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ATMOSPHERIC FRICTION, WITH SPECIAL REF-

ERENCE TO AERONAUTICS.

BY

A. F. Zauwm.

[Read before the Society February 27, 1904.]

MEASUREMENTS.

The experiments here described were made to determine
the magnitude of the friction of air flowing over even sur-
faces, both smooth and rough ones, and the law of its varia-
tion with the speed of flow, the length, and quality of surface.
The primary purpose of the investigation was to establish a
basis for calculations in engineering, and particularly in
aerial navigation ; but it is hoped that the measurements
are sufficiently accurate to be of value also to the general
dynamics of fluid motion.

It has long been known to marine science that in a well-
formed vessel one of the chief elements of resistance is the
skin-friction of the water on its sides; and, by analogy, it
was surmised that a fair-shaped body in the air might be
retarded in a similar way by the tangential drag of that
fluid. But the measurements of several prominent experi-
menters led them to affirm that the skin-friction of the air
is negligible, even for bodies of fair outline. The present
research, however, seems to prove that the frictional resist-
ance is at least as great for air as water, in proportion to
their densities. In other words, it amounts to a decided
obstacle in high-speed transportation. In aeronautics it is
one of the chief elements of resistance, both to hull-shaped
bodies and to aero-surfaces gliding at efficient angles of
flight. It seems important, therefore, that the main laws of
this resistance should be carefully determined.

36—Ball. Phil. Soc., Wash., Vol. 14, (@47)
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To measure the tangential force of the air on even sur-
faces, various skin-friction plahes were suspended inside a
wind-tunnel by means of two fine steel wires attached to the
top of the laboratory, as shown in figure 1. The tunnel
itself, standing on the floor of the laboratory, measuring 40
feet long by 6 feet square, has a 5-foot electric suction fan
at one end, and a cheese-cloth screen, or two, at the other, to
straighten the current of inflowing air. A boy with a rheo-
stat and tachometer holds the fan at any desired speed, ac-
curately to a fraction of 1 per cent., thus giving an even
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Fra. 1.—S8ection of Wind-tunnel with Suspended Skin-friction Plane.

flow of air of like constancy. As the wind-friction moves the
plane endwise the displacement is determined by the motion
of a sharp pointer attached to one suspension wire and travel-
ing over a fine scale lying on top of the tunnel. The swing
of the plane can be measured accurately to five-thousandths
of an inch, and the force on the plane is exactly proportional
to the scale readings. The wind-speed is usually measured
by a pressure-tube anemometer, though other kinds have
been employed for comparison.

In the first attempt to determine the coefficient of skin-
friction a thick plane was used, having wind-shields fore and
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aft, as shown in figure 1, to protect it from end-thrust. The
plane is 16 feet long, 4 feet wide, and 4 inches thick. The
shields are made of sheet zinc, their cross-section measur-
ing 4} by 12 inches inside, and each shield closely envelops
one end of the plane, yet has ample space farther within
to allow the air to flow very freely from one shield to the
other, through a large connecting pipe underneath the floor
of the tunnel, thus equalizing the pressure. This pipe, or
flue, measures 1 square foot in cross-section.

The static pressures in the two wind-shields deserve careful
attention. If they are equal, the resultant end-thrust is
nothing, and the only deflecting force on the plane is the
friction of the air along its sides. But in practice there is a
difference of static pressure, which is measured by connect-
ing the shields, by means of rubber hose, to a differential
pressure-gauge graduated to millionths of an atmosphere,
and usually read to one-ten-millionth.* Computing the end-
thrust from the differential pressure, and adding or subtract-
ing the result, gives the total skin-friction on the plane.
The correction thus introduced is about 5 per cent. of the
whole deflecting force.

Considerable care was taken in the design of the plane to
make it light and keep it perfectly straight. A frame was
made of organ tubes and covered with paper in such a way
as to be adjustable for warpage. Asshown in figure 2, the
paper is glued, not directly to the organ-tube frame, but to
§-inch boards which slide over the four outer faces of the .
frame. As the paper was fastened on wet, it now remains
very taut on all but the dampest days, and of course holds
the sliding pieces firmly to the frame. The process of ad-
justment is as follows: The two end sliding pieces are set
vertical by means of plumb-lines, thus bringing the four
corners accurately into a mathematical plane. The four
corners are then joined by tight threadsand the other sliding
pieces tapped into line with a mallet. The operation re-

#Qee ‘“ Measurement of Air Velocity and Pressure,’”’ Physical Review,
December, 1903.
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quires less than half an hour, and the plane can easily be
made true to less than g of an inch. The warpage of the
16-foot plane sometimes amounts to one-eighth of an inch
in twenty-four hours, and may be more than a quarter of
aninch in several days; but in practice the plane is kept
straight by timely adjustment.

During each experiment one assistant controlled the fan
speed by means of a rheostat, and noted the revolutions per
minute with a Schaeffer and Budenberg tachometer; another
assistant read the deflection of the plane, while a third ob-
served the differential pressure in the wind-shields by
means of a manometer, and the wind velocity as given by a
pressure-tube anemometer or a Robinson cup anemometer.
The duration of an experiment was usually about an hour
and comprised ten different wind velocities.

o

—

F1a. 2.—Cross-section of 16-foot Plane, Showing Paper Glued to Sliding Pieces.

The following page from the laboratory note-book for
January 30, 1903, gives the results obtained after some skill
had been acquired in using the various instruments. Similar
observations had been taken in July, 1902, and this much
of the present paper was communicated to the American
Association for the Advancement of Science in December,
1902.

