
THE 8K BASIC- IN-ROM
REFERENCE MANUAL

Sept. 1978

© Ohio Scientific Inc





Ohio Scientific 6 502 8K BASIC-in-ROM Introduction

Onio Scientific '5 BASIC-in-ROM was written by Microsoft, Inc.
and is very compatible with the numerous other BASICS written by
Microsoft including the original ALTAIR 8080 and 6800 BASIC, the
Commodore PET BASIC, the Apple floating POINT BASIC, and Radio
Shack Level II BASIC. The 6502 BASIC is considerably faster than
8080 and 6800 BASICS because of the 6502's superior instruction

'

daI^oc
1011 txme

- Tt is faster than competitive personal computer
BASICS

i

because it is a 6% digit implementation of BASIC and Ohio
Scientific machines are typically operated at higher clock SDeeds
that_ comparable 6502 based personal computers. As of* thewriting of this manual, Ohio Scientific 8K BASIC-in-ROM is con-
sidered the fastest floating POINT BASIC available for personal
compurers

.

The following manual provides detailed information about the
features in the language which are unique in this particular version
of BASIC. It further provides a handy reference for the standard
syntax of Microsoft BASIC. It is not intended however, to-be a
tutorial or teaching aid. The user is directed to several of any
of the excellent texts on BASIC to learn the language such as
BASIC AND THE PERSONAL COMPUTER by Dwyer and Crithfield which
is available through most Ohio Scientific dealers.

Ohio Scientific 8K BASIC-in-ROM has been extensively tested
and has been in use for several years. It is believed to be
reasonably bug free, however, no warranty is made for its accuracy
or usability.

8K BASIC-in-ROM is copyrighted by Microsoft, Inc. The BASIC
I/O handlers or support code are copyrighted. by Ohio Scientific,
Inc. The duplication, copying or publication of the code of the
8K BASIC-in-ROM is strictly prohibited without specific written
consent from Ohio Scientific.

-2-



Ohio Scientific 8K BASIC-in-ROM Reference Manual

Introduction

The following discussion pertains to Ohio Scientific computers
which utilize 8K BASIC-in-ROM in conjunction with an internal video
display interface, specifically, the C2-4P, C2-8P, Superboard II
and Challenger IP systems. When the computer is reset, the message
D/C/W/M or simply C/W/M will appear on the screen. D stands for
boot from disk, M stands for exit to monitor, C and W refer to
BASIC options. When the machine is first turned on, the user
always selects C which stands for "cold start". Cold start clears
the work space and initializes the BASIC interpreter. Once the
machine has been running, the user can optionally select W for
"warm start". Warm start is used to restart the BASIC interpreter
when an executable program is present in memory. It can be utilized
specifically when the break key is inadvertently depressed to return
to a program and in instances when' the control C has been disabled
for graphics displays for instance. For example, when the Ohio
Scientific Tiger Tank game is running in the computer and the user
wishes to examine the program, he would depress the break key then
the W key which will return him to the immediate mode of BASIC with
his program intact.

Memory Size?

When cold starting BASIC, the computer asks the question
"Memory Size?". By answering carriage return to this question,
the machine performs a memory test such that it finds all usable
memory. It reports the number of bytes available and sets up the
basic work space to use all available memory. The user can option-
ally type in a decimal number which corresponds to the upper limit
of the memory he wants BASIC to use. For example, an 8K BASIC-in-
ROM computer has 819 2 bytes of RAM (approximately 7 68 bytes are
used for system overhead). If the user wishes to allow BASIC to
utilize 4K thus leaving 4K available for machine code and other
applications, he would answer, 4096 to memory size then carriage
return. This would limit BASIC to utilize the first UK of memory.
Furthermore, the BASIC memory test would not be implemented,
consequently, memory above 4K would be preserved. Because of
this, the user can preload machine code routines before cold
starting the computer.

Terminal Width?

