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Introduction. 

C.  Jordan  f  has  proved  that  the  most  general  simple  closed  curve  divides 
the  plane  into  an  interior  and  an  exterior  region.  But  he  assumes  all  needed 

facts  in  regard  to  polygons  without  stating  clearly  just  what  those  assumptions 
are.  He  certainly  makes  use  of  more  than  the  special  case  of  the  same  theorem 
for  polygons.  Later  A.  Schoenflies  J  proved  the  theorem  for  a  more  restricted 

class  of  curves  including  polygons.  But  his  proof  is  not  simple.  Complete 
arithmetization  is  at  least  impracticable;  the  writer  must  leave  to  the  reader 
the  last  details,  but  these  details  should  be  only  such  as  the  reader  can 

immediately  fill  in.     Where  the  line  shall  be  drawn  must  be  left  to  the  judgment 

•  An  abstract  of  the  principal  results  of  this  paper  was  presented  to  the  American  Mathematical  Society  at 
Its  meeting  of  December,  1903,  and  was  published  in  the  Bulletin,  March,  1904. 

t  Court  cP Analyse,  2d  ed..  Vol.  I.,  SS96-103,  1893. 

JGottinger  Nachrichten,  Math.-Phys.  Kl.,  1896,  p.  79. 
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of  the  individual  writer.  Schoenflies  has  left  far  more  for  the  reader  to  do  than 

have  I  in  the  proof  that  follows. 

There  is,  however,  one  point  in  which  Schoenflies'  work  is  open  to  more 
serious  criticism.  He  proves  that  any  straight  line  which  joins  an  interior  point 
to  an  exterior  point  has  a  point  in  common  with  the  curve,  and  then  asserts  in 
the  theorem,  without  further  consideration,  that  it  is  impossible  to  pass  from  an 

interior  point  to  an  exterior  point  without  passing  through  a  point  of  the  curve. 
This  does  not  follow.  In  fact  it  is  possible  to  divide  the  points  of  the  plane  into 

three  assemblages  /Si,  S2  and  B  such  that  a  point  of  Sj  cannot  be  joined  to  a 

point  of  ̂ ^2  by  a  straight  line  having  no  point  in  common  with  B,  or  by  a  curve 
consisting  of  a  finite  or  infinite  number  of  straight  lines,  but  such  that  this  can 

be  done  by  other  simple  curves.  And  the  essential  difierence  between  these 
assemblages  Si  and  S^,  on  the  one  hand,  and  the  interior  or  exterior  of  a  curve, 

on  the  other,  is  a  property  of  the  interior  and  exterior  which  Schoenflies  leaves 
unmentioned  in  the  theorem  or  proof,  and  the  omission  of  which  is  our  final 
point  of  criticism:  namely,  that  each  is  a  continuum,  that  is,  if  any  point  is  an 

interior  (exterior)  point  all  points  in  its  neighborhood  are  also. 

More  recently  Ch.-J.  de  la  Vallee  Poussin  *  has  published  an  outline  of  a 
proof  of  the  same  theorem  for  the  most  general  simple  curve.  This  work  appears 

much  more  simple  than  either  of  the  proofs  already  mentioned,  but  it  is  not 
arithmetic  in  form,  and  it  is  not  easy  to  see  how  the  arithmetization  is  to  be 

effected.  It  can,  therefore,  be  regarded  only  as  a  sketch  of  whatever  rigorous 
proof  may  be  made  following  its  lines. 

Since  the  publication  of  the  abstract  of  the  present  paper  G.  A.  Blissf  has 

proved  the  theorem  for  a  somewhat  more  general  class  of  curves  than  those  for 
which  Schoenflies  proved  it.  O.  Veblen  J  has  recently  published  a  proof  for  the 

most  general  simple  curve.  None  of  these  proofs  deals  with  the  corresponding 
theorem  in  three  dimensions. 

The  present  paper  assumes  the  axioms  of  arithmetic  but  not  those  of  geome- 
try. It  contains  a  proof  of  the  above  mentioned  theorem  for  a  class  of  curves 

more  restricted  than  those  of  Jordan,  of  Valle6  Poussin,  or  of  Veblen,  but  more 

•Court  S'Analytt  inflniUtiTnal,  Vol.  I.,  (1908),  §$300-803. 
t  The  exterior  and  interior  of  a  plant  curve.  Bulletin  of  the  American  Matbematlcal  Society  (3),  Vol.  10, 

(1004),  p.  898. 

X  Theory  of  plane  curvet  in  non-metrical  analytit  titui.  Transactions  of  the  American  Mathematical  Society, 
Vol.  6,  No.  1,  Jan.  1905,  p.  S8. 
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general  than  those  of  Schoenflies  or  of  Bliss.  It  goes  back  to  fundamental  arith- 

metic principles,  and  does  not  assume  the  theorem  for  the  polygon.  Moreover,  it 

is  extended  in  Part  II  to  the  corresponding  theorem  in  three  dimensions,  and  it 

seems  highly  probable  that  it  could  be  extended  to  more  than  three  dimensions. 

The  proof,  both  for  two  and  for  three  dimensions,  is  based  on  a  conception  which 

I  have  called  the  order  of  a  point  with  respect  to  a  curve  [or  surface].  The  order 

is  a  point  function,  uniquely  defined  and  constant  in  the  neighborhood  of  every 

point  not  on  the  curve  [or  surface],  and  undefined  and  having  a  finite  discontinuity 

at  every  point  of  the  curve  [or  surface].  Its  value  is  always  a  positive  or 

negative  integer  or  zero. 

Part  I. 

IN  TWO  DIMENSIONAL  SPACE. 

I. — Fundamental  Conceptions. 

1.  A.  point  is  a  complex  of  n  real  numbers  {a,  I  ....  ).  This  number  n  is 

called  the  number  of  dimensions  in  which  the  point  lies.  An  assemblage  is  any 

collection,  finite  or  infinite,  of  such  points.  In  two  dimensions  the  assemblage 

of  all  the  points  is  called  the  plane.  In  the  earlier  chapters  we  confine  ourselves 

to  two  dimensions.  The  numbers  x,  y  are  called  the  coordinates  of  the  point 

P  {x,  y);  the  point  (0,  0)  is  called  the  origin;  the  assemblage  of  all  points  of  the 

type  (z,  0)  is  called  the  aj-axis,  etc.  Distance,  straight  lines,  circles,  squares,  and 
other  elementary  conceptions  are  assumed  to  be  defined  by  their  usual  analytic 

expressions  without  explicit  mention. 

2.  Transformations.  K point  transformation  is  a  rule  by  which  the  points  of 

an  assemblage  are  individually  replaced  by  the  points  of  an  assemblage,  in 

general  different.  If,  whenever  a  property  belongs  to  one  of  these  assemblages 

it  also  belongs  to  the  other,  it  is  said  to  be  invariant  of  the  transformation.  A 

rigid  transformation  in  two  dimensions  is  defined  by  relations  of  the  type. 

jc  =  a/  cos  a  —  y'  sin  a  +  Xq, 

y  =  a/  sin  a  +  ?/'  ̂^^  ̂   +  V^- 
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We  shall  assume  without  explicit  mention  the  simpler  facts  of  invariance.  We 

shall  use  the  expression  change  of  axes  for  brevity  to  denote  a  rigid  transfor- 
mation whenever  it  is  desired  to  emphasize  the  fact  that  the  essential  proper- 

ties of  the  assemblage  are  unchanged.  The  reasoning  involved  can  generally  be 
stated  in  something  like  the  following  form.  An  assemblage  is  given  concerning 
which  certain  facts  are  known.  The  assemblage  is  transformed  into  a  second 
assemblage  by  a  transformation  with  respect  to  which  the  given  facts  are  known 

to  be  invariant.  Certain  conclusions  are  reached  in  regard  to  the  second  assem- 
blage. This  is  then  transformed  into  the  given  assemblage  by  the  inverse  of  the 

first  transformation.  The  conclusions  are  known  to  be  invariant  of  this  inverse 

transformation.  They  therefore  apply  to  the  given  assemblage.  Unless  other- 
wise specified  a  change  of  axes  shall  be  effected  by  a  rigid  transformation. 

3.  Existence  of  a  Minimum.     The  following  theorem  is  well  known:* 

Theorem.  If  S^  and  S^  are  two  complete  f  assemblages  of  points  having  no 

point  in  common,  then  the  distance  of  any  point  of  Si  from  any  point  of  S^  has  a 

positive  minimum. 

4.  Curves.  A  simple  curve  %  is  an  assemblage  of  points  {x,  y)  which  can  be 
paired  in  a  one  to  one  manner  with  the  points  of  the  one  dimensional  interval 

(^  = '  =  <i)  in  case  the  curve  is  not  closed,  and  with  the  points  of  the  circle 

^  =  cos/W,  >7  =  sin>W, 

in  case  the  curve  is  closed;  moreover,  when  t  approaches  a  limiting  value  (t)  the 

point  (a;,  y)  shall  also  approach  a  limiting  point  («,  y),  and  this  limiting  point 

shall  be  the  point  of  the  curve  which  is  paired  with  7.  In  the  case  of  the  open 
curve  the  points  corresponding  to  t^  and  t^  are  called  end  points. 

It  follows  from  this  definition  that  a  simple  curve  can  be  represented  analy- 
tically by  equations  of  the  form 

x  =  4>(<),  y  =  m^  {k<t<h), 

where  ̂ {t)  and  4(0  are  single  valued  continuous  functions,  and 

^{t)  =  <^{t')  and    4,(<)=4,(<') 

•Of.,  for  example,  Jordan,  Court  cTAnalyte,  2d  ed.,  Vol.  I,  §30,  last  paragraph. 
t  Professor  Pierpont  snggests  complete  as  the  English  equivalent  of  abgeschlossen. 

JCf.  A.  Hnrirltz,  Yerhandlungen  det  ertlen  Internationalen  itathematiktr-Kongreaus,  p.  108. 
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are  not  simultaneously  satisfied  in  the  case  of  the  open  curve  when  t  =f=  t',  and  are 

not  simultaneously  satisfied  in  the  case  of  the  closed  curve  when  t^  t"  except 

that  ^(<o)  =  <?>(<i)  and  ̂ .{to)  =  ̂{ti) . 

If  the  curve  is  closed,  let  a  =  ti  —  t^.  It  is  then  convenient  to  extend  the  defi- 

nition of  the  functions  <p{t)  and  ■<i^{t)  to  all  values  of  t  by  means  of  the  relations 

^{t  +  no)  =  ̂ {t) ,  ̂t  +  no)  =  ̂ {t) , 

where  n  is  an  integer  and  a  is  defined  to  be  the  primitive  period  of  the  pair  of 

functions.  Conversely,  every  assemblage  of  points  defined  by  the  above  equa- 
tions is  a  simple  curve. 

