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INTKODUCTION.

MANY years have elapsed since this work was commenced, and it is even now only

partially completed. My object was to test the received theories of Capillary Action,
and through them the assumed laws of molecular attraction, on which they are

founded. To this end it was proposed to compare the actual forms of drops of

fluid resting on horizontal planes they do not wet, with their theoretical forms.

After some trials a satisfactory micrometrical instrument was constructed for the

measurement of the forms of drops of fluid, but my attempts to calculate their

forms as surfaces of double curvature failed entirely, and my undertaking must have

ended here, if I had depended upon my own resources. But at this point Professor

J. C. Adams furnished me with a perfectly satisfactory method of calculating by

quadratures the exact theoretical forms of drops of fluids from the Differential

Equation of Laplace, an account of which he has now had the kindness to prepare
for publication. After the calculation of a few forms, application was made to the

Royal Society for assistance from the Government grant in making the needful

calculations. The following extracts from the application (Oct. 27, 1855) will explain

the objects of the undertaking.
&quot;

I have carefully examined all the published

&quot;experiments that I could meet with, but these have been generally made with
&quot;

capillary tubes, and in consequence of the difficulties inherent in this mode of

&quot;observation they have not led to consistent and satisfactory results.

&quot; It appeared to me that the best test of theory would be obtained by making
&quot;careful measures of the forms assumed by drops of fluid resting on horizontal

&quot;planes
of various solids

&quot;

&quot;At first I knew of no better mode of arriving at the theoretical forms than

that given by geometrical construction, but I am indebted to Mr Adams for a

&quot;method of treating th,e differential equation

ddz I dz

Au u du 2
+-. 7-3-7-2** =

b

&quot; when put under the form - + - sin
&amp;lt;f&amp;gt;

= 2 + 2zb*
* = 2 + /9

*

B.



2 INTRODUCTION.

&quot;which gives the theoretical form of the drop with an accuracy exceeding that of

&quot;the most refined measurements. Values of
|, |

and
g
have been calculated by this

&quot;method for values of * at intervals of 2| to 5, from = to = 145, for

&quot;values of equal to }, \, 1, 3, 6, 10 and 16. It is however very desirable that

&quot;calculations should be made for more numerous as well as for larger values of ft.

&quot;I also propose to make accurate measurements of the forms of the common

&quot;surfaces of two fluids that do not mix. The form of a drop of fluid (A) will

&quot;be taken when immersed in a fluid (), and also the form of a drop of the fluid

&quot;

() when immersed in fluid (A), and for this purpose a plate-glass cell has been

&quot;constructed, so that the observations can be made whether the drops rest on the

&quot;bottom, or float in contact with the upper surface. The forms of drops of fluids

&quot;(A)
and (B) will also be taken when resting on horizontal planes surrounded by the

&quot;

atmosphere.&quot;

&quot;The objects of the experiments are

&quot;I. To compare the actual forms assumed by drops of fluid when resting on

&quot;horizontal planes composed of substances which they do not wet, with their theo-

&quot;

retical forms.

&quot;II. To determine the effects of supporting planes composed of various sub-

&quot;

stances.

&quot;

III. To examine the effects of different degrees of roughness of the supporting

&quot;planes composed of various substances.

&quot;IV. To determine the effects of variations of temperature on the forms of the
&quot;

drops of fluid from 32 to about 200 F.

&quot;

V. To examine the mutual action of two fluids that do not mix, and the
&quot;

effects of variation of temperature on them.&quot;

The Royal Society voted a grant of 50, the sum applied for. These calcula

tions were completed in 1857. And after the calculation of the theoretical forms

and volumes of sessile drops had been carried as far as seemed needful, the money
in hand was applied to the calculation of theoretical forms and volumes of pendent

drops of fluids. The results of these calculations have been printed in Table IV.

The delay in the publication of my results has arisen from the interruption of

my labours, caused first by my removal in 1857 from College to a country living,

and secondly by my appointment in 18G4 to the Professorship of Applied Mathematics
to the Advanced Class of Royal Artillery Officers, Woolwich. As no systematic ex

periments had then been made since the time of Hutton to determine the Resistance
of the Air to the motion of projectiles, and those for round shot only, I was induced
to turn my attention to the subject of Ballistics. The Results of my Experiments have
beon published under the authority of the Secretary of State for War, ay follows

I. Reports on Experiments made with the Bashforth Chronograph to determine
the Resistance of the Air to the Motion of Projectiles, 18G5 1870. London,
W. Clowes and Sons, &c. &c.
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II. Final Report on Experiments, &c. &c., 187880. London, W. Clowes and
Sons, &c. &c.

onAnd in connection with these Reports I published a Mathematical Treatise
the Motion of Projectiles, 1873, and a Supplement to that work, 1881.

Immediately after the completion, of these labours I turned my attention to the

preparation for publication of a part of my work on Capillary Action, for I cannot
now hope to be able to complete the work originally proposed. The Tables II. and III.

appear to give all that is required in order to supply the means for filling up the
intervals to five places of decimals for all values of /3 under 100, and of

&amp;lt;f&amp;gt;

under
180. The Table IV. for negative values of /3, although not so complete, will afford

considerable assistance, and the deficiencies can be easily supplied by original calcu

lation preparatory to interpolation.

Table V. gives the theoretical forms of free capillary surfaces of revolution about

a vertical axis, which was used in calculating the forms of drops of mercury shewn
in the diagrams. Deficiencies may be easily supplied by the help of Table II. by
interpolation.

As a specimen of the work I proposed to do, I have given diagrams and co

ordinates observed and calculated of forms of drops of mercury carefully measured in

X863. These shew how correctly the calculated and measured forms of these drops

agree, notwithstanding the very considerable variation in their outlines.

Also, as I found my measuring instrument in good working order in 1882, I

have made numerous measurements of drops of the same kind of mercury of 4, 8, 12,

16, 20 and 24grs. in order to find the values of o and w. The values derived

from each particular measurement vary considerably but the mean results for each

weight of drop are satisfactory and appear to confirm the received theories of Capil

lary Action. But as the Theories of Young, Laplace, Gauss and Poisson lead to the

same differential equation, and therefore give the same form of drops of fluid, experi

ments of this kind are not capable of deciding whether Poisson is correct in sup

posing that a rapid change of density takes place near the free surfaces of fluids.

But more definite information on this head may be expected when the values of

a and &&amp;gt; at the common surfaces of fluids which do not mix, as well as the effect

of variation of temperature on these quantities, have been determined according to

the original scheme.

Having given examples of the work I proposed to myself in the first instance, I

must leave to others the further examination of this important question, for it still

appears to me that this is the only way by which we can arrive at any definite

results.

I take this opportunity to return my best thanks to the Syndics of the

University Press for having undertaken the publication of this work.
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CHAPTER I.

THE phenomena which arise from Capillary Action seem to contradict the laws

of fluid equilibrium. In consequence, many worthless theories have been proposed

with a view to explain apparent anomalies. After long groping in the dark, it was

found to be desirable to discover by experiment what were the actual phenomena

which required explanation. Hawksbee* found that the height to which a fluid would

rise in a capillary tube of given radius was the same for all thicknesses of the tube.

From this it was apparent that the attracting force of the tube was situated at or

near the inner surface of the tube. But he does not appear to have taken account

of the mutual attractions of the particles of the fluid. Jurin b
also found that the

height of the column of fluid supported by capillary action depended solely upon the

interior diameter of the tube at the upper surface of the fluid. From this he con

cluded that the column of fluid raised by Capillary Action was supported by the

attraction of the periphery or section of the tube to which the upper surface of the

fluid cohered or was contiguous.

Clairaut was the first to attempt to explain capillary phenomena on right prin

ciples, by referring them to the mutual attraction of the particles of the fluid, and to

the attraction of the particles of the solid on the particles of the fluid
;

and sup

posing these attractions to depend upon the same function of the distance, he

concludes that even if the attraction of the capillary tube be of a less intensity than

that of the water, provided the intensity of the latter attraction be not twice as

great as that of the former, the water will still rise in the tube (p. 121). Clairaut

supposed that the attraction was sensible only at very small distances (p. 113).

Shortly afterwards Segner
d introduced the supposition that forces of attraction of

both the particles of the solid and of the fluid vanished at sensible distances. He
concluded that these forces gave a constant tension to the free capillary surfaces, and

Phil. Traru., 1711 and 1712. &amp;gt; Commentarii Soc. Reg. Set. Gottingensis T 1
&amp;gt;&amp;gt; Ibid. 1718 and 1719. 1751.

Thforie de la Figure de la Terre, 1743. Chapitre x.



THEORETICAL EXPLANATIONS OF CAPILLARY ACTION. 5

thence he tried to calculate the forms of sessile drops of fluid with a view to com

pare them with their measured forms. But in his calculations he took into account

only the curvature of the vertical sections made by a plane passing through the axis

of the drop. His measurements of the actual forms appear not to have been very

precise.

An important paper on the Cohesion of Fluids was read before the Royal Society

by Dr Young
a in which he pointed out the necessity of taking into account the

curvatures of both of the principal sections of the drop, and clearly propounded the

true principles on which the solution of the problem must depend. He arrived at

the conclusions (1) that the tension of a free capillary surface would be constant, and (2)

that the angle of contact between a given solid and fluid surface would also be con

stant. He attempted to derive these hypotheses from physical considerations, but it

is not easy to follow his reasoning. Even the editor of his works, Dean Peacock,

observes on his Analysis of the Simplest Forms that &quot;In the original Essay, the
&quot; mathematical form of this investigation and the figures were suppressed, the reasoning
&quot; and the results to which it leads being expressed in ordinary language : even in its

&quot;

altered form the investigation is unduly concise and obscure
&quot; b

. And respecting the

appropriate angle of contact, Young confesses that &quot;the whole of this reasoning on the

&quot;

attraction of solids is to be considered rather as an approximation than as a strict

&quot;demonstration&quot; . This may in part be urged as a reason why Laplace
d did not

more fully recognise the value of Young s labours. And although many of their

results agreed, the processes by which they arrived at them were very different, except

that they were much on a par in respect to the constancy of the angle of contact,

which Laplace did not deduce mathematically from his theory. Very good accounts

of Laplace s Theory were given by Petit e and Pessuti
f

, while it was attacked by

others, as Young
B
,
Brunacci h

,
Poisson J and others.

Gauss k
by a new and striking mathematical investigation obtained the same

differential equation to the form of capillary surfaces as Laplace had done, and also

supplied the defect of his work by obtaining an expression for the angle of contact

of the fluid with the solid. Like Laplace he supposed the fluid to be homogeneous

and incompressible. Bertrand has published a Memoir on Capillary Action, with a

view to make known the method of Gauss, as well as some simplifications of which

it is susceptible.

In 1831, Poisson published his important work, the Nouvelle Theorie de I Action

Capillaire. He strongly objects to Laplace s Theory because he has omitted in his

calculations to take account of a physical circumstance, the consideration of which

was essential; that is, the rapid variation of density which the liquid suffers near

Dec 20 1804.
g Quarterly -Review and Works, Vol. I., p. 436.

b
Works, Vol. i., p. 420 (note).

&quot;

Bmgnatelli, T. ., 1816.

c Ib 434 N uvelle Tlieorie, 1831.

Mec. cei. supp.auXLivre,l80G,1801.
*
Princip. Gen. Theo. Fig. Fluid. Gott.

Journal de Vecole Polytechnique. Cahier xvi, Dove s Repertorium, Bd. v., p. 49.

Llouville xiii., p. 185.

f Mem. Soc. Ital. T. xiv.



6 THEORETICAL EXPLANATIONS OF CAPILLARY ACTION.

its free surface, and near the solid against which it rests, &quot;sans laquelle les pheno-
&quot; raenes capillaires n auraient pas lieu

&quot;

*. But he, in fact, arrives at a differential equa
tion of precisely the same form as Young, Laplace and Gauss. It must be confessed

that Poisson is probably quite right in supposing a rapid variation of density near

the free surface of a fluid, and he has done good service in shewing how this sup

posed variation of density near the free surface of fluids may be taken account of in

the mathematical treatment of Capillary Action. The reader may be further referred

to a Mtmoire sur la Theorie de FAction MoUculaire, par Jean Plana b
.

Nouvettf Thiorie, p. 5. b Turin Memoires, 2 S6rie, T. xiv.



CHAPTER II.

EXPERIMENTAL TESTS OF THEORIES OF CAPILLARY ACTION.

MANY attempts have been made in recent times to test by experiment these

theoretical explanations of capillary phenomena. For this purpose Haiiy and Tremery*
at the request of Laplace made some experiments to determine the elevation of water

and of oil of oranges, and the depression of mercury in capillary tubes. Their results

appear to have satisfied Laplace that the elevation or the depression of a fluid in

capillary tubes varied inversely as the diameter of the tube. A tube of one milli

metre in diameter gave a mean elevation of 13mm&amp;gt;569 for water, and of 6
nun

738f)

for oil of oranges, and a mean depression of 7
mm 333 for mercury.

