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INTRODUCTION.

&quot;L ETUDE approfondie de la nature est la source la plus

feconde des decouvertes mathematiques.

Non seulement cette etude, en offrant aux recherches un but

determine
,
a Favantage d exclure les questions vagues et les

calculs sans issue
;
elle est encore un moyen assure de former

1 Analyse elle-meme, et d en decouvrir les elements qu il nous

importe le plus de connaitre et que cette science doit toujours

conserves

Ces elements fondamentaux sont ceux qui se reproduisent

dans tous les effets naturels.&quot; (Fourier.)

These words of Fourier are taken as the text of the present

treatise, which is addressed principally to the student of

ApjDlied Mathematics, who will in general acquire his mathe

matical equipment as he wants it for the solution of some

definite actual problem ;
and it is in the interest of such

students that the following Applications of Elliptic Functions

have been brought together, to enable them to see how the

purely analytical formulas may be considered to arise in the

discussion of definite physical questions.

The Theory of Elliptic Functions, as developed by Abel

and Jacobi, beginning about 1826, although now nearly
&quot; *-~~^^*~

seventy years old, has scarcely yet made its way into the
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ordinary curriculum of mathematical study in this country ;

and is still considered too advanced to be introduced to the

student in elementary text-books.

In consequence of this omission, many of the most interest

ing problems in Dynamics are left unfinished, because the

complete solution requires the use of the Elliptic Functions
;

these could not be introduced without a long digression,

unless a considerable knowledge is presupposed of a course

of Pure Mathematics in this subject.

But by developing the Analysis as it is required for some

particular problem in hand, the student of Applied Mathe

matics will obtain a working knowledge of the subject of

Elliptic Functions, such as he would probably never acquire

from a study of a treatise like Jacobi s Fundamenta Nova,

where the formulas are established and the subject is

developed in strictly logical order as a branch of Pure

Mathematical Analysis, without any digression on the

application of the formulas, or on the manner in which

they originate independently, as the expression of some

physical law.

In introducing these applications we are following, to some

extent, the plan of Durege s excellent treatise on Elliptic

Functions (Leipsic, Teubner); and also of Halphen s Traite

des fonctions elliptiqucs et de leurs applications (Paris,

1886-1891).

But while volume I. of Halphen s treatise is devoted entirely

to the establishment of the formulas and analytical properties

of the functions, and the applications are not discussed till

volume II.
;
in the following pages it is proposed to develop

the formulas immediately from some definite physical or

geometrical problem ;
and the reader who wishes to follow

up the purely analytical development of the subject is referred

to such treatises as Abel s (Euvres, Jacobi s Fundamenta Nova,
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already mentioned, or the Treatises on Elliptic Functions of

Cayley, Enneper, Kbnigsberger, H. Weber, etc.

The following works also may be mentioned as having been

consulted in the preparation of this work :

Legendre: Theorie des fauctions elliptiques ; 1825.

Thomas : Abriss einer Theorie der complexen Functionen

und der Tketafunctionen einer Verdnderlichen ; 1873.

Schwarz: Formeln und Lehrsdtze zum Gebrauche der

elliptischen Functionen.

Klein (Morrice) : Lectures on the Icosahedron ; 1888.

Klein und Fricke; Vorlesungen uber die Theorie der ellip

tischen Modalfunctionen ; 1890.

Despeyrous et Darboux: Cours de niecanique ; 1886.

R A. Roberts : Integral Calculus ; 1887.

Bjerknes: Niels Hendrik Abel; tableau de sa vie et de son

action scientifique ; 1885.

We shall begin by the discussion of the Problem of the

,
as the problem best calculated to

define the Elliptic Functions, and to give the student an idea

of their nature and importance.

Previously to the introduction of the Elliptic Functions,

the Circular Pendulum could only be treated by means of the

circular functions, by considering the oscillations as indefinitely

small, and by assimilating its motion to that of Huygens

Cycloidal Pendulum, of 1673.

But now the employment of the Elliptic Functions renders

the ordinary discussion of the Cycloidal Pendulum antiquated

and of mere historical interest, and banishes from our treatises

such expressions as
&quot; an integral which cannot be found,&quot; or

&quot;reducible to a matter of quadrature&quot; in describing an elliptic

integral, expressions which aroused the indignation of Clifford

Mathematical Papers, p. 562).
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According to the new regulations for the Mathematical

Tripos at Cambridge, to come into force in the examination

in May 1893, the schedule II. of Part I. includes &quot;

Elementary

Elliptic Functions, excluding the Theta Functions and the

theory of Transformation
&quot;

;
so it is to be hoped that this

reintroduction of Elliptic Functions into the ordinary mathe

matical curriculum will cause the subject to receive more

general attention and study. These Applications have

been put together with the idea of covering this ground by

exhibiting their practical importance in Applied Mathematics,

and of securing the interest of the student, so that he may if

he wishes follow with interest the analytical treatises already

mentioned.

We begin with Abel s idea of the inversion of Legendre s

elliptic integral of the first kind, and employ Jacobi s notation,

with Gudermann s abbreviation, for a considerable extent at

the outset.

The more modern notation of Weierstrass is introduced

subsequently, and used in conjunction with the preceding

notation, and not to its exclusion
;

as it will be found that

sometimes one notation and sometimes the other is the more

suitable for the problem in hand.

At the same time explanation is given of the methods by

which a change from the one to the other notation can be

speedily carried out.

It has been considered sufficient in many places, for instance

in the reduction of the Integrals in Chapter II., to write

down the results without introducing the intermediate analysis ;

as the trained mathematical student to whom this book is

addressed will have no difficulty in supplying the connecting

steps, and this work will at the same time provide instructive

exercises in the subject ;
and further, in the interest of such

students, many important problems have been introduced in
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the text, forming immediate applications of theorems already

developed previously.

I have to thank Mr. A. G. Hadcock for his assistance in

preparing the diagrams, and in drawing them carefully to

scale.

ERRATA.

Page 6. Line 9 from bottom, read Huygeiis.

42. Line 6, read sin&quot;
1 */ -.V x-y

48. Line 5 from bottom, read -
4tt-(9e- -r 4/r)

J
.

64. Line 19, read Fonctions elliptiques.

99. The diagram must be replaced by the one given below.

The Xodoid in fig. 12, p. 99, was described by a point

which was not a focus of the rolling hyperbola.

107. Line 2 from bottom, delete minus sign before radical.

138. Equation (7), read (r.,
2 -

ctf/D.

158. Line 12, read 3QX(x, y).

205. Line 6 from bottom, read $(u -
v)

-
$&amp;gt;(u

+ v).

213. Line 7 from bottom, read G + Lx - X(yz - y ~] -

with the corresponding subsequent corrections.

227. Line 7, read Ps/-Yi + Q\ ;-Y2
= -

282. Line 5 from top, for rectangle read ribbon.

328. Line 12 from bottom, read Pw. L. M. .?., IX.



ABBREVIATIONS.

Q. J. M., Quarterly Journal of Mathematics.

Proc. L. M. S., Proceedings of the London Mathematical Society.

Proc. G. P. $., Proceedings of the Cambridge Philosophical Society.

Am. J. M., American Journal of Mathematics.

F. E., Fonctions elliptiques (Legendre and Halphen).

Math. Ann., Mathematische Annalen.

Phil. Mag., Philosophical Magazine.

Phil. Trail*. Philosophical Transactions of the Royal Society of London.

Berlin Sitz., Sitzungsberichte der Berliner Akademie.



CHAPTEK I.

THE ELLIPTIC FUNCTIONS.

1. The Pendulum; introducing Elliptic Functions into

Dynamics.
When a pendulum OP swings through a finite angle about

a horizontal axis 0, the determination of the motion introduces

the Elliptic Functions in such an elementary and straight

forward manner, that we may take the elliptic functions as

defined by pendulum motion, and begin the investigation of

their use and theory by their application to this problem.
Denote by W the weight in Ib. of the pendulum, and let

OG= h (feet), where G is the centre of gravity ;
let Wk2 denote

the moment of inertia of the pendulum about the horizontal

axis through G, so that W(h*+ k2
) is the moment of inertia

about the parallel axis through (fig. 1).

Then if OG makes with the vertical OA an angle 6 radians

at the time t seconds, reckoned from an instant at which the

pendulum was vertical
;
and if we employ the absolute unit

of force, the poundal, and denote by g (32 celoes, roughly)
the acceleration of gravity, the equation of motion obtained

by taking moments about is

since the impressed force of gravity is Wg poundals, acting

vertically through G
;
so that

or, on putting h+ k*/h
=

I,

G.E.F.
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If the gravitation unit of force, the force of a pound, is

employed, then the equation of motion is written

w Jlftfr/TO . 7 O\*-^ v/ TTTf &quot; /\

(A.
2+&2

)-p
= Wh sm 0,

reducing to (1) as before.

2. Producing OG to P, so that OP = l, GP = k2
/h, the point

P is called the centre of oscillation (or of percussion) ;
and is

called the length of the simple equivalent pendulum, because

the point P oscillates on the circle AP in exactly the same

manner as a small plummet suspended by a fine thread from

(fig. 2); as is seen immediately by resolving tangentially

along the arc AP = s = l9
)
when the equation of motion of

the plummet is = g sin#=

or I(d
2
0/dt

2
)= -g sin#; ........................ (1)

and integrating, U(dO/dt)
2= C-gversO.........................(2)

These theorems are explained in treatises on Analytical

Mechanics, such as Kouth s Rigid Dynamics, or Bartholomew

Price s Infinitesimal Calculus, vol. IV., and might have been

assumed here
;
but now we proceed further, to the complete

integration of equation (2).

3. First suppose the pendulum to oscillate, the angle of

oscillation BOA +AOB being denoted by 2a (fig. 2); the angle
of oscillation is purposely made large, as in early clocks, in the

Navez Ballistic Pendulum, in a swing, or as in ringing a

church bell, so as to emphasize the difference from small

oscillations, the only case usually considered in the text

books
;
in

fig. 2 the angle of oscillation is made 300.

Then dO/dt = when 6 = a, so that in equation (2)

(7=# versa
;

and now denoting g/l by n2
,
so that n is what Sir W. Thomson

calls the speed (angular) of the pendulum,

^(dO/dt)
2 = n2

(vers a - vers 0)
= 2?i

2
(sin

2
Ja-sin

2
^), ..............................(3)

since vers = 2 sin2J0 ;

dO/dt= 27ix/(sin
2
ia -sin

2
i0),

and nt-f ^_-.. . ..(4)
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and (4) is called by Legendre an elliptic integral of the first

kind ; it is not expressible by any of the algebraical, circular,

or hyperbolic functions of elementary mathematics.

4. To reduce this elliptic integral to the standard form con

sidered by Legendre, we put
sinA0= sinJa sin 0,

equivalent geometrically to denoting the angle ADQ by

(fig. 2), where AQD is the circle on AD as diameter, touching
BBf

in D, and cutting the horizontal line PN in Q.

For, in the circle AP,

and, in the circle AQ,
AN= \AD vers 2$ =AD sin2

= I vers a sin2 = 21 sin2|a sin20.

Now sin2 \ a sin2
J$ = sin2

|a cos2

0,

and J$= sin
~ 1

(sinJa sin 0),

so that dle= .^i*.* *ft, v
^/(l snrja sm

2

0)

and therefore nt= fr--r~r ^r-, &amp;gt;J ^/(1-siu
2iasm2

^,)

which is now an elliptic integral of the first kind, in the

standard form employed by Legendre.

(Fonctions Elliptiques, t. I., chap VI.)

5. In Legendre s notation, sin-Jet is replaced by ic; the quantity
ic sin2

&amp;lt;)

is. denoted by A&amp;lt;/&amp;gt;

or A(0, K) ;
and the integral

ry(l-/c
2 sin2^)-^ is denoted by F&amp;lt;f&amp;gt;

or
I\&amp;lt;J&amp;gt;,K),

and called the elliptic integral of the first kind, being called

the amplitude and K the modulus.

Thus, in the pendulum motion,

nt^Ffj), or
F(&amp;lt;/&amp;gt;, sinja).

Legendre employs c instead of K, and puts K= sin 6 (a different

^ to what we have just employed) and calls the modular

angle ; and he has tabulated the numerical values of
F((/&amp;gt;, K) for

every degree of and 0. (Fonctions Elliptiques, t. II. Table IX.)

Legendre spent a long life in investigating the properties of

the function
Fc/&amp;gt;,

the elliptic integral of the first kind
;
but the

subject was revolutionised by the single remark of Abel (in
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1823), that
F(j&amp;gt;

is of the nature of an inverse function
;
and that

if we put u
F(f&amp;gt;,

then we should study the properties of 0,

the amplitude, as a function of u, and not of u as a function

of
&amp;lt;j&amp;gt;,

as carried out by Legendre in his Fonctions Elliptiques.

6. Jacobi proposed the notation = am u, or am(it, /c)
when

the modulus K is required to be put in evidence
;
and now,

considered as functions of u, we have Jacobi s notation

cos &amp;lt;

= cos am u, sin &amp;lt;

= sin am u,
A&amp;lt;/&amp;gt;

= A am u,

the three elliptic functions of u\ and in Jacobi s Fundamenta
Nova (1829) the properties of these functions,

cos am u, sin am u, A am u f

are developed, the elegance of Jacobi s notation tending greatly

to the popularity of this treatise.

7. Definition of the Elliptic Functions.

Jacobi s notation is rather lengthy, so that nowadays, in

accordance with Gudermann s suggestion (Tkeorie der Modular

Functionen, Crelle, t. 18), cos am u is abbreviated to en it,

sin am u to sn u, and A am u to dn u
;
and

en u, sn u, dn u
are the three elliptic functions (pronounced, according to Hal-

phen, with separate letters, as c, n, u ; s, n, u ; d, n, u) ;
and they

are defined by
en u= cos 0, sn u = sin 0, dn u = A&amp;lt;

= ^/(l /c
2 sin2

&amp;lt;) ;

where ^ is a function of u, denoted by am u, and defined by
the relation

so that
/~amtt

u = A/( 1 /c
2 sin2

0)
-

$d&amp;lt;j&amp;gt;
;

cZam u
d(j&amp;gt;

.

-&amp;gt;and
Y
-=

j

r
^/ (I K&quot; smz

(p)
= dnit.

rp, dcnu dcosd . dd&amp;gt;

Thence ,
=

,
= sm0-^-= snudnu:

du du * du
and similarly

d sn u d sin c?0
7

-=
7

- = cos -f-
= en u dn u

;du du ^ du
n u

&amp;lt;j&amp;gt;

/rsn d&amp;gt; cos c&amp;lt;

and , = ~rt-= ---- - ^ = /c
2sn i^ en udu du A0 cZt6
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8. Returning now with these definitions and this notation

to the motion--o-~ilie^ pendulum, we have, on comparison,
u= nt, while K= sin

|&amp;lt;v\so
that the modular angle is \a ;

and K= AD/AB= AB/AE, K
* =AD/AE (fig. 2) ;

also ^ = am u, cos == en u, sin
&amp;lt;/&amp;gt;

= sn u, d&amp;lt;f&amp;gt;/dt

= n dn u
;

d6/dt = 2nic cnu= 2 /i/c en nt,

sin|$= K sn u = K sn nt,

cos J(9
= dn it = dn ?i

;

AN=AD srfnt, ND =AD en2
*, NE=AE dn*nt

;

giving these quantities as elliptic functions of u or nt.

9. We notice that ic= for infinitely small oscillations of

the pendulum, the only case usually treated in the text-books ;

and now
&amp;lt;j&amp;gt;

= u = nt, so that

en u = cos u, sn u = sin u, while dn u = 1
;

and the elliptic functions have degenerated into the ordinary

circular functions of Trigonometry.

But in finite oscillations of the pendulum, where K is not

zero, these new functions are required, which are called the

elliptic functions; and their geometrical definition is exhibited

in fig. 2, in a manner similar to that employed in Trigonometry
for the circular functions.

The name elliptic function is somewhat of a misnomer ;

but arose from the functions having been first approached by
mathematicians in their attempt at the rectification of the

ellipse ( 77).

For finite oscillations the circular functions are applicable

only to cycloidal oscillations, as discovered by HuygKens, 1673,

whence the motion on the arc of a cycloid is generally investi

gated at length in elementary treatises
;
but this discussion

may be considered as of mere antiquarian interest, now that we

are proceeding to discuss the finite oscillations of the pendulum

by the aid of the elliptic functions.

We may however make here a slight digression on cycloidal

oscillations, treated in the manner we have employed for

circular oscillations.
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10. Gydoidal Oscillations.

In the cycloid, fig. 4, the angle ADQ or
&amp;lt;j&amp;gt;

= nt (not &mnt,
as in the circular pendulum) for all finite oscillations

;
for

as P oscillates on the arc BAB of the inverted cycloid

described by the rolling of the circle AE, Q follows P at the

same level on the circle AD with constant velocity.

For if PQF meets the circle on AE as diameter in R, then,

from a well-known property of the cycloid, the tangent TP is

equal and parallel to A R, and half the arc AP
;
and if n, p, q, r

denote simultaneous consecutive positions of N, P, Q, R,

the velocity of Q _
^
Qq _ , Qq, Nn

the velocity of P Pp
~~

Nn Pp
= cosec qQP sinpPQ = cosec AFQ sin AER

= _ IAN.AE
N

Now the velocity of P = ^(jlg . ND)
and therefore the velocity of Q = ^AD Mti/(2g/AE)

= AD^(g/l) = n . AD, a constant,

if AE=\l; and therefore the angular velocity of Q about D
is n, and the angle ADQ =

&amp;lt;p

= nt.

Therefore the oscillations are isochronous, since the period
is independent of the amplitude of oscillation.
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But in the circular pendulum the period increases with the

amplitude or angle of oscillation; because in the circle AP
(fig. 2) the versed &quot;sine AN varies as the square of the chord

AP, while in the cycloid AP (fig. 4) the versed sine AN varies

as the square of the arc AP.
The time from P to A on the cycloid is equal to the c.m.

(circular measure) of the angle ADQ divided by n or +J(gjl) ;

and generally the time over any finite arc Pp of the cycloid
will be equal to the c.m. of the corresponding angle QDq divided

by n, supposing the body to start from the level of D.

This will be true even when the point D is above E, as at

D f

, so that the body enters the cycloid with given velocity ;

as for instance in the case of a railway train entering with

given velocity V a cycloidal tunnel BAB under a river.

Making DD = ^V2
/g, the impetus of the velocity V, then

the time occupied by the train in the tunnel from B to B is

twice the c.m. of AD C divided by n.

Also if the length of the tunnel is 2s, then s= ^/(2lh), if

AD, the depth or versed sine of the tunnel, is h
;
so that the

time occupied is

2, .DC II. , IAD 2s If h

11. The Period of the Pendulum, and of the Elliptic

Functions.

The ^period of the pendulum is the name now given to

the time of a double swing, according to the report of a Com
mittee at the Conference of Electricians in Paris, 1889 :

thus, if the swing is small, the period is 27rx/(/&amp;lt;/)
seconds.

But if the angle, of vibration 2a is finite, the period is in

creased
; denoting the period by T, and therefore the quarter-

period, or time of motion of P from A to B (fig. 2) by %T,
then as t increases from to \T, increases from to a, and

from to J?r, so that nt or u increases from to K, where ( 4)

and K (or FIK in Legendre s notation, and called by him the

complete elliptic integral of the first kind) is now called the

real quarter period of the elliptic functions, to the modulus K.
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Now, expanding by the Binomial Theorem,

z=1

and, by Wallis s Theorem,

/IT
(sin

Thus the period of a pendulum of length I, oscillating through
.
an angle 2a, is

As a first approximation therefore in the correction for am

plitude of swing, the period must be increased by the fraction

J(sin |-)
2 of itself, or by 100(^ chord of a)

2
per cent.

Thus a pendulum, which beats seconds when swinging

through an angle of 6, will lose 11 to 12 seconds a day
if made to swing through 8, and 26 seconds a day if made to

swing through 10. (Simpson s Fluxions, 464.)

The value of K or / V has been tabulated by Legendre
for every degree and tenth of a degree in the modular angle

(Fonctions Mliptiques, t. II., Table I.).

We denote the modular angle by Ja, and put /c = sinja;
while cosja is denoted by K arid called the complementary
modulus, so that

i 2 1
K-+ K

~= 1
;

and then FI

K is denoted by K ,
and called the complementary

quarter period.

The following table (from Bertrand s Calcul Integral, p. 714),

gives the logarithms of the quarter periods /i&quot; and -ZiTjCorrespond-

ingtoeveryhalf degree in Ja, the quarter angle of swing; and then

2/oc = sin a, /c = sinja, //^cosja,
and ia is the modular angle.

The modular angle in the Table is given from to 45
;

to

determine K for a modular angle greater than 45, we look

out the value of K corresponding to the complementary modu
lar angle.
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&amp;gt;O O O O ip O O O &amp;gt;O p O p O O \O O ip O O O p O &amp;gt;O O

(N &amp;lt;N (M ^ ^H
eOOGOtOCC G51.-^iOOlOGOCO *C^

&amp;gt; lOOOOCiCiOCiOOOCOGOGOCOl^l^
rerccCC^&amp;lt;^&amp;lt;N(&amp;gt;lC^C^C&amp;lt;lC^Cv|&amp;lt;^C&amp;lt;laN

8^
01 co cc cc

ig i i CC -^ CO GO Oi --I

coi

o p p p &amp;gt;o p ip p o p o p O p

p p &amp;gt;p

O US O iO O O O O O 5

OOGQl-tODOiO-*iTt&amp;lt;CCCC(M&amp;lt;Nr-i,-&amp;lt;OOa5
JCOCOCDCOCOCOCOCOCOCOCQCDCOCOCDCOCOCOlO

GSCOfNCOcoco-HCOOOcOCOi i

c^ccr-^ccaoioccciTfiiOi iC^r2CCO - CCO5OlO^
^ wl O Oi O i i

C&amp;lt;1 iO i&quot;- O
- CC O L- IO (M O CO CC t I

t&amp;gt;. CO CC 1^ CiOOiOOirHC
&amp;lt;MOOCDrt&amp;lt;^coOilOC&amp;lt;lO CCQO^fC^rHCCCi)^H

i CO &amp;lt;N t^ CO O5 O i-H OO -O &amp;lt;M C5 CO CO i i O5 r IO CC (N
-^ IO O I GO Ci

CO CO i i O5 r IO CC (N O
^H(NCO ^lOCCl GO

p o p ip p ip p ip p p p ip p &amp;gt;p p o p ip p p p o p ip p ip p ip pop

^CCi ilOOi iCCL t&amp;gt;-OCClO OOr-iCOCOOSiOlOL^-GMCiGC^iCCr-^i i^^i I

3 h- IQ i I CO O I&amp;gt;- l&amp;gt;- IO CC (N C&amp;gt;J CO Tfl IO !- Gl (&amp;gt;4 IO GO C-4 IO Ci ^ GO (M I C^l 1- CM
CC GO CC O I IO CC (M O O5 CO I O IO * CC (M i i i O C5 O GC l^ t- CO CO UO iO Tf ^
Sl^-l&amp;gt;.l^.COCOCOCOCOO OiOiOiO 1OiOOOiOiO ^ ^^ -

rf-ti^-Tt&amp;lt;Tti rti^t(Tti

CJGOCC fCNCOl^-lOClOl i I

40 ^

p p p p p p &amp;gt;p p ip p p p
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p P p p O p Lt O ut p ip p p O ip O O p ip p O p O O O p \~ O p O

-e-

cccocot^ oc:c&amp;lt;&amp;gt;cic:o-icot-ou:r:i^!M-^ccc5XOiCM&amp;lt; ;c M -cc
r-H C4 CO IO t&amp;gt;&amp;gt;O C4 IO O) CN C 1-1 IOO CD &amp;lt;

t&amp;gt; COO t ^ ^H O&amp;gt; &amp;lt;X&amp;gt; COO ^ ^1 -^ -V
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12. We notice that when the modular angle is 15, then

log K lK =-2385606=1 log 3, so that K /K=^3:
this will be proved subsequently ;

but it shows here that the

period of a pendulum oscillating through 300 is ^/3 times the

period when the pendulum oscillates through 60.

Again we shall prove subsequently that,

if K/K=J t

7,iheiL2icK = l ,

so that equal parallel horizontal chords, BE the higher, and

W the lower, each of length one-eighth the diameter, cut off

arcs of the circle below them, which would be swung through

by the pendulum in times which are in the ratio of ^/l to 1.

Many other similar numerical examples can be constructed

when the Theory of the Complex Multiplication of Elliptic

Functions is studied.

13. When a=j7r, the pendulum drops from a horizontal

position and swings through two right angles, as in the Navez
Electro-Ballistic Pendulum

;
and now K=K

,
and the modular

angle is JTT.

Table II. from Legendre s Fonctions Elliptiques, t. II., gives

to five decimals the value of u =
F&amp;lt;f&amp;gt;

for every half degree in

the value of
&amp;lt;,

when the modular angle is 45
;
and thence by

means of the preceding formulas which determine the motion

of the pendulum by elliptic functions, the pendulum can be

graduated so as to measure small intervals of time A = Au/%,
as required for electro-ballistic experiments.

Then from Table II., when K=K
,
and K= K=$J2,

en u= cos
&amp;lt;,

sn u = sin
&amp;lt;,

dn u = ^/(l J win 2

^).

14. Generally in the pendulum, K=^nT, so that the period

When /c
=

0, K=\ir, and the period is ^^(l/g), as proved
otherwise in the ordinary elementary treatises, for small

oscillations of the
pendulum^

But in the finite oscillations of the pendulum, with

then ( 8) dO/dt = lnK en 4-Kt/T,

,sin-0= K

Putting
= 0, 16 = 0, we find

cnO = l, snO = 0, dnO=l ;
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and putting t = J7
7

,
u= K, =

JTT,

when the pendulum has swung to OB,

en A&quot;
= cos JTT

= O, sn K=l, dn K= K
;

while putting t = \T, u = 2
A&quot;,

when the pendulum is swinging backwards through the verti

cal OA, cu2K=-l,sn2K=0, dn2A =l;

analogous to the values of cos and sin 0, for $= 0, ^TT, TT
;

so that 2K is the Aa/ period of the elliptic functions, corre

sponding to the half period TT of the circular functions.
rir (p rir /-$

Since /c?0. A&amp;lt;
=Yd0/A0 /d&amp;lt;f&amp;gt;/&&amp;lt;f&amp;gt;

= 2K u, if = am u,000
therefore am(21Ttt)= -jr&amp;lt;p= 7ramt;
and generally am(2m A&quot; u) = m?r = m?r am ^6

;

so that cn(2??iJ*ri6)
=

COS(??ITT am IL)
=

( 1 )
y cn u,

sn(2mKu) = sin(m7rain u)=( l)
msn u,

while dn(2m-fiT it)
= dn u :

analogous to cos(m?r 6)= ( l)
mcos 0,

sin(m7r#) = (
-

l)
?nsin

;

and representing the motion, ??i half periods, past or future.

15. The degenerate Circular and Hyperbolic Functions.

As a increases from to TT, K increases from to 1, and K
from

|-TT to infinity; the pendulum has now, with /c = l, just
sufficient velocity to carry it to the highest position, and this

will take an infinite time.

For with a = ?r, equation (3), page 3, becomes

I (dO/dt)
2=

rr(l + cos 0) = 2n2 cos2
J0 ;

=
log tanJO+ 6) = log(secJ0+ tanJ0),

which is infinite when O= TT.

In Small oscillations the period is 27r/n, and the motion of

M, the projection of P on the horizontal axis Ax, is then a

Simple Harmonic Motion (s.H.M.) given by the differential

d2x
equation _+n-x= 0,

the solution of which is

o; = .4cos^, or Bsmnt, or A cosnt+Bsmnt, or acos(7i^-f e) ;

so that n is the constant angular velocity round D of the point

Q on the infinitesimal circle AQD, as in the cycloid.
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In Kepler s Problem in Astronomy, n represents what is

called the mean motion of a planet or satellite, and nt ornt+e
the mean anomaly ; a satellite of Jupiter, when observed in

the plane of its orbit, supposed circular, will appear to move
with a s. H. M.

But with *==!, putting J0 = = angle AEP (fig. 3)
nt =ysec 0^0 = log(sec + tan 0),

so that sec + tan
&amp;lt;f&amp;gt;

= e
nt

,

sec tan = e~ w&amp;lt;

,

sec =
\(e

ni+ e~ nt
)
= cosh nt,

tan =
(e

nt- e
~ nt

)
= sinh nt,

sin
(f&amp;gt;

= tanh nt, cos = sech nt,

tanJ0 = tanhJ?i, and so on.

Also dO/dt= 2n cosJ0 = 2n sech nt
;

so that if the angular velocity of the pendulum in the lowest

position OA is 2n, the pendulum will just reach the highest

position OE ;
but the time occupied in reaching it will be in

finite, since 6 = 7r, 0=.j7r makes nt and therefore t infinite.

The velocity of P in any position is

l(dO/dt)
= 2nl cosW = n . EP,

and therefore varies as EP.
If EP in

fig. 3 is produced to meet Ax in M
t
then

AM =AE tan0= 21 sinh nt, EM =EA secJ0= 21 cosh nt
;

so that, if AM or EM is denoted by x,

d2x
-n*x-0

~dt*

the general solution of which differential equation is

x A cosh nt-\-B sinh nt.

16. When the pendulum just reaches the highest position

OE, ic = l
;
and u (or nt) and 0, the c.m. of the angle AEP,

are connected by the relations

u =y*sec d&amp;lt;j&amp;gt;

=
log (sec

&amp;lt;f&amp;gt;

+ tan 0)

= cosh
~ ^ec $ = sinh

~ Han
&amp;lt;p

= tanh - 1sin = 2 tanh ~ :tanJ0.

Conversely
= cos

~ 1sech u= sin
~ atanh u = tan

~ Jsinh u = 2 tan ~ Hanh Ju ;

and then is called by Professor Cayley the Gudermannian
of u, and denoted by gdu; so that if = gdu, then

u = gd
&quot; J =

log (sec + tan 0) = cosh
- ^ec 0, etc.
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Holiel proposes for
&amp;lt;p

the name of hyperbolic amplitude of

16, with the notation = amh u, instead of gd 16
;
so that

amh u

sec &amp;lt;&amp;gt;d

16=/S&amp;lt;

o

or ^ = arnh u = /sech udu = cos
~ 1sech 16 = sin Hanh u, etc

;

analogous in the general case of the elliptic functions, for any
modulus /c, to ( 7)

= / u, etc.

As degenerate forms, when K = 1
,

en it = sech u, sn 16= tanh u, dn u= sech u
;

while, with /c = 0,

en u = cos 16, sn u = sin it, dn u = 1 .

Thus, when /c = l, the elliptic functions degenerate into the

hyperbolic functions
; and, when K = 0, into the circular func

tions
;
but with any other value of the modulus K, the elliptic

functions must be considered as new functions, of a higher

order of complexity than the circular or hyperbolic functions.

The following Table, from Legendre, F. E., t. II., Table IV.,

gives the values of

16= log (sec 4- tan
&amp;lt;/&amp;gt;)

=
log tan(JTT+ J0)

for every degree of radians
;
whence the numerical values of

the hyperbolic functions of u can be determined, by aid of a

table of circular functions, and by the relations

cosh u = sec 0, sinh u = tan
&amp;lt;p,

tanh u = sin 0, ....

For values of u greater than about 4 the Table fails
;
but

then it is sufficient, to two decimals, to take

cosh u = sinh u = Je
M

;

Iog10
cosh 16= Iog10

sinh u =Mu log 2
;

or, to a closer approximation,

Iog10
cosh u = MIL log 2 -fMe ~ 2u

,
. . .

,

Iog10sinh u Mu log 2 Me ~ 2
&quot;,

. . .
,

Iog10
tanhu= -2 Me~ 2u

...,

M denoting the modulus Iog10e.

(Proposed Tables of Hyperbolic Functions, Report to the

British Association, 1888, by Prof. Alfred Lodge.)
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TABLE TIL
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Considered. as a function of the latitude
&amp;lt;,
u was called the

meridional part by Edward Wright, 1599, who first employed
it for the accurate construction of the parallels of latitude on

the Mercator Chart, by making the ratio of the distance from

the equator of the parallel of latitude &amp;lt; to the distance between

the meridians whose difference of longitude is equal to the

ratio of
u/&amp;lt;j&amp;gt; ( 98).

17. Returning to the general elliptic functions, we notice

that en2u+ sn2u= l,

dn2u -f- /c
2sn2w,= 1

,

or, in a tabular form,

en sn dn

en u 7(1-811%)
snu

dnu

whence any one of the three elliptic functions en, sn, dn, can

be expressed in terms of any other
;
the three functions are

thus not absolutely necessary, but all three are retained and

utilized for simplicity of expression, as sometimes one and

sometimes another is most appropriate for the particular pro
blem in hand

;
in the same way, of the circular functions

cos 9, sin 9, tan 0, cot 9, sec 9, cec 0, vers 9,

one would be sufficient, but all are useful
;
and so also with

the hyperbolic functions cosh u, sinh u, tanh u,

For the reciprocals and quotients of the elliptic functions

en, sn, dn, a convenient notation has been invented by Dr.

Glaisher, according to which 1/cn u is represented by nc u,

1/sn u by ns u, 1/dn u by nd u, en u/dn u by cd u, and so on.

In this manner sn u/cn u would be denoted by sc u
;
but it

is more commonly denoted by tanam u, abbreviated to tn u
;

while en u/sn u or cs u would be denoted by cotam u, or ctn u.

, According to Clifford (Dynamic, p. 89) we might abbreviate

the designation of the hyperbolic cosine, sine, and tangent to

he, hs, and ht
;
or we may write them ch, sh, th

;
with en, sn,

tn for the elliptic functions
;
and merely c, s, t for the circular

functions.
G.E.F.
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18. Pendulum performing complete revolutions.

Secondly, suppose the pendulum performs complete revolu

tions (fig. 3).

We have seen previously ( 15) that if the pendulum has

an angular velocity 2n = 2^/(g/l) in the lowest position, it

will just reach the highest position; and therefore if this

angular velocity is increased, the pendulum will perform com

plete revolutions.

The integration of equation (1) in the form

or ^v
2
/g+ANAD, a constant, denoted by 2R,

shows that the velocity of P is that which would be acquired

in falling freely from the level of a certain horizontal line

BDB
,
which now does not cut the circle, as in fig.

2 when the

pendulum oscillated, but lies entirely above the circle, as in

fig. 3, at a height 2R above the lowest point A ;
and the im

petus of the velocity of P is the depth of P below BB .

Denoting the angle AEP by 0, so that =
|$, then

2l2

(d&amp;lt;p/dt)

2= g(2R I vers 20) == 2g(R .

/cZ0\
2

g
or

l-^-J
= -

on putting /c
2= l/R = AE/AD ;

and n2
=g/l, as before

;

so that nt/K =f(l
- K2 sin20)

-
cZ0

= P(0, K\

in Legendre s notation
;
and inverting the function according

to Abel s suggestion, with Jacobi s notation,

and now, with Gudermann s abbreviated notation,

cos ^0= en. nt/K,

d0 ^n , ,,

di
=

K
/*

AN= I vers = 2Z sin2 = AEsn2
nt/K ,

NE AE cri*nt/K, ND =AD dn2
nt/K,

AP =AE sn nt/K, PE=AE en nt/K,

NP = 21 sin ^0 cos J$ =AE sn nt/K en nt/K.
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19. The time of moving from A to E is obtained by putting
= IK, and is therefore Kic/n ;

and therefore the period, or

time of a complete revolution, is 2KK/n (not 4jfic/n).

With the series for K as given in 11, and with K2

the period of the pendulum for a complete revolution is

The analogous expression for the period when the pendulum
oscillates, rising on each side to a height 2R, less than 21, is,

as in 11,

8

Putting /c= 1, and R = I, makes K infinite, and brings us back

again to the separating case between oscillations and complete
revolutions of the pendulum ;

and we thus regain for this

case the original expressions involving hyperbolic functions,

previously investigated in 15.

But as K now diminishes again from 1 to 0, the pendulum
revolves faster and faster, until finally, when Ac= 0, we must

suppose the pendulum to revolve with infinite angular velocity,

the fluctuations of which for different positions of P are in

sensible
;
and the period is now zero.

20. We notice that, in the circle AQ (fig. 2) the point Q
moves according to the law

^ = am nt,

so that Q moves round in a circle, centre 0, in fig. 2 like the

point P making complete revolutions in fig. 3.

But now, in the motion of Q, gravity must be supposed
diluted from g to K4g ;

for if R or K-l denotes the radius of the

circle A Q, g the diluted value of gravity, and n =
*J(g /R) the

speed of the pendulum CQ, then we must have

$ = am nt= am rit/K,

so that n = Kn

We may dilute gravity in the circle A Q by inclining the

plane of the circle to the vertical at an appropriate angle.
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21. Another way of diluting gravity would be to replace the

circle AQ by a fine tube in the form of a uniform helix with

horizontal axis through its centre G perpendicular to the plane
of the circle AQ, and to suppose the particle Q to move in this

helix under gravity.

Then we shall find that if the length of one complete turn

of this helical tube is equal to the circumference of the circle

AP, the particle Q moving with velocity due to the level of E
will follow the motion of the particle P moving on the circle

AP with velocity due to the level of D, so that PQ will always
be horizontal, if once it is horizontal, and P, Q will always be

at the same level during the motion.

For in this case the mechanical similitude is secured by in

creasing the square of the velocity of Q in the ratio of 1 to

l//c
4

,
instead of diluting gravity to /c

4
&amp;lt;/.

We may secure the same effect by supposing Q to be a point
on a pendulum CQ , of length greater than GQ ;

or else of length

GQ, but of which the axis (7 is cut into a smooth screw of

appropriate pitch ;
or else engaging with teethed wheels, so as

to increase the angular inertia about G.

22. If we produce GQ to any fixed distance CQ =l
,
then Q

will also perform complete revolutions like a pendulum of

length ,
with gravity changed in a certain fixed ratio depend

ing on I
;
and we can keep gravity unchanged by choosing I

so that n 2=
g/l

= KV= K2
g/l,

or I =
l/K

*= lcosec2
a;

and now Q revolves with velocity due to a level at a height

2//c
4= 2cosec4

Ja above its lowest position; so that the period of

revolution of a simple pendulum of length I cosecHa, when the

velocity is due to the level of a line at a height 2cosec4
Ja above

its lowest point is equal to the time of oscillation of a simple

pendulum of length I through an angle 2 from rest to rest.

These problems on the pendulum have been developed here

at some length, in accordance with the idea of this Treatise,

that it is simple pendulum motion which affords the best

concrete illustration of the Elliptic Functions.

Similar principles are involved in the following three

theorems, which the student can prove as an exercise in the

manner employed for the cycloid in 10.
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1. If two vertical circles, of diameters AD and AE, touch at

their lowest points A, the time of oscillation from rest to rest

of a particle in the circle AE with velocity due to the level

of D will be to the time of revolution of a particle in the

circle AD with velocity due to the level of E in the ratio of

AEio AD (fig. 2).

2. Two particles move, under gravity, in vertical circles.

The one oscillates
;
the other performs complete revolutions.

Prove that if the height to which the velocity of the first is due

bears to the diameter of the first circle the same ratio as the

diameter of the second circle bears to the height to which the

velocity in it is due (the heights being measured from the low

est points of the circles) the ratio of the squares of the times

in corresponding small arcs and therefore the squares of the

whole times of oscillation and revolution will be that com

pounded of either of the before-mentioned equal ratios and

the ratio of the diameters of the circles.

3. Two equal smooth circles are fixed so as to touch the same

horizontal plane, their planes being at different inclinations
;

two small heavy beads are projected at the same instant along
these circles from their lowest points, the velocity of each bead

being that due to the height of the highest point of the other

circle above the horizontal plane, show that during the motion

the two beads will always be at equal heights above the hori

zontal plane.

23. We have compared the motion of the pendulum in
fig.

1

with that of the simple equivalent pendulum composed of

the particle P moving on a smooth circle, or at the end of a

fine thread or wire OP ; oscillating from B to E in fig. 2, and

performing complete revolutions in fig. 3, the velocity of P at

any point being that acquired in falling from the level of D.

Taking as coordinate axes the horizontal and vertical axes

Ax and Ay through A, and referring the motion of P to the

coordinates x and y, then since P describes the circle AP of

radius I, x2 = 2ly y
2
.

Denoting by v= ds/dt the velocity of P, then by the principle

of energy i^
2
/#
= 2P y,

2R denoting the height of D above A.
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dx l

But since --

_ dx2

_ V
*~ +2~-

while (ds/dt)
2=g(2R- y) ;

so that l
2
(dy/dt)

2
=g(2R- y)(2ly

-

dt I

called an elliptic integral in /, and of the ^rs^ kind.

24. Firstly, if the pendulum oscillates, R is less than I, and

2/ oscillates between and 2R
;
and the integral is reduced to

Legendre s canonical form by putting y = 2R sin2
;
when

nt =(! - K2 sin2
)

-
4d = ^(0, /c),

where K2= R/l, n
2
=g/l ,

and therefore with Jacobi s and Gudermann s notation,

and y = 2J? sn% = 2^/c
2 sn2

?i^ a;= 2fo sn^ dn nt
;

or ^=^Dsn2^, ND=ADcn2
nt, NE=AjEdu2

nt,

as before, in 8.

25. When /c= 0, the oscillations are indefinitely small
;

and now y = 2^ sin2
?i,

where R is a very small quantity ;

and nt = I - -
vr= sni

~ 1
A/Jt- ^2R

an ordinary circular integral.

It was Abel who pointed out (about 1823) that in looking

only at the Elliptic Integrals, mathematicians had been taking
the same difficult point of view as if they had begun to deduce

the theorems of elementary Trigonometry from an examination

of the properties of the inverse circular functions, as deduced

from the circular integrals.

(Niels-Henrik Abel. Tableau de sa vie et de son action

scientifique. Par C. A. Bjerknes. 1885.)
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26. Secondly, if the pendulum performs complete revolu

tions, as in fig. 3, R is greater than I, and y oscillates in value

between and 21
;
we now reduce the elliptic integral in 23

to Legendre s standard form by putting y = 2l sin2
0,

when nt/K=f(lK
2 sin20)&quot;W^=^[^, K)

where K2= l/R }

the reciprocal of its former expression ;
and now

= &m(nt/K, K), y = 2l sn?nt/K, x= 2lsii nt/K en nt/K ;

or AN=AEsu2
nt/K,

NE=AEcu2
nt/K ,

ND=AD dn*nt/K,

as proved before, in 18.

27. In the separating case between oscillations and complete

revolutions, R = l, and now K= 1
;

and y = 21 sm2 = I vers2&amp;lt; = I vers
;

also ( 23) nt =ysec Qd^ = log(sec &amp;lt;p

+ tan 0)

= cosh
&quot; 1sec = sinh

~Han = tanh ~ xsin = 2 tanh ~Han
J&amp;lt; ;

so that &amp;lt;

= gd nt, or arnh nt,

and sec = cosh nt, tan = sinh nt, sin = tanh nt,

y = 21 tanh 2
?i, x= 21 sech nt tanh nt,

as before, in 15.

28. Landen s Point.

With centre E in fig. 2 and radius j5 describe a circle

cutting the vertical AE in L
;
then Z is an important point in

the theory of pendulum motion and elliptic functions, called

Landen s point.

Since EB* =ED.EA=EC2 - CA\
therefore the circle, centre E and radius EB, will cut the circle

AQD, centre C, at right angles ;
and

since LC 2+CQ2 = LC-2+EC2 -EL*=,2LC . EC,
and EL =EB = 21K , EC=l(l+ K ^, LC=l(l- KJ.

Now, by 20, the velocity of Q
= J(2g . EN) = J(2gK*

. ^Y) =n^(2l . EN)
=n.LQ(I+K ).

Similarly in fig. 3, where P makes complete revolutions, the

velocity of P = n.LP(I+K)/K, where the Landen point L is

obtained by drawing a circle with centre D, cutting the circle

^.^orthogonally, and the vertical AD in L.
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We shall prove subsequently that any straight line through
L divides the circle APE in fig. 3 (or the circle AQD in fig. 2)

into two parts, each described in half the period.

29. Change from one modulus to its reciprocal.

It is important for the simplicity and for convenience of

tabulation of the elliptic functions that the modulus K should

not exceed unity ;
but the preceding reductions of the motion

of the pendulum to elliptic functions, in the two cases in which

the pendulum oscillates and performs complete revolutions,

show us how to make the elliptic functions to a modulus /c,

which is greater than unity, depend on the elliptic functions

to the reciprocal modulus l//c, which is less than unity.

For, on comparing the two expressions for y, according as

the pendulum oscillates or performs complete revolutions,

y = 2Rsn\nt, K), or 2lstf(Knt, l//c),

where /c
2 = Rjl ;

so that K2sriz (nt, K)
= sn2

(V?i, I/K) ;

or, putting nt= u,

K sn(u, K)
= sn (KU, I/K),

so that dn(u, /c)
= en (KU, l//c),

cn(^, /c)
= dn (KU, I/K).

Independently, if we suppose &amp;lt;

= am(^, /c),
and if we put

K sin
(j&amp;gt;

sin i^,

then K cos
&amp;lt;pd&amp;lt;j&amp;gt;

= cos
\/r d\js,

and cos

so that u = /(I /c
2sin2

&amp;lt;/&amp;gt;)~*&amp;lt;i0

/s

u

/sKU = sec

or

and since /c sin = sin
i/r, etc.,

therefore K sn(w., /c)
= SV.(KU} l//c), etc.

When u = K, =
j7r, and

i/r^sin&quot;
1
^; so that, if K is less

/sin&quot;

1*

( 1 /c

~ 2sin2
\/r
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30. Rectilinear Oscillations expi^essed by Elliptic Functions.

In simple pendulum motion, referred to horizontal and ver

tical axes Ax, Ay, drawn through the lowest point A, we have

shown in 24, 26, that

y = 2lK
2su2

nt, x= 2//c sn nt dn nt
;

or y = 2lsn?nt/Kf x= 2lsn nt/K en ntJK ;

according as the pendulum oscillates or performs complete
revolutions.

Treating the vertical motions separately, and differentiating

according to the rules established in 7, we find, on taking

y = 2/c2sn2
?i,

dy/dt= 4ilnK
2
sii nt en nt dn nt

d2
y/dt

2=
4&amp;lt;ln

2
K\cn?nt dn-nt- sn2nt dn2

?? t- K
2su2nt ctfnt)

--+ , by 17.
I IK.&quot; 46-/C-/

Taking y = 2lsn2
nt/K, we find in a similar manner

both immediately obtainable from the equation of 23,

whence I
2
(d

2
y/dt

2
)
= g(Rl-Ry~ly+f^

We shall find similar expressions for d-y/dt
2 when y varies

as cn2
?i or dn.

2
nt, all of the form

Let us determine then, as exercises in the differentiation of

the elliptic functions, the acceleration d2x/dt2
, and thence the

force at a distance x
t
which will make a body oscillate in a

straight line according to one of the laws

x = a en nt, sn nt, dn nt, tn nt, nc nt, ns nt, ....

Taking x= a en nt,

dx/dt na sn nt dn 7i

d2
x/dt

2
ri2a(cn nt dn2nt K

2su2nt en nt)

Ml
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so that
jp

reducing to zero when /c = 0.

It is often simpler to find dx/dt, and then to express
as a function of x

;
and then a differentiation with respect to t

will give d2
x/dt

2

immediately as a function of x.

Thus, if x= a sn nt,

dx/dt= na en ?i dn nt

80 that

reducing to zero, when /c= 0.

Similarly, if #= a dn 71*,

Generally, when cc varies also as tn ?i, nc TI, . . . , we shall

find a relation of the form

which, when multiplied by dx/dt and integrated, gives

KdxJMf =
or dx/dt=

an elliptic integral, of which the different expressions are given
in Chapter II.

31. A Special Minimum Surface.

Another interesting exercise in the differentiation of elliptic

functions is to verify that the surface discovered by Schwarz

(Gesammelte Mathematische Abhandlungen, vol. I., p. 77),

cnx+cny+ cnz+ cnx cuy en = 0,

with the modulus /c = J, is a minimum surface, having zero

curvature at every point, and therefore satisfying the condition

p, q, r, s, t having their usual meaning as partial differential

coefficients of s with respect to x and y.



THE ELLIPTIC FUNCTIONS. 27

Schwarz shows that this condition is equivalent to

pv p.2 denoting the principal radii of curvature of the surface

(C. Smith, Solid Geometry, 255), where

Y- P v= q

J(p
2+ q

2+ lY J(f+f+l)
Let us write cv sv dv for en x, sn x, dux-, and c

2 , s.2 ,
d
2 ,

C
3,

S
3 ,

d
3
for the same functions of y and z.

Then c
x+ c.

2+ c
3+ c^Cg= ;

and differentiating with respect to x,

But

(l+clC2)
2

so that ss(l + CiC2)
= s^, etc.

;

_vA = __?A = r

-,-.

By symmetry, g= ___

so that we may write

where D= (c^8l)

S
By symmetry

o
2 3

p, y p,
T r-

so that -t-- =0, provided that
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or

or, since s
x

2= 1 - c^, d* = i(3+ q2
),

or
(&amp;lt;?!
+ c

2+ c
s+c^) (3

- c
2
c
3
- c

3
c
x
- c^) = 0,

and this is true, in consequence of the original relation

Ci-f-Cg+Ca+CiCjCjrsO.
The other relation 3 c

2
c
3 c^ c

x
c
2
=

represents isolated conjugate points, where

C
1
= C

2
= C

3
= 1 -

Another minimum surface is

tn y tn 2+ tn s tn 03+ tn x tn
^/ + 3 = 0,

With K

32. Elliptic Function Solution of Euler s Equations of

Motion.

Before leaving the mechanical interpretation of elliptic

functions, we may just mention here an important application,

the application to the solution of Euler s equations of motion,

for a body under no forces, moving about its centre of gravity,

or about any fixed point.

Euler s equations for p, qy r, the component angular velocities

about the principal axes, are (Routh, Rigid Dynamics)

where A, B, C denote the moments of inertia about the princi

pal axes
;
and two first integrals of these equations are

= T, a constant
;

=G 2
,
a constant,

obtained by multiplying Euler s equations respectively by (i.)

p, q, r, and adding, (ii.) by Ap, Bq, Or, and adding ;
and then

integrating.

Comparing these equations with the equations of 7,

cn w = sn-u dn u, sn u = en u dn u, dn u = /c
2sn u en u,

where accents denote differentiation with respect to u, we

notice that if A &amp;gt; B &amp;gt; C, and the polhode includes the axis (7,

so that AT&amp;gt;BT&amp;gt;G
2

&amp;gt;CT, we may put u = nt, and
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p =P cn u, q = Q sn u, r = RdnU
,

and then, on substituting in Euler s equations of motion,

B-G_nP A-C_nQ A-B_ K2nR
A ~QR B ~RP C

=

PQ
Putting t = 0, and therefore p= P, q = 0, r = R; then

AP*+ CR2= T, A 2P2+ C2R2 = G\
G*-CT AT-G 2

so that P~

,., n,and then L B B-C~B(B-CY

while n2=R2

and

AB ABC
P2 A A-B_G*-CTA-B& c B-C~AT-G2 B-C

If the polhode encloses the axis of greatest moment A, so

-that AT &amp;gt; G2
&amp;gt; BT &amp;gt; CT, we must put .

2)
=P dn u, q

= Q sn u, r= Rci].u;

and then determine P, Q, R, n, K as before
;
when

AT-G2 B-C2_- 9_
ABC ~G2-CTA-B

In the separating case, when G 2= BT, then /c= l, and

p =P sech nt, q = Q tanh nt
,
r=R sech nt

;

so that, when t = 0,

2_ G2 B-C _ .J_G2 A-B
P ~ABA-C q ~ ~BCA-C

and initially or finally, when t = + yz
,

2
) = 0, q= G !

B, r = 0;

and the body is spinning about its mean axis B.

But when the body is spinning about the axis of greatest or

least moment, G2=AT= A 2p2
,
or G2 = CT= C 2r2

,
and K = ;

and

the period of a small oscillation is 2-Tr/n, where

. (A-B)(A-O (A-B)(A-0)
ABC. BC P

_We shall return subsequently to these equations in Chap. III.



CHAPTER II.

THE ELLIPTIC INTEGRALS (OF THE FIRST KIND).

33. In Chapter I. we have immediately made use of Abel s

valuable idea of the Inversion of the Elliptic Integral, which

is the foundation of the modern theory of the Elliptic Func
tions ; and we have considered the functions which are inverse

to the elliptic integral, and treated them as the direct funda

mental functions of our Theory.

Previously to Abel s discovery (1823) it was the elliptic

integral which was studied, as in the writings of Euler and

Legendre ; and, in fact, in a physical and dynamical problem
it is the elliptic integral which arises in the course of the

work
;
for instance in the form of the Equation of Energy,

$(dx/dt)
z= X, so that V2 t=/dx/JX-,

and now, when X is a cubic or quartic function of x, so that

d2
x/dt

2
is a quadratic or cubic, as in 30, the integral is called

an elliptic integral of the first kind ; and we have to follow

Abel and determine the elliptic function which expresses x as

a function of t.

To accomplish this, it will be useful to employ the notation

of the inverse functions, given by Clifford (Proc. London
Math. Society, vol. vii., p. 29

;
Mathematical Papers, p. 207)

analogous to those used in Trigonometry for the inverse

circular functions
;
and to make a collection of all the important

cases that can occur.

34. The Circular and Hyperbolic Integrals.

Starting with the circular functions, sin x, cos x, tan x, cot x}

...
,
we have, in the ordinary notation,

30
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Cx faI =sin- 1^ = cos- 1

/v/(l-^
2
X

*/ ^ \J-
~*~ x j

r\ r7~
/ aa &quot;

=cos- 1^ = sin- 1

x/(l-a;
2
),

+s ^/^-L
~~ X J

x

f X

x
dx 1

^-j
=cot-^ = tan--,etc.

X

We can employ a similar notation with the hyperbolic func

tions, cosh x, sinh x, tanh x, coth #, . . .
,
and write

X Jrf- =

x-\-\
etc.;

and the analogy with the circular functions is now complete,

and the results can be more easily remembered and written

down, than when the logarithmic function alone is employed.
To avoid complications due to the multiplicity of the

values of these and subsequent integrals, in consequence of the

variable x assuming complex values and performing circuits of

contours round the poles of the integral, we suppose for the

present that x is real, and increases or diminishes continually,

so as to assume all real values once only between the limits of

integration; also that the positive sign is taken with the

radical under the sign of integration ; we thus obtain what is

called the principal value of the integral or inverse function.

35. The Elliptic Integrals.

With the elliptic functions, snu, cnu, dnw, we have ( 7)

d SD.U dcnu ddnu
-j

= en u dn u, -.
= sn u dn u, j = /c

2sn u en u :

du du du
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and cn2
i&amp;gt;
= 1 sn2

u, dnzu = 1 /c
2sn2

w,
;

so that, if x = snu, then en u = ^/(l a?
2
),

/ ^^

7(i-^.i- Kvr u==sn &quot;

la; or sn
1(x&amp;gt; K)- ....... (1:

when the modulus K is required to be put in evidence.

Putting x=l makes the integral equal to K, the quarter

period corresponding to the modulus K ( 11).

Similarly, with

x = en u, then sn u= */( 1 x2
), dn u A

= -sn u nu = -

/i
^^

y(1 -^. KHA*r w = cn la or

so that the integral is K when the lower limit is 0.

Again, with

x= dn u
t
then &amp;gt;c sn u = ^/(l x2

), K en u = ^/(a
2

Ac
2
) ;

and ~=- K*suucnu=-J(l-x*.x*-K 2
) )

du

We may also put x= iuu, using Gudermann s abbreviation

of tn u for tan am u
;
and now

,_- J. 1 / \ / A \

and the integral is K when the upper limit is oo .

Putting & = sin0, cos 0, A&amp;lt;/&amp;gt;,

or tan&amp;lt; in (1), (2), (3), or (4),

reduces the integral to

/(I /c
2sin2

0)
~
-cZ0

= u = F(0, /c)

o

so that

=am u, and cos = en u, sin = sn u, A0 = dn u, tan &amp;lt;

= tn u.



THE ELLIPTIC INTEGRALS. 33

36. Thus, with a&amp;gt;b&amp;gt;x,

x dx 1 .fx b
&quot;

(5

indicating that we must put x b sin
;
and then the integral

is reduced to

a a V a
o

Similarly, with oc &amp;gt; x &amp;gt; a,

f x dx _1 Ja b\ ,

J (tf-a?.x*-}? a
81

WJ&quot;

indicating the substitution x a cosec (or a cec 0, as Dr.

Glaisher writes it).

Thus, for instance, with
oo&amp;gt;o?&amp;gt;l//c,

f^_ dx VJL \

J x/(!
~ ^2 1 ~ *2z2

)

~ W V
Again,

;

37. As numerical examples,

/i
r/r

-^
the integration required in the rectification of the lemniscate

r &amp;gt;2 = a2
cos20; so that r = a cn(^/2 s/a, J

with Dr. Glaisher s notation ( 17) of new for 1/cnu.
G.E.F. C



/

34 THE ELLIPTIC INTEGRALS.

Consider also the vibrations given by the dynamical

equation d2
x/dt

2 = 2n 2
x(c

2 x2
),

as in 30; so that x = gives the point of stable equilibrium,

and x = c gives the points of unstable equilibrium.

Integrating, supposing the motion to start from rest where

x = b, i (dx/dt)
2 = C- n2

c

(i.) When b2
&amp;lt;c

2
, the motion is at the outset towards the

origin, and dx/dt = n^/(a
2 x2 .b2 x2

),

writing a2 for 2c2 b2
;
so that

P dx f dx _fxdx
n
Jj(a2-x2 .b2-x2)-J JXj JX
x

= -\K sn~V ), with modulus
, by (5) ;a\ b/ a J

or x = bsu(Kant).
(ii.) When b2 = c

2
, dx/dt= n(b

2- x2
) ;

and, by 34, the ultimate state of motion is given by
x = b tanh bnt, or b coth but,

according as the motion falls away from the position of

unstable equilibrium, towards or away from the origin.

(iii.) When c
2

&amp;lt; 62 &amp;lt; 2c2
,

dx/dt=
r* dx rM

dx _
J x2-a2 .x2-b2

)~J XJ(x
2-a2 .x2-b2

)
b b

(iv.) When b2 = 2c2
,

nt = / ,,
2 pr

= ,- sec
~

V&amp;gt;

6

or x = b sec bnt.

(v.) When 62
&amp;gt;

2c2
, we must write a2 for 62- 2c2

;
and now

dx/dt= +nj(a
2+ x2 .x2- b2

},

dx

_ 1 J6 a

~v/(
2+ 62

)

CI] U /v/(^
2+

or x = 6/cn /v/(a
2+ b2)nt =b nc^(a

2+ b2
)nt.
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38. So far the function X has been treated as an even

quartic function of x, or as a quadratic function of a;
2

,
resolved

into two real factors
;
but according to Prof. Felix Klein there

are certain advantages in considering the integrals obtained

by writing x2
=z, in (1), (2), (3) ;

and then, waiting k for *
2

,

fJ
or 2cn-V(l-s), or 2dn- 1

v/(1 -^) ............. C
11 )

Conversely, by writing for z the values &2
,
1 #2

,
1 kx2

,
we

reproduce the integrals (1), (2), (3) from (11), by the simplest

quadric transformations; and it will not cause confusion if

we sometimes call k the modulus.

For these and various other reasons, Prof. Klein suggests

(Math. Ann. XIV., p. 116) that we should consider (11) as a

more canonical form of the elliptic integral than (1), the form

with which Legendre and Jacobi have worked.

39. Now, with X = x a.x {3.x y, and
a&amp;gt;/3&amp;gt;y,

we have, if GO &amp;gt; x &amp;gt; a,

fJ
q-y

, (12)

indicating that we must put

x y= (a y)cec
2
0, x a = (a y)cot

2

0,

and then x- /3
=

(/3
-

y)A
2 cec2

0,

to reduce the integral to Legendre s canonical form

=(! - k sin2

o

Similarly, by putting x - a = (a
-

/3)
tan2

0, x - /3
= (a

-

/
x

a-y.o;-/3

where Jl/ is used throughout to denote J^/(a y).

.(13)
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Thus, with
-ao&amp;gt;x&amp;gt;l/k, integral (11) becomes

f
j

9 1 L

-&quot; SI
_

J(x.l-x.I-kx)
l/fc

1 I
l-k , . ll-k.x- 1 - -=2dn- 1

A/- J~..x 1 v cc 1

40. When
a&amp;gt;#&amp;gt;/3,

Z is negative, and

y

_ la-.x--

(14)

/-J/fe

J *J(-

= cn -i /toir:*= dn -iJ^=y...... (15);\a jS.aJ y \cc-y

and now the modulus K is given by K 2 = k
f = (a /3)/(a y) t

and the modulus is therefore complementary to the modulus

in (12) and (13) ;
and the form of the result in these and other

subsequent integrals indicates the substitution required to

reduce the integral to Legendre s standard form ( 4) ;
while

the results can be verified by differentiation.

Thus, with
l//c&amp;gt;&&amp;gt;l, integral (11) is imaginary and may

be written

dx I -fee-

f* dx _ l
I x-l

JJ(x.l-x.I-kx)~ yi-k.x

.kfaB-t^^-llfc-^
mod. *T;

i denoting *J( 1).
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41. When
(3&amp;gt;x&amp;gt; y, X is again positive, and

P Mdx la-y.fi-x
7T -^p-y.a-x

-m^JyptelZ.-to-iJsze. . ..(16)V/3-y.a-x \a 05

/ 3/tZa /a-y^ = sn
-V^

x
..................... (17)

with fc = 08-y)/(a -y), as in (12) and (13).

Thus

/-
1

do? ll-x
j_ v or * /_JJ(x.l-x.\-kc) \1-A

while the result is as in (11) when the lower limit is 0.

42. When
y&amp;gt;x&amp;gt; oc,JTis negative, and

=cn

x Mdx ja-y
f. ^r = sn- 1

A /-
-L

J(-X) \a-x

with modulus k = (a /3)/(a y), as in (14) and (15).

Thus, with 0&amp;gt;x&amp;gt; oc
, integral (11) becomes

/
J*

.

_---- = 2idn~ 1
/*/---- j

^ o- /
!

.i-a:.i-
= sn Vr-a
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43. We notice that the substitution

_
,r
---

,
UI-

,r
---

,

^
75
----

,

-
,

# y p y & y p y # y a y
makes

dx y dy

x y

or changes (12) into (17), or (13) into (16).

Thus

dyr dx
.

J(x-a.x-/3.x- 7) j(y-a.y-/3.y- 7)
a 7

where K2 = k= (/3 y)/(a y).

Again the substitution

., or = or =
a-/3 a-2/ a-/3 a~2/ a-y a-y

changes (14) into (19), or (15) into (18) ;
and shows that

dx fy dy 2A&quot;

where k = K
2 = (a- ft)/(a

-
y).

The substitution which changes any one integral into another

is obvious by inspection of the preceding results.

44. Thus the integral fdxj^/X can be written down, ex

pressed by inverse elliptic functions, when X is a cubic form

in x, resolved into its three real linear factors.

For example, with a2
&amp;gt; 6

2
&amp;gt; c

2
,

d\ 2 J c
2+X

\

an integral occurring in the mathematical theories of Electricity,

Magnetism, and Hydrodynamics, in connexion with ellipsoids.

As another example, the student may prove that

r _dS_ 47ra6c Jc_ /a2 -62\

J (xjaY + (y~lb)
z + (zlc)*

~
J(a

2- c2
)

C W V a2 - c27

when the integration is extended over the surface S of the

sphere x*+ y*+ z2 = r*

(W. Burnside, Math. Tripos, 1881).



THE ELLIPTIC INTEGRALS. 39

45. When two of the roots, /3 and y suppose, of the cubic

X= are complex, we combine (x ($)(x y) into the real

quadratic (#-m)
2+n2

, suppose ;
so that X= x a . (x m)

2
-fn2

-

Now we substitute

X = (a;-m)
2+7i

2

y ~(x-af~ x-a
a quadric substitution, the #rap/i of which is a hyperbola, and

find the turning values of ?/, say y1
and

?/3 , the values of y
which make the quadratic in x,

have equal roots
;
so that y:

and y3 are the roots of

= 0, or ^+ (m- a)y

-, -
BThen y - yi

= -, y-?,= .

(Zy_(a?-a?1Xa?-g8).anQ 7 \9 5

aa? (OB a)
2

x
l
and 3 denoting the values of x corresponding to yl

and
2/3,

and therefore denoting the roots of the quadratic equation

x2 - 2ax 4- 2am-m2- n2 =
;

so that x =m+ x =m

Then /J
_r ^

by (12), with k
/= yJ(y l y^), k=J \ /* t/ 1/ \t/ 1 t/ o/

since
2/:

is positive and yz negative, or yl
&amp;gt; y &amp;gt; &amp;gt; yy

Again, with the same substitution,

dx r dy

cn-i /ft-y
2/3) &amp;gt;2/i-2/

-^ rcn-
1 ^^ ......(23)

by (19), to a modulus k the complementary modulus of (22),

namely k = yj(y^
-
ys ).
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46. We denote (a-m)
z+ n* by H\ and then

and by means of the same substitution as in 45,

dx
en

, (24);

dx I JH--(a-x) ,\

~v#
CI

iff+to^sy*)
r
, (25);

indicating that the substitutions x a or a x= H(^
reduce the integrals to Legendre s standard form

;
also that

Thus, as numerical examples,

/CO
fJ ]

/ &quot;I /O \tit*/ JL - 1 /
^ ^ ^v \

i

/&quot;

g da; J_
y x/a-^3

)&quot;^

with 2/c/ = J
= sin 30, K = sin 15, K = sin 75.