A  simple  curve  is  said  to  be  smooth  at  a  point  if  the  parametier  can  be  so 

chosen  that  the  first  derivatives  ^'{t)  and  ■^/'{t)  exist,  are  continuous,  and  do  not 
both  vanish  at  the  point.  If  the  point  is  an  end  point  one  sided  derivatives  are 
admitted.  A  smooth  curve  is  a  simple  curve  which  is  smooth  at  every  point.  A 

regular  curve  consists  of  a  chain  of  smooth  curves.  Analytically,  it  is  an  assem- 
blage which  can  be  defined  by  the  equations 

where  p{t)  and  ̂ -CO  are  single  valued  continuous  functions  whose  first  deriva- 

tives ^'{t)  and  4''{i)  exist,  are  continuous  and  do  not  vanish  simultaneously, 
except  possibly  at  a  finite  number  of  exceptional  points  called  vertices.  Moreover, 
these  derivatives  approach  limits  as  the  point  t  approaches  any  such  exceptional 

value  if  from  above,  and  also  when  t  approaches  t'  from  below,  and  in  each  case 

the  limits  approached  by  4>'(<)  and  •4''(0  *i"®  '^ot  both  zero;  the  forward  limits 
are  not  both  equal  respectively  to  the  backward  limits.  It  follows  that  one 
sided  derivatives  exist  at  thq  exceptional  point  and  that  they  are  equal  to  the 

respective  limits. 
A  regular  curve  may  admit  multiple  points,  that  is,  points  common  to  two 

or  more  of  the  constituent  smooth  curves,  other  than  the  common  end  points  of 

two  successive  smooth  curves.  Arithmetically  such  points  correspond  to  distinct 
values  oft.  Two  or  more  of  the  constituent  smooth  curves  of  a  regular  curve 

may  coincide  along  whole  arcs.  Such  curves  may  be  treated  arithmetically  in 
the  same  way  as  the  Riemann  surface  is  treated.     We  do  not  need  such  curves, 



848     AifES:  An  Arithmetic  Treatment  of  Some  Problems  in  Analysis  Sitits. 

and  shall  include  all  such  points  without  distinction  under  the  term  multiple 

point.  Any  point  of  a  regular  curve  not  a  multiple  point  is  a  simple  point.  All 

of  these  definitions  refer  exclusively  to  assemblages  of  points  and  not  to  the  par- 

ticular way  of  representing  them.* 
The  following  is  a  special  statement  of  a  well  known  theorem : 

Theorem  I.  A  simple  curve  is  a  complete  and  perfect  assemblage  of  points  and 

lies  in  a  finite  region  of  the  plane.  Moreover,  if  a  set  of  points  of  the  curve  has  a 

limiting  point  (i,  y),  then  the  corresponding  values  of  t  have  a  limit  which  is  a  point 
of  the  interval  (<o  =  ̂  =  ̂i)t  ow(?  (»,  y)  corresponds  to  i.^ 

The  following  theorem  is  stated  without  proof: 

Theoeem  II.  A  regular  curve  can  be  divided  into  a  finite  number  of  parts, 
each  of  which  can  be  represented  by  an  equation  of  the  form 

or  else  by  an  equation  of  the  form 

y=f{^)>  ia<x<b), 

where  f  is  single  valued  and  continuous  throughout  the  interval  of  definition. 

Most  of  the  results  which  follow  apply  to  a  somewhat  more  general  class  of 

curves,  which  by  virtue  of  Theorem  II  includes  all  regular  curves.  We  shall 
describe  such  a  curve  by  saying  that  it  satisfies  the  following  condition  : 

Condition  A :  A  curve  which  consists  of  a  chain  of  simple  curves  (after  the 

manner  of  a  regular  curve)  and  furthermore  is  such  that  each  constituent  simple 
curve  can  be  represented  by  an  equation  of  the  form 

y  =  /(x)  or  else  by  an  equation  of  the  form  x  ̂ f(y) , 

where /is  single  valued  and  continuous,  is  said  to  satisfy  Condition  A. 

5.  Vectors  and  Angles.  We  define  a  vector  %  to  be  an  object  determined 
by  the  two  following  phenomena : 

*For  %  dltcnssion  of  change  of  parameter,  orientation  of  curves,  etc.,  see  Sec.  III. 
f  Cf.  Jordan,  Court  cT Analyse,  8d  ed..  Vol.  1,  §§64,  85. 
X  This  is  a  special  case  of  an  oriented  curve,  discussed  in  Art.  12. 
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(a)  A  simple  curve  which  can  be  defined  by  equations  of  the  form 

(x  —  ait  +  bi,  a/  +  a/>0, 

\y  =  a^t+b„  {t,<t<t,); 

(b)  One  of  the  two  possible  permutations,  Pq  Pj  or  Pi  Pq,  of  the  end  points. 

It  follows  that  the  end  points  are  individually  invariant  of  any  change  of 

parameter  consistent  with  the  definition,  and  that  a  vector  is  also  completely 

defined  by  naming  the  end  points  in  a  particular  order,  e.g.  PqPi-  Taking  the 

four  points  Po(«o.  ̂ o).  Pi{^i<  Vi),  Po{4,  yo)^  and  Pi{x[,yi),  the  two  vectors 

PjPi  and  Pj  P{  are  said  to  be  equal  if 

Xi  —  Xo=xi—  a;^     and     2/i  —  yo  =  2^i  —  ̂ o- 

The  length  of  the  vector  Pq  P^  is  the  positive  number 

\^  {xi  —  xof  +  {yi—yoT ' 

The  angle  6  from  the  vector  Pq  Pi  to  the  vector  P'^  Py  is  defined  to  be  any  simul- 
taneous solution  of  the  equations 

X, a'o     Vi  —  Vo 
^  —  x'q    y'l—yo 

sin  0  =  ̂  

where  K  is  the  positive  number 

cos  0  =  ̂  yi—Vo     -(«!  — a;o) x'l  —  xlt        yi—yo 
(^) 

K=  [V(xi-xo)^  +  {yi-yof  V(xi -x^  f  +  {yi-y^yr'- 

If  the  vectors  are  defined  by  means  of  their  equations 

^'>^''-\y  =  a,t  +  h, 
a?  +  ai>0, 

a['  +  ai'>0, f  a;  ̂ aj  <  -f  6i, 

^^^''■\y  =  ait  +  b;„  {4<t'<t[), 

where  the  parameter  t  is  so  chosen  that  the  value  of  t  at  the  first  named  end 

point  is  less  than  that  at  the  last  named  end  point,  then  equations  {A)  are  equiv- 
alent to  the  equations 

sin  6=  X 

ai 

al 

cos  6=  X 

az 
a[ 

a' 

(S) 

where  K  is  the  positive  number 
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We  here  assume  an  analytic  definition  of  the  trigonometric  functions.*  Ordinarily 
we  select  a  particular  solution  by  some  convention.  The  angle  ABC  shall  mean 

the  angle  from  BA  to  BO. 

To  justify  the  above  definition  it  can  be  shown: 

(a)  That  equations  (A),  and  hence  (B),  always  have  solutions  differing  by 
multiples  of  27t; 

(6)  That  if  the  angle  from  P,  Pi  to  P;  P[  is  6,  and  that  from  Pl>P[  to  P^'P^' 
is  6' ,  then  the  angle  from  P^Pi  to  PqP'i  is  0  +  0'  +  2mt,  where  n  is  a  positive 
or  negative  integer  or  zero ; 

(c)  That  B  is  invariant  of  any  rigid  transformation. 

6.  Continua.  A  two-dimensional  continuum  is  an  assemblage  of  points 

P(x,  y)  such  that: 

(a)  If  Pq  (cco,  ̂ o)  is  a  point  of  the  assemblage,  all  points  in  the  two  dimen- 
sional neighborhood : 

\x  —  ocn\<h,        \y—yo\<^ 

of  Pq  belong  to  the  assemblage ; 

(6)  Any  two  points  of  the  assemblage  can  be  joined  by  a  simple  curve  con- 
sisting wholly  of  points  of  the  assemblage. 

The  neighborhood  of  a  point  Pq  may  be  defined  generally  to  be  a  continuum 

containing  Pq  and  such  that  the  distance  of  any  of  its  points  from  Po  is  less  than 

h,  where  A  is  a  positive  constant  as  small  as  either  party  to  a  discussion  wishes. 

The  term  near  will  be  used  as  a  technical  term  to  replace  the  longer  and  more 

familiar  expression  in  the  neighborhood  of. 

Any  point  of  a  continuum  is  an  interior  point.  A  boundary  point  of  a  con- 

tinuum is  a  point  not  belonging  to  the  continuum  but  having  points  of  the  con- 
tinuum in  its  neighborhood.  Any  point  Pj  not  an  interior  or  boundary  point  is 

an  exterior  point,  and  all  points  near  Po  are  exterior  points. 

The  term  region  is  applied  both  to  a  continuum,  and  to  a  continuum  plus  its 

boundary.  A  region  is  said  to  be  finite  if  it  is  possible  to  choose  a  constant  G 

80  that  if  P{z,  y)  is  any  point  of  the  region,  then 

1*1  +  \y\<G- 

•  Of.  for  insUnce,  Godcf roy,  TMorit  (Itmentaire  dtt  Sirie$,  Chap.  6. 



Ames:  An  Arithmetic  Treatment  of  Some  Problems  in  Analysis  Situs.     351 

The  boundary  of  a  region  is  a  complete  assemblage.*  If  two  continua  have  a 
point  in  common,  then  the  totality  of  the  points  of  the  two  continua  taken 

together  form  one  continuum.  The  continuum  S'  is  said  to  be  annexed  to  the 
continuum  S  along  B  (a  part  or  all  of  their  common  boundary)  if  the  points  of 

S,  S',  and  B  form  one  continuum  and  are  so  considered.  The  definitions  of  this 

section  are  invariant  of  any  one-to-one  and  continuous  transformation. 

There  are  at  least  two  essentially  distinct  ways  of  defining  a  particular  con- 
tinuum. One  is  by  defining  the  points  of  the  continuum  explicitly.  The  more 

common  way  is  by  defining  the  boundary  explicitly.  Section  II  deals  with  the- 
orems relating  to  the  second  method.  The  following  are  examples  of  the  first 

method. 

Example  1.     The  interior  of  a  circle  may  be  defined  by  the  inequality 

a.»  +  2^2  — r»<0. 

Example  2.  The  interior  of  a  triangle,  or  more  generally  the  assemblage  S, 

defined  by  relations  of  the  form 

Ui{x,y)=A,x  +  B,y+  a>0,  {i=l,  2,  3), 

where  these  equations  are  satisfied  by  at  least  one  point,  can  be  proved  to  be  a 
continuum  as  follows: 

(a)  Let  Pq  {xq,  y^j  be  one  point  of  S.  Since  ?<;  is  continuous  and  Ui{xQ,  y^ 

>  0  ,  hence  if  P  (x,  y)  is  any  point  near  Pq,  M<(a;,  ?/)  >  0,  and  hence  P  belongs 
toS. 

{b)  Let  Po    (xo.  2/o)  ̂ ^^  P\    (3^1.  Vi)  l>e  any  two  points  of  S.     Hence 

Mi(a;o,  2/o)  =  ̂ .a-o  + 5i2/o+  C'i>0, 

u,{x„y,)  =  Ax,  +  B,y,+  Q>0,  
(*-i,^^j. and  therefore 

where  ;ii  and  \  are  any  numbers  not  negative  and  not  both  zero.  This  is  a 

suflBcient  condition  that  the  point 

/\ Xq  +  a^ zi ,    ̂ iyQ±2^yy\ 

\       Aj  -|-  Ag  Ai  "T  A2      / 

*Cf.  Jordan,  ibid.,  §23. 

