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Abstract

ASSEMBLY OnEBATIOiS

This paper considers some of the qoeueing problems of interest

In the study of a single sewer vho assembles two items to produce a

single unit of output. This systea is a siapllfied prototype of many

industrial operations. Some characteristics of optimal assesbly

operations are developed.





The system to be considered consists of an operator who assembles

two parts to make one item o£ finished product. The traditional single

server queue can provide the analysis of the congestion levels of one

part for several special cases of this system. One instance of this

occurs when one of the parts is always available. In another case, one

part is ordered or produced after each assembly. In this situation, the

time to produce the first part can be added to the time to assemble the

item to give an occupation time, i.e., time until the server is ready

to begin the next assemt>ly. In another special situation, one of the

parts for the next assembly is ordered or produced at the start of

each assembly. Using an occupation time, which is the maximum of the

assembly operation time and the time to obtain the part which has just

been ordered for the next assembly, allows the standard queueing results

to be used.

There are many questions about this general type of system which

can be raised, Tltis suggests that the first consideration should be

to determine which systems are in some sense good. From a management

science point of view, the study of optimal designs and controls should

be the goal of the study of congestion systems. For the system considered

here it is almost necer^'s.ry t> begin with thase questions. The ifeason

is that if the differences between the expected number of arrivals of

the two parts becoaies arbitrarily large as time goes to infinity, the

system must be unstable. Most real systems of this type do not exhibit
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this marked Instability, Often such systems are components of larger

systems in which it is possible to control the arrival processes at

least partially. The function of queues in any system is to decrease

the dependence among the production or service operations performed

in the system. Although the limiting conditions of unbounded queues In

networks lead to simple results [l]) this extreme is not likely to be

desirable when there are costs of providing and maintaining waiting

lines. Unfortunately, most of the analyses of queueing theory depend

on the assumption of only one reflecting barrier at the' system empty

condition. The combination of the need to work in two or more dimensions

and a bounded state space require major developments in an« lysis.

A Model

A simple model can be developed for the two dimensional process

N(t) » [N^(t), Ng(t)] V7ith N^^(t) the number of parts of type A in the

system and M,,(t) t'\e number cf type B parts. Assume that the process

operates in discrete time with the tirne interval si^all. Assume that if •

there is a f^ rt of type A and also one of type B in the system at the

start of the period, there is a probability of [j, of completing the

A
assembly in i-c period,^ Assume that there ts a probability X. .(t) of

an arrival of a pe,;. t cf fype A in the period (t, t-J-At) if N(t) «= (i,j).

A
Furthermore, assume that Xjj (t) may be chosen to have any value between

A -a

and X for any state and any time. Similarly, XJ^(t) may be chosen

B
between and X . Moreover, assume that at most, one event occurs
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in a period. The transition probabilities for the process are

ij rs

hi

ij

1 (r.8) - (i-j, .1-1)

(r,a) » (i,j)

(r,s) « (i+l,j)

(r,8) - (i,j+l)

otherwise

where e(ij) »
i or j *

i and j > 1

The analysis of this process, even for reasonable assumptions on

X^.(t), Xfj(t) is a formidable challenge.

A Profit Structure

In order to focus on optimal systems, it is necessary to assume some

sort of a profit structure. A simple but interesting structure is

provided by assuming a cost for holding parts and a revenue for each

item produced. Specifically, for each item of type A stored in the

system for a period, assume the cost is hx „ For each part of type B,

charge h per item per period. For each item completed, assume that
B

A B
there ia a gain of g. Let V^-CX^i, X^^O be the expected one-period profit

starting form state ij. The assumptions imply that: '

,B

Uj(^ij« ^ij)=- i^A i " ^B J - A.2 \ - 4i ^B
-^ ^^<8 + ^A + hg) e(i,j)
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DynatRJc Program

The obvious analysis for the problem of selecting values for

A B
Xij(t) and ^ijCt) is dynamic programming. Since the one period

A B
expected profit is linear in X^. and \j^ with negative coefficients, the

optimal policy for one period is to use zero arrival probabilities for

all states. The recursive problem has the form

Wni.j = MAX
3 ^v(4., ^p3+ m[)^y Xl^h W^:,}

ij, iji

where Wj^^ \ ^^ ^^^ maximum discounted expected profit from n periods start-

ing from state ij, and Wj^ is the matrix of these quantities, p is the

discount factor, and T is the tensor whose elements are the transition

probabilities. Clearly, the objective function is always linear in the

decision variables, and thus they must be either or their maximum values,

The same. is true for the infinite horizon problem assuming that it is

meaningful. Thus the decision problem really is equivalent to one in

which fi'hara are four choices available in each state.

