UNIVERSITY OF

ILLINOIS LIBRARY

AT URBANA-CHAMPAIGN

BOOKSTACKS

CENTRAL CIRCULATION BOOKSTACKS

The person charging this material is re- sponsible for its renewal or its return to the library from which it was borrowed on or before the Latest Date stamped below. You may be charged a minimum fee of $75.00 for each lost book.

Theft, mutilation/ and underlining of book* are reasons for disciplinary action and may result In dismissal from the University.

TO RENEW CALL TELEPHONE CENTER, 333-8400 UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

AUG 0 1 1997

When renewing by phone, write new due date below previous due date. L162

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/areussavingsbank92114chan

Faculty Working Paper 92-0114

330 STX

B385

1992:114 COPY 2

Are U.S. Savings Banks Viable?

i |yv

of Urbana-Champafgn

C. Edward Chang Morgan J. Lynge,Jr.

Department of Finance Department of Finance

Southwest Missouri State University University of Illinois

Bureau of Economic and Business Research

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

BEBR

FACULTY WORKING PAPER NO. 92-01 14

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

March 1992

Are U.S. Savings Banks Viable?

C. Edward Chang

Department of Finance

Southwest Missouri State University

Morgan J. Lynge, Jr.

Department of Finance

University of Illinois

ARE U.S. SAVINGS BANKS VIABLE?

by

C. Edward Chang

Assistant Professor of Finance

Southwest Missouri State University

901 South National Avenue

Springfield, MO 65804

(417) 836-5563

and

Morgan J. Lynge, Jr.

Associate Professor of Finance

University of Illinois at Urbana-Champaign

1206 South Sixth Street

Champaign, IL 61820

(217) 333-7099

Paper for presentation at the Midwest Finance Association Meetings, Chicago, Illinois, March 26, 1992.

ABSTRACT

Recent developments in the analysis of <nul t iproduc t cost economies at other depository institutions have not been incorporated in empirical work on savings banks ( SBs ) . The purpose of this study is to examine the existence of multiproduct cost economies, particularly economies of scale and scope in the production of current services, provided by SBs. The generalized translog cost function and data on all insured SBs in the period 1986—88 are used. Results indicate that SBs achieve scale economies at small sizes and again beyond $500 million in total assets. Measures of scope economies a^re always positive, indicating that the joint product cost of the set of SB outputs is less than the sum of the costs of producing the outputs separately. Results suggest that the institutions that will survive are those that are large and efficient or those that are small but serving a particular niche market.

ARE U.S. SAVINGS BANKS VIABLE?

1 . Introduction

One of the many important repercussions of the savings and loan crisis is that the savings and loan industry is shrinking rapidly in both market share and the number of associations. Some savings and loan associations (S&Ls) have been absorbed by commercial banks and other healthy thrifts, while some S&Ls have converted their charters to become savings banks (SBs). Thus, a by-product of the shrinkage of the S&L industry is a growth in the number of SBs.

S&L conversion to a savings bank charter is motivated by several important reasons. One reason is to escape the connection to an industry with a negative public image. Another is to avoid the extra regulatory pressure and costs imposed on a troubled, regulated industry.

In addition, SBs have been given the flexibility to engage in a wider spectrum of financial activities than S&Ls. Although the liabilities of SBs are similar to those of S&Ls, SBs have a more diversified portfolio of assets. SBs for many years have had broader authority to invest in securities than S&Ls. As the number of SBs increases, an issue is whether the cost structure of financial intermediation by "typical" SBs can make them economically viable.

Recent developments in the analysis of multiproduct cost economies have not been incorporated in the empirical work on SBs.2 Since the early 1980s, the cost structure in multiproduct depository institutions, including commercial banks, savings and loan associations, savings

banks, and credit unions, has been examined by a number of studies [Murray and White (1983); Gilligan and Smirlock (1984); Gilligan, Smirlock, and Marshall (1984); Kim (1986); Lawrence and Shay (1986); Berger, Hanweck, and Humphrey (1987); Kolari and Zardkoohi (1987); Mester (1987b); Cebenoyan (1988); Lawrence (1989); Cebenoyan (1990); Hunter, Timme, and Yang (1990); Noulas, Ray, and Miller (1990); LeCompte and Smith (1990); Buono and Eakin (1990); Berger and Humphrey (1991); and Gropper (1991)]. Surveys of their results can be found in Mester (1987a), Clark (1988), Hunter and Timme (1989), and Humphrey (1990).

The purpose of this study is to examine the existence of multiproduct cost economies, particularly economies of scale and economies of scope, in the production of current services provided by SBs. This study is distinguished from other studies in banking by two features. The first feature is the use of Call Report data to examine multiproduct cost economies in SBs. One of the advantages of using this data base is that the population rather than a sample of the institutions can be analyzed.

The second feature of the study is the use of a state-of-the-art functional form. The computation of the measures of economies of scope and product-specific economies of scale require the assumption of a zero level of output for at least one of the products being produced. However, the translog cost function used in many other studies always yields zero total costs whenever the output of even one product is zero. The generalized translog cost function used here overcomes the problem of zero output levels for some products. The output variables are the Box-Cox metric transformations of the actual output levels.

