Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign

Faculty Working Papers

ASSEMBLY OPERATIONS

Richard V. Evans

College of Commerce and Business Administration
University of lllinois at Urbana-Champaign

FACULTY WORKING PAPERS

College of Commerce and Business Administration University of Illinois at Urbana-Champaign April 4, 1973

ASSEMBLY OPERATIONS

Richard V. Evans

非101

assembly opzrations

by

Richard V. Evans University of Illinois at Champaign-Urbana

Abstract

ASSEMELY OPEPATIORS

This paper considers some of the queueing problems of interest in the study of a single sewer who assembles two items to produce a single unit of output. This system is a simplified prototype of many industrial operations. Some characteristics of optimal assembly operations are developed.

The system to be considered consists of an operator who assembles two parts to make one item of finished product. The traditional single server queue can provide the analysis of the congestion levels of one part for several special cases of this system. One instance of this occurs when one of the parts is always available. In another case, one part is ordered or produced after each assembly. In this situation, the time to produce the first part can be added to the time to assemble the item to give an occupation time, i.e., time until the server is ready to begin the next assembly. In another special situation, one of the parts for the next assembly is ordered or produced at the start of each assembly. Using an occupation time, which is the maximum of the assembly operation time and the time to obtain the part which has just been ordered for the next assembly, allows the standard queueing results to be used.

There are many questions about this general type of system which can be raisec, mis sugests that the first consideration should be to determine which systems are in som sease good. From a management science point of riew, the study of optimal designs and controls should be the goal of the study of congestion systeas. For the system considered here it is almost necerney tegin with those questions. The reason is that if the difference becacen the expected number of arrivals of the two parts becomes arbitrarily large as time goes to infinity, the system must be unstable. Most real systems of this type do not exhibit
this marked instability. Often such systems are components of larger systems in which it is possible to control the arrival processes at least partially. The function of queues in any system is to decrease the dependence among the production or service operations performed in the system. Although the limiting conditions of unbounded queues in networks lead to simple results [i], this extreme is not likely to be desirable when there are costs of providing and maintaining waiting lines. Unfortunately, most of the analyses of queueing theory depend on the assumption of only one reflecting barrier at the' system empty condition. The combination of the need to work in two or more dimensions and a bounded state space require major developments in anelysis.

A Model

A simple model can be develoned for the two dimensional paocess $N(t)=\left[N_{A}(t), N_{B}(t)\right]$ with $N_{A}(t)$ the number of parts of type A in the system and $N_{p}(t)$ te numbre of eype parta. Assume that the process operates in discrece cime with the fine interval swall. Assume that if there is a part of byf A sod biso one of type in the syotem at the start of the punod, thene is a probability of μ of completing the assembly in in pertud. Assume that there is a probabiltty $\lambda_{\mathrm{fj}}^{A}(t)$ of
 Furthermore, assume that. $A,(t)$ ray be chosen to have any value between 0 and λ^{A} for any state and any time. Similarly, $\lambda_{i j}^{B}(t)$ may be chosen between 0 and λ^{B}. Moreover, assume that at most, one event occurs
in a period. The transition probabilities for the process are

where $\varepsilon(1 j)= \begin{cases}0 & i \text { or } j \geq 0 \\ 1 & i \text { and } j \geq 1\end{cases}$

The analysis of this poocess, even for reasonable assumptions on $\lambda_{i j}^{A}(t), \lambda_{j}^{B}(t)$ is a formidable challenge.

A Profit Structure

In order to focus on optimal systems, it is necessary to assume some sort of a profit structure. A simple but interesting structure is provided by assuming a cost for holding parts and a revenue for each iten produced. Specifically, for each item of type A stored in the system for a period, assume the cost is ha. For each part of type B, charge h_{B} per item per period. For each itern completed, assume that there ia a gata of g. Let $V_{i j}\left(\lambda_{i j}^{A}, \quad \lambda_{i j}^{B}\right)$ be the expected one-period profit starting Eorm state $i j$. The assumptions imply that:

$$
V_{i j}\left(\lambda_{i j}^{A}, \quad \lambda_{i j}^{B}\right)=-h_{A} j-h_{B} j-\lambda_{i j}^{A} h_{A}-\lambda_{i j}^{B} h_{B}+\mu\left(g+h_{A}+h_{B}\right) \varepsilon(1, j)
$$

Dynamic Program

The obvious analysis for the problem of selecting values for $\lambda_{i j}^{A}(t)$ and $\lambda_{i j}^{B}(t)$ is dynamic progranming. Since the one period expected profit is linear in $\lambda_{i j}^{A}$ and $\lambda_{i j}^{B}$ with negative coefficients, the optimal policy for one period is to use zero arrival probabilities for all states. The recursive problem has the form

$$
\begin{aligned}
& W_{0 i, j}=0 \\
& \left.W_{n i, j}=\max _{\lambda_{i j}^{A}, \lambda_{i j j}^{B}}\left\{V\left(\lambda_{i j}^{A}, \lambda_{i j}^{B}\right)\right\}+B I\left(\left\{\lambda_{i j}^{A}, \lambda_{i, j}^{B}\right\}\right) W_{n-1}^{\prime}\right\}
\end{aligned}
$$

where $W_{n 1, j}$ is the maximum discounted expected profit from n periods starting from state $i j$, and v_{n} is the matrix of these quantities, β is the discount factor, and T is the tensor whose elements are the transition probabilities. Clearly, the objective function is always linear in the decision variaides, end thus they must be either 0 or their maximum values. The same is true for the infintte borizon problem assuming that it is meaniagful. Thus the deciston problem really is equivalent to one in which there are fou chotees wimilable in each state.

