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Abstract

An n-person Bargaining Problem consists of a pair (5, d) where S C Rn
is a set of feasible

utility vectors which the players may obtain through cooperation, and the point d E 5,

called the disagreement -point, is interpreted as the utility that players receive if they fail

to reach an agreement. Given a class of bargaining problems, En
, a solution is a map that

associates with each problem (S,d) in Sn a unique point in 5. In this paper, we relax the

common assumption that S is convex and examine the implications for well known solution

concepts. We argue that even with von Neumann-Morgenstern utilities, this restriction

is substantive and limits the application of the theory. Without convexity, the solution

introduced by Nash(1950) is no longer well defined. We propose a new solution called the

Nash Extension. This solution coincides with the Nash solution when S is convex and is

the unique solution satisfying weak Pareto optimality, symmetry, scale invariance, conti-

nuity, and a new axiom, ethical monotonicity. We explore the relationship between ethical

monotonicity and Nash's independence of irrelevant alternatives. The solution introduced

by Kalai and Smorodinsky(1975) remains well defined on our domain and the characteri-

zation of the solution provided in their paper can be obtained without the assumption of

convexity of S. Similarly, the Egalitarian solution is well defined on our domain and the

characterization provided by Kalai(1977) does not require the convexity of S.
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1. Introduction

An n-person bargaining problem consists of a pair (S, d) where 5 is a non-empty subset

ofRn
, and d G S. The set S is interpreted as the set of utility allocations that are attainable

through joint action on the part of all n agents. If the agents fail to reach an agreement,

then the problem is settled at the point <i, which is called the disagreement point. A

bargaining solution F, defined on a class of problems Sn
, is a map that associates with

each problem (5, d) £ Sn a unique point in 5. In the axiomatic approach to bargaining

we start by specifying a list of properties (Pareto optimality, for example) that we would

like a solution to have. If it can be shown that there is a unique solution that satisfies a

given list of axioms, then the solution is said to be characterized this list.

It is common to restrict the domain to problems with convex feasible sets. However,

bargaining problems can arise from a variety of political, social and economic situations.

The requirement that S be convex seems to remove many important cases from considera-

tion. For example, the image in utility space of a finite set of resource allocations will be a

finite set of points, not a convex set. Or consider the bargaining problem associated with

an economy in which strong externalities are present. It is quite likely that the feasible set

of such a problem will be non-convex.

This restriction of domain is often justified by assuming that agents' preferences can

be represented by von Neumann-Morgenstern utility functions. Feasible sets may then be

convexified by running lotteries over the original elements. It is claimed that since agents

care only about the expected utility of settlements, these random allocations just as good

as the non-random ones. Restricting attention to bargaining problems with convex feasible

sets, therefore, has no economic consequences other than those associated with the von

Neumann-Morgenstern axioms on agents' preferences.

We disagree with this conclusion. We argue that the use of lotteries prevents us from

applying axiomatic bargaining theory to a large class of interesting problems.

For example, one common way of using bargaining theory in a cooperative context is

as a method of prescribing settlements to social distribution problems that are "fair" or



"ethical". Under this interpretation, the axioms that characterize the solution employed

are equivalent to a description of the ethical values of the society. We run into difficulties,

however, when a solution recommends that a problem be settled at an utility allocation

attainable only through a lottery. This is because agents do not walk away from the

bargaining table with lotteries in their pockets, they walk away with outcomes of lotteries.

We must therefore choose whether the fairness test is to be applied to expected utility

allocations or to actual utility allocations. This might be viewed as a choice between

fairness of opportunity and fairness of result. 1 Allowing problems to be settled at lotteries

is the same as deciding that outcomes don't matter. In many situations, this maybe

inappropriate and restrictive.

Take the case of an "egalitarian" society in which two identical free agents toss a

fair coin to decide who is to be slave to the other as an illustration. Each may prefer the

gamble to the status quo of both agents being free. So before the coin is tossed, the gamble

represents an individually rational, Pareto optimal, and in particular, equal division of the

surplus. However, the agent who ends up being the slave is substantially worse off than the

agent who becomes the slave holder. One would be hard pressed to argue that this is an

egalitarian society after the lottery is held. One would be even harder pressed to convince

the slave to accept his fate as "fair", and as the inevitable result of his egalitarian beliefs.
2

The axiomatic approach has also been applied to non-cooperative bargaining games.

