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ARCH AND BILINEARITY AS COMPETING MODELS FOR NONLINEAR DEPENDENCE

ANIL K. BERA
University of Illinois at Urhana- Champaign , IL, U.S.A. 61820

and

MATTHEW L. HIGGINS
University of Wisconsin-Milwaukee , WI , U.S.A. 53201

SUMMARY

In this paper we consider whether the wide acceptance of the ARCH process may
be at the expense of other nonlinear processes which can offer an improvement
in the predictive power of econometric models. We first propose a test which
should have good power against the simultaneous presence of ARCH and
bilinearity. A non-nested test is then suggested to determine whether
nonlinear dependence should be attributed to ARCH or bilinearity. The tests
are applied to three U.S. spot exchange rates. Results indicate that
nonlinear dependence may not be fully attributable to ARCH.





1 . INTRODUCTION

Of all nonlinear stochastic processes, the ARCH model of Engle (1982),

and its generalization to GARCH by Bollerslev (1986) , has been the most

widely applied in economics. The ARCH model provides a parsimonious and

easily interpreted parameterization of the conditional variance of an

economic time series. It is ideally suited for modeling changes in

volatility that are so prevalent in financial and monetary variables. The

ARCH model has also lead to an enormous research effort in detecting and

interpreting nonlinear dependence in economic data. To comprehend the size

of this literature, the reader needs only to consult the recent survey papers

by Bollerslev, Chou and Kroner (1992) and Bera and Higgins (1992).

The apparent success of the ARCH model, however, suggests that the

incorporation of nonlinear dynamics may not increase the explanatory power

and forecasting performance of econometric models. In an ARCH model, past

observations only provide information about future variances of the process,

not future means. Hence, the existence of ARCH cannot increase the

predictive power of an econometric model. The ARCH literature indicates that

once ARCH effects are accounted for, little in the way of nonlinearity

remains in economic data. A study which exemplifies this conclusion is

Hsieh (1989) . Hsieh sought to determine whether nonlinear dependence exist

in daily exchange rates, and if so, to determine the appropriate model for

this nonlinearity. Working with the log first differences of the daily U.S.

spot rate against five major currencies, he applied a battery of tests for



nonlinearity including Brock, Dechert and Scheinkman's (1987) correlation

dimension test, Tsay's (1986) test, McLeod and Li's (1978) portmanteau test

and Engle's (1982) LM test for ARCH. All tests convey strong evidence of

nonlinearity. Hsieh then fitted GARCH models to each of the series and

applied the same tests to the standardized residuals. He found that the

standardized residuals displayed little nonlinear dependence, and hence,

concluded that most of the nonlinearity in exchange rates can be accounted

for by GARCH.

Looking for nonlinear dynamics in the conditional mean of a series by

examining the residuals of a fitted linear model with GARCH errors, however,

will tend to favor the conclusion that GARCH accounts for the nonlinearity in

the data. Granger (1991, p. 142) emphasized this point and stressed the need

to place nonlinearity in the conditional mean on equal footing with

nonlinearity in the conditional variance. Despite the wide acceptance of

ARCH, a few authors have considered whether the ARCH phenomenon may be

largely an artifact of misspecified nonlinear dynamics in the conditional

mean of a model. For example. Pagan and Hong (1991) re-examined Engle

,

Lillien and Robins' (1987) ARCH in the mean (ARCH-M) model for the yield on

three month Treasury bills and Hodrick's (1987) ARCH model for the index of

industrial production. Pagan and Hong estimated the conditional means of the

models using non-parametric techniques and subsequently found that the

evidence for the presence of ARCH is greatly reduced.

In this paper, we pursue the question of whether a process with a

nonlinear conditional mean can provide an alternative to ARCH for modeling



nonlinear dependence in economic time series. As an alternative to ARCH, we

focus on the bilinear process of Granger and Andersen (1978) . We chose

bilinearity because it has an unconditional moment structure very similar to

ARCH, and hence, may be easily mistaken for ARCH [see the discussion in Bera

and Higgins (1992)], Yet, a bilinear process is forecastable , and therefore

its detection may increase the predictive power of a model. Weiss (1986)

noted the similarity between ARCH and bilinear. He treated them as

complementary processes and built simultaneous ARCH and bilinear models. We

will treat ARCH and bilinearity as competing models for nonlinear dependence.