47 
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belongs  to  S.  But  any  point  of  the  segment  Pq  Pi  can  be  expressed  in  this  form. 

Hence  any  two  points  of  S  can  be  joined  by  a  straight  line  wholly  in  S.  Hence 
S  IB  &  continuum. 

Example  3.     Let  an  assemblage  S  (Fig.  l)  of  points  P{x,y)  be  defined  by 
the  relations 

iCo<a;<JBi,         2/=/(a5)+r,         0<r<A,  (1) 

Fi£.  1 

where  f{x)  is  single  valued  and  continuous,  and  h  is  constant.     We  proceed  to 

prove  that  >S'is  a  continuum. 

(a)  Let  P{x,  y,  r)  be  any  point  of  S.     Choose  5  >■  0  so  that 

25<r  and       25<A  — f; 

25<  r  <A  — 25. 
that  is 

Since  /(x)  is  continuous  it  is  possible  to  choose  e  >■  0  so  that 

Ax)-S<        Ax)         <A^)  +  8 
when 

and  so  that 
x  —  e<^  x  -eC^x  +  e, 

We  now  proceed  to  show  that  any  point  P{x,  y)  in  the  neighborhood X  —  e< 

of  P  lies  in  S.     From  (4)  and  (5) 

X 

y 

<3-l- 

(2) 

(3) 

(4) 

(5) 
(6) 

(7) 
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Adding  (6),  (2),  and  (3)  and  simplifying  by  means  of  (1)  we  obtain 

/(^)<  y  <f{x)  +  h,  (8) 

that  is,  y=.f{x)-\-r,  whereO<r<A.  (9) 

But  (7)  and  (9)  are  the  condition  that  P  is  in  S, 

{b)  Let  Pi(xi,yi;  r^)  and  ̂ 3(0:2,  y^;  r^  be  any  two  points  in    S,  and  let 

ri,  <^  rj.     They  can  be  joined  by  a  simple  curve  in  S  defined  as  follows: 

x  =  X2,  /(x)  +  ri<f/</(a;) +rj, 

and  2/=/(a;)  +  »•],       x-i<x<X2  ov    Xi<x<xi. 

Hence  S\s  &  continuum. 

II.     The  Theorem  Relating  to  the  Division  of  the  Plane  by  a  Simple  Closed 
Curve. 

7.   Order  of  a  Point.     Given  any  closed  curve  whose  equations  are 

x=:^{t),  y  =  ̂ t), 

where  a  is  the  primitive  period  of  the  pair  of  functions  ̂ {t)  and  4'{t)  •  Let  P  (t) 

be  a  variable  point  on  the  curve,  and  0  a  fixed  point  not  on  the  curve.  Let  6{t) 

be  the  angle  which  OP  makes  with  the  positive  cc-axis,  or  its  equivalent  for 
this  purpose,  the  vector  (0,  0)(1,  0).  Then  6  is  an  infinitely  multiple  valued 

function  of  ̂   for  all  values  of  ̂,  such  that  any  two  values  of  d  corresponding  to 

the  same  value  of  t  differ  by  a  multiple  of  2  71.  Let  t^  be  a  particular  value  of  t 

and  let  6i{t^)  be  a  particular  one  of  the  values  of  6{to).  Then  it  is  possible  to 

choose  from  the  different  values  of  6{t)  one  and  only  one  set  of  values  which 

form  a  single  valued  continuous  function  of  t  taking  on  the  chosen  value  6,(<o) 

when  t  =  t^.*  Call  this  single-valued  function  6{t).  The  values  of  t  and  t  +  u 
represent  the  same  point,  and  the  values  of  the  multiple  valued  d{t)  at  this  point 

differ  by  a  multiple  of  27t.     Hence 

e{t  +  o)  =  e{t)  +  2  n  7t , 

•Cf.  for  example,  Stoltz,  Differential  Seehmmg,  Vol.  2,  p.  15-20. 
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where  n  is  a  positive  or  negative  integer  or  zero.  Then  n  is  defined  to  be  the 

order  of  the  point  0  with  respect  to  the  particular  parametric  representation  of 

the  curve.*     The  order  is  not  defined  for  any  point  on  the  curve. 
That  the  order  depends  only  on  0  and  not  on  the  particular  value  of  t 

chosen  may  be  seen  as  follows:  Let  t  vary  continuously.  Then  6{t)  and 

${t-\-a),  and  hence  n  vary  continuously.  But  n  can  vary  only  by  integers. 
Hence  n  is  constant.  That  n  is  independent  of  the  particular  one  of  the  possible 

single  valued  functions  chosen  is  seen  in  a  similar  manner.  That  n  is  invariant 

of  a  rigid  transformation  follows  from  the  fact  that  6{t)  and  d{t  +  Ui)  are  invariant. 

8.  We  proceed  to  prove  some  theorems  about  the  order  of  a  point. 

Theorem  I.  If  a  point  is  of  order  n  with  respect  to  a  given  closed  curve,  then 

all  Joints  near  it  are  of  order  n. 

Proof.  Let  Oj  be  a  point  not  on  the  curve,  and  0  any  point  near  it.  Let 

0,  and  B  be  the  angles  which  0^  P  and  OP  respectively  make  with  the  a;-axis. 

Then  if  Oi  0  is  suflBciently  small,  \  d^  —  B  \  is  less  than  an  arbitrarily  pre- 
assigned  number  for  all  points  on  the  curve.     In  particular 

\_Q,{t  +  CO)  -  e,{t)  ]  -  \e{t  +  (o)  -  0(0]  <  2  n. 

Hence  the  order  of  0  diflfers  from  that  of  Oi  by  less  than  unity.  But  both  are 

integers.     Hence  they  are  equal. 

Corollary.     The  points  of  the  order  of  a  given  point  form  one  or  more  continua. 

Theorem  IL  //  two  points  are  of  different  orders  with  respect  to  a  given  closed 

simple  curve  G ,  any  simple  curve  joining  them  has  a  point  in  common  with  G . 

Proof  Let  the  end  points  Po(^o)  and  Pi{ti),  {t^-C  0>  o^  ̂   simple  curve  G' 
be  of  orders  m  and  n  respectively  with  regard  to  the  closed  curve  G.  Consider 

the  upper  limit  t  of  the  values  of  t  corresponding  to  points  of  order  m. 

Then  there  are  points  of  order  to  and  other  points  not  of  order  m  near  P{i). 

If  P  is  not  on  the  curve  C  this  contradicts  Tlieorem  I.  Hence,  P  is  on  the 
curve  C. 

*It  is  sulBclent  for  the  present  chapter  to  consider  only  one  particular  parametric  representation.     See 
Art.  10  for  a  discussion  of  the  invariance  of  n  with  respect  to  a  change  of  parameter. 
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9.  The  theorem  relating  to  the  division  of  the  plane  by  a  closed  simple 

curve  will  be  proved  by  the  aid  of  two  lemmas  corresponding  to  the  statements 

that  the  curve  divides  the  plane  into  at  least  two,  and  at  most  two  continua. 

First  Lemma.  Near  any  point  Pq  of  a  simple  closed  curve  which  satisfies  Con- 
dition A  there  are  ttco  points  of  orders  differing  by  unity. 

Proof.  The  curve  consists  of  a  finite  number  of  parts,  each  of  which  can  be 

represented  by  an  equation  of  the  form 

(«)     2/ =/(»). 
or  else  by  an  equation  of  the  form  (b)     x  =/(y), 

where  /  is  single  valued  and  continuous.  If  Pq  is  an  end  point  of  one  of 

these  parts,  then  there  is  a  point  near  P^  which  is  not  such  an  end  point.  Hence 

we  may  assume  without  loss  of  generality  that  Pq  is  not  such  an  end  point.  Sup- 
pose that  the  part  on  which  Pj  lies  can  be  represented  by  the  equation 

The  other  case  is  similar.  Transform  to  new  axes  parallel  to  the  original  axes 

and  having  Pq  as  origin  (Fig.  2).  All  the  conditions  are  invariant  of  this  trans- 
formation. 

The  y-ax'iB  has  no  point  other  than  Pq  io  common  with  the  curve  near  P^. 
Hence  it  is  possible  to  choose  R  so  small  that  if  r  <  B,  and  B  is  the  point 

(o,  r),  and  Bi  the  point  (o,  —  r),  the  segment  BBy  has  no  point  on  the  curve 
except  Pj.     Let  P{t;  x,  y)  be  any  point  on  the  curve.     Let  $  and  dy  be  the 
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angles  BP  and  Bj  P  respectively  make  with  the  positive  a-axis.  Let  p  =  BP 

and  pi  =  BiP,  where  p,  pu  and  r  are  positive  numbers.  By  the  definition  of  an 
angle, 

Sm  d  =  ̂    ,  COS  6  =■  — 
P  P 

sm  Bi  =  ̂ — ! — ,  COS  01  =  —  . 
Pi  Pi 

Let  <^  =  0  -  01 .    Then 

sm  d)  =   ,       cos  A  =  ̂^   —^-^   . 
PPi  PPi 

From  these  relations,  if  o  is  the  primitive  period  and  e  sufficiently  small,  and  n, 

ni,  and  n,  integers,  positive,  negative,  or  zero,  and  x  increases  as  t  increases  near 

P,,  it  follows  that 

^{to+e)  >(2ni+l)7t, 

^{to+ci—e)  <(2n2+l)7«, 

^(<o  +  6))         =(2nj+l)7t. 

When  <o<C  ̂   <C  ̂0  +  ">  sin^  can  vanish  only  when  a;  =  0,  and  in  this  case 

(x*  +  2/^)  —  r',  and  hence  cos  ̂   is  positive.     Hence 

^{t)^{2n+  1)71        when        <o<^<^o+". 

and  therefore  «2  —  nj  =  1 .     Hence 

[0(<„  +  0))  —  0(0]  -  [0'(«o  +  ")  —  ̂'(^o)]  =^{to  +  ")  -  <p{to)  =  2 7t. 

Hence  the  order  of  B  exceeds  that  of  B'  by  unity. 

Second  Lemua.     Griven  the  continuum  B,  and  the  curve  AB  : 

y  =  /{x),  or  x=^f{y), 

where /is  single  valued  and  continuous : 
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(a)  If  R  contains  all  points  of  the  curve,  except  possibly  its  end  points,  which 

may  lie  in  the  boundary  of  B,  then  the  totality  Br  of  points  of  B  not  on  AB  form  at 
most  two  continua  ; 

(b)  If  also  one  or  both  end  points  lie  in  B,  then  B"  is  one  continuum. 
Proof,     (a)    Suppose    the    curve    can    be    represented    by   the    equation 

y=^f{^)^ 
(Fig.  3). 

The  other  case  is  entirely  similar.  Draw  a  straight  line  CD  parallel  to  the 

y-axis,  lying  wholly  in  B,  and  bisected  at  a  point  of  the  curve  AB,  with  C  lying 

above  the  curve.  Let  P  be  any  point  of  B"  which  cannot  be  joined  to  Z>  by  a 

simple  curve  wholly  in  B~.     If  there  is  no  such  point  the  theorem  is  granted. 

