B 3 025 704

UC-NRLF

TJ

7 M2

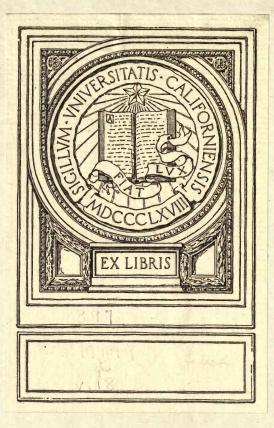
V.18

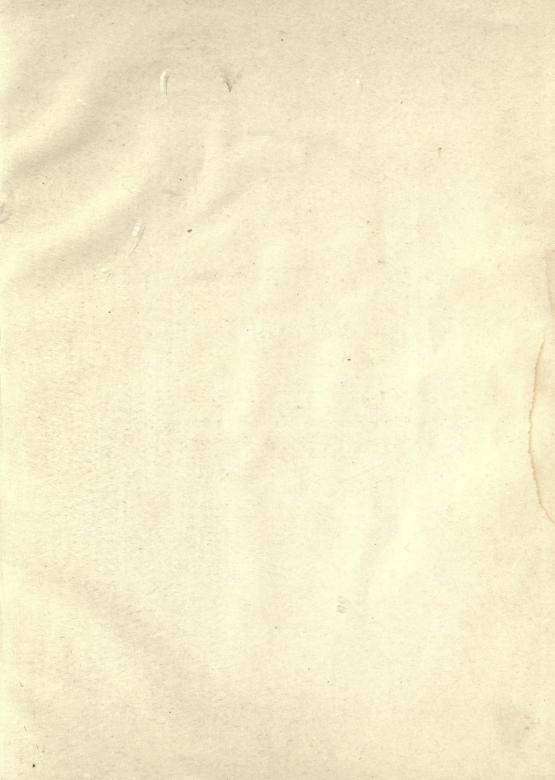
YC 66827

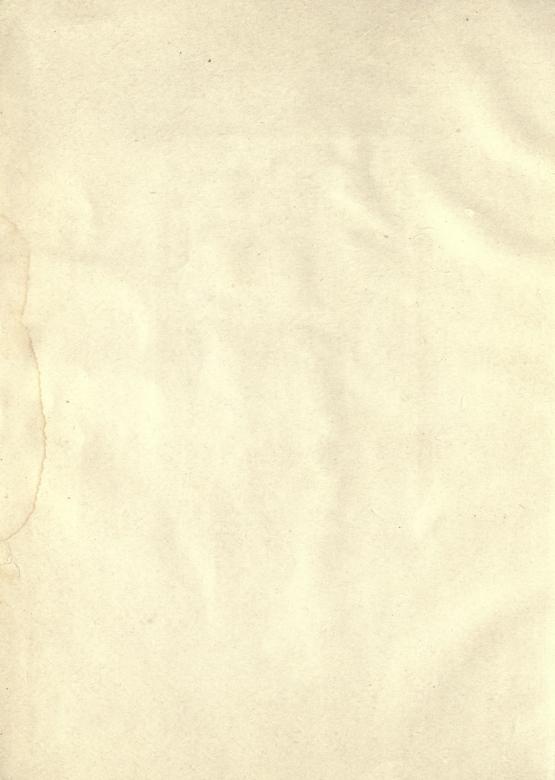
MACHINERY'S DATA SHEETS

REVISED AND RE-ARRANGED IN LIBRARY FORM

No. 18


Beam Formulas and Structural Design


PRICE 25 CENTS


CONTENTS

The Industrial Press, 49-55 Lafayette Street. New York Publishers of MACHINERY

COPYRIGHT, 1910, THE INDUSTRIAL PRESS, NEW YORK

MACHINERY'S DATA SHEET SERIES

COMPILED FROM MACHINERY'S MONTHLY DATA SHEETS AND ARRANGED WITH EXPLANATORY NOTES

No. 18

Beam Formulas and Structural Design

CONTENTS

Formulas for Round and Rectangular Solid Beams 4
Formulas for Calculating the Strength of Beams 5
Table of Section Modulus and Weight per Foot of Beams 6
Beam Charts 8
Areas of Small Rectangles11
Net Areas of Structural Angles
Loads for Eccentrically Loaded Rivet Groups
Angles of Hopper Side Intersections
Sections for Crane and Telpher Runways
Formulas for Moving Loads
Tables and Diagrams for Calculating Bending Moments and Shearing
Stresses
Safe Stresses for Beams Unsupported Laterally
Stresses in the Members of Roof Trusses
Splices for I-Beams and Channels
Tables and Diagrams for Designing Pressure Tanks,
Weights of Cylindrical Pressure Tanks

Copyright, 1910, The Industrial Press, Publishers of MACHINERY, 49-55 Lafayette Street, New York City

M2 N2 18

In the following pages are compiled a number of diagrams and concise tables relating to the strength of beams and structural design, carefully selected from MACHINERY'S monthly Data Sheets, issued as supplements to the Engineering and Railway editions of MACHINERY since September, 1898.

In order to enhance the value of the tables and diagrams, brief explanatory notes have been provided. In many cases in these notes, references are made to articles which have appeared in MACHINERY, and to matter published in MACHINERY'S Reference Series, giving additional information on the subject. These references will be of considerable value to readers who wish to make a more thorough study of the subject. In a note at the foot of each table reference is made to the page on which the explanatory note relating to the table appears.

BEAM FORMULAS AND STRUCTURAL DESIGN

Formulas and Tables for Beam Calculations

On page 4 is given a collection of formulas for beams of rectangular or round cross-section, supported and loaded in various manners. The table has been arranged in the simplest possible manner, and any required formula can be found at a glance. [MACHINERY, December, 1903, Flexure Simplified; March and May, 1907, Fundamental Ideas on the Strength of Beams; MACHINERY'S Reference Series No. 19, Use of Formulas in Mechanics, Second Editton, Chapter V, The First Principles of the Strength of Beams.]

On page 5 are given constants used in beam calculations for various crosssections of beam. The formulas for maximum bending moment and maximum deflection for beams loaded in various ways are also given on the same page. [MACHINERY, June, 1909, The Relation of Depth to Span of a Girder; January, 1910, To Calculate the Deflection of a Special Steel Section; February, 1910, Deflection of Beam Uniformly Loaded for Part of its Length; June, 1910, Limitations of the Common Theory of Flexure.]

On pages 6 and 7 tables are given of section moduli and weights per foot of beams of round, square and rectangular section, as well as of I-beams, channels and angles. These tables will be found particularly convenient for quickly determining the sizes of beams for supporting given loads. [MACHIN-ERY, December, 1904, Strength of Beams with Ribbed Sections; June, 1905, Notes on the Strength of Beams, Plates and Columns; September, 1905, Beam Formulas; May, 1906, Sections of Cast-iron Beams.] On pages 8 and 9 are given two beam charts by means of which the proper section to support a given load with a given length of beam may be found. The directions for the use of these charts are given on page 7.

د د د د د ر د د د د . د در د د د د د ه ر د در د د د د د د د د د د د د

Areas for Small Rectangles-Net Areas of Structural Angles

On pages 11, 12 and 13 are given tables for the areas of rectangles, the sides of which are given in fractions of an inch. These tables will be found especially convenient when calculating the moment of inertia and section modulus of built-up structural shapes. [MACHINERY, January, 1910, To Calculate the Deflection of a Special Steel Section.]

On pages 14 to 17, inclusive, are given tables of the weight and areas of structural angles, together with the net area of the section with holes for rivets deducted. When using these tables, the lengths of the legs of the angles are added together, and the sum of the lengths is first found in the left-hand column of the tables. Then the thick ness of the angle is found opposite this sum in the second column; the third and fourth columns give the weight in pounds per foot, and the cross-sectional area in square inches. The remaining columns give the net area after having deducted for one or two rivets of sizes as specified at the head of the columns.

At the foot of the table on page 17 a supplementary table is given of the area which is to be deducted for various sizes of rivets and angle thicknesses. This table may be used for determining the net area of angles of dimensions not given in the table, or for rivet sizes not specified.

FORMULAS FOR ROUND AND RECTANGULAR SOLID BEAMS

	w= load in pounds	W	ther.	dsf 10.181 - W	ď.	d³f <u>5.0921</u> =W	n middle.	<u>d³f</u> 2.5461 ^{-W}	ded.	$\frac{d^3 f}{1.2731} = W$	ical load.	$\frac{d^3 fI}{10.18ac} = W$	I loads.	d ³ f 5.092 a=W
id Beams.	l= length of beam in inches	2	ded at the c	$\frac{d^3f}{10.18W} = l$	nrmly loade	d ³ f :5.092m ⁻¹	single load in	$\frac{d^3f}{2.546}m^{=l}$	niformly loa	d ³ t 1.273 W -1	unsymmetr	a+c=1	symmetrica	l may be any length
Round Solid Beams.	d=diameter f= stress per of beam in sq. in. in inches extreme fibers of beam	f	one end, loa	$\frac{10.18lm}{d^3} = f$	ne end, unifo	<u>5.092Wl</u> _f	rt both ends, s	2.546 Wl f	· both ends, u	$\frac{1.273 wl}{d^3} = f$	ends, single	10.18 wac_f d ³ 1	th ends, two	5.092 wa _f
	d=diameter of beam in inches	d	Beam fixed at one end, loaded at the other.	$\frac{3}{f} \frac{10.181M}{f} = d$	Beam fixed at one end, unitormly loaded.	3 5.092WI d	Beam supported at both ends, single load in middle.	$\int_{f} \frac{3}{2.546 M} d$	Beam supported at both ends, uniformly loaded.	$\int_{f}^{3} \frac{1.273 Wl}{f} = d$	Beam supported at both ends, single unsymmetrical load.	310.18 wac d	Beam supported at both ends, two symmetrical loads.	3 <u>5.092 mad</u> <u>5.092 mat</u>
			Bec		Bea				Bedm		Beam sup,			d ³ f 5.092 w =a
	w= load in pounds	М	the other.	$\frac{bfh^2}{6l} = W$	I loaded.	$\frac{bfh^2}{37} = W$	Beam supported at both ends, single load in middle	<u>2bfh²</u> =W	ly loaded.	4bfh ² 31 = W	trical load.	$\frac{bh^2 fl}{6ac} = W$	Beam supported at both ends, two symmetrical loads	$\frac{bn^2 f}{3a} = W$
75.	l= length of beam in inches in pounds	2	loaded at	<u>bth</u> 2_1 6W _1	niformly	$\frac{bfh^2}{3w} = l$	single loa	$\frac{2bfh^2}{3W} = l$	s, uniform	$\frac{tbfh^2}{3w} = l$	le unsymme.	a+c=l	то ѕутте	L_i any lengti $\frac{bh^2 f}{3W} = \alpha$ $\frac{3W}{3W} = 1$
Solid Beams.	f = stress per sq. in, l = length in extreme of beam fibers of in inches. beam	f	t one end,	$\frac{61W}{bh^2} = f$	e end, u	$\frac{31W}{bh^2} = f$	both ends,	$\frac{32M}{2bh^2} = f$	both end	$\frac{32W}{4bh^2} = f \frac{4}{4}$	ends, sing	$\frac{6wac}{bfL} = h \left \frac{6wac}{bh2I} = f \right $	othends, t	$\frac{3Wa}{bh^2} = f$
	h=height of beam in inches	4	Beam fixed at one end, loaded at the other.	$\sqrt{\frac{6lW}{bf}} + h$	Beam fixed at one end, uniformly loaded.	$\frac{31W}{bf} = h$	ported at.	$\frac{31W}{2bf} = h$	Beam supported at both ends, unitormly loaded.	$\frac{31W}{4bf} = h$	Beam supported at both ends, single unsymmetrical load.		ported at b	3wa-h
Rectangular	b=breadth h= height of beam in inches in inches	9	Bea	$\frac{61W}{fh^2} - b$	Beam fiv	$\frac{31W}{fh^2} - b$	Beam sup	$\frac{3lW}{2fh^2} = b$	Beam sup	$\frac{37W}{4fh^2} = b$	Beam suppo	$\frac{\partial wac}{fh^2l} = b$	Beam supp	$\frac{3Wa}{fh^2} = b$
	Style of Loading and Support				VIII		€				k		+a++a+	

MACHINERY'S DATA SHEETS

No. 18

Contributed by B. M. Brigman, MACHINERY'S Data Sheet No. 97. Explanatory note: Page 3.

Y

And in case of the local division of the loc		A REAL PROPERTY OF TAXABLE PARTY.	Statement of the local division in which the local division in the local division in the local division in the			and the second se		
Torsion Modulus,	$\frac{bh^3 + b^3h}{6\sqrt{b^2 + h^2}}$	$\frac{d^8}{4.24}$		$\frac{d^3}{5.1}$	$\frac{D^{4}-d^{4}}{5.1D}$	$\frac{ba^3 + al^3}{10.2u}$	ked out	ar moment
Polar Moment of Inertia,	$\frac{bh^3 + b^3h}{12}$	a'4 6		$\frac{\pi d^4}{32}$	$\frac{\pi \left(D^{4}-d^{4}\right) }{32}$	$\frac{\pi (ba^3 + ab^3)}{64}$	an be worl	= rectangula
Section Modulus, $\frac{1}{c}$	6 6	$\frac{d^3}{6}$	BH3_Lh3	$\frac{d^3}{10.2}$	$\frac{D^4-d^4}{10.2d}$	$\frac{ba^2}{10.2}$	ections c le.	eam; <i>I</i> = lasticity.
Moment of Inertia, $J = Ar^2$	bh ⁸ 12	$\frac{d^4}{12}$	$\frac{BH^{2}-bh^{3}}{12}$	πd ⁴ 64	$\frac{\pi(D^{4}-d^{4})}{64}$	πba ⁸ 64	iicated s e in tabl	igth of b ulus of e
Square of Radius of Gyration,	$\frac{h^3}{12}$	$\frac{d^3}{12}$	$\frac{BH^3 - bh^3}{12(BH - bh)}$	$\frac{d^2}{16}$	$\frac{D^{*}+d^{2}}{16}.$	$\frac{a^2}{16}$	more compl from thos	ch-pounds. tion; $l = \text{len}$ ft; $E = \text{mod}$
Area, A	hd	ď ³	BH - hb	$\frac{\pi}{4}d^2$	$\frac{\pi}{4}(D^2-d^2)$	$\frac{\pi}{4}ab$	and J for	NOMENCLATURE ad moments in in area of cross-sec h of bcam or sha
Cross-section and Notation	<- <i>γ</i> ->	× ₽→	100 100 100 100 100 100 100 100 100 100			<	Values of I	NOMEN pounds and mor tent; $A =$ area half depth of b
Maximum Deflection	W1 ⁸ 3EI 1173	8EI 878	48EI 5 W13	384 <i>EI</i> 0.0093 <i>W</i> 1 ³ <i>EI</i>	0.0054 <i>Wl</i> ³ <i>EI</i> <i>Wl</i> ³	192 <i>EI</i> 1171 ³ 384 <i>EI</i>	W13 12EI	stresses in inding mon iertia; c =
Maximum Moment, M	. 1M	1		8 3 <i>W1</i> 16	1711 8 WI	8 12 12	<u>2</u>	inches, $M = be$
3eams of Uniform Cross-section	Cantilever, load at end	Cantilever, uniform load	Simple beam, load at middle	load Beam fixed at one end, supported at other, load at middle	Beam fixed at one end, supported at other, uniform load	load at middle Beam fixed at both ends, uniform load	Beam fixed at both ends, load at one end (pulley arm)	NOMENCLATURE NOMENCLATURE All dimensions are in inches, stresses in pounds and moments in inch-pounds. S = stress; $W =$ load; $M =$ bending moment; $A =$ area of cross-section; $l =$ length of beam; $I =$ rectangular moment of inertia; $J =$ polar moment of inertia; $e =$ half depth of beam or shaft; $E =$ modulus of elasticity.
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum Maximum Moment, Mu MuMaximum Maximum Maximum Moment, DeflectionCross-section and Moment Moment, Moment, Mu MuMaximum Moment Moment Mu Mu MuCross-section and Mu Mu MuArea, Mu Mu Mu Mu Mu MuSection Moment Moment Moment Moment Mu Mu MuMoment Moment Moment Mu Mu Mu Mu MuMoment Moment Mu Mu Mu Mu MuMoment Moment Mu Mu Mu Mu Mu MuMoment Moment Mu Mu Mu Mu Mu MuMoment Moment Mu Mu Mu Mu Mu MuMoment Moment Mu Mu Mu Mu Mu MuMoment Moment Moment Mu 	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum Maximum Maximum MutMaximum Maximum Maximum Maximum MomentMaximum Maximum Maximum Maximum Maximum MomentCross-section of Mut BEIArree, Maximus of Mut BEISquare of of Mut Mut BEIMoment Moment Mut Mut BEIMoment Moment Maximum Moment Mut Mut BEIMoment Moment<	Maximum Maximum Monenti, DeflectionMaximum beflectionMaximum Area, ASquare of Area, A_{12} Moment Area, A_{12} Section Area, A_{12} Area, A_{12} Square of A_{12} Moment A_{12} Section A_{12} Moment A_{13} Section A_{13} Section

FORMULAS FOR CALCULATING THE STRENGTH OF BEAMS

No. 18

BEAM FORMULAS AND STRUCTURAL DESIGN

5

Explanatory note: Page 3.

