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I. Introduction

Vasicek's (1973) Bayesian approach for estimating security beta

has been extensively accepted In empirical finance research. However,

this method cannot be used to take care of the possible non-stationary

nature of security beta. In addition, Fisher and Kamln (1978) have

argued that Vasicek's Bayesian estimator of security beta is a static

estimator and is generally not unbiased. The main purpose of this paper

is to generalize Vasicek's Bayesian beta coefficient adjustment model

so it can be used to Investigate the existence of the non-stationarlty

and the regression tendency associated with beta coefficients over time.

In the second section the model is defined. In the third section

the estimators of related parameters are derived. In the fourth sec-

tion the Bayesian estimation of time-varying beta coefficient is derived

in accordance with the maximum likelihood principle. In the fifth section,

the relationship between the Bayesian beta estimator derived in this study

and Vasicek's beta estimator are explored. In the sixth section possible

implications associated with the time-varying security beta are Indicated.

Finally, results of this paper are summarized.

II. The Model

Following Sharpe (1964), Llntner (1965) and Mossln (1966), the

capital asset pricing model (CAFM) is defined as

E(yj) = 6jE(x) (1)

where y . = R. - R^ = the excess rates of return on security j

.

X = R_ - R, = the excess market rates of return,m t
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If we allow the security beta 3. to be a random coefficient, then the

empirical version of random coefficient CAFM can be defined as (j sub-

script is omitted to simplify the notations)

(2)

(a) y, = 3,x^ + e,

(b) 6^ = Pq + u^

where E(e^) = 0, E(e. ) = a

E(e^e^) - 0,

E(u^.) = 0, E(u^^) = a^^,

ECu^Uj.,) = 0, t ?« t'.

Then (2) can be written as

y, = e^x^ + e,* (3)

where

Then,

\* = (\ - 3o)x^ -f e^.

Var(e,*) = xj^a ^ + o
^

(4)ttuu
To find Cov(e *, e ,*):

Cov(e^*, e^.,*) = Cov[(3^ - 3^)%^ + e^, (3^., r- ^q)-^^, + e^.l

= x^Xj., Cov[(e^ - 6y), (e^, - 3q)1 + Cov (e^, e^.,)

= + = 0, t Tft t'

Thus,

Cov(e^*, e^.,*) = 0, t ii' t'.

Chen and Lee (1977) have first developed random coefficient CAPM; Fabozzi
and Francis (1978) have estimated the random coefficient market model.
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hence, equation (4) can be written in terms of vector notation as

Var(e*) = o "^I + a '^D (5)

where I = a (.nxn) identity matrix

2
D = a diagonal matrix with diagonal elements x

Rewrite (^) as follows:

Var(e*) = o "^ (I + yD) (6)

Where y = a /o
u e

2
iJ*(Y) " ^ aiagonal matrix with diagonal elements 1 + yx .

Thus, the covariance matrix of e* has two parameters, o and y to be

estJJiiated. In the following section, tne method of estimating 3., o

and a will be derived.
u

2 2
III. The Estimation of the Best Prior for 3a> o and o

0' e u

If the disturbances are normally distributed, then the logarithm of

the likelihood function of ^ can be written as

^<ii X.
&u.

°^^> Y) = - f InUn) - ? Ino^^ - ^ In [ Z (l+rx^.^)]
t"l

2a
e

wnere

\ (2. - eyX)'D*(7r^<JL - BqX). (7)

It can be saown that the maximum likelihood estimators (MLE's) of B

2
and o of (7) can be written as





-4-

"
\t=l l-Hyx |\t=l i+rx^

The concentrated likelihood function of y is obtained by substituting

(8) and (9) into (7)^

L(^x,y;
-~f

ln(2it) - J In^l^'l^*""^!! - x <x ' D*"-'-x)"V D*""^
3^} (10)

-•|ln[ I (1+Yx/)] -f"^

t=l
*^ ^

'i'he MLE of y can be obtained by maximizing numerically the concen-

trated likelihood function for y. Equation (6), (9) and (10) can be

used in the iterative algorithms to obtain the MLE's of 3^, o and y.

