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ABSTRACT

In this paper an application of differential game theory in the

area of microeconomics is presented. The problem considered is that of

dynamic duopoly where two firms each limited by a maximum capacity of

production, share the same market, and try simultaneously but indepen-

dently to maximize their profits over a certain planning horizon. Neces-

sary conditions for the Cournot solution in the general case are dis-

cussed and more specific results for the special case of linear demand

and quadratic cost functions are developed.
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AN APPLICATION OF DIFFERENTIAL GAME THEORY TO

A DYNAMIC DUOPOLY PROBLEM WITH MAXIMUM PRODUCTION CONSTRAINTS

M. Simaan and T. Takayama

Introduction

Static and comparative static formulations of the duopoly game

following the line of Cournot [1] and Stackelberg [2] flourished in the

1950's after the path-breaking work of von Neumann and Morgenstern [3],

Theory of Games and Economic Behavior. Zero-sum or non-zero-sum, two

(or n) person games, cooperative or noncooperative games, etc. are well

documented (see Shubik [4], for instance). Methodologically, the static

and traditional duopoly theory seems to have failed to actively interact

with game theoretic approaches (see Osborne [5]).

It may be worthwhile to point out that logical developments of

the traditional duopoly game in its comparative static sense, by taking

advantage of a type of sequential decision-making procedures in reaching

some reasonable solutions such as the models of Cyert and DeGroot [6-7]

and Friedman [8], may have taken a step towards the dynamization of the

traditional theory. However, these models are still not completely

dynamic in nature. For instance, in the Cyert and DeGroot model it is

assumed that decisions are made sequentially in alternating periods while

profits are maximized over a certain planning horizon, and in the





Friedman model it is assumed that decisions are made simultaneously at

each period but that profits are only maximized over that particular

period

.

In this paper, we propose a model where decisions are made

simultaneously at each period of time and where the profits are maximized

over the whole planning horizon. We formulate the model in continuous

time as a non-zero-sum differential game problem. A similar discrete

time version of this model can also be formulated. In this model we

assume that the demand curve is described by a differential equation

which gives at each instant of time the relationship between the price

of the commodity, the rate of change of the price and the production out-

puts of both firms. We assume that each firm's objective is to maximize

its total discounted profits over a prespecified time horizon. A general

formulation and solution of this model, and a comparison between the

Cournot and collusive behaviors of both firms has been presented in

[9]. In this paper we give a complete characterization of the Cournot

solution especially for the case where each firm has a maximum production

capacity that cannot be exceeded. We show that the Cournot solution

can be a combination of several possibilities where each firm may either

stay out of the market, place its maximum supply in the market, act as

a monopolist, or share the market with its rival firm and act as a

duopolist. We treat in detail the case where the demand function is linear

and the production cost functions are quadratic.

Even though? differential game theory has recently received a great

deal of attention in the control Literature, very little has been done

in applying it to mieroeconomie problems. The simple, single commodity,





model considered in this paper provides such an application and demon-

strate.:; that useful conceptual results can be obtained. Before going

into the dynamic formulation, let us first briefly review the static

duopoly mode J as formulated by Cournot.

1. Static. Courno t Duopoly Model

Let x and x
9
be the outputs of firms .1 and 2 respectively, and

let the commodity price p be related to x + x by the following well

behaved continuous and di fferentiable (in R ) demand function:

(1) P = hCx^+x,)

Let the total production cost functions for Firms 1 and 2 be g, (x ) and

g (x,) respectively, then the profits to be maximized are:

EL (x ,x ) = x h(x -fx ) - g7 (x_) for Firm 1 , and
.L .L / j. 1 Z 1 1

(2)

H
9
(x

l5
x ) = x 9

h(x_,+x
?

) - g
2
(x

? ) for Firm 2 .