Fig.  3 

Otherwise  join  P  to  D  by  a  simple  curve  PD  wholly  in  B.  This  curve  will  have 

a  point  in  common  with  the  curve  AB.  Let  PE  be  an  arc  of  PD  having  one 

extremity  E  on  the  curve  AB,  but  containing  no  other  point  of  this  curve, 

Choose  an  arc  A'B'  of  AB  which  contains  E  and  also  the  point  common  to  AB 
and  CD  in  its  interior,  but  does  not  contain  A  ov  B.  Along  this  arc  construct 

two  continua  like  that  of  Art.  6,  Example  3,  one  above,  and  one  below  A!B', 

lying  wholly  in  B~,  and  denote  them  by  Ar+  and  N~  respectively.  Choose  a 

point  F  on  PE  so  near  to  E  that  it  lies  either  in  iV"+  or  N~.  Suppose  it  lay  in 
N~.  Choose  a  point  G  on  CD  in  N~.  Then  F  and  G  can  be  joined  by  a 

simple  curve  wholly  in  N~.  Hence  the  simple  curve  PFGD  lies  wholly  in  Br, 

which  is  contrary  to  hypothesis.  Hence  F  must  lie  in  N"^,  and  by  similar 

reasoning  P  can  be  joined  to  J^  by  a  simple  curve  wholly  in  B~.  Hence 

the  points  of  B~  form  at  most  two  continua. 
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(b)  Suppose  the  curve  is  represented  as  in  the  first  case  but  let  B  (Fig.  4) 

lie  in  B.  Extend  the  curve  AB  slightly  parallel  to  the  y-axis,  to  B' .  By  the 

first  case  the  points  of  E  not  on  AB'  form  at  most  two  coutinua.     If  they  form 

Fig.  4 

one  continuum  the  theorem  is  granted.  If  they  form  tvro  continua,  by  the 

adjunction  of  the  points  of  BB'  exclusive  of  B  these  can  be  annexed  to  each 
other,  thus  forming  one  continuum. 

Main  Theorem.  The  points  of  the  plane  not  on  a  given  simple  closed  plane 

curve  satisfying  Condition  A  form  two  continua  of  each  of  ichich  the  entire  curve  is 

the  total  boundary. 

Proof.  In  the  neighborhood  of  any  point  of  the  curve  there  are  two  points 

of  different  orders  with  respect  to  the  curve  (First  Lemma).  Hence  the  points  of 

the  plane  not  on  the  curve  form  at  least  two  continua  (Art.  8,  Th.  I  and  Cor., 

Th.  II,  also  Art.  6).  Divide  the  curve  into  a  finite  number  of  parts  each  of  which 

can  be  represented  by  an  equation  of  the  form  y  =f[x),  or  else  by  an  equation 

of  the  form  x=f{y).  Construct  these  in  the  order  in  which  they  appear  in  the 

curve.  By  the  second  part  of  the  Second  Lemma  each  of  these  except  the  last 

does  not  divide  the  region  consisting  of  the  plane  less  the  points  already  cut  out. 

The  last  divides  the  plane  into  at  most  two  continua.  Hence  the  points  of  the 

plane  not  on  the  curve  form  just  two  continua. 

Any  point  of  the  curve  is  a  boundary  point  of  each  continuum  (First  Lemma, 

and  Arts.  8  and  6).  Any  point  not  on  the  curve  belongs  to  one  of  the  continua, 

and  hence  cannot  be  a  boundary  point. 
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III.    Regions,  Orientation  of  Curves,  Normals, 
AND  Related  Topics. 

10.  CJiange  of  Parameter.     The  following  theorem  is  stated  without  proof: 

Theorem.     Let  a  given  sim2J'le  curve  he  defined  by  two  sets  of  equations 

\;Zlt  '.<><..    and    |-|W;    ,<e<,. 
where  ̂ ,  t//,  (^  and  4>  are  single  valued,  continuous  functions. 

(a)  In  the  ca,se  of  the  open  curve,  if  no  two  values  oft\t!'\  yield  the  same  point, 
and  if  the  values  oft  and  t  which  yield  the  same  point  of  the  curve  are  assigned  to 

each  otlier,  then  t  is  a  single  valued,  continuous  function  fit'),  monotonic  and  never 
constant  throughout  the  interval  of  definition  ;  and  the  same  two  points  are  given  as  the 

end  points  in  each  case  ; 

(b)  In  the  case  of  the  closed  curve,  if  no  two  values  of  t  \t''\  yield  the  same  point 
imless  they  differ  by  a  period  of  the  pair  of  functions,  the  values  of  t  and  t'  which 
yield  the  same  point  of  the  curve  can  be  assigned  to  each  other  in  such  a  way 

that  i'  =  f{t),  where  f if)  is  single  valued  and  continuous  for  all  values  oft,  monotonic 
and  never  constant. 

The  totality  of  transformations  H  =f{t)  thus  defined  form  a  group  G.  Such 

a  transformation  is  said  to  be  even  if  an  increase  in  t  yields  an  increase  in  t'.  The 

even  transformations  of  G  form  a  subgroup  G+  o{  6.  Any  transformation  of  G 
is  an  even  transformation  or  is  equivalent  to  an  even  transformation  followed  by 

the  transformation  t!  ̂  —  t.  The  order  n  of  a  point  with  respect  to  the  curve 

is  invariant  of  any  even  transformation.  If  t  is  replaced  by  —  t'  the  sign  of  the 

order  of  a  point  is  reversed.     Then  n*  is  invariant  of  any  transformation  of  G. 

1 1 .  Interior  and  Exterior. 

Theorem.  All  sufficiently  distant  points  are  of  order  zero  with  respect  to  a 
given  closed  curve. 

Proof  Let  Pi  {xi,yi)  be  a  distant  point,  and  let  P  {x,  y)  be  a  variable 

point  on  the  curve.  Let  Q  be  the  angle  PjP  makes  with  the  positive  cc-axis. 
Then  by  Art.  5, 

cos  Q  =  {-x  —  x,)l  P,P,  Bin  6  =  {y  —  y{) I  P^P. 
48 



360     Ames:  An  Anthmetic  Treatment  of  Some  Problems  in  Analysis  Situs. 

Then  if  Va^  +  2^]  is  taken  sufficiently  large  either  cos  6  or  sin  6  never 

changes  its  sign  as  P  varies.  In  either  case  the  maximum  variation  of  6  is  less 
than  71.     Hence  the  order  of  Pj  is  zero. 

If  the  points  of  a  continuum  are  all  of  order  n  the  continuum  is  defined  to  be 

oi  order  n.  The  exterior  of  a  simple  closed  curve  is  defined  to  be  that  one  of  the 

two  continua  into  which  the  curve  divides  the  plane  which  contains  all 

sufficiently  distant  points.  The  other  continuum  is  defined  to  be  the  interior.  It 
follows  that  the  exterior  is  of  order  zero,  and  the  interior  of  order  ±  1 .  If  the 

interior  is  of  order  —  1 ,  the  parameter  can  be  so  chosen  that  the  order  of  the 
interior  will  be  +  1.  The  neigJiborhood  of  a  curve  is  a  continuum  containing  all 

points  of  the  curve,  and  such  that  if  P  is  a  point  of  the  continuum,  and  Pi  a 

suitably  chosen  point  of  the  curve,  then  PPj  <[  h,  where  A  is  a  positive  constant 

previously  chosen  as  small  as  either  party  to  a  discussion  wishes. 

We  have  proved  incidentally  the  following  theorem,  which  for  greater 

clearness  we  state  somewhat  freely  in  geometric  language. 

Theorem.  Let  P  he  a  variable  point  on  a  simple  closed  regular  curve,  and  A 

any  fixed  point  not  on  the  curve.  Then  when  P  traces  the  curve  and  returns  to  its 

initial  position,  the  angle  which  AP  makes  with  the  positive  x-axis,  varying  continu- 
ously returns  to  its  initial  value  if  A  is  an  exterior  point  of  the  curve,  and  is  changed 

by  in  if  A  is  an  interior  point. 

12.  Orientation  of  Curves.  The  conception  of  an  oriented  curve  is  a  gener- 
alization of  that  of  a  vector.  It  is  often  desirable  to  distinguish  the  positive  from 

the  negative  sense  along  a  curve.  The  process  or  the  result  of  making  this  dis- 

tinction we  will  call  orientation.  More  explicitly,  we  define  an  oriented  curve 

and  then  define  the  positive  sense  along  such  a  curve.  An  oriented  simple  curve  is 

defined  to  be  an  object  determined  by  the  two  following  phenomena: 

(a)  A  simple  curve; 

(b)  One  of  the  two  possible  permutations  AB  or  BA  of  the  end  points  of  any 

one  open  arc  of  the  curve. 

If  the  orientation  of  a  given  simple  curve  is  defined  by  the  permutation 

PjPg  of  the  end  points  Pi{t^  and  Pz{t^  of  a  definite  open  arc,  and  P{t)  is  any  point 

of  that  arc,  then  we  will  agree  to  choose  the  parameter  so  that  <,  <  <<  <8.  and  con- 
versely. If  a  change  of  parameter  is  necessary  to  effect  this  it  can  always  be 

accomplished  by  the  transformation  <  =  —  t'.    Thus  a  permutation  of  the  end 
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points  of  any  open  arc  is  uniquely  determined.  Hence  a  simple  curve  can  be 

oriented  in  two  and  only  two  distinct  ways,  and  one  of  these  is  fully  determined 

by  a  permutation  of  the  end  points  of  an  arbitrary  arc.  With  this  agreement  as 

to  the  choice  of  parameter,  a  point  is  said  to  trace  a  simple  curve  in  the  positive 

sense  if  its  parameter  increases  continuously.  A  line  integral  is  said  to  be 

extended  along  the  arc  ti  t^  in  the  positive  sense  if  t^  is  the  lower  limit  and  t^  the 

upper  limit  of  integration.  The  sign  of  the  order  of  a  point  with  respect  to  a 

curve  is  reversed  by  reversing  the  orientation  of  the  curve. 

In  general  the  orientation  of  an  open  curve  is  entirely  arbitrary.  If  a 

simple  curve  is  considered  as  part  or  all  of  the  boundary  of  a  definite  region,  we 

will  agree  that  the  curve  shall  be  so  oriented  that  the  region  shall  be  of  order 

one  greater  than  the  region  from  which  the  curve  separates  it  (see  Fig.  5).     If  a 

closed  curve  is  not  explicitly  considered  as  a  boundary  of  a  region  exterior  to  it, 

it  shall  be  oriented  so  that  its  interior  is  of  order  one  greater  than  its  exterior, 

in  other  words,  so  that  if  0  is  an  interior  point  and  P  traces  the  curve  in  the 

positive  sense  returning  to  its  initial  position,  the  angle  which  OP  makes  with  a 

fixed  line  varying  continuously  shall  be  increased  by  2  7t  (see  Art.  11). 