Propert ies of
J).-, J^1^''' ,^°^. ,f^'9J:F^}:^ P̂\.:-.^y'^

The obvicas properrlas co try to establish for the n period optimal

A Apolicy are that the optimal Xij is }. for low values of i and for high

values of i for each j artd the sjTnetric result for Xj^a* This property
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defines two single-valued boundry functions, i^^-^^ ^^^ which the optimal

X^i is for i > i^Cj) ^^^ Jn^^^ ^*^^ which the optimal Xjj is for

*
j > Jn(i)« It should not be surprising that these functions exhibit

some smoothness properties. First, they are monotone non-decreasing.

The somewhat surprising property is that when the functions increase,

the magnitude of the increase is one. Thus, i^iO) 5 ^n (J+1) ^^^

i^(j) + 1 > in(j+l). Similarly, j*(i) < j*(i+l) and j*(i) + 1 > j*(i+l)

This last characteristic does have an intuitive explanation. If the

optimal policy defines a transition operate which makes it possible

to enter state i,j from one state k,m "^ i •» j, then it makes it possible

to enter either from i-l,j cr l,j-l, or both, which is clearly the

most direct possibility. Thus, the optimal n period policjr has the

form shown in Figure I,

* y

3 ifLy^iL,-jfL:^ '»* ;«/y / /^' y«;» ;™

I 2 3 4 5 i

Figure I Optitr^al 20 period policy for

A B
X = .1, X « .2, M, = .3, h^ = 1, hg = 2, pi = 60, 3 = .9

states i,J*Q(i) are in O's, states i*(j),j are marked by x's. The

arrows show possible transitions of the optimal operator. Ergodic

states (CO), (1,0), (2,0), (l,'!), (2,1), (2,2). (3,2).
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Properties of W

To prove the propertiec of the optimal ti period policy requires

a discussion of the ^ropertie^a of the, first differences of the

functions W . The optimal policy will have the required form if

a) W ^ ,
- ^v^ , , . is non-increaaing in i and non-decreasing

ni,j ni-l,j

in J.

b) W . . - W . . , is non-increasing in j and non-decreasing
ni^j.,; ni^j-i

in i.

""^ ^\i,j " ^ni-l,j^ 1 ^^ni-l,j-l " ^ni.2,j-l)

ni,j ni,j-l' — ni-l,j-l - ni-l,j-2'

If these properties hold, then they will also hold for

'h ^ ^^ni,J - ^ni-lj> ^"^ - ^B ^ ^<^ni,J ' ^ni,M>
.A

which are the two test criteria which determine the optimal X. . and

p
X.., respectively. Clearly, property a) implies that i*,^(j) will be

single valued and non-decreasing in j. Property c) quarantees

A A
that when the optimal X. . is X , then .

~ A ni,j ni-ljj'^ — A . ni-l,j-l ni,Z,j-l

A A
and the optimal X, , , . = X . Property d) provides this same property

I - i J J - J.

n
for the optimal X . „.

.

I

I



'
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Re formulation

To prove these propartie?? of the functions W requires examination

of the TW ,. If W , v/ere « function of ona variable, it might be
n- i n-i

possible to argue that T ip -4 toif..?lly positive operator [3k] » and thus

preserves the required unirood^l propertlea. Unfortunately, for linear

operators applied to functions of two veriables, very few general

results are available. One ciasb of operators which does preserve

the montonicity of first differences is the class of positive translation

operators, T is positive translation operator on functions of two

integer variables if the coordinate i,j of W is (TW). .
« E- -2. t W^

i,j reSj^sss^ r,a i-r,j-!

for some positive numbers t , reS. and seS«. For such an operator,
^

W, , - W, ^ > for al i and j, then TW will have this same
i,j i-n,j-m--

property. Similarly, if W. . - W. . is monotone increasing or de-

creasing in i and j, TW will also have this same property.

Unfortunately, the operators in this problem, even with the regularity

of the optimal policy, are not translation operators. The fact that there

are four regions in the optiiiial policy, corresponding to all four choices

of the two arrival probabilities is one difficulty. The second departure

from the requiremctnts of a translation operator occurs along the boundary

of the state space. When i or j is zero, then there is no assembly

possible, and the term \.\,
"^

. , . . is not present, nor is -jji W, ,. To

permit an orderly discussion of ail the special cases which are in-

herently possible in TVJ, a reformulation of the problem can be developed

which avoids making the boundary state special.
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To do this for i,j > -1,-1, define

V
i,j

{

-(l.|i.)g - h^(j+l)

i,J > 0,0

and

W
ni,j

W

W

n 0, j+1

n i-fi,0

W
n i,j

i=-l

j=-l

i,j> 0,0

Further, redefine T as

/

i,j,k,tn "
^

X*

x«

x!j

k,m = i-l.j'-r

k,m = i;j

k,m = i+l,j

k,m = i,J+l

Using these definitions,

V = l^V*

and V +.^TW = T (V^ + &W* )n r.