If x. a e x„ are not constrained t ier the solution of this problem

i proposed by Cournot is determined in terms of the reaction functions

which specify the output of one. firm in terms of the output of the other

firm (see Intrilligator [10]). These functions are obtained from:

3IL 3h 3h 3x„ dg. (x.)
1 - / . \ ,

2 °1 1

(3)

- h(x.+x„) + x, - >- x
n -a— —— = , and

3x 1 2 1 'J:< 1 dx
9

Sx dx

9II

2
Sh 3h 3 Xj dg

2
(x

2
)_ = h(x +X„) + x,, ;-" I- X„ T -r— j ~

ox,. 12 2 3x 2 3x_ rfx„ dx„
z 2 12 2





The terms 3x„/3x and 3x /3x„ are called "conjectural variations" terms

and they reflect the effect of variations in the output of one firm on

the output of the other firm. In the Cournot analysis, these terms are

assumed to he zero. The solution of the two simultaneous equations

ft ft

in (3) yields the Cournot equilibrium outputs x and x... In the case

where h(x 4-x„) is linear in (x +x ) and g. (x.) is quadratic in x. for

i = 1,2:

(4) h(x
l
+x

2
) = c - bCxj+x,) c > b >

(5) g. (x ) = (l/2)a.x
2

, o > i » 1,212. 11 1

then, the solution of (3) with zero conjectural variations is straight-

forward:

(6) x. =-
(b+a . )

c

_ _
i , 1 = 1,2

1
(2b+a )(2b+a

2
)-b

and it follows that

(b+a ) (b+a )c

(7) p* = i L

(2b+a K2b+a
2
)-b

It is important to note that the optimal Cournot outputs x

and x derived by the above procedure satisfy the following set of in-

equalities :

WV - Vv-V
(8)

n
2
(x*,x

2
) 2 n (x*,x

2
)





2. Dynamic Cou raot Duopoly Model

The model that we shall discuss in this section is essentially

a "dynamization" of the static model discussed in the previous section.

Lee the demand function be described by the following differential

equation

:

(9) dpJO = p (t) = G [h(x(t))-p<t)] , t e [0,T], pCO) = p
at O

where [0,T] is the planning horizon, x(t) = x (c)+x
? (t) is the sum of

the outputs x (t) and x
?
(t) of both firras respectively and G[u] is a

monotone increasing function of its argument satisying (see Samuelson

[11]):

(10) G[0] = and ^jlnl > Q y u e R.
du

This G function can be considered as the speed of adjustment function.

If, at a certain time t e [0,T], h(x(t ))-p(t ) f for some reason

such as the market price during its adjustment process was not high (low)

enough, resulting in a smaller (larger) supply quantity appearing in the

market than what the market actually desired at that price level, then the

market price moves in the direction stipulated by equation (9). Equilibrium

conditions are reached when h(x(t) )-p(t) = D for all t. The rationale

above is a genuinely dynamic price adjustment mechanism and is considered

to be a natural extension of the static price response function (see

Nikaido [12]) . If we let

(11) f( P (t),x(t)) = G[h(x(t))-p(t)]





and if we assume that -r— < for all t c |0,T], tlien it follows that
JX

r— < and tt- < (note that — = -,r~ , i = 1,2). TL is interesting to
r)p ,)X JX. JX

1

1

note that equation
. (9) relates the price at time t to the price at a

previous time t and to the entire history of total supply x
f

, over
1 1 1 . > t j

the interval [t ,tj. Functionally this can. be written as

(12) p(t) = »(t,p(t
1
),x

[t jt]
)

where * is the trajectory of the solution of equation (9) for a given

p(t ) and x
r

_,. Thus, in contrast to the static market theory which
l L t

., 1 1 j

does not address itself to the question of the process by which changes

in the price are brought about, but only compares the prices before and

afcer the change takes place, the dynamic market theory investigates how

the price changes with time and what trajectory it follows.

In static market theory it is well-known that the demand function

has the property that "an increase (decrease) in the total market supply

will cause a decrease (increase) in the market price of the commodity."