If  a  one-to-one  relation  is  established  between  the  points  of  two  simple 

curves  and  the  parameters  have  been  chosen  as  above,  then  they  are  said 

to  have  the  same  orientation,  or  to  be  similarly  oriented  if  the  parameter  of  one  is 

an  increasing  function  of  that  of  the  other.  They  are  said  to  hQ.\eopposite  orien- 

tations, or  to  be  oppositely  oriented  if  the  parameter  of  one  is  a  decreasing  func- 
tion of  that  of  the  other.  A  special  case  of  this  is  that  in  which  two  curves 

coincide  along  a  given  arc.  In  this  case  coincident  points  in  the  two  curves  are 

assigned  to  each  other,  unless  otherwise  specified. 
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Theorem.  Let  two  plane  regions  R^  and  R^  each  form  the  interior  of  a  simple 

closed  curve  Cj  and  G^  respectively,  satisfying  Condition  A.  Let  a  segment  Cj  of  Cj 

coincide  with  a  segment  a^  of  C^,  then 

(a)  If  Ry  and  i2,  are  exterior  to  each  other,  the  orientation  ofoiis  opposite  to 
that  of  (T, ; 

(b)  If  Ri  is  wholly  interior  to  R^,  the  orientation  ofOi  is  the  same  as  that  ofcz- 

Proof  (a).     Choose  a  part  or  all  of  (Tj  (orc^)  which  can  be  represented  in  the 
form 

(1)     yz=.f{x),         or  else  in  the  form         (2)     x=f{y), 

where  /is  a  single  valued,  continuous  function.  Let  Pq  be  any  point  of  this 

segment  not  an  end  point.  The  orientation  of  (Tj  can  not  be  the  same  as  that 

of  (Tj,  for  suppose  it  were.  Then  by  Art.  9,  First  Lemma,  near  Pq  there  are  two 

points  B  and  B'  such  that  the  order  of  B  with  respect  to  either  curve  is  greater 

than  that  of  .6'  by  unity.  Hence  by  Art.  11  jB  is  interior  to  each  curve,  which  is 
contrary  to  hypothesis.     The  second  case  is  proved  similarly. 

The  property  of  the  plane  stated  in  this  theorem  is  later  taken  as  the  defini- 
tion of  a  bilateral  surface.  It  is  not  true  on  a  unilateral  surface.  Thus  it  will 

follow  that  the  plane  is  bilateral.  Goursat  tacitly  assumes  this  theorem  or  an 

equivalent  one  in  his  proof  of  Cauchy's  Integral  Theorem.*  It  is  assumed 
whenever  an  integral  taken  around  any  region  R  is  assumed  to  be  equal  to  the 

sum  of  the  integrals  taken  around  the  mutually  exclusive  regions  of  which  R 

consists,  and  in  analogous  cases  involving  variation,  or  analytic  continuation 

along  closed  paths  in  the  study  of  multiple  valued  functions. 

13.   Tangents  and  Normals.     If  a  simple  closed  regular  curve  is  represented 

by  the  equations 
x  =  ̂ {t),        y  =  ̂ {t) 

and  if  its  orientation  has  been  defined,  and  the  parameter  has  been  chosen 

according  to  the  specifications  of  Art.  12,  then  the  positive  tangent  at  a  point 

Pq  (<o)  at  which  the  curve  is  smooth  is  the  vector  Pq  (*o)  Pi  (*i)  defined  by  the 

equations 
x  =  8^'{t,)  +  q>{t,),  (s,  =  Q<s<s,). 

•Acta  Matbematica,  I.  IV,  p.  197.     Or  see  Harkness  and  Morley,   Theory  of  FuncHont  (1893),  p.  164 
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A  normal  to  the  curve  at  a  point  Pq  (^o)  ̂t  which  the  curve  is  smooth  is  a 

vector  defined  by  the  equations 

X  =  —  es^'(0  +  ̂(<o) .  («o  =  0  S  «  ̂  si) , 
y=       es^{t,)  +  i^{t,),  (e==bl). 

If  this  enters  the  interior  of  the  curve  in  the  neighborhood  of  the  curve  it  is 

called  the  inner  normal.  It  follows  from  the  proof  of  the  first  lemma,  Art.  9, 

that  in  the  case  of  the  inner  normal  e  =  +  1,  and  the  inner  normal  makes  an  angle 

of  +  7t/2  with  the  positive  tangent.  Even  when  the  region  is  exterior  to  one  of 

its  boundaries,  these  conclusions  are  equally  true  of  that  normal  which  enters  the 

interior  of  the  region  provided  the  orientation  of  the  boundary  is  chosen  accord- 
ing to  the  specifications  of  Art.  12  (see  Fig.  5). 

14.  Regions  and  Boundaries.  As  an  illustration  of  a  class  of  theorems  which 

are  often  assumed  without  even  mention,  but  which  are  by  no  means  trivial,  the 

following  theorems  are  stated,  mostly  without  proof.  A  loop-cut  is  defined  to  be 

a  simple  closed  curve  lying  wholly  in  a  continuum  under  consideration. 

Theorem  I.  The  totality  B~  of  the  paints  of  a  plane  continuum  R  not  on  a 
given  loop-cut  L  satisfying  Condition  A  form  two  continua,  one  of  which  is  wholly 

interior  and  one  wholly  exterior  to  the  loop-cut,  and  every  point  of  the  hop  cut  is  a 

boundary  point  of  each. 

The  proof  is  similar  to  that  of  the  main  theorem  of  Art.  9,  which  is  a  special 
case  of  this. 

Theorem  II.  If  a  loop-cut  L  is  drawn  in  the  interior  of  a  closed  simple  curve 

C,  each  satisfying  Condition  A  : 

(a)  The  interior  of  L  lies  wholly  interior  to  C,  and  is  wholly  bounded  by  L; 

(b)  The  exterior  and  perimeter  of  C  lies  wholly  exterior  to  L,  and  the  exterior  of 
C  is  bounded  wholly  by  C ; 

(c)  There  exist  points  exterior  to  L  and  interior  to  C,  and  they  form  a  continuum 
of  which  C  and  L  form  the  total  boundary. 

Proof.    The  main  points  of  the  proof  may  be  exhibited  in  outline  as  follows: 
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Each  point  of  the  plane  belongs  to  one  of  nine  mutually  exclusive  classes: 

a c 

c. 

L, 

No  point. (3) No  point. 

(2) 
L No  point. 

(1) 

No  point. 
(1) 

A 

where  Q  and  C,  denote  the  interior  and  exterior  respectively  of  C,  etc. 

(1)  By  hypothesis,  no  point  of  Z  belongs  to  Cor  to  Cg. 

(2)  No  point  is  in  C,  and  Zj.  Suppose  P  were  in  C,  and  Xj.  Choose  a 

distant  point  A.  This  lies  in  0^  and  in  Z,.  Hence  A  and  P  can  be  joined  by  a 

curve  wholly  in  C^.  This  curve  must  cut  L.  Hence  a  point  of  Z  is  in  C,.  This 
contradicts  (l). 

(3)  Suppose  a  point  P  of  Cwere  in  Z,,  then  all  points  near  P  are  in  Z^. 

But  there  are  points  of  C<,  near  P.     This  contradicts  (2). 

By  Theorem  I  the  points  of  Q  consist  of  the  curve  Z,  and  two  continua 

belonging  to  Z(  and  Z«  respectively.  From  the  diagram  it  is  seen  that  Cis  wholly 

in  Z,.  Hence  by  Theorem  I  the  points  of  Z,  consist  of  the  curve  Cand  two  con- 
tinua belonging  to  (7<  and  C^  respectively.  Hence  there  are  points  of  each  class 

left  blank  in  the  diagram.  The  first  clause  of  (a),  (b),  and  (c)  can  now  be  read 

off  from  the  diagram.     The  remainder  of  the  proof  is  left  to  the  reader. 

Theorem  III.  If  tico  simple  closed  curves  C  and  L  each  satisfying  Condition 

A  are  wholly  exterior  to  each  other: 

(a)  The  interior  of  C  is  wholly  exterior  to  L,  and  is  wholly  bounded  by  G,  and 

similarly  interchanging  letters; 

{b)  There  exist  points  exterior  to  each,  and  these  form  a  continuum  bounded 

wholly  by  C  and  L . 

The  proof  is  similar  to  that  of  Theorem  II. 
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Theorem  IV.  If  n  simple  closed  curves  satisfying  Condition  A  have  no  point 
in  common  : 

(a)  A  necessary  and  sufficient  condition,  that  they  form  the  total  boundary  of  an 

infinite  region  is  that  they  lie  wholly  exterior  to  each  other;  the  region  so  bounded  is 
exterior  to  each; 

(6)  A  necessary  and  sufficient  condition  that  they  form  the  total  boundary  of  a 

tinite  region  is  that  n  —  1  of  the  curves  are  wholly  interior  to  the  remaining  one  and 

wholly  extei-ior  to  each  other;  the  region  so  hounded  is  exterior  to  each  of  the  n  —  1 
curves  and  interior  to  the  remaining  one. 

This  can  be  proved  by  mathematical  induction. 

Part  II. 

IN  THREE  DIMENSIONAL  SPACE. 

I. — Fundamental  Conceptions. 

15.  Some  of  the  fundamental  conceptions  made  use  of  in  the  following 

chapters  have  been  discussed  in  the  introduction  for  space  of  two  dimensions. 

Those  definitions  and  principles  will  now  be  extended  to  space  of  three  dimen- 
sions by  the  addition  of  a  third  variable,  without  further  comment,  whenever  no 

difficulty  presents  itself  in  so  doing.  We  shall  prove  the  theorem  that  a  simple 

closed  surface  divides  space  into  two  continua,  first  for  a  very  restricted  class  of 

surfaces,  and  later  indicate  how  the  proof  can  be  extended  to  more  general  cases. 

The  proof  follows  a  method  similar  to  that  used  in  two  dimensions.  A  prelimi- 
nary discussion  of  certain  fundamental  conceptions  is  necessary. 

16.  Surfaces.  A  smooth  simple  closed  surface  is  an  assemblage  of  points 

P{x,  y,  z)  defined  as  follows: 

{a)  If  P^{xq,  2^0,  Zq)  is  a  point  of  the  assemblage,  it  is  possible  to  choose 

three  equations 

X  =^[u,v),       y  ='4,{u,v),       z=x{u,v),  (A) 
where 

Xo  =  ̂ (mo,  Vo),     yo  =  ■4'(Wo.  Vo),     Zq  =  ;t(?«o.  ''o). 
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where  4»,  4'>  X  ̂ ^^  single  valued  near  (mo- Vo)>  where  all  points  given  by  these 

equations  near  (t^,  Vo)  are  points  of  the  assemblage,  and  where  no  point  {x,  y,  z) 

is  given  by  two  distinct  points  (u,  v)  near  {uq,  Vq). 

(b)  The  assemblage  is  simple,  that  is,  if  Po  {xq,  y^,  Zq)  is  a  point  of  the 

assemblage,  all  points  in  the  three  dimensional  neighborhood  of  Pq  can  be  given 

by  one  set  of  parametric  equations  (A)  as  just  defined. 

(c)  The  assemblage  is  complete,  that  is,  if  P(x,  y,  z)  is  a  limiting  point  of 
the  assemblage,  then  it  shall  belong  to  the  assemblage. 

(d)  The  assemblage  is  connected,  that  is,  if  Po{xq,  y^,  Zp)  arid  Pi{xi,  y^,  Zj) 

are  any  two  points  of  the  assemblage,  then  it  is  possible  to  draw  a  simple  curve 

x  =  7.{t),         y  =  (i{t),         z  =  v{t),  {fo<t<ti), 

having  Pq  and  Pj  as  end  points  and  such  that  all  points  of  the  curve  are 

points  of  the  assemblage. 

