

EPOCHS OF ANCIENT HISTORY.

Rev. G. W. COX, M.E. ant by GHARLES SANKEY, M.A.

The following may now be had:-

The GREEIKS and the PERSIANS. By the Rev. G. W. Cox, M.A. With 4 Coloured Maps, price $2 s, 6 d$.

Abstract

' Mr. Cox's work is the first volume in a new series on Ancient History, intended for youthful students, the publication of which was probably suggested by the great and deserved success of the series dealing with Epochs of Modern

History. Mr. Cox's high reputation as an authority on historical matters will no doubt insure the success of The Greeks and the Persians.'

Edinburgh Courant.

The EARLY ROMAN EMPIRE, from the Assassination of Julius Cesar to the Assassination of Domitian. By the Rev. W. W. Capes, Mr.A. With 2 Coloured Maps, price 2s. 6d.
EARLY ROME, from the Foundation of the City to its Destruction by
the Gauls. By W. Imye, Ph.D. With a Coloured MIap, price $2 s .6 d$.

The ROMAN TRIUMVIRATES. By the Very Rev. Charles Merivale, D.D. Dean of Ely. With a Coloured Map of the Roman Empire. Price 2s. $6 d$.

[^0]books by reason of the fact that, unlike schoolbooks in general, it is the outcome of a complete knowledge of all that modern criticism has done to separate the fabulous in early Roman history from that which may be accepted as really a part of the warp and woof of the great nation.
' Dean Merivale's volume on the Roman Triumvirates is written with the easy fluency and grace of a scholar who has already travelled over the same ground in the production of a more extensive and important history. This Epoch differs from some others of the series in the fact that its chief excellence consists not so much in the unraveiling of the philosophy of history as in the strength and interest of the narrative. The moral to be drawn from this Epoch is that Rome had reached the period when she could no longer retain her political liborty, and that the struggles of her Triumviratos could only end either in anarchy or in a monarchy.

School Board Cifronicle.

To be followed by:-

SPARTAN and THEBAN SUPREmacy. By Chables Sankey, M.a. Asoistant-Master, Marlborough College, Joint Editor of the Serics.
MACEDONIAN EMPIRE, its Rise and Culmination to the Death of Alexander the Great. By A. M. Cumters, M.A. Assistant-Master, Marlborough College.

ROJE and CARTHAGE, the PUNIC WARS. By R. Boswortil SMith, M A. Assistant-Master, Harrow School. ${ }^{\text {, }}$ The GRACCHI, MARIUS, and SULLA. By A. H. Beesly, M.A. AssistantMaster, Marlborough College.
The AGE of TRAJAN and the ANTONines. By the Rev. IV. Wolife Capes, м....

Nound Whuler $\frac{\pi}{p R}$

Colenso

Presented to the
LIBRARY of the
UNIVERSITY OF TORONTO
by

WYCLIFFE COLLEGE

LIBRARY

ARITHMETIC

By the same Author.

ARITHMETIC designed for the Use of SCHOOLS: to which is added a Chapter on Decimal Coinage. Revised Edition, with Notes and Examination Papers
 $12 \mathrm{mo} .4 s .6 d_{0}-\mathrm{KEX}, 58$.

A SHILLING ARITHMETIC designed for the use of Elementary SCHOOLS. 18 mo . price 1 s , cloth, or with ANSWERS, price 1 s .6 d . cloth.

ARITHMETIC for National, Adult, and Commerclal Schools :-

I. Text-Book, price 6rd. II. Examples, Pant I. Simple Arithmetic, price $4 d$. III. Examples, Part II. Compound Arithmetic, price $4 d$.
IV. Examples, Part III. Fractions, Decimals. Duodecimals, \&c. price 4d.

V: ANSWERS to Examples, with SoLUTIONS of the more difficult QUESTIONS, 1 s .
COLENSO'S ARITHMETICAL TABLES, on a Card price $1 d$.
THE ELEMENTS of ALGEBRA designed for the use of SCHOOLS, I-ART I. containing the Simpler Parts of the Science, suitahle for general School purposes, and as required for the attainment of an ordinary B.A. degree. New Edition, to which is prefixed a Sketch of the History of Algebra, by Rev. T. H. Grose, M.A. Fellow and Tutor, Qucen's College, Oxford.......12mo. 4s. $6 \mathrm{~d} .-\mathrm{Key}$, 5 s .

HUNTER'S EXAMMNATION-QUESTIONS On COLENSO'S ALGEBRA,
Part I. with Graduated Exercises, Problems, \&c. .12mo. 23. 6d.
COLENSO and HUNTER'S INTRODUCTORY ALGEBRA. Containing the Chief Rules in the First Part of 'Colenso's Elements of Algebra.' simplified with Additional Illustrations, and followed by a large Appendix of New Examples arranged in the Order of the Rules...............12mo. price 2s. $6 d .-$ KeY, price $2 s .6 d$.

COLENSO'S ELEMENTS of ALGEBRA, designed for the use of SCIIOOLS, PART II. adapted to suit the wants of more advanced Students ; containing the higher parts of the subject, with an APPEMDIX of more difficult Miscellaneous Examples and Equation Papers 12mo. 6s.- KEY, $5 s$.

COLENSO'S MISCELLANEOUS EXAMPLES and EQUATION PAPERS from Parts I. and II. of the Algebra ; with the ANSWERS....12mo. 2s. $6 d$.
COLENSO'S ELEMENTS of ALGEBRA, adapted for the use of NATIONAL and ADULT Schools; containing numerous Easy Examples and Questions under every Rule, with a Selection of Miscellaneous Exercises for Practice
.18mo. 1s. 6d.-Kex, 2s. 6d.
THE ELEMENTS of EUCLID (the parts usually studied in the Universitica); with Geometrical Exercises. New Edition, thoroughly revised, with Solved Examples of Deduced Problems and Theorems, and the Figures of Euclid arranged by themselves for Examination.

18mo. 4s. $6 d$. or with a KEY to the Exercises, $6 s .6 d$.
COLENSO'S GEOMETRICAL EXERCISES and KEY $18 \mathrm{mo} .3 s .6 d$.
COLENSO'S GEOMETRICAL EXERCISES separately, for the use of Schools where other Editions of Euclid may be employed 18 mo . 1 s .
PLANE TRIGONOMETRY, PART I. comprising the Measurement of 1ines and Angles, the Numerical Values of the Trigonometrical Ratios; with the Use of Logarithms and the Exponential Theorem......12mo. 3s. $6 d_{0}$. KEX, $3 s .6 d$.
PLANE TRIGONOMETRY, PART II. comprising the Summation of Scries, the Trigonometrical Solution of Equations, and a large collection of Miscellaneous Problems. 12mo. 2s. 6d.-KEY, $5 s$.

London, LONGMANS \& CO.

ARITHMETIC

DESIGNED FOR THE USE OF SCHOOLS:

TO WHich is added a chapter on

DECIMAL COINAGE.

BY THE

RIGHT REV. J. W. COLENSO, D.D. LORD BISHOP OV NATAL.

NEW EDITION, THOROUGHLY REVISED, Witil the addition of notes and examination-papers, and an explaíation of the metric systev of weights

LONGMANS, GREEN, AND CO. 1876.

QA
 LIBRARY
 SEP 242001
 EMPTY OF TARO

THE LATE MASTER OF TRINITY.

Extract from Dr. Whewele's Work on 'A Liberal Education,' pp. 158, 159.

As the basis of all real progress in Mathematics, boys ought to acquire a good knowledge of Arithmetic and a habit of performing the common operations of Arithmetic, and of applying the rules in a correct and intelligent manner. This acquirement appears to be often neglected at our most eminent classical schools. Such a neglect is much to bo regretted; for tho want of this acquirement is a great practical misfortune, and is often sorerely felt in after-life. Many persons who ares supposed to hare received the best education which the country affords, are, in all matters of numerical calculation, ignorant and helpless, in a manner which places them, in this respect, far below the members of the middle class, educated as they usually are. Arithmetic is a matter of habit, and can be learnt only by lon ⿱continued practice. For some years of boyhood there ought to be a daily appropriation \&f time to this object.

PREFACE.

Since this book was first published, some considerable additions have been made to it, besides further modifications, with a view to correcting any defects which experience has from time to time detected, and bringing it up to the requirements of the present day. These have been carried out under my sanction and superintendence, and to my entire satisfaction, by the Rev. J. Hunter, formerly of the National Society's Training College, Battersea, and chiefly at his suggestion ; and I consider that the book has been much improved by them.

I have taken the opportunity, however, of my being in England for a few weeks, to insert some additional pages on the Metric System of Weights and Measures, the principles of which, by a rule of the Council of Education in force in 1872, were required to be taught to all children of Standards V. and VI. in schools under the control of the Government. The rule in question has, however, been since rescinded, as requiring too much from elementary schools, while the use of the Metric System has not yet been rendered compulsory by Act of Parliament. But the general adoption of that System in England is only, it seems plain, a question of time.

J. W. NATAL.

London: December 24, 1874.
$+1=5$
41

$$
\begin{aligned}
& \text { = } \\
& = \\
& = \\
& \text { 1+ }
\end{aligned}
$$

1 F

TABLE OF CONTENTS:

Elementary Arithmetic.
Definitions, Notation, and Numeration Page
1
1
Simple Addition 2
" Subtraction 4
" Multiplication 5 7
Answers to Examples
Answers to Examples 9
Arithmetical Tables [9], [10]
Compound Arithmetic.
Снар.
I. Reduction

- 11
Compound Addition - 14
" Subtraction - 17
" Multiplication - 10
" Division - 21
Square and Cubic Measure
- 25
- 25
Miscellaneous Examples 29
II. Greatest Common Measure - $3 \pm$
Least Common Multiple - 35
III. Vulgar Fractions 38
Miscellaneous Examples - 54
IV. Decimal Fractions - 57
Miscellaneous Examples - 71
V. Practice - 74
Miscellaneous Examples - 79
Chap. Page - 81
YI. Proportion
YI. Proportion
Single Rule of Three - 84
Double Rule of Three 94
VII. Interest - 99
Discount - 105
Insurance, \&c - 107
Stocks - 109
Profit and Loss - 112
Proportional Parts - 114
Concliding Problems - 119
Miscellaneous Examples - 126
Appendix - 141
Standards of Money, Weight, Space, and Timo - 143
Decimal Coinage - 149
The Metric System - 1056
Notes and Examination-Paters on Arithmetic - 167
Examination-Papers - 178
Answers to the Examples - 200

ARITHMETIC.

Arithmetic is the science which treats of numbers-of the mode of expressing them -of the manner of computing by them - and of the various uses to which they are applied in the practical business of life.

The number one is called unity; and an integer, or whoie wumber, is a collection of ones, unities, or units.

The figures, $1,2,3,4,5,6,7,8,9$, denote, respeetively, the numbers one, two, three, four, five, six, seven, eight, nine; the figure 0 , called zero or a cypher, expresses nought or nothing; but by means of these figures, which are called the ten digits, or more commonly the nine digits and zero, any number whatever can be expressed. This is effected thus:

A figure standing by itself, or on the right hand of other figures, has its own proper value, expressing so many units;
A figure standing in the second place from the right is considered to express so many tens of units;
In the third place, so many tens of tens, or hundreds of units ;
In the fourth place, so many tens of hundreds, or thousands of units, \&cc., according to the following Table, called the

NUMERATION TABLE.
$\left.\begin{array}{llllllllllllll}7 & 1 & 2 & 8 & 1 & 4 & 3 & 5 & 7 & 1 & 2 & 3 & 4 & 1 \\ 9\end{array}\right)$
and so on to trillions, quadrillions, \&ce. if necessury

Notation is the art of expressing any given number by these figures ; Numeration the art of reading them, when so expressed.
N.B. Examples in Notation and Numeration may be obtained from those given in Addition and Subtraction.

The Romans used I for $1, \mathrm{~V}$ for $5, \mathrm{X}$ for $10, \mathrm{~L}$ for $50, \mathrm{C}$ for 100 , D or I_{D} for $500, \mathrm{M}$ or CI_{D} for 1000 .

When any character was followed by one of less or equal value, the expression denoted the sum of their simple values; but when preceded by one of less value, the difference; thus III stood for 3, IV for 4, and VI for $6, \mathrm{XL}$ for 40 , and LXX for 70 , \&c.

Every D_{D} annexed to I_{D}, and every C and ρ joined to CI_{D}, increased its value tenfold ; thus IDD stood for $5000, \mathrm{CCI}_{\mathrm{DD}}$, for 10,000 , \&ce.

A line drawn over a character increased its value a thousand-fold; thus $\overline{\mathrm{V}}$ stood for $5000, \overline{\mathrm{C}}$ for 100,000 .

The following signs are also made use of in Arithmetic:

+ (plus) shows that the number before which it stands is to be added;
- (minus) that the number before which it stands is to be subtracted;
\times (into) that the numbers between which it stands are to be multiplied;
$\div(b y)$ that the number which stands before it is to be divided by the one which follows ; and
$=($ equal $)$ that the numbers between whieh it stands are equal to each other.

Addition.-When any numbers are taken together, or added, the resulting number is called their sum.

Ex. Add 94163 21954
7812
593 35647 4895 $\overline{165064}$

In order to add whole numbers together, we first place them under one another, with their units-figures in the same vertical line; we then add these figures thus, 5 and 7 are 12, and 3 are 15 , and 2 are 17, and 4 are 21, and 3 are 24, i. e. 24 units, or 2 tens and 4 units; we set the 4 under the units-figures, to be the units-figure of the result, and carry the 2 tens to be added to the second or tens column; adding
this in the same manner, beginning with the 2 carried, thus 2 and 9 are 11 , and 4 are $15, \& \mathrm{c}$., we find the sum of the column to be 36, i. c. 36 tens, or 3 tens of tens (i. e. 3 hundreds) and 6 tens; we set the 6 under the tens-figures, to be the tens-figure of the result, and carry the 3 hundreds to the third or hundreds column : pursuing the same course with this, we find the sum of this column to be 40 , i. e. 40 hundreds or 4 tens of hundreds (i. e. 4 thousands) and 0 hundreds; we set the 0 under the hundreds-figures, to be the hundreds-figure of the result, and carry the 4 thousands, \&c.
N.B. Any sums may be set at pleasure in Addition, and the Answers proved by repeating the operation, beginning with the top figure of the units column, when the result will be the same, if the sum be worked correctly.

EXAMPLES IN ADDITION.

321413	2.	543123		3.	536123	4.
452734		234512		453215		234561
130421		713145		1234		345612
3718		104234		4231		456123
24561		36142		51234		561234
341323		3451		613254		612345
761284	6.	657890		7.	692387	8.
5.	768453					
612874		278679		4956		358428
8719		5798		87958		8796
46759		67843		769378		54937
587999		489567		5790		495
987678		37429		87658		876578

9. Add together five hundred and ninety-seren thousand six hundred and cighty-five, forty-nine thousand three hundred and seven, four hundred and nine thousand and sixty-seven, fourteen thousand and nineteen, seven hundred thousand and seventy-four, sixty-five thousand and nine.
10. Add together seven hundred and seven thousand four hundred and fifty-nine, ninety-eight thousand and seventy-four, six thousand eight hundred and seven, five hundred thousand three hundred and nine, seven thousand nine hundred and seventy-cight, nine hundred and nine thousand nine hundred and ninety-nine.
11. Add together fifty-five millions seven hundred thousand and five, seven hundred millions nine hundred and cight thousand two hundred and five, seventy-six millions fourteen thousand and fifty-nine, eight hundred and seventy-seven millions nine hundred and two thousand and forty-seven, seven millions eight hundred and four thousand five hundred and twelve, five hundred and scventy-five millions eight hundred and one thousand and ninety-nine.
12. Add together three hundred and nine millions four hundred and serentee:n thousand and eighty-seven, six hundred and seventy-fire thousand and forty-nine, seven thousand and ninety-seven millions cight hundred and fourteen thousand three hundred and five, seventynine millions five hundred and four thousand and forty-nine, six thousand and seventy-eight millions four hundred and thirty-nine thousand six hundred and forty-seven, seven thousand millions eight hundred and seventy-six thousand four hundred and twenty-nine.

Subtraction.-When one number is taken from another, or subtracted, the result is callel the remainder or the difference.

Ex. From 794327 In order to subtract one whole number from Take 342814 another, we first place the number to be sub451513 tracted under the other, with their units-figures in the same line; we then take the units-figure, 4 , of the lower number: from that of the other, 7 , thus 4 from 7,3 , i. e. 3 units, and we place the 3 under the units-figures, to be the units-figure of the result; then we proceed to the tens-figures, and say, 1 from 2,1 , i. e. 1 ten, and we set down 1 under the tens-figures; then to the hundreds-figures, and say 8 from $3 .$. I cannot; but if we take or borrow 1 out of the 4 thousands (leaving 3 thousands), and treat it as 1 ten of hundreds, we shall now have 13 hundreds in the upper line; we can now say 8 from 13,5 , i. e. 5 hundreds, and we set down 5 as the hundreds-figure of the result: and we have now to take 2 thousands from 3 thousands, or, which is just the same, but more convenient in practice, instead of supposing the upper figure, 4 , diminished when we borrow 1, we may suppose the lower corresponding figure, 2 , increased, i. e. we may carry one to it , and say 3 from 4, 1, i. e. 1 thousand, and so on.
N. B. Any sums may be set at pleasure in Subtraction, and the Answers proved by adding the remainder to the lower number, when the result will be the upper, if the sum be worked correctly.

EXAMPLES IN SUBTRACTION.

9. From six hundred and nine thousand seven hundred and one take three hundred and ninety-seven thousand and forty-mine.
10. From four hundred and fifty thousand and ninety-four take ninetynine thousand nine hundred and ninc.
11. From scven hundred and eighteen millions fourteen thousand and fifty-seven take ninety-seven millions eight hundred and four thousand seven hundred and sixteen.
12. From fifty-three thousand millions eighteen thousand and ninetyseven take forty thousand five hundred and twenty-eight millions seven hundred and six thousand seven hundred and nine.

Multiplication is the method of finding what number would result from adding several of the same numbers together; thus, if we add 6 sevens together, the resuit is

$$
7+7+7+7+7+7=42
$$

the same number as that given in the Multiplication-table for the value of 6 times 7: and, since the same number is also the sum of 7 sixes, or the value of 7 times 6 , it follows that, when two numbers are multiplied together, it matters not which we take as multiplier.

The numbers multiplied in any case are called factors, and the result is called the product.
Ex. 1. 3467 When the multiplier, as in Ex. 1., is not higher than
2 12, we first set it with the units-figure under that of 6934 the multiplicand; then we begin to multiply, saying, twice 7 is 14-four and carry one, i. e. we set down the 4 units under the units-figures, and carry the 1 , which means 1 ten, to be added to the tens; we now proceed, twice 6 is 12 (i. e. 12 tens, since 6 means 6 tens), and 1 (i.e. the one carried) is $13 \ldots 3$ and carry 1 , i. e. we set down the 3 tens, and carry the 1 , which means 1 ten of tens or 1 lundred, to be added to the hundreds, and so on throughout the line.

Ex. 2 3467... 2 When the multiplier, as in Ex. 2., is higher 692.... 8 than 12, we first set it under the multiplicand 6934 as before, and, having multiplied the upper 31203 line by the units-figure, 2, of the lower, as in 20802 Ex. 1., we now multiply by the tens-figure, 9, 2399164.... 7 saying 9 times 7 is 63 (i. e. 63 tens, since 9 means 9 tens) $\ldots 3$ and carry 6; i. e. we set down the 3 tens, and carry the 6 tens of tens or hundreds, and so on: we now multiply by the hundreds-figure, 6 , of the lower line, in the same manner; and then add up the separate lines, when the result is the product required. The 2,8 , and 7 , on the right, will be explaired presently.

Ex. 3. 37218 Since it is immaterial which number we take as

1563156 multiplier, it is best always to choose that which is simplest; and if it can be separated into two or more factors each less than 12 (thus $42=6 \times 7$), we may multiply separately by each, as in Ex. 3.
N.B. Any number which can be separated into factors is called a composite number; any number which cannot be so separated, such as $7,11,13,17, \& c \cdot$. is called a prime number.
Ex.4. $\begin{array}{r}3241 \ldots \ldots \\ 2700 \ldots\end{array}$ If the multiplier ends with one or
$\frac{2268700}{6+82}$
$8750700 \ldots . . .0$ more cyphers, the sum may be worked as in the annexed example, by which many useless cyphers are saved.
N. B. Any sums may be set at pleasure in Multiplication, and the Answers proved, either by repeating the operation with the other number for multiplier; or by the process of casting out nines (for the proof of which see Algebra), as follows: add up the figures in the upper number, divide this by 9 , and set down the $\mathrm{rem}^{\mathrm{r}}$; do the same with the other number; then do the same with the product of these rem ${ }^{\text {rs }}$, and with the product of the two numbers; and if the new rem ${ }^{\text {rs }}$ are the same, the sum is most probably right; but, if different, it is certainly wrong. Thus in Ex. 2., the first pair of rem ${ }^{\text {rs }}$ are 2 and 8, and their product 16 ; the rcm^{r} from this is 7, the same as from the Ans ${ }^{\mathrm{r}}$: in Ex. 4., the first pair of rem ${ }^{\mathrm{rs}}$ are 1 and 0 , and their product is 0 ; the rem ${ }^{\mathrm{r}}$ from this is 0 , the same as from the Ansr. See Note I.

It is desirable that the pupil should be made to apply one or both of these methods to the Examples below given.

EXAMPLES IN MULTIPLICATION.

1. 345673×2	2.	457632×3	3.	415763×4
4. 371281×5	5.	635432×6	6.	421375×7
7. 378914×8	8.	476539×8	9.	435976×9
10. 978564×11	11.	496782×12	12.	876549×12
13. 378125×16	14.	456932×18	15.	712436×24
16. 543817×27	17.	593654×30	18.	697128×36
19. 765438×40	20.	596437×45	21.	642198×60
22. 756328×72	23.	814765×84	24.	913748×96
25. 234915×123	26.	704745×615	27.	469830×369
28. 391525×861	29.	1174575×2214	30.	3523725×2583
31. 1644405×7749	32.	231549×8856	33.	463098×7380
34. 1389294×8900	35.	926196×7896		2778588×9867

Division is the method of finding how often one number is contained in another, i. e. how often one number must be taken to make up another. Hence Division bears the same reference to Subtraction, as Multiplication bears to Addition; for we might go on subtracting the divisor from the dividend, and then from the 1st rem ${ }^{\text {r }}$, then from the 2 nd remr, and so on, until the final $\mathrm{rem}^{\mathrm{r}}$ is either zero, or is less than the divisor itself; and if we counted the number of times we had subtracted it, this would be the result required, or, as it is called, the quotient. But the Multiplication-table will enable us much more easily to divide one number by another; thus, since 7 times 9 is 63 , if we divide 63 by 7 , we shall have the quotient 9 , or if by 9 , the quotient 7 : and the method of applying it to more difficult eases will be seen by what follows.

Ex. 1. 4) 2379
$594 \frac{3}{4}$

When the divisor, as in Ex. 1., is not higher than 12, we first set it in a loop before the dividend; then we take the first figure of the dividend, 2, i. e. 2 thousands : but, since 4 will not be contained at all in this, we take then the first two figures, 23, i. e. 23 hundreds, and say 4 is in $23 \ldots 5$ times and 3 over, and we set down the 5, i. e. 5 hurdreds, in the quotient, and carry the 3 lundreds, or 30 tens, to the tens-figure, 7 , of the dividend: we have now 37 tens, to be divided by 4 ; we say, therefore, 4 is in $37 \ldots 9$ times, and 1 over, and we set down the 9 , i. e. 9 tens, in the quotient, and carry the 1 ten or 10 units to the unitsfigure, 9 , of the dividend: we have now 19 units to be divided by 4 ; we say, therefure, 4 is in 194 times and 3 over, and we set down the 4, i. e 4 units, in the quotient, and place, as is usual, the final rem ${ }^{1}$ 3 over the divisor with a line between them, as $\frac{3}{4}$ (three-fourths), a quantity meaning $3 \div 4$, and called a fraction, of which more will be said hereafter.

It appears then that 4 will be contained 594 times in 2379, with 3 over; i. c. we might subtract 4 from 2379594 times, and have still 3 remaining. This is an example in Short Division.
Ex. 2. 42) 379543 ($9036 \frac{31}{42}$ When the divisor, as in Ex. 2., is

378

154
126 higher than 12, we place it, as before, in a loop before the dividend, and the quotient in a loop after it ; and we see that 42 will not be contained in the 3 (i. e. 3 hundreds of thousands), nor in the 37 (i. e. 37 tens of thousands), but will ive
contained 9 times in the 379 (i. e. 379 thousands); or, which is the same thing, but more convenient in practice, we take the first figure only of the dividend, and say 4 is in 37 . . 9 times; we set therefore the 9 (i. e. 9 thousands) in the quotient, and, multiplying 42 by 9 , subtract the product, $3 i 8$ (i. e. 378 thousands) from the dividend; and we have now the rem ${ }^{\mathrm{r}}$, i. c. 1 thousand or 10 hundreds, to be carried to the hundreds: we take in then the hundreds-figure, 5 , of the dividend, and have now 15 hundreds to be divided by 42 ; we say then (42 is in 15 , or) 4 is in 1 .. I cannot; we set, therefore, 0 (i. c. 0 hundreds) in the hundreds place of the quotient, and have now 15 hundreds, or 150 tens, to be carried to the iens; we take in then the tens-figure, 4, of the dividend, and have now 154 tens to be divided by 42 ; we say then 4 is in $15 \ldots 3$, and we set the 3 , i. e. 3 tens, in the quotient, and so on till, at last, we have the final rem ${ }^{r} 31$, which we set over the divisor, as a fraction, and have the whole quotient $9036 \frac{31}{42}$. This is an example in Long Division.

Ex. 3. But when the divisor, as in this case, is made up of two or more factors, less than 12, it is often more convenient to divide by each scparatcly, as follows.
6) 379543 There is here a fraction $\frac{1}{6}$ orer in the first quo7) $63257 \frac{1}{6}$ tient, and a rem $5 \frac{1}{6}$ in the second, which, according $9036 \frac{31}{42}$ to our previous practice, should be written $\frac{5 \frac{1}{6}}{7}$; but such an expression may always be simplified (as will be shown here.ffter) by putting the rem ${ }^{\text {r }} 5 \frac{1}{6}$ in the form $\frac{31}{6}$, (which we obtain by multiplying the 5 by the 6 , and alding in the 1); and then multiplying the 6 by the 7 , so making $\frac{31}{42}$, the same as the fraction obtained by the other method. See Note II.

Ex. 4. 39,00) 7134,53 ($182 \frac{3633}{3300}$ In this Ex. and in all others where

39
323 312
114
78
3653
there are cyphers at the end of the divisor, the work may be abridged by marking off, with a comma, or point, these cyphers, and as many figures also from the right of the dividend ; then we proceed, 3 is in 7 twice; but on trial we should find that 2 would be too large for the first figure in the quotient, (which comes of using 3 for the divisor instead of 39 , and this difficulty will sometimes occur, but not so as to embarrass the student, when he gets accustomed to division); we set, therefore, 1 as the first figure in the quotient, and go on, as before, till we have taken down all the figures before the point in the dividend; and then we com-
plete the last rem ${ }^{r}$ by taking down the two figures cut off, and put it over the divisor as a fraction.
N. B. Any sums may be set at pleasure in Division, and the answers proved by either of the methods given in Multiplication; since the product of the divisor and quotient (if the sum be worked correctly) will give the dividend, diminished, however, by the remainder (or upper number of the fraction) if any. Thus in Ex. 2., the divisor is 42 and quotient 9036, and the rem ${ }^{\text {r3 }}$ from these are 6 and 0 ; the product of these is 0 , and the dividend, diminished by the rem ${ }^{r} 31$, is 379512 , and the rem ${ }^{\text {rs }}$ from these are 0, $0:$ in Ex. 4., the dirisor is 3900 and the quctient 182, and the rem ${ }^{\text {rs }}$ from these are 3 and 2 ; the product of these is 6 , and the dividend diminished ly the rem ${ }^{r} 3653$, is 709800 , and the rem ${ }^{\text {r8 }}$ from these are 6,6 .

The pupil should be required to apply one or other of these methods of proof in the following examples.

EXAMPLES IN DIVISION.

1.	$432516 \div 2$	2.	$351789 \div 3$.	3.	$543756 \div 4$
4.	$713915 \div 5$	5.	$385734 \div 6$.	6.	$516824 \div 7$.
7.	$465328 \div 8$	8.	$395424 \div 8$.	9.	$567035 \div 9$.
10.	$457848 \div 11$.	11.	$716855 \div 12$.	12.	$936571 \div 12$.
13.	$2366745 \div 15$.	14.	$7954326 \div 18$.	15.	$6342576 \div 24$
16.	$6549372 \div 36$	17.	$4733491 \div 45$.	18.	$5674331 \div 60$
19.	$7825687 \div 64$.	20.	$3795469 \div 70$.	21.	$3754329 \div 80$
22.	$6598769 \div 84$.	23.	$8791605 \div 88$.	24.	$7654325 \div 96$

25.	$3765897 \div 23$.	26.	$4613578 \div 37$.	27.	$5123495 \div 41$.
28.	$3954371 \div 47$.	29.	$3755123 \div 234$.	30.	$5764123 \div 340$.
31.	$34568135 \div 357$.	32.	$76549139 \div 543$.	33.	$29876533 \div 6930$.
34.	$56854327 \div 7323$.	35.	$95642371 \div 8790$.	36.	$34568795 \div 9879$,

ANSWERS TO THE PRECEDING EXAMPLES.

ADDITION.

1. 1274170.
1. 1634607 .
2. 1659291.
1. 2333331.
1. 3005313.
1. 1537206.
1. 1648127.
1. 2067687.
1. 1835161.
1. 2230626.
1. 2294129927.
2. 20566726566.

SUBTRACTION.

1. 422021 .
2. 350185.
1. 62402 .
2. 340218.
1. 50917.
1. 190309.
1. 174186.
1. 85131.
1. 226877.
1. 212652.
1. 620209341 .
2. 12471311388.

MULTIPLICATION.

1.	691346.	2.	1372896.	3.	1663052.	4.	185640.5.
5.	3812592.	6.	2949625.	7.	3031312.	8.	3812312.
9.	3923784.	10.	10764204.	11.	5961384.	12.	10518588.

13. 605C000. 14. 8224776. 15. 17098464. 16. 14683059.
14. 17809620. 18. 25096608. 19. 30617520. 20. 26839665.
1. 38531880.22 .54455616 .23 .68440260 .24 .87719808.
2. 28894545.
1. 337103025.
1. 12742494345.
2. 12364716600.
3. $433+18175$.
4. 2600509050.
5. 2050597944.
6. 7313243616.
7. 173367270. 30. 9101781675. 33. 3417663240 .
1. 27416327796.

DIVISION.

1.	216258.	2.	117263.	3.	135939.	4.	142783.
5.	$6+289$.	6.	73832.	7.	58166.	8.	49428.
9.	630033_{9}^{8}.	10.	$41622 \frac{6}{11}$.	11.	$59737 \frac{12}{1 区 .}$	12.	$78047 \frac{7}{12}$.

13. 157783.
1. 181927.
1. $122276 \frac{23}{64}$.
2. $78556 \frac{65}{84}$.
3. $163734 \frac{15}{23^{*}}$.
4. $84135 \frac{26}{47}$.
5. $96829 \frac{182}{357}$.
6. $7763 \frac{5878}{7323^{\circ}}$.
7. 441907.
1. $105188 \frac{31}{45}$.
2. $54220 \frac{99}{70}$.
3. $99904 \frac{53}{88}$.
4. $124691 \frac{11}{37}$.
5. $16047 \frac{125}{233^{\circ}}$.
6. $140974 \frac{257}{53^{\circ}}$.
7. $10880 \frac{7171}{8790}$.
8. 264274.
1. $94572 \frac{11}{60}$.
2. $46929 \frac{9}{80}$.
3. $79732 \frac{53}{96}$.
4. $124963 \frac{12}{41}$.
5. $16953 \frac{103}{340^{*}}$.
6. $4311 \frac{1333}{6930^{\circ}}$.
7. $3499 \frac{2174}{9879^{2}}$.

역	a	\％	\％	8	슨	10	$\stackrel{\square}{0}$	8	$\stackrel{\circ}{\circ}$	\％	을	，	\＃
\Rightarrow	กิ	\％	F	枵	｜\％	1：	：	\％	8	1 ｜	豆	1	일
인	－	$\%$	\％	인	8		ㅇ	\％	\＆	8	\bigcirc		율
\bigcirc	－	ล	$\%$	2	\＃	\％	\％	은	¢	18	8	S	$\stackrel{8}{8}$
∞	\bullet	\％	\％	\％	\％	\％	\％	$\stackrel{\square}{0}$	il	18	m	8	8
－	1	－	\％	1%	｜ 9	＋	\％	\％	¢	18	下	－	¢
0	인	$\stackrel{\infty}{\sim}$	E	\％	｜\％	\％	완	\％	\％	8	\％	8	윤
\square	－	$\stackrel{1}{1}$	－1	18	18	8	¢	앙	8	18	13	3	8
－	∞	$\stackrel{1}{2}$	$\stackrel{\square}{\square}$	18	1 a	\cdots	ค	잉	\％	18	＊	4	\％
∞	\bigcirc	\bigcirc	익	$1 \sim$	${ }^{\circ}$	－	－	光	Б	18	\％	5	\％
${ }^{2} 1$	－	－	∞	\bigcirc	$1 \sim$	1	\pm	10	－	1 ｜	\％	운	\％
	10									$1{ }^{\circ}$			

The lb．Av．contains 7000 grs ．Troy．

For mixing and preparing Medical
make i Scrunle

He：gnt．

III. LENGTII.	IV. SURFACE.	VI. CAPACITY.
	144 Square Inches make 1 Square Foot	4 Gills or Noggins make 1 Pint
	9 Square Feet - . 1 Square Yard	2 Pints . . . 1 Quart
	$30 \frac{1}{4}$ Square Yards - . 1 Sq. Rod, Pole, or	${ }^{2}$ Quarts 1 Pottle
	Perch (P)	4 Quarts . . . 1 Gallon
	40 Perches - ${ }^{\text {a }} 1$ Rood (R)	2 Gallons - . . 1 Peck
	4 Roods (4840 sq. yds.) 1 Acro (A)	4 Pecks 1 Bushel
	640 Acres . . . 1 Square Mile	8 Bushels . . . 1 Quarter
		5 Quarters . - . 1 Load .:
	V. SOLIDITY.	$\left.\begin{array}{l}3 \text { Bushels . : . . } 1 \text { Sack } \\ 12 \text { Sacks }\end{array}\right\}$Coal Jreas.
		A Barrel of Beer contains 36 Gallons
	1728 Cubic Inches make 1 Cubic Foot	
	27 Cubic Feet - . 1 Cubic Yard	A Pipe . . . 2 Hogsheads

11

CHAPTER I.

ELEMENTARY RULES.

Reduction.

1. This is the name given to the method of converting a quantity expressedin one denomination to another, as from pounds to pence, from ounces to tons, from inches to yards, \&c.; thus $£ 3=720 \mathrm{~d} ., 250880 \mathrm{oz} .=7$ tons, $72 \mathrm{in} .=2$ yds. \&c.
2. To reduce a quantity to a lower denomination.

Rule. Multiply the given quantity by the number which shows how many of the next lower denomination make one of the higher; and so on, step by step, till we arrive at the proposed lower denomination.

Ex. 1. Reduce £37 to pence.

$£ 37$
20 Here, since $£ 1$ contains 20 s. we first multiply the 740 . $£ 37$ by 20 , to bring them into shillings; and then 12 since $1 s$. contains $12 d$., we multiply these shillings by Ans. 8880 d . 12, to bring them into pence. See Nors II .
If the given quantity consist of several terms of different denominations, we must add in with each product, as we proceed, the term (if any) of corresponding denomination.
Ex. 2. Reduce $£ 15$ 7s. 0 좆ㄴ. to fartlings.
$£_{15} 7$ s. $0 \frac{3}{4} d$.
$\frac{20}{307 s}$
$\frac{12}{3684 d}$. 4
14739f. Ans.

Here we first reduce $£ 15$ to shillings, adding in the 7 s . ; then these shillings to pence; and lastly these pence to farthings, adding in the 3 farthings.

Ex. 2.

1. $£ 513$ to farthings ; and 320 guineas to halfpence.
2. $£ 2000$ to halfcrowns; and 2000 guineas to sixpences.
3. $£ 27.10$ s. to pence ; and $17 s .6 \frac{1}{2} d$. to farthings.
4. $£ 7510$ s. $6 d$. to sixpences; and 220 crowns to fourpenny-pieces.
5. $£ 4710 \mathrm{~s} .11 \frac{3}{4} d$. to farthings, and $£ 850$ s. $10 \frac{1}{2} d$. to halfpence.
6. $£ 2910 \mathrm{~s}$. $0 \frac{1}{2} d$. to halfpence; and $£ 373$ halfcrowns to farthing
7. 23 tons to pounds; and 115 cwt . to ounces.
8. 27 lbs. to drams ; and 11 tons to ounces.
9. 3 qrs. 14 oz . to drams ; and 47 cwt. 25 lbs . to ounces.
10. 34 cwt. 3 qrs. 11 oz . to drams; and ε tons 3 qrs. 5 oz . to ounces.
11. 4 tons 15 cwt. 2 qrs. 12 lbs. to lbs. ; and 14 cwt .1 qr .8 drs. to drams.
12. 15 cwt. 2 lbs .9 oz . to cunces; and 3 tons 3 qrs. 3 oz . to drams.
13. 16 lbs . Troy to grains ; and : 05 lbs . Troy to dwts.
14. 27 oz .10 diwts. to grains' ; and 3 lbs .13 dwts. to dwts.
15. 9 oz .17 dwts .22 grs. to grains ; and 2 lbs .11 oz .20 grs. to grains.
16. 7 oz .19 dwts. to grains; and 3 lbs .9 oz .7 grs . to grains.
17. . 23 miles 7 fur. to feet; and 2 lea. 2 m .7 fur. to yards.
18. 3 fur. $135 \mathrm{yds}$.4 in . to inches; and 5 fur. $171 \mathrm{yds}$.2 ft . to inches.
19. 2 lea. 2 m .2 fur. 200 yds , to feet; and 5 m .200 yds .3 in . to inches.
20. 73 yds .3 qrs. to nails; and 35 clls 4 qrs. to nails.
21. 54 A .3 R. to poles; and $17 \mathrm{sq} . \mathrm{yds} .8 \mathrm{ft}$. to inches.
22. 7 A .12 P . to poles; and $29 \mathrm{sq} . \mathrm{yds}$. to square inches.
23. 13 cub. yds. to feet; and 7 cub. yds. 20 ft . to inches.
24. 23 cub. yds. 1000 in . to inches; and 12 cub. yds. 23 ft . to inches.
25. 137 gals. to pints; and 13 gals. 3 qts. to gills.
26. $\mathbf{1 7}$ qrs. to gals. ; and 220 bushels to quarts.
27. 3 loads 3 qrs. 3 pks. to gals.; and 2 qrs. 1 gal. to pints.
28. 3 loads 3 bus. to quarts; and 2 qrs. 7 bus. 2 pks. to gallons.
29. 27 years to days; and 3 yrs. 315 d . to minutes.
30. 5 mo .3 w .4 d . to hours; and 27 w .5 d .15 hrs . to seconds.

3. To reduce a quantity to a higher denomination.

Rule. Divide the given quantity by the number which shows how many of the lower denomination make one of the next higher ; and so on, step by step, till we arrive at the proposed higher denomination.

Ex. 1. Reduce 137520 farthings to shillings.
4) 137520 f .
12) 34380 d .

2865s. Ans.

Here we first divide the given number of far things by 4 to bring them into pence, and then we divide these pence by 12 to bring them into shillings.

If there should be a remainder after any division, we must set it down as a term of the same denomination as the dividend from which it came.

Ex. 2. Reduce 13799 furthings to pounds.
4) $13799 f$.
12) $\overline{3449 \mathrm{~d}}$. . $3 f$.

2,0) $28,7 \mathrm{~s}$. . $5 d$ $\overline{£ 147 s .} 5 \frac{3}{4}$ d. Ans.

Here, after dividing the given farthings by 4 , we have a rem ${ }^{r} 3$, which means that in $13799 f$. there are 3449 d ., and $3 f$. over; we set down therefore the rem ${ }^{\mathrm{r}}$ as $3 f$., that is, as a term of the same den ${ }^{\mathrm{n}}$ as the dividend from which it came; after dividing the pence by 12 , we have a rem ${ }^{r} 5$, which we set down, for a similar reason, as $5 d$.; and after dividing the shillings by 20 , we hare a rem ${ }^{r} 7$, which we set down as 7 s .
N.B. We have divided by 20 by the usual short method, cutting off the last figures of the dividend and divisor.

Reduce
Ex. 2.

1. 78790236s. to guineas ; and 150080 sixpences to pounds.
2. $1758960 f$. to crowns ; and as many halfpence to halfcrowns.
3. $480144 f$. to sevenshilling-pieces; and 50000 d. to pounds.
4. $284061 f$. to pounds; and $110012 d$. to pounds.
5. 101010d. to guineas; and $123290 f$. to pounds.
6. $350000 f$. to pounds; and 538483 halfpence to guincas.
7. 37568 lbs to tons ; and 108190 drs to cwt.
8. 2345820 drs. to tons; and 108234 oz . to ewt.
9. 100000 oz . to tons ; and 12821 drs . to qrs.
10. 229601 oz . to tons; and 314735 drs. to cwt.
11. 156423 drs. to cwt . ; and 1008001 oz . to tons.
12. 237023 oz . to tons; and 371283 drs . to cwt.
13. 13172 grs. to lbs. Troy ; and 30066 dwts. to lbs. Troy.
14. 17073 grs. to lbs. ; and 12327 grs. to lbs.
15. 108970 grs. to lbs ; and 189081 grs. to lbs.
16. 272821 grs. to i's. Troy ; and 127272 grs. to lus. Troy.
17. 36090 ft . to miles ; and 231031 yds . to leagues.
18. 120835 in . to furlongs ; and 378185 ft . to miles.
19. $\quad 517900 \mathrm{in}$. to miles; and 183810 ft . to leagues.
20. 13587 na. to yards; and 181970 na. to ells.
21. 121321 r. to acres ; and 33333 sq. inches to yards.
22. 20000 r. to aeres ; and 20000 sq. inches to yards.
23. 200000 cnb . in. to yards; and 138297 cub . in. to yards.
24. 106921 cub. in. to yards; and 180831 cub. in. to yards.

- 25. 18191 pts. to gallons; and 30983 gills to gallons.

26. 28716 qts . to loads; and 91356 pints to quarters.
27. 89765 pks. to loads; and 56789 pts . to loads.
28. 356187 qts. to loads; and 598712 gals. to quarters.
29. 137819 days to years; and 3561829 sec . to weeks.
30. 235967 hrs. to weeks; and 71871900 see. to years.

Addition.

4. Rule. Set the quantities to be added under one another, so that terms of the same kind may be in the same column.

Add the numbers in the right-hand column ; divide the result by the number of things in this column, which make one in the next; set the remainder, if any, under the first column, and carry the quotient to be added to the next; and so on with all the columns.
$\sum_{\infty} \quad s . d$.
Ex. 1. 1308
256
$\begin{array}{ll}23 & 4 \\ 7\end{array}$
$37 \quad 8 \quad 10$

12	9

$013 \quad 4$
$£ 89 \quad 26$

Here, adding op the pence in the right-hand column, we have 42 d . ; in order to bring this into shillings, we divide by 12 , which goes 3 times with 6 over, so that $42 d_{0}=3 \mathrm{~s} .6 \mathrm{~d}$. ; we set down the $6 d$. under the first column, and carry the 3 s . to the next; and so on.

Ex. 2. $2246 \frac{1}{4}$. Here, adding up the farthings in the right-hand $0 \quad 26 \frac{1}{2}$ \begin{tabular}{lll}
36 \& 0 \& $4 \frac{3}{4}$

\hline

 column, wo have $7 f$., which $=1 \frac{3}{4} d$. ; we therefore

7 \& 1 \& $1 \frac{1}{4}$

\hline$£ 65$ \& 8 \& $6 \frac{3}{4}$
\end{tabular} set down the $\frac{3}{4} d$., and carry $1 d$. to the next column.

$$
4
$$

$$
\text { Ex. } 3
$$

lb. oz. dr. qr. lb. oz. cwt. qr. lb. qr. lb. oz. $\begin{array}{llllllllllllll}13 . & 7 & 3 & 13 & 14 . & 3 & 27 & 15 & 15 . & 18 & 2 & 23 & 16 . & 13 \\ 25 & 7\end{array}$ 12009 $\begin{array}{lll}23 & 13 & 14\end{array}$ $\begin{array}{lll}3 & 15 & 7\end{array}$

1112
$\begin{array}{lll}0 & 21 & 13\end{array}$
$\begin{array}{lll}2 & 13 & 14\end{array}$
$\begin{array}{lll}17 & 19\end{array}$
$\begin{array}{lll}15 & 3 & 17\end{array}$
$\begin{array}{lll}9 & 2 & 25\end{array}$
$\begin{array}{ll}4 & 18\end{array} 6$
$\begin{array}{lll}24 & 17 & 5\end{array}$
$\begin{array}{lll}37 & 9 & 14\end{array}$
qr. lb. oz. dr.
17. $2 \quad 15 \quad 1311$ $\begin{array}{llll}3 & 5 & 11 & 8\end{array}$ $\begin{array}{llll}2 & 27 & 13 & 2\end{array}$ $\begin{array}{llll}3 & 17 & 15 & 4\end{array}$
cwt. qr. lb. oz.
18. $27 \quad 2 \quad 13 \quad 4$
$\begin{array}{llll}32 & 1 & 12 & 15\end{array}$
$\begin{array}{llll}28 & 0 & 15 & 12\end{array}$
$\begin{array}{llll}32 & 1 & 14 & 3\end{array}$
tons cwt. qr. lb.
$\begin{array}{lllll}19 . & 4 & 17 & 3 & 18\end{array}$
$\begin{array}{llll}2 & 3 & 0 & 15\end{array}$
$\begin{array}{llll}13 & 9 & 2 & 25\end{array}$
$\begin{array}{llll}22 & 18 & 3 & 15\end{array}$
oz. dwt. gr.
20. $9 \quad 17 \quad 23$

4	18	20
7	5	15
8	19	4

lb. oz. dwt. gr.
24. $12 \quad 5 \quad 13 \quad 22$
$\begin{array}{llll}24 & 7 & 19 & 13\end{array}$
$\begin{array}{llll}47 & 11 & 17 & 19\end{array}$
$\begin{array}{llll}31 & 4 & 11 & 17\end{array}$
lb. oz. dwt. oz. dwt. gr
21. $23 \begin{array}{lllllll}8 & 8 & 14 & 22 . & 7 & 17 & 21\end{array}$
$\begin{array}{llllll}7 & 9 & 19 & 11 & 5 & 13\end{array}$
$\begin{array}{llllll}37 & 5 & 3 & 4 & 14 & 20\end{array}$
$\begin{array}{lll}15 & 7 & 13\end{array}$
$\begin{array}{lll}10 & 17 & 5\end{array}$
lb. oz. dirt.
23. 25814
$\begin{array}{lll}37 & 3 & 15\end{array}$
$\begin{array}{lll}25 & 9 & 10\end{array}$
$44 \quad 7 \quad 11$
lb. oz. dwt. gr.
26. $27 \quad 0 \quad 17 \quad 22$
$\begin{array}{llll}5 & 9 & 0 & 23\end{array}$
$\begin{array}{llll}17 & 8 & 11 & 13\end{array}$
$\begin{array}{llll}22 & 7 & 9 & 15\end{array}$
dr. scr. gr.
27. 50013
$\begin{array}{lll}7 & 2 & 14\end{array}$
$\begin{array}{lll}3 & 1 & 17\end{array}$
$\begin{array}{lll}6 & 0 & 12\end{array}$
oz dr. scr.
28. 1172
$\begin{array}{lll}4 & 3 & 2\end{array}$
1050
$\begin{array}{lll}9 & 4 & 1\end{array}$
fur. po. gds.
rds. ft. in.
31. 1211 $22 \quad 29$
$9 \quad 0 \quad 3$
$13 \quad 1 \quad 4$
fur. po. yids.
35.

5	33	$4 \frac{1}{2}$
7	21	$3 \frac{1}{2}$
2	13	$2 \frac{1}{2}$
6	21	5

32.

> | 3 | 19 | $2 \frac{1}{2}$ |
| :--- | :--- | :--- |
| 8 | 27 | 3 |
| 4 | 35 | 5 |

po. rds. ft.
$\begin{array}{ccccc} & \text { po. } & \text { gds. } & \text { ft. } & \text { in. } \\ \text { 39. } & 7 & 3 & 1 & 11\end{array}$
$\begin{array}{llll}12 & 2 \frac{1}{2} & 2 & 4\end{array}$
$\begin{array}{llll}9 & 4 & 0 & 7\end{array}$

2	$3 \frac{2}{2}$	1	9

m. fur. po. gds.
40. $14317 \quad 2 \frac{1}{2}$
$\begin{array}{llll}23 & 5 & 33 & 4\end{array}$
$\begin{array}{llll}37 & 1 & 24 & 5\end{array}$
$\begin{array}{llll}43 & 7 & 31 & 1 \frac{1}{2}\end{array}$
dr. scr. gr.
29. $\begin{array}{rrrr}7 & 1 & 19 \\ & 8 & 0 & 1\end{array}$
$\begin{array}{lll}11 & 2 & 13\end{array}$
$\begin{array}{lll}9 & 1 & 14\end{array}$
m. fur. gds.
33. $5 \quad 7 \quad 137$
$\begin{array}{lll}2 & 4 & 121\end{array}$
$\begin{array}{lll}8 & 6 & 213\end{array}$
$\begin{array}{lll}3 & 5 & 23\end{array}$
gds. ft. in.
po. gds. in.
38. $7 \quad 3 \frac{1}{2} \quad 11$
$\begin{array}{lll}9 & 2 & 10\end{array}$
$\begin{array}{lll}5 & 1 \frac{1}{2} & 8\end{array}$

6	$2 \frac{1}{2}$	6

oz. dr. scr.
30. $11 \quad 7 \quad 2$

1052
$\begin{array}{lll}5 & 2 & 1\end{array}$
$11 \quad 6 \quad 2$
lea. m. fur.
34. 716 $8 \quad 2 \quad 4$ 105 $\begin{array}{lll}9 & 1 & 7\end{array}$
37. $5 \quad 2 \quad 10$
$\begin{array}{lll}8 & 1 & 4\end{array}$
$6 \quad 0 \quad 7$

9	2	5

m. fur. gds. in.
41. $3 \quad 5 \quad 137 \quad 9$
$\begin{array}{llll}7 & 7 & 77 & 7\end{array}$
$\begin{array}{llll}9 & 6 & 202 & 6\end{array}$

5	4	156	2

yds. qrs. na.
42. $25 \quad 3 \quad 2$
$\begin{array}{lll}37 & 0 & 3\end{array}$
$\begin{array}{lll}54 & 1 & 1\end{array}$
$49 \quad 2 \quad 3$
yds. grs. na.
43. $183 \quad 3 \quad 2$
$297 \quad 0 \quad 1$
$328 \quad 2 \quad 3$

| $169 \quad 1 \quad 2$ |
| :--- | :--- |

s.yds. s.ft. s.ins
46. $20 \quad 8100$
$31 \quad 7 \quad 85$
$24 \quad 5 \quad 34$
$37 \quad 8 \quad 113$
R. P. s.yds.
47. $7 \quad 33 \quad 20 \frac{1}{1}$
p. s. yds. s. ft. s.in.
50.

2	13	7	85
3	$20 \frac{1}{4}$	8	24
5	$25 \frac{1}{2}$	6	99
4	$22 \frac{3}{4}$	8	37

c. yds. c.ft. c. in.
53. $13 \quad 25 \quad 872$
$\begin{array}{lll}22 & 17 & 1000\end{array}$
$\begin{array}{lll}34 & 11 & 1534\end{array}$
$21 \quad 8 \quad 479$
gal. qts. pts.
56. 2731
$31 \quad 2 \quad 0$
$\begin{array}{lll}54 & 1\end{array}$
$\begin{array}{lll}37 & 0 & 1\end{array}$
qrs. bus. pks.
60.

13	3	2
24	6	1
37	3	1
43	5	2

gal. qts. pts. gills.
64.

22	3	1	3
31	2	0	1

$\begin{array}{llll}31 & 2 & 0 & 1\end{array}$
$\begin{array}{llll}13 & 3 & 1 & 2\end{array}$

24	3	1	1

d. hrs. min. sec.
67.
$\begin{array}{llll}5 & 13 & 39 & 42\end{array}$
$\begin{array}{llll}4 & 22 & 19 & 33\end{array}$
$\begin{array}{llll}6 & 20 & 29 & 45\end{array}$

4	17	59	59

yrs. d. hru. min.
70. $6 \quad 130 \quad 23 \quad 15$
$\begin{array}{llll}7 & 354 & 10 & 17\end{array}$
$\begin{array}{llll}8 & 45 & 22 & 14\end{array}$
$\begin{array}{llll}9 & 313 & 13 & 17\end{array}$
61. $13 \quad 4 \quad 7$
$24 \quad 3 \quad 4$
$\begin{array}{lll}37 & 4 & 0\end{array}$
$43 \quad 2 \quad 1$
bus. pks. gal. qts.
65. $13 \quad 2 \quad 1 \quad 3$
$\begin{array}{llll}42 & 3 & 1 & 2\end{array}$
$\begin{array}{llll}51 & 1 & 0 & 3\end{array}$

47	3	1	2

mo. w. d. hrs.
63. $13 \begin{array}{llll}13 & 5 & 11\end{array}$
$\begin{array}{llll}21 & 2 & 4 & 15\end{array}$
$\begin{array}{llll}37 & 3 & 6 & 17\end{array}$

41	2	5	19

yrs. w. d. hrs.
71. $14 \quad 13 \quad 5 \quad 23$
$\begin{array}{llll}22 & 47 & 4 & 3\end{array}$
$\begin{array}{llll}35 & 39 & 3 & 18\end{array}$
$\begin{array}{llll}21 & 44 & 6 & 15\end{array}$
ells q.s. na.
45. $35 \quad 2 \quad 3$
$42 \quad 4 \quad 5$
$\begin{array}{lll}37 & 2 & 2\end{array}$

| $25 \quad 4$ |
| ---: | ---: | ---: |

A. R. P.
49. $27 \quad 1 \quad 31$
$\begin{array}{lll}41 & 2 & 28\end{array}$
$\begin{array}{lll}51 & 0 & 19\end{array}$
$42 \geq 25$
pks. gal. qts.
58. 3 1-3
$\begin{array}{lll}4 & 0 & 2\end{array}$
$\begin{array}{lll}5 & 1 & 1\end{array}$

| $7 \quad 1 \quad 3$ |
| :--- | :--- | :--- |

bus. gal. qts.
62. 3113
$25 \quad 0 \quad 2$
4111

| $27 \quad 1 \quad 3$ |
| :--- | :--- | :--- |

R. P. s. yds. s.in.
$\begin{array}{llllllll}\text { 51. } 35 & 1 & 23 & 12 \frac{1}{2} & 52.37 & 33 & 23 \frac{1}{4} & 121\end{array}$
$\begin{array}{llll}21 & 25 & 17 & 135\end{array}$
$\begin{array}{llll}18 & 17 & 20 \frac{1}{2} & 102\end{array}$
$\begin{array}{llll}25 & 12 & 25 & 97\end{array}$
c. yds. c.ft. c.in.
55. $14 \quad 20 \quad 1431$
$\begin{array}{lll}32 & 3 & 1560\end{array}$
$\begin{array}{lll}25 & 18 & 937\end{array}$
$\begin{array}{lll}22 & 21 & 1364\end{array}$
bus. pks.gal.

59. $23 \quad 3 \quad 1$ $\begin{array}{lll}31 & 2 & 1\end{array}$ 2400 | 35 | 3 | 1 |
| :--- | :--- | :--- |

bus. pks.gal. 63. 2931 $\begin{array}{lll}37 & 2 & 0\end{array}$ $\begin{array}{lll}53 & 3 & 1\end{array}$ | $47 \quad 2 \quad 1$ |
| :--- | :--- | :--- |

qrs.bus.pks.gal.
66. 23 3 3 3 1 $\begin{array}{llll}32 & 4 & 1 & 0\end{array}$ $\begin{array}{llll}41 & 6 & 2 & 1\end{array}$ $52 \quad 2 \quad 0 \quad 1$
d. lirs. min. sec.
$\begin{array}{llll}2 & 13 & 10 & 32\end{array}$
$\begin{array}{llll}5 & 21 & 40 & 29\end{array}$
$\begin{array}{llll}7 & 23 & 19 & 19\end{array}$
yrs. d. hrs. min. 72. $8 \quad 244 \quad 22 \quad 49$
$\begin{array}{llll}6 & 315 & 17 & 38\end{array}$
$\begin{array}{llll}5 & 223 & 13 & 45\end{array}$
$\begin{array}{llll}7 & 129 & 21 & 48\end{array}$

Subtraction.

5. Rule. Set the quantity to bo subtracted under the other, so that terms of the same kind may be in the same column.

Subtract the right-hand term of the lower line from that of the upper, if possible ; if not, subtract it from the number of things in this column, which make one of those in the next, and add the upper term to the remainuer ; place the result under the first column, and carry one thing to the lower term of the next; and so on with all the columns.
$£ s . \quad d$. Here, taking $\frac{1}{2} d$. from $\frac{3}{d} d$, we have left $\frac{1}{4} d$. to be

Ex. 1. $3417 \quad 9 \frac{3}{4}$

27	8	$4 \frac{1}{2}$
$£ 7$	9	$5 \frac{1}{4}$

$\notin s . \quad d$.
Ex. 2. $19128_{4}^{\frac{1}{4}}$

$16 \quad 17 \quad 4 \frac{1}{2}$
$£_{2} \quad 15 \quad 3 \frac{3}{4}$

Here we cannot take $\frac{1}{2} d$. from $\frac{1}{4} d$. ; we borrow therefore $1 d$. from the $8 \dot{d}$., and convert it into farthings, thus changing the $S_{\frac{1}{4}} d$. into $7 d .+1 \frac{1}{4} d_{\text {., }}$ or $7 d .5 f$; taking, then, the $\frac{1}{2} l$. or $2 f$. from $5 f$., we have left $3 f$. or $\frac{3}{4} d$., to be set under the farthings, and have now to take $4 d$. from $7 d$., which leaves $3 d$. to be set under the pence.
N. B. In practice, it is best to take the $\frac{1}{2} d$. at once from the $1 d$. bor-
 as before; and also, instead of t^{\prime} king $4 d$. from $7 d$., we may take $5 d$. from Sd., which will leave the samr rem $3 d ., i$. e. we need not alter the quantity from which we subtract, if we add, or carry, one to the quantity subtracted.

Again, as we cannot take 17 s . from $12 s$., we borrow $£ 1$ from the $£ 19$, and thus taking 17 s . from $£ 112 \mathrm{~s}$. or 32 s , we have left 15 s , and then, taking $£ 16$ from $£ 18$, we have left $£ 2$. Here, too, it is best to take the 17 s . at once from the $£ 1$ borrowed, which leaves $3 s$., and add to this the $12 s .$, which gives $15 s$. as before; also, to carry $£ 1$ to the $£ 16$, making $£ 17$, and take this from the original $£ 19$, wbich leaves $£ 2$ as before.
$£ \quad s . \quad d$. Here, taking $\frac{3}{4} d$. from $1 d$. borrowed, we have $\frac{1}{4} d$. Ex. 3. $2360 \frac{1}{2} \quad$ left, to which we add the $\frac{1}{2} d_{\text {., making }}^{4} d$. to be set $221811 \frac{3}{4}$ down; then carrying 1 d . to the 11 d ., we have $12 d$, £0 $70 \frac{3}{4} \quad$ which we take from $1 s$. borrowed, and have no $\mathrm{rem}^{\mathrm{r}}$; again, carrying $1 s$. to the $18 s$., we lave $19 s$, which we take from $£ 1$ borrowed, and lave $1 s$. left, to which we add the $6 s$., making $7 s$. to be sct down; and carrying $£ 1$ to the $£ 22$, we have $£ 23$ to subtract, and no rem.

Ex. 4.

1. | e | s | s. |
| :---: | :---: | :---: |
| | 10 | d. |
| | 10 | | $\begin{array}{lll}13 & 7 & 5\end{array}$
2. $93 \quad 0 \quad 9$ 371011
3. $137 \quad 13 \quad 0 \frac{1}{4}$ $11115 \quad 9 \frac{3}{4}$
lbs. oz. ds.
4. $2711 \quad 3$ | 13 | 7 |
| :--- | :--- | :--- |

qrs. lbs. oz.
17. $1711 \quad 3$

82715
oz. dwt. gr.
21. $1119 \quad 3$

81417
oz. dwt. gr.
25. $23 \quad 0 \quad 4$ 11520
dr. scr. gr.
29. $7 \quad 1 \quad 18$
$\begin{array}{lll}4 & 0 & 19\end{array}$
yds. ft. in.
£3. 1317 $11 \quad 210$
m. fur. po.
37. $24 \quad 0 \quad 7$ $\begin{array}{lll}11 & 5 & 18\end{array}$
po. yds. ft.

41. $23 \quad 3 \quad 2$	$15 \quad 4 \frac{1}{2}$

8.yds. s.ft. s.in. 45. $13 \quad 2 \quad 73$ $\begin{array}{lll}6 & 8 & 131\end{array}$
A. R. P.
49. $45 \quad 2 \quad 35$

19	3	39

2. | $\&$ | 8 | s. |
| :---: | :---: | :---: |
| 45 | 14 | $7 \frac{1}{2}$ |
| | | | $12 \quad 7 \quad 5 \frac{1}{4}$
3. $24 \quad 0 \quad 5$

151211
$10.234 \quad 0 \quad 11 \frac{1}{4}$

| $195 \quad 18 \quad 10 \frac{3}{4}$ |
| :--- | :--- |

qrs. lbs. ez.
14. $13 \quad 3 \quad 1$ 51214
tons cwit. qrs.

18. 3211 | $30 \quad 14 \quad 3$ |
| :--- | :--- | :--- |

oz. dwt. gr.
22. 32721
$18 \quad 922$
oz. dwt. gr.
26. 3700

01113
oz. dr. scr.
30. 1100
$8 \quad 5 \quad 2$
po. $\mathbf{y d s}$ ft.
34. $23 \quad 3 \quad 1$ $\begin{array}{ll}13 & 4 \frac{1}{2} \\ \\ & 2\end{array}$
fur. po. yds.

38. $637 \quad 4$ | 5 | 18 | $4 \frac{1}{2}$ |
| :--- | :--- | :--- |

yds. ft. in.
42. 23.00

| $15 \quad 2 \quad 7$ |
| :--- | :--- | :--- | P. s.yds. s.ft. $22 \quad 13 \quad 5$ | $13 \quad 20 \frac{1}{4} 8$ |
| :--- | :--- |

R. P. s.yds.
50. $2 \quad 35 \quad 20$
$12128 \frac{1}{4}$

3. $\begin{array}{ccc}z & s . & d . \\ i 4 & 0 & 6 \frac{3}{4} \\ & 13 & 8 \\ 4\end{array}$ | 13 | 8 | $4 \frac{1}{2}$ |
| :--- | :--- | :--- |
4. $13211 \quad 6 \frac{1}{4}$
$129 \quad 13 \quad 4 \frac{1}{2}$

$11.317 \quad 14 \quad 0 \frac{1}{2}$ | $239 \quad 18 \quad 10 \frac{3}{4}$ |
| :--- | :--- | :--- |

cwt. qrs. lbs.
15. 33011 $\begin{array}{lll}12 & 124\end{array}$
cwt. qrs. oz.
19. 2713 $\begin{array}{lll}13 & 0 & 7\end{array}$
lbs. oz dwt.
23. $13 \quad 7 \quad 15$

61118
oz. dwt. gr.
27. $22 \quad 2 \quad 2$ 131111
lis. oz. dr.
31. $37 \quad 7 \quad 1$ $1911 \quad 2$

- fur. po. yds.

35. $637 \quad 2$ $115 \quad 4 \frac{1}{2}$
lea. m. fur.
36. $37^{\circ} \circ 5$

| $18 \quad 0 \quad 7$ |
| :--- | :--- | :--- |

yds. qrs. na.
43. $17 \quad 3 \quad 2$

13	0	1

R. P. s.yds.
$47.3 \quad 2 \quad 25$

2	35	$28 \frac{1}{4}$

R. s.yds. s.ft.

51.10	$13 \frac{1}{4}$	4
8	10	7

4. $89 \quad 15 \quad 7$
$7411 \quad 9$
5. $225 \quad 0 \quad 0$

| $37 \quad 18$ | $9 \frac{3}{4}$ |
| :--- | :--- | :--- |

$12.345 \quad 0 \quad 0$	$129 \quad 17 \quad 8 \frac{3}{4}$

qrs. 1bs. oz.
16. $2 \quad 23 \quad 0$

$1 \quad 25 \quad 9$

cwt. lbs. oz.

20. $45 \quad 0 \quad 3$ | $44 \quad 6 \quad 13$ |
| :--- |

oz. dwt. gr.
24. 1100
$2 \quad 18 \quad 22$
oz. dwt. gr.
28. $42 \quad 0 \quad 3$ 271321
dr. scr. gr.
32. $80 \quad 11$

6	2	15

m. fur. yds.
36. $13 \quad 6 \quad 123$
$8 \quad 7 \quad 219$
fur. po. yds.
40. $\begin{array}{lll}7 & 23 & 3 \frac{1}{2} \\ 6 & 3.5 & 5\end{array}$

44. $24 \stackrel{1}{2}$ | $19 \quad 2 \quad 1$ |
| :--- |

$\begin{array}{ccc}\text { 48. } & \text { R. } & \text { R. } \\ \text { R. } & \text { P. } \\ 2 & 29 & 29\end{array}$

23	3	35

s.yds. s.ft. s.in.
$52.12 \quad 2 \quad 13$
$8 \quad 7130$
c.sds. c.ft. c.in.
53. $23 \quad 13 \quad 357$

10251014
gals. qta. pts.

57. $36 \quad 2 \quad 0$ | 33 | 3 | 1 |
| :--- | :--- | :--- |

qrs. bus. pks.
61. $45 \quad 3 \quad 1$

$39 \quad 7 \quad 2$

65. hrs. m. s.

223919 84130
69. $\begin{array}{ccc}\text { yrs. } & \text { d. } & \text { hrs. } \\ & 131 & 22\end{array}$ 1930013
c.yds. c.ft. c.in.
54. $37 \quad 2 \quad 459$

7241532
gals. qts. pts.
58. $35 \quad 0 \quad 1$

$29 \quad 3 \quad 0$

lids. qrs. bus.
62. $22 \quad 3 \quad 5$

9	3	7

d. hrs. m.
66. 141720

62135
70. $27 \quad 35 \quad 4$
$1847 \quad 6$
c.yds. c.ft. c.in.
55. $45 \quad 24656$ 1219999

> pks. gals. qts.
59. $23 \begin{array}{lll}23 & 1 & 0 \\ 19 & 1 & 3\end{array}$

19	1	3

bus. pks. gals.
63. 5710

39	3	1

w. d. hrs.
67. $3 \quad 5 \quad 2$
$2 \quad 6 \quad 13$
yrs. w. d. -
71. $4545 \quad 3$

| $35 \quad 1 \quad 6$ |
| :--- | :--- | :--- |

c.yds. c.ft. c.in. 56. $27 \quad 13 \quad 2$ $13 \quad 23 \quad 731$ bus. pks. gal.

60. $47 \quad 2 \quad 0$ | 28 | 3 | 1 |
| :--- | :--- | :--- |

64 5. .bus.
64. $\quad 5 \quad 1 \quad 1$

$2 \quad 4 \quad 5$

68. $12 \quad 2 \quad 5$

$8 \quad 3 \quad 6$

jrs. d. hrs.
72. 2621311

1923121

Multiplication.

6. Rule. Set the multiplier under the right-hand term of the multiplicand; multiply this term by it, and find, as before, how many are to be carried to the next term, writing the rem ${ }^{r}$ under the right-hand term : then multiply the next term, and add in the number carried; and so on.
Ex. ₹. £23 135 Here $5 d . \times 4=20 d_{0}=1 \mathrm{~s}$. εd.; we set down $8 d$.,
Ans. $£ 94138 \quad$ 1s. carried, we have $53 \mathrm{~s} .=£ 213 \mathrm{~s}$.; we set down 13s. and carry $£ 2$:- $£ 23 \times 4=£ 92$, and, adding Ex. 2. $£ 37138 \frac{1}{2}$ the $£ 2$ carried, we have $£ 94$.

Ans. $\begin{array}{ll}414109 \frac{1}{2} & \text { Here } 2 f . \times 11=22 f .=5 d \text {. } 2 f \text {. or } 5 \frac{1}{2} d \text {; we sct }\end{array}$ down $\frac{1}{2} d$. , and carry $5 d$. ; and so on.

Ex. 5. 1. $23 \quad 8 \quad 4 \times 2$
3. $\quad 59137 \times 3$
5. $78 \quad 2 \quad 8 \times 4$
7. $9917 \quad 5 \times 5$
9. $17113 \quad 2 \times 6$
11. $134 \quad 6 \quad 9 \times 7$
13. $16514 \quad 2 \times 8$
15. $115 \quad 7 \quad 9 \times 9$
17. $\begin{array}{lllll}124 & 5 & 4 & \times 10\end{array}$
19. 1711311×11
21. $\quad 37 \quad 0 \quad 2 \frac{3}{4} \times 12$
23. $\quad 128 \quad 17 \quad 3 \times 12$
$£ \quad s . \quad d$.
2. $\quad 3713 \quad 5 \frac{1}{4} \times 2$
4. $48 \quad 77 \frac{1}{2} \times 3$
6. $\quad 9615-\frac{1}{2} \times 4$
8. $\quad 75 \quad 14 \quad 2 \frac{3}{4} \times 5$
10. $15411 \quad 3 \frac{3}{4} \times 6$
12. $161 \quad 12 \quad 7 \frac{1}{2} \times 7$
14. $173 \quad 18 \quad 5 \frac{1}{4} \times 8$
16. $\quad 135 \quad 15 \quad 4 \frac{3}{4} \times 9$
18. $\quad 175 \quad 4 \quad 9 \frac{1}{2} \times 10$
20. $183 \quad 12 \quad 10 \frac{3}{4} \times 11$
22. $\quad 51 \quad 10 \quad 0 \frac{1}{2} \times 12$
24. $171 \quad 13 \quad 5 \frac{1}{4} \times 12$
7. When the multiplier is large, but is composed of two or three factors*, we may multiply separately by each of these.
Ex. 1. Multiply $£ 2311$ s. $4 \frac{3}{4} d$. by 36.
Since $36=6 \times 6$, or $=4 \times 9$, or $=3 \times 12$, the sum may stand thus:

or \begin{tabular}{lll}
\multirow{2}{l}{} \& s. \& d.

23 \& 11 \& | $4 \frac{3}{4}$ |
| :--- |
| 4 |

\hline 94 \& 5 \& 7

\hline
\end{tabular}

or | $£$ | s. | d. | |
| :---: | :---: | :---: | :---: |
| 23 | 11 | $\frac{43}{4}$ | |
| | | 3 | |
| 70 | 14 | $\frac{{ }^{2 \frac{1}{4}}}{4}$ | |
| | | 12 | |
| 848 | 10 | 3 | Ars. |

Ex. 2. Multiply $£ 17$ 3s. $0 \frac{1}{2} d$. by 140 .
Since $140=4 \times 5 \times 7$, the sum may stand thus:

$£$	s.	d.
17	3	$0 \frac{1}{2}$
		4
68	12	2
		5
343	0	10
		7
2401	5	10

3. $93 \quad 8 \quad 3 \frac{1}{2} \times 21$
5. $68 \quad 74 \frac{3}{4} \times 35$
7. $8743 \frac{1}{2} \times 64$
9. $\quad 37 \quad 13 \quad 2 \frac{1}{2} \times 81$
11. $98 \quad 18 \quad 3 \times 96$
13. $\simeq 2 \quad 10 \quad 8 \frac{1}{2} \times 128$
15. $1011 \quad 8 \frac{1}{4} \times 270$
$\notin \quad s . \quad d$.
2. $791410 \frac{1}{4} \times 18$
4. 49128×28
6. $97 \quad 19 \quad 9 \frac{1}{2} \times 48$
8. 921110×70
10. $42 \quad 10 \quad 9 \frac{1}{4} \times 88$
12. $43 \quad 12 \quad 5 \frac{3}{4} \times 132$
14. 3156×176
16. $\quad 13 \quad 7 \quad 4 \frac{3}{4} \times 275$
8. When, however, the multiplier, though large, cannot bo broken up into factors, we must proceed as in the first case. $£ s . d$. Here $3 f . \times 37=111 f .=27 d$. $3 f$., or $27 \frac{3}{4} d$; we sct Ex. $23114 \frac{3}{4}$ down $\frac{3}{4} d$., and carry $27 d .:-4 d . \times 37=148 d$., and, add37 ing the 27 d. , we have $175 \mathrm{~d} .=14 \mathrm{~s}$. 7 d .; we set down $\begin{array}{llll}£ 872 & 1 & 7 \frac{3}{4} & 7 d\end{array}$

[^1]
11. 3 qrs. 6 lbs. $13 \mathrm{oz} .15 \mathrm{dr} . \times 8$
13. 5 tons $27 \mathrm{cwt} .27 \mathrm{lb} .5 \mathrm{oz} . \times 25$
15. 17 ewt. 3 qrs. 15 oz. 7 dr . $\times 36$
17. 3 lbs. 80 z. 15 dwts. 13 grs. $\times 49$
19. 5 fur. 78 yds . 2 ft .7 in . $\times 56$
21. 5A. 3R. 27P. $\times 70$
23. 3 sq. yds. 8 ft .131 in .
25. 87 gals. 3 qts. 1 pt
27.4 qrs. 6 bus. 2 pks. $\times 100$
$29.5 \mathrm{~d} .17 \mathrm{~h} .39 \mathrm{~m} .20 \mathrm{~s} . \quad \times 120$
12. 4 tons. $13 \mathrm{cwt} .17 \mathrm{lb} .10 \mathrm{oz} . \times 9$
14.9 toņs $16 \mathrm{cwt} .1 \mathrm{qr} .5 \mathrm{oz} . \times 32$
16. 18 tons 3 qrs. 5 lb . 13 drs. $\times 45$
18. 2 lb .7 oz. 9 dwts. 22 grs. $\times 50$
20. 7 fur. $87 \mathrm{yds} 1 \mathrm{ft} .5 \mathrm{in} . \quad \times$.
22. 17A. 1R. 31p. $\times 72$
$24.17 \mathrm{cub} . \mathrm{yds} .21 \mathrm{ft} .57 \mathrm{in} . \times 84$
26.37 gals. 2 qts. 1 pt. $\times 96$

2s. 3 qrs. 5 bus. $2 \mathrm{pks} . \quad \times 108$
$30.17 \mathrm{yrs} .110 \mathrm{~d} .17 \mathrm{~h}, 57 \mathrm{~s}, \times 144$

Division.

9. Rule. Set the divisor in a loop to the left of the dividend, and divide the left-hand term by it, setting the quotient under that term: if there be any remr, reduce it to the next lower den ${ }^{\text {n }}$, adding in that term (if any) of the divd, which is of this lower den ${ }^{\mathrm{n}}$, and divide the result by the div ${ }^{\mathrm{r}}$: and so on.
$\mathcal{L} s$. d. Here first we have to divide $£ 38$ by 3 ,
Ex. 1. whence we get $£ 12$ with $£ 2$ over: now, as we cannot divide $\mathscr{£}^{2}$ by 3 , we reduce it to 40 s., and adding in the term 6s. in the dividend, we have now to divide 46 s. by $3:-$ hence we get $15 s$. with $1 s$. over ; and since $1 s .=12 d$., adding in the term $8 d$. in the dividend, we have now to divide 20 d . by 3 : - hence we get $6 d$. with 2 d . over; and since $2 d_{0}=8 f$., we have lastly to divide $8 f .+1 f$., or $9 f$. by 3 , which gives us $3 f$. or $\frac{3}{4} d$.
$\&$ s. d. Here the number of pounds is exactly divisible Ex. 2. 8) 37626 by 8 ; and since we cannot divide the term, $2 s$ s, of the diridend by 8 , we reduce it to pence, and adding in the term $6 d$., we have now to divide $30 d$. by 8 ; whence we get $3 d$. with remr $6 d$; and since $6 d .=24 f$. we divide $24 f$. by 8 , and thus have $3 f$. or $\frac{3}{4} d$.

Ex. 8. 1. \quad| $£$ | s | |
| :---: | :---: | :---: |
| 26 | 15 | $3 \frac{1}{2} \div 3$ |

3. $56 \quad 15 \quad 8 \div 4$
4. $8410 \quad 3 \div 6$
5. 75 ? $6 \div 8$
6. $91 \quad 14 \quad 4 \frac{1}{2} \div 10$
7. $57 \quad 13 \quad 0 \div 12$

	$£$	d.
2.	1214	$3_{4}^{3} \div$
1.	7617	-
	9013	$8 \frac{3}{4} \div 7$
8.	87 16	$8 \frac{1}{1} \div$
	7417	$7 \frac{1}{4} \div 1$

10. Division by $10,100,1000,8 c$. is usually performed by pointing off one, two, three, \&c. figures, respectively, from the right of the dividend.
$£ \quad s$. d. Here, dividing 2315 by 100 , we have a quotient Ex. $23.1514 \quad 7 \quad 23$ with rem ${ }^{r} 15$; we may point off, therefore, the

20	e
$\begin{gathered} 3.1+8 . \\ 12 \end{gathered}$	quotient; reducing now this remr into shillings, and adding in the term 14s., we have to divide
$\begin{gathered} 1.7 \mathrm{sll} . \\ 4 \end{gathered}$	314 s . by 100 ; and since the quotient is 3 with
$3.00 f$.	e rem ${ }^{\text {r }}$: and so cn .

£ $s . d$.
Ex. 9. 1. $176 \quad 16 \quad 8 \div 10$
3. $329 \quad 1 \quad 3 \div 100$
5. $1511 \quad 9 \quad 2 \div 1000$
7. $645 \quad 16 \quad 8 \div 10000$

	$£$	s.	d.
2.	30	6	$3 \div 10$
4.	73	12	$11 \div 100$
6.	72	18	$4 \div 1000$
8.	1062	10	$0 \div 10000$

11. When the divisor islarge, but can be broken up into two or more facto:s, we may divide separately by each of these.

Ex. 1. Divide $£ 3762$ 3s. $6 d$. by 24.
Since $24=4 \times 6$, or $=3 \times 8$, or $=2 \times 12$, the sum may stand thus:

Ex. 2. Divide £40818 15s. Od. by 1200.
Since $1200=12 \times 100$, the sum may stand thus :
$£^{£} \quad s . \quad d$.
12) $4081815 \quad 0 \quad$ Here there is no quotient from the shillings, and 100) 24.01113 we have the

20	Ans. $£ 340$ os. $3 \frac{3}{4} d$.
$\begin{gathered} .31 s \\ 12 \end{gathered}$	N.B. In a case where one of the factors of the
$\overline{3.75 d .}$	divisor is $10,100, \& \mathrm{c}$. , it is generally best to divido last by that factor.
3.005.	

Ex.10. 1	$\begin{array}{cc}\mathscr{L} & 5 . \\ 702 & 6\end{array}$	
3.	27515	$1 \frac{1}{2} \div 18$
5.	34510	$5 \div 25$
7.	48517	$6 \div 120$
9.	20816	$9 \div 36$
11.	69210	$0 \div 800$
13.	347	$3 \div 45$
15.	36210	$0 \div 6000$
17.	4080	$9 \div 54$
19.	36318	$2 \frac{1}{4} \div 81$
21.	38616	$5 \frac{1}{4} \div 99$
		$9 \div$

12. When, however, the divisor, though large, cannot be broken up into factors, we must proceed as in the first case, ouly setting the quotient in a loop at the right of the dividend, instead of under it.

Ex. Divide £ 3715 18s. 9d. by 470.
Since $470=47 \times 10$, the sum may stand thus :

329
$\begin{array}{r}425 \\ 423 \\ \hline 2\end{array}$
$\frac{20}{58}$ (1
$\frac{47}{11}$
12
141 (3
141

Here the rem from the pounds is $£ 2$, which we reduce into shillings, adding in the term 18s. in the dividend : and so on.
.We have now to divide this first quotient by 10:

Ans. £7 18s. $1 \frac{1}{2} d$.

Ex. 11. 1. | f | s. | d. |
| :---: | :---: | :---: |
| 375 | 13 | $5 \frac{1}{2} \div$ |

3. $25818 \div 190$
4. $371 \quad 2 \quad 9 \frac{1}{2} \div 29$
5. $412 \quad 0 \quad 2 \frac{1}{2} \div 370$
6. $1375 \quad 13 \quad 6 \frac{3}{4} \div 123$
7. $2456211 \div 3650$
10) | $£$ | s. | d. |
| :---: | :---: | :---: |
| 7.9 | 1 | 3 |
| $\frac{20}{18.1}$ | | |
| $\frac{12}{1.5}$ | | |
| $\frac{4}{2.0}$ | | |
2. | | 289 | e. |
| :---: | :---: | :---: |
| | 0 | 8 |
3. $456 \quad 0 \quad 11 \frac{1}{4} \div 23$
4. $513 \quad 8 \quad 9 \div 3100$
5. $71218 \quad 7 \frac{1}{4} \div 41$
6. $2559 \quad 7 \quad 6 \div 18900$
7. $234811 \quad 4 \frac{1}{2} \div 354$
8. Hitherto we have had to divide some quantity of money, weight, \&c., or, as it is called, some concrete quantity, by a simple, or abstract, number, that is to say, we have had
to find a certain part of such a quantity: thus, to divide $£ 37 \mathrm{~s} .6 \mathrm{~d}$. by 8 , is to find the eighth part of $£ 37 \mathrm{~s} .6 \mathrm{~d}$. ; and here the quotient will also be a concrete quantity of the same kind as the dividend - as in this case, $8 s .5 \frac{1}{4} d$.

But if we have to divide a concrete quantity by another of the same kind, this amounts to finding loow many times the divisor is contained in the dividend: thus, to divide $£ 37 s .6 d$. by $16 s .10 \frac{1}{2} d$., is to find how many times $16 s .10 \frac{1}{2} d$. is contained in $£ 37 s .6 d$.; and here the quotient will be an abstract number - as in this case, 4.

The quotient in cases of this latter kind is to be found by reducing the two quantities to the same denomination, and then performing the division.

Ex. 1. Divide £ $\mathfrak{K}^{6} 7 \mathrm{~s}$. $6 d$. $\mathrm{by} 16 \mathrm{~s} .10 \frac{1}{2} d$. Here £3 $\left.\begin{array}{rl}7 \\ 16 \quad 10 \frac{1}{2} & =1620 \text { halfpence } \\ \end{array}\right\}$
hence 405) 1620 (4 Ars.
1620

Ex. 2. Divide 3 tons 2 cwt. 1 qr. 21 lbs . by 2 qrs. 7 lbs .

hence 63) 6993 (111 Ans.
63
69
63
63
63

Ex. 12.

9. $89 \mathrm{cwt} .22 \mathrm{lb} . \div 3 \mathrm{cwt} .1 \mathrm{qr} .6 \mathrm{lb}$.
$£^{£} \quad$ s. $\quad d . \quad £ \quad$ s. d.
2. $2215 \quad 7 \frac{1}{2} \div 31511 \frac{1}{4}$
4. $68 \quad 610 \frac{1}{2} \div 210 \quad 7 \frac{1}{2}$
6. $205 \quad 0 \quad 7 \frac{1}{2} \div 34 \quad 3 \quad 5 \frac{1}{4}$
8. $171 \quad 110 \frac{1}{2} \div 57 \quad 0 \quad 7 \frac{1}{2}$
10. 195 m .7 fur. $\div 7 \mathrm{ft} .6 \mathrm{n}$.
11. $81 \mathrm{cwt} .1 \mathrm{qr} .16 \mathrm{lb} . \div 1 \mathrm{cwt} .3 \mathrm{qr} .16 \mathrm{lb}$.
12. 9 lb .9 oz. 3 dwts. $12 \mathrm{grs} . \div 5 \mathrm{dwts} .9 \mathrm{grs}$.
13. 513 m .4 fur. 23 po. $\div 17 \mathrm{~m} .5$ fur. 27 po .
14. 1027 m . 1 fur. 6 po. $\div 17 \mathrm{~m}$. 5 fur. 27 po.
15. 244 qrs. 3 bus. 1 pk. $\div 3$ qrs. 3 pks. 16. 2366A. 3 R. 36 r. $\div 91$ A. 6 P.
14. To this head also may be referred certain cases of Reduction, in which we cannot pass directly, step by step. from one den ${ }^{11}$ to another, but must reduce both the given quantity and the proposed to some common lower den ${ }^{n}$, (it will be best to take the highest den ${ }^{n}$ to which they can both
be reduced), and then find by div ${ }^{n}$ what quantity of the proposed den ${ }^{n}$ is equivalent to the given quantity.

Ex. Reduce £96 16 s. to guineas.

 $\mathfrak{£}^{2} 9616$ s.$$
20
$$

21) $1936(92$ 189

42
4 Ans. 32g. 4s.
Reduce

Ex. 13.

