SD 557 .K7

		¥0 30(A REPART		
Class	S		5	1. 7 %	144 	,
Book			1			

Copyright N?_____

COPYRIGHT DEPOSIT.

Volumes have been written on volume

but

little has been written on

1

p

2 . pe

5 pe

8 1-6

quality and price

increment

increment

increment

Biltmore Timber Tables

BY

HOWARD R. KRINBILL

COPYRIGHT, 1911 BY HOWARD R. KRINBILL

FOR THE USE OF THE BILTMORE FOREST SCHOOL

WORKING FIELDS, 1911-12: ADIRONDACKS, SOUTHERN APPALACHIANS, LAKE STATES, PACIFIC COAST AND GERMANY

INTRODUCTION

This booklet has been prepared for the use of the students of the Biltmore Forest School and may prove of interest to foresters and lumbermen in general.

The original material consists of Compound Interest Keys for solving financial problems, Keys for the mental calculation of areas of circles, and Form Height Factors for estimating standing timber in board feet of lumber and in cords of wood and bark.

The Mill Factor Method of estimating standing timber is employed by Dr. C. A. Schenck, who publishes a handy booklet of Cruiser's Tables giving contents in board feet for trees of any diameter, any number of logs up to 6, any taper per log from I inch to 4 inches, and any Mill Factor from 5 to 8.

The Volume Tables of "The Woodman's Handbook" have been used as a basis for working out Form Height Factors.

The Tables for Use in Germany were compiled during an excursion through the forests of Germany.

This booklet is the right size for inserting in "The Woodman's Handbook" by Henry S. Graves, published by The United States Forest Service, or in "A Manual for Northern Woodsmen" by Austin Cary, published by Harvard University.

PROBLEMS IN FOREST FINANCE

To Illustrate the Utility of the Compound Interest Leys

1. The Report on the Standing Timber of the United States by Herbert Knox Smith, commissioner of corporations, gives as examples of "enormous increase in value with great profits to the owners" during an interval of 40 years: From \$5 to \$30 an acre, \$7 to \$40, \$20 to \$150, \$1 to \$18, \$4 to \$140, \$1 to \$50.

Question: What rate of interest do these "great profits" represent?

2. Southern pine sold by the government 40 years ago at \$1.25 per acre is now worth \$60. Douglas Fir sold at \$2.50 is now worth \$100 to \$200. What has been the annual price increment?

3. If Yellow Poplar log run averaged \$14 in 1895 and \$30 in 1910, what has been the annual increase in stumpage value, assuming that the expense of production was \$10?

4 Timber worth \$8 per acre in 1906 has increased yearly in volume 1 per cent, quality increment $2\frac{1}{2}$ per cent, price increment $4\frac{1}{2}$ per cent. Value in 1911?

5. If stumpage prices increase 8 per cent. yearly, when will the investment double? When will investment increase threefold? Tenfold?

6. In 1911 White Pine stumpage is worth \$6 per M, Poplar \$5, Oak \$4, and Yellow Pine \$3. What were the prices in 1890 and in 1900 if the annual price increment has been 10 per cent for White Pine, 8 per cent for Poplar and Oak, and 12 per cent. for Yellow Pine?

PROBLEMS

7. In 1901, \$1200 was paid for marked trees, equal volumes of White Pine, Poplar and Oak. The trees were to be cut in 5 years but in 1906 \$700 was borrowed at 6 per cent. to pay for the privilege of letting the timber stand until 1911. How much was gained (or lost) by waiting until 1911? The annual increments in volume, quality, and price were: White Pine, $3\frac{1}{2}$ per cent, 3 per cent, 8 per cent; Poplar 3 4-5, 2, 9; Oak 1 4-5, 1, 6.

8. In 1900 a forest of 10,000 acres was bought for \$70,-000. Taxes in 1900 were 6 cents per acre and advanced gradually to 15 cents in 1910. The lumber cut in 1900 was 1000 M and increased steadily each year to 2000 M in 1910. Stumpage netted \$2 per M in 1900 and rose steadily to \$5 in 1910. In 1904, a right of way was sold for \$150; in 1905, a waterpower site brought \$2500; in 1906, mineral rights, \$3800; in 1907, tan bark \$2750 net; in 1908, extract wood, \$1320 net.