The next question BASIC asks is "Terminal Width?". If the
user simply types carriage return to this question, the terminal
width defaults to 72 characters. This terminal width specification
is part of BASIC'S drivers. The video display software also con-
tains terminal width parameters. These parameters are fixed at
24 characters on the 600 board based systems and 64 characters en
the 540 based systems. The user can, in fact, specify narrower

-3-



in«So!
id

!j!
in res P°nse *° the terminal width ouestion. Forinstance, the user could answer 20 <carriaee return} so rh»

dJspiafwidt'n'tno^h" °v 6o ° based ^^-ulfconxLeWe

becter solutiSn
C
?S

:

o
U
v
Ctl°n "ith narr°" Width Pinters. Sowe™r?

S
a

L
et

red
r
uce^^\:rscL

e
Tf

a
?ne

n
Ln

P
Ixo

b
r
emS °' ""^ dU^ l=

LOAD and SAVE Commands

Tviltt^^TslvV^1 reserved "ords for uae with I/0

LOAD Command

of
e
a
L
s^r^Trd Can b

frv
executed in the immediate mode or as part

?nan
stored Pr?g"am, When the BASIC interpreter encounters aLOAD command, lt switches input from the keyboard ?o serial input

llnLt
J^Ut t0 BASIC °«rti»««i from this^ort un?i? ?hJ use?depresses the space bar on the terminal or a program modifies a

o
f
n
la

?0AS)
mem

Ser"iaI S^ST* ^ 515 '° ^^^fallo turns

interface but ^ S°Hi ? normally connected to an audio cassette
or RS-2 32 ?™f« i

Y bS ex?anded to accept input from a modem

cassette in^erfJp
e,^ command m conjunction with the video

anf?o JeaS in SJ;, r-Jo
8 C*PSll

i5?
t0 read **<>&*** ^om cassette«™ *£ ?

aH r°m cassette files. By the addition of hard-

Snafor^der C°"™d "" b« UtUi"d » *^°" « -vernal

SAVE Command

o5%ho
VLCOmmand Can be ^ executed in the immediate mode or as part

SAVE o SL P*°S™- When the BASIC interpreter encounters ?heSAVE command rt routes output to both the video screen and serial
encoui;^ 2m°h °5 °P«*at"n continues until a LOAD command is

leriafnnlr ?=
automatically clears the SAVE condition. The

5SS-2T! L °™?lly
,

conne<=ted to an audio cassette output
i^

e
;
face s ° ^at the SAVE command can normally be used fo? savinaprograms and storing data in cassette files. By the addition of

anfpr^ter" °C^1?F?t ""E* * * "°dm
>
-^ernaft^rm^al

on SAVE )

' rnS °ff SAVE
'
P0KE 517

> 2S 5 also turns

LOADing and SAVEing BASIC Programs
To SAVE a program on cassette:

1. Rewind the tape.
2

.

Type SAVE ^carriage return> .

3. Type LIST but not {carriage return) .

J.
Start the recorder in the record mode.

&. As soon as the leader passes over the tape head, type<carnage return) .
' yF

6
' ^hV^ U?*in« is complete, turn off the tape recorder

^tZlV: ^ ty
?
6 L°AD <carriaSS return> <space bar><carriage return> to revert to normal computer operation

-4-



To LOAD programs which are stored on tape into the computer,
proceed as follows:

1. Rewind the tape.
2. Cold start the machine or type NEW ^carriage return^ .

3

.

Type LOAD but not ^carriage return^ .

+

.

Start the tape in play-back mode.
5. As soon as the leader passes over the head, type

^carriage return^ .