The MLE estimator of H^ defined as in (S) is unbiased and is iden-

" 2
tical to the generalized least squares (GLS) estimator. The a (y) defined

as in (9) is biased since

„," 2, .. n-1 2
E(a (y)) = o •

e ' n e

A
2

Thus, the unbiased estimator of a (y) is

IV, Bayesian Estimation of Time Varying Security Beta

2 2 2
Assume that 3„, o and y = (a /o ) are knovra. Consider the

e u e

model of (2.a) in vector notation

The explicit form of this equation can be found in the appendix (A).
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2. '' X ^ + e_

here z' =
(yi» y2» •**» ^n^»

1' = (gj^, $2. •••.
^n^.

jE = ^^1' ^2* •••» ^n

"x -

(nxn)
•

X
n_

Assume that ^ has a multivariate normal prior density with mean

£ - E(l) = ECigQ + u) = iBp

where J_
= a colxmn vector of ones

and covariance matrix

(12)

Z = Var(je) = Var(J[eQ + u ) = Var(u) = o^ I, (13)

The likelihood of the data 2. given j6 is multivariate normal with

— 2
mean x^ _$ and variance a I. Thus, the joint density of j^ and

J8^
is

g(2..1)
- f(l) • i(ziE.»£>

(2,)n/2 1^(1/2
-P^- I <1 - ii>

•^"'
(1 - iL)}

—-^^-^exp(---\(Z-il)'(z-il)}
{2v) o^ 2c^

^ exp{ i- (e _ vi)«(e - p)}
(27r)'^/2 ^ n

u
2a

u
1

e e

(14)
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The posterior density of _3 can be obtained by dividing the marginal

density of 2. iiito the joint density defined in (14). Thus,

g(z.l)
sCilz)

gi(Z)

—^
:^jj-^ exp{"i[l- g*]'n"^[e -^*I}. (15)

(2Tr)

where 1* - E(B|i) = (~ij x'x + -\^)'^<r^ ii + "^ ^'^^

u

1 ,^-1
and n = Var(£lx) = (-^ x'x + -^I)

(16)

(17)

If the expected quadratic loss, E(_g-J^*) '(J;-J*), is used to determine

the best estimator of ^, it is well known that the mean of the posterior

density of ^ is the best estimator. Thus, the Bayesian estimator of _3 is

6* defined as in (16).

^ can be simplified as follows:

' 2

Since x'x

^1 2
X2

— 2.

2

• •

y X y
_ nj I n-'n

£- Boi-

L^OJ
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Thus, the matrix (—r- jc 'x. +—r I) is a diagonal matrix with diagonal
a a

u
B.

1 * 1 2^1 ,,1 ^1-1 0._^1
elements, —j x^ + —j. And —^ jj + —j i Z "^ —

J ^ —

2

^0
,
Vl

2 2
a a
u e

^0
,

^2^2

2
*

2
a a
u e

^0
,
Vn

2 2
a a
u e

^1^1
^2^2

X yn'n

, a column vector with the typical

^0 ''t^t
element (—^ + 2^ *

a a
u c

Thus, the optimal estimator of B can be written explicitly as

~ , t = 1, 2, ... n (18)e^ " (—2 +
2V ^ 2 + ^^ - ~~ra a ' a a 1 +

u e e u
Yx*

and

'^ t 1-1
Var(e^) = (-i^ + -i^) -^

.

a c
e u

(19)

2 2
It should be noted that 3„, a , and a are prior estimators. These

u E

estimators can be obtained by using either

(1) the maximum likelihood estimators as discussed in the previous

section or

(11) the random coefficient method as discussed by Chen and Lee

(1977) or Fabozzl and Francis (1978).

It Is easy to show that the Bayesian estimator, 6 , is unbiased.

2 / 2

'
r)

= e.

6q 3qX,

E(e,) = (-i
-^

a o
u e c u

la a
'0*
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Ihus , 3 is a linear unbiased estimator of H . Following (18), 3^. is

linear in y . 3 can be shovra to have minimvim variance

3
among the class o£ linear unbiased estimators of 3 • Thus, the 3

defined as in (18) is the unbiased and minimum-variance estimator if

2 2
the priors 3^, a and a are known with certainty.

If the priors
3f^,

o and a are consistent and efficient, Cooley

(1971) has proven in a similar context that the results of the previous

two sections are certainly true for large samples.

