MACHINERY'S DATA SHEETS

No. 18

Beam Formulas and Structural Design

PRICE 25 CENTS

CONTENTS

Formulas for Round and Rectangular Solid Beams.................... 4
Formulas for Calculatıng the Strength of Beams...................... 5
Table of Sectinn Modulus and Weight per Foot of Beams............. 6
Beam Charts... .. 8
Areas of Small Rectangles 11
Net Areas of Structural Angles... 14
Loads for Eccentrically Loaded Invet Groups............................ . . 18
Angles of Hopper Side Intirsections. 22
Sections for Crane and Telpher Ruhways................................ . 26
Formulas for Moving Lnads... 28
Tables and Diagrams for Calculating Bending Moments and Shearing Stresses

29
Safe Stress is for Beams Unsupported Laterally 31
Stresses in the Nembers of Roof Trusses................................ . 32
Splices for I-Beams and Channels... . . 36
Tables and Diagrams for Designing Pressure Tanks................. . 43
Weights of Cylindrieal Pressure Tanks 45

$$
\begin{aligned}
& \text { The Industrial Press, 49-55 Lalayette Street. New York } \\
& \text { Publishers of MACHINERY } \\
& \text { copyright. 1910. the industrial press, new york }
\end{aligned}
$$

MACHINERY'S DATA SHEET SERIES

COMPILED FROM MACHINERY'S MONTHLY DATA
SHEETS AND ARRANGED WITH EXPLANATORY NOTES

No. 18

Beam Formulas and Structural Design

CONTENTS

Formulas for Round and Rectangular Solid Beams 4
Formulas for Calculating the Strength of Beams 5
Table of Section Modulus and Weight per Foot of Beams 6
Beam Charts 8
Areas of Small Rectangles 11
Net Areas of Structural Angles 14
Loads for Eccentrically Loaded Rivet Groups 18
Angles of Hopper Side Intersections 22
Sections for Crane and Telpher Runways 26
Formulas for Moving Loads 28
Tables and Diagrams for Calculating Bending Moments and Shearing Stresses 29
Safe Stresses for Beams Unsupported Laterally 31
Stresses in the Members of Roof Trusses 32
Splices for I-Beams and Channels 36
Tables and Diagrams for Designing Pressure Tanks: 43
Weights of Cylindrical Pressure Tanks 45

In the following pages are compiled a number of diagrams and concise tables relating to the strength of beams and structural design, carefully selected from Machinery's monthly Data Sheets, issued as supplements to the Engineering and Railway editions of Machinery since September, 1898.

In order to enhance the value of the tables and diagrams, brief explanatory notes have been provided. In many cases in these notes, references are made to articles which have appeared in Machinery, and to matter published in Machinery's Reference Series, giving additional information on the subject. These references will be of considerable value to readers who wish to make a more thorough study of the subject. In a note at the foot of each table reference is made to the page on which the explanatory note relating to the table appears.

BEAM FORMULAS AND STRUCTURAL DESIGN

Formulas and Tables for Beam Calculations

On page 4 is given a collection of formulas for beams of rectangular or round cross-section, supported and loaded in various manners. The table has been arranged in the simplest possible manner, and any required formula can be found at a glance. [Machinery, December, 1903, Flexure Simplified; March and May, 1907, Fundamental Ideas on the Strength of Beams; Machinery's Reference Series No. 19, Use of Formulas in Mechanics, Second Edition, Chapter V, The First Principles of the Strength of Beams.]
On page 5 are given constants used in beam calculations for various crosssections of beam. The formulas for maximum bending moment and maximum deflection for beams loaded in various ways are also given on the same page. [Machinery, June, 1909, The Relation of Depth to Span of a Girder; January, 1910, To Calculate the Deflection of a Special Steel Section; February, 1910, Deflection of Beam Uniformly Loaded for Part of its Length; June, 1910, Limitations of the Common Theory of Flexure.]
On pages 6 and 7 tables are given of section moduli and weights per foot of beams of round, square and rectangular section, as well as of I-beams, channels and angles. These tables will be found particularly convenient for quickly determining the sizes of beams for supporting given loads. [MachinERY, December, 1904, Strength of Beams with Ribbed Sections; June, 1905, Notes on the Strength of Beams, Plates and Columns; September, 1905, Beam Formulas; May, 1906, Sections of Cast-iron Beams.]

On pages 8 and 9 are given two beam charts by means of which the proper section to support a given load with a given length of beam may be found. The directions for the use of these charts are given on page 7.

> Areas for Small Rectangles-Net Areas of Structural Angles

On pages 11, 12 and 13 are given tables for the areas of rectangles, the sides of which are given in fractions of an inch. These tables will be found especially convenient when calculating the moment of inertia and section modulus of built-up structural shapes. [Machinery, January, 1910, To Calculate the Deflection of a Special Steel Section.]

On pages 14 to 17, inclusive, are given tables of the weight and areas of struc tural angles, together with the net area of the section with holes for rivets deducted. When using these tables, the lengths of the legs of the angles are added together, and the sum of the lengths is first found in the left-hand column of the tables. Then the thick ness of the angle is found opposite this sum in the second column; the third and fourth columns give the weight in pounds per foot, and the cross-sectional area in square inches. The remaining columns give the net area after having deducted for one or two rivets of sizes as specified at the head of the columns.

At the foot of the table on page 17 a supplementary table is given of the area which is to be deducted for various sizes of rivets and angle thicknesses. This table may be used for determining the net area of angles of dimensions not given in the table, or for rivet sizes not specified.
FORMULAS FOR ROUND AND RECTANGULAR SOLID BEAMS

Rectangular solid Beams.						Found Solid Beams.				
Style of Loading and support	b-breadth of beam in inches	$h=h e i g h t$ of beam in inches	$f=$ stress per sq. in. in extreme fibers of beam	$l=$ length of beam in inches.	$w=10 a d$ in pounds		$d=$ diameter of beam in inches	$f=$ stress per sq. in. in extreme fibers of beam	$l=$ length of beam in inches	$w=$ load in pounds
	b	h	f	7	w		d	f	Z	W
	Beam fixed at one end, loaded at the other.					Beam fixed at one end, loaded at the other.				
	$\frac{6 I w}{f h^{2}}-b$	$\sqrt{\frac{6 Z w}{b f}}=h$	$\frac{6 I W}{b h^{2}}=f$	$\frac{b f h^{2}}{6 w}-l$	$\frac{b f h^{2}}{6 l}=w$		$\sqrt[3]{\frac{10.182 w}{f}}=d$	$\frac{10.18 \text { lw }}{d^{3}}=f$	$\frac{d^{3} f}{10.18 w}=l$	$\frac{d^{3} f}{10.18 t}-w$
	Beam fixed at one end, uniform/y loaded.					Beam fixed at one end, uniformly locied.				
	$\frac{3 I W}{f h^{2}}-b$	$\sqrt{\frac{3 l w}{b f}}=h$	$\frac{3 Z W}{b h^{2}}=f$	$\frac{b f h^{2}}{3 w}-2$	$\frac{b f h^{2}}{37}=w$	$\sqrt[3]{\frac{5.092 w l}{f}}-d$		$\frac{5.092 w l}{d^{3}}=f$	$\frac{d^{5} f}{5.092 w}-2$	$\frac{d^{3} f}{5.092 l}-w$
	Beam supported at both ends, single loadin middle.					Beam supported at bothends, single load in middle.				
	$\frac{32 w}{2 f h^{2}}=b$	$\sqrt{\frac{37 w}{2 b f}}=h$	$\frac{32 w}{2 b h^{2}}=f$	$\frac{2 b f h^{2}}{3 w}=2$	$\frac{2 b f h^{2}}{32}=w$		$\sqrt[3]{\frac{2.546 w l}{f}}=d$	$\frac{2.546 w l}{d^{3}}=f$	$\frac{d^{3} f}{2.546 w}=2$	$\frac{d^{3} t}{2.546 Z}-w$
	Beam supported at both ends, uniformly loaded.					Bearn supported at both ends, uniformly loaded.				
	$\frac{37 w}{4 f h^{2}}=b$	$\sqrt{\frac{32 w}{4 b t}}=h$	$\frac{32 w}{4 b h^{2}}=f$	$\frac{4 b f h^{2}}{3 w}=l$	$\left\|\frac{4 b f n^{2}}{3 Z}=w\right\|$		$\sqrt[3]{\frac{1.273 w l}{f}}=d$	$\frac{1.273 w l}{d^{3}}=f$	$\frac{d^{3} f}{1.273 w}-2$	$\frac{d^{3} f}{1.2732}-w$
	Beam supported at both ends, single unsymmetrical load.					Beam supported at both ends, single unsymmetrical load.				
	$\frac{O w a c}{f h^{2} l}=b$	$\sqrt{\frac{6 w a c}{b f l}}=h$	$\frac{6 w a c}{b h^{2 I}}=f$	$a+c=2$	$\frac{b h^{2} f l}{6 a c}=w$		$\sqrt[3]{\frac{10.18 w a c}{f Z}}=d$	$\frac{10.18 w a c}{d^{3} z}=f$	$a+c=l$	$\frac{d^{3} f l}{10.18 a c}=w$
	Beam supported at bothends, two symmetrical loads.					Beam supported at both ends, tro symmetrica! loads.				
	$\frac{3 w a}{f h^{2}}=b$	$\sqrt{\frac{3 w a}{b f}}=h$	$\frac{3 w a}{b h^{2}}=f$	$\begin{aligned} & \text { Z, anylength } \\ & \frac{b h^{2} f}{3 w}=a \end{aligned}$	$\frac{b n^{2} t}{3 a}=w$	$\frac{d^{3} f}{5.092 w}=d$	$\sqrt[3]{\frac{5.092 w a}{f}}=d$	$\frac{5.092 w a}{d^{3}}=f$	I may be any length	$\frac{d^{3} f}{5.092 a}=w$

FORMULAS FOR CALCULATING THE STRENGTH OF BEAMS

TABLE OF SECTIOHAL MODULI AND WEIGHTS PER FOOT OF BEAMS OF VARIOUS SECTIOHS.

Contributed by J. S. Myers, Machineri's Data Sheet No. 27. Explanatory note: Page 3.

SaNnOd NI W甘ヨả NO aVOT

Designing Eccentrically Loaded Bolt and Rivet Groups

On pages 18 to 21 , inclusive, four tables are given which greatly facilitate the solution of problems in the design of eccentrically loaded bolt and rivet groups. The explanatory example on page 18 gives full directions for the use of these tables. [Machinery, August, 1910, Eccentrically Loaded Bolt and Rivet Groups.]

Angles of Hopper Side Intersections

The finding of the angle of intersection between the various inclined planes in a rectangular hopper is a rather perplexing problem. In order to make the solution of problems of this kind easier, the diagrams on pages 22,24 and 25 have been prepared. These diagrams permit the required angle of intersection to be read off at a glance, when the inclinations of the side planes of the hopper are known. The descriptive matter on page 22 and the directions for the use of the diagrams on page 23, give the necessary information for their application to practical problems.

