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PIIKI'ACK

riiHIS tract is written in connection with the previous tract, No. I

this series, on Projective Geometry, and with the wane general

aims. In that tract, after the statement of the axioms, the ideas

considered were those concerning harmonic ranges, projectivity, order,

the introduction of coordinates, and cross-ratio. In the present tract*

after the statement of the axioms, the ideas considered are tlm-.-

concerning the association of Projective and Descriptive Geometry by

means of ideal points, point to point correspondence, coiiLrriien<-e,

distance, and metrical geometry. It has been my object in

tracts to extend the investigations jnst far enough to assure the reader

that the whole of Geometry is really secured by the axioms stated.

My hopes for a comparative freedom from typographical errors are

based upon my experience of the excellence of the University Press,

A. N. \V

Cambridge.

March, 1907.
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CHAFPEB I

FORMULATIONS OF THE AXIOMS

1. The general considerations which must govern a mathematical

investigation on the foundations of Geometry have been explained in

Chapter I of the previous tract of this series, on the Axioms of

Projective Geometry*. It is explained there that 'Descriptive

Geometry' is here used as a generic term for any Geometry in which

two straight lines in a plane do not necessarily intersect Also it i-

pointed out that the purely classihcatory portions of a Descriptive

Geometry are clumsy and uninteresting, and that accordingly the idea

of order is introduced from the very beginning.

There are three main ways by which this introduction "t" order

can be conveniently managed. In one way, which is represented by

Peano's axioms given below (§§ 3—6), the class of points which lie

between any two points is taken as a fundamental idea. It is then

easy to define the class of points collinear with the two points and

lying beyond one of them. Thus these three classes of points, namely

the two classes lying beyond the two points respectively and the class

lying between the two points, together with the two points themselves

form the straight line defined by the two points. Then a set of axioms

of the straight line are required, concerned with the idea of ' between,'

and also axioms are required respecting coplanar lines.

Another way, which was pointed out by Vailatit and Russell

to conceive a straight line as essentially a serial relation involving two

terms. The whole field of such a relation, namely the terms which are

thus ranged in order by it, forms the class of points on the straight

line. Thus the Geometry starts with the fundamental conception of a

* In the sequel this tract will be referred to as 'Proj. (ieom.'

t Cf. Rivista di Mateiuatira, vol. IV.

X Cf. Principles of Mathematics, J;
376.



2 THE INTRODUCTION OF ORDER [CH. I

class of relations. The axioms of the straight line are the axioms

which secure that each of these relations is a serial relation. The

points are the entities occurring in the fields of any of these relations.

The axioms of the plane are the same as in the previous mode of

development.

The third way, recently developed by Prof. 0. Veblen*, is to

consider the science of Descriptive Geometry as the study of the

properties of one single three-termed relation of order. The entities

forming the field of this relation are the points. When this relation

holds between three points A, B, and C, it is said that 'the points

A, B, and C, are in the linear order ABC This method of conceiving

the subject results in a notable simplification, and combines advantages

from the two previous methods. Veblen's axioms will be stated in full

(cf. § 8).

2. The enunciation of the axioms of Descriptive Geometry, which

is given in the sections (§§ 3—6) immediately following, is that due to

Peano t. His formulation is based upon that of Pasch +, to whom is due

the first satisfactory systematic exposition of the subject. The unde-

fined fundamental ideas are two in number, namely that of a class of

entities called 'points,' and that of the 'class of points lying between

any two given points.' It has already been explained § that this

undetermined class of points is in fact any class of entities with inter-

relations, such that the axioms are satisfied when considered as referring

to them.

The symbol AB will represent the class of points lying between

the points A and B. This class will be called the segment AB.
The first group of axioms, eleven in number, secure the ordinary

properties of a straight line with respect to the order of points on it,

and also with respect to the division of a line
||
into three parts by any

* Cf. A System of Axioms for Geometry, Trans, of the Anier. Math. Soc, vol. v.,

1904.

t Cf. I principii di Geovietria, Turin, 1889. These axioms are repeated by

him in an article, Sui fondamentl della Geometria, Rivista di Matematica, vol. iv.,

1894. In this latter article the minute mathematical deductions are omitted, and

their place is taken by valuable observations on the main points to be considered.

Also a treatment of congruence is given which does not appear in the earlier

tract. This article should be studied carefully by every student of the subject.

X Cf. Vorlesungen ihber neuere Geometrie, Leipzig, 1882. This treatise is the

classic work on the subject.

§ Cf. Proj. Geom. § 2.

1| Note that 'line' will be habitually used for 'straight line.'
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two points on it, and into two parts by any single point on it 1

Dedekind property* is nol secured by them, but, com] in

secured by axiom IV.

3. Peano's axioms of the straight lim- are a> follow

I. There is at least one point.

II. U A is any point, there is a point distinct from .1.

III. IfA is a point, there is no point lying between A and A.

It follows that the class A A possesses no members.

IV. If A and B are distinct points, there is at least one point

lying between A and B.

Thus the class AB is not the null class.

V. If the point C lies between A and B, it also lies between

B and A.

It easily follows that the classes AB and BA are identical.

VI. The point A does not lie between the points A and B.

Thus the class, or segment, AB does not include its end-point-

A and B.

Definition. If A and B are points, the symbol AB represents the

class of points, such as C, with the property that B lies betwi

A and C. Thus A'B is the prolongation of the line beyond B, and

B'A is its prolongation beyond A.

VII. If A and B are distinct points, there exists at least one

member of A'B.

VIII. If A and D are distinct points, and C is a member of AD,
and B of AC, then B is a member of AD.

IX. If A and D are distinct points, and B and C are members of

AD, then either B is a member of AC, or B is identical with C, or B
is a member of CD.

X. If vl and B are distinct points, and C and Z) are members of

A'B, then either C is identical with Z), or C is a member of BD, or Z>

is a member of 5C.

XI. If A, B, C, D are points, and B is a member of AC, and C
of Z?./), then C is a member of AD.

Definition. The straight line possessing A and B. symbolized by

str (A, B), is composed of the three classes A'B, AB, B'A. together

with the points A and B themselves.

Then by the aid of the previous axioms the usual theorems,

* Cf. Proj. Geoin. § 19, and § 9 of the present tract,

t Cf. Proj. Geom. § 16.

1—2



4 DEFINITION OF A PLANE [CH. I

excluding the Dedekind property, respecting the order of points on a

line can be proved. Also any two points are both contained by one

and only one line.

4. Peano uses the following useful notation which is an extension

of his notation for segments and prolongations. If J. is a point and

u is a class of points, then Au is the class of points lying on the

segments between A and points of u, and A'u is the class of points on

the prolongations of these segments beyond the points of u.

Then in conformity with this notation the seven regions into which

a plane is divided by three lines are as in the figure.

The plane determined by the three non-collinear points A, B, C—
written pie (A, B, C)—is defined to be the class of points consisting of

the points on the three lines str (BC), str (CA), and str (AB), and
of the points in the seven regions A (BC), A' (BC), B' (CA), C (AB),

A'(B'C),B'(C'A), C'(A'B).

5. Three axioms are required to establish the Geometry of

a plane.

XII. If r is a straight line, there exists a point which does not

lie on r.

Note that it would be sufficient to enunciate this axiom for one

straight line.

XIII. If A, B, C are three non-collinear points, and D lies on
the segment BC, and E on the segment AD, there exists a point F
on both the segment AC and the prolongation B'E (cf. fig. i, p. 5).

XIV. If A, B, C are three non-collinear points, and D lies on the
j
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segment BC, and F on the .segment AC, then point E lying

on both the segments /I /> and Z?/<
T
(cf. fig. ii).

Fig. i-

With these axioms all the usual properties of the division of a

plane by a line, and of the inside and outside of a plane closed figure,

can be proved. Thus if ABC form a triangle and a coplanar line

intersect the segment BC, it must intersect one and only one of the

segments CA and AB.
Also any three non-collinear points lie in one and only one plane ;

and the line determined by any two points lying in a plane lies entirely

in that plane. But, as the case of Euclidean Geometry shews, we

cannot prove from these axioms that an)' two lines in a plane

intersect.

6. For three-dimensional Geometry two other axioms are required.

XV. A point can be found external to any plane. The enuncia-

tion of this axiom can be restricted to a particular plane.



AXIOMS OF THREE DIMENSIONS [CH. I

XVI. Given any plane p, and any point A outside it, and any

point Q on it, and any point B on the prolongation AQ, then, if X is

any other point, either X lies on the plane p, or AX intersects the

plane p, or BX intersects the plane p.

The annexed figure illustrates the axiom, the points X1} X2 , Xs

heing positions of X which illustrate the three alternatives contem-

plated in the axiom. Thus Xx lies on the plane p ; X-2 lies on the

same side of p as B, so that AX2 must cut p in some point L ; Xz

lies on the same side of p as A, so that BXS must cut p in some

point M.
Axiom XVI secures the limitation to three dimensions, and the

division of space by a plane. It can also be proved from the axioms

that, if two planes intersect in at least one point, they intersect in

a straight line.

7. A point will be said to divide a line into two half-rays which

emanate from it.

A line will be said to divide a plane into two half-planes which

are bounded by it.

A plane will be said to divide space into two half-spaces which are

bounded bv it.



1-8] VARIOUS DRF1HJT10] 7

A Bheaf of lines is a complel planar In

at one point (the vertex). A sheaf of half-rays is

coplanar half-rays emanating from one point (the

A bundle of lines is a f"inplete set of lines concurrent at one point

(the vertex). A bundle of half-ray- i- a complete Bel "t' ha It
i

emanating from one point (the vertex).

If p, q, r are three half-rays belonging t<> a sheaf "t half-rays, then

/• is said to 'lie between' // and 7. if points A and B can be found "ii

// and q respectively, such that the segment A />' inters

It can be proved that if r lies between p and 7. then p
lie between r and q.

The complete set of planes through a given line the ailed

a sheaf of planes. The axis divides each plane into two half-phi

These half-planes form a sheaf of half-pianos.

If p, q, r are three lialf-planes belonging to a sheaf <>t' half-pl

then ;• is said to 'lie between'/) and q, if points -I and B can be found

on jt> and q respectively, such that the segment AB intersects /•.

It can be proved that if r lies between j> and 7, then p does not lie

between r and q.

The theorems indicated in this and in the preceding sections, and

allied theorems, are not always very easy to prove. But their proofs

depend so largely upon the particular mode oi formulation of the

axioms, that it would be outside the scope of this tract to enter into

a consideration of them. In the sequel we shall assume that the whole

class of theorems of the types, which have been thus generally indi-

cated, can be proved from the axioms stated.

8. Formulations of the axioms of Descriptive Geometry have also

been given by Hilbert*, and by E. H. Moore t, and by B. Russell + .

and by 0. Veblen§. Veblen's memoir represents the final outcome o\'

these successive labours, and his formulation will be given now. The

axioms are stated in terms oi' 'points' and oi a relation among three

points called 'order.' Points and order are not defined.

I. There exist at least two distinct points.

* Grundlagen der Qeometrie, Leipzig, 1899, English Translation by E. .1.

Townseud, Chicago, 1902,

t On the Projective Axioms of Geometry, Trans, oi the Amor, Math. Boa.,

vol. in., 1902.

J The Principles of Mathematics, Cambridge, 1908, oh. xi.vi.

§ A System of Axioms for Geometry, Trans, of the Amor. Math. Soc, vol. v..

1904.



8 veblen's axioms [ch. I

II. If the points A, B, C are in the order ABC, they are in the

order CBA.
III. If the points A, B, C are in the order ABC, they are not

in the order BCA.
IV. If the points A, B, C are in the order ABC, then A is

distinct from C.

V. If A and B are any two distinct points, there exists a point C
such that A, B, C are in the order ABC.

Definition 1. The line AB (A +B) consists of A and B, and of

all points Xin one of the possible orders ABX, AXB, XAB. The

points X in the order AXB constitute the 'segment' AB. A and

B are the ' end-points ' of the segment, but are not included in it.

VI. If points C and D (C# D) lie on the line AB, then A lies on

the line CD.

VII. If there exist three distinct points, there exist three points

A, B, C not in any of the orders ABC, BCA, or CAB.

Definition 2. Three distinct points not lying on the same line are

the 'vertices' of a 'triangle ' ABC, whose sides are the segments AB,
BC, CA, and whose 'boundary' consists of its vertices and the points

of its sides.

VIII. If three distinct points A, B, C do not lie on the same line,

and D and E are two points in the orders BCD and CEA, then a

point F exists in the order AFB and such that D, E, F lie on the

same line.

Definition 5. A point is 'in the interior of a triangle, if it lies

on a segment, the end-points of which are points of different sides of a

triangle. The set of such points is ' the interior ' of the triangle.

Definition 6. If A, B, C form a triangle, the 'plane' ABC
consists of all points collinear with any two points of the sides of the

triangle.
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IX. If there exist three points nol Lying in thi

exists a plane ABC such that there is a point /> nut lying ii

plane ABC.

Definition 7. If A, Ii, C, and D are four points not Lying in the

same plane, they form a 'tetrahedron' ABCD, whose i tin-

interiors of the triangles ABC, /{('/), CDA, DAB, whose ;"

are the four points A, B, C, and D, and whose 'edges' are the

segments AB, BC, CD, DA, AC, HI). The points ol '

and vertices constitute the 'surface' of the tetrahedron.

Definition 8. If A, B, C, D are the vertices of a tetrahedron, the

space ABCD consists of all points collinear with any two points of the

faces of the tetrahedron.

X. If there exist four points, neither lying in the same Line, dot

lying in the same plane, there exists a space ABCD, such that then- i-

no point Zi'not collinear with two points of the space A BCD.
The above axioms of Veblen are equivalent to the axioms of I

'

which have been previously given. Both Peano and Veblen give an

axiom securing the Dedekind property (cf. § 9). Also Veblen give- an

axiom securing the ' Euclidean ' property (cf. § 10).

9. Dedekind's original formulation'" of his famous property applies

directly to the case of a descriptive line and is as follows :

"If all points of the straight line fall into two classes such that

every point of the first class lies to the left of every point of the second

class, then there exists one and only one point which produces this

division of all points into two classes, this severing of the straight line

into two portions."

It is of course to be understood that the dividing point itself

belongs to one of the two classes.

It follows immediately that the boundary of a triangle consists vt'

points in a compact closed order possessing the Dedekind property as

already formulated for closed series!.

This definition may be repeated here to exhibit its essential in-

dependence of the special definition of projective segments upon which

the previous formulation rests.

Let A, B, C be any three points of a closed series. Then by

* Cf. his Continuity and Irrational Numbers, ch. in.; the quotation here is

from Beman's translation, Chicago, 1901.

f Cf. Proj. Geoin. g 19(a).
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hypothesis the series is such that there are two ways round from A
to C, namely, one through B and one not through B. Let segm {ABC)

denote the points, excluding A and C, which are traversed from

A to C through B, and let segm {ABC) denote the remaining

points of the series. Again let a class u of the points of the series

be called a segment of the series, when (1) there is a point B of the

series which does not belong to u, and (2) if P and Q be any two

points of u then segm {PBQ) belongs entirely to u.