Pronerties of reriod notima ?olicy

The obvicus properisa so toy to establish for the n pertod optimal policy are that the optime $\lambda_{i j}^{A}$ is λ^{A} for low values of 1 and 0 for high values of i for each 5 and the synetric result for $\lambda_{i j}^{B}$. This property
defines two single-valued boundry funcilons, $i_{n}^{*}(j)$ for wich the optimal $\lambda_{i j}^{A}$ is 0 for $i>i_{n}^{f}(j)$ and $j_{n}^{*}(i)$ for which the optimal $\lambda_{i j}^{B}$ is 0 for $j \geq j_{n}^{*}(i)$. It should not be surprising that these functions exhibit some smoothness properties. Eirst, they are monotone non-decreasing. The somewhat surprising property is that when the functions increase, the magnitude 0 位 the incraase is one. Thus, $i_{n}^{*}(j) \leq i_{n}^{*}(j+1)$ and $i_{n}^{*}(j)+1>i_{n}^{*}(j+i) . ~ S i m i l a r l y, j_{n}^{*}(j) \leq j_{n}^{*}(i+1)$ and $j_{n}^{*}(i)+1 \geq j_{n}^{*}(i+1)$. This last characteristic does nave an intuitive explanation. If the optimal policy defines a trancition operate which makes it possible to enter state j, j from one state $k, m<i_{j} j$, then $i t$ makes it possible to enter either from $i-1, j$ or $i, j-1$, or both, which is clearly the most direct possibility. Thus, the optimal n period policy has the form shown in figure T.

Pigure 1 Dptimal 20 period poticy for
$\lambda^{A}=.1, \lambda^{B}=.2, \mu=.3, h_{A}=1, h_{B}=2, \mu=60, B=.9$
states $i, j{ }_{20}(i)$ are in $0^{\prime} s$, states $i 火(j), j$ are marked by $x^{\prime} s$. The arrows show possible trancitions of the optimal operator. Ergodic staten $(0,0),(1,0),(2,0),(1,1),(2,1),(2,2),(3,2)$.
$\underline{\underline{P r o p e r t i e s ~ o f ~} W_{r}}$
To prove the propercier of the chtimal period policy requires

functions in . The opthma pocicy will have che required form it
a) $W_{n i, j}-W_{n i-1, j}$ fs nom-increading in i and non-decreasing in f.
b) $W_{n i, j}-W_{n i, j-i}$ is non-increasing in j and non-decreasing in 1.
c) $\quad\left(W_{n i, j}-W_{n i-1, j}\right)<\left(W_{n i-1, j-1}-W_{n i-2, j-1}\right)$
d) $\quad\left(W_{n i, j}-W_{n i, j-1}\right)<\left(W_{n i-1, j-1}-W_{n i-1, j-2}\right)$

If these properties hold, then they will also hold for $-h_{A}+B\left(W_{n i, j}-W_{n i-1, j}\right)$ and $-h_{B}+\beta\left(W_{n i, j}-W_{n i, j-1}\right)$
which are the two test criteria which determine the optimal $\lambda_{i j}$ and $\lambda_{i j}^{3}$, respectively. Clearly, property a) implies that $i *+1$ (j) will be single valued and non-decreasing in j. Property c) quarantees that when the optimel $\lambda_{j j}^{A_{j}}$ is λ^{A}, then.

and the optimal $\lambda_{i m, ~}^{A}=\lambda^{A}$. Droperty d) provides this same property for the optimal ${ }^{B}$.

Reformulation

To prove these propertien or the functions m requiree examination of the W_{n-1} IE W_{n-1} vere a nuncito of bus veriable, titmight be

 operators afplied to functand of wo vaxdables, teiy few genexal results are availabie. One chas of operntors which does preserve the montonicity of fitst differerices is the class of positive translation operators. T is positive translation operator on functions of two
 for some positive numbers $t_{r, E}, \mathcal{I} \in S_{1}$ and $s \in S_{2}$. For such an operator, (TW) ${ }_{i, j}-(T W)_{i-n, j-m}=\sum \sum t_{r, s}\left[W_{i-r, j-s}-W_{i-n-r, j-m-s}\right]$. Thus, if $W_{i, j}-W_{i-n, j-m} \geq 0$ for $a I i$ and j, then $T W$ will have this same property. Similarly, if $W_{i j}-W_{i-n, j-m}$ is monotone increasing or decreasing in i and j, $2 W$ wil also have this same property.

Unfortunately, the operators in this problem even with the regularity of the optimal policy, are not translation operators. Whe fact that there are Eour regions in whe optinal policy, corresponding to all four choices of the tho awroat robabriteies as one difficulty. The aecond departure from the requitements of a translation operator ocurs along the houndary of the scate space, mhen i or y^{\prime} ig yero, then there is no assembly
 permit an orderly discussion of ail the special cases which are inherently possible in $T W$, reformulation of the problem can be developed which avoids making the boundary state special.