We directly test ARCH models against bilinear models, and vice-versus, using

a stochasticly simulated Cox test as suggested by Pesaran and Pesaran (1992)

.

The outline of the paper is as follows. In section 2, we compare and

contrast the conditional and unconditional moment structures of ARCH and

bilinear models. In section 3, we propose a test which should have good

power against both ARCH and bilinear alternatives. We summarize in section 4

the Pesaran and Pesaran (1992) procedure for the stochasticly simulated Cox

test and describe how it can be implemented for conducting a non-nested test

of ARCH against bilinearity and vice-versa. To determine if bilinearity

might provide an alternative representation of nonlinearity , in section 5 we

apply the above tests to three Dollar spot exchange rates. Concluding

remarks are presented in section 6.



2. MOMENT STRUCTURES OF ARCH AND BILINEARITY

ARCH and bilinear processes can be defined in terms of univariate or

multivariate time series or in terms of the innovations of single or multiple

equation structural models. In this paper we characterize them in the

context of the errors of a dynamic single equation model. The dependent

variable y is assumed to be generated by

y^ = x^y9 + u^, t = 1,....T, (2.1)

where x is a kxl vector of exogenous variables and lagged values of the

dependent variable, )9 is a kxl vector of parameters and u is a stochastic

equation error. Let $ denote the information set at time t. Then u is

said to be generated by a GARCH(p,q) process if

u $ ~ N(0,h ), (2.2)
t' t-i t

where

h-a+au^ +...+au^ +Bh + . . . + 8 h . (2.3)
t 1 t-l q t-q 1 t-1 p t-p

A bilinear process for u is defined by the stochastic difference equation

u = i i b. U 6 .

-. € (2.4)
t ij t-i t-j t

i=l j=l

where b i = l,...,r, j = l,...,s, are parameters and e is an i.i.d.
i j t
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N(0,c7 ) innovation which drives the bilinear process. The bilinear process

can be justified as a second-order approximation of the Wold representation

of a stationary process.

A fundamental qualitative distinction between a GARCH process and a

bilinear process is evident when one considers the conditional distribution

of the dependent variable y under the two specifications. For the ARCH

model, with the conditional distribution of the error specified as (2.2), it

is immediate that

E(y $ ) = x'i9
't' t-i t*^

and

Var(y $ ) = h
"^t' t- 1 t

In the presence of GARCH the conditional variance becomes a function of the

information set, however, the conditional mean of the dependent variable is

the same as it would be if the errors where Gaussian white noise. Hence, the

presence of GARCH does not provide additional forecastablity of the dependent

variable. When the equation error u is generated by the bilinear process

(2.4), the conditional mean and the conditional variance are

;(y 1$ ) = x'B + I I b n e
t ' t - 1 t ij t-i t-j

i=l j=l

and



I 2
Var(y $ ) = cr

In the presence of bilinearity, while the conditional variance is constant,

the conditional mean of the dependent variable is augmented with interaction

terms between past equation errors and the innovations. Incorporating these

nonlinearities can increase the predictability of the dependent variable.

Despite this fundamental difference between the conditional moments of

GARCH and bilinear processes, the unconditional moments of the two processes

can be very similar. This is important because specification tests for these

processes and the identification of the orders of these processes is based on

their unconditional moment structures. As a result, it is easy to mistake

one process for the other.

To illustrate the similarity of the unconditional moments, we consider

the autocorrelations of the errors and the squared errors. First assume that

u is generated by an GARCH process (2.2). Since the conditional mean of u

is zero for any realization of $ , using the law of iterated expectations

it is immediate that

E(u u ) = E[E(u u $ )] =
t t-m t t-m ' t-1

for all m > 1, Hence, the GARCH errors are serially uncorrelated. The

dependence in GARCH errors is revealed through higher order moments . To

2
derive the form of the autocorrelation function of the squared errors u , it

is convenient to represent a GARCH process by the generating equation



u - z -h^^^ (2.5)
t t t ^ '

where z is i.i.d. N(0,1) and h is the same as (2.3). As shown by

Bollerslev (1986), squaring both sides of (2.5), produces a generating

2
equation for u of

2
'^

2 ^ 2 ^

t ^ i t-i ^ ^j t-j ^ ^j t-j t'
i=l j'l j-1

2
where i/ = (z - l)h is a serially uncorrelated mean zero disturbance term.

t t t
^

2
Therefore, the squared error u is generated by an ARMA(r,q) process, with

r = max(p,q), and its autocorrelation function will have the familiar form.

