REVISED AND RE-ARRANGED IN LIBRARY FORM

UC-NRLF

$$
\text { В } 3025693
$$

No. 8

Bearings, Couplings and Clutches-Chains and Hooks

PRICE 25 CENTS

CONTENTS

Dimensions of Pillow Blocks 4
Standard Babbitted Bearings 8
Proportions for Plain Bearings 9
Formulas for Ball and Roller Bearing a 10
Dimensions for Two-Paint Ball Bearings 12
Dimensions of shaft Couplings 16
Dimenstens of Crab Couplings 20
Dimensions af Cast-Iron Toothed Clutches 22
Formulas for Cine Clutches 24
Dimensions of Cast-Irfa Friction Clutches. 25
Dimensions of Universal Joints 26
Dimensions of Knuckle Joints 27
Dimensions of Chain Links 28
Dimensions of Eye-Bolts 31
Chain End Link and Narrow Shackle 32
Diagram of Chain Friction 34
Diagram of Journal Friction 35
Force Required for Hoisting 36
Crane Hooks 39
Standard Drum Scores 42
The Industrial Press, 49-55 Lafayette Street, New YorkPublishers of MACHINERY

MACHINERY'S DATA SHEET SERIES

COMPILED FROM MACHINERY'S MONTHLY DATA
SHEETS AND ARRANGED WITH EXPLANATORY NOTES No. 8

Bearings, Couplings and Clutches-Chains and Hooks

CONTENTS

Dimensions of Pillow Blocks 4
Standard Babbitted Bearings 8
Proportions for Plain Bearings 9
Formulas for Ball and Roller Bearings 10
Dimensions for Two-Point Ball Bearings 12
Dimensions of Shaft Couplings 16
Dimensions of Crab Couplings 20
Dimensions of Cast-Iron Toothed Clutches 22
Formulas for Cone Clutches 24
Dimensions of Cast-Iron Friction Clutches 25
Dimensions of Universal Joints 26
Dimensions of Knuckle Joints 27
Dimensions of Chain Links 28
Dimensions of Eye-Bolts 31
Chain End Link and Narrow Shackle 32
Diagram of Chain Friction 34
Diagram of Journal Friction 35
Force Required for Hoisting 36
Crane Hooks 39
Standard Drum Scores 42

In the following pages are compiled a number of diagrams and concise tables relating to bearings, couplings, clutches, chains and crane hooks, carefully selected from Machinery's monthly Data Sheets, issued as supplements to the Engineering and Railway editions of Machinery since September, 1898. A number of additional tables and diagrams also are included which are published here for the first time.

In order to enhance the value of the tables and diagrams, brief explanatory notes have been provided wherever necessary. In these notes a complete list of references is given to articles which have appeared in Machinery, and to matter published in Machinery's Reference Series, giving additional information on the subject. These references will be of considerable value to readers who wish to make a more thorough study of the subject. In a note at the foot of the tables reference is made to the page on which the explanatory note relating to the table appears.

BEARINGS, COUPLINGS AND CLUTCHES

Bearings

The design of bearings presents one of the most important problems connected with machine construction. No general rule can be given for the diameter of a bearing to sustain a certain load, as a number of factors enter into the design. The lubrication, in particular, plays a very important role, and the durability of the lubricating film is affected in a great measure by the character of the load carried. Commercial cils will endure at low speeds, without rupture of the oil film, from 500 to 1,000 pounds per square inch, when the load is steady. It is not safe, however, to load a bearing to this extent, since it is only under favorable conditions that the film will stand this pressure without breaking. The approximate unit pressure which a bearing will endure without seizing is expressed by the following equation:

$$
p=\frac{P K}{D N+K}
$$

In this formula:
$p=$ allowable pressure in pounds per square inch of projected area,
$D=$ diameter of the bearing in inches,
$N=$ number of revolutions of journal per minute,
P and $K=$ variables depending upon ihe quality of oil, manner of lubrication, etc.

The value of P for ordinary cases is about 200 for collar thrust bearings, 400 for shaft bearings, 800 for car journals, 1200 for crank-pins, and 1600 for wrist-pins. The factor K depends upon the method of lubrication, the rapidity of cooling and the care which the journal is likely to get. The
value of this factor is as follows: Ordinary work, drop-feed lubrication, 700; first class care, drop-feed lubrication, 1000 ; force-feed lubrication or ring oiling, 1200 to 1500 ; extreme limit for perfect lubrication and air-cooled bearings, 2000. This latter value is seldom used except in locomotive work where the rapid circulation of the air cools the journals.

In general the diameter of a shaft is determined with relation to its strength or stiffness. Having obtained the proper diameter, the next step in designing the bearing is to make it long enough so that the unit pressure shall not exceed the required value p. This length is found directly by the equation:

$$
L=\frac{W}{P K}\left(N+\frac{K}{D}\right)
$$

in which
$L=$ length of bearing in inches,
$W=$ load upon bearing in pounds,
P, K, N and D denote the same quantities as before.

A bearing, however, may give poor satisfaction because it is too long as well as because it is too short. It is, therefore, of importance that the diameter and length of the bearing be properly proportioned in relation to each other. On pages 4 to 7 , inclusive, are given dimensions of pillow blocks and general proportions of bearings for shafts from 1 to 12 inches diameter. These dimensions will be found very convenient for determining the proportions when the diameter of the shaft has first been determined. If the load placed upon the bearing is known, however, a calculation should be made to make sure that the diameter and its (Continued on page 23.)

DIMENSIONS OF PILLOW BLOCKS.

Contributed by B. H. Reddy, Machinery's Data Sheet No. 44. Explanatory note: Page 3.

DIMENSIONS OF BEARINGS-II
DIMENSIONS OF PILLOW BLOCKS.

	$\underset{\sim}{\text { 岕 }}$		$\begin{aligned} & \text { 出 } \\ & + \\ & \text { 1 } \end{aligned}$	$\stackrel{A}{\Rightarrow}$	$\begin{aligned} & + \\ & \stackrel{+}{-} \end{aligned}$		$\begin{aligned} & \text { + } \\ & + \\ & \text { a } \end{aligned}$	$\begin{gathered} 0 \\ \sim \end{gathered}$	$\underset{\sim}{\dot{z}}$	\propto		$\xrightarrow{-3}$				\square			
D	A	B	C	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T
$1^{\prime \prime}$	$\frac{5}{8 \prime}$		$1{ }_{2}^{1 \prime}$	$1{ }^{14^{\prime \prime}}$	${ }^{\frac{1}{4}}{ }^{\prime}$	$\frac{1}{18}{ }^{\prime \prime}$	"	$\frac{3}{82}$	$\frac{1}{}{ }^{\prime \prime}$				${ }^{1 / 2}$	$8^{8 \prime}{ }^{\prime \prime}$	${ }^{1 \prime}$				
$1 \frac{1}{4}$	$\frac{3}{4}$		$1 \frac{18}{16}$	12	$\frac{5}{16}$	${ }^{\frac{1}{16}}$	$\frac{3}{8}$	${ }^{\frac{3}{82}}$	$\frac{5}{8}$		8	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{16}$	$\frac{1}{4}$			$\frac{1}{8}$	$\frac{1}{16}$
11 $\frac{1}{2}$	$\frac{3}{4}$		$2 \frac{3}{8}$	2	$\frac{3}{8}$	$\frac{1}{16}$	$\frac{7}{16}$	$\frac{3}{38}$	$\frac{5}{8}$		$\frac{1}{2}$	$\frac{5}{8}$	$\frac{8}{4}$	$\frac{3}{16}$	$\frac{1}{4}$			$\frac{1}{8}$	$\frac{1}{16}$
$1 \frac{3}{4}$	1		$2 \frac{11}{16}$	$2 \frac{1}{4}$	$\frac{7}{16}$	$\frac{1}{16}$	$\frac{1}{2}$	$\frac{3}{32}$	$\frac{7}{8}$		$\frac{1}{2}$	${ }^{5}$	$\frac{3}{4}$	$\frac{3}{16}$	$\frac{1}{4}$			$\frac{1}{8}$	$\frac{1}{16}$
2	1		3	$2 \frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{16}$	$\frac{9}{16}$	$\frac{3}{32}$	$\frac{7}{8}$		$\frac{5}{8}$	$\frac{8}{4}$	1	${ }^{\frac{3}{16}}$	$\frac{5}{16}$			$\frac{3}{16}$	$\frac{1}{16}$
$2 \frac{1}{4}$	11 $\frac{1}{8}$		$3 \frac{9}{16}$	3	$\frac{9}{16}$	$\frac{1}{16}$	$\frac{5}{8}$	$\frac{3}{32}$	1		$\frac{5}{8}$	$\frac{3}{4}$	1	$\frac{3}{16}$	$\frac{5}{16}$			$\frac{8}{16}$	$\frac{1}{16}$
$2 \frac{1}{2}$	11 $\frac{1}{8}$		$3 \frac{7}{8}$	$3 \frac{1}{4}$	$\frac{5}{8}$	$\frac{1}{8}$	$\frac{8}{4}$	$\frac{3}{16}$	1		5	$\frac{3}{4}$	$1 \frac{1}{4}$	$\frac{8}{16}$	${ }^{5}$			$\frac{3}{16}$	
$2 \frac{3}{4}$	$1 \frac{1}{4}$		$4 \frac{3}{16}$	$3 \frac{1}{8}$	$\frac{11}{16}$	$\frac{1}{8}$	$1 \frac{18}{6}$	$\frac{3}{16}$	$1 \frac{1}{8}$		$\frac{8}{4}$	$\frac{7}{8}$	$1 \frac{1}{4}$	$\frac{1}{4}$	$\frac{5}{16}$			$\frac{3}{16}$	1
3	114	${ }^{1}{ }^{\prime}$	$4 \frac{1}{2}$	$3{ }^{\frac{3}{4}}$	$\frac{3}{4}$	$\frac{1}{8}$	$\frac{7}{8}$	$\frac{3}{16}$	$1 \frac{1}{8}$	$\frac{1}{4}{ }^{\prime \prime}$	$\frac{3}{4}$	$\frac{7}{8}$	112	$\frac{1}{4}$	$\frac{3}{8}$	${ }^{\frac{3}{4}}$	$\frac{3}{16}{ }^{\prime \prime}$	$\frac{3}{16}$	$\frac{1}{8}$
$3 \frac{1}{4}$	112	$\frac{3}{8}$	$4 \frac{1}{1} \frac{3}{6}$	4	$\frac{18}{1} \frac{18}{6}$	$\frac{1}{8}$	$\frac{15}{16}$	$\frac{3}{16}$	$1 \frac{1}{4}$	3	$\frac{8}{4}$	$\frac{7}{8}$	112	$\frac{1}{4}$	$\frac{8}{8}$	$\frac{3}{4}$	$\frac{3}{16}$	$\frac{8}{16}$	$\frac{1}{8}$
$3 \frac{1}{2}$	11 $\frac{1}{2}$	$\frac{3}{8}$	$5 \frac{3}{8}$	$4 \frac{1}{2}$	$\frac{7}{8}$	$\frac{1}{8}$	1	$\frac{3}{16}$	$1 \frac{1}{4}$	$\frac{3}{8}$	$\frac{7}{8}$	11 $\frac{1}{8}$	$1 \frac{3}{4}$	$\frac{1}{4}$	$\frac{8}{8}$	$\frac{3}{4}$	${ }_{18}^{8}$	$\frac{8}{16}$	$\frac{1}{8}$
$3{ }^{3}$	15	$\frac{8}{8}$	$5 \frac{11}{16}$	$4 \frac{3}{4}$	$\frac{15}{16}$	$\frac{3}{16}$	$1 \frac{1}{8}$	$\frac{9}{38}$	$1 \frac{3}{8}$	$\frac{8}{8}$	$\frac{7}{8}$	118	$1 \frac{3}{4}$	$\frac{1}{4}$	$\frac{8}{8}$	$\frac{8}{4}$	$\frac{3}{16}$	$\frac{3}{18}$	${ }_{8}^{1}$
4	15 ${ }^{5}$	$\frac{3}{8}$	6	5	1	$\frac{3}{16}$	$1 \frac{3}{16}$	$\frac{9}{82}$	$1 \frac{8}{8}$	$\frac{3}{8}$	$\frac{7}{8}$	118	2	$\frac{1}{4}$	$\frac{7}{16}$	1	${ }^{\frac{8}{16}}$	$\frac{1}{4}$	$\frac{3}{16}$
$4 \frac{1}{4}$	2	$\frac{8}{8}$	$6 \frac{9}{16}$	$5 \frac{1}{2}$	$1 \frac{1}{16}$	$\frac{8}{16}$	$1 \frac{1}{4}$	$\frac{9}{88}$	$1 \frac{8}{4}$	$\frac{3}{8}$	1	114	2	$\frac{1}{4}$	- 7	1	$\frac{8}{16}$	$\frac{1}{4}$	$\frac{3}{16}$
$4 \frac{1}{2}$	2	$\frac{3}{8}$	$6 \frac{7}{8}$	$5 \frac{3}{4}$	$1 \frac{1}{8}$	$\frac{8}{16}$	$1 \frac{5}{16}$	$\frac{9}{32}$	$1 \frac{3}{4}$	$\frac{3}{8}$	1	114	$2 \frac{1}{4}$	$\frac{8}{8}$	$\frac{7}{16}$	1	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{3}{16}$
$4{ }^{\text {3 }}$	21.	$\frac{3}{8}$	$7 \frac{3}{16}$	6	$1 \frac{3}{16}$	$\frac{3}{16}$	$1 \frac{3}{8}$	$\frac{9}{32}$	$1 \frac{7}{8}$	${ }^{3}$	1	$1 \frac{1}{4}$	$2 \frac{1}{4}$	8	78 18	1	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{3}{16}$
5	21	8	$7 \frac{1}{2}$	$6 \frac{1}{4}$	$1 \frac{1}{4}$	$\frac{8}{16}$	$1 \frac{7}{16}$	$\frac{9}{38}$	17	$\frac{8}{8}$	118	18	$2 \frac{1}{2}$	$\frac{3}{8}$	$\frac{1}{2}$	114	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{3}{16}$
$5 \frac{1}{4}$	$2 \frac{1}{4}$	$\frac{1}{2}$	$7 \frac{13}{16}$	61	$1 \frac{5}{16}$	$\frac{1}{4}$	$1_{18}{ }^{8}$	$\frac{3}{8}$	$1 \frac{7}{8}$	$\frac{1}{2}$	$1 \frac{1}{8}$	$1 \frac{8}{8}$	$2 \frac{1}{8}$	${ }^{3}$	$\frac{1}{2}$	$1 \frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{3}{16}$
$5 \frac{1}{2}$	$2 \frac{1}{4}$	$\frac{1}{2}$	$8 \frac{3}{8}$	7	$1 \frac{8}{8}$	$\frac{1}{4}$	$1 \frac{5}{8}$	$\frac{3}{8}$	$1 \frac{7}{8}$	$\frac{1}{2}$	$1 \frac{1}{8}$	138	$2 \frac{3}{4}$	8	$\frac{1}{2}$	$1 \frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{3}{16}$
$5 \frac{3}{4}$	21	$\frac{1}{2}$	$8 \frac{11}{16}$	$7 \frac{1}{4}$	$1 \frac{7}{16}$	$\frac{1}{4}$	11118	$\frac{3}{8}$	$1 \frac{7}{8}$	$\frac{1}{8}$	$1 \frac{1}{4}$	11 $\frac{1}{2}$	$2 \frac{3}{4}$	$\frac{8}{8}$	$\frac{1}{2}$	$1 \frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	1
6	21	$\frac{1}{2}$	9	$7 \frac{1}{8}$	$1 \frac{1}{2}$	$\frac{1}{4}$	$1 \frac{8}{4}$	$\frac{3}{8}$	$1 \frac{7}{8}$	$\frac{1}{2}$	$1 \frac{1}{4}$	11	3	$\frac{3}{8}$	$\frac{9}{16}$	118	$\frac{1}{4}$	$\frac{5}{16}$	4
61	$2 \frac{1}{2}$	$\frac{1}{2}$	9 5 ${ }^{8}$	8	$1 \frac{5}{8}$	$\frac{1}{4}$	$1{ }^{\frac{7}{8}}$	$\frac{8}{8}$	$2 \frac{1}{4}$	$\frac{1}{2}$	$1 \frac{3}{8}$	$1 \frac{8}{4}$	3	$\frac{1}{2}$	$\frac{9}{16}$	112	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{1}{4}$
7	$2 \frac{1}{2}$	$\frac{1}{2}$	$10 \frac{1}{8}$	$8 \frac{3}{4}$	$1 \frac{3}{4}$	$\frac{1}{4}$	2	$\frac{3}{8}$	21	$\frac{1}{2}$	188	$1 \frac{8}{4}$	$3 \frac{1}{4}$	$\frac{1}{8}$	$\stackrel{9}{16}$	14 ${ }^{\frac{3}{4}}$	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{1}{4}$
$7 \frac{1}{2}$	$2 \frac{1}{2}$	$\frac{5}{8}$	$11 \frac{3}{8}$	$9{ }^{1} \frac{1}{2}$	$1 \frac{7}{8}$	$\frac{1}{4}$	$2 \frac{1}{8}$	$\frac{3}{8}$	$2 \frac{1}{4}$	$\frac{5}{8}$	112	2	$3 \frac{1}{4}$	$\frac{1}{2}$	${ }_{8}^{5}$	$1 \frac{18}{4}$	$\frac{1}{4}$	$\frac{3}{8}$	4
8	3	$\frac{5}{8}$	12	10	2	$\frac{3}{8}$	$2 \frac{3}{8}$	$\stackrel{9}{16}$	$2 \frac{1}{4}$	$\frac{5}{8}$	12	2	$3 \frac{1}{2}$	$\frac{1}{2}$	$\frac{5}{8}$	2	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$
$8 \frac{1}{2}$	3	$\frac{5}{8}$	$12 \frac{7}{8}$	$10 \frac{3}{4}$	$2 \frac{1}{8}$	$\frac{8}{8}$	$2 \frac{1}{2}$	$\frac{9}{16}$	$2 \frac{1}{2}$	$\frac{5}{8}$	$1 \frac{5}{8}$	$2 \frac{1}{8}$	$3 \frac{1}{2}$	$\frac{1}{8}$	$\frac{5}{8}$	2	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$
9	3	$\frac{5}{8}$	$13 \frac{1}{2}$	$11 \frac{1}{4}$	$2 \frac{1}{4}$	$\frac{8}{8}$	$2 \frac{5}{8}$	$\frac{9}{16}$	$2 \frac{1}{2}$	${ }^{\frac{5}{8}}$	$1 \frac{5}{8}$	$2 \frac{1}{8}$	$3{ }^{\frac{3}{4}}$	$\frac{1}{8}$	$\frac{11}{16}$	21	$\frac{5}{16}$	$\frac{7}{16}$	$\frac{5}{16}$
913	$3 \frac{1}{4}$	$\frac{5}{8}$	$14 \frac{3}{8}$	12	$2 \frac{3}{8}$	$\frac{8}{8}$	$2 \frac{3}{4}$	$\frac{9}{16}$	$2{ }^{\frac{3}{4}}$	${ }^{\frac{5}{8}}$	$1 \frac{3}{4}$	$2 \frac{1}{4}$	$3{ }^{\frac{8}{4}}$	${ }^{5}$	$\frac{11}{16}$	$2 \frac{1}{4}$	$\frac{5}{16}$	$\frac{7}{18}$	${ }^{5}$
10	$3 \frac{1}{4}$	$\frac{5}{8}$	15	122	$2 \frac{1}{2}$	$\frac{3}{8}$	27	$\frac{9}{16}$	$2 \frac{3}{4}$	$\frac{5}{8}$	18 ${ }^{\frac{8}{4}}$	$2 \frac{1}{4}$	$3{ }^{\frac{3}{4}}$	${ }^{\frac{5}{8}}$	$\frac{11}{16}$	$2 \frac{1}{2}$	$\frac{5}{16}$	$\frac{7}{16}$	$\frac{5}{16}$
101 $\frac{1}{8}$	$3 \frac{1}{4}$	$\frac{5}{8}$	$15 \frac{5}{8}$	13	$2 \frac{5}{8}$	$\frac{1}{8}$	$3 \frac{1}{8}$	$\frac{3}{4}$	$2 \frac{3}{4}$	$\frac{5}{8}$	$1 \frac{7}{8}$	$2 \frac{3}{8}$	$3 \frac{8}{4}$	$\frac{5}{8}$	$\frac{3}{4}$	$2 \frac{1}{2}$	$\frac{5}{16}$	$\frac{1}{8}$	$\frac{5}{16}$
11	$3 \frac{1}{4}$	${ }^{\frac{3}{4}}$	$16 \frac{1}{2}$	$13 \frac{3}{4}$	$2 \frac{3}{4}$	$\frac{1}{2}$	$3 \frac{1}{4}$	$\frac{8}{4}$	$2 \frac{3}{4}$	$\frac{8}{4}$	$1 \frac{7}{8}$	$2 \frac{3}{8}$	4	5	$\frac{3}{4}$	$2 \frac{3}{4}$	$\frac{5}{16}$	$\frac{1}{2}$	$\frac{5}{16}$
111 $\frac{1}{2}$	$3 \frac{1}{2}$	$\frac{8}{4}$	$17 \frac{3}{8}$	141 ${ }^{\frac{1}{2}}$	$2 \frac{7}{8}$	$\frac{1}{2}$	$3 \frac{3}{8}$	$\frac{3}{4}$	3	$\frac{8}{4}$	2	$2 \frac{1}{2}$	4	${ }^{5}$	$\frac{3}{4}$	$2 \frac{3}{4}$	$\frac{5}{16}$	$\frac{1}{8}$	$\frac{5}{16}$
12	$3 \frac{1}{2}$	$\frac{3}{4}$	18	15	3	$\frac{1}{2}$	$3 \frac{1}{2}$	$\frac{3}{4}$	3	$\frac{3}{4}$	2	$2 \frac{1}{2}$	4	$\frac{5}{8}$	$\frac{3}{4}$	3	$\frac{5}{16}$	$\frac{1}{8}$	$\frac{5}{16}$

