UNIVERSITY OF
 ILLINOIS LIBRARY
 AT URBANA CHAMPAIGN
 BOOKSTACKS

Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign

Faculty Working Papers

BANKRUPTCY, LIMITED LIABILITY AND FINANCIAL INTERMEDIATION: A GENERAL EQUILIBRIUM APPROACH Masahiro Okuno

FACULTY WORKING PAPERS
College of Commerce and Business Administration
University of Illinois at Urbana-Champaign

February 11, 1977

BANKRUPTCY, LIMITED LIABILITY AND FINANCIAL INTERMEDIATION: A GENERAL EQUILIBRIUM APPROACH Masahiro Okuno

Bankruptcy, Limited Liability and Fiancial Intermediation:
A General Equilibritun Approach

Masahiro Okuno
January, 1977
Assistant Professor

Department of Ecmornics University of Illinois

1. Introduction

In Arrow-Debrew formuation of general equilibrium under uncertainty, two rather urealistic assumptions are made. First, they assume that all uncertainties are of the exogeneous nature and are objective, while, more important m.certainties may be endogeneous ones. Second, partially as a result of the fiast assumption, they assumed that there are complete markets for each contingency.

When we relax the second assumptions because of transaction costs, incomplece information, moral hazare or some other reasons, we obtain incomplete market structure. Lit is one of the important results in incomplete market theory that efficiency of equilibria depends upon mierlying market structure, especially upon availability of different financial securities. For example, Diamond [1] showed that, in a restricted economy, with incomplete markets and stock warkets, an equilibrium with firm's value maximization behavior will achieve "constrained" efficiency. Wamely, an equilibrium is Pareto efficient among all the possible allocations which are feasible with stock markets. Since, in general, such an equilibrium is not "full" Pareto efficient, there is a good reason to expect other types of financial institutions should emerge.

In this paper, be would Iike to analyze the property of an economy with a banking sector, which provides a riskless asset by pooling individual risks inherent to each individual fimn. Following Modigliani-Jaffee [4], we assume that banks provide loans to a firm whose retum is contingent upon the solvency of the firm.

In order to avoid possiblities of inefficiency caused by reasons
other than the existence of banking sector (e.g., see Hart [3]), we assume the same technolocy as in Diamond. Our main interest lies in the question if our economy will achieve constrained efficiency. Because of the wellknown problem of value marimization criterion due to the possibility of bankruptcy, we shall focus upon the stockholder's (investcr's) preference on firm's action.

Many works on stockmarkets assume the existence of a riskless asset. However, unless we analyze the mechanism of a financial intermediary which provides such an asset, the conclusion may be misleading. In fact, we shall show in this paper that even in Diamond economy with bank (and therefore a certain rule of bankruptcy and a certain rule of limited liability), e constraincafaratoefficient allocation is unstable in the sense that all the stockhoiders may want firms to change their actions, leading to inefficient state of the economy.

In section 2, we aill present the nodel. In section 3 , we will show that for each choice of fim's action, there is a corresponding price anc aliocation. In section 4, our main result will be presented. Section 5 concludes the paper. A mathematical proof is relegated to appendix.
2. Model

The econony consists of three different types of agents; con-
sumers, firms, and banks. There is only one good and there are two periods; period 0 and 1 . In period 0 , consumer can invest either in finmshich. will field a risky retum in geriod l but with limited lizoflitys or in bank deposit which will yieli a sare retum (with poseibly, positive interest rate). Firms invest a certaln amount of good in period 0 which can be financedeither directly by consumers or hy banks in the form of bank loans. We assure that firms have indivioual risks (Mainvand [5]). That is, given a certain amount of investment, a firm may find itself in period

I in one of several possible states with respect to output. The probability of the occurrence of a stace for a firm is independent of the probability for any other firm. Given the amount of investment and loan in period 0 , if a firm is in a state such that its output falls short of its obligation to banks, it goes benkrupt and all the output will be confiscated by creditors (banks). On the other hand, if a firm zinds itselfin a state where it can meet its Ioan ooligation, the firm will distribute the difference between the output and the loan as dividends to investors proportionally to the anount of investment. Finally banks provide safe asset (deposit) to consunters and provides loan to firms. Ganke can pool the risk inherent to loans, for we ausume that there are an infinite number os identical Eirms of each type with independent but idencical individual. risks. By the law of large numbers, the proportion of a certain type of firms in a certain state is equal to the ohjective probability of the state to decur.