In 1910, the property was sold for \$20,000 cash, \$10,000 yearly for 5 years, and shares of U. S. Steel, some common at $77\frac{1}{5}$ and the rest preferred at 119. Question: How many shares of each were secured to make 7 per cent. on investment, including taxes?

ANSWERS

- 1. \$5 to \$30=Aft-Value 6. Key 184. 184÷40=4.6 per cent. (Case 3.)
- Similarly, the other rates of interest are 4.5 per cent, 5.2 per cent, 6.6, 9.1, and 10.1 per cent.

2. \$1.25 to \$60=Aft-Value 48. Key 397. $397 \div 40 = 10$ per cent. \$2.50 to \$100=Aft-Value 40. Key $378. 378 \div 40 = 9\frac{1}{2}$ per cent. \$2.50 to \$200=Aft-Value 80, Key $449. 449 \div 40 = 11.2$ per cent. (Case 3)

- 3. \$4 to \$20=Aft-Value 5. Key 165. 165÷15=11 per cent. (Case 3.)
- 4. 8 1-5 per cent. ×5 years=Key 41. Aft-Value 1.5. 1.5×\$8=\$12. (Case 1.)
- 5. Aft-Value 2=Key 71. $71 \div 8$ =9 years. (Case 4)
- 6. Case 2. 7. Case 1. 8. Case 1, 5 and 6.

COMPOUND INTEREST KEYS

(Aft-Value is value at the end; Pre-Value is value at the beginning)