1. 835 guineas to pounds; and 538 pounds to halfguineas.
2. 760 halfcrowns to guineas; and 670 halfguiricas to halfcrowns.
3. 325 crowns to halfguineas; and 253 guineas to crowns.
4. 18756 fourpenny-pieces to crowns ; and 3700 halfcrowns to four-penny-pieces.
5. £36 17 s . $6 d$. to crowns ; and $£ 275 \mathrm{~s}$. $4 d$. to sixpences.
6. 100 halfguineas to fourpenny-picces; and $£ 100$ to seven-shilling-pieces.
7. 1 cwt. 2 lbs. Av. to Troy weight ; and 16 dwts. to Ap. weight.
8. $20 \mathrm{lbs} . ~ \Lambda \mathrm{v}$. to Troy weight ; and 5 drs. Ap. to Troy weight.
9. 478 ells to yards ; and 14 hands to feet.
10. 500 fathoms to yards; and 5 furlongs to fathoms.
11. It must be noticed, that we can never divide a concrete quantity of one kind by another of a different kind, as shillings by ounces, pounds by hours, \&c. ; since no quantity of shillings will contain ounces, nor of pounds, hours, \&c.

Nor can we multiply together concrete quantitics of any kind, whether the same or different: thus, we cannot multiply either shillings by shillings, or shillings by ounces.
16. Mensuration of rectangular areas.

Suppose $A B C D$ to represent the surface of
 a table, of which the length $A B$ is 5 feet, and the breadth $A D, 3$ feet. Divide then $A B$ into 5 equal parts, and $A D$ into 3 , as in the figure, and through the points of division draw lines parallel to $A B$ and $A D$. By this means wo
shall have divided the whole surface into small figures, such as $A E F G$, all equal to one another ; and since $A E=$ one foot, and $A G=$ one foot, it is plain that the surface $A E F G$ measures a foot every way, a foot long and a foot broad,-i.e. $A E F G$ is a square foot, and so are all the other small figures.

Now the number of these figures is $5 \times 3=15$, each horizontal row of 3 square feet (the number of feet in $A D$) being repeated 5 times (the number of feet in $A B$); so that the number of square feet in the surface is found by multiplying together the n^{0} of feet in its length and the n^{0} of feet in its breadth.
17. As the same method of proof would apply in any similar case, it appears that the n^{0} of square feet in any rectangular surface is found by multiplying together the n° of linear feet in its length and breadth; or if we express the length and breadth in yards, inches, \&e., and multiply them in this form, we shall obtain the n^{0} of square yards, square incles, \&c. in the surface.
Ex. Find the surface of a floor 17 ft .8 in , long by 3 yards wide.

Here	$17 \mathrm{ft} .8 \mathrm{in} .=212 \mathrm{in} . *$	12) 22896
	$3 \mathrm{yds}=108 \mathrm{in}$.	12) 1908
	1696	9) 159
	2120	176
	22896 sq. il	s. 6 ft . Ans.

Ex. 14. 1. $37 \mathrm{ft} .2 \mathrm{in} . \times 2 \mathrm{ft} .9 \mathrm{in}$.
3. $3 \mathrm{yds} .2 \mathrm{in} . \times 3 \mathrm{ft}$.
5. $15 \mathrm{ft} .7 \mathrm{in} . \times 11 \mathrm{ft} .11 \mathrm{in}$.
2. $23 \mathrm{ft} . \times 3 \mathrm{ft} .5 \mathrm{in}$.
4. $1 \mathrm{yd} .2 \mathrm{ft} . \times 1 \mathrm{yd} .1 \mathrm{in}$.
6. $22 \mathrm{ft} .5 \mathrm{in} . \times 3 \mathrm{yds}$.
7. What is the area of a court, 10 yds .2 ft . long, and 5 yds .1 ft . broad?
8. How many sq. $y \mathrm{ds}$. of carpet will it take for a room 26 ft . by 32 ft ?
9. What is the surface of a marble slab, whose length is 5 ft .7 in ., and breadth 1 ft .10 in .?
10. Find the area of a square building, whose side is 46 ft .8 in .

[^2]11. How many square yards of paper will be required for a room 17 ft . long, 12 ft .7 in . wide, and 8 ft .5 in . high ?
12. How much wainscoting is there in a square room, 18 ft .3 in . long, and 8 ft .6 in . high? See Note IV.
18. Since, by multiplying the length and breadth, we get the square area of any rectangular surface, it follows that, by dividing the square area by the length, we shall get the breadth, or, dividing it by the breadth, we shall get the length - taking care to express the quantities concerncd, before div ${ }^{n}$, as quantities of the same den ${ }^{n}$, as, for instance, not dividing sq. feet by inches, but first bringing them to sq. inches, \&c.

Ex. What length of paper, that is 2 ft . wide, will be required for a room 14 ft . square, and 10 ft .4 in . high ?
The room being square, the united length of its four sides will bo $14 \times 4=56$ feet, and their height being 10 ft .4 in ., we shall find the square area of the whole surface of the walls by multiplying these quantitics, first reducing them to inches.

Here $56 \mathrm{ft} .=672 \mathrm{in}$.
$10 \mathrm{ft} .4 \mathrm{in} .=124 \mathrm{in}$.
2688 1344
672 83328 sq. in.

The surface of the walls being 83328 sq. in., we have now to divide this by $2 \mathrm{ft} .=24 \mathrm{in}$., the width of the paper. in. sq. in. in. 24) $83328(3472$ 72 113 96 172 168

Ex. 15.

1. $5 \mathrm{sq} . y \mathrm{ds} .6 \mathrm{ft} .18 \mathrm{in} . \div 18 \mathrm{ft} .7 \mathrm{in}$. 2. $11 \mathrm{sq} . y d s .3 \mathrm{ft} .129 \mathrm{in} \div 2 \mathrm{ft} .9 \mathrm{in}$.
2. 8 sq. yds. $6 \mathrm{ft} .84 \mathrm{in} . \div 5 \mathrm{ft} .9 \mathrm{in}$. 4. 17 sq. $y d s .4 \mathrm{ft} .24 \mathrm{in} . \div 23 \mathrm{ft}$.
3. 17 sq. $y d s . ~ 0 \mathrm{ft}, 45 \mathrm{in} . \div 18 \mathrm{yds} .1 \mathrm{ft} .9 \mathrm{in}$.
4. 42 sq. y ds. $1 \mathrm{ft} .50 \mathrm{in} . \div 23 \mathrm{ft} .10 \mathrm{in}$.
5. What is the length of a room, whose breadth is 11 ft .11 in ., and which it takes $17 \mathrm{sq} . \mathrm{yds}$.2 ft .131 in , of drugget to cover?
6. One side of a rectangular building measures 26 yds .5 in ., and its area contains $683 \mathrm{sq} . \mathrm{yds} .2 \mathrm{ft} .25 \mathrm{in}$. show that it is square.
7. How many yards of carpeting, 2 ft . 4 in . broad, will it take to cover a room whose dimensions are 26 ft . by 35 ft .?
8. It is found that 288 yds . of paper, 2 ft .8 in . wide, will cover the walls of a room; how many would be required of paper $2 \mathrm{ft}, 3 \mathrm{in}$, wide?
9. How many yards of matting, 2 ft .3 in . wide, will be required for a square room, whose side is 18 ft .9 in .?
10. If the room in (11) be 13 ft . 4 in . high, how many yards of paper 1 ft .4 in . wide will be required for it ?

19. Mensuration of rectangular solids.

Suppose we place upon each of the little squares in the preceding figure, a solid (as, for instance, a brick) in the form of a cubic foot, that is, measuring a foot every way a foot long, a foot broad and a foot high - we shall have a liver of such bricks one foot high, and containing as many cubic feet as there are square feet in the base; if upon this we pile another similar layer, we shall have the whole solid two feet high, and containing twice as many cubic feet as there are square fect in the base; and so on ; hence the whole n^{0} of cubic feet in any such solid, will be found by taking the product of the n^{0} of feet in height by the n^{0} of square fcet in the base, and this last, as in (17), is the product of the n° of feet in length by the n° of feet in breadth.

Hence the n^{0} of cubic feet in any rectangular solid or space is found by multiplying together its length, breadth, and height (or thickness, as the height would be called when small, as, for instance, in the case of a beam of timber), these quantities being all reduced first to the same den ${ }^{n}$, and their product being of the same den ${ }^{\mathrm{n}}$, but in cubic measure.

Ex. Find the solid content of \mathfrak{a} beam of timber, 30 ft . long, 2 ft . 3 int wide, and $I f t .5$ in. thick.

Ans. 281880 cub. in. $=6$ cub. yds. 1 ft. 216 in, by Red ${ }^{\text {d. }}$.
20. So also, as before, having given the solid content of any space and any two of its three dimensions, we may find the third by dividing the content by the product of these two, reducing all to the same den ${ }^{\mathrm{n}}$.

Ex. What is the length of a room, whose width is 10 ft .4 in . and height $10 \mathrm{ft} .6 \mathrm{in} . ;$ and which contains 1519 cnb . ft. of air ?

Herc $10 \mathrm{ft} .4 \mathrm{in} .=124 \mathrm{in}$. 10 ft .6 in. $=126 \mathrm{in}$.

74
1488
15624 sq in .
A:cs. $168 \mathrm{in} .=14 \mathrm{ft}$.
and $1519 \mathrm{cub} . \mathrm{ft}$. $=2624832 \mathrm{cub}$. in., hence, performing the divn, we have
sq. in. cub. in. in.
15624) 2624822 (168

15624
106243
93744
124992
124992

Ex. 16.

1. $18 \mathrm{ft} .9 \mathrm{in} . \times 13 \mathrm{ft} .4 \mathrm{in}, \times 8 \mathrm{ft} .4 \mathrm{in}$, 2. $^{2} 3 \mathrm{ft} .9 \mathrm{in} . \times 6 \mathrm{ft} .8 \mathrm{in} . \times 2 \mathrm{ft} .7 \mathrm{in}$. 3. $11 \mathrm{ft} .3 \mathrm{in} . \times 3 \mathrm{ft} .4 \mathrm{in} . \times 10 \mathrm{ft} .5 \mathrm{in}$. 5. $7 \mathrm{ft} .4 \mathrm{in}, \times 5 \mathrm{yds} . \times 8 \mathrm{ft} .3 \mathrm{in}$.
2. $5 \mathrm{yds} . \times 6 \mathrm{yds} .2 \mathrm{ft} . \times 4 \mathrm{ft} .2$ in.
3. $9 \mathrm{ft} .2 \mathrm{in} . \times 2 \mathrm{yds} . \times 6 \mathrm{ft} .8 \mathrm{in}$.
4. How many cubic feet of water can be contained in a vessel with square base, whose side is 3 ft . and height 2 ft .10 in .?
5. What quantity of timber is there in a beam, whose length is 20 feet, breadth 3 feet, and thickness 2 ft .6 in . ?
6. Find the solid content of a cube, whose side is 7 ft .5 in .
7. In making a square pond, whose side was 12 yd. ., there were taken out 336 cub. yards of earth; how deep was it made?
8. What must be the length of a trench, 5 ft .6 in . deep, and 10 ft . 8 in . wide, that it may contain 7040 cubic feet ?
9. The depth of a canal is 7 ft .3 in ., the width 20 ft .4 in ., and the length 10 miles; how many cubic feet of water will it contain?

Miscellaneous Examfles. 17.

1. A sovereign weighs nearly 493 quarter grains; how many lles. will 1000 sovereigns weigh?
2. In 2551443 seconds, which is the exact length of tho lunar month, how many days?
3. What is the cost of 530 lbs . of tea at $3 s .7 d$. per lb ?
4. Six persons on a journey spend $£ 979 s .6 d$. ; how much is that for cach person?
5. The circumference of tho Earth contains 131250000 feet ; express the same in miles.
6. If 81 oxen are bought for $£ 177919 \mathrm{~s} .6 d$., what is the arerage prico per head?
7. How many letters, paying penny postage, require stamps to the amount of $£ 79472 \mathrm{~s}$. 10 d .?
8. A pint will contain 9000 barleycorns, and 3 of these, placed end to end, would reach an inch; how many feet would they all reach?
9. How many days would it take to count a million of sovereigns, at the rate of 100 a minute?
10. What is the amount of 42 cwt . of sugar at $£ 23 s$. $7 d$. per cwt ?
11. Divide 3587 yds. 9 in. into 27 equal distances.
12. What sum must bo divided among 27 men, so that each may receive $£ 146$ s. $8 \frac{1}{2} d$.?
13. How many ducats, each worth 4 s .9 d ., are contained in $£ 23116 \mathrm{~s}$.?
14. Divide $£ 1478$ 12s. $9 \frac{3}{4} d$. into 77 equal portions.
15. How many days in a solar year, which contains 310556928 seconds?
16. A cubic foot of water weighs 1000 ounces; what weight of water is there in a vessel, the length, width, and depth of which are each a yard?
17. The battering ram employed by Titus against the walls of Jerusalem weighed 100000 lbs.; how many tons did it contain?
18. The Calcutta rupee is worth $1 s .11 \frac{3}{4} d$.; what is the value of a lac, which consists of 100000 rupees?
19. Sound travels at the rate of 1140 feet a sccond; how many miles is a thunder-cloud distant, when the sound follows the flash after 7 seconds?
20. Light travels at the rate of 186040 miles a second ; if the Sun's light takes 8 min .13 sec . in reaching us, what is his distance from the Earth?
21. A cannon-ball travels at the rate of 400 yards a second; how many miles will it go in a quarter of a minute?
22. Find the amount of 200 tons 81 lbs . of iron railing at 7 d . per 1 lb .
23. Suppose a weekly newspaper, price $3 d$., has a circulation of 11800; what is the sum realised by its sale in a year?
24. If 2 cwt . 1 lb . cost $£ 11619 \mathrm{~s} .0 \frac{3}{4} d$., what is the cost of 1 lb .?
25. How much silk at $6 s .8 d$. a yard may be bought for 20 guineas?
26. To how many persons may $£ 6015 \mathrm{~s} .6 \mathrm{~d}$. be distributed, giving $£ \pm 135.6 d$. to each ?
27. An Attic drachma was worth $7 \frac{3}{4} d$.; what was the value of the talent, which contained 6000 drachmæ? and how many minæ did it contain, each worth £3 4.s. 7d.?
28. A Jewish shekel weighed 219 troy grains, and was worth $2 s$. $3 \frac{1}{2} d$.; what was the weight of a talent, containing 3000 shekels? and the value of 10000 talents?
29. The captains of Israel, after the destruction of Midian, mado a free-will offering of 16750 shekels; what sum did this amount to? Sice E.x. 28.
30. How long would a cannon-ball, moving at the rate of 1200 foet a second, be in passing from the Earth to the Moon, 230500 miles?
31. How much is spent in 15 years by a person who spends $£ 825$ 18s. 9 d. yearly? and how much would he have saved in that time out of an income of $£ 1500$?
32. How many pounds weight of bronzo are there in a million of pennies, cach weighing one-third of an ounce aroird.?
33. A plate of gold cost $£ 16117 s .6 d .$, at $£ 47 s$. $6 d$. per ounce; what was its weight?
34. How many pationts will an hospital maintain, whoso revenuo is $£ 562910 s$., when each requires on an average $£ 813 s .9 \mathrm{~d}$. per annum ?
35. If the duty on brandy, at $10 \mathrm{~s} .5 d$. a gallon, amounted to $£ 26357$ $5 s .10 \mathrm{~d}$., on what quantity was it paid ?
36. Twenty bricklayers and ten carpenters were employed in building a house, each of the former receiving $27 s$. per week, and each of the latter $29 s$.; what was the amount of their wages in 16 weeks?
37. Two boats start in a race, and one of them gains 5 feet upon the other in every 55 yards; how much will it hare gained at the end of half a mile?
38. What is the area of a playground $58 \mathrm{ft}, 6 \mathrm{in}$. long, and 54 ft , 9 in. broad?
39. A has $£ 1004 s .11 \frac{1}{2} d$., and $B 64393$ farthings; if A receive from $B 11111$ farthings, and B from A £11 11s. $11 \frac{1}{4} d$. , how much will A hare more than B ?
40. What is the value of a beam of timber, whose length is 20 ft ., breadth 3 ft ., and thickness 2 ft ., at 3 s . $8 \frac{8}{4} d$. per cubic foot?
41. If the length of a cubit was 22 inches, what was the cubic content of the Ark, which was 300 cubits long, 50 broad, and 30 high $\boldsymbol{?}$
42. A grocer mixes 3 cwt . 24 lbb . of sugar at $6 \frac{1}{2} d$. per lb . with 2 cwt . 64 lbs . at $4 \frac{1}{4} d$.; at what price per lb . must he sell the mixture, so as not to loso by the sale?
43. A person gives a five-pound note to pay for lodgings during tho month of August, at $2 s .8 d$. per night; what sum will be returned to him?
44. Of the three quantities 1347 lbs aroird., 449 shillings, and £6286, it is required to multiply one quantity by the quotient of the other two.
45. What is the cost of 6 packs of eloth, each containing 6 parcels, each parcel 6 pieces, and each piece 60 yards, at $2 \frac{3}{3} d$. per yard ?
46. A labourer's houso-rent is $£ 52 \mathrm{~s}$. 11d. a year; what must he lay up weckly to pay it?
47. It is estimated that the arerage strength of a man is equal to raising 100 lbs . through 1 foot in a second, working 10 hours a day; how many tons will he raise at this rate in the day?
48. In marching, soldiers take 75 steps a minute, in quick marching 108; how far would a regiment advance in 3 hours, the last half-hour at quick march, reckoning each step as 2 ft .8 in.?
49. If a compositor set up 8500 letters a day, and bo paid $5 \frac{1}{2} d$. for every thousand, how much will he earn in a week?
50. Divide $£ 18 \pm 11$ s. $2 \frac{1}{4} d$. equally among 39 persons; and, supposing 15 of them to have received their portions, and of the rest only 21 to appear, how much might be given to each of these?
51. A mixture is made of 9 gallons of spirits at $12 s .6 d$. per gal., 16 gallons at 18 s .9 d ., and 90 gallons at 22 s .3 d .; what is the ralue of a gallon of it?
52. A corn-factor buys 2 quarters at 39 s. per quarter, and 7 bushels at $6 s$. per bushel; at what price per bushel must the whole be sold, so as to gain $23 s .9 d$. in all?
53. A side of Lincoln's Inn Square is 770 fect, and of Russell Squaro 670 feet; how many acres does cach contain?
54. What weight of water may be contained in a canal whose depth is 8 feet, width 25 feet, and length 12 miles? See Ex. 16.
55. How many yards of carpet, 25 inches wide, will bo required to corer a floor that is 19 ft .7 in . long by 18 ft .9 in . wide?
56. A wished to exchange 50 gallons of brandy, at 21 s .9 d . per gallon, with B, for ale at $1 s .6 d$. per gallon; how many gallons of ale should he receive?
57. A wall is to be built, 15 yards long, 7 feet high, and 13 inches thick, with a doorway 6 feet ligh and 4 feet wide; how many bricks will it require, if each, including mortar, occupy 108 cubic inches?
58. Divide $£ 11510$ s among 5 men and 6 women, giving to each man thrice as much as to a woman.
59. An equal number of men, women, and boys earned £o5 13 s . in 6 weeks; each man earncd $2 s .4 d$. a day, each woman $1 s .3 d$. , and each boy 10d.; how many were there of each?
60. There is a plantation in the form of a hollow square, length externally 252 yards, and depth 16 yards; find the area of the plantation and that of the inner square.
61. Divide $£ 39$ into four equal numbers of guineas, half-guineas, crowns, and half-crowns respectively.
62. A clergyman commutes his tithes, ralued at $£ 500$, for equal quantities of wheat, barley, and oats; how much grain will he receive, supposing the arerago price of wheat to bo $6 s .7 d$. a bushel, of barley $3 s .11 \mathrm{~d} .$, and of oats $2 \mathrm{~s}, 10 \mathrm{~d}$.?
63. A and B go to bed at the same hour daily, but A rises at a quarter past 6 , and B at 8 ; how much of waking life will A have had more than B in 40 years, paying attention to the Leap-years?
64. Divide $£ 20$ among three persons, so that one may have $£ 315$ s, more than each of the others.
65. Divido $£ 5503$ 3. $1 \frac{1}{2} d$. among 4 men, 6 women, and 8 children, giving to each man double of a woman, and to each woman triple of a child.
66. Divido $£ 29$ s. $2 d$. among A, B, C, so that B may have $6 s .8 d$. more than A, and C 's share may be double of B s.
67. The circumference of the fore wheel of a carriage being 8 ft . 3 in ., and that of the hind wheel 11 ft .11 in ., how many more recolutions would be made by the fore wheel than by the hind wheel in going from Cambridge to London, a distance of 52 miles?
68. In new enclosures, the cost per acre of the first crop (wheat) is $£ 614 s .6 d$. . and the produce 18 bushels at $8 s$.; that of the seconed crop (barley) is $£ 316 s$., and the produce 25 bushels at $4 s$.; and that of the third crop (potatoes) is $£ 1211 \mathrm{~s} .2 \mathrm{~d}$., and the produce 100 bags at 3 s ; deducting one-tenth of the whole produce for tithes, find the result of enclosing 500 acres, in one year and in thrce.

CHAPTER II.

GREATEST COMMON MEASURE: LEAST COMMON MULTIPLE.

21. One number is said to be a measure or a factor of another, when it divides it exactly, without remainder.
Thus, $1,2,3,4,6,12$ are all measures or factors of 12 .
Unity, however, is not generally named among the divisors of a number.
22. Any number, which divides without remainder each of two or more numbers, is said to be a common measure or common factor of those numbers; and, of course, the greatest number which so divides them is their Grcatest Common Measure (G. c. m.)

Thus 2 is the only common measure of 4 and $6 ; 3,5,15$ are, each of them, common measures of 30 and 45 , and 15 is their greatest common measure; $2,7,14$ are, each of them, common measures of 14,42 , and 70 , and 14 is their greatest common measure.
23. To find the Greatest Common Measure of two numbers.

Rule. Divide the greater by the less, and the preceding divisor by the remainder, and so on continually, until there is no remainder : the last divisor will be the G. c. m. required.

Ex. 1. Find the G. C. M. of 3575 and 125455 ; and of 279 and 4185.

$$
\begin{aligned}
& \text { 3575) } 125455 \text { (} 3.5 \\
& \text { 279) } 4185 \text { (} 15 \\
& \frac{10725}{18205} \\
& 279 \\
& 1395 \\
& 17875 \\
& 1395 \\
& \text { Ans. } 279 . \\
& 1395 \\
& \text { Ans. } 55 .
\end{aligned}
$$

Ex. 2. Find the G. C. M. of 17 and 36.
17) 36 (2

34

$$
\begin{aligned}
& \text { 2) } 178 \\
& 16 \\
& \text { 1) } 2(2 \\
& 2
\end{aligned}
$$

Ans. 1.; i. e. the given numbers have no common measure but unity.
The reason of this Rule can hardly be explained without some knowledge of Algebra in the Student. The Rule itself is here introduced, because it is often uscful in reducing Vulgar Fractions to simple forms. Sec Note V.
Ex. 18. Find the G. C. M. of

1. 224 and 336 .
2. $\quad 175$ and 2042.
3. 2121 and 1313.
4. 377 and 1131.
5. 900 and 3474.
6. 2314 and 3721.
7. 2793 and 2660 .
8. 5325 and 8307.
9. 7056 and 7392.
10. 12321 and 54345 .
11. 348 and 1024.
12. 1225 and 625 .
13. 429 and 715.
14. 2431 and 770 .
15. 1379 and 2401.
16. $\quad \mathbf{0 0 7}$ and 7392 .
17. 4165 and 686.
18. 3775 and 1000 0
19. 6327 and 23997.
20. 24720 and 4155 .
21. One number is said to contain, or to be a multiple of, another, when it can be divided by it without remainder.

Thus 12 is a multiple of cach of $1,2,3,4,6,12$; and any number is a muliple of each of its measures.
25. A common multiple of two or more numbers is one which contains each of them ; and, of course, the least such number, is their Least Common Multiple (L. C. N.).

Thus 6, 12, 18, \&c., are all common multiples of 2 and 3 ; but 6 is their least common multiple : $12,24,36,48, \& e$., are all common multiples of $2,3,4,6$, and 12 ; but 12 is their lcast common multiple.

Of course, a common multiple of any given numbers may be found, by multiplying them all together ; thus a common multiple of 6 and 8 is 48 , of 4,6 , and 9 is 216 . In practice, however, we require the least common multiple, especially in preparing Vulgar Fractions for Addition and Subtraction
26. To find the Least Common Multiple of twe or more numbers.

Rule. Set them in a line, and strike out any that are contained in any of the others. Divide those not struck out by any number that will exactly divide one of them; under any which it exactly measures, place the corresponding quotient; under any which it partially measures (containing some factor common to it, but not being itself wholly contained in it), place the quotient obtained by dividing it by the common factor; and under any which it does not measure at all, repeat the number itself.
Now treat the new line thus formed, in the same mannet as the first; and so on, until all the numbers left in any line have no common measure but unity.
Then the continued product of the numbers in this line and all the divisors is the L. c. m. required of the giren numbers.

Obs. It will generally be most convenient to take pretty large numbers, if possible, for divisors; as fewer lines will thus be necessary, especially if such be chosen as contain themselves many simple fictors. Thus 12 contains the factors $2,3,4,6,12$, and is therefore, when possible, a very good divisor to be employed.
Ex. 1. Find the L. c. M. of $24,16,6,20,4,8,10,30,12,25$.

$$
\frac{12)}{24 \cdot 16 \cdot 9 \cdot 20 \cdot 7 \cdot 8 \cdot 70 \cdot 30 \cdot 72 \cdot 25} \frac{5 \cdot \frac{4}{4} \cdot}{2 \cdot 4}
$$

Ans. $4 \times 25 \times 12=1200$.
The reason of this process may be thus cxplained.
We are required to find a number, which shall contain $24,16,6,20,4$, $8,10,30,12$, and 25 . Now if we find a number which contains 24 , it will, of course, contain $6,4,8$, and 12 , which are themselves contained im 24. We may therefore strike out $6,4,8$, and 12 ; and for a similar reason, 10 , which is contained in 20 ; and we thus reduce the question to finding the \mathbf{L}. c. At. of $24,16,20,30$, and 25.

Now we choose for divisor, according to the Rule, the number 12; which exactly divides one of these, riz. 24. In order, therefore, that the L. C. Mr. required may contain 24 , it must, of course, contain this number

12, and besides that a factor 2 ; but we now wish to find what factors besides 12 and 2, the L. c. м. must contain, so as to contain all the giren numbers. We seo then that 12 will also supply the factors 4 of 16,4 of 20 , and 6 of 30 ; so that the only others besides 12 , which must be contained in the required number, are 2 to make up 24,4 for 16,5 for 20 , 5 for 30 , and 25 , i. e. the numbers given by our process in the second line; -to which a similar reasoning applics.

Ex. 2. What is the least number that can be divided by cach of 14 , $16,40,50,25,8,64$?

$$
\frac{10) 14 \cdot 76 \cdot 40 \cdot 50 \cdot 25 \cdot 8 \cdot 64}{7 \cdot \frac{4 \cdot 5}{32}}
$$

Ans. $7 \times 5 \times 32 \times 10=11200$.
Ex. 3. Find the L. c. M. of $27,24,6,15,5,9,126$.

2) 3 .	8.	5.	14
	4.	5.	7

Ans. $3 \times 4 \times 5 \times 7 \times 9 \times 2=7560$.
Ex. 19. Find the I. c. m. of

1. $15,20$.
2. $8,4,16$.
3. $12,15,16$.
4. $9,15,18,20$.
5. $8,12,15,20$.
6. 6, 12, 16, 18, 24.
7. $2,4,8,16,10,48$.
8. $7,12,15,27,35,40,45$.
9. $4,9,10,15,18,20,21$.
10. $8,9,10,12,25,32,75,30$.
11. 14,21 .
12. $3,9,22$.
13. $8,16,20$.
14. $16,9,12,18$.
15. $34,68,17,2$.
16. $8,12,18,24,27$.
17. $1,2,3,4,5,6,7,8,9$.
18. 9, 16, 42, 63, 21, 14, 72 .
19. $7,15,21,28,35,100,125$.
20. $15,16,18,20,24,25,27,30$.

CHAPTER III.

VULGAR FRACTIONS.

27. A Fraction is a quantity which represents a part or parts of an integer, or whole.
28. A Vulgar (that is, a common) Fraction, in its simplest form, is expressed by means of two numbers placed one orer the other, with a line between them.

The lower of these is called the Denominator, and shows into how many equal parts the whole is divided; the upper is called the Numerator, and shows how many of those parts are taken to form the fraction.

Thus $\frac{3}{4}$ denotes that the whole is divided into four equal parts, and that three of them are taken to form the fraction.
29. A proper fraction is one whose numerator is less than the denominator, and which is itself therefore less than the whole in question ; as $\frac{3}{8}, \frac{5}{7}$.

An improper fraction is one, whose numerator is equal to or greater than the denominator, and which is itself, therefore, equal to or greater than the whole in question; as $\frac{8}{8},-\frac{1}{7}$.
30. A mixed number is one formed of a whole number and a fraction ; as $2 \frac{2}{3}, 5 \frac{3}{4}$.

A compound fraction is a fraction of a fraction; as $\frac{3}{4}$ of $\frac{2}{3}$. $2 \frac{1}{2}$ of $\frac{3}{7}$ of $3 \frac{1}{4}$.

A complex fraction is one in which either the num ${ }^{r}$, or den ${ }^{\mathrm{r}}$ or both are fractions ; as $\frac{3 \frac{1}{2}}{2}, \frac{2}{4 \frac{2}{3}} \frac{1 \frac{1}{3}}{3_{i}^{3} \frac{3}{2}} \frac{\frac{3}{2} \text { of } 3}{2 \frac{1}{2}}$.
31. Every whole number may be considered as a fraction whose den ${ }^{r}$ is 1 ; thus 6 is $\frac{f}{1}$.
32. A fraction may be considered as expressing the division of the num ${ }^{r}$ by the den ${ }^{r}$.

Thus $\frac{3}{4}$ expresses $3 \div 4$: for we should obtain the same, whether we divide one unit into 4 equal parts, and then take three of these parts, that is, three-fourths of the one unit; or divide three units, each into 4 equal parts, and then take one part out of each four, i.e. one-fourth of each unit, and therefore one-fourth of the whole three units; so that $\frac{3}{4}$ of 1 , or $\frac{3}{4},=\frac{1}{4}$ of 3 , or $3 \div 4$.

For instance, $\frac{3}{4}$ of $£ 1$, which is $15 s$., $=\frac{1}{4}$ of $£ 3$, which is also $15 s$.
33. To reduce a whole number to a fraction with a given denominator.

Rule. Multiply the number by the given den ${ }^{\mathrm{r}}$, and the result will be the $n u m^{r}$ of the fraction required.

Ex. Reduce 5 to a fraction, with denominator 6.
Since 1 contains 6 sixth parts, $\therefore 5$ contains 30 sixth parts; or $5=\frac{30}{6}$.
Ex. 20. 1. Reduce 8 and 27 to fractions with den ${ }^{\text {ro }} 5$ and 27.
2. Reduce 34 and 135 to fractions with den ${ }^{\text {rs }} 11$ and 17 .
3. Reduce $6,9,12,20$, to fractions with den ${ }^{r} 15$.
4. Reduce $25,34,70,111$, to fractions with den 34 .
34. To reduce a mixed number to an improper fraction.

Rule. Multiply the whole number by the den ${ }^{r}$ of the fractional part; add the result to the num ${ }^{r}$ of that part for the new num ${ }^{r}$, and retain the same den ${ }^{r}$.

Ex. 1. $i \frac{2}{3}=\frac{23}{3}$: for $7=\frac{21}{3}$ (33); and hence, $7 \frac{2}{3}=\frac{21}{3}+\frac{2}{3}=\frac{23}{3}$.
Ex. 2. $1 \frac{1}{8}=\frac{9}{8}$.
Ex. 3. $5_{9}^{\frac{4}{9}}=\frac{49}{9}$.
Ex. 21. Reduce to improper fractions

$3{ }^{\frac{5}{7}}$.	2.	$10 \frac{2}{9}$.		$221 \frac{4}{11}$.			$32 \frac{11}{13}$.
6. $200 \frac{27}{50}$.	7.	$71 \frac{11}{12}$.	8.	$15 \frac{13}{15}$.	9.		$37 \frac{15}{37}$
$200 \frac{29}{30}$.	12.	$125 \frac{24}{25}$.	13.	$514 \frac{5}{10}$.			$719 \frac{11}{12}$.
$1 \frac{1}{11}$	17.	$17 \frac{2}{23}$	18.	$10 \frac{2}{3}$	19.		$85^{8.5}$

35. To reduce an improper fraction to a whole or mixed number.

Rule. Divide the num ${ }^{\mathrm{r}}$ by the den ${ }^{\mathrm{r}}$: the quotient will be a whole number, and the remainder, if any, the num ${ }^{r}$ of the fractional part of the mixed number required.

$$
\text { Ex. 1. } \frac{4.5}{9}=5 . \quad \text { Ex. 2. } \frac{113}{15}=7 \frac{8}{15} .
$$

Obs. All improper fractions, occurring in any sum, should (except the contrary be desired) be expressed as whole or mixed numbers.
Ex. 22. Reduce to whole or mixed numbers

1. $\frac{37}{9}$.
2. $\frac{79}{11}$.
3. $\frac{313}{13}$.
4. $\frac{3990}{23}$.
5. $\frac{1 n 23}{35}$.
6. $\frac{3127}{43}$.
7. $\frac{1210}{55}$.
S. $\frac{2221}{87}$.
8. $\frac{1247}{77}$.
9. $\frac{3136}{95}$.
10. $\frac{3000}{75}$.
11. $\frac{3577}{102}$.
12. $\frac{4148}{117}$.
13. $\frac{4041}{221}$.
14. $\frac{3133}{122}$.
15. $\frac{60 n 0}{375}$.
16. $\frac{5434}{357}$.
17. $\frac{6556}{401}$.
18. $\frac{12321}{200}$.
19. $\frac{23338}{333}$.
20. To multiply a fraction by any whole number or integer, either multiply the numerator, or divide the denominator by it.

Ex. 1. $\frac{2}{15} \times 7=\frac{14}{15}$.
For in each of the fractions, $\frac{2}{15}$ and $\frac{14}{15}$. the whole is divided into 15 equal parts, and 7 times as many of them are taken in the latter case as in the former.

Ex. 2. $\frac{7}{16} \times 4=\frac{7}{4}=1 \frac{3}{4}$.
For the whole being divided into 4 times as many equal parts in $\frac{7}{16}$ as it is in $\frac{7}{4}$, each of the parts in the latter is 4 times as great as in the former; and the same number of parts being taken in both cases, the latter fraction is therefore 4 times as great as the former.

$$
\begin{array}{ll}
\text { Ex. 3. } \frac{3}{5} \times 9=\frac{27}{5}=5 \frac{2}{5} . & \text { Ex. 4. } \frac{7}{15} \times 4=\frac{28}{15}=1 \frac{13}{15} . \\
\text { Ex. 5. } \frac{13}{27} \times 9=\frac{13}{3}=4 \frac{1}{30} . & \text { Ex. 6. } \frac{15}{28} \times 7=\frac{15}{4}=3 \frac{3}{4} .
\end{array}
$$

37. Converscly-To divide a fraction by any integer, either divide the numerator, or multiply the denominator by it.
Ex. 1. $\frac{12}{13} \div 6=\frac{2}{13}$.
Ex. 2. $\frac{15}{28} \div 5=\frac{3}{28}$.
Ex. 3. $\frac{2}{3} \div 5=\frac{2}{15}$.
Ex. 4. $\frac{7}{8}+6=\frac{7}{54}$.

Ex. 23. 1. Multiply $\frac{35}{36}$ by $9,12,18,25$; and divide it by $5,7,8,12$. 2. Multiply $\frac{125}{1+4}$ by $7,8,9,16$; and divide it by $5,8,12,25$.
3. Multiply $\frac{320}{693}$ by the numbers $2,3,4,5,7$.
4. Divide $\frac{320}{693}$ by the numbers $7,8,9,10,11$.
38. If the num ${ }^{r}$ and den ${ }^{r}$ of a fraction be both multiplied or both divided by the same number, its value will not be altered.

$$
\text { Ex. 1. } \frac{5}{8}=\frac{10}{14}=\frac{15}{21}=\frac{20}{28}=\& c . \quad \text { Ex. 2. } \frac{98}{48}=\frac{18}{24}=\frac{12}{10}=\frac{9}{12}=\& c .
$$

For if the num ${ }^{r}$ be multiplied by any number, the fraction is multiplied by it (36), and if the den ${ }^{r}$ be multiplied by any number, the fraction is divided by it (37) ; and if any quantity be both multiplied and divided by the same number, its value is not altered.
Similarly, when the num or den are both divided by the same number.

39. To reduce a fraction to lower terms.

Rule. Divide both the num ${ }^{r}$ and den ${ }^{r}$ by any common factors they contain.

From (38) it appears that the value of a fraction is not altered by this process.

When a fraction is reduced as much as possible by such division, it is said to be in its lowest terms. (See p. 20, note.)

Obs. All fractions, occurring in any sum, should (except where the contrary is desired) be expressed in their lowest terms.

Ex. 24. Reduce to their lowest terms

1.	$\frac{324}{120}$	2.	$\frac{720}{864}$.	3.	$\frac{324}{396}$.	4.	$\frac{1584}{5940}$.	5.	$\frac{1299}{16200^{\circ}}$
6.	$\frac{1952}{2178}$	7.	$\frac{495}{1210}$.	8.	$\frac{1296}{1728^{\circ}}$	9.	$\frac{1872}{2016}$.	10.	$\frac{980}{1!35}$
11	$\frac{3000}{3375}$.	12.	$\frac{2599}{3+56 .}$	13.	$\frac{1485}{2160^{\circ}}$	14.	$\frac{864}{3072}$.	15.	$\frac{3300}{4235}$.
6.	$\frac{6730}{8118}$.	17.	$\frac{5544}{6558}$.	18.	$\frac{7040}{7998 .}$	19.	$\frac{11385}{16335}$	20.	$\frac{298178}{23328}$

40. A fraction may be reduced immediately to its lowest terms by dividing both its num ${ }^{\mathrm{r}}$ and den ${ }^{\mathrm{r}}$ by their G. c. m.

This process is generally longer than the other, and is therefore, if possible, avoided in practice. It is, however, sometimes, the only way of reducing a fraction, when we are unable to detect by inspection the common factors of the num ${ }^{r}$ and denr . Thus we should not see, perhaps, that the fraction $\frac{2500}{4181}$ may be reduced to $\frac{23}{3}$ by dividing both its terms by 113 , their G. c. m.

$$
\text { Ex. 1. }{ }^{179)} \frac{4117}{9+87}=\frac{23}{53} . \quad \text { Ex. 2. }{ }^{\text {6 }} \text {. } \frac{13536}{17484}=\frac{24}{31} \text {. }
$$

Ex. 25. Reduce to their lowest terms

1. $\frac{321}{743}$.
2. $\frac{510}{1122^{\circ}}$
3. $\frac{299}{529}$.
4. $\frac{1407}{4+22^{\circ}}$.
5. $\frac{1905}{8173 .}$
6. $\frac{1715}{26955^{\circ}}$
7. $\frac{6509}{7889}$.
8. $\frac{1589}{2270}$.
9. $\frac{8851}{1+718^{\circ}}$
10. $\frac{3575}{4775}$.
11. $\frac{1281}{4+232}$.
12. $\frac{10759}{20405^{\circ}}$
13. We shall now give examples of the application of the foregoing rules to the mult ${ }^{\mathrm{n}}$ and div ${ }^{\mathrm{n}}$ of concrete quantities.

$$
£ \quad s . \quad d
$$

Ex. 1. $23139 \frac{7}{8} \times 35$ Here $\frac{7}{8} \times 5=\frac{35}{8}=4 \frac{3}{8}$; we set down $\frac{3}{8} d$., and

		5
118	9	$1 \frac{3}{8}$
		7^{7}
829	3	$9 \frac{5}{8}$

so also $\frac{3}{8} \times 7=\frac{21}{8}=2 \frac{5}{8}$; we set down $\frac{5}{8} d$., and carry $2 d$.

IIcre, in the first divn, there are $5 d$. over, to be divided by 7 , which we set down as $\frac{5}{7} d$., since (32) $\frac{1}{7}$ of $5 d .=\frac{5}{7}$ of $1 d$. We might have brought these $5 d$. to $20 f$. and then, dividing by 7 , should have had $2 \frac{6}{7} f$; but as a farthing itself is only a fraction of a penny, it is usual, when the result does not come out a clear number of farthings, to express the whole below the pence as a fraction of a penny.

In the second div ${ }^{\mathrm{n}}$, there is $1 \frac{5}{7} d$. over, or $\frac{12}{7} d$., which, divided by 4 , gives $\frac{3}{7} d$.

Ex. 3. 8) $\begin{array}{ccc}£ & s . & d . \\ 175 & 19 & 5 \frac{3}{4} \div 40\end{array}$
5) $\frac{21 \quad 1911 \frac{7}{32}}{4711 \frac{27}{32}}$

Here, in the first divn, there is $1 \frac{3}{4} d$. over $=\frac{7}{4} d$., which, divided by 8 , gives $\frac{7}{32} d$; in the second divn, there is $4 \frac{7}{3 \cdot 2} d$. over $=\frac{1355}{32} d$. , which, divided by 5 , gives $\frac{27}{32} d$.

$$
\begin{aligned}
& \text { £ s. } d . £ \text { s. } d . \\
& \text { Ex. 4. 13) } 5410 \quad 5 \frac{1}{2} \text { (4 } 310 \frac{15}{26} \\
& \frac{52}{2} \\
& 20 \\
& 50 \text { (3s. } \\
& 39 \text { Here there is } 7_{\frac{1}{2}} d \text {. over }=\frac{15}{2} d \text {, which, divided } \\
& 11 \\
& \begin{array}{l}
\frac{12}{137 \frac{1}{2}} \\
\frac{130}{7 \frac{1}{2}}
\end{array} \\
& { }^{£} \quad s . d \text {. } \\
& \text { Ex. 5. 3) } 1115178 \frac{1}{2} \div 300 \\
& \text { 100) } 3.71192 \frac{5}{6} \\
& \frac{20}{14.39} \\
& \frac{12}{4.70 \frac{5}{6}} \\
& \text { Here there is } 70 \frac{5}{6} d \text {. over }=\frac{425}{8} d \text {., which, } \\
& \text { divided by } 100 \text {, gives } \frac{425}{600} d .=\frac{17}{24} d \text {. } \\
& \text { Ans. £3 14s. } 4 \frac{17}{24} d \text {. }
\end{aligned}
$$

Ex. 26.

£ $s . \quad d$.
13. $2 \begin{array}{llll} & 0 & 1 & \div 3\end{array}$
15. $29 \quad 17 \quad 8 \div 5$.
17. $8 \quad 13 \quad 0 \div 9$.
19. $\quad 73 \quad 0 \quad 5 \frac{1}{4} \div 8$.
21. $\quad 69 \quad 17 \quad 5 \frac{3}{4} \div 9$.

ع3. $12415 \quad 6 \div 15$.
25. $1351410 \div 40$.
27. $127538 \div 200$.
29. $11341510 \div 1000$.
14. $\quad \begin{array}{llll} & 7 & 7 \frac{1}{4} \div 4 \text {. }\end{array}$
16. $72 \quad 13 \quad 5 \div 6$.
18. $37 \quad 6 \quad 2 \div 10$.
20. $\quad 29 \quad 7 \quad 0 \frac{1}{2} \div 7$.
22. $\quad 53 \quad 4 \quad 0 \frac{1}{2} \div 12$.
24. $\quad 131$ Il $8 \frac{1}{4} \div 18$.
26. $1111111 \frac{1}{4} \div 60$.
28. $675 \quad 13 \quad 6 \frac{1}{2} \div 500$.
30. $4332 \quad 13 \quad 7 \frac{3}{3} \div 3000$.
42. To reduce a compound fraction to a simple one.

Rule. Multiply together all the num ${ }^{\text {rs }}$ for a new num ${ }^{\text {r }}$, and all the denrs for a new denr.
Ex. 1. $\frac{2}{3}$ of $\frac{4}{5}=\frac{8}{13}$.
For one-third of $\frac{4}{5}$ is $\frac{4}{15}(37)$; thercfore two-thirds, which must be twice ns great, is $\frac{8}{13}$ (36).
lyy sirilar reasoning, $\frac{4}{5}$ of $\frac{2}{5}=\frac{8}{15}=\frac{2}{\frac{2}{5}}$ of $\frac{4}{5}$.
Ex. 2. $\frac{3}{4}$ of $5=\frac{3}{4}$ of $\frac{5}{5}=\frac{15}{4}$.
Mixed numbers must be reduced to improper fractions, before the rule can be applied.
Ex. 3. $2 \frac{2}{4}$ of 5 of $3 \frac{1}{2}=\frac{11}{4}$ of $\frac{5}{2}$ of $\frac{7}{2}=\frac{385}{8}=48 \frac{1}{8}$.
Compound fractions may often be reduced by striking out factors common to one of the num ${ }^{\text {rs }}$ and one of the den ${ }^{\text {rs }}$.
Ex. 4. $\frac{3}{4}$ of $\frac{\frac{2}{4}}{\frac{8}{4}}$ of $\frac{3}{\frac{2 \pi}{4 Q}}=\frac{9}{5}=1 \frac{4}{5}(35$, ons. $)$.
Ex. 27. Express as simple fractions

1. $\frac{1}{2}$ of $\frac{5}{6}$ of 4 .
2. $\frac{2}{3}$ of $\frac{5}{7}$ of 6 .
3. $\frac{3}{4}$ of $\frac{4}{5}$ of 3 .
4. $\frac{2}{3}$ of $\frac{1}{4}$ of $3 \frac{1}{2}$.
5. $\frac{2}{3}$ of $\frac{3}{5}$ of $\frac{5}{6}$.
6. $\frac{2}{5}$ of $3 \frac{1}{11}$ of $9 \frac{1}{6}$.
7. $\frac{2}{5}$ of $\frac{5}{8}$ of $\frac{3}{10}$.
8. $\frac{2}{7}$ of $\frac{5}{8}$ of $3 \frac{1}{2}$.
9. $4 \frac{1}{5}$ of $3 \frac{3}{4}$ of 10 .
10. $2 \frac{1}{2}$ of $\frac{3}{5}$ of $7 \frac{1}{3}$
11. $\frac{3}{4}$ of $\frac{5}{8}$ of $7 \frac{1}{9}$.
12. $3 \frac{1}{7}$ of $1 \frac{5}{9}$ of $3 \frac{3}{8}$.
13. $\frac{6}{7}$ of $\frac{11}{12}$ of 9 of $6 \frac{1}{8}$.
14. $\frac{4}{15}$ of $\frac{9}{21}$ of $\frac{5}{8}$ of 7 .
15. $\frac{3}{11}$ of $1 \frac{2}{9}$ of $5 \frac{1}{3}$ of $\frac{1}{4}$.
16. $3 \frac{5}{5}$ of $2 \frac{1}{4}$ of $\frac{3}{8}$ of $\frac{7}{15}$.
17. $\frac{12}{13}$ of $2 \frac{2}{3}$ of $1 \frac{1}{25}$ of $1 \frac{11}{6+{ }^{*}}$.
18. $\frac{3}{6}$ of $6 \frac{1}{2}$ of $\frac{13}{14}$ of $\frac{7}{26}$.
19. $1 \frac{1}{2}$ of $2 \frac{2}{3}$ of $3 \frac{3}{4}$ of $4 \frac{4}{5}$.
20. $\frac{7}{21}$ of $2 \frac{1}{2}$ of $\frac{3}{7}$ of $10 \frac{1}{3}$.
21. To reduce fractions to a common denominator.

Rule. Find the l. c. m. of all the den rs, and take this for the common den ${ }^{r}$: for the new num ${ }^{\text {rs }}$ multiply each num ${ }^{r}$ by the number obtained by dividing the common den ${ }^{r}$ by its own den ${ }^{\mathrm{r}}$.

Ex. Reduce $\frac{5}{8}, \frac{12}{12}, \frac{7}{18}$, to their least common denominator. The L. c. 3. of $8,12,18$, being 72 , we have

$$
\frac{5}{8}=\frac{5 \times 9}{72}=\frac{45}{72}, \frac{11}{12}=\frac{11 \times 6}{72}=\frac{66}{72}: \frac{7}{18}=\frac{7 \times 4}{72}=\frac{28}{72},
$$

where the factors $9, c, 4$, in the new num ${ }^{r s}$ are obtained by dividing the common den 72 by the original den ${ }^{r s} 8,12,18$, respectively.

For, in any one of these fractions, it is plain that its num ${ }^{r}$ and den ${ }^{r}$ have both been multiplied by the same number, viz. that which makes its $d^{d e n}=72$.

Ex. 28. Reduce to their least common den ${ }^{r}$

1. $\frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{2}{7}$.
2. $\frac{5}{6}, \frac{4}{7}, \frac{4}{5}, \frac{2}{11}$.
3. $\frac{2}{3}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8^{*}}$
4. $-\frac{1}{8}, \frac{5}{20}, \frac{3}{16}, \frac{13}{18}$.
5. $\frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \frac{31}{32}$.
6. $\frac{5}{6}, \frac{5}{8}, \frac{2}{9}, \frac{13}{24^{2}}$
7. $\frac{7}{16}, \frac{17}{18}, \frac{17}{24}, \frac{19}{36}, \frac{25}{48}$.
8. $\frac{2}{3}, \frac{4}{2}, \frac{16}{27}, \frac{8}{81}, \frac{16}{243}$.
9. $\frac{4}{7}, \frac{3}{10}, \frac{5}{12}, \frac{17}{3,}, \frac{4}{63}, \frac{15}{28}$.
10. $\frac{11}{27}, \frac{17}{24}, \frac{5}{6}, \frac{7}{13}, \frac{2}{3}, \frac{35}{36}$.
11. $\frac{3}{5}, \frac{7}{10}, \frac{6}{25}, \frac{11}{30}, \frac{13}{45}, \frac{23}{60}$.
12. $\frac{5}{7}, \frac{11}{12}, \frac{2}{15}, \frac{8}{27}, \frac{9}{35}, \frac{17}{40}$.

44. Addition of Fractions

Rule, Reduce them (if necessary) to their least common $d^{d} \mathrm{n}^{\mathrm{r}}$; and take the sum of the num ${ }^{\text {rs }}$, retaining the common den ${ }^{\text {r }}$.

Ex. 1. $\frac{3}{3}+\frac{1}{3}=\frac{4}{5}$.
For the whole being divided into 5 equal parts, 3 of those parts, together with 1 of those parts, must make 4 such parts.

Ex. 2. $\frac{2}{3}+\frac{3}{4}+\frac{4}{5}=\frac{40+45+18}{60}=\frac{133}{60}=2 \frac{13}{60}$.
If any of the given quantities are whole or mixed numbers, it is best to take separately the sum of the integral and fractional parts, and then add the two results together.

Ex. 3. $2 \frac{3}{5}+3 \frac{9}{10}+5 \frac{5}{12}+4$.
Herc $\frac{3}{5}+\frac{9}{10}+\frac{5}{12}=\frac{36+54+25}{60}=\frac{115}{60}=1 \frac{55}{60}=1 \frac{11}{12}$;

$$
\therefore 2+3+5+4+1 \frac{11}{12}=15 \frac{11}{12} .
$$

Improper fractions should be reduced to mixed numbers, and compound fractions to simple ones, before the application of this rule.

Ex. 4, $\frac{113}{6}+\frac{3}{5}$ of $\frac{10}{9}+2 \frac{3}{4}$ of $2 \frac{2}{11}$ of $\frac{5}{8}+5=14 \frac{1}{8}+\frac{2}{3}+3 \frac{64}{4}+5$.
Here $\frac{1}{8}+\frac{2}{3}+\frac{3}{4}=\frac{3+16+18}{24}=\frac{37}{24}=1 \frac{13}{24}$;

$$
\therefore 14+3+5+1 \frac{13}{24}=23 \frac{18}{24} .
$$

Ex. 29. Find the value of

1. $\frac{4}{7}+\frac{2}{7}+\frac{\pi}{7}+\frac{5}{7}+\frac{8}{7}$.
2. $\frac{1}{2}+\frac{1}{3}+\frac{7}{8}+\frac{5}{12}$.
3. $\frac{1}{2}+\frac{3}{4}+\frac{5}{6}+\frac{7}{9}$.
4. $\frac{13}{18}+\frac{8}{15}+\frac{11}{20}+\frac{13}{20}$.
5. $\frac{2}{3}+\frac{1}{6}+\frac{5}{9}+\frac{11}{12}$.
6. $\frac{7}{8}+\frac{7}{12}+\frac{7}{16}+\frac{7}{18}$.
7. $\frac{3}{10}+\frac{13}{15}+\frac{1}{5}+\frac{4}{21}$.
8. $\frac{11}{70}+\frac{5}{21}+\frac{1}{5}+\frac{17}{42}$.
9. $2 \frac{1}{2}+3 \frac{1}{3}+4 \frac{1}{4}+5$.
10. $3 \frac{3}{8}+2 \frac{\pi}{6}+\frac{7}{12}+3 \frac{1}{9}$.
11. $2 \frac{2}{3}+\frac{3}{5}+4+5 \frac{5}{6}$.
12. $1 \frac{3}{8}+\frac{1}{6}+\frac{5}{18}+2 \frac{1}{12}$.
13. $\frac{2}{27}+11 \frac{5}{54}+2 \frac{7}{15}+\frac{1}{10}$.
14. $\frac{11}{12}+\frac{14}{15}+\frac{2 \pi}{27}+\frac{39}{40}$.
15. $3 \frac{1}{42}+\frac{5}{22}+\frac{31}{63}+1 \frac{11}{14}$.
16. $17 \frac{1}{351}+\frac{3}{7}+\frac{4}{21}+1 \frac{7}{15}$.
17. $\frac{2}{7}$ of $18+\frac{3}{5}$ of $1 \frac{4}{21}$.
18. $\frac{11}{12}+1 \frac{2}{15}+\frac{7}{10}+2 \frac{11}{18}+\frac{1}{20}$.
19. $1 \frac{15}{10}+2 \frac{23}{24}+3 \frac{24}{25}+4 \frac{29}{30}$.
20. $5 \frac{3}{4}+\frac{3}{5}$ of $7 \frac{1}{2}+8 \frac{3}{10}$.
21. $\frac{2}{3}+7 \frac{2}{11}+\frac{4}{5}$ of $\frac{3}{7}$ of $10 \frac{1}{2}$.
22. $2 \frac{3}{4}$ of $3 \frac{2}{5}+\frac{111}{10}+2 \frac{1}{5}$ of $4 \frac{1}{8}$ of $1 \frac{3}{8}+4 \frac{2}{3}$ of $\frac{2}{15}$ of $2 \frac{1}{8}$ of $1 \frac{3}{7}$.

23.

85	$7 \frac{1}{2}$		713	$1 \frac{1}{3}$	29. 17	13	$5 \frac{1}{3}$	30. 23	2		$6 \frac{2}{9}$
61	$2 \frac{3}{8}$		217	$4 \frac{3}{7}$		6		14	i		$5 \frac{1}{6}$
517	$8 \frac{3}{4}$		52	$8 \frac{4}{9}$		10	$9 \frac{5}{6}$	7	8		
64	299		611	$2 \frac{11}{21}$	7	0	$8 \frac{1}{2}$	4	9		$5 \frac{11}{12}$
51	$7 \frac{4}{5}$		4	$0^{\frac{2}{7}}$	11	5	$4 \frac{1}{8}$	16	4		$2 \frac{7}{8}$
712	$6 \frac{19}{20}$		63	4 $\frac{1}{9}$		16	$5 \frac{7}{12}$	5	4		$3 \frac{3}{4}$

45. Subtraction of Fractions.

Rule. Reduce them (if necessary) to their least common den ${ }^{r}$, and take the difference of the num ${ }^{r 8}$, retaining the common denr.

Ex. 1. $\frac{4}{5}-\frac{1}{5}=\frac{3}{5}$.
For the whole being divided into 5 equal parts, and 1 of those parts being taken from 4 of those parts, there will remain 3 such parts.

Ex. 2. $\frac{9}{10}-\frac{7}{15}=\frac{97-14}{30}=\frac{13}{30}$.

If the given quantities are both mixed numbers, or consist of a whole and a mixed number, it is best to take separately the difference of the integral and the fractionai parts, and then add the two results together.

Ex. 3. 55 5 - $2 \frac{1}{2}$.
Here $\frac{5}{8}-\frac{1}{2}=\frac{5-4}{8}=\frac{1}{8} ; \therefore 5-2+\frac{1}{8}=3 \frac{1}{8}$.
Ex. 4. $5 \frac{3}{8}-2 \frac{1}{2}$.
Here $\frac{3}{8}-\frac{1}{2}=\frac{3}{8} \frac{-4}{4}=-\frac{1}{8} ; \therefore 5-2-\frac{1}{8}=3-\frac{1}{8}=2 \frac{7}{8}$.
Ex. 5. $6-4 \frac{3}{7}=2-\frac{3}{7}=1 \frac{4}{7}$.
Improper fractions should be reduced to mixed numbers, and compound fractions to simple ones, before the application of this rule.

Ex. 6. $\frac{1}{5}$ of $2 \frac{1}{2}$ of $16-1 \frac{3}{7}$ of $5 \frac{1}{2}=8-7 \frac{6}{7}=7 \frac{7}{7}-7 \frac{6}{7}=\frac{1}{7}$.
Ex. 30. Find the value of

1. $\frac{11}{15}-\frac{8}{15} ; \frac{13}{20}-\frac{7}{20} ; \frac{8}{15}-\frac{9}{20} ; \frac{1}{2}-\frac{1}{3}$.
2. $\varepsilon \frac{3}{4}-1 \frac{1}{4} ; 3 \frac{3}{4}-2 \frac{5}{8} ; 5-2 \frac{6}{7} ; 10 \frac{3}{5}-\frac{11}{60}$.
3. $1 \frac{4}{25}-\frac{3}{4} ; 9-3 \frac{4}{25} ; 97 \frac{1}{2}-48 \frac{5}{6} ; 5 \frac{3}{14}-2 \frac{10}{21}$.
4. $13 \frac{2}{75}-3 \frac{8}{15} ; 4 \frac{1}{24}-3 \frac{1}{16} ; 3 \frac{2}{9}-\frac{61}{126} ; 24 \frac{1}{24}-21 \frac{1}{21}$.
5. $1 \frac{8}{25}-\frac{4}{7} ; 17 \frac{1}{35}-\frac{4}{21} ; 4 \frac{3}{5}-\frac{1}{4}$ of $\frac{2}{3} ; \frac{9}{10}-\frac{1}{5}$ of $\frac{6}{11}$.
6. $1 \frac{2}{3}$ of $2 \frac{7}{9}-3 \frac{17}{18} ; 5 \frac{1}{3}$ of $4 \frac{1}{2}-3 \frac{1}{4}$ of $3 \frac{1}{5}$.
7. $3 \frac{1}{4}+4 \frac{2}{5}-5 \frac{1}{2}+16 \frac{5}{8}-7 \frac{11}{24}+10-14 \frac{5}{6}$.
8. $5 \frac{1}{5}-2 \frac{5}{6}-3 \frac{3}{10}+\frac{13}{2}-16 \frac{1}{4}+3 \frac{1}{12}+8 \frac{1}{9}$.

9. Multiplication of Fractions.

Rule. Multiply the num ${ }^{\text {rs }}$ together for the new num ${ }^{\text {r }}$, and the den ${ }^{\text {rs }}$ for the new den ${ }^{\text {r }}$

Ex. 1. $\frac{2}{3} \times \frac{4}{5}=\frac{8}{15}$.

This method is the same as that we should have used to find the value of the compound fraction $\frac{2}{3}$ of $\frac{4}{5}$, or $\frac{4}{5}$ of $\frac{2}{3}$, (42); and we must here observe that the same word 'Multiplication' is used to signify, not merely, in its original sense, and as we have hitherto employed it (when the multiplier was a whole number), the taking a multiple of a quantity, i. e. repeating it some number of times, but also (when the multiplier, as here, is fractional) the taking any part or parts of it; so that ' to multiply $\frac{2}{3}$ by $\frac{4}{5}$ ' is only another way of saying 'to take $\frac{4}{3}$ of $\frac{2}{3}$ '; and hence the Rule for the operation is the same in the two cases.

It will be seen, however, that this Rule includes the case of Mult ${ }^{\mathrm{n}}$ by whole numbers ; thus if we had to find the value of $\frac{3}{4} \times 5$, we might say, $\frac{3}{4} \times 5=\frac{3}{4} \times \frac{5}{1}=\frac{3 \times 5}{4 \times 1}=\frac{15}{4}$, obriously the same result as we should have obtained by the common rule of Mult ${ }^{\mathrm{n}}$ by whole numbers (36): and it is on this account, viz. that the general method of taking any part or parts of a quantity includes the particular case of taking any multiple of it, that mathematicians have adopted the name, properly belonging to the latter case only, and applied it also to the former, calling the operation in both cases multiplication.

The method, therefore, of Multn of Fractions is the same as that for reducing a compound fraction to a simple one; and (as in that case) mixed numbers must be reduced to improper fractions before applying the rule, and the result may be simplified by striking out factors common to num ${ }^{r}$ and den ${ }^{r}$.
E.. 2. $2 \frac{3}{4} \times 3 \frac{1}{2} \times 1 \frac{3}{5}$ of $\frac{2}{3}$ of $10=\frac{11}{4} \times \frac{7}{2} \times \frac{8}{5} \times \frac{2}{3} \times \frac{10}{1}=\frac{309}{3}=102 \frac{2}{3}$.

Ex. 31. Find the value of

1. $\frac{5}{12} \times \frac{9}{10} \times 2 \frac{2}{11} ; 2 \frac{1}{10} \times \frac{3}{11} \times 1 \frac{7}{9} ; 2 \frac{5}{11} \times 2 \frac{1}{5} \times \frac{5}{35}$.
2. $\frac{11}{25} \times 2 \frac{1}{2} \times 100 ; 13 \frac{1}{3} \times 3 \frac{4}{5} \times 1 \frac{7}{38} ; 6 \frac{3}{4} \times 2 \frac{9}{9}$ of 21 .
3. $2 \frac{1}{21}$ of $3 \frac{2}{\frac{2}{4}} \times 4 \frac{3}{4}$ of $1 \frac{1}{7} ; 2 \frac{1}{5} \times 1 \frac{3}{6}$ of $1 \frac{2}{13} \times 3 \frac{1}{4}$ of $1 \frac{5}{11}$.
4. $\frac{2}{2}$ of $\frac{7}{12}$ of $\frac{8}{5} \times \frac{4}{11}$ of $3 \frac{1}{7} ; 1 \frac{3}{6}$ of $\frac{5}{6} \times \frac{5}{18}$ of $\frac{1}{22}$ of 8 .
5. $\frac{3}{7} \times 1 \frac{2}{5}$ of $12 \frac{1}{2} \times 2 \frac{1}{5}$ of $\frac{3}{44} ; \frac{2}{3}$ of $1 \frac{1}{7} \times 2 \frac{2}{5}$ of $4 \frac{3}{6}$ of $2 \frac{2}{9}$.

47. Division of Fractions.

Rule. Invert the divisor, and multiply.
E.. 1. $\frac{3}{4}+\frac{5}{7}=\frac{3}{4} \times \frac{7}{5}=\frac{21}{20}=1 \frac{1}{20}$.

Here also the word 'Division' is used in a more general sense than heretofore, to denote the finding that quantity, which, multiplied by the divisor, will produce the dividend - the word multiplied, being here used in the enlarged sense explained in (46). Hence, in the above Example, where the div^{r} is $\frac{5}{7}$ and the div ${ }^{\frac{3}{4}}$, we must have quotient $\times \frac{5}{7}=\frac{3}{4}$: multiply each of these equals by the same quantity $\frac{7}{5}$, and the products must be equal; \therefore quotient $\times \frac{5}{7} \times \frac{7}{5}=\frac{3}{4} \times \frac{7}{5}$: but $\frac{5}{7} \times \frac{7}{5}=1$; hence the quotient $=\frac{3}{4} \times \frac{7}{5}=1_{\frac{1}{2} \frac{1}{0}}$, as above.

The quoticnt thus obtained will lave its usual meaning, when the div ${ }^{r}$ is an integer, i. e. will express how many times the div ${ }^{d}$ contains the div ${ }^{\mathrm{r}}$, or what multiple the div ${ }^{\mathrm{d}}$ is of the divr ; thus $\frac{3}{4} \div 5=\frac{3}{4} \div \frac{5}{1}=\frac{3}{4} \times \frac{1}{5}=\frac{3}{20}$, and hence $\frac{3}{4}$ contains $\frac{3}{20}$ five times or $=5 \times \frac{3}{20}$: but when the div ${ }^{r}$ is a fraction the quotient will express what part or parts the divd is of the div ; thus $\frac{3}{4} \div \frac{5}{7}=$ (as above) $1 \frac{1}{20}$, and hence $\frac{3}{4}=1 \frac{1}{20}$ of $\frac{5}{7}$.
Mixed numbers must be reduced to improper fractions, and compound fractions to simple ones, before applying this rule
Ex. 2. $2 \frac{2}{3} \div 3 \frac{3}{4}=\frac{8}{3} \div \frac{15}{4}=\frac{8}{3} \times \frac{4}{15}=\frac{32}{45}$.
Ex. 3. $\left(2 \frac{2}{3}\right.$ of $\left.3 \frac{3}{4}\right) \div\left(4 \frac{1}{2}\right.$ of $\frac{5}{7}$ of $\left.\frac{4}{45}\right)=10 \div \frac{2}{7}=10 \times \frac{7}{2}=35$.
E.. 4. $\frac{2}{\frac{2}{5} \text { of } 5} \frac{5}{\frac{1}{5}}=\frac{2}{27}=2 \times \frac{25}{25}=1 \frac{23}{27}$.

Hence it follows that a complex fraction, in which both the num ${ }^{r}$ and den ${ }^{r}$ may appear as fractions, may be simplified by multiplying together the outside numbers, or extremes, for the numr ${ }^{\text {r }}$, and the middle numbers, or means, for the den ${ }^{\text {r }}$.

Ex. 5. $\frac{\frac{3}{4}}{\frac{7}{5}}=\frac{15}{28} ; \frac{2}{3}=\frac{\frac{2}{3}}{3}=\frac{2}{\frac{3}{1}}=\frac{2}{9} ; \frac{2}{2 \frac{1}{3}}=\frac{2}{\frac{1}{1}}=\frac{10}{11} ; \frac{2 \frac{2}{12}}{3 \frac{1}{3}}=\frac{21}{\frac{21}{3}}=\frac{6.3}{80}$.
So also, in a complex fraction, common factors that appear in either one of the extremes and also in one of the means, may be struck out of both.

Ex. 6.

$$
\frac{2 \frac{5}{8}}{7}=\frac{\frac{213}{8}}{\frac{7}{1}}=\frac{3}{8} ; \frac{5}{3 \frac{3}{4}}=\frac{\frac{5}{1}}{\frac{153}{4}}=\frac{4}{3} ; \frac{1 \frac{7}{10}}{10 \frac{1}{5}}=\frac{\frac{77}{192}}{\frac{9+3}{5}}=\frac{1}{6}
$$

Ex. 32. Find the value of

1. $2 \div \frac{2}{3} ; \frac{2}{3} \div \frac{3}{4} ; 2 \frac{2}{3} \div 1 \frac{1}{2} ; 2 \frac{1}{12} \div 3 \frac{1}{3} ; 16 \frac{2}{3} \div 12 \frac{1}{2} ; \frac{32}{75} \div \frac{8}{15}$.
2. $11 \frac{4}{25} \div \frac{3}{5} ; \frac{7}{9} \div 14$; $\left(\frac{3}{5}\right.$ of $\left.\frac{8}{5}\right) \div\left(\frac{6}{7}\right.$ of $\left.\frac{3}{4}\right) ;\left(4 \frac{1}{2}\right.$ of $\left.\frac{5}{27}\right) \div\left(5 \frac{3}{5}\right.$ of $\left.1 \frac{3}{7}\right)$.
3. $209 \div \frac{1}{5}$ of 20 ; $\left(\frac{2}{7}\right.$ of $\left.\frac{7}{8}\right) \div\left(\frac{3}{4}\right.$ of $\frac{1}{3}$ of 5$)$; $\left(4 \frac{1}{2}\right.$ of $\left.3 \frac{1}{3}\right) \div\left(2 \frac{1}{4}\right.$ of $\left.6 \frac{1}{4}\right)$.
4. $\frac{52}{3 \frac{1}{4}} ; \frac{3 \frac{3}{4}}{5} ; \frac{\frac{14}{45}}{1 \frac{17}{25}} ; \frac{\frac{11}{12}}{\frac{17}{18}} . \quad$ 5. $\frac{9 \frac{7}{9}}{2 \frac{1}{27}} ; \frac{5 \frac{3}{11}}{2 \frac{7}{11}} ; \frac{8 \frac{3}{4}}{5 \frac{5}{8}} ; \frac{15 \frac{3}{5}}{7 \frac{4}{5}}$.
5. $\frac{23}{2 \frac{2}{3}+\frac{2}{5}} ; \frac{2 \frac{1}{3} \text { of } 1 \frac{1}{5}}{1 \frac{1}{3} \text { of } 1 \frac{1}{4}} ; \frac{3 \frac{3}{7} \text { of } 2 \frac{11}{12}}{\frac{1}{33} \text { of } 8 \frac{9}{14}} ; \frac{2 \frac{1}{2}+1 \frac{2}{3}}{3 \frac{2}{3}-2 \frac{1}{2}} ; \frac{4 \frac{4}{15} \text { of } 2 \frac{5}{8}}{5 \frac{1}{5}-4 \frac{1}{2}}$.

We shall here give examples of the application of the preceding rules to the Mult ${ }^{\mathrm{n}}$ and Div ${ }^{\mathrm{n}}$ of concretc quantities.

Ex. 1. Find the value of $\frac{3}{8}$ of $£ t$.
Since (32) $\frac{3}{8}$ of $£ 4$ is the same as $\frac{1}{8}$ of $£ 4 \times 3$, we first multiply $£ 4$ by 3. and then divide the result by 8.

$$
\text { 8) } \frac{\frac{3}{12} 0 \quad 0}{\begin{array}{l}
£ 4 \\
£ 1 \\
10 \\
0
\end{array}} \text { Ans. }
$$

This is the same (46) as to multiply $£ 4$ by $\frac{3}{8}$.
Ex. 2. Divide 1 ton 13 cwt . 15 lbs . by $1 \frac{1}{3}$.
Since $1 \frac{1}{3}=\frac{4}{3}$, we have here (47) to multiply by $\frac{3}{4}$. We may do this as in Ex. 1, or (which is often more convenient) by first dividing by 2, which gives $\frac{1}{2}$ of the quantity, and then dividing this half by 2 , which gives $\frac{1}{4}$ of it; and adding the two results together, we shall have $\frac{3}{4}$ of it.

Compound fractions must be reduced to simple ones before the application of this rule; but, in the case of mixed numbers,
it is best to multiply separately for the integral part, and add the result to that obtained by the Rule for the fractional part.

Ex. 3. Multiply E^{2} 10s. 4 d. by $3 \frac{5}{12}$.

$£ 210 \quad 4$
$£ 2$ 11 $8 \frac{5}{12}$ 1 0 $11 \frac{2}{3}$ 7 11 0 8 11 $11 \frac{2}{3}$

Sometimes it is convenient to reduce the given quantity to one denomination, before applying the Rule.

Ex. 4. Divide 7s. $1 \frac{1}{2} d$. by $\frac{9}{113}$.
Here 7s. $1 \frac{1}{2} d .=342$ farthings, which we have to multiply by $\frac{115}{9}=12 \frac{7}{9}$.

Ex. 33. Find the value of

1. $\frac{5}{8}$ of $£ 1 ; \frac{13}{20}$ of $£ 5 ; 6 s .8 d . \times \frac{2}{5} ; 3 \frac{3}{4}$ of $2 s .6 d . ; 2 \frac{8}{9}$ of $21 s$.
2. £3 $68 \times \frac{7}{10} ; \quad £ 3 \quad 7 \quad 5 \div 1 \frac{1}{2} ; \quad £ 5 \quad 46 \frac{1}{4} \div 1 \frac{2}{3}$.
3. £7 $68 \frac{1}{2} \times 1 \frac{5}{6} ;$ £8 $0 \quad 7 \frac{3}{4} \times 2 \frac{3}{4}$; £ $£ 10112 \frac{1}{4} \times 3 \frac{3}{4}$.
4. £13 $154 \times 4 \frac{5}{8} ; ~ £ 18170 \times 4 \frac{7}{8} ; \quad £ 2106 \frac{3}{4} \times 3 \frac{3}{4}$.
5. $£ 30146 \frac{1}{2} \div \frac{4}{23} ;$ £7 $134 \div \frac{12}{77} ; ~ £ 4433 \frac{3}{4} \div \frac{12}{127}$.
6. $\frac{5}{7}$ of a ton ; $\frac{2}{7}$ of a lb. Troy ; 3 cwt . $1 \mathrm{qr} . \div 1 \frac{3}{11} ; 11 \frac{7}{\frac{7}{9}}$ of 6 s. $11 \frac{1}{4} d$.
7. $2 \mathrm{wk} .3 \mathrm{~d} . \div \frac{9}{32} ; 3 \mathrm{~A} .3 \mathrm{R} .3 \mathrm{P} . \times 10 \frac{5}{12} ; 2$ s. $9 \frac{3}{4}$ d. $\times \frac{1}{5}$ of $5 \frac{1}{3}$.
8. $\frac{1}{8}$ of $18 \frac{1}{3}$ s.; 1 civt. 2 qrs. 13 lbs. $\times 3 \frac{11}{24} ; 13 \frac{27}{35}$ of $£ 75 \mathrm{~s} .10 \mathrm{~d}$.
9. £1 11 s. $6 d . \div \frac{1 \frac{2}{9}}{3 \frac{1}{7}} ; \frac{1 \frac{8}{11}}{1 \frac{2}{3}}$ of $£ 88 s .5 \frac{1}{4} d$. $; \frac{3 \frac{7}{11}}{4 \frac{2}{7}}$ of $\frac{10 \frac{5}{7}}{7 \frac{1}{2}}$ of $\frac{77}{540}$ of $27 s$.
10. 1 m .5 fur. $21 \mathrm{yds} .2 \mathrm{ft} . \div 2 \frac{7}{8}$ of $1 \frac{9}{11} ; £ 3 \frac{5}{8}+9 \frac{3}{16} s .+5 \frac{3}{4} d$.
11. $f^{\frac{3}{5}}+\frac{5}{16} s .+\frac{2}{9}$ of $21 \mathrm{~s} . ; \frac{4}{7} \mathrm{cwt}+8 \frac{5}{6} \mathrm{lbs} .+3 \frac{9}{10} \mathrm{oz} . ; 4$ d. $5 \mathrm{ll} . \times 1 \frac{7}{3 \mathrm{~B}} \cdot$
12. $1 \frac{7}{8}$ of $10 s .6 \mathrm{~d} .-\frac{3}{4}$ of $2 s .6 \mathrm{~d} .+£^{\frac{1}{12}}-\frac{1}{14}$ of $21 s$.
13. $\frac{5}{8}$ of $21 s .+\frac{5}{8}$ of $5 s .+\frac{5}{8}$ of $£ 312 s .6 d$.
14. $\frac{3}{4}$ of $21 \mathrm{~s} .+\frac{\pi}{8}$ of $5 \mathrm{~s} .+\frac{3}{5}$ of $7 \mathrm{~s} .6 \mathrm{~d} .-\frac{3}{4}$ of 2 d .
15. $2 \frac{2}{5}$ of $1 \frac{3}{4}$ of $8 \frac{3}{4} d$. $+3 \frac{2}{3}$ of $1 \frac{10}{11}$ of $\frac{3}{14}$ of $4 \frac{1}{2} d$.
16. $\frac{2}{7}$ of $£ 15+3 \frac{3}{7}$ of $£ 1+\frac{1}{3}$ of $\frac{5}{7}$ of $\frac{3}{5}$ of $£ 1+\frac{2}{3}$ of $\frac{3}{7} s$.
17. To reduce a given quantity to the fraction of another given quantily.

Rule. Reduce both to the same denomination ; and take the result of the former for the num ${ }^{\mathrm{r}}$, and of the latter for the denr, of the fraction required.

Ex. 1. Rednce $7 s . z$ cl. to the fraction of $£ 1$.
Since $7 s .7 l_{1}=91 d$., and $£ 1=240 d$., the fraction required is $\frac{91}{2+0^{*}}$.
For $1 d$, is $\frac{1}{2+0}$ of $£ 1$; and therefure $7 s$. $\bar{i} d$., which $=91 d$. , is $\frac{91}{2+0}$ of $£ 1$.
Any common denomination, to which the two quantities may be reduced, would answer the purpose of expressing one of them as the fraction of the other ; but if the highest, of which they both admit, be taken, the fraction will be expressed in lower terms.

Ex. 2. Reduce half-a-cromn to the fraction of half-a-guinea.
Reducing them to penee, we have the required fraction $=\frac{30}{126}$; but reducing to sixpences we have the same fiact on in lower terms $=\frac{5}{21}$. Note. $\frac{5}{21}$ expresses what is called the Rutio of $2 s .6 d$. to 10 s. $6 d$. (79).

Ex. 34. Reduce

1. $3 s .4 d$. to the fr. of $£ 1 ; 2 s .6 \frac{1}{2} d$. to the fr. of 6π.
2. $£ 79 s$. $6 d$. to the fr. of $\approx 134 s .6 d . ; 6 s .8 \frac{1}{2} d$. to the fr. of $1 \frac{3}{4} d$.
3. 3 qrs. 14 lbs . to the fr. of 3 cwt .1 qr. ; 1 ton 4 cwt . to the fr. of $15 \mathrm{cwt} 1 qr .20 lbs.$.
4. $3 s$. $7 \frac{1}{2} d$. to the fr. of $£ 13$ s. $4 \frac{1}{2} d_{0} ; £ 47$ s. $6 \frac{3}{4} d$. to the fi: of $27 s$.
5. 3 cwt . 2 qus. 3 lbs , to $\mathrm{t}^{\prime} \mathrm{ce} \mathrm{fr}$. of a ton ; 14 h .15 m . to the fr. of $3 \frac{1}{2}$ days.
6. 2 R. 13 r . to the fr. of 3 acres ; 14 half-crowns to the fr. of 6 s. $8 d$.
7. $\mathbf{\Lambda}$ ton to the fr. of 3 cwt .3 qrs. 21 lbs ; 30r. 5 yds . to the fir. of 1 fur. 2 Sp .
8. 3 w .16 m . to the fr. of half-an-hour ; 3 qrs. \& qts. to the fr. of 4 qrs. 3 bus.
9. 8 A .3 R . to the fr. of $2 \mathrm{~A} .32 \mathrm{P} . ; 1 \mathrm{ft} .2 \frac{2}{5}$ in. to the fr. of a yard.
10. 7 h .12 m , to the fr. of a day ; $£ 412 \mathrm{~s} .1 \frac{1}{2} d$. to the fr. of $£ 19 \mathrm{s} .3 \frac{3}{4} \mathrm{~d}$.
11. 17 lbs . to the fr. of $1 \mathrm{qr} .14 \frac{1}{2} \mathrm{lbs}$. ; 1 m . 4 fur. to the fr. of 3 yds . 1 ft .
12. 2 sq. $y d s .2 \mathrm{ft} .120 \mathrm{in}$. to the fr. of $3 \mathrm{p} .13 \frac{1}{\frac{1}{4}} \mathrm{yds} .1 \mathrm{ft} .72 \mathrm{in}$. $; 3$ cwt. 14 lbs . to the fr. of 2 ton 2 cwt .2 qirs.
13. $£ 2213 \mathrm{~s} .8 \frac{1}{4} d$. to the fr. of $3 \frac{1}{2} \mathrm{gs}$. $£ 316 \mathrm{~s} .6 \frac{3}{4} \mathrm{~d}$. to the fr. of £1 3s. $5 \frac{1}{4} d$.
14. 3000 in . to the fr. of 1 fur. 5 r.; $£ 20 s .3 \frac{3}{4} d$. to the fr. of $£ 14 s .2 \frac{1}{4} d$.
15. $1 \frac{1}{2}$ guincas to the fr. of $£ 1 \frac{1}{2} ; £ 116 \mathrm{~s} .5 \mathrm{~d}$. to the fr. of $£ 105 \mathrm{~s} .4 \mathrm{~d}$.
16. $3 \frac{3}{4}$ crowns to the fr. of $£ 112 \mathrm{~s} .9 \frac{3}{4}$ d. ; $2 \frac{2}{3}$ half-guineas to the fr. of 10s. $11 \frac{1}{4} d$.
17. To reduce a fraction of one given quantily to a fraction of another.
Rule. Express by (48) the first quantity as a fraction of the second ; and the fraction required will then be found by reducing the resulting compound fraction to a simple onc.

Ex. 1. Reduce $\frac{2}{3} s$, to the fraction of $£ 1$.

$$
1 s .=\frac{1}{20} \text { of } £ 1: \therefore \frac{2}{3} s_{0}=\frac{2}{3} \text { of } £_{2} \frac{1}{20}=£^{\frac{1}{30}} .
$$

Ex. 2. Reduce $1 \frac{2}{15}$ h. to the fraction of 10 min .
$1 \mathrm{~h} .=\frac{60}{10}$ of $10 \mathrm{~m} .=\frac{9}{1}$ of $10 \mathrm{~m} . ; \therefore 1 \frac{2}{15} \mathrm{~h} .=1 \frac{2}{15}$ of $\frac{6}{1}$ of $10 \mathrm{~m} .=6 \frac{4}{5}$ of 10 m .
Ex. 3. Reduce $3 \frac{\pi}{9}$ of $£ 10 \mathrm{~s} .9 \frac{3}{4} d$. to the fraction of $£ 110 \mathrm{~s}$. 10 d .

$$
£ 10 s .9 \frac{3}{4} d .=999 f ., \text { and } £ 110 s .10 d .=1480 f . ;
$$

hence the required fraction $=3 \frac{5}{9}$ of $\frac{999}{1880}=2 \frac{2}{5}$.

Ex. 35. Reduce

1. $£ \frac{3}{8}$ to the fr . of a guinea; $1 \frac{3}{4} s$. to the fr. of $£ 1$.
2. $\frac{2}{3} \mathrm{l}$. to the fr. of 15 s . ; $12 \frac{3}{4}$ of 3 s . 6 d . to the fr. of $£ 1$.
3. $\frac{5}{3}$ of 1 s .6 d . to the fr. of $1 s . ; \frac{6}{7}$ of a sixpence to the fr. of $£ 1$.
4. $3 \frac{1}{2}$ of $£ 13 \mathrm{~s}$. 4 d . to the fr . of $£ 5 ; 2 \frac{2}{3}$ of $17 \mathrm{~s} .6 \frac{1}{2} d$. to the fr. of 10 s.
5. $3 \frac{1}{7}$ of 1 cwt . 3 qrs. to the fr. of a ton ; $3 \frac{3}{7} \mathrm{~d}$. to the fr. of 3 wks .
6. $1 \frac{1}{4}$ of $£ 313 \mathrm{~s} .6 \mathrm{~d}$. to the fr . of $10 \mathrm{~s} .6 \mathrm{~d} . ; 2 \frac{2}{5}$ of $£ 6$ to the fr. of $£ 113 \mathrm{~s}$.
7. $2 \frac{4}{9}$ of 4 cwt . to the fr. of $3 \mathrm{qrs}$.4 lbs ; $4 \frac{7}{8}$ crowns to the fr. of 5 gs .
8. $\frac{5}{8} \mathrm{lb}$. Tr. to the fr. of a $\mathrm{lb} . \mathrm{Av}$. ; $\frac{5}{5}$ po. to the fr. of a fathom.
9. $\frac{3}{8} \mathrm{sq}$. ft . to the fi: of a pole ; $12 \frac{\mathrm{5}}{\mathrm{G}}$ of $1 \mathrm{qr} .3 \frac{1}{2} \mathrm{lbs}$. to the fr. of 1 ton 2 cwt .
10. $3 \frac{1}{2}$ of 2 A . 3 R. to the fr. of $2 \mathrm{R} .2 \frac{1}{2} \mathrm{r} . ; 1 \frac{3}{17}$ of $£ 24 \mathrm{~s}$. $7 \frac{1}{2} d$. to the fr . of $5 s$.
11. $3 \frac{3}{7} \mathrm{wks}$. to the fr. of 1 d . $8 \frac{5}{8} \mathrm{hrs}$; $2 \frac{4}{9}$ of 45 yds . to the fr. of 10 miles.
12. $2 \frac{2}{3}$ of 3 R .6 P . to the fr. of 1 A .2 R .3 F . ; $\frac{3}{8}$ of $1 \frac{1}{2}$ of 10 s. $7 \frac{1}{2} d$. to the fr. of $£ 44 \mathrm{~s} .4 \frac{1}{2} d$.
13. $33 \frac{1}{4}$ of 3 qrs. to the fr. of $3 \frac{3}{4}$ tons; $3 \frac{3}{4}$ of $1 \frac{3}{5} \mathrm{~A}$. to the fr. of $2 \mathrm{~A} .2 \frac{1}{2} \mathrm{P}$.
14. $7 \frac{1}{5}$ of $£ 23 s .6 \frac{1}{2} d$. to the fr. of $7 s .6 d . ; \frac{3}{8}$ of $5 s .+\frac{4}{5} s$. to the fr. of $21 s$.
15. $4 \frac{1}{5}$ of $£ 213 s$. $7 \frac{3}{4} d$. to the fr. of $£ 214 s .8 \frac{1}{4} d$. ; $1 \frac{2}{7}$ of $£ 20 s .1 \frac{1}{4} d$. to the fr. of $£ 22 s .2 \frac{1}{4} d$.
16. $6 \frac{32}{35}$ of $£ 110 s .5 \frac{3}{4} d$. to the ff. of $£ 33 s .0 \frac{1}{4} d . ; \frac{7}{9}$ of $£ 1-\frac{2}{5}$ of 21 s . to the fr . of 10 s .6 d .

Miscellaneous Examples. 36.

