northern part of the state," but the name of the state is not mentioned. All doubts are set at rest, however, if one consults Longworth's own account of the berry in the Gardener's Magazine of London, to which reference is made in the second article quoted above. Dating his communication at Cincinnati, Ohio, Sept. 30, 1841, Mr. Longworth says: "When driven into the interior of the state by the cholera, in September and October of 1832 , I found a raspberry in full bearing, a native of our state, and the only ever-bearing raspberry I have ever met with." Lougworth moved to Cincinnati about 1804 and lived there until his death, in 1863. In this letter to the London periodical, Longworth expresses the belief that this raspherry would succeed in England, and he sent plants of it there by James Howarth, who went to the old country " to purchase plants." The editor of the magazine adds a note that "plants of this raspberry are in a Londou nursery, but none of them will be sold till the worth of the variety is tested."
Indigenous raspberry growing began with this Ohio Everbearing variety; but the contemporaneous Ohio has no connection with this historical berry sare an accidental similarity of name.

III. THE"MISTLETOE DISEASE" OF THE BLACKBERRY.

During the last fall, we were asked about a curious disease or malformation of blackberry canes by a fruit-grower in Delaware, which is known locally as the "mistletoe disease," because of the mistletoe-like bunches of foliage. We asked for specimens, which, upon examination showed the work of a psylla-like insect

130.- "Mistletoe" of the blackberry.
known as the "Bramble Flea louse." This disease has long been known in New Jersey, and is also reported from New York. It therefore seems to be desirable to mention and illustrate the dispase so that our own berve growers may recognize it, if it should invade their plantations. Our Delaware correspondent writes that the disease is " found on Early Harvest, Erie, Taylor, Minnewaski, and several other blackberries, but not much on the Wilson. I notice it most on neglected patches and on poor land."

Professor F. W. Card, of the University of Nebraska, to whom I mentioned the disease, gives me the following references to it: Bulletin 45, Ohio Experiment Station, 1. 209; American Entomologist, i. 225, iii. 62; Illinois Entomological Report, viii. 17; Strong, Fruit Culture, 3d ed. 179; Saunders, Insects Injurious to Fruit, 320.

The specimens were referred to Mr. Slingerland who reports as follows: "The curling of the shoot is caused by a psylla known as the blackberry flea-louse (Trioza tripunctata). The insect was discovered by Dr. Fitch in 1851, and was common in New Jersey in 1869 and for several years after. The insect is said to be common on pine trees from Florida to Canada. There are said to be at least two generations annually. I do not know how it winters. It is recommended to cut out and burn all infested tips as soon as discovered. Doubtless much of the curling of the leaves is also due to the psylla, but a plant-louse (species unknown) had also contributed to this injury."

This insect is sometimes called Psylla rubi and Psylla tripunctata. Thorough spraying with kerosene emulsion before the injury has been wrought will probably keep the psylla in check; but in ordinary attacks the collecting and burning of the deformed clusters as soon as the disease is apparent will be sufficient to check the trouble.

IV. ROOT-GALLS.

We have many inquiries respecting galls upon the roots of various kinds of fruit trees. These galls are irregular swellings or excrescences upoli the roots or upon the main stem just below the ground, ranging in size from that of a pea to one's fist, or even to several inches in diameter upon large trees. They are best known upon nursery stock, because the roots of the tree are exposed for observation. Specimens of atfected apple roots are shown in Fig. 131. The galls are probably common upon old trees, however. In our Bulletin 74 ("Impressions of the Peach Industry in Western New York "), I made a discussion and illustration of galls taken from large peach trees. Since that time,
one pear grower has complained to us that his young standard orchard is gradually failing and that the difficulty seems to be the abundance of galls which he finds upon the roots.

Unfortunately, the cause of these galls is unknown, and it is also uncertain as to just how much damage they do. They seem to be widely spread in many countries, and they are known to be abundant in some of the nurseries of New York state. No one has ever been able to discover any insect or fungus which seems

131.- Root-galls upon apple trees from a nursery.
to be the cause of the mischief.* We are now making experiments with the affection; but in the meantime we desire to give our fruit-growers the latest information which we possess on the subject, because the extent of the injury in this state seems to demand that the attention of every tree-planter should be drawn to it. We always advise that trees with galls shall not be planted; or if they are planted, that all galls should be removed. We do

[^84]not know if the trouble is communicable from tree to tree, but the fact that great numbers of trees sometimes become infested in the nursery rows, seems to show that it may spread from tree to tree. However, one of the most distinguished German authorities upon plant diseases, Sorauer, thinks that these galls are simply abnormal deposits of woody tissue consequent upon the abrupt bending or injury of the roots when the trees are planted. A portion of his account is here translated (Sorauer, " Handbuch der Pflanzenkrankheiten," 1886, p. 737):
"These swellings have been seen by me mostly upon apples and pears. They appear generally at the crown of the roots of young trees, the enlargements having the size of hazel nuts or walnuts. In older specimens they may attain the size of one's fist. Their appearance upon the younger nursery stock is generally limited to the crown, but not unfrequently they are found lying deeper in the earth, or even upon slender one-year-old roots. In older trees they are much less frequent. The swellings have been found only upon those roots which lie near the surface of the soil. In those cases in which the galls have attained considerable size, a decreased growth of the branches of the trees may be noticed. Apparently, the gall absorbs so large a part of the nourishing material that the branches suffer. An unfavorable effect of these galls upon the roots appears to be a decreased development of small fibrous roots. This is especially noticeable in older trees.
"The color of the gall is similar in its younger stages to that of the sound root. Later, a darker color appears, in consequence of a deposit of dead material which forms the bark of the gall. If one examines the galls which are produced upon the smaller roots, it will be seen that they are generally located upon one side of the root body; that they have a softer tissue than the root, but that their color within is perfectly normal; and that they also possess an equal amount of starch. The large galls are composed of hemispherical growths which are superseded upon each other in such a manner that the surface has a very irregular granular and warty appearance. In the springtime the more
prominent of these elevations possess a light brown appearance and a perfectly herbaceous consistence. . . A cross-section of the gall shows an irregular fibrous mass. In the smallest swellings on the most slender roots, there may be recognized a small dead portion in the center, and it is also the case in large roots that a properly made cut will show that the swelling originated from an injury to the woody cylinder of the root during the first year of its existence. The injury may consist of a small crack which extends from the outside to the center of the root at the time when the latter was small, or the root during its first year may have been torn and thereupon a callus appeared over the wounded surface and this callus eventually developed into a rootgall. The manner in which the first cracks appear has not been clearly shown, but certain indications lead to the belief that they may be caused by extremes of expansion and contraction. There may be frequently found wedge-shaped bodies of parenchymatous tissue in the rings formed during the first and second years' growth of the root. These bodies (which may have the power of forming adventitious buds) must show fairly deep crevices by the alternate expansion and contraction of the tissues. The circumstance that such parenchymatous wedges may also appear upon uninjured roots leads to the conclusion that the root-gall may also arise without injury to the roots, but this is always a more rare case.
"I therefore consider the root-gall as a swelling which appears either upon the body of the root, or at the crown, but which is not caused by the action of any parasite. In the decayed surface tissues of the galls, many organisms may be found; but in the sound tissues I have beeu unable to discover any parasite. I have also looked in vain for a form of plasmodium. They appear to be cansed merely by an abnormal flow of sap. Instead of the uninterrupted return, to the ends of the roots, of the sap which has been modified by the stems above ground, it finds a constriction. This may be due to an injury of the root, or to its having been bent at an acute angle. In such phaces the accumulation of nourishing sap leads to the excessive growth which
appears to consist of a rich callus over the places of injury, and in the case of bent roots, the growth appears to be an abnormal development of tissues of wood and bark. The younger the root is, which has been bent, the more easily the crevices may appear which lead to the formation of the above mentioned parenchymatous wedges; an expansion, of the medullary sheath may occur, and the formation of adventitious buds be induced. . . I have frequently found woody bodies entirely isolated from the woody cylinder of the branches of rarious trees, especially in apples and in conifers. These bodies were buried in the tissues of the bark. Adventitious buds may be formed easily upou the roots of apples and pears since root cuttings of these plants will frequently produce shoots. Such shoots may also be found upon the more horizontal-growing roots of these trees, even when they are not separated from the parent plant.
"The formation of root-galls, therefore, does not appear to me more strange than similar swellings which are so commonly seen above ground. At first thought, it would seem strauge that these root swellings should appear so much more frequently in certain nurseries. The prevalence of the attacks and the season of their appearance seem to indicate a parasitic origin, but I have been unable to find any plants or animals to which the trouble may be ascribed. The examination of many scedlings from nurseries upon which root-galls had been commonly observed lead me to what I believe to be the true explanation of this disease, which has appeared during recent years in so many different localities. specinens of diseased and healthy roots which were taken from the upper part of the root system show that they have been well nomished and also that they bear many sharp angles, which, in some cases, have led to the growing together of roots that have been closely pressed together. In other cases, it will be seen that the early root system was cut back closely and a great many side roots have been produced near the cut surfaces. Since the young plants, in a vast majority of cases, show by their root systems that they have been well nourished, it may well follow that this good nourishment is also favorable to the formation of root-galls.

The disturbing influence may be ascribed either to the short cutting of the roots, or to the bending of the roots when the plants were set into the ground. If one watches the practices of the workman in transplanting seedlings in nurseries, an explanation for these crooked roots may be rery easily found, frequently the holes are too shallow to receive the deeper roots of the plants. The plant is therefore pressed into the soil so that the trunk may be set at the desired depth, and many of the roots are more or less seriously bent. If, at the same time, the roots are pressed in a horizontal direction, or if they are bent upon a large curve, this shallow method of planting is not followed by any serious consequences. The steady return flow of the nourishing sap should thereby be diverted toward a more free production of side roots, especially from the main roots which have been but moderately bent; but in case the plant has been pressed into the soil so that the root makes a short and sharp turn, then the flow is so great that au abnormal deposit of material may easily induce the formation of root-galls.
"It is, therefore, just these improved methods of culture, the fertilizing and cultivation of the soil used for nursery purposes, and the methods which nurserymen have of growing seedlings rapidly (because in this manner stronger trees are produced), which bring about the conditions under which the root-gall is found.
"The experiment should be made of growing stock after it has been pruned in various ways, and with different methods of transplanting."

It seems to have been generally assumed that this root-gall is a specific disease and due to some fungous parasite, and upon this assumption various fungicidal dressings of the roots have been advised (see, for example, Bulletin 74). The only actual experiments which I know to have been reported, in this country, are by W. E. Smith, Napa, California, and W. A. Yates, Breuham, Texas. Mr. Smith presented his results before a recent meeting of the Fruit Growers' Convention. I reprint the paper as it was published in the California Fruit Grower (Dec. 15, 1894, p. 481):
"The principal damage from root-knot appears to occur only when the knots approach the crown of the root; when they encircle the crown of the root the tree is hardly worth saving. Hence, where root-knots exist they should be destroyed early, at least before they encompass the root crown.
" Methods of Work.- As to the method of the work I will say, that as fast as the knots were uncorered by the man with shovel and trowel, I followed with brace and bit and a large bottle of concentrated solution of bluestone [sulphate of copper]. In the cork of the bottle a quill is fixed to guide the fluid easily into the bored holes. After two days' work the method of treatment was modified.
"A Phenomenon.-A curious and interesting thing occurred. I noticed that the leaves on certain branches of trees treated the first day had turned very dark, with a sort of coppery tint which was rery noticeable. The leaves dried up shortly and fell off, leaving the branches naked, while other branches on the same tree retained their green leaves. Not one tree only, but a score of them were showing this strange effect of the cupric solution. With those dead, copper-hued leaves before my eyes, there was little room for doubting that the cupric fluid had thus quickly entered into the circulation of the tree. It must have done so to produce the effect observed. And it must have gone up at a season when we speak of the sap as going down. I was a little scared at this phenomenon and modified my treatment by striking off the knots and puncturing the diseased wood, especially the core of the knot, with a sharp, pointed iron, then applying the cupric solution with a swab, in this way avoiding a too excessive quantity of the fluid penetrating the fiber of the tree. However, in the light of future events, there seemed to be no need of this precaution. The trees thus curiously, and, it would seem seriously affected, were all right in bud, leaf, blossom and fruit in the spring and summer following. They have shown no signs of injury since, but on the contrary seem to have taken on a healthier tone than the other trees, so that I now believe the treatment by boring is perfectly safe, if done in September or October. I could not vouch for it at other seasons of the year.
"Final Results.-After two years, not one of the 200 trees has died. Every tree treated was marked by tying a strip of cotton cloth on a south side branch next to the trunk of the tree. These marks still remain. Only last week I dug away the earth from about twenty of these marked trees, and found dead knots onlya specimen of which I brought with me, that members of this convention interested might see for themselves. The trees treated for root-knot now look as clean and healthy as those not treated - no difference can be seen - they all made a splendid growth last year and no finer trees can be seen in our section of the same age. In the light of these facts, I consider the treatment with bluestone, in the manner herein described, a success. Even if the knots should reappear after three or four years, it would still be profitable to apply this remedy to keep the knot growth in check. The cost of application need not be more than three to five cents a tree, and the bluestone used is so trifling in quantity that it need not be considered in the bill of expense. My treatment of root-knot has always been in the fall months of the year. Whether other seasons would do as well or better I am not prepared to say.
"Suggestions.- In using this remedy, my advice is to make the bluestone solution as strong as the water will dissolve.
"In applying the solution be sure that it penetrates the core of the root-knot.
"If the knot is on the main stem of the root, so as to be easily accessible, I would advise to knock it off and puncture the soft core repeatedly with any pointed implement. Then apply the solution with a swab. Be sure to have the solution penctrate the diseased wood."

This experiment, as here reported, is by no means a proof that the sulphate of copper is a cure for the root-gall. Mr. Smith simply repolts that the treated roots did not again develop galls; but if soraure's hypothesis of the formation of these galls is correct, we should expect that they would not return if once removed. Mr. Smith should have left some trees untreated from which the knots had been removed; and he should also have determined if
trees from which the knots were not removed, tend to develop still more knots. Mr. Smith's paper brought out a discussion from Mr. Yates, the larger part of which I am glad to quote (California Fruit Grouer, Feb. 9, 1895, 111), particularly as his conclusions are essentially like those of Sorauer:
"In common with many other horticulturists, Mr. Smith assumes the root tumor to be a disease, which in the strictest sense of the word it is not, as the tumors when first formed are composed of healthy cellular tissue; disease being afterwards superinduced by the abnormal condition of the enlargements interfering with the proper functions of the sap in regard to circulation.
" My first investigations of tumor' were made with the idea that possibly such curious growths resulted from an inherited cause, or were perhaps the work of minute fungi and therefore contagious; so I budded, grafted and inoculated unaffected from affected trees, but all to no purpose; the tumors refused to be reproduced.
"But while investigating along this line, I noticed that wherever the free circulation of sap under certain conditions had been checked or imjeded, it was no uncommon thing to see some of these tumors commence to form, and several years' observation has but served to convince me that they are primarily caused, either by impeded circulation of sap and consequent disorganization of the sap vessels and sumounding tissues, or by a lack of equality in the absorption of moisture by the roots and its transpiration by the leaves and branches.
"In the first instance, the sap being forced out of its regular channels and unable under these changed conditions to perform its proper functions, commences to throw out callus formations, which enlarge very rapidly owing to the amount of sap forced into them through what is generally known as the core of the knot. This mass of callused matter thus irregularly formed becomes after a time diseased, and it is at this stage that the fungus growths have been found which have led many investigators into the error of supposing these tumors to be the result of fungi. The causes of this impeded circulation are many;
among which may be mentioned, grafting and budding, when there exists, as is often the case, a disparity in size or lack of affinity between scion and stock; and abrasions or wounds of any kind made on the tree beneath the ground surface.
"In the second instance the lack of harmony between root and branch may be caused by an unseasonable loss of foliage, either through severe summer pruning, or the killing of the young growths by a late freeze. The means of transferring the moisture absorbed by the roots being thus suddenly cut off, the sap cells in the lower portion of the tree become congested, resulting in the ruptures that cause the formation of the callus knots, or tumors.
"As to the remedy for these tumors, I have always found cutting them off quite effective if taken in time, and when the work has been well done I have seldom seen a return of the knots; it is well to corer the wounds thus made with grafting wax or any substance that will answer the purpose of excluding the air without injuring the tree.
"From my present knowledge of root tumors I fail to see where Mr. Smith's solution of bluestone remedy can be of much henefit. Regarding the dead knots he found on trees previously treated with this remedy, I may say I have frequently noticed the same thing, as in many cases the tumors when partly rotten became detached from the tree, often, however, leaving a canker spot that later may endanger the life of the tree affected, if not attended to.
"I have more commonly met with these tumors on peach, plum and apple, but also occasionally on orer thirty other species of fruits, shade trees and evergreens."

The conclusion of the whole matter, thein, as we now understand it, is that these root-galls are not the work of a parasite, but are a malformation following some injury of the root or some uncongenial condition in soil or treatment. The galls mar seriously interfere with the nutrition of the plant, in many cases causing it to become weak and sickly. It is probable that the trouble is not communicable, and that cutting off the gall averts further trouble from that source. As a precautionary measure, however, we much prefer to plant only trees with perfectly clean and normal roots.

V. ARE DEWBERRIES WORTH GROWING?

Nearly five years ago, we published a bulletin (No. 34) upon the dewberry and concluded, from the results of our experiments and inquiry, that there is a future for the berry for commercial purposes. There was a brisk demand for the bulletin, largely due, it seems, to the novelty of the subject; but it ap-

pears to have had comparatively little immediate effect in encouraging the cultivation of the fruit. The dewherry is so unlike all otlfer small fruits in its habit of growth, that growers seem to be slow to learn how to handle it; and many of them are no doubt prejudiced against it becanse the species is so common, and often so troublesome, in old fields and vineyards. The rasp-
berry and blackberry have had a similar history, and the prejudices against them are only recently outgrown. Here and there, a person has studied the dewberry and has found it to be a raluable addition to the market fruits of early summer. I. A. Wilcox, of Portland, Chautauqua County, is one of these, and he read a paper commending the berry to the Western New York Horticultural Society last winter. I know Mr. Wilcox’s plantation, and am convinced that the dewberry is an acquisition to him. As our bulletin is now out of print, I shall make a few extracts from it and give some further directions for the growing of the plant.

Of the dozen or twenty varieties of dewberries which have been named and introduced, only two, the Lucretia and Bartel, have gained wide prominence. In fact, there may be said to be only one leading variety, and that is the Lucretia, and it is the only one which has been well tested in New York. The full history of this and others is given in the Bulletin 34. The dewberry bears the fruit upon the canes of last year's growth, the same as raspberries and blackberries do. These canes are long and weak and naturally lie perfectly prostrate on the gromm. "There are several methods of training the Lucretia dewberry," we wrote in 1891. "It is commonly allowed to lie upon the ground. The canes are cut back to three or four feet in length in the same manner as blackberry and raspberry canes are treated, and if the best results are expected the canes should be thimed to four or five in a hill. The canes are usually allowed to branch freely, although it is evident that some checking of the growth may often be essential to good results. A mulch is often placed under them to keep the berries clean and to retard the weeds. When this is applied, the vines are raised with a fork. A. M. Purdy* recommends two stakes, one to hold the bearing cane, and one the growing cane. This implies that only one cane is to be allowed to fruit each year. This method does not appear to be in practice and it 反is doubtful if it has anything to recommend it. Trellises and racks of varions kinds have been devised. In our plantation of Lucretia we have tried three methods of training. In one portion of the plantation the plants are allowed to lie upon the ground withont mulch, and the canes are cut off when three or

[^85]four feet long. Another portion is trained upon a common grape trellis of three wires, the canes being tied to the wires the spring of the bearing year by means of wool twine. In the third portion the vines lie upon a flat rack standing 18 inches above the ground, and made of light slats laid crosswise the row and resting upon bents at the sides. There has been no gain in productiveness or earliness upon the trellised or racked plants; the only advantages have come from the greater ease of picking and cultivating and the less amount of room occupied. And these advantages are considerable, and seem to me to warrant the adoption of some simple trellis, preferably a wire trellis, in garden culture. Whether it would pay in field or market culture is a question which must be determined by the grower himself. The labor of tying the canes to the wires is somewhat onerous, but it is needed only once in the season. This training does not interfere with covering for winter protection, for the young or growing canes are allowed to lie upon the ground and are tied up the following spring. If the canes interfere with cultiva tion while growing they can

133.- Dewberries on a wire screen. be placed length wise the row with a rake or they can be thrown over the lowest wire. After the
canes have borne, they are cut out, in the same manner as the canes of raspberries and blackberries." Mr. Wilcos trains to three strands of No. 13 wire, the top strand being three feet from the ground.

Upon several accounts, however, I prefer tying the canes to stakes as shown in Fig. 132. Three or four canes may be allowed to grow from each plant. and these are tied to the stakes, with wool twine or willow thongs, two or three times during the season, as they grow. The canes may be left on the stakes all winter, although it is better, particularly in exposed localities, to lay them down late in fall. Whilst the year-old canes are bearing fruit, the new ones are growing on the ground. As soon as the fruit is removed, the old canes are cut out and the new or es are tied up for the remainder of the season. To prevent the breaking of these young canes by the carly cultivating, it is necessary to turn them lengthwise the row with a fork. If they become very strong and if the land gets weedy, it may be advisable to tie up these young canes along with the old ones before the fruit is picked. On the other hand, if the land is clean, so that much cultivating or hoeing is unnecessary, the
 new canes may be allowed to lie on the ground throughout the entire seasm. This is scarcely advisable, however, for they are likely to make a weak and soft growth in weeds and grass and shade, and the ground cannot receive the attention which it should have. Some persons tie dervberries to a woven wire screen, as seen in Fig. 133. This is a neat practice for a few vines in the garden, but is too expensive for the field, and the spaces in the screen are not large enough to allow of the easy movement of the hand through it when tying and picking.

The one great merit of the dewberry is the carliness of the fruit. The fruit is indistinguishable 134. Lucretia dew- from the blackherry by the general public, and it berry, natural size. is ten days and often two weeks carlier than the standard varieties of blackberies. "Dewberries, rasperries, and blacklerries grow side by side in our plantations, and we have had, therefore, a good opportunity to observe the earliness of the Lacretia. This year (1891) the first ripe rasporries - Marboro
and Rancocas - were "obtained July 4. At this time a few dewberries were about fully grown and had turned red. July 8 a few dewberries were secured. July 11 demberries on some of the vines were ripening rapidly, and at this time Ada raspberry was just ripening and Doolittle and Souhegan were in their prime. July 16 Early Harvest blackberry, our earliest sort, gave its first ripe fruits, while the first picking of Agawam was not obtained until July 22. July 16 there were no flowers to be found upon the dewberries, but the blackberries were still blooming freely. A week later, pickings from the dewberries had practically ceased. It will be seen, therefore, that the dewberries ripen with the earliest black raspberries. But it must be said that there is a great variation in the time of ripening between different plants," a fact which is due to natural variation in the character of the variety. In propagating the dewberry, it is important that only those plants which bear large and uniform fruits shall be chosen for parents.

In quality, the Lucretia dewberry is probably inferior to the best blackberries. The canes are also rather more tender, but they are so easily laid down and covered that this is not a serious objection. The berries, on well grown plants, are large and handsome, glossy-black, and firm enough for shipping. The dewberry is not so heavy a cropper as the blackberry. Fifty to sixty bushels per acre may be considered to be a fair crop. To secure this yield, the rows should stand about three and a half feet apart, and the plants from two to three feet in the row.

The Lucretia is the only variety which I can confidently recommend for this state, although I should like to see the Bartel given some attention. All the dewberries propagate by rooting at the tips and joints of the canes, and they are therefore easily increased by any grower.

In order to bring the gist of the entire dewberry question to the reader's attention, I will reprint the conclusions of Bulletin 34 , adding the results of later experience:

1. The cultivated dewberries represent three distinct species of rubus or bramble, and two well marked botanical varieties. It is therefore reasonable to expect that different managements may be required in the different classes, or at least that various results will be obtained from their cultivation.
2. The botanical types to which the cultivated dewberries belong are these:
I. The northern dewberry, or Rubus Canadensis. To this type belong the Windom, Lucretia's Sister, and Geer.
(a) The Lucretia sub-type, or variety roribaccus, comprising the Lucretia.
(b) The Bartel sub-type, or var. invisus. To this belong. Bartel or Mammoth, General Grant, and Never Fail.
II. Southern dewberry, or Rubus trivialis. Here belong Manatee, Bauer, Wilson's White, and Austin, and probably Fairfax.
III. The western dewberry or Rubus ritifolius (known also as R. ursinus). Here belong the varieties known as Aughinbaugh (one of the reputed parents of the Loganberry), Skagit Chief, Belle of Washington, and Washington Climbing. None of these berries have been well tested beyond the Pacific coast region.
3. The dewberries are distinguished from the blackberries by a true trailing habit, cymose and few-flowered inflorescence, and the habit of propagating by means of "tips." Like the blackberries and raspberries, they bear their fruit upon canes of last year's growth, and these canes die or become weak after they have fruited. They are propagated by means of "tips " and root cuttings.
4. The peculiar merits of the dewberies as cultivated fruits are earliness, large size and attractive appearance, and the ease with which they may be protected in winter.
5. The peculiar demerits of the dewberries are the failure of the flowers to set, the formation of nubbins, and the difficulty of picking the fruit. There is no positive method known by which the first two difficulties can be overcome, and the causes of them are unknown, but there is reason to believe that tying up the canes, and pruning and thinning will tend to make the plant productive. The labor and unpleasantness of picking may be-
avoided by training the plants on a rack or trellis, or upon stakes, and by keeping them well pruned.
6. Various methods of training and cultivation are advised. In the earlier methods, the plants were generally set about the same distance as blackberries (3×7 or 4×7) and the canes are allowed to lie upon the ground, being headed in when they reach about three feet in length. A mulch of straw beneath the canes was sometimes used to keep the berries clean and render picking pleasanter. At present, the canes are either trained on a twowire or three-wire trellis, or tied to stakes, and the plants are set in rows which are three or four feet apart. Only three to six fruiting canes should be allowed to the plant. Some varieties, particularly Windom and Bartel, appear to do best if the fruit is shaded.
7. About twenty varieties of dewberry have been named and more or less disseminated during the last twenty years. Of these four have gained more or less prominence east of the Rocky Monntains, and are found to possess decided merits in certain places. This is a fair proportion of good varieties to inferior ones, as indicated by the annals of other fruits. These four are Lucretia, Bartel, Windom and Manatee.
S. Many persons have found dewberry culture to be profitable. This is evidence that the fruit is an acquisition. But it has not yet found general favor, and it is probable that it will never become as popular as the blackberry. Only the Lucretia is well known in New York.
8. The Windom possesses promise for the northwest. It is a native of Minnesota. It has not yet been tested to any extent elsewhere. It appears to demand partial shade for the best success.
9. The Lucretia has been found to be a desirable and profitable fruit in many places orer a large extent of territory, and it is therefore safe to conclude that its range of adaptation is large. Many, however, have failed with it. It appears to be variable and many of the plants are worthless. It is sometimes seriously
attacked by anthracnose and by a bramble rust. The Lucretia is a native of West Virginia.
10. Bartel has found great favor with some growers in the west, from Wisconsiu to Nebraska. It has not succeeded well in the east so far. The rariety known as Mammoth appears to be identical with Bartel. It is native to southern Illinois.
11. Manatee is said to be valuable for the south. It is a form of Rubus trivialis, and was found in Florida. Other types of this southern species are no doubt destined to be very useful.

VI. THE GOUMI. ELEAGNUS LONGIPES.*

Much has been said, \dagger during the past five years, about the goumi, all of which is deserved. It is a graceful and handsome bush of five or six feet high, bearing a profusion of silvery-white leaves and most abundant crops of cinnabar-red and gold-flecked berries. Whether considered for ornament or for fruit, it is one of the best of the many excellent shrubs which have come to us from Japan. Its silken-gray foliage is of a kind which is always desirable in shrubberies, and of which we have little in our native flora. The bush is as hardy as an apple tree. It stood the past winter in western New York without a blemish. It is enormously productive of fruit, and the berries are a delight to look upon, even if one does not desire to eat them. At first, these berries are very astringent, but when they are fully ripe and soft, they have a juicy piquancy which I enjoy. I have not tried them for culinary purposes, but it is salid that they may be used for sauces and pies and in the many ways in which cranberries are so delicious. The fruits begin to ripen the first days of July in western New York, and they continue upon the bush for three weeks, much to the delight of birds.

[^86]
135. The Goumi. (Eloagnus longipes, var. hortensis Natural size).

I do not know when this delightful bush first came to this country. William Falconer wrote in 1893 (Gardening, i. 275) that "although it has long been cultivated in gardens, it is only within the last few years that its merits have been generally appreciated, and it has become in much demand." It could not have been a very old resident of American gardens. It seems to have been first brought prominently to notice in England in 1873, by an illustration and description in Gardener's Chronicle, by Maxwell T. Masters. The species was described by Asa Gray in 1859. Maximowicz (Bull. Acad. Imper. Sci. St. Petersburg, vii. 560, 1870) divides the species into four varieties, two of which bear edible fruit. The form which is grown in this country is the variety hortensis, characterized by spineless branches, elliptical leaves, very long fruit-stems, and large edible fruit. In nurseries, the plant is sometimes called Elaagnus edulis.

The goumi grows readily from seeds. These should be sown or stratified in summer, before they become dry, and allowed to freeze the following winter. The next spring, they should germinate freely. Cuttings of the half-ripened wood strike readily in June or July, if handled in frames. As soon as attention is given to cultivation and selection, we may expect the goumi to become prized for the edible qualities of its fruit.

VII. THE WINTER INJURIES.

The past winter was umprecedentedly severe upon vegetation throughout the state. In most parts, all stone fruits were much injured. Only sour cherries seem to have escaped the havoc, and even they are not a heary crop. Pears were also serionsly hurt.

The University premises are not ideal lands for the tenderer fruits. The location is too high and bleak, and it is too far removed from the influence of Cayuga lake. The condition of the stone fruits, particularly of peaches, in the Cornell plantations is not an accurate guide to the conditions in the more favored fruit sections; yet a brief discussion of the winter injuries to fruits at this place may haye some points of usefulness.

At the outset, it should be said that the phenomenal injury wrought by last winter was probably not wholly the result of low temperature. The drought of the last summer and fall no doubt augmented the injury. It is well known that trees suffer more from cold weather when the ground is rery dry. I have compiled some figures from the reports of our meteorological bureau to show the conditions existing last winter. It will be seen that the total rainfall for last year was about twenty-eight and a half inches, whilst the normal precipitation is thirty-five to forty inches. During the period from July to December, inclusive, of 1895, the rainfall was less than sixteen inches, which is two and a third inches below the rainfall of the like period of 1894, even though that period was also a very dry one.

There are probably two ways in which the effects of a drought augment winter injuries. In the first place, the tree is probably weakened in vitality by an excessively dry season, and is thereby unable to endure so great exposure to cold. In the second place, there is evaporation of moisture from trees during the winter season, and if the ground is very dry this loss cannot be readily met; and the tree thereby " freezes dry," a condition which every nurseryman knows is generally fatal to trees. The extent to which loss of moisture may take place through the bark of dormant twigs may be determined by cutting off the twigs and quickly sealing over the ends with wax, weighing them, and then detecting the loss in weight from time to time. The following figures of such measurements will serve to emphasize the fact that moisture is lost from winter twigs, although they are not designed to show the actual rate of this loss when the twigs occupy their natural position on the tree.

April 7th, a cion of apple weighing 4.425 grams was placed on a balance, and the loss by evaporation measured at intervals during three days. The cut end of the cion was sealed with wax to confine evaporation to that which may take place through the bark. The balance or scales was placed in a living room, where the readings could be taken at frequent intervals. It will be
noticed that the rate of evaporation was nearly constant, areraging about $\frac{1}{2}$ centigram per hour.-

					n $\stackrel{y}{0}$ ¢ 							$\begin{gathered} \text { is } \\ \text { O } \\ \text { O } \\ \text { B } \\ \Xi \\ \hline \end{gathered}$			
Twig weighing 4.425 grams.	1 cg .	5 cg .	2 cg .	5 cg.	2 cg.	º cg.	4 cg	2 cg .	2 cg	4 cg .	2 cg .	2 cg .	3 cg .	39 cg.	. 088

It has been said that the rate of the loss of moisture from trees in winter determines the relative hardiness of different varieties of apples, and of some other fruits. The following table shows studies of twigs of varieties of different degrees of hardiness, but it will be seen that the per cent. of loss of moisture bears no relation to the supposed hardiness of the varieties:

VARIETIES.	Original weight.	Weight at the ex. piration of two days.	Loss.	Per cent of loss.
	Grammes.	Grammes.		
Seek-no-further, Twig No. 1.	1.07 1.3275	. 1.985	$\begin{aligned} & .085 \\ & .0725 \end{aligned}$	$\begin{array}{r} .0794 \\ .0546 \end{array}$
*Fameuse, No. $1 . . .$.	1.095	1.025		. 0639
*Fameuse, No. 1.	.8:	. 725	. 085	. 103
Fall Jennetting, No. 1.	1.045		. 0435	. 0453
Fall Jennetting, No. 2.	1.45	1.3875	.06\%5	. 0431
*Northern Spy, No. 1	1.38	1.3125	. 0675	.054
*Northern Spy, No.	1.155	1.0925	. 0.625	-0,
*Oldenburg, No. 1	1.595	1.55		. 053
*Oldenburg, No. 2.	1.8725	1.265	.1075	. 078
* Oldenburg, No. $1 .$.	2.11	2.0025	. 10%	. 0559
Baldwin, No. ${ }^{\text {a }}$	1.34	1.26	. 08	. 059
Baldwin, No. 3.	. 93	. 87		. 064
Rhode Island Greening, No. 1	1.1825	1.11	. 065	.061
Rhode Island Greening, No. 2.	1.005	1.7075		. 055
*Titovka.		1.3425	.1075	.074
*Red Astrachan, No.	1.4825	$1.40 \% 5$. 075	. 051

*Supposed to be the hardiest varieties.
Early in April, twigs, from the previous year's growth were taken from several varieties of apples, which rary much in their ability to endure our climate. The twigs were carefully weighed, and the cut ends were then sealed with wax to prevent evaporation sare through the bark. At the expiration of two days the wax was removed and the twigs again weighed. The twigs were kept in an open shed.

The following table shows that there is great variation in the rate of water, loss between twigs of the same variety of apple:

VARIETIES.	Original weight.	Weight at the expiration of three days.	Loss.	Per cent of loss.	Average per cent of loss.
Baldwin 'Twig No.	Grains.		Grains.		
Baldwin, No. $2 .$.	19.425	17.2	2.1205	. 1114	
Baldwin, No. 3.	18.9	16.75	2.15	. 113	
Baldwin, No. 4.	29.25	26.4	2.85	.0974	
Baldwin. No. 5.	24.2	21.4	2.8	. 115	. 1098
Oldenburg. No. 1	31.3	29.4	1.9	. 0607	
Oldenburg, No.	31.65	31.35	3.3	.095\%	
Oldenburs, No. 3	15.8	14.3	1.	. 0949	
Oldenburg No. 4	28.95	26.6	2.35	. 0812	
Oldenburg, No. 5	9.5	8.25	1.25	. 131	. 0926

Peaches, and the Treatment of Injured Fruit Trees.- Not only the fruit buds of peaches were killed, but the trees themselves were very seriously injured upon the University place. Most of the last year's growth was wholly killed, and in many instances vigorous branches an inch in diameter were destroyed. All peach wood was markedly browned and discolored.

The proper treatment for any trees so seriously injured as this is to cut them back very heavily. This severe heading-in - sometimes to the extent of three or four feet - remores the driest and weakest portions and concentrates the energy of the tree into a comparatively small area of top. Heary pruning always tends towards the production of wood, and this wood production is probably never more needed than in winter-injured trees, for it teuds to renew the vitality of the tree. The philosophy of this becomes apparent upon a moment's reflection. The browned and injured wood can never regain its former usefulness. New tissue must be developed as quickly as possible in order to carry forward and to maintain the regetative morgies. This new tissue is laid on over the old, and the old, thereby, quickly becomes sealed in, so to speak, and removed from the agencies of decay. Every ohservant fruit-grower knows that if a tree which is severely winter-injured in limb and trunk were to bear even a partial crop of fruit in the coming season, it would very likely die outright. If, however, all its energies were directed to the development of
new tissue, the injury would soon be overgrown. The injured wood, like the heartwood of the tree, is soon removed from active participation in the vital processes. It therefore follows that the danger resulting from the browning or blackening of the wood by winter injury, depends very much upon the subsequent treatment of the trees.