3 The generalized translog functional form has been applied to multiproduct cost studies in other industries. Some notable examples in various industries are Fuss (1983) in telecommunications, Sing (1987) in gas and electric utilities, Kim (1987) in U.S. railroads, and Kellner and Mathewson (1983) and Fields and Murphy (1989) in life insurance.

The rest of this paper is divided into four sections. Section 2 specifies the model. Section 3 describes the data. Section 4 discusses the estimation procedure and presents the results. Section 5 presents the conclusions drawn from the analysis.

2. The Model

This study follows the development of the multiproduct cost function in the commercial banking industry. In developing statistical cost functions, researchers begin with the microeconomic principle that production costs depend on input prices and the level and composition of outputs. In a competitive environment, SBs are assumed to minimize the costs associated with a given level of output; i.e.,

Min. C = JT WjX., f1)

3-1

subject to a production constraint F(Y,X) = 0

where C = total costs,

W = the vector of unit prices of m inputs (factors), W. = l,...,m,

X = the vector of m inputs, X., j = l,...,m, and

Y = the vector of n output quantities, Y , i = l,...,n.

4 This functional relationship follows from the property of duality between the production and cost functions. A standard result of duality theory is that the properties of the production transformation can be derived from the reduced form cost function: Min. C(Y,W).

For purposes of this study, we are interested in the following multiproduct cost concepts:

2.1 Output Cost Elasticities

CEi = ainC(Y,W)/ainYi (2)

2.2 Marginal Costs

MCi =aC(Y,W)/8Yi = (C(Y,W)/Yi)CEi (3)

2.3 Overall Scope Economies

sc _ SjC(Yx,W) - C(Y,W) (4)

C(Y,W)

SC measures the fraction cost savings (dissavings) that are due to joint production, and will be positive (negative) if overall economies (diseconomies) of scope exist. With nonjointness in production, SC will be zero.

2.4 Product-Specific Scope Economies

_ C(YX,W) + C(YN,i;W) - C(Y,W) (5)

1 C(Y.W)

where C(Y-,W) and C(YU ;,W), respectively, represent the cost of producing product i and all other products independently. This measure indicates the difference between the cost of joint production of all of the n outputs and the cost of producing n-1 outputs at their current level while separately producing the other output at its current level. Thus, if SC- > (<) 0, SC. measures the relative increase (decrease) in cost if Y were produced in two groups i and N-i.

2.5 Overall Scale Economies

SL = C(Y,W)/(EiYiMCi) = l/(SiCEi) (6)

Overall scale economies are measured by the inverse of the sum of output cost elasticities with respect to outputs. If SL > 1, then overall scale economies exists; if SL = 1, then constant returns to scale exist; and if SL < 1, then there are diseconomies of scale.

2.6 Product-Specific Scale Economies

IC^Y^) ICi/C(Y,W) 1 YjMC^Y^W) CE~

where IC-(Y,W) = C(Y,W) - C(YU ;,W), and

1 N â–  1

C(YN.j,W) = C(Y1,...,Yj.1,0,Y. + 1,...,Yn,W)

6 The incremental cost of the i h product, IC(Y,W), is defined as the difference in cost incurred by the firm to produce the given level of product i as opposed to producing a zero level, while the quantities of other products are held constant. If SL- > (<) 1, then scale economies (diseconomies) exist in the production of output i; and if SL- = 1, then constant returns to scale exist in the production of output i.

The major models contain three equations - a cost function and two share equations. The two share equations are included to increase the efficiency of the estimations. We employ the generalized translog cost function to represent the total cost function. The generalized translog cost function which includes five bank outputs and these input prices is:

3

ln(C) = A0 + £ M^i - 1)/*1 + E Bi In(Wj)

i-i j-i

+ X/2E E siJ(Y* - ii Ai ttt* - i)/*] (8)

i=l k-1

+ 1/2 E E Gjkln(W3)ln(Wh) ♦ £ V D„ [ (Y*1 - D/lIlnllfj]

j-1 h-l i = l j=l

The dependent variable is logarithmic total cost. The output variables are transformed by the Box-Cox metric. Using Shephard's lemma, the input demand share equations are derived by differentiating the above generalized translog cost function with respect to the input prices:

Ca = 3ln(C)/ain(Wj)

3 5 (9)

= B: + E Gjhln(wh) + E Dij[(Yi" " 1]/X1 J - 1»2

h-l i-l

In addition, the system of equations must satisfy certain regularity restrictions such as symmetry and homogeneity.

Sik = Ski for all i, k; and Gjh = Gh;j for all j, h. (symmetry)

(10) and EDij =0' â– "â–  =1, 2' 3' 4' 5* (homogeneity)

3 3

E B3 = L' E G3h = 0' J = 1« 2' 3;

j=l h-l

3

i

The multiproduct cost concepts discussed above can be obtained from the generalized translog cost function as follows. The cost elasticity of the i output obtained from the generalized translog cost equation (8) can be expressed as:

CE, = [A, + EjSifcUYjJ - D/X) * BjDy InWjjYi1. f11)

When mean-scaled data are used in the estimation procedure, at the point of approximation where Y- = W. = 1, the cost elasticity reduces to CEj = A,-.

