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UBRARP

ABSTRACT

This paper describes a new type of array processor (SPEAC) which

could he characterized as an intermediate between ILLIAC IV and the Associa-

tive Processor. The number of processing elements (PE's) is typically IK

but could go as high as 8K. Each PE is a relatively simple unit with about

IK equivalent gates, designed to allow implementation either on a single very

complex LSI chip or on several MSI chips. Each PE plus its memory (PEM) could

then be assembled on one single printed circuit board or ceramic substrate.

Processing is performed in groups of four bits which allows varia-

ble word length. Maximum freedom in data format and instruction format is

made possible by the use of a mi creprogrammable control unit (CU). Therefore,

the machine is quite versatile and can be used efficiently either on floating-

point large precision problems (matrix operations, signal processing, etc.)

or on fixed-point small precision ones (character manipulation, picture pro-

cessing, etc. )

.

PE design is carried out in great detail and a general sketch of

the CU is presented. Operations are described and timed, with particular

emphasis on floating-point addition (20 jusec per PE for 32 bits) and floating-

point multiplication (25 /isec per PE for 32 bits). A few typical applications

are presented along with their time estimates.
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1. INTRODUCTION

Faster computers may be obtained either by improving the raw speed

of the circuits and components or by adopting a better organization, i.e.,

using the same circuits in a more efficient architecture. Indefinite im-

provements in circuit speed cannot be expected due to fundamental physical

constants, the most obvious of these being the speed of light. Therefore,

new approaches to computer organization must be found if projected demands

of computer users are to be met, particularly in the area of large scientific

problems

.

In recent years, a fair amount of attention has been given to non-

conventional organizations and the first two super-computers utilizing these

new concepts will become operational within a few months: the pipeline pro-

cessor CDC-STAR [1] and the array computer ILLIAC IV [2] [3]. Several other

approaches have been proposed in the literature, deserving special mention

the parallel processor, extensively studied by IBM [h~\, and the associative

processor, a type of array processor utilizing an associative memory and

distributed logic [5]« Goodyear Aerospace Corporation has been working on

an associative processor and successful tests have been performed on a re-

duced scale prototype.

An endless number of questions, discussions and comparisons can and

have been raised when the capabilities and handicaps of the different organi-

zations are considered [6]. As usual, one can usually find a specific appli-

cation in which a given architecture excels and a pathological case in which

the same approach fails miserably. It is not the purpose of this paper to

engage in such comparisons. It will instead deal only with a particular



organization: the array computer.

The array processor family of computers has been widely accepted

by the computer community as a cost-effective approach in a particular but

rather important set of applications. In the sequel, this type of architec-

ture is examined and a new approach to the design of an array processor is

proposed in order to take advantage of recent and contemplated developments

in the fields of LSI circuits and solid state memories.



2. THE ARRAY COMPUTER AND ITS APPLICATIONS

2.1 General Description of an Array Computer

ILLIAC IV will be taken here as the "typical" array computer. This

section is not supposed to "be a complete description of ILLIAC IV and a cer-

tain familiarity with [2] and [3] is assumed. Only a few basic concepts are

considered here in order to set the stage for the following discussion.

Figure 1 shows the functional diagram of a classical computer. It

consists of: 1) A memory to hold operands and instructions, 2) A control

unit that fetches instructions from the memory, decodes them and issues con-

trol signals to 3) An arithmetic unit that performs the operations on oper-

ands taken from the memory. The most radical approach to parallelism would

obviously be to duplicate the elements shown in Figure 1 a number (n) of

times providing adequate interconnections between the elements. This is the

multiprocessor or parallel processor approach. Although powerful, this or-

ganization leads to several implementation problems and seems to be imprac-

tical for large n. (The Burroughs B6500 uses this organization with n = k. )
fflclX

One of these problems is the economic burden caused by the multiplicity of

control units since in a sophisticated classical machine the control unit

accounts for rather more than fifty percent of the total gate count. This

leads to the array computer approach, whose functional diagram is shown in

Figure 2. Only arithmetic units and memories are duplicated and one single

control unit (CU) drives the "array" of arithmetic units. Actually not the

whole control unit can be made central since certain control decisions are

operand-dependent (normalization for example). Therefore, a minimum amount

of control is kept local and each arithmetic unit plus its local control will
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be called processing element (HE) . Each PE operates on its own memory ( PEM) .

The term processing unit (PU) will be used to designate a PE with its PEM.

Instructions can be stored either across the PEM's or in a special instruc-

tion memory.

Therefore, an array computer is characterized by the fact that a

single instruction stream is executed simultaneously by at the most n PU's.

The concepts of local indexing, routing and mode control will now be intro-

duced.

The biggest restriction imposed by this type of organization is

obviously that every PE must be performing precisely the same instruction on

the same addresses on its own PEM . These constraints can be relaxed to a

good extent with the introduction of extra hardware to allow: a) local

indexing : each central base address, "broadcast" by the CU to each PE, is

locally indexed, b) mode control : each instruction is locally modified by

the PE's. The simplest form of mode control is to locally decide if central

instruction "I" will be locally executed as "I" or as a no-op; i.e., each

PE can be turned on or off. This is the only type of mode control available

in ILLIAC IV (extreme mode control capability would obviously lead to a multi-

processor approach), c) routing : obviously, for most applications, at a

certain point in the computation PE. may need an operand which is stored in

PEM., i ^ j. Therefore, some way of "routing" operands from one PE to

another is highly desirable. The most complete freedom of routing would be

obtained if a cross-bar switch were provided linking each PEM to each PE.

Naturally, this solution is prohibitively expensive for large values of n.

The simplest type of routing is to link PE. to PE's i-1 and i+1. This is

called "neighbor routing. " Obviously, non-neighbor routing is obtained with



a sequence of neighbor routings.

2.2 Typical Applications and Their Requirements

The obvious application for an array computer is on problems in

which the same operations must be repeated over a set of operands. Matrix

operations fit nicely in this category and therefore this type of machine

will work well on solving systems of linear equations, Fourier transforms,

systems of partial differential equations, etc. Several areas of major

scientific interest are included in such formalizations and the best known

proposed applications for an array computer are: weather analysis and pre-

diction, linear programming, seismic data processsing, hydrodynamic flow

analysis, phased array radar processing, picture processing, etc.

Since a new type of array processor was contemplated, the first

step was to elaborate a list of questions about the features of an array pro-

cessor and submit it to several users in different areas of applications. In

this way an opinion could be formed as to which features are needed for each

application and which compromises would be acceptable.

Users in four areas of application were interviewed: l) weather

problem (WP) , 2) seismic signal processing (SP), 3) linear programming (LP),

and k) hydrodynamic flow problem (HP)

.

The basic questions asked were:

a) How much floating-point operations does your application

need? Could you do with fixed-point only?

b) What precision is needed for your application? How many bits

is the typical precision in the input data?

c) How important is local indexing in your application? To



which extent is local indexing used only as a solution to

poor routing facilities?

d) How much routing is done? Would only neighbor routing be

sufficient? What are typical numbers for non-neighbor routing?

e) Mention any other problems encountered and facilities desired

in your area of application.

It should be pointed out that all persons interviewed are ILLIAC IV

users. ILLIAC IV contains 6k extremely powerful PE's with a complete reper-

toire of floating and fixed point instructions. Words are 6k bits long and

can be used in submultiple precision variants of two 32-bit words or eight

8-bit words. There are facilities for local indexing and routing (accom-

plished through an optimal combination of distance 1 (neighbor) routings and

distance 8 routings). Mode control is on-off only.

The following facts were established by the survey above:

a) Floating point : Floating point seems to be a luxury turned ne-

cessity. All users admitted that they could probably do with-

out floating point by careful scaling of the quantities. They

also admitted that they would hate to be forced to do that. The

consensus is that presently a viable machine should have, if

not hardware floating-point instructions, at least a good, fast

set of floating-point subroutines.

b) Precision : Naturally, the precision requirements are heavily

dependent on the particular application and method of solution:

WP uses 32-bit words although the initial data has a typical

precision of 8 bits only. It is felt that performing computa-

tion on 32-bit words is good insurance against precision erosion
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due to severe numerical error propagation with the methods

presently used. SP receives data from sensors in 13 to ik "bits

precision and operates on 32-bit mode. Incidentally, simple

format conversion of the input data accounts for a considerable

amount of processing time in this application. SP could con-

ceivably be performed with less precision than 32 bits: 18 or

2k bits should be adequate. LP is the application with the

heaviest requirements on precision: I/O is performed in 32-bit

mode but internal calculations use 6k bits to avoid severe

error buildup in LP problems with about U00 equations. In fact,

even 6k-bit precision is inadequate for larger problems and the

use of multiple precision routines is envisioned. HP has been

using 32 bits which is adequate for low precision inputs. How-

ever, k8 to 6k bits would be ideal for future applications.

Finally a few special but important applications need much less

precision. Picture processing can be done with k to 8 bits of

precision and a recently developed area--linear programming with

Boolean variables --uses 1-bit precision for the variables and

"small" integers for the coefficients.

The conclusion is obvious: a versatile machine should

have as many precision modes as possible. This was the case

with serial by bit machines which featured variable word length.

Speed requirements forced the introduction of parallel proces-

sing of a word and the variable word convenience and efficiency

was lost except for some low-precision instruction variants as

the ones featured in ILLIAC IV.
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c) Local Indexing : This seems to be a very important feature,

heavily used by almost all application. Its main use is

definitely to avoid slow routings in a "skewed" type of matrix

storage [3]» However, a few other types of use for local

indexing did appear.

d) Routing : Routing is the most difficult problem in an array

computer. Complete and unlimited routing facilities are eco-

nomically impossible for large values of n. The ILLIAC IV

approach did satisfy its users, however. Definitely the most

frequent type of routing is neighbor routing. Odd routing dis-

tances do appear, however, in a few important cases: table
n

look-ups and log-sums (i.e., the problem of obtaining E a.

i=l
X

where each a. is stored in a different PE) are two examples.

2.3 Considerations on the Number and Complexity of the FE's

The array-processor family of computers has at present two well

established members: ILLIAC IV and the Associative Processor (AP) . Both

these machines were extensively studied and are actually being built. In a

sense, however, they represent two extremes in this design philosophy: ILLIAC

IV has a relative small (6h) number of PE's, each an extremely powerful

floating-point word-parallel unit with 13K gates. The AP, described in [5],

12 15
has a very large number (on the order of 2 - 2 ) of PE's, each an extremely

simple fixed-point serial-by-bit unit containing only 32 gates. Each ILLIAC IV

PE has a floating point add time of 175 nsec. and a floating-point multiply

time of 225 nsec. for 32-bit operands. The AP has a fixed-point add time of

35 /usee, and a fixed point multiply time of approximately 1 msec, for 32-bit
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operands. Therefore, a 12K PE AP could add fixed point about as fast as

ILLIAC IV. Multiplication would still be much slower (about 20 times slower

even for a 12K PE AP) . Routing capability in the AP is extremely limited:

only neighbor routing is permitted, on a bit-by-bit basis. PEM is 2K 6^-bit

words long in ILLIAC IV and only 256 bits long in the AP. However the AP's

PEM is an associative memory allowing simultaneous interrogation of n bits

(n is the number of PE's). Obviously, ILLIAC IV s conventional PEM's could

also be considered as an associative memory allowing simultaneous interroga-

tion of 6k words

.

It seems obvious that the AO is a much less versatile machine than

ILLIAC IV, i.e., its field of application is quite limited. However, it may

come as a surprise that in the problems to which it is well suited (especially

radar tracking applications), the AP is quite cost-effective. In fact, its

proponents argue that it can perform those special jobs at the same rate as

ILLIAC IV but at l/30th of the cost.

A few generalizations are in order: One could consider a set of

array computer M.. , M , ... , M each with a simpler (slower) PE than its

predecessor but with a larger number of PE's in order to keep constant the

average speed. Figure 3 illustrates the number of PE's x speed of each PE for

these machines. Figures h and 5 represent some rough qualitative estimates

about the versatility of these machines (i.e., how large is the set of appli-

cations for which they are well suited, i.e., can compute approximately n

times faster than a sequential machine with same speed as each PE) and the

cost-efficiency of such machines for such suitable problems. The estimate in

Figure k is practically obvious: the sequential machine (n=l) is the most

versatile. As n grows, the number of problems that the machine can handle
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efficiently obviously decreases. Figure 5 is harder to justify. In fact, it

is a guess "based in two extremes: ILLIAC IV and the AP. A third machine,

however, to be introduced later, does seem to verify this hypothesis: as n

grows and each PE is simplified, modern integrated circuit techniques (LSI)

allow a very rapid decrease in the cost per PE.

These considerations justify the idea of exploring the possibilities

of a third type of array computer: the SPEAC (for small PE Array Computer).

This machine would be between the AP and ILLIAC IV in number of PE's and PE

power and hopefully would achieve a happy compromise between ILLIAC IV s rela-

tive versatility and the AP's cost-efficiency. The initial goals were:

n
SPEAC ~ 10 n

iLL IV
t0 10° n

iLL IV

PE speed
spEAC

~ ^ PE speedy ^ to -^ PE speedy
Iy

gates per PEspMC
~ ^ gates per PE^

Iy
to -^ gates per PE^

2

The remainder of this paper is dedicated to exploring the feasi-

bility and characteristics of this new machine.
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3- SPEA.Cs HARDWARE

Initially, a few general considerations are made in order to estab-

lish the design goals that dictated the structure chosen for the hardware.

The multiplication algorithm is also presented as a preface to the actual

hardware description since the PE has "been specifically designed to implement

this algorithm efficiently.

3*1 General Considerations

a) The PE will be simple enough and built in a quantity high enough

to warrant the expense of building special-purpose MSI to LSI

integrated circuits . At first, it was hoped that a whole PE

could be contained in a single LSI chip. This still seems to be

possible, at least with the kind of technology foreseeable within

a decade: a bipolar integrated chip with density on the order

of 1 to 2K equivalent gates would be needed. However, even if

one does not count on such extremes of built-to-order LSI, the

proposed design could be implemented using a few dozen standard

or nearly standard MSI chips, allowing an entire PU to be packed

in one printed circuit card .

b) The results of the survey mentioned in Section 2.2 indicate the

need of some floating-point capability. Naturally, entirely

hardware-implemented floating-point is out of the question in a

simple PE. However, the hardware should allow efficient imple-

mentation of floating-point routines . Serial processing, by

bit or by groups of bits is the only way to keep the gate count

low. This leads naturally to variable word length as a means
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of satisfying the conflicting precision requirements outlined

in Section 2.2.

c) Most contemplated applications have a high frequency of multi-

plications, typical of scientific problems. Therefore, multi -

plication should be as fast as possible , ideally almost as fast

as addition as is the case in the ILLIAC IV PE.

d) Due to the existence of a CU, the PE must be strictly syn -

chronous and local control must be minimized . Any synchronism

or -data-dependent optimization is wasted since the CU must

always wait for the worst-case which almost certainly occurs for

large n. This rules out certain classical methods like: in-

creasing the speed of multiplication by adding only when the

multiplier bit is one and simply shifting when it is zero.

Instead, the CU must always output micro-orders for the worst-

case and:

either: the method is such that the extra operations are no-ops

for non-worst-case conditions (example: add on a zero

multiplier bit);

or: some local control (typically a flip-flop) will inhibit

certain steps in non-worst-case conditions (example:

normalization, recomplementation)

.

e) An accumulator is impractical in a variable word length machine

since it would have to be as long as the worst-case-length.

Therefore, variable word length machines are typically 2- or 3-

address machines. Three addresses are quite desirable since

they avoid the frequent duplication of operands (to avoid its
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destruction) found in 2-address machines. The classical short-

coming of 3-address machines, unnecessarily large instructions

when the third address is equal to a previous one, can easily be

avoided by adopting a variable length instruction format . There-

fore, each instruction (op-code) will have a large number of

variants with different lengths, from a minimum of zero ad-

dresses (in this case the old contents of the address registers

would be used as addresses) to a maximum of six addresses,

three basic addresses plus three addresses for local indexing.

Word length of each operand and of the result might also be

specified in the address part. The resulting instruction format

is illustrated in Figure 6.

basic op-code variant
v_

as many addresses as specified by
the variant code

Figure 6. Instruction Format

f) Timing considerations: In order to satisfy the initial esti-

mates set forth in Section 2.3, an addition time of 3 to 30 usee

and a multiplication time of k to kO usee are needed. Consider-

ing the basic PEM cycle time of the order of one-half usee (this

assumption will be explained in Section 3-2), and noticing that

1 to 3 PEM's cycle times (depending on the amount of interleave)

are required per serial operation of the PE, one concludes that

a 30 to 60 usee addition time is obtained in a bit-by-bit PE for
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32-bit fixed point addition. Straight multiplication will take

32 times as much or about 1 msec* This is far too slow and a

serial by hexadecimal digit PE (i.e., serially processes chunks

of h bits) is now considered. Addition time (32 bits, fixed

point) now goes down to 8 to 15 /isec which is convenient.

Straight multiplication, taking 32 times longer, is still quite

slow. The next step would be a serial by byte PE but this pre-

sents two problems: firstly, normalization is either rather

complicated and slow or it is done in 8-bit increments causing

an unacceptable erosion in precision; secondly, the number of

gates in the PE will be quite larger. Therefore, a serial by

hexadecimal digit PE seems to be the best compromise: normali-

zation in k bit increments (i.e., exponent base = 16) is quite

acceptable and widely used in present computers. A somewhat

elaborate multiplication algorithm (described in the next sec-

tion) will be adopted to bring the multiplication time down to

acceptable values.

;) Since the basic unit of data in the PE is one hexadecimal digit

instead of a whole word, the machine is capable of accepting

several different word formats provided the CU is able to gener-

ate an appropriate microsequence for that format. This immedi-

ately suggests the. idea of micro-programming . Therefore, no

particular word format will be picked and the PE control wire set

will be chosen as carefully as possible in order to maximize the

number of formats and operations that can be dealt with by

writing adequate micro-programs at the CU level. The variable
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format feature can be quite useful in certain applications

(like seismic signal processing) in which format conversion

accounts for a significant percentage of the processing time.

Summing up, the following design goals are thus established for SPEAC:

- PE built with MSI and LSI integrated circuits.

- One printed circuit card per PU.

- Variable word length.

- Multiplication not much slower than addition.

- Up to 3 addresses (possibly indexed) per instruction.

- Variable instruction length.

- PE serial by hexadecimal digits.

- Variable word format.

- Microprogramming capability.

3.2 The Multiplication Algorithm

As pointed out in Section 3-lj "straight" multiplication techniques

(i.e., bit-by-bit) yield an unacceptably high multiplication time as compared

to the addition time. On the other hand, ver-high- speed multiplication of the

type used in ILLIAC IV requires a massive increase in the number of gates. The

best compromise for SPEAC seems to be some form of hexadecimal multiplication

algorithm allowing multiplication times roughly proportional to I\n where N is

the number of hexadecimal digits in the operands rather than the number of

bits. It is also required that the algorithm be able to generate the product

without the need to store double precision partial products since the PE has no

register capable of holding long numbers and storing partial products in the

memory will be slow and require the use of a portion of PEM as "scratchpad area.

"
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The following multiplication algorithm satisfies the requirements

above and is proposed for SPEAC: Consider the multiplication of two numbers

A and B, each containing n+1 hexadecimal digits:

A = a. + a n 2 + a^2 + . . . + a. 2 + . . . + a 212 1 n

k 8 kl hn
B = K + L2 + b^2° + ... + b.2 + ... + b 212 1 n

(1)

(2)

The double precision product M will be written as:

k 8 kl
M = A X B = mn + mn 2 + m^2 + . . . + m.2 + . . . +12 1 2n+l

multiplying (l) and (2) as polynomials:

2
M2n+l)

(3)

h R
M = A X B = a

Q
b + (a^ + a

1
b
Q
)2 + (a

Q
b
2

+ a^ + 3,^)2 +

1
;; ,.1,.. i 2
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i

2
Un
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.

<3=0
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'2n M
E a. b . . 2 + ... + a b 2

. . j-n n-j+i I n n
i3=l

M2n)

or:

A:
n / i

,
. \ 2n /2n

M = E E a.b. .(2
41

) + E E a. b . . (2^)

From (3) = (k)

(k)

m = (aoVmod 16 ;
C = Wdiv 16

(i ' e- Vo =
°0 (2 } + V
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n
b_) ,.,/-;
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c
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o
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o
b
i

+ a
i
b
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1TI.

i < n

m

i-l
+

.^
a
j
b
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2n

a
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r
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2n
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m
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n
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Therefore, the product may be computed as follows:

- multiply a and b , the two low order digits of A and B; the

h
result has two hexadecimal digits: cn (2 ) + mn ; m is the low

order bit of the product and can be stored (in double precision

multiplication) or discarded; c 'is kept in an accumulator.

- multiply: a X b ; add to the accumulator;

multiply: a X b ; add to the accumulator; the accumulator then

contains cm * store or discard m and keep c in the accumulator

and so on, using the equations (5) to determine each c. and m.

.

It is easy to see that (n+l) pairs of hexadecimal digits must be

multiplied to compute the product of two numbers each with (n+l) hexadecimal

digits. It should also be noticed that if a single precision product is de-

sired, the product can replace one of the operands: m , m , ... , m are

computed only to accumulate the carry and discarded, m is the first digit

that may be in the final product and can be stored either "on top" of a or

b since these two digits are not needed anymore to form the product. Finally,

nu replaces a (or b ). If m. -, = c =0, then the product is stored cor-^n ^ n x n' 2n+l n ' *

rectly. However, if m -. = c ^ 0, the product must be normalized, i.e., each

digit is shifted one to the right, m is discarded and c = hl. n is then
n n 2n+l

stored on the address of a (or b ).
n n

The number of memory accesses required is:

Memory accesses = 2W + N + (N-l) + N

operand stores fetches stores
fetches

J v.

multiplication normalization
of the mantissas
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where N = n+1 is the number of hexadecimal digits in each operand. Notice,

however, that in the computation of each m. , one operand fetch may be saved

since the operand is already available from the last operation in the previous

computation. This saves N-l operand fetches.

Therefore: Total number of memory accesses = 2N(N+l), including

normalization.

Finally, it should be pointed out that the operations may be arranged

in such a way that not only (N-l) fetches are saved as described but also each

address is modified only in unitary decrements or increments. Since the ad-

dress registers will have the capability of unitary increment or decrement,

only the addresses of a and b are needed initially. These addresses are then

possibly indexed and the rest of the multiplication does not require further

address broadcasts. Figure 7 illustrates the order of operations for the

multiplication of two k—digit numbers.

3. 3 The System as a Whole

A summary description of the complete system is initially presented

in order to establish the function of each component and their interconnec-

tions. Figure 8 is a diagram of the global structure. The components are:

a) The FU array, containing "a large number" of PU's arranged in

rows. Each row has 128 FU's and the number of rows is not fixed:

with the exception of "row gating, " nothing in the machine is a

logical function of the number of PU rows. Therefore, any number

of PU rows can be used in SPEAC provided that the row gating

contains that same number of inputs. There are, however, some

practical limits: too few rows (say 1 or 2) will lead to an
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a b (initial address broadcasts and fetches)

a^b + a„b

A A'EPP '

n

ip
&
2 + Vi + y,CTA A — A -

a^b + a b + a b + a b
QOV A — A — A

—

* b h- a b + a b

CTA —A —

A

b a + b a

LTA^ —

A

J

D No fetch or address modification

A Add 1 to the address and fetch

— Subtract 1 from the address and fetch

Figure 7- Fetches in Multiplication
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COMMON ADDRESS BUS

CORNER
MEMORY?