To do this for $i, j \geq-1,-1$, define

$$
V_{i, j}^{*}= \begin{cases}-(1-\mu) g-h_{B}(j+1) & i=-1 \\ -\left(j-\mu i g-h_{A}(j+1)\right. & j=-1 \\ \mu g=-h_{A} i-h_{B j} & i, j \geq 0,0\end{cases}
$$

and

$$
W_{n i, j}^{*}= \begin{cases}W_{n} 0, j+1 & i=-1 \\ W_{n i+1,0} & j=-1 \\ W_{n i, j} & i, j \geq 0,0\end{cases}
$$

Further, redefine T as

$$
T_{i, j, k, m}^{*}= \begin{cases}\mu & k, m=1-1, j-1 \\ 1-\mu-\lambda_{i j}^{A}-\lambda_{i j}^{B} & k, m=i, j \\ \lambda_{i j}^{A} & k, m=i+1, j \\ \lambda_{i j}^{B} & k, m=i, j+1\end{cases}
$$

Using these definitions,

$$
\mathrm{V}=\mathrm{T}^{*} \mathrm{~V}^{*}
$$

and $V+\operatorname{eTh}_{\mathrm{n}}=T^{*}\left(V^{*}+B W_{\mathrm{K}}^{*}\right)$
The function $V^{*}+6 W_{\text {Hi th }}^{*}$ will have the required first difference properties if W has them and in addeiow

and the corresponding inequality
$\beta\left[W_{n 1, j}-2 W_{n} 0, j+\eta_{n o, j+1} \leq g+h_{A}+h_{B}\right.$.

This inequality will cercaindy hold if it holds for $\beta=1$. An alternative form of thic inequality cin be found, assuming the properties of W_{n} previously mentioned are true. In paricuiar, since

$$
\left(W_{n} 0, j+1 \quad W_{n} 0, j\right) \leq\left(W_{n} 0, j-W_{n 0, j-1}\right)
$$

the previous inequality will hold if

$$
W_{\mathrm{n}} 1, j-W_{\mathrm{n}} 0, j-1 \leq g+h_{A}+h_{B}
$$

A more general result is
e) $W_{n i, j}-W_{n i-1, j-1} \leq g+h_{A}+h_{B}$;
and it is this one which will be established inductively. This inequality will also supply the symetic condition required for the boundary on which $j=0$.

Induction

The funceion $W_{0, j}=0$ clearly satisties all of the properties, a to e. Within each of the four gestions of the optimal policy, the optimal T^{*} is a translation oreraton, and thes, properties a to d, hold within these regions. propesty a hots sixae the definition of \boldsymbol{v}^{*} and W_{n-1}^{*} gives

Using the induction hypothesis $\mathrm{N}^{*}\left(V^{*}+\beta W_{n-1}^{*}\right) \leq \sum_{\mathrm{Km}} \mathrm{t}_{\mathrm{ij}}^{*} \mathrm{~km}\left(\mathrm{~g}+\mathrm{h}_{\mathrm{A}}+\mathrm{h}_{\mathrm{B}}\right)=\mathrm{g}+\mathrm{h}_{\mathrm{A}}+\mathrm{h}_{\mathrm{E}}$ since nt * is a Marbov operator. This result does not depend the translation operator characteristics of T^{*} and thus holds everywhere.

Crossing from one raglon of the optimb policy to anoiner requires futcher anaiysis. In crassing the orindacy a phot the optimal

 the optimal $\lambda_{i j}$ is cero. but its replaramer by zewo does not cauge an increase since previous terms of the bind have bena mantegative.

All of the other terms in thin diffetence are positive multiples of terms which are not greater than their counterperts in the previous difference. The next difference lnoses the nrgative of this term, but since the term itselt has become negative, this is the loss of a positive contribution to the difference. When increasing the first variable causes crossing of the boundary $i, j_{n}^{*}(t)$, the optimal $\lambda_{i j}^{B}$ changes from 0 to λ^{B}. This adds the term $\lambda^{B[}\left[V_{i j+1}^{*}+\beta W_{n-1} i, j+1\right)-$ $V_{i j}^{*}+Q W_{n-1}^{*}$ to the first difference. Since the previous test criterion for $\lambda_{i j}^{2}$ is negative stince the optimal value is $\mathrm{X}_{\mathrm{ij}}^{\mathrm{j}}=0$,
 to the fingt ditherence procucing sometting larger. Rearanging terms,

 ccrms which are non-increar hg either br the jonduction argument or becsuse of tho previous discussion of crossing the $i_{n}^{*}(j)$, j boundary.

In place of these tao speuial tems, the previous difference one has
 This may be writter as (1-म, B,
 counter pare in the previone aprestion. Doreoter, ajso by induction,

 first change canot increase the first ifforence. Purther increasing the first. variable means that the first difference will have both the terms $\lambda^{B}\left(\left(V_{i+1, j+1}^{*}+\varepsilon W_{n-1}^{*}+1, j+i\right)-\left(V_{i+1, j}^{*}+\beta W_{n i+1, j}^{*}\right)\right)$ and $-2^{B}\left(\left(V_{i j+1}^{*}+\beta W_{n-1 i, j+1}^{*}\right)-\left(W_{i, j}^{*}+\beta W_{n-1}^{*}, j\right)\right)$ while the previous first difference will have oniy the term $\lambda^{B}\left({\left(V_{i}^{*} j+1\right.}_{*}+\beta W_{n-1}^{*} i, j+1\right)$ $\left.-\left(V_{i j}^{*}+\beta W_{n-1}{ }_{i, j}\right)\right)$. Eliminating the special term from the previous first difference can only decrease its value, but if this is done, the argument just completed showsthat what is left.is still not smaller than the new Eirst difference. From this point on, the positive translation operator agreement is again valid.