The degree of overall scope economies is measured by:

SC = [C(Y1,0,0,0,0,W) + C(0,Y2, 0,0,0, W) + C (0 , 0 , Y3 , 0 , 0 , W)

+ C ( 0 , 0 , 0 , Y4 , 0 , W) + C ( 0 , 0 , 0 , 0 , Y5 , W) ( 12 )

- C ( Y1 , Y2 , Y3 , Y4 , Y5 , W) ] /C ( Y: , Y2 , Y3 , Y4 , Y5 , W)

8 The degree of product-specific scope economies, for example for product Y1 , is measured by

SC^ = [C(Y1,0,0,0,0,W) + C(0,Y2,Y3,Y4,Y5,W)

(13)

- C(Y1,Y2,Y3,Y4,Y5fW)]/C(Y1,Y2,Y3/Y4/Y5,W) .

Similarly, the degree of product-specific scale economies, for example for product Y1 , is measured by

SLj. - {[C(Y1/Y2,Y3,Y4/Y5,W) - C (0, Y2, Y3 , Y4, Y5, W) ] / C(Y1,Y2,Y3,Y4,Y5,W) }/CET.

(14)

Finally, the measure of overall scale economies at the approximation point reduces to:

SL = 1/(2^) . (15)

3 . Data

All data were obtained from the Call Reports of Condition and Income for the period 1986-1988. The numbers of available SBs insured by Federal Deposit Insurance Corporation are 444 in 1986, 456 in 1987, and 469 in 1988. The final list contains SBs which were in operation in all three years. After SBs with missing values for variables were dropped, a total of 417 "typical" SBs remained and were used for empirical analysis. Table 1 categorizes all sample SBs according to asset size for the three years. The variables used in the estimating eguations are described below.

[Insert Table 1 about here]

9

3.1 Total Costs

Total costs, C, include all labor and physical capital expenses, as well as interest expense; that is, total costs of inputs used to provide the various outputs of the SBs. Humphrey (1990) found that believable estimates for scale economies should be based on models using total costs. We include interest expense in the measure of total costs because it is significant in size and likely to differ among SBs. Ignoring interest expense could lead to serious specification error and inconsistent empirical estimation.

3.2 Output and Input Measures

As suggested by Sealey and Lindley (1977), our analysis employs the intermediation approach to measuring SB output. Outputs are measured as the dollar value of all of the SB's earning assets. Earning assets include (1) interest-bearing balances due from depository institutions, Y.., (2) securities and assets held in trading accounts, Y2, (3) Federal funds sold and securities purchased under agreements to resell, Y,, (4) total loans and leases net of unearned income, Y,, and (5) direct and indirect investments in real estate ventures, Yc.

Three input categories, including labor, physical capital, and funds (including deposits), are treated as inputs that are intermediated to produce SB assets.

3.3 Input Prices

A separate input price is assigned to each input. Due to the aggregated nature of Call Report data, the three input prices are approximated in the following manner:

10

(1) price of labor, W. : calculated by dividing total salaries and fringe benefits by the number of full-time eguivalent employees (including SB officers);

(2) price of physical capital, W,: calculated by dividing total expenses of premises and fixed assets by the dollar value of total assets;

(3) price of funds, W3: calculated by dividing the total interest expense paid on deposits, Federal funds purchased and securities sold under agreements to repurchase, demand notes issued to the U.S. Treasury, mortgage indebtedness, subordinated notes and debentures, and other borrowed money by the sum of funds from these sources. In line with traditional banking firm behavior, the cost of deposits in the form of interest paid to attract them is considered as the price paid for inputs.

The definitions of the variables are summarized in Table 2. Summary statistics of the variables are presented in Table 3. Not all SBs in our sample produce in all product lines. In fact, zero levels are always present for some SBs in Y1 , Y,, and Ye. For the purpose of examining economies of scope and product-specific economies of scale, inclusion of such SBs is important. This allows extrapolation of the multiproduct cost function to regions of zero outputs. Since Yp and Y^ do not have zero levels in our sample, we use the minimum to replace the zeros in eguations (12) to (14) to avoid any overextrapolation.

[Insert Tables 2 and 3 about here]

11

4. Empirical Results

4 . 1 Estimation Procedure

Cost equations for SBs are estimated separately by year. All variables entering the equations are standardized by dividing by their respective sample means to eliminate the upward bias in t-statistics associated with unsealed variables, as suggested by Spitzer (1984).6

While the estimates are unbiased and consistent, estimating only the cost equation is relatively inefficient because of unused information. We augment the total cost equation with two derived input demand share equations using Shephard's lemma. Since these two equations do not involve any new coefficients, greater efficiency in estimation can be achieved by including such share equations along with the cost equations. Only two share equations are estimated since any attempt to estimate the complete system will lead to singularity in the variance-covariance matrix because the shares sum to one for each observation, as implied by the linear homogeneity in input prices. The share equation corresponding to the third input is omitted. Barten (1969) has shown that the parameter estimates are invariant to which share equation is omitted.

The three equations (8) and (9) - one cost function and two share equations - comprise the major models to be estimated. We estimate the system of equations using Zellner's seemingly unrelated regressions (SUR) procedure. This technique uses estimates of the covariance of the residuals across equations to improve the efficiency of the estimates.