Pears.- In the Cornell plantation, pears will be a very light crop this year, largely as a result of the winter. There was no injury to the growth or to fruit-spurs, but many of the fruit-buds were killed.

There is much complaint of the blackening of the pear wood by the winter injury. Several varieties upon our own plantation show wood which looks to be lifeless, yet the trees are making good growtl. Much of this wood really is irreparably injured, but the new layer which is now making may be expected to maintain the health of the trees in perfection, as explained above. I have observed this injury to pears from time to time for twenty years, and the trees have invariably recuperated if given good care. I recall making the experiment of setting cions of pear wood which was so completely blackened as to appear as if hopelessly injured. The grafts grew, and bore for many years, and were in no way inferior to ordinary pear grafts.

In some parts of the state, pear trees were ruined by the winter. In most instances, these trees will leaf out this spring and they may make some growth, but later on they will be found to droop and die much as if attacked by blight. The wood, upon being cut, will be found to be much discolored. This serious injury to pear trees will probably not be found in the well known fruit regions of the state, however.

Plums.- There are practically no plums upon the University place this year, except of native species. The trees had set profusely of buds, but the buds, and, in most instances, the entire fruit-spur, were killed outright. There is now and then a fruit on Lombard and a few other varieties. None of true domestica plum trees were injured in body or limb by the winter.

Of the Japanese plums we shall have no fruits, except now and then one on cions set two years ago in Lombard tops. The fruit-
spurs of the Japanese varieties were killed in about the same degree as those of the domesticas. Georgeson and Abundance, however, were somewhat injured on the top growths, but the trees do not appear to have been damaged. Burbank, Red June, and Yosebe (of our Bulletin 106, Fig. 13), were wholly uninjured, sare the loss of the fruit-spurs. Yosebe even bore a few flowers, but they did not set fruit. Judging from the beharior of the Japauese plums upon our grounds last winter, they are about as hardy in tree and bud as the common run of the domesticas.

In contrast to the domestica and the Japanese varieties, the Americana types stood the winter without a blemish and are now carrying a full setting of fruit. Even one or two of the Chicasaws blossomed, but they will probably mature no fruit. Wild Goose was not injured.

Armicots.- The winter totally destroyed the entire fruit-spurs of all the apricots upon the Cornell plantation, including the Russian rarieties (Budd, Gibb, Catherine, Nicholas), and the Russian almond of Lovett (which is an apricot). The ouly variety which was seriously killed back in limb is the Royal, but the rood of nearly all apricots is discolored. Early Golden and Moorpark did not kill back; and young trees of the Prumus Mume type (see Bulletin 71) were only slightly injured. The Russian varieties were least injured in wood of any of our apricots. When pruning the trees this spring, it was very noticeable that the wood of the Russians was hard and firm and comparatively little discolored. Yet, I should not advise the growing of Russian apricots in this region, because other kinds bear so much better fruit, and it is only at long intervals that we have such winters as the last one proved to be.

Dwarf Cherries. - We have three types of dwarf cherries (see Bulletin 70) growing together in a border alongside a lawn. One of these is the common sand cherry (Prumus pumila) of the east. This was uninjured. Another is the western dwarf cherry (Prunus Besseyi). The form of this known as the the Improved Rocky Mountain dwarf cherry was very severely injured, and one bush of it was killed back to within six or eight inches of the
ground. Bushes which we have grown from Nebraska and Manitoba seeds were wholly uninjured and are now laden with fruit. The third type is the Utah Hybrid cherry, which wholly escaped injury and which is now bearing a very heavy crop of fruit. This cherry is a hybrid of Pranus Besseyi and Prunus Watsoni. The latter is the sand plum of Nebraska. A small bush of it, growing with the above cherries, was practically uninjured.

Nuts.- Spanish and Japanese chestnuts were set in the spring of 1889 , in a protected location. They were from a northern nursery. The Spanish have been killed back by every winter, sprouting out from the trunk or the crown each year. Last winter they were killed to the ground.

The Japanese chestnuts have stood fairly well, although they are not fully hardy. The trees are now only eight feet high, however, because of the killing back of the leading shoots nearly every winter. They are well branched and broad-headed, but look as if they would always be weak and poor trees.

The European or English walnut rarely escapes winter injury at Cornell. Last winter the branches froze back a foot or two.

The filbert (variety known as Prolific Cob) lost all its fruit buds and male catkins, and the young growth froze back severely.

The Japanese walnut (Juglans Sieboldiana) passed the winter without injury and is now in full bloom.

VIII. CRIMSON CLOVER IN ORCHARDS.

The experience with crimson clover in western New York is now sufficient to show that it is capable of enduring the winter under favorable conditions, but that the failures are quite as numerous as the successes. It is probable that we have not yet learned just how to grow it. Yet even now, there appears to be as uniform success with crimson clover sown in July and August as there is with the common red and mammoth clovers sown at the same time.

There are certain misapprehensions respecting crimson clover which I desire to correct. In the first place, we recommend it only for orchards, not as a forage or hay crop. The common
clovers, sown in the spring, are much more useful in the general farm rotations. This crimson clover is an anual and is capable of living over winter. It may, therefore, be sown after the summer cultivation is done, and afford some beuefit to the land at a time when the trees are comparatively quiescent. The various uses of crimson clover in the orchard are discussed at some length in our Bulletin 102. Persons err in looking for a too heavy stand of crimson clover. It must not be expected to give the amount of herbage which the ordinary clover seeding does. Even a thin covering, if it passes the winter, is very useful in improving the conditions of the land; and a good fall stand which wholly kills out during the winter is also worth the growing upon the greater part of our fruit lands. We are convinced that crimson clover has come to stay, but we are equally convinced that it is unwise to rely upon it year by year for a cover crop. It will find its place in a judicious alternation of cover crops, the particular alternation to be determined by every farmer for himself.

Crimson clover is often sown too late. We think that the last week in July or the first week in August is as late as it can be sown with safety in the average year. If sown later, it obtains too little root-hold; if sown in June, it becomes too ripe before winter. The latest sowing which we know to have successfully passed last winter was made for us in a nursery at Dansville (by F. M. Hartman) on the 17th of August. Upon the drier portions of the area, the stand was very poor, but in the moister places it made an excellent show this spring. Mr. George A. Sweet, of Dansville, sowed a large area upon the 8th of August. In parts of the field there was an excellent stand this spring, but in large portions of it there was none. There are many experiences like this, and most of them are traceable to a poor catch of seed in the fall. What agencies underlie these poor catches it is dificult to determine, but they are probably such as are associated with the merhanical preparation of the seed-bed, and are undoubtedly of the same kind as those which are responsible for so many poor stands of common clover.

We made an experiment last year upon crimson clover upon
hard clay land, sowing it at four intervals, July 25, August 14, August 29 and September 9. Only the first sowing passed the winter. The details of the experiment are as follows:

A strip of land in the Cornell pear orehard was sown to crim son clover July 25,1895 , the seed being harrowed in. A second sowing was made August 14; a third, August 29 ; and the fourth, September 9. At the time of the third sowing the soil, which is a heary clay, was in excellent condition; it was moist and well pulverized, while the first two lots of seed did not have equally favorable conditions. The stand from the first sowing was fairly good during the latter part of August, the plants being from one to five inches high. The growth in the moister parts of the plat was the most vigorous. Seedlings from the second sowing were also slowly appearing, but not uniformly.

When the last sowing was made September 9 , the plants of the first lot stood from one to eight inches high; the strongest growth was made by a few plants upon the more moist soil. The plants of the second lot were from one to three inches high, only a few, however, measuriug the greatest height. Most of the plants were small, and the growth was weak. The seed leaves were appearing upon the third plot, and a few plants, again in the more moist places, had each produced a true leaf.

Notes taken October 18 show that the plots differed greatly. The plants from the first sowing averaged about six inches in height in the more favorable spots, and they covered the ground thickly, the remainder of the plot having fewer and smaller plants, some spots being entirely bare.

The stand of the second plot proved to be fairly good, but the plants were all small, those in the drier places being not more than an inch or two in height, while in the most favorable places the average height was scarcely over four inches.

The growth upon the third plot was unexpectedly poor considering the favorable circumstances under which the seed had been sown. Only a few seedlings had survived, and these were small and very spreading, in this respect resembling those which were making a poor growth in plot 2.

The fourth sowing, made September 9 , showed a better stand of plants, and the growth had been so rapid that they fully equaled in size those of plot 3 .

Such was the condition of the plots when winter set in. A slight growth was made late in the fall, but no material change took place in the appearance of the plants. But in the spring of 1896 the effect of the winter was very plainly to be seen. April 17, all the plants which were growing in the dry places of plot 1 had been killed, as well as those whose roots had been exposed more or less by the wash of water during rain; these probably suffered from drought when the land began to dry, and were consequently unable to withstand the cold of the winter or of early spring. In uniformly moist places fully 90 per cent. of the original stand passed the winter in good condition, and growth was vigorously continued as the weather became warmer.

In plot 2 apparently not more than 1 per cent. lived through the winter. One place, much favored by uniform conditions of moisture, contained many small but healthy plants; the remainder of the plot was almost totally bare.

Plots 3 and 4 showed no trace of the presence of crimson clover. Every plant appeared to have been destroyed, and only the bare soil and an occasional weed were visible.

Experiments made, partially under our supervision, by T. G. Yeomans and Sons, well known fruit growers at Walworth, Wrayne County, are reported below. These plots were upon good dark orchard loam, which is in a good state of cultivation, and the test was in every way as fair as we could wish to have tried. The season, of course, was exceptional.
"Plot No. 1.- Early in May we sowed a plot of crimson clover which was in bloom July 29th, after having been cut back to cut off the weeds growing with it. The clover on this plot was all dead this spring.
"Plot No. 2.—June 23, 1895, sowed three strips in orchard, one each of crimson, medium red, and alsike. The seed was harrowed in by a Breed's weeder, and rolled. We had a fine shower the
day previous. It came up quickly, and on September 4th, the crimson had a few blossom heads. At this time the red and the crimson were about the same size, and covered the ground. The alsike was only about half as large as the other two. All of these plots had a good deal of barnyard grass at this date, while that sown one month later had none, and was quite free from all weeds. The crimson clover of this plot is all dead in the spring of 1896 , while the red and alsike are about the same size, and both cover the ground nicely.
"Plot No. 3.-July 16, 1895. Sowed three and one-half acres of crimson clover in orchard. It came up quickly and covered the ground completely, and was admired by all. Much of it was killed during the winter, although it was in a sheltered place where the snow did not blow off. The ground was rather low. It was plowed under about May 15, 1896, leaving the ground in finer and better condition than we have ever seen it on that plot.
"Plot No. 4.-July 16, 1895. Sowed three more strips of the three clover orchards, as in plot No. 2. This all came up well, and did not have weeds growing in it, as did plot No. 2. In the spring of 1896 the strip of crimson is nearly all killed, while the red is as large as the red of plot No. 2, and the alsike about half as large.
"Plot No. 5.- On July 18th, plowed under five acres of stubble in open field, after cutting off a crop of hay. Sowed it all to crimson clover, which came up quickly and covered the ground well before winter. This spring it was in fine condition and covered the ground completely, except a small strip through one side, where the snow had evidently been blown off from a ridge. This plot is located on the east side of a large piece of woods, which shelters it from the west winds, which are our prevailing winds. This plot was plowed May 11th this year aud planted to corn.
"Plot No. 6.-August 17th. Sowed three more strips in orchard similar to plot No. 2, but a shower, just as we were finishing the harrowing, prevented our rolling it. Neither of these strips grew in the fall of 1895, and it is apparently a failure.
"As the result of our experiments last season with these clovers, we will not sow any more crimson on any large scale until we have experimented further with it, but will try medium red, sown in our orchards about June 1.5th to July 20th. Our objects will be to secure a covering for the ground during the latter part of the summer, fall and winter to improve the mechanical condition of the soil, and to add fertility. Our intention would be to plow under the clover in May and June following. We refer to orchard purposes entirely. We think the red is worthy of further experiments, and would adrise others to try it for themselves. We have long felt the need of something which will give us the results we have attained the past season with the red clorer, and if results are generally as satisfactory as they have been this time, we will be satisfied; " but we are not yet ready to give any final opinion upon the question.

> L. H. BAILEY.

BULLETIN 118-July, 1896.

Corne11 University—Agricu1tural Experiment Station, ITHACA, N. Y.

CHEMICAL DIVISION.
FOOD PRESERVATIVES
$\longrightarrow \mathrm{AND}=$
BUTTER INCREASERS.

By Geo. W. Cavanaugh.

ORGANIZATION.

Board of Control-The Trustees of the University.

STATION COUNCIL.
President, JACOB GOULD SCHURMAN.
Honorable A. D. WHITE Trustee of the University.Professor I. P. ROBERTS President State Agricultural Society.Professor I. P. ROBERTSAgriculture.
Professor G. C. CALDWELL Chemistry.
Professor James Law Veterinary Science.
Professor J. H. COMSTOCK. Entomology.
Professor L. H. BAILEY Horticulture.
Professor II. H. WING Dairy Husbandry.
Professor G. F. ATKINSON Cryptogamic Botany.
OFFICERS OF THE STATION.
I. P. ROBER'IS Director.
E. I. WILLIAMS Treasurer.Clerk.
ASSISTANTS.
M. V. SLINGERLAND Entomology.
G. W. CAVANAUGH Chemistry.
L. A. CLINTON Agriculture.
E. G. LODEMAN Horticulture.B. M. DUGGAR.Cryptogamic Botany.

Office of the Director, 20 Morrill Hall.
The regular bulletins of the Station are sent free to all who request them.

BULLETINS OF 1896.

[^87]
Food Preservatives and Butter Increasers.

The subject of the preservation of articles of food against decay is one of no little importance. Decay or fermentation is known to be due to the action of living germs or ferments. If in any way these germs can be destroyed or their development prevented, without any change in the food product itself, it seems possible that food might be preserved almost indefinitely.

Two conditions that are absolutely necessary for the growth and multiplication of these germs are a moderate temperature and moisture. The methods most generally used for the preserration of food aim to destroy these germs by depriving them either temporarily or permanently of one or the other of these conditions. These methods may be grouped as follows:

1st. Those depending upon the use of heat for the destruction of the germs and subsequent sealing to exclude other germs. This principle is illustrated in the process of canning fruits and vegetables.

2d. Those depending upon the use of cold to prevent the multiplication of the germs for lack of sufficient heat. An example of this is found in our extensive systems of cold storage.

3d. Those in which the food product is dried in order that the germs present may not multiply for lack of sufficient moisture. The production of evaporated fruits illustrates this principle.

Where it is impossible to employ any of the above methods, or where their use might injure or destroy some desirable quality of the food resource is often had to the direct addition to the food of some substance that is detrimental to germ life. The familiar process of preserving meats, especially pork, by salting illustrates this class. There seems to be little or no objection to the
use of foods preserved by any of the first three general methods, nor to this last provided that the substance added has itself no bad fhysiological effect. Besides common salt the following substances are often used: borax, boric acid, salicylic acid, benzoic acid, sulphate of soda, saltpeter and formalin. There is no doukt that they possess the power of arresting the action of germs, but there is some question about the advisability of the continued use of foods containing them. Inasmuch as there is some prejudice on the part of dealers and consumers against their use, frequent attempts are made to introduce preparations of these substances under new forms and names. Two of these preparations have been recently examined at this Station.
The first bore the name

"Preservitas, a Special Cream Preservative."

It is a fine white powder that dissolves readily in water. The following directions are given for its use: "Add $\frac{1}{2}$ oz. to one oz. of the preservitas to each gallon (Imperial) of cream, according to the length of time it is desired to keep it fresh. The smaller proportion will keep cream sweet and with full flavor for a fortnight, and the larger proportion for a month if the cream is quite fresh at the time of the addition. It is advisable to make a paste of the preservitas with a little of the cream, rubbing it into the cream, and then to add the paste to the bulk of the cream.

Note: This preservative is suitable for cream only.
(Signed) The Preservitas Co.,
Managers Burton, Baker \& Co., 110-112 Southwork St.,

London, S. E."

An analysis showed that it contained 30 per cent. borax, a small proportion of salicylic acid; the remainder was sugar. Its preserving power is due, of course, to the borax and salicylic arcid. The sugar helps to bring the borax into solution, as borax has the peculiar property of dissolving more readily in water containing sugar than in water alone.

The second preparation is called
"Callerine, the Ideal Food Preservative."
It is a colorless liquid having a disagreeable pungent odor. It is a little heavier than water. The following are some of the recommendations and directions which accompanied the sample: " Callerine is efficient, cheap and reliable. One ounce of callerine is equal to one pound of salicylic or boracic acids. Not only is callerine harmless to human life, but when any article of food which has been treated with callerine is cooked, the callerine is completely eliminated by the heat.

General Directions.

For Milk:-Add 1 ounce (2 tablespoonfuls) Callerine to 14 gals. milk. This will keep it three days at a temperature of 75° I. For longer keeping or warmer weather, use more Callerine.

A solution of 2 ounces of Callerine to 1 quart of water will be found an efricient wash for preserving meat, poultry, game, fish, regetables, etc. Articles should be carefully washed with the above solution, or, better still, allowed to remain in solution for a few minutes.

$$
\text { Price: Gallons, } \$ 6.00
$$

We are putting up a Special Working Sample (16oz.) which we will forward on receipt of $\$ 1.25$.
(Signed)
Callerine M'f'g. Co., 44 North St., Philadelphia, Pa."

An analysis showed it to be a 7 per cent. solution of formalin, or formic aldehyde. Formalin is the name under which this substance is ordinarily sold, while formic aldehyde is its strictly chemical name. The use of two names for the same substance mar be sometimes misleading, but in this case the two names are used similarly to the terms blue vitriol and copper sulphate. Blue vitriol is the common commercial name while copper sulphate is the chemical name for the same substance. Formalin is at present much used as a germicide and general antiseptic
and preserving agent. It is sold as a 40 per cent. solution and quoted at $\$.60$ per pound.

There is no doubt that formalin is a most effective preserving agent. Prof. R. T. Thomson (Analyst, xxi, p. 65) shows that it is more effective than boracic acid, borax, salicylic or benzoic acids. According to his experiments $17 \frac{1}{2}$ grains per gallon kept milk sweet 11 days.

The 40 per cent. solution of formalin has a specific gravity of 1.080. Since a gallon of water weighs about $81-3 \mathrm{lbs}$. a gallon of the formalin weighs $81-3$ times 1.080 , or 9 lbs . At $\$.60$ per lb. a gallon of this 40 per cent. solution costs $\$ 5.40$. From one gallon of the 40 per cent. solution $55-7$ gallons of a 7 per cent. solution can be made. Therefore the difference in cost between formalin bought as such and callerine at $\$ 6$ per gallon is:

$$
\begin{aligned}
& 1 \text { gal. formalin. } \$ \text {. } \$ \text {. } 40 \\
& 554 \text { gal, callerine at } \$ 6 \text { per gal. }
\end{aligned}
$$

If bought in the Special Working Sample (16 oz.) at $\$ 1.25$ the difference in cost is:

1 lb . formalin	\$. 60
55.7 lbs . callerine at $\$ 1.25$.	7.14

Or in other words $\$ 34.28$ and $\$ 7.14$ are asked, respectively, for $\$ 5.40$ and $\$.60$ worth of formalin. By purchasing the original material at $\$.60$ per lb. and adding water at the rate of $44-7 \mathrm{lbs}$. to each pound of formalin a solution of the same strength as callerine is obtained.

As to the effects of formalin on digestion Prof. R. T. Thomson in the article above referred to quotes from Dr. Leffmann " Processes of digestion are allied to processes of decomposition, in so far that the latter are frequently preceded by transformation under the influence of ferments. We may infer then that whatever prevents putrefaction at least delays digestion." While there is no evidence that evil effects have followed from the use of such small quantities of formalin as are necessary to preserve milk, it seems advisable from Dr. Leffmann's statement to be cautious about its use in any considerable quantity.

It would seem unwise to endanger the healthful condition of the stomach and diminish the digestibility of cream and milk, naturally rated among the most digestible food products. That milk and cream treated with formalin are injured, is not founded upon theory but upon facts. Digestion experiments have been made upon milk with and without the presence of formalin. In the cases so far reported the milk containing the formalin required a longer time for digestion than that which contained no formalin. Furthermore, the behavior in the Babcock test of milk which had been preserved by formalin shows that its composition is in some way affected. Ordinarily, the curd of milk is dissolved by the sulphuric acid that is used in this test. Where formalin is used the curd often fails to dissolve and becomes a compact mass. If this preservative can so alter milk that sulphuric acid may fail to dissolve its curd, is it not at least probable that the action of the gastric juices of the stomach may be rendered less effective?

CHASE'S BUTTEER INCREASER.

Agents have been busy throughout different parts of the State attempting to introduce the above named substance. It was guaranteed to bring about an increased yield of butter in charning. A sample of this substance was examined at this Station. It was a liquid having the general appearance of vinegar and a slight odor of oil of wintergreen. The label bore no name of the firm manufacturing it nor any address showing where it might be obtained. It guaranteed to double the yield of butter from cream if added in small proportions to the cream before churning.

It was a 25 per cent. solution of acetic acid, which is the acid of vinegar, and a small amount of salicylic acid. (Salicylic acid is a constituent of the oil of wintergreen.)

The action of acids on milk is to curdle the casein. This is shown in the souring of milk itself when lactic acid is formed from the milk sugar; or by adding vinegar or other acids to milk. Hence it is plain what the effects of Chase's Butter Increaser would be. The acetic acid would curdle the casein which would
become mixed with the fat, and yield a product that would be neither good butter nor poor cheese.

A second article of an even more fraudulent nature has also been sold by agents. It goes under the name of " Gilt Edge Butter Compound." It guarantees to make two pounds of butter from one pound of butter and a quart of sweet milk. In general the directions were to warm the butter until soft, mix in the milk and add as much of the compound as could be placed on a one cent piece and mix all together. The resulting butter (?) will weigh two pounds. This "Gilt Edge Butter Compound" is a mixture of about equal parts of alum and soda with a little pink coloring matter. It was sold in ounce packages for \$1.

These substances would act in a similar way to the acid in the " Increaser," i. e. , by incorporating the casein and also a considerable amount of water with the cream. This incorporated casein furnishes a medium for the growth and multiplication of millions of organisms. It is to remove this casein and so get rid of these germs that butter is so carefully washed.

While the food preservatives may have some valuable uses, as keeping milk samples for composite tests, there is absolutely no excuse for "Butter Iucreasers" in an honest community. They are fraudulent in that they pretend to teach the producer how he can get more butter from cream than there is in it. They promote dishonesty by throwing in the way of an unscrupulous producer a means of defrauding his customers; and worse than all, the use of these "Increasers" is an attempt to put on the market a product which not only cheats the producer but may possibly endanger the health of the consumer.

GEORGE W. CAVANAUGH.

BULLETIN 119 -August, $1 S 96$.

Corne11 University-Agricu1tural Experiment Station, ITHACA, N. Y.

HORTICULTURAL DIVISION.

THE TEXTURE 0F THE SOIL.

" Men of the greatest Learning have spent their Time in contriving Instruments to measure the immense Distance of the Stars, and in finding out the Dimensions, and even Weight of the Planets: They think it more eligible to study the Art of plowing the Sea with Ships, than of Tilling the Land with Ploughs; they bestow the utmost of their Skill, learnedly, to prevent the natural Use of all the Elements for Destruction of their own Species, by the bloody Art of War. Some waste their whole Lives in studying how to arm Death with new Engines of Horror, and inrenting an infinite Variety of Slaughter; but think it beneath Men of Learning (who only are capable of doing it) to employ their learned Labours in the Invention of new (or even improving the old) Instruments for increasing of Bread."-Jethro Tull.

By L. H. Bailey.

O R G A N I Z A T I O N

Board of Control - The Trustees of the University.

STATION COUNCIL.
President, JACOB GOULD SCHURMAN.
Hon. A. D. WHITE Trustee of the University.
Professor I. P. ROBERTS President State Agricultural Society.
Professor I. P. ROBERTS Agriculture.
Professor G. C. CALDWELL Chemistry.
Professor JAMES LAW Veterinary Science.
Professor J. H. COMSTOCK Entomology.
Professor L. H. BAILEY Horticulture.
Professor H. Ǐ. WING Dairy Husbandry.Professor G. F. ATKINSONBotany.
OFFICERS OF THE STATION.
I. P. ROBERTS Director.
E. L. WILLIAMS Treasurer.E. A. BUTLERClerk.
ASSISTANTS.
M. V. SLINGERLAND Entomology.
G. IV. CAVANAUGH Chemistry.
E. A. CLIN'TON Agriculture.
E. G. LODEMAN Horticullure.B. M. DUGGARCryptogamic Botany.

Office of the Director, 20 Morrill Hall.
The regular bulletins of the Station are sent free to all who request them.

BULLETINS OF 1896.

106. Revised Opinions of the Japanese Plums.
107. Wireworms and the Jud Moth.
108. The Pear Psylla and the New York Plum Scale.
109. Geological History of the Chautauqua Grape Belt.
110. Extension Work in Horticulturo.
111. Sweet Peas.
112. The 1895 Chrysanthemums.
113. Diseases of the I'otato.
114. Spray Calendar.
115. 'The Pole Lima Beans.
116. Dwarf Apples.
117. Fruit Brevmies.
118. Food Preservatives and Butter Increasers.
119. 'The Texture of the Soil.

Cornell University, Ithaca, N. Y., August 1, 1896.
The Honorable Commissioner of Agriculture, Albany:
Sir.-This bulletin and its successor (No. 120) are designed to inaugurate a new type of experiment station publication. They are written for the purpose of giving their readers a few simple and primary lessons in some of the most fundamental subjects connected with the cropping of the land. It is hoped that they do not contain a single new fact. It is their sole ambition to teach, not to discover or to record. The writers hope that they may be used as texts in horticultural societies, granges and farmers' clubs. It is wished that they may inspire some persons to read further into the subjects, and especially that they may suggest the reading of King's book upon "The Soil," from which the bulletins themselves have heavily drawn. These bulletins are published by the State appropriation which was given, (chapter 437, Laws of 1896), in part, for "disseminating horticultural knowledge" in the Fourth Judicial Department of the State. We expect to use them in the schools of horticulture which are to be held under the auspices of this State grant. If the simple principles which they attempt to enunciate were to be clearly apprehended by our farmers, all the money and effort expended in experimentation in this State would be many times repaid.

> L. H. BAILEY.

136. -The unproductive clay from which Sample I. was taken.

137.-The good bean soil from which Sample II. was taken.

The Texture of the Soil.

The other day I secured one sample of soil from a very hard clay knoll upon which beans had been planted but in which they were almost unable to germinate, another sample from a contiguous soil in which beans were growing luxuriantly, and as a third sample, I chipped a piece of rock off my house, which is built of stone of the neighborhood. All of these samples were taken to the chemist, Mr. Cavanaugh, for analysis. The area from which I took the hard and unproductive clay (Sample I.), is shown in Fig. 136. The reader will not be able, I think, to discover any bean plants upon it, although the seed was drilled into it at the same time as in the soil which furnished Sample II. Fig. 137 shows the area from which Sample II. was taken. This area is only twenty feet removed from the other, and is of the same original formation, but it differs in being in a slight derression or "draw " and the soil is in a fairly fine degree of division. It is really a good bean soil. The samples of soil which were actually taken to the chemist are shown in Fig. 138. The rock (Sample III.) was hard limestone, known to geologists as the Tully formation.
The chemist reports as follows:

	Moisture.	Nitrogen.	Phosphoric acid.	Potash.	Lime.	Organic matter.
I. Unproductive clay	13.25	. 08	. 20	1.1	41	3.19
II. Good bean land...	15.95	. 11	. 17	. 75	. 61	5.45
III. Lime rock.			. 08	2.12	2.55

In other words, the chemist says that the poorer soil-the one upon which I cannot grow beans-is the richer in mineral plant food, and that the rock contains a most abundant supply of potash and about half as much phosphoric acid as the good bean soil.

All this, after all, is not surprising, when we come to think of
it. Every good farmer knows that a hard and lumpy soil will not grow good crops, no matter how much plant food it may contain. A clay soil which has been producing good crops for any number of years may be so seriously injured by one injudicious plowing in a wet time as to ruin it for the growing of crops for two or three years. The injury lies in the modification of its physical texture, not in the lessening of its fertility. A sandy soil may also be seriously impaired for the growing of any crop if the humus, or decaying organic matter, is allowed to burn out of it. It then becomes leachy, it quickly loses its moisture, and it becomes excessively hot in bright sunny weather. Similar remarks may be applied to all soils. That is, the texture or physical condition of the soil is nearly always more important than its mere richness in plant food.

A finely divided, mellow, friable soil is more productive than a hard and lumpy one of the same chemical composition because:

It holds and retains more moisture; holds more air; presents greater surface to the roots; promotes nitrification; hastens the decomposition of the mineral elements; has less raciable extremes of temperature; allows a better root-hold to the plant.

In all these ways, and others, the mellowness of the soil renders the plant food more arailable and affords a congenial and comfortable place in which the plant may grow.

The reader will now sce the folly of applying commercial or concentrated fertilizers to lands of poor texture. He will see that if potash, for example, were applied to the hard lumps of Sample I. (Fig. 138), it could not be expected to aid in the growth of plants, because plants cannot grow on such soil. If the same quantity were applied to Sample II., however, the greater part of it would be presented to the roots of plants at once, and its effects would no doubt be apparent in the season's crop. The reader will readily understand that it is useless to apply commercial fertilizers to lands which are not in proper physical condition for the very best growth of crops.

The poor or lumpy soil contained a greater percentage of potash and phosphoric acid, no doubt, because, of the lack of humus
in the sample. As it contains less organic matter, it therefore has less nitrogen than the good soil (Sample II.). Probably because of this less percentage of organic matter, this lumpy soil also contains less moisture than the other. As a matter of fact, however, these differences which the chemist found in the organic matter, nitrogen and moisture, are not sufficient to account for the very great differences in the productivity of the two soils. The chemical examination would have thrown more light upon the value of these soils if a determination had been made of the amount of potash and phosphoric acid which is soluble; but even then, the chemist could not have told, from analysis alone, how

valuable this land might be for any particular crop. Analysis does not show how agreeable or comfortable the land may be to the plants. There is sufficient potash in the rock (Sample III.), and even enough phosphoric acid, to grow a crop of beans; and yet, even if I add the nitrogen and water and make the mineral plant food soluble, I cannot hope to grow a crop on the walls of my house. In brief, a chemical analysis of soil is only one of several means of determining the value of land, and in the general run of cases it is of very secondary value.

How can the texture of lands be improved? In general, by three means-by judicious plowing and tillage, by the incorporation of humus, and by the use of underdrains. The value of
simple tillage or fining of the land as a means of increasing its productivity was first clearly set forth in 1733 by Jethro Tull, in his "New Horse Hoeing Husbandry." The premises upon which Tull founded his system are erroneous. He supposed that plant roots actually take in or absorb the fine particles of the earth, and, therefore, the finer and more numerous these particles are, the more luxuriantly the plant will grow. His system of tillage, however, was correct, and his experiments and writings have had a most profound influence. If only one book of all the thousands which have been written on agricultural and rural affairs were to be preserved to future generations, I should want that honor conferred upon Tull's "Horse Hoeing Husbandry." It marked the beginning of the modern application of scientifio methods to agriculture, and promulgated a system of treatment of the land which, in its essential principles, is now accepted by every good farmer, and the appreciation of which must increase to the end of time. These discursive remarks will, I hope, emphasize the importance which simple tillage holds in agricultural practice.

Farmers do not appreciate the importance of humus as an ameliator of land. In farm lands it is usually supplied in the form of green crops, stubble or sward, and barn manures. When humus is absent, sandy soils become too lose and leachy and hot, and clay soils bake and become lumpy. The different physical characteristics of our Samples I. and II. are largely due to the greater amount of humus in the good soil, and yet we have seen that the chemist pronounced the other soil richer in native plant food.

The writer has much of this hard, unproductive land, like Sample I. What is to be done with it? To cover it with commercial fertilizer would be of little benedit. It must first be put in fit condition for the growing of crops. A crop of clover plowed under would quickly improve it, but the land is newly planted to orchard and he does not care to seed it down. The next recourse is stable manure. Of this enough can be had to cover the hardest spots. For the rest, catch or cover crops must be used. Follow-
ing beans or potatoes. he can sow rye and plow it under very early in the spring (see Bulletin 102). Now and then he can use a fall crop of sowed corn or oats, or something of the kind. After a time, he mar be able to get the land in such a condition of tilth as to secure an occasional stand of crimson clover. This practice, continued judiciously for a few years, ought to radically change the character of the land; but all this will be of little arail unless the plowing and cultivation-which are now so inadequate-can be done in a timely and intelligent was. All this will take time and patience. He wishes that there were some short-cut and lazy way of improving this land by making some application of fertilizer to it, but there is not. The most he can do is to slowly bring it into such condition that it will pay to put concentrated fertilizers on it. In short, the first step in the enrichment of unproductive land is to improve its physical condition by means of careful and thorough tillage, by the addition of humus, and perhaps by underdrainage. It must first be put in such condition that plants can grow in it. After that, the addition of chemical fertilizers may pay by giving additional or redundant growth.
L. H. BAILEY.

BULLETIN 120-August, 1896.

Cornell University—Agricultural Experiment Station, ITHACA, N. Y.

AGRICULTURAL DEPARTMENT.

THE MOISTURE OF THE SOIL AND ITS CONSERVATION.

Page 488.

By L. A. Clinton.

ORGANIZATION.

Board of Control-The Trustees of the University.

STATION COUNCIL.
President, Jacob gould schurman.
Hon. A. D. White Trustee of the University.
Professor I. P. Roberts President State Agricultural Society.
Professor I. P. Roberts Agriculture.
Professor (x. C. CaLDWELI Chemistry.
Professor James Law Veterinary Science.
Professor A. N. Prentiss Botany.
Professor J. H. COMSTOCK Entomology.
Professor L. H. Balley Horticulture.
Professor H. H. W'ing Dairy Husbandry.Professor G. F. ATKINSONBotany.
OFFICERS OF THE STATION.
I. P. ROBERTS Director.
E. L. Williams Treasurer.
H. W. BUTLER Clerk.
ASSISTANTS.
M. V. SLINGERLAND Entomology.
G. W. CAVANAUGH Chemistry.
E. G. LODEMAN Horticulture.
L. A. CLINTON Agriculture.B. M. DUGGARCryptogamic Botany.

Office of the Director, 20 Morrill Hall.
The regular bulletins of the Station are sent fiee to all who reqnest them.

BULLETINS OF 1896.

[^88]
THE LESSON OF THE DAISIES.

No one who has chanced to make a somewhat extended tour through the farm-lands of any part of the middle states during the last of June or the first of July can have failed to notice how large a fraction of the area was white for the harvest-a harvest not of grain, but of Ox-eye Daisies. Fields of buckwheat at the height of their bloom were never whiter than many lowlands which once were rich meadows, and many hillsides which once were rich pastures. The daisies are so prevalent and luxurious this year that a stranger might suspect that all the farmers had gone into the business of floriculture, but a few questions will soon dispel this illusion, for the growers of the daisies very rarely appreciate their beauty. It is a genuine and destructive invasion, and yet the daisies have not conquered the meadows; they have merely stepped in to occupy and possess the soil which the grass had abandoned. The worst of it is that the great majority of the tillers of the soil do not apprehend the true condition of things, and while they bewail the fate which forces them to harvest daisies instead of grain or hay, they do not realize the fact that they have invited the attack and encouraged the invaders.

Occasionally a farmer is heard to ask how these weeds can be killed, but he does not realize that if by some rapid process they could all be dispatched new legions would fill their places at once if the conditions which they enjoy remain. What farmers need to comprehend is that without some radical mistake in the management of their land the daisies never would have gained such a foothold. All plants, including weeds, settle and thrive where the competition for life is such that they can enter into it and prosper. A good stand of grass leares no room nor any hope for weeds. It is not in well-tilled fields that Canada thistles flourish, but in neglected pastures and by the roadsides. In the contest with the best agricultural practice they cannot prevail. It is in the untilled plains of the west or in the tilled regions where there is mile after mile of plowed land producing only eight or nine bushels of wheat to the acre year after year, without any rotation, where the Russian thistle is a natural and inevitable intruder.