1. Which is the greatest and which the least of $\frac{2}{13}, \frac{7}{45}, \frac{3}{20}$?
2. Divide the sum of $\frac{1}{4}, \frac{1}{3}$, and $\frac{3}{20}$ by the difference between $\frac{1}{5}$ and $\frac{1}{4}$.
3. What n° added to $\frac{14}{27}$ makes $1 \frac{3}{5}$? and what taken from $1 \frac{22}{27}$ leaves $\frac{11}{15}$?
4. Which is the greater, $\frac{2}{5}$ of $2 \frac{3}{7}$, or $\frac{7}{9}$ of $1 \frac{1}{4}$, and by how much ?
5. Divide the sum of 10 and $\frac{1}{10}$ by the difference, and also the difference by the sum; and find the sum and difference of the two quotients.
6. Divide the sum of $\frac{3}{5}$ of $£ 37 s .6 d$., and $\frac{1}{6}$ of $4 \frac{1}{2}$ guineas, by $10 \frac{5}{7}$.
7. If I pay away $\frac{1}{2}$ of my moncy, then $\frac{1}{3}$ of what remains, and then $\frac{1}{4}$ of what still remains, what fraction of the whole will be left?
8. What n° added to $\frac{10}{11}, \frac{11}{14}, \frac{2}{33}, \frac{41}{42}$, will make the sum total 3 ?
9. What must be the length of a plot of ground, if the breadth be $15 \frac{3}{4}$ feet, that its area may contain 46 square yards?
10. Add together the sum, difference, product, and quotient (the greater being divided by the less) of $\frac{3}{4}$ and $\frac{7}{10}$.
11. Find the value of $\frac{3}{4} \mathrm{lb}$. Troy $+\frac{1}{6} \mathrm{oz}$. Troy ; and of $£ \frac{3}{4}-\frac{3}{4} s$.
12. Express $2 \frac{5}{9}$ ells as a fr. of a yard ; and mult. 3 ft . $7 \frac{1}{3} \mathrm{in}$. by $2 \frac{1}{2} \mathrm{in}$.
13. Add the sum and difference of $\frac{4}{5}$ of 3 guineas and $\frac{2}{3}$ of $£ 4$.
14. Divide $\frac{7\left(1 \frac{1}{2} \text { of } \frac{3}{14}\right)}{\frac{1}{6}\left(\frac{3}{3 \frac{1}{2}} \text { of } 7\right)}$ by $\frac{9}{14}$, and find the value of $\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{\frac{1}{2 \frac{1}{2}}+3 \frac{1}{2}+\frac{1}{4 \frac{1}{2}}}$.
15. To $\frac{4}{15}$ of a dozen add $\frac{13}{24}$ of three hundred, and divide this sum ly the difference of $3 \frac{3}{4}$ of a hundred and $43 \frac{3}{5}$.
16. Multiply the sum of $1, \frac{1}{2}, \frac{2}{3}$, and $\frac{3}{4}$, by the difference of $\frac{4}{15}$ and $\frac{3}{20}$; and divide that product by the double of $21 \frac{7}{9}$.
17. Take from 1 its half, third, and twenty-fourth parts; add the product of those parts to the rem ${ }^{r}$; and multiply this sum by $7 \frac{11}{19}$.
18. Multiply the sum of $3 \frac{2}{3}$. $4 \frac{3}{4}$, and $4 \frac{4}{5}$, by the difference of $7 \frac{8}{7}$ and $5 \frac{5}{6}$; and divide the product by the sum of $94 \frac{1}{8}$ and $93 \frac{1}{9}$.
19. Divide 2 by the sum of $2 \frac{2}{3}, \frac{4}{5}$, and 4 ; add $1 \frac{2}{3}-\frac{7}{9}$ to the quotient; and multiply the result by the difference of $5 \frac{1}{5}$ and $4 \frac{1}{2}$.
20. Find the value of $\left(\frac{1}{2}+\frac{1}{3}\right) \times\left(1 \frac{1}{3}+2 \frac{3}{4}\right) \times\left(2 \frac{1}{14}-1 \frac{1}{2}\right) \times\left(3 \frac{1}{10}-\frac{3}{7}\right)$; and of $1 \frac{3}{4} \div 2 \frac{1}{2}+5 \frac{1}{2} \div 3 \frac{1}{8}$.
21. A person had $\frac{7}{54}$ of a lottery ticket, which was drawn a prize of of $£ 51810$ s. What was the value of his share?
22. Express the sum and difference of $£ \frac{8}{12}$ and $\frac{3}{4}$ of a crown as fractions of half-a-sovereign; and find how many times the first contains the second.
23. Multiply $15 \frac{5}{8}$ s. by $109 \frac{5}{7}$, and divide $£ 614$ s. $7 \frac{5}{16}$ d. by $267 \frac{3}{16}$.
24. How often is $\frac{4}{7}$ s. contained in half-a-crown? and how often is \mathcal{f}_{5}^{3} contained in 24 guineas?
25. If a yurd of lace cost $£ 1 \frac{29}{9 \mathrm{G}}$, what will $16 \frac{11}{25}$ yards cost?
26. If $\frac{3}{8}$ of a ship be worth $£ 3740$, what is the value of the whole?
27. Compare, as fractions of their highest comrron denomination, the valucs of $\frac{1}{16}$ of $£ 1, \frac{1}{20}$ of a guinea, and $\frac{6}{25}$ of a crown.
28. Find the value of $\frac{5 \frac{5}{8} \div \frac{2}{3}}{\left(1 \frac{1}{5} \text { of } \frac{5}{9}\right) \div 10 \frac{1}{3}} \times \frac{2}{5}$ of $\frac{1 \frac{1}{2} \text { of } 4 \frac{1}{4}}{13 \frac{7}{8} \text { of } 5 \frac{1}{3}}$.
29. If $\frac{2}{3}$ of an estate be worth $£ 220$, find the value of $\frac{3}{11}$ of it.
30. Express in Tr. weight the difference between $\frac{2}{8} 1 \mathrm{~b}$. Tr. and $\frac{3}{8} \mathrm{lb}$. Av.
31. Find the value of $\left(12 \frac{5}{6}-8 \frac{3}{4}-1 \frac{1}{10}+\frac{8}{15}\right) \times 4 \frac{1}{2} \times\left(7 \frac{5}{12}-6 \frac{1}{2}\right)$, and of $\frac{2}{3} \div 1 \frac{5}{7}-\frac{5}{8} \div 3 \frac{2}{11}$.
32. Compare, as fractions of their highest common denomination, the values of $\frac{1}{21}$ of half-n-crown, $\frac{1}{24}$ of $3 s .4 d$., and $\frac{1}{28}$ of $4 s .2 \frac{1}{2} d$.
33. Express, as a fraction of $£ 5$, the difference between $£ 7 \frac{4}{5}$ and $£ 7 \times \frac{4}{5}$; and find the value of $£ 14 \frac{14}{15} \div 1 \frac{10}{11}$.
34. A person owes a guinea to each of 4 creditors: to one he pays $\frac{1}{2}$ of his debt, to another $\frac{3}{4}$, to another $\frac{4}{5}$, and to another $\frac{19}{2 c}$; what will he still be owing altogether?
35. Express in Troy weight the sum of $3 \frac{2}{9} \mathrm{lbs}$. Tr., and $16 \frac{1}{3} \mathrm{lbs}$. Av.
36. Find the value of $\frac{5 \frac{4}{5}-2 \frac{1}{n}}{3 \frac{3}{\frac{3}{4}+\frac{.1}{20}}}$ of $\frac{4 \frac{1}{2}+5 \frac{19}{\frac{1}{2}}}{4 \frac{1}{20}}$ of $\frac{2 \frac{3}{5}+1 \frac{2}{3}}{7 \frac{10}{2 \hbar}-2 \frac{1}{4}}$.
37. If $\frac{3}{16}$ of a ton is worth $£ 410$ s., what is the value of $\frac{1}{5}$ of it ?
38. After taking out of a purse $\frac{2}{5}$ of its contents, $\frac{2}{3}$ of the remainder was found to be $13 s .5 \frac{1}{2} d$; what sum did it contain at first?
39. The dimensions of a room are $29 \frac{1}{2} \mathrm{ft}$. by $11 \frac{1}{4} \mathrm{ft}$. ; what length of carpet, $\frac{5}{8} 5 \mathrm{~d}$. wide, will cover it? and what will be the expense of it , at $3 \frac{3}{4}$ s. per yard?
40. A ship is worth $£ 16000$, and a person, possessed of $\frac{5}{16}$ of it, sells δ of his share ; what share has he remaining, and what is it worth?
41. Express 4 bus. 1 pk. 1 gal. 2 qts. as a fr. of a qr. ; and reduce 5 ciwt. to lbs. Troy.
42. If $\frac{1}{8}$ of a ship be worth $£ 3610$ s. $7 \frac{1}{2} d$., what share will cost £125 5s.?
43. Multiply $3 \frac{3}{20}$ by $15 \frac{5}{7}$, and divide $\frac{2}{3^{\frac{3}{4}}}$ by $\frac{2 \frac{3}{4}}{3}$; and add together the sum and difference of these results.
44. A party having a bill to pay of $£ 127 s .1 \frac{1}{2} d$., one of them pays for himself and three friends the sum of $£ 59 \mathrm{~s} .10 \mathrm{~d}$. ; how many were they?
45. Express bath in Tr. and Av. weight, $\frac{1}{11} \mathrm{lb}$. Tr. $+\frac{1}{11} \mathrm{lb}$. Av.
46. A pint contains $34 \frac{2}{3}$ cubic inches; how many gallons of water will fill a cistern 4 ft .4 in . long, 2 ft .8 in . broad, and $1 \mathrm{ft} .1 \frac{1}{2} \mathrm{in}$. deep?
47. Add together $1 \frac{3}{4}, 2 \frac{2}{3}$, and $3 \frac{1}{2}$; multiply this sum by the product of these fractions; subtract from the result the difference of $2 \frac{2}{3}$ and $1 \frac{1}{2}$; and divide the remainder by the sum of $5 \frac{1}{2}$ and $1 \frac{1}{3}$ of $3 \frac{3}{4}$.
48. How many yards of paper, $\frac{5}{8} \mathrm{yd}$. wide, will be required for the walls of a room that is $20 \frac{3}{8} \mathrm{ft}$. long by $11 \frac{1}{5} \mathrm{ft}$. wide, and $12 \frac{1}{2} \mathrm{ft}$. high? and what will be the cost of it at $2 \frac{1}{4} d$. a yard?
49. A culic foot of rood weighing $11 \frac{10}{11}$ lbs., what is the weight of a beam 24 ft . long, $2 \frac{3}{4} \mathrm{ft}$. witc, and $2 \frac{1}{2} \mathrm{ft}$. thick ? and what is its value at $3 \frac{44}{45} s$. per cubic foot?
 wife, $\frac{1}{2}$ to his son, and the rest to his daughter. The wife at her death leaves $\frac{3}{5}$ of her legacy to the son, and the rest to the daughter; but the gon adds his fortune to his sister's, and gives her $\frac{1}{3}$ of the whole. How much will the sister gain by this? and what fraction will her gain be of the whole ?

CHAPTER IV.

DECIMAL FRACTIONS.
50. In common numbers, or decimal integers, the actual value of each figure depends upon its position with respect to the place of units, its value in any one position being onetenth of what it would be, if it stood one place further to the left : thus 3045 denotes 3 thousands, 0 hundreds, 4 tens, and 5 units, or $3000+0+40+5$; where we may obtain the actual value of any figure by multiplying it by $10,100,1000$, \&c., according as it stands in the 1 st, $2 \mathrm{nd}, 3 \mathrm{rd}$, \&c. place to the left of the place of units.

Now if we continue the same method of notation to the right of the place of units, still reckoning the value of each figure to be one-tenth of what it would be, if it stood one place further to the left, we obtain what are called decimal fractions, or briefly decimals; thus setting, as is usual, a dot, called the decimal point, after the unit's place, the number 3.045 , \&c. will denote 3 units, 0 tenths, 4 hundrcdths, 5 thousandths, \&c., or $3+\frac{0}{10}+\frac{4}{100}+\frac{5}{1000}+\& c$. ; where we may obtain the actual value of any figure by dividing it by 10 , $100,1000, \& \mathrm{c}$. , according as it stands in the 1st, 2nd, 3rd, \&c. place to the right of the place of units.
51. Hence it follows that a decimal may also be defined to be a fraction, whose den ${ }^{\text {r }}$ is 10 , or some power* of 10 , as 100 , 1000 , \&c., which denr , however, is not set down, as in vulgar fractions, under the num ${ }^{r}$, but expressed by marking off by a point, from the right of the numr, as many figures as there are cyphers in the den ${ }^{r}$, prefixing cyphers to the former, if necessary, to make up the requisite number of figures after the point.

[^3]Thus $\frac{347}{100}=\frac{300+40+7}{100}=3+\frac{4}{10}+\frac{7}{100}=3.47$;

$$
\begin{aligned}
& \frac{13}{1000}=\frac{10+3}{1000}=\frac{1}{100}+\frac{3}{1000}=.013 ; \\
& \frac{212.5}{1000}=2.125, \frac{119}{10000}=.0119, \frac{27}{100000}=.00027, \& c .
\end{aligned}
$$

52. Conversely, any decimai may ie expressed as a vulgar fraction by setting down the figures which compose it as the num ${ }^{r}$, and for the den ${ }^{r}, 10,100,1000, \& c$ according as there are one, two, three, \&c. figures after the point. This, in fact, amounts to expressing each figure separately as a vulgar fraction with its own den ${ }^{\mathrm{r}}$, and then bringing all these fractions to one common den ${ }^{r}$.

Thus $2.03=2 \frac{3}{100}$ or $\frac{2 n 3}{100} ; .379=\frac{3}{10}+\frac{7}{100}+\frac{8}{1000}=\frac{300+i 0+9}{1060}=\frac{37 n}{1000}$; $42.037=42 \frac{37}{1000}$ or $\frac{42037}{1000} ; .0029=\frac{29}{10000} ; 15.001=15 \frac{1}{1000}$ or $\frac{15001}{1000}$.

Sometimes the resulting fractions admit of reduction to lower terms.

Thus $13.75=13 \frac{75}{100}=13 \frac{3}{4} ; 23.0625=23 \frac{625}{10000}=23 \frac{1}{16}$.
53. Any decimal is multiplied by $10,100,1000, \delta \cdot c$. by moving the point one, two, three, \&c. places to the right, and divided by moving it similarly to the left.

Thus
$3.247=\frac{3247}{1000}$; hence $3.247 \times 10=\frac{3247}{100}=32.47 ; 3.247 \div 10=\frac{3247}{10000}=.324 i$,

$$
\begin{aligned}
& 3.247 \times 100=\frac{3247}{10}=324.7 ; 3.247 \div 100=\frac{3247}{10000}=.0 .3-47 . \\
& \text { So } .0023 \times 100=.23,2.3 \div 100=.023, \\
& \quad 2.3 \times 1000=2300,2.3 \div 1000=.0023, \text { \&c. }
\end{aligned}
$$

54. It should be carefully noticed, that adding cyphers to the right of a decimal does not alter its value; thus $3, .30$, .300 , are all equal, representing each of them $\frac{3}{10}$, or as in (52) $\frac{3}{10}, \frac{30}{100}, \frac{300}{1000}$, respectively; but prefixing cyphers to the left of a decimal after the point is equivalent (53) to dividing it by $10,100, \& c . ;$ thus $.3, .03 .003$, are respectively $\frac{3}{10}$, Iúg, $^{3} \frac{3}{1000}$.
Ex. 37. Express as decimals
$\begin{array}{ll}\text { 1. } \frac{7}{10}, \frac{117}{10}, \frac{33}{100}, \frac{1015}{1000} . & \text { 2. } \frac{1}{100}, \frac{21}{10000}, \frac{117}{10000}, \frac{3}{10000000} \text {. }\end{array}$
55. 2 tenths +3 hundredths +37 millionths.
56. 11 tenths +11 thousandths +11 humdred-thousandths.
57. $13+3$ thousandths +5 milliouths.
58. 101 tenths +10 thousandths +101 millionths.

Express as vulgar fractions
7. .037, .0002, .25, .375. 8. .0075, 1.225, .1875, 3.225 .
9. $.0006875, .0009375,23.038125$.
10. 15.203125, .00234375, 4.0078125.

Multiply and divide
11. .3 by 10 and $1000, .00125$ by 100 and $15000,538.734$ by ten thousand.
22. 1.1 by 1000 and $1000000,11.025$ by 1000 and 100000 , and 213.012 by a million.

55. Addition and Subtraction.

Rule. Set down the decimals with their points in the same vertical line, so that units of the same kind may be under one another, filling up the blank places with cypher's; then add or subtract as with common integers, setting the point in the result in the same line with the other points.

Ex. 1. Add together 2.8146, .0938, 8, .875, 31.2788, 4.0087 .
2.8146 Here the figures in the right-hand column represent so .0938
8.0000
.8750 many ten-thousandths; so that we have to add together
31.2788
4.0087
47.0709

$$
\frac{6+8+0+0+8+7}{100.00}=\frac{29}{10000}=\frac{2}{1000}+\frac{9}{10000}
$$

we set down therefore the 9 under the column of tenthousandths, and carry the 2 thousandths to the next columu;
l:x. 2. Find the difference of 2.418 and 1.2234 .
Here we have 4 ten-thousandths in the lower line, but
2.4180
1.2234
1.1946 none in the upper ; we therefore have to borrow one from the 8 in the next column, i. e. we borrow 1 thousandth $=10$ ten-thousandths, from which we take the four ten. thousandths, and have 6 remaining; we have now only 7 thousundths in the upper line, from which we are to take 3 thousandths, or, instead of this (as in former cases of borrowing in Subtraction), we may take 4 thousandths from 8 thousandths; and so on.

Ex. 38. Find the value of

1. $11.275+.34132+.00414+.0001+23.001$.
2. $321.4+12+31.6154+.01+2.214+415.62$.
3. $.001213+45.013+234+.0012+141.00056$.
4. $1.0000123+31.1+117.154+2343.008+.0002$.
5. $32.001-12.999$; and $3.45-.00098$.
h. 23.1415-2.098; and 3.412-2.99987.
6. 22.0001-2.9999; and 2415.6-2414.5987
7. . $001-.0009987$; and 24.004-. 987516 .
8. $1.3742-.03742$; and $3.054-.3054$.
9. . $0123-.009087$; and $3.33-2.58765$.

56. Multiplication.

Rule. Multiply the given decimals as if they were common integers, and mark off in the product as many decimal places as there are in the multiplier and multiplicand together.
Ex. 1. Multiply 1.0025 by 2.5 .
1.0025
$\frac{2.5}{50125}$
$\frac{20050}{2.50625}$ Ans. For $1.0025 \times 2.5=\frac{10025}{10000} \times \frac{25}{10}=\frac{250695}{100000}=2.50625$.

Ex. 2. Multiply . 0048 by .000012 ; and 1.205 by $.005 \times .006 \pm$.

.0048	$\frac{1.005}{.000012}$
.0000000576	$\frac{.005}{.005025}$
	$\frac{.0064}{20100}$
	$\frac{30150}{.0000321600}=.03003216$ Ans.

Ex. 39. Find the value of

1. 22.5×32.16; and 4.41×33.21.
2. $.0001 \times .001$; and 32.1×2.31.
3. . 0032×23.45; and $.0002 \times 3.01$.
4. $22.5 \times .0241 \times .0024$; and $.0003 \times .01 \times 500000$.
5. $2.7 \times .27 \times .027 \times 270$; and $.2 \times .04 \times .008: 64000$.
6. $1.1 \times .011 \times 1.01 \times .0101$; and $.013 \times 1.6 \times .007 \times 3.05$.

57. Division.

Rule. If the given divisor is not a whole number, make it so by removing its decimal point altogether, and shift the decimal point of the dividend as many places to the right as there were decimal figures in the divisor; annexing for this purpose decimal cyphers, if necessary, to the dividend.

Then divide as if the given decimals were common integers ; and when, in the process of division, the decimal point of the dividend is arrived at, place a decimal point in the quotient.

Decimal cyphers may be annexed to the dividend, to any extent that may be wanted for carrying on the division. (54)

Ex. 1. Divide 277.53 by 12 ; also . 27753 by 12 ; and 1037 by 305 .
12) 277.5300
23.1275
12). 2775300 .0231275
305) $1037.0(3.4$ 915 1220 1220

Here the divisors are all integral, and the position of the point in the quotient is very simply determined. In the first sum, we take the 12th part of 27 tens, which is 2 tens and 3 over; then the 12th of 37 units is 3 units and 1 over; then the 12th of 15 tenths is 1 tenth, \&c.; so that the point in the quotient comes exactly under that of the dividend. In the second sum the 12th of 2 tenths is 0 tenths; the 12th of 27 hundredths is 2 hundredths, and 3 over, \&e.; and here the student should particularly observe, that when the divisor is a whole number, there will always be a quotient figure, thongh sometimes, as here, a cypher, for every decimal figure of the dividend.
Ex. 2. Divide .805 by 2.3 , 001029 by 1.68 , and 1 by .007 .

In the 1 st of these sums the divisor, 2.3 , is mult ${ }^{d}$ by 10 , which removes the point, and the dividend is also mult ${ }^{d}$ by 10 , by having the point shifted one place to the right. In the 2nd sum the divisor and dividend are mult ${ }^{\text {d }}$ by 100 , and in the 3rd by 1000, to make the divisor integral. In the 3 rd sum the quotient will not terminate, but, by annexing cyphers to the dividend, we may continue the quotient ns far as we please.

Obs. An integral divisor ending with cyphers may be deprived of the cyphers, if we shift the point of the dividend one place to the left for every cypher withdrawn: thus,

$$
.45 \div 60=.045 \div 6
$$

A little consideration will enable us often to avoid the trouble of counting the decimal places of the dividend and divisor.

Ex. 4. Divide 15.95 by 2.75 .
2.75) $15.950(5.8$
$\frac{1375}{2200}$
2200

Here, without counting, we may set at once the point after the 5 in the quotient, because it is plain that the divisor, which is a little greater than 2 , will go about 5 times in the dividend, which is a little greater than 15.
Ex. $£ 0$. Find the value of

1. $15.625 \div 2.5$; and $.015625 \div 25$.
2. $1562.5 \div .00025$; and $1.5625 \div 25000$.
3. $181.3 \div .00037$; and $171.99 \div 27.3$.
4. $9.065 \div .049$; and $.03 \div .001$.
5. $8 \div .002$; and $37.5 \div 7.68$.
6. $15 \div 6.25$; and $17.28 \div .0144$.
7. $.00128 \div 8.192$; and $1708.4592 \div .00024$.
8. . $0002 \div .0163$; and $4 \div .00255$.
9. $11.1 \div 32.76$; and $.0123 \div 3.21$.
10. $2.117 \div .0073$; and $.032 \div 2.137$.
11. To reduce any fraction to a decimat.

Rule. If the den ${ }^{r}$ be $10,100,8 c$. we may at once express it as a decimal (51): in other cases, if $10,100 \& \mathrm{c}$. be a factor of the den ${ }^{r}$, divide the numerator by it as in (53), and then divide the num ${ }^{r}$ as it now stands by the remaining factor as in (57), and the result will be the decimal required.

Ex.

$$
\frac{1}{400}=\frac{.01}{4}=.0025 ; \frac{37}{80}=\frac{3.7}{8}=.4625
$$

59. Sometimes the division will not terminate, but the same figures will be repeated over again continually.

Ex. Reduce $\frac{95}{90}$ or $\frac{9.5}{9}, \frac{3}{1100}$ or $\frac{.03}{11}$, and $\frac{4}{7}$, to decimals.
9) 9.50000
$1.05555 \mathrm{Sc} .=\frac{95}{50}$.
11) $\frac{.03000000}{.00272727} \& \mathrm{cc} .=\frac{3}{1100} . \quad \frac{4.0<00000}{.5714285 \& \mathrm{sc} .}=\frac{4}{7}$.

Decimals of this kind, in which the same figures are continually repeated without end, are called Circulating, Repeating, or Recurring, Decimals; and the part repeated is called the Period or Repetend.

It is usual to express any circulator by writing it down to the end of the first period, and setting dots over the first and last figures of the period; which dots will, of course, be on adjacent figures, when the period consists of only two figures, and will coalesce into one dot, when the period consists of only one figure.
Thus the above results would be written $1.05, .0027, .571428$.
A pure circulator is one in which the period begins immediately after the decimal point; all others are called mixed.
Ex. 41. Reduce to decimals

1. $\frac{2}{50} ; \frac{13}{250} ; \frac{42}{8} ; \frac{1000}{625} . \quad$ 2. $\frac{108}{125} ; 11 \frac{17}{1250} ; \frac{4000}{250} ; 5 \frac{3}{10 .}$.
2. $7 \frac{13}{64} ; \frac{17}{128} ; \frac{1}{6100} ; 11 \frac{53}{31250}$.
3. $\frac{1}{512} ; \frac{1025}{1024} ; \frac{13}{1600} ; \frac{7}{5120}$.
4. $\frac{15 \frac{1}{2}}{16}$ of $\frac{11}{62 \frac{1}{2}} ; 7 \frac{1}{2}$ of $\frac{18}{62500} ; 1 \frac{2}{19}$ of $1 \frac{1}{75}$ of $\frac{2}{7}$.
5. Any fraction, to be expressed as a decimal, should first be reduced to its lowest terms ; and then, if the den ${ }^{\text {r }}$ contain only powers of 2 and 5 as factors, it may be reduced to a finite or terminating decimal.

For, in reducing a fraction to a decimal, we set a point after the num ${ }^{\text {r }}$, and annex cyphers to it, until the den ${ }^{\mathrm{r}}$ will, if possible, exactly divide it. Or, leaving ont of consideration the point, (which, it is plain, does not affect the division, but only determines the place of the point in the result), this amounts to multiplying the num ${ }^{r}$ by such a power of 10 , as will make it contain the den ${ }^{r}$. But now, since the fraction is supposed to have been originally in its lowest terms, the den ${ }^{\mathrm{r}}$ can have no factor in common with the original num ${ }^{r}$; if, therefore, it be exactly contained in the num ${ }^{r}$ as it now stands, that is, with the annexed cyphers, it can only $\mathrm{b}:$ by its being contained in that power of 10 , by which the original num ${ }^{r}$ has been multiplied. But, since 10 contains only the factors 2 and 5 , any power of 10 will contain only powers of 2 and 5 ; and, therefore, the denr, in order to be contained exactly in some power of 10 , must be made up only of powers of 2 and 5 as factors. In this case the division would terminate, and the decimal be finite; but not so, if the den ${ }^{r}$ contain any other factors, such as $3,7,11$, \&c., since then no power of 10 whatever would contain the den ${ }^{\text {r }}$, nor, therefore, would the original rum ${ }^{\mathrm{r}}$, whatever be the number of cyphers annexed, become exactly divisible by it.
61. If the den ${ }^{r}$ of a fraction, in its lowest terms, contain any other factor than powers of 2 and 5 , the fraction may be expressed as a Circulating Decimal, where the number of figures in the period will be less than the den ${ }^{\text {r }}$.

For since, in the division, the figures to be taken down are always the same, riz. cyphers, it follows that, whenever we have any former remainder repeated, we shall also have the same series of figures repeated in the quotient: but, if we go far enough, we cannot help having some former remainder repeated; for, all the remainders must, of course, be less than the divisor (or den ${ }^{\mathrm{r}}$), and so the number of different remainders must be less than the den ${ }^{r}$ itself.

Ex. 1. Reduce $\frac{6}{7}$ to a decimal.
') 6.0 ($85 \% 14 \dot{2} \quad$ Here we have had in order the remainders 6,4 : $\begin{array}{ll}\frac{56}{40} & \begin{array}{l}5,1,3,2, \text { which are all there are less than the } \\ \text { divisor, } 7 \text {; the rext remainder must therefore be } \\ \text { one of these again, and accordingly we find it to be }\end{array} \\ \frac{35}{50} & \begin{array}{l}\text {; now, since the same figure, } 0 \text {, is taken down to it } \\ \text { as before, it is plain that the whole series of figures } \\ \text { in the quotient will be reproduced in exactly the }\end{array} \\ \text { same order as before. }\end{array}$

Ex, 2. Reduce $\frac{69}{22}=3 \frac{3}{22}$ to a decimal.

$$
\begin{aligned}
& \text { 22) } \begin{array}{l}
3.0(.130 \\
\frac{22}{80} \\
\frac{66}{140} \\
\frac{132}{8} \quad \text { Ans. } 3.136 .
\end{array} \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Sometimes a decimal of very long period may be carried out easily to many places, as in the following example:

Ex. 3. Reduce $\frac{1}{19}$ to a decimal.
19) $1.00(.05263$
$\frac{95}{50}$
$\frac{38}{120}$
$\frac{114}{60}$
$\frac{57}{3}$

Hence $\frac{1}{19}=.05263 \frac{3}{19}, \therefore \frac{3}{19}=.15789 \frac{9}{19}$;
and hence $\frac{1}{19}=.0526315789 \frac{9}{19}$;
$\therefore \frac{9}{19}=.4736842101 \frac{81}{19}=.4736842105 \frac{5}{19}$;
and hence $\frac{1}{19}=.05263157894736842105 \frac{5}{19}$,
and, by continuing this process, we obviously double at every step the number of figures obtained.
This decimal, it will be seen, circulates after the eighteenth figure; so that

$$
\frac{1}{19}=.052631578947368421 .
$$

Ex. 42. Reduce to decimals

1. $\frac{13}{9} ; \frac{103}{180} ; \frac{129}{55} ; \frac{17}{1375} . \quad$ 2. $\frac{47}{14} ; \frac{111}{22} ; \frac{22}{1685} ; 23 \frac{52}{333}$.
2. $\frac{89}{93999} ; \frac{121}{21} ; 17 \frac{8401}{43500} ; \frac{4111}{333500}$. $4 . \frac{135}{3700} ; \frac{297}{23600} ; \frac{378}{925} ; \frac{1139}{55555}$.
3. $\frac{1}{17} ; \frac{1}{23} ; \frac{1}{29} ; \frac{1}{31}$.

62. To reduce a pure circulator to a fraction.

Since $\frac{1}{9}=.111111$ \&c., it follows that $\frac{2}{9}=.2222 \& c ., \frac{5}{9}=.5555 \& c . ;$ so that any pure circulator, having one figure in the period may be expressed as a fraction with that figure in the num ${ }^{r}$, and 9 in the denr.

Again,

$$
\frac{1}{\mathfrak{9 9}}=\frac{1}{9} \div 11=.010101 \& c . ; \text { hence } \frac{5}{99}=.050505 \& c . ; \frac{23}{99}=.232323 \& c . ;
$$

so that any pure circulator, having two figures in the period, may be expressed as a fraction with those figures in the num ${ }^{r}$, and 99 in the den ${ }^{r}$.

In like manner, since

$$
\frac{1}{999}=\frac{1}{9} \div 111=.001001 \& \mathrm{cc}, \frac{1}{2999}=\frac{1}{9} \div 1111=.0001 \& c .,
$$

and so on, it will follow that $a n y$ pure circulator may be expressed as a fraction with the period itself in the numr, and in the den ${ }^{r}$ as many 9 's as there are circulating figures.

$$
\text { Thus } .37 \dot{\delta}=\frac{378}{999}=\frac{14}{37}, .037 \dot{\delta}=\frac{378}{9999}=\frac{43}{1111}, .00037 \dot{\delta}=\frac{378}{939999}=\frac{2}{5291} .
$$

63. To reduce a mixed circulator to a fraction.

If we had a pure circulator with any figures before the point, we might either keep these to form a mixed number, as $3 . \dot{4}=3 \frac{4}{9}, 5 . \dot{4} \dot{3}=5 \frac{43}{99}$; or we might bring the whole at once to an improper fraction, with the same den ${ }^{r}$ as before,
by writing for the num ${ }^{\mathrm{r}}$ all the figures to the end of the first period, subtracting, however, the figures before the point; thus $3.4=\frac{31.3}{9}=\frac{31}{9}=3 \frac{4}{9} ; 5.43=\frac{543.5}{99}=\frac{538}{99}=5 \frac{43}{99} ;$ \&c.
The reason of this method may be thus seen :

$$
\begin{gathered}
3 \frac{4}{9}=\frac{3 \times 9+4}{9}=\frac{3(10-1)+4}{9}=\frac{30+4-3}{9}=\frac{34-3}{9} ; \\
5 \frac{43}{99}=\frac{5(100-1)+43}{99}=\frac{543-5}{99}, \& c .
\end{gathered}
$$

Now, if the point be not immediately before the period, as in these examples, but moved towards the left, this is equivalent to dividing the decimal by $10,100,8 \times$., and we must therefore annex to the den ${ }^{\mathrm{r}}$, as found by the preceding liule, as many cyphers as there are figures between the point and the first period:

$$
\text { thus } .03 \dot{4}=\frac{34-3}{900}=\frac{31}{900} ; .54 \dot{4}=\frac{54.3-5}{990}=\frac{533}{990}=\frac{269}{495} \text {. }
$$

If there should be any figures of a mixed circulator still left before the point, it will be best to leave these as they are, to form a mixed number :
thus $2.46=2 \frac{46-4}{90}=2 \frac{42}{50}=2 \frac{7}{15}$, the same as $\frac{246-24}{90}=\frac{222}{90}=2 \frac{42}{30}$.
The above results may be thus stated, as a Rule for reducing any circulator to a fraction :

Consider only the figures after the point; then
For the num ${ }^{r}$, write the decimal to the end of the first period, subtracting from it (if any) the figures which do not circulate ;

For the denr, write as many 9 's as there are figures circulating, followed by as many 0's as there are figures not circulating. See Note VI.
Ex. 43. Reduce to fractions

1. . $3 ; .05 ; .54 ;$. 729 .

2. $.024 ;, .0132 ;, .006775 ; 2.043$ 2.
3. 2.0909; .54950; 1.0428571.
4. $4.0531 ; 7.6531 ; 2.345 ; .09318$.
5. $2.6428571 ; 5.193181 ; 11.28 \%$.
6. It may be noticed that, according to the above rule, the circulator $\dot{9}=\frac{9}{9}=1$. It is true, we cannot reverse this
operation, and reduce 1 to the decimal $.999 \& c$; yet it will be evident, by repeating the period, that this decimal really differs from 1 by a quantity so small as to be absolutely insensible : thus

$$
1-.9=1-\frac{9}{10}=\frac{1}{10}, 1-.99=1-\frac{99}{100}=\frac{1}{100}, 1-.999=1-\frac{999}{1000}=\frac{1}{1000}, \& c .,
$$

where we see that, by repeating the 9 's, the difference between 1 and the corresponding decimal becomes less and less, and thus may be made as minute as we please, and will at length become absolutely insensible.

It is in this sense that 1 is said to be the value of the circulator . 9 , and, incleed, that any vulgar fraction is assigned as the value of any circulator ; so that, in fact, the equivalent vulgar fraction for any circulating decimal is that to which the value of the decimal will become more and more nearly equal as we repeat its period, and from which it may; by such continued repetition, be made to differ by a fraction as minute as we please, and altogether insensible.

Whenever, therefore, in a decimal we find the figure 9 circulating, we may at once,get rid of the period, by adding 1 to the figure preceding it: thus $.4999 \& c .=.5$, the same result as we should obtain by the Rule, since

$$
.49=\frac{49-4}{90}=\frac{45}{90}=\frac{5}{10}=.5 .
$$

65. Arithmetical operations in which circulating decimals are concerned, may often be performed, with sufficient accuracy for all practical purposes, by repeating the period as often as shall seem upon consideration necessary to ensure the result being correct to some given number of decimal places.

Ex. 1. Add together $13.5,2.0 \dot{5} 5,111.000 \dot{4}, 3.14159 \dot{1}, 2.02 \dot{4}$ correctly to 6 decimal places.
13.55555555
2.02525252
111.00044444
3.14159159
2.02402402
131.74686812

Here, by carrying out the decimals to 8 places, we ensure the accuracy of the first 6 places; for, although the last two are incorrect, and would be altered, if we carricd on our periods farther, yet a little consideration will show us that the sixth and all the preceding figures will not be altered, however often we may repeat the periods.

In such a case it is generally sufficient to carry out the periods to three decimal places more than the number required to be accurate.

Ex. 2. From 1.02341 take $.62 \dot{8}$, correctly to 6 decimal places.

$$
\begin{array}{r}
1.023413413 \\
.628888888 \\
\hline .334524525
\end{array}
$$

Ans. . 394524.
It is sometimes convenient to reduce the circulators to vulgar fractions, especially for the purpose of multiplying or dividing onc circulator by another, in which case the fraction, resulting from the multiplication or division, may be afterwards reproduced in the decimal form.

Ex. 3. $.2 \dot{3} \times .3 \dot{6}=\frac{21}{90} \times \frac{36}{99}=\frac{14}{105}=.0 \dot{8} \dot{1} ; .1 \tilde{6} \div .002 \dot{7}=\frac{15}{90} \div \frac{27}{9900}=\frac{550}{9}=$ 61.1.

Ex. 44. Find the value (correct to 7 places of decimals) of

1. $.13 \hat{8}+.142857+2.4188+2.0 \hat{6}+42.6 \hat{3}+.008197183$.
2. $37.2 \dot{3}+.2 \hat{6}+7.7 \dot{\grave{2}}+.29 \dot{7}+3.97 \dot{3}+8+4.75+74.0367+32.41$.

3. $37.23 \times .263$; and $7.72 \mathbf{2} \times .297$.
4. $3.9 .9 \times 8$; and 74.0367×4.75.
5. $.3 \div 09$; and $.04 \div .769230$. $8 .{ }^{\circ} 7 \div .142857$; and $.042 \div .030$.
6. To find the value of any decimal of a given quantity

Rule. As in common Reduction, multiply the given decimal by the number of units of the next lower den ${ }^{n}$ which make one of the given den ${ }^{n}$: the integral part (if any) of the result will be so many units of that lower den ${ }^{n}$, and the fractional part may now be reduced in the same manner to a lower den ${ }^{\mathrm{n}}$; and so on.

Ex. 1. Find the value of $£ .36875$.

.36875	or, omitting useless cyphers,	.36875
$\frac{20}{7.37500}$		20
$\frac{12}{4.50000}$		7.37500
$\frac{4}{2.00000}$		$\frac{12}{4.500}$
		$\frac{4}{2.0}$ Ans. 7 s. $4 \frac{1}{2} d$.

If the given quantity be expressed in more than one den ${ }^{n}$, it should be reduced to one, before applying the Rule.

Ex. 2. Find the value of .07 of $£ 210 \mathrm{~s}$; and of .7365 of 6 s .8 d .
Here $£ 210 s_{s}=50 s$., and $6 s .8 d_{1}=80 d$.

.07	.7365
50 3.50 12	80 6.0

Ex. 3. Find the value of $.177083 £$.
.17708333
20
3.54166660
12

$$
\overline{6.4999992}=6.5 \text { as in }(64) .
$$

Ans. $3 s .6 \frac{1}{2} d . \quad \frac{4}{2.0}$

Or thus; $\begin{array}{r}.17708_{\frac{1}{3}} \\ \begin{array}{l}3.54166_{3}^{2}\end{array} \\ \begin{array}{l}6.50000 \\ \frac{4}{2.0}\end{array}\end{array}$

But it is often best to convert a circulator entirely to a vulgar fraction in such a case, and so find its value.
Ex. 4. Find the value of 3.27 of a ton.
Here $3.27=3 \frac{5}{18} ;$ and $3 \frac{5}{18}$ of a ton $=3$ tons 5 cwt . 2 qrs. 6 lb . $3 \frac{5}{9} \mathrm{oz}$.
Ex. 45. Find the valuc of

1. . 45 of $£ 1$; . 68125 of $£ 1$; and 2.325 of $£ 1$.
2. 32.5 of $5 . \mathrm{s}$; 1.85 of 3 s .4 d .; and 2.375 of 13 s .4 d .
3. . 13125 of $£ 5$; and . 001953125 of $£ 40$.
4. 3.45 of 5 guineas ; and .325 of $1 \frac{1}{2}$ ton.
5. 23.42 of a day; and 1.46875 of an acre.
6. 2.74 of 12 s .6 d .; and 22.25 of $\mathfrak{£ 2} 2 \mathrm{~s} .6 \mathrm{~d}$
7. 3.225 of $2 \frac{1}{2}$ guineas ; and 22.75 of $£ 510$ s. $6 d$.
8. 3.03 of I 9 s .5 d. ; and. C 474609375 of $£ 10 \mathrm{l} 3 \mathrm{~s}$. $s d$.
9. . 176 of 1 fur. 35 p. 2 yls .5 in ; and .22 of 3 qrs. 15 lbs .
10. . 2775 of $1 \mathrm{sq} . \mathrm{yd} .3 \mathrm{ft} .72 \mathrm{in}$. ; and 32.156 of 3 m .330 yds .
11. 2.441 of $£ 320$ s. $4 \frac{1}{2} d$.; and 33.25 of $£ 312$ s. $4 \frac{1}{4} d$.
12. 44.045 of $11 \frac{1}{4} a$.; and $.5 s+.7$ of a crown $+.125 £$.
13. . $634375 £+.025$ of $25 s .+.825$ of $30 s$.
14. 8.71875 of $8 d .+1.146875$ of 6 s. $8 d .-.0625$ of Ω guinea.
15. . 375 of a guinea +.1875 of a crown +.3 of $7 s .6 d .-.875$ of $2 d_{0}$
16. 3.83 of 4 s ; and 6.15 of 2 s . $9 \frac{3}{4}$ d.
17. $23.4^{\prime} 5$ of 3 m .5 fur.; and 13.27° of 5 A .2 R .
18. 2.20% of $£ 39$ s. $4 \frac{1}{2} d$; ; and 2.145 of 5 s. $8 \frac{5}{4} d$.
19. .397916 of $£ 1$; and .40972 of a guinea.
20. . 571428 of $a \mathrm{qr}$.; and $.285714^{4}$ of a cwt.
21. To reduce a given quantity to the aecimal of another given quantity.

Rule. Begin with the term of lowest den ${ }^{n}$ in the first given quantity, and reduce it to a decimal of the next higher den ${ }^{n}$; prefix to this decimal the term (if any) of this higher den ${ }^{n}$, which is found in the first given quantity, and reduce the result to a decimal of the next higher den ; and so on, until we have thus brought it, if possible, to the decimal of the second given quantity.

Ex. 1. Reduce $£ 317 s, 6 \frac{3}{4} d$, to the decimal of $£ 5$.
4) 3.00

Here we first reduce $3 f$. to a decimal of a penny, by 12) 6.7500 dividing by 4 ; the result is .75 , i. e. $3 f=.75 d$., and, pre20) 17.562500 fixing the $6 d$. , we have now $6.75 d$., which we reduce to
5) 3.878125 the decimal of a shilling; and so on.
. 775625 Ans.
Sometimes, as in common Reduction, we cannot thus pass directly, through different successive denns, from the first to the second given quantity; and then it will be necessary to express the first as a fraction of the second, and then to reduce this fraction to a decimal.

Ex. 2. Reduce 2 s. $9 \frac{3}{4} d$. to the decimal of 7 s. $9 \frac{3}{4} d$.

$$
\text { Here } \frac{2 s .9 \frac{3}{4} d .}{7 s .9 \frac{3}{4} d .}=\frac{135 \text { farthings }}{375 \text { farthings }}=\frac{9}{25}
$$

Ex. \%6. Reduce

1. 9 s .6 d . to the dec. of $£ 1$; and $2 \mathrm{~s} .2 \frac{1}{4}$ d. to the dec. of $£ 5$.
2. 5 s . to the dec. of 13 s .4 d .; and 17 s .3 d . to the dec. of 10 s .
3. $\mathscr{L} 12 s .6 d$. to the dec. of $£ 1$; and $2 s .7 \frac{1}{2} d$. to the dec. of $10 s$.
4. $3 s .33_{4}^{3} d$. to the dec. of $£ 16 \mathrm{~s} .6 \mathrm{~d}$.; and $£ 34 \mathrm{~s}$. 2 d . to the dec. of 2 s .4 d .
5. $6 s .6 \frac{3}{4} d$. to the dec. of a guinea; and $7 s .10 \frac{1}{2} d$. to the dec. of $£ 2$.
6. 9 oz .2 dr , to the dec, of alb . ; and 3 fur. 33 yds . to the dec. of a mile.
7. 2 m .1100 yds . to the dec. of a lcague ; and $12 \mathrm{~h} .55^{\prime} 21^{\prime \prime}$ to the dec. of a day.
8. 3 qrs. 3 lbs .1 oz .7 drs. to the dec. of a cwt. ; and $18 \frac{1}{4}$ days to the dec. of a year.
9. $15 s .6 \frac{3}{4} d$. to the dec. of $£ 4$; and 1 cwt . 3 qrs. 7 lbs . to the dec. of $2 \frac{1}{2}$ tons.
10. $3_{\frac{3}{4}} \mathrm{gs}$. to the dec. of $£ 100$; and $4 \frac{1}{2} \mathrm{lbs}$. to the dec. of 3 qrss .12 lbs .
11. 13s. $4 d$. to the dec. of a crown, and 2 tons $4 \frac{1}{2}$ civt. to the dec. of 1 ton $11 \frac{1}{4}$ cwt.
12. $3 \frac{1}{2}$ in. to the dec. of $\frac{1}{4}$ mile ; and 22 guineas to the dec. of $£ 25$.
13. 2 R .4 F . to the dec of 1 R .5 P . ; and $£ 211 \mathrm{~s} .6 \frac{3}{4} d$. to the dcc. of $£ 3$.
14. 8 sq. ft .20 in . to the dec. of 12 sq . in. ; and $7 s .6 \frac{1}{2} d$. to the dec. of $£ 1$.
15. $2 \mathrm{w} .6 \frac{1}{4} \mathrm{~d}$. to the dec. of 4 d .3 hrs . $;$ and $£ 612 \mathrm{~s}$. $6 \frac{3}{4} d$. to the dec. of $1 \frac{1}{2}$ guinea.
16. 5 hrs. $3^{\prime} 2 \frac{1 / \prime}{\prime \prime}$ to the dec. of a day ; and $£ 2412 s .6 \frac{1}{4} d$. to the dec. of $£ 4$.

MISCELLANEOUS EXAMPLES IN DECIMAL FRACTIONS.

47.

1. What vulgar fraction is equivalent to the sum of 14.4 and 1.44 divided by the difference?
2. What is the value of .0333 \&c. of half-a-crown multiplied by .5 ?
3. The circumference of a circle $=3.1416$ times the diameter ; find the radius of the Earth, whose circumference is 24857 miles.
4. If the length of the year be taken at $365 \frac{1}{4}$ days instead of $360.24 \frac{2}{9}$ days, its true value, what will the crror amount to in four centuries?
5. Reduco $\frac{4}{256}$ and $\frac{256}{7}$ to decimals; 3.75 and 3.75 to vulgar frac. tions ; and multiply . 235 by . 0021 and 1.2.
6. Reduce 7s. 6 d . to the decimal of $£ 1$; find the value of $£ 2.6625$; and, if 1 oz. cost $.03125 £$, what will .0625 lbs cost?
7. Find the value of $.6 £+.3125 s .+.2$ of a guinca.
8. Reduce $\frac{3}{22}$ and $4 \frac{3}{14}$ to decimals; 0123 to a vulgar fraction; and clivile 18.073 by .0341 and 5300 .
9. Find the value of $.453125 £+1.1484375 s .+.71875 d$.
10. Reduce $.875 £$ to the decimal of a guinea; and 1.25 of $3.675 £$ to the decimal of 10.5 s .
11. Find the value of .300694 of a day ; and of .91789772 of 2 A .
12. Find the value of $3 \frac{2}{5}+4 \frac{1}{8}+1 \frac{11}{40}+3 \frac{13}{625}$ both by vulgar fractions and by decimals; and show that the two results coincide.
13. Find the value of 1.875 guinca +1.875 crown +1.875 of $3.625 £$.
14. Find the difference between $5 \frac{1}{2}$ half-guineas and $3.125 £$; and reduce the result to the decimal of half-a-crown.
15. Multiply 1 s. $\mathfrak{h} \frac{1}{4} d$. by $5: 82.5$; and divide $£ 1685 s .4 \frac{2}{25} d$. by 1.32 .
16. The price of $\frac{1}{2}$ an oz. of coffee is . 4583 s .; what is the value of .0015625 of a ton?
17. Find the difference between 1.6 of 3.4 of $1.125 £$ and $\frac{1}{5}$ of 3.6 of $0.1125 £$.
18. Reduce $\frac{17}{256}$ and $\frac{1}{101}$ to decimals; .0675 and .0675 to vulgar fractions; and find the value of .73125 of $£ 5$.
19. If a lb . of sugar cost .0703125 of $8 s$. , what is the ralue of .0625 cwt .?
20. Add together $\frac{3}{5}, \frac{7}{8}, \frac{9}{10}$ and $\frac{7}{32}$, both as vulgar fractions and as decimals ; and show that the two results coincide.
21. Find the value of $3.5 s .+2.9$ of $23.375 s .-\frac{1.75}{3.5}$ of 16.6 s s
22. Find the difference between $17 . \dot{4} 28571$ sq. ft. and 100.8 sq. in.s and between 1.76 cub. yds. and 26.66 cub. ft.
23. Multiply .0235 by 8.03 ; divide .0625 by 2.5 ; and find the value of .8435416 of $£ 5$.
24. Multiply $6 s .0{ }_{4}^{3} d$. by 85.3125 ; and divide $£ 1011 \mathrm{~s} .3 \mathrm{~d}$. by 29.25.
25. Find the value of 4.4 of a guinca -3.75 of half-a-crown $+.416 £$ -.3571428 of a guinca.
26. How many yards of matting, 2.4 fect broad, will cover a floor that is 27.3 feet long and 20.16 feet broad?
27. Find the value of .375 of $5.375 £$, and of .06328125 of $£ 100$; and reduce $£ 27 s$. $9 \frac{3}{4} d$. to the decinal of $10 s$.
28. Find the values of $3.5+2.83+.6+1.175 ; 11.73-10.916$; $3.375 \times 1.6 \times 4.8 ; \frac{3.375}{4.5}$; and find the product of the results.
29. Find the value of 1.2 of 3.5 of $4.375 d .+1.83$ of .954 of .428571 of $4.5 d$.
30. What is the quarter's rent of 22.7916 acres of land, at $3.72 £$ per annum per acre?
31. Reduce $\frac{7}{64}$ and $\frac{7}{65}$ to decimals; .65 and .0651 to vulgar fractions; and $£ 23 s .3 \frac{3}{d} d$. to the decimal of $£ 4$.
32. Find the value of .285714 of $£ 30+6.857142 £+.6$ of .714285 of $.6 \mathbb{E}+1.3$ of .42857 is.
33. Reduce $2 \frac{5}{8}$ and $\frac{4}{111}$ to decimals; 2.05 and .205 to vulgar fractions; and $£ 19$ 17s. $2 \frac{1}{4} d$. to the decimal of $£ 5$.
34. Multiply 1 cwt. 2 qrs. 3 lbs. by 5.125 ; and divide $£ 38340$ s. $5 \frac{1}{4}$ d. by 441.75 .
35. If an ounce of gold be worth $£ 4.0099$, what is the value of a bar of gold, weighing 1.683 lbs ?
36. Ficduce .6 of $£ 1+.6$ of $5 s .3 d .+3.75$ of a crown to the decimal of 16 s .
37. Find what dccimal multipicd by 175 will give the sum of $\frac{1}{4}, \frac{16}{25}$, $\frac{43}{50}$, and $3 \frac{1}{2}$.
38. Multiply 285 by 4.02 ; divide 2.961 by .007 ; and find the value of 2.778125 of $\epsilon s .8 d$.
39. Reduce $\left(\frac{2.375}{3.16}\right.$ of $\left.\frac{4.4}{.062 \tilde{5}}\right) \div\left({ }_{8}^{8 . \dot{\delta}}\right.$ of $\left.\frac{4}{5.625}\right)$ to a simple quantity.
40. Multiply $£ 216 \mathrm{~s}$. 10.75 d . by 144.33 ; and divide $£ 9753 \mathrm{l} 4 \mathrm{~s} .8 \frac{1}{4}$ d. by 234.5 .
41. Find the value of 3.275 of $£ 10$; multiply 3.275 by 12.8 ; and divide .0625 by .00005 .
42. Reduce $\frac{11}{512}$ and $\frac{3}{33}$ to decimals; 2.0325 and .3105 to vulgar fractions ; and 2 lbs .3 oz , to the decimal of a ton.
43. licduce $1.75 s$. to the decimal of $£ \mathfrak{i z}$: and 2.6 of $£ .877083$ to the decimal of half-a-sovereign.
44. Find the value of 3_{43}^{37} of $£ 312 \mathrm{~s} .6 \frac{3}{4} d$. ; and reduce the result to the decimal of $£ 350$ s. $3 \frac{3}{4} d$.
45. Reduce $\frac{2.8 \text { of } 2.27}{1.136}+\frac{4 . \dot{t}-2.83}{1.6+2.629}$ of $\frac{6.8 \text { of } 3}{2.25}$ to a simple quantity.
46. Find the value of $\frac{4}{5}$ of 2.625 guineas; and the difference between 26.5r. and $70 \frac{3}{5} \mathrm{sq}$. yds.
47. Find the value of 6.83 of $£ 3.8677083+5.8$ of $£ 2.4114583-4.375$ of $£ 1.3$.
48. Leduce to a decimal, accurate to 5 places, $16\left(\frac{1}{5}-\frac{1}{3 \times 5^{3}}+\frac{1}{5 \times 5^{-3}}-\frac{1}{7 \times 5^{7}}+\& c.\right)-\frac{4}{239^{9}}$. Sec Note VII.
49. Find the sum of $£ 1.15+2.0625$ guineas +.0078125 of $32 s$. ; and reluce the result to the decimal of half-a-sovereign.
50. Reduce to a decimal, accurate to 7 places,

$$
1+\frac{1}{1}+\frac{1}{1 \times 2}+\frac{1}{1 \times 2 \times 3}+\frac{1}{1 \times 2 \times 3 \times 4}+8 \mathrm{c} \text {. Sce Note VII. }
$$

CHAPTER V.

PRACTICE.

68. This is an expeditious method of finding the ralue of any quantity of merchandise, \&c. when the value of a unit of any denomination is given; as of 456 cwt . at $£ 313 \mathrm{~s} .6 \mathrm{~d}$. per cwt., or of 3 cwt .3 qrs. 13 oz , at $£ 26 s .7 \frac{1}{2} d$. per lb . \&cc.
69. Case I. Where the given quantity is expressed in the same denomination as the unit whose value is given.

Under this head will occur such examples as the fo!lowing : 36 cwt . at $£ 310 \mathrm{~s}$. per cwt ., 25 lbs . at $£ 216 \mathrm{~s} .8 \mathrm{~d}$. per $l \mathrm{ll}$., 37 oz. at $£ 517 \mathrm{~s}, 6 d$. per oz., \&c. : where the unit, whose value is given, is of the same den ${ }^{2}$ as the quantity whose value is required. It is obviously immaterial what the unit itself is ; that is to say, the values would be the same either of 36 cwt . at $£ 310 \mathrm{~s}$. per cwt ., or of 36 lls . at $£ 310 \mathrm{~s}$. per $l \mathrm{lb}$., or of 36 oz . at $£ 310 \mathrm{~s}$. per $o z$., or (without specifying any unit) of 36 articles at $£ 310$ s. each, or, as it is briefly expressed, of 36 at $£ 310$ s.

Ex. 1. Find the ralue of 36 at $£ 310$ s.
Here we have, in fact, to multiply $£ 310$ s. by 26 ; let us first then multiply $£ 3$ by 36 , or, which amounts to the same, multiply $£ 36$ by 3 , and we shall have $£ 108$ as the amount of 36 at $£ 3$. tl tak 0 lats
10s. $\frac{1}{2}$ 108
18

Ans. $£ 126$ of 36 pounds $=£ 18$, which we add to the $£ 108$, and thus have the whole product of $£ 310 s . \times 36$.

Ex. 2. Find the value of 253 at $\mathfrak{£ 2} 16 s .8 d$.
£25̄3
2×253 : and then, since $6 s .8 \mathrm{~d}$. is $£ \frac{1}{3}$, dividing 253 by 3 , we have $£ 846 \mathrm{~s} .8 \mathrm{~d}$., the value of
10s. $\frac{1}{2} \begin{array}{llll}266 & 10\end{array}$
6s. $8 d$. $\frac{2}{3} \frac{2}{3}-6-6 s .8 d . \times 253$, which we add to the other two Ans. $£ 71616 \quad 8 \quad £ 216 s .8 d . \times 253$.

Ex. 3. Find the value of 371 at $£ 517 \mathrm{~s} .6 \mathrm{~d}$.

£371		Hero we find tho value of $£ 510 s . \times 371$ as
		before : then instead of taking, as we might,
	55	$6 s .8 d$ as $£^{\frac{1}{3}}$, \&c., we may take $5 s$. as $\frac{1}{2}$ of $10 s$.,
10 s.		nd so find the valuo of 5 s. $\times 371$, by taking
	$\begin{array}{lll}92 & 15 \\ 46\end{array}$	the value of $10 s . \times 371, \mathrm{i} . e$. half of $£ 18$
2	46	£92 15s.: in like manner, we may then
	€2179 12	e $2 s .6 d$. as $\frac{1}{2}$ of $5 s$., and find the value of

Ex. 4. Find the ralue of 713 at $£ 48 s .11 \frac{1}{2} d$.

£713				Here we find, as in Ex. 2, the value of
				£4 8s. 4 d. $\times 713$; we then take $7 \frac{1}{2} d$. as $\frac{1}{8}$ of 5 s.,
		2852		and so divide by 8 the line $£ 1785$ s., which is
$5 s$.		1785		the value of 5 s. $\times 713$.
3s. 41.		11816	8	
$7 \frac{1}{2} d$.		225	$7 \frac{1}{2}$	
	20	17 7		

£ \&. d.
Ex. 49. 1. 127 at 3130
3. 339 at 4120
5. 253 at 7170
7. 365 at 11146
9. 285 at 166
11. 492 at 6189
£ s. d.
2. 235 at $5 \quad 76$
4. 341 at $617 \quad 6$
6. 457 at 1186
8. 573 at $715 \quad 6$
10. 389 at 8136
12. 297 at 1169

Ex. 5. Find the value of 89 at $3 s$. $11 \frac{3}{4} d$.

Ex. 6. Find the ralue of 111 at $18 s$. $7 \frac{1}{2} d$.

Wo might treat this as the last Ex. ; or, to aroid the final reduction, we may bogin at onco by taking $6 s .8 d$. as $£_{\frac{1}{3}}$, \&c., drawing a line under the 111 , beforo wo divide by 2 , sinco it is not to bo added in with tho other lines.

Otherwise:-As tho n^{0} of shillings in tho $£ 111 \times .9=£ 99$ 18s. 0 d . price is cven, we can conveniently change it
 into tho decimal of $£ 1$, viz., $£ .0$, and multiplying by .9 , we may mentally doublo the decimal of the product for shillings ; \&c.

Ex. 50. s. d.		
1. 227 at $2{ }^{1 \frac{1}{4}}$	2. 149 at $3{ }^{2 \frac{3}{4}}$	3. 854 tat
4. 356 at $409 \frac{3}{4}$	5. 365 at $57^{\frac{3}{4}}$	6. 373 at 7
7. 177 at $811 \frac{1}{2}$	8. 784 at 9 23	9. 480 at 11
10. 193 at 13 5 $\frac{1}{2}$	11. 395 it $144^{\frac{3}{4}}$	12. 499 ait 17

70. It is often convenient to suppose the given ralue increased so as to become an exact number of pounds, or shillings, \&c. for which we may calculate by common Multn ; then, if we find by Practics the ralue of the part added to the true value, and subtract it from the other result, we shall get the required amount.

759

3s. $4 d$. \begin{tabular}{l}
$\frac{1}{6}$

\hline

72 \& 3 \& 4

\hline
\end{tabular} Ans. $£ 716168$ ing amount, we have the same result as before.

Similarly, in Ex. 3, wo may add 2s. 6d. to the given value, making it $£ 6$; then multiply $£ 6$ by 371 , and from the result subtract $2 s .6 d . \times 371$, or $\frac{1}{8}$ of $£ 371$.

71. Case ir. When the given quantity is not expressed in the same denomination as the unit whose value is given.

Here we shall have to find the value of 3 cwt . at $£ 213 s .6 d$. per lb., or of 2 cwt 3 qrs. 16 lbs. at $\& 35 s$. $7 \frac{1}{2} d$. per cwt., or per qr., or per lb., \&c. In all instances, (like the first of these,) where the given quantity can be immediately reduced to the same den ${ }^{\mathrm{n}}$ as the given unit, we may do this, and shall then have only an example nnder Case 1. : thus 3 cwt. $=$ 336 lbs ., and the value of 336 lbs . at $\mathfrak{L} 213 \mathrm{~s} .6 \mathrm{~d}$. per 1 lb . may be found as before. So also, if we can reduce any part of the given quantity to the same den ${ }^{\mathrm{n}}$ as the given unit, we may find its value by mult ${ }^{\mathrm{n}}$; and, for the remr , we may take parts of the given unit itself, and proceed as in the following examples.

Ex. 1. Find the value of 7 cwt 3 qrs. 11 lbs . at £2 13 s . 1 d . per qr.
The given unit being a qr., we reduce 7 cwt . 3 qrs. to 31 qrs., and find the value of them by multiplying by 31: then to find the value of 11 lbs ., we consider that 3 lbs . are $\frac{1}{4}$ qr., and 4 lbs . are $\frac{1}{7} \mathrm{qr}$. ; so that, dividing $£ 213 \mathrm{~s} .1 \mathrm{~d}$. by 4 and 7 , and adding up, we have the value of 7 cwt 3 qrs. 11 lbs.

Ex. 2. Find the rent of $8 \mathrm{~A}, 3 \mathrm{R} .10 \mathrm{p}$. at $£ 117 \mathrm{~s} .8 \mathrm{~d}$. per acre.
Here we find the rent of 8 A ., as in the last example ; and then calctlate that of 3 R .10 p ., and add as before.

	$\begin{array}{lll} f & \text { s. } & d . \\ 1 & 17 & 8 \times 8 \\ & & 8 \end{array}$			
	151		rent	8 A .
2R. $=\frac{1}{2}$	18	10	"	2R.
1R. $=\frac{1}{2}$	9	5	"	1 R .
$10 \mathrm{P} .=\frac{1}{4}$	2	$4 \frac{1}{4}$	"	101.
Ans. £16 $1111 \frac{1}{4}$				

Ex. 3. Find the rent for $3 \mathrm{mo} .3 \mathrm{w}, 5$ d. at $£ 313 \mathrm{~s}$. 6 d . per montl.
Here $1 \mathrm{mo}=4 \mathrm{wks}$; and we can take $3 \mathrm{wks}=\frac{1}{4}$ of 3 mo . \&cc., as in one of the subjoined forms, or $1 \mathrm{wk}, 5 \mathrm{da}=\frac{1}{7}$ of 3 mo . \&c., as in the other.

23.52.

1. 6 cwt. 1 qr. 11 lbs . at $£ 217 \mathrm{~s} .9 \mathrm{~d}$. per cwt.
2. 3 cwt. 3 qrs. 5 lbs. at $£+14$ s. per cwt.
3. 9 cwt . 21 lbs . at $£ 511 \mathrm{~s} .1 \frac{1}{2} d$. per civt.
4. 2 cwt. 4 lbs .12 oz . at $£ 3 \mathrm{ls}$. per cwt.
5. 3 qrs. 5 lbs .9 oz . at $£ 214 \mathrm{~s} .6 \mathrm{~d}$. pcr 1 b .
6. 2 qrs. 9 lbs .13 oz . at 15 s .9 d . per lb .
7. 2 qrs. 7 oz .9 drs. at $18 s .6 d$. per lb.
8. 2 cwt .2 lbs .2 oz .12 drs at $£ 13 \mathrm{~s} .9 \mathrm{~d}$. per lb.
9. 3 cwt. 3 qrs. 27 lbs .15 oz .12 drs . at $£ 7$ per cwt.
10. 6 oz . 18 dwts. 20 grs. at 7 s . 9 d . per oz.
11. 3 lbs. 5 oz. 14 dirts. 12 grs. at $17 \mathrm{~s} .6 d$. per oz.
12. 22 yds .2 ft .2 in . at 18 s .8 d . per yard.
13. 13 yds .1 ft .7 in . at 9 s .4 d. per foot.
14. 37 A .1 R. 28 p . at $£ 22 \mathrm{~s}$. per acre.
15. 17A. 3R. 19p. at $£ 518 s .6 d$. per acre.
16. 21 A .2 R. 12 p. at $£ 315 \mathrm{~s}$. 8 d. per acre.
17. 5 mo .3 w .4 d. at 17 s .6 d . per weck.
18. 7 mo .2 w .5 d . at $\mathfrak{£ 2} 8 \mathrm{~s} .4 \mathrm{~d}$. per month.
19. 9 mo .1 w .6 d. at $£ 12 \mathrm{~s} .9 \mathrm{~d}$. per weck.
20. 6 mo .3 w .2 d . at $£ 30 \mathrm{~s} .6 \mathrm{~d}$. per month.
21. The method of Practice may be applied, as we have said, to any ease where the value of any quantity is sought, that of a unit of any den ${ }^{n}$ being given. It is not, however, necessary (as in the foregoing Examples) that this given value should be the price of the unit, \&c.; but, whenever any given amount is charged for any reason upon the unit, we may find thus the corresponding amount for the given quantity.

Ex. A bankrupt is able to pay $12 s .6 \frac{1}{2} d$. in the $£$, and his delts are $£ 3600$: what was his estate worth?

$10 s$.	$\frac{1}{2}$	1800	
2s. $6 d$.	$\frac{1}{4}$	450	
$\frac{1}{2} d$.	$\frac{1}{60}$	$7 \quad 10$	
Ans.	$£ 2257$	10	

This means that, for cvery $£$ he owes, he can pay only $12 \mathrm{~s} .6 \frac{1}{2} d_{.} ;$here then we have to find the value of $12 s .6 \frac{1}{2} d . \times 3601$, which must have been the value of his whole cstate.

Miscellaneous Examples. 53.

1. What must be paid to 721 labourers for a week's service, at 17s. $4 \frac{1}{2} d$. each ?
2. What would be the amount of 137 tons 12 cwt . of goods, at the rate of $£ 24 s .10 \frac{1}{2} d$. per cwt.?
3. Calculate the amount of a sulary of 24418 rupees, valued at $2 s .1 \frac{3}{4} d$. each.
4. A bankrupt's delts are $£ 7357$, and he is able to pay 12 s. $9 \frac{3}{4}$ d. in the \mathfrak{E}; what are his cffects worth?
5. To how much will a charge of $£ 288 s .2 d$. per day amount in 365 days?
6. Lodgings at £o 10 s. $6 d$. per month being occupied for 8 mo. 21 days, how much must be paid for them?
7. What must be given for a gold snuff-box, weighing 5 oz .0 dwts 20 grs ., at the rate of $£ 43 \mathrm{~s} .0 \mathrm{~d}$. per oz.?
8. What is the dividend on $£ 171014 \mathrm{~s}$. $6 d$., at 13 s. $4 \frac{1}{2} d$. in the $£$?
9. How many acres will supply 53 horses with hay and oats, if each horso consume annually the produce of 5a. 3r. 26r.?
1.0. What is the expense of digging a ditch, of which the cubic content is 5705 c cubic yards, at the rate of $18.7 \frac{3}{1} \pi$. per yard?
10. A bankrupt owes $£ 2468$, and can pay 15 s. $6 d$. in the $£$; what are his effects worth?
11. Find the weight of 1000 pieces of gold coin, each weighing 6 dwt 7 gr .
12. An officer's pay is $12 s .3 d$. per day; what is that in a year?
13. A labourer's pay being $2 \mathrm{~s} .9 \frac{3}{4} \mathrm{~d}$. a day, what is the whole pay of 23 men for 25 days?
14. If lodgings let at $133.6 d$. per week, how much do they let for during 273 days?
15. A merchant bought 182 quarters of wheat at $£ 21 \delta$. $3 d$. per quarter, and retailod the samэ at $£ 2$ 18s. 4 d . per quarter; what was his gain, and at what per quaiser should he have sold it to hare gained exactly 104 guineas?
16. What sum would be required to pay the wages of 377 lalourcrs for a weok, at $2 s .5 d$. a day each?
17. If a person's estate be worth $£ 138416 s$. per ann., and the landtax be assessed at 2 s. $9 \frac{1}{2} d$. in the $£$, what is his net annual income?
18. An iron bridge consists of 3 arches, the centre one weighing 3046 tons, and the two others 2600 tons cach; what is the cost of the iron at $£ 613 \mathrm{~s} .6 \mathrm{~d}$. per ton?
19. What will a room cost in painting, at $1 s$ s. $7 \frac{1}{2} d$. per square yard, those height is $10 \mathrm{ft}$.3 in ., width 16 ft .6 in., and length 18 ft .10 in .?
20. An estate of 134 A .3 R .16 p . is rented at $£ 212 \mathrm{~s} .6 \mathrm{~d}$. per acre, and afterwards the best pasture, consisting of 51 A .2 R .12 r. , is let at £3 10 s. per acre; what will the first tenant still hare to make up of his rent?
21. A bankrupt's liabilities are estimated at $£ 375817 \mathrm{~s}$. 6 d .; what aro his assets, if he can pay $13 s .7 \frac{1}{2} d$. in the $£$?
22. What is the joint ralue of 5 qu. $3 \frac{1}{4} \mathrm{bu}$. of wheat at $7 s$. $4 \frac{1}{2} d$. per bushel, and 5 qu. $3 \frac{1}{4}$ bu. of cats at $4 s .2 \frac{1}{4} d$. per bushel?
23. There were sold three pieces of land, containing $59 \frac{1}{2} \Delta ., 76 \frac{1}{4} \Delta$., 30A. 12p. respectirely: the price of the first piece was $£ 127 \mathrm{~s}$. 10 d. , of the second $£ 1315 s .9 d$. , and of the third $£ 168 s .6 d$. per acre ; what was given for the whole?
24. What will be the cost of replacing a cistern, to weigh 8 cwt . 2 qrs. 14 lbs ., at the rate of $£ 20 s .6 \mathrm{~d}$. per crrt., if the plumber allows \&1 11s. $6 d$. per cwt. for the lead of the old one, which weights 6 cwt . ${ }^{1} \mathrm{qr} .10 \mathrm{lbs}$.?

CHAPTER VI.

PROPORTION.

73. The Ratio of one quantity to another is the number which expresses what fraction the former is of the latter, and is therefore obtained, as in (48), by dividing the former by the latter.

Thus the ratio of 108 to 144 , or (as it is written) of $108: 144$, is $\frac{109}{1+4}=\frac{3}{4}$, meaning that 108 is $\frac{8}{4}$ of 144 .

The former of the two terms in any ratio is called the antecedent, and the latter the consequent; and it is plain from the above, that all ratios are equal which may be made to have the same antecedont and consequent by striking common factors out of their two terms.

Thus the ratios of $108: 144,36: 48,21: 28,15: 20,3: 4$, \&c., are all equal, since each of them is equivalent to the fraction $\frac{3}{4}$; and it will be seen that the first of each of these pairs of quantities is $\frac{3}{4}$ of the second.
74. When two ratios are equal, they are said to form a Proportion, and the four terms coriposing them are ealled proportionals, or are said to be proportional to one another.

Thus, since 15 is $\frac{3}{4}$ of 20 , and 21 is $\frac{3}{4}$ of 28 , and so (as before was said) the ratio of $15: 20=$ the ratio of $21: 23$, these four quantitics form a proportion, which is usually expressed thus, $15: 20:: 21: 28$, and read as 15 is to 20 so is 21 to 28 , or 15 is to 20 as 21 is to 28 ; and here 15 and 21 are the two antecelents, 20 and 28 the two consequents, of the ratios which form this proportion.
N.B. It should be well noticed that the proportion 15:20::21:28 expresses that 15 is the same fraction (proper or improper) of 20 that 21 is of 28.

75 . In any proportion, the product of the 1 st and 4 th terms = the product of the 2 nd and 3rd terms, or, as it is commonly said, the product of the extromes $=$ the product of the means.

Thus in the proportion $15: 20:: 21: 28$, since the two ratios are equal, we have $\frac{15}{20}=\frac{21}{28}$; and, if we multiply each of these cquals by 20×28, we get $15 \times 28=20 \times 21$, or 1 st $\times 4$ th $=2 \mathrm{nd} \times 3$ rd.
76. Conversely, if the product of any two quantities $=$ the product of two others, the four are proportionals, the factors in one product being the extremes, and those in the other the means, of the proportion.

Thus, since $6 \times 20=120=8 \times 15$, if we divide each of these equals by $6 \times 8,6 \times 15,20 \times 8,20 \times 15$, respectively, we get
$\frac{20}{8}=\frac{15}{6}$, whence $20: 8:: 15: 6$ or $\frac{15}{6}=\frac{20}{8}$, whence $15: 6:: 20: 8$;
$\frac{20}{15}=\frac{8}{6}$, whence $20: 15:: 8: 6$ or $\frac{8}{6}=\frac{20}{15}$, whenec $8: 6:: 20: 15$;
$\frac{6}{8}=\frac{15}{20}$, whence $6: 8:: 15: 20$ or $\frac{15}{20}=\frac{6}{8}$, whence $15: 20:: 6: 8$;
$\frac{6}{15}=\frac{8}{20}$, whence $6: 15:: 8: 20 \mid$ or $\frac{8}{20}=\frac{6}{15}$, whence $8: 20:: 6: 15$;
in the first set of which proportions it is seen that the terms of one product, 6 and 20 , are the extremes, and those of the other product, 8 and 15 , the means; and vice versit, in the other set.
77. Hence also it follows, that, if four quantities in any given order are proportionals, they will also be proportionals in any other order, in which the same two terms will go together, cither as extremes or means.

Thus, since $6: 9:: 10: 15$, it follows by (75) that $6 \times 15=9 \times 10$, and therefore by (76) we have also $6: 10:: 9: 15,10: 15:: 6: 9$, \&c., in which 6 and 15 still go toyether, cither as extremes or as means. We could not have, however, $6: 15:: 9: 10$, \&cc., in which this is not the case.
78. If we have given any three of the four terms of a proportion, we may by means of them easily find the fourth; for since by (75) the 1 st $\times 4$ th $=2$ nd $\times 3 \mathrm{rd}$, we have the 1 st $=\frac{2 \mathrm{nd} \times 3 \mathrm{rd}}{4 \mathrm{th}}$, the $4 \mathrm{th}=\frac{2 \mathrm{nd} \times 3 \mathrm{rd}}{1 \text { st }}$, the $2 \mathrm{nd}=\frac{1 \mathrm{st} \times 4 \mathrm{th}}{3 \mathrm{rd}}$ and the $3 \mathrm{rd}=\frac{1 \mathrm{st} \times 4 \mathrm{th}}{2 \mathrm{nd}}$.

Ex. Find the numbers which shall form the 1st and 2 nd terms, respectively, of a proportion with the numbers $6,7,8$.

$$
\begin{aligned}
& \text { Here the } 1 \mathrm{st}=\frac{2 \mathrm{nd} \times 3 \mathrm{rd}}{4 \mathrm{th}}=\frac{6 \times 7}{8}=5 \frac{1}{\frac{1}{1}} \text {, and } 5 \frac{1}{\frac{1}{4}}: 6:: 7.8 \text {; } \\
& \text { tha } 2 \mathrm{nd}=\frac{1 \mathrm{tt} \times 4 \mathrm{th}}{3 \mathrm{rd}}=\frac{6 \times 8}{7}=6 \frac{6}{7} \text {, and } 6: 6 \frac{6}{7}:: 7: 8 .
\end{aligned}
$$

Ex. 54. Find numbers which shall form the 1st, 2nd, 3rd, 4th terms, respectively, of a proportion with

1. $2,3,4$.
2. $3,4,5$.
3. $4,5,6$.
4., 5, 6, 7.
4. $2,5,7$.
5. $4,5,8$.
6. $2,7,9$.
7. $5,7,7$.
8. We have hitherto given instances only of the ratios of abstract quantities, or numbers, to one another; but we may similarly obtain the ratios of concrete quantities.

Thus the ratios of $£ 108: £ 144$, of $9 \mathrm{cwt} .: 12 \mathrm{cwt}$., of 15 gals. : 20 gals., of 39 ft . : 52 ft ., are (by 48) respectively $\frac{108}{144} \cdot \frac{9}{12}, \frac{15}{20}, \frac{39}{52}$, each of which reduces to $\frac{3}{4}$; and we say, therefore, that the ratio of $£ 108: £ 144$ is the same as that of $3: 4$, or $\frac{3}{4}$, meaning that $£ 108$ is $\frac{3}{4}$ of $£ 144$; and sin with the other ratios.

Of course, however, the quantities forming such a ratio must be of the same kind; for, otherwise, one of them could not be a fraction of the other.

Thus it would be absurd to speak of the ratio of $£ 108: 144 \mathrm{cwt}$., or of 9 cwt. : 12 gals., \&c.

So also, though they be of the same kind, we must besides reduce them, as in (48), to the same denomination, before we can express the one as a fraction of the other, and so find their ratio.

Thus the ratio of $7 s .6 d_{0}: 4 s .2 d_{1}=$ the ratio of $90 d_{.}: 50 d_{0}=\frac{90}{50}=\frac{9}{5}$ $=9: 5$.
N.B. Whatever be the nature of the quantities themselves, their ratio is always a mere abstract number, expressing, as stated in (73), what fraction the one is of the other.

Thus in the last instance the ratio of $90 \mathrm{~d} .: 50 \mathrm{l}$. is, as in (48), the number $\frac{9}{5}$, not $\frac{9}{5} d$.; for it has no reference whatever to the fact, that the given quantities were pence, but only to the magnitude of the one with respeet to the other, i. e. to the fact that the one is $\frac{9}{5}$ of the other; and it would plainly have been just the same, if the ratio had been that of $£ 90: £ 50$, or, of 90 cwt . : $50 \mathrm{cwt} ., \& \mathrm{cc}$.
80. So also, when two such ratios are equal, they form a proportion; thus £108:£144::9 cwt.: 12 cwt.; only liere we cannot, as in (77), change the order of the terms, except the change be such as still leaves the two ratios possible.

Thus, it will be true, as before, that $\hat{£} 144: £ 108:: 12$ cwt. : 9 cwt, or $9 \mathrm{cwt} .: 12 \mathrm{cwt}:.: £ 108: £ 144$, \&c.; but we cannot say that $£ 144$: 12 cwt.::£108:9 cwt., bccause the two ratios $£ 144: 12 \mathrm{cwt}$. and $£ 108: 9 \mathrm{cwt}$. are absurd. It would, however, be true, that $£ 144: £ 12$:: 108 cwt : 9 cwt \&cc.
81. For the like reason, we cannot exactly say of such a proportion, that the product of the extremes $=$ that of the means; thus it would be absurd to speak of multiplying £144 by $9 \mathrm{cwt}$. \& \& . : if, however, we consider only the numerical values of the terms, this would be still true: and, having three terms of such a proportion giren, we may, by means of their numerical values, find as in (78) the numerical value of the fourth term, which will be of the same kind and denomination as the other term of the ratio to which it belongs.

Thus to find a fourth proportional to $£ 108, £ 100,9$ cwt., we have its numerical value $=\frac{100 \times 9}{108}=8 \frac{1}{3}$, which must be $8 \frac{1}{3}$ cut. ., since it must be of the same kind and denomination with 9 cwt., the other term of the ratio to which it belongs; and the proportion will therefore be

$$
£ 108: £ 100:: 9 \mathrm{cwt} .: 8 \frac{1}{3} \mathrm{cwt} .
$$

82. The method above referred to, by which we may find the fourth proportional to three given quantities, -viz. by multiplying together the 2 nd and 3 rd , and dividing the product by the 1 st,-is commonly known by the name of the Rule of Three.

In practical applications of this Rule, the three given quantities are generally concrete ; and a very large class of Examples are those, where, the cost of a given quantity of some article being given, we are required to find, either what will be the cost of another given quantity, or else what quantity may be bought for another given cost. For it is plain that, in any such case, if the first cost be double. treble, half, \&c. of the second cost, the first quantity will bo double, treble, half, \&c. of the second quantity, and, generally, the first cost will be the same fraction of the second cost that the first quantity is of the second quantity;
i.e. the ratio of the two costs will be the same as the ratio of the two quantities, or the four will be proportionals, so that we may apply to them the preceding observations.

Ex. 1. If 39 cwt. of sugar cost $£ 91$, what will be the cost of 18 cwt.? 30 cwt. : 18 cwt.: : $£ 01$: the Ans., whose numerical value we obtain by

18	multiplying $£ 01$ by 18 , and dividing
728	by 39 , without considering these as
91	concreto quantities, and the result 42
39) 1638 ($£ 42$	will be of the same kind as the 3rd
155	term, viz. £..

Aus. £42. $\quad 78$
Ex. 2. If $£ 42$ will buy 18 cu't. of sugar, what quantity may be had for $£ 01$?

$$
£ 42: £ 91:: 18 \mathrm{cwt} .
$$

18 728 91
$42\left\{\frac{6 \longdiv { 1 6 3 8 }}{7 \lcm{273}}\right.$
Ans. 30 cwt .

Here we hate multiplied the 2 nd by the 3rd (the least of the two) for convenience, and the result 39 will be of the same kind as the third term, viz. cwt.

Ex. 55.

1. If 12 yards of cloth cost $£ 15$, what would 8 yards cost at the same rate?
2. If 46 bu . of wheat cost $£ 16$, how many may be lought for $£ 72$?
3. What will be the cost of 90 gals. of wine, if 495 gals. cost $£ 396$?
4. How many acres of land may be rented for $\mathfrak{E} 65$, if the rent of 168 acres be $£ 364$?

- .. If 63 loads of straw can be lought for $\mathfrak{f 1 8 0}$, how many may be had for $£ 100$?

6. How much must be giren for 25 doz. of wine, at the rate of $£ 176$ for 80 doz .?
7. Since the $A n s w e r=\frac{2 \mathrm{nd} \times 3 \mathrm{rd}}{1 \text { st }}$, and the value of this fraction is not altered by striking common factors out of its num ${ }^{r}$ and den ${ }^{r}$, we may sometimes simplify the operation by striking out (before we multiply and divide according to the Rule) a common factor, either from the 1st and 2 nd terms, or from the 1st and 3rd terms.

Ex. 3. If 275 reams of paper cost $£ 15815$ s., what would 990 reams cost?

Here haring first, for conrenience, reduced the 3rd term to shillings, we have signified the value of the 4th term by a fraction representing the product of the 2 nd and 3 rd terms divided by the 1 st. Then striking out 25 from 3175 and 275 , Te get 127 and 11 ; then dividing 990 by the 11, we obtain 127×90.
Ex. 4. If 14 tons of bar-iron cost $£ 106$ 11s. $6 d$. ., how much may be had for 100 guincas?
$£ 10611$ s. $6 d .: \quad 100$ guin. $:: 14$ tons $: \frac{14 \mathrm{t} . \times 4200}{4263}$
$\frac{20}{2131}$
$\frac{2}{4200}$ si $\frac{2}{4263}$ sixp.

200

$$
\begin{aligned}
& \frac{14 \times 4200}{4263}=\frac{2 \times 200}{29}=400 \text { t. } \div 29 \\
& 203 \\
& \text { 20) } 400\left(13 \frac{23}{29}\right. \text { tons. Ans. } \\
& \frac{29}{110} \\
& \frac{\varepsilon 7}{23}
\end{aligned}
$$

7. If 385 yards of cloth cost $£ 253$, how many may be had for $£ 138$?
8. How much cambric may be bought for $£ 45$, if 714 yds. cost $£ 85$?

9 . If 36 A .3 R . of land are rented for $£ 84$, what should be the rent of 21A. 3R. 20p.?
10. If I pay $£ 18$ for 7 cwt .3 qrs .14 lls . of sugar, what would bo the cost of $4 \mathrm{cmt} .1 \mathrm{qr} .14 \mathrm{ll} / \mathrm{s}$.?
11. How much oats, at $£ 8015 \mathrm{~s}$, for 51 quarters, may be bought for £62 14s.?
12. If 172 cwt .2 qrs. 18 lbs. of potatocs cost $£ 0417 \mathrm{~s}$. Gd., how much must be given for 7 crrt .3 qrs. 11 ll s . ?
84. The Principles of Proporivon may, however, be applied to numberless cases, besides such as we have been hitherto considering; and we must here say a little more of the general nature of what are called Proportional Quantities.

We have already seen what is meant by saying that four quantities are proportionals; but it is common also to speak of two quantities being proportional to each other (or varying as each other); only here the quantities are used generally, whereas the four quantities, in the former case, were particular values of such general quantities.

Thus, for example, we say commonly that the weight of an article is proportional to, or varies as, the price; where the words weight and price are used generally, without reference to any particular weights or prices: but by saying this we mean, that if we took any two particular weights, and the two corresponding prices, the four would be proportionals: and thus, having given any two weights, and one of the corresponding prices, we might find, by the Rule of Three, the other price; or, having given any two prices, and one of the corresponding weights, we might find the other weight: and this we have been doing in the preceding examples.
85. But now other quantities, considered generally, may be similarly proportional to each other; and to these the same principles may be applied. Thus, fhe rent of a house will vary as the time it is occupied, a workman's wages will vary as the time he labours, the distance run by a coach will vary as the rate at which it moves, \&cc. ; in all which cases, if we take any two particular values of the first quantity, and the two corresponding values of the latter, the four would be proportionals; so that, if three only were given, we could apply the Rule of Three, as before, to find the fourth.
86. Sometimes we can only know from philosophical reasons, that two such general quantities are proportional ; as, for instance, that the length of the shadow cast by a vertical rod, at any given hour of the day, varies as the height of the rod; that the velocity acquired by a heavy body in falling varies as the time of motion from rest, \&c.; but, in most cases that occur in common practice, it is easy to apply at once the
test of proportionality, as in former examples, viz. by considering whether, by taking any two particular values of one quantity, and the corresponding two of the other, the four would be proportional, i.e. whether the lst of the former set would be the same fraction of the 2 nd , as the lst of the latter set would be of the 2 nd .
'This, perhaps, we may do most simply thus : consider if, by doubling, trebling, \&c. any value whatever of the one quantity, the corresponding value of the other quantity would also be doubled, trebled, \&c. ;-in which case the above test would be satisfied with these four quantities, and therefore the two given general quantities would be proportional to each other.
87. Hence, when any question i, j proposed, in which, having given any two values of one quantity, and one of the corresponding values of the other, we are required to find the other of these values, we must first enquire whether the case be one of Proportion. If so, we may proceed to state and solve the sum by the Rule of Three. It will be best, first to set down the 3rd term, which will always be the single given term, and of the same kind as the answer (being the antecedent of the ratio in which the answer is the consequent); then the other two terms, (which will always be of the same kind, being two given values of the other quantity,) will form the other ratio-the antecedent, or 1st term, being that value which corresponds to the antecedent of the second ratio, or 3rd term.