For comparison, now assume that u is generated by the bilinear process

(2.4). For the general bilinear process, it is difficult to derive

2
expressions for the autocorrelations of u and u . However, when only a

single bilinear term is allowed, expression for these autocorrelations can be

obtained. Unlike the general GARCH(p,q) process, the general bilinear

process is not serially uncorrelated. An important sub-class of the bilinear

process, however, has a moment structure similar to a GARCH process. Any

single -term bilinear model of the form

u=bue+e, (2.6)
t ij t-i t-j t

where i > j , has conditional mean zero since

E(u ) - E[E(u $ .)]
t t ' t-i



E[b u E(€ 1$ ) + E(€ 1$ )
i j t-i t- j ' t-i t ' t-i

0.

In this class of bilinear models, where the conditional mean is zero for all

realizations of $ , the autocorrelations of u are zero since
t-i t

p - E(uu ) = E[E(uu $ )] =
m t t-m t t-m' t-1

for all m > 1. Also like the GARCH(p,q) process, the autocorrelations of the

2
squares of the process (2.6) are non-zero. Let p be the m'th order

m

2
autocovariance of u . Granger and Andersen (1978, p. 45) showed that

2
p ^ for m < j

CD

and

2 ,,2 2. 2 - ^ .

p - (b a ) p for m > j

.

m ij £ n-i

2
Hence the autocorrelation function of u has the form of the autocorrelation

t

function of an ARMA(i,j) process. Since the process is autocorrelated in the

squares, it will also display the temporal clustering of large and small

deviations of the GARCH model.

The fact that both ARCH and certain bilinear processes are serially

uncorrelated in the levels but display autocorrelation in the squares,

indicates that one process may easily be mistaken for the other. Granger and

Andersen (1978) recommended that bilinearity be detected by looking for



significant autocorrelations in the squares of least squares residuals.

Engle (1982) recommended that ARCH be detected by means of a Lagrange

multiplier (LM) test and showed that the LM test for ARCH can be computed as

2 2
T-R where R is the coefficient of multiple correlation from the artificial

—2 —2 ~2 ~
regression of u on an intercept and u , . . . , u , u being the least

t t~i t~(i *.

squares residuals from (2.1). As pointed out by Luukkonen, Saikkonen and

Terasvirta (1988), this statistic is asymptotically equivalent to the McLeod

and Li (1978) portmanteau test using squared residuals. Therefore, finding

autocorrelations in the square OLS residuals may indicate nonlinearity , but

it is not constructive as to what the alternative nonlinear model should be.

3. A JOINT REGRESSION TEST FOR ARCH AND BILINEARITY

Since we are interested in the presence of GARCH or bilinearity, prior

to considering testing one specification against another, we will derive a

test that should have good power against both of these alternatives when the

null hypothesis is Gaussian white noise. Higgins and Bera (1989) showed that

a joint test for ARCH and bilinearity could be constructed by adding the

standard LM tests for each individual alternative. In this section, we

propose a similar, but computationally easier test which can be computed as

the sum of two F- tests of the significance of regressors in a single

artificial linear model.

The test is based on an alternative model which incorporates both ARCH

and bilinearity. We consider the dynamic linear regression model
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y = x';3 + u (3.1)

in, which the equation error u is generated by the bilinear process

u = Z Z b.u .6 .
+ e (3.2)

t ij t-i t-j t
i=l j =1

where b =0 for i < j , and the innovations to the bilinear process e are
ij t

generated by the ARCH(q) process

€ $ - N(0,h ) (3.3)
t' t-i t

where

h = a + a € + . . . + a €
t 1 t-l q t-q

In the specification of the bilinear process (3.2), we impose b =0 for
ij

i < j because a LM test cannot be constructed against an alternative which

includes both u e and u e [see Saikkonen and Luukkonen (1988)1.
t-i t-j t-j t-i

Similarly, for the conditional variance we consider ARCH rather than GARCH

since a LM test can not be constructed which tests simultaneously for lagged

€ 's and lagged h 's [see Bollerslev (1986)]. Let m = min(r,s) and

d = r-s - m(m - l)/2. Then let b = (b , . . . ,b )' denote the dxl vector of
11 rs