V. The Relationship Between the Time-Varying Bayesian Beta and
Vasicek Bayesian Beta.

The Bayesian estimator and its variance defined as in equations

(18) and (19), respectively, are the generalized cases of Vasicek'

s

equations (15) and (16), respectively. Ttie reasons are analyzed as

follows. To obtain a cross-sectional Bayesian estimator for a security

4
beta, Vasicek (1973) has employed the following reparametrized

regression model

y^ = n + 3^(Xj. - x) + e^ , t = 1, 2, ... n (20)

where 3 indicates the beta coefficient to be estimated by using cross-

sectional information, n = ot + 3 x (a is the constant term of the market

model and x = 2x , . Equation (20) can easily be rewritten in an

equivalent form

3
See Appendix B for proof.

4
A cross-sectional Bayesian estimator refers to the use of cross-sectional
information in estimating a security beta.
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^t*
'^

^c\* + e^. t = 1, 2, ... n (21)

_ _ _ "^

where x^* = x^ - x, y^* = y^ - y and y =
. 2 y^ , .

t t "^t •' t •' j^_i t/n

The 3 defined as In (21) is not assumed to be a time varying beta

coefficient. The cross-sec tioual beta coefficient, 3 , can easily

be obtained by using equation (21) in the above-mentioned analysis.

Under the assumption of stationarity of g , equations (12) and (13)

reduce to the following equations, respectively,

E(e^) = b' (22)

and

Var(ti^) ^ o^^ , (23)

where g = B and b' = 0^ (the vector ^ in (12) and (13) reduces to 3 ),

Then, the joint density of ^* and fc defined as in (14) will refluce

to the following equation

.(iL*.V " "7= ^"^^ T ^^c " ^'^^^-

/2iia 2o
u u

ir—- exp{ —
(x* - x*^)'<Zf - ii*0J>. (24)

-„ ^n/2 n „ 2
(2it) o 2a

e e

where x*' - (x^*, x^*, ..., x^*) and x*' » (y^*. ^2*' *••»
^n*^'

The posterior of B defined as in (14) becomes
c

5
Vasicek (1973) has assumed that the cross-sectional distribution of
betas is approximately normal with mean b' and variance a .



^.

I C . '• ' \ .' "' :• •
J " 1 1 '1

•



-10-

a a (g -b*)

(2ii) 2y

where b* = E(e |^*)

= (-^ x*'ii* + -^)""'" C-^- + -^ 2i*'Z*) (25)

o o o a
e u u e

and Var(b*) = Var(e^|x*) = C-\2£*'x* + -^)~"'' (26)

a a
c u

liquations (25) and (26) are the reduced forms of the Bayesian estimator,

3 , of the time varying beta coefficient and its variance, Var(3^),

defined as in equations (16) and (17), respectively. Under the criterion

2
of minimizing the expected quadratic loss function, E(3 -b') , the optimum

estimator of 3 is defined as in (25) and its variance is defined as in
c

(26). Explicitly, the Bayesian estimator of 8 can be written as
2 ^

Zx *y * / Zx *

a * f o a

b* = (-^ + ^ ^) / i-^-^r- + -^)

u e ' e "u

\ °e
/^U^-x) y^ a^ o^ /Ux^-x)

and its variance is

Var(b*) = [-ij + —

^

-

^
_ ^

3"^, (28)

°u % /^/^t-^>

where b = the estimated & obtained by tlie ordinary least squares method

Zx *y *

t
= 2~ •

Zx *

t
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Equations (27) and (28) are exactly equal to Vasicek's equations (16) and

(17), respectively. Therefore, the Bayesian estimator and its variance

defined as in equations (16) and (17), respectively, are the generalization

of the Vasicek's estimator, b*, and its variance, Var(b*), respectively.

In the following section, possible implications associated with time-

varying Bayesian security beta are discussed.

VI. Some Implications
>

Possible implications associated with the time-varying Bayesian

security beta are now explored.

2
(i) The Var(& ) approacnes zero if the variance, a , associated

with the beta coefficient approaches zero. This is simply because

lim Var(e ) = lim —5-^ = ,

2 2 X
^-H) a -K) t ^ 1

u u -y + -7
o o
e u

2 2
where x^ and a are known to be finite. Hence, the

t e
'

precision of the Bayesian estimator, g , depdfijids on the magnitude of

the variation of the beta coefficient. The si»aller the variarvce associated

with the beta coefficient, the smaller the variance of the Bayesian

estimator. Furthermore, the Bayesian estimator also implies that &

is equal to the prior, 3^, if o approaches to zero.