A few essential data may be prefaced : surface of plane
between wind shields, 138.08 square feet; cross-section of
plane, 202.1 square inches ; weight, 58 pounds; 1-inch swing
of plane, =0.296 pound deflecting force; 1 milligram per
square centimeter differential pressure in the wind shields
equals 0.00287 pound end-thrust on the plane; mean tem-
perature of experiment, 4°.5 C.; barometric pressure, 29".74 ;
time, 3.30 to 4.30; weather, dry; mouth of tunnel not
screened.
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TasLe 1.

Skin-friction on Plane Measuring 167 X 4 X 4”/.
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Rev. In. Lbs. Mgy.sq. Lbs. Mg.sq.cm. Ft.sec. Lbs.
150 0.27  0.080 0.0 0.0 70 11.11 .000579
200 0.41  0.121 0.0 0.0 105 13.63 .000875
250 064 0.160 0.0 0.0 155 16.16 .001156
300 0.76  0.225 1.0 0.003 225 19.46 .00165
350 095  0.277 17 0.005 295 22.30 00203
400 1.19 . 0.352 3.9 0.011 376 25.14 .00262
450 1.45 0.428 7.1 0.019 465 28.0 .00324
500 1.74  0.516 9.5 0.026 570 31.0 .00392
560 2.04 0.603 13.7 0.037 670 33.6 .00463
600 2.39  0.701 16.5 0.045 815 37.0 .00539

The force in the third column is computed from the ob-
served swing of the plane. Adding the end-thrust, since
the differential pressure opposed the deflection of the plane,
there results the actual skin-friction on the exposed surface.-
Dividing by the area of the surface gives the values recorded
in the last column. The wind speed is computed from the
pressure-tube readings by a theoretical formula, which has
been carefully verified by a special series of experiments
which were published in the Physical Review, December, 1903.

The values of the wind velocity and skin-friction have been
plotted on logarithmic cross-section paper, as shown in figure
3. Their relation in this, as in subsequent experiments, is
invariably expressed by a straight line—that is, by the rela-
tion, ’

F=av ... (9
in which F is the total friction, v the wind speed, a, n, nu-
merical constants. The concrete relation obtained from the
numerical values of table I is, for a plane 16 feet long,

f=0.00000671 9185 . . ... (v = ft. sec.),
f=0.00001363 v1& ....... (v=mi. hr.),
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F1a. 3.—Relation between Velocity and Unit Friction for 16-foot Plane.



ATMOSPHERIC FRICTION. 253

in which f is the average friction in pounds per square foot
of surface, and v is the wind velocity in the units indicated
within the parentheses. This relation was corroborated by
later experiments in which no wind-shields were used.

Having fairly established the law of variation of the skin
friction with the air velocity, an effort was made to discover
its variation with the length of surface. A simpler method
was then adopted which had been considered, but was dis-
carded in the beginning as appearing hardly delicate enough
to measure such extremely small forces as the friction was at
first conceived to be.

-— - -
- -
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Fi1a. 4.—Skin-friction Plane with Sharp Ends, Suspended in Wind-tunnel.

Planes were now constructed similar to those commonly
used to determine the skin-friction of water. The first
was a pine board 4 feet long, 25.5 inches wide, and 1 inch
thick, carefully trued and varnished, and suspended in
the wind tunnel, as usual, by steel wires 0.025 of an inch
in diameter. It was provided with a 7-inch pine prow
and stern, both of ogival form. These were held on by
dowel pins, as shown in figure 4, and each terminated in a
sharp edge, from the center of which a steel pin protruded
along stream between guides to steady the plain against
wabbling. As the doweling was carefully executed, straight
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planes of any length could be made by adding extra boards,
the lengths most employed being 2, 4, 8, 12, and 16 feet.

The method of using the planes to determine the surface
friction was as follows: The total force was measured, at
various velocities, using the prow and stern first on the 16-foot
board, then successively on the 12, 8, 4, and 2 foot boards, and
finally with nothing between them. Subtracting this last
force from each of the others gave the friction on those five
lengths. It may not be absolutely true that the end resist-
ance was the same for each of those lengths, but the error
of this assumption is regarded as very slight for several
reasons : (1) the end resistance is but a small part of the
total ; (2) the stream lines are so slightly disturbed that the
flow about the ends must be practically the same in all
cases; (3) the results harmonize very well with those ob-
tained by other methods.

Table II, taken from the laboratory note-book, exhibits
the observed and computed values for the two-foot friction-
board. The mouth of the tunnel was screened with cheese-
cloth to steady the flow of the air, in order to obviate wab-
bling in so small a board. The velocity was thus reduced,
it is true, but sufficient values are given to make a reliable
diagram.

The following data may be prefaced : surface of the two-
foot plane without prow and stern, 8.83 square feet ; weight
of plane with end pieces, 17 pounds; 1 inch swing of
plane = 0.0862 pounds wind force; barometric pressure,
29.80 inches ; mean temperature of experiment, 24°.2 C.

TasLe 1I.
Surface Friction by 24’/ X 25.6’’ Pine Board with Prow and Stern.

8peed Force Pressure | g4 | Friction
Swing of | causing F;:g;:n fril:t?:n. tube spezd.

fan plane. | oying. anem. 8q. ft
Rev. min, In, Lbs, Lbs. Lbs. Myg. 8q. cm. | Ft. sec. Lbs.
200 0.050 0.00431 0.00233 0.00198 22.8 6.38 0.000224

250 0.080 0.00690 0.00385 0.00325 37.0 ‘8.12 | 0.000368
800 0.120 0.01634 0.00653 0.00481 58.0 10.18 | 0.000545
350 0.158 0.01362 0.00734 0.00628 78.5 11.80 | 0.000710
400 0.206 0.01767 0.00949 0.00818 103.5 13.62 | 0.000925
450 0.260 0.02240 0.01188 0.010562 132.0 15.34 | 0.001188
500 0.310 0.02586 0.01879 0.01207 155.0 16.61 | 0.001368
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The third column gives the whole force on the friction-
board with its prow, stern, and suspension wires. The fourth
column gives the force on the latter alone, which, deducted
from the whole force, gives the friction on the sides of the
two-foot length. Dividing this net friction by 8.83, the area
of the true friction surface, gives the values in the last
column.