47. We notice that ^ = ITT when x =aH
)
so that

&quot;

/* ^
y /v/{ a;--(-W )

2+^2
}

+H

= /:
a+^L _J?L_

Jj{x-a.(x mf+n?

a x . (x m)
2+ n2

}

(27)

-00

/OO

xV/v,

3 ,,=/ 1
/7**^ 1 \

\/3+l

ix r^^ dx
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dx

/*
dx r

x/a-^)y
- -v/3+l

But, by the Cubic substitution x =
(4&amp;lt;

so that

or ^(sin 75) = ^/3-F(sin 15),
that is, K IK= ^/3, if /c = sin 15, as stated in 12.

48. Degenerate Elliptic Integrals.

When the middle root /3 of th,e cubic X= approaches to

coincidence with either of the extreme roots, a or y, or when
the pair of imaginary roots become equal, the elliptic integrals

degenerate into circular or hyperbolic integrals.
j&amp;gt;

We notice, from 16, that when &= 0, sn -1^ becomes sin&quot;
1
^,

cn 1^ becomes cos&quot;
1
^, etc.; and that, when k = l,sn.-

lx becomes

tanh 1
^, cn 1^ or dn- 1^ becomes sech&quot;

1
^, and tn- 1^ becomes

sinh
~ lx.

Thus, when k= l, the integral (11)

/dx_ _ r dx

/(x.l-x. i-kx) J(l-x)Jx
= 2 tanh- = 2 sech~

__.
1 a; \1-OJ a?

This supposes that x &amp;lt; 1
;
but with oo &amp;gt; x &amp;gt; 1,

^^ oo 7

y (!)&amp;gt;

= 2 coth
&quot;V^ = ^ cosech-V(s- 1)

= 2 sinh- 1J - = 2 cosh-i/ = sinh -iV^.\ic-l \-l ic-1

But when & = 0, the integral (11) becomes

.= 2sm~ 1
/v/ic

- 2 cos-

r 1 dx _ _j

x = 2sin- 1

v/(l X) = TT sm~ l

2^(x. Ix).
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49. Making /3
=

y, or a, in the integrals (12) to (19), and
still denoting J*/(a y) by M, then

(i.) with oo&amp;gt;aj&amp;gt;a,

Mdx Ix-a la y
/ =Sin~ 1

A /
---^

VOJ- VoJ
= COS

-

y

1 i*/(a y & a)- 1 v

-flfcfcc .

!
a-a

sm = cos
, /a-y&quot; 1
,*/
--

^-;
A aj-y

T
60 Mdx , . /a-y . , , /a-y

/7
-- - --

^

= - ---^- = - 1 --*

J (x-a

this integral being infinite when a; = a.

(ii.) With a &amp;gt; a; &amp;gt;

y,

f* Mdx . Ix-y /a-y
/7
-- ~ -- - ---^- --*

y(a-
7

which is infinite when x= a ;

fa Mdx . la-x
/7~
--

\~~77
-

r= smh~ 1
A/- -^

J (x-y)J(a-x) \iC-

which is infinite when a?= y.

(iii.) With y &amp;gt; cc &amp;gt; oo
,

Mdx . , /y-aj /-y~ ~ = 1 ----- = &quot; 1 --L
a?

a-x

,
= cosh

- J
A/

= sinh
-
\/

&quot;a an Vy a? \v x

this last integral being infinite when cc = y.

The limits have been chosen so as to exclude these infinite

values.

50. Weierstrass s Elliptic Functions defined.

When the general cubic expression X is given, not resolved

into factors, then Weierstrass s notation becomes useful, and

may be defined here.
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Weierstrass writes s+f for x, and chooses / so as to make
s
2
disappear in the new value of X, which he denotes by J5 ;

and thus S= 4s3 g2
s

&amp;lt;?3,

where g2
and g3

are called the invariants ; so that the integral

dx ds
x

ds
u suppose

f
J

and now, inverting the function in Abel s manner, s is an

elliptic function of u, denoted by pit- in Weierstrass s notation,

so that

=rl8i
or p-(; gv gs ).............(A)

when the invariants g2
and

(/3
are to be put in evidence.

51. In Weierstrass s notation we are independent of the

particular resolution of S into factors
;
but by what precedes

in equation (12), if, when $ is resolved into real factors,

S= 4(s 6^(8 e.2)(s e
B ),

with e
l

&amp;gt; e.
2

&amp;gt; e
3 ,

then, with x &amp;gt;
6&amp;gt;

&amp;gt; ev
C ds 1

_^ _ l
/e1 ~&amp;lt;?

3

e)^ V -

s e
l

1 , , !* e&amp;lt;= vdn~

by (12); so that

(B)

The value of u for s = e
l

is denoted by o^, and called the

real half period; and by (20) we notice that

Wl
=f x

^=r ŝ=^--- (28)

ex
^

e
3

andby(13)and(B),/
%&amp;lt;

-^ &amp;lt; ==p-
1

(
ei
~

gg ei
~

g8+ g
1) (29)

w/ v ^ ^ s e
i

With e
2

&amp;gt;s&amp;gt;e
3 , ^jS is again real, and by (16), (17), and (B),
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52. For values of s between e
1
and e

2 ,
or between e

z and

~
, *J& is imaginary ; however, the value of Jdsj\JS be

tween the limits e
z and oo is denoted by o&amp;gt;3 ,

and called the

imaginary half period ; so that, by (21),

/-i ds r&amp;lt;* ds _ iK f

^ =J jsy X/S T^S) .............(82)

2

and, from (12) and (14),

*2= ( 2
-

8)/(l
~

*3)&amp;gt;
K*= (

e
i
~

2)/(l
~

S)-

Also, from (14) and (15), with e
1

&amp;gt; s&amp;gt; e
2 ,

/
c
i ds . 1/01 e^e, o \

^s=tp (
-
t-s &amp;lt;i; ^ ~4 .........(33)

/
s

&amp;lt;s . ,/e, e2 .e
2 60 \

^=^-v ;_; -*-&amp;lt;*&amp;gt; * -*)j .......

and, from (18) and (19), with e
s

&amp;gt; s &amp;gt; oo
,

/
e
a ds

/S
fj Q

-Ta^P H-*; 9 -93) (36)V^

53. The quantity gf 27#3
2

is called the discriminant, and

is denoted by A
;

it is called the discriminant, because the

roots of 8= are all three real, or one real and two imaginary,

according as A is positive or negative ;
and A = 0, when two

roots are equal.

Since S= 4 3-
g2

s-g3
= 4(s

- e^s - e
2)(s

-
e^\

therefore e^e^e^O,
and g2

= -
4(e2

e
s+ e^+e^ = 2(e*+ e

2

2+

Therefore

and

This quantity 5f2
3
/A is called by Klein the absolute invariant,

and denoted by J ;
and then, with k for /c

2
,

-
,_ _- r~

2 2
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54. For the present we reserve the difficulties of interpreta

tion of the multiple values of the integral u =fds/*JS, due to s

being allowed to assume complex values, and to perform
circuits round the poles, branch points, or critical points, so

called, of the integral, given by the roots of S= 0.

We suppose the variable s to pass once through all real

values from oo to oo
;
and now

(i.)
oo &amp;gt; s &amp;gt; e,

/
or u=vl -dslJS=&amp;lt;a,- 9--*-*+e, ........ (37)

which, employing the direct functions, expresses the relation

*-&amp;gt;-*-*=$?
...................

(38&amp;gt;

(ii.)
e
l

&amp;gt;s&amp;gt;e
2 ,

(39)

or u = CD, + a),

-e
2 ; gr -gs

.........(40)

(iii.) e
2

&amp;gt; s&amp;gt; e
3 ,

u = w + w

(41)

or u = 20)! -f- c 3 /ds/^/S
&amp;lt;

3

(iv.) e
3

&amp;gt; s &amp;gt; co
,

-jr.); (43)
/
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or u = 2^!+ 2ft&amp;gt;3 /ds/^/8
00

Thus /ds/^S=2a)l+ 2co3 , (45)

and
2ft)!

is called the real period, and 2w3
the imaginary

period of Weierstrass s elliptic function pu.

With Argand s geometrical representation of a complex

quantity, such as x+ iy, the complex quantity

u = ta&amp;gt;

l+ 1f(l6
3 (0&amp;lt;t&amp;lt;l,0&amp;lt;t &amp;lt;l)

represents all points lying inside a rectangle, called the period

parallelogram.
As 8 or $u diminishes continually from oo to GO

,
the argu

ment u describes the contour of this rectangle ;
and for

(iii.) t^+ a&amp;gt;

3 (I&amp;gt;t&amp;gt; 0), (iv.) t a&amp;gt;s (l&amp;gt;if&amp;gt; 0),

the values of s or
$&amp;gt;u-

are real, and lie in the intervals

(i.) ao&amp;gt;s&amp;gt;e
lt (ii.) e

1
&amp;gt;s&amp;gt;e

2 , (iii.) e
2

&amp;gt;s&amp;gt;e
3 , (iv.) e3 &amp;gt;s&amp;gt; CXD

;

while the corresponding values of $ u are taken as

(i.) negative, (ii.) positive imaginary,

(iii.) positive, (iv.) negative imaginary.

For any point u inside the rectangle $u assumes a complex
value. (Schwarz, Elliptische Functionen, p. 74.)

55. In the same way, with the integral (11), denoting its

value between the limits oo and z by u,

(i.)
oo

&amp;gt;z&amp;gt;l/& (39),

=
2K-2sn-^f^\...................(46)

(ii.) l/k &amp;gt; z &amp;gt; 1 ( 40),

(47)

(iii.) 1&amp;gt;0&amp;gt;0(41),

-

kz

.................................. (48)
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(iv.) 0&amp;gt;2?&amp;gt;-oc (42),

(49)

Therefore f~r =-^-
7 ^ = 4A

r
+4iJT, .............. (50)

^/ *J(Z . 1 2? . 1 A
1

)

and 4JT and 4^Ar are called the real and imaginary periods of

the corresponding elliptic function, in this case sn2
|i,.

56. But if we take Legendre s and Jacobi s fundamental

integral Jdxj^/X, where X = 1 x2
. 1 K2x2

,
and denote

r
Idxj^/X by u, then, by the preceding article, with x~ for 0,

(i.) CC&amp;gt;X&amp;gt;\JK,

1 / ^2^2 _1
&quot; KV& ~~

-L / K -i \

(ol)

(ii.) I
&quot;

I -
/C

-, K^........................(52)

(iii.) 1&amp;gt;*&amp;gt; 1,

=

J- /C

(iv.) -1&amp;gt; a;
&amp;gt;-!/*,

/c

2i^-^sn- 1
/

-

1

, K .................... (54)

(v.) -l//t

.....................................(55)

Therefore*,(I-.x*.I-K*a?)-*dx = 4K+2iK -,

..............(56)

-00

and 4/f and 2iK are called the periods of the elliptic func

tion sn u.
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57. If, with l&amp;gt;x&amp;gt;-l, and X=I-x2.I-Az
,
we denote

r* r i

the
iategr&lfdx/JX by u

; then/dfe/^/Z=JT ( 11); and
( 41)

or, employing the direct functions,

/ T
sn

and then ( 17)

\ 1X2

-w)
== or cdw; .........(57)

(58)

&amp;lt;

59
&amp;gt;

relations analogous to equation (38) ;
or to the relations

sin(JTT 0)
= cos 0, cos(JTT 6) = sin 9,

of the circular functions of Trigonometry.

58. When the discriminant A of 8 is negative, and two of

the roots of the equation 8= are imaginary, we take e
2
as

the real root, and combine the product s e^.s e^ into

(s m)
2+7i2

,
as in 45

;
and since

therefore m= Je2 , #2
= 3e

2

2 47i2
, #3

=

while H 2=
(62
- m)

2+ ?i
2 = fe*+ ?^

2
,

4A 2= n*/H2= 47i2/(9^2
2

1 - 16/cV2 = 3^2/(9e2
2+ 4 2

),

A = 3

, fha r_ 2 _ _= &quot;
_

108A 2

- 2

59. Now, as in 45, by means of the quadric substitution,

,2

,....-. (60)
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da- (s-e,)
2-# 2

(s-s)(s-s)
ds= (s-ezf (A)2

(s-^)
2 (s-s3)

2

while oe^-, o--^= _-__,

provided S
1
=

Thence s
l+ s3 = 2e

2
=

J( l+ e3)
- e

2
- e

2
= - f62

~ e
z 5

or 6
2
=

| e2 ;
on the supposition that e

l+ e
2+ e

3
=

;

and
e-j
= e

2+ 2H, e2
= 2e

2, e3
= e

2
2^.

s -T (s-ejda-fAs -T (s-e

J JSJ^-^-

ei.or-e^o es )

cr

where 2=
4(&amp;lt;r

e
1)(cr e

2)(o- e3)
=

4&amp;lt;7

3
y2o- y3 ,

suppose ;
and the discriminant A 7

of 2 is now positive.

60. Now, y9 =-4(e2

y3
= 46^3

A7 = y2
3 -

27y3
2 = 256^ 2

(4JJ
2-

9&amp;lt;?

2
2
)
2

.

.,, , e.7 -e3
2#-3e

2 , 6l -e9
Also with A2 = * -3=a 2

, X 2=^--^=
el~ 63 *&quot; 61~ C3

4ff
!_9^_^2 3

~H2
lA ~

Denoting by J the absolute invariant of 2, then ( 53)

y2
3

= 4 (1-X2X/2
)

3

A 27 X4X/4

If we put 4X2\/2 =
1/T, then

(4T
/

-1)
3

r
27T

d

while, with 4/cV2 = r in (D),

r_- 8

Now, if 2/c/c = 2XX ,
then TT/= 1, the relation which holds in

the transformation from a negative discriminant in $ to a

positive discriminant in 2.

If we equate the values of J in (C) and (E), we find

(1-fc)
2 & 1

G.E.F.
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61. When A is negative, and when we know the real factor

s &amp;lt;?

2
of $; so that, with Je2

2+ ri2 =

then, with # 2 = J(9e2
2+ 4ii

2
),
and expressed as in 46,

f ds I 8 -e
2
-H

U=/ -7-3
=

/rrCn-
1

yv, ..............(62)y
x/&amp;gt;3 2*/-ti s e

2+H
with 2KK=n/H ;

so that

-- e
2+H-(e2-H)cn(2u*/H) .

,
or p*= _J__ 2

; (63)

by means of which we change from Weierstrass s notation to

Jacobi s and vice versa, when A is negative.

Thus, for example, if #2
= 0, then &amp;lt;?

2
=

(J&amp;lt;73)*,
n2 = fe2

2
,
#2 = 3g

2
2

;

and, as in 46,

3+ l)ft.93)
i

Sinl5 }
-lXi^)* /

/ ^g

(4iM7s)
= rl(8; -^ --^ sin 75-1-

i
S

62. Supposing s to range from oo to oo in the integral
r&amp;gt;

= /ds/^/S, when A is negative, then

*

(i.)
&amp;lt;x&amp;gt;

where o&amp;gt;2
denotes /du/tJS, the real half period of n.

(ii.) e
2 &amp;gt;s&amp;gt;-cc,

where w/ denotes /ds/^S, a pure imaginary quantity, called

the imaginary half period of $m ;
and the period parallelogram

( 55) is now bounded by o&amp;gt;2
and , ,

as adjacent sides.

Also (47), mrKIJ-H^-iriJH. ,.-(66)
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63. Treating in the same way the integral (2),

_ /&quot;&quot; dx
I /(~\ _ /r2 *- 2 4- i^rV*/ /^/V-

1- * K ** ^

by replacing z by 1 z2 in 38, 55
;

(i.) oo&amp;gt;a&amp;gt;l,

(ii.)

(68)

(iii.) 1 &amp;gt; x&amp;gt; co
,

u= iK + 2K+icn-\-l/x, K)

.......... (69)

64. By the substitution x2 =
l/y, the integral

dx
&quot;

dy

i r-ds
7

~^AJ 7S
&quot;

on putting y= s \B/A ;
which can be expressed by Weier-

strass notation, or by the notation of Jacobi, when the factors

of the denominator are known, as in equations (12) to (19) ;

f_ E+Fx _,
J J(A + Ba?+ Cx*+DxQ

)

can thus be reduced to elliptic integrals, of the form considered

in 39-61, the first term by the substitution x* = I/y, and the

second term by the substitution x- = z.

rnu
a a*dr a

rhus

the integration required in the rectification of 7
13 = a3cos W.

But by substituting ?
&amp;gt;2

/a
2 =

l/y, we find

asdr r ady
s =
o

so that
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65. Write X for ce
2- a2

. x2- b2
. x2- c

2
,
where a2

&amp;gt;6

2
&amp;gt;c

2
;

and write Jf for b^/(a
2

c
2
) ; then we find, on substituting

y for I/O)
2

,
and taking a, /3, y for 1/c

2
, 1/6

2
, I/a

2
;

(i.)
oo &amp;gt; x2

&amp;gt; a2
, comparing with equation (18),

fMdx_ l la-
2-x~ 2

_ Ib
2 .x2-a2

J -jx~ VF*=~ar 2
~

^a2 .x*-b2

Ia2-b2 .x2 Ia2-b2 .x2 -c2

= cn &quot;

~ 1 -

to modulus

(ii.) a2
&amp;gt; a;

2
&amp;gt; 62 , comparing with (17) and (16),

Mdx
x /6

2 .a2-^2

T&quot; Va2-62
.o)

2

~

to modulus

(iii.) b2 &amp;gt;x
2

&amp;gt; c
2

, on comparison with (15) and (14),
bMdxf

J
&quot;

~/-*

J ** *.a?-x2

7 -

2
.......... (75)

to modulus

(iv.) c2 &amp;gt; a2
&amp;gt; 0, on comparison with (13) and (12),

f Mdx
1

lb*.c*-xz

J J(-X)- Vc2 .62 -a52
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fx Mdx
1

Iaz-c2 .x*

J /(-*)&quot; Vc2 .a2-a2

/a
2 .c2 -o;2 Ia?.b2 -x*= cn- 1

A/^ ^ H= dn- 1

/x /r;? 5 , (77)\c2 .a2
a?
2 yb 2 .a? x2

2 *- 2

to modulus

66. When X is a quartic function of x, and we know a factor,

x a, of X, then the substitution x a = l/y reduces

JclxJ^/X to the form M/dy/^/Y,
where Fis a cubic function of y\ and this form can be treated

by the preceding rules.

But, independently, if we can resolve X into four real linear

factors, x a, x
/3.

x y, x S,

so that X = x a . x /3 . x y . x 3,

and we suppose that a &amp;gt;

/3
&amp;gt; y &amp;gt; S

;
then with

(i.) oo &amp;gt; x &amp;gt; a,

dx

. . (78)

indicating that we must put

.
9 /3 S.X a 9jsm2 = &quot;

5
-5 ,

cos2 =9
S.X a 9j a /3.x2

&quot; - 2 - -

to reduce the integral to the standard form ( 4)

2

and then
a y .p o

the anharmonic ratio of the four points A,B,C, D, the &amp;gt;cte of

the integral ( 54), given by x = a, /8 y, 5.

The verification by differentiation is a useful exercise for the

student.
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(ii.) With a &amp;gt; x &amp;gt;

/3, we change the sign of X to make the

integral real; and now, writingM for
J^/(ct-y./3-&amp;lt;S) throughout,

r aMdx

-i /^L^- i /q-&amp;lt;?-a-ft_
i i la-S.x-y

^a-$.x-S~ y a-/3.x-S~ Va-y.a-&amp;lt;T&quot;

r*Mda

I8n-^l^^^
but now the modulus K is the complementary modulus to /c, so

j. i j /o 7 / ct
~~ o . *y

~~ o
tnat K K = ^ ;

a y . p ^

the different forms of the result indicate the appropriate substi

tution required for reducing the integral to the Legendrian form.

(iii.) With /3
&amp;gt; x &amp;gt; y, X is again positive, and

/
X

l la-y./3-X . la-6.X-y , . la-6.X-S /01 .= sn- 1
A/-^-

!
^ = cn- 1

A /-&amp;gt;r
J- J: =dn- 1

A/ )0 % ,....(81)
\/3-y.a- ^l/3-y.a-x Vp-3.a-X

/*
Mdx
^X

l/3-S.x-y ly-S./3-X ly-S.a-X
-sn-M^ -isBcn-Mi -^= dn- 1 -^- -

V p-y.X-o Vp-y.aJ-o,
with the same modulus AC as in (78).

(iv.) With
y&amp;gt;x&amp;gt; S, X is negative, and

Mdx

-S.8-x \a-y.8-x v

y-S./3x yyS./3x \o-y.p-
x dx

-i la-y.x-S_ _ 1 la-S.y-x_ 1^_ 1 ja-S./S-x

with the modulus of (79) and (80).

la-S . /3-x ,
.

A/ j- ,....(84)
\y-o.a-a;
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(v.) With S&amp;gt;x&amp;gt; x
,
X is positive, and

f 7^

&quot;~4^
::-~

(85)

with the original modulus of (78), (81), and (82).

67. Landens Transformation.
When Legendre s arid Jacobi s standard integral (1) is

treated as a particular case of these integrals (81) and (82), we
write a = l/X,

= l,y= -!,&amp;lt;$= -1/X, so that Jlf=J(l+X)/X;
and now, with y for variable,

/l+X.1-3/ _ x /l-X.l + y_ /1-X.l + Xy , .

V~2J^X
-

V 2.1-X
-

Vl+X.l-X-&quot;
(8

where the modulus AT is now given by /r= 4X/(l+ X)
2
,
so that

and we are thus introduced to Landens transformation, to be

discussed hereafter.

Changing, in 41, x into y
2
,
and k into X-, we find

dy

with modulus X
; indicating, on comparison with (86), results

such as

which can be translated into the various forms of Landen s

quadric transformation.
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Denoting integrals (86) and (88) by u and v, then

ojj.
y&amp;lt;y,

i\i _ ^,

i-xy
cn2

(v, X)=-jJ^y4,
dn2

(v, \) ss~^-t (91)

whence sn(v, X) = ( 1 + g/

M^&amp;gt;^)cnK
^ etc (92 ^

We can easily prove, or verify by differentiation, that

= _ - _-- 2 ^
to the same modulus /c= 2x/X/(l+X); so that, denoting this

integral by u, and denoting sn(w, K) by x, then

- y

or
dn(w&amp;gt;

K)
= ,

; nd(M;/c)
= .-.

f-- 1 A

since
^/

sn(^ ^) where v= (1+OM
5

and thence

X)nd(^,jc)J ............... (96)

^)nd(^/c); ...............(97)

(Cayley, Elliptic Functions, p. 183).

The relation (92) between x and
^/, namely,

thus leads to the differential relation

dx
(98)
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68. The six anharmonic ratios of a, /5, y, S, arising by per

mutation or substitution, give rise to six values of the modulus

k, given by

^i-^ rV-iL^i ...................(99)

or sin2
#, cec2

#, cos2
#, sec2

#, -cot2
$, -tan2

#, iffc = sin2
0;

or tanh%, coth%, sech2
u, coslrw, - cech2

u,
- sinh2

u, if k= tanh2u.

We may notice that the expression for / in (D) of 53 is

unaltered if for k we substitute any of these other five values
;

and, on comparison with Weierstrass s notation,

J
so that we may put

-
nom~ A =

25(5
-&quot; (1

and then ^ = TV(2-Q, 6
2
= TV(-l + 2fc), e3

=
rV(-l-&) ;

so that h =
(e.2 e^l(el e^))

as in 51.

69. Degenerate Forms of the Elliptic Integral.

When two of the roots a, /3, y, S become equal, the corre

sponding integrals degenerate into circular and hyperbolic

integrals, which can easily be written down, on noticing as

before ( 48) that (i.) when k = 0, STL~ IX becomes sin&quot;
1
^, cn^se

becomes cos&quot;
1
^, etc; (ii.) when k=l, sn 1^ becomes tanh&quot;

1
^,

cn&quot;
1^ or dn -1^ becomes sech^, and tn~ 1

o? becomes sinh&quot;
1^.

When two of them are equal, we may replace the four,

quantities a, ft y, S by the three distinct quantities a, 6, c,

suppose, where a &amp;gt; b &amp;gt; c
;
and now the degenerate elliptic

integrals fall into three classes, I., II., III.

I. Writing M for J^/(a b . a c) ;
then

(i.) oc &amp;gt; x &amp;gt; a,

f Mdx . , , la b.x c , , la c.x b
IT -r-77

--
j
-

r= 81DJl-1A/T- ~ = COSh
~ 1

/v / j
-

.J (x a)tj(x b,x c) \b-c.x a \lb-c.x a

(ii.) a&amp;gt;x&amp;gt;b,

fx Mdx , la b.x c . ,
,

la c.x b
/-
--

77
-

T
-r = cosh~ 1

/v / I
- = sinh~ 1

/v / I
-

.

J (a x)fj(x b.x c) yb c.a x yb c.ax
b

(iii.) b &amp;gt; x &amp;gt; c,

Mdx_ _ _ 1
la b.x c_ . _ 1

la c.b x

(b-x.x-c)~ Vb-c.a-x-
~

^Jb-c.a-x
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c.brx Mdx .
1

la b.x c

//
-

\ /,-L \
= sin

~
\rr~ = cosJ (a x)*J(b x.x c) ^b c.a x

c

(iv.) c&amp;gt;x&amp;gt; oo
,

C c Mdx . , la b.c x la c.b x
/7
--

\ 77i r = sinn~ l
\hr- - = cosh~ l*-

1 .J (a x)^/(b x:c x) \b c.a x yb c.a x
X

II. Writing M for ^(a-b.b-c); then

(i.) x &amp;gt; x &amp;gt; a,

Cx Mdx . , Ib c.x a la b.x c
h-IA // v= sin \\ 7

= cos&quot;
1
,*/ 7.J (x b)^/(x a.x c) ya c.x b \a c.x b

a

(ii.) a&amp;gt;x&amp;gt;b,

f a Mdx . Ib c.a x , . la b.x c
If
-

7\ // x
= smh~ 1

A / T = cosn~ 1
A/ r.J \x~ b)*J(a x.x c) ^la c.x b \ja-c. x b

X

(iii.) b &amp;gt; x &amp;gt; c,

fx Mdx , ,
Ib c.a x la b.x c

/7I
-

\~~77
-

r = cosn- 1
A/
-

-.

- = smh~ 1
A /
-

j
-

.J (b x)+/(a x.x c) \a c.b x \a c.b x
c

(iv.) c &amp;gt;x&amp;gt; oo,

/&quot;

c Mdx , Ib c.a x la b.cx
/7L
-

T~77 \
= COS&quot;

1
^/
-

j

- = ffln Vl-1
-

.J (o x)^/(a x.c x) ^a c.b x \a c.b x

III. Writing . for %J(a-c. b-c) ;
then

(i.) oo &amp;gt; a; &amp;gt; a,

. la c.x b . , , Ib c.x a- 1 - = - 1 --r r.

-r-

A
-

j A --r .

c)^/(x a.x b) ya b.x c \a b.x c

(ii.) a&amp;gt;x&amp;gt;b,

a Mdx la c.x b . , Ib c.a x--
r~77

-
f^
= cos- 1

^/
-

T
- =sin~ 1

/v /
-

^
-

;x c)^(a x.x b) \a b.x c y a b.x c

x Mdx_ _ . _j
la c.x b_ _ a

Ib c.a x

-c)J(a-x.x-b)~ &amp;lt;\/a-b.x-c~

~

^a-b.x-c
b

(iii.) b &amp;gt;x&amp;gt; c,

f b Mdx . la c.b x Ib c.a x
77
-

\ 77
-

L
-

r = Sinh~ 1
A /
--r- = COsh~ 1

A /
---

T
-

.

J(x-c} tj(a-x.b-x} ^Ja-b.x-c ^a-b.x-c
X

(iv.) c &amp;gt; x &amp;gt; oo
,

r Mdx , . la c.b x . , , Ib c.axi -- -- = cosh&quot;
1
A /
-

j
= smh&quot;

1
A/
--

T
--

.J (c x)*J(a x.b x) ya b.c x ya b.c x
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70. When all four roots of the quartic X = are imaginary,
so that

(x- a)(x -/3) = (x- m)2+ nz
, (x

-
-y)(x -S) = (x-

is reduced by the substitution

Let us suppose that X is resolved into two quadratic factors,

so that X is of the form

X= (ax
2+ 2bx+ c)(Ax

2+ 2Bx+ C),

where, by supposition, ac b 2 and ACB2 are negative, so

that the roots of X = Q are all imaginary.

then the maximum and minimum of y, the tui-ning points of

y, being denoted by yl
and

y.-,,

X-L
and x.

2 denoting the values of x cormsponding to yl
and

of y ;
and now

dy _2(Ab- aB)(Xl
-
x)(x

- x9)

dx (Ax
2+ 2Bx+ C)

2

For x is given in terms of y by the solution of

(Ay-a)x-+ 2(By-b)x+ Cy-c = 0, ............ (104)
and this equation has equal roots at the turning points of y,

which are therefore given by the quadratic equation

or (AC-&)tf*-(Ac+aC-2Bb)y+ac-&=Ot
......(105)

and then
B-b ax+ b._ bx+c

-a y y~Ax+B~Bx+CT

Ddy

dy
2(Ab-aB)

and (Ay1 -a)(a-Ay.z)= -

AC-B2
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sothat

, .
-, , ,,-x f

which, by (lo), gives /

* -i /=1L
-}- cn-\/^-4-dn-i /

V 2/i -2/2 x/2/i v 2/i -2/2 N/2/i &amp;gt;2/i

with *2= 1 - y2/yv K
&quot;2 =

the last expression, by the inverse dn function, being the

simplest, as expressing a function of an argument oscillating

between two positive limits, y^ and y2
.

71. For example, if

X = x4+ 2a2
o;
2cos 2a+ a4

= (x
2+ 2ax sin a+ a?)(x

2- lax sin a+ a2
),

and if y (x
2+ 2a& sin a+ a2

)/(a?
2 2acc sin a+ a2

),

then #!
=

, 2/i
= tan2

(j7r+ Ja) ;
X

2
= a, 2/2

= tan2
(j7r Ja);

so that //= tan2
(^7T Ja) = (1 sin a)/(l + sin a) ;

r_dx

JV(^+ ^a^c^cos 2a+ a4
)

,

a2
(l+sina)

But, by substituting ~2
=

^j

--
&amp;gt;

ct I

r
J

.. .

x ,
/-, Ar\\

5-en-
1
(3; sma) = 7r-cn- 1-T- -5, ......(109)2a 2a 2 2

by (2), a reduction of the elliptic integral to a different

modulus, the modular angle being now a
; affording another

illustration of Landen s transformation of 07.

Thus, with a= JTT, equation (108) gives

where K = (J2-I)2
(when K \K=\} ;

and by (109),

dx ,l x2

etc -

For other numerical examples, the student may take

;
2+ 3, etc.



THE ELLIPTIC INTEGRALS. 61

72. When two roots only of the quartic X = are imaginary,

we may still make use of the substitution ( 70)

y = N/D, where X=ND\
but now take ac b2

negative, and ACB2
positive.

Proceeding as before we find that the maximum yl
is positive,

but the minimum y 3
is negative ;

and y oscillates between

and yl
for real values of ^/X ;

and

/dx
_ 1

7?
~
J(AC-B*)

so that, by (14),

i, ...(110)
~2/3

with K2 =^(^- 2/3). */2 = -
2/&%i

-
2/s).

73. By another method of reduction we shall find

(Enneper, Elliptische Functionen, p. 23)
dx

x - a)
1 ^

/j^_^
J\/{a-x.x-/3.(x-

_ lZ(a-x)-H(x-/3) ,

etc.
;
where R2 =(a- m)

2+n2
,
K2

=(/3- m)
2+nz

;

and Ac
2 =i-a-3 2-^2-

so that ZKK =n(a- 13)/HK.

Degenerate forms occur when a and /3 are equal ;
and now

dx

n(x-a)
dx
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74. Replacing y by N/D in equations (102), then

N- Dy.2 = (a- Ay.^)(x
- x

2)
2

;

so that we may write, according to Mr. R. Russell,

D = Ax2+ 2Bx+ C= P(x^
-

x)
2+ Q(x

- x
2)

2
,

N=ax2 +2bx+c=p(x1 -x)
2+q(x-x2)

2
;
..........(113)

where P = (Ay l -a)/(y 1 -y.J, Q = (a-Ay2 )/(yl -y2);

and p=Py2 , q = Qyr
Interesting numerical examples can be constructed by giving

arbitrary integral values to xv x.
2 , P, Q, p, q ;

and now the

substitution ^ = ^H^2

,

fda _C
J sJX J

will make, as in 37,

^

J(p+q!?.P+Qz*r
75. When the factors of the quartic X are unknown, we

employ Weierstrass s function, and we shall show subsequently
in Chap. IV. that the elliptic integral Jdx/^/X is reduced to

Weierstrass s canonical form \Jdsj^S ( 50) by the substitution

s=-H/X,
H denoting the Hessian of the quartic X (Cayley, Elliptic

Functions, p. 346) ;
we may thus write

~dx
T

,/ H=

where g2 , g3
are the quadrinvariant and cubinvariant of the

quartic X or aa)
4+ 46x3+ 6c

so that g2
= ae ^bd+ 3c2

,

gB
= ace+ 2bcd ad2 eb2

c
3
,

H = (ac
- 62X+ 2(ad- bc)x

3+(

and the general reduction of the elliptic integral of the first

kind Jllxj^/X, where X is a cubic or quartic function of x,

is now complete.

The application of this general method to the particular

cases already discussed is left as an exercise for the student.

76. Systematic Tables of the integrals of the elliptic functions

sn u, en u, dn u
t
ns u, ds u, cs u, dc u, nc u, sc u, cd u, sd u, nd u,

and of their powers have been given by Glaisher (Messenger of

Mathematics, 1881
).
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Supposeyen udu is required ;
we may write it

o

cnudnudu r cZsnu 1 . 1

=/ 771
-

9 ^-^ = -sm-dnu yV(l JK%n%) /c

o

etc.
;
so that

IK. en -M/cZu= cos
&quot; x
(dn u) = sin

~ 1
(/c

sn u) = tan
~ 1

(/c
sn u/dn u)

o

= J sin
&quot; I
(%K sn t& dn u) = am(/ci6, l//c), etc.

Similarly,
K

u+ KCiiu , dnu+/ccnu , K
=log -i =logj , etc.,

K dnu /ccnu

while /dn udu = cos
&quot; 1
(cn u) = sin

~ 1
(sn u) = am ^.......... (1 1 6)

o

As an exercise the student may integrate nsu, dsu, ...; also

sn3 i6, cn%, dn3
u, ...; and obtain formulas of reduction for the

integrals of (sn u)
n

, (en u)
n

, (dn u)
n

,

As a general method, for (snu}
n for instance, we put

sn2u= s
;
and now

s.i-kSr Un suppose -

By means of the well known formula of reduction,

for vp =Jxpdxj^/N, where N=ax*+ 2

we have, on comparison,
a= fc, 6= -1(1 +^,6=1,^ = 1(71-1);

so that vp = 2un ,
vp+l = 2un+ to

vp -
1
= 2un - 2 ,

and

(n+ l)fcien+2 ?i(l + ^)un+ (?i l)un - o = snn
~ lu en u dnu,...(l 1 7)

the formula of reduction for un =y(sn u)
ndu.

When the limits are and K, we obtain the recurring formula

(?i+i)^/l+2 -?i(i+^K+(^-iK- 2 =o, ...... (118)
ri-n-

analogous to Wallis s formulas for /(sin or cos 0)
ndO.

o

The same formulas hold for un= (cd u)
n
du, since ( 57)

cdu = sn(^ u).

Thus un is made to depend ultimately on uv already deter

mined, or on u.
2 ;

and a similar procedure will hold for the

integrals of (en u)
n or (sd u)

n
, (dn -u-)

n or (nd u)
n

,
etc.
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77. The Elliptic Integral of the Second Kind.

We may mention here incidentally that the integrals of

sn2
u, cn2

u, dn2
u, us2

u, ds2
u, cs2i&, . . .

require for their expression new functions called elliptic in

tegrals of the second kind, such as occur for instance in the

rectification of the ellipse.

For if, in the ellipse (cc/a)
2
+(2//6)

2 = l,

we put x= a sin 0, y = b cos
&amp;lt;

;

then - = + = a2cos2

&amp;lt;/&amp;gt;

+ &2sinV = d\l - e
2sin 2

0) ;

Cup ct(p cicp&quot;

so that -=/J(l-e
2sin2

&amp;lt;j&amp;gt;)d&amp;lt;p =/A(&amp;lt;/&amp;gt;, e)^-/dn
2
itcZ

a o oo
on putting = am(u, e); and 6, the excentricity of the ellipse,

is now the modulus.

The integral y^/(l /c
-2sin20)(i0 oryX(0, K)d&amp;lt;f&amp;gt;

is denoted by
o

JE((p, K) by Legendre, and called the elliptic integral of the

second kind ; and when the upper limit is JTT, the integral is

denoted by E I
K, or by E simply, and called the complete elliptic

integral of the second kind.

Examples. The following examples are collected chiefly

from Legendre s Functions Elliptiques ; the results, being

now expressed by the inverse elliptic functions, will serve as a

guide to the substitutions required to reduce the integrals to

the standard elliptic forms, and the correctness can be tested

by differentiation as an exercise.

4. /(x-a.x-/3)-
idx
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6.

7. Prove that, if wn =
4&amp;gt;x

n
(I
- xn),

2- 1 /

and express the result when n = 3, 4, or 6.

8. Prove that, if x a is a factor of the cubic X, so that

X = (x
- a)(ax

2+ 2bx+ c) ;

fv 7.

3

7^ ~aa2

a

an integral occurring in the determination of the motion of a

projectile in a resisting medium.

Evaluate the integral when acr+ 2ba+ c = 0, so that

. Prove that (i.)
A cn^ = /1

k y l + dnu A/l

-dnu

x.. . rKsnudu _ 1

J dnu+ K K (!+K )
o

/*8JC

(iii.) /u sn%&amp;lt;iu= 2K(K-E)/K2
.

o

/-Jir 1
(iv.) /f\&amp;lt;A, /c)sin 6&amp;lt;i^&amp;gt;

= - sin -^J K

10. Prove that

^//c
/2

&amp;gt;K&amp;gt;E&amp;gt;

11. Denoting the integral f(^)-
n
d^ by un,

establish the

formula of reduction

/c%w+2- (n- 1) (1 + K*2)un+ (n- 2)un_ 2
= - /rsin cos

Evaluate -uw for -w. = 2, 3, 4, . . . .

G.E.F.



CHAPTER III.

GEOMETRICAL AND MECHANICAL ILLUSTRATIONS
OF THE ELLIPTIC FUNCTIONS.

78. Graphs of the Elliptic Functions.

Now that the Elliptic Functions have been defined and a

few of their fundamental properties have been established in

Chapter I. in connexion with the pendulum; while in Chap
ter II. the reductions of the elliptic integral to the standard

form have been tabulated, let us consider some further applica

tions, and first in connexion with the graphs of am u, en u,

sn it, dn u, represented by curves whose equations are of the

form y am x, en x, sn x, or dn x.

The graphs of these equations are given in fig. 5, in curves

(i.), (ii.), (iii.), (iv.) ;
the modular angle employed is 45, so that

the curves can be plotted from the numerical values given in

Table II., analogous to the graphs of the circular and hyper
bolic functions, given in Chrystal s Algebra, Part II.

; thus,

for instance, the curve y =&mx is the graph of the relation

between $ and u in 5.

We notice from the equations of 57, Chap. *IL, that by

sliding the curves along Ox through a distance K, the curve

y = snx becomes changed into y= sn(I -f #) = cn#/dn# or cdx,

and not into y = cnx
;
while the curve y= cnx becomes changed

into y = cn(x K) = KSn.x/dux or tc sdx, and not into y = snx;
so that the curves y= sn x and y = cnx are essentially distinct

curves, and cannot be superposed, like y= cosx and y = sinx.

The curve
(i.),

the graph of am x
}
consists of a regular un

dulation, running along the straight line y= \irx\K\ so that

am x= ^7rX/K-}- periodic terms = \-wx\K-
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in a Fourier series, where the B s are to be determined sub

sequently ;
and then by differentiation,

dn x = (k-jr/K) { 1 + 22m,Bncos(nirxlK) }.

So also the graph of E$ or Eamu, the elliptic integral of

the second kind ( 77) consists, like (i.) the graph of aino:,

of an undulation running along the straight line y= Ex/K;
so that we may write, in Jacobi s notation,

where Zx is a periodic function of x, which can be expressed in

a Fourier series

and then, by differentiation,

dn2# = EjK+(irlK)I,nCn cos n-n-x/K ;

whence also the expression for sn2# and cu-x in a Fourier series.

Fig. 5.

We proceed now to some mechanical and geometrical appli

cations of these curves.

79. PROBLEM I. The curve assumed by a revolving chain

We shall prove that

y/b
= sn Kxlci

(fig. 5, iii.) is the equation of the curve of a uniform chain,

rotating steadily with constant angular velocity n about an

axis Ox, to which the chain is fixed at two points, 2ct feet

apart, gravity being left out of account, e.g. a skipping rope.
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Denote by t the tension in poundals of the chain at any

point, and by w the weight in Ib. per foot of the chain.

Then the equations to be satisfied are

d / dx\ _ . d / dy
ds\ ds/~ ds\ ds.

Therefore tdx/ds= T,a, constant, the thrust in poundals in

the axis due to the pull of the chain
;
and therefore

rJ /rlii\ /n^-fin fl^ti rJw
(.(/ / (A/U \ Iv W tt/t/ U/JU

the differential equation of the curve of the chain.

But 14-^
2

l

so that dydty dsd?8

dx dxz dx

and therefore

Integrating, supposing y= b when dy/dx = and ds/dx

ds n2
iv., 9 9

.

^=l +w(^-^);

so that t= Tds/dx = T+ i%2
w(6

2-
y-).

so that x is an elliptic integral of y, of the form (5) in

Chap. II.
;
and y is an elliptic function of x, obtained by

inverting the function of the integral.

To obtain this function, let y = b sin &amp;lt;

;
then

ri2wb-

,1 TrX i_ /c nw
so that d&amp;gt;

= am K-, where = ^ ;

a a 2T

and y/b= sn Kx/a,

the equation of the curve formed by the chain
;
and now 2a

denotes the distance between the ends of the chain.
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We may denote Tj\n
2w by Ji

2
;
and now

h- K
&quot;

2
_ti

2 lab , la
. , 19. ~?~ro J^K

whence the modulus K and quarter period K can be determined

when h and a are given ;
and

while ^ =~A0;
fix a

and integrating, with the notation of 5 and 77,

Kh*

If 2^ denotes the length of the chain, then s = l when = 1^,

and J^(0, *)=. , j^(0, /c)=^; and therefore

I+ a = JJ?JST^/
=^ = 2aAy^/2

,

from which /c, -ST, and .fi

1

must be found by a tentative process,

from Legendre s F.E., II., Table II., when a and I are given.

For instance, if K = K = |^/- as ^n ^able II., page 11,

A&quot;= 1-85407,^
and 6/a = 1 5255, l/a

= l 92

80. When the chain is fixed at two points not in the axis,

nor in the same plane through the axis, the chain when re

volving in relative equilibrium will form a tortuous curve,

which will sweep out a surface of revolution, of which the

preceding curve y/b= snKx/a is a particular case of the

meridian curve, while the general equation is of the form

For in this more general case the equations of relative

equilibrium are now
d (,dx\ d ( dy\

,

d (,dz\
-y-U-f )

=
0, -^-i t-Y- } + n-Wy = 0, -y-f t-j- + n*wz= 0.

ds\ ds/ ds\ dsJ ds\ dsJ

Three first integrals of these equations are

H, a constant; (2)

and t-\-^n-iv(y
2+ z 2

)
= \, a constant (3)
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Putting y*+ zz = rz
,

th dy dz _ .dr2

ydx ^dx~^dx

and from (1) and (2), 2/^-^|
=f ;

therefore, squaring and adding,

d &amp;lt;

d&
or

= 2

(|!
-
4)
-
-*^*

=
^(2X

-

suppose ;
arid for r2 to lie between b2 and c

2
,
we must suppose

&amp;lt;i

2
&amp;gt; fr

2
&amp;gt; r2

&amp;gt; c2
,
and as it is of the form (17), p. 37, we put

W- r2 =
(6

2- c
2
)cos

2

0, r2- c2 = (6
2- c2)sin

2

0,

cZ
2- r2= dz- c

2 -
(6

2- c2)sin
2 = (d

z- c2 )A2
0,

where /c
2=

(6
2 -c2

)/(rZ
2 -c2

).

Then

- c
2
)cos

2 sin2

or . r =

so that
&amp;lt;p

= am Kx/a,

where K z
/a

z = n*w2
(d

2- c2)/4T
2=

4(cZ
2- c

2
)/h

4
;

and then r2 = y
2+ z2 = b^r^Kxja+ c

2
cr\

2
Kx/a,

the equation of the surface swept out by the chain, the meridian

curve being similar to curve (iv.) in fig. 5.

81. The chain will obviously take up the form which, with

given length between the two fixed ends, has the maximum
moment of inertia about the axis of revolution

;
and we have

thus investigated the solution of an interesting problem in the

Calculus of Variations.
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The form of the chain for a minimum moment of inertia is

obtained by supposing that r2
&amp;gt;d

2
,
as in (13), p. 35

;
and by

putting r2 d2 = (d
2 62

)tan
2

^&amp;gt;,

T2-b2 = (d
2 -b2

)sec
2

&amp;lt;j&amp;gt;,

r2- c
2 = (d

2- c
2
)A2 sec2

0,

K2 =
(b

2 - c
2
)/(d

2 -c2
), as before.

Then ~ 2

= 4(d
2- 62

)
2tan2

- b2
)
2
(d

2- c2)tan
2 sec4 A2

0,

so that
&amp;lt;p

= am Kx/a,

and then y
2+ z2= d2sQC2

&amp;lt;j&amp;gt;

- 62tan2

a- b2sc2Kx/a
is the equation of the surface of revolution upon which the

chain lies, when its moment of inertia about the axis of x is

a minimum.

The projection of the chain upon a plane perpendicular to

the axis is to be investigated subsequently.

82. When the two points to which the ends of the chain are

fastened lie in the axis, or in a plane through the axis, the

chain takes the form of a plane curve, whose equation is

y/b = sn Kx/a
for a maximum moment of inertia, as already shown in 79

;

and y en Kxja = cZ, or y = d nc Kx/a
for a minimum moment of inertia

;
which can be proved as a

simple exercise in the Calculus of Variations, by considering
the variation of the integral

83. PROBLEM II.
&quot; The curve on which an ellipse, of semi-

axes a and b, must roll for its centre to describe a straight line

Ox is the curve whose equation is

y/a= dn x/b,

the modulus /c being the excentricity of the
ellipse.&quot;
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For if the centre M of the ellipse describes the horizontal

straight line Ox (fig. 6), M must always lie vertically over P,
the point of contact with the fixed curve, so that the ellipse
rests in neutral equilibrium if its centre of gravity is at the

centre M\ teeth being cut in the curves, if requisite, to prevent

slipping.

Therefore the polar subnormal

^n dr . ,. ... 1 cos2# sin 2$MG= &quot; m the elhpse ~^~^~~dO

must be equal to the subnormal

= y^r i*1 the fixed curve AP
}
where MP= r= y.

Fig. 6.

Now in the ellipse, differentiating,

2 dr (I 1\ . . I/I 1 1 1--
* ^Z ==

lf2
--o)2sm0cos0=2A /( 9

--5-r ir3 dO \62 a2/ \ \r2 a2 62 r2

snce

or

-
9r2 a2 ô2 7^ 2

62 a2
/

so that in the fixed curve AP

. dy

by (9), p. 33
; or, by inversion of the function,

y/a = dn x/b.
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The arc of the rolling carve is obviously the same function

of r as the arc of the fixed curve is of y ;
and therefore the

arcs are expressible by elliptic integrals of the second kind.

The curve AP can be described as a roulette, by a point P
fixed to a certain curve which rolls on Ox, and therefore

touches Ox at G, since G, the foot of the normal PG, is the

centre of instantaneous rotation.

Since PM is the perpendicular from a pole P on the tangent
of the rolling curve, and that the relative orbit of P and M is

the ellipse, therefore the pedal of the rolling curve with respect

to the pole P is an ellipse ; or, in other words, the rolling

curve is the first negative pedal of an ellipse with respect to

its centre, that is, the envelope of lines drawn through each

point on the ellipse perpendicular to the line joining the point

to the centre of the ellipse.

The first negative pedal of an ellipse with respect to its

centre is called Talbot s curve ; its (p, CD) equation is

1 _ cos2
co sin 2

o&amp;gt;

p~~~oT ~P
and it is of the sixth degree (Cayley, Proc. R. S., 1857-9, p. 171).

84, For a rolling hyperbola, changing the sign of b2
,
the

fixed curve must be given by

abdy abr_
-J J(y

*-

by (8), p. 33
;
so that, by inversion of the function.

a/y = en X/CLK, or y/a = nc X/CLK,

is the equation of the fixed curve for the hyperbola.

85. When the fixed curves are of the form of curves (ii.) and

(iii.) in
fig. 5, we shall find in a similar manner that the rolling-

curves which will rest upon them in neutral equilibrium are

given by
1 cosh2

,
sinh2# 1 cosh 2 sinh2_ -

;_
j
_

/&quot;1 1* __ --_ _^_
r2 a2 b2 r2 a2 b2

Taking the first of these two rolling curves,
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_ dr _ ?V(a2- r2
. b2+ r8

)

d0~ ~^T~
so that in the corresponding fixed curve

dx ab

x-fa My ab fy
Jj(a*-y2.b2+ y

2
) T^hP) U

by (7), p. 33
;
so that, by inversion,

y/a = en #/&/c, with mod. K = a/^/(a
2+ 62

).

Similarly it can be proved that the second rolling curve can

rest in neutral equilibrium on the fixed curve (fig. 5, iii.)

y/a= sn xja, with mod. a/b.

86. TROBLEM III. Dynamical Problem. &quot;The curve

rcuO = c is the relative orbit of the centres of gravity of a

straight rod fitting into a smooth straight tube, resting on a

smooth horizontal table, when struck by an impulsive couple,

the centres of gravity of the rod and of the tube being initially

c feet
apart.&quot;

Suppose the rod to weigh m Ib. and the tube to weigh
M Ib., and denote the moments of inertia about the centres

of gravity by mk2
,
MK 2

(Ib. ft.
2
).

Then, if P is the C.G. of the rod, Q of the tube (PQ = r), and

the (stationary) C.G. of the system,

Denoting by n the initial angular velocity communicated to

the system by the impulsive couple, then from the Principle of

the Conservation of Angular Momentum,

{m(k
2+ OP2

) +M(K2+ OQ*)}(de/dt),

( 79 MY mMr2 \dO ( 72 ,

,, T, 9 ,

mMc2 \ /1X
or 1̂ +XK*+--= m]l*+MK*+n ..... (l)

Again, from the Principle of the Conservation of Energy,

m

or, after reduction,

1

2
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the kinetic energy in foot-poundals, is constant, and

Therefore, employing the value of dOjdt given by (1),

or, finally,

+ J/ZT 2+ mJ/c2
/(m+ Jl/)

f

so that r is an elliptic function of 0, given by (8), p. 33.

We therefore put r = csec&amp;lt;; and then find

where /c
2 = ^ T777-

so that = am 0, cos &amp;lt;

= en
;
and therefore

r en = c.

87. When c = 0, /c = l, and this method fails; but now

r2
dfl

2
=

(ra&
2+MK*)(M+m)

=
a2

suppose, where a2=
(991+M)(mkz+MK*)/mM ;

/^ ft K* st

and now = 7 77 rr-^ = sinh~ 1
-,J T^/( I -f r

2
/a

2
) r

or rsinh$ = ,

the equation of one of Cotes s spirals, the relative orbit of the

centres of gravity of the rod and tube, ultimately described

after leaving the unstable position of coincidence.

The system of the rod and tube may be supposed started

by any arbitrary impulse, not necessarily a couple, and the

essential character of the relative motion is unaltered; but now
the C.G. of the system is no longer at rest.

88. Other mechanical arrangements, leading to the same

equations of motion, will readily suggest themselves
;
thus the

tube may be supposed to be one of the hollow spokes of a

wheel of weight M lb., moveable about a fixed vertical axis,

while the rod is one of a number of equal rods, or balls, of

collective weight m lb., one in each tube, and initially placed
with the C.G. at a distance c from the axis of the wheel.
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Now, if the wheel is started by an impulsive couple with

angular velocity n, the path of the C.G. of each rod or ball in

its spoke will be of the form

r en (9 = c.

89. PROBLEM IV. Central Orbits and Catenaries expressed

by Elliptic Functions.

When a Central Orbit, expressed in the polar coordinates

(1/u, 0), is described under an attraction to the pole, of magni
tude P (dynes per gramme), then, as is proved in treatises on

Dynamics, P is given by the equation

73 z.2 *fdZu i \ i 7 40 1 dOP = h2u2l +u \ Wh ere /6==r2 =
\d02 J dt u2 at

and the constant h is twice the rate of area swept out by the

radius vector
;
and v the velocity is given by

h 2 ,jd

Given the equation of the orbit as a relation between u and

0, the value of P as a function of u is thence easily determined

by differentiation, as in 30
;
let us then determine P for the

orbits au = sn, en, tn, or dn m6
;

also for the inverse curves

au = ds, nc, cs, or nd m9,
in Glaisher s notation

;
the remaining orbits

au = cd, sd, dc, ds mQ
;

are not distinct curves, being merely formed by reflexion in the

line 0=$K/m, since cd mO = 8i\(K mO) ( 57), etc.

As in 30, we shall find by differentiation that (d
2
u/d6

2
) + u is

always of the form Au+Bus
,
so that P is of the form /x,u

3+ vu5
;

and conversely, given this form of P, we find by integration

that (du/dO)
2

is of the form C+Du2+ Eu*
,

so that is an

elliptic integral of u, and u an elliptic function of (9, of which

the results are given in 36.

When the orbit is given by

we find by differentiation, as in 30, that P is of the form

Xu2+ /xu
3+ j/u

4
;
and conversely, when P is of this form,

(du/dO)
2

is a cubic form in u
;
and 6 is given as an elliptic

integral or inverse elliptic function of u, by the results of

equations (12) to (45), Chap. II.
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As an exercise the student may determine the value of P
and v\ as functions of u or r, in the orbit

1 _cn
2m$ sn2ra0

and its inverse curve, whose equation is of the form

Similarly the central forces required to make a chain assume
the form of one of the preceding curves can also be determined

(Biermann, Problemata quaedam mechanica functionum
ellipticarum ope soluta, Berolini, 1865).

When a transverse force T is introduced into the field of

force, then h is no longer constant, but, as demonstrated in

treatises on Dynamics and the Lunar Theory, -

dh?_2T T _dlogA.

,.,

dP+
-~

*=

V~ dO

T du

If we assume P = h2u3
;
then

d (, du\ dlosh ,du
l s+~

=&amp;gt;
or h = c

&amp;gt;

a constant

But = /m2
,
so that = Cn2

}
or =-C, which shows

that the body approaches the centre with constant velocity C.

Suppose, for instance, we take an orbit given by
m6 = am au,

then h = C = C~

and P =hW =

T= u*~- = -CAin mO cos mO
;

so that V, the potential of the field of force, is given by

and then P=_, T=-.
-
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90. PEOBLEM V. The motion of Watt s Governor.

&quot;The oscillations of Watt s Governor between the inclina

tions a and /3 to the vertical, when constrained to revolve with

constant angular velocity co, are given by

tan|$ = tanjadn(?i, K), with K = tanJ/3/tanJa,

where 6 denotes the inclination of an arm to the vertical axis

at the time t.&quot;

Consider the motion of either rod and ball, as if unconstrained

by the other, and denote by C the moment of inertia of the

rod and ball about its axis of figure, and by A the moment of

inertia about the axis on which the rod turns at the upper

joint (fig. 7).

Fig. 7.

Drawing the three principal axes OA, OB, OC at 0, and

three moving coordinate axes Ox, Oy, Oz, such that Ox
and OA are coincident, Oz is vertical, and yOz, BOC in

the same vertical plane, then the components of angular

velocity about OA, OB, OC are (dO/dt), o&amp;gt;sin$, e*&amp;gt;cos$;

and the corresponding components of angular momentum are

-A(d6/dt), -4o&amp;gt;sin0, Coo cos 0.

The components of angular momentum about Ox, Oy, Oz

will therefore be

fc1= -A(d6/dt) t
h
2
=

(C-A)&amp;gt;sin6cos6, h
s
=

(Ccos*6+Asin*6)a&amp;gt;;

while the component angular velocities of the coordinate axes

Ox, Oy, Oz are ^ = 0, 6.2
= 0, 63

=
u&amp;gt;,

with the notation of

Routh s Rigid Dynamics.
Take the poundal as the unit of force, and denote by M the

weight in Ib. of either arm and ball, by h the distance in feet

from of the centre of gravity; the equation of motion
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obtained by taking moments about Ox or OA is

or -A(d2

0/dP)+(A-C)u2sin0cos0 = Mghsin0 , (1)

so that, ifA = C, the motion reduces to simple pendulum motion.

Integrating, on the supposition that a &amp;gt; &amp;gt;

j8,
and that

dO/dt = Q when = a and /3,

rZ6
2 A G

-jp
=

-j
or(cos cos a)(cos /3 cos 0) (2)

The position of relative equilibrium is given by d2
0/dt

2 = Q;

and then, if 9 = y,

so that in these oscillations the point D, which controls the

valve, makes equal excursions above and below its position of

relative equilibrium.

The technical name for these oscillations is
&quot;Hunting&quot;; and

some kind of frictional constraint is required to prevent these

oscillations from becoming established.

(Maxwell, Proc. R. S.
t 1868.)

Denoting tanja, tan J/3, tanj$ by a, b, x respectively, then

equation (2) may be written

4 dx2_A-G pfl-x* l-a2\/l-62 1-;

~dP~ ~A~w\T+^~T+~

or = cos a cos

and this, by equation (9), p. 33, gives

x = adn(nt, K), or tanj$ =
where /c = 6/a = tan J/3/tan Ja, and ?? =o)sinjacosj/3x/(l G

For a small oscillation, we put a = /3; and then /c =l, /c
=

and now the period of an oscillation

27T 47T /_JL

\ A^ to sn a

91. If we suppose the whole weight of a rod and ball con

centrated at the centre of gravity, we have (7=0, A=Mh-\
and now the motion may be assimilated to that of a particle
in a smooth circular tube, which is made to rotate about a

vertical diameter with constant angular velocity w.

(Prof. B. Price, Analytical Mechanics, 403).
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The equation of motion (1) now reduces to

h ..
.,

AcoVm cos = g sin 0,

where h denotes the radius of the circle
;
and for oscillations

on one side of the vertical between a and
/3, a &amp;gt; 9 &amp;gt;

ft,

(dO/dt)
2 = o)

2
(cos

- cos a) (cos ft
- cos 0),

the solution of which is, as before,

tan J0 = tan Ja dn nt,

where /c = tan J/3/tanJa, n = w sin | a cos J/3.

If the particle in its oscillations just reaches the lowest

point of the circle, ft
=

;
and then K = 0, /c = 1

;
and now

dnnt degenerates into sechnt ( 16) ;
so that

tan J$= tan \a sech nt, where n = o&amp;gt;
sin Ja ;

the position of relative equilibrium being given by

cos y = g/w
2h = |(1 4- cos a)

= cos2
Ja.

If the particle passes through the lowest point, it will come

to rest again where 0= a; and now

(dO/dt)
2

&amp;lt;o

2
(cos cos a)(2 cos y cos a cos 0),

where 2 cos y cos a &amp;gt; 1; and the solution of this equation is

tan J0 = tan Ja en nt, where n = ^^/(cos y cos a).

When a = 7r, we shall find the motion given by

so that, after an infinite time, the particle just reaches the highest

point of the circle, where it will be in unstable equilibrium.

A still greater velocity of the particle relative to the tube

will make the particle perform complete revolutions, which

will be expressed by
ta,uW = Ctnnt.

We have supposed the circular tube to be made to rotate

with constant angular velocity about a vertical diameter
;
but

the motion of the particle relatively to the tube will be found

to depend on similar equations when the tube is attached in

any other manner to the vertical axis.
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92. Such will be the motion of a pendulum swinging about

an axis fixed to the Earth, and now it is interesting to notice

other cases of motion of bodies which can be directly compared
and made to synchronize with the motion of an ordinary

pendulum, swinging through a finite angle.

Thus the pendulum, if moveable about a smooth vertical

axis, which is fixed to a wheel moveable about a fixed

vertical axis, the inertia of the wheel being sufficiently great

for the reaction of the pendulum to have no sensible effect on

its angular velocity, will perform pendulum oscillations, with

g replaced by aw2
, o&amp;gt; being the angular velocity of the wheel

and a the distance between the axis of the wheel and of the

pendulum.

Again a cylinder of radius a and radius of gyration k, rolling

inside a fixed horizontal cylinder of radius b, will synchronize
with a pendulum of length l = (b a)(l+&

2
/a

2
).

If the fixed horizontal cylinder is free to rotate about its

axis, and has its centre of gravity in the axis, then the length
of the equivalent pendulum is

-, ,

l=(b-a)(I+n\ where n=-
2 l+-2

mk-, MK2
denoting the moments of inertia about the axes

of the rolling and fixed cylinders.

The rolling cylinder may be replaced by a waggon on

wheels, and the motion can still be compared with that of

a pendulum.
A circular cone, whose C.G. is in its axis of figure, and whose

axis is a principal axis, performs pendulum oscillations when

it rolls on an inclined plane, or inside or outside another fixed

cone, whose axis is sloping, the vertices of the cones being

coincident; the determination of I, the length of the equivalent

pendulum, in these cases is left as an exercise to the student.

In those cases where the finite oscillations are not of the

pendulum character, we suppose the motion indefinitely small
;

and now, in small oscillations under gravity, instead of giving
the formula for the period of a small oscillation, it is in general

simpler to give I, the length of the pendulum, whose small

oscillations have the same period.
G.E.F.
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Thus for the vertical oscillation of a carriage on springs,
I is equal to the permanent average vertical deflection of the

springs, due to the weight of the body of the carriage.

For the small vertical oscillations of a ship, l=V/A, where
V denotes the displacement of the ship (in cubic feet), and A
the water line area (in square feet) ;

and if the ship is floating
in a dock of area B sq. feet, then it is easily proved that

93. The Reaction of the Axis of Suspension of a Pendulum.
It is important to know the magnitude of this reaction in

the case of a large swinging body, like a bell in a church tower.

Denote by X and Y the horizontal and vertical components
of this reaction, considered as acting on the swinging body ;

and take the gravitation unit of force, the force of a pound.
Then X, Fand W

t applied at the centre of gravity G (fig. 1),

will be the dynamical equivalents of the motion of the body,
collected as a particle at G

;
and since the component accelera

tions of G are h(dO/dt)
z in the direction GO,

and h(d
2

0/dt
2
) perpendicular to GO,

therefore, resolving horizontally and vertically,

Wh(d
2

0/dt
2
)cos 9- Wh(dO/dt)

2sin = Xg,

Wh(d
2

0/dt
2
)siu 0+ Wh(dO/dt)

zcos Q=Yg-Wg-
while, from the pendulum motion,

I(d
2
0/dt*) =-g sin 0, l\d0/dt)

2
=g(2R-lvQrs 6).

From these equations we find

Y ^ 4&amp;gt;Rh 2h

pp
= 1 jsa&O+ ,2- cos -/-cos 0(1 cos Q)t

Y
,

h (2hr
~W

~~ +
I

= ~
VI

x i-2h 4Rh\
..

an .

TJ/-

=
I ~i
---

/2/
sln rsm cos 0,

and therefore the resultant of X and F TF(1 h/l) is a force

in the direction GO
;
and T varies as the depth of P below

the line
2/
= i^+ i^&amp;gt;

whence X and F are easily constructed.
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94. In the simple pendulum, h = I, and the tension T of the

thread PO is given by

At the end of a swing y = 2R, and T/W=l-2R/l; so that,

if 2R is less than I, T is always positive.

But if 2R is greater than I, so that the plummet swings

through more than 180, T changes sign, and the thread will

become slack, unless replaced by a light stiff rod.

When 2R is greater than 21, the pendulum makes complete
revolutions

;
and now, at the top of a revolution, y = 21, and

T/W=4&amp;lt;R/l 5
;
and when 2R is greater than -JZ,

T is again

always positive, and the plummet can be whirled round at

the end of a thread, without the thread becoming slack.

95. When the axis of suspension of the pendulum is hori

zontal, and cut into a smooth screw of pitch p, the equation of

energy gives

W(V+ k*+p*)(dOldt)
2= Wg(H-h vers 0),

if the centre of gravity descends from a height H above its

lowest position ;
so that

(It,-+tf+p2
)(d*Oldt

2)=-ghsm 0,

and therefore I = h+ (k
2+p2

)/h ;

and now in addition to X and F, the reaction of the axis exerts

a horizontal longitudinal component Z and a couple pZ, given by
W d2

6_.-Wphsin6~
g

P dt2
~

2

Similarly the increase in I due to the pendulum being sup

ported on friction wheels may be investigated.
As an exercise the student may investigate the small oscil

lations of a system of clockwork, in which the wheels are

unbalanced about the axes, and prove that for small oscilla

tions the length of the simple equivalent pendulum is given by
I = (2wfcy)/(Zti&p*eoB a),

where w denotes the weight, wh the moment, and iuk2 the

moment of inertia of a wheel about its axis
;
a denoting the

angle which the plane through the axis and centre of gravity
makes with the vertical in the position of equilibrium ;

and

p denoting the velocity ratio of the wheel.
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96. The Internal Stresses of a Swinging Body.
These internal stresses are most forcibly realized on board a

ship rolling in the sea, not only in their effects as producing

sea-sickness, but also in causing the cargo to shift, if the cargo
is grain, coal, or petroleum, in bulk.

It is usual to consider the ship as acted upon by two forces,

(i.) W tons, the weight or displacement of the ship, acting

vertically downwards through the centre of gravity 6r,

(ii.) W tons, the buoyancy of the water, acting vertically

upwards through M the metacentre (fig. 8).

t

Fig. 8.