The remedy for weeds is to keep the land busy with a good crop on it, and this means that the farmer must give persistent and connected thought to his business. If the daisies crowd out the grass, it is because the meadow has been neglected and the grass has begun to fail, and wherever there is a vacancy by the failure of the grass every enterprising weed finds a rightful opportunity to establish itself. If the farmer asks, therefore, what will kill the daisies, there is one answer; better farming. Weeds find nourishment and a home wherever there is waste ground, which means ground not properly occupied. Widespread areas of daisies, buttercups, wild carrots, mustards and the like are, therefore, the types and measures of the prevailing ignorance of farmers respecting the very fundamental principles of their calling. The one good thing that weeds can accomplish is to prove by their presence that there is a weak point in the established
system of agriculture: the only way to turn their visits to advantage is to heed this instruction by revolutionizing farm practice and organizing some profitable rotation which will exclude them.

If farmers cannot interpret the teachings of the weed it certainly would be advisable for the agricultural experiment stations to help them in this particular. The existence of these invaders means that what the farmers of these states primarily need is more instruction in fundamental matters concerning the handling of their land. We are glad, therefore, to see that many of the stations are turning to this subject, and that they are doing more than merely furnishing botanical descriptions of the various noxious plants. The Cornell Station, for example, in a bulletin entitled Reflections Upon Weeds, gives some sound primary instruction in agricultural science. It is to be hoped that both this station and others will continue work of this sort eren if they forego to some extent experimentation in higher fields. So long as the farmer needs elementary teaching it ought to be furnished to him, even if it takes the time of officials who ought to be searching for scientific truth. A late bulletin of the Genera Experiment Station upon the principles which underlie the application of commercial fertilizers deals with the simplest matters, matters with which every intelligent farmer ought to be familiar, and yet there is no doubt that every word of it is needed. The time may come in America, as it has come in some older countries, when the common schools instruct children in the principles of agriculture-so that in fundamental points of practice the ordinary farmer will know what to do, and will be able to tell why he does it. Until that day arrives every effort to increase his knowledge of principles deserves encouragement.-Editorial in Garden and Forest, July 22, 1896.

The Honorable Commissioner of Agriculture, Albany:
Sir.-This expository bulletin is submitted, as explained in the prefatory note of Bulletin 119, for publication under Chapter 437 of the Laws of 1896.

L. H. BAILEY.

The Moisture of the Soil, and Its Conservation.

The conservation of soil moisture is one of the most important problems presented to the farmer and gardener. Hardly a season passes in which some important crop is not reduced in yield from twenty-five to seventy-five per cent. because of lack of sufficient moisture to bring it to maturity. The soil may have been put in proper condition, plant food may have been supplied in the form of fertilizers, and all other conditions may have been favorable for the development of a full crop, yet with the supply of moisture deficient all this labor and expense count for little or nothing. The questions, therefore, arise, "To what extent can the amount of soil moisture be controlled?" "Is it possible to do anything to save crops from the oft-recurring droughts", "

The insufficient water supply is not due to lack of rainfall, but to its unequal distribution. The average annual rainfall in New York for the last seventeen years is 34.31 inches. The lowest rainfall ever recorded in the state was in 1879 when only 19.74 inches fell. In 1895 there was also a deficiency, only 28.66 inches being recorded. In the arid portions of Kansas, a rainfall of 20 inches which is well distributed, is reasonably sure of making a good crop. The loss there by surface drainage is, however, very slight, it being estimated at not more than ten per cent. or about 2 inches, leaving is inches for crop growth. In New York, with a rainfall of from 34 to 40 inches, nearly one-half passes off by surface drainage and is lost so far as immediate plant growth is concerned. Not only is the water lost to the crops, but it carries with it much of the soluble plant food of the surface soil. This, then, would suggest one important step in the attempt to store up moisture. This surface flow of water must be prevented and caused to sink into the soil to supply a reservoir from which plants can secure moisture during the period of growth.

How the soil holds its water.

That a proper understanding of the question may be reached, it is necessary to have a knowledge of the conditions under which water exists in the soil, and of the part it plays in the mysterious operations of plant growth. Water may be in one of three forms, -as free, capillary, or hygroscopic water. The free water of the soil is that which flows under the influence of gravity. It is the source of supply for wells and springs. It is not directly used by plants and its presence in the soil within eighteen inches of the surface is detrimental to the growth of most cultivated crops. It is valuable, however, because it is the supply from which capillary water is drawn.

The capillary water does not flow by gravity. It is the direct source of moisture for plants. It may be either drawn upwards or it may pass downwards depending upon whether the soil is drier at the surface or below. In time of droughts, the capillary action of the soil may be sufficient to raise the water through a distance of five or six feet, its power in this respect depending directly upon its physical condition. If the

139.-The soil mulch. soil is coarse and cloddy and the particles are not compact, then the water can not rise to take the place of that which is carried off by evaporation or used up by plants in their growth. If, however, the soil is fine, in good condition, and homogeneous, the water passes freely and continuously to the surface. Notice the track of the horse on the plowed ground, or the foot-print of the driver, and see how the moisture comes directly to the surface, because the soil has been compacted and there is intimate capillary relation between its particles. This moist surface shows that the water is passing off from it into the air. This observation should teach a lesson. The soil may be pulverized and made compact, but the capillary pores near the surface must be enlarged by tillage so as to break the capillary (mmections and stop the water in its upward course, and thus force it to pass off through the tissues of the phant. This loose surface stratum, two or three inches deep, is the "soil mulch" (Fig. 139) of which so much has been said
in recent writings. It is one of the most important means of preventing the loss of water from the soil. It breaks off the capillary pores in the soil structure and interposes between the lower moist soil and the air a layer so loose that the water can not rise through it. This mulch may itself dry to dust, but it nevertheless protects the soil below. When soils become baked, the minute capillary pores connect directly with the atmosphere and the evaporation of water is very rapid. Hence it is exceedingly important that the crust be broken after every rain.

The hygroscopic water of the soil flows neither under the influence of gravity nor capillarity. It is held firmly in place upon the particles of soil and can only be driven off by a high degree of heat. Just how important this water is in the growth of plants has not been determined, but it is probable that during severe droughts it may assist in carrying the plant over, enabling it to maintain itself until capillary action is restored.

The necessity of water for growing plants.
The importance of water to the growing plant can ouly be undestood when we apprehend and appreciate how large a part of its structure is composed of water, and that even this large percentage of its composition is but a fraction of the total amount used in its development. The quantity of water entering into the structure of plants varies from sixty to as high as ninetyeight per cent. of their total weight. During the entire period of growth, there is a constant giving off of moisture by the foliage, and it must be made good by that which is taken up by the roots. By experiments conducted at the Wisconsin Experiment Station, it has been found that in raising oats, for every ton of diry matter produced there were required 522.4 tons of water; for every ton of dry matter of flint corn there were required 233.3 tons of water; for dent corn, 309.8 tons of water for every ton of dry matter. On plots at this Station, 1.8 tons of dry matter of oats per acre represented an expenditure of 940.32 tons of water. Potatoes used 422.7 tons of water per ton of dry matter. The yield of potatoes on the experiment plots of 450 bushels per acre during the dry season of 1895 represented an amount of water equal to 1310.37 tons.

Just why so much water is required by the growing plant and how it obtains this supply is not usually understood. It has been the subject of considerable re-

140.-A corn plant showing the intimate relation between the roots and the soil particles. From life. search and even now presents interesting problems for further study. The roots of the plant are its feeders and all of the water ordinarily used by it passes in through these channels. The particles of soil hold a film of water in firm contact. The roots and rootlets of the plant, in burrowing through the soil, come into intimate relation with these soil particles (Fig. 140). The finer the soil, the closer the relation estab lished between it and the roots. The The roots are thus surrounded by a thin film of water, a portion of which they are able to absorb. The water passes up through the tissues of the plant, carrying with it soluble plant food which is conveyed to the manufacturing or elaborating organs, the leaves. There, in the presence of sunlight, the fixation of carbon from the air takes place and by means of the movement of the sap the now organized material is caried to all growing parts of the structure. That part of the water no longer required passes off through the breathing pores of the leaf, called stomata. As evaporation is a cooling process, there is no doubt that this loss of water has an important influence in lowering the temperature of foliage and in promoting the fixation of carbon.

As already stated, the plant roots can absorb food only in the soluble form, and the passage of a large quantity of water through their dissum is necessary to furnish the supply of mineral elements required by growth. Not only is a large quantity of moisture demanded for the direct use of the plant, but its presence in the soil is necessary in order that the plant food may
be rendered available. Few soils are so lacking in fertility that they would not grow crops could the mineral plant food which they contain be unlocked and brought into fit condition for use. This important operation, as well as nitrification,- or the conrersion of nitrogen compounds into the form of nitrates,-can proceed only in the presence of moisture. Crops plowed under for green manuring, and barn manures, can be made arailable only when there is sufficient moisture in the soil to cause breaking down and decomposition. With moisture in the soil, there is a constant movement towards the plant roots to restore the equilibrium, or to make good that used by the plant. This morement of the moisture brings to the roots the soluble plant food.

The living root itself has the power of disintregating and decomposing the particles of soil and of dissolving and extracting some of the plant food. This powerful action, by which the solid rock is broken down and its plant food liberated and by which even polished marble can be corroded, goes on only in the presence of moisture. Supply the plant with moisture, and its roots are able to set free from the particles of the soil a part of the mineral elements required for its growth. Supply even our sandy desert plains with abundant moisture and immediately they change from a desert to a garden.

An acre of soil to the depth of one foot weighs approximately 1,800 tons. If 25 per cent. of this is moisture, we should have 450 tons of water per acre. An acre of soil to the depth of eight inches weighs about 1,200 tons. If 25 per cent. of moisture were found here it would contain per acre 300 tons of water. Plants can maintain themselves with as low as 5 per cent. of water, but their growth seems to go on most rapidly in soils whose water content is from 13 to 25 per cent.

The conservation or saving of moisture.

The annual rainfall in New York is sufficient for the requirements of plants, could it be distributed or conserved during the growing season. The experiments conducted by the U. S. Dept. of Agriculture with a view to controlling the distribution of rainfall, proved that it was beyond control by any means known at present. Dependence must then be placed upon irrigation or
conservation of moisture to overcome the disastrous effects of drought. In the arid and semi-arid regions of the West, where irrigation is successfully practiced, the problem is apparently solved, or is at least reduced to a mere matter of co-operation and cost. But in the Eastern states, entirely different conditions are met. To supply the enormous amount of water required for growing crops means an outlay of money entirely beyond the individual means of most farmers and gardeners. In the West where irrigation is practiced most uniformly, farmers are not required to take into consideration the possibilities of rain. They know that there will be no heary downpour immediately after flooding their crops. But here there is no such guarantee, and to flood the fields by irrigation and have that followed immediately by a heavy rain might mean the entire destruction or serions injury of the crop. Although irrigating systems may be introduced in special cases, yet the great dependence, in this State, must be the rainfall and the conservation of the moisture of the soil.

The means by which moisture may be conserved are as follows:

> By plowing and tillage, mulches, underdrainage, lessening the influence of winds, applications of lime, salt, etc., rotation of crops to increase humus, adapting the crop to the soil.

Plowing to save moisture.-As already indicated, the first step in the conservation of moisture must be the preparation of the soil so that the rain will sink down and not be carried off by surface drainage. In many sections of the country, especially in the Southern States, the great bane to agriculture is the surface washing of the soil. Owing to shallow plowing and shallow cultivation, the water is unable to settle into the hard soil with sufficient rapidity and is carried along the surface, producing those gullies which are there so destructive to farm lands.
The improvements in the plow have done much towards remedying these defects, but there is still a large amount of ignorance
as to the proper use of this implement. As an implement to be used in the preparation of the soil for the reception of moisture, it stands pre-eminent. Good plowing does not consist - as ordinarily supposed - in merely inverting a portion of the earth, but in pulverizing and fining it and burying the sod or refuse which may be on the surface. The amount of water which a soil is capable of holding depends directly upon the fineness of its particles. Then that plow which will break and pulverize the soil most thoroughly is the one best adapted to fit the soil for holding moisture. This point is well illustrated by King in his book on "The Soil." He says," Since each independent soil grain of a moist soil is more or less completely surrounded by a film of water, it is evident that, other conditions being present. the largest aggregate surface area may retain the most water per cubic foot. Now, a cubic foot of marbles one inch in diameter possesses an aggregate surface of 27.7 square feet while if the marbles were reduced in diameter to one-thousandth of au inch, then the total area per cubic foot is increased to 37,700 square feet." From this it is evident that the total amount of water capable of being absorbed by a soil which is cloddy and lumpy is very slight in comparison with what it would be were it in a finely divided state; and not only is its absorbing power less, but its power of holding moisture is also greatly reduced. King found the rate of percolation from soils of different degrees of fineness to be as follows, the column of soil being eight feet in height:

Time of Percolation.

SIZE OF GRAINS.	Per cent. lost in 1 hour	Per cent. lost in : 3 hours.	Per cent. lost in 24 hours.	Per cent. lost in 48 hours.
. 186 inch.	9.10	10.45	13.05	13.52
. 073 inch	7.95	9.47	12.31	12.72
. 061 inch.	6.22	9.21	11.71	11.53
. 045 inch.	$1 . \% 6$	2.83	7.64	8.44
. 032 inch.	1.28	1.91	5.83	6.79

This striking difference in the rate of percolation from soils of different degrees of fineness shows most forcibly the importance of thorough pulverization of soils to increase their water absorbing and moisture holding capacity.

A large amount of water is lost during the winter and spring
months owing to the surface drainage of melting snows and heary rainfalls. To prevent this loss, fall plowing should be extensively practiced, and where the subsoil is very hard and compact the use of the subsoil plow may prove most beneficial. Should the ground break up in clods, then it may be allowed to remain during the winter without harrowing to more thoroughly subject it to the beneficial action of the elements. But should the soil be in good mechanical condition, then some plants should be growing on it during the winter. The importance of keeping growing plants on the soil during the winter can hardly be overestimated. They serve to bind the soil, to take up the plant food which may be soluble and liable to loss by drainage. If these plants are plowed under in the spring, organic matter is added to the soil. In corn fields, wheat or rye may be drilled in without plowing and it will obtain sufficient growth to act most beneficially upon the soil during the winter and it may be plowed under in the spring, having served its purpose as a soil protector. The use of cover crops for orchard lands is fully discussed in Cornell Bulletin 102.

It should be said, however, that hard land which is bare or devoid of humus is very apt to become puddled or cemented during the winter if plowed in the fall. In such cases, all that is gained by fall ploughing is more than lost by this running together of the soil.

On land that has been fall plowed, work can begin in the spring several days earlier than on unplowed land. It should be the practice to stir the surface soil just as early in the spring as conditions will permit, that a soil mulch

141.-Clay soil, showing its impermeable character. may be formed which will serve to prevent the escape of the water from below. On clay land it is of special importance that work be commenced early, and yet on account of its peculiar nature it is the slowest in drying out and the last to be plowed. This delay may mean the difference between a success and a failure of the crop. Clay soils, owing to their fine state of division and their tenaciousness, are but slowly permeated by water (Fig. 141).

But once saturated, unlike sandy soil, it does not permit the water to pass off by percolation and must wait until the sun's rays and the winds have dried off the surface sufficiently to permit of its being worked. Then, to conserve the moisture, frequent shallow tillage should be given and crops should be sown before the water has become exhausted. The slow passage of the water towards the surface, by means of capilliary action, furnishes plants with moisture and insures a successful start, which is half the battle towards securing a successful crop. King found that the loss of moisture during seven days from April 29th to May 6th was 9.13 lbs . of water per square foot greater on the unplowed than plowed land, equal to a rainfall of 1.75 inches, or 198 tons of water per acre. Can it be afforded to thus delay the spring plowing and the preparation of the soil mulch? Then, the very evaporation is a cooling process and the soil, instead of becoming warm and of a proper temperature for the germination of seeds, remains cold and uncongenial as long as this wasteful process goes on. With sandy and gravelly soils the difficulty experienced in the spring is not so great. They are both permeable to water and furnish another means for its escape besides evaporation. The water passes off by percolation and the soil soon becomes warm and ready for the reception of the seeds. But moisture can be conserved better on clay lands than on sandy lands, because the loss occurs chiefly through evaporation. It is upon clay or heary lands, therefore, that the value of the soil mulch is markedly apparent.

Harrowing to save moisture.-The harrow, besides pulverizing and fining the soil for the seed-bed, is most efficient in furnishing a soil mulch. The spring-tooth harrow is in reality a cultivator, and its action is similar to that of the cultivator. When used as an instrument to conserve moisture, the teeth should penetrate to the depth of about three inches, and to produce the best effect the ridges left by it should be leveled off by a smoother which can now be purchased as an attachment to the harrow. The tillage of orchards by the harrow is now practiced extensively, and nothing short of irrigation will so nearly meet the demands of trees for moisture, particularly upon the heavier soils.

The Acme harrow is a most excellent implement on soils which are comparatively free from stones and rubbish. The plow-like action of its blades serves to pulverize the surface soil, to spread the loose mulch evenly, and it leaves a most excellent seed-bed.
The cutaway or disc harrows may be either beneficial or of absolute injury. If the discs are so set that they cover but a portion of the surface with the mulch, they leave a ridge exposed to the action of the wind and sun, and the rate of evaporation is greatly increased. The discs should be set at such an angle that the whole surface shall be stirred or covered. Their chief value lies in their cutting and pulverizing action on clay soils, but as conservers of moisture they are inferior to the Acme or the spring-tooth. Soils which need the disc harrow should generally be gone over again with some shallower tool.

The mellower the soil the lighter should be the work done by the harrow. On most heavy orchard soils it will be found necessary to use the heavy tools, like the spring-tooth and disc harrows, in the spring, but if the land is properly handled it should be in such condition as to allow the use of a spike-tooth or smoothing harrow during summer. This light summer harrowing, as shown in the cut on the title page, should be sufficient to keep down the weeds, and it preserves the soil mulch in most excellent condition. With such a tool, and on land in good tilth, a man can harrow ten or more acres a day.

Cultivators and conservation of moisture.-The action of cultivators is not materially different from that of the spring-tooth harrow. The size of the teeth should be regulated by the work to be performed, a many small-toothed implement being preferable to a few large teeth, where the object is to conserve moisture. It must be borne in mind that in a dry time the less surface exposed the less will be the evaporation. If a large toothedimplement is used to destroy grass and weeds, then it should be followed by a smoother to reduce the ridges and prevent loss of moisture. Ridge culture is only allowable when the object is to relieve the soil of moisture on bottom lands where the water comes very near the surface, or for some special crops, where a high degree of warmth is required early in the season. In these
cases it may be necessary to throw up ridges to produce the proper degree of warmth for germination, but even then the ridges should be slight. Nothing could be better calculated to dry out a potato field or a corn field than throwing the ground up in high ridges, leaving a large surface exposed to the action of sun and wind.

In fruit plantations which are in a proper state of cultivation, a small-toothed or even spike-toothed cultivator will be found sufficient to maintain the surface mulch.

The following figures show how much the use of the cultivator may do to save moisture: In our determinations of soil moisture we found, on July 1st, in a plot where $14,080 \mathrm{lbs}$. of green forage per acre had been cut from one-half of it but 6.73 per cent. of moisture, while on the open cultivated space between plots, within five feet from where the other sample was taken. 10.54 per cent. of moisture was found. July 6th samples were again taken. The percentage of moisture in the standing oats was 4.07, and in the open cultivated space 13 per cent. This clearly illustrates the difference in the amount of soil moisture retained by frequent surface tillage compared with that which is found where a crop of grain covers the soil.

The roller in its relation to soil moisture is an implement whose value depends largely upon local conditions. There is no tool which requires more judgment as to its proper use. On light, loose sandy or gravelly soils, where every effort must be made to solidify and pack the particles closely together, the roller must be used repeatedly. The difficulty of such soils is that the spaces between the grains are so large that the water is permitted to pass through freely and is lost by percolation. The capillary openings are so large that there is very feeble rise of the water to take the place of that used by plants and lost by evaporation (Fig. 142). The roller lessens the size of these pores in solidifying

142.-Coarse gravelly soil, -hownity itsose structure. the soil and the capillary force is then strong enough to draw the water to the surface (Fig. 143). If,
now, the soil is left in this condition, it has been put in the best possible form for parting with its moisture, and it will take advantage of the opportunity unless prevented by establishing a surface mulch. In seeding land in a dry time the soil should be rolled in order to bring sufficient moisture to the seeds to insure germination. Where circumstances will permit, the roller should be followed by a smoothing harrow that the surface mulch may be restored and the moisture stopped before reaching the atmosphere (Fig. 144). On clay lands the roller must be used with much caution. If used immediately after grain is sown, and a heavy rain following, there would be danger of the soil becoming so compact on the surface that the tender shoots would be unable to get through, and the most direct connection would be established between the soil moisture and the air. A good method of treatment for clay is to roll before the seed is sown, then harrow and make a good seed-bed, and then drill in the grain. After the plants are well up the roller may be used again, which will bring the water to the surface, where the growing plants can make use of it before it passes off by evaporation.

Herbage mulches.-The covering of the soil by a mulch of leaves or decaying vegetable matter is nature's way of conserving moisture and of restoring fertility to the soil. Go to any forest where the leaves have not been burned annually and notice the mulch which covers the soil (Fig. 145). The soil will be found to be moist and loose. Humus has been stored up and the covering of leaves prevents the escape of the moisture by surface evaporation. Many persons conclude that because nature tills by mulching, man should do the same, but the conclusion is fallacious. Farm areas are too open and to much exposed to searching winds to allow of the good results which nature obtains in the seclusion and coolness of the forest. Even our largest orchards do not give us forest conditions. This herbage mulch also induces shallow rooting of trees, as sod land does (see Bulletin 102). In most farm lands, also, it is necessary to plow or move the land at least once a year in order to sow the seed and harvest the crop, and this would destroy an herbage mulch. Aside from all this, it is impossible, except in very
special cases, to secure sufficient herbage to afford an adequate mulch.

The humus of the soil is the great store-house for nitrogen and moisture. It is the accumulation of decaying vegetable or animal matter, and its presence in the soil, while not absolutely necessary to the growth of plants, is the factor which makes the land congenial for the very best development of the crop. The constant use of commercial fertilizers, without being supplemented by barn manures or green manuring, will so reduce the percentage of humus in the soil that its water-holding capacity will be considerably diminished. This humus should be liberally supplied by means of cover crops, rotations, and stable manures.

143.-Showing the effect of the roller in compacting the surface layer.

144.-Showing how the soil mulch should be restred by tillage after the roller has been used.

145.-The loose mulch on forest soils.

Underdrainage and how it acts as a conserver of moisture is popularly misunderstood. It is usually supposed that underdrains, instead of acting as conservers of moisture, produce exactly the opposite effect. It has already been noticed that water may exist in the soil as free or capillary and that the presence of the free water within eighteen inches of the surface is positively detrimental to the growth of most cultivated plants. Not only is it necessary that moisture be supplied, but also that the soil shall be in such condition that the air may have access to it, for a supply of oxygen is necessary to the breaking down and decomposition of organic matter and the making of plant food available. The underdrain removes only the free water which may come too near the surface and it leaves the soil above in a porous condition, so that the water of rainfall may sink down instead of being carried off by surface drainage. This rainfall water is not caught
and removed by the drains in its downward course, but the drainage flow begins only when, by the accumulation of the rainfall the level of the free water has been brought up to the level of the drain. Thus the reservoir for the supply of capillary water is kept nearer the surface during a drought and is removed a proper distance from the surface during a wet time to insure a healthy and proper development of the roots of plants.

Hineral substances as conservers of moisture.-Among the materials of commerce which are applied to soils as indirect fertilizers, are lime, gypsum and salt, all of which are thought to act as conservers of soil moisture. The application of quick lime to certain soils has been found to have a most beneficial action. When used upon a heavy clay it causes a certain adhesion or

146. - The flocculation of the surface of clay soils by the addition of quick lime.

147.-The action of lime, at a few inches in depth, in sandy soil.
flocculation, a binding together of the minute particles, and prerents their running, at time of rains, into a compact, hard crust (Fig. 146). It causes a more granular condition, making the soil looser and more porous, allowing the water of raiufall to permeate it more readily. As a result of flocculation, the pores of the soil near the surface are enlarged, and it thus better serves the purpose of a mulch to hold in reserve the moisture underneath.

On sandy soils the difficulty in conserving moisture arises from the fact that they are so open and porous that the water passes through and is lost to the plant. It would seem that an application of lime here would tend to aggravate the difficulty. On clay, the artion of the lime takes place at or near the surface, the soil being so compact that it is not washed down through the soil. In sand, the pores are so large that the lime sinks readily into the soil, and instead of finding the effects of its appli-
cation at the surface we must look for it below. The binding property of lime is well known from its use in the trades. In its passage down through the particles of sand, it does not proceed far before it probably begins to bind the grains together, and there is formed a layer somewhat impervious to water (Fig. 147).

Frequent and small applications of lime have been found most beneficial. From twenty to forty bushels per acre will usually be found to give the best results. On marshy and boggy lands which have recently been drained, but still remain sour and full of undecomposed organic matter, the benefit derived from applying lime is very great. It breaks down the regetable matter, neutralizes the acid and makes plant food arailable. In this case, its action upon the plant food in the soil is more important than its agency in the conserration of moisture.

Windbreaks to save moisture.-The drying effects of the wind are well known, when it has unbroken sweep orer a farm. The loss of moisture from this cause is very great. Windbreaks are not only a protection in winter, but they serve equally well in summer to protect the fields. The hedge-row around a field is not, then, entirely useless, since it serves its purpose as a conserver of moisture. (See our Bulletin IX.)

Selection and management of crops in relation to soil moisture.Crops should, as far as possible, be adapted to the conditions best calculated to furnish them with a sufficient supply of moisture. The grasses and grains thrive best on loamy or clay soils where the moisture is held and not allowed to pass away by percolation. On sandy and gravelly soil crops should be grown to which frequent culture can be given, for in this way we may aid in bringing water to the reach of plants. On sandy soils so treated, some catch crop should be grown which can be plowed under for green manure, thus serving to keep up the humus of the soil. The practice of growing crops, especially grains and grasses, in an orchard, cannot be too strongly condemned. (See Bulletin 102.) The soil should be left bare in early summer, not only that we may harrow and cultivate and thus conserve moisture and set free plant food, but because the loss of moisture from the growing grain crop is so great as to deprive the fruit trees of the amount necessary for their use. Crop an or-
chard only for the purpose of green-manuring. If nitrogen is needed, then crimson clover or common clover may be sown and allowed to remain as a covering for the soil during the winter and may be plowed under in the spring. The surface tillage should begin and continue faithfully through the growing season.

Suggestions for determining the amount of moisture in soils.
It is a very easy matter to determine the amount of moisture in a soil. The only apparatus required is a pair of scales which will weigh to grains and a tube which can be driven into the soil for taking the sample. Such a pair of seales can be purchased for a small sum,* and the tube may consist simply of a piece of boiler pipe about one and one-half inches in diameter which has had the outer edge at one end bevelled down to enable it better

to be driven into the soil. Have a mark on the outside of the thbe indicating eight inches or one foot from the sharpened end, areording to the depth to which it is desired to take the sample. The sampler used by the United States Department of Agriculture (Figs. 148 and 149) is described as follows: "The soil sampling tubes are made ont of brated brass tuhing about seveneighth inch internal diamoter and fifiexn inches long. The tubing is No. 21 Stubb's gatuge. On one end a brass collar about one-fourth of an inch wide is sweated in. The end of the tube is then turned off in a lathe giving a rather long taper but letting the point be the full thiekness of the collar. I mark is cut into the tube twelve inches from this rutting edre." We have used this implement with much satisfaction.

* Eimer \& Amend, New York, make a balance which, with weights, can be purchased for about $\$ 3.00$.

In determining the moisture in a given soil, several samples should be taken and these samples thoroughly mixed and then accurately weighed. Then subject the sample to a heat of 212 degrees Fahrenheit for a few hours, then weigh and heat again for one hour, then weigh again, and continue this operation until there is no further loss of weight by heating. The difference in weight between the original and the heated sample will indicate the amount of moisture which was present. Divide the difference in the weights by the first weight of the sample, to determine the per cent. of moisture in the original sample and multiply by 100 . The following case will illustrate:

Original weight of sample 2 lhs.
Weight after drying .. 1.5 lbs.
Loss in drying.. . 5 lbs.
Per cent. of moisture in original sample $=.5 \div 2$.
$=.25 \times 100=25$ per cent .
An interesting line of work for granges and farmers' clubs would be the investigation of soil moisture.

The importance of thorongh culture to conserve moisture is so great that if its value was fully realized we should experience less trouble from droughts. Far better is a season with a deficiency of rainfall if continuous surface culture be given than a season of abundant rains with little culture. Much wiser is he who cultivates a small farm and cultivates it intensively than he who attempts to spread over a large area and allows his crops to suffer from droughts, becanse the moisture which they so much need has not been saved by frequent tillage. Neglect the soil, allow the orchard to care for itself, and when the time of harvest comes the reward shall be according to the labor; but treat the soil as a living thing, care for it faithfully and intelligently, study the plants and learn their ways and the conditions under which they thrive and give them congenial surroundings, and they will respond with a readiness that will abundantly repay the best efforts in their behalf.

149.-The soil sampler.

SUMMARY.

1. The average amnual rainfall in New York is sufficient for the growth of profitable crops. Owing to its unequal distribution and to the loss of nearly one-half of it by surface drainage, crops usually suffer from droughts.
2. The first step towards conserring moisture is to put the soil in such a physical condition that it will be perrious to water, or afford a reservoir for it.
3. Water exists in the soil as free, capillary or hygroscopic. The free water within eighteen inches of the surface is injurious to the growth of cultirated plants. The capillary water is the direct source of their supply and should be conserved by all possible means.
4. Capillary action of the soil depends upon the fineness of its particles and the closeness of their relation to each other. In coarse, loose, sandy or gravelly soils the action is weak; in fine, well-compacted soils it is strong.
5. When the capillary interstices or pores in the soil are continuous from the moist under soil to the surface, the moisture rises uniformly and passes off into the atmosphere by evaporation. If. however, these interstices or pores are made very much larger near the surface, the moisture is arrested in its upward movement, a result which is accomplished by light surface cultivation which produces a "soil mulch." This mulch of loose soil answers much the same purpose as a board or carpet would in cutting off the direct connection of the capillary soil with the atmosphere. As soon as the soil becomes baked or encrusted, the capillary connection with the atmosphere is renewed, and another tillage is required to re-establish the soil mulch.
6. A large amount of water is necessary for the plant, as its food is in a very dilute solution, and water is also used in building plant tissue.
7. Moisture in the soil is necessary that nitrification and decomposition of organic matter may take place. Without it the action by which the roots are able to corrode the solid rock and set free plant food cannot take place.
8. The distribution of rainfall cannot be controlled by any
known means. Dependence must be placed upon irrigation and the conservation of soil moisture.
9. Irrigation is expensive, and while entirely practicable in arid regions, yet in our section if flonding by irrigation should be followed by heary rainfall, the effect might be disastrous. Where irrigation is not a common necessity, it must be secured by individual enterprise, and is, therefore, expensive. In New York we must depend largely upou conserving or preventing the loss of the moisture.
10. The means by which moisture may be conserved are: judicious plowing and tillage, mulches, underdrainage, windbreaks, applications of lime, salt. etc., and adaptation of crop to the soil.
11. The absorbing or capillary power of a soil depends upon the fineness of division of its particles.
12. The plow is a most valuable implement for pulverizing and fining the soil. Fall plowing is recommended for heavy clays, the surface to be left rough and mharrowed. Fall-plowed lands catch and hold the water.
13. Surface tillage should begin early in the spring, as every day's delar after the soil is in fit condition means a loss of many tons of water.
14. The harrow is valuable as an implement with which to establish and maintain a surface mulch. Frequent harrowing of an orchard will greatly lessen the evaporation from the surface.
15. Where cultivators are used as conservers of moisture, many fine teeth are preferable to a few coarse teeth.
16. Ridge culture is calculated to promote evaporation. To conserve moisture, practice level culture and so reduce the area exposed.
17. The roller brings moisture to the surface by compressing the soil. On loose, sandy soils it is useful by compacting the particles. On clay its use may prove injurious if followed by heary rains. Where possible it is well to follow it with a smoothing harrow to restore the mulch.

- 18. A surface mulch of leares and decaying regetable matter is nature's way of conserring moisture. It also adds humus to
the soil, which is the great store-house for nitrogen and moisture. An herbage mulch can rarely be used in farm areas, however.

19. Underdrains act beneficially in making soils porous above them and thus increasing their permeability, and in removing the free water and thus allowing the access of air, which is as necessary as moisture.
20. Lime, gypsum and salt are all used as conservers of moisture. An application of lime seems to have a beneficial effect on heary clay and on light sand. It also acts favorably on marshy, sour lands.
21. Grasses and grains should be grown on clay and loamy soils, leaving sandy and gravelly lands for cultivated crops. The humus of tilled lands may be kept up by barn manures and by green manuring.
22. The space between the trees in orchards should be left free fir tillage. A growing crop makes such a demand upon the suppiy of moisture that the trees may be seriously injured.
23. Leterminations of soil moisture may be easily made by angone. The importance of this line of work is called to the attention of granges, farmers' clubs and horticultural societies.
24. The importance of thorough tillage to conserve moisture cannot be made too emphatic. Deficiency in rainfall with intensified agriculture is preferable to abundant rains and neglect by the cultivator. The soil will respond in a large measure accordiug to the treatment it receives. Neglect it and it will fail to bring forth liberal increase, but cultivate intelligently and thoroughly and it responds quickly.

L. A. CLINTON.

BULLETIN 121-September, 1896.

\qquad
Cornell University-Agricultural Experiment Station, ITHACA, N. Y.

HORTICULTURAL DIVISION.

SUGGESTIONS FOR

The Planting of Shrubbery.

> By L. H. Bailey.

ORGANIZATION.

Board of Control-The Trustees of the University.

STATION COUNCIL.
President, JACOB GOULD SCllURMAN.
Hon. A. D. WHITE Trustee of the Uninersity.
Professor I. P. ROBERTS President State Agricultural Society.
Professor I. P. ROBERTS Agriculture.
Professor G. ('. CALDWELL Chemistry.
Professor JAMES LAW Teterinary Science.
Professor A. N. PRENTISS, Emeritus Botany.
Professor J. H. COMSTOCK Entomology.
Professor L. H. BAILEY Horticulture.
Professor H. H. WING Dairy Husbandry.
Professor G. F. ATKINSON Botany.
OFFICERS OF THE STATION.
I. P. ROBERTS Director.
E. L. WILLIAMS Treasurer.
E. A. BUTLER Clerk.
ASSISTANTS.
M. V. SLINGERLAND Entomology.
G. W. CAVANAUGH. Chemistry.
E. Gi. LODEMAN Horticulture.
J. A. CLIN'TON Agriculture.B. M. DUGGARCryptogamic Botany.

Office of the Director, 20 Morrill Hall.
The regular bulletins of the Station are sent free to all who request them.

BULLETINS OF 1896.

[^89]Cornell University, Ithaca, N. Y., September 1, 1896.
Honorable Commissioner of Agriculture, Albany:
Sir.-The writer hopes that this paper may contain some suggestion for the betterment of home grounds in rural commonities; it is therefore submitted for publication under Chapter 437 of the Laws of 1896 .
L. H. BAILEY.

156.-An effective piece of planting. See page 518.

Suggestions for the Planting of Shrubbery.

I. Some general considerations.

The trouble with home grounds is not so much that there is too little planting of trees and shrubs, but that this planting is meaningless. Every yard should be a picture. That is, the area should be set off from every other area, and it should have such a character that the observer catches its entire effect and purpose without stopping to analyze its parts. The yard should be one thing, one area, with every feature contributing its part to one strong homogeneous effect.

150.-The common or nursery type of planting.

These remarks will become concrete if the reader turns his cye to Figs. 150 and 151. The former represents the common type of planting of front yards. The bushes and trees are scattered promiscuously over the area. Such a yard has no purpose, no central idea. It shows plainly that the planter had no constructive conception, no grasp of any design, and no appreciation of the fundamental elcments of the beauty of landscape. Its only merit is the fact that trees and shrubs have been planted; and this, to most minds, comprises the essence and sum of the orna-
mentation of grounds. Every tree and bush is an individual, alone, unattended, dis onnected from its environments, and therefore meaningless. Such a yard is only a nursery.

The other plan (Fig. 151) is a picture. The eye catches its meaning at once. The central idea is the residence, with a warm and open greensward in front of it. The same trees and bushes which were scattered haphazard over Fig. 150 are massed into a framework to give effectiveness to the picture of home and comfort. This style of planting makes a landscape, even though the area be no larger than a parlor. The other style is simply a collection of curious plants. The one has an instant and abiding pictorial effect, which is restful and satisfying: the observer

151.-The proper or pictorial type of planting.
exclaims, "What a beautiful home this is!" The other piques one's curiosity, obscures the residence, divides and distracts the attention: the observer exelaims, "What excellent lilac bushes these are!"