DIMENSIONS OF PILLOW BLOCKS．

	$\stackrel{\square}{\square}$					A		z m + i 4	̇̀ a ＋ ì	出 + + i	$\begin{aligned} & \text { 炭 } \\ & \stackrel{\text { ex }}{+} \\ & \dot{\text { à }} \end{aligned}$	$\stackrel{\sim}{\infty}$	¢ a + + 殅			$\begin{aligned} & \text { 炭 } \\ & \underset{\sim}{0} \end{aligned}$	$\begin{gathered} \dot{\sim} \\ + \\ i \\ \text { i } \end{gathered}$	它	
D	U	v	w	x	Y	z	A^{\prime}	B^{\prime}	C^{\prime}	D^{\prime}	E^{\prime}	$\mathrm{F}^{\prime \prime}$	G^{\prime}	H^{\prime}	I^{\prime}	J^{\prime}	K^{\prime}	L^{\prime}	M^{\prime}
1＇		$\frac{1}{8}^{\prime \prime}$	$\frac{1}{8 \prime}^{\prime \prime}$	$\frac{8}{16}{ }^{\prime \prime}$			$1{ }^{\frac{3}{4}}{ }^{\prime \prime}$	$23^{\prime \prime}$	$3 \frac{1}{2}^{\prime \prime}$	$5{ }^{\prime \prime}$	$6 \frac{1}{2}^{\prime \prime}$	$2 \frac{1}{4}^{\prime \prime}$	$2 \frac{1}{2}^{\prime \prime}$	$\frac{3}{8 \prime}$	$\frac{7}{16}{ }^{\prime \prime}$	$\frac{5}{8}$			
$1 \frac{1}{4}$		$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{16}$			2	$2 \frac{7}{8}$	$4 \frac{1}{4}$	$6 \frac{1}{4}$	8	$2 \frac{3}{4}$	3	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{3}{4}$			
112		$\frac{1}{8}$	$\frac{1}{8}$	$\frac{8}{18}$			$2 \frac{1}{4}$	$3 \frac{1}{8}$	$4 \frac{1}{2}$	$6 \frac{1}{2}$	$8 \frac{1}{2}$	3	$3 \frac{3}{8}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{3}{4}$			
$1 \frac{3}{4}$		$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{16}$			$2 \frac{1}{2}$	$3 \frac{5}{8}$	$5 \frac{1}{4}$	$7 \frac{3}{4}$	10	$3 \frac{1}{2}$	$3{ }^{\frac{5}{8}}$	${ }^{\frac{5}{8}}$	$\frac{11}{17}$	1			
2		$\frac{3}{16}$	$\frac{8}{16}$	$\frac{1}{4}$			3	$4 \frac{1}{8}$	$5 \frac{3}{4}$	$8 \frac{1}{4}$	101	$3{ }^{\frac{3}{4}}$	$4 \frac{1}{4}$	$\frac{5}{8}$	$\frac{11}{16}$	1			
$2 \frac{1}{4}$		$\frac{8}{16}$	$\frac{3}{16}$	$\frac{1}{4}$			$3 \frac{1}{4}$	41 $\frac{1}{2}$	61 ${ }^{\frac{1}{2}}$	$9 \frac{1}{2}$	12	4	41 $\frac{1}{2}$	${ }^{\frac{3}{4}}$	$\frac{7}{8}$	$1 \frac{1}{8}$			
$2 \frac{1}{2}$		$\frac{3}{16}$	$\frac{3}{18}$	$\frac{1}{4}$			$3 \frac{3}{4}$	5	7	10	$12 \frac{1}{2}$	$4 \frac{1}{2}$	5	$\frac{8}{4}$	$\frac{7}{8}$	11 $\frac{1}{8}$			
23		$\frac{8}{16}$	$\frac{3}{16}$	$\frac{1}{4}$			4	$5 \frac{1}{4}$	$7 \frac{1}{4}$	102	131 $\frac{1}{2}$	5	$5 \frac{1}{2}$	$\frac{7}{8}$	1	$1 \frac{3}{8}$			
3	$\frac{3}{8 \prime}{ }^{\prime \prime}$	${ }^{\frac{1}{4}}$	$\frac{3}{16}$	${ }^{\frac{1}{4}}$	$\frac{3}{16}$	$\frac{8}{4}{ }^{\prime \prime}$	$4 \frac{1}{4}$	$5 \frac{1}{2}$	$7 \frac{1}{2}$	11	14	$5 \frac{1}{2}$	6	$\frac{7}{8}$	1	13 ${ }^{3}$	$2{ }_{8}^{5 \prime \prime}$	$2 \frac{1}{4}^{\prime \prime}$	$\frac{1}{8}^{\prime \prime}$
$3 \frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{3}{16}$	$\frac{3}{4}$	$4 \frac{8}{4}$	$6 \frac{1}{4}$	$8 \frac{3}{4}$	123	16	6	$6 \frac{3}{4}$	1	118	$1 \frac{1}{2}$	27	$2 \frac{1}{2}$	$\frac{1}{4}$
$3 \frac{1}{2}$	$\frac{8}{8}$	$\frac{1}{4}$	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{8}{18}$	$\frac{8}{4}$	5	61 ${ }^{2}$	9	13	161	61 $\frac{1}{2}$	$7 \frac{1}{4}$	1	11 $\frac{1}{8}$	$1 \frac{1}{2}$	27	$2 \frac{1}{2}$	$\frac{1}{4}$
$3 \frac{8}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{8}{16}$	$\frac{3}{4}$	$5 \frac{1}{4}$	7	$9 \frac{8}{4}$	14	18	7	78	11 $\frac{1}{8}$	$1 \frac{1}{4}$	$1{ }^{3}$	$3 \frac{1}{4}$	$2{ }^{3}$	$\frac{1}{4}$
4	$\frac{1}{2}$	$\frac{5}{16}$	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{16}$	1	$5 \frac{8}{4}$	$7 \frac{1}{2}$	101	15	19	$7 \frac{1}{2}$	$8 \frac{1}{4}$	11 $\frac{1}{8}$	$1 \frac{1}{4}$	$1{ }^{3}$	$3 \frac{1}{4}$	$2{ }^{3}$	$\frac{1}{4}$
$4 \frac{1}{4}$	$\frac{1}{2}$	$\frac{5}{16}$	$\frac{1}{4}$	$\frac{5}{16}$	${ }^{\frac{8}{6}}$	1	6	8	11	16	$20 \frac{1}{2}$	$7 \frac{1}{2}$	$8 \frac{1}{4}$	$1 \frac{1}{4}$	$1 \frac{3}{8}$	2	$3 \frac{3}{8}$	3	$\frac{1}{4}$
$4 \frac{1}{2}$	$\frac{1}{2}$	$\frac{5}{16}$	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{1}{4}$	1	61 $\frac{1}{2}$	$8 \frac{1}{2}$	112	161	21	8	$8 \frac{8}{4}$	11 ${ }^{1}$	$1 \frac{3}{8}$	2	$3 \frac{5}{8}$	3	$\frac{1}{4}$
$4 \frac{3}{4}$	$\frac{1}{2}$	$\frac{5}{18}$	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{1}{4}$	1	$6 \frac{3}{4}$	9	$12 \frac{3}{8}$	$18 \frac{1}{4}$	$23 \frac{1}{2}$	$8 \frac{1}{2}$	91	11	$1 \frac{5}{8}$	21	$4 \frac{3}{8}$	$3{ }^{3}$	$\frac{1}{4}$
5	$\frac{5}{8}$	$\frac{8}{8}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	11	7	91	$12 \frac{5}{8}$	$18 \frac{3}{4}$	24	9	$9 \frac{3}{4}$	11 $\frac{1}{2}$	18	21	43	$3{ }^{3}$	$\frac{1}{4}$
$5 \frac{1}{4}$	$\frac{5}{8}$	$\frac{8}{8}$	$\frac{1}{4}$	$\frac{8}{8}$	$\frac{1}{4}$	14	$7 \frac{1}{8}$	$9 \frac{8}{4}$	$13 \frac{1}{8}$	$19 \frac{1}{4}$	$24 \frac{1}{2}$	$9 \frac{1}{2}$	$10 \frac{1}{2}$	11 $\frac{1}{2}$	$1 \frac{5}{8}$	$2 \frac{1}{4}$	$4 \frac{3}{8}$	$3 \frac{3}{4}$	$\frac{8}{8}$
$5 \frac{1}{2}$	$\frac{5}{8}$	$\frac{8}{8}$	$\frac{1}{4}$	$\frac{8}{8}$	$\frac{1}{4}$	$1 \frac{1}{4}$	$7 \frac{3}{4}$	10	138 ${ }^{\frac{3}{8}}$	$19 \frac{1}{4}$	$24 \frac{1}{2}$	10	11	11 $\frac{1}{2}$	15	$2 \frac{1}{4}$	$4 \frac{3}{8}$	$3 \frac{3}{4}$	$\frac{3}{8}$
$5 \frac{3}{4}$	$\frac{5}{8}$	$\frac{8}{8}$	$\frac{1}{4}$	$\frac{8}{8}$	4	11	8	$10 \frac{1}{4}$	135	$19 \frac{3}{4}$	25	101 $\frac{1}{2}$	112	11 $\frac{1}{2}$	15 ${ }^{\frac{5}{8}}$	$2 \frac{1}{4}$	$4 \frac{3}{8}$	$3 \frac{3}{4}$	8
6	$\frac{8}{4}$	$\frac{7}{16}$	$\frac{5}{16}$	$\frac{7}{16}$	$\frac{5}{16}$	11	$8 \frac{1}{2}$	$10 \frac{3}{4}$	$14 \frac{1}{8}$	$20 \frac{1}{4}$	$25 \frac{1}{2}$	11	12	11 $\frac{1}{2}$	15	$2 \frac{1}{4}$	$4 \frac{3}{8}$	$3 \frac{3}{4}$	$\frac{3}{8}$
61 $\frac{1}{2}$	$\frac{8}{4}$	$\frac{7}{16}$	$\frac{5}{16}$	$\frac{7}{16}$	$\frac{5}{18}$	11	9	113 ${ }^{\frac{3}{4}}$	$15 \frac{3}{4}$	23	29	111	$12 \frac{1}{2}$	$1 \frac{3}{4}$	178	$2 \frac{1}{2}$	$4 \frac{7}{8}$	$4 \frac{1}{4}$	$\frac{8}{8}$
7	$\frac{7}{8}$	$\frac{7}{16}$	$\frac{5}{16}$	$\frac{7}{16}$	$\frac{5}{16}$	13 ${ }^{\frac{8}{4}}$	$9{ }^{9}$	$12 \frac{1}{2}$	161	231	291	121	$13 \frac{1}{2}$	$1 \frac{3}{4}$	$1 \frac{7}{8}$	$2 \frac{1}{2}$	$4 \frac{7}{8}$	$4 \frac{1}{4}$	$\frac{8}{8}$
$7 \frac{1}{2}$	$\frac{7}{8}$	$\frac{1}{2}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{16}$	13	$10 \frac{1}{4}$	13	17	24	30	131	$14 \frac{3}{4}$	13 ${ }^{\frac{3}{4}}$	178	$2 \frac{1}{2}$	$4 \frac{7}{8}$	$4 \frac{1}{4}$	$\frac{3}{8}$
8	1	$\frac{1}{2}$	$\frac{8}{8}$	$\frac{1}{2}$	$\frac{5}{16}$	2	114	14	18	26	33	142	$15 \frac{3}{4}$	2	$2 \frac{1}{8}$	3	57	5	$\frac{3}{8}$
$8 \frac{1}{2}$	1	$\frac{1}{2}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{16}$	2	113	14，	1818	261	331	151	163	2	$2 \frac{1}{8}$	3	$5 \frac{7}{8}$	5	$\frac{3}{8}$
9	1	$\frac{9}{16}$	$7^{7} 6$	$\frac{9}{16}$	$\frac{8}{8}$	21	$12 \frac{1}{2}$	$15 \frac{1}{2}$	201	$28 \frac{1}{2}$	$35 \frac{1}{2}$	16	$17 \frac{1}{4}$	2	$2 \frac{1}{8}$	3	$5 \frac{7}{8}$	5	$\frac{3}{8}$
911	1	$\frac{9}{16}$	$\frac{7}{16}$	${ }^{2} 8$	${ }^{\frac{8}{8}}$	$2 \frac{1}{4}$	13	16	21	$29 \frac{3}{4}$	38	17	$18 \frac{1}{4}$	$2 \frac{1}{4}$	$2 \frac{3}{8}$	$3 \frac{1}{4}$	$6 \frac{3}{8}$	$5 \frac{1}{2}$	$\frac{3}{8}$
10	11	$\frac{9}{16}$	$\frac{7}{16}$	$\frac{9}{16}$	$\frac{8}{8}$	$2 \frac{1}{2}$	$13 \frac{8}{4}$	$16 \frac{3}{4}$	$21 \frac{3}{4}$	303	381	18	$19 \frac{1}{4}$	$2 \frac{1}{4}$	$2 \frac{3}{8}$	$3 \frac{1}{4}$	$6 \frac{3}{8}$	$5 \frac{1}{2}$	$\frac{3}{8}$
101 $\frac{1}{2}$	14	$\frac{5}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{8}{8}$	$2 \frac{1}{2}$	$14 \frac{1}{4}$	$17 \frac{1}{4}$	$22 \frac{1}{4}$	30％	39	19	$20 \frac{1}{4}$	$2 \frac{1}{4}$	$2 \frac{3}{8}$	$3 \frac{1}{4}$	$6 \frac{3}{8}$	$5 \frac{1}{2}$	$\frac{3}{8}$
11	$1 \frac{1}{4}$	$\frac{5}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{8}{8}$	$2 \frac{3}{4}$	15	18	23	$31 \frac{3}{4}$	40	20	$21 \frac{1}{2}$	$2 \frac{1}{4}$	$2 \frac{3}{8}$	$3 \frac{1}{4}$	$6 \frac{3}{8}$	$5 \frac{1}{2}$	$\frac{1}{2}$
111 $\frac{1}{2}$	11	$\frac{5}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{8}$	$2 \frac{3}{4}$	$15 \frac{3}{4}$	$19 \frac{1}{4}$	$24 \frac{3}{4}$	$34 \frac{3}{4}$	431	21	$22 \frac{1}{2}$	$2 \frac{1}{2}$	$2 \frac{5}{8}$	$3 \frac{3}{4}$	$7 \frac{3}{8}$	61	$\frac{1}{2}$
12	11 ${ }^{2}$	$\frac{5}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{8}{8}$	3	163	20	$25 \frac{1}{2}$	$35 \frac{1}{2}$	441	22	$23 \frac{1}{2}$	$2 \frac{1}{2}$	25	$3 \frac{3}{4}$	73	$6 \frac{1}{4}$	$\frac{1}{2}$

