Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign

Faculty Working Papers

APPROXIIATE FIXED POINTS IN RECTATGULAR ARRAYS

Charles Blair

\#393

College of Commerce and Business Administration University of lllinois at Urbana-Champaign

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

April 15, 1977

APPROXIITATE FIXED POINTS IN RECTANGULAR ARRAYS

Charles Blair

Approximate Fixed Points in Rectangular Arrays

 byCharles Blair*
Department of Business Administration University of Illinois
April, 1977

*Assistant. Professor

Abstract
An extension of Kuhn's "Cubical Sperner Lemma" is used to present two

Introduction

Let $f:[0,1] \rightarrow[0,1]$ be continuous. The natural way to find a point x such that $f(x)$ is close to x would be something like this: compute $f(1 / 2)$. If it is greater than $1 / 2$, confine your search to $[1 / 2$, 1]. Otherwise search in $[0,1 / 2]$. Next compute $f(3 / 4)$ in the first case or $f(1 / 4)$ in the second case... Each computation cuts the size of the interval under consideration in half.

The same idea applies in n dimensions. Let $f:[0,1]^{n}+[0,1]^{n}$ be continuous. By the Browwer theorem, there is an x such that $f(x)=x$. Divide the unit cube into two rectangles R_{1}, R_{2} according to whether $x_{1} \geq 1 / 2$ on $x_{1} \leq 1 / 2$. Let $B\left(R_{1}\right)$ be the boundary of R_{1} and assume f has been computed there. It may be the case that every continuous function $g: R_{1} \rightarrow[0,1]^{n}$ for which $g(x)=f(x)$ on $B\left(R_{1}\right)$ has a fixed point. In that case f must have a fixed point in R_{1} and R_{2} may be ignored. If this is not the case then f must have a fixed point in R_{2} and R_{1} may be ignored. In general:

Proposition: Let $R\left(\ldots[0,1]^{n}\right.$ be an n-dimensional rectangle and $f: R \rightarrow[0,1]^{n}$ be such that every $h: R \rightarrow[0,1]^{n}$ for which $h(x)=f(x)$ on $B(R)$ has a fixed point in R. Let $R=R_{1} \cup R_{2}$ where R_{1} and R_{2} are two n-dimensional rectangles whose interiors are disjoint. Then either (i) every $g: R_{1} \rightarrow[0,1]^{n}$ for which $g(x)=f(x)$ on $B\left(R_{1}\right)$ has a fixed point in R_{1}, or (ii) every $g: R_{2} \rightarrow[0,1]^{n}$ for which $g(x)=f(x)$ on $B\left(R_{2}\right)$ has a fixed point in R_{2}.

Proof: If (i) and (ii) fail there are $g_{1}: R_{1} \rightarrow[0,1]^{n}$ and $g_{2}: R_{2} \rightarrow[0,1]^{n}$ without fixed points, which agree with f on $B\left(R_{1}\right) \cup$ $B\left(R_{2}\right)$. But then we could define $h: R \rightarrow[0,1]^{n}$ by $h(x)=g_{1}(x)$ for x in R_{1} and $h(x)=g_{2}(x)$ for x in R_{2}. h would not have a fixed point, contradicting our hypothesis. Q.E.D.

The key point here is that knowing the values of f on the "small" subset $B\left(R_{1}\right) \cup B\left(R_{2}\right)$ enables us to cut our search space in half by confining our subsequent hunt for a fixed point to R_{1} in case (i) and to R_{2} in case (ii).

In practice one computes approximate fixed points, i.e., points x for which $f(x)$ is close to x. The information at hand is the values of $f(x)$ on a rectangular grid, a finite subset of $[0,1]^{\mathrm{n}}$, e.g.

$$
A_{k}=\left\{\left.\left(\frac{a_{1}}{k}, \frac{a_{2}}{k}, \cdots \frac{a_{n}}{k}\right) \right\rvert\, 0 \leq a_{i} \leq k a_{i} \text { integer }\right\}
$$

The main purpose of this paper is to show how the"bifurcation" idea described above may be used to compute approximate fixed points. Approximate Fixed Points in Rectangular Arrays

Rectangular grids were discussed by Kuhn [2] and we essentially follow his treatment.