Then the series possesses the Dedekind property if any segment

such as u (which excludes more than one point of the series) must

possess two boundary points, that is to say, if there must exist points
1 A

A and C snch that segm {ABC), with the possible exception of either

or both of A and C, is identical with u. Here—as above

—

B is a

point which does not belong to u.

Hence a sheaf of half-rays can also be considered as a closed

compact series with the Dedekind property. This is made immediately

evident by surrounding the vertex by a triangle in the plane of the

sheaf. Then each half-ray of the sheaf intersects the boundary of the

triangle in one and only one point. Also the order of the points on

the boundary is the order of the corresponding half-rays of the sheaf.

But the boundary of the triangle is a closed series with the Dedekind

property.

10. By the aid of the Dedekind axiom and of the preceding

axioms, it can now be proved that, if I be any line and A be any point,

not incident in /, then in the plane Al at least one line can be drawn

through A, which does not intersect /.
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For take any point B on I. and lei /' and 7 be the ! •• *\.
: :

half-rays of / which emanate from B ( onsider the shea! o\ hall

vertex A, in the plane d/. Some of these half-rays intersect p and

some intersect </, and these classes are mutually exclusive.

Also, from the Dedekind property, there exist two semi-ray* which

are limits of the semi-rays intersecting p. A li ifl one of the Bemi 1

let r be the other. Now the semi-ray p has no end-point. Hence r i-

not among the semi-rays intersecting p. Again by similar reasoning

there is a semi-ray 8 which is the limit of the semi-rays u

secting </, and s does not intersect q.

Now first let r and s be not collinear, and let /•' and $' l>e the

half-rays supplementary to r and s respectively. Consider the

(a, say) of lines through A with one set of their halt-ray- beta

r and s', and therefore with their supplementary half-rays between

r' and s. There are an infinite number of such lines. Now all half-

rays emanating from A and lying between the half-ray AB and r

intersect p, and no other half-rays from A intersect p. Similarly for

the half-rays AB and s and q. Also if s' lie between the half ray .1 />'

and r, then /-'lies between the half-ray AB and s; and in this

every line of the set a intersects the line / twice, namely once for each

of its pair of supplementary half-rays emanating from A. But this -

impossible. Hence neither the supplement of r nor that of s can

intersect /. Secondly if rand s are collinear, then the complete line

formed by r and s cannot intersect /. For neither r nor s intersects /.

Thus taking any point A and any line /. the -heat' of Lines,

vertex A and in the plane Al, falls into two parts, namely the lines

which intersect /, called the lines 'secant ' to /. and the lines which do

not intersect /, called the lines 'non-secant ' to /. The non-secant lines

of the sheaf may reduce to one line. The supposition that this is the

case is the 'Euclidean Axiom.'



CHAPTER II

THE ASSOCIATED PROJECTIVE SPACE

11. We have now to establish the relation of Descriptive Geometry

to an associated Projective Geometry. In a Projective Space let a

'convex region' be defined to be a region which (1) does not include

the whole of any line, and (2) includes the whole of one of the two

segments between any two points within it. It is easy to prove that

such regions exist. For remembering* that we can emplo)r the

ordinary theory of homogeneous coordinates, the surface

x1 + y- + z2 — u" —

is well known to enclose such a region. Let a quadric enclosing a

convex region be called a 'convex quadric' Again in two dimensions

let A, B, C be any three non-collinear points, and let P be any point

not collinear with any two of them. Let AP meet the line BC in L,

BP meet CA in M, CP meet AB in N.

Define the triangular region (ABC/P) to be the set of points

formed by the collection of segments such as segm (A QB) +, where

Q is any point on segm (BPM), and B is the point where the line

* Cf. Proj. Geom. §§ 37 and 42.

t Cf. Proj. Geom. § 13.
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,4(2 intersects BC. The pointf .1 B, C can be ii pd in thi^

definition without altering the region obtained

Similarly in three dimensions, if A, B l>

non-degenerate tetrahedron, and P be any poinl n'>t on

planes, ABC, BCD, etc., the 'tetrahedral region AB( D P can be

similarly defined. From the ordinary theory ofhomogeneous coord

it is well known that a triangular region in two dimensions, and

tetrahedral region in three dimensions, are both convex regie

Again the triangular region {ABC P considered above I

' boundary ' the segments (BLC), (CMA), (ANE), together with the

points A, B, (J. Also considering the tetrahedral region .1 BCD P
let AP intersect BCD in /,, BP intersect <I>A in M, CP in'

DAB in N, DP intersect ABC in 0. Thru the 'boundary
1

of the

tetrahedral region (ABCD/P) consists of the triangular regions

(BCD/L), (CDA/M), (DAB/N), (ABC/O), together with the

boundaries of these triangular regions.

It is now a well-known result from the use <>f coordinates that in

two dimensions any line through a point in a triangular region cats

the boundary in two points only; and that in three dimensions any

line through a point in a tetrahedral region cuts the boundary in tw>

points only.

12. Now consider a convex region, let it be either the region

within a convex quadric, or a tetrahedral region. Call the points

within it ' Descriptive points
'

; and call the portions of lines within it

'Descriptive lines.' The projective order of points on a line becomes

an open order for Descriptive points on Descriptive lines. Then by

the use of coordinate Geometry it is easy to prove that all the

Descriptive axioms of the present tract, either in Peano'a form or in

Veblen's form, are satisfied, including the Dedekind axiom, but exclud-

ing the Euclidean axiom. Thus in the figure the lines .1 H and CD
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intersect at a pointH in Descriptive Space ; but the lines AB and EF
do not intersect in Descriptive Space, since K lies outside it. Also it

is evident that through any point P an infinite number of lines can be

drawn, coplanar with AB, and not intersecting it in Descriptive Space.

13. The previous article (§ 12) proves* the existence theorem for

Descriptive Space with the negation of the Euclidean axiom ; in other

words, it proves the independence of the Euclidean axiom.

The existence theorem for Descriptive Space with the Euclidean

axiom is immediately proved by considering the region of Projective

Space found by excluding all the points on one projective plane. The

region is convex according to the above definition ; also all the

Descriptive axioms, together with the Dedekind axiom and the Euclidean

axiom, hold for it t.

14. The independence of the Dedekind axiom of the other axioms,

combined with the negation of the Euclidean axiom, is proved by con-

sidering, as in § 12, Descriptive Space to be a tetrahedral region in

Projective Space, but confining ourselves to the points whose co-

ordinates are algebraic numbers %, as in the corresponding proof for

Projective Geometry.

The independence of the Dedekind axiom of the other axioms,

combined with the Euclidean axiom, is similarly proved by considering

Descriptive Space to be the region in Projective Space found by

* Cf. Proj. Geom. § 43.

t In the later Greek period, and durirjg the seventeenth and eighteenth centuries,

the discussion of the foundations of Geometry was almost entirely confined to

attempts to prove the Euclidean axiom. The explicit recognitions of its inde-

pendence by Lobatschefskij (1828), and by J. Bolyai (1832) laid the foundation of

the existing theories of non-Euclidean Geometry. For the literature of the whole

question cf. Stackel and Engel, Die Theorie der Parallellinien von Euklid bis auf

Gauss, Leipzig, 1895, and also their Urkunden zur Geschichte der Nichteuklid-

ischen Geometrie, I. Lobatschefskij, Leipzig, 1898.

X Cf. Proj. Geom. § 43 (a). An oversight in this proof may be here corrected.

The proof, as printed, proceeds by considering only points with rational coordinates.

But then a difficulty arises as to the theory of segments given in Chapter IV. of

Proj. Geom. For it is necessary that the real double points of a hyperbolic

involution should belong to the points considered. But these double points are

given by a quadratic equation. Thus algebraic numbers {i.e. numbers which can

occur as the roots of equations with integral coefficients) should be substituted for

rational numbers. The proof proceeds without other alteration. I am indebted to

Mr G. G. Berry of the Bodleian Library for this correction.
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excluding a particular plane; and farther, m before >ur

consideration to the points whose coordinates are i

15. It has been proved in .'.' 12 and 18 tli.it i convex re§

Projective Space is a Descriptive Bpaoe. The conv<

now to be considered in this and in the nexl chapter; namely, .

a Descriptive Space, to construct a Projective Space of which the

Descriptive Space is part. This effects a rery considerable simplil

tion in the investigation of the properties of Descriptive Space owing

to the superior generality of the analogous properties of Projecl

Space. Thus a Projective Space affords ;i complete inU'rpivtatimi of

all the entities indicated in coordinate geometry. It i> in order to

gain this simplification that the 'plane at infinity '

is introduced into

ordinary Euclidean Geometry. We have in enVt to seek the logical

justification for this procedure by indicating the exact nature of the

entities which are vaguely denned as the 'points at infinity': and the

procedure is extended by shewing that it is not necessarily connected

with the assumption of the Euclidean axiom. This investigation is

the Theory of Ideal Points* or of the generation of 'Proper and

Improper Projective Points' in Descriptive Geometry. The Euclidean

axiom will not be assumed except when it is explicitly introduc

The remainder of this chapter will be occupied with the general

theorems which are required for the investigation.

16. If A be any point and / be any line not containing J. then

the plane Al divides the bundle of half- rays emanating from .4 into

three sets, (1) the half-rays in the plane Al, (2) the half-rays on one

side of the plane, (3) the half-rays on the other side of the plane.

The sets (2) and (3) are formed of half-rays supplementary one to

the other.

Lemma. With the above notation, it is possible to find a plane

through the line / and intersecting any finite number of the half-rays

either of set (2) or of set (3).

For let a1} ••• a„ be n half-rays of one of the two sets. Let />\ be

any point on au and B, be any point on aa . Then either the plane

* Originally suggested by Klein (extending an earlier suggestion of von Standi),

Math. Annul, vols. iv. and vi., 1871 and 1872 ; first worked out in detail by Pasoh,

loc. cit., §§ 6—9. In the text I have followed very closely a simplification ol the

argument given by R. Bouola, Sulla Introduzione degli Knti Improprii in Qeometria

Projectiva, Giornale di Matematiche, vol. xxxvm., 1900.
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Bjl lies between the planes B2 l and A I, or the plane B2 l lies between

the planes B1 l and Al, or the planes BJ and B2 l are identical. But

in either of the first two cases the intermediate plane intersects both

semi-rays a^ and a2 . Hence a plane is found through /, intersecting

both «j and a2 . Call it the plane B2 l. Again take any point B3 on a3 ;

and the same argument shews that at least one of B2'l and B3 l inter-

sects a1} a2 , and as . Proceeding in this way, a plane is finally found

which intersects each of the n semi-rays.

17. Desargues' Perspective theorems* can be enunciated in the

following modified forms

:

(1) If two coplanar triangles ABC and A'B'C are such that

the lines A A', BB', CC are concurrent in a point 0, then the three

intersections of i?Cand B'C, CA and G'A', AB and A'B', if they^exist,

are collinear.

* Cf. Proj. Geom. § 7.
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(2) If the pairs of homologous Bide* of the two coplanar triai

k&Cand A'FC, namely, BCaad PC, CA and C'A\ AB w
intersect in three collinear points, then the line* .1.1 .

///.'. ' '

two intersect, are concurrent in the same point.

Considering the first proposition let AB said .17;' intersect in /,,

BCand H'C'mM, CA and CA' in X. Now it is nut possibli

for A! to lie on the segment OA, and for A to lie on the segment '>.l .

Assume that A' does not lie on tne segment OA. Let B l»<- any point

external to the given plane (a, say). Now by the lemma of .' 16, it i-

possible to find a plane through LM, lying between the planes LM II and

//iJ/.l {i.e. the plane a), and intersecting the three lines A'. I. HI:. l:< .

say, in the points A", B", C" (in the figure C?" is nol shewn . Then

evidently A" must lie in the segment IIA. Hence A

A

", si]

does not lie in the segment OA, must intersect OR in the segment OR
Thus the intersection of the lines A'A" and 0i2 is secured. I. I

be the point 0'. Again the lines OA' and 0' IS' are the projeetion-

from 72 on the plane A'O'B' of the lines OA' and 02P. Now .1 H
passes through L. Hence B" lies on the plane A'A'B , i.e. on the

plane OA'B ' . Hence B" is on the projection of the line OR on the

plane O'A'B', i.e. B" lies on O'B'. Thus />'7>'" passes through <>

.

Reasoning in exactly the same way for BC and H'C, it follows tliar

C'C" passes through 0'. The same figure has now been constructed is

in the proof of the corresponding theorem for Projective Geometry*.

Accordingly the theorem follows by the same reasoning.

In order to demonstrate the converse theorem, we proceed exactly

as above, except that, L, M, N are now assumed to be collinear, is

the point of intersection of AA' and BB ' . Then the same construc-

tion is made as before, and it is successively proved by similar reasoning

that every pair of the lines A'A", B'B", C'C" intersect. But the lines

are not coplanar. Hence they intersect in the same point 0'. But O
must lie on RO. Thus CC passes through 0.

Corollary. The enunciation of the first theorem can be modified

by removing the assumption that AC and A'C intersect, but by adding

the assumption that AC intersects LM.

18. A trihedron is the figure formed by throe lines concurrent

in the same point, and not all coplanar. The three linos form the

edges of the trihedron; the three planes containing the lines, two by

* Cf. Proj. Geom. S 7.
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two, form the faces of the trihedron ; the point of concurrence of the

three edges is the vertex of the trihedron.

It follows (cf. § 6) that, if two trihedrons have the same vertex, any

two faces, one from each trihedron, must intersect in a line through

the vertex ; also that any two planes each containing two edges, one

edge from each trihedron, must intersect in a line through the vertex.

Desargues' theorems can be applied to two trihedrons with the

same vertex; only in this case, as in Projective Geometry, there are

no exceptional cases depending on non-intersection.

The enunciations are as follows :

(1) If a, b, c and a', b', c' are the edges of two trihedrons with the

same vertex, such that the planes containing a and a, b and b', c and c'

are concurrent in a line s (i.e. belong to the same sheaf), then the three

intersections of the planes be and b'c', ca and c'a, ab and a'b' are

coplanar.

(2) If a, b, c and a', b', c' are the edges of two trihedrons with the

same vertex, such that the three intersections of the planes be and

b'c', ca and c'a, ab and a'b' are coplanar, then the three planes

containing a and a, b and b ', c and c' belong to the same sheaf.

These propositions immediately follow from the case of triangles

by noticing that, by the lemma of § 16, the six edges of the trihedrons

can be cut by a plane, not through the vertex. Hence by the previous

remarks on trihedrons, Desarguesian triangles are obtained without the

exceptions due to non-intersection.

19. The two theorems of the present and next articles are the

central theorems of the whole theory of Ideal Points.