Having proved the forst patt of property a and by symetry, the
 j. Agatn, alchough not nogespaxy, it is nossible that increasing if may cause the crossing of bok "oundariss. Again, consiricr each one seperately. In crosemg the houndary from the region in which the optimal $\lambda_{i j}^{B}=\lambda^{B}$ to the one in which they are zero the first term in
the first difference to be dropped is
$-\lambda^{B}\left(\left(V_{i-1, j+1}^{*}+B \prod_{n-1}^{*}-1, j_{1}^{*}\right)-\left(V_{i 1, j}^{*}+\beta W_{n i-1, j}^{*}\right)\right) 。$
 itself and cannot be banaced aganet uthex temm using positive multiples of non-decreasing first doftererces acemand since this extra term io
positive, just ignore at and what remans ts mot grafter than the crue firg
ference and is not less than che previous one. Inczeasing j byl, again: use the
 The $\left(1-\mu-\lambda^{E}\right)$ balances the terain the previous differeace corresponding those in the bracker, i.e., the same term with $j=j-1$. The λ^{B} tern equals a term in the previous first difference. If it were possible to increase j further without dropping the term $\lambda^{B}\left(\left(V_{i, j+1}^{*}+\beta W_{n i, j+1}^{*}\right)\right.$ $\left.-\left(V_{i j}^{*}+\beta W_{n i, j}^{*}\right)\right)$ the argument could be in difficulty for, although other terms are non-decransing, this one has been shown to be nonincreasing. Fortnately, this texm must drop out with the next increase in j. Again, everything is not symetric so that the positive multiplier
 $-\left(V_{i-1}^{*} j-1+B W_{n}^{*} i-\lambda, j-1\right)$, which rust be positive since the optimal $\lambda_{i \cdots, j-1}^{\mathrm{g}}$ is 0 , to the previous ajeference merely increases its value. This allows the splltting of ($1-\mu$) into $\left(1-\mu-h^{i}\right)+\lambda^{E}$ to Dalance cerms. Thus, the new enest difference is not less than a quantity which is not leas than the previous first difference.

Next, it is necessaty to explain the effect on $W_{n i j} W_{n i-1, j}$ of crossing into the segion in which the nptimal $\lambda_{i j}^{A}=\lambda^{A}$ because of an increase in j. The firsteffect is the introduction of $-\lambda^{A}\left(V_{i, j}+\beta W_{n-1}^{*} i, j\right)$ $\left.-\left(V_{i-1, j}^{*}+B W_{i-1, j, j}^{*}\right)\right)$. In the first difference for the previous j value, split the $1-\mu$ term into $\left(1-\mu-\lambda^{A}\right)$ and λ^{A}. The ($1-\mu-\lambda^{A}$) multiplies a term which is non-decreasing in the successive differences.
$\lambda^{A}\left(\left(V_{i j-1}^{*}+\beta W_{n+i}^{*} j-1\right)-\left(V_{i-1, j-1}^{*}+\beta W_{n+i-1, j-1}\right)\right)$ is negative since the optimal $\lambda_{i-1, j}^{A}$ is zero and its loss in the next difference only serves to increase the difference. Increasing j by 1 means that the two differences will both have $\left(1-\mu-\lambda^{A}\right)\left(\left(V_{i j}^{*}+\beta W_{n-1 i j}^{*}\right)-\left(V_{i-1 j}^{*}+\beta W_{n-1 i-1, j}^{*}\right)\right)$ terms and the positive multiplier argument works. At some point j increases, the $\operatorname{term} \lambda^{A}\left(\left(V_{i+1, j}^{*}+\beta W_{n-1 i+1, j}^{*}\right)-\left(V_{i j}^{*}+\beta W_{n-1 i, j}\right)\right)$ appears and it causes an increase. Further increases in j are permissible under the positive translation operator argument. Thus, property a is justified complettely, and by symmetry, so is property b.

Mert, propertics 0 and a nerd to be verified. As i increases and

 is the Loss of a tem of the four $\mathrm{i}^{*}\left(i V_{i+1, j}^{*}+W_{n-1+1, j}^{*}\right)-\left(V_{i, j}^{*}+W_{n-1 i, j}^{*}\right)$). When this happens, the corteaponaing temm- $A^{A}\left(V_{i j-1}^{*}+E W_{n-1}^{*} i j-1\right)-$
 negative, it cannot make the difference of differences positive. In what remsins, there are only positive multiples of negative differences of first differences. The second term must disappear with an increase in i, since when the optimal $\lambda_{i j}^{A}=0$ so must $\lambda_{i j-1}^{A}=0$. The positive
mutipio agreement hogiten combint toms so thet one bas

 serves to reduce the difermose of deferonces beiow the already negative result that the posittve muraphisa ergume gives.

Continuing the discussion of this difference of differences, it
is necessary to examine what happens as the boundary at which the optimal $\lambda_{i j}^{B}$ changes from λ^{B} to 0 . The first effect on ($W_{n i j} \cdots W_{n i-1, j}$) $-\left(W_{n i-1, j-1}-W_{n i-2, j-1}\right)$ is that the term $-\lambda^{B}\left(\left(V_{i-1, j+1}^{*}+\beta W_{n-1 i-1, j+1}^{*}\right)\right.$
$\left.-V_{i-1, j}^{*}+B W_{n i-1, j}^{*}\right)$ is eliminated. This gives no difficulty since this happens only when the term is positive. Dropping a positive term merely makes the result more negative than the already negative result of the positive multiplier argument. The next loss is not unique and might happen simultaneously. First, the term considers $\lambda^{B}\left(\left\langle V_{j-2, j}^{*}+\beta W_{n-1 i-2, j}^{*}\right)\right.$ $-\left(V_{i}^{*}-2, j-1+3 H_{n-1}^{*}+2, j-1\right)$. Either this drops out either simultaneously wth the first loss or on the next increase of I because the form of the boundary " ${ }^{\text {th }}$ (j). If this drops out with the fixst loss, then the only
 $\left.\left.-\left(V_{i, j}^{*}+B W_{a-i}^{*} j, j\right)-\left(V_{i-1,}^{*}+\beta W_{n-1}^{*}-1, j\right) \cdots\left(V_{i-1, j-1}^{*}+\beta W_{n-1}^{*} i-1, j-1\right)\right)\right]$.