k "k

The function V + 3 W^ will have the required first difference properties

if W has them arid in addition
n

* *
(V. . + is wlO n i,J C,j n 0,j^ ~ ^ G,j n Qj^ -i,j "^ n -l,j'

and the corres ponding inequality

3 Cw - , - 2W . + W ..J < S + h^ ^ h„
n 1,J n o,j n o,j+l — ^ A + B,
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This inequality will certainly hold if it holds for P*=l. An alternative

form of this inequality can be found, assuming the properties of W_

previously mentioned are true. In particu,lar, since

the previous inequality will hold if

n l,j n 0,j-l — ^ A

A more general result is

e) W . , - W . . . . < g + h. -I- h_,
' n 1, j n 1-1, j-1 — =* A B'

and it is this one which will be established inductively. This in-

equality will also supply the syraetic condition required for the

boundary on which j-O.

Induction

The function W .. = clearly satisfies all of the properties,
oij

a to e. Within each of the four rej^ions of the optimal policy, the

optimal T, is a translation operator, end thus, properties a to d, hold

within these regions. Property e holes since the definition of V arid

*
W /
n-1 gives

f^^^'n n i"^n n 1 i 1 > for i,j>l,
* , ,v * * n-li,j- n-li-1, j-1 -
I, J ^,^j 1 i,J i n i 1 i,j .. <^g -r u^ 1 n^

for i or j = 1

L

Using the. induction hypothesis T*(V* -!- ^ W* ,)< EE t.^
,

(&fh^+h„) = fffh.+h„
n-1 — Km ij Wn A B A B

*
since T is a Markov operator. This result does not depend the translation

operator characteristics of T and thus holds everywhere.
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Crossing from one region of the optimal policy to another requires

further analysis. In crossing the boundary at which the optimal

A A
X . . changes from X to 0, W . .

- W d.'oos the term

^^ ^Vj ' ^ ^n-1 i-M,j> - ^^'i J
* ^ <-l i,P ^^°P^ ^^' ^' ^^^

expression for W ... At this point the term '^ecoraes negative since

the optimal X,. is ^ero, bi:t its replac^-ment by zero does not cause an

increase since previous terms of this kind have been non-negative.

All of the other terms in this difference are positive multiples of

terms which are not greater than their counterparts in the previous

difference. The next difference looses the negative of this term, but

since the term itself has become negative, this is the loss of a

positive contribution to the difference. When increasing the first

variable causes crossing of the boundary i,j*(t), the optimal

X . ^ changes from to X . This adds the term X [(V.^^, + 3 W , , ..,.
ij ij+1 n-1 i,j+l) -

v.. + 3W T ,] to the first difference. Since the previous test
ij n-i ij

B B
criterion for X.. is negative since the optimal value is X., = 0,

- ^^t<-l j.l
+ S W^.i ,.,_ ^j) - (V*^^^ + 9 W*.^

^., j)] may be added

to the first difference producing som.ething larger. .Rearranging terms,

one has X^[(V.
j^,

+ g W^., ,^^j -
("Vl, j+x

+ ^ Vl i-1, J+l>^

* (1-^i-X^ [(V*_^ + P -/_^ y) - (V^_^_^ + P w;;_^
..j_ p plus other

terms which are non-increaf^lng either by the induction argument or

ir

because of the previous discussion of crossing the i (j),j boundary.
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In place of these two special terms, the previous difference one has

only the term (i-ji) (fV* + ^ W*
i . , .) - (V* « , + 3 W* . ^ _ \) .

1-1, J n-1 1.-1,1 i-Z j n~l i'2^y^

This may be written as (l-p,-X ) ^ X times the bracketed terra.

By the induction (l-|jb-X) tiuies the bracket terra ia not less irhan its

counter part in the previous expression. Moreover, also by induction,

X^ ((V* , . + 3 W*
, , , J - (v'' .,, + 3 W^

., ^ ,)) ie not less than^ 1-1, .1 n-1 1-1, j i--ij n-1 j--2,J'

i j+l ik-i i,j .-), j-< .. n-1 1-1, j+1

first change cannot increase the first difference. Further increasing

the first variable means that the first difference will have both the terms

-^^«<
i+1

+ ^ Vl i.j+l>
-

^^i,J
^ ^ Vl i.j^^hile th. previous first

difference will have only the terra X ((V. .^ -,
+ 3 W ,,:,.,)'

i j+1 n-1 i,j+l
it

- (V + 3 W '. ,)). Eliminating the special terra from the previous
J * *j

first difference can only decrease its value, but if this is done, the

argument just completed showsthat what is left, is still not smaller than

the new first difference. From this point on, the positive translation

operator agreement is again valid.