We shall show next that this property also holds true, locally, for our

dynamic market; that is if (p(t),x(t)) is a trajectory satisfying

p(t) = f (p(t) ,x(t)) , t e [0,T] for a given p , then a positive (negative)

perturbation in x(t) will cause a negative (positive) first order pertur-

bation in p(t)

.

The economic significance of this assumption is shown in

proposition 1.
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Propos ition 1 :

The condition—- ' implies that for any pair (p(t),x(t))

satisfying (9), if x(t) = x(t) + 6x(t) whore 5x(t) t V t i. [O/i'J; then p(t)

= p(t) + Sp(t) + Higher order terms, where •

r
J j>(t) 1 V t e [0,T].

Proof

(Note that th.e same proof holds if the sign of ;Sx(t) and 5p(t)

are reversed). The Condition -r— < follows from (11). Linearize
OX

equation (9) around the trajectory (p(t),x(t)) by expanding the RHS

in a Taylor series expansion. The first order terms give the linear

differential equation

S P = 6p 6x

The solution of this equation is

<Sp(0) =

fip(c)

Jo

t-T)

r:~
I

J

6x(T)d!

T <f

and clearly — < and 6x(x) _ imply that Sp(t) I 0,
ox

In the price adjustment process described above, the supply

quantities x (t) and x (t) are treated as decision variables chosen inde-

pendently by each firm in order to maximize its total profits. If we

assume that g. (x . (t)), a convex function in x.(t), is the cost of pro-

duction at time t per unit time for firm i, then the profits accumulated

by firm i over the horizon [0,Tl '..urn be written as:





(13) n. (x.,x ) =
X 1 l

~r.t
e

T
[p(t)x

i
(t)-g..(x

i
(t))jdt 1,2

where r. is an appropriate discount: rate for firm i.

Thus, the dynamic duopoly problem we are considering (9)- (13)

is a direct application of non-zero-sum differential game theory. While

there are several approaches for solving non-zero sum differential game

problems (see [13-16] for instance), in this paper we shall consider

only the Cournot solution (sometimes referred to as Nash). Furthermore,

we shall assume that the production functions need not necessarily be

functions of time only, but that they are allowed to be " feedback" func-

tions of the current price p(t) in the market; i.e. x = ;<. ( t ,p (t ) ) and

x„ = x
?
(t,p(t)). Furthermore, as required by practical economic con-

siderations, we assume that each firm has a maximum capacity of produc-

tion X.. Thus, the admissible strategy spaces X-,
ancl Xn f°r f irras 1

and 2 respectively are defined by:

(14) = ix.(t, P (t)) :

<
x. (t,p(t)) 1 X.} for i = 1,2

The Cournot solution for this problem is therefore defined as a pair

(x',x„) with x e X-, anc < xo e Xo such that the set of inequalities in
1 2. 1 x- i.

(8) is satisfied with I' and H as given by (.13).

Upon applying the differential game results developed in [13],

the necessary conditions for the Cournot solution of the above problem

can be written as follows: First define the Hamiltonian functions:





(15) fi
i
<t,p,x

1
,x

2
,A

i
) = p(t)x

±
(t,p<t)) - g..(t,x.(t,p(t))) +

A.(t)f(p(t),x (t,p(t)) + x
2
(t,p(t))) for i = 1,2

t" 1

1

* *
where X.(t) is the adjoint variable Tor the i firm, then (x ,x ) must

satisfy the conditions (see Appendix .1).

(16a) p(t) = f(p(t),x (t,p(t)) + x
2
(t,p(t))) , p(0) = p

q

,3f 3f 3x„>

(16b) X
L
(t) - r^t) - x

L
(t,p(t)) - X

x
(t) [

- +— ¥
-)

/3f 3f 3x

(16c) X
?
(t) = r

2
A
2
(t) - x

2
(t,p(t)) - >,

2
(t) {j^ + ^-^-J

(lod) H
1
(t,p,x^,x

2
,X

1
) = max HU.p.x^x,,, A.^

V x
l

(16e) H
2
(t,p,x ,x

2
,A

2
) = max H(t ,p,x„.,x

2
,
X^)

with

(16f) X (T) = and \
2
(T) =

as boundary conditions for (16b) and (16c). In the above conditions, the

-r . t

discounting factors e have be en eliminated by redefining the adjoint

variables as described in [17].