In the Supplement a la Theorie de VAction Capillaire, Laplace found the fol

lowing expression for the approximate thickness
(&amp;lt;/)

of a large drop of fluid resting

on a horizontal plane
b

:

q+ -.- = A/- sin +* ab V a 2
Soil sin -

For comparison, Gay-Lussac measured the thickness of a drop of mercury one

decimetre (2Z) in diameter resting upon a perfectly horizontal glass plane, and found

it to be 3
mm 378 at a temperature 12 8C. In calculating the value of q Laplace

neglects the value of ~r because it is an insensible quantity. He then supposes

- = 13 square millimetres, and m = 152 grades
= 13G 8 as determined by some previous

experiments, and substituting finds q = 3
mra

39064, instead of the measured thickness

3&quot; 378.

Gauss merely refers to the results of Laplace, and gives the value of his a*

which is equivalent to the - - of Laplace, equal 3 25 square millimetres.

f&L

Supp. au X Livre, p. 52, 53.
b P - 64-



g EXPERIMENTAL TESTS OF THEORIES OF CAPILLARY ACTION.

Poisson obtains the following expression
for the approximate theoretical thick

ness (*) of a drop of fluid resting on a horizontal plane:

.f \

Here the a, and of Poisson are respectively
the and *-&amp;lt;* of Laplace.

Referring to a previous experiment,
Poisson writes a cos = 4 5746 for a tempera

ture of 12--8C., and for a first approximation
he uses only the first term m (o).

Thus

& = (a V2 cos^ = a
2

(1 -f cos a/),

or & cos &/ = (a
2
cos w ) (1 -f cos a&amp;gt;

).

And writing for k, 3
mm

&quot;378,
the experimental thickness of a drop of mercury of

radius UIKT*, * a temperature 12 8C., as found by Gay-Lussac, he obtains

(3 378)
2
cos ft/ = a2

cos a/ (1 + cos &&amp;gt; )
= 4 5746 (1 + cos to

),

which gives cos a/ = cos 48 nearly, or to = 48 nearly, and a
2
cos G&amp;gt;

= a2
cos 48 = 4 5746

now gives a or A/- = 2mm G146.

In the next place the term - --

only is neglected, because it is insensible :

/*

Z = Z + (v
/

2-l)a = 50 + 1-083 = 51-083; and ^=3mm
-378.

Substituting in (o), w is found to be 45 30
,
which gives by the help of the

equation a* cos a&amp;gt;
= 4 5746, a* or - = 6 5262 square millimetres, and a or A/- = 2 mm&amp;gt;5547.

a V a

Avogadro
b made numerous experiments to clear up some doubtful points relative

to capillary action. He carefully examined how far any air or moisture commonly

supposed to adhere to the interior of glass tubes might affect the depression of

mercury. With this object in view, he exhausted the air, and heated the glass tube

when the mercury was not in contact with it, and he found that the depression of

the mercury in the tube was precisely the same after as it was before these pre
cautions were taken.

In order however to determine the capillary constant a2
or -

, for mercury, he

made use of a tube of copper 20nun

long, and 2mm &quot;80 in diameter , well amalgamated

Nwvelle TUorie, p. 217. b Accad . piti e Mat . Torino, T. 40 (1836).
e Ibid. p. 221.



EXPERIMENTAL TESTS OF THEORIES OF CAPILLARY ACTION. f)

in the interior, and found it to be 5 56 square millimetres*, and, therefore, a or

A/- =2mm
357. Then substituting this value of a

2
in Poisson s

b formula

h= - - I7
2 *%

a. b
8 ^ 3 -&quot;

and making h = 4
mm

69, a = radius of tube = Omm 9525, according to Gay-Lussac s ex

periment, he obtained b = cos &&amp;gt;

= O8440 or &&amp;gt;

= 32 5 c = (180 147 5) nearly, instead

of 45 5 given by Poisson.

Substituting these two values a2 = 5 5G and &/ = 32-5 in Poisson s expression (o),

for the theoretical thickness of a large drop of mercury quoted above, he obtains

3 mm&amp;gt;235 instead of the measured thickness 3
mm

378. Upon this he remarks that the

smallness of this difference which corresponds to considerable differences in the values

of a2 and of cos &&amp;gt;

,
shews that this observation was little adapted to give, by its

combination with the depression of mercury in capillary tubes, exact values of these

quantities.

Avogadro then determined to measure the depression of mercury in a capillary

tube, so that he might obtain a value of &/ determined entirely from his own ex

periments. His glass tube had a radius of Omm 80 d
. He adopted a depression of

5
mm

125, that being the mean of a great number of careful observations. The tempera

ture was between 10 C. and 14 C. This depression is rather less than that found by

Gay-Lussac quoted above, when allowance is made for difference in the radii of the

tubes with which they experimented. Substituting as before he finds

w = 40 21 = (180
- 1 39 39 ).

In the next place Avogadro substitutes the value of cos a/ just found = 07021

and a2

=5-56, in Poisson s formula (o) quoted above, and finds 3 mra&amp;gt;154 for the thick

ness of a large drop of mercury instead of Gay-Lussac s measured thickness 3&quot; 378.

Desains 6 has deduced from Danger s experiments
f a2

or - = 67144, which gives

a or A /- = 2
mm

-5912 and = 37 52 33&quot; =(180 -142 7 27&quot;),
which values appeared

V a

to satisfy best the whole of the experiments. He states however that for different

sorts of mercury a or
y/i

varied from 2
mm 55 to 2

nim
-61, and o&amp;gt; from 38 to 45

or from (180 -142) to (ISO
9

-135). Desains also obtained from experiments with

large drops of mercury a or ^-2621 and = 41 36 30&quot;=(180-138 23
30&quot;).

Still more recently Quincke has made very numerous experiments with a view

to determine the capillary constants for a variety of fluids, and also for metals at

P. 221.

Nouvelle Theorie, p. 147.

Acead. Fis. e Mat. p. 223.

B.

227



8 EXPERIMENTAL TESTS OF THEORIES OF CAPILLARY ACTION.

Poisson- obtains the following expression for the approximate theoretical thick

ness (k) of a drop of fluid resting on a horizontal plane :

/
w a

k = a V2 cos 5-
- +

Here the a, and of Poisson are respectively
the

\
and TT-^ of Laplace.

Referring to a previous experiment,
Poisson writes a cos = 4 5746 for a tempera

ture of 12-8C., and for a first approximation he uses only the first term m
(

Thus
/. j

V= (a V2 cos
|-J

= a
2

(1 4 cos a&amp;gt;

)&amp;gt;

or & cos a&amp;gt;

=
(a

2
cos &&amp;gt; ) (1 + cos a&amp;gt;

).

And writing for k, 3
mm

378, the experimental thickness of a drop of mercury of

radius J-WT*, * a temperature 12 8C., as found by Gay-Lussac, he obtains

(3 378)
s
cos w = a2

cos &&amp;gt; (1 + cos a/)
= 4 5746 (1 + cos a&amp;gt;

),

which gives cos &&amp;gt;

= cos 48 nearly, or o&amp;gt;
= 48 nearly, and a

2
cos = a* cos 48 = 4 5746

now gives a or A/
- = 2mm G146.

In the next place the term --
only is neglected, because it is insensible :

1 = 1 + 0/2-1) a = 50 + 1-083 = 51-083
;
and &=3mm

378.

Substituting in (o), &&amp;gt; is found to be 45 30
,
which gives by the help of the

equation a* cos a/ = 4 5746, a
2
or - = 6 5262 square millimetres, and a or A/- = 2

mm
5547.

Avogadro
b made numerous experiments to clear up some doubtful points relative

to capillary action. He carefully examined how far any air or moisture commonly

supposed to adhere to the interior of glass tubes might affect the depression of

mercury. With this object in view, he exhausted the air, and heated the glass tube

when the mercury was not in contact with it, and he found that the depression of

the mercury in the tube was precisely the same after as it was before these pre
cautions were taken.

In order however to determine the capillary constant a2
or -

, for mercury, he

made use of a tube of copper 20nun

long, and 2&quot;&quot; 80 in diameter , well amalgamated

NouvelU TMorit, p. 217. b Accad . pig . e MaL TorinOj T&amp;gt; 40 (1836)
Ibid. p. 221.
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in the interior, and found it to be 5 5G square millimetres*, and, therefore, a or

A / - = 2
mm

-357. Then substituting this value of a
z
in Poisson s

b formula

and making 7i = 4mtn-69, a = radius of tube = Omm-9525, according to Gay-Lussac s ex

periment, he obtained b = cos &&amp;gt;

= 8440 or w = 32-5 c = (180
- 147 5) nearly, instead

of 45 5 given by Poisson.

Substituting these two values a
2 = 5 5G and = 32 5 in Poisson s expression (o),

for the theoretical thickness of a large drop of mercury quoted above, he obtains

3 mm&amp;gt;235 instead of the measured thickness 3mm&amp;lt;

378. Upon this he remarks that the

smallness of this difference which corresponds to considerable differences in the values

of a2 and of cos &/, shews that this observation was little adapted to give, by its

combination with the depression of mercury in capillary tubes, exact values of these

quantities.

Avogadro then determined to measure the depression of mercury in a capillary

tube, so that he might obtain a value of a/ determined entirely from his own ex

periments. His glass tube had a radius of Omm 80 d
. He adopted a depression of

5
mm

-125, that being the mean of a great number of careful observations. The tempera

ture was between 10 C. and 14 G. This depression is rather less than that found by

Gay-Lussac quoted above, when allowance is made for difference in the radii of the

tubes with which they experimented. Substituting as before he finds

= 40 21 = (180
- 1 39 39 ).

In the next place Avogadro substitutes the value of cos&&amp;gt; just found = 07G21

and a2
=5-56, in Poisson s formula (o) quoted above, and finds 3mm&amp;gt;154 for the thick

ness of a large drop of mercury instead of Gay-Lussac s measured thickness 3 378.

Desains 6 has deduced from Danger s experiments
f a2

or - = 67144, which gives

a or /l = 2
mm

-5912 and &&amp;gt;

= 37 52 33&quot;
= (180

- 142 7 27&quot;),
which values appeared

V a

to satisfy best the whole of the experiments. He states however that for different

sorts of mercury a or ^ varied from 2
mm 55 to 2

nim
-61, and from 38 to 4.5

or from (180 -142) to (180*
-

135). Desains also obtained from experiments with

large drops of mercury a or ^ = 2-621 and - 41 36 30&quot;=(180-138 23
30&quot;).

Still more recently Quincke has made very numerous experiments with a view

to determine the capillary constants for a variety of fluids, and al

a P 221
&quot; P &quot; 227

^ ,, vi - 117
e Ann. de Ch. Ph. [3] T. u. (1857).

f
W
fI! ;;:;

P
p ^3 f Ann. de CH. Pk. [3] T. p. 501.

c Accad. Jfis. e Mat. p. ^o.

B.



10 EXPERIMENTAL TESTS OF THEORIES OF CAPILLARY ACTION.

a temperature just above the melting point. He found that the values of a or

decreased for the same drop of mercury
a

, according to the time it had stood in

position. He also found that varied from 38 to 45ob
,

or from (180
- 142) to

(180
-

135). But other results were obtained far beyond these limits. For the

mean value of a or J^ he adopted 2&quot;

in
&quot;8

c
,
and some of his experiments gave as

* a

high a value as 2
mm

9, both of which differ considerably from the previously .received

value 2 -6.

In 18G8-9 Quincke published
11 the results of some experiments made to deter

mine the capillary constants at the common surfaces of two fluids incapable of

mixing. In this case he pursued methods of experimenting in some respects similar

to those I had suggested in my application to the Koyal Society in 1855. But

the value of Quincke s results is very much diminished by the manner in which

he carried out his experiments, and by his mode of determining the theoretical

forms of sessile drops of fluid. Thus Quincke s method requires the measurement,

with great precision, of the height of the vertex of a large drop above/ the largest

horizontal section of the drop. But in my experiments I have found that only a

rough approximation to this quantity can be obtained directly by the most careful

measurement. The theoretical forms of Quincke are much the same as those of

ner, for in the calculations of both, one of the two principal radii of curvature

is supposed to be infinite. There is also a further objection to the use of large

drops of fluid, which Quincke s methods of calculation necessitated, because they

change their form slowly when a change in their volume is made. But only a

slight change in the volume of a small drop will give a marked change in its form.