CONTROL

-DATA (t BITS)

WIDE DATA PATH

Figure 8. Global Structure
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uneconomical machine since each PE is relatively slow and good

average speed can only he obtained by using a large number of

PE's. Therefore, the speed obtainable with 1 or 2 rows would

not justify the investment represented by the components needed

to drive the array: CU, mass memory, etc. On the other hand,

too many rows will result in poor I/O speed and routing speed

(since these operations are performed on a per-row basis)

causing a degradation in system performance. Based on these

considerations, an interval of k-6k PU rows has been established

as the most useful range. In particular, 8 rows were chosen

for the "typical" SPEAC. Therefore, for the remainder of this

paper, a 102 Ij- PE machine will be described.

b) The row gating switch which is a 512-bit, bidirectional, 1-out-

of-8 selector driven by a row address supplied by the CU. This

switch selects one of the PE rows for I/O transactions with the

mass memory.

c) The I/O buffer register which is a long, shiftable register to

buffer the i/O flow between mass memory and PE array. It should

be pointed out that this register has twice the length of the

mass-memory word and can be shifted by any multiple of ^--bits in

a maximum of 7 clock pulses. These two features enable the i/O

buffer register to provide routing facilities for SPEAC. The

method will be detailed in Sections 3-7 and k.7.

o

d) A mass memory system with at least 10 bits of relatively fast

(l to 3 jusec cycle time) random-access memory. Bulk core is the

present choice for the mass-memory, probably backed-up by a
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hierarchy of large capacity disk and tape. The random-access

mass memory serves as a common pool of data for the different

parts of the system and is directly accessible to the CU, HJ

array, corner-memory and other peripherals.

e) A corner-memory which is a special-purpose peripheral device

operating on the mass memory in the same fashion as an indepen-

dent I/O channel. This device is capable of reading from mass

memory 128 words with 128 hexadecimal digits each; the i— word

read can be written as: a._ a._ ... a. n _ Q , where each a., is a
ll i2 il2o ij

hexadecimal digit. After being loaded with rows in this way, the

corner-memory can write back in mass memory in a column-wise

fashion: i.e., the i— word written will be: a,, a_. ... an _ Q ..
' li 2i 12oi

Therefore, the device can read a matrix of 128 x 128 hexadecimal

digits row-by-row and rewrite the same matrix column-by-column.

This function is desirable in SPEAC to convert data written in

mass memory by the array into a form that will allow the same

data to be easily handled by the CU. The corner-memory is not

an essential part of the system but has been included for the

sake of completeness. It should also be mentioned that several

other peripheral devices (tape decks, printers, etc.) can be

attached to the system in the same way as the corner -memory.

f

)

A control unit (CU) which sends control pulses to all other units

in the system besides having full processing capability on its

own. Actually, the CU can be considered a standard serial high-

speed general purpose computer in which several modifications

were introduced. It must accept three different types of
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instructions: CU instructions, PE instruction and l/O instruc-

tions. CU instructions are completely processed in the CU

although operands can he received from the array and results

""broadcast" to the array via the common data bus (CDB) which

will be described shortly. PE instructions are decoded in the

CU and each corresponds to a micro-program which is executed and

generates a set of control pulses or micro- sequences. These are

sent to every PE in the array via the control lines. Finally,

I/O instructions are decoded in the CU and sent to one or more

independent i/O channel(s) which drive the row gating, mass mem-

ory, I/O buffer register and corner-memory. The CU must also be

compatible with the mass memory used in the system since this

memory will be shared by the CU and PE and serves as a common

pool of data. The CU can interchange data with the PE's via the

common data bus, one hexadecimal digit at a time. However, the

only high capacity data link between CU and array is via the mass

memory. Notice also that SPEAC's programs are not stored in the

PEM's but in the CU's own internal fast memory and, for large

overlayable programs, also partly in the mass memory.

The control unit is linked to the PE's by three buses and one inter-

rupt wire. The first bus is a 12-bit common address bus (CAB) in the direction

of CU to PE only. The CU can send addresses to the array via CAB. These ad-

dresses can then be stored by each PE in internal address registers and used to

access PEM. The second bus is a k-bit bidirectional common data bus (CDB)

whose use has already been described. The last bus is a set of approximately
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80 control lines which control every PE function. The interrupt wire is a

single line connecting every PE to the CU. It is used to send to the CU an

interrupt request which orginated in a PE and must be serviced by the CU.

Each PE is linked to the row gating by a bidirectional U-bit I/O

bus (IOB) which is not common. All the I/O buses (one from each PE) are con-

nected to the row gating which selects one group of 128 IOB's (corresponding

to one PU row) for connection to the I/O buffer register (lOBR).

It is now possible to describe how a program is processed in SPEAC:

Program and data are assumed to be initially on tape. The tape is loaded into

SPEAC s mass-memory and from there the program is loaded in the CU memory and

a portion of the data is transferred to PEM. Processing is then performed

simultaneously with further transfers between PEM and mass memory with the

latter serving as overlay memory for the relatively small PEM. The results of

the computation are transferred from PEM to mass memory and can then be printed

or stored in tape via a peripheral device.

Each component of the system will now be analyzed with special em-

phasis on the PU.

3-k The Processing Unit

3.U.1 PE Memory

Semiconductor memories were chosen for the PEM's for two basic reasons:

a) Small size, compatible with the LSI chips that make up the PE.

This way each PU could be entirely mounted on a single printed

circuit card or on a ceramic substrate.

b) Low price per bit even in small size. This characteristic was

needed since each PEM in SPEAC is necessarily small for economic
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reasons: 8K "bits is the proposed "basic size -with provision for

expansion up to a maximum of 32K bits per PEM.

The next step was to choose between bipolar and MOS memories. At

the beginning of the investigation, a survey of semiconductor memories [7]

indicated that MOS LSI held the greatest potential for this application:

large densities (1000 "bits per chip is already commercially available), minute

power dissipations (50 juw per bit is obtainable), acceptable speeds (less than

1 /isec cycle time is typical) and low price ($.02 per bit is commercially

available). Therefore, the following PEM chip was postulated for use in SPEAC:

MOS LSI, 102^ bits, 50 juw per bit power dissipation, 500 nsec cycle time , price

less than $20 in quantities.

Since progress in the area of semiconductor memories has been so fast,

a reevaluation of the design choice for SPEAC !

s PEM was undertaken at the end

of the investigation. It was then discovered that the case for MOS was not as

clearcut as before, due to the following factors:

a) Although MOS currently appears to have a distinct density and

price advantage, it should be noted that recently announced bi-

polar processing technology will allow 102U bit and larger bipolar

memories with not much increase in power requirements. These

devices will be available for delivery about mid-1972 at about

MOS prices. With power reduction techniques they take about the

same or less power than MOS and are considerably faster with an

80 to 100 nsec cycle time.

b) It should be noted that the choice of MOS requires an additional

power supply level. If bipolar is chosen, the same supply used

for the PE logic can be used by PEM. This is more economical



28

since it is less expensive to buy "x" additional amps on an

existing supply than to "buy the first "x" amps on a new voltage

level,

c) If MOS is used, an interface is normally needed to adjust MOS

voltage level to bipolar, thus increasing the number of gates

per PE. Moreover the larger densities in MOS are obtainable in

dynamic memories; i.e., memories in which the information is

stored as charge in MOS P-N junction capacitance. These memories

are thus volatile and must be refreshed as often as every 2 )usec

at higher temperatures. This is unacceptable in SPEAC since it

would introduce frequent delays in processing to refresh PEM.

Therefore, static MOS memories must be used and density with these

memories is not better than with bipolar. Static MOS is also

slower unless decoding is separately performed with bipolar logic.

In conclusion, the factors considered above indicate that PEM would

probably be built with bipolar devices or at least static MOS with bipolar de-

coding if prices drop as much as predicted. In fact a hybrid chip already

exists which, if obtainable at a price small enough, would be an excellent

choice for PEM: It consists of 8 MOS static memory chips with 256 bits each,

mounted on a ceramic pack with bipolar decoding. The organization is 102^ 2-bit

words making only four of these elements needed for the PEM.

The devices are made by T.I. (SMA 2002) and have a typical cycle time

of only 150 nsec. A block diagram is presented in Figure 9-

Therefore, although the basic cycle time of 500 nsec ( 300 nsec access

time) is retained for the remainder of the paper, it now appears that it is a

little pessimistic. Significant gains in performance could be obtained in some
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operations with the faster memories which would probably be available if SPEAC

were to be built in the near future.

ARRAY SELECTm
ADDRESS -

Ba-Ta-IR
MTC

R/W
READ STROM

c

c

VM Vcc* Vcc*2

•I- 4-1-

b

z>

MOS STORAGE

READ

WRITE CONTROL

GND

Vcc-

SENSE

AMPLIFIER

DATA
OUT

Figure 9- Block Diagram of a Possible PEM Chip

Since the basic unit of data in the PE is one hexadecimal digit, PEM

is organized in ii-bit words. Each hexadecimal digit is addressable in the mem-

ory. It is also extremely important to adopt an access technique for PEM which

will avoid I/O bounding of programs as much as possible: PEM contains only 2K

hexadecimal digits or 2^6 32-bit words . Therefore, for many problems the data

will not fit entirely in PEM and mass memory is used as back-up. It would be

desirable then to be able to exchange data between PEM and mass memory and,

simultaneously, allow the PE to access PEM to perform normal processing. This

justifies the adoption of a two-port system: PEM is divided in two modules ,

each with IK hexadecimal digits and the two modules can be accessed simultane-

ously. Basically, one module is replenished from mass memory while the other

module is used for operations. In this way, PEM can almost be considered as a

fast scratchpad memory for the PE's with mass memory being the main memory.
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Since (as will be shown in Sections 3-5 and k) a row of 102^ 32-bit numbers

can be exchanged between PEM and mass-memory in about 128 usee and the basic

floating-point operations take on the order of 25 usee, a number brought to

PEM must be used at least six times in operations before being overwritten in

order to avoid I/O bounding. This ratio of 1 to 6 is a comfortable figure for

a machine intended for scientific applications. It should also be pointed out

that l/0-PE overlap is not the only use of the two module system: if I/O is not

occurring, the two modules can be used to overlap fetches for CU operations and

PE operations or even for the simultaneous fetch of two operands in a PE opera-

tion if each operand happens to be in a different module. It is the responsi-

bility of CU's final station (FINST) to assign use of the two PEM modules in an

optimum way (see Section 3*5)

•

3A.2 PE Data Registers

The algorithm described in Section 3-2 can be very efficiently mech-

anized using the register structure presented in Figure 10.

_A_

t—

i

1 1 1 1 1
1 1—

1

r

1 1 1 1 1 1 > 1 1

1 1 1 1 1 I 1 1 1 1 1

1 1 1 1 1 1 i_

INCREMENT
Ac

REGISTER A

C-F—O ADD CONDITIONAL

O ADD UNCONDITIONAL

REGISTER B

Figure 10. Basic Data Register Structure
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There are two data registers: A and B. Register B is a simple,

non- shiftable 4-bit unit. Register A is divided into three parts: A , A
r 7 m

(for right and medium) with 4 bits each and A (for carry) with 12 bits.

Register A is fully shiftable, right or left, bit-by-bit. There is also a

fast 4-bit shift mode in which the contents of register A are shifted (left or

right) one hexadecimal digit in one operation. The right fast 4-bit shift is

not essential to implement the multiplication algorithm efficiently but can

be very useful in other applications. It should also be pointed out that part

A of register A is connected as a counter and a pulse to the "increment A "

c c

control will cause the contents of A to be incremented by one unit. Finally,

registers A and B are linked by a 4-bit parallel adder which, when activated,

replaces the contents of A with the sum of the contents of A and B. The
m m

adder can be used unconditionally or conditioned to the presence of a "one" in

location A . The carry generated by the adder can be fed to the "increment
r

A " control,
c

To use the structure of Figure 10 to multiply using the polynomial

algorithm, two hexadecimal digits a. and b. are placed in registers A and B

respectively. Multiplication is accomplished with a sequence of four add con-

ditionals and shifts right 1 bit. Register A is then shifted left fast 4 bits-

and a new multiplication can be performed with the new product automatically

added to the previous one(s). Registers A and A then work as a small accumu-

lator in multiplication. Note that in the polynomial multiplication of two

numbers, each n hexadecimal digits long, the worst case carry that can occur

is less than log^n + 4 bits. Therefore, the number of bits needed in A is
2 c

given by log_n +4. A reasonable value for n is 64 which leads to an
^ to2 max max
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A 10 bits long. Since in SPEAC register length is naturally a multiple of k

bits, 12 bits were reserved for A . For the same reason, the address regis-

ter's length was chosen as 12 bits allowing up to kK hexadecimal digts per

PEM module although only IK is contemplated at this stage.

3.^.3 PE Description

The data register configuration described in the previous section

was used as a kernel around which the whole PE was designed. Figure 11 pre-

sents a simplified PE diagram showing all registers and data paths. For a com-

plete logical diagram, Figure 13 should be consulted. In order to reduce the

size and complexity of Figure 13, a number of special symbols were adopted.

These are defined in Figure 12 and deal with representing groups of k or 12

wires in a concise way. Only a few logic elements appear explicitly in Figure

13; most logic is represented as logical blocks called packages. These pack-

ages are numbered and labeled with a name describing their function; i.e.,

l-of-8 selector, type D flip-flop, inverter, etc. The complete diagrams of

the logic inside each package are presented in Appendix A. It should be noted

that most packages perform standard logic functions and are availabe as SSI

or MSI chips. This aspect will be further pursued in the section on imple-

mentation.

3.^4. 3*1 Registers and Buses

Each PE contains nine registers with a total capacity of 65 bits.

Table 1 lists each register, its capacity, function, and special features.

Buses are used to provide data paths between the different registers. This

allows maximum flexibility (since each register can be directly loaded from

any other register) at a reasonable cost. Two types of buses are needed: a
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12-bit address "bus, linking all address registers and the CAB, and a U-bit

data bus linking all the remaining registers, the CDB and the IOB. Since it

was decided that both PEM modules should be simultaneously accessible, one

pair of buses is dedicated to each PEM module. Therefore, there are four

buses altogether: two address buses (Al and A2) and two data buses (Dl and

D2). Buses Al and Dl are linked to PEM module 1 and buses A2 and D2 are linked

to PEM module 2. Figure 11 clearly shows all the connections to each bus. In

this figure, an arrow into a bus indicates that the given data can be gated

into the bus; an arrow out of a bus indicates that the contents of the bus can

be gated into the given unit; a dot in the intersection of a wire and a bus

indicates a permanent connection of the wire to the bus. It should also be

noticed that every line connected to an address bus represented in fact 12

wires (except the line into SM which is a k-bit line) while lines connected to

a data bus stand for h wires with the exception of the line into EE which is

a single bit line. A very rough approach to the number of gates needed to im-

plement the bus system can now be obtained: counting each arrow associated

with a data bus as k gates and each arrow associated with an address bus as 12

gates, one obtains a total of 35^- gates. This represents about a third of the

total number of gates used in the PE with flip-flops accounting for the second

third and arithmetic, decoding and local control using the remaining gates.

It is important to point out that PEM module 1 is permanently con-

nected to bus 1 and module 2 to bus 2. Therefore, if an operand is in module

i then bus i must be used to fetch that operand. On the other hand, inter-

register transfers can use any bus that is available. This fact will be im-

portant in the design of the CU's final station (FINST).
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Register Capacity
(bits)

Function Special Features

A Shiftable (bidirectional, 1- and U-bit distances)

A 12 address/ Can count up
c

data

A
m

k data Each bit is individually enabled

A
r

k data None

B h data None

h 12 address Can count up or down

X
2

12 address Can count up or down

X
3

12 address Can count up or down

LC k local
control

Each bit is individually enabled

EE 1 mode None

Table 1. PE Registers
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3- U. 3-2 The Arithmetic/Logic Unit

The simple adder of Figure 10 was replaced in the final design by a

more sophisticated arithmetic/logic unit (A/L unit) which is capable not only

of adding but also of performing several other arithmetic and logic functions

as well as comparisons. This unit, whose logical diagram can be seen in

package 9 (Appendix A), is currently available from several manufacturers in

a 2H-pin MSI bipolar chip. There are five control lines in the A/L unit,

allowing a choice between 32 functions (not all different). Table 2 shows

these 32 functions.- There is also an A = B output to test for equality. Other

comparisons can be performed by subtracting the two inputs and analyzing the

output carry. Input B to the A/L unit is always register A . Input A can be

selected among Dl, D2, reg B and reg B. This allows one to compute not only

(reg B) - (reg A ) (by picking reg B as the A input to the A/L unit and sub-

tracting) but also (reg A ) - (reg B) (by picking reg B as the A input and

adding) . Inputing to the A/L directly from Dl or D2 is not essential but speeds

up several operations by avoiding unnecessary loads into B only to use the A/L.

The output of the unit can be gated either into A or into A . Another impor-

tant feature is the possibility to gate the output of A/L into A shifted one

to the right. This speeds up multiplications considerably since two hexadeci-

mal digits can be multiplied in k clocks instead of 8 (i.e., k add and shift as

opposed to h adds and k shifts).

3.1+-3-3 Scratchpad Memory

A small (16 hexadecimal digits), fast scratchpad memory (sM) has

been added to the final version of the PE. This unit is available in a 16-pin

MSI chip (see package 8, Appendix A) and can read or write one hexadecimal

digit in one PE clock. Although not essential to the PE, sM can be added at a
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S
3
S
2
S
1
S M = 1

(logic functions)

M = (arithmetic operations)

C =
n

C = 1
n

3000

0001

F = A F = A

F = A v B

F = A + 1

F = (A v B) + 1F = A v B

0010 F = AB F = A v B F = (A v B) + 1

D011 F = F = 1111 F =

D100 F = AB F = A + AB F = A + AB + 1

0101 F = B F = (A v B) + AB F=(AvB)+AB+l

DUO F = A© B F = A - B - 1 F = A - B

3111 F = AB F = AB - 1 F = AB

1000

1001

F = A v B F = A + AB

F = A + B

F = A + AB + 1

F = A + B + 1F = A© B

1010 F = B F = (A v B) + AB F=(AvB)+AB+l

1011 F = AB F = AB - 1 F = AB

1100 F = 1 F = A + A F = A + A + 1

1101 F = A v B F = (A v B) + A F=(AvB)+A+l

1110 F = A v B F = (A v B) + A F=(AvB)+A+1

1111 F = A F = A - 1 F = A

Table 2. Functions Provided by the A/L Unit



1+0

low cost and provides a dramatic improvement in performance. Floating-point

addition, for example, is speeded up by a factor of three. The main use of

sM is to avoid repeated fetches of the same digit in multiplication and to

store partial results before normalization. It should be noticed that since

sM receives addresses from the address buses (four low order bits only are

used), it can be locally indexed, i.e., each PE can locally modify an address

in sM before performing an sM fetch. This is extremely valuable in floating-

point normalization. Therefore, sM is the fourth element in SPEAC's memory

hierarchy which is, from the smallest and fastest unit to the slowest and

largest: sM - PEM - mass memory (random access) - large capacity disk.

3.U.3-^ Address Registers

There are three address registers in the PE: X
n

, X and X .

These are simple, non-shiftable 12-bit units with additional logic to enable

them to act as up/down counters (see package 11, Appendix A). The address

registers are normally loaded from the CAB with a base address broadcast by

CU to all PE's. This base address can then be locally indexed. Successive

hexadecimal digits of an operand can be accessed by incrementing or decrementing

an address register using the up/ down counter feature and avoiding frequent use

of CAB and repeated local indexing operations. It is now clear that a memory

transaction may use as address one of four sources: registers X.. , X
p , X^, and

CAB. The common address bus can be directly used as the address source in I/O

transactions or in operand fetches when local indexing is not necessary. This

use of CAB indicates that one could possibly eliminate X and still obtain good

performance since, in most cases, for PE operations only two addresses are

simultaneously needed; in the fetch phase of the operation, the addresses of
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the two operands are stored in X and X . In writing the result two other

addresses are needed in X and X --the address of the result and an sM

address. X is used, most of the time, to hold I/O transaction addresses. It

is felt that eliminating X would cause frequent conflicts in CAB use and a de-

gradation in performance. Only extensive simulation can indicate whether such

degradation is small enough to warrant removal of X for a very significant

saving in the number of gates.

3-^. 3-5 Register A

There are eight possible sources of input data to each of the

parts of register A. Six of these eight are common to A , A and A . They
c m r

are: l) shift A right one, 2) shift A left one, 3) shift A fast k right,

k) shift A fast k left, 5) load with Dl (Al in the case of A ), and 6) load

with D^ (A„ in the case of A ) . The seventh input option is the add and shift
2 2 c

especially implemented to speed up multiplication. The effect of this input

is the following: the output of the A/L unit is loaded into (A , A , A ,' m
2

m
i

m

A ), A is shifted right one and A is either shifted right one( if the out-
r
3

- r c

put carry for the A/L unit is zero) or is incremented by one and shifted right

one (if the output carry from the A/L unit is one). Finally, the eighth and

final possible input to A is: for A and A , the output of the A/L unit (used

for addition, subtraction and logical operations); for A , the last input
c

possibility is simply A incremented by one (i.e., the counter feature of A )

.

Input control is independent for each of the three parts of regis-

ter A. Therefore, register A shifts end-around as a whole only when A , A and70 J c m

A are simultaneously loaded with the same shift input. Several other useful

results may be obtained when only one or two of the parts of A receives a shift
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command. For example, loading A with a shift fast k right enables one to

copy A directly into A without having to use Dl or D2. A direct swap of the

contents of A and A can "be achieved by simultaneously loading A with a
m r to m

shift fast k left and A with a shift fast k right. There is a control wire to
r °

determine whether a distance 1 shift is to be end-off or end-around. Distance

k end-off shifts are obtained by shifting only two of the parts of A.

A and A have a single load control which, when OFF, preserves

the contents of the register and when ON loads the register with the selected

input. Load control for A is more sophisticated and allows not only "load"

and "no-load" but also a conditional load dependent on the value in Dl or D2.

In this conditional load, bit i of A is loaded only if bit i in Dl or D2 is' m

ON. This is very useful in "assembling" a hexadecimal digit out of specific

bits of two other digits as is the case in inserting a sign bit in a number.

It is important to notice that Al or A2 can be gated into A thus

allowing addresses to reach the data handling part of the PE. This feature

is used to modify addresses in local indexing. Also A is a counter and can

be used as such when not needed to accumulate a carry in multiplication. This

provides a general purpose 12-bit counter in the PE which is extremely useful

in several applications. Therefore, A has a quadruple function: a) it

provides linkage between the address portion and the data portion of the PE,

b) it serves as a general purpose counter, c) it accumulates the carry in multi-

plication, d) for special applications, A could be used as an additional address

register.

For a more complete idea of the whole PE as well as all the available

controls the reader is directed to Figure 13 where each control wire is indicated

as a line ending in an open circle with a code name associated to it. There is
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Control Wire

.... — ,.