DIMENSIONS OF BEARINGS-IV
DIMENSIONS OF PILLOW BLOCKS.

		$\begin{gathered} \infty \\ + \\ x \\ + \\ + \\ +1 \\ +1 \\ +z \\ \vdots \end{gathered}$	$\begin{aligned} & \text { iv } \\ & + \\ & \dot{z} \end{aligned}$		$\begin{aligned} & \text { z̀ } \\ & \text { a } \end{aligned}$			$\begin{gathered} \text { z } \\ \sim \end{gathered}$	$\underset{\rightarrow}{\mathrm{E}}$	$\begin{aligned} & i_{2} \\ & 1 \\ & i_{m} \end{aligned}$	4		$\underset{\sim}{A}$			¢ a 1 1 0			
D	N^{\prime}	O^{\prime}	P^{\prime}	Q'	R^{\prime}	S^{\prime}	T ${ }^{\prime}$	U^{\prime}	v^{\prime}	W'	X^{\prime}	Y^{\prime}	${ }^{\prime}$	A_{1}	B_{1}	C_{1}	D_{1}	E_{1}	F_{1}
$1{ }^{\prime \prime}$	$\frac{3}{8 \prime}{ }^{\prime \prime}$	$21^{\prime \prime}$	$\frac{7}{16}{ }^{\prime \prime}$	$\frac{7}{16}{ }^{\prime \prime}$	$\frac{1}{\frac{1}{2}}$	$\frac{7}{8}$	$\frac{9}{16}{ }^{\prime \prime}$		${ }^{1}{ }^{\prime \prime}$	$11^{\prime \prime}$				$\frac{1}{8}^{\prime \prime}$		$2 \frac{3}{4}{ }^{\prime \prime}$	$3^{\prime \prime}$		$2^{\prime \prime}$
11	$\frac{1}{2}$	3	$\frac{9}{16}$	$\frac{9}{16}$	$\frac{5}{8}$	1	$\frac{11}{18}$...	$\frac{5}{16}$	17 ${ }^{\frac{7}{8}}$				$\frac{1}{8}$		$3 \frac{3}{4}$	4		$2 \frac{1}{2}$
11 $\frac{1}{2}$	$\frac{1}{8}$	$3 \frac{1}{2}$	$\frac{9}{16}$	$\frac{9}{16}$	$\frac{5}{8}$	1	$\frac{11}{16}$		$\frac{8}{18}$	$2 \frac{1}{8}$				$\frac{3}{16}$		41	41		3
13 $\frac{3}{4}$	$\frac{3}{8}$	$4 \frac{1}{4}$	$\frac{11}{16}$	$\frac{11}{16}$	$\frac{3}{4}$	13 $\frac{3}{8}$	$\frac{18}{16}$		$\frac{8}{8}$	$2 \frac{1}{4}$				$\frac{8}{16}$		$5 \frac{1}{8}$	$5 \frac{1}{2}$		$3 \frac{1}{2}$
2	$\frac{5}{8}$	$4 \frac{1}{2}$	$\frac{11}{16}$	$\frac{11}{16}$	$\frac{3}{4}$	138	$\frac{18}{18}$.	$\frac{8}{8}$	$2 \frac{3}{4}$				$\frac{1}{4}$	$3 \frac{1}{4}^{\prime \prime}$	$5 \frac{1}{2}$	6	$3^{\prime \prime}$	4
$2 \frac{1}{4}$	$\frac{8}{4}$	$5 \frac{1}{4}$	$\frac{18}{18}$	$\frac{7}{8}$	$\frac{7}{8}$	12	1		$\frac{1}{8}$	3				$\frac{1}{4}$	4	61 $\frac{1}{2}$	7	$3 \frac{1}{2}$	$4 \frac{1}{2}$
$2 \frac{1}{2}$	$\frac{8}{4}$	$5 \frac{3}{4}$	$\frac{18}{16}$	$\frac{7}{8}$	$\frac{7}{8}$	118	1		$\frac{1}{8}$	$3 \frac{1}{2}$				$\frac{1}{4}$	$4 \frac{1}{2}$	7	$7 \frac{1}{8}$	$3 \frac{8}{4}$	5
$2 \frac{3}{4}$	$\frac{8}{4}$	$6 \frac{1}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{7}{8}$	11	1		$\frac{1}{2}$	$3 \frac{3}{4}$				$\frac{1}{4}$	5	8	81 ${ }^{\frac{1}{2}}$	$4 \frac{1}{4}$	$5 \frac{1}{2}$
3	$\frac{8}{4}$	$6 \frac{3}{4}$	$\frac{18}{18}$	$\frac{7}{8}$	$\frac{7}{8}$	118	1	$\frac{7}{8}{ }^{\prime \prime}$	$\frac{1}{2}$	4	$11^{\prime \prime}$	$3^{3 \prime}$	$2{ }_{4}^{\prime \prime}$	$\frac{1}{4}$	$5 \frac{1}{2}$	81	9	41	6
$3 \frac{1}{4}$	$\frac{7}{8}$	74	$\frac{15}{15}$	1	11 $\frac{1}{8}$	13 ${ }^{\frac{3}{4}}$	$1 \frac{1}{4}$	1	${ }^{\frac{5}{8}}$	$4 \frac{1}{2}$	1 $\frac{1}{2}$	$\frac{3}{4}$	$2 \frac{1}{2}$	$\frac{8}{8}$	$5 \frac{8}{4}$	$9 \frac{1}{4}$	10	5	61
$3 \frac{1}{2}$	-	8	$\frac{15}{16}$	1	11 $\frac{1}{8}$	13 ${ }^{\frac{3}{4}}$	$1 \frac{1}{4}$	1	${ }^{\frac{5}{8}}$	$4 \frac{3}{4}$	11 $\frac{1}{2}$	$\frac{7}{8}$	$2 \frac{1}{2}$	$\frac{8}{8}$	$6 \frac{1}{4}$	93 $\frac{3}{4}$	1012	$5 \frac{1}{4}$	7
$3 \frac{3}{4}$	1	$8 \frac{3}{4}$	$1 \frac{1}{16}$	$1 \frac{1}{8}$	11 ${ }^{\frac{1}{4}}$	$1 \frac{7}{8}$	$1 \frac{3}{8}$	118	$\frac{11}{16}$	$5 \frac{1}{8}$	15	$\frac{7}{8}$	$2 \frac{3}{4}$	$\frac{8}{8}$	$6 \frac{1}{4}$	101	11	$5 \frac{1}{8}$	7
4	1	9	$1 \frac{1}{16}$	$1 \frac{1}{8}$	$1 \frac{1}{4}$	$1 \frac{7}{8}$	$1 \frac{3}{8}$	$1 \frac{1}{8}$	$\frac{11}{16}$	$5 \frac{5}{8}$	15	1	$2 \frac{3}{4}$	$\frac{3}{8}$	$6 \frac{3}{4}$	103	111	$5 \frac{3}{4}$	$7 \frac{1}{8}$
$4 \frac{1}{4}$	11 $\frac{1}{8}$	10	1 $\frac{3}{16}$	$1 \frac{1}{4}$	1388	$2 \frac{1}{8}$	$1 \frac{1}{2}$	$1 \frac{1}{4}$	$\frac{8}{4}$	$5 \frac{7}{8}$	2	1	3	$\frac{8}{8}$	7	114	12	6	8
$4 \frac{1}{2}$	118	1012	$1 \frac{3}{16}$	$1 \frac{1}{4}$	13 $\frac{3}{8}$	$2 \frac{1}{8}$	$1 \frac{1}{8}$	$1 \frac{1}{4}$	$\frac{3}{4}$	$6 \frac{3}{8}$	2	11 $\frac{1}{8}$	3	$\frac{3}{8}$	7	111	12	6	8
$4 \frac{3}{4}$	$1 \frac{1}{4}$	11	$1{ }_{16}{ }_{16}$	$1 \frac{8}{8}$	11 $\frac{1}{8}$	$2 \frac{1}{4}$	$1 \frac{11}{16}$	$1{ }_{1}{ }^{\frac{7}{16}}$	$\frac{7}{8}$	$6 \frac{3}{4}$	21	- $1 \frac{1}{8}$	3	$\frac{8}{8}$	$6 \frac{1}{2}$	113	$12 \frac{1}{2}$	$6 \frac{1}{4}$	8
5	$1 \frac{1}{4}$	111 $\frac{1}{8}$	$1 \frac{5}{16}$	$1 \frac{3}{8}$	11 $\frac{1}{2}$	21	$1 \frac{11}{16}$	$1 \frac{7}{16}$	$\frac{7}{8}$	7	$2 \frac{1}{4}$	$1 \frac{1}{4}$	3	8	61	113	$12 \frac{1}{2}$	$6 \frac{1}{4}$	8
$5 \frac{1}{4}$	$1 \frac{1}{4}$	114 ${ }^{\frac{3}{4}}$	$1{ }^{\frac{5}{16}}$	$1 \frac{8}{8}$	11 $\frac{1}{2}$	$2 \frac{1}{4}$	$1 \frac{11}{16}$	$1{ }_{16}{ }^{7}$	$\frac{7}{8}$	$7 \frac{1}{2}$	$2 \frac{1}{4}$	$1 \frac{1}{4}$	$3 \frac{1}{4}$	$\frac{1}{2}$	$6 \frac{3}{4}$	12	13	61 $\frac{1}{2}$	$8 \frac{1}{2}$
$5 \frac{1}{2}$	11	121	$1{ }_{16} \frac{5}{16}$	$1 \frac{3}{8}$	112	21	$1 \frac{11}{16}$	1_{18}^{7}	$\frac{7}{8}$	$77 \frac{8}{4}$	$2 \frac{1}{4}$	13	$3 \frac{1}{4}$	$\frac{1}{1}$	$6 \frac{8}{4}$	12	13	61	81
$5 \frac{3}{4}$	$1 \frac{1}{4}$	$12 \frac{3}{4}$	$1 \frac{5}{16}$	$1 \frac{8}{8}$	118	$2 \frac{1}{4}$	$1 \frac{11}{16}$	$1{ }_{1}{ }^{7}$	$\frac{7}{8}$	8	$2 \frac{1}{4}$	13	$3 \frac{1}{4}$	$\frac{1}{2}$	$7 \frac{1}{4}$	$12 \frac{1}{2}$	$13 \frac{1}{2}$	$6 \frac{3}{4}$	9
6	14	13	$1{ }_{16}{ }^{5}$	$1 \frac{8}{8}$	112	$2 \frac{1}{4}$	$1 \frac{1}{1} \frac{1}{6}$	$1{ }^{\frac{7}{16}}$	$\frac{7}{8}$	$8 \frac{1}{2}$	$2 \frac{1}{4}$	12	$3 \frac{1}{4}$	$\frac{1}{8}$	$7 \frac{1}{4}$	$12 \frac{1}{2}$	$13 \frac{1}{3}$	$6 \frac{3}{4}$	9
61	11 $\frac{1}{2}$	141	$1{ }_{\text {I }}{ }^{\text {g }}$	1. $\frac{5}{8}$	178	$2{ }^{5}$	2	$1 \frac{11}{18}$	1	911	$2 \frac{1}{2}$	11	$3 \frac{1}{2}$	$\frac{1}{2}$	7	13	14	7	91
7	118	15	$1{ }^{18}$	$1 \frac{5}{8}$	17	25	2	111 11	1	97	$2 \frac{1}{2}$	$1 \frac{5}{8}$	$3 \frac{3}{4}$	$\frac{1}{8}$	8	14	15	$7 \frac{1}{8}$	10
$7 \frac{1}{2}$	112	16	$1 \frac{9}{16}$	$1 \frac{5}{8}$	$1 \frac{7}{8}$	25	2	1118	1	103	$2 \frac{1}{2}$	15	4	$\frac{8}{8}$	$8 \frac{1}{2}$	$14 \frac{8}{4}$	16	8	101 $\frac{1}{2}$
8	112	17	$1{ }_{16}{ }^{\text {g }}$	1 5	178	25	2	$1 \frac{1}{16}$	1	113.	3	13	4	8	$8 \frac{1}{4}$	151	161	$8 \frac{1}{4}$	11
$8 \frac{1}{2}$	112	18	$1{ }^{\frac{9}{16}}$	1 ㄷ	178	25	$2 \frac{1}{8}$	111	1	115	3	13 ${ }^{\frac{3}{4}}$	$4 \frac{1}{4}$	$\frac{5}{8}$	$8 \frac{3}{4}$	153	17	$8 \frac{1}{3}$	111 $\frac{1}{8}$
9	$1 \frac{8}{4}$	183	$1 \frac{18}{18}$	$1 \frac{7}{8}$	$2 \frac{1}{8}$	3	$2 \frac{1}{8}$	2	$1 \frac{1}{4}$	121	3	$1 \frac{7}{8}$	41	5	$9 \frac{3}{4}$	163	18	9	12
911	$1 \frac{8}{4}$	20	1138	17	$2 \frac{1}{8}$	3	$2 \frac{1}{2}$	2	$1 \frac{1}{4}$	13	$3 \frac{1}{4}$	17	$4 \frac{3}{4}$	$\frac{5}{8}$	10	$17 \frac{3}{4}$	19	919	121 $\frac{1}{2}$
10	$1 \frac{3}{4}$	203ㅕㄴ	1188	$1 \frac{7}{8}$	$2 \frac{1}{8}$	3	$2 \frac{1}{8}$	2	$1 \frac{1}{4}$	$13 \frac{3}{4}$	31	2	$4 \frac{8}{4}$	5	1012	$18 \frac{1}{4}$	191	$9 \frac{3}{4}$	13
101	13 ${ }^{\frac{1}{4}}$	211	$1 \frac{18}{18}$	17	$2 \frac{1}{8}$	3	$2 \frac{1}{8}$	2	$1 \frac{1}{4}$	$14 \frac{1}{4}$	$3 \frac{1}{4}$	2	5	5	11	188	20	10	13
11	13 ${ }^{\frac{3}{4}}$	22 $\frac{1}{2}$	1183	$17 \frac{7}{8}$	$2 \frac{1}{8}$	3	$2 \frac{1}{8}$	2	$1 \frac{1}{4}$	15	$3 \frac{1}{4}$	$2 \frac{1}{8}$	$5 \frac{1}{4}$	${ }^{8}$	111	191	21	101	131
111 $\frac{1}{2}$	2	$23 \frac{3}{4}$	$2 \frac{1}{16}$	$2 \frac{1}{8}$	$2 \frac{1}{2}$	$3 \frac{3}{8}$	$2 \frac{3}{4}$	21	$1 \frac{3}{8}$	$15 \frac{7}{8}$	$3 \frac{1}{2}$	$2 \frac{1}{8}$	$5 \frac{1}{2}$	$\frac{8}{4}$	113 ${ }^{\frac{3}{4}}$	201	22	11	141
12	2	241	$2 \frac{1}{16}$	$2 \frac{1}{8}$	$2 \frac{1}{2}$	$3 \frac{3}{8}$	$2 \frac{3}{4}$	21	$1 \frac{8}{8}$	168	$3 \frac{1}{3}$	21	$5 \frac{1}{2}$	${ }_{4}^{8}$	12	21	221	111	15