The favourite method of testing the theories of capillary action has been by
tin.- measurements of the heights to which fluids rise in capillary tubes. In cases

where the fluid wets the solid, there is only one constant, a, to be determined, as

the angle &&amp;gt;
= 0. But experiments of this kind are very liable to be vitiated by

irregularities in the bore of the tubes, or by impurities adhering to the inner
surface of fine tubes, which do not admit of being cleaned. The layer of fluid

which lines the tubes must make a sensible reduction in the radii of the finer

upillary tubes. And the theoretical expressions for the height of the fluids in
these tubes are approximations which are not strictly applicable to tubes of large
diameter used in experiments of this kind.

Some recent writers on capillary action have disputed the correctness of the
arrived at by the earlier experimenters. Thus Simon 6 has concluded from
5 experiments of his own that the elevation of water in capillary tubes is

ery far from varying inversely as their diameters, and that the height to which
ter rises between parallel plates compared with that which takes place in tubes

being as 1 : 2, is as 1 : 3, or rather as 1 to TT.

r- Ann. Bd. cv., p. 35 (1858). a
Pogg .^ Bd . CXXXIX

Ann. de Ch. Ph. [3] T. xxxvm. (1851).
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Bede a comes to the conclusion that the depression of mercury and the elevation
of water in glass tubes do not respectively vary inversely as the diameters of the
tubes exactly, and that the thickness of the substance of the tubes has a sensible

effect, or, in other words, that the molecular attractions are not insensible at sensible

distances.

Wolf b afterwards concluded from his experiments that the elevation of the same
fluid in capillary tubes, all circumstances being alike in other respects, depends

upon the nature of the tube.

Laplace and Poisson considered that the only effect of a change of temperature
was to change the elevation of a capillary column according to the change in density.

Thus Laplace
c

says &quot;L elevation d un fluide qui mouille exactement les parois d un
&quot; tube capillaire, est, a diverses temperatures, en raison directe de la density du
&quot;

fluide, et en raison inverse du diametre interieur du tube.&quot; And Poisson d obtains

for the elevation (h) of a fluid in a capillary tube of radius a

Rr dr.

He then supposes that by a change of temperature h, p and R are respectively

changed into h
, p and R , neglecting the change in a. And having found T-=- he

remarks &quot; L expeVience montre, en effet, que pour un meme liquide a differentes

&quot;temperatures,
Felevation du point C croit proportionellement a la densite^ ce qui

&quot; donne lieu de croire que la force repulsive de la chaleur, ou du moins, sa

&quot;

variation, que nous avons negligee, n a qu une influence insensible sur 1 integrale

Very careful experiments have been carried out by Frankenheim and Sondhauss,

and afterwards by Brunner, to determine how far the height of the capillary column

depends upon the temperature. Frankenheim 6 found that the height to which

water rises in a capillary tube l
mm

in radius at a temperature t C. is

15
ram -33G- 0-0275U - 000014 2 between -2 5 and 93-4C.,

and Brunner f
. finds it to be

15mm -33215 -0028G396* from to 82 C.

Hence it appears that the elevation of fluids decreases with an increase of

temperature much more rapidly than would be expected according

of Laplace and Poisson.

In the foregoing sketch of the progress of experiments made to determine

capillary constants I have given attention chiefly to those where mercury was

Savans Etr. Brux. T. xxv. (1853).

Ann. de Ch. Ph. [3] T. XLIX.

Supp. Th. de VAction Capillaire, p. 39.

d Nouvelle TMorie, p. 106.

Pogg. Ann. Bd. LXXII. (1847).

f
Disquisitio Phys. Exp., p. 34, 35 (1846).

22
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the fluid employed. Every experimenter finds that changes of form are constantly

going on in capillary surfaces from one cause or another. Still something more

definite is desirable in the results. But as the experiments have been conducted

apparently with every precaution, it does not appear probable that any new experi

ments of the same kind would lead to better results. When &&amp;gt; is determined by

reflection its value must be obtained for a point at a short distance from the

junction of the solid and fluid surfaces. The experiments on the thicknesses of

large drops of fluid are not satisfactory because the theoretical expression is not

exact, and because the thickness of the drop varies so slowly in large drops. Also

the approximate theoretical thickness is given in terms of two unknown quantities

a and to.

During the time when I was able to use the Cambridge University Library,

I made copious extracts from numerous papers on this subject, but it does not

appear necessary for me to allude further to them in this place, especially as the

late Professor Challis has published a very good and elaborate report on Capillary
Action*. For numerous references to the works of early writers on the subject,

reference may be made to the articles
&quot;

Capillaritat,&quot; &quot;Cohasion&quot; and
&quot;Tropfen&quot;

in

Gehler s Physikalisches Worterbuch. Recent experiments will be found referred to

in Fortschritte der Physik 1845, &c. and in Jahresbericht, 1847, &c. von Liebig,

Kopp, u. Will. See also the article on Capillary Action in the 9th edition of the

Encyclopaedia Britannica by the late Professor Clerk Maxwell.

Brit. Ass. Report, 1834.



CHAPTER III.

ON THE CALCULATION OF THE THEORETICAL FORMS OF DROPS OF

FLUID, UNDER THE INFLUENCE OF CAPILLARY ACTION, WHEN SUCH DROPS

ARE BOUNDED BY SURFACES OF REVOLUTION WHICH MEET THEIR RESPECTIVE

AXES AT RIGHT ANGLES.

WE have already stated that various methods of obtaining the differential equa
tion to the surface of fluid under the action of capillary forces have been given by

Laplace and other writers on Capillary Action. The form of the equation obtained by

these different methods is, however, in all cases the same.

Perhaps the simplest way of obtaining the equation in question is to consider

the fluid to be in equilibrium under the action of gravity and of a uniform surface

tension.

Let T be this uniform tension, R and R the principal radii of curvature at

any point of the surface of the fluid, p the fluid pressure at that point.

1 1 pThen R + R ~T
If z be the vertical coordinate of the point measured downwards, &amp;lt;r the density

of the fluid, and g the force of gravity, then

p = gcrz + C, where C is a constant.

When two different fluids are separated by the capillary surface, p is the dif

ference of the pressures in the two fluids at their point of meeting, and &amp;lt;r is the

difference of the densities of the fluids.

When a drop rests upon or hangs from a horizontal plane surface, the remaining

surface of the drop being free, this free surface will evidently be one of revolution

about a vertical axis, and it will meet the axis at right angles.

Take the axis of revolution as the axis of z, and the point in which it meets

the free surface as the origin.
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Let x be the horizontal and z the vertical coordinate of any point in a

meridional section of the surface of the fluid, p the radius of curvature of the

meridional section at that point, and
(f&amp;gt;

the angle which the normal to the surface

makes with the axis of revolution.

Then the length of the normal terminated by the axis is , and we have
sin

&amp;lt;f&amp;gt;

mm ijf j.v . .

sin

and the above found equation becomes

1 sin
&amp;lt;f&amp;gt; _ C+ gcrz

p x ~~T~

Let 6 be the radius of curvature at the origin, so that at that point we
have both

p
=

b, and limit \-^~.r )=6,
Vsm

&amp;lt;f&amp;gt;J

Hence _=_ Wh

and the equation becomes

1
,
sin 6 2 flfo-

1 E = _ _1_ y_ .

p x b
^ T

J
+

ir2+y ^-

y-
be called ft which is an abstract number. Also let , be the length ofo
^ IlCriCllOIicU S6CL1OI1 TnpnQnT*Arl ff/\&amp;gt;v- 4-T-

&quot;

i

L wnsideratio
the onSin and terminated at the

Then jn

&amp;lt;

=
/a cos

dz = p sin

, =

For the sake of s implicity , we will^ ,_ ,_ f ^ .^^ ^ f .
?

o b b
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which amounts to taking the quantity b as the unit of length, and we may at anytime re-introduce the quantity b by writing

x z p s .

b b 6
a

6
lnsteac* f x

&amp;gt;

z
&amp;gt; P an(J *

Thus simplified, our equation becomes

p

Also when
&amp;lt;

=
0, we have z = 0, p = 1 and limit

(

*
)
=

1, hence the form of the
\siu

&amp;lt;p/

curve depends on the single parameter . The magnitude of the curve, or its scale,
is proportional to b.

The same equation is applicable to the case of hanging drops, but in that case
2 is to be measured upwards from the vertex, and /3 will be negative.

Since _ . . . _ ,

\,dx

dz

and sin rf&amp;gt;
= %L

the above equation is equivalent to

~ + jl + (-} \ -^- = (2 +&z\ jl +dx
{ \dxj } xdx v

(.

a differential equation of the 2nd order. The two arbitrary constants which enter

into the integral of this equation are to be determined by the condition that when x = 0,

z = 0, and r-= 1.
xdx

We are unable either to find the general relation between x and z, by means i

this equation, or to express these two quantities in terms of a third variable.

We may, however, as in all cases where the differential equation to a curve is

given, develope the increments of the coordinates in series proceeding according i&amp;lt;&amp;gt;

ascending powers of the increment of the quantity chosen as the independent varial&amp;gt;l&amp;lt;-.

Thus we can trace a small portion of the curve starting from a known point, and

then we may make the point which terminates this portion a new starting point for

tracing another small portion, and so on successively until any required portion of

the curve has been traced.

For instance, suppose the given equation to be

d2u ,. (dy \

-j-y
= j I -7 , y, tj,

where / denotes any function of the quantities H , y and t.

at
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Then by repeated differentiations of this equation,
and by substitution of the

value of ^ in the successive results, we may find the general values of the higher

rfr

differential coefficients

Jf W
in terms of

-J*.,
y and t.

Hence if, for a given value t.
of t,

we know that

y = y and -]-
=
[-2 ]

, suppose,

we can find the values of ^ and the higher differential coefficients of y, which corre

spond to t = t .

/d*y\ fd*u\ n

Let these values be denoted by H^J , ^J ,
&e.

Therefore if
t,
= t + Bt ,

and if yl
and

t-j)
be the values of y and ^ which

correspond to t = t
lt
we have by Taylor s theorem

The increment & must be taken so small as to render these series convergent.

The values of y^ and
( -j- ) being thus known, we may find

(
-A

) , (-^} , &c., by
vflc/j \dt J

l \ut /j

the same formulae as before
;
and then if

Hiid if yt
and

f-^J
be the values of y and

-JJ
which correspond to =

&amp;lt;

x ,
we may simi

larly find yt and f

-^-J
, and the same process may be repeated as often as we please.

^

A similar process may be employed if we have any number of simultaneous
ifferential equations, and the same number of dependent variables, such as, for

instance, the following:

dx

%-/(*, y, t),



CALCULATION OF FORMS OF DROPS. 17

The method fails if any of the differential coefficients employed become infinite

in the interval over which the integrations extend, and therefore the independent
variable should be so chosen that no infinite or very large values of the differential

coefficients will be introduced.

The intervals adopted should be so small that a few of the terms of the series

will suffice to give the results with all the accuracy that is desired.

After a few points of the curve, in the neighbourhood of the starting point,

have been determined by the foregoing or some equivalent method, it will usually

be found more convenient to determine other points of the curve in succession by

making use of a series of successive values of the differential coefficient which is

given immediately by the differential equation, rather than by employing the values

of the successive differential coefficients of higher orders which are found by means

of the several derived equations.

To fix the ideas we will suppose, with especial reference to our present problem,

that the given differential equation is one of the first order, say

dy / / ,\

J=-/&).
Let ...

_,, t_z , t_y t_lt
t ,

t
lt

&c. be a series of values of the independent variable

t, forming an arithmetical progression with the common difference w.

Let . .. y y y_3 &amp;gt; y,y y^t y& y^ &amp;lt;^c *

denote the corresponding values of y, and let

be the corresponding values of q, or of -~
,

and suppose a&amp;gt; to be so small that the successive differences of these values of q

soon become small enough to be neglected.

Let t = t + nw,

and suppose that we have already found the values of

2/-4 y~s&amp;gt; y~v y~i UP ^ y*

and therefore also those of ... g_4 ,. q_ z&amp;gt; ?_2 , ?_t up to q ,

and that the successive differences of these quantities are taken according to the

following scheme :

n q

-4 q_t

_3 q 3 AY2
... &c.

A?_2
A ?_t

2 o A q A qQ
&c.

A&amp;lt;7_i

A3

&amp;lt;7

1
&amp;lt;?_!

A2

ft

q
.j

B.
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Then the general value of q found by the ordinary formula of interpolation,

for any value of n, will be

provided that n be taken between limits for which this series remains convergent.

Hence the general value of y will be

y = fadt
= a) fydn,

or, substituting the above value of q,
and adding a constant to the integral so as

to make y=y when =0,

where all the integrals are supposed to vanish when n = 0.