6. Upon completion of a LOAD, turn off the tape recorder
type <space bar> and then ^carriage return^ .

Cassette Data Files

The simplest way to store data on cassette is to store the data
imbedded in data statements which have line numbers as part of
the program. Thus, the data comes along with the program when
it is loaded in but requires that the entire program be re-stored
when the data is changed. This is not an unreasonable handicap
in small programs. To further simplify the use of data statements
for data storage, BASIC allows the LIST command to be imbedded as
a statement as part of the BASIC program. For example, a short
BASIC program utilizes data in data statements between lines 100
and lines 200. To allow the user to change these data statements,
a portion of the program can have a statement such as LIST 100-200
which when executed will selectively LIST that portion of the
program. And following this statement, it can have a statement
such as PRINT" CHANGE THE ABOVE STATEMENTS AS NECESSARY BY TYPING
A LINE OVER AGAIN": STOP. This statement when executed will prompt
the user to change data statements and will then discontinue program
execution by a break.

Cassette Based Sequential Files

The most sophisticated cassette based data storage technique is
to utilize sequential data files on cassette. To construct a

sequential data file on tape, the program must simply execute a
SAVE command followed by a series of PRINT commands which print
out the desired information. This information will appear on
the video screen and will also be stored in sequential fashion
on cassette. The individual entries will be delineated or
separated by carriage returns. To input from cassette data files,
the BASIC program must execute a LOAD command then execute INPUT
statements. These INPUT statements will be answered by the
cassette instead of the keyboard. This technique is straightforward
with two minor tricks. The first problem is that the programmer
must be certain that the information on cassette 'is presented to
the computer after each INPUT statement is executed. Obviously,
if the information was outputted from the cassette before the
BASIC program executed an INPUT statement, it would be lost.
This is not a problem in simple programs because the SAVE command
automatically places 10 nulls before each output before it is

placed on cassette. These 1C pad characters will provide sufficient

-S-



situation can be handled effectively as follows tl ^ h • •

of every data file thp n„+n„fi-^
roiiows. At the beginning

acter strina%Jn ««J 5
OUL Putt ^

nS Program should place a 72 char-
u5mT?7 !h ?

g follow
f

<

?
by a carnage return. This string will h-

file wifl thL!
ynC fle

i
d

-
.

The Prc^ that then"aS the data

SSSffir^l'SWs s scar-
procedure should not be necessary under normal circumstances.

Outputting to Printers

&S5@%€3§3?:z£C.
Other Devices

.zes

-6-



SPECIAL CHARACTERS

Character

t (shfl P)

(shift 0)

Carriage return

Control C

: (colon)

Contol

Use

Erases line being typed

Erases last character being typed

Must be used after each line typed

Interrupts program execution or listing
returns to command mode.

Allows multiple statements per line

Typing a control once surpresses output

until another control is typed.

? ? can be used instead. of print.

OSI 8K BASIC is a "standard" BASIC with additional string handling
capability and I/O commands, as well as the following features.

OSI BASIC allows multiple statements per line via ":". Next with-
out a variable can be used when FOR-NEXT statements are not nested.

END statements are not necessary. Question marks can be used
Instead of "PRINT". "LET" 1s optional. No spaces are required in

BASIC. These features allow highly efficient memory usage when
necessary.

Variables can be two characters long. Longer variables can be used
but only the first two characters will be utilized. The first
character must be alphabetic, the second can be alphabetic or
numeric. Long variables can not contain words used by BASIC such
as NEW, SIN, and so on. Since spaces are not necessary BASIC would
interpert a variable such as "ANEW" as a variable A and the command
"NEW" and would erase the program.

EXAMPLES

:

LEGAL ILLEGAL

A IA
Al #B

AZ TOO
BEQ RGOTO
APPLE NEW 1

TUESDAY FREQUENCY

Note: that variables AZ1 and AZ2 would be treated the same since
BASIC looks only at the first two characters.

-7-



COMMANDS

NULL

EXAMPLE

LIST
LIST TOO

NULL 3

RUN RUN

RUN 200

NEW NEW

CONT CONT

LOAD LOAD

COMMENTS

Lists program
Lists program from line TOO. Control
C stops program listing at end of
current 1 ine.

Inserts 3 nulls at the start of each
line to eliminate change return
bounce problems. Null should be -.

when entering paper tapes from Teletype®
readers. When punching tapes Null?=3.
Higher settings are required on faster
mechanical terminals.