(e)  The  assemblage  lies  in  a  Jlnite  region,  that  is,  it  is  possible  to  choose  a 

constant  G  so  that  if  P(a;,  y,  z)  is  a  point  of  the  assemblage,  then 

\x   \    +    \y   \    +    \z\<^G. 

(/)  The  assemblage  is  smooth  at  every  point,  or  simply  smooth,  that  is,  if 

-fo  (^oi  Z/o'  2o)  is  a  point  of  the  assemblage,  it  is  possible  to  choose  the  equations 

(.4)  so  that  the  first  partial  derivatives 

1>u  (—9^)'^"'  '^■"  '^'"  Z"'  JC" 

are  single  valued  and  continuous  near  {uq,  Vq,),  and  so  that  the  Jacobians 

J.= 

'i'uX'' 

1        Jy      4'«  ̂„  I     7-  _  i  «?'u  '4'u 

do  not  all  vanish  at  Pq. 

By  virtue  of  (a),  (c)  and  (e)  the  assemblage  is  said  to  be  closed. 
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17.  Dissection  of  Surfaces. 

Theorem  I.  A  smooth  simple  closed  surface  can  be  divided  into  a  finite  number 
of  parts,  each  of  which  has  the  following  properties : 

(a)  It  can  be  represented  by  an  equation  of  one  of  the  following  forms : 

«=/(y.z).     or     y=f{z,x),     or     z=f(x,y), 

where  f  and  its  first  partial  derivatives  are  single-valusd  and  continuous; 
(b)  It  is  bounded  by  one  simple  regular  curve; 

(c)  It  can  be  included  in  a  sphere  of  arbitrarily  preassigned  radius. 

To  prove  this  we  divide  space  into  cubes  of  edge  h.  If  5  is  chosen 

BuflBciently  small,  either  the  part  of  the  surface  in  any  cube  consists  of  a  finite 
number  of  prices  each  of  which  satisfies  the  requirements  of  the  theorem,  or,  in 
case  the  surface  is  tangent  to  a  face,  the  part  of  the  surface  in  the  two  cubes 

having  this  face  in  common  satisfies  the  requirements  of  the  theorem.  The 
details  of  the  arithmetization  are  omitted. 

Most  of  the  discussions  which  follow  apply  to  any  simple  surface  which  can 

be  dissected  as  specified  in  Theorem  I,  We  shall  describe  such  a  surface  by  say- 
ing that  it  satisfies  the  following  condition  : 

Condition  B:  A  surface  is  said  to  satisfy  Condition  B  if  it  consists  of  a  finite 

number  of  parts  each  of  which  answers  to  the  description  in  Theorem  I,  and  if, 

moreover,  the  surface  satisfies  conditions  (6,  c,  d,  e)  of  Art.  15.  If  it  also  satisfies 
(a)  it  is  said  to  be  closed. 

18.  Parametric  Representation  of  Surfaces.  The  following  theorems  relate  to 

the  possibility  of  representing  a  given  surface  by  two  different  systems  of  para- 

metric equations,  and  to  the  relations  of  the  two  parametric  planes.  The  trans- 

formations involved  are  analogous  to  the  transformation  t  =f{t')  by  which  the 

parameter  <  of  a  simple  curve  is  replaced  by  a  different  parameter  t',  where /(<') 
is  monotonic  and  never  constant  (Art.  10).  The  theorems  are  given  without 

proof. 

Theorem  II.     If  two  planes  R  and  R  are  mapped  in  a  one  to  one  and  continu- 
ous manner  on  each  other,  and  a  simple  closed  curve  C  in  R  is  mapped  on  a  simple 

closed  curve  C  in  R',  each  of  which  is  oriented,  then 
49 
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(a)  Any  interior  {exterior)  point  of  G  is  mapped  on  an  interior  {exterior)  point 
ofO; 

{h)  All  sitch  transformations  form  a  group  G;  of  these  there  are  transforma- 
tions, called  EVEN  transformations,  for  which  the  curves  of  every  such  pair  have  the 

same  orientation,  and  these  transformations  form,  a  subgroup  (r"*"  of  G ;  there  are 
transformations  called  odd  transformations  for  which  the  curves  of  every  such  pair 

have  opposite  orientations,  in  particular  the  transformation  x!  ̂=-  x,  y=  —  y;  the 

totality  of  even  and  odd  transformations  exhaust  G;  moreover,  the  group  of 

odd  transformations  can  be  generated  by  the  particular  odd  transformation 

a/  =  X,  y'  '=■  —  y  in  succession  with  each  of  the  even  transformations  ; 

(c)  If  the  Jacobian  of  such  a  transformation  is  defined  and  continuous  at  every 

point  of  the  regions  involved,  and  does  not  vanish  in  them,  then  the  necessary  and 

sufficient  condition  that  the  transformation  is  even  is  that  the  Jacobian  is  positive  at 

every  point. 

Theorem  III.  If  a  finite  simple  surface  region  R  including  its  boundary, 

which  is  a  simple  closed  curve  C,  is  mapped  in  a  one  to  one  and  continuous  manner 

on  a  portion  R'  of  a  plane,  then  R'  forms  the  interior  and  boundary  of  the  closed 
curve  G'  on  which  G  is  mapped. 

19.  Unilateral  and  Bilateral  Surfaces.  Orientation.  Given  any  simple 

surface.  Let  i2,  be  any  complete  open  region  of  the  surface,  and  let  (7,-  be  a 

simple  closed  curve  forming  part  or  all  of  its  boundary.  If,  having  oriented  one 

such  boundary,  it  is  then  possible  in  one  and  only  one  way  to  orient  every  such 

boundary  so  that  if  (7^  and  Gj  are  any  two  of  these  having  a  common  segment  a, 

(a)  Gi  and  Gj  shall  be  oppositely  oriented  along  <t  when  i2,  and  Rj  are 
exterior  to  each  other,  and 

[b)  Gi  and  (7,  shall  be  similarly  oriented  when  either  Ri  or  Rj  is  interior 
to  the  other, 

then  the  surface  is  said  to  be  bilateral.  If  this  is  not  possible  the  surface  is  said  to  be 

unilateral.  We  will  agree  that  if  one  such  curve  on  a  bilateral  surface  is  oriented, 

then  the  orientation  of  every  such  curve  on  the  surface  shall  be  consistent  with 
the  above  specifications. 
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Let  us  now  extend  to  surfaces  the  idea  of  orientation.  "We  define  an 
oriented  simple  surface  to  be  an  object  determined  by  the  three  following 

phenomena : 

(a)  A  simple  bilateral  surface; 

(6)  A  definite  complete  open  region  of  the  surface; 

(c)  An  oriented  simple  curve  forming  part  or  all  of  the  boundary  of  that 

region. 

It  follows  that  a  simple  bilateral  surface  can  be  oriented  in  two  and  only 

two  distinct  ways.  If  a  simple  bilateral  surface  is  oriented  and  is  represented  by 

three  equations  of  the  form 

x  =  ̂ {u,v),  y  =  ̂ {u,v),         z=;i^(m,  v), 

and  if  a  complete  open  region  5,  of  the  surface,  bounded  by  C^,  corresponds  to 

the  region  R!  bounded  by  (7/  of  the  mu -plane,  then  if  Oi  and  C/  are  not  simi- 

larly oriented  they  will  be  after  the  substitution  m  =  —  u',  v  =  v'.  We  shall 
assume  that  the  parameter  has  been  so  chosen.  Then  by  the  theorem  of  Art.  12 

and  Theorem  III  of  Art.  18  the  same  is  true  for  every  such  curve.  Thus  the 

different  parts  of  the  surface  may  be  given  by  different  analytic  representations 

and  the  validity  and  definiteness  of  our  definitions  be  not  affected. 

II.    SouD  Angles  and  Order  of  a  Point. 

20.  Solid  Angles.     Let  us  start  from  the  ordinary  conception   of  a   solid 

angle.     Define  a  system  of  spherical  coordinates  by  the  relations 

a;  =  p  sin  ̂   cos  6, 

^  =  p  sin  <^  sin  6, 
s  =  p  cos  (^ . 

We  shall  speak  of  the  line  4»  =  0  and  ̂   =  7t  as  the  polar  axis.     Let  a  piece  R  of 

a  surface  be  defined  by  the  equation 
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where /(0,  <p)  is  a  single  valued  function  of  6  and  <^  throughout  a  region  R'  of  the 
surface  of  the  unit  sphere.  Then,  according  to  the  ordinary  conception,  the  solid 

angle  subtended  by  R  at  the  origin  is  the  area  of  R',  which  is  given  by  the 

^™  y   r,  sin  4><£0d<^. 
We  wish  to  extend  this  definition  in  such  a  way  that  the  solid  angle  shall  be 

susceptible  of  an  algebraic  sign.  To  illustrate  our  purpose,  consider  the  convex 
surface  of  a  circular  cylinder  so  situated  that  the  origin  is  exterior  to  it,  and  so 

that  it  is  not  pierced  by  the  polar  axis,  and  so  that  some  of  the  radii  vectoies 

cut  it  in  two  points.  It  can  be  divided  into  two  parts  so  that  each  can  be  repre- 
sented by  one  equation  of  the  form  p  =/(0,  4)).  We  wish  to  define  the  solid 

angle  subtended  by  the  cylindrical  surface  so  that  the  contribution  of  one  of 
these  parts  shall  be  positive,  and  the  other  negative,  and  so  that  the  total  solid 

angle  shall  be  the  algebraic  sum  of  the  solid  angles  subtended  by  these  two  parts. 
If  this  surface  is  represented  parametrically  by  the  equations 

p  =  P{u,v),         d  =  @{u,  v),         ̂   =  ̂ {v,  v), 

under  suitable  restrictions  as  to  continuity,  it  will  be  observed  that  the  Jacobian 

D  {u,  v) 

will  be  positive  throughout  one  of  these  parts  of  the  cylinder,  and  negative 

throughout  the  other.  If  now  in  the  double  integral  above  we  replace  Q,  <p  by 
the  new  variables  u,v  we  obtain  the  integral 

// sin  d>  r.)  '    -<  du dv,* 

^  D  {u,  v) 

extended  over  the  total  cylindrical  surface.  In  this  form  the  Jacobian  takes 

care  of  the  sign,  and  thus  yields  in  one  integral  the  result  desired.  Guided  by 
this  illustration  we  shall  proceed  to  formulate  a  general  definition  of  a  solid  angle. 

Giveu  any  oriented  bilateral  surface  R  referred  to  a  system  of  rectangular 
coordinates,  and  represented  by  one  or  more  sets  of  equations  of  the  form 

X  =  X{u,  v),         y  ■=  Y{u,  v)         2  =  Z(u,  v), 

where  the  parameters  are  so  chosen  as  to  satisfy  the  requirements  of  Art.  19. 

*S«e,  for  example,  Qonrsat,  Court  cP Analyu,  Vol.  I,  |138. 
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Let  0{xq,  i/q,  Zq)  be  any  fixed  point  not  on  the  surface.  Change  to  a  new 

system  of  rectangular  axes  with  0  as  origin  by  a  transformation  having  a 

positive  determinant.  Then  change  to  a  system  of  spherical  coordinates  having 

0  as  origin  and  defined  by  the  equations  given  above.  R  can  now  be 

represented  by  one  or  more  sets  of  equations  of  the  form 

We  shall  at  first  require  that  the  surface  shall  not  be  pierced  by  the  polar  axis. 