If, in particular,
we put rc = 1, and substitute the several values of the

definite integrals

we shall have, by changing the signs throughout,

1 A 1 , 1 19 . 3 A5 863

_ &c__
24192 3628800 1036800

Similarly, putting n = 1 and substituting the values of the definite integrals

f
l

n(n + l)j /

1

n(r + l)(n + 2) J

J T^~ **
J

-
1.2.3

~ dn
&amp;gt;

&C &quot;

we shall have

5257 ,17()017 A 8 2082753
|

**
17280 ^ +

3628800 ^ + 7257600 q + C

\

It will usually be found expedient to choose o&amp;gt; so small as to render it unnecessary
to proceed beyond the fourth order of differences.

The series last found gives the value of yl
in terms of quantities which are

supposed to be already known, that is, the value of the variable y which was
tously known for values of the independent variable extendino- as far as t = t

now becomes known for the value t = t +
&amp;lt;o,

or at the end of an additional interval a&amp;gt;
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It will be remarked, however, that the coefficients of the series above found

for y y_ l}
after the first two terms, are much smaller and diminish much more

rapidly than the corresponding coefficients of the series for yl y . Hence by taking
into account the same number of terms of the series in the two cases, the value

of y y_j will be determined with much greater accuracy than that of y^ y .

In what has gone before, the successive values of y up to y are supposed to

be already known, and therefore the equation which gives the value of y y_ t may
be regarded as merely supplying a verification of former work. If, however, we

suppose that the value of y is only approximately known, while the successive values

as far as y_v
have been found with the degree of accuracy desired, we may use the

equation for y y_^ to give the corrected value of y ,
in the following manner.

Suppose that (y ) is an approximate value of y ,
and let y = 0/o)+ 7

?&amp;gt;

where 77 is

so small that its square may be neglected.

Also let
(&amp;lt;? ) be the corresponding approximate value of q found from the equation

by putting y = (ya]
and t = t .

Then we may put q
=

(&amp;lt;? ) + krj,

where k denotes the value of the partial differential coefficient ~ or
, found

dy dy

by substituting (T/O)
for y and t for t after the differentiation.

Let A(g ), A2

(^ ),
A3

(g ), A4

(q ), &c. denote the values of the successive dif

ferences formed with the approximate value (g ) and the known values q_v q_v &c.

which immediately precede it, then we have

A=A + *

&c. = &c.

But, by the equation before obtained,

-
\ A?o

- ^ ^\~ 21
AS?o

-
720

A*?o
~

leo^ &quot;

60480

275 A7 33953_ .* 8183 , _ &
)

92 q
~
3628800 q 1036800

&quot;

j

Or, substituting for yol qa, A^ ,
A 2

^, &c. their values in terms of r, and known

quantities,

II l 19
c I

-2~i2&quot;24~726~

32
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Hence if e denote the excess of the quantity

-&c
12&quot;

w/ 24
-

over the quantity (yj-y.v we shall have

,111 J9.-&C~
2
~

12 24 720

e

w h_l_l_JL- 19--&c

which detennines 77,
and therefore y =

(#o) + 7
?&amp;gt;

and ?o
=

(&amp;lt;?o)
+^ both become known.

If in finding e we stop at the term involving A4

(q ),
we shall have

and

251

ke

i
251 k^m^

It will be observed that the coefficient of a&amp;gt;k in the denominator of these

expressions is the same as that of A4

(?
in the expression for y l ya

.

This is no mere coincidence, as it is easy to shew that, generally, the coefficient

of any term &)A
r

^ ,

in the expression for yl yv is equal to the sum of the coefficients of the terms

involving

coq , a&amp;gt;bq , aA*j ,
&c. . . . a&amp;gt;Ar

^

in the expression for y y_^

Hence if in finding e we also include the term involving A5

(fl ),
we shall similarly

have

e

17
=

95

and
95

An approximate value of y may always be found from the series of values

y-v y.v 2/-t. y_, previously calculated, by taking the successive differences of four
or five of the last terms of the series, and assuming that the last difference so
found remains constant.
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The numerical operations will be greatly facilitated by the use of Tables which
exhibit the values of

19
4

3 .
5 8G3

720 160 60480
&quot;

for given values of A4

g, A5

&amp;lt;?,

A6

&amp;lt;?,

&c.

Such Tables have been formed by Mr Bashforth for this purpose, and are given
at the end of this Chapter.

Having made these preliminary observations on the general method of finding
successive small portions of a curve by means of its differential equation, we will

now proceed to apply the method to the problem under consideration, viz. to the

tracing of the curve formed by a meridional section of a drop of fluid, by means
of the equation above found

1 sin &amp;lt;b

- + -- =2 + &z.
p x

First, suppose &amp;lt; to be taken as the independent variable.

The above equation may be regarded as giving p as a function of the co

ordinates x and z, and these latter quantities are to be found by the integration

of the equations

dx

dz

Also x and z vanish with
&amp;lt;,

and p is initially
= 1.

We will first find the form of the curve in the neighbourhood of the origin

by developing p and the coordinates x and z in series of ascending powers of
&amp;lt;/&amp;gt;.

Instead of employing the general method described at the outset, it will be

found more convenient, in this particular case, to proceed as follows :

Assume, as we evidently may do,

p
= 1 + Itf + btf + bjt + M&amp;gt;&quot;

+

where &
2 ,

lv &c. are constants to be determined, then

dx -,
1 , , _!__ A*
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Substitute the assumed value of p and integrate, therefore

155 *
-

&amp;lt;wVo
* +

*&quot;

-

-

+ &c, &c.

Similarly

and therefore

+ *c., &c.

Also, we find

-
(V - 46A ,

&amp;gt;

_ _
ftA +
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sin $ /sn
Also

&quot;

and

and from above

+ JPr/ i\rr*
cvC.j vx\-

Hence, by performing
the division indicated, we may find

+ &c., &c.

Substitute these expressions
in the equation

x
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and equate the coefficients of corresponding powers of
&amp;lt;/&amp;gt;,

and we shall find successively

b- /j /j._
5760

p
128

p
9216

l

6799--
8960 18432

&quot;&quot;

92160 81920 Pl

= _ __ J_ 1469

14515200
p ^

36288
p

442368
p

104513 4 _ 4882031

5529600
p

88473600
^

which gives the value of p in terms of
&amp;lt;f&amp;gt;,

as far as &amp;lt;

10
.

Again, substituting these values of b
t , 1

4 , &c., in the expressions for -
, x and *,

we shall obtain
^

--R__?Lfl- 401
ff

8431
8960 P 30720 p 92160 P

~
737280

/_233_ 17 1517
U4515200 P 725760 p f

2211840^

7409
ff ,522091

2764800
P *

88473600
to the 10th order in

WNW*^
&quot;

(39916800 145IT200

- 443821
22118400 88473600

to the llth order, and
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V40320

49 67,,,+ 7Q70Q P 9

-C

3628800 241920 ^ 184320
H

691 200
p

819200

1 269 7993
35j&amp;gt;J_

n
~

i 7/1,1 Qf&amp;gt;A.(\i\
r i oao* rnoA P ~OAO 41^^479001600 174182400^ 139345920^ 5308416

724007 4 4882031

265420800 P 1061683200
P

to the 12th order.

It is hardly necessary to remark that in these expressions the coefficient of each

power of
&amp;lt;f&amp;gt;

thus found is exact, and not merely approximate.

Also if s denote the length of the arc of the curve measured from the origin,

1
3 (

1 1

53- --
80640 165888 829440 737280

233 _1_**, _1469 *s, 104513
P p ^ p r

+ - - If] &amp;lt;f&amp;gt;&quot;
1 t i c i A n &quot;

/ /\ r\
&quot;

I

V159667200^ 399168^ &quot;4866048^ 60825600

443821

88473600

to the llth order in &amp;lt;.

In order that the terms in these series which involve higher powers of
&amp;lt;j&amp;gt;
may be

insignificant, $ must not exceed a certain limiting value which will, of course, depend

on the value of 8. The larger the value of j3, the smaller will be this limitingO

value of
(f).

To find the values of the coordinates for larger values of 9, we must proceed

step by step according to the method described above, 9 being taken for t, and x

and z in turn taken for y, the value of 9 being increased at each step by a given
*l

small quantity.

9 Let o&amp;gt; be the circular measure of the interval between two consecutive values of

9, then must be so chosen that the series above found will give sufficiently accurate

values of the coordinates throughout several, say four or five such intervals.

Suppose ...9_5 , 9_4 , 9_3 , 9-2 &amp;gt; 9-!- 9o to be a series of consecutive values of 9, with

the common difference
&&amp;gt;,

and let

B.
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be the corresponding
values of the coordinates, and

...p-*, P-4, P-S P-*&amp;gt; P-*&amp;gt; P

the corresponding
radii of curvature.

The equations
to be integrated are

dx ,

-=pcos^

dz .
,-=psm^

1 sin0 _
b&amp;gt; Qwhere

- + - - z f p*.
jj *&amp;gt;u

Suppose that the values of the coordinates, and consequently those of the radius

of curvature, have been calculated for the successive values of up to $_ and we

wish to fiud the values of the same quantities for &amp;lt;

=
&amp;lt;

In the first place, we may obtain an approximate value of p in the following

manner.

Tabulate the calculated values of logp, and form their successive differences

according to the following scheme:

log p b

Alogp_ 4

Alogp_3
A3

logp_.
A2

logp_2
A \ogp_,

Alog/3_2 AMogp.,
logp_ A 2

log p.,
A log p_,

logP-,

If o&amp;gt; is taken sufficiently small, the differences as we proceed to higher orders

will rapidly diminish, and it will generally be easy by inspection of the two or three

last calculated fourth differences, to fix upon an approximate value of the fourth

A*logp immediately succeeding.

Call this approximate value A4

log(p ), and by successive additions form A3

log(p ),

A*log(/&amp;gt; ), Alog(/j ) and Iog(p ), thus

_t

A logp.,

Alogp_, A3

log(p )

AMog(p )

Alog(p )
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Form the values of

...cfo_5 , dx^, dx_s , dx_3 , dx_v

dz-5 , dz_4 , dz_3 , dz_2 , dz_v

and of their successive differences, according to the following scheme :

cos 0_5
= dx_

cos
&amp;lt;_4

= dx

cos
&amp;lt;_3

=
rf^.

cos
&amp;lt;/&amp;gt;_2

=
c?^_

cos
&amp;gt;_

= dx

and

sn _5
=

_

sin $_4
=

yp_3
sin

&amp;lt;_3
=

rf^_

w/D_2 sin &amp;lt;_2
= c?^

2
c^

Aefc.,

ty/j^j
sin

&amp;lt;^&amp;gt;_ t
=

c?^_j

If p were known, we might similarly form

dx =
cop cos^ and dz =

(ap sin
,

and the successive differences

,
A 4

c?a;
, &c.,

, AV , &c.,

and then we should have, by what has been already proved,

^o
~

#-1
= d3co

~
g

Arf;r
o
~

J2
^dx ~~

24
A3^ ~

720

1 1 1 19
and z -

z_ t
= dz -

^
Mz - AV* -^

3

and when X
Q
and z had thus been found, we should have the equation

/ o
xo

in verification of the value which had been used for p .

42
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Now, let (dr.) and (dz ) be approximate
values of dx and dz respectively, given by

(d-x )
= ca (PO) cos

&amp;lt;f)
,

(dzt)
=

&amp;lt; (po) sin fa,

and let the successive differences found by employing (dxj instead of dxv and (c

instead of dz ,
be denoted by

Hi HI \*&quot;0 J \0 \ O/

respectively, and suppose that (a; )
and (a )

are given by the equations

00 -
*_,

= (dx )
-
\
A (^ )

-1 A2

(ete.)
-^ As

(^ )
-^ A4

(^ )
-

&c.,

() -
.,
=

(dz )
-

\
A (efe )

-
^ A2

(& )
- i A3

(dz )
-
WQ A4

(dz ]
- &c.

Also let [p ] be found from the equation

and suppose that this gives [p ]
=

(p ) (1 -f e),

where e is a very small known quantity.

Then if the true value of p
=

(p9) (1 + ??), the correction of the value of (efo ),

and therefore also that of the values of A (dx^, A 2

(dx \ A3

(dx \ A4

(dz? ), &c. will be

rja) (p ) cos
^&amp;gt;

,

and the correction of the values of (dz ),
A (dz ), A

2

(c?^ ),
A3

(c/^ ), A
4

(da,,), &c. will be

&amp;lt;7&amp;gt; (Po) sin 0o-

Hence if we stop at the terms which involve differences of the 4th order, we
shall have

. , 251
#o
-

(*) = ^ (Po) cos fa

and

Hence, since 1 +
8

and

we find

251

72l)
^ ^ s^u ^

I 7~~y^
+ &

I

neai ly
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but

)̂(
1 -^nearly,

and _L = JL
(1
_

e) nearl

Hence T~\ [e ??]
=

R^TJ ^w (PO) s in $o ^
? + $ nearly,

and therefore
77
= - _ -

, nearly.

Hence 77 is found, and therefore the values of x and z , which were required,
become known.

In practice, the following slight modification of the above process will be found
convenient.