Eormally, there are m types of consumers indexed by $i=1, \ldots, m$, and n firms indexed by $j=1, \ldots, n$. There are infinirely many consumers and fins of each type. Let (i, k) denore the k-ih consuner of i-th rype and ($j, k)$ denoze the $k-t h$ consumer of rype j. Drefine F_{k} to be a set of
consumers (i, k) for all i and firots (j, k) for all j. We assume;
(A.1) For all i and k, a coneumer (i, k) can invest only in firms in E_{k}. Whthout such an assumytion, a consumer can invest in infinitely
many firms and completely pool the risk. In the reality, a consumer can invest only in a finite number of firms because of indivisibility of stocks and transaction costs. In this sense, our formulation may be considered as an approximation of the reality. For the firms in which a consumer invests should be determined erdogeneously cather than exogeneously as in our formilation.

Let us start with a firm (f, k) . For the sake of simplicity, we drop k from subscripts. Let $e_{i j} \vdots R_{+}$be the units of good invested in $j-t h$ firm by i-th consumer (in E_{k}) in period 0 and let $i_{i}: R_{i}$ be the units of loan j-th firm borrows from banks. A. unit of loan is a contract such that the firm will pay one unit of good in period 1 if it does not go bankrupt and will surrender all the outputs to banks if it goes bankrupt. Let $p_{j} \leqslant R_{+}$be the price (in terms of good in period 0) of a unit of loan to a firm of type j. $1 / p_{j}-1$ is the rate of interest on Inan for firm of type j.

Let S_{j} be the set of all individual states for j-th firm which is a finite set. Let $a_{j s_{j}} \hat{Z} R_{i}$ for all $s_{j} \leq s_{j}$ be the output-input ratio for $j-t h$ Eirm if state s_{j} occurs. We assume $a_{j s_{j}}$ is constant and therefore firms have constant returns to scale both in the sense of stochastic and in the usual sense for each state). Let $\pi_{j s_{j}} R_{+}$be the probability that j th firm finds itself in state $s_{j} \forall_{S_{j}}$ in periud 1 . Hence in period 1 , exactly $\pi_{j s_{j}}$ portion of j-th fimm is in the state s_{j}. By definition $s_{j} \sum_{j} S_{j} \pi_{j}=1$. Let $x_{j}=\dot{z}_{j} / \bar{E}_{i} \tilde{E}_{1} e_{i j}$, the debt-equity ratio j-th firm chooses.
Since we assume that all firus and consumers of the same type behave in the same mamer, the ratio x_{j} is coman for all j-th type firms. Given the
choice of x_{j} and the price of loan for j-th type firm, p_{j}, the total dividend payment by j-th firm in state $s_{j} s_{i}$ is

$$
\operatorname{Max}\left[a_{j g_{j}}\left(\sum_{i=1}^{m} \epsilon_{i j}+p_{j} z_{j}\right)-2_{j}, 0\right\}=2 \operatorname{Lax}\left[\left\{a_{j s_{j}}\left(1+p_{j} x_{j}\right)-x_{j} j \sum_{i=1}^{m} e_{i j}, 0\right\} .\right.
$$

Since dividend is distribuzed proportionally to the amount of investment, the return for a mit of investment if state s_{j} occurs, $\rho_{j s}$, is

$$
f_{j s_{j}}\left(x_{j}, p_{j}\right)=\operatorname{Max}\left[a_{j} s_{j}\left(I+i_{j} x_{j}\right)-x_{j}, 0\right] .
$$