Controls Function

IcCl to AcC3 A
c

Select one out of eight possible inputs

?VcCU

ALCC1, ALCC2

A
c

A/L unit

Load A with the selected input

Select input carry C between 0, 1, lcFFl and lcFFV

ALC1 to ALC5 A/L unit Select function performed by A/L unit (see Table 2)

ALIC1, ALIC2 A/L unit Select operand A for A/L unit between B, B, Dl
and D2

ALIC3 A/L unit Use B instead of B as operand A if lcFFl is ON

ALICH A/L unit Uses instead of selected data as operand A if
A is OFF
r
o

AmCl to AmC3 A
m

Select one out of eight possible inputs

AmC^, AmC5 A
m

00 - do not load A ; 11 - load A (all bits) with
m' m

selected input: 10 - load A with AND of selected

input and Dl: 01 - load A with AND of selected

input and D2

ArCl to ArC

3

A
r

Select one out of eight possible inputs

ArCU A
r

Load A with selected input
r

AShC A Distance 1 shift is end-around

A1C1 to A1C3 Al Select one value out of five to gate into Al

A2C1 to A2C3 A2 Select one value out of five to gate into A2

BC1 B Select among Dl and D2 as inputs to B

BC2 B Load B with the selected input

CDBC CDB Select between Dl and D2 to gate into CDB

Clock All FF's Clock pulse

D1C1 to D1C3 Dl Select one value out of eight to gate into Dl

D2C1 to D2C3 D2 Select one value out of eight to gate into D2

Table 3. Control Wires and Their Functions
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Control Wire Controls Function

EEC1 to EEC

3

EE Select one bit out of the eight in Dl, D2 as input
to EE

EECU EE Load EE with the selected input bit

IOBC IOB Select between Dl and D2 to gate into IOB

LCiCl, LCiC2
(i=l,2,3,*0

lcFFi 00 - do not load lcFFi; 11 - load lcFFi with bit i

of Dl; 10 - load lcFFi with bit i of D2; 01 - load
lcFFi with: 1=1, A=B output from A/L unit; i=2,

output carry from A • ±=3, OR of carry from X,

,

-

X and X • i.=k, output carry from A/L unit

LC1C3, LCiCU

(1=1,2,3,^)

lcFFi 00 - do nothing; 10 - gate lcFFi into interrupt
wire; 01 - enable clock if lcFFi of OFF; 11 -

enable clock if lcFFi is ON

PEMiCl (i=l,2) PEM mod i Select read or write

PEMiC2 (i=l,2) PEM mod i Do not obey mode control

sMCl sM Select between Dl and D2 as input to be read into

sM

sMC2 sM Select between four low order bits of Al and A2

as address to sM

sMC3 sM Select read or write in sM

KiCl (i=l,2,3) X.
l

Load input selected by XiC3

XiC2 (1=1,2,3) X.
1

Count X. up or down as selected by XiC3

XiC3 (1=1,2,3) X.
1

If counting, select between up or down; if loading

select input between Al and A2

Table 3 (Continued)
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a total of 78 control wires in the PE and Table 3 lists these wires in alpha-

betical order along with a description of their function.

3-k.k Local Control

It has already been pointed out that a certain minimum amount of

local control must be present at each PE to take care of data- dependent actions.

This takes the form of gates which, when activated, allow or inhibit an at-

tempted action depending on some internal PE state. When the information used

for local control is stored at some PE register at the same time it is needed,

no additional memory elements are necessary. This is the case, for example,

with the use of A as local control for the "add conditional" in multipli-
r

cation (see Figure 10). In other instances, however, the local control infor-

mation is not available any more when it is needed. In this case local con-

trol flip-flops must be introduced to store this information. Specifically,

there are in the PE six "dynamic outputs" which must be stored somehow since

they may be needed for local control. These dynamic outputs are:

Equality output (A = B) from the A/L unit

Carry (C n _) from the A counterJ x n+12 ;
c

Carry/borrow (C _ ) from the address registers X- , X and X~

Output carry (C . ) from the A/L unit

Four local control flip-flops designated by lcFFi (i=l,2, 3,U) are

used to store the dynamic outputs: A = B can be stored in lcFFl; C from

A can be stored in lcFF2 ; the OR of C - from Xn , X^ and X„ can be stored in
c ' n+12 12 3

lcFF3; and C , can be stored in lcFF^. Notice that only one lcFF is used to
' n+U

store the OR of the carry/borrow' s from the three address registers. This re-

sults in a saving of two lcFF's and does not introduce any serious disadvantage
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since a carry/borrow In an address register is normally an error condition and

will cause an interrupt regardless of the particular register in which the

overflow occurred.

It is easy to see that local control is the most serious obstacle in

achieving the goal of a PE as general as possible, able to cope with a wide

range of word formats and instructions. Normally, a lcFF may be loaded only

with a specific bit of information and a certain PE function. This tends to

freeze conventions like negative number representation and sign bit location.

These shortcomings suggest the possibility of some generalized local control

logic as illustrated in Figure ik. This could be viewed as allowing micro-

programming at the PE level. Obviously, a generalized local control as the

one proposed in Figure lh is prohibitively expensive. Therefore, the subject

was intensively researched and .a satisfactory compromise has been found.

Initially, one should notice that any type of local control can be

achieved using only enable control; i.e., being able to enable or disable the

whole PE according to the presence of a ZERO or a ONE in a lcFF. To prove this

proposition, simply consider the fact that local control can be of two types:

a) if (lcFFi) THEN action 1, and b) IF (leFFi) THEN action 1 ELSE action 2.

For the moment, a disabled PE is defined as one in which the clock is inhibited

causing all registers to retain their old values. Local control of type a can

be implemented by enabling only the PE's in which lcFFi is ON, executing the

micro sequence to perform action 1 and then enabling all PE's again. For local

control of type b a second step is needed in which only PE's in which lcFFi is

OFF are enabled and then action 2 is executed followed by enabling all PE's

again. This type of local control, achieved through enabling and disabling PE's,

will be called indirect local control as opposed to direct local control in
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Figure Ik. A Generalized Local Control
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which one or more control wires are directly inhibited by some IcFF or other

register in the PE. Although indirect 1c is universal and can achieve any

desired effect, it is obviously slower since extra time is needed to turn PE's

ON and OFF. Therefore, local control in SPEAC will be primarily of the indi-

rect type except for a few extremely important functions in which one cannot

afford the extra time; these will be implemented directly.

3.^.^.1 Direct Local Control

Direct local control is used in SPEAC for four functions:

a) Input carry (C ) to the A/L unit. This is controlled by wires

ALCC1 and ALCC2 ( see Figures 13 and Table 3) . C can thus be

chosen between four values: ONE, ZERO, the complement of lcFFl,

and the same value as in lcFF^. C = ZERO is used in initiating
n

unsigned addition and C = ONE in initiating unsigned subtraction

(using also reg B as operand A to the A/L unit). Signed addi-

tion must be locally controlled since it can be an actual addi-

tion (if both operands have the same sign) or a subtraction (if

the signs are different). A sign comparison can easily be stored

in lcFFl since A = B can be stored in this flip-flop. There-

fore, lcFFl = ONE if signs are equal, ZERO otherwise and C =

lcFFl can be used in initiating a signed addition. The last

possible value of C is lcFFU. This is used in the middle of^ n

an addition or subtraction, when C must have the value that
n

C . had in the previous step. Therefore, when adding (or sub-

tracting) hexadecimal digits a. and b. of A and B, the value of

lcFFU is the carry C . from the addition (or subtraction) of
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a. , and b. , and will be used as C . At the same time, lcFF^)-
l-l l-l n '

will be changed to C . from a. + b., to be used in the next6 n+4 i l

step.

b) Input A to the A/L unit. This is controlled by wires ALIC1,

ALIC2, and ALIC3* The first two wires choose between B, B, Dl

and D2. The last one, ALIC3 implements a direct local control;

when ALIC3 is ON, input A to the A/L unit will be B instead of

B if lcFFl is OFF. If lcFFl contains a comparison of signs in

signed addition, as explained above, then this local control

transforms an addition into a subtraction for the PE's in which

the signs are unequal.

c) Gating of input A to the A/L unit. This local control is actu-

ated by a ONE in wire ALICk. When this happens, the gating of

input A to the A/L unit is inhibited by the presence of a ZERO

in A . Therefore, if A is ZERO and ALICU is ON, operand A
r r

to the A/L unit is ZERO regardless of the values of ALIC1, ALIC2

and ALIC3* Obviously, this implements the "add conditional"

needed for multiplication.

d) Finally, there is local control built into the input gating to

register A . When "add and shift" is chosen as the input to

register A, A is either shifted right one (if C . is ZERO)

or is incremented by one and shifted right one (if C > is ONE)

as explained in Section 3«^«3«5«

3.^.^.2 Indirect Local Control

All control functions not directly implemented are obtained
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using the lcFF's to enable chosen PE's. In order to do this, one must be able

to store the controlling bit in one of the lcFF's. It has already been ex-

plained that the "dynamic outputs" can be directly stored in lcFF's. There

are four lcFF's in the PE and Figure 15 presents a simplified diagram of the

controls at the input and output of each lcFF. For the precise logic, the

reader is referred to Figure 13 and package 6 in Appendix A.

The local control structure illustrated in Figure 15 is actually a

simplification of the generalized local control described in Figure 1^; the

number of gates was considerably reduced to make the unit practical for use

in a "small" PE like SPEAC's. Nevertheless, the unit is as powerful as the

generalized local control although not as fast.

In order to perform indirect local control, every bit in the PE

should be accessible to a lcFF. This is achieved by linking LC, the register

composed of the four lcFF's, to data buses Dl and D2 like all other data

registers thus allowing any bit in the PE to be fed as input to a lcFF. It

should also be recalled that the dynamic outputs can also be stored in the

lcFF's. Therefore, the input gates of Figure 1^ have been reduced in Figure

15 to a l-out-of-3 selector for each lcFF. The selector for IcFFi is con-

trolled by two wires: LCiCl and LCiC2. The four possible input actions are:

a) do nothing (i.e., retain the previous value stored), b) store in IcFFi

th th
the i— bit in Dl, c) store in IcFFi the i— bit in D2, and d) store in

IcFFi the dynamic output associated with that flip-flop as described in

Section 2.k.k.

It is often necessary to set a lcFF to a Boolean combination of

other bits, sometimes to a Boolean combination of bits in other lcFF's. In

order to save the gates needed to implement this directly, the output of LC is
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Figure 15- Diagram of a Local Control FF
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made available as a possible value of Dl or D2 like any other data register.

Therefore, the contents of LC can be brought to register A and one can per-

form shifts and logical operations. When the desired function is obtained,

it can be stored back in LC from Dl or D2.

The output gates of the generalized local control have also been

reduced in Figure 15 to a l-out-of-3 selector controlled by two wires: LCiC3

and LCiC^. These wires control the function performed by each lcFF. The

four possible functions performed by lcFFi are: a) do nothing (i.e., the

state of the flip-flop has no effect on the PE), b) enable PE only if lcFFi

is ON, c) enable PE only if lcFFi is OFF, and d) gate the output of lcFFi to

the interrupt wire. Function d, used when it is desired to send an interrupt

sign to the CU, will be discussed in Section 3 •^•6. Functions b and c are

used to perform indirect local control. Since it is possible to enable either

on a ONE or on a ZERO of a lcFF, one avoids moving LC to A only for comple-

menting. This is important because it is often needed to enable PE's in which

lcFFi is ON, perform an action and then enable only PE's in which it is OFF to

perform another action thus obtaining control of the type IF (lcFFi) THEN

action 1 ELSE action 2. It is then clear that a lcFF does not have a certain

fixed function but is attributed , for each clock cycle, one among four possible

functions. Also, each lcFF is controlled completely independently from the

others, which makes this type of lc rather costly in terms of control wires;

16 wires are required altogether. It is felt, however, that the performance

and versatility obtainable with this local control justifies the cost.

', . h . 5 Mode Control

Mode control is simply the ON-OFF type as in ILLIAC IV. Register M
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(also called EE for external enable) is in charge of this control. This is a

single bit register -which can be loaded with any bit of Dl or D2. Therefore,

the input gating for register M is a l-out-of-8 selector controlled by wires

EEC1, EEC2 and EEC3- A fourth wire (EEC^) completes the control of register

M. When EECU is ON, M is loaded with the input bit select by the three other

wires; when it is OFF, M retains its old value. The mode control register has

a fixed function which is to enable the PE on a ONE (i.e., whenever M is ON,

the PE is enabled and whenever it is OFF, the PE is disabled)

.

The mode register can also be called "external enable" register,

which points out the fact that it is an enable register reserved for user (or

macro-instructions) manipulations, as opposed to the internal enable, which is

the function attributable to IcFF's. This is normally used only by the

systems programmer in micro-instructions.

It is now convenient to define precisely what is meant by a dis-

abled PE. Most registers in the PE are clocked by the signal Ck which is the

main clock sent by the CU "Clock ", inhibited by register M, and possibly by

the IcFF's. Therefore, when a PE is disabled, all registers clocked by Ck

are frozen; i.e., they retain their old values. The elements not clocked by

Ck are: Registers M and X , and the two PEM modules. Register M is directly

clocked by "Clock" and cannot be disabled. This is obviously needed or else,

once M were disabled, the PE could never be enabled again. There is a special

problem with PEM and X : as described in Section 3-^.1, one must be able to

overlap PE operation with replenishment of PEM. Therefore, I/O operations must

be able to reach a disabled PE since PEM in all PE's must be replenished re-

gardless of the fact that some PE's may be temporarily OFF. In order to ac-

complish this, each PEM module receives both clock signals: the direct signal
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"Clock" and the possibly inhibited Ck. A control wire (PEMiC2 where i is the

module number) decides whether "Clock" or Ck is to be used, thus choosing be-

tween ignoring and respecting disabling. Also, X is clocked by "Clock"

instead of Ck since it is mainly used to hold addresses for i/O operations.

Finally, it can be pointed out that the contents of M are not

accessible to the PE. Therefore, if the setting of M is to be used later, it

must be temporarily stored in sM at the time it is being loaded into M.

3« h.G Interrupts

The interrupt system is very simple; every PE has one interrupt wire

and the CU receives also only one wire which is the OR of the data in the

interrupt wires of each' PE. If one or more PE's are interrupted, the CU will

sense a "1" in the interrupt wire and the operating system will have to inter-

rogate the PE's to find out which are responsible. This scheme has the advan-

tage of making the number of interrupt wires independent of the number of PE's,

allowing for system expansion.

It has already been described (in Section 3 •^••^••2) that one of the

functions attributable to each lcFF is the gating of its contents into the

interrupt wire. Conditions that should case an interrupt are detected in the

PE and stored as a ONE in some lcFF. The interrupt can then be sent to the CU

by attributing the interrupt function to that lcFF. It should be noticed that

the propagation times of the PE interrupt signals are assumed short compared

to the PE clock period. This is what allows only one interrupt flip-flop to

be used for different conditions like the following: exponent overflow,

exponent underflow, fixed point overflow, division by zero, etc. It is as-

led that the CU will notice the interrupt soon enough to be able to distin-

guish the different conditions by an analysis of which step of which operation
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was being performed.

It is also interesting to point out that the interrupt system is used

not only to detect error conditions, but can be very useful to detect the end

of a recurrence process or to optimize certain programs. For example, assume

that a recurrence process is being executed' by all PE's. At the end of each

step, the error is computed and compared with the maximum acceptable. All PE's

in which the error is smaller than the maximum are turned OFF, via lcFF3 for

example. Sending lcFF3 via the interrupt wire will enable the CU to detect if

all PE's have been turned OFF. If this is the case, the recurrence is ended.

It may also be quite useful to add a control wire enabling one to send M via

the interrupt wire.

3.^-.7 Implementation Remarks

This section considers some of the design problems that would have

2
to be solved if the PE previously described were to be actually built. T L

integrated circuits will be used in the implementation of the PE logic due to

their medium cost, speed, and power dissipation. MOS logic was initially con-

sidered and it offered considerable advantages in cost and power dissipation,

however, it does not seem to be fast enough for the purpose of making the mem-

ory cycle (l/2 jusec) the basic speed limiting factor. This cannot be achieved

with conventional MOS logic in the PEM (although silicon-on-saphire technology

promises for the near future an order of magnitude increase in the speed of

MOS logic). T L, although not as fast and desirable, will allow a good bal-

ance between memory fetch time and PE operation time; assuming 10 nsec as the

typical gate propagation delay time, and considering that there are no long

logic chains in the PE, it is realistic to assume a PE clock period of 100 nsec

(PE clock frequency = 10 Mc/s). Therefore, a PE clock takes — to — of a PEM
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cycle, depending on how fast the PEM is used.

Since the PU's will be pluggable, it is important that the number of

connections to each PU be minimized as this is, in integrated circuitry, a cost

factor probably more important than mere gate count. Table k shows the actual

number of PE connections achieved. A total of 103 to 110 is needed, probably

making necessary two connectors in each PU if a conventional printed circuit

is used. Three power wires are needed instead of two if MOS PEM's are used

since they need an extra voltage level. IOB and CAB must be bidirectional.

This is achieved either running two independent buses, one in and one out as

indicated in Figure 11 and 13, or using only one bus with additional logic in

the PE and one extra control wire to choose in which direction the bus is to

be used. The cost of six extra connections seems small enough to save the

extra complications of using only one bus. Also, if both in and out buses are

present, they could be simultaneously used in some operations like i/O and

routing. Therefore, eight wires are used for CDB and eight more for IOB.

Function Number of Connections

Control wires 80 - 78

CDB k - 8

IOB k - 8

CAB 12

Interrupt Wire 1

Power 2 - 3

Total 103 - HO

Table h. Connections to Each PU
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The number of control wires (78) is quite large, but this is the

price to pay for retaining maximum PE versatility for the micro-programmer.

Of course, the number of control wires could be reduced by adding encoding

logic in each PE. However, this would increase the gate count per PE and re-

duce the flexibility of the controls. Therefore, encoding of control wires

was used only when flexibility was not affected (like in the input to a regis-

ter; anyhow, the register cannot be loaded with two different inputs) and

when the extra gating comes automatically in the IC's used or can be added

economically.

2
T L MSI chips manufactured by Texas Instruments

provide a preliminary guideline in the discussion of questions related to:

number of gates, IC's available off-the-shelf, power dissipation, etc. There-

fore, the suggested IC's are limited to the ones listed in [8] and this infor-

mation is only useful in rough evaluations for a breadboard PE. In actual con-

struction, a few made-to-order LSI IC's would be used in place of several

2
smaller chips. Table 5 lists a few MSI T L chips available off-the-shelf that

could be of interest in the construction of a breadboard PE. Table 6 lists

all the packages used in Figure 13 and also gives the number of FF's per pack-

age and a very rough evaluation of the number of equivalent gates per package.

Memory elements were not included in the evaluation of the totals for the PE.

Roughly, the proposed implementation requires IK gates and 6k type D flip-

flops for a total of approximately 1.3K gates. Table 7 presents a preliminary

evaluation of the number of IC chips that would be needed in each PU. Two

numbers are given: one, for a breadboard PU, uses the chips introduced in

Table 5; in this case more than one hundred chips are necessary. The second

number assumes the availability of a few custom made IC's with up to 2k pins
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Chip Type Equivalent DIP Average Description
Num- Gates Pins power
ber diss mW

1 SMA2002 na 28 1331
p

Memory: M05, 102U x 2, T L com-
patible fully decoded

2 Fair3532 na 16 150 Memory: M05, 512 X 2, T L com-
patible fully decoded

3 SN7i+89 na 16 375 Memory: 16 x k, scratchpad

1+ SWfkl^ na 16 na Register: D-type, k bits

5 SN7*H7^ na 16 na Register: D-type, 6 bits

6 SN7^191 58 16 325 Counter: parallel in/out , syn-

chronized, up/down, k bits

7 SK7^l8l 75 2U ~375 A/L unit: U bits

8 SN7U157 ~15 16 125 Data selector: Quad 2-to-l

9 SW7U153 ~l6 16 180 Data selector: Dual U-to-1 with
strobe

10 SN7U152 -15 16 130 Data selector: 8-to-l

11 SN7ifL98 -1+0 16 25 Data selector/ storage register:
2-to-l, k bits

12 SN7^LS83 ~^2 16 75 U-bit binary full adder

Table 5- Some IC Chips that Might Be Used in the PE



59

Package
Number

Function No.

Used
Approx

.

Gates per
package

FF's per
package

Total
gates

1

Total
FF's

1 l-out-of-8 selector; no
strobe

29 9 261

2 Quad D type FF; clock
enabled for all FF's
simultaneously

5 5 1+ 25 20

3 Type D FF with enable on
the clock

9 2 1 18 9

k 1-out-of-U selector; no
strobe

5 5 25

5 l-out-of-3 selector with
enable decoding

k 5 20

6 Enable and interrupt con-
trol

1 18 18

7 PEM-1 mod 2 — — — —
8 sM--6^ bit memory- -16

Ij-bit words
1 — — — —

9 A/L unit 1 -6o 60

10 l-out-of-2 selector
without strobe

59 3 187

11 h bit add/ subtract coun-
ter, parallel in/parallel
out

9 -25 1+ 225 36

12 1-out-of-it- selector with
strobe

U 5 20

13 Quad inverter 1 k k

11+ Increment by 1 network
(6 bits)

2 25 50

15

TOTALS

l-of-5 selector 2k

...

6 Ikk

611057
i

Table 6. Packages Used in the PE and Their Contents
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Used In

i

Breadboard Actual Implementation
Chips Used No. of Chips Used No. of

Chips Chips

PEM chip 1 = i Pk 7 k as in breadboard k

reg B and input gates chip 11 as Pk 2 + (k

X Pk 10)

1 as in breadboard 1

input to Dl, D2, A ,m
A , A
r c

chip 10 as Pk 1 28 2 X Pk 1 Ik

input to A , A chip 10 as Pk 15 2k 2 x Pk 15 12

output to IOB, CDB chip 8 as k X Pk 10 2 as in breadboard 2

inputs to sM chip 8 as k x Pk 10 2 as in breadboard 2

sM chip 3 as Pk 8 1 as in breadboard 1

A/L unit chip 7 as Pk 9 1 as in breadboard 1

X-,> Xp, X_ chip 6 as Pk 11 9 l| Pk 11 6

inputs to X , X , X chip 8 as k X Pk 10 9 6 X Pk 10 6

input A to A/L chip 9 as 2 X Pk 12 2 as in breadboard 2

Increment net chip 12 as - X Pk Ik 3 Pk Ik 2

A
c

chip 5 as 1— x Pk 2 2 as in breadboard 2

A
r

chip k as Pk 2 1 as in breadboard 1

A
m

SSI dual FF 2 k x Pk 3 1

enable control in A
m

chip 9 as 2 X Pk k 2 k x Pk k 1

M and M input SSI FF; chip 10 as

Pk 1

2 Pk 3 + Pk 1 1

LC and LC input SSI dual FF; chip 9
as Pk 5

k 2 x Pk 3 +

2 x Pk 5

2

enable control chip 9 as r x Pk 6 k Pk 6 1

others SSI chips 5 Pk 13 + Pk k;

3 x Pk 5

2

1

Total 108 Total 61*

Table 7- Rough Estimates for the Number of Chips Per PU



61

per DIP. These IC's are only slight modifications of the ones in Table 5- In

this case, the number of chips goes down to about 6k. This number of chips

will readily fit in one printed circuit board or, better yet, a new packaging

technology could be used: a multi-chip on a ceramic substrate technique which

is being developed at Fairchild. As far as design is concerned, the substrate

is analogous to a two-sided printed circuit board with single devices installed.

In addition, a system package is being developed to connect these devices

together with simple cam-operated connectors and backplanes.

It is important to point out that the number of 6k chips was ob-

tained with a very superficial analysis of the circuit and only assuming the

availability of quasi- standard IC's. It is expected that with careful compu-

ter analysis of the possible partitions of the circuit and wide use of custom-

made IC's, the number of MSI chips could go down to about 30 (this is the num-

ber reached if one divides the total number of equivalent gates in the PE

(1.3K) by 60 to 70, the number of equivalent gates easily obtained nowadays

2
in one MSI T I chip)

.

The power dissipation per PE is quite acceptable. It is on the

2
order of 15 watts, assuming an average of 10 mw per gate for T L. A new low

2
power T L could be used to reduce this number by a factor of 5 to 10.

Finally, it should be mentioned that a number of simplifications

could be adopted in the PE at a small cost in performance. Only careful simu-

lation can decide whether the saving thus obtained justifies the loss in per-

formance or versatility. Some of these simplifications are:

- make B unavailable as a value to Dl or D2

- do not use.

X

- use only 10 bits in address lines instead of 12
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- make X. count up only instead of up/ down.

- reduce A to 8 or 10 bits.
c

3-5 The Control Unit

The control unit has already been summarily described in Section 3.3.

In this section, a few more details of CU's structure and functions are pre-

sented but only in a macroscopic way, without getting to the gate level as was

done with the PE.