Similar tables were obtained for the other friction-boards,
of lengths 4, 8,12, and 16 feet respectively. When the values
from the five tables are plotted on logarithmic cross-section
paper they give five separate straight lines, all having the
same inclination as the one shown in figure 3, in which the
slope tangent is 1.85. This means that, for all the velocities
and lengths of surface employed in this research, the skin-
friction is expressed by an equation of the form

a being a numerical constant, and v the wind speed. Hence
if the net friction on each board is known for any velocity, it
can readily be computed for any other velocity.

In practice the computations illustrated in tables I and
IT were obviated, for all the tables, by a simple expedient.
The observed anemometer readings and swing of the plane
were plotted while the measurements were in progress,
giving five straight lines, all of the same slope. Then a
point was selected on each line representing a wind speed of
ten feet per second, and the corresponding friction per square
foot of surface noted. From these values the numerical
equations between F and v can at once be written. The ob-
served values are given in the subjoined table.

TasrLe III.
Skin Friction at 10 Feet per Second for Various Lengths of Surface.

Length of friction board. 2 4 8 | 12 l 16

Average friction,pounds
per square foot....... 0.000524 | 0.000500 | 0.000475

0.000467 | 0.000457

37—Bull. Phil. 8oc., Wash., Vol. 14,
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Knowing, then, the friction at the same speed on five dif-
ferent boards, there remained to determine the law of its
variation with length of-surface. To that end, the values in

g
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F1a6. 5.—Relation between Length and Unit Friction at 10 Feet per Second.

table III were plotted on logarithmic cross-section paper, as
shown ia figure 5. The result is a straight line whose
equation is of the form,

f=al, 00
whence F=fl=al%. .., ()

in which f is the average friction in pounds per square foot
and [ is the length of surface in feet. At one foot per second
the coefficient is 0.00000778; hence at any speed, v feet a
second, the average friction per square foot is

f = 0.00000778 1 007 y 185 (y = ft. sec.),
f = 0.0000158 997 4185 (5 = mi. hr.).

Assuming the two laws thus far derived to be true for the
planes and wind speeds employed, we may readily express
the total friction on a plane of any length from 2 to 16 feet,
moving at any speed from 5 to 40 feet a second. Thus, by
the last equation, the total friction F on a surface 1 foot wide
and 1 foot long is

F=fl=0.00000778 1 $y8, (v=ft. sec.).
F=0.0000158 93y 18, . . (v=mi. hr.).

Of course this value of F must be doubled for a material
plane of length ! and width one foot, since a material plane
has two sides.

In order to facilitate the computation of skin-friction in
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practice, the following table has been derived from the equa-
tion f = 0.0000158 [ =7 ¢ 185, The friction for any inter-
mediate velocity, or length of surface, may be found by in-
terpolation. If the surface is of variable length it may be
divided into longitudinal strips, the force on each strip being
the product of the area of the strip multiplied by the average
friction for its particular length. Only the values in heavy
type lie within the range of the experiments above described.

TasLe IV.
Friction per Square Foot for Various Speeds and Lengths of Surface.

Average friction in pounds per square foot.

1’ plane. | 2/ plane. | 4/ plane. | 8/ plane. | 16/ plane. |32/ plane.

Wind speed.

5 | 0.000303 | 0.000289 | 0.000275 | 0.000262 | 0.000250 | 0.000238
10 |1 0.00112 | 0.00105 |0 00101 |0.000967 | 0 000922 | 0.000878
15 | 0.00237 | 0.00226 |0.00215 |0.00205 |(0.00195 | 0.00186
20 | 0.00402 | 0.00384 | 0.00365 |0.00349 |0.00332 | 0.00317
25 | 0.00606 | 0.00579 |0.00551 (0 00527 |0.00501 | 0.00478
30 | 0.00850 | 0 00810 0.00772 0.00736 0.00701 0.00668
35 (0.01130 | 0.0108 0.0103 0.0098 0.00932 0.00888
40 | 0.0145 | 0.0138 0.0132 0.0125 0.0125 0.0114
50 |1 0.0219 | 0.0209 0.0199 0.0190 0.0181 0.0172
60 | 0.0307 0.0293 0.0279 0.0265 0.0253 0.0242
70 1 0.0407 | 0.0390 0.0370 0.0353 0.0337 0.0321
80 [ 0.0522 | 0.0500 0.0474 0.0452 0.0431 0.0411
90 | 0.0650 | 0.0621 0.0590 0.0563 0.0538 0.0511

100 | 0.0792 | 0.0755 0.0719 0.0685 0.0652 0.0622

It may now be inquired what other circumstances alter
the surface friction. Perhaps the chief of these are the atmos-
pheric changes of density and the unevenness of surface.

No effort was made to determine the relation between the
density and skin-friction of the air, partly for want of time,
partly because, with the apparatusin hand, too great changes
of density would be needed to reveal such relation accu-
rately. Doubtless the friction increases with the density,
since it is due to the inertia of the fluid near the friction sur-
face. Of course, in steady motion at low velocity, such as
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studied by Maxwell, the conditions are different. He found
that when one plane moved edgewise near and parallel to
another plane, at a constant speed below one-twelfth of an
inch per second, the friction is independent of the pressure
and proportional to the absolute temperature for such at-
mospheric conditions as prevail near the earth’s surface.

