UNIVERSITY OF
ILLINOIS LIBRARY
AT URBANA.CHAMPAIGN BOOKSTACKS

# Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign 

BEAR

## FACULTY WORKING PAPER NO. 780

# Axioms and Examples Related to Ordinal Dynamic Programming 

Charles E. Blair

 PER NO.



-

#  

a

<br><br>10 IT



. -
(
10
$\qquad$ - + $\square$ $+\frac{1}{2}$ $+$
(

## ans

.2 $\qquad$
$\qquad$
$\qquad$
(11)
$\qquad$

## BEBR

FACULTY WORKING PAPER NO. 780<br>College of Commerce and Business Administration University of Illinois at Urbana-Champaign<br>June 1981

# Axioms and Examples Related to Ordinal Dynamic Programming 

Charles E. Blair, Associate Professor Department of Business Administration

## Abstract

We continue the work of Sobel on axioms for preferences in discrete Markov processes. Sufficient conditions for optimality are presented, and the logical interrelation with previous axiomations is discussed.

Axioms and Examples Related to Ordinal Dynamic Programming
by Charles E. Blair
We consider deterministic sequential Markov process. Let $X$ be a set of states. For each $x \varepsilon X, M(x) \subset X$ is the set of states that can be reached in one step from $x$. Define $\Delta$ to be the set of mappings $\delta: X \rightarrow X$ such that $\delta(x) \varepsilon M(x)$ for every $x \in X$. A policy is an infinite sequence $\delta_{1} \delta_{2} \ldots$ where $\delta_{i} \varepsilon \Delta$. A stationary policy has all $\delta_{i}$ equal. For each policy $\pi=\delta_{1} \delta_{2} \ldots$ and each $x \in X$ there is a unique sequence $x_{0} x_{1} x_{2} \ldots$ such that $x_{0}=x$ and $x_{n}=\delta_{n}\left(x_{n-1}\right), n=1,2, \ldots$ We will denote this sequence by $P(\pi, x)$. For $x \in X, \Phi_{x}$ is defined to be the set of sequences $P(\pi, x)$ that arise as $\pi$ varies over all possible policies. $\Phi_{\mathrm{x}}$ is the set of all posterities with initial state x .

Sobel [1] studied situations in which orderings are assigned to the sets $\Phi_{x}$, which satisfied various axioms. For $p, q \varepsilon \Phi_{x}$ we thus have an ordering under which either $p \geq q$ or $q \geq p$. The ordering on posterities induces a partial ordering on policies: $\pi_{1} \geq \pi_{2}$ if and only if $P\left(\pi_{1}, x\right) \geq P\left(\pi_{2}, x\right)$ for all $x \varepsilon X$. An optimal policy $\pi$ is one such that $\pi \geq \pi^{-}$for all policies $\pi^{-}$.
$[1,2]$ showed that, provided certain axioms hold with regard to the orderings on posterities and policies these results hold:
(1) If there exists an optimal policy, then there exists an optimal stationary policy.
(2) If $\pi=\delta_{1} \delta_{2} \delta_{3} \ldots$ and for every $\delta \varepsilon \Delta \pi \geq \delta \delta_{1} \delta_{2} \delta_{3} \ldots=\delta \pi$, then $\pi$ is optimal.
(3) If X is finite there is a stationary optimal policy.

We follow [1] in assuming throughout that the orderings on $\Phi_{\mathrm{x}}$ satisfy
(4) if $P_{1}, P_{2} \varepsilon \Phi_{x}$ and $x_{0} \ldots x_{n}$ is a sequence such that $x_{i} \varepsilon M\left(x_{i-1}\right)$ $1 \leq i \leq n$ and $\operatorname{x\varepsilon M}\left(x_{n}\right)$ then $x_{0} \ldots x_{n} p_{1} \geq x_{0} \ldots x_{n} p_{2}$ if and only if $P_{1} \geq P_{2}$.

Here $x_{0} \ldots x_{n} p$ is the sequence of states formed by concatenating $x_{0} \ldots x_{n}$ and $p$. The hypotheses imply that these two sequences are members of $\Phi_{x_{0}}$. The intuitive content is that if one sequence is preferable to another when x is the starting state, then the same holds if x is reached at a later time.
(4) is satisfied by most criteria that one would want to use in a dynamic programming problem. However additional assumptions must be made in order to obtain (1)-(3).
[l] proposes the "countable transitivity" axiom
(5) Let $p_{i} \varepsilon \Phi_{x} i=0,1,2, \ldots$. If for $i \geq 1$, the first $i$ terms of $p_{i}$ coincide with the first $i$ terms of $p_{0}$ and $p_{1} \leq p_{2} \leq p_{3} \leq \ldots$, then $p_{0} \geq p_{i}$ for all i.

