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ABSTRACT

This paper describes the use of inductive learning in MARBLE, a

knowledge-based expert system I have developed for assisting business

loan evaluation. Inductive learning is the process of inferring

classification concepts from raw data; I use this technique to

generate loan-granting decision rules based on historical and pro-

forma financial information, A learning method is presented in this

paper that can induce decision rules from training examples.
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I. Introduction

A major issue in designing knowledge-based expert systems for

decision support is the process of knowledge acquisition: the encoding

of human expertise into decision rules that can be incorporated in

the expert system. The knowledge acquisition process is the main

bottleneck in building expert systems for several reasons. First, even

an expert of the given problem domain may not be aware of exactly what

decision rules he/she has been applying; usually it would take a

knowledge engineer to spend tedious interview sessions with the expert

to identify a useful set of rules that can capture the necessary

expertise and experience in the given domain. Second, there may not be

experts in some domains or, when there are several experts specialized

in the same area, it is often difficult to get consensus on the set of

decision rules to use. Third, even when the decision rules have been

determined and employed in the knowledge base, the expert system still

needs to have a means to refine the rules continuously.

This paper describes a research aimed at automating the knowledge

acquisition process for knowledge-based decision support. The principal

objective is to investigate machine learning technique for deriving

decision rules in the expert systems. Specifically, an inductive

learning method that can extract concepts or decision rules from raw

data is described; such a method can be characterized as learning by

example because the set of raw data provides decision examples made by

human experts. Throughout this paper, I shall describe the application

of inductive learning in MARBLE, a knowledge-based expert system for

business loan evaluation.
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The remainder of the paper is organized as follows. Section II

reviews the knowledge-based approach to decision support and describes

a prototype I have developed for business loan evaluation, emphasizing

the importance of machine learning in such a system. Section III intro-

duces concepts acquisition by inductive learning. Section IV describes

an algorithm for inductive learning. Section V describes an example on

commercial loan evaluation using the approach presented in Sections III

and IV. Finally, Section VI discusses such related issues as

probabilistic reasoning and conceptual clustering in the context of

inductive learning and knowledge-based decision support.

II. MARBLE: A Knowledge-based Decision-Support System

II. 1 An Overview of the System

The research described in this paper is part of an ongoing effort

to develop a knowledge-based expert system specializing in financial

decision support for commercial banks. The system, referred to as

MARBLE (standing for "an expert system for managing _and Recommending

business loan evaluation), is a MYCIN-based system [7] consisting of

decision rules for evaluating commercial loans. It applies the judgment

exercised by experienced loan officers in arriving at lending decisions

for commercial loans.

marble's architecture consists of three major program modules: the

Consultation Module, the Explanation Module, and the Knowledge Acquisi-

tion Module, as shown in Figure 1. The Consultation Module interacts

with the user to obtain information about the factual information for

the problem, so as to generate decision information. An example of the

question/answering session between the Consultation Module and the user
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of MARBLE is shown in Appendix 1. In the process of decision support,

the Explanation Module can provide justifications for the rules taken

or explain the question posed to the user. The Knowledge-Acquisition

Module is used to derive decision rules or to refine MARBLE 's knowledge

base. The inductive learning method described in this paper is to be

embedded in this module.

Insert Figure 1 Here

Characterized by the often large amount of data and program modules

(models) involved, a decision-support system is usually linked with an

external database and a model base [2]. It has been shown that the

knowledge-based expert system provides a very good environment for this

type of decision support [25]. The system's problen-solving process,

then, consists of a sequence of operations utilizing information from

the knowledge-base, external database, dynamic database (sometimes

referred to as working memory), and model base. In the case of MARBLE,

the model base can contain program modules for financial analysis,

forecasting, simulation, or regression. The external database typically

contains the historical loan data and financial information of companies

applying loans. Therefore, special care has been taken to handle the

interface between the system's knowledge-base, model base, and database

[26].

II. 2 Modeling the Loan-evaluation Decision

Typically, the evaluation of a business-loan application is a sub-

jective decision process made independently by loan officers, bank

controllers, auditors, and bank examiners. The loan-granting decision
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usually relies on examining a large amount of historical and pro forma

financial information and on judgmental evaluation on the company's

market characteristics, industry performance, management competence,

and accuracy of the information obtained.

The loan-evaluation decision is traditionally analyzed by statisti-

cal linear models, such as regression analysis [22] or multivariate

discriminant analysis [13]. As pointed out by Haslem and Longbrake [12]

and Kaplan and Dietrich [13], statistical analysis with linear models

cannot capture the subjective judgments and the qualitative evaluation

so important in the lending decision. In essence, the expert-system

approach used by MARBLE is akin to the heuristic simulation method

employed by Cohen, Gilmore, and Singer [6]; they both simulate the

decision process of loan officers. MARBLE, however, employs production

rules as the basic knowledge representation, which has been pointed out

as an effective model of the human decision-making process [21]. In

addition, the recent knowledge-based technology enables MARBLE to be

equipped with uncertainty reasoning, explanation, and incremental

refinement capabilities. As will be shown, inductive learning can be

applied to enhance further MARBLE ' s performance by automatically

acquiring decision rules for loan classification.