AFT-					TEN	THS	i						
VALUE	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9			
	70.	KEYS	(Num	ber of	Years	x Rate	of Int	erest)	KEYS				
1		10	19	27	34	41	48	54	60	66			
	71	76	81	85	90	94	98	102	106	109			
23	113	116	119	122	125	128	131	134	137	140			
4	142	145	147	150	152	154	157	159	161	163			
5	165	167	169	171	173	175	177	179	180	182			
6	184	186	187	189	190	192	193	195	196	198			
7	199	200	202	203	205	206	208	209	210	211			
8	213	214	215	217	218	219	220	221	223	224			
9	225	226	227	228	229	231	232	233	234	235			
-								1					
10	236		To obtain key of any omitted Aft-Value, add the										
$ 10 \\ 11 $	$236 \\ 246$	•	To ob	otain k	ey of	any on	nitted .	Aft-Va	alue, a	dd th			
		keys				any on examp		Aft-V:	alue, a	dd th			
11	246	keys	of its f	factors	. For		le:			dd th			
$\begin{array}{c} 11 \\ 12 \end{array}$	$246 \\ 255$	keys	of its f Key	actors of 29=	. For =Key o	examp	le: us Key	of 2.9	=345.	dd th			
$11 \\ 12 \\ 13$	$246 \\ 255 \\ 262$	keys	of its f Key	actors of 29=	. For =Key o	examp f 10 ph	le: us Key	of 2.9	=345.	dd th			
11 12 13 14	$246 \\ 255 \\ 262 \\ 270$	keys	of its f Key	actors of 29=	. For =Key o	examp f 10 ph	le: us Key	of 2.9	=345.	dd th			
$11 \\ 12 \\ 13 \\ 14 \\ 15$	246 255 262 270 278 284 288	keys	of its f Key	actors of 29=	. For =Key o	examp f 10 ph	le: us Key	of 2.9	=345.	dd th			
$11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16$	246 255 262 270 278 284 288 296	keys	of its f Key	actors of 29=	. For =Key o	examp f 10 ph	le: us Key	of 2.9	=345.	dd th			
$ \begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ \end{array} $	246 255 262 270 278 284 288 296 301	keys	of its f Key	actors of 29=	. For =Key o	examp f 10 ph	le: us Key	of 2.9	=345.	dd th			
$ \begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ \end{array} $	246 255 262 270 278 284 288 296 301 307	keys	of its f Key Key	factors of 29= of 36=	. For =Key o =Key o	examp of 10 ph f 6 ph	le: us Key ıs Key	of 2.9 of 6	=345. =368.	dd th			
$ \begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 25\\ \end{array} $	246 255 262 270 278 284 288 296 301 307 330	keys	of its f Key Key M	factors of 29= of 36=	. For =Key o =Key o	examp of 10 ph f 6 ph	le: us Key us Key nay b	of 2.9 of 6	=345. =368.	dd th			
$ \begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 25\\ 50\\ \end{array} $	$\begin{array}{c} 246\\ 255\\ 262\\ 270\\ 278\\ 284\\ 288\\ 296\\ 301\\ 307\\ 330\\ 401 \end{array}$	keys	of its f Key Key M	factors of 29= of 36=	. For =Key o =Key o	examp of 10 ph f 6 ph	le: us Key us Key nay b	of 2.9 of 6	=345. =368.	dd th			
$\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 25\\ 50\\ 100\\ \end{array}$	$\begin{array}{c} 246\\ 255\\ 262\\ 270\\ 278\\ 284\\ 288\\ 296\\ 301\\ 307\\ 330\\ 401\\ 472\\ \end{array}$	keys	of its f Key Key M M	factors of 29= of 36= lany f	. For =Key o =Key o proble	examp f 10 ph f 6 ph ems n reme	le: us Key is Key nay be ember	of 2.9 of 6	=345. =368.	dd th			
$11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 25 \\ 50 \\ 100 \\ 500 \\$	$\begin{array}{c} 246\\ 255\\ 262\\ 270\\ 278\\ 284\\ 288\\ 296\\ 301\\ 307\\ 330\\ 401\\ 472\\ 637\\ \end{array}$	keys	of its f Key Key M M	factors of 29= of 36= lany f	. For =Key o =Key o proble	examp of 10 ph f 6 ph	le: us Key is Key nay be ember	of 2.9 of 6	=345. =368.	dd th			
$\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 25\\ 50\\ 100\\ 500\\ 1,000\\ \end{array}$	$\begin{array}{c} 246\\ 255\\ 262\\ 270\\ 278\\ 284\\ 288\\ 296\\ 301\\ 307\\ 330\\ 401\\ 472\\ 637\\ 708\\ \end{array}$	keys	of its f Key Key M M	factors of 29= of 36= lany f	. For =Key o =Key o proble	examp f 10 ph f 6 ph ems n reme	le: us Key is Key nay be ember	of 2.9 of 6	=345. =368.	dd th			
$11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 25 \\ 50 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 $	$\begin{array}{c} 246\\ 255\\ 262\\ 270\\ 278\\ 284\\ 288\\ 296\\ 301\\ 307\\ 330\\ 401\\ 472\\ 637\\ 708\\ 944 \end{array}$	keys	of its f Key Key M M	factors of 29= of 36= lany f	. For =Key o =Key o proble	examp f 10 ph f 6 ph ems n reme	le: us Key is Key nay be ember	of 2.9 of 6	=345. =368.	dd th			

How to Use the Keys:

CASE	GIVEN	WANTED	SOLUTION
$\begin{array}{c}1\\2\\3\\4\\5\end{array}$	per cent. and years per cent. and years Aft-Value and " per cent. & Aft-V. per cent. and years	Aft-Value of \$1 paid yearly	per cent. x years=Key to Aft-V. 1Aft-Value=Pre-Value Keyyears=per cent. Keyper cent.=years. <u>Aft-Value of Key-1</u> per cent.
6	per cent, and years	Pre-Value of \$1 paid yearly	Aft-Value of Key-1 per cent,xAft-Value of Key

MILL FACTORS

The Mill Factor of a saw mill is its productive efficiency expressed in board feet of saw cut per cubic foot in the log. For example, Mill Factor 7 indicates that the mill produces 7 and wastes 5 board feet for each cubic foot in the log.

The unavoidable waste depends upon the following factors: soundness of logs, taper of logs, diameter of logs, thickness of saw, thickness of boards, smallest width permissible, quality of mill machinery, skill of sawyer, inspection rules followed in edging and trimming, lowest marketable grade, and shrinkage.