3. 5-1 CU General Structure

Figure 16 presents a diagram of the control unit structure. The

components are:

a) CU Memory (CUM) , which is a conventional, high speed random

access memory in which SPEAC's instructions and CU data are

stored. It can be replenished from mass memory and is accessed

by the central processing unit and by the instruction lookahead

unit.

b) Instruction Lookahead Unit (ILA) which fetches instructions from

CUM and sends them to the instruction decoding unit. Since CUM

is very fast, a sophisticated ILA is probably not necessary.

c) Instruction Decoding Unit (IDU) which performs basic instruction

decoding and central indexing. The instructions are identified

as CU, PE, or i/o instructions and sent to the respective in-

struction processor along with their indexed addresses and other

data.

d) Central Processing Unit (CPU) which is the CU instruction proces-

sor and responsible for the execution of CU instructions. It
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Figure 16. CU Structure
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is basically a fast, highly parallel unit similar to one of

ILLIAC IV s PE's. It should be compatible with the data formats

used in the PE's. Therefore, for maximum versatility, it should

also be microprogrammable like the instruction processor. The

CPU is not completely independent from the PE array since it can

send common operands to all PE's via CDB ("broadcasting") and

also can receive data from the PE's. For this purpose, the CPU

can send microsequences to the PE's via the CU Queue.

e) I/O Instruction Channel (IOC) which is the I/O instruction pro-

cessor and executes array I/O instructions. Like the other two

instruction processors, it could be microprogrammable for maxi-

mum versatility. The IOC sends i/O requests to the mass memory

interchange and control pulses to the row gating and i/O Buffer

Register (lOBR). It can also send microsequences to the PE via

the 10 Queue.

f

)

PE Instruction Processor (PEIP) which is the third and last in-

struction processor, in charge of PE instructions. It is fully

microprogrammable and can be divided into two parts. The first

part is a microprocessor (uP) which executes the microprograms

and sends microsequences to the PU via two queues--PE Queue 1

and PE Queue 2. The second part is a micromemory (uM) which

stores the microprograms. uM does not have to be a separate

memory; part of CUM may be used as micromemory if this is the

most economical scheme.

g) Four Queues which are: Queue (Q) , PE Queue 1 (PEQ.l') . VN Queue 2

(PEQ2), and 10 Queue (lOQ) . These queues store microsequences
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sent by each instruction processor, absorbing fluctuations in

the rate of generation of these microsequences which enables the

final station to keep the array as busy as possible.

h) Final Station (FINST) which analyzes the entries at the bottom

of each queue and decides which micro sequences to send to the

array for optimum PE performance. It must also combine two queue

entries into one PE microsequence since each queue entry is not

a complete ^sequence but a request to use one of the two pairs

of buses in the PE's. FINST action will be explained in consid-

erable detail in Section 3-5-3*

i) Mass Memory Interchange (MMl) which utilizes the several modules

of mass memory in an optimum fashion, solving memory request con-

flicts. It receives requests from the following sources: CUP,

IOC, Corner Memory and Peripherals.

3-5-2 Machine Synchroni zation - Events

Events are the means of synchronization in the machine; not only

are they accessible to the user for problem-dependent synchronization (i/O and

operations, for example) but they are also used by the microprograms to syn-

chronize different microsteps executed in the PE's, CU and IOC. Each event is

assigned an absolute number and it is basically a flip-flop; when OFF, the

event did not occur and when ON, the event has occurred. A reasonable number

of events are needed; Gh as a first approach, for example.

Therefore, synchronization is obtained with commands to "WAIT on event

N" or "CAUSE event N. " WAIT and CAUSE commands are attached to instructions

and are recognized and' obeyed at three units: CUP, IOC and FINST. Consider,

for example, a CU instruction which needs as one operand a PE value sent via
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CDB. The instruction goes to CUP which does any local processing needed and

then issues the micro sequence to CUQ,. The micro sequence contains a "CAUSE

event N. " The CU then idles on a "WAIT on event N. " When the micro sequence

is executed; i.e., when the data needed from the array reaches the CUP, event

N happens and CUP finishes execution of the instruction. This waiting time

could be used by the CU for multiprocessing a serial program (a compilation,

for example) being run simultaneously. One must make sure that an event will

not be considered "occurred" because the FF is ON from another use of the same

event number. Therefore, the user does have the responsibility of "releasing"

an event when the present use of that event number terminates. This may be

done when the event is waited on for the last time, with a special type of

wait--WAIT and RELEASE--or an event may be specifically reset with a RESET

EVENT command.

The following event manipulation commands are desirable:

- Wait on a boolean function of events

- Cause an event depending on a boolean function of others

- Cause several events simultaneously.

Basically those commands are for program use only since microsequence synchron-

ization must be very fast and must be done with single events.

It should be noticed that one would never wait on a boolean combina-

tion of events since this would require the boolean function to be evaluated

at each clock to determine if the wait is over. The way to do this is to have,

after each cause of the events that appear in the boolean function, a state-

ment that evaluates the boolean combination and places the result on an extra

number: N. Then the wait is simply on event N.

Care must be taken to avoid re-use of an event before its previous



67

use is completed. Certain complicated cases may "be confusing. Consider, for

example, the following program:

Input 1 cause event #3 v

:

)
PE-multiply wait on event #3 'and release it

Input 2 cause event #3

CU operation wait on event #3

In the situation above, Input 1 may occur and cause event #3- Then,

before the PE-multiply or Input 2 occur, the CU operation may be executed and

event #3 is ON so there is no wait.

The possibility of symbolic event names handled by the hardware

could be investigated; the hardware would automatically assign symbolic event

numbers to the first available physical event flip-flop. This would free the

user of keeping track of which events are available and also no set of events

would have to be reserved for ^sequence use. However, the user would still

have to release events.

Note also that with the present scheme, it is necessary to divide

the events into two sets: user events and internal events. The latter will

be used by the microprograms to synchronize the execution of microsequences.

3-5-3 Queue System and FINST

Queue entries can be considered as requests to use part of a PE.

These requests are serviced by FINST which, if possible, combines two entries

from different queues into a PE microsequence and sends the microsequence to

the PE's. The purpose of FINST and the queue system is to keep both pairs of

PE buses (Al, Dl and A2, D2) as busy as possible.
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The basic principle involved is dynamic bus allocation ; i.e., each

queue entry does not ask specifically for use of bus 1 or 2, it asks for

either a) any bus, or b) the bus that has access to the PEM module containing

the address stored in X. (i=l,2, or 3) • Requests of type a are made for inter-

register transfers, in which it is immaterial which bus is actually used;

requests of type b are necessary for memory transactions since for these a

specific bus must be used. Therefore, under dynamic bus allocation, CUP, PEIP

and IOC do not specify the microsequences completely- -FINST will dynamically

allocate buses to the partial microsequences in the best possible way.

3.5-3-1 Queue Structure

Each queue entry contains basically a partial microsequence and

information which is used by FINST. The fields of a queue entry are illustra-

ted in the upper part of Figure 17- All four queues have the same structure

although only Queue 2 has been detailed.

queue 1 CUQ

i

queue 2: PEQ!

A

queue 3:PEQ2 queue O-I0Q

<

r

EV
A

FFXI FFXI

2

X

FFX3

6

C USB
1

N

FFCO

1

'

s

12

CA

Vau

BAO

4

CO

VCDR

XDU

6

WEV

Wvu

6

CEV

XEVU

BC

1 1

CDBR CDBRU FFCI BAIm BCI

Figure 17- Queues and FINST Structure
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The fields are as follows:

X: address field (2 bits) . means the address register is not used;

i.e., we have a data transfer and not a memory fetch. X=i (where

1 < i < 3) means the address register X. in the PE's will be used— — l

in this microsequence.

C: counter field (~6 bits). means the microsequence is a no-op. C=

iX) means that when a bus is assigned to that queue, then this micro-

sequence and the next n-1 will be processed consecutively.

(US: these are fields that contain the partial-microsequence.

uSB: bus-dependent microsequence field (~23 bits). This is the part of

the microsequence related to bus used.

IdSC: bus -independent microsequence field (~55 bits). This is the part of

the microsequence related to control that does not use buses.

CAU: use of CAB field (l bit). CAU ON means CAB will be used and must

be set to the value stored in CA.

CA: common address field (12 bits). This contains the value to be used

as common address.

CDU: use of CDB field (l bit). CDI ON means CDB. will be used and must
v ' m

be set to the value stored in CD.

CDR: common data receive field (l bit). When ON, CDB , will be used to
out

receive data from the PU's; this data must be stored in CDBR.

CD: common data field (k bits). This contains the value to be used as

common data.

EV: these are fields that control events.

WEVU: wait event use field (l bit). When 0N= this entry must await an

event whose number is stored in WEV.

WEV: wait event field (~6 bits). This contains the number of an event
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to be waited on.

CEVU: cause event use field (l "bit). When ON, this entry must

cause an event whose number is stored in CEV.

CEV: cause event field (~6 bits). This contains the number of an

event to be caused.

The bus-dependent microsequence field must be further explained. It

can be divided into two sub-fields: ,uSBa and jLiSBb. juSBa, with 8 bits, corre-

sponds to the control wires to gate into buses D and A (3 wires for each) and

to control PEM (2 wires). In the actual microsequence, this field appears

twice: once for each bus pair. ,uSBb, with about 15 bits, corresponds to the

control wires to gate from buses D and A. The values of the bits in this

field of a queue entry have a special meaning: a ZERO means that the corre-

sponding control is not used in this microsequence and a ONE means that the

control is used (i.e., the final microsequence must have in that position the

appropriate bit to load from the bus that has been assigned to that queue

ent ry

.

3.5.3.2 FINST Structure and Operation

The structure of the final station will not be presented in detail;

only the major registers and their uses are discussed and a few considerations

are offered on the output logic of FINST (i.e., the part that merges together

two queue entries and assembles the micro sequences)

.

The major registers of FINST are illustrated in Figure 17 and are

as follows:

FFXi ( 1=1,2,3): address control FF (l bit). FFXi = j means that in

the array, all Xi registers have addresses pointing into memory
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module j (j=0,l). These flip-flops are automatically set by the CU

(i.e., the FINST) every time a microsequence is sent in which the

hit that controls gating into Xi is ON. The setting is based on the

contents of the CA field in that microsequence. Local modifications

(as in local indexing) of Xi cannot change the module it points to.

This condition can easily be checked within each PE and causes an

interrupt (just monitor the carry from the address registers). Be-

sides the automatic setting, FFXi should also be settable by the

programmer for special applications.

FFCi (i-0,l): conflict FF (l bit). These are the conflict flip-flops,

set either when the bus could not be assigned or when one or two

of the bus assignments is not used on a particular clock because

of bus conflicts or because the queue is empty.

BAi (i=0,l): bus assignment register (2 bits). When BAi = j, bus i

is assigned to queue j . j e {0,1,2, 3}

•

BCi (i=0,l). bus counter (~6 bits). When BCi = j, there are j micro-

sequences left to be performed before the bus can be reassigned;

BCi = means that bus i is idle.

CDBR: common data bus register (h bits). This is the register where

values placed in CDB , by the PE's are stored.
out

CDBRU: common data bus register use (l bit). When equal to 1 it means

that CDBR is in use; i.e., a result placed in it has not been removed

by the CU and therefore CDBR cannot be reused before the CU frees it

by resetting CDBRU.

The FINST decision procedure is now described: at each clock, FINST

must decide to which of the four candidates the use of the PE buses will be
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assigned. Once a request from a queue is granted, the next (C) requests from

that same queue must be obeyed before the bus can be reassigned (where (c) is

the contents of the counter field). This ensures the microprogrammer that,

once control is obtained, it will be retained for a number of microsequences

enabling the completion of a procedure before a new bus assignment destroys

needed data. Therefore, groups of microsequences that must be executed se-

quentially, without interruption, are "linked" together by placing in the coun-

ter field of the first queue entry the number of microsequences in the group.

The FINST decision procedure is illustrated in Figure 18 by a flow-

graph. If a bus counter register in FINST is zero, the corresponding bus is

idle and an attempt is made to assign it. The order in which assignment at-

tempts are made is, in Figure 18: ICQ, CUQ, PEQ1, and PEQ2. This attempts

first to get the i/O done. This assignment hierarchy , in an actual implemen-

tation, would probably be dynamic and selectable by the programmer instead of

fixed. Section 3-5-5 discusses a situation in which a dynamic assignment

hierarchy is required.

The following observations should be made with respect to the flow-

graph in Figure 18:

- The notation (Top Queue j:C) means the contents of field C of the

entry at the top of Queue j

.

- A queue is empty either when it is physically empty or when it is

flagged WAIT on an Event that has not occurred yet.

- There is a CAB or CDB conflict when the following expression

(where TQi means top queue i) is true:

a) (TQ(BA0):CAU)=1 AND (TQ(BAl) : CAU)=-1 AND (TQ(BAO) : CA)/(TQ(BAl) : CA)

OR
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yet

Bus maybe assigned

BCi= (top queue j:C)

BAi= j

gat FFCi= I

where i such
that :

(BAi)>(BAj)

(i,j) = (0,l),(l,0)

merge (top queue (BAO)) ft

(top qaeue(BAI)) into a

PEji sequence, inhibited

by FFCi=0, i=0,l;

set CAB ft CDB as needed

ft send the p sequence to

the array

finolizotion: BCD*mln (BCC— 1,0)

BCl4-min(BCI-|,0)

FFCO«-0-, FFCI^O; pop
queues used &. causa event a

BUS i (=0,1

QUEUE j j= 0,1,2,3

Figure 18. FINST Action Flow- graph



(b) (TQ(BA0):CDU)=1 AND (TQ(BAl) : CDU)=1 AND (TQ(BAO) : CD)/(TQ(BAl) : CD)

OR

(c) (TQ(BA0):CDR)=1 AND (TQ(BAl) : CDR)=1

OR

(d) ((TQ(BAO):CDR)=l OR (TQ(BAl) : CDR)=l) AND CDBRU-1

where the term (a) takes care of CAB conflicts, the term ("b) detects CDB.m
conflicts, the term (c) detects CDB , conflicts, and the term (d) takes care

out

of CDBR use conflict (i.e., CDBR has not yet been used after being set by a

previous operation)

.

It should be pointed out that the decision procedure outlined in

Figure 18 is only a basic algorithm. A few sophistications would have to be

introduced in an actual implementation; specifically: a) the procedure should

also be able to handle efficiently micro sequences that do not require the use

of any bus, and b) the possibility of deadlock should be considered and steps

taken to avoid it.

Figure 19 illustrates the part of FINST that merges the two selected

queue entries together and "assembles" the microsequence. Gate control

selects which of the four possible inputs to each bus is actually gated into

the bus; queue i is gated into the bus if i is the value of the expression

written in each gate control box. Briefly, the assembly procedure is as fol-

lows: CDB . is gated into CDBR if the CDR field of any of the two selected
out

queue entries is ON; CDB. is set from the CD field of the selected entry, if

any, that has field CDU ON; CAB is obtained from the CA field of the selected

entry, if any, that has field CAU ON. Field ,uSC of the final microsequence is

the OR of these fields in the two selected entries. A check for conflicts

would be necessary at this point to make sure that the two j/SC fields are
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TQ(BAi):CDR=
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Figure 19 . Final Microsequence Assembly in FINST
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compatible to be OR'ed together; i.e., the actions determined by one of the

entries must not conflict with the actions determined by the other. As ex-

plained previously, field juSBa appears twice in the microsequence, once for each

bus pair. Therefore, ^SBaO is obtained from the juSBa field of the entry selec-

ted by BAO and ^SBal is obtained from the ,uSBa field of the entry selected by

BA1. Finally, field uSBb is simply taken out of field uSBb of the entry selec-

ted by BA1. A conflict is also possible at this point: fields ,uSBb of the

two selected entries should yield a zero when AND'ed together, bit by bit. If

this is not the case, there is a conflict in the YSBb fields. It should also

be pointed out that every gate control box is inhibited by the conflict flip-

flops FFCi; i.e., when FFCi is ON, no field from the entry selected by BAi is

used in the assembly of the microsequence.

3»5'^+ The PE Instruction Processor

The basic structure of the PE instruction processor is presented in

Figure 20. The components are:

a) A macro -instruct ion register (MIR) which holds the op code and

variant field of the macroinstruction being processed. This

register is initialized by IDU and is accessible to the micro-

processor to be used in controlling microprogram fetch and in

arithmetic and masking operations.

b) A microinstruction register (uIR) which holds the op code and

addresses of the microinstruction being executed.

c) A micro-memory (juM) which holds the microprograms.

d) A PEIP busy flip-flop (PEIPB) which is turned ON by IDU when a

macroinstruction is delivered to the microprocessor and is turned
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Figure 20. Basic PEIP Structure
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OFF by the PEIP logic when the last microinstruction of the

macroinstruction has been processed. This signals IDU that the

microprocessor is idle and ready to receive the next macro-

instruction.

e) A subroutine push- down stack used in controlling execution of

subroutines by the microprocessor. Each entry in the stack

contains three fields: a start address field which holds the

address in which the subroutine starts; a return address field

which holds the address of the first instruction following the

subroutine; and a repeat count field containing the number of

times the subroutine is to be executed.

f) A group of local registers which is used to hold intermediate

results in arithmetic operations. The contents of the local

registers can be used in assembling the different fields of

the partial microsequences to be fed into the PE queues: PEQ1

and PEQ.2. Finally, the local registers are also accessible to

the IDU which initializes them with the instruction addresses

and other instruction data. In this connection, MIR can be

considered a local register and it is assigned local register

number 1. The other local registers are numbered in sequence

and they are accessed by their local register number. Sixteen

local registers are proposed, each 12 to 16 bits long.

g) An arithmetic unit capable of performing fixed-point operations

on short words: 12 to 16 bits is enough. At least addition,

subtraction and multiplication are available (integer division

and module operations are also useful) . The operands are
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either the contents of specified local registers or literals.

The results are placed in a specified local register.

An arithmetic unit is needed to enable microprograms to accept dynam-

ically specified parameters as word length, number of addresses, etc., since

it is obviously extremely inefficient to have one complete microsequence stored

for each small variant of a basic instruction.

This also determines the need for a number of relatively sophisti-

cated microinstructions; for example, subroutine calls. The suggested micro-

instruction repertoire is presented in Table 8. This repertoire allows very

efficient microprograms with respect to juM use. It is assumed that the micro-

processor is fast enough to allow an average output of one partial micro-

sequence each 100 nsec. Fluctuations in this rate are absorbed by the queues.

As indicated in Figure 20, the microinstructions' format uses four

fields: op-code, local register number (LR), immediate bit (IMM), and two

addresses, Al and A2, each as long as a local register. The use of these

fields for each microinstruction is detailed in Table 8. The immediate bit

qualifies the first address; if IMM is ONE the first address contains an

immediate operand instead of a local register number.

The partial microsequence s are generated in pairs, assuming optimal

conditions; i.e., assuming that both buses will be available. The first

partial microsequence in each pair is placed in PEQ.1 and the other one is

placed in PEQ.2 so that if both buses are available they will be executed simul-

taneously and if not they will be executed sequentially. Events are used to

coordinate the draining of the queues as needed. One extra bit in the queues

may be needed to signal a request for the simultaneous execution of a partial

microsequence from PEQ1 and one from PEQ2 as is required in a swap of registers
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Op Code
mnemonic)

Description

CALL

RETURN

GOTO

IF

ADD

SUB

MULT

uSEQ,

Subroutine call; executes (A2) times the subroutine starting at

juM address (Al)

Marks the end of a subroutine or the end of a microprogram.

Transfers control to the microinstruction in juM address (A2).

If (LR) masked by (Al) is all l's then transfers control to the
microinstruction in iM address A2

Add (Al) and (A2) and place the result in LR

Subtract (Al) from (A2) and place the result in LR

Multiply (Al) and (A2) and place the result in LR

Emit a partial microsequence to PEQ1 or PEQ2

Table 8. Microinstruction Repertoire

This will also necessitate a change in assignment hierarchy or else the array

will idle for a long period waiting for both buses to become available.

The microinstruction (uSEQ, must be able to "assemble" a partial micro-

sequence (placing in each field either a literal or the contents of a specified

local register) and place it either in PEQ1 or PEQ2.

Therefore, this microinstruction is unreasonably large and requires

about 100 bits of data. This shows the need for a microinstruction with a

variable number of bits (just as is the case of macroinstructions) to optimize

memory use since the ^SEQ, microinstruction takes so much more space than the

other microinstructions.

3*5-5 IDU and Instruction Format

Central indexing is decoded and performed by the IDU which hands the

ulting addresses to the three instruction processors. The detailed instruc-
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tion format is illustrated in Figure 21. Instructions are composed of a vari-

able number of "chunks, " each 12 to 16 bits long. A chunk may be an address,

an op code or some other type of data. The smallest instruction contains only

two chunks: IDU information and op code.

1DU INFORMATION

INDEXED
ADDRESSES

# OF
CHUNKS

VARIANT OP CODE ADDRESSES + OTHER CHUNKS

1 y » i y—f
INSTR * OF
TYPE ADDRESSES

TOTAL VARIANT FIELD

Figure 21. Detailed Instruction Format

The four fields in the first chunk (ll bits) contain information

used by IDU:

a) The instruction type field , with 2 bits, indicates whether the

instruction is a CU, 10 or PE instruction enabling IDU to send

the instruction to the appropriate processor.

b) The indexed addresses field has 3 bits. If bit i is on, then
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the i— address is to be indexed. The following convention is

adopted for the order in which base addresses and index addresses

are presented:

third chunk: first base address

fourth chunk: if first address is indexed, then it is the

address index for the first address, else it

is the second base address.
•

etc.

c) The number of addresses field indicates how many of the chunks

following the first two are addresses.

d) The number of chunks field gives the total length of the

instruction.

These last two fields are also sent as part of the variant field since they are

needed by the processors.

IDU places an instruction in an instruction processor as follows:

initialize instruction register with op code and total variant field; initial-

ize the three first local registers with the addresses, but do not change a

register to which an address was not given in the present instruction; then

initialize the next local registers with the extra chunks in the order given-

-

the instruction processor decides what to do with them.

3-6 Mass Memory

A survey was conducted on the state of the art of mass storage sys-

tems including bulk magnetic core, fast disks, fast drums and semiconductor

memories. Fast magnetic drum (at one-half cent per bit) or disk (as low as

one-twentieth of one cent per bit) could be used as the mass memory since they
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have a significant price advantage over the other two systems. However, being

cyclic, these systems would introduce synchronization problems and/or latency

time waits. Therefore, while disks are still being considered as a possible

very-large -capacity back-up for mass memory, the choice for the actual mass

memory is a random access system: bulk core or semiconductor.

CDC bulk core model 6636 was picked up as a sample of what is now

available. Its characteristics are:

- 7*5 million bits per module

- the maximum number of modules is four

- cycle time: 3«2 jiisec; access time: 1.6 jusec

- up to four modules can be interleaved

- the transfer rate is 25 to 100 million 6-bit chars per second

- it fetches in long words of U80 bits

- its cost is approximately three cents per bit.

It is expected that in the near future, price of bulk core will

drop to below one cent per bit. Assuming the availability of units of this

price and with cycle times as above, a unit fetching in 512-bit words could

be used as SPEAC's mass memory.

As for semiconductor memories, the main advantage core has over any

semiconductor type is the ability to be non-volatile. Semiconductor memories

are already available for less than three cents per bit although the price

always goes up for special configurations like the long word that is needed in

SPEAC's mass memory. Since semiconductor is so much faster than bulk core, one

might attempt to multiplex a narrower word but faster semiconductor memory to

achieve the desired word length and access time. In addition, a large memory

of shift registers might be considered. A special design would be easier to
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achieve and control can be maintained over synchronization and latency prob-

lems.

Therefore, mass memory will be a random-access unit: bulk core or

semiconductor, depending on economic considerations. It is assumed that

several modules of mass memory will be overlapped under the control of the mass

memory interchange (MMl) so that conflicts between mass memory access requests

from different sources will be infrequent. An average cycle time of 2 ,usec

(l usee access time) for the mass memory has been assumed in all timing

estimates.