II. 3 Knowledge Acquisition in MARBLE

Knowledge acquisition is the transformation of problem-solving

expertise from some knowledge source to a program. Potential sources

of knowledge include domain experts, textbooks, and raw data. It is

widely recognized that knowledge acquisition is a crucial process in the

construction of knowledge-intensive systems because of the difficulty of
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truthfully incorporating all specialized facts, procedures, and

judgmental rules about the problem domain [7]. Currently, the

knowledge-acquisition process in MARBLE is primarily achieved through

learning by being told, which is essentially the transformation of

explicit domain knowledge into the representation form used by the

expert system, sometimes referred to as "knowledge engineering,"

The ability to learn has long been recognized as an essential

feature of intelligence. Dietterich et al. [9] categorizes learning

methods into four areas: rote learning, learning by being told, learn-

ing from examples, and learning by analogy. This paper describes an

inductive learning method that would help MARBLE augment its knowledge

base through "learning by examples." The use of inductive learning to

generate knowledge has been an important area of AI research. The work

by Winston [29] pioneered the application of inductive learning to

deriving conceptual descriptions for classifying block-world struc-

tures. Buchanan and Mitchell [3] developed a rule-learning method for

discovering domain-specific knowledge used in inferring chemical struc-

tures from mass spectrum. Michalski and Chilausky [18] described

PLANT, an expert system for soybean disease diagnosis; they performed

an empirical study showing that the combination of learning by being

told and learning from examples in PLANT can improve the diagnosis

accuracy.

Insert Figure 2 Here

The primary application of inductive learning in MARBLE is to

determine decision rules from examples of classification decisions done

by domain experts (Figure 2). This capability would be very valuable
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in credit analysis, where the problem is to extract the classification

knowledge from a large amount of historical financial data. The widely

used traditional data analysis techniques, such as factor analysis or

discriminant analysis, only provide a scoring function with little

interpretation. Inductive learning, on the other hand, can help detect

interesting conceptual patterns or reveal structure in the data. The

other application of machine learning shown in Figure 2 is to refine

the decision rules based on past performance; this needs to be done

empirically by analyzing the performance trace, and will not be included

in the discussion of this paper.

III. Concept Acquisition by Inductive Learning

III.l Inductive Learning: A Review

Inductive learning can be defined as the process of inferring the

description of a class from the description of some individual objects

of the class. Each class can be viewed as a concept which is described

by a concept recognition rule as a result of inductive learning; if an

input data object satisfies this rule, then it represents the given

concept. For example, a recognition rule for the concept "good customer"

might be;

"A customer whose asset exceeds $1,000,000.00, total-debt

is less than $250,000.00, and whose annual growth-rate is

more than 10%."

Using first-order predicate calculus (FOPC) as the knowledge

representation, such a concept can be represented by a conjunction of

attribute descriptions:

customer (t) A (asset (t) > 1,000,000) A (total-debt (t) <

$250,000) A (AGR(t) > 0.10) ^ (class (t) = 'GOOD')
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An alternative way to represent such a concept is to use the

variable-valued logic (VL) proposed by Michalski [16, 17]. The VL

language is an extended form of if-then rules where many-valued vari-

ables are involved. The premise section of each rule is a conjunction

of multivalued attribute variables; each variable is enclosed by a

bracket with the corresponding attribute values. The aforementioned

concept recognition rule can be represented by the VL formalism as

follows:

[assets > $1,000,000] [total-debt < $250,000]

[AGR > 0.10] > [class : 'GOOD'].

I shall use the VL formalism for knowledge representation throughout

this paper for its simplicity and clarity.

In performing concept formation tasks, an induction program is pre-

sented with objects, usually consisting of a set of attribute-value

pairs as object descriptions. The program is expected to generalize

from these examples and derive the common concept so as to accurately

classify new objects. Sometimes negative examples—i.e., objects which

fail to exhibit the concept—are presented to facilitate the process

and to improve the accuracy of the learning. Angluin and Smith [1]

used the following specifications to define an inductive inference

problem:

(1) the class of rules being considered;

(2) the hypothesis space, sometimes referred to as the description

space, which consists of a set of concept descriptions such that

each rule in the class has at least one description in the hypoth-

esis space;
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(3) for each rule, its set of examples, and the sequences of examples

that constitute admissible presentations of the rule;

(A) the class of inference methods under consideration;

(5) the criteria for successful inference.

Essentially, inductive learning is an inference process executed in

the hypothesis space; this inference process reads in examples and out-

puts concept descriptions taken from the hypothesis space. The suc-

cessful implementation of the inference process depends largely on the

adequate handling of the following design issues:

1. Organization of the hypothesis space.

2. Representation of the inference rules.

3. The inference method.

4. Criteria for evaluating hypothesis.

5. Criteria for successful inference.

The remainder of this section will give a more detailed look at each

of these issues.