Under the most favorable conditions, in the case of straight, sound logs, a band mill will have a Mill Factor of 8, while a circular mill will generally be rated not higher than 7.

The 40 or 50 different log rules used in the United States represent either constant or variable Mill Factors. Among the former are:

The N. Hampshire or Blodgett Rule (115 Blodgett Feet per M)	-Mill :	Facto	r 6.
The Square of Two-thirds Rule	•		6.8
The Vermont Rule	••		
The Square of Three-fourths Rule	**	••	8,6

The most common log rules with variable Mill Factors are:

	ы		
Diame- ter	Mill Factor	Factor	Factor
$\begin{array}{c} 6\\ 9\\ 12\\ 15\\ 18\\ 21\\ 24\\ 30\\ 36\\ 40\\ 50\\ 60\\ 120\\ \end{array}$	$\begin{array}{c} 1.3\\ 3.6\\ 5.2\\ 6.2\\ 6.9\\ 7.6\\ 8.0\\ 8.6\\ 9\\ 9.2\\ 9.7\\ 10.0\\ 10.7\\ \end{array}$	$\begin{array}{c} 6.1 \\ 5.7 \\ 6.3 \\ 7.3 \\ 7.4 \\ 7.9 \\ 8.0 \\ 8.4 \\ 8.2 \\ 8.6 \\ 8.6 \\ 8.6 \\ 8.6 \\ 8.8 \end{array}$	$\begin{array}{c} 6.1 \\ 7.2 \\ 8.3 \\ 8.2 \\ 8.2 \\ 8.7 \\ 8.7 \\ 9.0 \\ 9.1 \\ 9.0 \end{array}$

It is evident that any given log rule is accurate for any given saw mill only where the Mill Factor of the log rule equals the Mill Factor of the saw mill.

A standard method of log measurement would be to allow a certain number of board feet per cubic foot in the log. By comparing the solid cubic contents of a number of logs with the actual output in board feet of lumber, the Mill Factor of a mill is readily obtained.

Page 8 shows the contents of sound trees in feet board measure by the Mill Factor Method.

DOYLE BOARD FEET IN SOUND TREES (Taper above butt $\log = \frac{3}{4}$ to 3 inches)

DIAMETER	TAPER AND	No. of Fourteen Foot Log								
BREAST-HIGH OUTSIDE BARK	BARK OF BUTT LOG	1	2	3	4					
12	2.7	25	44	53	63					
15	3.4	51	92	117	127					
18	3.8	92	165	217	260					
21	4	146	260	357	435					
24	4.5	211	387	541	669					
27	4.5	297	549	773	963					
30	4.6	400	745	1050	1310					
33 .	5	506	946	1340	1660					
36	5.1	630	1190	1660	2060					
39	5.6	754	1410	1980	2510					
42	6.1	890	1670	2350	2970					
45	6.6	1030	1950	2740	3470					
48	7.1	1190	2250	3170	3990					
51	7.7	1350	2550	3620	4540					
54	8	1540	2890	4080	5080					
57	8.8	1710	3220	4540	5650					
. 60	9.2	1920	3560	5010	6250					

The lumberman wastes timber to save money; the consumer wishes him to waste money to save timber.

CONTENTS OF SCUND TREES IN BOARD FEET MILL FACTOR 7

(Taper above butt log=two inches per log)

SMALL DIAMETER OF	NUM	IBER O	f Four	RTEEN	Foot I	Logs
Butt Log Inside Bark	1	2	3	4	5	6
7	26	39				1.00
8	34	53				
8 9	43	69	83	-		
10	53	88	107		1 20 1	
11	65	108	134	147		
$\overline{12}$	77	130	164	184		
13	90	155	198	224	238	
14	105	182	235	269	288	
15	112	210	275	318	344	2.1
16	137	241	318	372	406	
17	154	275	365	430	473	
18	173	310	415	492	545	
19	193	347	468	558	623	1.70
20	214	- 387	524	629	706	
21	236	428	583	703	794	
22	259	472	645	782	887	
23	283	518	711	866	986	
24	308	566	780	953	1090	-
30.	480	896	1260	1568	1827	
36	686	1309	1855	2338	2758	
42	938	1792	2569	3262	3878	
48	1225	2359	3395	4340	5194	5964
54	1554	3003	4340	5572	6699	7735
60	1918	3717	5397	6951	8400	9737