Contributed by B. H. Reddy, Machinery's Data Sheet No. 44. Explanatory note: Page 3.

STANDARD BABBITTED BEARINGS．

Industrial Prean，N．Y．

A	B	C	D	E	F	G	H	I	J	K	L
11 ${ }^{1}$	2	28	34	3	48	$\frac{8}{8}$	$\frac{5}{8}$	$\frac{8}{8}$	$\frac{7}{16}$	$\frac{5}{16}$	$\frac{7}{16}$
1星	21	$2{ }^{\frac{8}{4}}$	$3 \frac{8}{4}$	$3 \frac{1}{2}$	54	$\frac{5}{8}$	$\frac{5}{8}$	8	$\frac{6}{8}$	－ 18	－${ }^{7}$
2	$2 \frac{1}{2}$	3	4	4	6	$\frac{6}{8}$	$\frac{1}{1} \frac{3}{6}$	$\frac{8}{8}$	$\frac{8}{4}$	$\frac{5}{16}$	$\frac{7}{16}$
21	$2 \frac{8}{4}$	38	$4 \frac{1}{2}$	$4 \frac{1}{2}$	$6 \frac{8}{4}$	$\frac{8}{8}$	$\frac{1}{1} \frac{8}{6}$	$\stackrel{8}{16}$	${ }^{1} \frac{1}{1} \frac{8}{6}$	8	$\frac{1}{2}$
$2 \frac{1}{2}$	$3 \frac{1}{8}$	3星	5	5	$7 \frac{1}{4}$	$\frac{5}{8}$	18	${ }^{7} 8$	$\frac{1}{15}$	$\frac{8}{8}$	$\frac{1}{8}$
$2{ }^{\frac{8}{4}}$	38	$4 \frac{1}{8}$	$5 \frac{1}{2}$	$5 \frac{1}{2}$	78	8	$\frac{1}{1} \frac{8}{6}$	$\frac{7}{18}$	$1 \frac{1}{8}$	$\frac{1}{8}$	$\frac{5}{8}$
3	3 35	$4 \frac{1}{2}$	6	6	$8 \frac{1}{2}$	星	$\frac{1}{1} \frac{5}{8}$	${ }^{7}$	$1 \frac{1}{8}$	$\frac{1}{2}$	$\frac{5}{8}$
31	37	$4 \frac{7}{8}$	$6 \frac{1}{2}$	61 $\frac{1}{2}$	9^{2}	$\frac{8}{4}$	－ 18	${ }^{16}$	$1 \frac{8}{4}$	$\begin{aligned} & \overline{2} \\ & \frac{8}{8} \end{aligned}$	－
$3 \frac{1}{2}$	$4 \frac{1}{4}$	$5 \frac{1}{4}$	$6 \frac{8}{4}$	7	$9 \frac{1}{2}$	$\frac{8}{4}$	${ }^{1} \frac{1}{1} \frac{8}{6}$	${ }^{7}{ }^{7} 6$	$1{ }^{\frac{7}{16}}$	$\begin{aligned} & 8 \\ & \frac{5}{8} \end{aligned}$	$\frac{8}{4}$
3星	4，$\frac{1}{2}$	5i	$7 \frac{1}{4}$	$7 \frac{1}{2}$	$10 \frac{1}{4}$	星	$\frac{1}{1} \frac{1}{6}$	$\frac{7}{18}$	$1 \frac{1}{2}$	8	$\frac{1}{1} \frac{3}{6}$
4	$4 \frac{8}{4}$	6	$7 \frac{8}{4}$	8 ．	108	$\begin{aligned} & \frac{7}{3} \\ & \frac{7}{4} \end{aligned}$	$1 \frac{1}{2}$	8	$1{ }^{\frac{5}{8}}$	$\frac{11}{16}$	$\frac{7}{8}$
41	$5 \frac{1}{8}$	68	$8 \frac{1}{4}$	$8 \frac{1}{2}$	111	$\frac{4}{8}$	$1 \frac{1}{2}$	－	17	$\begin{aligned} & 16 \frac{1}{16} \\ & \frac{1}{18} \end{aligned}$	$\frac{8}{8}$ $\frac{7}{8}$
$4 \frac{1}{2}$	$5{ }_{5}^{8}$	68	$8{ }^{4}$	$9{ }^{2}$	$12{ }^{2}$	$\begin{aligned} & \frac{7}{8} \\ & \frac{7}{8} \end{aligned}$	$1 \frac{1}{2}$	$\frac{1}{2}$	$1 \frac{7}{8}$	$\begin{aligned} & \frac{16}{18} \\ & \frac{8}{4} \end{aligned}$	1^{8}
5	$5 \frac{7}{8}$	$7 \frac{1}{2}$	98	10	$13 \frac{1}{4}$	$\frac{7}{8}$	$1 \frac{1}{8}$	$\frac{1}{8}$	$2{ }^{3} 8$	$\frac{8}{4}$	
$5 \frac{1}{2}$	$6 \frac{1}{2}$	$8 \frac{1}{4}$	$10 \frac{3}{4}$	11 ．	141 $\frac{1}{8}$	$\frac{7}{8}$	$1 \frac{1}{2}$	－${ }^{\text {8 }}$	$2 \frac{8}{8}$	$\frac{5}{8}$	$1 \frac{1}{8}$
6	$7{ }^{2}$	9	111	12	151	8	$1{ }^{\frac{8}{8}}$	${ }^{19}$	$2 \frac{5}{8}$	$\frac{7}{8}$	$1 \frac{1}{8}$
$6 \frac{1}{2}$	$7 \frac{1}{2}$	98	121 $\frac{1}{2}$	13	17^{2}	7	$1 \frac{5}{8}$	${ }^{6}$	$2 \frac{8}{4}$	1^{8}	$1 \frac{1}{4}$
7	8	101	131	14	18	$\frac{7}{8}$	$1 \frac{5}{8}$	$\frac{9}{18}$	$2 \frac{3}{4}$	1	$1 \frac{1}{4}$
M	N	0	P	Q			T	U	V	W	Size of Bolts．
$\frac{8}{8}$	$1 \frac{8}{8}$	2	$1 \frac{5}{8}$	${ }_{16}^{5}$			$\frac{8}{18}$	$\frac{5}{8}$	$\frac{1}{1} \frac{1}{6}$	$\frac{1}{4}$	$\frac{5}{8}$
${ }^{8}$	12	$2 \frac{1}{8}$	$1 \frac{8}{8}$	c 16 16			$\frac{3}{16}$ $\frac{3}{18}$	－${ }^{8}$	$\frac{1}{1} \frac{1}{1}$	$\frac{1}{4}$	－
$\frac{1}{2}$	14	$2 \frac{1}{2}$	$2 \frac{1}{8}$	$\frac{8}{8}$			$1{ }^{6}$	$\frac{8}{4}$	－ 118	$\frac{1}{4}$	$\frac{8}{8}$
${ }_{16}^{9}$	2	$2 \frac{8}{4}$	$2 \frac{8}{8}$	$\frac{8}{8}$			$\frac{1}{4}$	$\frac{7}{8}$	$\frac{7}{8}$	8	$\frac{8}{4}$
$\frac{6}{8}$	$2 \frac{1}{4}$	3	$2 \frac{8}{8}$	${ }^{\frac{8}{16}}$			$\frac{1}{4}$	年	$\frac{8}{8}$	$\frac{8}{8}$	$\frac{3}{4}$
$\frac{11}{18}$	$2 \frac{1}{8}$	31	$2 \frac{8}{8}$	$\begin{aligned} & 7_{7}^{6} \\ & 1_{1}^{6} \end{aligned}$			$\frac{5}{18}$	$1{ }^{8}$	1^{8}	8	$\frac{7}{8}$
	$2 \frac{5}{8}$	$3 \frac{1}{2}$	$3 \frac{8}{8}$	16			$\frac{5}{16}$	1	1	$\frac{1}{8}$	$\frac{7}{8}$
$\frac{1}{1} \frac{3}{6}$	$2 \frac{7}{8}$	$3 \frac{8}{4}$	$3 \frac{7}{16}$	$\frac{1}{2}$			${ }^{5}$	118	$1 \frac{1}{8}$	，	1
$\frac{7}{8}$	$3 \frac{1}{8}$	4	$3 \frac{1}{1} \frac{1}{6}$	－${ }^{9}$			$\frac{5}{18}$	$1 \frac{1}{8}$	$1 \frac{1}{8}$	1	1
$\frac{1}{15}$	31	$4 \frac{1}{8}$	$4{ }^{1}$	${ }_{1}^{9} 8$			${ }_{5}$	$1 \frac{1}{4}$	$1 \frac{1}{4}$	$\frac{5}{8}$	1118
1	$3 \frac{1}{2}$	5	$4 \frac{1}{4}$	${ }_{5}$			$\frac{8}{8}$	$1 \frac{1}{4}$	$1 \frac{1}{4}$	5	11
$1 \frac{1}{16}$	$3 \frac{3}{4}$	$5 \frac{1}{4}$	$4 \frac{1}{8}$	$\frac{5}{8}$			$\frac{8}{8}$	$1 \frac{3}{8}$	$1 \frac{8}{8}$	$\frac{8}{4}$	11
$1 \frac{1}{8}$	4	$5 \frac{1}{2}$	$4 \frac{3}{4}$	$\frac{1}{1} \frac{1}{6}$			－	$1 \frac{8}{8}$	$1 \frac{8}{8}$	$\frac{8}{4}$	$1 \frac{1}{4}$
$1 \frac{1}{4}$	438	$5 \frac{8}{8}$	$5{ }^{5}$	$\frac{1}{1} \frac{1}{18}$			8	$1 \frac{1}{8}$	$1 \frac{8}{8}$	7	$1 \frac{1}{4}$
$1 \frac{8}{8}$	$4 \frac{7}{8}$	$6 \frac{8}{8}$	$5 \frac{18}{18}$	$\frac{8}{4}$			$\frac{8}{8}$	$1 \frac{1}{8}$	$1 \frac{8}{8}$	$\frac{7}{8}$	$1 \frac{1}{4}$
$1 \frac{1}{2}$	$5 \frac{1}{4}$	$6 \frac{3}{4}$	$6 \frac{3}{8}$	$\frac{3}{4}$			${ }^{\frac{7}{16}}$	18	$1 \frac{5}{8}$	1	112
$1 \frac{5}{8}$	$5 \frac{3}{4}$	71 ${ }^{4}$	$6 \frac{7}{8}$	$\frac{7}{8}$			18 7 7	$1{ }^{\frac{5}{8}}$	$1 \frac{5}{8}$	1	11
18	6	$7 \frac{1}{2}$	$7 \frac{8}{8}$	$\frac{7}{8}$			${ }^{18}$	$1{ }^{\frac{8}{4}}$	$1 \frac{5}{8}$	1	$1 \frac{1}{2}$

PROPORTIONS FOR LIGHT WRENCHES

$$
\begin{aligned}
& \mathrm{B}=\mathrm{W} \times .8 \\
& \mathrm{D}=\mathrm{W} \times .65 \\
& \mathrm{E}=\mathrm{W} \times .4 \\
& \mathrm{~F}=\mathrm{W} \times .25 \\
& \mathrm{~L}=\mathrm{W} \times 7
\end{aligned}
$$

BALL AND ROLLER BEARINGS-I

Contributed by W. B. Chapin, Machinery's Data Sheet No. 25. Explanatory note : Page 23.

BALL AND ROLLER BEARINGS-II

FORMULAS FOR BALL AND ROLLER BEARINGS. (Continued.)

N	$\left(\frac{180}{N}\right)^{\circ}$	$\operatorname{Sin}\left(\frac{180}{\mathrm{~N}}\right)^{\circ}$	$\frac{1}{\operatorname{Sin}\left(\frac{180}{N}\right)^{\circ}}$	$\frac{1}{\operatorname{Sin}\left(\frac{180}{N}\right)^{\circ}}+1$	$\frac{1}{\operatorname{Sin}\left(\frac{180}{N}\right)^{\circ}}-1$
18	10°	. 17365	5.7588	6.7588	4.7588
19	$9^{\circ} 28^{\prime} 25.2^{\prime \prime}$. 16459	6.0755	7.0755	5.0755
20	9°	. 15653	6.3925	7.3925	5.3925
21	$8^{\circ} 34^{\prime} 17.1^{\prime \prime}$. 14904	6.7095	7.7095	5.7095
22	$8^{\circ} 10^{\prime} 54.5^{\prime \prime}$. 14231	7.0267	8.0267	6.0267
23	$7^{\circ} 49^{\prime} 33.9^{\prime \prime}$. 13617	7.3439	8.3439	6.3439
24	$7^{\circ} 30^{\prime}$. 13053	7.6613	8.6613	6.6613
25	$7^{\circ} 12^{\prime}$. 12533	7.9787	8.9787	6.9787
26	$6^{\circ} 55^{\prime} 23^{\prime \prime}$. 12054	8.2963	9.2963	7.2963
27	$6^{\circ} 40^{\prime}$. 11609	8.6138	9.6138	7.6138
28	$6^{\circ} 25^{\prime} 42.8^{\prime \prime}$.11196	8.9314	9.9314	7.9314
29	$6^{\circ} 12^{\prime} 24.8^{\prime \prime}$. 10812	9.2491	10.2491	8.2491
30	6°	. 10453	9.5668	10.5668	8.5668
31	$5^{\circ} 48^{\prime} 23.2^{\prime \prime}$. 10107	9.8931	10.8931	8.8931
32	$5^{\circ} 37^{\prime} 30^{\prime \prime}$. 09801	10.2030	11.2030	9.2030
33	$5^{\circ} 27^{\prime} 16.3^{\prime \prime}$. 09505	10.5208	11.5208	9.5208
34	$5^{\circ} 17^{\prime} 35.9^{\prime \prime}$. 09225	10.8402	11.8402	9.8402
35	$5^{\circ} 8^{\prime} 33^{\prime \prime}$. 08963	11.1570	12.1570	10.1570
36	5°	. 08716	11.4731	12.4731	10.4731
37	$4^{\circ} 51^{\prime} 53.5^{\prime \prime}$. 08481	11.7911	12.7911	10.7911
38	$4^{\circ} 44^{\prime} 12.6^{\prime \prime}$. 08258	12.1095	13.1095	11.1095
39	$4^{\circ} 36^{\prime} 55.3^{\prime \prime}$. 08047	12.4270	13.4270	11.4270
40	$4^{\circ} 30^{\prime}$. 07846	12.7456	13.7456	11.7456

Contributed by W. B. Chapin, Machinery's Data Sheet No. 25. Explanatory note: Page 23.