If the lines a, b, c are the intersections of three planes a, /?, y of a

sheaf with a plane it, not belonging to the sheaf, and if\0 be any
point not incident in ir, then the three planes Oa, Ob, Oc belong to

one sheaf.
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If the axis (r) of the sheaf intersect the plane » in a point •*>', then

the three lines a,b,c pas.-, through >»', and the line 0/8 evideotlj

contained in Oa, Ob, Oc, and thus forms the •> v.i- of the hot -beaf.

Consider now the case when the axu /•, of the sheaf

intersect tt. Then a, A, c arc not concurrent, and no two of diem

intersect. Hence one of the three (b, say) must li<' between ['.<.

segment, joining a point on a and a poinl on c, intersects A) tl thei

two. Take any two points L and A' on a and c respectively, then the

segment LN intersects b in a point .'/. Take two other points P and

Q on LN so that we have the order J*, L, M, X. '/. Take any point

D on c ; then the segment 7JZ> must intersect a and A in two ]k »i n t
-

A and B respectively; and the segment AQ must intersect the

segment DN in a point C. Then the line BC must intersect the

segment NQ in a point R. Thus a triangle ABC has been formed,

whose vertices lie on a, b, c, and whose sides AB, AC, l><' pa—

through P, Q, R respectively.

By taking another point D' on c, another triangle A'B'C can be

similarly formed, whose vertices lie on a, b, c, and whose sides All
and A'C pass through P and Q respectively.

We have first to shew that B'C passes through R. For taking

any point T on the axis (r) of the sheaf, the lines TA, TB, TC form

the edges of one trihedron, and the lines TA', TB', TC form the

edges of another trihedron with the same vertex.

Also the planes TAA', TBB', TCC belong to the same sheaf.

Hence the three intersections of the pairs of planes TAB and TA'B,

TAC and TA'C, TBC and TB'C are coplanar ; hence they lie in

the plane TPQ. Hence B'C passes through R.

Now considering the two trihedrons with edges OA, OB, OC, and

OA', OB', OC, the intersections of the pairs of faces OAB and OA'B,

OAC and OA'C, OBC and OB'C are respectively OP, OQ, OH
;

and these are coplanar. Hence by the converse part of Desargues'

theorem for trihedrons, the planes OAA', OBB', OCC belong to the

same sheaf. Hence Oa, Ob, Oc belong to the same sheaf [i.e. have

a common line of intersection).

20. If any two of the lines a, A. C an' coplanar. but the three

lines are not coplanar, and similarly for the lines a. />, </, then c and </

are coplanar.

If a and b intersect, the theorem is evident ; for a, b, <• are con-

current, and a, b, d are concurrent. Hence c and (/ are concurrent
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Assume that a and b do not intersect. Then it is easy to prove

that no two of the lines intersect. It follows that no one of the lines

c, b, d can intersect any of the planes ab, ac, ad in which it does

not lie.

Fist. 1.

Fig. 2.
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Hence it follows that cither c and d lie on opposite * the

plane at, ore? and /> on opposite sides of the plane ac, or 6 and c on

opposite sides of the plane <i<l.

First, let c and </ lie on opposite sides of the plane db (c£ fig. I

Take any point Con c. Then the plane Cd musl intersect the plane

«£ in a line, d', say. Then the lines a, />, d' are the intersectioi

the three planes e?«, db, d(J with the plane "A : and these three j.l.

belong to the same sheaf. Hence (cf. § 19) the three, planes throngh

the lines a, b, d' respectively and through any point not on ,il, bel

to the same sheaf. But C is such a point. I fence the plane- Cat,

Cb, Cd' belong to the same sheaf. But c is the common line oi

and Cb. Hence Cd' contains the line c. Hence c and <l are coplanar.

Secondly, let the plane ad lie between b and c. Then the plane be

must intersect the plane ad in some line, d', say. Thus the three lines

A, d', c are the intersections of the three planes ab, ml. ac with the

plane be. These three planes belong to the same sheaf. Hence

(cf. § 19), if D is any point on d, not on be, the planes Db, Dc, Dd'

belong to the same sheaf. But Db and Dd' intersect in the line d
;

hence Dc passes through the line d. Thus c and d are coplaiuir.

Thirdly, let the plane ac lie between b and d. Then the proof is

as in the second case, interchanging c and <I.



CHAPTER III

IDEAL POINTS

21. Definition. An 'Associated* Projective Point,' or an 'Ideal

Point,' is the class of lines which is composed of two coplanar lines,

a and b, say, and of the lines formed by the intersections of pairs

of distinct planes through a and b respectively, and of the lines in the

plane ab which are coplanar with any of the lines of the projective

point not lying in the plane ab.

It follows immediately from § 20 that the lines forming a projective

point are two by two coplanar ; and further that (with the notation

of the definition) the lines of the projective point lying in the plane

ab are the lines in ab coplanar with any one of the lines of the

projective point not lying in ab.

Definition. A projective point is termed 'proper,' if the lines

composing it intersect. Their point of intersection will be called the

'vertex' of the point.

Thus a proper projective point is simply a bundle of lines, and

every bundle is a proper projective point.

Definition. A projective point is termed 'improper,' if the lines

composing it do not intersect.

It is proved (cf. §§ 24—30) that Projective Geometry holds good of

projective points as thus defined, when a fitting definition has been

given of a 'projective line.'

Definition. A projective point will be said to be ' coherent with

a plane, if any of the lines composing it He in the plane.

Definition. A 'projective line' is the class of those projective

points which are coherent with two given planes. If the planes

* The word ' Associated ' will usually be omitted.
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intersect, the projective line is called 'proper' j and tin- line of int

section is the 'axis.' If the planee d<» nol intersect, tin- pi

line is called 'improper.'

Since Projective Geometry has been developed* from the two

fundamental ideas of 'point' and ' straight line,' the other definiti

of projective elements must simply be those which have bee

in considering Projective Geometry. Thust a projective plane i- the

class of those projective (ideal) points, which lie on any project

line joining any given projective point A to any projective point on

any given projective line not possessing the given projective point .1.

Definition. If a projective plane possesses any proper projective

points, it will be called a 'proper projective plane.' Otherwise it is an

' improper projective plane.'

The vertices of all the proper projective points on a proper pro-

jective plane will be seen to form a plane (cf. § 26 (a)).

Definition. A proper projective point and its vertex are said t<> be

'associated,' so likewise are a proper projective line ami its axis, and

also a proper projective plane and the plane constituted by the vert

of its proper projective points.

22. Since any two lines belonging to a projective point are

coplanar, it easily follows that any two lines of the projective point

can be used in place of the two special lines (a and b) used in the

definition (cf. § 21). Hence it can easily be proved that any plane,

containing one line of a projective point, contains an infinite number

of such lines. In other words, if a projective point is coherent with

a plane, an infinite number of the lines of the projective point lie

in the plane. In fact it follows that, through each point of the plane.

one line passes which belongs to the projective point.

23. If three projective points are incident in the same projective

line, then with any plane, with which two of the projective points

cohere, the third projective point also coheres.

First, if the three projective points are proper, the theorem is

immediately evident.

Secondly, let two of the projective points. M and .V. say. be

proper, and let the third projective point, L. say. be improper. Let

* Cf. Proj. Geoiu. t Cf. Proj. Geom. § 4.
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the projective line possessing L, M, N be denned by the two planes

7T and tt' (cf. Definition of § 21). Then the three projective points cohere

with tt and tt'. Let -k" be any third plane with which two of the three,

Fig. l.

L, M, and N, cohere. Let Mx and Nx be the vertices of the proper

points, M and N. Then MXNX is a line in the plane * (cf. fig.* 1);

also the line MXNX belongs to L. Again (cf. § 22) another line r

exists in tt belonging to L ; and Mx and Nx must lie on the same

side of r. Let r be airy line in ir belonging to L, and on the opposite

side of the line r to Mx and Nx ; such a line exists (cf. § 22). Let

be any point of -k on the side of r remote from Mx and Nx . Then

the segment OMx intersects r and r, in A and A', say ; and the

* Note in drawing an illustrative figure, it is convenient to make the assump-

tion of § 12, and to consider Descriptive space as a convex region in a larger

Projective Space. This region is marked off by an oval curve in the figure, and an

ideal point, such as L, is a point outside the oval. Note that the existence of L,

as an analogous entity to "Ji"! and Nx , must not be assumed in the present

reasoning.
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sc-niciii OX, intersects r and /•', in B and B I

J.V, and //J/, intersect, in C, say; the segment* l:M and .1 iV

intersect, in 0", say. New project from any point O u -. and two

trihedipns are formed, oamely <>.\. <>/;. nc and "J fi

wiili the same vertex 0'. Also the homologon in the

three coplanar lines O'L, o'.l/,, o'.v,. Hence the three planes .1 .1 .

()'/>'/,'', OCC are concurrent in a line. Hence the plane <>'
(

tains the line 00. Therefore uC' passes through 0. Agaii ;

from any point 0" in »r", and consider the trihedrons .1 B I

and 0'Vi', 0"//, 0"0'. Then the planes o.i.r. o /;/;. 0"0<

concurrent in the same line 0"O. Tims the three lines I.. M
0"Nl are coplanar. Hence if two of them lie in w", the third must do

so also. Hence if two of L, M, N cohere with »r", the third also

does so.

Thirdly, let either two or three of A. J/. N be improper. Thus

let L and 3/ be certainly improper (of. tigs. •_> and 3). In the plane -
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form a triangle ABC, such that its sides AB, BC, CA belong to

L, M, N respectively. Thus if N is a proper point, CA passes

through Nl , the vertex of N : also since the lines BC and AB do not

intersect the line NXML, the points A, B, C lie on the same side

of this line (cf. fig. 2) : also since the lines BC and BA do not

intersect the line N-^ML, either C lies on the same side of the line AB
as N-l, or J. lies on the same side of the line BC as JSf1 . Assume that

C lies on the same side of AB as i\^ (cf. fig. 2). The rest of the proof

for figures 2 and 3 is now identical. In the plane tt, let r be any line

Fig. 3.

belonging to L, on the side of AB remote from C. In the plane w,

take any point on the side of r remote from C. Then the segments

OA and OB intersect r, say in A' and B '. Also the line A'N
intersects the segment OA, and does not intersect the segment AC;
hence it must intersect the segment OC, say in C. Then, by pro-

jecting from any point 0' in the plane ir and by similar reasoning

to that in the second case, it is proved that the line B'C belongs

to M. Then, as in the second case, by projecting from any point

0" in 7t", it follows that, if any two of the projective points L, M, N
cohere with tt", so also does the third.

24. (a) It follows from § 23 that any two planes, with which

both of two given projective points cohere, define the same projective
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line as any other pair of such planes. Hence two
|

determine not more than one projective line.

(P) Two projective points determine a1 leasl one projective line.

For if the points are proper, this is immediately evident. Bui in

case let the projective points be A and />, and lei o be any point.

There are at least two lines, '/, and ft.,, which are members of .1 and

such that the plane ax a» does nol contain 0. Then the planes Oa

and Oa., intersect in a line which passes through and is a member of

A. Hence through any point there passe- a line which is a member of

a projective point. Hence through there are lines belonging to A

and B respectively. But these lines determine a plane, with which A

and B both cohere. Similarly a second such plane can be determined.

Hence there is a projective line possessing both A and H.

25. The Axioms of Projective Geometry* can now be seen to be

true for the 'Projective Elements' as thus defined. Thus we have the

following theorems corresponding to those axioms of the previous tract,

of which the numbers are enumerated in the initial bracket-.

(I, II, III.) There is a class of Projective Points, possessing at

least two members.

(IV, V, VI, VII, VIII.) If .4 and B are Projective Points, there

is a definite projective line AB, which (1) is a class of projective

points, and (2) is the same as the projective line BA, and (3) possesses

A and B, and (4) possesses at least one projective point distinct from

A and B.

Note that two improper projective points may possess n<> cunnnnn

line.

(IX and X.) If A and B are projective points, and C is a pro-

jective point belonging to the projective line AB, and is not identical

with A, then (1) B belongs to the projective line AC, and (2) the

projective line AC is contained in the projective line AB.
(XI.) If A and B are distinct projective points, there exists at

least one projective point not belonging to the projective line AB,

26. Before considering the proof of the ' axioms " of the projective

planet, some further propositions are required.

(a) Since a line exists through any given point and belonging

to any given projective point, it easily follows that the set of projective

* Cf. Proj. Geom. §§4, 7, 8, 14.

t Cf. Proj. Geom., Axioms XII. XIII. XIV.
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points cohering with a plane form a proper projective plane ; and that

conversely, any proper projective plane is the set of projective points

cohering with some plane.

(j8) Any projective line intersects any given proper projective

plane. For through the vertex of any proper projective point on the

projective plane, a plane passes with which every point of the

projective line coheres (cf. § 23). This plane intersects the plane

associated with the projective plane in a line. Two such planes can

be found. The two lines in the plane associated with the projective

plane define a projective point which lies both in the projective line

and the projective plane.

(y) Two projective lines in a proper projective plane necessarily

intersect.

For let on and n be the projective lines and a be the proper

projective plane, and a
2 its associated plane. Take any point

outside alt Then two planes Om and On exist, with which re-

spectively all projective points of m and n cohere. These planes

intersect in a line through 0, I, say. Let A be any point in a
x .

The plane Al intersects a.
x in a line, l', say. The two lines I and /'

define a projective point which lies in both the projective lines m
and n.

(S) Desargues' Theorem holds for triangles formed by projective

lines and projective points in a proper projective plane. i

By (y) immediately above, no exception arises from non-intersec-

tion. Then by taking a point external to the associated plane, two

trihedrons can be formed for which the theorem holds. Hence the

theorem holds for the proper projective plane.

(c) The projections upon a proper projective plane of three

projective points belonging to the same projective line also belong to

a projective line.

The theorem is immediately evident, if the centre of projection,

or if any one of the three projective points, is proper. Assume that

all the projective points are improper. Let L, 31, Ar be the three

projective points, and S the projective point which is the centre of

projection. Let -nr be the proper projective plane on to which L, M, N
are to be projected. Let a be any plane with^which L, M, N all

cohere. On a construct figure 3 of § 23. Project (remembering (/8)

above) the whole figure of associated projective points from S on to the

plane *. Then by the first case of the present theorem, all collinear

groups of projective points which possess a proper projective point are
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projected into collinear groups. Lei .1. I>. M N be pro

into A u #,, ... Mu .V .

Thus, in the plane t, two homologies] triangles .1 BtC and

At'/i/C',' are obtained, J,.!,', //,#,', '''" being concurrent in 0^j
also />,A, and />','. I,', /y,C, and AVT, .1/', and A '

i re concurrent

respectively in />,, J/, , A,. Hence, ty 8 ibove, A .'/
,

.V, belong

to the same projective line.

27. The next group of propositions correspond to the three axioms

concerning- the projective plane.

(XII.) If A, B, C are three projective points, which do ii"t

belong to the same projective line, and d/ belongs to the projective

line BC, and B' to the projective line CA, then the projective lines

AA' and BB' possess a projective point in common.

If the projective plane ABC is proper, the theorem follows from

8 26 (y). If the projective plane ABC is improper, consider any plane

with which all the projective points of the projective line l!/i cohere.