We may now proceed as before-reducing the 1st and 2nd terms to the same den ${ }^{\text {n }}$-and, if desirable, the 3 rd , to any denn we plase-striking out common factors (if any) from the 1st and 2nd, or 1st and 3rd-multiplying together the 2 nd and 3 rd , and dividing by the 1 st-when the quotient will give the Answer, in the same den ${ }^{n}$ as that in whinh we have expressed the 3rd term.

Ex. 1. What is the coach farc for 130 miles, if it is £1 $9 s .4 d$. for 85 milcs? Here 5) 85 m . : 5) $130 \mathrm{~m} .:: £ 1 \quad 9 \quad 4 \quad$ Herc it is plain that, if we double the distance, whatever it may be, the corresponding fare will also be doubled; hence the fare varies as the distance, and we proceed as before, setting as the 3rd term the single given quantity £1 $9 s .4 d$. , and, for the terms of the first ratio, the pair of given quantities of the same kind, 85 m . and 130 m ., of which we set 85 m . first, since it is that distance which corresponds to the 3rd term.
Ex. 2. The rents of a parish amount to $£ 1750$, and a poor-rate is u :anted of $£ 6119 \mathrm{~s} .7 \mathrm{~d}$. ; what is that in the $£$? $£ 1750: £ 1:: £ 61197 \quad$ Here it is plain that, if we double the rent,
$\frac{20}{1239}$
$\frac{12}{14875}(8 d$. 14000
Ans. $8 \frac{1}{2} d . \quad \overline{\frac{875}{1750}}=\frac{1}{2}$ whatever it may be, the corresponding rate will also be doubled: so that the rate varies as the rent. The single term is here the $1750) \overline{14875}(8 d . \quad$ whole rate, $£ 6119 \mathrm{~s} .7 \mathrm{~d}$.; the terms of tho first ratio are the two given rents, $£ 1750$ and $£ 1$, of which $£ 1750$, since it corresponds to

This sum in fact amounts merely to one in division; since if $£ 1750$ will supply a rate of $£ 61 \mathrm{l} 9 \mathrm{~s}$. 7 d ., we may obtain that supplied by $£ 1$, by simply dividing this amount by 1750 .

Ex. 56.

1. A field of 18 acres is let for $£ 2418 s .6 d$.; what would be the rent of 42 acres at the same rate?
2. If a servant's wages be $\mathscr{E} 2$ a year, what should he receive for 87 days' service?
3. If the coach fare for 65 miles be $£ 11 \mathrm{~s} .8 \mathrm{~d}$., how far ought one to go for $£ 218 \mathrm{~s} .8 \mathrm{~d} . ?$
4. If a carding-machine throw off 54 lbs . of wool in $2 \mathrm{hrs}, 46 \mathrm{~min}$. so sec., in what time will it throw off 24 lbs .?
5. How much land may be rented for $£ 70$ 10s. $6 d$., if 5 acres are rented for $£ 4$ 13s. 4d.?
6. What is the assessment on 20A., if that 0n 445 A . be $£ 1414 \mathrm{~s} .9_{\frac{3}{4}}^{3} /$?
7. If the tax on a rent of $£ 25$ is $£ 210$ s., what will it be on a rent of $£ 109 \mathrm{~s} .4 \frac{1}{2} d$?
8. What is the amount of poor-rates to be paid upon $£ 9510 s .9 \frac{1}{2} \neq$, when $£ 39 \mathrm{lls}, 8 \mathrm{~d}$. is levied upon $£ 791 \mathrm{l} 3 \mathrm{~s} .4 \mathrm{~d}$. ?
9. The expenses of the poor in a parish amount to $£ 1107 \mathrm{~s}$. 6 d ., and the whole rent is $£ 2000$; how much in the $£$ must be levied to pay it?
10. What is the tax on a house rented at $£ 6510 \mathrm{~s}$. Ged., if that on one rented at 25 guineas be $£ 411 s$ s. $10 \frac{1}{2} d$.?
11. Sometimes we may have two general quantities so depending on each other, that, if we double any value whatever of the one, the corresponding value of the other, instead of being doubled, will be halved. Thus, if any given number of men would do a piece of work in a certain time, it is plain that double that number would do it in lalf the time. In this case the four quantities will still be proportional, but with the terms of the second ratio in inverted order ; since the 1st value of the former quantity will be the same fraction of the 2 nd, that the 2 nd of the latter quantity is of the 1st.

The two general quantities are here said to be inversely proportional to each other, whereas in the former examples they were directly proportional: but the Rule of Three may still be applied, if we take care to state the sum rightly, viz. by setting last, as before, the single term, and then setting as the second term, or consequent of the first ratio, (instead of, as before, the first, or antecedent,) the corresponding value of the other two given ones.
Ex. 1. A person completed a journey in 32 days, travelling $8 \mathrm{hrs} . x$ day; how long would he take to do the same, travelling only 6 hrs. a day? 6 hrs. : 8 hrs.:: 32 days

Here the term 8 hrs. corresponds to the
6) $\frac{8}{256} \frac{12 \frac{2}{3}}{}$ days. term 32 days, and it is plain that if we Ans. $42 \frac{2}{3}$ days. double the n° of hrs. in each day, the n° of days required will be only half of what it was before ; so that the n° of hrs, in a day varies inversely as the r° of days required. The single or 3rd term is 32 days, and here we put the corresponding term, 8 lirs., second instead of first, as in the former cases.

Or we might reason thus. The whole number of hrs. must be the same in both cases; and therefore $32 \times 8=6 \times$ Ans., whence we have the $A n s .=\frac{32 \times 8}{6}=\frac{236}{6}=42 \frac{2}{3}$ days.

Ex. 2. If 84 sheep can be grazed in a field for 12 days, how long might 112 shtep have been grazed in the same field?

IIere it is plain that, if we double the
sheep sheep days
112: 84::12 12
112) 1008 (9 days Ans. 1008 n^{0} of shecp, they will be kept for only lualf the time in the same ficld; so that the n^{0} of sheep varics inversely as the n^{0} of days. The single term is 12 days, and we set the corresponding term, 84 sheep, second.
Or thus: 84 sheep for 12 days consum: as much as 84×12 sheep in one day; and we have $84 \times 12=112 \times$ Ans. \therefore Ans. $=\frac{84 \times 12}{112}=9$ days.

Ex. 57.

1. If 100 workmen can do a piece of work in 12 days, how many can do the same in 8 days ?
2. If a besieged garrison have 4 months' provisions, at the rate of 18 oz. per man per day, how long would they be able to hold out, if each man were allowed only 12 oz . per day?
3. If I borrowed of a friend $£ 300$ for 8 months, for how long a time should I lend him £200 in return?
4. How many men would perform in 168 days a piece of work, which 108 men can perform in 266 days?
5. If a person, travelling 12 hrs. a day, would finish his journey in 3 weeks, how many weeks would he take to do it, if he travelled only 9 hrs. a day at the same rate ?
6. If $47 \frac{1}{4}$ shilling cakes can bo mado of a quarter of wheat, what will be the price of a cake, if 70 are made of the same quantity of flour?
7. How much land, at $27 s$. per acre, should be given in exchange for 480 acres, at 35 s . per acre ?
8. A besieged fortress has provisions for 3 weeks, at the rate of 14 oz. a day for each man; at what rate per day must the provision be distributed, so that the place may hold out 5 weeks?
9. We must always be assured, as in the preceding Examples, that the two general quantities concerned in any case are proportional to one another, cither directly or inversely, and so that the question is one which falls under the

Rules of Proportion. But when satisfied of this, we may relieve ourselves of some of the care required in stating the sum, by the following general Rule, which includes both cases, and is that commonly given as the

RULE OF THREE.

Set last the single term, (viz. that which corresponds to the Answer,) and the greater or less of the other two terms second, according as it is seen that the Answer will be greater or less than the third term.

The reason of this is plain; for, if the three quantitics do form the first three terms of a proportion, the single term must bv set 3rd, since it belongs to the ratio of which the Ans. is the other term; and then, as we know that the Λ ns. will be found by multiplying this term by one, and dividing by the other, of the two remaining terms, it is obvious that, if the Ans. is to be greater than the 3rd term, we should have to multiply by the greater and divide by the less of the two, i. e. we should have to put the greater of them second; if less, the less.

This explanation, however, is only intended to show that the above Rule will enable us to make the same statement of the sum as we should have done by the proper considerations, and so to get the correct result. It does not at all profess to give the true reason for so stating, which depends upon the foregoing observations. See Note VIII.

Ex. If 10_{7}^{5} lUs. of salt cost $1 \frac{9}{10}$ s., what will $3 \frac{2}{3}$ cwt. cost ?
Here the singic, or 3rd term, is $1 \frac{9}{16} s$; $10 \frac{5}{7} \mathrm{lbs}$. $3 \frac{2}{3} \times 112 \mathrm{lbs}:: 1 \frac{9}{16} \mathrm{~s}$. and siuce the Ans. will plainly be

$$
\text { Ans. }=\frac{25}{16} s, \times \frac{11}{3} \times 112 \times \frac{7}{75} \quad \text { greatcr chan this, we set the greater of }
$$

$$
=\frac{118 . \times 7 \times 7}{3 \times 3}=£ 210 s .10 \frac{2}{3} d .
$$ the two others in the second place, viz. $3 \frac{2}{3} \mathrm{cwt}$. or $3 \frac{2}{3} \times 112 \mathrm{lbs}$. when reduced to the same den ${ }^{n}$ as the 1st term.

Ex. 58.

1. If 60 lbs . of salt cost $0 s .1 \frac{1}{4} d$., what will be the cost of 15 lbs ?
2. What is the value of sheep per score, if 311 sell for $£ 5851$ s. $4 \frac{1}{2} d$.?
3. A bankrupt owes $£ 472610$ s., and his effects are worth $£ 1181$ $12 s .6 \mathrm{~d}$. ; how much will he be able to pay in the $£$?
4. If $27 \frac{1}{2}$ bushels of potatocs cost $5_{5}^{5} 48.6 d$., what quantity will cost $£ 2514 \mathrm{~s}$. 7 d .?
5. If 39 cwt. $1 \mathrm{qr}, 11 \mathrm{lbs}$, cost $£ 596 s, 6 d$. , what wirl 13 cwt . cost at the same rate?
6. What weight of sugar may bo bought for $£ 37488$. , when the cost of 6 cwt . 2 _qrs. $/ \mathrm{is} £ 14$ 14s. 8 d. ? ?-
7. If the tax on £335 7s. $6 d$. amount to $£ 5813 s$. $0 \frac{3}{4} d$., what is that in the $£$?
8. How many gallons of wine, at the rate of $£ 3116 s$. $4 d$. for 46 gals., may be bought for $£ 117$ 11s. $8 d$. ?
9 . If 17 cwt .3 qrs. 14 lbs . of tallow cost $£ 382 s .8 d$., how much may be bought for $£ 512 s .6 d$. at the same rate?
9. If the sixpenny loaf weighs 3 lbs . when wheat is at $6 s$. a bushel, what ought it to weigh when wheat is at $6 s .9 d$. a bushel?
10. .Suppose there are $12,000,000$ sheep fed in this country; what is the value of their wool-produce yearly, if 11 sheep produce 25 lbs . of wool, which is sold at $£ 812 s$. per cwt.?
11. From 3 tons 5 cwt. take 1 ton 16 cwt. 3 qrs. 12 oz., and find the value of the remainder at $£ 17 \mathrm{~s} .6 \mathrm{~d}$. for 1 qr .27 lbs .
12. If a nobleman's rental be $£ 8050$ per annum, and the land-tax bo charged at the rate of $£ 115 s$. per $£ 100$, what will be his nett income?
13. If $4 \frac{1}{4}$ yards of cloth cost $£ 514 \mathrm{~s}$. $4 \frac{1}{2} d$., what would 20 yds. cost?
14. The chain for measuring land is 66 feet long, and divided into 100 links; what is the length of a wall which measures 2456 links?
15. The rateable value of a parish amounts to $£ 1250$, and a poorrate of $£ 2710 \mathrm{~s} .6 \mathrm{~d}$. is to be raised; what will a person have to pay whose rents are $£ 525$?
16. A wedge of gold, weighing 14 lbs .3 oz .8 dwt ., is valued at $£ 5144 \mathrm{~s}$.; what is the value of an oz.?
17. A bankrupt has assets to the amount of $£ 1020$, and debts to the amount of $£ 3225$; what will his creditors receive in the $£$?
18. A bankrupt's effects amounted to $£ 980$, which paid his creditors 13 s .6 d . in the $\mathfrak{£}$; what did his debts amount to?
19. What is the income corresponding to an income-tax of $£ 132 s .6 d$. , at the rate of 7 pence in the $\mathfrak{£}$?
20. 'A borrowed of $B £ 1755$ s. for 102 days, and afterwards would return the favour by lending B the sum of $£ 2106 s$; for how long should he lend it?
21. What is the height of a steeple, whose shadow was 148 ft .4 in ., at the same time that the shadow of a staff 6 ft .4 in . long was 5 ft .3 in .?
22. A coach goes from Eondon to Liverpool, at the rate of 9 miles an hour, in 24 hours; in what time would the distance be performed on the railroad, at the rate of 32 miles an hour?
23. A besieged town, containing 22400 inhabitants, has provisions to last 3 weeks; how many must be sent away that they may be able to hold out 7 weeks?
24. If a serrant receire $£ 3 \frac{1}{2}$ for 20 weeks' service, how many weeks ought he to remain in his place for 12 guineas?
25. If the carriage of $15 \frac{1}{2}$ cwt. for 60 miles came to 7 s .9 d ., how far ought $3 \frac{1}{4} \mathrm{cwt}$. to be carried for the same money?
26. How much may a person spend in 73 days, if he wishes to lay by erery year 50 guineas out of an income of $£ 450$?
27. The carriage of a parcel of goods, weighing 1 ton 3 cwt .2 qrs., cost $£ 2148$.; what will be the charge for 4 other parcels, weighing each 17 cwt .3 qrs. 7 lbs ?
28. If $3 \frac{3}{4}$ shares in a speculation are worth $£ 2710$ s., what are $4 \frac{5}{8}$ shares worth?
29. If $1 \frac{2}{3}$ yard of cotton print cost $2 s .6 d .$, what is the cost of $24 \frac{1}{2}$ yards?
30. If $1 \frac{3}{8} \mathrm{cwt}$. of sugar cost $3 \frac{1}{2}$ guineas, what must be given for $17 \frac{3}{4}$ lbs.?
31. At $3 s .4 \frac{1}{2} d$. for $4 \frac{3}{5} \mathrm{lbs}$., what is the price of $14 \frac{3}{8} \mathrm{lbs}$?
32. If $2 \frac{1}{4}$ yards of cotton print cost $1 s .10 \frac{1}{2} d$., what is the cost of $13 \frac{\frac{\pi}{8}}{8}$ yards?
33. If $6 \frac{2}{3}$ yards be worth 27 s. $9 \frac{1}{2} d$., what quantity is worth $18 s .2 \frac{35}{64} d$.?
34. What is the value of $\frac{3}{7}$ of $\frac{3}{4}$ of a ship, when $\frac{5}{8}$ of the whole is worth $£ 525$?
35. If 6336 stones of $3 \frac{1}{4} \mathrm{ft}$. length complete a certain quantity of wall, how many similar stones of $2 \frac{2}{3} \mathrm{ft}$. length will raise a like quantity?
36. If a ball falling from rest acquire a velocity of $115 \frac{1}{5} \mathrm{ft}$. in $3 \frac{3}{5}$ seconds, at what rate will it be moving at the end of the first second, and at the end of $4 \frac{3}{4}$ seconds?
37. What will 3 cwt . $1 \mathrm{lb} .1 \frac{1}{2} \mathrm{oz}$. of merchandise cost, if the cost of $13 \frac{2}{5}$ tons be 500 guineas?
38. If $4 \frac{5}{9}$ oz. Av. cost $8 \frac{31}{32} s$. , what will $8 \frac{13}{24}$ lbs. cost?
39. If $\frac{1}{192}$ of $\frac{2}{3}$ of $2 \frac{1}{2}$ of 40 lbs . of beef cost $1 \frac{3}{50} d$., how many lbs, may be bought at the same rate for $6 s$. $7 \frac{1}{2} d$. ?
40. Suppose it were asked, 'If 9 men can reap 30 acres of wheat in 10 days of 6 hours each, how many men would reap 40 acres in the same time?' This would be an instance of common Direct Proportion, and we should have

$$
30 \text { ء. }: 40 \wedge .:: 9 \text { men }: \frac{40}{30} \times 9=12 \text { men. }
$$

But now suppose that, instead of 'in the same time,' the question had said, 'in 12 days of the same length.' Here it
is plain that, after finding, as above, the n° of men, 12 , who would reap 40A. in 10 days, we must still have another Proportion, to find the n^{0} who will reap the same n^{0} of acres in 12 days; thus (the case being here one of Inverse Proportion),

12 days: 10 days :: 12 men $: \frac{10}{12} \times 12 \mathrm{men}=10 \mathrm{men}$.
Once more, suppose that, instead of ' 12 days of the same length,' the question had said, ' 12 days of $7 \frac{1}{2}$ hrs. each.' Here, after having found, as above, the n^{0} of men, 10 , who will reap the 40 A . in 12 days of 6 hrs . each, we must still have a third Proportion, to find the n° who will reap the same n^{0} of acres in the same n^{0} of days of $7 \frac{1}{2} \mathrm{hrs}$. each; thus (the case being here also one of Inverse Proportion),
$7 \frac{1}{2}$ hrs. : 6 hrs. :: 10 men $: \frac{6}{7 \frac{1}{2}} \times 10$ men $=8$ men.
91. Now the above is an instance of Compound Proportion, whereas the preceding Examples were all instances of Simple Proportion ; the difference between questions in Simple and Compound Proportion being, that, in the former, we have one general quantity proportional to another; whereas, in the latter, we have one general quantity proportional to each of several others, taken separately, i. e. supposing that, while we take the two different values of any one of them, the others meanwhile retain the same fixed values.

Thus, in the above Proportions, the n° of men is proportional, in the 1st, to the n° of acres (directly) when the n° of days continues the same, and the n° of hours in each day the same -
in the 2 nd , to the n° of days (inversely) when the n^{0} of acres continues the same, and the n° of hours the same -
in the 3 rd, to the n° of hours (inversely) when the n^{0} of acres continues the same, and the n^{0} of days the same.
92. We have seen that, in cases of Simple Proportion, when a single value of one general quantity is given corresponding to one given value of the other, we may find that
corresponding to another given value of the other by the Rule of Three. In like manner, in cases of Compound Proportion, when a single value of the first quantity is given, corresponding to one given set of values of the other quantities, we may find that corresponding to another given set of them, either, as above, by successive Proportions, or by what is called the Double Rule of Three, which arises from the following consideration. Taking the numerical value of the lst result in its original form, $\frac{40}{30} \times 9$, we have that of the 2 nd, $\frac{10 \times 40}{12 \times 30} \times 9$, and of the 3rd, $\frac{6 \times 10 \times 40}{7 \frac{1}{2} \times 12 \times 30} \times 9$, which would, of course, reduce itself to the final answer, 8 , i. e. 8 men : but now this is the same result as we should get, if we made only one statement, in which we set down the single term, 9 men, as usual, last, and, for the 1 st and 2 nd terms, the products, respectively, of the numerical values of the 1st and 2 nd terms of the three Proportions.

The same will be true in other cases. It is best to set down, one under another, the num. values of the first ratios of these Proportions, observing to state them by considering each general quantity separately, with reference to that quantity whose single value is in the 3 rd term; and then we may multiply these together, (striking out, as before, common factors from the 1 st and 2 nd , or 1 st and 3 rd , and, finally, multiply together the 2 nd and 3 rd terms of the resulting compound statement, and divide by the first.

Ex. If 5 compositors set up a work of 6 sheets in 8 days, in what time will 6 compositors set up a work of 0 sheets?

Hore 8 days is the single term, to be set last: now, if we doubled the n° of mon (supposing the same n^{0}. of sheets), the n° of days would be halved; hence the n° of days raries inversely as the n° of men, and the corresponding first ratio will be 6 men : 5 men. Again, if we doubled the n° of sheets (supposing the same n° of men), the n° of days would be doubled; hence the n° of days varies directly as the n° of sheets, and the
corresponding first ratio will be 6 sheets : 9 sheets; we have, thereforo, setting down the numorical values of these ratios),

$$
\left.\begin{array}{l}
6: 5 \\
6: 9
\end{array}\right\}:: 8 \mathrm{da} .: \frac{8 \times 5 \times 9}{6 \times 6} \text { da. }
$$

and now striking out 4 from the dividend, and 2×2 from the divisor, we have

$$
\frac{2}{\frac{8}{6} \times 5 \times 9} \begin{aligned}
& 6 \times 6 \\
& 3 \times 3
\end{aligned}=2 \times 5=10 \text { days. } A n s \text {. }
$$

Ex. 59.

1. If 15 pecks of wheat serve 9 persons for 22 days, how long will 20 pecks serve 6 persons?
2. If $£ 335$ s. pay 15 labourors for 18 days, how many labourers will $£ 7016 s$. pay for 24 days?
3. If 27 men can dig $2 \frac{1}{4}$ acres in 2 days, how many men can dig 2 acres in 3 days?
4. If 7 horses be kept 20 days for £12, how many may be kept 14 days for $£ 18$?
5. If 9 persons spond $£ 147$ in 6 months, how many will $£ 13013 s$. $4 d$. last for 4 months?
6. If 6 horses consume 375 lbs. of oats in 8 days, what quantity will 4 horses consume in 10 days?
7. How much paper is required for 5000 copies of a book of $12 \frac{1}{2}$ sheets, if 66 reams are required for 3000 copies of a book of 11 sheets?
8. If 8 men earn $£ 9$ wages for 5 days' work, how much would -36 men earn for 24 days' work at the samo rate?
9. If $£ 100$ will pay the expenses of 5 persons for 22 wks. 6 da., how long would 12 persons be supported by $£ 150$ under similar circumstances?
10. If 7 men earn $\mathfrak{£} 910 \mathrm{~s} .6 \mathrm{~d}$. in $10 \frac{1}{2}$ days, what sum will 28 men earn in $31 \frac{1}{2}$ days?
11. If the wages of 25 men amount to $£ 115$ in 16 days, how many men must work 24 days to receive $£ 1555 s$., the daily wages of the latter being one-half those of the former?
12. If 21 men mow 72 acres of grass in 5 days, how many must be employed to mow 460 A .3 R .8 P . in 6 days?
13. If 9 persons spend $£ 120$ in 8 months, how much will servo 26 persons for 12 months?
14. If 12 horses in $4 \frac{1}{2}$ days plough $10 \frac{1}{2}$ acres, how many horses would plough 35 acres in 20 days?
15. If a 3 lb . loaf costs 7 d . when wheat is at 52 s .6 d . per quarter, what should be the price of wheat when a 2 lb . loaf costs $5 \frac{1}{2} d$.?
16. If a man travels 65 miles in 3 days, by walking $7 \frac{1}{2}$ hours a day, in how many days will he travel 156 miles by walking 8 hours a day?
17. What will be the wages of 15 men for 10 months, when 9 men receive $£ 26115 \mathrm{~s}$. for 8 months?
18. If 3 persons are boarded 5 weeks for $£ 1710$ s., how long should 14 persons be boarded for 60 guineas?
19. How far should 80 cwt . be carried for $£ 29$, if 30 cwt . be carried 17 miles for $£ 58$ s. $9 d$.?
20. If 6 men can reap 34 acres of corn in 5 days, how many men will be required to reap 95 A . 32 P. in $10 \frac{1}{2}$ days?
21. If 40 bushels of corn serve 12 horses 37 days, how many days would 195 bushels serve 9 horses?
22. A person completes a journey of 160 miles in 3 days, travelling 11 hours a day; in how many days would he complete 1000 miles, going 15 hours a day at the same rate ?
23. If 3 men can reap 7 acres of wheat in 2 days, how long will it take 8 men to reap 20 acres at the same rate?
24. If a ton of turnips will last 25 sheep for a fortnight, how much will be required to supply 40 sheep during the months of January and February in Leap-year?
25. If 6 men can dig a trench, 220 yards long, in $2 \frac{1}{2}$ days, by working 8 hours a day, how many will dig a trench, 187 yards long, in $4 \frac{1}{4}$ days, working 6 hours a day?
26. If 12 men build 24 rods of wall in 30 days, working 8 hours a day, how many hours a day must 18 men work to build 64 rods in 40 days?
27. If 8 men can plough 84 acres in 12 days of $8 \frac{1}{4}$ hours each, how many acres can be ploughed by 20 men in 11 days of $7 \frac{4}{5}$ hours each ?
28. If 8 men can dig a trench 100 ft . long, 3 ft . broad, and 4 ft .6 in . deep in 9 hours, how many will be required to dig a trench 80 ft . long, 5 ft . broad, and 2 ft . deep in $5 \frac{1}{3}$ hours?
29. If 7 men can erect a certain piece of wall in $20 \frac{5}{8}$ days of $0 \frac{3}{5}$ hours each, how long would it take 3 men to do $2 \frac{3}{4}$ of the same work, reckoning $10 \frac{1}{2}$ hours to the day?
30. If 20 men can excavate 185 cubic yards of earth in 9 hours, how many men could do half the work in a fifth of the time?

CHAPTER VII.

MISCELLANEOUS RULES.

93. Interest is the consideration paid for the use of money. The Rate of Interest is the sum paid for the use of a certain sum, generally $£ 100$, for a certain time, generally one year : thus, if $£ 5$ is paid for the use of $£ 100$ for one year, the interest is said to be at the rate of 5 per cent.

The sum originally lent is called the Principal; and the principal, together with its interest for any time, is called the Amount for that time.

When interest is only taken for the original principal, it is called Simple Interest; but, when at the end of any stated period, as a year, the interest accruing is added to the previous principal, and interest reckoned upon this sum, taken as the principal, for the next year, it is called Com \rightarrow pound Interest.
94. To find the Simple Interest on a given sum for a given time at a given rate per cent. per annum.

Rule. Multiply the principal by the number of years, and by the rate of interest per cent., and divide the result by 100 ; the quotient will be the interest required.

Ex. 1. Find the Simple Interest on $£ 725$ for 3 years at 5 per cent. per annum.
£725 For the Int. will be the same, whether we
\qquad
2175

Ans. £108 $15 s .15 .00$ suppose the Principal, $£ 725$, repeated three times in three successive years, or three times in one and the same year ; that is, the Int. on $£ 725$ for three years is the same as the Int. on £2175 for one ycar: and this we find, according to the above definition of Int., by dividing by 100, to see how many Cents there are in the sum, and then taking 5 for each, i. e. multiplying by 5 ; or, which is the same thing, but more convenient in practice, we first multiply by 5 , and then divide by 100 .

Ex. 2. Find the Simpie Interest on $£ 212$ 10s. 4 d. for $2 \frac{3}{4}$ yrs. at $2 \frac{1}{2}$ per cent. per ann.

Here the rem ${ }^{\mathrm{r}}$, after dividing by 100 , is
for $\frac{1}{2} \left\lvert\, \begin{array}{rrr}1168 & 16 & 10 \\ 292 & 4 & 2 \frac{1}{2} \\ 14.61 & 1 & 0 \frac{1}{2}\end{array}\right.$
12.21
$\overline{2.52 \frac{1}{2}}$

$$
\frac{52 \frac{1}{2}}{100} d_{0}=\frac{105}{200} d_{0}=\frac{21}{40} d_{0}
$$

and, the Int. being $£ 1412 \mathrm{~s} .2 \frac{21}{40} d$., we have the whole amount $£ 227$ 2s. $6 \frac{21}{4} \frac{1}{0}$. But it is generally best to represent the whole procedure first symbolieally, in order to ascertain whether the calculation may be simplified; thus we have

$$
\frac{£ 21210 \mathrm{s.} 4 \mathrm{~d} . \times 2 \frac{3}{4} \times 2 \frac{1}{2}}{100}=\frac{£ 21210 \mathrm{~s} . \pm d . \times 11}{160}
$$

so that $\frac{11}{160}$ of the given principal will be the interest.

Ex. 60. Find at Simple Interest,

1. Interest on $£ 500$ for 5 yrs. at 5 per cent.
2. Interest on $£ 375$ for 3 yrs . at 4 per cent.
3. Amount of $£ 1125$ for 4 Jrs. at 3 per cent.
4. Amount of $£ 2275$ for $3 \frac{1}{2}$ yrs. at 5 per cent.
5. Interest on $£ 34716 s$. 8 d . for 15 yrs . at 4_{4}^{3} per cent.
6. Amount of $£ 2000$ for $12 \frac{1}{4}$ Jrs. at $3 \frac{1}{2}$ per cent.
7. Amount of $£ 575$ for $8 \frac{3}{1}$ yrs. at $3 \frac{3}{8}$ per cent.
8. Interest on $£ 32510 \mathrm{~s}$. for 4 yrs . at $5 \frac{1}{2}$ per cent.
9. Interest on $\mathfrak{£} 50013 s, 4 d$. for $2 \frac{3}{4}$ yrs. at $2 \frac{3}{4}$ per cent.
10. Intcrest on $£ 150$ for $3 \frac{5}{12}$ yrs. at 4 per cent.

If parts of a year be given, they may be expressed as a fraction of a year.

Thus the Int. for 2 yrs. 3 mo., at any given rate, would be the same as that for $2 \frac{1}{4}$ yrs. at the same rate.

But, in practice, more accuracy is generally required; and we must express the given parts of a year in days, and then, firding first the Int. for one year, we may find by a proportion the Int. for the given portion of a year.

Ex. 3. Find the Int. on £325 from March 1, 1871, to May 31, 1874, at 4 per cent. per ann.

When interest is thus required from one date to another, the day of the first date is to be left out, because it is not until the day following that one day's interest will have accrucd. Accordingly, we have here the whole time $=3 \mathrm{yrs} .91 \mathrm{da}$.

Now, the int. for 1 year is $(£ 325 \times 4) \div 100=£ 13$; and for 91 days we have by Proportion-

$$
\begin{aligned}
& 365 \text { da. : } 91 \text { da. }:: £ 13: £ 3 \text { 4s. } 9_{\frac{63}{73} d .} \begin{array}{l}
\text { Int. for } 3 \text { yrs. }=£ 13 \times 3=39 \\
\text { Ans. The whole int. is } £ 42 \\
\hline
\end{array} \frac{0}{9 \frac{63}{73}}
\end{aligned}
$$

If the rate of Interest be given in parts of a $£$, they may be expressed as a fraction of a \mathscr{E}, and the sum treated as before; or we may work for them by the method of Practice.

Ex. 4. Find the Int. on $£ 500$ for 4 yrs., at $£ 57 \mathrm{~s}$. 6 d . per cent.

$$
\frac{£ 500 \times 4 \times 5 \frac{3}{8}}{100}=5 \times 21 \frac{1}{2}=£ 107 \text { 10s. Ans. }
$$

Ex. 5. Find the Int. of $£ 30715 s .6 d$. for 156 days, at $£ 414 s .6 d$. per cent.

Here it will be best to work throughout by decimals, and to extend them only to so many places as will insure the accuracy of the final result to two or three decimals of a penny. Also we may employ the method of Practice, not only for the rate, but also for the days, 156 da. being $=146+10$ da $=\frac{2}{5}$ yr. +10 da.

	$£_{4}^{£ 3.07775}=\text { Principal } \div 100 .$
	12.31100
$10 s .=\frac{1}{2}$	1.538875
$4 s .=\frac{1}{5}$. 61555
$6 d .=\frac{1}{8}$. 076944
	$\begin{gathered} \frac{14.542369}{10} \end{gathered}=\text { Int. for } 1 \mathrm{yr} .$
	145.423690
	$.398421=$ Int. for 10 da .
$73 \mathrm{da}=\frac{1}{5}$	$2.908474=\quad, \quad 73 \mathrm{da}$.
73 da. $=\frac{1}{5}$	$\underline{2.908474}=\quad \# \quad 73 \mathrm{da}$.
	$\begin{gathered} \underset{£ 6.215369}{20} \\ 20 \end{gathered} \quad \overline{156} \mathrm{da}$
	4.307380
	12
Ans. $E 6$	s. 3.688 d .

Ex. 61. Simple Interest.

1. Find the amt. on $£ 500$ from March 1 to Jan. 10, at $4 \frac{5}{8}$ per cent.
2. Find the amt. on $£ 7500$ fiom May 5 to Oct. 27 , at $3 \frac{1}{8}$ per cent.
3. Find the amt. on $£ 115817 \mathrm{~s} .6 \mathrm{~d}$. for 1 yr .115 d., at $£ 210 \mathrm{~s}$. per cent.
4. Find the int. on $£ 250$ 12s. 6d. from March 26, 1870, to Oct. 31, 1872, at 3 per cent.
5. Find the int. on $£ 399615 \mathrm{~s}$. for 4 yrs .225 d . at $£ 213 \mathrm{~s} .4 \mathrm{~d}$. per cent.
6. Find the int. on $£ 275515 \mathrm{~s}$. for 3 yrs .110 d . at $£ 32 s .6 d$. per cent.
7. To find the Compound Interest on a given sum, for a given time, at a given rate per cent. per ann.

Rule. At the end of each year add the Interest for that year to the Principal at the beginning of it, and this will be the Principal for the next year ; and so on, till we have found the final Principal, or whole Amount. See Note IX.

Ex. Find the Compound Interest on £750 for 3 yrs., at 4 per cent. per ann.; and also at $2 \frac{1}{2}$ per cent. per ann.

	$£ 750$	First Principal.
$\frac{1}{100}=$	30.00	Int. in 1st year.
	780.00	Sccond Principal.
$\frac{4}{100}=$	31.20	Int. in 2nd year.
	811.20	Third Principal.
$\frac{4}{100}=$	32.448	Int. in 3rd year.
	£843.648-750	=£93 12s. $11 \frac{13}{25} \mathrm{~d} .1$ st Ans.
$2 \frac{1}{2}$	$£ 750$	1st Principal.
100		
$\frac{1}{40}=$	$\begin{aligned} & 768.75 \\ & 19.21875 \end{aligned}$	2nd Principal. Int. in 2nd year.
	787.96875	3rd Principal.
$\frac{1}{40}=$	19.69921875	Int. in 3rd year.
	807.66796875	$-750=\mathfrak{L} 57$ 13s. $4 \frac{5}{16} d .2 n d$ Ans.
		Ex. 62.

1. Find the amt. of $£ 9516 s .8$ d., for 2 yrs ., at $2 \frac{1}{2}$ per cent.at comp.int.
2. Find the amt. of $£ 50$, for 3 yrs., at 5 per cent. at comp. int.
3. Find the difference between the simple and compound interest on £41 13s. 4 d., for 2 years, at 5 per cent.
4. Find the difference between the simple and compound interest on $£ 3654$ s. $8 \frac{1}{4} d$., for 3 years, at 4 per cent.
5. Find the comp. int. on $£ 225$, for 3 years, at $3 \frac{3}{4}$ per cent.
6. Find the comp. int. on $£ 300$, for 3 years, at $2 \frac{2}{3}$ per cent.
7. There are four things to be considered in all questions of Interest - the Principal, the Rate of Interest, the Time, and the Total Interest, (the Amount being only the sum of the first and last of these); and, if any three of these be given, we are able to obtain the fourth. Hitherto we have only considered the case which most commonly occurs in practice, viz. that in which the Principal, Rate, and Time are given to find the Interest, (or the Amount); we shall now give an Example of each of the other three cases which may arise in Simple Interest-those in Compound Interest being more difficult, and of less frequent occurrence.
I. When the Principal, Interest (or Amount), and Rato are given to find the Time.
Ex. In what time will $£ 9113 \mathrm{~s}$, $4 d$. amount to $£ 1056$ s. $0 \frac{1}{2} d$, at $4 \frac{1}{4}$ per cent. per ann.?
Subtracting the prineipal from the amount, we have here given the interest $=£ 1312 \mathrm{~s}$. $8 \frac{1}{2}$ d.; now in one year $£ 9113 \mathrm{~s}$. 4 d . produces, at tho given rate, $\frac{£ 91 \frac{2}{2} \times 4 \frac{1}{4}}{100}=\frac{£ 11 \times 17}{48}$; we have, therefore,

$$
\begin{gathered}
\frac{£ 11 \times 17}{48}: £ 1312 s .8 \frac{1}{2} d .:: 1 \text { year, } \\
\text { or, } £ 11 \times 17: £ 1312 s .8 \frac{1}{2} d . \times 48:: 1 \text { year. } \\
\frac{\frac{12}{163126}}{\frac{4}{4}} \\
11 \frac{654 \frac{1}{2}}{59 \frac{1}{2}} \\
3 \frac{1}{2} \text { years. Ans }
\end{gathered}
$$

1I. When the Rate, Time, and Intessst (or Amount) are given to find the Principal.
Ex. What sum of money, put out to interest for 4 yrs, at $8 \frac{1}{2}$ per cent., will amount to $£ 259$ 7s.?
At the given rate for the given time the interest of $£ 100$ would be $£ 3 \frac{1}{2} \times 4=£ 14$, and therefore its amount $£ 114$; we have, therefore,

which we obtain in the usual manner, $=£ 227$ 10s.
III. When the Principal, Time, and Interest (or Amount) are given to find the Rate.

Ex. 1. At what rate per cent. will $£ 142$ 10s. amount to $£ 16313$ s. $11 \frac{1}{4} d$. in $4 \frac{1}{4}$ years?

The interest of $£ 14210$ s. is $£ 213 \mathrm{~s}$. $11 \frac{1}{4} d$. in $4 \frac{1}{4}$ years,
\therefore for 1 year it is $20349 \mathrm{~d} . \div 17=1197 \mathrm{~d}$.;
and $£ 14210$ s. being $=34200 \mathrm{~d}$., we have

$$
\begin{aligned}
& 34200 d .: £ 100:: 1197 d . \\
& \text { or, } 38 d .: £ 1:: 133 d .: £ 3 \frac{1}{2} . \\
& \text { Ans. } 3 \frac{1}{2} \text { per cent. per ann. }
\end{aligned}
$$

Ex. 2. At what rate per cent. per annum will $£ 5$ amount ts 5 guineas in 219 days?
In 219 da ., or $\frac{3}{5}$ of a year, the int. of $£ 5$ is 5 .

$$
\begin{aligned}
& \therefore \text { in } 1 \text { year it is } 5 s . \div \frac{3}{5}=8 \frac{1}{3} s_{0} \\
& £ 5: £ 100:: 8 \frac{1}{3} s .: £ 8 .{ }_{3}^{3} . \\
& \text { Ans. } 8 \frac{1}{3} \text { per cent. per ann. }
\end{aligned}
$$

Ex. 63. Simple Interest.

1. At what rate will the int. on $£ 10210$ s. amount to $£ 1213 s .8 \frac{1}{4} d$. in $2 \frac{1}{4}$ years ?
2. What sum will amount to $£ 450$ s. $9 \frac{3}{4} d$. in 1 year, at $6 \frac{1}{2}$ per cent. ?
3. In what time will the int. on $£ 49816 \mathrm{~s}$. 8 d . amourt to $£ 109 \mathrm{~s} .3 \frac{1}{4} d$., at $6 \frac{1}{8}$ per cent.?
4. At what rate per cent. will the int. on $£ 200$, for 146 days, amount to $\mathfrak{£ 4} 16 s$.?
5. In what time will $£ 73211 \mathrm{~s}$. 10 d . amount to $£ 170978$. $7 \frac{1}{8} d$., at $5 \frac{1}{3}$ per cent. ?
6. What sum must be put out to interest at $4 \frac{2}{3}$ per cent., to become $£ 490$ s. $5 \frac{1}{4} d$. in $5 \frac{1}{4}$ years ?
7. At what rate will the int. on £4127 10s. amount to £92 17 s. $4 \frac{1}{2} d$. in a year?
8. What principal will produce $\mathscr{£} 12115 \mathrm{~s}$. 5 d . in 2 yrs 1 mo ., interest at $5 \frac{3}{5}$ per cent. ?
9. In what time will $£ 419$ amount to $£ 4864 s .3 \frac{1}{2} d$., at $4 \frac{3}{8}$ per cent. ?
10. At what rate will $£ 22012 \mathrm{~s} .6 \mathrm{~d}$. become $£ 240.4 \mathrm{~s}$. $8 \frac{2}{3} d$. in $3 \frac{1}{3}$ yrs. ?
11. What principal in 3 years 73 days will become $£ 101 s$. $10 \frac{1}{2} d$, interest at $6 \frac{1}{4}$ per cent. ?
12. In what time will the interest on $£ 812$ 10s. 10 d . amount to $£ 771$ 18s. $3 \frac{1}{2} d$., at $4 \frac{3}{4}$ per cent. ?
13. Discount is the sum allowed for the payment of money before it is due.
Thus, if A has to pay to $B £ 525$ at the end of a year, and the rate of interest is 5 per cent., he might arrange to discharge his debt by paying him now $£ 500$, because this sum put out to interest would amount to $£ 525$ at the year's end. In this case, therefore, $£ 25$ would be the discount which B would allow to A, for paying him the debt at the present time.

The present value of a sum, due at some future time, is, therefore, the sum left, when the discount for that time is deducted, (as $£ 500$ in the above instance); and may be defined to be that sum which, put out at interest for the time in question, would amount to the sum due at the end of the time; and the discount is the difference between the whole sum and its present value, or the interest upon the present value.
98. The most common form in which Discount occurs is in the prepayment of Bills or Notes of Hand, which are both documents (but differing somewhat in form and character) by which a person engages himself to pay a certain sum, at a certain future time, both named therein. If the credit of the party promising payment, or of the party holding the bill, be considered satisfactory, a banker will discount it, that is, will pay its present value at once, deducting from the whole amount the discount upon it for the time that must elapse before it will become due.
99. In practice, however, it is usual to charge as discount the interest on the future debt itself; by which means the present value obtained is evidently less than it should equitably be.

Thus, if a banker discounted at 5 per cent. a bill for $£ 525$, due at a year's end, he would not calculate what sum (viz. $\mathfrak{£}^{500}$) at interest would produce $£ 525$ at the year's end, and so deduet the interest (viz. £25) for this sum as discount ; but he would calculate the interest on the debt, $£ 525$, itself (viz. $£ 265 s$.), and, deducting this, would pay only $£ 498$ 15s. to the holder of the bill as its present value. By this means, since $£ 49815$ s., with its own interest, would not amount to $£ 525$ in a
year, the holder is a loser, and the banker gains, as we have seen, the difference of $£ 500$ and $£ 49815$ s., viz. $£ 15$ s., by the transaction-being, in fact, the interest upon the true discount.

In practice, therefore, questions in discount are reduced merely to questions in Simple Interest; but we shall, here and throughout, give examples in the more correct rule, unless the contrary be expressed.
N.B. In Great Britain and Ireland 3 days, called Days of Grace, are always allowed, after the time that a bill is nominally due, before it is legally due. Thus, if a bill of $£ 250$ were drawn on July 10 , at 3 months, it would be nominally due on Oct. 10, but legally on Oct. 13; and, if a banker were to discount it on Aug. 20, he would reckon forward to Oct. 13, (the last of these days inclusive,) and, finding the interval to be 54 days, he would reckon the interest on $£ 250$ for that time, and, deducting it as discount, would pay the difference as the present value of the bill.

It may be noticed, also, that, if a bill would fall nomiually due on the 29th, 30th, or 31st of February, or on the 31st of any month which has only 30 days, it is considered to be nominally due on the last day of the month, and therefore legally on the 3rd of the following month : and, if any fall legally due on Sunday, they are paid in Great Britain on the Saturday, but in Ireland on the Monday.
Ex. 1. What is the discount on $£ 39617$ s. $5 \frac{1}{1} d$. , due at 9 months, at 4 per cent.?

This example falls under (96), Case II., in Simple Interest; since, therefore, $£ 100$ produces in 9 months, at 4 per cent., $£ 3$, we have $£ 100$, the present value of $£ 103$, due at the end of 9 months; and thus we get the proportion,

$$
£ 103: £ 39617 s .5 \frac{1}{4} d .:: £ 100,
$$

which, being solved as usual, gives us the present value $£ 3856$ s. 3 d., and therefore the discount, £11 11s. $2 \frac{1}{4} d$.

Ex. 2. What would a banker gain by discounting on Sept. 21 a bill of $£ 3183$ s., dated July 31 , at 4 months, at 5 per cent.?
This bill will be nominally due on Nov. 30, and legally on Dec. 3 ; and, reckoning from Sept. 21 to Dec. 3, (the last inclusive), we have 73 days. We shall find the interest on $£ 3183 \mathrm{~s}$. for 73 days, in the ustual manner, to be $£ 33 \mathrm{~s}$. $7 \frac{14}{25} d_{\text {s }}$; and the present value of it, i.e. that principal, which at 5 per cent. would become $£ 3183 s$. in 73 days, we shall find, as in Ex. 1, to be $£ 315$, and therefore we have the discount $=$ $\mathfrak{£}^{2} 3 \mathrm{~s}$. ; so that the banker gains upon the whole $7 \frac{14}{25} d$.

Ex. 64.

1. Find the present value of $£ 284$, due at the end of 2 years, at $3 \frac{1}{4}$ per cent. per annum.
2. What is the present value of $£ 850$, due at the end of 3 years, at $3 \frac{1}{2}$ per cent.?
3. Find the discount on $£ 133611 \mathrm{~s}$. $3 d$., due at the end of $3 \frac{1}{2}$ years, at 5 per cent.
4. Required the present value of $£ 15117 s .6 d$., due at the end of 4 years, at $5 \frac{3}{8}$ per cent.
5. What is the discount on $£ 882 s .5 d$., due at the end of 5 months, at $4 \frac{1}{2}$ per cent.?
6. Find the discount on $£ 21012 s .1 d$., due at the end of $3 \frac{1}{2}$ years, at $4 \frac{1}{4}$ per cent.
7. Find the present value of $£ 5989 s .9$., due at the end of 1 year 115 days, at $2 \frac{1}{2}$ per cont.
Find the true discount upon the following bills-

| | | s_{0} | d. | Drawn. | Discounted. |
| ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| 8. | 419 | 12 | 1 | March 6, at 7 months | Sept. 15, at 5 per cent. |
| 0. | 457 | 18 | 0 | Sept. 12, at 5 months | Jan. 13, at 4 per cent. |
| 10. | 537 | 5 | 2 | Fob. 20, at 3 months | April 27, at $3 \frac{3}{3}$ per cent. |
| 11. | 755 | 5 | 9 | March 17, at 3 months | May 31, at 6 per cent. |
| 12. | 1006 | 15 | 6 | Aug. 5, at 5 months | Dec. 6, at $3 \frac{1}{3}$ per cent. |
| 13. | 1337 | 14 | 6 | May 31, at 4 months | Sept. 3, at 5 per cent. |
| 14. | 1846 | 5 | 2 | Dec. 25, at 2 months | Feb. 8, at 6 per cent. |
| | | | | See Nore X. | |

100. There are other cases of common occurrence in which a rate per cent. is charged.

Insurance is a per centage paid for securing property from fire, \&c. The charge is regulated by the nature of the property insured, and the hazard to which it is exposed, as laid down in the Tables of the different Insurance Companies, The whole annual payment is called the Premium, and the legal document by which the Insurer is secured from loss is called the Policy of Insurance.

Life Insurance is a per centage paid for securing the payment of a sum of money upon the death of a person. The charge is regulated by the age and healthiness of the person whose life is assured, at the time the Policy was first taken
out, as laid down in the Tables ; and, being thus settled, it is reckoned per cent. upon the whole sum secured - the whole annual payment being called, as before, the Premium upon the Policy of Assurance.
In each of the above cases the Premium, like Interest, must be renewed every year, while the Policy is in force ; but the following charges are, from their nature, paid only once.

Insurance from sea risk is a per centage charged upon the value of a cargo, just as in Fire Insurance.

Commission is a per centage paid to an agent for buying or selling goods.

Brokerage is a smaller per centage of the same nature, paid usually for transacting money concerns.
101. It is usual with tradesmen to allow (what is called) a discount of 5 per cent. for ready-money payments upon goods purchased, or, (since 5 per cent. is the same as 1 in 20), to allow a shilling in the pound upon the account to be paid: thus, for ready-money payment of an account of £7 $13 s .6 d$., most tradesmen would allow $7 s .6 d$. , ($7 s$. for the £7, and $6 d$. for the $10 s .$,) and would be content therefore to receive as full payment $£ 76 s$. This, however, differs from the discount of which we have before been speaking, since it takes no account of the time, at which the debt would otherwise be paid; but is merely an arrangement to secure to the seller the convenience of a readymoney payment, by giving to the buyer a corresponding advantage.

Ex. 1. What is the sum to be paid for insuring a vessel and cargo, worth $£ 2225$, at $3 \frac{1}{4}$ per cent.?
£2225

Ans. £72 6s. 3d. $\overline{3.00}$

Ex. 2. What is the premium upon a policy of $£ 375$ upon a life of 28 , the rate being $£ 28 s .7 \mathrm{~d}$. per cent. for that age?

Here $£ 375=3 \frac{3}{4}$ of $£ 100$; and the premium is $3 \frac{3}{4}$ of

$£ 2$	8	7
		3
$4 \longdiv { 7 }$	5	9
1	16	$5 \frac{1}{4}$
$£ 9$	2	$2 \frac{1}{4}$

Ex. 3. What sum should be insured at 4 per cent., on goods worth $\mathscr{E} \mathbf{8 5}$, that the owner may receive, in case of loss, the value both of goods and premium?

Here, if $£ 100$ were insurcd, it would cover goods to the amount of $£ 96$, together with the premium $£ 4$; hence we have the proportion

$$
£ 96: £ 735:: £ 100,
$$

whence wé get, as usual, the Ans. $=£{ }^{£} 765 \mathrm{l}$ 12s. 6 d .

Ex. 65.

1. What would be the ready-money payment of an amount of $£ 27$ 13s. $6 d$. ., discount being allowed at 5 per cent. ?
2. What would be the expense of insuring a vessel and cargo, whose value is $£ 251610$ s., at $3 \frac{1}{8}$ per cent. ?
3. What is the premium on a policy of assurance for $£ 228613 \mathrm{~s} .4 \mathrm{~d}$., upon the life of a person aged 42 , at the rate of $£ 310$ s. per cent. for that age ?
4. At $4 \frac{3}{8}$ per cent., for what sum should goods be insured, which are worth $£ 42715 s .3 d$. , in order that, in case of loss, the owner may recover their raluc, together with the premium paid?
5. What would be the cash payment of an account of $£ 2717 \mathrm{~s}$. $5 d$., at 5 per cent.?
6. What is the brokerage upon a money transaction of $£ 27315 s$., at $3 s .4 d$. per cent.?
7. For what sum should a cargo, worth $£ 5263$, be insured, at $7 \frac{2}{3}$ per cent., so that the owner may recover, in case of loss, the value both of cargo and premium ?
8. What is the commission upon $£ 7136 \mathrm{~s}$. 8 d., at $2 \frac{3}{4}$ per cent. ?
9. What is the premium of insurance upon $£ 320817 \mathrm{~s}$. 1 d ., at $£ 212 \mathrm{~s}$. per cent. ?
10. What is the premium on a policy of insurance for $£ 1237$ 10s., upon a life of 21 years, at the rate of $£ 22 \dot{s} .4 d$. per cent. for that age ?
11. What is the brokerage on $£ 7682 \mathrm{~s} .6 \mathrm{~d}$., at 3 s .4 d . per cent.?
12. For what sum should goods, worth $£ 43840$ s. 3 ., be insured at $\mathfrak{£ 2} 6 \mathrm{~s} .8 \mathrm{~d}$. per cent., that the owner may recover, in case of loss, the value of both goods and premium?
13. Stock is the name given to Money, lent to some Trading Company, or, more commonly, to our own or some foreign Government, at some given rate of Interest, which is settled at the time the Money is first lent, according to the circumstances then existing.

Thus, if Government were to borrow to the amount of $£ 500,000$ at 4 per cent., and A had lent $£ 100$ of this sum, A would be said to have $£ 100,4$ per cent. stock, and would receive a document entitling him to receive the Interest (viz. £4) upon this stock from year to year, until Government chose to repay the Principal, and put an end to the debt.

The source from which the Interest is paid is called the 'Public Funds,' being, however, only an imaginary Property, representing the credit of the Country itself, which is pledged to the payment of the debts contracted by its Government; the Interest is paid half-yearly, and the document, entitling the possessor to receive it, may be sold, and transferred from one party to another, just as any other kind of property.

If money would always bring the same amount of Interest, the average price of $£ 100$ stock would be always the same, (viz. £100, the price first given for it) - we say the average price, because even then the price would evidently be somewhat less immediately after the payment of a dividend than it would be immediately before it. But not only does this cause affect the price of Stocks, but the continual fluctuations in the value of Money, arising from commercial or political changes or expectations abroad and at home, are constantly disturbing it, even two or three times in the same day, according to the news which reach us. The price of stock, then, will rise or fall according as it seems most likely that Money would fetch elsewhere a ligher or a lower rate of Interest, i. e. would be more scarce, and in demand, as in prospect of war, or of active speculation, or be lying upon hand and plentiful, as when trade is looking dull, and there are no means of employing capital.

Thus, if at the time A wished to sell his stock, money was elsewhere making 5 per cent., it is plain that no one would give him $£ 100$ for the right to receive only 4 ; but since $£ 80$ of common or sterling money (as it is called) would now bring $£ 4$ interest, he would be able to sell his $£ 100$ stock for $£ 80$; and the 4 per cents. would be said to be selling at 80 .

With this explanation, the mode of treating questions on Stocks will be easily seen from the following Examples.

Ex. 1. If $£ 3500$ be invested in the $3 \frac{1}{2}$ per cents. at 98 , what is the annual income thence derived?
Here $\frac{\mathbf{3 5 0 0}}{98}=\mathrm{n}^{\circ}$ of cents. purchased, for each of which $£ 3 \frac{1}{2}$ are paid as intcrest: hence the whole income $=\frac{3500}{98} \times 3 \frac{1}{2}=£ 125$.
Ex. 2. The $3 \frac{1}{2}$ per cents. are at $99 \frac{7}{8}$; how much money must be invested in them to produce an income of $£ 140$?

Here $\frac{140}{3 \frac{1}{2}}=\mathrm{n}^{\circ}$ of cents. required, for cach of which $£ 99 \frac{7}{8}$ are paid; hence the whole sum paid $=\frac{140}{3 \frac{1}{2}} \times 99 \frac{7}{8}=£ 3995$.

Ex. 3. If a person were to transfer $£ 29000$ stock, from the $3 \frac{1}{2}$ per cents. at 99 , to the 3 per cents. at $90 \frac{5}{8}$, what would be the difference in his income?

Here $£ 29000$ in the $3 \frac{1}{2}$ per cents. produces $290 \times £^{0} 3 \frac{1}{2}=\mathfrak{£ 1 0 1 5}$ Int., and would be sold out for $290 \times 99=£ 28710$; this money, invested in the 3 per cents. at $90 \frac{5}{8}$, would purchase $\frac{28710}{90 \frac{5}{8}}$ cents., and therefore would produce, as Int., $\frac{28710}{90^{\frac{5}{8}}} \times 3=£ 9508 s_{\text {. }}$; and his income, therefore, would be diminished by $£ 6412 s$.

Ex. 66.

1. The 4 per cents. being at $82 \frac{1}{8}$, what must be given for $£ 1000$ stock? and what sum would be gained by selling out again at $86 \frac{1}{4}$?
2. What income should I get by laying out $£ 1188$ in the purchase of 3 per cent. stock at 81 ?
3. If I lay out $£ 3000$ in the 3 pcr cents. when they are at $84 \frac{3}{8}$, what income should I thence derive?
4. A person having $£ 4200$ invests it in the $3 \frac{1}{4}$ per cents. at 90 ; find his income.
5. What is the price of stock per cent., when a person can purchase £2766 13s. 4d. for £2490?
6. What sum must be invested in the 3 per cents. at $94 \frac{1}{4}$, to yield an annual income of $£ 500$?
7. How much stock at $92 \frac{1}{2}$ can be bought for $£ 494$, a commission of $\frac{1}{8}$ per cent. being charged on the stock purchased?
8. What is the cost of 850 Bank Annuities at $90 \frac{5}{8}, \frac{1}{8}$ per cent. being paid for brokerage? And what sum would be lost by selling out at $89 \frac{1}{2}$?
9. If I lay out $£ 1000$ in the $3 \frac{1}{2}$ per cents. at 96 , what sloould I lose by selling out at 95 ?
10. If a person lays out $£ 4650$ in the $3 \frac{1}{2}$ per cents. at 93 , what will be his loss of property by the stocks falling $\frac{1}{2}$ per cent.?
11. What would be the difference in income, made by the transfer of $£ 5000$ stock from the 3 per cents. at 72 to the 4 per cents. at 90 ?
12. A person transfers $£ 11000$ from the 4 per cents. at 92 to the 5 per cents. at 110; what is the difference in his income?
13. What would be the difference in annual income from investing $£ 3450$ in the 4 per cents. at 92 , and the $3 \frac{1}{3}$ per cents. at 69 ?
14. A person invests $£ 18150$ in the 3 per cents. at $90 \frac{3}{4}$, and, on their rising to 91 , transfers it to the $3 \frac{1}{2}$ per cents. at $97 \frac{1}{2}$: what increase does he make thercby in his annual incone?
15. If I lay out $£ 1110$ in the 4 per cents. at $92 \frac{1}{2}$, at what price should they be sold to produce a gain of $£ 100$?
16. In which is it most advantageous to invest, in the 3 per cents, at $89 \frac{1}{2}$, or the $3 \frac{1}{2}$ per cents. at $98 \frac{1}{2}$?
17. A sum of $£ 3750$ was sold out of the 3 per cents. at 95 , and put at compound interest for 2 years at 4 per cent. ; the amount being laid out in the $3 \frac{1}{2}$ per cents. at 104, find the alteration in income.
18. A person has $\mathfrak{f l 0 0 0}$ in the $3 \frac{1}{2}$ per cents.; how much must he have also in the 3 per cents. that his whole income may be $£ 200$, and what sum would he realise by selling out at $83 \frac{5}{8}$ and $77 \frac{1}{8}$ respectively?
19. A sum is laid out in the 3 per cents. at $89 \frac{3}{8}$, and a half-year's dividend received upon it; the stock being then sold at $94 \frac{5}{8}$, and the whole increase of capital being $£ 54$, find the original sum laid out.
20. The sum of $£ 1001$ was laid out in the 3 per cents, at $89 \frac{3}{8}$, and a whole year's dividend having been reccived upon it, it was sold out; the whole increase of capital being 72 guineas, find at what price it was sold out.
21. Profit and Loss. - The method of treating questions of this kind will be best learnt from the following Examples.

Ex. 1. If tea be bought at $5 s .6 d$. per lb ., and sold at $6 s .8 d$., what is the gain per cent.?

Here the gain on the prime cost, $5 s .6 d_{.,}$is $1 s .2 d$. ; hence we have

$$
5 s .6 d .: £ 100:: 1 s .2 d .: \text { the Ans. }
$$

which is found by the usual method to be $£ 214 \mathrm{~s}$. $2 \frac{10}{11}$ d.

Ex. 2. If bar-iron, which cost in making $£ 21 \mathrm{~s} .8 \mathrm{~d}$. per cwt., be sold at a loss of $5 \frac{3}{8}$ per cent., what price did it fetch per cwt.?

Here bar-iron, which cost $£ 100$, would only have sold for $£ 100-£ 5 \frac{3}{8}$ $=£ 94 \frac{5}{8}$; hence we have

$$
£ 100: £ 21 s .8 d .:: £ 94 \frac{5}{8}: \text { the Ans. }
$$

which is found by the usual method to be $£ 119 \mathrm{~s}$. $5 \frac{1}{8} d$.
Ex. 3. If 5 per cent. be gained by selling 125 yards of cloth for $£ 95$, what was the prime cost per yard?

Hore, if the cloth had sold for $£ 105$, the prime cost would have been $£ 100$; therefore the selling price per yd. being $\frac{95 \times 20}{125}$ s, we have $£ 105: \frac{95 \times 20}{125} s .:: £ 100: \frac{304}{21} s=14 s .5 \frac{5}{7} d$. Ans.

Ex. 4. If 4 per cent. be lost by selling linen at $2 s .9 \mathrm{~d}$. a yard, at what price mnst it be sold to gain 10 per cent.?

Here, cloth which would have cost $£ 100$ would have been sold for $£ 96$ at the first price, and for $£ 110$ at the second; we have, therefore, $£ 96: 2 s .9 d .::$ £110 : second price $=3 s .1 \frac{13}{16} d$.

Ex. 67.

1. How must nutmegs, which cost 18s. 9 d. per lb., be sold, so as to gain 16 per cent.?
2. If tea be bought at $2 s .11 d$. per 1 lb ., and sold at $3 s$. $7 d$., what is the gain per cent.?
3. A merchant, by selling sugar at $£ 116 s$. $6 d$. per cwt., loses 18 per cent. ; what was his prime cost?
4. If cheese, which was bought at $£ 34 \mathrm{~s} .7 \mathrm{~d}$. per cwt., bo sold at $£^{2} 12 \mathrm{~s} .4 d$., what is the gain per cent.?
5. If iron, raised at an expense of $£ 45 s .3 \frac{1}{13} d$. per ton, be sold at $£ 419 \mathrm{~s} .9 \mathrm{~d} .$, what is the gain per cent.?
6. If I buy 2048 yards of linen at $3 s$. $2 \frac{1}{2} d$. per yard, and sell the whole for $£ 3596 s .8 d$.; required the whole gain and the gain per cent.
7. If hemp cost $£ 487 \mathrm{~s}$. $6 d$. per ton, and be sold at $£ 43$ per ton, how much per cent. is lost, and how much is lost in the sale of 39 tons, 3 cut.?
8. If 64 ells of lace cost $£ 115$, at what price per yard must it be sold, so as to gain 18 per cent.?
9. A plumber sold 96 cwt. of lead for $£ 1092 s .6 d$., and gained at the rate of $12 \frac{1}{2}$ per cent.; what did it cost him per cwt.?
10. On the sale of 112 yards of silk velvet at 14 s . $0 d$. per yard, a
merchant loses $£ 1014 \mathrm{~s} .8 \mathrm{~d}$. ; find the prime cost of the whole, and the loss per cent.
11. If teas at $2 s .9 d ., 3 s .3 d$. , and $2 s .4 d$. be mixed in equal quantities, and the mixture sold at $£ 1616 \mathrm{~s}$. per cwt., what will be the gain or loss per cent.?
12. A person has $\frac{1}{7}$ th of a ship, worth $£ 6600$, and insured for $91 \frac{1}{4}$ per cent. of its real value; what damage would he sustain in case of its being lost?
13. What was the cost of printing 500 copies of a book, which was sold for 5 s., if the expense of sale was 34 per cent., and the author's profit $£ 3715$ s. upon the whole?
14. If $5 \frac{1}{2}$ per cent. be gained by selling butter at $£ 55 s .6 d$. per cwt., what will be the gain per cent, by selling it at 1 s .3 d . per 1 b. ?
15. If 8 per cent. be gained by selling 218 yards of cloth for $£ 9213 s$., at what price per yard must it be sold, so as to gain 17 per cent.?
16. A person buys 50 reams of paper, which he thought to sell at $£ 12 s .6 d$. per ream, making 8 per cent. profit on the prime cost ; but, 5 reams being damaged, what did he gain or lose per cent. by selling the remainder at the same rate?
17. A person buys 4 cwt . of goods for $£ 15$, intending to gain 12 per cent. by the sale; but, a guinea's worth (at this calculation) being damaged, at what price should he sell per cwt., to gain as much upon his whole outlay as he intended?
18. Bought 236 yards of cambric at 7 s. $10 \frac{1}{2} d$. per yard, and sold onefourth at 10 s .3 d ., one-third at 8 s .6 d ., and the remainder at 7 s . per yard; what was the gain or loss per cent. upon the whole outlay?
19. If eggs be bought at the rate of 5 a penny, how many should be sold for 7 d ., to gain 40 per cent.?
20. A person purchases pins, 18 in a row, and sells them, 11 in a row, at the same price; how much is his gain per cent. on his outlay?
\qquad
There are various examples depending upon the following Rule, the method of treating which will be best explained in the instances below given.
21. Proportional Parts.-To divide a given quantity into parts which shall have to each other given ratios.

Rule. Form fractions whose common den ${ }^{r}$ is the sum of the numbers expressing the ratios, and the num ${ }^{\text {rs }}$ the separate numbers themselves; and take these fractions of the given quantity: they will be the parts required.

Ex. 1. Divide 75 into two parts which shall have the ratio of $2: 3$.
Here the fractions are $\frac{2}{5}$ and $\frac{3}{5}$, and the parts required are $\frac{2}{5}$ of $75=30$, and $\frac{3}{5}$ of $75=45$, which are plainly in the given ratio.
The reason of the Rule is evident, since the sum of the num ${ }^{\text {rs }}$ makes up the den ${ }^{r}$, and therefore the sum of the fractions makes up unity, i. c. the sum of the parts makes up the whole of the number; while the parts themselves, having a common den ${ }^{r}$, are in the ratio of their num ${ }^{\text {r. }}$.

Ex. 2. Gunpowder is composed of 76 parts of nitre, 14 of charcoal, and 10 of sulphur: how much of each of these will be required for a cwt. of powder?

Here the fractions are $\frac{76}{100}=\frac{19}{25}, \frac{14}{100}=\frac{7}{50}, \frac{10}{100}=\frac{1}{10}$, and the parts are 3q. $1 \frac{3}{25} \mathrm{lbs}$., $15 \frac{17}{25} \mathrm{lbs}$., and $11 \frac{1}{5} \mathrm{lbs}$. respectively.

Ex. 3. Divide $£ 1000$ among A, B, C, so that A may have half as much again as B, and B a third as much again as C.

Here, representing C 's part by $1, B^{\prime}$'s is $1 \frac{1}{3}$, and A 's $1 \frac{1}{3}+\frac{1}{2}$ of $1 \frac{1}{3}=2$; and, therefore, the parts are to be as the numbers $2,1 \frac{1}{3}, 1$, or $6,4,3$. Hence the fractions will be $\frac{6}{13}, \frac{4}{13}, \frac{3}{13}$; and the parts required $£ 46110$ s. $9 \frac{3}{13} \mathrm{~d}$., £307 13s. $10 \frac{2}{13}$ d., £230 $15 \mathrm{~s} .4 \frac{8}{13} \mathrm{~d}$.
N.B. - It will be found most convenient, where there are many fracs tions with the same den ${ }^{r}$, to find the part corresponding to that den ${ }^{2}$ with num ${ }^{r}$ unity, and then multiply this successively by the num ${ }^{\text {rs }}$ of the different fractions; thus we should find $\frac{1}{13}$ of $£ 1000$, and then multiply this by $6,4,3$, respectively.

Ex. 4. A, B, and C form a joint capital for conducting a business, of which A contributes $£ 500, B £ 650$, and $C £ 700$. At the end of a year the profits are $£ 555$; what share should each receive?

Their shares should evidently be in the ratio of their contributions of capital, i. e. in the ratio of $500,650,700$, or of $10,13,14$; hence the fractions are $\frac{10}{37}, \frac{13}{37}, \frac{14}{37}$, and since $\frac{1}{37}$ of $£ 555=£ 15$, we have the shares required $£ 150$, £195, £210.

Ex. 5. A begins business with a capital of $£ 800$, and, at the end of 3 months, takes B into partnership, with a capital of $£ 1000$; at the end of another 6 months they divide their profits, $£ 330$; what should each receive?
Here A contributcs $£ 800$ for 9 months, and $B £ 1000$ for 6 months; and the interest of $£ 800$ for 9 months =interest of $£ 800 \times 9$ for 1 mo ., and the interest of $£ 1000$ for 6 months=interest of $£ 1000 \times 6$ for 1 month; hence the value of A 's and B 's outlay may be represented by the products 800×9 and 1000×6, or 7200 and 6000 respectively, and their shares of the profits must be in this ratio=that of $6: 5$; hence A 's share $=\frac{8}{12}$ of $£ 330=£ 180$, and B 's share $=\frac{5}{12}$ of $£ 330=£ 150$.
N.B.-It appears, as in the above Ex., that the values of sums employed in business, \&c., for different times are proportional to the products of the sums by the times, or rather of their numerical values, the sums being expressed in the same den ${ }^{\mathrm{n}}$, and so also the times.

Ex. 6. A and B enter into partnership, A contributing $£ 500$ and B $£ 300$; at the end of 9 months they take in C as partner, who brings into the concern a capital of $£ 1000$. The profits, $£ 2000$, being divided at the end of another 9 months, what shares did they each receive?

Here, as in Ex. 5, at the end of 18 months, the shares of capital supplied by A, B, C, respectively, may be measured by the numbers $500 \times 18,300 \times 18,1000 \times 9$, or $5,3,5$ respectively: hence the fractions will be $\frac{5}{13}, \frac{3}{13}, \frac{5}{13}$; and since $\frac{1}{13}$ of $£ 2000=£ 15316$ s. $11 \frac{1}{13} \mathrm{~d}$., their shares of profit will be $£ 7694 s .7 \frac{5}{13}$ d., $£ 461$ 10s. $9 \frac{3}{13} d$., $£ 7694$ s. $7 \frac{5}{13} d$, respectively.

Ex. 68.

1. Divide 1065 into parts, which shall be to each other in the ratio of $3,5,7$; and also into parts which shall be in the ratio of $\frac{1}{3}, \frac{1}{5}, \frac{1}{7}$.
2. A, B, and C engage in trade, investing capital to the amount of $£ 128, £ 176$, $£ 192$ respectively: their profits amount to $£ 279$; what were their shares of it?
3. How much copper and tin will be required to cast a cannon weighing 16 cwt. 3 qrs. 11 lbs ., gun-metal being composed of 100 parts of copper and 11 of tin?
4. Divide $£ 153$ among five persons in the proportion of the fractions $\frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}$.
5. Divide 1400 into parts, which shall have the same ratio to one another as the cubes of the first four natural numbers.
6. Pure water is composed of 2 gases, oxygen and hydrogen, in the proportion of 88.9 to 11.1; what weight of each is there in a cubic foot (1000 oz .) of water ?
7. Divide $£ 300$ among three persons, so that the first shall have twice as much as the second, and the third twiee as much as the other two together.
8. A works regularly 9 hours a day ; B remains idle the first two days of the week, and works $6 \frac{1}{4}, 8 \frac{1}{2}, 10 \frac{3}{4}, 12$ hours, respectively, on the other four; what sum should each receive out of $£ 1112 s .6 \frac{3}{4} d$. at the month's end?
9. The standard silver coin of this realm is made of 37 parts of pure silver and 3 of copper, and a lb. Troy of this metal yields 66 shillings; what weight of pure silver is there in $20 s$.?
10. In England, gunpowder is made of 75 parts of nitre, 10 of sulphur, and 15 of charcoal; in France, of 77 of nitre, 9 of sulphur, and 14
of charcoal: if half a ton of cach be mixed, what weight of nitre, sulphur, and charcoal, will there be in the compound?
11. The standard gold coin of this realm is made of gold, 22 carats fine, and a lb . Troy of this metal yields $46 \frac{29}{20}$ sovereigns; what weight of pure gold is there in 100 sovereigns?
12. If 4 oz . of gold, 17 carats fine [see Appendix], are mixed with $3 \mathrm{oz}, 13$ carats fine, how much fine gold will there be in a gold ornament made of the compound, and weighing $3 \frac{1}{2}$ oz.?
13. A and B engage in trade, their capitals bcing in the ratio of 4:5; and, at the end of three months, they withdrew respectively $\frac{2}{3}$ and $\frac{3}{4}$ of their capitals: how shonld they divide their whole gain, £335, at the end of the year?
14. A, B, C join their capitals, which are in the proportion of $\frac{1}{2}, \frac{1}{3}$, and $\frac{1}{4}$; at the end of 4 months A withdraws $\frac{1}{2}$ of his capital, and at the end of 9 months more they divide their profits, $£ 284$; what should each reccive?
15. A and B rent a pasture for $£ 75 ; A$ puts in 80 sheep and B 100, but at the end of 6 months they each dispose of half their stock, and allow C to put in 50 sheep to feed; what should A, B, C, severally pay towards the rent at the year's cud?
16. Four pareels of gold, weighing respectively $10,4,2$, and 4 oz ., and of $13,12,11$, and 10 carats fineness, being mixed, what was the fineness of the compound?
17. If the preceding be reduced by refining to 16 oz., what will be the fineness of the mass? or if its fineness, when reduced, be 16 carats, what will be the reduced weight?
18. If 8 oz . of gold, 10 carats fine, and $2 \mathrm{oz} ., 11$ carats fine, bo mixed with 6 oz . of unknown fineness, and that of the mixture be 12 carats, what was the unknown fineness?
19. A, B, C, are sent to empty a cistern, by means of two pumps of the same bore. A and B go to work first, making 37 and 40 strokes re. spectively a minute; but, after 5 minutes, they make cach 5 strokes less a minute, and, after 10 minutes more, \boldsymbol{A} gives way to C, who works at the rate of 30 strokes a minute. The cistern is emptied in 22 minutes altogether, and the men are paid 12s. 7 d . for their labour. What should each receive?
20. A and B are partners, having each embarked $£ 500$ in their business. At the end of 3 months they gained $£ 300$, when A withdraws $£ 200$, and B at the same time advances $£ 200$. At the end of the next 3 months, they gained $£ 780$, when A again withdraws $£ 200$, and B at the same time advances $£ 200$. At the end of the year they separated, dividing their property, which by losses during the last 6 months was reduced to $£ 400$. What should A and B each receive?
21. Charn Rule.-When a comparison of several successive quantities is made by stating how many of the second are equivalent to a given number of the first, how many of the third are equivalent to a given number of the second, and so forth, and it is required to find how many of the last are equivalent to a given number of the first, the answer is conveniently found by the Chain Rule. The following is an example:

What is the value of 20 lbs . of bacon, if 15 lbs . of bacon be equal in value to 14 lbs . of cheese, and 35 lbs . of cheese equal to 46 lbs . of pork, if pork be worth $6 s .3 d$. per stone of 8 lbs ?

In applying the Chain Rule to this question, we first set down the direct demand-How many pence $=20 \mathrm{lbs}$. of bacon? - which may be written briefly thus: ? pence $=20 \mathrm{lbs}$. bacon; then we set down a given quantity of bacon as equivalent to a given quantity of something else: thus, 15 lbs . bacon $=14 \mathrm{lbs}$. cheese; then another given quantity of cheese as equivalent to something else: thus, 35 lbs . cheese $=46 \mathrm{lbs}$. pork; then another given quantity of pork as equivalent to something else: thus, 8 lbs . pork $=75$ pence. These equations should be placed in successive lines, as follows :

$$
\begin{aligned}
\text { ? pence } & =20 \mathrm{lbs} . \text { bacon, } \\
\text { if } 15 \mathrm{lbs.} \text { bacon } & =14 \mathrm{lbs} \text { cheeso, } \\
35 \mathrm{lbs} . \text { cheese } & =46 \mathrm{lbs} \text { pork, } \\
8 \mathrm{lbs} . \text { pork } & =75 \text { pence } ;
\end{aligned}
$$

where it may be observed that the first and last quantities in the statement are of like denomination, viz. pence, and that the second side of an equation is always of the same kind and denomination as the first side of the next equation. The answer for the term of demand (? pence) will now be found by dividing the continued product of the right-hand numbers by that of the left-hand numbers. Thus:

The reason of the equating and calculating processes will be evident if we employ unity to express the antecedent of each condition; thus:

$$
\begin{aligned}
? \text { pence } & =20 \mathrm{lbs} . \text { bacon, } \\
\text { if } 1 \mathrm{lb} . \text { bacon } & =\frac{14}{15} \mathrm{l} \text { b. cheeso, } \\
1 \mathrm{lb} . \text { cheese } & =\frac{46}{35} \mathrm{lb} . \text { pork, } \\
1 \mathrm{lb} . \text { pork } & =\frac{75}{8} \text { pence; }
\end{aligned}
$$

for now it is obvious that 20 lbs . bacon $=\frac{14}{15} \times 20 \mathrm{lbs}$. cheeso $=\frac{46}{35} \times \frac{14}{15}$ $\times 20 \mathrm{lbs}$. pork $=\frac{75}{8} \times \frac{45}{35} \times \frac{14}{15} \times 20$ ponce.
The most important application of the Chain Rule belongs to what is called Arbitration of Exchange.-See Note XI.

Ex. 69.

1. If 10 first-class labourers do as much work per hour as 12 secondclass, 14 second-class as much as 16 third-class, 18 third-class as much as 21 fourth-class, what number of the first class corresponds to 8 of the fourth?
2. When $94 \frac{1}{2}$ Dutch florins is the exchange for 100 Austrian florins, and 16 sovereigns are given for $193 \frac{1}{2}$ Dutch florins, how many Austrian florins should be given for 28 sovereigns?
3. How many lbs. of tea are equivalent to $10 \frac{1}{2} \mathrm{lbs}$. of butter, when 5 lbs. of toa are equivalent to 14 of coffee, 9 of coffee to 20 of sugar, 10 of sugar to 6 of cheese, and 10 of cheese to 9 of butter?
4. If 8 sacks of flour be equal in value to 13 loads of straw, 3 sacks of flour to 10 sacks of potatoes, 27 sacks of potatoes to 26 cwt . of rice, and 18 bushels of oats to 5 cwt . of rice, how many loads of straw are worth as much as 10 bushels of oats ?
5. If 16 pears be equal in price to 25 apples, and 18 oranges equal to 12 pears, and 20 lemons equal to 27 oranges, and lemons cost $13 \frac{1}{2} d$ a dozen, what is the cost of 15 apples?
6. How many yards of velvet are equal in value to 60 of muslin, when 25 of muslin are equal to 16 of calico, 21 of calico to 13 of flamnel, 40 of flannel to 27 of linen, $58 \frac{1}{2}$ of linen to 28 of silk, and 47 of silk to 35 of velvet?
7. How many pounds sterling will be the value of 1000 rupees, when 15 rupees are worth 7 American dollars, 5 dollars worth 26 franes, and 101 franes worth $£ 4$?
8. If 4 quarters of oats be worth 3 quarters of barley, 14 quarters of barley worth 11 quarters of wheat, 27 quarters of wheat worth 32 bags of rice, 24 bags of rice worth 67 sacks of potatoes, and 2 sacks of potatoes weigh 3 cwt., what quantity of potatoes is equivalent to 63 bushels of oats?
9. When $\frac{1}{4}$ of alb . of tea is equal in value to $\frac{1}{5}$ of a stone of mutton, and $\frac{5}{9}$ of a stone of mutton equal to 3 lbs . of coffee, and $\frac{1}{8}$ of a lb . of coffee equal to $\frac{1}{5}$ of a lb . of beef, how many lbs. of boef are equivalent to 20 lbs . of tea?
10. If an ounce troy of standard silver, of which 37 in 40 parts of the whole are fine, be worth $5 s .1 \frac{1}{2} d$., and copper worth 5 guineas per cwt., what is the ratio of the value of fine silver to that of copper?
11. Square Root.-The square root of a given number is that number which, when multiplied by itself, produces the given number. Thus, the square root of 49 is 7 , because $7 \times 7=49$.

The sign of the square root is \checkmark, a corrupted form of the initial letter of the Latin word radix, root; thus we write $\sqrt{ } 49=7$.
Few numbers, comparatively, are perfect squares; as may be seen by the intervals of the numbers $1,4,9,16,25$, $36,49,64,81$, which are the squares, respectively, of 1,2 , $3,4,5,6,7,8,9$, and which indicate that every perfect square must have $1,4,5,6$, or 9 , as its last significant figure.
107. Now, as the square root of 49 is 7 , because $7 \times 7=49$, so the square root of 186624 is 432 , because 432×432 $=186624$; but, while simply from recollection of the ordinary Multiplication Table it is easy to tell what is the square root of 49 , a process somewhat complex is requisite to extract from 186624 the square root of that high number.

We proceed to exemplify the method of extracting the square root of a large number, referring for proof of the method to the chapter on Involution and Evolution in Colenso's Algebra.

Ex. 1. Extract the square roots of 186624, 77841, 9659664.

Here we first place a dot over the last figure, and then over every second figure, reckoning from it; by which means the number will be divided into periods, as they are called, consisting each of two figures, except the first, which (when the number of figures in the given number is odd) will evidently consist of only one figure.

We then take the nearest square n^{0} not greater than the first period: this is 16 in the first of the above instances, and we set its square root, 4 ,
as the first figure in the root; we then subtract its square, 16, and bring down the next period, 66.

We now set the double of the first figure in the root, 8 , in a loop, as divisor, to the left of the remr, regarding it, however, as standing for 80 , not for 8 , since we shall presently have to set another figure after it. Dividing the rem ${ }^{r}$ by this dis $\mathrm{r}^{\mathrm{r}}, 80$, we set the quotient, 3 , as the second figure both in the root and also in the divr : then, multiplying the 83 by 3 , we subtract the product, and take down the remaining period, 24.

To form the next divr, we double the last figure of the preceding one, making 86 , which (as before) we regard as 860 , and proceed exactly in the same manner : and if finally, as here, we find there is no $\mathrm{rem}^{\text {r }}$, we may conclude that we have found the exact square root.

In the 2nd instance, notice (i) that the second rem ${ }^{\mathrm{r}}, 49$, is greater than the divr, 47 ; this may sometimes happen, but no difficulty can arise from it, as it would be found that, if instead of 7 we took 8 for the second figure, the subtrahend would be 384, which is too large : And (ii), that the last figure, 7, of the first divr, being doubled in order to make the second divr, and thus becoming 14, causes 1 to be added to the preceding figure, 4 , which now becomes 5 .

In the 3rd instance, we have an intermediate cypher in the root.
Ex. 2. Extract the square roots of $1000,2,1.6, .002$.

In the 1st instance, we find there is a $\mathrm{rem}^{\mathrm{r}}, 39$, when we lave made use of the last period of the given number, 1000 ; but we may continue the operation as long as we please in such a case, by setting a decimal point after the given number, and annexing cyphers as decimal places; and for cuery period of two cyphers thus formed we shall obtain a decinal figure in the root.

The same is true of the 2 nd instance, except that we have not taken the trouble to set down the extra cyphers at the end of the given number, though we have taken them down as required, and set the decimal point in the root.

In the 3rd instance, it is to be noticed that the first dot must always be placed on the last figure of the integral part of any number, i.e. on the one next before the decimal point, and then on every second figure on cach side of it. Of course, in the 4 th instance, the figure next before
the decimal point, though not expressed, is 0 . And, in both these, we have had to annex one cypher to the original number, to complete its points.

In all such cases the square root can never be exactly obtained; but by annexing cyphers, it may be ascertained to as many places of decimals as we pleaso. Such roots are called irrational or surds.

Ex. 3. Extract the square roots of $\frac{169}{289}, \frac{37}{64}, \frac{7}{12}$, and $\frac{5}{7}$.
(i.) $\frac{169}{289}=\frac{13 \times 13}{17 \times 17}, \therefore \quad \frac{169}{289}=\frac{\sqrt{ } 169}{\sqrt{ } 289}=\frac{13}{17}$.
(ii.) $\sqrt{ } \frac{37}{64}=\frac{\sqrt{ } 37}{\sqrt{ } 64}=\frac{\sqrt{ } 37}{8}=\frac{6.082762+}{8}=.760345+$.

$$
\text { Or, } \sqrt{\frac{37}{64}}=\sqrt{ } .57812 \tilde{0}=.76034 \overline{5}+.
$$

$$
\begin{equation*}
\sqrt{\frac{7}{12}}=\sqrt{\frac{21}{36}}=\frac{\sqrt{ } 21}{6}=\frac{4.58257 \dot{+}}{6}=.76376+. \tag{iii.}
\end{equation*}
$$

$$
\text { Or, } \sqrt{ } \frac{7}{12}=\sqrt{ } .583333 . .=.76376+.
$$

(iv.)

$$
\begin{aligned}
& \sqrt{5}=\sqrt{\frac{35}{49}}=\frac{\sqrt{ } 35}{7}=\frac{5.91608-}{7}=.845154 . \\
& \text { Or, } \sqrt{ } \frac{5}{7}=\sqrt{ } .71428571+=.845154 .
\end{aligned}
$$

In the 1st instance, the given fraction is a perfect square, and its root is found by extracting separately the roots of num ${ }^{r}$ and den ${ }^{r}$. Observe that the square root of a proper fraction is always necessarily greater than the fraction.

In the 2nd instance, the den ${ }^{\text {r }}$ only is a perfect square, and we may either proceed as in the 1 st instance, or roduce the giren fraction to a decimal, and then seek the root.

In the 3rd instance, neither num ${ }^{r}$ nor denr ${ }^{r}$ is an exact square, but if we multiply both by 3 , we shall have the latter an exact square, and may then proceed as in the Ist instance. Otherwise, we may first reduce $\frac{7}{12}$ to a decimal.

In the 4th instance, we proceed as in the 3rd.

Ex. 70.