Labor disputes, for example, may be interpreted as unanimity games in which all agents

must agree to a division of the jointly produced surplus or gain nothing. Such games may

have many Nash equilibria and axiomatic methods give us a sensible way of selecting a

single outcome.

One interesting way to use bargaining theory in this situation is to imagine a mediator

attempting to settle a labor dispute. Mediation is predicated on the belief that if agents are

persuaded that a particular division is "fair" , then they will voluntarily agree to coordinate

their actions and accept the allocation as a settlement to their problem. Thus, the axioms

We thank Charles Kahn for this suggestion.

A similar point is argued by Myerson(1981)



summarize what the mediator believes the agents are likely to accept as fair.

Alternatively, we could view the theory as being purely predictive in nature. The

axioms are then interpreted as statements about the behavior of rational agents given the

institutional framework. For example, we might believe that rational agents will never

settle at a point that is not Pareto optimal or individually rational.

Now consider both of these non-cooperative interpretations in an institutional setting

that does not include the possibility of signing binding contracts. Then in particular,

agents can not credibly commit to abide by the outcomes of lotteries. [Take the slave game

described above. Recall that after the lottery is held, one player ends up being worse off

than he is at the disagreement point. So regardless of whether individual rationality is

imposed because it is "fair", as in the mediation model, or because it is "rational", as in

the behavioral model, the agent who loses the lottery will surely renege on his agreement

to be a slave if there does not exist a binding contract to hold him. Agents will not

voluntarily accept a settlement that is unfair or irrational, respectively, under these two

interpretations. Therefore, the use of lotteries in the non-cooperative context requires that

binding contracts be part of the institutional structure. 3

In this paper we investigate the behavior of certain solution concepts on a domain

that admits non-convex problems. Our primary contribution is a generalization of the

Nash solution. The Nash solution is not well defined on the domain of non-convex bar-

gaining problems. Maximizing the "welfare function" proposed by Nash, or indeed any

"social welfare function", over a non-convex set will not necessarily yield a unique point. 4

The Nash solution, therefore, does not give a clear recommendation of how to settle some

problems. To overcome this difficulty we suggest and characterize a new solution, called

the Nash Extension. This new solution is well defined on the domain of problems that ad-

mit freely disposable utility, and coincides with the Nash solution on the domain of convex

problems. The axioms employed in the characterization are the same as those employed

Binmore( 1988) forcefully presents a similar argument in the non-cooperative framework, concluding: "Thus
convexity necessarily has to appear as a substantive assumption rather than a near tautology." p51.

It is possible, however, to characterize the Nash solution on the domain on non-convex bargaining problems
where the Nash solution happens to be well defined. See Foster and Vohra (1988)



by Nash, except that Nash's Independence of Irrelevant Alternatives, or Contraction In-

dependence as it will be called in this paper, is replaced by a new axiom, called Ethical

Monotonicity.

We motivate this axiom in the following way. It is undesirable to settle problems at

allocations attainable only through lotteries. Nevertheless, if agents have von Neumann-

Morgenstern preferences, then lotteries must be included in the totality bargaining op-

portunities. So if a solution is to be sensitive to all these opportunities then we should

somehow take into account the convex hull of the original 5. We take the settlement

recommended by a solution for the convex hull of a bargaining problem as a bench mark

allocation. In a sense, this ethical point summarizes all the attainable allocations since it

is the ethically desirable point of the true feasible set (including the inadmissible lotteries)

under the chosen solution concept. Now suppose that we have a problem 5 and a smaller

problem S' that is contained in 5. Then we say that the two problems are ethically similar

if the ethical point of the larger one is an element of the convex hull of the smaller, and

the two problems have the same disagreement point. Ethical monotonicity says that if two

problems are ethically similar, then no agent should benefit from this decrease in oppor-

tunities from S to S'. Similarly, no agent should be hurt by an expansion of opportunities

if the expanded problem is ethical comparable to the original problem.