Some measurements were made with the four-foot friction-
board covered with various materials to observe the effect of
quality of surface upon the tangential resistance. Practi-
cally the same frictlon was observed, whether the board was
covered with dry varnish, or wet, sticky varnish, or sprinkled
with water, or covered with calendered or uncalendered
paper, or glazed cambric, or sheet zine, or old English
draughting paper, which feels rough to the touch. But when
the plane was covered with coarse buckram, having sixteen
meshes to the inch, the friction at ten feet a second was 10
to 15 per cent. greater than for the uncovered surface, and
the friction increased as the velocity raised to the power 2.05,
or approximately as the square of the speed.

The fact that such a variety of materials exhibit practi-
cally the same friction seems to indicate that this is a shear-
ing force between the swiftly gliding air and the compara-
tively stationary film adhering to the surface, or embedded
in its pores. If, as seems to be true, there is much slipping,
this means that the internal resistance of the air is less at
the surface than at a sensible distance away. As the shear-
ing strength of a gas is due to the interlacing of its mole-
cules, owing to their rapid motion normal to the shearing
plane, it may be that the diminution of shear near a boundary
surface is due to the dampening, within the film, of the com-
ponent of molecular translation normal to the surface.

To summarize the results attained thus far, it may be said
that, within the ascribed limits of size and wind speed

(1.) The total resistance of all bodies of fixed size, shape
and aspect is expressed by an equation of the form
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R being the resistance, v the wind speed, a, n, numerical
constants.

(2.) For smooth planes of constant length and variable
speed the tangential resistance may be written

(3.) For smooth planes of variable length, /, and constant
width and speed the friction is

(4) All even surfaces have approximately the same co-
efficient of skin-friction.

(6.) Uneven surfaces have a greater coefficient of skin-
friction, and the resistance increases approximately as the
square of the velocity.

The equation R=av" was found to express very accu-
rately the resistance of all the shapes tested at speeds from
five to forty feet a second. For normal planes, spheres,
cylinders, and blunt bodies generally, except very small ones,
n equals 2, very approximately ; for thin, tapering bodies
n may have any value from 2 to 1.85; but in every case, if
the form and aspect of the model remain fixed, @ and n are
found to remain practically invariable for all the speeds em-
ployed. This was manifested by plotting the speed and
resistance on logarithmic cross-section paper and observing
that the diagram was invariably a straight line for all the
models tested. The statement cannot be true for a great
range of speeds.

Such were the results obtained in a wind of uniform
velocity and direction. When, however, the current is tur-
bulent a and n are found to vary considerably ; but since
the flow of a turbulent wind cannot be specified, the meas-
urements obtained in one such current cannot well be ap-
plied to determine the resistance in a different one. For
that reason it seemed better to make the measurements in a
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uniform wind, where, moreover, the instruments give steadier
readings.

On comparing the above results with those obtained by
Dr. Froude for water, it is found that the equations are very
similar. The exponents are nedrly the same, and the co-
efficients are to each other roughly as the densities of air
and water. Using varnished friction-boards, Froude finds
n = 1.85 for a surface 8 to 20 feet long, and n = 2.00 for a
plane 2 feet long; I find n = 1.85 for all lengths from 2 to
16 feet. By Froude’s measurements the friction varies as the
power 0.83 of the length for varnished planes 2 to 20 feet
long; Ifind it to vary as the power 0.93. With a varnished
- board 2 feet long, moving 10 feet a second, the ratio of our
coefficients of friction for air and water is 1.08 times the ratio
of the densities of those media under the conditions of the
experiment.

But insome respects Froude's results are quite unlike mine.
For several surfaces he finds the skin-friction to vary as the
square of the velocity, or nearly so, which is the relation I
observed in a turbulent current and when the friction-board
was vibrating slightly. He finds the friction of calico about
twice that of a varnished surface ; Ifind that glazed cambric
has about the same friction as a varnished surface; but if
the cambric is roughened, so as to expose a fine down, the
friction is very much increased.

The fact that for some surfaces the coefficients of friction
for air and water are roughly as their densities is of consider-
able interest. It is well known that the head resistances of
the two fluids are directly as their densities, and if their fric-
tion coefficients also bear that ratio, the total resistances must
be approximately as the densities. Hence the data obtained
from water-resistance measurements on such surfaces may be
fairly well applied to estimate the air resistance on various
shaped models.

It is not, however, self-evident that the surface friction of
any two fluids is proportional to their densities, and should
not be taken for granted. It happens to be roughly true for



ATMOSPHERIC FRICTION. 261

varnished wooden surfaces in air and water, but appears to
be wholly untrue for calico surfaces. In default, therefore,
of an adequate physical theory of surface friction the mag-
nitude in any given case can be determined only by direct
experiment.

To complete the theory of the skin-friction board, two steps
further remain to be taken. First, the equations of motion
for a viscous fluid must be integrated to find the velocity at
all points in the disturbed region about a thin material
plane. Then the speed of flow must be measured at all
points next the plane and at some distance away. The
writer expectssoon to map the stream-lines and measure the
velocity. If, then, the equations can be integrated so as to
give the speed as a function of the space codrdinates, the
computed and observed values can be directly compared.
It is hoped that some one may obtain sufficiently general
solutions of the equations to be of practical value, particu-
larly for the simpler case in which the plane is indefinitely
wide and in which the edge conditions are negligible. The
integrals, if sufficiently general, will be of great importance
to the science of surface friction, and may at once be applied
to the mass of accurate data that for a generation has been
accumulating in the laboratories of marine engineers.