Sections for Crane and Telpher Runways

In the design of crane, telpher and similar runways, suitable provision should be made for the lateral strength. The three types of section most commonly used for the purposes mentioned above consist of: 1. An I-beam for vertical strength with a channel riveted to the compression flange for lateral stiffness. 2. The same construction, with the addition of a smaller channel to the tension flange to increase the vertical strength. 3 . Two I-beams side by side, with a cover plate on the top flanges only.

An illustration of each of these three types is shown on pages 26 and 27 , where also the section modulus, moment of inertia and other properties of the three types of built-up sections are given. [Machinery, May, 1908, Maximum

Stresses; April, 1910, The Design of a Plate Girder.]

Formulas for Beams Supporting Moving Loads

The most common case of moving loads is that of two wheels equally loaded, such as a crane trolley on the crane bridge, or the bridge upon the runway. There is nothing difficult about finding the maximum moment, provided the location of the load upon the span which produces the maximum moment is known. The general rule covering this case is:

For moving loads, when all the loads are upon the span at once, the maximum moment under any particular load will occur when the center of the span is midway between this load and the center of gravity of all the loads.

Fig. 1
The load which produces the maximum moment will in nearly all cases be the heaviest one of the two loads adjoining the center of gravity, hence the orule may be stated:

Place the center of gravity of all the loads and the heaviest load adjacent to the center of gravity equidistant from the supports, and find the moment under the heaviest load.

Example.-What is the maximum moment produced by the system of wheel loading shown in Fig. 1?

Solution.-First find the center of gravity of all the loads by taking moments about some point of reference. Dividing the algebraic sum of the moments by the sum of the loads gives the distance from the point of reference to the center of gravity, thus:
(Continued on page 46.)

AREAS OF SMALL RECTANGLES-I

	1/32	$1 / 6$	3/32		32	16	32	$1 / 4$
1/32	0.00097			The fraction giving the altitude of the rectangle is found at top of the columns, the base in the left-hand columin, and the area in the bodyof				
$1 / 16$. 001953	0.003906						
3/32	. 002930	. 005859	0.008 .789					
$1 / 8$. 0.03906	. 007812	.011719	0.0	the fable.			
5/32	. 004883	. 009766	. 014648	. 019531	0.024414			
3/16	. 005859	.011719	. 017578	. 023437	.0292.97	0.035156		
	. 00.6836	. 013672	. 020508	. 0	. $034 / 80$. 041016	0.0478 .52	
$1 / 4$.007812	.015625	. 0	. 0312	.039.0.62	. 046875	. 054687	0.0625
	. 0	. 0	. 0	. 0	. 043945	. 052734	. 061523	2
$5 / 16$. 009766	. 0	.029297	. 039062	.048828	. 058594	. 068359	. 078125
	. 010742	. 021	. 03222	. 042969	. 05.3711	. 064453	. $075 / 95$. 085937
3/8	. 0	. 0	. 0	. 0	. 058594	. 070312	.082031	. 09375
13/32	. 0	. 0253	. 038	. 0	.063477	. 076172	. 088867	. 101562
$7 / 16$. 013672	:0	. 0	. 0	. 0	. 082.031	. 095703	.109375
$15 / 32$. 0	. 0	: 0	. 0	. 073242	. 087891	. 102539	.1/7187
$1 / 2$. 0	.03/25	. 0	. 0.0625	. 078125	. 09375	. 109375	. 125
17/32	. 0	. 0332.0	. 0498	. 06640	. 083008	. 099609	.116211	$.1328 / 2$
	. 0	. 0	. 0	. 0	. 087891	.105469	.123047	. 1
$19 / 32$. 0185	. 037109	. 0556	. $0742 / 9$. 092773	.1/1328	,129883	.148437
5/8	. 019	. 0	. 0	.078/25	. 097656	. $1 / 7 / 87$.1367/9	. 1
21/32	. 0	. 0	. 0615	.082031	:102539	.123047	. 143555	. 164062
$11 / 16$. 0	. 0429	. 0	. 085937	. 107422	.128906	. 150390	$.17 / 875$
23/32	. 022	. 0	. 0673	. 0	./1/2305	.134766	. 157227	. 1
$3 / 4$. 023.4	.0468	. 0703	. 0937	. $117 / 87$. 140625	. 164062	. 1875
25	. 024	. 0	. 0.732	. 09765	. 122070	. 146484	.170898	.1953/2
$13 / 16$	$\therefore 025391$. 050	.0.7.6! 72	.1015	.126953	. 152344	. 177734	.203125
$27 / 32$. 026367	. 05273	:0791	. 1054	.13/836	.158203	. 1845.70	. 21093
$7 / 8$.027344	. 054687	.082031	.109375	.1367/9	. 164062	.19/406	. 21875
29/32	.028320	:056641	. 084961	113281	.14/602	.169922	.198242	. 226562
$15 / 16$.029297	. 058594	. 087891	.117187	$: 146484$.175781	.205078	.23437
31/32	$.0302^{1} 73$. 06054	. 090820	.121094	.151367	.18/641	.21/.9/4	.242/87
1	. $03 / 25$.	. 0625	. 09375	$.125^{\circ}$.15625	18.75	.21875	. 25

The areas of intermediate rectangles varying by $\frac{1}{64}$ can be found by interpolation as the following examples show:

One side given in 64 ths.

$$
\left\{\begin{array}{l}
\frac{3}{32} \times \frac{5}{64}=(\text { next smaller area }+ \text { next larger area }) \div 2 \\
\text { next smaller area }=\frac{3}{32} \times \frac{1}{16}=0.005859 \\
+ \text { next larger area }=\frac{3}{32} \times \frac{3}{32}=\frac{0.008789}{0.014648} \\
2
\end{array}\right.
$$ (Continued on Sheet. No. 2.)

AREAS OF SMALL RECTANGLES-II

	9/32	$5 / 16$	1/32	$3 / 8$	13/32	$7 / 6$	15/32	1/2
9/32	0.079102							
$5 / 16$.087891	0.097 .656						
$11 / 32$. 0906680	. 107422	$0.1!8: 164$					
3/8	. 10546.9	./17187	. 128.906	0.140625				
13/32	. 114258	.126953	. 139648	. 152344	0.165039			
$7 / 16$.123047	. 136719	. 15039%	. 164062	. 177734	0.191406		
1532	. $13 / 8136$.146484	.161133	. 175781	. 190430	. 205078	0.219727	
1/2	. 140625	. 15625	. $17 / 875$.1875	.203125	. 21875	. 234375	0.25
7/32	.149414	.166016	. 182617	.199219	. 215820	.232422	. 249023	. 265625
9/16	.158203	. 175781	. 193359	. 210937	.228516	. 246094	. 263672	. 28125
1932	. 166992	. 185547	. 204102	. 222656	.241211	.259766	. 278320	.296875
5/8	. 175781	:195312	. 214844	. 234375	. 253906	. 273437	. 292969	. 3125
2132	. 184570	. 205078	. 225586	. 246094	. 266602	. 287109	-307617	. 328125
$11 / 16$.193359	. 214844	:236328	. 257812	. 279297	.300781	. 322266	. 34375
2332	. 202148	. 224609	. 247070	.26953/	.29'1992	. 314453	. 336914	. 359375
$\frac{3}{4}$. 210937	:234375	.257812	. 28125	. 304687	. 328125	. 351562	. 375
${ }^{25}$. 219727	.24414!	. 268555	. 292969	, 317383	. 341797	. 366211	. 390625
13/6	. 228516	. 253906	. 279297	.304687	. 330078	. 355469	. 380859	. 40625
27/32	. 237305	:2636.72	. 290039	. 316406	".342773	.369141	. 395508	. 421875
$7 / 8$. 246094	. 273437	. 300781	.328125	-.355.469	.382812	. 410.156	. 4375
29.3	. 254883	. 283203	. 311523	. 339844	:368164	. 396.484	:424805	. 453125
15/16	. 263672	.292969	. 322266	.35/562	. 380859	.410156	.439453	. 46875
31/32	. 272461	. 302734	. 333008	. 363281	. 393555	.423828	. 454102	484375
! 1 ".	. 28125	. 3125	. 34375	. 375	. 40625	. 4375	. 46875	. 5
	ides giv	Example en in 64ths.	terpola $\frac{3}{64} \times \frac{7}{64}=$ next small next larg	ation (Con next small ller area $=$ er area $=$	ntinued) ller area + $\begin{aligned} & \frac{1}{32} \times \frac{3}{32}=0.0 \\ & \frac{1}{16} \times \frac{1}{8}=\frac{0.0}{0.0} \end{aligned}$ deduc	next large $\frac{0.002930}{\frac{0.007812}{20 t^{2}\left(\frac{1}{64}\right)^{2}}}=$	area. - $\begin{aligned} & =0.005371 \\ & =0.000244 \\ & 0.005127 \end{aligned}$	$\left.\frac{1}{64}\right)^{2}$

AREAS OF SMALL RECTANGLES-III

Contributed by Martin Joachimson, Machinery's Data Sheet No. 126. Explanatory note: Page 3.