Given the price p_{j}, firm will choose the optimal return profile by choosing a suitabie debt-equity ratio $x_{j} \in R_{f}$. We shall come back to this point later. For the sake of simplicity, we assume that consumers will face no uncertainty except risks involved in returns from investment in firms. Let $w_{i} \equiv\left(w_{i 0} w_{i l}\right) \in R_{+}^{2}$ be the pair of endowments for each period for a consumer of type i. In period 1 , consumer's income in E_{k} depends upon what state has been realized in each firm in E_{k}. We call an array of individual states $\sigma \equiv\left(s_{j}\right)_{j=1}^{n} \sum_{j=1}^{\mathrm{X}} S_{j} \equiv S$ as a social state of E_{k}. A consumer's plan is a plan of consumptions $c_{i} \equiv\left(c_{i 0},\left(c_{i 0}\right), S_{j}\right) p_{+}^{S+1}$, i.e., consumption plan for period 0 and contingent pians for each social state, investments $e_{i} \equiv\left(e_{i j}\right)_{j=1}^{n} \cdot R_{+}^{n}$ and purchase of bank deposit $m_{i} \leq R_{+}$. A unit of bank deposit is a contract such that a bank will deliver one unit of good in period 1 regatdless of the social state in exchange for investraent in bank in period 0 . We write $p_{0}=R_{+}$for the price for deposit in peirod 0 in rerms of good in period $0.1 / p_{0}-1$ is the interest rate for deposit. Under prices $p \equiv\left(P_{0},\left(P_{j}\right)_{j=1}^{n}\right) R_{+}^{n+1}$ and firms decisions $x \equiv\left(x_{j}\right)_{j=1}^{n}=R_{+}^{n}$, a consumer's plan $\left(c_{i}, e_{i}, \bar{m}_{i}\right\}$ is bucget feasible if it satisfies

$$
\begin{align*}
& c_{i 0} \leq w_{i 0}-\sum_{j=1}^{n} e_{i j}-p_{0} m_{j} \tag{2}\\
& e_{i 0} \leq w_{i j}+\sum_{j=1}^{n} w_{j} s_{j}\left(z_{j}, p_{j} j e_{i j}+n_{i}\right. \\
& \text { for all } \sigma=\left(s_{j}\right)_{j=1}^{n} S . \tag{3}
\end{align*}
$$

Each consumer of type i is endowed with the same utility function, $u_{i}=R_{T}^{S+1} \rightarrow R_{i}$. Consumer's plam $\left(c_{i}, e_{i}, m_{i}\right)$ is optimal if it is budget feasible and if there is mo other budget feasible plan which would yinid higher atility.

Number of banke is arbitra:y. However, for the convenience, we treat this sector as though it consists of one bank in the whole economy. This treatment is justified, for competitive banking impies constant returns to scale for banks as will be shom in the following. Let mo $_{0} \mathrm{~F}_{\mathrm{t}}$ be the undts of deposit banks offer to consumers in each subeconomy, E_{k}. Let loj $E_{t} R_{t}$ be the units of loan they finance to each of j-th type firm. Since we axe interested in some kind of equilibrium, we assume theat banks have correct expectarions about firms' return. Otherwise, banks will have profit or loss which would result in new entry or exit. Let f_{j} be the experted return for banks from a unit loan to a firm of type j. If j-th firm chooses the debt-eguity ratio x_{j} and banks lene $Z_{0 j}$ units of loan to the firm, total investment of j-th firm muse be $p_{j} \ell_{0 j}+l_{0 j} / x_{j}$, provided $x_{j}>0$. In period 3 , banks expect to receive average return from each of j-th type firm of the amount,

$$
\sum_{s_{j}}{s_{j}}_{j s_{j}}\left[\ell_{0 j}, a_{j s_{j}}\left(p_{j} \ell_{0 j}+i_{0 j} / x_{j}\right)\right] .
$$

If $x_{j}=0$, firm of type j will never go bankrupt, for $a_{j s_{j}} \geq 0$ for all $s_{j} \in s_{j}$.

Hence expected return should be $\delta_{0 j}$, although fima wrold never demand loans. Therefore.

$$
\begin{gather*}
\left.f_{j}\left(x_{j}, p_{j}\right)=s_{j}^{i} \in s_{j} s_{j} \min \left\{I, a_{j s_{j}\left(p_{j}\right.}+1 / x_{j}\right)\right\} \text { if } x>0 \\
1
\end{gather*}
$$

 feasible if they can meet the amount of loan by the amount of deposit.

$$
\begin{equation*}
\sum_{j=1}^{n 7} p_{j} \varepsilon_{0 j} \leq p_{0}^{73 / 0^{\circ}} \tag{5}
\end{equation*}
$$

We consider two different types of banks.
(A.2) Banks are periectly competitive and
(A.2)' barks are regulated so that they cannot make any positive profit (namely, banks must choose a feasible plan which would yield zero profit.)