A secondary contribution of this paper is to show that convexity is not required for

the characterizations of the Egalitarian and Kalai-Smorodinsky solutions provided by Kalai

(1977) and Kalai and Smorodinsky (1975), if utility is assumed to be freely disposable. The

paper concludes by suggesting how the methods used can be extended to other solution

concepts and to other domains.



2. Definitions and Axioms

We start with some definitions and formal statements of the axioms used in the char-

acterizations. Given a point d £ Rn
, and a set S C Rn

, we say S is d- comprehensive if

d < x <y and y £ S implies x £ S. 5

The comprehensive hull of a set S C Rn
, with respect to a point d £ Rn

is the smallest

d-comprehensive set containing S:

comp(S; d) = {x £ Rn
| x £ S or 3 y £ 5 such that d < x < y}. (1)

The convex hull of a set S cRn
is the smallest convex set containing S:

n+l n+l

i=\ i=l

t(S) = < x £ Rn
|
x = y^ aiyi for some a,- > 0, 2. <*,- = ! and y,- € 5

1 V 2 > . (2)

The convex and comprehensive hull of a set S C Rn
, with respect to a point d £ Rn

is the

smallest convex, d-comprehensive set containing 5:

concomp(S; d) = con{comp{S\ d)). (3)

Let C denote the space of compact subsets of Rn
. The Hausdorff distance p : C x C —» R

is defined by,

p(S, S') = < max maxmm
||
x — y ||

; max mm
\\
x — y

]}
(4)

where • is the Euclidean norm. An closed e-ball around x is defined as:

The vector inequalities are represented by >, >,and ^>.



B€ (x) = {z G Rn
| ||

x - z
||
< e} (5)

Let int(S) denote the interior of 5, and d(S) the boundary of 5. Define the tyeaA: Pareto

frontier of 5 as:

W\P(S) = {x e 5
I
y > x implies y 5}. (6)

Define the strong Pareto frontier of 5 as:

P(S) = {x e S\y>x implies y £ 5}. (7)

The domain of bargaining problems considered in this paper is £". This is defined as

the class of pairs (5, d) where S C Rn and d G Rn such that:

Al) S is compact.

A2) 5 is d-comprehensive.

A3) There exists x G S and x ^> d.

This differs from the usual domain, which we denote S"on , in that we do not assume that

the set of feasible utility allocations is convex. A bargaining solution, F, is a function from

£? to Rn such that for each (S,d) G E£, F(S,d) G 5.

A list of axioms that will be used to characterize the solutions discussed in this paper

follows. Readers familiar with axiomatic bargaining theory may wish to skip to the defi-

nition of Ethical Monotonicity. All bargaining problems mentioned below are assumed to

be elements of £".

Weak Pareto- Optimality (W. P.O.): F(S,d) G WP(S).

Contraction Independence (C.IND) 6
: If S' C S, d' = d, and F(S,d) G 5', then F(S',d') =

F(S,d).

C.IND was introduced by Nash(1950) with the label "Independence of Irrelevant Alternatives".



A permutation operator, 7r, is a bijection from {1, 2, . .
.

, n] to {1, 2, . .
.

, n}. II
n

is the class

of all such operators. Let n(x) = {x^ l\x n ^ 2\ . . . ,x 7r ( n)
).

7 and ic(S) = {y G Rn
| y =

7r(x),x E 5}.

Symmetry (SYM): If for all permutation operators 7r G II
n

, 7r(S) = 5 and 7r(d) = d, then

F l (S,d) = F'(S,d)Vz,;.

An affine transformation on Rn
is a map, A : Rn —> Rn

, where A(x) = a + bx for some

a G Rn
,6 G R++- A n

is the class of all such transformations. Let A(5) = {y E Rn
| y =

A(x),x G S}.
>

Sca/e Invariance (S.INV): V A G An
, F(A(S),A(d)) = A(F(S,d)).