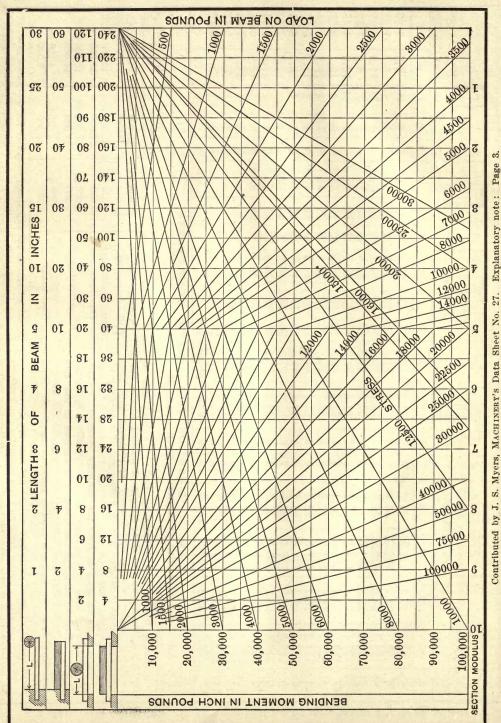
MACHINERY'S Data Sheet No. 3.

MACHINERY'S DATA SHEETS

																												-			
		s	.02	.02	.03	90	Gn ¹	11.	.19	.14	.30	.19	.40	.29	.70	.40	.73	.56	1.15	-28	1/1	1.50	0/1	20. 1	Co.1	12.0	CZ.Z	2027	1.15	1.23	2.87
	*	M	9	0.00	8	- ,	0.1	2.4	3.4	2.1	4.6	2.5	5.3	2.8	6.8	4.1	7.7	4.5	9.5	4.9	0.9	+	4.4	0.0	17.1		10.1		8.5	7.1	17.1
ONS.		t	-400	Tela a	-400	***	-100 1	a ¶ ∰ ¶ ¶ 0	espo	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18	18 16	18	16 16	-1/02	-14		-14	8 18	-14	1 g	ajoo +	-(14 1 w	11	19 H	16	18	1.6	cito eci	16 16	16
SECTIONS.		B	00/4	ec 4	-		14 1	-14	2	cc 4		2	2	2	2	231	281	2 21	2	2	30		102 F			10			ち ち	n c	3
	<u>1982</u>	Q	cc 4	aci-4	-		14 7	-14 -1'2	-	00/4	cc 41	2	2	22	2	2 21	2	3	3	2	2	oi	10	1 1	10	100	10	10	N N N N	54	4
ARIOUS	11	S.	1.1	1.2	1.4	6-1-0	1.2	2.5	3.5	4.2	4.3	5.0			-	6.9		-	9-5	8.1	9.0	10.01			10.0	511 I	10.01	101	15.4	18.2	20.6
OF V		M	4	. ro	9	24	0 ⁴	6 44 -B	6	+1/22	~	10	13	15	0 *¦3	124	14	174	192	4	15#	104	104	212	104	0.0	D Z Z	22	15	25	30
BEAMS	,	a	M	n n	3	4	dr •	4 LC	2	S	9	9	9	9	2	2	2	2	~	~	~ ~	~ ~	~ ~	~ ~	ה מ	"	"	מ מ	25	10	10
OF BE/	1	s	1.7	1.8	1.9	2°0	2.5	5.6 9.6	4.8	5.4	6.1	7.3	8.0	8.7	10.4	11.2	12.1	14.2	15.1	1.91	1.11	10.4	20.4	0.22	24.0	74.4	20.02	5. RZ	51.1 ZE 0	38.0	58.9
FOOT		M	2	64	73	107	10 rat	10 20	84 84 84	124	148	124	148	174	15	172	20	100	202	23	22 ¹⁰	N	071		0.0	001	D L L	20	211	35	42
PER F		Q		n o	m	4	+	4	ى ·	2	Ŋ	9	9	9	-	2	2	~	~	~	~ ~	"	"	ה כ	מ מ	29	2	2	10	12	15
		s	.17	.33	.50	19.	97.	20	.04	.38	.75	1,13	1,50	1.02	1.53	2.04	2.55	3.06	2.00	2.67	5.33	4.UU	0.05	4.10	47.0	20.01	> c	NG.21	00.0	12.00	15.00
D WEIGHTS		M	1.70	3.40	5.10	6,80	21.2	6.38 6.38	8.50	2.55	5,10	7.65	10.20	5.95	8.93	11.90	14.87	17.85	10.20	13.60	00.71	04.02	07.17	01.11	00'02	54.UU	00.24	00.10	20.40	40.80	51.00
IAN		В	-14	1 -lca	cc 41	- '	44 1	-109 0014	-	-14		60 4	_	+-()02	60)44	-	-1-+		20)44 4	- ;		-102			4/02		102	n r		5 %	23
MODUL		0	10	101	2	2	Z ⁴	2 ⁴⁷	241	10	N	N	N	34	3	341	34	34	4	4	4	.	4 r	n L	0 1	n	n L	0	0 4	9.0	9
_	-	s	.17	.24	:33	.43	000	68.	1.10	1.33	1.60	1,90	2.23	2.60	3.00	3.46	3.95	4.50	5.01	5.72	6.40	1.14	1.34	0112	01.01	10.10	12.00	07.01	08.11	24.10	27.70
F SECTIONAL		W	3,40	4.30	5.31	6.43	CQ. /	8.38	11.95	13.60	15.35	17.22	19,18	21.25	23.43	25.00	28,10	30,60	33.20	35,92	58.15	CQ' 14	17 00	10.14	01,00	04.40	14.10	00,00	85.00	93.72	102.80
TABLE O		s						53				1.12	1.32	1.53		-	2	9	0	51	- 0	NC	2-		20	10		מים	50	14.20	16.30
		M	2.67	3,38	4.17	5.05	0.00	8.18	9.39	10.68	2		ഹ	9	∞	0	2		-0	∞ (_ c	NL	Ωn	<u> </u>) C	NC	0 5	t c	⊃ cc	73.60	0
		D	-	-400	-++	- 0000	429 b	choo coto	1-100	2	2 ³ 8	24	238	24	282	28	2#	3	381	24-1 4-1	- otta	10	1 C#	14 14	20	- t	4 +	101 0	34 LT	54	54

No. 18

.(pent		s	1.29 3.52 3.52 3.53 4.07 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.6		Quiescent Load.	25,000 to 30,000 16,000 to 17,000	10,000 to 14,000	4,000 to 6,000	greater lower fail by
OF VARIOUS SECTIONS (Continued).	4) III	M	8.2 9.7 19.7 19.7 19.9 10.4 10.4 10.4 10.4 25.7 17.2 27.2 26.4 58.3 58.3		Quie	25,000 30,000 16,000 17,000	10,000	4,0 6,0	is not supported laterally for distances greater the width of the compression flange, lower used Short beams heavily loaded may fail by web.
) SNO		+	$\cdots \cdots $		d. b) to) to) to	to	r dist sion loade
CTIC		8	44400000 ·		Moving Load.	20,000 to 25,000 12,500 to 14,000	8,000 to 11,000	2,000 to 4,000	ully for mpres avily
SE	A PARTY AND	0	444000000000000000000000000000000000000				12		atera e col ns he
SUOIS	11	S	233.1 233.1 241.0 254.0 254.0 254.0 255.7 557.4 557.557.4 55		Shock.	15,000 to 20,000 7,500 to 10,000	6,000 to 8,000	1,000 to	of the t bear
VAF		M	······································	TS.	io I	15, 20, 10,	မ်းတိ		suppo ldth Shor
10F		0	$\begin{array}{c} 12 \\ 12 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\$	CHARTS.					not sed.
FOOT OF BEAMS		S	60.8 68.1 68.1 88.4 93.5 97.9 97.9 172.0 1122.0 174.0 174.0 174.0 198.4 198.4 198.4 198.4 198.4 198.4 198.4 198.4 198.4 198.4 198.4 198.4 198.4 198.4 198.4 198.4 198.4 199.4	BEAM CI		Nickel Steel (Oil Tempered). Structural Steel (Medium).	Steel Casting.	Iron.	
OF B		M	45 55 55 55 55 65 65 65 65 65 65 65 65 65	EBE		ickel I Tem uctur Medi	eel Ca	Cast Iron.	When a beam an 20 times resses must be ippling of the
OT	12.5	0	· 22440002138881155 · 2442000213888	THE		Stri (0i)	St		Whe tan resse
ER FO		s	18.0 21.0 24.0 24.0 25.3 55.3 55.3 55.3 55.3 56.7 100.0 133.3 144.0 132.3 240.0 251.3	USING	th a	case line, ond- oint	the and	Find de-	
CHTS P		M	61.2 71.4 81.6 81.6 81.6 81.6 81.6 91.8 136.0 165.2 91.8 136.0 155.2 272.0 272.0 272.0 272.0 224.8	DIRECTIONS FOR USING	load wi	g as the th this e corresp om this p	cts with d to use,	o the bo quired.] of section	er foot are given. conditions and should The following values
WEI		8	08686469869498980 20000468980	LION	lyen	rnea rnea l lin ne fr	terse	s rec	ot al litior foll
ON	1	0	1220009888886666	SEC.	at 8	of lo unde ugona tal lin	it in is d	w pc bdulu	con The
SECTIONAL MODULI AND WEICHTS PER		S	31.6 36.0 45.7 57.1 57.1 85.3 102.3 121.5 112.3 122.3 192.7 192.7 192.7 192.7 253.5 288.0	DII	To find a proper section to support a given load with a ven length of beam: Find the length of the heam in that horizontal line at	the top which shows the same nature of loading as the case in hand; follow vertical line directly underneath this line, downward until it intersects with a diagonal line correspond- ing to the load; following the horizontal line from this point to the column on the left gives the hending moment. Follow:	Ing this same line to the right until it intersects with the diagonal line representing the stress it is desired to use, and	following the vertical line from this new point to the bottom borizontal line, we find the section modulus required. Find this section modulus in the table for the form of section de-	stred and the size of beam and weight per foot are given. The proper stress to use depends upon conditions and should be selected to suit the case in hand. The following values may be used:
NAL M		M	112.4 122.4 152.8 154.9 166.6 191.3 206.8 374.9 374.9 374.9 4411.4 489.6	M.C.	section to : the hes	the same ical line ersects v wing th	o the rig ting the	line from nd the so in the ta	beam and weight to use depends upol the case in hand.
SECTIC		S	18.7 21.2 24.0 26.9 33.7 41.4 50.2 60.3 60.3 84.1 84.1 84.1 84.1 113.6 113.6 113.6 113.6 113.6 113.6 113.6 113.6		of beam: ength of	h shows low vert ttil it int ad; follo	te line to	rertical re, we fin	size of t stress to o suit th
TABLE OF		M	88.29 96.14 104.3 112.8 121.7 130.9 150.2 171.0 193.0 150.2 241.0 257.0 253.1 353.1 384.5	r	To find a Find the 1	top whic. and; fol iward un to the lo	this sam onal line	wing the contal lir section r	sired and the si The proper st be selected to may be used:
TAI		Q	23#110# 211100# 211100# 200 200 200 200 200 200 200 200 200	E	give	the in h down ing	ing diag	follo horiz this	sired Th be so may


No. 18

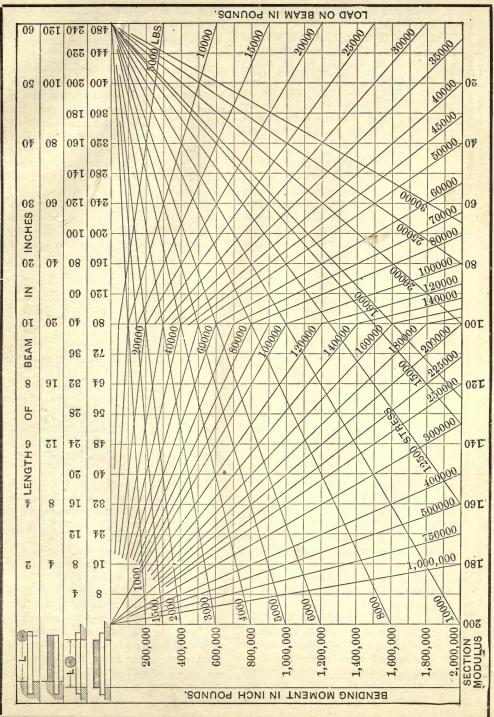
1

BEAM FORMULAS AND STRUCTURAL DESIGN

Contributed by J. S. Myers, MACHINERY'S Data Sheet No. 27. Explanatory note: Page 3

MACHINERY'S DATA SHEETS

No. 18


8

BEAM CHART-I

No. 18

BEAM CHART-II

BEAM FORMULAS AND STRUCTURAL DESIGN

Page Explanatory note: 27. Myers, MACHINERY'S Data Sheet No. i Contributed by J.

ŝ

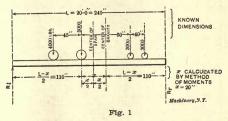
Designing Eccentrically Loaded Bolt and Rivet Groups

On pages 18 to 21, inclusive, four tables are given which greatly facilitate the solution of problems in the design of eccentrically loaded bolt and rivet groups. The explanatory example on page 18 gives full directions for the use of these tables. [MACHINERY, August, 1910, Eccentrically Loaded Bolt and Rivet Groups.]