APPLICATIONS.

The laws of skin-friction have both theoretical and prac-
tical application. They serve theory by explaining some
apparently anomalous phenomena and by leading to more
complete formule for total resistance. They are of practical
use because in many of the forms employed in transporta-
tion the skin-friction is a large part of the total resistance.

It has been the common practice of writers on air resist-
ance to employ the Newtonian formula,

R=a1’,

in which aisregarded as constant for a surface of fixed form
and aspect ; but this equation is far from true (1) for blunt



262 . ZAHM.

bodies moving at high speeds, and (2) for bodies of easy shape
moving at moderate speeds.

For blunt bodies at speeds below 1,400 feet a second the
resistance is expressed more accurately by the equation

R=av®+ b3,

in which @ and b are constants. This has been shown ana-
lytically by Duchemin,* and has been proved experimentally
by the writer{ for speeds below 1,000 feet a second. It was
also corroborated by Duchemin by citations from the ex-
periments of others.

For bodies of easy shape and moderate speed the coeffi-
cient a in the Newtonian formula gradually diminishes with
the velocity. This was observed by Langley and Canovetti,
and now one reason seems apparent. The resistance cannot
vary as the square of the velocity because a large part of it
is friction, which varies as a lower power.

A good general formula may be obtained by writing the
total resistance as the sum of two terms, one giving the head
resistance proper, the other the skin-friction. Thus for ordi-
nary transportation speeds we have

R=av*+ w8,

in which the body constants, a and b, are each a function of
the dimensions and aspect of the given figure. A like for-
mula may be used for a family of figures.

a=—"" PE—

F1e. 6.—Symmetrical Ogival Wedge of Minimum Resistance.

As an example of the influence of the friction term, let it
be required to find the resistance per unit length of a post

*¢Tes Lois de la Resistance de I'air.”
1 ‘“ Resistance of the air at speeds below one thousand feet a second,’’
Philosophical Magazine, May, 1901.
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having the form of cross-section shown in figure 6. The
head resistance proper may be written equal to that of the
major section, taken normal to the velocity multiplied by
the sign of half the angle of the edge of the post. Thus

R. =08ina,

in which ¢ is the resistance of the major section and a is the
angle abd. Again, the skin-friction resolved parallel to the
velocity is

R=2f7fds .%’:2ff,dx,

in which f, is the coefficient of friction for the element of
surface, and dz is an element of the width ab. Hence the
total resistance may be writlen

R=csina+ 2fz,

in which f is the average friction per unit surface.

A glance at the above equation reveals its chief features.
For z equal to zero, the second term vanishes, and the first
becomes

R=c¢,

which is the normal resistance of the major section. For z
very large the first term is negligible, and there remains

R=2fz,

which is the formula for a simple plane moving edgewise.
Thus the total resistance is comparatively large when z
‘equals zero; then becomes smaller and smaller till & mini-
mum is reached, and finally continuously larger as z goes
on increasing. The width giving a minimum resistance is,
of course, obtained by placing the derivative of R equal to
zero and solving for z.

What has been said of this particular shape is true of all
the figures of a family in which the major cross-section is
kept constant while the length varies. There is some length
for which the resistance is a minimum, and beyond that the

se—Baull. Phil. 8oo., Wash., Vol. 14.
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resistance increases with the length up to infinity. To illus-
trate these features, let the equation for the total resistance
be applied to the data of an experiment.

For practical engineering purposes, which need not be
detailed here, it was found desirable to measure the total
resistance of a number of wedge forms such as shown in
figure 6. The models are all 1 inch thick and of the widths
given in the second column of table V. The size of the
models is given in the first column as so many calibers,
their outlines being circular arcs whose radii are an even
number of times the thickness of the wedge. The actual
measured values of the resistance per unit length of post at
10 feet a second are given in the last column of the accom-
panying table and shown diagrammatically in figure 7 by
the little circles.

TaBLe V.

Computed and Observed Resistances of Duangular Cylinders One Inch Thick,
One Foot Long, and of Various Widths.

Computed resistance.
Caliber of | Width of Observed

model. model. resistance.
Head. Frictional. Total.

1 1.76 0.00687 0.000212 0.00708 0.00702
b 4.41 0.00307 0.000511 0.00358 0.00375
10 6.20 0.00221 0.000687 0.00290 0.00298
20 8.88 0.00155 0.000960 0.00251 0.00267
30 11.05 0.00125 0.001178 0.00243 0.00250
40 12.97 0.00108 0.001348 0.00243 0.00238

50 14.31 0.000968 0.001500 0.00247 0.00235
60 16.00 0.000870 0.001664 0.00253 0.00253
70 16.87 0.000822 0001746 0.00257 0.00253
80 18.25 0.000772 0.001884 0.00266 0.00261
100 20.12 0.000690 0.002061 0.00275 0.00285
150 24.87 0.000557 0.002505 0.00308 0.00299

Now let us apply to these data the equation
R=csin a+ 2 fx.

Taking ¢ = 0.0139 pounds, the normal resistance of the
major section at 10 feet a second, as computed by Langley’s
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coefficient ; also sin a = 1/1" 1+ 2% z being inches; and
2f = 0.0001263 = 07, the numerical equation becomes

0.0139
Vit

The values obtained by substituting for z the various widths
of the models are given in the table and shown by means of
the curves in figure 7.