Because of the capacity constraints (14), conditions (16d) and

(16e) can be written as:
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(17a) =0 for _ x (t,p(t)) _ X..

I

dg, 3f

(17b) P (c) - -. - + A.(t) -r— , < for x.(t,p(t)) -
dx. i. .'X.

l 1

(17c) > for x.(t,p(t)) =

for i = 1,2. Thus, the solution may exhibit any combination of the nine

possibilities of (17a)- (17c) for i = 1,2 each holding over a sub-interval

of time in [0,Tl. These possibilities are tabulated in Table 1; and

whether a possibility is a part of the solution or not is determined

by the parameters of the problem and the initial price p .

Since in general it is almost impossible to obtain an analytic

solution for the coupled partial differential equations (15)- (17), we

shall in the next section discuss the solution for the special case of

linear demand and quadratic cost functions. It is important to mention

that this special case can he considered as a first order approximation

of the local behavior of corresponding non-linear duopoly problems.

3. Linear-Quadrat ic Dynamic Duopoly Model

Let the demand function (9) be linear of the form:

(18) p(t) = c - ap(t) - b(x
1
(t)+x

2
(t))

a [- - - (x.(t) + x't)) - p(t)] (see (9))
a a 1 2

and the cost functions be quadratic of the form:
i

(19) g.(x.(t)) = (l/2)a x (t) i = 1,2li ii
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TABLE 1

POSSIBILITIES IN THE SOLUTION OF THE DUOPOLY MARKET

Possibility x
t
(t,p(t)) x

2
(t,p(c)) Firm 1

i

Firm 2

PI Out

i

Out
!

?2 o t o Out Monopolist

?3 I o Monopolist Out

P4 X
2

Out Max. Capacity
!

P5 x
l

Max. Out

Capacity

P6 1 o X Monopolist Max. Capacity

P7 h 1 o Max.
Capacity

Monopolist

P8 x
l

X
2

Max.

Capacity
Max. Capacity

P9 i o 1 o Duopolist Duopolist
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where a, b, c, a. and a
?

are positive constants. The profits over [0,T]

can be written as:

(20) !l.(:<v x
2

) -

J,

c
Vt

(p(t)x. (t)-(l./2)«.x^(t)]ilt

for i = 1,2. In (20), for the sake of simplicity we have assumed that

r = r 9
= r. The production functions x. (t,p(t)) are to be selected from

the admissible sets of controls and we assume that capacity constraints

of the form:

(21) ! x.(t, P (t)) 2 x. i = 1,2

are imposed. In (21) the function p(t) is the price trajectroy satisfying

equation (18). Furthermore, in order to insure that p(t) does not cross

< c
to the negative region, we shall assume that X. + X, _ —

. Thus, if
1 Z D

define q(t) = p(t), then it follows from (18) that

we

(22) q(t) * -aq(t)

and hence q(t) - for all t. This implies that p(t) - — for all t. The
a

region of interest is therefore a rectangle in the p - x plane defined by

2 p - ~ and _ x _ -g- . Applying the necessary conditions (15)- (17)

we ge t

:

(23a) p(t) = c - ap(t) - b (x^t ,p (t) )+x.
?
(t ,p(t) ) ) , p(0) = P<

3x (t,p(t))
(23b) Xft) = (r+a+b

L
„ ••-) \. (t) - ::.. (t ,p(t)

)

1 op 1 i

(23c) A
2
(t) = (r+a+b

Sx (t,p(t))





and

13

(23d) f = for t x. (t,p(t)) t X.