III. 2 Hypothesis Space

Since the major step in inductive learning is concerned with the

process of generalization, it is useful to organize the hypothesis space

in such a fashion that the generalization relation is explicitly repre-

sented. The subsumption relation in predicate logic can provide such a

structure. The subsumption relation formally represents the relative

generality (or specificity, for that matter) between two logic descrip-

tions. If A and B are two well-formed-formulas (wffs), A subsumes B if

and only if there exists a substitution a such that the descriptions in

a(A) are a subset of those in B. For example, RED-HAIR(x) & TALL(x) &

TEACHER(y) subsumes RED-HAIR(a) & TALL (a) & TEACHER(g(a) ) & ENGLISH(g(a)

)
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with the substitution a = {a/x, g(a)/y}. If A subsumes B, then A is

more general than B, which implies that A can apply in more situations

than B. Based on this subsumption relation, the descriptions in the

hypothesis space can be placed in a partial order according to the

generality of each description. This type of hypothesis space is used

in [20], [28] and [17].

Another structure used for organizing the hypothesis space is the

decision-tree structure where a node with b branches in the tree repre-

sents the corresponding attribute has b different values in the example

set. Quinlan [23] and Lee and Ray [14] used decision tree to structure

the hypothesis space of their learning programs.

III. 3 Inference Rules

In the general AI problem-solving process, rules are used as state-

transformations in the effort to achieve the desired goal, which then

provides the solution to the problem. In the same vein, inductive

learning can be viewed as a process of transforming initial concept

descriptions to intermediate concept description to, ultimately, the

inductive concept descriptions. The transformations are achieved by

using inference rules.

There are different types of inference rules used in inductive

learning. Michalski [17] developed a set of generalization rules to

facilitate the searching of the inductive concept descriptions and to

guide the movement in the hypothesis space. The AM system described in

[15] used roughly AO heuristic rules to create new concepts; the rules

are used to achieve such learning functions as generalization, speciali-

zation, permutation of function arguments, and reasoning by analogy.
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These types of inference rules serve as "refinement operators" to im-

prove hypothesis.

III. A The Inference Method

The process of inductive learning is often implemented as a heuris-

tic searching procedure [15, 20, 24]. Concept descriptions are derived

through a sequence of transformations to generate the goal descriptions

in the hypothesis space. Descriptions satisfying the training examples

provide the initial condition; negative examples provide constraints to

reduce the search space. Because there are enormous amounts of concept

descriptions contained in the hypothesis space, successful inference

methods often utilize heuristic information to guide the search and

bypass unnecessary searching paths.

It is important to choose a representation for the rule space in

which generalization can be accomplished by inexpensive operations.

Mitchell's version-space algorithm takes advantages of the partial

ordering of the hypothesis space. He defines the version space as the

set of all concept descriptions that are consistent with all the train-

ing examples so far. Initially, the version space is the complete set

of possible concepts. The version space is progressively reduced when

more training examples are presented. Positive examples force the

program to generalize and, consequently, the more specific concept

descriptions are eliminated. Conversely, negative examples force the

program to specialize, so the more general concept descriptions are

removed from consideration. The version space gradually shrink in this

manner until only the desired description remains.
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Another approach for facilitating the process of generalization is

to use the set of negative examples as constraints to rule out undesir-

able points. The central methodology underlying the learning programs

in [17, 18, 19] is based on the concept of a star. A star of the

example e against the set E, denoted G(e/E), is defined as the set of

all maximally general expressions that satisfy the positive example e

and that do not satisfy any of the negative examples in E. This method-

ology essentially decomposes the problem of finding a complete descrip-

tion of a concept into subproblems with each subproblem aimed at finding

the star that covers one positive example but none of the negative

examples. In the process of generating the stars, the descriptions can

be generalized and simplified by the aforementioned transformation rules

or refinement operators. The rule-learning algorithm described in

Section IV is based on this star methodology.

As previously stated, a classification rule can be represented in

the form of a decision tree. The inference procedure to form classifi-

cation rules in this context is then the construction of decision trees.

Typically, the decision tree can be generated by a branch-and-bound

procedure and a branching criterion is needed to determine the attribute-

value to be included in the rule. [23] and [14] employed a branching

criterion based on the expected information content of each node. The

information content of a node is measured by - p log„ p - p log p ,

where p is the proportion of positive examples and p is the proportion

of negative examples. The algorithm selects the next attribute to

include in the rule based on the principle of maximizing expected

information gain.
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III. 5 Criteria for Evaluating Hypothesis

In the searching of inductive concept descriptions, the movement in

the hypothesis space needs to be guided by some criteria which establish a

basis for evaluating the hypothesis. Such criteria are used in select-

ing the most promising concept among a group of candidates. The possible

criteria include:

(a) Simplicity of hypothesis. This criterion states that, while

everything else being equal, the hypotheses (a concept description)

with the least number of attributes should be selected.