Such planes exist. Thus the associated projective plane of Buch a

plane is a proper projective plane containing the line BB'. But by

§ 26 (/3)the projective line AA' intersects this proper projective plane,

in the projective point D, say. Also by s"
•-'('» («) the projection- of

B, A', C from A on to this proper projective plane belong to the

same projective line. Hence D belongs to BB'. Thus AA' and />'/>'

intersect.

(XIII.) If A, B, C are three projective points, not belonging to

the same projective line, then there exists a projective point not

belonging to the projective plane ABC.
This follows immediately from Peano's Axiom XV given in ?; 6

above.
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28. The theory of Harmonic Ranges must now be considered.

Let A, B be any two points, C a point in the segment AB. Take

F any point outside the line AB, and H any point on the segment

FC, and let EG be as in figure 1. Then the point D, if it exist, is

the harmonic conjugate of C with respect to A and B. By considering

the associated projective points and the associated projective lines, the

requisite harmonic conjugate (as a projective point) always exists.

Thus, on the basis of the axioms of Projective Geometry already

proved, the proof for the uniqueness of the harmonic conjugate in the

associated projective geometry holds good*. Thus in the original

Descriptive Geometry, the harmonic conjugate, if it exist, is unique.

Furthermore, since H is on the segment FC, E and G are re-

spectively on the segments AF &&& FB. Hence D, if it exist, cannot

lie on the segment AB. Conversely, ifD is any point on the line AB,
say on the side of B remote from A, take E any point on the segment

AF, then BE must intersect the segment BF. Hence AG and BE
must intersect in H, on the segments AG and BE. Therefore FH
intersects the segment AB. Thus the harmonic conjugate with respect

to A and B of any point on the line AB, not on the segment AB,
must exist, and lies on the segment AB.

Furthermore, if D lies on the side of B remote from A, and C
lies on the segment BC, let FC and EB intersect in H'; and AH'
intersect the segment FB in G'. Then since C lies in the segment

BC, H' lies in the segment BH, and G' lies in the segment BG.
Hence D' exists and lies in the segment BD. Thus as C moves

towards B, D also moves in the opposite direction towards Bf.

* Cf. Proj. Geom. §§ 6 and 7. t Of. Proj. Geom. § 17 (/3).
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Hence i< i ea ik een thai the segment .!/<' divided ,

parts by reference to the harmonic conjugates of poini in

respecl to .1 and B. The part formed by the segment AR

c,

exclusive of A and A",, contains the points whose harmonic oonj

lie on the .side of A remote from B ; the Begment BK . exclusive "I

B and JC.,, contains the points whose harmonic conjugates lie on tin-

side of B remote from A ; the segmenl A', A'., inclusive of A' and A'..

contains the points for which the harmonic conjugates 'I" nol

It is not necessary that the points A', and A' be distinct It' they

coincide, the segment K
X
K2 , inclusive of A' and K ., shrinks into a

single point K. Thus in Euclidean Geometry the middle point of any

segment AB is this degenerate portion of the segment.

It immediately follows that Fano's axiom* is satisfied for proper

projective lines. Hence, remembering thai the harmonic relation is

projective!, we have :

(XIV.) If A and B are distinct projective points, and C is a

projective point of the projective line AB, distinct from A and B,

then the harmonic conjugate of C, with respect to .1 and B, is

distinct from C.

Also the restriction to three dimensions follows at once from

Peano's Axiom XVI of § 6, giving the same restriction for Descriptive

Geometry. Hence we find :

(XV.) If a be any projective plane, and A be any projective point

not lying in a, any projective point P lies on some line joining A I

some projective point on a.

29. The order of the projective points on a projective line must

now be considered.

If the projective line is proper, the order of the proper projei

points on it will be defined to correspond to the order of the associated

points. Thus (cf. fig. 2 of § 28) if the points marked in the figure are

projective points, as C moves from A to A' , excluding A',, the projec-

tive point 7), which is the harmonic conjugate to C with respect to .1

and B, moves from G through all the proper projective points on the

* Cf. Proj. Geom. §8. t Of. Proj. Geom. §
•
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side of A remote from B ; and as C moves from K2 , excluding K2 ,

to B, D moves towards B through all the proper projective points

on the side of B remote from A.

Now let the order of the improper projective points be defined so

as to make the above theorem hold generally : thus as C moves from

Kx to K2 , including Kx and K2 , let the order of the improper

projective points through which D moves be such that D passes

continually in the same direction round the line from the proper

projective points on the side of A remote from B to the proper

projective points on the side of B remote from A.

Then by theorem (a) of § 17 of the Tract on Projective Geometry,

the order as thus defined agrees with the order as defined in §§ 14

and 15 of that Tract. Also the order on the improper projective

lines is obtained from the order on the proper projective lines by

projection. Since the harmonic property is projective, the orders

obtained thus by different projections must agree. Also from Peano's

axioms of the segments of the Descriptive line given in § 3 above,

it follows that the Projective axioms of order* are satisfied, namely

:

(XVI.) If A, B, G are distinct projective points on the same

projective line, and D is a projective point on segm (ABC)j, not

identical either with A or G, then D belongs to segm (BCA).

(XVII.) If A, B, G are distinct projective points on the same

projective line, and D is a projective point belonging to both

segm (BCA) and segm (GAB), then D cannot belong to segm (ABC).

(XVIII.) If A, B, G are distinct projective points on the same

projective line, and D is a projective point, distinct from B, and

belonging to segm (ABC) [which excludes A and C~\, and E belongs

to segm (ADC), then E belongs to segm (ABC).

30. Finally, the Dedekind property:}: for the projective line

follows immediately from its assumption for Descriptive Geometry

(cf. § 9 above).

Thus all the axioms for Projective Geometry, including the axioms

of order and the Dedekind property, are satisfied by the Projective

Points and the Projective Lines. Furthermore the proper projective

points evidently form a convex region in the projective space formed

by the projective points. Also the geometry^of this convex region of

* Cf. Proj. Geom. § 14.

t i.e. on the segment between A and C not possessing B, cf. Proj. Geom. § 13.

J Cf. Proj. Geom. § 19 (a).
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roper projective points correspond! step '<• rtep with I

the original descriptive Bpace. Thus the geometry of descriptive

an always be investigated by considering il as ;i convex region in a

projective space. This -imply amounts to considering the

proper projective points and adding thereto the impropei
|

points. A particular case arise* when the Euclidean axiom e£ i<»,

fcbove) is assumed. The improper projective points then li-- on a

improper projective plane. Tim- in Euclidean Geometry when the

rplane at infinity
1

is considered, the associated projective geometry has

been introduced, and this plane is the single improper projective plana

w.



CHAPTER IV

GENERAL THEORY OF CORRESPONDENCE

31. In this chapter the general ideas of Correspondences, or

Transformations, and of groups of transformations are explained, and

thus the idea of continuous motion is led up to.

Consider any proposition respecting two entities p and q ; let it be

denoted by <j> (p> <z)-
The proposition may be varied by replacing

p and q by two other entities, say u and v, so that the new proposition

is
<f>

(n, v). Thus we arrive at the notion of a constant form common

to all the propositions of the type cf> (x, y), where x and y are any two

entities such that a significant proposition results when x and y replace

p and q in
<f> (p, q). Note that a false proposition is significant ; an

insignificant proposition is not in truth a proposition at all, it is a

sequence of ideas lacking the type of unity proper to a proposition.

The constant form of the proposition <£ (x, y), as x and y vary, may
be said to constitute a relation between x and y, in those special cases

for which <£ (x, y) is a true proposition. The order of x and y in

respect to this relation represents the special roles of x and y
respectively in the proposition <£ {x, y). Thus if this relation is called

R, 'x has the relation R to y,' or more briefly xRy, is equivalent to

the proposition </> (x, y), however x and y be varied. It is evident that

we might have considered the relation indicated by the proposition in

such form that, if it be denoted by R'
,
yR'x represents </> (x, y). Then

R and R are called mutually converse relations. It is evident that

each relation has one and only one corresponding converse relation.

When xRy holds, x is called the referent and y the relatum. A
relation is said to be a one-one relatiorTwhen to each referent there is

only one relatum, and to each relatum there is only one referent. For

example, if aRb and aRc both hold, where b and c are distinct entities,

then the relation R is not one-one.



Bl, 32] DEFINITION OF A BBLA1

The olass of all the referent! in reepeoi to a relati

Domain of the relation, and the elan of all relate ii the 001

domain. In mathemaf ice e one one relation is often spoken ofai e trana

Ebrmation (or correspondence) of the members of its domain u I

with) the corresponding members of the converse domain. The com
roondenoe Is definite and reversible, and constitutes a rale by which

we can pass from an} member of dhe class to a corresponding definite

member of the other class.

Por example, the equation

const it ii tcs a one-one relation of all real numbers, positive or negative,

to the same class of real numbers. This brings out the fad thai the

domain and the converse domain can be identical.

Again, a projective relation between all the points on one line "t

projective space and all the points on another (or tin- same) line

constitutes a one-one relation, or transformation, m- correspondence,

between the points of the two lines. Any one-one relation of which

both the domain and the converse domain are each of them all the

points of a projective space will lie called a one-one point i

spondence.

32. By reasoning* based upon the axioms of Projective Geometry,

without reference to any idea of distance or of congruence, coordinates

can be introduced, so that the ratios of four coordinate.- characterize

each point, and the equation of a plane is a homogeneous equation of

the first degree. Let X, Y, Z, U be the four coordinates of any

point; then it will be more convenient for us to work with nou-

homogeneous coordinates found by putting ,/• for A' /', y for )' f.

for ZjU. Accordingly the actual values of ./•, //, c are, as usual, the

coordinates characterizing a point. All points can thus be represented

by finite values of x, v/, ~, except points on the plane, V <>. For theee

points some or all of x, y, and - are infinite. In order to deal with

this plane either recourse must be had to the original homogeneous

coordinates, or the limiting values of x to y to : must be considered as

they become infinite.

The plane, x = 0, is called the yz plane, the line, y 0. : Q, i^

called the axis of ./, and the plane, £7=0, is called the infinite

plane.

* Cf. Proj. G-eom. chs. n, and ra.

8 -
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When the fundamental tetrahedron is changed, the coordinates are

changed according to the formula

X' = o- {anX+ a12 Y + alsZ + au U),

Y' =<r {a^X+a^ Y+ a.2SZ + a^ U],

Z' = <r \a31X+aS2 Y+ assZ + au U\,

V = ar {«j X + «2 Y + as Z+a4 U\.

Hence the non-homogeneous coordinates are transformed by the

formula

a; = (anx + a12y + a13z -»- au)l(axX + a.2y + asz + a4 ),

y - (a 2lx + a.22y + a23z + a2i)j(aiX + a2y + asz + a4 ),

z = (aslx + a 3.2y + (tz%z + a-ii)l{aiX + a.2y + a sz + a4).

But if the infinite plane is the same in both cases, the formula for

transformation becomes

x = an x + a12y + aviz + au ,

with two similar equations.

33. A one-one
v

point correspondence can be characterized by

formula? giving the coordinates of any relatum in terms of those of

the corresponding referent. It must be remembered that every point

is both a relatum and a referent. Let the correspondence under

consideration be called T, then the coordinates of the relatum of any

point x, y, z will be written Tx, Ty, Tz. Thus we have

Tx = ft (x, y, z), Ty = ft (x, y, z), Tz = ft3
(x, y, z),

where the functions ft, ft, ft are defined for every point of space and

are single-valued. Furthermore, since the correspondence, being one-

one, is reversible, it must be possible to solve these equations for x, y,

and z, obtaining

, x = ft (Tx, Ty, Tz), # = ft {Tx, Ty, Tz), z = ft (Tx, Ty, Tz).

Let this converse relation be written 2\, and let the coordinates of

the relatum of any point x, y, z be written T^x, T-^y, TY z. Then

x=T,Tx=TT,x, y=T1 Ty=TT1y, z = T1 Tz=TT1 z.

Then, remembering that by properly choosing x, y, z we can take

Tx, Ty, Tz to be any point of space,~we find

Tx = ft (x, y, z), Txy = ft (x, y, z), 2\« = ft (x, y, z),

where ft, ft, ft are defined for every point of space and are single-

valued.
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34. Consider* the one-one point correspondence / sfinedbj

Tx <Ai (', .'/> "-. ".>": .. Or), '/.'/ &te .'/• - " "

'/'-.

<f>
(x, y, :. a a

where (^u </,, ,..ar are /• parameters. Lei the pa beassai

be efifeotive, bo that two different choices of special values for them

necessarily produce different correspondences. Then by varying He-

parameters an assemblage of correspondences Is produced, each

spondence being defined by a particular choice of the parameters

Oi, a.., ... a,

.

Now let 8 and T be any two members of this assemblage. Then

fUTx, i.e. 8(Tx), 8Ty,&nd 8Tz obviously are the coordinates of a point

which is related to the point (x, ;//, z) by a one-one point correspondence.

This correspondence is denoted by 8T. Now, if ST is necessarily a

member of the assemblage whenever 8 and T are both members of it.

the assemblage is called a group. When each correspondence of the

group is defined by r effective parameters, where r is a finite number,

the group is called finite and /--limbed. The group is said to be

continuous, if, # and T being any two different transformations of the

group, whenever the parameters of $ vary continuously and niton

approach those of T as their limits, then, for every value of x, //. :.

also S.r, 8g, Sz vary continuously and approach Tx, 7//. Tz as their

limits.

The assumption that <£,, <£..,, <£;!
are analytical functions of their

arguments, ,r, //, z, «x , a.>, ... ar , secures that the group is continuous,

35. The identical one-one point correspondence, a say, is such

that, for every value of ,v, y, :.

n,v = ,r, % = .'/, Qz : (1).

Finite Continuous Transformation Groups exist which do not

contain the identical transformation. But the chief interest of the

subject is concerned with those which do contain it. Let <<{'. <<'.

be the value-system of the parameters for which the corresponding

transformation of the group is the identical transformation !-. bo that

ilr = ,r = <£, (,r. >/, :, of, <i :
'\

. . . a,, ) 2 .

with two similar equations.

* Cf. Vorlesungen iiber Continuierliche Grttppen, by Lie. oh. n. §
•_'.
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For brevity put

,H> (*,y,«,«,,- «,0\ -t.(«*.)-t.,<.n-i,%...r)\
\ c^» /ai ),...ar"

&,(*»+*,.:.+* = fc(„,,)_ fc (,_i,j,...r)> (3).

V 0«» /a x",...ar"
;

Now any transformation (I
7

) of the group can be expressed in the

form

Tx - (j>i (x, 3/, 2, «i° + «i^5
«2° + #2^ • • • , «r° + M))

Ty=<f>.2 (x,y, z, af + e^t, a2°+e.2 t, ...,ar° + eri)r (4)-

Tz = <j>3 {x, y, z, a" + ex t, a2
° + e2 t, ... ,ar° + er t)j

Hence, since the functions <£], <f>2 , <£3 ar© analytic, if t is not too

large, we find, remembering equations (2) and (3),

Tx = x + 1 (e2 & + e2 i2 + • • + £»-£r) + terms involving f, f, etc.
,

Ty = y + 1 (e^! + e2 rj2 + ... + erVr) + terms involving f, f, etc.
\ (5).