KEYS FOR MENTAL CALCULATION OF AREA OF CIRCLES

DIAMETER CLASS						I	Base	Key					
6 in	ches						=.2 sq		.1	sq.	ft.	per	in.
12	" "	66	24	66	12	" "	=.78	"				.	
24	66	"	36	66	24	"	= 3.14	66	.3	" "	66	66	" "
36	66	"	$40\frac{1}{2}$	66	36	"	=7	"	.4	"	66	66	66
40 3	" "	"	50^{-}	66	401	"	= 9	"	.5	66	66	66	6
50	"	. .	60	" "	50		= 13.6	"	.6	**	" "	" "	66

The key to Square Feet Per Inch is the tens figure of the upper limit of the diameter class.

How to use the Keys:

Area 27 in.=3.14+ $(\overline{27-24} \times .3)$ =4.0 sq. ft. Area 38 in.=7 + $(\overline{38-36} \times .4)$ =7.8 sq. ft.

ESTIMATING STANDING TIMBER AT SIGHT

After the Keys for Area of Circles are memorized, standing timber may be estimated at sight quickly and accurately by the Sectional Area—Form Height Factor Method af follows:

No. of 14ft Logs (Taperabovebutt log equals 2 in. per log.)		D TREES IN BOARD FFET, FACTOR 7
1	Area of small end of	butt log inside bark x 100
2	Contents of a one lo	g tree x 1 2
3	6.6	x 2 ¹ / ₂
4	6.6	x 3
5	6.6	x $3\frac{1}{2}$

The above method may be applied to any log rule having a constant Mill Factor by simply changing the length of log. For example: M. F. 8, log 12 ft. and M. F. 6, log 16 ft.

FORM HEIGHT FACTORS

Sectional Area Breast High×F. H. F.=Cords of 128 Cubic Feet of Wood

TOTAL HEIGHT IN FEET

s	Solub CU FT. PER CORD		SOLID CU. FT. PER CORD	DIAMET'R	BREAST	4	10	50	60	70	80	90	100	110	120	140	160
	CHESNUT	EXTRACT WOOD	90	1 1 2 2 3 4	69258147065	2 1 1 1	20 18 18 7	23 21 20 19 19 18 18	28 25 23 22 21 21 21 20	30 27 26 25 24 24 24 23 22	31 29 28 27 27 27 26 25 26	34 32 31 30 29 28 28	38 36 34 33 32 31 31 30	34 33 33 32			
SECOND	GROWTH	HARDWOOD	80 down to 1 inch	1111		64 64 64	26 26 27	$31 \\ 31 \\ 32 \\ 33 \\ 35 \\ 37 \\ 39$	$36 \\ 37 \\ 38 \\ 38 \\ 40 \\ 43 \\ 45$								
SPRUCE	(For Fir.	Multiply by .9)	95 down to 4 in.	1] 2 2 2	6 9 2 5 8 1 24 7	12	18 20	22 26 26	28 30 30 30 29	34 35 34 32 32 32	38 36 36 35 34	42 40 38 37					
	WHITE PINE		90	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	692581470665	22	22	28 27 27	33 32 31	37 37 35	43 42 40 38	48 47 45 43 42 42	$53 \\ 52 \\ 50 \\ 48 \\ 47 \\ 46 \\ 46 \\ 45 \\ 45 \\ 100 \\ 1$	$57 \\ 55 \\ 53 \\ 52 \\ 51 \\ 50 \\ 50 $	63 6() 57 56 56 55 54	$ \begin{array}{r} 66 \\ 65 \\ 64 \\ 63 \\ 62 \end{array} $	72 70

SHORT-CUT FORM HEIGHT FACTORS S. A. Breast High × F. H. F.=Cords of 128 cubic feet of wood