(b) The set-theoretical goodness of fit. This criterion stems from the

research in language learning. It states that given the example set S,

the best learned concept description should satisfy every element in S

and as few additional elements as possible.

(c) The decision theoretical measure. Based on Bayes' Theorem, this

criterion looks for a hypothesis that has the maximal conditional

probability given the set of examples. That is, for the given set of

examples S, the best hypothesis h maximizes Pr(h/S). Since by Bayes'

Theorem, Pr(h/S) = (Pr(h) • Pr(S/h) )/(Pr(S) ) , the criterion essentially

is to maximize Pr(h) • Pr(S/h).

An interesting observation is that criterion (c) can combine both

criteria (a) and (b). That is, Pr(h) can be evaluated by the simplicity

of h and Pr(S/h) can be measured by the goodness-of-f it of h to the set

of examples S—in other words, higher Pr(h) means simpler hypothesis

and higher Pr(S/h) means better fit of h to S.
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III. 6 Inference Criteria

The inference criteria are used to evaluate the inference procedure

to derive inductive concept descriptions. Two such criteria are espe-

cially important: (a) the convergence of the inference procedure and

(b) the solution quality of the inference procedure as measured by

"completeness" and "consistency" of the procedure.

(a) Convergence, This criterion is typically used in the theoretic

study of language learning [1]. Conceptually, suppose an inference

procedure is run on a large collection of examples with the examples

presented in a sequence. The inference procedure is said to converge

correctly if it always derives the correct rules after some finite

number of iterations.

(b) Completeness and consistency. Inductive learning of concepts

is essentially a process of generalization such that the resulting con-

cept description for each class can correctly describe the individual

examples of that class; the description is typically a conjunction of

attribute-value pairs shared by all objects in the class. The complete-

ness condition says that the concept description generated by the induc-

tive learning process must correctly describe all positive examples;

the consistency condition states that the concept description generated

must not describe any of the negative examples.

IV. An Inductive Learning Algorithm

In terms of algorithmic design, the process of inductive learning

for multiple concepts begins with the separation of positive and nega-

tive decision examples among the whole set of training examples. Let
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the set of positive examples be S and the set of negative examples be

S-j, the goal of the algorithm is then to determine a conjunction of

attribute values as the concept description that satisfies the com-

pleteness condition, the consistency condition, and the criterion of

the induction.

The learning program would iteratively choose an element e in S

k i k
and, for every element f in S ,

generate a discriminant d(e /f ), or

ik
d-' for short. Mathematically, let

gj = a J . a^-* a. = A a. and12 11
i=l,n

f^=fj.f^ f^= A f^^ ^1 ^2 i , , 1 »

i=l,n

1 i i k
where a. and f . are attributes in e-^ and f , respectively.11 t r J

Then d^^ = d(e-^/f^) = A a.^, where Q = (i : a.^ ^ f.^l and d^^ =

leQ

ik i k
A d. . That is, d(e /f ) is a conjunction of attribute values

i=l»^jk
J k

that can be described by e but not f .

Next, the program will generate a set of all consistent complexes

(^j associated with e ; each element C: in Cr is a conjunction of

attributes not described by any of the negative examples in S .

Algorithmically, C": is generated by taking an attribute out

ik
of each d , for k = l,,..n, and form a conjunction, that is,

£ = l,n

Thus, there are a total of2.,, •£.^.., £. = IT £., consistent

complexes for e (remember that £., is the number of attributes contained
jk
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in the discriminant d-^ ). Each of the complexes is consistent, since it

does not cover any negative example.

The induction criterion should then be applied to choose the best

complex C in C^'s based on a utility function,

f(d) = W,P, + w^P„ + ... + w P ,
1 11 2 2 r r*

re P, , P„, ..., P are the induction criteria chosen by the user,whe

w , w , ..., w show the degree of importance the user gives to the pre-

ference criterion. C'' is chosen by selecting the highest f(') value.

For example, the induction criterion
—

"to satisfy as many positive

examples as possible while not covering any of the negative examples"

can be translated to the utility function:

MAX f(c^) = N_ - W*N,,
i P N

where N is the number of positive examples satisfied by Cr, and N is

the number of negative examples that can describe C , . W is a very large

number used to discourage N from taking any positive value.

Positive examples covered by C will be removed from S , and the

same procedure will be applied to the remaining S and the original

S^ again until all positive examples, e s, are covered. All the

complexes thus produced will be combined to form a complete disjunctive

description which covers every positive examples. This algorithm is

described by the flowchart shown in Figure 3.

insert Figure 3 here
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Decision rules derived from this algorithm satisfy both the

completeness and the consistency conditions defined in Section III.l. A

simple proof is described here according to the algorithm displayed in

Figure 3. The algorithm is complete because the algorithm uses steps

2-5 to generate new complexes to describe uncovered positive examples

until every positive example is covered by the disjunctive concept

description, D, produced in step 9. The algorithm is also consistent

because the concept is generated based on the discriminants d(e /f ) in

step 3, which ensures that none of the negative examples are covered by

the inductive description represented by D.