Angles of Hopper Side Intersections

The finding of the angle of intersection between the various inclined planes in a rectangular hopper is a rather perplexing problem. In order to make the solution of problems of this kind easier, the diagrams on pages 22, 24 and 25 have been prepared. These diagrams permit the required angle of intersection to be read off at a glance, when the inclinations of the side planes of the hopper are known. The descriptive matter on page 22 and the directions for the use of the diagrams on page 23, give the necessary information for their application to practical problems.

Sections for Crane and Telpher Runways


In the design of crane, telpher and suitable provision similar runways. should be made for the lateral strength. The three types of section most commonly used for the purposes mentioned above consist of: 1. An I-beam for vertical strength with a channel riveted to the compression flange for lateral stiffness. 2. The same construction, with the addition of a smaller channel to the tension flange to increase the vertical strength. 3. Two I-beams side by side, with a cover plate on the top flanges only.

An illustration of each of these three types is shown on pages 26 and 27, where also the section modulus, moment of inertia and other properties of the three types of built-up sections are given. [MACHINERY, May, 1908, Maximum Stresses; April, 1910, The Design of a Plate Girder.]

Formulas for Beams Supporting Moving Loads

The most common case of moving loads is that of two wheels equally loaded, such as a crane trolley on the crane bridge, or the bridge upon the runway. There is nothing difficult about finding the maximum moment, provided the location of the load upon the span which produces the maximum moment is known. The general rule covering this case is:

For moving loads, when all the loads are upon the span at once, the maximum moment under any particular load will occur when the center of the span is midway between this load and the center of gravity of all the loads.

The load which produces the maximum moment will in nearly all cases be the heaviest one of the two loads adjoining the center of gravity, hence the rule may be stated:

Place the center of gravity of all the loads and the heaviest load adjacent to the center of gravity equidistant from the supports, and find the moment under the heaviest load.

Example.—What is the maximum moment produced by the system of wheel loading shown in Fig. 1?

Solution.—First find the center of gravity of all the loads by taking moments about some point of reference. Dividing the algebraic sum of the moments by the sum of the loads gives the distance from the point of reference to the center of gravity, thus:

(Continued on page 46.)

AREAS OF SMALL RECTANGLES-I

٢		1/32	1/16	3 _{/32}	. 1/8	5132	3/16	7/32	1/4
F	1/32	0.000977					111111		
	1/16	.001953	0.00,3906		The trac	tion giving	the altitum	ide of the is, the ba	se in the
-	3/32	.002930	.005859	0.008789				area in th	
ſ	18	.0.03906	.007812	.011719	0.015625	the table	2.		
	5/32	.004883	.009766	.014648	.019531	0.024414		n lar	1-1-2-12
ſ	3/16	.005859	.011719	.017578	.023437	.0292.97	0.035156		
	7/32	.00,6836	.01.3672	.020508	.027344	.034180	.041016	0.047852	
	1/4	.007812	.015625	.023437	.03125	.039062	.046875	.054687	0.0625
	9/32	.008789	.017578	.026367	.035156	.043945	.052734	.061523	.070312
ľ	5/16	.009.766	.019531	.029297	.039062	.048828	.058594	.068359	.078125
	11/32	.010742	.021484	.032227	.042969	.053711	.064453	.075195	085937
	3/8	.011719	.023437	.035156	.046875	.058594	.070312	.082031	.09375
-	13/32	.012695	.025391	.038086	.050781	.063477	.076172	.088867	.101562
	116	.013672	:027344	.041016	.054687	,068359	.082031	.095703	.109375
	15,32	.014648	.029297	:043945	.058594	.073242	.087891	.102539	.117187
1	1/2	.015625	.03125	.046875	.0625	.078125	.09375	.109375	.125
	17/32	.016602	.033203	.049805	.066406	.083008	.099609	.116211	.132812
1	9/16	.017578	.035156	.052734	.070312	.087891	.105469	.123047	.140625
1	19/32	,018555	.037.109	.055664	.074219	.092773	.111328	,129883	.148437
1	18	.019531	.039062	.058594	.078/25	.097656	.117187	.136719	.15625
1	21,32	.020508	.041016	.061523	.082031	.102539	.123047	.143555	.164062
	11/16	.021484	.042969	.064453	.085937	.107422	.128906	.150390	.171875
1	32	.022461	.044922	.067383	.089844	.112305	.134766	.157227	.179687
	314	.023437	.046875	.070312	.09375	.117187	.140625	.164062	.1875
	25/32	.024414	.048828	.073242	.097656	.122070	.146484	.170898	.195312
	13/16	.025391	.050781	,0.7.6 / 72	.101562	.126953	.152344	.177734	.203125
	2/32	.026367	.052734	:079102	.105469	.131836	.158203	.1845.70	.210937
	18	.027344	.054687	.082031	.109375	,136719	.164062	.191406	.21875
- H	29/32	.028320	:056641	.084961	.113281	,141602	.169922	.198242	.226562
	15/16	.029297	.058594	.087891	.117187	.146484	.175781	.205078	.234375
	31/32	.0302'73	.060547	.090820	.121094	.151367	.181641	.211.914	.242187
	1"	.03125.	.0625	.09375	.125	.15625	18.75	.21875	.25
	pol	he areas c ation as t side given	he follow. in 64 ths.	$\begin{cases} a x a m p \\ 3 z x \delta 4 = (1 \\ next s d + next h d d d d d d d d d d d d d d d d d d $	fangles vo bles show mext smaller maller are arger are d on She	: er area + n a = $\frac{3}{32} \times \frac{1}{16} =$ a = $\frac{3}{32} \times \frac{3}{32} =$	ext larger 0.005855 0.008785 0.014645	• area) ÷ 2	

Contributed by Martin Joachimson, MACHINERY'S Data Sheet No. 126. Explanatory note: Page 3.

MACHINERY'S DATA SHEETS

AREAS OF SMALL RECTANGLES-II

		9,	5,	//.	3.	/3.	7	15	4
	9.	⁹ /32	5116	"/32	318	¹³ /32	7/16	15,32	1/2
	9/32	0.079102			<u> 1985 - 1986</u>	·			
	516	.08789[0.097656						
	1/32	.096680	.107422	0.118164					
	318	.105469	.117187	.128906	0.140625				
ć	13,32	.114258	.126953	.139648	.152344	0.165039			
	7/6	.123047	.136719	,150391	.164062	.177734	0.191406		
	15/32	.131836	.146484	.161133	.175781	.190430	.205078	0.219727	
	1/2	.140625	.15625	.171875	.1875	.203125	.21875	.234375	0.25
	1/32	.149414	.166016	.182617	.199219	.215820	.232422	.249023	.265625
R	9/16	,158203	.175781	.193359	.210937	.228516	.246094	.263672	.28125
	19/32	.166992	.185547	.204102	.222656	.241,211	.259766	.278320	.296875
125	518	.1757.81	:195312	.214844	.234375	.253906	.273437	.292969	.3125
	21/32	.184570	.205078	.225586	.246094	.266602	.287109	.307617	.328125
	11/10	.193359	.214844	.236328	.257812	.279297	.390781	.322266	.34375
-	23.	.202148	.224609	.247070	.269531	.29'1992	.314453	.336914	.359375
	3/4	.210937	234375	.257812	.28125	.304687	.328125	351562	.375
	25/32	.219727	.244141	.268555	.292969	.317383	.341797	.366211	.390625
	13,16	.228516	.253906	.2792.97	.304687	.330078	.355469	.380859	.40625
	27,32	.237305	263672	.290039	.316406	.342773	.369141	.395508	.421875
	7/8	.246094	.273437	.300781	.328/25	.355.469	.382812	.410.156	.4375
	29,32	.254883	.283203	.311523	.339844	.368164	.396484	424805	.453125
	15/16	.263672	:292969	.322266	.351562	.380859	.410156	.439453	.46875
	31,32	.272461	.302734	.333008	.363281	.393555	.423828	.454102	.484375
1	1.".	.28125	.3125	.34375	.375	.40625	.4375	.46875	.5
			-	Interpola	tion (co	ntinued			
				$:\frac{3}{64}\times\frac{7}{64}=$				r area	$(\frac{1}{64})^2$
				1		-			64)
	Both	sides give	en in 64 ths.			$\frac{1}{32} \times \frac{3}{32} = 0$ $\frac{1}{16} \times \frac{3}{32} = 0$	007812		
						<u>O.</u>	010742	0.005371	
	4				Carles.	aeau	(64)	0.000244 0.005127	
-									

Contributed by Martin Joachimson, MACHINERY'S Data Sheet No. 126. Explanatory note: Page 3.

AREAS OF SMALL RECTANGLES-III

-	17/32	9116	19/32	518	21/32	11/16	23/32	314
17/32	0.282227		02	.0	32	. 10	-32	. 4
9/16	.298828	0.316406						
19/32	.315430	.333984	0.352539			1.1.2.2.8		
5/8	.332031	.351562	.371094	0.390 025				
21/32	.348633	.369141	.389648		0.430664			
11/10	.365234	.386719	.408203	.429687		0.472656		
23,32	.381836	.404297	.426758	.449219	.471'680	.494141	0.516601	
3/4.	.398437	421875	.445312	.46875	.492187	.515625	.539062	0.5625
25/32	.415039	.439453	.463867	.488281	.512695	.537110	.561523	.585937
13,16	.431641	.457031	.482422	.507812	.533203	.558594	.583984	.609375
27/32	.448242	.474609	.500976	.527344	.553711	.580078	.606445	.632812
7/8	.464844	.492187	.519531	.546875	.574219	.601562	.628906	.65625
29/32	481445	.509766	.538086	.566406	.594727	.623047	.651367	.679687
15,16	.498047	.527344	,556641	.585937	.615234	.644531	.673828	.703125
31,32	.514648	.544922	.575195	605469	.635742	.666016	.696289	.726562
1	.53125	.5625	.59375	.625	.65625	.6875	.71875	.75
	25/32	13/16	27/32	7/8	29 _{/32}	15/16	31 _{/32}	1
25,32	0.610352						•	
13,16	.634766	0.660156			52			
27/32	.65.9180	.685547	0.711914					
78	.683594	.710937	.738281	0.765625				
29/32	.708008	.736328	.764648	.792969	0.82/289			
15/16	.732422	.761719	.791016	,820312	.849609	0.878906		
31/32	.756836	.787109	.817383	.847656	.877930	.908203	0.938477	
1	.78125	.8125	.84375	.875	.90625	.9375	.96875	1.00000
		(1-1). S						
Exa	a b ample: I <u>I</u> 6	$\begin{array}{c} c d \\ x 2 \frac{3}{32} = a x \end{array}$	c+bxc+ axc=	tangles la a × d + b × c = 1 × 2 = 1 = 16 × 2 =	d 2.00000	0	ble:	
			axd= bxd=	= / x 32 = // x 32 = // x 32	0.09375 0.06445 3.53320	0 <u>3</u>		

Contributed by Martin Joachimson, MACHINERY'S Data Sheet No. 126. Explanatory note: Page 3.

NET AREAS OF STRUCTURAL ANGLES-I

Sum of	÷		3.4.1.2	A	Irea afte	r Deduc	ting for	-
Length	Thick- ness	Weight	Area	One 518	34 R.	ivets	718 R.	ivets.
of Legs	•			Rivet	One	Two	One	Two
	3116	2.5	0.72	0.58				· · · · · · · ·
	14	3.2	0.94	0.75				
4"	5116	4.0	1.15	0.92				
	3/8	4.7	1.36	1.08				
	116	5.3	1.56	1.23				
	3/16	2.8	0.81	0.67	0.65			
	14	3.7	1.06	0.87	0.84	0.62	0.81	0.56
4 <u>1</u> "	3/16	4.5	1.31	1.08	1.04	0.77	1.00	0.69
42	318	5.3	1.55	1.27	1.22	0.89	1.17	0.79
112.2	116	6.1	1.78	1.45	1.40	102.	1.34	0.90
10 10 L R - 7	1/2	6.8	2.00	1.62	1.56	1.12	1.50	1.00
24 2 1 2 2	3116	3.1	0.90	0.76	0.74			
4.	14	4.1	1.19	1.00	0.97	0.75	0.94	0.69
5"	5116	5.0	1.47	1.24	1.2.0	0.93	1.16	0.85
5	318	5.9	1.73	1.45	1.40	1.07	1.35	0.97
	116	6.8	2.00	1.67	1.62	1.24	1.56	1.12
	1/2	7.7	2.25	1.87	1.81	1.37	1.75	1.25
	14	4.5	1.31	1.12	1.09	0.87	1.06	0.81
1.164	5116	5.5	1.62	1.39	1.35	1.08	1.31	1.00
5 <u>ź</u> "	3/8	6.6	1.92	1.64	1.59	1.26	1.54	1.16
52	7/16	7.6	2.22	1.89	1.84	1.46	1.78	1.34
ST May	1/2	8.5	2.50	2.12	2.06	1.62	2.00	1.50
	9/16	9.5	2.78	2.36	2.29	1.80	2.22	1.66
	14	4.9	1.44	1.25	1.22	1.00	1.19	0.94
	5116	6.1	1.78	1.55	1.51	1.24	1.47	1.16
	318	7.2	2.11	1.83	1.78	1.45	1.73	1.35
6"	7/16	8.3	2.43	2.10	2.05	1.67	1.99	1.55
	1/2	9.4	2.75	2.37	2.31	1.87	2.25	1.75
5.2	9/16	10.4	3.06	2.64	2.57	2.08	2.50	1.94
	518	11.4	3.36	2.89	2.81	2.26	2.73	2.10
	116	12.4	3.65	3.13	3.03	2.43	2.96	2.27
	5/16	6.6	1.93	1.70	1.66	1.39	1.62	1.31
	318	7.8	2.30	2.02	1.97	1.64	1.92	1.54
	7/16	9.1	2.65	2.32	2.27	1.89	2.21	1.77
111	12	10.2	3.00	2.63	2.56	2.12	2.50	2.00
62	9116	11.4	3.34	2.92	2.85	2.36	2.78	2.22
	518	12.5	3.67	3.20	3.12	2.5.7	3.04	2.41
1 . T	11/16	13.6	4.00	3.48	3.40	2.80	3.31	2.62
	314	14.7	4.31	3.75	3.65	2.99	3.56	2.81
	13/16	15.7	4.62	4.01	3.91	3.20	3.81	3.00
1	Vote: The	size of r	ivet hole.	s is '18" lai	ger than	diamete	r of rive.	<i>t</i> .

Contributed by Martin Joachimson, MACHINERY'S Data Sheet No. 129. Explanatory note: Page 3.