bilinear parameters and let a = (a , . . . , a )
' denote the qxl vector of ARCH

1 q

parameters. We consider the joint null hypotheses H :a = and H :b = 0.
A B

When H is true the model reduces to a linear regression model with bilinear
A °
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errors and when H is true the model reduces to a linear model with ARCH
B

errors. When both H and H are true, the model becomes the standard linear
A B

model.

We derive the computationally convenient test for the joint hypothesis

by employing the concept of a locally equivalent alternative (LEA) model

suggested by Godfrey and Wickens (1982) . Consider the artificial linear

model

q r s

y = x'B + 1^.7 (7j .

- a^) + I lb. 7 .7 .
+ e (3.4)

t t It t-i ij t-i t-j t
i=l i=l j=l

~ ~2 1 —2
where e is the least squares residual of (3.1), a =• - 2 e and b =0 for

t
^

T t t ij

i < j. Note that under the joint null hypothesis u = e . Let 6 = (6' ,d')' ,

where 9 = (fi',(j^)' and 9 = (a',b')'. Let i(d) denote the log- likelihood

*

for model (3.1) -(3. 3) and let c (9) denote the log-likelihood for the model

(3.4). Model (3.4) is said to be a LEA of model (3.1)-(3.3) if under H and
A

H
B

(i) the models are identical

*
di di

('') ir-JT
2 2

Condition (i) requires that both models are equivalent under the joint null

hypothesis. Condition (ii) ensures that the LM test for the null hypothesis

based on the LEA model is asymptotically equivalent to the LM test based on

the original model. It is obvious that (i) is true. To demonstrate that
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(ii) is true, we follow Godfrey and Wickens (1982, p. 85) and first show that

the Jacobian term in the log- likelihood of (3.4) can be neglected

for local alternatives . Denote

f! = y. - K^ - I'^.^(^ .

-o"-) ' I Zb..
t " t f "it t-i

i=l i-1 j=l
ij t-i t-j

The Jacobian term in £ (^) is

T

Zlog
t-1

ar

5y.

T / q

X log 1 - la,{
t = l i = l

1 t-i

I Za.(7^ . a')

t=l i=l
i t-i

q T
~2 ~2,

la. IG: .
- a )

i — t-i
i=l t=l

= 0,

where the approximate equality follows from log(l - x) = -x for small x,

Then

dl e
t t-i

/ 2
€
t

da rt 2
i 2a

— - 1

2 2 2
€ (e - o )

t-1 t

2?

and it is easily shown that

«* ~ —2 —2
dl e € (e - a )

t _ t t t-i

da 2
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Therefore, the LM for H in model (3.1) -(3. 3) is essentially based on the
A

quantity

t-i

and the LM test for H in model (3.4) utilizes
A

lei (1^ - a^) .^ t t t-i
t = i

However, since e —^ e these two test must be asymptotically equivalent.

In a similar fashion, one can show that the LM tests for H using models

(3,1) -(3. 3) and (3.4) are asymptotically equivalent. Therefore model (3.4)

represents a LEA for model (3.1)-(3.3).

We' can now construct a computationally easy test for ARCH and

bilinearity by testing the joint hypotheses H :a = and H :b = in the LEA

model (3.4). One approach is to consider the standard LM test which can be

2
computed as T-R from the regression of a vector of ones on the elements of

*

dt /dd . From (3.4), these elements are seen to be

t 1

~2
a

t t

t

~2
€
t

-2
a

ao'- 2a
k

at'
t

ab
ij

1

~2
a

t-i t-j
fori=l,...,r, j-1 s, i>j
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afl* -2,-2 2.
dc € (e - a )

t ,-Z -2.
, t t-i - . -

J— = - ( e - a ) + for i = 1 , _ . , q

,

OOl t-1 —2

*

Note the first term in dt /da comes from the Jacobian. Recall that
t i

YloelSf /9y I vanishes, however, the contribution of the Jacobian to the

score function for each t does not vanish.