V. An Example: Applying Inductive Learning in the MARBLE System

I shall use the loan evaluation as an example to illustrate the

application of inductive learning in MARBLE, The objective is to

determine the risk classification of commercial bank loans. In order

to describe the default risk on a given commercial loan, a bank usually

would use a five-category classification scheme [13]. Here, for the

sake of simplicity, only three classes, represented by I, lA, II, are

actually used in the set of training examples. There are a total of

nine training examples: customers A, B, C for class I; D, E, F for

class lA; and G, H, I for class II. The inductive procedure for learning

classification rules can be described as follows:

(i) Choosing the relevant attributes for training examples

An initial set of attributes using historical and pro forma finan-

cial information are selected to be included in each input data case

as training examples. As shown in Figure 4, this set of attributes
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includes nominal, linear, and structured attributes. In the more tra-

ditional data analysis techniques, such as regression or discriminant

analysis, only linear and nominal attributes can be considered. The

ability to process structural information constitutes one of the

advantages of symbolic processing (as characterized by most AI

programs) over numerical calculation (as characterized by statistical

analysis). The domain of each structured attribute usually can be

represented by a hierarchy of attribute values, corresponding to a

generalization tree. Two structured attributes used in this example

are shown in Figure 5. The tree structure will be used to apply

appropriate generalization rules in the induction process,

(ii) Specifying the data description and the domain-specific

knowledge

After choosing the relevant attributes, a set of data descriptions

{e,}, i = 1, 2, 3, and the corresponding class {k.}. (K. = I, K^ = lA,

K~ = II) are used as training examples (Figure 6).

insert Figures 4, 5, and 6 here

The domain-specific knowledge, represented by the generalization

trees, can be specified by the following transformation rules:

Rl:

[past-account-eval = one-year]V[past-account-eval = two-year]V

[past-account-eval = three-year] —> [past-account-eval = present];

R2:

[account-type = commission]V[account-type = fees]

—> [account-type = other-businesses].
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(iii) Forming a induction criterion

The induction criteria are (1) to maximize the number of positive

examples covered, while not covering any of the negative examples, and

(2) to include the least number of attributes,

(iv) Applying the inductive learning algorithm

To derive the classification decision rule for class I, we start

with the first positive example, corresponding to customer A, in class I.

Step 1

—The program produces the discriminant d of customer A against each

negative examples one by one, starting with customer D in the negative

example set. This process generates the following conjunctive description

[F1=H][F2=H] [current-assets >$A2, 000] [net-worth >$37,000]

[total-debt >$19, 000] [funds >$8, 000] [cash <$6,000]

[cur-liability <$55, 000] [inventory >$12,000]

[avg-inventory >$6,000] [avg-prof its >$8,000] [past-acc-eval <2Y]

[account-type =C].

—Repeat the same procedure to the remaining negative examples,

against customer E:

[F2=H] [current-assets >$38, 000] [net-worth >$46,000]

[total-debt <$28, 000] [ inventory >$14 ,000] [avg-inventory >$6,000]

[avg-profits >$9,000] [account-type =T]

against customer F:

[F1=H][F2=H] [current-assets >$52, 000] [net-worth >$A0,000]

[total-debt <$25, 000] [funds >$6, 000] [cash <$5,000]

[cur-liability <$45, 000] [inventory >$11,000]

[avg-inventory >$5, 000] [avg-profits >$9,000]
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[past-acc-eval = present] [cust-status =N] [account-type =E]

against customer G:

[F1=H][F2=H] [current-assets >$A5, 000] [net-worth >$38,000]

[total-debt <$36, 000] [funds >$0][cash <$6,000]

[cur-liability <$57, 000] [inventory >$7,000]

[avg-inventory >$3,000] [avg-profits >$9,000] [past-acc-eval = lY]

[cust-status =C] [account-type =C]

against customer H:

[F1=H][F2=H] [current-assets >$37, 000] [net-worth >$29,000]

[total-debt <$27 ,000] [funds >$7, 000] [cash <$6,000]

[cur-liability <$53, 000] [inventory >$13,000]

[avg-inventory >$5, 000] [avg-profits >$8, 000] [past-acc-eval =1Y]

[account-type =T]

against customer I:

[F1=H][F2=H] [current-assets >$46, 000] [net-worth >$36,000]

[total-debt <$35, 000] [funds >$5, 000] [ cash <$5,000]

[cur-liability <$57, 000] [inventory >$14,000]

[avg-inventory >$6, 000] [avg-profits >$0] [past-acc-eval =1Y]

[account-type =C].