Tz = z + t(e1 £,1 +e2 £2 + ... + er t,r) + terms involving t*, f, etc.

Hence in the limit when t diminishes indefinitely, writing

we find

L X — X H 77 v . etic.

,

at

-^=el i1 + e2 $2 + ...+er$r \

dy ,„v
-

(̂

=e1 r]1 + e2 r)2 + ... +erVr> (6).

-j
t
= exti +e2£2 + ...+er£r

)

These equations define the infinitesimal transformations of the

group, every value-system of ratios of ex , e2 , ... er defining one Infini-

tesimal Transformation.

36. Conversely by integrating equations (6) of § 35, it can be

proved that the form of any fintte^transformation of the group can be

recovered. Assume that we have found in this way

*=/ (t, Clt C2 , C3), y=f2 (t, Cu C2 , Cs), z=fs (t, Cu C2 , Cz),

where C1} C2 , Cs are the constants introduced by the integration. Let
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.'•„, .'/o, Zo be the value of <r, y, t when ' 0. Then from the

equations it can be proved <<> be possible, owing t<> the i<i rl

the continuous group of one-one traneformatioi ( ( I

in terms <»('./„,//„, ~„. Thus we obtain again equations i

namely

with two similar equations, where '.,,//„, 3o now correspond to r,y, i

in those equations, and .'•,//, : to '/•', '/'//, Tz.

But it is not true that, if any equations of the same for

equations (6) of § 3"> bo writ ten down, where J . B any

arbitrarily chosen functions of a?, //, z, the integral forms give the finite

transformations of an r-limbed finite continuous group. F<>r in

equations (<>) of s"
; >5, %,, ..., Care derived from equations 3

that is to say, they are partial differential coefficients of functions with

special properties. The enunciation of the conditions to be satisfied

by ii, ..., £,., so that a finite continuous group <»f transformations may

result from the integration of the corresponding equations, is called the

Second Fundamental Theorem of the subject. It is not required here.

Also if 0i, e»,...e,. are kept unchanged, then the assemblage of

transformations found by the variation of t in equations I ol

form a one-limbed continuous group, which is defined by the Bingle

infinitesimal transformation which it contains, namely that one corre-

sponding to the given value-system of <,, <-. ...<,. Also every finite

transformation is a member of the one-limbed group produced by the

indefinite repetition of some infinitesimal transformation.

37. A latent point of a transformation is a point which is trans-

formed into itself. A latent curve or surface is such that any point of

it is transformed into some point on the same curve or surface.

It is evident that the latent points, lines, and surfaces of any

infinitesimal transformation are also latent for every finite transfor-

mation belonging to the one-limbed group defined by it. They are

called the latent points, lines, and surfaces of the group.

The transformations which leave a given surface latent inu>t form

a group, for the successive application of two such transformations -till

leaves the surface latent. Also the assemblage ot the infinitesimal

transformations which leave a surface latent must be the infinitesimal

transformations of a continuous transformation group.
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38. If a reentrant single-branched curve a (which may be a straight

line) is transformed by an infinitesimal transformation of a continuous

[group into a curve f3, then the senses* round, or directions round, the

curves correspond in a perfectly definite manner, the same for all such

infinitesimal transformations.

In order to make clear the correspondence of directions round any

two reentrant single-branched curves a and /3, let OPxL and OP2L
define two complementary segments round a, and let O'QiM&nd OQ2M
define two complementary segments round (3. Now consider any

one-one point transformation which (l) transforms a into /?, (2) trans-

forms segments of a into segments of /?, (3) transforms into 0'.

Then one of the two following mutually exclusive cases must hold, either

one of the two, OQlM and the relatum of OPx L, contains the other, or

one of the two, 0'Q
2M and the relatum of OP1 L, contains the other.

If one of the two, 0'

Q

XM and the relatum of OP1L, contains the other,

then the segments OPxL and O'QiM will be said to correspond in sense

where and 0' are corresponding origins. Also we shall consider an

arbitrary small portion of a containing as the neighbourhood of ;

thus divides its neighbourhood into two parts, one lying in the

segment OP1 L, and the other in the segment OP2 L. Similarly 0'

divides its neighbourhood on /? into two parts. Then the case con-

templated above, when the segments OPxL and O'QiM correspond in

sense with and 0' as corresponding origins, will also be expressed by

saying that corresponds to 0' and the neighbourhood of in the

segment OP1L corresponds to the neighbourhood of 0' in the segment

O'Q^M.

Now considering the case of an infinitesimal transformation, the

curve /3 must lie infinitesimally near to the curve a, so that the point

Qtl may be assumed to be a point infinitesimally near to the point Pa

and the point Q2 to be a point infinitesimally near to the point P2 .

Then no point of the segment OPxL which is infinitesimally near to Px

is infinitesimally near to any point on the segment 0'Q
2M. Hence the

segments OPxL and O'QiM must correspond in sense with and O'as

corresponding origins. Thus only one of the two cases of corre-

spondence in sense is now possible-

Notice that for this theoremJhe_curves a and (3 need not be distinct,

nor need the points and 0'.

If a straight line / is latent for a transformation, and is a latent

point on it, and segments with origin correspond in sense with

* Cf. Proj. Geom. § 15, extended to any reentrant lines.
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themselves, then the line is said to I"- transformed directly in the

neighbourhood of 0, in the other case it if laid

inversely in the neighbourhood of 0.

Thus it follows ae a corollary from the above proposition tb

infinitesimal transformation, which leaves latent a line and

point on it, transforms the Line directly in the neighbour!

Hence also it follows that any finite transformation of tl ne-limbed

group defined by the infinitesimal transformation, transforms the line

directly in the neighbourhood of 0.

Similar theorems hold with respect to surfaces. It is sufficient for

us to consider a transformation for which l j a given Btraighl line / is

latent and also a point on it, and J the relata of piano- through /

are pianos and the relata of straight lines through O an- -traight line-.

The general extension is obvious.

The portion of a piano through 0, which lies within an arbitrarily

small convex surface (cf. § 11; which contains within it. will be

called the neighbourhood of 0. The axis /divides into two part- the

neighbourhood of on a plane p through / ; call them p x
and /'.. Let

the plane q be the relation of p with respect to the transformation, and

let the two parts of its neighbourhood, as divided by I. be </ and </_..

Let a line through in p cut the convex surface in /',. /'.
: and let

the relatum of the line in q cut the surface in Qu <,>
: : also let OP

stand for the segment of the line in the neighbourhood /> L
, and so on.

Then (assuming that continuous lines are transformed into con-

tinuous lines) if OP
x
and 0(/ {

correspond in sense, the same must hold
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for all similar parts of corresponding lines through in the neighbour-

hoods px and q x
. The neighbourhoods px and qx will then be said to

correspond in sense. Also if p is latent, it will be said to be trans-

formed directly in the neighbourhood of with / as axis, if the

neighbourhood px corresponds to itself in sense.

Now, if the transformation is infinitesimal, it follows at once from

the case of curves, that a definite one of the two neighbourhoods

g1 and q.2 must correspond in sense with p x , and that, if the plane p is

latent, it must be transformed directly in the neighbourhood of with

I as axis.

39. The general projective group of one-one point correspondences

is the group of those transformations which transform planes into planes.

Such transformations must therefore transform straight lines into

straight lines, and must leave unaltered all projective relations between

sets of points on lines.

Now, if in such a transformation three points A, B, C on a line I

are known to be transformed into A', B', C on a line /', the relatum

on /' of every point on I is determined. For, by the Fundamental

Theorem* one and only one projective relation can be established

between the points on /and those on V, such that A corresponds to A',

B to B', and C to C. Thus the given transformation must transform

I into /' according to this relation.

Hence it follows that if four points, A, B, C, D on a plane p, no

three of which are collinear, are known to be transformed into A', B'

,

C, D' on a plane p ', the relatum on p of every point on p is determined.

For let AD meet BC in E, and AD' meet B'C in E'. Then E'
corresponds to E. Hence A, B, E on AB correspond to A', B', E' on

A'B'. Hence the relatum on A'B' of every point on AB is determined,

and similarly for BC and B'C, and for CA and CA'
. But through any

point P on p a line / can be drawn cutting BC, CA, AB in L, M, N.
Thus the relata on p of L, M, N, namely L, M', N' on /', are deter-

mined. Thus the relatum of every point on I is determined. Hence
the relatum of P is determined.

Similarly, if A, B, C, D, E are five points, no four of which are

coplanar, and if for any projective transformation their relata are

determined, then the relatum of every point is determined. Accordingly

a projective transformation is completely determined when the relata

of five points, no four of which are coplanar, are determined.

* Cf. Proj. Geom. § 9 (7).
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40. Now consider transformations of the type

'/'./ r
ii u .i- <i, .</ a i

<i
.

' • a " a i i

Ty '",,.' a // a i
• a . a a a " a i - 1)

•

Tz (>iM .r
i a, .'/ a . "

. a i
" y • a . I

They obviously belong to the general projective group

above. Also there are fifteen effective parameters. Bui it' ire

substitute for .t; y, z the coordinates of a given poinl . I. and for

T
7

^, Ty, Tz the coordinates of a given point .1 . three e«inat i. ,>

obtained between the parameters. Let the same be done for />'

and C, D and .//, E and A". Then in all fifteen equations are

found. Also if no four of A, B, C, D, E are coplanar, and no four of

A', II', C, /)', E' are coplanar, these equations are 'oii-.i-t.-nr. and

definitely determine the transformation T. Hence of. 39 the

equations (1) can, by a proper choice of parameters, be mai

represent any assigned transformation of the general projective group.

Hence the transformations represented by them are those of the whole

general projective group.

It is obvious from the form of these equations that the _i t oij. is

a fifteen-limbed continuous transformation-group. To find it- infini-

tesimal transformations, put

an = 1 + au t, aK = aVi t, aVi
- a l3 t, au = a iA t, a, .<,/, a , = «

:
t

. a a t. etc.

Then we find that the analogues of equations i; ot s .",."i are

dx
-=- — an .v + a v,y + a

1:1

* + a 14
- ,r (a,,r + a.,y + a.,c) I

= u.,, X + «j-j// + a&Z + <*._>4 — V (u, X + «._.// + a., ;
)

•-'

dy

di

dz ,
s

a,,,r + a,,,y + a.,. z + a.,, - c («,,r + <(,,// <i
, :

These equations give the general form of an infinitesimal tram

ormation of the general projective group.



CHAPTER V

AXIOMS OF CONGRUENCE

41. The logical analysis of the method of superposition as applied

to geometrical proofs is now to be undertaken. In this method a

figure is said to move unchanged till it arrives at coincidence with

some other figure. But what moves ? Certainly not the points of the

space. For they remain where they are. If it is some physical body

occupying space which moves, then the assumption, that the body

remains unchanged in its motion, involves the very comparison

between the assemblage of points occupied in one position with that

occupied in another position, which the supposition was designed to

explain. Accordingly we find that Pasch* in effect treats 'congruence'

as a fundamental idea not definable in terms of the geometrical concepts

which we have already acquired. He states ten axioms of congruence

in a form applicable to Descriptive Geometry. They are as follows,

where the single capital letters represent points, and the figures are

the ordered assemblages of the points mentioned, ordered in the order

of mention.

I. The figures AB and BA are congruent.

II. To the figure ABC, one and only one point B' can be added,

so that AB and AB are congruent figures and B lies in the segment

AC or C in the segment AB'.

III. If the point C lies in the segment AB and the figures

ABC and A'B'C are congruent, then the point C lies in the segment

A'B'.

IV. If the point Cx lies injthe- segment AB, and the segment ACX

is lengthened by the segment C±C2 which is congruent to it, and AC*
is lengthened by the segment C2C3 , congruent to ACU and so on, then

finally a segment CnCn+1 is arrived at which contains the point B.

* loc. cit. § 13.
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V. rf in the figure ABC the segments AC and B( tent,

then the figures ABC and BAG are congruent.

VI. If two figures are congruent, so also are their homoli

parte eongruent.

VII. If fcwo figures are each congruenl to a third figure, th<

congruent to each other.

VIII. If of two congruent figures one is enlarged by the addition

of a point, the other can be similar))' enlarged so thai the ei

figures are congruent.

IX. If AB and AY/// arc any two given figures, /'', <>. II

not collinear, and AB is congruent to FC, then in any plan itaining

AB exactly two points C and I) can be found such that the figures

ABC and ABB are each congruent to FGH, and furthermore the

segment CD lias a point in common with the line AB.
X. Two figures A BCD and ABGE which arc not plane figures

are not congruent.

42. These axioms at once suggest the analysis and definition of

congruence in terms of our previously stated geometrical concepts.

This analysis was first successfully achieved by Lie*.

Any point of space may be supposed to move with the rigid figure

when the method of superposition is applied. Accordingly, considering

the explanations of chapter IV, we see at once that a superposition

is in fact a one-one point transformation. Let this Bpecial da-- oi

point transformations be called motions. We have now to consider

whether the peculiar properties of motions can be defined in term- >t

the geometrical ideas already on hand.

If a rigid body is transferred from position a to position /i. ami

then from (3 to y, the final transformation defined is the same as it' ir

were transferred directly from a to y. Thus the successive application

of two motions produces a motion. But this is the characteristic group

property.

What Lie has succeeded in doing is to define in geometrical terms

the properties which must be possessed by a complete group o\' motions.

But now the explanations of the preceding paragraphs are found t«> be

* Cf. two papers by Lie in the Leipziger Beriehte, 1890. These investigations

are reproduced in a much enlarged form in the Theorie der Trantformationsgi

vol. in. part v. But Lie's line of thought was not that suggested above. 11.

from an almost successful solution of the same problem by Helmholtz. of. Veber </iV

Thatsachen, die der (leometrie :u Grunde liegen, Gdtt. Naohr. istis. and Collected

Works, vol. ii.
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to some extent faulty. For they implicitly assume that there is one

definite group of motions, as indeed our sensations of the physical

world do in fact seem to give us special intelligence of one such definite

group in physical space. However it will be found that an indefinite

number of groups of one-one point transformations exist which satisfy

Lie's definitions of the properties of a complete group of motions.

Accordingly a motion when one special group is being considered is not

a motion when another such group is considered.

A group of motions is called a congruence-group, and the

definitions of the characteristics of such a group are called the axioms

of Congruence.

43. Lie's results, as expressed by himself, are as follows

:

Definition*. A finite continuous group in the variables oc1} #2 > ••#»

is called transitive, if in the space (pou x2 , ...ccn) an w-fold extended

region exists, within which each point can be transformed into any

other point through at least one transformation of the group.

Definition^. A real continuous group of three-fold extended

space possesses at the real point P free mobility in the infinitesimal,

if it satisfies the following conditions : If a point P and an arbitrary

real line-element passing through it are fixed, continuous motion is still

possible ; but if, in addition to P and that line-element, an arbitrary

real surface-element, passing through both is held fixed, then shall no

continuous motion be further possible.