If the reader catches the full meaning of these contrasts, he has acquired the first and most important conception in landscape gardening. The conception will grow upon him day by day; and if he is of an observing tum of mind, he will find that this simple lesson will revolutionize his habit of thought respecting the planting of grounds and the beanty of landscapes. Be will sere that a bush or flower-bed which is no part of any general purpose or design-that is, which does not contribute to the making of a picture-might better never have been planted. For

[^90]myself. I had rather have a bare and open pasture than such a yard as that shown in Fig. 150, even though it contained the choicest plants of every land. The pasture would at least be plain and restful and unpretentious. It would be nature-like and sweet. But the yard would be full of effort and fidget.

Reduced to a single expression, all this means that the greatest artistic value in shrubbery lies in the effect of the mass, and not in the individual shrub. A mass has the greater value because it presents a much greater range and variety of forms, colors, shades and textures, because it has sufficient extent or dimensions to add structural character to a place, and because its features are so continuous and so well blended that the mind is not distracted by incidental and irrelevant ideas. A couple of pictures will admirably illustrate all this. Fig. 152 is a picture of a natural copse. It stretches across a vale, and makes a lawn of the bit of meadow which lies in front of it. The landscape has become so small and so well defined by this bank of verdure that it has a familiar and personal feeling. The great, bare, open meadows are too ill-defined and too extended to give any domestic air; but here is a portion of the meadow set oft into an area which one can compass with his affections.

This mass in Fig. 152 has its own intrinsic merits, as well as its office in defining a bit of nature. One is attracted by the carelessness of its arrangement, the irregularity of its sky line, the bold bays and promontories, and the infinite play of light and shade. The observer is interested in it because it has character, or features which no other mass in all the world possesses. He knows that the birds build their nests in it, and the rabbits find it a happy covert.

Now let the reader turn to Fig. 153, which is a picture of an "improved" city yard. Here there is no structural strength to the planting, no defining of the area, no continuous flow of the form and color. Every bush is what every other one is or may be, and there are hundreds like them in the same town. The birds shun them. Only the bugs find any happiness in them. The place has no fundamental design or idea, no lawn upon which a picture can be constructed.

153.- Λ typical city lot cramped and crowded by impertinent bushes,

This leads me to say that if a landscape is a picture, it must have a canvas. This canvas is the greensward. Upon this, the artist paints with tree and bush aud flower the same as the painter does upon his canvas with brush and pigments. The opportunity for artistic composition and structure is nowhere so great as in the landscape garden, because no other art has such a limitless field for the expression of its emotions. It is not strange, if this be true, that there have been few great landscape gardeners, and that, falling short of art, the landscape gardener too often works in the sphere of the artisan. There can be no

155.-The three guardsmen.
rules for landscape gardening, any more than there can be for painting or sculpture. The operator may be taught how to hold the brush or strike the chisel or plant the tree, but he remains an operator; the art is intellectual and emotional and will not confine itself in precepts.

The making of a good and spacious lawn, then, is the very first practical consideration in a landscape garden. This provided, the gardener conceives what is the dominant and central feature in the place, and then throws the entire premises into subordination with this feature. In home grounds this central feature

157.- Λ little weedland alongside a rear walk.
is the house. To scatter trees and bushes over the area defeats the fundamental purpose of the place,-the purpose to make every part of the grounds lead up to the home and to accentuate its homelikeness. Keep the center of the place open. Plant the borders. Avoid all disconnected, cheap, patchy, and curious effects.

It is not enough that the bushes be planted in masses. They must be kept in masses by letting them grow freely in a natural manner. The pruning-knife is the most inveterate enemy of shrubbery. Pictures 154 and 15a illustrate what I mean. The

158. - A front yard before planting.
former represents a good group of bushes so far as arrangement is concerned, but it has been ruined by the shears. The attention of the observer is instantly arrested by the individual bushes. Instead of one free and expressive object, there are sereral stiff and expressionless ones. If the observer stops to consider his own thoughts when he comes upon such a collection, he will likely find himself counting the bushes; or, at least, he will be making mental comparisons of the various bushes and wondering why they are not all sheared to be exactly alike. Fig. 155 shows how the same "artist" has treated two deutzias and a juniper.

Much the same effects could have been secured, and with much less trouble, by laying two flour barrels end to end and standing a third one between them.

I must hasten to say that I have not the slightest objection to the shearing of trees. The only trouble is in calling the practice art, and in putting the trees where people must see them. If the operator simply calls the business shearing, and puts the things where he and others who like them may see them, objection could not be raised. Some persons like painted stones, others like iron bulldogs in the front yard and the word "welcome" worked into the door-mat, and others like barbered trees. So long as these likes are purely personal, it would seem to be better taste to put such curiosities in the back yard, where the owner may admire them without molestation.

160.-A good combination.

I do not mean to discourage the use of flowers and bright foliage and striking forms of regetation; but these things are never primary considerations in a good place. The structural elements of the place are designed first. The flanking and bordering masses are then planted. Finally, the flowers and accessories are put in, in just the same way that a house is painted after it is built. Flowers appear to best advantage when seen against a background of foliage, and they are then, also, an integral part of the picture. The flower garden, as such, should be at the rear or side of a place, the same as all other strictly personal appurtenances are; but flowers and bright leaves may be freely scattered along the borders and near the foliage masses. Fig. 156 (at the beginning of the bulletin) is a model in this respect.

What kinds of shrubs and flowers shall I plant? This is a wholly secondary and largely personal consideration. Be sure that the main plantings are made up of hardy and vigorous species, and have lots of them. Then get the things which you like. I like bull-thistles, lilacs, hollyhocks, burdocks, rhubarb, dogwoods. spireas, elders and such careless things. But others have

101.-A "fill" in a back yard.
better tasters. There is endless merit in the chnice of species, but the point I want to emphasize is that the arrangement or disposition of the plants is far more important than the kinds.

It should be said that the apprectation of foliage effects in the landseape is a higher type of feeling than the desire for mere color. Wlowers are mansitory, but foliage and plant forms are abiding. The common roses have very litto value for landscape planting, because the foliage and habit of the rose bush are not
attractive, the leares are inveterately attarked by bugs, and the blossoms are fleeting. Some of the wild roses and the Japanese Rosa rugosa, however, have distinct merit for mass effects. Wild bushes are nearly alwas attractive when planted in borders and

16.. -The same "fill" four years later.
groups. They improve the apperane under cultivation, because they are given a better chance to grow. In wild nature, there is such a fierce struggle for existence that plants usually grow to few or single stems and they are sparse and sraggly in form; but once given all the poom they want and a good soil, and they
become luxurious, full and comely. In most home grounds in this state, the body of the planting may be very effectively made by the use of bushes taken from adjacent woods and fields. The masses may then be enlivened by the addition here and there of cultirated bushes, and the planting of flowers and herbs about the borders. It is not essential that one know the names of these wild bushes, although a knowledge of their botanical features

163.-The beginning of a back yard.
will add greatly to the pleasure of growing them. Neither will they look common when transferred to the lawn. There are very few people who know even the commonest wild bushes intimately, and the bushes change so much in looks when removed to rich grounds that few people recognize them. I have a mass of shrubbery which is much admired, and visitors are always asking me what the bushes are; yet I dug the roots in the neighborhood.

Wholly aside from any artistic value, a simple collection of common wild plants is always full of interest and merit. Fig. 157 shows a plantation which answers the double purpose of a wild garden and a border mass-planting. The area is about three feet wide and ninety feet long, and lies along one side of a small back yard (seen in Fig. 164). The soil was originally a most tough and obstinate clay, so hard that even yet annual plants can scarcely be made to grow in it. Plants have been brought from the wild at odd times and set promiscuously in the border, and it now contains over one hundred distinct species. Every day from April to October there are flowers in it, and every spring it renews itself with scarcely a care on the part of the owner. To be sure, there are some weeds in it, but then, the weeds are a part of the collection! A well grown bull-thistle in such a place is worth more than a bushel of potatoes. These plants have been lifted from the fields in the most careless fashion. A noble plant of the pink-hearted Spiræa lobata was pulled from a swamp in July when it was in full bloom; the bluebells have been stolen from cliffs without regard to time or season; some of the roots were carried in the pocket for hours before the opportunity came for planting, and this, too, in the height of summer. Of course, some plants have resented this treatment, but the border is a happy family and it is all the better and more personal because it is the result of moments of relaxation.

I have spoken of this choice little weedland to show how simple and easy a thing it is to make an attractive mass-plantation. Just set aside a bit of ground in the right place, spade it up and make it rich, and then set plants in it. That is all there is of it. You will not get it to suit you the first year, and perhaps not the sccond one. You can always pull out plants and put more in. I should be sorry if it did perfectly suit you, for I should then feel that you had lost interest in it. I should never want a lawn-garden if I could not change it a little or plant something new each year.

- t word should be said abont just how to make a group. Dig up the entire area. Never set the bushes in holes dug in the sod. Spade up the ground, set the bushes thick, hoe them, and then let them go. If you do not like the bare earth between

then, sow in the seeds of hardy annual flowers, like phlox. petuma, alyssum and pinks. The person who plants his shrubs in holes in thr sward does not seriously mean to make any foliage mass, and it is likely that he does not know what relation the border-mass has to artistic planting. I have said to plant the bushes thick. This is for quick effect. It is an easy matter to thin the plantation if it becomes too thick. I should generally plant all common bushes as close as two feet apart each way, especially if I get most of them from the fields so that I do not have to buy them.

165.-Diagram of Fig. 164. 50×90 feet.

II. Some specific examples:

All these remarks will mean more if the reader is shown some concrete examples. I have selected a few cases, not because they are the best or even because they are good enough for models, but because they lay in my way and illustrate what I desire to teach. We will first look at a very ordinary front yard. Fig. 158 shows the yard as it looked before the shrubbery was planted. The large tree seen in the foreground at the left, and the spruce, were remored. A little sprig of exochorda had been planted the year before and is now carefully guarded by stakes. Four years later sees the yard as shown in Fig. 159. The little

exochorda has now grown to be the large bush in the very foreground with the child's tricycle behind it, and the porch found. timon is screened and a border is thereby given to the lawn. The length of this planting from end to end is about fourteen feet, with a projection towards the front, on the left, of ten feet. In the bay at the base of this projection the planting is only two feet wide, and from here it gradually swings out to the steps,

167.-A rustic corner.
eight feet wide. The prominent large-leafed plant near the steps is a bramble very common in the neighborhood, Rubus odoratus, and it is a choice plant for decorative planting. The plants in this tangle in front of the porch are all from the wild, and comprise a prickly ash, several plants of two wild osier's or dogwoods, a spice bush, rose, wild sunflowers and asters and golden-rods. The promontory at the left is a more ambitious but less effective mass. It contains the exochorda, a reed, variegated elder, saca-
line, variegated dogwood, tansy, and a young tree of wild crab. It the rear of the plantation, next the house, one sees a tall pear tree.

The best single part of the planting is the reed (Arundo Donax) orertopping the exochorda. The photograph (Fig. 159) was taken early in summer before the reed had become conspicuous, but Fig. 160 shows it as the artist saw it in September.

It became necessary to fill a little " run" in a back yard. Fig. 161 shows how it looked. The soil was the hardest clay. Rubus cratrgifolius was planted on the bank, which it soon covered with an impenetrable tangle. Wild osiers, some asparagus

168. -The central open space and the mass-Hanked sides.
plants, sedges, a sumac bush, and other common things were put in, and the aspect changed to that of Fig. 162.

A person had a back yard shown in Fig. 163. It was an unpromising subject. The clay was of the vilest kind. The owner wanted a tennis court, and the yard is so small as not to allow of wide planting at the borders. However, something could be done as shown in the sequel (Fig. 164). Upon the left is the weedland horder, shown from the other end in Fig. 1.57. A diagram (Fig. 16ã) will show what has happened. In the first place, a good lawn was made. In the second place, no walks or drives were laid in the area. The drive for grocer's wagon and coal is seen in the rear, ninety feet from the house. From I to J is the weedland, separating the area from the neighbor's premises. Near I is a clump of roses. It K is a large bunch of golden-rods.

H marks a clump of yucea. G is a cabin, of which I will speak later. From G to F is an irregular border, about six feet wide, containing barberries, forsythias, wild elder, and other bushes. i) E is a screen of Russian mulberry, setting off the clothes yard from the front lawn. Near the back porch, at the end of the screen, is an arbor covered with wild grapes, making a playhouse for the children. A clump of lilacs stands at A. At B is a vinecovered screen, serving as a hammock support. The lawn made and the planting done, it was next necessary to lay the walks. These are wholly informal affiars, made by sinking a plank ten

169.-A newly made landscape garden, ready for the border planting.
inches wide into the ground to a level with the sod. The border plantings of this yard are too straight and regular for the most artistic results, but this was necessary in order not to encroach upon the central space. Yet the reader will no doubt agree that this yard is much better than it could be made by any system of scattered and spotted planting. Let him imagine how a glowing carpet-bed would look set down in the center of this lawn.

The cabin which stands at (t in Fig. 163 is shown in perspective in Figs. 166 and 167. This is a rustic bark-covered structure which was built to add picturesqueness to the area. The front view, Fig. 166, shows the use of the two best arbor vines yet in-

troduced into this country, the Japanese actinidia and akebia. These vines are most vigorous, perfectly hardy, free of insect and fungous injuries and of extraordinary attractiveness in foliage and habit. The picture also shows the yucca group which is located at H in Fig. 165. The cabin is shown at rear view in Fig. 167; and the reader will be interested to know that the planting in the rear of this cabin is a part of the shrubbery shown in Fig. 162.

These various pictures will fix in the reader's mind the importance of a simple structural design for the home grounds. The essential elements of this design are the open center and the wellplanted sides. It is particularly important that the riew to and from the front of the dwelling house be kept open, for otherwise there can be little conception of pictorial effect in the composition. It is a grave mistake to cover up or to obscure the one central and important feature of the place. This principle is well shown in Fig. 168. This architectural composition would have little place or merit in the landscape if the foresround were promiscuously planted.

Let us now see how this principle may be applied to a very ordinary area. Fig. 169 shows a small clay field (75 ft . wide and 300 ft deep), with a barn at the rear. In front of the barn is a screen of willows. The observer is looking from the dwelling house. The area has been plowed and seeded for a lawn. The operator has then marked out a devious line upon either border with a hoe handle, and all the space between these borders has been gone over with a garden roller to mark the area of the desired greensward. The borders are now planted with a variety of small trees, bushes and herbs. Five years later the photograph shown in Fig. 170 was taken.

The reader may now begin to appreciate the value of foliage masses in the landscape, and the comparatively trivial and weak effects of mere flower-beds in any rural picture. Let me illus trate agrain the uses of mass-effects by photographs taken in one of our most famous metropolitan parks. Fig. 171 is one of that common type of water pieces in our city parks, in which the artificial and ugly borders are wholly bare. It is difficult to con-

171.-A water piece devoid of effective planting.

1\%- I water piece well planted
ceive of any use or beauty which is served by the butter ladle promontory at the right. The other riew, Fig. 172, shows a similar structural design with the borders planted with elders and dogwoods and other common things. The one picture is a harsh and ambitious attempt at design; the other is as sweet and restful as a glimpse from paradise.

173.-Kerria, canna and wildsunflower, and the grass not.too scrupulously sheared, in the corner by the steps.

But if one has no area which he can make into a lawn and upon which he can plant such verdurous masses, what then may he do? Even then there may be opportunity for a little neat and artistic planting. Even if one lives in a rented house, he may bring in a bush or an herb from the woods and paint a picture with it. Plant it in the corner by the steps, in front of the
porch, at the corner of the house, almost anywhere except in the center of the lawn. Make the ground rich, secure al strong root and plant it with care; then wait. The little clump will not only have a beauty and interest of its own, but it will add immensely to the furniture of the yard. About its base one may plant stray bulbs of glowing tulips or dainty snowdrops and lilies-of-thevalley; and these may be followed with pansies and phlox and other simple folk. V'ery soon one finds himself deeply interested in these random and detached pictures, and almost before he is aware he finds that he has rounded off the rormers of the house,

174. - A careless corner. The growth came from a sod dug in a swale in early spring. Clematis and purple cupatorium, and lesser weeds, comprise the colony.
made snug little arbors of wild grapes and clematis, covered the rear fence and the outhouse with actinidia and bitter-sweet, and has thrown in dashes of color with hollyhocks, (:annas and lilies, and has tied the foundations of the buildings to the greensward by low strands of vines or deft bits of planting. He soon comes to feel that flowers are most expressive of the hest emotions when they are daintily dropped in here and there amatinst a background of foliage. Presently he rebels at the bold, hansh and impudent designs of some of the gardeners, and grows into a pure and sub dued love of the plant forms and verdure. Ho maty still like the weeping and cut-leaved and party-colored trees of the horticulurist, but he sees that their best effects are to hr had when they
are planted sparingly, as flower's are, as borders or promontories of the structural masses.

It all amounts to this, that the best planting, like the best painting and the best music, is possible ouly with the best and

175. - A corner and doorway draped with honeysuckie.
tenderest feeling and the closest living with nature. One's place grows to be a reflection of himself, changing as he changes, and expressing his life and sympathies to the last.

> L. H. BAILEY.

BULLETIN 122-December, 1896.

Cornell University-Agricultural Experiment Station, ITHACA, N. Y.

HORTICULTURAL DIVISION.

SECOND REPORT UPON
Extension Work in Horticulture.

By L. H. Batley.

ORGANIZATION.

Board of Control-The Trustees of the University.

STATION COUNCIL.

President, JACOB GOULD SCHURMAN.

Hon. A. D. WHITE... Trustee of the University.
Professor. I. P. ROBERTS................... President State Agricultural Society.
Professor I. P. ROBERTS... Agriculture.
Professor G. C. CALDWELL.. Chemistry.
Professor James Law .. Veterinary Science.
Professor. A. N. Prentiss, Emeritus....................................... Botany.
Professor J. H. COMSTOCK... Entonology.
Professor L. H. BAILEY.. Horticulture.
Professor H. H. WING... Dairy Husbandry.
Professor G. F. ATKINSON.. Botany.

OFFICERS OF THE STATION.
I. P. ROBERTS.. Director.
E. L. WILLIAMS... Treasurer.
E. A. BUTLER ... Clerk.

ASSISTANTS.
M. V. SLINGERLAND....-.....-.. Entomology
G. W. CAVANAUGH... . Chemistry.
E. G. LODEMAN.. Horticulture.
L. A. CLINTON..
B. J. DUGGAR

Cryptogamic Botany.

Office of the Director, 20 Morrill Hall.
The regular bulletins of the Station are sent free to all who request them.

BULLETINS OF 1896.

106. Revised Opinions of the Japanese Plums.
107. Wireworms and the Bud Moth.
108. The Pear Psylla and the New York Plum Scale.
109. Geological History of the Chautauqua Grape Belt.
110. Extension Work in Horticulture.
111. Sireet Peas.
112. The 1895 Chrysanthemums.
113. Diseases of the Putato.
114. Spray Calendar.
115. The Pole Lima Beans.
116. Dwarf Apples.
117. Fruit Brevities.
118. Food Preservatives and Butter Increaser8.
119. The Texture of the Soil.
120. The Moisture of the Soil.
121. Suggestions for the Planting of Shrubbery.
122. Second Report upon Exteusion Work in Horticulture.

Extension Work in Horticulture.

The Honorable Commissioner of Agriculture, Albany:
Sir.-About a year ago (in Bulletin 110). I made an official report of the progress of the work which had been undertaken by this institution in furtherance of the purpose of the Experiment Station Extension, or Nixon bill. That report was made at the expiration of the second year's work under that law. A third year has now been added to our experience, and we have also made some departures in the character of the work; and since the undertaking has now grown to such proportions that it can no longer be handled by any of the regularly organized departments of the College of Agriculture of Cornell Cniversity, it has seemed to us to be worth the while to address you another report of progress.

1. Geveral Scope of Work.

In the former report, it was explained that the worls of extending the influence and usefulness of the Experiment station has been thrown into three more or less separate lines,-research or experiment, direct teachings, and the publication of the results of investigation. The animus of the putire enterprise has been an attempt to inquire into the agricultural status, to discorer the causes of the rural depression, and to suggest means for impror. ing the farmer's position. This attempt has been sureitioally directed to a single great branch of rural industre, horticulture. in pursuance of the provisions of the law; but what is true of the horticultural communities is essentially true of other agricultural regions, and, moreorer, these two trpes of agricultural industry cannot be separated by any arbitrary lines. The work. therefore, has practically resulted in a broad study of rural economics. We conceive that it is impossible to really extend
the Experiment Station and University impulse to the people in such manner that it shall come to them as a living and quickening force, without first studying the fundamental difficulties of the farmers' social and political environment.

It is not necessary to the present report that I make any discussion of the agricultural status. I may only say that, as the result of the most painstaking study which I have been able to make, I am convinced that there is no agricultural disease. That is, there is no political condition which is peculiar to agriculture and which can be remedied by legislation. By reason of their inherent conservatism, the agricultural people have not yet adjusted themselves to the recent social and economic movements, and they have not fully assimilated the knowledge and impulses of the time; and I am also convinced that grave errors have been committed in forcing the development of western lands. If these general conclusions are sound, then it follows that the solution of our agrarian difficulties is to be sought in better education. By education, I mean literally what I say,-by means of a general waking up, a shaking out of all the old habits of thought, an injection of new conceptions of life, an intellectual stirring up of every rural community. I do not mean the simple giving of information, the cramming in of carefully assorted facts. We need to shake out the snarls and kinks of prejudice and indifference before giving great attention to the dissemination of more direct information. There is already enough popular knowledge of better agricultural methods to greatly improve our rural conditions, if only the farmers would assimilate it and apply it. This knowledge is of little account when it is a mere extraneous possession. It must be worked into the fibre of the man until he is not aware that he possesses it.

In this extension work, therefore, we have sought not so much for new facts as for some way of driving home the old facts. We have tried to set forces at work which would silently extend themselves when we had left them. Fortunately, we have been greatly aided by the hard times and the multitudes of
bugs and special difficulties. These things have driven people to thinking and to asking for information. The agricultural communities are thoroughly aroused, and now is the time to teach. When one is thoroughly prosperous in his business, there is little chance-as, in fact, there is generally little need-of teaching him other methods.

I must hasten to say that the agricultural status in Western New York is not such a deplorable one as my reader may suppose, or as he may infer from my preceding remarks. Those farmers who grow various and difficult crops are wide awake, intelligent, aggressive and for the most part contented. The man who grows only a few and staple crops is very apt to fall into stereotyped ways of thinking, which may mean that he drops behind the times. Just as fast as more varied farming is forced upon the agricultural communities by the inexorable struggle for existence, will the farmer's horizon and sympathies enlarge; and with the progress of this broadening and educative impulsewhich now, fortunately, is rapidly rising-the farmers will find themselves in position to correct whatever minor faults of leg. islation that may have occurred, and to direct and control the social forces with which they are concerned.

We might classify our efforts to reach the people, in the progress of our work, under five general heads. These efforts have all been experiments in methods of extension teaching as applied to horticulture. We have tried to ascertain the value of:

1. The itinerant or local experiment as a means of teaching.
2. The readable expository bulletin.
3. The itinerant horticultural school.
4. Elementary instruction in the rural schools.
5. Instruction bymeans of correspondence and reading courses.

Unless all signs are deceptive, the greatest good which has yet been accomplished has come through the bulletins. We have wished that we might be able to make bulletins which would interest the reader aside from the information which they contain. We should have liked to put juice into them, for pemmican, whilst exceedingly nutritious, is difficult of digestion.

Aside from the reporting of definite experiment work, thesebulletins have taken the form of surveys of the status of certain industries; and an effort has also been made to give a new flavor to country life by writing upon subjects of floriculture and ornamental gardening. Whilst it seems to us that the publications have been useful in furthering the work which we have had in mind, we are nevertheless convinced that an unlimited issue or even a very large number of such expository bulletins would not be proportionately useful at the present time. There are still a number of horticultural subjects which we desire to treat in this spirit; but it is evident that the real fundamental work of extension teaching must be prosecuted along other lines in connection with publication of a distinctly didactic kind. It may be said, before leaving this subject, that the entire number of bulletins thus far published under the auspices of the Nixon bill, including the present report, is forty. The experimental and investigational work which is still going forward-of which there is con-siderable-will be reported in forthcoming bulletins. For the present report, it is only necessary to explain the work of direct teaching which we have undertaken during the present year, and to draw certain conclusions from the general work of the Nixon bill.

2. Experiments in Extension Teaciing.

During the past season, we have made an especial effort to determine the best methods of reaching the rural communities by means of personal teaching, and our work has fallen into three general lines. In the first place we have carried forward one month's work of consecutive tearching by means of the horticultural schools which we have herotofore held and which are somewhat fully reported in Bulletin 110; we have made another experiment of a month's duration in teaching naturestudy and object lessons in the rural schools of the Fourth Judicial Department; and at the present time, we are endeavoring to carry forward the instruction which has been thus begun by means of correspondence and an attempt to establish reading. courses in the various school districts and rural organizations.

The horticultural schools held during the month of September were as follows, the names of the teachers being in italic:

1. Aug. 28, 29, F. S. Jamestown, Chautauqua Co., Y. M. $_{\text {. }}$ C. A. Hail, Bailey, Slingerland \& Lodeman, Roberts Powell de Cavanaugh, Clinton.
2. Aug. 29, S. Ellington, Chautauqua Co. Case \& Frisbee's Hall. Lodeman, Slingerland, Powell.
3. Aug. 31, Sept. 1, M., T. East Randolph, Cattaraugns Co. Hall's Opera House. Clinton, Cavanaugh, Powell. Lodeman de Slingerland, Bailey.
4. Sept. 2, 3, W., Th. Cuba, Allegany Co. Fireman's Hall. Bailey, Cavanaugh, Powell. Slingerland, Powell and Clinton.
5. Sept. 2, 3, 4, W., Th., F. Brocton, Chautauqua Co. Evenings only. Bailey. Lodeman. Powell.
6. Sept. 4, 5, F., S. Lyndonville, Orleans Co. Methodist Church. Lodeman, Cavanaugh, Bailey. Clinton, Powell.
7. Sept. 7, M. Romulus, Seneca Co. Romulus Hall. Lodeman, Clinton, Roberts.
S. Sept. 7, 8, M., T. North Rose, Wayne Co. I. O. G. T. Hall. Powell, Duggar, Cavanaugh. Slingerland, Bailey.
8. Sept. 8, 9, T., W. Williamson, Wayne Co. Grange Hall. Powell, Duggar. Bailey, Slingerland, Cavanaugh, Clinton.
9. Sept. 10, Th. Webster, Monroe Co. Lodeman, Cavanaugh, Clinton.
10. Sept. 9, 10, W., Th. Hilton (N. Parma), Monroe Co. F. W. Baptist Church. Lodeman, Cavanaugh, Powell. Slingerland de Duggar, Bailey.
11. Sept. 11, 12, F., S. Dansville, Livinyston Co. Grange Hall, near Stone's Falls, Friday ; farm of H. R. McNair, below Woodsville, Saturday. Basket picnics. Bailey, Lodeman, Roberts. Cavanaugh \& Duggar, Clinton.
12. Sept. 12, S. Wyoming, Wyoming Co. Powell do Slingerland, Roberts, Powell.
13. Sept. 14, 15, M., T. Le Roy, Genesee Co. G. A. R. Hall. Powell de Duggar, Clinton, Bailey. Cavanaugh, Mrs. Comstock.
14. Sept. 15, T. Dundee, Yates Co. G. A. R. Hall. Lodeman, Clinton, Slingerland.
15. Sept. 16, W. Hall's Corners, Ontario Co. Lodeman de Slingerland, Clinton, Loaeman.
16. Sept. 16, 17, W., Th. Skaneateles, Onondaga Co. Library Hall. Powell, Cavanaugh, Mrs. Comstock, Clinton, Roberts.
17. Sept. 17, Th. Fayetteville, Onondaga Co. Powell de Duggar, Cavanaugh, Bailey.
18. Sept. 17, 18. Th., F. Oswego, Oswego Co. Court House. Lodeman, Slingerland, Powell. Mioberts, Cavanaugh.
19. Sept. 18, 19, F., S. Mexico, Oswego Co. Town Hall. Lodeman, Slingerland, Clinton, Cavanaugh, Powell.
20. Sept. 21, 22, M., T. Lowville, Lewis Co. Court House. Powell, Duggar de Slingerland, Bailey. Clinton, Cavanaugh.
21. Sept. 22, 23, T., W. Poland, Herkimer Co. F. B. Church. Bailey, Duggar de Slingerland, Powell. Clinton, Cavanaugh.
22. Sept. 23, 24, W., Th. Trenton, Oneida Co. Grange Hall. Bailey, Slingerland de Duggar, Powell. Cavanaugh, Clinton.
23. Sept. 24, 25, Th., F. Clinton, Oneida Co. Scollard Opera House. Bailey \& Slingerland, Mrs. Comstock de Morrill, Bailey. Cavanaugh de Duggar, Powell.
These schools were designed to impart specific horticultural instruction, and, more particularly, to awaken closeness of observation, and careful reasoning therefrom, upon the part of the attendants. These schools were arranged for in the various places through a local committee which was appointed by the person who applied for the school in that community. Posters were distributed some time in adrance of the meetings, the subject matter of one of which is presented herewith:

A SCHOOL OF HORTICULTURE

WILL BE HELD IN THE
> Y. M. C. A. Hall, Jamestown, chautauqua COUNTY, N. Y.,

Friday and Saturday, August 28 and 29,1896 , beginning at 10 o'clock, sharp.
This school is held under the auspices of the Experiment Station Extension, or Nixon Law, which, for three years, has given funds for the promulgation of horticultural knowledge in Western New York. Its territory is the Fourth Judicial Department, comprising twenty-two counties, of which the easternmost are Jefferson, Lewis, Herkimer, Oneida, Onondaga, Caysga, Seneca, Yates and Steuben. The demands of this law are met by conducting experiments, by publishing the results of these researches in bulletin form, in sending agents or experts to examine orchards and plantations when advice is needed, and in the holding of schools in which the various matters of science
and practice pertaining to fruit-growing, gardens and greenhouses are discussed. The force of instructors who take part in these schools are Mr. George T. Powell and teachers in Cornell University:

Teachers upon General Subjects: Professor I. P. Roberts, (xeorge T. Powell, Professor L. H. Bailey.

Representing Spraying, Vineyards and Small Fruits: E. G. Lodeman, Instructor in Horticulture.

Representing Entomology: M. V. Slingerland, Assistant Entomologist in the Experiment Station.

Representing Tillage, Conservation of Moisture, Farm Tools, and the like: L. A. Clinton, Assistant Agriculturist in the Experiment Station.

Representing Chemistry, Plant Foods, Fertilizers: G. W. Cavanaugh, Assistant Chemist in the Experiment Station.

Representing Plant Diseases and Botanical Matters: B. M. Duggar, Assistant Botanist in the Experiment Station.

Instruction for Children: Mrs. J. H. Comstock.
Some or all of these persons will be present at every school.
These schools are free to everyone. It is especially desired that the women and young men should attend them. Each session will be devoted to one general subject, and all questions upon that subject should be reserved for that occasion. It is the purpose of these schools to awaken an interest in rural affairs and to inspire correct methods of observation and thinking, quite as much as to give explicit direction for horticultural work.

It will conduce to the interest of the occasion if the citizens make displays of flowers, fruits and vegetables. Participants are requested to bring in all specimens of insects, diseased plants, and the like, concerning which they desire information.

Come prepared to learn, not to criticize. Bring note-book and pencil. If forty or fifty earnest persons are in attendance at all the sessions, the school will be a success; but it is desired to reach as many people as possible.

A course of reading will be laid out, at the school, for all who desire to take it up. The local rural societies should further this work. The value of the school will depend greatly upon the extent to which it stimulates further reading and study.

Whenerer practicable, it is desired that one session, or a part of a session, be given to the children of the public schools.

Please circulate this information widely.
For further information consult the local committee: Newell Cheney, Poland Center; A. A. Van Vleck, Jamestown; W. C. Gifford, Jamestown; M. Wample, Jamestown;

Or address L. H. Bailey, Cornell University, Ithaca, N. Y.
Programs will be ready before the school opens.

One of the most aseful exercises in connection with these schools, and which we have uniformly employed from the beginning of our work, consists in observation lessons. Some small object, like leares or roots, flowers or seeds, is put in the hands of all the attendants, and, after they have examined it for a few minutes, the instructor begins to ask questions concerning it. This exercise drills every participant in observation, in the drawing of proper inferences from what he sees, and the exercise has always been productive of the greatest interest and good. A sample program of one of these horticultural schools is herewith submitted:

Everyone interested in Rural Affairs is invited to attend a

SCHOOL OF HORTICULTURE

TO BE HELD IN
SCOLLARD OPERA HOUSE, CLINTON, ONEIDA CO., Thursday and Friday, September 24 and 25, 1896.
The school is held under the auspices of the Nixon, or Experiment Station Extension Bill, which appropriates funds for the dissemination of horticultural knowledge in the Fourth Judicial Department of the State. The work is in charge of Cornell University (Ithaca), and the instruction is givell chiefly by teachers in that institution, under the immediate supervision of L. H. Bailey.

Local Committce: E. P. Powell, Clinton; T. T. Thompson, Clinton; H. B. Sykes, Clinton; Ira F. Ellenwood, Clinton; J. H. Marvin, New Hartford.

Thursday, $10 \mathrm{~A} . \mathrm{m}$. (Sept. 24).
Lesson upon Flowers - (Conducted by L. H. Bailey).
M. V. Slingerland - Insects: What they are and How they Live. Illustrated by specimens and models.
After this exercise questions may be asked about spraying.

$$
\text { Thursday, } 2 \text { г. м. }
$$

Lesson upon Leaves - (Conducted by L. H. Bailey).
E. P. Powell - Orchard Culture: How to secure healthy trees and healthy crops.
Mrs. J. H. Comstock - What bright-eyed children may see in their walks. Illustrated by original colored drawings. It is hoped that the school children may be present at this latter exercise.

Thursday, $7: 30$ p.m.
Lesson upon Branches - (Conducted by L. H. Bailey).
L. H. Bailey - The Philosophy and Practice of Pruning. Illustrated by specimens.
This exercise will consider certain phases of evolution, as well as of the pruning of trees.

Friday, 10 a. m. (Sept. 25).
Lesson upon Buds - (Conducted by Professor Morrill).
A. D. Morrill - The Leaf-bud and Budding and Grafting.
B. M. Duggar - Fungi: What they are and How they Live.

At this point persons may ask questions about diseases of plants.

$$
\text { Friday, } 2 \text { p. m. }
$$

Lesson upon Matches - (Conducted by George W. Cavanaugh). George W. Cavanaugh - The Chemistry of Some Plant Foods. Illustrated by chemical tests.
George T. Powell - How to Pick, Pack and Export Apples.
Will some one bring in a barrel of apples properly packed? Be on hand promptly at the opening hour. Time is precious. Bring note-book and pencil.
Bring all the family. The introductory lessons will be especially interesting to children, and there should be a good turnout.

Come prepared to ask and to learn, but do not come to criticize. The school is intended for those of an inquiring mind, not for those who wish simply to be entertained.

Each regular attendant will be enrolled as a scholar.
Printed synopses of each regular talk or lecture will be distributed.

Bring in specimens of fruits, insects, plants, and whatever else interests you.

It is more needful. to learn first to think correctly than to perform correctly ; for ail accurate labor is the child of accurate thought.

Bring this program with you.
We have taken up this experiment in teaching with the same spirit in which we would take up an investigation in natural science; that is, we have not attempted to prove any preconceived notions but have wished to seek for the truth. We have desired chiefly to know what is the best means of reaching the farming communities with the new educational impulses. In respect to these September schools, I may say that they were uniformly well received by the communities in which they were held. As
an experiment, all of them are considered to have been successful, although it should be said that one of them was not held because of a conflict with a county fair. These schools have drawn a limited number of participants, ranging all the way from twenty to two hundred. I presume that an average attendance would run from forty to sixty. The participants have almost uniformly been the most influential horticulturists and farmers of the neighborhood - persons who extend a wide influence and who will give great popularity to any work in which they are interested. In distinctively fruit-growing regions, and especially in those localities where farmers' institutes, grange meetings and other like assemblages have been held, these schools have been immediately worth many times more than they have cost. In certain other communities, however, especially those in which farmers' meetings have not been held energetically, and in grazing regions, these schools hare, in my opinion, been of too technical or special character to produce the greatest amount of good. As a result of the holding of many of these schools, I am now of the opinion that they cannot be used as primary factors in university extension; they are capable of accomplishing a great amount of good when the community has been awakened by simpler and more elementary means. I should therefore consider that they could serve their best uses when they are given as a reward to those communities in which the greatest amount of interest in reading courses, in horticultural clubs, institutes and such other public factors has been developed. There are centers enough in New York State where such schools can be held with distinct advantage at the present moment; but they should be rather the culmination of a series of extension teaching efforts rather than a primary or preliminary means of awakening the rural communities.