(23e) p(t) - u.x. (t,p(t)) - bA
i
(t) -\ < for x

±
(t,p(t)) =

(23f)
^

> for Xj,(t,p(t)) = X
±

for i = 1,2 and with A, (T) = A
?
(T) = 0. The sedation of the above

system of equations can be represented by the following nine possibilities

as summarized in Table 1 .

Case 1 (Possibility PI)

Condition (23e) holds for both firms. That is x (t,p(t)) = and

x"(t,p(t)) = 0. This implies that p(t) < bA. for i = 1,2. But [13]

A .
= 3V./3p where

l l

(24) V. (p,t,x
1
x
2

) =
|

e
J

-'(p(T)x(T)-(l/2).«.x-(T))dT

J r

Then, this condition means that when the price becomes less than b5V./3p

(the marginal revenues) for i = 1,2, both firms will not be accumulating

any profits and hence their best policy is to stay out of the market.

This naturally causes the price to increase since p(t) = c - np(t) > 0.

Case 2a (P2)

Condition (23e) holds for firm 1 and Condition (23d) for firm 2,

* ft

That is, x (t,p(t)) = and x.,(t
;
p(t)) > 0. This implies that
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p(t) < b3V /3p for firm 1 and p(t) > b3V /3p for firm 2; and as a result

it is only profitable for firm 2 to enter the market. Thus, firm 2 is

now acting as a monopolist with no influence from its rival firm. The

necessary conditions which maximize its profits follow directly from

(23a), (23b) and (23e). The monopolistic behavior of firm 2 has been

separately studied in [18] and the results can be directly applied in this

case. We only mention however that the optimum supply rule for firm 2

is an affine function in p(t), of the form x„(t,p(t)) = I<
2
(t)p(t) 4- E

?
(t)

where K„(t) and E„(t) are functions of time, determined, and with

properties as described in [18].

Case 2b (P3)

Condition (23e) holds for firm 2 and Condition (23d) for firm 1.

This is the dual situation of case 2a, and firm 1 will now be the

monopolist

.

Case 3a (P4)

Condition (2 3e) holds for firm 1 and condition (23f) for firm 2.

ft A
That is x (t,p(t)) = and x (t,p(t)) = X2> For firm 1 this implies that

p(t) < b3V /3p and for firm 2, p(t) > a
2

_\
2
+ bdV /3p. Thus firm 2 is a

monopolist who saturates the market with, his product collecting maximum

profits, while firm 1 cannot afford to sell the product at the prevailing

price, and therefore stays out oi the market.
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Case 3b (P5)

Condition (23e) holds for firm 2 and Condition (23f) for firm 1.

This is the dual of case 3a and firm 1 will now -place its maximum

output in the market.

Case 4 a (P6)

Condition (23d) holds for firm 1 and Condition (23f) for firm 2.

That is x (t,p(t)) _ and x
?
(t,p(t)) = X

?
. This implies that

p(t) > b9V./3p for both firms; however, for firm 2 the price is high

enough for it to place its maximum output X in the market. Firm 1 sup-

plies the remaining need of the market, and this is also done in an optimal

monopolistic way . Thus firm 1 now acts as a mon opol ist in a market de-

scribed by

(25) p(t) = c
±

- ap(t) - bx
3

where c. = c - bX„ . The solution of this case is also as discussed in
l 2

[IS] where the optimum supply rule is shown to be an affine function in

p(t) of the form x (t,p(t)) = K
1
(t)p(t) + E.(t).

Case 4b (P7)

Condition (23f) holds for firm 1 and Condition (23d) for firm 2.

That is x (t,p(t)) = X and x (t,p(t)) _ 0. This is the dual of case 4a,
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Case 5 (PS)

Condition (23f) hold.'; for both firms. That is x (t.p(t)) = K

and x,(t,p(t)) = X and p(t) > b3V./3p for both firms. Both firms place

their maximum outputs in the market and realize maximum profits without

any competitive ef fo r t

.