These two forces form a couple of moment W.QM.smO
(foot tons), so that the ship will roll about a horizontal longi

tudinal axis through G, like a pendulum of length GL = k-jGM
feet, Wk2

denoting the moment of inertia of the ship about

this axis of rotation.

Now to find the force which acts upon w, any infinitesimal

part at P of the ship, to give it its acceleration and to balance

its weight, we refer the point P to axes Gx and Gy, drawn

upwards through GM and perpendicular to GM.
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This force will balance the reversed effective force of w at P
and the effect of gravity on w

;
and therefore, in gravitation

measure, will have components
w d*9 w fd&\* ,~~ V

&quot;7/2

x
\J+ )

~^~w cos ft parallel to Gx,

w d26 w fdO\
2

~&quot;g

X
~dP~ g

V (di)
+w sm Parallel to GV-

If w is suspended as a plummet by a very short thread, the

thread will take the direction of this force, and will therefore

make an angle with Gx

_ i9 sin Q_ x(d
z
O/dt*)

-
y(dO/dtf

gcos6+ y(d*0!dP)
-
x(d6/dty

2

Supposing the ship to roll like a pendulum of length ,

through an angle 2a, then

I(d
2
0/dt

2
)=- -g sin 0, and ^I(d0ldt)

2
=g(cos6-cos a) ;

and by 8,

dW/dP = - n2sm 6=- 2- /i
2sinJ0 cos J0 = - *n*K sn nt dn nt,

(dO/df = 2n\cos - cos a)
= 4?i2(sin

2
Ja
- sin2J#) = 47iVcn%l

At any instant the lines of reversed resultant acceleration

will be equiangular spirals, of radial angle 0, round the centre

of acceleration G as pole, the resultant acceleration at P being
/* .

rr
g,- sin cosec 0, and the resultant effective force

w-j
sin 6 cosec 0,

when we put GP = r, and I(d6/dty=g sinOcot 0; so that

tan = (sn nt dn nt)/(2ic cn
2

n).

Superposing the effect of gravity, the resultant lines of force

or internal stress will be equiangular spirals of the same radial

angle 0, round a pole J, the position of which is obtained as

follows (fig. 8) : Draw LK perpendicular to GL to meet the

horizontal line GK in K; describe the circle on GK as diameter,
and draw KJ making an angle GKJ=&amp;lt;}&amp;gt;

with GK; this will

meet the circle in /.

For the resultant effective force of w at P, being

/= iv-rsm 6 cosec =
WTTJ&amp;gt;

making an angle with GP
t will, when compounded with w

upwards, and taking the triangle PGJ turned through an

angle as the triangle of forces, have a resultant

t = w.PJjGJ, making an angle with JP.
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This will be the tension and in the direction of a short thread,

from which w is suspended as a plummet at any point P ;
and

the deflection of this plumb line from its original mean direc

tion in the ship will be a measure of the tendency of a body
to slide or of a grain cargo to shift

;
and to a certain extent of

the tendency to sea-sickness at this point of the ship and at

this instant of its motion.

The tendency will clearly have its maximum value at the

end of a roll, when dO/dt = 0, and =
JTT, and then / coincides

with K. (Prof. P. Jenkins, On the Shifting of Cargoes, Trans

actions of the Institute of Naval Architects, 1887.)

The plumb line at P will now set itself at right angles to

KP, while the surface of water in a tumbler at P will pass

through K ;
and a granular substance at P will begin to slip

if KP makes with its surface an angle greater than the angle
of repose of this grain.

Thus up the mast, at a distance a feet from G, water would

be spilt out of a tumbler, or sand in a box would shift, by the

rolling of the ship through an angle 2, which would not spill

or shift, if the ship heeled over steadily, until an inclination /3

(the angle of repose of the sand) was reached, given by

tan /3
= (1 + a/7)tan .

At the centre of oscillation L, where a=l, there is no

tendency for the water to spill, and this shows that the motion

of the ship is felt least by going down below as far as possible

in the middle of the ship.

In a swing the body is very near the centre of oscillation,

so that ordinary swinging is very little preparation for the

motion of a vessel.

A swing to act properly as a preparation for a sea voyage
should be constructed as in

fig. 5, to imitate, in full size, the

cross section of the ship, suspended at M
;
arid now the varying

effect of the motion can be experienced by taking up different

positions on the deck, up the mast, and in the cabins, con

structed in this swing.

Sir W. Thomson proposes to find the axis of rotation of a

ship and the angle through which the ship rolls by noting the

direction of the plumb lines of two such plummets, suspended
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at two given points across the ship ; planes through the plum
mets perpendicular to the plumb lines at the extreme end of a

roll would intersect in K\ the horizontal plane throughK would

meet the median longitudinal plane of the ship in the axis G
;

while the plane through K perpendicular to the median plane
would meet it in L, whence GL, the length of the equivalent

pendulum, and therefore the period of small oscillations could

be inferred, as a check on this construction.

Example. A rod AB, whose density varies in any manner,

is swung in a vertical plane about a horizontal axis through A.

Prove that the bending moment of the rod is a maximum at a

point P, determined by the condition that the C.G. of the part
PB is the centre of oscillation of the pendulum.

97. PROBLEM VI The Elastica or Lintearia.

The Elastica is the name given to the curve assumed by a

uniform elastic beam, wire, or spring, originally straight, when
bent into a plane curve (fig. 9) by a stress composed of two

equal opposite forces T, on the assumption that at a point P
at a distance y from the line of the applied stress the bending
moment Ty is equilibrated by a moment of resistance B/p,

proportional to the curvature l//o ;
and the constant B is called

the flexural rigidity of the spring (Thomson and Tait, Natural

Philosophy, 611).

O M G x

B

Fig. 9.

Then Ty = B/p, or yp= B/T= c
2

, suppose ;

and by KirchhofFs Kinetic Analogue, the normal of the Elas

tica performs pendulum oscillations on each side of a perpen
dicular to the line of stress, as the point on the curve moves

with a constant velocity.



88 ILLUSTRATIONS OF

For, when the normal has turned through an angle 0, the

curvature - = -=- = 9-
p ds c2

and by differentiation

d*6 1 dy 1 .

~r~2
=

~9 7 ~? sm $&amp;gt;

as2 c2
&amp;lt;is c2

which agrees with the equation of pendulum motion

d2

0/dP = - n2siu ft if 8/c
= nt.

Corresponding with the oscillating pendulum we have the

undulating Elastica, intersecting the line of stress at an angle
a

;
and thus, writing s/c for nt in 8,

sin JO = K sn s/c, cos JO= dn s/c,

sin = dy/ds = 2/c sn s/c dn s/c,

so that y = 2cK en s/c,

measuring s from the point A, at a maximum distance from the

line of thrust
;
and a graduated bow might thus be employed

for giving mechanically the numerical values of the en function.

In the nodal Elastica corresponding with the revolving

pendulum,
= 2 am S/CK, sin = 2 sn S/CK en S/CK

= dy/ds ;

SO that y = 2(c//c) dn S/CK.

In the separating case, K = 1, and y = 2c sech s/c ;
and

JO = amh s/c, sin JO = tanh
s/c, tan JO = sinh s/c, etc.

In the undulating Elastica
/y /Y~ = cos =

^/(l
- 4/c

2 sn2

s/c dn%/c) = 1 - 2/c
2sn2

s/c ;

and in the nodal Elastica

= cos = ^(l - 4 sn2

s/c cn
2
s/c) =1-2 sn2

s/c ;

so that x is given in terms of s by means of elliptic integrals
of the second kind

( 77).

A great simplification is introduced when K =K=^ MJ2-
J
the

Elastica now cuts the line of thrust at right angles, and

cos = cn 2
s/c

=
J2/

2
/c

2
,

which shows that this Elastica is the roulette of the centre of

a rectangular hyperbola, rolling on the line of thrust.

It is easily proved that in this curve the radius of curvature

p is half the normal PG
;
also that a chain can hang in this

curve as a catenary, provided the linear density is proportional
to (ncs/c)

3
;
this is left as an exercise for the student.
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Wheri /c = 0, the undulating Elastica corresponds with small

oscillations of the pendulum, and the Elastica is ultimately

coincident with the line of thrust, the ordinate y varying
as sins/c or sinx/c; and then the length of the beam,

TTC = Tr^/(B/T), is the extreme length at which the straight

form of the beam begins to become unstable under the

thrust T.

The nodal Elastica becomes practically a circle when /c = 0,

corresponding in KirchhofFs Kinetic Analogue to the practi

cally uniform revolutions of a pendulum when the velocity is

indefinitely increased.

The Elastica is also called Bernoulli s Lintearia, being the

cross section of a horizontal flexible watertight cylinder, when
filled with water, the free surface of which lies in the line of

thrust Ox] for if t denotes the constant circumferential tension.

t/p=wy, the pressure of the water,

or yp = t/w= c
2

.

It is also the profile of the surface of water drawn up by

Capillary Attraction between two parallel plates (Maxwell,

Encyclopaedia Britannica, Capillary Action).

The student may prove, as an exercise, as in 80, that if the

wire is bent into a tortuous curve by balancing forces and

couples at its ends, it will assume the form of a curve in a

surface of revolution defined by an equation of the form

(Proc. London Math. Society, vol. XVIII.)

98. PROBLEM VII. Sumner Lines on Mercators Chart.

Sumner Lines, so called after Captain Sumner, of Boston,

Massachusetts, are the projections on M creator s chart of

small circles on a sphere ;
if simultaneous observations are

taken of the chronometer and of the altitude of the sun or a

star, the observer knows that he must lie on a small circle

having its pole where the Sun or star at that instant was in

the zenith, and having an angular radius the complement of

the observed altitude; and two such observations are em

ployed in Sumner s Method for determining the ship s place.

According as the observed altitude of the Sun or the star is

greater or less than the declination, the small circle on the
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Earth does not or does enclose the polar axis; and the cor

responding Suraner line will be a closed or open curve, whose

equation may be thrown into the form

cosh y/c
= sec a cos x/c, ....................... (i.)

or sinh y/c
= tan /3 cos x/c....................... (ii.)

On Mercator s chart
( 16) the latitude and the longitude

of a point whose coordinates are x, y may be written

where Trc/180 is the length on the chart of a degree of longitude
at the equator.

These relations are obtained by noticing that the bearing by

compass of two adjacent points on the chart will be the same

as on the terrestrial sphere, if

dy_ dO
dx cos 6d(p

and now, if x =
C(f&amp;gt;,

so as to make the meridians of longitude

equidistant parallel straight lines, then

dy/dO= c sec 6, y/c =/sec OdO,

or
( 16) $ = amh y/c.

Now let
&amp;lt;5 denote the declination of the Sun or star, y the

observed altitude, &amp;lt; the difference of longitude of the observer

and of the object ;
then in the spherical triangle SPZ

S denoting the Sun or star, Z the zenith of the observer, and

P the pole of the Earth s axis.

Since cos 8Z= cos PS cosPZ+ sin PS sin P^cos SPZ,
therefore sin a= sin S sin 6+ cos S cos cos 0,

or cos S cos
(j&amp;gt;

= sin a sec 6 sin S tan

= sin a cosh y/c sin S sinh y/c ;

and according as a is greater or less than S, this is reducible to

the form A cosh(y b)/c or Bsiiih(y 6)/c; and this again

by a change of axes to the form of (i.) or
(ii.).

(Crelle, XL, Gudermann, on the Loxodrome ; Messenger of

Mathematics, XVI. and XX., Sumner Lines.)

Differentiating equation (i.) with respect to x,

dy _ sec a sin x/c _ sec asm x/c

dx
~

sinh y/c /v/(sec
2a cos2

x/c 1)

ds tan a _ sin a

dx x/(sec
2a cosPx/c 1) x/(sin

2a sin2
x/c)
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so that, as in 3, 4, and 8,

sin x/c
= K sn s/c, cos x/c = dn. s/c,

cosh y/c= sin a dn s/c, sinh y/c
= tan a en s/c,

the modular angle being a.

This shows that s/c in the closed Sumner Line (i.) may be

equated to nt in the oscillating pendulum, and then x/c will be

half the angle made by the pendulum with the vertical
;
also

in the Sumner Line
dx

cos
\[s
= -=- = cn. s/c, or

i/r
= am s/c,

the intrinsic equation ;
and p = c sin a sec x/c.

The differentiation of equation (ii.) gives in a similar manner

_
dx

so that x/c
= am s/c, with mod. angle /3 ;

and now, in the corresponding undulating Sumner Line, x/c is

half the angle made with the vertical by a revolving pendulum,
if we put s/c

= Knt.

Also -T- , l//c)

by 29
;
so that ^ = am(/cs/c, l//c),

the intrinsic equation ;
and p = c cosec /3 sec x/c.

Fig. 10.

The second curve, by a shift of origin a distance JTTC to the

right, becomes sinh y/c
= tan j3 sin x/c,

and then it cuts at right angles the first curve (fig. 10)

cosh y/c= sec a cos x/c.
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For, differentiating these equations logarithmically,

,-&amp;gt;ydy ,x
coth^ -/- = cot-.

c dx c

, y dy x
tanh --

-^-= tan - ,

c dx c

and therefore the product of the ~ s is 1.

In fact .putting sec a coth a, the curves are derivable as

conjugate functions from the equation

x+ iy = c amh(a
/+ i/3).

99. PROBLEM VIII. Catenaries.
&quot; The catenary for a line density proportional to cosh s/a,

where s is the length of the arc measured from the lowest

point, is of the form

tanh y/b
= dn x/a, or dn x/b,

according as a, the ratio of the tension in pounds to the density
in Ib. per foot at the lowest point of the catenary is greater

or less than b
;
the Catenary of Uniform Strength being the

curve in the separating case of a = b&quot;

The equation of the Catenary of Uniform Strength, in

which the linear density or cross section is so arranged as to

be proportional to the tension, is well known (Thomson and

Tait, Natural Philosophy, 583) being
evlbcos x/b

= l, or e^/& = sec x/b ;

or as it may be written

tanh \y\~b
=

tsn\^x/b.

For if
O-Q

denotes the density in Ib. per foot, and cr 6 the

tension in pounds at the lowest point A, cr the density and

0-6 the tension at any other point P, at a distance s from A,
measured along the curve, the equations of equilibrium of

APare

o-b cos \js
= CTO&, o-b sin -^ =Ja-ds.

Thence a- = o- sec
\}s, andycrc/s

= a- b tan
i/r ;

so that &amp;lt;r

=
&amp;lt;r

6 SQC2
\lsd\js/ds

=
&amp;lt;r sec

\]s,

or ds/d-fi
= b sec

i/r,

s=fb sec \fsd\fs
= b cosh

~
^ec

\{s
= b cosh

~ 1

o-/o- ,

o

a- = o- cosh s/b.
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We might therefore take a piece of uniform flexible and

inextensible material, cut out from a plane piece by two

catenaries, or modified catenaries, say y/c= cosh x/b, and

hang it up in a catenary of equal strength.

Also x =/cos i/rcZs ==/*bd\lr
=

61^,

y =Jsiu \fsds =jb tan ijsdty
= b log sec

i/r ;

so that y/b = log sec x/b, or ey/b= sec x/bt

the equation of the Catenary of Uniform Strength.
But now suppose two supports at the same level to be made

to approach or recede from each other
;
the piece of cloth or

the chain will hang in a different catenary.

Denoting by &amp;lt;r
ct the tension in pounds at the lowest point

A, and by t the tension at P, then

t cos
\fs
= arQa, tsm\fs =f&ds = or b sinh s/b ;

dy b . , s
so that p or -~- = tan \^

= - smh y ,

the intrinsic equation of the curve.

or v- aMp

an elliptic integral, ofthe form (10), p. 33; and puttingp = tan

d\[r_ //cos2
\/r

sin2

\/A~-
In the separating case, a = 6; and then x= b\fs, as in the

Catenary of Uniform Strength ;
the greatest possible span of

a catenary of given material is therefore 7rb = 7TT/ iv, where T
denotes the tenacity of the material, in pounds per sq. foot,

and w the density or heaviness, in Ib. per cubic foot.

But with a &amp;gt; b,

^ *)&amp;gt;

where K = b/a;

so that JTT -f \/r
= am x/b,

A dy en x/band -- = i^u\h-= ---L

C en x/b sn x/b 7 f K2sux/b snaj/6 7

=/~ 2 n J-dx =/-
I

J sn2
#/6 J l

-- ---
dx sn x/b

x/b sn
I

dn2
x/b

or tanh y/b = dn x/b.
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With a &amp;lt; b,

so that \r
= am x/a,

-, cfo/ . sn x/aand -^=tanr=--4-j
--

-,
ewe en 05/a

/sn
#/a en oj/a 7 _ /*/c

2sn cc/a en a/a-
1)

-
/

-- Ct/X == / i
-

n
-

/

-
A&amp;gt;

-
cuz

x/a J dtfx/a-K
2

o

a

or tanh y/b = i
---r = dn(^T aj/a),
dnx/a

by 57 ;
so that by a change of origin, taking the axis of y in

a vertical asymptote of the curve, its equation may be written

tanh y/b = dn x/a.

(Compare Cayley, on A Torse depending on Elliptic Func

tions, Q. J. M., XIV., p. 241.)

100. In the catenary formed by an elastic rope or flexible

wire, obeying Hooke s Law &quot; ut tensio sic vis,&quot; we may still

have p= sinh u
;
but u is no longer proportional to the arc s.

We use o- to denote the uniform density of the rope when

unstretched, and s to denote the length of rope which stretches

in AP to length s, a-Q
b denotes as before the tension in pounds

of the rope at the lowest point A, and CTO
C is used to denote the

modulus of elasticity of the rope in pounds ;
so that, by

Hooke s law, 1 = 1 -|
--

.

asQ o- c

Then, as before, for the equilibrium of AP,

t cos
i/r
= (r a, t sin

i/r =fo-ds
= or s

Q)

so that p= -^- -f
= sinh u,

dx o

if we put s = a sinh u
;

and then t= crox/(a
2+ s 2

)
= cr a cosh u.

t \ds . a2m, ds A $ \dsQ , a58

, o
Inen ^ =1J ^_y= acOshuH cosh-u,

/-y/j/ \ -_ /7//Vo/ /*
Ct/ Cv \ O^n^ / t-v tv O

and
7
-=

^/( 1 +p2
)
= cosh u,

dx



THE ELLIPTIC FUNCTIONS. 95

,1 dx a2
,

so that -= = cH cosh u,du c

-z- = a sinh u-\ cosh u sinh u.
du c

Integrating, putting a/c
= h,

s/a
= sinh u+ %h(u+ cosh u sinh u),

x/a= u+ h sinh u,

2//a
= cosh u+ J/i sinh%.

For the corresponding points on the rope, when it is supposed

inextensible, putting c = co
,
and h = 0,

s /a= sinh u, xja= u, y /a= cosh u,

giving an ordinary catenary ;
so that the tangents are parallel

at corresponding points of the catenaries of the elastic and of

the inextensible rope.

The terms depending on h, considered separately, define an

ordinary parabola ;
so that the catenary formed by an elastic

rope is something intermediate to a parabola and a common

catenary.

101. PROBLEM IX. Geodesies.
&quot;

Investigation of the geodesies on the Catenoid, the surface

formed by the revolution of a catenary round its directrix, and

on the Helicoid, into which it can be developed ;
also of the

geodesies on the Unduloid and Nodoid, the capillary surfaces

of revolution, of which the meridian curves are the roulette

of the focus of a conic section, an ellipse or hyperbola, rolling

upon the axis of revolution.&quot;

The simplest mode of determining a geodesic on a surface of

revolution is to treat it as the path of a particle moving
under no forces on the surface, considered as smooth, so that

ds/dt is constant
;
and then, since the reaction of the surface

passes through the axis, rz

dO/dt is constant
;
and therefore

= 6, a constant,
ds

r and denoting the polar coordinates of any point of the

projection on a plane perpendicular to the axis Ox
;
and thus

ds- dx2
.
dr2

.
r4
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In the catenoid r/a = cosh x/a,

so that
dx a

and therefore, in the geodesic,

r2_ a2 dr2 .dr2 r*
+ ~

dO* b2

We must distinguish the two cases according as b2 ^ a2
.

When b2
&amp;gt;a

2
, then r2

&amp;gt;b
2

;
the geodesic osculates the circular

cross section of radius b
;
and we have

r sn 6 fr, with K = a/b,

as the polar equation of the projection of the geodesic.
When b2

&amp;lt; a2
,
then r2

&amp;gt; a2
;
the geodesic crosses the circular

section of minimum radius a; and supposing it cuts the

meridian here at an angle a,b = a sin a
;
and now

r sn($//c)
= a, the modular angle being a.

In the separating case, b = a and K = 1
;
and then sn(9 = tanh 6;

so that r tanh = a

is now the polar equation of the projection of the geodesic, a

curve having r = a as an asymptotic circle.

Generally in any geodesic on a surface of revolution, which

cuts the meridian curve at a distance r from the axis at an

angle v, sin y = r-- =
;A da r

so that sin ^ varies inversely as r.

102. Now suppose the catenoid is divided along a meridian

curve AP, and again along the smallest circular section AA
,

and that this section AA is drawn out into a straight line, of

length 2-7TC&
;
the rest of the surface, if flexible and inextensible,

will assume the form of a Helicoid, or uniform screw surface

of pitch a, such that its equation is

z = a$,

taking the axis of z along the axis of the surface, and p, the

polar coordinates of the projection of a point on a plane per

pendicular to the axis
;
and AP will become a generating line

of the Helicoid
;
this is proved geometrically, by noticing that

the length of the helix PPf

on the Helicoid is equal to the

length of the circle PPf

on the Catenoid.
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The surface being inextensible, and a circular cross section

of the Catenoid becoming a helix on the Helicoid, it follows that

r2d6* =
p-d&amp;lt;f

+ dz2 =
(P

2+ a2
)d&amp;lt;j&amp;gt;

2
;

and since r2 = p
2+a2

,
therefore 6 = &amp;lt;.

Fig. II.

Therefore the equation of the projection of a geodesic on the

helicoid is either of the forms

or (p
2+ a2

)sn
2 = b2= a2

/*
2

,

_ a dn

The Catenoid is the surface of revolution formed by a

capillary soap bubble film, when the pressure of the air is the

same on both sides of the film. The surface is easily formed

practically by dipping a circular wire into soapy water and

raising it vertically ;
and it is evident from mechanical con

siderations that the surface is a minimum surface ( 31).

The Helicoid, into which the Catenoid can be deformed, can

be produced in the same manner by a film between two coaxial

helical wires of the same pitch (C. V. Boys, Soap Bubbles).
G.E.F.
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These surfaces are particular cases of Scherk s minimum

surface, whose equation is

,y ,aj(x*+ y*-b2
) ,J(x*+ y

2
-b*)s^atan-^+ ataji-V^TK-T 2 . 2\+ b tanh &quot;

// *T -

2 , 2 &amp;gt;

# &vO
2+ 2/ + ) ^/(a;

2+ y + a )

or

reducing to the Catenoid when a= 0, and to the Helicoid

when 6 = 0.

The verification in the manner of 32 is left as an exercise

for the student.

103. The meridian curve of the Catenoid is the roulette AP
of the focus of a parabola aG, the pressure of the air being the

same on both sides of the film (fig. 12).

But when the pressure of the air inside the film is increased

or diminished, we find that the surface of revolution formed

by the capillary film has as meridian curve BP or OP, the

roulette of the focus of an ellipse or hyperbola, the first surface

being called the Unduloid and the second the Nodoid.

(Maxwell, Capillary Attraction, Encyclopaedia Britannica.)

Denoting by y, y
f

the perpendiculars from the foci P, P on

the axis Ox on which the conic rolls, then in the Unduloid

BP, generated by the focus P of a rolling ellipse bQ,

y+ y = (PQ+ QP )COS ^ = 2a COS ^,
and yy =W;
so that 62+ y

2= 2ay cos
\js.

If in the meridian curve BP of the Unduloid, we denote

the radius of curvature by /o,
and the normal PG by n, then,

since b2+ y
2= 2ay cos ^= 2ay*/n,

1 62 1
therefore - ^ 9+ s~ ;

n 2a 2 2a

and since cos \fs = -- + -,

lay 2a

differentiating,

. d\!s ( b* 1 \dy
sin y-f =

(
- - -

o
-

) -/-,as \2a /

?/
2 2a/as
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Fig. 12.

or

so that __ = _.
n p a

Then, if p denotes the excess over the atmospheric pressure
of the air inside a capillary film, in the shape of an Unduloid,

and t the tension of the film,

p =t(-} = L:
\n p/ a

so that, if inside a Catenoid, the pressure is increased, the

surface is changed into an Unduloid.

If the pressure is slightly diminished by p, the surface be

comes a portion of a Nodoid CP
;
for now

and in the meridian curve CP of the Nodoid, the roulette of

the focus P of a hyperbola cR with foci P and
P&quot;,

y&quot; y = (P&quot;R RP)cos \fs
= 2a cos

\js,
and yy = b2

;

so that 62
y

2 = 2ay cos
i/r
= 2ay

2
/n :

l = 62 1

n~2ay2 2a

and
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In the geodesic on the Unduloid,

y
2

dO/ds = a sin y.

supposing the geodesic cuts the meridian curve at an angle y
at its maximum distance a from the axis; also a = a(l+6), and

the minimum distance /3
= a(l e), so that a/5

= 62
, a-h/3 = 2a;

and y lies between a and /3.

Now, in the projection of the geodesic on a plane perpen
dicular to Ox, writing r for y, so that tsm\[^

= dy/dx
ds2 dx2 dr2 dr2 r4

or 02a2sm2

y
and ? cos

\/s
=

(b
2
-\- r2)/2a ;

so that

= L ffl+^m ^
1 4a2 Aa2sin2

leading to integrals of the form (72) and (73), p. 52.

We suppose first that /3 &amp;gt; a sin y, so that the geodesic crosses

the minimum section of the surface, and therefore all the

sections if produced ;
and now with a &amp;gt; r &amp;gt;

/3
&amp;gt; a sin y, we

have, according to equation (72),

~
J(a:

2-r2 .r2
-/3

2 .r2-a2sm2

7)

1 _cn2

m^_L sn
2m0

r2 a2
/3

2
&quot;

Secondly, if a &amp;gt; r &amp;gt; a sin y &amp;gt;

/3,
then the geodesic osculates

the circle of radius a sin y, and is limited by the convex part
of the surface between two such circles

;
and the equation of

the projection of the geodesic is obtained from the above

merely by interchanging a sin y and
/3.

In the separating case a sin y = /3 ;
and then K = 1, m= tan Jy ;

and the polar equation of the projection of the geodesic is

1 = sech2mfl tanh2mfl

r2 rf~ ~p*~~
a curve having an asymptotic circle y= /3.

The formulas are similar for the geodesies on the Nodoid.
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104. Eulers Equations resumed. Poinsot s Geometrical

Representation of the Motion of a Body under No Forces.

We now resume these equations of motion, of which the

solution by elliptic functions has been indicated in 32.

By the Principle of the Conservation ofAngular Momentum

(Routh, Rigid Dynamics, Chap. IX.) the axis OC of the re

sultant angular momentum G will be fixed in space ;
and the

direction cosines of this axis with respect to the principal

axes of the body being

Ap/G, Bq/G, Cr/G,

the component angular velocity about OC will be

Or 6r

where, as before, T denotes twice the kinetic energy of the body.
It is convenient to denote this component of angular velocity

about OC by a single letter, say /m; and also to replace G and T

by Z&amp;gt;M and D/x
2
, making T/G = ^ and G2

/T= D; and then D will

be a constant quantity, of the same dimensions as A, B, C.

If / denotes the moment of inertia about the instantaneous

axis of rotation OP, and if OP denotes the vector of the

momental ellipsoid at 0, then /varies as OP~ 2
,
so that we may

put I=Dh2/OP2
,
where h is a new constant length.

Now, if o&amp;gt; denotes the resultant angular velocity about OP,

T-Jo)2
,
or D^ =DhVjOP\

so that the angular velocity CD varies as OP : and

IUL CD p q r

The direction cosines of the normal of the momental ellipsoid

at P being proportional to Ax, By, Cz, or Ap, Bq, Cr, are

therefore Ap/G, Bq/G, Cr/G ;
so that OC, the axis of G, is

perpendicular to the tangent plane at P ; and if OC meets this

tangent plane in C, it follows that OC= h, so that the tangent

plane at P is a fixed plane ;
and during the motion the

momental ellipsoid rolls on this fixed plane, called the in

variable plane, with angular velocity proportional to OP.

The curve traced out by the point of contact P on the

momental ellipsoid is called the polhode, and the curve traced

out by P on the invariable plane is called the herpolhodc ;
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these names are due to Poinsot, as well as this geometrical

representation of the motion.

(Theorie nouvelle de la rotation des corps, Paris, 1852.)

The equation of the momental ellipsoid may now be written

while Ax/Dli, By/Dh, CzjDh are the direction cosines of the

invariable line 00 ; so that

AW+ B*y*+ CV =D%2
.

The polhode is therefore the curve of intersection of these

two coaxial quadric surfaces, and therefore lies on the cone

called the polhode cone
;
and the projections of the polhode

on the principal planes are therefore

(A - B)By*+(A-C) Gzl = (A- D)Dhz
,
....

105. Denoting by v the component angular velocity of the

body about the axis OH, where OH is equal and parallel to CPt

and, by solution of these equations,

A-B.A-C .

or =
i/
2+

(l
-

-g)(I
-
Q) yu

2= ^- v,?, suppose ;

B-C.B-A /- I&amp;gt;\- D

C-A.C-B
2

/ D\(. D-^^ 1 &quot;

and in these equations we may replace p, q, r, o&amp;gt;, /x, v by

^, T/, 0, OP, /t, p, respectively, where p
2 = OP2 h2

.

Example. Prove that

and simplify
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106. On the supposition that

AT&amp;gt;BT&amp;gt; G2
&amp;gt; CT, orA&amp;gt;B&amp;gt;D&amp;gt;C,

r never vanishes, and the polhode encloses the principal axis (?;

but p and q alternately vanish, so that i/
2 oscillates in value

If we put
v-
2
= (~ - l){(l

-
^)cos

2
6&amp;gt;+ (l

-5
/r \U \ & * o/

then A-

Or* =

We now find, on substituting in one of Euler s equations,

-D .

, d2
n 9(A-B)(D-C) .

and ~- = -D^- .
--- sm 6 cos 6,

the solution of which is of the form, as before in IS and 32,

= a,m(nt, K),

,A-D.B-C A-B.D-C
n~ =D^- and K

- =

the anharmonic ratio of A, B, D, C
;
while

giving ( 32)

107. Quadrantal Oscillations.

The oscillations given by a differential equation of the form

are called quadrantal oscillations (Thomson and Tait, Natural

Philosophy, 322), the system having two positions of stable
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equilibrium given by = and =
TT, and two unstable posir

tions in the remaining quadrants, given by 6= |-TT ;
for

instance, an elongated piece of soft iron in a uniform magnetic
field, or an elliptic cylinder moveable about its axis in a cur

rent of liquid performs quadrantal oscillations. (Q. J. M.
t xvi.)

When the system performs complete revolutions, the solu

tion is ( 18)
= &m(mt/K, K) ;

but if it oscillates about the positions of stable equilibrium,

given by 6 = 0, the solution is ( 29)

0= am(m, l//c),

or cos 6= dn(mt/K, K),

sin 9= Kfm(mt/K, AC),

where K is less than unity.

The second solution will apply to the second state of motion

in 32, where AT&amp;gt; G2
&amp;gt; BT&amp;gt; CT, or A &amp;gt; D&amp;gt; B &amp;gt; G, and where

p never vanishes, and the polhode encloses the principal axis A .

108. Differentiating the equations of 105 with respect to t,

du_ dv_A-B.A-G dp^B-G.B-A dg_G-A.G-B dr
&amp;lt;a

dt~ v
dt~ BG Pdt~ CA qdt~ AB

~r
di

_B-C.C-A.A-B
ABC

~ PqT

or = - 4. . o,a
2-

a,
2

. W2-
a&amp;gt;

2
.

so that co
2 and t/

2 are elliptic functions of t, of the form given

by equation (15), p. 36.

But, on reference to equation (A), p. 43, we see that

if ea ,
eb,

ec denote the roots of 4s3
#2

s #3
=

;
so that on

comparison we may make

proportional to $u ea , ^u e^ $)u ec ;

or, symmetrically, we can put

CT* = -m\A - B)($u- ec) ;

where the factor -m2
is introduced for the sake of homogeneity,
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m being of the dimensions of an angular velocity, such as p, q,

r, CD, [*, v ;
and now, on substitution in Euler s equations,

du* B-C.C-A.A-B (B-C C-A A-
~dt*

=
-ABC-

-m =(^r+-jr+-c
suppose; so that u= & constant nt.

109. As in 32, we take A &amp;gt; B&amp;gt; C- and then

(i.) when AT&amp;gt;BT&amp;gt;G
2

&amp;gt;CT, or
A&amp;gt;B&amp;gt;D&amp;gt;G,

r never vanishes, and we must take

ec &amp;gt; ea &amp;gt; pu &amp;gt; eb ;

so that ^ = ec ,
e
2
= e

a&amp;gt;
e
3
= eb ;

(ii.) when AT&amp;gt; G2
&amp;gt;BT&amp;gt; CT, or A

&amp;gt;D&amp;gt;B&amp;gt;C,

p never vanishes
;
and then

and we must take e
1
= ea , e, = ec , e. = eb .

Since pu oscillates between e.
2

and e
3 ,

and is taken

initially equal to e
s , we find, on reference to equation (42),

p. 45, that we must put
u = 2^+ o&amp;gt;

3 nt,
so that the constant of integration for u in 108 is 2^+ 0)3.

Now, at the cost of symmetry, to get rid of the imaginary
o&amp;gt;3 , and to make the argument of the elliptic functions a real

quantity nt, equation (42), expressed in the direct notation,

gves

B
and eb always replaces e

3 , while ea replaces ev ec replaces e
2 ,

or

vice versa, according as the polhode encloses A or (7.

110. For the determination of eat eb,
ec , we have the equations

*a+ eb+ ec = 0,

(B-C)ea+ (C-A)eb+ (A - B)ec
= T/m

2 = D^fm2
,

A(B- 0)ea+ B(C-A)eb+ C(A - B)ec
= G*/m* = D^/m*,

whence AT- G2 =m2

(C -A)(A- B)(eb
- ec),

BT- G*=m*(A -B}(B- C)(ec
-

fl),
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A-D
6 *~

B-D
a m2 A-B. B-V
= D/x

2 C-D
m*~B-C.C-A

so that ec ea is taken positive or negative, according as

BTG2 or B D is positive or negative; while eb ec and

eb ea are always negative, as explained above.

Also (ea eb)-(&amp;lt; c-ta) = 3sa, &amp;gt;

whence the values of ea ,
eb ,

ec .

Then
&amp;lt;/2
=

{(e6
- ec)

2+ (ee
- ea )*+ (ea

- e
fr )

2
}

can be found
;
and the discriminant ( 53)

=

r_^2
3_-~ ~~

111. We have supposed no forces to act; but the case in

which the impressed couple is always parallel and proportional

to the resultant angular momentum leads to equations which

can be solved in a similar manner
;
in this way we imitate the

motion of a body, like the Earth, which is cooling and con

tracting uniformly.

Now, the component impressed couples about the principal

axes being of the form \Ap, \Bq, XCr,

A(dp/dt)-(B-C)qr = \Ap, ...,

which, on putting p = e~ Xt
p ,

and \t
/ = l e~ Xt

, reduce to

so that p , q
f

,
r are the same functions of

,
which p, q, r would

be of t, in the case where no forces act.

In the case of the cooling and contracting body, we put

A=e~ XtA
,
B = e~ XtB

,
C=e~ XtC

Q
-

)
and the equations become

which are solved as before
;
and Poinsot s geometrical repre

sentation of the motion still holds, with slight modification.



THE ELLIPTIC FUNCTIONS. 107

A similar procedure will solve the following theorem :

&quot; A rigid body is moving under the action of a force whose

direction and magnitude are constant, always passing through
the centre of inertia (e.g. gravity), and of an absolutely con

stant couple.
&quot;

If p, q, T denote the component angular velocities about the

principal axes at the centre of inertia, and if u, v, w denote the

compound velocities of the centre of inertia along the principal

axes at the time t
;
then the determination of

p/t, q/t, r/t, ujt, v!t, w/t,

in terms of J
2
is the same as that of p, q, r, u, v, iv, in terms

of t, when no forces act; t being reckoned from the commence

ment of the motion.&quot; (W. Burnside, Math. Tripos, 1881.)

112. To obtain the equation of the herpolhode, we notice

that during the motion the polhode cone, fixed in the body, rolls

on the herpolhode cone, fixed in space, being the common
vertex

; corresponding areas of these cones are therefore equal,

as also their projections on any fixed plane, for instance the

invariable plane.

Therefore if p, (p
denote with respect to C the polar co

ordinates of P on the herpolhode,
dz d\ B dx dz Cz d dx

Since *=0=?=fi
p q r v

therefore
,

dt h A
dz dV ufA-B C-A ,

.1

ABC
D.C-D

ABC
which, combined with the value of di?/dt or dp

2
/dt of g 108,

Pa&quot;

~
P Pb~

-
p~

will determine the equation of the herpolhode.
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113. Using Weierstrass s functions of 108,

M
2
1

mJ

M
_

.
C-A . J.- u2

xl
a

with Of = -

^-(7 C-J. A-B
-

i i

and then
iw &quot;&quot;^

SSB1 -Lj^-1 (positive),

/A
2
/l ^/^&amp;gt; !\^-^ = l--l. (positive),

and, since 6
X (or ee) &amp;gt;$v&amp;gt;

e
2 (or &amp;lt;?a),

we must, by (39), 54, where t is a proper fraction, take

v =

Therefore
ât

or

and, integrating,

and we are thus introduced to a new integral, called an

elliptic integral of the third kind.

The cone described in the body by OH ( 105) is called by
Poinsot the rolling and sliding cone

; during the motion this

cone rolls on an invariable plane through 0, while at the same

time this plane turns with constant angular velocity JUL
about

OC
;

so that, if p, $ denote with respect to the polar co

ordinates of H on this plane,
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114. With the notation of the elliptic functions of Jacobi,

as in 106,

p~ DD-C DD-C DA-D

A-D.D-C D.A-B.D-C ^
-AC~ ABC

which can be thrown into the form

A
DA-B

on putting /c
2sn2a=-

-^

DB-C C B-D A B-D
-a=

BD=C&amp;gt;
Cn &quot;a= ~B D=C&amp;gt;

dna = B A=D
With ea = e

z ,
eb = e

3 ,
ec = e

lt
and v =

coj+ t ws ,
then by (32), p. 44,

and
eb B AD

so that a=K+t iK r

.

B-D

_

B l-K2s

i en a dn a n
sna

and, waiting u for nt,

i sn a dn

i en a dn a . /&quot;/c sn a en a dn a sn2w

sn a
o

. /&quot;/c sn a en au^/ y 5

^y 1 /rsn-a

7

du,

the last term an elliptic integral of the third kind, in the form

employed by Jacobi.

On putting sni6= sin 0, and sn a = sin a, /c
2sn2a= m, then

,.cosaAa
sn

o

the third elliptic integral, as employed by Legendre ;
the

further discussion of this integral must be reserved for a

subsequent chapter.
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EXAMPLES.

1. Prove that, if the excentric anomaly in an undisturbed

planetary orbit of excentricity e is represented by 2 am(u, e),

the mean anomaly is

2 am

2. Prove that the envelope of the straight line rays

K ZX sn u+ (en u+ K dn u)y = K sn u(dn u+ /c en u)

where u is the variable parameter, is the curve

the caustic of parallel rays, after refraction at a circle, of

refractive index l//c ;
and find the order of this curve.

(Cayley, Phil. Trans., 1857,
&quot;

Caustics.&quot;)

3. Prove that a portion of a flexible inextensible spherical
surface of radius a, bounded by two meridians (a lune, or gore
of a spherical balloon) can be bent into the surface of revolu

tion given by

, /c;

0, $ denoting the latitude and longitude of the point on the

sphere.

Explain the geometrical theory, distinguishing the cases of

K &amp;lt;1,
and K &amp;gt;1.

4. Denoting by o&amp;gt; the solid angle subtended by a circle of

radius a at a point whose cylindrical coordinates are r, z with

respect to the axis of the circle, prove that

dco _ az K3

da~ 2arl K -

Show how to determine the illumination at any point of the

surface of the water at the bottom of a deep well, due to the

light from the sky.
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5. A uniform circular wire, charged with e coulombs, is

presented symmetrically to a fixed insulated sphere of radius

a centimetres, so that every point of the wire is at a distance

/ cm from the centre of the sphere, the radius of the wire sub

tending an angle a at the centre of the sphere.

Prove that the electricity, in coulombs per cm
2
,
induced at a

point of the sphere whose angular distance from the axis of

symmetry is 0, is given by
E

.,_ Wsinasinfl /2 _ a2-
2a/cos(fl

-
a)+/2

~
a2-

2a/cos(0+ a)+/2
~
a2-

2a/cos(0+ a) +f*

6. Prove that if this sphere and wire gravitate to each other,

and if the wire is free to turn about a fixed diameter perpen
dicular to the line joining the centres, the wire will be in stable

equilibrium when its plane passes through the centre of the

sphere ;
and prove that the oscillations of the wire due to the

gravitation will synchronize with a pendulum of length

)
CJ
cm

where b denotes the radius of the wire, c the distance between

the centres of the sphere and wire in cm, M the weight of the

sphere in g, C the gravitation constant
;
and

JP=lj-X= JK(1+O
jr

{(1 + K -)^K],

where K~ = bc/(b+ c)
2

.

Determine the position of stable equilibrium and the length
of the equivalent pendulum, when the attraction is changed to

repulsion.

7. Two uniform concentric circular wires of radii b and c cm,

weighingM andM g, are freely moveable about a common fixed

diameter. Prove that in consequence of their gravitation, the

oscillations will synchronize with a pendulum of length

Cm

where F and K have the same values as before.



CHAPTER IV.

THE ADDITION THEOREM FOR ELLIPTIC
FUNCTIONS.

115. So far we have considered the elliptic functions of a

single argument u
;
but now we have to determine the for

mulas which give the elliptic functions of the sum or difference,

uv, of two arguments u and v, in terms of the elliptic functions

of u and v
;
and thence generally the formulas for the elliptic

functions of the sum of any number of arguments u-\-v+w+...\
and the formulas for the duplication, triplication, etc., of the

argument.
The Addition Theorem for Circular and Hyperbolic

Functions.

The analogous formulas in Trigonometry for the Circular

Functions are well known, namely,

sin(u v)
= sin u cos v cos u sin v,

cos(t6 v)
= cos u cos v + sin u sin v

;

or, as they may be written,

siu(uv)
= sin u sin i&amp;gt; sin% sin v,

cos(u v)
= cos u cos v + cos u cos v

;

the accents denoting differentiation
;
and to these*may be added

. -
1 + tan u tan v

these formulas constituting the Addition Theorem for the

Circular Functions.

For the Hyperbolic Functions, the formulas are

cosh(u v)
= cosh u cosh v sinh u sinh v,

sinh(u v)
= sinh u cosh v cosh u sinh v

;

112
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or, as they may be written,

cosh(u v)
= cosh u cosh v cosh u cosh v,

sinh(i6 r)
= sinh u sinhVsinh u sinh v

;

and to these may be added

,, v tanh it tanh -v

tanh(u v)
=

-, ;

1 tanh u tanh v

constituting the Addition Theorem for the Hyperbolic Func

tions.

116. The Addition Theorem for the Elliptic Functions.

For the Elliptic Functions the analogous formulas of the

Addition Theorem are found to be

sn(uv) = (sn u sn
/

t? sn w- sn v)/D,

cn(u v) = (en u en v + cn u cn v)/D,

dn(u v) = (dn u dn v /c~
2dn% dnv)/D,

where D=l /c
2sn%sn2v

;

or,performing the differentiations, and dropping the double signs,

sn u en v dn v+ en u dn u sn v /n

cn u cn v sn u dn u sn v dn v

1 K2sri2u sn2y

dn it dn v /c
2sn it cn u sn v cn v /ox

(3)

Putting /c = 0, we obtain the formulas for the Circular

Functions, sin(u+ v) and cos(w-f-i ),
the denominator D re

ducing to unity.

Putting /c = l, remembering that then (16) snu becomes

tanhu, cnu or dnu becomes sech u, we obtain from (1)

tanh u sech2v+ sech2^ tanh v
, 9 , 9

1 tanh2
w, tanh2 y

_ tanh u( 1 tanh2
1?)+ (

1 tanh%)tanh v_ tanh u+ tanh v

1 tanh 2u tanh2
i; 1+ tanh u tanh v

as before; with the corresponding formula for sech(i6-f-v)

or cosh(w+ r), the formulas for the Hyperbolic Functions.

117. To establish these formulas of the Addition Theorem
for Elliptic Functions, let us employ the geometry invented

by Jacobi (Crelle, Band 3
;
Gesammelte Werke, I, p. 279), at

the same time interpreting the geometry in connexion with

Pendulum Motion.
G.E.F. H
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To do this, let us suppose that Pf

would be the position of

P in
fig.

2 at the time t, if it had started r seconds later, and

puU- T= f; then (6)
AN =AD stfntf, N D=AD cnV, NE=AE drfnt

, etc.
;

and we shall prove that PP f

touches a fixed circle through B
and B during the motion

(fig. 13).

For suppose that, in the small element of time dt, P has

moved to an adjacent point p and P to p ;
and let PP

, pp
intersect in R, so that R is ultimately the point of contact on

the envelope of PP .

Then since, by a property of the circle, PP cuts the circle

APP at equal angles at P and P
,

PR _, Pp _ velocity of P _ IND
RP

~
Pp

~
velocity of P

~
VNtf

Now describe a circle with centre o on AE, passing through
B and B ,

and touching PP at a point which we shall denote

by R ;
then

= OB*+ Oo*-Wo.ON- Bo*

= Oo(OD+Do+oO-

Similarly,

so that
PR PR
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and therefore R and R coincide
;
and we have thus verified

that PP touches at R the circle oR (using the notation oR to

mean a circle of centre o, and radius oR).

Putting Oo = a, and denoting the angles A OP, AOP by 9,

, and ADQ, ADQ by 0, ^, then

PR2 = 2a . ND= 4aR cos^= 4aZ/c
2cos20,

so that P R+RP= 2
/v/(a

while PP= 2Z sin J(0
-

),

and therefore sin J(0
/

)
=

^/(a/Z)K(cos i/r-f- cos 0).

Putting nt = u, nt = v, nr=uv= iv; then since (8)
,
sin J$ = /c sin = /c sn u, cos J$ = dn u

;

sin JO = /csini/r
=

(0 ) snudnv
V&amp;lt;z

j
=

6
,
a constant.

I /f(CQS \lr+ COS 0)

Putting t = 0, v= 0, and therefore u = n-T = w, we find

Va_
snw _lcmv_ 11cn.w.

I 1 + cnw smu \l +cn^
so that

1 cn(u v)_suu dn v dn u sn v _ en v en ?&

1 + cn(i6 v) en v+ en u sn u dn v+ dn u sn u

one form of the Addition Theorem, which by algebraical trans

formation can be reduced to one of the preceding forms of 116.

118. Representing, as in 31, snu by sv cnu by c
lt
dnu by

d
lt
and the corresponding functions of v by s

2 , c2,.c?2 ;
then

1 + cn(u v)

so that l-cn(u-t.j= fe-ci ;

.-v) (c.

V

xor cn(u v) =

and changing the sign of v,

another form of the Addition Equation.

A
. 1 cn(u v) fs,d9

Again 4= -&quot;

1+cnO-v)

tA_
2-

&quot;

and, adding numerators and denominators (componendo),
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. 2 (C
(u V)

= -9-

-L K 8^ 82

the usual form (2) of the Addition Theorem for the en function.

But, subtracting numerators and denominators (dividendo),

Cn(u V)
~~ nT

1

-~|-

_l_ s/_\2+ K2,

*+lf&amp;gt;

and another form can be easily established in the same way,

(Glaisher, Messenger of Mathematics, vol. x., p. 106
;

M. M. U. Wilkinson, Proc. London Math. Soc., vol. xiii., p. 109;

Woolsey Johnson, Messenger of Mathematics, vol. xi., p. 138.)

119. Expressed again in Legendre s trigonometrical form,

with = am u, i//-
= am v, y = am(u v),

ja _ 1 cos y_ sin
&amp;lt;^&amp;gt;

A^ sin

V ^ sin y cos
i//-+ cos

V
_ 1 + cos y_ sin A\/^+ sin

a sin y cos \^ cos

Therefore, eliminating Ax//-,

= 2 cos + 2 cos \/r
cos y,

or cos = cos \^ cos y sin
-0-

sin yA0.

Expressed in Jacobi s notation, since u =

cn.(v+ iv)
= cii vciiw

Changing v+ ^v into u v, this becomes

cn(u v)
= en u en v+ sn u sn v dn(i6 v),

or cos y = cos
(p
cos \^+ sin

&amp;lt;^&amp;gt;

sin \k-Ay.

Conversely, these relations, treating y as constant, lead to

the differential relations du dv= 0,

or cZ0/A0-^/A^ = 0,

or l - 2sin2
- - d 2 l - K

2sin2 &amp;lt;

= 0.
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Writing x for sin
&amp;lt;p

sin
\/s, y for cos

(p
cos

\fs,
and m for Ay,

then cos y = x/(m
2

/c
2
)//c ( 17); and the integral relation

becomes y 4-mx = ^/(m
2

/c
/2

)//c,

leading to the differential equation, of Clairaut s form,

y
- xp= *J(j?

- K Z
)/K,

denoting dy/dx by p ;
this is the form of the differential

equation when we change to these new variables x and y.

120. We have begun in 117 by supposing the points P and

P to oscillate on a circle with velocity due to the level of the

horizontal line BDB f

, cutting the circle in B and B (figs. 2, 13);

but if they are performing complete revolutions with velocity

due to the level of a horizontal line BB through D not cutting

the circle, but lying above it (figs. 3, 14), a similar proof will

show that PP touches a fixed circle having with the circle

PP the common radical axis BB
, the two circles not inter

secting ;
and the Landen point L

( 28) will be a limiting

point of these two circles.

But this motion of P and P in fig. 14 is imitated by the

circulating motion of Q and Q on the circle AQ in fig. 13
;
so

that QQ touches at T a fixed circle, centre c
;
and the hori

zontal line through E is the common radical axis of this circle

and the circle CQ, the Landen point L being a limiting point :

and thus the Addition Theorem for Elliptic Functions can be

deduced from the motion of P and P in fig. 14, or of Q
and Q in

fig. 13, as given by Durege, Elliptische Functionen, X.

For if in fig.
1 4 a circle is drawn with centre o and radius

oR, such that BDB (fig. 3) is the common radical axis of this

circle and of the circle AP, then, since the tangents to these

circles from D are equal in length,

and now, if the tangent to the inner circle at R cuts the outer

circle in P and P ,

as in 117 ;
and similarly RP 2 = 20o . ND

;
so that

PR _ /^
/

JD_ velocity of P
.

RP V XJJ velocity^fP&quot;

and therefore PP will continue to touch the circle R, during
the subsequent motion of P and P .
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Similarly, in fig. 13, QQ during the motion touches a fixed

circle, centre c and radius cT
;
and putting Oc = c,

We notice, on reference to 28, that

LQ2= 2LC.EN=2LC.EA drfnt = 4l\I
so that LQ= LA dn nt

;

and therefore -~ =
-^,

or XT7

bisects the angle QLQ in fig. 13; while LR bisects the

angle PLP in fig. 14
;
we may state this theorem geometrically,

&quot;

the segments of a tangent to one circle, cut off by another

circle, subtend equal angles at a limiting point of the two

circles.&quot;

Then, with the notation of 117,

QT+ TQ = 2 &amp;lt;/(cQ(A^+ A0),
and Q Q = 2R sin(0

-
\j/)

= 2KH sin(0
-

\/r) ;

so that, in Legendre s trigonometrical form,

Putting \/r
= 0, then = y ;

so that

\^)_ /csiny 1 Ay
/csiny

VR
/csin(0+ \^) K sin y 1 + Ay= :

*-
:

* = or -
,

c A\^ A0 1 Ay /csiny

the product of the two equations being unity.

Conversely, the relation

sin(0 + \fs}
=

(7(A^+ A0),

where C is an arbitrary constant, leads to the differential relation

121. Taking the equations

Ay _ /c
2

sin(&amp;lt;/&amp;gt;

sny ir
&amp;lt; sny

we find, on eliminating sin 0,

2/c
2cos sin

i/r
sin y = (1 + Ay)(A^- A^)

-
(
1 - Ay)(Ai/r+ A^)

A^ = AyAx/&amp;gt;&quot;
/c
2cos

^&amp;gt;

sin i/r
sin y,

or dn u= dn v dn it; /c
2cn it sn v sn u?

,

with it =
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By eliminating cos 0,

2/c
2sin cos

\}s
sin y = 2A^ 2

AyA&amp;lt;/&amp;gt;,

Ai/r
=

A&amp;lt; Ay+ /c
2sin cos

\/r
sin y,

or dn(u 10)
= dn u dn 10 -f /c

2sn % snw cn(it w).

Changing w into v,

dn(u v)= dn u dn v -f /c
2sn u sn v cn(i6 r),

or Ay= A0Ai/r+ /c
2sin sin

i/r
cos y.

Writing a; for /c
2sin sin

i/^, ^/
for A^Ai//-, and 7)1, for cny,

then y+mx = *J(ic
2+ /c

2m2
),

the integral relation of Clairaut s differential equation

y - xp= *J(K
2+ K

z
p

z
),

which is therefore the transformation of

when we change to these new variables x and y.

Taking the two trigonometrical expressions from 119, 120,

for the Addition Theorem,

1 cos y_ sin Ai//-
sin 1//-A0 1 Ay_ K

2
sin(&amp;lt; i//-)

siny cosi/r+cos&amp;lt; siny

we obtain, by subtraction and reduction,

Ay cos cos
\[sA&amp;lt;p

cos

sin y sin
&amp;lt;p

+ sin
\js

dn(u v) cn(i6 v) dn u en v en u dn v

sn(u v) sn u -f sn v

the form of the Addition Theorem given by J. J. Thomson

(Messenger of Mathematics, vol. IX., p. 53).

122. With the notation of the elliptic functions,

1 + dn(u v) _ Ac(sn u en v+ sn v en u}

K sn(i// v) dn v dn u

1 du(u v) /c(sn u en v sn v en u)
/c sn(it v) dn v+ dn u

Therefore, as before, with Glaisher s abbreviations,

v)_ (cZ2
cZ

1)(s1c2
-

~
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Similar algebraical reductions to those given above for

cn(u v) will establish the formulas for du(u v) and dn(u+v),
given by Glaisher (Messenger, X., p. 106),

S
l^-2

C
2 S2^1C1

+ /cV2
c
i
c
2 1 -AV

the last of form (3), 116.

123. The Duplication, Triplication, etc., Formulas.

Putting v=u in formulas (1), (2), (3) of 116, and writing
s, c, d for sn u, en u, dn u, we find

9 =

Writing ^f, 0, D for sn2u, en 2u, dii 2u, we find

1+1)
&quot;&quot;

c/
2

_~

Putting u=pr, then fif=l, 0-0, !) = /; and

Again, in 67,

, (1 +Qsn(^ /c)cn(u, /c) _ 1 +/ /l-dn(2u,/c)
dn(u,/c) /c Vl + dn(2u,AcT

and 2w=(l+X)v, X = (l -/)/(!+/),

which is called Landeris second transformation.
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Again, putting v = 2u, and making use of the above formulas,

we shall find

on 3,,-
1 - 6*V+ 4(1+*Vs6- 3/cV

1 - sn 3u 1 + */l - 2s+ 2/cV- /c

1 + sn 3u 1 - s\ 1 + 2s- 2/c
2s3- /c

l-jcsn3u_ 1 + K8/1 - 2/cS+ 2/cs
3- /cV\ 2

.

1 + K sn 3u 1 - #s \1 + 2/cs- 2/cs
3-

jc

with similar expressions for en 3 it and dn 3tt, leading to

+ 2/c
/2 c+ 2/c

2c3+ *

l-dn3u 1-
l+dn3w,

i_j_9i/r/3 9 t-
/
r7

I ** &amp;lt;-l/ -K Uj

the algebraical work is left as an exercise for the student.

124. Poristic Polygons ofPoncelet, with respect to two Circles.

Starting from the point A in
fig. 13, and drawing the

successive tangents AQV Q^o, Q^Q^ to the inner circle,

centre c, from the points Qv Q2 , Q3 ,
... on the circle CQ ;

or starting from A in fig. 14, and drawing the tangents APV

PJPv P2
P

B ,
... to the inner circle, centre o, from Pp P2 ,

P
3 ,

. . .

on the circle OP
; then, if we denote the first angle ADQl

or

AEP
1 by am w, it follows from this construction that

ADQ2
=AEP = am 2^(;, ADQ3

=AEP
S
= am 3w, . . .

;

and we have thus a geometrical construction for the elliptic

functions of the duplicated, triplicated, ... argument.
When iv is an aliquot part, one 71

th
,
of the half period 27T, or

T of the half period 2T seconds, then after n such operations
the polygon AQ^^Q^, ...

,
or AP^^P^, ... ,

will close on itself

at the starting point A ;
and the preceding investigations show

that during the subsequent motion of these points, the polygon
formed by them will continue to be a closed polygon, inscribed

in the circle CQ and circumscribed to the circle cT, or inscribed

in the circle OP and circumscribed to the circle oR
;
and thus

we have a mechanical proof of Poncelet s Poristic Theorem for

two circles, a problem discussed by Fuss, Steiner, Jacobi,

Richelot, and Minding.

(Cayley, Philosophical Magazine, 1853, 1854, 1861.)
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Let us consider the particular cases of w equal to
, J, J, },

*

... of the half period 2K.

(i.) When w= 2K, PP is horizontal in fig. 13; and P and

P coincide in fig. 14.

(ii.) When w= K, the circle oR in fig.
14 and the circle cT in

fig. 13 shrink up into the limiting point L, Landen s point

( 28) ;
and now any straight line through L will divide these

circles OP or CQ into two parts described in equal times, ^T ;

while in
fig. 13 the line PP will touch the circle described

with centre E through B, L, and B
, subtending an angle 4a

at
;
and any arc PP will be described in time \T, half the

time of describing BAB ;
hence the following theorem

&quot; Two segments of circles are described on the under side of

the same horizontal straight line, one subtending twice as

many degrees at the centre as the other; if a particle oscillates

on the lower segmental arc under gravity, any tangent to the

upper arc will cut off from the lower an arc described in half

the time of oscillation.&quot; (Maxwell, Math. Tripos, 1866.)

As P is passing through A in
fig. 15, P is instantaneously

at rest at B or jB
;
and AB, AB are obviously tangents at B

and B to the circle BLB ,
drawn with centre E

;
while PP is

one side of a crossed quadrilateral, escribed to this circle BLB
t

and inscribed in the circle BAB .

When the circle cT shrinks up into the limiting point L,

then, as in 120,

QL2= 2CL. EN, LQ 2= 2CL. EN
and since QL . LQ is constant in the circle CQ, therefore

EN. EN is constant, and equal to LE2
,
the value it assumes

when N and N pass each other at the point L.

Since EN . EN =EL2 =EB2
,

a circle can be drawn passing through N, N ,
and touching EB

at B
;
and the triangles ENB, EBN are therefore similar, so

that ENB =EBN ,
EN B = EBN.

(Landen, Phil. Trans., 1771, p. 308.)

Translated into a theorem of elliptic functions,

EN. EN =EA 2du2udu2
v, and EB2= K 2

. EA 2
,

so that, as in (59), 57,

dn u dn v= K, when u v= K,
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Otherwise, since ( 28)

and

therefore

123

= ALdiiv,

QL.LQ = AL.LD,
dn u dn v = LD/AL = K.

A

Fig. 15.

The similarity of the triangles A QL, LDQ shows that

and since ( 10) AQ =ADsn u, DQ =
therefore, as in (57), 57,

sn u = en v/dn. v or cd v, when u&amp;gt;
= v

Again, since DQ /DL =A Q/LQ,

therefore
DL sn u

AL dn u dn u
as in (58), 57, when v=-u K.
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Conversely, if the straight line QLQ , passing through L,

moves into the adjacent position qLq , then

u &amp;lt;lQ _ Q^_ _ IEN _ velocity of Q
q Q -LQ -^~EN

~
velocity of Q

7

if Q and Q move under gravity, or diluted gravity, on the

circle CQ with velocity due to the level of E\ so that QLQ
will continue to pass through L, and will divide the circle CQ
into two parts described in the same time \T ( 28).

If in fig. 13 we denote the radius of the circle cT by r, then

y or am w denoting the angle ADQ-^ ; while, from 120,

1 Ay_ c . _R c,

I+Ay&quot;&quot;l

&amp;gt;

Cr y

A , 2
4cR

2 (-R-c)
2-r2

and thence J = * =

Again, if Z)g is drawn from D to touch the circle cT, and

the angle ADq is denoted by y or am w
,
then

, r cosy , cnw
sin y = -^ =

/
r-L, or sn ^v = -=-- ,

^L c Ay on 10

so that ( 57)

125. Poristic Triangles.

(iii.) When w = \K or |-^T, triangles Q^Q^Qs can be inscribed

in the circle CQ and circumscribed to the circle cT, while at the

same time triangles P-,P2
P

3 (or hexagons) can be inscribed in

the circle OP and escribed to the circle oR (fig. 16).

The well known relations of Trigonometry
c2= R*- 2Rr, or a2 =R2+ 2Rr,

where Cc = c, Oo = a, cT=r, oR = r, are now easily deduced.

We may write these relations, more symmetrically,
r r _ -

^ ~ r

In fig. 16,

and since
cQg

bisects the angle J\T|Qj-4.,
which is equal to y,

therefore DcOi
=

J (TT y) ;
and DcQ|

=
DQ^c,

or D(^
= DC.

Similarly AQ = Ac
f
so that

Therefore sin y + cos y = 1
,

or sn\K+ CD.$K= I
,

r r
+ ~
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We shall employ this suffix notation for the points N, P, Q
to signify points corresponding to aliquot parts of K.

Corresponding to w= ^K, the circle oR becomes the circle

through B, N^ R ;
and nowP^AP* is a triangle escribed to

this circle, and inscribed in the circle OP.

For iv = ^K, the circle oR becomes the circle through

B, N^ B
;
and now we shall find that hexagons can be

escribed to this circle, and inscribed in the circle OP.

The tangents at P
g

, P* touch the circle BNJB , and the

tangents at PI, Pj.
touch the circle BNJ1 ;

while AP%, AP&amp;lt;

are the common tangents of the circles BNBf

,
BN 2B .

Denoting the sides of the triangle Q^Q^ by qv qz , g3 ,
then

But uv i//
2 ,
M

3 denoting the value of u corresponding to the

points Qv Q2 , QB , and cZ
1?

cZ
2 ,
d
B denoting the corresponding

values of dn u, then ( 120)

(r72so that

a constant, a relation connecting dv d
2 ,
d
s , when
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126. Poristic Quadrilaterals.

(iv.) When w= ^K, quadrilaterals Q^Q^Q^Q^ can be inscribed

in the circle CQ which are circumscribed to the circle cT, and

now the corresponding relation is found to be

(
-&amp;lt; v

\Ji-J
while TjjPg, T

2
T intersect at right angles in L, being the

bisectors of the angles between Q^LQ^ Q?LQ3 (fig. 17).

This relation is proved immediately by taking the quadri
lateral in the position AQDRs ;

and now y = y = am ^K,

so that squaring and adding leads to the desired relation.

As in (ii.), quadrilaterals can be escribed to the circle BLB
,

which are inscribed in the circle OP, since N coincides with L.

But the circles BNiB and BN*B are related to the circle

OP with regard to poristic octagons; and the common

tangents of these circles are easily recognised at the points

PJ,
p

4
, PJ.

Conversely, starting with the circle cT and the internal

point L, and drawing T^LT^ TJLT through L at right angles

to each other, the tangents to the circle cT at Tv T2 ,
T3 ,

T4

will form a quadrilateral Q1Q2Q8Q4
which is inscribed in a

circle CQ, the diagonals Q^, Q2Q4 passing through L, and

being equally inclined to T^T3
and jT

2
T

4
.

If
Q-fi, Q2c, Q^c, Q4

c are produced to meet the circle CQ again

in qv qz , q3 , q, then q-^q3 and g2g4 are diameters of the circle

CQ; for Q^ bisects the angle Q2QiQ4 &amp;gt;

so that the arc

Q2g1
= arc q-tQi, and similarly the arc Q2^3

= arc g3Q4 ,
so that the

arc qlQ2q3
= &YC

yiQ$3&amp;gt;
an(i eac^ ^s therefore a semi-circle.

It follows, from elementary geometrical considerations, that

LT*+LT*+LT3*+LT?= 4r2
,

or T^
,

so that cq*+ cg3
2= cq*+ cg4

2= (^2- c
2
)

2
/r

2
,

leading to 2(R
2+ c2)

= (^
2- c

2
)
2

/r
2

,

or, as before, +-J= 1.
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t&amp;gt; Denoting by uv u2 ,
u

3 , u^ the values of u at Qlt Q2t Q3 , Q4 ,

so that u^
- u.2

= u
2
- u

3
=u

3
- v,

4
=

\K ;

and denoting by cZ
lf

c^
2 ,

cZ
3 ,

cZ
4 the coiTesponding values of dn u,

then ( 5 7) d
1
d
3
= d

2d^
= K

;

and ( 120) ZQ = 2Z(l-/c
/

)dnu,
so that

&quot; &quot; ^ &quot;

while

=
21(1

- K )(d^) ;

Fig. 17.