NET AREAS OF STRUCTURAL ANGLES-I

Sum of Length of Legs	Thickness	Weight	Area	Area after Deducting for				
				One $5 / 8$ Rivet	$3 / 4$ Rivets		$7 / 8$ Rivets.	
					One	Two	One	Two
$4^{\prime \prime}$	3/16	2.5	0.72	0.58	-	-	-	-
	$1 / 4$	3.2	0.94	0.75	-	-	-	-
	5/16	4.0	1.15	0.92	-	-	-	-
	3/8	4.7	1.36	1.08	-	-	-	-
	$7 / 16$	5.3	1.56	1.23	-	-	-	-
$4 \frac{1}{2}^{\prime \prime}$	3/16	2.8	0.81	0.67	0.65	-	-	-
	1/4	3.7	1.06	0.87	0.84	0.62	0.81	0.56
	5/16	4.5	1.31	1.08	1.04	0.77	1.00	0.69
	3/8	5.3	1.55	1.27	1.22	0.89	1.17	$0.79{ }^{\circ}$
	$7 / 16$	6.1	1.78	1.45	1.40	102.	1.34	0.90
	1/2	6.8	2.00	1.62	1.56	1.12	1.50	1.00
$5^{\prime \prime}$	3/16	3.1	0.90	0.76	0.74	-	-	-
	1/4	4.1	1.19	1.00	0.97	0.75	0.94	0.69
	5/16	5.0	1.47	1.24	1.20	0.93	1.16	0.85
	3/8	5.9	1.73	1.45	1.40	1.07	1.35	0.97
	7/16	6.8	2.00	1.67	1.62	1.24	1.56	1.12
	1/2	7.7	2.25	1.87	1.81	1.37	1.75	1.25
$5 \frac{1}{2}^{11}$	$1 / 4$	4.5	1.31	1.12	1.09	0.87	1.06	0.81
	5/16	5.5	1.62	1.39	1.35	1.08	1.31	1.00
	$3 / 8$	6.6	1.92	1.64	1.59	1.26	1.54	1.16
	$7 / 16$	7.6	2.22	1.89	1.84	1.46	1.78	1.34
	1/2	8.5	2.50	2.12	2.06	1.62	2.00	1.50
	$9 / 16$	9.5	2.78	2.36	2.29	1.80	2.22	1.66
$6^{\prime \prime}$	1/4	4.9	1.44	1.25	1.22	1.00	1.19	0.94
	5/16	6.1	1.78	1.55	1.51	1.24	1.47	1.16
	3/8	7.2	2.11	1.83	1.78	1.45	1.73	1.35
	7/16	8.3	2.43	2.10	2.05	1.67	1.99	1.55
	1/2	9.4	2.75	2.37	2.31	1.87	2.25	1.75
	9/16	10.4	3.06	2.64	2.57	2.08	2.50	1.94
	5/8	11.4	3.36	2.89	2.81	2.26	2.73	2.10
	$11 / 16$	12.4	3.65	3.13	3.03	2.43	2.96	2.27
$6 \frac{1^{\prime \prime}}{2}$	5/16	6.6	1.93	1.70	1.66	1.39	1.62	1.31
	3/8	7.8	2.30	2.02	1.97	1.64	1.92	1.54
	$7 / 16$	9.1	2.65	2.32	2.27	1.89	2.21	1.77
	1/2	10.2	3.00	2.63	2.56	2.12	2.50	2.00
	9/16	11.4	3.34	2.92	2.85	2.36	2.78	2.22
	5/8	12.5	3.67	3.20	3.12	2.5 .7	3.04	2.41
	$11 / 16$	13.6	4.00	3.48	3.40	2.80	3.31	2.62
	$3 / 4$	14.7	4.31	3.75	3.65	2.99	3.56	2.81
	13/16	15.7	4.62	4.01	3.91	3.20	3.81	3.00
Note: The size of rivet holes is $1 / 8$ "larger than diameter of rivet.								

Contributed by Martin Joachimson, Machinery's Data Sheet No. 129. Explanatory note: Page 3.

NET AREAS OF STRUCTURAL ANGLES-\|I

Sum of Length of Legs	Thickness	Weight	Area	Area after Deducting for			
				$\frac{3}{4}$ Rivets		$7 / 8$ Rivets	
				One	Two	One	Two
71	5/16	7.1	2.09	1.82	1.55	1.78	1.47
	3/8	8.5	2.48	2.15	1.82	2.10	1.72
	$7 / 16$	9.8	2.87	2.49	2.11	2.43	1.99
	1/2	11.1	3.25	2.81	2.37	2.75	2.25
	9/16	12.3	3.62	3.13	2.64	3.06	2.50
	5/8	13.6	3.98	3.43	2.88	3.35	2.72
	$11 / 16$	14.8	4.34	3.74	3.14	3.65	2.96
	3/4	16.0	4.69	4.03	3.37	3.94	3.19
	13/16	17.1	5.03	4.32	3.61	4.22	3.41
$7 \frac{1}{2}^{\prime \prime}$	$5 / 16$	7.7	2.25	1.98	1.71	1.94	1.63
	$3 / 8$	9.1	2.67	2.34	2.01	2.29	1.91
	$7 / 16$	10.5	3.09	2.71	2.33	2.65	2.21
	1/2	11.9	3.50	3.06	2.62	3.00	2.50
	$9 / 16$	13.3	3.90	3.41	2.92	3.34	2.78
	5/8	14.6	4.30	3.75	3.20	3.67	3.04
	$1 / 16$	15.9	4.68	4.08	3.48	3.99	3.30
	3/4	17.2	5.06	4.40	3.74	4.31	3.56
	13/16	18.5	5.43	4.72	4.01	4.62	3.81
- $8^{\prime \prime}$	5/16	8.2	2.40	2.13	1.86	2.09	1.78
	$3 / 8$	9.8	2.86	2.53	2.20	2.48	2.10
	7/16	11.3	3.31	2.93	2.55	2.8 .7	2.43
	$1 / 2$	12.8	3.75	3.31	2.87	3.25	2.75
	9/16	14.2	4.18	3.69	3.20	3.62	3.06
	5/8	15.7	4.61	4.06	3.51	3.98	3.35
	$11 / 6$	17.1	5.03	4.43	3.83	4.34	3.65
	3/4	18.5	5.44	4.78	4.12	4.69	3.84
	13/16	19.9	5.84	5.13	4.41	5.03	4.22
$8 \frac{1^{\prime \prime}}{}$	$5 / 16$	8.7	2.56	2.29	2.02	2.25	1.94
	3/8	10.4	3.05	2.72	2.39	2.67	2.29
	7/16	12.0	3.53	3.15	2.77	3.09	2.65
	$1 / 2$	13.6	4.00	3.56	3.12	3.50	3.00
	$9 / 16$	15.2	4.47	3.98	3.49	3.91	3.35
	$5 / 8$	16.8	4.92	4.37	3.82	4.29	3.66
	$11 / 6$	18.3	5.37	4.77	4.17	4.68	3.99
	$3 / 4$	19.8	5.81	5.15	4.49	5.06	4.31
	$13 / 16$	21.3	6.25	5.54	4.83	5.44	4.63
	$7 / 8$	22.7	6.67	5.90	5.14	5.79	4.91

Note: The size of rivet holes is $1 / 8$ "larger than diameter of rivet.

NET AREAS OF STRUCTURAL ANGLES-III

sum of Length of Leg	Thickness	Weight	Area	Area after Deducting for			
				34 Rivets		78 Rivets	
				One	Two	One	Two
9 9	3/8	11.0	3.23	2.90	2.57	2.85	2.47
	$7 / 16$	12.8	3.75	3.35	2.99	3.31	2.87
	1/2	14.5	4.25	3.80	3.39	3.75	3.25
	9/16	16.2	4.75	4.26	3.77	4.19	3.63
	5/8	17.8	5.23	4.68	4.14	4.60	3.97
	$11 / 6$	19.5	5.72	5.12	4.52	5.03	4.34
	3/4	21.1	6.19	5.53	4.88	5.44	4.69
	13/16	22.7	6.65	5.94	5.23	5.84	5.03
	$7 / 8$	24.2	7.11	6.34	5.58	6.23	5.35
$9 \frac{1}{2}^{\prime \prime}$	3/8	11.7	3.42	3.09	2.76	3.04	2.66
	7/16	13.6	3.97	3.59	3.21	3.53	3.09
	$1 / 2$	15.3	4.50	4.06	3.62	4.00	3.50
	$9 / 16$	17.1	5.03	4.54	4.05	4.47	3.91
	5/8	18.9	5.55	5.00	4.45	4.92	4.29
	$11 / 16$	20.6	6.06	5.46	4.86	5.37	4.68
	3/4	22.3	6.56	5.90	5.24	5.81	5.06
	13/16	24.0	7.06	6.35	5.64	6.25	5.44
	7/8	25.7	7.55	6.78	6.02	6.67	5.79
	$15 / 15$	27.3	8.03	7.21	6.39	7.09	6.15
	1	28.9	8.50	7.63	6.75	7.50	6.50
$10^{\prime \prime}$	3/8	12.3	3.61	3.28	2.95	3.23	2.85
	$7 / 16$	14.3	4.18	3.80	3.42	3.74	3.30
	1/2	16.2	4.75	4.31	3.87	4.25	3.75
	$9 / 16$	18.1	5.31	4.82	4.33	4.75.	4.19
	5/8	20.0	5.86	5.31	4.76	5.23	4.60
	$11 / 6$	21.8	6.41	5.81	5.21	5.72	5.03
	$3 / 4$	23.6	6.94	6.28	5.63	6.19	5.44
	13/16	25.4	7.47	6.76	6.05	6.66	5.85
	$7 / 8$	27.2	7.99	7.22	6.46	7.11	6.23
	15/15	28.9	8.50	7.68	6.86	7.56	6.62
	1	30.6	9.00	8.13	7.25	8.00	7.00
$10 \frac{11}{2}$	7/16	15.0	4.40	4.02	3.64	3.96	3.53
	1/2	17.0	5.00	4.55	4.13	4.50	4.00
	$9 / 16$	19.1	5.59	5.10	4.61	5.03	4.47
	5/8	21.0	6.17	5.62	5.08	5.54	4.92
	$1 / 16$	23.0	6.75	6.15	5.55	6.06	5.37
	3/4	24.9	7.31	6.65	6.00	6.56	5.81
	13/16	26.8	7.87	7.16	6.45	7.06	6.25
	$7 / 8$	28.7	8.42	7.65	6.89	7.54	6.67
	15/16	30.5	8.97	8.15	7.33	8.03	7.10
	1	32.3	9.50	8.63	7.75	8.50	7.50
Note: The size of rivet holes is $1 / 8$ 'larger than diameter' of rivet.							

Contributed by Martin Joachimson, Machinery's Data Sheet No. 129. Explanatory note: Page 3.