Tlieorem%. (1) If a real continuous projective group of ordinary

three-fold extended space possesses without exception in all real points

of this space free mobility in the infinitesimal, then it is six-limbed and

transitive, and consists of all real projective transformations through

which a not-exceptional imaginary surface of the second degree, which

is represented by a real equation [e.g. x1 + y
2, + z2 + 1 = 0], remains

invariant (latent).

(2) If a real continuous projective group of ordinary three-fold

extended space possesses free mobility in the infinitesimal, not in all

real points of this space but only in all real points of a certain region,

then it is six-limbed and transitive and is either the continuous real

projective group of a not-exceptional real not-ruled surface of the

* Cf. Tlieorie der Transformationsgruppen, vol. i. § 58.

t Cf. loc. c.it. vol. in. § 98.

X Cf. Lie, loc. cit. vol. in. § 98.
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second degree [i.e. with this surface latent], or it i- by meant oi ;i real

projective transformation similar to the group of Euclidean moti
r

riie above constitutes what I ..
i

* calk bis 'firsi tolution of the

Riemamn*-Helmholtz Problem.'

The axioms which are implicit in this solution appeal to be the

following :

(1) A congruence-group is a Unite continuous group of one-one

point transformations, containing the identical transformation.

(2) It is a sub-group of the general projective group.

(3) An infinitesimal transformation belonging to it can alwa

found satisfying the condition, th.it any definite line and any definite

point on the line are latent.

(4) No infinitesimal transformation of the group exists Buch that

a line, a point on it, and a plane through it, shall all he latent.

44. Lie'st 'second solution of the Riemann-Helmholtz Problem'

consists of the theorem that the following axioms completely

characterize a complete assemblage of Euclidean or non-Euclidean

Motions

:

(1) The motions form a real continuous group defined by in-

finitesimal transformations.

(2) If any arbitrary real point (///', //...", y-f) is fixed, then the real

points (x1} #a , #a), into which it is possible to move any real point

(./,', -fa ? #3°), satisfy a real equation of the form

W{y1\yi\ yf; xx\x2\x£\ xly xa , xt) 0,

which is not satisfied by x-^ = y^, x2 = y»°, x8 =y»°, and which represents

a real surface passing through (.?Y', ,r.,°, ,r
:i
").

(3) Round any point (y^, yJ, y-f) a finite three-fold region exists,

such that, when (y^, y.f, y/) is fixed, any other point (a?i°, ./. .

can be moved through an irreducible continuous sequence of points up

to any point satisfying the above equation of (2).

45. The conception of a finite continuous group, though it is

simple enough analytically, does not seem to correspond to any o\' the

obvious and immediate properties of congruence-transformations as

presented by sense-perceptions. The following set of axioms conform

more closely to the obvious properties of congruence-transformations
;

* Riemaun's work in this connection is contained in his Habilitatione

Veber die Ilypothcsen, welche der Geometric :u Grande liegen, L854, of. his Collected

Works, and also a translation in the Collected Works of \Y. K. Clifford.

t Cf. loc. cit. vol. in. § 102.
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they are based upon, and are modifications of, a set of congruence-

axioms given by Peano*.

(1) The assemblage of congruence-transformations is a sub-group

of the general projective group.

(2) The group contains the converse of every transformation

belonging to it.

(3) Given any two points and 0', and any two lines / and I'

through and 0' respectively, and any two planes tt and ir' through

/ and V respectively, one and only one transformation of the group

exists which transforms into 0', I into I', mr into v ', so that the two

neighbourhoods of on / correspond in an assigned manner with the two

neighbourhoods of 0' on /', and the two neighbourhoods of on t? as

divided by / correspond in an assigned manner with the two neigh-

bourhoods of 0' on ir as divided by /'.

(4) Given any line and any point on that line, an infinitesimal

transformation of the group exists such that the line and the point

are latent.

Comparing these axioms with those of § 43 which are required for

Lie's 'first solution,' it will be found that practically 'finite and

continuous ' is left out of the first axiom of § 43, but on the other

hand the fourth axiom is strengthened into the form of axiom (3) of

this article.

The following chapters will be based upon these axioms.

Proposition. It follows immediately from axioms (2) and (3) that

the identical transformation is the only member of the group for

which a given point is latent, and a given line through the point is

latent, being transformed directly in the neighbourhood of the point,

and a given plane through the line is latent, being transformed directly

in the neighbourhood of the point with respect to the line as axis.

For with the notation of axiom (3) let T be such a transformation

with respect to the point 0, the line /, and the plane ir. Also let S be

the transformation of the group which transforms 0, I, and rr, into 0',

l', and 7r', in a specified way according to axiom (3) ; and let St be the

converse of S which also belongs to the group. Then the transforma-

tion ST belongs to the group, and transforms 0, I, -t into 0', l\ ir,

according to the same specified way as S. Hence by axiom (3), we

have ST = S. Thus operating with S1} we have SiST- #x $. But by

axiom (2) SjST and &$ belong to the group ; also SXST= ClT= T, and
&/8f = 0. Hence 7' -O.

* Cf. loc. cit. Riv. Mat. vol. iv.



CHAPTER VI

INFINITESIMAL ROTATIONS

46. An infinitesimal transformation of the projective group ef.

§ 40, equations (2)), which leaves the origin and the axis of x latent, is

of the form

dx .

jj
= aux + a122/ + aViz - X (a,.*- + a,// + a

:i
z)

dy .

-£ = aw 2/ + a.2Xz-y(a 1
x+a.,i/+a,:) ( 1 ).

^ = <h&y + a*<- - » («1« + «•_•// + ":<~ )
)

We proceed to consider the specialization necessary for the

efficients in order that this may be a 'rotation round the axis of x in

a congruence group.

There is in a congruence group only one infinitesimal ' rotation

'

round any given line with a given point on the line latent. For consider

the motion of the plane, y=pz
i
round the axis of x with the origin

latent; after the infinitesimal transformation (1), we have

dy dz dp

dt p
dt dt'

Substituting from (1), and putting y=pz, we find

dp i \ a

Hence when p is changed to p + dp by the infinitesimal transformation

(1) we find

*« =—p-^l ,
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Now consider a second infinitesimal transformation of similar form

to (1), only with au', a12
', etc. as coefficients. Let d2 t be the incre-

ment of t requisite to change p into p + dp. Then we have

d2t= , . ,

dp
,,

-
2 (3).

a23 + (a22 -a^jp-a^p2

Now consider the transformation

(dx\
-J-)

comes from the first trans-

(dx\
-j-

J
from the second. But this transformation leaves

the plane, y=pz, latent. Hence by the proposition of § 45, it is the

identical transformation. Thus we find dx = 0, dy = 0, dz = 0, for every

value of x, y, z, and p. Thus

aux + a12y + a13z — X (a
xx + a2y + asz)

a23 + (
a22 - a

33) P - awP
2

_ an'x + a12
'y + a13

' z — X {o-\X + a2
'y + a3'z)

a2S
' + (a22

' - a3S')p- a32
'p2

with corresponding equations for y and z. These three equations hold

for every value of x, y, z, and p. Hence it is easy to prove that

on' _ <hl = _ ^» = _ ^L (a)

an a12 a33 a3

Thus the infinitesimal transformations are identical.

47. The plane, my + nz = 0, is latent for the rotation of § 46 (1),

fill (1 2j

if m -# + n -j- = is satisfied whenever the point (x, y, z) lies on the

plane. Hence
ma22 + na32

= am,

ma23 + nam = an,

and a is given by
(op - a22)

(or - a33)
- a23a32 = (1).

But by the proposition of § 45, there can be no real latent plane of

this form. Hence the roots of equation (1) are imaginary. Thus

4 (a22a33
- a23a32)

- (a^ + a33 )

2 > (2).
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48. In the neighbourhood of the origin the rotation of M i

can be expressed l»y

dx
i/t

", ' I "i .'/ • «u-

1

dz

di
=

" " "
"-

'

Thus, writing yoc^, ex /'''',// .-s.-itisHus cMjn;iri«iu i ,.t it. Hence

p is complex. Thus we may write

y = ei («2S + a:m) * (y C0S vt + >/ sill vt)}

z = eh («sa + «i») '
( 5(J Cos itf + q sin « / 1

1

where v = v/{as a,B -a.;i n,: -](«,,, + a.B )

:
|, and y and j^can be determined

in terms of y , z , and of the coefficients. Thus, putting A. = gi (*« + °») "7»,

when £ = irjv,

y = -\y , z = -Xz :;
.

and when t - 2ir/v, y=Wy0i z - A'-'c„ ( 1 ).

By the proposition of § 45, the equations (4) must reduce to

y = y , z = z . Hence \=1, and therefore

Oaa + «88=

Thus for a value of t, not zero, the integral form of equations ( l ) yields

the identical transformation.

Also equations (2) become

•(6).

y = v/o cos vt + —*?- sm 1 1

« = s cos v< + — J0 ^"
sin i/

J'

Hence a value of £ can be found such that by the corresponding

transformation of the type of equations (6), any plane y =/\>~» is trans-

formed into any plane y =pz, the axis of x being transformed directly.

and the neighbourhoods of on the planes as divided by the axis of x

corresponding in assigned manners. Hence by axiom (3) of § 45, this

is the only transformation of the group for which these conditions are

fulfilled.

Hence the transformations for which the origin and the axis of *

are latent, the axis of x being transformed directly in the neighbour-

hood of the origin, form a one-limbed continuous group produced by

the infinitesimal transformation which fulfils these conditions.

4—2
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49. The transformation of § 46 (1) on the latent axis of x

(i.e. y - 0, #= 0) is given by

dx

If an 4= 0, the solution is

X Xq .— e^ut .

an -alt l- au -a1(r

If an = 0, the solution is

1 1 = a,£.
X X

But (cf. § 48) when t = 2irfv, we find x = a\, for every value of x .

Hence au = 0, % = 0.

Thus every point on any line is latent for a rotation round it with

one point of it latent. This fundamental theorem will be cited by

the shortened statement, that 'every point on an axis of rotation

is latent.'

Thus equations (1) of § 46 for the infinitesimal rotation round the

axis of x, reduce to

dx / \ \

-j
t
= <h*y + <hsZ ~ x (o,2y + as z)

d/u / \

-ft
=a,2y + *,„z-y{a,y + azz)\ (l),

ft = o-vy + <*33~ - * dny + «
3-)

where a.22 + a33 =0") ,

?
.

and a22 a.,3
— a.23 a32 > 0)

50. The condition that

lx + my + nz = 0, (£=#0) (1),

should be a latent plane for the rotation (1) of § 49 is that

7
dx dy dz . , 4

*

l
dt
+mi +n

dt=° (2)>

whenever (1) is satisfied. Hence substituting for

dx dy dz

di' di' di'
and using (1), we find

a12 l + a.22m + a
s

.2n = 0\ .,„>.

a^l^-a^m 4- a^n^O) ^
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Prom the inequality (2) of . 19, it follows thai the solution of this

equation satisfies the condition / * o.

Let this plane be taken to be the plane of fz, we. the plan.- ,

Tins requires

«12= 0, a,,

51. With this specialization of the plane of //,, the condition that

Ix + my + nz + 1 = (

]

)

should be a latent plane for the rotation 1 of
] 19 La that

, dx dy dz
l
dt
+m

dt
+ n

dt^
{>

'

whenever (1) is satisfied. Hence substituting from equations I

§ 49 and using equation (1), we find (cf.
£j 50, equation (4))

awm + a.o.,n + a. = <)}

} (2).a32 ?« + a,, /i + a.. = OJ

Hence there is a family of latent planes of the form (1), where / is

the variable parameter, and m and n are definitely determined in terms
of the coefficients of the infinitesimal rotation. Now let one member
of this family be taken to be the infinite plane. Then from equations

(2), we find

08 = 0, 08= (3).

Hence with these choices for the plane of i/z and for the infinite

plane, the infinitesimal rotation round the axis of .?• is reduced to the

form

g = o2ay + oa8«i , ) .

dz

where a.„ + a... =0) ...

^hK^S
— aS8a89 > Oj

Then every plane of the family \.r + /a = is latent.

52. Any infinitesimal motion, which keeps the origin fixed, i- of

the form
dx . vl

jj
= €UX + €V2 1/ + €

1:! C - X («!« + €,1/ + €..Z) I

with two similar equations
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If the line, x = la-, y — mo-, z - no, is latent, then

dx j d<r dy _ do- dz _ do

dt~" dt' dt ~ '" dt' dt~ '"dt'

Hence putting p for - -j- , the equations (1) become

(
en ~ p) I + cia»* + €i3^

— vl

(

€il + H*n> + €3») = 0,

with two similar equations.

These equations hold for all values of o. Accordingly, near the

origin, when o is very small,

(cu - p) I + e12m + e13 n = 0,

with two similar equations.

Hence p, in the neighbourhood of the origin, satisfies

ell-P, £h2 , «13

% )
c22-p, % = 0.

But this equation has always one real root. Thus there is always

one real latent line through the origin. Hence every infinitesimal

motion for which one point is latent possesses an 'axis.' Also (cf. § 49)

every point on this axis is latent. Accordingly for eveiy point on the

axis, x = lo, y = mo, z = no, we have

dt ' dt
U

' dt
U"

Hence €u / + e12m + els n - a- (/ex + me.2 + >te3) = 0,

with two similar equations.

These equations hold for every value of a-. Thus

€21 Z + €o2?W + £23% =

e31^ + e32^ + £33 ft =

e
x / + £»m + €3 n =

y (2).

Hence we find the equation,
|

ers |

= 0, and that the values of

I : m : n which satisfy the first three equations, must satisfy the

fourth
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53. The infinitesimal rotation round the b

lonii (r\\ § 19, equation! (1 ) and

^ /;,- 0** ytf

where fti
+

and Ai/3»-)8

'I'l,,.,,, aince (cf.
.' 16, axiom (1)) the motionj form a groo]

combining this infinitesimal rotation with that round the ai

another infinitesimal rotation of the -roup is fonnd Thui cf 51,

equations \ }) an infinitesimal rotation of the group, the

special axes and infinite plan.; of \ 51, is of the form

lh

lf
&i*+Pv>z-zipxz + &z)

at

^ = finZ+Kc^y + (£« - pcoJ : a (A* -

where * has any arbitrary value.

Hence (c£ § 52) we have

ft,, 0, ft,:

ft.,,, KOe, (4).

1

#n, ""mj ft - ' "*»

But equation (4) holds for every value of k. Hence

fti («»»«» -«»«a) = 0.

Hence (cf. §51, equations (5))

A,=o

Thence, again from equation \ ,
we find

/Su/8naa-/5tt/SIla.= (<

From equations (2) and (5) we find

0» = O
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54. Now (of. § 50) the plane of yz is the latent plane through the

origin of the infinitesimal rotation round the axis of x, and the axes of

y and z are any distinct lines in this plane through the origin. Any
point on the latent plane, Ix + my + nz = 0, of the rotation round the

axis of y satisfies (cf. § 53, equations (1), (5), and (7))

l/3ls z + in (fi21x + ft23 z) + nfizxx = 0.