Suppose the assumed value of Iog(/o ) to be increased by 100 units of the last

place of decimals employed, then while calculating the values of (dx \ (dz ), (x ),

(z )
and the consequent value of [p ],

note at the side of the work, the changes
which would be severally caused in each of these quantities by such an augmen
tation of log (p ). It may be remarked that the changes in (# ) and (z ) will be

251
times the changes in (dxQ) and (dz ) respectively, when we stop at terms

251
involving A4

,
and that ^^ may be conveniently put under the form

Now suppose that an increase of 100 units in
log(/&amp;gt; ) causes a diminution of

//,
units in log [p ], and that the excess of log[/3 ]

above log (p )
is X of the same

units, then the correction to be applied to the assumed value log(/? )
will be

100
X - - such units,

100 +
JJL

and the correction to the value of log [p ]
will be

^ such units,
100

and the proportionate changes required in the values of (da- ), (dz ), (a- ) and (ZQ)

will be at once found.

If in findino- fa;) and (z) we include the terms which involve differences of
O \ \ O/

the 5th order, the fraction \ ,
which occurs in the above, should be replaced by

720
95

288 3 V 96,

We may, of course, change the value of to whenever the more or less rapid

rate of diminution of the successive differences shews that it is expedient to increase

or diminish the interval. It is only necessary, by selection from or interpolation

between the values already calculated, to find the coordinates for a few val

separated from each other by the newly chosen interval.
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This circumstance makes it necessary, when /3 is negative, to choose a different

independent variable.

Suppose now that s, the length of the arc measured from the vertex, is taken

as the independent variable.

The equations to be integrated are

d&amp;lt;b
= -

ds,
P

dx = cos
cf) ds,

dz = sin
&amp;lt;j)

ds,

where the value of - in terms of x, z and &amp;lt;
is given, as before, by the equation

1 sin &amp;lt;f&amp;gt;

p x

Also to determine the constants of integration, we have, when s = 0,

05=0, z = Q,
&amp;lt;/&amp;gt;

= 0, and - = 1.

We must first find the form of the curve in the neighbourhood of the vertex,

by developing &amp;lt;,
x and z in series of ascending powers of s.

We have already found s as well as as and z in series of ascending powers of
&amp;lt;/&amp;gt;,

and by means of Lagrange s theorem it is easy to transform these series so as to

obtain the required series in powers of s.

From the expression of s in terms of
&amp;lt;f&amp;gt;,

we find by transposition,

8+ 5S 2011
P -

80640 165888 829440 737280

233 _J__*, 1469_fl.+ 104513 g ,

I

&quot; P p p &quot;^ p T___ _
59667200

P
399168

p 4866048
p &quot;^

60825600
p T

88473600

- &c.,

or
&amp;lt;f)

= s +
F(&amp;lt;j&amp;gt;), suppose,

which is in the proper form for the application of Lagrange s theorem.

Hence, we have
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fl 1* fs Z
Also if in the values of x, z, -j-r ,

-,- in terras of 6, we change &amp;lt;h into s. and
dtp cLcp

denote the results by

f ,
f

. (dx\ ,

(), (.),
(^j

and

we have, by the same theorem,

In this way, we obtain

487 _
80(J40 5806080 5806080 737280

/J^3_ 7 17539 271 1 \
r
V159er67200

p T
2851200 p

r
851558400 p 47308800

p r
88473600

P
/

+ &c., &amp;lt;fec.

_X ~ S

1
Q + JL a* Z_^

fc80
P

725760
p 82944 p )362880 4480 725760

.s, n
s
u

p p39916800 118800 319334400 15966720 2703360

&c., &c.

2 T^O T l ,- , ~T * /&amp;lt; I O T I

fv~{\(\

_-. ____ -
40320 64512 107520 73728

, (
i __19 *,_!i8i9 ^_^ + .

3028800 403200
P +

58060800
P

7257600
p r

7372800

,
1 _2477_ 2917 2 1264267

479001600 1916006400
P

121651200
p 30656102400^

42137 &, 1
P +

68124672UO
M

1061683200

-f &c., &c.

B.
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Also, we have

1
_d&amp;lt;f&amp;gt;

p ds

I 629 487 -_p _
645120 045120 81920

,/_233_ 7 17539 271 11 ^ 10

V14515200
p

259200
p

77414400
p

4300800 P 88473600
p

J

+ &c., &c.

As before, it may be remarked that the coefficient of each power of .9 thus

found is exact, and not merely approximate.

We may also find these series for
&amp;lt;f&amp;gt;,

x and z in terms of s independently, in

the following manner :

Assume, as we evidently may do,

- = 1 + c/ + c/ + c/ + c/ + c
10

.s

10 + &c.,

therefore &amp;lt;

= I
-- = s + - c/ + ^ c/ + ^ c/ + - c/ + -- c

10
s&quot; + &c.,

since &amp;lt; and s vanish together.

Hence we may find

cos (b = i - s

(
1 1 JL

V40320
~

360 2 + 36 2 30 4 15 7

i i _ _

3028800 mlO 2 432 2 162 2 600 4
~
30 *

50 4 ~42 C6+ 21

1,11 1

&c., &c.,

and

/I 1 \ .
. / 1 1

2160
~
2 108 2 162 2 120

&quot;

4 15 24 14
&quot;

G

/ 1_ _1_ _1_ 2 _ 1 1 _1
V399168UO 120960 2160 324

c
* + 3600 4 90^

JL .A _J J_ JL J_+
90 2 f4 +

50
4

168 Cs + 21
CA +

18 8 11
^
10

&c., &c.
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And therefore

&quot; C
,362880 3240 2 324 270 &quot;

~
1735

&quot;

63 (

/__1_ 1 JL_ 2 1 J^ J^
V39916SOO 166320 2 + 4752

c
* 1782 2 + 6600 4 330

550 *~ 462

+ &c., &c.,

and

1 . /I 1 N
, / 1 1 I

=2 a
124- 12

C
&amp;gt; +(720-36

C^30

V40320

/ 1_ __ _ ^
V3628800 21600 Z 1080 2 f620 2 1200 4 150

--
140 Ca

/_1_ J_ 1
2 _ 1

8 1_
V479001600 1451520 2 25920 Ca 3888

C
* + 43200 4

_ 2 _ 2 __ _
1080^ 4

1080 2
C* + 600 4 2016 6 152

_L 1
+
216

C
&quot;

~
132

C

+ &c., &c.

Hence, we may find by division

4 8 41
2 52 2 16 172

4725 2
~
14175 *

~
567 2

~
4725

4
&quot;

4725 63 6 9

4 32 2 __532 3 __52_ J^ J^
93555

C ~
66825 ^ 467775 2 155925 4 3465^ 567

24 , 4_ J&amp;gt;96

8 1
( jj,

1925 4 1485
C

10395 C2C(5 2 97 C&amp;gt;!

1 1
10

&quot;

&c., &c.
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Substitute these expressions in the equation

p x

and equate the coefficients of corresponding powers of s, and we shall find successively,

3

c = 8 /9
2
4- ft

3

6 5760
p

1920
p r

9216
p

__p +__ /9.___,Q., o
8 8960

p 645120 p 645120
P r

81920
p :

7539 271_ P +10 P ,3 __ _ _
14515200 259200 77414400 4300800 88473600

which agree with the coefficients of the several powers of s in the value of - which

has been already found in another way.

Also by the substitution of these coefficients in the expressions for x and z

given above, we shall obtain the same values of x and z as those which have been

before found.

By means of the above series, we may determine the values of x, z and $
for given values of s in the neighbourhood of the origin. As in the case where

&amp;lt;/&amp;gt;

was taken as the independent variable, in order that the terms of these series which

involve higher powers of s may be insignificant, s must not exceed a certain

limiting value which will, of course, depend on the value of 8. The larger the

value of 8, the smaller will be this limiting value of s.

In order to find the values of x, z and &amp;lt; for larger values of s, we must

proceed step by step, as in the former case, the value of s being increased at each

step by a given small quantity, suppose.

The interval &&amp;gt; should be so chosen that the series above found will give

sufficiently accurate values of x, z and
&amp;lt;j&amp;gt; throughout several, say four or five such

intervals.

The process to be followed is exactly similar to that explained before, except

that in this case there are three quantities x, z and &amp;lt; to be determined by inte

gration instead of the two x and z.

It is this circumstance only which makes it preferable to employ &amp;lt; as the

independent variable in the case where this method is applicable, viz. when 8 is

a positive quantity.

The present method is equally applicable whether 8 be positive or negative.
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Now, suppose ...s_3 , s_,, s_3 , s_2 , s_lt s to be a series of consecutive values of s,

with the common difference to, and let ...$_5 , &amp;lt;_4 , $_3 , $_2 , t^, &amp;lt;f&amp;gt;

be the correspond

ing values of
&amp;lt;f&amp;gt;,

and

the corresponding values of the coordinates, and

P_5&amp;gt; p_4 , p_3 , p_2 ,

the corresponding radii of curvature.

The equations to be integrated are

&amp;lt;ty = l

ds p

dx

dz
-;- = sm

&amp;lt;b,

ds

1 sin &amp;lt;f&amp;gt;

where - + - - == 2 + /S^.
p a;

Suppose that the values of
&amp;lt;,

x and 0, and consequently also the corresponding
values of the radius of curvature p, are known for the successive values of s up to ._,,

and we wish to find the value of each of these quantities for s = $ .

In the first place, we may obtain an approximate value of in the following
P

manner.

Tabulate the calculated values of -
,
and form their successive differences accord-

P

ing to the following scheme :

P-5 A-i- A3

?-4 A2 P-3
-,

P-* A4 -
P-4 A A3 - p~*

P-s A- ^
T

P-2 A 4^
P- A A3 - ^

P-a A2 - P-i
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If o) is taken sufficiently small, the differences as we proceed to higher orders

will rapidly diminish, and it will generally be easy by inspection of the two or three

last calculated fourth differences to fix upon an approximate value of the fourth

difference A4

immediately succeeding.
Po

Call this approximate value A4

( J
,
so that the approximate is distinguished from

the true value by being inclosed in a parenthesis, and by successive additions form

f l \ \ i l \ i i l \ ^
A&quot;

-

,
A and 1

,
thusW W W

-i L.

A2
- Vo

1 Pi A8/l\r-i A3 -
P-2 A _ Vpo/

Po

Form the values of

... dx_5 , dx_4, dx_3 , dx_2 , dx_^

... dz_,, dz_4 , dz_3 , dz_^, dz_lt

and of their successive differences, according to the following scheme

P-5
w

P-4

w cos
&amp;lt;_5

=

o cos
&amp;lt;_4

=

w cos
&amp;lt;&amp;gt;_

=

&) cos &amp;lt;i
= dx ,

ft) COS _ =
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and

co sin
&amp;lt;&amp;gt;_.

= dz_5
A2

cfe dz

(osm&amp;lt;j&amp;gt;_t
= dz_4 AVz_3

3

A4

cfe_2

co sin
&amp;lt;j)_3

= cfe_3 AV2 . AV*

eo sin
&amp;lt;^&amp;gt;_2

= dz_z

co sin
&amp;lt;_j

=
tfe_j

If -- and
^&amp;gt;

were known, we might similarly form
Po

d(j)
= -

,
dx

Q
= co cos

(f)
and dz

Q
= co sin ^

Po

and the successive differences

A2
&amp;lt;r

,
A3dx

,
A4dx0) &c.,

Afi 7 ^\ ft 7 /\ ft y t\7T*
* _

( !
,

i^
Lv(Vj||

. * f ..
, Utfuaj

and then we should have, by what has been already proved,

A rffc
- A^ - Ay0 -

&c.,

j7 - &c.,

- A^^ - A 2
c^ -

2j
A3^ -

and when &amp;lt;

,
^ and z were thus found, ought to agree with its assumed value,

and the values of
&amp;lt;,

x and z should satisfy the equation

which thus affords a verification of the value which was used for .

Po

Now, let
(d(f&amp;gt; ) be an approximate value of

dcf&amp;gt;
, given by

1

Wo) =

and let the successive differences found by employing (d(j) ) instead of
d&amp;lt;f)

be denoted by

and suppose that
(&amp;lt; ) is given by the equation

1 1 1 in
- - A

(d&amp;lt;p )
--- A 2

(Jc/&amp;gt; )
- 57

_ 1 w - I
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Also, let (dx ) and (dzQ]
be approximate values of dx

Q
and dz respectively, given by

(dx )
= co cos

(&amp;lt; ),

(dz )
=

ft&amp;gt; sin
((/&amp;gt; ),

and let the successive differences found by employing (dx^) instead of dx
,
and (dz )

instead of dz
,
be denoted by

A (dx.\ A ((fe ), A
s

(cfe ),
A4

(fro). &c.,

and A (dz^ t
A2

(&amp;lt;fe ), A8

(ek ),
A4

(d* ), &c., respectively,

and suppose that (a- ) and (z )
are given by the equations

0*o)
-

*-i
= (^o)

-
g
AW -

i 2
AiW -

24 A(^ )
-^ A 4

(^ )
-

&c.,

(^ )
-^ = (^ )

- 1 A ((foc)
- 1 A2

(^ )
- i A3

(^ )
- A4 ^ - &c.