The system of equations to be estimated is linear conditioned on X. The method used to determine the value of X is an iterative

12 least-square search. Specifically, we proceed by specifying a set of values for X (in increments of 0.001), estimating the remainder of the parameters conditional on X, and selecting those parameter estimates that correspond to the X which maximizes the log of the likelihood function for the system, therefore minimizing the residual sum of squares.

The coefficients for the generalized translog cost function are used to calculate the cost measures. Each of the cost measures is computed by multiplying the estimated coefficients by the vector of means of the variables. Since the function computes total costs in logarithms, we take the exponential of each of the above components and calculate the cost measure if they are involved with total costs.

All cost measures are estimated at mean output levels. Because we deal with the population rather than a sample of the SBs in question, standard deviations are not calculated. Since the effects on costs of changes in the variables included in the cost function may differ depending on the levels of the variables, the measures of overall scale economies are evaluated at eight different points for both types of SBs: (1) the point consisting of the means of the input prices and outputs, which corresponds to the "typical" (or average) SB; and (2) the points consisting of the means of the input prices, and the seven mean values of the output variables which corresponds to the seven size categories in Table 1.

4.2 Results

The parameter estimates and their t-statistics for the generalized translog multiproduct cost functions are presented in Table 4. The

13 coefficients of output and input price variables carry their expected positive signs and are, except for Yr in 1986, statistically significant at the 0.01 level of significance.

[Insert Table 4 about here]

Goodness-of-f it measurements for the cost eguation and the two estimated share eguations are given in Table 5. Measures show F probabilities of 0.0001 for the cost and share eguations with adjusted R-square of at least 0.9974, 0.5133, and 0.8905 for the cost, labor share, and capital share eguations, respectively. This indicates that the explanatory variables and the functional form specified do capture the variations in the total costs and also have high explanatory power .

[Insert Table 5 about here]

For convenience of discussion, as outlined in Table 2, we will still use Y1 to represent interest-bearing balances due from depository institutions, Y-, to represent securities and assets held in trading accounts, Y, to represent Federal funds sold and securities purchased under agreements to resell, Y4 to represent total loans and leases net of unearned income, and Y5 to represent direct and indirect investments in real estate ventures.

Table 6 gives the values at the means of output cost elasticity, marginal cost, incremental cost, as well as degrees of product-specific scale economies and product-specific scope economies for each output, Y- ( i = 1, 2 , 3 , 4, 5 ) . We would expect positive marginal costs associated with the production of banking services. As expected, the marginal costs of producing outputs are all positive.

14 [Insert Table 6 about here]

Product-Specific Scale Economies

Since there may be scale economies associated with production of a particular product, product-specific scale economies are investigated. For SBs, the degrees of product-specific scale economies with respect to Yp and Y, are less than one, while those for Y, and Y5 are greater than one. The results of this measure for Y1 are mixed. From the standpoint of cost alone, the typical SB would gain by increasing the levels of Y4 and Y5 while reducing the levels of Y2 and Y, on an individual basis. The results also indicate that direct and indirect investments in real estate ventures enjoy product-specific scale economies (though declining) over the three-year period.

Product-Specific Scope Economies

Table 6 gives the estimates of product-specific scope economies, SCj (i = 1, 2, 3, 4, 5) at the means. For SBs, the degrees of product- specific scope economies with respect to Y2, Y,, and Y4 are positive, while those for Yc are negative. The results of this measure for Y1 are mixed. When they are positive (negative), the typical SB would gain by producing that particular product and the other four products jointly (separately). Interestingly, the joint production of direct and indirect investments in real estate ventures and the other four products always exhibit slight scope diseconomies.

15 Overall Scale Economies

Table 7 documents the estimates of overall scale economies at means and additional seven mean points. The results at mean output levels indicate that SBs exhibit constant returns to scale. Slow but sure improvement in overall scale economies are found over the three- year period.

[Insert Table 7 about here]

There is evidence that scale economies first decrease as SBs grow larger and then increase as SBs grow even larger. In other words, the pattern of estimates of scale economies is that in general the small and large SBs exhibit overall scale economies while the SBs in between exhibit slight overall scale economies or constant returns to scale. More cost savings usually occur beyond $500 million in asset size.

Overall Scope Economies

Table 8 documents the estimates of overall scope economies at the means. The measures of overall scope economies are always positive. Thus, the results at mean output levels indicate that SBs exhibit overall scope economies. That is, the joint product cost of the existing five outputs is less than the sum of the costs of producing the five outputs separately by five SBs.

[Insert Table 8 about here]

Table 8 also gives the estimates of overall scope economies at the additional seven mean points. The results show that scope measures first decrease as SBs grow larger and then increase as SBs grow even larger. That is, the larger and smaller SBs enjoy more cost savings from joint production than the SBs in between.

16

5 . Conclusions

The use of an expanded data base which contains all SBs in question should provide the best possible information about multiproduct cost economies of SBs. The generalized translog cost function used here overcomes the problem of zero output levels for some products and, therefore, enables us to examine the existence of overall economies of scope as well as product-specific economies of scale and scope in SBs' production of banking services.