Now by a property of the circle (Euclid VI. D)

so that -
^^(^i+ d

s)(d2+ cZ
4

or (^i+ ^
3)(^2+ cZ

4)
is constant, and =2N//c

/

(l+
the value obtained by putting u4

= 0, when

and d* =
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Then

when

Thus

so that

127. Poristic Pentagons, etc.

(v.) When v= \K, or -fTf, the poristic polygons are pentagons

(fig. 18), and the relation to be satisfied is of the form

or p-q=p + q-i
where p and q are used to denote r/(R c) and r/(E + c).

We notice that the relation for pentagons leads to a cubic

equation, when two of the three quantities R, r, c are given ;

but the equation reduces to a quadratic when c= or the circles

are concentric, the case considered by Euclid.

The reader is referred to the articles of Cayley (Phil. Mag.,
Series IV., Vol. 7, and Collected Works) and to Halphen s

Fonctions Elliptiques, t. II, chap. X., for the proof of this

relation and the similar relations for other polygons.
We shall find that Halphen s a and y (t. II, p. 375) are con

nected with our R, T, c, /c, and w by the relations

v&amp;gt;

-r--
(R + c)

2 r2 * \R + c

and thence Halphen s x and y can be formed.

By the use of Legendre s Table IX. for
F(&amp;lt;p,

K) (F. E., t. II.)

we are able to construct geometrically, to any required degree
of accuracy, figures of circles related to each other for poristic

polygons of any given number n of sides.

Having selected an arbitrary modulus K or modular angle

Ja, we look out the value of K, and then determine, by pro

portional parts, the value of in degrees corresponding to an
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will markamplitude of K/n, 2K/n, . . .
;
and these values of

the position of the points Qv Q2 ,
....

Thus, in drawing figs. 13, 14, 16, 17, we have selected

/c= sin 60, when K= 2 1565; and in drawing fig. 16 for poristic

triangles, we find, from Legendre s Table IX.,

am J#=c.m. of 3S49 , amf^T=c.ir,. of 685 .

A
Fig. 18.

These angles enable us also to set out figs. 13 and 14, where
the circles are drawn so related as to admit of poristic hexagons.

In drawing figs. 15 and 17, Landen s point L is sufficient to

complete the diagram ;
also to double the number of sides of

a polygon of an odd number of sides.

In fig. 18, K has been taken as sin 75, as in
figs. 1, 2, 3

;
and

now K= 276806
;
and from Legendre s Table IX.,

amifiT=c.m. of 3018
, am|/i=c.m. of 7020 /

,

by means of which the figures can be drawn.

Fig. 19 shows poristic heptagons, to the same modular angle
of 75, laid out by means of the relations

0!
= am 4^=0.001. of 22S

, 3
=am4Ar

=c.m. of 5649
,

5
= amffiT=c.m. of 776 .

G.E.F. 1



130 THE ADDITION THEOREM

128. The poristic relation between the quantities R, r, c

has been obtained by placing the polygon in a symmetrical

position; but another method is employed by Wolstenholme

(Proceedings London Math. Society, vol. VIIL, p. 136
;

also

by Halphen, F.E.. II., chap. X.), where the polygon on the circle

OP is considered in its limiting form, when passing through
one or both of the common points B and B .

Thus with triangles, the tangent to the circle oR at B must

meet the circle OP again at a point PI, the point of contact of

a common tangent of the two circles P and R, the degenerate

triangle being BPP.
For quadrilaterals, the tangents to R at B, B must meet at

A on the circle P, BACAB being the degenerate quadrilateral.

For pentagons we obtain the degenerate form BP^Pg_PtPB,
where BP^ is the tangent at B to oR, the circle through

B, JV|,
B

,
and PT. is the point of contact of a common tangent

of the circles OP and oR
(fig. 18).

For hexagons (fig. 16) the limiting form is BP^P^BP.P^B,
where BP^, P^B

f

are tangents at B, B to the circle through

B, JVi, B
r

: and so on.
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129. Geometrical Applications of Elliptic Functions to

Spherical Trigonometry.

Taking the fundamental formulas of Spherical Trigonometry

cos c= cos a cos b+ sin a sin b cos (7,

sin A sin B sin C=
.
-= - = K, suppose;

sin a sin 6 sm c

then cos C= ^/(l /c
2sin 2

c)
= Ac,

so that cos c = cos a cos b -f- sin a sin 6Ac,

a formula like that of 119, with a, b, c for 0, ^, y ;
so that if,

keeping (7, c, and therefore K constant, we vary a and b, then

cos B . da+ cos A .db = 0,

or dafAa db/Ab = ;

and, conversely, the integral of this differential relation is the

formula above.

(Lagrange, Theorie des fonctions, p. 85, 81, 82
;

Legendre, Fonctions elliptiques, t. I., p. 20.)

If, in Jacobi s notation, we put
a = am(u, K), b = am(r, /c),

c = am(vj, /c),

then the differential relation becomes

du dv= 0,

so that u v = & constant = w,

since a = c, or ^t = 10, when & = and v= 0.

Supposing K is less than unity, and the angle C is acute, then

c&amp;gt;C,
and of the other angles, one, A, must be obtuse, and the

other, B, acute.

But by changing to the colunar triangle on the side BC, we

may convert the triangle ABC into one in which all three

angles are obtuse
;
and in such a triangle we may put

a = am u, b = jr am v = am(2 JfiT v), c = am(2^T w) ;

so that if the triangle ABC has three obtuse angles, we may put

s ,

where it
1 -f- u.2+ UB

= u+ 2K v+ 2K lu =
and now

cosA = dn uv cos B = dn u.
2f

cos C= dn u,

so that, by 29, we may write

A = TT amC/citp I/AC),
B = -TT am(/at2 , l//c), C=TT am(/cW3 , l//c),

where /c is less than unity.
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For instance, if ABC is the spherical triangle formed by three

summits of a regular tetrahedron,

A = B = C =
ITT,

and cos a = cos b = cos c = J,

sin a = sin b = sin c= f &amp;gt;^/2,

sin a 4^2 8
*

8
* ** ~

16

while ^ = ^2 = ^3= j^K,

so that en K= -
}, sn |JJT= f*/2, dn 4^= f .

When /c = 0, K=\-w, and the triangle J.5(7 is coincident with

a great circle
;
and now

When K = 1, K=vo; and therefore of uv u2 ,
U3, two of them,

say i&j and i&
2 ,
are infinite

;
so that

cos a= sech u
x
= 0, or a = JTT ;

and similarly b = JTT ;

the triangle ABG now has two quadrantal sides and therefore

two right angles, the third side c and angle G being equal, and

taken greater than a right angle.

130. For values of K which would be greater than unity, we

change the notation by considering the polar triangle; and now
if ABO is such a polar triangle, having three acute sides, instead

of three obtuse angles, we put
sin a _ sin b _ sin c _
sinA sin B sin C

and A = am v
lt
B= am v

2 ,
0= am V

B ,

where v
l
=2Ku

l ,
v
2
= 2K u-

2 , v%
= 2K u

s ,

so that ^+^+^= 2^.

Now sin a = K sn vv sin b = K sn v
2,

sin c = K sn v
3 ;

cos a = dn vv cos b = dn i&amp;gt;

2 ,
cos c= dn V

3 ;

so that ct = am(/c^1 , l//c), & =
am(/ci&amp;gt;2 , l//c),

c = am(/c^3, l//c).

The fundamental formula

cos c = cos a cos b+ sin a sin b cos c

now leads to the formula of 121,

dn V
B
= dn ^dn v

2 +/c
2sn ^sn u, en v

s ,

or dn^+ v
2)
= dn Vjdn v2 /c

2sn ^sn ^c^Vj+ V
2).

In the degenerate case of /c = 0, K=^-JT)
and

and now a = 0, 6 = 0, c = 0, so that the spherical triangle is
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indefinitely small, and may be considered a plane triangle;

and we can thus deduce the formulas of Plane Trigonometry.

131. A spherical triangle thus falls into one of two Classes,

I. or II.
;
in Class I. the triangle, or a colunar triangle, has

three obtuse angles; in Class II. the triangle, or a colunar

triangle, has three acute sides
;
the quadrantal triangle falling

into Class I., and the right-angled triangle into Class II.

In Class I. we put

sin -4 _sin jB_sin C_
sin a

~
sin 6 sin c

~

and then K is less than unity; and we put

a = am u
l}

b = am u.- c = am u
s ,

where u
l+u2+ u3

= K,

and then

A = TT Sim(KUv l//c), B = TT am(/cu2 , l//c), C=7r am(/cU3 , I/*).

In Class II. we put
sin a _ sin b _ sin c _
sin A

~
sin B

~
sin G~

and then K is less than unity ;
and we put

A = amv
1 ,

.Z?= amt
2 ,
0=amii

s ,

where v
l+ v

2+ v
3
= 2K,

and then a = am(/cf1 , l//c), 6 = am(/ci 2&amp;gt; l//c), c= am(/ci 3 , l//c).

When this triangle of Class II. is the polar of the triangle

in Class I
,

u
x+ 1\

= u.2+ v.2
= u

3+ v
3
= 2K.

The change from one Class to the other affords an illustration

of the change from one modulus to the reciprocal modulus ( 29).

The spherical triangles employed originally by Lagrange
and Legendre fall into Class I.; and a full discussion of the

connexion between Elliptic Functions and Spherical Trigono

metry will be found in the Quarterly Journal of Mathematics,

vols. 17, 18, 19, in articles by Glaisher and Woolsey Johnson.

But it is preferable in some respects to work with the

spherical triangles of Class II., as growing out on the sphere
more naturally from the infinitesimal plane triangle ;

so it is

proposed to develop here the relations with Elliptic Functions

by means of a typical triaDgle of Class II., having three acute

sides, and to refer to the articles of Glaisher and Woolsey
Johnson for the corresponding relations of Class I.
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132, Writing cv sv cZ
x
for cnv

l}
snvv duvv etc. : then with

v
l+v2+v3

= 2K
&amp;gt;

we may put, in Class II.,

A=a,mv
l,
B= &mVz, (7=amv3 ;

so that cos A = cv sin A = sv etc.
;

and now sin a = K sin A = KS
I}

cos a= dv etc.

From the fundamental formulas

cos c = cos a cos b+ sin a sin b cos C,

cos 0= cos A cos 5 sin A sin 5 cos c,

we obtain d = d

where &amp;lt;i

3
= dn i;

3
= dn(^1+ v

2),
c
3
= en v

3
= cn(v1+ 1

2 ) .

Again, from these two formulas of spherical trigonometry,
cos (7= cos A cos B sin jl sin .B(cos a cos 6 -f- sin a sin 6 cos (7),

o ^_ cos A cos 5 sin A sin 5 cos a cos b- COS L/-----
;
---

;
- -

;
--

;
--- -

1 sin A sm B sin a sin 6

so that -CD-
. .,

-,

cos a cos 6 sin a sin 6 cos A cosB
Similarly, cosc = = : ^ ;

---
: 5
--,

1 sm J. sin B sm a sin 6

leadin to d = dv
12

As a specimen of Class II., take the spherical triangle formed

by three adjacent summits of a regular icosahedron
;
then

A=B=C=fr;
, cos C+ cos A cos B cos (7 1

and cosc= : : ^-- = T~ n n=&amp;gt;

sin J. sm B 1 cos u ^75
so that K = sine/sin C= 1^7(10 2^/5);
and then ^ = ^2

=
^3
= !^,

so that en K=cosC= K^o - 1
),

dn fK= cos c= -J-^/5.

133. To prove that in a triangle of Class II. we obtain the

differential relation

cos b. dA + cos b. dB = 0, or dA/AA + dB/AB= 0,

when we change A and 5, keeping c and (7 constant, dis

place the triangle ABC into the consecutive position ABC\
keeping the points A, B fixed and the angle AC S unchanged
in magnitude (fig. 20).
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Then, if CA and CB produced on the sphere meet the great

circle of which C is the pole in P and Q, the arc PQ = G ;
and

if C A and C B produced meet this great circle in Pf

and Q ,

the arc P Q is ultimately equal to the arc PQ, or

Fig. 20. Fig. 21.

But PAP = -dA, QBQ = dB; while ultimately

PP = -sin 4P . cZJ. = -cos 6 . dA, QQ = cos a . dB;
so that cos b . dA + cos a . dB = 0,

or

since sin a = KsinA,
With A = am vv B = am v

z ,
this becomes

so that v
x+ v.2

= constant 2K v^ where C= am v
s ;

since B+C=7r, or v.2+ v%
= 2K, when A = 0, i\

= 0.

Conversely, this differential relation, interpreted with respect

to the triangle ABC, of which the side AB is fixed, expresses

the constancy of the opposite angle C.

134. If, as is customary, we deduce the differential relation

cos B . da+ cos A . db = 0, or da/Aa+ db/Ab = 0,

from a spherical triangle ABC of Class I., in which

sin A=Ksiua, cosJ. = Aa,

we keep the angle C fixed, and displace the side AB into its

consecutive position A B
,
without change of length, through

an infinitesimal angle 6 about the centre of instantaneous

rotation /, the point of intersection of the arcs AI, BI, drawn

perpendicular to CA, CB respectively (fig. 21).

sin IBH cos Bm , db ,, AA sm/J.
Then --=11-=-. -

da BB sin IB sin IAH cos A
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135. To obtain immediately the addition formulas (1), (2),

(3) of 116 for the elliptic functions, Mr. Kummell draws the

arc CD perpendicular to AB (fig. 20), and denotes the perpendi
cular CD by p, the segments BCD, ACD of the angle C by
F, G, and the segments BD, DA of the base C by / g ;

so that

F+G=Ct f+g=c.
(Kummell, Analyst, vol. V., 1878.)

Now, from the right-angled spherical triangles ACD, BCD,
cos G= sin A cos fr/cos p, sin G= cos A/cosp ;

cos F= sin B cos a/cos p, sin F= cos J9/cos _p ;

or with sin A = sv cos J. = c
1?

sin a= ATS, cos a = dv etc.,

and writing M for cos p,

cos G = s^dJM, sin G= cJM ;

eosF=s
2
d

l/M, siuF=c
2/M.

Also sin 2?
= sin A sin 6 = sin a sin 5= KS^,

so that ^f 2= cos2p= 1- K\V,
a quantity which we have found it convenient to denote by D.

Now, cos C= cos F cos 6r sin .F sin G,

or c
3
-

(s1s2cZ1cZ2
- c^yD,

or en (v + v
2)
= en v

3
=

(ctc2 s
1
s
2
c?

1
cZ

2)/D,

formula (2).

Again, sin Csii\(F-\- G)
= sin jp

7

cos G 4- cos J^
7
sin G,

or s
3
=

(s^gdg+ sfrdJ/D,
where 8

ft
=8HV8 =3Sn(^1 -|-V2), as in formula (1).

Changing the sign of v
2,

sn^-^) =sin(JF- G),

or J^
7

6r = am(v1
v9),

while ^+(7= am^3
= am(2^r t^ -y

2)

= 7r-zm(vl+ v
2),

so that jP== JTT \ am(
G= ATT- J am

Thus, for instance,

tan{ | am(^1+ v
2) + J am^ v

2)}
= cot (r= tanA cos 6 = s^d^jc^

tan
{ | am(i;1+ v

z) J am(^ u&amp;gt;)}

= cot J^= tan B cos a = s^djc^

Again, from the right-angled spherical triangles BCD, ACD,
cos /= cos a/cosp= dJM, sin /= sin a cos B/cosp = KS^/M ;

cos $= cos 6/cos p= cZ
2/Jf, sin g= sin 6 cos A/cos p =
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and therefore

dn(i\+ v.
2)
= dn v

s
= cos c = cos(/+ g)

= cos/cos g sin/sin g

_dl
d

2

as before, in (3), 116.

Also sin(/+0) = /csn(v1+ v
2),

sin
(/-&amp;lt;/)

= K sn(vl
-v

2}-,

whence /and g can be found as functions of v^+ v^ and i\ v
z

.

136. The formula employed by Morgan Jenkins in the

Messenger of Mathematics, vol. XVIL, p. 30, as fundamental

in Spherical Trigonometry, is

sm(A+B) _ sinO
cos 6+ cos a 1 + cosc

&quot;

and this now leads to

^1^9 ~r ^2^1_ ^3~

or, in the Legendrian form

sin G
1 + A(7

a formula already obtained from pendulum motion in 120.

Then the formula

S
1
C
2
~~ S

2
C
l

S3

d^-d^ l-cZ3

or sin(J. B)_ sin G
AB-AA 1-AO5

gives
sinU-J)_ sinO
cos 6 cos a 1 cos c

The formulas of 120, in the form

1 -f c
3 c

2
c
:

lead to the relations

sin(q+ fr) _ sine

C&quot;

.....................
cos 5+ cos J.

~
1 -cos C&quot;

sin(q b) sin c

cos B cos J.

&quot;~

1 + cos (7

and from these four formulas of Spherical Trigonometry Mr.

Morgan Jenkins deduces the analogies of Xapier, Delambre,
and Gauss.
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137. Write, as before, in 135,

A = am u, B= am v.

F= \-K \ am(u+ ^)+ J am(u,
/

y),

6r= JTT J am(M- -j-
i&amp;gt;) J am(u -y).

Then, since

siu(F 4- ) + 8in(F- G) = 2 sin .Fcos G,

therefore, writing cv sv d
v
for en u, sn u, dn u, and c

2 ,
s
2 ,

cZ
2
for

en -y, sn v, dn v, and D for cos2
^ or 1 K\\2

,

sn(u + f) + sn(u v) = 2s
l
c
2
d

2/I) )
............ , ......(1)

cos(.F- G) - cos(,P+ G) = 2 sin J^sin G,

cn(u v)+ cn(u + v) = 2 c^cJD ;
..................... (2)

cos(/ (/)+ cos(f+g) = 2 cos/cos gr,

dn(u + -y)
= 2 d^dJD ;

.....................(3)

in(^- G) = 2 cos ^ sin G,

sin(u v) = 2 s^dJD ;
.\ ............ ..... (4)

cos(,P- G) + cos(T+ G) - 2 cos 7^ cos G,

cn(u v) cn(u + v)
= 2 s^s^dJD ; .................(5)

cos(f-g) cos(f+g) = 2sinfsing,

dn(u + v) = 2 K\c1
s
2
c
2ID , ............... (6)

sin(F- ^-sin^-sin2
^,

sn(u
-

v)
=

(c2
2- c^VD = (s^

- s
2
2
)/D. ..(7)

Again, since

1 + sin(/+ &amp;lt;7)sin(/-gr)
= cos2

^ + sin2/,

and sin(/+^) = /csn(u + ?;), sin(/ #)
= * sn(i6 -y),

-7;) = (^2

2 + /cVc2
2
)/Z); ............ (8)

- G) = sin2,P+ cos2G,

-v) = (c2

2 + s
1

2^
2
2
)/D; ..............(9)

1 - coa(F + G)cos(F- (7)
= sin2G + sin2

^,

1+ cn(u + v) cu(u-v) = (c1
* + c*)/D ;..... .......... (10)

1+ cos(f+g) cos(/ r/)
= cos2

/cos
2
^,

(11)

-/c2
sn(u + v) sn(tt -v) = (^

2 + Ac
2s

2V)/D ;
.......... (12)

-
sin(.F+ )sin(^- G) = siri2G + cos2

F,

(13)

; ........ ..(14)

cos(/ g) = siu2f+sm2
g,

: ,
........ (15)
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{1 sin(.F+ G)}{lsm(F- G)} = (sin ^cos )
2

,

(16)

(17)

.............(18)

.............(19)

8(^4- G)}{lcos(F- G)} = (sin Fsin G)
2

,

(20)

{1+ cn(u + v)}{! cn(u-v)} = (8l
d

z +8z
d.

1)*/D; ............ (21)

(1 cos(/+0)}{l cos(/-(/)}
= (cos/cos)

2
,

-v)} = (dl dJ*ID; ................(22)

dv(u-v)}=K
2
(sl c&amp;lt;

i
+s2

c
l)

z
/D; ........... (23)

sin(F + 6r)cos(jF G} = sin G cos G + sin F cos F,

sn (u + v) cn(i6 v)
= (s&d^ + s^d^/D ;

.........(24)
- sin(F- G)cos(F+ G) = sin G cos G - sin .Pcos F,

sn(w v) cn(i6 + v)= (s&dz s&dJ/D ;
...... , ..(25)

sin(/+ g) cos(f-g) = sin/ cos/+ sin g cos g,

sn(u + v) dn(u v)
= (s^c, + 82dzc^)/D ;

......... (26)

siv(f-g) cos(f+g) = sin/cos/- sin g cos g,

sn(u v) dn (u + v)
=

(s-^cl^ s^d^sJD ;
......... (27)

-cos(.F+ G)cos(f-g) = {cosA cosB-sinAsiuBcos(f+g)}cos(f-g),

cn(u + v) dn(u- v)
= (c^d^l2

-K\s^jD ;
....... (28)

cos(F- G)cos(f+g) = cos(F-G){ cosa cos b + sin a sin bcos(F+ G)},

cn(u v) dn(u + v) = (c^c.2d^d2 + K ^S^/D ;
...... (29)

eon20= 2 sin 3 eos 0,

sin{am(u + v) + &m(u v) }
= 2 s^d^/D ;

...................(30)

) am (u v)} =282
c
zdJD ;

..................(31)

cos{am(u + v) + am(u - v)} = (q
2- sfd^/D ;

............ (32)
- cos 2F= sii^F- cos2

^,

cos{am(^ + r)-am(u-t )}
=

(c2
2 -s

2
2
c?

1
2
)/j[); .............(33)

the thirty-three formulas of Jacobi, given in his Fundamenta

Nova, 18, and reproduced in Cayley s Elliptic Functions.



140 THE AUDITION THEOREM

Similarly any other formula in Spherical Trigonometry is

converted into a form of the Addition Theorem of the Elliptic

Functions, and conversely; by writing cv s-^
for cos A, sin A,

and dv KSI
for cos a, sin a, etc., with

Thus the six four-part formulas, of which

cot a sin c= cotA sinB+ cos c cos B
is the type, obtained by eliminating cos b between (a) and (J3),

lead to Sg^ = s
2
c
i+ S

i
c

2^3&amp;gt;

with five other similar relations.

By means of these and the preceding relations we can prove
the following examples on the formulas of Elliptic Functions.

EXAMPLES.

1. Prove that, if u-\-v+w+x = 0,

/. N en u dn v dn u en v
,

en w dn x dn w en x _ ~

snu suv snw s

(ii.) /c
2 /cV2sn USUVSUWSD.X+ /c

2cn u en v en w en a?

dn u dn t&amp;gt; dn w dn a;= 0.

2. Prove that

,. x , N x 2/c
2sn u en i&amp;gt; dn v

(I.) nsftt tn-f-8n(
&amp;lt;

tt+tj)= :r~9
--

;r~?
--

&amp;gt;

dn2^ dn 2
i6

(ii.) 1 - K2sn2O+ v)sn
2
(u,
-

v)
=

(1
-

/c
2
sn%)(l -

/c
2sn4

?;)/D
2

:

(iii.) /c
2
sn(u+ v)sn(u v)su(u+ ^)sn(u w)

- K2sn2v sn2
^(;) ~

2 sn2
(u

l-snu_cn2
i(

...

(u.)

4. Prove that

and hence prove that the expression
1 K sn x sn y 1 + K sn z sn w
1 + K sn x sn y 1 K sn z sn w
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remains unaltered when for x, y, z, w we substitute respectively

5. Prove that, if tanh A = K sn2
a, tanh B = K sn2

/3,

tanh(4-5)=*sn
Deduce Jacobi s relations,

or

+ y)sn(/3-y) 1 -
/c sn(y + a)sn(y-g) l-/

y)sn(/3-y) l+/csn(y+a)sn(y-a)

or = 1
;

1 - K sn(t
-
x)sn(y

-
z) ~L

- K $n(t
-
y)sn(z

-
x) l-KSu(t-z)sn(x-y}

l+KSn(t-x)sn(y-z) 1 + K sn(
-
y)sn(z

-
x) 1 + K sn(t

-
z)sn(x

-
y)

or =1
;

(Glaisher, Q. J. M., vol. XIX., p. 22.)

6. Prove that the tangents at the points on an ellipse of

excentricity e whose excentric angles are

&amp;lt;p

=
JTT am(u, e), i/r

=
JTT am(i;, e),

will meet on a confocal ellipse when u v is constant, and on

a confocal hyperbola when u+ v is constant.

Hence show that the general integral of

d&amp;lt;p/J(l
- e

2sin2
0)
- cty/JQ - e%in2

^) -

may be written

and convert this into the form

cos y= cos &amp;lt; cos \[r+ sin sin ^-^/(l e2sin2
y),

proving that tan^V

7. Prove that the straight line joining the points

ccu(u-\-v)} csn(i6+ -u) and ccn(u v), csr\(u v),

on a given circle of radius c, will touch an ellipse whose semi-

axes are c sn(/f v), ccnv, when u is constant and v is

variable
;
and determine the envelope when u is variable and

v is constant.



CHAPTER V.

THE ALGEBEAICAL FORM OF THE ADDITION
THEOREM.

138. The first demonstration of the existence of an Addition

Theorem for Elliptic Functions is due to Euler

(Acta Petropolitana, 1761 ; Institutiones Calculi Integralis),

who showed that the differential relation

connecting X= ax4+ 4&amp;gt;bx

s+ Qcx2+ 4?dx+ e,

or (a, b, c, d, e)(x, I)
4
,

the most general quartic function of a variable x, and Y the

same function of another variable y, leads to an algebraical

relation between x and y, X and Y.

This algebraical relation is

_*JX\
2

= a(x+ y)
2+ M(x+ y)+ C,

x y /

where C is the arbitrary constant of integration ;
and this

relation when rationalized leads to a symmetrical quadri-

quadric function of x and y, of the form
( 148)

ax2
y

2+ 2/3xy(x+ y)+ y(x
2+ xy+ y

2
)+2%+ y)+ e= 0,

or (ax
2+ 2/3x+ y)?/

2+ 2(/3x
2+ 2y +% + y^

2+ 2&c+ e - 0,

or (ay
2+ 2/fy+ y)x

2+ 2(/fy
2+ 2yy+ S}x+ yif+ 2Sy+ e = 0.

(Cayley, Elliptic Functions, chap. XIV.)

With a = and b = 0, X and Y reduce to quadratic functions

of x and y ;
and then

*JX~^Y=gi consfcant

x-y
is the general integral o

142
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139. By writing (lx+m)l(l x
f+m ) for x, which is called a

linear substitution, this symmetrical quadri-quadric function

becomes unsymmetrical, the five constants a, /3, y, S, 6 being

thereby raised in number to nine
;
and then

dx/^/X becomes changed to (lm
f

I mjdx I^X ,

where X =
(a, b, c, d, e)(lx+ m, I x+m )*.

The invariants
g&amp;lt;&amp;gt;

and gz of the quartic X have been defined

in 75, and in 53 the discriminant A=#2
3

27&amp;lt;73
2

,
and the

absolute invariant J=gf/A ;
and now, if g2 , g^ A ,

J denote

the same invariants of X
,
we find

g.2 =(lm -l myg2 , gj = (l m-lmjg A = (Zm
- Z m)

12A
;

while the absolute invariants J and J are equal.

Conversely, any unsyrnrnetrical quadri-quadric function

whatever of x and y may be written

G(x, y)= (ay*+ 2/3 y+ y&amp;gt;

2+ 2(/3if+ Zy y+ S&quot;)x+ yif-+H y+ e&quot;

L, M}
N being quadratic functions of x, and P, Q, R being

quadratic functions of y.

Then by differentiation

(Px+ Q)dx + (Ly+iM)dy = ;

and by solution of quadratic equations

Ly+M= *J(M- - LN) = JX, suppose ;

Px+Q = J(Q2-PR) = JY, suppose;

and thus we are led to the differential relation

where X and T are quartic functions of X, not necessarily of

the same form, but having the same g.2 and g3
.

A linear transformation, such as that given by

can however always be found, which will transform

where T is a quartic having the same coefficients as the quartic
X

;
in other words, the quartics X and Y have the same in

variants
;
so that we may, without loss of generality, consider

X and Fas of the same form, and therefore drop the accents

in the expression for G(x t y}.
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Now

so that
*- = axy+ p(x y

a form of the integral relation, in which the coefficients a, 6, c,

d, e in X and Y are functions of a, /3, y, S, e, determined by

e),

the Hessian, with changed sign, of (a, /3, y, (5, e)(x, I)
4

;
and

140. Lagrange proves Euler s Addition Equation as follows:

Put dx/dt^^/X, and therefore dy/dt= ^/Y] then

suppose; so that putting x+y=p, x y = q, then

dp dq ==x_ Y
dt dt

= %apq(p
2+ q

2
)+ bq(3p*+ g

2
) + Gcpq+ 4&amp;gt;dq ;

whence
dt

2 dp d?p 2 dqfdp\
2

c/p~ =

Both sides of this equation are now integrable, so that

or

We notice here that, if C=4b2
/a,

X-
x-y
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141. In the canonical form considered by Legendre, with

oc = suu, dx/du = ^/(l x2
. 1 /c

2^2
),

y = sn v, dy/dv = ^/( 1 y
2

. 1 /c
2
2/

2
),

then X = 1 x2
. 1 A2

,
Y= ly2 .! K2

y
2

.

Therefore dxj^/X+ dy/JY= 0,

leads to du+ dv =0,

or u+ v = constant;

which, in Clifford s notation, may be written

sn
~ lx -\- sn

~ l

y = con stant.

Euler s Addition Theorem of 138 now gives

_ (en u dn u en v dn v)
2

/c
2
(sn

2& sn2
i?)

2

(sn u sn vf

_ /dn u en v en u dn i&amp;gt;\

2 _ fdn(u+ v) cn(u+ v)\
2

V snu sn v / \ sri(u+ v) J

by J. J. Thomson s formula of 121.

142. But the Addition Theorem (1) for sn(u+ v) of 116,

sn u en v dn i&amp;gt;+ sn v en u dn u
1

when translated into the inverse function notation, gives

22?

This reduces, for K = 0, to the trigonometrical formula

the integral of

and for /c = l, to

tanh
~ lx+ tanh ~ l

y = tanh - l
,

l+xy
the integral of cfo/( 1

- as
2
)+ c^/(l

- y
2
)
= 0.

Similarly, equations (2) and (3) of 116 may be written

We can now see why so little progress was made with the

Theory of Elliptic Functions, so long as the Elliptic Integrals

alone were studied, and also why Abel s idea of the inversion

of the integral has revolutionised the subject.
G.E.F.
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143. A slight change of notation in the canonical integral

(11) of 38, suggested by Kronecker (Berlin Sitz., July, 1886),

introduces a further simplification, on writing
x=

then dx/du=

n /-t \

-j-9
= /C-( 1 -- )(1 KX)du2 K

with p = K
- l

-\- K
-

)

and now u=fdxj /JX,
o

with X= x( 1 px+ x*).

Now
= sn

- + sn

144. In Weierstrass s notation, we take

X = x*-g.2x-g^
so that, in the general expression of the quartic X,

a = 0, 6 = 1, c = 0, d=-lg2 , e=-g^ ,

and now Euler s form of the Addition Theorem becomes, with

z for G the arbitrary constant,

Now if x =
$&amp;gt;u, y = $v, so that

then we shall find ( 147) that 2=
&amp;gt;(u
+

1&amp;gt;) ;
so that

or, in the inverse notation,

Put i6+f = ty, so that

since ( 51) #&amp;gt;w
is an even function, and p w an odd function

of w
; then, with

therefore also, by symmetry,
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Thus -

$v $w &amp;lt;@w &amp;lt;@n&amp;gt; pu pv
or ( pv- &amp;lt;$w }&amp;lt;&amp;gt;u

+ ( yw- $&amp;gt;u }&amp;lt;p

v+ (pu pv )$&amp;gt;

w = 0,

or (p v $&amp;gt; iv)pu + (p lv pu^pv + ($&amp;gt;

u p v)pw = 0,

1, pu, p u,

or 1, pv, &amp;lt;@&amp;gt;v

=0 ...........................(G)

Weierstrass thus replaces the three elliptic functions sni&amp;lt;,,

en u, dn u by a single function pu, and its derivative p u.

145. Take for example the integral of ex. 8, p. 65,

fX
~
$dx, where X=(x-a) (ax

2+ 2bx+ c),

a cubic function of x, having a factor x a.

This example shows that we may put
Z* ... ac-62

^&quot;
Wlth ^=o, ^=^

a)

and then

Now, if y and are the values of x corresponding to the

values v and w of u, and if

=
0, or &quot;Z

-
Sefo+Y~ kly+Z~ *dz = 0,

then the integral relation (G) of 144 connecting x, y, z becomes

(y-*)Z+(*-*)r4+(a!-y)Z*=0............ . .....(1)

We notice that the integral relation does not require the

knowledge of the factor x a ofX
\
so that, writing

we have, on rationalizing the relation (1),

or X7Z={Aays+Btoz+zx+xy)+C(x+y+z)+I)}* ...(2)

(MacMahon, Comptes Rendus, 1882
; Q. J. If., XIX., p. 158.)

Then

sothat ff _

equivalent to Allegret s result (Comptes Rendus, 66).
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146. We shall find it convenient to replace the constant O
in Euler s integral relation by 4c+ 4s, and to consider s as the

arbitrary constant, the meaning of which is to be interpreted ;

and then

x-y

or s= -
*

where

F(x, y) = ax2
y

2+ 2bxy(x+ y)+ c(x
2+ 4txy+ y

2

= (ax
2+ 2bx+ c)y

2+ 2(bx
2+ 2cx+c%

= (ay
2+ 2by+ c)x

2+ 2(6^/
2+ 2cy + d)x+ cy

2+ 2dy+ e,

a symmetrical quadri-quadric function of x and y.

Treating s as a function of the independent variables x and

y t
we shall find

1 df ,y 1 dX ,v~ ~

(ax*+ 3bx2+ 3cx+ d)y + bx*+ Sex2+ 3cfcc+ e

9 /v , -c, /T72 /
Y_|_

M- -^.JJ suppose ;z *
(x y)

and similarly we shall find that \/Y has the same value.

But if s is taken as constant, then

or dxjJX+ (%/&amp;lt;/
F= 0,

so that the differential relation which leads to Euler s integral

relation is thus verified.

147. But now denote

4s8
-02s -0s by 8

*

where g%
= ae 4&amp;lt;bd+ 3c2

, ^3
= ace+ 26ccZ acZ2 eb2

c
3
,

so that ( 75) g2
and #3

are the quadrivariant and cubicvariant

of the quartic X (Burnside and Panton, Theory of Equations;

Salmon, Higher Algebra).
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We shall find, after considerable algebraical reduction, that

(x-yf

so that
1 ^4- l dy- l ds-

and the elliptic elements dx/^/X and dy/*J Fare now reduced by
this substitution to Weierstrass s canonical form ds/^/S of 50.

Mr. R. Russell points out a concise way of performing this

algebraical reduction, by means of the linear substitution

t = (TX+ y)/(T+l) in the quartic (a, b, c, d, e)(t, I)
4

;

which then becomes of the form

Xr^4i(Xly+X^+ QF(xt y^+4!(Y1x+ F2 )T+ F,

or ^T4+4T3+ 6CT2+ 4DT+#, suppose.
If the invariants of this new quartic are denoted by (?

2, G ,

then G, = (x
- yYg GB

= (x- y)
6GB ;

and $= 4s3 &amp;lt;s (r

(x-y)

(x-y)*

148. Rationalizing the integral relation of 146,

or s2(x
-

y)
2-

sF(x, y)
- E(x, y]

= 0,

where E(z, y)
= {(ac-b

2
)

+ i(ae
- c2

)2/
2+ (be

-
cd)y+ ce- d*

;

&amp;lt;* ( -Artfc-yF-rffa y)-H(x, y) = o

where ^(ic, y) = (ac b2
)x-y

2+ (acZ bc)xy(x

a symmetrical quadri-quadric function of x and y.

149. When aj = y, F(x, x) = X, and

^(aj, a;)
= H(x t x) = (ac

-b^+ 2(ad- bc)x
s+ (ae+ 2bd-

+ 2(be-
the Hessian H of the quartic A

r
.
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One value of s is now infinite, and the other

t~
as in 75

; for, when x = y,

F(x,y)-JXJY=
2(x-y)

2

_ 1t {F(x,y)}*-XY . -ZE(x, y) H
%x-yY{F(x, y)+JXJY}-

ll

F(x, y)+JXJY~
~
X

a substitution due originally to Hermite (Crette, LII., 1856).

Now, since t = GO
,
when X= 0, or x= a,

(x-y)*
Q

ft-\ -H/X),

a denoting a root of the quartic X= ;
and here

T=*/(*P-9J-9J
(I&amp;gt;+YX-X+XY

=lt _

(x-y)*{(Y
}
x+

where G is a certain rational integral function of x of the

sixth degree, called the sextic covariant of the quartic X ;
the

preceding algebra showing that

T2Z3=G2
,
or 4# 3-#2

//Z 2+#3
^3+ 2=

0, .........(H)
this is called a syzygy between X, H, and G.

(Burnside and Panton, Theory of Equations, p. 346.)

For instance, if X is already in Weierstrass s canonical form,

so that, if x = $u,

X= #/
2u = 4a;

3 -
g2
x- gs ,

then H=
and now t=

so that ^ =

This may also be written

pStt^ftt-

150. Withy =00,
2s = ax2+ Zbx+ c-

or s
2-

(ax
2+ 2bx+ c)s- (ac

- 62
&amp;gt;

2- (ad- bc)x
-

J (ae
- c

2
)
= 0.

With y = Q,

2s = (ex
2+ 2dx+e- +Je^X)/x2

,

or cc
2
s
2-

(ex
2+ 2dx+ e)s-(ae c

2
)x

2-
(be

-
cd)x -ce+ d2 = 0.
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Writing F(x, y) in the first equation of 146 in the form

Y+ JY (x
-
y)+ TV Y&quot;(x

-
2/)

2
,

we can find x as a function of s and y by the solution of a

quadratic, in the form

..-

This method of the reduction of the general elliptic element

dx/^/X to Weierstrass s canonical form ds/^/S is taken from a

tract
&quot; Problemata quoedam mechanica functionum ellipti-

carum ope soluta. Dissertatio inauguralis&quot; 1865, by G. G. A.

Biermann, where the formulas are quoted as derived from

Weierstrass s lectures.

151. Changing the sign of ^/F, we find that

.*fe.y)WA/r
2(x-y)*

leads to the differential relation

1 dx 1 dy _ 1 ds
f~~ =

so

9

implying that u v = when x = y, since s oo when x= y :

and now, in Weierstrass s notation,

r
that, putting /d(

rx r*&amp;gt;

u v= ldx\JX /ds/^/S,
^/ +/

Changing the sign of v, and therefore again of F,

so that p2it = -HX/X, $&amp;gt;2v

= -Hy/ F,

implying that u = when X= 0, v = when F=0
;
so that

where a denotes a root of the equation X = 0.

Then w
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Mr. R. Russell finds, as is easily verified algebraically, that

___
(x-yy X&quot; (x-y)*X (x-yf Y&quot;

=

But, from the Addition Theorem (F) of 144,

and therefore

2 p(uy)-
the sign being determined by taking v small, when ^/

= a, nearly.

Now, p
/

(u-i;)

so that, as in 147,

152.

p2v= - It H
ylY =

(6
2-

oc)/a,

and p 2v = - It Gv/Y% = (a?d
- 3abc+ 268

)/a
l

;

ax+ b

Again, from equations (F)* and (G) of 144,

_ Y&+ Y2~

and putting u = 0, and therefore x = a, we find

aa -\- b_ p v+ p 2v

^/a &amp;lt;pv &amp;lt;p2v

so that the quartic can be solved, when &amp;lt;@v
and p v are known.

(Solution of the Cubic and Quartic Equation, Proc. London
Math. Soc., vol. XVIII., 1886.)
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Otherwise, with t= -H/X,

d^ = _H X-HX _ __2
dx ~^~ X

while T3 = 4 3-
gz

t -gs
= G2

/X
3

,

so that dt/JT= - Zdx/JX,

and u = /dx/^X = $/dt/JT=^ ~
\ - H/X),

a denoting a root of the quartic X=0.
Then p2u = t = - H/X, & 2u = -T=- G/X? ;

while v = when y = a, and Y= ;

so that ptt= , =.^?)
2(x a)

2

u= /S= (aaS + ^^q2 + ^Ca +^X+^ 4 ^Cq2 + IX
(x-a)

B ..**

If v, k, K denote the values of u, s, S, when x = oc
,

^= J (aa
2+ 26a+ c)

= pv, J^= (aa
3+ 36a2+ 3ca+ cZ)^/a

= - p v

7
aa3+ 36

S K=
x a

so that *_= __ =

and now p2v= (b--ac)/a, p 2v= (a-d

Conversely, given these values of p2v and p 2-y, and supposing
the bisection of the argument of the elliptic functions to be

carried out, we can determine
%&amp;gt;v

and p i
,
and thence solve the

quartic equation X = 0.

153. Since F(x, a) vanishes when x = a, a root of X = 0, it is

divisible by x-a ;
so that

, suppose,x ~~ a

a typical linear transformation, which converts dx/^/X into

ds/^S, the canonical form of Weierstrass.

Denoting the four roots of X= by a, /3, y, S, then since

6/a= -i(a
we may write

=
jLfa- x-a a -/3 a-7 a-6V
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and now

= /3(a
-

y)(a
-

8)+ y(a
-

3)(a
-

)+ ffa
-

/3)(a
-
y)a

with three other values ft, y ,
S corresponding to ft y, S.

Now ^/S=- -j-^- TO

(x-aY
JX

^^

Denoting by e
1}

e
2 ,

e
3 ,
the roots of the discriminating cubic

4&amp;lt;e*-g2e-g3
= Q,

so that $=4(s gjXs e
2)(se3),

then we may write
r _ Q

s- ei
= \a(a -y)(a-S ) ^,C OL

JU OL

so that, to x= a, /3, y, S, corresponds s GO, ev e
2 ,

e3 ;
and then

-
y) },

If we interchange a and
/3,

and put

then to z=
/3, y, (5, a, corresponds s

1
= oo

, 63 ,
e
2 , ^ ;

so that s = s
l gives a linear substitution converting

dx/^JX into dzjJZ,
in which 05 = a, /3, y, S, corresponds to z =

/3, y, ^, a.

If s is replaced by pu, and the same function of z by p;, then

we find from 54 that

V = U, U+ 0)v U+ CO-L+ ft)3 ,
U+ 2ft)!+ fc&amp;gt;3,

gives the four linear transformations which leave dx/^/X
unaltered

;
and corresponding to the values (a, /3, y, 8) of x

we find (a, ft y, 5), (A y, 5, a), (y, A a, /3), (ft a, ft y) of
;

the first transformation being merely z = x, not a distinct trans

formation.
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154. When, as at first,

_

and when e is a root of the discriminating cubic, then s e is a

perfect square ;
and we find

where, as in 70, the quartic X is resolved into the quadratic

factors Nx and DX) and Y into the corresponding factors Ny

and Dy ;
this can be done in three ways, corresponding to the

three roots of the discriminating cubic.

Thus the integral relation

x-y
leads to the differential relation

as is easily verified algebraically, N and D being quadratics.

155. A more elegant expression can be given to these rela

tions if we follow Klein (Math. Ann., XIV., p. 112
;
Klein and

Fricke, Elliptische Modulfunctionen, 1890) in employing

homogeneous variables x and x.2, by writing xjx2
for x, and

2/1/2/2
f r y &amp;gt;

and now

/dx7x~j
Conversely, by writing x for xv and 1 for x2,

we return to

our original non-homogeneous variable x.

Klein employs the abbreviations

(xdx) for xz
dx

l
x
1
dx

z ,
and (xy) for x^

also fx for (a, 6, c, d, e)(xv #
2)

4
;
and now with
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and

reducing to the above in 153, when fz/
= 0.

The Hessian JT or ZT( 15
03
2) of X or f(a)15

a;
2 )

is now given by

and the sextic covariant G or G^, a5
2) by

aff

We may also use x and y as the homogeneous variables in

the quantities, instead of x and x
2

.

Thus, for example, the integralff~&(xdy), where

f= xll
y -f 1 lxQ

y
Q

xy
11

(the icosahedron form)

is shown to be elliptic by means of the substitution

where

dxdy

Then we can verify the syzygy

where T= -

Now

since gs
=^T2 ~ 5

, provided &amp;lt;?3
=
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f l
xcly 6 f x

dz 6 6

j w=u^^^=^- iz-^ m ^
Similar reductions will show that the interals

are also elliptic ;
also the integrals

f(tfy
- xy

5
)
~
\xdy) and

depending on the octahedron form,

(Schwarz, Werke, II., p. 252 ; Klein, Lectures on the Icosahedron.)
&quot;- !

156. The further development introduces the theorems of

Higher Algebra on the quartic and cubic, for the treatment of

which the reader is referred to Salmon s Higher Algebra and

Burnside and Panton s Theory of Equations.

Thus, H denoting the Hessian of a quartic X, and ev e
2 ,

e
3

the roots of the discriminating cubic

4e3
g2

e gB
= 0,

then 4(H+elX)(H+e,XXH+e.,X) = 4!H3
-g,HX-2+gB

Xs= - G\
where G denotes the sextic covariant ( 149) ;

so that H+ eX
is the square of a quadratic factor of G.

Following Burnside and Panton (p. 345) we shall find it

convenient to put 16(H-{-eX)= P2
;
and then

P
1
P

2
P3 =32G,

Pp P.7 ,
P

3 denoting the quadratic factors of the sextic covariant G.

Then P,
2+P2

2+P3
2 = - SH,

since e
x -f e

2+ &amp;lt;?

3
=

;

while (e,
- e

3)P^+ (e,
-
eJP,*+ (e,

- e
2)P3

2=
;

and eJP*+ e
2
P

2
2+ e3P3

2 = - 1 6(^
2+ e*+ ef)X = - 8g.2X.

Since (e2
- e

3)P1
2 = (^

- e
3)P2

2-
(^
- e

2)P3
2

therefore each of these factors must be the square of a linear

factor, and we may therefore put

so that Uj and u
2
are linear

;
and now
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157. Mr. R. Russell points out (Q. /. M. t XX, p. 183) that

Hermite s substitution of t = H/X reduces the integral

dtcu &ur ,
3 _u

dx~ &quot;Jf
2

an ~~^2 ft 2?
For

so that G~^dx = J(4
3

gz
t g3}~%dt.

Again the integraiy*(4
3

g2
t gB)~%dt, as well as the general

(2)

.(3)

where K or K(x, y) denotes the Hessian of the cubic U(x, y),

integral

where 7 or U(x, 1) denotes the cubic (a, b, c, d](x, I)
3

,

is again proved to be elliptic by the substitution

given by , y}
=

dxdy

&quot;dotty*

The cubicovariant J of the cubic U is given by

,(5)

da?
1

dy

and the discriminant A by

A = a2^2+ 4ac3 -6a6ccZ+4c^3-362c2
; (6)

and now we have the syzygy

(Salmon, Higher Algebra, 192; Burnside and Panton,

Theory of Equations, 159.)

Differentiating (3) logarithmically

3ds_3JT_2T_ _&7
sdx~ K

&quot;

U
~~ KU
J

while

so that

and

dx

U*

sdx Uds
-K

=
~T

ds

(8)
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When we know a factor, x a, of V, then we may employ,
as in ex. 8, p. 65, the substitution

s=U*/(x-a) .............................(9)

Putting U= (x
-
a)(ax

2+ 2Vx+ c )

then 4;2
3

gs
is a perfect square, when

ac -V2

93
~

and now z =

00s+ 26 a+ c
~

aa2+ 26a+ c

aa;
2+ 26 ar+ c -#3(x

-
a)

2

-3K 3s

(aa
2+ 26a -f c) U% ad2+ 26a+ c

while

9/ 9(4s
3+ A)

(aa
2+ 2ba+ c)

3 ?72
~
(aa

2

, .............(10)

a transformation equivalent to that of 47.

158. Mr. R. Russell also shows (Proc. L. M. S., XVIIL, p. 57),

,,

where X denotes a quartic and H its Hessian, can be reduced

to the sum of three elliptic integrals by Hermite s substitution

t=-H/X.
For we may replace ( 156)

lxz+ 2mx+n by 2xF\ + gP2+ rP3

or by 4pV( -H-ej:) + 4gV( ~^- ^0+ 4^( -JET- e
8Z),

where
^9, g, r are determined by equating coefficients

; while

so that the integral becomes

fp^-H-e^+q^-H-e^+rJt-HJ aX + 3H . aX + H
JXdt

/3H



160 THE ALGEBRAICAL FORM

the sum of three elliptic integrals.

Particular cases may be constructed by making /3 and /3

zero, or a and a zero
;
when we obtain

f(lx
2+ 2mx+ n)dx/X, or f(lx

2+ 2mx+ n)dx/H.

159. Mr. Russell remarks that the reduction of the well-

known hyperelliptic integral

r (Ix^+ ^mx+ri^dx
J x/( 1 X2

. 1 + KX2
. 1 + \X* . 1 K\X2

)

to the sum of elliptic integrals is a particular case of this

theorem, since the quartics

1 x2
. 1 K\x2 and 1 + KX2

. 1 + \x2

can be expressed in the forms aX+(3H and a X+ fi H,

by taking X= l+/cAa?
4

,
and therefore H= K\x2

;

and now a = l, a =l, fi= -(l+/cA)//cA, /3

X =
(/c+ A)//cA.

These integrals are considered in Cayley s Elliptic Functions,

chap. XVI., where x2
is replaced by x; they arise in the expres

sion of Legendre s elliptic integral

jd&amp;lt;pl&((f), b) in the form E-\-iF,

when the modulus b is complex, so that b2 = e+if.

(Jacobi, Werke, I., p. 380 ; Pringsheim, Math. Ann., IX., p. 475.)

Writing P for x(I-x)(I+ Kx)(l+\x)(l- K\x), Jacobi finds

&amp;gt;,

c)+F(&amp;lt;i&amp;gt;, 6)},

where

or

x

2( 5A W ft -
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Then employing the inverse function notation,

fdxJ P
I ( ll+K.l+\.Xj\ . ll+K.l+X.X

&quot;

/xdx
_

?~

When X is negative, then b and c are conjugate imaginaries ;

so that we can now express F((/&amp;gt;, 6) in the form E+iF, when

62 is of the form e+ if.

For, writing
- X for X, and now writing

P for x(l-x)(l+ Kx)(l-\x}(l -\-K\X\

f 2E fxdx -
J JP *J(1+K.1-\) J JP

th

In the particular case considered by Legendre, X = 1, and now

P = x(l-x^(I-A2
),

on replacing K by /c
2

;
so that

-x2
. 1 -

can be expressed by elliptic integrals.

Mr. R. Russell employs the substitution

and now

dy f A(l-Bx)dx

so that, putting

x{(I+Bxy
2

-Ax}{(l+BxY--o-Ax}=P,
therefore & = K-\2

,
B= J(K\).

Taking JB = x/(/cX), and

)
2- Ax = (l-x)(l- K\x\

then 2JK\-A=-1- K\,

and taking B= ^/(/cX),

G.E.F. L
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160. Mr. Roberts s integrals (Tract on the Addition of the

Elliptic and Hyperelliptic Integrals, p. 53)

where Q is a reciprocal quartic in x2
, say

or aQ = (ax*+ %bx2+ a)
2-

(2a
2+W-

furnish another particular case of Mr. Russell s theorem, since

Q can be expressed in the form

where X and H are in their canonical forms,

y= dv

Or we may put x-\-x
l = u, x x~ l = v, when the integral

becomes $A(U+V) + B(U- V\

where U= f du

Thus

where X= I+x\ H=x\

Therefore the integral /
j
--

^-

is reduced to elliptic integrals by a substitution, such as

y = (I+x^/x
2

;

and then becomes

Another particular case of the general theorem occurs in the

reduction of the integral

where R is a sextic function, the roots of which form an involu

tion, and whose invariant E therefore vanishes (Salmon, Higher

Algebra, 1866, p. 210).
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This invariant E is the one tabulated in the Appendix,

p. 253, Higher Algebra, where it occupies thirteen pages.

The sextic covariant G of a quartic X is a specimen of a

sextic of which the roots form an involution
;
and writing

32G or

c
2) (a3#

2+ 2bsx+ 1
3)

= a
1

.&amp;gt;.

l
.x

1
a

2
C &quot;~

^2 x ~~
^-2)

as(x O3
.x

3),

then since the squares of Pp P2 ,
P

3
are linearly connected by

the relation of 156, therefore Pv P9 ,
P

8
are mutually har

monic, and any one is therefore the Jacobiari of the remaining
two

;
this leads to the three relations

a.2
c
3 -f 3

c
2

26
2
63
=

8
c
1+ c^Cg 26

3
6
1
=

c^c., 4- a.
2
c
t S/^i^.,

= 0.

^
7 =

are the six linear transformations which reduce

to

as in 74
;

so that if the quartic A&quot; is resolved into the

quadratic factors JV and D, we may write

Now N/D is maximum or minimum when x = 9, or 0.

Making P
1?
P

2 ,
P

3 homogeneous by the introduction of y,

which is afterwards replaced by unity, so that

P=(av b
1,cl)(x, yy-.....

then the three distinct linear transformations of 153, which

leave dx/^/X unaltered, are found to be

^ _ _

KB
J

&quot;

ltyVx ~ty ~dx

(R, Russell, Proc. L. M. S. t XVIII, p. 48.)

Now i

dx or f(
Aui+SuJ(u2

du
i
- *VK)

y *JG J ^/{^^(V-V)}
where u

1}
u.

2
are defined in 155, is reduced by the substitution

y
2 = ujuv or

p(x-&amp;lt;f&amp;gt;\ (x-0),
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This integral has been considered by Richelot (Crelle,

XXXIL, p. 213) ;
and by differentiation we find

according as ?/
2
is less or greater than ^/2-l ;

and thence the

integration can be inferred; the value of K to be taken is

- 1 or tan 22J, when it will be^found that K jK=

161. As further applications, consider the integrals

where A0 = ^(1 - 62sin2

&amp;lt;/&amp;gt;).

(Legendre, Fonctions elliptiques, I., p. 178.)

Putting A0 = ;

2
,
and l-Z&amp;gt;

2= c2, then

1

the integration required in the rectification of the Cassinian

oval, given by
or

where r
lt
r
2
are the distances from the foci (a, 0).

The expression 1 x*.x^ c2 can be expressed by H 2

where X= x*+ c, H=(l+c)x2
;

and now the substitution y=X/H gives

so that

-16

V(2+2C)

by means of the results of 39-41.

In the Cassinian
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rZs 2 2r2

8

Now, if we put
r* = (a

2
+/3

2
)
2cos2 + (a

2-
/3

2
)
2sin20,

then s = a2

/{ a2+ /S^cos
2
^+ (a

2-
/3

2
)
2sin2

}

Similarly

which can be expressed in a similar manner.

Again, substituting A2 = #3
,
then

particular cases of the preceding general integrals.

Mr. R. A. Roberts (Proc. L. M. S. t XXII., p. 33) has shown

that /(lx+ m)(ax
6+ 2btf+ c)

~
s or - j^

can be expressed as the sum of elliptic integrals, not always
however in a real form.

Mr. Russell shows that if x Ov x 6.
2
are the factors of Pv

a quadratic factor of the sextic covariant, then

lx+m

is reduced by the substitution

lf=p(x -oi )/(x ^e.2 )

to the form lr-. R^
*

.

,

. dy,
*//(a2/

8
+26?/

4 +c)
&quot;

and this again by the substitution

to the forn,

two elliptic integrals, not necessarily however in a real form.



166 THE ALGEBRAICAL FORM

Abel s Theorem, applied to the Addition Equation.
162. Euler s Addition Theorem is now found to be a very

special case of a Theorem of great generality, due to Abel, the

method of which we shall employ here, in the very limited form

required for the Addition of the First Elliptic Integrals.

Consider the points of intersection of the fixed quartic curve

whose equation is

2/
2 = A

,
................................(1)

with any arbitrary algebraical curve whose equation in a

rational form may be written

f(,2/) = ................................(2)

By continually writing X for y*
2
,
we can reduce equation

(2) to the form P+ Qy = 0; ............................(3)

and now the abscissas of the points of intersection of (1) and

(2) are given by the equation
P+QJX = 0, .............................(4)

or, in a rational form, P2 Q2X = ..............................(5)

Denoting the degree of this equation (5) by /*, and its roots

by xv x
2 ,

... Xfi, Abel puts

^x =P2-Q2X = C(x-xJ(x-x2)...(x-Xn), .........(6)

and now he supposes the roots of this equation to vary in

consequence of arbitrary variations in the coefficients of the

terms in equation (2), corresponding to arbitrary changes in

the shape and position of this curve
;

the coefficients in

equation (1) are however kept unchanged.
If dP, 3Q denote small changes in P and Q due to the

changes in the coefficients, and if dxr denotes the correspond

ing change in any root xr of equation (5), then

Vxr . dxr+ 2P&amp;lt;5P
- 2Q8QXr

= 0,

or, making use of equation (4),

= 0,

dxr _ 9QdP-P8Q_OxL- ~ -

suppose.

Now, if the degrees of P and Q are denoted by p and
q&amp;gt;

then the degree of Ox is p+ q ,
and we shall find this is

always at least one less than
JUL I, the degree of i//#, or two

less than /m, the degree of
\fsx.
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For if in equation (3), P2 and Q2X are of equal degree, then

q=p 2, and n = 2p ,
so that /x p q = 2; and pp q is

greater than 2, if q is less than p 2.

But if q is greater than p 2, then the order of
\/ric

is given

by that of Q2X, and therefore
/uL
= 2q+ 4&amp;lt;,

while p = + l at

most
;
so that

/u. p q
= 3 at least.

Since x6x is thus of lower degree than \fsx, we can split the

fraction x6x/\fsx into a series of partial fractions, such that

r xr9xr m

and now, if we make x 0, we find that

a theorem in Algebra due to Euler
;
otherwise stated as

/y.
W_ = 0- ..... (9)

provided m is less than /z 1, the * marking the position of

the missing factor xr xf.

Applying this theorem to equation (7), we find

so that, if, in consequence of any finite alteration of the

coefficients in equation (2) or (3), the roots of equation (5)

become changed to x\, x
2 , ..., x ^,

then

aX + ... +^dx^ = 0, ...... (11)

the Theorem of Abel, as required for present purposes.

It is the combination of the theory of Integrals and of the

theory of Algebra which furnishes the key of Abel s Theorem
;

the algebraical laws are expressed very concisely by a single

equation (5), of which the variables are the roots, and whose

coefficients are not independent, but are connected by a number

of relations.

Thus, if we take P of the ^
th

order, and Q of the order p- 2,

we have a plexus of ^ or 2p equations of the form (4)

and the elimination of a, /3, /,..., y, ... leads to a determinant

of 2p rows, each row of the form
h--2 r /t-

Jbr ,
. . .

,
JUr
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163. Suppose for instance that (2) is the parabola

(2) or (3)
then equation (4) becomes

axz+ 2px+y-JX =
0, ......................(4)

and (5) becomes the quartic equation

(ax*+2px+ 7)
2-X =

0, ......................(5)

Denoting the roots by xv x
2 , x3 , x^ then the elimination of

a, /3, y leads to the determinant

4 &amp;gt; *^4 *i X/ 4

as the integral relation, corresponding to
(/JL 4),

&

By making a= ^/a, so that the parabolas are of constant

size, or by writing equation (5) in the form

one root, x suppose, becomes infinite
;
and now

4(/3-%3+ (4/3
2+ 2ay

so that

= 6c- 2y-

or

Now the two relations

^+ y - Vx/-Yi
= 0,

+ y-JaJXt
= 0,

give by subtraction

(x,
- x

z){a(x1+ x
2)+ 2/3}

=V
S

where (7= 2aa;
3
2+ 46^

3+ 6c 2x/a/v/A
r

3 ;

and we thus obtain Euler s original integral relation, the

general integral of the differential relation

dx
1/^/Xl+ dxJ^/X2

= 0,

when is constant
;
and a particular integral of

c^/V^i+ dx
2/JX2+dxJJXs - 0,

when ic
s
is considered as variable.
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164. When X is in Legendre s canonical form 1 x1
. l

then Abel takes P = ax+ x*, Q = b
,

and now equation (6) becomes
- K2

x-)

where xf+ x.2
2+x/ = b2K2-

2a,

xfxf+x/x^+a;^2 = b2+6V+ a2
,

r 2r 2r 2 _
7,2l X-2

X3
- U .

But a and b are determined by the equations
ax

l+ ^j
3+ 6ZX

= 0, aa32+ xf+ 6.Y
2
=

:

so that b

and therefore, as in formula (1), 116,

&amp;gt;^
3

a^!
JT , x.

2
X

l
1 K-x^xf

Also 1 - r/Y
2

. 1 - x,
2

&quot;

1 -
3
2 - 1-6V+ 2tt+ 62+ b2

K
-+ a2-

while ^
j

2+ a/V
2+ #

3
2

K*xfafa = 2a,

so that

2 - a^
2- o;

2
2- a;

3
2+&x*xx = 2(1+ a)

or (2
- x* - x* - xf+ K*-x*-xx3*y = 4(1

-
.r^Xl

-
2
2
)(1

-^2
),

which may also be written

as in 119, with ^
1
= snit, x.2

= snv, x
3
= su(uv).

This, with x^=siiul ,
x9
= snu9t o:3

= sn^3 , may be written

1 cn2

i^ cn 2
i6

2
cn 2

iis+ *2 en i^

where u^+ it
2

( 131); and, with a triangle of Class I., is equivalent to the

formulas in Spherical Trigonometry
1 cos2a cos26 cos2c+ 2 cos a cos b cos c = /c

2sin2a sin 26 sin 2c

= sin2^. sin 26 sin2c = sin 2a sin2jB sin 2c = sin2a sin26 sin2
(7.

165. To obtain the Addition Theorem for Weierstrass s

functions, we consider the intersections of the cubic curve

y* = x*-g&-gs ,
or X, ............... (1)

with an arbitrary straight line

(2)
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Now, if x
lt
x

2 , x% denote the roots of the equation

then

so that a = v^_
v ^ 2

, ft
=^

and
( 144) a;

1 +aj2+c3
=

The elimination of a and ft between these two equations and

leads, as in 144, to the determinant (G)

1, x
lt \/Xl 1, pu, $ u

1, x
2 , ^/X% =0, or 1, pv, &amp;lt;@

v

1, x
, ,JX 1,

where u + v+ iv = 0.

In addition, from (5),

so that

166. Consider the intersections of the fixed cubic curve

with a variable straight line

Then \}sx
= (ax+ /3)

3
(
Ax*+ 3Bx2+ 3Cx+ D)

and - - 3

/Y&amp;gt; ,7 /y&amp;gt; _ r^

a3-^
Denoting by yv yz , y.3 the corresponding values of y, then

{C+ J (a
8-

j+ x
2+ a;

as in 145.



OF THE ADDITION THEOREM. 171

Now, if the constants a and /3 receive small increments

Sa and S/3, then

yf/x^dxi+ 3(00?!+ /3)
2
(V + Sfl)

= 0,

and \/s
x

l
= (a

3 A )(xl
X
2)(x1

xs),

dx,

=0,
and the sum of the three integrals is a constant, which can be

made to vanish by taking for the lower limits a root of the

equation y = 0.

In the particular case of the cubic curve

the relation expressing the collinearity of the three points is

aj
1
a?

2
ar
s+ 2/i2/22/3

=1 -

Now, as in 145, with #2
= 0, #3 =1, and

and, by symmetry, with

(i

we find from (F) 144, after reduction,

so that it+ ! =
,
a constant.

With pa= l, then ( 149) p2a = l
;
so that ( 62)

p2a= ?(2a&amp;gt;2
~ a

)&amp;gt;

or a = ^2-

We may therefore put
U =

Jct&amp;gt;2+ , V = Jft)2 #,

and express x and
^/ by functions of t.

For any other arbitrary value of a, the integral relation

connecting x and y will be, by 145,

and treatin as constant, this leads to the differential relation

= 0.
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We can put

(1-g*)* _(l-~ p* ~

where

and pi0= l, for the value z= oo
;
and then

167. When the quartic JT is resolved into two quadratic
factors N and D, we may replace (1) by the quartic curve

y*=N/D; ................... ...........(i)

and now equation (4) is replaced by

PJD+QJN=0; .........................(4)

so that equation (5) becomes

P*D-QZN=0...........................(5)

The elimination of the constants from the plexus of equations
determined by the roots of this last equation (4) leads to

determinants, whose rows are of the form

For instance, by taking P and Q linear, so that the variable

curve (2) or (3) in 162 is a hyperbola, we can obtain the

integral relation of 154 in the form

- eontant .

(W. Burnside, Messenger of Mathematics.)
We have taken X as a quartic function of x, so as to apply

to the elliptic functions, but Abel s theorem holds for any

higher degree of X, the method of proof being exactly the

same; and, according to Klein, we resolve X, supposed of

even degree, into factors N and D, differing in degree by or

a multiple of 4, when we wish to make use of the fixed curve

168. The reader is referred to the treatises of Salmon or of

Burnside and Panton for the proof of the Theorems in Higher

Algebra quoted here
; they are easily verified, however, if we

work with the quartic in its canonical form

U= x* 6m x2

y
2+ y

4
;

when H= mx*+ (1 3m2
)x

2
y

2

my*,

G = J(l
- 9m 2

)xy(x*
-

y*).
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The following examples, taken from recent examination

papers, will illustrate the character of the algebraical work.

EXAMPLES.

1. Denoting by U the binary quartic, reduced to its canonical

form, #
4 6ra#2

i/
2
-f y

4
,
its quadrinvariant and cubinvariant by g.2

and
(/3 ,

and its Hessian and sextic covariant by H and G,

prove that

(i.) 4m3 -#2m-(73
= 0;

(ii.) H-t-mU is a perfect square ;

(iii.)