_		NE	TAREAS	OF STRO	OTORAL /	ANGLES		3.53T.4
	Sumof	1		a alla	Area	after De	ducting 1	for
	Length	Thickness	Weight	Area		ivets		Rivets
	of Legs			di serti	One	Two	One	Two
		5116	7.1	2.09	1.82	1.55	1.78	1.47
	Service I	318	8.5	2.48	2.15	1.82	2.10	1.72
		7/16	9.8	2.87	2.49	2.11	2.43	1.99
	,,	12	11.1	3.25	2.81	2.37	2.75	2.25
	7″	9/16	12.3	3.62	3.13	2.64	3.06	2.50
		10	13.6	3.98	3.43	2.88	3.35	2.72
		116	14.8	4.34	3.74	3.14	3.65	2.96
		2/A	16.0	4.69	4.03	3.37	3.94	3.19
		13/16	17.1	5.03	4.32	3.61	4.22	3.41
	1	116	7.7	2.25	1.98	1.71	1.94	1.63
		318	9.1	2.67	2.34	2.01	2.29	1.91
	1.2.2	7/16	10.5	3.09	2.71	2.33	2.65	2.21
	-,1"	1/2	11.9	3.50	3.06	2.62	3.00	2.50
	72"	9116	13.3	3.90	3.41	2.92	3.34	2.78
		3/8	14.6	4.30	3.75	3.20	3.67	3.04
	State 15	11/16	15.9	4.68	4.08	3.48	3.99	3.30
		311	17.2	5.06	4.40	3.74	4.31	3.56
		13/16	18.5	5.43	4.72	4.01	4.62	3.81
		116	8.2	2.40	2.13	1.86	2.09	1.78
	1.5	3/8	9.8	2.86	2.53	2.20	2.48	2.10
		7/16	11.3	3.31	2.93	2.55	2.87	2.43
	. 8"	1/2	12.8	3.75	3.31	2.87	3.25	2.75
	. 0	91.0	112	.110	260	2 20	262	206

4.18

4.61

5.03

5.44

5.84

2.56

3.05

3.53

4.00

4.47

4.92

5.37

5.81

6.25

6.67

3.20

3.51

3.83

4.12

4.41

2.02

2.39

2.77

3.12

3.49

3.82

4.17

4.49

4.83

5.14

3.62

3.98

4.34

4.69

5.03

2.25

2.67

3.09

3.50

3.91

4.29

4.68

5.06

5.44

5.79

3.06

3.35

3.65

3.84

4.22

1.94

2.29

2.65

3.00

3.35

3.66

3.99

4.31

4.63

4.91

3.69

4.06

4.43

4.78

5.13

2.29

2.72

3.15

3.56

3.98

4.37

4.77

5.15

5.54

5.90

NET AREAS OF STRUCTURAL ANGLES-II

Note: The size of rivet holes is '8" larger than diameter of rivet. Contributed by Martin Joachimson, MACHINERY'S Data Sheet No. 129. Explanatory note: Page 3.

9/16

518

11/16

314

13/16

5116

318

7/16

1/2

9/16

518

11/16

314

13/16

718

8<u>1</u>"

14.2

15.7

17.1

18.5

19.9

8.7

10.4

12.0

13.6

15.2

16.8

18.3

19.8

21.3

22.7

MACHINERY'S DATA SHEETS

No. 18

NET AREAS OF STRUCTURAL ANGLES-III

Sum of				Area	after Dec	ducting i	for
Length	Thickness	Weight	Area	34 R.	ivets	7/8 R	ivets
ofLeg				One .	Two	One	Two
	318	11.0	3.23	2.90	2.57	2.85	2.47
	7/16	12.8	. 3.75	3.35	2.99	3.31	2.87
	1/2	14.5	4.25	3.80	3.39	3.75	3.25
. "	9116	16.2	4.75	4.26	3.77	4.19	3.63
9"	518	17.8	5.23	4.68	4.14	4.60	3.97
	11/16	19.5	5.72	5.12	4.52	5.03	4.34
	314	21.1	6.19	5.53	4.88	5.44	4.69
	13/16	22.7	6.65	5.94	5.23	5.84	5.03
	718.	24.2	7.11	6.34	5.58	6.23	5.35
	318	11.7	3.42	3.09 .	2.76	3.04	2.66
	7/16	13.6	3.97	3.59	3.21	3.53	3.09
	1/2	15.3	4.50	4.06	3.62	4.00	3.50
	9116	17.1	5.03	4.54	4.05	4.47	3.91
. 11	518	18.9	5.55	5.00	4.45	4.92	4.29
9ź"	11/16	20.6	6.06	5.46	4.86	5.37	4.68
	314	22.3	6.56	5.90	5.24	5.81	5.06
	13/16	24.0	7.06	6.35	5.64	6.25	5.44
	7/8	25.7	7.55	6.78	6.02	6.67	5.79
	15/16	27.3	8.03	7.21	6.39	7.09	6.15
	1	28.9	8.50	7.63	6.75	7.50	6.50
	318	12.3	3.61	3.28	2.95	3.23	2.85
	7/16	14.3	4.18	3.80	3.42	3.74	3.30
	1/2	16.2	4.75	4.31	3.87	4.25	3.75
	9116	18.1	5.31	4.82	4.33	4.75.	4.19
"	518	20.0	5.86	5.31	4.76	5.23	4.60
10"	11/16	21.8	6.41	5.81	5.21	5.72	5.03
	314	23.6	6.94	6.28	5.63	6.19	5.44
	13/16	25.4	7.47	6.76	6.05	6.66	5.85
	7/8	27.2	7.99	7.22	6.46	7.11	6.23
	15/16	28.9	8.50	7.68	6.86	7.56	6.62
	1	30.6	9.00	8.13	7.25	8.00	7.00
111	7/16	15.0	4.40	4.02	3.64	3.96	3.53
	1/2	17.0	5.00	4.55	4.13	4.50	4.00
	9/16	19.1	5.59	5.10	4.61	5.03	4.47
	518	21.0	6.17	5.62	5.08	5.54	4.92
10!"	1/16	23.0	6.75	6.15	5.55	6.06	5.37
102"	314	24.9	7.3/	6.65	6.00	6.56	5.81
	13/16	26.8	7.87	7.16	6.4.5	7.06	6.25
	718	28.7	.8.42	7.65	6.89	7.54	6.67
	15116	30.5	8.97	8.15	7.33	8.03	7.10
	1	32.3	9.50	8.63	7.75	8.50	7.50
-	ote: The si		and the second se		the state of the s	-	the second s

Contributed by Martin Joachimson, MACHINERY'S Data Sheet No. 129. Explanatory note: Page 3.

No. 18

NET AREAS OF STRUCTURAL ANGLES-IV Area after Deducting for Sum of Tig Rivets 31/2 Rivets Length Thickness Weight Area of Legs One Two One Two 318 14.9 4.36 4.03 3.70 3.98 3.60 7/16 4.68 4.30 4.18 17.2 5.06 4.62 1/2 5.31 19.6 5.75 4.87 5.25 4.75 9/16 21.9 6.43 5.94 5.45 5.87 5.31 518 5.85 24.2 7.11 6.56 6.01 6.48 12" 11/16 26.5 7.78 7.18 6.58 7.09 6.40 314 28.7 8.44 7.78 7.12 7.69 6.94 13/16 31.0 9.09 8.38 7.67 8.28 7.47 718 9.74 8.97 8.21 8.86 7.98 33.1 15/16 35.3 10.37 9.55 8.73 9.43 8.49 1 37.4 11.00 10.13 9.25 10.00 9.00 1/2 23.0 6.76 6.31 5.89 6.26 5.76 9/16 7.16 7.09 6.53 26.0 7.65 6.67 518. 8.44 7.89 7.35 7.82 7.19 28.7 11/16 8.72 8.12 8.63 7.94 14" 31.7 9.32 314 8.44 33.8 9.94 9.28 8.63 9.19 13/16 10.76 10.05 9.34 9.95 9.14 36.6 718 10.85 10.09 10.74 9.87 39.5 11.62 15/16 42.0 12.35 11.53 10.71 11.41 10.48 11.31 12.06 11.06 1 44:4 13.06 12.19 1/2 7.25 26.4 7.75 7.30 6.88 6.75 9/16 7.71 8.13 7.57 29.6 8.69 8.20 518 32.7 9.61 9.06 8.52 8.99 8.36 11/16 35.8 10.53 9.93 9.33 9.84 9.15 16" 314 11.44 10.69 9.94 38.9 10.78 10.13 13/16 42.0 12.34 11.63 10.93 11.52 10.72 718 12.47 11.71 12:35 11.48 45.0 13.23 15116 13.31 12.49 48.1 14.12 13.18 12.24 13.00 1 51.0 15.00 14:13 13.25 14.00

Area Deducted for Various Sizes of Rivets and Thickness of Anales.

14.95

15.76

14.01

14.77

14.81

15.87

16.74

1/16

1/8

54.0

56.9

	Size of		1.1.4			5.1		7	Thick	knes	5						
Rivets	Rivets	3/16	14	5116	318	7/16	:12	9/16	518	1/16	34	13/16	7/8	15/16	1	1/16	1/8
1	318	0.09	0.13	0.16	0.19	0.22	0.25	0.28	0.31	0.34	0.38	0.41	0.44	0.47	0.50	-	-
1	12	0.12	0.16	0.20	0.23	0.27	0.31	0.35	0.39	0.43	0.47	0.51	0.55	0.58	0.63	-	-
1		0.14															
2	518	0.28	0.38	0.46	0.56	0.66	0.75	0.84	0.94	1.03	1.12	1.22	1.31	1.40	1.50	1.60	1.68
1		0.16															
2		0.33															
1	7/8	0.19	0.25	0.31	0.38	0.44	0.50	0.56	0.63	0.69	0.75	0.81	0.88	0.94	1.00	1.06	1.12
.2		0.37															
1	1	0.21	0.28	0.35	0.42	0.49	0.56	0.63	0.70	0.77	0.84	0.91	0.98	1.06	1.13	1.20	1.26
	Note	: The	size	e of l	rive	t hol	es is	5 18"	larg	ter t	han	dian	nete	rot	rive	t.	

Contributed by Martin Joachimson, MACHINERY'S Data Sheet No. 129. Explanatory note: Page 3.

13.75

14.49

LOADS FOR ECCENTRICALLY LOADED RIVET GROUPS-I

Directions for Using Tables.

The following tables facilitate the finding of the number of rivets to support eccentric loads.

All the tables are calculated for a vertical spacing of rivets of three inches; size of rivets, ³4-inch; and maximum stress per square inch, 10,000 pounds.

To use the tables, decide on the number of vertical rows of rivets, and the distance between the outside rows, if more than one row is used. Then, in the table for the number of rows adopted, find the number of rivets required for the given load.

Example: Find number of rivets required for supporting a load of 5000 pounds applied 18 inches from the center of the rivet group. Three vertical rows of rivets will be used; distance between outside rows, 6 inches. (See illustration below).

In Table III, giving the number of rivets for three vertical rows, find the distance (18 inches) between the load and center of rivet group; then in the section headed 18 inches" and in the column headed "6 inches" (horizontal distance between the outside rivet rows), find the figure nearest to the given load. This figure is 5.6, which, being in thousands of pounds, is equivalent to a load of 5600 pounds. Now follow the horizontal line from 5.6 to the left where the number of rivets for the given case is found to be 9.

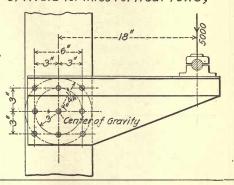


Table of Number of Rivets for Eccentric Loads One Vertical Row of Rivets.

Body of Table Gives Total Load in Thousands of Pounds Vertical Spacing of Rivets, 3"- Size of Rivets, 34".

Number	Horizontal Distance between Load and Center of Rivet Group											
Rivets	0"	12"	3"	6"	9"	12"	15"	18"	21"	24"		
1	4.4											
2	8.8	6.2	3.9	2.1	1.4	1.1	0.9	0.7	0.6	0.5		
3	13	10	7.3	4.1	2.8	2.1	1.7	1.4	1.2	1.1		
4	17	15	11	.6.7	4.7	3.6	2.9	2.4	2.1	1.8		
5	22	19	15	9.8	6.9	5.3	4.3	3.6	3.1	2.7		
6	26	24	20	13	9.5	7.4	6.0	5.0	4.3	3.8		
7	30	28	24	17.	12	9.8	7.9	6.7	5.8	5.1		
8	35	33	29	21	15	12	10	8.5	7.4	6.4		
9	39	37	33	25	19	15	12	10	9.2	.8.1		
10	44	42	38	29	22	18	15	12	11	9.8		
11	48	46	43	34	26	21	18	15	13	11		
12	52	51	47	38	30	25	20	18	15	13		

LOADS FOR ECCENTRICALLY LOADED RIVET GROUPS-II

			17:											-		
	· r -		100	5							1.10					
			TI	vo I	Vert	ical	Ro	ws	of	Riv	ets.					1000
	,	1 -		~.		- /						,	10		1.	
Boo	ay of	t la	ble	GIVE	25 /	ota	1 20	ad	In I	Thou	Isar	nds.	of M	31	75	
	V	ertic	cal.	Space	sing	r of	Riv	ets,	3"-	- 51	ze o	f Riv	ets,	4.		
	H	brize	onta	I Die	tan	ro h	ating	200	100	dar	da	ente	rof	Rive	+ Gra	aun
Number	0"	01120	nnai	1/2"	run	JE De	= / //	en.	3"		u u	1	101	6"	- 0/0	op
of	-		H		onto	I DI	star	TCP	betv		7 Riv	iet R	ows		-	
Rivets	Any	3	6	9	12	15	3	6	9	12	15		16	9	12	15
2	8.8	4.4	5.8	6.6	7.1	7.3	2.9	4.4	5.2	5.8	_		2.9	3.7	4.4	4.9
4	17	11	12	13	14	14	7.9	9.5	10	11	12		6.5	7.5	9.1	9.9
6	26	19	19	20	21	22	13	15	16	18	19	8.6	10	12	14	15
8	35	27	27	28	29	29	20	22	23	24	25	13	15	17	19	20
10	44	37	36	36	37	37	29	29	30	31	_		20	22	24	26
12	52	46	44	44	44	45	38	37	38	39			26	28	30	32
1:4	61	55	53	53	54	54	46	45	46	46	-	_	33	34	36	38
16	70	64	61	61	62	62	56	54	54	55	-		40	41	42	44
18	79	73 82	71	71	71	71	65	63	63	63			48	49	50	59
20	88	92	80	80	80	80	74	72	72	72			56	64	65	66
24	105	101	97	97	97	97	93	89	89	89				73	73	74
A		orizo		-	tand		twe		oad	and	-	ter	_	-	Grou	
Number			9"	010	, and		///01		12"	arra	1	1707		15!		
of				oriz	onto	al D.	ista	nce		veel	7 Ri	vet l	Rows			
Rivets	3	6	9	12	15					12	15	3	6	9	12	15
2	1.2	2.2	2.9	3.5	4.0	2 1.	0 1.	7 2	.4	2.9	3.4	0.8	1.4	2.0	2.5	2.9
4	3.5	4.8	6.1	7.2	8.1	1 2.	7 3.	9 3	5.0	6.0	6.9	2.2	3.2	4.3	5.2	5.9
6	6.2	8.0	9.5	10	12	_	8 6	3 7	7.9	9.2	10	3.9	5.3	6.6	7.9	9.1
8	9.6	11	13	15	10	and so it is		_		12	14	6.0	7.6	9.Z	10	12
10	14	15	17	19	21	_			-	16	18	9.0	10	12	14	16
12	19	20	22	24						20	22	12	13	15	17	19
14	30	25	27	29	31					24	26	15	21	23	25	23
18	37	37	39	41	43			-		34	36	24	25	27	29	31
20	44	44	45	4.7	49					39	42	29	30	31.	33	36
22	52	51	52	53	53					45	47	35	35	37	39	41
2.4	60	59	59	60		11	1	_		51	.53	41	41	42	44	46
Number	He	prizo			fanc	e be	twe		oad	ana	Cer	nter	of R		Grou	'P
of			18'						21"					24"		
Rivets		-		loriz								vet R				
	3	6	9	12	15	_	_		9	12	15	3	6	9	12	15
2	0.7	1.2	1.7	2.2					-	1.9	2.3	0.5	1.0	1.4	1.7	2.1
4	1.9	2.8	3.7	4.5	and the state of the					4.0	4.7	1.4	2.1	2.9	3.6	4.2
8	3.3	4.5	5.7	6.9						6.2	7.2	2.5	3.5	4.5 6.3	5.6	6.5
10	7.6	8.8	10	12	14					10	12	5.8	6.8	8.1	9.7	0.0
12	10	11	13	15	17		-			13	15	8.0	8.9	10	<u> </u>	13
14	13	14	16	18	20					16	18	10	11	12.	14	16
16	1.7	18	19	21	23					19	21	13	13	15	17	.19
.18	21	21	23	25	27	7 10	3 1	8 1	20	22	24	16	16	18	20	22
20	25	26	27	29	31	2	2 2	3 2		26	28	20	20	21	23	25
22	30	30	32	34	36				-	30	32	23	23	25	27	29
24	35	35	36	38	40	23	1 3	13	32 .	34	36	27	27	28	30	33
		SIL-		1												

LOADS FOR ECCENTRICALLY LOADED RIVET GROUPS-III

Three Vertical Rows of Rivets.