Also let be found from the equation

and suppose that this gives

Vo

where e is a very small known quantity.

Then, if the true value of =( ) + the correction of the value of
(dd&amp;gt;a], and

Po W
therefore also that of the values of A

(d(f&amp;gt; ), A2

(cZ&amp;lt; ),
A 3

(&amp;lt;f&amp;lt;/&amp;gt;
), A

4

(d$ ), &c., will be wrj.

Hence, if we stop at the terms which involve differences of the 4th order, we
shall have

^ /A \
251

9o
~

(9o)
=

251
Wherefore cos

&amp;lt;f&amp;gt;

cos
(^&amp;gt; ) 0)77 sin

251
and sin fa

= sin
(&amp;lt;

) + 0)77 cos

Hence the correction to be applied to the values of
(&amp;lt;fo- ),

A (cLr ),
A2

(cy ),

4

(^ ), &c., will be

251 8 . ,,~
720

w ^ Sm ^ )



CALCULATION OF FORMS OF DROPS. 41

and the correction to be applied to the values of (dzQ},
A (dzu ),

A2

(cb ),
A3

(W2 ),

A4

(Wz ), &c., will be

251
2

72Q o&amp;gt;n
cos

Whence if, as before, we stop at the terms which involve differences of the 4th

order, we shall have
251

sm

, x /25i
*o
-

(*)
=

(

Hence, since

!-+=Po ^o

and
_Po

we find

1 1 ) 251

sin
(cfr ) ff

251

251

or

1 Ml sin
(&amp;lt;

) J/251 y . /. \1_251 cos

Po LPoJ (^o)
2

1\720 / j 720 (a

n+ P
^720 J

^7 cos
(&amp;lt;/&amp;gt; ) ;

but
1 /1\ =

77, by supposition.V/

or

which gives ?;.

Whence the values of ,
&amp;lt;/&amp;gt;

,
.-r and ^ become known.

P
251

If terms involving differences of the 5th order be included, the coefficient

95
in the above expressions must be replaced everywhere by

As in the former case, the following slight modification of the above process will

be found convenient in practice.

B. 6
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Suppose [ ] the assumed value of to be increased by 100 units of the last placeW P

of decimals employed, then while calculating the values of
(d&amp;lt;j&amp;gt; ), (&amp;lt; ), (dx ), (ok ), (# ), (z )

and the consequent value of
,
note at the side of the work the changes which

would be severally caused in each of these quantities by such an augmentation of
[ )
\rO

As before, it may be remarked that if we stop at the terms involving A4
the

251
changes in

(&amp;lt; ), (# )
and (z ) will be j times the changes in

(d&amp;lt;/&amp;gt; ), (dx ) and (dz )

251
respectively, and that

=^-r may be conveniently put under the form

l

12 ^
251

If we also include the terms involving A 5

,
the coefficient ^ must be replaced

95 1
Or -

Now suppose that an increase of 100 units in I
) causes a diminution of u, unitsW

in
,
and that the excess of above

[
1 is X of the same units, then the cor-

LPoJ LPoJ W
rection to be applied to the assumed value

[ ] will beW
100 X

such units.

wi
LPoJ

such units,

100 +

and the correction to the value of -
|

will be
L *

X//.~
100 + yU,

and the proportionate changes required in the values of
(d&amp;lt;/&amp;gt; ), (&amp;lt; ), (dx ), (dzu ), (#)

and (z ) will be at once found.

A numerical example of the method, when s is taken as the independent

variable, is given hereafter.

As before, we may, if it is found convenient, increase or diminish the interval

between the successive values of s.

It may be remarked, as before, that when, by means of the appropriate series,

we have found the values of - - for a sufficient number of small values of s, we can
P

form the corresponding value of
d&amp;lt;j&amp;gt;,

and thence derive the corresponding values of

&amp;lt;j&amp;gt; by integration, and again by means of these we can find the corresponding values

of dx and dz, and thence derive by integration the corresponding values of x and z

without employing the series for those quantities, unless we choose to do so as a

means of verification.
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In the foregoing investigation,
&amp;lt;/&amp;gt;

is supposed to be expressed in the circular

measure, but in order to find cos $ and sin
&amp;lt;/&amp;gt;

from the tables, &amp;lt; must be converted
into degrees, minutes and seconds. This can be readily done by means of special
tables for the purpose.

Or we may, if we choose, express d(f&amp;gt;

at once in seconds by multiplying by
20G2G4-8, the number of seconds in the unit of circular measure, and thence find

the number of seconds in &amp;lt; by integration, without passing through the circular

measure. Thus if
$&quot;

denote the number of seconds in
&amp;lt;/&amp;gt;,

and if 7 denote the

number 20G2G4 S, we shall have

w l j l

a&amp;lt;p

= - 7 as = -
7&&amp;gt;,

where log 7 = 5 3144251.

In conclusion, it may be worth while to say a few words in order to point
out the distinction between the method of integration above explained and that

which is commonly known under the name of &quot;

Integration by Quadratures.&quot; In

this latter method, we have to find y from the equation

where f(t) is a known function of t.

If we regard q as the ordinate of any point of a curve corresponding to the

abscissa t, then y will be the area included between the curve, the axis of t, the

ordinate q, and some fixed ordinate.

In this case the values of q can be found, a priori, for any given values of
t,

whereas in the more general case already treated of, where q is a function of y
as well as of t, the unknown quantities y and q must be found simultaneously,
and therefore we can only proceed step by step.

As the simpler case is included in the more general one, we may, of course,

still employ the same formula of integration that we have already obtained, but it

will be more advantageous to use a slightly different one.

If we denote the successive values of q by

&quot;?,,-2&amp;gt; ?-! In, &C.,

and if the corresponding values of y be denoted by

y-*i y-i&amp;gt; #&amp;gt;
&c

-&amp;gt;

and if, in a notation similar to that already employed, the successive differences of

the quantities q be represented as in the following scheme :

q*~ l
&quot;

3 A 5 A7 A9

Ag^, AV +!
A5

g)1+,

3

AVy,,44

*

A9

gn+

62
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then, as is before proved, we shall have

yn
~~
yn-\

=
fydt between the limits t = t

Q + (n 1) w and t = t
a + nw

I . 1 1 19 . 3 A5 863
g.
- A j.

- A

275 33953

2492 &quot; 8628800

Q

3183

1036800
A

If we transform this series into one which contains only such differences as
;
in the

above scheme, occur in the same horizontal lines as qn
and AyM ,

we shall find

that the coefficients of the successive differences ultimately diminish much more

rapidly than before.

When the differences of higher orders than the 9th are neglected, it is readily

shewn that the above series is equivalent to

191

60480

~
12

191

1209 60
7

q +3

24 72U

2497

3628800

2497 A &amp;lt;, )^ 7257600 ^B+*
;C

J

Similarly, by repeated applications of this formula, we have

y^ ~
Vn-,

=
&amp;lt;

{^i
-
\ A?^

-^ A j. + i A g. + A^,i+1
-

191 6 191
7

60480 ^ t+2 + 120960 ^

&c., &c.

_
3628800

1

+ + 24
A

?&quot;

191 A6 191 2497__ A v/ -I__ A n -I__ \
60480 y &quot;!+4 ^ 120960 ^m+4 3628800

Adding all these equations, and observing that

A + A + &c. + Ar =

&c.

&c.

&c.

_.
7257600

A

11
^m+3

&quot; ^+720

11

1440

2497_ _ _ A n _ &amp;lt;VP I
y &quot; +5

&quot;

&c.

- A
we obtain

n ym = fadt between the limits = t + ?mo and t = t + nca,

24 720
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2497 497 )+
3628800 (A^ ~

A?&amp;lt;7-)
~
7^7666 (A^ &quot; A^ ~ &c

j
in the first line of which expression

9Wi + ?m+a + &c. + qn
-

(qn
-

qm)

may be replaced by

(? + 2.) + &amp;lt;7m+1 + q^ + &c. + gn_r

Also, by substituting for the differences of odd orders in the series for yn y_,
viz. by putting

A
&amp;lt;7= ? -?-!&amp;gt;

A flu-A a^-A fr,

&c. &c.,

we obtain

(2. + (7^)
-

2l (A^-i + A^) +
14-40

(A^+Z + A4^+l)

191 2497

120960 - 7257600 - - ~

and similarly, by substituting for the differences of even orders in the series for

y*-yn &amp;gt;

viz - by putting

&c. &c.,

we obtain

/-i

1 1
c\ t \^^ In I ^&quot;^ /n4-ty I c* A

24 v j m+iy 24

When, by means of the method before explained, we have found a series of

successive values of q,
viz.

&amp;lt;?m . ?&amp;gt;
&c - 9-i. &amp;lt;?&amp;gt;

together with the differences of odd orders which are immediately contiguous to

the horizontal lines through qm and qn , we may advantageously employ the formula

just obtained in verification of the value of yn -ym previously found.
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Weddle s approximate formula for the area of a curve which is divided into

6 portions by 7 given equidistant ordinates*, viz.

has likewise been found to afford a convenient means of verification.

NOTE. In the reference made at the top of p. 31 to Bertrand s paper, the page

referred to should be 208 instead of 185, the latter being the page at which the paper

begins.

EXAMPLE OF THE METHOD, WHEN &amp;lt; IS TAKEN AS THE
INDEPENDENT VARIABLE.

Suppose that j3
=

6, and that the values of x and z, and also that of p, have

been already calculated for values of &amp;lt; at intervals of 2| from to 32^, and

that we wish to find the values of the same quantities for = 35.

Here &&amp;gt;

= the circular measure of 2-|,

= 0-04363323,

log co = 8-6398174.

In the first place calculate a table giving the logarithms of w cos
&amp;lt;,

&&amp;gt; sin
^&amp;gt;

and sin
&amp;lt;f)

for values of
$&amp;gt;

at intervals of 2|. Thus for = 35 the calculation

will be

&) 8-6398174 8-6398174

cos&amp;lt; 9-9133645 sin 97585913

8-5531819 8-3984087

The following is a portion of the table.

TABLE A.

lo w cos log (a) sin log (sin &amp;lt;/&amp;gt;)

30
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Next, collect in a table the values of log p for the successive values of
&amp;lt; up

to $ = 32, and find their differences to the 4th order, thus

logp

TABLE I.

A A* A 3 A4

25

30

2502

1869

1449

1049)
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For
&amp;lt;f&amp;gt;

= 35 the calculation will be

log (p) 97872150

log (&) cos 0) 8-5531819

log 8-3403969

+ 100

(das) -02189762 + 50 3

The change of (dx) in units of the last decimal place, which would be produced

by an increase in log (p) of 100 units in the last decimal, is placed at the side.

Similarly, collect in a table the values of dz = pa sin &amp;lt; for the same values of

0, forming them by means of the logarithms in the 2nd column of Table A. Add
to this table the approximate value of dz for &amp;lt;

= 35, and find the differences, as

before, to the 4th order, thus

dz

TABLE III.

Mz tfdz tfd

22J -01283728 - 13145 + 79
+ 70770 + 1416

25 -01354498 - 11729 68
+ 59041 + 1348

27^ -01413539 - 10381 - 86

+ 48660 + 1262
30 -01462199 - 9119 (- 136)

+ 39541 (+ 1126)
32J -01501740 (- 7993)

(+ 31548)
35 (-01533288)

For
&amp;lt;/&amp;gt;

= 35 the calculation will be

log(p) 97872150

log (w sin 0) 8-3984087

+ 100

log 8-1856237

(dz) -01533288 + 35 3

the change of (dz) for an increase of 100 units in log (p) is placed at the side.

Collect in two other tables the successive values of x and z which have been

already computed, and form the differences of these quantities to the 4th or 5th

orders, by which means any error of consequence that may have crept into the work

will at once become apparent.
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From the values of (dx), (dz) and their differences, and from the known values
of x and z for

&amp;lt;

= 32, find the approximate values of x and z for = 35, thus

For &amp;lt;

= 32|, x -45780303 For
&amp;lt;f&amp;gt;

= 32|, z -12246288
&amp;lt;

= 35, (da:) 02189762 $ = 35, (dz] &quot;01533288

- i A (dx] 83749,5 50,3 _ 1 A
(&amp;lt;fe)

- 15774 35,3
-

TU A 2

(cfo)
- G53,6 2,5 _ ^ A s

(efe) 666,1 1,8
-

2
A!W ~ 16,9 -

,2 _ J
T A (cfe)

-
46,9 -

,2

-T*&A
4

(rf*0_
+ 12,2 3) 52,6 -7&amp;gt;&A

4

(cfe) 3,6 3)^9
&amp;lt;/&amp;gt;

= 35, (x) -48053156 17,5 (z] -13764424,8 12^3

6_ 6

ft (z) 82586549 74

In order to prevent an accumulation of small errors, the quantities involving

A, A2

,
A3 and A4

are carried to one place of decimals beyond those which are

ultimately retained.