During October a series of meetings was held in the schoolhonses of various parts of the Fourth Judicial Departruent. These were under the immediate supervision of Mr. George T. Powell, who was assisted throughont the month by Mr. John W. Spencer, of Westfield. These meetings were of the type which
had been so successfully inaugurated in Westchester county a year ago under the auspices of the Committee for the Promotion of Agriculture, a work which had been carried to its practical demonstration by Mr. Powell. The itinerary of the October meetings, together with some statistics thereof, are herewith submitted:
Oct. 1. a. m. Charlotte Centre, Chautauqua Co., Geo. R. Mathewson, teacher; 36 pupils.
P. m. Sinclairville High School, Chautauqua Co., Professor F. L. Hannum, principal; 165 pupils.
2. a. m. Thornton, Chautauqua Co., Bates District, Blanche Stone, teacher; 37 pupils.
p. m. Ellington, Chautauqua Co., High School, Professor E. W. Storms, principal; 130 pupils.
3. p. m. Kennedy, Chautauqua Co., Mrs. Millie Lathrop Williams, teacher.
5. a. m. Ashville, Chautauqua Co., D. H. Findley, principal; three departments; 60 pupils.
p. m. Blockville, Chautauqua Co., J. C. Smith, teacher; 34 pupils.
6. a. m. North Collins, Erie Co., High School, L. L. Shore, principal; 130 pupils.
p. m. North Collins, Eugene Willitt's District, Elizabeth E. Kingsland, teacher; 23 pupils.
7. - East Aurora, Erie Co., Jewett District, Miss Luella Malon, teacher; 18 pupils.
A. м. Youngstown, Niagara Co., Henry Lutts' District, Cora A. Bradley, teacher; 27 pupils.
p. M. Youngstown, district near Model City, Elizabeth M. Berkley, teacher; 29 pupils.
8. a. m. Knowlesville, Orleans Co., Graded School, J. F. McNall, principal; 85 pupils.
p. m. Millville District, Orleans Co., Ernest A. Roll, teacher; 34 pupils
9. a. m. Spencerport, Monroe Co., Graded School, F. W. Hill, principal; 170 pupils.
р. м. Medina, Orleans Co., High School (Erening), Adams Basin, Monroe Co., W. H. Clark, principal; 50 pupils.
12. A. M. South Livonia District, Livingston Co., W. Arthur Turner, teacher; 47 pupils.
p. m. Livonia, Jivingston Co., High School, W. H. Cone, principal; 200 pupils.
13. a. m. East Palmyra School, Wayne Co.; 14 pupils.

Oct. 18. I. м. Palmyra, Wayne Co., High School, Professor S. D. Arms, principal; 600 pupils. Evening lecture.
Conesus District, Livingston Co., S. L. McNinch, principal; 90 pupils.
Foot's Corners School, Livingston Co., Josephine Stalee, teacher; 21 pupils.
14. a. m. Boughton Hill District, Ontario Co., Miss Mary T. O'Neil, teacher; 30 pupils.
P. M. East Victor School, O. Smith, teacher; 23. pupils.
Victor, Ontario Co., High School; 300 pupils. (Evening.)
a. m. and p. m. Naples, Ontario Co., Naples High School, Professor W. C. Noll, principal; 225 pupils.
Oct. 15. a. m. Phelps District No. 2, Ontario Co., Miss Emma Saulsbury, teacher; 27 pupils.
r. M. Phelps Union School, Ontario Co., Professor D. D. Edgerton, principal; 330 pupils.
A. m. Canandaigua, Ontario Co., District No. 17, Lucretia Adams, teacher; 22 pupils.
a. m. Canandaigua, District No. 15, Mabel Mersereau, teacher; 11 pupils.
Canandaigua, District No. 14, Cora Parker, teacher; 20 pupils.
P. m. Reed's Corners School, Ontario Co., Julia C. Caplise, teacher; 31 pupils.
16. p. m. Geneva School, Ontario Co., Miss Ellen Beach in charge; 40 to 50 in room.
19. Fayetteville, Onondaga Co., Union School, Professor T. J. House, principal; 338 pupils.
p.m. Manlius Union School came to Fayetterille, Professor E. Neeley, Manlius, principal.
Dwight Stone's District, Oswego Co., Mrs. Francis Gilbert, teacher; 25 pupils.
Lansing, Oswego Co., F. D. Bradley, teacher; 60 pupils.
20. a. m. Oswego Falls, Oswego Co., Maud Marden, teacher; 87 pupils.
P. m. Fulton, Oswego Co., High School, Professor P. G. Clapp, principal; 1,000 to 1,100 pupils.
21. a. m. Volney District No. 7, Oswego Co., Mrs. Flora S. Davis, teacher; 27 pupils.

Volney District No. 4, Lilian Hollunbeck, teacher; 19 pupils.

Oct. 21. a. M. Volney District No. 3, Mrs. Anna Fradenburg, teacher; 30 pupils.
22. Mexico, Oswego Co., High School, Professor A. W. Skinner, principal; 300 pupils.
23. A. M. Allendale District, Adams P. O., Jefferson Co., Clarence Pitts, teacher; 35 pupils.
P. M. Adams, Jefferson Co., Miss M. J. Salisbury, principal; 250 pupils.
24. Watertown, Jefferson Co., Horticultural school.
26. A. m. New Fartford, Oneida Co., District No. 10, Leon E. Jinks, teacher; 33 pupils.
P. M. New Hartford, District No. 7, Miss Augusta Light, teacher; 14 pupils.
27. a. m. New Hartford Union School, Professor G. Spaulding, principal; 300 pupils.
p. m. New Hartford Union School.

Hornellsville, Steuben Co., District No 12, Miss Cassie Cunningham, teacher; 20 pupils.
28. A. m. Arkport, Steuben Co., High School, H. W. Harris, principal; 150 pupils.
P. m. Canisteo, Steuben Co., High School, Professor W. D. Hood, principal; 500 pupils.

Evening. Hornellsville High School, Professor W. R. Prentice, superintendent.
29. a. m. Rheims, Steuben Co., Pleasant Valley District, Miss Minnie E. Pierce, principal; 60 pupils.
P. M. Hammondsport, Steuben Co., High School, Professor E. L. Monroe, principal; 300 pupils.

The plan of effort in this teaching was to visit two schools during the day, one in the forenoon and one in the afternoon. The arrangements were made in advance with the school commissioner or the trustees, and the fact that the speakers were to be at the school-house was ordinarily announced some days in advance so that parents and friends could visit the school at that time if they chose. The teacher was in every case willing to omit the regular exercises for an hour or two in order that our instructors might take up the work of object teaching with the children. The motive in this work was to find out just how the pupils could be reached by means of object lesson teaching, and just how much iniorest they would be likely to manifest in agricultural matters in case it were ever found to be desirable
to introduce such teaching as a part of the district school work. The instructor would first axplain the reason for his coming and give the school to understand that no new text-books were for sale and that no new classes were to be required at the hands of the teacher. He then ordinarily took up some simple object lesson. It might be in one place a stalk of corn which he had in his hand and the process of growth of which he would explain from seed to harvest; it might be in another case the germination of a bean or a pumpkin seed; it might be in another case the habits or structure of a potato bug or some other insect; it might be, again, the reasons why there were knots and knot holes in the woodwork in the school-house; it might be a very elementary talk upon the different plant foods which are in the soil; it might be in other cases a very brief sketch, with charts, of some fungus; and so on. These exercises were uniformly well received by both the pupils and the teachers and this work has, I think, awakened more inspiration in the minds of our instructors than any other attempt which we have yet made to reach the people. The teachers in the schools have without exception expressed themselves as willing and desirous of taking up some such simple exercises as a rest for the pupils two or three times a week, if only they themselves could be instructed in the proper methods of carrying on the work. In order to afford this instruction to the teachers, we are now proposing to issue a series of experimental leaflets on object lessons and place these in the hands of the teachers.

There is no doubt of the necessity for work of this kind with the children. The love or antipathy of the farm is engendered at a very early age in the minds of the young. This has been demonstrated in these October meetings when we have asked those children who live on farms and who still desire to do so to raise their hands, and we almost uniformly find that the number who desire to live on farms is far less than those who actually do live on them. With these children, ranging from six to fifteen years of age, the question of pecuniary profits upon the farm has appealed very little, but they are influenced directly
by the environments under which they are living. Jhese environments must be improved; and if they are, there is every reason to expect that children will love the country better than the city. We have thought, therefore, that it is eminently worth the while to instill the love of nature and the knowledge of a multitude of living things in the minds of the children; and by so doing we are fully convinced that we shall also be spreading the very same knowledge and impulse to the parents of these children. In fact, all the instructors whom we have had in the field during the present year are fully convinced, I think, that the fundamental method in improving the agricultural status is to begin with genuine and attractive nature-education in rural schools. As soon as a genuine interest in these matters is awakened in the children and teachers, school gardens, cabinets of plants, insects and minerals, and other enterprises will cluster about the school-center, and the influence thereof will spread throughout the country side.

A report of this October work by Mr. Powell is herewith sub. mitted:
"That the agriculture of New York state has been seriously depressed for several years, there is no question; that this has affected the condition of the rural population unfavorably is also recognized. It is, however, difficult to see wherein legislation ran be obtained that will materially change the present conditions, except upon some educational lines that would enable 'those engaged in agriculture, through greater knowledge, to more successfully meet some of the difficulties attending production, the interests of consumers being here closely connected with that of producers of food supplies.
"There has been a belief that our educational system, excellent as it is, could be made of greater value to the individual by helping him to obtain a closer knowledge of some of the forces of nature which contribute so largely to the necessities and comforts of life. While our country schools have instructed children in the common and higher English branches, and, in instances, have taught some of the principles of natural science, but little attempt has been made to give science instruction with its application made to living things or to those pertaining to the active affairs of life.
"Under the auspices of the committee, known as the Com-
mittee for the l'romotion of Agriculture, organized in New York in 1895, for the promotion of agriculture and of agricultural education, the experiment was tried of giving a course of lectures on natural sciences applied to agriculture in the district and high schools of Westchester county. The work proved of practical value, and a demand came upon this committee to extend it to many other sections in the state. It was thought by the New York committee that Cormell University, haring such a complete equipment for scientific instruction and able teachers in agriculture, could render valuable service to the antire state by extending this line of instruction, and combining with its experiment and iurestigation work that of instruction in some of the principles of agriculture on the University Extension plan.
" During the month of October, 1896, this work was given to a number of schools in the different counties comprising the Fourth Judicial Department, under the prorisions of the Nixon bill, for the extension of horticultural knowledge and instruction. Two classes of schools were reached: those in the rural districts and the union free schools. A district school would be risited in the morning, and in the afternoon a mion or high school. Two lectures were given in each, namely, on plant and insect life. Observation lessons were given pupils, while methods of teaching these subjects were given the teachers. The most familiar objects were chosen from the plant life of the school district. Seeds representing familiar plants were germinated and placed in the hands of pupils for observation and study. The full corn in the ear was shown to illustrate what had taken place since the germination of the seed. Lectures on insects were given, choosing the familiar and injurious kinds of the district (those that do direct and serious damage to crops and to regetation), giving their history, the different transformations through which they pass, and instruction on how to save the losses they cause. To the higher pupils, lectures were given on the beneficial insects, their relation to the flowers, and how they are an important factor in the fruitfulness of orchards and vinevards, in the distribution of pollen of different flowers, in eross-fertilization and formation of the seeds of plants; also on the relation of the soil to all forins of life, regetable and animal, its important elements in phant food and how it ean be studied in anmementary manner. Teachers were given instruction by objects and illustrations on how these subjects rould be taught, without multiplying studies or experises or without text-books, by dropping some regular exercise once or twice a week and putting in a twenty-minute natural science period as incidental work. Thus, during a term. much valuable instruction can be given on important topics without adding to the crowded demands upon teachers and pupils,
and in so doing the entire work of the school will be adranced in interest and in efficiency.
"'This work has been, without exception, received f'avorably and with interest by teachers, pupils, officers and patrons of the schools who have come to listen to this course of lectures. In some instances, in the rural districts, farmers have been present who were school trustees, and at the close of the exercises one said publicly in speaking of the work done that 'if he and his neighbors could have had that kind of instruction when they were boys, they would have been in a far more prosperous condition as farmers to-day.' In some places, notably in districts near where a horticultural school had been held the previous month, the school-house was beautifully decorated with autumn leaves, with boughs of apples hanging on the walls of the schoolroom, flowers and plants brought in for the occasion, while the fruits of the orchard and of the garden were piled upon the teacher's desk and on the floor to be correctly named and to ascertain the causes of some diseases and blights that were afflicting them; and in such cases there was a marked attendance of the patrons of the school. In several schools a vote was taken to ascertain the number of pupils who lived upon farms, both in district and high schools, and a further test vote taken to ascertain how many were satisfied to live on the farm and desired to do so when they had finished their school work. In some places the astonishing fact was met that not one hand went up or one vote was given in favor of living on the farm. This is a significant and vitally important fact brought out in this experimental educationat work. These school children from the farm expressed the simple, honest convictions of their hearts that they were not satisfied with farm living and intended to get away from it in the future when opportunity might offer. Yet these children from the farms showed no lack of interest in the subjects as they were presented to them and showed an active interest in answering questions that pertain to some of the interesting things about the farm.
"This is but a corroboration of the facts obtained in the recent investigation touching the condition of the rural population made by the New York Committee for the Promotion of Agri-culture-that sevents per cent. of the replies received in this inquire indicated a tendency on the part of the rural population to go to the city. An important question here arises. What is to be the future of our rural schools and of the agriculture of the state if the present gencration, as seems so clearly indicated, is not satisfied with rural life and feels no interest in maintaining or contributing to the agricultural and educational interests of the state? While many more rural school-houses must become
deserted, there are thousands of children already in our cities who are deprived of school advantages because adequate room does not exist for them to get into the schools of the city. The further problem also arises of the difficult economic questions to be met in our cities as the result of congestion of population. The standard of teaching has been much improved in New York state. It has been gratifying to meet so miversally teachers who are not only well qualified, but who are doing excellent work in their schools and who have the true teaching spirit. Our educational forces are thoroughly efficient and well equipped, but there is a need of different application of our school work in rural districts. The life of the district needs to be changed and it can in no way be so effectively done as through our schools. The best work cannot be done in schools with an attendance of only half a dozen children. School districts will be forced to even greater consolidation in the future, and it would be desirable if families could also be consolidated, for it is the lack of social opportunity that is felt. It is the isolation of the farm home that the boy and girl dislikes in these days of close communication and contact with the world which is brought about by steam and electricity. School grounds could be enlarged. They should furnish the opportunity for planting trees and shrubs; for the planting of seeds and growing of flowers; for having a nicely-kept lawn, and in time, these things, with their influences would extend to the homes of children who do not have them and bring with them those attractions and interest that make a home what it ought to be-pleasant and inviting in its surroundings. With some principles taught that apply to the life of the farm in its various forms, much that is to-day discouraging, unprosperous and almost hopeless will be gradually changed to better conditions, and general and permanent prosperity will follow.
"The great need in this work is teachers fitted for it. Many excellent teachers have felt their want of preparation for this kind of teaching, but our normal schools are already giving some instruction in nature-teaching, and by carrying the system somewhat further can render the state an invaluable aid in this direction.
"The instructors furnished by Cornell University in this work have shown excellent adaptability in it, and while scientific instruction has been given, it has been made to meet the understanding and interest of all, even the youngest in the primary grades. This work in the schools in the comnties lying within the Fourth Judicial District has met with even a larger measure of interest than in Westchester county. In that county most
farmers look upon their farms as holding a special value outside of farming purposes, hence most farms are for sale at any time; while out in the state the interest in land is more permanent and this has awakened a general and active interest in this line of instruction in every school and school district where it has been given. The plan has been accepted, not only as practical by those who have witnessed its workings, but as helpful to all whatever may be the work they will take up in life. As a system of instruction, it will bring experiences of delight to children in their school days, such as they have not before known, in the many interesting subjects in nature that will be brought out to them to know and to study about.
"The future value to the state of this kind of instruction can hardly be measured. With some exceptions, the farms of New York are in a condition of sadly depleted fertility of the soil. Nearly everywhere is to be observed the absence of that most valuable renovator of the soil-the clover plant-and in its place a low type of herbage of little value. The cost of production is thereby much increased and the profits in farming consequently largely reduced. Many of the children living on the farms of New York are practically disinherited from the soil upon which they have been born because of the mistakes of their fathers. But while the soil is depleted, it is by no means exhausted of fertility; and by the study of its necessities, and by the emplorment of skill and intelligence in the art of agriculture, it is capable of vast improvement, of maintaining a great population and adding to the greater prosperity of those who shall cultivate it while contributing to the general prosperity and wealth of the state. The future of the agriculture of the Empire State can be determined through educational forces, and our public schools can be made a most certain and powerful factor in its elevation to a much higher position of prosperity."

The following are samples of many unsolicited letters showing how this type of efforts appeals to teachers:
"Your visit to our school has been very pleasantly discussed by many of our students and teachers. I think that I may say by the more intelligent ones. I believe it sowed seed for thought and in good ground.
"We have perhaps seventy-five students from farms and presumably among the best of them, and I am of the opinion that a day or a half day spent by them under the instruction of your department, by coming to uss, will be sowing sceds that will yield some sixty and some a hundred fold.
"I want to express myself in favor of such work being done in schools like ours in the state.

Most respectfully yours,
B. (7. CLAPP, Priucipal Fulton High School."
Fulton, Oct. 28, 1896.
"I send you under separate cover a number of letters written by some of the children whom you addressed. They are sent you just as written by the pupils without assistance and are selfexplanatory.
"We will be pleased to use whatever help you can give us for our general work which comes about once in two weeks.
"The impression you made upon the boys and girls here was excellent.

> Yours with respect, WM. C. NOLL, Principal Naples Union School."

Naples, November 16, 1896.
"Our children and teachers were so interested in the work presented by Mr. Powell and his assistants, that we write to thank the Horticultural Department, through you, for the incentive to work along the lines they so ably indicated, and the many hints as to ways and means. We wish we might have still further instruction.
"Thanking the Department again, for the added interest we shall take in the teaching of noxious insects, the necessity for fresh air, and plant life of the region,

$$
\begin{aligned}
& \text { I am, sincerely, } \\
& \text { MARY J. SALISBURY, } \\
& \text { Principal." }
\end{aligned}
$$

Adams, November 3, 1896.
"It is with pleasure that I express to you my hearty approval of the work presented to our school by your instructors.
"The pupils were much interested and I believe that the introduction of the study into our schools must certainly meet with very practical results.

> Yery truly yours.
> H. W. HARRIS, Principal Union School."

Arkport, November 2, 1896.
Intimately associated with these two attempts to teach the rural communities by personal means, has run the effort to awaken a living interest in the reading of bulletins and books.

We have therefore recommended, in every one of our schools and meetings, that the farmers procure certain reading matter for study and reflection during the winter time. We have printed circulars of suggestions for these courses of reading, a copy of which is here reprinted:

SUGGESTIONS FOR

A Course of reading

UPON SUBJECTS RELATING TO HORTICULTURE (MORE ESPECIALLY TO FRUIT GROWING).
(SECOND EDITION.)
Most of the reading of farmers is of such a scattered and haphazard character, that the reader is unable to obtain any consecutive or fundamental ideas upon the various subjects. It is suggested that each local farmers' club, grange or horticultural society-or a neighborhood gathering, when other organizations do not exist-take up a prescribed line of reading and thinking for the coming winter.

The company which desires to take up such a course should be thoroughly organized, and each reader should secure and own the various bulletins and books which are to be read. At each meeting a prescribed number of pages is laid out to be read before the next gathering. Upon coming together, the leader asks a member to read the first paragraph of the exercise or lesson, and to give his opinion of the same. Discussion is then called for. Each paragraph is treated in similar manner.

It is obvious that one of the best subjects to select for the first readings is the soil and its management. Three or four meetings could be very profitably spent upon this general topic. From this, it would be well to pass to the fertilizing of the land. After this, various special topics could be taken up, depending upon the interests in the locality.

The course of reading suggested in this circular is designed for introduction following the Schools of Horticulture which are held in western New York (the Fourth Judicial Department), under the auspices of the Nixon or Experiment Station Extension Bill, which provides funds for disseminating horticultural knowledge in this territory. The circular, therefore, has no suggestions for reading in subjects pertaining to general farming and stock farming, although the silo has been mentioned because it may become such a valuable adjunct to the maintaining of the fertility of many horticultural farms. The readings are designed to be merely elementary and introductory. The time can-
not be far distant when a well-organized series of agricultural reading circles, and correspondence instruction, will be demanded. The present suggestions cannot be more than temporary expedients; and as soon as any company or club desires more extended study, other bulletins and books will be recommended.

Only such bulletins have been recommended in this list as are published in this state (by the State Experimental Station at Geneva, and the Cornell Experiment Station at Ithaca), and only those, too, which are of a general nature, or those which can be called reading bulletins rather than reference or technical bulletins. There are other reading bulletins published by these stations which have not been recommended because they are out of print. It is hoped that the reading of these bulletins may lead to the reading of books, where the subjects are set forth in more fullness.

> L. H. BAILEY,
> Ithaca, N. Y.

Soils and Tillage:
Bulletin 119, Cornell. The Texture of the Soil (L. H. Bailey).
Bulletin 120, Cornell. The Moisture of the Soil and its Conservation (L. A. Clinton).
Bulletin 72, Cornell. The Cultivation of Orchards (L. H. Bailey).
"The Soil," by F. H. King. The Macmillan Co., New York. 750.

Manures and Fertilizers:
Bulletin 94, State Station. The Composition and Use of Fertilizers (L. L. Van Slyke).
Iinlletin 103, Cornell. Soil Depletion in Respect to the Care of Fruit Trees (I. P. Roberts).
Bulletin 102, State Station. Silage and Silos (W. P. Wheeler).
"The Fertility of the Land," by I. P. Roberts. (In press).
Fruits and their Cultivation:
Bulletin 69, Cornell. Hints on the Planting of Orchards (L. H. Bailey).

Bulletin 102, Cornell. General Obserrations Respecting the Care of Fruit Trees (L. H. Bailey).
"Fruit Culture," by W. C. Strong, Rural New Yorker, N. Y. 1.

Bulletin 84, ('ormell. Whe Recent Apple Failures of Western New York (L. H. Bailey).

Bulletin 74, Cornell. Impressions of the Peach Industry in Western New York (L. H. Bailey).
Bulletin 100, Cornell. Evaporated Raspberries in Western New York (L. H. Bailey). Gives a general account of evaporators, and of raspberry growing.
Other writings upon special fruits will be recommended if desired.

Spraying, Insects, Diseases:

Bulletin 86, Cornell. The Spraying of Orchards (E. G. Lodeman).
Bulletin 101, Cornell. Notions about the Spraying of Trees; with Remarks on the Canker-worm. (L. H. Bailey).
"The Spraying of Plants," by E. G. Lodeman. The Macmillan Co., New York. $\$ 1$.

The Making of Home Grounds:
Bulletin 121, Cornell. Suggestions for the Planting of Shrubbery (L. H. Bailey).
Bulletin 90, Cornell. China Asters; with Remarks upon Flower-Beds (L. H. Bailey).

Helps for Teachers:
"Elements of Botany," by J. Y. Bergen. Ginn \& Co., Boston. "Familiar Trees and Their Leaves," by Schuyler Mathews. D. Appleton \& Co., N. Y. "Plant Life on the Farm," by Maxwell T. Masters. Orange Judd Co., New York. "Chemistry of the Farm," by R. Warrington. Orange Judd Co., New York.
Every grange or, farmer's club should be slowly accumulating a library of good rural books for purposes of reference. Advice will be given when desired.

This circular is simply an adrisory one, although we are convinced that it has already awakened a genuine interest in many quarters in its subject. We find that there are very few rural books which are adapted to the needs of children or which can be put in the hands of teachers in the country schools. We have therefore conceived of a series of leaflets upon object lessons, dealing with common things, which may be put in the hands of teachers, and, when desired, of pupils as well. We have preferred that these little texts be not read to the pupils as stories, but that they shall answer as suggestions to the teachers who shall have the children perform the simple experiments and to make the direct observations which are there indicated. One of these leaflets is herewith reprinted:

TEACHER'S LEAFLETS

FOR URE IN THE RURAL SCHOOLS
PREPARED BY

THE AGRICULTURAL EXPERIMENT STATION OF CORNELL UNIVERSITY,

Issued under tho auspices of the Experiment Station Extension, or Nixon Law. By L. H. Bailey.

How a squash plant gets out of the seed.

BY L. H. BAILEI.

If one were to plant seeds of a Hubbard or Boston Marrow Squash in loose warm earth in a pan or box, and were then to leave the parcel for a week or ten days, he would find, upon his return, a colony of plants like that shown in Fig. 1. If he had not planted the seeds himself or had not seen such plants before, he would not believe that these curious plants would ever grow into squash vines, so different are they from the vines which we know in the garden. This, itself, is a most curious fact - this wonderful difference between the first and the later stages of all plants, and it is only because we know it so well that we do not wonder 1. Squash plant at it.
a week old.
It may happen, however,-as it did in a pan of seeds which I sowed a few days ago-that one or two of the plants may look like that shown in Fig. 2. Here the seed seems to have come up on top of the plant, and one is reminded of the curious way in which beans come up on the stalk of the young plant. If we were to study the matter, however,-as we may do at a future time,-we should find a great difference in the ways in which the squashes and the beans raise their seeds out of the ground. It is not our purpose to compare the squash and the bean at this time, but we are curions to know why one of these squash plants brings its seed up out of the ground whilst all the others do not.

[^91]In order to find out why it is, we must ask the plant, and this asking is what we call an experiment.

We may first pull up the two plants. The first one (Fig. 1) will be seen to have the seed still attached to the very lowest part of the stalk below the soil, but the other plant has no seed at that point. We will now plant more seeds, a dozen or more of them, so that we shall have enough to examine two or three times a day for several days. A day or two after the seeds are planted, we shall find a little point or root-like portion breaking out of the sharp end of the seed, as shown in Fig. 3. A day later this root portion has grown to be as long as the seed itself (Fig. 4), and it has turned directly downwards into the soil. But there is another most curious thing about this germinating seed. Just where the root is breaking out of the seed (shown at a in Fig. 4), there is a little peg or projection. In Fig. 5, about a day later, the root has grown still longer, and this peg seems to be forcing the seed apart. In Fig. 6, however, it will be seen that the seed is really being forced apart by the stem or stalk above the peg for this stem is now growing longer. The lower lobe of the seed has caught upon the peg (seen at a, Fig. 6), and the seed-leaves are trying to back out of the seed. Fig. 7, shows the seed still a day later. The root has now produced many branches and has thoroughly established itself in the soil. The top is also growing rapidly and is still backing out of the seed, and the seed coats are still firmly held by the obstinate peg.

Whilst we have been seeing all these curious things in the seeds which we have dug up, the plantlets which we have not disturbed have been coming through the soil. If we were to

7. The operation further progressed.

8. The plant just coming up.

10. The plant straightening up.
see the plant in Fig. 7, as it was "coming up," it would look like Fig. 8. It is tugging away trying to get its head out of the bonnet which is pegged down undemath the soil, and it has "got its back up" in the operation. In Fig. 9, it has escaped from its trap and it is laughing and growing in delight. It must now straighten itself up, as it is doing in Fig. 10, and it is soon wanding froud and straight, as in Fig. 1. We now see that the reason why the seed came up on the plant in Fig. 2, is because in some way the peg did not hold the seed-coats down (see Fig. 13), and the expanding leaves are pinched together; and they must get themselves loose as best they can.

11. The true leaves developing.

12. Marking the root.

There is another thing about this curious syuash plant which we must not fail to notice, and this is the fact that these first two leaves of the plantlet came out of the seed and did not grow out
of the plant itself. We must notice, too, that these leaves are much smaller when they are first drawn out of the seed than they are when the plantlet has straightened itself up. That is, these leaves increase very much in size after they reach the light and air. The roots of the plantlet are now established in the soil and are taking in food which enables the plant to grow. The next leaves which appear will be very different from these first or seed leares.

These later ones are called the true leaves. They grow right out of the little plant itself. Fig. 11 shows these true leaves as they appear on a young Crookneck squash plant, and the plant now begins to look much like a squash rine.

13. The root grown in the end portions.

14. The markidg of the stem, and the spreating apart of the marks.

We are now curious to know how the stem grows when it backs out of the seeds and pulls the little seed-leaves with it, and how the root grows downwards into the soil. Now let us pull up another seed when it has sent a single root about two inches deep into the earth. We will wash it very carefully and lay it upon a piece of paper. Then we will lay a ruler alongside of it, and make an ink mark one-quarter of an inch from the tip, and two or three other marks at equal distances above (Fig. 12).* We will now carefully replant the seed. Two days

[^92]later we will dig it up, when we shall most likely find a condition something like that in Fig. 13. It will be seen that the marks $\mathrm{E}, \mathrm{C}, \mathrm{B}$, are practically the same distante apart as before and they are also the same distance from the peg, AA. The point of the root is no longer at DD, however, hut has giown on to F. The root, therefore, has grown almost wholly in the end portion.

Now let us make a similar experiment with the stem or stalk. We will mark a young stem, as at A in Fig. 14; but the next day we shall find that these marks are farther apart than when we made them (B, Fig. 14). The marks have all raised themselves abore the ground as the plant has grown. The stem, therefore, has grown between the joints rather than from the tip. The stem usually grows most rapidly, at any given time, at the upper or younger portion of the joint (or internode); and the joint soon reaches the limit of its growth and becomes stationary, and a new one grows out above it.

Natural science consists in two things-seeing what you look at, and drawing proper conclusions from what you see.

Respecting the general necessity and requirements for such reading course, I submit the following report from Mr. John W. Spencer, who has been intimately associated with this district school work and who is at the present time aiding us in conducting a correspondence instruction:
"As you well linow, a reading course for farmers on agricultural topics, after the plan of the Chautauqua course, has long been a cherished plan of mine, and when you asked me to go with Mr. Geo. T. Powell during the month of October, I gladly accepted, for it seemed to he a good opportunity to test the practicability of the idea. I still think it a good one, but the month's experience has shown me another plan more expedient for the time and giving more lasting and practical results. I do not suggest the abandonment of the plan for a reading course, but that it be held in abeyance as a sequel to a second plan, which is this: That the College of Agriculture of Cornell University prepare papers for teachers in our common schools qualifying them to develop the powers of observation of pupils on subjects pertaining to the field. forest and household. For instance, give each child a piece of bread and the teacher draw out everything appeating to the childs eye. The teacher could supplement many points the child failed to observe. Then begin an inquiry as to why such and such points come to be so,-begin
a study of the canse. The study into the cause of the porosity of the bread could be made to lead, step by step, to the whole chemistry of baking, and from that to starch and its frequency and great importance.
" I do not suggest that these exercises be made an added recitation, but a rest exercise of twenty minutes for once or twice each week. A clever teacher can give such subjects a wide range of adaptability from primary to nearly the lighest erade. Themes can be made of some of the most familiar subjects involving chemistry, insect, plant life, and geology, arousing observation and a spirit of inquiry as to canse. It is not the superstructure that I think this plan would build, but the foundations for the superstructure, which is most important. Introduced into the schools, there would be a double benefit,-first upon the child, and then when he went home and talked about it with bis parents they too would unconsciously become pupils. This last may seem merely incidental but I am sure that the aggregate results will be immense. It takes only five to eight jears to raise a crop of boys and girls to the point where the majority of them are thinking of their qualification of getting their own living, and their preparation will be vastly enhanced, particularly for farm life, if they have developed an inquiring spirit to know the why of things.
"During the month of October I visited, either alone or with Mr. Powell, forty-two schools, representing an attendance of 4,687 pupils, located in the counties of Chautauqua, Erie, Niagara, Monroe, Livingston, Ontario, Steuben, Oswego, Jefferson and Oneida, and the schools have ranged from the brick temple of one thousand pupils to the little school-house of eleren. The children everywhere are alike,-all eager for instruction, and so are the teachers, except some with only one or two years' experience, who feel a lack of preparation and fear that they might not do the proper thing, but when assured that the plan of observation exercises was to reach the children only by fully equipping the teacher, all hesitation was banished. Not a single teacher has made an objection to the plan.
" In conclusion, I would suggest that your department prepare observation exercises in the spirit of the foregoing remarks. To schools employing the highest grade teachers, no solicitation will be necessary more than to present the literature. To the hamlet and district schools an exemplification of the work to the pupils will promote its adoption. I would advise pushing this last industriously during the present winter, depending for its future spread upon the popularity given by those schools visited this winter and by working through such centers as teachers' institutes in the next school year."

This correspondence-instruction is likewise experimental; that is, we are endeavoring at the present time to determine just how it can be carried on under our limitations and for New York state. We have no authority by law to establish a permanent or organic system of reading courses throughout our territory. We have kept the names of the participants in all of our September schools, and we have the names of the teachers and officers in the rarious rural and village schools which we have risited. In each of these public schools we have requested the taa her to have the pupils write their next compositions upor the subjects which were Iresented by our instruct. rss, and to for ward these compositions to us as samples of the kind and extent of interest which the children may be expertat on trike in tlis work. Both teachers and children have responded with surprising readisess, and the correspoudtence from this soure which has alreads accumulated is large and is an indication that the work can be greatly extended with the most marked briefits. We have also taken the opportunity to write to the various correspondents who have been interested in our work, asking them certain specife questions unon ertain bulletins which wo have sent them and which have been used as texts in the schools, particularly upon Bulletins 113 and 120) (The Textrere of the soil, and The Assisture of the soil). This correspondence las: hem the monas of tying together the varions agricultural interasis of the Fourth Andicial Inequrtmont and the College of Agriculture of Corncll University, and has resulted in a natural and organic union which, it seems to me, it would be, violence to break.

All this work, as I have said, has been experimental,- $2 n$ attrmpt to discover the best method of tomening the people in agriculture. We believe that the most efliciont means of eleyating the ideals and practice of the rural communities are as follows, in approximately the order of fundamental importance: (1) The establishment of nature-study or ohject-lesson study, combined with field-walks and incidental instruction in the principles of farm-practice in the rural schools; (2) the pstablishment of correspondence-instruction in connection with reading-courses,
binding together the University, the rural schools, and all rural literary or social societies; (3) itinerant or local experiment and investigation, made chiefly as object-lessons to farmers and not for the purpose, primarily, of discorering scientific facts; (4) the publication of reading bulletins which shall inspire a quickened appreciation of rural life, and which may be used as texts in rural societies and in the reading courses, and which shall prepare the way for the reading of the more extended literature in books; (5) the sending out of special agents as lecturers or teach. ers, or as inrestigators of special local difficulties, or as itineram. instructors in the normal schools and before the training classes of the teachers' institutes; (6) the itinerant agricultural schoul. somewhat after the plan of our horticultural schools, which shall be equipped with the very best teachers and which shall be giren as rewards to the most intelligent and energetic communities.

All these agencies, to be most efficient, should be under the direction of a single burean wholly remored from partisan political infuence and intimately associated with investigational work in agriculture. Such a bureau should also have most intimate relations with the Department of Public Instruction, for not on? must the public schools be reached, but teachers must be trained. The teachers in our public schools are now of a high grade, and they will quick!y seize opportunities to prepare themselres to teach the elements of rural science. There should be facilities placed at the disposal of erery normal school in the state, whereby it may receive courses of lectures upon rural subjects from teachors of recognized ability, and teaching-helps, in the way of expository leaflets, should be placed in the hands of erery teacher who desires them. All this work of carrying the modern uniFersity extension impulse to the country is too important and too fundamental to be confined to any one particular agricultural interest or to any one district of the state; and it is a work, too, which should be treated as a teaching extension and not as an experiment station extension.

In conclusion, I must say that the farmers, as a whole, are willing and anxious for education. They are difficult to reach
because they have not been well taught, not because they are unwilling to learn. It is astonishing, as one thinks of it, how scant and poor has been the teaching which has even a remote relation to the tilling of the soil; and many of our rural books seem not to have heen born of any real symunthy with the farmer or any just appreciation of his euvirouments. Just as soon as our educational methods are adapted to the farmer's needs, and are born of a love of farm life and are inspired with patriotism, will the rural districts begin to rise in irresistible power.