Case 6 (P9)

Condition (23d) holds for both firms and this represents a true

duopoly situation where both firms are actively engaged in a competitive

market. While in a.1.1 previous cases we did not differentiate between

closed-loop (feedback) and open-loop supply curves since they both lead

to the same solution: in this case we. must differentiate between them

becar.se (see' [131) their corresponding solutions are different. We

discuss each case separately.

(a) Closed- loop (feedback) Supply Curves

ft

In this ca^'-i x. are strictly functions of t and p(t). It can
r

easily be checked that the Two Point Boundary Value problem (23a'), (23b),

(23c) and (23e) admits affine supply curves as a solution. After some

simple algebraic manipulations, it can be shown {9] that:

(26) x*(t.p(t)) = — [l-bK.(t)lpCt) -- — E.(t)
i u . i ot . x

i i

where K. (t) and E.(-t) satisfy:
J. t
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(27) K. = (r+2a+ — (1-bK.) + 2 — (l-bK.))K. - — (1-bK,)

i J i

(28) !•:. = (r+a+ — (1-bK.) + — (1-bK.)) IS. - - - K. K. - K.c
i (i . :i a . ] l a . l j i.

i .1 J

for i = 1, i,2 and i ^ j. Equations (27) for i = 1,2 are

quadratic of the Riccati typo arid equations (28) are linear and can be

solved after (27) has been solved for K and K
?

. If this duopoly case

holds over a subinterval ft ,t,,]Cl [0,T], then the boundary conditions

for (27) and (28) are obtained from:

3V.

(29) Xi(t ) = —I

l jp = t.

where, X,(t), i = 1,2 are expressed in terms of K. (t) and E. (t) as:

(30) X.(t) = K.(t)p(t) + E.(t)li i
i = 1,2

The value functions V.,i = 1,2 under any of the possibilities of the

previous five cases are clearly quadratic in p(t), and hence the boundary

conditions K. (t„) and E. (t„) are readily available from (29) and (30).
i 2 i Z

(b) Open-loop Supply Curves

In addition to the above solution, the Two Point Boundary Value

problem (23a), (23b), (23c) and (23e) also admits supply curves which 'are

strictly functions of time only as solution. In this case the terms

3x./c>p in (23b) and (23c) will vanish and the solution can be obtained by

directly solving the resulting cou[>led system of linear ordinary differ-

ential equations. Another way which transforms the system into a single





point boundary problem is to follow a procedure similar to the closed-

ioop case. If we assume tbat A.(t) i = 1,2 can be written in the form:

(31) X.(t) = D.(t)p(t) + F.(t)

then (23a) and (23d) will give:

2 2

(32) p(t) = -(a + — (1-bD ) + 5-(l-bD„))p(t) + (c + -- F + — F )
a 1 a„ I a 1 a„ I

o(t)p(t) + p(t)

whose solution gives the open-loop Cournot price trajectory

(33) p (t) = p(t
x

)

a (x)dx
'1 +

L
I)d3

p(T)dT

jt
1

The open-loop Cournot supply functions are then obtained from (23d) as:

ft

ft -
CX(T)dT

(34) x?'(t) = -T (l-bD.(t))lp(t
1
)e Jr +

1 al i | 1 1

o((3)d3

T p(l)dT ^F.(t)
a . i
i

The functions D.(t) and F.(t) can be shown to be solutions of the
i i

differential equations

(35) D.(t) = (r+2a-f — (1-bD.) + —-(1-bD. ) )D . -—(1-bD.)
l a. i a. i l a. i

i .1 x

'These A.'s are different" from the closed-loop A.'s of eq . (30).
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(36) F.(t) = (r+a+ — (l-bD.))F. -—D.F.-D.c
i a

.

x i a.iji

for i = 1,2 , j = 1,2 and i ^ j

The difference between the feedback and open- loop solutions Is

due to the terms 3x. (t,p(t) ) /3p in equations (23b) and (23c) which are

set equal to zero in the open-loop case. These terms express the

awareness of one firm of the dependency of the other firm's supply policy

on the current price in the market. Ideally, both solutions guarantee

a Cournot-type equilibrium in which no firm has an incentive to cheat.