Extract the square roots of -

1. 5329 and 8836.
2. 34225 and 137641 .
3. 531441 and 350164 .
4. 95481 and 249001 .
5. 348100 and 6512490000 .
6. 37491129 and 16949689 .
7. 3534400 and 65561409 .
8. $\quad 99960004$ and 24088464.
9. $\quad 119550669121$ and 368451428004 .
10. 8, 20, and 363.
11. 35120 and 8837 .
12. 134909.29 and 650506.7716.
13. 6663.114 and 27.773 .
14. .2:5 and 51.12965025.
15. . 012012 and .00158404.
16. . 000082355625 and .021 .
17. $\frac{529}{5329}, \frac{18}{49}$, and $\frac{129}{400}$.
18. $\frac{7}{72}, \frac{14}{243}$, and $3 \frac{37}{196}$.
19. $287 \frac{7}{\mathrm{~B}}, 6136 \frac{1}{\mathrm{~g}}$, and $367 \frac{2}{\mathrm{~T}}$.
20. $\frac{1}{303}, \frac{.00144}{.155}$, and $3-\frac{4}{5-\frac{6}{7}}$.
21. $1 \frac{2}{3}$ of $\left(4 \frac{2}{3}+5 \frac{3}{4}\right)$, and $1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}$.
22. How many links in length is a square field containing 8 ac .2 ro. 9 po.?
23. Find the length of a square having the same area as a rectangle 43 ft .5 in . long and 34 ft .7 in . broad.
24. What sum of money must be divided among A, B, C, so that A may have $6 s$. and $C 0 s .4 \frac{1}{2} d$., and that B may have as much per cent. more than A as C has more than B ?
25. Cube Root.-The cube root of a given number is that number which when multiplied by its square produces the given number. Thus, using $\sqrt[3]{ }$ as the sign of the cube

The first nine numbers are the respective cube roots of $1,8,27,64,125,216,343,512$, and 729.
The method of extracting the cube root of a large number is much more complex than that required for the square root, as will appear from the following example. A proof of the method will be found in the chapter on Involution and Evolution in Colenso's Algebra.

Fx. Extract the cube root of 80677568161.

we set is cube root, 4 , as the first figure in the root; then, sultracting its cube, 64, we bring down the next period, 677 . We now set the triple of the first figure of the root, 12 , at some distance to the left of the rem ; (there is 123 in the sum, but the 3 will be accounted for by and by ;) then we multiply this triple by the first figure of the root, and place the product, 48 , between 12 and the remr, annexing two cyphers to it.

We now divide the rem ${ }^{r}$ by this 4800 , and set the quotient, 3 , as the second figure in the root, and also after the 12, making 123 : now we multiply this 123 by 3 , the second figure in the root, set the product, 360 , under 4800 , add them up, multiply the sum, 5169 , by the second figure in the root and subtract the product, 15507 . We bring down the next period, 568 , and have now to form the two quantities to the left of it. The first is obtained by tripling the last figure, 3 , of 123 , which gives 129 (the final 2 in 1202 will be accounted for when the nest figure in the root is found); and the other quantity, 5547 , is found ly adding 9 , the square of the second figure in the root, to the two preceding middle lines $\frac{369}{5169^{\circ}}$. We now add two cyphers, and repeat the whole process described in this paragraph.

The remarks made abore with respect to surd square-roots apply also to cube-roots: thus, $.01,24.1$ would be pointed for the cube-root .010́, 24.100́.

Ex. 71.

Find the cube roots of-

1. 185193 and 405224.
2. 21952 and 6859000 .
3. 4330747 and 35287552 .
4. 9481881 C and 959530803000 .
5. 529475129 and 111423515328 .
6. 2617755532773 and 176369715712 .
7. 357750791.290 and .050243403 .
8. $\quad 50000$ and 527.71 .
9. 8047 and 5678.9 .
10. $\frac{5}{6}$ and $30 \frac{1}{4}$.
11. A box is 3 ft .5 in . long, 1 ft .8 in . wide, and 14 inches deep. Required the edge of a cubical box of the same capacity.
12. The volumes of spheres are to one another as the cubes of their diameters. If, therefore, the Sun be $1 \frac{1}{4}$ million times as large as the Earth, and the Earth's diameter be 7912 miles, how many miles will the Sun's diameter measure?

MISCELLANEOUS EXAMPLES.

1. The circumference of a coach-wheel being $16 \frac{1}{2} \mathrm{ft}$., how often will it turn round between London and Oxford, a distance of 59 miles?
2. If a person's estate produce $£ 400$ a year, and the land-tax be assessed at $2 s .9 d_{0}$ in the pound, what is his net annual income?
3. Reduce $\frac{4158}{10395}$ to its lowest terms, and $£ 115 \mathrm{~s} .6 \mathrm{~d}$. to the fraction of a guinea; find the value of $\frac{3}{28}$ of half-a-guinea, and add together $\frac{1}{3}$, $\frac{2}{5}$ of $\frac{10}{21}, 1 \frac{2}{7}$, and $3 \div 2 \frac{2}{5}$.
4. Divide $21 \frac{1}{2}$ guineas equally among 12 men .
5. What is the rent of 145 s .1 R .32 P . of land, at $£ 105$ s. 3 d . per acre?
6. The produce of a farm one year was 150 quarters, which were sold nt 58s. a qu. ; in the next year the price of wheat fell to 48 s., but the crop, being plentiful, produced on the sale the same amount as before : of how many quarters did the second crop consist?
7. A straight plank is $3 \frac{1}{2} \mathrm{in}$. thick, and $6 \frac{1}{4} \mathrm{in}$. broad; what length must be cut off so as to contain $6 \frac{1}{4}$ cubic feet of timber?
8. A person holding 50 shares in the London and North-Western Railway, sells out at 170 ; what income would he have by buying into the $3 \frac{1}{2}$ per cents. at $93 \frac{1}{3}$?
9. If 5 lbs . of tea be worth 12 lbs . of coffeo, and 7 lbs . of coffeo worth 20 lbs . of sugar, and 14 lbs . of sugar worth $7 s, 1 \frac{3}{4} d$., what is the worth of 9 lbs . of tea?
10. A common pasture containing 54 A . 3 R. $35 \frac{1}{2} \mathrm{P}$., another containing 39A. $13 \frac{3}{4} \mathrm{P}$., and a third containing $54 \frac{1}{2} \mathrm{~A}$., are to be divided into 60 equal parts, after deducting from the whole 114. $2 \frac{3}{8} \mathrm{R}$. for tithes ; of how much does one part consist?
11. Find the square root of 370881 , and the side of a square containing 7367 sq . ft. 52 in .
12. If the produce of wheat be tenfold of the seed, how many quarters can be obtained from one grain in 10 years, supposing there to be 7580 grains in a pint?
13. If I lose $1 \frac{1}{4} d$. in $3 s .4 d$., how much do I lose per cent.?
14. In the centigrade thermometer the freezing point is zero, and the boiling point is 100°; in Fahrenheit's the freezing point is 32°, and the boiling point is 212°; what degree C . corresponds to 68 F .?
15. How much water must be added to a cask, containing 40 gallons of spirits at $13 s .8 d$., to reduce the price to $10 s .6 d$. ?
16. A bill for $£ 100$ has six months to run, and the holder has it discounted at 5 per cent., and receives $£ 9710$ s, ; how much less than his due does he receive?
17. Find the value of $\frac{2}{9}$ of a guinea; reduce $2 s .3 \frac{1}{2} d$. to the fraction of a pound, and $1 \mathrm{hr} .7 \frac{1}{2} \mathrm{~min}$. to the fraction of 1 da .6 hrs .
18. A person invested $£ 1000$ in the 3 por cents. at $90 \frac{5}{8}$; but tho price rising to $91 \frac{1}{4}$, he sold out, and invested the proceeds in the $3 \frac{1}{2}$ per cents. at $97 \frac{1}{3}$: find the increase in his income.
19. Find the square root, and also the cube root, of $95951 \frac{161}{625}$.
20. A general levies a contribution of $£ 870$ on four villages, containing $250,300,400$, and 500 inhabitants respectively; what must they each pay?
21. A can do a piece of work in 10 days, which B could do in 13 ; in what time would they do it together?
22. A stationer sold quills at 11 s . a thousand, by which he cleared $\frac{3}{8}$ of the money; what would he clear per cent. by selling them at $13 s .6 d$. a thousand?
23. Reduco $\frac{3872}{92807}, 17 \frac{5}{12}+\frac{4}{15}+144 \frac{11}{21}, 2 \frac{13}{35}-\frac{17}{25}, \frac{3}{4}$ of $\frac{6}{7} \times \frac{4}{15}$ of $\frac{11}{18}$ of $\frac{21}{23}$, and $6347 \div 2 \frac{3}{4}$, to their simplest forms.
24. Divide the value of 79 florins betwcen A and B, giving A half-a-crown more than B.
25. Three persons rent a piece of land for $£ 6010 \mathrm{~s}$.; A puts in 5 sheep for $4 \frac{1}{2}$ months, $B, 8$ sheep for 5 months, and $C, 9$ sheep for $6 \frac{1}{2}$ months: what must each pay of the rent?
26. What is the present worth of $£ 75$, due 15 months hence, at 5 per cent. ?
27. If A can do a piece of work in 10 days, and A and B can do it together in 7 days, in what time would B alone do it?
28. Find the cube root of 133354510 .
29. Divide $£ 160$ s. 10 d . among 4 persons in the proportion of the fractions $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$.
30. Divide 1037 into two parts, which shall have to one another the ratio of the sum of 7.625 and 5.375 to their difference.
31. A cistern has two pipes, by one of which it may be filled in 40 min., and by the other in 50 min .; it has also a discharging pipe, by which it may be emptied in 25 min . If all these three were open together, in what time would the cistern be filled?
32. There is a number which, when divided by $\frac{2}{3}$ of $\frac{4}{5}$ of $1 \frac{1}{2}$, will produce 1 ; find its square.
33. If a person lend me 1296 guineas for 125 days, how lon: should I lend him $£ 1620$ to requite the favour ?
34. Find the square roots of 9.21677 and 921677 .
35. If 6 men will dig a trench, 15 yds . long and 4 broad, in 3 days
of 0 hours each, in how many days of 8 hours each will 8 men dig a trench $20 \mathrm{yds}$. long and 7 broad?
36. Reduce $13 s .7 \frac{1}{2} d$. to the decimal of a pound, and $\frac{3}{7}$ of $1 s .5 \frac{1}{2} d$. to the fraction of half-a-crown ; divide 1001 by $300625, .1001$ by .000300625 , and 10.01 by 390.625 .
37. The cost price of a book is 3 s .0 d . ; if the expense of sale be 6 per cent. upon this, and the profit 24 per cent., what would be the retail price?
38. If the Sun moves through 360° in 365 days 5 hrs. 48 m ., how many minutes and scconds will he pass through in a day?
39. Divide $£ 15$ among 10 men, 13 women, and 25 children; each man to receive twico as much as cach woman, and each child half as much as each woman.
40. There is a fraction whiel, when multiplied by the cube of $1 \frac{1}{2}$, and dirided by the square root of $1 \frac{7}{3}$, produces $\frac{3}{8}$; find it.
41. A floor, 24 ft .4 in . broad and 96 ft .6 in . long, is to be laid at $1 \frac{1}{2} d$. per square foot; find the cost.
42. A solls to $B \frac{7}{8}$ of $\frac{1}{3}$ of $\frac{4}{5}$ of 30 sheep for $\frac{3}{14}$ of $\frac{8}{26}$ of $\frac{8}{9}$ of $£ 210$; what was the a verage price of each sheep?
43. The cstate of a bankrupt, $£ 21000$, is to bo divided among four creditors, whose debts are, \mathcal{A} 's to B 's as $2: 3, B$ s to C 's as $4: 5, C$'s to D 's as $6: 7$; what must each reccire?
44. A cubic foot of water weighs 63 lbs ; what is the weight of water in a ressel 1 ft . deep, 16 ft .7 in . long, and 8 ft .4 in . wide?
45. The profits of a mine for one year amounted to $£ 329613 s .5 \frac{1}{4} d$., and a person holding 14 shares received for his dividend the sum of £1025 $12 s$. $7 \frac{1}{2} d$. ; how many shares were there in all?
46. If the price of gold bo 4 guineas an oz., what is the cost of a gold ornament weighing 3 oz ., of which 18 parts out of 24 are pure gold; allowing $3 s .4 d$. per oz. for the value of alloy, and 25 per cent. upon the whole for expenss of workmanship?
47. Find the square roots of .064 and 26.123456790 .
48. What is the price of a piece of timber, of which the length, breadth, and thickness are respectively 23 ft .9 in ., 2 ft .4 in ., and 2 ft ., at $0 \frac{1}{2} d$. per solid foot?
49. If 90 degrecs correspond to 100 French grades, how many degrees and how many grades are there in the sum of 36.45 degrees, and 36.45 grades?
50. A man can reap $302 \frac{1}{2}$ square yards in one hour; in what time will 3 such men reap $2 \frac{7}{9}$ acres?
51. A farmer gare for a horse a bill of $£ 156$, due 8 months hence, at $4 \frac{1}{2}$ per cent., and sold him at onco for $£ 180$; required his gain per cent.
52. A can do a piece of work in 3 days, B can do thrice as mucli in

8 days, and C five times as much in 12 days: in what time would they do it together?
53. If a tradesman marks his goods 20 per cent. above the cash price, what ready money would he take for an article marked $26 s$.?
54. If 6 men can earn $£ 20$ in 21 days, when the days are 12 hrs . long, how much can 4 men earn in 35 days, when the days are 10 hrs. long?
55. If 45 bricks will pave a square yard, how many will be wanted for a space 34 ft . long and 14 ft . wide, allowing for a path, 2 feet wide, all round?
56. Reduce $3 \frac{1}{2} s$. to the decimal of $\frac{5}{11}$ of a guinea; and find tho values of .232 of a cwt., and 4.0171 of a mile.
57. A gentleman had 5 sons, to whom he left $£ 3750$ in cash, and two bills of $£ 151$ each, due at the end of two and three months respectively; the eldest son had by the will $\frac{1}{4}$ of the property, and, taking eharge of the whole, he paid the others their shares, which were equal, in cash. What would these be, reckoning interest at 4 per cent.?
58. Find the sq. root of 39.0625 , and the cube root of 2116.874304 .
59. What is the annual interest on $£ 76978$, bought into the Danish $3 \frac{1}{2}$ per cents. at 77 ? and what sum would be gained by selling out at $77 \frac{7}{8}$?
60. It is desired to cut off an acre of land from a field $15 \frac{1}{2}$ p. in breadth; what length must be taken?
61. Express a degreo ($60 \frac{1}{22}$ miles) in metres, when 32 metres are equal to 35 yds .
62. At $9 \frac{3}{4} d$. per sq. yd. what is the cost of painting a room which is 24 yds . round, and 10 ft .4 in . in height?
63. Find the difference between $\sqrt{\frac{2}{3}}$ and $\sqrt[3]{2}$.
64. What is the alteration in income made by transferring $£ 10000$ from the 3 per cents. at 92 to the 4 per cents. at 110 ?
65. Divide $4 \frac{1}{3}$ into two parts, one of them to be $4 \frac{1}{3}$ times the other.
66. A plate of gold, 3 in . square and $\frac{1}{8}$ in. thick, is extended by hammering so as to cover a surface of 7 sq . yds.; find its present thickness.
67. I bought 171 gallons of brandy in bond for $£ 793 s .4 d$., and on taking it out paid duty equal to $112 \frac{1}{2}$ per cent. of the bonded value; what was the duty per gallon?
68. Compare the interest on $£ 350$ at $4 \frac{3}{8}$ per cent., with the interest on $£ 450$ at $3 \frac{3}{8}$ per cent., for one year.
69. The day's journey in Turkey being 10 hours, of $4 \frac{1}{2}$ English miles each, and the proportion of an English to a Roman mile being 12: 11 nearly, how many Roman miles are there in 13 days' journcy in Turkey?
70. A drawing-room, 36 ft .10 in . long and 23 ft .2 in . wide, is surrounded with a cornice $3 \frac{1}{2} \mathrm{in}$. wide, the grilding of which cost $£ 411 \mathrm{~s}$. $10 \frac{1}{2} d$.; how much was that per square foot?
71. A stoward receives for his landlord $£ 1987$ of rent, and disburses one-fifth; he pays his landlord $£ 19512 \mathrm{~s}$. , and the remainder is invested in an estate at 30 years' purchase: find the rent of the cstate.
72. Reduce $\frac{7}{13}$ of half-a-crown to the fraction of half-a-guinea, and $6 s .3 \frac{3}{4} d$. to the decimal of a $£$; find also the value of $\frac{2}{5}$ of $\frac{3}{4}$ of £6666 13s. 4 d .
73. What is the yearly interest on $£ 1127$ bought into the 4 per cents. at 92 ?
74. Find the value of $£ 1368$ 7s. 5 d. sterling in dollars and cents, a dollar being equal to 100 cents, and to $4 s .4 d$. English money.
75. A sum of $£ 3333$ s. $3 \frac{3}{4} d$. is to be divided among 4 persons, whoso shares are to be in proportion as $1,2,3,4$; find the share of each.
76. The circumference of the Earth in the lat. of London is 15120 miles; find the distance between two successive meridians of longitude, and the space passed over by the Sun in his apparent daily motion in a minute.
77. If a person accepts $£ 2471 \mathrm{~s} .8 \mathrm{~d}$. as present payment of $£ 2520$ s. $6 d$. due four months hence, at what rate per cent. does he allow discount?
78. Divido $13 s$. $1 \frac{1}{2} d$. into six parts, each succeeding part to be $6 \frac{1}{2} d$. more than each preceding.
79. How much stock, at $93 \frac{1}{4}$ per cent., can be purchased for $£ 540$, a commission of $\frac{1}{8}$ th per cent. being charged on the stock purchased?
80. If either 5 oxen or 7 horses will eat up the grass of a close in 87 days, in what time will 2 oxen and 3 horses oat up the same?
81. The sum of $£ 313 \mathrm{~s} .6 \mathrm{~d}$. is to be divided among 21 men, 21 women, and 21 children, so that a woman may have as much as two children, and a man as much as a woman and a child; what will each man, woman, and child receive?
82. A sells to $B \frac{1}{8}$ of $\frac{3}{4}$ of $\frac{7}{19}$ of a package of tea, which weighs $\frac{3}{7}$ of $\frac{1}{2}$ of 1 cwt . 21 lbs . at 3 s .6 d . per lb. ; what did it come to?
83. How many revolutions will a carriage-wheel, whose diameter is a yard, make in a mile, the ratio of the diameter to the circumference being $1: 3.14159$?
84. A cistern can bo filled by two pipes, A and B, in 4 min. and 5 min . respectively, and emptied by C in $2 \frac{2}{5} \mathrm{~min} . A$ is opened for 2 min ., and then A and B together for 1 min . more, when C is also opened. In what time would the cistern, which now contains 361 gals., be full? and how many gallons would have passed through A and B respectively?
85. What is the yearly interest on $£ 27225$, lought into the $3 \frac{1}{4}$ per cents. at $97 \frac{1}{2}$?
86. Express in its simplest form $\frac{15}{16}-\frac{14}{15}+\frac{13}{14}-\frac{11}{12}$; and add together $\frac{3}{8}$ of a guinea, $\frac{3}{16}$ of a crown, and $\frac{3}{10}$ of 7 s .6 d ., and reduce the result to the decimal of $16 s$.
87. Find the simple interest on $£ 32516 s .8 d$., for 5 months, at $4 \frac{1}{2}$ per cont.
88. If 18 men eat 16 s . worth of bread in 3 days, when wheat is at 54s., what value of bread will 45 men eat in 27 days, when wheat is at 45 s. ?
89. What length of paper, $22 \frac{1}{2} \mathrm{in}$. broad, will be used for a room $21 \mathrm{ft} .9 \frac{1}{2} \mathrm{in}$. long, 15 ft .7 in . broad, and $8 \mathrm{ft} .1 \frac{1}{2} \mathrm{in}$. in height? and what will it cost at 1 s . 3 d . a yard?
90. Find the value of 36.42 tons of coal, at 17 s . $7 \frac{1}{4} d$. per ton; and tho difference between $\frac{5}{6} \times \frac{9}{10} \times \frac{17}{18}$ of $10 s$., and $\frac{1}{7}$ of $\frac{2}{3}$ of $£ 311 s .0 \mathrm{~d}$.
91. The 3 per cents. are at $85 \frac{1}{8}$; what price should the $3 \frac{1}{2}$ per cents. bear, that an investment may be made with equal advantage into either stock? And what income would be derived by so investing £5000?
02. A farm lets for $£ 02$ por annum : the tenant pays for 2 years' occupation, with interest accumulating at 5 per cent.; the landlord pays $\frac{1}{4}$ the amount for repairs of house, $\frac{1}{3}$ of this for repairs of barn, and $£ 23 s .4 d$. for other expenses: find the balance.
03. What will be the cost of painting a room at $9 \frac{1}{2} d$. per square yard, if the sides are each 10 ft . $10 \frac{1}{4} \mathrm{in}$., the ends $16 \mathrm{ft} .1 \frac{3}{4} \mathrm{in}$., and the height 10 ft .3 in.?
94. Express 1618 $\frac{1}{2}$ Eng. miles in degrees (a degree $=60 \frac{1}{2 \lambda}$ miles): find the values of $\frac{5}{7}$ of $£ 27 s .8 \frac{1}{4} d$., and of $\frac{3}{10}$ of $£ 16 s .8 d$., and reduce their difference to the decimal of $£ 20$.
05. Twenty-six wedges of gold, weighing in all 33 lb .3 oz .7 dwt . 4 gr ., are to be coined into sovereigns: find the weight of each wedge, and the number of sovereigns coined from the whole, at the rate of $3 \frac{143}{160}$ sovereigns per oz.
06. How many feet in 150 must a road 10798 feet long rise, to bo carried from a plain to a hill 463 feet in perpendicular height?
97. A gentleman selling a mortgage of $£ 4410$, for which he received 5 per cent. interest, bought into the $3 \frac{1}{2}$ per cents. Bank Stock at 70 ; after receiving the interest for 5 years, on the stocks rising to 75 , he sold out. What was his gain upon the whole transaction, over what he would have received had he continued the mortgage?
98. What is the present worth of $£ 32516 s .8 d$., due at the end of 5 months, at $4 \frac{1}{2}$ per cent.?
99. Find the square roots of $6242 \frac{1}{4}$ and 1438.237, and the cube roots of .000328500 and 27054.036008 .
100. If 40 men in $7 \frac{3}{7}$ days can $\operatorname{dig} 3$ rectangular fields, each 150 yda ,
by 130 ; how long will 37 men bo digging 5 fields, each $120 \frac{1}{2}$ yds. by 20 ?
101. If 3 men, 5 women, or 8 children, could do a quantity of work in $26 \frac{1}{2}$ hours, in what time will 2 men, 3 women, and 4 children complete it?
102. A person, leaving Paddington at 13 minutes before 2, P.M., travels the first 162 miles at 27 miles an hour, the next 121 miles at $9 \frac{1}{2}$ miles an hour, and the last 27 miles at 8 miles an hour : when will he reach his destination, Penzance?
103. How many square yards are there in a parade, 864 ft .3 in . long and 62 ft .6 in . broad?
104. A met two beggars, B and C, and, having in his pocket $\left(3 \frac{7}{11} \div 4 \frac{2}{7}\right)$ of $\left(10 \frac{5}{7} \div 7 \frac{1}{2}\right)$ of $\frac{77}{5 * 0}$ of a moidore (27 s .), gave $B \frac{1}{7}$ of $\frac{3}{4}$ of that sum, and $C \frac{3}{5}$ of the remainder; what did each receive?
105. What is the present worth of $£ 114710$ s., due 3 years hence, at $4 \frac{1}{2}$ per cent. simple interest?
106. A and B entered into partnership: A put into stock at first $£ 2000$, and at the end of 8 months $£ 1000$ more ; B put in at first $£ 750$, and at the end of 4 months $£ 3000$, but took out $£ 1300$ at the end of 3 months more. At the year's end they had gained $£ 1635$; what should each receive?
107. Allowing that $44 \frac{1}{2}$ guineas weighed a lb. Troy, when 32 halfpennies weighed a lb. Av., and observing that alb. Av. contains 7000 gr . Troy, what was the difference in grains between the weights of a guinea and half-penny?
108. How much stock must be bought at 88 per cent., in order that, by selling out when the stocks are at 90,20 guineas may be gained?
109. A bankrupt pays $3 \frac{1}{2} d$. in the pound, and the total of his payments amounts to $£ 154$; what was his debt?
110. A person has $£ 18752$, for which he is receiving $3 \frac{1}{2}$ per cent., but spends annually $£ 27$ more than the whole original interest; what has he at the end of 3 years?
111. If $£ 100$ be placed at interest at 5 per cent., and the interest be added to the principal every 20 years, in how many years will it amount to $\mathfrak{E 1 0 0 0}$?
112. The prime cost of a 50 -gall. cask of wine is $£ 25$, and 10 gall. are lost by leakage; at what price per gall. must the remainder be sold, so as to gain 10 per cent. on tho whole original cost?
113. To do a certain piece of work A by himself would require 16 hours, $B 18, C$ 20. Suppose that after A and B working together for 5 hours, and then B and C for 3 hours, the remainder of the work is left for C to finish, in whet time would he finish it?
114. If the carriage of 60 cwt . for 20 miles cost $£ 14 \frac{1}{2}$, what can I have carried 30 miles for $£ 5 \frac{7}{16}$?
115. Find the side of a square whose area equals 14 sq . ft. 11 in .
116. A and B engage in a speculation, and dividing the proceeds of it, A took $£ 5718 s$., and $B £ 29148$., as their respective portions; what sum did each lay out, it being known that A paid $£ 716 \mathrm{~s}$. 8d.more than B ?
117. A person had $£ 2950$ in the Danish 3 per cents., at $7 \frac{1}{4}$, which he transferred to the Russian 5 per cents., at $110 \frac{5}{8}$; required the alteration in his income.
118. Extract the square root of .009059 and of $461 \frac{52}{81}$, and the cube root of .578703 .
119. If 7 oxen are worth 64 shecp, and 3 shecp cost $£ 512$ s., what must be given for 100 oxen?
120. A person buys teas at $3 s$. and $4 s$. the lb ., and mixes them in the proportion of $4: 7$; what will he gain per cent. by selling at $3 s$. $0 d$. per lb.?
121. Find the difference between the simple and compound intercst on $£ 150$ in 3 years, at $4 \frac{1}{2}$ per cent.
122. If 5 men can reap a field, in length 800 ft . and breadth 700 ft ., in $3 \frac{1}{2}$ days of 14 hours each; in how many days of 12 hours each will 7 men reap a field of 1800 ft . by 960 ft ?
123. Three soldiers, A, B, and C, divide 770 cartridges in the following manner: as often as A takes $4, B$ takes 3 ; and as often as A takes 6, C takes 7: how many will each have?
124. If $£ 100$ in 2 years gain $£ 12$ interest, what principal will gain $£ 615 s$. in $4 \frac{1}{2}$ months?
125. A person desires to exchange 25 Spanish $£ 100$ bonds, and $£ 800,3 \frac{1}{2}$ per cent. Stock, for 3 per cent. Consols; the prices of these sccurities being $48,90,93 \frac{3}{8}$ respectively, what quantity of Consols can he oltain?
126. A person buys three estates of 56,67 , and 71 acres, and gires $£ 813 \mathrm{~s} .6 \mathrm{~d} ., \mathrm{£} 924 \mathrm{~s} .8 \mathrm{~d}$., and $£ 1003 \mathrm{~s}$. 2 d . an acre for them respectively; what should they produce annually to pay 15 per cent. upon his whole outlay?
127. If a beam which is 10 in . wide, 8 in . deep, and 5 ft .6 in . lorg, weigh 8 cwt .1 qr ., find the length of another beam, the end of which is a square foot, which shall weigh a ton.
128. A and B have 18s. and 12s. respectively; and if A give B $2 \frac{3}{8} \div 4 \frac{3}{4}$ of the difference of $2 \frac{3}{13} \div 13 \frac{5}{13}$ of their respective sums, and $\frac{1}{7}$ of $2 \frac{1}{2}$ of A^{\prime} s present sum be added to $\frac{11}{15}$ of $\frac{1}{2}$ of $B ' s, C$ s sioney will be $1 \frac{1}{2}$ of this sum: find it.
120. What is the expense of carpeting a room, 28 ft . long and 19 ft . wide, with carpet $\frac{3}{3} \mathrm{yd}$. wide, at $5 s .9 \mathrm{~d}$. a yard ?
130. A person transfers $£ 2000$ sterling from the $3 \frac{1}{2}$ per cents. at 99 , to the 3 per cents. at $86 \frac{5}{8}$; what is the difference in his income?
131. Multiply £2 $16 s, 10.75 d$. by 144.33 , and divide £9753 14 s . $8 \frac{1}{4} d$. by 234.5 .
132. What would be the purchase-money for an estato producing a rental of $£ 32283 s .4 d$., at the rate of $8 \frac{3}{4}$ per cent.?
133. What will be the expense of glazing a hall-window containing 60 squares, each 1 ft .3 in . long, and $11 \frac{1}{4} \mathrm{in}$. wide, at 1 s .10 d . per sq. ft.?
134. A lb. of tea and 4 lbs . of sugar cost $5 s$. ; but if sugar were to riso 50 per cent., and ter 10 per cent., thoy would cost $6 s .2 d$. Required the prices of tea and sugar per lb .
135. If I buy 14 sheep for $£ 396 s .5 \frac{1}{2} d$., and sell 6 of them at $36 s$. each, for what must the remainder be sold that I may gain 4 per cent. on the whole?
136. The weights of equal quantities of lead and cork are as 11.324 and .24 ; and 60 cubic inches of lead, with 54 of cork, weigh as much as $1538 \frac{2}{3}$ of fir: what number represents proportionally the weight of fir?
137. By selling an article for 10 s., the seller loses 5 per cent.; what will be the loss or gain when sold for $12 s .6 d$. ., and what was its prime cost?
138. A puts out to interest $£ 2000$ at 4 per cent. ; he spends annually $\mathfrak{£ 7 5}$, and adds the remainder of his dividend to his stock: what is he worth at the end of 5 years?
139. A country containing 711117 inhabitants increases to 732666 ; find the increase per cent
140. If 12 men can complete a piece of work in 15 days, working 6 hrs. a day, how many can do it in $85 \frac{1}{2}$ days working $12 \frac{12}{19} \mathrm{hrs}$. a day?
141. A bankrupt has good debts to the amount of $£ 45618 \mathrm{~s} .1 \mathrm{~d}$., and the following bad debts, $£ 3607 s .10 d$., $£ 12013$ s., and $£ 1918$ s., for which he receives respectirely 4,5 , and 9 shillings in the $£$; his own liabilities amounted to $£ 340812 \mathrm{~s}$. : how much can he pay in the $£$?
142. A had $£ 213 s$., and B, when he had paid $A 6 \frac{2}{7} \div 1 \frac{2}{9}$ of £1 11s. 6 d., found that he had remaining $\frac{1}{43}$ of the sum which A now had: what had B at first?
143. Find the sq. roots of .0026009 and .0002404 , and the cube root of $\frac{8}{9}$.
144. A rectangular cistern, of which the length is $13 \frac{3}{8} \mathrm{ft}$. and the breadth 6 ft ., contains $294 \frac{1}{4}$ culbic feet of water; what is the depth of the cistern, and what is the weight of water when one cubic inch weighs 252.5 grains?
145. At what rate per cent. of simple interest will $£ 1$ become a guinea in 5 years?
146. How much will a broker, who charges 5 per cent. discount, give for a bill for $£ 600$ due at 2 months?
147. Riding a journey of 27 miles into town, I meet the coach which left town at the same moment that I started from hence (viz. 7 o'clock), at the 15 th mile-stone from town. Supposing that it travels 10 miles an hour, find the hour when we meet, and the time when (proceeding at the same rate as before) I shall reach London?
148. If 12 casks are carried 18 miles for $£ 16$ when the carriage is at 1 s. 3 d., how far ought they to be carried for $£ 72$ when the carriage is at 10d.?
149. Add together $\frac{3}{5}$ of $\frac{8}{9}$ of a guinea, $\frac{4}{9}$ of a pound, and $3 \frac{5}{11}$ of $14 \mathrm{~s} .8 d$. ; and reduce the sum of $1 \div 3 \frac{1}{2}$ of half-a-guinea and $3 \div 3 \frac{3}{4}$ of 15 s .6 d . to the decimal of a pound.
150. What number of lbs. of tobacco, at the same number of pence per lb., amounts to $£ 1610$ s. $9 d$.?
151. A manufacturer employs 50 men and 35 boys, who work respectively 12 and 8 hours a day during 5 days of the week, and halftime the other day; each man receives $6 d_{\text {., }}$, and each boy $2 d$., an hour. What is the whole amount of wages for a year?
152. A man buys 27 sheep for $£ 30$, and sells 12 of them, so that he loses 3 per cent. in the sale; at what price per shecp must he sell the remainder, so that he may gain $2 \frac{1}{2}$ per cent. on the whole purchase?
153. Two persons buy respectively, with the same sums, into the 3 and $3 \frac{1}{2}$ per cents., and get the same amount of interest; the 3 per cents. being at 75 , at what are the $3 \frac{1}{2}$ per cents. ?
154. Find the present worth and discount on $£ 226$ 1s. 11 d., due 7 months hence, at $4 \frac{3}{4}$ per cent.
155. Three tons of merchandise cost $£ 2615 \mathrm{~s} .5 \mathrm{~d}$. ; at how much per cwt. must it be sold so as to gain 20 per cent.?
156. Divide $3 \frac{1}{2}$ guineas among 6 persons, so that their shares may be in the proportion of the reciprocals of the first 6 units.
157. Divide 099 into three parts, so that 6 times the first, 7 times the second, and 11 times the third may be equal.
158. Half the trees in an orchard are apple trees, a fourth pear trees, a sixth plum trees, and there are besides 50 cherry trees; how many trees are there altogether ?
150. A banker borrows money at $3 \frac{1}{2}$ per cent., and pays the interest at the end of the year : he lends it out at 5 per cent., but receives the interest half-yearly, and by this means gains $£ 200$ a year: how much does he borrow?
160. By selling tea at 2 s .8 d . a pound, a grocer clears $\frac{1}{8}$ th of his outlay; he then raises the price to $3 s$.: what does he clear per cent. upon his outlay at the latter price?
161. How much tea, at $2 s .4 \frac{1}{2} d$., must I give for 28 lbs . of sugar, at $4 \frac{3}{4} d$. , so as to gain 5 per cent. by the exchange?
162. Reduce $\frac{729}{1917}$ to its lowest terms, and $\frac{1}{256}$ to a decimal; and add together $2 \frac{3}{3}, 3 \frac{7}{10}, \frac{1}{25}$, and $1 \frac{7}{8}$; and divide $2 \frac{3}{5}$ of $1 \frac{2}{3}$ of $1 \frac{5}{6}$ by $7 \frac{19}{24}$.
163. If 54.32 cub. in. of gold be as heavy as 101.36 cub. in. of silver, how many oz. of silver are equal in bulk to $226 \frac{1}{4}$ oz. of gold?
164. What is the present worth of $£ 13112 \mathrm{~s}$. $6 d$., payable in $\frac{1}{4}$ of a year, at 5 per cent.?
165. The length of a street is 937 ft .6 in ., and its breadth 66 ft .8 in .; find the cost of paring it at $8 \frac{1}{2} d$. per square yard.
166. If 100 men, in 6 diys of 10 hours each, can dig a trench 200 yards long, 3 wide, and 2 deep, in how many days of 8 hours long will 180 men dig a trench of 360 yards long, 4 wide, and 3 deep?
167. A person spending annually $£ 240$, saves $£ 21 \overline{\tilde{\omega}} \mathrm{~s}$. of it quarterly by ready payment; what is the rate of discount? and if he by this means makes an increase of $20 \frac{5}{8}$ per cent. upon his annual saring, what was his annual income?
168. A certain sum of money was divided among three persons, A, B, C. Suppose that A 's share was $£ 26412$ s., and C 's $£ 28$ s., and that A 's share contained the value of B 's as often as B 's share contained C_{s}; what must the whole amount have been?
169. Add together $3 \frac{5}{6}$ of $2 \frac{1}{5}$ of $7 \frac{11}{20}$ of a $£, 9 \frac{3}{7}$ of $3 \frac{8}{9}$ of a shilling, and $8 \frac{1}{4}$ of $4 \frac{1}{8}$ of a penny, and divide the sum by $\frac{11}{12}$ of $\frac{5}{17}$ of $\frac{3}{8}$ of $3 \frac{1}{2} d$.
170. Extract the square roots of $2.05 \dot{\ddagger}$ and of 42.03361 ; and the cube roots of 15.438249 and 629.422793 .
171. If 6000 lbs . of iron are cast off at a foundry in 24 hours, how many tons weight will be cast off in 308 days, supposing them to work 16 hours each day? and if the price of iron be $£ 33 s$. per ton, what will be the gain per cent. upon the annual expenditure, supposing it to be $£ 20$ per week of 6 days?
172. How must wine, which cost $15 s$. per gall., be sold, so as to gain $21 \frac{1}{4}$ per cent.? and how so as to lose the same?
173. The value of a pound of goid is 14 times that of a pound of silver, and the weights of equal quantities of gold and silver are in the ratio of 19 to 10 ; find the value of a bar of silrer equal in bulk to $£ 1750$ worth of gold.
174. A, B, and C, together, can dig an acre of land in $7 \frac{1}{8}$ days. A digs 32 perches in 5 days, and $B 54$ perches in 7 days. Find the three lowest integral numbers expressing the comparative powers of these men; and the time in which C digs $17 \frac{2}{3}$ perches.
175. What is the prizo of a silver cup weighing $1 \mathrm{lb}, 10 \mathrm{oz}, 12 \mathrm{dwt}$. 6 grs ., worth $5 s$. an ounce?
176. Divide the cube root of $\frac{5345344}{116603}$ by the square root of 260100 .

17\%. Reduce $2 \mathrm{w} .2 \mathrm{~d} .19 \frac{1}{5}$ hrs. to tho fraction of a month, and $\frac{13}{16}$ of a shilling $+\frac{5}{8}$ of half-a-crown $+\frac{11}{15}$ of a guinea to the decimal of a $£$.
178. A fast train leaves Bristol for London, a distance of 120 miles, at 2 o'clock, and travels at the rate of 25 miles per hour ; at what time must a luggage train, which travels at the rate of 15 miles in 50 minutes, have left, so as not to be overtaken by the fast train?
179. Find the commission on $£ 126$ at $\frac{5}{8}$ per cent., and reduce tho answer to the decimal of $£ 111 s .6 d$.
180. If, by selling fine Irish cloth at 5 s. per yard, I gain 8 per cent., what will be my rate of profit if I sell at $6 s .4 d$. per ell?
181. Add together the cube roots of $.00730138 t$ and 32768 , and multiply the result by the square root of $72 \frac{1}{4}$.
182. What ready money will discharge a debt of $£ 528$ $9 s$., due 4 months hence, at $4 \frac{7}{8}$ per cent. ?
183. Find the least common multiple of $64,720,960$; and find what decimal $17 \mathrm{yds}$.1 ft .6 in . is of a mile, and what fraction of $3 s .6 d$. is $\frac{5}{9}$ of $\frac{15}{13}$ of $2 s .6 d$.?
184. The 3 per cent. stock is at $98 \frac{3}{8}$, and the $3 \frac{1}{2}$ per cents. at $106 \frac{1}{4}$; into which is it most advantageous to buy?
185. $£ 1000$ is to be divided among A, B, and C, so that for every $£ 3$ given to A, B is to receive $£ 5$ and $C £ 8$; what sum had they each?
186. Reduce $4 \frac{97}{875} \mathrm{lbs}$. Av. to 'Troy weight, and 3 cwt . 34 lbs .2 oz . to the decimal of a ton; and $.0975, .63, .5243$, to their equivalent fractions.
187. The quantity of copper ore sold at Truro on a certain day was 3696 tons (of 21 cwt . each), and tho produce $6 \frac{7}{6}$ per cent.; find the quantity of fine copper obtained from it in common weight.
188. A rectangular parish, 6 fur. long and 4 fur. broad, is enclosed; a belt of plantation, 200 ft . wide, is carried the wholo way round; a main road, 60 ft . wide, runs across the land in the direction of its length, and a cross road, 41 ft . wide, in the dircetion of its breadth: how many acres of field were there?
189. If the sixpenny loaf weigh $5 \frac{1}{2} \mathrm{lbs}$. when wheat is at $5 \frac{3}{4} s$. per bushel, what must be paid for $52 \frac{1}{4} \mathrm{lbs}$. of bread when wheat is at $8 s .6 \dot{d}$. per bushel ?
190. Find the present value of $£ 2730 s .9$ d., due 3 months hence, at $4 \frac{1}{2}$ per cent., and the compound interest on $£ 105$ in 3 years, at $3 \frac{1}{2}$ per cent.
191. A body of 7300 troops is formed of four battalions, so that $\frac{1}{2}$ of the first, $\frac{2}{3}$ of the second, $\frac{3}{4}$ of the third, and $\frac{4}{5}$ of the fourth, are all composed of the same number of men ; how many were there in each?
192. Among the Jews the coin mina (or pound) was worth 50 shokels of silver, each weighing 210 grs ; the weight mina, when of gold,
weighed 100 shekels, when of silver, 60 ; what were the values of these minæ, rating gold at $£ 4$ and silver at 5 s. an ounce ?
193. A father left to the elder of his two sons $\frac{13}{25}$ of his estate, and $\frac{13}{25}$ of the remainder to the younger, and the residue to his widow; find their respective legacies, it being found that the elder son received $£ 1690$ more than the younger.
194. Divide 240 into two parts, such that $\frac{1}{4}$ of one added to $\frac{1}{10}$ of the other shall equal 36 .
195. If 193 Russian versts be equal to 205.9 French kilomètres, and 1552.94 kilomètres equal to 964.9 English miles, how many miles aro equal to 100 rersts?
196. If the rent of 2 acres for $\frac{3}{4}$ of a year bo $£ 13 s$. 3 d., what will be the rent of 547 acres for a half year?
197. If I buy 3 per cents. at $78 \frac{3}{8}$, and $3 \frac{1}{2}$ at $05 \frac{3}{16}$, which is the best investment? If I had invested $£ 6962$ 19s. $3 \frac{3}{4} d$. in each, and the former rose and the latter fell $\frac{1}{16}$, how much should I lose or gain?
198. If 3 men can mow 7 acres of grass in 5 days of 9 hours each, in how many days of 8 hours each will 5 men mow $17 \frac{1}{2}$ acres?
199. Add together $3 \frac{2}{15}, 2 \frac{5}{12}, \frac{1}{9}$, and $\frac{4}{45}$; find the difference of $3 \frac{4}{27}$ and $2 \frac{5}{9}$, and divide $3 \frac{4}{27}$ by $2 \frac{5}{9}$.
200. Five thousand copies are issued of a $6 s$. book: the cost of printing is 1 s . per copy, of binding $4 d_{\text {., and }}$ a carriage, advertising, \&c., $2 d_{\text {. }}$: the publisher disposes of them to the retail bookseller, charging 25 copies as 24 , and 30 per cent. less than the selling price, and upon the whole receipts takes 10 per cent. commission for himself: what are the gains respectively of author, publisher, and bookseller on this edition?
201. Find the square root of $\frac{169}{\mathrm{k} 13}$, and the cube root of 352045.367981 .
202. Find the discount on $£ 129410$ s. for $1 \frac{3}{4}$ year, and the interest on the discount for the same time, at $4 \frac{1}{2}$ per cent.
203. Divide 100 guineas into an equal number of guineas, halfguineas, crowns, half-crowns, shillings, and sixpences, and reduce the remainder to a fraction of a pound.
204. A person has $£ 3500$ to lay out; the 3 per cents. are at $82 \frac{1}{2}$, and the $3 \frac{1}{2}$ at 96 : what would be his income from each ?
205. How many inches are there in the diagonal of a cub. ft., and how many square inches in a superficies made by a plane through two opposite edges?
206. A merchant employs $£ 700$ in trade, and at the end of 3 years takes another into partnership, who advances $£ 1900$. At the ond of 4 years from this time they hare gained $£ 500$; how ought this to be divided between them?
207. If 24 pioneers, in $2 \frac{1}{2}$ days of $12 \frac{1}{2}$ hours long, can dig a trench
139.75 yds . long, $4 \frac{1}{2}$ yds. wide, and $2 \frac{1}{2} \mathrm{yds}$. deep, what length of trench will 90 pioneers dig in $4 \frac{1}{5}$ days of $9 \frac{2}{3}$ hours long, the trench being $4 \frac{7}{8}$ yds. wide and $3 \frac{1}{5} \mathrm{yds}$. deep?
208. What is the discount on $£ 257$ 8s. $8 \frac{1}{4}$ d., paid 210 days before due, at $4 \frac{1}{2}$ per cent. ?
209. What is the cost of papering a room 15 ft . long, 12 ft . wide, and 10 ft . high, with paper 30 in . broad, at $7 \frac{1}{2} d$. per yard?
210. The sum of $£ 925$ was so divided among A, B, C, and D, that $B ' s$ portion was equal to $\frac{11}{12}$ of A^{\prime} s, C 's was equal to $\frac{3}{8}$ of $B \prime$'s, and D 's was half as much as D^{\prime} s and C 's together: what did each receive?
211. A draper bought 5 pieces of silk, each 52 yards, at $4 s$. $3 \frac{1}{4} d$. per yard, and sold the whole so as to gain as much as $16 \frac{1}{4}$ yards were sold for ; what was the selling price per yard?
212. $£ 100$ stock, in the 3 per cents., is sold for $£ 9115 s$. ; how much can be bought for £540, allowing, for commission, $\frac{1}{8}$ per cent. upon the stock bought?
213. A gentleman's income is $£ 89613 s .4 d$. per ann. ; he gives to the poor quarterly $£ 1310$ s., and lays up 200 guineas at the year's end: how much does he spend in 6 days?
214. A grocer buys 13 lbs . of tea at $2 s .3 d ., 16 \mathrm{lbs}$. at $2 s .5 d$. , and 18 lbs . at $3 s .3 d$., and mixes them : at what rate per lb . must he sell the mixture so as to gain on the whole $17 \frac{1}{2}$ per cent.?
215. What is the present worth of $£ 203515$ s., due in 2 yrs. $5 \frac{1}{2}$ mo., at $4 \frac{1}{2}$ per cent.?
216. What is the expense of paving a rectangular court-yard, whose length is 63 ft ., and breadth 45 ft ., it being paved with pebbles at 1 s .9 d . per sq. yard, except a foot-path, which runs the whole length, 5 ft .3 in . broad, and is paved with flag-stones at $3 s$. per square yard?
217. A and B can do a piece of work alone in 12 and 16 days respectively; they work together at it for 3 days, when A leares it, but B continues, and after 2 days is joined by C, and they finish it together in 3 days; in what time would C do it alone?
218. Find the value of $13 \frac{53}{4480}$ of 2 cwt .2 qrs.; and of $\frac{57}{55}$ of $£ 88 \mathrm{~s}$. $5 \frac{1}{4} d$.
219. A can mow $2 \frac{1}{2}$ acres of grass in $6 \frac{2}{3}$ hours, and $B 2 \frac{1}{6}$ acres in $5 \frac{2}{3}$ hours: they mow together a field of 10 acres; in what time will they do it, and how many acres will each mow?
220. In making gold thread for embroidery, a cylinder of silver weighing 360 oz . Av. is cased with one of gold weighing 6 oz . ; and this mass is drawn through a series of circular holes, continually diminishing in diameter, until it becomes so thin that 202 feet in length weigh one dram : what is now the length of the thread?
221. The gross weight of the Chinese silver, brought homo in

January 1842, was 143639 lbs ., and the mint-refiner undertook to pay all expenses of refining on being allowed $3 \frac{1}{2}$ grs. of gold (less 10 por cent.) on every pound weight gross of silver: what sum did this amount to, at $£ 41 \mathrm{~s} .3 \mathrm{~d}$. per oz. ?
222. The weight of gold extracted from the above was 2530 oz . 1 dwt. 17 grs.; what was its value at the same rate?
223. What would be the interest on $£ 2565$ s. 9 d., at 4_{2}^{1} per cent., for 4 yrs. $5 \frac{1}{2}$ mo. ? and what would be tho compound interest on $£ 1040$, at 4 per cent., for 3 years?

141

A P P E N D I X.

The choice of the number 10 , as the base or radix, as it is called, upon which the decimal system or scale of Notation depends, common as it is to so many nations, barbarous as well as civilised, may be conceived to have had its foundation in the natural practice of counting on the fingers, whence the term digit; but we might have taken any other number for base, and, having characters for zero and all the figures less than the base, we might express any number whatsoever in such a scale. (See Alg. Notation.)

The admirable method of notation by the use of the nine digits and zero is of extreme antiquity; and though called the Arabic method, (because first introduced into Europe through the Moors in Spain about the 11th century, though it was not till about the 14th that it superseded the old Roman system,) was certainly known to the Hindoos long before the rise of Arabian science, and even by them ascribed, for its excellence and the remoteness of its origin, to the direct revelation of the Divine Being. It seems to have been traced with some probability to the regions of Thibet.

The system of the Greeks was almost identical with that of the Hebrews, or Phœnicians: that of the Romans, though very simple, was singularly cumbrous and inconvenient; and it is a striking proof of their extreme indifference to any advances in scientific matters, that they so pertinaciously retained it, notwithstanding their acquaintance with the far more perfect and comprehensive notation of the Greeks.

The figures now in use are derived from the old Arabic, though much modified and corrupted by the course of time.

When numbers are used with reference to the things numbered, as when we say 3 apples, 4 pens, 5 shillings, they are said to be
concrete numbers; when used without such reference, merely to indicate a certain number of units of the same kind, as when we say simply $3,4,5$, they are called abstract numbers.

The concrete quantities, required in ordinary calculations, are those which are necessary to express Money, Weight, Space, and Time. In the Tables will be found the most common of these quantities ; but we shall here make a few additional remarks about them, and explain the Standurds, which are used in each of thesa classes.

The standard gold coin of this realm is made of a metal, of which 22 parts in 24 are pure gold, and 2 parts alloy, a mixture of silver and copper. From a lb. Troy of this metal are coined $46 \frac{2}{4} \frac{9}{0}$ sovereigns $=£ 4614 \mathrm{~s} .6 \mathrm{~d}$.; so that the Mint price per oz. of standard gold $=\frac{1}{12}$ of $£ 4614 s .6 d .=£ 317 s .10 \frac{1}{2} d$; and since there are 11 oz . of pure gold in 12 oz . of standard, we shall have (neglecting the value of the alloy) the value per oz. of pure gold at the Mint $={ }_{1 T}$ of $£ 4614 s .6 d .=£ 44 s .11_{1 \frac{5}{1}} d$.

The standard silver coin is made of a metal, of which 37 parts in 40 are pure silver, and 3 parts alloy (copper). From a lb. Troy of this metal are coined 66 s ., so that the Mint price per oz. of standard silver is $5 s .6 d$. : and since there are $\frac{37}{4} \frac{7}{0}$ of an oz. of pure silver in this, the value per oz. of pure silver at the Mint is $\frac{4}{3} \frac{0}{7}$ of $5 s .6 d .=5 s .11 \frac{1}{3} \frac{3}{7} l$.

From a lb. Av. of copper are coined 24 pence : but this is not a legal tender for more than $12 d$., nor is the silver coinage for more than 40 s., the gold coinage being the standard of the realm.

The following coins are noticeable, occurring often in ancient documents:-

Groat $=4 d .$, Tester $=6 d .$, Noble $=6 s .8 d .$, Angel $=10 s$. , Merk $=13 s .4 d$. , Carolus $=23 s .$, Jacobus $=25 s .$, Moidore $=27 s$.

Great inconvenience having been long felt in this country, from the want of uniformity in the systems of weights and measures; which were in use in different parts of it, an Act of Parliament was passed in 1824, and came into operation on Jan. 1, 1826, by whicli certain weights and measures, therein specified, were declared to be the only lawful ones in this realm, under the title of Imperial Weights and Measures.

It was settled by this Act-

1. That a certain yard measure made by an order of Parliament in 1760, (by comparison with the yards then in common use,) should be henceforward the Imperial Yard, and the Standard of Length for the kingdom : and that in case this Standard should be lost or injured, it might be recovered from the knowledge of the fact, that the length of a pendulum, oscillating in a second, in vacuo, in the latitude of London, and at the level of the sea, (which can always be accurately obtained by certain scientifie processes,) was 39.13929 inches (or twelfih parts) of this yard;
2. That the half of a double-pound Troy, made at the same time, should be the Imperial Pound Troy, and the Standard of Weight; and that of the 5760 grains, which this lb . contains, the lb. Av. should contain 7000 : and that in case this Standard should be lost or injured, it might be recovered from the knowledge of the fact, that a cubic inch of distilled water, at the temperature of 62° Fahrenheit, and when the barometer is at 30°, weighs 252.458 grains ;
3. That the Imperial Gallon, and Standard of Capacity, should contain 277.274 cubic inches, (the inch being above defined,) which size was selected from its being nearly that of the gallons already in use, and from the fact that 10 lbs . Av. of distilled water, weighed in air, at a temperature of 62°, and when the barometer is at 30°, will just fill this space.
The name Troy Weight has been derived from Troyes, a city of France, where great fairs were once held, and to which it was introduced, about the time of the Crusades, from Cairo in Egypt; but it has also been derived from the monkish name for London, Troynovant, from Trinovantum. The name Avoirdupois is probably derived from the old Norman, avoirs, goods and chattels, and pois, weight.
It is probable that a grain of wheat was the element of weight in former days, and a grain of barley (barleycorn) the element of length.
The pennyweight was so called as being the weight of the silver penny then in use.
The words ounce and inch are both derived from the Latin uncia, or twelfth part, of a pound and foot respectively.

The following weights and measures are noticeable, besides those given in the Tables.

Firkin (of Beer)	$=9$ gals.	als.
Kilderkin	. $=18$ gals.	Runlet $=18$ gals.
Barrel.	$=36$ gals.	Tierce $=42$ gals.
Hogshead	- 54 gals.	Hogshead . . . $=63 \mathrm{gals}$.
Butt	$=108$ gals.	Puncheon $=2$ Tierces. $=84$ gals.
Tun	- $=2$ butts	Pipe $=2$ Hogsheads . $=126 \mathrm{gal}$

Since there are 24 carats in a lb. of gold, the fineness of gold is often expressed by saying that it is so many carats fine, meaning so many parts out of 24 ; thus our standard gold is 22 carats fine, and jewellers' gold (as marked on the stamp of a watch) is 18 carats fine.

In measuring land, surveyors use a chain, called Gunter's chain, which is 22 yards long, and divided into 100 links; and 10 square chains, or 100,000 square links, make an acre.

In France, the standard of linear measure is the metre, which is one ten-millionth part of the Terrestrial arc from the Equator to the Pole $=39.371$ inches ; and their other measures are all decimal parts or multiples of this : thus the decimetre $=3.9371$ in., centimetre $=.39371$ in., millimetre $=.03937$ in., \&c., and so the decametre $=393.71 \mathrm{in}$., and similarly for the hectometre (hecatometre), kilometre (chiliometre), myriometre, \&c.

The standard of weight is the Gramme = weight of a cubic centimetre of distilled water $=15.4340 \mathrm{grs}$; and this is likewise subdivided and multiplied into the decigramme, centigramme, kilogramme, \&c.

T'he standard of capacity is the litre $=61.028$ cub. inches, that of superficial measure, the are $=119.6046 \mathrm{sq} . \mathrm{yds}$., that of solid measure, the stere $=35.317 \mathrm{cub}$. ft. - all of which may be subdivided and multiplied as before.

The Greek unit of linear measure was the $\pi 0 \tilde{u}_{\S}=12.135$ inches. The principal Attic measures of length were
ठ ́кктu入os $\left(\frac{1}{16} \pi\right)=\frac{3}{4} \mathrm{in}$. nearly.
$\pi \hat{\eta} \chi$ Us $\quad\left(1 \frac{1}{2} \pi\right)=1 \frac{1}{2} \mathrm{ft}$. or $\frac{1}{2} \mathrm{yd}$. $\quad \sigma \tau \alpha ́ \delta \iota o v(600 \pi)=606 \frac{3}{4} \mathrm{ft}$.
jp \quad uía $\quad(6 \pi)=6 \mathrm{ft}$. or a fathom. $\quad \delta i \alpha u \lambda$ os $(1200 \pi)=1213 \frac{1}{2} \mathrm{ft}$.
It will be found that there are very nearly $8 \frac{3}{4}$ stadia in a mile. The Persian parasang was 30 stadia, rather more than a league.

The principal square measures were the square $\pi \sigma_{s} \tilde{v}_{s}$ and $\pi \lambda^{\prime} \dot{\varepsilon} \rho o \nu$, which latter contained 4 äpovpar, and was a little less than a rood.

The Roman unit of length was the pes $=11.6456$ inches.
Their other ordinary measures were the digitus ($\frac{1}{16}$ pes), uncia ($\frac{1}{1} p$.), palmus ($\frac{1}{4} p$.), palmipes ($1 \frac{1}{4} p$.), cubitus ($1 \frac{1}{2} p$.), gradus ($2 \frac{1}{2} p$.), passus (5 p.), milliarium or mille passuum ($5000 \mathrm{p} .=1618 \mathrm{yds}$.).

Their principal square measure was the jugerum (240 p . by 120) $=28800$ pedes quadrati, or $\frac{2}{3}$ acre, nearly.

For rough calculations, the $\pi 0$ ṽ and pes may each be considered to be equivalent to a foot English.

The Greek and Roman systems of money were naturally founded upon those of weight, the denominations of money and weight being identical.

The Attic unit of weight and money was the drachma, which, as a weight, was equivalent to $66 \frac{1}{2} \mathrm{grs}$. and this weight of silver being worth $9 \frac{3}{4} d$., this was the value of the silver coin, drachma, Their other coins (all in silver) were as follows -

$$
\begin{aligned}
& 6 \text { obols (}(\beta \beta 0 \lambda o i ́) \text { made } 1 \text { drachma (} \delta \rho a \chi \mu \eta) \\
& 100 \text { drachmae . . . } 1 \text { mina }(\mu \nu \hat{a}) \\
& 60 \text { mince } 1 \text { talent }(\tau d \dot{\lambda} \lambda \nu \tau v \nu) \text {; }
\end{aligned}
$$

so that the obol was worth about $1 \frac{1}{2} d$., the mina $£ 41 \mathrm{~s} .3 d$., the talent $£ 24315 s$.

Besides these, there were the diobolus, triobolus, didrachm, tetra$d \mathrm{rachm}$ (or stater), \&c., whose values are explained by their names.

In later times, the value of the drachma as a coin corresponded to the Roman denarius $=8 \frac{1}{2} d$

The Roman unit of weight was the libra, or pound,$=5204$ grs., that is, nearly $\frac{3}{4} \mathrm{lb}$. Av., or very nearly $\frac{9}{10}$ lb. Troy. This weight of the metal as or bronze (a mixture of copper and tin) formed originally the coin as, or pound; but the weight of the coin was subsequently reduced in the proportion of $8: 5$.

The as or libra was divided into 12 uncia, i. e. tuelfth-parts; and the following names were given to the different multiples of an uncia.

$1 \frac{1}{2}$ unc. (sesqui-uncia)........ .sescunx	7 unc.septunx
2 ... ($\left.\frac{1}{6} \mathrm{lb}.\right)$................sextans	8 ... ($\left.{ }_{3}^{2} \mathrm{lb}.\right)$...................bes
3 ... ($\left.\frac{1}{4} \mathrm{lb}.\right)$ ter-uncius or quadrans	9 ... ($\left.\frac{3}{4} \mathrm{lb}.\right)$..............dodrans
... ($\left.\frac{1}{3} \mathrm{lb}.\right) \ldots t r i e n s ~$	10 ... (56 lb.)dextans
5quincunx	11
... ($\frac{1}{2} \mathrm{l} \mathrm{l} .=$ semi-as)ssmis	12 libra or as

The name bes is supposed to be formed from des (as bis from oic), and this from de-triens (desit triens), meaning an as wanting a triens or third; just as dodrans, dextans, deunx, are formed from de-quadrans, de-sextans, de-uncia.

It should be observed that the word uncia, or ounce, means simply a twelfth-part; and therefore the above terms sescunx, sextans, \&c. were used by the Romans, as so many fractions, for subdivisions of other units, as well as of the as : thus, we have had above the uncia of length $=\frac{1}{12}$ pes, and see also below among the measures of capacity.

The uncia of weight $=434 \mathrm{grs} .=$ very nearly an ounce Av.
The Romans had also a silver coinage, consisting of the denarius zind its parts. These were the denarius, worth $8 \frac{1}{2} d$., and equivalent (as its name denotes) to 10 ancient ases or 16 later ones; the quinarius (5 ancient ases) $=4 \frac{1}{4} d$., called also victoriatus, from the image of Victory upon it; the sestertius (i. e. semis tertius nummus, or a coin worth $2 \frac{1}{2}$, viz. ancient ases $)=2 \frac{1}{8} d$.; libella $=\frac{1}{10}$ den., sembella $($ semi-libella $)=\frac{1}{20}$ den., terunçius $=\frac{1}{40}$ den. $=($ as above $) \frac{1}{4}$ ancient αs or $\frac{2}{5}$ later $a s=\frac{1}{5} d$., nearly.

For rough calculations we may reckon the αs at $\frac{1}{2} d$. , sestertius $2 d$., denarius $8 \frac{1}{2} d$. The sum of 1000 sestertii was called a sestertium $=\mathfrak{f} 817 \mathrm{~s} 1 d$., but there was no coin for this amount.

The Greek $\xi_{\epsilon} \epsilon \sigma \dot{\eta}_{s}=$ Roman sextarius, may be conveniently taken as the unit of capacity, being equivalent to (. 9911 or) just one pint

English. The sextarius was so called as being $\frac{7}{6}$ of the congius, and contained 12 siuator, cyath i; and the multiples of the cyathus had the same names among the Romans as those of the uncia, or ounce of weight : thus, 2 cyathi was a sextans, or $\frac{1}{6}$ of a sextarius, \&.c.
The Greeks had also the кот $\dot{\alpha} \eta=\frac{1}{2}$ sext. $=\frac{1}{2}$ pt., $\chi_{0 \text { iiv }}^{\prime}=1 \frac{1}{2}$ pt.,
 the "̈ктos and $\dot{\mu} \mu i \varepsilon \kappa т о s$ were the sixth and twelfth parts of the mieslimnus. The Romans had, beside the cyathus and sexturius, the hemina $=\frac{1}{2}$ pt., congius $=6$ sext. $=3$ qts., modius $=2$ gals., urna $=$ 3 gals., amphora $=6$ gals.

A Solar Day is the interval between two successive transits of the Sun over the meridian of any place; but, from several causes, this interval is continually varying, though slightly, in duration. If, however, we take the mean of many observations, we shall get the length of the Mean Solar Day, and this is the Standard unit for the measurement of Time in ordinary life: though Astronomers have another unit in common use.
The Solur Year is the interval between the Sun's leaving and returning to a certain fixed point in his apparent orbit round the Earth (the Ecliptic), and is accurately determined by Astronomers to contain 365.242218 mean solar days $=365$ days, 5 hrs., 48 min ., $47 \frac{1}{2}$ sec. nearly. Hence the common, or Civil, Year, which contains only 36.5 days, is somewhat shorter than the Solar, or True, Year; and this error, being nearly $\frac{1}{4}$ oî̀ a day, would accumulate, if not corrected, so as to produce at length a complete confusion in the times at which the seasons would return, and we should have Summer, sometimes in July, sometimes in December.
Julius Casar first corrected this; and, supposing, in the then state of Science, that the Solar Year contained exactly 365 days, 6 hrs. $=365.25$ days, he ordered that every fourth year should contain 366 days instead of 365 . But this correction was really too great by .007782 of a day, since the Solar Year contained only 365.242218 days; and in 400 years this error amounted to $400 \times .007782=3.1128$ days; and hence it happened that the vernal equinox, which fell, in A.d. 325, at the Council of Nice, on March 21, fell in A.d. 1582 on March 11. Pope Gregory, in consequence, caused 10 days to be omitted in that year, making Oct. 15 to follow Oct. 4 , so that the vermal equinox fell next year
again on March 21 ; and, to prevent the recurrence of this error, he ordered that in every succeeding cycle of 400 years, 3 of the leap years should be omitted, viz. those which complete a century, when the number of hundreds is not divisible by 4 ; thus, 1600,2000 are leap years, but not $1700,1800,1900$, \&c.

The Gregorian correction was introduced in England in 1752. when it had become necessary to omit 11 days of the current year; and the Calendar thus rectified is called the New Style, the Julian reckoning (which is still retained in Russia) being the Oll Style.

This correction is too great on the other side by .000282 of a day, but the error only amounts to a day in 4000 years.
N.B.-Until a.d. 1752 , the New Year's day in England for all official records was the 25 th March : hence, we often find, in works relating to an earlier period, a double date given, as 1703-4, whenever the event referred to occurred during the month of January, February, or March, up to March 25-the former indicating the year according to the old, and the latter, according to the modern, reckoning.

DECIMAL COINAGE.

1. It may be desirable to say here a few words upon the subject of a Decimal Coinage, which has been for some time under the consideration of the Government, has been recommended for adoption by a Committee of the House of Commons, and is likely, therefore, before long, to be introduced in England, as it has been already in France and in the United States of America.
2. Two systems of decimal coinage have been proposed, and each has met with warm supporters, - the one based upon the penny or farthing, the chief coin of the poorer classes, as the unit of reference, the other upon the pound sterling or sovereign, the chief coin of the wealthier classes. Each of these systems has its own peculiar advantages and disadvantages, which we shall proceed briefly to explain. Of the two, the advantages of the latter, based upon the pound sterling, seem to be upon the whole the greatest; and as it has been specially recommended by the House of Commons' Committee, it is probably that which will be ultimately sanctioned by Act of Parliament, perhaps, with some modification of its details, as, for instance, in the names at present proposed for the new coins.
3. I. One system of decimal coinage takes the farthing for its unit of reference, and its money-table would be somewhat as follows:-
10 Farthings make 1 Doit $=10 f .=2 \frac{1}{2} d$.
10 Doits make 1 Florin $=100 f .=2 s .1 d$.
10 Florins make 1 Pound $=1000 f .=20 s .10 d$.

The coins required for use in this system would be the following: -

Copper-farthing, halfpenny, and penny, as now ;
Silver - doit ($2 \frac{2}{2} d$.), groat (5 d.) , shilling ($12 \frac{1}{2} d$.), florin ($25 d$.);
Gold -half-pound (125d.), pound (250d.).
It might also be convenient to have a dollar or doubleflorin (50d.) in silver, and a crown ($62 \frac{1}{2} d$.) in gold, so that five dollars, or four crowns, would go to make the pound. The difference in size between the doit and the groat, being much greater than that existing between the present $3 d$. and $4 d$. pieces would allow very well of their being both coined in silver.
4. The advantages of this system are the following:-
(1.) All coins now in use would be still available; and thus, while the banks would be collecting the old coins, and gradually withdrawing them from circulation, business might be carried on as usual with the old shilling, florin, and pound. This would prevent, no doubt, much confusion at first, especially among the poorer classes.
(2.) The farthing, halfpenny, and penny, would be permanently retained, and the price of food, the rate of wages, \&c., being generally fixed by the penny, much inconvenience would be saved by this means to the mass of the population.
(3.) No change need be made in the penny postage, the penny-stamp, the tolls for turnpikes, bridges, \&c., nor in any fixed payment whatever, as now existing.
5. The disadvantages of this system are the following : -
(1.) The present pound sterling, which is the usual unit of reference in all great questions of national and commercial finance, would be ultimately displaced altogether.
(2.) The accounts of bankers, merchants, \&c., kept during past years according to the old coinage, or the sums of money mentioned in statistical or other records could not be immediately compared with corresponding entries under the new system, nor without the trouble of reducing them
in each case to their equivalent expressions in the new coinage.
(3.) The process of reduction from the old coinage to the new, though easy on this system, is much more easy on the other system of decimal coinage, as will presently appear.
6. We may here complete what we have to say on this system, by explaining the process of reduction from the old coinage into the new.

To reduce a Sum of Money from the present Coinage into the new Decimal Coinage (Penny System).
Since one old pound contains 960 farthings, and one new pound contains 1000 farthings,
it follows that if a denote the number of old pounds, and b the number of new pounds, in the same given sum of money, then

$$
960 a=1000 b^{*} \text {, or } b=\frac{9 \beta}{100} a=\left(1-\frac{7}{100}\right) a=a-.04 a .
$$

Hence we may find the number (b) of new pounds, corresponding to any given number (a) of old pounds, by subtracting from a the quantity $.04 a$, which we obtain by merely multiplying a by 4, and moving the decimal point in the result two places to the left, or otherwise by deducting 4 per cent. from the amount.
Ex. 1. Reduce $£ 765$ from the old Coinage into the new (Penny) Coinage.

Here $a=765.00$

$$
\begin{aligned}
.04 a & =\frac{30.60}{b} \\
=734.40 & =734 \text { Pounds } 4 \text { Florins (new Coinage). }
\end{aligned}
$$

Since 1 shilling $=\left(\frac{1}{2} \frac{1}{0}={ }_{105}^{5}=\right) .05$ of a pound, any number of shillings in the given sum may be expressed at once as a decimal of a pound, by merely multiplying by 5 ,

* For if we denote that sum by S when reduced into farthings,

$$
\begin{aligned}
& \frac{S}{960}=a, \text { and } \frac{S}{1000}=b, \\
& \therefore S=960 a=1000 b .
\end{aligned}
$$

and setting the product to fill the two places of figures immediately after the point.

Ex. 2. Reduce $£ 34317$ s. into the new (Penny) Coinage.

$$
\begin{aligned}
\text { Here } a & =343.850 \\
.04 a & =13.754 \\
b & =339.096=330 \text { Pounds, } \begin{array}{c}
0 \text { Florins, } 9 \text { Doits, } 6 f . \\
\text { (new Coinage). }
\end{array}
\end{aligned}
$$

If there are any odd pence in the given sum, these have only to be reduced to farthings, and added in as thousandths of a pound.

Ex. 3. Redt.se $£ 409$ 11s. $8 \frac{1}{2} d$. into the new (Penny) Coinage.

$$
\text { Here } a=409.550
$$

$$
\begin{aligned}
.04 a & =\frac{16.382}{393.168} \\
8 \frac{1}{2} d . & =\frac{34}{b} \\
b=393.202 & =393 \text { Pounds, } 2 \text { Fl., } 2 \text { f. (new Coinage) } .
\end{aligned}
$$

7. The converse process of reduction from the new coinage into the old would be performed as usual.

Ex. 1. £:34.4 (new) $=\frac{4) \frac{734400 f}{1 2 \longdiv { 1 8 3 6 0 0 }} \text {. }}{\frac{2 0 \longdiv { 1 5 3 0 0 } s}{765} \text {. (old). }}$
Ex. 2. $£ 330.096$ (new) $=4) 330096 f$.

$$
\begin{aligned}
& 1 2 \longdiv { 8 2 5 2 + d } \text {. } \\
& \frac{2 0 \longdiv { 6 8 7 7 \mathrm { s } }}{343 £} 17 \mathrm{~s} \text {. (old). }
\end{aligned}
$$

Ex. 3. $£ 393.202$ (new) $=4$; $393202 f$. $12998300 \frac{1}{2}$ d.

$$
\begin{aligned}
& \text { 20)8191s. } 8 \frac{1}{2} d . \\
& 409 £ 11 s .8 \frac{1}{2} d . \text { (old). }
\end{aligned}
$$

8. II. The other system of decimal coinage takes the pound sterling, or sovereign, for its unit of reference, and its money-table would be somewhat as follows:- the mil being the $\frac{1}{1000}$ of a pound sterling $=\frac{6}{25}$ of a penny $=\frac{24}{25}$ of a farthing.

> 10 Mils make 1 Cent. $=\frac{1}{100} £=2 \frac{2}{5} d$.
> 10 Cents make 1 Florin $=\frac{1}{10} £=2 s$.
> 10 Florins make 1 Pound sterling $=20$ s.

The coins required for use in this system would be the following: -

Copper-mil ($\left.\frac{(}{25} d.\right)$, two-mils or double ($\frac{12}{25} d$. .), five-mils or doit ($1 \frac{1}{5}$ d. .) ;
Silver-cent (2 $2 \frac{2}{5}$ d.), two-cents or groat ($\left.4 \frac{4}{5} d.\right)$, five-cents or shilling (12d.), florin (2s.).
Gold-half-sovereign (10 s .), sovereign (20s.).
It might also be convenient to have a dollar or doubleflorin (4s.) in silver, and a crown (5s.) in silver or gold.
9. The disadvantages of the system are the following: -
(1.) It would abolish the coins most in use with the poor, namely, the farthing, halfpenny, penny, and $3 d ., 4 d$. , and $6 d$. pieces, leaving them only the shilling, and coins of larger value. The sixpence, indeed, might still be used for a time, as it is exactly equivalent to 25 mils; but it would ultimately be withdrawn from circulation.
(2.) It would be impossible to pay exactly in the new coinage a sum in the old coinage which contained (besides pounds and shillings) any number of pence, except it were six-pence. For $1 d .=4 \frac{1}{6} \mathrm{mils}, 2 d .=8 \frac{1}{3} \mathrm{mils}$, \&c.
(3.) Hence also it would be necessary that, wherever a rate of $1 d$. is now levied for any purpose, a change should be made, and cither 4 mils or 5 mils charged instead. Where large sums are raised by such a rate, this would produce a very considerable difference in the amount so obtained.

To take, for instance, the case of the penny postage : if 4 mils be charged instead of $1 d .=4 \frac{1}{6}$ mils, the loss to the government upon every penny would be $\frac{1}{6}$ mil, and upon a million of pounds $240000000 \times \frac{1}{6}$ mils $=40,000,000$ mils $=$ $\mathscr{\&} 40,000$; whereas, if 5 mils be charged instead of $1 d$. ., the gain to the government would be $\frac{5}{5}$ mil upon every penny, or, upon a million of pounds, £200,000.

The same would be true of tolls taken for turnpikes, bridges, \&c., which are usually rated at $1 d ., 2 d ., 3 d ., 4 d$., \&c., and the difficulty of coming to a satisfactory arrange-
ment in such cases would be much greater than in that of a government impost. For, in the latter case, it is the government, that is, the nation itself, which would be the gainer or loser by the loss or gain of the public in paying the tax; whereas, in the former, the loss or gain of the public would occasion a corresponding gain or loss to the private individuals or companies who might be the proprictors of the tolls.
10. Notwithstanding the above disadvantages, the recommendations of this system are so great, (1) from its not abolishing the shilling, florin, crown, half-sovereign, and sovereign; (2) from its allowing old accounts to be compared at sight with those of the present day, without the trouble of reduction ; (3) from the facility with which a sum may be converted on this system from the old coinage into the new ; that there is little reason to doubt its being ultimately adopted, if our present system is exchanged for any other.
11. To reduce a Sum of Money from the present Coinage into the new Decimal Coinage (Pound System).
Here the number of pounds remains unchanged; the shillings, if any, may (as before) be expressed as a decimal of a pound by multiplying by $\frac{1}{20}$ or .05 ; and, since $1 d .=4 \frac{1}{6}$ mils, if the pence be converted into farthings, the number of farthings will give the number of equivalent mils, except that 1 mil must be added whenever the number of pence is $6 d$. , or above it. If special accuracy be required, then 1 mil should be added for any number of odd pence between $3 d$. and $9 d$. ., and 2 mils for any number of odd pence above $9 d$.; by which arrangement the loss and gain upon the fractional parts of a mil, when there are several sums of money concerned, would in the long run be fairly balanced.
Ex. Reduce $£ 409$ 11s. $8 \frac{1}{2} d$. from the old Coinage into the now (Pound) Coinage.

Herc $£ 409 \mathrm{lls} . \quad 0 \mathrm{~d} .=£ 409.550$
$8 \frac{1}{2} d$. $\quad 35$
Ans. $\overline{£ 409.585}=£ 4095$ fl. (85 cents, or) 8 cents 5 mils.
12. The converse operation would be performed as usual.
£409.585
$\frac{20}{11.700}$
$\frac{12}{8.40}$
$\overline{1.60}$
Ans. $£ 409$ 11s. $8 \frac{4}{2}$ id. nearly.
13. We may exemplify the application of this system in one or two instances.

Ex. 1. Multiply $£ 37$ 17s. $4 \frac{1}{2} d$. by 43.

N.B. - The difference in these two results arises from the fact that in the one we have expressed $1 \frac{1}{2} d$. by 6 mils, instead of $6 \frac{1}{4}$ mils, its true value, and in the other we have expressed $4 \frac{1}{2} d$. by 19 mils, instead of $18 \frac{3}{4}$ mils, its true value. The second error of $\frac{1}{4}$ mil when multiplied by 43 produces an error of $10 \frac{3}{4}$ mils, which added to the first error of $\frac{1}{4}$ mil makes up the whole difference of 11 mils.

Ex. 2. Find the value of 5 cwt . 3 qrs. 14 lbs . at $£ 149 s .8 d$. per cwt.
$£ 14 \quad 9 \quad 8=£ 14.483$

14. It would be of little use to pursue this subject any further at present, while the whole matter is yet under consideration, and the details of the measure, to be here: after proposed to Parliament, are by no means fixed.

THE METRIC SYSTEM.

15. Bcsides the Decimal Coinage, there is also a Decimal System of Weights and Measures, commonly called the French or Metric System, which has been adopted by nearly all the Continental nations of Western Europe, * and will probably at no very distant day be established also in England. The first step indeed to such establishment had been already taken, when the Council of Education required in their Code of Regulations (1871) \dagger that a chart of the Metric System should be hung conspicuously on the walls of all schools under Government inspection, and that in all such schools children in Standards V and VI should know the principles of the Metric System, and be able to explain the advantages to be gained from the uniformity in the method of forming multiples and sub-multiples of the unit. \ddagger

[^4]16. The advantages in question are obvious. Thus in Avoirdupois Weight 16 drams make 1 ounce, 16 ounces make 1 pound, 28 pounds make 1 quarter, 4 quarters make 1 hundred-weight, 20 hundred-weight make 1 ton, where the numbers, indicating the maltiples of the unit of the next lower denomination which make one of the higher, are respectively $16,16,28,4,20$; and so in Troy Weight they are 24, 20, 12, in Apothecaries' Weight, 20, 3, 8, 12; and the same irregularity prevails in the Tables of Measures. But in the Metric System the number is always the same, viz. 10 , so that ten times the unit of the next lower denomination makes always one of the higher--except a slight modification in Square Measure, as shown below. By this means all laborious multiplications and divisions are avoided, such as are required under the old system, e.g. for reducing ounces to tons, or miles to inches. And arithmetical operations of all kinds are so much simplified in practice by the use of the Metric System that (to use the words of Prof. Leone Levi, Metric System, p. vi), 'Here is a tool which offers facilities for saving one-half of the time in arithmetical education, and one-fourth, or one-third, of the time spent in all the transactions which include calculations of weights and measures.'. Being, moreover, so generally employed on the Continent, it is very desirable, with a view to international communication, that it should be as soon as practicable adopted also in England. And, in fact, it is already used exclusively in some popular scientific class-books, and a knowledge of it is required by Examiners in Physics and Chemistry.
inconsistency, as tho law now stands, whilst the restriction is removed against contracting in terms of the Metric System, any person using such weights and measures for the purpose of buying and selling in shops and other places subject to the visits of Inspectors of Weights and Measures, or haring them in his possession, is liable to have them seized and to conviction and forfeiture.' Prof. Leone Levi, Theory and Practice of the Metric System, p. 6.
17. The Metric System is so called from the French word mètre (derived from the Greek metron, ' measure '), the name given to a line of a certain length ($39 \cdot 37$ inches, rather more than a yard), which was fixed upon in 1799 by the French Legislature as the standard unit of linear measure, and
 which was at that time supposed to be the ten-millionth part of the distance from the Equator to the Pole. It has been since found, however, that the measurement of the Earth's circumference then made was not quite correct. And, consequently, the Metre, as originally determined by that measurement, is really an arbitrary length, like the English inperial yard.
18. The Metric System has four principal units, all depending on the metre.

1. The Metre ($39 \cdot 37$ inches) is the unit of measures of length.
2. The Are (120 square yards), the square of ten metres, is the unit of measures of surface.
3. The Litre (61 cubic inches), the cube of the tenth of a metre, is the unit of measures of capacity.
4. The Gram ($15 \frac{1}{2}$ grains) is the unit of measures of weight, and is the weight in vacuo of so much water at its greatest density as would fill the cube of the hundredth part of a metre.
5. The standard Metre is a platinum bar, and the standard Kilogramr (p. 161) a platinum cylinder, which are preserved carefully in the Hôtel des Archives at Paris. Exact copies of them are deposited at the Conserratoire
des Arts et Métiers, and are used to verify the metric standards for foreign countries. But England possesses two platinum copies of the standard Metre, deposited with the Royal Society in London, and a platinum copy of the standard Kilogram, deposited at the Standard Department. Besides these, brass copies of the Metre, Kilogram, and Litre, have been carefully made, and presented by the French to the British Government, and are now deposited at the office of the Warden of the Standards.
6. Each unit has its decimal multiples and sub. multiples, as follows:-

	Length	Surface	Capacity	Weight
1000	kilometre		kilolitre	kilogram
100	hectometre	hectare	hectolitre	hectogram
10	dekametre	...	dekalitre	dekagram
1 *	metre	ARE	rre	gram
$\cdot 1\left(=\frac{1}{10}\right)$	decimetre		decilitre	decigram
$\cdot 01\left(=\frac{1}{100}\right)$	centimetre	centiare	centilitre	centigram
$001\left(=\frac{1}{1000}\right)$	millimetre		millilitre	milligram

21. The following are the tables of measures employed in the Metric System, with their respective units.

I. Measures of Length or Linear Measure.

The unit of Linear Measure is the Metre $=39 \cdot 37$ inclies, or 3.28 feet, or 1.09 yard (more correctly 39.3708 in . $=3 \cdot 2809 \mathrm{ft} .=1 \cdot 0936 \mathrm{yds}$.).

10 millimetres make 1 centimetre.		
10 centimetres	,	1 decimetre.
10 decimetres	$"$	1 metre.
10 metres	$"$	1 dekametre.
10 dekametres	$"$	1 hectometre.
10 licctometres	,	1 kilometre.
10 kilometres	,	1 myriometre.

Hence, in order to reduce from one denomination to another, the French arithmetician merely throws the decimal point one or more places to the right or left as the case
may require. Thus $98765 \cdot 4321$ metres $=98765432 \cdot 1$ millim. $=9.87654321$ myriom. ; whereas under the English system, in order to reduce 987654321 inches to leagues, we should have to divide by $12,3,5 \frac{1}{2}, 40,8,3$, successively, a very laborious process.
N.B. The delametre (10 m . or 100 decim. $=32.8 \mathrm{ft}$. or 10.9 yds .) is used as a chain in surveying, and is divided into 50 links, each containing 2 decim.

The lilometre ($1000 \mathrm{mr} .=1093 \cdot 6 \mathrm{yds}$.) is nearly 5 furlongs ($1100 y$ ds.), so that 8 kilom. $=5$ miles nearly.
The myriometre (10 kilometres or $10,000 \mathrm{~m}$.) $=50$ furlongs, or $6 \frac{1}{4}$ miles nearly (more nearly $=10936 y d s$. or $6 \frac{1}{5}$ miles).

II. Measures of Surface or Square Measure.

The unit of Square Measure is the Are or square dekametre, that is a square of which the side is a dekametre $=10$ metres, and which therefore contains (p. 26) 100 square metres $=119 \cdot 6$ square yards.
100 centiares (square metres) make 1 are.
100 ares $(=10,000$ square metres) " 1 hectare.

III. Measures of Solidity or Cubic Measure.

The unit of Cubic Measure is the Stere or cubic metre $=61027$ cubic inches, or 35.3166 cubic feet, or 1.30802 cubic yard, nearly.

> 10 decisteres make 1 stere. 10 steres $\quad, \quad 1$ dekastere.
N.B. These measures are chiefly used for wood and carpontry.

IV. Measures of Weight.

The unit of Weight is the Gram, which is the weight in vacuo of 1 cubic centimetre of distilled water at its greatest density, viz. at the temperature of 4° of the centigrade thermometer $=15 \cdot 43234$ grains or $15 \frac{1}{2}$ grains, nearly.

10 milligrams mak	1 contigram.
10 centigrams	1 decigram.
10 decigrams	1 gram .
10 grams	1 dekagram.
10 dekagrams	1 hectogram.
10 hectograms	1 kilogram.
10 kilograms	1 myriogram

N.B. The kilogram or kilo, as it is often called, $=15432 \cdot 34$ grains $=2 \frac{1}{3} \mathrm{lbs}$. Av. (15,400 grains) nearly, is the weight usually employed on Continental railways; and the half-kilo ($=1 \frac{1}{10} \mathrm{lb}$. Av.) is also generally used as a weight on the Continent.

The centner $=50$ kilos. $=771,617$ grains $=110 \frac{1}{4} \mathrm{lbs}$. Av. (771,725 grains) $=1 \mathrm{cwt}$. (112 lbs.) nearly.

The quintal $=10$ myriogr. or 100 kilos. $=220 \frac{1}{2}$ lbs. Av. $=2 \mathrm{cwt}$. nearly.

The millier or tonue $=10$ quintals or 1,000 kilos $=2205$ lbs., or 20 cwt., or 1 ton, nearly.

V. Measures of Capacity.

The unit of Capacity is the Litre or cubic decimetre $=61.027$ cubic inches $=1.76$ pint.

10 centilitres make 1 decilitre.

10 decilitres	$"$	1 litre.
10 litres	$"$	1 dekalitre.
10 dekalitres	$"$	1 hectolitre.
10 hectolitres	$"$	1 kilolitre.

N.B. The hectolitre $=100$ litres $=176$ pints $=22$ gallons, or 23 bushels, nearly.
22. Since 1 decimetre $=10$ centimetres, therefore (p. 28) a cubic decimetre or litre $=1000$ cubic centimetres. Hence the weight in vacuo of a litre of distilled water at its greatest density is the weight of 1000 cubic centimetres of such water, or 1000 grams, that is to say, the weight of a litre of such water is 1 kilogram.