Starts program execution at first line.
All variables are reset. Use an
immediate GOTO to start execution at
a desired line.

GOTO 200 with variables reset.

Deletes current program.

Continues program after Control C or
STOP if the program has not been modified,
For instance a STOP followed by manually
printing out variables and then a CONT
is a useful procedure in program debugg-

Used in cassette and Disk BASIC only.

OPERATORS

SYMBOL EXAMPLE

= A-10

LET B=10

-
C=»-B

t(Shift/n) XT4

COMMENTS

LET is optional

Negation

X to the 4th power

CfO with C negative and D not an integer
gives an FC error.

* C=A*B Multiplicati

/ D=L/M Division

-
Z=L+M Addition

-3-



J=255.1-X Subtraction

<> 10 IF AoB THEN 5 Not equal

> B>A B greater than A

< B<A B less than A

<» < B<=»A B less than or equal to A

*>,> BOA B greater than or equal to A

AND IF B>A AND A>C
THEN 7 If both expressions are true then—.

OR IF B>A OR A>C
THEN 7 If either expression is true then—.

NOT IF NOT B>A THEN 7 If B<=A then—.

AND, OR, and NOT can also be used in Bit manipulation mode for per-
forming Boolean operations of 16 bit 2s complement numbers (-32768 to
+32767)

EXAMPLES

EXPRESSION RESULT
63 AND 16 16
-1 AND 8 8
4 OR 2 6
10 OR 10 10
NOT -1

NOT 1 -2

OPERATOR EVALUATION RULES : Math statements evaluated from left to
right with * and / evaluated before + and
Parentheses explicitly determine order of
evaluation.

Precedence for evaluation

1

)

By parenthese
2) +
3) Negation
4) */
5) + -

6) =,<>,<,>,< = , > =

7) NOT
8) AND
9) OR

-9-



STATEMENTS

In the following examples

V or W is a numeric variable, X

X$ is a string expression, I or

NAME

DATA

DEF

DIM

END

FOR, NEXT

EXAMPLE

10 DATA 1,3,7

10 DEF FNA (V)=V*B

110 DIM A (12)

999 END

10 FOR x-.l to 10 STEP .1

20

30 NEXT X

GOTO 50 GOTO 100

GOSUB, RETURN 100 GOSUB 500
500 ... .

600 RETURN

IF... THEN

IF... GOTO

ON... GOTO

10 If X-5 THEN 5
10 If x-5 THEN PRINT X
10 If X-5 THEN PRINT X:Y=

10 IF X=5 GOT05

is a numeric expression,
J is a truncated integer.

COMMENTS

Data for READ statements must
be 1n order to be read. Strings
may be read In DATA statements.

User defined function of one
argument.

Allocates space for Matrices
and sets all matrix variables
to zero. Non dimensioned
variables default to 10.

Terminates program (optional

)

STEP is needed only if X is

not incremented by 1. NEXT X

1s needed only if FOR NEXT
loops are nested if not NEXT
alone can be used variables
and functions can be used In
FOR statements.

Jumps to line 100

Goes to subroutine, RETURN
goes back to next line number
after the GOSUB

If the statement is true

•Z Then the following will be
executed including multiple
statements of that line.

Same as if THEN with line
number

100 ON I GOTO 10, 20, 30 Computed GOTO

If 1=1 then 10
If 1=2 then 20

If 1=3 then 30

-10-



PRINT 10 PRINT X
20 PRINT "Test"

READ 490 READ V, W

REM 10 REM

RESTORE 500 RESTORE

STOP 100 STOP

Prints value of expression
Standard BASIC syntax with
> > formats

FUNCTIONS

Function

ABS (X)

INT (X)

RND (X)

SGN (X)

SIN (X

COS X
TAN (X)

ATN (X)

SQR (X)

TAB (I) •

USR (I) See I/O section

EXP (X)

FRE (X)

LOG (X)

Reads data consecutively from
DATA statements in program

This 1s a comment for non-
executed comments.