However, in the feedback case, if one firm cheats the other firm auto-

matically adjusts its supply, after detecting the resulting change in

the prevailing price in the market. In the open- loop case this cannot

be done since each firm is committed to a production program that specifies

at each t the quantity to be supplied to the market. However, in both

cases, the firm that attempts to cheat will suffer a loss in its profits.

The feedback supplies also have the desirable property that if

an external disturbance that causes the price to deviate from, its Cournot

optimal trajectory takes pJace, then a Cournot equilibrium, with profits

as defined in (24), will still hold for the remaining part of the

trajectory. This is not so in the open-loop case.

Over the interval of time where duopoly prevails (case 6) the

firms may negotiate what supply form to use. Naturally the one that

leads to more profits is more desirable. However, from the consumer's

point of view, it may seem that allowing the firms to adjust their sup-

plies according to the prevailing price of the commodity in the market,
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will result in increased profits for the firms. While this may be so

in some cases of monopolies or collusive duopolies; the competitive, non-

cooperative nature of the Cournot solution may actually result in a de-

crease in the profits of the firms.

Conclusion

In this paper, a dynamic duopoly problem where each firm is

limited by a maximum production capacity has been formulated and solved

within the framework of differential game theory. It was shown that the

Cournot solution may be a combination of various possibilities which may

include each firm either staying out of the market, or competing with

its rival for a share of the market, or placing its maximum capacity

indie market. Thus a Cournot solution of a dynamic duopoly problem

may include sub-intervals of time where one firm acts independently as

a monopolist. When a duopoly situation prevails, however, the Cournot

supply curves can be either in feedback or in open-loop forms, each

leading to a different price trajectory. Necessary conditions for each

case have been derived and it was shown that the closed-loop Cournot

supply curves are always nffine functions of the price. The marginal

supplies (i.e. 9x./8p) are shown to be functions of time that satisfy

a set of Riccati-like differential equations.
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AP P gT1di x 1

We will show how che necessary conditions (.15)— (1 7) art: derived

for i=l (firm 1). An identical derivation follows for i=2. Define

the Hamiltonian for firm 1:

H
1
(t,p,x

1
,x

2
,Y

1
) = e~

r
l
t

[p(t)x
1
(t J p(t))-g1

(x
1
(t,p(t))]

+ Yl (t) f(p(t), Xj_(t,p(t)) + x
2
(t,p(t))

then the necessary conditions are:

3H _ 3x dg 3x

(Al) Yl (t) = - ~ = -e
r
i
C

[x. + p ~ - -r--- ~ ]

1 9p 1 9p dx Dp

-Y iii + ULii + H-!*2 ) , (T) =
'l

V
3p ax 3p 3x

2
Sp

fVi-> u

and

(A2) H
1
(t,p,x

1
,x

? ,Y
1

) = Max H^t.p,x^Xj^)
X
1
EX

1

r t
Now (as done in Arrow [17]) let A = e 1 Y-, a"d define

r t
~

H (t,p,x1> x2
,X ) = e 1 H

]

(t,p,x
1
,x

9 ,Y
1

)

Condition (Al) , then reduces to:
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(A3)
*i - r

i
xrx

i
- ( p - d| +Ai^^

-x, (
-~ + ~- —h , X, (T) =

1 Dp ox dp 1

and (A2) can be written as:

= for 1 x
L
(t,p(t)) - X

d8
i af

<A4) p - -£± + A
x
|i- < for Xl (t,p(t)) -

> for x
1
(t,p(t)) = X

Furthermore we see that condition (A4) implies that:

d:-:. 1 jx. dp1 3 P

and this reduces (A3) to condition (16b).
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