In like manner, since 1 metre $=10$ decimetres, therefore the weight of a cubic metre of such water is that of 1000 cubic decimetres, viz. 1000 kilos or 1 millier. Thus a mass of rock 4 metres long, 3 metres wide, and 2 metres deep, would contain $(4 \times 3 \times 2=) 24$ cubic metres, and fill 24 kilolitres; and as this quantity of water would weigh 24 milliers, the weight of the mass in question would be found at once by multiplying this weight by the number which expresses the specific gravity of the rock compared with water.
23. A metric quantity may be read in rarious ways, in terms of one denomination or of more than one, at pleasure. Thus $35 \cdot 703$ metres may be read as 35 metres 7 decim. 3 millim., or as $3 \cdot 5703$ deliam., or as 357 decim. 3 millim., or as 035703 kilom.

But, in writing a metric quantity from dictation, it is neoessary sometimes to insert cyphers, as in the following examples:-

Thirteen kilometres, seven grams $=13 \cdot 007$ kilometres or 13007 grams ;

Seven hectolitres three centilitres $=7.0003$ hectolitres or 700.03 litres;

Seven hectares six ares five centiares $=706.05$ ares or 7.0605 hectares.

But it should be noted carefully that in Square Measure such an expression as $5 \cdot 7 \mathrm{sq} . \mathrm{m}$. means-not 5 sq . metres 7 sq. decim., but-5. $7\left(=5 \frac{7}{10}\right)$ sq. metres $=5$ sq. metres 70 sq. decim. (since 1 sq. metre $=100$ sq. decim.). Similarly in Cubic Measure $5 \cdot 07 \mathrm{cub}$. m. means $5_{5^{\frac{7}{0}} \mathbf{0}} \mathrm{cub}$. metres $=5 \mathrm{cub}$. metres 70 cub . decim. And conversely, since 1 sq . metre $=100 \mathrm{sq}$. decim. and 1 cub . metre $=1000 \mathrm{cub}$. decim., therefore 9 sq . metres 5 sq . decim. $=9.05 \mathrm{sq}$. m ., and, in like manner. 8 cub . metres 91 cub . decim. $=8.091$ $c u b$. m.
24. Since the metre $=1.09$ yard or $1_{10}^{\frac{1}{10}}$ yard, nearly, and the half-kilo $=1_{10}^{10} \mathrm{lb}$. Av., nearly, it follows, that when goods are sold by the metre or half-kilo, the prices should be 10 per, cent. higher than when they are sold by the yard or pound respectively. In like manner since the centner (50 kilos.) $=110 \frac{1}{4} \mathrm{lbs}$., which is less than a hundred-weight (112 lbs.) by $1 \frac{3}{4}, ~ l b .=\frac{1}{64} c w t$., the prices of goods, when sold by the centner or millier (20 centners), should be $\frac{1}{64}$ less than when sold by the hundred-weight or ton (20 cwt .) respectively, which amounts to a reduction of $2 \frac{3}{4} d$. in the $£$.
25. The metre, half-kilo, centner, and millier, might be called the metric yard, metric pound, metric hiundred-weight, metric ton, respectively. And the following names, corresponding to the names of 'English measures, are given by Prof. Levi, Metric System, p. 64.

Metric	gue (half-myriometre)	$=$		miles.
"	mile (kilometre)	$=$	1094	yards.
"	furlong (double-hectometre)	=	219	
"	chain (double-dekametre)	$=$	21.9	"
	pole (half-dekametre)	$=$	$5 \cdot 5$	
	fathom (double-metre)	$=$	6.50	
"	cubit (half-metre)	=	$1 \cdot 6$	
	hand (decimetre)	$=$		inches.

26. The following is a table of approximate equiralents in the English and Metric Systems, where great accuracy is not required (Prof. Galbraith, as quoted by Prof. Levi, Metric System, p. 49).

Length.
1 metre $=3$ feet 3 inches 3 eighths. 64 metres $=70$ yards.

Linear, Square, and Cubic Measure.
10 metres $=11$ yards.
10 sq. metres $=12$ sq. yards.
10 cub. metres = 13 cub. yards.

> Land Measure.
> 1 are $=4$ perches. 10 ares $=1$ rood.
> 1 hectare $=2 \frac{1}{2}$ acres,

Weight.

1 kilogram $=2 \frac{1}{5} \mathrm{lbs}$. Av. 30 grams $=17$ drams Ar.

Liquid and Dry Measure.
$4 \frac{1}{2}$ litres $=1$ gallon.
1 hectolitre $=22$ gallons.
27. The following table gives a more accurate list of the equivalents of the principal metric measures in terms of English measures, and vice versâ.

$$
\begin{aligned}
& \text { Measures of Length. } \\
& \text { Millimetre }=03937 \text { inch. } \\
& \text { Centimetre }=3937 \text { " } \\
& \text { Decimetre }=3.937 \text { inches. } \\
& \text { or } 32809 \text { foot. } \\
& \text { Metre }=39.37079 \text { inches. } \\
& \text { or } 3 \cdot 28089 \text { feet. } \\
& \text { or } 1.09363 \text { yard. } \\
& \text { Dekametre }=10.93633 \text { yards. } \\
& \text { or } 1 \cdot 98842 \text { pole. } \\
& \text { Inch }=0254 \text { metre. } \\
& \text { Foot }=30479 \text {, } \\
& \text { Yard }=91438 \text {, } \\
& \text { Pole } \quad=5.0291 \text { metres. } \\
& \text { Chain (}{ }^{4} \text { p.) }=20 \cdot 1164 \text { " } \\
& \text { Furlong }(10 \text { p. })=201 \cdot 1644 \text {, } \\
& \text { Mile }=1609 \cdot 3149 \text {, } \\
& \text { or } 16093 \text { kilom. } \\
& \text { Square decimetre }=15.50059 \text { square inch. } \\
& \text { Square metre }=1 \cdot 19603 \text { square yard. } \\
& \text { or } 10 \cdot 76429 \text { square feet. }
\end{aligned}
$$

Hectare	=	2.47114 acres.
Are	$=$	$\cdot 02471$ acre.
Square inch	$=$	6.45137 square centimetres.
Square foot	=	$9 \cdot 28997$ square decinetres.
Square yard	=	-8361 sq. metre (contiare).
Square pole	$=$	-2529 are.
Rood	=	$10 \cdot 11678$ ares.
Acre	=	40.4671 "
	or	-40467 hektares.

Measures of Solidity.
Cubic decimetre $=61.02705$ cubio inches.
Cubic metre $=35.31658$ cubio fect. or 1-30802 cubic yard.
Cubic inch $=16.38618$ cubic centimetres.
Cubic foot $=28.3153$ cubio decimetres.
Cubic yard $=7645$ cubic metre.
Measures of Weigitt.

Gram	$=$	$\cdot 56438 d r$.
	or	-03527 ounce Avoirdupois.
	or	$15 \cdot 43234$ grains.
	or	-64301 dut.
Hectogram	=	$3 \cdot 52739$ ounces Avoirdupois.
	or	$3 \cdot 21507$ ounces Troy.
Kilogram	=	35.2739 ounces Avoirdupois.
	or	$2 \cdot 2046$ pounds Avoirdupois.
	or	$2 \cdot 6792$ pounds Troy.
	or	-01968 hundred-weight.
Millier	=	-98420 ton.
Grain	$=$	-0648 gram.
Pennyweight	$=$	$1 \cdot 55517$ "
Ounce Troy	=	$31 \cdot 1035$ grams.
Pound Troy	=	373.24195
Dram	=	$1 \cdot 77184 \mathrm{gram}$.
Ounce Avoirdupois	$=$	$28 \cdot 34954$ grams.
Pound Avoirdupois	$=$	453.50265
Stone (14 lls.)	$=$	6.3503 kilometres.
Quarter (28lss.)	$=$	12.70059 "
		I

$$
\begin{array}{ll}
\text { Hundred-weight } & =50.80238 \text { kilometres. } \\
\text { Ton } & =1016.0475 \text { ". } \\
& \text { or } 10.160475 \text { quintals. } \\
& \text { or } 1.0160475 \text { millier. }
\end{array}
$$

Measures of Capactit.

Centilitre $=$	-07043 gill.
Decilitre	-17607 pint.
Litre	1.7607
or	-88038 quart.
or	-22009 gal.
Dekalitre $=$	$2 \cdot 20096$
Hectolitre $=$	22.0096 "
cr	$2 \cdot 751208$ uns.
or	-343901 gr.

Pint $=56755$ litre.
Quart $=1 \cdot 13510$ "
Gallon $=4.54041$ litres.
Bushcl $=3.63233$ dekalitres.
or 36.3233 litres.
Quarter $=2 \cdot 90586$ hectolitres.
or $29 \cdot 0586$ dekalitres.
or $290 \cdot \mathrm{~s} 86$ litres.

NOTES AND EXAMINATION-PAPERS

on

A RITHMETIC.

NOTES.

Note I.

Casting out the Nines, as a method of Proof for Multiplication, depends on the two following considerations:-
(i.) Any n° divided by 9 leaves the same remainder that would be left if the sum of its digits were divided by 9.

$$
\text { Thus, } 687 \div 9 \text { leaves } 3 \text {; and }(6+8+7) \div 9 \text { leaves } 3 \text {. }
$$

(ii.) If each of two nos be divided by any n°, say 9 , and the product of their remainders be taken, this product divided by 9 will leave the same remainder that would be left if the product of the two nos were divided by 9 .

Thus, $1547 \div 9$ leaves 8 , and $687 \div 9$ leaves 3 ; then, $(8 \times 3) \div 9$ leaves 6 , and $(1547 \times 687) \div 9$ also leaves 6 .

The first of these considerations will appear just from the following illustration.

10 , or 100 , or 1000 , or any other power of 10 , is an exact n^{0} of nines +1 ; therefore,

80 is an exact n^{0} of nines +8,		
600 is	ditto	+6,
680 is	ditto	$+6+8$,
687	is	ditto
dito	$+6+8+7 ;$	

so that $687 \div 9$ leaves the same remainder as $(6+8+7) \div 9$.
It is evident, then, that to ascertain what remainder would be left after dividing any n° by 9 , we need only sum the digits of the n^{0}, and cast out 9 as often as it arises in the addition.
The second consideration may be illustrated by the following example:-

$$
\begin{aligned}
& \text { Since } 1547=171 \text { nines }+8, \\
& \text { and } \quad 687=76 \text { nines }+3,
\end{aligned}
$$

therefore, 1547×687 is equal to
$(171$ nines +8$) \times 76$ nines, [which gives an exact n^{\bullet} of nines]
$+(171$ nines +8$) \times 3$; [which gives an exact n° of nines $\left.+8 \times 3\right]$; evidently, therefore, the whole product is an exact n° of nines $+8 \times 3$, ot +24 , or +6 ; the 6 being obtained by adding the digits 2 and 4 .

Note II. .

When a divisor is composed of two or more factors, and the quotient is found by using those factors successively, the remainders after the several divisions may be converted into the full remainder in the manner employed in the following example:-

Divide 39711 by 35 , or by 5×7.
$\left.\begin{array}{l}\frac{5) 39711}{7 \lcm{7942} \ldots 1} \\ 1134 \ldots 4\end{array}\right\} \begin{aligned} & 5 \times 4+1 \\ & =21 \mathrm{rem} .\end{aligned}$
Or, $7 \lcm{39711}$
5) $5673 \ldots 0\}^{7 \times 3+0}$
$1134 \ldots 3\}=21 \mathrm{rem}$.

Quotient, $1134 \frac{21}{35}$, or $1134 \frac{3}{5}$.
Dividing by 5 first, the successive remainders are 1 and 4; or, dividing by 7 first, they are 0 and 3 ; and to find the entire remainder, we multiply the first divisor by the second remainder, and to the product add the first remainder.

The reason of this procedure may be shown thus:-
We are required to find how many thirty-fives are contained in 39711 units. Dividing first by 5 units we find that 39711 is $=7942$ fives + 1 unit; and then dividing the fives by 7 we find them $=1134$ thirty-fives +4 fives; so that 37911 units are equal to

1134 thirty-fives +4 fives +1 unit, $=1134$ thirty-fives +21 units;
$=1134$ thirty-fives $+\frac{21}{35}$ of $35 ;=1134 \frac{21}{35}$ thirty-fives.
In the second form of the division we have 0 as the first remainder: in such instances, the second remainder placed over the second divisor gives the fractional part of the quotient in a simpler form.

Note III.

Strictly, in reducing $£ 37$ to shillings, we multiply-not $£ 37$ by 20 , which would produce $£ 740$, but 37 by 20 ; the reasoning is that $£ 37$ contains 20 times as many shillings as pounds.

Note IV.

The multiplication of dimensions is frequently performed by what is called the method of Duodecimals, which subdivides both square fect and cubic feet into denominations called primes, seconds, thirds, \&cc.; 12
superficial primes being $=a$ square foot, 12 cubic primes $=a$ cubic foot, and, in both eases, 12 seconds $=a$ prime, 12 thirds $=a$ second, $\& c$.

Primes, scoonds, \&e., are marked thus,

$$
15 \text { sq. ft. } 7^{\prime} 10^{\prime \prime} 5^{\prime \prime \prime} ; 15 \text { cub. ft. } 7^{\prime} 10^{\prime \prime} 5^{\prime \prime \prime} .
$$

In the first of these expressions the seconds evidently are square inches, for they are 144 ths of a square foot; and if to these we add the 7 primes, or twelfths of a sq. foot, $=84$ one-liundred-and-forty-fourths of a sq. foot, we have 94 sq . inches, and the whole expression is equivalent to $15 \mathrm{sq} . \mathrm{ft} .94 \frac{5}{12} \mathrm{sq}$. in.

In the second of the expressions the thirds are evidently culic inches, for they are 1728 ths of a cubic foot, and if to these we add the 7 primes and 10 seconds, which are $=\frac{7}{12}+\frac{10}{144}=\frac{1008}{1728}+\frac{120}{1728}$ of a cubic foot, we have $1128+5$ cubic inches, and the $w h o l e=15 \mathrm{cub}$. ft. 1133 cub . in.

Suppose, now, it is required to find by duodecimal multiplication the area of a rectangular surface, 37 ft .7 in . by 5 ft .9 in .

Here, since $37 \mathrm{ft} .7 \mathrm{in} .=37 \frac{7}{12} \mathrm{ft}$, if the rect-

ft.	pr.	
37	7	
5	9	
187	11	
28	2	3

The entire product is 216 sq . ft . 1 prime 3 seconds.
If 12 ths of an inch, commonly called parts, occur in cither of the factors, the duodecimal multiplication is performed in the same way.

Let it be required to multiply 28 ft .9 in .6 pts . by 11 in .9 pts .

ft .	pr.	sec.			It should be observed that the
28	9	6			
0	11	9			ducted in the same way as the
26	4	8	6		
1	9	7	1	6	preceding one, is equivalent to
		$3^{\prime \prime}$		$6^{\prime \prime \prime}$	finding first $\frac{11}{12}$ of the multiplicand,

then $\frac{9}{144}$ or $\frac{1}{16}$ of it, and that we do not really multiply one concrete quantity by another, which would be absurd.

Note V.

For a demonstrative arithmetical cxample of the process of finding the greatest common measure of two numbers, see IIunter's Art of Teaching Arithmetic, p. 64. Λ very slight acquaintance with Algebra will enable the student to understand the following illustration of the gencral Rule for finding the G.c.m.

Let it be required to determine the G.c.m. of 1275 and 561.
The G.C.m. of 1275 and 561 evidently cannot exceed 561 , and must be $=561 \div$ some factor of 561 . Let x denote that factor. Therefore, the G.c.m. of the proposed nos will be $\frac{561}{x}$, when x has the least value that allows $\frac{561}{x}$ to measure 1275.
We hare to find, then, the least value of x making $1275 \div \frac{561}{x}$, or $\frac{1275 x}{561}$ a whole n°.
Now, $\frac{1275 x}{561}=2 x+\frac{153}{561}$ of x; so that $\frac{153}{561}$ of x is a whole n^{0}. Put $\frac{153}{561}$ of $x=\mathrm{A} ; \therefore x=\frac{561}{153}$ of $\mathrm{A},=3 \mathrm{~A}+\frac{102}{153}$ of A ;
$\therefore \frac{102}{153}$ of $A=a$ whole n^{0}, which we may call B;
$\therefore A=\frac{153}{102}$ of $\mathrm{B}=\mathrm{B}+\frac{51}{102}$ of B ;
similarly, $\frac{51}{102}$ of $\mathrm{B}=\mathrm{C} ; \quad \therefore \mathrm{B}=\frac{102}{51}$ of $\mathrm{C},=2 \mathrm{c}$ exactly.
Now, we should get $B=a$ whole n°, whatever whole n^{0} we might choose for the value of c ; but we must take $\mathrm{c}=1$, the lowest whole n°, that we may obtain the lowest integral value of x.

Hence, $\frac{1275 x}{561}=\frac{1275}{561}$ of $\frac{561}{153}$ of $\frac{153}{102}$ of $\frac{102}{51}$ of $1=\frac{1275}{51}$;
$\therefore \frac{x}{561}=\frac{1}{51}$, or, $\frac{561}{x}=51$, the G.c.m. required.
From the above analysis, then, it appears that the G.c.mr. of two non is obtained by dividing the greater by the less, then the less by the remainder, and so on as prescribed by the Rule.

To determine the G.c.n. of three nos, find that of two of them, and then that of the result and the third number. Thus, the G.c.m. of 12528, 16182, and 13804 , will be found $=58$; for that of the first two $n 0^{\circ}$ is 522 , and that of 522 and 13804 is 58.

To find the g.c.n. of fractional quantities, as, for example, of $8 \frac{3}{4}$ and
$19 \frac{5}{6}$, express them as fiactions having a common denominator, then find the G.C.m. of the numerators, and under it write the common denomina. tor. The result for the supposed example will be $\frac{7}{12}$, which is contained 15 times in the first n^{0} and 34 times in the second.

Note VI.

For the conversion of a mixed circulating decimal to a vulgar fraction, the following rule is self-demonstrating:-Multiply the givers decimal by 10 , or 100 , or 1000 , \&c., according as there are one, two, three, \&c., decimal places before the circulating period; express the result as a mixed fraction, and then divide it by the 10 , or 100 , \&c., previously used as a multiplier, which will evidently restore the value of the given expression.

Thus, to convert . $03 \dot{4}$ and $.273 \dot{4} 5$ to vulgar fractions:-
(i,) $.03 \dot{4} \times 100=3 . \dot{4}=3 \frac{4}{9}$;

$$
\text { and } 3 \frac{4}{3} \times \frac{1}{100}=\frac{31}{900} .
$$

(ii.) $.27345 \times 1000=273.45=273 \frac{45}{99}=273 \frac{5}{11}$;

$$
\text { and } 273 \frac{5}{15} \times \frac{1}{1000}=\frac{3008}{11000}=\frac{376}{1375} \text {. }
$$

What is further included in the usual Rule has reference to an easy method of multiplying by the denominators $9,99,999, \& c$.

Thus, $273 \frac{45}{95} \times \frac{1}{1000}$ being $=\frac{273 \times 99+45}{99 \times 1000}$,

$$
\text { and } 273 \times 99 \text { being }=273 \times(100-1)
$$

we have $\frac{27300-273+45}{99000}=\frac{27345-273}{99000}$

$$
=\frac{27072}{99000}=\frac{3008}{11000}=\frac{376}{1375} .
$$

Note VII.

The series proposed for calculation in Ex. 47, 48, is one by which the ratio of the circumference of a circle to its diameter may be approximately computed. Sce Colenso's Plane Trigonometry, Part II. p. 7. The result signifies that the circumference of any circle is nearly 3.14159 times the diameter.

The scries proposed for calculation in Ex. 47, 50, is that whereby what is called the base of the Napicrian system of Logarithms is approximatcly computcd. See Colenso's Plane Trigonometry, Part I. p. 121, or Hunter's T'reatise on Loyarithms, p. 55. The result signifies
that the Napierian Logarithm of any given number is that power of 2.7182818 which when calculated produces the given number.

Note VIII.

Questions in Proportion can always be worked independently of the artificial Rule of stating, and though sometimes not so conveniently, yet always in a more satisfactory way as regards simplicity of demonstration. It will appear from the following examples that a knowledge of the first principles or fundamental rules of Arithmetic is sufficient for the solution of all problems in the Rule of Three.
(1) If 15 lbs . of salt cost 1 s .6 d ., what cost 25 lbs .?

Cost of $15 \mathrm{lbs},=18 d$.
(2) If 25 lbs . of salt cost $2 s .6 d$. , what quantity cost $1 s .6 d . ?$

$$
\text { No. of lls. for } 30 \mathrm{~d} .=25 \mathrm{lbs} \text {. }
$$

$$
1 d_{0}=\frac{1}{80} \text { of } 25 \mathrm{lbs} .
$$

$$
18 \mathrm{~d} .=\frac{18}{30} \text { of } 25 \mathrm{lbs} .
$$

$$
\frac{25 \mathrm{lbs} \times 18}{30}=5 \mathrm{lbs} \times 3=15 \mathrm{lbs} . \text { Ans }
$$

(3) What is the coach fare for 130 miles at the rate of $£ 198.4 d$. for 85 milcs?

$$
\begin{gathered}
\text { Fare for } 85 \text { miles }=29 \frac{1}{3} s . \\
" \quad 1 \text { mile }=\frac{1}{85} \text { of } 29 \frac{1}{3} s . \\
" \quad 130 \text { miles }=\frac{1300}{85} \text { of } 29 \frac{1}{3} s .
\end{gathered}
$$

(4) If 112 sheep were grazed in a field for 9 days, how long might 84 sheep have been grazed in the same field?

Time that 112 sh. were grazed $=9 \mathrm{da}$. 1 sh. might be grazed $=112$ times 9 da.
" 84 sh. $\quad, \quad,=\frac{1}{84}$ of 112 times 9 da.

$$
\frac{9 \text { da. } \times 112}{84}=3 \text { da. } \times 4=12 \text { da. Ans. }
$$

(5) A person comileted a journcy in 32 days, travelling 8 hours a day; how long would he have taken to do the same, travelling only 6 hours a day?

> No. of days at 8 hrs. a day $=32$ da.
> " at 1 hr a day $=8$ times 32 da.
> $" \quad$ at 6 hrs. a day $=\frac{1}{6}$ of 8 times 32 da.

$$
\frac{32 \text { da. } \times 8}{6}=\frac{128}{3}=42 \frac{2}{3} \text { da. Ans. }
$$

$$
\begin{aligned}
& 1 \mathrm{lb} .=\frac{7}{15} \text { of } 18 \mathrm{~d} . \\
& 25 \mathrm{lbs} .=\frac{25}{15} \text { of } 18 \mathrm{~d} . \\
& \frac{18 d . \times 25}{15}=6 d . \times 5=2 \mathrm{~s} .6 \mathrm{~d} . \text { Ans. }
\end{aligned}
$$

(6) Three partners with a joint stock of $£ 1026 \mathrm{lls}$. $6 d$. gain $£ 2876.5$.; what share of the gain falls to one of the partners whose stock is £365 17s.?

Gain on $£ 103611 \mathrm{~s} .6 \mathrm{~d}$. (or 41463 sixp.) $=5746 \mathrm{~s}$.

$$
\begin{aligned}
& " \text { on } 1 \text { sixp. }=\frac{1}{41463} \text { of } 5746 s . \\
& " \text { on } £ 36517 s .0 \mathrm{~d} .(\text { or } 14634 \text { sisp.) } \\
&=\frac{14634}{41463} \text { of } 5746 \mathrm{~s} . \\
& \begin{aligned}
& \frac{5746 s .}{} \times 14634 \\
& 41463= \\
& \frac{5746 s . \times 1626}{4607}=£ 101 \text { ss. Ans. }
\end{aligned}
\end{aligned}
$$

(7) If $10 \frac{5}{7} \mathrm{lbs}$. of sugar cost $4 \frac{11}{16} \mathrm{~s}$., what will $3_{3}^{2} \mathrm{cwt}$. cost?

Cost of $\quad 10 \frac{5}{7} \mathrm{lbs} .=4 \frac{11}{16} \mathrm{~s}$.

$$
\begin{aligned}
& \text { "of } \quad 1 \mathrm{lb} .=\frac{7}{75} \text { of } \frac{75}{16} s_{0}=\frac{1}{16} \text { of } 7 s . \\
& \text { " of } 112 \times 3 \frac{2}{3} \mathrm{lbs}=\frac{112 \times 3 \frac{2}{3}}{16} \text { of } 7 \mathrm{~s} .
\end{aligned}
$$

$$
\frac{7 s . \times 112 \times 11}{16 \times 3}=\frac{49 s . \times 11}{3}=£ 819 \mathrm{~s} .8 \mathrm{~d} . \text { Ans. }
$$

Note IX.

In calculating the amount of any sum of money, by compound interest, for any n° of years, at 4 per cent. per annum, we add to the original principal $\frac{4}{100}$ of itself to obtain the 2 nd principal, then to this principal we add $\frac{4}{100}$ of itself to obtain the 3rd principal, and so on.

Now, adding to any $n^{\circ} \frac{4}{100}$ of itself is the same as multiplying it by 1_{1}^{100}, or by 1.04 ; and accordingly, the amourt of $£ 750$ for 3 jears, at 4 per cent. per annum., comp. int. might be fuund thus: -

$$
\begin{aligned}
& £ 750 \times 1.04 \times 1.04 \times 1.04, \\
& =£ 750 \times 1.04^{3}=£ 750 \times 1.124864, \\
& =£ £^{2} 43.648 .
\end{aligned}
$$

Similarly, the amount of $£^{7} 50$ for 4 yrs. at 5 per cent. Would bo $\mathfrak{f e}^{7} 50 \times 1.05^{4}$. And, gencrally, to find the amount of $£$, by comp. interest, for any n^{0} of years, at any annual rate, we may first add a hundredth of the rate to 1 , then raise the sum to that power which is denoted by the n° of years, and then maltiply by p.

Suppose that, in this way, we lave to find the compound interest of $£^{2} 956 s$. $8 d$., for 3 yrs., at 5 per cent, per ann., payable half-ycarly:the rate is here intended to denote $2 \frac{1}{2}$ per cent. per half-y car; for 6 halfyears.

We have accordingly to find the 6th power of 1.025 ; and this we could obtain at once from compound interest Tables; or we could very easily calculate it from a Table of Logarithms. The simplest form of the arithmetical process is as follows; the divisor 40 determining the interest in each case, because $2 \frac{1}{2}$ is $\frac{1}{40}$ of 100 .

$\begin{aligned} & \text { 40) } 1.025 \\ & .025625 \\ & \hline \end{aligned}$	Aint. of $£ 1$ for $1 \mathrm{hf} . \mathrm{yr}$.			
$\begin{aligned} & 4 0 \longdiv { 1 . 0 5 0 6 2 5 } \\ & .0262656 \end{aligned}$	Do.	"	2	do.
$\begin{array}{r} 4 0 \longdiv { 1 . 0 7 6 8 9 0 6 } \\ .0269223 \end{array}$	Do.	,	3	do.
$\begin{array}{r} 4 0 \longdiv { 1 . 1 0 3 8 1 2 9 } \\ .0275953 \end{array}$	Do.	"	4	do.
$\begin{array}{r} 4 0 \longdiv { 1 . 1 3 1 4 0 8 2 } \\ .0282852 \end{array}$	Do.	"	5	do.
1.1596931	Do.	"	6	do.

Hence the compound interest of $£ 1$, at the end of the 3rd year, is $£ .1596934$; which multiplied by $95 \frac{1}{3}$ gives the comp. int. of $£ 956 \mathrm{~s}$. 8 d . $=£ 15.2241$, or $£ 154 s .5 .78 \mathrm{~d}$. Ans.
Now, suppose it is required to find what principal at $2 \frac{1}{2}$ per cent. per annum, comp. int., will in 6 yrs. amount to $£ 1103 s .5 d$.: that is, what is the present worth, by comp. int., of $£ 1103 s .5 d$. payable in 6 yrs :-we have

$$
\begin{aligned}
& 1.025^{6} \times \mathrm{P}=110.170833 ; \\
\therefore & 110.170833 \div 1.1596934=£ 95 . \text { Ans. }
\end{aligned}
$$

Again; let it be required to find at what rate of comp. int. $£ 95$ will amcunt to $£ 1103 \mathrm{~s}$. 5 d. in 6 yrs : :-
$110.170833 \div 95=1.1596934$, the 6th root of which may be found by logarithms $=1.025$; or, $\sqrt{ } 1.1596934=1.0768906$, the cube root of which is 1.025 . Hence the rate is $2 \frac{1}{2}$ per cent. Ans.

Lastly; to find in what time $£ 95$ will amount to $£ 110.170833$, at $2 \frac{1}{2}$ per cent. per ann, comp, int.:-Here we should ascertain by logarithms what potwer of 1.025 is equal to 1.1596934 ; but when the time is an exact n^{0} of years, as in this instance, it would be found by raising 1.025 through consecutive powers till the required amount of $£ 1$ is found equal to the 6 th power, denoting the time to be 6 yrs.

Note X.

A Rule called Equation of Payments is introduced in some treatises on Arithmetic. It teaches how to ascertain the single time at which two or more debts, due at different times, might be discharged by one payment of the sum of the debts. It is merely a particular application of
the principle of Discount; and it is given in two forms, according to true discount and mercantile discount, respectively.

Examp. I owe $£ 1085$; of which $£ 651$ is duc 5 months hence, and $£ 434$ is due 8 months hence; how many months hence would one payment of $£ 1085$ discharge both debts, reckoning the use of money worth 5 per cent. per annum?

We compare the several sums by means of their present values, considering that the discount on $£ 651$ for 5 months added to the discount on $£ 434$ for 8 months, should be equal to the discount on $£ 1085$ for the time sought.

Now, according to Mercantile Discount, we have

$$
\frac{5}{1200} \text { of } £ 3255=\text { int. of } £ 651 \text { for } 5 \text { monthss }
$$

and $\frac{5}{1200}$ of $£ 3472=$ int. of $£ 434$ for 8 months;
$\therefore \frac{5}{1200}$ of $£ 6727=$ int. of $£ 1085$ for 6.2 months. Ans.

$$
\text { bccause } 6727 \div 1085=6 \cdot 2 \text {. }
$$

This method is evidently independent of the rate of interest; and hence, for equating terms of payment according to mercantile discount, we have the following

Ordinary Rule. Multiply the several debts by their times in any uniform denomination, and divide the sum of the products by the sum of the debts.

Thus, the above process is reduced to the following:-

$$
\begin{aligned}
651 \times 5 & =3255 \\
\underline{434} \times 8 & =\underline{3472} \\
\underline{6755} & \underline{6 \frac{1}{5}} \text { months. Ans. }
\end{aligned}
$$

Tho meaning of which is, that as the int. of $£ 651$ for 5 months is that of $£ 3255$ for a month, and the int. of $£ 434$ for 8 months is that of $£ 3472$ for a month, so the int. of $£ 6727$ for a month is that of $£ 1085$ for $6 \frac{1}{5}$ months.

But secondly, according to True Discount, we have

$$
\begin{aligned}
\frac{5}{12} \text { of } £ 5, \text { or } £ 2 \frac{1}{12} & =\text { disc. on } £ 102 \frac{1}{12} \text { for } 5 \text { mths. } \\
\text { or } \frac{1}{49} & =\text { disc. on } 1 ; \\
\frac{8}{12} \text { of } £ 5, \text { or } £ 3 \frac{1}{3} & =\text { disc. on } £ 103 \frac{1}{3} \text { for } 8 \text { mthss } \\
\text { or } \frac{1}{31} & =\text { disc. on } 1 ;
\end{aligned}
$$

$\therefore \frac{651}{49}=£ 13_{7}^{2}$ is the disc. on $£ 651$ for 5 mths.

$$
\frac{434}{31}=\frac{14}{£ 2} \text { is the disc. on } \underline{434} \text { for } 8 \text { mths. }
$$

We have to find, thercfore, in what time $£ 1057 \frac{5}{7}$ would produce $£ 27 \frac{2}{7}$ interest, or $£ 7404$ would produce $£ 191$.

$$
\left.\begin{array}{r}
7404: 100 \\
5: 191
\end{array}\right\}:: 12 \text { mo. }: 6 \frac{118}{617} \text { mo. Ans. }
$$

This answer, equal to about 6.19 months, is a little less than 6.2 , tho answer found according to mercantile discount; but as the method of true discount is much more laborious than the other, and in most practical questions gives a result very little less than the other, it is generally sufficient, as it is more convenient, to follow the ordinary rule.

The Rule for equating according to true discount may be given as follows:-

Find for each of the debts the discount that would reduce it to its true present value; then find the time for which the sum of the discounts would be the true discount on the sum of the debts.

For a discussion of the principle of Equation of Payments, see Hunter's Art of Teaching Arithmetic, p. 79.

Note XI.

In Paper IX. will be found a varicty of Questions relating to the come parison of the moncy of different countrics. This subject is frequently treated in books on Arithmetic under a special Rule called Exchange.

The Par of Exchange is the intrinsic value of the coin of one country as compared with a fixed sum of the money of another. The Course of Exchange is the variable sum of the money of one country actually given for a fixed sum of the money of another.

Thus, France exchanges with England a variable number of francs, averaging about 25.30 , for the pound sterling; for the actual Course of 1ixchange, being dependent on the course of trade, is in almost continual fluctuation. Moreover, as in England gold is the adopted standard of value, and France has a silver standard;-as also the values of gold and silver are not always in the same proportion, and each metal has not always the same value in both countries,-the Par itself is not invariable.

Arbitration of Exchange is the estimation of the rate of Exchange implied in the purchase of indirect Bills of Exchange, Bullion, Coins, \&c., in one country, as compared with their sale in another.

Thus, to find what arbitrated rate of Exchange is established between

London and Paris by bills on Vienna bought in London at 10 florins 1 kreutzer per $£$ sterling, and sold in Paris at 254 francs per 100 florins; a florin being $=60$ kreutzers :-

Here we have given $£ 1=601$ kreutzers, and 600 kreutzers $=25.4$ francs; $\therefore 1 \mathrm{kr}=\frac{25.4}{600} \mathrm{fr}$,
and $601 \mathrm{kr} .=25.4 \mathrm{fr} . \times 1 \frac{1}{600}=25.44 \mathrm{fr}$. per £. Ans.
Again; to find what arbitrated rate is established between London and Paris by the purchase of gold in London at 77 s. $10 \frac{1}{2} d$. per ounce standard, and the sale of it in Paris at 4 per mille premium: an ounce Troy being $=31.1$ grammes, and 1000 grammes of English standard gold being worth 3151 francs :-

Here we have 311 grammes $=10 \mathrm{oz}$., or 1 gramme $=\frac{10}{311} \mathrm{oz}$.;

$$
\therefore 1000 \text { grammes }=\frac{10000}{311} \mathrm{oz}
$$

1000 grammes bought in London for $77 \frac{7}{8} s . \times \frac{10000}{311}$;
1000 grammes sold in Paris for 3151 frs. $\times 1.004$; $\frac{6230000}{8 \times 311} s_{s}: 20$ s. :: 3163.6 fiss, 25.27 frs. nearly. Ans.

EXAMINATION-PAPERS.

Paper I.

Questions on the Introductory Pages.

1. (a) Explain the principle by which the decimal system of notation is made capable of expressing any number whatcuer.
(b) Distinguish between the arts of Notation and Numeration.
2. Add Thirteen thousand thirteen hundred and thirtecn to Scventeen thousand seventeen hundred and seventeen.
3. Subtraction may be performed (a) for the purpose of diminishing a quantity by taking away some quantity it contains, or (b) for the purpose of comparing two quantities as to their absolute magnitndes. Give properly distinctive names for the results in these two cases.
4. (a) If two numbers be equally increased, how is their difference nffected? A father is 3 score and 5 years old, and his son is 37 ; what is the difference of their ages? and what will be the diffcrence of their ages 10 years hence? (b) Apply these considerations to explain the process of borrowing ten and carrying one in subtraction.
5. (a) What name is given to two or more numbers connected by multiplication? (b) Show how six sevens are equal in amount to 7 sixes. (c) Show why multiplying successively by 6 and 7 gives the same result as multiplying by 42 .
6. What are the methods commonly used for proving the accuracy of multiplication? How might division (if the pupil understood that process) be used as a trial of correctness in multiplication?
7. (a) Divide 27564 by 21 in two ways:-resolving 21, first, into successive divisors 7 and 3 , and secondly, into successive divisors 3 and 7 . (b) Explain by reference to your work the usual process of finding the full remainder by means of the two partial remainders.

Paper II.

Questions on Articles 1 to 20.

1. In reducing $£ 7$ to shillings what multiplicr, strictly considered, do we employ? Explain.
2. In dividing a concrete quantity by an abstract number, as for example in finding the 8th part of $£ 37 \mathrm{~s} .6 \mathrm{~d}$. (Colenso, p. 24), which of the expressions is properly the quotient? and why?
3. How would you reduce crowns to guineas? florins to crowns? sovereigns to guineas? yards to English elię lbs. Avoirdupois to lbs. Troy?
4. (a) Under what conditions may one conereie quantity be added to another? subtracted from another? divided by another?
(b) Why cannot one concrete quantity be multiplied by another?
5. (a) How is the square measure of a rectangular surface found from its length and breadth? If the length be 5 feet, and breadth 4 feet, is the area $=5 \mathrm{ft} . \times 4 \mathrm{ft}$? Explain.
(b) How is the width of a rectangular space found when the length and area are given?
6. (a) How is the cubic measure of a rectangular solid found from its length, breadth, and height? Suppose the dimensions are 8,6, and 2 fect:- explain the process of finding the solidity.
(b) How is the height or the thickness of a rectangular solid fcund, when its cubic content and its length and breadth are given?

Paper III.

Questions for Illustration of Ex. $\mathbf{1 7}$.

1. (a) Λ man's yearly income is known:-How would you find the sum he must spend weekly, so as to lay by a given sum at the year's end?
(b) Given, a man's daily incume and his yearly expenditure:-How do we find his weekly saving?
2. The sum of 3 crowns, 3 florins, and 3 pence, is equal to 3 times the sum of a crown, a florin, and a penny, that is, 3 times $85 d$.-Apply this consideration to the solution cf Exs. 50, 61, and 62, in Set 17.
3. If $£ 342$ is to bo multiplied by 242 , and the product divided ly 11,8 , and 4 , successively, the effect of the whole may be symbolically c=pressed thus, $\frac{£ 342 \times 242}{11 \times 8 \times 4}$, which, by cancelling, becomes $\frac{£ 171 \times 22}{8 \times 2}$ cad by further cancelling becomes $\frac{£ 171 \times 11}{8}=\frac{£ 1881}{8}=£ 235 \quad 2 \mathrm{~s}$. Gd. -Apply this mode of treatment to the solution of Exs. 45, 55, and 67, in Set 17.
4. How do you find the arerage value per yard of a quantity of goods, consisting of 20 yards at 12 s .6 d . and 35 yards at 9 s . 10d.?Would tho resillt be oficcted by the altcration of taking oade-ifth of osch
of the given quantities, making them together $=11$ yards?-Solve Exs. 42 and 51 , in Sct 17.
5 In Ex. 63, Set 17, show that the result equals $\frac{1 \frac{3}{4} \times 40}{24}$ years, or $\frac{70}{24}$, or $\frac{35}{12}$, of a ycar, $=2 \frac{11}{12}$ years; and explain the following process:-

> | 12) 365 da. | 6 hrs |
| :---: | :---: |
| $30 \quad 10 \frac{1}{2}$ | |

Ans. 2 yrs. 334 da. $19 \frac{1}{2}$ hrs.
6. (a) Reduce 4 men 7 boys to an equivalent number of boys, supposing a man equivalent to 3 boys.
(b) Reduce 7 men 12 women 5 children to an cquivalent number of children, supposing 2 women equivalent to a man, and 3 children equivalent to a woman.
(c) Apply the above species of reduction to the solution of Exs. 58 and 65, in Set 27.
7. (a) If the number 365 is to be divided into four parts, three of them equal, and the fourth 95 less than each of the others; how many times the first part would make $365+95$?

Apply a similar mode of inquiry in the solution of Ex. 64, Set $\mathbf{Z 7}$.
(b) If the sum of two numbers is 135 and their difference is 95 , show how each number may be found.

Divide a sovereign between Harry and George, giving George 20\%. less than Harry.
8. Explain the following method of solving the latter part of Ex. 68 , in Set 27 ; and find the first answer similarly :-

3 yrs. profit on 500 ac. @ $£ 42 s .4 d,=£ 2058 \quad 6 \quad 8$
Tithes=produce of 50 ac . @ £27 4s. $0 \mathrm{~d} .=1360 \quad 0 \quad 0$
2nd Ans. Gain in the three Jcars $\overline{\mathfrak{E} 698 \quad 6 s .8 d}$.

Paper IV.

Questions on Chapters II, III, and IV.

1. What is meant by a common measure of two or more numbers? How is their c.c.m. ascertained?
2. What is meant by a multiple of a number? How do you find the L.C.M. of two or more numbers?
3. Show that the product of two numbers divided by their G.c.m. gives their L.c.m.
4. Find that the c.c.m. of 11310,12354 , and 64090 , is 58 .
5. How do you find the c.c.n. of numbers all or partly fractional? Find the c.c.3r. of $26 \frac{1}{\frac{1}{2}}, 28 \frac{7}{8}$, and $29 \frac{1}{6}=\frac{7}{2} \frac{7}{2}$.
6. How do you find the l.c.m. of numbers all or partly fractional ? Find the L.c.m. of $10 \frac{1}{2}, 6 \frac{7}{8}$, and $4 \frac{9}{10}=4042_{2}^{1}$.
7. What is a fraction? Is 3 farthings an integral or a fractional quantity? Define a concrete fraction.
8. What arithmetical operation is signified by the line separating the terms of a fraction? What is an improper fraction, and how is it reduced to a proper form?
9. What rule of fractions is anticipated in reducing a mixed fraction to an improper onc?
10. Why is it necessary that fractions should be of one common denominator for addition or subtraction?
11. (a) Show that multiplying the numerator of a fraction is equivalent to dividing the denominator, and that dividing the numerator is equivalent to multiplying the denominator.
(b) Hence show that the value of a fraction is not changed by multiplying or dividing both its terms by any one number.
12. What name is given to a fractional expression of the form $\frac{3}{5}$ of $\frac{7}{8}$? Which quantity is thus denoted to be a multiplier of the other?
13. (a) Prove the rules for multiplication and division of fractions: exemplify with $\frac{3}{5}$ and $\frac{7}{8}$.
(b) What does multiplication by a fraction strictly mean?
14. Explain the meaning of such a fraction as $\frac{f^{\ell} 11 \mathrm{~s} .8 \mathrm{~d}}{f^{\prime} 217 s \text {. }}$
15. (a) A certain quantity, A, is given:-If it be $\frac{3}{5}$ of another quantity B, how would you find B ? If it be half as much again as B, how would you find B ?
(b) A number increased by its 5th part amounts to 30: how would you find the number?
(c) A number diminished by its 5th part becomes 24: how would you find the number?
16. (a) Distinguish between decimal and vulgar fractions. What is the special utility of decimal fractions?
(b) Compare the metrical, or French, scale of lineal measure with the English.
17. (a) State and prove the rule for pointing in multiplication of decimals. (b) How do you determine the local values of the quotient figures in division of decimals?
18. (a) What are circulating decimals? (b) Distinguish those vulgar fractions that are convertible into terminating decimals; and show that all others are convertible into recurring decimals.

Paper V.

Supplementary Questions in Reduction of Measures.

1. Reduce 22870062 square inches to acres, \&c.

$$
\text { 4) } 14 . . .23 \text { ро. }
$$

Ans. 3 ac. 2 ro. 23 po. 10 yds .8 ft .18 in.
2. Reduce the preceding result to square inches.

3 ac. 2 ro. 23 po. 10 yds. 8 ft. 18 in. 4	
$\begin{gathered} 14 \\ 40 \end{gathered}$	ro.
$\begin{gathered} 583 \\ 30 \frac{1}{4} \\ \hline \end{gathered}$	po.
$\begin{array}{r} 145 \frac{3}{4} \\ 17500 \\ \hline \end{array}$	
$\begin{gathered} 17645 \frac{3}{4} \\ 9 \end{gathered}$	yds.
$\begin{array}{r} 158819 \frac{3}{4} \\ 12 \\ \hline \end{array}$	ft .
$\begin{array}{r} 1905837 \\ 12 \end{array}$	
22870062	in. Ans.

T 3. Reduce 1254492 sq . in. to sq. poles, \&c.
4. Reduce 1 ac .3 ro. 39 po. 14 yd .5 ft . to sq. inches.
5. Reduce 123456789 sq . inches to acres, \&c.
6. Reduce 2 ac .3 ro .13 po. 14 yd .5 ft .100 in . to sq. inches.
7. Reduce 9532482 sq. inches to acres, \&.c.
8. Reduce 2 ro. 22 po. $14 \frac{1}{4} \mathrm{yd}$. to sq. feet.
9. Express 22 sq. po. 2 yd .4 ft .72 in . in the denomination of sq . yards.
10. An imperial gallon measures 277.274 cabic inches; how many gallons would a vessel contain of which the capacity is $196 \frac{1}{2}$ cub. feet?
11. The length of a wall, according to the French metrical system, is 9 metres 4 decimetres 8 centimetres; reduce this to English feet, the length of the metre being 39.371 inches.
12. Reduce 13 feet to metres.
13. How many decametres correspond to 1760 yards?
14. A clain 66 fect long is divided into 100 equal parts called links. Reduce an acre to square links.
15. A rod of brickwork, viz. a square pole, or $272 \frac{1}{4}$ square feet, has a standard thickness of a brick and a half:-If a piece of brickwork be 48 fect long and 22 fect high, and $2 \frac{1}{2}$ bricks thick, to how many rods of standard thickness is it cquivalent?

Paper VI.

Qucstions on Rutio. (Sce Art. 73.)

1. If the ratio of L to M is $5: 8$, and that of M to N is $6: 7 ;$ what is the simplest form of the ratio of L to N ?

$$
\begin{aligned}
& \text { Here } L \text { is } \frac{5}{8} \text { of } M \text {, and } M \text { is } \frac{6}{7} \text { of } N \text {; } \\
& \therefore L \text { is } \frac{5}{8} \text { of } \frac{6}{7} \text { of } N=\frac{15}{28} \text { of } N . \text { Ans. } \\
& \text { Or, } L \text { is to } N \text { as } 15: 28 \text {. Ans. }
\end{aligned}
$$

2. M buys 15 cows and 130 sheep for a certain sum, and N buys 9 cows and 175 shecp, at the same rates as M, for the same sum. Compare the values of a sheep and a cow.

Since N has 6 cows fewer than M, but has 45 sheep more than M, and botli persons pay the same amount, it is evident that 6 cows are worth 45 shecp,
or 1 sheep worth $\frac{6}{45}$, or $\frac{2}{15}$, of a cow,
or the values of a sheep and a cow are as $2: 15$. Ans.
3. One vessel contains a mixture of 16 pints of brandy and 5 of water; another colitains 24 pints of brandy with 11 of water. Compare the strengths of the two mixtures.

1st mixture 21 pints, 16 of which are brandy,
2nd " 35 " 24 "
$9)$
\therefore the strengths are $\frac{16}{21}$ and $\frac{24}{35}$,

$$
\text { or } \operatorname{as} \frac{2}{3} \text { to } \frac{3}{5} \text { or as } 10: 9 . \text { Ans. }
$$

91. 4. \mathbf{A} boat whose speed was $9 \frac{3}{4}$ miles an hour sailed from A to B, a distance of 65 miles; and a second boat, which left $A 2 \frac{1}{4}$ hours after the first, arrived at $B 5$ minutes before the first. Compare the rates of sailing.
1. A and B buy oranges at 10 for a shilling; A retails them at 9 for a shilling, and B at $17 d$. for a dozen. Compare their gains on selling the same number of oranges.
2. If A 's rate of profit is $\frac{4}{9}$ of $B ' s$, and for every guinca that B gaing \boldsymbol{C} gains a sovereign, compare the profits of A and C.
3. A sum of money is so divided among Roger, Henry, William, and Thomas, that R. gets $3 d$. as often as I. gets $2 \frac{1}{2} d ., \mathrm{H}$. gets $3 d$. as often as W. gets $4 \frac{1}{2} d$., and W. gets $4 d$. as often as T. gets $3 \frac{1}{2} d$. Find the direct proportion of the four shares.
4. If 3 men and 11 boys, working together, can do 5 times as much work per hour as a man and a boy together, compare the work of a boy with that of a man.
5. One vessel M contains a mixture of 27 gallons of wine and 11 of spirits; another vessel N contains a mixture of 43 gallons of wine and 14 of spirits. Compare the strengths of the two mistures, supposing the strength of spirits to be three times that of wine.

Paper VII.

Questions on Averages.

1. In a school register of daily attendance the numbers for a certain week were-Monday 83, Tuesday 80, Wednesday 75, Thursday 80 , Friday 77, Saturday 72. What was the average daily attendance?
2. A tradesman's receipts of money in one week were-Mon. 33/10 $\frac{1}{2}$, Tues. 26/6, Wednes. nothing, Thurs. $10 / 8 \frac{1}{2}$, Fri. $43 / 11 \frac{1}{2}$, Saturday $30 / 10$. What was the average daily reccipt?
3. The quantities of maize raised in the United States, in three successive years, were $-494618200,421953000$, and 417899000 bushels. What, in British currency, was the value of the average yearly produce, rating it at 25 cents per bushel, and reckoning the dellar of 100 cents to be worth 4s.?
4. Required the mean of the following observations of temperature: $-41^{\circ} 29^{\prime}, 41^{\circ} 27 \frac{1^{\prime}}{2}, 39^{\circ} 13^{\prime}, 41^{\circ} 33^{\prime}, 37^{\circ} 47 \frac{11^{\prime}}{2}, 44^{\circ} 28^{\prime}$, and $40^{\circ} 13^{\prime}$.
5. If 3 quarts of stout at $9 d$. a quart are mixed with 10 pints of alc at $2 \frac{1}{2} d$ a pint, what is the worth of a pint of the mixture?
6. At a competitive examination there were 4 candidates at the age of 19,3 at 20,2 at_ 21 , and 3 at 23 . Find the average age.
7. How many square fect are in a regularly tapering plauk 10 ft . 6 in . long, the width being 9 inches at one end and 7 inches at the other?
8. The average of twenty-one results is 61 , that of the first eight being 64, and of the next eleven 59. Required the average of the last two.
9. Three quantities of tea, at $3 / 3,4 / 2$, and $4 / 4$ per lb., respectively, make a mixture of 1.36 lbs ., there being 5 lbs . more of the first kind than of the second, and 6 lbs . more of the third than of the first and second together. What is the worth of the mixture per 1 b .?
10. The average of ten results was $17 \frac{1}{2}$; that of the first three was $16 \frac{1}{4}$, and of the next four $16 \frac{1}{2}$; the cighth was 3 less than the ninth, and 4 less than the tenth. What was the last result?
11. If 9 gallons of spirits at $18 / 6$ are mingled with 7 gallons at $21 /$, how much water must be added to reduce the value to $16 / 6$ a gallon?

Paper VIII.

Questions on the Relation between Time and Power.

1. M can do a piece of work in 20 days of 7 hours, and N can do it in 14 days of 8 hours. For how many hours Ω day should M and N be engaged together, that the work may be done in 10 days?
M does 1 measure of work per hour; 140 such measures $=$ the whole work.
N can do, per hour, the 112th of the whole, viz. $140 \div 112$, or $1 \frac{1}{4}$ measures;
$\therefore M$ and N together do $2 \frac{1}{4}$ meas. per hour;
or the whole work in $140 \div 2 \frac{1}{4}=62 \frac{2}{9}$ hrs.
$62 \frac{2}{9}$ hrs. $=10$ days, is $6 \frac{2}{9}$ hrs. a day. Ans.
2. A cistern is filled by two pipes, A and B, in 20 and 24 minutes respectively, and is empticd by a tap C in 30 minutes. What part of it will be filled in 15 minutes, if A, B, and C are all turned on together?

If A runs 1 measure per minute, 20 measures would fill the cistern; then B would run, per minute, the 24 th of 20 , viz. $\frac{5}{6}$ of a measure, and C the 30 th of 20 , viz. $\frac{2}{3}$ of a measure ; and A, B, and C being all opened, the cistern would gain $1+\frac{5}{6}-\frac{2}{3}$, or $1 \frac{1}{6}$ meas. per minute, and in 15 min . would gain $1 \frac{1}{6} \times 15=17 \frac{1}{2}$ meas.,
which is $1 \frac{1}{2} \frac{1}{2}$ twenticths $=\frac{7}{8}$ of the cistern. Ans.
3. F and G together reap a field in $8 \frac{3}{4}$ days, and F alone can reap as much in $3 \frac{1}{2}$ days as G can do in 5 . In what time could each by himself reap the ficld?
F^{\prime} in 1 day does 1 measure, $G \frac{1}{5}$ of $3 \frac{1}{2}$ mens. $=\frac{7}{10}$ meas.
\therefore the whole work is $1 \frac{7}{10} \times 8 \frac{3}{4}=14 \frac{7}{8}$ meas.

$$
\left.\begin{array}{l}
14 \frac{7}{8} \div 1=14 \frac{7}{8} \text { da. by } F \text { alone } \\
14 \frac{7}{8} \div \frac{7}{10}=21 \frac{1}{4} \text { da. by } G \text { alone, }
\end{array}\right\} A n s .
$$

4. \boldsymbol{Y} and \boldsymbol{Z} began together a piece of work which they could have done singly in 34 and 38 days, respectively. \boldsymbol{Y} continued till the work was finished; but Z had left him 4 days before its completion. In what time was the work done?
Y did 1 measure per day, and the whole work was 34 measures; so that Z did, per day, the 38 th of $3 t=\frac{17}{19}$ of a measure.
Now, if Z had continued the whole time of $Y, 4$ times $\frac{17}{19}$, or $3 \frac{11}{19}$ extra measures of work would have been done, viz. $37 \frac{11}{19}$ meas. by both agents in Y 's time; therefore

$$
37 \frac{11}{19} \div 1 \frac{17}{19}=714 \div 36=19 \frac{5}{6} \text { da. Ans. }
$$

5. A cistern has two supplying pipes, A and B, and a tap C. When the cistern is empty, A and B are turned on, and it is filled in 4 hours; then B is shut and C turned on, and the cistern is quite emptied in 40 hours; when, lastly, A is shut and B turned on, and in 60 hours afterwards the cistern is again filled. In what time could the cistern be filled by each of the pipes A and B, singly?
A and B together supply 1 measure per hour, and the whole content of the cistern is 4 measures. B runs, per hour, more than $C, \frac{1}{60}$ of the 4 meas. C runs, per hour, more than $A, \frac{1}{40}$ of the 4 meas.
$\therefore B$ runs $\frac{4}{60}+\frac{4}{40}$, or $\frac{1}{6}$ meas. per hour more than A.
$\therefore A$ and B together, in 1 hour, run $\frac{1}{6}$ meas. more than A runs in 2 hours;
but A and B together run 1 measure per hour;
$\therefore A$ runs $1-\frac{1}{6}$, or $\frac{5}{6}$ meas. in 2 hours,
B runs $2-\frac{5}{6}$, or $\frac{7}{6}$ meas. in 2 hours;

$$
\left.\begin{array}{l}
\frac{5}{6} \text { meas. }: 4 \text { meas. }:: 2 \text { hrs. }: 9 \frac{3}{5} \text { hrs. by } A, \\
\frac{7}{6} \text { meas. }: 4 \text { meas. }:: 2 \text { hrs. }: 6 \frac{6}{7} \text { hrs. by } B,
\end{array}\right\} \text { Ans. }
$$

6. A can do a picce of work in 25 days, B can do it in 20 days, and C in 24. The three work together for 2 days, and then A and B leave; but C continues, and, after $8 \frac{3}{5}$ days, is rejoined by A, who brings D along with him, and these three finish the remainder of the work in 3 days more. In what time would D alone have done the whole work?
7. $\dot{\Lambda}$ piece of work can be done by A and B together in 14 hours, or by B and C in $10 \frac{1}{2}$ hours, or by A and C in 12 liours. In what time could each person do it by himself?
8. To complete a certain work, B would take twice as long as A and C together, and C thrice as long as A and B together; and A, B, and C, by their united exertions can do it in 5 days. In what time could cach do it by himself?
9. A can do a piece of work in 10 days, B in $9, C$ in 12. They all begin it together ; but only C continues till the work is finished, $-A$ leaving it $3 \frac{3}{5}$ days, and $B 2 \frac{3}{5}$ days bcfore its completion. In what time is it performed?
10. Λ cistern has two pipes, A and B, which singly conld fill it in 9 hours and 10 hours, respectively. It has also two taps, C and D, which singly conld empty it in 12 hours and 8 hours, respectively. Suppose that when the cistern stands half-full of water, A and D are turned on for 3 hours; that then B is also turned on for the next 2 hours; that then A and D are turned off, and C is turncd on for the next 8 hours; after which all are shut, and the cistern is found to contain 95 gallons more than its half content:-Find the content of the cistern. Find also how much per hour the cistern would lose or gain, if all the pipes were set open at once.

Paper IX.

Questions on Lxchange. (See Note XI.)

1. Reduce 396 dollars 53 cents Λ merican to British moncy, at 4s. $6 d$. per dollar.
2. Convert 1206.70 American dollars into French money, at 5 franes 45 centimes per dollar.
3. Reduce $£ 375816 s .6 d$. to francs, at 25.35 francs per $£$.
4. Find the value, in British money, of goods sold for 7889 francs 90 centimes,-exchange, 24 fir. $41 \frac{1}{2}$ cts. per $£$.
5. What in English money is the value of the franc, at the exchange of 25.57 francs per $£$ sterling?
6. How many pence per milree ($=1000$ rees) is the exchange between Portugal and Britain, when $£ 823$ 5s. 6 d . worth of wine costs 3161 milrees 375 recs?
7. If, when the course of exchange hetween England and Spain is $38 \frac{1}{2} d$. per dollar of 20 reals, a merchant in Liverpool draws a bill of $£ 35416 \mathrm{~s} .3 \mathrm{~d}$. on Madrid, how many dollars and reals will pay the draft?
8. What is the arbitrated rate of exchange between London and Lisbon, when bills on Paris, bought in London at 25.65 francs per $£$, are sold in Lisbun at 525 rees per 3 franes?
9. If 11.65 Dutch florins are given for 24.89 francs, 383 florins fur 437 marks Hambro', and 68 $\frac{1}{4}$ marks for 32 silver rubles of Petersburgh; how many franes should be given for 932 silver rubles?
10. Reckoning a Roman scudo worth $5 \frac{2}{5}$ francs, and a shilling worth $1 \frac{1}{4}$ franc, what amount of discount do I allow by accepting $£ 10$ in exchange for 45 scudi and 12 francs? And if I were to allow 4 per cent. discount, how many francs along with 50 scudi should I give for £12?
11. A merchant in London owes to one in Amsterdam 350.75 florins, which must be remitted through Paris. The quotations being, for London on Paris 25 franes 30 cents. per \mathscr{L}, and for Amsterdam on Paris $45 \frac{1}{2}$ florins per 100 francs, the London merchant delays remitting till the rates are 25.45 francs per $£$, and 11 florins per 24 francs. What does he gain or lose by the delay?
12. $£ 1000$ sterling is due from London to Portucgal, when the exchange is $61 \frac{1}{2} d$. per milrec. Whether is it better, for Portugal, to draw directly on London, or circuitously, at an expense of $1 \frac{1}{2}$ per cent., through Holland and France;-exchange between Britain and IIolland 11.90 florins per $£$ sterling, between Holland and France 10 florins for 21 francs, and between France and Portugal 480 rees for 3 francs?
13. When English money bears a premium of 5 per cent. in America, how much sterling should be given for 750 dollars, each worth 4 s . 6 d . at par?
14. A rupee contains 16 annas each 12 pice:-Find, in French money, the annual interest, at $3 \frac{1}{2}$ per cent., on 5217 rup. 3 an. 6 pi., exchange 2.63 francs per rupec.
15. If goods bought in London at a guinea be exported to New York, at how many dollars should they be sold there, in order to cover all expenses; estimating the export charges to be $7 \frac{1}{2}$ per cent., and the sale charges 5 per cent.; the course of exchange being 6 per cent. premium for bills on London?
16. At what price in Company's rupees (cach $=16$ annas) was indigo purchased in Calcutta, if the sale of it in London at 5s. per lb . yiclded a profit of 20 per cent.; the shipping charges in Calcutta being 6 per cent., sale charges in London 9 per cent., and loss of weight $1 \frac{1}{4}$ per cent.:-exchange 25d. per rupec?
17. Given-that 1 ounce Troy equals 31.1 grammes; that 10 grammes of French standard gold are worth 31 francs; and that the worth of a given weight of English standard gold is to that of the same weight of French standard as 3151 to 3100 : 一
(i.) To what number of Troy ounces of English standard gold is the franc equivalent, and what is the fixed number of franes equivalent to $£ 1$? -the English mint price for standard gold being $77 s$. $10 \frac{1}{2} d$. per ounce.
(ii.) How many francs are equivalent to $£ 1$, when gold purchased in London at 77s. $10 \frac{1}{2} d$. is sold in Paris at $14 \frac{1}{2}$ per mille (i.e. per 1000) premium on the fixed price? and how many, when gold is at 1 per millo discount?
(iii.) Find that the results are correctly stated in the following newspaper reports; and give the percentage results more nearly :-
a. The premium of gold at Paris is $7 \frac{1}{2}$ per mille, which, at the English mint price of $£ 317 \mathrm{~s}$. $10 \frac{1}{2} \mathrm{~d}$. per ounce for standard gold, gives exchange 25.353 ; and the exchange at Paris on London, at short,* being $25.33 \frac{1}{2}$, it follows that gold is about 0.09 per cent. dearer in Paris than in London.
b. The quotation of gold at Paris is about $\frac{1}{2}$ per mille premium, and the short exchange on London is $25.27 \frac{1}{2}$. On comparing these rates with the English mint price of $£ 317 s$ s. $10 \frac{1}{2} d$. per ounce for standard gold, it appears that gold is nearly 4-10ths per cent. dearer in London than in Paris.

Paper X.

Questions on the uniform consumption of uniformily growing produce.

1. Suppose that in a meadow of 20 acres the grass grows at a uniform rate, and that 133 oxen could consume the whole of the grass in 13 days, or that 28 of the oxen could eat up 5 acres of it in 16 days; how many of the oxen could eat up 4 acres of it in 14 days?

$$
\begin{aligned}
& 133 \text { ox. to } 20 \text { ac. is } 26 \frac{3}{3} \text { ox. to } 4 \text { ac. } \\
& 28 \text { ox. to } 5 \text { ac. is } 22 \frac{2}{5} \text { ox. to } 4 \text { ac. }
\end{aligned}
$$

[^5]
16 da.

22.4 ox. : 26.6 ox. $:: 13 \mathrm{da}$. : $15 \frac{7}{16} \mathrm{da}$. 3 days' growth eaten by 22.40 x . in $\frac{9}{16} \mathrm{da}$.
$\frac{9}{16}$ da. $: 16$ da. $:: 3$ da. growth $: 85 \frac{1}{3}$ da. growth.
16
\therefore the original grass is $=69 \frac{1}{3}$ da. growth.

Note. In explanation of the above form of solution, it may be observed that as the orig. grass +13 da. growth of the 4 acres is eaten by 26.6 ox . in 13 da .
\therefore orig. grass +13 da. growth is eaten by 22.4 ox . in $15 \frac{7}{16}$ da. but, orig. grass +16 da. growth is eaten by 22.4 ox. in 16 da .
$\therefore 3$ da. growth is eaten by 22.4 ox. in $\frac{9}{10} \mathrm{dd}$, which amounts to $85 \frac{1}{3}$ da. growth in the whole 16 da.;
so that the quantity of grass in the meadow at first must have been $69 \frac{1}{3}$ days' growth; and we have now given, orig. grass +16 da. growth eaten by 22.4 ox. in 16 da ., to find how many ox. would eat orig. grass +14 da. growth in 14 da.
For another manner of solving problems of this kind see Hunter's Art of Tcaching Arithmetic, p. 10.5, and Examination Questions on 'Colenso's Algebra,' p. 62.
2. If 133 oxen consume the grass of a meadow in 13 days, and 112 of the oxen could consume the grass of the same meadow in 16 days,-the grass growing uniformly; in what time could 125 of the oxen do it?

Here, as in the preceding solution, the original grass will be found $=69 \frac{1}{3}$ days' growth; and now, $16+69 \frac{1}{3}$ da. growth being eaten by 112 oxen in 16 da., the time is required in which 125 oxen would cat what grows in the required time $+69 \frac{1}{3}$ da. growth.
$\left.\begin{array}{r}112: 125 \text { ox. } \\ 16: 1 \text { da. }\end{array}\right\}:: 85 \frac{1}{3}$ da. growth : $5 \frac{20}{21}$ da. growth.
or, 125 oxen eat $5 \frac{20}{21}$ da. growth in 1 day,
thus consuming $\frac{1}{4 \frac{20}{21}}$ da. growth of the orig. grass per day, or the whole in $69 \frac{1}{3} \div 4 \frac{20}{21}=14$ da. Ans.
3. If 29 oxen would eat up a field of grass in 7 weeks, or 25 oxen would eat up the same field in 9 weeks, -the grass growing uniformly; how many oxen would do it in 6 weeks?
4. Suppose that a tank receives a regular and continual supply of
water, and that, when it contains a certain quantity, 12 cqual taps being set open would empty it in $7 \frac{1}{2}$ minutes, or 7 of the same taps would empty it in 16 minutes; how many of the taps would empty it in 50 minutes?
5. Suppose that in a certain meadow the grass is of uniform quality and growth, and that 20 oxen would exhaust the grass in $12 \frac{3}{4}$ days, or 21 oxen would do so in 12 days; in what time would 26 oxen do it?
6. I find that I can engage 15 workmen for 11 weeks, or 31 workmen for 5 weeks, at uniform wages, and in cither case pay the wages exactly by means of the interest now accumulated on a certain sum of money and that which will arise during the particular period of engage-ment:-For how long could I engage 9 workmen on the same principle?
7. If 23 oxen consume 8 acres of pasture in 26 days, and 25 oxen consume 7 acres of the same in 20 days,-the grass growing uniformly; how many acres of it would 33 oxen consume in $5 \frac{7}{9}$ days?
8. Suppose that 17 oxen in 30 days, or 19 oxen in 24 days, could consume a field of uniformly growing pasture; find what number of oxen, diminished by the removal of 4 at the end of 6 days, would eat up the same field in 8 days.
9. In a field in which grass grows uniformly, suppose that 31 oxen can consume $8 \frac{3}{4}$ acres in $\frac{3}{4}$ of the time in which 15 oxen would consume $5 \frac{1}{\frac{1}{4}}$ acres, and that 22 oxen would require 3 days longer to consume $7 \frac{1}{2}$ acres than 20 oxen would require for $6 \frac{1}{4}$ acres:-In what time would the 31 oxen eat up the $8 \frac{3}{4}$ acres?
10. An empty cistern has two supplying pipes A and B, and two taps C and $D \quad A$ would fill the cistern in $42 \frac{1}{2}$ minutes, and B in 46 minutes; and D can carry off per minute half as much again as C. After A and B, running together, have supplied a certain quantity, C is allowed to run with them, and takes 51 minutes to empty the cistern; but had D been turned on along with C, the two would have taken only $5 \frac{3}{4}$ minutes to empty it. In what time would the cistern have been cmptied if D had been turned on instead of C ? and how much of the cistern was filled when C was set open?

Paper XI.

Questions similar to Concluding Misc. Examp. 134 \& 194.

1. A certain number is divided into two parts, such that 10 times the first added to 18 times the second gives 15 times the entire number; what fraction of the whole is each of the parts?

Questions of this kind closely resemble Examp. 2 in Paper VI., and may be solved similarly; thus, since we have

10 times the first part and 18 times the sceond together equal to 15 times the first and 15 times the second, it is evident that ($15-10$) times the first compensates or equals ($18-15$) times the second ; i.c. 5 of the $1 s t=3$ of the $2 n d$; or, 1 of the $1 s t=$ $\frac{3}{5}$ of the $2 n d$; or, 1st $: 2$ nd $:: 3: 5$; so that the parts are $\frac{3}{8}$ and $\frac{5}{8}$ of the whole.

Otherwise.
10 times the 1 st with 18 times the $2 n d=15$ times both;
10 10 10
$\therefore 8$ times the $2 n d=5$ times both;
or, the $2 n d$ is $\frac{5}{8}$ of the whole
and the 1 st is $\frac{3}{8}$ of do.
2. Divide the quantity 520 into two parts, such that 118 times one part added to 128 times the other shall give 63700 .

Here, we have $63: 00[\div 520]=122 \frac{1}{2}$ times the entire no.
$\therefore 118$ times the 1 st with 128 times the $2 n d=122 \frac{1}{2}$ times both;
$\therefore 10$ times the $2 n d=4 \frac{1}{2}$ times both;
$\left.\begin{array}{l}\text { or, the } 2 n d \text { is } \frac{9}{20} \text { of the whole },=234 \\ \text { and the } 1 \text { st } \text { is } \frac{11}{20} \text { of } \quad \text { do. }=286\end{array}\right\}$ Ans.
3. A person borrows $£ 618$ in two separate sums, at the respective rates of $3 \frac{1}{2}$ and 5 per cent. per annum; and he repays the two loans at the end of 10 months, with interest amounting to $£ 2210$ s. Required the amount of each loan.

The respective interests are

$$
\frac{5}{6} \text { of } \frac{3 \frac{1}{2}}{100} \text { of } 1 \text { st loan, and } \frac{5}{6} \text { of } \frac{5}{100} \text { of } 2 n d \text {; }
$$

and these together are equal to $\frac{22 \frac{1}{2}}{618}$ or $\frac{15}{412}$ of both loans;
i.e. $\frac{7}{240}$ of 1 st with $\frac{10}{240}$ of $2 n d=\frac{15}{412}$ of both;

$$
\begin{aligned}
\therefore \frac{3}{240} \text { of } 2 n d & =\left(\frac{15}{412}-\frac{7}{240}\right) \text { of both } \\
& =\frac{716}{412 \times 240} \text { of } £ 618 .
\end{aligned}
$$

$\therefore 2 n d=\frac{716}{412 \times 3}$ of $£ 618=£ 3581$ 1st $=£ 260$.
14. Sold 449 yards of cloth, part at $12 s$. a yard, and the remainder at 17 s ., and for the whole received $£ 315$ 13s. How many yards were sold at each rate?
5. A woman sold $7 \frac{1}{2}$ dozen apples for $6 s .2 d$., some at the rate of 3 for $2 \frac{1}{2} d$., and the rest at 8 for $6 \frac{1}{2} d$. How many were sold at each rate?
6. I gave \&s. for a basket of oranges and lemons, buying the former at the rate of 2 for $3 d$., and the latter at 5 for $4 d$. I then sold all at the uniform rate of 5 for $6 d$., and gained $6 \frac{1}{4}$ per cent. How many had I of each kind?
7. 12 lbs . of tea and 25 lbs . of coffee together cost $£ 46 \mathrm{~s} .8 \mathrm{~d}$.; but if tea were to rise $2 \frac{1}{2}$ per cent. and coffee to fall $4 \frac{1}{2}$ per cent, the same quantities would cost $£ 45 \mathrm{~s}$. 11 d . Required the prires of tea and coffce per lb.
8. If the increase in the number of male and female criminals be 1.8 per cent., while the decrease in the number of males alone is 4.6 per cent. and the increase in the number of females is 9.8 ; compare the antecedent numbers of male and female criminals.

Paper XII.

Questions on Involution and Elolution.

1. Simplify the expression $\frac{3}{7}$ of $\frac{300}{\sqrt{5}} \times \sqrt{\frac{2}{3}}$.

To remove surd denominators, multiply the numerator and denominator of the second fraction by $\quad \therefore 5$, and those of the third fraction by $\sqrt{ } 3$, which gives

$$
\frac{3}{7} \text { of } \frac{300 \times \sqrt{ } 5}{5} \times \frac{\sqrt{ } 6}{3}=\frac{60}{7} \sqrt{ } 30 . \text { Ans. }
$$

2. Which is the greater quantity, $\sqrt{2}$ or $\sqrt[3]{3}$?

$$
2^{\frac{1}{2}} \text { and } 3^{\frac{1}{3}}=2^{\frac{3}{6}} \text { and } 3^{\frac{2}{6}}=8^{\frac{1}{6}} \text { and } 9^{\frac{1}{6}} \text {; }
$$

$$
\therefore \sqrt[8]{3} \text { is the greater. }
$$

3. Find the diagonal of a rectangular space, 702 feet long and 406 feet broad.

The length and breadth form with the diagonal a rightangled triangle, of which the two perpendicular sides are glven, to find the third or longest side. Now, in every rightangled triangle, the sum of the squares of the perpendicular sides is equal to the square of the longest side; therefore,

$$
\begin{aligned}
592^{2}+406^{2} & =792100, \text { square of diag. } \\
\sqrt{7} 92100 & =890 \mathrm{ft} \text {, the diagoual. Ains. }
\end{aligned}
$$

4. Show that the length of the edge of a cube multiplied by $\sqrt{ } 3$ gives the diagonal of the cube.

If $A B$ and $B C$, cdges of a cube, be each represented by 1 , then the square of AC , the -liagonal of a superficial side, is evidently $1^{2}+1^{2}=2$, and the square of the cube's diagonal $A D$ is $=\mathrm{AC}^{2}+\mathrm{CD}^{2}=2+1=3$; thercfore $\mathrm{AD}=\sqrt{ } 3$ when the edge of the cube is 1 ; or,
 by similar triangles, the diagonal of every cube is the product of the length of the edge by $\sqrt{ } 3$.
5. The tip of a reed was 8 inches above the surface of a lake; but, forced by the wind, it gradually advanced, and was submerged at a distance of 28 in . Find the depth of the water.

Lct $A D=D C$, represent the reed; DC the lake's surface; BD the depth.

Given $\mathrm{AB}=8, \mathrm{BC}=28$, to find BD .
The right-angled triangles ABC , AeD, having the acute angle A common to both, are similar; hence, dA: Ae :: CA : AB; or, since $\mathrm{A} e$ is $\frac{1}{2} \mathrm{AC}, \therefore \frac{2 \mathrm{DA}}{\mathrm{CA}}=\frac{\mathrm{CA}}{\mathrm{AB}}$; or, $2 \mathrm{DA} \times \mathrm{AB}$

$=\mathrm{CA}^{2}=8^{2}+28^{2}=848$; or, $\mathrm{DA} \times 16=848$; or $\mathrm{DA}=53$ inches. Hence $\mathrm{BD}=53-8=45$ inches. Ans.
6. What quantity is $\frac{20}{23}$ of its reciprocal?

The quantity \div its reciprocal is $=\frac{20}{23}$, but the quotient of any quantity \div its reciprocal is the square of that quantity;

$$
\therefore \sqrt{\frac{20}{23}} \text {, or } \frac{2}{23} \text { of } \sqrt{ } 115=.9325 . A n s
$$

ๆ 7. A square space contains 1056 sq. yards: Express the length of its side as the decimal of $\frac{1}{11}$ of a mile.
8. Find the side of a square field containing 2 ac. 3 ro. 17 po. 30 yds .
9. A square space contains 38 sq. poles 6 yds .4 ft .72 in .; find the length of its side.
10. A rectangular field is 190 yds . long and 123 yds . wide; find the side of a square field of half the area; find also the length of a ficld twice as large as the first, and twice as long as it is broad.
11. Show that $10 \div \sqrt{2}$ is $=5 \times \sqrt{ } 2$.
12. Multiply $\sqrt{ } 112$ by $\sqrt{ } 175$.
13. If the perpendicular sides of a right-angled triangle are 13.02 and 5.2 feet, what is the third side?
14. If the town A is 72 miles west of B and 135 south of C, what is the distance from B to \boldsymbol{C} ?
15. Which is the greater of the two quantities $\sqrt[3]{2}$ and $\sqrt[1]{19}$? and which of the two $\sqrt{ } 3$ and $\sqrt[5]{15}$?
16. If the diagonal of a rectangular surface is 3.4061 inches, and the length 3.406 inches, what is the width?
17. The diagonal of a square is 353.55 ; find the length of its side.
18. The members of a party being solicited for contributions to a charitable object, each person gave a number of half-pennies equal to the number of members, and thus made up a sum total of $12 \mathrm{~s} .0 \frac{1}{2} d$. What sum was centributed by each ?
19. Suppose the top of a straight ladder, $18 \frac{1}{4}$ feet long, to rest against a building at the height of $13 \frac{3}{4}$ feet from the ground; at what horizontal distance from the bottom of the building is the foot of the ladder placed?
20. The edge of a cube is 250 ; what is its diagonal?
21. Find the edge, and also the surface, of a cube of wood, the diagonal of which is 3 ft .9 in .
22. Of what sum of money is $£ 28$ the same fraction that the sum itself is of 60 guincas?
23. If the compound interest of $£ 250$ for 2 years be $£ 208$ s., what is the rate per cent. per annum?
24. The capacity of a cistern is 478.4 gallons:-Required (a) the length equal to the breadth of a cistern of the same capacity $2 \frac{1}{2}$ fect deep; and (b) the breadth equal to twice the depth of a cistern of the same capacity 6 feet long: -a gallon being $=\mathbf{2 7 7 . 2 7 4}$ cub. inches.
25. What fraction of $\left(\imath^{\prime} 4050 \times .0002 \div .20+v^{\prime} 1458\right) \div \sqrt{ } .02$ is

$$
\sqrt{ }(6.00 \dot{8} \div .3042)+\sqrt{ }(116.6 \times .046) ?
$$

26. A can excavate 14.2834 cubic yards per day; how many can B do per day, if A could do B 's daily quantity in $\frac{11}{12}$ of the time that B would take to do A 's daily quartity?
27. The original cost of a pipe of port is $£ 55$, and it is sold to A at a certain loss per cent.; then A sells it to B at the same losing rate; but B sells it to C, at a profit of 12 per cent., for the original cost. What was the loss per cent. at which A and B sold the wine?

Paper XIII.

Supplementary Miscellancous Questions. [A.]

1. What is the greatest unit of time with which 15 ho. 12 nin. and 1 da. 3 hr .33 min . can be both represented by integers?
2. How many times can .0087 be subtracted from 2.291 , and what will the remainder be?
3. What is the greatest number by which 2500 and 3300 can be divided, so as to leave remainders 4 and 36 , respectively ?
4. Define Proportion.-Can the quantitics $2 \mathrm{yds} .2 \mathrm{ft} .10 \frac{1}{4}$ in., $£ 243 s ., £ 1211 \mathrm{~s} .6 \frac{3}{4} d$, and 5 yds .2 ft , be formed into a pioportion? Give the reason.
5. State the distinction (i) between simple and compound division, (ii) between simple and compound proportion, and (iii) between simple and compound interest.
6. Distinguish mereantile from true discount; and show that the difference between the interest and the truc discount on the same sum is the interest of the discount.
7. Find by duodecimal multiplication the product of 13 ft .5 in . 7 pts. by $3 \mathrm{ft}$.5 in .
8. Multiply, by the method of duodecimals, 29 ft .7 in . by 9 ft . 8 in. 6 pts.
9. Express the results of the two preceding questions in square leet, square inches, and a fraction of a square inch.
10. Find, by duodecimal multiplication, that the product of 26 ft . 8 in . by 5 in .9 pts . is $12 \mathrm{sq} . \mathrm{ft} .9^{\prime} 4^{\prime \prime}$; and calculate by Practice the value of the latter quantity at 15 s . $9 \frac{1}{2} d$. per square foot.
11. What two quantities have for their sum 9 guineas and 9 shillings, and for their difference 10 crowns and 10 pence?
12. A offers to $B 6 \mathrm{cwt} .2$ qrs. 7 lbs . of sugar, worth 38 s . per cwt., for 24 yds . of cloth, worth $8 \mathrm{~s} .3_{4}^{3} \mathrm{~d}$. per yard. How much per cent. would B gain or lose by accepting the offer?
13. If one man can plough a quarter of an acre in 2 lirs. 23 min., and another can do it in 2 hrs. 34 min., what fraction of an acre could they together plough in an hour?
14. What sum of money increased by $\frac{2}{5}$ of $\frac{4}{5}$ of $\frac{7}{8}$ of itself amounts to 3 s. $4 d$.?
15. Whet decimal fraction diminished by .037 of itself becomes .6955?
16. Show that the amount of $\mathfrak{£ 7}$ for 3 years, at 5 per cent. per aunum, compound intercst, is $=\mathfrak{g i}^{7} \times 1.05^{3}$.
17. If $3 \frac{3}{4}$ per cent. is lost by selling steel nibs at $3 s .6 d$. a gross, how much would be gained or lost per cent. by selling them at $2 s$. $6 \frac{5}{9} d$. a hundred?
18. Λ fruiterer by selling apples at the rate of 8 for $6 \frac{1}{2} d$. gains 17 per cent.; at what rate should he sell them per dozen to gain 20 per cent.?
19. If by selling cloth at $28 s$. $6 d$. for 5 yards my gain would be $6 \frac{2}{5}$ per cent., what should I gain or lose per cent. by selling it at 37 s .6 d . for 7 yards?
20. The population of a town is 3370 ; what was its population a year ago, if in the interval there has been an increase of about 2.65 per cent.?
21. The amounts $£ 210$ and $£ 155$ are payable 2 years and 5 years hence, respectively; assign the mean period, or equated time, at the end cf which, according to mercantile discount, these two amounts might be paid at once?
22. The sum of $£ 434$ is due as follows: $-\frac{1}{3}$ of it in 4 months, $\frac{1}{5}$ in 5 months, and the remainder in 7 months. Find the equated time for one payment of $£ 434$, according to mercantile discount.
23. Find the value of

$$
\frac{\frac{1}{2}-\frac{2}{5}}{\frac{37}{6}-1 \frac{3}{7} \text { of } 4 \frac{1}{5}} \text { of } \frac{£ 111 \mathrm{~s} .8 \mathrm{~d} .}{£ 217 s .} \text { of } \frac{142 \mathrm{yds.} 0.8 \mathrm{ft} .}{2 \mathrm{yds.} 1.7 \mathrm{ft} .} \text { of } 13 \text { days } 3 \mathrm{hrs} .
$$

Invent a question to which the last three factors in this expression may be the answer; and show how they are so.
24. Divide 99 into four parts, so that the first shall contain 3 for every 4 in the third and every 5 in the fourth, and so that $\frac{1}{3}$ of the second may be $\frac{1}{8}$ of the sum of all the rest.
25. Divide $8 s$. among A, B, C, so that A may reccive $8 d$. as often as B receives $3 d$., and B may reccive $5 d$. as often as C receives $3 d$.
26. Express in lowest terms the product of

$$
1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\frac{1}{81} \text { and } \frac{1}{11}-\frac{3}{59}+\frac{1}{181} .
$$

27. The sum of $7 \frac{1}{2} d$. was divided among A, B, C, in such proportion that A received $1 \frac{1}{2} d$. more than C, and $B 2 \frac{1}{4} d$. less than C : Suppose a sovereign had been divided among them in the same proportion, what would each have received?
28. What half-yearly dividend is derived from an investment of $£ 1000$ in the 3 per cents. at $87 \frac{3}{8}$, after deducting for income-tax 7 d . in the $£$?
29. What interest does a person obtain for his money, who invests in the $3 \frac{1}{2}$ per cents. at 91 ?
30. How many acres, roods, \&cc, are equal to $\frac{3}{4}$ of $\frac{1 \frac{3}{7}}{1 \frac{7}{5}}$ of $\frac{8.5}{2.25}$ of
 518 sq. ft. 28 in. ?
31. Find the true discount on $£ 10010 \mathrm{~s} .10 \mathrm{~d}$. payable in 4 years, interest being at $3 \frac{1}{2}$ per cent. per annum.
32. What sum of money improved by simple interest, at $3 \frac{1}{2}$ per cent. per annum, for half a year, will amount to $£ 1416 s$. ?
33. What would be the true present worth of $£ 29+2 s .6 d$., for $3 \frac{3}{29}$ years, reckoning simple interest at the yearly rate of 4.027 guincas per £100?
34. If the simple interest of $£ 162.871$ for 148 days were $£ 2.8142$ what would be the rate per cent, per annum?

Paper XIV.

Supplementary Miscellaneous Questions. [B.]