O Tf

(iv.) H,~

(vii.) the Hessian of XU+imH is

(X
2-

TV(7X)ff+ (i

and the sextic covariant is

2. Denoting the roots of 4e3 g2eg2
= Q by ev e.

2 ,
e
s, prove

that the roots of (x-+ %g.2 }
2

2g3
x =

are of the form

3. Denoting the discriminant, Hessian, and cubicovariant of

a cubic / by A, K, and /, prove that

(Work with the canonical form U=ax3
-\-by

3
.)

Denoting the same functions of XJJ-h/xG by A ,
K

,
J

, prove
that A = (X

2
-/A

2
A)

2
A,

4. Prove that X and Y in 139 have the same invariants

and gs (Burnside and Panton, 1886, p. 418).

5. Prove that, in 156,

Vfe- 8 &amp;gt;Pl
+ Vfe- *l)

is the square of a linear factor of X.
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6. Discuss the properties of the quartic X in 153, whose

roots are a
, ft , y , 3 .

7. Prove that ( 160) O
lt &amp;lt;/&amp;gt;!

; 2 , 3 ; $3 , 2 &amp;gt;

define an involu

tion of the roots of the sextic covariant G (R. Russell).

8. Prove that the cubic substitution

y = (bxs+ 3e$2+ 3fZo;+ e)/(ax
s

dy 3dx
makes

j-, ^7-^ TT~\
=

^ (fjMyg^Uy)
where Ux =(a, b, c, d, e)(x, I)

3
.

(Hermite ; Crelle, LX., p. 304
;
R. Russell, Proc. L. M. S.

t

XVIIL, p. 52.)

dx
9. Integrate /^4r

10. Prove that, with s= pu,

u - e)
- -

(s
2- 268 - 2e2

- e

2U = 8 -f
1
~ ^ 1 *L_- ?

s e
2

11. Prove that, if

(i.) p(v; -20, -40) = 5, then p2v = 0, ^3v=

(ii.) p(v; -60, -10) = 5, ............ 0, ......... i,

(iii.) KO; -15, 19) =f, ............ I, .........W,
12. Prove that

(i.) /(A + Bx)dx/y is elliptic, if y
2=

(1
- x2

)(a+ 3a?

(ii.) f(A+Bx+Cy)dx/lj-
is elliptic, if

t/

f(a;, y)
=

(a, 6, c, /, gr, ^)(^
2
, 2/

2
, 1).

(W. Burnside).



CHAPTER VI.

THE ELLIPTIC INTEGRALS OF THE SECOND AND
THIRD KIND.

169. The Elliptic Integrals, and thence the Elliptic Func

tions, derive their name Elliptic from the early attempts of

mathematicians at the rectification of the Ellipse.

It was some time before mathematicians perceived that the

simple integral to begin considering is

which has not originally such a special connexion with the

ellipse ;
but the name Elliptic Integral has nevertheless been

retained generally for all integrals of this nature.

To a certain extent this is a disadvantage ;
not only because

we employ the name hyperbolic function to denote coshi(,

sinl^t, tanh u, ..., by analogy with which the elliptic functions

would be merely the circular functions cos&amp;lt;, sin
&amp;lt;p,

tan 0, ...;

but also because it is found that the elliptic functions are a

particular case of a large class, called hyperelliptic functions,

but included in a larger class, called Abelian functions after

Abel, which, beginning with the algebraical, circular, hyper
bolic, and elliptic functions of a single argument u (jj

=
l)

are in the general case the functions ofp arguments which are

met with when we consider the integrals

/(!,, a*..... x&quot;-
1

) dx/JX,

arising in the linear transformations of
J&quot;dxj^/X,

in which

X is a rational integral function of x of the degree 2p+ 2:

for now the linear transformation (lx+m)/(lx+m
f

) converts

into (lm -V
175
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170. Legendre s elliptic integral of the second kind has already
been defined in 77

;
and denoting it by E$, then the length

of the arc BP of an ellipse is given by aEtf&amp;gt;,
where the arc BP

and the excentric angle of the point P are both measured from

the minor axes OB, and now the modulus is the excentricity of

the ellipse.

The quadrant of the ellipse BA is given by aE, where,
r^Tr

as in 77, E denotes /A0c?0, the complete elliptic integral of

o

the second kind, in which
&amp;lt;

=
JTJ-.

The perimeter of the ellipse is therefore ^aE, the same as

that of a circle of radius aEfyir.

The periodicity of sin
&amp;lt;
and A&amp;lt; shows that, as in 14,

and generally
when m is an integer.

Expanded in ascending powers of the modulus

2 -

so that, employing Wallis s theorems of integration, as in 11,

T^ fj* i fi
n
^?/1.3.5...27i-lV K-

H H -

E=J^ =^\l-^^-^~^) -_J,
o

n~ l

whence the numerical value of E can be calculated.

Tables of the numerical values of
E(j&amp;gt;

for every degree of &amp;lt;

and of the modular angle are given in Legendre s F.E., II.,

Table IX.
;
while the values of log E are given in his Table I.

for every tenth of a degree in the modular angle.

We reproduce this Table of logE, and of log^
7

, correspond

ing to the complementary modulus AC ,
to 7 decimals, and to

every half degree in the modular angle J, corresponding to

the values of logK in Table I, p. 10.

171. By differentiation and integration, we prove that

d(E&amp;lt;j&amp;gt;\ F&amp;lt;j&amp;gt;

d
f .. fd&amp;lt;t&amp;gt; E&amp;lt;j&amp;gt;

K2 sin cos 0.

zk?) ? d-^
F*}=J iv&quot;^-?*- AT

and therefore, with $ = JTT,

dE K d E
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o p o p &amp;gt;p p o p p 9 p p

o Lt o
&amp;gt;p p ip p ip o o p o p o o o o o p ip p ip o o p o p o 9 H 9

! ip 9 o 9 ip 9 p 9 p 9 p 9 ip 9 ip 9 p 9 p 9 ip 9 ip 9 ip o p o p 9 &amp;gt;p
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w
H^
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We can now prove Legendre s relation, that

EK +E K-KK is constant, and =
JTT ;

for denoting it by A, we find that dA/dic = Q, so that A is

independent of K
;
and taking K = 0, then

o o

172. In Jacobi s notation, with
&amp;lt;

=

E(f&amp;gt;

=Eam u =fdu.
2udu

;

o

and now, from the quasi-periodicity of am u ( 14),

where m is an integer.

We may therefore, as in 78. separate E&mu into two

parts, one the secular part, increasing uniformly with u, at a

rate 2E per increase 2K of u, and the other a periodic part,

denoted by Zi& in Jacobi s notation, and called the Zeta

function ; so that

or Zu =/(dn%- EjK)du.

Addition Theorem for the Second Elliptic Integral.

173. A well-known theorem, due to Graves and Chasles,

asserts that if an endless thread, placed round a fixed ellipse, is

kept stretched by a pencil, the pencil will trace out a confocal

ellipse (fig. 22). (Salmon, Conic Sections, 399.)

If the excentric angles (measured from the minor axis of the

ellipse) of the points of contact P, Q of the straight parts of

the thread PR, RQ are denoted by &amp;lt;j&amp;gt;,
\[s,

so that the

arc BP = aE(f), arc BQ = aE\js ;

and if we put &amp;lt;p

= am u, \}s
= am v, the modulus K being the

excentricity of the ellipse, then, as asserted in ex. 6, at the end

of Chap. IV., R moves on a confocal ellipse, when u v is

constant, and conversely.

For the coordinates of R being given by
cos \!s cos (h 7 sind&amp;gt; sinx^r

x = a r-h---r-rS y = b .^ r\
sm(0 \Is) sm(0 \/s)

we find from Jacobi s formulas (4), (5), and (31), 137, replacing

u and v by ^(u+ v) and ^(u v),
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cni&amp;gt; i

sin(am u ami;)
sn u sn v

__ _
&quot; &quot;

sn

179

-t;)

am-?;)

Therefore
Fig. 22.

, cn

a = a dc ^~where

so that a2
-/5

2 = a2 -62
,

and therefore E describes a confocal ellipse, if u v is constant.

If 16+ v is constant,
-we find (x/aj-(y//3r = l,

where
&amp;lt;/
= aK sn |(u+ v), $= aK en l(u+ v),

so that a/2+ /3
2= aV - a2 - 6^

and ^ therefore describes a confocal hyperbola (MacCullagh).
To realise mechanically this motion of R on the hyperbola,

the threads RP, RQ must pass round the ellipse, and be led,

in the same direction, round a reel rnoveable about a fixed

axis at C
;
so that, as the reel revolves, equal lengths of thread

are wound up or unwound.
If the hyperbola starts from the ellipse at L, then
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If the threads are wound in opposite directions on the reel,

then R will describe a confocal ellipse, as at first
;
but in this

case the reel may be suppressed, and the thread merely made

to slide round the ellipse, as in the theorems of Graves and

Chasles.

Moreover, it is not necessary that the tangents RP, RQ
should proceed to the same ellipse, but to any two fixed con-

focals, and the same theorems hold.

If tangents R P t RQ ,
are drawn to the ellipse from any

other pointR on the confocal hyperbola RR, forming with RP,

RQ the quadrilateral RrRY, then r, r lie on a confocal ellipse,

by the preceding theorems
;
and now a circle can be inscribed

in this quadrilateral whose centre is at T, the point of concourse

of the tangents to the confocals at R, T, R, r
\
for TR, Tr, TR,

Tr bisect the angles of the quadrilateral ; (Salmon, Conic

Sections, 189).

If R is brought up to L, the circle touches the ellipse at L
;

so that the point of contact of the circle inscribed in the area

bounded by two tangents and the ellipse is at the point where

the confocal hyperbola through the point of intersection of the

tangents cuts the ellipse.

174. Putting u v = iv, or
F&amp;lt;f&amp;gt;

F\fr
= Fy,

then when v = Q and Q is at B, u = iu and P is at G where

(j)
= y suppose ;

while R will come to 7) on the ellipse RD, where

it is cut by the tangent at B.

Now, since

PR+RQ-arc PQ =BD+DG-&rc BG,
or &rcPQ-wcBG=PR+RQ-BD-DG ,

therefore E$ E\}s Ey= a certain trigonometrical func

tion of
&amp;lt;p, \/s, y, which is found to be /c

2sin
&amp;lt;f&amp;gt;

sin
\fs

sin y ;

this is the Addition Theorem for the Second Elliptic Integral.

-r? r&amp;gt;T&amp;gt;? ?f cosx^-cos^
2

79 fsin0-sini//&quot; /I
For PR2 = a2

! sin -^--rf- J- + 62
^ r-*r---TV~ COS

r

\ sm^-^) j \ Bin(0-V0

so that PR = aA0-.

while BD = r
---.

Sin y
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Therefore, by 121,

sin y

= a {ooa cos
\lr -f sin sin i/^Ay cos(0 \f/)}

l-A2
y .= a --L sin sm \/r

sin y
= a/c

2sin sin
\fs

sin y.

In Jacobi s notation this is written

E am uE&rnvE am(i& r), or Zu Zr Z(u v)
= K

2sn -it sn v sn(u v).

175. Putting -y = w, and therefore i = Zw
t
then

# am 2w 2E am w = /c
2sn 2w sn2/

w;,

or changing w into Jie?,

.Z? am iv 2E am Jtt;
= /c

2sn la sn2
Jw;

= sn w-
( 123).

Then PjR+ jRQ-arc P = BJD+DG-wc BG
,

, x
l cni/j r,= a(l + an w) -- aE am i(;

sn w
sn w 1 dn

\-asuw

/ sn w
j-, f \ o /sn w dn to \= 2a( ^am4te;)=2a( ^ ^amivj :

\1 + en i/j / \ en -kiv /

and now en \wt
or en ^(u v) = b//3, where fi=OK.

176. A ready way of proving the Addition Theorem is to

take the spherical triangle of Class II.
,
in which

A = am vv B = am v9 ,
C= am VB,

where i\+ v.
2+ 1

3
= 2/i

,

and to vary all the sides and angles, keeping K constant.

Then dv
1+ dv

z+ dv
s
= 0,

or dA /cos a+ dB/cos b+ cZ(7/cos c = 0,

or cos 6 cos c . dA + cos c cos a . dB+ cos a cos 6 . dC= 0,

or (cos a sin 6 sin c cos J.)cLl + (cos 6 sin c sin a cos

. + (cos c sin a sin 6 cos C)dC= 0,

or cos adA -f cos 6c?5+cos ccZO

os J.cZ^

= K2
d(siu A sin B sin (7).
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Integrating,

E(A )+ E(B)+ E(C) - 2E= /c
2sin A sin B sin 0,

since ycos adA =/J(i - K*n*A)dA = E(A),
o

and v
2
= makes B= 0, and ^4 + (7= TT, or

A&quot;(

In Jacobi s notation

Eam ^+Eam t
2+^am v

s
2E= /c

2sn ^s
or Zv

1+ Zv
2 -f Zi&amp;gt;3

= /c
2sn

with ^+ v
2+ v

3
= 2if.

With

or Zu+ Zv Z(i6+ v) = /c
2sn u sn v sn(u+ v).

Fagnano s Theorems.

177. The particular case of the -Addition Theorem, obtained

by putting y= j7r, or u v = K, was discovered by Fagnano

(1716), and leads to his theorems, namely, that if P, Q are two

points on an ellipse of excentricity K, whose excentric angles

0, \fs,
measured from the minor axis, are such that

A0AI/A
= K, or tan tan

\{s
=

l//c
=

a/b,

then the arc BP+ arc BQ arc J.5 = /c
2sin sin

i/^,

or arc BP arc J.Q = a /c
2sin sin

i/r
=Ax /a ;

xix
/:

2. a2

and then tan2 tanV=
^^-__-2^ = _,

or K
2xV2- ct

2 ^2+ ic
/2 + a4 - 0.

On reference to tig. 23 it will be found that, if OF, OZ are

the perpendiculars on the tangents at P and Q, then

(i.) ^40^=0, AOY=^,
(ii.) wcBP-sircAQ =PY=QZ=VQ-PT, -

so that VZ=PT, and PFor QZ=K*xx /a ,

the tangents at P, Q meeting 0-4, 01? in T, F;

(iii.) OP2-OQ2 = OF 2-0 2
; (iv.) OY.OZ=ab.

When P and Q coincide in F, then P is called Fagnano s

point ;
and then

(i.) the arc BF arcAF= a-~b\

Va?- T-,

(iii.)
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(iv.) the tangents at P, Q intersect in R on the confocal

hyperbola FED, through F, D, whose equation is

(v.) the tangents at P and Q intersect in R on the confocal

ellipse KDH, through K, D, H, whose equation is

(vi.) PR-eL

(vii.) the circle inscribed in the region bounded by AD, DB
and the ellipse AB touches the ellipse at F; etc.

The proof of these theorems is left as an exercise.

o

Fig. 23.

178. Denoting the arc J.Pby s, the perpendicular OFon the

tangent at P by p, the angle A T by \fr,
then by Legendre s

formula

ds d?

so that s+PY= /pd\[f ;

and in the ellipse

p =
while

PF= dp[d\fr
= a/c

2sin^ cos i/r/A\^ = a/c
2sin sin

\f, ;

so that s+ a/c
2sin ^ sin^ = afk\}sd\{s

=
aE\fs

= arc 5Q,

or arc J2Q arc AP= a/c
2sin

^&amp;gt;

sin
i/r,

as at first, in Fagnano s Theorem.
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Confocal Ellipses and Hyperbolas.
179. If we put

then x = c sin cosh 0, y = ccos(J&amp;gt;
sinh 9

;

T&amp;gt;

2 n

so that --^+-0 =C2
2 2

c2^
&amp;gt;

the equations of a system of confocal ellipses and hyperbolas,
since cosh2$ sinh2

6) = sin2 + cos2^ = 1.

T , n dx2
dy

2 dx2
dy

2

2/ ,
2

. 0jN

5^
+45= d02+^ = c(cosh e~ sin

*&amp;gt; ;

so that, in an ellipse BP, along which is constant, the

arc BP = c//J(cosWO-sm
2

&amp;lt;j))d&amp;lt;p

=
aE&amp;lt;/&amp;gt;

as before, with a = c cosh 0, and the modulus equal to the

excentricity sech 6.

For the confocal hyperbola, along which &amp;lt; is constant, the

arc is given by

which can be expressed by elliptic integrals of the first and

second kind, of Legendre s form.

Putting

the equation of the hyperbola is

and now the coordinates of any point P on the hyperbola may
be given by a cosec % b cot ^ ;

and the tangent at P by

and then amh 6 = JTT x,

cosh 6 = cosec x, sinh = cot x, tanh = cos x, etc.

The tangents at P, and at another point Q defined by
will therefore meet at a point R, where

a cosec x cot x cosec x cot x cos x cos x b cosx
When we put

v= am u, v = am v
s\. * /\.

the modular angle being 0, then as in 173 for the ellipse,
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SaCoCZ, Co Cn ifu - 11

)

185

sn v) dn J(it v)

_
b s

1
cZ

1
s
2
(i

2 SjcZg
sn J (it+ v

)
d n J (it v)

and therefore, eliminating en ^(u v) and dn i(u v),

a en

/csn /csn Ksn(tt+f)
where a =

and

so that J describes a confocal ellipse, when u+ v is constant.

Fig. 24.

180. By putting u-\-v = K, we obtain theorems for the hyper
bola (fig. 24) analogous to Fagnano s theorems for the ellipse.

Now ( 123) a

or a2

and j describes the ellipse -FT), whose equation is
o o

x

which will intersect the hyperbola in a point F, the analogue
of Fagnano s point on the ellipse, the coordinates of which are

c sin 0^/(l + cos 0), c(cos )*.
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Now, as in 57, with

X= am U, x = am v, and

and cot x cot % = K = cos 0,
or sinhflsinh 6 = K,

and if a;, y and a?
, ^ denote the coordinates of P and Q,

a;= a cosec x= aAx7cos x &amp;gt;

^ = a cosec x = ^Ax/cos x ;

y = a cotx=a*tnx , 2/
= a cot x = a* tan x ;

and thus yy = aY = C2cos3
&amp;lt;.

Drawing the perpendiculars Y, OZ from on the tangents
at P, Q, and denoting the angles AOY, AOZ by o&amp;gt;, ;

then

cfcc w/6
2

tan co =
.p
=

~r-2
= tan

&amp;lt;/&amp;gt;

cos x= tan
&amp;lt; tanh = sin sin x /Ax ;

sin
ft&amp;gt;

= sin
&amp;lt;

sin X , cosft&amp;gt;
= Ax

/

,
sin w = sin sin x, cos = Ax-

Now denoting OF, OZ by p, p ,
then

_p
=

^/(a^cos
2^ 62sin2

ft))
= c^sin2

^ sin2
o&amp;gt;)

= c sin
&amp;lt;p

cos x ;

pp = C2sin20cosxcosx = C
2sin2

^c
Making use of the formulas

ds d2
p dp

-j-= T^&amp;gt; p, and PF= -
7 ,

c^oj dw2 l da)

then

PF- arcAP =

also PF= c sin co cos (o/^sin
2
^ sin2

co)

= c tan x Ax = c/tan xAX
= c cosh sinh 0/^/(cosh

29- sin2^).

181. The arc AP of the hyperbola is now expressed in terms

of an elliptic integral of the first and of the second kind
;
we

can however express the arc by means of two elliptic integrals

of the second kind, or by two elliptic arcs by means of Lan-

den s transformation
( 67).

We shall find that if we put
2\ or sin2ir

sin2\/r , (1-f sin0)A(i/r, y)then tan y = -r
Y . .

,
sec v = /

A sin

, 4sin0 ,

where y
2=

, 7 =
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_n x ~
0)A(Vr,y)

~
(

A , 1 + sin
&amp;lt;/&amp;gt;

cos 2

,

so that

l + sin

^-sinX)
~
Ax -. (l + sin0)A(^, y)

cos a)+ ^/(sin
2
^ sinV) = AX + K cos x =

(1 + sin 0)A(i/r, y) ;

Integrating,

(i

and now the arc of the hyperbola

182. If we put
then we find ( 180)

= =
1 cos tan2^ 1 cos

sn =

A /^ &amp;gt; x __ l-(l-cos0)sin
2

x
/

_ A2

x
r

+cos0-

and _

Now, sin(2x
-
f)
= X sin g

as in Landen s second transformation ( 123); and

(1 + cos 0)A( X)c/ -
(A2 + cos

= 2Ax dx + 2 cos ,
- siu

Integrating,

(1 +cos 0)^(f, X) = 2^x
/+ 2 cos

&amp;lt;pFx - sin2
^ sin x cos xV^x j

and the arc J.P can be expressed by means of E^ and E(, X).

When x= x
/= am i^ then ^^i^r;

also ( 175) 2Y =
^(/c)+ 1 - cos 0, while 2^=

-2&quot;
;

so that (1 + K )^(X) = ^(/c)+ K K.
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183. The following theorems, analogous to those of 177,

can easily be proved by the student :

(i.) The difference between the infinite asymptote DT and

the infinite arc FT is equal to AD arc AF\ so that

the difference between the infinite asymptote OT and

the infinite arcAT is equal to OD+AD -2 &rcAF
,

(ii.) the coordinates of F are (c+ &),/{(c-&)/c}, *J(V/c);

and the tangent FK=AD =
b, KG= c;

(iii.) the tangents at P, Q intersect in R on the confocal

ellipse through F, whose equation is

~

and the tangents at P
, Q intersect in R on the con-

focal hyperbola through D and K, whose equation is

= c;
c a a

(iv.) PR- arcPF=QR- arc QJP ;

(v.) P R+R Q- arc P Q is constant;

(vi.) the circle inscribed in the region bounded by the

straight line AD, the asymptote DT and the hyper
bola AQ touches the hyperbola at F\

PT.QV =FK 2
, PY.QZ=c2

,

Qv-PT=QZ, or vZ = PT,

sin x cos x cos x sin x cos x cos x
184. The geometrical theorems of 173 for the ellipse hold

with slight modification for the mechanical description of con-

focal ellipses and hyperbolas from a fixed hyperbola.

The threads from the reel must be led round distant points

on the hyperbola APQ (fig. 24) and be wrapped on the curve
;

and now, starting from F, the confocal ellipse FED will be

described, if the threads are led off in the same direction.

At D, one thread DT must be supposed of infinite length ;

and, beyond D on the ellipse FD, the thread DT must be trans

ferred to the other branch of the hyperbola.

By making the threads come off the reel in opposite direc

tions, the confocal hyperbola DK can be described, starting

from D or any other point R.
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185. The integration of the functions of 77 can now be

expressed by means of the elliptic functions, and of the function

E am u, defined by
E am u =fdii

2udu.
o

Then ficstfudu =u E am u
o

jK
2GJ^udu=E am u K 2

u.

o

To integrate a reciprocal function, for instance nd 2
u, we

notice that

-y-^ log dn u = K 2nd2u dn2
u,

Cf/U&quot;

so that fK
2nd2udu =E am u /c

2sn u en u/dn u ;

o

and so on.

Again, since cd2
i6 = sn2

(j5T u),

jK
2cd2udu = u jdu

2
(K u)du

= u E+E am (K u)

= u E am u+ /c
2sn u en u/dn u :

and since K 2nd2u= dn2^ u),

fK
2nd2udu =EE &m(Ku)

=E am u /c
2sn u en u/dn u,

as before.

In Problem III, 86, we find

dt

and 7i*=&&QdQ = 0- E am + sn dn 0/cn 0.

EXAMPLES.

1. Prove that the area of the Cassinian

is 2 / (6
4 a4sin2

&amp;lt;)

2

cZ0, if b &amp;gt; a
;

o

/~ iT 4
or 27 (a^ o*sm2

(h)~^b
4
cos~cbdd), if a &amp;gt; 6.
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2. Rectify, by means of elliptic arcs (pointing out the

geometrical connexion),

(i.) y/b
= sin x/a, cos x/a, cosh x/a, dn x/a, en x/a, sn x/a, . . .

;

(ii.)
r= bcos(bO/a) or acos(a9/b), the pedals of an epi- or

hypo-cycloid ;

(iii.) rcos(bO/a)
=

b, or rcosh(b6/a) = b, Cotes s spirals;

(iv.) the Iima9on r= a+ bcos0, the trochoid, and the epi-

and hypo-trochoids.

3. Express x as a function of s in the Elastica of 97.

Prove that if the ordinate is made equal to p, the perpendic
ular on the tangent from the centre of an ellipse or hyperbola,
and if the abscissa is made equal to the &rcAPPY, the

curve will be an Elastica (Maclaurin, Fluxions, 1742.)

,, z
.

- K v
-i. Prove that (1 K2

)-r^+ -5
--K=Q:

x die K OK

d*E \- dE
(1 *rhrx+~ j- +E =0.

cue K OK

Change the independent variable in these differential equa
tions from K to k, 6, or u, where

K = ^k= sin = tanh u
;

and reduce the resulting equations to the canonical form

7 o

y dx2

Solve the differential equations in which

1 _ //
I=-7T9jj*&amp;gt; cosec2

2$, cosech2
2u,

4Ar/C
z

(Glaisher, Q. Jl Jf., XX., p. 313
; Kleiber, Messenger, XVIII.,

p. 167.)

5. Prove that, if u
l -}-u2+ u

3 -\-u^ 0,

12S4 ll,. 3 x 4~
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The Elliptic Integral of the Third Kind.

186. We can now make a fresh start, and prove the Addition

Theorem for the Zeta Function independently ;
and then pro

ceed to Jacobi s form of the Third Elliptic Integral.

(Fundamenta Nova, 49; Glaisher, Proc. L.M.S. XVII. p. 153.)

Multiplying formulas (3) and (6), 137,

4/c
2sn u en u dn u sn v en v dn v /1N

,..(1)2
(1-/C

2
S1

and, integrating with respect to v,

x n 2 en u dn u/sn it

where C is the constant of integration, independent of v.

To determine C, first put v = u\ then

2 en u dn u/sn u

so that, replacing E am u by Eu/K+Zu,
, \ . TJ, \ ryo 2 en u dn tt/sn u 2 en u dn ulsn u

Z(u+v)-f-Z(tt-v)-Z2tt=
-=-H

---
i
-

5-^5 ^
1 /c

zsn4u 1 rTsnnc. su*v

n /csn
1

sn2u\
= K-sn(u+ v)su(u-v)su2u ..........(2)

Replacing u+vt u v, and 2u by u, v, and tt+t?, this

becomes the formula given above, 176,

Zu+ Zv- Z(u -f- v)
= /c

2sn u sn v sn(u+ v)............. (2)*

Again, put u = Q for the determination of 0; then

C= 2Eu+ 2 en u dn u/sn ^ ;

and now
2/c

2sn u en u dn u sn2v
(3),

1 /c
2sn2

w, sn2
t&amp;gt;

another form of the Addition Equation of the Zeta Function,

leading immediately to Jacobi s form of the Third Elliptic

Integral, as required in 114.

187. Integrating this equation (3) again with respect to v, and

employing Jacobi s notation of

TT/ \ r /Vsn u en u dn u sn 2
i; dv

H(v, u) for /J 1
o

where u is called the parameter, and v the argument, then

IK 16 = vZu-
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Jacob! now introduces a new function Qu, called the Theta

Function, defined by

\og~,

or

so that

Now
o

/Z(u v)dv = log

and

,.,

so that the Third Elliptic Integral is expressed by Jacobi s

Theta and Zeta Functions, the arguments being u and v, two
in number only, and not three, n, K,

&amp;lt;/&amp;gt;,

as in Legendre s form.

188. Integrating equation (3) again with respect to u,

fu f v

/ 7{dn
2
(t + v} dn2

(i6 v)}dvdu = log(l

o o

or

Q(u v) _, Qu-^-~ ~ 2 lo ~ = , ...

log(l
-

or - = l-^n%sn2
^, ......... (6)

a formula which takes the place of the Addition Theorem for

the Theta Functions.

For instance, putting u = v,

e%u = (l- /c
2

sn%)e%/6
3

................ (7)

Interchanging the argument and parameter, u and v, then

so that II(^, v)-II(v, ^) = uZv-?;Zu, ........................... (8)

and Ii(v, u) is thus made to depend upon II(^, v).
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189. In Legendre s notation, II(7i, /c, 0) or simply 110, is

employed to denote his Elliptic Integral of the Third Kind

n being called Legendre s parameter ( 114) ;
and with Jacobi s

notation, H(, K, am u) =

But Jacobi changes the notation, by putting n= /c
2sn2

a,

and by calling a the parameter ;
also by denoting the integral

V2sn a en a dn a snhidu , -,-,- ,

o

and not the integral

du ,. , sn a H(u, a)
2 ^ 5-, which equals u-\

/c
2sn-a sn-n, en a dn a

o

In Legendre s notation, the Addition Equation of the elliptic

integrals of the first kind

leads to
E&amp;lt;p

+ E\fr E/JL
= /c

2sin sin
i/r

sin /A,

the Addition Theorem for the second elliptic integrals ;

and now for Legendre s elliptic integrals of the third kind,

the Addition Theorem is (Legendre, F. E. /., Chap. XVI.)

TT , i TT ; TT 1 n*./a sin d&amp;gt; sin \!s sin /mH$+ H\k-U/uL= r tan- 1 - -^_
V a 1 + 71 71 COS

&amp;lt;j&amp;gt;

COS
T/r

COS
/JL

= -J-, tanh-i
&amp;gt;

/(
-

a)siD sin
t SiPM

, (9)
^( a) 1 + n n cos cos

\js cos /x

according as a is positive or negative, where

this can be verified by differentiation.

This relation is very much simplified by the use of Jacobi s

function II(u, a) ;
and now with

it becomes H(u, a)+ II(v, a) II(u+ v, a) = J log fi,

where n_B(u-a)9(t;-a)e(u+ T;+ a)- .............(1

and 1 is capable of being expressed in a great variety of ways
by means of the elliptic functions en, sn, dn of combinations

of u, v, a.

G.E.F. N
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F /6Q- a)e(v- a)\
2

_~
80 ~J ~I- K%n*(;u-a)sn(v-a)

00 ~) ~lif
/ea9(u+0-a)\ 2

9(M+ fl)9(u+ tt-2a)

I 00 / ~l- KWasn\u+v-a)

90&quot;

( 188), so that (Fundamenta Nova, 54)

Q 2 _ 1 /c
2sn2

(u+ a)sn
2

(i&amp;gt; + a) 1 /c
2sn2a sn2

(t& -f 1; a) _ _ ,

sn2
(u+ v+ a)&quot;

One of the simplest expressions, equivalent to that given
above in (9) in Legendre s notation, is

Q _ 1 it
2snusn vsna sn(u-\-v a) ,- .

l+/c
2
snt(/snvsnasn(u+ v+ a)

&quot;

and a systematic collection of different forms of Q is given by
Glaisher (Messenger of Mathematics, X.).

190. According as Legendre s or (1 +TI)(! + 2
/^) is positive

or negative, so his Integral of the Third Kind LT(X /c, 0) falls

into one of two classes, the first called circular, the second

logarithmic, or hyperbolic, as we shall call it.

In the corresponding classification of Jacobi s form, the para
meter a is imaginary or real; and it is remarkable that in

dynamical problems, it is the circular form, with imaginary
Jacobian parameter a, which is of almost invariable occurrence.

When Legendre s

a or (l+7i)(l+/c
2

/?i)

is positive, and the corresponding Elliptic Integral of the Third

Kind is circular, then Jacobi s parameter is imaginary; and

(i.) with n positive, we must put n= /c
2sn2m;

(ii.) K
2

&amp;gt;n&amp;gt; 1, we must, according to 56, put

as in 114
;
and now the integral is expressed by

H.(u, id] or H(u, K+ib),

involving Theta and Zeta functions of the imaginary arguments
ia or K-\-ib ;

for which there is no theorem, short of expansion,
to express the result in a real form.

We shall find however, in the applications, that this imagi

nary form constitutes no real practical drawback.
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Taking for example the result of 114, then, by (6) 188,

with u = nt, and a =K+t iK
;
while

cm

so that, by multiplication,

(x+ iy)(cos fjit i sin /mt), or p exp i(0

-s/C AC J QuBa

which, when resolved into its real and imaginary part, gives
the vector of the herpolhode, or its coordinates with respect to

axes resolving with constant angular velocity //.

191. Take Jacobi s IL(u, a), and split up the quantity under

the sign of integration into a quotient and partial fractions
;

therefore

Icnadnaf /&quot;&quot; du C du
2 sn a 1^/1 K sn a sn u ,y 1 + K sn a si

= u en a dn a/sn a+ II(it, a) ;

while

1 cnadn a f f du f du
:( f-
(J 12 sn a tJ 1 K sn a sn u J 1 + /c sn a sn 16J

V en a dn a sn u ,

/csn

c sn (a+ u) J/c sn(a u) }du

/c cn(a + u) dn _

Therefore, by addition and subtraction,

en a dn a r du f en a dn a\
I - = u ZcH

sna V 1 K sn a sn u \ sna/
o

, 1^
Q(a u) dn(a u) /ccn(a

2
t&amp;gt;(a+ u)*dn(a+u)+/ccn(a+w) dna /ccna

cnadna/&quot; a lt / cnadnaN
/r =su(ZaHsn a ^y 1 + /c sn a sn u sn a /

. 1, 0(a 11) dn( ^()+ /ccn(a u) dna /ccna
&
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192. Again, taking the formula (7), 137,

sn2a = sn(a+ tt)sn(a tt).Ksna snu
and differentiating logarithmically with respect to a,

Ksn sn

_1 cn(a+ u)dn(a+u) 1 cn(a u)dn(a u)
~~2

sn(&amp;lt;x+ u) 2 su(a-u)
and then integrating with respect to u,

snacnadnadu 1, sn(o.+ i6)

Sn^-sn%
=
2 10g4^) E(W&amp;gt;

ft

a-w) 0(o tt)

a+ .)-
)
.............. (14)

introducing Jacobi s function Hu, called the Eta Function,
defined by the equation (Fundamenta Nova, 61),

snu=J_I^
^/K Bu&quot;

This form (14) and Jacobi s II(u, a) are the two forms of the

hyperbolic integral of the third kind to which Legendre s form

can be reduced for negative values of a.

When &amp;gt; n &amp;gt; /c
2
,
we put n = /c

2sn 2
a,

and obtain Jacobi s form TL(u, a) of (5).

When 1 &amp;gt; n&amp;gt; oo,we put n = l/sn
2
a,

and obtain the above form (14).

This form again can be split up into partial fractions
;
and

a similar procedure shows that, since

du
__, snu , dnu cnu

therefore, by equations (4) and (7), 137,

cnadnasnuduf
2
,y

sn (a+ u) sn( u) ,

sn(a u) J sn (a+ u)
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cn(g u) dng cng

cn(g+ u) dna+ cng*

. -, + cn(a+ u) dng cng

u) cn(g u) dna+ cna ^

Therefore, by addition and subtraction of (14) and (16),

/cnadnadusn g sn u
o

i 11 0(g+u) dn(g+ w)-j-cn(g+ it) dng cng
G(a u) dn(a u) cn(g u) dna-fcna*

/cnadnadusna+snu

) en (a -h u) dn g+ en g
(a u) dn(g w)+ cn(g ii) dn g en g*

By means of equation (6), 188, and the formulas of 123,
these relations may be written

/cnadnadusn a sn u
o

rj -i

2
^(g+ ii) sn ^g en ^(c

U/jA-f- iO^ T^TT x

U~^(g it) sn ^(a

/cngdngfesn g+ sn u
o

The student may prove, by a similar procedure, that

/ dnu-dna
_ 1
=

//c
2snacna(?-i6 _ ,

, 1 + dn(a it

dnt + dna
: 10g T+ dH(a+i

/snacnadna
snucnudnu 7 ,

sn*a-sn tt

/

y ciiu-cna
= uZ _
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Eulers Pendulum.
193. Consider for instance the rolling oscillations on a

horizontal plane of a body with a cylindrical base, such as a

rocking stone, or a cradle.

Then the Principle of Energy, considering the line of contact

as the instantaneous axis of rotation, leads to the equation

JO
2- 2ch cos + h2+ k2

)(d6/dt) = #&(vers a- vers 0) ,

where denotes the inclination to the vertical of the plane

through the axis and the centre of gravity at any time t, a the

extreme value of 0, c the radius of the cylindrical surface, h the

distance of the C. G. from the axis of the cylinder, and k the

radius of gyration about the parallel axis through the C. G.

When c = 0, this equation reduces to ordinary pendulum
oscillations, as in (3) 3

;
but in the general case we have the

oscillations of what is sometimes called Euler s Pendulum.

Th
d? = {(c-

4tgh cos2

and now, if we put
tanJ$ = tanJ cos 0,

dt

on putting 7i
2=

r//c, and

2_ (c+ fe)
2+ fe

2
.

/2 _ (c-hY+ k*

~c2 -2c/icosa+ A2+ /c
2S1 ~c2 -2^cosa + ^2+ A:

2C(

To reduce this to Jacobi s canonical form, put &amp;lt;j&amp;gt;

= &mu,
and sin2

Ja = /c
2sn2a

;
then dn2a = cos2

ia,

-
and sn2a = -

, y^
--

,
cn2a =, y^ , .,

,

. .

2 7g
(c+ /i)

2+ &2
(c+ /i)

2+ k2

dt ^snadna dn 2u
so that n = 2

en a, 1

_ sn a dn a_ 2/c
2sn a en a dn a sn2u

en a 1 /c
2sn2

, _sn a dn a
and 7i^=2 u 2II(u, a)

en a

while
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In the ordinary pendulum, where c = 0, this reduces, as

in 8, to

equivalent to

sin|$= sinJa sn nt
;

where n now denotes

As another application of the Third Elliptic Integral the

student may rectify the inverse (or pedal) of an ellipse or

hyperbola, with respect to any point; examining the parti

cular case when the point is the centre
;

also the case of the

Lemniscate, the inverse or pedal of a rectangular hyperbola,
with respect to the centre (R. A. Roberts, Integral Calculus,

p. 810).

EXAMPLES.

1. Prove that, if fc+ //=!,

(k c//
and deduce Legendres relation of 171.

2 fm f l_ k(y-x)dxdy

o o

/7w
o

x^W ^1 -. .7 7.

.3

J(l +Kx(^ Ky (-x.-(y-l.-K )

(66).
(y-x}dxdy_ =^
-e

B)^/(-4! .y-er y-e.2 .y-e3)

( 51).

(y-x)dxdij _fJ
( 47).

(/3-a)(7-a}(S-a}(y-x)dxdy_

y |8

7. Denoting K-E, K -E , E-K-K, E -^K by J, J , G, G
f

respectively (Glaisher, Q. J. M., XX.), prove that

IK dK \ K
f2

(^dJ T
dE\

-5
-- JK.J )

= -
1 JtLi

-
7
-- J -j ]dK dK / K\ die die /

( Jf
dE rdJ \ 1

(
dG r,dG\= K (J -^

--
~J l

= -
I VT^J

--
^&quot;^T&quot;)

V a/c a/c / K \ dK OK/



CHAPTER VII.

ELLIPTIC INTEGRALS IN GENERAL, AND THEIR
APPLICATIONS.

?. The general algebraical function, the integral of which

leads to elliptic integrals, is of the form

S+TJX
U+ VJX&amp;gt;

where S, T, U, V are rational integral algebraical functions of

x, and X is of the third or fourth degree in x.

We first rationalize the denominator, so that

S+TJX__(S+TJX)(U-VJX)_M N 1

U+ vJX
~

U 2-V*X ~D^D JX 9

suppose ;
and now the integration of the rational part M/D is

effected by elementary methods, when it is resolved into its

quotient and partial fractions.

In the irrational part NjD^/X, the rational fraction N/D
is also resolved, into a quotient, having a typical term xm

,

and into partial fractions, having typical terms

By differentiation, we find that

so that, integrating, and denotingJx
m
dx/^/X by um,

xm -

3^/x = (m 1)emm+4(m f)bum _ l+ 6(m

+ 4(ra
- %)dum _ 3+ (m- 3)eum _ 4,

a formula of reduction by means of which the integral um is

made to depend ultimately on the integrals u2 ,
uv and u .

200
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Similarly, by differentiation and integration, denoting

by vm

we can determine another formula of reduction, of the form

-l
= A Vn+ Bl n - 1 + Cl n _ -2+ Dvn . 3+ El n . 4,/ \n

{Jb a)

by means of which the integral vn is made to depend ultimately
on the integrals vv v

Qt V-^, and v_
2 ;

or rather, on vv u ,
uv u2 ;

since r and u are the same, and

v -i
= u

i
~ w

o
u -2

= U
2
~ 2ca 1+ a*w .

By the various substitutions of Chapter II., u is reduced to

Legendre s First Elliptic Integral, while at the same time the

integrals uv u.2 ,
and i\ are reduced to elliptic integrals of the

Second and Third Kind.

When x a is a factor of X, the substitution x a = l/y
shows that v

1
becomesJydyj^/Tt where Fis a cubic function

of y, and v
l
now reduces to the Second Elliptic Integral.

But without carrying out this work in detail, now only of

antiquarian interest, we adopt instead the Weierstrassian

notation : and by means of the substitutions of the previous

chapter we express x and ^/X rationally in terms of pu and

p u ;
so that the integration is reduced ultimately to that of

A+Bp u with respect to u, A and B being rational functions

of $11.

195. We must at this stage introduce the functions

fi& and
&amp;lt;ru,

the functions employed by Weierstrass, in conjunction with
his function

&amp;lt;pu.

The function fit, called the zeta function, is defined by

&= pu, or f&= Jpudu ;

while the function a-u, called the sigma function, is defined by

or log a-u =judu, (TIL = expy udu
;

and thus -^ = 9 u
du2
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fi

Taking the definition of s or pu in 50,

expand in descending powers of s, and integrate ;
then

the *
marking the place of a missing term in the expansion.

Therefore, by Keversion of Series, since u2
is a rational

function of s, we obtain, in the neighbourhood of u= 0,

To obtain further terms of the expansion, assume

$&amp;gt;

u =
^2+ * + c

l
u2+c^+ c3u

Q +...+cn

and since &amp;gt;

2u= 4?3u

we can obtain from the last equation a recurring formula for

the determination of the coefficients c
;
and as far as UB

,

The expansion of the zeta function is now

fu = + -^3-^!_ #2V
u^ 60 140 24 .3.52 .7 24

. 3. 5. 7. 11

so that, defined more strictly,

o

Similarly we shall find, for the sigma function,

f-f~/JI ;
A I -

|^
*-7 *J 3 ^_ IS 2~

* 24 .3.5 23.3.5.7 29 .32 .5.7 27 .32
.5 2.7.11

so that, strictly defined,

loc &amp;lt;ru
= log u + / ( tu }du, or &amp;lt;jii

= ^exp/ \(u )du.J \* u/ v t/ Vs u/
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Homogeneity.
196. From considerations of homogeneity it follows, that if

u is changed into u/m, and at the same time if g.2 and g3
are

changed into ??i
4

&amp;lt;72
and m6

(/3 , then s or
&amp;lt;pu

is changed into m2
s

or m2
$w ;

so that

}-
1

(
Vj

lit \ttir

. \_ i-y fOL.

and similarly

_ 1 i(u

a{u ; g.-,, gB)
= m &amp;lt;r ( ;

At the same time the discriminant A becomes changed to

m12
A, but the absolute invariant J is left unchanged ( 53) ;

we may in this manner alter the argument u proportionally ;

for instance by taking m =
i/(e1

- c
3)
we can make the argument

the same as in the corresponding elliptic functions ( 51).

When m is chosen so that m12A = l, or m=A&quot;*,the elliptic

integral is said to be normalised (Klein).

Suppose, for instance, that g = 0,

and m, m2 are the imaginary cube roots of unity, J Ji^/3 ;

then m3 =
l, and u/m =mz

v,-,

so that $p(m
2
it

; 0, g^ = m?&amp;lt;p(u ; 0, g3),

p(m u ; 0, gs)
=m

f&amp;lt;u ; 0, gs ),

1111(3 w iC ~-~ v) iit/tL O if1&amp;gt;~

/

lJlf*

&amp;lt;r(u 0, f/o)
=

m&amp;lt;r
= m~vL/^/

/yyj /&amp;gt;T1

This is the simplest illustration of the theory of Complex

Multiplication of Elliptic Functions, of which we shall make
use hereafter

;
the general theory is required in the integration

of the equation
Mdy dx

for particular numerical values of g.2 and
&amp;lt;/3 ,

when l/M is a

complex number of the form a+ ib^/n ;
in this instance g.2

=
Q&amp;gt;

and M is an imaginary cubic root of unity.
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197. With the aid of these three functions of Weierstrass^

&amp;lt;pu, fit, and oru, it is possible to express any elliptic integral,

and we can thus complete the problem left unfinished in 194.

The function fu is analogous to Jacobi s Zeta function
;
and

with s =
&amp;lt;@u}

it may be defined by the relation

&=J
S

-jji=/(4s
3 -

2
s-

&amp;lt;/3)

-
*s ds

*

Thus, for instance, from 153, with appropriate limits,

.

as-0-3 dx
i

\a /3 a y a

where u=f^=.J sj-&

To obtain the Addition Equation of the zeta function

analogous to (2) and (3) of 186, take the formula (F) of 144,

it ll, ft/?A ^

implying also the formula, obtained by changing the sign of v,

ftt+r
so that, by subtraction,

,(u
_

v)

Integrating (a) with respect to v,

where C, the arbitrary constant of integration, may be obtained

by putting v = 0, when p; = oo
;
so that 0= 2u, and

An interchange of it and v gives

-8-)+
so that, by addition,

(y)

the Addition Equation, analogous to (2*) 186.
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With U+ V+W = Q
)

this may be written, analogous to 176,

198. We can now take the function A+Bp u of 194, and

suppose that A and B are resolved into their quotient and

partial fractions.

Writing p, p , p&quot;,
... for

&amp;lt;pu
and its successive derivatives,

then the relations

pt= 4^
3
-#,p-(/3

p&quot;= W-to
p&quot; =l2pp\ etc.,

enable us to express the quotient or integral part of A +B p u
in the form

C= C

Considering next a partial fraction of A +B y u of the form

we replace a by pi
1

,
and write the partial fraction in the form

pu-pv

All such partial fractions can thus be expressed by a series

of terms,

where the sum of the coefficients I is zero for each partial

fraction, and therefore for the whole series
;
so that

?
1+ /

2+ /
3 +...=0.

Again, by repeated differentiation of equations (/3) and (ft )

( 197), with respect to u or v, we obtain equations, such as

by means of which partial fractions of the form
P+ Q& u .. P+ Qy u

,o, or generallv . .u w*1 J *

can be expressed by terms of the form ^(u+ r), $&amp;gt;(u v), and

by their derivatives
;
as well as by terms of the form L and C.
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Thus, finally, A+Bp u, or any rational function of
&amp;lt;pu

and

p u, can always be expressed as the sum L + P of two series of

terms, L = l(u- vj+ l(u- v
z)+ l

B{(u
- r

s)+ . . .
,

where ^+ Z
2 _|_ g+ . . .

= Q,

and P = c+2m ^(u v) ;

and now the integral can immediately be written down, in

volving, in general, the sigma, zeta, and $ function, as well as

its derivatives.

When the sigma and zeta functions are absent, the integral
is a function of @u and p u, and is not properly elliptic, but

only algebraical.

This method of integration is taken from Halphen s Fonc-

tions Elliptiques, L, chap. vii.

Halphen points out that to obtain the coefficients in the

series of terms

Iflu -v)-}-m$(u -v)+m^\u -v}+ m.$&quot;(u
-

v)+ . . .
,

corresponding to the same v, it is only necessary to take the

coefficients of (u v)-\ (u-v)~
2
, (u-v)~

3
, ... in the expansion

of A+B$ u in ascending powers of u v; the coefficient I

being Cauchy s residue.

199. Integrating (j3) with respect to v, then

ff udv^^uy) .....J &amp;lt;$U-&amp;lt;$V *(r(U-v)
S lPl

which may be considered a canonical form of the Third Elliptic

Integral, in Weierstrass s notation.

Thus, for instance, in 113,

By integration of (y), with respect to u and v,

I i u i v- -,

/I
ip
u

% pU

/I
W U Q VJ

tZv =
2 ^-^v
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either of which may be taken as a canonical form of the Third

Elliptic Integral ;
and also as illustrating the interchange of

amplitude u and parameter v, as in the Jacobian Elliptic

Integral of the Third Kind, TL(u, v), in 188.

Or otherwise, interchanging u and v in (fa), or integrating (/3 )&amp;gt;

so that, by addition of (fa) and (fa),

.

-.(&amp;lt;?)

a form of the theorem of the interchange of amplitude and

parameter, analogous to (8), 188.

200. Integrating (ft) with respect to u,

the fundamental formula is the use of Weierstrass s elliptic

function, analogous to equation (6) of 188.

As an application consider the herpolhode of 113 ; then

(jUoV

while #* = . l^
u+ v

(e
~ t

\&amp;lt;K*-t;)

so that, in the curve described by H,

fo+ t

a-ua-v

while in the herpolhode described by P we must multiply this

function by eiflt or cos /mt+ i sin jmt.

Putting u = v in (K), we obtain

(7 (7

This may be obtained by integration of the formula of 149,

1 d2
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If u, v, w, x denote any four arguments,

&amp;lt;r(u

- v
)&amp;lt;r(

u+ v )ar(w
-

x)a-(w+ x)

0, ............ (L)
since it is of the form

where U- V=- ^Ua^v^u- QV), etc.

201. We notice that the Third Elliptic Integral can be

expressed very simply as the logarithm of a function, so that
we may write (y^ in the form

uv ft/ - -v- ii V-*V )
^ ) )

o
7

i , . o-(u-\-v] }where ^C^, v) = -&-***
eru arv

and
&amp;lt;/&amp;gt;(u, v) is called by Hermite a doubly periodic function of

the second kind.

Changing the sign of u, or v,

(jU (TV

so that
&amp;lt;p(u, v)&amp;lt;p(u, v)

=
&amp;lt;@u $&amp;gt;v.

202. Suppose @v = e
lf

e
2 ,

or e3 ; then, according to 54, we
can take v =

u&amp;gt;v ^+ 0)3,
or w3 ,

to correspond; and now

&amp;lt;p

v = 0, and log (j&amp;gt;(u, v)
= % log ($&amp;gt;u pv) ;

so that

0(u, wj)
=

&amp;lt;f&amp;gt;(u,

-
Wl)

=
J($&amp;gt;u

-
ej, etc.

;

and
&amp;lt;/&amp;gt;(u, v) is an elliptic function for these values of v.

We may thus put

, or ^,

where a-.u denotes

Similarly,

where

Also
^&amp;gt;%

= -
2^/($&amp;gt;u

-er pu-e.2 .
&amp;lt;pu

-e
3)
= - Z^u cr.

2
u ar3u/a*ii,

and ( 200)
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Denoting by a, /3, y the three numbers 1, 2, 3, taken in any

order, then the relation

gives, by a combination of the expansions of o~u and
&amp;lt;pu

in 195,

so that o-au is an even function of u, and unaffected by Homo

geneity ( 196).

Thus, for instance, from ex. 9, p. 174,

&amp;gt;2u
- ea

The symbol ^ is employed to denote fa)a ,
so that

r\
is

the analogue of Legendre s E of 77.

With positive discriminant A ( 53), we find (exs. 4, o, p. 199),

and with negative A ( 62),

formulas analogous to Legendre s relation of 171.

203. Denoting $m, pv, pie; by x
t y, z, then ( 165) if

u+ v+ w = 0,

(x^y + z}(^xyz-gz )
= (yz+ zx+ xy+lg^ ................. (I.)

Denoting also (x ea)(y ea}(z ea) by sa
2

,
then since

a+ (a;

__zzx x 2x ze

by means of (I) ;
and this is of the form A+Bea , so that

(e,
- g

s)si+ 3
-

ei )s.2+ (ct
- e

2)s3
=

;

or (ez
- e3V1

uor1
i o-^+(e3

- e
1)o-2ito-27;o-2w+ (e1

-
62)0-3160-3^0-3^

= 0,

snce

(W. Burnside, Messenger of Mathematics, Oct. 1891.)

As an exercise the student may prove that, with

u+ v+ iv+ x = 0,

(e.2
e
a)criU (r-^v

2
-

3 a
- 11 -

the analogue, in Weierstrass s notation, to Cayley s theorem,

given in ex. 1, ii., p. 140.
G.E.F. o
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204. The solution of Lamp s differential equation, which may
be written in Weierstrass s notation

.(1)

is given, when n = l, by the function 0(u, v) of 201.

For, differentiating &amp;lt; logarithmically with respect to u,

1 d(b 1 & u & v ,. N c c--5*-=5- - =(u+ v) tu tv,
$ du 2 ^u-^^

and differentiating again,

1 d2
&amp;lt;f&amp;gt;

I
d&amp;lt;{&amp;gt;

2
,

&amp;lt;j&amp;gt;du*-fdu*

=

so that

du2 4

Lame s differential equation, with n = l, and h= $v.

The general solution of

is therefore

y = C&amp;lt;j&amp;gt;(u, v) + C (f&amp;gt;(u, v), or
C&amp;lt;t&amp;gt;(u, v) + C

&amp;lt;p(
u, v).

When h or @v = e
lt

e
2 ,

or e
3 , the solution is one of Lamp s

functions, as in 202.

One solution is now *J($u ea ), where a = l, 2, or 3;

the other being

{ f(u+ coa) eau}/J^u ea) t

as may be verified by differentiation, or determined indepen

dently from a knowledge of the particular solution
^/(&amp;lt;@u

ea).

205. The revolving chain, resumed.

We are now able to complete the solution ( 80) of the

tortuous revolving chain, by obtaining an analytical expression

for its projection on a plane perpendicular to the axis of

revolution.

Putting y = r cos
i/r,

z = r sin
i/r,

then we have found in 80, p. 70, that, when the notation of

Legendre and Jacobi is employed,

d^_H H/T
dx

~
Tr*
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which, on putting u = Kx/a, and

so that, with K
2 = (6

2- c
2
)/(cZ

2- c2),

sn2v= -
(d

2- c
2
)/c

2
, cn

2^= c?
2
/c

2
,

i cZi\/r cn v dn v/sn v
becomes ~f- = --^^--,

ft i& 1 trSDrli sn v

,
, .

,
cn t dn i; ,-,, x ,, x

so that i\/s=u- ---
IL(u, v)...................... (1)

Since sn2
y is negative, we may, by (67) 73, put v= t iK

,

where t is a real proper fraction.

Now r=

=ceo /

\

-,., .$ /9(u-fv) / cnvdnv \
while elV=J7

--
(exp --- -- Zv)u;

\6(u y) snv /

j.v w^ 0(^+ v) / cn v dn v \
so that y+ iz= cOQ-^^ exp -- --

Zv)u:....(3)
016 Ot; sn v

which, when resolved into its real and imaginary part, will

give y and as functions of u or Kxja, and thus represent the

equation of the chain.

y
^ 206. The procedure is more rapid with Weierstrass s notation.

Writing 2/

2+ z2 = r2
,
we have found that ( 80)

(

r7.,2\2 /4, /
,2

=^o--^+^-c),
so that we may put

-
Sw), .....................................(1)

j j J.V j.

provided that ~-i-=

and g2 , g% are suitably chosen.

Since v is the value of u which makes r2
vanish, therefore

the value of (dr
2
/dx)

2 when r2=
( 80) ;

so that

^2y=: -16lT 2
/?i%

2^6
,

............................... (2)

and
&amp;lt;p

v is therefore a pure imaginary, which we take to be

negative imaginary, so that v= t w3 ( 54).

Now d = H_ dx^ -IE 1 )&v_
dn Tr2 du n-wJ& pu pv %&amp;gt;u-$&amp;gt;v
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or = --- = b&v+ u) + tf(v-u)-tv ......(3)du
%&amp;gt;upv

Jiv

from (ft) ( 197) ;
so that

(i&amp;gt; tt)

while r- k =
...................(5)-2 *

and + fe= fc

crVcrU

=
Jc&amp;lt;/&amp;gt;(u, v),

y-iz = k&amp;lt;f&amp;gt;(u,-v),
.................................. (6)

giving the form of the chain.

For a revolving chain fixed at two points, we must have r2

restricted to lie between positive values, 62 and c
2

, and therefore

$u must be restricted to lie between e
2
and e

3 ;
so that with

du/dx constant, we must put u = x

For a chain attracted to the axis with intensity proportional
to the distance, and thus taking up a form of minimum
moment of inertia, we have u = xcvja ;

and now pu can become

infinite, and the chain reach to infinite distance.

In this and other mechanical problems, the parameter of the

elliptic integral of the third kind is almost always imaginary ;

the apparent awkwardness of this imaginary parameter is

removed when we proceed to express the vector y-\-iz by a

doubly periodic function of the second kind
$(11,, v), whose

logarithm is the elliptic integral of the third kind
;
and thence

determine y and z theoretically by resolving &amp;lt;/&amp;gt;(u, v) into its

real and imaginary part.

Familiar instances of the same procedure are met with in

Elementary Mathematics
;
thus

x+ iy = c cos(nt+ ia), or c cosh(nt+ i/3),

will represent elliptic or hyperbolic motion about the centre.

Generally, with x -f iy z, X+iY=Z=F z: then

will give the motion of a particle of unit mass under component
forces (X, F). (Lecornu, Comptes Rendus, t. 101, p. 1244.)



AND THEIR APPLICATIONS. 21:3

207. The Tortuous Elastica.

A procedure, similar to that just employed for the revolving

chain, will show that the equation of the curve assumed by
a round wire of uniform flexibility in all directions can be

expressed by the equation

y+ iz=
k&amp;lt;l&amp;gt;(u, v)

and z =ku+ yii,

where u= swjc+ w
3 ,

s denoting the length of an arc of the wire, and 2c the length
of a complete wave.

(Proc. London Math. Society, XVIIL, p. 277.)

The elastic wire differs thus from the revolving chain in

having it = so^/c+ ws , instead of tt=a^
1/a-hw8 ( 97).

To establish these equations, take the axis Ox as the axis of

the applied wrench, consisting of a force A^ along Ox and

a couple L in a plane perpendicular to Ox
;
denote the tor-

sional couple about the tangent at any point by G, and the

flexural rigidity of the wire by B.

Then the component couples of resilience about the axes

Ox, Oy, Oz are taken to be

B(y z&quot;-y&quot;z), B(z x&quot; -z&quot;x ), B(x y&quot;-x&quot;y )

the accents denoting differentiation with respect to the arc s
;

the equations of equilibrium are therefore

B(yz&quot;-y&quot;z }=Gx+L (1)

B(z x&quot;-z&quot;x)
= Gy + Xz (2)

B(xy&quot;-x&quot;y }=Gz-Xy (3)

(Binet and Wantzel, Comptes Rendus, 1844).

Differentiating each equation with respect to s, multiplying

respectively by x, y, z, and adding, gives

G =
;
so that G is constant.

Multiply equations (1), (2), (3) by x, y, z\ and add
;
then

-r L*
&quot;^- X(yz

- y z)
= 0,

so that yz y z = r2
d\fs/ds

= G/X, a constant
;

and
yz&quot; y&quot;z

= 0.

Again, multiplying (2) by y, (3) by ~, and adding, gives

Bx\yz -
y z}

- Bx
(yz&quot;

-
y&quot;z)

= G(yy
f+ zz \

or Bx&quot; = X(yy + zz \
so that, integrating, Bx = ^X(y-+ 2

) + H.
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Then

= 2X(Bx -H)(I-x 2)-G2
,

a cubic function of x
;

so that, by inversion of the elliptic

integral, x or y
2+z2

is an elliptic function of the arc s, which

may be written

y
2+^ = &8

(pa,-pw), ...........................(4)

or Bx
. , , du

provided A
dx

and now
du

also = iG ds = 2iBG 1 = frfa
^ 23

By KirchhofFs Kinetic Analogue, it follows that the axis of

a Spherical Pendulum, Gyrostat, or Top can be made to follow

in direction the tangent of a certain Tortuous Elastica, when

the point of contact of the tangent on the elastica moves with

constant velocity ;
so that, if x, y, z are the coordinates of a

point fixed in the axis of the Gyrostat, and Ox is vertical,

7
d o-(u+ a)) ,

. .= k-r
- -exp(X MU,du cru o-a)

where now u =^+ o)3,

and 2
1/w is the period of the oscillations of the Top, or Spheri

cal Pendulum.

The Spherical Pendulum and the Top.

208. To prove these formulas independently for the spheri

cal pendulum, let the weight of the bob be W lb., and let the

tension of the thread be a force of NlW poundals ;
then the

equations of motion are, with the axis of x drawn vertically

dovmwards,
d2x d2 d 2z A /1X

0; ......... (1)

subject to the condition, I denoting the length of the thread,



AND THEIR APPLICATIONS. 215

The equation of energy is

(2)

while yz yz = /^, a constant................ (3)

Now, xic+ T/i/ + 22 4-^2 = ##,

so that JV72 =
&amp;lt;/
+ x2+ #

2+ z2 = g(3x+ 2c) ;

thus giving the tension of the thread.

Hermite writes (Sur quelques applications des fonctions

elliptiques, 1885)

(y+ iz)(y
-

iz)
= yy+ zz- i(yz

-
yz)

= xxih,
so that the norm of each side is

(y
2
+z*)(y

z
+z*) =xW+h\

Then

(V-xz
){2g(x+ c)-x

2
} =xW+h?,

or I
2x2 = 2g(x+ c)(l

2- x2
)
- h2

so that x is a simple elliptic function of t, which we may write

x = k(pv-&u), ........................ (4)

where u = nt+a)^ for ^16 to lie between e.
2
and e

s
.

Then l
2
k-,tY2

ii = 2gJ^u- pvf- 2gck
2
(pu- pv)*

-
pi )+ 2gd*

- h2

provided n2 =
^gkjl

2
,
and py= Jc/& ;

while ^2
and g3 are suitably chosen.

The value of y v is found by noticing that x = when u v;

and thus l
2k2nY2v= 2gcl

2- h2
,

Now Hermite writes

d2
.

j-5(3/2f= -r- 9
= --1- = ,^ 2V&amp;lt;

c/it
2

grfc
A;

Lame s differential equation for n = 2, with ^=6|w.
The formal solution of this equation is reserved for the

present; but it can be inferred for this case by taking the

equation (3) and writing it

^= h

du n(y
2+ z2)

di\ts_ ih/n _^i
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We now put
.........(6)

and since I
2x* = hz

,
when x = I, or when u = a, or 6, therefore

79

With & positive, and 06&amp;gt;0u&amp;gt;0a, we take p a negative

imaginary, and 6 = a positive imaginary, so that ( 54),

,
where p and q are real proper fractions.

Then = - +s_. ...(7)au 016 0a
&amp;lt;pb $u

and integrating, by equation (/3), 199,

i 11 &amp;lt;r(

U+ a) . ., cr(6+ u) c7 /Q \

V =l 1 g^=r)
-f+i 1 8-^-(8

&amp;gt;

Now

while

j.i , 7 ,. -
so that v+^= ^ -

exp(
-
fa
-

era 0-6 9%
-,cr(u a)a-(b u /nx

(9)

thus giving the solution of Lame s differential equation for n 2.

209. It is interesting to verify that these values of y+ iz

and y iz are solutions of Lame s equation for n = 2.

Denoting y-\-iz by 0, and differentiating logarithmically,

and differentiating again,

1 p u-p a 1 p b-p u.
2 u wt 2 &amp;lt;b &amp;lt;u

l/0 i6 a\ 2
. 1 &amp;lt;QU a 6 0V l/0 6 /r

i= . I-5
)

&quot;&quot;~

9 ^^ 1 + 4^7;

-K6+^)
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u &a p 6 p u
a- T2 pu pa po*-fne.

But with p a = p 6,

tt p a p 6 & u- -
\-

pit)

-rt = 6pit -{- 3pa+ 3p6,
&amp;lt;h CiU

Lame s differential equation for ?i = 2, with 7t = 3pa+ 3p6, in

place of the previous value of h = 6pv.

From KirchhofF s Kinetic Analogue in 207 we may put

-, NexP( ft&amp;gt; tyu
era orb cr

d I

where X = f(a+ b) fa f6.

With p (a
-

6)
= p a = p 6,

therefore f(a 6)
= fa f6 ;

and, changing the sign of a,

P7 cZ

exp(ca Co)u=-j-A(tt, a^7 9
o-a 0-6 a-

2u

(Halphen, F. E., I., p. 230.)

210. In the slightly more general case of the motion of the

Top, we shall find it convenient to draw the axis Ox vertically

upwards, and to call the angle which the axis OC of the

top makes with the vertical Ox.

Then, from the principles of the Conservation of Energy and

Momentum, we obtain the equations (Routh, Rigid Dynamics)

iA(dO/dty+ \A sm2
0(aV/cZ0

2 = Wg(c- h cos 0) ,
...... (

1
)

^sin20(^/^0+^ cos0=^, ...................... (2)

where r denotes the constant angular velocity of the top about

its axis of figure OC, d\frjdt the angular velocity of the verti

cal plane through Ox and OC, h the distance of the centre of

gravity G from 0, W Ib. the weight of the top, and C, A
its moments of inertia about the axis of figure OC} and about

any axis through at right angles to OC.
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Putting A/Wh= l=OP, as in the simple pendulum, then

P is the centre of oscillation for plane vibrations.

The elimination of d\fsldt between equations (1) and (2) gives

=
(/(cos cos a)(cos cos /3)(cos d),...... (3)

suppose ;
the inclination of the axis of the top to the vertical

being supposed to oscillate between a and
/3,

a &amp;gt; &amp;gt;

/3, or cos a &amp;lt; cos &amp;lt; cos /3
&amp;lt; d.

Guided by equation (17), p. 37, we put

cos = cos a cos2
&amp;lt; + cos /3 sin

2
&amp;lt;,

cos cos a = (cos /3 cos a)sin
2

&amp;lt;,

cos/3 cos 6 = (cos /3 cos a)cos
2

&amp;lt;

;
................(4)

and therefore,

=
o j{d cos a (cos/3 eosa)sin

2

&amp;lt;/&amp;gt;}

, 9 cos 8 cos a ,9 d cos ^8where /r =--s &quot; K ^d cos a a cos a

and in-
2 = J &amp;lt;/(c?

cos a).