NET AREAS OF STRUCTURAL ANGLES-IV

Sum of Length of Legs	Thickness		Weight		Area		Area after Deducting for											
			$3 / 4$ Rivets	$7 / 8$ Rivets														
			One	Two		One		Two										
12^{17}	3/8					. 9		4.36	4.03			3.70			3.98	3.60		
	$7 / 16$							5.06	4.68			4.30			4.62	4.18		
	1/2			. 6				5.75	5.31			4.87			5.25	4.75		
	9/16		21					6.43	5.94			5.45			5.87	5.31		
	5/8		24			7.11	6.56			6.01			6.48	5.85				
	$11 / 6$					7.78	7.18			6.58			7.09	6.40				
	3/4		28			8.44	7.78			7.12			7.69	6.94				
	13/16		31			9.09	8.38			7.67			8.28	7.47				
	7/8		33			9.74	8.97			8.21			8.86	7.98				
	$15 / 16$		35			0.37	9.55			8.73			9.43	8.49				
	1		37	. 4		1.00	10.13			9.25			0.00	9.00				
$14^{\prime \prime}$	1/2		23			6.76	6.31			5.89			6.26	5.76				
	9/15		26	. 0		7.65	7.16			6.67			7.09	6.53				
	5/8.		28			8.44	7.89			7.35			7.82	7.19				
	$1 / 16$		31			9.32	8.72			8.12			8.63	7.94				
	3/4		33			9.94		9.28		8.63			9.19	8.44				
	13/16		36			0.76	10.05			9.34			9.95	9.14				
	$7 / 8$. 5		1.62	10.85			10.09			10.74	9.87				
	15/16		42	. 0		2.35	11.53			10.71		11.41		10.48				
	1		44.4		13.06		12.19			11.31				11.06				
16^{11}	$1 / 2$		26.4			7.75	7.30			6.88		7.25		6.75				
	9/16		29		8.69			8.20		7.71		8.13		7.57				
	5/8		32.7			9.61		9.06		8.52		. 8.93		8.36				
	$11 / 6$		35.8		10.53		9.93			9.33		9.84		9.15				
	3/4				11.44		10.78			10.13		10.69		9.94				
	13/16		42.0		12.34		11.63			10.93		11.52		10.72				
	$7 / 8$		45.0		13.23		12.47			11.71		12.35		11.48				
	$15 / 16$		48.1		14.12		13.31			12.49		13.18		12.24				
	1		51.0		15.00		14:13			13.25		14.00		13.00				
	$\begin{aligned} & 1 / 16 \\ & 1^{1 / 8} \end{aligned}$		54.0		15.87		14.95			14.01		14.81		13.75				
			56.9		16.74			15.76		14.77		15.62		13.7514.49				
Area Deducted for Various Sizes of Rivets and Thickness of Angles.																		
$\begin{array}{l\|l\|} \hline \text { No. of } & \text { Size of } \\ \text { Rivets } & \text { Rivets } \\ \hline \end{array}$			5/16 $3 / 8$		7/6 :/2		Thickness											
					9/16	16 5/8	11/6	3/4	13/16	7/8	15/16	11	$11 / 611 / 8$					
13	8.0 .090	0.13	0.16	0.19		0.22	20.25	0.31 0.39	0.34	0.380.	. 41	0.440 .47		0.50-		-		
11	0.12	0.16	0.20	0.23	0.27	20.31	0.35			0.47		0.55	50.58	0.63	3	-		
1	80.140	0.19	0.23	0.28	0.33	30.38	0.42	20.47	0.52	0.56	0.61	0.66	60.70	0.75	50.80	- 0.84		
2	80.280	0.38	0.46	0.56	0.66	6 0.75	0.84	40.94	1.03	1.12	1.22	1.31	11.40	1.50	01.60	. 68		
1 3	$4{ }^{4} 0.160$.	0.22	0.27	0.33	0.38	8 0.44	4.49	90.55	0.60	0.66	0.71	0.77	70.82	0.88	80.93	3 d. 98		
2	$4{ }^{4} 0.330 .4$	0.44	4 0.54	0.66	0.76	60.87	0.98	81.09	1.20	1.31	1.42	1.53	31.64	1.75	51.86	1.97		
1 \%	8 lllll	0.25	50.31	0.38	0.44	40.50	0.56	60.63	0.69	0.75	0.81	0.88	80.94	1.00	01.06			
2	3 0.370.	0.50	0.62	0.75	0.87	71.00	9.12	21.25	1.38	1.50	1.62	1.75	51.87	2.00	02.12	22.25		
1	0.210	0.28	0.35	0.42	0.49	40.56	6.63	30.70	0.77	0.84	0.91	0.98	81.06	1.13	31.20	1.26		
	e: The	size	e of	ivet	t hol	oles is	is $/ 8$ "	" larg	ger th	than dia	diam	mete	ter of	frive	ret.			

LOADS FOR ECCENTRICALLY LOADED RIVET GROUPS-I

Directions for Using Tables.

The following tables facilitate the finding of the number of rivets to support eccentric loads.
All the tables are calculated for a vertical spacing of rivets of three inches; size of rivets, $3 / 4$-inch; and maximum stress per square inch, 10,000 pounds.

To use the tables, decide on the number of vertical rows of rivets, and the distance between the outside rows, if more than one row is used. Then, in the table for the number of rows adopted, find the number of rivets required for the given load.

Example:- Find number af rivets required for supparting a load of 5000 pounds. applied 18 inches from the center of the rivet group. Three vertical rows of rivets will be used; distance between outside rows, 6 inches. (See illustration below).

In Table III, giving the number of rivets for three vertical rows, find the distance (18 inches) between the load and center of rivet group; then in thie section headed "Is inches" and in the column headed " 6 inches" (horizontal distance between the outside rivet rows), find the figure nearest to the given load. This figure is 5.6 , which, being in thousands of pounds, is equivalent to a load of 5600 pounds. Now follow the horizontal line from 5.6 to the leff where the number of rivets for the given case is found to be $\dot{\vartheta}$.

Table of Number of Rivets for Eccentric Loads One Vertical Row of Rivets.

Body of Table Gives Total Load in Thousands of Pounds Vertical Spacing of Rivets, $3^{\prime \prime}$-Size of Rivets, $\frac{3}{4}$."

$\begin{gathered} \hline \text { Number } \\ \text { of } \\ \text { Rivets } \end{gathered}$	Horizontal Distance between Load and Center of Rivet Group									
	$0^{\prime \prime}$	$1{ }^{\frac{1}{2}}$	3 "	6"	9"	12 "	15"	$18^{\prime \prime}$	$21^{\prime \prime}$	24"
1	4.4	-	-	-	-	-	-	-	-	
2	8.8	6.2	3.9	2.1	1.4	1.1	0.9	0.7	0.6	0.5
3	13	10	7.3	4.1	2.8	2.1	1.7	1.4	1.2	1.1
4	17	15	11	6.7	4.7	3.6	2.9	2.4	2.1	1.8
5	22	19	15	9.8	6.9	5.3	4.3	3.6	3.1	2.7
6	26	24	20	13	9.5	7.4	6.0	5.0	4.3	3.8
7	30	28	24	17.	12	9.8	7.9	6.7	5.8	5.1
8	35	33	29	21	15	12	10	8.5	7.4	6.4
9	39	37	33	25	19	15	12	10	9.2	8.1
10	44	42	38	29	22	18	15	12	11	9.8
11	48	46	43	34	26	21	18	15	13	11
12	52	51	47	38	30	25	20	18	15	13

Contributed by Harry Gwinner, Machinery's Data Sheet No. 130. Explanatory note: Page 10.

LOADS FOR ECCENTRICALLY LOADED RIVET GROUPS-II

Number of Rivets		$\begin{aligned} & \text { Ta } \\ & \text { rtic } \end{aligned}$	ble cal	Give Spac		ical Tal of		s			$\begin{aligned} & \text { vets } \\ & \text { usa } \\ & \text { ize } \end{aligned}$	$R i$				
	Horizontal Distance between Load and Center of pivet Group															
	$0^{\prime \prime}$			$1^{1 / 21}$						$3^{\prime \prime}$				$6 "$		
	Horizontal Distance between Rivet Rows															
	Any	3	6	9	12	15	3	6	9	9112	15	3	6	9	12	15
2	8.8	4.4	5.8	6.6	7.1	7.3	2.9	4.4	45.	25.8	86.3	1.7	2.9	3.7	4.4	4.9
4	17	11	12	13	14	14	7.9	9.5	510	011	12	4.9	6.5	7.5	9.1	9.9
6	26	19	19	20	21	22	13	15	516	618	19	8.6	10	12	14	15
8	35	27	27	28	29	29	20	22	23	324	425	13	15	17	19	20
10	44	37	36	36	37	37	29	29	30	031	132	19	20	22	24	26
12	52	46	44	44	44	45	38	37	73	839	9. 40	25	26	28	30	32
1.4	61	55	53	53	54	54	46	45	54	646	47	31	33	34	36	38
16	70	64	61	61	62	62	56	54	45	455	5.56	39	40	41	42	44
18	79	73	71	71	71	71	65	63	36	363	3.63	48	48	49	50	51
20	88	82	80	80	80	80	74	72	27	2.72	72	57	56	56	57	59
22	96	92	88	88	88	88	83	80	- 8	080	81	65	64	64	65	66
24	105	101	97	97	97	97	93	89	98	989	89	75	73	73	73	74
Number of Rivets	Horizontal Distance between Load and Center of Rivet Group															
	- $9^{\prime \prime}$					12"						$15^{\prime \prime}$				
	Horizontal Distance between Rivet Rows															
	3	6	9	12	15	3	6		9	12	15	3	6	9	12	15
2	1.2	2.2	2.9	3.5	4.0	1.0	1.7		2.4	2.9	3.4	0.8	1.4	2.0	2.5	2.9
4	3.5	4.8	6.1	7.2	8.1	2.7	73.9		5.0	6.0	6.9	2.2	3.2	4.3	5.2	5.9
6	6.2	8.0	9.5	10	12	4.8	8. 6.3		7.9	9.2	10	3.9	5.3	6.6	7.9	9.1
8	9.6	11	13	15	16	7.4	49.1		10	12	14	6.0	7.6	9.2	10	12
10	14	15	17	19	21	11	12		14	16	18	9.0	10	12	14	16
12	19	20	22	24	26	15	516		18	20	22	12	13	15	17	19
14	24	25	27	29	31	19	2.0		22	24	26	15	17	18	20	23
16	30	31	32	35	37	24	45		27	29	31	20	21	23	25	27
18	37	37	39	41	43	30	30		32	34	36	24	25	27	29	31.
20	44	44	45	4.7	49	36	36		37	39	42	29	30	31.	33	36
22	52	51	52	53	55	42	42		43	45	47	35	35	37	39	41
2.4	60	59	59	60	62	49	949		50	51	53	41	41	42	44	46
Number of Rivets	Horizontal Distance between Load and Center of Rivet Group															
	$18^{\prime \prime}$ \| 21"											24"				
	Horizontal Distance between Rivet Rows															
	3	6	9	12	15	3	6		9	12	15	3	6	9	12	15
2	0.7	1.2	1.7	2.2	2.6	0.6	1.1		1.5	1.9	2.3	0.5	1.0	1.4	1.7	2.1
4	1.9	2.8	3.7	4.5	5.3	1.6	2 2.4		3.3	4.0	4.7	1.4	2.1	2.9	3.6	4.2
6	3.3	4.5	5.7	6.9	8.1	2.9	3.9		5.0	6.2	7.2	2.5	3.5	4.5	5.6	6.5
8	5.1	6.5	8.0	9.4	10	4.4	45.6		7.0	8.3	9.7	3.9	5.0	6.3	7.5	8.8
10	7.6	8.8	10	12	14	6.6	6 7.6		9.1	10	12	5.8	6.8	8.1	9.7	11
12	10	11	13	15	17	9.1	10		11	13	15	8.0	8.9	10	11	13
14	13	14	16	18	20	11	12		14	16	18	10	11	12	14	16
16	1.7	18	19	21	23	14	15		17	19	21	13	13	15	17	19
18	21	21	23	25	27	18	18		20	22	24	16	16	18	20.	22
20	25	26	27	29	31	22	23		24	26	28	20	20	21	23	25
22	30	30	32	34	36	26	26		28	30	32	23	23	25	27	29
24	35	35	36	38	40	31	$3!$		32	34	36	27	27	28	30	33

Contributed by Harry Gwinner, Machinery's Data Sheet No. 130. Explanatory note: Page 10.