3-7 I/O Buffer Register

The structure of the I/O buffer register (lOBR) is illustrated in

Figure 22. TO a FROM
MASS MEMORY

L

1

IOBRA IOBRK

1 r

2 i

IOBR.

TO
ROW GATING

FROM
ROW GATING

Figure 22. i/O Buffer Register Structure

The register is divided in two parts: a right part (lOBRr) and a

left part (IOBR^). Each part is as long as a mass memory word: 512 bits.

IOBRr is connected to the mass memory and is the actual buffer register; it can

also receive data from the row gating (128 hexadecimal digits, one from each

PE in a PE row). lOBRi is needed to achieve routing capability in SPEAC; it
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can send data to the row gating. IOBR as a whole can be shifted end around,,

left or right in U-bit (one hexadecimal digit) increments. In order to achieve

good routing speed, it is vital that IOBR can be shifted by any distance (from

1 to 127 digits) in only a few clock periods. This poses an interesting

minimization problem: how many direct shift paths should be implemented in

order to obtain any shift in a given number of clocks? Also,- a few distances

are especially important and the corresponding shifts should be particularly

fast; this is the case with powers of two since routes by a power of two ap-

pear much more frequently than Other routing distances as they are used in log-

sums, Fast Fourier transforms, etc. Finally, there is the important economic

restriction of keeping the number of direct shift paths at a minimum since

for each path one needs roughly one gate per bit and there are 1024- bits in

IOBR. It was decided that a minimum of 7 direct shift paths are needed with

the following direct shift distances: 128 left (this is vital to the opera-

tion of both i/O's and routes), 1 right and left, 32 right and left, and 8

(or k) right and left. This scheme enables one to perform any shift in not

more than 7 clocks. The worst case is distance 52 (50 if one uses k instead of

8) . Moreover, shifts by a power of two take not more than k clocks and most

take only one or two. At a cost of 2K more gates, one could implement 9 di-

rect paths (128 left, 1 left, 1 right, 2 left, 2 right, 8 left, 8 right, 32

left, and 32 right) for a worst case shift of 5 clocks.

It is assumed for the remainder of the paper that 7 paths were im-

plemented. This represents an investment of about 12K gates in IOBR which is

a reasonable price to pay to achieve routing and i/O buffering for the whole

machine. Table 9 presents the number of elementary shifts needed to shift a

number by any distance from 1 to 6k when the direct paths are: 128 left,
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A* B* A B A B A B A B

———
A B A B A B

1 1 9 3 IT 5 25 k 33 2 kl 1+ ^9 6 57 5

2 2 10 k 18 6 26 k 3^ 3 k2 5 50 7 58 5

3 2 11 k 19 5 27 3 35 3 k3 5 51 6 59 k

k 1 12 3 20 1+ 28 2 36 2 kk It 52 5 60 3

5 2 13 it 21 5 29 3 37 3 ^5 5 53 6 61 4

6 3 lit 5 22 5 30 3 38 it k6 6 5k 6 62 U

7 3 15 5 23 1+ 31 2 39 ^ kl 6 55 5 63 3

8 2 16 it 2k 3 32 1 ko 3 1+8 5 56 it Gk 2

*A - shift distance
*B - number of elementary shifts

Table 9- Number of Elementary Shifts for Each Shifting Distance

1 left, 1 right, 32 left, 32 right, k left, and it right.
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k. SPEAC's OPERATION

k.l Generalities - Data Format

The algorithms used in performing the most important instructions

will be outlined in this section and timing estimates will "be presented. The

timing is based only on a count of the PE clocks necessary to perform the

instruction; no CU delays were taken into account. Therefore, the estimates

neglect CU instruction fetching, decoding and central indexing times. Also

neglected is the time taken by the OU to execute microprogram control instruc-

tions; i.e., microinstructions that do not generate micro sequences. These

approximations are justified by the assumption that CU is, on the average,

faster than the PE's (CU clock rate is about twice PE clock rate) and the

queues insure that PE's will not have to wait by CU.

The timings are also a function of how much overlap is possible

when the instruction is executed; i.e., how many buses are available for the

PE instruction use. This factor depends on the assignment hierarchy used by

FINST, on the location of the operands in PEM and on how much i/O is taking

place when the instruction is executed. In the timings, at least one bus is

assumed always available for PE instructions (or else the worst case times

will obviously be infinity). Sometimes two timings are given: the "normal "

one, with only one bus available and the "optimum" timing, assuming maximum

overlap (two buses are available). CDB and CAB bus conflict is also a possi-

ble cause of delays which were not taken into account in the times since they

depend on how much i/O is going on. However, these delays are expected to be

negligible in a PE with three address registers.

As discussed in Section 3*1 - g> the machine accepts any word format,
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since there is nothing in the hardware to "freeze" the data representation.

Of course, adequate microprograms must be written to deal with a desired word

format.

An arbitrary (and quite conventional) format for floating-point num-

bers was picked up and used in the timings. This representation will be called

the "standard format " and is as follows: a number appears in PEM as indicated

in Figure 23-

e
n
e

e
l

e
o

m
n
m

..

"i
m
o

Figure 23. Standard Floating-Point Format

Each PEM location contains one hexadecimal digit. The location of

m„ is low memory address. There are N = n + 1 exponent digits and N =

n + 1 mantissa digits. Mantissa is in sign and magnitude and the sign is in

bit e • i.e., the low order bit of the LSD of the exponent. Therefore the

exponent has 1+N - 1 bits since one bit of the exponent is used for mantissa

sign. The exponent base is 16 and the exponent is represented in excess no-

tation. The number A represented in Figure 23 has a value given by:

A = (-1) X (m
n

(2 )

m

where E, the exponent, is given by:

E = e

(~h)n (-10 (XL+1 ) E
. + m

1
(2

m
) + m

Q
(2 ))(l6

E
)

Un -1
e

+ (e
Q2

)(2) + (e )(2
C

) + (e
1
)(2

D
) + ... + (e

n ) (2
e

)01 '
v "02 /v ^" /

'

v ~03
e

If a floating-point number is normalized, m / 0; i.e., at least

one of the four bits of m is one.

A particularly important length for a floating-point number is 32

bits, which was often taken as the standard floating-point number in this
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section. A 32-bit floating-point number has one mantissa sign bit, a base

16 exponent with 7 bits and a 2l+-bit mantissa.

k.2 Local Indexing

Operand addresses are sent to one of the PE address registers via

CAB. Only one clock is needed to transmit an address in this fashion. Then,

if required, any address may be locally indexed at a maximum cost of 1.6 jusec

(l6 PE clocks) per indexing.

The microsequence to perform local indexing is presented in Table

10; the notation is explained in the introduction of Appendix B. It is as-

sumed that the address to be indexed (x x x ) is loaded in X
n

and the index

is i
2
i
x
i .

In conclusion, local indexing is relatively fast (about 7% of

the time for a 32-bit floating-point multiplication) and the procedure does

not penalize the users that do not need it since it is performed only when

the instruction variant field is adequately set. Also, the microsequence

presented can be significantly speeded up if one knows that the index is less

than three hexadecimal digits long.

^•3 Multiplication

Two mantissas A and B, each with N hexadecimal digits, are to be

multiplied. Using the notation of expressions 1 and 2 in Section 3-2, the

following steps are performed:

1) load a, from memory into register B

2) load b^ from memory into register A
r

3) set to zero the remainder of register A; i.e., A and A
m

k) multiply a and b
Q
using four "add and shift" commands. At the
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£ o & o
3 o 3 o
S H B H
•H O -H O
cti H -H W

Microsequence Comments

2

3

5

6

9

10

11

12

13

lU

15

16

1

2

3

k

6

6

7

8

9

10

11

12

13

X^ *- CAB (address (i ))2 o

A <- X nc 1

B «- PEM (X ); shift A right k

Wait for PEM fetch

Wait for PEM fetch

A *- (B+A )j C =0; lcFF^ *- C
, ;

Incr X^

n+k'

Ik

15

B *- PEM (X ); shift A right k

Wait for PEM fetch

Wait for PEM fetch

A <- (B+A ): C =lcFF^;
r m n

lcFFU *- C . ,; Incr X_
n+4 2

B «- PEM (X ); shift A right k

Wait for PEM fetch

Wait for PEM fetch

A <- (B+A ); C =lcFF+;
r m n
lcFF4 «- C

n+U

Shift A right k; interrupt on
lcFF+ ON

Xn
«- A

1 c

Put in X the address of the index

Transfer address to he indexed to A

Fetch i and place x in A
o o m

Add i and x and place in A
o o r

Fetch i., and place x, in A
1 * 1 m

Add i n and x n and place in A11 r

Fetch i„ and place x^ in A
2 2 m

Add i and x ; shifting A will place

x+i in A from which it is returned
c

to X ; an overflow in the indexing

causes an interrupt.

Table 10. Microsequence for Local Indexing
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end of this step, A and A will contain the two-digit product

of a^ and b^; b_ was destroyed and A now contains m.
r

5) if a double precision product is desired, store m = (A ) into

memory; jump this step if a single precision product is to be

obtained

6) increment by 1 the contents of register Xp (it is assumed that

initially X, contains the address of a and X contains the

address of b_) . Therefore, X now contains the address of b

7) load b from memory into reg A

8) multiply b (in reg A ) and a (in reg B) as described in step

k; note that the "carry" of the previous multiplication is auto-

matically added to the product

9) increment X-. by 1, decrement X by 1

10) shift register A left k bits which vacates A

11) reload register A and B; multiply

12) A now contains mn which can be stored or discarded
/ r 2

And so on, following the algorithm of Section 3*2. To determine

digit m. of the product (i< n), the cycle: [increment X , decrement X , load

B, load A , multiply, shift left h] is repeated i+1 times. On the first cycle

only one increment-load is performed and on the last cycle there is no shift

left k. It has already been mentioned that in single precision, product m is

the first digit of the product which is not discarded and it can be stored in

b ' s position (or a ' s). If at the end of the multiplication m does not

equal zero, a normalization is needed; each hexadecimal digit is read and

restored shifted right. Therefore, m is discarded, m n becomes the low
' n ' n+1
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order digit and m_ _ the high order one.to 2n+l

This algorithm is general and can handle mantissas with any number

N of digits. The introduction of the scratchpad memory, however, results in a

remarkable improvement in the procedure, especially for N not greater than 16

(which includes most practical applications).

The method consists of overlapping a multiplication of two digits

with the fetch of a third digit which is temporarily stored in sM and will be

used in a subsequent multiplication. This is always possible because the "add

and shift" command used in multiplication does not need any PE bus; a bus is

thus left available for the fetch. Since the multiplication takes k clocks

and a fetch only 3; there is still time to increment the address register used

(preparing for the next fetch) and to reload B concurrently with its last use

in an "add and shift." A fifth clock is required to reload A and a sixth if

it is necessary to store A in sM before reloading A . The procedure described

is listed in Appendix B, note a, under the name MF (for multiply and fetch).

It should be also pointed out that the result is now first stored in sM and

only after normalization is written in PEM which avoids the relatively slow

process of rereading and restoring in PEM only to normalize.

The time required to multiply two mantissas (each N digits long) can

now be estimated: N executions of MF are required, taking 5 clocks each; N

product digits must be stored, which takes 6 clocks per digit (see function

ST in Appendix B, note d) and N more clocks to store the product temporarily

in sM. Finally, about 13 clocks are necessary for initialization and control.

Therefore:

T ~ 5N
2

+ 7N +13 , N < 16 (1)

re T is the time for mantissa multiplication in clocks. Since each clo<
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takes 100 nsec, for N = 8 a T of kO jusec is obtained.

U.3«l Floating-point Multiplication

The algorithm is relatively simple: initially the mantissas are

multiplied as described previously and the normalized single precision product

is stored. A is left -with a 1 if normalization was performed (i.e., if

m_ , = 0) and with a otherwise. A is then subtracted from the first expo-
2n+l J m

nent and the second exponent is added to the difference which obtains the ex-

ponent of the result. Five extra clocks are needed to detect exponent over-

flow or underflow and to recode the exponent of the result in excess repre-

sentation as explained in Appendix B, note f . The sign of the result is

obtained from the exclusive - OR of the signs of the factors.

Timing estimate: for two floating point numbers with N digits in

the mantissa and N digits in the exponent, the mantissa product will take

(from (l)) about ^W + 7N +13 clocks; exponent manipulation takes about k

clocks per digit plus 6 clocks per digit for storage and about 5 clocks for

control. The final expression is:

T ~ 5N
2

+ 7N + ION + 18 , N + N < 16 (2)
fpm mm e e m —

where T__ is the time for floating-point multiplication in clocks,
fpm

For the "standard" 32-bit floating-point number, N = 2 and N = 6
e m

which yields T„ = 27 jusec. For this case, the precise jiisequence is pre-

sented in Appendix B and the results obtained are as follows: normal time =

25 jusec; optimum time = 2k )usec. Two 6^-bit floating-point numbers (N = 12,

N = k) can be multiplied in about 86 ,usec.

It should be remarked that the algorithm illustrated obtains the

single precision product by truncation of the double precision product. If
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simple truncation is not satisfactory and rounding is to be- performed, then a

small addition is needed in the microsequence. This is not too time consuming,

however

•

k.h Addition and Subtraction

Unsigned addition or subtraction is quite straightforward and can

be performed in the following steps:

1) load from PEM address (X ) into register B.

2) load from PEM address (X^) into register A .

2 m

3) add or subtract using input carry (C ) zero (one in subtraction)

for the first cycle and C =lcFF^ for the remaining cycles. Also,

at each cycle, IcFFU stores the output carry C . . Therefore,

at every cycle after the first one, lcFF^- contains C « from the

previous step.

h) increment X and X by 1.

5) go to step 1.

On the last cycle, lcFFU is gated to the interrupt wire since lcFFU

ON (OFF in subtraction) at this point indicates an oveflow.

Timing estimate: for two unsigned fixed-point numbers with N digits

each, one needs, per digit, 6 clocks to fetch the two operands, 1 clock to add

and 5 clocks to write the result in PEM. Therefore:

T = 12N (3)
a

where T is the time for unsigned addition or subtraction in clocks. Thus,
a

T = 10 (usee for N = 8 digits,
a

k.k.l ['Atoned Addition and Subtraction

There are several different ways to perform signed addition and
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subtraction. Signed numbers can be stored in PEM either in a complement form

or as sign and magnitude. The latter seems to be preferable since it speeds up

multiplication and slows addition.

To add two signed numbers represented in sign and magnitude notation,

it is necessary first to compare the signs. The result of the comparison is

stored in lcFFl which will be ON if the signs are equal, OFF otherwise. lcFFl

is then used to control whether an addition or a subtraction is actually per-

formed. The two numbers are then added (or subtracted, if lcFFl is OFF) and

the final output carry, which is stored in IcFF^, is analyzed to determine the

sign of the result, whether recomplementation is needed or not and if there

was overflow. The rules are presented in Appendix C, note f.

Signed addition (or subtraction) takes 6 clocks per digit to fetch

the two operands, one clock to add/ subtract, one clock to temporarily store

the result in sM (assuming N < 16, this is possible and speeds up recomple-

mentation considerably), 2 clocks per digit to recomplement (PE's in which this

operation is not needed are disabled), 6 clocks per digit to store the result'

in PEM and about 10 clocks for control and sign manipulations. Therefore,

T = 16N + 10 , N < 16 (k)
sa ' —

where T is the time for signed addition or subtraction in clocks: for N = 8,
sa D ' '

T = Ik ^sec.
sa

k.k.2 Floating-point Addition and Subtraction

The algorithm is quite complex and can be divided into six distinct

phases: a) exponent comparison, b) exponent subtraction, c) hexadecimal point

alignment, d) mantissa addition, e) recomplementation, and f) normalization.

The basic steps are the following:
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1) Set up X and X with the addresses of the two exponents.

2) Fetch the exponents (storing them temporarily in scratchpad

memory to avoid subsequent fetches) and compare them, exchanging

the exponents and addresses in PE's with the "wrong" order so

that all PE's will have in X the address of the number with

the larger exponent.

3) Compute the difference d of the exponents and add it to address

X , thus performing hexadecimal point alignment.

k) Set up A with (FFF-N +l) via CAB and add d which prepares in A

a trap that will overflow when N -d+1 is added to it; this will^ m >

indicate that all valid digits of the smaller operand have been

used and zeros must be substituted for the remaining digits.

5) Perform the actual addition following the algorithm described in

the previous section with one extra step: after loading B from

PEM, B is zeroed if a carry has already occurred in A . A con-

tains initially the trap described in step h and is incremented

by one as each pair of digits is added. lcFF2 is used to store

the first carry from A . The sum is temporarily stored in sM

for possible recomplementation and normalization before it is

finally stored in PEM.

6) The final carry is analyzed to determine if there is a need for

recomplement ation or if an "overflow" occurred; i.e., if one

extra MSD containing a ONE should be added to the mantissa. The

rules are presented in Appendix C, note f

.

7) Recomplementation is performed; only PE's in which this operation

is necessary are enabled. The recomplemented result goes back
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to sM.

8) X and X, are used as counters: X is initialized to FFF (all

ones) and X is initialized with the larger exponent. Then both

registers are decremented by one for each leading zero in the

mantissa of the result. Therefore, at the end of the process X

will contain the exponent of the result and X will contain a

trap to be used in A in the next step.

9) The mantissa of the result is written in PEM using X to store

the address of the result in PEM and X to store the address of

the result in sM. The mantissa is written from LSD to MSD and

the trap in A is used to write initially as many trailing zeros

as there were leading zeros before normalization.

10) The exponent is written from sM into PEM.

Timing estimate: since the procedure is so complex, it is quite

difficult to obtain a precise formula for the number of clocks in addition.

As a rought estimate, it takes for each pair of mantissa digits: 9 clocks to

add, 2 clocks to recomplement, 2 clocks to count leading zeros and 8 clocks

to write in PEM; for each pair of exponent digits: 3 clocks to compare, 3

clocks to subtract and 6 clocks to write in PEM. Adding about 50 clocks for

control, sign manipulation and other housekeeping actions, the final expres-

sion is:

T _ = 21N + 12N + 50 , N + N < l6 (5)fpa m e ' e m —

where T„ is the time for floating-point multiplication in clocks, N is the

number of digits in the mantissa and N is the number of digits in the expo-

nent. Thirty-two bit floating-point numbers with N = 6 and N = 2 take aboutme
20 usee to add. For this case, a precise microsequence is presented in Appendix
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C and the results are: normal time = 21 ,usec, optimum time = 19 ,usec. Two

6k-"bit floating-point numbers can be added in about 35 jusec.

k-5 Other Operations

A few other important operations are now considered and a quick

sketch is presented describing how they would be performed in SPEAC.

^•5'1 Division

This operation has not been considered in detail and while it is

probably possible to design a sophisticated division algorithm that will use

the PE very efficiently, this will take considerable research. On the other

hand, even a very straightforward restoring division algorithm can be per-

formed in an acceptable time. For N < 8, the two mantissas can be stored in
m —

sM; then the divisor is repeatedly subtracted from the dividend until a final

borrow results and disables the PE. This is performed a maximum of 15 times;

then all PE's add the divisor to the remainder to restore a positive remainder.

The number of subtractions is counted in A . Each subtraction takes only 2
c °

clocks per digit once the operands are in sM. Therefore, it takes at least

32N clocks to determine each digit of the quotient. Adding about 3 extra

clocks per subtraction for control, one obtains the following rough timing

estimate for mantissa division:

T. ~ 32N
2

+ 50N , N < 8 (6)
d m m ' m —

This yields about 130 usee for 2^-bit mantissa division and not more than 1^0

jusec for 32-bit floating-point division. The ratio of about six between

floating-point division and floating-point multiplication times is adequate

for this type of machine (in ILLIAC IV, this ratio is 7)-
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k.5-2 Logic Operations

Logic operations are quite straightforward in this machine since

the A/L unit in the PE's can directly perform all sixteen logical functions

of Wo variables. Therefore, to obtain any bit-by-bit logic function of two

operands, each N digits long, the same algorithm described for unsigned addi-

tion (Section k.k) can be performed; the timing is also as given by (3):

T- 3 12N (7)

where T« is the time required to perform one bit-by-bit logical operation.

If. 5*3 Comparisons

In SPEAC, the result of a comparison is normally stored either on a

lcFF or in the mode register. It can also be stored in sM or PEM for future

use or sent to the CU via CDB. The six different types of comparisons (>, <,

>, <, =, 7O can readily be performed by the A/L unit. The algorithm for com-

paring two unsigned numbers is similar to the algorithm to add two unsigned

numbers; as each pair of digits is compared, the result of the comparison for

= is always stored in lcFFl. This is needed even to perform a comparison for

>, <, >, or < since lcFFl is used to "freeze" the result of the comparison once

the first pair of unequal digits is found. For example, the typical micro-

sequence for a < compare is as follows:

- load first operand from PEM into A

- load second operand from PEM into B

- enabling on lcFFl ON, store the comparison A = B in lcFFl and

A < B in IcFFU.
m

When all the digits have been compared, lcFFU will have the resulting bit.

Therefore, the timing is:
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T
c

= TN (8)

where T is the time in clocks for comparisons of two unsigned numbers, each

N digits long, leaving the result in the PE.

Signed and floating-point comparisons require a little more control

but the linear dependence on N is as in (8). Rough estimates are:

T
sc

~ TN + 10 (9)

T
fpc ~ 7(N

E
+ V + 2° ^

where T is the time for signed comparisons in clocks and T^ is the time
sc r fpc

for floating-point comparisons in clocks.

k.^.h Shifts

Shifts by a total distance of b bits are easily performed in two

phases: address indexing is used to shift by (b div k) and register A shifts

are used to shift by (b mod k) . sM is also frequently used as temporary

storage, especially in end-around shifts. If b is global (i.e., all PE's will

shift by the same distance) then the address indexing is performed in the CU.

In general, it takes in the worst case 3 clocks to shift each digit, one to

store it in sM and 6 to store the shifted digit back in PEM. Therefore:

T ~ 12N , N < 16 (11)
s —

where T is the time in clocks to shift a number with N digits by a global
s

distance. The operation is a little more complex if b is local; i.e., the

shifting distance is different in each PE. In this case, local indexing is

initially performed, taking about 20 clocks, to "shift" by "b div k." The

quantity "b mod V is then stored in LC and three successive shifts are per-

formed which are enabled by lcFFl, lcFF2 and lcFF3 respectively. The remain-

der of the operation is as for global shifts. Therefore:
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T-, ~ 12N + 20 , N < 16 (12)
Is —

where T-, is the time in clocks to shift a number with N digits by a local
Is

distance.

It should also be pointed out that the PE, besides shifting, has

very good bit manipulation capability in general due to the locally controlled

gating into A .too m

k.6 i/o

Both I/O and routing are performed using the row gating and IOBR.

I/O will be described first. An elementary I/O operation consists of inter -

changing the data words Dl, intially in PEM, and D2, initially in mass memory

(MM). Both words contain 512 bits and Dl is stored across one PE row: row j

th
(PEi in row j contains the i— hexadecimal digit of Dl). Recalling the IOBR

structure presented in Figure 22, the general procedure is the following:

clock - Initiate a MM read of word D2 to IOBRr.

clock 8 - Initiate a PEM read of word Dl.

clock 10 - MM read is completed and D2 is in IOBRr. The PEM read

will be completed during the next clock period, therefore

gate Dl through row- gating to IOBRr and simultaneously

shift IOBRr left 128 digits (i.e., IOBRi +- IOBRr) . This

can be done in one clock.

clock 11 - At this instant, IOBRr contains Dl and IOBRi contains D2

Initiate now the MM rewriting which will replace D2 by

Dl in MM. Also initiate a PEM write which will write D2

from IOBRi! into any PEM row selected by row gating. If

the row selected is row j, then D2 will replace Dl in
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that PEM row.

clock 16 - PEM -write is complete; D2 is now available in PEM.

clock 21 - MM rewrite is finished; ready to start a new i/O transac-

tion at this clock.