However (4) and (5) do not imply (2).*
Example: Let $X=\{0,1\} . M(0)=X . M(I)=\{1\} . \Phi_{1}$ consists of the single posterity l111... $\Phi_{0}$ consists of the posterities 0000 ... and $0^{k} 111 \ldots$ for $k \geq 1$. Define $000 \ldots$... 01111 ... > $0011 \ldots$... etc. (4) is easy to verify. (5) is satisfied because $p_{1} \leq P_{2} \leq P_{3} \ldots$ implies (in this example) that $p_{i}=p_{i+1}$ for all sufficiently large $i$. Let
*This corrects theorem 3 of [1]. Sobel had discovered this independently while writing [3]. This motivated the use of the alternative axiom (6) in [2].
$\delta_{1}(0)=1=\delta_{1}(1)$ Then the policy $\pi=\delta_{1} \delta_{1} \delta_{1} \ldots=\delta_{1}^{\infty}$ satisfies $\pi \geq \delta \pi$ for any $\delta \varepsilon \Delta$. But if $\delta_{2}(0)=0$ and $\pi^{-}=\delta_{2}^{\infty}$ then $P(\pi, 0)=01111 \ldots$ $\nsupseteq P\left(\pi^{-}, 0\right)=000 \ldots$ hence $\pi \not \pi^{\wedge}$ and $\pi$ is not optimal.

It can be shown that (4) and (5) imply strengthened versions of (1) and (3).

Theorem 1: Assume (4) and (5) hold. Suppose that there is a $\delta \varepsilon \Delta$ such that, for every $x \varepsilon X$, if $p \varepsilon \Phi_{x}$ there is a $P^{\wedge} \varepsilon \Phi_{X}$ whose first two terms are $x, \delta(x)$ with $p^{-} \geq p$. Then $\delta^{\infty}$ is an optinal policy.

Proof: Let $\mathrm{x} \subset \mathrm{X}, \mathrm{p} \varepsilon \Phi_{\mathrm{X}}$. We will construct a sequence of $\mathrm{p}_{\mathrm{i}} \varepsilon \Phi_{\mathrm{X}}$ such that $p_{1}=p \leq P_{2} \leq P_{3} \leq \ldots$ and the first $i$ members of $P_{i}$ coincide with the first $i$ members of $P\left(\delta^{\infty}, x\right)$. We start with $p_{1}=p$ and continue by induction. If $p_{1}, \ldots P_{n}$ have already been constructed let $p_{n}=x_{0} x_{1} \ldots$ By hypothesis, there is a $q \varepsilon \Phi_{x_{n-1}}$ such that $q \geq x_{n-1} x_{n} \ldots$ and the first two terms of $q$ are $x_{n-1}$ and $\delta\left(x_{n-1}\right)$. By (4), $p_{n+1}=x_{0} x_{1} \ldots x_{n-2} q$ $\geq P_{n}$. This completes the construction of the $p_{i}$. (5) implies that $P\left(\delta^{\infty}, x\right) \geq p$. Since $x, p$ were arbitrary $\delta^{\infty}$ is optimal. Q.E.D.

Theorem 1 has a converse in the sense that if no $\delta$ exists satisfying the hypothesis then no policy is optimal.

Corollary 2* $^{*}$ : If $\pi=\delta_{1} \delta_{2} \delta_{3} \ldots$ is an optimal policy, then $\delta_{1}{ }^{\infty}$ is an optimal policy.

Proof: In this case $p^{-}$in the hypothesis of Theorem $I$ is $P(x, \pi)$.
Q.E.D.

[^0]Corollary 3: If X is finite there is a stationary optimal policy. Proof: For each $x \varepsilon X, \Phi_{x}=\underset{y \in M(X)}{\cup} Q_{y}$, where $Q_{y}$ consists of those posterities whose first two terms are $x, y$. If an ordered set is the union of finitely many subsets at least one of the subsets is such that, for each point of the set, there is a point of the subset at least as large. If $\delta(x)$ is chosen so that $Q_{\delta(x)}$ is such a subset, then the hypothesis of Theorem 1 is satisfied and $\delta$ is a stationary optimal policy. An alternative to (5) was proposed in [2]:

Let $\pi=\left(\delta_{1} \delta_{2} \ldots\right)$ and $\xi$ be two policies.
then $\xi \geq \delta_{1} \ldots \delta_{k} \xi$ for all $k$ implies $\xi \geq \pi$

$$
\xi \leq \delta_{1} \ldots \delta_{k} \xi \text { for all } k \text { implies } \xi \leq \pi
$$

(4) and (6) together imply (1), (2) and (3). However there are two objections to (6). First, it discusses the partial ordering on policies rather than the total ordering on posterities, and is thus somewhat indirect. Second, (6) excludes lexicographic discountedreturn criteria, a fairly natural class of preference orderings (example 3 of [1]).