This can be shown as follows

The prior o in Vasicek's analysis is estimated by

2 1 2
^ "^ -^=1

^ <^yt
- ^ - ^^t^

where a and b are the ordinary least squares estimators of the regression
parameters a and 3 /, = a + 3 x^ + e^).
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^0 Vt /""t 1
lim g^ = lim [(—J + -—) / (-^ + -^)]
2^ 2_a a / a a

u u ' -

a -n)
u

= im e^ = e,.

a -s-0

u

Thus, the random coefficient CAPM defined in (2) becomes the fixed coefficient

CAPM as the variance of the beta coefficient reduces to zero. And, the

Bayesian estimator, 3 , defined as in (18) is a generalized case of

the estimator of the beta coefficient associated with the fixed coefficient

CAPM.

(ii) The estimated time-varying beta coefficient, & , is a function

2 2
of y^, X , a and o . Thus, the g. is jointly determined by the cur-

t tu e
»j.oy

rent market conditions, firm's structure changes in response to economic

events and micro-economic changes of a firm. Rosenberg and Guy (1976)

have shovm that the beta for any security is the weighted average of the

relative variances of particular economic events to the variance of the

market retuims, where each weight is the relative response coefficient

that represents the proportion of total variance in market return due to

a particular economic event. Thus, the Bayesian estimator defined as in

(18) not only is the optimal estimator but possesses the practical sig-

nificance of the beta coefficient as discussed by Rosenberg and Guy.

(iii) The estimated beta coefficients of a security over a

saii5>ling period can be employed to identify the behavior of the beta
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coefficient in response to prominent changes in certain economic events

such as rate of inflation, interest rates, growth rate of real GNP,

etc. For example, when uncertain inflation is considered, Chen and

Boness (1975) have shown that the systematic risk of a stock contains

inflation risk represented by the covariaace between the security's

return and the rate of inflation. A positive covariance between a

security's return and the rate of inflation indicates that an inflation

preferred stock is likely to have higher return when inflation exists.

On the other hand, the market return, x , will also possibly be affected

by changes in the rate of inflation. Hence, the Bayesian estimator, g ,

defined in (18) implies that an inflation-preferred security would exper-

ience a positive change in magnitude of the beta coefficient If inflatlo'i'i

is anticipated. Likewise, an inflation-averse stock tends to have a

negative change in magnitude of the beta coefficient.
A

(iv) The 3 defined in (18) can be used to forecast beta co-

"> 2
efficients once the priors 3^, o" and a are properly determined.

To forecast beta coefficient, both expected excess security return and

expected excess market return must be estimated. If the related excess

rates of return can be estimated precisely, then the estimated beta

coefficient will be a useful predictor for future systematic risk.

(v) The Bj. can also be used to measure the risk level of a mutual

fund. Kon and Jen (1978) have argued that the magnitude of 3^ for a

See Chen and Boness (1975) for detail discussion of "inflation-
preferred" or "inflation-averse" stocks.
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mutual fund depends on expectations at the beginning of the time interval of

future security and market movements over that interval conditional on

tiie manager's information set. The Bayesian estimators defined as in

^0 ^t
(18) indicates that the numerator, [

—

j + (—T^^^' ^^P^^^sents over-all
a a
U E

expectation at the beginning of the time interval. In other words, the

2
future security movements expressed by Srt/o , and market movements over

2 8 ^t 1
that interval, signified by (y./o )x . The denominator, (

—

j + —r-)

,

a o
e u

contains information about market conditions, unsystematic risk of a firm

and variation of firm's structure changes in response to the market. This

2 2 2
implies that a manager's information set can be represented by (x /a + l/o ),

Thus, the Bayesian estimator 3. » niay well be an appropriate risk proxy

for time-varying systematic risk of a managed fund.

(vi) Finally, it should be noted that the time-varying beta

as Indicated in equation (18) can also be used to estimate the time path

of historical beta coefficient. The time path of historical beta can be

used to test whether individual fiirm's beta is non-stationairy or not.

Furthermore, the time path of historical beta coefficient can also be

used to analyze the sources of regression tendency discovered by Blume

(1971, 1975). Following equation (18), the change of beta coefficient

over time can be defined as

Y(3oX - x y )

1 + YX^

3q [=E(e )] is the expected value of B during the period t.
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If estimated y is constant over time, then the change of ^^ over time

is due to the change of (3qX - x y ) and yx . If the rati°

between y. and x (y^/x ) is equal to S«» then the estimated

systematic risk is constant over time. If Y-^/x is large^ (°^ smaller)

A

than 3^, the the g will decrease (or increase) over time* This

analysis has given the existence of regression tendency a formal inter-

pretation.