Having proved the first part of property a and py gymetry, the

first part of property b now consider W , , - W , , , as a function of
n l,j n i-l,j

j. Again, although not necessary, it is possible that increasing j may

cause the crossing of boi:h boundaries, Af^ain, consider each one

seperately. In croseing the boundary from the region in which the

B B
Optimal X j

= X to the one in which they are zero the first terra in
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the first difference to be dropped is

The term X^C'^^^,., + 8 W*_, ,_,.,)
- (V*^ . + g W^ . ^)] is left by

itself and cannot ba balanced against other terms using positive multiples

of non-decreasing first dif f^rerices argumanc. Since thia extra terra is

positive, just ignore it and what: remains Is not graater than the true first

ference and is not less than the previous one. Increasing j by 1,, again: iise t-hf*

device of writing (l-p,-Ax^) ((V*^ -r p w*
^^^^)

- (V*,^^ +
^^'n<-l,^^^'

The (1-P.-X ) balances thfi term in the previoue differenhs corresponding

B ^

those in the braclaet, i.e. , the same term with j=j-l. The \ term

equals a term in the previous first differc.nce. If it were possible to

increase j further without dropping the term X ((V . - 4- 3 W . . ,)

•k -fc

- (V^ . 4- p W . .)) the argument could be in difficulty for, although
i j n ij ®

other terms are non-decraasing, this one has been shown to be non-

increasing. Fortunately, this term must drop out with the next increase

in j. Again, everything is not symetric so that the positive multiplier

argunjent can wortc immediately. Adding ?*. ((V, - . + B W , . .)
1-1, j n i-1, j'

- (V » . T + vf . , . ,)), which must be positive since the optimal
i-I j-1 n i-i,;j-l '

'^

a
X, , , . is 0, to the previous difference merely increases its value.
1-1, J-1

B R
This allows the splitting of (1-ij,) into (l-p--X ) -f X to balance terras.

Thus, the new first difference is not less than a quantity which is not

less than the previous first difference.
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Next, it Is necessary to explain the effect on W . , - W ^ . , of
n 1 j n 1-1,

j

A A
crossing into the region in which the optimal \ = X because of an

A +
increase in j. The first effect is the introduction of -X ((V. . + P W , ^ ,)i , j n - 1 i

, j
^ if

- (V 4- p W , , . )) . In the first difference for the previous J
i - i

, J a***! " i-
, J

A A A*
value, split the 1-p, terra into (l-|j,-X ) and X . The (l-p,-X^raultiplie8

a term which is non-decreasing in the successive differences.

X*((V* j.i+ Sw;;,.
J.,)

- (V*.i,j.i+ PW^^.j j.j)) is negative since

the optimal X^ , . ^ j . ^ -i ^ ^l .. j.j:^ ti-l>j is zero and its loss in the next dLfference only serves

to increase the difference. Increasing j by 1 means that the two differences

will both have (l-vL-X'S ((V*. + P W*_^
^ ^) - (V*_^^ + p W*^^^

1-1, j^^

terms and the positive multiplier argument works. At some point, j increases,
(

the term X ((V.^, , + gw , .^ , .) - (V., + PW . . J) appears and it
i-l-l,j n-1 5+1, J' ij n-1 i,j''

causes an increase. Further increases in j are permissible under the

positive translation operator argument. Thus, property a is justified

completely, and by symmetry, so is property b.

Next, properties c and d need to be verified. As i increases and

(W . . - W . ^ .) - (W . •, , 1- W . o 4 t) begins to cross the
n i,j n 1-1, j n t-l,j-l n i-2,1-i ^

A A
boundary at which the optimal X.^ changes from X to 0, the first change

is the loss of a tern of the four ^ ((V.., ^ + W ,...,,)- (V. . + W - . .)) .

i+l,j n-ii+i,j i-,j n-1 i,J
A * *

V?hen this happens, the corresponding term -X ((V . , ^ + pW , ^. ,) -
^ ^1 j-1 n-1 ij-1

* *
(V,

^ , . 4- 3 W 1 -

-J 4 i))n^*'y or may not disappear, but since it is

negative, it cannot make the difference of differences positive. In

what remains, there are only positive multiples of negative differences

of first differences. The second term' must disappear with an increase

A A
in i, since when the optimal X. . '^ so must X, . - =0. The positive

ij ij-1



<
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multiple agreerrieiit requires corabintng terms so that one has

^ ^ -J A
" '*^^={ 9 ! 1

"^ ^ '"^
1 ' •? •»'>^- with 1-u-X > since it is, of course,

a probability. The next term which is dropped is -X ((V. ,
- p W n ^ .)

1 9 J n-i 1 ,

J

- (V.
^ ^

-1- 3 W •, .
-f )) because it bec':^rae,<5 positive. This change

serves to reduce the difference of differences below the already negative

result that the positive multiplier argument gives.