A second approach is to estimate (3.4) by least squares and then compute

two separate F- tests for the hypotheses H :a = and H :b = 0. From the

additivity result of Higgins and Bera (1989), the two sets of regressors

e (e - o ) and e e
.

are asymptotically orthogonal. Therefore a joint

test for ARCH and bilinearity can be obtained by just adding these two

F-statistics.

As pointed out by Godfrey and Wickens (1982, p. 86), a slight

complication arises with the second approach. For the q regressors

— —2 —2
€ (e - a ), the standard least squares formula will not produce the

correct covariance matrix. To see this, note that for the normalized inner

product of these regressors with the equation error

T T
^-1/2 v' ~ ,-2 -2. a ^-1/2 v / 2 2. , 2 2.
T I ^€ (€ .

- C7 ) = T Z (e - a )(e
.

- a ).
t t t-1 t t-1

t=l t=l

a 2 2
where "=" denotes asymptotically equivalent. Since the sequences e - a and

t

2 2 4
e -a are i.i.d. (0,2a ), we have that
t-i

T'"'" lei G^ - a"-) -^ N(0,4a').^ t t t-i
t = i
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The OLS estimate of the variance, however, is

, T 6 T
2l v" -2/~2 ~2.2 & ^ a r< 2 p ^8

t=i t=i

which omits the factor 2 from the true variance. This can be corrected by

appropriately normalizing the F-statistic. The other d regressors e 7
t-i t-j

present no problem. The normalized inner product of these regressors with

the equation error is

T T
-1/2 Y ~ ~ ^ t"1/2 r^

T )ce e =T /ee e^ t t-i t-j ^ t t-i t-j
t=l t=l

and since the sequence € € e is i.i.d. (0,a ), we have that
t t-i t-j

T

T'^/* y e 7 7 -5U N(0,a').^ t t-i t-j
t-i

Least squares will compute the variance as

2 T 2 Tar-'~2~2 aar^2 2 p 6

T ^ t-i t-j T '-' t-i t-j
t=l t=l

and hence the problem does not arise. If we let F denote the F-statistic

for a = and F denote the F-statistic for b = in (3.4), a joint test can

be based on the statistic

a.F + d-F ^ x'
2 1 2 ^q+d
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This joint test for ARCH and bilinearity is very easy to compute. It

requires estimating (3.1) by least squares and then running the artificial

regression (3.4). The joint test can then be constructed with standard

output from the the artificial regression.

4. NON-NESTED TEST BETWEEN ARCH AND BILINEARITY

The above test is designed to have power against both GARCH and

bilinearity. Therefore, if a joint null hypothesis is rejected, it does not

provide any guidance as to whether the nonlinearity should be attributed to

GARCH or bilinearity. The challenging problem is to directly test one

nonlinear specification against another. Since neither the GARCH nor the

bilinear process is a special case of the other, such a test must be based on

a non-nested testing principle. The highly nonlinear nature of the

likelihood functions of the GARCH and bilinear processes, however, make it

difficult to analytically derive standard non-nested tests. Recently,

Pesaran and Pesaran (1992) have suggested a simulation method for

implementing the Cox test which circumvents these analytic difficulties. In

this section, we describe how their simulation technique can be employed to

test GARCH and bilinearity against one another.

Pesaran and Pesaran (1992) considered two hypotheses which specify the

conditional distribution of the dependent variable y as
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H : g(y ,7|z.)
g t t

where x and z are conditioning variables which may be exogenous or

predetermined, and d and 7 are unknown parameters. The conditional densities

in H and H are assumed to be non- nested in the sense that one can not be
f 8

obtained as a special case or as an approximation of the other. The standard

Cox (1961, 1962) test for such non-nested hypotheses, assuming H is to be

tested against H , is
8

T^(^,7) - d - E^(d),

A A--IT
I

I

where d = T S d , with d = log f(y ,5 x ) - log g(y ,72), is the

A A

average maximized log- likelihood ratio and d and 7 denote the MLE's of d and
A

7. The term E (d) denotes a consistent estimate of the expected value of d

assuming H is true. To implement the Cox test, d can be obtained by

numerically maximizing the likelihood function under H and H . The term
A

E (d) is usually taken to be the Kullback-Leibler information measure

C(^ ) = E [log f(y,^ ) - log g(y.7,(^ ))]