Hence mfim + ra/331 = 0, l(3ls + mfi23 = 0.

Thus the equation of the latent plane is

P*PsiX-pnPsiy+ AaA»«=0 (1).

But (cf. § 53, equations (2)) /313 fi31 cannot vanish. Hence the

latent plane cannot contain the axis of y. Thus we may assume its

intersection with the plane, x - (i.e. with the latent plane of the

rotation round Ox), to be the axis of z. With this assumption we

have

A» = (2).

Then from equation (6) of § 53, we find

a2„
= (3).

And from equations (5) of § 51, we find

«33 = (4).

A latent plane of an infinitesimal rotation round an axis will be

said to be perpendicular to the axis. The set of axes of coordinates

with any given origin, found by taking the axis of x to be any line,

the axis of y to be any line in the latent plane through the origin of

the infinitesimal rotation round the axis of x, and the axis of z to be

the line of intersection of the latent planes through the origin of the

infinitesimal rotations round the axes of x and y, will be said to be

mutually perpendicular, or mutually at right angles.

It has now to be proved that a set of axes mutually at right angles

have reciprocal properties in respect to each other.

55. With the mutually perpendicular axes of § 54, the equations

(2) of § 52, as applied to the infinitesimal rotation of equations (3) of

§ 53, become

fi13n = 0, (&3 + «a23 ) n = 0, p31 1 + k<x32m = 0,

fij+ psn = 0.

Hence * can be given any arbitrary value, and then the corresponding
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values of I : m : n are to be found. Also /*, ; . i'1 " " cannot

vanish.

1 1

«

'iice we have » = 0, //*-». >»/(— /?«).

Thus ft = I

56. Again, let lx + my + nz + I be anj one of the family of

latent planes of the rotation round the axie of y. Then, for all points

on the plane

, dx dy '/:

Hence substituting from equations (1) of § 53, remembering that

Pn, Pa, P*, ft

have all been proved to vanish for the special axes, we have

nPn.a + (lpw + mPn + P%)z <>

for all points on the plane. Also ft,, /8a, do not vanish. Hence

n = 0, l = -(rnpn + P*)!PK'

Thus there is one latent plane for which m- 0, n 0, /

This is the plane

-P9x + Pu=0.
But this plane is a member of the family (cf. s 51) of latenl planes

of the rotation round the axis of x. Also the infinite plane has ben

chosen to be any member of this family. Tims we now chouse the

infinite plane to be the one common member of the two families ol

latent planes of the infinitesimal rotations round the axes of x and ol

y. This plane, since /3]::4=0, can never pass through the origin. W ith

this choice, we find

& = (1).

Then, with this special tetrahedron of reference, the equations

defining the infinitesimal rotation round the axis of x are reduced to

d® a dy ,l:
,.n

^r ' *—* 5-** (J) -

where a.
J;{

a.,._, < o (3

Also the equations defining the infinitesimal rotation round the axis

of y are reduced to

%-hk §=&.*, % A.* M
where PnPn<0 (5
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57. The equations defining the infinitesimal rotation round the

axis of z are (cf. § 53, equations (1), (5) and (7))

% / X

-j
t
= til® - y

(

7lx + y2y)

dz

dt

(1),

= ysi sb + y32y -z(ytx + y2y)

/here .(2).712-/21 <0

Thus the transformation found by combining three infinitesimal

rotations round the axes of x, of y, and of z is by equations (2) and

(4) of § 56,

-jfe

= Kiy\il! + k»Pi»Z - X (K3yxx + x3y2y)

dy

dt

dz

= K3y21x + (a23 + k2 /323)Z-y (k-^x + «
3y2y) (3).

= 0.

- (k2Asi + K
sy31 ) x + (K

3y32 + a32)
y-z (k^X + «3y2y) ;

Hence applying equations (2) of § 52, we find

, K3y12 , K2 fi13

K3y2i ,0 ,
a23 + k2 /323

"sAti + Kzyu ,
K3y32 + a32 ,

This equation holds for every value of «2 and k3 .

Thus the term involving k.2 k3 yields ywPvsPsi = 0. Hence, since

712 and /331 cannot vanish, we have

&3 = (4).

The term involving k
3
2 yields 712731 a23 = 0. Hence, since y12 and a^

cannot vanish, we have

731 = (5).

The coefficient of k3
2
k2 is 714731 /?23 + /?i3721y32 . Hence, using (4) and (5),

and noting that /313 and y21 cannot vanish, we find

732 = (6).

The coefficient of k2 k3 gives

7l2a23An + ^13^32721 = (7).
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Now equations ('2) of .' 52, applied to fchii case, become,

simplifying by (-1), (5) and (6),

KayJam » K.Ji v.n li,

K,y
2l / + a^n - 0,

k.,(3.m I + a,
Vim 0,

K:\J\I ' K .:/'in 0.

Hence arayi-K3&iya=0.

This equation holds for all values of «-., and «
:iJ and fi, t

do not vanish.

Hence yi=0, y, -

Thus the infinite plane is the common latent plane of the three infini-

tesimal rotations round the three rectangular axes.

58. Thus using equations (4), (5), (6), (8) of S 57, the equal

for the infinitesimal rotations round the three mutually perpendicular

axes, the infinite plane being the common latent plane of the rotations,

are

dx _ dy dz ,, v^ = 0, Tr ^z, jr ^>, ,1),

dx n dy n dz

dx dy dz n . .

Tr y^j, tr y,,r, m = Q (.,,.

where a-s^-^O, ftsAa<0, yuya<0 (4),

and yia«28Aa + As^ya =-0

It at once follows from the symmetry of these equations, that a Bet

of axes mutually at right angles have reciprocal properties in respect to

each other.

The mention of equations (4) and (5) is avoided by altering the

unit points* on the axes, that is, by writing X.r for .r, fiy for y, and

vz for z, where A, (*, v are constants at our disposal. Let thorn be

chosen, so that

fiaga/v = - va^lix = o>! (say),

and v(313 \ = — A/?
31/v = o>2 (say).

By equations (4), the ratios of A. : p. : v are real. Then by equation

(5), we have

Xyai//* = - Myi 2/A = wa (say).

* Cf. Proj. Geoni. §42.
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Hence remembering that o^, oj2 ,
w3 are arbitrary parameters, we find

that any infinitesimal rotation round an axis through the origin can be

expressed in the form

dx dy dz ...

-jj = - u>3y + «>2 z, -^ = -<a
1 z + ^x, Ti=-«»2#+««>iy ••(6).

The latent line of the rotation is given by

w/(a1 = y/w2 =rz/<os .

Thus this form gives one and only one infinitesimal rotation round any

line through the origin. Hence the form (6) can include no infini-

tesimal transformation other than those of the congruence group under

consideration.

A tetrahedron formed by three mutually perpendicular axes, with

the common latent plane of the three rotations round the axes for its

fourth plane, and with the unit points of its axes chosen so as to produce

equations (6), will be called a normal reference tetrahedron.

When the congruence group is given, the normal reference tetra-

hedrons are determinate, though infinite in number. But a congruence

group can be found so that any given tetrahedron is a normal reference

tetrahedron.

>



CHAPTER VII

THE ABSOLUTE

59. Consider the surfaces which are latent fora rotation round

theaxisof#. Let the axis system forma normal reference tetrahedron.

Then the infinitesimal rotation can be written

dx . dy dz

di
=

°> di=
"•

It
""•* ,U

Let u be any latent surface. Then we have

'a *//

dy dz

as the requisite condition. Solving this linear equation In !

rule, and remembering that x has been treated as a constant, we find

that the latent surfaces are of the form

f(tf + z\ .r) = (2),

where./ is an arbitrary function. Surfaces, whose equations are of tin-

form of (2), will be called surfaces of revolution round the axis of x.

60. A necessary and sufficient condition, that a surface may be

latent for any congruence transformation which leaves the origin at

rest, is that the surface be a surface of revolution round each of the

three axes. Hence by equation (2) of §
.">*» this family oi' surfaces is

represented by

Hr + /+^) + M = : I 1 ).

where A and ^ are arbitrary parameters. Let these be called spheres.

with the origin as centre.

The infinite plane is the common polar plane of the origin, with

respect to each of the spheres with it as centre. Thus transforming to
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homogeneous coordinates by putting x = X\ U, y= Y/U, z = ZI U,

where U= is the equation of the infinite plane, the equation of

the family of concentric spheres is

A(X 2 + Y2 + Z2
) + ^U2 =0 (2).

Thus returning to the original coordinates, if <j> (x, y, z) = is the

equation of any sphere, centre at (x
, y , z ), the equation of the family

of spheres with that centre is

where, as usual, t is introduced to make the equation homogeneous

and is put equal to 1 after differentiation.

61. By recurring to equation (2) of § 60, we see that the plane

of yz, which is the plane perpendicular to the axis of x, is the plane

through the origin and through the common conjugate line of the axis

of x with respect to any of the spheres, centre the origin. Hence if

</> (x, y, z) = is any sphere with centre A (x
, y , z ), and A 1 is the

point (x1} yx , zj, then the plane through A perpendicular to A A X is

where

(«o+^1)^ + (2'o + ^i)^ + («o+A«1)^ + (l+X)^ = ...(1),

and <f>0) (^-) , etc. are the results of substituting the coordinates of

A in 4> {x, y, z), — , etc.

Let the left-hand side of (1) be written (A , A x , P)<f,, where P is

the variable point (x, y, z). Thus the equation of the plane, perpen-

dicular to the line A A X and through the point A , is

(A ,A 1 ,P)4>
= (2).

A quadratic surface of rey/olution round the axis of x is of the form

(cf. equation (2) of § 59) I

b(y2 + z2) + ax2 +2gx + c = (3).

This can be written in the form

A {a (x2 + y
2 + z2

) + (3} + a'x2 + 2gx + c' = 0.

Thus, if 4> (%, y, z) = is the equation of a sphere, centre A (x
, y , z ),



60 62] FAMILIES OP CONOFJn BH 8PH1 I

the equation of a quadric surface of revolution round the line joii

J„ to Ai ''•,, .'/,, Zi) is

A<£ (x,y, «) + /*(A , .1,, l'y,,„ \-v(A;Au P)*{ >
"

'rich dd> dd> dthV-

£ +*>4 f)
" ••

The family of quadric surfaces of revolution round any line must

include every family of concentric spheres with its common centrt

point on the line. Accordingly taking J„ to be the origin, and <,>' >

to be x- + y
2 +

z

2 + \, the family of spheres al any poinl (a

included in the family

A (./" + f + z- + 1) + /A (./,.' +
.//,// + S,c)

a +l'r (./•,./: ." y

that is, in the family

A {x1 + // + z
1
) + fj.

(xxx + y xy + z\z)* + 2v (xxx + y xy + ;,:) + (r ...

For this is the family of quadrics of revolution round the line joining

the origin to the point (xx , y x , z x ).

62. Consider any two infinitesimal projective transformations in

the plane of xy. One transformation is defined by

dy ,

-jk - a2X x + (U,y + Oas - .'/ {<'\ '' + <(://)

•C-".

The other is defined by

dx— = bnx + b^y + bw - x ifhes + b»y)

J = b.nx + h,2y + (>,, - y (b x x + b,y)j

Now each of these transformations leaves a family of curves Latent*

the locus of points, which either are the points of contact of members

of the respective families, or are points on a curve common to the two

families, is given by

axxx + ay2y + a 13 -x (a xx + a.2y) _ a 2Xx + a.22y + <<.2:i
- ji {a

x
x - <r //) .,.

bnx + bv2y + b X3
— x (bxx + b2y) b2xx + b^y + b^-y (bxx + b2

i/)

This locus is a cubic curve.

Now consider two rotations belonging to the congruenoe group

under consideration. Let one be about the point (0. 0, 0), and the
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other about the point (#x , yx , 0), and let the plane of xy be latent for

them both. Then for the first rotation, the family of latent curves

(cf. § 60, equation (l)) in the plane of xy is given by

\(x2 + f) + p = (4);

and for the second rotation, the family of latent curves (cf. § 61,

equation (5)) in the plane of xy is included in the family

A
2 O2 + y

2
) + /i

x 0, x + yxyf + 2v2 (xxx + yxy) + <rx = (5).

It is easy to prove that the locus of points where members of the

family (4) touch members of the family (5) is the line xjx-i =yjy1 .

Hence for the case of these two rotations the cubic curve of equation

(3) above becomes a straight line and a common member of the two

families (4) and (5). Thus these two families must possess a common
member. Let it be

d (x
2 + y

2
) + 1 = 0.

Then (cf. § 60, equation (1), and § 61, equation (5)) the sphere,

Cl (x
2 + y

2 + z2
) + l = (6),

belongs to the family of spheres centre (0, 0, 0), and also to the family

of spheres centre (xx , yl , 0).

Hence any two distinct families of concentric spheres with different

centres possess one. member in common.

63. Let (#!, yx , zx ) and (x2 , y2 , z2) be any two points which are

not collinear with the point (0, 0, 0). Let (cf. § 62)

c^ + ^r
2 + 0+1=0 (1)

be the sphere common to the two families of spheres with centres at

(0, 0, 0) and (xx , y1} zx ) respectively ; and let

c2 (x
2 + y

2 +z2
) + 1 = (2)

be the sphere common to the two families of spheres with centres at

(0, 0, 0) and (x2 , y2 , z2) respectively. Then (cf. § 60, equation (3)) the

family of spheres, centre (xx , y1 , z^, is given by

K }ci (x
2 +f + z2

) + 1} +
/
/*, {Cl {xxx + yxy + zx z) + l}

2 = . .
. (3),

and the family of spheres, centre (x2 , y2 , z2 ), is given by

A2 {c2 (x
2 + y

2 + z2
) + 11} + fji2 {c2 (x2x + y2y + z2 z) + l}

2 = . . .(4).

But (cf. § 62) it is possible to find a common member of the families

(3) and (4). Then remembering that the two centres are not collinear

with the origin, it is easy to prove that we must have

^i = 0, iu2 = 0, cx = c2 (5).
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Tims the three families of concentric sphere* with

mm collinear points have one member in common. Hence i<

prove that there is one sphere common to .-ill families of concentric

spheres. Let this sphere he called -The Absolute.
1

64. By a rotation round a suitable axis any point can be o

to any neighbouring position. For, if

c {x" + f + z-) + 1 =
I

is the absolute, then (cf. S 63, equation (3))

c (.r
2 + if + z") + 1 -{c, (xiX + yxy + z\z) + l}

8=0 2

is the equation of the sphere, centre (./-,, //,, c,), touching al the origin

the plane

xlx + y1y + z1z 0.

Hence if x1/l=y1/m = z1/n, the sphere touches at the origin the plane

Ix + my+ nz - ().