The diagram portrays the main features of the equation
very clearly. The total resistance falls rapidly at first, be-
comes & minimum when the wedge is about one foot wide,
then increases indefinitely with the width. The true head

R= + 0.0001263 z ‘9.
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F1g. 7.—Computed and Observed Resistances of Symmetrical Wedges.

resistance and the skin-friction, as shown by the lower
curves, approach each other, becoming equal when the
width of the wedge is a little below one foot, then diverge
indefinitely, the friction being four times the true head
resistance when the width of the wedge becomes two feet.
We have thus found a formula which accords very well
with the data of experiment ; but its first term expresses only
approximately the true head resistance and is here employed
merely tentatively. In fact, the coefficient f had to be some-
what increased to make the computed and observed values
agree. Thus the term 0.000126z makes the skin-friction
equal to 0.00127 of a pound, when = equals one foot, whereas
by table IV it should be 0.00113. So probably the term ¢
#in a gives values for the head resistance which are some-
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what toosmall. Possibly, also, the values of f given in table
IV for short planes should be slightly increased.

It should be remarked that the minimum resistance given
above is such only for the symmetrical shapes in question,
but not necessarily a minimum for all possible shapes having
the same major section. In fact, when a five-caliber bow,
shown by the dotted line in figure 7, was combined with a
fifty-caliber stern, the resistance was much diminished, and
it was found incidentally that the ratio of the resistance of a
good model to that of its major section can be made less
than one part in eight. What the ratio may be for the
shape of least possible resistance has not been ascertained.

Similar experiments were made with spindles having the
outline shown in figure 8, and with like results. These are

F1c. 8. —Symmetrical Ogival Spindle of Minimum Resistance.

still unfinished ; but it may be mentioned, in passing, that
the frictional effect is very manifest. The total resistance
of a symmetrical spindle having such outline is again half
friction, and has its minimum value in a model of about
twelve calibers, for which the length is nearly seven times
the major diameter—a relation given by Rankine for well-
formed ships. A still less resistance is found when a two-
caliber bow, shown dotted in figure 8, is combined with a
twelve-caliber stern, in which case the length is about five
times the major diameter. The ratio of the resistances of
the spindle and its major section has been reduced to about
one part in eight. What the smallest possible ratio may be
for a given velocity has still to be ascertained and may well
form the object of a special research. '

The foregoing examples suffice to indicate the importance
of the friction term in the general equations of aerody-
namics. We may now notice its bearing on problems of
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transportation, and particularly the cost of propulsion in
aeronautics. Let us consider the soaring plane, first assum-
ing it smooth, then frictional.

Let A be the area of the plane, W its weight, v its veloc-
ity, a its angle of flight, R its resistance, H the propulsive
power, and s the density of the fluid in which it is moving.
Then, if the plane is frictionless and steadily soaring on
a horizontal course in still air,

R=Wtana ......... (a)

H=Rv,............ (5)

W=2k Av*sinacosa, . .. (c)
1+ sin’a

the last expression being the lift as given by Duchemin’s
formula, in which % is a constant of figure.

The relations of these seven variables contain much that
is of interest in the theory of the aeroplane. For example,
let ug find the mileage cost and the propulsive power when
the plane is just soaring.

The mileage cost is proportional to the resistance divided
by the load, and hence, as shown by equation (a), it is
directly proportional to the tangent of the angle of flight.
It may therefore have any value, from zero to infinity,
according to the inclination of the plane, and if this be kept
constant the mileage cost is the same for all velocities, for
whatever extent of surface, and for all densities of the
medium, from mountain air to sea water.

In a similar way the mileage cost may be studied as a
function of any of the other variables. Thus from equation
(c) we obtain
W (1 + sin *a)

tan ¢ = g Ad (T—sinay "~ @

in which the ratio of the parenthetical factors is practically
unity for small values of a. Hence, writing

W
tan e =0k 4w - - (@)
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it is at once evident that the mileage cost is directly propor-
tional to the load, and inversely proportional to the density
of the medium, the area of the plane, and the square of its
velocity.

The propulsive power may be obtained directly from the
last equation. Thus,

_ . me
H=Wvy tana_2kcAv.

Thisshows that the power varies directly as the square of the
load, and inversely as the density of the medium, the area
and speed of the plane.

This last relation, viz., that if W, s, and A remain con-
stant, H varies inversely as v, has been more emphasized
than the other relations by the various writers on aero-
nautics. It was first proved, though in a different manner,
by A. Du Roy de Bruignac,* and formally enunciated by
him in 1875, as follows: “ Providing the angle of a heavy
plane, moving in the air, be maintained at the minimum
necessary to sustain its weight, the work of translation
diminishes as the velocity increases.” Mr. Curtist gives a
different analytical proof, and Lord Rayleigh, in his inter-
esting memoir on “ The Mechanical Principles of Flight,”
demonstrates analytically that “if frictional forces can bhe
neglected, a high speed is all that is required in order to
glide without energy. Mr. Chanute{ has shown, by nu-
merical computation, that De Bruignac’s statement may be
applied to birds and flying machines moving at limited
speeds, say thirty to forty miles an hour; and Professor
Langley has concluded from his experiments that the pro-
pulsive power of a material soaring plane diminishes with
the speed up to at least 66 feet a second, if the edge resist-
ance be left out of the account.