Now we may put &amp;lt;

= am nt, and

cos = cos a cn2
?i + cos /3 sn

2
7i, ................ (5)

so that the projection on the vertical Ox of the motion of a

point on OC resembles ordinary plane pendulum motion.

When d = 1 and cos a= 1, then

G and Cr vanish, and the oscillations are in a vertical plane.

But, in the general state of motion,

._
dt

=
&quot;sin

=
1 G+ Cr 1 0-
2

1 G^+ Or 1_G-Or_
2 l-cosa-(cos/3-cosa)sn

2
ft~2

so that
\/s

is expressed by two Third Elliptic Integrals.



AND THEIR APPLICATIONS. 219

Putting cos#= 1 in equation (3), show that

== 2(l +cos a cos

= 2(l -cos a)(l -cos /3)((Z- 1),
i

while, in accordance with Jacobi s notation, we put
cos 3 cos a 9 cos

/
cos a .=

,

1 + cosa 1 cos a

so that, finally, with u= nt, we find

en t\n vsn. v
t

. en

and, as in the spherical pendulum ( 208), we take

v
l
= ipK , r.2

=K+ iqK ,

where p and q are real proper fractions.

In the Weierstrassian notation, we put, as in (6), 208,

1 + cos = k($ni pa), 1 cos 6 =

and thence ( 22-i) c - h cos = hk{p(a+ b)-

^1-1- AT, V A ,We thus obtain -5-*-=
---

1

du pu $&amp;gt;a

but now the relation p a= p & holds only when 0;- = 0, or

when the motion of the top is comparable with that of the

spherical pendulum ;
on the other hand, the relation p a = $ b

implies that G = 0.

The Kinetic Analogue of the Top with the Tortuous Elastica

( 207) is obtained by putting
a+ b = a), and X = f(a+ 6) a f&.

In the Steady Motion of the Top, a = /3, K = 0, K= JTT ;

and the elliptic functions degenerate into circular functions.

We thus obtain the condition for the steady motion, and the

period of the small oscillations, given in Ifoutb sRigidDynamics.

211. A similar procedure will solve the general equations

of motion of a solid figure of revolution, moving under no

forces through an infinitely extended incompressible friction-

less liquid ;
the work will be found in Appendix III. of

Basset s Hydrodynamics, vol. I
;
also in Halphen s Fonctions

elliptiques, II., chap. IV. The problem is of practical interest

from its bearing upon the determination of the amount of spin

requisite to secure the stability of an elongated projectile.

(Proceedings, Royal Artillery Institution, 1879.)
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212. We again resume the consideration of the motion of a

body under no forces, first mentioned in 32, as affording a

good practical illustration of the necessity for the introduction

of various analytical theorems of Elliptic Functions.

Geometrical Representation of the Motion of a Body under
No Forces, according to MacCullagh, Siacci, and Gebbia.

Quadrics concyclic with the moinental ellipsoid, that is,

having the same circular sections, are given by (Smith, Solid

Geometry, 170)

(A -H)x2+ (B- H)y2+ (C- H)z2 = Dk2
;

and now, if we produce the instantaneous axis of rotation OP
to meet the concyclic quadric in P

,
and denote OP by R,

(A -H)p*+ (B- H)q2+ (C- H)r2 =DAV/E 2
,

while Ap*+ Bq
2+ Cr^Dh

so that, by subtraction,

M2 R2J
C

*

R2 R2
~
D

Along the polhode, R h sec 6, where denotes the angle
between the instantaneous axis OP and the fixed axis of

resultant angular momentum 00
;
and then

W = COS26 _
H

(l}

the polar equation of a quadric surface of revolution.

Since R2
is less than A2sec2$ for all points adjacent to P on

the momental ellipsoid, therefore in the concyclic quadric
1 . cos2 H

-f 9̂ is greater than

except at the point P ,
and therefore the concyclic quadric

touches this quadric surface of revolution at P and rolls

upon it during the motion.

We may also take concyclic quadrics, given by

and now __ C0^, ..................... (2)

the polar equation of a quadric of revolution.

In particular, if H= D, then .K sin 6 = h, the polar equation

of a cylinder of revolution, outside which this concyclic hyper-
boloid rolls during the motion (Siacci, In memoriam D.

Cheliniy Collectanea mathematica, 1881.)
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213. By reciprocation of these theorems, we prove Mac-

Cullagh s theorem,
&quot; that the ellipsoid of gyration,

^ , f, z*_ I

A^B^C M*

always moves in contact with two fixed points on the axis of

resultant angular momentum, equidistant from the centre
&quot;

;

and we also deduce Gebbia s extension of MacCullagh s theorem,
that &quot; confocals of the ellipsoid of gyration, the polar recipro
cals of the concyclic ellipsoids of the momental ellipsoid, slide

without rolling on fixed quadric surfaces of revolution.&quot;

In particular, the polar reciprocal of Siacci s cylinder of

revolution is a circle, upon which a certain confocal to the

ellipsoid of gyration slides without rolling.

Geometrical Representation of the Motion, according to

Sylvester, Darboux, omd Mannheim.
214. In Sylvester s splendid generalization of Poinsot s re

presentation of the motion of the body, it is proved that a

confocal to the momental ellipsoid rolls upon a plane per

pendicular to the axis of resultant angular momentum OC at

a constant distance from 0, which plane rotates about OC with

constant angular velocity, and therefore gives a geometrical

representation of the time. (Phil. Trans., 1866.)
The proof of this theorem depends upon twro geometrical

propositions, in connexion with confocal quadric surfaces

(i.) &quot;The locus of the pole of a fixed tangent plane to a

quadric surface, with respect to any confocal, is the normal to

the first surface
;

&quot;

(ii.)
&quot;

the difference of the squares of the perpendiculars from

the centre on two parallel tangent planes of two confocals is

constant and equal to the difference of the squares of the

corresponding semi-axes.&quot;

Thus, in
fig. 25, if OP is a surface confocal with the

momental ellipsoid OP, then Q, the pole of the invariable

plane CP with respect to the surface OP
,
will lie in the

normal PQ to the momental ellipsoid at P
;
while the surface

OP will touch a plane C P
, parallel to the invariable plane

CP, and such that OC - = OC 2
-\~, X2

denoting the difference

of the squares of corresponding semi-axes of the confocals.
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Since C is a fixed point during the motion of the body,
therefore C&quot; is also fixed.

Drawing the plane QL through Q, parallel to the invariable

plane, and denoting OC by h, as before
;
then since Q is the

pole of OP,

OQ.OV=OP&quot;
2

,
or OL.OC=

so that OL =h- \2
/h, LC=

Fig. 25.

Again, denoting as before ( 104) by /JL
the constant com

ponent of the angular velocity of the body about OC, so

that the resultant angular velocity of the body about OP is

m cosec OPC, then the velocity of the point P in the body is

p cosec OPC . OP . sin POP = ^.P V,
where V is the point in which the line OP cuts the plane C P .

Therefore the angular velocity of P about the invariable

r nn . p v py PQ A2

line OU is /x
(7
7P7= MOP =M00 :=/x

/t
2

a constant ;
so that if the surface OP rolls without slipping

on the plane C P
,
this plane must revolve about OC with

constant angular velocity yuX
2
//i

2
.

The point P lies in the plane OQPC ;
and since

C P _C P _OC
f

_OC
CP~ LQ -OL-~OC&quot;

therefore OC . C P = OC . CP,

and P lies on the rectangular hyperbola PP
;

this is the

geometrical property principally employed by Prof. Sylvester.

(Solid Geometry, Salmon, 167, 180; Smith, 163, 167.)
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The angular velocity of the vector C P with respect to the

revolving plane C P being ~7?&quot;~Mp
& follows that, if p, $

denote the polar coordinates of a point P on the herpolhode
described by P on the revolving plane C P

,
then

n 2
OC&quot;

2 K

, _ X2
\ A-D.B-D.C-D

equations similar to those required for the herpolhode of P.

In particular, if we take \2 = k2
,
then 00 =

0, and the con-

focal OP is a cone
;
and the plane through rotates with

constant angular velocity /UL,
while the cone, called by Poinsot

the rolling and slipping cone, rolls on this revolving plane,

the angular velocity about the line of contact OH being v.

If we consider the curve described on this revolving plane

by the point H, the foot of the perpendicular from P on the

plane, then p, being the polar coordinates of H ( 113),

dt ~dt ABG~
~

~p

so that the point H describes on the revolving plane an orbit

as if attracted to
; and, as in 89, we shall find that the

requisite central force is of the form Ap+ Bps
.

(Pinczon, Comptes Rendus, April, 1887.)

This is otherwise evident, by noticing that the vector x+iy
of this curve satisfies Lame s equation ( 204)

72

jj^x
+ iy)

= (2$m+ &v)(x+ iy),

where

so that %
A value of X may be found which makes the herpolhode of

P a closed curve
;
and this closed polhode is an algebraical

curve, when v is an aliquot part of a period, the correspond

ing elliptic integrals of the third kind becoming pseudo-elliptic.

Abel has devoted great attention to the subject of pseudo-

elliptic integrals ((Euvres, XL), and the algebraical herpolhode
affords an interesting application of his theorems ( 218).



ELLIPTIC INTEGRALS IN GENERAL,

The Addition Theorem for the Third Elliptic Integral.

A 215. Theorems (9) and (10) of 189 show that, employing

the function $(11, v) of 201,

log

or

or i ai 2 = o
o-^+^ -h te.

2)orv a-u^ju^

where, expressed by elliptic functions of uv u
2 ,
and v

,

U ~ V+ U

Also, as in equation (8), 188,

log (fr(v, u) = log 0(u, v)+ i^fy vftfc
;

so that

log 00, O+log^ ,
u

2)

= log &amp;lt;f&amp;gt;(v, Ul+u2)
-

{fa+ fu.2
-^+ u.

2) } v+ log Q, . . . (3)

the Addition Theorem for the parameters uv u2
.

These theorems have been generalized by Abel for the addi

tion of any number of amplitudes or parameters in the

Third Elliptic Integral, and the proof is a simple extension of

his method, employed in 162 (CEuvres, XXL).

Denoting by a any arbitrary quantity, equation (7) of 162

may be written

1 dxr Oxr
a xr *JX,r

~~

(a xr)\j/xr

Now, since Qa is of lower degree in a than \fsa, and

it follows that, when resolved into partial fractions,

6a _ y 6xr

and therefore, writing fx and
&amp;lt;px

for P and Q respectively, and

A for the value of X when x = a,

^,
1 dxr 6a 9 &amp;lt;f&amp;gt;aSfa faS&amp;lt;/&amp;gt;a=

V^
=

(fa)
2 -

*J a fa+
&amp;lt;t&amp;gt;a

or 2
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Integrating, with the notation ( 197, 199),

so that

&amp;lt;r(v+Ur )n-
&amp;lt;

is expressible by elliptic functions, ? and
#&amp;gt;

,
of v

; provided that,

as in (11), 162,

tm

= 0, or 2tt-r= 2u r, (6)

the coefficients in fa and
&amp;lt;pa being determined as functions of

pur and $ ur by the plexus of equations (4) in 162
;
fa and

&amp;lt;p

a being the same functions of u r.

Thus the function

is an elliptic function of v provided that the sum of the values

ur ofv which make the function vanish is equal to the sum
of the values u r which make the function infinite

;
in other

words, briefly expressed, provided the sum of the zeroes u is

equal to the sum of the infinities u .

In particular, with the u r s all zero, 1,ur
=

;
and in equation

(6), 162, we can put

\fsa
=

(fa)
2

so that 2 log &amp;lt;p(u r) v) = log(fa+ &amp;lt;/&amp;gt;a

. *JA ) + constant.

Thus 11^,.,*), or ^+%)^+Xl_-HO ) ....... (8)

when u
l+ u

2 -{-u3 +...+UfJll

= 0, ..................... (9)

is a rational integral function of
$&amp;gt;v

and
$&amp;gt;

v, which may be

written, as in 198,

v.............. (10)
G.E.F P
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So also, since ( 201)

therefore, writing 7&quot; for %*,

r=ui-l

2 log (j)(
U

r&amp;gt; v)
=
log 0( U, v)+ log Q + a constant, ......(11)

r=l

where Q = C f

/(p 17 #w).

In particular, when 7=ea , 0(#, v) = ^/(pv-ea) ( 202), and

r

n&quot;J&amp;lt;ttr,t;)=a/V(fw-ett) &amp;gt;

..................(12)
? = !

when u
1+ u2+u3 +... + u fji-i

=
(ji)a .

By an interchange of amplitude and parameter,

2 log (f&amp;gt;(u,
vr) 2 log 0(i&, yV)

= log Q pu, ..........(13)

provided that 2^=2^
12 being a function of $m, ^ u, $v t

$&amp;gt;

v
;
and

p = 2(fyr-fy
/

r).
.

216. A further application of Abel s Theorem of 162 shows

that p is expressible as a function of pv and $ v\ this is the

generalization of the Addition Theorem for the Second Elliptic

Integral, given in 186.

For

and this case can be determined as a degenerate case of the

preceding result
; since, making a oo

,

Ja-XT JXT

= the coefficient of I/a
2 in the expansion in ascending powers

1 . fa da. ,JA /-, 1X
of I/a of -^ log^^j ......................0-

Thus, with Z = 4fl3
3-

#2
a-

^/3 ,
and a; = py,

then

and p

Jacobi calls V^ the /^c^o? o/ tae 27iird Elliptic Integral

(Werke, II., p. 494.)
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217. Similar results hold when, as in 167, X is supposed
resolved into two factors, Xl

and X.
Denoting P^ - Q*X2 by ^xy

and varying the arbitrary coefficients in P and Q, and conse

quently the roots of \^x = 0, as in 162, then

^xrdxr+ 2PSP . X - 2QSQ . X,= 0,

while PJX^+QJX^Q ,

so that ^ xrdxr
- 2(Q3P-PSQ^X^) =

0,

or far = 2Q-dP-PSQ^ Oxr

^/Xr \]s xr \ls
xr

and I,dxr/^/Xr
= 0, or 2ur

= 2u r .

Again, as in 215,

2_L_ dxr _ Oc&amp;lt;^ _
a-xr

~ ~

^ loo ,

*

Thus, as an application to the formulas of 174, 176, 186,
and 189, take, as in 38 (Durege, Elliptische Functionen, 36),

X=X
1
X

2 ,
where X^ = x, JT

2
=

(1 #)(! kx).

Then, with x= sn2u,

c rxdx 2 ,

and

;

in Legendre s notation, with = arn
i^,, and ??-== I/a.

Now, if, as in 164, 165, we take

P or ixp-\-x, and Q or
(f&amp;gt;x

=
q,

and denote by xv x
2 ,
x
3 ,
the roots of the equation (7), 167,

V*, or P^-Q2^, or

then

x
l+

so that, as in 164,

(2
-^ - ;r

2
- a;

8+kx^x^ = 4(1-^.1-^.1- a;
3 )f

where
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AgaiD,
a dx r a ^Xt, , f a

a-x
l ^/X1 Ja-Xc, J~X9 Ja-x3

or - tanh - *, (16)V^ la^/Ai
since a^, a?

2 ,
&
3
vanish when p and g are made zero

;
and this is

equivalent to the result of equation (9), 189, with a= 1/n,

A l-a.I-ka

and
fa

Similarly, for the Second Elliptic Integral,

00
= -I* TET f^- C* tanh-&quot;^/-*;

1 --^ (a=x}

(17)

as before, in 174, 176, and 186.

218. Abel s pseudo-elliptic integrals are derived by making
the u s equal in equations (7), (12) ;

or the v s equal in equation

(13) ;
also by making their sum equal to a period a ,

or the

sum of multiples of periods, such s^sp^+ qcoy

Now
/JL log 0(it, v) is of the form log 2 pu,

or
&amp;lt;j)(u, vY is of the form e-PMQ,

where Q is a rational integral function of
&amp;lt;@u

and
&amp;lt;p

u of the

form of in (8), sometimes qualified by a divisor ^/(^u ea ).

We begin with the simplest case of an algebraical herpolhode

by taking
&amp;lt;y = ft)

1+ Jw3 ;
and then, from equations (39) and (40),

54, we can infer that the value of s, between e
l
and e

2 ,
which

makes &JZ3?.iV~ e
s_ e

i
_&quot;~

e
2 e

z
~ e

z

s 8 or v=
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Denoting pu by s, p u by ^/S, and pv by a, we infer that

is pseudo-elliptic, that is, can be expressed in terras of

/ds/JS and of i&u-\QJS/P).
In fact, by differentiation of

_ .

since ip v = - 2
/v/(e1

- e
3

. e
2
- e

s) { ^/(el
- e

3)
-
^/(^

- e
s) }.

In the herpolhode, therefore, of 113,

or = -^+H s/(e1
- e

s)
- J(e2

-
e.)} nt,

and therefore, relatively to axes revolving with constant

angular velocity,

the herpolhode will be the algebraical curve, given by

a s

(a s) cos 20 = ^/(s e
l
.s &,),

(a
-

s)
2cos2

2(9 = (a
-

s)
2-

(e3+ 2a)(a
-

)+ (a
-
e.Xa

- e
2 ),

(a
-

s)
2sin220+ {VK - 6

3) + v/(*2
- e

3)}
2
(a - s)

where, as in 1 1 3, a s, or p u pu = 2
7I/&quot;

Referred to Cartesian coordinates, in which

this equation becomes

of the form
(

2+ 62)(i/
2+6-2

)
= a*....................... (18)
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The relation $v e%
=

ftt/(e 1 e^.e2
e
s ),

combined with the equations of 110, 113, leads to the relation

A-D.D-C_A-B.B-C .

D2 B2

and either B = D, which gives the separating polhode ;
or

D
=A~B+ C

the relation for this algebraical herpolhode.

Now, from 108-110,

(D D\2
/x

2

(D D\ 2
/x

2

while, with A &amp;gt; B &amp;gt; D &amp;gt; G, and ee= ev ea= e
z ,

eb = e
3 ,

^1 ^2 ^c ?a (Q

To determine the confocal surface which will describe this

algebraical herpolhode by rolling on a fixed tangent plane, we
must equate the angular velocity of the axes to jwA

2
/A

2
;
and

X2
1

The squares of the semi-axes of the confocal are therefore

_l_ 1

A 2 2

D 1 I

B-2-
D 1 1D

while the square of the distance from the centre of the tangent

plane on which this confocal rolls is given by

The confocal is therefore a hyperboloid of two sheets, of the

0,2 ,,,2 ~2

-S-tftS- 1

arid in rolling on a fixed tangent plane at a distance b from

the centre, it will trace out the algebraical herpolhode (18),

being the preceding herpqlhode, changed in scale in the ratio

of h to b (Halphen, F. E., II., p. 285).
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219. A more complicated case can be constructed by taking

v
a?!+ Jo)3 ;

but now we must choose particular numerical

values for #2
and

&amp;lt;/3
.

If we select the modular angle of 15, then 2or = J, and in

(C), 53, J= 53
-7-4, J- 1 = H 2 H-4

;
so that, by choosing A = 108,

then #2
= 15 #3

= 11
;

and
i
= i-r-V3 e.

2 =-l, e^
= ^-^3.

It is easily verified that, with the above value of v, $&amp;gt;v

= ^\

for p2v= f = p4i&amp;gt;;
also this value of

&amp;lt;pv
or s makes, in equa

tions (39) and (40), 54,

Je, e9 . e9 ?o \ ifei~~ ez- ei~ e^ ^
* (

J
-f^ ; fe -) =2P (--^;h ; ^ -4

The corresponding elliptic integral of the third kind in the

herpolhode will now be pseudo-elliptic ;
we find, in fact, that,

if 0= .sin
-1=

(2s -1)*
dO 1 2s+ 5 1

since i$ v= 3^2 ;
so that, in the herpolhode,

flipvdu . A
&amp;lt;t&amp;gt;-nt=/

- -=-ix/2 ?i^+ 0;y pv-fwi-

and therefore, relatively to axes revolving with constant

angular velocity /u. ^^/2n, the herpolhode will be the alge

braic curve

(2s- 1)

or (l-2s)
3sin230+ 9(l- 2s)

2- 108 = 0,

in which 1 - 2s = 2(pv - $&amp;gt;u)

= 2
2̂ ^ = 3^, suppose ;

71&quot; /i&quot; C&quot;

and now ^sin^O+ 3c2
p
4- 4c6 = 0, .................. (19)

a curve, consisting of six equal waves, arranged on a circle.

With (i.)
A &amp;gt; B &amp;gt; D &amp;gt; C, and

2/4 T) T)

then (113)

so that
A-D.D-G A-D.B-D
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Then, either A D= 0, which would give a stable rotation

about the axis A
;
or

zr;B+(7 ; ..........................
&amp;lt;

20
&amp;gt;

so that D is the harmonic mean between B and C.

3 ^B-D.D-G
Again, pv-ea=^-z- -^c~ ~&amp;gt;

so that
~

=

which is impossible, with A &amp;gt; B &amp;gt; C.

But (ii.), with A &amp;gt; D&amp;gt; B &amp;gt; C, we find that D is the har

monic mean between A and B] also

i-.I-x/Sf! n 11 2_V3/1_1\
D A~ 2 \D BJ B+C~A~ ~2\C B)

so that 2+ ^/3 is the ratio of the semi-axes of the focal ellipse

of the momental ellipsoid, and /3(^/3 l) is the excentricity.

Another algebraic herpolhode can be constructed by taking

|co3 ; and, with
&amp;lt;72
= 15,

&amp;lt;73
= 11, we find that

Now, if

in
.1
6

^ y2(^/3-1)
ds~

so that

/%p
vu_

$&amp;gt;v-pu~ (28-2^/3 +

and now the algebraic herpolhode, with respect to revolving

axes, is given by

(28-2^3+ 5)^1 30 = 6(^/3- I)*J(s-e2
. s-e

3\

reducing to an equation of the form

................... (23)
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With
(i.) A &amp;gt; B &amp;gt; D&amp;gt; C, and

T , , A-D.D-C -B-D.D-G
Therefore -^ -^

and rejecting the factorDC
y

jD-C .4 2^/3-3 1 1 2,7:i-3/l I
- = r ~= -,,

-A-D 0= 6
r

so that the excentricity of the focal ellipse of the moniental

ellipsoid is ^3 1.

With
(ii.) A &amp;gt; D &amp;gt; B &amp;gt; C, we are led to an impossible result.

Points of Inflexion on the Herpolhodes.
220. The original herpolhodes drawn by Poinsot (Theorie

nouvelle de la rotation des corps) were represented with points
of inflexion, as curves undulating between two concentric

circles on the invariable plane.
But it was pointed out by Hess, in 1880, and de Sparre

(Comptes Rendus, Nov., 1884), that such points of inflexion can

not exist on Poinsot s original herpolhodes, which are curves

always concave to the centre, as drawn in Routh s Rigid
Dynamics, Chap. IX.

;
like the horizontal projection of the path

of the bob of a conical pendulum, or like the path of the Moon
relative to the Sun, a good figure of which is given in the

English Mechanic, p. 337, June, 1891, by Mr. H. P. Slade.

The herpolhodes described on planes parallel to the invari

able plane in Sylvester s representation are capable, however,
of possessing points of inflexion, when the confocal of the

momental ellipsoid attains a certain shape. (Hess, Das Rollen

einer Fldche zweiten Grades auf einer invariabeln Ebene*

Munich, 1880
;
de Sparre, Comptes Rendus, Aug., 1885.)
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Denoting by h the constant distance from the centre of the

plane upon which a quadric surface rolls, de Sparre shows that

the herpolhode on the plane has points of inflexion, when the

quadric is

(i.) an ellipsoid

5+S+S- 1
- &amp;lt;&amp;lt;* ifW^.o-d^+

i;

(in a momental ellipsoid, A&amp;lt;B+ C, or
z

&amp;lt;

-i + -
i &amp;gt;

so ^hat

points of inflexion cannot exist on the herpolhode) ;

(ii.) a hyperboloid of one sheet

/g2 y2 z2 111
&quot;2
+ ?5

~~
&quot;9

= 1 a2
&amp;lt;b

2
,

if A,
2

&amp;lt; a2
,
and -s &amp;gt; r2+ ~o

a2 6 2
c
2 a2 b2 c

2

(iii.) a hyperboloid of two sheets

x2 v2 z2 111
-o T7 ,

=
1, 12

&amp;lt; c
2
,

if 70 &amp;gt; -o+ -o, whatever the value of /i.

a2
fc
a

c
2 62 a2

c2

These herpolhodes being similar to the original herpolhode
of the momental ellipsoid, when referred to axes rotating with

constant angular velocity /xA
2
/A.

2
, can be considered as defined

by the polar coordinates p, 0, given in terms of the time t, by
the equations of 113,

pfs5S#(fW fW), (1)

d9 vifi v /n\=m+ - ~n (2)
at

$&amp;gt;v $u
with u = nt+ up v = (0

l+ t a)3, m/ju = l \2

/h
2

.

Denoting the velocity in the curve by F, and its radius of

curvature by R, then, resolving normally,

V*_dP I d( $e\ dO(&amp;lt;]*pR~ dt P ~dt\
p dt) p dt\dt2

which will be found to reduce to an equation of the form

F3_ ==P
/

wh ere P=m3
-f-3mn2

$)v+nHp v,

Q = $m*nip v mn2
$&amp;gt;&quot;v ^nH$&amp;gt;

&quot;v
;

and the corresponding herpolhodes will have points of inflexion

when X is chosen so that Pp
2
-f Q can vanish.

Thus Halphen points out that the algebraical herpolhode
of 218 will have points of inflexion, if b2

&amp;lt; Ja
2

.
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221. The polhode being given by the intersection of the two

quadric surfaces Ax2 +%2 + Cz* =M2
,

we may in consequence write

c

where (BC)c
A(B-C)a*+B(C-A)b2

and then
2 +X 62 +X c

2 +X
the equation of a system of confocal quadrics, on choosing I

B-CC-AA-B
such that I = .

1 D I TT~

Then
n n

^A]^

2a ~ b -

By varying X along the polhode, we find

2 dx 1 d\ dx \ x d\
___ _______ __

OT&quot;
- __ _

xdt7a*+\dt ~dt 2o*+X(ft
so that the polhode is an orthogonal trajectory of the confocal

surfaces, for any one of which X is constant
;
and two ellipsoids

can be drawn on which the curve is a polhode, of which the

generating lines of the confocal hyperboloid through the points

are normals.

When these confocals are hyperboloids of one sheet, the

generating lines may be made of material rods or wires,

jointed at the points of crossing ;
and now any such a system

of rods forming a hyperboloid is capable of deformation, and

assumes in succession the shape of the confocal hyperboloids ;

the trajectory of any fixed point on a rod being orthogonal to

the hyperboloids, and therefore capable of being a polhode, if

the hyperboloids are coaxial with the momental ellipsoid of

the body. (Messenger of Mathematics, 1878
;
Senate House

Solutions for 1878 ; Larmor, Proceedings Cam. Phil. Society,

1884, Jointed Wickerwork] Darboux and Mannheim,

Rendus, 1885 and 1886.)
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Darboux has shown (Despeyrous, Cours de mecanique, t. II.,

Notes XVII., XVIII.) that if we hold a given generator fixed,

then any point fixed in any other generator will describe a

sphere ; thus, if a rod moves with three points P, Q, R on it

connected by means of bars to three fixed centres A, B, G in

a straight line, any other point 8 of the rod will describe a

sphere about a centre D in the line ABC, such that the A. R.

(ABCD) is equal to the A. R (PQRS).
The point where the line PQR meets the generator parallel

to ABC will describe a plane, the corresponding centre being
at an infinite distance

;
and generally, if one generator is held

fixed, any point on the parallel generator will describe a plane.

The herpolhode can now be described by taking a jointed

hyperboloid, similar and similarly situated, and of half the size

of the former one used for describing the polhode, with one

generator fixed along the invariable line 0(7, and with the par
allel generator along the normal PQ at P

;
and now, if P is

moved in a direction perpendicular to the hyperboloid at P,

it will describe a plane curve, which is the herpolhode.

222. Any point fixed in a body moving under no forces,

whose co-ordinates with respect to the principal axes are

represented by a, b, c, will have component velocities

cq br, ar cp, bp aq, parallel to the principal axes;

and will describe a curve whose projection on the invariable

plane will be given, in polar co-ordinates p and 0, by ( 104-113)

(bCr- cBqf+ (cAp - aCr)
2+ (aBq- bA cff~~~

+ {(a
2 + b2

)r
- cap - bcq }~ &amp;gt;

the moment of the velocity about the invariable line OC
;
and

p, q, r are given as functions of t in 32, IOC, and 108.
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The equations are much simplified when the point is fixed on

one of the principal axes, when two of the three quantities

a, b, c vanish
;
and it will be a useful exercise for the student

to prove that, in these cases, the curve of projection on the

invariable plane with respect to axes rotating with angular

velocity G/A, G/B, G/C respectively, is given by an equation
of the form

x+ iy = k&amp;lt;f&amp;gt;(u,(aa v), or
k&amp;lt;f&amp;gt;(u,

w6 -f), or
k(/&amp;gt;(u,

(oc -v).

Another useful exercise is to deduce -Poinsot s relations when
the co-ordinate axes fixed in the body are not principal axes.

Now, if the equation of the momental ellipsoid is

Ax2+ By*+ Cz2- ZA yz
- 2B zx- 2C xy = Dh2

;

and if p, q, r denote as before the component angular velocities,

and h
lf

h.
2 ,
h
s the components of angular momentum about the

axes, the three equations of motion under no forces are

where

h^Ap-C q-B r, h, =Bq-A r-Cp, h
3
= Cr-Bp-A q;

and these equations are solvable by elliptic functions.

(Dissertation Ueber die Integration eines Differentialgleich-

ungssystems ; Paul Hoyer, Berlin, 1879.)

223. The numerical results obtained in the preceding alge
braical herpolhodes can be utilized in the corresponding

problems of the revolving chain ( 205-206) and of the

Tortuous Elastica
( 207).

Putting t = J, or v =
o&amp;gt;3

in 206,

then p-y
= e

3
-
J(e^

- e
3

. e.2
-

ej,

.2
-
ej}

pu-pv

^^^^
or (s-^)cos[2^+ { V(i-*s)+V(2-*3)}W] = ^/(s-e^s-e^
where s-pv = r*/k\

In the corresponding problem of the Tortuous Elastica of

207, it is merely requisite to replace x by the arc s.
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The working out of the analogies for the other algebraical

herpolhodes is left as an exercise; merely mentioning that

jKK; 15, H)= -f,
and that, if

= J sin- = j cos-
(2s+ 3)* (2

dO 1 2s+ l 1 ^ *

\i&amp;lt;& vdu u I . , W=
-75
-

,
sm - * ^-

$m-py ^2 3 (^
224. The analytical expressions in 208, 210 for the motion

of the Spherical Pendulum and of the Top or Gyrostat show,

by comparison with the equations of the herpolhode in 200,

that this motion may be considered as compounded of two

Poinsot representations of the motion of a body under no forces,

as given in 104, 214 (Jacobi, Werke, II., p. 477).

The relations connecting these two component Poinsot

motions have engaged the attention of Darboux (Despeyrous,
Cours de mecanique, II., Note XIX.), of Halphen (F. E., II.,

Chap. Ill), and of Routh (Q. J. M., XXIII.).

We may put the conclusions arrived at by these mathema

ticians in the following condensed form, depending on funda

mental dynamical and geometrical considerations.

(i.) If the vector OH represents the axis of resultant angular

momentum, then H lies in a horizontal plane through the point

G, where the vertical vector OG represents G, the constant

component of angular momentum about the vertical.

(ii.) If the plane drawn through H, perpendicular to the axis

of the Top, cuts this axis in G, then 00= Or, the constant com

ponent of angular momentum about 00, the axis of the Top.

(iii.) These two planes, one horizontal and through G, which

we shall call the invariable plane of G, and the other through
and perpendicular to OG, which we shall call the invariable

plane of G, intersect in a line HK perpendicular to the vertical

plane GOG and if HK meets the plane GOO in K, then

CR2- GH2= OK2- GK2 = OG2- OG2 = G2- 2r2
.

(iv.) The instantaneous axis of rotation 01 lies in the plane

HOC
;
and if 01 meets GH in I, the resultant angular velocity
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about 01 is OI/C; also CI/CH=C/A,
and the velocity of C is r . CI.

(v.) By equation (i.) of 210, the square of the velocity of G
is

(:&amp;gt;C-

2r2 Wg/A)(c-hcos6);
so that CI2= (2C

2
Wg/A)(c

- h cos 0),

= 2A Wghk(pw $&amp;gt;u), suppose.

Then, by equation (3) of 210, with u = nt+ u&amp;gt;

%ln-k*p&quot;
2u = gtf(pu

- pa)(pu- &b)(pu
- pw) - (a

and therefore, when u= a, b, w, we have three equations of the

form
i$&amp;gt;

a= a+ /3pa, i$&amp;gt;

b = a+
/3$&amp;gt;b, if

rw
so that, according to 165, we may put iv = b a.

(vi.) Now GH2 =
2AWghk{&(b-a)-&i&amp;lt;,}

2A
Wghk(f&amp;gt;w -fru,), suppose,

where
pi&amp;lt;/

-
p(a+ b) = - (G

2- C2r2)/2A Wghk ;

and since

. G-Cr

and

therefore ptg
-

f(b
-

a) = -
(p

and therefore ( 151) we may put w =

(vii.) The point JT moves in the invariable plane of G with

velocity equal to the impressed couple of gravity, and parallel

to the axis of the couple ;
so that the velocity of H is in the

direction HK, and equal to Wgh sin
;
and the moment of this

velocity about G is Wgh sin 6 . GK.
But GK sin 6 = OC-OG cos 0,

so that p
2

(d&amp;lt;j&amp;gt;/dt)

= Wgh(Cr- G cos 6),

if p, denote the polar coordinates of H in the invariable

plane of G.

Now p
z = 2

and cos =
so that finally we shall find, after reduction,

__ _

dt 24
and therefore H describes in the invariable plane of G a her-

polhode with parameter 6+ a.
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(viii.) Similar considerations will show that the curve de

scribed by H in the invariable plane of C is also a herpolhode,
with parameter b a.

If in equation (2) of 210 we replace Or by AT, the motion

of OC is unaltered, but now the momental ellipsoid at becomes

a sphere, and OH is the instantaneous axis of rotation
;
so that

the motion of OC is produced by rolling the cone, whose base

is the herpolhode described by H in the invariable plane of 0,

on the cone whose base is the herpolhode in the invariable

plane of G, the angular velocity being proportional to OH.

(ix.) But in the general case, where 01 is the instantaneous

axis, the curve described by / in the invariable plane of G is

similar to the curve described by H, and is therefore a herpol
hode.

Now from (v.), drawing CM, IN perpendicular to OG,

20 2
Wg/A)(c-

A
-s . GN

so that O/ 2 varies as the height of /above a certain horizontal

plane ;
and the locus of 1 is therefore a sphere, to which the

point and this plane are related as limiting point and radical

plane.

The motion of the Top can therefore be produced by rolling

the herpolhode described by / in the invariable plane of G on

this sphere, with angular velocity proportional to 01.

(x.) It still remains to be shown that the cone described by
01 in space round OG is a herpolhode cone

;
this is left as an

exercise.

Darboux shows that two such hyperboloids as those described

in 221, with a pair of generating lines, PQ, PQ in coincidence,

and the opposite generators OG, OC of the same system inter

secting in a fixed point 0, may be used to represent the

motion of OC, the axis of a Top, when OG is held vertical;

the point P of intersection of the coincident generators being

made to describe herpolhodes in the invariable planes of G
and G, by being moved in the direction of the common normal

of the hyperboloids.
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225. The numerical results of the pseudo-elliptic integrals

of 218, 219, and 223 can be utilised for the construction oi

similar degenerate cases of the motion of the Top.

Thus, if a = I o&amp;gt;3 ,
b =^+ io?3 ,

then 6+ a= o)
1+ o)3 ,

6 c^ee^;

and we shall find cos a = 0, cos ft
=

K, cZ= sec
/3,

and

CV= 2A Wgh sec
ft, G2= 2A Wgh cos

ft.

The spherical curve described by C is now given by
sin sin(nt cos ft \ts)

= ^{cos 0(cos ft cos 6)},

sin cos(nt cos ft \fs)
=

^/(l cos ft cos #).

With a = Jo&amp;gt;3 ,
6 = M! |o&amp;gt;3,

and 6+ a = o)v

we find that cos a, cos
ft,

and d are unaltered, but Cr and G
are interchanged ;

and C now describes the spherical curve

sin sin(nt \[r)
=
*J{cos #(sec/3 cos 0)},

sin cos(nt ^) = ^/(l sec ft cos 0).

Again, with a = fo?3 ,
6 =^ J o&amp;gt;

3 , (/2
= 1 5, #3

= 1 1 :

so that ^a= f, p6 = J, we find that

and the spherical curve described by G is given by
sin3$ sin 3\fs=

(
1 2 cos 0)*,

sin30cos 3x^
=

(l + cos ^+ cos2
0)v/(2-f 2 cos# cos20).

To realise this motion practically, place a homogeneous sphere,

of radius c, inside a fixed spherical bowl of radius a, in contact

at an angular distance of (50 from the lowest point, and spin

the sphere about the common normal with angular velocity

The sphere if released will roll on the interior in this curve

As another numerical illustration we may take

when

Also, with
9-2
= 30,

p-J3= - 5 - f /6,
G.E.F. Q
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226. It is convenient to represent the two parts of
\/s by

^ and
i/r2 ,

such that

&quot;va-i
G+ Cr l

dt 2 A 1+C080 du

1 G-Cr 1

dt 2 A 1 cos du
&amp;lt;pb pu

also to put x = V r~Vy 2
whence Euler s an^le

&amp;lt;p

=

and dx= Cr-Gcos9(

cw A sin2

an expression obtained by interchanging (7 and O in
i/r.

With ct= pw3 ,
6 = o)

1+ gco3 ,
a change of g into q interchanges

(} and Cr, while a change of p into &amp;gt; interchanges G and

O: both changes of sign change G and G and 6V into

Cr, and thus reverse the motion.

The following degenerate cases of the motion of the Top will

afford an exercise on the preceding results of 210, 224 :

A. With b-a= (a
lt

or q p = Q,

^_ G _ c _ 1 + cos q cos /3

Cr k cos a+ cos /3

C2r2
/
2A Wgh= cos a -f cos ft ;

and by 215, x is now pseudo-elliptic ; and

X ~ \/(cos a ~h cos /3)x/(i#/^X
~~

i , ,
.

/ (cos 8 cos 0)(cos cos a)^J^gJ g /7__foy^-l / \ I / \ /

V I+ cos a cos /3 (cos a+ cos /3)cos

i&amp;gt;s/{(
cos /3 cos 0)(cos cos a)}= sin

&quot; 1^-^
. \

sin t7

_
1&amp;gt;v
/{l + cosa cos /3 (cos a+ cos /3)cos 0|-

The angular velocity ofH round G in the invariable plane

or G is now constant and equal to $G/A.
B. With b a = o^+ w3 , or q p = 1,

n_ G _c _I+d cos a

Cr~Ji~ cos a+ cZ

and the spherical curve described by C has cusps on the circle

given by 0=8
,
and now

-, , / (d cos0)(cos0 cos a)where =tan~ \ /
-T 7X ^ etc.

V 1 + d cos a - (cos a + a)coa
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The angular velocity of H round G is again equal to %G/A.
C. With b+ a = uv or q+p = 0,

7 Or 1 -f cos a cos 8.
a = -77-

= - - -
TT &amp;gt;

G cos a+ cos p
and now \Js is pseudo- elliptic, and given by

while the angular velocity of H round C in the invariable

plane of C is constant and equal to ^

D. With /_&amp;gt; + a =
a?!+ o&amp;gt;3 ,

or g+p = l,

(7r 1 + r? cos a
-^= j
Cr cos a+a

and the angular velocity of # round C in the invariable plane
of C is again %Cr/A.

E. With g = 1, 6 = o^+ 3 , G Cr= 0, and i/^2 disappears ;
and

now cosj3 = c/A=l, the Top being spun originally in the

upright position.

Now if the Top falls ultimately to the extreme inclination a,

we find that C2 r2

/2A Wgh = 1 + cos a ;

and subsequently, after a time t,

sin ^0= sin Ja sech[sin \a^/(gjl)t}t

Crt /cos cos a .

^2^- 8ln V i

so that the integrals for t and
i//-

are pseudo-elliptic.

F. With q= Q
)
b= w

l,G Cr = 0, and i/r2 again disappears; but

now cZ= l, and the Top does not rise to the vertical position.

For numerical illustrations of this motion, take

a=
fo&amp;gt;3 ,

and
&amp;lt;/2 =lo, #3

= 11, when ^a=f;
or

^r.2
= 48, ^r3

= 44, when pa= 4.

G. With p= l, a = co
3 , (r+ (7r= 0, and ^ disappears; now

cos a = 1, and the Top passes through its lowest position.

For numerical examples of pseudo-elliptic cases, employ the

results pK+ ift^; 15, 11) = 1, and ^(^+ -^3; 48, 44) = 2.

H. Withp=l and q=I, G = and Cr =
;
and the motion

reduces to plane revolutions, as in 18.

I. With p= l and q = 0, G = and (7r= 0; and the motion

reduces to plane oscillations, as in 3.

K. With &amp;gt;

= !,# =0, d=l, cos/3= 1, cosa= 1, the pen
dulum is at rest in its lowest position.
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The Trajectory of a Projectile, for the Cubic Laiv of Re

sistance.

227. An immediate application of the function 0(u, v) of

201 occurs in the solution of the motion of a body under

gravity in a resisting medium, in which it is assumed that the

resistance of the medium is in the direction opposite to motion,

and that it varies as the cube of the velocity.

Refer the motion to oblique coordinate axes, one Ox in the

direction of projection at the point of infinite velocity, and the

other Oy drawn vertically downwards.

Denote by w the terminal velocity of the projectile in

the medium
;
so that if W denotes the weight in pounds, the

resistance of the air at a velocity v is a force of W(vjw)
z

pounds, and the retardation produced is g(v/w)
B
.

The equations of motion are then

dx= g(ds\~
^AdtJ ds

&quot; &quot;

( )

g ds\*dy+J &quot;

Eliminating the term due to the resistance,

dx d2
y d2x dy _ dx

dt dt-~&quot;dP dt~~9!K

or, writing p for dy/dx,

dp dt dp dx
-

01-

It Ox makes an angle a with the horizon, then

ds2

_dy* 2^^sin&amp;lt;/
d&^ dt*

2
di dt**

and now equation (1) becomes

dfa _ 9(
dt2

~
uAdt dt
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Integrating, noticing that dxfdt = oc
,
when p = 0,

- 3

suppose, where _p
3

3^
2sin a+ 3p is denoted by P;

dx _*

2TwP - ^
Then, from (3),

d
f-=q(~\~ = 9̂P &amp;gt;

dx *\dt/ ur

so that 4^=M

w2

and ^=/p-3/7, 1 (6
\

; (7)

while ^= p,
di w
n+ f* i

(8)

228. The integration required in (6) is similar to that of

ex. 8, p. 65, discussed also in 157; we substitute

where m is some arbitrary constant factor
;
and then

40s-
grs
=

{ (4m
6-

g3)p*
- 1 2m*p sin a+ 12m6

}/j9
2
,

which is a perfect square, when

4m6
#
3 = 3m6sin2a , or

&amp;lt;/3
=m6

(4 3 sinV) ;

so that J(z* -flrg)
=mV3(2 -p sin a)/p,

and

dp c/dx

on choosing m2= J ;
so that

gx C* &
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Then

and supposing x= a at the vertical asymptote, where p= ao
,

na since ga I^=
3 V*

=
3

so that
,&amp;lt;/a /##_ 2

V~ F
i&amp;lt;7

2 ~3p

vg
cfy 3 wz

/
lft

v

or x&amp;gt;= /= = -; (W)
dx ,qa ,gx ,ga ,gx&quot;

@~ -
&amp;lt;@

y - ~
o ^/.-2 n,,2 5 /,2

,, 9 &amp;lt;7tt

6^2
r,5 W*

and, integrating, y=f- dx,

the equation of the trajectory.

It is convenient to write w and v for gx/w
2 and ga/w

2
;

and now

to be integrated by the preceding rules of 198.

Rationalizing the denominator np

r

v $ u, it becomes

since
&amp;lt;72
=

;
and resolved into linear factors, it becomes

where CD, o&amp;gt;

2 denote the imaginary cube roots of unity, viz.,

= -
\i

+ ix/3^ &quot;

2 = -
J

Now, resolved into partial fractions,

|

.

2 &amp;gt; v 9 u 2 cov ^ 2

2
&quot;T~ 2-i^ &quot;T&quot;

&quot;~W

pu 2 $

on making use of the results of 196, when g2
= Q-

Then

gy ri PVH/^ ri&v&du+af fift&amp;lt;*&amp;gt;+f d
w2 J 2$v $)u j 2$&amp;gt;(jov $)u J 2$) u?v &amp;lt;pu

which is prepared for integration as required in 198; and since
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2 pv
=

log o-(v u)-\- log o-u uv+ constant

therefore the result of the integration may be expressed by

The conditions of Homogeneity of 196 also show that the

last equation (13) may be written

(TV (TO)!

or simply

^ = - 3uv -
log ar(v -u)-u&amp;gt; log &amp;lt;r((jov

- u) - or

subject to the condition that y= 0, when u or x = 0.

The equation is left in the complex imaginary form, as there

exists no theorem for the expression of

]ogcr(ft&amp;gt;v u) in the form P+ iQ;

unless we introduce a new function
&amp;lt;!&amp;gt;(, a), defined by

(Halphen, F. E.
t I., p. 151)

/&quot;a

229. For the expression of the time t in the trajectory,

equation (8) leads to

w J pv to-u

/I
p v+p u 7

r\
&amp;lt;p (0v+$&amp;gt;

u, r\ &amp;lt;Q ufa+tiu-j
7;- du+ur/ s ~ -dii+co/ - --du, (lo)2 tov - to\i J 2 wv -$u J1

pw*t&amp;gt;

- p n

when resolved, as before for y, into partial fractions
;
so that

aty- = -
log 0(

-
u, t&amp;lt;)

- o)
2
log 0(

-
, o&amp;gt;r)

-
o) log 0(

-
16, w2

v),

01 , ,

co-log w log ^ s
cr

%

era)? era)-

or simply
=

log a-(v u) o
2
log o-(c*)V u) co log &amp;lt;r(o)

2 y u), (1 6)

subject to the condition that =
(), when x or = 0.
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By addition,

I
i

-
{ crV crU j (TV (TCOV (7(JD

2V (T
3U

and this last term, when expressed in a real form, is equal to

(Halphen, F. K, I., p. 232.)

This can be proved independently ;
for

J ~Sv&amp;gt; u

2 $ v
&amp;lt;@

u

constant

230. For the purpose of the expression of y and t in ascend

ing powers of x or u
t

it is useful to employ the function

e
v^v

,
which we may denote by i/&amp;gt;-(

1(,, t?) or
\fs ;

(TV

so that \j/( u, v)
= a-u

(j)( u, v), and i/r
=

l, when u = ().

We may now write

gy/w
2= log i/r( u, v) w log i/r( w, w y) o&amp;gt;

2
log \[s( u, w2

v),

gt/W = log \/s( U,V) ft)
2

log l/r( &, ft)V) ft) log \/r( ^, ft)
2
l
).

Differentiating logarithmically,

on expanding the second side by Taylor s Theorem
;
so that,

integrating again,
77 2 /i* 3 77

log^(~u, ?;)=- 2y^+ ^-^^+..., ............... (18)

Then, with
&amp;lt;/2
= 0, and ^a)V = o)^vl etc.,

/ 2
V/

/

y-ft)Vi;+..., .......... (19)

(20)
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so that 2 = 3 ^V-&amp;gt;i-+ ,_ ... (2 1)

Oi

and here u = gx/ iv
2

, g.2
= 0, gB

= T
T
T(4 3 sin2

a), p;= I ,

231. When pv p2 , p3 denote the values ofp corresponding to

three points defined by the values xv x.
2 ,
XB of x, or uv u2 ,

uz

of u, such that

X
1+x2+ x3

= 0, or i6
1 -f it

2+ U B
= 0,

then, according to 145,

This Theorem follows also as a corollary of Abel s Theorem,
as applied in 166

;
and it is interesting to proceed to the

determination, in a similar manner, of the corresponding values

of
2/1 + 2/2+ 2/3 and

*i+ ^+ ^
3

.

Changing, in 166, x into p and y into P*, then from (7) 166,
n

dy2+ dy3)=pl
P

l

-

3 z2

&quot;

Therefore

= -log(a-l)-colog(a-w)-a)
2
log(a-co

2
),...(24)

=
log(a 1

)
-

ft)
2
log(a CD) a&amp;gt; log(a co

2
) ;

. . (25)

P^_Ps Ps_Pi Ps_Pi
where a = -2---=&amp;gt;- JL=J-f_?_

; ..... (26)
^2-^3 Ps-Pi Pi~P2

and a = ao
,
when ^ =^&amp;gt;2 =_ps

= 0.

As a corollary from the preceding expressions for y and t in

terms of x or u, it follows that

&amp;lt;r(v u-j)(r(v u
2)a-(v U

B)_ 1

o-
3 v a-ul&amp;lt;rU^rUB
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232. By taking x
s
= and pa

= 0, then

Pi+PtPiPfina=*Ot
or l/p1+ l/p2

= sin

when a3
1 + a;

2
=

0, or

Now, from equations (13) and (16),

= -
log
=-JS tan

-

2
$&amp;gt;

6u $rv

-
0)

= -
log + ^3 tan

-

2 jp% ^
3
v)

v
In particular, when ^^ = a)2 ,

then

and .^= _ S

2*= _ 1

logfc^VV3 tan --
^ 4 fy ^2V

so that the expressions for y and t are pseudo-elliptic ; and, at

this point, p = 2sina.

233. We may now investigate the properties of certain points.

on the,trajectory.

When u = 2o&amp;gt;
2 v,

then
$&amp;gt;u

=
J, &amp;lt;gfu

=
J sin a, and p = cosec a,

so that the tangent is perpendicular to Ox.

The velocity in the trajectory is given by

iv(p*
-
2p sin a+ !)*(p

3-
3^&amp;gt;

2sin a+ 3|?)~*,

and this is a minimum, by logarithmic differentiation, when

j9 sing p
2

2p sing + I_ _
2 2 sin g -f 1 5

3
~

or p2cos2a+^ sin g- 1 = ...................(27)

If the tangent AB makes an angle ft with Ox at the point A,

^ sin 8
then p=.

f
,

C0s(g p)
so that the relation becomes

tang=-2cot2/3 = tan/3-cot/3..........(28)

Then ^(4+ tan2
g) = tan /3+ cot /3

= 2 cosec 2/3,

or (3#) =JC4~ 3 sin 2
g) - cos g cosec 28.
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The relation (28) is equivalent to a number of other re

lations, such as

tan(2/3 a)
= tan a tan 2/3

= tan a + 2 cot a,

tan a ={cot(a-)}*-{ten(a -)}*, etc.

Also, since p = -: r~r~*
sin a

o#&amp;gt;
u

therefore, at these points of minimum velocity,

^
/2w,
= T.(4_3sm

2
a) = 3//3 ,

and p
3
w=r/3 ,

and therefore ?2?&amp;lt;,
= #w, or u =

fo&amp;gt;2 ,
as in 160.

The integrals for y and t at these points of minimum velocity

are therefore pseudo-elliptic, and depend on

f ds , f sds

J (**-iM4*8- 1)

a
./ (s

8- we**8- iy

integrals first considered by Euler (Legendre, F. E., I., Cha|&amp;gt;.

XXVI).
We find, by differentiation, that

(29)&quot;

, ...(30)
^ts- i; tj ^-tr L) -f x/ o V ^&quot;

i
;

-^tan- 1

x/(4*
3
-l)

(2

by means of which the results can be constructed : and

noticing that, if s =
&amp;lt;pv, *J(4-s

3
1 )
= p v,

&amp;lt;j&amp;lt;,

= 0, gz
= 1. then

we find finally, when u = |cD2 ,

n-Vly-f^), (32)
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234. Denoting by the angle which the tangent at any
point makes with Ox, the tangent at 0, the point of infinite

velocity, and by the angle which it makes with the tangent
at A, the point of minimum velocity, then =

/3 (
j) 1

and

sin sin(/3 &amp;lt;)

L)
~

cos(a
-

0)

~~

cos(a

cosq
so that

and

and since

sn ~
0)
- 2 cos(

-
ft+ 0)

tan siD -

c&amp;lt; s(/3
-
0)
- cot 25 sin(/3

- A)
- - - --= - 2 cos a

_ _9= z cos a cosec zp -r-^ -

sm

~ 3 sin2
a) = | cos a cosec

,, r ,

therefore . ^~^= \-^-,

= -^... ...(34)tan p &amp;lt;pu-\-$
co

2

Therefore, at points defined by uv u
2 ,
where the tangents

make equal angles with the tangent at A,

p tt1 *P/t i
ssf *i&amp;lt;

k
&amp;gt;r

Thus, if 1^ = 0, then u^ = w.2 \
and the tangent where u= u&amp;gt;.2

makes an angle 2/3 with Ox.

By the principle of Homogeneity of 196, we can select any

arbitrary value of
&amp;lt;/3,

and it is convenient to take #3 =1; and

gx u ,l/

-^ = ,
then

K;
2 m

.,.

now, if

where m6=g3,

With
,(/2
= 0, #3

=
1, we have found, in 166,

. v (///. ,,

Again, n - =^, thenm w2

&amp;lt;pv

= (4
- 3 sm2

a)-*, ^= ^/3 sin a(4
-

so that, as a increases from to JTT,

and v increases from w.
2
to |o)2 .

cos

v increases from to
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Denoting the analytical expression for tan^/tan/3 in (34)

by X, then X is independent of a or
/3,

and therefore a Table

of numerical values of X, with u or mgxju^ for argument, will

serve for all trajectories.

It will be a useful numerical exercise for the student to

prove that corresponding values of u and X are

2J/-2

,
1

21

0;

i2

|0)2 ,
00 .

EXAMPLES.

Prove that, with g.2
= Q, #3

=
1,

2. ^ (it
- fft?9 )

=

3. u-

/* ^-^
/ &amp;gt; j. \ i ,2cm 1

. / _ = fu f.73 tanh
-
*/3

ypit-1 9V
p %

^ &quot;

T̂&quot; log p ^
w &quot; ^2) iW3 tan

&quot;A log F(U ~ *^)+Av/3 tan

7. Integrate



CHAPTER VIII.

THE DOUBLE PERIODICITY OF THE ELLIPTIC

FUNCTIONS.

235. Besides pointing out the advantage of the direct Ellip
tic Functions obtained by the inversion of the Elliptic Integrals

( 5), Abel made an equally important step (Crelle, II., 1827)
in showing that the Elliptic Functions are doubly-periodic
functions, having a real period, 4&amp;gt;K or 2K, as already defined

in 11, and an imaginary period, 4&amp;gt;K i or ZK i, where, as

before in 11,

o

Doubly-periodic functions make their appearance when we
consider functions of a complex argument w = u+ vi.

Denoting x+ yi by z
y
we have already discussed in 179 the

system of confocal conies given by

rj = c sin w, or c cos w, when u or v is constant.

T ,,. r dz
In this case w= I ,

2 2-,J v (c ^ )

and the poles of this integral, as defined in 54, are given by
z= c, the foci of the confocal system of conies.

Changing the origin to a focus, then

r dz
iv=1

j-

and z= 2c sin2\w,
2c z= 2c cos2Jt0,

dz/dw= c sin w.

Denoting by r, r the focal distances of a point, then

r2 = (x 4- yi)(x yi)
= 4c2sin2

J(u 4- m)sin
2
J(i, w),

254
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or r= 2c sin

? = 2c cos

so that /+ r = 2c cos vi= 2c cosh i;,

/ r= 2c cosu,

giving the contbcal ellipses and hyperbolas, for which v and u
are constants.

It is convenient to denote x yi by z and u vi by i(/
;

and now the Jacobian

T 3(fl5, ?/) 9 . . ,

J or -) = c
2sm w sm ^o = Jrf .

9(tt, v)

236. Now, if we consider the integral (11) of 38,

then z = sn2
^

\z cn

dz/diu= sn \w en \w dn |i(; ;

and the poles of the integral are given by z = Q, 1, and 1/&.

Denoting by r, r
,

r&quot; the distances of a point from these

poles or foci 0, (7, 0&quot; in fig. 26, then

r = sn Jitf sn Jt(/, r= en Jw en 10
,

&r&quot; = dn \w dn |t(/ ;

or by means of formulas (2), (3), (5), (28), (29) of 137, with \w
and Ji{/for it and t

,
and therefore u and i?j for u+ v and it v,

cnri cnu 1 dn-yi dn u
r =

K-

_ u 4- en u dn t i /c
/2 dnvi dnu

/cr&quot; =^^^
en vi dn 16 en u dn ri

cnu
cnvidntt cnuckivi

From these relations, by the alternate elimination of u and r,

r+ r dnm= en vi\

r rdnu =wu )

or kr&quot;+ ^7^ cn i?i= dn
vi&quot;\

kr&quot; kr cn u = dn u )

or ki-&quot;du vi kr en vi = 1 k\
kr&quot;&i\ u kr cnu =1 k)

the vectorial equations of one and the same system of confocal

orthogonal Cartesian Ovals (fig. 26) ;
also J=krrr&quot;. (Darboux,

Annales scientifiques de Vecole normale superieure, IV., 1867.)
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As we travel round one of these curves and make complete

circuits, each enclosing a pair of poles of the integral w, defined

either by and 1, or 1 and l/k, the integral increases by
constant quantities 4K&quot; or 4&amp;lt;K i, the corresponding periods of

the elliptic function sn2
Jt(;, as in 55.

y

Fig. 26.

By making k = 0, we obtain the degenerate case of the

confocal conies, and now K=^TT, while K =x&amp;gt;
,

so that the

circular functions have a real period 2-rr and an infinite

imaginary period; on the other hand, the hyperbolic functions,

as illustrated by the confocal ellipses, have an infinite real

period and an imaginary period 2?ri.

Mr. J. Hammond has shown, in the American Journal of

Mathematics, vol. I., how these Cartesian Ovals may be de

scribed mechanically, by means of reels of thread, as in the

case of the confocal conies of 173.

He takes two reels of thread, of different diameters, fastened

together, and pivoted on the same axis at C. Now, if the

threads are led through a pair of the foci, and ,
the curves

r IT = c

will be described, if the diameters are in the ratio of I to 1.

By leading the threads round an oval, as in fig. 26, theorems

can be obtained, connecting arcs of confocal Cartesian Ovals,

analogous to those of Graves and Chasles for elliptic arcs.
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237. By inversion of this system of confocal Cartesian Ovals,

we shall obtain another system of orthogonal quartic curves,

with four coneyclic foci A, B, C, D, defined by the vectors

z = a, ft, y, S, suppose ;
and now

w=fdz/J(za . z-/3 . z- 7 . z-S) ;

or, writing iv for iv/^/(a y fi~ &amp;lt;&amp;gt;)&amp;gt;
then, from 66,

6 S.z a 91 a 8.z 8 01 a 8.z y , 91
-

7)
= sn2

^(;, ? 75 ==cn
2
iic?,

- J= dn2
to.

a-S.z-/3
2

a-&amp;lt;5.0-/3 a-y.z-/3

Denoting by rv r
2 ,
r
3 ,
r
4
the distances of a point from the

foci A, B, C, D, then, from these equations,
Q $

rp R T
mod.

&quot;

. -i = sn ^iv sn Aiv
,

mod. - = en to en Aw7

,

a o T
2 a o r

z

mod. - = dn &w dn Ati;
;

a-y r
2

so that we obtain the vectorial equations of these orthogonal

quartic curves on replacing r
t r, r&quot; in the equations of the

Cartesian Ovals by these expressions.

(Proc. Cam. Phil. Society, vol. IV.
; Holzmuller, Einfuhrung

in die Theorie der isogonalen Vei^wandtschaften, 1882.)

238. We now proceed to express the elliptic functions of the

imaginary argument vi by functions of a real argument v.

We know that cos vi = cosh v, sin vi= i sinh v, tan vi= i tanhv
;

and that the function
&amp;lt;p

or amh u, and its inverse function

u or amh~ 1 =
log(sec ^&amp;gt;

+ tan 0)= cosh&quot; ^ec^, etc.,

connects the circular functions of
&amp;lt;f&amp;gt;,

for which /c = 0, with the

hyperbolic functions of u in 16, for which K = 1
;
and then

cosh u = sec 0, sinh u tan 0, tanh u= sin 0, tanh Ju= tan
J^&amp;gt;,

Now, if
(p
= amh

i/ri,

then cos ^ cosh i/ri
= 1

,
or cos0 cos

*//
= 1,

a symmetrical relation, so that

^ = amh 0/i ;

and sin
(p
= tanh \fsi

= i tan ^,
cos

(p
= sech

i//&amp;gt;i

= sec \^,

tan 0= sinh
\fsi

= i sin
i/r,

etc.

Also
d&amp;lt;p

= i sech \lsid\fs
= i sec

A(0, )
=

s/(! + ^
2tan2

^) = sec

so that

G.E.F.
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If
\/s
=

a.m(v, K ),

then = am(w, /c);

and
sn(vi, K)

= i *,., or isc(v, K), or HU(V,K);

cn(vi, K)
= TTXI or nc(v, * );

cu(v, K )

, . . . du(v, K) , ,

dn(m,*) = ^Yy or dc(v,*).

connecting the elliptic functions of imaginary argument vi and

modulus /c with the elliptic functions of real argument v and

complementary modulus //.

Putting v =K
,
we notice that snK i, enK i, and dn TTi are

infinite; and putting v= 2K
,
then

also sn4JST
/

^= 0, en ^K i= 1, dn4^ i= 1.

239. The Addition Theorems of 116 may now be written

cn(u+ vi*)
= (cuu cnv isn udnusn

sn(u+ vi) (snudiiv -\-icnudny. snv

dn(u+ vi)
= (dn u en v dn -y ?/c

2sn u en 16 sn v) -=- .D,

jD = en2v+ /c
2sn2u sn2v

;

remembering that the modulus of the elliptic functions of v

is K, while that of the functions of u is K.

Thus, putting v K
t

1 ,., .cnu=
, dn(u+JTi)=-t--- :

/csnu snu
so that, putting u = K,

w(K+K i)
= - IK IK, sn(K+K i)

=
I/K, dn(K+K i)

= 0.

Writing C, S, D for en 2u, sn 2u, dn 2%, then
( 123)

Generally, when m and TI denote any integers, we find that

cn(t6+2mK+ 2nK i)
=

(
- 1 )

m+ncn u,

K i)
= (-l)

m sn u,

2nK i)
= (-l)

n duu-

so that 4fK and ZK i are the periods of sn u,

2K and 4*K i are the periods of dn u
;

the periods of cu u being 2(K+K i) and 2(KK i).
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In 164, we may now write

MI+ ^2+us
= 4wiK+ 4&amp;lt;nK i

;

or in the notation of the Theory of Numbers,

^+ ^2+ ^3 = (mod. 4&amp;gt;K,
K i\

240. A combination of the transformations of 29 and 238,

to the reciprocal and to the complementary modulus, gives

, .
x

1 1 cnfc w, iic/ic)
cn(m, K)= 7

-K= -3-7-7 v-/-/\= i / / , /(

cn(v, K ) dn(r v, I/K ) dn(/c w, tc/* )

. ^_^~
K dn(K vi,

Thus cn^ w, i/c//cO
=

cd(w,, /c)
= sn(E w,, AC),

or am(/c u, //c/V)
= i?r am(^T u, K) ;

as is otherwise evident, when we notice that, if

u=f (1
- *2cos2

0)~*cty
=^/ (1 +^ sinV)

so that ^ = am(/c
/

u, i/c/V),

then K-u=f(l- K-cos-\!s)~*d\!s= f (l-/c
2sin2

0)&quot;^0,

^ o

or
(j)
= a,m(K U,K),

provided i/r
=

JTT 0.

241. As an application, take the values of v
1
and v

2
in 210

;

l + cos/3 cZ cos a cZ + 1
2/ 2

, v , 1 ,
_

1 1+cosa 1 + cosa 1 + cos a

1 cos 8 o cZ cos a o cZ 1 .

dnV7
=

1
-

--, sn2^9
=

^ ,
cn-?;9= _- &amp;gt;

1 cos a 1 cos a 1 cos a

so that, with v
l=pK i

) v.
2
=K+qK i, where p and q are real

proper fractions ( 56), then

1 cos a _ _ snH
j _ sn~pl i dnzqK i

1+cosa .sn
2v cn2 l i

1 cos/3 KUZV
I
dn 2/y

2_ K^stfpK i

f+cos 8
==

~.sn2
y dn

= &quot;

d+
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Thence, expressed in a real form,

1-cosa =
1 + cos a

~

or
( 135) tanJa-

a=

Also
( 29)

so that =
am{(2&amp;gt;+gX# , I//} -fam{(p -)/# , I//}.

And

or =
In the Spherical Pendulum, O =

;
and therefore ( 210)

1 cos a 1 cos /3 d 1 _ -.
t

I+cosa l + cos/3 cZ+ &quot;l~

, c^ 1
ancl

/r/ -. z^/en g/^ dn g^
or sn(p g)^T = snpK cn qK du qK .

Thence

8n(g+y)JT cn(q+p)K
&quot; &amp;lt;)S/

^-
&quot;

(
&quot;

242. With Jacobi s notation of 189, the expression for i

in 210 becomes

-.-
\ sn

en
-+ZV,+

1
snv

and now, if we divide
i/r

into its secular and periodic part,

in the form
\/r
= ^fu/K+ \/r ,

then ^ is called the apsidal angle, in the motion of the Top or

of the Spherical Pendulum, as seen illustrated for instance in a

Giant Stride and

2

which must now be expressed in a real form.
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From 172,
rvi

iZ(vi, K)
= i/(dn

2
vi-E/K)dvi

E fdn*(v, K) i=^v/ -
9 ; ,

dvK J cv 2
(v, K )

E . t snvdnv ,

-K. en v

sn v dn v

7 ^+

en v

sn v dn i?

by means of Legendre s relation of 171.