Respectfully submitted,

L. H. BAILEY,

In charge of the scientific and teaching work of the Nixon bill, Cornell University, December 1, 1896.

BULLETIN 123--December, 1896.

Cornell University-Agricu1tural Experiment Station, ITHACA, N. Y.

ENTOMOLOGICAL DIVISION.
green fruit W0RMS.

By M. V. Slingerland.

ORGANIZATION.

Board of Control - The Trustees of the University.

STATION COUNCIL.
President, JACOB GOULD SCHURMAN.
Hon. A. D. WHITE Trustee of the University.
Professor I. P. ROBERTS President State Agricultural Society.
Professor I. P. ROBERT'S Agriculture.
Professor G. (. CALDWHLL Chemistry.
Professor James Law Veterinary Science.
Professor J. H. COMSTOCK Entomology.
Professor L. H. BAILEY. Horticulture.
Professor H. H. WING Dairy Husbandry.
Professor G. F. ATKINSON Botany.
OFFICERS OF THE STATION.
I. L . ROBERTS Director.
E. I. WHLLIAMS Treasurer.
E. A. BUTLER Clerk.
ASSISTANTS.
M. V. SLINGERLAND Entomolory
G. Wr. CAVANAUGB. Chemistry.
L. A. CLINTON. Agriculture.
B. M. DUGGAR Cryptogamic Botany.

Office of the Director, 20 Morrill Hall.
The regular bulletins of the Station are sent free to all who request them.

BULLETINS OF 1896.

106. Revised Opinions of the Japanese Plums.
107. Wireworms and the Bud Moth.
108. The Pear Psylla and the New York Plum Scale.
109. Geological History of the Chautanqua Grapo Belt.
110. Extension Work in Horticulture.
111. Sweet Peas.
112. The 1895 Chrysanthemums.
113. Discases of the Potato.
114. Spray Calendar.
115. The Pole Lima Beans.
116. Dwarf Apples.
117. Fruit Brevitios.
118. Food Presorvatives and IButter Increasers.
119. The 'lezture of the soil.
120. The Moisture of the Soil.
121. Sugrestions for the Planting of Shrubbery.
122. Second Report upon Extension Work in Ilorticulturc.
123. Green Fruit Worms.

Cornell Universtiy, Ithaca, N. Y., December $23,1896$. Honorable Commissioner of Agriculture, Albany:

Sir.-This bulletin contains a history of some insects which have recently caused considerable damage in our state. It is hoped that the description of the insects, with the methods of combating the same, will prove of value to our fruit growers. This paper is therefore submitted for publication under Chapter 437 of the Laws of 1896.
L. H. BAILEY.

CONTENTS.

Introduction. Page 569.
What Green Fruit Worms are. Page 570.
Habits and Food of the Caterpillars and Moths. Page 570. Their History and Distribution. Page 571.
Their Life-history. Page 572.
The Different Species Discussed. Pages 573-580.

1. Xylina antennata Walk. Page 574.
2. Xylina laticinerea Grt. Page 577.
3. Xylina grotei Riley. Page 578.

Natural Enemies. Page 580.
How to Combat these Fruit-eating Caterpillars. Page 581.

Green Fruit Worms.

> Xylina antennata Walk.
> Xylina laticinerea Grt. Xylina grotei Riley. Order Lepidoptera; family Noctudde.

In New York state, the year 1896 has been marked by the appearance in destructive numbers of several insects which have not been noticeably injurious here during the past decade or more. The army worm, which in July ravaged field (rops in nearly every county in the state, is a familiar example; and the insects discussed in this bulletin also afford another illustration of this fact.

Most of our correspondence during May and June related to the cause of the large holes being eaten into the sides of young fruits, especially apples. The depredators proved to be large, light green caterpillars that have been popularly known as "green fruit worms." As these caterpillars had not seriously troubled New York fruit growers since 1877, they were a new insect pest to many. This year specimens were sent to the insectary from the following twelve counties: Niagara, Genesee, Orleans, Wayne, Oswego, Chautauqua, Ontario, Columbia, Clinton, Tompkins, Seneca and Saratoga. Judging from the reports accompanying the specimens, the caterpillars evidently did the most damage in the first five counties named. It was estimated that at least 25 per cent. of the apple crop was injured in many localities. Had there not been an musually heary crop of apples all over the state this year, the destruction of so large a pereentage of the young fruit by these caterpillars would have been a much more serious matter. Fruit growers should acquaint themselves with these fruit-eating caterpillars so as to guard against their ravages in the future, when there may not be so many young fruits to spare as there were this year.

What They Are.

These green fruit worms are large, light yellowish or applegreen caterpillars, with a narrow cream-colored stripe down the middle of the back, a wide cream-colored stripe along each side, and many similarly colored mottlings or spots which sometimes form quite distinct stripes along the body above the broad lateral stripes. When fully grown they range from an inch to an inch and a half in length. Some of them are shown at work in the illustration on the title page, and at a, plate 2 ; figures f and g, plate $1, c$ and d, plate 3 , and b, plate 2 are from photographs of the worms taken twice natural size. Like many other caterpillars, these green fruit worms are the offspring or younger stage of insects known as moths 'or millers. These adult forms are represented natural size at b, plate 1 , at a, plate 3 and at f, plate 2 ; and also twice natural size in the same plates.

Habits and Food of the Caterpillars and Moths.

For several years before the fruit-eating habit of these green fruit worms was discorered, they were known to feed upon the leaves of the apple and several forest trees; the leaves of poplar, hickory, wild cherry, box-elder, and the buds of roses are recorded among their food-plants. During the summer of 1870, however, the insects attracted unusual attention in Missouri and Illinois by being frequently found eating or boring into apples, peaches and the spongy oak-apple (a large apple-like swelling or gall often produced on oak-leaves by a minute gall-fly). This year, pears, peaches, plums, currants, and quinces were eaten in New York state, but the caterpillars confined themselves mostly to an apple diet. We have not observed the worms boring into the fruit. They simply begin eating on one side and often continue feeding until nearly half of the fruit is eaten, leaving a large cavity on that side (see illustration on title page, and figure a, plate 2). They work during May and the first half of June, and are not to be found on the trees again during the year. The insects go from fruit to fruit, one caterpillar thus ruining several fruits; an instance is recorded of one worm destroying six of the eight quinces on a tree. The caterpillars feed during the day, and
probably also at night. When young, they doubtless feed upon the foliage or buds, for, when the fruit is large enough for them to eat, the worms are found to be half grown or more. One of our correspondents writes: "We grafted some young Dutchess pear trees this spring, and have had to watch them continually to keep these worms from destroying the buds."

We have found some of the caterpillars apparently resting during the day on a silken web spun on one side of a partly rolled leaf; some of our correspondents have also observed this. We suspect that this is not a normal habit of the insects, for the only occasion we saw it resorted to in our cages was in the case of the caterpillar shown in figure d, plate 4 ; it was suffering from a serious internal trouble in the form of a parasitic grub which finally came out and fastened the worm to the leaf with its silken cocoon (see the figure).

Dr. Riley has recorded that the caterpillars can pinch with their little jaws quite sharply, so as to draw a little blood from a tender part. The worms are easily disturbed at their work of feeding on the fruits, for if the tree or limb be suddenly jarred, they at once drop to the ground, not spinning down by a silkeu thread as do the canker worms.

The parents of these green fruit worms-the moths-are nightflyers, remaining concealed on the bark of the trees or in other secluded places during the day. Most of them appear during September and October, and, hibernating in sheltered places, appear again in March, April and May; some evidently remain in the ground as pupæ over winter, the moths not appearing until spring. They are readily attracted to lights or sweetened baits at night, and are " often found in maple groves while sugaring is going on. Sometimes sap-pails are found in the morning with the surface of the liquid completely covered with the moths."

Their History and Distribution.
These green fruit worms first attracted serious attention by boring into apples and pears in 1870, in Missouri and Illinois; Dr. Riley also states that he had seen them for several years preriously on the foliage of different trees. A newspaper slip, writ-
ten in 1872, states that the insects were rery common and destructive in the South, where the worms made their appearance during April and May, in the latitude of Mobile and New Orleans. In 1875, the caterpillars appeared in large numbers in the orchards in the ricinity of Lockport, N. Y. Professor Comstock investigated this outbreak and found that much damage had been done in many apple and pear orchards. In the case of one roung pear orchard, he counted the whole number of pears on several trees and found that $4 \tilde{y}$ per cent. of them had been injured by the caterpillars. It was noted that this orchard was adjoining a forest from which the insects may have spread. It is a curious fact that although these green fruit worms were so numerous in 1877, they seem not to have attracted attention again anywhere in New York state until 1896, nineteen years later. In 1888, quite a number of apples were found apparently injured by these caterpillars in Maine.

The adult insects-the moths-are not uncommon in Canada and the northern and eastern portions of the United States; and the insects have been recorded as injurious in the South and as far west as Nevada. Collectors report the moths as common in, and we have this year received the catcrpillars from, several widely separated localities in New York state. Thus, these fruiteating caterpillars are very generally distributed throughout Canada and the United States.

Their Life History.

The green fruit worms do most of their damage to the young fruits in May, lat some of them continue working until nearly the middle of oune. Jming the first week in June most of the caterpillars get their full growth and then bursow into the soil beneath the trees to a depth of from an inch to three inches. Here they roll and t wist their bodies about until a smooth earthen cell is formed. Most of them then spin atoont themselves a very thin silken cocoon; some spin no cocoon. Within the cocoon or the earthen cell, the caterpillar soon undergos a wonderful transformation which results in what is known as the pupa of the insect. One of these dark brown, lifeless-looking pupe is shown, natural size, at c, plate 2 , and emarged on the same

PLATE I.- Fylina antennata Walker. a. the moth at rest, nutural size; b, the moth, nut. ural size; c, the pupa, enlarged; d, caudal segment of the pupa, much enlarged; e, the caterpillar at work, natural size; \mathbf{f} and \underline{g}. the caterpillar, dorsal and lateral views, tvicc natural size; h , the moth, twice naturalsize.

PLATE IL.- Eylina lacticinerea (irnte, a, the caterpillar at work, natural size; 1). the, caterpillar, twice naturalsize; c, the pupa, naturalsize: d, the pupa, enlarged: n. caudal segment of pupa, much enlarged; f, the moth, natural size; n, the moth, twice nutural size.
plate. Most of these insects spend about three months of their life in the ground during the summer in this pupal stage. Some evidently hibernate as pupe, and thus pass mine months or more of their life in this stage. Usually about September 15th, the moths break their pupal shrouds and work their way to the surface of the soil. Most of them emerge in the fall before October 15th, and pass the winter as moths in sheltered nooks; some evidently do not emerge until spring. Warm spells in winter sometimes arouse a few of them from their hibernation.

During the first warm days of early spring, all the moths appear, and doubtless the mothers soon begin laying eggs. No observations have been made on the eggs or young caterpillars in the North, but in a newspaper article published in the South in 1872, it is stated that the eggs are deposited in the spring on the nndersides of the leaves. They hatch in a few days, and the young worms begin at once to eat the foliage, or the fruit, or both.

There is thus but one brood of these green fruit worms in a year. They work mostly in May, pupate in the soil in June, live as pupæ during the summer and sometimes all winter, and most of the moths emerge in the fall and hibernate, laying their eggs in the spring.

The Different Species Discussed.

In all previous discussions of an economic nature regarding these green fruit worms, they have been considered as comprising but a single species of insect, namely, the ash-gray pinion (Tylina antennata). However, when the specimens of the caterpillars hegan to arrive at the insectary last spring, it was soon evident that there were at least two quite different kinds. We grew the supposed two species separately in our cages. When the moths appeared in September, they were sent to an expert, Professor J. B. Smith, for determination. He returned them labelled as three distinct species! We had thus bred two species of moths in the cage where we thought we had only one kind of green fruit worm. As the moths of all three species showed
remarkahe rescmblanes to each otherw lempare fighes b and h, plate 1 , figures a and b, plate 3 , and figures f and g, plate 2), we at once began a search for characters which might separate the insects in their caterpillar or pupal stages. It had been an easy matter from the first to separate the caterpillars into two distinct kinds, as represented in figures e, plate 1 and a, plate 2 , or g, plate 1 and b, plate 2. It was also found that the pupæ developed from these two kinds of caterpillars were quite different; this difference is well shown in figures d, plate 1, and e, plate 2. Very fortunately, through the kindness of Mr. L. O. Howard, U. S. Entomologist, we were able to examine the single specimen preserved of the caterpillars which Dr. Riley had under observation when he wrote of the insect in 1870. This specimen (figured at c and d, plate 3, twice natural size) revealed some characters which we had overlooked, and enabled us to separate the caterpillars we had had in one cage into two species. We were also able to connect each species of caterpillar with the moth of the same species. In the discussion of the three species whch follows, the differences mentioned above, and several others, are more fully brought out.

1. Xylina antennata Walk.

About three-fourths of all the green fruit worms sent to the insectary were of this species; from some localities, however, nearly as many of the next species discussed were received.

As early as 1858 , a moth of this species (habitat unknown) found its way into the British Museum, and was there first described and named. When Dr. Riley discussed these green fruit worms in 1871, he also described the moths and named them Xylina cinerea. In 1879, specimens of X. cincrea were taken to England by Dr. Fernald and there compared with Walkers' X. antennata, and the identity of the insects thus established. In 1882, Dr. Riley stated (Papilio, II, 101), that his description of the moths of these insects included all three of the species to be discussed here; but he considered two of the forms as only varie-

[^93]ties, and not distinct species. Mr. A. G. Butler, of the British Museum, has recently also expressed his oninimi The Entomologist for 1891, p. 242), that all three forms were only variations of a single species, X. antomata. Our authorities on this wroup of moth, Professors Smith and Mr. Grote, however, have considered them as three distinct species; and our study of the earlier stages of the insects confirms this conclusion.

As all three species apparently occur in the same localities, and as the moths are so remarkably similar in size, color, and markings, it is not surprising that they should be classed as varieties of one species. We have never before seen three species of moths which showed such remarkable resemblance to each other, and yet were quite different in their caterpillar and pupal stages.

At a on plate 1 is shown a moth of X. antennata, natural size; the figure is reproduced from a photograph taken from life while the moth was at rest in the top of one of our cages. At b, plate 1 , the moth is shown with wings expanded, natural size, and at h is shown same moth, twice natural size. These figures will show the size and markings of the moth, and also represent nearly its natural color. It usually differs from the moth of X. laticinerea in the ground color of its wings being of a more brownish cast; and from the moth of X. grotei in that its markings are not so bright and distinct. There may be slight antennal differences in the males of the three species, and there are certainly quite marked differences in the male genitalia of X. antennata and X. grotei as is shown, enlarged at g and f, plate 3 .

The moth of X. antennata began to emerge in our cages September 13 th, and all had appeared by October 6 th; the specimens which Professor Comstock reared in 1877 emerged September 17th. In the following table the recorded captures of the moths, at lights or sweetened baits, are given:

PLACE.	Dates.
New York State.	August 4, September 26, October 10, April 8, 20.
Clyde. N. Y.	September 10, and warm spells in winter up to April 15.
Schenectady, N. Y	September 15, 30.
Newark, N.J	September. ${ }^{\text {Sem, May. }}$
St. Catherines, Ont	September 16.
Newton, Mass	September, October, March, April and May.
Evanston, Ill.	October.
Maywood, Ill.	August 18, 26.

The above table shows that the adults have appeared in some localities in August, but most of the records agree in giving September or October as the months when they are usually seen in the fall. 'The fact that the moths hibernate, as shown by Mr. Devereaux's captures during warm spells in winter at Clyde, N. Y., explains the records of captures in March, April and May. In some localities or seasons, perhaps all of the moths of this species do not emerge in the fall, but hibernate as pupre. Our breeding experiments, howerer, indicate that all emerge in the fall, differing in this respect from X. laticinerea as will be shown later.
is was stated in the general discussion of the life-history of these green fruit worms, doubtless egg-laying takes place early in the spring, and the young caterpillars feed upon the buds and leaves until May, when the fruit is large enough for them to eat. The further life-history of this species follows closely the general account just mentioned.

The caterpillar of this species is figured, natural size, eating the apple, on the right in the frontispiece, and twice natural size, both lateral and dorsal views, at f and g, plate 1. It is of a light, apple-green color, sometimes yellowish, with the head of nearly the same color, and the venter darker. As the figures show, the hair-bearing spots are white and very distinct. A narrow mesal cream-colored stripe, slightly wider near the middle of the body, extends along the dorsum; there is a slightly narrower, but distinct subdorsal stripe of the same color that is somewhat broken toward the extremities; there is also a wide, stigmatal, cream-colored stripe, mostly below the spiracles, with its lower or ventral edge sharply defined, but with its upper or dorsal edge much indented with the body color and irregularly extending to a much broken, narrow, lateral stripe of cream-colored spots a little above the spiracles. Most of these characteristic markings are well shown in the figures at f and g, plate 1 . The caterpillars spin a very thin cocoon of silk about themselves in their earthen cell before they change to pupe.

The brown pupa, shown enlarged at c, plate I. resembles in size and general appearance that of X. laticincrea shown at c and d, plate 2. But a close examination of the caudal end of the pupa of these two species reveals striking differences. These are well
shown in the enlarged figures of this portion of the puper at d, plate 1 , and e, plate 2.

2. Xylina laticinerea Grt.

This green fruit worm was represented among the specimens received from each locality, and, in one or two instances, it seemed to be equally as numerous as the preceding species.

The moth of X. laticinerea was first described and named in 1874 from a Massachusetts specimen. The insect is illustrated on plate 2 , figures f and g representing the moth, natural size and twice natural size, respectively. It seems to differ from the moth of X. antennata in the ground color of the wings being of a more decidedly ash-gray color and the markings are possibly a little more distinct; a comparison of the figures of the two species, shown on piates 1 and 2, will show that they are very similar. There may be antennal and genitalic differences in the males also; having bred no males of laticincrea, we cannot verify this.

Nothing has been recorded respecting the life-history or earlier stages of this species; the caterpillar described by. Mr. Edwards (Papilio, III, 135) as belonging to this insect, was certainly another species, probably X. grotei, as we shall see later. Our observations show that the caterpillars appear in May with, and have the same habits as, those of X. antennata. Pupation takes place in earthen cells in the soil about the same time in June. But the caterpillars of X. laticinerea spin no trace of a cocoon. The insect remains in the pupa state until fall, when some of them give forth the moth, but in our cages most of the pupa are now hibernating; one moth emerged September 26th. The following table, made up from the recorded captures of the moths this species, shows that they fly both in the fall and spring, many of them doubtless hibernating and others not emerging until spring.

PLACE.	Dates.
Schenectady, N. Y..	September 29, 30; October $4,6,10,19,21,25$. April.
Saranac Lake, N.	September 15.
St. Catherines, Ont	October 8; May 2.
Newton, Mass....	September and October.
Evanston, Ill.	November and April. ${ }^{\text {S }}$, April 21, 22."
Minnesota....	September 16; October 3; April 21, 22.*

A comparison of the figures of the caterpillars of this species at a and b, plate 2, with those of the other two syecies represented on plates 1 and 3 , will at once show that it is quite different from either of the others. It is of a light apple-green color, sometimes with a slight bluish cast; the head is sometimes a little lighter, and the venter is but slightly darker. The whole body is very finely mottled with minute cream-colored spots, and the hair-bearing spots are small and not very distinct. There is a narrow cream-colored mesal stripe on the dorsum, wider near the middle of the body; the narrow light lemon-yellow stigmatal stripe, widest toward the extremities, runs just above the spiracles, except in the case of the spiracle nearest each extremity, where it runs below; there is also a very narrow, much broken, sometimes quite indistinct, cream-colored stripe midway between the mesal and stigmatal stripes. On some specimens the yellow stigmatal stripe was bordered above with a blackish shade, as shown on the parasitized caterpillar at a, plate 4. A comparison of this description of the caterpillar with that of Mr . Edwards, referred to above, will show that they cannot apply to the same insect; for the lemon-yellow stripe is narrow and above the spiracles, and not broad and below, as in Mr. Edwards' description.

The pupa of this species is not formed within a cocoon, and also differs from that of X. anternata very strikingly in the structure of the caudal segment, as is well shown by a comparison of the enlarged figures of this part at l, plate 1 , and e, plate 2 . Otherwise the pupæ are quite similar, as the enlarged figures at c, plate 1 , and d, plate 2 , show.

Although the moths of X. antennata and X. laticinerea are distinguished from each other with considerable difficulty, the above descriptions and the accompanying figures show that the caterpillars and pupre of the two species are quite distinct and, can be easily separated. Thus both insects are distinct and valid species.

3. Tylina grotei Riley.

Only a small percentage of the green fruit worms sent us proved to be of this species.

PLATE III.- Tylina grotei Riley. A, the moth, natural size: b, the moth, tuice natural size; c and d, the caterpillar, dorsal and lateral vipws, twice natural size; e , the calerpillar at work, natural size: f, genvtalia (right half,) of the male Nylina grotei, much enlarged; g, genitalia (right half,) of the male of Nylina antennata, much enlarged.

PLATE IV.-Some of the enemies of green fruit morms. a, caterpillar of lylina laficin. ereafrom which the parastic grub of Metporus hyphantriae has just emergcd and is spinniny its cocoon, natural size; b, two of the eurious suspended cocoons of Deteorus. hyphantriae, enlarged; c, the adult paraxite (Meteorus huphantriap), much enlarged; d, a caterpillar of Iylina lacticinerea killed by the parasitic grub of Mesochorus agilis which has spun its cocoon beneath the caterpillar, fastening the latter to the leaf, natural size.

The moth was first described as I. cincrosa in 1879, from New York state specimens. In 188., Dr. Riley pointed out that this name could not be used, as another insect belonging to the same genus had received the same name years before. He suggested the name X. grotei instead, but thought the insect was only a variety of X. antennata. Nothing has since been recorded about the species.

A comparison of the figures of the moth at a and b, plate 3, with the figures of the moths of the other two species on plates 1 and 2 , will show how remarkably similar the insects are in the adult state. The moths of X. grotei have a much brighter appearance and their markings are more sharply defined than in either of the other two species. The ground color of their wings is much like that of X. antennata, but there is a decided difference in the male genitalia of these two species, as is shown in the enlarged figures at f and g, plate 3 . Our specimens of the moths of X. grotei emerged from the 18 th to the 26 th of September. We have found no recorded captures of this species. Doubtless its life-history is very similar to that of X. antennata.

The caterpillars of X. grotei so closely resemble those of X. antennata that we did not notice their characteristic differences until the moths which appeared in one of our cages were determined as two distinct species; and until we had seen the only caterpillar preserved by Dr. Riley when he studied these green fruit worms in 1870. The caterpillar at the left in the frontispiece (the same one is shown at e, plate 3) is of this species; figures c and d, plate 3, are reproductions of photographs taken twice natural size, from Dr. Riley's preserved (blown) specimen. Compare these figures with those of the caterpillars of X. antennata at e, f and g, plate 1. The difference between the broad stigmatal stripes is readily seen; in X.grotei, both edges of the stripe are quite sharply defined, while in X. antennata the upper edge is much broken or indented with the body color. Anothr difference readily seen on the specimens, but not so evident in the figures, is that the subdorsal stripes in X. grotei are not so continuous as in X. antennata, but are made up of three or four irregular spots on each segment. Otherwise, as regards general color, size, etc.,
the caterpillars of these two species are practically alike. Dr. Riley's description of his green fruit worm agrees with his preserved specimen of X. grotei, and he states that the moth of this species (a rariety, he then considered it) "heads his series." Mr. Edwards described a caterpillar of what he supposed was X. laticinerea, but his description applies to the caterpillars of X. grotei, and not to those of either of the other two species under discussion.

The indications are that the caterpillars of X. grotei spin slight cocoons within which they change to pupe, as in the case of X. antennata. But we cannot say whether there are any differences in the pupæ of these two species or not.

Natural Enemies.

Fortunately for the fruit grower, these green fruit worms have several deadly enemies. One correspondent reported that redwinged blackbirds had been seen either catching and eating the caterpillars or carrying them away to feed their young. Doubtless other birds which frequent orchards also include the worms in their menu.

The indications are, however, that the caterpillars suffered much more from the attacks of at least two minute foes among their own kind. From the material sent to the insectary, we bred two minute hymenopterous parasites. Apparently the most numerous and efficient one of these little enemies is shown much eularged at e, plate 4 ; they are only about 1.5 of an inch in length. It was named Meteorus hyphantric by Dr. Riley in 1886. That year it did valiant work in checking the fall web-worms (Hyphantria cunea). Its method of working is to deftly insert an egg into the body of an unwary and defenceless caterpillar. A grub hatches from this egg and proceeds to live on the internal fats and juices of its host-the caterpillar. The host leads a lingering existence, and finally, a short time before death ensues, the parasitic grub bores its way out through the skin of its host and proceeds to spin the curious brown cocoon, shown natural size at a, and much enlarged at b, plate 4 . Just how the grub manages to make these suspended cocoons is not known. Apparently it
first spins out the large suspending silken thread, and then, at the end of this, holding on in some manner (perhaps by its jaws), it proceeds to spin about itself a coarse, loose cradle of the same kind of silk. When secure inside this cradle it lets go its hold from the suspensory thread and spins its soft, dense, finethreaded cocoon. These cocoons are attached to any part of the tree and the threads which suspends them varyin length from onehalf an inch to four inches. From ten days to two weeks (in June) after the grub spins its cocoon the transformation through the pupal to the adult stage takes place. The little four-winged foe then emerges through a round hole made in the end of the cocoon, by deftly gnawing around the lower end and thus detaching a neatly fitting cap.

The other little enemy of these green fruit worms is about the same size as, and looks something like, the one just described. It also works inside the caterpillars in the same manner, gradually sapping out their life. But instead of undergoing its further transformations in a suspended cocoon, it bores its way out of the caterpillar, and crawling beneath its host, it proceeds to fasten the latter down to a leaf with its cocoon. This state of affairs is well shown at d, in plate 4 . The two thirds grown caterpillar is pinioned to the leaf by the cocoon of the grub which caused it to die a lingering death. This little parasitic foe is known to science at Mesochorus agilis.

Doubtless the efficient work of these little parasitic insects and the birds has been one of the main reasons why these green fruit worms have troubled New York fruit growers only at long intervals.

How to Combat these Fruit-Eating Caterpilears.

It is to be hoped that these caterpillars will not often risit our orchards in destructive numbers, for the past season's experience has shown that it is a difficult matter to check their ravages. It would seem at first thought that the pests might be readily killed with a Paris green spray. But several of our correspondents, who have a reputation for thoroughness in spraying and who success. fully check fungi and other insects, reported that all of their
efforts in this line did not noticeably diminish the crop of these caterpillars. Some sprayed with the poison three or four times during the time the worms were at work. Mr. Albert Wood, Carlton, N. Y., collected 60 live worms and placed 20 on each of three large branches loaded with young apples; the branches were cut off and nailed up somewhere. One branch was sprayed with kerosene emulsion, one with arsenate of lead and the third with hellebore. Two days after the worms were all lively and well, and had kept on eating apples. The orchard from which these worms were taken had received three thorough applications of Bordeaux mixture and Paris green.

It is possible that one or two thorough applications of Paris green, made before the blossoms open, when the caterpillars are small and feeding on the buds and leaves, might kill many of them. However, the concensus of opinion among our correspondents seems to be that they cannot be effectually reached with a spray at any time. It is probably true that it is practically impossible to sufficiently coat the outside of a young apple with a poison spray, so that one of the caterpillars would get enough to kill it when it eats into the fruit. For this reason we concur in the belief that the worms cannot be effectually checked with a spray of any kind after the fruit gets large enough for them to feed upon it. But the young worms must feed upon the buds and leaves for a time before the fruit gets large enough, and it seems plausible that a Paris green spray, thoroughly applied at least once before the trees blossom, must result in the death of many of the worms. We would like to see this tried, but there is one difficulty which will always arise; that is, one can rarely, if ever, tell whether the insects are present in his orchard in destructive numbers until they begin to eat the fruit. It is always a good practice, however, to spray orchard fruits at lanst once (where bud moths or case-bearers are thick, twice) before the blossoms open with the combined Bordeaux and Paris green.

One correspondent writes that the caterpillars were the most numerous in a cultivated orchard. This does not agree with the observations of Professor Comstock made during the outbreak in 1877; he states that the fruit was injured most in those orehards
which were not cultivated. This fact led him to recommend that many of the insects could be destroyed by the cultiration of the orchards during July and August, while the worms are in the ground undergoing their transformations. We believe that thorough cultivation during the summer will tend to greatly lessen the crop of green fruit worms for the following year.

The fact, as reported by several correspondents, that the caterpillars will at once drop to the ground (not spin down as do canker worms) when the branch upon which they are at work is unnaturally jarred, affords a vulnerable point of attack against them. Why not jar them off into sheets and then kill them? We saw this successfully accomplished last spring in an orchard near Geneva, N. Y. "Curculio catchers" were in daily use to catch this most serious pest of stone-fruits, and hundreds of the green fruit worms were being caught at the same time, thus "killing two birds with one stone." On young trees this is the most efficient and practicable method of fighting these caterpillars we can suggest. Three or four good thorough jarrings ought to effectually check their ravages for the season. Of course, on old, large trees it would be a big undertaking to jar them, and when there was such a setting of fruit as we had last spring, it might not pay to do it. But with a small setting of fruit, it might mean the difference between a good crop and no crop at all, in which case it would certainly pay.

In brief then, our recommendations for fighting these fruiteating caterpillars are to always spray the trees at least once with Paris green in the Bordeaux mixture before the blossoms open, to kill some of the worms while they are young. Later sprayings, after the fruit is large enough for them to eat, will avail but little. After the fruit sets, the only successful and practical way to fight them seems to be by jarring them off into sheets or "curculio catchers" and killing them. Follow this with thorough cultivation of the soil during the summer, and thus kill many of the insects while they are undergoing their transformations in the soil. They are difficult pests to fight, and it is to be hoped that at least another nineteen years may pass before our fruit growers receive a third visitation from destructive numbers of them.

APPENDIX II.

Detailed Statement of receipts and expenditures of the Cornell University Agricultural Experiment Station, for the fiscal year ending June 30, 1896.

RECEIPTS.

From Horticultural Division.

 1895.July 12. Products sold $\$ 5935$
Nov. 1. Products sold. 1396
Dec. 2. Products sold 2288
1896.
Jan. 4. Products sold 6 32
20. Products sold 2633
Feb. 1. Products sold 2825
Hauling coal 1804
March 3. Hauling coal 3725
April 1. Hauling coal 3241
Hauling coal. 572
$\$ 25051$
From Office.
1896.
Feb. 8. Eighty bulletins $\$ 400$
25. Forty bulletins 200
EXPENDITURES.
For Salaries.
1895.
July 31. I. P. Roberts, director, one month $\$ 12500$
H. H. Wing, dairyman, one month 10416
G. C. Watson, assitant agriculturist, one month 10000
G. F. Atkinson, cryptogamic botanist, one month 9166
G. W. Cavanaugh, assistant chemist, one month 6666
Aug. 31. I. P. Roberts, director, one month 12500
H. H. Wing, dairyman, one month 10466
G. C. Watson, assistant agriculturist, one month 10000
G. F. Atkinson, cryptogamic botanist, one month 9166
G. W. Cavanaugh, assistant chemist, one month 6666
H. W. Smith, clerk, one month 6250
Sept. 30. I. P. Roberts, director, one month 12500
H. H. Wing, dairyman, one month 10 ± 16
G. C. Watson, assistant agriculturist, one month 10000
G. F. Atkinson, cryptogamic botanist, one month 9166
G. W. Cavanaugh, assistant chemist, one month 6666
H. W. Smith, clerk, one month 6250
Oct. 31. I. P. Roberts, director, one month 12500
H. H. Wing, dairyman, one month 10366
L. H. Bailey, horticulturist, one month 16666
G. F. Atkinson, cryptogamic botanist, one month 9166
G. W. Cavanaugh, assistant chemist, one month 6666
1895.
Oct. 31. M. V. Slingerland, assistant entomolo- gist, one month $\$ 12500$
H. W. Smith, clerk, one month 6250
S. H. T. Hayes, assistant agriculturist, twenty-seven days 6750
Nov. 30. I. P. Roberts, director, one month 12500
H. H. Wing, dairyman, one month 10416
L. H. Bailey, horticulturist, one month 16666
G. F. Atkinson, cryptogamic botanist, one month 9166
G. W. Cavanaugh, assistant chemist, one month 6666
M. V. Slingerland, assistant entomolo- gist, one month 12500
H. W. Smith, clerk, one month 6250
S. H. T. Hayes, assistant agriculturist, twenty-six days 6500
Dec. 31. I. P. Roberts, director, one month 12500
H. H. Wing, dairyman, one month 10 ± 16
L. H. Bailey, horticulturist, one month 16666
G. F. Atkinson, cryptogamic botanist, one month 9166
G. W. Cavanaugh, assistant chemist, one month 6666
M. V. Slingerland, assistant entomolo- gist, one month 12500
H. W. Smith, clerk, one month 6250
S. H. T. Hayes, assistant agriculturist, twenty-six days 6500
1896.
Jan. 31. I. P. Roberts, director, one month 12500
H. H. Wing, dairyman, one month 10416
L. H. Bailey, horticulturist, one month 16666
G. F. Atkinson, cryptogamic botanist, one month 9166
G. W. Cavanaugh, assistant chemist, one month 6666
1896.
Jan. 31. M. V. Slingerland, assistant entomolo- gist, one month $\$ 12500$
H. W. Smith, clerk, one month 6250
L. A. Clinton, assistant agriculturist, one month 8333
Feb. 29. I. P. Roberts, director, one month 125 00
H. H. Wing, dairyman, one month 10416
L. H. Bailey, horticulturist, one month 16666
G. F. Atkinson, cryptogamic botanist, one month 9166
G. W. Cavanaugh, assistant chemist, one month 6666
M. V. Slingerland, assistant entomolo- gist, one month 12500
H. W. Smith, clerk, one month 6250
L. A. Clinton, assistant agriculturist, one month 8333
March 31. I. P. Roberts, director, one month 12500
H. H. Wing, dairyman, one month 10416
L. H. Bailey, horticulturist, one month. 16666
G. F. Atkinson, cryptogamic botanist, one month 9166
G. W. Caranaugh, assistant chemist, one month 6666
M. V. Slingerland, assistant entomolo- gist, one month 12500
L. A. Clinton, assistant agriculturist, one month 8333
April 30. I. P. Roberts, director, one month 12500
H. H. Wing, dairyman, one month 10416
G. F. Atkinson, cryptogamic botanist, one month 9166
G. W. Cavanaugh, assistant chemist, one month 6666
L. A. Clinton, assistant agriculturist, one month 8333
E. A. Butler, clerk, one month 5000
1896.
May 31. I. P. Roberts, director, one month $\$ 12500$
II. H. Wing, dairyman, one month 10416
G. F. Atkinson, cryptogamic botanist, one month 9166
G. W. Cavanaugh, assistant chemist, one month 6250
L. A. Clinton, assistant agriculturist, one month 8333
E. A. Butler, clerk, one month 50 00
June 30. I. P. Roberts, director, one month 12500
H. H. Wing, dairyman, one month 10424
G. F. Atkinson, cryptogamic botanist, one month 9174
G. W. Cavanaugh, assistant chemist, one month 6674
L. A. Clinton, assistant agriculturist, one month 8337
Total for salaries 87,93498For Buildings.
1895.
July 22. Labor, painting insectary 8975
30. Lumber and labor 662
22. Paint and sundry supplies 36.5
Aug. 14. Labor, painting insectary 1340
Feb. 14. Fifty-two gallons oil 368
Oct. 2. Plumbing 315
Total for building 84025
For Printing.
1895.
June 22. U. S. Express Co., expressage $\$ 025$
July 16. U. S. Express Co., expressage 25
17. U. S. Express Co., expressage 80
16. Franklin Engraving Co., electros 3256
1895.
July 11. Franklin Engraving Co., express on photos $\$ 025$
25. U. S. Express Co., expressage. 30
Aug. 13. L. V. R. R. Co., freight and cartage 158°
27. U. S. Express Co., expressage 25
3. W. F. Humphrey, printing Bulletin No. 97 10145
Sept. 7. U. S. Express Co., expressage 30
30. I. C. Chandler, drawings 1200
Oct. 21. U. S. Express Co., expressage 25
31. U. S. Express Co., expressage 30
Nov. 8. U. S. Express Co., expressage. 25
21. George Small, lumber and labor 133
29. Lovejoy Co., electros 16
Dec. 9. Lovejoy Co., electros 53
Nov. 23. Franklin Engraving Co., electros 970
30. Franklin Engraving Co., electros 78
Dec. 7. U. S. Express Co., expressage. 15
11. U. S. Express Co., expressage 25
23. U. S. Express Co., expressage 80.
31. L. V. R. R. Co., freight and cartage 184
28. W. F. Humphrey, printing Bulletin No. 105. 1130 25
1896.
Jan. 1. National Express Co., expressage 25
2. U. S. Express Co., expressage 75
4. Lovejoy Co., electros 109
21. W. F. Humphrey, printing Bulletin No. 107 and No. 108 33950
9. L. V. R. R. Co., freight and cartage. 341
30. E. G. Hance, cartage 100
31. National Express Co., expressage 40
Feb. 1. National Express Co., expressage 40
Jan. 29. Lovejoy Co., electros 84
30. U. S. Express Co., expressage 65
Feb 11. U. S. Express Co., expressage 60
24. New York Engraving Co., electros 800
Regeipts and Expenditures.591
1896.
Feb. 29. U. S. Express Co., expressage $\$ 025$
March 10. U. S. Express Co., expressage 40
14. U. S. Express Co., expressage 45
13. Lovejoy Co., electros 990
20. U. S. Express Co., expressage 35
25. E. G. Hance, cartage 25
April 6. W. F. Humphrey, printing Bulletin No. 114. 6025
8. D. L. \& W. R. R. Co., freight and cartage, 838
17. U. S. Express Co., expressage 25
30. U. S. Express Co., expressage 90
May 5. E. G. Hance, cartage 50
22. U. S. Express Co., expressage. 105
Total for printing. $\$ 71920$
For Office Expenses.
1895.
July 11. National Express Co., expressage $\$ 080$
15. Andrus \mathbb{E} Church, stationery 200
24. Andrus \& Church, stationery 525
26. T. S. Buck, rubber stamps. 657
31. L. V. Maloney, labor 4050
Aug. 2. G. F. Atkinson, expenses to Denver 10850
24. W. E. Barnes, labor 175
26. U. S. Express Co., expressage 45
29. W. O. Wyckoff, stationery 235
Andrus \& Church, stationery 1015
21. Rural Pub. Co., subscription Rural New Yorker. 100
Sept. 2. L. V. Maloney, labor 4050
3. M. A. Adsitt, stationery 310
28. L. V. Maloney, labor 3750
30. Andrus \& Church, stationery 262
Oct. 5. Ithaca Gas Co., gas 200
15. Andrus \& Church, stationery 450
12. Andrus \& Church, stationery 1327
1895.
Oct. 18. U. S. Post Office, stamps $\$ 1000$
30. U. S. Post Office, stamped envelopes 1090
31. L. V. Maloney, labor. 4050
31. Popular Science Monthly, subscription 100
25. M. A. Adsitt, typewriter ribbons 210
Nov. 7. Ithaca Gas Co., gas 120
12. Andrus \& Church, stationery 135
30. L. V. Malonej, labor. 3900
30. M. A. Adsitt, typewriter supplies. 325
26. U. S. Post Office, postage 500
22. Andrus \& Church, stationery 200
23. Andrus \& Church, pencils 45
Dec. 9. U. S. Post Office, postage 500
6. Ithaca Gas Co., gas 40
17. M. A. Adsitt, 1 doz. carbon 50
24. U. S. Post Office, postal cards. 100
28. U. S. Post Office, stamps 500
31. L. V. Maloney, labor 3900
A. T. Stout, labor 620
1896.
Jan. 3. Andrus \& Church, stationery 155
4. M. A. Adsitt, typewriter supplies 130
9. M. A. Adsitt, stationery 105
7. Ithaca Gas Co., gas 32
14. A. A. A. C. \& E. S., fee. 1000
17. U. S. Post Office, stamps 700
18. Andrus \& Church, stationery 125
31. L. V. Maloney, labor 4050
Feb. 1. A. T. Stout, labor 1012
Andrus \& Chureh, stationery 250
Jan. 21. M. A. Adsitt, carbon 25
Feb. 22. U. S. Post Oflice, postage. 500
11. Andrus \& Chureh, stationery 315
25. Ithaca Stamp Co., rubber stamps 175
29. L. V. Maloney, labor 3750

1896.