Body of Table Gives Total Load in Thousands of Pounds Vertical Spacing of Rivets, 3"- Size of Rivets, 3".

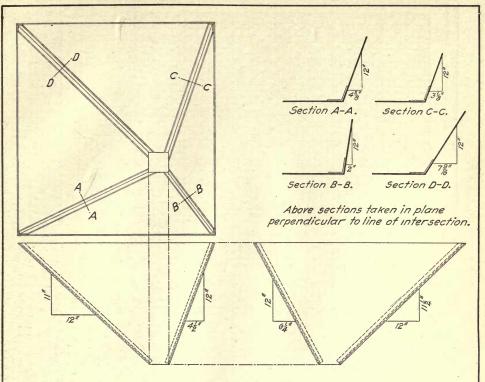
		-			-		1					7	
Number													
of	0"		1	12"	1.1.5								
Rivets	-	-									e Rive		
	Any	6	8	10	12	6	8	10	12		8	10	.12
3	13	7.5	8.4	9.1	9.6	5.7	6.2	6.9				4.7	5.3
6	26	16	17	18	19	12	13	14	-			10	11
9	39	28	28	29	30	20	21	23				16	17
12	52	39	40	40	41	30	31	32				.23	24
15	66	52	5.2	53	53	.41	42	43	44			30	32
18	79	6.6	66	66	66	53	53	54				39	40
21	97	79	79	79	. 79	6.6	66	67	67			49	50
24	105	92	92	92	92	7.9	7.9	79	75			59	60
27	118	106:	106	106	106	92	92	92	92	-		70	7.1
30	132	119	119	119	119	106	106	106				82	83
33	145	132	132	132	132	.119	119	119				94	95
36	158	146	146	146	146	133	133	133				107	107
Number	Hor			istan	ce be	etween			nd Ce	nter	of Rive		que
of			9"		1	,	12"					5"	
Rivets		1 0			al Di						Rivet		
	6	8	10	12		E		0	12	6	8	10	12
3	2.4	3.1	3.5						3.3	1.5	2.0	2.4	2.8
6	5.8	6.7	7.6					./	6.9	3.7	4.5	5.1	5.4
9	10	11	12	13	_			9.9	11	6.6	7.4	8.0	9.4
12	15	16	17	.19					15	10	11	12	13
15	21	22	23	25	-				20	14	15	16	17
18	28	29	30	32				4	26	.18	19	20	22
21	36	37	38	39					32	24	25	26	27
	45	45	46						39	30	31	32	33
27.	55	55	56	56					46	36	37	38	39
				66			-		-	52	45	53	54
33	76	76	76	87				2	64		52	62	62
36					1				73.	60	of Rive		
Number	HOI		18"	Siane	e ve	weer		a an	u cer	nerd		4"	op
of				-170-	talr	21" Distance be			200	Jutein	le Rive		VG
Rivets	6	8	10	1201		15 ar		10	12	6	8	10	12
3	1.3	1.7	2.0					.8	2.1	1.0	1.3.	1.6	1.9
6	.3.2	3.8	4.4					.0	4.4	2.5	3.0	3.4	3.9
9	5.6	6.3	7.2					5.3	7.0	4.3	4.9	5.6	6.2
12	8.4	9.3	10	11					10	4.5	7.2	8.0	8.9
15	0.4	12	13	14	-			2	13	9.1	9.9	10	11
18	16	17	18	19	_		the second	5	16	12	13	14	15
10	20	21	22	23		-	-	9	20	15	16	17	18
21	20	26	27	28				4	25	19	20	21	22
21	2.5		1 4 /	1 20				9	30	24	25	26	27
24	25			21	2 2								
24 27	31.	32	. 33	34		and the second s		-					
24 27 30	31.	32 38	33	40	33	3 3	4 3	35	36	29	30	31	32
24 27	31.	32	. 33		33	3 3	4 3 9 4	-					

LOADS FOR ECCENTRICALLY LOADED RIVET GROUPS-IV

				for an and						-			2			
			,	Four	1/	1:	0		4 D:							
			-	our	ver	incar	πον	V5 0.	ה את	rets						
	Roc	tu of	Tabl	la Giv	ac 7	Total	l'an	d in	The		nds d	f Pa	unde			
	DUC	y Un	-tica	1 600	es /	orar	Dive	4 2	1-6	030	of Rive	1	und s			
		vei	incu.	i Spa	icing	101	aive.	13, 0	- 51	zec		213, 2	7.			
		Hor	izont	al Dis	stanc	e bet	ween	Log	dan	d C	enter	of Ri	vet G	roun		
	Number	0"			2."				3"		enter of Rivet Group					
	of Rivets	- 3		Hor	izoni	tal Di	stan	ce b	etwee	en O	itside	Rivet				
	HIVE15	Any	9	12	15	18	9	.12	15	18	3 9	12	15	18		
	4	17	11	1.2	13	13	8.0	9.2	10	11	1 5.2	6.3	7.2	8.0		
	8	35	23	25	26	27	17	19	21.	27		13	15	16		
	12	52	3.7	35	40	.43	28	30	32	3.			23	25		
	16	70	52	54	55	56	41	43	45	41	-		32	34		
	20	88	69	70	71	72	55	57	58	60			42	45		
	.24	105	86	86	87	88	71	72	73	7.			54	56		
	28	123	104		104	105	87	87	88	8:	-		66	68		
	32	140	122		122	122	104	104	105				79	80		
	36 40	158	139	139	139	139	122	122	122				94	95		
	40	193	151	151	175	175	139	139	139		-			110:		
	44	211	193	193	193	193	174	174	174	-				125		
				tal Di							nter a					
	Number	1101		9"	3/4/10		TFFECT	12"	u un	ALE	NIEI C		5"	op		
	of.				zonte	al Di	stand		twee	no	itside		-			
	Rivets	9	12	15	18	9	1		15	18	9	12	15	18		
	4	3.8	4.7	5.5	6.3					5.2	2.5	3.2	3.8	4.4		
	8	8.5	10	11	12				9.4	10	5.6	6.9	8.0	9.0		
	12	14	16	18	20				4	16	9.4	11	12	14		
	16	21	23	25	27	17	1	9 2	21	23	14	15	17	19		
	20	29	31	33	35	23	3 2.	5 2	27	29	19	21	23	25		
	24	38	40	42	44	31	3	3 3	15	37	25	27	29	31		
	28	.48	50	52	55	-		1 4	13	45	32	34	36	39		
	32	60	62	63	65					54	40	42	44	46		
	36	.70	73	75	77				2	65	49	51	53	55		
	40	86	86	87	88				13	75	59	60	62	64		
-	44 48	100	100	101	102					86	69	70	71	73		
		The second second	114	al Dis	116		-			98	80 nter o	81 + Piu	83	85		
	Number	1101		18"	siunc	e Der	ween	21"	auno	a cel	TIET O		24"	,op		
	of				izont	al Di	stan		etwee	20 0	utside			16		
	Rivets	9	12	15	18	9	1		15	18	9	12	15	18		
	4	2.1	2.7	3.3	3.8					3.4	1.7	2.1	2.6	3.0		
	8	4.8	5.9	6.9	7.9	-			5.1	7.0	3.7	4.6	5.4	6.2		
	12	8.0	9.1	10	12	7.0	2 8.	3 3	9.6	10	6.2	7.4	8.5	9.7		
	16	12	13	15	17	10	2 1	2	13	15	9.4	10	12	13		
	20	16	18	20	2.2	14			17	19	13	14	16	17		
	24	22	24	25	27	19			22	24	17	18	20	22		
	28	28	30	32	34	24				30	21	23	25	27		
	32	34	36	38	40	30				36	27	29	30	32		
	36	42	44	46	48			-		43	33	35	36	38		
	40	51	52	54	56	44				50	40	41	43	45		
	44 48	60	61	62	64	51	5.			57	48	49	50	52		
1	40	09	1.//	72	74	61	6	3 6	64	66	55	56	57	59		
			6.12 p. 1					-				-				

2 Three sets of curves are given for the three cases found in actual practise: and y, one angle less, and one angle more than 45 degrees. Angles less than Two angles, x and y, both more than 45 degrees both less than 45 degrees. 12" "8 BIDUDXJ UD44 5521 Salput • 97 their line of intersection, will cut out a section having four straight sides and four right angles, and to these through perpendicular to The angle of flare is expressed thus in the accompanying sketch cases only do the curves on sheets I, III and form the angles x and y with the horizontal plane. If a and the angle of flare be called F, Usually there may be passed through an ordinary hopper or chute, a plane which II apply. Let plates A and B then cos F = - cos x cosy. The curves The values of the angle of flare and are expressed in the slope of inches The angle of flare is expressed thus plane b-b be passed the angles formed by the hopper sides 45 were calculated from this formula. if the angle is less than 45 if the angle is more than Two angles, x and y, View of Plate B. Two angles, x degrees. degrees. 5 7-12 View of Plate A. per foot. ,71 Plate Plate A Nim

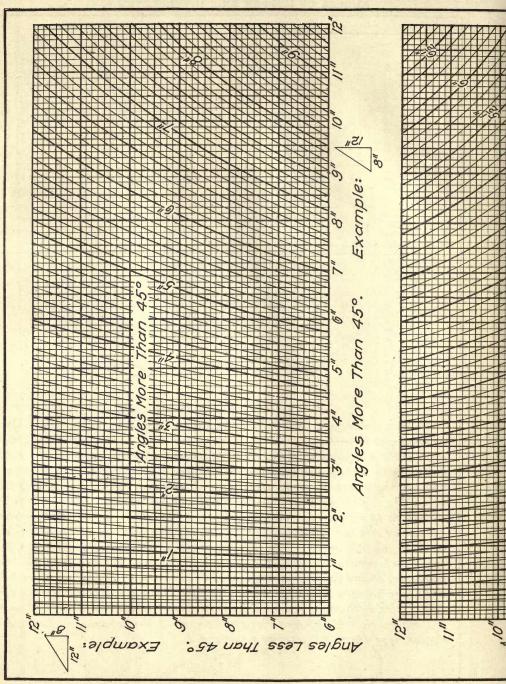
MACHINERY'S DATA SHEETS


No. 18

Explanatory note: Page 10.

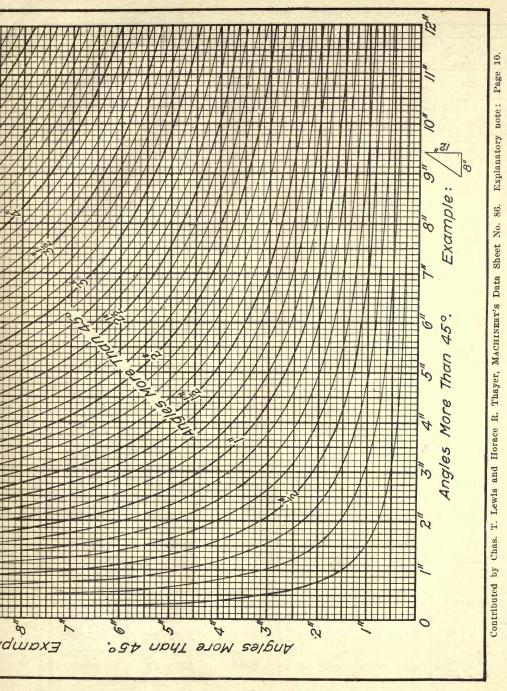
Contributed by Chas. T. Lewis and Horace R. Thayer, MACHINERRY'S Data Sheet No. 86.

No. 18


BEAM FORMULAS AND STRUCTURAL DESIGN ANGLES OF HOPPER SIDE INTERSECTIONS—II

Directions for the use of the diagrams.

In the accompanying illustration of hopper, let the slopes of the four sides be known, as indicated by the slope in inches per foot. For the intersection angle of the side sloping II inches in I2 inches with the side sloping 12 inches in 64 inches, use diagram for one angle more than 45 degrees and one angle less than 45 degrees. (See Upper diagram, sheets III and IV.) At the left of the diagram are values ranging from 6 inches to 12 inches for angles less than 45 degrees. Follow the horizontal line at Il inches until it meets the vertical line projected up from 6'4 inches. The intersection of these two lines gives, on the curves across the diagrams, the nearest value for the intersection angle, which in this case is 43 inches in 12 inches. (See section A-A of hopper on this sheet.) In a similar manner, use the diagram for two angles both more than 45 degrees (lower diagram sheets III and IV) for section B-B, and for section D-D use diagram for two angles less than 45 degrees, sheet I.