evaluated at 8, where Q is the true value of d and 7 (^ ) = plim 7. In
'*^ *^ f

simple models, such as non-nested linear regression models, both C{d ) and

y (d ) can be obtained analytically. In more complex models, such as ours,

this is usually not the case.
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Pesaran and Pesaran (1992) ,
proposed a method for evaluating the plim

A A

and expectation in 7 (d) and C(d) by simulation. The technique is based on

generating R artificial samples Y = (y .,..., y .)', j = 1,...,R from the

density f (y, ^ |x ) consistent estimator of y (&) is then

7 (R) = R 5r 7., where 7 is the MLE of 7 using the j ' th artificial sample

Y . Similarly, a consistent estimator of C(^) is

c/e) ^ll [L(Y^.J) - L(Y^,;^(R))]
R " •- f" j g J

where L (Y.,^) = T"V log f(y^.,^)
f J t=i tj

and L (Y.,7 (R)) =
8 J *

A

T 2] log g(y ,7 (R)). The consistency of these two estimators follows
t=i tj *

immediately from the law of large numbers since the sample Y are
j

independently generated. In an empirical application of testing a logit and
A

probit against on another, Pesaran and Pesaran (1992) found that C (d) and
R

A

7 (R) converge very rapidly. Beyond R = 100, the estimates change very

little.

To implement the test, one needs a consistent estimate of the asymptotic
A A

1/2
variance of T •T--(^,7). Pesaran and Pesaran (1992) demonstrated that

2 1 V /J :i\2 1

f T " ' t
t=i

T aiog f(y J)
Id-

t = l
dd

T aiog f(y ,^) Slog f(y ,^)
Y» t t

L4

t=i
de dd'

-1

T aiog f(y ,6)

Id-
t=i

89
(4.1)

is a consistent estimator of the asymptotic variance which can be computed as
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the estimated standard error from the regression of d on an intercept and

aiog f(y ,d)/dd, not corrected for degrees of freedom. Pesaran and Pesaran

then showed that

t'^^ (d - C (5))/v^^ N(0,1), (4.2)

under appropriate regularity conditions

,

A

Once C {9) has been computed, the statistic (4.2) can be readily

computed from an artificial regression without explicitly computing the

variance from (4.1) This can be done through a moment test interpretation of

the Cox test as suggested by Tauchen (1985) . The Cox test is based on the

criterion function c(y ,d) = d - E (d ) , for which clearly E [c(y ,6)] = 0.

A

The moment E (d ) is estimated under the null model by C (^) . The test is
Z, X^ R

IT
then conducted by testing the significance of m = - 2 m , where^ ^ ^

T t=l t
A A

m = d - C (^) . Now let m' = (m , . . . ,m ) , f = Slog f (y J)/de ,

F' = (f f ) and I' = (1,...,1). Following Tauchen (1985), consider theIT
t-statistic of fi in the artificial regression

m ' l^ + Ffi + rj. (4.3)

Using the partition inverse formula, and noting F'l = and m = d - C (d) , we

have

i'M m

^ a (^'M^)'^'
I? F
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if
m

a

d - C (5)

a

-1,
where M = I - F(F'F) F' and a is the standard error of the regression

F »7
^

(4.3). But

a = \-
'

[^ F] m'm
-1

'l'\

I -

k
_ F'F F'J

m

2 1 „, -1,
- ^ X (\ - m) - ^ m'F(F'F)"'F'm

t-i

i X (d - d)^ - \ d'F(F'F)''F'd.
T " • t

t-i

which is exactly the the variance estimator v in (4.1). Therefore, the

t-statistic of ^ in (4.3) is identical to the statistic (4.2), This

provides a convenient method for computing the test. Although

computationally intensive, it is straight forward to implement this procedure

to test GARCH and bilinearity against each other. In the following section,

we conduct the tests for three Dollar spot exchange rates.