Under competitive assumation (A.2), banks plan is optimal if, given prices p, it is feasinie nad it maximizes profit.

$$
\sum_{j=1}^{n} E_{j}\left(x_{j}, p_{j}\right)_{0 j}-\pi_{0}
$$

among ail Feasible plans.
Under regulatocy assumption (A.2)', banks' plan is optimal if,
given prices μ, it is Feasible and

$$
\sum_{j=1}^{n} i_{j}\left(x_{j}=p_{j}\right) 2_{0 j}-m_{0}=0
$$

3. Equiljbriua

Throughout this paper, we assume the following in additon to (A.1) and (A.2) (or (A.2)').
(A.3) For all i, u_{i} is scrictly quasi-concave, differentiable and monotone in consumption in peinod 1.
(A.4) $w_{i 0}>0$ and $w_{i l} \geqslant 0$ fot ail i.
(A.5) $a_{j 5} \therefore 0$ for ali j and all $\mathrm{s}_{j} \mathrm{E}_{\mathrm{j}} \mathrm{S}_{j}$.

Assume that, by whatever reason, each type of firm has chosen a debt-equity ratio, x_{j}, and $x=\left(x_{j}\right)_{j=1}^{n}$ is temporarily fixed. Then the return from investment, $\rho_{j s_{j}}$, and return from loan, f_{j}, depend only upon prices. Under assumptions (A.1), (A.2), (A.3) - (A.5), we can prove:

Proposition 1 For each $x \in \mathbb{R}_{+}^{n}$, there exists prices $p \in \mathbb{R}_{+}^{n+1}$, consumer's plan $\left(c_{i}, e_{i}, \tilde{m}_{i}\right)_{i=1}^{\prime}$ baris's plan $\left(l_{0}, m_{0}\right)$ such that
(a) $\left(c_{i}, e_{i}, m_{i}\right)$ is optimal under p for all i
(b) (bo, m_{0}) is optimal under p
(c) $\sum_{i=1}^{m} m_{i} \leq \sum_{i}$
(d) $s_{b_{j}} \leq x_{j} \sum_{i=1}^{i n} e_{i j}$ for all j.

Proof Sce Aplendix.

Wote that the smae proposition holds under (A.1), (A.2)", (A.3)-
(A.5), for banks technology is that of constant retums to scale given the prices. We call a pair $(x, p) E \mathbb{R}_{+}^{\pi} \times R_{+}^{\pi+1}$, a pseudo-equilubrium of the econony if p with $\left(c_{i}, e_{j}, m_{i}\right)_{i=1}^{\text {th }}$ and $\left(g_{0}, n_{0}\right)$ satisfies (a) - (d) under x. In other words, if (x, p) is a pseudo-equilibrium, then p is a true equilibrium price when firms choose x as their aecisions under p.

One may note that if (N, p) is a pseudo-equilidrium of the econony, $p_{j} \leq P_{0}$ for all. j. Namely, interest on loan is always higher than interest on money. It jis so because undex the comation of zero profit (recall that banking technolugy is that of constant retums to scale), bank must charge higher interest on loan in order to ormensate a possibility of bankruptcy.

In what way co fims make cheix decfsions? Since incomplete markets and a possibility of bankuptcy are our major concern, neither profit maximization nor value maximization can be an acepred doctrine. Therefore, we will take a rather naive approach that firm"s action is determined by stockholders (investors). Since there are an infinite number of firms and consumers, prices, p, must be viewed as given by them. Under a pseudo-equilibri (x, p), a consumer preters a decision x_{j} to x_{j}^{\dagger} for a firm of type j if the optinal plan under (x, p) vields hjgher utility to hirn than the optimal plan under $\left(x\left(x_{j}^{f}\right), p\right)$ where $x\left(x_{j}^{j}\right)=\left(x_{1}, \ldots, z_{j-1}, x_{j}^{\prime}, x_{j+1}, \ldots, x_{n}\right)$. Similarly, a consumer prefers x_{j}^{\prime} to x_{j} under (x, p) if the optimal plan under $\left(x_{j}\left(x_{j}^{\prime}\right), p\right)$ is preferred to the optimal plan under (x, p).