1. Two numbers have for their greatest common measure 537 and for their least common multiple 18795. What must the greater n° be, if the less is $=105$ times $\frac{2 \frac{6}{7}}{4 \frac{5}{6}}$ of $\frac{363.37}{8.4}$?
2. The circumference of the fore wheel of a carriage is $6 \frac{7}{8}$ feet, and that of the hind wheel is $12 \frac{5}{6}$ feet. How many feet must the carriage pass over before both wheels shall have made a complete number of revolutions?
3. The diameter of the fore wheel of a carringe is $\frac{5}{9}$ of that of the hind wheel, and the former makes 528 revolutions in passing over $\frac{3}{4}$ of a mile. How many revolutions does the hind wheel make in passing over a mile? and what is the circumference of each wheel?
4. In what proportion must water be mingled with spirits worth 10 s .6 d . a gallon, to reduce the value to 9 s .11 d . per gallon?
5. How much ore must one raise, that on losing $\frac{17}{40}$ in roasting and $\frac{8}{19}$ of the residue in smelting, there may result 506 tons of pure metal?
6. £225 9s. is due in 48 days, and $£ 5998 s$. in 26 days:-What sum paid at present would discharge both these debts? and how many days would be the equated time for one payment of the $£ 824$ 17s. $9-$ interest being reckoned at 5 per cent.
7. A cubic foot of water weighs 1000 oz . avoirdupois; a pipe whose bore is $3 \frac{1}{2}$ square inches discharges 252 lbs . per minute; find the velocity per hour of the issuing water.
8. If when corn is 15 s . 9 d . a quaiter, and hay $5 \frac{1}{2}$ d. per stone, 7 horses can be kept 8 days for $£ 4 \mathrm{ls} .3 \mathrm{~d}$; how many weeks cal 16 horses be kept for $£ 95$, when corn is 2 s. a bushel, and hay 70 s. a ton, supposing that 126 lbs . of hay are consumed with 1 bushel of corn?
9. An analysis of the Board of Trade returns for 1861, respecting shipwrecked lives, gave the following results:-Saved by life-boats, $13 \frac{1}{2}$ per cent. ; by rocket and mortar apparatus, 8 per cent.; by ships' boats, \&c., 62 per cent.; by individual exertion $\frac{1}{2}$ per cent.: lost, 16 per cent. Determine the number of lives saved, by the several means cnumerated, corresponding to an excess of 2619 rescues by ships' boats over those by life-boats.
10. Find troo decimal fractions together cqual to $\frac{1}{15}$, and such that one may be $\frac{1}{15}$ of the other.
11. A stationer by selling quills at a guinea a thousand, gaincd. $\frac{0}{7}$ of what they cost him. What was the prime cost?
12. A ring weighs 1 divt. 4 grs., and is worth $£ 12 \mathrm{~s}$. If 1050 of such rings be packed in a box weighing $3 \frac{1}{2}$ lbs., what would it cost to convey them 144 miles, at the rate of 5 s . per ton per mile, insurance being demanded at the rate of $\frac{1}{8}$ per cent. ?
13. A monolith of red granite in the Isle of Mull is said to be abont 108 feet in length, and to have an average transverse section of 113 square feet. If shaped for an obelisk, it would probably lose one-third of its bulk, and then weigh about 600 tons. Determine the number of cnbic yards in such an obelisk, and the weight in pounds of a cubic foct of granite.
14. Show that, in comparing the rates of two locomotive bodies, A and B, if the distance passed over per unit of time by A is $\frac{3}{4}$ of that by B, then A 's time per unit of distance is $\frac{4}{3}$ of $B ' s$.
15. A has 38 florins and a sovereign; B has 61 half-sovereigns and 11 florins. What sum transferred by B to A would make B lave exactly 6 times as much money as A ?
16. The difference of two numbers is $477 \frac{2}{11}$, and one of them is to the other as $\frac{3}{7}$ of $2 \frac{3}{8}$ of 1.53 is to $5 \frac{11}{13} \times 4 \frac{1}{4}$. Find the two numbers.
17. With what capital did a tradesman commence business, if at the end of 12 months his nett gain amounted to $£ 21014 \mathrm{s.j}$ a certain portion only of that gain being accounted trade profit, the remainder, viz. 5 shillings for every 9 shillings of the trade profit, being legal interest of capital?
18. The sum of $£ 100$ has been accumulating at compound interest
for 125 years at 3 per c.nt.: the amount is now invested in 3 per cent. consols at 95 . What will be the annual income therefrom?
N. B. $1.03^{30}=4.38 .3906$; and only four places of decimals need be retained in the result.
19. If the discount on $£ 567$ be $£ 3414 s .3 \frac{3}{7} d$., simple interest being reckoned at $4 \frac{1}{2}$ per cent., when is the sum due?
20. Λ narrow rectangular field, $A B C D$, has its length $A B 160$ $y d s$. and breadth $B C 31 \frac{3}{7}$ yards. To what point E in the side $A B$ must a stralght line from C be drawn, so that $A E C D$ may contain an acre?
21. A person invests $\mathcal{L} 6200$ in the 3 per cents, at $89 \frac{1}{8}$, and pays income-tax 10d. in the pound; on the stock rising to 92 he sells out, and invests the procceds in $£ 50$ railway shares which yield an annual dividend of $3 \frac{1}{2}$ per cent., clear of income-tax. Find the alteration in his income.
22. Certain railway shares pay an annual dividend of $£ 310$ s. Λ person having bought 12 shares, at such a price that they yielded $5 \frac{5}{9}$ per cent. on his investment, sold them when the price had risen $£ 5$, and invested the proceeds in $3 \frac{1}{4}$ per cent. stock at 85 . Find the alteration in his income.
23. What fraction of $\sqrt[3]{ } .0135$ is $\sqrt[3]{ } .004$.
24. From $\frac{1}{27}$ of $\sqrt[3]{5.92}$ subtract $\frac{1}{67}$ of $\sqrt[3]{61.77 \text {. }}$

Paper XV.

Supplementary Miscellaneous Questions. [C.]

1. A corn merclant laving bought 1300 quarters of wheat, sold one-fifth of it at a profit of 5 per cent., one-third at a profit of 8 per cent., and the remainder at a profit of 12 per cent.; but had he sold all at a profit of 10 per cent., his gain would have been $£ 1613 s .8 d$. more. What did the wheat cost him?

$$
1-\frac{1}{5}-\frac{1}{3}=\frac{7}{15} \text { sold at } 12 \text { p. c. profit. }
$$

\therefore the several quantities are as 3,5 , and 7 .

$$
\begin{aligned}
£ 3 \times 1.05 & =£ 3.15 \\
5 \times 1.08 & =5.40 \\
7 \times 1.12 & =\frac{7.84}{16.39} \\
15 \times 1.10 & =\frac{16.50}{.11}
\end{aligned}
$$

That is, on every $£ 15$ of the whole prime cost the gain would have been $£ .11$ more ; herice, £. 11 : £16 13s. $8 \mathrm{~d} .:: £_{15}: £ 2275$. Ans.
2. The gross receipts of a railway company in a certain ycar are apportioned thus: -40 per cent. to pay the working expenses, 54 per cent. to give the shareholders a dividend at the rate of $3 \frac{1}{2}$ per cent. on their shares; and the remainder, $£ 28350$, is reserved. Find the paid-up capital of the company.

$$
\begin{aligned}
& \quad 100-40-54=6 \text { p. c. of gross receipts is reserved. } \\
& \therefore 6: 54:: £ 28350: £ 255150 \text { amt. of dividends. } \\
& 3 \frac{1}{2}: 255150:: £ 1100: £ 7290000 . \text { Ans. }
\end{aligned}
$$

3. What is the exact time between 5 and $6 o^{\prime}$ 'loek when the hour and minute hands of a watch should be at right angles to each other? and what, when they should be coincident?

Call the hour hand H, and the minute hand M. At 5 o'clock, H is 5 twelfths of the circumference in advance of M; and it is required to find at what time after 5 o'clock the interval between H and M will be 3 tweliths.

Now, as $(5-3)$ twelfths and $(5+3)$ twelfths are both proper fractions, there will be two occurrences of the interval.

In the first instance, M has to gain 2 twelfths on H, and in the sccond instance 8 twelfths; and, as M gocs 12 times as fast as H, and gains 11 twelfths of the circumference per hour, we have

$$
\begin{aligned}
& 11 \mathrm{tw} \text { : } 2 \mathrm{tw} .:: 60 \mathrm{~min} .: 10 \frac{10}{11} \mathrm{~min} \text {. past } 5 \text {; } \\
& 11 \mathrm{tw} .: 8 \mathrm{tw} .:: 60 \mathrm{~min} .: 43 \frac{7}{11} \min . \text { past } 5 \text {; }
\end{aligned}
$$

which are the times when the hands intercept a fourth of the circumference, or are at right angles.

Similarly, to find when the hands are coincident is to find when M will have gained 5 twelfths of the circumf. on H.

11 tw .: 5 tw : :: 60 min . : $27 \frac{3}{11} \mathrm{~min}$. past 5 ;
which is the time when H and M point in one direction.
Note. The third answer might have been found thus:

$$
\left(10 \frac{10}{11}+43 \frac{7}{12}\right) \div 2=27 \frac{3}{11} \min . \text { past } 5 .
$$

4. At what rate must I sell sherry that cost me 40 s . a dozen, if I am to gain on every $£ 100$ of outlay the selling price of 5 dozen?
$£ 100 \div £ 2=50$ dozen bought for $£ 100$;
and I am to sell $(50-5)$ or 45 dozen for the prime cost of 50 dozen, viz. for $£ 100$;

$$
\therefore £ 100 \div 45=44 \mathrm{s.} 5 \frac{1}{3} d . \text { per doz. Ans. }
$$

5. A's present age is to B 's as 9 to 7 ; and 34 ycars ago the prorurion was 5 to 2. Find the present age of each.

In solving such problems it is borne in mind that the difference of the ages of two persons is always the same, though the ratio of the ages is alurays varying.

Here, then, we have A 's present age to B 's as $9: 7$; and 9 is $4 \frac{1}{2}$ times $(9-7)$. Similarly, A's former age was to B 's as $5: 2$; and 5 is $1 \frac{2}{3}$ times ($5-2$).

Therefore, A 's present age is $4 \frac{1}{2}$ times the difference of A 's and B 's ages; and his former age was $1 \frac{2}{3}$ times the same difference ; so that we have

A's former age $=\frac{1 \frac{2}{3}}{4 \frac{1}{2}}$ or $\frac{10}{27}$, of his present age;
$\therefore \frac{17}{27}$ of A 's present age $=34$

$$
\left.\begin{array}{r}
\therefore \text { A's present age }=54 \text {, } \\
B \text { 's } \frac{7}{9} \text { of } 54, \quad=42 .
\end{array}\right\} \text { Ans. }
$$

6. A boatman rows 5 miles with the tide in the time he would take to row 3 miles against it; but if the hourly velocity of the current were $\frac{1}{2}$ a mile more, he would move twice as rapidly with the tide as against it. What is his power of rowing in still water?

If 5 represent his rate with the tide, then 3 represents his rate against the tide, and the average of these, viz. $\frac{1}{2}(5+3)$, or 4 , represents his rate in still water ; also $5-4$, or $4-3$, viz. 1 , represents the velocity of the current, $=\frac{1}{4}$ of his rate in still water.

Again, if 2 be his rate with the tide, and 1 his rate against it, then $\frac{1}{2}(2+1)$, or $1 \frac{1}{2}$, is his rate in still water ; also $2-1 \frac{1}{2}$, or $1 \frac{1}{2}-1$, viz. $\frac{1}{2}$, is the velocity of the current, $=\frac{1}{3}$ of his rate in still water.
$\therefore \frac{1}{3}-\frac{1}{4}$, or $\frac{1}{12}$ of his rate in still water is $=\frac{1}{2}$ a mile per hour ; and hence his rate in still water is $\frac{1}{2}$ a mile $\times 12=6 \mathrm{mi}$. an hour. Ans.
7. A contractor engages what he considers a sufficient number of men to execute a piece of work in 84 dass; but he ascertains that three of his men do, respectively, $\frac{1}{6}, \frac{1}{7}$, and $\frac{1}{9}$, less than an average day's work, and two others $\frac{1}{8}$ and $\frac{1}{10}$ more; and in order to complete the work in the 14 weeks, he procures the help of 17 additional men for the 84th day. How much less or more than an average day's work on the part of these 17 men is required?

Here, instead of 5 men working with ordinary ability, during the 84 days, there are

$$
\frac{5}{6}+\frac{6}{7}+\frac{8}{9}+\frac{9}{8}+\frac{11}{10}=4 \frac{2027}{25 \frac{7}{0}} \text { ordinary men; }
$$

so that the deficiency to be made up is equal to the work of 1 ordinary workman for 84 times $\frac{493}{2520}$ da.

- 1 ordinary workman for $\frac{493}{30}$ days, $=17$ ordinary workmen for $\frac{29}{30}$ of a day, or, 17 men each doing $\frac{1}{30}$ less than an average day's work. Ans.

8. A farmer gave for a borse a bill of $£ 73$ due in 1 month, and sold him at once for a bill of $£ 87$ at 4 months. Required the farmer's gain per cent, reckoning interest at $4 \frac{1}{2}$ per cent.

$$
\begin{gathered}
100 \frac{3}{8}: 100:: £ 73: £ \frac{800}{11}, \text { Pres. Worth of } £ 73 ; \\
101 \frac{1}{2}: 100:: £ 87: £ \frac{600}{7}, \quad \text { Do. of } £ 87 ; \\
\therefore \frac{800}{11}: \frac{600}{7}:: 100: 100 \times \frac{6}{7} \times \frac{11}{8}=117 \frac{6}{7} ; \\
\text { or, } 17 \frac{6}{7} \text { per cent. gain. Ans. }
\end{gathered}
$$

9. Divide the number 237 into three parts such that 3 times the first may be equal to 5 times the second and to 8 times the third.

Since 5 times the 2 nd $=3$ times the 1st, \therefore the $2 \mathrm{nd}=\frac{3}{5}$ of the 1st; similarly, the $3 \mathrm{rd}=\frac{5}{8}$ of the 2 nd ;
and the three parts are as $1, \frac{3}{5}$, and $\frac{5}{8}$ of $\frac{3}{5}$,

$$
\text { or, as } 40,24 \text {, and } 15 \text {; }
$$

$\therefore \frac{40}{79}$ of $237=120$, the 1 st,
$\left.\begin{array}{l}\frac{24}{79} \text { of } 237=72, \text { the } 2 \text { nd, } \\ \frac{15}{79} \text { of } 237=45 \text {, the 3rd. }\end{array}\right\}$ Ans.
10. Divide $£ 543318 s$. into three sums, such that their amounts by compound interest at 5 per cent. per annum, for 20,23 , and 27 years, respectirely, shall be equal.

$$
\begin{aligned}
\text { The } 1 \text { st } \times 1.05^{20} & =\text { the } 3 \mathrm{rd} \times 1.05^{27}, \\
\therefore \text { the } 1 \text { st } & =\text { the } 3 \mathrm{rd} \times 1.05^{7} ; \\
\text { The } 2 \mathrm{nd} \times 1.05^{23} & =\text { the } 3 \mathrm{rd} \times 1.05^{27}, \\
\therefore \text { the } 2 \mathrm{nd} & =\text { the } 3 \mathrm{rd} \times 1.05^{4} .
\end{aligned}
$$

Thus, the three required parts of the given sum will be as

$$
\begin{aligned}
& 1.05^{7}, 1.05^{4} \text {, and } 1 ; \text { or, as } 1.4071,1.2155 \text {, and } 1 \text {; } \\
& \text { or as } 14071,12155 \text {, and } 10000 ;
\end{aligned}
$$

accordingly, the 36226 th part of the given sum, viz. $3 s$., multiplied by these proportional numbers gives $£ 2100$ 13s., $£ 1823$ 5s., and $£ 1500$. Ans.
-11. Suppose 9 men or 15 women to earn 25s. a day at reaping, when they work $9 \frac{2}{11}$ hours a day; how many men with 4 women would earu 35s. a day at the same employment, if the duration of daily work were an eighth less than in the former case ?
12. Thirteen horses do the same work as twenty ponies, and 12 horses can just draw a certain load on level ground; how many ponies along with 5 horses could draw a load $\frac{3}{7}$ as heavy up a gradual slope which makes the traction more laborious by $\frac{1}{8}$ for ascent and $\frac{1}{10}$ for rougliness?
13. What must a person have invested in the 3 per cents. at $90 \frac{5}{8}$, if a transfer of $\frac{3}{5}$ of his capital to the 4 per cents. at 115 would increase his income by $£ 7$?
14. Suppose that from an official return of the arrivals of oxen, calves, sheep, pigs, and horses, in the port of London, from the continent, in a certain week, it appears that there were 3 times as many sheep as oxen, that the number of pigs was $13 \frac{1}{3}$ per cent. of the number of sheep, that for every 28 pigs there were 25 calves, that the horses were $\frac{1}{10}$ per cent. of the whole, and that the horses and oxen together were 3587:-What was the number of oxen?
15. A merchant has three qualities of whisky, viz. at $18 s ., 16 s$. , and 15s. a gallon, and in quantities, respectively, as $3,4,5$; and with these he mingles such a quantity of water as makes the average value 15 s .6 d . a gallon. How much per cent. of the mixture is water?
16. Suppose that 15 men would be necessary to excavate 966 cubic yards in 8 days of $10 \frac{1}{2}$ hours each:-How many men did a contractor engage for 12 days of $7 \frac{1}{2}$ hours, to excavate 575 cubic yards, if he found it requisite to engage 4 additional men during the last 4 days, in order to complete the work in the 12 days?
17. I bought 128 yards of cloth for $£ 100$, and am now obliged to sell it at a loss of as much money as I shall receive for a dozen yards. At what do I sell it per yard?
18. I bought paper at the rate of $3 s .7 \frac{1}{2} d$. for 5 quires, and sold it so as to gain as much on the cost of 32 quires as 3 quires were sold for. At what rate did I sell it per quire?
19. I gave 3 sovereigns for two dozen of wine, at different rates per dozen; and by selling the cheaper kind at a profit of 15 per cent., and the dearer at a loss of 8 per cent., I obtained a uniform price for both. What did cach dozen cost me?
20. F and G are partners in trade; F contributes $\frac{2}{5}$ of the joint capital fur $10 \frac{1}{2}$ months, and G receives $\frac{5}{8}$ of the gain. Required G 's period of investment.
21. At what time between 11 and 12 o'clock will the hour and minute hands of a clock make with each other an angle intercepting 27 of the minute divisions?
22. A merchant buys two pipes of wine, one for $£ 112$, one for $£ 120$, and he also buys a third pipe; on mixing the three, he sells his wine at 50 s. per dozen, gaining 25 per cent. on his outlay; what was the price of the third pipe? -The n° of dozens in a pipe is 56 .
23. My age is 62 , and my son's age 30 ; how long ago was my age 5 times that of my son? and how many years hence (if we are both alive) will my age be a third of 5 times his age?
24. My age was 24 when my eldest son was born, and when I attain to twice my present age he will be 8 times as old as he is now. What is his age?
25. A boatman rowing against the tide passes a body floating with the tide, and in 9 minutes afterwards is a mile distant from it; in 35 minutes more he rows $2 \frac{1}{2}$ miles, and then returns. At what rate per hour does he return, supposing the tide to flow uniformly in one direction?
26. A corn merchant bought 121 quarters of wheat, and he sells it so as to gain $17 \frac{1}{2}$ per cent. on 26 quarters, and 13 per cent. on the remaining quantity, having previously tried to sell the whole at a uniform advance of 15 per cent., which would have brought him $£ 45$ s. more than he actually received. What did the wheat cost him per quarter?
27. A watch that gains 24 seconds per hour is set to right time at a quarter to 5 p.m. What will be the right time between 8 and 9 o'elock the same erening, when the hour and minute hands of the wateh point in exactly opposite directions?
28. Of the whole cost of constructing a railway, $\frac{5}{7}$ is held in shares, and the remainder, $£ 400000$, was borrowed on mortgage at $£$ per cent. Find what amount of gross annual receipts,-of which 40 per cent. will be required for the working expenses of the line, and 8 per cent. iat a reserve fund, -will yield to the shareholders a dividend of $4 \frac{1}{2}$ per cent. on their investments?
29. A dealer buys 18 cwt .3 qrs. at 1 s .3 d . a lb., which, to obtain a fair profit, he should retail at $8 \frac{1}{3}$ per cent. above cost price. Bnt, while he professes to sell at the rate of 3 lbs . for 3 s . 10d., he serves his customers, to his own advantage, with a false balance, in which 10 lb . weighs $10 \frac{1}{2} \mathrm{lb}$., and at the same time he uses a false lb . of 6860 grains How much does he make beyond the fair profit?
30. I have this day paid $£ 2180$, being repayment, with interest, of two loans, both contracted by me at one time, viz. of $£ 1163$ borrowed at 4 per cent. per annum, and $£ 994$ at $4 \frac{1}{2}$ per cent. How long is it since the sums were borrowed?
31. A person borrowed $£ 2726 \mathrm{~s}$. 6 d . at 5 per cent. per annum, and repaid the loan by yearly instalments of $£ 100$, that sum including the ycar's interest; how much of the debt was discharged in 3 years?
32. What must be the gross rental of an estate, so that, after deducting $7 d$. in the $£$ income-tax, and $4 \frac{1}{2}$ per cent. on the remainder for expenses of collecting, there may be left a nett rental of $£ 1000$?
33. I sold an amount of railway stock at 104, and invested the proceeds in the 3 per cents at 91 ; I then sold out the 3 per cent. stock at 95 , and re-purchasing the railway stock at 105 , I found myself a gainer of $£ 50$ by the whole transaction. Required the amount of railway stock.
34. The interest on a certain sum of money fur 2 ycars is $£ 7116 s$. $7 \frac{1}{2} d$., and the discount on the same sum, for the same time, is £63 17 s., simple interest being reckoned in both cascs. Find the rate jer cent. per annum, aud the sum.
35. At what rate per cent. per annum, compound interest, would a sum of money in 2 years amount to the same as at $3 \frac{1}{2}$ per cent. per annum simple interest?

3ĉ. If a publisher, in selling a book for cash, rates it at 25 per cent. below publishing price, and then charges for 15 copies as 12 , how long credit could he allow, so that, on the principle of true discount at 4 per cent. per annum, the sum to be reccived for a book should be just 29 per ceut. below publishing price?
37. The external length, breadth and height of a rectangular wooden
closed box are 18,10 , and 6 , inches, respectively, and the thickness of the wood is half an inch. When the box is empty it weighs 15 lbs , and when filled with sand, 100 lbs . Compare the weights of equal bulks of wood and sand.
38. I bought goods at 23 s .9 d . with 4 months' credit, and sold them forthwith at $25 s .6 d$. with such allowance of credit as made my gain $6 \frac{2}{3}$ per cent. How long credit did I give, reckoning interest at 4 per cout. per annum?
39. If I am allowed $1 \frac{1}{4}$ per cent. discount on an amount charged to me for goods, and give my acceptance at five months for the nett sum; and if by selling the goods forthwith for a bill of $£ 162$ 12s. 2 d ., payable in 7 months, my present gain is $11 \frac{1}{9}$ per cent.; what is the amount originally charged to me, interest being reckoned at 5 per cent. per annum?
40. The present income of a railway company would justify a dividend of 4 per cent., if there were no preference shares; but as $£ 200000$ of the stock consists of such shares, which are guaranteed 5 per cent. per aunum, the ordinary shareholders receive only $3 \frac{1}{2}$ per cent. What is the whole amount of stock?
41. A man bought a house, which cost him 4 per cent. upon the purchase money to put into repair; it then stood empty for a year, during which time he reckoned he was losing 5 per cent. upon his total outlay. IIe then sold it again for $£ 1192$, by which means he gained 10 per cent. upon the original purchase-money. What did he give for the house?
42. (a) Show that if 5 times $A, 6$ times B, and $7 \frac{1}{2}$ times C, are equal quantitics, then A, B, and C are in the proportion of $\frac{1}{5}, \frac{1}{6}$, and $\frac{2}{15}$.
(b) What is meant by the reciprocal of a number? What fraction divided by its reciprocal gives a quotient equal to $\frac{153}{272}$?
43. Divide 33 cwt . 2 qr 22 lb . into three such parts that 6 times the first, 9 times the second, and 10 times the third may be equal amounts.
44. Divide $£ 368 \mathrm{~s}$. into four parts such that their simple interests for $4,6,7$, and 10 months, and at $3,4,5$, and 6 per cent. per annum, respectively, shall be all equal.
45. Divide £ $£ 3010$ into three sums, so that if the first be put out at simple interest for 3 years at 4 per cent, the second for 5 years at 3 per cent., and the third for 2 years at $2 \frac{1}{2}$ per cent., the amount of the second shall be double that of the first, and the amount of the third treble that of the second.
46. By the sale of goorls which cost me $£ 319$ s. $2 d$. I lost a sum
equal to $5 \frac{5}{9}$ per cent. of the proceeds; and by the sale of another quantity which cost me $£ 5$ I gained a sum equal to $31 \frac{3}{7}$ per cent. of the procceds. What did I gain per cent. on the whole?
47. If 9 oxen are kept for the same moncy as 7 horses (for any given time), and a team of oxen are $\frac{1}{5}$ as long a a ain in ploughing 97 acres as the same number of horses are in ploughing 90 acres, and a field costs as much whether ploughed by oxen or horses, viz. $£ 75 \mathrm{~s} .6 \mathrm{~d}$.; the same men being required in both eases, and being paid by the time, what is dus to them?
48. If 28 mea can excarate 750 cubic yards in 4 days, working $6 \frac{3}{4}$ hours a day; what uniform length of day will 24 men require, to excavate 61.5 cubic yards in $3 \frac{1}{2}$ days, supposing that any 5 of the latter party can do as much in 4 hours as any 6 of the former can do in $3 \frac{1}{2}$ hours, and that 2 men will be withdrawn from the latter party after $2 \frac{1}{2}$ days' work ?
49. In a certain manufactory, 158 men of ordinary ability, and working the same number of hours each day, execute a certain piece of work in a week; but if the abilitics of 2 of them had been, respectively, $\frac{1}{7}$ and $\frac{1}{9}$ less than ordinary, and the abilitics of 2 others $\frac{3}{5}$ and $\frac{3}{8}$ more, the work could have been finished $\frac{23}{83}$ of an hour sooner. How many hours a day did the men work ?
50. The interval between the firing of two guns, at a railway station. was 6 minutes, and a passenger in a train, approaching the station at a uniform rate, heard the sccond seport 5 min .51 sec . after hearing the first. Now, suppose the sound of the train's approach to have bceome audible at the station when the train was 2 miles off, how soon after that did the train pass the station,-sound travelling 1125 fect per second?

ANSWERS TO THE EXAMPLEG.

1.

1. $492480 ; 161280$.
2. 3021 ; 3300 .
3. $51520 ; 206080$.
4. 996528 ; 73029.
5. 92160 ; 25200. ${ }^{\text {. }}$
6. 3816 ; 21607.
7. $44160 ; 324003$.
8. 1132; 37584.
9. 1096 ; 440.
10. 3936 ; 188.
11. $16000 ; 84000$.
12. 45647 ; 40821.
13. 6912; 394240.
14. 10:08; 408584.
15. $13200 ; 733$.
16. $126060 ; 15620$.
17. 1180; 716.
18. $351 ; 361152$.
19. 1088 ; 2040.
20. 9855 ; 2030400.
21. $6600 ; 842$.
22. $14161 ; 164760$.
23. $21728 ; 84624$.
24. 26921 ; 1741872
25. $4750 ; 16820$.
26. $25624 ; 45780$.
27. 8760 ; 23184.
28. 1074088 ; 599616.
29. 1158; 1032.
30. 3960 ; 16815600 .

2.

1. $3751916 ; 3752$.
2. 1429 ; £. 086 s .8 d .
3. 400 g .17 s .6 d . ; $£ 1288 \mathrm{~s} .6 \frac{1}{2} \mathrm{~d}$.
4. 16 tons 15 cwt. 1 qr. 20 lbs. ; 3 cwt. 3 qrs. 2 lbs .9 oz. 14 drs.
5. 4 tons 1 cwt .3 qrs. 7 lbs .5 oz .12 drs. ; 60 cwt .1 qr. 16 lbs .10 oz .
6. 2 tons 15 cwt. 3 qrs. 6 lbs. ; 1 qr. 22 lbs. 1 oz. 5 drs.
7. 6 tons 8 cwt. 14 lbs .1 oz ; 10 cwt .3 qrs. 25 lbs .6 oz .15 drs.
8. 5 cwt . 1 qr. 23 lbs .7 drs ; 28 tons 2 cwt. 2 qrs. 1 oz .
9. 6 tons 12 cwt. 1 qr. 1 lb .15 oz. ; 12 cwt. 3 qrs. 22 lbs .5 oz .3 drs .
10. 2 lbs. 3 cz .8 dwts. 20 grs. ; 125 lbs .3 oz .6 dwts.
11. 2 lbs .11 oz .11 dwts. 9 grs. ; 2 lbs .1 oz. 13 dwis. 15 grs.
12. 18 lbs .11 oz .10 grs. ; 32 lbs .9 oz .18 dwts. 9 grs.
13. 47 lbs. 4 oz. 7 dwts. 13 grs. ; 22 lbs. 1 oz. 3 dwts.
14. 6 m .6 fur. 150 yds .; 43 lea. 2 m .2 fur. 31 yds .
15. 15 fur. 56 yds. $1 \mathrm{ft} .7 \mathrm{in} . ; 71 \mathrm{~m} .4$ fur. 205 yds.
16. 8 m .1 fur. $86 \mathrm{yds}$.4 in .; 11 lea. 1 m .6 fur. 110 yds .
17. 849 yds. 3 na. ; 9098 ells 2 qrs. 2 na.
18. 758 A. 1 r. 1 P. ; 25 sq. yds. 6 ft. 69 in.
19. 125 A. ; $15 \mathrm{sq} . \mathrm{yds}$.3 ft . 128 in .
20. 4 cub. $y d s .7$ ft. 1280 in . ; 2 cub. yds. 26 ft .57 in .
21. 2 cub. $y d s .7 \mathrm{ft} .1513 \mathrm{in}$: 3 cuh. yds. 23 ft .1119 ig.
22. 2273 gals. 3 qts. 1 pt. ; 968 gals. 1 pt. 3 giils.
23. 22 lds. 2 qrs. 1 bus, 1 pk. 1 gal. ; 178 qrs. 3 bus. 1 pk. 1 gal. 2 zts.
24. 561 lds .1 bus. 1 pk. ; 22 lds. 7 bus. 1 pk. 2 qts. 1 pt.
25. 278 lds. 1 qr. 2 bus. 3 pks. 3 qts. ; 9354 qrs. 7 bus.
26. 377 yrs. 214 days ; 5 w .6 d. 5 hrs. 23 m .49 s .
27. 1404 w. 3 d. 23 h. ; 2 yrs. 101 d. 20 h .25 m.

3.

qr. lb. oz. dr.
17. $12 \quad 11 \quad 5 \quad 9$
oz. dwt. gr. lb. oz, dwt. oz, dwt. gr. \quad lib. oz, dwt. $\begin{array}{lllllllllllll}20 . & 31 & 1 & 14 & 21.84 & 7 & 9 & 22 . & 34 & 15 & 11 & 23 . & 133 \\ 5 & 10\end{array}$ lb. oz. dwt. gr. \quad lb. oz. dwt. gr. lb . oz. dwt. gr. 24. $116 \quad 6 \quad 2 \quad 23$ dr. scr. gr.
27. $22 \quad 2 \quad 16$
yds. ft. in.
31. $58 \quad 0 \quad 3$
fur. po. yds.
35. $22 \quad 10 \quad 4 \frac{1}{2}$
po. yds. ft. in.
39. $32 \quad 4 \quad 0 \quad 7$
yds. qrs. na. yds. ${ }^{\text {mrs. na. }}$
42. $167 \quad 0 \quad 1$

P. s.yds, s.ft. s.in.
50. $16 \begin{array}{llll}24 & 3 & 101\end{array}$
c.yds. c.ft. e.in.
53. $92 \quad 9 \quad 429$

56. pals.
5ts. pt.
56. 150

67. $\begin{array}{ccccc}\text { d. } & \text { h. } & { }_{2} & { }_{28} & \text { s. } \\ 50 & 59\end{array}$

dr. scr. gr. 29. $37 \quad 0 \quad 7$
m . fur. yds. lea. m. fur. 33. 21 0 $\quad 54 \begin{array}{lllll}34 . & 27 & 0 & 6\end{array}$ 32. 24344
yds. ft. in.
po. yds. ft. in.
68. $102 \mathrm{yd}$.
69. $30 \quad 1 \quad 2$
m. fur. po. yds.

41 m. fur. yas. f . 41. $27 \quad 0 \quad 133 \quad 2$ $\begin{array}{cc}\text { ells } & \text { qrs. na. } \\ 328 & 1 \\ 3 & 1\end{array}$ ells qrs. na. 45. $142 \quad 0 \quad 1$ 49. $162 \begin{array}{ccc}\text { R. } & \stackrel{\text { P. }}{2} \\ 23\end{array}$ A. P. s.yds. ft. in. $\begin{array}{llllllllllll}51 . & 9 . & \mathrm{S}_{2}^{\text {R. }} & 18 & 18 & 23 & 52 . & 103 & 9 & 25 \frac{1}{4} & 3 & 23\end{array}$ $\begin{array}{ccc}\text { 5.yds. c.ft. c.in. } \\ 106 & 10 & 8\end{array}$
 55. $95 \quad 11 \quad 108$ 61. $119 \begin{array}{llllllllll}4 & 4 & 62 . & 124 & 5 & 1 & 63 . & 168 & 3 & 1\end{array}$ bus. pks. gal. q's.
65. $155 \quad 3 \quad 1 \quad 2$
66. $150 \quad 0 \quad 3 \quad 1$

$$
\begin{aligned}
& \text { 69. } \begin{array}{cccc}
\text { d. } & \text { h. } & 21 & \text { m. } \\
\text { y. } & \text { s. } \\
\text { y. } & \text { d. } & \text { h. } & \text { m. } \\
\text { 72. } & 28 & 184 & 4 \\
0
\end{array}
\end{aligned}
$$

a.

1. $\begin{array}{ccc}f & s . & d . \\ 10 & 3 & 3\end{array}$
2. $55 \quad 9 \quad 10$
3. $25 \quad 17 \quad 2 \frac{1}{2}$
lbs. oz. drs.
4. $14 \quad 4 \quad 2$
qrs. lbs. oz.
5. $8 \quad 11 \quad 4$
oz. dwt. gr.
6. $3 \quad 410$
oz. dwt. gr.
7. 2148
dr. scr. gr.
8. $3 \quad 0 \quad 19$
jd. ft. in.
9. 119
m. fur. po. 37. $12 \quad 229$
po. yds. ft. 41. 741
s.jds. s.ft. s.in.
10. $6 \quad 2 \quad 86$
A. R. P.
11. $25 \quad 2 \quad 36$
c.yds. c.ft. c.n. 53. 12141071 gals. qts. pt. 5\%. $2 \quad 21$
qrs. bus. pks.
12. $5 \quad 3 \quad 3$
hrs. m. s. 05. $13 \quad 57 \quad 49$ yrs. d. hrs. 63. 121969
13. | | s. | d. |
| :---: | :---: | :---: |
| | $\frac{1}{4}$ | |
14. 876
15. $38 \quad 2 \quad 0 \frac{1}{2}$
qrs.lbs. oz.
16. $718 \quad 3$
ton cwt. qrs.
17. 162
. oz. dwt. gr.
18. $13 \quad 17 \quad 23$
oz. dwt. gr.
19. 36811
oz: dr. scr.
20. 221
po. y ds. ft.
21. $9 \quad 3 \quad 2$
fur. po. yds.
22. $18 \quad 5$
'yds. ft. in.
23. $7 \quad 0 \quad 5$
P. s.yds. s.ft.
24. $8 \quad 22 \quad 6$
R. P. s.yds.
25. $1 \quad 13 \quad 22$
c.jds. c.ft. c.in.
26. 294655
gals. qt. pt.
27. 51
lds. qrs. bus.
28. $12 \quad 4 \quad 6$
d. hrs. m.
29. $7 \quad 19 \quad 45$
jrs. w. d.
30. $8 \quad 39 \quad 5$

31. $218 \quad 18 \frac{3}{4}$
32. $77 \quad 15 \quad 1 \frac{3}{4}$
cwt. qrs. lbs.
33. $20 \quad 215$
cwt. lbs. oz.
34. $14 \quad 27 \quad 12$
lbs. oz. dwt.
35. $\begin{array}{lll}6 & 7 & 17\end{array}$
oz. dwt. gr.
36. $8 \quad 10 \quad 15$
lbs. 'oz. dr.
37. $\begin{array}{lll}17 & 7 & 7\end{array}$
fur. po. yds.
38. 5213
lea. m. fur.
39. $18 \quad 2 \quad 6$
yds. qrs. na.
40. $4 \quad 31$
R. P. s.yds.
41. $0 \quad 6 \quad 27$
R. s.yds. s.ft.
42. $2 \quad 2 \frac{1}{4} 6$
c.yds. c.ft. c.in.
43. $33 \quad 4 \quad 1385$
pks. gal. qt. 59. 311 bus. pk. gal. 63. 1711
w. d. hrs. 67. U $5 \quad 13$
yrs. w. d. 71. $10 \quad 43 \quad 4$
44. $187 \quad 1 \quad 2 \frac{1}{4}$
45. $21523 \frac{1}{4}$
qrs. lbs. oz. 16. $0 \quad 25 \quad 7$
qrs. lbs. oz. 20. $3 \quad 21 \quad 6$ oz. dwt. gr. 24. $8 \quad 1 \quad 2$ oz. dwt. gr. 28. $14 \quad 6 \quad 6$ dr. scr. g". 32. 1016
m. fur. yds. 36. 46124 fur. po. yds. 40. $0 \quad 27 \quad 4$
46. $\quad 4 \quad 4 \quad 2$
A. R. P. 48. $13 \quad 2 \quad 34$
s.yds. s.ft. s.in. 52. $\begin{array}{llll} & 3 & 3 & 27\end{array}$
c.yds. c.ft. c.in. 56. 1316999
bus. pks. gal. 60. $18 \quad 2 \quad 1$
lds. qr. bus. 64. 214
mo. w. d.
47. $3 \quad 2 \quad 6$
yrs. d. hrs.
48. $6 \quad 346 \quad 14$
£ s. d.
49. 46168
50. $\quad 146 \quad 12 \quad 10 \frac{1}{2}$
51. $499 \quad 7 \quad 1$
52. $927 \quad 7 \quad 10 \frac{1}{2}$
53. $1325 \quad 13 \quad 4$
54. $1221 \quad 18 \quad 6 \frac{3}{4}$
55. $1888 \quad 13 \quad 1$
56. $618 \quad 0 \quad 6$
57.

£ s. d.
2. $\quad 75 \quad 6 \quad 10 \frac{1}{2}$
5. $\quad 312 \quad 10 \quad 8$
8. $\quad 378 \quad 11 \quad 1 \frac{3}{4}$
11. $940 \quad 7 \quad 3$
14. 139176
17. $1242 \quad 13 \quad 4$
20. $2020 \quad 110 \frac{1}{4}$
23. $1546 \quad 7 \quad 0$

	\mathscr{L}	s.	d.
3.	179	6	9
6.	387	2	2
9.	1029	19	0
12.	1131	8	$4 \frac{1}{2}$
15.	1038	9	9
18.	1752	7	11
21.	444	2	9
24.	2060	1	3

7.

1. $895 \quad 1 \quad 10 \frac{3}{4}$
2. $\begin{array}{llll}1096 & 3 & 9 \frac{1}{2}\end{array}$
3. $\quad 979 \quad 1411 \frac{1}{4}$
4. $2713 \quad 12 \quad 6$
5. $\quad 881 \quad 14 \quad 9 \frac{1}{2}$
6. $1532 \quad 4 \quad 9 \frac{1}{2}$
7. $1543 \quad 511 \frac{1}{8}$
8. $\quad 1475 \quad 17 \quad 9 \frac{3}{4}$
9. $2536 \quad 3 \quad 2 \frac{1}{2}$
10. $2318 \quad 16 \quad 9 \frac{1}{4}$
11. 6 cwt. 1 qr. 26 lb .15 oz .8 dr . 12.41 tons $18 \mathrm{cwt}$.1 qr .18 lb .10 oz . 13. 159 tons 1 cwt .10 lb .13 oz . $\quad 14.314$ tons 10 lbs.
12. 31 tons 19 cwt .1 qr. 6 lb .11 oz . 16. 811 tons $15 \mathrm{cwt} .3 \mathrm{qrs}$.3 lb .4 oz . 12 dr.

9 dr .
17. 182 lb .10 oz .1 divt. 13 gr .
18. 131 lb .2 oz. 15 dwt. 20 gr .
19. 12 lea. 1 m .4 fur. 16 yds. 8 in .
21. $414 \mathrm{~A}, 1 \mathrm{R} .10 \mathrm{P}$.

20: 19 lea. 2 m .1 fur. 98 yds. 8 in .
23. 313 sq. yds. l ft. 112 in .
22. 1255 A. 3 R. 32 P.
25. 7908 gals. 3 qts.
24. 1493 cub. yds. 11 ft .1332 in .
26. 3612 gals.
27. 96 lds. 1 qr. 2 bus.
28. 79 lds. 3 qrs. 2 bus.
29. $1^{\circ} \mathrm{yr} .323 \mathrm{~d} .6 \mathrm{~h} .40 \mathrm{~m}$.
30. 2491 yrs. 247 d. 2 h. 16 m .48 s.
3.

10.

1.	35	2	$3 \frac{3}{4}$	2.	13	8	$2 \frac{1}{2}$	3.	15	6	$4 \frac{3}{4}$	4.	8	12	10
5.	13	16	5	6.	10	10	10	7.	4	0	$11 \frac{3}{4}$	8.	1	2	$10 \frac{3}{4}$
9.	5	16	$0 \frac{1}{4}$	10.	8	12	$10 \frac{1}{4}$	11.	0	17	$3 \frac{3}{4}$	12.	0	9	$5 \frac{3}{4}$
13.	7	14	3	14.	7	5	$1 \frac{1}{4}$	15.	0	1	$2 \frac{1}{2}$	16.	0	8	$7 \frac{3}{4}$
17.	11	$1 \frac{1}{2}$	18.	5	17	$9 \frac{3}{4}$	10.	4	9	$10 \frac{1}{4}$	20.	4	18	$8 \frac{1}{4}$	
21.	3	18	$1 \frac{3}{4}$	22.	3	0	$5 \frac{1}{4}$	23.	2	8	$4 \frac{1}{4}$	24.	4	0	$0 \frac{1}{4}$

11.

	$£$	s.	d.		£.	s.	d.		$£$	s.	d.		\mathscr{L}	s.	d.
1.	28	17	$11 \frac{1}{2}$	2.	17	0	$0 \frac{1}{2}$	3.	1	7	2	4.	19	16	$6 \frac{3}{4}$
5.	12	15	$11 \frac{1}{2}$	6.	0	3	$3 \frac{3}{4}$	7.	1	2	$3 \frac{1}{4}$	8.	17	7	$9 \frac{1}{4}$
0.	11	3	$8 \frac{1}{4}$	10.	0	2	$8 \frac{1}{2}$	11.	0	13	$5 \frac{1}{2}$	12.	6	12	$8 \frac{1}{4}$

12.
13. 9.
1. 6.
1. 9.
1. 27.
1. 9.
1. 6.
1. 9.
1. 3.
1. 27.
1. 137896.
1. 43.
1. 436.
1. 29.
1. 58.
1. 79.
1. 26.

13.

1. $876 \& 15 s . ; 1024 \& 8 s$.
2. $154 \& 8 s . ; 1062 \& 3 s$.
3. $147 \& 2 \mathrm{~s} .6 \mathrm{~d} . ; 1090 \& 4 d$.
4. 138 lb .6 oz. 10 dwt. ; 6 dr. 1 scr. 4 gr.
5. 24 lb .3 oz .13 dwt .8 gr . ; 12 dwt .12 gr .
6. $597 \& 2$ qr. ; $4 \& 8$ in. \quad 10. $1000 ; 550$.

14.

| | s.y. s.f.
 1.in.
 1. 11
 3 3 | 10 |
| :--- | :--- | :--- | :--- |

$\begin{array}{rrrr}\text { 4. } & 1 & 6 & 60 \\ 7 . & 56 & 8 & 0 \\ 10 . & 2+1 & 8 & 112\end{array}$

1. 2 ft .9 in .
2. $2 \mathrm{yds}$.10 in .
3. 13 ft .1 in .
4. 130 .
5. 52 yds .3 in .
6. 12 yds .1 ft .5 in .
7. 2 ft .9 in .
8. The other side is $26 \mathrm{yds}$.5 in .
9. 341 yds . 1 ft
10. 250.

26.

	c. d d .	in.	c.yds. ft.			in.	c.yds. fi.			in.
1.	77	576	2.	1	25	144	3.	14	12	1080
4.	46	0	5.	33	16	864	6.	13	15	1152
7.	02	864	8.	5	15	0	9.	15	2	1673
10.	7 ft .		11.	120			12.	7783	360	

17.

1. 21 llss . 4 oz. 15 dwt .
2. $\mathfrak{£} 9419 \mathrm{~s}$. 2 d .
3. $24857 \mathrm{mi}, 1680 \mathrm{yds}$.
4. 1907314.
1. 6 da. 22 hrs. 40 min .
2. $132 \mathrm{yds}$.2 ft .7 in .
3. 976 ducats.
4. $365 \mathrm{da}$.5 hrs .48 min .48 sec .
5. 44 tons 12 cwt. 3 qrs. 12 lbs .
6. 1 mi. 4 fur. 20 yds .
7. 3 mi .3 fur. 60 yds .
8. $£ 7670$.
9. 63 yds.
10. £193 15s.; 60 minæ.
11. £1919 5s. 5d.
12. $£ 12380$ 1s. 3 d .; $£ 10110$ 18s. 2 d . 32. $20833 \frac{1}{3} \mathrm{lbs}$.
13. 37 oz .
14. 50606 gal.
15. 26 yds. 2 ft .
16. $£ 332$ 2s. $6 \frac{1}{4} d$.
17. 102700 cub. yds. 16 ft .1152 in .
18. 17s. $4 d$.
19. $£ 148$ 10s.
20. 1607 tons 2 cwt. 3 qrs. 12 lbs .
21. 23s. $4 \frac{1}{2} d$.
22. 21 s.
23. 13 ac. 2957 sq. yds. 7 ft.; 10 ac. 1477 sq. yds. 7 ft.
24. 353571 tons 8 cwt . 2 qrs. 8 lbs . 55. $58 \frac{3}{4} \mathrm{yds}$.
25. 725 g gal.
26. 5044.
1. A man, $£ 1610 \mathrm{~s}$. ; a woman, $\mathfrak{£} \dot{5} 10$ s.
2. 7.
1. 3 ac. $584 \mathrm{sq} . \mathrm{yds}$; 10 ac .
2. 20.
1. 2 yrs. 334 da. 19 hrs .30 min . 64. £9 3s. 4 d .; £5 8 s .4 d . ; £5 8 s .4 d .
2. A man, $£ 660$ s. $4 \frac{1}{2} d$.; a woman, $£ 330$ s. $2 \frac{1}{4} d$. ; a child, $£ 110$ s. $0 \frac{3}{4} d$.
3. $A, 7 s .3 \frac{1}{2} d . ; B, 13 s .11 \frac{1}{2} d .: C, 27 s .11 d$.
4. 10240.
1. Loss in one year, $£ 12210 s$. ; gain in three years, $\mathfrak{£} 698$ 6s. 8d.
2. 3. 112.
1. 4.
1. 2.
1. 25
2. 101.
1. $1+3$.
2. 377.
1. 11.
1. 18.
1. 7.
1. 2.
1. 77.
1. 133.
1. 49.
1. 213.
1. 25.
1. 336.
1. 57.
1. 3.
1. 15.
1. 2. 60.
1. 42.
1. 16.
1. 198.
1. 240 .
2. 80.
1. 180.
1. 144.
1. 120.
1. 68.
1. 144.
1. 216.
1. 240.
1. 2520.
1. 7560.
1. 1008.
1. 1260.
1. 10500.
1. 7200.
1. 10800.
1. 2. $\frac{40}{5}, \frac{135}{5} ; \frac{216}{27}, \frac{729}{27}$.
1. $\frac{90}{15}, \frac{135}{15} ; \frac{180}{15}, \frac{300}{15}$.
2. $\frac{374}{11}, \frac{1485}{11} ; \frac{578}{17}, \frac{2295}{17}$.
3. $\frac{850}{3 t}, \frac{1156}{3 t} ; \frac{2380}{34}, \frac{3774}{3 t}$.
4. $1 . \frac{28}{7}$.
5. $\frac{92}{8}$.
6. $\frac{2435}{11}$.
7. $\frac{236}{17}$.
8. $\frac{427}{13}$.
9. $\frac{10027}{50}$.
10. $\frac{863}{12}$.
11. $\frac{1738}{15}$.
12. $\frac{2.315}{18}$.
13. $\frac{1384}{37}$.
14. $\frac{6029}{30}$.
15. $\frac{3149}{25}$.
16. $\frac{8229}{16}$.
17. $\frac{2131}{21}$.
18. $\frac{8639}{12}$.
19. $\frac{228}{115}$.
20. $\frac{4284}{239}$.
21. $\frac{3 P 13}{360}$.
22. $\frac{12421}{111}$.
23. $\frac{8500}{99}$.
24. 25. $4 \frac{1}{9}$.
1. $7 \frac{2}{11}$.
2. $24 \frac{1}{19}$.
3. 130.
1. $29 \frac{8}{35}$.
2. $72 \frac{37}{43}$.
3. 22.
1. $25 \frac{46}{87}$.
2. $16 \frac{15}{\frac{15}{7}}$.
3. $33 \frac{1}{95}$.
4. 40.
1. $35 \frac{7}{102}$.
2. $35 \frac{53}{117}$.
3. 21.
1. $25 \frac{85}{122}$.
2. 16.
1. $15 \frac{79}{357}$.
2. $16 \frac{140}{401}$.
3. $61 \frac{121}{200}$.
4. $70 \frac{128}{333^{\circ}}$
5. 6. $\frac{35}{4}, \frac{35}{3}, \frac{35}{2}, \frac{875}{36} ; \frac{7}{36}, \frac{5}{36}, \frac{35}{288}, \frac{35}{432}$.
1. $\frac{875}{144}, \frac{125}{18}, \frac{125}{16}, \frac{125}{9} ; \frac{25}{144}, \frac{125}{1152}, \frac{125}{1728}, \frac{5}{144}$.
2. $\frac{640}{693}, \frac{320}{231}, \frac{1280}{693}, \frac{1600}{693}, \frac{320}{99}$.
3. $\frac{320}{6851}, \frac{40}{693}, \frac{320}{6237}, \frac{32}{693}, \frac{320}{7623}$.
4. 5. $\frac{9}{20}$.
1. $\frac{5}{8}$.
2. $\frac{9}{11}$.
3. $\frac{4}{15}$.
4. $\frac{4}{5}$.
5. $\frac{2}{3}$.
6. $\frac{9}{22}$.
7. $\frac{3}{4}$.
8. $\frac{13}{14}$.
9. $\frac{22}{43}$.
10. $\frac{8}{9}$.
11. $\frac{3}{4}$.
12. $\frac{11}{16}$.
13. $\frac{9}{32}$.
14. $\frac{60}{77}$.
15. $\frac{35}{41}$.
16. $\frac{11}{13}$.
17. $\frac{20}{21}$.
18. $\frac{23}{33}$.
19. $\frac{77}{81}$.
20. 21. $\frac{3}{7}$
1. $\frac{5}{11}$.
2. $\frac{19}{23}$.
3. $\frac{7}{22}$.
4. $\frac{3}{5}$.
5. $\frac{7}{11}$.
6. $\frac{282}{313^{\circ}}$
7. $\frac{7}{10}$.
8. $\frac{37}{66^{*}}$
9. $\frac{25}{33}$.
10. $\frac{13}{456^{\circ}}$
11. $\frac{29}{55}$.
12. 13. $19 \quad 6 \quad 9 \frac{7}{8}$.
1. 8118101 .
2. 21916 6
3. $160 \quad 5 \quad 8 \frac{8}{12}$.
$£^{£} \quad$ s. $\quad d$.
4. $\quad 38 \quad 18 \quad 7 \frac{3}{5}$.
5. $91410 \frac{1}{2}$.
6. $131122 \frac{1}{2}$.
7. $286511 \frac{4}{35^{\circ}}$.
8. $2 \quad 6 \quad 913$.
9. $0 \quad 19 \quad 2 \frac{2}{3}$.
10. $4310 \frac{5}{14}$.
11. $\begin{array}{llll} & 8 & 4 \frac{2}{5} \text {. }\end{array}$
12. $117 \quad 2 \frac{31}{80}$.
13. $\quad 1 \quad 28 \frac{7}{20}$.
$£ \quad s . d$.
14. $\quad 36 \quad 4 \quad 3$.
15. $219 \quad 7 \quad 0_{5}^{3}$.
16. $134184 \frac{1}{9}$.
17. $28218 \quad 7 \frac{18}{270}$
18. $0 \quad 13 \quad 4 \frac{1}{3}$.
19. $12 \quad 2 \quad 2 \frac{5}{6}$.
20. $9 \quad 2 \quad 6 \frac{21}{32}$.
21. $488 \frac{1}{24}$.
22. $3>10 \frac{9}{20}$.
23. $1 \quad \begin{array}{llll} & 7 & 0 \frac{13}{40} \text {. }\end{array}$
24. $519 \quad 6 \frac{2}{5}$.
25. $\quad 314 \quad 7 \frac{2}{5}$.
26. $715 \quad 3 \frac{11}{34}$.
27. $76 \quad 2 \frac{11}{24 .}$.
28. $6 \quad 7 \quad 6 \frac{11}{50}$.
29. $1810_{\frac{5}{56}}^{5}$.
30. $1.1 \frac{2}{3}$.
31. $2 \frac{6}{7}$.
32. $1 \frac{4}{5}$.
33. $\frac{7}{12}$.
34. $\frac{1}{4}$.
35. $11 \frac{1}{3}$.
36. $\frac{3}{40}$.
37. $\frac{5}{8}$.
38. $157 \frac{1}{2}$. $10 . \quad 11$.
39. $3 \frac{1}{3}$.
40. $16 \frac{1}{2}$.
41. $43 \frac{5}{15}^{\text {² }}$.
42. 3.
1. $\frac{1}{2}$.
2. $\frac{39}{64}$.
3. $\frac{4}{9}$.
4. 72.
1. $1 \frac{2}{5}$.
2. $7 \frac{7}{4 t}$.
3. 4. $\frac{105,140,126,60}{210}$.
1. $\frac{1925,1320,1848,420}{2310}$.
2. $\frac{16,18,20,21}{24}$.
3. $\frac{18,80,27,104}{144}$.
4. $\frac{24,28,30,31}{32}$.
5. $\frac{60,45,16,39}{72}$.
6. $\frac{63,88,102,76,75}{144}$.
7. $\frac{162.108,144,24,16}{243}$
8. $\frac{720,378,525,612,80,675}{1260}$
9. $\frac{440,765,900,504,240,1050}{1080}$.
10. $\frac{5}{-\frac{0,630,216,330,260,345}{900}}$.
11. $\frac{5400}{7560} \frac{6930,1008,2240,19: 44,3213}{756}$.

29.

1. $2 \frac{\mathrm{~B}}{7}$.
2. $2 \frac{1}{8}$.
3. $2 \frac{31}{3}$.
4. $2 \frac{43}{180}$.
5. $2 \frac{11}{36}$.
6. $2 \frac{41}{144}$.
7. $1 \frac{73}{90^{\circ}}$
8. 9.
1. $15 \frac{1}{12}$.
2. $10 \frac{17}{72}$
3. $13 \frac{1}{10}$.
4. $3 \frac{65}{72}$.
5. $13 \frac{19}{45}$.
6. $3 \frac{8.51}{1080}$.
7. $5 \frac{34}{63}$.
8. $19 \frac{4}{35}$.
9. $5 \frac{6}{7}$.
10. $5 \frac{107}{720}$.
11. $13 \frac{329}{400}$.
12. $18 \frac{11}{20}$.
13. $11 \frac{74}{165}$.
14. $34 \frac{1139}{1440^{\circ}}$.

		s.			£	s.	d.		£	s.	d.
23	29	3	$10 \frac{17}{24}$	24.	26	6	$6 \frac{1}{3}$.	25.	28	7	$9 \frac{13}{3}{ }^{\circ}$
26	28	10	$1 \frac{19}{48}$	27.	39	3	$0 \frac{11}{40}$.	28.	32	12	$9{ }^{\frac{8}{6}}$.
29	87	13	$8 \frac{5}{8}$.					30.	70	10	$11 \frac{43}{4}^{\circ}$

ร0. 1. $\frac{1}{5} ; \frac{3}{10} ; \frac{1}{12} ; \frac{1}{6}$.
2. $2 \frac{1}{2} ; 1 \frac{1}{8} ; 2 \frac{1}{7} ; 10 \frac{5}{12}$.
3. $\frac{41}{100} ; 5 \frac{21}{25} ; 48 \frac{2}{3} ; 2 \frac{31}{42}$.
4. $9 \frac{37}{75} ; \frac{47}{48} ; 2 \frac{31}{42} ; 2 \frac{167}{168^{\circ}}$
5. $\frac{131}{175} ; 16 \frac{88}{105} ; 4 \frac{13}{30} ; \frac{87}{110}$.
6. $\frac{37}{54} ; 13 \frac{3}{5}$.
7. $6 \frac{29}{60}$.
30. $18 s .7 \frac{7}{12} d$.
13. 17 s. $9 \frac{29}{48} d$.
8. $\frac{23}{45}$.
11. $2 s .5 \frac{5}{18} d$.
9. £8 $211 \frac{1}{6}$.
12. £5 0 5 $\frac{17}{24}$.
14. £3 $13 \quad 8 \frac{14}{15}$
31. 1. $\frac{45}{88} ; 1 ; \frac{3}{4}$.
3. $49 \frac{16}{21} ; 22$.
2. $78 \frac{4}{7} ; 60 ; 409 \frac{1}{2}$.
4. $\frac{1}{5}$; $5 \frac{5}{24}$.
5. $1 \frac{1}{8} ; 17 \frac{7}{8}$.
2. $18 \frac{3}{5} ; \frac{1}{18} ; \frac{112}{135} ; \frac{5}{48}$.
4. $16 ; \frac{3}{4} ; \frac{5}{27} ; \frac{3}{26}$.
6. $7 \frac{1}{2} ; 2 \frac{2}{5} ; 38 \frac{2}{11} ; 3 \frac{4}{7} ; 16$.
32. 1. $3 ; \frac{8}{9} ; 1 \frac{7}{9} ; \frac{5}{8} ; 1 \frac{1}{3} ; \frac{4}{5}$.
3. $52 \frac{1}{4} ; \frac{1}{5} ; 1 \frac{1}{15}$.
5. $4 \frac{4}{5} ; 2 ; 1 \frac{5}{9} ; 2$.

33.

1. $12 s .6 d . ; £ 35 s . ; 2 s .8 d . ; 9 s .4 \frac{1}{2} d ; £ 30 s .8 d^{2}$
2. £2 6s. 8 d . \ddagger £ 2 s . $11 \frac{1}{3} d$.; £3 2 s . $8 \frac{11}{20} d$.
3. £13 8s. $11 \frac{7}{12} d$; $£ 221 s .9 \frac{5}{16} d_{.} ; £ 3911 \mathrm{~s} .11 \frac{7}{16} d$.
4. £63 13s. 5 d .; £91 $17 \mathrm{~s} .10 \frac{1}{2} \mathrm{~d}$.; £9 9s. $7 \frac{5}{16} \mathrm{~d}$.
5. £176 13s. $7 \frac{3}{8} d$. ; £49 3s. $10 \frac{2}{3} d$. ; £46 4s. $0 \frac{11}{16} d$.
6. 14 cirt. 1 qr. 4 lbs.; 3 oz. 8 dwts. $13 \frac{5}{7}$ grs. ; 2 cwt. 2 qrs. 6 lbs.; £4 1s. $8 \frac{1}{2} d$.
7. δ w. 4 d. $10 \mathrm{~h} .40 \mathrm{~m} . ; 39$ A. 1 R. $1 \frac{1}{4} \mathrm{P} ; 3 \mathrm{~s}$.
8. $2 s .3 \frac{1}{2} l_{\text {. }} ; 5$ cwt. 2 qrs. $9 \frac{23}{24} \mathrm{lbs} . ; £ 1008 s .4 d$.
9. $£ 41 s . ; £ 814 s .6 \frac{3}{4} d_{0} ; 4 s .8$ d.
10. 2 fur. 124 yds .2 ft . ; \& 42 s .2 d .
11. $16 \mathrm{~s} .11 \frac{3}{4}$ d. ; 2 qrs. $17 \mathrm{lbs} .1 \frac{7}{39}$ oz. ; 5 d .38 m .20 sec .
12. 16 s. $11 \frac{1}{2} d$.
13. 3 s. $7 \frac{1}{2} d$.
14. £ $\mathfrak{1}$ s. $G_{1}^{3} d$.
15. £1 $£_{3}$
16. £i 17 s . $5 \frac{1}{2} d$.

34.

1. $\frac{1}{6} ; 5 \frac{1}{12}$.
2. $\frac{13}{23} ; 46$.
3. $\frac{7}{26} ; 1 \frac{5}{9}$.
4. $\frac{29}{187} ; 3 \frac{35}{144}$.
5. $\frac{79}{448} ; \frac{19}{112}$.
6. $\frac{31}{160} ; 5 \frac{1}{1}$.
7. $5 \frac{5}{63} ; \frac{5}{11}$.
8. $1008 \frac{8}{15} ; \frac{11}{16}$.
9. $3_{44}^{43} ; \frac{2}{5}$.
10. $\frac{3}{10} ; 3 \frac{1}{7}$.
11. $\frac{2}{5} ; 792$.
12. $\frac{1}{45} ; \frac{5}{68^{\circ}}$
13. $6 \frac{29}{168} ; 3 \frac{4}{15}$.
14. $\frac{100}{297} ; 1 \frac{2}{3}$.
15. $1 \frac{1}{20} ; 1 \frac{23}{224}$.
16. $\frac{4}{7} ; 2 \frac{14}{25}$.
17.
18. $\frac{5}{14} ; \frac{7}{80}$.
19. $\frac{1}{270} ; 2 \frac{37}{160}$.
20. $\frac{5}{6} ; \frac{3}{140}$.
21. $\frac{49}{60} ; 4 \frac{61}{90}$.
22. $\frac{11}{40} ; \frac{8}{49}$.
23. $8 \frac{3}{4} ; 8 \frac{8}{11}$.
24. $12 \frac{4}{9} ; \frac{13}{56}$.
25. $\frac{18}{35} ; 1 \frac{19}{35}$.
26. $\frac{1}{726} ; \frac{21}{128}$.
27. $18 \frac{2}{3} ; 10 \frac{1}{2}$.
28. $17 \frac{19}{29} ; \frac{1}{160}$.
29. $1 \frac{31}{81} ; \frac{17}{240}$.
30. $\frac{133}{400} ; 2 \frac{42}{43}$.
31. $41 \frac{4}{5} ; \frac{107}{840}$.
32. $4 \frac{3}{25} ; 1 \frac{2}{9}$.
33. $3 \frac{43}{125} ; \frac{92}{135}$.
34.
35. $\frac{7}{45}$ greatest, $\frac{3}{20}$ lcast.
36. $14 \frac{2}{3}$.
37. $1 \frac{11}{135^{5}}$.
38. $\frac{7}{9}$ of $1 \frac{1}{4}$, by $\frac{1}{1260}$.
$5 \frac{20002,400}{9999}$.
39. 5 s. 3 d.
40. $\frac{1}{4}$.
41. $\frac{69}{231}$.
42. 9 oz. 3 diwt. 8 gr. ; 14s. 3 d .
43. $£ 56 \mathrm{~s} .8 \mathrm{~d}$.
44. $\frac{1}{128^{\circ}}$.
45. 46.
1. $26 \frac{2}{7} \mathrm{ft}$.
2. $3 \frac{27}{280^{\circ}}$.
3. $3 \frac{7}{36} ; 108 \frac{1}{3}$ sq. in.
4. $3 \frac{1}{2} ; 1 \frac{17}{88}$. $15 . \frac{1}{2}$.
5. $\frac{1}{7}$.
6. $\frac{583}{720}$.
7. $5 \frac{7}{36} ; 2 \frac{23}{50}$.
8. £67 4s. $3 \frac{1}{9} d$.
9. $1 \frac{5}{24} ; \frac{11}{24} ; 2 \frac{7}{114}$.
10. £85 14s. $3 \frac{3}{7} d$. ; 4s. 7 d.
$24.4 \frac{3}{8} ; 42$.
11. £21 8s. $1 \frac{1}{2} d$.
12. $£ 9973$ 6s. 8 d .
13. $\frac{25,21,24}{20}$.
14. $4 \frac{23}{64}$.
15. $£ 90$.
16. 19 dwt. 9 gr.
17. $14 \frac{81}{160} ; \frac{97}{50 t}$.
18. $\frac{240,280,303}{84}$.
19. $\frac{11}{25} ; £ 716 s .5 \frac{1}{2} d$.
20. 21 s .
21. 23 lbs. 17 dwt. $5 \frac{1}{3}$ gr.
22. $1 \frac{53}{75}$.
23. £4 16s. 38. £1 $13 s$. $7 \frac{3}{4} d$.
24. 59 yds ; $\mathfrak{£ 1 1} 1 \mathrm{~s} .3 \mathrm{~d}$.
25. $\frac{25}{128} ; £ 3125$.
26. $\frac{71}{128} ; 680 \frac{5}{9} \mathrm{lbs}$.
27. $\frac{3}{7}$.
28. 99.
1. 9.
1. 2 oz. 8 dwts. 8 gr. Troy ; 2 oz. $10 \frac{74}{175} \mathrm{dr} . ~ A r . ~ 46 . ~ 81$.
2. $12 \frac{11}{5 \cdot}$.
3. $140 \frac{1}{3} \mathrm{yds}$. $\mathfrak{£ 1} 6$ s. $3 \frac{3}{4}$ d.
4. 17 cwt . 2 qrs. 5 lbs ; $£ 3216$ s. 4 d.
5. £333 6s. $8 \mathrm{~d} . ; \frac{1}{30}$.

37

1. .7, 11.7, .33, 1.015 .
2. .230037. 4. 1.11111.
3. $\frac{37}{1000}, \frac{1}{5000}, \frac{1}{4}, \frac{3}{8}$.
4. $\frac{11}{16000}, \frac{3}{3200}, 23 \frac{61}{1600}$.
5. .01,. .0021, .0117, .0000003.
6. 13.003005 . 6. 10.110101 .
7. $\frac{3}{400}, 1 \frac{9}{40}, \frac{3}{16}, 3 \frac{9}{40^{\circ}}$.
8. $15 \frac{13}{64}, \frac{3}{1280}, 4 \frac{1}{128^{\circ}}$
9. 3,300 ; .03, . 0003 .
.125, 12.5 ; . $0000125, .000000125$; 5387340, .0538734.
10. 1100,$1100000 ; .0011, .0000011$; 11025, 1102500; .011025, $.00011025 ; 213012000 ; .000213012$.

38.

$\begin{array}{lll}\text { 1. } 34.62156 . & \text { 2. } 782.8594 . & \text { 3. } 420.615973 .\end{array}$
4. 2492.2622123 .
5. $19.002: 3.44902$.
6. $21.1335: .41213$.
7. $19.0002: 1.0013$.
9. $1.33678: 2.7486$.

1. $\quad 723.6: 146.4561$.
2. . $07504: .000602$.
3. $5.31441: 4.096$.
4. . $0000013: 23.016484$.
5. . $003213: .34235$.

39.

| 2. | $.0000001: 74.151$. |
| :--- | :--- | :--- |
| 4. | $.0013014: 1.5$. |
| 6. | $.0001234321: .00044408$. |

40.
41. $6.25: .000625$.
42. $6250000: .0000625$.
43. $490000: 6.3$.
44. $185: 30$.
45. $40 C 0: 4.8828125$.
46. $2.4: 1200$.
47. . $00015625: 718580 . \quad$ 8. . 0122699 \&c. $: 1568.627$ \&c.
48. . $3388278 \& c .: .00383177 \& c . \quad 10 . \quad 290: .014974 \& c$.

41.

1. . $04: .052: 5.25: 1.6 . \quad$ 2. . $848: 11.0136: 15.625: 5.1875$.
2. $7.203125: .1328125: .00015625: 11.001696$.
3. . $001953125: 1.0009765625 ; .008125 ; .0013671875$.
4. . 1705 ; . 00216 ; . 32 .

42.

1. $1 . \dot{4}: .572 \dot{2}: 2.3 \dot{4} 5: .012366$. 2. $2.928571 \dot{4}: 5.045: .0132$: 23.156 .
2. . $0089: 5.761904: 17.12931: .12345$.

3. . 058823529411764%.
. 0434782608695652173913.
. 0344827586206596551724137931 . . 032258064516129.
4.
5. $\frac{1}{3}: \frac{5}{89}: \frac{\pi}{11}: \frac{27}{37}$.
6. $3 \frac{23}{55}: \frac{133}{3000}: 1 \frac{8}{55}: \frac{89}{19800}$.
7. $2 \frac{111}{1110}: \frac{111}{202}: 1 \frac{3}{70}$.
8. $\frac{4}{165}: \frac{8}{185}: \frac{1}{148}: 2 \frac{107}{2475}$.
9. $4 \frac{59}{1110} ; 7 \frac{145}{222}: 2 \frac{19}{55} ; \frac{41}{440}$.
10. $2 \frac{9}{14} ; 5 \frac{17}{88} ; 11 \frac{19}{66}$.
11.
12. 47.411455286 .
13. 168.7023911456 .
14. . $24: .0327116$.
15. . 857142 : . 0058.
16. $9.928: 2.29 \%$.
17. 3.6 : . 052 .
18. $31.791: 352.08564$.
19. $49: 1.145$.

45.

1. $9 s .: 13 s .7 \frac{1}{2} d .: £ 26 s .6 d$.
2. $13 s .1 \frac{1}{2} d$. : $1 s .6 \frac{3}{4} d$.
3. $£ 82 s .6 d .: 6 s .2 d .: £ 111 s .8 d$.
4. $£ 182 \mathrm{~s} .3 \mathrm{~d} .: 9$ cwt. 3 qrs.
5. $23 \mathrm{~d} .10 \mathrm{~h} .4 \mathrm{~m} .48 \mathrm{scc} .: 1 \mathrm{~A} .1 \mathrm{R} .35 \mathrm{r}$.
6. $£ 114 s$. 3 d . : £47 5s. $7 \frac{1}{2} d$.
7. $£ 89 s .3 \frac{3}{4} d .: £ 12513 s .10 \frac{1}{2} d$.
8. £1 11 s. $6 \frac{3}{4}$ d. : 10 s. $1 \frac{1}{2}$ d.
9. 13 r. 2 yds. 1 ft .4 in . : 21 lbs . 12 oz .7 .68 drs.
10. 3 sq. ft. $67 \frac{1}{2} \mathrm{in} .: 102 \mathrm{~m} .875 \mathrm{yds} .5 .76 \mathrm{in}$.
11. £78 3s. $1.8645 d .: £ 1205 s .9 .3125 d$.
12. £2 1s. $3.50625 d$. : 6 s . 6 d .
13. 12s. $1 \frac{3}{4} d$. 15. 10 s. $11 d$.
14. $85 \mathrm{~m} .7 \mathrm{p} .1 \frac{1}{2} \mathrm{yd} .: 73 \mathrm{~A} .2$ ค. $20 \frac{1}{6} \mathrm{yds}$.
15. 7 s. $11 \frac{1}{2} d .: 8 s$. $7 \frac{1}{4} d$.
16. £1 §s. $0 \frac{3}{4} d$.
17. $15 s .4 d .: 17$ s. $3 \frac{3}{4} d$.
18. £7 13s. $1 \frac{39}{40} d$: : 12s. $3 \frac{1}{2} d$.
19. $16 \mathrm{lbs} .: 1 \mathrm{qr} .4 \mathrm{lbs}$.

46.

1.	. 475 : . 021875.	. $375: 1.725$.	3. $1.125: .2625$.
4.	. $125 ; 27.5 .5$. 3125 ; . 196875.	6. .5703125; . 39375
7.	. $875 ; .5384375$.	8.	.777587890625; .05.
9.	. $19453125 ; .03625$.	10.	. 039375 ; . 046875.
11.	$2.6 ; 1.424 .12$.	. $00022095{ }^{\text {\% }}$; 924.	13. 1.86 ; . 859375.
	97.6 ; .377083́.		15. 4.90 ; 4.208

16. . 127109375 ; 6.156510416 .

97.

$\begin{array}{llll}\text { 1. } 1 \frac{2}{9} . & \text { 2. } \frac{1}{2} \text { d. } & \text { 3. } 3956 \text { miles nearly. } & \text { 4. } 3 \frac{1}{9} \text { days. }\end{array}$
5. . $02734375,36.571428 ; 3 \frac{3}{4}, 3 \frac{34}{45}, .0004935, .282$.
6. $.375 ; £ 213 s .3 d . ; 7 \frac{1}{2} d$.
7. 16 s. $11 \frac{3}{4} d$.
8. .13்́, 4.2142857 ; $\frac{81}{4050} ; 530, .00341$.
9. 10 s. $3 \frac{1}{4} d$.
10. . 3571438 ; 8.75 . 11. 7n. $13 \mathrm{~m} . ; 1$ A. 3 R .13 r .22 yds
i2. $11 \frac{513}{625}=11.8208$.
14. $4 s .9 d .=1.9$ of $2 s .6 d$.
16. $£ 2$ 11s. $4 d$.
17. 11s. 3d.
18. . $06640625, .0099$; $\frac{27}{400}, \frac{76}{1125} ; £ 313 s .1 \frac{1}{2} d . \quad 19.3 s .11 \frac{1}{4} d$.
20. $2 \frac{19}{32}=2.59375$.
21. £ $2 \mathrm{~s} .11 \frac{9}{20} d$.
22. $16 \mathrm{ft} .104 \frac{52}{63} \mathrm{in}$. ; $20 \mathrm{ft} .1486 \frac{2}{25} \mathrm{in}$.
23. $.18988 ; .025 ; £ 44 s .4 \frac{1}{4} d$. 24 . £25 17 s. $2 \frac{31}{64} d$; 7 s. $2 \frac{2}{3} d$.
25. £4 4s. $9 \frac{1}{2} d$.
27. £2 0 s. $3 \frac{3}{4} d$.; £6 6s. $6 \frac{3}{4} d$.; 4.78125 .
28. 8.175 ; . 816 ; 27 ; . 75 ; 135. 1940625.
29. 1s. $9 \frac{3}{4} d$. 30. £21 3s. $11 \frac{1}{10} d$.
31. $.109375, .10076923$; $\frac{13}{20} \cdot \frac{43}{660} ; .54140625$. 32. £15 14s. $10 \frac{2}{7} d$.
33. 2.625, . $036 \hat{6}, 2 \frac{1}{20}, \frac{37}{180} ; 3.971875$.
34. 7 cwt. 3 qrs. $8 \frac{3}{8} \mathrm{lbs}$; $£ 813 \mathrm{~s} .7 \mathrm{~d}$. 35. £81.
36. 2.140625. 37. . 03 .
39. 59.0625. 40. £410 $11 \mathrm{~s} .9 \frac{123}{400} d_{\text {. }}$; £41 $11 \mathrm{~s} .10 \frac{1}{2} d_{0}$
41. £32 15s.; 41.92; 1250.
42. . $021484375, .0$ ' $; ~ 2 \frac{13}{400}, \frac{63}{185} ; .0009765625$.
43. . 0875 ; 4.67. 44. £14 0 s. $1 \frac{1}{2} d$; .4. 45. 9.
46. £2 $4 s .1 \frac{1}{5} d_{.} ; 24$ P. 5.025 sq. yds.

4Я. 3.14159. 49. £3 6s. $6 \frac{3}{4} d . ; 6.65625 . \quad$ 50. 2.7182818.
50. 2.7182818.

48.

	£	s.	d.	$£$		d.	£	s.	d.	£		
	838	10	0	2. 1486	6	8	3. 1452	5	0	4. 2606		
	2213	3	4	6.	7	6	7. 3203	1	8	8. 621		0
	810	10	0	10. 2590	0	0	11. 3459	11	8	2.		

49.

	476	5		2. 1263	2		3. 1555	8			2344		
	1986	1	0	6. 879	14	6	7. 4279	12			445		
	377	12	6	10. 3374	11		11. 3413	5			545		

50.

1. 2317
$7 \frac{3}{4}$
2. 241 13
3. 1791311
4. $8513 \quad 3$
5. $103 \quad 0 \quad 8 \frac{3}{4}$
6. $14315 \quad 2 \frac{1}{2}$
7. $79 \quad 5 \quad 7 \frac{1}{2}$
8. 361158
9. $28615 \quad 6 \frac{3}{4}$
10. $129 \quad 17 \quad 5 \frac{1}{2}$
11. $28464 \frac{1}{4}$
12. $44811 \quad 7 \frac{1}{4}$
13.

	£	s.	d.		£	s.	d.		£	s.	d.
1.	400	4	4 $\frac{1}{2}$?.	1059	9	$1 \frac{3}{4}$	3.	1070	2	$0 \frac{3}{4}$
4.	2486	15	7	5.	125	16	$8 \frac{1}{2}$	6.	179	17	$10 \frac{3}{4}$
7.	2542	0	$0 \frac{1}{2}$	8.	2696	5	10	9.	201	14	$9 \frac{1}{4}$
10.	366	13	$2 \frac{3}{4}$	11.	1841	7	$9 \frac{1}{4}$	12.	1980	13	$1 \frac{1}{2}$

52.

	$£$	s.	d.
1.	18	6	$7 \frac{5}{16}$
4.	6	4	$7 \frac{5}{112}$
7.	52	4	$8 \frac{119}{128}$
10.	2	13	$9 \frac{23}{30}$
13.	18	18	$9 \frac{1}{3}$
16.	81	12	$6 \frac{1}{10}$
19.	43	1	3

55.
56. $£ 583 s .2 d$.
57. £5 19 s. $2 \frac{10}{73} d . \quad 3.176 \mathrm{~m}$.
58. 1 h .14 m .
59. 75 A .2 R .10 ค.
60. 1s. $1 \frac{49}{200} d$.
61. $13 \mathrm{~s} .3 d$.
62. $£ 10$ s. $11 \frac{1}{4} d$.
63. £4 $15 s .6 \frac{19}{40} d$.
64. £11 9 s. $4 \frac{1}{20} d$.
65.
66. 150 .
67. 6 mo.
68. 12 mo .
69. 171.
1. 4.
1. $8 \frac{1}{10} d$.
2. $622 \frac{2}{9} \mathrm{~A}$.
3. $8 \frac{2}{5} \mathrm{oz}$.

58.

1. $1 s .11 \frac{3}{4} d$.
2. £37 12s. 6 d .
3. $5 s$.
4. $135 \frac{5}{12} \mathrm{bu}$.
5. £19 $12 s$.
6. $165 \mathrm{cwt} .19 \frac{13}{17} \mathrm{lbs}$.
7. $3 s .6 d$.
8. 170.
1. 2 cwt. 2 qrs. 15 lbs .5 oz .
2. 2 lbs. $10 \frac{2}{3} \mathrm{oz}$.
3. £2004155 16s. $10 \frac{46}{77} d$.
4. £79 1s. $7 \frac{1}{2} d$.
5. £7144 7s. 6d.
6. £26 18s. $2 \frac{14}{17} d_{\text {. }}$
7. $540 \frac{8}{25} \mathrm{yds}$.
8. £11 11s. $2 \frac{13}{25} d$.
9. £3.
10. $£ 145117 s .0 \frac{4}{9} d$.
11. $£ 450$.
12. 6 s. $3 \frac{39}{43} d$.
13. $178 \mathrm{ft} .11 \frac{19}{63} \mathrm{in}$.
14. $6 \frac{3}{4} \mathrm{hrs}$.
15. 85 days.
16. $286 \frac{2}{13} \mathrm{~m}$.
17. £79 10s.
18. $12800 . \quad 25.72$.
19. $£ 3318 s .4 d$.
20. £1 16s. 9d.
21. £8 $3 s .8 \frac{32}{47} d$.
22. 10 s. $6 \frac{9}{16} d$.
23. 11 s. $4 \frac{1}{4} d$.
24. $8 s .5 \frac{29}{44} d$.
25. £270.
26. 7722.
1. $4 \frac{3}{8} \mathrm{yds}$.
2. £ֹ 17 s. $11 \frac{5}{128} d$.
3. £13 0 s. $0 \frac{3}{4} d$.
4. 32 ft . ; 152 ft .
5. $26 \frac{1}{24} \mathrm{lbs}$.

59.

60.

ct.

66.

1. £821 $5 s . ; £ 4158$.
2. $£ 44$.
3. $£ 10613 s .4 d$.
4. £151 13s. 4 d.
5. £90.
6. £15708 6s. 8d.
7. £533 6s. 8d.
8. £771 7s. $6 \mathrm{~d} . ; £ 1012 \mathrm{~s} .6 \mathrm{~d}$.
9. £10 8s. $4 d$.
10. £25.
11. Increase of $£ 10$.
12. Increase of $£ 20$.
13. £16 13s. 4 d . 14. £53 6s. 8 d .
14. $100 \frac{5}{6}$.
15. The $3 \frac{1}{2}$ per cents.
16. £17 3s. $6 d$.
17. £5500; £S36 5s.; £4241 17s. 6d. 19. $£ 715$.
18. $93 \frac{1}{8}$.

67.

1. £1 1s. $9 d$.
2. $22 \frac{6}{7}$ per cont.
3. $£ 24 s .6 \frac{6}{41} d$.
4. 12 per cent.
5. 17 per cent.
6. £30 16s.; $9 \frac{3}{8}$.
7. $11 \frac{1}{y} ; £ 2108$ s. $7 \frac{1}{2} d$.
8. £1 $13 \mathrm{~s}, 11 \frac{1}{10} d$.
9. £1 0s. $2 \frac{1}{2} d$.
10. £93 6s. 8 d. ; $11 \frac{1}{2}$ per cent. 11. 8 p. c. gain. 12. £82 10 s.
11. £44 15s.
12. 40. $15.9 s .2 \frac{1}{2} d$.
1. $2 \frac{4}{5}$ p. c. loss.
2. $£ 49 s .7 \frac{1}{5} d$.
3. $5 \frac{5}{9}$ p. c. gain.
4. 25.
1. $63 \frac{7}{11}$.
2.
3. $213,355,497$; 525 ธ, $315,225$.
4. $£ 72, £ 09, £ 108$.
5. C, 15 cwt .0 qrs. 20 lbs . ; T. 1 cwt .2 qrs. 19 lbs.
6. £46 13s. 4 ., £355, £28, £23 6s. 8 ., £20. 5. $14,112,378,896$.
7. 0.889 oz . ; H. $111 \mathrm{oz} . \quad$ 7. $£ 66$ 13s. $4 d$.; $£ 336 \mathrm{~s} .8 \mathrm{~d} . ; \mathfrak{£} 200$.
8. £6 17 s. 3 d.; £4 15 s. $3 \frac{3}{4} d$. $\quad 9.3 \mathrm{oz} .7$ dwt. $6 \frac{6}{11}$ grs.
9. N. $1702 \frac{2}{5} \mathrm{lbs}$; S. $212 \frac{4}{5} \mathrm{lbs}$; C. $324 \frac{4}{5} \mathrm{lbs}$.
10. 1 lb .11 oz .10 dwt. $20 \frac{100}{623}$ grs.
11. $2 \mathrm{oz}$.4 dwt. 14 grs.
12. $£ 160, £ 175$.
13. $£ 102 ; £ 104 ;$ £ 78.
14. $£ 28$ 2s. $6 d$. ; £35 3s. $1 \frac{1}{2} d$. ; £11 14s. $4 \frac{1}{2} d$.
15. 12 carats. 17. 15 carats: 15 oz . 18. 15 carats.
16. 4 s. $2 \frac{1}{2} d_{.} ; 6 s .7 \frac{1}{2} d_{0} ; 1$ s. $9 d . \quad$ 20. $£ 100 ; £ 300$.

69.

70.

1. 73; 94.
2. 729 ; 592. .
3. $590 ; 80700$.
4. $1880 ; 8097$.
5. $345761 ; 607002$.
6. $2.828427+$; $4.472136-$; $19.052559-$.
7. $187.403308+; 94.005319-$. 12. $367.3 ; 806.54$.
8. $81.6279-$; $5.270009+$.
9. . 1096 - ; . 0398.
10. $\frac{23}{73} ; .6060915+; .56789+$. 18. .3118048-; . $2400274+$; 1_{14}^{11}.
11. $16.9595+$; $78 \frac{1}{3} ; 19.1647-$.
12. . $0574485-$; $.096386+; 1.426353-$ - 21. $4 \frac{1}{6} ; 1.103026$.
13. 925 links. $\quad 23.38 \mathrm{ft} .9 \mathrm{in}$. nearly.
14. 22 s. $10 \frac{1}{2} d$.
15. $185 ; 371$.
16. 309 ; 490 .
17. $6123 ; 4117$.
18. $9098 ; 4908$.

71.

1. 57 ; 74.
2. $163 ; 328$.
3. $800 ; 4812$.
4. $7090 ; .369$.
5. $20.03909+; 17.84109+$.
6. $1 \mathrm{ft} .10 .624+\mathrm{in}$.

MISCELLANEOUS.