This in negative ab a zesult of property d of the induction hypothesis. The $\operatorname{cam} \lambda^{B}\left(V_{i, j+1}^{*}+B W_{n-1}^{*} x, j+1\right\}-\left\{V_{i, j}^{*}+\beta W_{n-1}^{*} i, j\right)$ must drop out with the next increase of if If it. drons out simultaneously with the
loss of thefirst cerm, one can have left - $\lambda^{B}\left[\left(V_{i-1, j}^{*}+B W_{n-1}^{*} i-1, j^{3}\right.\right.$

 since it is the difterence of differences which are now decreasing. Thus, multipled by $-{ }^{\text {B }}$ mases the product non-positive. The renaining terms are negative since they are posituve multiples of non-positive differences of differences by hypothesis c. Tt the first and the next two terms drop out simultaneously, the last remaining λ^{B} termis $-\lambda^{B}\left[\left(V_{i-1, j}^{*}+\beta W_{n-1}^{*} i-1, j\right)\right.$ $\left.-\left(V_{i-1, j-1}^{*}+\beta W_{n-i}^{*} i-1, j-1\right)\right]$, but this is negative since the term in the bracket is positive. This texm also drops out at the next increase in j and none of the λ^{8} rems are left. This completes the proof of property c and the symmerio counterpart property d. This completes the inducion. In the analysis the only terms involving the arrival rate which was know to be changing at each boundary were discussed. It is passible that in some cases the two boundaries axe crosged stmatanausty. Thas presents no problem. The only poscible problem contes when $1-A^{A}$ and i-w A^{B} are used. If necessary,

Dynamics
Dynanio properthes of thas anolysis seem somewht more difficult to estabiag than the resulte on the sem of the optimal n period policy. One result, which is relatively easy, is that there exist bounds i* and i^{*} tuch that for all n the optimal arrival rates are $\lambda_{i j}=0$ for $i \geq i^{*}$ and $\lambda_{i j}^{B}=0$ for $j \geq j^{*}$. The axgument for this is that the n period profits can be witten as a sum of profits in each of the n periods. For large i the first period profit will ha less in state
$i+1$ than it is in soart i. Eot at least the next i periods, all sample pathe starting from t t 1 dill have at lonst as large an inventory of A parts ag will those from s"atc i, and thus, the profits starting from i +1 will not excers tose otatrin fom for this interval. Equality can occur jit Er some the che fretory generated itarting from
 $\lambda_{k-1, m}^{A}$ is $\lambda^{\hat{A}_{n}}$. In this caze, some of whe histories tarting from i will have the same level of A inventory as the correspoading ones starting from $\dot{1}+1$. From this time on, there ivill be d one-to-one match of the remaining nossible history of the process. On the other hand, there will be hostrries in which the number of A items on hand is always 1 more stareing fromit i than is the cast stareing Erom i until the level 0 is raached. At this time, the histories starting from $i+1$ have a profit which is μ o h inigher than those starting from i. For the remairing time until the horizon, the possible histories may seprate, but the difference in profits is bounded by
 in the woth oi starting in $i+i$ anc stacting in is not greater than

 easily establishes thet if a $\left\langle i, \hat{A}_{i j}=0\right.$. In periods, no more than n cype A atems can be uged, ant thus profits can only be decreased by adding a type A trem at any time during the n periods.

The bounds $i^{*} \% j^{*}$ just dsscussed can be used to sey that there is a finite state finite action problen foc thich the recursive optimal discounted expected profit functions the arr equat to infinite state $W_{n i, j}$ when $(i, j) \leq(i *, j *)$ This nollows inmetiately from the transition operator, which guarantecs that if $A_{j}=0$ for $i>L_{*}$, and $\lambda^{B}=0$ for $j \leq j *$ and all n, then Wi, j depends oniy on wi, ${ }^{\prime}$ for $i^{\prime}<i *$ and $j \leq j *$ and $m \leq n$. This dependence is the same for W_{n} and W_{n}.

As far as the behavior of W_{n} as n approaches infinity is concerned, the fact that the system evolves according to a Markov chain having positive probability of only finite changes instate, and the fact pzofits are discounted by $\beta<1$, combine to guarantee convergence for all finite states. A standard contraction argument easily establishes

$$
\left|W_{n+1} i_{j} j-W_{n i, j}\right| \leq \beta\left|W_{n i, j}-W_{n-1} i, j\right|
$$

This unfortunately does not provide a characterization of the sequence of optimal policies. There is one obvious result which can be supported. If $\lambda_{i j}^{A}=0$ and $\lambda_{i-1, j-1}^{A}=0$ in the optimal policy for period n, then $\lambda_{1 j}^{A}=0$ for perici $n+\cdots$ In this case, che test criterion is strictly negative.

$$
\begin{aligned}
& -h_{A}+B W_{n+1}+1, j-W_{n+1} i, j=-h_{A}+B\left\{(I-\mu)\left[-h_{A}+W_{n i+1, j}-W_{n i, j}\right]\right. \\
& \left.+\mu\left[-h_{A}+W_{n i, j-1}-W_{n i-1, j-1}\right]\right\} \leq-h_{A}<0 .
\end{aligned}
$$

This implies that the region in which $\lambda_{i j}^{A}$ should be λ^{A} cannot expand by more than 1 in each period. If i is sufficiently large that the optimal $\lambda_{i j}^{A}=0$ for all periods up to n and states which can be reached from i,
then this criterion behaves like $-h_{A}\left(1-\beta^{n+2}\right) /(1-\beta)$ which is monotonic decreasing in n.