Generalization rules as the extension-against rule and the climbing

generalization tree rule have been applied in the foregoing process

in deriving these discriminants.

Step 2

—Form a set of complexes C s by taking an attribute out of each

discriminat d-^ generated in Step 1.
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For example, by taking out the first attribute in each discriminant

generated above and alternatively taking the attribute of the

AI i
discriminant against customer I, d , the following 13 complexes (C";s)

are generated:

(1) [F1=H] [F2=H] [F1=H] [F1=H] [F1=H] [F1=H]
,

(2) [F1=H] [F2=H] [F1=H] [F1=H] [F1=H] [F2=H]

,

(3) [F1=H][F2=H][F1=H][F1=H][F1=H] [current-assets >$46,000],

(13) [F1=H][F2=H][F1=H][F1=H] [F1=H] [account-type=C]

Another example of the complex generated in this step would be

(i) [avg-inventory >$6 ,000] [net-worth >$46,000]

[avg-inventory >$5, 000] [avg-inventory >$3,000]

[net-worth >$29, 000] [net-worth >$36,000],

This process continues until all the consistent complexes are

generated.

These complexes can be simplified by removing redundant components

or applying generalization rules. For example, complex (3) can be sim-

plified to [F1=H] [F2=H] [current-assets > $46,000] and complex (i) can

be generalized to [avg-inventory >_$7, 000] [net-worth _>$47 ,000] by apply-

ing the closing interval rule described in [17] (note that the unit of

input data is $1,000).

Step 3

—Choose the best complex description from the set of complexes

generated in Step 2 according to the preference criterion. The
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preference criteria used in the example include (1) to maximize the

number of positive examples covered, (2) to minimize the number of

negative examples covered, and (3) to minimize the number of attributes.

Then the complex selected is

[avg-inventory _>$ 7, 000] [net-worth 2$^7,000],

which covers customers A, B, and C in the set of positive examples.

Step 4

—Remove the covered positive examples from the list of positive

examples by the resulting description in Step 3, and apply the

algorithm to the remaining positive examples. Since, in this case,

all the positive examples have been covered by the single complex,

the decision rule for class 1 is

[avg-inventory >_$7, 000] [net-worth _>$^7, 000] ~> [class = I].

The same procedure produces the following decision rule for class lA;

[$37,000 _< net-worth <_ $48,000] [inventory >$8,000]

—> [class = lA]

;

and for class II

[F1=H, A] [total-debt >^ $26,000]

~> [class = II].

For the given set of training examples, the three classification

rules thus generated covered all the positive examples but none of the

negative examples, i.e., the induction process is both complete and

consistent. These decision rules not only can be used for credit

classification, each of the rules is also a description of a "concept"

learned from observing the classification examples. The set of decision

rules generated by the inductive learning program can then be added to



-22-

the expert system. For this example, the three decision rules just

generated can then be stored in MARBLE as follows:

1. PREMISE: ($AND (GREATEQ* (VALl CNTXT AVG-INVENTORY) 7,000)

(GREATEQ* (VALl CNTXT NET-WORTH) 47,000));

ACTION: (DO-ALL (CONCLUDE CNTXT CLASS-TYPE I TALLY 1000))

2. PREMISE: ($AND (BETWEEN* (VALl CNTXT NET-WORTH) 37,000 48,000)

(GREATEQ* (VALl CNTXT INVENTORY) 8,000))

ACTION; (DO-ALL (CONCLUDE CNTXT CLASS-TYPE lA TALLY 1000)); and

3. PREMISE: ($AND ($0R ($AND (SAME CNTXT Fl H)

(SAME CNTXT Fl A)))

(GREATEQ* (VALl CNTXT TOTAL-DEDT) 26,000))

ACTION: (DO-ALL (CONCLUDE CNTXT CLASS-TYPE II TALLY 1000)).

V. Other Important Aspects of Inductive Learning

V. 1 Probabilistic Learning

In inductive learning, if the training examples are highly distinct

in the attribute space and occur in separable clusters, then the

generalization procedure may result in concepts which are unambiguous in

characterizing the classes. However, in real life, the training examples

given as input data are usually not perfect but, rather, are contaminated

by a variety of "noise," thus causing errors. In the case of business

loan evaluation, for example, the noise may be caused by incorrect

financial information or inconsistent granting decisions made by loan

officers. The inductive learning method just described would derive

generalized descriptions even from the erroneous examples and generate

decision rules accordingly. To account for the possible noise in input
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examples, the learning system should be able to recognize the inperfec-

tion of the data and exploit the converging evidence for the conceptual

descriptions. An easy approach to resolve this problem is to relax the

preference criterion specified for the induction procedure so that the

description of a class is allowed to cover some negative examples under

a specified limit. Alternatively, rather than taking a deterministic

view, the inductive learning system can derive concept descriptions

probabiMstically.