By uniform continuity there is an integer k such that $|x-y| \leq \frac{n^{*}}{k}$ implies $|f(x)-f(y)| \leq \varepsilon$. Approximate fixed points for f are obtained by locating a subcube of edge length $\frac{1}{k}$ with vertices in A_{k} such that, for each $1 \leq i \leq n$, there are vertices of the cube x_{i}, y_{i} such that the i th component of x_{i} (respectively y_{i}) is \geq (resp. \leq) the ith component of $f\left(x_{i}\right)$ (respectively $f\left(y_{i}\right)$). If x is any point of such a cube then \mid (ith component of x) - (Ith component of $f(x)) \left\lvert\, \leq \varepsilon+\frac{1}{k} *\right.$ so x may be considered an approximate fixed point.

An Extension of the "Cubical Sperner Lemma"
Fix $f:[0,1]^{n} \rightarrow[0,1]^{n}$. As before $A_{k}=\left\{\left.\left(\frac{a_{1}}{k}, \ldots, \frac{a_{n}}{k}\right) \right\rvert\,\right.$ $0 \leq a_{i} \leq k, a_{i}$ integer $\}$ for some fixed $k, S_{1}, \ldots S_{n}$ are fixed subsets of A_{k}.

For $1 \leq j \leq n$ a j-dimensional rectangle will be defined as a nondegenerate j-dimensional rectangular subset of $[0,1]^{n}$ each of whose

[^0].
vertices is in A_{k}. A j-dimensional rectangle is not a ($j+1$)-dimensional rectangle. A j-dimensional cube will be a j-dimensional rectangle with each edge of length $\frac{1}{k}$.

The boundary $B(R)$ of a j-dimensional rectangle R is the union of the (j-1)-dimensional faces of R.

For each j, we define* two families of j-dimensional cubes, the j-fixed cubes and the special j-fixed cubes. We proceed by induction:

A l-fixed cube is a l-dimensional cube (i.e. a line segment of length $\frac{1}{k}$) such that exactly one of the two vertices is a member of S_{1}. A special 1-fixed cube is a 1 -fixed cube both of whose vertices are members of S_{2}.

For $j>1$ a j-fixed cube is a j-dimensional cube which contains an odd number of special ($j-1$)-fixed cubes. A special j-fixed cube is a j-fixed cube all of whose vertices are members of S_{j+1}.

Example: for $n=k=2$. If $S_{1}=\{(0,0),(1 / 2,1 / 2)\}$ and $S_{2}=\{(0,0),(0,1 / 2),(1 / 2,1 / 2)\}$ then $\{(0,0),(1 / 2,0)\}$ is a 1-fixed cube while $\{(0,0),(0,1 / 2)\}$ is a special 1-fixed cube. The 2-dimensional cube $\{(0,0),(0,1 / 2),(1 / 2,0),(1 / 2,1 / 2)\}$ is not a 2 -fixed cube since it also contains the special 1 -fixed cube $\{(0,1 / 2),(1 / 2, I / 2)\}$. If S_{2} were changed to $\{(0,0),(0,1 / 2)\}$ we would have a 2 -fixed cube.

Theorem 1: If R is any j-dimensional rectangle the boundary $B(R)$ contains an even number of ($j-1$) fixed cubes. Proof: Each ($j-2$) dimensional cube in $B(R)$ is contained in exactly two ($j-1$) dimensional cubes in $B(R)$. Therefore:

Q is ($j-1$) dim.
cube in $B(R)$

* A similar definition is used in Wolsey [4].
.

So the number of odd terms, which correspond to ($j-1$)-fixed cubes, must be even. Q.E.D.

Corollary: For each $1 \leq i \leq j$ a j-fixed cube contains vertices X_{i}, y_{i} such that $x_{i} \in S_{i}$ and $y_{i} \notin S_{i}$.