Translation Invariance (T.INV): V x G Rn
, F(S + {x}, d + x) = F(S, d) + x.

Continuity (CONT): For all sequences {(5",d)}~
l5

if p(S,S") -> 0, then F(S",d) -*

F(S,d).

Strong Monotonicity (S.MON): If 5 C 5' and d = d', then F(S',d') > F(S,d).

The /dea/ Point of a problem (S,d) is defined as:

a(5, d) = (max x
1

, max x
2

, . . . , maxx n
). (S)

x€S xgS x€S
x>d x>d x>d

Restricted Monotonicity (R.MON): If 5 C 5', d = d', and a(S,d) = a(S',d'), then

F(S',<f) >F(5,d)-

The Ethical Point with respect to F of a problem (5, d), is defined as:

e
F
(S,d) = F(con(S),d). (9)

Now Ethical Monotonicity is formally defined:

£*/nca/ Monotonicity (E.MON): If 5' C 5, d' = d, and e
F (S,d) G con(S'), then F(5,d) >

F(S',d').

Although this new axiom is a monotonicity requirement, it turns out that Ethical

Monotonicity with Pareto Optimality implies Contraction Independence on the convex

Superscripts stand for the components of a vector



domain. On the domain of comprehensive problems, there is no logical relation between

the two axioms.

8



3. The Solutions

In his 1950 paper, Nash considers the domain £"
on °f convex problems. He proposes

the following solution:

N(S,d) = I argmax f[(xi - rf,-) I
, (10)

and demonstrates that it is the only solution that satisfies W.P.O, SYM, S.INV, and

C.IND. On the domain E", however, the mapping N fails to be a solution as defined the

introduction. This is because N will not be single-valued on £" in general. A natural sug-

gestion would be to define a new solution by taking a selection from the set of maximizers

of the Nash product. Unfortunately, it is impossible to do this in a way that satisfies

the properties enjoyed by N on the convex domain. Obviously, no such selection satisfies

SYM. Additionally, it can be shown that any such selection must also fail to satisfy the

axioms CONT and C.IND.

To remedy this deficiency we propose a new solution, the Nash Extension, which is

constructed as follows. First define the mapping L : E£ —> Rn
as:

L(S,d) = con(N(con(S),d),dY (11)

L(S,d) is the line segment connecting the disagreement point cf, to the

Nash solution of the problem composed of the convex hull of 5, and d. Now we define

the solution NE:

NE(S,d)= imaxx
|
x G L(S,d)f)s\ , (12)

where max indicates the maximal element with respect to the partial order on R n
. The

construction of NE is illustrated figure 1. The point NE(S,d) is the intersection of the



weak Pareto frontier of S and the line segment connecting the disagreement point and

Ethical Point under the Nash solution the problem (S,d). Obviously, NE coincides with

TV on the domain of convex problems.

N(con(S),d) = ethical point

Figure 1: The Nash extension solution

Nash wrote that the minimal standard that any solution to a bargaining problem

ought to meet is that it be single valued and continuous. We pause to show that the

Nash Extension meets both of these requirements. To see that the iVE solution is single

valued, notice that L is a non-empty, compact-valued correspondence. Then since L is also

a line segment, its maximal element exists and is unique. Thus, NE is non-empty and

single- valued on S". We now prove that it is continuous.

Lemma 1. NE is continuous on S™.

Proof/

Let S" —* S . We begin by showing that con is a /^-continuous correspondence. To see

this, suppose that for any given t > 0, p(S,S') < e. Then for any ij = ^?=i °'' T « € con(S)

there is a. y' = Y^?=i a *x
'i
^ con(S') such that y 6 B( (y'). By reversing the argument, we

10



also find that for any y' G con(S') there is a y E con(S) such that y' G B e (y). Thus if

p(S,S') < e then p(con(S), con(S')) < e, and so con is p-continuous.

Therefore, since con is continuous, and N is continuous on X)con> ^he composition

map e^, where e
N (S,d) = N(con(S),d), is continuous by Hildenbrand(1974) proposition

B.7. We conclude that if Sv -* 5, then e
N(S",d) -» e

N
(5,c?).