Continuing the discussion of this difference of differences, it

is necessary to examine what happens as the boundary at which the optimal

B B
X^ , changes from X to 0. The first effect on (W .. - W . , ,)
ij n ij n i-l,j'

^

'K i-lj.l - ^n i-2,J-l> '' ^^^^ ^^'^ ^^^^ -^^
^<^!-l,j+l ^ ^ Cl i.l,j^l>

- V* . 4 + ^ W ^ .)) is eliminated. This gives no difficulty since
1- i ,

J ni- i ,

J

this happens only when the term is positive. Dropping a positive term

merely makes the result more negative than the already negative result

of the positive multiplier argument. The next loss is not unique and

B ^ i(

might happen simultaneously. First, the term considers X ((V. -+PW ,.^.)
i~z,j n-l i--i,j

•k *
- (V. ^ . ,+ 3 W 1 . ^ . ^)). Either this drops out either simultaneously

with the first loss or on the next increase of j because the form of the

boundary i (j). If this drops out with the first loss, then the only

B , .,, , , . , ,Btremaining X' terms can be collected bv giving X [({'V. ^. + 3 W , , .,-)
• Xj j+i n-l i,jTi

- (V*
, + 3 if

, . ,)) - {(V\' ,
.4- 3 w'' , . _ J - (Vf , , - + 3 W*

, , , , ,..-1
i,j a~i i,y i-i,J n-l 1-1, j i-l,j-l n-l i-l,j-l))J.

This is negative as a result of property d of the induction hypothesis.

The term }-^'((y*
.. , 4 ^ W*

, ^ ... - (V* .. + ^ W* , . J) must drop out
:i,j-»-i n-.. i,j+i; i,j n-l i,j

with the next increase of j. If it drops out simultaneously with the
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loss of the first term, one can have left - \ [((V^ , . + P W , ^ , Ji-l.j n-1 i-l.J

^^i-l,j-l ^n-i i-l,j-r^ ^^ i-2,j ^ ^n-1 i-aj''

- (^\ „ . . + 3 W ))]. Th- term in the bracket is positive

since.it is the difference of differences which are now decreasing. Thus,

multipled by ->. makes the pioduct non-positive. The remaining terms

are negative since they are positive multiplp.s of non-positive differences

of differences by hypothesis c. If the first and the next two terms drop

out simultaneously, the last remaining X term is -X [(V, , . + 3 W , . , .)
i-l,J n-1 i-l,j

- (V, , . 1 + 3w -,.-,, i^'» but this is negative since the term in
i-l,j-i n-l i-i,j-i

the bracket is positive. This term also drops out at the next increase

B
in j and none of the X terms are left. This completes the proof of

property c and the symmetric counterpart property d.

This completes the induction. In the analysis the only

terms involving the arrival rate which was known to be changing at each

boundary were discussed. It is possible that in some cases the two

boundaries are crossed simultaneously. This presents no problem. The

A B
only possible problem comes when l-p,-X and 1-|.;."X are used. If necessary,

A B
however, k. -X > dn6 V-.,^ - X > cnn be. useu with k -fk «=l-u, since

A R
1 - ^.- • - -

' IS .^. t>r oba t^ I i t v

DynarTtics

Dynamic properties of t^iis analysis seem somewhat more difficult

to establish than the results on the form of the optimal n period policy

One result^ which is relatively easy, is that there exist bounds i*

and j* such tbst for all n the optimal arrival rates are X^ .
= for

i > i* and X^ = for 1 > 1* . The argument for this is that the n
ij -

period profits can be written as' a sum of profits in each of the n

periods. For large i the first period profit will h^ less in state



i
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i -f 1 than It is in scate i. For at least the next i periods, all

sample paths starting from i 4- 1 will have at least as large an inventory

of A parts se will those from snate 5., and thus, the profits starting

from i + 1 will not excead those starting from i for this interval.

Equality can occur i.t at some txvnt the hiRtory generated starting from

i + 1 is in n statf k,m in which ^^'^ o>timal V is 0, but the ootimal

A A
X. . is X . In this care, some of the histories Titarting from i

will have the same level of A inventory ac the corresponding ones

starting from i + 1. From this time on, there will be a

one-to-one match of the remaining possible history of the process.

On the other hand, there will be histories in which the number of A items

on hand is always 1 more starting from i + 1 than is the cast starting

from i until the level is reached. At this time, the histories

starting from i + 1 have a profit which is p^ - h higher than those

starting from i. For the remiaining time until the horizon, the possible

histories may ssptirate, buc the difference in profits is bounded by

s>4P !w ., X
- W o < 1 I .~ ^"^a'^^w ^y induct 5 on. Thus, the difference

in the worth of starting in i + 1 and starting in i is not greater than

-h, -h fj [g'i'h.+h 1 which can be made negative for i sufficiently large.