ANGLES OF HOPPER SIDE INTERSECTIONS-III and IV

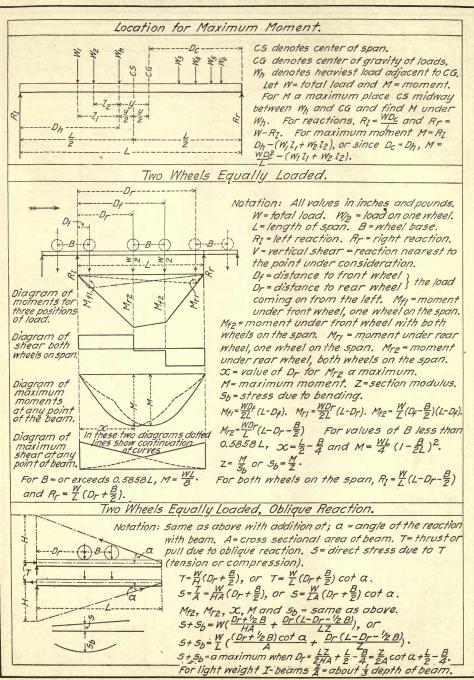
MACHINERY'S DATA SHEETS

No. 18

No. 18

SECTIONS FOR CRANE AND TELPHER RUNWAYS-I

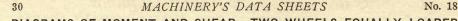
.6	Davag	dies of East	tiona Consis	ting of One	
1	Sectio	1	<i>US</i>	Moment	Distance
	Upper Chord Axis a-a	Lower Chord Axis a-a	Upper Chord Axis b-b	of Inertia	C
10" 15** 10" I 25*	52.06	27.15	14.09	182.72	6.73
10" 15** 12" I 31.5*	70.22	39.97	14.35	311.78	7.80 .
12" 20.5# 12" I 31.5*	81.71	40.66	22.19	333.39	8.20
12" 20.5# 12" I 40*	90.41	50.31	22.55	396.91	7.89
15" I 42#	,103.55	64.87	14.86	607.83	9.37
12" 20.5* 15" I 42*	118.80	66.06	22.62	648.68	9.82
15" I 42*	151.94	68.18	42.65	724.77	10.63
15" I 50#	135.28	75.02	25.33	742.67	9.90
12" 20.5# 15" I 60#	.140.17	90.13	23.50	838.22	9.30
15" 33* 15" I 60*	173.59	93.20	43.43	933.90	10.02
18" I 55*	161.57	99.11	23.16	1122.90	11.33
18" I 55*	203.18	102.50	43.11	1253,60	12.23
15"I 80#	197.81	120.17	44.48	1151.27	9.58
20"I 65#	199.98	129.60	23.72	1594.03	12.30
20" I 65#	247.50	133.85	43.56	1772.11	13.24
20" I 80*	278.43	164.98	44.52	2/13.31	12.81
20"I 80#	305.44	168.05	49.12	2226.62	13.25
15"_33* 24" I 80*	339.17	196.13	44.56	3032.18	15.46
<i>15[™]⊶ 55</i> [#] 24 [™] I 100 [#]	455.00	239.53	60.64	3894.80	16.26
	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	a CHr.of Gravity A Sectic Upper chord Axis a-a 10"	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sectional I (Poallus Moment of Inertia Upper chord Axis a-a Lower chord Axis b-b Moment of Inertia 10"

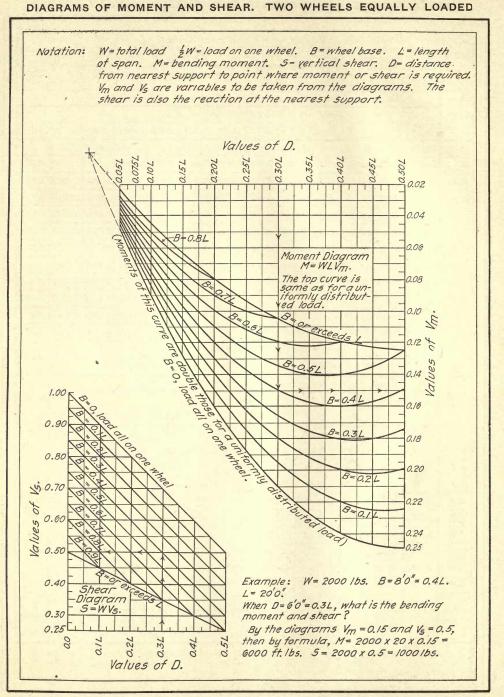

Contributed by F. W. Bowman, MACHINERY'S Data Sheet No. 87. Explanatory note: Page 10.

	SECTIONS	FOR ORAN	E AND TE			
		1:	Castions Con	sisting of T	wo.	
K-D>	Pro	beams and	One Conne	cting Plate	no -	105.0701
ctr. of		tional Mode		ing raio.		
Gravity	000			Distance	Moment	Distance
JL L	Upper Chord	Lower Chord	Upper Chord	D	of Inertia	C
	Axis a-a	Axis a-a	Axis b-b		11161 114	
1-12" x 38" Pl. 2-10" I\$ 25#	81.01	54.18	20.27	5.75	337.02	6.22
1-14" x 2" Pl. 2-12" IS 31.5#	131.53	81.72	36.30	7.50	630.03	7.7/
1-14" x 2" Pl. 2-12" I\$ 40#	147.64	100.75	40.38	7.25	748.53	7.43
1-14" x 2" Pl. 2-15" Is 42#	192.53	131.50	40.03	7.00	1211.00	9.21
1-15" x 2 Pl. 2-15" I\$60#	239.39	179.40	55.30	7.50	1589.54	8.86
1-15" x 2" Pl. 2-15" IS 70#	251.22	196.35	61.22	7.50	1708.27	8.70
1-15 x 2 Pl. 2-15" IS 80#	285.65	230.98	65.55	7.25	1979.53	8.57
1-16" x 2" Pl. 2-18" IS 55#	279.02	197.60	. 60.51	8.50	2140.06	10.83
1-16" x 2" Pl. 2-20" I5 65#	347.57	257.80	65.48	8.25	3034.28	11.77
1-16" x 2" Pl. 2-20" IS 80#	406.10	318.45	67.99	7.50	3658.97	11.49
1-18 x 2" Pl. 2-24" IS 80#	504.42	379.58	90.22	9.50	5306.49	13.98
1-18" x 2" Pl. 2-24" IS 100#	545.59	435.11	106.12	9.50	5930.54	13.63
A D	Th	e channel g	niven first i	s on the top	chord	1.00
a a A ctr. of Gravity	F		nd Two L	Consisting	of One	
- C			Modulus			
* ~	linear Chard			Lawar Chard	Moment of	Distance
167	Upper Chord Axis a-a	LowerChord Axis a-a	Upper Chord Axis b-b	Axis b-b	Inertia	C
1-10" 15* 1-10" I 25* 1-8" 11:25* 1-12" 20.5*	62.87	43.62	14.09	8.97	321.89	5.12
1-10" 1 25#	10.95	50.92	21.98	14.09	394.66	5.15
1-12" 20.5* 1-12" I 31.5* 1-10" 15*	99.54	68.40	22.19	14.35	603.23	6.22
1-12" 20.5* 1-15" I 42* 1-10" 15*	139.08	100.03	22.62	14.86	1040.34	7.80
1-12" - 20.5*	185.61	119.97	42.65	22.62	1336.49	8.20
I-12" 20.5* I-18" I 55* I-10" 15*	185.03	138.27	23.16	15.52	1652.32	9.35
1-15" - 33# 1-18" I 55# 1-12" - 20.5#	241.06	163.01	43.11	23.16	2075.17	9.79

SECTIONS FOR CRANE AND TELPHER RUNWAYS-II

Contributed by F. W. Bowman, MACHINERY'S Data Sheet No. 87. Explanatory note: Page 10.


MACHINERY'S DATA SHEETS FORMULAS FOR MOVING LOADS



Contributed by John S. Myers, MACHINERY'S Data Sheet No. 85. Explanatory note: Page 10.

No. 18 BEAM FORMULAS AND STRUCTURAL DESIGN 29 TABLES FOR SHEAR OR MOMENT. TWO WHEELS EQUALLY LOADED

Notan Bi st. be th va	tion: V = wheel hear is ending e support triable.	V- tota base requir mome ort ne s to be	l load D= o red. R arest arest e take	on wh distan = rat, = ver; to the n fron	eels. ce fro io of E tical s point n table	w= la m sup to L hear of under es.	oad op port B/L. on bea cons	to point $x = nx = nm whdera$	wheel. at at m atio of ich is a tion.	L= len hich m D to L uso the Vm an	egth of nomen = D/L react	f span $M = M = M$? . :
	12-10-20									= WL		- 2	
$R = \frac{B}{I}$		1749	-312	N. a.	Va	lues	of L	7/2 = .	x.	1	12.1	6.23	
-	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.375	0.40	0.425	0.45	0.475	0.50
0.0	0.0475	0.090	0.1275	0.16	0.1875	0.210	0.227.	5 0.234	4 0.24	0.2442	0.2475	0.2494	0.250
0.1	0.0450	0.085	0.1200	0.15	0.1750	0.195	0.2100	0.2150	0.22	0.2231	0.2250	0.2256	0.225
0.2	0.0425	0.080	0.1125	0.14	0.1625	0.180	0.1925	0.1969	0.20	0.2019	0.2025	0.2019	0.200
0.3	0.0400	0.075	0.1050	0.13	0.1500	0.165	0.1750	0.1781	0.18	0.1806	0.1800	0.1781	0.175
0.4	0.0375	0.070	0.0975	0.12	0.1375	0.150	0.157	5 0.159	4 0.16	0.1594	0.1575	0.1544	0.150
0.5	0.0350	0.065	0.0900	0.11	0.1250	0.135	0.1400	0.1400	6 0.14	0.1381	0.1350	0.1306	0.125
0.6	0.0325	0.060	0.0825	0.10	0.1125	0.120	0.1225	0.1219	0.12	0.1222	0.1238	0.1247	0.125
0.7	0.0300	0.055	0.0750	0.09	0.1000	0.105	0.1138	0.1172	0.12	0.1222	0.1238	0.1247	0.125
0.8	0.0275	0.050	0.0675	0.08	0.0983	0.105	0.1138	0.1172	2 0.12	0.1222	0.1238	0.1247	0.125
0.9	0.0250	0.045	0.0638	0.08	0.0983	0.105	0.1138	0.1172	0.12	0.1222	0.1238	0.1247	0.125
	0.0238	0.045	0.0638	0.08	0.0983	0.105	0.1138	0.1172	0.12	0.1222	0.1238	0.1247	0.125
orover	0.95	0.90	0.85	0.80	0.75	0.70	0.65	0.625	0.60	0:575	0.550	0.525	0.50
01 01 01			l	alues	of D/L	= x 1	from o	ther su	upport	2	1		
	In th	ne abov	re the	values	enclo	sed b	y hear	y line.	s are n	naxim	บที		
		Table	givin	g val	ues or	F Vs in	n fori	nula	5= W	Vs.			11
$R = \frac{B}{L}$	1	-			Va.	lues a	f DII	=X					$R = \frac{B}{L}$
	0.00	0.05	0.10	0.15	5 0.2	0 0.	25	0.30	0.35	0.40	0.45	0.50	
0.0	1.00	0.95	0.90	0.8	5 0.2	30 0	.75	0.70	0:65	0.60	0.55	0.50	0.0
0.1	0.95	0.90	0.85	0.8	0 0.	75 0.	.70	0.65	0.60	0.55	0.50	0.45	0.1
0.2	0.90	0.85	0.80	0.7	5 0.7	0 0.	65	0.60	0.55	0.50	0.45	0.40	0.2
0.3	0:85	0.80	0.75	0.7	0 0.0	55 0.	60	0.55	0.50	0.45	0.40	0.35	0.3
0.4	0.80	0.75	0.70	0.6	5 0.0	60 0.	.55	0.50	0.45	0.40	0.35	0.30	0.4
0.5	0.75	0.70	0.65	. 0.6	0 0.	55 0.	50	0.45	0.40	0.35	0.30	0.25	0.5
0.6	0.70	0.65	0.60	0.5	5 0.	50 0	.45	0.40	0.35	0.30	0.275	0.25	0.6
0.7	0.65	0.60	0.55	0.5	0 0.	45 0	.40	0.35	0.325	0.30	0.275	0.25	0.7
0.8	0.60	0.55	0.50	0.4	5 0.	40 0.	375	0.35	0.325	0.30	0.275	0.25	0.8
0.9	0.55	0.50	0.45	5 0.4	25 0.	40 0.	375	0.35	0.325	0.30	0.275	0.25	0.9
	0.50	0.47	5 0.45	0.4	25 0.4	40 0.	375	0.35	0.325	0.30	0.275	0.25	1
or over	1.00	0.95	0.90	0.8	5 0.0	80 0.	.75	0.70	0.65	0.60	0.55	0.50	orover
1	1			Values	s of D	1=x	from	other	suppo	rt	1		1
1n 0 m	Values of $D_L = x$ from other support In both the above tables $R = 0$ indicates one wheel instead of two. When $B = 0.5858L$ the moment with one wheel in the center of span is equal to the maximum moment with both wheels on.												

Contributed by John S. Myers, MACHINERY'S Data Sheet No. 85. Explanatory note: Page 10.

No. 18 BEAM FORMULAS AND STRUCTURAL DESIGN SAFE STRESSES FOR BEAMS UNSUPPORTED LATERALLY

In order to provide the same security in both flanges of a beam the compression flange should either be supported against lateral flexure at distances not greater than 20 times the flange width, or a lower stress should be used for the compression flange than is permissible for the tension flange.

The formula given in the Cambria Steel Co's. hand-book corresponding to 16000 lbs. per sq inch safe tensile stress is: $S_{c} = \frac{18000}{12} ,$

Pounds.

of

Thousands c

.512

Flange,

Compression

5tress 7

Allowable 6

5 11 54 of Values

-C

30

40

3

2L

20

A

60

70

Ratio of Span to Flange Width = 4/h.

50

11

10

9

8 11

15

where the letters have the following values; Sc = safe compressive stress. L=length unsupported in inches. 6 = breadth of flange in inches.

The curve marked 16000 was plotted according to the above formula.

The curves for 14000, 12500 and 10000 corresponding tensile stresses were plotted from proportionally lower values.

Values of Sc read from the 10000 curve, if considered as a decimal, give the ratio of safe compressive to safe tensile stress.

> Values read from the dotted line in the same manner, give this ratio according to Pencoud and Carnegie Co's hand-book.

Examples:

 $\frac{L}{b}$ = 55, sate tension = 12500. What is the safe compression?

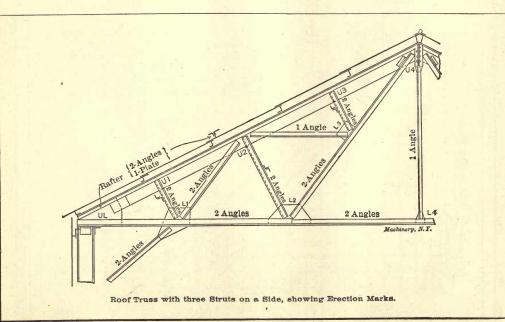
Following as indicated by arrows, the 12500 curve gives 7000; answer. Following from A to B then to C indicates that for = 90 Sc = 0.3 St.

80

B

A

90


100

STRESSES IN THE MEMBERS OF ROOF TRUSSES.

The accompanying tables give the percentage of the total load on a roof truss which each member of that truss bears. This load is made up of the weight due to the material of the roof covering, slate, corrugated iron, or other material; the weight due to miscellaneous loads, such as shafting, suspended machinery, etc.; and the load due to wind pressure and snow. The sum of all these for a surface whose length is the total width of the roof from eaves to eaves, and whose width is the distance between the center line of adjacent spans, is the total load on each span.

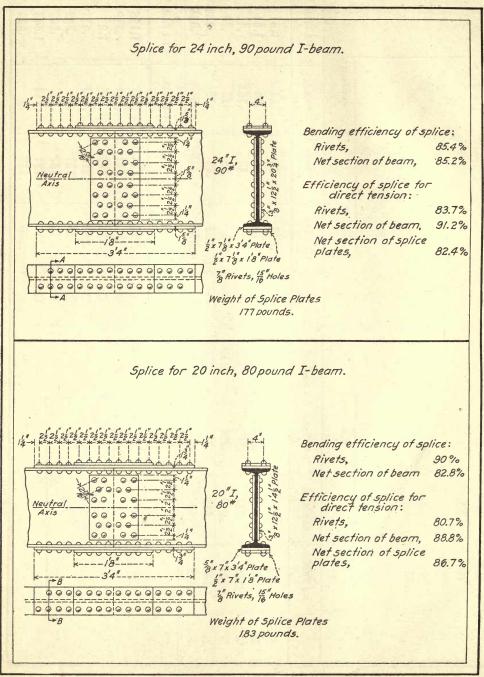
Having found the total load, select a suitable form of truss from among those represented by the skeleton diagrams in the accompanying data sheets. In these diagrams the tension members are represented by single lines, and the compression members by double lines. Under the column representing the desired pitch of roof will be found a coefficient for each member of the truss. This coefficient, multiplied by the total load, gives the tensile or compressive stress, as the case may be, for that member Knowing the values of these stresses, suitable sections may be calculated from the data given in the handbooks of the various steel companies. The pitch of a roof is the height of the span divided by its length.