By Definition, NE(S,d) G £(5,<i). So NE(S,d) = (1 - A*)d + A*eN (S,d) for some

A* G [0,1]. Also, for each S", NE(S",d) = (1 - A")d + X v
e
N {Sv

1
c?) for some A" G [0,1].

Notice that the sequence {A"} is drawn from the compact set [0,1]. Thus, given any

sequence of sets {S"} converging to S, if it can be shown for every convergent subsequence

{A"*} of {A"} that A"* —» A* then the lemma is proven. Suppose not. Then there are two

cases:

1. Suppose first that for some subsequence {S l/k
}, A" fc —* A and A > A*. Then the

definition of NE implies (l-\)d+\eN (S,d) = x^S. Thus the sequence {NE(SUk
)}

converges to a point not S, contradicting the hypothesis S Uk —> S.

2. Now suDpose that for some subsequence {S Uk
} that \ Uk —> A and A < A*. Then

(1 — \)d + \eN (S,d) = x <C NE(S,d). Additionally, the existence of a point S that

strictly dominates d implies that d <C x. Hence by the d-comprehensiveness of S,

x G int(S). Thus there exists e > and v\ such that for v > i/\, B t (x) C S Uk and

NE{S,d) $. B t (x). Since e
N (S Uk ,d) —» e

N (S,d), there exists 1/2 such that 1/ > i/2

implies L(S Uk ,d) n B€ (z) ^ 0. Now, for each 1/* let y"* = max{L(S Vk ,d) n £€(£)}.

Let i/' = max{v l ,v2
}. Clearly for vk > v\ y"k exists and y

Vk G dB€ (x) n 5"*.

However, by hypothesis NE(S" k ,d) —* x , so there exists 1/" such that i/* > z/' implies

NE(S Uk ,d) G tnt(Be (x)). Then for i/4 > max{i/>"}, we have y
Uk G 5"fc n L(S"k ,d)

and ?/'/fc > NE(S" k ,d), contradicting the definition of NE.

Hence for every subsequence of 5", we have that A = A*. Therefore, x = NE(S,d).

Our main result is a characterization of the new solution NE.

Theorem 1. A solution on EJ? satisfies W.P.O, S.V, SYM, E.MON, and CONT if and

only if it is the Nash extension.

11



Proof/

(a) First it is shown that the NE solution satisfies the axioms.

W.P.O: Let x = NE(S,d). Assume there exists y £ 5 such that y ^> x. Then since S

is d-comprehensive there exists z G L(S,d) D S such that z ^> x. However, this

contradicts the hypothesis x = NE(S,d).

S.INV: Let (S, <f) £ E™ and A E An be any affine transformation. Since con(X(S)) =

A(con(S)), and N satisfies S.INV on S"on , we conclude that Ar(A(con(5)), A(d)) =

A(JV(con(SV)). ThusL(A(S),A(d)) = X(L(S,d)). Therefore, max{L(A(S),A(d))

fl A(5)} = max {A(L(5,<f) (1 S)} = A(A/\E(S,<i)), as required.

SYM: Let (5, d) be a symmetric problem. Then (con(S), d) is also a symmetric problem.

Since N satisfies SYM on E£on , N(con(S),d) is a point of equal coordinates. But

so is d, and so all elements L(5, d) are points of equal coordinates. Consequently,

NE(S,d) £ L(S,d) is symmetric.

E.MON: Let (S,ef), (S',<f) be such that; 5c5',(f = (i' and e
NE(S',d') e con(S). Then

A^(con(5'),^') = NE(con(S'),d') = e
NE

(S',d'), and therefore N(con(S'),d') £

con(S). Since con(5) C con(S'), and A" satisfies C.IND on S"on , N(con(S),d) =

AT(con(S'),d'). Furthermore since d = d! by hypothesis, L(S,d) = L(S' ,d').

Therefore S C 5' implies NE(S,d) < NE(S',d'), as required.

CONT: See lemma 1.

(b) Conversely let F be a solution on S" satisfying the five axioms, and consider any

problem (S,d). By S.INV, we can set d = and N(con(S),d) = (1,1,..., 1) = e.