Our results for product-specific scale economies indicate that the typical SB would gain by increasing the levels of Y^ and Y5 while reducing the levels of Y2 and Y-, on an individual basis. The results for product-specific scope economies indicate that the typical SB would gain by producing Y,, Y,, and Y^ (Yc) and the other four products jointly ( separately) .

Constant returns to scale were evidenced for typical SBs in recent years. In general, larger and smaller SBs exhibit overall scale economies while those of intermediate size exhibit slight overall scale diseconomies or constant returns to scale. The results of overall scope economies indicate that typical SBs exhibit overall scope economies - that is, they incurred lower costs by engaging in multiproduct production. SBs of all asset sizes exhibit overall scope economies while larger and smaller SBs seem to enjoy even more cost savings from joint production than the intermediate-sized SBs.

These results conform to the conventional view of depository institution viability. That is, the institutions that will survive are those that are large and cost-efficient or small but serving a

17 particular niche market. New laws allowing interstate mergers and acquisitions may result in just such an industry structure for savings banks.

H-ML.4-24

18

Footnotes

'New regulations under federal law have placed significant restrictions on S&Ls. For example, S&Ls must have 70 percent of their assets in home mortgages, this against a background of declining real estate values. State-chartered SBs in many states have to meet only a 60 percent requirement for home mortgage lending.

2Of the very few studies on SBs, Benston (1972), Eisenbeis and Kwast (1991), Rosen et al. (1989), and Stansell and Hollas (1990) use approaches other than multiproduct cost function. Kolari and Zardkoohi (1990) use a translog cost function approach to examine economies of scale and scope in thrift institutions, but they study Finnish cooperative and savings banks.

3To see why this is so, let the cost function be represented by: In C = b In Y + X where X represents the remaining terms in cost equation, then C = Y exp(x), which equals zero when Y is zero.

This function form was first used by Caves, Christensen, and Tretheway (1980). As its name suggests, this function is a generalization of the translog because the expression for output approaches the natural logarithm of output as X approaches zero; i.e.,

(Yi-1)

lim -. = lnY,.

Jl-0 k

The authors are aware of the controversy regarding appropriate measures of bank output, that is, the choice between the production approach and the intermediation approach as discussed in Mester (1987a) and Clark (1988). We believe that Sealey and Lindley make a compelling case for using earning assets as outputs. Moreover, even if we wanted to use the production approach, the limitations of Call Report data preclude the best use of this approach for being lack of number of accounts. Since there is no ideal way to disaggregate bank earning assets into distinct categories, we simply go by the characterization of the Call Reports.

6Spitzer (1984) suggested that the transformed variables be scaled by their sample means before estimation. Failure to scale the transformed variables can result in biased hypothesis testing. The scale of this bias is likely to be substantial. The use of mean-scaled variables in the estimation will reduce such bias.

The system estimates are preferred to the single-equation ordinary least squares (OLS) estimates because of their greater efficiency, as evidenced by the decreases in the magnitudes of standard errors. The results of the OLS estimation are available upon request.

19

Q

Our estimated cost functions satisfy all the regularity conditions when evaluated at the means of the relevant samples. Since the model has imposed symmetry and homogeneity, the regularity conditions are satisfied if the cost function is monotonically increasing and concave in input prices.

20

References

Barten, A. , "Maximum Likelihood Estimation of a Complete System of

Demand Equations," European Economic Review 1 (Fall 1969), 7-73.

Benston, G. , "Savings Banking and the Public Interest," Journal of Money, Credit and Banking 4 (1972), 133-226.

Berger, A., G. Hanweck, and D. Humphrey, "Competitive Viability in

Banking: Scale, Scope, and Product Mix Economies," Journal of Monetary Economics 20 (December 1987), 501-520.

Berger, A., and D. Humphrey, "The Dominance of Inefficiencies over Scale and Product Mix Economies in Banking," Journal of Monetary Economics 28 (1991), 117-148.

Board of Governors of the Federal Reserve System, Reports of Condition

and Income, Washington, D.C., December 1986 through December 1988.

Buono, M. , and B. Eakin, "Branching Restrictions and Banking Costs," Journal of Banking and Finance 14 (December 1990), 1151-1162.

Caves, D., L. Christensen, and M. Tretheway, "Flexible Cost Functions for Multiproduct Firms," Review of Economics and Statistics 62 (August 1980), 477-481.

Cebenoyan, A. , "Multiproduct Cost Functions and Scale Economies in Banking," Financial Review 23 (November 1988), 499-512.

Cebenoyan, A. , "Scope Economies in Banking: The Hybrid Box-Cox Function," Financial Review 25 (February 1990), 115-125.

Clark, J. , "Economies of Scale and Scope At Depository Financial

Institutions: A Review of the Literature," Federal Reserve Bank of Kansas City Economic Review (September/October 1988), 16-33.

Eisenbeis, R. , and M. Kwast, "Are Real Estate Specializing Depositories Viable? Evidence from Commercial Banks," Journal of Financial Services Research 5 (1991), 5-24.

Fields, J., and N. Murphy, "An Analysis of Efficiency in the Delivery of Financial Services: The Case of Life Insurance Agencies," Journal of Financial Services Research 2 (October 1989), 343-356.