Under assumptions (A.1), (A.2 ${ }^{\circ}$, (A.S) - (A.5);
Proposition 2 There erists a pseudomequilibrium (x, p) where no consumer prefers any other debt equity ratio to x_{j} for any firm j .

The pseudo-equilibriun in proposition 2 is very stable, for there is no consumer who wants to defect from the situation. However surprising, the proposition is racher trivial.

Let $x_{j}=0$ for ain j. Whatever the prices are, $\rho_{j s_{j}}>0$ for all j and s_{j} by (A.5), Hence there is a price of deposit p_{0} (which is large and corresponaing interest rate is negazjure) such that there is no demand for deposit by constmers. On the oher hand, saies of loan by firms are zero, for $x_{j}=0$ £or all j. iherefore, if $\pi_{0}=0$ and $z_{0 j}=0$ for: all $j,\left(z_{0}, m_{0}\right)$
 Hence we can ignore bankins sectur ind fitker. of donesit and loan, Then, whatever $p_{j}^{\prime \prime s}$ are, comsumex's phens ste leternined and they will clear
 is maximized at $x_{j}=0$ for all i and s_{j} and tit propesition holds.

The guestion of the exishenct of a rue equiljurimm, botin in the sense of non-trivial one waec regulation ass mation (A.2)' and in the sense of one mader conpetitive assumphon (A.2), whil not be jursued here. One of the reasons is that cur bankruptcy rule win inevitably introdace nonconverity and the can only hope some approxima eq equilibrium or local equiljbrim. A simple evamile in the next section s an example where we cannot have a true equilibrium but only a iocal one. Bonever, our main concem being that of efficiency, we are content with an economy which possesses only a local equíitrium.

4. Efficiency

Since we are concemu? wh in mplete markets, there is no great hope that we can obtain a Parct effacient squilibumat Therefore, we considex muh weaker notion of efficathey atroduced by Dianond [1]. A pseudo-ecailitrium of the econom: $\{x$, ?) is called conslrajned efficient if there is no other pseado-equblitram, (${ }^{\prime}$, F°), which will make at least one consuner better off without making arybody worse oft.

Proposition 3 There Tray axist a constrained efficient pseudoequilibriuni, (p, r), and x_{j}^{\dagger} such that ior all $x_{j} \underset{(}{i}\left(x_{j}, x_{j}^{\prime}\right)$ all the investors prefer \hat{X}_{j} to x_{j}.

In other wards, we may sind a constrained efficient psendo-equilibrium so that not only all the investors wat to change the debt-equity ratio even locally but also they agree on the Urection, Such a psendo-equilibrium can nem ver bestable, and any equilibriun which reflects stockholdexs preference may be inefficient. Different fron the result on stockmarkets with value maximization (Stiglitz [7], Ekem-Wilson [2], Radner [6]), our inefficiency is the result of the exisrence of tonkruptcy and limited liability.

The proposition obove is a consequence of che following example.
Let $n=i$ and iet us drop subsuript j. Mheratore, p denotes the price of loan.) let $S_{j}=S=\left\{1\right.$, is and $a_{2} " \dot{c}_{2}>0$. Let $w_{i n}>0$ and $w_{i l}=0$ for all i. Assume that utility insotjons 0° s ato dientical for all i and are homothetic so thni we cen aggregate inciffercnce curves. Finally assume that u_{i} 's depends only upon consumption in beriod l. Namely, $u_{i}=\left(c_{0}, c_{i}, u_{2}\right)=u_{i}\left(c_{0}, u_{1}, z_{2}\right)$ sor all c_{0} and c_{0}

$$
\text { consider a stare of the econmy }(y, p) \text { so that arount of loan }
$$

demand by firms is $2(x)$, By (A. 3) and definition of equilibrium.

Therefore, for $S=1,2$,

$$
\sum_{i=1}^{r, t} c_{i s}=\operatorname{Max}\left\{a_{s} \sum_{i=1}^{\Gamma_{i}} n_{i 0}-2(i), 0\right]+\sum_{s=1}^{\sum_{s}} \operatorname{Tin}\left[a_{s} \sum_{i=1}^{\pi} w_{i 0}, 2(x)\right] .
$$

Hence the following holds.