Then NE(S, d) = (a, . . . ,a) = x for some a > 0. We distinguish two cases:

Case 1) 5C R^.

Let the sets T and V be defined as follows,

T = concomp[(n, 0, . .
.

, 0), (0, n, . . . , 0), (0, . .
.

, n); d] (13)

V = T\{x + Rl+ }. (14)

12



Since e = N(con(S),d), the hyperplane defined by Y17=i Xi ~ n suPPorts con(S) at e.

Hence S C T. Also, since F satisfies W.P.O, and S is comprehensive, z G {x + R-++}

implies that z £ S. Thus SC7.

Now, since (V,0) is a symmetric problem, and x is the only symmetric point in

WP{V), by W.P.O. and SYM, F{V, d) = x. Also, since e is the only symmetric point

in WP(T), by W.P.O. and SYM, F(T,d) = e. But con(V) = T, and so e
F (V,d) = e.

Therefore, since S C V and e
F (V, d) = e G con(S), by E.MON, F(5, d) < F(V, d) = x.

There are two possibilities,

i) x E P(S). Then by W.P.O, F(S,d) = x = NE(S,d) and the proof is complete.

ii) x £ P{S). Then consider the sequence of problems {(V
r

'/

;0)} and {(5";0)} defined

by:

V = <V[_jcomp

S" = < S I) comp

1 „ In «-e + (l- -)x;0 (15)

-e + (l--)z;0 (16)

SinceV is symmetric and d = 0, by W.P.O. and SYM, F(V,0) = (<*+£, ...,<*+£) =

x u
. Since 5" C V", e

F(V u
,0) = e and e € con(S"), by E.MON and W.P.O. we have

F(S",d) = F(V,d) = xv . But since S" -» S, by CONT F(5",d) -> F(5,d). Thus

since xv — x, we conclude that F(5, d, ) = x = NE(S, d).

Case 2) S<£ R£.

Let V = {^(jTren" 7r (^')}- Since V is symmetric, and 2 G WP(V'), we can replace

(V, 0) above with (V,0) and replicate argument given for Case 1. •

Kalai(1977) examines the properties of an alternative to the Nash solution called the

egalitarian solution. Although idea of dividing surpluses equally is not new, Kalai was the

first to present an axiomatic characterization of this solution. Formally, let us define the

egalitarian solution, E, as:

13



E(S,d) = {max[x € S
\
x {
- d{ =Xj-djVi,j G (l,...n)]}. (17)

The axioms we use here are the same as those employed by Kalai to characterize

the solution E on the domain of convex bargaining problems. Further properties of the

egalitarian solution are discussed Kalai(1977) and Thomson (1986).

Theorem 2. A solution F on E? satisfies SYM, T.INV, W.P.O, and S.MON if and only

if it is the egalitarian solution.

Proof/

The proof that E satisfies the four axioms is elementary and is omitted. Conversely let

F be a solution satisfying the four axioms. Given any (5, d) £ E™, we can assume by T.INV

that the problem has been normalized such that d = 0. Thus E(S, d) = (a, . .
.

, a) = x for

some a > 0. Now let T be defined by:

T = comp(x;0), (18)

and consider the problem (T, 0). Since T is symmetric, d = 0, and x is the only symmetric

element of WP(T), by W.P.O. and SYM, F(T,d) = x. Also, since S is comprehensive

TCS. Hence, by S.MON, F(S,d) > x.

By assumption, S is compact. Thus, there exists (3 E R such that x £ S implies ( — /?,

— /?, . .
.

,
— (3) < (a;

1
,!

2
, . . . ,xn

)
< (/?,/?, . .

. ,
/?). Let Z be the symmetric closed hypercube

defined by:

Z={y<ER"| |y| < (/?,/?, . .

.