Later  we  shall  remove  this  restriction.  We  define  the  solid  angle  subtended 
by  ̂   at  0  to  be  the  integral 

where  R'  is  the  totality  of  the  regions  in  the  ww-planes  corresponding  to  R,  and 
where  dudv  is  essentially  positive.  It  follows  that  the  solid  angle  is  invariant 

of  any  change  of  parameter  made  by  a  transformation  having  a  positive  Jacobian 

at  every  point.  In  particular  it  is  immaterial  whether  the  surface  is  represented 

by  one  or  many  sets  of  parametric  equations. 

If  the  surface  has  a  point  Pi(a;i,  y^,  z^,  p^)  on  the  polar  axis,  the  integrand 

is  not  defined  at  that  point  as  the  Jacobian  may  become  infinite.  Let  a  point  P 

approach  Pj .     Then  it  can  be  shown  that 

which  is  finite  and  defined.  The  integrand  at  such  a  point  shall  now  be  defined 

to  be  that  limit.  Then  the  integral  is  a  fully  defined  proper  integral.  We  now 

define  the  solid  angle  in  all  cases  to  be  the  integral  (A) . 

Any  rotation  of  the  system  of  spherical  axes  about  0  is  accomplished  by 

introducing  ff  and  ̂ '  in  place  of  6  and  ̂   by  a  transformation  having  a  positive 
Jacobian.  By  simply  making  this  substitution  it  can  be  shown  that  the  integrand, 

and  hence  the  solid  angle,  is  invariant  of  this  transformation.  It  follows  that 

the  solid  angle  is  independent  of  the  particular  choice  of  polar  axis,  and  is 

invariant  of  any  change  in  the  original  system  of  rectangular  axes  made  by  a 

transformation  with  positive  Jacobian. 

21.  Solid  Angle  in  Terms  of  a  Line  Integral.  We  shall  now  express  the  solid 

angle  by  means  of  the  line  integral  /  cos  ̂   dd  taken  around  the  boundary  of  the 



372     Ames:  An  Arithmetic  Treatment  of  Some  Problems  in  Analysis  Situs. 

surface.  The  possibility  of  doing  this  is  suggested  by  analogy  with  Green's 
theorem  in  the  plane.  In  fact,  in  the  simpler  cases  this  can  be  accomplished  by 

a  direct  application  of  Green's  theorem.  From  Art,  19  it  follows  that,  if  the 
surface  is  divided  into  parts,  this  integral  extended  along  the  entire  boundary  of 

the  surface  is  equal  to  the  sum  of  the  integrals  of  the  same  function  extended 

along  the  boundaries  of  the  parts,  taken  in  the  positive  sense  of  the  curve  in  each 

case.  This  follows  since  along  the  common  boundary  of  any  two  of  the  parts  the 

integral  is  extended  once  in  one  sense  and  once  in  the  opposite,  and  these  two 

integrals  cancel  each  other.     We  need  the  following  theorem: 

Theobem.  Given  any  smooth  surface,  and  any  point  0  not  on  the  surface  ;  then 

it  is  possible  to  draw  through  0  a  straight  line  not  tangent  to  the  surface,  making  an 

arbitrarily  small  angle  with  a  given  line. 

Proof.  The  condition  that  a  line  through  0  is  tangent  to  the  surface,  repre- 

sented by  spherical  coordinates,  is  that  D{d,  ̂ )ID{u,  ?;)  =  0  at  the  point  of  contact, 

excluding  from  consideration  points  of  the  surface  in  the  neighborhood  of  the  polar 

axis.  This  will  be  no  limitation  on  the  generality  of  the  proof,  as  the  polar  axis 

maybe  changed  if  desired.  Now  divide  the  surface  into  a  finite  number  of  parts 

each  of  which  can  be  represented  by  an  equation  of  at  least  one  of  the  following 

forms:      (j)  ̂   ̂;^(0^  ̂ )^      ̂ ^      (2)  0  =  ̂ (<?,,  p),     or     (3)  <?.  =  r(p,  0), 
where ^,  fi,  v,  and  their  first  derivatives  are  single  valued  and  continuous.  That 

this  is  possible  follows  directly  from  Art.  17.  The  condition  that  a  part 

can  be  represented  in  the  first  form  is  that  Z)(0,  ̂ )/D(u,v)  :^  0  in  the  part.  Hence 

no  line  through  0  can  be  tangent  at  a  point  of  a  part  of  the  first  class.  Discard  all 

parts  which  can  be  represented  in  the  first  form.  Then  if  the  parts  are  taken 

suflBciently  small,  D{d,  ̂ )jD{u,  f )  <  e  throughout  the  remainder  of  the  surface, 

which  we  will  denote  by  S~,  where  e  is  an  arbitrarily  preassigned  positive  number. 

Then  if  a  is  the  solid  angle  subtended  by  /S"  at  0, 

a  =     /   /    sin  d)  r,/       X  du  dv J  Js-        ̂   I){u,  v) 

<    f  f  \Bmq>^^\dudv =   J  Ja-\        ̂   D{u,  v) 

-    J  Js-\J){u,  v)  I 

^vX-'^"^^       <^f£dudv  =  eK, 
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where  K  is  independent  of  the  method  of  division.  Hence  by  taking  the  parts 

suflBciently  small  the  solid  angle  subtended  by  S~  can  be  made  less  than  that 
subtended  by  a  preassigned  region  of  the  surface  of  a  sphere  with  0  as  center. 

Then  it  is  possible  to  draw  a  straight  line  through  0  piercing  this  region  and  not 

touching  S~.     This  proves  the  theorem. 
Such  a  line  meets  the  surface  in  at  most  a  finite  number  of  points.  Let  the 

polar  axis  be  so  chosen.  Now  divide  the  surface  into  a  finite  number  of  arbitra- 
rily small  parts  by  Art.  17.  At  most  a  definite  number  independent  of  the  size 

of  the  parts,  contain  points  on  the  polar  axis.  If  the  parts  are  taken  sufficiently 

small  the  contribution  of  these  parts  to  the  solid  angle  can  be  made  arbitrarily 

small.  Each  of  the  remaining  parts  can  be  represented  in  at  least  one  of  the 

three  following  forms: 

(1)  p  =/(0,^),      (2)  ̂   =/(p,  e),      (3)  e  =  /(4..  p). 

"We  shall  show  first  that 

//«^°  ̂   ?^j  ̂"  ̂"  =  -f'''  ̂   ̂ ^  (^) 
in  each  part  which  can  be  represented  in  the  first  form.  The  line  integral  is  to 

be  extended  around  the  boundary  of  each  part  in  the  positive  sense.  The  con- 

dition that  a  part  can  be  so  represented  is  that  D(d,  ̂ )/D{tc,  v)  =1=  0,  and  hence 
has  a  constant  sign  in  the  part.     Hence 

ry sin  4,  g  (^'  »)  du  dv  =ff  sin  ̂ dQd<i»,  ( (7) 

where  dO  d^  has  a  constant  sign,  the  same  as  D{Q,  ̂ )/D{u,  v).  We  may  think 

of  the  transformation  6  =  d{n,  v),  ̂   =  ̂ {u,  v),  as  a  transformation  from  the  uv 

plane  to  the  6ip  plane.  Suppose  D{d,  ̂ )/D{u,  v)  <  0,  and  hence  dO  d^  <  0. 

Apply  Green's  theorem.     We  obtain 

I   I  s'm  pdd  d^=^  I  cos  <^ 

dd 

extended  along  the  boundary  of  the  region  in  the    6^  plane  in  the  positive 
sense,  or 

^de 

■  j  cos  ̂   ̂ 
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extended  in  the  negative  sense.  Since  D{d,  ̂ )/D{u,  ■»)<  0,  by  Art.  18,  Th.  II  c, 
this  corresponds  to  the  positive  sense  of  the  curve  in  the  uv  plane,  and  by  Art.  19, 
this  corresponds  to  the  positive  sense  of  the  boundary  of  the  region  on  the 

surface.  If  D(d,  ̂ )jD{u,  v)  >■  0  similar  reasoning  leads  to  the  same  result. 
Hence  the  solid  angle  is  given  by  the  integral 

—  /  cos  4)  dB 

taken  in  the  positive  sense,  for  every  region  of  the  first  class. 

Consider  those  parts  which  can  be  represented  in  the  form  ̂   =/(p,  B). 
Then 

By  reasoning  similar  to  that  just  used  the  same  result  is  obtained. 
We  shall  adopt  a  diflFerent  method  for  the  third  case.  Let  R  be  any  one  of 

the  regions  already  discussed,  and  Cits  boundary.  Let  it  be  referred  to  any  two 

systems  of  spherical  coordinates  (p,  6,  ̂)  and  (p,  6' ,  ̂')  having  the  same  origin 
and  such  that  no  point  of  i?  or  C  is  a  point  of  either  polar  axis.  If  R  is  suflS- 
ciently  small  it  is  possible  to  construct  a  conical  surface  having  0  as  directrix 
and  a  point  V  as  vertex  so  chosen  that  no  element  intersects  either  polar  axis. 
Consider  that  part  of  this  surface  which  lies  between  V  and  C.  Let  this  be 

divided  into  arbitrarily  small  regions.  Then  each  of  these  regions  can  be  repre- 
sented by  an  equation  of  at  least  one  of  the  following  forms : 

p=/{d,^),  or        ̂   =  f{p,6), 

and  also  by  an  equation  of  at  least  one  of  the  following  forms : 

p  =/,{$', ^'),        or        ̂ '=/,{p,e'). 

Hence  by  each  system  of  coordinates  the  solid  angle  is  equal  to  the  line  integral 
along  G.     But  the  solid  angle  is  invariant  of  the  system  of  axes.     Hence 

/  cos  ̂   dd  =J  cos  ̂ '  d&. 

Hence  in  computing  the  value  o{  jcoB^dO  around  the  boundaries  of  all   the 
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regions  of  the  given  surface  we  may  choose  the  axes  arbitrarily  for  each  region. 
But  the  axes  can  always  be  chosen  so  a  given  small  region  can  be  represented 
in  one  of  the  forms 

p=/(0,4.)  or        ̂ =Ap,d). 

Hence  for  any  sufficiently  small  region  not  containing  a  point  of  the  polar  axis 

the  solid  angle  equals  ■^—  /  cos  ̂   dd  extended  along  its  boundary  in  the  positive 
sense. 

22.  Order  of  a  Point.  Now  suppose  that  the  surface  is  closed.  We  shall 

show  that  the  solid  angle  is  a  multiple,  positive,  negative  or  zero,  of4  7t.  Let 
the  curves  qt  be  the  boundaries  of  those  parts,  finite  in  number,  and  each 
arbitrarily  small,  which  have  a  point  in  common  with  the  polar  axis.  These 
parts  may  be  so  chosen  that  the  point  in  common  with  the  polar  axis  is  an 

interior  point  of  the  part.  Let  C~  be  the  total  boundaries  of  the  remaining 
parts.  Then  since  the  integral  is  extended  along  every  boundary  once  in  one 
sense  and  once  in  the  opposite, 

y^_cos  4>  tZ0  +  2    / .  cos  ̂   (Z0  =  0. 