BALL BEARINGS-I

DIMENSIONS FOR TWO-POINT BALL BEARINGS

$D=$ Diam, of Ball
$R=$ Radius of Race
$A=R-\frac{D}{2}$
$B=A \operatorname{Cos} 26^{\circ}$
$c=A \sin 26^{\circ}$
$S=2(R-B)$
$S-D=$ Clearance of Ball
$n=$ Number of Balls

$$
Y=\frac{D+.003}{\sin \frac{180^{\circ}}{n}}
$$

D	R	A	B	C	S	$S-D$	D	P	A	B	C	S	$S-D$
$1 / 4$.175	.050	.045	.022	.260	.010	$9 / 16$.354	.073	.065	.032	.577	.015
$5 / 16$.205	.049	.044	.021	.322	.010	$5 / 8$.394	.082	.073	.036	.641	.016
$3 / 8$.240	.053	.047	.023	.386	.011	$11 / 16$.433	.089	.080	.039	.705	.018
$7 / 16$.275	.056	.051	.025	.449	.011	$3 / 4$.473	.098	.088	.043	.770	.020
$1 / 2$.315	.065	.058	.029	.513	.013	$7 / 8$.558	.121	.109	.053	.898	.023

Contributed by Herbert C. Snow, Machinery's Data Sheet No. 56. Explanatory note: Page 23.

BALL BEARINGS-II

TWO-POINT BALL Continued									
D	1/4			$\frac{5}{16}$			$\frac{3}{8}$		
7	X	Y	Z	X	Y	Z	X	Y	Z
8	. 401	. 661	. 921	. 502	. 824	1.147	, 602	. 988	1.373
9	. 480	. 740	1.000	. 601	. 923	1.246	. 720	1,106	1,492
10	. 559	. 819	1.080	. 699	1.022	1.344	, 839	1.224	1,610
11	. 638	. 898	1.159	. 798	1,121	1,443	, 957	1.342	1,728
12	. 717	. 978	1,238	, 897	1,219	1.541	1.075	1.461	1.846
13	. 797	1.057	1,318	. 996	1.319	1.641	1,194	1.580	1,965
14	, 877	1,137	1.398	1.096	1.418	1.741	1,3/4	1,699	2,085
15	. 957	1,217	1.477	1,195	1.518	1.840	1.433	1.818	2,204
16	1.037	1,297	1.557	1.295	1,617	1.940	1,552	1,938	2,323
17	1.117	1.377	1.637	1,395	1,717	2,040	1.672	2.057	2,443
18	1,197	1.457	1,717	1.495	1.817	2,139	1.791	2.177	2,563
19	1.277	1.537	1.797	1.595	1.917	2.239	1.911	2.297	2,682
20	1.357	1.617	1.878	1.694	2,017	2.339	2,031	2,416	2,802
21	1.437	1,698	1.958	1.795	2,117	2,439	2.151	2,536	2,922
22	1.518	1.778	2.038	1.895	2,217	2,539	2.271	2.656	3,042
23	1.598	1.858	2,118	1.995	2,317	2,640	2,390	2.776	3.162
24	1.678	1.938	2,199	2,095	2,417	2.740	2.510	2,896	3.282
25	1.759	2.019	2,279	2,195	2,517	2,840	2,631	3,016	3,402
26	1.839	2.099	2,359	2.295	2.618	2,940	2,751	3.136	3,522
27	1.919	2.180	2,440	2.396	2,718	3,040	2,871	3.256	3,642
28	2.000	2.260	2,520	2,496	2,818	3,141	2,991	3,377	3,762
29	2.080	2.340	2,600	2,596	2,918	3.241	3.111	3,496	3.882
30	2.160	2.420	2,681	2.696	3.018	3,341	3,231	3,616	4.002

Contributed by Herbert C. Snow, Machinery's Data Sheet No. 56. Explanatory note: Page 23.

BALL BEARINGS-III
TWO-POINT BALL BEARINGS
Continued

D	$\geqslant 16$						$\frac{9}{16}$		
n	X	Y	Z	X	Y	Z	X	Y	Z
8	. 702	1.151	1.599	. 801	1.314	1.828	, 901	1.478	2.055
9	. 840	1.289	1.738	, 959	1.472	1.985	1.078	1.655	2,232
10	. 978	1.427	1.875	1.116	1.629	2.142	1.255	1.832	2,409
II	1.115	1.564	2.013	1.273	1.786	2,300	1.432	2.009	2,586
12	1.253	1.702	2.151	1.430	1.943	2.457	1.608	2.185	2.762
13	1.392	1.841	2.290	1.589	2.102	2.615	1.786	2.363	2.940
14	1.531	1.980	2.429	1.748	2.261	2.774	1.964	2,541	3.118
15	1.670	2.119	2,568	1.906	2.420	2.933	2.142	2.719	3.296
16	1.809	2.258	2.707	2.065	2.578	3,092	2.322	2.899	3,476
17	1.949	2.397	2.846	2.224	2.738	3,251	2.501	3.078	3,655
18	2.088	2.557	2.986	2.384	2.897	3.410	2,680	3,257	3,834
19	2.228	2.676	3,125	2.543	3.056	3.569	2.859	3,436	4.013
20	2.367	2.816	3.265	2.702	3.215	3.729	3.038	3,615	4.192
21	2.507	2.956	3.404	2.862	3.375	3.888	3.217	3,794	4.371
22	2.647	3.095	3.544	3.021	3,535	4.048	3,396	3.973	4.550
23	2.786	3.235	3.684	3.181	3,694	4.207	3.575	4.152	4.729
24	2.926	3.375	3.824	3.340	3.854	4.367	3.756	4.333	4.910
25	3.066	3.515	3.964	3,500	4.014	4.527	3.936	4.513	5.090
26	3,206	3,655	4.104	3.660	4.173	4.687	4.116	4.693	5.270
27	3.346	3.795	4.244	3,820	4.333	4.847	4.296	4.873	5,450
28	3.486	3.935	4.384	3,980	4.493	5.006	$4.47 \dot{4}$	5,051	5.628
29	3.626	4.075	4.523	4.139	4.653	5.166	4.653	5.230	5.807
30	3.765	4.214	4.663	4.799	4.812	5.325	4.831	5,408	5.985

Contributed by Herbert C. Snow, Machinery's Data Sheet No. 56. Explanatory note: Page 23.

BALL BEARINGS-IV
TWO-POINT BALL BEARINGS
Continued

TWO-POINT BALL Continued									
D	$\frac{5}{8}$			$\frac{11}{16}$			3/4		
7	X	Y	Z	X	Y	Z	X	Y	Z
8	1.000	1.641	2.282	1.099	1.804	2,510	1.198	1.968	2,738
9	1.196	1.837	2.479	1.315	2.020	2.726	1.433	2,203	2,973
10	1,392	2.034	2.675	1,531	2.236	2.942	1.669	2.439	3.208
11	1,589	2.230	2.872	1.747	2,452	3,158	1. 904	2.674	3.444
12	1.785	2.426	3,068	1.963	2.668	3,373	2.140	2.909	3,679
13	1.983	2.625	3.266	2.180	2.886	3,591	2.377	3,147	3.917
14	2.181	2.823	3,464	2,398	3.104	3,809	2.615	3,385	4.154
15	2,380	3.021	3,662	2,616	3.322	4.027	2.852	3,622	4.392
16	2,578	3.219	3.860	2,834	3.539	4.245	3.090	3,860	4.630
17	2.777	3,418	4.059	3,053	3.758	4.464	3,328	4.098	4.868
18	2.975	3,617	4.258	3,271	3.977	4.682	3,567	4.337	5.107
19	3,174	3,816	4.457	3.490	4.196	4.901	4.805	4.575	5,345
20	3,373	4.015	4.656	3,709	4.414	5.119	4.044	4.814	5,583
21	3,572	4.214	4.855	3,928	4.633	5.338	4.285	5.055	5.825
22	3.772	4.413	5.054	4.147	4.852	5.557	4.522	5.291	6,061
23	3.971	4.612	5,254	4.366	5.071	5.776	4.760	5.530	6,300
24	4.170	4.811	5,453	4.585	5.290	5.996	4.999	5.769	6,539
25	4.370	5,011	5.652	4.804	5.510	6.215	5.238	6,008	6.778
26	4.569	5,211	5.852	5,014	5.729	6.435	5.478	6.248	7.017
27	4.769	5.410	6.052	5,243	5,949	6.654	5.717	6.487	7,257
28	4.968	5.610	6.251	5,463	6.168	6.873	5.956	6.726	7.496
29	5.167	5.809	6.450	5,682	6.387	7.092	6.195	6,965	7.735
30	5,367	6.008	6,649	5,901	6.606	7,311	6.434	7.204	7.974

Contributed by Herbert C. Snow, Machinery's Data Sheet No. 56. Explanatory note: Page 23.

CLAMP COUPLINGS

PLATE COUPLINGS

SAFETY FLANGE COUPLINGS.

	$\left\|\begin{array}{ll} 1 & \\ 0 & x \\ 0 & x \\ 1 & x \\ 3 & 0 \\ 2 & 0 \end{array}\right\|$	m	\cdots	m	m	∇	∇	∇	∇	∇	∇
	Σ	－19	－104	420	40	Mit	mit	mit	m ${ }^{*}$	10	No
	\checkmark	b	－68	$\stackrel{N}{\infty}$	$\begin{gathered} -104 \\ 9 \end{gathered}$	-in	\cdots	$\begin{gathered} -10 \\ v \end{gathered}$	$\begin{gathered} -1 \nabla \\ 6 \\ 2 \end{gathered}$	$\stackrel{-18}{6}$	－ $\begin{gathered}-8 \\ 2\end{gathered}$
	$\left.\begin{array}{\|lll} 1 & x & 3 \\ 5 & 0 & 0 \\ 5 & 0 \end{array} \right\rvert\,$	－	－	－	\checkmark	\checkmark	－	－	－	－	N
	\pm	－	mo	mit	\sim	$\underset{i}{-\infty}$	$\begin{gathered} -104 \\ w \\ w \end{gathered}$	$\begin{gathered} m \\ m \\ N \end{gathered}$	m	m	m
	＞	-100	-10	No	-iN	$\begin{gathered} 600 \\ M \end{gathered}$	$\begin{gathered} m, \\ m \end{gathered}$	$\begin{gathered} m i t \\ m \end{gathered}$	$\begin{gathered} m i \alpha \\ m \end{gathered}$	$\stackrel{m i t}{m}$	M゙メ
	さ	$\mid \stackrel{\text { m }}{\star}$	$\begin{gathered} -18 \\ 60 \end{gathered}$	$\stackrel{m}{N}$	の	-	\sim	$\begin{gathered} -1 N \\ m \\ - \end{gathered}$	\checkmark	－104	$\stackrel{\square}{\square}$
	\checkmark	$\left\|\begin{array}{c} -\infty \\ N \end{array}\right\|$	mid	$\begin{gathered} -10 \\ m \end{gathered}$	$\stackrel{m}{\gamma}$	$\begin{gathered} -10 \\ 6 \end{gathered}$	$\begin{gathered} -10 x \\ 0 \\ 0 \end{gathered}$	$\underset{\substack{m i z \\ 0}}{ }$	N	N	N
	4	6×0	60	mit	m	No	No	No	N^{0}	－	－
	4	6^{00}	－100	m	－100	$\stackrel{m 00}{\nabla}$	$\stackrel{y}{m}$	$\begin{gathered} -18 \\ 4 \end{gathered}$	$\underset{\substack{\text { mir }}}{\mathbf{m i r}}$	$\stackrel{-1}{6}$	mb_{6}
	0	$\begin{gathered} -\infty \\ \infty \\ \infty \end{gathered}$	$\begin{gathered} N \infty \\ \sim \end{gathered}$	$\begin{gathered} 600 \\ m \end{gathered}$	$\underset{\square}{\mathrm{m} / \mathrm{N}}$	$\begin{gathered} 910 \\ 6 \end{gathered}$	$\begin{gathered} -1 \times 4 \\ c \end{gathered}$	$\hat{N}^{\infty 0}$	$\stackrel{-18}{N}$	mit	－
	U	$\left\|\begin{array}{c} \text { mা } \\ \sim \end{array}\right\|$	$\begin{gathered} -104 \\ m \end{gathered}$	$\begin{gathered} 4,10 \\ 8 \end{gathered}$	$\begin{gathered} -100 \\ 6 \end{gathered}$	\checkmark	介	∞	の	－10	\bigcirc
	∞	-18	N	$\left\lvert\, \begin{gathered} \text { mid } \\ \infty \end{gathered}\right.$	$\begin{gathered} -10 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} -\mu \\ -N \\ \hline \end{gathered}$	\checkmark	$\begin{gathered} -10 \\ 6 \\ 2 \end{gathered}$	へ	$\stackrel{\sim}{N}$	0
	¢	№	29	$\begin{gathered} M \\ N \end{gathered}$	の	$\begin{gathered} -1 w \\ m \end{gathered}$	\checkmark	$\underset{\sim}{n}$	b	-10 6	\bullet