,/?)}. (19)

Also define T' as:

T' = Z\{x + R£+ }. (20)

14



Consider the problem (T';0). Since T' is symmetric, d = and x is the only symmetric

element of WP(V), by W.P.O. and SYM, F(T',d) = x. But since S C T', by S.MON,

F(S, d) < x. Thus, F(5, d) = x = E(S, d). •

The next solution considered is the Kalai-Smorodinsky solution, K:

(5, d) = max [x E 5
|
x E con(a(5, d), d)]

.

(21)

The axioms used are those employed by Kalai and Smorodinsky(1975) to characterize

K on the convex domain with two agents, except that only weak Pareto optimality is

used. The generalization to more agents is not immediate since K does not satisfy even

Weak Pareto Optimality on £"
on for n > 2. No such problem exists on the comprehensive

domain. For further discussion see Kalai and Smorodinsky(1975) and Thomson(1986).

Theorem 3. A solution F on H? satisfies SYM, S.INV, W.P.O, and R.MON if and only

if it is the Kalai-Smorodinsky solution.

Proof/

The proof that K satisfies the axioms is elementary and is omitted. Conversely let F

be a solution satisfying the four axioms. Given any (S,d) E £", assume by S.INV that

the problem has been normalized such that d = and a(S,d) = (/?,...,/?) = y. Then

A' (5, d) = (a, . .
.

, a) = x for some a > 0. Let T be defined as:

r = comp(y;0)\{x + R£+ } (22)

and consider the problem (T, 0). We distinguish two cases:

Case i) S C R+. Since S is comprehensive and x E WP(S), we have S C T. Also, since T

is symmetric, d = 0, and x is the only symmetric element WP{T), by W.P.O. and

SYM, F(T,0) = x. However, since 5 C T, and a(5,0) = a(T,0) = y, by R.MON

F(5,0) <F(T,0) =z

Now let T' be defined by,
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T =comji[09
v 0,...,0)> (0,A... f 0)f 0,...^)9 x;0]. (23)

Consider the problem (T", 0). Since T is symmetric, d = 0, and x is the only symmetric

element in WP(T'), then by W.P.O. and SYM, F(T',0) = x. Also, since T'cS and

a(S,d) = a(T',0) = y, by R.MON, F(5,d) > F(T',d) = x. Thus F(5,d) = x =

K{S,d).

Case ii) 5 <£ R" • Let V be defined as follows,

In-en J

Note that V is symmetric and S C V. If we replace

(T, 0) the previous argument with (V,0) the proof goes through as before. •
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4. Conclusion

Since Nash's pioneering treatment of the bargaining problem, most authors have main-

tained the assumption of convexity of the feasible set. In this paper we have dispensed with

convexity. We proposed a new solution, the Nash Extension, and demonstrated that it re-

tains several of the desirable features of the Nash solution on the domain of comprehensive

problems, while coinciding with the Nash solution when the problem is convex.

Our main result is a characterization of the new solution, employing a new axiom,

Ethical Monotonicity. Additionally we demonstrate that axiomatic characterizations of

several well known solutions can be extended to the domain of problems that are merely

comprehensive. This does not seem to be a very strong restriction on the domain since it

is implied by an assumption of freely disposable utility.

This work suggests that the assumption of a convex feasible set is not essential for any

Monotone Path Solution. Since any Monotone Path Solution is well-defined on the domain

of comprehensive problems any characterization found on the domain of convex problems

should be easy to adapt. This class of solutions is discussed and axiomatized Thomson

(19S6), pp52-57. A second class of solutions that are well defined on the domain of convex

problems is the class of strictly concave social welfare functions. The Nash solution is the

most widely known of these. The class of solutions represented by an additively separable

social welfare function has recently been axiomatized by Lensberg(1988). It would be of

interest to see if our method of constructing the Nash Extension could be employed to

define a new solution or solution class on the domain of comprehensive problems, which

coincides with the selection of the given social welfare function or class of functions, when

the problem is convex. A characterization could then be attempted using E.MON or some

similar axiom.

We close by remarking that it may also be of interest to study more general domains.

For example, suppose agents cannot necessarily dispose of utility freely, but they can "agree

some of the time and disagree some of the time," then the we have a domain of problems

which the feasible sets are star-shaped with respect to the disagreement point.
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