Nearly identical with the expression for power is the equa-

* ¢ Recherches sur la Navigation Aerienne.’”’
1 ‘“ Experiments in Aerodynamics,’”’ Langley.
1 ‘‘Aerial Navigation.”
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tion for the speed of fall of a horizontal plane having lateral
motion. If v, be its edgewise speed, v, the speed of fall,
then its true speed, v, equals /3 5+¢? and the angle a, be-
tween v and the plane, is determined by the equation
tana =w, [v,. Substituting this value of « in equation (d),
we have

v,

=
Yy

W (1 + sin %)
9 Fs Av (1—sin %a)’

which, for high speeds and moderate loading, becomes,

o = W1+ sin ’a_),

T 2Tk A

since a is small, and v, is nearly equal to ». Under these
conditions the speed of fall varies inversely as the speed of
flight, which means that the rate of descent and the power
expended may be made indefinitely small by sufficiently in-
creasing the speed. Of course, if the air has an upward
trend equal to or greater than v, the plane will soar con-
tinuously on a horizontal or ascending course.

Suppose the gliding plane to dip « degrees below the
horizon, and to have a forward resistance. The angle of
impact of the air is d =9 —e, in which tan 9 =19, /v, as
before; and, when steady motion is established, the hori-
2 ks Av? sind sin @, just

1+sin2s
equals the horizontal resistance. Accordingly the plane
will glide continuously with the constant component veloci-
ties, v, forward and v, downward. Tf, however, the air has
an upward trend equal to v,, or greater, the plane will glide
eontinuously on a horizontal, or ascending course. This is
the principle of one kind of soaring practiced by the birds.*

zontal component of the air pressure,

*The Wright brothers report that they can glide continuously down
a seven-degree slope at a speed of 18 miles an hour in still air. This
means that if the air has an upward trend of 18 X sin 7° =2} milesan
hour, they can glide on a horizontal course indefinitely at a speed of 18
cos 7° = 17.06 milesan hour. Hence in a soaring pavilion having a forced
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It can be proved, by a slight extension of this argument,
that soaring is possible even in a wind that alternately rises
and falls.

Many other relations between these variables might be
pointed out, but it would be foreign to the purpose of this
paper. In passing it may be observed that, for a plane of
given size, weight, and speed, it is more than eight hundred
times easier to glide through water than through air, since
the power varies inversely as the density of the medium.
An interesting hydroplane has in fact been constructed by
Professor Williams, of Cornell University, and made to
“soar ” through the water of Lake Cayuga. _

In the foregoing discussions it has been assumed that
Duchemin’s formula is a true expression for the resistance
of a smooth plane. This is not true for all planes at all
angles, though at small angles it is doubtless true; for at
these the formula makes the normal resistance on the oblique
plane proportional to the sine of the angle of flight, which
is unquestionably true.

So much for a smooth mathematical plane. Let us now
consider the effect of surface friction. If the friction per
square foot is f’ v!'®%, and the angle of flight is small, equa-
tion (a) may be written

R= Wtana + 2f Av'*s,

the other equations remaining practically the same. Sub-
stituting in this the value of tan a in (d’) we have

— w? ’ 1.85
R W"' 2[ A’U,

WQ

H= o145

+2f Avss,

upward draft of, say, 3 miles an hour, a group of machines could glide
all day without motive power, rising and falling at pleasure. The power
of such a draught is about /5 of a foot pound per second over each square
foot of floor surface. Hence two horse-power can maintain such a
draught continuously over 5,500 square feet of surface, working at an
efficiency of 50 per cent.
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These equations show that for high speeds both R and H,
that is, both the mileage cost and propulsive power, in-
crease with the velocity. In the limit the mileage cost
varies as v!%, while the power varies as v%%. By giving
concrete, practical values to W, s, and 4, it is easy to show
that both the resistance and power of a soaring plane have
minimum values at some small angle, say between one and
ten degrees. An example will illustrate this.

Let it be required to find the power necessary to propel a
soaring plane one foot square weighing one pound. The
soaring angle, a, is given in terms of the velocity by the
equation (c) by making ks = 0.004, 4 being one square foot,
W one pound, and v being miles an hour. The resistance
may then be computed from the formula

R=tana + 2f,

f being the coefficient of friction, as given by table IV. The
power and pounds carried per horse-power are obtained by
obvious means. The computations for such a plane are
given in table VI.

TaBLe VI.

Computed Power and Speed for a Soaring Plane; Area, One Square Foot;
’ Weight, One Pound.

Computed resistance.
Soaring| Soaring Tow-line | Tow-line
speed. | angle. power. | horse load.
Drift. | Friction.| Total. '
Mi. hr.| Deg. Lb. Lb. Lb. . . sec. Lbs.
30 8.25 0.145 0.0170 0.162 7.13 77.1
36 5.94 0.104 0.0226 0.1266 6.561 84.3
40 4.62 0.790 0.0289 0.1079 6.32 86.7
45 3.56 0.0621 0.0360 0.0981 6.39 86.1
50 2.88 0.0500 | 0.0439 0.0939 6.89 80.2
60 2.03 0.0354 0.0614 0.0962 8.60 64.7
70 1.47 0.02567 0.0814 0.1071 11.00 50.0
80 1.12 0.01956 0.1045 0.1240 14.56 35.8
90 0.88 0.0154 | 0.1300 0.1454 19.17 28.7
100 0.71 0.0124 0.1684 0.1708 25.00 22.0

39—Ball. Phil. 8oc., Wash,, Vol. 14.
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The effect of friction is very manifest. Owing to it, the

~ power reaches a minimum at about forty miles an hour. The

mileage cost attains its least value at about fifty miles an
hour and at an angle of less than three degrees. This latter
relation is more clearly shown in figure 9, where the soaring
angle and resistance are coordinated. The drift curve is
nearly a straight line for the small range of angles plotted,
but later turns rapidly upward, becoming infinity and verti-
cal at an angle of ninety degrees. The friction curve begins
at infinity, falls rapidly, and becomes zero at a soaring angle
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Fia. 9.—8Soaring Angle and Computed Resistances for a Foot Square Plane
Weighing One Pound.

of ninety degrees. The total resistance is asymptotic to the
others, and has its minimum at about two and a half de-
grees. This angle and the corresponding speed are, there-
fore, the most economical for a thin foot-square soaring plane
weighing one pound.