Proof: We argue by induction on j. For $j=1$ this is immediate. For $j>1$ a j-fixed cube contains at least one special (j-l)-fixed cube, so we have members and non-members of $S_{1}, \ldots S_{j-1}$, by induction hypothesis, as well as members of S_{j}. By Theorem I, the j-fixed cube contains an even number of ($j-1$)-fixed cubes, so it must contain at least one ($j-1$)fixed cube that is not special. This implies there is a vertex which is not in S_{j} Q.E.D.

If $S_{i}=\left\{x \varepsilon A_{k} \mid\right.$ ith component of $x \geq$ ith component of $\left.f(x)\right\}$ then an n-fixed cube qualifies, by our coroliary, as an approximate fixed point in the sense of the preceding section.

Theorem 2: For any j-dinensional rectangle R the parity of the number of j-fixed cubes in R is the parity of the number of special (j-1)-fixed cubes in $B(k)$.

Proof: Each ($j-1$)-dim. cube in $B(R)$ is in exactly one j-dim. cube in R. Each ($j-1$-din. cube not in $B(R)$ is in exactly two j-dim. cubes in R. Therefore:

Each odd term on the left corresponds to a j-fixed cube. Q.E.D. The original "cubical Spernex lenua" [2] dealt with the sets S_{i} described previously. These had the special property that $S_{i} \longrightarrow$
$\{x \mid$ ith component of $x=1\}$ and $S_{i} \cap\{x \mid i t h$ component of $x=0\}=\emptyset$. Corollary $[2,4]:$ If the special property on S_{i} holds, then $[0,1]^{n}$ contains an odd number of n-fixed cubes.

Proof: We argue by induction on n. The case $n=1$ is immediate. For $n>1$ we show that the boundary of $[0,1]^{n}$ has an odd number of special ($n-1$)-fixed cubes and apply theorem 1. A airect consequence of the definitions is that the only special ($n-1$)-fixed cubes in $B\left([0, I]^{n}\right)$ are the ($n-1$)-fixed cubes in $\{x \mid n$th components of $x=1\}$. By induction hypothesis there are an odd number of these. Q.E.D.

Applications of Theorem 2 to Fixed-Foint Algorithms
Theorem 2 suggests several methods of locating approximate fixed points. We describe two in detail: 1. Bifurcation. This is the method described in the introduction. Starting with $[0, l]^{n}$ and the S_{i} defined previously, we have shown that the boundary of $[0,1]^{n}$ has an odd number of special ($n-1$)-fized points. Take any (n-li-dimensional rectangle which divides $\{0,1\}^{n}$ into n-dimensional rectangles R_{1}, R_{2}. One of R_{1}, R_{2} will. have an odd number of special (n-I)-fixed cubes in its boundary, so theorem 2 says that rectangle has an approximate fixed point. We then divide that rectangle into two rectangles, one of which must contain an odd number of special ($n-1$)-fixed cubes in its boundary, etc. If at each step we divide the rectangle into halves as neariy equal as possible, we Will obtain an n-fised cube after at most $n\left(\log _{2} k+1\right)$ divisions. Note that finding the parity of the number of special ($n-1$)-fixed cubes in $B(R)$ never requires evaluation of f in the interior of R. It is not always necessary that f be evaluated at every point of $B(R)$ either. For example, continuty considerations may enable one to locate an ($n-1$) dimensional rectangle T in $B(R)$ such that $T \cap A_{k} \subset S_{i}$ for some $i \leq n-1$.

In this case, T contains no $(n-1)$-fixed cubes by the corollary to theoren 1. If TAACS then theorem 2 says we need only compute the parity of the number of special ($n-2$)-fixed cubes in $B(T)$. Undoubtedly other refinements are also possible.
2. "Wandering Willie"* The proof of theorem 2 says things about the number of n-fixed cubes by looking at special ($n-1$)-fixed cubes and associating two n-dimensional cubes if they have a special (n-l)-fixed cube in conmon. This suggests that a n-fixed cube fay be located by wandering through a sequence of special ($n-1$)-fixed cubes in some manner. One first has to locate an ($n-1$)-fixed cube and there are other complications.