One elementary i/O transaction then takes: 1 MM cycle and 1 PE clock

or approximately one MM cycle, which was assumed to be 2 jusec (l ,usec access

time, 1 jusec rewrite time). Eight of these elemtnary i/O's are needed to ex-

change one digit in every PEM with MM since there are eight PE rows. Therefore:

Ty
Q

= 168N (13)

where T # is the time in clocks to interchange a word N digits long between

PE's and MM. For N=8, T
T /n

= 135 jusec. This indicates that since a typical

32-bit floating-point operation takes about 25 usee, each word brought to PEM

should be used on at least six operations (before being overlaid to MM) in

order to completely overlap execution and i/O.

The procedure described above for i/O transactions is based on the

assumption that MM is bulk core. In this case, IOBRr is in fact the memory

data register for MM. If MM is implemented with semiconductor memory, then it

would be better to modify the structure in Figure 22 and have the output data

from MM linked to IOBRi! and the input data linked to IOBRr. This would avoid

the IOBR shift in clock 10 and would save one clock in each transaction.

U.7 Routing

The following algorithm is employed to perform routing left of one

digit by a distance R, R < 1023- This is obviously general since a routing

right by n is equivalent to a route left by 102^-n.

1) IOC, which processes routings, decomposes R into r'=R div 128
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and r=R mod 128. r' will be taken care of by row gating and r

by shifting IOBR.

2) IOBRr is loaded with row r' from PEM (rows are numbered from

through 127).

3) IOBRr is shifted left 128 thus placing row r in IOBRi; simul-

taneously row r'+l is brought to IOBRr.

h) IOBR is shifted left by a distance r.

5) IOBRi now contains the routed word for row 0. Therefore, IOBRi

is written into row 0.

6) IOBR is now shifted by (128-r) which places row r'+l into I0BRJ5

simultaneously, row r'+2 is brought to IOBRr

7) Repeat step k.

and so on

It should be noticed that row r' has to be brought to IOBR twice,

once at the beginning and once at the end of the routing. This is necessary

to recover the leftmost digits of r' which are lost when step k is first

executed.

The actions performed are: 9 row loads into IOBRr, 1 shift by 128,

8 shifts by r, 7 shifts by ( 128-r) and 8 stores of IOBRii into rows. Also

the first clock of all but the first row loads is overlapped with the last

clock of a shift and the first clock of all but the last IOBR stores is

overlapped with the first clock of a shift. Therefore, the timing for routing

will be given by:

T = % + 8(t -1) + 8t . , x + 7t . /, oQ n + t ,, lnQ \ + T(t -1) + t
r % v 1 ' sh(r) ' sh(128-r) sh(128) s s

where T is the time in clocks for routing one digit by a distance R = 128r'+rj



10if

tn is the number of clocks for a row load; t , / •> is the number of clocks to
1 ' sh(r)

shift IOBR by r; and t is the number of clocks for a row store. It is known

that t v/-,po\=l< The values for t and t
g
depend on where the digit to be

routed is: if it is in some PE register, then these times are only one clock

;

if the digit is in PEM, then t* requires one PEM read or 3 clocks and t takes

5 clocks for a PEM write. Therefore, there are four different types of

routing. They are, from the fastest to the slowest: l) PE to PE, 2) PEM to

PE, 3) PE to PEM and k) PEM to PEM.

For routings of type 1:

T _ = (8t , / x + 7t ./,„ Q n + 3)N {lk)
rl v sh(r) ' sh(128-r) ' v '

where T .. is the time in clocks to route a number with N digits, t , / » is
rl sh(r)

given by Table 9 for r < 6k; shifts by r > 6k in a given direction are simply

obtained by first shifting by 128 (end around) and then shifting (128-r) in

the opposite direction, t . / x for r > 6k can thus be written as 1+t . / n/~ Q \* sh(r) sh(12o-r)

and t
n / nr, s is taken from Table 9-
sh( 128-r)

For N=8 and r=l, one obtains T .. = 20 jusec. This is the best possi-

ble routing time and it is on the order of one floating-point operation time.

Other distances may take longer. For example, when N=8 and r=2, T _ is

32 ijisec. Note also that routing must always be from one location to another

or else the row that must be loaded twice would be changed when accessed for

the second time.

For routings of types 2, 3, and k the expressions are:

T
r2 = (8t

sh(r)
+ 7t

Sh(128-r)
+ 21 > N (15)

T
r 3

" (8t
sh(r)

+ 7t
Sh(l28-r)

+ ^ (l6)

T
rU - < 8t =h(r)

+ 7t*h(l28-r)
+ 53)N U7)
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It is also important to notice that since routing is performed in

chunks of 128 each, several other special purpose types of partial routings

can he microprogrammed and are very useful in specific applications.

k.Q Summary of Timings

Table 11 presents a summary of the timing estimates for several

operations and four "typical" word lengths: 16 bits (N =3> N =1), 32 bits

(N =6, N =2), k8 bits (N =9, N =3), 6h bits (W =12, N =k)

.

m ' e /} m ' e J ' K m e



106

Operation
Formula
Number

Time :Ln /Lisecs

16 bits 32 bits ^8 bits 6k bits

Local indexing, per address 1.6 1.6 1.6 1.6

Mantissa multiplication 1 12 39 82 llH

Floating-point multiplication 2 9.^ 26 52 86

Fixed-point unsigned addition 3 k.Q 9-6 15 19

Fixed-point signed addition k 1-k Ik 20 27

Floating-point addition 5 12.5 20 28 35

Mantissa division 6 kk 1*4-5 na na

Logic Operations 7 k.Q 9-6 15 19

Comparison of unsigned numbers 8 2.8 5.6 Q.k 11

Comparison of signed numbers 9 3-8 6.6 9.k 12

Comparison of floating-point
numbers 10 k.Q 7-6 11 13

Global shifts 11 k.Q 9-6 15 19

Locally indexed shifts 12 6.8 12 17 21

I/O ( PEM*—MM) 13 67 135 200 269

Routing PE - PE, distance 1 Ik 10 20 30 ko

Routing PEM - PE, distance 1 15 17 35 52 69

Routing PE - PEM, distance 1 16 23 k6 69 91

Routing PEM - PEM, distance 1 IT 30 6o 90 120

Table 11. Summary of Timing Estimates
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5- APPLICATIONS

5-1 General Considerations

In general, SPEAC can handle efficiently most problems in which

ILLIAC IV performs well since most of the features of ILLIAC IV are also

available in SPEAC. A large number of parallel algorithms to implement many

important applications in ILLIAC IV have been developed [9 through 17] • Ob-

viously, these algorithms can be used as a starting point when the use of

SPEAC for the same applications is contemplated. A few modifications or a

new approach are sometimes required due to the following differences:

a) PEM is much smaller in SPEAC and many problems which are "core

contained" in ILLIAC IV must use memory overlay in SPEAC. On

the other hand, MM in SPEAC is random-access and the machine

was especially designed to allow efficient PEM overlay so it is

normally possible to use SPEAC efficiently even in non-core con-

tained problems. In ILLIAC IV, non-core contained problems,

while not as frequent as in SPEAC, are harder to program effi-

ciently due to the latency problem in its disk mass memory.

b) Routing is relatively slow in SPEAC. While in ILLIAC IV a

route takes about half the time required for a floating-point

operation regardless of distance, in SPEAC it takes from one to

several times as much as a typical floating-point operation,

depending on the distance. On the other hand, in SPEAC routing

is an i/O operation and can be overlapped with PE processing.

Also special route instructions can be microprogrammed, "cus-

tomized" to particular problems.
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c) ILLIAC IV is primarily intended for computations on floating-

point numbers with 32 or 6k bits precision. While SPEAC can

also handle these problems, floating-point multiplication be-

comes relatively slow for very long word lengths since it is

proportional to the square of the number of digits in the word.

Furthermore, there is a very important area of applications

which is much more "natural" to program for SPEAC than for ILLIAC

IV. This area includes problems involving a large quantity of

fixed-point numbers with small precision, typically only a few

bits. Examples of these problems are: picture processing, non-

numerical processing in strings of characters, etc. These prob-

lems can be handled very efficiently by SPEAC due to its digit-

by-digit processing and fast operation for small words.

d) In ILLIAC IV, the number of PE's (nOT ) is 6k and for most appli-
iriii

cations one is interested in tackling problems in which the num-

ber n of parallel computations is equal to or greater than n .

In matrix computations, for example, n is the order of the matrix

and in discrete Fourier transforms n is the number of points.

Therefore, a frequent problem in ILLIAC IV is to partition a

large data set into "chunks" of 6k or 6k X 6k so that each

chunk can "fit" in the machine. Chunks are then processed se-

quentially. In SPEAC, n_=102U and for most problems one will

be interested in n < n • the typical problem is to subdivide a

data set into several pieces and to process all the pieces in

parallel to "fill" the whole machine when n < n .

In the next sections a few specific representative applications of
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SPEAC are considered in detail. Of course, they are only meant as a sample

since many other interesting applications could possibly he efficiently han-

dled by the machine.

Timing estimates were based on counting PE clocks by hand. Some

attempt has been made to take into account PE/lO overlap but precise numbers

could only be obtained with a very sophisticated simulator for CU and specific

detailed microprograms for every instruction. Therefore, the estimates can

be a little pessimistic if the overlap was not fully accounted for.

5-2 Relaxation

The problem consists of: given an initial matrix U , n x n, find a

succession of matrices U , XT , . . . where each term of matrix U is a func-

tion of the four "neighbors" of the term in the previous matrix U .

In general,

i^.fdf
n

., u^ ., u* . ,, t£ . ,, u
k

.)ij 1+1,0 i~i,o 1,0+1' i,o-i ; i,o
;

This is a general formulation for a series of problems that can be very ef-

ficiently solved using an array computer. If the elements of U are floating-

point numbers, then this type of expression can be used to find the equili-

brium temperatures or potentials at every point of a plane submitted to given

initial conditions at the edges; if the elements of U are small integers, then

each element can represent a point of a picture coded according to a gray

scale. In this case, the formulation can be used to implement a "smoothing"

filter or a number of other picture processing problems.

As an example, the following case will be studied.

TT
k+i u* . + u

k
_ . + u

k
. _ + u^ . _

U . = l+l, J 1-1,0 i,J+l ijQ-1
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The loop condition is the following: if |UV . - U7 .
|
< e for all

i,j then exit the loop; otherwise repeat.

Two values of n are considered: 32 and 102^ although other powers

of two can also be handled efficiently.

a) n=32; the elements of U are 32-hit floating-point numbers.

The most straightforward (and most inefficient) way of coding the loop is:

the elements of U are stored across PE's, row after row; i.e., numbering PE's

from to 1023 and rows from to 31? element U. . is stored in PE„^. .. U
ij 32i+j

is in PEM location a. The loop is:

1) Route distance 1 left from PEM location a to PEM location b.

2) Route distance 1 right from PEM location a to sM(0).

3) Add sM(0) to PEM(b) and store in PEM(b)

.

k) Route distance 32 left from PEM(a) to sM(0).

5) Add PEM(b) *- (PEM(b)+sM(0)).

6) Route distance 32 right from PEM(a) to sM(0).

7) Add sM(0) *- (PEM(b)+sM(0)).

8) Multiply the addition of the four neighbors by .25, sent via CDB:

sM(0) «- (sM(0) X CDB(.25))-

9) Test for ending condition; sM(0) which now contains 1J "is

subtracted from U which is in PEM location a and the difference

is compared against e, sent via CDB. In PE's in which the end-

ing condition is satisfied, a zero is gated to the interrupt

wire and register M is reset which disables the PE.

10) Write sM(0) in PEM location a and go back to step 1.

The process ends when, in step 9 CU receives a zero via the inter-

ire; this indicates that all PE's are disabled. At this point the result
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of the last iteration is stored in sM(O); all PE's are enabled and the

result can then be stored in PEM. The procedure requires three additions

(20 usee), one subtraction (20 usee), one multiplication (25 usee), three

routes of type 2 (35 usee), one route of type k (60 usee), and one comparison

(7-6 usee) for a total of 278 usee per execution of the loop. Obviously, each

execution of the loop computes a new iteration matrix- -U ~ out of the pre-

vious value u . It should be noticed that sM was used as temporary storage in'

some steps. sM can store two 32-bit numbers: one in sM(0) through sM(7) and

the other in sM(8) through sM(l5). It is obviously possible to write micro-

sequences for variants of addition and multiplication which take one or both

operands from sM instead of PEM and also possibly have the results in sM in-

stead of storing the numbers back in PEM. These operations will be faster

than the normal PEM to PEM ones (from 1.6 to 6.k usee faster) but this will

not normally be taken into account in these worst-case timings. It is also

important to notice that since sM is used as scratchpad in most operations, if

the two operands are in sM, one is destroyed during the operation unless sM

is enlarged to contain four or eight 32-bit numbers instead of only two.

A few improvements are possible in the straightforward algorithm

presented above and they are as follows:

1) The routing in step 1 does not have to be of type ^4- since sM is

available. Therefore, one can load the data in sM(0) (2.k usee),

route from sM(0) to sM(8) (20 usee), and store sM(8) in PEM

{h usee). These last four usee can be overlapped with the

routing and total time is roughly 25 usee.

2) A special microsequence can be written for an instruction to

divide by k by shifting and normalizing. This will take much



112

less than 25 usee; since the operand, is in sM and the -result is

also left in sM, 5 usee is a reasonable upper bound.

3) All additions except the last can be overlapped with routings of

type 2. The routings to be overlapped must be of type 2 because

there is no space in sM to keep the elements of U permanently

in sM, which would enable one to use only type 1 routings. If

more space were available in sM, the sum could also be kept in

sM and PEM location b would not be used.

The improved algorithm is as follows:

1) sM(O) *- PEM(a); IT is now in sM(O) (2.k usee).

2) Route distance 1 left from sM(O) to sM(8) (20 usee). Simultan-

eously, write sM(8) in PEM(b) (~2.6 usee).

3) Route distance 1 right from sM(0) to sM(8) (20 usee).

k) PEM(b) *- (PEM(b)+sM(8)) . Simultaneously, route distance 32 left

from PEM(a) to sM(0) (35 usee).

5) PEM(b) *- (PEM(b)+sM(0)) . Simultaneously, route distance 32

right from PEM(a) to sM(8) (35 usee).

6) sM(0) <- (PEM(b)+sM(8)) (~16 usee). Note that this addition

takes less time because the result is not stored back in PEM.

7) sM(8) •*- sM(0) shifted 2 right (i.e., divided by k) and normalized

(~5 usee)

.

8) Test end condition. This is the same as step 9 in the original

algorithm (~8 usee).

l) PEM(a) «- sM(8). Go to step 1 (~h nsec).

The total time is now only ~lU8 usee for each complete relaxation.

Further improvement is possible if sM can store four 32-bit numbers instead
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of only two. In this case all routings are of type 1 (which saves 30 usee)

and the whole problem can be done in sM which saves all PEM reads and writes

except the initial read and final write. In this case a total time on the

order of 110 ^sec is possible.

The algorithms considered assume .a toroidal geometry; i.e., there are

no edges. ILL . is considered a neighbor of IT . and U. _ a neighbor of U. on •

0,j 31, J i,0 i,31

This is not desirable for most actual applications. In most cases, there is

an outside edge: U _ ., U00 ., U. , and U. „„ with fixed values. This can
-l,y 32, y i,-l 1,32

be easily included in the program in the following way: a digit D is stored

in each PE containing the LSB ON if the element stored in that PE belongs to

row 0, the second LSB ON if it belongs to row 31, the third LSB ON for column

0, and the MSB ON for column 31- The fixed edge values are stored in PEM

locations c,d,e and f (each is only needed in 32 PE's, but it is probably

easier to store them in all PE's). A new step is needed between 2 and 3 in

the improved algorithm. This step is number 2— and is identical with step 1.

Before steps 1, 2—, h, and 5, a local indexing is added. This local indexing

is enabled by the bits of D and makes PE's that have an edge neighbor take

the edge value instead of the "end-around" neighbor. This adds only about

8 jiisecs to the procedure.

It should also be pointed out that overlaps of two operations both

using sM can be less than perfect since sM has only one port. Normally, how-

ever, operations that use sM do so 50$ or less of the clocks and thus very

good overlap is possible. Multiplication is an exception since it uses sM

very heavily.

b) n=102U; the elements of U are floating-point 32-bit numbers.
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In this case each row of U is stored across PE's and 102^ rows are needed.

Therefore, the problem is not "core contained" and PEM overlay is necessary.

Routing is only needed now to access the "left" and "right" neighbor; the

"upper" and "lower" neighbors of an elements and the element itself are

stored in the same PE. Therefore, at least three complete rows of U must

always be present in PEM. Assuming they are in locations a, b, and c respec-

tively, the algorithm is:

1) sM(0) *- PEM(b); U
k

is now in sM(0) (2.k usee).

2) PEM(d) *- (PEM(a)+PEM(c)); do not destroy sM(0) (20 usee).

3) Route distance 1 left from sM(0) to sM(8) (20 usee).

k) PEM(d) *- (sM(8)+PEM(d)); do not destroy sM(0) (20 usee).

5) Route distance 1 left from sM(0) to sM(8) (20 usee).

6) sM(0) *- (sM(8)+PEM(d)) (~16 usee).

7) sM(8) *- sM(0) shifted 2 right and normalized (~5 usee).

8) Test end condition (~8 usee)

.

9) PEM(b) «- sM(8); go to step 1 {~k usee).

Steps (2,3) and {k,5) could overlap for a total time of 58 usee per

row. However, this would leave only 5-7 usee in which both buses are not

simultaneously used and i/O overlay could not occur. Since FINST normally

assigns priority to i/o, on the average each loop will take the maximum time

of 116 usee and will have to wait for 20 more usee for i/O. Therefore, the

procedure is i/O bound and each loop takes 135 usee which is the time needed

for an i/O transaction. One iteration is then performed in about 135 msec.

Fixed edge conditions can be introduced as discussed in case a and do not cost

any extra time since the procedure is i/O bound.
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c) n=102U; the elements of U are one-digit integers. This

case -would be used in picture processing. The problem is "core contained"

since 2K digits are available in PEM and only IK are needed. Storage is as

in case b, each row across PE's. All elements of the same column are in the

same PEM. Only one PEM read and one PEM write are needed per row since sM is

now capable of storing sixteen h-bit elements. Assume that sM(a) contains the

upper neighbor, sM(b) the present element and sM(c) will contain the lower

neighbor. The algorithm is:

1) sM(c) *- PEM(address of element of next row).

2) reg A *- sM(a)+sM(c).

3) Route distance 1 left from sM(b) to sM(d) (2.5 usee)

.

k) reg A «--reg A+sM(d) (.2 usee).

5) Route distance 1 right from sM(b) to sM(e) (2-5 usee).

6) reg A *- reg A+sM(e) ( .2 usee)

.

7) Shift reg A right 2 bits (.2 usee).

8) Test end condition (~.5 usee).

9) Got to step 1.

The whole procedure then takes only about 6 usee since steps 1, 2,

and h are overlapped with routes. Therefore, one iteration can be performed

in about 6 msec. Fixed edge conditions could be introduced without diffi-

culty since there is space in sM to keep the data for the edges. This prob-

lem could also use two digits per element for a gray scale with 256 shades.

Since sM can still be used, the time increases linearly to 12 msec per iter-

ation.

In conclusion, SPEAC performs exceedingly well in relaxation type

problems.



116

5- 3 Matrix Multiplication

Given two matrices, A and B , the problem consists of finding
nxn nxn &

\ n
the matrix C , which is the product of A and B. C=AxB (c. .= Z a., x "b ).nxn ij

k=1
ik kj ;

Two basic methods can be used to store matrices in an array com-

puter:

a) Straight storage , in which each row is stored across PE's and

all elements of a column are stored in the same PE. Therefore,

a. . is stored in PE .

.

b) Skewed storage , in which each row is stored across PE's but it

is also rotated one position farther than the preceeding row in

an end-around fashion. Thus, a. . is stored in PE/ . . _\
' ij (i+ j -2) mod n+1

In either storage scheme one row of A can ^° accessed by fetching

one row of PE memory. When a matrix is skewed one column can also be accessed

in one memory fetch by indexing each PE to a different memory location. To

fetch the first column of A, for example, each PE simply loads from location

A plus the number of that PE. By routing this indexing pattern, any column

of A can be accessed in one operation. It would take many memory fetches to

access a column of a matrix which is not skewed since all elements of a column

are stored within one PE.

Three methods have been proposed ([11] and [12]) to perform matrix

multiplication in an array computer. Briefly, they are as follows:

a) the log- sum method , which is used to multiply skewed matrices

since columns and lines must be accessible. A row of the first

matrix is fetched and multiplied, in parallel, by a column of the

second matrix. The results are summed across PE's to produce one
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element of the solution. There are two major causes of inef-

ficiency in this method. First of all, the operation of summing

across PE's, known as a log-sum, is at best only 20$ efficient

in using PE's. Secondly, excessive routing is required to

properly index columns and line them up with rows.

b) the broadcast method which generates one row of the result ma-

trix at a time rather than just one element. It operates on

matrices which are stored straight in memory and produces a

result matrix which is also stored straight. Each row of the

result is obtained after n multiplications and accumulations

(the result of each multiplication is added to the sum of all

previous multiplications). To obtain row i of the result, the

k— element a of row i of matrix A is multiplied by the k

—

row of matrix b and all n rows thus obtained are added together.

The expression is:

n
row(c

i
) = £ a

ik
row(b

k )

k=l

The CU must be able to broadcast the elements a. . to the PE's

and the PE's must have access to rows of B (i.e., row across

PE's). As opposed to the skewed matrix multiplication, this

method is almost 100$ efficient. There is no log-sum involved

and no routing is required.

c) Knapp ' s method of which only a brief description is offered

here; for a detailed treatment see [12]. A and B are stored

straight and C will also be obtained straight. As in the broad-

cast method, each row of the result is obtained after n multi-
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plications and accumulations. However, no "broadcast takes

place. To obtain row i of the result, row i of A is multiplied

by each diagonal of B and then routed right one. Defining the

. th n . _ _ _
k— diagonal of B as:

bl,V b
2,k+l' •"

>
b
i,(k+i-2)modn+l ; *" ' \, (k+n-l)mod n+1

then Knapp's method is expressed by the following:
n

row(c.)= E (row a. routed right (k-l) times) X
1

k=l
X

th
(k— diagonal of B)

To access the first diagonal of a matrix stored straight, each

PE is locally indexed with the PE number (starting with 0); this

pattern is routed right (k-l) times to access the k— diagonal.

The efficiency of Knapp's method is very good because no log-sum

,
operations are performed, but not as good as straight multipli-

cation since routing is required. Its major use is to perform

several small matrix multiplies simultaneously using only a

small group of PE ' s for each one

.

The three methods can be used in SPEAC but the log-sum method is not

considered in detail since it is the least efficient. Two cases are studied:

a) n=102U and each element is a 32-bit floating-point number.

Each matrix is stored straight and the broadcast method will be used. One

slight modification is needed, however, to avoid I/O bounding since the problem

is not "core contained. " In the broadcast method the rows of B are used in

order from row 1 to row n (to compute row 1 of C) and then again from row 1 to

row n (to compute row 2 of C) and so on. Therefore, each row is used only for

one multiply and add each time it is in PEM. Since n multiply and adds can be
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performed in k-5 jiisec, there is no time to overlay a row which takes 135 /usee.

The solution is simple; each row of B must he used several times each time it

is brought to PEM. In this way, several rows of the product are computed

simultaneously. For example, the first row of B (row(b )) is brought and is

multiplied by 6k broadcast elements a , a, , ... , a,-. . The 6k rows

thus obtained are stored in PEM. Row(b ) is then accessed and is multiplied

by a, „, a , ... , a^, ; each of the 6k rows thus obtained is added to the

corresponding row of the first 6k. At the end of 102U cycles, all rows of B

have been accessed and used 6k times each, and the first 6k rows of C are

completed. The method is repeated sixteen times to obtain the 102^ rows of

C. Since each multiply and add takes k^ /isec, 6k take 2880 /isec in which there

is time to interchange 21 rows. Therefore, I/O can be easily overlapped with

execution; while the 102^4- rows of B are used, there is time to interchange 21K

rows and all that is needed is to interchange 102^4- rows plus the 6k result

rows

.