Most of the AI inductive learning research to date has been

focussed on the deterministic aspect, although uncertainty reasoning

has always been an important issue in designing expert systems. The

research efforts in [10, 14, 24, 27] represent some recent develop-

ments dealing with probabilistic learning. The probabilistic learning

system (PLS) developed by Rendell [24] adopted an information theoreti-

cal model to determine the probability associated with each candidate

concept description. PLS uses a splitting algorithm which repeatedly

dichotomizes the attribute space (sometimes referred to as the feature

space) into smaller cells based on a dissimilarity measure. The

splitting process continues until the training examples in each cell

are as homogeneous as possible. The most relevant conceptual descrip-

tion can then be derived. The probabilistic rule generator (PRG)

developed by Lee and Ray uses a modified branch-and-bound strategy

to extract relevant attribute/value pairs for inclusion in the concept

description. At each node of the search tree, PRG uses the information

entropy as an evaluation function for selecting the branching attri-

butes. An interesting aspect of PRG is that it can progressively select
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the most relevant concept for configuring the decision rules, and thus

is shown to be computationally more efficient than prior inductive

learning methods [17].

Theoretically, a learning system that derives decision rules

probabilistically should be, in general, more efficient computationally

than the deterministic counterpart because the completeness and consis-

tency conditions (Section III) are relaxed; instead, a probabilistic

learning system carries out statistical tests to determine the signifi-

cance of various concept descriptions. This computational advantage

becomes important when the amount of data is getting larger. If a

deterministic approach such as the one described in this paper is used,

the set of training examples needs to be preprocessed so that the most

representative examples are extracted to serve as input to the induc-

tion algorithm.

V.2 Conceptual Clustering

As pointed out by Clancey [5], classification is a process

critical to most problem-solving processes. The method for learning

from examples described in Sections III and IV is concerned with forming

conceptual descriptions for a set of predetermined classes, assuming

that a set of data/class examples has been supplied by an external

source (i.e., a domain expert). A different type of inductive learning

can be achieved through "learning from observation," where the input

data set consists of data cases without any associated classification.

This type of learning process would create classes (clusters) among the

data cases and then generate conceptual descriptions to characterize
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each class. Such a machine-learning method is sometimes referred to as

conceptual clustering [A, 11, 19].

In general, clustering is a procedure applied to classifying a set

of data into mutually exclusive groups such that the data in the same

group are similar while data of different groups are dissimilar to each

other. Unlike the numerical taxonomy methods previously used for

clustering, however, the conceptual clustering method characterizes each

derived class by a conjunction of conceptual description, thus providing

better interpretation of the classes. Moreover, as opposed to using a

single similarity measure, conceptual clustering is also characterized

by its ability to take into account nominal and structural attributes

as well as linear numerical attributes.

Conceptual clustering can be used for knowledge acquisition in

decision-support situations where the domain expert is either hard to

find or is unreliable. In talking to several managers of commercial

banks, for example, I found a general feeling existing among them that

there are no agreed-upon criterion for classifying loan applications and

the decision is often ad hoc. Thus, using historical loan data and the

associated granting decision as training examples does have its short-

coming in that the input data may not be adequate examples for the

classification decision. By contrast, conceptual clustering provides a

method for grouping the input data into classes based on the inherent

characteristics of the data, A conjunctive conceptual description is

then generated to characterize each class, as to what can be achieved

by the method described in Sections III and IV. Thus, conceptual

clustering can be viewed as "learning without a teacher."
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VI. Conclusion

Features such as explanation ability, heuristic inference, reason-

ing with uncertainty, and capabilities for incremental refinement make

the knowledge-based expert system an effective tool for decision sup-

port. In this paper I have described another aspect in designing such

knowledge-based decision support systems: an inductive learning method

that can help automate the knowledge-acquisition process and generate

decision rules.

Although the inductive learning process described in this paper is

primarily related to classification, because classification is a

plausible paradigm for human problem solving, the inductive learning

method is, therefore, applicable to general decision support problems

as well. Moreover, inductive learning can help discover the structure

and concepts associated with the data, enabling the decision support

system continuously to refine its knowledge base. As an extension to

this work, I am currently working on learning probabilistic rules and

the integration of learning from examples with conceptual clustering.
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Appendix 1

.

An Example of MARBLE'S question-answering aode

The following is a sanple question-answering session with MARBLE, a

loan evaluation decision support system.

(1) "What is the customer that is applying for LOAN-17"

••ASCEM INC.
{•• indicated the user input.}

(2) "Is the customer a present customer?"

»»YES

(3) "Do you want to do the extensive credit checking on this customer?"

••YES.

(M) "What is the rating of management competence?"