But  by  taking  the  parts  sufficiently  small 

—  J  _C08  ̂   dd 

and  hence  its  equal 

^    /    cos  <^  do 

can  be  made  arbitrarily  near  to  the  solid  angle.  But  at  the  same  time  the  latter 
sum  can  be  made  arbitrarily  near  to 

where  i;,  =  ±  1.     Hence  the  solid  angle  equals 

50 



376     Ames:  An  Arithmetic  Treatment  of  Some  Problems  in  Analysis  Situs. 

On  the  other  hand 

X-'^«  +  2X'^^=o- 
since  the  integral  is  extended  along  every  segment  once  in  one  sense  and  once 
in  the  opposite.     But 

"  d6  =  0. 

t 
This  may  be  shown  by  taking  the  parts  suflBciently  small,  and  showing  that  the 

total  variation  of  0  in  any  one  part  is  less  than  2n,  and  hence  equal  to  zero. 
Hence 

But 

where  «( is  an  integer,  positive,  negative  or  zero,  and  the  solid  angle  ̂   >7>  J,(  ̂^ 

differs  from  V  /  dd  by  twice  the  contribution  of  those  integrals  for  which  rii  is 

negative.  Hence  the  solid  angle  equals  Ann,  where  n  is  an  integer,  positive,  nega- 
tive or  zero.  Then  define  the  order  of  the  point  0  with  respect  to  the  surface  to 

be  the  number  n.     The  order  of  a  point  on  the  surface  is  not  defined. 
The  solid  angle  is  invariant  of  the  particular  choice  of  the  polar  axes,  and  of 

any  change  of  the  parameters  u,  v  in  any  part  of  the  surface,  provided  the  trans- 
formation has  a  positive  Jacobian.  If  the  parameters  are  changed  at  all  points 

of  the  surface  by  transformations  having  negative  Jacobians,  the  sign  of  the 

solid  angle  is  changed  but  its  absolute  value  is  invariant.  Hence  the  same 

statements  are  true  of  the  order  of  a  point.  For  a  like  reason  the  order  of  a 

point  is  invariant  of  any  change  in  the  rectangular  axes  to  which  the  surface  is 
referred,  effected  by  a  transformation  with  positive  Jacobian. 

Theorem  I.  1/  the  order  of  a  point  0  not  on  the  surface  is  n,  then  all  points 
in  the  neighborhood  of  0  are  of  order  n . 

Proof.  The  integral  defining  the  solid  angle  is  the  integral  over  a  finite 
region  of  a  uniformly  continuous  function  of  all  the  variables  involved,  including 
the  coordinates  of  0.  Hence  the  solid  angle,  and  therefore  the  order  of  0  is 

continuous  when  0  is  not  on  the  surface.  But  the  order  can  vary  only  by  a 
multiple  of  unity.     Hence  it  is  constant. 
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Corollary.      Tlie  points  of  the  order  of  a  given  point  form  one  or  more  continua. 

Theorem  II.     If  two  points   are   of  different   orders  with  respect  to  a  given 

surface,  then  any  simple  curve  joining  them  has  a  point  in  common  with  the  surface. 

The  proof  is  the  same  as  in  two  dimensions  (Art.  8). 

III.    The  Division  of  Space  by  a  Closed  Surface. 

23.  The  theorem  that  a  closed  bilateral  surface  which  satisfies  Condition  B 

(Art.  17)  divides  space  into  two  continua  is  proved  by  the  aid  of  two  lemmas 

entirely  analogous  to  those  used  in  two  dimensions. 

First  Lemma.  If  P^is  a  point  of  a  closed  bilateral  surface  which  satisfies 

Condition  B,  then  near  P^  there  are  two  points  whose  orders  with  respect  to  the  given 
surface  differ  by  unity. 

Proof  Let  the  surface  be  arbitrarily  oriented.  If  the  surface  is  not  smooth 

at  Pq,  there  is  a  point  of  the  surface  near  Pq  at  which  it  is  smooth,  and  which 

may  be  used  instead  of  Po-  Hence  we  may  assume  that  the  surface  is  smooth  at 

Pg.  Transform  to  a  new  set  of  rectangular  coordinates  with  origin  at  Pq,  and  so 

chosen  that  the  surface  near  Pq  can  be  represented  by  one  equation  z=f{x,  y), 
where  /  is  single  valued  and  continuous.  The  axes  can  at  the  same  time  be  so 

chosen  that  the  z-axis  has  only  a  finite  number  of  points  in  common  with  the 

surface  (Art.  21,  Theorem).  It  is  possible  to  choose  two  points  0"'"(o,  o,  6)  and 

0~{o,  0,-6)  where  5  is  so  chosen  that  no  point  of  the  surface  except  Pq  lies  on 

the  segment  0~  0^  of  the  z-axis.  Now  refer  to  two  systems  of  spherical  coordi- 

nates having  the  origin  at  0"*'and  0 ~  respectively,  and  the  positive  z-axis  as 
positive  polar  axis.  Cut  out  from  the  surface  small  regions,  each  containing  one 

of  the  points  common  to  the  surface  and  the  polar  axis.     In  each  case  the  sum 

of  the  integrals  /  cos  ̂   dQ,  extended  around  these  regions  in  the  positive  sense,  is 

arbitrarily  near  to  the  solid  angle  subtended  by  the  surface  at  the  origin 

(Art.  21).  The  contribution  of  the  part  containing  Pq  to  the  angle  at  0+  differs 

from  the  contribution  of  the  same  part  to  the  angle  at  0~  by  a  number  arbitrarily 
near  to  4  7t.    That  of  the  remaining  parts  in  the  two  cases  differ  by  an  arbitrarily 
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small  number.     But  the  orders  of  0"*"  and  0~  can  differ  only  by  integers,  hence 
they  differ  by  unity. 

Second  Lemma.     Given  any  three  dimensional  continuum  R,  and  a  surface  8 : 

2  =f{^,  y),      or      y  =/{z,  x),      or      x  —f{y,  z), 

where /is  single  valued  and  continuous: 

(a)  If  R  contains  all  j^oints  of  S  except  possibly  its  boundary  points  which 

may  lie  in  the  boundary  of  R,  then  the  totality  R~  of  points  of  R  not  on  S  form  at 
most  two  coniinua  ; 

{b)  If  also  Shas  a  simple  regular  boundary  one  point  of  which  is  inR,  then  R~ 
forms  one  continuum. 

Proof,  (a)  Suppose  S  can  be  represented  by  the  equation  z  =  f{x,  y). 

The  other  cases  are  similar.     (See  Fig.  6,  in  which  the  surface  S  is  represented 

but  not  the  boundary  of /jf).  Draw  a  straight  line  CZ)  parallel  to  the  z-axis, 

lying  wholly  in  R,  and  bisected  at  a  point  of  the  surface  S,  and  such  that  Cis 

above  the  surface  S.  Let  P  be  any  point  of  R~  which  cannot  be  joined  to  D  by 

a  simple  curve  wholly  in  R~.  If  there  is  no  such  point  the  theorem  is  granted. 
Otherwise  join  P  to  Z)  by  a  simple  curve  PD  wholly  in  R,  This  curve  will  have 

a  point  in  common  with  the  surface  S.  Let  PE  be  an  arc  of  PD  having  one  end 

E  on  the  surface  S,  but  containing  no  other  point  of  S.  Choose  a  region  S'  of  S 
whose  interior  and  boundary  lies  wholly  \n  R,  and  containing  E  and  the  point 
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common  to  GD  and  the  surface  *S'.  Define  two  assemblages  iV+  and  N~  analog- 
ous to  that  of  Art.  6,  Example  3,  as  follows : 

z  =/(a;.  y)  +  r,  {x,  y)  in  S', 

0  <  r  <  A  for  iV+, 

— 7i  <  r  <  0  for  N'. 

These  can  be  proved  to  be  continua  in  a  manner  analogous  to  that  just  referred 

to.  Choose  a  point  F  on  the  arc  PE,  and  so  near  to  E  that  it  lies  either  in  N'^ 

or  N~.  Suppose  it  lay  in  N^.  Choose  a  point  G  on  GD  in  N~.  Then  F  and  G 

can  be  joined  by  a  simple  curve  wholly  in  N~.  Hence  the  simple  curve  PFGD 

lies  wholly  in  R~,  which  is  contrary  to  hypothesis.  Hence  F  must  lie  in  iV^+, 

and  by  similar  reasoning  P  can  be  joined  to  C  by  a  simple  curve  wholly  in  R~. 

Hence  the  points  oi  R~  form  at  most  two  continua. 
(b)  Suppose  the  surface  is  represented  as  in  the  first  case,  but  let  it  be 

bounded  by  a  simple  regular  curve  having  a  point  Pq  interior  to  R.  If  this 

point  is  a  vertex  there  is  a  point  of  the  boundary  of  S  near  it  which  is  not  a 

vertex,  and  which  lies  in  R.  Hence  we  may  assume  that  it  is  not  a  vertex. 

Let  the  surface  now  be  extended  slightly  past  Pq.  By  reasoning  similar  to  that 

of  the  first  case  it  can  be  proved  that  the  points  oi  R  not  on  this  enlarged  surface 

form  at  most  two  continua.  If  they  form  one  continuum  the  theorem  is  granted. 

If  they  form  two  continua,  they  can  be  annexed  to  each  other  by  the  adjunction 

of  the  points  added  to  the  given  surface,  thus  forming  one  continuum. 

Main  Theorem.  The  points  of  space  not  on  a  given  simple  closed  bilateral 

surface  which  satisfies  Gondition  B  form  two  contintia,  of  each  of  which  the  entire 

surface  is  the  total  boundary. 

Proof.  In  the  neighborhood  of  any  point  of  the  surface  there  are  two  points 

of  different  orders  with  respect  to  the  surface  (First  Lemma).  Hence  the  points 

of  space  not  on  the  surface  form  at  least  two  continua  (Art.  22,  Th.  II).  Divide 

the  surface  into  parts  each  of  which  can  be  represented  in  at  least  one  of  the 

following  forms : 

a:=/(y.z).        or       y=f{z,x),        or        z—f{x,y). 

Discard  these,  one  at  a  time  in  such  an  order  that  each  part  after  the  first  when 

discarded  shall  have  a  portion  at  least  of  its  boundary  in  common  with  a  part 
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already  discarded.  Then  replace  them  in  reverse  order.  By  the  second  part  of 
the  Second  Lemma  each  of  these  except  the  last  replaced  does  not  divide  the 

region  consisting  of  all  space  less  the  points  already  cut  out.  By  the  first  part  of 

the  same  lemma  the  last  part  replaced  divides  the  resulting  region  into  at  most 
ttoo  continua.  Hence  the  points  of  space  not  on  the  surface  form  just  two 
continua. 

Any  point  of  the  surface  is  a  boundary  point  of  each  continuum  (First  Lemma, 
and  Art.  6).  Any  point  not  on  the  surface  belongs  to  one  of  the  continua  and 
hence  is  not  a  boundary  point.     This  proves  the  theorem. 

A  discussion  of  interior,  exterior  and  normals  might  be  made  analogous  to 

that  in  two  dimensions.  More  general  surfaces,  having  edges  or  vertices  may  be 
defined  in  a  manner  analogous  to  the  definition  of  a  smooth  surface  given  in 

Art.  16.  If  such  a  surface  satisfies  Condition  B  (Art.  17),  then  the  foregoing 

discussion  applies  to  it. 
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