What is both more interesting and more difficult is the behavior In the regions in which $\lambda_{i j}^{A}$ should be λ^{A}. So far no counter example has been found for the hypothesis that the optimal $\lambda_{i j}^{A}$ are non-decreasing functions of n. A proof that this must be so involves showing that

$$
\left(-h_{A}+\beta W_{n+1 i+1, j}-\beta W_{n+1} i, j\right) \geq\left(-h_{A}+\beta W_{n i+1, j}-\beta W_{n i, j}\right)
$$

whenever the right-hand-side is positive. This is equivalent to

$$
\left(W_{n+1 i+1, j}-W_{n+1 i, j}\right) \geq\left(W_{n i+1, j}-W_{n i, j}\right)
$$

when the right-hand-side $i s \geq h_{A}$. All that is easy to argue is that

$$
\left(-h_{A}+W_{n i+1, j}-W_{n i, j}\right) \geq 0 \rightarrow\left(W_{n+1 i+1, j}-W_{n+1 i, j}\right) \geq 0
$$

This is an immediate consequence of the recursive definition of W_{n+1} which permits this difference to be written as a sum of positive terms. To say more than this requires a stonger inequality than

$$
\left(W_{n i, j-1} W_{n} W_{n}-W_{j-1}\right) \geq\left(W_{n j-1, j}-W_{n j, j}\right)
$$

Which was shown earlier. A stronger version does not hold everywhere. When the optimal $\lambda_{i-1}^{A}, j-1=0$, there can be equality especially for small n.

Small Intervals

The natural interest in differential equations for queueing systems resulting from the $M / M / 1$ analysis raises the question of what happens if the interval size is reduced. To examine this, one needs to reformulate the problem somewhat. Following the usual approach, the probabilities of the three possible state change events are redefined as $\lambda^{A} \Delta t, \lambda^{B} \Delta t$, and $\mu \Delta t$. The holding cost can be redefined as h_{A} and h_{B} per unit time respectively. The cost of holding one type A item for Δt is now $h a t$. Finally, the discount factor has to be modified to be $1-\sigma \Delta \mathrm{t}$. The criterion for choosing the $\mathrm{n}+\mathrm{lst}$ $\lambda_{i j}^{A}$ in these terms is

$$
-h_{A} \Delta t+(1-\sigma \Delta t)\left(W_{n i+1, j}-W_{n i, j}\right)
$$

Since this is an affine function of Δt, it changes sign at most once as Δt goes to zero. This guarantees that shrinicing Δt will not produce oscilations in the transition probabilities which would make the limiting differential equation meaningless. At the moment, this differential equation is not of computational interest. Perhaps the most interesting aspect of the formulation leading to the differential equation occurs in the limit as the time parameter gets large. To the accuracy of Δt

$$
V\left(\lambda_{i j}^{A}, \lambda_{i j}^{B}\right)_{i j}=V_{i j}^{\prime} \Delta t\left\{-h_{A} i-h_{B j}+\mu g \epsilon_{i j}\right\} \Delta t
$$

and the limiting W for any Δt satisfies

$$
0=\max _{\lambda_{i j}^{A}, \lambda_{i j}^{B}}\left(V_{i j} \Delta t\left(T\left(\lambda_{i j}^{A}, \lambda_{i j}^{B}\right)-I\right) \Delta t W\right)
$$

 course, also true here for the mobablitisfo wt is not the that an optimal stationary pofioy depends only on ratios of the cost parameters. The scaling possibility here is among the holding costs, h_{A} and h_{B}, and the expected revenue per unit time given that the operation is working $\mu \mathrm{g}$. Thus, the absolute value of μ does become important. To eliminate this one must factor from the function to be optimized $\mu \Delta t$ in which case h_{A} / μ and h_{B} / ψ the expected holding cost during an assembly will be the holding cost parameterc.

Dependence on 4
In many simutions, mos oniy is ft poesible to controt the inputs, but also ie is mecescax ho chocse ine man ano/ow eguipment to perform the assembiy, Th this moden, this la fequmatent to choosing the com-

 of artival probebilitaes and whe intial condttons. The comoined decision probiem has the rom

$$
\sup _{4 s \theta}(\text { mo, max } w(D)-c(m)
$$

In this expression D is an infinite sequence of decision functions D_{n}. each one of which specisies $\lambda_{j, j}^{A}$ and $\lambda_{i j}^{B}$ for each state ij. The function $C(\mu)$ is a cost for choosing μ as th: assembly probabiiity. The first bracket repesents the scalar prociuct and is the expectation with respect to the initial conditions of tha discounted expected return over an infinite horizon using puifcy D For a flued vaiue μ. In many situations the set of values 9 from which μ mast be chosen is a finfte set and a maximum will exist. If the number of valurs in θ is small, it will be feasible to solve the problem by enumeration of the μ values. If $C(\mu)$ is quite irregular, such a procedure may be the only possibility. From a modeling point of view, even if θ is interval $\left[0, \mu^{m}\right]$, it is probably permissible to approximate θ by a finite set containing only a few values since the entire model is an approximation anyhow. From any point of view cther than immediate implementation, this resort to crude numerical methods has little, if any, appeai. The problem is to develop properties of $\max _{D} W_{\mu}(D)$ as a function of H and assumptions on the form of $C(\omega)$ which will insure that a more efficient sequential search procedure than enumeration can be used to solve the probiem. The situation of being atle to pastially characterize the optimal policy of a sequential decision process and possesion of relatively efficient computational means for finding it is typicel of the analysis of many queueing systems. As in this example, this should not be the end of the analysis, for real problems have both design (selection of μ) and control (selection of $\lambda_{i j}^{A}$ and $\lambda_{i j}^{B}$ for each decision time) aspects.