LOADS FOR ECCENTRICALLY LOADED RIVET GROUPS-III

Contributed by Harry Gwinner, Machinery's. Data Sheet No. 130. Explanatory note: Page 10.

LOADS FOR ECCENTRICALLY LOADED RIVET GROUPS-IV

Four Vertical Rows of Rivets.

Body of Table. Gives Total Load in Thousands of Pounds Vertical Spacing of Rivets, $3^{\prime \prime}$-Size of Rivets, $\frac{3}{4}$ ".

Number of Rivets	Horizontal Distance between Load and Center of Aivet Group													
	$0^{\prime \prime}$							3 "					$6^{\prime \prime}$	
	Horizontal Distance between Oütside Rivet Rows													
	Any	9	12	15	18	9	12		15	18	9	12	15	18
4	17	11	1.2	13	13	8.0	9.2		10	11	5.2	6.3	7.2	8.0
8	35	23	25	26	27	17	19		21.	22	11	13	15	16
12	52	3.7	35	40	43	28	30		32	34	18	21	23	25
16	70	52	54	55	56	414	43		45	46	28	30	32	34
20	88	69	70	71	72	55	57		58	60	38	40	42	45
24	105	86	86	87	88	71	72		73	74	50	52	54	56
28	123	104	104	104	105	87	87		88	89	63	65	66	68
32	140	122	122	122	122	1041	104		105	5105	577	78	79	80
36	158	139	139	139	139	1221	122		122	2122	29	93	94	95
40	1.76	157	157	157	157	1391	139		139	9 139	1108	108	109	110
44	193	175	175	175	175	1561	156		156	5 156	6 124	124	124	125
48	211	193	193	193	193	1741	174		174	1774	4140	140	140	141
Number of. Rivets	Horizontal Distance between Load and Center of Pivet Group													
	Horizontal Distance between Outside Rivet Rows.													
	9	12	15	18	9	12		15		18	9	12	15	18
4	3.8	4.7	5.5	6.3	3.0	3.8		4.5		5.2	2.5	3.2	3.8	4.4
8	8.5	10	11	12	6.7	8.2		9.4		10	5.6	6.9	8.0	9.0
12	14	16	18	20	11	13		14		16	9.4	11	12	14
16	21	23	25	27	17	19		21		23	14	15	17	19
20	29	31	33	35	23	25		27		29	19	21	23	25
24	38	40	42	44	31	33		35		37	25	27	29	31
28	48	50	52	55	39	41		43		45	32	34	36	39
32	60	62	63	65	48	50		52		54	40	42	44	46
36	70	73	75	77	58	60		6.2		65	49	51	53	55
40	86	86	87	88	70	71		73		75	59	60	62	64
44	100	100	101	102	82	83		84		86	69	70	71	73
48	114	114	115	116	94	95		96		98	80	81	83	85
Number of Rivets	Horizontal Distance between Load and Center of Pivet Group													
	18"				1 2/'"						24"			
	Horizontal Distance between Outside Rivet Rows													
	9	12	15	18	9	12		15		18	9	12	15	18
4	2.1	2.7	3.3	3.8	1.9	2.4		2.9		3.4	1.7	2.1	2.6	3.0
8	4.8	5.9	6.9	7.9	4.2	5.2		6.1		7.0	3.7	4.6	5.4	6.2
12	8.0	9.1	10	12	7.0	- 8.3		9.6		10	6.2	7.4	8.5	9.7
16	12	13	15	17	10	12		13		15	9.4	10	12	13
20	16	18	20	22	14	16		17		19	13	14	16	17
24	22	24	25	27.	19	20		22		24	17	18	20	22
28	28	30	32	34	24	26		28		30	21	23	25	27
32	34	36	38	40	30	32		34		36	27	29	30	32
36	42	44	46	48	37	39		41		43	33	35	36	38
40	51	52	54	56	44	46		48		50	40	41	43	45
44	60	61	62	64	51	53		55		57	48	49	50	52
48	69	71	72	74	61	63		64		66	55	56	57	59

Contributed by Harry Gwinner, Machinery's Data Sheet No. 130. Explanatory note: Page 10.
ANGLES OF HOPPER SIDE INTERSECTIONS-I

Directions for the use of the diagrams.
In the accompanying illustration of hopper, let the slopes of the four sides be known, as indicated by the slope in inches per foot. For the intersection angle of the side sloping II inches in 12 inches with the side sloping 12 inches in $6 \frac{1}{4}$ inches, use diagram for one angle more than 45 degrees and one angle less than 45 degrees. (See upper diagram, sheets III and IV.) At the left of the diagram are values ranging from 6 inches to 12 inches for angles less than 45 degrees. Follow the horizontal line at Il inches until it meets the vertical line projected. up from $6 \frac{1}{4}$ inches. The intersection of these two lines gives, on the curves across the diagrams, the nearest value for the intersection angle, which in this case is $4 \frac{3}{8}$ inches in 12 inches. (See section $A-A$ of hopper on this sheet.) In a similar manner, use the diagram for two angles both more than 45 degrees (lower diagram sheets III and IV) for section $B-B$, and for section $D-D$ use diagram for two angles less than 45 degrees, sheet I.

SECTIONS FOR CRANE AND TELPHER RUNWAYS—I

	Properties of Sections Consisting of One I-and One L-beam.				
	Sectional Modulus			Moment of Inertia	Distance C
	upper Chord Axis a-a	Lower Chord Axis a-a	upper Chord Axis b-b		
$\begin{array}{ll} 10^{\prime \prime} & 15^{*} \\ 10^{\prime \prime} I & 25^{*} \end{array}$	52.06	27. 15	14.09	182.72	6.73
$\begin{array}{ll} 10^{\prime \prime} & 15^{*} \\ 12^{\prime \prime} I & 31.5^{*} \end{array}$	70.22	39.97	14.35	$31 / .78$	7.80
$\begin{array}{lll} 12^{\prime \prime} & 20.5^{* *} \\ 12^{\prime \prime} & I & 31.5^{*} \end{array}$	81.71	40.66	22.19	333.39	8.20
$\begin{array}{ll} 12^{\prime \prime \prime} & 20.5^{*} \\ 12^{\prime \prime} & I \end{array}$	90.41	50.31	22.55	396.91	7.89
$\begin{aligned} & 10^{\prime \prime} \perp 15^{*} \\ & 15^{\prime \prime} I I 42^{* *} \end{aligned}$,103.55	64.87	14.86	607.83	9.37
$\begin{array}{lll} 12^{\prime \prime} & 20.5^{*} \\ 15^{\prime \prime} I & 42^{* *} \end{array}$	$1 / 8.80$	60.06	22.62	648.68	9.82
$\begin{array}{ll} 15^{\prime \prime} & 33^{*} \\ 15^{\prime \prime} I & 42^{*} \end{array}$	151.94	68.18	42.65	724.77	10.63
$\begin{array}{lll} 12^{\prime \prime} & 25^{*} \\ 15^{\prime \prime \prime} & 5 & 50^{\#} \end{array}$	135.28	75.02	25.33	742.67	9.90
$\begin{aligned} & 12^{\prime \prime}, 20.5^{*} \\ & 15^{\prime \prime} I \quad 60^{*} \end{aligned}$. 140.17	90.13	23.56	838.22	9.30
$\begin{array}{ll} 15^{\prime \prime} & 33^{*} \\ 15^{\prime \prime} I & 60^{*} \end{array}$	173.59	93.20	43.43	933.90	10.02
$\begin{aligned} & 12^{\prime \prime} 120.5^{* *} \\ & 18^{\prime \prime} I 55^{* *} \end{aligned}$	161.57	99.1/	23.16	//22.90	$1 / .33$
$\begin{array}{ll} 15^{\prime \prime} & 33^{\#} \\ 18^{\prime \prime} I & 55^{*} \end{array}$	203.18	102.50	43.1/	1253.60	12.23
$\begin{aligned} & 15^{\prime \prime}, 33^{\neq} \\ & 15^{\prime \prime} I \quad 80^{\neq} \end{aligned}$	197.81	120.17	44.48	1151.27	9.58
$\begin{aligned} & 12^{\prime \prime} \check{20.5^{*}} \\ & 20^{\prime \prime} I 65^{* 4} \end{aligned}$	199.98	129.60	23.72	1594.03	12.30
$\begin{aligned} & 15^{\prime \prime}, 33^{\#} \\ & 20^{\prime \prime} I \quad 65^{\#} \end{aligned}$	247.50	133.85	43.56	/772. //	13.24
$\begin{aligned} & 15^{\prime \prime}, 33^{\#} \\ & 20^{\prime \prime} I \quad 80^{\#} \end{aligned}$	278.43	164.98	44.52	2/13.31	12.81
$\begin{aligned} & 15^{\prime \prime}=40^{*} \\ & 20^{\prime \prime} I 80^{*} \end{aligned}$	305.44	168.05	49.12	2226.62	13.25
$\begin{aligned} & 15^{\prime \prime} \check{L} 33^{\#} \\ & 24^{\prime \prime} I 80^{\#} \end{aligned}$	339.17	196.13	44.56	3032.18	15.46
$\begin{aligned} & 15^{\prime \prime} L 55^{\#} \\ & 24^{\prime \prime} I 100^{*} \end{aligned}$	455.00	239.53	60.64	3894.80	16.26

Contributed by F. W. Bowman, Machinery's Data Sheet No. 87. Explanatory note: Page 10.