Clearly, when \'i , ^^ . - Vf . .
< 0, the optimal X ,, , ^ = 0. This also

easily establishes that if n < i, X* . = 0. In n periods, no more than

n type A items can be. used, and thus profits can only be decreased by

adding a type A item at any time during the n periods.
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The bounds i*> j* just discussed can be used to say that there is a

finite state finite action problem for which the recursive optimal dis-

counted expected profit functions W^^j. ^ ^^^- equal to the infinite state

^ni 1
^^^^ (i»j) j5 (i*>j*)- This follows iinmediately from the transition

A 8
operator, which guarantees that if }^ ^ =0 for i > i*, and X = for j < j*

and all n, then Wni,j depends oni.y on W^^i^j for i^ < i* and j < j* and
e

m < n. This dependence is the same for W and W„.•- n n

As far as the behavior of W as n approaches infinity is concerned,

the fact that the system evolves according to a Markov chain having positive

probability of only finite changes instate, and the fact profits are dis-

counted by 3 < 1, combine to guarantee convergence for all finite states.

A standard contraction argument easily establishes

' nfl i^ ni^j ' — ' nl,j n-1 i,j'

This unfortunately does not provide a characterization of the sequence

of optimal policies. There is one obvious result which can be supported.

A A
If X. ,

= and X. - , . = in the optiiTtai policy for period n, then
ij 1-1, J-1

r J r

X. = for period n + 1. In this case, the test criterion is strictly

negative.

A n^l i+i,j nfl i,j A ^ ^^A ni+l,j ni,j

^ A n i,j-l n 1-1, j-1 — A

A A
This implies that the region in vrhich X.\ should bo X cannot expand by

more than 1 in each period. If i is sufficiently large that the optimal

X, .
= for all periods up to n and states which can be reached from i.
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n4*2
then this criterion behaves like -h (1-3 )/(l-3) which is monotonia

decreasing in n.

What is both more interesting and more difficult is the behavior

A A
in the regions in which X. should be \ . So far no counter example has

^ J

been found for the hypothesis that the optimal X are non-decreasing

functions of n. A proof that this must be so involves showing that

A nfl i+l,j n+1 i,j' — A n i+l,j ni,j

whenever the right-hand-side is positive. This is equivalent to

nfl 1+1, j nfl i,j — n i+l,j ni,j

when the right-hand-side is > h. . All that is easy to argue is that

(-h. + W .^T 4 - W . .) > 0—^(W_^, .^, . - W_^, . ,) >
^ A n i+I,j ni,j — ^^ n+1 i+l,j n+-l i,j —

This is an immediate consequence of the recursive definition of W -

which permits this difference to be written as a sum of positive terms.

To say more than. this requires a stronger inequality than

ni,j-l n i-1, j-l-^ - n i-i-l,j ni,j^

v;hich was shown earlier. A stronger version does not hold everywhere.

A
When the optimal X. ^ - = 0, there can be equality especially for small n,
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Small Intervals

The natural interest in differential equations for queueing

systems resulting from the M/M/1 analysis raises the question of what

happens if the interval size is reduced. To examine this, one needs to

reformulate the problem somewhat. Following the usual approach, the

probabilities of the three possible state change events are re-

A B
defined as X A t, X At, and p, A t. The holding cost can be re-

defined as h. and h per unit time respectively. The cost of holding

one type A item for A t is now h A t. Finally, the discount factor has
A

to be modified to be 1 - ct A t. The criterion for choosing the n + 1st

X in these terms is

-h^it+ (1- aAt) (W^^^j
J
-W„ ._^)

Since this is an affine function of At, it changes sign at most once as

At goes to zero. This guarantees that shrinking At will not produce

oscilations in the transition probabilities which would make the

limiting differential equation meaningless. At the moment, this differential

equation is not of computational interest. Perhaps the most interesting

aspect of the formulation leading to the differential equation occurs

in the limit as the time paraneter gets large. To the accuracy of At

'V<"Hj»^ij>ij " VijAt {-h^i - hgj + |jg e^j} At.

and the limiting W for any At satisfies

- max (V,, At (TCXf., X?.) - I) At W)
^A >B •*-J ^J -^XA X&.
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As usual, in queueing processes, the Lt can be factored outj both the

limiting W and the opuiraal policy do not depend on the size of At.

This also is the limit cc which tne solution to the differential equation

must converge. In M/M/1, an inter pre taticn of the unimportance of At

is that: the limiting probabllilties depend only on ratios

of transition prooabilities . not their absolute values. This is, of

course, also true here for the probabilities. It is not true that an

optimal stationary policy depends only on ratios of the cost parameters.

The scaling poesibility here is among the holding costs, h. and h and

the expected revenue per unit time given that the operation is working

|jg. Thus, the absolute value of jj. does become important. To eliminate

this one must factor from the function to be optimized iiAt in which case

h. /p, and h /p. the expected holding cost during an assembly will be the

holding cost parameters.

Dependenc e on jj.