March 2. M. A. Adsitt, stationery................. $\$ 175$
7. Andrus \& Church, stationery........... 520
13. M. A. Adsitt, stationery.................. 335
31. E. A. Butler, labor......................... 1200
L. V. Maloney, labor................... . . 3900

April 2. Balance on typewriter, M. A. Adsitt.... 6250
Ithaca Gas Co., gas..................... 64
7. Andrus \& Church, stationery.......... 500
17. M. A. Adsitt, stationery................. 440
22. L. V. R. R. Co., freight and cartage..... 85
24. Tichenor \& Son, repairs on typewriter
desk. 50
28. E. M. Hall, linoleum................... . . 4500

Library Bureau, book-case.............. 1750
30. L. V. Maloney, labor..................... . 3900

Andrus \& Church, stationery.......... 550
May 1. W. R. Morey, cartage................... 25
20. Mary Miller, labor....................... 75
22. I. P. Roberts, traveling expenses....... 2073
U. S. Express Co., expressage........... 35

Andrus \& Church, stationery........... 810
June 27. U. S. Post Office, postage................ 895
May 26. Ithaca Gas Co., gas...................... 80
30. L. V. Maloney, labor..................... 3900

June 3. E. M. Hall, door mat.................... 65
M. A. Adsitt, stationery................ . 175
9. Andrus \& Church, stationery........... 460
M. A. Adsitt, stationery................. 105
16. U. S. Post Office, postage............... 500

May 22. Bool Co., oil............................... 150
June 22. M. A. Adsitt, stationery................ 100
M. A. Adsitt, stationery................ . 160
30. Andrus \& Church, stationery.......... 543
U. S. Post Office, postage............... $\quad 3 \Omega 8$
L. V. Maloney, labor.................... 3900
1896.
June 27. James Seaman, labor. $\$ 8321$
30. M. A. Adsitt, carbon 50
Total for office expenses $\$ 1,05951$
For Agricultural Division.
1895.
June 22. D., L. \& W. R. R. Co., freight and cart- age $\$ 148$
July 20. J. C. Stowell \& Son, wool sacks 240
31. E. E. Lull, labor. 2726
Aug. 21. National Express Co., expressage 90
15. L. V. R. R. Co., freight and cartage 111
30. Theo. VanNatta, labor. 2846
Sept. 9. H. H. Wing, traveling expenses 970
3. Aermotor Co., galvanized tanks 1468
9. Aermotor Co., galvanized iron 1190
Aug. 31. C. S. Baker \& Co., pamphlets $2 \cdot 0$
Sept. 23. H. H. Wing, traveling expenses. 220
28. R. D. Roberts, labor. 1583
J. W. Gilmore, labor. 730
Treman, King \& Co., glass. 30
Oct. 7. D., L. \& W. R. R. Co., freight and cart- age 460
31. John Stout, labor 3192
24. D., L. \& W. R. R. Co., freight and cart- age 100
Nov. 30. F. P. Hatch, labor 1875
Dec. 20. Bush \& Dean, cheese cloth 30
1896.
Jan. 18. D., L. \& W. R. R. Co., freight and cart- age 51
23. Andrus \& Church, stationery. 413
11. U. S. Post Office, postage. 100
17. Farmer's Fertilizer Co., fertilizers 250
31. F. P. Hatch, labor 525
18. E. G. Allen, periodicals 870
Receipts and Expenditures. 595
1896.
Feb. 26. National Express Co., expressage $\$ 025$
April 10. U. S. Post Office, stamped envelopes 1080
13. U. S. Express Co., expressage 40
14. D. M. Thorburn \& Co., seeds 194

- 23. Farmer's Fertilizer Co., fertilizers 723

28. National Express Co., expressage 205
May 2. D., L. \& W. R. R. Co., freight and cart- age 311
I. P. Roberts, traveling expenses 532
D. Hill, trees 1000
29. J. M. Johnson, labor 1400
30. S. Raub, labor 390
31. National Express Co., expressage. 45
L. V. R. R. Co., freight and cartage 72
June 3. F. Ellis, hay 1293
32. J. J. Brown, mule. 2000
33. R. L. Speed, labor 1400
34. E. A. Butler, tobacco plants 1 S0
35. J. M. Johnson, labor. 2800
36. National Express Co., expressage. 45
37. E. Hodge, labor 48
38. R. L. Speed, labor 1840
Farmer's Fertilizer Co., fertilizers 13613
39. J. Shimada, labor 2350
A. T. Stout, labor 320
C. B. Tailby, labor. 203
G. W. Tailby, labor. 219
Total for Agricultural Division $\$ 52746$
For Horticultural Division.
40.

July 2. American Gardening, subscriptions $\$ 235$
June 29. James Seaman, lumber. 4000
July 13. Driscoll Bros. lime 205
27. Thos. Shea, labor 8 25
Aug. 1. Ira Grover, labor 3750

1895.

July 1. George Small, lumber $\$ 1403$
1896.
Jan. 17. Bool Co., furniture 770
1895.
Aug. 31. Ira Grover, labor. $38^{*} 42$
June 27. C. J. Rumsey \& Co., hardware 7878
Oct. 1. Ira Grover, labor. 3700
Sept. 27. U. S. Dept. Agr., index cards 200
Oct. 21. U. S. Express Co., expressage 65
28. National Express Co., expressage. 382
Nov. 1. Ira Grover, labor 3700
Oct. 12. Andrus \& Church, stationery. 325
5. Dennison Mfg. Co., tags 250
Aug. 19. G. E. Steihert, publications 2175
Oct. 15. Andrus \& Church, stationery. 75
Aug. 17. J. J. McGowan, oats 1018
Sept. 30. Bool Co., frames 90
Nov. 15. L. V. R. R. Co., freight and cartage 50
2. Phoenix Nursery Co., trees 50
Oct. 8. Jamison \& McKinney, plumbing 80
Nov. 30. Ira Grover, labor 3700
11. G. V. Nash, botanical specimens 750
Oct. 5. American Dry Plate Co., plates. 978
Nov. 20. Selover \& Atwood, plants. 500
23. Dennison Mfg. Co., glue 250
1896.
Feb. 2. Andrus \& Church, tags. 75
1895.
Dec. 20. F. E. Ellis, hay 1154
Oct. 9. Driscoll Bros., lime. 2365
Sept. 28. Slocum \& Taber, sundries 410
Nov. 3. Fall Creek Milling Co., feed 4892
Dec. 14. U. S. Express Co., expressage 30
Sept. 29. Hook Bros., baskets and seeds 680
July 2. Geo. Rankin \& Son, glassware 5261896.
Jan. 1. Ira Grover, labor 3700
Receipts and Expenditures.597
1896.
Jan. 9. U. S. Express Co., expressage $\$ 060$
14. Fall Creek Milling Co., sacks 96
1895.
Dec. 21. John Reidy \& Co., sundries. 430
19. George Small, lumber and labor. 175
31. E. \& H. T. Anthony, printing frames 140
20. C. J. Rumsey \& Co., hardware 6911
21. Pritchard \& Son, wagon repairs 2770
1896.
Feb. 1. Ira Grover, labor 3700
A. Laurence, hay 1558
Jan. 27. U. S. Express Co., expressage 25
18. E. G. Allen, periodicals 985
27. E. D. Sturdevant, seeds 115
Feb. 29. Ira Grover, labor. 3700
28. U. S. Express Co., expressage. 30
26. Slocum \& Taber, sundries 595
29. L. V. R. R. Co., freight and cartage 50
March 7. U. S. Dept. Agr., index cards 200
Jan. 7. Reynolds \& Lang, steam fitting 10824
July 26. Rothschild Bros., netting 40
Feb. 25. Burns Bros., horseshoeing. 3075
15. S. H. Bush, oats 4298
March 25. F. Ellis, hay 1500
April 14. Repairs. 3433
May 4. Ira Grover, labor 3700
June 29. Barr Bros., hardware 70
30. Seaman, labor and lumber 35637
Driscoll Bros., lime and stone 2525
J. B. Lang, labor and fittings. 9895
Total for horticultural division $\$ 1,51605$
For Chemical Division.
1895.
July 3. Eimer \& Amend, watch glasses and grinding. $\$ 158$
1895.
Nov. 4. J. K. Haywood, labor. $\$ 2610$
July 26. Treman, King \& Co., pans 200
Oct. 11. Bush \& Dean, toweling 92
Nov. 30. J. K. Haywood, labor. 2055
1896.
Jan. 3. J. K. Haywood, labor. 3000
Feb. 8. J. K. Haywood, labor. 2580
March 3. J. K. Haywood, labor. 1380
April 1. J. K. Haywood, labor. 3000
14. Repairs 2063
May 2. J. K. Haywood, labor 3255
5. Eimer \& Amend, retraction cartridges. 173
11. Rothschild Bros., linen 73
June 3. J. K. Haywood, labor. 3310
22. Supplies 14215
23. Eimer \& Amend, chemical supplies 9647
Total for chemical division $\$ 47811$
For Botanical Division.
1895.
July 26. White \& Burdick, chemicals $\$ 320$
June 7. Reed \& Montgomery, book binding 50
Aug. 19. Bush \& Dean, muslin 235
Sept. 2. Campbell Bot. Supply Co., books 1000
Nov. 1. U. S. Express Co., expressage 55
Sept. 25. Reed \& Montgomery, book binding 80
Aug. 19. G. E. Stechert, publications 100
July 17. G. E. Stechert, publications 40
Nov. 8. B. Stoneman, labor. 200
Aug. 19. G. E. Stechert, publications 1431
Nov. 8. M. A. Nichols, labor 100
G. R. Chamberlain, drawings 150
Oct. 31. Richards \& Co., botanical supplies 2450
29. Enz \& Miller, stationery 315
15. Bool Co., lumber and labor. 1575
May 20. Bausch \& Lomb, chemical supplies. 5050

1895.

Aug. 21. E. McGillivray, photo supplies $\$ 1442$
Oct. 5. Botanical department, repairs 3480
Nov. 16. Treman, King \& Co., hardware 840
Dec. 10. Botanical department, repairs. 2390
Oct. 5. Jamieson \& McKinney, plumbing 4136
17. Eimer \& Amend, chemical supplies 4666
Dec. 10. Reed \& Montgomery, book binding. 100
Nov. 29. G. E. Stechert, publications 308
1896.
Jan. 18. E. G. Allen, publications 148
Feb. 28. Cambridge Bot. Supply Co., books. 500
June 20. Bausch \& Lomb, botanical supplies 6975
23. U. S. Express Co., expressage 65
22. G. E. Stechert, botanical supplies 12672
27. Corning \& Co., alcohol 2188
U. S. Post Office, postage. 1200
30. E. McGillivray, prints and photo sup- plies 5691
Bausch \& Lomb, glass vials 450
Rochester Optical Co., photo supplies 8760
Bool Co., cabinet case 2500
Eimer \& Amend, glass tubes and express. 715
Richards \& Co., chemical supplies. 1140
Total for botanical division $\$ 73535$
For Entomological Division.
1895.
July 13. U. S. Express Co., expressage $\$ 050$
31. E. E. Lull, labor 120
36. E. McGillivray, photo supplies. 414
31. Rural Pub. Co., copy of article 100
June 7. C. J. Rumsey \& Co., wheelbarrow 300
Aug. 24. U. S. Express Co., expressage 130
17. Cramer Dry Plate Co., photo supplies 413
Sept. 6. E. McGillivray, photo supplies 1015
4. M. V. Slingerland, labor 100

1895.

Sept. 21. G. W. Herrick, labor. $\$ 1280$
30. Peter Henderson, plants 436
18. Andrus \& Church, stationery 140
Aug. 26. Treman, King \& Co., glass, etc 168
Oct. 18. G. W. Herrick, labor. 300
17. Treman, King \& Co., hardware 325
29. E. McGillivray, photo supplies 241
Nov. 12. Andrus \& Church, stationery 2105
Oct. 2. Jamieson \& McKinney, plumbing 196
Dec. 17. U. S. Express Co., expressage 110
2. Treman, King \& Co., hardware. 110
18. Lawton \& Co., supplies 377
14. G. Cramer, photo plates 710
23. G. W. Herrick, labor 610
18. E. McGillivray, camera and supplies 6511
21. Blongren Bros., cuts and express 273
7. A. B. Brooks, drugs 569
1896.
Jan. 27. G. W. Herrick, labor 1035
April 13. C. J. Rumsey \& Co., hardware 30
Jan. 29. D. B. Stewart \& Co., oil. 513
Feb. 22. G. W. Herrick, labor 1140
March 6. M. V. Slingerland, labor. 100
17. G. W. Herrick, labor 1200
16. M. V. Slingerland, labor. 100
April 7. G. W. Herrick, labor 815
14. Andrus \& Church, stationery 80
Platt Drug Co., drugs. 35
27. Bausch \& Lomb, supplies. 450
May 4. G. W. Herrick, labor 740
5. Treman, King \& Co., hardware 310
Bowker Fertilizer Co., fertilizers 288
11. Cramer \& Co., photo supplies 662
19. G. W. Herrick, labor 790
June 9. G. Cramer \& Co., photo supplies 455
W. Tetum \& Co., aquariums. 2362
Taylor \mathbb{E} Preswick, book 144
Receipts and Expenditures. 601
1896.
.June 9. Treman, King \& Co., hardware \$0 80
Bool Co., furniture 2305
15. Eimer \& Amend, camera and fixtures 2650
16. G. Rankin \& Son, glass jars 1425
19. G. W. Herrick, labor 1010
19. Library Bureau, furniture 1500
27. James Seaman, lumber and labor 9205
29. G. W. Herrick, labor 540
30. E. Curtis, chemicals 1245
Total for entomological division $\$ 48909$

S U M M A R Y.

The Agricultural Experiment Station of Cornell University in account with the United States Appropriation.

1896.

To receipts from treasurer of the United States as
per appropriation for the year ending June 30, 1896, under act of Congress approved March 2, 1887.
$\$ 13,500 \quad 00$
'June 30. By salaries $\$ 7,934$ 98
By buildings . $40 \quad 25$
By printing $\quad 71920$
By office expenses......................... 1,05951
Equipment, labor and current expenses:
Agriculture. $\quad 527 \quad 46$
Horticulture. 1,516 05
Chemistry. 47811
Botany. 73535
Entomology. 48909
$\$ 13,500 \quad 00$
Receipts for produce sold:
Balance from 1895-96.................... . $\$ 59378$
Horticultural division 25051
Office. $\because \cdot$...................................... 600
$\$ 85029$

By balance to $1896-97$
$\$ 85029$

GENERAL INDEX.

Page.
Act, making an appropriation to Cornell University Experiment Station, 18
of 1887, establishing agricultural experiment stations 13
Adalia bifunctata, an enemy to the pear psylla II3
Allen, C. L., quoted 215
Agriculturist, report of, L. A. Clinton 29
Agriotes maneus Say, the wheat wire-worm 86
Apples, dwarf, bulletin II6 373
Appendix II, financial statement 585
Appropriations, objects of 7
federal and state 5
Asaphes decoratus Say 87
Atkinson, George F., report of botanist 23
Auditors certificate of, to treasurer's report 21
Austin, James, packing shed described 416
Babcock, E. F., mentioned 43
Bailey, L. H., work mentioned 310
bulletin, revised opinions of the Japanese plums 35
bulletin on chrysanthemums 255
bulletin II7, fruit brevities 405
bulletin on pole Lima beans 345
bulletin IIO, extension work in horticulture 159
bulletin on the texture of the soil 465
bulletin ier, suggestions for the planting of shrubbery 503
bulletin 122 , second report upon extension work in horticulture 531
a brief of the evolution of plants 195
the philosophy and practice of pruning 196
the management of orchard lands 197
and A. P. Wyman, bulletin on sweet peas 207
Barry, Patrick, opinion on dwarf apples 376
Bartholomew, E. S., grape growing in Northern Chautauqua 200
Page.
Barker, Michael, mentioned 163
Beans, pole Lima 115
Berchmans, P. J., mentioned 53
Berger, H. H., \& Co., mentioned 61
Black, Gov. Frank S., letter of transmittal 2
Botanist, report of, George F. Atkinson 23
Bridgeman, Thomas, quoted. 215
Bulletins, list of, issued 1888 to 1897 10
Burbank, Luther, mentioned $43,45,46,47,54,56,57$, 62
Butter increasers, Bulletin II8, by Geo. W. Cavanaugh 457
Butter increaser, Chase's 463
Caldwell, G. C., chemistry of the soil and the grape 185
how can the farmer tell what fertilizer his soil needs 186
report of chemist 22
Canavalia ensiformis 362
Card, F. W., acknowledgment 425
Chase's butter increaser. 463
Chautauqua grape belt, geological history of, bulletin Io9, by R. S. Tarr, 123
ancient beaches 144
bed rock 129
climatic conditions 155
contents of bulletin 125
gravel ridges 134
gravel ridges 145
hillside soils 132
influence of the gravel ridges 157
interpretation 149
introduction 127
irregulalarities of, level of, gravel ridges. 148
lake clay soils 136
letter of transmittal, by L. H. Bailey 125
modern beaches I 39
most favorable places for the location of vineyards. 156
résumé of the geological history 150
shale gravel I38
General Index. 605
Chautauqua grape belt - (Continued). Page.
soils
soils 129
soils, relative value of 138
topography 128
variations in the gravel ridges. 147
Callerine, the ideal food preservative 461
Cavanaugh, Geo. W., bulletin of food preservatives and butter increasers 457
Chemist, report of, Prof. G. C. Caldwell 22
Chrysanthemums, the 1895 bulletin 112, by L. H. Bailey, Wilhelm Miller and C. E. Hunn 255
classification, reflections upon, by Mr. Miller 261
color problems, Mr. Miller 267
florets, description of, Mr. Miller 265
fragrance, Mr. Miller 272
letters of transmittal, by L. H. Bailey 257
nomenclature, reflections upon, by Mr. Miller. 261
novelities, test of 273
sundry remarks upon the subject 259
varieties grown, named in alphabetical order 275
varieities, Mr. Hunn's choice 291
Bailey's choice of six 292
variation, reflections upon, by Mr. Miller 261
Clinton, L. A., bulletin on the moisture of the soil 475
report of agriculturist 29
Coates, Leonard, in California Fruit Grower, quoted 54
Comstock, J. H., entomologist, report of 26
Conditions of climate favoring the grape, from transactions of the Chautauqua horticultural society 201
Conservation of moisture 483
Craig, W. N., quoted 221
Crimson clover in orchards 451
Crissey, S. S., commercial grape culture Chautauqua county 194
Cryptohypnus abbreviatus, Say. 90
Curtis, William (iz88), quoted 214
Dairy husbandry and animal industry, report of assistant professor of,
H. H. Wing 34
Daisies, the lesson of the 477
Page.
Dewberries, are they worth growing 435
summary of evidence 439
Doryphora decemlineata, Say 322
Drasterias elegans, Tabr 89
Duggar, B. M., appointeḍ assistant cryptogamic botanist 23
Duhamel, quoted on Rennette apple 388
Durand, E. J., transferred to university 23
the nutrition of plants. 188
Pollen: What it is and what it does 188
Dwarf apples, bulletin ni6, by E. G. Lodeman 373
commercial value of dwarf apples 396
Daucin apple 387
dwarfing in general. 377
dwarfing the apple 382
effect of checking the movement of sap 377
fruits grown as dwarfs 38 I
letter of transmittal, by L. H. Bailey 375
opinions of dwarf apples. 376
paradise apple, the 383
propagation of dwarf apple stocks 389
pruning 389
Rennette apple 388
summary of the evidence. 404
varieties suitable for dwarfing 403
yield of standard orchards 399
Eleganus longipes $4{ }^{2}$
Entomologist, report of J. H. Comstock. 26
Everbearing raspberry 421
Epidapus scabies, Hopkins 311
Extension work in horticulture, bulletin InO, by L. H. Bailey 159
brief of the evolution of plants, by L. H. Bailey 195
chemistry of the soil and the grape, by Prof. Caldwell 183
commercial grape culture in Chautauqua county, by S. S. Crissey and G. Schoenfeld 194
Conspectus of horticulture school held at Fredonia, N. Y., Decem- ber 26-29, 1894 170
Extension work in horticulture - (Continued). Page.
Conspectus of horticultural school held at Youngstown, August 16 and 17, 1895. 173
at Jamestown, October 31, November 2, 1895. 175
at Lockport, November 29-30, I895 178
at Fredonia, December 30 and 31, I\&95. 180
flower growing for amateurs, by Ernest Walker. 193
fungi and fungous diseases, by E. G. Lodeman 189
insects and insect enemies, by M. V. Slingerland. 191
list of publications 20.4
management of orchard lands, by L. H. Bailey 197
nutrition of plants, by E. J. Durand. 188
nutrition of plants, the, by Prof. Rowley 187
nursery, from the seed to the setting of the plantation, by $N . C$.
Smith 191
philosophy and practice of pruning, by L. H. Bailey. 196
picking and packing grapes, by J. A. Tennant 194
Pollen: what it is and what it does 188
potato diseases, by E. G. Lodeman 190
publication 203
plows and plowing, by Prof. Roberts 184
research or experiment 164
stock, silos and soiling for fruit-growers, by Prof. Roberts 184
synopses of subjects used in the horticultural schools 183
theory of tillage and productivity of land, by Prof. Roberts 183
teaching 167
vegetable gardens under grass, by W. M. Munson. 192
Extension work in horticulture, second report upon, bulletin 122 , by L.
H. Bailey 531
announcement of school at Jamestown 538
bulletins recommended for study in horticultural schools. 554
correspondence instruction 562
extension teaching, experiments in 536
general scope of the work 533
horticultural schools, list of, held in September, 1896 537
How a squash plant gets out of the seed (a teacher's leaflet) 556
programme of school at Clinton 540
Extension work in horticulture - (Continued). Page.
report, by Mr. Powell 549
reading courses 552
suggestions for 553
school-house meetings, list of, held in October, 1896 543
teacher's leaflets, sample copy of 556
testimonials of teachers in regard to the work 551
the work classified 535
Food preservatives and butter increasers, bulletin 118 , by Geo. W. Cavanaugh 457
Callerine, the ideal food preservative 461
formalin or formic aldehyde 461
preservitas, a special cream preservative 460
Financial statement, appendix II 585
summary of 602
Formalin or formic aldehyde 461
its effects upon digestion 462
Fruit brevities, bulletin 117, by L. H. Bailey 405
apricots, winter killing of 450
dewberries, botanical types of 440
are they worth growing 435
crimson clover in orchards 451
dwarf cherries, effect of winter upon 45I
everbearing raspberry 421
history of the Ohio raspberry 420
letter of transmittal. 407
mistletoe disease of the blackberry 424
packing houses for fruit 409
peaches, and the treatment of injured fruit trees 448
plums, winter killing of 449
rainfall at Cornell 445
root-galls 425
summary of evidence on dewberries 439
the winter injuries 444
Goumi, the 442
Grape belt, Chautauqua 123
rage
Grapes; developement of methods on large areas 198
Grape growing in Northern Chautauqua, by E. S. Bartholomew 200
Green fruit worms, bulletin I23, by M. V. Slingerland 505
contents of bulletin 568
habits and food of the caterpillars and moths 5:0
history and distribution 5,1
how to combat these fruit-eating caterpillars 581
intraduction six)
life history $5: 2$
natural enemies ミNO
species discussed 573
I Xylina antennata, Walk 574
2 Xylina laticinerea, Grit 577
3 Xylina grotei, Riley 577
what green fruit worms are 570
Heikes, W. F., mentioned 64
Higby, Geo. S., quoted 55
Help demanded by agriculturists 8
History of the Ohio raspberry 420
Horticultural extension work, bulletin IIO. 161
Horticulturist, report of, L. H. Bailey 31
Horticulture, extension work in a second report, by L. H. Bailey 531
Hopkins, A. D., paper referred to 331
Howard, L. O., quoted 120
Humus, a storehouse of nitrogen and moisture 491
Hunn, C. E., bulletin on chrysanthemums. 255
choice varieties of chrysanthemums 291
Hutchens, W. T., mentioned 214
Japanese plums, bulletin 106, by L. H. Bailey 35
adapted to wide range 40
prefatory remarks, by L. H. Bailey 37
varieties, named in alphabetical order, described 4I. 65
Jaques, George, opinion on dwarf apples 376
Kerr, J. W., mentioned 56
Page.
Koch, quoted on Daucin apple 387
Lathyrus latifolius 217
tingilanus 216
Lecanium juglandis? Bouche i18
Letter of transmittal, Gov. Frank S. Black. 2
Pres. J. G. Schurman 5
Lodeman, E. G. 163
fungi and fungous diseases 189
potato diseases 190
bulletin on diseases of the potato 293
Lord, H. B., auditors report. 21
Lovett, Mr., mentioned 43
Macrosporium solani, E and M. 302
Magazine of horticulture quoted. 422
Marvin, Hon. R. P., extract from, address by 202
Maskell, Mr., quoted in note. 120
Matthews, T. Schuyler, quoted. 220
McMahon (I806), quoted 214
McNair, Mr., experiments with potatoes 316
Melanotus communis, Gull 88
Miller, Philip (i754), quoted. 214
quoted on Paradise apple 385
Wilhelm, bulletin on chrysanthemums. 255
Mistletoe disease of the blackberry 424
Moisture, loss of, by trees 447
Moisture of the soil and its conservation, bulletin I20, by L. A. Clinton, 475
conservation or saving of moisture 483
cultivation and conservation of moisture. 488
harrowing to save moisture 487
herbage mulches 400
how the soil holds its water 480
humus, a storeliouse of nitrogen and moisture 491
lesson of the daisies 477
mineral substances as conservers of moisture. 493
necessity of water for growing plants. 481
General Index.611
Moisture of the soil and its conservation - (Continued). Page.
plowing to save moisture 484
percolation, time of 485
roller, the, in its relation to soil moisture 489
selection and management of crops in relation to soil moisture 493
soil moisture 479
suggestions for determining the amount of moisture in the soil 494
summary of bulletin 496
under drainage as a conserver of moisture 491
wind breaks to save moisture 493
mulches, herbage 490
Munson, T. V., mentioned 45
W. M., vegetable gardens under glass 192
Nixon, S. F. 16I, 162
Normand, J. L., mentioned. 44
Ospora scabies, Thax 310
Packing houses for fruit 409
Peaches, and the treatment of injured fruit trees 448
Pear psylla, the, and the New York plum scale, bulletin 108. 103
appearance of 108
classification and name of 107
egg laying of the winter brood. 109
egg laying and summer habits IIO
habits of the adult 109
habits of the nymph 109
history and destructiveness of 105
honey-dew and excrement of. III
how it spreads 106
how it passes the winter. 108
how to combat. II4
indications of its presence 107
life history of 108
natural enemies of III
number of broods of 110
success in destroying, Mr. Powell's 116
Page
Plum scale, the New York II8
damage in 1894, extent of 118
damage in 1895, extent of II9
effect of the winter of 1894 on the scales II9
food plants of 121
history and distribution of 120
name of 120
natural enemies of. 121
outlook of the future 120
results of spraying 122
Petitt, W. W., his packing house described 412
Phytophthora infestans, De Bary 297
Platt, N. S. mentioned 45
Planting of shrubbery, suggestions for the, bulletin I21, by L. H. Bailey, 499
general suggestions 503
some specific examples. 519
Plums, see Japanese plums 35
Pole Lima beans, bulletin 115, by L. H. Bailey 345
black or early black Limas 351
Chickasaw lima 362
growing Lima beans in New York 365
in California 368
Horticultural Lima. 361
index of, bulletin 115 372
Sevas, the 350
synopsis of bulletin. 347
types and varieties 349
varieties not tested 361
Willow-leaf Limas 35 I
Potato, disease of the, bulletin II3, by E. G. Lodeman 293
early blight, treatment of 312
early blight, leaf blight 302
flea-beetles 323
fungi, part I 297
insect diseases of the potato 322

General Index.
613
Potato - (Continued) Page.
late blight or potato rot, treatment of 312
letter of transmittal, by L. H. Bailey 295
disease, historical notes on. 296
rot, late blight, downy mildew 297
scab of potato 309, 318
spraying machinery 325
summary 329
synopsis of bulletin. 295
treatment of fungous diseases 312
Powell, G. T., report of experience destroying pear psylla. II6
mentioned 542
report by 549
Powell, Harold G 163
Preservitas, a special cream preservative 460
Prentiss, Prof. Albert N., illness and death of. 23
Psylla pyricola 105
Psylla rubi and psylla tripunctata 425
Purdy, A. M., quoted on raspberry 421
Publications, extent of 9
Rainfall at Cornell, 1887-1895 445
Ramsay, F. M., quoted. 53
Report of director, I. P. Roberts 7
Roberts, Daniel, mentioned 42
I. P., director, report of 7
I. P., theory of tillage 183
plows and plowing 184
stock, silos and soiling for fruit-growers 184
Rowlee, Professor, aid acknowledged 25
the nutrition of plants 187
Rohnert, Waldo, a seedsman's account of the varieties of the sweet pea 225
Root-galls 425
Rye in the vineyard, by G. Schoenfeld 203
Schoenfeld, G., commercial grape culture in Chautauqua county 194
why I sow rye in the vineyard 203
Schurman, Pres. J. G., letter of transmittal 5
Sciara, sp 3II
Page.
Shrubbery, see planting of 499
suggestions for the planting of, bulletin 121, by L. H. Bailey 503
Slingerland, M. V., report by 26
explanatory note by, in bulletin 107 71
bulletin by, on wire worms and bud moth (No. 107) 69
bulletin by, on the pear psylla and New York plum scale (No.
108) 103
bulletin 123, on green fruit worms 565
quoted 425
insects and insect enemies 191
mentioned 163
Smith, N. C., the nursery I9I
W. E., paper on root-galls, in California fruit- grower, reprinted. 430
Snow, Geo. C., his packing-house described 410
Soil, moisture of 475
texture of 465
Sorauer, "Handbuch der Pflanzenkrankheiten," quoted. 427
Spencer, J. W., mentioned 542
report by 560
acknowledgment 127
Spray calendar (bulletin II4), by E. G. Lodeman 333
apple scab 335
bean, anthracnose of 336
beet, leaf spot 336
aphis of cabbage and cauliflower 336
carnation, anthracnose of. 336
celery leaf blight and rust 337
cherry, black knot 337
chrysanthemum, leaf spot of 337
cranberry, fire worm, fruit worm of 337
currant, leaf blights of 337
egg plant, leaf spot of 337
gooseberry, mildew of 337
grape, anthracnose, black rot, downy mildew, powdery mildew, ripe rot, stecly-bug 338
hollyhock rust 338
Spray calender- (Continued). Page.
leaf blight 3.40
nursery stock, fungous diseases 338
peach nectarine; apricot, brown rot of. 338
pear, leaf blight or fruit spot, leaf blister, psylla, slug. 339
plum, brown rot, leaf blight, black knot, curculio, plum scale, San Jose scale 339
potato, early blight, rot, scab, potato beetle 339
quince, leaf blight or fruit spot 340
raspberry, blackberry, dewberry, anthracnose, orange rust, saw-fly 340
rose, black spot, mildew, aphis, leaf-hopper, red spider 340
tomato, leaf blight, rot 341
violet, blight, spot 341
FORMULAS.
amoniacal copper carbonate 343
bordeaux mixture 341
copper sulphate solution 343
hellebore $3+3$
iron sulphate and sulphuric solution 342
kerosene emulsion 343
london purple 341
paris green. 3.4
potassium sulphate solution 342
tobacco water 343
Stark Bros., quoted 64
Strong, W. C., opinion on dwarf apples 376
Sweet peas (bulletin iII), by L. H. Bailey and A. P. Wyman 207
Eckford, Henry, quoted 213
general sketch of 211
introduction, by L. H. Bailey 209
varieties 220
a seedsman's account, by Waldo Rohnert 225
grown at Cornell in 1895 231
list of, alphabetically arranged, with notes. 233
where and how to grow sweet peas 218
Tarr, R. S., bulletin on geological history of the Chautauqua grape belt, No. 109. 123
Page.
Temnant, J. A., picking and packing grapes 194
M. D., acknowledgment 127
Texture of the soil (bulletin IIg), by L. H. Bailey 465
Thaxter, Dr. R., paper referred to 310
Thomas, John J., opinion on dwarf apples 376
Tmelocera ocellana 92
Treman, R. H., auditor's report 2 I
Tracy, S. M., quoted on Chickasaw Lima beans 364
Tracy, W. W., mentioned 215
Treasurer, report of 20
Trioza tripunctata 425
Van Deman, H. E., quoted 54
Van Dusen, H. P., quotation on history of the Ohio raspberry 420
Van Lindley, J., quoted 54
Walker, Ernest, flower growing for amateurs 193
Warder, John A., opinion of dwarf apples 376
Watson, T. L., acknowledgment 127
Wiilard, S. D., mentioned. 64
Williams, E. L., report of treasurer 20
Wing, H. H., report of, assistant professor of dairy husbandry and ani- mal industry 34
Winter injuries to fruit trees 444
Wire worms and the bud moth (bulletin Io7), by M. V. Slingerland 69
bud moth, the, see table of contents 72
explanatory note 7 I
wire worms, see table of contents 72
Worms, green fruit 565
Wyman, A. P., and L. H. Bailey, bulletin on sweet peas. 207
Wyman, Mr., a student's opinion of the sweet peas 228
Xylinia antenata, Walk 574
laticinerea, Grit 577
grotei, Riley 578
Yeomans, L. T., quoted on raspberry 42I
Yenmans, T. G., \& Sons, packing-house described. 418

INDEX OF CUTS.