SECTIONS FOR CRANE AND TELPHER RUNWAYS-II

	Properties of Sections Consisting of Two I-beams and One Connecting Plate.					
	Sectional Modulus			$\begin{gathered} \text { Distance } \\ D \end{gathered}$	Moment of inertia	$\begin{gathered} \text { Distance } \\ C \end{gathered}$
	upper Chord Axis a-a	Lower Chord Axis a-a	upper Chord Axis b-b			
$\begin{aligned} & 1-12^{\prime \prime} x^{3} 3^{\prime \prime} \mathrm{P} \\ & 2-10^{\prime \prime} 5^{5} 25^{4} \\ & \hline \end{aligned}$	81.01	54.18	20.27	5.75	337.02	6.22
$\begin{aligned} & 1-14^{\prime \prime} x \sum^{1 / 2} P \% \\ & 2-12^{\prime \prime} I^{5} 31.5^{*} \end{aligned}$	131.53	81.72	36.30	7.50	630.03	7.71
$\begin{aligned} & 1-14^{\prime \prime} \times x^{14} \mathrm{Pl} \\ & 2-12^{\prime \prime} I^{5} 40^{*} \end{aligned}$	147.64	100.75	40.38	7.25	748.53	7.43
$\begin{aligned} & 1-14^{\prime \prime} \times x^{111} \mathrm{P} / . \\ & 2-15^{\prime \prime} I^{5} 42^{*} \end{aligned}$	192.53	131.50	40.03	7.00	121/.00	9.21
$\begin{aligned} & 1-15^{\prime \prime} \times{ }^{\frac{1}{2}} 191 \\ & 2-15^{\prime \prime} I^{5} 60^{*} \end{aligned}$	239.39	179.40	55.30	7.50	1589.54	8.86
$\begin{aligned} & 1-15^{\prime \prime} \times x^{111} p 1 . \\ & 2-15^{\prime \prime} 15^{2} 70 \% \end{aligned}$	251.22	196.35	01.22	7.50	1708.27	8.70
$\begin{aligned} & 1-15^{\prime \prime} \times{ }^{101}{ }^{11} p 1 \\ & 2-15^{\prime \prime} 15^{2} 80^{*} \end{aligned}$	285.65	230.98	65.55	7.25	1979.53	8.57
$\begin{aligned} & 1-16^{\prime \prime} \times{ }^{1}{ }^{14} p 1 \\ & 2-18^{\prime \prime} I^{5} 55^{*} \end{aligned}$	279.02	197.60	60.51	8.50	2140.06	10.83
$\begin{aligned} & 1-16^{\prime \prime} \times x^{10} P \% \\ & 2-20^{\prime \prime} I^{s} 65^{*} \end{aligned}$	347.57	257.80	65.48	8.25	3034. 28	$1 / .77$
$\begin{aligned} & 1-10^{\prime \prime} \times \frac{1}{2}^{11} \mathrm{Pl} \\ & 2-20^{n} 15880 \% \end{aligned}$	406.10	318.45	67.99	7.50	3658.97	11.49
$\begin{aligned} & 1-18^{\prime \prime} \times \frac{1}{2}_{2}^{\prime \prime} P 1 \\ & 2-24^{\prime \prime} I^{s} 80^{*} \\ & \hline \end{aligned}$	504.42	379.58	90.22	9.50	5306.49	13.98
$\begin{array}{\|l\|} 1-18^{\prime \prime} \times{ }^{111} \mathrm{p}^{\prime \prime} \mathrm{P} \\ 2-24^{\prime \prime} \mathrm{I}^{5} 100{ }^{*} \end{array}$	545.59	435.1/	106.12	9.50	5930.54	13.63
	The channel given first is on the top chord					
	Properties of Sections Consisting of One I and Two L-beams.					
	Sectional Modulus				Moment	
	upper Chord Axis a-a	Lowerchord Axis a-a	upper Chord Axis b-b	LowerChord Axis b-b	of inertia	C
$\left.\begin{aligned} & 1-10^{\prime \prime}=15^{*} \\ & 1-10^{\prime \prime} I \\ & 125^{* *} \\ & 1-8^{\prime \prime}, ~ \end{aligned} 11.25^{*} \right\rvert\,$	62.87	43.62	14.09	8.97	32/.89	5.12
	76.93	50.92	21.98	14.09	394.06	5.15
	99.54	68.40	22.19	14.35	603.23	6.22
$\begin{aligned} & 1-12_{n}^{\prime \prime}{ }^{20.5 *} \\ & 1-10^{\prime \prime} L^{4 S^{*}} \\ & 15^{*} \end{aligned}$	139.08	100.03	22.62	14.86	1040.34	7.80
$\begin{array}{\|l\|l\|} \hline 1 / 5^{\prime \prime} & 33 * \\ 1-5^{\prime \prime} & 32^{*} \\ 1-12^{\prime \prime} & L \\ \hline \end{array}$	185.61	$1 / 9.97$	42.65	22.62	1336.49	8.20
$\left.\begin{array}{\|l\|} \hline-1 T_{2 " \prime}^{\prime \prime} \\ 1 / 20.5^{*} \\ 1-10^{\prime \prime} \\ \hline \end{array} 15^{* *} \right\rvert\,$	185.03	138.27	23.16	15.52	1652.32	9.35
$$	241.06	163.01	43.1/	23.16	2075.17	9.79

Contributed by F. W. Bowman, Machinery's Data Sheet No. 87. Explanatory note: Page 10.

TABLES FOR SHEAR OR MOMENT. TWO WHEELS EQUALLY LOADED

Notation: W-total load on wheels. $\frac{1}{2} w=$ load on one wheel. $L=$ length of span. $B=$ wheel base. $D=$ distance from support to point at which moment or shear is required. $R=$ ratio of B to $L=B / L$. $X=$ ratio of D to $L=D / L$. $M=$ bending moment. 5 = vertical shear on beam which is also the reaction ofthe support nearest to the point under consideration. Vm and $v s$ are variables to be faken from tables.													
$R=\frac{B}{L}$	Table giving values of V_{m} in formula $M=W \angle V_{m}$												
	Values of $D / L=x$.												
	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.375	0.40	0.425	0.45	. 475	0.50
0.	0.0475	0.09	0.1275	0.16	0.1875	0.210	0.2275	0.2344	0.24	0.2442		4	0.250
0.	0.0450	0.085	0.1200	0.15	0.1750	0.195	0.2100	0.2156	0.22	0.2231	0.2250	2256	0.225
0.	0.0425	0.080	0.1125	0.14	0.1625	0.180	0.1	0.1969	0.20	019	0.20	0.2019	0.200
0.3	0.0400	0.07	0.1050	0.13	0.1500	0.165	0.1750	0.1781	0.18	0.1806		781	0.175
0.4	0.0375	0.070	0.0975	0.12	0.1375	0.150	0.1575	0.1594	0.16	0.1594	0.157	0.1544	0.15
0.	0.0350	0.065	0.0900	0.11	0.1250	0.135	0.1400	0.1406	0.14	0.1381	0.1350	, 306	0.125
0.6	0.0325	0.	0.0825	0.10	0.1125	0.120	0.1225	0.1219	0.12	0.1222	0.1238	1247	0.12
0.7	0.0300	0.05	0.0750	0.09	0.1000	0.105	0.1138	0.1172	0.12	0.1222	0.1238	0.1247	0.
0.8	0.0275	0.050	0.0675	0.08	. 98	0.105	0.1138	0.1172	0.12	222	0.1238	0.1247	0.125
0.9	0.025	0.04	0.0	0.08	0.098	0.105	0.1138	0.1172	0.12	0.1222	0.1238	0.1247	0.
$\stackrel{\text { I }}{\text { orover }}$	0.0238	0.045	0.0638	0.08	0.0983	0.105	0.1138	0.1172	0.12	0.1222	0.1238	24	0.12
	0.95	0.90	0.85	0.80	0.75	0.70	0.65	0.625	0.60	0.575	0.550	0.525	0.5
	Values of $0 / L=x$ from other support												

In the above the values enclosed by heavy lines are maximum

$R=\frac{B}{L}$	Table giving values of V_{S} in formula $S=W V_{s}$.											$R=\frac{B}{L}$
	Values of $D / L=X$											
	0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	
0.0	1.00	0.95	0.90	0.85	0.80	0.75	0.70	0.65	0.60	0.55	0.50	0.0
0.1	0.95	0.90	0.85	0.80	0.75	0.70	0.65	0.60	0.55	0.50	0.45	0.1
0.2	0.90	0.85	0.80	0.75	0.70	0.65	0.60	0.55	0.50	0.45	0.40	0.2
0.3	0.85	0.80	0.75	0.70	0.65	0.60	0.55	0.50	0.45	0.40	0.35	0.3
0.4	0.80	0.75	0.70	0.65	0.60	0.55	0.50	0.45	0.40	0.35	0.30	0.4
0.5	0.75	0.70	0.65 .	0.60	0.55	0.50	0.45	0.40	0.35	0.30	0.2	0.5
0.6	0.70	0.65	0.60	0.55	0.50	0.45	0.40	0.35	0.30	0.275	0.25	0.6
0.7	0.65	0.60	0.55	0.50	0.45	0.40	0.35	0.325	0.30	0.275	0.25	0.7
0.8	0.60	0.55	0.50	0.45	0.40	0.375	0.35	0.325	0.30	0.275	0.25	0.8
0.9	0.55	0.50	0.45	0.425	0.40	0.375	0.35	0.325	0.30	0.275	0.25	0.9
'I	0.50	0.475	0.45	0.425	0.40	0.375	0.35	0.325	0.30	0.275	0.25	
	1.00	0.95	0.90	0.85	0.80	0.75	0.70	0.65	0.60	0.55	0.50	er
	Values of $D / L=x$ from other support											

In both the above tables. $R=0$ indicates one wheel instead of two. When $B=$ 0.5858 L the moment with one wheel in the center of span is equal to the maximum moment with both wheels on.

Contributed by John S. Myers, Machinery's Data Sheet No. 85. Explanatory note: Page 10.

STRESSES IN THE MEMBERS OF ROOF TRUSSES.

The accompanying tables give the percentage of the total load on a roof truss which each member of that truss bears. This load is made up of the weight due to the material of the roof covering, slate, corrugated iron, or other material; the weight due to miscellaneous loads, such as shafting, suspended machinery, etc.; and the load due to wind pressure and snow. The sum of all these for a surface whose length is the total width of the roof from eaves to eaves, and whose width is the distance between the center line of adjacent spans, is the total load on each span.

Having found the total load, select a suitable form of truss from among those represented by the skeleton diagrams in the accompanying data sheets. In these diagrams the tension members are represented by single lines, and the compression members by double lines. Under the column representing the desired pitch of roof will be found a coefficient for each member of the truss. This coefficient, multiplied by the total load, gives the tensile or compressive stress, as the case may be, for that member Knowing the values of these stresses, suitable sections may be calculated from the data given in the handbooks of the various steel companies. The pitch of a roof is the height of the span divided by its length.

The cut below illustrates the construction of a common form of roof truss. "Erection marks," U L, L 1, L 2, etc, are shown at all the connection points. Every member which goes to make up the connection at any given point is marked in the shop with the erection mark for that connection, and the drawings for each of the parts are similarly marked. This facilitates both the checking of the calculations and the erection of the structure.

Roof Truss with three Struts on a Side, showing Erection Marks.

STRESSES IN THE MEMBERS OF ROOF TRUSSES. (Continued.)									
					Machurry, N. F .				
	1-3 Pltch.	30° Pitch.	$1-4$ Pltch.	1-5 Pitch.		$1-3$ Pltch.	30° Pitch.	1-4 Plith.	1.5 Pitch.
A	. 789	. 875	. 978	1.178	A	. 79	. 875	. 978	1.18
B	. 789	. 875	. 978	$1 \cdot 178$	B	. 72	. 813	. 922	1,133
C	. 676	.75	. 839	1,009	C	. 651	. 75	. 866	1.087
D	. 563	. 625	. 699	. 841	D	. 532	. 688	. 81	1.04
E	. 267	. 272	. 28	. 294	E	. 104	. 109	. 112	. 116
F	. 25	. 25	. 25	. 25	F	. 094	. 109	. 125	. 157
G	. 210	. 217	. 225	. 294	H	. 094	. 109	. 125	. 157
H	. 188	. 188	. 188	. 188	J	. 104	. 109	. 112	. 116
J	. 156	. 165	. 177	. 2	K	. 282	. 326	. 375	. 471
K	. 125	. 125	. 125	. 125	L	. 376	. 434	. 5	. 625
L	. 656	. 758	. 875	1.094	M	. 564	. 651	. 75	. 94
M	. 563	. 65	. 75	.938 .938	N O	. 658	. 76	. 875	1.096
N	. 469	. 541	. 625	. 731	Tang	. 667	. 577	. 5	. 4
0	. 375	. 433	. 5	. 625	Sec.	1.202	1.155	1.118	1.077

STRESSES IN THE MEMBERS OF ROOF TRUSSES. (Continued.)