It will be observed in the last column that the maximum
weight carried per tow-line horse-power is scarcely ninety
pounds. This is very small, but may be increased in several
ways: by lightening the load and letting the plane soar at
a lower speed ; by arching the surface like a vulture’s wing ;
by changing the foot-square plane to a rectangle and towing
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it long side foremost. The latter device has been tested ex-
perimentally by Mr. Langley. His results are presented in
table VII, together with corrections for skin-friction made
by the present writer.

TasLe VII.
Data for Soaring of 30 X 4.8 Inch Plane; Weight, 500 Grammes.

8oaring | Soaring | Horizontal | Corrected Horse- | Corrected
angle. speed. | resistance. | for friction. load. for friction.
Deg. R, gec. Gms. Gma. Lbs. Lbs.
10 40.7 88 95.04 77 71.3
b 49.8 45 55.34 122 99.2
2 65.6 20 37.69 209 110.9

The last column shows, after correction for friction, that
the plane in question may carry about 111 pounds per tow-
line horse-power at an angle of two degrees if the edge re-
sistance be neglected. This ratio of weight to power is still
not very large, but it may be augmented by arching the plane
and by lessening the load. Thislatter device is being pushed
to an extraordinary degree by Dr. A. G. Bell, and it will be
very interesting to learn the horse-load of his most efficient
kites.

So much for soaring planes. But these are of less sub-
stantial interest than arched surfaces, which, besides other
advantages, carry a larger burden per horse-power. This
fact is duly regarded by modern aeronauticians, both investi-
gators and designers. The Wright brothers, who, after
Lilienthal and Chanute, have been especially active and suc-
cessful in practical flight, claim for their gliding machine a
tow-line horse-load as high as 166 pounds at a speed of eigh-
teen miles an hour, and that, too, including the resistance of
the entire framing. Mr. Herring has reported similar good
results with a flying mbdel. To secure such efficiency with
a plane, either square or shaped, as in table VII, the surface
load would have to be much less than one pound per square
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foot. It seems, therefore, most important to the science of
flight to determine accurately the lift and drift of arched
surfaces for various speeds and angles of advance.

The frictional resistance of arched surfaces can be deter-
mined by the method previously employed for wedges.
Thus, resolving the friction on any element, ds, of the sur-
face into components at right angles and parallel to the
course and integrating the latter component over the sur-
face, we have

R=2j:f.ds.‘g=2fz,

in which fis the average unit friction and z the length of
surface fore and aft, the width being unity. Hence the
frictional resistance of a plane or arched surface, soaring at
small angles on a horizontal course, equals the horizontal
projection of the surface multiplied by the average unit
friction, as given by table IV ; that is,

R=2fS§,

in which f is the average friction and § is the projected
surface.

The reader may like a practical application of the above
formula. Take, for example, the Wright brothers’ gliding
machine of 1902. Its surface measures 5 feet fore and aft,
spreads 320 square feet, and meets a total resistance of 30
pounds when soaring 18 miles an hour. By table IV the
average friction is 0.00302 pounds per square foot. Hence
by the last formula

R =2 X 0.00302 X 320 = 1.9 1bs.

The friction, therefore, seems to be only about six per cent.
of the total resistance.

For spindle-shaped hulls, or surfaces of revolution, the skin
resistance is computed in a similar way. Thus resolving the
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friction on an elementary band of radius » and of width
ds, into components at right angies and parallel to the axis,
and integrating the latter, we have

R=21rfrf.ds.‘%=27rff,rdx=an,

in which f is the average unit friction and A is the area of
the longitudinal section of the solid of revolution.

Let us now apply this formula to compute the resistance
of the Zeppelin balloon at a speed of, say, 10 feet a second.
The balloon is a cylinder, with ogival ends of 1.5 calibers;
the length is 390 feet; the diameter is 39 feet. Hence the
longitudinal section may be taken as roughly equivalent to
a rectangle 39 feet wide by 350 feet long, the area being
13,650 square feet, approximately. Now, the average fric-
tion on a plane surface 350 feet long, at 10 feet a second, is
0.000366 of a pound per square foot. Hence, by the formula
just established, R = = f A, the skin-friction on the entire
convex surface is 0.000366 X 13,650 X 3.1416 = 15.7 pounds.
The pure head resistance of prow and stern is about 61.6
pounds, as determined by the writer’s unpublished experi-
ments on spindles. Hence the total resistance of the balloon
is 77.3 pounds, approximately, and thus the friction is about
20 per cent. of the whole resistance.

The value just computed of the ratio of friction to total
resistance seems very small, but that is because the balloon
is so blunt-ended. If, however, the cylindrical part be pro-
vided with a two-caliber prow and nine-caliber stern, the re-
sistance, figured as in the last paragraph, would be: Fric-
tion, 16.5 pounds; pure head resistance, 15.6 pounds; total
resistance, 33.1 pounds. Thus the friction is about one-half
of the entire resistance.

Analyzing in a similar way the resistance of street cars
and railway trains, it is seen that for a short, blunt car the
skin-friction is of small consequence; foralong train it may
equal, or exceed, the head resistance. When cars are run at



276 ZAHM.

a very high speed, as on the Marienfelde Zossen Electric -

Railway, the chief resistance is due to the air, since the
road-bed has to be very smooth and well balanced. In such
cases cconomy would seem to require that the cars should,
like navigable balloons, be designed in accordance with
established aerodynamic principles.
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