In many situations, not only Is it possible to control the inputs,

but also it is necessary to choose the itian and/or equipment to perform

the assembly. In this model, this is f^:quivalent to choosing the com-

pletion probability li. This choice is made once when the system

begins operation. In general, this decision depends on both the sequence

of arrival probabilities and the initial conditions. The combined

decision problem has the form

^"^ {( Po, max W (D)) - G(^))
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In this expression D is an infinite sequence of decision functions D-j.

A B
each one of which specifies X, . and \. . for each state i j . The function

C(p,) is a cost for choosing \i, as th-' assembly probability. The first

bracket represents the scalar product and is the expectation with respect

to the initial conditions of the discounted expected return over an

infinite horizon using policy D for a fixed value jj, . In many situations

the set of values 9 from which |j, mist be chosen is a finite set and

a maximum will exist. If the number of values in 9 is small, it will

be feasible to solve the problem by enumeration of the |j, values. If

C(iJi) is quite irregular, such a procedure may be the only possibility.

From a modeling point of view, even if 9 is interval [0,|A ], it is

probably permissible to approximate 6 by a finite set containing only

a few values since the entire model is an approximation anyhow. From

any point of view other than immediate implementation, this resort to

crude numerical methods has little, if any, appeal. The problem is to

develop properties of max W (D) as a function of u, and assumptions on
D M*

the form of C(m>) which will insure that a more efficient sequential

search procedure than enumeration can be used to solve the problem.

The situation of being able co partially characterize the optimal policy

of a sequential decision process 2nd possesion of relatively efficient

computational means for finding it is typical of the analysis of many

^ueueing systems. As in this example, this should not be the end of

the analysis, for real problems have both design (selection of p.)

A B
and control (selection of >,. . and X^ , for each decision time) aspects.
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For applications, it will generally be much more difficult and expensive

to rectify errors in design than to improve control.

An important question to answer is whether an optimal p, exists.

Unfortunately, the dependence of the functions W , . on pi is not as easy

to describe as one might hope. Consider the derivatives d W , ,/dii. First

dW, . . dV,
,

« —w

d|ji d ^

= (g-^A-Hig) Hj

^\03 ^V,j
=

dM.^ d^'

These one period functions are extremely well behaved, but examination

of dW^ . ./dp. gives a more complicated picture. For the second period

only X . for j > and can be positive. The function is

/C-\i-hgj+M.(g4-h^+hg)] (l-ffi) +P.3 (\+\) i>l, j>l

[-h -h j+iA(&fh +h )] (l+P(l-p,))H- M,3 (-h_(j-l)) i=l j>lA B B

"2i,j < ^-^A^"V^^^'W^ (l+3(l-ti)) +P.3 (-h^(i-l)) j=l i>l

-V!o"^^ (1+(1-X^^)3) +3X^^ ('\i'\+ \^(^h^+h^)) i > j=0
iO ^ A B

i,j «,0,0
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The first derivatives are

dW
ILl
d|j,

(&<-h^+hgO (1+6) + PCV^ig)

(&4-h^+hg) (l+3-2p.^) 4- (h^+b^)

I - ^A
I P Xoi ^^^^^;Oj

B
^10 <^V^>

v°

i>l J>1

i«l j>l

i>l j°l

i=0 j>0

i>0 j=0

i=0 j»=0

A B
At the points at which X.. and X.^ change values the derivatives are

OJ lO

undefined. The test criterion for X^ . is

-V^^^i ij - ^ioj> = -V^(<^^^V^B> -V

which is negative until

g

A
Thus, for small ^i,, X„ should be zero, while for large values it becomes

A
X . This makes W^^ , piecewise linear and convex. W^ . ,. is similar.

W^, . and W^ ^
are concave increasing; while the remaining functions

W«, . for i>l j>l are increasing and linear in p,.
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For the general case, one has, by induction, that the functions

W
nfl i,j are continuous in \m since, for any continuous function,

A
G(|jl), X (inax(0,G(iJ,))) is continuous. For the intervals in which the

derivatives are defined

'^,^1 1.1 '^^4l-^!l >
,

^ f^«(^-« ^n 1-1. 1-1

dp, p, dp,

dp,

A B

ij n i+1 , T ij n i,j-H +
dp, dp,

n i-l,j-l ni,j

A A
As in the case of W,^,^ . when X, . changes from to X , the derivative

20, J ij
'^

of W . , . . experiences a positive jump. Since W ..- ^ - W , , must be
n+-l i,j '^ j^v^;:i.uuj.,,c J r ni+l,j n i,j

n
increasing. The same holds for X . When the derivatives exist, they,

must be non-negative. Under the induction hypothesis,

<1W ., , . > dV(X^ X^.) + 3|ie(ij) (W„ .
T , T

- W ..)
"^1 ^»-1 ^J ^J n i-l,j-l nij

dp dp,

Since W . .
- W .. . has already been shown not greater than gfh +h

,

'^^jj"''-'"^>J'"^ AB
the right-hand-side must be non-negative. These derivatives inherit