Thus, with v
l=pK i,

Again, by (2)*, 186, since Z#=0,

Z(^+ M.)
= Zu -

therefore, with v
2
=

Also, if
/&amp;gt;

and ^ are proper fractions, the logarithmic term

of i vanishes ( 264) ;
so that, finally,

In the Spherical Pendulum,

npK /snpK = /c
2sn pZ*sn qK si\(p q)K

so that =

With the Weierstrass notation, taking u in equation (8)

of 208 between the limits o&amp;gt;3
and ^+ 0)3,

we find ( 278)

i = (a

where a =

In small oscillations near the lowest position, p and K are

very nearly unity, while q and K are small.
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The Geometry of the Cartesian Oval.

243. Denote the angles POO
, POO, P0&quot;0 in fig. 26 by

0, 9 , 6&quot; respectively ;
then with as origin,

_cu^w cn^w _ /A en n 1 cnw\
~~cn w+cn w

~
\ \l 1 + cnw/

or, in a real form, with modulus K for the functions of v,

... l/I
~

\ \1

cnu 1 cni&amp;gt;\ snjudnju
en u en

~ . n
cos ^= T , sin 9=,

.

+ en u en v 1 + en u en v

With /x

as origin,

and, similarly,

^,_~

_ //]
~
\\l

. ^,_ dn \w _ l/l duu 1 dn m\
~dnw+ dnii/&quot;V\l +dnu l+dnvi)

sn

M . n//
cos =

-T
-

,
sin 0&quot;

=

dn Ju
/c
2snusnv

dni + dnucnt/ dn ^+ dn ucn v

With as origin, and

a; -j- yi= sn2
Jty,

,, i A/

7

then ^ tan W =
sn

To reduce this to a real form, similar to the above, we require

two new formulas, not included in Jacobi s list ( 137), but easily

derivable from it, namely,

Now, with \w and \iv for u and v
t
and u and vi for

and u v,

dnu+ cnu dnm//
A/(j\\dnu-cnu dn

,_ //dnu+cnu 1 dn v\ _ en |u dn \u sn |v en |t;~
V.Vdnu-cnu 1 + dn v/

&quot;

sn Jw dn Jv

/c
/2sn u sn v

cos 6&amp;gt;

= 7- i
sm (7 = ,dnu cnudnv dnu cuuduv
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244. Again, denoting the angles which P subtends at O O&quot;,

0&quot;0, 00 by 0, ,
&amp;lt;j&amp;gt;&quot; respectively, so that

= 7r -&amp;lt;9 -0&quot;, $ = 0-6&quot;, 0&quot;

= 7r-0-0 ;

then we shall find

tan i,_
sn i^ dn ^ cn i^



264 THE DOUBLE PERIODICITY

TU 73^ i r\&amp;gt;

&amp;gt;

2 dn^dnv //I cnucnt&amp;gt;\ ,
Inen rp+ tyq =^ A/IT Jdu

tc 1 + en w CD v y VI + en u en v/

-y
-

2 ^(1 2

so that the sum of the arcs described by P and Q is expressible

as an elliptic arc.

D r\&amp;gt;
&amp;gt;

/c
/2cn v ,

Again Pp Qq=^ -= ~\(T~, -cut,
/c
2 1 4- en u en i&amp;gt; \ \l-f-cni6 en t&amp;gt;

which is expressible in the form

- 2 dn v cos

2
&quot;*&quot; 2. 2 &amp;gt;v/(

dn2^+ 2 en V dn v cos
0&quot;
+ cn

so that the difference of the arcs described by P and Q is

expressible by the sum of two elliptic arcs
;
and thus the arc

of the Cartesian Oval described by P is given by means of

three elliptic arcs, which is Genocchi s Theorem (Annali di

Matematica, VI., 1864
;
Mr. S. Roberts, Proc. L. M. S., III., V.).

246. Let us examine the analytical properties and physical

applications of the functions

log en Jw, log sn ^w, log dn \w.

Denoting log en \w by fa+ ityv when resolved into its real

and imaginary part, then

= | log en %w en \w -f | log en J

, en \w dn \w en ^w dn \w . _ , .en w r

en= 9 lOff -
;;

- -
^

- --
f
- --

\~ 1 tan 1;;

- -
^

- --
f
- -- ~ - -

7
-

j

-
dn Jto dn \w en \w + en %w

en iv dnu+dnmcnu ., ,. Il cnu 1 cnm

as in 236, by means of formulas (3), (20), (28) of 137 ;
and

now expressing the elliptic functions of vit
to modulus

/c,
in

terms of functions of v, to modulus /c understood
;
then

_il ^dnu+ cnudnt; _ 1
l/lcnu 1 en tA

^l
~

todn v+dnucn f ^~ \\l + cni6 1

Denoting logsn \w by (f&amp;gt;2+ i\ls2 ,
then

= J log sn Jwsn Jty + J logsn J

, sn Aw dn iit; sn A^ dn itt; . . , .sn \w sn
log

^ -4-^ - hitan-H f y
dn %W dn J^ sn \w + sn

cnm en u
,

.. ,. //dnu-fcntt dnvi cnvi~ ,. //dnu-fcntt dnvi cnvi\
~HA /(-i
--- -r ^ :)\\dnu en u dnvi-fcntrt-/
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1 cnucn-y
2 cn

. _ 1
//dnu+ cnu 1 dnv\

v \\dnu-cnu 1-fdn-y/

Similar!}
7
, denoting logdn^iv by fa+ i fiy it

cuviduu+ cuuduvi . .. //I -dim l-~
: A .

enw+ en u \\l +dnu 1-fdnw/

idnu dnv cl/
1
*/!
\ \1+cnucnt; \\l-r-dni6

By (20), (21), (22), (23) of 137, we prove, in a similar

manner,
l + cn-it . cuvi-\-cuu ,

, A _, isuvidiiu

1 emu 2 cnvi en

= tanh -1
(cn u en

= tanh ~ J

(dn u en v/dn v} i tan
~ 1

(cn u sn v/sn u),

y

)
= etc.

i w enw
247. These conjugate functions ^ and -^ of the complex

u-\-vi are capable of representing the solution of various physi
cal problems concerning a plane in which u and v are taken as

rectangular co-ordinates, since they satisfy the conditions

3u ~dv *dv 3i6

Here tt and v are not restricted to be rectangular co-ordinates,

but they may represent the conjugate functions of confocal

conies or Cartesian Ovals, as in 179, 236, or of any orthogonal

system, which divides up a plane into elementary squares or

rectangles, as on a map or chart.

As in 54?, we take a period rectangle OABC, bounded by
u= 0, u=2K, v =

y
v = 27i

;
and now, as the end of the vector

w or u+ vi, drawn from 0, travels round the boundary OABC
of this period rectangle, the vector w assumes the values

ZtK(Q &amp;lt;*&amp;lt;!); 2#+ 2*
/

JGT i(0 &amp;lt;$
&amp;lt;!);

2tK+2K i(I &amp;gt; t &amp;gt; 0) ;
2 JTi(l &amp;gt;t &amp;gt; 0).

When the sides of the period rectangle are a and 6, we

replace u and v by 2Kx/a and 2K y/b, where K /K=b/a.
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Taking the function log en \w or ^-}-i^v then from to A,

V^i
=

;
from A to B, ^ = ITT ;

from to (7, ^1=2^; and fr m
G to 0, ^ = 0.

At A, where K = 2^T, -y = 0, then 1=
= oo

;
and at (7, where

u = 0, -y = 2K, ^ = oo .

The functions ^ and
i/rlf

therefore satisfy the conditions

required of the potential and stream function, due to electrodes

at A and C, of the plane motion of electricity or fluid, when
bounded by the rectangle OABC.
The function ^ will also represent the stationary tempera

ture at any point of the rectangle, when the sides OA, OC are

maintained at temperature zero, and the sides AB, BG at

temperature JTT.

When the period rectangle is a square, or KK\ then

\^i- i 71
&quot; when u+v= 2K, or along the diagonal AC; we thus

obtain the permanent temperature inside an isosceles rect

angular prism, when the base is maintained at one constant

temperature, and the sides at another.

Similar considerations will show that the function logsnjw
or 02+^2 wiH &iye ^e streaming motion in the same period

rectangle, due to a source at 0, and an equal sink at C.

The function
\jsz

is now zero along OA, AB, EG, and JTT along

0(7; and ^2
will therefore represent the stationary temperature

when OC is maintained at temperature JTT, while the other

sides are maintained at zero temperature.
A superposition of four such cases will give the permanent

temperature when the sides of the period rectangle are main

tained at any four arbitrary constant temperatures. (F. Purser,

Messenger of Mathematics, VI., p. 137.)

EXAMPLES.
1. Solve the equation

2. Investigate the curves given by

dz/dw= (I-z*)$.

3. Prove that the system of orthogonal curves given by

are the stereographic projections of a system of confocal sphero-

conics (W. Burnside, Messenger of Mathematics, XX.).
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Prove that the stereographic projection of the points

on the sphere
whose latitude and longitude are 6,

&amp;lt;p,

are given by

Prove also that

^
toy f%y /asy _ /^y (*y\*

n*
va)

+ v^J ^
\d~J ~\^v)

+w +W
4. Discuss the physical interpretation of

-ic/c sn u sn v
.

.ic cnv .

dn u dn -y /c enu
and determine the single function from which it is derived

;

K sn u sn vf ,

. . .
,

also of 0-h^0 = tanh~ 1
J +^tanJdn n dn v en v

Interpret these expressions when

5. Prove that, if x+ yi = sn w,

then

gives the plane motion of liquid streaming past two obstacles

given by x = l and l//c, x= 1 and l/K (W. Burnside,

Messenger, XX.).

27ie Double Periodicity of Weierstrass s Functions.

248. A procedure similar to that of 236 will show that the

Cartesian Ovals of fig. 26 are also the representation of the

conjugate functions of the system z ^w, obtained from the

definition of 50,

r dz

or dz/dw = pw=-
where 4s3-g^-g3

=
4(2
-
e^(z

-
e.2}(z

- e
a) ;

and z = e
lt

e
2 ,

eB define the three foci.

According to 51,

&iv -ez
=

(el
- 63)dsV(^i ~ ^)w= (e2

- e
8 )
cn

pw -
6l
=

(ex
- e

3)
csV^ -

e^tv =-(el
- ^

3)dn

by 239
;
thus identifying these results with those of 236.
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With the notation of 202,

and denoting the focal distances by r
lt
r
2 ,
r
3 ,
and u vi by w ,

249. To express these focal distances in a real form, as in 236,

we employ the Addition Theorem (K) of 200, written

a-(u+ v)v(u v)= o-% cr
2f

{ (pv ea) (&amp;lt;pu
ea) }

= (r
2uo-a-v-cra

2u (r
2v....................(M)

Again, from 154, $&amp;gt;(u+ v) ea is a perfect square; and we

may write x = put y = $&amp;gt;v,
s= p(u+v) &amp;gt;

_ -eg.pv-ep.pv- ey)
-
*/(pu-ep . pu-ey .

$&amp;gt;v-ea) N
$&amp;gt;v $&amp;gt;u

and now
&amp;lt;ra(w+ v)a-(u v) = +J {p(u+ v) Co] cru ar

2v
(&amp;lt;pv &amp;lt;pu)

= VU &amp;lt;Ta
U

(TpV
(T
y
V

&amp;lt;TpU

&amp;lt;T

y
U

(T^V (TV,... (0)

and changing the sign of v,

ar(u+ v)a-a(u v)
= o-U (rau oyy

o-y
v+

cr^U
o-y
u a-av crv. . . .(P)

Again, by multiplication with (N) and reduction,

v)

or

&amp;lt;ra(u+ v
)&amp;lt;rp(

u~ v) = arau a-pU
a-av a^v

-
(ea

-
e^a-u

a-
y
u &amp;lt;rv &amp;lt;r

yv, (Q)

cra(u v)arp(u
+ v) = o-au a-pU

a-av a-pV
-f (ea -e^)a-u

ayu crv cry
v. (R)

Similarly,

(u -v) = (pu- ea)(^v
- ea)

-
(ea
- e

ft
)(ea

- e
y)

cr(u--v) &amp;lt;pv &amp;lt;pu

or

&amp;lt;7a(u+ v)o-a(u
-

v) = (ra~u cra
2v- (ea

-
6p)(ea

- e
y)ar

2u &amp;lt;r*v....... (8)

(Schwarz, Elliptische Functionen, p. 51.)
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Now, from these equations (0), (P), (Q), (R), with

w or %(u+vi) for u, and w or ^(u vi) for v,

_ a-w a-iv &amp;lt;r&amp;lt;tf(r.v , vii (rvi

or r =

with similar equations for r
2
and r

3 ;
and thence the vectorial

equations of the Cartesian Ovals analogous to those of 236

r
z

&amp;lt;rs
u - r

B a-2
u =

(e.2
-e^u \ etc ^

r
2 o-3

t i r
3 &amp;lt;r.2

v i = (e2 ejvjvij
These vectorial equations again are the geometrical inter

pretation of the formula, immediately deducible from (N),

(T)

Making m2 = 1 in the homogeneity equations of 196, gives

V( 5 92 &) = ~
V(v 5

02&amp;gt; -0s)
the equivalent of the equations of 238, by which a change is

made to a real argument and complementary modulus
;
while

(w; 02&amp;gt; 3)= - 4(^5 02 -9s)

-(vi , 2 . 3)= ^&amp;gt;; 2 . -03)

o-a(^; 2 3)= &amp;lt;ra (
v

&amp;gt; 02 -0s)-

250. When a point has made a complete circuit of one of the

ovals, enclosing a pair of foci, defined by e.
2
and e

3 ,
or e

l
and e

2,

z will have regained its original value, but w will have increased

or diminished by 2^ or 2o&amp;gt;3 ,
defined as in 51, 52 by the

rectilinear integrals

so that 2^!, 2o)3 are the periods of the function pw, and

To fix the ideas we have supposed the circuit of two poles
of the integral made on the enclosing branch of a Cartesian

Oval, but the result will be the same whatever be the curve,

provided it makes the same number and nature of circuits.

Now, in 165, we can have

EE() (mod.20)!, 2o&amp;gt;3 ).
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251. In 54 it has been shown how, as the vector of the

argument w traces out the contour of the period rectangle, &amp;lt;pw

assumes all real values : and $w may be made to assume any

arbitrary complex value at a point in the interior of the

rectangle, given by a determinate vector t^ + t wB
.

It is convenient to put o)
1+ a)3

=
o&amp;gt;2 ,

so that

ft&amp;gt;!
+ w

2+ w
3
= 0, with

gj_+ 6
2+ e

s ;

and now ^o^ = ev $a)2
= e

2 ,
#&amp;gt;o&amp;gt;3

= e
3 ;

while
%&amp;gt; u&amp;gt;i

~
fi coz

=
$&amp;gt;

to3
= 0.

The equations of 54 show that

e-. e9 . 6, Co

A

equations analogous to those of 57, in Jacobi s notation.

Thus, from ex. 9, p. 174,

With negative discriminant, as in 62, we take e
2
as real,

and ev e
2 imaginary; also o^

= J(w2+ a/2), o&amp;gt;3
=

J(W2
~~ w/2) &amp;gt;

252. A great advantage of the Weierstrassian notation (at

first rather baffling to one accustomed to the methods of

Legendre and Jacob!) is that the dimensions of the elliptic

integral are left arbitrary, and can be changed by an applica

tion of the Principle, of Homogeneity of 196.

When the canonical elliptic integral of 50 is normalized

in Klein s manner ( 196) by multiplying by AT\ then

A^eZs r da-

where s = AV, (/2
= A^y2 , g3

=

and now
y&amp;gt;

3
27y3

2 = 1,

so that the new discriminant is unity, and
T O T&quot; 1 \*w O

If GTP trr
3
denote the real and imaginary half periods of the

normalized integral, then

= ft)3
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The general elliptic integral, written with homogeneous
variables as in 155, is also normalized by Klein by multiply

ing by the twelfth root of the discriminant of the corresponding

quartic, and its half periods are now c^ and C7
3.

If we normalize, for instance, the canonical integral (11) of

38, written with homogeneous variables xv X
2 ,

in the form

f(x^x.2 .x2
x

l
.x.2 kxjrtyfyfa^ x

l
dx.

2 ) &amp;gt;

then the invariants gz , g3 ,
and the discriminant A of the quartic

12 * 2
^~

1
&quot;

*^&quot;&amp;gt;

~
A/tX/-fl

y

being the expressions given in 68, therefore

Now the half periods of integral (11), 38, being 2K, 2K i,

We are thereby enabled to change from Weierstrass s (al
and

o&amp;gt;3
to Jacobi s K and K, and to utilize the numerical results of

Legendre s Tables. (Klein, Math. Ann., XIV., p. 118.)

When the discriminant A is negative, we normalize by
multiplying by ( A) 1

^, and replace o^ and o)3 by u&amp;gt;2 and
o&amp;gt;./

( 62); but now the new discriminant y9
3

27y3
2 = 1, and

o&amp;gt;.

2(
-

A)&quot;
= SA^/Q/o/), o/,(

- A^) = 2K i4/(^ ) ( 47, 58).

For instance, if g2
= in 50, (-A)^=^/3^/(/8 ;

and in 58,

,7=0, or 2/C/-J, 24/(J^ )
= 4/2; and now

while
( 47) wjVwj=K ilK= i

Confocal Quadric Surfaces.

253. The symmetry and elegance of the Weierstrass notation

is well exhibited in the physical applications relating to con-

focal surfaces of the second degree.

The equation of any one of a system of confocal quadrics

we put
a2+\=

and now the interal

d\

X

With e
l

&amp;gt;e.
2

&amp;gt; e
3,
we must take a- &amp;lt;b

2
&amp;lt; c2.



272 THE DOUBLE PERIODICITY

Three confocals can be drawn through any point x, y, z,

an ellipsoid, a hyperboloid of one sheet, and a hyperboloid of two

sheets.

Supposing the ellipsoid to be defined by X or u, and the

hyperboloid of one sheet in a similar manner by fj.
or v, and

the hyperboloid of two sheets by v or w
;
then in going round

the period rectangle of 54,

(i.)
u =pco, oo &amp;gt; pu &amp;gt; ev for the ellipsoids ; starting with p =

for the infinite sphere, and ending with p = \ for the inside

of focal ellipse;

(ii.) v = coj+ &amp;lt;?ft&amp;gt;3,

e
l &amp;gt;pv&amp;gt;e2 ,

for the hyperboloids of one sheet;

starting with q = from the focal ellipse, and ending with

(7
= 1 for the focal hyperbola;

(iii.) W = ?*!+ o&amp;gt;

3 ,
e
2 &amp;gt;$w&amp;gt;es ,

for the hyperboloids of two

sheets
; starting with q = l. from the focal hyperbola, and ending

with q= for the outside of the focal ellipse ;

(iv.) the fourth side of the period rectangle gives imaginary
surfaces.

254. Replacing 62-a2 and c2-a2
by /3

2 and y
2
,
so that

are the equations of the focal ellipse of the confocal system, we
should have to put, with Jacobi s notation,

= 7
2cs

2
(u,,c), tf+\=

,

where

and now u, v, w will be Lame&quot;s parameters, as given in Max
well s Electricity and Magnetism, I., chap. X.

By solution of the three equations of the confocal quadrics,

_

c2 ct
2

. c2 62

and thus x, y, z can be expressed as functions of u, v, w.

Employing the function sa of 203,

ms22
, y

2=
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When 62 = c
2
, the ellipsoids are oblate spheroids, and the

hyperboloids of two sheets degenerate into planes through Ox
;

and now the orthogonal system is given by

1 V2
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255. We may take u, v, w as Lame s thermometric para
meters, and now Laplace s equation becomes (Maxwell, Elec

tricity, I., chap. X.)

Thus
&amp;lt;j)

=

+ 2Evw+ 2Fwu+ 2Guv+Huvw
is a particular solution of this equation; for instance, the

electric potential between two confocal ellipsoids, defined by

U-L and it
2 ,
maintained at potentials U-^ and U% is given by

When the solution
&amp;lt;^&amp;gt;

is equal to UVW, the product of three

functions, U a function of u only, F of v, and W of w only,

then Laplace s equation becomes

ft=

so that we may put

three equations of Lame s form
( 204), when g =

256. The complete solution of Lame s equation was first

obtained by Hermite, in the form

Denoting by Fthe product U^U2
of U^ and U

2 ,
or F(u) and

F( u), two particular solutions of the general linear differential

equation of the second order, in its canonical form

where 1 is some function of u, and denoting differentiation

with respect to u by accents, then

or F/ -2/F=2C7
1

/

C72 ;

and F//x- 2/F - 2/
r F- 2 [7/ CT

2 + 2 Z7/ f//

or F// -4/F/-2/ /

F=0,
the general solution of which linear differential equation is
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A first integral of this differential equation is

2 YY&quot;
- F2- 4/F2+ C 1 = 0,

where C is a constant, given by

U& -UJU^C,
the integral of ^ J7

2

&quot; - Uf U.
2
= 0.

In Lame s differential equation

and now, changing to x = pu as independent variable,

and this equation for Fhas, as a particular solution, a rational

integral function of x or jm, of the -nth order, which we may
write F=
and ^

Now, by logarithmic differentiation,

?7
2 ^ F

Brioschi shows (Comptes Rendus, XCIL) that, when resolved

into partial fractions, we may put

pa)
provided that

and

Then

and, integrating,

Fu, or
[T,
=n eX p(

-
fa) = II0(, a) ;

while Z72 or J^ u) is obtained by changing the sign of or a,
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257. Hermite shows (Comptes Rendus, 1877) that the func

tion F(u) may be otherwise expressed by
/ /I \ n-I

*()=(

and
&amp;lt;f&amp;gt;u,

called the simple element, is of the form eXu
cj)(u, w),

&amp;lt;/&amp;gt;(u, co) being a solution for n = 1 and h = poo ( 204).

To obtain the coefficients Av A 2, ... in F(u), we suppose
&amp;lt;u or eXu(p(u, (o),

JFu, ^?u expanded in the neighbourhood of

u = Q ( 195), in the form (Halphen, F. E. /., chap. VII.)

Substituting in Lame s differential equation

F&quot;u= {n(n+ I)pu+ h}Fu,
we obtain, by equating coefficients,

_----
- 10

On comparing the two forms of the solution Fu, we find that

w = 2a, and X =
fo&amp;gt; 2fa.

Thus, for instance, when TI = 2, we find, as in 209,

d
j(
_

f((
_

When 7i = 3,

where
ctj+ a

2+ a
3
=

a&amp;gt;,

r

l liis fails when g2
=

0, and a
1
= v, a

2
= wf, a

3
= aj

2^
;
but now

(229) J^= i(^



CHAPTER IX.

THE RESOLUTION OF THE ELLIPTIC FUNCTIONS
INTO FACTORS AND SERIES.

258. The well-known expressions for the circular and hyper
bolic functions in the form of finite and infinite products

(Chrystal, Algebra, II., p. 322; Hobson, Trigonometry, chap.

XVII.) have their analogues for the Elliptic Functions, as laid

down by Abel in Crelle, 2 and 3.

Granting the possibility of the resolution into linear factors,

the individual factors are readily inferred from a consideration

of the zeroes and infinities of the function.

Denote 2mK+2nK i by ft,

where m and n denote any integers, positive or negative,

denote also Q+K or (2m+ I)K+ ZnK i by Qv

tt+K+K i or (2m+ l)K+(2n+l)K i by Q
2 ,

and Q+K i or 2771^+ (2n+ l)K i by Q
8

.

Then considering the function

sn u,

the zeroes are given by u = fi, and the infinities by u = Q3

( 239) ;
and thus we infer that, if sn 11 can be resolved into

a convergent product of an infinite number of linear factors,

the form is

m= oo n= oo / n, \

u IT IT
(l-j)

&quot; =-&quot;&quot;=-&amp;lt;
X

(1)

the accents in the numerator denoting that the simultaneous

zero values of m and n are excluded.
277



278 THE RESOLUTION OF THE ELLIPTIC FUNCTIONS

Similarly, cnu=BTLn(l-) /D, .............. . ...... (2)

...................... (3)

the zeroes of cnu being given by u = lv and the zeroes of

dnu by u= }
2 ,

while the infinities are given as before by
u = Q3 ;

D denoting the denominator in (1).

259. But now, in demonstrating the analytical equivalence
of the expressions on the two sides of equations (1), (2), (3), it

will fix the ideas if we employ a physical interpretation, such

as that given in 247.

It was shown there that the real and imaginary part (norm
and amplitude) of

log sn w,

where w= u+ vi, will represent in the rectangle OABG the

potential and current function of the flow of electricity (or of

liquid, following the laws of electrical flow) from a positive

electrode at to a negative electrode at C, JTT amperes being
the strength of the current

;
but here we take OA=K, OG=Kf

;

and u, v are the coordinates of any point in the rectangle.

The infinite series of electrodes, which are the optical images

by reflexion of these two electrodes at and (7, will form a

system on an infinite conducting plane, such that, if the

strength of the current at each electrode is 2?r amperes, the

resultant effect in the rectangle OABG will be the same as

before.

(Jochmann, Zeitschrift fur Mathematik, 18G5;

0. J. Lodge, Phil. Mag. 1876
; Q. J. M.

y XVII.)

Starting with a single electrode at 0, of current 2?r amperes,

the potential and current function at any point whose vector

is w or u+ vi are the norm and amplitude of logw; and logiv

may be called the vector function of the electrode at 0.

For an electrode at a point whose vector is c a-\-bi, the

vector function 8&z=X+yi is log(0 c),

which may be written

disregarding the complex constant log(-c).
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The vector of any optical image of in the sides of the

rectangle OABC being given by Q, the vector potential of the

corresponding electrode is log(l w/Q); and the vector function

of the system of images of the positive electrode at will be

Similarly the vector function of the system of images of the

negative electrode at C will be

But these functions, considered separately, represent a

physical impossibility, and are analytically meaningless ;
their

difference, however,

will represent the vector function of the whole system of posi

tive and negative electrodes
;
and since this function satisfies

the requisite conditions inside the rectangle OABC as the

function logsnw, we are led to infer equation (1), with suitable

restrictions explained hereafter.

For log en w, the positive electrode is placed at A, the

negative electrode being still at (7; the vectors of the positive

electrode images are given by Q
: ;

and now equation (2) is

inferred
;
while for log dn w, the positive electrode is placed

at B, and the vectors of its images are given by Q
2 ,

the

negative electrode being at (7; and we infer equation (3).

When in the rectangle OABC we have OA = a, OC=b,
we take K lK^bja, and write K(x/a)+K i(y/b) for u+ vi*

x, y now denoting the coordinates of a point.

260. We now proceed to express these doubly infinite pro
ducts of factors, corresponding to the different integral values

of m and n, by means of singly infinite factors for different

values of n
;
that is, we combine all the factors for one value

of n and the infinite series of values of m into a single ex

pression; and here we employ the formulas for the trigono
metrical functions expressed as infinite products.

Interpreted physically, we determine the vector function of

an infinite series of electrodes, equispaced on a straight line

parallel to OA.
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Denoting the vectors of such a series of positive electrodes

by 2ma+nbi, the vector function is

m= / __
log n (z-2ma-nbi), or iog(-n6i)IT(l-

and provided that (z nbi)/2ma is ultimately zero when m is

infinite, or that z/ma and n/m tend to the limit zero, we can

write this vector function (Cayley, Elliptic Functions, p. 300)

log sin \-w(z nbi)/a, .......................(4)

Resolved into its norm and amplitude, this vector function is

i log J[cosh{7r(2/ nb)/a} cos TTX/O]

+ itan~ 1
[tanh{j7r(2/ ti&)/a}cot(j7ra;/a)]. ...(5)

The amplitude or current function is therefore constant when

a3=(2m-hl)a; and there is no How across these lines, provided

however, as is physically evident, we do not recede to such a

large distance from the origin that we are not justified in

taking It z/2ma as zero.

261. We suppose that Oy passes through the centre of this

infinite series of electrodes, or that m reaches to equal infinite

positive and negative values; but now, at a very large dis

tance from 0, the electrodes on one side of a line, given by
o;= (2m-|-l)a, where m is a large number, will preponderate
over the electrodes on the other side, and the resultant effect

will be a uniform normal flow a across this line, to counteract

which a term of the form az or loge~
az must be added to the

vector function.

The analytical equivalent of this physical effect is illustrated

by the theorem proved in Hobson s Trigonometry, p. 328, that,

when the integers p and q are made infinite in any given

ratio, then 00, the limit of the product

Ji) ... (1+w V 2aA a/ \ a/\ 2a/ \ qa

The infinite product TL(l+cnx) is convergent for all finite

values of x, if the series 2cn is convergent ;
as is evident on

expanding the logarithm of the product.
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But Weierstrass shows (Berlin Sitz., 1876) that the divergent

product

can be made convergent if the exponential factor ezlma is

attached to the linear factor Iz/ma; or, interpreted electri

cally, if to the motion due to the electrode at ma, whose

vector function is log(l z/ma), we add a uniform streaming

motion parallel to the vector ma, given by log ezlma or z/ma.

Now, denoting the harmonic series

since the limit of sp log_p or s
q logq is Eulers constant.

262. In a similar manner it is inferred that the vector

function of an infinite series of positive electrodes, whose

vectors are (2m+ l)a-f-7i6i,

m reaching to equal positive and negative infinite values, is

log cos %Tr(z-ribi)/a
= JlogJ[cosh{7r(y-w&)/a} + cos(7r#/a)]

+ i tan- 1

[tanh{ %Tr(y-nb)/a}t&n(^7rxla)], (7)

having lines of equal amplitude given by x = 2ma.

Therefore the vector function of a pair of lines of electrodes,

whose vectors are 2manbi, is

log sin{ \TT(Z nbi)/a }sin{ \ir(z -f nbi)/a}
= log J{cosh(7i7r&/a) cos(7r^/a)} ;

or, corrected by the addition of a constant, which makes the

function vanish when z = Q, the vector function is

, cosh(ti7r&/a) cos(7T0/a) , 1 2ow

where q = e- 7rb/a
.

For a pair of lines of electrodes whose vectors are

(2m+ l)a?i6i, the vector function is

which may be replaced by
, cosh (ri7r6/a) + cos (irz/a) , 1 + 2q

n
cos(7rz/a) + (?

2n
/0 ^

cosh(7i7r6/a)-|-l
W2

For the line of electrodes along OA, whose vectors are 2ma
or (2m+ l)a, the vector function will be

log sin(j7r/a) or log cos(|7T0/a) ................ (10)
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263. Under Cayley s restrictions, that m reaches to equal

positive and negative infinite values, and n also
;
but that the

infinite values of n are infinitely small compared with the

infinite values of m (equivalent to taking the infinite array of

the images of the electrodes as contained in an infinite rect

angle, of which the length in the direction OA is infinitely

greater than the breadth in the direction OB), we can now

replace the doubly infinite products in (1), (2), (3) by singly

infinite products, in the form

,sn u =A sin(j7ru/A) II -
r-

v +D, (11)
71-1 I 1 &quot;*? )

en u = B cos(JirM/JSr) II __L
S
-_ 4-D, (12)

dnu= Oil

where

D= n

By putting u= 0, the values of A, B, G are seen to be

, 1, 1
;
while g= exp(

- ^K \K}.

The common denominator D of the three elliptic functions,

which represents physically a function whose logarithm is the

vector function of the negative electrodes at points whose

vectors are of the form Q3 ,
is the equivalent of Jacobi s Theta

Function of 187; and we write

1

-00 nl 4Li +

The numerator of sn u will now be the equivalent of the

Eta Function, defined in 192
;
and thus

Hu= K sn u Qu

. ...(16)

The numerator of en u is represented by the Eta Function

of u+ K, and the numerator of dn u by the Theta Function of

and the factors are so chosen that
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Equation (6) of 188 may now be written

while, by means of (7), 137,

H(+t;)H(u-t;)8*0=Hue8 -eVBP (19)

264. It is convenient to replace \iru\K by a single letter x
;

and we shall now find that the constant factors are so adjusted

as to give the expansions in a Fourier series in the form
o 9 a i /o/&quot;^\

cin R/y {91\sinox t^i;

It is easily shown algebraically that

71=00

n=l

by changing z into
&amp;lt;fz

and multiplying by qz, when the pro

duct on the left hand side merely changes sign ;
whence equa

tion (20) is inferred from (15) by putting z= e
2xim

}
and equation

(21) is obtained from (20)* by writing qz for z, and multi

plying by q^z*.

Written in the exponential form,

&amp;gt;*

(22)

or with g = e~ a
,
a= 7rK IK, arid b = xi,

n -^b -

......(24)

and e(u+2K)= Ou,

H(u+ 2Ar)=-Hu, ....................(25)

Changing u into u+K i, or a; into x+ ^i\ogq, we find

iq-le-^eu, ..............(26)

agreeing in giving K snusn(u+K i)
= l, .................... .(27)

and leading by differentiation to the formula

Z(u+K i)
=Zu + (cnuduu/suu)-(i7rilK), ......... (28)

which, with ( 176),

Z(u+K) = Zu-(K2
snucuu/dnu), ..................... (29)

leads to

nu/cnu)-(%Tri/K) .......... (30)
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265. Jacob! writes (Werke, I., p. 499) x for ^iru/K, and

Ox for 9tt, OjX for Hit, ^ for H.(u+ K), and #3
ce for Q(u+K) ,

and now

.........(31)

m ox ......... (32)

m*if*-1W*~V*
= 2q$cos x+2^cos %x -f 2^cos ox + ......... (33)

= 2^Vna:i

......... (34)

or, with q = e~ a
,
b = xi,

Ox = Ei2n exp(
-

O^x = 2 exp (

(35)

Conversely, starting with these functions as defined by
these exponential series, it is possible to rewrite the whole

theory of Elliptic Functions ab initio in the reverse order, and

to deduce all the preceding results.

(Jacobi, Werke, I., p. 499 ; Clifford, Math. Papers, p. 443.)

For instance, we find that

6(x+ JTT)
-

flgOJ, 0(x+ \i log q)=- iq^e^x,
O^x+ JTT)

-
2x, O^x+ \i log q)

= -
iq-$e

xi
6x,

2(x+ ITT)
= - 0^, 6z(x+ Ji log ?)

= g-V flgB,

3(x+ JTT)
= 0c, 3(o;+ Ji log q)

=
q-iePOjc......(36)

The quotient of two functions is thus a doubly periodic

function, of reaZ period 2?r or TT, and imaginary period ilogq.

The form of the and function series shows that they

satisfy partial differential equations of the form

_
dxz d log q

and the functions are therefore suitable for the solution of

problems in the Conduction of Heat.

Thus, if 6(x cos a+ y sin a, q) represents at any instant, = 0,

the temperature at the point (x, y) of an infinite plane, of
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which y denotes the ihei^mometric conductivity, then at any

subsequent time t, the temperature will be given by

0(o; cos a+ # sin a, qe -W) ....................(38)

266. Similar considerations to those of 258 enable us to

resolve other expressions into factors
;
for instance,

., . , dnu-f/ccnu
,
or its reciprocal

so that

K K

dn u KCIIU K /dn u K en u
Vdnu

K

dn u -f- K
_ A/ ,

K dn u+ K en u \ dn u+KCHU
Now dc u, or sii(Ku) = l//c, when

or cos \TTUJK= cosh(2r&
-

1)

while dc u = I/K,

when cos %TTU/K= cosh(2w V)^

and therefore we may put

dn u K en u _ _.cosh(2?i V)\TrK ]R cos \irU\K

,

11 n -
-&quot;

- 1J

where the letter C is used to denote some constant factor.

Now, writing x for ^TrujK, and supposing x and it real,

log(l
- 2c cos x+ c2)

= log(l
- ce

xi
) + log(l

-
ce-**)

=
2(c cos x+ Jc

2cos 2a;+ Jc
3cos 3x +...),

log(l + 2c cos cc+ c
2
)
= 2(c cos x Jc

2cos 2ic+ Jc
3cos 3a: ...),

log = -

-5
= 4(c cos a;+ ic3cos 3x+ |c

5cos bx +...).
1 + LC cos x -f- c

-

Therefore, expanding the logarithm of (39),

log-
l

^-

= logC-

= \ogC-
,l-q~ 3 1-53- 5 !_ 5

5

yv AV 1 cos(2??i l)^7ru!K= \ogC 22 r- -.
, ^ ,

and, differentiating,

snu=S , ,..(41)
JL sinh2m

the expression of sn u in a Fourier Series.
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267. By forming the similar factorial expressions for

Ksnu+iduu and suu+ icnu,

and taking logarithms, we shall find

log(/c sn u+ i dn u)
.^, 1 sin(2m= constant SiS
2m -1 eosh(2m

, ,
,

. N .^1 sin rri

log( sn u+^ en u)= constant ^E rt, , r~ ...... (43)m cosh m-TrK IK
and, differentiating,

?r^ cos(2m

TT

and therefore, integrating,

We have now found that, in 78,

1

n cosh

268. From 263, we find, in a similar manner, that

7T
2

Now, referring back to 78, we can put

^ 7T 1 7T 2(

TTX _, sn -

am u = -x-^4- 2 r
--WTTT................ (46)m cosh m-jrK IK

v l c= constant 2,--^TT--7^771^; .................. (47)m Binh(mxJi7JT)
and, differentiating,

7r
s^iKm7rV^_-^ J

&quot;

(49)

K Kl-q^
Putting u= in (49) or (50) gives what is called &quot;a q series,&quot;

m toiuf* _K(K-E)
//77-\ ^

i
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As an exercise, the student may form the similar factorial

expressions for

1 cnu 1 snu 1 dnu duu cnu
etc.

sn u en u- K sn u yc sn u

and their reciprocals

1-fcnu 1 + snu 1 + dnu dnu+snu ,

sn u CD u K sn u jc sn u

and thence determine, by logarithmic differentiation, the Fourier

Series for ns u, cs u, ds u, etc. (Glaisher, Q. J. M., XVII.).

The applications of these expansions will be found in papers
in the Q. J. M., XVIIL, XIX., XX.

269. As an application of these q series, consider the problem

of the electrification of two insulated spheres, in presence of

each other, of radii a and b, and at a distance c from centre

to centre, when maintained at potentials Va and Vb ,
with

charges of Ea and Eb (Maxwell, Electricity and Magnetism,

I, chap. XL).
Then Ea= qaaVa+ qabVb,

Eb
= qabVa+ qbbVb , (52)

where q^, qbb are called the coefficients of capacity, and q^ the

coefficient of induction.

We take u and v as coordinates, given by the dipolar system

x+yi= kt&u^(u+vi), (53)

so that u = constant represents a circle through the poles

(0, k), and v = constant represents an orthogonal circle, with

the poles as limiting points.

Now, if we revolve this system about the axis Oy, which

may be supposed vertical, the two spheres, if outside each

other, may be supposed defined by
v = a and v=

/3,

so that a = fc cosech a, b = k cosech
/3, c = /j(cotha+ coth/3) ;

and putting a+ /3
=

aJ, Maxwell shows, by Sir W. Thomson s

method of successive images, that

qaa = kZ cosech (n?3 /3), qab = &2 cosech nft,

qbb
= k2 cosech(?iT a), (54)

the summations extending for all positive integral values of n
from 1 to oc .

Here qab is called Lambert s Series ; it is considered in the

Fundamenta Nova, 66.
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Again, with a ft
= x,

= k2 cosech

and by the preceding formulas it can be shown that
Trr/

................ (55)

When the two spheres are equal, x = Q, and

= = k% cosech Zn -

When /3
= 0, the sphere ft becomes a plane; and now

qaa= qab= /c2 cosech Tia = a sinh aS cosech net
;

which shows that the capacity of a sphere of radius a is raised

from a to ct sinh aS cosech Tia by the presence of an uninsulated

plane at a distance a cosh a from its centre.

Similar functions occur in the determination of the motion

of two cylinders or spheres, defined by v = a and
ft,

when

the interspace is filled with homogeneous frictionless liquid.

(W. M. Hicks, Phil Trans., 1880
; Q. J. M.

t XVII, XVIII.
;

Basset, Hydrodynamics, I, Chaps. X., XL
;

C. Neumann,

Hydrodynamische Untersuchungen. )

270. To illustrate geometrically the singly infinite product
forms in 263 of the elliptic functions, consider the analogous

problems of electrodes at the corners of curvilinear rectangular

plates, bounded by arcs of concentric circles and their radii.

The vectors from the centre as origin of a series of p
electrodes, equally spaced round a circle of radius a, will be

aexp 2r?ri/p, where r= l, 2, 3, ..., p\

and with polar coordinates r, 0, the vector of the point will be

T exp i6
;
so that for the p electrodes, each conducting a current

of 2?r amperes, the vector function is

loglfjr exp(i#)-a exp(2r7ri/p)} =log(r^e
?

^-a^), ..... (56)

by De Moivre s Theorem (Hobson, Trigonometry, Chap. XIII.).

Interpreted geometrically, the norm is the logarithm of the

product of the distances of an}7
point P from the electrodes,

while the amplitude is the sum of the angles the lines joining

the electrodes to P make with the vector $ 0.
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We thus prove incidentally one of Cotes s theorems, namely.

that the square of the product of these distances is

(r
peipe- aP)(rPe

~W -aP) = r2?- 2a*r*cos p6+ a2
^, ... (57)

and, in addition, the theorem that the sum of the angles the

vectors from the electrodes to P make with the vector $ = is

r^sin pQtan 1
; .....................(08)ap

and when the sum of these angles is constant, the locus of P is

an oblique trajectory of the curves

rPcospO or r^sin pO = constant.

With a single negative electrode at the centre, of current

nw amperes, half the total current from the n electrodes on the

circle will flow to 0, the other half flowing off to infinit} .

Now the vector potential is, on writing ep for r/a,

j.
rnsin n

i tan 1 -

rncosnO an

We can isolate a sector, bounded by =
0, 9 = ir/n t

and

/ = a; and the preceding expression will represent the vector

function of the electrical flow of JTT amperes, with electrodes

at the end of the vectors r = a, and at r = 0.

The amplitude of this expression will also represent the

temperature in this sector, if the radius 6= is maintained at

temperature 0, while the radius (9= 7r/?i and the arc r = a are

maintained at temperature |TT.

271. Now suppose that on the same circle r = a, an equal
number p of negative electrodes are placed, equally spaced be

tween the positive electrodes
;
the vectors of these electrodes

being a exp(2?^ l^i/p, the vector function is

or, if moved out radially on to a circle of radius b,

-log^-PeW+ bP)......................... (60,

The vector function of p equal electrodes at a exp ZTTTI/}),

and of p equal negative electrodes at a exp(2r l)-7ri/p will

therefore be log^e?*
6

aP)/(rPe
ip6+ a*) ;

which, when resolved into its norm and amplitude, is

--H tan~ :

- 7-* -t-za r* cosptJ-|-a**
J.E.F. T
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, . cospO ,

. , , sin pO= tanh 1
r^- 4^ tan&quot;

1
. .......... (61)

with p = log(r/a) ;
this function will represent the state of

electrical motion in a wedge bounded by $= and Q = Trjp.

272. The substitution in the preceding expressions in 24-7

of the conjugate functions pO and log(r/a)^ or pp for u and v,

leads to the solution of corresponding problems for curvilinear

rectangles bounded by arcs of concentric circles and their radii
;

and now q=(b/a)
p

,
where a and b are the radii of the curved

sides, while tr/p is the angle between the straight radial sides
;

so that in the rectangle OABC,
OA = a7r/p, BC=b-7r/p, OC=AB= a-b.

The vectors of the imaes of an electrode at are now

where n denotes any integer, positive or negative, and

r = l, 2, 3, ...,n.

For electrodes at A, B, C, the vectors of the images are

For a given value of n, the vector potential of the electrodes,

whose vectors on a circle of radius aqnfp are

aq^Pexp^riTr/p or aq
nlp

exp(2r ty-jri/p

will be \ogU(r^d-aPq
n
) or logU(rpe ipd+ apq

n
).......... (62)

Now, suppose a positive electrode is placed at and a

negative electrode at C, with the corresponding system of

images ;
the vector function is

low &quot;i

on introducing a negative electrode, of current TT amperes, at

the origin ; and, writing irW/K for p6+ ilog(a/r)P, this becomes
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equivalent, as in 263, on omitting constant terms, to

log sn iv.

A similar procedure with electrodes at A, C, and B, C, will

lead to the singly infinite factorial expressions for en it, and dnu.

Projecting these equipotential and stream lines stereographi-

cally on a sphere which touches the plane, we shall obtain the

corresponding solutions for the flow of electricity on the surface

of the sphere.

(Robertson Smith, Proc. R. S. of Edinburgh, vol. VII.
;

M. J. M. Hill and A. J. C. Allen, Q. J. M.
y XVI, XVII.)

273. When these electrodes are replaced by straight parallel

vortices, perpendicular to the plane, which is taken as hori

zontal, the potential and stream functions are interchanged.

Suppose a vortex is placed at a point P in the rectangle

OABC
;
to introduce the restriction that there is no flow across

the sides of the rectangle, we must suppose the motion due to

vortices which are the optical reflexions of the point P in the

sides of the rectangle ;
the sign of the vortex being positive or

negative according as the corresponding image has been formed

by an even or odd number of reflexions.

The vectors of the positive images will therefore be

and of the negative images

2ma+ 2nbi z
;

where z = x -+- y i-
, .- = x yi.

The resultant current and velocity function at =+&amp;gt;;*
will

therefore be the norm and amplitude of

_

(2ma+ 2nbi+ -z )(2ma+ 2nbi+ {;+z )&quot;

At the point P, this vector function, due to all the other

images, is therefore

(
2ma -f 2nbi+ z z

and writing r,-
=

-&amp;gt;
and 2l^K a a b

this may, according to 263, be replaced by
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The stream function at P is therefore, disregarding constants,

9% H2w- H% 2w
,

v

=
| log(ns

2
K, ns2

m)
= J Iog{ns

2
(u, /c) + ns2

0, * )-!} : ...(66)

so that the curve described by the vortex is given by
ns2

(2Kx/a, K)+ u/(2K y/b, K) = constant, ......... (67)
and all the other image vortices keep up a symmetrical dance,

by describing similar curves.

274. The vortex is stationary when at the centre of the

rectangle; and now, changing to the centre as origin, the

vectors of the images are ma+nbi, where m+ 7i is even for

the positive, and odd for the negative images; so that the

vector function of the motion is given by

, n ,, cnw //% .v=
log =Jlog T . .................(68)

en kw 1 + cnit;

Expressed as norm and amplitude, as in 247, this function

_ i
I

1 en w 1 en w
l

1 en w 1 -f en w
4 cn^//

,, cuvi cuu ,, snu dn vi= ^ log
----r- - + 1

log
-

& .
,

. .

en vi+ en u sn u dn vi+ dn u sn w
, , en u , , sn u dn t i

tanh
~ J

. tanh ~

.
-
T
-

.

enw dn u snw
. 4

.snttdn t
//&amp;lt;r

.,

en v)+ ^ tan -1
,
........... (09)dn u sn ??

with u ZKxja, v = 2K y/b; the modulus of the elliptic func

tions of v being /.

The equation of a stream line of liquid is therefore given by
en u en v = constant, or

cn(2Kx/a, K)cu(2K y/b, K) = constant............. (70)

Close up to a vortex the velocity according to these ex

pressions would become infinitely great, which is physically

impossible; but a solid core may be substituted for this central

portion, and the shape of this core has been investigated by
J. H. Michell, Phil. Trans., 1890.
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275. When a point is placed inside an equilateral triangle,

the Kaleidoscopic series of positive images is given by the

vectors z, wz, w 2
z, where z = x+ yi, and w is an imaginary cube

root of unity ;
the negative images being given by z, coz

, o)V,

where z = x+ yi ;
the origin being at a corner of the triangle,

and the axis of x perpendicular to the opposite side (Fig. 27, i.).

(i.) Fig. 27. (ii.)

In addition, similar groups of six images must be added,

ranged round the centre of hexagons forming a tesselated pave

ment, the vectors of the centres of the hexagons being
2mh+ 2nhij3 and (2m+ l)/i+ (2?i + 1)^^/3,

where h denotes the altitude of the equilateral triangle.

In the corresponding doubly inhnite products, the elliptic func

tions will have K jK= lJ% i
so that ( 47), /c = sin 15, 2or = J.

Then, in Weierstrass s notation, the vector potential at

for a single source or electrode inside the triangle will, neglect

ing constant terms and factors, be expressed by ( 278)
log o- (-s V (f-fttf )(r (i-orz)

(71)

while for a vortex or electrified wire, the vector potential is

The nature of the resolution of these functions into their

norm and amplitude is illustrated in 227 to 231.

(O. J. Lodge, Phil. Mug., 1876; 0. Zimmermann, Das logar-
ithmische Potential einer gleichseitig dreieckigen Platte, Diss.

Jena, 1880
;
A. E. H. Love, Vortex Motion in Certain Triangles,

Am. J. M., XI.)
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So also for a rectangular boundary OACB, if we write

a for g-x+ (r]-y)i, or -2,

ft for g+ x+ (i-y)i, or +/,

y for +a +
(&amp;gt;?
+ 2/)i or f+z,

5 for ^-a+ fo+ Z/)*, or faf;
3;, -2 , 0, 5? being the vectors of the point P and its images

by reflexion in the coordinate axes Ox, Oy, taken in order in

the four quadrants ;
then the vectors of all the other images

by reflexion in the sides of the rectangle OABC being ranged
in a similar manner round points whose vectors are 2ma-f 2?i6i,

it follows from what has gone before that we may express the

vector function at f of all their images, taken as positive, by

log era v/3 o-y rS, ........................ (73)

with w
l
= a, a)3

= bi
;

disregarding constant factors, and exponential factors of the

form exp(Au+Bu2
).

But when we represent the vector potential of a vortex or

electrified wire at P, the vector potential becomes

276. As another illustration of the connexion of a regular

Kaleidoscopic figure with Elliptic Functions, consider the solu

tion of the reciprocant
8 =

0, .................. (75)

dii d2
ii 7 dsy d*y

where ^ 8B7 i
a= j v ^=&quot;T^&amp;gt;

c=
idx dor dor dx*

(Sylvester, Lectures on the Theory of Reciprocants, VI., 1888.)

Mr. J. Hammond has shown (Nature, Jan. 7, 1886, p. 231
;

PTGC. L. M. S., XVII., p. 128) that the integral of this equa

tion (75) may be written

(l + ti)dt
( n

&amp;gt;

By turning the axes through an angle ^tan^A/ic), we can

make X vanish
;
and now, replacing JAC by unity,

^-^5 0,4),. ..(78)

and K*+y*)K-2^)= 1 ......................... (79 &amp;gt;
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Since (196) $&amp;gt;(joz

=
copz, $&amp;gt;a)

2z = a)
z
pz,

where eo is an imaginary cube root of unity, therefore

pu(x+yi)&u?(x-yi)= i, ....................(80)

which shows that the curve is unchanged if turned through an

angle of 60 about the origin (Fig. 27, ii.).

Captain MacMahon has shown that the intrinsic equation of

this curve may be written

cos3^ = cln(s/c), with jc=JV2 ................ (81 )

The student may also show that the equation of the curve

may be written in one of the forms

K 2sn2
(#, K) = ic

/2sn2
(y, AC ),

K)dn(y, K )
=

K, ..............................(82)

with /c = sinl5, /c = sin75.

As a similar exercise, the student may solve the rcciprocant

fc-56 = .............................. (83)

in the form
$&amp;gt;x $&amp;gt;y

= -1, ............................(84)

and determine its intrinsic equation, drawing the correspond

ing curves (Proc. London Math. Soc., XVII., p. 360).

277. When we expand, in ascending powers of u, the

logarithm of a doubly infinite product, such as that in the

numerator of sn u in equation (1), 258, we find

Now, when the origin is taken at the centre of all the

points whose vectors are Q, the coefficients of u, u3
,
u5

,
...

vanish
;
but the value of the series is still indeterminate, until

the infinite curve containing all these points has been defined.

For if P denotes this infinite product, and P its value when

the boundary has changed into a similar curve, then

where the summation now extends over the region lying be

tween the two boundaries; and now the limit of SQ~ 2
is a

definite number, A suppose, while the limit of 2Q~ 4
. ... is zero.

Therefore

logP
/

-logP=.Wu2
,
or P = Pe*Au*...-, .........(86)

so that the value of the infinite product depends on the shape
of the infinite boundary (Clifford, Math. Papers, p. 463).
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But, as in $ 261, Weierstrass removes this ambiguity \yy

attaching to each linear factor of the product, such as

,. i f (u 1
an exponential factor exp( c -f

-
\l2 z

and, in the physical analogue, the corresponding electrode at 12,

whose vector function is log(l u/Q), must have associated

with it a uniform flow in the direction of the vector Q, repre
sented by u/Q ;

and a streaming motion iri rectangular hyper

bolas, whose asymptotes are parallel and perpendicular to the

vector Q, represented by |(u/Q)
2

.

Now in the expansion of the logarithm of the doubly infinite

product P, when these exponential factors are introduced,

logP =logu-XZQ- 4-iu6Sft- 6
-..., ........... (87)

an absolutely convergent series
;
that is, a series the value of

which is independent of the order of the terms.

278. Making a new start ab initio with the sigma func
tion ( 195), as defined now by the equation

n/
TT/ It &amp;gt;

-

/TT\n l-exp+5 , .........(U)

where Q = 2mto+ 2iico ,
and ta /wi is a real positive quantity, so

that co, a) correspond to w&amp;gt;v co3
or co2 ,

a)2 according as A is posi

tive or negative, then a-u is the analogue of Jacobi s Eta Func

tion
;

i n fact,

a-u = CeAu R^(el
- e

s)u = Ce^O^TrU/u), ....... (88)

( 263), where C, A are certain constants
;

also log a-u is the

same as logP in equation (87).

Now denoting, as in 195,

d log o-u , - , cZ
2
lo(r aril du

~ by ^ and - or

(V)

by differentiation of
( U) and (58) ;

so that, on reference to 195,

we may put
#2
= 602Q- 4

, #3
= 14.0ZQ- 6

, ...............(W)
also 2 = 24 .3.52 .72Q- 8

,
= 24

. 3. 5 . 7. 11 2Q 10
,
etc.
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Differentiating (60) again,

p tt=--r
(,7Q?

......................... (Y)

Then (o-u)/u, ufu, u2
^u, u3

^ u, u*p&quot;u, ..., are unaffected by
the considerations of homogeneity of *196; as for instance in

the expansions in equations (21) and (22) on p. 249.

A change in (X) and (Y) ofu into u+ 2pw+ 2qw, where p and

q are integers, merely leads to a rearrangement of terms
;

so

that, as in 250,

p( U+ Ipw+ 2^0) )
=

pit.

Also, since in Q = 2m&&amp;gt;-f2?7a&amp;gt; ,
the arrangements (771, -?i)

and

( ?7i, ri) exist in pairs, therefore

and p
/2u = 4 . pw, pw . pu,

= lp*u-g2 pu-g3 , .................................(AA)
as originally defined otherwise in 50.

A change of u into u+ 2w in (V) shows that, by a rearrange
ment of terms,

ftw+ 2ft&amp;gt;)

= 6+ 217, ..................... (89)
where q is a certain constant, determined by putting w= w,

so that
/
= & ............................ (90)

Similarly ^+ 2o/)
= fu + 2i/, ..................... (91)

where ? $ ; ..........................(92)

and, generally,

f(u+ 22^+ 2go)
/

)
= t+ 2p,;+2^

/

............(BB)

Integrating (^9) and (90),

&amp;lt;r(u+ 2w) = Ce*i&amp;lt;ru,,
&amp;lt;r(w+ 2o) )

=WVw
;

where (7 and (7 are determined by putting u = oo and a/
;

so that

(7(u+ 2o))=
_ e*+)(rM, o-( + iV)= -e*^M +wVit, (93)

and therefore

,, .....................(94)

, .....................(95)

and, generally,

(f(u+ 2^0)+ ^gco )
= -

(
- 1 )(P+lX?+l)e

C2,^+2977 Xt4+;)w+9a; )
(rM/) . . .(CO)

obtained also by integration of (BB).
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The doubly infinite products in (U) may be converted into

singly infinite products ;
and now

where q = e
l&quot;,

and

trie*
= ix2- 7r

2S ,

j

=
J-TT*

- 7r
22 cosech 2

(W/a&amp;gt;;),
... .(97)

etc.
;
for the proof of these and other similar formulas merely

stated here, the reader is referred to Schwarz and Halphen.

Also, denoting Q+ w, ft+ + , Q + w by Q
x ,

fi
2 , Q3 ,

then the function cra% of 202 may be otherwise defined ab

initio by the relation

^

^ =
^Iin(l-)exp(J+Ig),

........(EE)

which will be found to lead to the preceding results.

d2

Denoting j- 2 logout* by &amp;lt;pau, we shall find that

&y* =K +
a&amp;gt;a)&amp;gt;

= 1 2
&amp;gt;

3..................(98 &amp;gt;

(A. R. Forsyth, Q. J. M., XXII.)

279. Returning to the function G of equations (8) and (10),

215, and changing the sign of the us, we may also write it

_ cr(v+ Ui+ U
2+ + UH)&amp;lt;T(V

~
UI)&amp;lt;T(V

U
2)

- . .
&amp;lt;r(v

uu )

(99)

and since we may suppose the it s and v to be all increased by

equal amounts, the condition (9) of 215 is no longer required.

Now, since G vanishes when v = ur,
where r=l, 2, 3, ..., /x;

therefore the coefficients c
,
cv c

2 , ..., CM are determined by
a series of equations of the form

= c
o+ ci^^+ c2F

/

ur+...+c^- 1
)itr ;

......... (100)

and therefore the determinant

(101)

where M is a factor independent of v
;
and now this theorem,

as a corollary of Abel s theorem, shows that the determinant

also vanishes when v=
u-^

u . . . u^.
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The symmetry of the determinant shows that M must be a

symmetric function of the us
;
or writing u for v, and denot

ing the determinant by &amp;lt;j&amp;gt;(uQ ,
u

lt
u.

2 ,
. . .

, Up\ then cp
is a

symmetric function of the it s, such that

. x _ Au . . . i -

and it will be found (Schwarz, 14) that

J. =(-1)^-1)1! 2! 3! .../il.

Thus, for instance, with
JUL
= 2,

1, pw, p zi,

=2
1, pv ^

By forming a similar function C&quot; of the u&quot;s, subject to the

condition (6) of 215, we see that (7) is an elliptic function of

v, which can be expressed by C/C ,
where C and C f

are given

by determinants, as above.

Equation (CC) is also sufficient to prove that the function

in (7) 215 is doubly periodic.

As an application of the principles of this article and of

209, 215, 216, 257, the student may prove that Q of 215 is,

writing a for uv b for u.- and u for v, given by the equations

)o-(u+ b)ar(a+ b)

&amp;lt;r(u+ a -f- b)a-u a-a orb

1
, pa, 1, pa, p a

1, p6, p ft

We thus verify the equations of 209, 257,

du
=

$(u, a)&amp;lt;t(u- t b).

When condition (6) of 215 is not satisfied, then (7) reappears

qualified by an exponential factor of the form epv when v is

increased by 2&amp;gt;o)+ 2go/; the function is then called by Hermite

a doubly periodic function of the second kind ; the function

(p(u, v) defined in 201 being the simplest instance of this

kind of function.
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280. Making the i/, s all equal, as in 218, and interchanging
u and v, the function

rfu+ftf

is a doubly periodic function which can be expressed in the

form of C
;
but now the coefficients c must be determined by

a series of equations of the form

Expressed as a determinant we may now put

pu-pv,

Finally, making u = v, and dividing both sides by
we find, in the limit,

l=M * &quot;&quot;

where

Halphen denotes this function of u by ^(p+
Thus for instance, as in 200, with /*

= 1,

= &quot; ~2 (Schwarz, 15);

.

t =-pu.

Again, with /x
= 2,

By logarithmic differentiation,

lo ^n^ = -- lo
,
= 7i

2 ^-

whence $nu can be expressed rationally in terms of

When u= v,

,
. . . .(HH)

,
$&amp;gt;
u, ____
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Also, when u = 0,

= aM(-l&amp;gt;*
+V ; ............................(102)

and therefore a^ = 0, when jj.v
= Sp^+ 2&amp;lt;?o&amp;gt;3

.

281. In the pseudo-elliptic integrals ( 218)

yuv
= (mod. wv o&amp;gt;3);

and now, knowing the number /z, the coefficients c
,
cv &,, ... in

C or xu are readily calculated from a knowledge of the values

of py, p v, p&quot;v,
...

;
in this way the results employed in 218,

219, 223, 225, 233 were inferred.

Thus, for instance, in 219, we know that

JUL
= 3, JULV

= 3a)
x+ o&amp;gt;3 ;

pv = J, p v =3V2
&amp;gt; P^t= -6, p&quot;

v = 18i^/2, &amp;gt;&quot;%
= -252, ...;

so that the ratios of c
,
cp c

2 ,
. . . can be calculated from the

equations = c + ^4- 3i^/2c2 6c3,

0- -6^+ 18^2^- 252c3.

Taking an arbitrary value of c3 , say f, we find, by solution,

V=-9, c1= -10, c
2=-3V2;

^ = fcs(f p&quot;u 31^2 p w, 10 j?u 9)

= fc3{(2 p

Now u

so that, in the algebraical herpolhode referred to axes rotating
with a certain angular velocity, we may put

thus leading to the results of 219.

As other numerical examples the student may investigate
the results of 218, 223, 225, 233

;
also the example due to

Abel (CEuvres, I, p. 142), where yu
= 5, #2 =12, #3

= 19, and
v = fw2

or ift&amp;gt;

2 , when &amp;lt;@v

= 2 or 1
;
we then find that the

values of c
,
cv c

2 ,
c
3 ,

c
4 ,

c. are proportional to

-288, -36, -48^3, 12, ij3, 0;
or -396, -252, -12i^/3, -24, ^3, 0.
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Writing s for $u, then we may put

Xu = - 288 - 36#m- 48i^/3p ie,+ 1
2%&amp;gt;&quot;u

+ iJ 3p&quot;u

= 36(2s
2-s- 10) + 12ix/3(s-4) /v/(4.s

3-12s- 10),

M = - 396 - 252w-

We thence infer that the corresponding pseudo-elliptic inte

grals involve

_ 1._ .

2(8-1)

. tan
-_

&amp;gt;~

and now by differentiation we infer that

2s+ 13 cs_ 2_ _ ,(8-4)^/^-1^-1 9)

!^&quot;

s __
&quot;

*
~

/&quot; r&amp;gt;

&quot;

x-*. ~t y-v \
&quot;&quot; /-A Ldll

S 1

J s+ 2

Thus, in the Weierstrassian notation,

= - tan
~

V)W &amp;lt;0V

with f/2
= 1 2, #3

= 1 9, according as yv = 1 or - 2.

These results may be employed in the construction of

degenerate cases of the catenaries discussed in 80, 205, 206.

Thus, for instance, the curve given by

r^o^( 2^/3u-oO~) = ^/^

is a plane catenary for a central attraction ri*wr per unit of

length, in which ( 80)

So also a tortuous catenary is given by the equations

/

/

5
cos(5$+

under an attraction nhvr to the axis Ox.
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282. Other pseudo-elliptic integrals are formed by the sum
of two or more elliptic integrals of the third kind, when the

sum of the parameters is of the form pw+ qco, as in 226, for

the expressions of and .

We shall denote the integral of the third kind in the form

(fa), 199, by $(u, v), as this we have found is the form of

most frequent occurrence in the dynamical applications ;
and

now (fa) shows that

$(u, a+ b)

,11 &amp;lt;r(a u)&amp;lt;r(b+Mog-7 i \8
&amp;lt;r(a

+ u)o-(b+

IQ
pa p

by reason of (y), 197, and (K), 200

When a+ 6 = a&amp;gt;a , p (a+ 6)
= 0, $(tt, a+ 6) = ;

and now

, 6)= -

By equation (N), 249, we may write

i
lo&amp;lt;y

g(a+ .)- gq = tanh
, 1 /Am-ea . pa-q, . pq-

p
p(a u) ea \ \pa ea.pa ep.jpu

, , p a pu e . . / /a pu= tanh- J
, ,

or % tan- 1
f

pa ea

the latter form to be employed in dynamical problems, where

p a is always imaginary ;
thence the expressions given for f

and in 226 can be inferred.

As an application we can put a+ b = a)
l + (as or co3

in 209, and

thence deduce a degenerate case of the Spherical Pendulum.

EXAMPLES.

1. Prove the following q series :

(i.)

...

... 90

(iv.) (1-

(v.) ^/(KK)^. 2q^, g^TV/cV
2

, J&quot;sl/l72S&amp;lt;/

2
,
or l/1728g, accord

ing as A is positive or negative, when q and K or // is small.
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2. With the notation of g 265, prove the theorem

=
2&amp;lt;9

1 &amp;lt;6&amp;gt;1(6-
-
y - z)0l(s-z-x^s -x-y},

where 2s=w+x+ y+ z.

Deduce the formulas

(i.) A/2sn u sn v sn r sn s

Ac
2cn u en v cri ? en s+ dn u dn v dn r dn s K Z= 0,

provided u+ v -\-r-\- 8= 0.

(ii.) K2sn -J(u -}- v+ r+ s)sn | ( &+ v r s)

X sn ^(u v+ r )sn J(w v r+s)

3. Show that

= 2(e2
- e

s) (es
- ^(^

4. Show that Weierstrass function a(u) satisfies the partial
differential equations

Show that the second of these equations is also satisfied by
the function

cra(u)/{ (ea
-

ep)(ea
- e7) }i ;

and write down the differential equation satisfied by o-au.

5. Prove that the projection of a geodesic on a quadric of

revolution on a plane perpendicular to the axis is analytically
similar to a herpolhode (Halphen, II., Chap. VI.).