Case 1:

$$
\begin{aligned}
& x(x) \leq a_{2}^{i} \sum_{i=1}^{a} w_{i=0} \quad \sum_{i=1}^{n} w_{i 0} \\
& \sum_{i=1}^{m} c_{i 1}=a_{1} \sum_{i=1}^{i n} w_{i 0} \\
& \sum_{i=1}^{m} c_{i 2}=a_{2} \sum_{i=?}^{i n} w_{i 0}
\end{aligned}
$$

Case 2:

$$
\begin{aligned}
& a_{2} \sum_{i=1}^{i=1} W_{i 0}<l(x)<a_{1} \sum_{i=1}^{m i n} 10 \\
& \sum_{i=1}^{m} c_{i]}=a_{1} \sum_{i=1}^{m} w_{j 0}-q_{2}\left[x(x)-a_{2} \sum_{i=1}^{m} w_{i 0}{ }^{j}\right. \\
& \sum_{i=1}^{\sum_{i 2}} c_{i 2}=x(x)-i_{2}\left[(x)-a_{2} \sum_{i=1}^{i x i} i 0^{3} \cdot\right.
\end{aligned}
$$

Case 3:

$$
\begin{aligned}
& a_{2} \sum_{j=1}^{m} w_{i 0}<a_{j} \frac{a_{i=1}}{v_{i n}} \therefore x(x) \\
& \sum_{i=1}^{m} c_{i i}=\bigcap_{i=1}^{m} c_{i 2}=i_{1} B_{i}+i_{i} a_{i} \sum_{i=1}^{m} w_{10}
\end{aligned}
$$

Therefore depending pin twe mant of loan to a firm. $2(x)$,

 that the ageregate comsumtion vector $\left(\sum_{i=1}^{n} \sum_{i=:}^{v} \sum_{i}\right.$ is on an open

 through 6 . Jhen C hemg the aggregato optimal corsmotion, the aggregate budget line must te angent to j, anirh is capictar as be in Figure 1. Since it represents the ageregate consumptom jinn consumers as a whole Woul. $\mathrm{B}_{\text {expect }}$ to obtaía by investang all taeir enderments in firms (note
 represents the upgregate consumption plan wher they juvest all their
 lies in the cast of B, and $p_{1}(x, p)>a_{1}$ or $a_{1} p-1>0$. Therefore, investors unanimusty prefer figher debt-equity ratio which would increase return for investor in sca*e is for If E lius in the west of B, the same argument shows that investons manimously frefar lower debt-egnity ratio. Only at point in Figure 2, invencors are loculjy satisfied with the situation, i.e., investors prefer to stay with the ongomg debt-equity ratio if their altematives are restricted to smazl chorges or $\%$. In other words, in the oper segnent $A B, F$ is the onty poseibie (lacal; equilibrinn. of course, F cannot be an efficient state in oum sensi, fox point G in Figure 2 makes the ail consumers becter off. On the other hand. at efficient state G, investors unanimously prefer a higher dcot-equity vatio. Finally, a point P cannot De a true giobal equijilutum, since at $p, \rho_{1}(x, p)=a_{2}$ and $\rho_{2}(x, p)=0$ which is preferred to by $x=0$ which would miarantee p. a_{1} and $p_{2}=a_{2}$.
5. Conclusions

In our economy, the rule of limiced liability (equatjon (I)) severs the process of information transmission by prices. Because of the rules it is irrelevant for stockholdez's preference how much ortput a firminill produce in a state where the firm goes bankrups. Monever, this level of output is at jease as mbortant as the level of output in won-bankzurt states from banks viewoonts, and therefore crucial for frices. In ocher words, the marginal rate of pooduct transfornation between two states fata state a firm gees bankrupt and a state where bank does not go barkrupt; would be egual to the marginal rate of substitution when Investors consider the change of output in bankuptcy state when the fim changes its action. Nameiy, when The rate of retum from a firm could be written as

$$
o_{j s_{j}}\left(x_{j}, p_{j}\right)=a_{j s_{j}}\left(1+p_{j} x_{j}\right)-x_{j}
$$

as a simple computation would show, MRS and MRPT vould coincicte.

Kowever, with this modified rate of remm, the rule of limited liability would no longer exist and banks would be mable to pool risks. In this sense, although one cannot hope that price mechanism is likely to lead to an efficient equilibrinm in an econony with liwited liability and financjal intermediarjes, it is an inevitable price one must pay in order to introduce the tuechanism of financial intermediation.