Unit $\delta=\frac{D}{3}+\frac{1}{4}{ }^{\prime \prime}$

\％	219	M10	$\sim^{\text {Na }}$	${ }^{\text {N100 }}$	M ${ }^{4}$	M_{100}	ψ	$\stackrel{M 100}{*}$	M	5^{100}	－ c_{0}	$\begin{gathered} \text { max } \\ 6 \end{gathered}$	，${ }^{1}$	V^{104}	N	込	1100	－${ }_{0}$	の	Q	Now
6 7	$\stackrel{-1}{\sim}$	m	－${ }^{1 / 4}$	$\underset{N}{M+}$	＊		4	这	${ }^{104}$	\bigcirc	－ 10	\wedge	$=$	${ }^{1 / 4}$	∞	2	${ }^{104}$	－ or^{10}	Q	\geqslant	\cong
\bigcirc	$\left\|\begin{array}{c} \text { molos } \\ \mu \end{array}\right\|$	$\underset{\sim}{\operatorname{mot}}$	m	$\begin{gathered} m_{4} \\ m \end{gathered}$	m_{m}	\checkmark	$\stackrel{-104}{8}$	$\stackrel{\operatorname{ma}}{4}$	0	${ }^{5104}$	$\begin{gathered} \text { mu } \\ n^{\alpha} \end{gathered}$	6	$\begin{gathered} -\mathrm{y}_{2} \\ \hline \end{gathered}$	m_{nt}	N	Nu	mid	－${ }_{0}^{104}$	9	$\omega_{\mathrm{N}}^{\mathrm{N}}$	${ }^{-104}$
$\begin{aligned} & N \\ & M \end{aligned}$	Noo	$\begin{gathered} -1 \infty \\ M \end{gathered}$	－	N－${ }_{\text {Nu }}$	m	${\underset{N}{N}}^{+N}$	$\begin{gathered} -104 \\ m \end{gathered}$	$\left\lvert\, \begin{gathered} \text { mut } \\ \mathrm{m} \end{gathered}\right.$	\downarrow	$\frac{-\lambda}{}$	$\left\lvert\, \frac{1 n 9}{8}\right.$	$\stackrel{m x}{\star}$	\square	$\frac{10}{6}$	$\begin{gathered} 104 \\ 10 \end{gathered}$	$\begin{gathered} \text { m } \\ \text { nt } \end{gathered}$	6	$\begin{gathered} m+t \\ 0 \end{gathered}$	N	$\operatorname{mid}^{d x}$	$-\infty$
$\begin{aligned} & n \\ & n \end{aligned}$	－	910	N100	\sim	Nar	M	int	$\left.\begin{gathered} \mathrm{N}_{1} \\ \mathrm{~N} \end{gathered} \right\rvert\,$	$\begin{gathered} 100 \\ M^{2} \end{gathered}$	$\frac{\mathbb{N}}{\mathbf{N}}$	$\begin{aligned} & 1 / 104 \\ & m \end{aligned}$	$\stackrel{m}{m}$	\forall	$=$	$\|-\ln \|$	：	：	4	${ }^{10}$	6	${ }^{104}$
$?$	N00	－	-100	－	M100	－ 10	4100	m	1100	\sim	$\stackrel{100}{\sim}$	$\stackrel{N}{N}$	$\underset{M}{m}$	\sim^{-14}	$\stackrel{\sim}{n}(100$	Nu	$\begin{aligned} & \mathrm{N}_{100} \end{aligned}$	$\begin{aligned} & -100 \\ & 10 \end{aligned}$	M100	$\stackrel{100}{10}$	${ }^{100}$
$\underset{\sim}{\sim}$	m ${ }^{\text {d }}$	N100	＝	－	$\bigcirc 100$	－${ }^{4}$	M100	$=$	－	0100	m	$=$	${ }^{100}$	\sim_{4}	：	Nu	＝	$\stackrel{-14}{\sim}$	$\stackrel{m}{n}$	M	$=$
\bigcirc	9100	m）	：	N00	：	－	－ 100	$=$	－	mio	－104	$=$	$51 / 00$	ma	＊	Noo	\cdots	$\begin{array}{\|c\|c\|} \substack{100} \end{array}$	－${ }^{2}$	$\stackrel{\sim}{\sim}$	$\stackrel{n}{n}$
0	［19	4100	\therefore	mit	$=$	N00	－	：	\bigcirc	－4	＝	M100	$=$	－ 1×4	＝	4100	m	N_{10}	\bigcirc	Nu	${ }^{1}$
∞	19	IN	4100	＝	mt	$=$	N100	－	$=$	：	$\bigcirc 100$	－ 4	$=$	M100	2．	$\underline{-104}$	＝	4.9100	N_{100}	N	$\stackrel{100}{1}$
N	M100	N上	－ 14	0 O	4100	mit	：	N0，	：	－	：	－100	：	－	＝	＝	：	－10	$=$	nt	＝
0	119	1100	N19	M	4100	：	$=$	mb	＝	$=$	N00	：	－	：	＝	－100	$=$	－4	M100	－ 14	＝
3	4519	$=$	1	IN	＝	＝	919	4100	$=$	m ${ }^{4}$	＝	$=$	N00	＝	＝	＝	－	$=$	＝	－${ }^{*}$	＝
$\begin{aligned} & 4 \\ & 0 \end{aligned}$	2	6， 19	M／100	：	＝	N19	－	－ 10	＝	$=$	$4 / 100$	＝	$=$	M ${ }^{\text {d }}$	＝	＝	$=$	Noo	：	－	＝
\％	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{6} \\ & 0 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \\ & 0 \end{aligned}$	$$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	8	$\stackrel{\infty}{\circ}$	\lesssim	$\underset{y}{n}$	$\underset{m}{m}$	$\underset{\underset{\sim}{\underset{N}{2}}}{ }$	$\stackrel{\infty}{ \pm}$?	$\stackrel{N}{2}$	$\stackrel{10}{N}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	תֻ	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & n \\ & N \\ & N \end{aligned}$	$\begin{gathered} \underset{\sim}{u} \\ \underset{\sim}{u} \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & \sim \\ & \hline \end{aligned}$
0	－	－${ }^{*}$	－ 14	$\mathrm{m}^{\text {＋}}$	$\%$	べ	$\stackrel{14}{M}$	$\stackrel{m}{\text { mid }}$	m	$\frac{1}{2}$	$\left\|\begin{array}{c} -m \\ m \end{array}\right\|$	m^{n+}	\forall	$-\nabla$	$-\frac{104}{}$	$\stackrel{m}{\alpha}$	6	i^{10}	6	${ }^{10}$	N

DIMENSIONS OF CAST-IRON TOOTHED CLUTCHES

BORE
A

corresponding length, as given in the table, are sufficient to prevent excessive unit pressure. On page 8 are given dimensions for standard babbitted bearings, the diameter A of the shaft being the basic dimension. On page 9 proportions for plain bearings are given; the formulas upon which the more important dimensions are based are given beneath the table. [MACHinery, December, 1906, January and February, 1907, Design of Bearings; November, 1907, Causes of Hot Bearings; Machinery's Reference Series No. 11, Bearings, Chapters I and II.]

Ball Bearings

The permissible load to which twopoint ball bearings having one row of balls may be subjected is given by the following formula by Prof. Stribeck:

$$
P=K \times 0.44 d^{2} z
$$

in which formula
$P=$ load in pounds,
$K=$ constant depending on the properties of the material, the form of the ball race, and the angular speed of the bearing,
$z=$ number of balls,
$d=$ diameter of ball in units of $1 / 8$ inch. (For example, if the diameter of the ball is $1 / 8$ inch, then $d=1$. If the diameter of the ball is 7-16 inch, then $d=3.5$, etc.)

For ball bearings made of high-grade material and accurately machined, K has the following approximate values for steady loads and uniform speeds:

Revolutions per Minute	Values of K
10	20
150	18
300	15
500	10
1000	7.5
1500	- 5

On the basis of these figures, it is apparent that the given bearing will carry only one-fourth the load at a speed of 1500 revolutions per minute that it will
carry at 10 revolutions per minute. The table and the formulas given relate to radial bearings. For determining the permissible load on a thrust bearing, we have the formula:

$$
P=2.2 K d^{2} z
$$

in which the various letters denote the same quantities as before. This formula applies to steady loads and uniform speeds. The values of K to be used for thrust bearings are given in the following table:

Revolutions per Minute	${ }_{\text {Values }}^{\text {of } \mathrm{K}}$
10	12.5
150	4.5
300	3.5
500	3
1000	2
1500	1.5

For parts which have very little motion, such as crane hooks, for example, K may be taken as high as 18 to 20. For very high speeds, above 1500 revolutions per minute, ordinary thrust bearings are impractical for taking end thrusts. Centrifugal force at such high speeds plays a very important part. The manner in which the permissible load varies with the speed is apparent from the following table, calculated for a specific bearing:

Revolutions	
per	Load in
Minute	Pounds
10	11,000
150	3,740
300	2,640
500	2,420
1000	1,760
1500	1,540

The formulas and tables just given make it possible to determine for any given bearing the load it may be expected to carry, or, if the load is known, to determine the diameter and number of balls required at any given speed. Besides, there are a number of other calculations required in the design of (Continued on page 30.)
H.P. = horse-power transmitted,
$N=$ revolutions of crank-shaft per minute,
$r=$ mean radius of friction cone, in inches,
$r_{1}=$ large radius of friction cone, in inches,
$r_{2}=$ small radius of friction cone, in inches,
$R_{1}=$ outside radius of leather band, in inches.
$R_{2}=$ inside radius of leather band, in inches,
$v=$ velocity of a point at distance r from the center, in feet per minute, $F=$ tangential force acting at radius r, in pounds,
$P_{n}=$ total normal pressure between cone surfaces, in
$P_{s}=$ spring pressure, in pounds,

$\beta=$ included angle of clutch leather, when developed, in degrees,
$f=$ cosfficient of friction $=0.20$ to 0.25 for greasy leather on iron,
$p=$ allowable pressure per square inch of leather band $=7$
to 8 pounds,
$W=$ width of clutch leather, in inches.

PROPORTIONS OF CAST-IRON FRICTION CLUTCHES

For sizes not giren below. $\begin{aligned} & a-2 D \\ & b=4 t o 8 D \\ & c=2 \frac{1}{4} D \\ & t=1 \frac{1}{2} D \\ & e=\frac{3}{8} D \\ & h=\frac{1}{2} D \\ & s=\frac{5}{16} D \text { Nearly } \\ & k=\frac{1}{4} D \end{aligned}$ Note: The angle ϕ of the cone may be from 4° to 10°								
D	a	b	C	t	e	h	5	K
1	2	4-8	$2 \frac{1}{4}$	$1 \frac{1}{2}$	38	$\frac{1}{2}$	$\frac{5}{10}$	$\frac{1}{4}$
$1 \frac{1}{4}$	$2 \frac{1}{2}$	5-10	2%	1%	$\frac{1}{2}$	$\frac{5}{8}$	$3 / 8$	$\frac{5}{16}$
$1 \frac{1}{2}$	3	$6-12$	$3 \frac{3}{8}$	$2 \frac{1}{4}$	$5 / 8$	$3 / 4$	$\frac{1}{2}$	$3 / 8$
13	$3 \frac{1}{2}$	$7-14$	4	$2 \frac{5}{8}$	$5 / 8$	$7 / 8$	5/8	$\frac{7}{10}$
2	4	8-16	$4 \frac{1}{2}$	3	$3 / 4$	/	5/8	$\frac{1}{2}$
$2 \frac{1}{4}$	$4 \frac{1}{2}$	9-18	5	$3 \frac{3}{8}$	78	$1 \frac{1}{8}$	5/8	$\frac{9}{10}$
$2 \frac{1}{2}$	5	$10-20$	$5 \frac{5}{8}$	$3 \frac{3}{4}$	/	$1 \frac{1}{4}$	$3 / 4$	$5 / 8$
$2 \frac{3}{4}$	$5 \frac{1}{2}$	// - 22	$6 \frac{1}{4}$	$4 \frac{1}{8}$	1	13	7/8	$\frac{11}{16}$
3	6	12-24	$6 \frac{3}{4}$	$4 \frac{1}{2}$	$1 \frac{1}{8}$	$1 \frac{1}{2}$	718	$3 / 4$
$3 \frac{1}{4}$	$0 \frac{1}{2}$	$13-26$	$7 \frac{3}{8}$	$4 \frac{7}{8}$	$1 \frac{1}{4}$	158	1	$\frac{13}{16}$
$3 \frac{1}{2}$	7	$14-28$	$7 \frac{7}{8}$	$5 \frac{1}{4}$	$1 / 8$	13	1	$7 / 8$
$3 \frac{3}{4}$	$7 \frac{1}{2}$	$15-30$	$8 \frac{1}{2}$	$5 \frac{5}{8}$	13	$1 \frac{7}{8}$	$1 \frac{1}{4}$	$\frac{15}{16}$
4	8	$16-32$	9	6	$1 \frac{1}{2}$	2	1'4	1
$4 \frac{1}{4}$	$8 \frac{1}{2}$	17-34	$9 \frac{1}{2}$	$6 \frac{3}{8}$	$15 / 8$	$2 \frac{1}{8}$	138	$1 \frac{1}{10}$
$4 \frac{1}{2}$	9	18-36	$10 \frac{1}{4}$	63	13	2年	138	$1 \frac{18}{8}$
$4 \frac{3}{4}$	$9 \frac{1}{2}$	19-38.	10.3	$7 \frac{1}{8}$	13	$2 \frac{3}{8}$	$1 \frac{1}{2}$	$1 \frac{3}{10}$
5	10	20-40	$11 \frac{1}{4}$	$7 \frac{1}{2}$	$1 \frac{7}{8}$	$2 \frac{1}{2}$	$1 \frac{1}{2}$	$1 \frac{1}{4}$
$5 \frac{1}{4}$	$10 \frac{1}{2}$	21-42	$11 \frac{3}{4}$	$7 \frac{7}{8}$	2	25/8	$1 \frac{5}{8}$	$1 \frac{5}{10}$
$5 \frac{1}{2}$	//	22-44	$12 \frac{3}{8}$	$8 \frac{1}{4}$	2	$2 \frac{3}{4}$	$1 \frac{3}{4}$	$1 \frac{3}{8}$
$5 \frac{3}{4}$	$11 \frac{1}{2}$	23-46	13	$8 \frac{5}{8}$	$2 \frac{1}{4}$	$2 \frac{7}{8}$	$13 / 4$	$1 \frac{7}{16}$
\bigcirc	12	24-48	$13 \frac{1}{2}$	9	$2 \frac{1}{4}$	3	178	$1 \frac{1}{2}$

Contributed by Alex Theuerkauf, Machinery's Data Sheet No. 99. Explanatory note: Page 30.

PROPORTIONS OF UNIVERSAL JOINTS

For Sizes Not Given Below： $a-1.80$ $h-0.50$ $b-2.0 D$ $i-0.250$ $c-1.00$ $k=0.6 D$ $e-1.00$ $w=1.00$ $f-0.75 D$ $t-0.0750$ Approx． 9－0．6D $p-0.1250$ These proportions hold good for forgings or steel castings．												
D	a	6	c	e	f	9	h	i	k	w	＋	p
$\frac{1}{2}$	78	1	$\frac{1}{2}$	78	$3 / 8$	$\frac{5}{16}$	年	$\frac{1}{8}$	$\frac{5}{16}$	$\frac{1}{2}$	$\frac{1}{16}$	$\frac{1}{16}$
3	18	$1 \frac{1}{2}$	3	14	$\frac{9}{16}$	$\frac{7}{16}$	38	$\frac{3}{16}$	$\frac{7}{16}$	3	$\frac{1}{10}$	$\frac{1}{16}$
1	13	2	1	15	3	5／8	$\frac{1}{2}$	年	5	1	$\frac{1}{16}$	\％
$1 \frac{1}{4}$	2年	$2 \frac{1}{2}$	1／4	2	$\frac{15}{16}$	$\frac{3}{4}$	5／8	$\frac{5}{16}$	3	$1 / 8$	尔	$\frac{1}{8}$
$1 \frac{1}{2}$	$2 \frac{3}{4}$	3	$1 \frac{1}{2}$	$2 \frac{3}{8}$	1\％	7	$\frac{3}{4}$	38	7	$1 \frac{1}{2}$	\％	$\frac{3}{16}$
13	3\％	$3 \frac{1}{2}$	13	$2 \frac{3}{4}$	15	$1 \frac{1}{10}$	78	$\frac{7}{16}$	$1 \frac{1}{16}$	13	\％	$\frac{3}{16}$
2	$3 \frac{5}{8}$	4	2	3 年	12	$1 \frac{3}{16}$	1	$\frac{1}{2}$	$1 \frac{3}{16}$	2	$\frac{3}{16}$	年
$2 \frac{1}{4}$	4	$4 \frac{1}{2}$	24	35	111	13	1\％	$\frac{9}{16}$	13	2年	$\frac{3}{16}$	年
$2 \frac{1}{2}$	$4 \frac{1}{2}$	5	$2 \frac{1}{2}$	4	18	$1 \frac{1}{2}$	14	5／8	$1 \frac{1}{2}$	$2 \frac{1}{2}$	$\frac{3}{16}$	$\frac{5}{16}$
$2 \frac{3}{4}$	5	$5 \frac{1}{2}$	$2 \frac{3}{4}$	$4 \frac{3}{8}$	$2 \frac{1}{16}$	1116	13	$\frac{11}{16}$	$1 \frac{11}{16}$	23	$\frac{1}{4}$	$\frac{5}{16}$
3	$5 \frac{1}{2}$	6	3	4%	$2 \frac{1}{4}$	$1 \frac{13}{16}$	$1 \frac{1}{2}$	$\frac{3}{4}$	$1 \frac{13}{16}$	3	年	$\frac{3}{8}$
3年	$5 \frac{7}{8}$	62	$3 \frac{1}{4}$	$5 \frac{1}{4}$	$2 \frac{7}{16}$	$1 \frac{15}{16}$	15	$\frac{13}{16}$	$1 \frac{15}{16}$	3年	年	3
31	$6 \frac{3}{8}$	7	$3 \frac{1}{2}$	$5 \frac{5}{8}$	$2 \frac{5}{8}$	2\％	13	7	2\％	$3 \frac{1}{2}$	$\frac{5}{16}$	$\frac{7}{16}$
$3 \frac{3}{4}$	$6 \frac{3}{4}$	$7 \frac{1}{2}$	$3 \frac{3}{4}$	6	$2 \frac{13}{16}$	2年	1\％	$\frac{15}{16}$	2年	$3 \frac{3}{4}$	$\frac{5}{16}$	$\frac{7}{16}$
4	7年	8	4	63	3	23	2	1	$2 \frac{3}{8}$	4	$\frac{5}{16}$	$\frac{1}{2}$
$4 \frac{1}{4}$	738	$8 \frac{1}{2}$	4年	$6 \frac{8}{8}$	$3 \frac{3}{16}$	$2 \frac{9}{16}$	2\％	$1 \frac{1}{16}$	29	4年	$\frac{5}{16}$	$\frac{1}{2}$
$4 \frac{1}{2}$	8	9	$4 \frac{1}{2}$	$7 \frac{1}{4}$	$3 \frac{3}{3}$	2111	$2 \frac{1}{4}$	1\％	$2 \frac{11}{16}$	$4 \frac{1}{2}$	$\frac{3}{8}$	$\frac{9}{16}$
$4 \frac{3}{4}$	$8 \frac{1}{2}$	$9 \frac{1}{2}$	$4 \frac{3}{4}$	$7 \frac{5}{8}$	$3 \frac{9}{16}$	27	$2 \frac{3}{8}$	$1 \frac{3}{16}$	27	43	$3 / 3$	$\frac{9}{16}$
5	9	10	5	8	$3 \frac{3}{4}$	3	22	1年	3	5	$3 / 8$	5

Contributed by Alex Theuerkauf，Machinery＇s Data Sheet No．99．Explanatory note：Page 33.