•»F7
{F7 is a function key of showing WHY this question is needed.}

The rating of management competence is needed to determine the firm's
credit-worthiness in relation to a particular loan application

the rating of management competence is high, and

the outside credit rating of the firm is high, and
credit rating based on the bank's financial analysis of the
applicant's statements is high, or

a rating of management competence is HIGH, and
the outside credit rating of the firm is HIGH, and

credit rating based on the bank's financial analysis of the
applicant's statements is AVERAC2, or

a rating of management competence is HIGH, and
the outside rating of the firm is GOOD, and

credit rating based on the bank's financial analysis of the
applicant's statements is HIGH, or

a rating of management competence is AVERACS:, and

the outside rating of the firm is HIGH, and
credit rating based on the bank's financial analysis of the
applicant's statements is HIGH.

it is definite (100%) that the credit-worthiness is high.
it is definite (100%) that extensive credit check is

finished, and

3) Inform the user of this decision.

{the user can input the value with some degree of certainty)
•»HIGH
»»8

(5) "What is the outside credit rating of the firm?"
••F8
{F8 is a HOW function key. The user is able to see how the value of
previous parameters have been determined.}

HOW did the system determine the value of

MANAGEMENT-COMPETENCE OF LOAN-1

RULE073
If 1) 1)

2)

3)

2) 1)

2)

3)

3) 1)

2)

3)

4) 1)

2)

3)

then 1)

2)



CUSTOMER-STATUS OF LOlM-1

CUSTOMER-NAHE OF LOAN-1

{If the user choose Banagement-coopetence , the following appears:}

MANAGEMEMT-COMPETENCE was determined to be HIGH with certainty 80% by

user Input.

»»Hicai

(6) What Is the type of loan?

••TERM

(7) What Is the firm's 3-year average net profits?
••90,000,000

(8) What is the firm's trend in net profits?
••FM
[FH is an UNKNOWN function key}

(9) What is the Industry median ratio of pretax profits to total

tangible assets divided by prime rate of interest?
»»2

(10) What is the firm's ratio of pretax profits to total tangible

assets divided by prime rate of Interest?
••2

(11) What is the firm's percentile in industry ratio of net profits to
tangible net worth?
••0.8

(12) What is the firm's percentile in industry inventory turnover
ratio?
•»F4

(13) What is the firm's percentile in industry: net profits?
••FM

(1^) If the firm's percentile ratio of pretax profits to total tangible
assets exceed prime rate, answer the ratio, otherwise press F^^l,

••Fji

(15) What is the Industry median trend in net profits?
••0.2

(16) What is the ratio of cash to total current liabilities?
••0.2

(17) What is the percentile value of the firm's ratio of inventories to
current assets?
••0.2

(18) What is the percentile value of the firm's current ratio?
••0.8

(19) What is the proposed loan amount?



••10,000,000

(20) What is the legal loan Halt?
••120,000,000

(21) What is the axlmuo loan limit determined by either the firm's
average deposits during the past year or during the past three years?
••100,000,000

(22) What is the ratio of proposed loan to firm's total assets?
••0.8

(23) What is the purpose of the loan?
••PLANT AND EQUIPMENT

(24) What is the proposed maturity of the loan?

(25) Is the firm in a fully secured basis?

»»N0

(26) THE LOAN IS GRANTED WITH CERTAINTY FACTOR = 72%
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In MARBLE, production rules are the basic form of knowledge repre-

sentation. Rules can be subject to categorization In accordance with

the context-types for which they are most appropriately Invoked. For

example, some rules deal with profitability, some with solvency, and

still others deal with loan evaluation. The grammar of the rules,

described by the BNF formalism, is shown in Table 1.

<rule> :: = <premise> <action>

<preraise> :: = ($AND <condition> ,,, <condition>)

<condition> :: = (<funcl> <context> <parameter>)
|

(<func2> <context> <parameter> <value>)

($0R <condition> ,. <condition>)

<action> :: = <conclusion>
|
<actfunc>

(DO-ALL <conclusion> ... <conclusion>) I

(DO-ALL <actfunc> <actfunc> <actfunc>)

<conclusion> :: = (<confunc> <context> <parameter> <value> TALLY <cf>)

Table 1

To capture fully the decision rules used in business loan evaluation,

MARBLE currently uses eight different context-types in its knowledge

base:

LOAN The loan application

EVALUATION An evaluation of a new customer relationship, and

FEASIBLE A feasibility appraisal



Appendix 2 (cont'd)

RECOMMEND Detailed recommendations:

51 The credit-worthiness of the firm in relation to the

proposed loan,

52 The indication of the extent that the customer will build
the bank,

53 The evaluation of the expected profitability to the bank
of a customer relationship with the firm.

PROFITABILITY The expected profitability of the firm;

SOLVENCY The expected solvency ability of the firm

The context-types instantiated during the consultation session are

arranged hierarchically in a data structure termed the context tree, as

shown in the following figure:

Figure A.

1

The context tree helps to structure a knowledge base domain by allowing

the knowledge engineer to separate a large amount of information of

knowledge into logical entities. Each context can solve one part of

the total problem and provide important information needed to solve the

problem as a whole.
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