5. Nonlinear Dependence in U.S. Exchange Rates

One of the most successful areas in which ARCH models have been applied
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is in the study of short run movements in daily and weekly foreign exchange

rates [see, for example, MaCurdy and Morgan (1987), Milhoj (1987),

Diebold (1988), Bailie and Bollerslev (1989), Diebold and Nerlove (1989) and

Hsieh (1989)], In this section we use data similar to these studies. We

estimate both ARCH and bilinear models for each spot rate and then compute

the stochasticly simulated Cox test of each specification against the other.

The three currencies we consider are the British Pound, the Canadian

Dollar and the Japanese Yen To avoid the complications of day of the week

and holiday effects, we employ weekly data. The original data are the

interbank closing spot prices on Wednesday denominated in U.S. cents per unit

of foreign currency. The data run from the first week of January 1973

through the first week of June 1985. The data are analyzed in the first

differences of logarithms. Therefore, the analyzed series represent the

percentage rates of return from holding a unit of foreign currency one week.

After making the logarithmic transformation, there are 651 observations.

As a first stage in building a GARCH and bilinear model for each series,

we specify autoregressive (AR) models to account for any linearity in the

data. The order of the AR processes were chosen through the standard

identification techniques. The Canadian Dollar and the Japanese Yen can be

adequately modeled by an AR(1) process. The Pound required an AR(4) process.

After estimating the AR models, we computed the joint regression F-test for

ARCH and bilinearity as described in section 3. The results for various

orders of q, r and s are shown in Table 1. Not surprisingly, all three

series show significant evidence of nonlinearity . We also computed the joint
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test for ARCH and bilinearity described in Higgins and Bera (1989) and the

results were very similar to those reported in Table 1,

Next, we fit AR models with GARCH and bilinear errors to each of the

series. To identify the order of the GARCH processes, models of various order

were estimated. Each series seemed adequately represented by a GARCH(0,2) or

GARCH(1,1). The maximized value of the likelihoods tended to favor the

later, therefore we specified each series as GARCH(1,1), The estimated model
A A

are shown in Table 2. For the Japanese Yen, the sum of a and B are close

to one. This is characteristic of the integrated GARCH process of Engle and

Bollerslev (1986). Similarly, the order of the bilinear models were selected

by considering t- statistics and likelihoods for models of various orders.

The estimated models are shown in Table 3. Comparing the conditional means

of the AR models with GARCH errors and the AR models with bilinear errors,

there is little difference in the estimated AR parameters and their computed

standard errors. This suggests that the bilinear error structure captures

dependence in the conditional means of the series which cannot be represented

by a pure AR process.

We then proceed to compute the stochasticly simulated Cox test of each

model against the other. The tests are implemented as described in section 4

A A

and computed from the artificial regression (4.3). Both 7 (R) and C {d) were
* R

computed with R = 50 and R = 100 replications. Since the values of the test

statistic changed little as the number of replications increased, we only

report the results based on 100 replications. The results for the three

exchange rates are shown in Table 4.
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Considering the results in Table 4, it is evident that GARCH may not

totally account for the nonlinearities in the data. For the British Pound,

GARCH cannot be rejected in favor of bilinearity, but bilinearity can be

rejected in favor of GARCH. Considering the Canadian Dollar, however, GARCH

is clearly rejected against bilinearity. Although bilinearity can not be

rejected against GARCH at the 1% level using a two- tailed test, it can be

rejected at the 5% level. This indicates that any nonlinear dependence in

the Canadian Dollar may marginally be better represented through a

conditional mean model rather than by a GARCH model for the conditional

variance. For the Japanese Yen, both GARCH and bilinearity are rejected at

any reasonable level of significance, indicating that neither model

appropriately represents the nonlinear dynamics in the series. However, we

interpret the results for the Yen cautiously. From the estimated GARCH model

in Table 2, the Japanese Yen appears to be very close to an I -GARCH process

for which the unconditional variance and higher moments do not exist. The

lack of higher order moments may invalidate the asymptotic distribution

theory of the Cox test, although the results of Lee and Hansen (1991) and

Lumsdaine (1991) show that the standard asymptotic theory of the MLE goes

through for the I -GARCH model.