discontinuities from those of W . All discontinuities give positive jumps,

if for any n X changes only once from to X and similarly X changes

at most once.
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Inductive analysis can show that the test criterion is non-

decreasing or equivalently it is continuous and d(W ,, ... ^,. - dW
. , , .. , ,^ n^-l i+l,j/d|j, trfl i,j)/dp,

is non-negative when it is defined. Continuity follows the continuity of

W . For one period, the derivative is zero except for i=0 j>0 when

it is positive. The gener-'^l case is

dp, dp, dy,

dW - dW
+ a M.e(i+l,j) °^ni .1-1 - PM.e(i,J) n i-lJ-1

d|j, d|ji

^^^^-^i+l,j"^i+l,j"^'^^"^^'^^^
^^ ^-^^'^

^'-' ^'J
dp.

+ 3 XA ^^n i-f2,1 - 3X^ . ^^n i-fUJ
^-"^'^ —dT^ ^'J

—
dT^

B dW
Q

^B dW

dy, dp,

3s(i+l,j) W + 3e(l+l,j) W + 0e(i,j) W
nii-ijj ni,j-i ni,J

.pe(i,j) W
ni-i,3~l
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The terras involving derivatives of W make no positive contribution due

to the induction hypothesis when e(i,i)=l and the decisions are the same

in i+l,j and ij. Similarly, if e(i+i
, j) and G(i,j) are positive, the

last four terras must have a non-negative sum because of the properties

of W previously shown. There are, of course, other special cases to

D R Ti

be considered. First, it may happen that X = \ and X, .
= 0,

i**'i>J i-jj

but this does not lead to a negative contribution. When X, , . changes
i+ i

, J
D R n

from to X , there is a positive jump, and when X becomes X , a smaller negative
^ J

A A A
jump. When X. , becomes X and X. . , . = 0, then there is a negative jump

of -X (dW ,,, wj - dW . wj )j t>ut this is nullified by the positive
ni+l,j/d|j, ni,j/d^i '

term (l-X^^^
,,

- ^c(i+l,j))
<«'„,^i,3/d^

- d-X^.j " V'^d.J)) ^ni,i/6^-
A A

When X. . . becomes X , there is a positive jump. The possibility of

«(i»j) * 0> e(i+l>j) = 1 only contributes a positive addition tb the

derivative terras, for -^wiW . . /dy is replaced by the larger value zero.

In the last four terms, this possibility produces -W . , , . + W . . ,, but^ ni+lj ni,j-l'

by the previous induction this must be not less than -g-h. -h , which

A B A B
is the negative of dV(X.,, "^-j.! x^^^\^ " ^V(X ,X, .)/d|j, in this situation.

Thus, inductively dW ., .,, ./du - dW
, , ^ ./da is non-negative when it

n+-l i+l,j '^ n+-l i,j "^ °

is defined. This means that there is at most one value of [i at which

A A A.

X. . will change from to X and it will remain X for all higher values

a
of \i.. A symmetric argument applies to X .

Optimal ]i,

The result just obtained guarantees that any stage the optimal

A B
X. . and X^ . are well behaved. The monotonicity of W ^ ^ in u, is not
ij ij ^ ni,j ^

a strong enough property to guarantee that there will be a unique
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optitnum |ji for the design problem posed in the previous section. Much

more is necessary if one wishes (P-^,W ) - C (p») to be unimodel. The

obvious disirable property of concavity does not hold for W«. .. The

•difficulties of the analysis of this system are typical of problems

of design and control of Markov systems, especially when the natural

state space is two or highei in dimension.

Even if it were possible to show that under reasonable conditions

there is an optimal |j,, there still retoains the problem of finding this

value. An iterative procedure which approximately solves the dynamic

programming problem for the optimal control for each value of jj, and searches

among these solutions for an optimum has little to offer other than

its feasibility. What is needed is an iterative procedure which will

A B
pick a sequence |i(k) , \. .(k), X. .(k)

j
k=l.,. which will converge to

an optimum if one exists, without the necessity of ^,(k) being constant

for large intervals of k values.

In the study of these systems, the author has engaged in soma

rather extensive numerical vrork. Unfortunately, the results of this

work are not in a form that they can be presented as yet. Perhaps the

most striking result so far is the very small number of states which

are ergodic in these systema . In most cases so far, optimal queue sizes

have been under 10, and, moreover, rrjany fewer than the corresponding

maximum of 121 states have been ergodic. Although it is easy to

introduce further complexities, which will cause any numerical analysis

:o tax the power of a computer, it is striking how much of the imagined
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dlfficultles disappear in calculation. The results presented here

really constitute an "academic" exercise, for they all had strong

support from calculations before the inductions had been completed.

Only an "academic" could afford to ask are these properties always

true before considering what happens when the structure of the problem

is changed.
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