21

Fuss, M. , "A Survey of Recent Results in the Analysis of Production Conditions in Telecommunications," in L. Courville, A. de Fontenay, and R. Dobell (eds.)> Economic Analysis of Telecommunications: Theory and Applications (New York: Elsevier Science Publishers, 1983).

Gilligan, T. , and M. Smirlock, "An Empirical Study of Joint Production

and Scale Economies in Commercial Banking," Journal of Banking and Finance 8 (1984), 67-77.

Gilligan, T. , M. Smirlock, and W. Marshall, "Scale and Scope Economies in the Multi-Product Banking Firm, " Journal of Monetary Economics 13 (May 1984) , 393-405.

Gropper, D., "Empirical Investigation of Changes in Scale Economies for the Commercial Banking Firm, 1979-1986," Journal of Money, Credit and Banking (November 1991), 718-727.

Humphrey, D., "Cost Dispersion and the Measurement of Economies in Banking, " Federal Reserve Bank of Richmond Economic Review (May/June 1987), 24-38.

Humphrey, D., "Why Do Estimates of Bank Scale Economies Differ?," Federal Reserve Bank of Richmond Economic Review (September /October 1990), 38-50.

Hunter, W. , and S. Timme, "Does Multiproduct Production in Large Banks Reduce Costs?," Federal Reserve Bank of Atlanta Economic Review (May/June 1989), 2-11.

Hunter, W. , S. Timme, and W. Yang, "An Examination of Cost Subadditivity and Multiproduct Production in Large U.S. Banks," Journal of Money, Credit and Banking 22 (November 1990), 504-525.

Kellner, S., and G. Mathewson, "Entry, Size Distribution, Scale, and Scope Economies in the Life Insurance Industry," Journal of Business 56 (January 1983), 25-44.

Kim, H. , "Economies of Scale and Economies of Scope in Multiproduct Financial Institutions: Further Evidence from Credit Unions," Journal of Money, Credit and Banking 18 (May 1986), 220-226.

Kim, H. , "Economies of Scale and Scope in Multiproduct Firms: Evidence from U.S. Railroads," Applied Economics 19 (1987), 733-741.

Kolari, J., and A. Zardkoohi, Bank Costs, Structure, and Performance (Lexington, Mass.: D.C. Heath and Company, 1987).

Kolari, J., and A. Zardkoohi, "Economies of Scale and Scope in Thrift

Institutions: The Case of Finnish Cooperative and Savings Banks," Scandinavian Journal of Economics 92 (1990), 437-451.

22

Lawrence, C. , "Banking Costs, Generalized Functional Forms, and

Estimation of Economies of Scale and Scope," Journal of Money, Credit and Banking 21 (1989), 368-379.

Lawrence, C. , and R. Shay, "Technology and Financial Intermediation in a Multiproduct Banking Firm: An Econometric Study of U.S. Banks, 1979-1982," in C. Lawrence, and R. Shay (eds.), Technological Innovation, Regulation and the Monetary Economy (Cambridge, Mass.: Ballinger Publishing Company, 1986) .

LeCompte, R. , and S. Smith, "Changes in the Cost of Intermediation: The Case of Savings and Loans," Journal of Finance 45 (September 1990), 1337-1346.

Mester, L. , "Efficient Production of Financial Services: Scale and

Scope Economies," Federal Reserve Bank of Philadelphia Business Review (January /February 1987), 15-25 (a).

Mester, L. , "A Multiproduct Cost Study of Savings and Loans," Journal of Finance 42 (June 1987), 423-445 (b).

Murray, J., and R. White, "Economies of Scale and Economies of Scope in Multiproduct Financial Institutions: A Study of British Columbia Credit Unions," Journal of Finance 38 (June 1983), 887-902.

Noulas, A., S. Ray, and S. Miller, "Returns to Scale and Input

Substitution for Large U.S. Banks," Journal of Money, Credit and Banking 22 (February 1990), 94-108.

Rosen, R. , P. Lloyd-Davies , M. Kwast, and D. Humphrey, "New Banking

Powers: A Portfolio Analysis of Bank Investment in Real Estate," Journal of Banking and Finance 13 (July 1989), 355-366.

Sealey, C, and J. Lindley, "Inputs, Outputs, and a Theory of Production and Cost at Depository Financial Institutions," Journal of Finance 32 (September 1977), 1251-1266.

Sing, M. , "Are Combinations Gas and Electric Utilities Multiproduct Natural Monopolies?," Review of Economics and Statistics 69 (August 1987), 392-398.

Spitzer, J. , "Variance Estimates in Models with the Box-Cox

Transformation: Implications for Estimation and Hypothesis Testing," Review of Economics and Statistics 66 (November 1984), 645-652.

Stansell, S., and D. Hollas, "An Examination of the Relative Economic Efficiency of Mutual vs. Stock Savings Institutions," Journal of Real Estate Finance and Economics 3 (1990), 73-89.