Appendix 1

We shall prove Proposition and therefc xt \overbrace{f}^{n} is fixed throughout this section. Let $q_{j}\left(p_{j}, P_{0}\right)=E_{0} f\left(v_{j}, p_{j}\right\}$. Then
Leman $1 q_{j}\left(\cdot, p_{0}\right)$ has a unique fir: ed point for all $p_{0} \in R_{+}$.
Proof $q_{j}\left({ }^{(}, p_{0}\right)$ is continuous ard non-decreasing for each $p_{0}-R_{+}$, for $f_{j}\left(x_{j}, p_{j}\right)$ has the same property. The range $o \vec{E} q_{j}\left(\cdot, P_{0}\right)$ is contained in a compact set, $[0, p]$. Unless $p_{0}=0, p_{j}=0$ cannot be a fixed point. Hence, if $q_{j}\left(\cdot, p_{0}\right)$ is concave for given p_{0} fr R_{+}, there is a unique fixed point. To see this, observe that min [1, $\left.a_{j s}\left(p_{j}+1 / x_{j}\right)\right]$ is concave $i_{n} p_{j}, E_{j}\left(x_{j}, p_{j}\right)$ as a sum of concave functions is also concave ard hence $q_{j}\left(p_{j}\right)$ is concave.

$$
\text { Because of the above lemma, } \phi_{j}\left(p_{0}\right)=\left\{p_{j}, q_{j}\left(p_{j}, p_{0}\right)=p_{j}\right\} \text { is }
$$

a well-defined, single-valued function.
Lemma 2 $\dot{j}_{j}\left({ }_{0}\right)$ is continuous.
Proof It follows from the continuity of $q_{j}\left(p_{j} ;\right.$; for each p_{j} and the concavity of $q_{j}(\cdot, 0)$.
Q.E.D.

Let $B_{i}: R_{+} \rightarrow R_{+}^{S+1} \times \mathbb{R}_{+}^{n} \times R_{+}$such that

$$
x_{i}\left(p_{0}\right)=\left(c_{i}, e_{i}, m_{i}\right) \geqslant 0 \left\lvert\, \begin{align*}
& \left(c_{i}, e_{i}, m_{i}\right) \text { satisfies (2) and } \tag{3}\\
& \text { with } p_{i}=m_{j}\left(p_{0}\right)
\end{align*}\right.
$$

and

$$
\xi_{i}\left(p_{0}\right)=\left(c_{i}, e_{i}, m_{i}\right) \in B_{i}\left(p_{0}\right) \left\lvert\, \begin{aligned}
& u_{i}\left(c_{i}\right) \geqq u_{i}(c ; \text { foe } a 1 I \\
& (c, Q, n) \in B_{i}\left(p_{0}\right)
\end{aligned}\right.
$$

Leman $2 \xi_{i}\left(P_{0}\right)$ is a contimous function for ail $p_{0}=0$.
Proof $\bar{E}_{i}\left(p_{0}\right)$ is a well-defjrat Eunction for all $p_{0}>0, ~ f o r ~ B^{2}\left(p_{0}\right)$ is nonempty, compact valued for alj $P_{0}=0$. Conlinuity follows frow the contimity of u_{i} and $B^{j}\left(p_{0}\right)$, Continuity of $B^{i}\left(p_{0}\right)$ is graranced by A. 4) y usual reasons.

$$
\begin{aligned}
\text { Let } \psi\left(p_{0}\right)= & \left.i p_{0} \sum_{j=1}^{j} \prod_{i} \sum_{j=1}^{n} q_{j}\left(p_{0}\right) \sum_{i=1}^{m} x_{j} \varepsilon_{i j} \mid\left(c_{i}, e_{i}, u_{i}\right) \equiv \xi_{i}\left(p_{0}\right)\right\} \\
& \text { anci } I_{k}=\left\{\frac{1}{k}, k\right] \text { for each } k=2,3, \ldots
\end{aligned}
$$

Define a mapping $\gamma_{k}: I_{k} \rightarrow I_{k}$ such thet

$$
\gamma_{k}\left(p_{0}\right)=\min \left[k, \max \left(\frac{1}{k}, p_{0}+\left(p_{0}\right)\right]\right.
$$

Since $\psi\left(p_{0}\right)$ is a continuous single-valued function, $r_{k}\left(P_{0}\right)$ is continuous and using Brower"s Eisel point theorem, Lems 4 For each $k=2,3, \ldots$, there exists a Eixed point, poksuch that $P_{O K}^{*}=F_{K}\left(P_{O K}^{*}\right)$.