PROPORTIONS OF KNUCKLE JOINTS

Contributed by Alex Theuerkauf, Machinery's Data Sheet No. 99. Explanatory note: Page 33.

STRAIGHT LINK CRANE CHAIN

Size of Chain in Inches		Width of Link Inches	$\begin{gathered} \text { Weight per } \\ \text { Foot of } \\ \text { Chain } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Proof Test } \\ & \text { for B B } \\ & \text { Chain } \end{aligned}$	$\begin{aligned} & \text { Proof Test } \\ & \text { for } B B B \\ & \text { Chain } \end{aligned}$	$\begin{aligned} & \text { Proof Test } \\ & \text { for Dredge } \\ & \text { Chain } \end{aligned}$
t	7	w	Pounds	Tons	Tons	Tons
$\frac{3}{16}$	$1 \frac{3}{8}$	$\frac{13}{16}$	0.50	0.39	0.45	0.50
$\frac{1}{4}$	$1 \frac{1}{2}$	1	0.75	0.66	0.75	0.80
$\frac{5}{16}$	$1 \frac{3}{4}$	$1 \frac{3}{16}$	1.10	1.37	1.60	1.70
$\frac{3}{8}$	2	$1 \frac{3}{8}$	1.55	1.92	2.21	2.36
$\frac{7}{16}$	$2 \frac{1}{4}$	19	2.00	2.64	3.05	3.33
$\frac{1}{2}$	$2 \frac{1}{2}$	$1 \frac{3}{4}$	2.65	3.41	3.92	4.42
$\frac{9}{16}$	$2 \frac{7}{8}$	$1 \frac{15}{16}$	3.25	4.29	4.93	5.53
$\frac{5}{8}$	$3 \frac{1}{4}$	$2 \frac{1}{8}$	4.20	5.28	6.07	6.67
$\frac{11}{16}$	$3 \frac{1}{2}$	$2 \frac{5}{16}$	5.00	6.32	7.28	8.02
$\frac{3}{4}$	$3 \frac{3}{4}$	$2 \frac{1}{2}$	5.90	7.59	8.74	9.24
$\frac{13}{16}$	4	$2 \frac{11}{16}$	7.00	8.91	10.30	10.70
$\frac{7}{8}$	$4 \frac{1}{4}$	3	8.00	10.30	11.90	12.10
$\frac{15}{16}$	$4 \frac{1}{2}$	$3 \frac{1}{4}$	9.00	11.80	13.60	14.50
1	$4 \frac{3}{4}$	$3 \frac{1}{2}$	10.00	13.50	15.60	16.30
$1 \frac{1}{8}$	$5 \frac{1}{2}$	$3 \frac{7}{8}$	12.50	16.20	18.60	19.60
$1 \frac{1}{4}$	6	$4 \frac{1}{4}$	16.00	20.10	23.10	24.00
$1 \frac{3}{8}$	$6 \frac{1}{2}$	$4 \frac{3}{4}$	19.00	24.20	27.80	28.70
$1 \frac{1}{2}$	$7 \frac{1}{4}$	$5 \frac{1}{4}$	21.00	28.90	33.20	34.60
$1 \frac{5}{8}$	$7 \frac{7}{8}$	$5 \frac{3}{4}$	25.00	34.90	39.00	41.00
Note: Sate working loads of chains are one-half of proof test loads.						

Contributed by F. E. Walker. Explanatory note: Page 33.

CABLE CHAIN

Size of Chain in Inches	Stud Link				Close Link			
	Lerigth of Link in Inches	width of Link in Inches	Weight per Foot of Chain	Proof Tes't	Length of Link in inches	width of Link in Inches	Weightper Foot of Chain	Proof Test
t	2	W	Pounds	Tons	Z	w	Pounds	Tons
3	$4 \frac{3}{8}$	$2 \frac{3}{4}$	5.5	10.1				
$\frac{13}{16}$	$4 \frac{3}{4}$	3	6.3	12.0				
$7 / 8$	5	$3 \frac{1}{4}$	8.2	13.7				
$\frac{15}{16}$	$5 \frac{3}{8}$	$3 \frac{1}{2}$	9.2	15.7				
,	$5 \frac{7}{8}$	$3 \frac{3}{4}$	10.2	18.0	$4 \frac{5}{8}$	$3 \frac{1}{2}$	10.3	12.0
$1 \frac{1}{16}$	6年	37	11.5	20.3	5	$35 / 8$	11.8	12.5
$1 \frac{1}{8}$	$6 \frac{1}{2}$	$4 \frac{1}{8}$	12.3	22.8	$5 \frac{3}{8}$	378	12.7	15.1
$1 . \frac{3}{16}$	$6 \frac{3}{4}$	$4 \frac{1}{4}$	13.5	25.5	$5 \frac{1}{2}$	$4 \frac{1}{8}$	13.7	16.9
$1 \frac{1}{4}$	$7 \frac{18}{8}$	$4 \frac{1}{3}$	15.0	, 28.1	$5 \frac{3}{4}$	$4 \frac{1}{4}$	15.2	18.7
$1 \frac{5}{16}$	718	$4 \frac{5}{8}$	16.2	31.0	6	$4 \frac{1}{2}$	16.5	20.6
138	$7 \frac{3}{4}$	478	18.3	34.0	61/4	$4 \frac{3}{4}$	18.8	22.6
$1 \frac{7}{16}$	$8 \frac{1}{8}$	$5 \frac{1}{8}$	18.8	37.2	$6 \frac{5}{8}$	5	19.7	24.7
$1 \frac{1}{2}$	$8 \frac{1}{2}$	$5 \frac{3}{8}$	21.2	40.5	67	$5 \frac{1}{4}$	21.7	27.0
$1 \frac{9}{16}$	878	$5 \frac{5}{8}$	23.8	44.0	$7 \frac{1}{4}$	$5 \frac{1}{2}$	23.0	29.2
15	$9 \frac{1}{4}$	57	25.0	47.5	$7 \frac{1}{2}$	$5 \frac{3}{4}$	25.3	31.6
$1 \frac{11}{15}$	95	6	26.2	51.2				
13	10	$6 \frac{1}{4}$	28.8	55.2				
178	$10 \frac{1}{2}$	$6 \frac{3}{4}$	33.8	63.3				
$1 \frac{15}{16}$	$10 \frac{3}{4}$	7	35.8	67.5				
2	$1.1 \frac{1}{8}$	$7 \frac{1}{4}$	38.8	72.0				
$2 \frac{1}{16}$	$11 \frac{1}{2}$	$7 \frac{1}{2}$	42.3	76.5				
218	12	$7 \frac{3}{4}$	46.0	81.2.				
$2 \frac{3}{16}$	$12 \frac{1}{2}$	8	48.3	86.1				
$2 \frac{1}{4}$	13	$8 \frac{1}{4}$	50.0	91.0				
Note: Safe working loads of chains are one-half of proot test loads.								

Contributed by F. E. Walker. Explanatory note: Page 33.
ball bearings. On pages 10 and 11 are given formulas and tables for determining the dimensions of the enveloping and enveloped cylinder in ball bearings, when the diameter of the ball and the number of balls are known. This table is, of course, equally applicable to roller bearings, when the diameter of the roller and the number of rollers are known. The formulas required for determining the dimensions are given at the head of the table on page 10 , and in the body of the tables are given the values of the constants entering in these formulas for number of balls varying from 5 to 40.

On pages 12 to 15 , inclusive, are given dimensions for two-point ball bearings. The table in the lower part of page 12 gives the dimensions relating specifically to the shape of the races when the diameter of the ball is known, while the dimensions in the tables on pages 13,14 and 15 give the diameters of the ball races as determined from the number and diameter of the balls.

Assume as an example that it is required to find the dimensions of a twopoint ball bearing having 20 balls of $3 / 8$ inch diameter. From the table on page 12 we find:

$$
\begin{aligned}
\text { Radius of race } R & =0.240 \text { inch, } \\
\text { Dimension } A & =0.053 \text { inch, } \\
\text { Dimension } B & =0.047 \text { inch, } \\
\text { Dimension } C & =0.023 \text { inch, } \\
\text { Dimension } S & =0.386 \text { inch, } \\
\text { Clearance }(S-D) & =0.011 \text { inch. }
\end{aligned}
$$

From the table on page 13 we find that for 20 balls of $3 / 8$ inch diameter, diameter X, or the diameter of the inner ball race, equals 2.031 inches; diameter Y, or the diameter through the center of the balls, equals 2.416 inches, and diameter Z, or the diameter of the outer ball race, equals 2.802 inches. [Machinery, December, 1907, and January, 1908, Ball Bearings; May, 1909, Some Notes on Ball Bearings; MaChinery's Reference Series No. 56, Ball Bearings.]

Shaft Couplings

The types of shaft couplings in general use vary greatly in appearance and construction. The method of construction is often dependent upon the space allowed for the coupling. When the coupling must be limited to its diameter, the clamp coupling, a type of which is shown on page 16 , is especially suitable. When there are no limitations on the diameter of the coupling, plate or flange couplings, as shown on pages 17 and 18, are often used. Another simple form of coupling is shown on page 19. This coupling consists of a sleeve or muff, split on one side, which is placed over the shafts and their key; the outside of this sleeve is tapered at both ends, and it is clamped upon the shafts by means of two taper rings firmly held together by bolts. The crab coupling shown on page 20 , dimensions for which are tabulated on page 21, should be classified as a clutch rather than as a coupling, a clutch, in general, being understood to mean a coupling which can be disengaged at will. Dimensions for the various classes of couplings are given beneath the illustrations referred to.

Clutches

Clutches, as already mentioned, may be defined as disengaging couplings. Clutches may be divided, in general, into two classes, toothed clutches and friction clutches. The crab coupling, shown on page 20 and already referred to in the previous section, is an example of a toothed clutch. In this clutch one part, that to the left, is fastened to its shaft laterally, as well as keyed to the shaft to prevent turning. The part to the right is free to slide back and forth upon its shaft, but is, of course, also prevented from turning on the shaft by a key. The sliding motion for engaging or disengaging the clutch is accomplished by a forked lever
(Continued on page 33.)
CRANE CHAIN AND EYE BOLTS

	\bigcirc	
	z	
	E	NNMMよなザ
	\cdots	
	\simeq	
	\cdots	
	\pm	
	\checkmark	
	4	
	w	
	0	
	0	
	∞	
	を゙	
	$<$	

as shown. Another form of toothed clutch of special design is shown on page 22.

The second type of clutches are the friction clutches, of which the cone clutch is the most common. There appears to be considerable misunderstanding, or perhaps rather lack of understanding, of the formulas for cone clutches. A number of formulas are given in various hand-books and treatises on machine design, many of which do not at first sight seem to agree. While the various formulas may be correct, the difficulty met with is caused by the fact that in cone clutch design different formulas are developed according to whether the clutch surfaces are assumed to engage with or without some slip. On page 24 is given a set of formulas which takes both of these conditions into consideration. These formulas will be found very convenient for ready reference when designing new cone clutches or when checking designs already made. On page 25 dimensions for cast-iron cone clutches are given, and formulas are added so that sizes not given in the table beneath the illustration can be proportioned if necessary. [Machinery, November, 1908,

Clutches for Power Presses; October, 1909, Formulas for Cone Clutches.]

Universal and Knuckle Joints
Universal joints are made in many forms. One type which will be found suitable for ordinary conditions is shown on page 26. A table of dimensions is given, and formulas are provided for proportioning sizes not contained in the table. When universal joints are used, the two shafts connected by means of the joint do not move at a uniform rate of motion in relation to each other. If the driving shaft moves at a uniform rate of motion, then the driven shaft will have a slightly variable motion. The variation, however, is so slight, particularly for small angles, as to be negligible in most cases occurring in machine construction, where the universal joint is used merely for transmitting motion without specific reference to its uniformity. The universal joint is used particulariy for feed motions on various machine tools; it does not work well when the angle between the two shafts is more than 45 degrees. Dimensions of knuckle joints are given on page 27, together with formulas to be used for sizes not given in the table.

CHAINS AND HOOKS

Chain for Hoisting Purposes
The only class of chain dealt with in the following will be chain for hoisting purposes. Chain of this character is made with oblong or elliptically shaped links. The best material to use for chain is a good grade of wrought iron, such as Swedish or Lowmoor iron, either of which is freer from silicon, phosphor, sulphur and other impurities than the more common brands. The tensile strength of the best grades of wrought iron does not exceed 46,000 pounds per square inch, while mild
steel of about 0.15 per cent carbon has a tensile strength of nearly double this amount. The ductility and toughness of wrought iron, however, is greater than that of any other grade of ordinary commercial steel; for this reason it is preferable for making appliances subjected to intermittent heavy strains, as it will always give warning by bending or stretching before it fractures or snaps off. Another most important reason for using wrought iron is that a perfect weld can more easily be accomplished.
(Continued on page 38.)
SHOWING RESISTANCE DUE TO ONE BEND OF CHAIN.

GHOWING RESISTANCE AT PITCH DIAMETER OF WHEEL IN TERMS OF LOAD ON THE JOURNAI.

Contributed by R. A. Greene, Machinery's Data Sheet No. 30. Explanatory note: Page 38.
FORCE REQUIRED FOR HOISTING

$P=$ force required to hoist, $L=$ load, $f_{\alpha}=$ journal friction, $f_{c}=$ chain friction.		

FORCE REQUIRED TO MOVE CRANE TROLLEYS

$F=$ force required to move trolley, T = weight of trolley, $d=$ diam. of driving wheel in inches, $r=$ ratio of diam. of gear A to gear B, $e=e$ efficiency of gears, t =inch-pounds forque atmotor, $L=$ load, $l=$ length of crank arm in inches, $P=$ force at cran $f_{\alpha}=$ journal frict $f_{c}=$ chain frictio		

In calculating the strength of chains it should be observed that the strength of a chain link subjected to tensile stresses is not equal to twice the strength of a bar of iron of the same diameter as the material from which the chain link is made, but is a certain amount less than this, due to the bending action caused by the manner in which the load is applied to the link. The weld also reduces the actual strength of the chain link. The following empirical formula is commonly used for calculating the breaking load in pounds of wrought iron crane chains:

$$
W=54,000 \quad D^{2}
$$

in which
$W=$ breaking load in pounds,
$D=$ diameter of bar from which the link is made, in inches.

The working load to which chains should be subjected should never exceed more than one-third of the value of $W_{\text {, }}$ thus determined, and in many cases not even as high a stress as one-third the breaking load is permissible. When the load does not act in direct tension, as, for example, in cases when the chain is wound round a heavy casting and severe bending stresses thus introduced, a much greater factor of safety ought to be used. Dimensions for ordinary straight link crane chain are given on page 28. Besides the dimensions, this table also gives the weight per foot of the chain in pounds and the strength of the chain, as ascertained by "proof" tests for three different classes of chain, designated as $B B, B B B$ and dredge chain. The "proof" usually applied is half of the estimated ultimate load at which the chain would collapse. On page 29 are given dimensions for standard cable chains, both of the type known as stud link chain, and of the type known as close link chain. The weight per foot and the strength as ascertained by proof tests are given. On page 31 are given dimensions for the United States Navy standard crane chain. Ascording to this standard a factor of
safety of 5 is used. On the same page are given dimensions for eye bolts of a type that may be used in connection with chain, and for other purposes. On page 32 are given dimensions for the United States Navy standard chain end link and narrow shackle. [Machinery, April, 1909, The Forging of Hooks and Chains; Machinery's Reference Series No. 61, Blacksmith Shop Practice, Chap: ter III, The Forging of Hooks and Chains.]