At the side are calculated the changes of (x) and (z), in units of the 8th place
of decimals, which would be required if log (p) were increased by 100 units of the

7th place of decimals.

These changes are found by multiplying the corresponding changes of (dx) and

(dz) already found by

251 = !ii + !fi-.!
720 3 \

r
20 { 12

Next, from (x) and (z) find ^ and log [p] by the formula

1 _ _
f

. sin
&amp;lt;f&amp;gt;

, . i

p:
= A + p (z) p-r- , p being here = b.

Table (A), log sin 35 97585913 2 + 6 (z)
= 2 8258655 7,4

log (a?) 9-6817219 1,5 subtract 11936290 -_4,_

log 00768694
-_1,5_

1 R
N. 1-1936290 -

4, H
log i. 0-2127831 3,0

or log [p] 9-7872169 -
3,0

log (p) 97872150

Difference 19

The numbers placed at the side are the changes which would be caused by
the increase in log (p) before mentioned.

B. 7
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It should be remarked that in this last calculation the quantity 2 + 6 (z) is

only carried to 7 places of decimals, whereas in the above calculation 6 (z) was given

to 8 places.

Consequently the change of 2 + 6 (z] or that of 6 (z) before found must be divided

by 10, in order to reduce it to units of the 7th decimal.

We see that the value thus found for log [p] exceeds the assumed value of

log (p} by 19 units in the 7th decimal place.

Hence the correction to be applied to log (p} will be

in 100
19 x -^ = 18,4 such units,

and the corrected value of log p for
&amp;lt;/&amp;gt;

= 35 will be

9-7872168,

which may now be added to the numbers in Table I.

Similarly, the corrections to be applied to the values of (dx) and (dz) will be

50,3 x 184 = 9,3 and 35,3 x 184 = 6,5

respectively, in units of the 8th decimal, so that the corrected values will be

etc = -02189771 and &amp;lt;fe= -01533294,

which may be added to the numbers in Tables II. and III.

The successive differences of log (p) will of course require the same correction as

log(p) itself, and similarly for the differences of (dx} and (dz).

Also, the corrections to be applied to the values of (x) and (z) will be

17,5 x -184 = 3,2 and 12,3 x &quot;184 = 2,3

respectively, in units of the 8th decimal, so that the corrected values will be

x = -48053159 and z = &quot;13764427,

which may be added to the Tables of the collected values of x and z respectively.

The provisional values of log (p}, (dx) and (dz} and of their respective differences,

which in the foregoing example have been inclosed in parentheses, may in the actual

work be merely written in pencil, so that, when they have served their purpose, they

may be easily effaced, and then replaced by the corrected values written in ink.

The Volume V of the portion of the drop corresponding to
&amp;lt;/&amp;gt;

= 35, is at

once found by the formula

15P
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thus, 1-6322367
P

^i 11936290

0-4386077

log 9-6420762

a;
2

log 9-3634438

TT log 0-4971499

9-5026699

ft log 07781513

log 8-7245186

V -05302963

In this as well as in the former part of the work of this example, b is

supposed to be unity, so that in the general case the quantities above denoted by
D T* P \&amp;gt;

p, x, z and V will be replaced by j-, j,
-= and ^ respectively.

The following shews the application of the formula of correction

77
=

, 251
l+

W&amp;gt;

to this example.

log x, 9-68172

251 2-39967

720 2-85733

9-54234

cos
&amp;lt;f&amp;gt;

9-91336

(cr )

2 9-36344

0-54992

N. 3-5475

6-

9-5475

log 0-97989

(PoY 9-57443

sin
&amp;lt;/&amp;gt;

975859
&amp;lt;u 8-63982

ff^ 9-54234

8-49507

031266

_!

1-031266

Hence ^=:___. nearly,

which agrees very well with the result found by the other method.

72
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EXAMPLE OF THE METHOD, WHEN s IS TAKEN AS THE
INDEPENDENT VARIABLE.

Suppose that it is required to calculate the theoretical form of a pendent drop
of fluid, where /3

= 5.

As in the former example, we will suppose that 6 = 1.

First, putting j3
= 5 in the general formula for -

,
we obtain for points near

the origin

- = 1 - 0-1875 s
2 + 0-01692,7083 s

4 - 0-00248,2096 s
6

+ 0-00028,3075 s
8 - 0-00003,3537 s

10 + &c.,

which series is sufficient to give
- to 9 or 10 places of decimals, provided s do

not exceed 4.

The value of - is the same for corresponding positive and negative values of s,

so that if we put s 0, s = + 01, s = 2, s = + 3 and s = + 4 in succession,

we may obtain

s

P
o i-

0-1 0-99812,67

0-2 0-99252,69

0-3 0-98326,03

+ 0-4 0-97042,33

Also
tj&amp;gt;=l-ds

= 8- 0-0625 s
3 + 00338,54166 s

5 - 0-00035,4585 s
1

+ 0-00003,1453 s
9 - 00000,3049 s

11 + &c.

Similarly, putting /3
= 0*5 in the series for x and z respectively, we obtain

x = s- 0-1666 s
5 + 0-02083,3 s

5 - 00244,9157 s
7 + 00029,4734 s

9

- 0-00003,5199 s
n + &c.,

z = 0-5 s
2 - 0-05729,16 s

4 + 0-00716,14583 s
6 - 0-00085,03747 s

8

+ 0-00010,17165 s
10 - 0-00001,21847 s

12 + &c.

From which we may find

s
(f) (in circ. measure). &amp;lt; (in deg. &c.) x z

0-0 0&quot; 0-0 0-0

0-1 0-09993,753 5 43 33 596 + 0*09983,354 00499,428

0-2 + 019950,108 11 25 50 051 + 19867,330 01990,879

0-3 0-29832,065 17 5 33 051 G 29555,009 0-04454,110

0-4 +0-39603,409 224127*896 38954 ;273 0-07856,212
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Now, let us suppose that the values of p, &amp;lt;,
a; and z have been already calcu

lated for s = 0&quot;l,
s = 2 and s = 3, and that we wish to find the values of the same

quantities for s = 4 by the foregoing method of integration.

Here we have &amp;lt;a

= O l.

From the given values of -- we may find the corresponding values of (&amp;lt;
= -,

and their successive differences, as shewn in the following Table :

s (&amp;gt;

- 0-3 0-09832,603

92,666
-0-2 0-09925,269 -36,668

55,998 -0,597
-01 0-09981,267 -37,265 +0,396

18,733 - 0,201 +,006
0-0 0-1 -37,466 +0,402

- 18,733 +0,201 -,006
0-1 0-09981,267 -37,265 +0,396

- 55
;
998 +0,597 (-,018)

0-2 0-09925,269 -36,668 (+0,378)
- 92,666 (+0,975)

0-3 0-09832,603 (-35,693)
(-128,359)

0-4 (0-09704,244)

If we supply another line of differences by supposing the 6th diffei ence to be

constant, we shall obtain the quantities included in parentheses in the above Table.

and the corresponding assumed value of .- .- for s = 4 will be 97042,44.

From the values of
(J&amp;lt;j&amp;gt;)

and its differences, and the known value of &amp;lt; for s= 3.

find the approximate value of
&amp;lt;f)

for s = 4, thus

For s = 0-3,
&amp;lt;f&amp;gt;

-29832,065

5 = 0-4,
d&amp;lt;f&amp;gt; -09704,244

- A
d&amp;lt;f&amp;gt;

+ 64,179,5

100 in units of 8th decimal place-
^A&quot;efc

-
,040,6

-
7V

9oAU - ,010-A5 + ,000,4

(&amp;lt;)
-39603,413 _33

or 22 41 27&quot; 903 0&quot; 068

The changes placed at the side correspond to an increase in
^-

of 100 units

in the 7th decimal place.

As the interval &&amp;gt; is rather large, we have taken into account the terms in A9
.
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With this value of
(&amp;lt;)

we calculate the corresponding values of (dx) and

(dz), thus

logcos(&amp;lt;)
9-9650125 -0,6 log sin

(&amp;lt;)
9 5863199 +3,4

log a)
81] log &) 9

8-9650125

(dx) -09225980 -1,2

8-5863199

(dz) -03857624 +3,0.

The small quantities at the side are the changes of the quantities opposite to

which they stand, in units of the last decimals respectively employed, which would

be caused by an increase of 0&quot; 06S in
(&amp;lt;/&amp;gt;),

or by an increase of 100 units in the 7th

decimal place of
(P)

With these values of (dx) and (dz) and the previously calculated values of dx
and dz for s=01, s = 2 and s = 3, we may form the following Tables:

s
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Hence we find x and z for s = 4, thus

For
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Also the corrections to be applied to the values of
(a?) and (z) respectively,

will be

.

- -09 x -
0,4 and - 09 x 1,0

in units of the 8th decimal place, both of which are insensible.

These results agree very well with the more accurate ones found before by
the use of series.

The Volume V is found by the formula

TT /sin 1F _

thus,

1

p

log

loff

0-9902954

0-9704235
__
0-0198719

8-2982394

9-1811102

IT 0-4971499

7-9764995

9-6989700log

log

V
8-2775295

-0189465

Application of the formula of correction

95 sin 95

to this example.

lo 9-51833

8-51833

cos(&amp;lt; ) 9-96501

- iog 9-99570

8-51833

8-51409

2

8-48334

9-59055

8-89279

078125

002134

000502

080761

7-02818

2 log 0-30103

7-32921

Hence = _ _
1-081

w)
,

log

cos(c/&amp;gt; ) 9-96501

~/8 9*69897

6-70064

which very nearly agrees with the result found before by the other method.
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A
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B.
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Table shewing the value of A4 which corresponds to each unit in the value of

-L _/ A A -

-

720 37-8947
A4

.
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Table shewing the value of A5 which corresponds to each unit in the value of

A5 = A 5

160 53-3333



60 TABLES.

Table shewing the value of A9 which corresponds to each unit in the value of

863

60480
A =

70-0811
Aa

.
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Table shewing the value of AT which corresponds to each unit in the value of

275
, = _1_

24192 87-9709



62 TABLES.

Table shewing the value of A8 which corresponds to each unit in the value of

33953 1

3628800 106-87715
A8

.



CHAPTER IV.

COMPARISON OF CALCULATED AND MEASURED FORMS OF DROPS.

(C Z
THE coordinates

j
and

j
for the curves represented by Laplace s differential

equation were calculated by the method of Professor Adams for values of
&amp;lt;, 5, 10&quot;,

15 175, 180, and for values of & 1, , f, i; | ,
1

; H, 2, 2; 3, 4, 5, 6, 7, 8
;

10, 12, 14, 16; 20, 24, 28, 32; 40, 48, 56, 64, 72, 80, 88, 96 and 100. For /3=1 the

calculations were made by Professor Adams, for ft
= 10 by Professor W. G. Adams,

and for the values of /?, |, , 3, 6, 16 and 32 by myself. The calculations for the

remaining positive values of fi were made by Dr C. Powalky, who was recommended

for the work by the late Professor Encke.

T* Z
Afterwards the values of - and corresponding to 6 = 5, and for the suc-

b b

cessive values of ft, 0, 8, 16, 24, 32, 40... 88 and 96 were arranged in order and

differenced. Then the values of .- and -,- corresponding to the same value of
&amp;lt;4,

and
b o

to the values of (3, 3G, 44... 92 were found from the above by interpolation, arranged

in order with the values of the same quantities for the values of {3, 0, 4, 8, &c.

T 2

already calculated, and the whole differenced. Next the values of r and ~ corre

sponding to &amp;lt;

= 5 and to the values of /3, 18, 22, 26, 30, 34, 38, 42, &c. were

found from the above by interpolation, arranged in order with the values of the

same quantities for values of /3, 0, 2, 4, 6, 8, 10, &c. already found, and the whole

IT

differenced. And in the same manner the values of
-j

and
j
corresponding to $ = 5&quot;

were found by interpolation for the values of /?, 9, 11, 13, 15, 17, 19, &c., arranged

in order with the values of the same quantities already found for the remaining

integral values of (3 up to 100, and the whole differenced.

Further, the same process was gone through for values of
&amp;lt;f&amp;gt;,

10, 15, 20....

175 and 180.