Example 2: Let $X=\{0,1\} . ~ M(0)=M(1)=X$. For a posterity $F=x_{0} x_{1} x_{2} \ldots$ define $v_{i}(P)=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n} r_{i}\left(x_{n-1}, x_{n}\right), i=1,2 . \quad r_{1}(0,0)=1$;
$r_{1}(1,1)=2 ; r_{1}(0,1)=r_{1}(1,0)=0 . \quad r_{2}(0,1)=1 ; r_{2}(0,0)=r_{2}(1,1)=$ $r_{2}(1,0)=0$. For $p, p^{-} \varepsilon \Phi_{x} p \geq p^{-}$iff $v_{1}(p)>v_{1}\left(p^{-}\right)$or $v_{1}(p)=$ $v_{1}\left(p^{-}\right)$and $v_{2}(p) \geq v_{2}\left(p^{\prime}\right)$. Let $\xi=\delta_{1}^{\infty}$, where $\delta_{1}(0)=\delta_{1}(1)=0$. Let $\pi=\delta_{2} \delta_{3}^{\infty}$ where $\delta_{2}(0)=1, \delta_{2}(1)=0 ; \delta_{3}(0)=0, \delta_{3}(1)=1 . \quad v_{1}(P(\xi, 0))=$ $v_{I}\left(C^{\infty}\right)=1, v_{1}(P(\xi, 1))=\frac{1}{2} . \quad v_{1}\left(P\left(\delta_{2}, 0\right)\right)=v_{1}\left(010^{\infty}\right)<v_{1}(P(\xi, 0))$.

Since $\mathrm{P}\left(\delta_{2} \xi_{,} 1\right)=\mathrm{P}(\xi, I)$, it follows that $\xi \geq \delta_{2} \xi_{\text {. }}$ Similarly, it can be verified that $\xi \geq \delta_{2} \delta_{3} k_{\xi}$ for every positive $k$. Since $v_{1}(P(\pi, 0))=$ $v_{1}\left(O 1^{\infty}\right)=1=v_{1}(P(\xi, 0))$ and $v_{2}(P(\pi, 0))=\frac{1}{2}>v_{2}(P(\xi, 0))=0$, it follows that $\xi \notin \pi$, which contradicts (6).

An alternative to (6) is the "dual" to (5).
(5') Let $p_{i} \varepsilon \Phi_{x} i=0,1,2, \ldots$ If for $i \geq 1$, the first $i$ terms of $P_{i}$ coincide with the first $i$ terms of $p_{0}$ and $p_{1} \geq p_{2} \geq P_{3} \geq \ldots$, then $P_{0} \leq P_{i}$ for all $i$.

Theorem 2: (4) and (5) imply (2).
Proof: Suppose $\pi \geq \delta \pi$ for every $\delta \varepsilon \Delta$ and let $\xi=\delta_{1} \delta_{2} \delta_{3} \ldots$ and x\&X. Then repeated application of (4) gives $\pi \geq \delta_{1} \pi \geq \delta_{1} \delta_{2} \pi \geq \delta_{1} \delta_{2} \delta_{3} \pi \geq \ldots$ hence $P(\pi, x) \geq P\left(\delta_{1} \pi, x\right) \geq P\left(\delta_{1} \delta_{2} \pi, x\right) \geq \ldots$ Hence $\left(5^{\prime}\right)$ implies $P(\pi, x) \geq$ $P(\xi, x)$. Since $x$ and $\xi$ were arbitrary this implies $\pi$ is optimal. Q.E.L.

Corollary: If the orderings on $\Phi_{\mathrm{x}}$ are given by lexicographic discounted-return criteria then (1), (2), (3) hold.

Proof: It suffices to verify that (5) and (5') both hold. This is easily established by noting that $v_{i}\left(p_{0}\right)=\operatorname{Limv}_{\mathrm{n} \rightarrow \infty}\left(p_{n}\right)$. $\quad$ Q.E.D.

It seems that (5) and (5) are preferable to (6). [1] suggests that there are several problems still to be addressed in the case in which $X$ is infinite. We would like to mention this issue: in those cases in Which there is no optimal stationary policy (hence no optimal policy by (1)) when is it the case that for every policy $\pi$ there is a stationary policy $\delta^{\infty}$ such that $\delta^{\infty} \geq \pi$ ?

Acknowledgement
These problems were suggested to me by Professor Sobel, with whom I have had many helpful discussions.

## References

1. M. J. Sobe1, "Ordinal Dynamic Programming," Management Science vol. 21 (1975) pp. 967-975.
2. M. J. Sobel, "Ordinal Sequential Games," Georgia Institute of Technology, College of Management, Technical Report MS-80-3.
3. D. P. Heyman and M. J. Sobel, Stochastic Models in Operations Research, Vol. 2, McGraw-Hill, New York, to appear.
;

1



[^0]:    *This result is established in the proof of Theorem 2 of [1]