	1-3 Pitch.	30° Pitch.	1-4 Pitch.	1-5 Pitch.		1-3 Pitch.	30° Pitch.	1-4 Pltch.	1-5 Pitch.
A	. 676	. 75	. 839	1.01	A	. 676	. 75	. 84	1.01
B	. 537	. 625	. 727	. 917	B	. 676	. 75	. 84	1.01
C	. 188	. 217	. 25	. 312	C	. 313	. 33	. 353	. 4
D	. 208	. 217	. 224	. 232	D	. 25	. 25	. 25	. 25
E	. 563	. 649	. 75	. 938	E	. 563	. 65	. 75	. 938
F	. 375	. 43	. 5	. 625	F	. 375	. 433	. 5	. 625
						1-3 Pitch.	30° Pitch.	1-4 Plich.	1-5 PItch.
					A	. 742	. 833	. 937	1.123
					B	. 58	. 666	. 759	. 932
					C	. 555	. 666	. 785	1.0
					D	. 242	. 288	. 338	. 418
					E	. 155	. 167	. 18	. 202
					F	. 155	. 167	. 18	. 202
					G	. 617	. 721	. 838	1.043
					H	. 375	. 433	. 5	. 625

SPLICES FOR I-BEAMS-I

Contributed by A. L. Campbell, Machinery's Data Sheet No. 123. Explanatory note: Page 47.

SPLICES FOR I-BEAMS—II

Splice for 18 inch, 65 pound I-beam.

Splice for 15 inch, 60 pound I-beam.

Weight of Splice Plates 108 pounds.

Splice for 12 inch-40 pound I beam.

Weight of Splice Plates 85 pounds.

Splice for 10 inch-30 pound I-beam.

SPLICES FOR I-BEAMS-IV

Contributed by A. L. Campbell, Machinery's Data Sheet No. 123. Explanatory note: Page 47.

Splice for 15 incti, 40 pound Channel.

Bending efficiency of splice:
Rivets,
Net section of channel, 81%
Efficiency of splice for direct tension:
Rivets,
87%
Net section of channel, 89.8\%
Net section of splice plates
99%
weight of splice Plates
77 pounds.

Splice for 12 inch, 30 pound Channel.

Bending efficiency of splice: Rivets, 94.8\% Net section of channel, 83.7\%

Efficiency of splice for direct tension:

Rivets
Net section of channel, 91.6%
Net section of splice
plates,
93.3\%

> weight of Splice Plates
> 47 :pounds.

SPLICES FOR CHANNELS-II

Splice for 10 inch, 25 pound Channel.

Bending efficiency of splice:
Rivets, 97.3\%

Net section of channel, 92%
Efficiency of splice for direct tension:
.Rivets,
91.2\%

Net section of channel, 91.8%
Net section of splice
plates,
83.8%
Weight of splice Plates 37 pounds:

Splice for 9 inch, 20 pound Channel.

Weight of Splice Plates 31 pounds.

Bending efficiency of splice.
Rivets,
90.8\%

Net section of channel, 90.4%
Efficiency of splice for direct tension:
Rivets,
80.7\%

Net section of channel, 89.8\%
Net section of splice
plates, $\quad 100 \%$

SPLICES FOR CHANNELS-III

| Splice for 8 inch, 16.25 pound Channel. |
| :---: | :---: | :---: |

STANDARD PROPORTIONS OF RIVETED JOINTS FOR PRESSURE TANKS

Thick－ ness of Plate	Lap Joint Single Riveted					Lap Joint Double Riveted						Double Strap Butt Joint Triple Riveted						
	p	d	D	l	E	p	d	D	5	l	E	p	d	D	s	2	U	E
$\frac{5}{16}$	$2{ }^{\text {c }}$	$\frac{3}{4}$	$\frac{13}{15}$	$1 \frac{1}{8}$	59	310	$\frac{3}{4}$	$\frac{13}{10}$	2	$1 \frac{1}{8}$	74	6	5	$\frac{11}{16}$	a	$1 \frac{1}{8}$	$\frac{1}{4}$	88
38	$2 \frac{1}{16}$	$\frac{13}{16}$	\％	$1 \frac{3}{16}$	56	3 ？${ }_{10}$	$\frac{13}{16}$	7	2	$1 \frac{3}{16}$	72	6	$\frac{3}{4}$	$\frac{13}{16}$		$1 \frac{3}{16}$	$\frac{5}{16}$	86
$\frac{7}{16}$	$2{ }^{1} 8$	8	$\frac{15}{16}$	1 年	54	$3 \frac{2}{10}$	\％	$\frac{15}{16}$	2	14	70	$6 \frac{3}{4}$	8	$\frac{15}{16}$		14	3	86
$\frac{1}{2}$	$2 \frac{1}{8}$	$\frac{15}{16}$	1	14	53	3	8	$\frac{15}{16}$	2	名	67	7	8	$\frac{15}{16}$		14	$\frac{7}{16}$	86
$\frac{9}{16}$	$2 \frac{3}{16}$	1	$1 \frac{1}{16}$	$1 \frac{1}{4}$	51	$3 \frac{1}{16}$	$\frac{15}{16}$	1	2	年	66	7	8	$\frac{15}{16}$		年	$\frac{45}{100}$	86
5／8						$3 \frac{1}{8}$	1	$1 \frac{1}{16}$	2	14	66	7	8	$\frac{15}{16}$		14	$\frac{1}{2}$	86
$\frac{11}{16}$						3	1	1／16	2	14	62	7	$\frac{15}{16}$	1		14	$\frac{9}{16}$	85
$\frac{3}{4}$						27	1	1／16	2	14	60	7	$\frac{15}{16}$	，		14	$\frac{9}{16}$	85
$\frac{13}{16}$												$7{ }^{\text {年 }}$	1	$1 \frac{1}{16}$		14	5	85
78												7	1	$1 \frac{1}{16}$		18	5	84
$\frac{15}{16}$												$7 \frac{1}{4}$	118	$1 \frac{3}{16}$		13	$\frac{11}{16}$	83
1												7	$1 \frac{1}{8}$	$1 \frac{3}{16}$		13	$\frac{3}{4}$	83

Contributed by C．R．Whittier，Machinery＇s Data Sheet No．132．Explanatory note：Page 48.
PLATE THICKNESS FOR PRESSURE TANKS
Thickness in inches = factor of safety,5) $\times 100 \times$ working pressure in pounds x diam. in inches $2 \times$ (breaking stress, 55000) \times efficiency in per cent
$0.004545 \times$ working pressure in pounds \times diam. in inches
for double strap, triple rivefed butt joint, 83 to 88 per cent,
for double riveted lap joint, 60 to 74 per cent,
for single riveted lap joint, 51 to 59 per cent.

WEIGHTS OF CYLINDRICAL PRESSURE TANKS

Taking the 5000 -pound load as the point of reference,

The dimension thus found is the distance of center of gravity to the right of the line of reference ($=x$) in Fig. 1.

Placing the load so that the center of the span is midway between the center of gravity and the heaviest wheel load, or, what is the same thing, placing the load so that the center of gravity of all the loads and the heaviest load are equidistant from the supports, gives the locations as indicated at the bottom of Fig. 1. To find R_{1} and R_{r} take moments as follows: Since the center of gravity of all loads is now known, consider them concentrated at this point; then R_{1}
$15,000 \times 110$
$=\frac{150}{240}=6875$ pounds and $R_{r}=$
$15,000 \times 130$
240
moments under the 5000 -pound load,
$6875 \times 110=+756,250$
$4000 \times(-45)=-180,000$
Maximum moment $=576,250$ inchpounds.

Two Wheels Equally Loaded
The general rule previously stated, when applied to two wheels equally loaded, may be given as follows:

When the wheel-base is less than (2$\sqrt{2)}$ times the span $(=0.5858 \times$ span $)$, the maximum moment occurs with both wheels on the span and when the distance from one support to the wheel nearest to it is equal to one-half the span minus one-fourth the wheel-base.

When the wheel-base exceeds 0.5858 times the span, the maximum moment
occurs when one wheel is in the center of the span.

From this the maximum stress can be calculated when the section modulus is known, or the section modulus required to withstand a given moment and not exceed a specified stress may be determined.

The first part of the chart on page 28 gives in condensed form the location for the maximum moment, with formulas for same. The second part gives a summary of the formulas for two wheels equally loaded, together with diagrams showing how the moment and shear varies for a specific location of the load, or for any point of the beam.

The third part of the chart on page 2δ refers to the oblique reaction caused in a beam carrying a moving load and supported at one end by a tie-rod or a strut making an acute angle with the beam. In the case of a strut, this produces a direct tensile stress in the beam in addition to the bending stress, and in the case of a tie-rod a direct compressive stress is produced. A familiar example of this latter case is found in the ordinary jib crane.

The tables on page 29 give values of the variable ∇_{m} in the formula $M=$ $W L V_{\mathrm{m}}$, where $M=$ the moment occurring at any point throughout the length of the beam, $L=$ length of span, and W $=$ the load. The lower table on this page gives values of the variable ∇_{B}, in the formula $S=W V_{s}$ where $S=$ the shear at any point of the beam, and W $=$ the load.

The diagram on page 30 gives the same data as the tables on page 29, but in diagram form, which makes it easier to interpolate for intermediate values. By the aid of these tables or diagrams, the moment or shear at any point on the beam or girder can be quickly determined. This being known, it is easy to find the section modulus required, how close to the supports it may be necessary to bring the cover plates if a built-up section be used, and at what point the
shear decreases sufficiently so that the web stiffeners may be omitted when such is permissible.

Example.-A girder of 20 feet span supports a load of 30,000 pounds carried on two wheels equally loaded, the wheelbase being 10 feet. What is the maximum moment?
Solution. $-L=12 \times 20=240$ inches; $X^{\prime}=30,000$ pounds; $B=10$ feet $=0.5 L$. From the table on page 29, or the diagram on page 30 , the maximum value of V_{m} is found to be 0.1406 , say 0.14 , then $M=W L V_{\mathrm{m}}=30,000 \times 240 \times 0.14=$ $1,008,000$ inch-pounds. This is the answer to the question.

Example,-A girder carries a moving load on two wheels equally loaded, the wheel-base being 0.2 of the span. At what point could the outside cover plate be stopped off if it constitutes one-third of the flange area?