For applications, it will generally be much more difficult and expensive to rectify errors in design then to improve control.

An important question to answer is whether an optimal μ exists.
Unfortunately, the dependence of the functions w, f on μ is not as easy to describe as one might nope. Consider the derivatives d wi, $j d \mu$. First

$$
\begin{aligned}
& \frac{d W_{1 i, j}}{d \mu}=\frac{d V_{i, j}}{d \mu}=\left(g+h_{A}+h_{B}\right) \epsilon_{i j} \\
& \frac{d^{2} W_{10 j}}{d \mu^{2}}=\frac{d^{2} V_{i, j}}{d \mu^{2}}=0
\end{aligned}
$$

These one period functions are extremely well behaved, but examination of $d W_{2 i, j} / d \mu$ gives a more complicated picture. For the second period only λ_{0}^{A} for $j>0$ and can be positive. The function is

The first derivatives are

At the points at which $\lambda_{0 j}^{A}$ and $\lambda_{i 0}^{B}$ change values the derivatives are undefined. The test criterion for $\lambda_{0 j}^{A}$ is

$$
-h_{A}+B\left(W_{11, j}-W_{10, j}\right)=-h_{A}+B\left(\left(\mu g+h_{A}+h_{B}\right)-h_{A}\right)
$$

which is negative until

$$
\mu \geq \frac{h_{A}-\beta h_{B}}{g}
$$

Thus, for small H, $\lambda_{O j}^{A}$ should be zero, while for large values it becomes λ^{A}. This makes $W_{20, j}$ piecewise 1 inear and convex. $W_{2 i, 0}$ is similar. $W_{2 i, j}$ and $W_{2 i, 1}$ are concave increasing; while the remaining functions $W_{2 i, j}$ for $i>1 \quad j>1$ are increasing and linear in μ.

For the general case, one has, by induction, that the functions $W_{n+1} i, j$ are continuous in wince, for any continuous function, $G(\mu), \lambda^{A}(\max (0, G(\omega j))$ is continuous. For the intervals in which the derivatives are defined

$$
\begin{aligned}
& \frac{d W_{n+1} i, j}{d \mu}=\frac{d V\left(\lambda_{i j}^{A}, \lambda_{i j}^{B}\right)}{\mu} \quad \beta \quad\left\{\mu(i, j) \frac{d W_{n} \sum_{i-1}, j-1}{d \mu}\right. \\
& +\left[1-\lambda_{i j}^{A}-\lambda_{i j}^{B}-\mu \varepsilon(i, j)\right] \frac{d W}{n i j}+ \\
& \lambda_{i j}^{A} \frac{d W_{n i+1, j}}{d \mu}+\lambda_{i j}^{B} \frac{d W_{i, i, j+1}}{d \mu}+ \\
& \left.\mu \in(i j) W_{n i-1, j-1}-\mu \in(i, j) W_{n i, j}\right\}
\end{aligned}
$$

As in the case of $W_{20, j}$ when $\lambda_{i j}^{A}$ changes from 0 to λ^{A}, the derivative of $W_{n+1} i, j$ experiences a positive jump. Since $W_{n i+1, j}-W_{n i, j}$ must be increasing. The same holds for $\lambda_{i j}^{B}$. When the derivatives exist, they must be non-negative. Under the induction hypothesis,

$$
\frac{d W_{n+1} i, j}{d \mu} \geq \frac{d V\left(\lambda_{i j}^{A}, \lambda_{i j}^{B}\right)+\beta_{\mu} e(i j) \quad\left(W_{n i-1, j-1}-W_{n i j}\right)}{d \mu}
$$

Since $W_{n i, j}{ }^{-} W_{n} i-1, j \sim 1$ has already been shown not greater than $g+h_{A}+h_{B}$, the right-hand-side must be non-negative. These derivatives inherit discontinuities from those of W_{n}. All discontinufties give positive fumps, if for any $n \lambda_{i j}^{A}$ changes only once from 0 to λ^{A} and similarly $\lambda_{i j}^{B}$ changes at most once.

Inductive analysis can show that the test criterion is nondecreasing or equivalently it $i i^{\prime}$ continuous and $d\left(W_{r+1} i+1, j / d \mu-d W_{n+1} i, j\right) / d \mu$ is nonnegative when it -3 devised. Continuity follows the continuity of W_{n+1}. For one period, the derivative is zero except for $i=0 \quad j>0$ when it is positive. The genera case is

$$
\begin{aligned}
& \frac{d W_{n+1} i+1, j}{d \mu}-\frac{d W}{n+1} i_{2} 1 \quad=\operatorname{dV}\left(\lambda_{i+1, j}^{A}, \lambda_{i+1, j}^{B}\right)-\frac{d V\left(\lambda_{i, j}^{A}, \lambda_{i, j}^{B}\right)}{d \mu} \\
& +\beta \mu \epsilon(i+1, j) \frac{d W_{n i, i-1}}{d \mu}-\beta_{\mu \epsilon(i, j)} \frac{d_{n} i-1, j-1}{d \mu} \\
& +\beta\left[1-\lambda_{i+1, j^{A}}^{-\lambda_{i+1, j}^{B}}-\mu \epsilon(i+1, j)\right] \frac{d W_{n i+1, j}}{d \mu} \\
& \left.-B\left[1-\lambda_{i, j}^{A}-\lambda_{i, j}^{B}-\mu \in I i, j\right)\right] \frac{d W_{n i, j}}{d \mu} \\
& +B \lambda_{i+1, j}^{A} \frac{d W_{n i+2, j}}{d \mu}-\beta \lambda_{i, j}^{A} \frac{d W_{n i+1, i}}{d \mu} \\
& +B \lambda_{i+1, j}^{B} \frac{d W}{d \mu}-\beta \lambda_{i, j}^{B} \frac{d W_{n i, i+1}}{d \mu} \\
& -\beta \varepsilon(j+1, j) W_{n i+1, j}+\beta \in(i+1, j) W_{n i, j-1}+\beta \varepsilon(i, j) W_{n i, j} \\
& -\beta \in(i, j) W_{n i-1, j-1}
\end{aligned}
$$