For convenience, a point in A_{k} is a 0-dimensional cube and a special 0 -fixed cube is a member of S_{1}. Also define $D_{i}=\{x \in[0,1\} \mid$ last $n-i-1$ components of x are 1\}. Thus $D_{i} S_{j}$ for $j \geq i+2$. $D_{n-1}=D_{n}=[0,1]^{n}$.

The algorithro generates a sequence of cubes C_{i} of dimension d_{i} as follows:

Step 1 [initialize]: $C_{1}=\{(1, \ldots 1)\} \quad d_{1}=0 . \quad i=1$.
Step 2 [wandering attempt]: Let $r=d_{i}$. Try to find a $(r+1)$ dimensional cube $E C D_{r}$ which has C_{i} as a face but such that $C_{i-1} \neq E$ and C_{i-1} is not a r-dimensional face of E. If there is no such E go to step 5 , otherwise go to step 3 .

Step 3 [succescful rander]: Try tc find a special r-fixed face of E that is not among C_{1}, \ldots, C_{1}. If there is no such face go to step 4. Otherwise let $C_{i+1}=a n y$ such face. $d_{i+1}=r$. Increase i by 1 and return to step 2.

Step 4 [discovery of special $(x+1)$-fired cube]: Let $C_{i+1}=E$. $d_{i+1}=r+1$. If $d_{i+1}=n$ stop. Otherwise increase i by 1 and return to step 2.
*A similar algorithm has been developed by Wolsey [4].

Step 5 [smashing into the boundary of $\left.D_{r}\right]:$ Try to Iocate a special $(r-1)$-fixed face of C_{i} that is not among $C_{1} \ldots C_{i}$. If there is none, stop. Otherwise let $c_{i+1}=$ any such face. $d_{i+1}=r-1$. Increase i by 1 and return to step 2 .

Exampie: We illustrate "Wandering willie" for $n=2, k=3$. The points of A_{k} will be abbreviated by capital letters as shown in the diagram:

A	B	C	D
N	F	G	H
J	K	L	M
N	D	Q	N

Thus D corresponds to (1,1), N corresponds to (0,0), L corresponds to $(2 / 3,1 / 3)$ and so forth. Let f be such that $S_{1}=\{B, D, F, H, L, M, R\}$ and $S_{2}=\{A, B, C, D, E, F, G, H, L\}$. Then the sequence of cubes C_{i} generated by "Wandering Willie" is:
$\mathrm{D}(1) ; \mathrm{CD}(4) ; \mathrm{GH}(3) ; \mathrm{GL}(3) ; \mathrm{FG}(3) ; \mathrm{BC}(3) ; \mathrm{B}(5) ; \mathrm{AB}(4) ; \mathrm{EF}(3)$; EFJK(4).
EFJK is a 2-fixed cube.
Here we indicate a cube by its vertices and the numbers in parentheses refer to the steps generating the cubes.

Theorem 3: Wandering Wilie halts after a finite number of steps at a n-fixed cube.

Proof (outline): First one shows by induction on that if $C_{1}, \ldots C_{L}$ are the first L cubes generated by W. W. then (a) $C_{I}, \ldots C_{L}$ are all different (b) for $1 \leq i \leq L C_{i}$ is a special d_{i}-fixed cube contained in $D_{d_{i}}$. (c) if E is a j-dimensional cube in D_{j} which does not have C_{L} as a ($j-1$)-dimensional face, then $C_{1}, \ldots C_{J}$ contains an odd number of ($j-1$)dimensional faces of E iff. $E=C_{i}$ and either C_{i} was introduced by step 4 or C_{i+1} was introduced at step 5. The induction involves many individually
.
simple cases and we omit the details.
Once (a), (b), (c) are established it follows that w. w. can never halt in step 5 (we only included this possibility for expository reasons). If C_{L} is such that step 2 Eails when $i=1, C_{i}$ cannot have been introduced by step 4. So, by (c), an even number of special (d_{L} - 1)-fixed faces of \mathcal{C}_{L} appear in $\mathrm{C}_{1}, \ldots C_{\mathrm{L}}$. 万ुy (b) C_{L} has an odd nuber of special ($\mathrm{d}_{\mathrm{L}}-\mathrm{I}$)fixed faces, so there must be at least one fresh face waiting at step 5 .