S	PECIES	Cords of 128 Contain		TOTAL HEIGHT TREE FEET	OF F. H. F.
Ches	nut	90 solid cub	ic feet	. 75 ft. and unde Over 75 ft.	5 10
				Over 15 1t.	$\frac{\mathrm{H}}{5}$ + 11
		(For Long C 160 cubic fee		75 ft. and unde	6 6
		112 solid cub	ic feet)	Over 75 ft.	$\frac{\mathrm{H}}{\mathrm{6}}$ + 9
	nd growth ardwood	80 solid down	to 1 in.	30 ft. to 60 ft.	$\frac{H}{2} + D$
Spru	ce	95 solid down	to 4 in.	65 ft. and under	$\frac{H}{2}$
				Over 65 ft.	$\frac{3}{10}^{H} + 13$
Fir		95 solid down	to 4 in.	65 ft. and unde	$\frac{H}{2} - 2$
				Over 65 ft.	$\frac{2 H}{5} + 2$
Whit	90 solid cubic feet		ic feet	80 ft. and unde	2 2
				90 ft. to 100 ft.	$\frac{\mathrm{H}}{2}$
				110 ft. to 120 ft	$\frac{\mathrm{H}}{2} - 2$
				130 ft. to 170 ft	$\frac{2 \text{ H}}{5} + 8$
	1	cords	-10	24 16	50
M		unn slaupA	1]	
BAR	SHOTORS	DIAMETER	$\frac{4}{3}$ D	2 D 2 D 2 D	3 D
CORDS OF BARK	нисн - нек	ТЕМАІ ТЕАЯЯЯ	12-20	21-33 15 12 18 18 18 24 18 24 24 24 24 24 24 24 24 24 24 24 24 24	27 30 33 36–48
COI		F. H. F. x.S. J. F. A.	.08	112211	60. 80.
	82	SPECI	As0 Jun	EWFOCK (Hea	н

1		T	ABLE	ES FC	DR U	SE IN	I GI	ERMANY
S. A. I		High >	IGHT <f. h.<br="">f solid</f.>	f.=0		11/100		s per acre per acre t, per acre t, per acre r 1000 \$ per Cord
Ныснт Геет	OAK	BEECH	SPRUCE	FIR	SCOTCH PINE	U. S. WHITE PINE	WORK	rds s are +6=Cord e +9=Cords e +100=Bd, f $e \times 1100=Bd$, f $e \times 14=Cu$, ft . Metre \$ pe
Short-Cut F. H. F. Short-Cut F. H. F. Short-Cut For all Heights 52,00,000 50,0000 50,000 50,0000 50,000000 50,000 50,000 50,000 50,0000	20 25 28 32 35 38 41 44 48 51 54 48 60 63 68 * * H9	10 16 21 25 28 31 35 38 41 44 7 50 53 56 58 * * - H 9	$\begin{array}{ c c c c c c c c c } \hline 18 & 12 & 25 & 83 & 34 & 42 & 53 & 35 & 55 & 55 & 56 & 53 & 45 & 75 & 66 & 32 & 45 & 45 & 45 & 45 & 45 & 45 & 45 & 4$	$\frac{19}{226} \frac{226}{29} \frac{23}{23} \frac{23}{53} \frac{341}{43} \frac{468}{48} \frac{51}{53} \frac{57}{59} \frac{59}{50} \frac{9}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{12} \frac{1}{12$	14 20 24 26 33 35 38 40 42 45 47 55 55 ***************************	$\begin{array}{c} 22\\ 25\\ 27\\ 30\\ 33\\ 35\\ 37\\ 39\\ 42\\ 43\\ 45\\ 47\\ 50\\ 7\\ -\\ H \end{array}$	METRIC CONVERSION TABLE FOR FIELD WORK	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

MAY 29

The German Foresters

Are growing Oak in rotations of 150 years at \$100 to \$200 per thousand board feet, the Corner Stone of Conservative Forestry being High Stumpage Price.

The foundation for Destructive Forestry is laid by low prices and low tariff, high taxes and high freight rates, "hot fires and cold logic," free trade and unlimited competition.