6. Conclusion

We consider the above results preliminary. The rejection of the models

may be due to the specification of the conditional distribution rather than
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misspecified nonlinear dynamics. As indicated by Bollerslev (1987), a

conditionally normal GARCH process may not be appropriate for asset returns.

The conditional distributions frequently have heavier tails than the normal

distribution. A conditional normality assumption may also be inappropriate

for a bilinear model. The estimator of the variance of the Cox test (4.1) is

highly dependent upon the parametric density specified in the null

hypothesis. If the parametric model is misspecified, the variance estimator

is likely to be inconsistent. In future work, we plan to adopt a

quasi -maximum likelihood approach and employ a robust variance estimator in

the manner of White (1982).

Also, finding evidence of nonlinearity in the mean of a series does not

necessarily indicate that incorporating this nonlinear structure will lead to

improved forecasts. Recent papers by Diebold and Nason (1990),

Mizrach (1992), and Prescott and Stengos (1990) conducted forecasting

exercises which employed nonparametric techniques to allow for nonlinearities

in the conditional means. These papers indicate that improved

forecasting can be achieved with in the sample period, but not necessarily

out of sample. The focus of our paper is restricted to the choice between

bilinear and GARCH models. By employing our procedure the investigator

should at least be able to decide whether bilinearity or GARCH, or neither of

the two models, should be adopted to capture the nonlinearity in the data.
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Table 1. Joint Regression Tests for ARCH
and Bilinearity.

order Currency

British Canadian Japanese
q,r,s Pound Dollar Yen

1.1.1 24.17* 8.63 16.69*

1.2,2
1.3,3

28.52^
45.09*

10.53
24.24*

16.88
23.37*

2,1,1 39.06* 10.89 20.84*

2,2,2 45.83 10.85 23.28

2.3,3 56.28 21.53 26.90

3,1.1 47.97* 13.01 28.51*

3.2,2 55.08 11.87 31.71
3,3,3 49.11 16.97 31.65

4,1,1 48.42* 13.02 35.99*

4,2.2 53.68 11.87 39.14
4,3,3 47.63 17.10 40.02

Indicates significant at the 1% level

Table 2. Estimated GARCH Models

British Pound :

y = -.054 + .264 y - .003 y + .060 y + .080 y
^ (.033) (.046)

^'^
(.037)

^'^
(.036)

^'^
(.035)

^'"^

h = .092 + .175 €^ + .758 h
(.036) (.044)

^'^
(.063)

^"^

Canadian Dollar :

y = -.006 + .278 y h = .048 + .457 e^ + .277 h
^ (.013) (.047)

""'^
^ (.013) (.087)

""^
(.102)

^'^

Japanese Yen:

y = .031 + .327 y h = .003 + .052 e + .945 h
^ (.031) (.041)

^"^ ^ (.002) (.008)
^'^

(.007)



Table 3. Estimated Bilinear Models

British Pound:

.079 + .257 y - .054 y + .072 y + .058 y
(.045) (.040)

^"^
(.034)

^'^
(.029)

^"^
(.029)

^"*

+ .035 u €

(.013)
"-'^ '-''^

a^ = 1.149
^ (.064)

.138 u € + .139 u € - .020 u e

(.068)
^''^ "-'^

(.050)
'^ '''^

(.017)
"-'^ ^'^

Canadian Dollar:

y = - .044 + .418 y + .094 u e + .225 u e
^

(.009) (.027)
^'^

(.022)
"'^ """^

(.058)
^~^ ^~'^

+ .225 u €

(.058)
^'^ '-''^

.102 u e

(.038)
"-'^ ""'^

a = .173
^ (.009)

Japanese Yen

.021 + .301 y + .038 u €

(.015) (.035)
^'^

(.013)
^"^ ^"^

.020 u €

(.010)
'''^ "-'^

a = 1.154
^ (.062)

Table 4 Stochasticly Simulated Cox Tests Between
GARCH and Bilinearity!

H : GARCH H : Bilinear

H : Bilinear H : GARCH
1 1

British Pound

Canadian Dollar

Japanese Yen

-1.17 -3.01

-6.94* -2.03

-6.62* -4.73*

*The simulations are based on R = 100 replications

Indicates significant at the 1% level for a two-

sided test.