Page.
Abundance plums 38
Abundance plum tree 42
A corner draped with honey suckle 529
A careless corner. 528
Adalia bipunctata II3
A "fill" in a back yard 514
A front yard before planting 511
A good combination 513
Agriotes mancus, adult, enlarged 87
A little weedland alongside a rear walk 510
"Apple-blossom," a sweet pea 231
A native mass of shrubbery 505
An effective piece of planting 502
A newly-made landscape garden ready for the border planting 523
five years' growth upon the area shown above 524
A rustic corner 521
Asaphes decoloratus, larva of, enlarged 88
caudal segment of larva 88
adult, enlarged 88
A typical city lot 507
A water piece well planted. 526
A water piece devoid of effective planting. 526
Black Lima 351
" Blanche Ferry," a sweet pea. 234
Bliss Lima bean 353
Bud moth, work of, in opening leaf buds 92
caterpillar of 94
pupa of 95
adult 95
nest and eggs of 96
egg of, showing developing caterpillar 98
Bud moth - (Continued). Page.
leaf showing the work of the young caterpillar 98
twig showing position of the winter homes of the caterpillar 99
work of (frontispiece) 69
Burbank plums (frontispiece to bulletin 106) 35
Burbank plum 46
Burbank tree 47
" Butterfly," a sweet pea. 236
Chabot plum 48
Chase plums 38
Challenger Lima bean 358
Chautauqua grape belt (frontispiece) 123
Chickasaw Lima or Jack bean 362, 363
Chrysanthemums grown for special blooms 258
Chrysona oculata II2
Clay soil, showing its impermeable character 486
Click-beetle 74
Coarse, gravelly soil 489
Conserving moisture (frontispiece) 475
Corn plant growing in cage infested by wire worms and click-beetles 74
Corn plant showing contact with soil 482
Countess of Randor, a popular sweet pea 210
Crest of modern beach at Barcelona I40
Crimsonia, chrysanthemum 274
Cross sections of beach and bar. 142
Cryptohypanus abbreviatus, details of the mouth parts of the larva 9I
Development of the squash plant 557, 558
Double pea, the Splendor 222
Diagram of Figure 164 519
Diagram showing elevation of terraces 145
Drasterius, elegans, adult, larva and caudal segment of larva (Figs. 28, 29, 30) 90
Dreer improved Lima bean 357
Dewberries on a wire screen 437
Dwarf Ben Davis apple tree 390
after pruning 392
Eckford, Henry, portrait of. 213
Index of Cuts. 619
Page.
Forms of chrysanthemum florets 264
Front face of lower beach terrace, just west of Portland 147
Frontispiece (bulletin II7), strawberries 405
Frontispiece to bulletin 122 531
Georgeson plum 51
Georgeson tree 52
Good bean soil 468
Horticultural Lima bean 360
"Imperial Blue," a sweet pea. 241
Io:a (chrysanthemum) 277
J. E. Lager, (chrysanthemum frontispiece) 255
Kerria, canna and wind sunflower 527
Lady-bug beetles, spina larva skins of. 12I
Leaf of Mammoth kidney-shaped Lima bean. 355
Leaf of New Extra Early Lima bean 354
Leaf of Willow-leaf Lima bean 352, 353
Lima beans, New Extra Early 348
Lucretia dewberry 438
Lucretia dewberries trained to stakes 435
"Madam Carnot" 2;0
Mammoth Kidney-shaped Lima bean 357
Map of the region in the vicinity of the grape belt 130
Maps showing the average temperature and rainfall of the grape belt I54
Maru plum 57
Melanotus cribulosus (Figs. 25, 26 and 27), wire worm of, caudal seg- ment of larva and adult insect. 89
" M. Georges Biron" 268
Millipede 73
"Mistletoe" of blackberry 424
Modern beach at Barcelona, showing the crest in the background I38
Mrs. Henry Robinson, chrysanthemum 287
"Mrs. Gladstone," a sweet pea 246
Mr. Snow's packing table 413
Mrs. W. H. Rand, chrysanthemum 284
'Mum cutting, half size 260
Page.
Neglected dwarf apple tree 394
Niagara escarpment, profile of 128
Niagara grape belt, location of I28
Northern Lights, chrysanthemum 280
Packing-houses of George C. Snow 410
Packing-house of W. W. Petitt 412
Packing-room in Mr. Petitt's house 414
James Austin 416
T. G. Yeomans \& Son 418
Pear psylla (frontispiece) 103
full-grown nymph of 108
adult insect 108
egg of 109
newly-hatched nymph of. 109
Pebbles of the modern beach, at Barcelona 143
Perennial pea 217
Photograph showing the pebbly nature of old beach terrace, near Sheridan 144
Plum scale, infested branches II8
Potato sprayer, home-made 126
Potato tuber affected with dry rot 301
Power churn (frontispiece to bulletin ir8) 457
Red June plum 59
Red June plum tree. 60
Root-galls upon apple trees 426
Root growth of the squash plant 559
Round the crest of a gravel ridge, just east of Fredonia I35
Samples of soil 471
Scab on potatoes 310
Section in the boulder clay on Mayville and Westfield road I32
Section of the grape belt 129
Section through a bar between Sheridan and Fredonia 143
Section through the upper beach at Westfield, showing stratification of pebbles and sand 137Page.
Section to show the relative position of the gravel ridges and the other classes of soils 134
Shavings, chrysanthemum 290
Showing the action of lime on clay and sandy soils 492
Soil, compacted by roller, tilled forest mulched 491
Spraying machine (Ward's rig) 336
(rig for spraying bushes) 338
(Yeoman's rig) 340
Spurs of Ben Davis dwarf apple 396
Squash plant a week old 556
Tangler Scarlet pea 216
The beginning of a back yard 516
The same back yard, four years later 518
The central open space and the moss flanked sides 522
The common or nursery type of planting 503
The same as 5I4, four years later 515
The same as 5ir, after planting 512
The pictorịal type of planting 504
The soil sampler 494, 495
The soil mulch 480
The Goumi (Eleagnus longipes) $4+3$
Three typical sizes of sweet pea flowers 223
The sweet pea flower 221
The vine-covered cabin in which drawings for Cornell bulletins are made 520
The three guardsmen 509
Two types of sweet pea flower 224
Types of Lima beans 350
Union of Fallwater apple upon Paradise stock 380
Unproductive clay soil 468
Upper terrace southeast of Sheridan 136
"Venus," a sweet pea 252
Wave-cut cliff and beach of Lake Erie, north of Ripley 126
Well conceived but badly treated 508
Page.
Wheat wireworms, enlarged. 86
details of mouth parts. 87
Willard plum 65
Willow, leaf lima 35I
Wireworm 73
"W. W. Aster" 266
Yosebe plum 66

[^0]: * Mean of the tri daily observations. \# Jean of lhe maximum and minimusu by the Diaper the tri-laily observations are derived by the formula ($\overline{\mathrm{a}} \mathrm{a} . \mathrm{m} .+2 \mathrm{p}, \mathrm{m} .+9 \mathrm{p} . \mathrm{m}_{\mathrm{o}}+9 \mathrm{p} . \mathrm{m}$.) $\div 4$. four hours. SRanfall on the 28th-27th estimated from record of adjacent stations.
 (a) 3. 24; (b) 18,29 ; (c) $21,25,29$; (d) 3, 25; (e) 1, 2, 25 ; (f) $3,24,25,29$; (g) 23, 25; (h) 25,26 ; (i) (t) 16, 17; (u) 18, 27; (v) 2, 12; (w) 3, 23; (x) 12, 16; (y) 29, 31; (z) 16, 29; (aa) 13, 24; (ab) 1, 5; (ac) (cc) $20,25,26$; (cd $) 19,20,25$.

[^1]: * Mean of the tridaily observatious. Mean of the maximum and aninimum by the Draper the tri-daily observationsare derived by the formula $\left(7 \mathrm{a}_{\mathrm{o}} \mathrm{m}_{0}+2 \mathrm{p}, \mathrm{m} .+9 \mathrm{p} . \mathrm{m}_{\mathrm{o}}+9 \mathrm{p} . \mathrm{m}_{\mathrm{o}}\right) \div 4$.
 (a) 28,29 ; (b) $6,27,29$; (c) 23,29 ; (d) 15,28 ; (e) 17,18 ; (f) 18,19 ; (g) 16,17 ; (h) 18,22 ; (b) 15 , (u) 5, 9 ; (v) 5, 8 ; (w) 3, 4 ; (x) 3, 5, 9 ; (y) 18, 19; (aa) 6, 7; (ab) 8, 15; (ac) 6, 13, (ad) 6, 7, 8, 9 ;

[^2]: \ddagger Maximum and minimum by the Draper thermograph. † Mean includes

[^3]: (a) 30,31 ; (b) $1,30,31$; (c) $25,29,30$; (d) 29,31 ; (e) 4,5 ; (f) 13,14 ; (g) 15,24 ; (h) 13,24 ; (i) 12 , 26.24 ; (w) 21, 28; (x) 21, 24, 25; (aa) 8, 11; (bb) 3, 8; (cc) 8, 9 ; (dd) 3, 20; (eb) 11, 20; (ff)

 Mean of the tri-daily observations. \$ Mean of the maximum and minimum by the Draper tri-flaily observations are derived by the formula, ($7 \mathrm{a} . \mathrm{m} .+2 \mathrm{p} . \mathrm{m} .+9 \mathrm{p} . \mathrm{m} .+9 \mathrm{p} . \mathrm{m}.) \div 4$. four hours.

[^4]: 13,$24 ;(k) 18,24$; (l) 24,$25 ;(m) 21,25$; (n) 6. 21 ; (q) 18,21 ; (r) 18,25 ; (s) 13,18 ; (t) 20, 31; (v) 21, 3. 11 ; (gq) 3, 9,12 ; (hh) 3. 6 ; (ii) 7, 11; (kk) 2, 27; (ll) 1, 9, 12, 19; (mm) 3, 8, 11; (nn) 9, 12.

 Thermograph. || Report receiced too late to be used in computing means. The means from the

 - Blank indicates that the duration is not shown in the original records, but is within twenty-

[^5]: \ddagger Maximum aud minimum by

[^6]: * Mean of the tri-daily observations. : Meangof the maximam and minimum by the Draper the tri-daily observationsare derived by the formula ($7 \mathrm{a} . \mathrm{m} .+2 \mathrm{p}, \mathrm{m} .+9 \mathrm{p}, \mathrm{m},+9 \mathrm{p}, \mathrm{m}.) \div 4$.
 (a) 9,10 ; (b) 9,14 ; (c) 10,11 ; (d) 14,21 ; (e) $9,10,11$; (f) 7,16 ; (g) 8,13 ; (h) 7,20 ; (i) $7,16,20$ 13 ; (v; 11, 23 ; (w) 22, 24; (x) 14. 24 ; (y) 9,26 ; (z) 18,19 ; (ab) 18, 19, 22; (ac) 18, 31; (ad) $18,26$. (al) 22, 29; (am) 5, 10, 19; (an) 2, 26, 31 .

[^7]: thermograph. \|Report received too late to be used in computing means. The means from

[^8]: ＊Mean of the trida ly ot servations．\＆Mran of the Max．ano Mm．by the Diafor thermo－ tri－daily ubservations are derived by the formula，（ $\sim \mathrm{a} . \mathrm{m} .+2 \mathrm{p} . \mathrm{m} .+9 \mathrm{p} . \mathrm{m} .+9 \mathrm{p} . \mathrm{m}.) \div 4$ ． four bours．
 （a） 2,$30 ;(b, 7,20 ;(c) 8,20:(d) 7,8,23 ;(e) 5,18 ;(f) 5,8$ ， $20:(g) 13,20,21 ;(h) 5,20 ;$（i）20，22； （s）2，3， $4:(t) 1,3 ;(u ; 19,29 ;(v) 4,19 ;(v) 3,6 ;(x) 4,30 ;(y) 22,21,25,26 ;(z) 21,22:$（ub） 16,24 ； （ak） 8,30 ；（al） 9,26 ；（am） 26,27 ；（an） 9,10 ；（ap）17，21；（bb）3，13， 30 ．

[^9]: + Max. and Min. by the Draper Thermograph.

[^10]: ; Max. and Min. by the Draper Thermograph.

[^11]: \ddagger Record for the month incomplete. \| Receired too late to be included in the arerages.

[^12]: * Mean of the tri-daily observations. \& Mean of the maximum and minimum by the Draper tridaily observations are derived by the formula, ($7 \mathrm{a} . \mathrm{m} .+2 \mathrm{p} . \mathrm{m} .+9 \mathrm{p} . \mathrm{m} .+9 \mathrm{p} . \mathrm{m}.) \div 4$. four hours.
 (a) $5,6,10$; (b) $5,6,8$; (c) 5,6 ; (d) 6,10 ; (d) 6,9 ; (f) 6,8 ; (g) $5,6,9$; (h) 5,8 ; (i) $6,7,8,9$; (t) 20,29 ; (u) 20 , 30; (v) 20,25 ; (v) 27,28 ; (x) 1,20 ; (u) 28,29 ; (z) $20,26,29,30$; (a a) 25,29 ; 8, 14; (bc) 10,20 ; (bdi) $22,24,25,20$; (be) $10,10,2 i, 31$; (bf) 10,23 ; (bg) 2,19 ; (bh) 10,31 ; (cc) 2 , (df) 2, 7; (dg) 19, 23; (ee) 28, 31; (ef) 9, 16.

[^13]: *Mean of the tri-daily observations. Mean of the maximum and minimum by the Draper the tradaily observationsare derived by the formula ($7 \mathrm{a} . \mathrm{m}_{\mathrm{o}}+2 \mathrm{p} . \mathrm{m}_{\mathrm{c}}+9 \mathrm{p} . \mathrm{m} .+9 \mathrm{p} . \mathrm{m}$) $) \div 4$.
 (a) 11, 12; (b) 10,11 ; (c) 23,24 ; (d) 5,23 ; (e) $21,23,24$; (f) 10,24 ; (g) 11,25 ; (h) 2,25 ; (i) 9,13 ; (u) 3,30 ; (v) 14,29 ; (w) 18 , 19; (x) 12, 17; (y) 2,30 ; (aa) 13 , 19; (ab) $13,17,29$; (ac) 18, 28; (ad) 3 , 29 ; (cd) 13, 28.

[^14]: * Mean of the tri-daily observations. †lbank indicates that the duration is not shown in the the Wraper thermograph. IReport received too late to bo used in computing means. Tho $+9 \mathrm{p} . \mathrm{m})-4.$.
 (a) 29. 30: (b) 15, 31: (c) 28, 30; (d) 1, 29, 31; (e) 15, 28, 30; (f) 1, 2, 31; (g) 1, 31; (h) 30, 31; (i) 23, 10, 15; (t) 10, 25; (ut) 9, 26; (v) 19, 20; (w) 10, 19, 2, 26; (x) 16, 27; (y) 26, 27; (aa) 12, 13, 24; (ab) 13; (bf) 6, 14; (cc) 5, 6; (cd) 1, 7; (ce) $1,7,25$; (cf) 8, 18; (dd) 4, 8, 12, 13; (de) 5, 8, 12, 13; (df) 6, 8,

[^15]: +Maximum and Minimum by the Draper Thermograph

[^16]: * Mean of the tri-daily observations. \ddagger Mean of the Max. and Min. by the Draper Thermo tri-daily observations are derived by the formula, ($7 \mathrm{a} . \mathrm{m} .+2 \mathrm{p} . \mathrm{m} .+9 \mathrm{p} . \mathrm{m} .+9 \mathrm{p} . \mathrm{m})$.+4 . four hours. (1) Voluntary Observer. (2) U. B. Weather Bureau.
 (a) 10,30 ; (b) 18,26 ; (c) 3, 18, 26; (d) 17, 30 ; (e) $17,29,30$; (f) 20,22 ; (g) 20, 30 ; (h) 6, 37, 29, 30; (ℓ) 2, 15; (u; $7,12,29,30 ;(v) 17,27 ;(v) 12,30 ;(x) 20,28 ;(y) 5,21 ;(z) 14,20,30:(a \alpha) 7,16 ;(a b)$

[^17]: \ddagger Max. and Min. by the Draper Thermograph. \| Received

[^18]: \ddagger Record fir the month incomplete. II Received too late to be included in the arerages.

[^19]: * Meas of the tri daily observations. + Mean of the maximum and minimum by the Drapex the tri-flally obvervations are derived by the formula $\overline{7} \mathrm{c} . \mathrm{m} .+2 \mathrm{p} . \mathrm{m} .79 \mathrm{p} . \mathrm{m} .+9 \mathrm{p} . \mathrm{m})-4.$. four hours. (1) Sohntary obserser. (2) U. S. weather bureau.
 (a) 12,$13 ;$ (b) 7,$14 ;$ (c) 7,13 ; (() $0,13,14 ;$ (e) 6,$13 ;$ (f) 5,$13 ;(g), 4,27 ;(h) 27,28 ;(7) \cdots 4,28:$
 (bd) 2,$16 ;$ (be) 3,$23 ;(b f) \stackrel{2}{2}, 9 ;(b \neq 9,10,16 ;(b h) 7,12,17 ;(c c) 12,17 ;(c d) 9,10,11,30 ;(c e) 5,9,10$,

[^20]: ${ }_{\dagger}^{+}$Max. and Min, by the Draper Thermograph. \|Recoived too late to be

[^21]: ＊Mean temperatures are derived from tri－dails observations．\ddagger Mean temperatures are de （2）United States Weather Bureau．All means not otherwise indicated are derived from maxi NOTE－The mean temperature and average total precipitation for the several regious are

[^22]: \ddagger One month interpolated in total for 1896 .

[^23]: Established in August, 1890; special temperature statlon; latitude, 42 deg .25 mln . north; longitude, 79 deg .15 min . West; elevation, 1,260.

[^24]: Established October, 1890; special temperature station; Iatitude, 43 deg .05 min. north; longitude, 72 deg . 48 min . west; elevation, 270 feet.

[^25]: Date of establishment not known, but prior to 1888 ; latitude, 43 deg. 06 mln . north; longitude, 77 deg. 00 min . west; elevation, 407 feet.

[^26]: *Distributing center. About 575 postoffices receive, by mail from distributing centers, and bulletin, the forecasts. || Display cold-wave and frost warnings. tWhistle signals.

[^27]: * Essay on the Climate of the State of New York, by F. B. Hough, Albany, N. Y.
 + A Letter upon the Climate of New York, by Professor J. H. Coffin. Contained in the
 " Natural History of New York State," Albany, 1843.

[^28]: * Atmospheric Temperature and Precipitation in the United States, by C. A. Schott. Smithsonian Contributions to Knowledge, a vols., Washington, 1876 and 1881.
 +Climatology of the United States, by Lorin Blodgett; Philadelphia, 185\%.

[^29]: * An opposite effect is produced by an unusually low pressure over the north Atlantic, when in conjunction with a strong development of the continental "high;" in which case the northwesterly circulation is strengthened, and the low temperature of the interiorextends to the eastern States.

[^30]: $\stackrel{\circ}{\square}{ }^{10}$

[^31]: * The values heregiven were computed from the determinstion made by Ferrel, "Recent Advances," p. 152.

[^32]: * The isothermal charts of Buchan furnish the b asis of the description given herewith.

[^33]: * The true annual range is slightly greater than the difference between January and July meaus.
 \dagger Haximum occars in August.

[^34]: * The cosine formula $T=A_{0}+A_{1} \cos (x-e)$ is used here, + Value as given by Ferrel. कt The periodic formula for New York state, from which the curve of plate 1 was constructed, is as follows: $T=45.9^{\circ}+24.4^{\circ} \cos \left[t-\left(202^{\circ} 56^{\prime}\right)\right]+0.76^{\circ} \cos .\left[2 t-\left(311^{\circ} 30^{\prime}\right)\right]+0.45^{\circ} \cos .\left[3 t-\left(50^{\circ} 50^{\prime}\right)\right]$. The mean monthly temperatures for the State used were the avorages of the values at Humphrey, Cooperstown, Lowville (Regents' record), New York city, Albany, Plattsburgh, Canton, Oswego and Ithnea. The mean annual temperature thus derived for the State is 0.5° higher than that of Table 2.

[^35]: * Kingston is near the head of the St. Lawrence river and at a greater distance from the lake than Toronto.

[^36]: * January, lisji, was the coldest month on record at lhiladelphla and at New Bedford, Mass. ; the

[^37]: - It may be noted that dates given for Palermo, in the U.S. Weather Revlew for 1888 are those of the flrst light frost of outumn. The error is here corrected by means of a second series of observatlons kindly forwarded by Mr. Bartlett.

[^38]: * The temperature on these dates were remarkably high throughout New York, the maximum noted at stations of the Regents' system being 01 degrees.-Ed.

[^39]: *Maximum temperature at Ithaca on December 31, 1875, was 59 degrees; January 2, 1876, 64 degrees.

[^40]: * Reducible substantially to Fechner's formula used by Dr. Hann. A strict accuracy would require the probable error of the variability itself to be taken into account, but this is not necessary in the present case.

[^41]: * The above formula may be transformed to $n=0.71 \frac{V^{2}}{R^{2}}$; where V is the variability, R is a
 defnite value of the probable error (n this case 0.5°), and n is the number of years required t) refuce the jrobable error to the given amount.

[^42]: * Edition exlatusted.

[^43]: * Edition exhausted.

[^44]: ＊Rilition axhmastad．

[^45]: * Jodition exhausted.

[^46]: Note.-The illustrations in this bulletin show the fruits full size, but the reader must bear in mind the fact that pictures always look smaller, to the motrained eye, than the objects which they represent.

[^47]: *The following additional historical notes may be added: D. E. Hough, who first received the Japanese plums in this country, had a small nursery in Vacaville, California, about 1870 to 1875 . Professor Wickson writes: "Mr. Hough was a very expert budder and budded stock for others as well as on his own account. He was quite given to roving from place to

[^48]: Blood: See Satsuma.
 Blood Plem No. 3.
 "Fruit somewhat smaller than Satsuma, flesh very deep red and juicy, sweet; middle of July; tree of rery open straggling growth."

[^49]: * This insect was discussed in detail in Bulletin 44, issued in October, 1892. There was so great a demand for the bulletin that the issue was exhausted in about a year. While this discussion includes an abstract of Bulletin 44, it also contains much new material, especially in regard to the distribution of the insect, its natural enemies, and to the methods of fighting it.
 \dagger The evidence submitted by Dr. Lintner (Ninth Rept. p. 319) to show that this insect "may have been operating in the State of New York as early as in 1824 , if not in the preceding century," is far from conclusive.

[^50]: * During the severe attack in Maryland in 1894, "the leaves were scarcely at all yellowed, but were covered with dead and dry patches or spots, sometimes invading almost the entire leaf." It seemed to be due "to the sun-scalding resulting from the collection of the honey-dew on the leaves in large drops."

[^51]: * Most writers state that the adult emerges from the cocoon, but, as was pointed out by Dr. Shimer in 1865 and by Dr. Riley in 1869, what they hare called the pseudo-imago or sub-imago comes from the cocoon. The names given this stage of the insect are misleading, as they properly apply to a winged stage preceding the imago stage of may flies. In the case of the lace-winged flies, their pupue are sufficiently active to force their way out of the cocoon.

[^52]: * The formula is $\frac{1}{2}$ pound hard or soft soap, 1 gallon water, 2 gallons kerosene.

 First, thoroughly dissolve the soap in boiling water. While this solution is still very hot add the kerosene; if the whole is then left over the fire for a few moments to raise the temperature of the kerosene slightly, it will facilitate the emulsifying process. Remove from the fire and quickly begin to agitate the whole mass through a syringe or force pump of some kind; draw the liquid into the pump and force it back into the dish. Continue this operation for five minutes or until the whole mass assumes a creamy color and consistency which will adhere to the sides of the vessel, and not glide off like oil. If desired for use immediately, it may

[^53]: now be readily diluted with cold water, preferably with rain water. Or the whole mass may be allowed to cool when it has a semi-solid form, not unlike loppered milk. This stock if covered and placed in a cool dark place will keep for a long time. In making a dilution from this cold stock emulsion, it is necessary to measure out the amount of the emulsion required and first dissolve it in three of four parts of boiling water; if cold water be used a large quantity of a white flocculent mass rises to the surface and does not dissolre. After the stock emulsion is dissolved, cold water may be added in the required quantities. If all the utensils are clean, and the directions followed closely, no free oil will rise to the surface of the dilution.

[^54]: * The eleration of the lake is 573 feet above sea level ; and of the base above the iake, as determined by a line of levels run at Portiand, 147 feet. Therefore at this point the base of the lowest beach ridge is 720 feet abore sea level.

[^55]: * From Section 1 to Section 3 the distance is 36 miles. The erest of the second beach is 185 feet above lake level at State Line, 195 feet at Portland and 221 feet just east of Silver Creek. In other words, the beach increases in elevation at the rate of about 1 foot a mile. There is little doubt that the uplift is greater in the east than in the west.

[^56]: *This moraine has not been traced, so that nothing can be stated concerning its extension; but it appears in quite distinct development about two miles east of Silver Creek, extending nearly to the town.

[^57]: *The beharior of this frost was altogether remarkable, leaving some districts or vineyards almost unharmed, and nearly ruining the crop in others, while even in the same vineyard these extremes were sometimes noticed. This was probably chiefly due to eddies of the air, for even though air is almost quiet, it is still in uneven motion. One may see this illustrated on a calm day by moticing the movements of a column of smoke. The air, being invisible does not reveal these movements, and we become aware of them only when the conditions are exceptional, as when a frost is dealing out destruction to vegetation. The condition of the ground also affects the frost, and the question whether it is dry or moist, freshly plowed or turf covered, whether there are trees or pastures or plowed ground in the neighborhood, all have their influence; but this subject has never been properly studied, and it is not possible to state just how these differences affect frost action.
 \dagger This was well illustrated during a frost in the middle of September, 1895. At W'estfield there was no indication of a frost, east of Silver Creek signs of its effect began to appear, and at Hamburg, the frost had done considerable damage to the more delicate forms of regetation.

[^58]: * Nathan Smith \& Son, Adrian, Mich.

[^59]: * Dorner \& Son, Lafayette, Iudiana.
 \dagger Beckert \& Bros., Glenfield, Pa.
 \ddagger E. G. Hill \& Co., Richmond, Indiana.

[^60]: * Pitcher \& Manda, Short Hills, N. J.
 $\dagger^{'}$ T. II. Spaulding, Or'snge, N. J.

[^61]: *Rev. M. J. Berkeley, Journal of the Royal Horticultural Society, Vol. I.

[^62]: *For bibliographies of the enrlier contributions concerning the early blight of potatoes, see Jones, 6th Ann. Rept. Vt. Agric. Exp. Sta. 1892, 66 et seq. Also Sturgis, 18th Ann. Rept. Conn. Agric. Exp. Sta. 1894, 127 et seg.

[^63]: *Ann. Rept. Conn. Agric. Exp. Sta. 1894, 127-134.

[^64]: *See also N. Dak. Agric. Exp. Sta. 1891, Dec. Bull. 4, which contains a record of Bolley's work and a full bibliography of the subject.
 \dagger The paper was read Nov. 12, 1890, at Champaign, Ill., before a meeting of the Association of Agricultural Colleges and Experiment Stations. See also a full account in the Amn. Rept. Conn. Agric. Exp. Station. 1890, Pp. 80-95.

[^65]: *Av excellent account of the effect of various chemicals and manures upon the amount of scab upon potato tubers has been published by Wheeler and Tucker in Bull. 23, of the R. Y. Agric. Exp. Sta. Oct. 1895.

 See Special Bull. 2. W. Va. Agric. Exp. Sta. pp. 97-111. Also Proceedings of the Washington Entomological Society, May 3, 1894 ; Insect Life, vii. p. 147.

[^66]: * A good mixture for use upon potatoes may be prepared by dissolving six ponnds copper sulphate in about twelvo grallons of water; slako four pounds quicklime and add to the copper sulphate solution. Dilute to forty gallons. If the forocyanide of potassium test is employerl, put in about one-fourth more lime than the test solution shows to be necossary.

[^67]: * The Bordeaux mixture was made accordiner to the "Normal" formula; copper sulphate, 6 pounds; quicklime, 4 pounds; water, 45 gallons. This mixture contains copper sulphate at the rate of 1.6 per cent of the weight of water ased.
 \dagger This mixture was made by dissolving 3 ounces copper chloride in 24 gallons of water, and then to this solution was added 6 ounces of slacked quicklime.

[^68]: "N. Dak. Agric. Exp. Sta. Bull. 4, p. 14.

[^69]: * Wheeler and Tucker. Bull. 33, pp. 58-79.

[^70]: * Chemical analysis of Paris purplo showed it to eontain 34.1 per cent. arsenic trioxide, 40.7 per cent. of this being solable in water. It is sold by Sykes \& Street, 85 Water street, New York.

[^71]: * The poison was introduced by Henry S. Ziegler, 400 N . Third street, Philadelphia, Pa. It contains 36.75 per cent arsenic trioxide, 14.58 per cent of which is soluble in water.
 \dagger Ann. Rep. Vt. Agric. Exp. Sta. 1894, 96.

[^72]: 106. Revised Opinions of the Japanese Plums.
 107. Wireworms and the Bud Moth.
 108. The Pear Psslla and the New York Plum Scale.
 109. Geoloxical History of the Chautauqua Grape Belt.
 110. Extension Work in Horticulture.
 111. Sweet Peas.
 112. The 1895 Chrysanthemums.
 113. Diseases of the Potato.
 114. Spray Calendar.
 115. The Pole Lima Beans.
 116. Dwarf Apples.
[^73]: * As a matter of fact, the sour cherries, and very often the sweet ones, are grown upon Mahaleb stock in New York stato. Tho Mabaleb stock is more casily worked and managed than the Mazzard or Sweet Cherry stock. The trees which aro grown upon Mahaleb ordinarily reach their full stature. They are made dwarf only by judicious pruning.
 L. II. B.

[^74]: * 1. "Malus pumila, que potius frutex quâ arbor. Mala præcocia, Trag. Tab.
 Malus humilus, cujus fructus pomum Adami.
 Gesn. Hort." [Py. and g. malus paradisiana].
 "Frnit both red and white"
 The name in the brackets has been written in the volume of Bauhin's Pinax owned by Harvard University. The writing is old and wbose it is has not been determined. The copy at the congressional library at Washington contains no specific mention of the Paradise apple.
 + "Species Plantarum," 1753, 479.
 \ddagger "Synopses Monographicæ," iii, 1847, 195.
 || "Historiæ Plantarum Universalis," i, 1650, 7.

[^75]: * "Paradisus T'errestris," 1629, 588.
 † "Die Duetschen Obstgehölze," Stuttgart, 1876, 62.
 \ddagger See volume 1. of Dochnal's "Fiihrer der Obsthunde."

[^76]: * Jour. of the Hort. soc., London, 1848, iii. 116.
 \dagger Koch. "Die Dentschen Obstgehölze," 63.

[^77]: * Bauhin, "Historia Plantarum" I. 18.
 † "Die Deutschen Obstgehölze," 66.
 \ddagger "Paradisus Terrestris," 1629, 587.
 \|| Die Deutschen Obstgehölze. 65.

[^78]: * Traité des Arbres Fruitiers, 1768, I. 273.

[^79]: $a \quad b \quad d$ (center.)
 e (bottom.)

[^80]: * These trees, however, were removed after they had beon set two years, sothat their behavior may be somewhat abnormal.
 L. H. B.

[^81]: * "Miniature Fruit Garden." From 13th English Ed. 1866, p. 69 et seq.
 \dagger "Fruit Culture," London, 1892, p. 65.

[^82]: * A pound ($£$) is equal to about $\$ 4.86$.

[^83]: *"Fruit Culture," London, 1892, p. 122.

[^84]: *The root-knot of the southern states and of greenhouses is a wholly different trouble and is tho work of a nematode worm. 'There is also a rout swelling or gall on raspborries dno to the work of an insect.

[^85]: *Small Fruit Instructor, 94 (1887) ; Pop. Gard. ii. 100, 160.

[^86]: * Prononncer lon-gi-pees. The name means "long-footed," that is, longstemmed, and refers to the frait stems.
 \dagger For illustrated accounts of it, seo Garden and Forest, i. 499 (1889); American Garden, xi. 565 (1890); Van Deman, Rept. Dept. Agric., 1890, 423, colored plate (under the name of Elaagmus pungens) ; Orchard and Garden, xiv. 157 (1892); Gardening, i. 275, 277 (1893).

[^87]: 106. Revised Opinions of the Japanese Plums.
 107. Wireworms and The Bud Moth.
 108. 'The P'ear Psylla and The New York Plum Scale.
 109. Geological History of the Chautauqua Grape Belt.
 110. Extension Work in Horticulture.
 111. Sweet Peas.
 112. The 1 セ95 Cbrysanthomums.
 113. Diseases of the Potato.
 114. Spray Calondar.
 115. The Pole Lima Beans.
 116. Dwarf Apples.
 117. Fruit Brevities.
 118. Food Preservatives and Butter Increasers.
[^88]: 106. Revised Opinions of the Japanese Plums.
 107. Wireworms and the Bud Moth.
 108. The Pear Psylla and the Now York Plum Scale.
 109. Geological History of the Chautauqua Grape Belt.
 110. Extersion Work in Horticulture.
 111. Sweet Peas.
 112. The 1895 Chrysanthemums.
 113. Diseases of the Potato.
 114. Spray Calendar.
 115. The Pole Lima Beans.
 116. Wwarf Apples.
 117. Fruit Brevities.
 118. Food Preservatives and Butter Increasers.
 119. 'The Texture of the Soil.
 120. The Moisture of the Soil.
[^89]: 106. Revised Opinions of the Japanese Plums.
 107. Wireworms and the Bud Moth.
 108. The Pear Psylla and the New York Plum Scale.
 109. Geological History of the Chautanqua Grape Belt.
 110. Extension Work in Iorticulture.
 111. Sweet Pear.
 112. 'The 1895 Cbrysanthemums.
 113. Diseases of the Potato.
 114. Spray Calendar.
 115. The Pole Lima Jeans.
 116. D) warf' Apples.
 117. F'ruit Brevities.
 118. Food Preservatives and Butter Increasers.
 119. 'Thes Texture of the Soil.
 120. 'The Moisture of the Soil.
 121. Suggestions for the Planting of Shmbbery.
[^90]: 52. - A uative mass of shrubbery, of elders. hawthorns, brambles, and the like
[^91]: Note-Whese leaflets are intended for the tother, not for the scholars. It is their purpose to suggest the method which a teacher may pursue in instructing children at odd times in nature-study. The teacher shonld show the children the objects themselves-should phant the seeds, raise the plants, collect the insects, ete.; or, better, he should interest the children to collect the objects. Advanced pupils, however, may be given the leathets and asked to perform the experiments or make the observations which are sugested. The scholars themselves should be taught to do the work and to arrive at independent conclusions. Teachers who desire to inform themselves more fully unon the motives of this naturestudy teaching, should write for a copy of Bulletin 122, of the Cornell Experiment Station, Ithaca, N. Y.

[^92]: *Note.-Common ink will not answer for this purpose because it "runs" when the root is wet, but indelible ink, used for marking linen or for drawing, should be used. It should also be said that the root of the common pumpkin, and of the summer bush sfuashes, is too fibrous and branchy for this test. It should be stated, also, that the root does not grow at its very tip, but chiefly in a narrow zone just back of the tip: but the determination of this point is rather too difficult for the beginner.

[^93]: * Professor Smith writes: "As I have them divided in my collection you can tell the difference between them; but if you undertake to locate it you will become lost in a short time."