Since w. w. must halt eventually, by (a), and it does not malt in step 5 it must wander into an n-fixed cube. Q.E.D.

We believe that the "worst case" behavior of bifurcation is superior to Wandering Willie in this sense: For any \hat{E}, bifurcation (where we divide the cube into nearly equal halves at each stage) will locate a n-fixed cube after evaluating f at $\leq\left(1+4 /\left(1-(1 / 2)^{\mathrm{n}-1}\right)(k+1)^{\mathrm{n}-1 \%}\right.$ of the $(k+1)^{n}$ points of A_{k}. We conjecture that chere is $a<\theta<1$ independent of k such that functions f can be constructed for which Wandering Willie (or similax algorithon on simplexes) will evaluate f at $d k+I)^{n}$ points before finding an apmoxinate fixed point. [specifically, we confecture that we may take $\theta \geq(1 / 3)^{n} j$.

However, we believe the "typical case" behavior of Wandering willie will be reasonable. It is clear that uncefined bifurcation is not practical, since even a single division requires computation of f at $(k+I)^{n-1}$ points.

Hybrios are also a posstibility. One fiea would, be a bifurcation search on A_{h} for small k. This wouk locate a "Iarge" n-Etxed cube J. We could then introduce a finer rectangular subdivision only on J. If fortunate, $B(J)$ would have an odd numer of specfal (n-l)-fixed points with respect to the fine subdivision. If this happens, bifurcation can *This figure can be sharpened.
be performed on J. If unfortunate, we would have ro hunt for another large cube (which we hope ts ciose to J) suttable for a second bifurcation.

Another possible algoritho would add (n-l) dimensional dividing planes on $[0,1]^{\text {I2 }}$ one at a time, presurably having the next dividing plane pass through the n-fixed cuber curcentiy located. This would be in the spirit of the "eccentric barycentric" adaptive algorithm of Zamgwill [5]. Both of the hybrids sacriftice the "worst case" bound of pure bifurcation. Conciuding Remarks

A bifurcation algorithm is possible on a simplex. The result analogous to theorem 2 is:

Theorem 4: Let a subdivided n-dimensinnal simplex be arbitrarily labelled with $\{1,2, \ldots n+1\}$. The parity of the number of completely labelled suosimplices is the parity of the number of ($n-1$)-dimensional simplices in the boundary which have labels \{1, 2,..., n\}. Proof as for theorems 1 and 2. However, the subdivision has to be chosen rather carefully.

The similarity betwean the proois of theorems 1,2 , and 4 and the "standard" proofs of Sperner's Lemma in [1] and [3] should be mentioned. It must be grudgingly admitted that the definition of n-fixed cubes vas chosen to make these proofs work.

All the theorems and algorithms uscussed here depended essentially on an arbitrary ordering of the co-ordinates of the cube or, equivalently, on a specific order for $S_{1} \ldots . S_{n}$. This is also the case for many of the algorithms in the literature, and we believe this may be more than an aesthetic defect.
*In this case, we are relaxing the requirement that the edges of the cube are all of equal length.
.

1. Fan, K. Convex Sets and their applications. Rizgone National Lab Sumner Lectures 1959.
2. Kuhn, H. W. "Some Combinatorial Lemas in Togalogy", IBy Journal oE Research and Development, 4 (1960), pp. 508-524.
3. Stoer, J. \& fitzgall, C. Converity and optimization in Finite Dimensjons I, pp. 126-127, Springer-Verieg $19 \% 0$.
4. Wolsey, L.A., "Cubiad Sperner Jemmas as applicatbons of generalized complementary pivoting", CoEE discission paper no. 7507, March 1975.
5. Zangwill, W. T. "An Eccentric Berycentric Fixed Zoint Algoritha," University of Illinois Business Auministration, December 1975, to appear in Math of operations. Research.

[^0]: * These figures can be sharpened.