Finally the results were arranged as they have been given in Table II., with
&amp;lt;/&amp;gt;

for their argument, and differenced to test the accuracy of the work.
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Y
Values of

j-z
were calculated by the formula already given (p. 30) for the same

T* Z
values of /3 for which

j
and

j
were calculated, and the results have been given in

Table III.

Values of
|

and
| corresponding to values of

&amp;lt;f&amp;gt;,
15, 30, 45, 60, 90, 120,

135, 140, 145 and 150 were taken from Table II., and, the intermediate values

having been supplied by interpolation, the results have been given in Table V. This

Table is useful in calculating the theoretical forms of drops corresponding to given
values of /3.

x z V
Other Tables were formed by interpolation of values of r , and inter-

6 6 6

mediate to those given in the above-mentioned Tables, but they are at once too

extensive and yet too incomplete for publication in their present form. In this way
X 2

Tables of values of
j , j

and
p-

were formed corresponding to values of /S, O O,

01, 0-2, 0-3 49-8, 49-9, 50 0, for values of
tf&amp;gt;,

135, 136, 137, 138 153, 154&quot;,

155, which were extremely useful, as will be explained hereafter, in deducing the

capillary constants from the measured forms of drops of mercury. But these Tables

would have been still more convenient if they had been formed so as to five

CC ^ V^ CO 2
log

-

, log and log p instead of
^

,

^
and

p .

/V f*

The values of y and
j vary so rapidly for low values of /3 and high values

of
&amp;lt;/&amp;gt;

that they could be obtained by interpolation correct only to four places of

decimals from /3
= to ft

= T9. Beyond that they were calculated to five places
V

of decimals, while the values of ^ were calculated, unfortunately, to only four places

of decimals throughout.

The rectangular coordinates of points in the outlines of drops of mercury were

measured by the help of a microscope moveable on vertical and horizontal slides by
micrometer screws. The microscope was focused by motion along a third slide parallel

to the line of collimation. These three slides were parallel to three rectangular axes,

two of which were horizontal.

There was found to be a difficulty in arranging the cross lines of the microscope,
so as to obtain a correct outline of the drop of fluid, because it would be difficult

to judge when the crossing of ihe micrometer lines was exactly on the contour of

the drop. Much labour was expended on the construction of a position micrometer,

where the intersection of the middle of one micrometer line with a side of the other

line was to be the centre, about which they turned. At each observation the micrometer
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lines were to be turned so that the above-mentioned side of the micrometer line

became a tangent to the contour of the drop, while the other line was a normal

at that point. But this could not be considered a satisfactory arrangement, because

there would be some error of excentricity, and the microscope would be liable to be

slightly disturbed by the application of the force necessary to bring the cross lines

into their proper position. This contrivance was therefore abandoned in favour of a

more simple arrangement suggested to me by the late Professor W. H. Miller. This

was to use two pairs of parallel and equidistant spider lines, one pair being horizontal

and the other pair vertical, so as to form by their intersection a small square in

the centre of the field of view (Fig. 1). This arrangement appears to be quite

satisfactory, for it is easy to judge when a small arc of the contour of a drop of

fluid passes through the middle of this small central square.

The screws used to measure the vertical and horizontal coordinates of points in

the contour of a drop of fluid were originally formed of one piece of metal. Great

care was taken to obtain a screw of uniform pitch throughout, of about 53 turns to

the inch. When however the screws were mounted, it was found that although each

one was tolerably uniform, the two screws differed sensibly in their pitch. By the use

of a micrometer ruled to the one-hundredth of an inch, the exact rate of both screws

at every point was determined. In this way tables of the value of every turn were

calculated for both the vertical and horizontal screws. In the following measure

ments of the forms of five drops of mercury made in 1863, the original readings

of the screws are given as they were entered in the observing book, as well as

their values in inches obtained by the help of the above-mentioned Tables.

The coordinates of numerous points in the contours of these five drops of

mercury, which vary considerably in size, were measured, because it was desired to

find whether the theoretical forms would agree satisfactorily with the true forms of

drops of mercury. In Fig. 2, the theoretical forms of these drops are given on a

large scale, and an attempt has been made to indicate by a cross the position of

some of the points measured.

UHI7BRSIIT

B.
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No. I

Original readings
in turns of the screws
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No. II

Original readings
in turns of the screws
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No. Ill

Original readings
in turns of the screws
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No. IV

Original readings
in turns of the screws
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No. V

Original readings
in turns of the screws
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The agreement between theory and experiment appears to be so far satisfactory.
And if on more exact comparison any slight discrepancy between theory and experi
ment should become apparent, it will be known that, this is not due to any error

in the calculated forms.

In adapting a theoretical form to the measured form of a drop of mercury, it

would be sufficient to secure its passing through the vertex A (Fig. 4) and the two

points B, C, for which &amp;lt;

= 90, if it was possible to measure AO correctly. But this

can be accomplished practically only with sufficient accuracy to give a rough first

approximation to the value of /3, by finding OC+AO and referring to Table I.

This value of /3, if erroneous, must be corrected by trial till a curve is found from

Table II., which passes through D and E, the extremities of the base, or till two

curves are found for consecutive values of /3, one of which falls outside, and the other

within DE. Then by proportional parts the exact value of /3 required can be found.

Let BC=2R, DE=2r, and AN = H. The following example will explain how
the values of the capillary constants are obtained by means of these quantities.

For the drop No. V. 2E = 03081 inch, H= 01174 inch, and 2r = 2819 inch.

Having found by the help of Table I. and by trial that the proper value of $
lies between 24 and 24 1, we proceed to find b the radius of curvature at the

vertex corresponding to /3
= 24 0. From Table II., when

&amp;lt;/&amp;gt;

= 90, we find that

I
= R = Olo40_o = .48692 and therefore 5 =

_1|| _|
)

which gives log ft = 9-50020.

That will suffice to secure a curve which passes through the vertex A and has the

correct width BC. We wish in addition to secure a curve which passes through
the two points D, E at the base of the drop, or through two points d, e near the

base.

log r = 914907 logH= 9 06967

log b = 9-50020 log b = 9-50020

log
~ = 9-64887 log p = 9-56947
(s : t/

and therefore J = 44552 and ~ = 37108.
6 6

And to find the theoretical form of this drop we use the manuscript Tables

z H
above referred to a

. For ft = 24 the Table gives -r,
= 37108 = p corresponding to

= 139 36. And for the same value of
d&amp;gt;,

=0-4460S-(H)0050=0-44558. Hence
6

f -fi
= and -?/ = - 0-00006, &amp;lt;

= 139-36.

&quot; See note a on next page.
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Again, corresponding to
ft&quot;

= 241 we find in the same manner as before

log b&quot;
= 9-50070, which gives p

= 44501 and p=0 37066. And for & = 241 b the Table

gives ^=0-37066 corresponding to
&amp;lt;/&amp;gt;

= 139 5S, and ^;
= 0-44481. Here we have

^
*
=0; --^ = + 0-00020; &amp;lt;4

=
) 00

The required value of /S therefore falls between 24 and 241, and its exact value

may be found as follows :

P = 24-0 gives log b = 9 50020
;

error in = - 00006
;
and f = 139 36

&quot; = 24-1 gives log I&quot;
= 9 50070 ; *= + 0-00020; and f = 139-58

Diff. + 0-1 + 0-00050 + 0-00026 + 0-22

Hence by taking proportional parts we must find such values of S/3 ,
8 log 6

cc

and
4&amp;gt;

as will make the error in 7-, vanish.
b

& = 24-0 gives log b = 9 50020; error in
|,
=-0 00006

;
and = 139 36

8/3 =+ -023 5 log b = + 0-0001 2;

Hence j3
= 24-023 log 6= 9-50032;

ft

+0-00006 ;
0-05

= 139-41

Hence 6 = 0-31646 inch, a=-,= ^-^ = 119 94, and iJ -= 01291 inch. Also
J_ v CC

the volume =63 x 0-2072 = 0-0065667 cubic inch, and the corresponding weight is 22 535

grains.

IT /

Nearly the same results might be arrived at by using the values of
j

and
j

in Table II. for ft
= 24 and ft

= 25, only the differences would correspond to a

difference of 1 instead of 01 in the value of- ft, and to a difference of 5 instead of

1 in the value of 6.

NOTE a
.

/3=24-0
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It is evident that the above calculations would have been facilitated if the

Tables referred to in the note had been calculated for log
x

-

, log
2

and log
? rather

x z V
than for r &amp;gt; r arid j-g, as has been already remarked.

The coordinates at the points of the theoretical curve at which the tangent is

inclined to the horizon at angles of 15, 30, 45, 60, 90, 120,- 135 &c., are found

by the help of Table Y. for values of
,
O O, 01, 2, 3 46 5, 46 6, 467.

For instance for
&amp;lt;f&amp;gt;

= 135,

/3
= 24-0

; y = 0-45156; | = 36554
v b

+ 8/3 = 0-023 gives -11 -15

X
=24-023;

?T

= 0-45145
; ^

= Q-36539

and 6 = 0-31646 inch.

Therefore x = 6 x 45145 = 1429 inch,

and = 6x0-36539 = 0-1156 inch.

DETERMINATION OF CAPILLARY CONSTANTS OF MERCURY IN
CONTACT WITH GLASS.

The great impediment to the exact determination of capillary constants arises

from the changes that usually take place at capillary surfaces when left undisturbed

for some time. All careful experimenters have recognised this difficulty. It seemed
therefore best to place a drop of mercury in position and to take measures of 2R, 2r

and H as opportunity offered. Drops weighing 4, 8, 12, 1C, 20 and 24 grains were

used, because it was expected that, if a and w were not really constant for mercury
resting on glass, some indication of the manner in which they varied would thus

be made manifest. The mercury was obtained as being pure from a leading philo

sophical instrument maker about 1862. When any experiment was to be made, a

sufficient quantity was taken from this store, and after having been used, it was

treated as waste. Also the same glass plate table was used in all the experiments.
The glass plate was cleaned with blotting paper or with the pith of the stalk of

the artichoke. And after this, either the same or a fresh drop of mercur}
T was

placed in position and vibrated. In the following tables of experiments the operation
of cleaning the glass and replacing the same drop of mercury is indicated by a dotted

line But a change in the mercury used is denoted by a line across the table.

The reading of the thermometer is given and also the time duritig which the

drop had been in position when the measurement was made. The experiments were

carried on in. a small workshop built in a garden apart from other buildings. The

B. 10
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observing table rested on supports driven into the ground which were independent
of the brick floor. There were public roads, used chiefly for light traffic, on two

sides at the distances of 50 and 60 yards. The slow changes in the forms of drops
of fluid appear to arise, (1) from some small change that takes place in the tension

of the enveloping surface, (2) from changes of temperature between night and day,

and (3) from slight tremors arising from passing vehicles, &c. The calculation of

the capillary constants was carried on as the experiments were made. After all had

been completed the reductions of the instrumental observations into inches were

carefully examined, and the calculations of all the 145 experiments were repeated,
so that the results given in the following tables may be considered to be quite correct.

The variation in the value of the capillary constants deduced from drops of

mercury of the same size was much greater than was expected. But, when the

mean values of to and a derived from each form of drop were compared, the agree
ment was surprisingly close. Hence so far as these experiments go the form of sessile

drops appears to be that indicated by the Theories of Young, Laplace, Gauss and

Poisson.

Finally the values of a, o&amp;gt;,
and V were calculated from the mean values of

2.R, 2r, and H for each size of drop of mercury. The results are given on the last

page for comparison with the means of the values of a and &&amp;gt; derived from each experi

ment for each size of drop of mercury.

In order to carry out the original scheme, as sketched in the Introduction, many
more experiments should be made, particularly for the purpose of finding the effects

of variation of temperature on the values of the capillary constants.

The calculations for negative values of /3 should also be greatly extended, so that

the intervals between them might be readily filled up by interpolation, as we have

done in the case of positive values of /3.

The measuring instrument in its present form appears to be satisfactory. The

microscope descends in a vertical direction by its own weight and is raised by the

screw. A screw of about 50 turns to the inch is very suitable for experimenting with

mercury. But a quicker motion will become desirable when experiments are made

with a drop of one fluid immersed in another fluid, as the drops may be then much

larger.

All documents connected with these calculations now in my possession will be

carefully preserved, and every assistance will be afforded to any person who may under

take the completion of the work.

MINTING VICARAGE, Oct. 1883.
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DROP OF 4 GRAINS OF MERCURY.

No. of

Observa
tion
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DROP OF 8 GRAINS OF MERCURY.

Xo. of

Observa
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DROP OF 12 GRAINS OF MERCURY.

No. of

Obser
vation
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DROP OF 20 GRAINS OF MERCURY.

No. of

Obser
vation
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DROP OF 24 GRAINS OF MERCURY.

7
(J

No. of

Obser
vation
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SUMMARY OF MEAN KESULTS FOR EACH WEIGHT OF DROP OF MERCURY.

Weight
of

Drop
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