CU obtains the elements to broadcast either directly from mass mem-

ory or from the PE's via CDB. The latter is the most straightforward scheme

and can be efficiently used since overlap is possible with execution due to

the fact that I/O takes a relatively small percentage of the execution time.

6k rows of A are needed in the PE at all times to obtain the broadcast ele-

ments. Patterns are also stored in PEM and used to turn off all but one PE

each time CDB , is used to send a broadcast element to CU. Note also that
out

CU can simultaneously broadcast a previous element since CDB. is used for

this purpose.

In the worst case, there are 19k rows in PEM at one time: the 6k

rows of C that are being computed, the 6k rows of C that have just been
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completed and have not been placed in MM yet, 6k rows of A that are being

used to obtain broadcast elements, and 2 rows of B--one being used to multiply

and a new one being prepared for the next step. When the 6^- completed rows

of C are overlaid to MM, the space is used to load the next group of 6h rows

of A. When a new step begins, the locations of the old rows of A are used

to place the new partial rows of C.

Therefore, complete overlay of I/O and CU instructions is possible

and the timing is simply given by: n (multiplications and additions). sM

can contain the row of B being used 6k times and also the result of the multi-

plication. Only the result of the addition must be stored. In these condi-

tions, multiply and add takes about ^3 (usee and the final result is k-3 sec .

b) n=102^/2 (k=l,2,3A) and each element is a 32-bit floating-

point number. This is the submultiple case, in which the size of the

matrix is a submultiple of the size of the array. In order to keep all PE's

n
busy, one can either divide the matrix in PE parts and use all PE's to

n n
compute one multiplication or PE multiplications can be computed simultan-

n
eously. The two approaches are very similar and only the first is considered.

Two methods can be used; the broadcast method, which is especially suitable

when PE is small (2 or k ideally) and Knapp's method which is best when

n
PE » 8.

In the broadcast method, PE repetitions of a row of B can be cate-

n
nated across one row of PEM's and the method is used as before but instead

of generating k rows of C at the end of each step (k=64 in the example pre-

sented in part a), k X PE rows of C are constructed simultaneously. For

n
n n

: 8 this repetition is easily obtained by writing in PEM PE times the

n n

me row of B read only once from MM. Obviously, there is one difficulty:
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the broadcast element must be different for each of the PE copies of the row
n

of B. Up to four different broadcast elements may be sent during a multipli-

cation of two digits without any extra delay. The only problem is to enable

sM's in only a portion of the PE's without disabling the multiplication itself.

This suggests the introduction of an enable flip-flop for I/O and CU use and

sM may be directed to obey either the PE enable or the i/O/CU enable. If this

is available, the broadcast method can be used without any extra cost since

the multiple broadcasts are overlapped with multiplication. Therefore: time =

n
2

n3
^3 -—7— = -— X ^3 Msec, and for a 256 X 256 matrix the time = 'jhO msec.

PE' PE
If the above mentioned control of sM is not available, about 8( * PE+2)

n
additional clocks are needed per multiplication to select the broadcast

elements. For PE = K, this adds 5 jtisec per multiplication. The expression

3 n
is: time = -— X (h-3 + .8(^PE + 2)) ^sec.

n
PE n

This method is then convenient only when PE is small so that the
n

extra time spent in selective broadcast is not excessive.

Knapp's method avoids selective broadcasts but introduces routings.

n n
PE rows of A are concatenated across one row of PEM's and B is repeated PE
n n
times, once for each concatenated row of A. For n=128, this operation is

easily obtained by writing in PEM eight times the same row of B read only once

from MM. For n < 128 this repetition may require initial routes. Each dia-

gonal of B is obtained by local indexing ( PE copies of the diagonal are

n
actually obtained) and multiplied by the rows of A. The result is accumulated

n
and when all diagonals have been used, PE rows of C are computed. After each

n
diagonal is used, the rows of A must be routed right by a distance of 1. Since

this route is end-around with respect to n and not to n , a second route is
PE

needed (by a distance n) unless n=128. The rows of A can be kept in sM while
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in use so routing is of type 1. The time is given roughly by the following:

3 3n n
time = (add time + multiply time + 2 route times) = 90 jusec

n nn
PE PE

if the routes are all fast. Therefore, the selective broadcast method is

n
best for all cases in which PE < 32.

n

^.h Pattern Matching

This application was chosen to test the character manipulation capa-

bilities of SPEAC. The problem, fully described in [9], is briefly stated as:

given two strings of characters, S (with n characters: s n , s„, ... , s ) and
s 1' 2' ' n

s

P (with n characters: p , p , ...
, p ), find out how many times and/or in

P n
p

which position does P occur in S. P is called the pattern string and S the

source string. Normally n » n . The problem can be considered in two dif-

ferent aspects: l) n is very small (typical 1 to 3) and only the count of

occurrences is desired. This is what is needed in analysis of texts to obtain

the frequency of occurrence of given letters or combinations of letters, and

2) n can be a small integer up to about 15 and the positions in S in which P

occurs are desired. This is the type of algorithm needed, for example, to find

all occurrences of the words BEGIN and END in a segment of a program as would

be necessary in a parallel compiling technique as proposed in [10].

The source string S can be arranged in memory in two different ways:

l) S is distributed across PE ' s in rows, one element per PE; i.e., character S.

is in PE/. n, and 2) S is distributed across PE's in n_,_ chunks each
(l mod n

pE
)' PE

with njn adjacent characters; i.e., character S. is in PE/ ,
-,-

eheme 2, called storage in chunks , leads to much more efficient pro-

I IA.C than storage scheme 1, called storage across PE's . This is due
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to the fact that with storage in chunks, routing is practically eliminated.

However, both storage schemes are considered since it may be difficult to use

storage in chunks if the input data is not initially manipulated by corner

memory

.

a) Storage in chunks; only a count of the number of occurrences

is required. Each character is assumed to be four bits long and is coded in

one digit. Obviously, this introduces no restriction since the same algorithms

can be applied if more than one digit is needed to code each character. No

character manipulation instructions were considered in Chapter h. Therefore,

most instructions used in these algorithms are custom-made, that is, they

are described in terms of their microsequences.

Initially, the first (n -1) characters in each chunk must be routed

left by a distance of one in order to enable the recognition of truncated

occurrences of P (i.e., an occurrence of P in which p is the right-most

character in chunk i and p_, p_, ...
, p are the first characters in chunk

2 3 n
P

i+l) . The initialization thus takes (n -l) routings distance 1 or (n -l) x
p

o
p

2.5 usee.

Ideally, for best efficiency, the length n of each chunk (n =n /n
pT? )

is a large number, n is here considered to be on the order of IK; i.e., the

source string has one million characters. If S Is longer, the whole procedure

is repeated a number of times; each execution analyzes one million characters.

The following algorithm can be used: X contains the address of the

next character in S to be analyzed. The pattern string is initially brought

to CU and will be repeatedly broadcast via CDB.

1) X, is loaded via CAB with the address of the next character of S
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to be analyzed as a possible start of an occurrence of P:

X *- CAB( address of S. ) (l clock). Simultaneously, all lcFFl

are turned ON: lcFFl <- ON via CDB.

2) Compare the characters of S and P and turn off PE's in which no

match is found: A <- PEM(X n ); lcFFl «- (A =CDB(p.)): Increment
m 1 m o

X ; Enable function is attributed to lcFFl ON (k clocks).

3) Step 2 is repeated n times, for j=l,2, . .. , n . At the end

of this loop, lcFFl is ON only if there was a match.

k) Count the match by incrementing A in PE ' s in which there was

a match. A is initially zero; increment A , enabled by lcFFl

ON (1 clock).

5) Go to step 1. The whole procedure is repeated n =n /n times,

using as S.: s„, s, , . . . , s

c

6) At the end of the chunk, A contains the number of matches in
' c

each PE; no overflow is possible since A can store up to k¥L

and only 2K matches are possible if n =n . =2K. A log-J * c c maximum

sum of the contents of A is then performed and the final total
c

may be sent to CU via CAB.

The kernel in the algorithm above can now be timed; step 2 is re-

peated n times and the loop is repeated n times, for a total of n (kn +l)
p c c p

clocks. The initialization takes 20 (n -l) clocks and the finalization takes

ten routings of type 1 and ten additions of l6-bit unsigned numbers for the

Log-sum, for a total of 150 clocks. Therefore:

Total time=(n -1)20 + n (kn +1) + 150 clocks.
V c

N

p

For n =1K and n =5, the total time to search one million characters for a match
c p
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is only 2.1

b) Storage in chunks; the location of each occurrence is re-

quired. The algorithm is very similar to the one in case a, hut now X is

also used to hold the location in PEM where the address of the next occurrence

will he stored. Step h is replaced by the following:

h) Store the occurrence of the match in each PE by writing the

address of S., the first character of the occurrence, in X^;
1 2

X
p

is then incremented by one. Since the whole step is enabled

only in PE's in which there was a match, each list of occurrences

is compact, with no vacant locations: PEM(X ) *- CDB( address of

S.); Incr X ; attribute enable function to lcFFl ON. Three PEM

writes are needed since an address has three digits.

The new step K takes 12 clocks and the new total time is:

Total time=(n -1)20 + n (kn +12) + 150 clocks,
p c p

For n =1K and n =5, the total time is now 3-2 msec,
c P

c) Storage across PE's; only a count of the number of occurrences

is required. Since in this storage scheme adjacent digits are in adjacent

PE's, left routings of distance 1 are needed between comparisons. There

is also a problem with the right-most PE's; at a routing, these PE's should

receive characters from the next row of characters rather than end-around

characters from the present row. For each row of characters, the algorithm

is as follows:

1) Load in A the characters of the old next row (the present row)
m

which are in sM(0): A «- sM(0) (l clock).

2) Fetch the next row of characters from PEM and store in sM(0):



126

sM(O) «- PEM(X ) where X contains the address of the characters

In the next row (3 clocks). Simultaneously;, all lcFFl are

turned ON via CDB.

3) Compare character in A with the first character of P, sent via

CDB; the result is stored in lcFFl, enabled by lcFFl ON:

lcFFl *- (A =CDB(pJ) (1 clock),
m 1 '

k) Store A in B to prepare for the routing: B <- A (l clock).
m * m

5) Replace B by sM(O) only in the first PE. In this way, B will

contain the row needed for routing. A <- sM(O) enabled only

in the first PE (2 clocks).

6) Route 1 character left, distance 1 from B to A (20 clocks)

.

> m

7) Same as step 3 hut using p .

th
8) Repeat steps k through 7 ( n -l) times. For the i— execution,

character p. n of P is used and the first i PE's are enabled in

step 5- Therefore, p-1 different patterns are needed to enable

PE's in step 5- Since p is small and each pattern takes only 1

bit per PE, these patterns may be stored in sM and enabling

takes only 1 clock.

9) lcFFl is now ON only if a match occurred; A is incremented to

store this fact: Incr A enabled by lcFFl ON (l clock).

The whole algorithm is repeated once for each row. At the end of

the procedure, a log-sum of A is performed to obtain the total number of

occurrences. This takes 150 clocks. The total time to process n rows is

then:

Total time=n (6 + 2*+(n -1)) + 150 clocks,
r P

To analyze one million characters when n =1K and n =5, 10*2 msec are required.
1 y
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Therefore, this algorithm is about five times slower than the one for chunk

storage.

d) Storage across PE's; the location of each occurrence is re-

quired. Only a small modification is needed in the algorithm of case c,

similar to the modification introduced in case b. Instead of using A to keep

the number of matches, X is used to keep the address in PEM where the address

of the next match will be stored. This step adds 12 clocks per row to the

algorithm of case c, thus yielding a total time of:

Total time=n (17 + 2k(n -l)) + 150 clocks.

Or, for IK rows and n =5, 11-3 msec.
} p '

Therefore, pattern matching can be performed very efficiently in

SPEAC. One final sophistication to improve performance if the number of

occurrences is small is the following: when testing for each possible match,

gate IcFFl to the interrupt wire after each comparison. If the CU receives a

zero, this means that that match failed in all PE's and the present attempt

can be abandoned without testing all the remaining digits of P. This step

costs no extra time and could provide an impressive improvement for large

values of n (i.e., n > 10).
P P

5.5 Sparse Matrices

The problem deals with the elimination of the need to store in PEM

the zero elements of sparse matrices and the resulting problem of remembering

in some form the positions of the non-zero elements in the actual matrix. The

term actual matrix will be used to refer to a sparse matrix represented with

its zeroes and actual row to refer to a row of such a matrix also with its

zeroes. The form decided upon clearly must be useful in completing the task
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of sparse matrix multiplication. This section is concerned with describing

two forms of storing sparse matrices for SPEAC, discussing their program adap-

tability, and demonstrating their use in programming.

The two general forms for storing sparse matrices are the individual -

tag method and the bit-matrix method [11]. These two methods are similar in

that for both, the non-zero elements of a matrix are stored in the same way;

th
for a sparse matrix A, 102^ x 102^-, the j— column is stored in PE . and zeroes

are eliminated by pushing each non-zero number up the column until no zero

elements remain between it and the next higher non-zero element, if one exists.

1) The bit-matrix method consists of storing a 1 or a bit

for each element of the actual matrix depending on whether an

element is non-zero or zero respectively. The result of this

procedure is a matrix with the same dimensions as the actual

matrix, but which requires less space to store in memory since

each element of this matrix is only a bit wide. These bits are

stored packed four in each digit and require 256 digits in each

PEM. The LSB in this string B of 256 digits (102U bits) in PE.

th
indicates whether a . is zero or not; in general, the j— bit

in the string in PE. refers to element a... This method allows
l Ji

very efficient reconstitution of the actual rows but may still

need too much storage space if the matrix is very large and

very sparse. In this case, the following method is used instead.

2) The individual-tag method associates with each non-zero ele-

ment of a matrix A a related positive integer t, called a ta

A tag matrix is constructed in which t. . is zero if a is zero
i. J J. J

and t =i if a is non-zero. The tag matrix is then stored
ij ij
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with column j in PE . and compacted in the same way used to com-

pact A. Therefore, PEM. will contain two strings of numbers:

a,, a~, .... a and t n , t_, ... . t where n. is the number
1' 2' ' n. r 2' ' n. 2

of non-zero elements of A in column j. a. is the i— non-zero

element in column j of A; if this is element a, ., then t.=k.

Each element t takes only three digits for matrices up to k-K X

k-K. Note that n. is normally different for each column of A

but hopefully, if the zero elements of A are randomly distributed,

no large variations exist between the number of non-zero ele-

ments in two columns.

The problem of multiplying two sparse matrices stored in either of

the methods above is now considered. The broadcast method of multiplication

(see Section 5«3) is used. Therefore, the only extra procedure needed is an

efficient way to reconstruct the actual rows of the matrices. This is the

purpose of the algorithms now described.

a) Expand in actual rows a sparse matrix stored according to the

bit-matrix method. The rows must be expanded in order, from the first to the

last. Fortunately, this is the order in which they are used in the broadcast

method. Initially, the first digit b of the bit string B is fetched from PEM

in each PE and stored in sM(O) . The address of the first element of each com-

pacted column (i.e., the address of a,) is sent via CAB to X . When each digit

of the elements of the first row must be fetched, the PE's are enabled by the

LSB of sM(o) during both the fetch and the subsequent increment of X to point

to the next digit. If the register to which the fetch is made is initially

zeroed, the register will contain the correct row element after the fetch.
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X is also kept pointing to the appropriate element of the compact column

since it is not advanced in PE. when the actual row had a zero in column ,i

.

For the fetches of the three next rows, the three next bits of b are used as

enabling bits and then the next element b of B is fetched, and so on- The

extra time required to fetch the elements of B is probably easily overlapped

with PE multiplications and the time to multiply two sparse matrices: A x B

(each 102^4- x 102^-) stored according to the bit-matrix method is D x U3 sec

where D is the density of matrix A. Obviously, CU can analyze the broadcast
JA.

elements and avoid broadcast of each zero element which decreases the multi-

plication time proportionately to the density of matrix A. It should be no-

ticed that the optimum reduction factor is not simply D but D x D . It is
A A B

possible to devise an algorithm that achieves a reduction in time approaching

the optimum value [13]; i.e., the algorithm also takes advantage of the sparse-

ness of B to reduce multiplication time. However, the procedure is quite com-

plex and will not be discussed here. It is also easy to see that the rows of

the result can easily be compacted in the same bit-matrix representation if

need be (i.e., if the product matrix is also sparse).

b) Expand in actual rows a sparse matrix stored according to the

individual-tag method. As in case a, the rows must be expanded in order. In

this case, however, the expansion procedure is less efficient. Initially, the

first tag t is fetched from PEM and compared for equality with the row number

(i.e., one for the first row) sent via CDB. This fetch and comparison takes

about 12 clocks since three digits must be compared and one of the operands is

broadcast and does not have to be fetched. The result of the comparison, left

in lcFFl, is then used to enable the fetch from PEM address X and the subse-
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quent increment of X • Therefore, an additional 1.2 jiisec is needed to fetch

each row in the individual-tag method. This cannot be overlapped with multi-

plications , as in case a because the arithmetic part of the PE must be used

for the comparison.
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6 . CONCLUSIONS

The concept of an array computer with a very large number of rela-

tively simple processing elements has been proven feasible; the PE hardware

was described in great detail and the sections on operations and applications

show that this hardware can be used quite efficiently. Obviously, several

problems remain to be studied and the following considerations analyze these

problems and offer some suggestions for further research.

Two areas are considered: l) problems related with SPEAC in parti-

cular, and 2) problems related with the general architecture of array computers

with many processing elements.

With respect to SPEAC in particular, the PE hardware has been pain-

stakingly refined and optimized as far as one can get without an actual com-

mitment to build the machine; a few questions remain to be answered and final

"tuning" of the PE hardware must be performed, but these could be accomplished

only with definite cost figures to analyze the cost-efficiency of different

alternatives. Some of these alternatives were discussed in the section on

implementation. A few specific points are:

a) The scratchpad memory sM introduced in the PE at a late stage in

development has proven to be an impressive improvement, making

possible a reduction by a factor of two to three in the times of

floating-point operations. The study of applications also re-

vealed that an increase in the capacity of sM will improve the

performance in several areas. Therefore, the final size of sM

must be carefully determined to optimize cost-efficiency. It

i s also interesting to notice that sM has performed so well



133

because of the relatively large values attributed to PEM access

and cycle times (300 nsec and 500 nsec respectively). It now

appears that these values are unduly pessimistic and depending

on the final times obtained, the importance of sM will decrease

and sM may be eliminated all together.

b) CU architecture was only sketched and a much more detailed de-

sign would be needed if the machine were to be built. Specifi-

cally the system of two queues for PE operation did not result

in any substantial improvement for most operations. Since the

system is quite expensive to implement and introduces serious

complications in microprogramming, it should be dropped and only

three queues used; one for I/O, one for PE, and one for CU

instructions.

c) The possibility of overlapping PE instructions with I/O or CU

instructions has proven very valuable in several applications.

The system should be refined as suggested in Section 5«3-"k to

allow overlap not only in the use of PEM, but also in the use

of sM.

d) Final minimizations in the number of connections and the number

of chips per PE must be performed in view of the state of the

art in integrated circuitry at the time of implementation. This

field has advanced so rapidly that the picture has changed sub-

stantially within the last year. Specifically, one would need

2
data about MOS - T L relative performance, equivalent gate den-

sities obtainable per chip and cost of custom-built chips.

With respect to the field of array computers with a large number of
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processing elements, the followings considerations are offered:

a) Software development for an array computer is a troublesome

area as demonstrated by the arduous and sometimes frustrated

efforts to develop a high-level language for ILLIAC IV. This

was probably to be expected if one takes as a parallel the

development of high-level software for sequential computers; it

started only after a decade of painstaking machine-language

programming. The lapse in the case of array computers should

be much shorter since a whole body of knowledge about languages

does exist and will be used as a basis. Nevertheless, array

computer users seem to be condemned to a few years of assembly-

language programming while software researchers gain the insight

and experience needed to provide efficient and reliable high-

level compilers.

It was expected at the beginning of this research that program-

ming SPEAC would be one order of magnitude more difficult than

programming ILLIAC IV just as programming IILIAC IV is one order

of magnitude harder than programming conventional computers.

Fortunately this has not been the case; programming SPEAC has

been about as difficult as programming ILLIAC IV. Of course,

this was mainly due to the fact that the size of the sample prob-

lems was selected to facilitate programming. The problem be-

comes more difficult when problems "smaller" than the size of

the array must be handled efficiently and this is more and more

frequent as the number of PE's increases.

If large array computers are to perform the role that is
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expected of them, the user must be spared, the task of knowing

what each specific PE is doing, much in the same way as in

conventional computers the user has been spared the task of

keeping track of absolute memory addresses. An initial step in

this direction is provided by N. R. Lincoln. In a recent paper

[10], he proposes a radically new technique for using array

computers in such problems as compiling, which have so far been

considered typically non-parallel (that is, unsuitable for these

machines). Such techniques, if successful, could increase tre-

mendously the area of application of SPEAC. The study of the

performance of SPEAC in pattern matching problems, which was

discussed in Section 5.U, has shown that it can perform very

efficiently the basic tasks required in Lincoln's scheme.

b) One very promising idea has been recently proposed to help

solve the problem of handling efficiently problems "smaller"

than the size of the array in computers of the type of SPEAC.

It consists of linking groups of PE's together in a hardware-

implemented fashion so that a group of PE's would be able to

function as a single PE with speed roughly proportional to the

number of actual PE's in the group. The problem is reasonably

complex and will require considerable research but the possi-

bilities are far-reaching; this method would not only make it

much easier to use efficiently computers of the scale of SPEAC,

but it would also make practical array computers with tens and

even hundreds of thousands of very simple PE's.

c) Finally, one very long-range research project would be to inves-
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tigate how far one could go with the number of elements in a

parallel processor. The approach described above allows one to

envision a processing unit composed of many similar "PE's"

linked together in a fail- soft configuration, much like the

individual cells in a brain. If one PE fails, the only imme-

diate effect would be a slight reduction in the speed of the

processor as a whole.
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APPENDIX A

PACKAGE LOGICAL DIAGRAMS
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DATA
INPUTS

DATA
SELECT <

(ADDRESS)

o OUTPUT W

Package 1. One-out-of-eight Selector without Strobe
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CVJa

GOO •XLOO
CO O 0C

A

6

I>2

10

oo

CO

u

£
6

°3

Q

CO

U
3u

A

6

°4
A

IT
(ENABLE CLOCK) E C (CLOCK)

Package 2. Quad Type D Flip-flop with Enable on the Clock



1^0

r\

e 6 6 c
(ENABLE CLOCK) (CLOCK)

Package 3- Type D Flip-flop with Enable on the Clock
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DATA <

v.

B

O— > 4 C

ADDRESS <

H>

>

3

OUTPUT
W

Package k. One-out-of-four Selector without Strobe



Ik2

r

DATA INPUTS <

V.

o j>o—i—d^>

ADDRESS <

LH>H>

O

ENABLE OUTPUT

-O E

OUTPUT

-O W

Package 5. One-out-of-three Selector with Enable Decoding



(ENABLE INPUT) E, C
(

(CLOCK INPUT)

A, O
B, &

D2

A, O-

D, O

*3 »
B, C

D« »

A« O-

B 4 0-

1U3

O C (CLOCK OUTPUT)

O I (INTERRUPT OUTPUT)

Note: The Function is as follows for each lcFF:

A B Function

Do nothing, i.e., the lcFF is not used

1 Use the lcFF to control the interrupt wire; the interrupt wire will
assume the logical level of the lcFF

1 Enable the PE (i.e., allow the clock to reach the registers) when the
lcFF contains a ZERO

1 1 Enable the PE when the lcFF contains a ONE

Package 6. Enable and Interrupt Control



lkk

* <

A, o-
A2 O-
A3 o-
A4 o-
A5 o-

A7 o-
A8 O-
Ag O-
Aio°-

1024X2
MEMORY
CHIP

DATA
IN

SENSE
OUT

R/W

1024X2
MEMORY
CHIP

R/W

DATA
IN

sense/
OUT ^

-0 D,

-o D2
-Q D3
-o D*

DATA

<K
-O R/W

-o S 2
"° S 3
-o S4

SENSE
OUTPUT

Package 7. PEM - 1 Module



1^5

(ALWAYS ON) r-^>-
MEMORY<~C><~
ENABLE U£>.