23

Table 1 Size Distribution of U.S. Savings Bank

1986

1987

1988

Asset size

Number

% of

Number

% of

Number

% of

(millions )

of

Total

of

Total

of

Total

Banks

Number

Banks

Number

Banks

Number

Less than $25

27

6.5

21

5.0

17

4.1

$25-49

41

9.8

40

9.6

40

9.6

$50-99

80

19.2

78

18.7

69

16.5

$100-299

152

36.5

151

36.2

156

37.4

$300-499

46

11.0

49

11.8

44

10.6

$500-999

37

8.9

41

9.8

48

11.5

$1,000 or more

34

8.2

37

8.9

43

10.3

Total

417

100.0

417

100.0

417

100.0

Table 2

Definitions of the Variables

Variable

C: Y,:

W0:

Definition

Total costs

interest-bearing balances due from depository institutions

securities and assets held in trading accounts

Federal funds sold and securities purchased under agreements to resell

total loans and leases net of unearned income

direct and indirect investments in real estate ventures

input price of labor

input price of physical capital

input price of funds

24

1986

c

Y1

Y2

Y3

Y4

Y5

W1

W2

w7

1987

c

Y1

Y2

Y3

Y4

Y5

W1

W2

w,

1988

c

Y1

Y2

Y3

Y4

Y5

W1

w2

w7

Table 3 Data Summary for U.S. Savings Banks

Variable Mean Standard Minimum Maximum

deviation

30186

85297

7873

30933

110265

432731

9828

22327

257748

574256

1709

9532

24.606

5.347

0.003

0.001

0.066

0.006

31161

90555

6963

33136

113641

484137

7434

18970

296365

621799

2379

11523

26.977

6.231

0.003

0.001

0.061

0.005

35122

92628

9039

57613

104033

409758

7089

17803

336077

674402

2698

13266

28.069

5.791

0.003

0.001

0.065

0.005

193 1396085

0 533189

6 7670028

0 220792

2614 7669261

0 129082

11.529 48.818

0.000 0.010

0.013 0.083

195 1505538

0 407974

25 8624492

0 205800

2787 7557750

0 148270

11.921 61.457

0.000 0.010

0.037 0.077

209 1450659

0 842642

25 7375876

0 179700

2974 6988041

0 159234

3.416 61.455

0.000 0.011

0.031 0.083

Table 4

Parameter Estimates (SUR) for U.S. Savings Banks

25

Variable

1986 Estimate

1987 Estimate

1988 Estimate

0.089

0.097

0.095

INTERCEP

W1

W2

W3 Y,*Y

*Y-

*YC

VY2

Y2*Y3

Y *Y

Y *Y *2 X5

Y3*Y3

Y3*Y4

Y * Y *3 X5

VY4

Y * Y *4 Y5

Y5*Y5

0 (0

0 (5.

0, (26,

0 (11,

0,

(51,

0,

(1.

0,

(42,

0,

(61,

0,

(261,

0.

(5.

-0.

("2.

-0.

(-2.

0.

(1. -0,

(-1.

0.

(27.

-0,

(-5.

-0.

(-22.

-0.

(-1- 0.

(12. 0.

(1.

0.

(1.

0.

(6.

0.

(1.

0.

(0.

003 285)

018***

547)

256***

576)

044***

650)

684***

870)

005

169)

132***

820)

042***

159)

826***

906)

003***

688)

002***

991)

000**

013)

001

320)

000

515)

141 * * *

437)

006***

544)

148***

823)

002*

840)

008***

363)

002

334)

000*

653)

070***

762)

002*

784)

001

836)

0

(0

0

(5

0

(37

0

(9

0

(68

0

(3

0

(50

0

(81

0

(294

0

(4

-0

(-0

0

(2

-0

("1

0

(0

0

(28

-0

("2

-0

(-26

-0

("1

0

(10

-0

(-0

-0

(-2

0

(8

0

(1 0

(2

.006

.781)

.016***

.765)

.267***

.084)

. 029***

.158)

. 680***

.756)

.012***

.311)

. 142***

.783)

. 046***

.607)

. 812***

.438)

. 003***

.994)

.001

.853)

.000**

.127)

.002

.547)

.000

.036)

. 154***

.681)

.002**

.059)

. 168***

.341)

.001

.335)

. 006***

.347)

.001

.892)

.000**

.113)

. 084***

.641)

.002

.588)

.002***

.848)

0.

(0.

0.

(7.

0.

(31.

0.

(9.

0.

(73.

0.

(3.

0.

(54.

0.

(80.

0.

(326.

0.

(6.

-0.

(-0.

0.

(0.

-0.

(-2.

0.

(0.

0.

(26.

-0.

(-2.

-0.

(-24.

-0.

("2.

0.

(9.

-0.

(-1-

-0.

(-0.

0.

(8.

0.

(1-

0.

(3.