The cut below illustrates the construction of a common form of roof truss. "Erection marks," U L, L 1, L 2, etc, are shown at all the connection points. Every member which goes to make up the connection at any given point is marked in the shop with the erection mark for that connection, and the drawings for each of the parts are similarly marked. This facilitates both the checking of the calculations and the erection of the structure.

Contributed by R. F. Kiefer, MACHINERY'S Data Sheet No. 53. Explanatory note: Page 47.

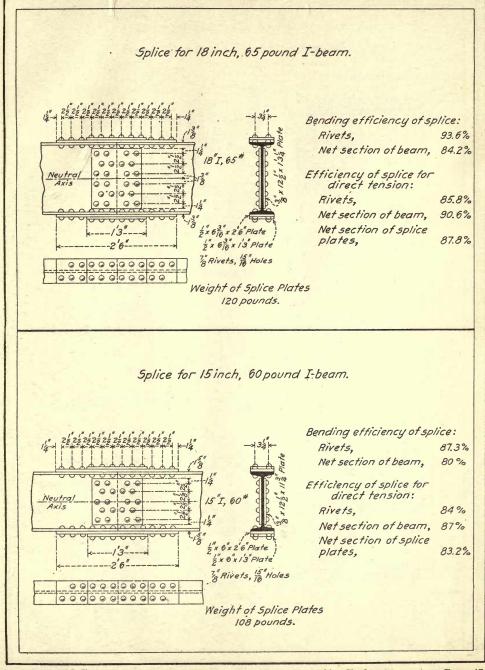
1	No. 18 BEAM FORM	ULAS	AND	STR	UCT	URA	L DE	ESIGN			33	ing dir	
		1-5 Pitch.	1.122	1,122	.898	.325	.25	.267	.167	1.042	.833	.625	うち あいのうちょうちょう
(Continued.)	Machinery, M.T.	1-4 Pitch.	.932	.932	.745	.301	.25	.236	.167	.833	.667	·5	Domo 47
		30° Pitch.	.833	.833	.667	.289	.25	.220	.167	.722	.577	.433	132
TRUSSI	₩	1-3 Pitch.	.751	.751	9	.279	.25	.208	.167	.625	.5	.375	Controlled by D. D. Martin Martha Parts Chart No. 50 Wardsundar
F ROOF			А	В	C	D	Е	Ъ	G	Н	Ţ	K	THE TOTAL
RESSES IN THE MEMBERS OF ROOF TRUSSES.		1-5 Pitch.	1.178	1.005	1.005	.673	.2445	195	.168	1.094	.782	.375	1.4
THE MER	Machinery, N.Y.	1-4 Pitch.	979	.839	839	.562	.225	195	14	.875	.625	.375	
SSES IN		30° Pitch.	.875	.75	.75	2	.217	.217	.125	.758	.542	.375	H -1 5-1-1-1
STRE		1-3 Pitch.	.789	.677	.677	.451	.21	.21	.1127	.665	.469	.375	
			A	В	C	D	ы	<u>ب</u> ري	, H	ſ.	K	I	

		1-6 Pitch.	1,18	1,133	1,087	1.04	.116	.157	.232	.157	.116	.471	.625	- 94	1.096	1514	.4	1.077	
(Continued.)	H Kachinger, N. F.	1-4 Pitch.	978	.922	.866	.81	.112	.125	.224	.125	.112	.375	.5	.75	.8/5	62.	2	1.118	Page 47.
	A CONTRACTOR	30° Pitch.	.875	.813	.75	.688	.109	.109	.217	.109	.109	.326	434	.651	97.	112.	.577	1.155	Exulanatory note: Pas
ROOF TRUSSES.		1-3 Pitch.	62.	.72	.651	.532	.104	.094	.208	.094	.104	.282	.376	.564	1008	188	.667	1.202	53 Renlanat
OF ROOF			A	В	С	D	E	Γ.	Ċ	Н	<u>г</u>	K	Γ	W X	ς () 	Tang	Sec.	a Shoot No
MEMBERS O		1-5 Pitch.	1.178	1.178	1,009	.841	100	101	GZ.	.294	.188	.2	.125	1.094	820		.731	.625	R Riefer MacHINEBR's Date Shoot No 62
IN THE ME	Machinery, N. F.	1-4 Pitch.	.978	.978	.839	669.	98	10	62.	.225	.188	.177	.125	.875	75		.625	-2	
STRESSES IN	A A A A A A A A A A A A A A A A A A A	30° Pitch.	.875	.875	.75	.625	626	212	62.	.217	.188	,165	.125	.758	ц Ч		.541	.433	Contributed by R.
STRI		1-3 Pitch.	.789	.789	.676	.563	1967	102	62.	.210	.188	.156	.125	.656	563	000	.469	.375	Cot
			Å	В	C	D	Ę	1 [+	4 (5	Η	ſ	K	L	M	W I	Z	0	

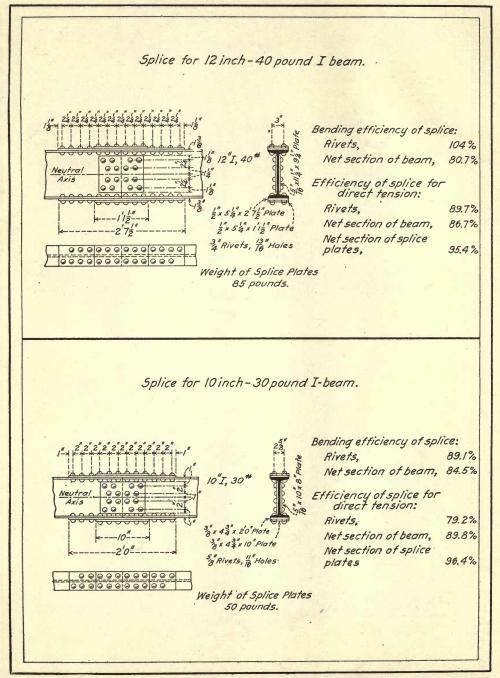

34

No. 18

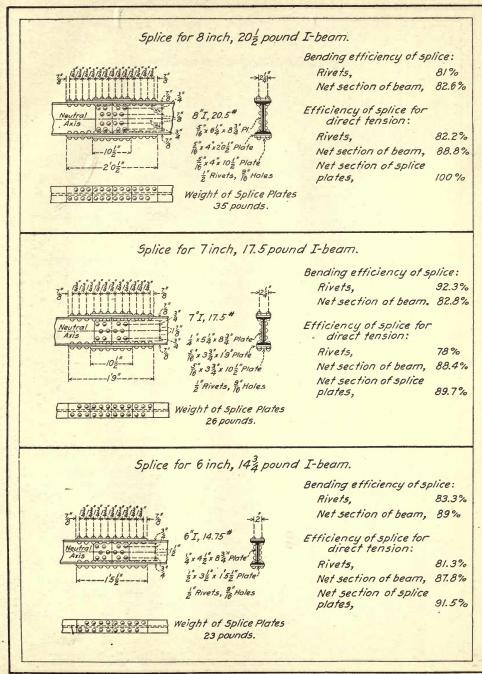
BEAM FORMULAS AND STRUCTURAL DESIGN


		1-5 Pitch.	1.01 1.01 1.01 .25 .938 .625	1-5 Pitch.	1,123	.932	1.0	.418	.202	.202	1.043	625	
itinued.)	Rachinery, N. F.	1-4 Pitch.	.84 .84 .353 .25 .75 .75	1-4 Pitch.	.937	.759	.785	.338	.18	.18	.838	5	age 47.
ES. (Con		30° Pitch.	.75 .75 .33 .25 .65 .433	30° Pitch.	.833	.666	.666	.288	.167	.167	.721	.433	atory note: F
F TRUSS		1-3 Pitch.	.676 .676 .313 .313 .25 .563 .375	1-3 Pitch.	.742	.58	.555	.242	,155	.155	.617	.375	o. 53. Explan
F ROO			予 王 ひ C 田 子		A	р	C	Ω	E	٤	5	Η	ta Sheet N
STRESSES IN THE MEMBERS OF ROOF TRUSSES. (Continued.)	The second secon	1-5 Pitch.	1.01 .917 .312 .232 .938 .625		12.								Contributed by R. F. Kiefer, MACHINERY'S Data Sheet No. 53. Explanatory note: Page 47.
THE ME	Machinery, N.T.	1-4 Pitch.	.839 .727 .25 .25 .25 .75 .5				F	~		Н	Machinery, N.Y.		R. F. Kiefer, M
ESSES IN	La La	30° Pitch.	75 625 217 217 217 649 43		•		1 de la				5		ontributed by
STR		1-3 Pitch.	676 537 188 208 563 375						M				Ö
			予 正 U C B F				14						-

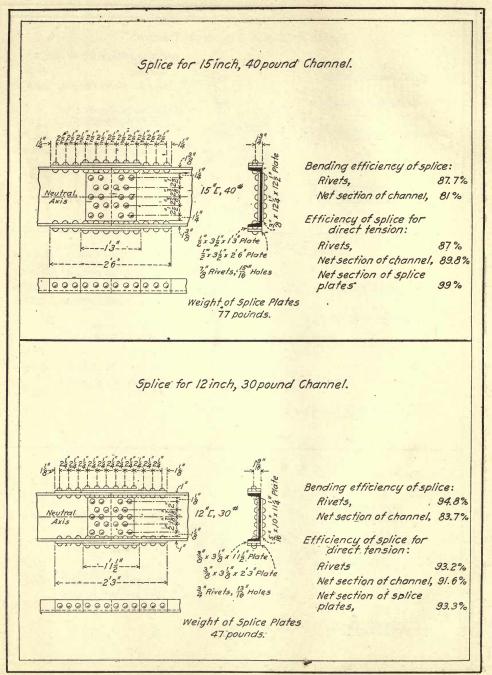
SPLICES FOR I-BEAMS-I


Contributed by A. L. Campbell, MACHINERY'S Data Sheet No. 123. Explanatory note: Page 47.

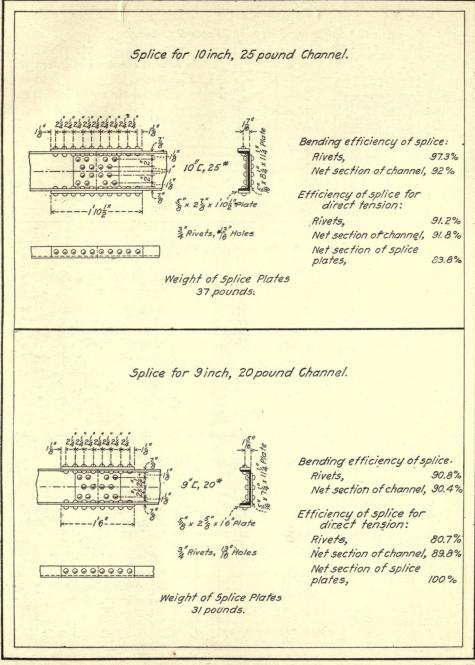
SPLICES FOR I-BEAMS-II


Contributed by A. L. Campbell, MACHINERY'S Data Sheet No. 123. Explanatory note: Page 47.

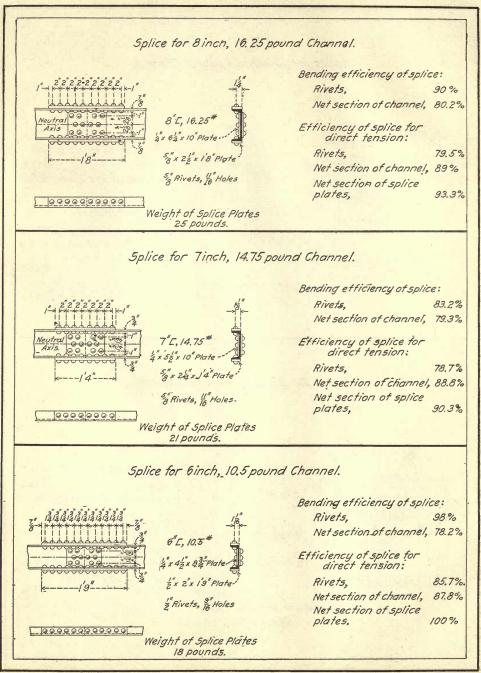
SPLICES FOR I-BEAMS-III


Contributed by A. L. Campbell, MACHINERY'S Data Sheet No. 123. Explanatory note; Page 47.

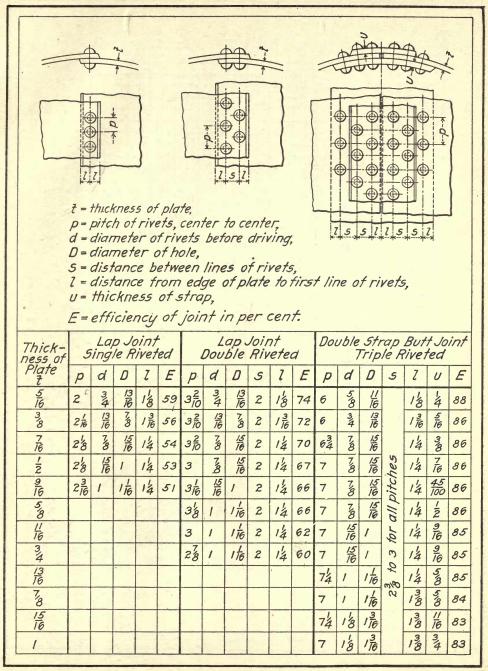
SPLICES FOR I-BEAMS-IV


Contributed by A. L. Campbell, MACHINERY'S Data Sheet No. 123. Explanatory note: Page 47.

SPLICES FOR CHANNELS-I

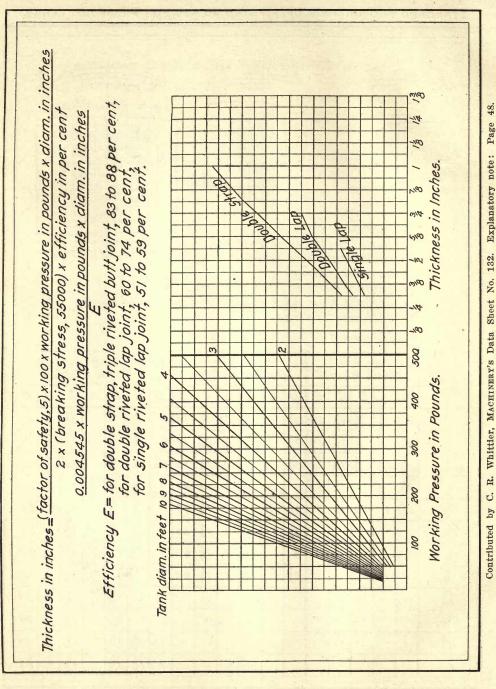

Contributed by A. L. Campbell, MACHINERY'S Data Sheet No. 125. Explanatory note: Page 47.

SPLICES FOR CHANNELS-II

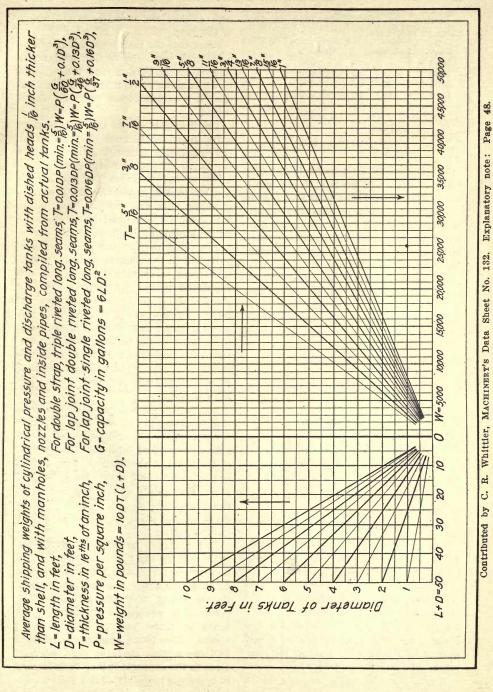

Contributed by A. L. Campbell, MACHINERY'S Data Sheet No. 125. Explanatory note: Page 47.