Now let this be any plane through the origin and through the neigh-

bouring position to which the origin is to be displaced. Then it

follows that a rotation round a suitable axis through the point
|
./ , //,, z

x )

can effect the required displacement of the origin.

Thus the effect of any infinitesimal congruent transformation can

be produced by combining a rotation round some line not passing

through the origin with a rotation round some line through the origin.

Hence (cf. §45, axiom (3)) the absolute is latent tor any congruenl

transformation of the group.

65. Conversely the group of projective transformations, for which

a given imaginary or convex quadric is latent, forms a congruence -roup.

For take a tetrahedron, self-polar with respect to the given surf

the second degree, as the fundamental tetrahedron. Then the equation

of the surface can be reduced to the form

c(x2 +if + z-) + l = | I .

and, when c = 0, the surface degenerates into the infinite plane.

The most general form of infinitesimal projective transformation i-

-^ = U + aux + a,,// + OjS«
- X (a v r + «,,y/ - a

;;
;) \

(hi . I

-~ = V + a.
2l x + a.,,j/ + a.,A Z

-
<

//(a
1
,r+ a,i/ + a.-:)

J

_

dz
,— = w + a3lx + a.,,// + «....; - % {a

xx + a., if +>,,:)
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This is to satisfy

•(3),

dx dy dz
w
Tt+ y Tt

+z
dt

when (1) is satisfied.

Hence (3) becomes, after simplifying by (1),

CX (u + anx+ a12y 4- als z) + cy (v + a
21x + a22y + a23 z)

+ cz(w + a31x + a32y + a
33 z) + (aTx + a.2y + a3z) = .-.(4).

Then (4) must either be identical with (1), or must be an identity.

But it cannot be identical with (1). Hence it is an identity.

Thus cu + a1 = 0, cv + a2
= 0, cw + a3

= 0,

Can = 0, Ca22 = 0, Ca33
= 0,

C (a12 + a21) = 0, C (a13 + a31)
= 0, C (a23 + a32)

= 0.

Thus the general form of transformation is

dx . ,\
-j- = u — <a3y + o}2 z + ex (ux + vy + wz)

dy

dt
= v — oiiZ + w3w + cy (ux + vy + wz) V (5).

— = w - w
2x + ^y + cz (ux + vy + wz)

But when the origin is fixed, these equations reduce to the equations

(6) of § 58 for the general infinitesimal rotation round the origin of the

corresponding congruence group. Also it is easy to see that the

above equations give one and only one infinitesimal transformation

which transports the origin to a given neighbouring point (udt, vdt,

wdt), and at the same time transforms a given line / through the

origin, and a given plane n through I, into a neighbouring line and

plane respectively through the new position of the origin and the new

position of /. Thus by § 64 and by axiom (3) of § 45 all the transforma-

tions of the form (5) belong to the associated congruence group.

Hence these equations give the general form of an infinitesimal

congruence transformation, referred to a normal reference tetrahedron.

The equation of the absolute is then

c(x2 + y
2 + z2

) + 1=0 (6).

It follows from equations (5) by applying the 'Second Fundamental

Theorem' (cf. § 36) that a congruence group is a six-limbed finite

continuous group.
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66. The congruence groups are divisible into thn

In Type I, c is positive. Then the absolute

(6)) is an imaginary quadric. The congruence axiomc hold for

transformation of all points of the projective ipace l>y any meml

of such a congruence group. Such a congruence group ii called

Elliptic.

In Type II, c is negative. Then the absolute is ;i real oo

quadric. The congruence axioms only hold fur all point- within

space enclosed hy the absolute for transformations by any memb
of the corresponding congruence group. Such a congruence group i-

called Hyperbolic.

In Type III, the numerical value of c has diminished indefinitely.

Groups of this type require further investigation. They an- called

Parabolic.

67. In the Parabolic case, when c diminishes indefinitely, the point

equation of the absolute

c (a? + if + z'
2
) + 1 =

reduces to that of the infinite plane. Hence for every parabolic group

a plane is latent.

Again in equation (3) of § 63 by putting kc = a, (i = b —\ we find

that the equation of any sphere, centre (.*',, yu z
t ), can be written

a (x2 + f + z- - 2.V.X - 2i/ri/ - 2z,z) + /> + c [(be -a) (./•,.'• -.'/i.v + : i

+ 2b(.r
i
.r + i/

i
</ + z

i
;)\=Q.

Hence whenc diminishes indefinitely, and the coefficient of do term

is infinite, the general equation for spheres, centre (.r,, ylt -:,). becomes

a (,r + f + z* - 2,r, .r - 1yxy -2zlz) + b= Q (l).

Hence every sphere cuts the infinite plane, which is latent for this

special choice of coordinates, in the imaginary conic where

,r + //- + z'- =

cuts it. Thus this imaginary conic in the infinite plane is also

latent.

Accordingly in the parabolic form the absolute is represented by

the latent infinite plane, and by the imaginary latent conic in the

infinite plane. A set of concurrent rectangular axes are a set o\

concurrent lines intersecting the infinite plane at the angular points

of a triangle self-conjugate with regard to the absolute conic.
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The general form of the infinitesimal transformation (cf. § 65,
equations (5)), referred to a normal reference tetrahedron, reduces to

doc

^ = «-«*.+ «**

dy

ft = v-<*xz + vz x;) (2).

dz



CHAPTER VIII

METRICAL GEOMETRY

68. The theory of distance follows immediately from that of con-

gruence by noting two facts. In the first place let the anharmonic
ratio* of the range (PQRS) be denoted by [PQRS] : then if

A, A P P I*

are collinear points, we have

{AlP1A aPi}
x {A1P2A*P>} = {A1PlAiP ;,

or, in another form,

log {A^AiP*} + hg {A^AtPs} Log !.!,/', -I ,/
J

.: (1).

In the second place, let ^ and A» be the two real or imaginary

points in which the line containing the points P
x , Pit Ps meets the

real or imaginary absolute of some definite congruence group. Then

for any transformation of that group (a) the anharmonic ratios arc

unaltered because the transformation is projective, and
(J3) the points

/l 1 and A 2 are transformed into the points in which the transformed

position of the line PiP2Pa cuts the absolute.

Thus if some multiple! of log {4 1P1j4 9P8} be defined as the

distance between the points l\ and P.., where J, and A. are the

points where the line PiP2 cuts the absolute, then equation I secures

the characteristic addition property of distance in respect to collinear

points, and the second consideration secures the characteristic in-

variability of distances in a congruence transformation.

* Cf. Proj. Geoni. § 38.

f This definition is due to Cayley, Sixth Memoir on Quant U-x, Phil. Trans.

1859 and Coll. Papers, vol. it., and to Klein, Ueber die sogenatmte nicht-eukliJische

Geometric, Math. Ann. vol. iv. 1871.

5—3
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69. Now let P1 be the point (x1} y1} zx), and P2 the point

(#2, y<i, z*)- Then the coordinates of any point on the line PiP2 take

the form

\<i\ + /u#.'o Xi/j + ixy.2 \z t
+ fjLZ2

A + [A. \+ [X. A + fX

Thus the points A 1 and A 2 , where the line PXP2 cuts the absolute,

c (a? + y" + z") + 1 = 0,

are given by the roots A^/^ and A2/,u2 of the quadratic equation

A2
{c (xx

2 + y? + zf) + 1} + 2A^ {c (x\x2 + y,y2 + z1 z2)+l]

+ ^{c(x2
2 + y2

2 + z2
2
) + l} = (1).

For the elliptic case, when c is positive, put

„
c(x1x2 + y1y2 + z1z2) + l

pnc n — l l
•

{c (tf + y;
2 + tf) +\Y{c {xi + yi + z£) + 1}*

Then* {A1P1AZP2}
= ftA2/A^2 = e™.

Thus the distance PiP2 , written dist (P1P2), can be defined by

dist (P.P,)^
-J-

log {A 1P1A iPt } (2).

Hence

cos
dist^i -P«) = c(x1x2 + y1y2 + z1 z,) + l ,

7 {c (xf + y
2 + z 2

) + 1 j
* {c (xi + y2

2 + z2
2
) + 1

}

2

It is evident that there will be two distances, associated with the two

segments into which the point-pair Pj and P2 divides the line PiP2 .

If one distance, say the smaller, is called dis^PjPo), the other will

be Try -dist (PXP2 ). Thus the whole length of a straight line is Try.

This system of metrical geometry embraces the whole of Projective

Space t.

70. For the hyperbolic case, when c is negative, put

cosh 6 = - l + cjx^ + y^ + z^
_

{1 + c (xx

2 + y;
2 + z?)f {l + c (x.f + y,

2 + zi))~

* Cf. Proj. Geom. §38.

f The possibility of a Metrical Geometry with closed lines of finite length was

first suggested by Riemann, cf. loc. cit. For a full account and amplification of

Riemann's treatment of distance, cf. Forms of Ndn-Euclidean Space, by F. S. Woods,

printed in The Boston Colloquium, New York, 1905.
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Then ifP, and Pa are both within the region enclosed by the absolute^

is necessarily real.

I fence (cf. § (>'.», equation H;;

[AiPiAJPJi r,A Kto

Thus the distance /',/', written dial (PiPs), can be « 1 * - f i 1 1 * - < I by

dist(/V,j lylogM.P.J PJ
Therefore

cosh
dist ^Pl^ = 1 + c (

'''
1

'''
J
+ lh!h + ~ ,Cj)

1 2)

y {i+fl(«k
i+^i+0}*U + «

There will only be one distance between P, and Ps . This musl

associated with the sole segment of the line PiPs which lies wholly

within the region enclosed by the absolute. This system of metrical

geometry only embraces those points which lie within the region

enclosed by the absolute*. Any point in the region to which t In-

metrical geometry applies is at an infinite distance from every point

on the absolute.

71. The parabolic formula for the distance, arising when c is in-

definitely diminished, can be derived as a limit from either of the other

two cases. Put y
a
c = +l, according as c is positive or negative, bo

that y increases as c diminishes numerically. Thru expanding both

sides of equation (3) of § 69, or of equation (2) of § 7<>, and pro-

ceeding to the limit, we find

{dist (P, Ps)f - (« - x,f + (* - ys? + fe - z,f

The parabolic system of metrical geometry embraces all projective

space with the exception of points on the latent plane, which is the

infinite plane in our system of coordinates. This is the ordinary

Euclidean Geometry.

72. Exactly the same procedure can be applied for the measure-

ment of the angle between planes. Let p x
and ps be any two planes,

and let- t
x and t, be the two real or imaginary piano through the

intersection of j^ and p., and tangential to the absolute. When the

* Metrical Geometry of this Hyperbolic Type was first discovered by Lobat-

schefskij in 1826, and independently by J. Bolyai in ISS'i. Tins discovery is

the origin of the modern period of thought in respecl to the foundations of

Geometry.
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congruence group is elliptic, or when the congruence group is hyper-

bolic, and the line of intersection of px and p2 passes through the

region enclosed by the absolute, then tx and t2 are necessarily not real.

Then the angle between the planes is defined to be — log {txpx t2p2}.

Thus if the two planes are given by

lxx + mxy + nxz+px = 0, l2w + m2y + n2z +p2 = 0,

and is the angle between them, we have

a lx l2 + mx
m2 + n x n2 + cpxp2 ,,.

cos# =
1

£-£
j (1).

{lx
s + mx + nx

2 + cpiY {/2
2 + mi + ni + cpi} 2

As before, there are two angles and tt —
; but it can be proved that

the whole angle round a line is 2ir, owing to the existence of dia-

metrically opposite regions in the neighbourhood of the line.

In the parabolic case, when c is indefinitely diminished, the angle

between the planes is given by

. lx l2 +

m

xm2 +

n

x n2 . .

cos6l = =t—j
j (2).

(li
2 + m* + n^)'

2
{LJ + mi + ni)*

73. The same procedure can also be applied for the measurement

of the angle between two concurrent lines. Let lx and l2 be any two

concurrent lines in a plane p. Let tx and t2 be the real or imaginary

tangents from the point {lx . 4) to the conic which is the section of the

absolute by the plane p. When the congruence group is elliptic, or when

the congruence group is hyperbolic and the point (lx . L) lies within the

region enclosed by the absolute, then tx and U are necessarily imaginary.

Then the angle between the lines is defined to be — log {tx lx t2 12). Thus

there are two angles and tt — 6 between two intersecting lines, and

the whole angle round a point is 27r.

In the degenerate parabolic case the section of the absolute by

the plane p becomes two conjugate imaginary points in the plane at

infinity. These are known as the circular points at infinity. Then

tx and t2 are the imaginary lines from the point (lx . l2) to these points

respectively*.

* This projective view of Euclidean Metrical Geometry was elaborated by

Laguerre in 1853, previously to the rise of the general theory which is explained

here. ^^
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74. Thus Metrical Geometry U In EuH the ii ra of the

properties of a particular congruence group. Any ••' of azioin

congruence (cf. .'.' 13 to 15) form the definition of wh.it w<- mean by

a congruence group. The investigations which are summed op in

equations {>>) of§ <i"» and in equations (2) of .' 67 form the proof of the

existence of congruence groups in a projective space for which the

axioms of order and of Dedekind continuity hold. It is proved that

to any convex quadric and to an\ imaginary quadric with a real

equation exactly one congruence group corresponds. Also there is

one congruence group corresponding to each imaginary conic lying in

a real plane and defined by a real equation.

If the absolute is a real quadric, the metrical geometry applies only

to the region within it. If the absolute is an imaginary quadric, the

metrical geometry applies to all the projective space. If the absolute

is an imaginary conic in a real plane, the metrical g< tetry applies

to the whole of the projective space with the exception of the real

plane.

75. It follows that in relation to Projective Geometry no

additional geometrical axiom is required in order to establish metrical

properties. But the case is otherwise in respect to Descriptive

Geometry. The transformations of a congruence group in Descriptive

Geometry are to be one-one transformations of descriptive points into

descriptive points, and all the other axioms of congruence can be

enunciated without change of form. Thus when the associated pro-

jective space is formed, associated congruence groups in the projective

space must exist, which however satisfy the further conditions (1) that

proper projective points are to be transformed into proper projective

points and (2) that the congruence conditions are to hold throughout

the whole region of the proper projective points.

It follows therefore that the convex boundary surface of the proper

projective points (cf. § 30) must be a quadric surface, or in the degene-

rate case a real plane. Unless this is the case no congruence group

can exist in the original descriptive space.

Thus the Euclidean axiom (cf. £ 10) is sufficient to secure the

existence of parabolic congruence groups having as their latent plane

the single plane of improper projective points (the points at infinity).

Also with this axiom no other types of congruence groups can exist.

But it is to be noticed that alternative congruence groups exist, namely

one for each imaginary conic lying in the plane at infinity.
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In order to secure the existence of hyperbolic congruence groups an

axiom is required which secures that the boundary of the proper pro-

jective points is a quadric. Then it is to be noticed that one and only

one congruence group exists in the descriptive space, namely that one

which corresponds to this definite quadric. Perhaps the most direct

form of the axiom is to assert that a hyperbolic congruence group

exists.
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