007

909)

019***

138)

222***

442)

026***

434)

719***

699)

013***

796)

138***

118)

045***

312)

817***

722)

003***

791)

000

272)

000

527)

002**

038)

000

364)

140***

049)

002**

126)

156***

175)

002***

593)

005***

779)

001

190)

000

074)

081***

387)

001

313)

002***

328)

Table 3 (continued)

26

Variable

1986 Estimate

1987 Estimate

1988 Estimate

w1*w1

w.,*w2

w1*w3

w2*w2

w2*w3

w3*w3

y1*w1

Y1*W2

Y1*W3

Y2*W1

Y2*W2

Y2*W3

Y3*W1

Y3*W2

Y3*W3

Y4*W1

Y4*W2

Y4*W3

Y5*W1

VW2

Y5*W3

0.061***

0. 067***

0 . 047***

(10.433)

(11.813)

(9.593)

0.008***

0. 003***

0 . 003***

(6.684)

(3.057)

(3.107)

-0. 069***

-0. 070***

-0.051***

(-11.495)

(-12.294)

(-10.240)

0. 034***

0.037***

0.037***

(59.342)

(68.379)

(65.001)

-0.042***

-0.040***

-0. 040***

(-32.977)

(-32.787)

(-33.369)

0. Ill***

0. 110***

0.091***

(17.485)

(18.418)

(17.422)

0.000

-0.000

-0.000

(1.539)

(-0.336)

(-0.853)

-0.000

-0.000

-0.000

(-0.535)

(-1.364)

(-0.675)

-0.000

0.000

0.000

(-1.393)

(0.620)

(1.020)

-0 . 014***

-0.011***

-0. 010***

(-8.575)

(-7.320)

(-6.617)

-0.000

0.000

0.000

(-0.605)

(0.476)

(0.234)

0. 014***

0.011***

0.010***

(8.528)

(7.313)

(6.678)

-0.001

-0.002***

-0.001*

(-1.415)

(-4.009)

(-1.821)

-0.000

-0.000

-0.000

(-0.346)

(-0.714)

(-0.833)

0.001

0 . 002***

0.001**

(1.462)

(4.207)

(2.041)

0.004*

0.002

-0.002

(1.817)

(0.770)

(-1.291)

-0.000

-0.001*

-0.000

(-0.829)

(-1.715)

(-0.824)

-0.003

-0.001

0.003

(-1.601)

(-0.425)

(1.500)

0.001***

0.001***

0.001***

(3.176)

(3.339)

(4.427)

-0.000

-0.000

-0.000

(-1.337)

(-0.351)

(-1.249)

-0.001***

-0.001***

-0.001***

(-2.816)

(-3.300)

(-4.216)

T statistics in parentheses.

***Signif icant at 0.01 level for a two-tailed test

**Signif icant at 0.05 level for a two-tailed test

*Signif icant at 0.10 level for a two-tailed test

27

Table 5

Goodness-of-Fit Measurements

SSE

DF

MSE

R2

1986

Cost Equation

1,

.63494816

381

0.00429120

0.

.9974

Labor Share

0.

,30073207

408

0.00073709

0,

.5154

Capital Share

0.

.01440929

408

0.00003532

0.

.8905

1987

Cost Equation Labor Share Capital Share

1.37969548

381

0.00362125

0.9977

0.28207297

408

0.00069136

0.5133

0.01150806

408

0.00002821

0.9090

1988

Cost Equation Labor Share Capital Share

1.25989230

381

0.00330680

0.9980

0.24000568

408

0.00058825

0.5379

0.01160510

408

0.00002844

0.9006

SSE: Sum of Squared Errors.

DF: Deqrees of Freedom.

MSE: Mean Square Error (MSE = SSE/DF)

R2: Adjusted R-squared.

28

1986 CE,.

ici sci

1987

CE.

MCi

ici

1988

CEi MC1- ICj SL,. SC;

Table 6 Product-Specific Cost Measures at Mean Points

Y1 Y2 Y3 Y4 Y5

0.018

0.256

0.044

0.684

0.005

0.018

0.257

0.044

0.686

0.005

0.004

-2.871

-0.007

0.877

0.014

0.220

-11.166

-0.155

1.279

2.991

0.005

3.009

0.017

0.900

-0.006

0.016

0.267

0.029

0.680

0.012

0.016

0.268

0.029

0.684

0.012

0.029

-1.786

-0.017

0.864

0.018

1.834

-6.658

-0.587

1.264

1.499

0.021

1.906

0.026

1.291

-0.009

0.019

0.222

0.026

0.719

0.013

0.019

0.223

0.027

0.724

0.013

0.023

-1.865

0.004

0.890

0.018

1.195

-8.357

0.145

1.229

1.306

0.014

1.956

0.005

1.288

-0.009

29

Table 7

Estimates of Overall Scale Economies at Eight Mean Points

Asset Size 1986 1987 1988 (millions )

"Typical" bank 0.993 0.997 1.001

Less than $25 1.070 1.081 1.093

$25-49 1.047 1.047 1.057

$50-99 1.020 1.022 1.033

$100-299 1.001 1.004 1.012

$300-499 0.993 0.999 1.001

$500-999 0.994 1.003 1.002

$1,000 or more 1.010 1.032 1.023

Table 8

Estimates of Overall Scope Economies at Eight Mean Points

Asset Size 1986 1987 1988

(millions)

"Typical" bank 0.948 1.306 1.302

Less than $25 0.706 0.856 0.942

$25-49 0.311 0.443 0.445

$50-99 0.206 0.319 0.349

$100-299 0.396 0.568 0.528

$300-499 1.096 1.471 1.247

$500-999 1.817 2.475 2.146

$1,000 or more 6.967 9.493 8.065

HECKMAN

BINDERY INC.

JUN95

IBound-To-PleBi N. MANCHESTER INDIANA 46962