SELECT
INPUTS

ai °—fc^p'O—

©

;_

I &-^,

mZD-

=o
;az>

' * I ^ * I
*

'

"~
i j ? r~" "H 3 ' r~" "~

l 3 -«

i

~"

4^¥j^S-^'
pe>
3TVS-S' '^plHP""

Package 8. 64-bit Scratchpad Memory

(16 4-bit Words)
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—D-

GorY
(NOT USED)

oC„+4

PorX
(NOT USED)

C3^ A=B

Package 9. Arithmetic/Logic Unit



r

1U7

DATA

INPUTS <

v.

D
>|

pr>
)

1

OUTPUT

O
W

1

( k——<3

( > A D/

(i

kTA SELECT

ADDRESS)

Package 10. One-out-of-two Selector without Strobe



ll*8

CLOCK Co [>o

DOWN/UP Mo £>o »

DATA INPUT D °-

ENABLE Go

DATA INPUT Djo-

DATA INPUT D2 o-

DATA INPUT D3 o-

P~

LOAD L o—c£> 1

O-

!tL>

t>
L>

O
t>

I>

-(NOT USED)
RIPPLE CLOCK
MAX/MIN

-o OUTPUT
Cn+12

PRESET
J O,

CLEAR

-oOUTPUTQq

CLEAR '

f-o OUTPUT Q1

<> <
»—

c

PRESET

K LV
CLEAR

#-o OUTPUT Q2

t>

J-o OUTPUT Q3

Note: When cascading, G input goes to least significant hexadecimal digit and

C ._ output comes only from most significant hexadecimal digit; G. ,

n+ Ld. 1+ J-

is connected to C, n n \ > j f°r all not externally connected G and C ,_.
(n+12)i n+12

Package 11. l*-bit Up/Down Counter, Parallel In/Out



ll+9

S (STROBE)

O

DATA

INPUTS

(ADDRESS)

Package 12. One-out-of-four Selector with Strobe
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DATA INPUTS

Package 13- Quad Inverter
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OUTPUT
CARRY

OUTPUTS
A

& 6 h L) 6 6

/^\ Q r\ Q

6 6

D 5 D6

DATA INPUTS

INPUT
CARRY

Note: When cascading, C output comes only from most significant package;

C input to the least significant package is "1." Input (C ). is

connected to output (C _„).^ v n+12'i

Package Ik. Increment-by-one Network (l6 bits)



i5;

r Dr

DATA
INPUTS -< O<

v

^-O^-D*^

SELECT -\
(ADDRESS)

^—
D>^-

J
-D>

<*—[>^H>

€>
OUTPUT

-O W

Package 15 . One-out-of-five Selector without Strobe
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APPENDIX B

MICROSEQUENCE FOR 32-BIT FLOATING-POINT MULTIPLICATION
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This is a detailed listing of the microsequences sent by CU to each

PE to perform the multiplication: a X b = c, where each number is in the

following format:

a
7
a
6
a
5
a

l+
a
3
a
2
a
i
a
o

a is the mantissa LSD (least significant digit)

a is the mantissa MSD (most significant digit)

a^n (i.e., the low order bit of a^) is the mantissa sign bit

a , a^ , a^- and a,^ constitute the exponent; a,- is the low order bit of the

exponent.

The exponent is in excess notation and the mantissa in sign and mag-

nitude. The exponent base is 16. an is the low address in the PEM.

The following abbreviations are used in the microsequences:

A <- B which means that register A is loaded with the contents of

register B.

sM(x) or PEM(x) which means the contents of the location with ad-

dress X in sM or PEM; X can be a literal or a register in

which case the contents of the register are taken as the ad-

dress. When X is a literal, it is sent via CAB.

CAB(a) or CDB(a) which means that data a is sent via the common bus.

En(i,ON) or En(i,OFF) which means that the enable function is at-

tributed to lcFFi ON or OFF.

Each microsequence is numbered with two PE clock counts: maximum and

minimum. The minimum count assumes that the two buses are available and maxi-

mum overlap can be achieved; the maximum count assumes that only one bus is

available at all times for PE operation. CAB and CDB are assumed always

available

.
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& o & o
3 o 3 o
b h s h•HO -HO

^ S sS Microsequence Comments

1 1 X <*- CAB (address (a
Q )) Address registers are loaded with

mantissas' LSD addresses

2 2 X
2
- CAB( address (b )

)

3 3 A
r

«- PEM(X )• sM(0) - PEM(X-) PEM read; takes 3 clocks

6 3 B «- PEM(X
2 ) If overlap is possible, one extra

clock is needed to store in sM

8 6 sM(6) «- PEM(X )

9 6 A <- CDB(0); A <- CAB(0);
m ' c '

Ready to start multiplication ; X ,

Incr X ; Incr X X are ready to access the next

digits

10 7 MF(1, X
1

, *, 1, *) See note a for the meaning of MF;
m is completed

15 12 MF(7, x
2 , 7, 0, S)

20 17 MP(2, X
1 , 6, 2, *) m is completed

25 22 mf(*, *, i, l, s)

30 27 mf(8, x
2

, 8, o, s)

35 32 mf(3, x
x

, 6, 3, *) m is completed

Uo 37 mf(*, *, 7, 2, s)

^5 h2 MF(*, *, 8, 1, S)

50 hi mf(9, x
2

, 9, o, s)

55 52 MF(U, Xr 6, if, *') m is completed

60 57 MF(*, *, 1, 3, S)

65 62 MF(*, *, 8, 2, S)

70 67 MF(*, *, 9, 1, S)

75 72 MF(10, X
2

, 10, 0, S)
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£ V Bo
P o 3 o
s H 53 H•HO -HO
^ w -h w Microsequence Comments

80 75 MF(5, xr 6, 5, *) m. is completed

85 82 MF(*, *, 7; ^ S)

90 87 MF(*, *, 8, 3, s)

95 92 MF(*, *, 9, 2, S)

100 97 MF(*, *, 10, 1, S)

L05 102 MF(ll, X
2

, 11, 0, S)

110 107 ML(7, 5, 0) See note "b for the meaning of ML,

m,_ is loaded in sM(0)
5

116 113 MF(7, x^, 8, U, s) a,- is loaded in sM(7) for future

use

121 118 MF(*, *, 9, 3, s)

126 123 MF(*, *, 10, 2, S)

131 128 MF(*, *, 11, 1, S)

136 133 ML(8, 5, 1) nv is loaded in sM(l)

lte 139 mf(8, x
x

, 9, k, s) a is loaded in sM(8) for future

use

1U7 ikh MF(*, *, 10, 3, .S)

152 1^9 MF(*, *, 11, 2, S)

157 15U ML(9, 5, 2) nu is loaded in sM(2)

163 160 MF(9, X
2

, 10, k, S) bx- is loaded in sM(9) for future

use

168 165 MF(*, *, 11, 3, S)

173 170 ML(10, 5, 3) ran is loaded in sM(3)

176 MF(10, X
2

, 11, U, S) "b is loaded in sM(10) for future

use
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Bo So
3 o 3 o
53 H g H•HO -HO

|g g] g Microsequence Comments

18k 181 ML(11, 5, h) m
Q

is loaded in sM(^)

190 187 ML(*, *, 5) nL is loaded in sM(5)

191 188 X «-CAB( address (c ))

192 189 X
g
- CAB(O) X, and X are prepared to write

the result

196 193 lcFFl «- (A =CDB(0)); sM(6) - A
m ' m

m is loaded in sM(6)

197 193 A *- CDB(0)
m

198 19^ En(l,0N)j A «- CDB(0010);

Incr X

See note c

199 195 ST c is stored in PEM; see note d

for the meaning of ST

205 201 ST c is stored in PEM

211 207 ST c is stored in PEM

217 213 ST c is stored in PEM

223 219 ST c, is stored in PEM
k

229 225 ST c,_ is stored in PEM
5

235 231 ST; wait on Event #1 o.r is stored in PEM; see note e

2Ul 237 ST; wait on Event #2 c is stored in PEM

Exponent computation starts now

200 200 B *- sM(7); a <- CAB(O) B is loaded with LSD of exponent
of a

206 201 A «- (B-A ): C =1- lcFF^ <- C ,,

m m } n ' n+4
A is still as in note c
m —

212 206 Shift A , A right h; B <- sM(8) B is loaded with MSD of exponent
of a

218 207 A *- (B-A ): C =lcFF^
m m ' n
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So So30 3 o
S H S H•HO -HO

^ w ;d g Microsequence Comment s

22^4- 212. Shift A left h; B <- sM(9) Wow have in A . A : exp(a)-l if
c' m

m-|-i=0 a^d exp(a) if n^i^O

230 213 A «- (A.0B)
r m

A now contains the sign of c
r

236 2ll+ A «- (A AND CDB(lllO))mm Set sign bit to zero in A
m

2^2 215 A *- (A +B); C =0; lcFF^ «- C ,

m m ' n. n+4

2^3 216 A «-

A

m
Q

r
A now contains LSD of exp(c)
m

2kk 218 sM(7) «- A : cause Event #1V 1 J m )

2k5 221+ Shift A right U; B *- sM(lO) A has MSD of exp(a) and B has
m

MSD of exp(b)

2U6 225 A *- (A +B) j C =lcFF^;
m m ' n '

lcFFU *- C ,

n+4

2l+7 226 A *- (A @CDB(l000))j shift A Correct sum in excess notation by
m ' m.. r

complementing MSB
right k

2kQ 230 sM(8) «- A : cause Event #2;
' m' J

shift A left k
m

2 1+9 231 A , A , A *- LC Start detection of exponent over-
m
2

m
x

m
Q flow or underflow; see note f

250 232 lcFFl «- (A =LC)
m

251 233 Interrupt on lcFFl ON

251 2kl End of the operation
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Notes:

a) MF(a, b, c, d, S) is defined as the following set of five microsequences:

1) Add and shift; sM(a) *- PEM(b)

2) Add and shift

3) Add and shift II III
~» r

h) Add and shift; Incr (b); B *- sM(c)

5) A «- sM(d): shift A , A left k
r '

o. m

IV

If a and b are *'s then portions I and II are absent; if c is a * then

portion II is absent; if S is replaced by a * then portion IV is absent.

MF can perform the following: a) multiply two digits, b) fetch from PEM and

store in sM a digit to be used in the next multiplication, and c) load A and

B with the two digits needed in the next multiplication.

b) ML

1

2

3

k

5

6

a, b
;

c) is defined as the following set of six microsequences:

Add and shift

Add and shift

Add and shift

Add and shift; B *- sM(a)

sM(c) «- A.

A

r

sM(b)

II

If a is a * then portion I is absent; if b is a * then portion II is

absent. ML multiplies two digits, stores the MSD of the product in sM and

loads A and B with the two digits needed in the next multiplication.
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c) At this stage, X points to m (in sM(0)) if m.
|1
=0 and to nv (in sM(l))

if m.,.,^0. Therefore. X points to c_. Also, A contains 0000 if m.,.,/0 and
11' 2 ' m 11'

0010 if m =0 to prepare for the correction in the exponent.

PEM(X ) *- sM(X )

d) ST is defined as the following set of six micro sequences:

Wait for writing in PEM

Wait for writing in PEM

Wait for writing in PEM

Wait for writing in PEM

Incr X, , Incr X

ST stores the digits of the product in PEM. This is overlapped as much as

possible with the computation of the exponent.

e) The wait in this microsequence assures that the exponent will be written

in PEM only after it is computed.

f) In excess notation addition, there is an overflow if the carry from the

MSB is equal to the MSB of the sum before the necessary correction which con-

sists of complementing the MSB.
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APPENDIX C

MICROSEQUENCE FOR 32-BIT FLOATING-POINT ADDITION



162

This is a detailed listing of the micro sequences sent "by CU to each

PE to perform the addition: a + b = c. Number format, notation and abbre-

viations used are as listed in the introduction to Appendix B.
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So so
P O P o
a h s h•HO -HO

2 Ph 2 PM
Microsequence Comment s

1 1 X <- CAB( address (a )) Address registers are loaded with
address of MSD of the exponents

2 2 X
2

<- CAB( address (b ))

3 3 A <-PEM(X ); sM(3) «- PEM(X ) PEM read; takes 3 clocks

6 3 B «- PEM(Xp) If overlap is possible, one extra
clock is needed to store in sM

8 6 sM(l) «- pem(x
2 )

9 7 lcFFl <- (A =B); lcFF^ <- (A < B) :v m ' m '

'

Shift A left h, Deer Xn ,c 1'

Deer X

Comparison of exponents starts

10 8 A «-PEM(X, ): sM(2) *- PEM(Xn )m 1 ' 1
Read the LSD's of the exponents

13 8 B - PEM(X )

15 11 sm(o) *- pem(x
2 )

16 12 En(l,0N); lcFFU <- (A < B)
;

lcFFU is now ON iff exp(a)> exp(b);

Shift A left k
m

c
:A contains exp(a)

17 13 A <- (A AND CDB(OOOl))mm All bits except sign are zeroed

18 14 Shift A right 4; A +- B
r ' m

19 15 A *- (A AND CDB(OOOl))mm All hits except sign are zeroed

20 16 lcFFl *- (A =A )m r
lcFFl is now ON if sign(a)=sign(b)

21 17 En(U,0N); A <- sM(0); A «- X Interchange exponents and addresses
in PE's in which exp(a)> exp(b)

22 18 En(4,0N); A «-sM(l); X-, - X
7 " m ' 1 2

23 19 En(i+,0N); B *- sM(2); X
£

<-

A

2k 20 En(4,0N); sM(0) +- B; shift A
left k

25 21 En(4,0N); B *- sM(3); shift A
left k

.
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^ ^
cd O s o
3 o 3
s H a rH
•H C5 •H o
X id

c^ N H W
S Ph s Ph

Micro sequence Comment s

26 22 En(^,0N); sM(l) «- B

27 23 Shift A right k; sM(2) +- 1C See note a |

28 2k B *- sM(0) Exponent subtraction now starts

29 2k A «- (A OR CDB(OOOl))mm Sets sign bit to one so that it
does not interfere with subtraction

30 25 A *- (B-A ): C =1; lcFFU «- C
, ;r v nr' n ' n+V

B «- sM(l); shift A right k
' > m

31 26 A <- (B-A ); C =lcFF^:
m m ' n
A *- CAB{0)

10 8 Deer X , Deer X These six clocks are overlapped
with previous ones; they make X..

point to a and X point to b
15 11 Deer X , Deer X

16 12 Deer X , Deer X

IT 13 Deer X , Deer X

18 Ik Deer X , Deer X
p

19 15 Deer X , Deer X

32 27 Shift A right 1; A *- X_
' c 2

See note b

33 28 lcFFl *- (A =CDB(0)); B ^A
m ' r

3^ 29 lcFF2 *-CDB(0); A <- CDB(O)

35 30 En(l,0FF); lcFF2 *-CDB(0010); Ready now to perform mantissa
shift A right U alignment; see note c

36 31 A <- (A +B); C =0; lcFF^ *- C ,,m m J n ' n+4

37 32 En(U,0N); Incr A

38 33 Shift A left k

39 3^ X
2
-A

c
Mantissa alignment completed

ko 3k A - CAB(FFF-N +1)
c m

Prepare trap in A ; see note d
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a o
P o
S H
•H O
X

a o
3 o
a h
•H o
a
•H W
2 Ph

Microsequence Comment s

41 35 Shift A right 4; A *- CAB(FFF)

42 36 A +- (A +B); C =0; lcFF4 *- C
,m m ' n ' n+4;

B still had the difference of the
exps; it is reloaded with the first

B <- PEM(X ) operand

43 37 En(4,0N); En(2,0FF); Incr A
;

lcFF2 *- C .

n+12

44 37 lcFFl +- sM(2); shift A left 4 Trap is completed; lcFFl is ON only)

if signs are equal

45 38 A «- PEM(Xn )m V Fetch the second operand

48 41 ADFI(4) The actual addition starts now; see
note e for the meaning of ADFI, ADF

57 ^7 ADF(5) and AD

66 53 adf(6)

75 59 adf(7)

84 65 ADF(8)

93 71 AD(9) Addition completed; now find out
sign of result and if recomplemen-
tation is needed: see note f.

96 7^ A - LC; B *- LC
m '

97 75 sM(3) +- A ; shift A right 4

98 76 Shift A left 1

99 77 A +- (A~ AND B)mm
100 78 lcFFl *- A lcFFl is ON if recomplementation is

m
needed

101 78 B *- CDB(0)

102 79 A «- sM(4)
m

Ready to start recomplementation

103 80 RCI(5,4) See note g for meaning of EC and
RCI

105 82 RC(6,5)
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So So
P O P O
S H £ H
•HO -HO

' S g§ Micro sequence Comment s

1

107 8^ RC(7,6)

L09 86 RC(8,7)

111 88 RC(9,8)

113 90 RC(*,9) Recomplementation completed

115 92 A «- sM(0)
m

Now set up sign of result; i.e.,

change the sign of the exponent in
sM(0), sM(l) if recomplementation
was needed.

116 93 En(l, ON); A
m
- (A

m© CDB(000l))

117 9^ sM(0) <- A
m

118 95 A «- sM(3); B *- sM(3) sM(3) contains MSB ON if there was a

final output carry and LSB ON if

sign(a)=sign(h)

119 96 Shift A left k; X, +- CAB(FFF)
c '1

120 97 Shift A right 1; IcFFl *-
m '

CDB(OOOl)

121 98 A *- (A AND B)
m m

122 99 lcFFU *- A
m

lcFF^ is now ON if there was an

"overflow.

"

123 99 A *- sM(l); A +- CAB(O)
m ' c

12^ 100 Shift A left U; A «- sM(0)
c ' m

125 101 Shift A left i+; A <- CDB(O)
c ' r

126 102 Shift A right 1« sM(lO) «-

CDB(OOOl)

127 103 X
2

*" A
c'

A
m

*" SM(9) X now contains exp(a) without the

sign

128 lO^f (8) See note h for the meaning of CZ
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_ ^ - <*So So
3 o 3 o
S H S H
•HO «HO
aj w -h w Microsequence Comment s

130 106 cz(7)

132 108 cz(6)

13U 110 CZ(5)

136 112 cz(U)

138 Hk cz(*)

3A0 116 En(U,0N); Incr X This adds 1 to the exp if there was
"overflow"

llu 117 A - X • A *- CDB(O)?
c 2' r '

A *- CDB(O)
m y

1^2 118 Shift A right k

1^3 119 Shift A left 1

Ikk 120 A <- sM(0) Insert the sign back in the expo-
m
o nent

lk5 121 sM(0) *- Av ' m

lk6 122 Shift A right k

ikf 123 sM(l) *- A ; shift A right h-

B «- CDB(O)

Final exponent is now in sM(0),
sM(l); prepare to detect exponent
overflow or underflow

lk8 12k lcFFl *- (A =B) • A - X,v m ' > c 1

li+9 125 Interrupt on lcFFl OFF; lcFFl OFF means exponent overflow
X *- CAB(U) or underflow

150 126 En(U,0N)j X
2

+- CAB(5)

151 127 Incr A ; lcFF2 «- C _ •

c> n+12'
X -f- CAB (address (c));

B *- CDB(O)

Ready to start storing the result

152 128 WR See note i for the meaning of WR

160 136 WE



168

M
B o
3 o
a h
•H O

B o

•H O
•H W Micro sequence Comments

1

168 Ikk WE

176 152 WP

USk 160 WR

192 168 WP Mantissa is stored in PEM

200 176 PEM(X )
- sM(0) Now store exponent in PEM

205 181 Incr X

206 182 PEM(X )
«- sM(l)

2lU 190 End of the operation
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Notes:

a) At this stage, the situation is as follows: lcFFl is ON if the signs are

equal, OFF otherwise; A , A contains the smaller exponent; the larger expo-

nent is stored in sM(O), sM(l); in sM(2) the LSB is a, one if the signs are

equal and a zero otherwise.

b) At this point the situation is that A , A contains the difference of the/ jt m r

exponents. If A is non-zero, then b will not participate in the sum (since

the exponent difference is too large) and lcFF2 is set ON in PE's in which

this happens.

c) Mantissa alignment is performed "by adding the exponent difference (which

is in B) to the address of b which is in A , A . The modified address of b is
c' m

then returned to X„.

d) A will be used as a counter which yields an overflow when all digits of

b have been used. For PE's in which this overflow (which is stored as a lcFF2

ON) has appeared, digits of b are replaced by zeros before the addition.

e) ADF(a) (add and fetch) is defined as the following set of microsequences:

1.1 - En(2,0N); B *- CDB(O); Incr X • Incr X

2.2 - En(2,0FF); Incr A : lcFF2 <- C no' ' c> n+12

3, 3 - A *- (AtB); C =lcFF^; lcFF^ *- C ,
• A <- PEM(Xn ) ; lcFFl OFF causes

r m n ' n+V m 1 '

subtraction instead of addition

6.3 - B - pem(x
2 )

9,6 - sM(a) 4- A

ADF takes a minimum of six clocks and the normal time is nine clocks.

ADFI is similar to ADF but in clock (2,2) C is set to lcFFl instead of to
' n

lcFFU. ADFI is used for the first addition and takes as long as ADF.
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AD is similar to ADF but no new fetch is performed. It is used for the

last addition and takes only three clocks.

f) The rules are: for a+"b=c, sign(c)=sign(a) and no recomplementation is

needed unless sign(a)/sign(b) AND lcFF*+ is OFF at the end of the operation.

In this case, sign(result)=sign(a)=sign(b) and recomplementation must be per-

formed. An overflow occurs when sign(a)=sign(b) AND lcFF^ is ON at the end

of the operation.

g) RC(a,b) (recomplement) is defined as the two following microsequences:

1) A *- ((A~ v B)+B+l): A *- sM(a); C =1cFF^j IcFFU <- C ,r m '
' m > n ' n+4

2) En(l,0N); sM(b) <- A

- If a is a *. then A is not loaded on the first microsequence.— m

- The arithmetic function above performs recomplementation when B=0.

- RCl(a,b) is used for the recomplementation of the first digit; it is

similar to RC but in the first microsequence C =1 instead of C =lcFF^.
n n

h) CZ(a) (count zeros) is defined as the following set of two microsequences:

1) En(l,0N); En(U,0FF); lcFFl +- (A =B); A «- sM(a)

2) En(l,0N); En(4,0FF); Deer X • Deer X

If a is a * then A is not reloaded in the first microsequence. This— m

function decrements X and X if A is zero (and has always been zero previous-

ly) and if there was no "overflow" which is signaled by lcFF^ OFF. Since X

contains initially all l's, a trap is formed to yield a carry when the number

of leading zeros is added to it. Since X contains initially the larger

exponent, the exponent of the result is formed by subtracting one out of X

for each leading zero.
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i) WR (write) stands for the following set of eight micro sequences:

En(2,0N)j B +- sM(X
2
); Incr X

En(2,0FF): Incr A ; lcFF2 <- C nov
' ' >

o.' n+12

PEM(X ) *- B

Wait for writing in PEM

Wait for writing in PEM

Wait for writing in PEM

Wait for writing in PEM

Incr X

WR stores the sum of the mantissas in PEM and also takes care of elimi-

nating leading zeros. The trap in A signals when all leading zeros (which are

transformed in trailing zeros) are eliminated.
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