Restores Intlal values of
all DATA statements

Stops program execution re-
ports a BREAK. Program can
be restarted via CONT.

Comment

For X->0 ABS(X)=X
For X4) ABS(X)=-X

INT (X) » largest Integer less than X

Generates a random number between and 1

R/TO (0) generates the same number always

RND (X) with the same X always generates
the same sequence of random numbers
NOTE (B-A)* RND (1 )+A generates a random
number between B and A

IF X>0 SGN(X)-1
IF x-<0 SGN(X)=0

Sine of X where X 1s in rfadians)
Same for COS, TAN, and ATfT(ARC TAN)

Square root

Spaces the print head I.

EfX where E is 2.71828

Gives number of Bytes left in the workspace.

Natural LOG to obtain base 10 logs use
L0G(X)/L0G (10)

-11-



POS (I)

SPC (I)

Gives current location of terminal print
head.

Prints I spaces, can only be used in print
statements.

STRINGS

Strings can be from to 255 characters long. All strinq variables
end 1n $ ex. A$, B9$, HELL0$

.

Strings can be dimensioned equated, printed, read from Data statements,
etc.

STRING FUNCTIONS

ASC (X$)

CHR$ (I)

LEFTS (X$,I)
RIGHT$(X$,I)

MID $ (X$,I,J)

LEN (X$)

STR$ (X)

VAL (X$)

Returns ASCIT value of first character 1n
string.

returns a I character string equivalent
the ASCII value above.

Gives left most I characters of string X$
Gives right most I character of string X$

Gives string subset of string X$ starting
at Ith character for J characters. If J is omitted,
goes to end of string.

Gives length of string in bytes.

Gives a string which is the character
representation of the numeric expression
of X. Example X=3;l

X$=STR$(X)
X$="3.1"

Returns string variable converted to
number. Opposite of STR$(X)

-12-



I/O

The following features of 051 8K BASIC are useful! primarily for
I/O control. The user should be extremely careful with these state-
ments and functions since they manipulate the memory of the computer
directly. An improper operation with any of these commands can
cause a system crash, wiping out BASIC and the users program, thus
requiring a complete reload of the computer.

STATEMENT/ FUNCTION COMMENT

PEEK (I) Returns the decimal value of the
specified memory or I/O location.
(Decimal)
Example:

X=PEEK (64256)
Loads variable X with the 430 Board's
A/D converter output. (FB0Onex )

POKE I,

J

Loads memory location I (decimal) with
J (Decimal) I must be between and
65536 and J must be between and 255
Example: 10 Poke 64256, 255 loads FBOO
with FF (Hex) thus loads the 430 Board's
D/A port such that its output is +2
vol ts

.

WAIT I,J,K Reads status of memory location I

(Decimal) exclusive OR's with K then
AND's the result with J until a non
zero result is obtained. If K is omit-
ted, it is zero.

Wait is used for fast service of input
status flags.
Example: Wait X.l will wait until Bit
zero of memory location X goes low then
BASIC will continue.

The high speed servicing of flags via the WAIT command allows the
programmer to service medium speed devices such as line printers or
Industrial equipment directly in BASIC.

USR: The USR function allows linkage to machine language routines
such as ultra-fast device handlers, etc. The USR function calls
only one machine language routine and can pass one integer value tc the
machine language routine so that 65,000 actual user routines are possible,

The beginning of the user subroutine must be poked into 23EhpY (low)
and 23Fnev (high). The USR routine can use up to 8 levels of sub-

'

routines (16 stack locations) without page swapping.

The USR function can obtain the argument of the function by callinq
the routine pointed to by 6 (low) and 7 (high). This routine will

-13-



place the value of the argument 1n AE/u
e
-\ (high part) and AF(u ex )

(low part). To pass a value back to BASTc, the high part 1s placed
1n A and the low part 1s placed 1n Y and the subroutine pointed to
by 8 and 9 should be called. If this function 1s not called USR
(X) will equal X. An RTS returns from USR to BASIC. All registers
can be modified by the user routine without affecting BASIC, however,
no page zero locations can be mod1f1edl The POKE instruction can
also be used to change the USR function call.