VII. Summary

In this study, Vasicek's (1973) static Bayesian security beta esti-

mator is generalized to obtain a time-varying Bayesian se^^^ity beta

estimator. It is shown the prior estimators associated w^*^^ ^^

dynamic Bayesian security beta can either be obtained by t^^ maximum

likelihood estimator or the generalized least squares esti-''''^t°^ asso-

ciated with random coefficient CAPM.

The implications related to the dynamic Bayesian sec"*^^*^y beta

estimator in obtaining historical beta and predicting fut"^^ beta (Sf/Jii,

discussed. The relationship between the dynamic Bayesian beta with the

traditional beta estimator is also explored. Furthermore* **^ possible

existence of regression tendency has given a formal interP'^^'^^tion.
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Appendix A

The explicit form of equation (10) can be derived as follows:

Since

-1 -1 " ""t -1
(a) (x'D* -^x) ^ = ( E £-^)

^

t=l l+Tx

-1 ^ ^-t^t
(b) x'D* Z = ^ —

^

t=l 1+TX

(c) (x'D* -^x) ^x'D* X = ( ^ %) / ( 2 ~)
t=l 1+YX / t=l 1+Yx

, 2

(d) x'D* X . (x'D* -^x)
-"

• x'D* X = ( 2 %) / ( Z ^)
t=l 1+TXj. / t=l 1+TX^

2

(e) x'D* Z = ^ H
t=l 1+Yx

(f) Thus,

X'D*"'-'-[I - x(x.'D*~-'-x)'""^x'D*~-^]X

2 2

- E ^-[( I —^)^ ( E ^)] >

t=l 1+YX^ t=l 1+YX^ t=l 1+Yx^

since the likelihood function, L(x;x,a) is a In function and it

is well-defined. Thus, equation (10) can be written as

2 / 2

L<X;i.Y) = "j ln(2Tr) - f In ^ { E ^- - ( E
—^t )2 /( j;

t^y
t=l 1+YX^ t=l l+Yx^'^ / t=l 1+YXj.

-|ln [ E (1+Yx ^] -f .

t=l '^ ^
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Appendix B

To show that 3^ has minimum variance among the class of linear

unbiased estimators of 6 ,the follovdng theorem is first established.

Theorem 1 ; E[(e^ - ^^)y^] =

Proof: E[(e^ - e^)y^] = E[(e^ -
^t^ ^^t^'t

"^
^t^^

= x^E[(B^ - 3,.)B^] + E[(3^. - 6^)ej.]

But, E[(3^ - ej.)e^] = E(e^g^) - E(gJ)

^O^t
"^ ^Vt^ 2 2= E -0-^ |-t_t . (^2 ^ ^2^

• 1 + Yx^

—-2 io^ +
&o>

1 + Yx^

' '2
- (^u

-^ 4>' ^(^^t> = °

1 + YX^

2 2 2
Yx. a -a

t u 2 u
- a =

And

, , 2 u 1 + YX
1 + YXj. t

E(e„e + YX y £ )

t t' t t t 1.2
1 + YXj.

2
Yx^ECy^e^.) yx^E(x^^^c^ + e^)

2~~ ~ ~2
1 + Yx^ 1 + YX

' t ' t

2 2
a
u

since Y = "j

e

Yx^a x^a a
t e t u . u_ _

^ since Y = —

2

1 + YX 1 + YXj^ o

2 2
-X o X a

Hence, E[(B^- ej.)y^] = LJL. + _LJL_ = q.

1 + Yx^ 1 + YX^ Q.E.D.
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Tbeorem 2 ; Let 3 be any estimator of 3. that is linear in y and

unbiased. Then,

E(3j. - 3j.)^ - E(3^ - 3j.)^ 10.

Proof: Since 3 and 3^ are linear in y , we may write

3^ = 3^ + ay
J.

+ b,

where a and be are real numbers.

Then,

E(3^ - 3^.)^ = E[(3j. - 3j.) + Cay^ + b)]^

= E(3j. - 3j.)^ + E(ay^ + b)^ + 2E[(3^ - 3^) (ay^ + b)]

=E(3j. - 3^.)^ + E(ay^ + b)^,

where the cross-product term equals to zero by Theorem 1.

Thus, E(3^ - 3^^ 1 E(3^ - 3^)^ ,

2
since E(ay + b) >^ 0.

Q.E.D.
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