Solution.-It could be stopped off at a point where the moment is two-thirds the value of the maximum moment. Referring to the diagram on page 30, the curve for $B=0.2 L$ shows the maximum value of ∇_{m} to be 0.2025 . Two-thirds of $0.2025=0.135$. The same curve shows for $V_{\mathrm{m}}=0.135$ that $D=$ about $0.19 L$, which is the required answer. If the girder were 40 feet long, the outside cover plate could be stopped off at $0.19 \times$ $40=7.6$ feet from each end. The plate should be carried beyond the theoretic point for a distance sufficient to insert two or three rivets.

Example.-The wheel-base being 0.4 the span, what is the maximum shear?

Solution.-By referring to either the table or diagram, the maximum shear is found to be 0.8 of the load.

Beams Unsupported Laterally

The Cambria Steel Co. gives the following formula,

$$
S_{\mathrm{c}}=\frac{18,000}{1+\frac{L^{2}}{3000 b^{2}}}
$$

in which $S_{\mathrm{c}}=$ safe compressive stress
when the safe tensile stress is 16,000 pounds per square inch. This formula is derived from Gordon's by making an allowance for a factor of safety and taking into account the fact that the compression flange receives some support from the parts in tension.

The diagram on page 31 is based upon this formula, which gives values on the side of safety. The curve giving safe compressive stresses for various ratios of I.
-corresponding to 16,000 pounds per b
square inch tensile stress was laid out from values calculated by the above formula. The curves for the lower allowable tensile stresses were reduced proportionally; thus, for 14,000 pounds tensile stress any value of $S_{c}=\frac{14,000}{16,000}=$
7/8 of the value for 16,000 tensile stress. [Machinery, March, 1908, Maximum Stresses.]

Stresses in the Members of Roof Trusses
On pages 32 to 35 , inclusive, explanatory matter and tables are given for determining the stresses in the members of roof trusses. The tables give the percentage which each member of a roof truss bears of the total load, in the various designs, and the explanatory remarks on page 32 give further explanation regarding the method of using these tables.

Splices for I-Beams and Channels

It often happens in the use of rolled shapes for structural purposes, that the material could be spliced together conveniently and with economy, provided an efficient and reliable form of splice were available. Splices for I-beams and channels, efficiently arranged and carefully calculated, are shown on pages 36 to 42, inclusive. The sections are taken from Carnegie's Hand-book, and a medium section of each size has been chosen. In every case the splices for I-beams and
channels consist of a top and bottom plate, or plates, riveted to the flanges, and two side plates riveted to the web.

The reason why medium-sized sections have been selected for the calculations, rather than the so-called standard sections, is that the medium-sized section more nearly fulfills the average requirements in design, and as the steel mills constantly roll other than the standard sections, they can easily be obtained.

The efficiency of the riveting, net section of the beam, etc., are also given in percentages on the pages referred to. Splices are not shown for I-beams and channels smaller than the 6 -inch sections, because it is not often necessary to splice such small pieces; also, the efficiency of the splice would probably be low. [Machinery, November, 1909, Splices for I-beams and Channels.]

> Proportions of Riveted Joints for Pressure Tanks

The tables and diagrams on pages 43 , 44 and 45 are made up for use when designing tanks subjected to internal pressure. On page 43 are given standard proportions for riveted joints for tanks of this kind. The standard longitudinal seams used for pressure tanks are: 1. A single riveted lap joint with an efficiency from 51 to 59 per cent. 2. A double riveted lap joint with an efficiency ranging from 60 to 74 per cent. 3. A double strap triple riveted butt joint with an efficiency varying from 83 to 88 per cent.

The dimensions required for laying out the riveted joints for any of these three types are given in the table on page 43. Page 44 gives the plate thickness required for varying working pressures in pounds, tank diameter in feet,
and different types of riveted joint. For example, assume that the working pressure in a tank is 200 pounds per square inch, that the tank is 6 feet in diameter, and that a double strap triple riveted butt joint is to be used. Then locate 200 pounds on the scale at the bottom of the diagram on page 44, and follow the vertical line from 200 until it intersects the diagonal line for 6 feet tank diameter. From the point of intersection follow the horizontal line until intersecting the diagonal line for a double strap joint. From the point of intersection thus located follow a vertical line downwards to the bottom scale. It will be seen that a plate thickness of slightly more than $3 / 4$ inch is required. In this case, a plate $13 / 16$ inch thick would probably be used.

Page 45 gives a diagram by means of which it is possible to determine the approximate weight of a pressure tank when the length and diameter in feet and the thickness of the suell in inches are known. Assume as an example that the diameter of a tank is 10 feet and the length 20 feet. The plate thickness is $5 / 8$ inch. Adding the length and diameter together, the sum 30 feet is located to the left on the bottom scale in the diagram on page 45 and the vertical line from 30 is followed until it intersects the diagonal line corresponding to a diameter of 10 feet. From the point of intersection follow the horizontal line until it intersects the diagonal line for $5 / 8$-inch plate thickness, and from this point of intersection follow the vertical line downward to the bottom, where the approximate weight of the tank, 30,000 pounds, is found. [Machinery, July, 1910, Weights of Cylindrical Pressure Tanks.]

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO $\$ 1.00$ ON THE SEVENTH DAY overdue.

$\begin{array}{ll}\text { TJ1 } & \\ \text { M2 } & 347509 \\ V_{118} & 34\end{array}$

UNIVERSTTY OF CALIFORNIA LBRARY
20. 16. Machine Tool Drives.-Speeds and Feeds of Machine Tools: Geared of Single Pulley Drives; Drives for Migh Speed Cutting Tools.

3ro. 17. Strength of Cylinders-For mulas, Charts, and Diagrams.

No. 18. Shop Arithmetic for the Ma-chinist.-Tapers; Change Gears: Cutting Speeds: Feeds: Indexing; Gearing for Cutting Spirals: Angles.

No. 19. Use of Eormulas in Mechanics. -With numerous applications.

No. 20. Spiral Gearing-Rules. Formulas, and Diagrams.

No. 21. Measuring Tools. Ifintory atid Development of Statidard Mensurements; Special Calipers: Compasses; Micrometer Tools; Protractors, etc.

2No. 22. Calculation of Elements of Machine Design.-Factor of Safety Strensth of Bolts; Riveted Joints; Kevs and Keyways. Toggle-joints.

No. 23. Theory of Crane Design.-Jib Cranes: Calculation of Sliaft, fears, and Bealings: Force Paquired to Move Crane Trolleys; Pillar Cinues.

No. 24. Examples of Calculating De-signs.-Charts it Jesigning, Funch and Riveter Frames; Sheir Frames: Billet and Bar Passes; ete.
No. 25. Deep Hole Drilling. Mcthods of 1 cilling; in, ruction of Frils.

2No. 26. Modern Punch and Die Con-struction-ronsiruction and The of Sul)press Di s; Modery Blanking Die Construction; D.awing sand Femmine Dips.

No. 27. Iocomotive Design, Part I.Buters, Cylinders, Pipes ind Pistons.

Mo. 28. Locumotive Design, Part H.Stephenson Valve Mation; Theory: Vimorlation and Desi; of Vilve Motion: The Walschaerts Val Mot \quad.
No. 29. Locon. ise Design, Part III. Croscokebis: Exioist Pipe: Fratmes: Cross-he: Guide Iars: Gmmecting-rods: Crank-n' : A:los; Drivins-wheels.

No. 30. Lrocomotive Design, Part IV.Springs, Trueks, Cab and Tender.

No. 31. Screw 2 aread Tools and Gages.
No. 32 Screw Thread Cutting-- Ia the Change Geurs, i reud Iouls: Kinks

NO. 33. iystems and Practice of the Drafting-Room.

No. 34. Care and Eepair of Dymamos and Motors.

To. 35. Tables and Formulas for Shop and Drafting-Room. - The The of Formalas; Solution of Priangles: Strenstl of Materials; Gearing: Soriw Threids: Tap Drills; Drill Sizes; Tapers: Kevs: Jig Bushinge, etc.

3ro. 36. Iron and steel. Principles of Manufacture and Treatment.
No. 37. Bevel Crearing.-Rules and Formulas; Jixamples of Cnleulation:

Tooth Ouglines: Strength and Durability Design; My:thuds of Chitting Teeth.

No. 38 Grinding and Grinding Ma chine 39
39. Fans, Ventilation and Feating. Tans: Heater ${ }^{2}$ Shop Heating.
No. 40, Wheels. T lre ir Purpose. and Deslgin.
\%. 11. Jigs and Fixtures, Part I.Principles of Jig and Fixture Design: Drill and Boring Jig Bushings; Locating Paints; Clampins Devices.

No. 42. Jigs and Fixtures, Part II-Open and Closed Drill Jigs

No. 43. Jigs and Fiztures, Part III.Boring und Milling Ifxtures.

No. 44. Machine Blacksmithing.-Systeins, Tools and Mechines used.

No. 45 Drop Forging. Litr-ont of Phont: Mette of frop Forging, Dies.

No. 46. Hardening and Tempcring.Hardenins Plants; Treating High-Speed steel: Hardelling Gages; Hirdenins Kinks.

No. 47. Electric Overhead Cranes. Design and Cilculation.

No. 48. Files and Filing.-Types of Files, lising and Making Files.

No. 49. Girders for Electric Overhead Cranes.

No. 50. Principles and Practice of Assembling Machine Tools, Pitlit I.

IVo. 51. Principles and Fractice of Assembling Machine Tools, Pirt II.

No. 52. Advanced Shop Arithmetic for the Machinist.

No. 53. Use of Logarithms and LogarIthmic Tables.

No. 54. Solution of Triangles Part if - Nethuds, Fiules and Examples

No. 55. Solution of Triangles, Part II, Tribles ol Nattral Tuections.
No. 56. Iall Bearings.-Principles of Design and Cousimiction.
No. 57. Metal Spinning.-Mit chines, Tools and Methods L'sed.

No. 58. ERelical and Elliptic Springs.Calculation and Design.

No. 59. MEachines, Tools and Methods of Automobile Manufacture.

No. 60. Construction and Manufacture of Automobiles.

No. 61. Blacksmith Shop Practice.ivioulet E Hamith Shop WMatine: Forging of towlis ind Chatis: Miscellaneous Appliances aud Methods.

No. 62. Hardness and Durability Testing of IVetals.

No. 63. Heat Treatment of Steel. Hardening Tompering and Cise-Hardenins.

> No. 64 . Gage Naking and Lapping.
> No 65 . Formulas and Constants for Gas Engine Design.

Machners, the monthly mechanical journal, originator of the Refevenc

 Data Sheet Series, is published in four editions the shon Pation. si the Enginecring Edition, $\$ 2.00$ a year; the Railway Edition, $\$ 2.00$ Foreign Edition. $\$ 3.00$ a year.