6. Evaluate the surface of an ellipsoid.

7. Construct some degenerate cases of trajectories or caten

aries on a sphere, or on a vertical paraboloid or cone, employing
the numerical results of the pseudo elliptic integrals.



CHAPTER X.

THE TRANSFORMATION OF ELLIPTIC FUNCTIONS.

283. By the Theory of Transformation is meant the ex

pression, in terms of the elliptic functions of modulus K and

argument u, of an elliptic function with respect to a new

modulus X and of a proportional argument u/M; and then M is

called the multiplier, and the relation connecting the moduli

X and AC is called the modular equation.
A particular case of Transformation has already been intro

duced in Landen s Transformation ( 28, 67, 71, 123, 181, 182)

in its application to Pendulum Motion, and to the Rectification

of the Hyperbola.
In accordance with the plan of this treatise, we begin with

a physical application of the Theory of Transformation, before

proceeding to the analytical treatment of the subject.

Suppose then in 259 that an odd number, n, of such

rectangles as OABC are placed in contact, side by side, so as

to form a single rectangle OA nBnC, of length OAn = na, [and

height 0(7=6
;
and now put

OA /OC= a/5= A/A ,

so that A /A =nK IK ,
...........................(1)

where K, K denote the quarter periods with respect to the

modulus K ( 11), and A, A with respect to the modulus X.

Let us begin by placing a positive electrode at 0, and an

equal negative electrode at (7; then, inside the rectangle OB,
the vector function will be

log sn Az/a = log sn(Ax/a+A iy/b),

with z = x+ yi.
G.E.F.
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But, inside the rectangle OBn ,
the vector function of these

electrodes and their images will be that due to positive elec

trodes at 2sa and negative electrodes at 2sa+bi, where s

assumes all integral values from to n 1; and the vector

function of this system is
( 259, 275)

s= n-l

log II sn K(z-2sa)/na = log ILsu(Kx/na+K iy/b- 2sK/ri).
s = Q

The physical equivalence of these two forms of the vector

function, as seen from two different points of view, shows that

or sn(u/lf, X) =A li sn(u 2sK/n), (2)

where u/M= Az/a, u = Kzjna ;

so that M= K/nA =K /A ; (3)

this is the formula for HIQ first real transformation of the sn

function, of the nth order.

Similar considerations will show that

&amp;gt;, (4)

(5)

If, as in 263, we put

q = exp( TrK jK), and r= exp( TrA /A) ;

then r= q
n

, (6)

and X is less than /c.

It simplifies matters to place the rectangle OB in the

middle of n such rectangles placed side by side, and now s

ranges from ^(n 1) to J(?i+l); and combining equal posi

tive and negative values of s, we find, according to (7) 137,

=!(- 1) sn2
?y, sn2 2sTT OiJL W/ O1JL o(jUH

s= i JL rr

where co = K/n ;

oi&amp;gt; y=^n i

1

rXvy (8)
JjfJ. .L

^^
/C (JL w

connecting y= sn(u/M,\) and x = su(u, /c), a = sn(2sK/n).

284. Next suppose that w equal rectangles, such as OABC,
are piled on each other, so as to form a single rectangle

OABnCn ,
where OA =a, OCn= nb

;
and now put
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OA/OC = a/6 = A/A ;

so that K IK=nA!/A..................................... (9)

The physical equivalence of a positive electrode at and an

equal negative electrode at C, and of their images in the rect

angle OABC, with the positive electrodes at 2sK iy/b and the

negative electrodes at (2s+l)K iy/b in the rectangle OABnCn
and their images, shows in a similar manner that

sn(Az/a, X) =A II sn(Kx/a+K iy/nb
- ZsK ijn),

where s may assume all integral values from to n l, but

preferably, from J(??, 1) to i(?i+ l); or

sn(u/M, X) = A II sn(tt
- ZsK i/n, K),

...........(10)

where u/M Az/a, u = Kzja ;

so that M=K/A =K /nA -,

.....................(11)

and now, with

q = exp( TrK jK), r=exp( xA /A),

we have r = q
1 / 1

,
..............................(12)

and now X is greater than /c.

Similar considerations show that, by placing positive and

negative electrodes at A and C, or B and C, we shall obtain

the formulas

cu(u/M, \) = BTL cu(u - 2sK i/n) ;
............ (13)

du(u/M, \) = CIL dn(u - ZsK i/n) ;
............ (14)

these are the formulas for the second real transformation of

the elliptic functions, of the Tith order.

A similar physical interpretation of Transformation may be

given in connexion with the curvilinear rectangles bounded by
concentric circular arcs and their radii, as discussed in 270.

285. Besides the first and second real transformations in

which q is changed into q
n and q

lin
,
now denoted by r^ and

T
O ,

there are in addition n 1 imaginary transformations,

when n is a prime number, in which q is changed into wpql/n
,

denoted by rp ,
where p = 1, 2, 3, ..., n 1, and o&amp;gt; is an

imaginary Tith root of unity ;
so that, corresponding to a given

value of K, the modular equation of the ?ith order, if prime
will be of the (?i+ l)th degree in X, having the roots

^oo \) ^l ^2 ^n-l&amp;gt;

of which two only, X and X ,
will be real

;
\x &amp;lt; K &amp;lt; X .
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We need only consider the Transformations of prime order,

as a Transformation of composite order, mn, can be made to

depend on the transformations of the mth and nth order.

The different transformations of the mrith order are formed

by changing q into
&amp;lt;?

m/n
;
so that the number of transformations

for any number in general is the number of divisors of mn
;

reducing to ?i+ l, as before, for a prime number n.

For a transformation of order ri2 there is one real transforma

tion for which q remains unaltered, and we thus obtain the

formulas for Multiplication of the argument u by n.

286. After this physical introduction, we can proceed to the

general algebraical theory of Transformation, as developed by
Jacobi in his Fundamenta nova theories functionum ellipti-

carum, 1829.

The theory in its generality consists in the determination of

y as a rational algebraical function of x, of the form

y=Uir, .............................(15)

where U and V are rational interal functions of x,

so as to satisfy a differeotial relation of the form

Mdy dx

where X= ax*+ 4bx*+ 6cx2+ dx+ e, \

Y=Ay*+ 4,By
s+ 6Cy

2+ 4&amp;lt;Dy
+ E,)&quot;

Making the substitution of (15), we find that we must have

dx

and the first condition requisite is that

where T is a rational integral function of x, of the (2n 2)th

degree ;
and now, if we can make

(20)

where If is a constant multiplier, the Transformation is

effected.
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But if U and V are both of the nth degree, or if one of the

nth and the other of the (n l)th degree, so that either an or

bn (not both) is zero, this is necessarily the case
;

for any

square factor in (U, F)
4 will appear as a linear factor of

dU ndV
j V U

=j j

dx dx

which is also of the (2n *2)th degree, and can therefore only

differ from I
7

by a constant factor M.

The Transformation is now said to he of the nth order.

By taking X of the sixth, instead of the fourth degree, Mr.

W. Burnside has derived hyperelliptic integrals (Proc. L. M. S.,

XXIII.) from the elliptic element dy/*JY, similar to the hyper-

elliptic integrals of 159, 160, by means of substitutions of

the second, third, and higher orders.

Now denoting by a, /3, y, S the roots of the quartic X = 0,

and by a, /3 , y, S
f

those of Y
;
so that, resolved into factors,

X= a(x-a)(x-/3)(x-y)(x-S),

Y=A(y- a!)(y
-

/3 )(y
- y }(y

-
&amp;lt;T) ;

then A(U-aV)(U-/3 V)(U- 7 V)(U-S V)

= aT\x-a)(x-fi)(x-y)(x-$} ,

and now a factor, such as U a V, must be composed of linear

factors, such as x a, and of the squares of factors of T.

In the expression y = U/V there are at most 2n+ l arbitrary

constants
;
and in determining 7 and Vso as to satisfy relation

(19) we determine 2n 2 of these arbitrary constants; thus

there remain at disposal three arbitrary constants, correspond

ing to the three constants involved in an arbitrary linear

transformation, such as that obtained by writing ( 139)

(lx+m)l(l x+m }
for x,

as exemplified in 153, 160, where the constants I, m, I
,
m

are chosen so as to make X and Y quadratic functions of y?

and ?/
2

.

When X and Y reduce to quadratic functions of x and y,

the elliptic functions degenerate into circular and hyperbolic
functions : and now there is no Theory of Transformation,

except for the change from circular to hyperbolic functions, as

in 16.
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287. Jacobi, in his Fundamenta nova, works throughout
with the differential relation for the sn function ( 35)

dx

connecting x= su(u, K) and y= su(u/M, X).

Now, if y=U/V,
then, since u = makes x = and y = 0, y and therefore U
must be an odd function of x, the other, V, being an even

function
; so that for an odd order of the transformation

Since x= I, y = l: X= !/K, ?/
= l/X; etc., are simultaneous

values of x and y, the relation connecting x and y may be

written in any one of the following forms,

1+ y = (I+ x)A*/V, or V+ ff=(l+ x)A*;

1_ y = (l- x)A
/z

/Vt
V- U=(l- x)A *;

(I- Kx)C
2

;
.....(22)

where A and G are rational integral functions of x, of the

^(n l)th degree, which become changed into A and G when
x is changed into x

;
so that we may put

A=P+Qx, A =P-Qx,
C^P + Vx, C =P -Q x,

where P, Q, P , Q are even functions of x
;
and therefore

l-y l^-ocP-Qx\* l-\y l^
1 + y l+oj\P+Qaj/ l + \y l+KX\P -Q x)

O^lVinO* W ~&quot;^ $/ *&quot;~:
-

a ^ a ( ^O )

When the order n of transformation is even, we put

and now 7+ U= (1 + x)( 1 + Kx)B*, V+\U =D2
,

y-^=(l_a;Xl-^)5/2
, F-X^7=D 2

;
.........(24)

where 5, D are rational integral functions of x, of the (^n l)th

degree, changing into Bf

and D when x is changed into #;

so that we may put

B= R+Sx, B =R-Sx-

where R, S, R t
Sf

are even functions of x.
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288. The number of independent constants represented by

the a s and 6 s in U and V can be immediately halved by

noticing that a change of u into u+K i has the effect of

changing x into l/Kx and y into l/\y ( 239); and therefore of

interchanging U and V.

An algebraical simplification is thus introduced by writing

X/\/K for x and y/^/\ for y, as in 143
;
the differential rela

tion now becomes of the form (Cayley, American Journal of

Mathematics, vol. 9)

Pdx
(25)

and 2a = jc+l/K, 2/3
= X+ l/X, ..................(26)

,
. sn(u, /c) sn(pu, X) .

connecting x=, -, y *-~ -

v K

and now, if y= U/V,

for an odd order n of transformation, involving only n co

efficients B
,
B

lt
...

,
Bn _i, and therefore n l arbitrary

constants in y ;
also Bn_i=pB .

It follows then that, in the original relation y=U/V, con

necting aj = sn(w, K) and y = su(u/M,\), if a2 x2 is a factor

of 7, then 1 /c
2a2x2 must be a corresponding factor of V

;
and

we thus obtain the expression of y as a function of x given in

equation (8), and in addition the relation

\ = M*KnILa*, (27)

so that we may write

y = M^xILj^_~^ (28)

Professor Cayley writes equation (25) in the form

(i+

where the ^ s and S s are the zonal harmonics of a and
/3.

289. Writing this equation (28) in the form

which is an equation of the ?ith degree in x, the roots of which

are x = snu} sn(u2a&amp;gt;),
...

, sn{u(?i
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where
o&amp;gt;

= 2K/n or 2K i/n for the two real transformations, we
find that the sum of the roots

_

or combining the equal positive and negative values of s,

\ ( u ^ \ 2 sn u en 2so&amp;gt; dn
-^r^sm ^, X

)
= sn u -h 2 =-5 -:-5

/elf \lf / 1 /c
2sn2

2so&amp;gt;sn
2u

the expression for ?/ when the product in equation (8) is resolved

into its partial fractions
;
and similar expressions hold for the

en and dn functions (Jacobi, Werke, I., p. 429 ; Cayley, Elliptic

Functions, p. 256).

290. We need not therefore confine ourselves, with Jacobi,

to the Transformations of the sn function
;
but we may some

times find it preferable to seek the relations connecting
x = cn(u, K) and y = cu(u/M, X),

when
( 35

; Abel, (Euvres, I., p. 363)

Mdy _ dx

/(!
-

2/

2 V
or the relations connecting

x = dn(u, K) and y=

_-,
2

~ - 2 2
~

relations already given in (4), (5), (13), (14) of 282, 284.

But Prof. Klein points out (Math. Ann., XIV., p. 116) that

it is the differential form of 38 (really Rieinann s form),

connecting z = sn2
(u, /c)

and t = sn2
(u/lf, X),

and leading to the relation, on writing k for /c
2 and I for X2

,

Mdt
dz^_ _ , ,oo\~

which is the most fundamental in the theory of the elliptic

functions sn, en, and dn
;
the periods now being 2/f and 2K i,

instead of 4&amp;gt;K and ZK i, etc. ( 239) ;
the quadric transforma

tions (of the second order)

z = x2
,

1 x2
,

or 1 A2
,

t = y\ l-if, or 1-X2
/, .................(34)

leading immediately to the preceding transformations of the

sn, en, and dn functions.
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291. The Theory of Transformation may be developed en

tirely from the algebraical point of view
;
but Abel has shown

how the form of the transformation of the nth order may be

inferred from the elliptic functions of the nth parts of the

periods, called by Klein, modular functions.
Thus taking the first real transformation connecting

in relation (33), then

- -nd-*y -HA

D= II(l-A;a0)
2
, ......................(35)

where a = sn*2sK/n, /3
= sv-(2s-l)K/n,

arid the products extend for all integral values of s from 1 to

!(-!&amp;gt;

The form of the factors is inferred by Abel from the con

sideration that

(i.)

where s and s are integers ; and, from equation (3),

z= sn2
2sK/n = Q, or a;

(ii.) when =
l, ^Y=(2s-l)A+2s A%

u = (2s
-
l)K/n+ 28 jfiT *,

z = sn\2s- V)Kjn= 3 or 1;

(iii.) when t = l/lt u/M=(2s-I)A + (2s -l)A i,

u = (2s
-

1)K/n+ (2s
- I)K i,

z= sn*{(2s-I)K/n-K i}
=

l/k/3 or l/k.

(iv.) when t = co
, u/M= 2sA+ (2s

-
1)A i,

z = sti2(2sK/n
-K i)

=
1/ka, or oo .

Similarly the relations can be inferred connecting
3=cn2

(tt, K) and t = cn2
(u/M, X),

or z = du2
(u, K) and t = cn2

(u/M, X),

not only for the first real transformation, depending on equa
tion (3), but also for the second real transformation, depending
on equation (11), and also for any one of the imaginary
transformations of the nth order.
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292. In Weierstrass s form the relation is

dx

connecting x= p(u; g2 , g3)
and y = p(u/M; 72,73),

by a relation of the form

y=U/V;
and this must be equivalent to relations of the form

y-ea
= (x-ea)A*/V, or (x-efi&IV, or (x-eJC*IV, (36)

for a transformation of odd order; giving

so that V must be a perfect square ;
thus leading to the

requisite number of equations for the determination of the

arbitrary coefficients in U and V, and an equation over, which

relation may be made to connect the absolute invariants J
and J

,
and corresponds to the modular equation.

For a transformation of even order, we shall have

U

equivalent to relations of the form

9-+
and therefore

A 2 x-68 B* x-ey &amp;lt;7

2

si* r 5= 3*
or

**
.....( &amp;gt;

293. In the Weierstrassian form we determine the relation

connecting x=
$&amp;gt;(u, J) and y=p(u/Mt

J
).

But without altering J we may write ( 196)

and now, if w, M denote the real and imaginary half periods of

$&amp;gt;(&, J) or pu, we may take w/n, u&amp;gt; as the periods of ip(u, J )
in

the first real transformation of the nih order
;
and w, af/n as

the periods in the second real transformation (Felix Muller, De

transformationsfunctionum ellipticarum; Berlin, 1867).

The first real transformation, of odd order n
t may now be

written

similar to equation (30) for the sn function, and obtained in a

similar manner.
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By integration of this equation ( 195)
S~~

n), (41)
8= 1

where G^l* 2
p(28a&amp;gt;/ri)

= p(2sw/n) ;
.................(42)

S=l 3=1

and integrating again,

log &amp;lt;r(u,
J )

=
(j^u

2+ log o-u II o-(u 2sa)/ri)(r(u+ 2sco/ri),

&amp;lt;r(ut
J )

= CeG^o-u n
&amp;lt;r(tt

-
2sw/n)o-(u+ 2so/%).j ............ (43)

The constant C is determined by putting u = 0, when

cru a-(u

= n x

(r(-2sa)/n)(r(2sw/n)
and now

,r(, JQ = e^Wn&quot;)(7(28^-:^2
r/n+M)

a=l (7-(2Sft)/7l)

p2sa&amp;gt;/7i),
......................(44)

by formula (K) of 200.

Thus, for instance, with 7i = 3,

o.(u, JO = e
G
^(cm)*(&U- GJ, ............... (45)

where (7
1
= p|o) = ^Jw,

and therefore satisfies the equation of 149

v...............(46 &amp;gt;

Denoting by 6r
2
and 6^3 the transformed values of #2

and gB,

they are found by a comparison of coefficients in the expansion
of both sides of equation (44) in ascending powers of u ( 195).

Thus, if J&quot;=0, or g.2
= Q, then 6^ = or^3 ;

and taking the

value G
l
= 0, then J = 0, G2

= Q, GB
= -27gB ,

and

&amp;lt;r(u; 0, -27gB)
=

(&amp;lt;ruf&u
...................... (47)

Employing the principle of Homogeneity of 196, this

equation may be written

(r(uiJ3) = iJ3((ru)
3
&u, ...............(48)

leading by differentiation to

itu&amp;gt;
..............(49 &amp;gt;

and 3P(&quot;V3)=-3^+-= ~^+ ...... (50)

since g2
= 0, as in 47.
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Thus, if
&amp;lt;/3

is positive, and &amp;lt;o

2 , o&amp;gt;2
the real and imaginary

half periods ( 62), then ft)
2 /a&amp;gt;2

= i^/3 ;
and if we take u=

fo&amp;gt;2 ,

then &
3u = g3 ( 166, 233) ;

so that pw2

/= 0.

Again, putting u co2
in equation (49) gives

%V3 =
3jfe........................... (51)

Making use of the last equation of 202, we find

As a numerical exercise the student may construct the

following table, and also fill in the values for u = w2 &amp;gt;

o&amp;gt;2 , Jo)2 ,

-Jo&amp;gt;2 , |-w2 , |eo2 ,
...

; taking #2
= 0, &amp;lt;73

= 1
;
these numerical results

are useful in the problem of the Trajectory for the Cubic Law
of Resistance, discussed in 227-234.

,+ (V2+D
3 7ry.3

IW */2 + l)
3eT&quot;^

1 ^V3

-* 3
ie

Linear Transformation.
294. In Chapter II. the general elliptic differential

has been reduced to Legeridre s standard form

and to Jacobi s, or rather Riemann s standard form (11) of 38,

by various substitutions, in 39, 40, 41, 42, 43, etc., which are

practical illustrations of the Linear Transformation.

In 160, the six linear transformations are given which,

according to Mr. R. Russell, reduce

dx/^/X to the form dz/J(Atf+ 6Cz*+E).
In determining the linear transformations, of the form

y= U/r=(aSI&amp;gt;+ p)l(yX+ 8)...................(52)

which satisfy Riemann s differential relation

Mdy _ dx _-,~

connecting x= $n\u, K) and y = su2
(u/M,\),
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we notice, by 139, that the absolute invariant J is unchanged ;

so that, according to 68, there are six values of I, given by

= k,

1
l-fc, 1-4;fc-1 &&amp;gt; !-& A;

and six corresponding linear transformations, in which

Afi aK+bK i

.(53)

cK+dK i
and be ad=l; (54)

a, b

c,d

1

1
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Landeris Transformation of the Second Order.

296. The point L ( 28) in figs. 2 and 3 has been called

Landens point, because of the use made of it by Landen

(Phil. Trans., 1771, 1775) for his transformation, important

historically as the first case investigated of the Transforma
tion of Elliptic Functions, being the Quadric Transformation,
or of the second degree.

The ratio AD/AE being sin2
|a or /c

2
,
while EL/EA = cosa

or K
; therefore, if C is the middle point of AD,
LG AL-AC AE-EL-^AD
GA AG

_ 1 cos a \ sin2a _ (1 cos Ja)
2

_ 1 cos

J sin2a

The ratio LC/CA is denoted by X
;
so that

21~ a.

(l-OM */* =(l-W, and /cX
/=

different forms of the modular equation of the second order.

Still denoting the angle ADQ in
fig.

2 by 0, we denote the

angle ALQ by i/r;
and now ( 28) since the velocity of Q

is 7i(l+/c
x

)^Q, perpendicular to CQ, therefore the component

velocity of Q, perpendicular to LQ }

LQ d^/dt= n( 1 + K )LQ cos LQG,
or d\ls/dt

= n(l+ K )cos LQG.
sin LQG LG , ,

But since :
=

777,
= X, therefore

sin
I//- CQ

sin LQG= X sin ^, cos ZQ&amp;lt;7= VC1 - x sinV) = A(^, X) ;

and d\lsldt
= n(l+ K )&(\Ir, X),

or ^=am{(l+icM X} .........................(60)

Now, since the angle LQC=2(j&amp;gt; \fs,
therefore

sin(20 -&amp;lt;//)

= A sin
i/r;

...................................(61)

/__ =~ nr tan

or tanx^ =\ /- ft
..............................(03)

1 K tan 2
&amp;lt;

sin
i/r
=

(1 H-^sin cos

as in equation (92), 67.

Putting nt = u, (!+K) nt = v, then
sin^&amp;gt;

= sn

and we obtain the formulas (90) to (98) of 67.
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297. Landen starts with the relation (61) ;
so that, differen

tiating logarithmically,

cot(20 \fs)(2d&amp;lt;p d\{/)
= cot

\lr d\[s,

2 cot(20 ^)c?0 = {cot(20 \I

sin 20 d\fs

sin
\jr sin(20

sin 20 cosec
\fs

~
cos(20 \/s)

Now cos(20
- ^) = ^/(l

- X2sin2
x/r)

= A(^, X) ;

while sin 20 cot
i/r

cos 20 = X,

cot
\js
= cot 20 -f X cosec 20,

cosecV = 1 + (cot 20+ X cosec 20)
2

,

sin220 cosec2^ = sin2
20-f(cos 20+ X)

2

= 1 + 2X cos 20+ X2

= (l+X)
2 -4Xsin2

0,

or sin 20 cosec
\lr
= (l+\)J(I- K2sin2

0)
=

(1 + X)A(0, AC),

where /c = 2x/X/(l+X) ;
so that, finally,

c?0 _K1+W d+ _(l+QcZ0.~

so that, if = am(n, K), then
^/r
= am{(l+/c

/

)ni, X}, and the

angle \/r may be made to represent pendulum motion on the

circle CRL, on CL as diameter, LQ meeting this circle in It.

The velocity of R will then be due to the level of L
,
a point

on CE produced, such that CL = CL/X
2

;
and now we find that

EL = CL -CE=EL,
after reduction, so that L and L are the limiting points of the

circle AQD with respect to the horizontal line through E\ but

now the value of g in the motion of R on the circle CRL must,

in accordance with 20, be reduced to
J&amp;lt;?(1 O4

-

. L Q_LD_EL+ED_ K + K
-

2_I+ K

LQ ~LD -EL-ED- K - K *-T^&quot;

so that ( 28) the velocity of Q is

n(l+ K )LQ, or n(l- K )L Q.................(65)

The period of R in the circle CRL is half the period of Q in

the circle AQD; so that, if A denotes the real quarter period
of the elliptic functions of modulus X,

^ or (l+A)A = Jf. . ..(66)
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298. Conversely, as in 123, we can express the elliptic

functions of modulus K and argument (1 + \)v in terms of the

elliptic functions of modulus X and argument v
;
or starting

with the motion of R, we can deduce the motion of Q.

But considering the motion of Q as defining in a similar way
the motion on a larger circle, to a larger modulus y, we change
X into AC and K into y, where

1 y , 1 K

and now, from 123,

,. . x 1 AC sn2
(u, AC)

dn(l+/c.u, y)
= -

-^-M&amp;gt;

/., v

cn(l + K . w, y) =

1 + AC sn2
(u, AC)

cn(u, Ac)dn(u, AC)

1 + K sn2
(i6, AC)

called Landens Second Transformation.
With x = sn(u, K), y = sn(l+K .u,y\ v/here y

then

.(68)

AC),

and - y
2

. 1 -yV)

Or, with x = dn(u, AC), 2/
= dn(l + AC . u, AC),

y = 9*

= 2/c -s-F,

1-2/ =2(1 -a;2
) s-F,

leading to the differential relation, (3) of 35,

dy _ (1 + K)dx

(69)

(70)
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299. Denoting by T the real quarter-period of the elliptic

functions to modulus y, then x= 1 makes y = 1, or u =K makes

(l+ K).u = T ;
so that

or (66) (l + X)A = /i=4(l + y )r.........................(71)

Also, A ,
K

, r&quot; denoting the corresponding quarter periods to

modulus X , K, y, the imaginary transformations of 238 show

that, with iu = v,

, N/v cn(v, K)dn(v, K )

cn(l+,c .v, X)= -.-

cn(l+/c .v, y )
=

3 /i ,
/

&amp;gt;/N

1 /c sn 2
(v, ic )

dn(l + K . v, X )
= .

,
, z ,

(&amp;gt;

l+rsn*(v, /c)

1 (1 /c)sn
2
(t , /c )-

so that A = (1+OK , r
or i(l4.X)A = K

/ =
(l + y )r ;

.................. (73)

and therefore 1 A!=^= 2^. ... (74)
J A -LV 1

An inspection of Landen s formulas shows that the dn func

tion has always a rational Quadric Transformation.

Mr. R. Russell shows (Proc. L. M. S., XVIII.) that the

general rational quadric transformations which reduce

dx/JX to the form

are always of the form

Pv P2, P3 denoting the quadratic factors of G, the sextic

covariant of X
( 160).

Thus if X= 1 - x2
. 1 - K*X*,

the sextic covariant may be written

leading to Landen s transformations, given above.
G.E.F X
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300. Landen s Transformation is useful, as employed by

Gauss, for the numerical calculation ofK
;
for if we put (fig. 2)

LA = a, LD= b-, and GA = av GL = J(a* - b*) = |(
-

&) ;

then o
1
= J(a+ 6), b,

= J(ab); and K = b/a, X^bja^ ...(76)

Now, denoting \js by &amp;lt;f&amp;gt;v and X by KV equation (64) becomes

2^0 dfa . (?7)

^(tt
2cos2 + 62sin2

0) ^/(a
2

while 0!
=

TT, when

so that

i+ 6
1

2sin2
]

_
/*&quot; _ %
yJW**fa+bfafy

or =
l
aa

fl
=K

1(l+ Kl)......................(78)

Continuing this process with
15
a

lf
and b

lt
so as to obtain a

continuous series, given by ( 296, equation 62).

= - tan
&amp;lt;p
n ,

, 6n+l = V(an&n); ............. (79)

then a rt
and 6W tend to equality ;

so that, putting

a= & =/* and =^
/!L_J^/(a

2cos2

r*r

or
a

._, .-., . -*) (8&amp;lt;&amp;gt;)

r=l r=l

Denoting the modular angle of KH by n ,
then

Kn+l = sin (9n+i
= tan2

J$n ;

COS 9n+ i
= SeC2 J0n-v/(COS ^n)

and 1 +/CH+I = sec2 J0n = //
n

^x
&amp;gt;

so that

jfir= jTrsec OVC008 cos ^ cos 2
cos 93 ...), (84)

a formula suitable for the logarithmic calculation of K.
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The Transformation of the Third Order, and of higher

Orders.

301. According to Jacobi s method, the transformation may
be written

1 _i_&amp;lt;?/
i i -&amp;gt;-v i i ~/ v&quot;*y

connecting x= sn.(u t K) and y= sn(u:M, X) ;
and then

i q + 1 +aV _ x I-x*/a
z

l + (a
2+ 2a)B

2
~M l-K*aW~

so that l/Jf=2a+l,

-

leading to the differential relation

*

We shall find that, expressed in terms of a,

=

and ,,_(l-a)(l+a)
s

,, _ ( 1 + aX_l
-

a)
3

&quot;&quot;

so that

leading to the Modular Equation of the Third Order.

We shall also find that this transformation ma} be written

1 cn(u/M, X) _ 1 en u/a -f 1 + a en u\ 2

1 -f- cn(u/M, X) 1 + en uAa -f 1 a en uJ
*

l+dn(u/4fl A)~~l+dn iAa+1-dn J ^88)

As a numerical exercise the student may work out the case

of a

In Legendre s notation, with ic = siu0, ?/
=

sinx/r, he finds

tliat these relations are equivalent to

The Transformation of the Third Order was the highest to

which Legendre attained, until it was pointed out by Jacobi

in the Astronomische Nachrichten, No. 123, 1827, that Trans

formations exist of the fourth, fifth, or any other higher order,

as already explained.



324 THE TRANSFORMATION OF ELLIPTIC FUNCTIONS.

tt

,

Thus the transformation of the fifth order may be written

1 _ xn _

and of the seventh order

and so on.

302. When the transformation of the third order in 157 is

employed for the reduction of the integral in equation (6), 227,

then s3 =-E&quot;
3
/P

2
, (92)

where P =p3- 3p
2sin2a+ 3p, (93)

and ./T =&amp;gt;
2cos2

a+psin a 1, (94)

as in equation (27), 233
;
so that ^=0 and 8 = at the points

of minimum velocity.

Now, with this substitution of 157,

s = p(yx/w
2

; 0, A), (95)

where A = 4- 3 sin2a = 27#3 , (96)

( 228) ;
and denoting

/ao

-V&amp;lt;1*&amp;gt;

then 0Q9
= 0, p JQ2=-/JfA

&amp;gt;

and #9Q 9
= i-Tr^S ( 293).

Again (157), v (

where J=p*(3 sin a- 2 sin3
)
-
3^

2
(2
- sin2 )+ 3p sin a - 2,

and J+P/v/A = 2{i(sina+ /v/^)P- 1
}
3

/-P
/v/A = 2{Ksina-v/A)p-l}

3
.............(97)

Now from 233,

^/A = cos a(tan /3+ cot {$),

|(sin a 4- &amp;gt;v/A)

= J cos a(tari a + tan /3+ cot
)8)
= cos a tan /3,

J(sin a x/A) = J cos a(tan a tan /3 cot /3)
= cos a cot $

. ., sin 6
while p = -.

---

cos(a 6)

Therefore

(^; u&amp;gt; -A) -^112.2

5 0,
-

cos a tan ^ sin cos(a 0) _ tan(/3 0) _ tan
(j&amp;gt;~

cos a cot /3
sin cos(a 0)

~
tan /3 ~&quot;tanj

_V (u- 0, .g3)-^

( 234) a curious result of this transformation.
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Again, since $ %a).2
=

tf ^wy we may put

and then, making use of relation (17) of 229,

&amp;lt;r(ia&amp;gt;2
-

u)o-
2
(^.2+ w)P(il2+ u)

by means of (K) 200, and the relation #?fo.\2
=

;
and this

again, by equation (CC) 279 and by 293, reduces to

_ flr(}Qi
- tt

; 0, -A) ..-
; 0, -A)

6

Transfoi^mation of the Theta Functions.

303. Taking the function, as defined in 263, 265 in the

factorial form,

0(x,q) = &amp;lt;j&amp;gt;(q)Il(l-2q

2r - lcos2x+ q*
r - 2

\ ...... (100)
r= l

where
&amp;lt;f&amp;gt;(q)

is a certain function of q which 264 shows can be

written
&amp;lt;f&amp;gt;(q)

= H(l - q-
r

\ .................................. (101)

then changing x into nx, and q into q
n

,

0(nx, q
n
)
=

(p(q
n
)Ii(l-2q-&quot;

--
lc

II_

S

f[ {l-2(/
2r - 1c

? = ! = o

(by Cotes s Theorem of the Circle of 270)
fi.(f1n\ s= n-l

=
{Sl?&amp;gt;

a!+8 /n ?)...................... (102)

Similarly, with yu
=

l, 2, 3,

Forming the quotients, and writing x for %7rU/K, then ( 263)
1 0-.X

and thence we obtain the formulas for the Transformation of

the Elliptic Functions of 283.
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Similar considerations will show that, when q is changed to

where yu
= 0, 1, 2, 3

;
this is left as an exercise (Enneper,

Elliptische Functionen, 38).

EXAMPLES.

1. Prove that a transformation of the fourth order is

1 1 x lKX/Ix
+y

and prove that the relation between X and K is then

and M=
2. Prove that, by means of the substitutions

cosh ^u sinh &amp;lt;&

=-r-r ,

u+ sinh u cosh

cosh ^u sinh &amp;lt;

or sin =
.. ,

t rn ~isinh JM+ cosh iucos

u cosh

dO = sech

cosh

(cosh u+ sinh u cosh
o

1 .3. 5...2m-l 1 /*^ (sinh ^)
-3.. . 2u - 2m

o

3. Prove that, with the homogeneous variables #
1}
#
2
of 155,

and writing Xl
for dX/dx^ X2

for dXjdx^ the general cubic

transformation which reduces dx/+JX to the form

is of the form z= (lX1+mX2)/(l Xl+m X2 ) (ex. 8, p. 174).

Prove also that the general quartic transformation may be

written z = (lX+ mH)/(lX+m H),

where H denotes the Hessian of the quartic X ( 75).

(R. Russell, Proc. L M. 8., vol. XVIII.)
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4. Prove that (Cayley)

satisfies the relation

dy pdoc

Modular Equations.
304. In the Transformations of the nth order, which con

nect the Elliptic Functions of modulus X with those oi

modulus K, and make r = q
n

,
or q

lln
,
or a)Pq

l/n
( 285),

A i K i 1 K i 2pK+K i ,, .aK+bK i nn^
&quot; or - or ~ or senerally (106)

where 6c ad = n,

the Modular Equation, which determines X in terms oi /c, is of

the (?i+l)th order, as already stated, when n is prime, and

has two real and n 1 imaginary roots.

We shall content ourselves with merely stating the Modular

Equations of simple order, connecting K, X and AC
,
X , adopting

the form and classification employed by Mr. R. Russell in the

Proc. London Math. Society, Vol. XXT.

CLASS I. 71 = 15, mod. 16
;

Q= 4

E = 4

7i. = 15, P3-

CLASS II. w = 7, mod. 16;

= 7, P = 0, or 4/(/cX)+ /4/(/c X
/

)-l, (Guetzlaff).

-23, P-3 = o, or 4/( /cX)+4/(/c
/

X
/

) + (256 /cX/X
/

)
TV

= 71, P3 -4E4(P2
-Q)+ 2PPl-P-0.

= 119, P8-J^(7P5-28P8Q-hl6PQ2)+ JR8
(...)...=0.
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CLASS III. n = 3, mod. 8
;

p=
Q =J

n = 3, P = 0, or J(K\)+ J(K \ )
= I, (Legendre).

7i=ll, P-/# = 0, or

7i = 43, Pu +...=0.
7i = .59, P5 + ... = 0.

^ = 83, P7 +...=0.

CLASS IV. ?i = 1, mod. 4?
;

w = l, P = 0.

7i = 9, P6- 1 4P3J2+ G4PQ^- 3-R2 = 0.

71=17, P3-Hlop2 -64Q)+ 26JAP+ 12/2 = 0.

7i = 29, P^(P
2+ I7R*P- 9R%)

JR^gP
2- 64Q-

7i = 37,

71 = 53, P2{P4+ ^(413P3-2 1(5PQ)+.

305. According to Professor Klein (Proc. L. M. 8., X.
;
Math.

Ann., XIV.) these Modular Equations are replaced by relations

between the absolute invariant J and its transformed value /
,

by the intermediate of quantities T and T ,
such that J is a

certain function of T, and J the same function of T ,
and now,

7i = 2; /:/-!:!= (4T -1)
3

: (T- l)(8r+ l)
2

: 27r,

TT =1 (60).
7^ = 3; /:,/-! :1= (T- l)(9r-l)

3
: (27r

2- 18T- I)
2

: -64T,

TT=1.
71 = 4; J:,/-l:l=

(T
2+ 14r+l)

3
:

(T3-33T2 -33T H-1)
2

: 108r(l-r)
4

,
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w=5; J:J-l:l= (-r-
: (T-2_

TT=125.
71 = 7; J:J-1:1 = (T

2+13T+ 49XT
2

7()T-7)
2

: 1728T|

72 = 13; J:J-l:l= (

: (T
2
+6T+13)(T

6+10T5+46T4+108T3+122T2
+38T-1)

2
: 1728r.

rr = 13.

The Multiplication of Elliptic Functions.

306. If we perform the second real transformation upon the

first real transformation, we obtain a transformation of the

order n2
, leading back again to the original modulus K ;

because

the first real transformation changes q into q
n

,
and the second

real transformation changes q
n back again to q.

We then obtain the elliptic functions of argument

u/MM
t

=nu, since M = K/n-A, Mr

=A/Kf

in terms of the elliptic functions of argument u, by a trans

formation of the order n2
,
and thus obtain the formulas for

Multiplication of the argument.
Thus multiplication by 2 or 3 can be obtained by two suc

cessive transformations of the second or third order
;
and so on.

Knowing that the order of the transformation is n2
,
we

infer in Abel s manner the factors of the numerator and

denominator of the transformation, involving the modular

functions, the elliptic functions of the 7ith part of the periods.

Thus we infer, with the notation of 258, that, for an odd

value of
71,

snrm = UjV, ........................................(107)

where U= n sn u II IlYl - ~

v=

where m, m =0, 1, 2, 3,..., $(n-l);
the simultaneous zero values of m and m being excluded.

as denoted by the accents, so that the number of factors is
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Combining the factors by formula (7) of 137,

sn(^-O/^), (108)

where A is a constant factor
;
and this may be written

sn?w= 4nil8n(%+ Q/w); ...................... (109)

where m, m = 0, 1, 2, ..., +(w-l);
the simultaneous zero values of m and m being now admissible.

Similar considerations will show that

cn?iu= nncn^-f Q/TI), ........................(110)

dnwtt=0nndn(tH-Q/tO........................ (Ill)

To determine the constant factors, change u into u+K or

u+K i, when we shall find (Cayley, Elliptic Functions, 368)
4 = (-1)^-1)^2-^ B = (K/K^- I

\ C= (l/ic )K
n*- l

\

By taking in 259 a rectangle OA nBnCn ,
in which (M 7l

= ?ia
&amp;gt;

OBn= nb, and therefore containing ?i
2
elementary rectangles,

we obtain a physical representation of the formulas (109),

(110), (111) for Multiplication of the argument by n.

Writing u/n for u, and making n indefinitely great, we
deduce in a rigorous manner the doubly factorial expressions
for sn u, cnu, dnu in (1), (2), (3) of 258.

Again, by putting /c= or /c = l, the student may deduce as

an exercise the trigonometrical formulas for the resolution of

the circular and hyperbolic functions into factors.

(Hobson, Trigonometry, Chap. XVII.)

The Complex Multiplication of Elliptic Functions.

307. When K \K ^/D, and D is an integer, we may sup

pose the multiplier n resolved, by the solution of the Pellian

equation, into two complementary imaginary factors, so that

and now the multiplication by n can be effected by two suc

cessive multiplications by the complex multipliers a-\-ib^/D

and a ib^/D, each leading to an imaginary transformation of

the Tith order, not changing q or the modulus K.

(Abel, (Euvres, I, p. 377
; Jacobi, Wcrke, I., p. 489.)

The first requirement then in Complex Multiplication is a

knowledge of the value of K for which K jK= *JD ;
and this

is found by putting K = X , K = X in the corresponding Modular

Equation of the order D ( 304).

The equation is now, according to Abel, always solvable

algebraically by radicals
;
so that, returning to the question of



THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. 331

the pendulum in 1 5, it is possible to determine by a geometri

cal construction the position of two horizontal BB , W, as in

fig. 1, cutting off arcs below them, such that the period of swing
from B to B is ^JD times the period from b to V.

Thus the Modular Equation of the second order being

written X = (1
- K )/(! +* )

we find, on putting /c = X,

X2+ 2\ = l, or \ =J2-1, when A /A = ^/2.

Putting K = \ , K=\ in the Modular Equation of the third

order ( 304),

2
/v/( /c/c )

= l, or 2/c/c = i=sini7r, when K /K=J3;
so that the modular angle is TW or 15.

When K /K=2, /c = U/2-l) 2
(71);

obtained by putting r/r = l, y = y =J^/2 in 298,299.

When K /K = j5 t
2KK = Jo-2~ 4/(2^ ) =KV5 - 1 X

or (2/c/c )~^-(2/c/c f = 1.

When K IK=J*l t 2^/(^ )
= l, 2 =

, 4/(2 )=i-

Collections of these singular moduli required in Complex

Multiplication are given by Kronecker in the Berlin Sitz.&amp;gt;

1857, 1862, in the Proc. L. M. S., XIX., p. 301
;
also by Kiepert

in the Math. Ann., XXVI., XXXIX., and by H. Weber in his

Elliptische Functioned, 1891.

308. In the expression of y = sn(a-\-ib All/D}u as a rational

function of x= snu, leading to the differential relation

Mdy dx ,

Jacobi finds (TferA;e, t. L; de multiplicatione functionum

ellipticarum per quantitatem imaginariam pro certo quodam
modulorum systemate) that we must restrict a to be an odd

integer, and b to be an even integer ;
but these restrictions

disappear if we work with the en functions
;
and we can

even suppose that 2 and 26 are odd integers.

Let us determine then the relations connecting
x = cnu and ?/

= cn J(

so that I/M= -J + Ji

leading to the differential relation

dy (

where C = K/K, the cotangent of the modular angle.
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If D= 4&amp;lt;n 1, and we denote (K+K i)/n by w
,
we shall

then find that, when n is odd,

c

ic ic

but, when ti is even,

. --(1

x
T

c c

ic

The arithmetical verification for the simple cases of D = 3,

7, or 15 is left as an exercise for the student (Proc. Cam.
Phil. Society, Vol. V.).

Formulas (112) and (113) are inferred by putting

(1) y-1,
when -J(

- 1 + i^/D)u = 2mK+ZmK i (m+m even) ;

and then u = fanK (m+ m^co, x = en 2? ft).

(2) ?/=-!,
i-(
- 1 +iJD)u = 2mK+ ZmK i (m+m odd) ;

and then x = cn(2r l)w.

(3) y = ic,

i (w+m odd);

(4) y=-ic,
\(-l+iJD}n = (2m+l)K+(2m +l)K i (m+m

x

even):
and then x= cn(2r l)co.

309. When D = 4&amp;gt;n+ I or 1, mod. 4, the relation connecting
oj= en u and y = en \ (

1 +i^D)w cannot be rational ; but Mr.

G. H. Stuart has shown (Q. J. M., Vol. XX.) that it may be

written in the irrational form
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where o&amp;gt;

-(K+K i)/(2n+ 1),

a transformation of the order n+ i
;
and this is equivalent to

2

-F,

F= (i_?)n(l+- -I ;
......(114)

V ic/ I cn(2?- l)o&amp;gt;J

this is inferred in the same manner as formulas (111) and (112).

For instance, with n = 0, D = 1, and K = J^/2, c = 1
;

i/ -I , -\ //-\ //^+ cn u\
en J( 1 +i)u = *J(i)J( ^J-y

\ \i en u/

equivalent to, with u = (1 -f i)v,

/1 .. .1 icnzv
cn(l \)v = ^^-:. ,-

1 + i cn2t

With w = l, D = 5, 2/c/c = x/5 - 2^ =

/c _v/5
+ l, U5 + 1.V c
2 V 2

and en i - 1 +iou

where a = en i(lf+K i).

310. Generally in the expression of y = $ulM as a function

of # = #?&, where
w /w or K i/K=J(-D),

and the multiplier 1/Jlf is complex, of the form

it is convenient to consider four classes of 1).

Class A, D = 3, mod. 8
;

Class B, D = 7, mod. 8;

Class C, D = l,mod. 4;

Class D, D = 2, mod. 4;

the class for D =
0, mod. 4, not requiring separate consideration.

It is convenient also to consider the discriminant D ( 53) as

negative ; a change to a positive discriminant being effected by
the method of 59

;
now w Jw.2 = i^/D.

We can also normalize the integrals ( 196, 252) by taking

g*- 27#3
2 = -

1, so that g,
=

J/(
-

J).
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CLASS A. D =
3, mod. 8 = 8p+ 3 or 4&amp;gt;n-l, if n = 2

The relation connecting x and y can be written in one of

the three equivalent forms

-eJ IL {x-^1+ 2ra)3M)}
2-

F,

V= H{x-p(2r

leading to the differential relation

Mdy _ dx

This verifies in the particular case of p = 0, when

and then

This is the simplest case of Complex Multiplication,

meationed in 196, and employed in 227 in the determina

tion of the Trajectory for the cubic law of resistance.

The form of the general transformation is inferred from the

consideration of the series of values of u which make

y or
&amp;lt;p(ujM)

ev e
z , e%,

and GO .

(i.) When y = e
lt

u/M=

2n

so that ic or
$&amp;gt;u

= e
x
or

(ii.) When y = e
2 ,

= e, or
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(iii.) When y = e
s ,

u= g

&amp;lt;pu

= ev or ^w24-r ft)3
?i or

(iv.) When y=ac ,

it = 2gw2+ 2 /

and $m = j0(2ro&amp;gt;3/?i).

Hence the form of the Transformation is inferred.

By addition, we find

n&amp;gt;n
A ,

7&amp;gt;

n - 1 i A fii
- 2

j re) ^O ~~ X1 1 iXy ~f XI
,-)&amp;gt;Aj

. .

^ i ji I
^__^__
(o;P-(71

^- 1 + (?^-
2
...)

2

where ?i = 2p+ l; and we shall find that xl
1
= 2(r

1 ;
and the

xl s and (? s are symmetrical functions of ev e.
2&amp;gt; e%,

and there

fore functions of
g&amp;lt; #3

or J\ while ^ has the same significa

tion as in 293.

By employing the Modular Equations given above, or

employing Hermite s results (Theorie des equations modu-

laires), we find

=3, J=0, 9t
= o,

n T -* 8
=11, J=-, g,= g=

) A _^ , .

/i -&quot;-2 -jo .3~

= 3, 9s

these values of J.
,
A

3 , A, A
5
were calculated by Rev. J.

Chevallier, Fellow of New College, Oxford, who has also

verified the case of D= 1 1 .

D =27, J=-29 x53 --32
,

etc.

D =35, & = f /v/5{iU/
D =43, /=-2x5,

^ =3x7x^43 (Hermite).

73^43, etc.

=51, /=-64.(5+ Vl7)
3U/l7 + 4 )

2
(Kiepert).
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D =67, ,/=-29 x5 3 xll 3
, #2

=

#,
= 7x31x^/67 (Hermite).

D =163, /=-2 12 x53 x233 x293
, J(g2+ l)

= % x 7 x 11,

(/3
= 7xllxl9xl27x /163 (Hermite).

CLASS B. D = 7
t
mod. 8 = 8^ + 7 = 4^-1, if n = 2p + 2.

The relations connecting y==p(u/M) and o; = pu, where

are found, in a manner similar to that employed in Class A ;

-
ej(x

- e9) Yl\x- p( 2+ 2n*&amp;gt;
: }

2
-f- F,

24- 7,
r-O

Jf2 nf {^ - pfo+ 2ro,} 2
-j- F,

r

As simple numerical applications,

/&amp;gt;
= 1 5, ^//c/c

= sin 18 (Joubert).

In these cases the Jacobian notation is almost more simple,

as given in 308.

CLASS C. D = 1, mod. 4 = 4n+ 1.

The relations connecting x =
&amp;lt;pu

and y = tfu/M), where

cannot now be rational
; but, according to Mr. G. H. Stuart,

we can express the relations in the irrational form

a relation which may be said to be of the order n+ \
and

this is equivalent to
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CLASS D. D an even number.

In this class the simplest function to employ is the sn func

tion
;
for instance, with

K \K= ^/2, then K = v/2 - 1
;

sn-u
~~&quot;

2 i)

&quot;

and

where
&amp;lt;o

=
J(K iK ) ;

leading to the equations

1 K.y_ 1 #/! + Kx sn wV2

1 -f Ky 1 + 5\1 /ca? sn o&amp;gt;/

connecting ic = snu and y = su(l-t-

/2 i
Also = 2 = ^

These transformations show that it is not possible to express

cn(l-Mx/2)i6 in terms of cn-u-, or dn(l + ? v/2)u in terms of u,

by a rational transformation.

With K /K=2, then /c = (v/2-l)
2

(71),

and the relation connecting x = snu and y = sn(l + 2i)u may
be written

/ /y.2 \ / ^2 \

sn*4w/

(l-A23n2
2a))(l-/c-

--&amp;gt;

where
o&amp;gt;

=
i( A&quot; iK ) ;

equivalent to the relations

/ T \ 7 / Vn - ^_\ /ij a

l-y 1-lrtBJ

1-

sn z

so that cn(l + 2i)i6 has a factor dnw, and dn(l + 2/)w, has a

factor en u.

G.E.F. Y
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When K/K=J6, then K = (*J3-J2)(2-

and the corresponding relation between snu and

to be written down is left as an exercise.

(Proc. Gam. Phil. Soc., Vols. IV., V.)

It can also be shown, in the preceding manner, that the

relation connecting x=
&amp;lt;pu

and y = $(ujM) where

i\}\d D is an even number 2m, can be expressed by the relations

-c,A =M\x-,g H -pi--&amp;lt;&amp;gt;2
/ + v

&amp;gt;

As numerical exercises, we may take

(i.) D = 2, when ^= 30, $r8
= 28, ^=-

(ii.) D = 4, when
&amp;lt;/2
= ll, $r8

=
7, G^-

oil. In conclusion we may quote from Schwarz some

general remarks on doubly periodic functions.

Every analytic function
&amp;lt;/&amp;gt;u

of a single variable u for which

an algebraical relation connects
&amp;lt;f)(u

+ v) with
(fru

and
&amp;lt;/&amp;gt;?;

is

said to have an Algebraical Addition Theorem
;
and then

&amp;lt;f&amp;gt;u

must be an algebraical function of 0u (Chap. V.).

Every such function is then an algebraical function, or an

exponential function (circular or hyperbolic function), or an

elliptic function, which can be expressed rationally by pu and

V u (Chap. VII.).

Elliptic functions are doubly periodic. A function of a

single variable cannot have more than two distinct periods,

one real and one imaginary, or both complex. For if a third

period was possible, the three sets of period parallelograms
obtained by taking the periods in pairs would reach every

point of the plane, so that the function would have the same

value at all points of the plane, and would therefore reduce to

a constant (Bertrand, Calcid int&jral, p. 602).
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Abel, in generalising these theorems, was led to the discovery
of the hyperelliptio and Abelian functions.

Thus if X in 169 is of the fifth or sixth degree, we obtain

functions of 2 variables and 4- periods ;
if of the 7th or 8th

degree, of 3 variables and 6 periods; and generally, if X
is of the degree 2p+ l or 2p+ 2, there are p variables and

2p periods ;
but this would lead us beyond the scope of the

present treatise, and the reader who wishes to follow up this

development is recommended to study Professor Klein s articles
u
Hyperdllptische Sigmafunctionen&quot; Math. Ann., XXVII.,

XXXIH., etc.
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I. The Apsidal Angle in the small oscillations of a Top.

The expression given by Bravais in Note VII. of Lagrange s

Mdcanique analytique, t, II, p. 352, for the apsidal angle in

the small oscillations of a Spherical Pendulum about its lowest

position is readily extended to the more general case of the

Top or Gyrostat, if we employ the expression on p. 201, 242,

as the basis of our approximation.
We divide the apsidal angle ^ into two parts, ^ and

&quot;^

such that i^l
=

ar]l a)l^(ij^
f2
=bth -w^b-

and now put a = o)3 sa&amp;gt;3 ,
b = w

l+ qcDs ,

where q and s are small numbers; so that, expanding by

Taylor s Theorem as far as the first powers of q and 8, we may

put ^a

and now, by means of Legendre s relation of p. 209,

But, from equation (B), 51,

vu e;,- ^ = 2 = 1

so that, integrating between the limits and oov

o

or ^ + e
l
ta

l
= V(e

i
~

s)^ (Schwarz, 29).

Also (51) (^-^3)0)!- ^/(^-e.^K-
so that

i^!+ &amp;lt;?

3wi
= V(^i

&quot;&quot; e
z&amp;gt;(K

~~ ty
and therefore i^ = \i-jr+^3^/( fl

i

340
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But, from 210, when a and ft are very nearly TT, their

approximate values are given by

since f
//

a
=

2(e?1
e
3)(e2 e

s)&amp;gt;

and K
2 =^A ^ = Vzi2( 52);

and therefore

Also ( 210)
G-Cr

;

/C
2

so that (^
- e

3)qV- - T -2

cot2 i cot2

2

_
Therefore ^^ JTT+ 3

jc cot Ja cot

E

But, ultimately, when /c= and /c

r

=l,
then ^=i7r, and lt(/i _^)/AC

2 = i 7r (11,170);
so that Mfj^ JTT+ ITT cot Ja cot i/3,

7r cot - a cot 3.

This reduces for the Spherical Pendulum, in which (7? = 0, to

^ S JTT( 1 + f cot Ja cot J/3) S $ir(l + 1 sin a sin /3),

when a and ft are nearly TT, thus agreeing with Bravais s result.

When a = 7r and 6r-f-(7r= 0, this approximation fails; but

the student may now prove that the apsidal angle is

This will be the apsidal angle when the Top is spinning in

the vertical position with small angular velocity /
,
and is then

struck with a slight horizontal blow.
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II. The Motion of a Solid of Revolution in infinite friction-

less liquid.

The reductions of the Elliptic Integral of the Third Kind

in 282 in consequence of the relation

a+ b = u&amp;gt;a ,

in connexion with the Top and Spherical Pendulum, are useful

also in constructing degenerate cases of the motion of a Solid

of Revolution in infinite liquid, as mentioned in 211.

We refer to Basset s Hydrodynamics, Vol. I., Chapters

VIII., IX., and Appendix III., also to Halphen s Fonctions

elliptiques, II., Chap. IV., for an explanation of the notation
;

and now T the kinetic energy of the system due to the

component velocities u, v, w of the centre of the body along

rectangular axes OA, OB, 00, fixed in the body, 00 being the

axis of figure, and to component angular velocities p, q,r about

OA, OB, 00 is given by

T=$P(u*+ v*)+$Rwz+ }2A(p*+ q*)+ $Cr* (A)

(to which the terms

P (up+vq)+P wr

may be added in the case of a body like a four-bladed screw

propeller, or like a rifled projectile provided with studs or

spiral convolutions on the exterior).

Then the Hamiltonian equations of motion are

d
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Multiplying (1), (2), (3) by ||, g, g adding and in-

tegrating, proves that

/32V
,

/37V /32V .

I
- -

) + (
) + (

-
)

is constant ; or
\du/ \dv J \dwJ

pi(u*+ v~)+RW = F 2
,

.....................(B)

F being a constant, representing the resultant linear momentum
of the system.

Similarly, it is shown that

-dT^T -dT^dT 3T3T.
- is constant : or

r=G, ...................(C)

where G is a constant, representing the resultant angular
momentum of the system.
From equations (A) and (B),

A( p*+ q-)
= 2T- 6V2- RuA- P(u

2+ v2
)

and, from equation (3),

so that ^y or ^^(; is an elliptic function of t.

Taking the axis Oz in the direction of the resultant impulse

F, and denoting by yp y2 , y3
the cosines of the angles between

Oz and OA
t OB, 00, so that

then, with Euler s coordinate angles 6, &amp;lt;/&amp;gt;, ^,
= sin $cos = sin^sin

-_p cos + sn ~

so that
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G+ CFr J__ G-CFr 1
4&quot;

__
2AF 1+C080 2AF l-cos0~ dt

suppose ;
and then

,
CFr-GcosO

The equations given by Kirchhoff ( Vorlesungen iiber mathe-

matische PhysiJc, p. 240) for a, fa y, the coordinates of with

respect to fixed axes O a, /3,
O y (O y parallel to Oz) are

^-
- ^-; ..................(9)at Vu &v 3w

where av 2 &amp;gt;

as denote the cosines of the angles between O a

and OA
t OB, 00; and fa, fa, fa, the cosines of the angles

between O p and OA, OB, 00.

Expressed b}^ Euler s coordinate angles,

a^ cos 6 cos
&amp;lt;p

cos
\^r

sin
&amp;lt;f&amp;gt;

sin ^,

2
= cos sin cos

\/r
cos

(/&amp;gt;

sin
i/r,

a 8
= sin cos ^r ;

fa = cos cos sin
i/r+ sin cos

\/r,

fa = cos sin sin
i/r+ cos cos

i/r,

j#3
= sin ^ sin

i/r ;

while p = s^n
&amp;lt;f&amp;gt;0

sin cos \^,

g = cos 00+ sin sin
i/r,

r= 0-}- cos \js ;

so that, after reduction,

Fa =A cos
i/r

ft+ (Or J. cos ^)sin 6 sin
i/r,

^S=A sin
\/r

- (Or-A cos ^)sin 9 cos ^,

Writing Fx for ^cos or Rw, equation (D) becomes

n*i(x&amp;gt; if (IT rv ^V2- 1

&amp;lt;&

-
l
(a

&quot;

Tj/1 4 2

suppose, where n2

T\D~pJ-
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Denoting the roots of the quartic X = by x
ot
xv x

2 , x^

we may put, according to 151, 152,

x-x =

j._ / -
. ._ _3

pu pc pc eB

and now, when x oscillates between x.2 and x%,

u = nt+ o)3
.

The letter u has been used here in two senses, to agree with

the ordinary notation
;
this need not however lead to confusion.

Differentiating,

(u f&amp;gt;

2

2
&amp;lt;p (
u c) ^ 2c

-
c) + p(-u -f c) ;

so that we must write v for 2c and u for u c, to agree with

Halphen s notation.

Now, to determine y,

F =

(F-̂nP
so that, in a complete period 2^ of the motion, the point

will have advanced parallel to O y a distance

F2

also ( 152) 6^2c = coefficient of x1 in X.
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We now suppose that u = a makes #=1, and u = b makes
x 1; then

(pa- &amp;lt;pc)(&amp;lt;pu

-
pc) (p&

-

J?^Lf?lc_ _ .G CFr p 6 p c _ .6+ CFr

(pa- pc)
2
~

4Jfy,
&quot;

Then

di\ls l _ \ p a(pit-

&amp;lt;/% (pa

^
!

pa pc pM,-a
= -

!((
~ c)

-KO + c)+ fa

and similarly
;

^i=-
and therefore

ty = - .|Pu+ i
log

where

Also

= -a; =

$&amp;gt;

2
c($&amp;gt;u

-
pa)(p?&amp;gt;

- pu)

(pa - pc)(p6
-
pc)(pw

- p

o-(a
-

c)a-(a+ c)o-(6
-

c)o-(6+ c)a-
2
(u
-

so that

giving the projection on a plane perpendicular to 00 of the

motion of a point on the axis OC
t relatively to 0; also

We find also, as in 224, that if the values a
x
and b

l
of u

correspond to

then
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But now introduce the condition

a+ b = w (t ,

when, according to 282, \[s
becomes pseudo-elliptic.

Putting =tan-

and, employing 6 instead of a, this may also be written

so that
1+XQ

. l + Xa l-X
Q

. l-

and therefore each is equal to 1, and

snce x +
and, changing to the complementary angle.

XR.X X-y

X X
Q .XXa

-sin-i /^-^-*7_ M-i Ix-Vo-Xc^x
V 2^2^&quot;&quot; V ~2-7 2

with o. a &amp;gt;

a;^
&amp;gt; a; &amp;gt; ic7

&amp;gt; # .

Differentiatin,

so that

-I
~~

iC&quot;

provided that n(x +xa)
= GjAF, n(l + x xa )

= Cr/A.

The quartic ^ must therefore break up into the two-

, ,. fe (7?- Gx Cr
,

quadratics ^-- + -1 and ^+-^--,--1$
Mid

= (T&_W_(GX
- CrF

^
so that the requisite relation when a+ 6 =

o&amp;gt;,
is
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Now

so that sin2# sin 2= ^Ar

, sin2 cos 2=
and g=mt-\ls,
where m= J (a; + a;a )

-
JG/A F.

Also, from (7) and (8),

F(a cos r+ 3 sin \/=A6
= A n^/JT/sin 6 =An sin sin 2f ;

JP( sin
\/r /3 cos i/r)

= (Cr xl cos 0\^)sin ^

CrF-GcozO
-f^TO -An sm0 cos 2

Therefore ^ a = An sin 0(sin 2 cos
\[s

cos 2 sin
\/r)

= J.?i sin sin(2 \js)

= Ans\n sin2m#-

^/3 = ^1% sin Q c

= ^4 sin 6 c

Now in the motion of a point on 00, relative to 0,

sin 0e^ = sin cos(mt g)+ i sin 0sin(m

_^r/ jX-XQ .Xa-X . lxp-X.X
W&quot; ~&quot;2~ *V~ ^~T~

where a; = cos a
When b a = wa t

and
V^i&quot;^ or ^ s pseudo-elliptic, we

shall find that 6r and Or are interchanged, and

JCtJ

then 2T-Crz- ^= ;
........................... (F)

^L

so that P*(V+ v2

)
=

As a numerical exercise, we may take, in addition to (F),

G = 4&amp;gt;AFn, Or =2^/7An;
then X = x4-Wx2+IG /J7x-l5

=
(a;

2 - 2J7x+ S)(x*+ 2^-
5) ;

= 60, (/8
= 88, ^ = 1+2^/3, 2 =-i&amp;gt;, 3

= 1-2^/3;
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pa= -
8, pb = 1

;
a = a&amp;gt;8 ,

6 = Wl
-

Ja&amp;gt;3 ( 225) ;

pc = 2v/7+ 3, p c = - 8^7 - 20, 92c = 5, p 2c =
Now we shall find that

=etc.

sin3 cos 3(nt
-

\fs}
=

(
- f+ *J7 cos - cos20)*,

sin*08in3(nt ^)
-2 cos + 7 cos/- cos 0-

MISCELLANEOUS EXA^IPLES.

1. Construct a Table exhibiting the connexion between th^

twelve elliptic functions

sn u, ns u, dc u, cd it
;

en u, ds u, nc u, sd u
;

dn it, cs u, sc u, nd u.

2. Construct a Table of the values of the sn, en, dn of

u-\-mK-\-nK i in terms of sn u, en it, dn u ;
also of the elliptic

functions of ^(yiiiK-\-nK i),
for m, tl=0, 1, 2,

3. Prove that, accents denoting differentiation,

(i.)
sn it dn&quot;it sn&quot;u dn u = sn u dn u, etc.

(suit)
2

, snt&sn tt, (sn u)
2

(ii.) |(cnu)
2

,
en it cn%, (cn tt)

2 = /c
/2sn u cuudn u.

(dnu)
2

, dnudn fi, (dn^t

(G. B. Mathews.)

4. Denoting by (m, n) the function

sn (um un)cr\(um+un )

en um

prove that

(4, 1)(4, 2)(4, 3X2, 3)(3, 1)(1, 2)+ (4, 1)(2, 3) + (4, 2)(3,

Denoting by A, B, G the functions

z] sn( 7/)sn(s a;)

z)sn(x y}&quot;

prove that ABC+A +B+C=0.
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5. Prove that
/~2u

(i-) IK sn vdv = 2 tanh - l

(K sn2
u).

o

(ii.) A sn(2 it -f a)du = tanh
~ x

{ K sn u sn(i& -f a) } .

o

fK
(ill) / log us mfot = \TrK -\K log I/*.

o

6. Determine the orbit in which

P = h?(u
3+a2u5

),
the apsidal distance being a.

7. Rectify r*a*co8|0,

8. Prove that the perimeter of the Cassinian Oval of 161

. 4/3
2#

IB e^her - =

and draw the corresponding curves.

9. Prove that the length of the curve of intersection of two

circular cylinders, of radius a and &, whose axes intersect at

right angles, is 8a
%l**^ K2 = 2

/6
2

;

and verify the result when a = b.

10. Prove that K and K satisfy the differential equation

d ^n fr^l 1 7^ o
d/c\

L(l
~

Lj dkr 4

Deduce the relation

die

and thence deduce Legendre s relation ( 171).

11. Prove that CTJ and C7
2 of 252 satisfy the differential

2 -
equation

12. Deduce the Fourier series for snu, en u, dnit of 266,

267 from the series for Zu of 268, making use of Landen s

Transformations and of equations (28), (29), (30) of 264.
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13. Prove that

n i s _
;

.... ,

14. Prove that, if a variable straight line meets the curve

Atf+Byt+Cx+D^Q
, y2X^s ya) then ( 166 )

.Vl 2/2 ?/3

15. Denoting the integral

/*
xydx , ~

tf^x by fo)

o

where y is given as a function of # by the equation

prove that, for three collinear points,

16. Prove or verify that, with
&amp;lt;/2
= 0, the solution of Lame&quot;s

differential equation

s =

1
s =

(Halphen, Memoire sur la reduction des equations difftren-

tidles, 1884.)

17. Determine, by means of elliptic functions, the motion of

liquid filling a rectangular box, due to component angular
velocities about axes through the centre parallel to the edges.

(Q. J. M., XV., p. 144
;
W. M. Hicks, FeZocify and

Potentials betiveen parallel planes, p. 274.)
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18. Prove that, with x = %7ru/w and A = ^/w ( 278),

and thence convert the formulas (M) to (T) of 249 into-

Jacobi s notation.

19. Prove that ( 264, 20*)

l/Q=
T

fl(l
_
fr) =

m

r=l m

20. Prove that

(in.) ,_= II-

21. Prove that, in Appendix II., p. 34G,

O2

-
b}
-

Work out the case of

An*
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