SPLICES FOR CHANNELS-III

Contributed by A. L. Campbell, MACHINERY'S Data Sheet No. 125. Explanatory note: Page 47.


STANDARD PROPORTIONS OF RIVETED JOINTS FOR PRESSURE TANKS

Contributed by C. R. Whittier, MACHINERY'S Data Sheet No. 132. Explanatory note: Page 48.


44

MACHINERY'S DATA SHEETS

No. 18

BEAM FORMULAS AND STRUCTURAL DESIGN

No. 18

Taking the 5000-pound load as the point of reference,

Loads Distances 5000×0 $3000 \times (+60)$		Moments 000 180,000
		- 180,000
15,000 lbs. 	- == 20	300,000) inches.

15,000

The dimension thus found is the distance of center of gravity to the right of the line of reference (=x) in Fig. 1.

Placing the load so that the center of the span is midway between the center of gravity and the heaviest wheel load, or, what is the same thing, placing the load so that the center of gravity of all the loads and the heaviest load are equidistant from the supports, gives the locations as indicated at the bottom of Fig. 1. To find R_1 and R_r take moments as follows: Since the center of gravity of all loads is now known, consider them concentrated at this point; then R_1

 $=\frac{15,000 \times 110}{240} = 6875 \text{ pounds and } R_{\rm r} = 15,000 \times 130} = 8125 \text{ pounds. Taking}$

240

moments under the 5000-pound load,

 $\begin{array}{rrr} 6875 \times 110 & = + \ 756,250 \\ 4000 \times (- \ 45) & = - \ 180,000 \end{array}$

Maximum moment = 576,250 inchpounds.

Two Wheels Equally Loaded

The general rule previously stated, when applied to two wheels equally loaded, may be given as follows:

When the wheel-base is less than $(2 - \sqrt{2})$ times the span $(= 0.5858 \times \text{span})$, the maximum moment occurs with both wheels on the span and when the distance from one support to the wheel nearest to it is equal to one-half the span minus one-fourth the wheel-base.

When the wheel-base exceeds 0.5858 times the span, the maximum moment occurs when one wheel is in the center of the span.

From this the maximum stress can be calculated when the section modulus is known, or the section modulus required to withstand a given moment and not exceed a specified stress may be determined.

The first part of the chart on page 28 gives in condensed form the location for the maximum moment, with formulas for same. The second part gives a summary of the formulas for two wheels equally loaded, together with diagrams showing how the moment and shear varies for a specific location of the load, or for any point of the beam.

The third part of the chart on page 28 refers to the oblique reaction caused in a beam carrying a moving load and supported at one end by a tie-rod or a strut making an acute angle with the beam. In the case of a strut, this produces a direct tensile stress in the beam in addition to the bending stress, and in the case of a tie-rod a direct compressive stress is produced. A familiar example of this latter case is found in the ordinary jib crane.

The tables on page 29 give values of the variable V_m in the formula $M = WLV_m$, where M = the moment occurring at any point throughout the length of the beam, L = length of span, and W= the load. The lower table on this page gives values of the variable V_s , in the formula $S = WV_s$ where S = the shear at any point of the beam, and W= the load.

The diagram on page 30 gives the same data as the tables on page 29, but in diagram form, which makes it easier to interpolate for intermediate values. By the aid of these tables or diagrams, the moment or shear at any point on the beam or girder can be quickly determined. This being known, it is easy to find the section modulus required, how close to the supports it may be necessary to bring the cover plates if a built-up section be used, and at what point the shear decreases sufficiently so that the web stiffeners may be omitted when such is permissible.

Example.—A girder of 20 feet span supports a load of 30,000 pounds carried on two wheels equally loaded, the wheelbase being 10 feet. What is the maximum moment?

Solution.— $L = 12 \times 20 = 240$ inches; W = 30,000 pounds; B = 10 feet = 0.5L. From the table on page 29, or the diagram on page 30, the maximum value of V_m is found to be 0.1406, say 0.14, then $M = WLV_m = 30,000 \times 240 \times 0.14 =$ 1,008,000 inch-pounds. This is the answer to the question.

Example.—A girder carries a moving load on two wheels equally loaded, the wheel-base being 0.2 of the span. At what point could the outside cover plate be stopped off if it constitutes one-third of the flange area?

Solution.—It could be stopped off at a point where the moment is two-thirds the value of the maximum moment. Referring to the diagram on page 30, the curve for B = 0.2L shows the maximum value of V_m to be 0.2025. Two-thirds of 0.2025 = 0.135. The same curve shows for $V_m = 0.135$ that D = about 0.19L, which is the required answer. If the girder were 40 feet long, the outside cover plate could be stopped off at 0.19 × 40 = 7.6 feet from each end. The plate should be carried beyond the theoretic point for a distance sufficient to insert two or three rivets.

Example.—The wheel-base being 0.4 the span, what is the maximum shear?

Solution.—By referring to either the table or diagram, the maximum shear is found to be 0.8 of the load.

Beams Unsupported Laterally

The Cambria Steel Co. gives the following formula,

$$S_{\rm c} = \frac{18,000}{1 + \frac{L^2}{3000 \ b^2}}$$

in which $S_c = safe$ compressive stress

when the safe tensile stress is 16,000 pounds per square inch. This formula is derived from Gordon's by making an allowance for a factor of safety and taking into account the fact that the compression flange receives some support from the parts in tension.

The diagram on page 31 is based upon this formula, which gives values on the side of safety. The curve giving safe compressive stresses for various ratios of L_{i}

--- corresponding to 16,000 pounds per b

square inch tensile stress was laid out from values calculated by the above formula. The curves for the lower allowable tensile stresses were reduced proportionally; thus, for 14,000 pounds ten-14.000

sile stress any value of $S_c = \frac{1}{16,000} =$

7% of the value for 16,000 tensile stress. [MACHINERY, March, 1908, Maximum Stresses.]

Stresses in the Members of Roof Trusses

On pages 32 to 35, inclusive, explanatory matter and tables are given for determining the stresses in the members of roof trusses. The tables give the percentage which each member of a roof truss bears of the total load, in the various designs, and the explanatory remarks on page 32 give further explanation regarding the method of using these tables.

Splices for I-Beams and Channels

It often happens in the use of rolled shapes for structural purposes, that the material could be spliced together conveniently and with economy, provided an efficient and reliable form of splice were available. Splices for I-beams and channels, efficiently arranged and carefully calculated, are shown on pages 36 to 42, inclusive. The sections are taken from Carnegie's Hand-book, and a medium section of each size has been chosen. In every case the splices for I-beams and

channels consist of a top and bottom plate, or plates, riveted to the flanges, and two side plates riveted to the web.

48

The reason why medium-sized sections have been selected for the calculations, rather than the so-called standard sections, is that the medium-sized section more nearly fulfills the average requirements in design, and as the steel mills constantly roll other than the standard sections, they can easily be obtained.

The efficiency of the riveting, net section of the beam, etc., are also given in percentages on the pages referred to. Splices are not shown for I-beams and channels smaller than the 6-inch sections, because it is not often necessary to splice such small pieces; also, the efficiency of the splice would probably be low. [MACHINERY, November, 1909, Splices for I-beams and Channels.]

Proportions of Riveted Joints for Pressure Tanks

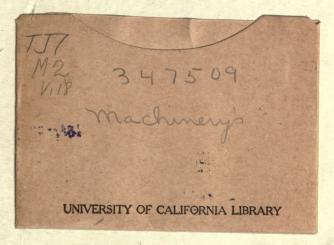
The tables and diagrams on pages 43, 44 and 45 are made up for use when designing tanks subjected to internal pressure. On page 43 are given standard proportions for riveted joints for tanks of this kind. The standard longitudinal seams used for pressure tanks are: 1. A single riveted lap joint with an efficiency from 51 to 59 per cent. 2. A double riveted lap joint with an efficiency ranging from 60 to 74 per cent. 3. A double strap triple riveted butt joint with an efficiency varying from 83 to 88 per cent.

The dimensions required for laying out the riveted joints for any of these three types are given in the table on page 43. Page 44 gives the plate thickness required for varying working pressures in pounds, tank diameter in feet, and different types of riveted joint. For example, assume that the working pressure in a tank is 200 pounds per square inch, that the tank is 6 feet in diameter, and that a double strap triple riveted butt joint is to be used. Then locate 200 pounds on the scale at the bottom of the diagram on page 44, and follow the vertical line from 200 until it intersects the diagonal line for 6 feet tank diam-From the point of intersection eter. follow the horizontal line until intersecting the diagonal line for a double strap joint. From the point of intersection thus located follow a vertical line downwards to the bottom scale. It will be seen that a plate thickness of slightly more than 3/4 inch is required. In this case, a plate 13/16 inch thick would probably be used.

Page 45 gives a diagram by means of which it is possible to determine the approximate weight of a pressure tank when the length and diameter in feet and the thickness of the shell in inches are known. Assume as an example that the diameter of a tank is 10 feet and the length 20 feet. The plate thickness is 5/8 inch. Adding the length and diameter together, the sum 30 feet is located to the left on the bottom scale in the diagram on page 45 and the vertical line from 30 is followed until it intersects the diagonal line corresponding to a diameter of 10 feet. From the point of intersection follow the horizontal line until it intersects the diagonal line for 5/8-inch plate thickness, and from this point of intersection follow the vertical line downward to the bottom, where the approximate weight of the tank, 30,000 pounds, is found. [MACHINERY, July, 1910, Weights of Cylindrical Pressure Tanks.]

No. 18

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW


142 6

AN INITIAL FINE OF 25 CENTS

WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

NOV 24 ::	18DEC'57群」
APK 30 1942	REC'D LD
	DEC 4 1957
FEB 22 1944	18Apr'58 DS
DEC 1 1944	REC'D LD
FEB 23 1945	APR 15 1953
21 Dec'48 Cb	
No. of the second s	13Dac'SOCT
28 Jan' 49 A.P.	
16jun '51CH p	NOV 29 1960
5Jun ⁷ 51LL 19Apr 56CT	
APR - 5 1956 LU	
	LD 21-100m-7,'40(6936s)

YC 66827

No. 16. Machine Tool Drives.—Speeds and Feeds of Machine Tools; Geared or Single Pulley Drives; Drives for High Speed Cutting Tools.

No. 17. Strength of Cylinders—For mulas, Charts, and Diagrams.

No. 18. Shop Arithmetic for the Ma-chinist.—Tapers; Change Gears: Cutting Speeds; Freeds: Indexing; Gearing for Cutting Spirals; Angles.

Use of Formulas in Mechanics. No. 19. -With numerous applications.

No. 20. Spiral Gearing .- Rules. Formulas, and Diagrams. etc

Measuring Tools .--- History and No. 21. Development of Standard Measurements; Special Calipers: Compasses; Micrometer Tools; Protractors, etc. -

No. 22. Calculation of Elements of Machine Design. - Fractor of Safety; Strength of Bolts; Riveted Joints; Keys and Keyways; Toggle-joints.

No. 23. Theory of Grane Design.—Jib Granes: Calculation of Shaft, Cears, and Beatings: Force Required to Move Crane Trolleys; Pillar Cranes.

No. 24. Examples of Calculating De-signs.—Charts in Designing: Punch and Riveter Frames; Shear Frames; Billet and Bar Passes; etc.

No. 25. Deep Hole Drilling .- Methods of L rilling; 'on truction of Prills.

No. 26. Modern Punch and Die Con-struction - Construction and Use of Sub-press Di s. Modern Blanking Die Con-struction; D. awing and Forming Dies.

No. 27. Locomotive Design, Part I .-Botters, Cylinders, Pipes and Pistons.

No. 28. Locomotive Design, Part H.-Stephenson Valve Motion; Theory, Calcu-lation and Design of Valve Motion; The Walschaerts Val Mot 1.

No. 29. Locon tive Design, Part III. -Smokebox; Exacts: Pipe: Frames Cross-he: , Guide Lars; Connecting-rods; Crank-n's; ; Axles; Driving-wheels. Frames;

No. 30. Locomotive Design, Part IV.-Springs, Trueks, Cab and Tender.

No. 31. Screw Laread Tools and Gages.

No. 32 Screw Thread Cutting,-Lathe Change Gears; '1 read Tools; Kinks

No. 33. lystems and Practice of the Drafting - Room.

No. 34. Care and Repair of Dynamos and Motors.

No. 35. Tables and Formulas for Shop and Drafting-Room. The Use of Formu-Ins; Solution of Triangles: Strength of Materials; Gearing; Screw Thrends; Tap Drills; Drill Sizes; Tapers; Keys; Jig Bushings, etc.

No. 36. Iron and Steel. Principles of Manufacture and Treatment.

No. 37. Bevel Gearing.—Rules and ormulas, fixamples of Calculation;

Tooth Outlines: Strength and Durability, Design, Methods of Cutting Teeth.

1188.2.

No. 38 Grinding and Grinding Ma chines

No. 39. Fans, Ventilation and Heating.

Fans, Vealer, Shop Heating.
 No. 40. Day Wheels. Their Purpose.
 Calculation and Design.
 41. Jigs and Fixtures, Part I.-

10.41. Jigs and Fixtures, Part I.-Principles of Jig and Pixture Design: Drill and Boring Jig Bushings; Locating Points; Clamping Devices.

No. 42. Jigs and Fixtures, Part II.-

No. 43. Jigs and Fixtures, Part III.-Boring and Milling Fixtures.

No. 44. Machine Blacksmithing .-- Systems, Tools and Machines used.

No. 45. Drop Forging. - Lav-out of Plant: Methods of Drop Forging; Dies.

No. 46. Hardening and Tempering.-Hardening Plants; Treating High-Speed Steel: Hardening Gages; Hardening

No. 47. Electric O Design and Calculation Overhead Cranes .---

No. 48. Files and Filing .- Types of Files, Using and Making Files.

No. 49. Girders for Electric Overhead

No. 50. No. 50. Principles and Practice of As-sembling Machine Tools, Part I.

No. 51. Principles and Fractice of As-sembling Machine Tools, Part 11.

No. 52. Advanced Shop Arithmetic for the Machinist.

No. 53. Use of Logarithms and Logarithmic Tables.

No. 54. Solution of Triangles. Methods, Rules and Examples

No. 55. Solution of Triangles, Part II, Tables of Natural Functions.

No. 56. Tall Bearings .- Principles of Design and Construction.

No. 57. Metal Spinning .- Machines. Tools and Methods Used.

No. 59. Machines, Tools and Methods of Automobile Manufacture.

No. 60. Construction and Manufacture of Automobiles.

Appliances and Methods

No. 62. Hardness and Durability Test-ing of Wetals.

No. 64. Gage Making and Lapping.

No 65. Formulas and Constants for Gas Engine Design.

102 12

MACHINERY, the monthly mechanical journal, originator of the Reference Data Sheet Series, is published in four editions—the Shop Edition. 3° the Engineering Edition, \$2.00 a year; the Railway Edition, \$2.00 · Foreign Edition. \$3.00 a year.

The Industrial Press, Publishers of MACI

49-55 Lafaye'te Street,