The terms involving derivatives of W_{n} make no positive contribution due to the induction hypothesis when $\epsilon(i, i)=1$ and the decisions are the same in $1+1, j$ and $i j$. Similarly, if $\epsilon(i+, j)$ and $\epsilon(i, j)$ are positive, the last four terms must have a non-negative sum because of the properties of W_{n} previously shown. Where are, of course, other special cases to be considered. Firet, it may happen that $\lambda_{i+1, j}^{B}=\lambda^{B}$ and $\lambda_{i, j}^{B}=0$, but this does not lead to a negative contribution. When $\lambda_{i+1, j}^{B}$ changes from 0 to λ^{B}, there is a positive jump, and when $\lambda_{i j}^{B}$ becomes λ^{B}, a smaller negative jump. When $\lambda_{i j}^{A}$ becomes λ^{A} and $\lambda_{i+1, j}^{A}=0$, then there is a negative jump of $-\lambda^{A}\left(d W_{n i+1, j} / d \mu-d W_{n i, j / d \mu}\right)$, but this is nullified by the positive $\operatorname{term}\left(1-\lambda_{i+1, j}^{B}-\mu_{E}(i+1, j)\right) d W_{n i+1, j / d \mu}-\left(1-\lambda_{i, j}^{B}-\mu \epsilon(i, j)\right) d W_{n i, j / d \mu}$. When $\lambda_{i+1, j}^{A}$ becomes λ^{A}, there is a positive jump. The possibility of $\epsilon(i, j)=0, \varepsilon(i+1, j)=1$ only contributes a positive addition to the derivative terms, for $-\mu d W_{n i, j} / d \mu$ is replaced by the larger value zero. In the last four terms, this possibility produces $-W_{n i+1 j}+W_{n i, j-1}$, but by the previous induction this must be not less than $-g-h_{A}-h_{B}$, which is the negative of $\mathrm{dV}\left(\lambda_{i+1, j}^{A}, \lambda_{i+1, j}^{B}\right) / \mathrm{d} \mu-\mathrm{dV}\left(\lambda_{i, j}^{A}, \lambda_{i, j}^{B}\right) / \mathrm{d} \mu$ in this situation. Thus, inductively $\mathrm{dW}_{n+1}+1, j / \mathrm{d} \mu-\mathrm{dW}{ }_{n+1} i, j / d \mu$ is non-negative when it is defined. This means that there is at most one value of μ at which $\lambda_{i j}^{A}$ will change from 0 to λ^{A} and it will remain λ^{A} for all higher values of μ. A symmetric argument applies to $\lambda_{i \xi}^{B}$.

Optima1

The result just obtained guarantees that any stage the optimal $\lambda_{i j}^{A}$ and $\lambda_{i j}^{B}$ are well behaved. The monotonicity of $W_{n i, j}$ in μ is not a strong enough property to guarantee that there will be a unique
optimum μ for the design problam posed in the previous section. Much more is necessary if one wishes ($F_{0}, \operatorname{Hnj}_{n}$) $\sim C(\mu)$ to be unimodel. The obvious disirable property of concayty doea not hold for $W_{2 i j}$. The difficulties of che anayyis of this system are typical of problems of design anc control of Markov syctems, especialiy when the natural state space is tro or hicine in dimencion.

Even if it were possible to show that under reasonable conditions there is an optimal μ, there 3 till remains the problem of finding this value. An iterative procedure which approximately solves the dynamic programing problem for the optimal control for each value of μ and searches among these solutions for an optimum has little to offer other then its feasibility. What is needed is an iterative procedure which will pick a sequence $\mu(k), \lambda_{i j}^{A}(k), \lambda_{i j}^{B}(k) \mid k=1 \ldots$ which will converge to an optimum if one exists, without the necessity of $\mu(k)$ being constant for large fitervais of k values.

In the stady of these systems, the author has engaged in soms rather extensive mumerical vork. Unfoztunately, the results of this work are not in form that they can be presented as yet. Perhaps the most striking zeault so far is the very small number of states which are ergodic in these syotems. In most cases so far, optimal queue sizes have been under 10 , and, norenver, many fewer than the corresponding maximum of 121 states have been ergodic. Although it is easy to introduce further complexitles, which will cause any numerical analysis to tax the power of a computer, it is striking how much of the imagined
difficulties disappeax in calculation. The results presented here really constitute an "academic" exercise, for they all had strong support from calculations before the inductions had been completed. Only an "academic" could afford to ask are these properties always true before considering what happens when the structure of the problem is changed.

References

[1] Jackson, R., "Job Shape-Like Queueing Systems," Management Science, Volume 10, 1963, pp. 131-142.
[2] Karlin, S., Total Positivity, Stanford University Press, 1968.
[3] Derman, C., Finite State Markovian Decision, Processes, Academic Press, 1970.