1. 18880.
1. $£ 345$.
2. $\frac{2}{5} ; 1 \frac{29}{42} ; 1 s .1 \frac{1}{2} d . ; 3 \frac{5}{84}$.
3. $£ 117 \mathrm{~s} .7 \frac{1}{2} d$.
4. $£ 1492$ 13s. $7 \frac{7}{20}$ d.
5. $181 \frac{1}{4}$ qu.
6. $41 \frac{1}{7} \mathrm{ft}$.
7. $£ 31815 \mathrm{~s}$.
8. 31 s . 6 d .
9. $2 \mathrm{~A} .1 \mathrm{R} .5_{80}^{19}$ P.
10. 600 ; 85 ft .10 in . $12.2576 \frac{517}{55 \mathrm{~g}} \mathrm{qrs}$.
11. $3 \frac{1}{8}$.
12. 20 . 15. $12 \frac{4}{63}$.
13. 200.76 10. 1s. $2_{41} d$.
14. 4s. $8 d . ; \frac{11}{96} ; \frac{3}{80} .18 . £ 32$ s. $0 \frac{24}{29} d$. 19. $309.76 ; 45.78082-$.
15. $£ 150, £ 180, £^{2} 240, £ 300$. 21. $5_{\frac{15}{23}}$ days. 22. $96 \frac{4}{11}$.
16. $\frac{33}{767} ; 162 \frac{29}{140} ; 1 \frac{121}{175} ; \frac{11}{115} ; 2308$.
17. A, 80s. 3d. ; B, 77s. 9d.
18. £11 5s., £20, £29 5 s.
19. $£^{f} 7011$ s. $9 \frac{3}{17} d$.
20. $23 \frac{1}{3}$ days.
21. 510.9 -.
22. 884, 153.
23. £6 5s. ; £4 3s. 4 d. ; £3 $2 \mathrm{~s} .6 \mathrm{~d} . ;$ £ $£ 10 \mathrm{~s}$.
24. $3.035913+$; $960.010103+$.
25. $\frac{16}{25} . \quad 33.105 \mathrm{da}$.
26. . 68125 ; $\frac{1}{4} ;$. $00256256,256.256, .0256256$.
27. $4 s$ s. $10 \frac{1}{2} d$.
28. $59 \mathrm{~min} .8 \frac{14708}{43829} \mathrm{scc}$.
29. 13s. $2 \frac{22}{91} d$, 6 s. $7 \frac{11}{91} d$,, $3 s$. $3 \frac{51}{91} d$.
30. £1 10s. $6 \frac{6 \pi}{91} d$.
31. 3 tons 17 cwt. 2 qrs. $26 \frac{1}{4} \mathrm{lbs}$.
32. 25208 \&c. ; $5 \frac{1}{9}$.
33. $69 \frac{51}{200}$ degrees $=76 \frac{19}{20}$ grades.
34. $14 \frac{22}{27}$ hrs. 51. $18 \frac{11}{13}$.
35. $\frac{8}{9}$ of a da. 53. 21s. $8 d$.
36. $£ 1810$ s. $4 \frac{4}{9} d$.
37. 1500.
1. . $3 \dot{\text { bi }}$; 25 lbs .15 oz .11 .004 drs. ; 4 miles $30 \frac{2}{9}$ yds.
2. $£ 7595$ 5. $7 \frac{73}{101} d$. \quad 58. $6.25 ; 12.84 . \quad$ 59. $£ 3499 ; £ 87415 s$.
3. $10 \frac{10}{31} \mathrm{P}$. 61. 111104. 62. £3 7s. 2d. 63. . 057 \&c.
4. £34 10s. $10 \frac{10}{11} d$. 65. $3 \frac{25}{48} ; \frac{13}{16}$.
5. $\frac{4}{27^{*}} \quad$ 41. $£ 1413 s .6 \frac{1}{4} d$.
6. £3200, £4800, £6000, £7000.
7. 4 5. 46. $£ 1119 s .4 \frac{1}{2} d$. 48. $£ 47 s$. $8 \frac{11}{12} d$.
8. 10s. 5 d .
9. $245: 243$.
10. $638 \frac{2}{11}$. 66. $\frac{1}{806 \pm} \mathrm{in}$.
11. $£ 409 s .4 d . \quad 72 . \frac{5}{39} ; .315625$; £2000.
12. $2 s$. $7 \frac{1}{2} d$.
13. 6315 dollars $55 \frac{10}{13}$ cents.
14. £33 6s. $3 \frac{39}{40}$ d., £66 12s. $7 \frac{19}{20} d .$, £09 18s. $11 \frac{37}{40} d .$, , $£ 1335$ 5s. $3 \frac{9}{10} d$.
15. $42 \mathrm{~m} . ; 10 \frac{1}{2} \mathrm{~m}$. 77. 6 per cent. 78. 10d., 1 s. $4 \frac{1}{2}$ d., 1 s. 11 d., \&c.
16. $578 \frac{26}{83} . \quad$ 80. 105 . 81. 1s. $9 d ., 1$ s. $2 d$. , and $7 d$.
17. 3s. $5 \frac{11}{32} d$. \quad 83. 560.22 \&c. $\quad 81.1 \frac{1}{2} \min . ; 427 \frac{1}{2}, 190$.
18. £907 10 s.
19. $\frac{9}{500}$; . 69140625.
20. $£ 6$ 2s. $2 \frac{1}{1} d$.
21. £15.
22. $107 \mathrm{yds}$.2 ft .11 in . ; $£ 614 \mathrm{~s}$. $11 \frac{7}{12} d$.

23. £3 4s. 11d. $\quad 94.23 \frac{670}{1519} ; \mathfrak{£ 1} 14 s .0 \frac{3}{4} d_{0} ; 8 s . ; \quad 06515625$.
05.1 lb .3 oz. 7 dwt. $4 \frac{10}{13}$ grs. ; $1555 \frac{29}{19200}$.
24. $6 \frac{2331}{5399}$.
25. $£ 315$.
26. $£ 31916 s .8 \frac{120}{163} d$.
27. $79.0070+; 37.9241-; .060 ; 30.02$. 100. 8 days. 101.15 hrs . 102. $6 \mathrm{~min} .17 \frac{7}{19} \mathrm{sec}$. A.m. 103. $6001 \frac{53}{72} \mathrm{yds}$.
28. B, 6d.; C, 2s. $6 d$.
29. £1011 0s. $3 \frac{39}{227} d$.
30. $£ 840, £ 795 . \quad 107.80 \frac{111}{356^{\circ}}$ 108. £1050. 109. £10560. 110. £18668 2s. $7 \frac{331}{500} d$.
$113.1 \mathrm{hr} .51 \frac{2}{3}$ min. $\quad 114.15 \mathrm{cwt}$.
31. A, £16 $1 \mathrm{~s} .8 d_{.} ; B$, £ 85 .
32. . $095178+$; $21 \frac{5}{9} ; \frac{5}{6}$.
$\begin{array}{ll}\text { 121. } 18 s . ~ & \frac{1961}{2000} d_{0} \\ \text { 122. } 9 \text { days. } & \text { 123. } A, 264 ; B, 198 ; C, 308 .\end{array}$
33. £300. $\quad 125.2133 \frac{1}{3} . \quad$ 126. $£ 27717$ s. $0 \frac{3}{10} d$.
34. $7 \mathrm{ft} .4 \frac{8}{9} \mathrm{in}$.
35. $16 s .3$ d. 129. £22 13s. $2 \frac{2}{9} d$.
36. £1 $8 s .6 \frac{6}{7} d$. 131. £ $41011 s .9 \frac{123}{400} d . ;$ £ $4111 s .10 \frac{1}{2} d_{\text {. }}$
37. £36893 6s. 8d. 133. £6 8s. $10 \frac{7}{8}$ d.
38. 3s. 4d. ; 5d.

13อ. £3 15s. $2 \frac{7}{8} d$.
136. . 45.
137. $18 \frac{3}{4}$ per cent. ; 10 s. $6 \frac{6}{19} d$. cost price.
138. £2027 1s. $7 \frac{9173}{15625} d$. 139. $3 \frac{1}{33}$. 140. 1. $\quad 141.3 s .4 d$.
142. £87s. 143. . 05099902 - ; . $01505048+$; . 9615 -.
144. $3 \frac{2}{3} \mathrm{ft}$. ; 8 tons 3 cwt. 3 qrs. $1 \frac{4}{175} \mathrm{lbs}$. 145. 1 per cent.
146. £ $\ddagger 950$ s. $9 \frac{111}{121}$ d. $\quad 147.8 \mathrm{hrs} .30 \mathrm{~min} . ; 10 \mathrm{hrs} .22 \frac{1}{2} \mathrm{~min}$.
148. $121 \frac{1}{2}$.
149. £3 10s. $9 \frac{1}{15} d . ; .77$.
150. 63.
151. £4957 6s. 8d. 152. £1 $3 s .0 \frac{1}{15} d$.
154. £220, £6 1s. 11d.
153. $87 \frac{1}{2}$.
156. 30 s., $15 s_{\text {., }} 10$ s., 7 s. $6 d_{\text {., }} 6 s ., 5 s$. 157. 415.8, $356.4,226.8$.
158. 600. 159 . £12800.
160. $26 \frac{9}{16}$. \quad 161. $4 \frac{4}{9} \mathrm{lbs}$.
162. $\frac{27}{71}, .00390625,8 \frac{73}{200}, 1 \frac{1}{51}$. 163. $121 \frac{1}{4}$. 164. $£ 130$.
165. £245 18s. $11 \frac{7}{9} d . ~ \& ~ 166 . ~ 15$.
168. £292 4s.
170. 1.43, 6.483́ ; 2.49, 8.57.
172. 18s. $2 \frac{1}{4} d ., 11$ s. $9 \frac{3}{4} d$. 167. $4 \frac{7}{12}, £ 2936 s .8 d$. 169. £62 3s. $8 \frac{117}{160} d_{\text {., }} 34733.92$. 171. 550 tons, $68 \frac{3}{4}$.
174. $6384,7695,8321$; $2 \frac{37}{314}$ da. 173. £65 15s. $9 \frac{9}{19} d$.
176. $\frac{2}{2} \overline{2}^{\circ} \quad 177 . \frac{3}{5}, .9147916$. 175. £5 13 s. $0 \frac{3}{4} d$.
179. . 5. 178. 12 hrs .8 min .
181. 273.649.
182. £520. 180. $9 \frac{11}{25^{\circ}}$.
184. The $3 \frac{1}{2}$ per cents. 183. 2880, . 00994318 8, $\frac{125}{273}$.
186. 4 lbs. 11 oz .19 dwts., $.165234375, \frac{39}{400}, \frac{7}{11}, \frac{97}{185}$.
187. 266 tons, $16 \frac{1}{10} \mathrm{cwt}$.
188. 1764. 540 sq. yds.
189. 7s. $0 \frac{6}{23} d$. 190. £270, £11 8s. $3 \frac{13809}{20000} d$.
191. $2400,1800,1600,1500$.
192. £Ј $14 s$ s. $0 \frac{3}{4} d$., £ $18210 \mathrm{~s} .$, £6 $16 s .10 \frac{1}{2} d$.
103. $£ 3250, £ 1560, £ 1440 . \quad 194.80$ and 160.
195. 66.286.
196. £211 19s. 3d. 197. The 3 per cents. ; $19 s .7 \frac{3}{8} d . \quad$ 198. $8 \frac{7}{16}$.
199. $5 \frac{3}{4}, \frac{16}{27}, 1 \frac{16}{69}$. 200. £532 4 s., $£ 10016 s$., $£ 432$.
201. . 45593 - ; 70.61. 202. £94 10s., £7 $8 s .10 \frac{1}{20} d$. 203. 51, $1 \frac{29}{40^{*}}$ 204. £127 5s. $5 \frac{5}{11} d .$, £127 12s. 1 d. 205. 20.7846 \&c., 203.646 \&c. 206. £196, £304. 207. $491 \frac{1}{160^{\circ}} \quad$ 208. £6 9 s. $11 \frac{1}{4} d$.
209. £2 5s. 210. £320, £293 6s. 8d., £110, £201 $13 s .4 d$.
211. $4 s .6 \frac{2}{3}$ d. 212. $587 \frac{37}{49}$. 213. £10 8s. \quad 214. $3 s .1 \frac{37}{40} d$.
215. £1832 19s. $6 \frac{822}{1777}$ d. 216. £29 17s. $2 \frac{1}{4} d$. 217. 12 days. 218. 1 ton 12 cwt. 2 qrs. 3 lb .5 oz . ; £8 $14 \mathrm{~s} .6 \frac{3}{4} d$.
219. 12 hrs. 48 min. ; $4 \frac{4}{5}, 5 \frac{1}{5}$. \quad 220. 224 miles 64 yds.
221. £3820 8s. $9 \frac{21}{128} d$. 222. £10278 9s. $5 \frac{9}{32} d_{0}$
223. £51 8s. $4 \frac{389}{1600}$., £129 17s. $2 \frac{34}{625} d$.

EXAMINATION-PAPERS.

Paper \mathbf{V}.

3. 31 sq. po. 30 yd. 2 ft. 4. 12524940 in .
4. 19 ac. 2 ro. 29 po. 2 yd. 5 ft .81 in .
5. 17778376 in .
6. 1 ac. 2 ro. 3 po. 4 yd. 5 ft .6 in.
7. $27897 \frac{3}{4} \mathrm{ft}$.
8. 668 sq. yds.
9. 1224.6 gall.
10. 31.103 ft .
11. 3.962 met.
12. 160.93 decam.
13. 100000 .
14. $6 \frac{46}{99^{\circ}}$

Paper VI.

4. $13: 20$.
5. $8: 13$.
6. $7: 15$.
7. $96: 80: 120: 105$.
8. $1: 3$ or $\frac{1}{3}$.
9. M to N as $18: 17$.

Paper VII.

1. $77 \frac{5}{6}$.
2. $24 / 3 \frac{3}{4}$.
3. $£ 22241170$.
4. $40^{\circ} 53^{\prime}$.
5. $3 \frac{1}{4} d$.
6. $20 \frac{7}{12}$.
7. 7 sq . ft.
8. 60 .
9. $4 / 1 \frac{1}{2}$.
10. $21 \frac{3}{4}$.
11. 3 gall.

Paper VIIr.

6. $22 \frac{1}{2} \mathrm{da}$.
7. $A 12, B 15, C 20$ da.
8. $A, 33 \frac{3}{5}$ hrs. ; $B, 24$ hrs. ; $C, 18 \frac{2}{3}$ hrs.
9. 360 gall.; 1 gall. per hr. gained.

Paper IX.

1. $£ 894$ s. $4 \frac{1}{2} d$.
2. 6576 fr. $51 \frac{1}{2}$ cts.
3. 95286.21 fr .
4. $£ 323$ ss. $1 \frac{17}{19} d$.
5. $9.386 d$.
6. $62 \frac{1}{2} d$. ncarly.
7. 2211 dol. $16 \frac{4}{11}$ re.
8. $53 \frac{1}{2} d$. per milree, nearly.
9. 3722.07 fr .
10. $4 s$. ; $42 \frac{1}{2}$ francs.
11. Gains $8 s . n e a r l y$.
12. Circuitously, by 35.985 milrces.
13. $£ 16014 s .3 \frac{3}{7} d$.
14. $480 \mathrm{fr} .24 \frac{1}{2}$ cents.
15. 5 doll. $50{ }^{3}$ cents.
16. 1 rupee 11.13 annas per 1 lb . 17. (i.) . 0102045 oz. ; 25.17 francs.
17. (ii.) 25 fr. $53 \frac{1}{2}$ cts. ; 25 fr. $14 \frac{1}{2}$ cts. 17. (iii.) a. $088 \mathrm{p} . \mathrm{c}$. dearer.
18. (iii.) b. . 367 p. c. dearer.

Paper \mathbf{x}.

3. 32 oxen.
4. 4.
1. $0 \frac{3}{11} \mathrm{da}$.
2. 20 wks .
3. 3 ac.
4. 40 oxen.
5. 21 days.
6. 14.076 min . $; \frac{1593}{2930}$ of the cist.

Faper 5 .

4. 264 at 12 s . \&c.
5. 42 and 48.
6. 40 or.; 45 lem .
7. T. 3s. $9 d .$, C. 1s. $8 d$.
8. 5: 4.

Paper XIx.

7. 2031.
1. 108.097 yd ; $30 \bar{\sigma}_{\frac{3}{3}}^{3} \mathrm{yd}$.
2. 21 po. $2 \frac{1}{5} \mathrm{yd}$.
3. 153 mi .
4. $\sqrt[4]{ } 10 ; \sqrt{ } 3$.
5. 250 . 18. $8 \frac{1}{2} d . \quad 10.12 \mathrm{ft}$.
6. 2 ft .2 in . nearly; $28 \frac{1}{\mathrm{~B}}$ sq. ft. 22. £42.
24.5 .5413 ft . ; 5.058 ft .
7. 13.6801 cub. yds .
8. 6 po .1 yd .
9. 14.02 ft .
10. . 0261 in .
11. 433 nararly.
12. 4.
1. $\frac{2}{31}$.
2. 5.51 p. c. nearly.

Faper XIII.

1. 57 min .
2. 263 times ; . 0029 rem .
3. 192.
1. 46 sq. ft. $0^{\prime} 0^{\prime \prime} 11^{\prime \prime \prime}$.
2. 287 sq. ft. $2^{\prime} 5^{\prime \prime} 6^{\prime \prime \prime}$.
3. 46 sq. ft. $0 \frac{11}{12} \mathrm{in}$. ; 287 sq . ft. $29 \frac{1}{2} \mathrm{in}$.
4. £10 1s. $9 \frac{7}{18} d$.
5. $£ 64 \mathrm{~s} .5 d$., $£ 313 s .7 d$.
6. Gain 25 p. c. 13. $\frac{405}{2002}$ ac.
7. $2 s .7 \frac{1}{4} d$.
8. .72.
9. $\frac{5}{6}$ per cent. gained.
10. 10 d .
11. Nothing.
12. 3283.
1. 3 yrs. 100 das.
2. 5_{5}^{3} mths.
3. Value $=242 \frac{1}{8} \mathrm{da}$.
4. 18, 27, 24, 30.
5. A 5s., $B 1$ s. $10 \frac{1}{2} d$., C 1 s. $1 \frac{1}{2} d$.
6. $\frac{17}{315}$.
7. A 11s. $4 d ., B$ 1s. $4 d ., C 7 s .4 d$.
8. £16 13s. $4 d$.
9. Nearly £3 16s. 11d. p. c.
10. 40 ac. 9 po. 10 Jds. $32 \frac{4}{7} \mathrm{in}$.
11. $£ 126 s .11 \frac{1}{3} d$.
12. £14 10s. $10 \frac{10}{1 \mathrm{i}}$ d. 33. $£ 260$.
13. $4 \frac{23}{88}$.

Paper Kiv.

1. 3759.
1. $192 \frac{1}{2} \mathrm{ft}$.
2. $391 \frac{1}{2}$ rev. ; $7 \frac{1}{2}$ and $13 \frac{1}{2} \mathrm{ft}$. circumf.
3. 1 gall. water to 17 spirits.
4. 1520 tons.
5. $£ 8215$ s. ; 32 days.
6. 1 mile, $1557 \frac{3}{4}$ yds. nearly.
7. 12 weeks.
8. 729, 432, 3348, 27.
9. . 00416 and .0625.
10. $3111 \frac{1}{3} \mathrm{c} . \mathrm{yds}$. 165.19 lbs .
11. 16 s .4 d .
12. 31 s. $4 \frac{1}{5} d$.
13. 4 florins.
14. £1505.
15. $£ 127$ 1s. $5 d$.
16. $1 \frac{31}{69}$ yr., or 1 yr .164 da .
17. 12 yards from B.
18. $£ 24$ increase.
19. $£ 10$ 16s. decrease.
20. $\frac{2}{3}$.
21. . 008.

Paper $\mathbb{X V}$.

11. 12 men . 12. 2 pon. 13. £6947 18s. 4 d. 14. 3570.
12. 3.627 p. c. 16.7 men.
13. $26 s .8 d ., 33 s .4 d$.
14. $14 s .3 \frac{3}{7} d$.
15. $11 \frac{2}{3}$ mths.
16. At 24 min . and at $30 \frac{\mathrm{f}}{11} \mathrm{~min}$. past 11 .
17. £104.
18. 22 yrs ago ; 18 yrs. hence.
19. 4.
1. $0 \frac{1}{21} \mathrm{mi}$. an hour.
2. $9 \frac{5}{11} \mathrm{~min}$. past 8 .
3. $£ 111 \mathrm{~s}$. 3 d .
4. The whole.
5. $£ 1400$.
6. 3.4408.
7. 6 mth s .
8. $£ 1000$.
9. $7 \frac{2}{3}$ mths.
10. £147.
11. . $^{3} \stackrel{3}{4}$
12. $£ 1716 s$. $4 \frac{4}{11}$ d., £8 18 s . $2 \frac{3}{11} d$. \&cc.
13. £322, £627 4s., £2060 16 s .
14. $23 \frac{11}{43}$ p. c.
15. For ploughing the field with oxen, £\& $7 \mathrm{~s} .0 d$. ; For ploughing it
with horses, $£ 3$ 18s. $9 \frac{3}{4} d$.
16. $7 \frac{1}{5}$ hours. \quad 49. $10 \frac{1}{6}$ hrs. $\quad 50.6 \mathrm{~min} .6 .08 \mathrm{sec}$.

SELECT GENERAL LISTS

or
 SCHOOL-BOOKS
 PUBLISHED BY

Messrs. LONGMANS and CO.

4-5 The School-Books, Atlases, Maps, \&c. comprised in this Catalogue may be inspected in the Educational Department of Messrs. Longmans and Co. 39 Paternoster Row, E.C. London, where also all other works published by them may be seen.

English Reading-Lesson Books.

Bilton's Infant Primer for School and Home use, 18mo.

| - Infant Reader, Narratives and Fables in Monosyllables, 18mo........................ | $3 d$. |
| :--- | :--- | :--- |
| | $4 d$. |

- Second Reading Book, for Standard II. 18mo.
- Third Reading Book, Boys' Edition and Girls' Edition, fep. 9d....................
- Fourth Reading Book, Boys' Edition and Girls' Edition, fcp. 18. each
- Fifth Reading Book, or Poetical Reader, fcp.
- - Grade Lesson-Book Primer. crown 8vo.

Stevens and Hole's Grade Lesson Books, in Six Standards, 12mo. :-
The First Standard, pp. 128
The Second Standard, pp. 160
The Third Standard, pp. $160 .$.
9d. The Fourth Standard, pp. 224. $3 d$. 9a. The Sixth Standard, pp $260 \ldots \ldots \ldots$
Answers to the Arithmetical Exercises in Standards I. II. and III. price $4 d$. in Standard IV. price $4 d$. in Standards V. and VI. $4 d$. or complete, price 18. $2 d$. Stevens and Hole's Advanced Lesson Book, 12mo

- - Useful Knowledge Reading Books:-

Book I. for Girls' Fourth Standard, crown 8vo.
Boox II. for Girls' Fifth Standard, crown 8vo.. ${ }^{2}$
Book III. for Girls' Sixth Standard, crown 8vo... 28.
M'Leod's Reading Lessons for Infant Schools, 30 Broadside Sheets 28^{8}.

- First School-Book to teach Reading and Writing, 18mo................
- Second School-Book to teach Spelling and Reading, 18mo.

Isbister's First Steps in Reading and Learning, 12mo............................... 9 d.

- Word-Builder, First Standard, 6d. Second Standard...........
- Sixth Standard Reader, 12mo.

18. $6 d$.

The Graduated Series of Reading-Lesson Books :-
Morell's Elementary Reading Book or Primer, 18 mo.
Book I. pp. 144

Book IV. pp. 410
Jones's Secular Early Lesson-Book, 18 mo $6 d$.

- Secular Early Lesson-Book. Part II. Proverbs 4 d.
- Advanced Reading-Book; Lessons in English History, 18 mo. 10d.
Marcet's Seasons, or Stories for Young Children, 4 vols. 18mo............. each 28.
Sullivan's Literary Class-Book; Readings in English Literature, fcp. $28.6 d$.
Writing Books.
The Ready Writer, a Course of 18 Graduated Copy Books each sd.
Books I. to VIII. of the Ready Writer are printed in Pencil-Ink.
Combes, Stevens, and Hole's Complete Writer ; a Set of 16 Graduated Copy-Books, on Fine Paper, price 48. Gd. per Dozen to Teachers.M'Leod's Graduated Series of Nine Copy-Bookseach$8 d$.
Mülhauser's Writing Books, 2s. 3d. per Dozen to Teachers.
Johnston's Civil Service Specimens of Copying MSS. folio$23.6 d$.
School Poetry Books.
Bilton's Poetical Reader for all Classes of Schools, fcp. 18. $3 d$.
M'Leod's First Poetical Reading Book, fcp. 9 d.
- Second Poetical Reading Book, fcp. $18.8 d$.
Cook's First Book of Poetry for Elementary Schools, 18 mo 9 d .
Twells' Poetry for Repetition, comprising 200 short pieces, 13 mo 2s. 6 d.
Haghes' Select Specimens of English Poetry, 12mo. 8s. 6d.
Goldsmith's Deserted Village, by Stevens \& Morris, fcp. $4 d$. sewed or $6 d$. cloth.Traveller, by Stevens \& Morris, fcp. 9d. sewed or 18 . cloth.
M'Leod's Goldsmith's Deserted Village, and Traveller, each Poem, 12mo. 18. 6d.Gray's Elegy, edited by Stevens \& Morris, fcp. 4d. sewed or 6d. cloth.- Poems, with Notes by G. Candy, M.A., fcp.28. 6d.
Johnson's London and Vanity of Human Wishes, by Fleming, fcp. 18. 6 d .
Pope's Select Poems, edited by Arnold, fcp. 8vo. 2s. $6 d$.
Milton's Lycidas, edited by Jerram, crown 8vo. 28. $6 d$.
- Samson Agonistes, by Fleming, ficp. 2\%.
- - - by Stevens \& Morris, fcp. 4d. sewed or $6 d$. cloth.
- Samson Agonistes and Lycidas, by Hunter, 12mo, 18. 6d.
- L'Allegro, Stevens \& Morris, fcp. 4d. sewed or 6d. cloth.- Il Penseroso, Stevens \& Morris, fcp. 4d. sewed or $6 d$. cloth.
- Comus, L'Allegro and Il Penseroso, by Hunter, 12mo. 18. 6 d.
- Paradise Lost, by Hunter, I. \& II. 18. 6d. each: III, to V. 18. each.
Scott's Lady of the Lake, Cantos I. and II. Jeaffreson, fcp. 28. $6 d$.
Thomson's Seasons, Spring and Summer, by Morris, fcp. 28. $6 d$.
- - Autumn and Winter, by Morris, fcp. 28. $6 d$.
Hunter's 35 Plays of Shakespeare, with Explanatory Notes, each Play 18.

ing John.	Troilus and Cressida.	Measure for Measure.
chard II.	Hamlet.	Merchant of Venice.
chard III		empe
Henry IV. Part İ.	King Lear. ${ }_{\text {Othello }}$	Winter's Tale.
	All's Well that ends	Love s Labour ${ }^{\text {Lom Lost. }}$
enry Vi. Part I.	Twelfth-Night.	Much ado about
Henry VI. Part II.	Comedy of Errors.	Nothin
Henry VI. Part III.	Two Gentlemen of Verona.	Taming of the Shrew.
Julius Cæsar.	Midsummer Night's	W indsor.
Coriolanus.	Dream.	Cymbeline.
Antony and Cleopatra.	As You Like it.	Timon of Athers.

English Spelling-Books.
Barford and Tilley's English Spelling, 16mo. 18. $6 d$.
Sewell's Dictation Exercises, First Series, 18mo. 18. Second Series 28. $6 d$.
Sullivan's Spelling-Book Superseded, 18mo. 18. $4 d$.

- Words Spelled in Two or More Ways, 18mo. $10 d$.
Johnson's Civil Service Spelling Book, fop. 18. $8 d$.

Grammarand the English Language.

Keane's Handbook of History of English Language, small 8vo. 38. $6 d$
M'Leod's Explanatory English Grammar for Beginners, 18 mo 9 d.
English Grammatical Definitions, for Home Study $1 d$.
Bain's First or Introductory English Grammar, 18mo 18. $4 d$.

- Higher English Grammar, fcp. 28. 6d.
- Companion to English Grammar, crown 8vo. 38. 6d.
Graham's English, or the Art of Composition Explained, fcp. 58.
Sullivan's Manual of Etymology, or First Steps to English, 18mo. 10d,
- Attempt to Simplify English Grammar, 18mo. 18.
Hiley's Child's First English Grammar, 18mo. 18.
Abridgment of Hiley's English Grammar, 18mo. 18. 9d.
Hiley's English Grammar and Style, 12 mo 38. 6d.
Hiley's Exercises adapted to his English Grammar, 12mo. 2s. 6 d 48. $6 d$.
- Practical English Composition, Part I. 18mo. 18. 6d. Key 28. 6 d.

38. Key 48.
Wadham's English Versification, crown 8vo. 48. $6 d$.
Fleming's Analysis of the English Language, crown 8vo. 58.
Isbister's English Grammar, 12mo 18. 6d.

- First Book of Grammar, Geography, and History, 12 mo $6 d$.
The Stepping-Stone to English Grammar, 18mo. 18.
Hunter's Text-Book of English Grammar, 12mo. 28. 6d.
- Manual of School Letter-Writing, 12mo. 18. 6d.
Johnston's English Composition and Essay-Writing, post 8vo. 38. $6 d$.
Graham's English Style (a Course of Instruction), fcp. 68.
Marcet's Willy's Grammar for the use of Boys, 18 mo 28. $6 d$.
- Mary's Grammar, intended for the use of Girls, 18mo. 28.
Morell's Essentials of English Grammar and Analysis, fep. $8 d$.
Morgan's Learner's Companion to the same, post 8 vo $6 d$.
Morell's Grammar of the English Language, post 8vo.28. or with Exercises 28. $6 d$ - Graduated English Exercises, post 8vo. 8d. sewed or 9d. cloth.Morgan's Key to Morell's Graduated Exercises, 12mo.48.
Murison's First Work in English, fcp. 8vo. 38. 6 d.
Lowres's Grammar of English Grammars, 12mo. 38. $6 d$.
- Companion to English Grammar, 12mo 2s. 6 d.
Edwards's History of the English Language, with Specimens, 18mo 9d.
Brewer's Guide to English Composition, fcp. 8vo. 58. 6d.
Roget's Thesaurus of English Words and Phrases, crown 8vo. 108. 6d.
Arnold's Manual of English Literature, crown 8vo. 78. 6d.
- Beowulf (Text and English Translation), with Notes \&c.8vo. 128.
Isbister's Outlines of the English Language, Part I. 12mo. $6 d$.
Latham's Handbook of the English Language, crown 8vo 68.
- Elementary English Grammar, crown 8vo. 38. $6 d$.
- English Grammar for Classical Schools, fep. 2s. 6d.
- Rules and Principles for the study of English Grammar, 18mo. 18.
Müller's (Max) Lectures on the Science of Language, 2 vols. crown 8v 168.
Ferrar's Comparative Grammar, Sanskrit, Greek, Latin, Vou. I. 8vo. 128.
Weymouth's Answers to Questions on the English Language, fcp.8vo. 28. 6d.
Paraphrasing, Parsing, and Analysis.
Hunter's Introduction to Précis-Writing, 12mo 28.
Johnston's Civil Service Précis, 12mo. 38, 6d.
Morell's Analysis of Sentences Explained and Systematised, 12mo. $2 s$.
Lowres's System of English Parsing and Derivation, 18mo 18,
4 General Lists of School-Books
Morgan's Training Examiner, First Course, 4d. Second Course, 18.
Hunter's Paraphrasing and Analysis of Sentences, 12 mo 18. $3 d$. Key 18. $3 d$.
- Progressive Exercises in English Parsing, 12mo. $6 d$.
- Questions on Paradise Lost, I. \& II. \& on the Merchant of Venice
- Johnson's Rasselas, with Notes \&c. 12mo. 28. $6 d$.
Dictionaries; with Manuals of Etymology.
Latham's English Dictionary, founded on Dr. Johuson's, 4 vols. 4 to. price 27. Abridged English Dictionary, 1 vol. medium 8vo 248.
Black's Student's Manual of Words derived from the Greek, 18 mo 18. $6 d$.
Latin, 18mo. 28. 6 d.
- Student's Manual, Greek and Latin, complete, 18mo. 38. $6 d_{\text {d }}$
Sullivan's Dictionary of the English Language, 12mo 38. $6 d$.
Dictionary of Derivations, or Introduction to Etymology, fcp 28.
Graham's English Synonyms, Classified and Explained, fcp. 68.
Whately's English Synonyms, fcp. 38.
Maunder's Treasury of Knowledge and Library of Reference, fcp. 68.
- Biographical Treasury, re-constructed by Cates, fcp. 68.
- Scientific and Literary Treasury, fcp. 68.
Elocution.
Isbister's Illustrated Public School Speaker and Reader, 12mo 38. 6d.
- Lessons in Elocution, for Girls, 1Umo. 18. 6 d.
- Ontlines of Elocution, for Boys, 12mo. 18. $6 d$.
Millard's Grammar of Elocution, fcp. 2s. $6 d$.
Smart's Practice of Elocution, 12 mo 48.
Rowton's Debater, or Art of Public Speaking, fcp. 68.
Twells's Poetry for Repetition, 200 short Pieces and Extracts, 18 mo 28. 6d.
Hughes's Select Specimens of English Poetry, 12mo. 38. 6d.
Bilton's Repetition and Reading Book, crown 8 vo 28.6d.
Arithmetic.
Hunter's New Shilling Arithmetic, 18mo. 18. Key 28.
Colenso's Arithmetic designed for the use of Schools, 12 mo 48. $6 d$.
Key to Colenso's Arithmetic for Schools, by Rev. J. Hunter, M.A. 12 mo 58.
Colenso's Shilling Elementary Arithmetic, 18mo. 18. with Answers 18. $6 d$.
- Aritnmetic for National, Adult, and Commercial Schools :-

1. Text-Book 18 mo $6 d$.
2. Examples, Part I. Simple 4. Examples, Part III. Fractions, Decimals Arithmétic 4d. Duodecimals 4 d. 18.
3. Answers to Examples, with Solutions of the difficuit Questions
4. Answers to Examples, with Solutions of the difficuit Questions
Colenso's Arithmetical Tables, on a Card $1 d$.
Lupton's Arithmetic for Schools and Candidates for Examination, $12 m o$.
28.6d. or with Answers to the Questions, $\mathbf{3 8 . 6 d}$. the Answers separately 18Examination-Papers in Arithmetic, crown 8vo
Hunter's Modern Arithmetic for School Work or Private Study, 12mo.38.6d.Key, 58.Combes and Hines' Standard Arithmetical Copy-Books, in Nine Books, 4d.each.Combes and Hines' Completo Arithmetical Copy-Books. Complete in NineBooks, on Fine Paper, $4 d$. to $6 d$. each. Price $48.6 d$. per dozen to Teachers.
M'Leod's Manual of Arthmetic, containing 1,750 Questions, 18mo $9 d$.
Hiley's Recapitulatory Examples in Arithmetic, 12 mo $18.6 d$.
Moffatt's Mental Arithmetic, 12mo. 18. or with Key, 18.6d.Anderson's Book of Arithmetic for the Army, 18mo.18.
M'Leod's Mental Arithmetic, I. Whole Numbers, II. Fractions each 18.

- Extended Multiplication and Pence Tables, 18mo.
Johnston's Civil Service Arithmetic, 12 mo 48.
- Civil Service Tots, with Answers and Cross-Tots 18.
Thomson's Treatise on Arithmetic, 12 mo 88. $6 d$. Key 58.
Tate's First Principles of Arithmetic, 12mo 18. $6 d$.
Pix's Miscellaneous Examples in Arithmetic, 12mo 28.6d.
Stevens and Hole's Arithmetical Examination Cards, in Eight Sets, eachSet consisting of Twenty-Four Cards. Price 18. per Set.
A. Simple Addition and Subtraction.
B. Simple Multiplication and Division.
C. Compound Rules (Money).
G. Simple and Compound Proportion.
D. Compound Rules (Weights and Mea- H. Interest, Stocks, and Miscellaneous sures). Problems.
Isbister's High School Arithmetic, 12mo. 18. or with Answers $18.6 d$.
Calder's Familiar Arithmetic, 12mo. 48. 6d. or with Answers, 58. 6d. theAnswers separately, 18. the Questions in Part II. separately.18.
Calder's Smaller Arithmetic for Schools, 18 mo 2s. 6d.
Liddell's Arithmetic fcr Schools, 18mo. 18. cloth; or in Two Parts, Sixpenceeach. The Answers separately, price Threepence.
Harris's Gradnated Exercises in Arithmetic and Mensuration, crown 8vo.28.6d. or with Answers, 3s. the Answers separately, 9d.............Full Key 68.
Merrifield's Technical Arithmetic and Mensuration, small 8vo. 38.6d. Key 3s. 6d.
Book-keeping.
Isbister's Book-keeping by Single and Double Entry, 18mo. 9d.
Set of Eight Account Books to the above $6 d$.
Hunter's- Examination-Questions in Book-keeping by Double Entry, 12 mo. ${ }^{28}$.

18. $6 d$.= \quad Ruled Paper for Forms of Account Boo
Mensuration.
Merrifield's Technical Arithmetic \& Mensuration, small 8vo. 38. $6 d$.
Hunter's Elements of Mensuration, 18mo 9 d.
Hiley's Explanatory Mensuration, 12mo. 2s. $6 d$.
Boucher's Mensuration, Plane and Solid, 12mo 38.
Nesbit's Treatise on Practical Mensuration, by Hunter, 12mo. 38. 6d.y Key 5s.
Algebra.
Colenso and Hunter's Introductory Algebra, 18mo. 28. 6d. Key 28. $6 d$.
Griffin's Algebra and Trigonometry, small 8vo. 38. 6d.

- Notes on Algebra and Trigonometry, small 8vo. 38. $6 d$.
Colenso"s Algebra, for National and Adult Schools, 18mo 18.6d. Key 28.6d.
- Algebra, for the use of Schools, Part I. 12 mo 48.6d. Key 58.
- Elements of Algebra, for the use of Schools, Part II.12mo.6s. 28. $6 d$.
Tate's Algebra made Easy, 12mo. 28. Key 38. 6 d
Reynolds's Elementary Algebra for Beginners, 18mo. 9d. Answers, 3d. Key 1s.
Thomson's Elementary Treatise on Algebra, 12mo 58. Key 48. 6d.
Lund's Short and Easy Course of Algebra, crown 8vo. 28. 6d. Key 28.6d.
Wood's Algebra, modernised by Lund, crown 8vo 78. 6 d.
MacColl's Algebraical Problems, with Elliptical Solutions, 12mo. 28.6d.
Geometry and Trigonometry.
Hawtrey's Introduction to Euclid cloth 28. 6d.
Thomson's Euclid, Books I. to VI. and XI. \& XII. 12 mo. 58.
- Plane and Spherical Trigonometry, 8vo. 48. 6 d.
- Differential and Integral Calculus, 12 mo 58. 6 d.
Watson's Plane and Solid Geometry, small 8vo. 3s. 6 d.
Wright's Elements of Plane Geometry, crown 8vo 58.
Willock's Elementary Geometry of the Right Line, crown 8 vo. 58.
Potts's Euclid, University Edition, 8vo 108.
Intermediate Edition, Books I. to IV. 38. Books I. to III. 6d.Books I. II. 18. 6 d. Book I. 18.
- Enunciations of Enclid, 12mo $6 d$.
Tate's Practical Geometry, with 261 Woodeuts, 18 mo 18.
- Geometry, Mensuration, Trigonometry, \&c. 12mo. 38. $6 d$.
Isbister's School Euclid, the First Two Books, 12 mo 18. $6 d$.
Tate's First Three Books of Euclid, 18mo. $9 d$.
Colenso's Elements of Euclid, 18mo......48. 6d. or with Key to the Exercises 68. 6 .
- Geometrical Exercises and Key.

18.

- Geometrical Exercises, separately, 18 mo
- Trigonometry, 12mo. Part I. 38. 6d. Key 38. 6d. Part II. 28. 6d. Key 58.
Hunter's Plane Trigonometry, for Beginners, 18 mo 18. Key $9 d$.
Booth's New Geometrical Methods, 2 vols. 8 vo 668.
Hymers's Differential Equations and Calculus, 8vo 128.
Williamson on Differential Calculus, crown 8vo. 108. 6 d.
- on Integral Calculus, crown 8vo, 108. 6 d .
Hunter's Treatise on Logarithms, 18 mo 18. Key $9 d$.
Jeans' Plane and Spherical Trigonometry, 12mo. 78. 6d. or 2 Parts, each 48.
- Problems in Astronomy \&c. or Key to the above, 12 mo 68.
Land Surveying, Drawing, and Practical Mathematics.
Nesbit's Practical Land Surveying, 8vo 128.
Binns's Orthographic Projection and Isometrical Drawing, 18mo 18.
Winter's Mathematical Exercises, post 8vo 68. $6 d$.
Winter's Elementary Geometrical Drawing, Part I. post 8vo. 38.6d. Part II. 6s. 6d.
Pierce's Solid or Descriptive Geometry, post 4to. 128. 6d.
Kimber's Mathematical Course for the University of London, 8vo. 12s.
Part I. for Matriculation, separately, 18. 6d. Key, in 2 Parts, 58. each.

128. Salnion's Treatise on Conic Sections, 8 vo 128.
Wrigley's Examples in Pure and Mixed Mathematics, 8 vo 88. $6 d$.
Works by John Hullah, Professor of Vocal Music in King's College, in Queen's College, and in Bedford College, London.
Hullah's Manual of Singing. Parts I. and II. 28. 6d.; or together 58.
Exercises and Figures contained in Parts I. and II. of the Manual,Books I. and II.each
Large Sheets, containing the Figures in Part I. of the Manual. Nos. 1 to 8 in a Parcel 68
Large Sheets, containing the Exercises in Part I. of the Manual. Nos. 9 to 40, in Four Parcels of Eight Nos. each per Parcel 6.
Large Sheets, the Figures in Part II. Nos. 41 to 52 in a Parcel 98.
Radiments of Musical Grammar, royal 8vo. 38.
Grammar of Musical Harmony, royal 8vo. Two Parts each 18. $6 d$
Exercises to Grammar of Musical Harmony 18.
Grammar of Counterpoint. Part I. super-royal 8vo. 28. 6d.
Infant School Songs $6 d$.
School Songs for 2 and 3 Voices. 2 Books, 8 vo $6 d$.
Hymns for the Young, set to Music, royal 8vo $8 d$.
Old English Songs for Schools, Harmonised $6 d$.
Exercises for the Cultivation of the Voice. For Soprano or Tenor 28. $6 d$.
Time and Tune in the Elementary School, crown 8vo. 28. $6 d$.
Exercises and Figures in the same, crown 8vo. 18. or 2 Parts, 6d. each.
Chromatic Scale, with the Inflected Syllables, on Large Sheet
Card of Chromatic Scale, price $1 d$.Notation, the Musical Alphabet, crown 8 vo .$6 d$.
Political and Historical Geography.
Thomson's Introduction to Modern Geography, New Edition in the press.Hiley's Child's First Geography, 18mo.9d.

- Elementary Geography for Beginners, 18mo. 18. 6 d.
- Compendium of European Geography and History, 12 mo 38. 6d.
- Asiatic, African, American and Anstralian Geography, 12 mo 38.
Burbury's Mary's Geography, 18mo. 28. 6d. Questions 18
The Stepping-Stone to Geography, 18 mo 18.
Hughes's Child's First Book of Geography, 18 mo 9d.
- Geography of the British Empire, for Beginners, 18mo. 9d.
- General Geography, for Beginners, 18mo. 9d.
Questions on Hughes's General Geography, for Beginners, 18mo. 9d.
Lupton's Examination-Papers in Geography, crown 8vo. 18.
Hughes's Geography of British History, fcp. 8vo. 58.
- Manual of Geography, with Six Coloured Maps, fcp. 8vo. 78. $6 d$.
Or in Two Parts:-1. Europe, 38. 6d. II. Asia, Africa, America, \&c 48.
Hughes's Manual of British Geography, icp. 28.
Sullivan's Geography Generalised, fcp. 28. or with Maps, 28. 6d. Introduction to Ancient and Modern Geography, 18mo. 18.
Maunder's Treasury of Geography, fcp. 68.
Keith Johnston's Gazetteer, or Geographical Dictlonary, 8vo 428.
Butler's Ancient and Modern Geography, post 8vo. 78. 6d.
- Sketch of Modern Geography, post 8 vo 48.
- Sketch of Ancient Geography, post 8vo. 48.
M'Leod's Geography of Palestine or the Holy Land, 12mo 18. 6d.
Physical Geography and Geology,
Proctor's Elementary Physical Geography, fcp. 18. $6 d$.
Hughes's (W.) Physical Geography for Beginners, 18mo. 18.
Maury's Physical Geography for Schools and General Readers, fcp 28. $6 d$.
Hughes's (E.) Ontlines of Physical Geography, 12mo.......8s. 6d. Questions $6 d$.
Keith's Treatise on the Use of the Globes. 12mo. 68, 6d. Key 28.6d.
Butler's Text Book of Physical Geography In the press.
Woodward's Geology of England and Wales, crown 8vo. 148.
Nicols's Puzzle of Life (Elementary Geology), crown 8vo 58.
Evans's Petit Album de l'Age du Bronze, crown 8vo. 128.
School Atlases and Maps.
Public Schools Atlas of Modern Geography, 31 entirely New Coloured Maps,imperial 8vo. or imperial 4to. 5s, cloth.
Public Schnols Atlas of Ancient Geography, 25 entirely New Coloured Maps, imperial 8 Fo . or imperial 4to. 78.6 6 . cloth.Butler's Atlas of Modern Geography, royal 8vo108. 6d.
- Junior Modern Atlas, comprising 12 Maps, royal 8vo. 48. 6d.
- Atlas of Ancient Geography, royal 8vo. 28.
- Junior Ancient Atlas, comprising 12 Maps, royal 8vo. 48. 6d.
- General Atlas, Modern \& Ancient, royal 4to. 228.
M'Leod's Pupil's Atlas of Modern Geography, 4to. 18.
Natural History and Botany.
The Stepping-Stone to Natural History, 18mo. 28.6d.
Or in Two Parts.-I. Mammalia, 1s. II. Birds, Reptiles, and Fishes 18.
Owen's Natural History for Beginners, 18mo. Two Parts 9d. each, or 1 vol. 28.
Maunder's Treasury of Natural History, revised by Holdsworth, fep. 68.
Lindley and Moore's Treasury of Botany, Two Parts, fcp. 128.
Wood's Bible Animals, 8vo. 148.
- Homes without Hands, 8vo. 148.
- Insects at Home, 8vo 148.
- Insects Abroad, 8 vo. 148.
Out of Doors, crown 8vo. 78.6d.
- Strange Dwellings, crown 8vo 78. 6d.
Chemistry and Telegraphy.
Tilden's Theoretical and Systematic Chemistry, small 8vo. 38. 6d.
Armstrong's Organic Chemistry, small 8vo. 38. 6 d
Miller's Elements of Chemistry, 3 vols. 8 vo .
Part I.-Chemical Physics, Fifth Edition, 15s.
Part II.-Inorganic Chemistry, Fifth Edition, 21s.
Part III.-Organic Chemistry, Fifth Edition in the press.Introduction to Inorganic Chemistry, small 8vo.38. 6 d.
Tate's Outlines of Experimental Chemistry, 18mo. 9d.
Odling's Course of Practical Chemistry, for Medical Students, crown 8vo 68.
Thorpe's Quantitative Chemical Analysis, small 8vo. 48. 6d.
Thorpe and Muir's Qualitative Chemical Analysis, small 8vo. 38. 6 d .
Crookes's Select Methods in Chemical Analysis, crown 8vo. 128. $6 d$.
Preece and Sivewright's Telegraphy, crown 8vo 38. $6 d$.
Culley's Practical Telegraphy, 8vo 168.
Natural Philosophy and Natural Science.
Blozam's Metals, their Properties and Treatment, small 8vo. 38.6d.
Ganot's Physics, translated by Prof. E. Atkinson, post 8vo. 158.
- Natural Philosophy, translated by the same, crown 8vo. 78. 6d.
Helmholtz' Popular Lectures on Scientific Subjects, 8 vo $128.6 d$.
Weinhold's Introduction to Experimental Physics, 8vo. 318. $6 d$.
Jenkin's Electricity \& Magnetism, small 8vo. 38. 6d.
Maxwell's Theory of Heat, small 8vo. 38. 6d.
Marcet's Conversations on Natural Philosophy, fcp. 78. 6d.
Irving's Short Manual of Heat, small 8vo. 28. $6 d$.
Day's Numerical Examples in Heat, crown $8 v o$. 18. 6 d.
- Electrical \& Magnetic Measurement, 16 mo $28.6 d$.
Downing's Practical Hydraulics, Part I. 8vo 58. 6d.
Tate's Light \& Heat, for the use of Beginners, 18mo 9d.
- Hydrostatics, Hydraulics, \& Pneumatics, 18 mo 9d.
- Electricity, explained for the use of Beginners, 18mo 9 d.
- Magnetism, Voltaic Electricity, \& Electro-Dynamics, 18mo. 9d.
Tyndall's Lesson in Electricity, with 58 Woodcuts, crown 8vo 28. 6 d.- Notes of Lectures on Electricity, 18. sewed, 18.6d. cloth.- Notes of Lectures on Light, 18. sewed, 18. 6d. cloth.
Text-Books of Science, Mechanical and Physical, adapted forthe use of Artisans, and of Students in Public andScience Schools.
Anderson's Strength of Materials, small 8 vo 38. 6d.
Armstrong's Organic Chemistry 38. 6d.
Barry's Railway Appliances 38. $6 d$.
Bloxam's Metals 38. $6 d$.
Goodeve's Elements of Mechanism 3s. 6d.
Principles of Mechanics 38. $6 d$.
Griffin's Algebra and Trigonometry $38.6 d$.
Jenkin's Electricity and Magnetism 38. $6 d$.

General Lists of School-Books

Maxwell's Theory of Heat. 3s. 6d.
Merrifield's Technical Arithmetic and Mensuration 3s. $6 d$.
Miller's Inorganic Chemistry $38,6 d$.
Preece \& Sivewright's Telegraphy 38. 6d.
Shelley's Workshop Appliances 38. 6 d.
Thomés Structural and Physiological Botany 68.
Thorpe's Quantitative Chemical Analysis 48. 6d.
Thorpe \& Muir's Qualitative Analysis 38. 6d.
Tilden's Chemical Philosophy $38.6 d$.
Watson's Plane and Solid Geometry 38. $6 d_{0}$*** Other Text-Books in active preparation.
Mechanics and Mechanism.
Goodeve's Elements of Mechanism, small 8vo. 3s. 6d.
Principles of Mechanics, small 8vo. 38. 6d.
Magnus's Lessons in Elementary Mechanics, small 8vo. 38. 6d.
Tate's Exercises on Mechanics and Natural Philosophy, 12mo 28. Key 38. $6 d$.

- Mechanics and the Steam-Engine, for beginners, 18mo $9 a$.

8. $6 d_{\text {. }}$
Hanghton's Animal Mechanics, 8vo. 218.
Twisden's Introduction to Practical Mechanics, crown 8vo. 108. 6d.
First Lessons in Theoretical Mechanics, crown 8vo. 88. 6d.
Willis's Principles of Mechanism, 8vo. 18.
Barry's Railway Appliances, small 8vo. Woodcuts $38.6 d$.
$3 s .6 d$.
Engineering, Architecture, \&c.
Anderson on the Strength of Materials and Structures, small 8vo. 88. 6d.
Bourne's Treatise on the Steam-Engine, 4to 42.
Catechism of the Steam-Engine, fcp. 6.

- Recent Improvements in the Steam-Engine, fcp. 68.
Handbook of the Steam-Engine, fcp 98.
Main and Brown's Marine Steam-Engine, 8vo 128. 6 d .
- - Indicator \& Dynamometer, 8 vo 48. $6 d_{\text {. }}$

58. 6 d.
Fairbairn's Useful Information for Engineers. 3 vols. crown 8 vo $318.6 d$.
Treatise on Mills and Millwork, 2 vols. 8vo. 328.
Mitchell's Stepping-Stone to Architecture, 18mo. Woodcuts. 18.
59. 6 d.Gwilt's Encyclopædia of Architecture, 8vo.
Downing's Elements of Practical Construction, Part I. 8vo. Plates 528. 6d.
Moseley's Mechanical Principles of Engineering and Architecture, 8vo..148.
Popular Astronomy and Navigation.
The Stepping-Stone to Astronomy, 18 mo 18.
Tate's Astronomy and the use of the Globes, for Beginners, 18mo. 9d.
Proctor's Lessons in Elementary Astronomy, fcp. 8vo. 18. $6 d$.
Brinkley's Astronomy, by Stubbs \& Brünnow, crown 8vo 68.
Herschel's Outlines of Astronomy, Twelfth Edition, square crown 8vo. 128.
Webb's Celestial Objects for Common Telescopes, 16mo. 78. 6d.
Proctor's Library Star Atlas, folio 258.

- New Star Atlas for Schools, crown 8vo. 58.
- Handbook for the Stars, square fep. 8vo. 58.
Evers's Navigation \& Great Circle Sailing, 18mo. 18.
Jeans's Handbook for the Stars, royal 8vo 4s. $6 d$.
- Navigation and Nantical Astronomy, PART I. Practical, 12mo. 58.
Merrifield's Magnetism \& Deviation of the Compass, 18mo. 78. 6d.
Laughton's Nautical Surveying, small 8vo 68.
Animal Physiology and Preservation of Health.
Buckton's Health in the House, small 8vo. 28.
House I Live In ; Structure and Functions of the Human Body, 18mo. 28. 6 d.
Bray's Education of the Feelings, crown 8vo 2s.6d.
- Physiology and the Laws of Health, 11th Thousand, fcp. 18. $6 d$.
- Diagrams for Class Teaching per pair 6s. 6d.
Marshall's Outlines of Physiology, Human and Comparative, 2 vols. cr. 8vo. 32s
Mapother's Animal Physiology, 18mo. 18.
Hartley's Air and its Relations to Life, small 8vo. 68.
General Knowledge.
Sterne's Questions on Generalities, Two Series, each 28. Keys each 48.
The Stepping-Stone to Knowledge, 18 mo 18.
Second Series of the Stepping-Stone to General Knowledge, 18mo. 18.
Chronology and Historical Genealogy.
Cates and Woodward's Chronological and Historical Encyclopædia, 8vo. ...428."
Slater's Sententic Chronologice, the Original Work, 12 mo 18. 6d. improved by M. Sewell, 12mo. 88. 6d.
Crook's Events of England in Rhyme, square 16mo. 18.
Mythology and Antiquities.
Cox's Manual of Mythology, in Question and Answer, fcp. 38.
- Mythology of the Aryan Nations, 2 vols. 8vo 288.
- Tales of Ancient Greece, crown 8vo. 68. $6 d_{\text {. }}$
Hort's New Pantheon, 18mo. with 17 Plates 28. $6 d_{0}$,
Becker's Gullus, Roman Scenes of the Time of Augustus, post 8vo. 78, 6d.
- Charicles, illustrating the Private Life of the Ancient Greeks 78. 6d.
Rich's Illustrated Dictionary of Roman and Greek Antiquities, post 8vo 78. 6 d.
Ewald's Antiquities of Israel, translated by Solly, 8vo. 128.6 d .
Goldziher's Mythology among the Hebrews, translated by Martineau, 8vo. 168.
Biography,
The Stepping-Stone to Biography, 18 mo 18.
Maunder's Biographical Treasury, re-written by W. L. R. Cates, fcp 68.
Cates's Dictionary of General Biography, 8vo. 25s.
Pattison's Isaac Casaubon, 1559-1614, 8vo. 188.
Epochs of Modern History.
Church's Beginning of the Middle Ages Nearly ready.
Cordery's Freuch Revolution to the Battle of Waterloo. Nearly ready.
Cox's Crusades, fep. 8vo. Maps28.6d.
Creighton's Age of Elizabeth, fcp. 8vo. Maps. 28.6d.
Gairdner's Houses of Lancaster \& York, fcp. 8vo. Maps 28. 6 d .
Gardiner's Thirty Years' War, 1618-16 18, fep. 8vo. Maps 2s 6d.
Gardiner's First Two Stnarts and the Puritan Revolution, fcp. 8vo. Maps 28. $6 d$.
Hale's Fall of the Stuarts, fcp. 8vo. Maps 28. 6d.
Johnson's Normans in Europe, fcp. 8vo. Nearly ready.
- Lawrence's Early Hanoverians In the press.
- Longman's Frederick the Great and the 7 Years' War. In the press.
Ludlow's War of American Independence, fcp. 8vo. Maps $28.6 d$.
Morris's Age of Anne In the press.
Seebohm's Protestant Revolution, fcp. 8vo. Maps 2s. 6d.
Stubbs's Early Plantagents, fcp. 8vo. Maps 28. 6 d.
Warburton's Edward the Third, fcp.8vo. Maps 28. $6 d$.
Epochs of English History.
Powell's Early England up to the Norman Conquest, fcp. 8vo. Maps. 18.
Creighton's England a Continental Power, 1066-1216, fcp. Maps. 9d.
Rowley's Rise of the People and Growth of Parliament, 1215-1485, fcp. Maps. 9d.
Creighton's Tudors and the Reformation, 1485-1603, fcp. 8vo. Maps. 9 d.
Cordery's Struggle against Absolute Monarchy, 1603-1688, fcp. Maps. 9d.
Rowley's Settlement of the Constitution, 1688-1778. Nearly ready.
Tancock's England during the Revolutionary Wars, 1778-1820. In the press.
Browning's Modern England, from 1820 to 1876. In the press.
British History.
Armitage's Childhood of the English Nation, fcp. 8vo. 28. 6d.
Catechism of English History, edited by Miss Sewell, 18mo. 18. 6 d.
Turner's Analysis of English and French History, fcp. 23. $6 d$.
Ontlines of the History of England, 18mo. 18.
Morris's Class-Book History of England, fep. 38. 6 d.
Cantlay's English History Analysed, fcp. 28.
The Stepping-Stone to English History, 18mo. 18,
The Stepping-Stone to Irish History, 18 mo 18.
Lupton's Examination-Papers in History, crown 8vo. 18.
English History, revised, crown 8vo. 78. $6 d$.
Gleig's School History of England, abridged, 12 mo 68.
- First Book of History-England, 18mo. 28. or 2 Parts. each $9 d^{.}$
- British Colonies, or Second Book of History. 18mo 9d.
- British India, or Third Book of History, 18mo 9 d.
Historical Questions on the above Three Histories, 18 mo 9 d.
Littlewood's Essentials of English History, fcp 3.
Bartle's Synopsis of English History, fep. 8vo 38. 6 d.
Epochs of Ancient History.
Beesly's Gracchi, Marius and Sulla, fcp. 8vo. Maps 28. 6d.
Capes's Age of the Antonines, fcp. 8vo. Maps 28. $6 d$.
- Early Roman Empire, fcp. 8vo. Maps $28.6 d$.
Cox's Athenian Empire, fcp. 8vo. Maps. 28. 6 d.
- Greeks \& Persians, icp. 8vo. Maps 28. 6 d.
Ihne's Rome to its Capture by the Gauls, fep. 8vo. Maps.. 2s. 6d.
Merivale's Roman Triumvirates, fcp.8vo. Maps 28. 6d.
Sankey's Spartan and Theban Supremacy Nearly ready.
...In the press. Smith's Rome and Carthage, the Punic Wars In the press.
History, Ancient and Modern.
Sewell's Popular History of France, crown 8vo. Maps. 78. $6 d$.
Gleig's History of France, 18mo. 18.
Maunder's Historical Treasury, with Index, fcp 68.
Mangnall's Historical and Miscellaneous Questions, 12mo 48. $6 d$.
Taylor's Student's Manual of the History of India, crown 8vo. 78. 6d.
Marshman's History of India, 3 vols. crown 8 vo 228. 6d.
Sewell's Ancient History of Egypt, Assyria, and Babylonia, fcp 68.
The Stepping-Stone to Grecian History, 18mo. 18.
Browne's History of Greece, for Beginners, 18mo. 9d.
Sewell's First History of Greece, fcp. 3s. 6d.
Cox's History of Greece, Vols. I. \& II. 8vo. 368.
- General History of Greece, crown 8vo. Maps 78, 6d.
- School History of Greece, fcp. 8vo. Maps Nearly ready. Nearly ready.
Puller's School History of Rome, abridged from Merivale, fcp. Maps s. In the press.

12

 General Lists of School-BooksTaylor's Student's Manual of Ancient History, crown 8vo 78. 6d.

- Stadent's Manual of Modern History, crown 8vo 78. 6d.
Turner's Analysis of the History of Greece, fcp. 2s. $6 d$.
Sewell's Catechism of Grecian History, 18mo. 18.6d.
- Child's First History of Rome, ficp. 28.6d.
The Stepping-Stone to Roman History, 18 mo 18.
Turner's Analysis of Roman History, fcp. 28. $6 d$.
Browne's History of Rome, for Beginners, 18mo. 9d.
Merivale's History of the Romans under the Empire, 8 vols. post 8 vo 48.
- Fall of the Roman Republic, 12mo. 78. 6d.
- General History of Rome, crown 8vo. Maps 78. 6d.
Thne's Roman History, Vols. I. and II. 8 vo 308.
Rawlinson's Sixth Oriental Monarchy (the Parthians), 8vo. Maps \&c. 168.
Seventh Oriental Monarchy (the Sassanians) 8vo. Maps \&c. 28.
Scripture History, Moral and Religious Works.
Pulliblank's Teacher's Handbook of the Bible, crown 8 vo 38. $6 d$.
The Stepping-Stone to Bible Knowledge, 18 mo 18.
Gleig's Sacred History, or Fourth Book of History, 18mo. 28. or 2 Parts, each 9d.
Rogers's School and Children's Bible, crown 8vo. 28.
Young's New Concordance to the Bible, imperial 8\%o. In the press.
Conybeare and Howson's Life and Epistles of St. Paul, 1 vol. crown 8 vo 98.
Potts's Paley's Evidences and Hora Pauline, 8vo. 108. 6d,
Browne's Exposition of the Thirty-Nine Articles, 8vo 168.
Gorle's Examination Questions on the above, fcp. 88, 6d.
Ayre's Treasury of Bible Knowledge, fcp 68.
Girdlestone's Synonyms of the Old Testament, 8vo. 158.
Riddle's Manual of Scripture History, fep. 48.

Rothschild's Histery and Literature of the Israelites, 2 vols. crown 8vo......12s. 6d.
Kalisch's Commentary on the Old Testament; with a New Translation. Vol. I. Genesis, 8 vo . 188 . or adapted for the General Reader, 128. Vol. II. Exodus, 158. Or adapted for the General Reader, 128. Vol. III. Leviticus, Part I. 158. or adapted for the General Reader, 8s. Vol. IV. Leviticus, Part II. 158. or adapted for the General Reader, 88.
Whately's Introductory Lessons on Christian Evidences, 18mo 6d.
Sewell's Preparation for the Holy Communion, 32 mo 38.
Norris's Catechist's Manual, 18mo. 68.
Boultbee's Exposition of the Thirty-Nine Articles, fcp
Mental and Moral Philosophy, and Civil Law.
Lewes's History of Philosophy from Thales to Comte, 2 vols. 8vo 32.
Whately's Lessons on Reasoning, fcp 18. 6 d .
Mill's System of Logic, Ratiocinative and Inductive, 2 vols. 8 vo 258.
Killick's Student's Handbook of Mill's System of Logic, crown 8vo 38. 6d.
Stebbing's Analysis of Mill's System of Logic, 12mo. 38. 6d.
Thomson's Outline of the Necessary Laws of Thought, post 8vo. 68
Bacon's Advancement of Learning, analysed by Fleming 38. 6d.
- Essays, with Annotations by Archbishop Whately, 8vo. 108. 6 d .
- - annotated by Hunter, crown 8vo. 38. 6d.
- - annotated by Abbott, 2 vols. fcp. 8 vo 68.
Markby's Bacon's Essays, with References and Notes, fcp. 18. $6 d$.
Swinbourne's Picture Logic, crown 8vo. 58.
Whately's Elements. of Logic, 8 vo . 108. 6d. crown 8 vo. 48. 6d.
- Elements of Rhetoric, 8vo. 108. 6d. crown 8vo. 48. 6d.
General Lists of School-Books
Bain's Rhetoric and Euglish Composition, crown 8vo. 48.
Mental and Moral Science, crown 8ro...108. 6d.
Morell's Handbook of Logic, for Schools and Teachers, fcp. 28.
Introduction to Mental Philosophy, 8vo. 128.
Ueberweg's Logic, translated by Lindsay, 8vo. 168.
Hnme's Treatise on Human Nature, by Gireen and Grose, 2 vols. 8 vo 288.
Essays, by the same Editors, 2 vols. 8vo. 288.
Lewis's Influence of Authority in Matters of Opinion, 8vo 148.
Amos's Science of Jurisprudence, 8vo. 188.
- Primer of English Constitution and Government, crown 8vo. 68.
Sandars's Institutes of Justinian, 8vo 188.
Principles of Teaching, \&c.
Gibbs \& Edwards's New Revised Code, crown 8vo 38. 6d.
Sewell's Principles of Education, 2 vols, fcp. 128. 6d.
Gill's Systems of Education, Icp. 8vo. 38. 6 d.
- Art of Religious Instruction, fop. 8vo. In the press.
- Art of Teaching to Observe and Think, fcp. 28.
Robinson's Manual of Method and Organisation, fcp. 38. $6 d_{0}$
Sullivan's Papers on Education and School-Keeping, 12mo. 28.
Potts's Liber Cantabrigiensis, fcp. 5s. 6d.
- Account of Cambridge Scholarships and Exhibitions, fcp 18. 6 d.
- Maxims, Aphorisms, \&c. for Learners, crown 8vo. 18. 6 d.
Lake's Book of Oral Object Lessons on Common T'hings, 18mo. 18. 6 d.
Johnston's Army and Civil Service Guide, crown 8vo. 58.
- Civil Service Guide, crown 8vo 18. 6 a.
- Guide to Candidates for the Customs, fcp 18.
Guide for Customs Candidates, fcp.
Guide for Customs Candidates, fcp. $1 s$. $1 s$.
Johnston's (Miss) Ladies' College and school Examiner, fcp, 18. 6d. Key 28. 6d.
The Greek Language.
Fowle's Short and Easy Greek Book, 12 mo 28. 6 d.
- Bton Greek Reading-Book, 12mo. 18. 6 d.
- First Elasy Greek Reading-Book, 12 mo 5.
Second Easy Greek keading Book, 12 mo 58.
Parry's Elementary Greek Grammar, 12 mo 3s. $6 \alpha_{0}$
Farrar's Brief Greek Syntax and Accidence, 12 mo 48. 6 d.
- Greek Grammar Rules for Harrow School, 12 mo 18. $6 d^{6}$
Morris's Greek Lessons, 4th Edition, square 18 mo 2s. $6 d^{2}$.
Kennedy's Greek Grammar, 12mo. 48. 6d.
Hewitt's Greek Examination-Papers, 12 mo 18. $6 d_{0}$
Collis's Ohief Tenses of the Greek Irregular Verbs, 8\%o. 18.
- Pontes Classici, No. II. Greek, 12 mo 38. 6 d.
- Greek Verse-Book, Praxis Lambica, 12mo 48.6d.
Donaldson's New Cratylus, 8 vo 218.
Wilking's Manual of Greek Prose Composition, crown 8vo 78. $6 d$. Key 58. - Exercises in Greek Prose Composition, crown 8vo. 48. Key 2s. $6 \boldsymbol{d}$.
Progressive Greek Anthology, 12mo. 58.
Valpy's Greek Delectus, improved by the Rev. D... 218.
- English-Greek Lexicon abridged, square 12 mo 88. $6 d^{2}$.
Liddell and Scott's Larger Greek-Lexicon, crown 4to. 368.
- - Greek-English Lexicon abridged, square 12 mo 7s. 6 d.
Bloomfield's College and School Greek Testament, fcp.

5.
6.

Wilkins's Scriptores Attici, Excerpts with English Notes, crown 8vo.
68.
Congreve's Politics of Aristotle, translated, 8ro. 188.
Bolland \& Lang's Politics of Aristotle, post 8vo. 78. $6 d$.
Grant's Ethics of Aristotle, with Essays and Notes, 2 vols. 8vo. 328.
Williams's Nicomachean Ethics of Aristotle translated, crown 8vo. 7s. 6d.
Pindar's Odes, \&c. revised and explained by Donaldson, 8 vo.
168.
168.
Wright's Plato's Phædrus, Lysis and Protagoras, translated, fcp. 48. 6d.
Zeller's Plato and the Older Academy, by Alleyne \& Goodwin, cr. 8vo. 18.
Linwood's Sophocles, Greek Text, Latin Notes, 4th edition, 8vo. 168.
Theban Triology of Sophocles literally explained In preparation.
Green's Birds and Peace of Aristophanes, crown 8vo. each 38. $6 d_{0}$.
Isbister's Xenophon's Anabasis, Books I. to III, with Ňotes, 12 mo $38.6 d_{0}$
White's Xenophon's Expedition of Cyrus, with English Notes, 12mo 78. 6d.
Thucydides' Peloponnesian War, translated by Crawley, 8vo. 10s.6d.
Sheppard and Evans's Notes on Thucydides, crown 8vo. 78. $6 a_{0}$
Parry's Reges et Heroes, from Herodotus, with Notes, crown 8vo. 38. $6 d^{\circ}$.
Mahaffy's History of Greek Classical Literature.
White's Grammar-School Greek Texts, with Vocabularies.
平sop (Fables) and Palæphatus (Myths), 32 mo 18.
Humer, First Book of the Iliad 18.
Lucian, Select Dialogues 18.
Xenophon, First Book of the Anabasis 18. 6 d.
Second Book of the Anabasis 18.
St. Matthew's Gospel 28. 6d.
St. Mark's Gospel 18. $6 d^{2}$
St. Luke's Gospel 2s. $6 d_{\text {. }}$
St. John's Gospel 18. $6 d_{\text {. }}$
St. Paul's Epistle to the Romans Nearly ready.
White's Grammar-School Latin Texts, with Vocabularies.
Cæsar, First Book of the Gallic War, 32 mo 18.
Cæsar, Second Book of the Gallic War 9d.
Cæsar, Fourth Book of the Gallic War 9\%.
Cæsar, Fifth Book of the Gallic War 18.
Cæsar, Sixth Book of the Gallic War 18. 6 d
Cicero, Cato Major sive de Senec ready.
Eutropius, First \& Second Books of Roman History 18.
Entropius, Third \& Fourth Books of Roman History 18.
Horace, First Book of the Odes 18.
Horace, Second Book of the Odes 18.
Horace, Third Book of the Odes 18.
Nepos, Miltiades, Cimon, Pausanias, and Aristides. 9d.
Ovid, Select Myths from the Metamorphoses $9 d^{2}$.
Ovid, Selections from the Epistles and Fasti 18.
Pr.ædrus, Select Fables 9d.
Phæadrus, First \& Second Boo 18. 6d.
Virgil, Fourth Book of the Georgics 1s.
Virgil, First Book of the Æneid 18.
Virgil, Second Book of the Æneid 18.
Virgil, Fourth Book of the Æneid 18.
Virgil, Fifth Book of the Eneid 18.
Virgil, Sixth Book of the Eneid 18.
The Latin Language.
The Public School Latin Primer, 12 mo 28. 6d.
Kennedy's Subsiaia Primaria, Exercise Books to the Public Schooi Latin 88, $6 d^{2}$
Key to the Exercises in Subsidia Primaria, Parts I. \& II. price 5 s.
Kennedy's Subsidia Primaria, III. the Latin Compound Sentence, 12 mo 18.

- Curriculum Stili Latini, 12mo. 48. 6d. Key, 78. 6d.
- Palæstra Latina, or Second Latin Reading-Book, 12mo............. 5s.
Kennedy's Child's Latin Primer, or First Latin Lessons, 12 mo 20.
Child's Latin Accidence, 12 mo 18.
Fowle's Short and Easy Latin Book, 12 mo 18. $6 d$.
- First Easy Latin Reading-Book, 12 mo 3s. 6 d.
- Second Easy Latin Reading-Book, 12 mo 38. 6d.
Jerram's Latine Reddenda, crown 8vo 18.
Wilkins's Progressive Latin Delectus, 12 mo 28.
- Easy Latin Prose Exercises, crown 8vo. 28. 6d.

288.

White and Ridde's Large Latin-English Dictionary, 1 vol. 4to. White's College Latin-English Dictionary (Intermediate size), medium $8 v o .1$
White's Junior Student's Complete English-Latin \& Latin-EnglishDictionary, square 12 mo .12.Separately $\{$ The Latin-English Dictionary, price 7s. 6 d.- Middle-Class Latin Dictish-Latin Dictionary, price $58.6 d$.

- Middle-Class Latin Dictionary, square fep. 8vo............................ 38. Riddle's Young Scholar's Lat.-Eng. \& Eng.-Lat. Dictionary, square 12 mo 108. 6d.Separately $\left\{\begin{array}{l}\text { The Latin-English Dictionary, } 68 . \\ \text { The English-Latin Dictionary, } \\ \text { 58. }\end{array}\right.$
Riddle and Arnold's English-Latin Lexicon, 8vo 218.38. $6 d$.
- Elementary Latin Reading-Book, or Tirocinium Latinum, 12mo. 28 .
Latin Prose, Palæstra Stili Latini, 12mo. 68.
Collis's Chief Tenses of Latin Irresular Verbs, 8vo. 18.
Sheppard and Turner's Aids to Classical Study, 12 mo 18.

58.

Turner and Price's Aids to Classical Study, 12 mo .
58.
58.
Hewitt's Latin Examination-Papers, 12 mo $18.6 d$.
Moody's Eton Latin Grammar, 12mo....... 28.6d. The Accidence separately 1 s 18.
Collis's Pontes Classici Latini, 12 mo 38. 6 a .
Bradley's Latin Prose Exercises, 12 mo . 38. 6d. Key58. 6d.
Prendergast's Mastery Series, Manual of Latin, 12mo. 28. 6 d.
Wilkins's Manual of Latin Prose Composition, crown 8vo. 58. 6d. Key

- Latin Prose Exercises, crown 8vo. 48. 6d. Key 58.
- Rules of Latin Syntax, 8 vo 28.
- Latin Compound Sentence, 8vo. 18.
- Notes for Latin Lyrics (in use in Harrow, \&c.) 12mo. 48. 6d.
- Latin Anthology, for the Junior Classes, 12 mo 48. 6 d.
Valpy's Latin Delectus, improved by White, 12 mo .28. 6 d.
Yonge's Latin Gradus, post 8vo. 98 . or with Appendix 128.
Rapier's Introduction to Composition of Latin Verse, 12mo....38. 6d. Key 28.6dWalford's Progressive Exercises in Latin Elegiac Verse, 12mo. 28.6d. Key 58.Yonge's Odes and Epodes of Horace, School Edition, 12 mo .48. 6 d.
- Satires and Epistles of Horace, School Edition, 12mo. 58.
- Library Edition of the Works of Horace, 8vo 218.
Conington's Æyneid of Virgil, translated into English 98.
Kennv's Virgil's Aneid, Books I. II. III. and V. 18 mo .

18.
19.

Virgil's Works, edited by Kennedy, crown ${ }^{2} \mathrm{vo}$. 108. 6 d.
Beesly's Germanicus, from Tacitus's Annals, fcp. 28.
Parry's Origines Romanæ, from Livy, with English Notes, crown 8vo. 48.
White's Cicero's Cato Major and Laelius, 12 mo 38. 6d.

- Livy, Books XXII. \& XXIII. With English Notes, each Book 28. $6 d$.
Yonge's Ciceronis Epistolæ, with English Notes, Books I. II. and III. 38. 6d. 38. 6d.
Bradley's Cornelius Nepos, improved by White, 12 mo 38. 6d.
- Ovid's Metamorphoses, improved by White, 12 mo 48. 6d.
- Select Fables of Phædrus, improved by White, 12mo 28. $6 d$.
Isbister's Cæsar, Books I. - VIII. 12 mo . 4s, or with Reading Lessons 28. $6 d$ 48. 6d. 3s. 6 d.
Cæsar's Commentaries, Books I.-V. 12mo.
Cæsar's Commentaries, Books I.-V. 12mo.
Kenny's Oæsar's Commentaries, Book I. 18mo. 18. Books Iİ. \& İİI. 18. $6 d$.
Simcox's History of Latin Classical Literature. In the press.
The French Language,
The Stepping-Stone to French Pronunciation, 18 mo 18.
Prendergast's Mastery Series, French, 12 mo 28. 6d.
Stièvenard's Rnles and Exercises on the French Language, 12mo 38. 6 d.
Tarver's Eton French Grammar, 12mo 68. 6d.
Contanseau's Practical French and English Dictionary, post 87o. 7s. 6d.
Pocket French and English Dictionary, square 18mo 3s. 6 d.
- Premières Lectures, 12 mo 2s. 6d.
- French Grammar, 12mo $\begin{array}{ll}28.6 d . & \text { Key } 38 . \\ \text { Key } \\ \text { 2s. }\end{array}$
Contanseau's Guide to French Translation, 12mo 88. 6d. Key 8s. $6 d^{2}$.
- Prosateurs et Poètes Français, 12mo 38. 6 d.
Contanseau's Middle-Class French Course, 18mo. 38. 6d.
Accidence, 8d. Syntax, 8 d.French Conversation-Book, $8 d$.French Translation-Book, $8 d$.Easy French Delan-Book, 8 aFirst French Reader, $8 d$.Second French Exercise-Book, 8 d . 1Second French Reader, $8 d$.French and English Dialogues, $8 d_{2}$
Cassal \& Karcher's Modern French Anthology, Part I. 38. 6d. Part II. 68. GraduatedFrench Translation Book, Part I. 38.6d. Part II. 58
Corneille's Cid, annotated by Cassal, fcp. 18. 6 d. 18. $6 a^{2}$.
Polyencte, annotated by Cassal, fcp
Polyencte, annotated by Cassal, fcp
Racine"s Iphigénie, annotated by Cassal, fcp. 1s. $6 d^{2}$.
Voltaire's Zaire, annotated by Karcher, fcp. 18. $6 d$.
De Vigny's Chatterton, annotated by Stièvenard. fcp. 18. $6 d_{\text {. }}$.
Lamartire's Toussaint Louverture, by Cassal, fcp. 8vo. 2s. 6d.
Merlet's French Grammar, fcp. 5s. $6 d_{0}$.
- French Pronunciation and Accidence, fcp. 38. 6d. \} KEx, price $38.6 d^{2}$.58. 6d.
Le Traducteur, fep
- Stories for French Writers, fcp. 28.
- Aperçu de a Littérature Française, fcp. 28. 6 d.
\perp Exercises in French Composition, fcp. $38^{\circ} 6 d^{\circ}$.
- French Synonymes, fcp. 2s. 6 d.
Ronlier's French Homonyms and Paronyms, crown 8vo. 28. $6 d$,
$38.6 d$,
Stièvenord's T.ectures Françaises from Modern Anthors, 12 mo 48. $6 d$.
Souvestre's Philosophe sous les Toits, by Stièvenard, square 18 mo 28. $6 d$.
German, Spanish, Hebrew; Hindustani and Sanskrit.
Collis's Card of German Irregular Verbs, 8vo. 28.
Just's German Grammar, 12 mo 1s. $6 d$.

38. 6 d.

- German Reading Book, 12 mo 18.
Wintzer's First German Book for Beginners, fcp
Wintzer's First German Book for Beginners, fcp Wintzer's First German Book for Beginners, fcp......... 38. 6d.
Wirth's German Chit-Chat, crown 8vo. 28. 6 d.
Neebe's Children's Mirror, 10 Stories in German, crown 8vo. 3s. 6d.
Mi'ne's Practical Mnemonic German Grammar, crown 8vo. 38. $6 d_{0}$.
Naftel's Elementary G
German Syntax, 9 . First German Exercise-Book.In the press.
Second German Exercise-Book.German Prose Composition Book.
[In preparation.
[In the press:
[In the press: Second German Reader.First German Reader.[In preparation.
[In preparation.
Buchheim's German Poetry, for Repetition, 18 mo Nearly ready.
Prendergast's Handbook to the Mastery Series, 12mo.

28.
29.

- Mastery Series, German, 12 mo 28.6d.
- Manual of Sp.nish, 12 mo 28. 6 d.
Longman's Pocket German \& English Dictionary, square 18mo. 58.
Blackley's Practical German \& English Dictionary, post 8 vo 78. 6 d .
Schiller's Song of the Bell, by Bilton, crown 8 vo .

28.
29.

Kalivch's Hebrew Grammar, 8vo. Part I. 128. 6d. Key 58. Part İİ. 128.
Müller's (Max) Sanskrit Grammar for 52s. 6d.London, LONGMANS \& CO.

WYCLIFFE COLLEGE

 LEONARD LIERARY

ANNOTATED POEMS OF ENGLISH AUTHORS.

The following may now be had:-
GOLDSMITH'S TRAVELLER, 9d. sewed, 1s. cloth. GOLDSMITH'S DESERTED VILLAGE, $4 d$. served, or $6 d$. cloth, GRAY'S ELEGY, 4d. sewed, or 6d. cloth. MILTON'S L'ALLEGRO, 4d. sewed, or $6 d$. cloth. MILTON'S IL PENSEROSO, 4d. sewed, or 6d. cloth. EDITED AND ANNOTATED FOR THE USE OF CANDIDATES BY TIE Rev. E. T. STEVENS, M.A. \& the Rev. DAVID MORRIS, B.A.

OPINIONS of the PRESS.

- An excellent series, carefully edited, and furnished with explanatory footnotes by the Rev. E. T. Stevens and the Rev. D. Morris. These handy little volumes are well adapted for the guidance of young students of English literature.
Rоск.
- This series is intended to meet the requirements of elementary and second grade schools, and of youthful students of our English literature in general. Each work selected is one of classical and standard merit, and is prefaced with a short but comprehensive sketch of the writer, including an account of the style and design of his work. Allusions are carefully explained, and all grammatical difficulties are removed in the'notes.'

Standard.

- A series of cheap publications, containing poems by standard English authors, sufficiently annotated and explained to be of service to boys and girls in meeting the requirements of elementary and second grade schools?

Englisi Independent.

- So many sets of English classics pass through our hands that their identity is occasionally lost. This is a new series, and one to which we can give a cordial welcome, both for its selection of subjects and for the style in which it is produced. Each volume contains a short account of the Author whose poem follows, and of the poem itself. Unlike other annotated editions for schools, the notes are in this placed beneath the text, and not relegated to the end. This plan adds to the usefulness of each volume as a school text-book. The notes are purely explanatory, the etymological and grammatical explanations are of sufficient worth to deserve permanent record. A good example of this may be found in Gray's Elegy (14), on the expression, "Many a." The same expression occurs in the \bar{L}^{\prime} Allogro, and the same note is repeated.

This is treatment which a really good poem will bear, and which is of the greatest service to the student cf English; and the less opportunity he has of a classical training the more he needs that which this affords him.'

NONCONFORMIST.

- Tiny books got up with great taste. The works of standard poets having come to be considered a necessary part of the education of certain pupils, these books have been prepared for their use. Each book contains one poem, prefaced by a sketch of the Author's life, and at the foot of each page copious notes and grammatical hints are given. The books are well printed and capitally edited.'

Literary World.
'An excellent series of choice compositions, selected from standard English authors, for the use of pupils of the second grade and elementary schools. Each poem is prefaced with a brief sketch of the Author's life, and a short criticism on the poem, accompanied by numerous explanatory and critical foot-notes. With the aid of these annotations, written as they are in simple language, there is no reason why these great poems should not be read with intelligence and apprecia. tion.

Lancet.

- Each poem is published separately, with a short sketch of the Author's life, and accompanied with copious notes on the meaning and derivation of words, and such other subjects as are necessary to comprehension of the text without reference to dictionaries, or other sources of information, on the part of the student. Not only will these little books give material aid to the understanding of our best poets, but they offer a better insight into the refinements of our language than can be had from ordinary means. The little books are very nicely got up, and offered to the public at the lowest possible price:

Queen.

The following are nearly ready:-

Bloomfield's Farmer's Boy.
Burns' Cotter's Saturday Night, and other Poems.
Campbele's Gertrude of Wyoming.
Coleridae's Rime of the Ancient Marinev. Cowper On His Mother's Picture. Cowper's Task.

Longrellow's Evangeline.
 Militon's Lycidas.

Scotr's Lady of the Lake.
SCotr's Lay of the Last Minstrel. Shakespeare's Julius Cogar.
Wordsworth's Excursion (Selection).

[^0]: - Looking at the names which appear upon these title-pages, it is superfluous to say that this series of historical epochs is no mere compilation. They are works of first-rate merit, written by masters of these fields of historic study and investigation. They are upon a high level of style and philosophic thought; they are the result of a perfect knowledge and grasp of the most advanced results of investigation and speculation upon evidences of old history; and the reader feels that he can trust himself to his Authors as to a guide who will help him to think and to educe the lessons of history as well as to make himself acquainted with the course and causos and consequences of events.
 ' Mr. Cux's Athenian Empire is the model of the study of an epoch, because the period covered is hardly more than that of an ordinary lifetime, and yet it is a period of momentous interest and of vast developments in the history of the human race.
 'Dr. Ihne's Early Rome should occu. py a place of its own among educational

[^1]: * In order to find these, note that any no. is exactly divisible by 5 , if it ends in 5 or 0 ; by $2,4,8$, if the no. formed by its last one, two, three figs. respectively is div. by $2,4,8$; by 3 or 9 , if the sum of its figures is divisible by 3 or 9 , respectively; by 11, if the sums of its figs. in odd and even places, when div. by 11 , leave the same remir:

 Thus 75 and 30 are each divisible by 5 , since they end in 5 and 0 respectively; 24 by 2 , since 4 is div. by $2 ; 756$ by 4 , since 56 is by $4 ; 1528$ by 8 , since 528 is by 8 ; 72908374 by 11 , since figs. in odd places $=7+9+8+7=31$, and in even $=2+0+3+4=9$, . and 31 and 9 , when div. by 11, leave the same remr, 9 ,

[^2]: * It might at first sight appear that we are here multiplsing inches by inches, contrary to the statement in (15); but, in reality, it is only the numbers 212 and 108 that we multiply, not the quantities 212 in . and 108 in : : so also the resulting product is only the number 22396 , to which we append sq. in., because we know from the abore, that this is the number of square inches in the given area. A similar remark applies to all such cases, and to all such expressiens as multiplying the length by the briadth. \&c. The Student's attention should be strongly drawn to this.

[^3]: * A power of a number is the product of a number multiplied hy itself once or successively. When the number is used as a factor twice, thrice, \&c., the product is called the second power, third power, \&c., of the n.

[^4]: * The Metric System has been adopted in France, Holland, Belgium, Greece, Spain, Portugal, Italy, Roumania, the North German Confederation, Wurtemberg, Bararia, Baden, and also by Chili, Equator, Uruguay, Brazil, the Argentine Confederation, New Granada, Peru, Venezuela, and partially or in substance in Norway, Canada, British India, and the United States; while a Decimal System of Weights and Measures, differing only from the Metric System in the unit chosen as the base of the System, exists by law in Austria and Switzerland.
 \dagger But this rule is not at present (1874) in force.
 \ddagger In 1864 the Metric Act of Parliament (27 \& 28 Vict. c. 117) was passed, which provides that, ' Notwithstanding anything contained in any Act of Parliament to the contrary, no contract or dealing shall be deemed to be invalid or open to objection on the ground that the weights or measures expressed or referred to in such contract or dealing are weights or measures of the Metric System, or on the ground that decimal subdirisions of legal weights and measures, whether Metric or otherwise, are used in such contract or dealing.' In other words, this Act permitted the use of the Metric System. And yet, ' by a strange

[^5]: * That is, by bil's payable at short sight, as 3 days' sight, and therefure immediately worth their amount in cash.