Proof of Prososition

Consider à sequence $\left(\mathrm{P}_{0 \mathrm{k}}^{*} \mathrm{k}_{\mathrm{k}=2^{\circ}}^{\infty}\right.$ Let us show that $0<\lim _{k \rightarrow \infty}$ inf $\mathrm{P}_{\mathrm{Ok}}^{*} \leqq$
 For all p_{0} in an open intorval, $(0, \theta)$. Since $\hat{\phi}_{j}\left(p_{0}\right) \leq p_{0}$ for all p_{0}, for ary
 Eore, $r_{i}>U$ and $e_{i j}=0$ for all i and j whenever $\left(c_{i}, \epsilon_{i}, c_{i}\right) E_{i} E_{i}\left(p_{0}\right)$. In Jiew of the definition of $\gamma_{k}, p_{0} \in(0, E)$ cannot be a fixed point for $\gamma_{k}\left(p_{0}\right)$ for any k. Hence lin inf $P_{0 k}^{*} \geq \varepsilon>0$.

 $q_{j}\left(\cdot, p_{0}\right)$ for all j and since the fixed point must be unique, $\phi_{j}\left(p_{0}\right)=p_{0}$. for all j. But then, $r_{j}{ }_{j}\left(x_{j}, \hat{i}_{j}\left(p_{0}\right)\right)=1 / \mathbb{N}, 1 / p_{0}$ for all j and ${ }_{j}$ for $p_{0}>\mathbb{N}^{\prime}$. Namely, $j_{j=1} e_{i j}>0$ and $m_{i}=0$ whenever $\left(c_{i}, e_{i}, m_{j}\right) b_{i}\left(p_{0}\right)$ for all i. But because of definition, such $P_{0}>$, cannot be a fixed point for $\gamma_{\},}$. Hence, $\lim _{k \rightarrow \infty} \sup _{P_{0 k}}^{*} \leq N<\infty$. Therefore, there is a subsequence of $\left\{p_{0 k}^{*}\right\}_{k=2}^{\infty}$ which converges to $p_{0}^{*}=[\varepsilon, ~ N T]$.
 0 must hold. Let $m_{0 i}^{*}=\sum_{i=1}^{m} \sum_{i}^{*}, \ell_{0 j}^{*}=\sum_{i=1}^{\pi} x_{j} e_{i j}^{*}$, and $p_{j}^{*}=\phi_{j}\left(p_{0}^{*}\right)$ for all i and j. Then $\left(p_{0}^{*},\left(p_{j}^{*}{ }_{j=1}^{n}\right),\left(c_{i}^{*}, e_{i}^{*}, m_{i}^{*}\right)_{i=1}^{m},\left(\eta_{0}^{*},\left(e_{0 j}^{*}\right)_{j=1}^{n}\right)\right.$ satisfies (a) - (d) of the proposition.

Reforences

11) Diamond. P. "The Role af a Stokk M+1kez in a General Equilibrium Model with Technological Lncertainty, $4 E R$. Yil. 57, 1967.
[2] Ekern, S. and Wilson, R, "On the Theory of the Firm in an Economy With Incomplete Markets," Ife beil four nai of Economics and Management Science, Vol. 5, 1974.
!3] Hart, O., "On the Optimality of Fquilibrium hien Markets are Incomplete," JET, Vol. 11, 1975.
[4] Jaffee, n. and Modigliani, F. "A Theory and Cest of Credit Rationing," AER, Vol. 59. 1969.
[5] Malinvaud, E. "The Allocation of Individual Risks in Large Markets," JET, Vol. 4, 1972.
"6] Radner, R., "A Note on Urianimity of Stockholders' Preferences Anong Alternative Production Plans: A Refornulation of the Ekern-Wilson Model," The Bell Journal of Economics and Management Science, Vol. 5, 1974.
-7] Stiglitz, J., "On The Optimality of the Stock Market Allocation of Investment," QJE, Vol. 86, 1972.