INTERRUPTS

For Interrupting routines of any significant length, page zero and
page one should be swapped out to higher memory, or memory partition-
ing (A-J5 and A] 7 on late model OSI memory boards) should be used.

CONVERTING OTHER BASICS TO RUN
ON OSI 6502 8K BASIC

MATRIX subscripts: Some BASICS use [ ]
OSI BASIC used ( ).

Strings :

OTHER OSI

DIM A$(I,J) DIM A$ (J)
AS (I) MID$ (A$,I,1)
AS (I, J) MIDS (A$,I,J-I+1)

Multiple assignments: B»C*0 must be rewritten as B»0:C»0. Some
BASICS use/ to delimit multiple statements per'line.Use ";". Some
BASICS have MAT functions which will have to be rewritten with FOR-
NEXT loops.

-14-



TABLE 2-1. BASIC ERROR CODES

CODE

DD

FC

ID

NF N-*,

OD o..

OM 0-1

ov

LS

OS

ST

TM

UF

«&

SN S-»

RG * \
US Ufcrf

/0 A
CN c-J

L±tt

T-|

U -s^

DEFINITION

Double Dimension: Variable dimensioned twice.
Remember subscripted variables default to
dimension 10.

Function Call error: Parameter passed to
function out of range.

Illegal Direct: Input or DEFIN statements can
not be used in direct mode.

NEXT without FOR:

Out of Data: More reads than DATA

Out of Memory: Program too big or too many
GOSUBs, FOR NEXT loops or variables

Overflow: Result of calculation too large
for BASIC.

Snytax error: Typo, etc.

RETURN without GOSUB

Undefined Statement: Attempt to jump to
non-existent line number

Division by Zero

Continue errors: attempt to inappropriately
continue from BREAK or STOP

Long String: String longer than 255 characters

Out of String Space: Same as OM

String Temporaries: String expression too
complex.

Type Mismatch: String variable mismatched
to numeric variable

Undefined Function

-15-





SSlSeri LZ

fort!

LIST

DATA

GOSUB

ON...GOTO

RESTORE

NEW ,

DEF

IF. . .GOTO

ON. . .GOSUB

Commands

CONT V

Statements

CLEAR t

GOTO ^

NEXT

REM

Expressions

Operators

/
-.+.*. At. NOT, AND, OR,><,<> , > »,<-,-

Variables

NULL S RUN

RETURN y

DIM

IF. . .THEN

END

INPUT

FOR

LET

POKEv' PRINT READ

STOP

:
n

RANGE 10-32 to 10+32

A. B, C, . . ., Z and two letter variables

The above can all be subscripted when used in an array

String variables use above names plus $, eg. AS

Functions

ABS(X) ATN(X) / COS(X)

LOG(X) PEEK(I) POS(I)

SPC(l)v SQR(X) V TAB(I)

String Functions

ASC(XS) >/ CHR$(l)v FRE(X$)

RIGHTS(X$,I) STR$(X) y
Special Characters

EXP(X) FRE(X) 1- INT(X) .

RND(X) SGN(X)v S1N(X)

TAN(X) USR(l)v

LEFTS(X$,I) v LEN(X$)/ MID$(X$, I.J)

VAL(X$)/

• Erases line being typed, then provides carriage return, line feed.

*~ Erases last character typed.

CR Carriage Return - must be at the end of each line

Separates statements on a line.

CONTROL/C Execution or printing of a list is interrupted at the end of a line.
"BREAK IN LINE XXXX" is printed, indicating line number of next statement
to be executed or printed.

CONTROL/O No outputs occur until return made to command mode. If an Input
statement is encountered, either another CONTROL/O is typed, or an error occurs

? Eqi'' slent to.PRINT