Chain Friction

To determine by calculation exactly the power lost through chain and journal friction in hoisting machinery is a very difficult, not to say impossible, task. It is possible, however, to determine approximately the power consumed by the chain and journal friction by basing the calculations upon known experimental results. On page 34 is given a diagram of chain friction showing the resistance due to one bend of the chain when the diameter of the sheave, in inches, over which the chain is laid, and the diameter of bar, in inches, from which the chain link is made, are known. The explanatory note beneath the diagram and the example given. clearly indicate the method used for determining the amount of chain friction. This diagram is based on the for-mula:

$$
f_{\mathrm{c}}=0.04 \frac{d}{D}
$$

in which
$f_{\mathrm{c}}=$ chain friction,
$d=$ diameter of bar from which chain is made, in inches,
$D=$ diameter of sheave, in inches.
On page 35 is given a similar diagram for determining journal friction. This. diagram is based on the formula:

$$
f_{a}=0.15 \frac{d}{D}
$$

in which
$f_{\mathrm{a}}=$ journal friction,
$d=$ diameter of journal, in inches,
(Continued on page 43.)
DIMENSIONS OF CRANE HOOKS-I

DIMENSIONS OF CRANE HOOKS-II

Fig. 1.	Formulas for Crane Hooks. $A=$ area of section shown in the illustration, in square inches, $f=$ allowable fiber stress in pounds per square inch $P=$ load in pounds, $R^{2}=$ square of the radius of gyration in inches. For b, b_{1}, d, r, y_{0}, and y_{1}, see Fig. I. $\begin{gathered} \frac{P}{f}=\frac{A}{1+\frac{y_{1} y_{0}}{R^{2}}} \quad A=\frac{b+b_{1}}{2} \times d \\ y_{1}=\frac{b+2 b_{1}}{b+b_{1}} \times \frac{d}{3} \quad y_{0}=\frac{b+2 b_{1}}{b+b_{1}} \times \frac{d}{3}+r \\ R^{2}=\frac{\left(b^{2}+4 b b_{1}+b_{1}^{2}\right) d^{2}}{18\left(b^{2}+2 b b_{1}+b_{1}^{2}\right)} \end{gathered}$ Assume $b=0.05 d$, and $b_{1}=0.3 d$; then $\frac{p}{f}=\frac{d^{3}}{7.2 d+11.615 r}=\text { constant in table. }$ Directions for using Table for Crane Hooks. P, f and r are assumed, to suit the requirements; f may be assumed to equal from 16,000 to 25,000 pounds per square inch. Divide P by f and find the quotient in the column headed by the required radius r in the table. Then follow the horizontal line from this quotient to the left-hand column headed d. The figure in this column gives the required width d of the crane hook, and all the other dimensions are found from Fig. 2 as functions either of d or r.

STANDARD DRUM SCORES.

$\begin{gathered} \text { Rope } \\ \text { A } \\ \text { B } \\ \text { C } \\ \text { D } \end{gathered}$	$\begin{aligned} & \frac{8}{8} \\ & \frac{8}{18} \\ & \frac{7}{88} \\ & \frac{7}{88} \\ & \frac{8}{88} \\ & \frac{8}{82} \end{aligned}$	$\frac{3}{18}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{8}{7}$ $\frac{8}{7}$ $\frac{8}{87}$	$\begin{aligned} & \frac{1}{\frac{1}{2}} \\ & \frac{9}{16} \\ & \frac{8}{812} \\ & \frac{1}{8} \\ & \frac{8}{32} \end{aligned}$	$\frac{9}{16}$ $\frac{8}{8}$ $\frac{5}{16}$ $\frac{9}{6}$ $\frac{18}{8}$ $\frac{8}{8}$	\% ${ }_{\text {c }}^{\frac{5}{8}}$	$\begin{aligned} & \frac{11}{1} \\ & \frac{11}{8} \\ & \frac{8}{4} \\ & \frac{8}{8} \\ & \frac{1}{64} \\ & \frac{1}{8} \end{aligned}$				$\mathbf{1}^{\frac{15}{15}}$	$\begin{aligned} & 1 \\ & \frac{1}{18} 18 \\ & \frac{17}{\frac{1}{2}} \frac{1}{4} \frac{1}{4} \\ & \frac{8}{18} \end{aligned}$
$\stackrel{i}{r_{0}^{2}}$											
Chain	$\frac{3}{8}$	${ }_{10}^{78}$	${ }^{\frac{1}{2}}$	${ }^{9} 8$	$\frac{5}{8}$	${ }^{\frac{17}{16}}$	$\frac{3}{4}$	${ }^{\frac{1}{1} \frac{8}{8}}$	${ }^{7}$	${ }^{\frac{1}{15} 5_{8}^{8}}$	1
A	$1 \frac{1}{\frac{1}{2}}$	1118	$1 \frac{7}{8}$	$2 \frac{1}{18}$	$2{ }^{\frac{5}{16}}$	$2 \frac{1}{2}$	$2{ }_{17}^{17}$	$2 \frac{7}{8}$	$3 \frac{1}{8}$	$3^{\frac{8}{16}}$	$3 \frac{1}{2}$
B	$\frac{8}{18}$	${ }_{7}^{78}$	4	${ }^{\frac{9}{88}}$		$\frac{12}{3 \frac{1}{8}}$	${ }_{\frac{8}{8}}$	${ }^{\frac{1}{3} \frac{8}{8}}$	${ }^{18}$	${ }_{\frac{15}{35}}^{5}$	$\frac{1}{2}$
C	$\stackrel{18}{16}$	$\frac{8}{8}$	$\frac{12}{18}$	$\frac{8}{4}$		$\frac{7}{8}$	$\frac{18}{15}$	1	$1{ }_{18}^{18}$	$1 \frac{1}{\frac{1}{8}}$	$1{ }_{1}^{\frac{3}{18}}$
D	$\frac{8}{18}$	${ }^{81}$	${ }_{5}^{5}$	${ }^{\frac{11}{3}}$	$\frac{8}{8}$	$\frac{18}{3}$	${ }_{18}^{78}$	$\frac{13}{3}$		${ }^{\frac{17}{83}}$	${ }^{18}$

Chain	${ }^{\frac{3}{8}}$	${ }_{18} \frac{18}{18}$	$\frac{1}{3}$	${ }_{18}{ }^{16}$	${ }^{\frac{5}{8}}$	${ }^{\frac{11}{17}}$	${ }^{\frac{3}{4}}$	${ }^{\frac{1}{18}}$	$\frac{7}{8}$	${ }^{\frac{1}{15}}$	1
A	$1 \frac{1}{4}$	$1{ }_{18}^{78}$	$1{ }_{18}$	$1{ }^{\frac{8}{4}}$	$1 \frac{7}{8}$	$2 \frac{1}{18}$	$2{ }^{\frac{3}{18}}$	28	$2 \frac{1}{3}$	$2{ }^{1 \frac{1}{16}}$	$21^{\frac{13}{8}}$
B	${ }^{\frac{11}{812}}$	$\frac{8}{8}$	${ }^{7}$	${ }^{\frac{1}{8} \frac{5}{8}}$	${ }^{\frac{1}{3} \frac{7}{8}}$	${ }^{\text {I6 }}$	${ }^{\frac{5}{8}}$	${ }^{\frac{21}{3} \frac{1}{12}}$	$\frac{23}{3 \frac{2}{3}}$	${ }_{\frac{8}{4}}$	$\frac{18}{18}$
C	${ }_{18}^{8}$	${ }^{\frac{7}{88}}$	$\frac{1}{4}$	$\frac{9}{38}$	${ }^{\frac{8}{16}}$	${ }^{\frac{11}{32}}$	${ }^{\frac{3}{8}}$	${ }_{8}^{183}$	$\frac{7}{18}$	${ }^{\frac{18}{5} \frac{5}{2}}$	$\frac{1}{2}$
D	1	$1 \frac{1}{8}$	$1 \frac{1}{4}$	$1 \frac{8}{8}$	$1 \frac{1}{2}$	$1 \frac{5}{8}$	$1 \frac{3}{4}$	$1 \frac{7}{8}$	2	$2 \frac{1}{8}$	$2 \frac{1}{4}$

Contributed by R. A. Greene. Machinery's Data Sheet No. 30.
$D=$ diameter of circle at the periphery of which the load is applied.
On page 36 formulas are given for determining the total force required to hoist a given load with different kinds of hoisting apparatus when the chain and journal frictions are taken into consideration. On page 37 formulas àre given for determining the force required to move crane trolleys when a certain load is suspended and the chain and journal friction are taken into consideration. The values of the journal friction f_{a} and the chain friction f_{c} to be inserted into these formulas are obtained from the diagrams on pages 34 and 35 . In this case the values used are, of course, the values read off on the upper and right-hand sides of these diagrams.

Crane Hooks

On page 39 are given proportions of crane hooks based upon the formulas given by Prof. Unwin. The dimensions here given include hooks of a capacity up to 10 tons, which is the capacity to which tables of dimensions of crane hooks found in hand-books usually apply. Hooks of these capacities are largely the result of practice, and are forged from a rod of uniform cross-section for reasons of economy in manufacture. They are, however, not always as economical as regards the use of the material as might be desired. In designing a hook of large capacity the matter of weight is of much more importance than the cheapness of production, and it is important to distribute the metal in the most economical manner and to obtain the necessary strength with a minimum of weight. The shape of the cross-section of a hook is such that it does not lend itself readily to exact mathematical treatment, but approximations may be made which are fairly accurate and which experience has shown to be safe. On page 40 is given a set of fundamental formulas for the design of crane hooks of large ca-
pacities, and on page 41 a table of dimensions is given, by means of which the work of determining the size of crane hooks for various capacities is greatly facilitated. Hooks designed by this table have been thoroughly tested in practice and have given entire satisfaction. For ordinary service, a fiber stress of from 16,000 to 25,000 pounds may be safely used.

When using the table on page 41 for designing crane hooks, the load P, in pounds, which the hook will be required to carry, is first determined. Then the allowable fiber stress f is assumed, and the quotient $\frac{P}{f}$ obtained. This quotient is found in the body of the table under the value of the radius r required in the hook. When the nearest value to P

- in the table has been located in the f
vertical column under the radius, follow the line horizontally to the lefthand column, which gives the dimension d directly. All the other dimensions are proportioned from the dimension d, as shown in the engraving Fig. 2 on page 40.

As an example, assume that a crane hook for a 50 -ton crane is to be designed, that the radius r is required to be 3 inches, and that the allowable unit fiber stress is 20,000 pounds. Expressed in pounds, $P=100,000$ pounds. This divided by 20,000 gives us the quotient 5 , which is found in the table in the vertical column under 3 -inch radius. It will be seen that the nearest value to 5 is 4.75 , and following the horizontal line in which 4.75 is found, to the lefthand column for a, we find $d=7.5$ inches. All the other dimensions can now be found by inserting this value of d in the formulas in Fig. 2, page 40.

Most of the available information relative to hooks is better suited to meet the needs of the designer than the maker, and a few remarks relative to the making of crane hooks may be of
interest in this connection. When hooks of either of the types shown on page 39 are to be made, stock of the diameter A of the hook should be used. If a hook is made in proportion to a chain to which it is to be attached, the easiest and simplest manner of determining the right diameter of material to use is to multiply the diameter of the material of which the chain is made by 2.5. For obtaining the length of the material for the hook, multiply the diameter of the stock for the hook by 7. Take, for example, a chain of standard pattern made from material one-half inch in diameter, which is generally recognized as the proper size for a working load of $11 / 2$ ton. Thus, $1 / 2$ inch
$\times 2.5=11 / 4 \mathrm{inch}=$ required diameter of stock for hook. In order to find the length of the material to use, we have $11 / 4 \times 7=83 / 4$ inches. Therefore $83 / 4$ inches of material $11 / 4$ inch in diameter is the proper amount of stock to use for a hook that will support a working load of $11 / 2$ ton. If properly forged, a hook made from this material will be according to the dimensions given for crane hooks on page 39. The best material for hooks is a good grade of wrought iron. [Machinery, April, 1909, Crane Hooks, and The Forging of Hooks and Chains; Machinery's References Series No. 61, Blacksmith Shop Practice, Chapter III, The Forging of Hooks and Chains.]

No. 16. Machine Tool Drives.-Speeds and Feeds of Machine Tools; Geared or Single Pulley Drives; Drives for High Speed Cutting Tools.

No. 17. Strength of Cylinders-Formulas, Charts, and Diagrams.

No. 18. Shop Arithmetic for the Ma-chinist.-Tapers; Change Gears; Cutting Speeds; Feeds; Indexing; Gearing for Cutting Splrals; Angles.

No. 19. Use of Formulas in Mechanics. - With numerous applications.

No. 20. Spiral Gearing.-Rules, Formulas, and Diagrams, etc.

No. 21. Measuring Tools.-History and Development of Standard Measurements; Special Calipers: Compasses; Micrometer Tools; Protractors, etc.

No. 22. Calculation of Elements of Machine, Design.-Factor of Safety; Strength of Bolts; Riveted Joints; Keys and Keyways; Toggle-joints.

No. 23. Theory of Crane Design.-Jib Cranes; Calculation of Shaft, Gears, and Bearings; Force Required to Move Crane Trolleys; Pillar Cranes.

1. 24. Examples of Calculating De-signs.-Charts in Designing; Punch and Riveter Frames; Shear Frames; Billet and Bar Passes; etc.

No. 25. Deep Fole Drilling.-Methods of Drilling; Construction of Drills.

No. 26. Morern Punch and Die Con-stanction.- ('nnstruction and Use of Subpress Dies; Modern Blanking Die Construction; Drawing and Forming Dies.

No. 27. Locomotive Design, Part I.Boilers, Cylinders, Pipes and Pistons.

No. 28. Iocomotive Design, Part II.Stephenson Vic Motion; Theory, Calculation and Design of Valve Motion; The Walschaerts Valve Motion.

Mo. 29. Iocomotive Design, Part III. -Smokebox; Exhaust Pipe; Frames; Cross-heads; Guidר Bars; Connecting-rods; Crank-pins; Axles; Driving-wheels.

To. 30. T.ocomotive Design, Part IV.Springs, rucks, Cab and Tender.

No. 31. Screw Thread Tools and Gages.
No. 32. Screw Thread Cutting.-Lathe Change Gears; Thread Tools; Kinks.

No. 33. Systems and Practice of the Drafting-Room.

No. 34. Care and Repair of Dynamos and Motors.

No. 35. Tables and Eormulas for Shop and Drafting-Room.-The Use of Formulas; Solution of Triangles; Strength of Materials; Gearing; Screw Threads; Tap Drills; Drill Sizes; Tapers; Keys; Jig Bushings, etc.

No. 36. Iron and Steel.-Principles of Manufacture and Treatinent. No. 37. Bevel Gearing.-Rules and
Formulas: Exiamples of Calculation;

Tooth Outlines; Strength and Durability; Design; Methods of Cutting Teeth.

No. 38. Grinding and Grinding Ma chines.

No. 39. Fans, Ventilation and Heating. -Fans; Heaters; Shop Heating.

No. 40. Fly-Wheels.-T heir Purpose, Calculation and Design.

No. 41. Jigs and Fixtures, Part I.Principles of Jig and Fixture Design: Drill and Boring Jig Bushings; Locnting Points; Clamping Devicos.

No. 42. Jigs and Fixtures, Part II.Open and Closed Drill Jigs.

No. 43. Jigs and Fixtures, Part III.Boring and Milling Fixtures.

No. 44. Machine Blacksmithing.-Systems, Tools and Machines used.

No. 45. Drop Forging. - Lay-out of Plant; Methods of Drop Forging; Dies.

No. 46. Hardening and Tempering. Hardening Plants; Treating High-Speed Steel; Hardening Gages; Hardeaing Kinks.

No. 47. Electric Overhead Cranes. Design and Calculation.

No. 48. Files and Filing.-Types of Files; Using and Making Files.
No. 49. Girders for Electric Overhead Cranes.

No. 50. Principles and Practice of Assembling Machine Tools, Part I.
No. 51. Principles and Practice of Assembling Machine Tools, Part II.

No. 52. Advanced Shop Arithmetic for the Machinist.
No. 53. Use of Logarithms and Logarithmic Tables.
No. 54. Solution of Triangles, Part I. - Methods, Rules and Examples.

Mo. 55. Solution of Triangles, Part II. -Tables of Natural Functions.
No. 56. Ball Bearings.-Principles of Design and Construction.
No. 57. Metal Spinning.-M a chines, Tools and Methods Used.
No. 58. Helical and Elliptic Springs.Calculation and Design.

No. 59. Machines, Tools and Methods of Automobile Manufacture.

No. 60. Construction and Manufacture of Automobiles.

No. 61. Blacksmith Shop Practice. Model Blacksmith Shop; Welding; Forging of Hooks and Chains; Miscellaneous Appliances and Methods.

No. 62. Hardness and Durability Testing of Metals.

No. 63. Heat Treatment of Steel. Hardening, Tempering and Case-Hardening.

No. 64. Gage Making and Lapping.
2Vo, 65. Formulas and Constants for Gas Engine Design.

Macirnery, the monthly mechanical journal, originator of the Reference and Data Sheet Series, is published in four editions-the Shop Edition, $\$ 1.00$ a year; the Engineering Edition, $\$ 2.00$ a year; the Railway Edition, $\$ 2.00$ a year, and the Foreign Edition, $\$ 3.00$ a year.

The Industrial Press, Publishers of Machinery,

