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ABSTRACT

The Bonding Action of Clays

Part II— Clays in Dry Molding Sands

Part I of this report, "Clays in Green Molding Sands," presents a gen-

eral discussion of the modern concept of the structure of clays, a funda-

mental classification of bonding clays based on their clay mineral

composition, and results of a fundamental study of bonding clays in green

sands, namely a description of the green compression strength and bulk

density properties characteristic of each class of bonding clays, a theory

of the bonding action of clays in green sands, and an explanation of the

variations in bulk density in green sands. Part II presents a continuation

of this fundamental study of bonding clays in dry sands. The objective

of the work was to provide information leading to a better understanding

of the properties of molding sands and bonding clays and hence to the

more economical production of better castings.

Data are presented showing the relation of dry compression strength to

amount of tempering water for varying amounts of each type of clay. The
dry compression strength of a clay can be represented by the formula

DC = (T—M)K where T is the amount of tempering water, M is the

amount of tempering water theoretically required before any dry strength

develops, and K is a coefficient providing a comparative measure of the

bonding value of a clay. K and M values are presented for each class

of clays.

Sands bonded with halloysite or kaolinite clays are unique in that they

develop greatly increased strength without much loss of water when
rammed specimens are allowed to dry slowly. This so-called air-set

strength is different from green strength or dry strength and was not

found in sands bonded with montmorillonite or illite clays.

A theory of dry strength is presented based on the wedge-block con-

cept of holding grains in place. Air-set strength develops because a certain

amount of time (measured in minutes) is required for some of the temper-

ing water to penetrate masses of halloysite or kaolinite clay and to become

fixed so that a strong wedge-block is formed.

Because of air-set strength and other properties of some clays, it is

difficult or for some clays impossible to predict the strength of a partially

dried mold from simple green or dry strength determinations.
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THE BONDING ACTION OF CLAYS

PART II— CLAYS IN DRY MOLDING SANDS

Introduction

The present report gives further results obtained in the cooperative

research project for the study of bonding clays and molding sands con-

ducted by the Illinois State Geological Survey Division of the Department

of Registration and Education and the Engineering Experiment Station of

the University of Illinois under the sponsorship of the Illinois Clay

Products Company, Joliet, Illinois. Part I of this same report, "Clays in

green molding sands/'6* presents a detailed statement of the objectives of

the project, appropriate acknowledgments, and certain results of a funda-

mental study of the bonding action of water and clays in green sands,

namely

:

1. A fundamental classification of bonding clays based on their clay

mineral composition.

2. A description of the green compression strength and bulk density

properties that are characteristic of each class of bonding clays.

3. A theory of the bonding action of clays in green sands.

4. An explanation of the variation of bulk density in green sands.

Part I also contains a discussion of the modern and generally accepted

concept of the structure of clays. As a knowledge of this concept is

desirable for an understanding of the data regarding dry sands, it is

suggested that the reader consult Part I before considering Part II.

The results of the study of dry sands presented herein are briefly as

follows

:

1. A description of the dry compression strength properties that are

characteristic of each class of bonding clay.

2. A theory of the bonding action of clays in dry sands.

3. A description of the compression strength properties that are char-

acteristic of each type of bonding clay during the gradual removal of

tempering water before drying is complete.

4. A description of air-set strength ; the increase in strength developed

in sands bonded with halloysite or kaolinite clay within a short time (one

hour ± ) after ramming without the loss of much tempering water.

5. A theory of air-set strength.

Samples Studied

The fundamental classification of bonding clays based on their clay

mineral composition (presented in Part I of this report) separates them

* For references, see bibliography at end of report.

1



2 CLAYS IN DRY MOLDING SANDS

into groups with distinctive bonding properties. The classification may be

summarized as follows:

Class I—Montmorillonite bonding clays

A. Clays composed of the clay mineral montmorillonite in which the

aluminum is replaced by some magnesium, but not by appreciable iron,

and in which sodium is the chief exchangeable ion. Bentonites from the

Black Hills area belong to this class of clays.

B. Clays composed of montmorillonite in which the aluminum is re-

placed to a considerable extent by iron, and in which calcium and some-

times hydrogen are the chief exchangeable ions. Bentonites from northern

Mississippi 4 belong to this class of clays. Many of the German bentonites 5

used in bonding molding sands also belong to this class. Some of the bond-

ing clay used in Europe (for example, Geko) is natural calcium mont-

morillonite clay treated with a sodium salt to prepare a synthetic material

approaching class IA.

Class II—Halloysite bonding clays

"White Clay" from the Eureka district in Utah, recently placed on the

market as a bonding clay as a result of this investigation, is composed

of the clay mineral halloysite and therefore belongs to this class of

bonding clays.

Class III—Illite bonding clays

"Grundite" produced in Grundy County is a trade example of a bond-

ing clay composed chiefly of the clay mineral illite.

Class IV—Kaolinite bonding clay

Fireclays produced extensively in Illinois and Ohio for the bonding

trade are composed primarily of the clay mineral kaolinite.

Only some clays composed of halloysite, illite, or kaolinite have bond-

ing properties adequate for commercial use. 8 Only certain of such clays,

probably because of structural variations of the clay minerals, have rela-

tively high bonding strength.

Five clays were selected especially so that each would illustrate the

distinctive and characteristic properties of one of the foregoing classes or

subclasses. With the exception of the halloysite clay, the samples are the

same as those used in the study of green sands. 6 The samples studied were

as follows:

1. Montmorillonite clay, Belle Fourche, South Dakota, class IA.

2. Montmorillonite clay, northern Mississippi, class IB.

3. Halloysite clay, near Eureka, Utah, class II.

4. Illite clay, Grundy County, Illinois, especially selected from under-

clay of Pennsylvanian age, class III.

5. Kaolinite clay, Grundy County, Illinois, especially prepared from

an underclay of Pennsylvanian age different from that above, class IV.
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Experimental Procedure

Dry compression strengths were determined, according to the standard

procedure of the American Foundrymens Association 1 (A.F.A.) for mix-

tures of all samples using various amounts of clay up to 15 percent

prepared with varying amounts of tempering water. All moisture values

are expressed in percentage of moist sample in accordance with A.F.A.

standards. Strength values are based on determinations on three speci-

mens which showed less than 10 percent variation in compression strength,

according to A.F.A. standard procedure.

For the study of strength developed during gradual loss of tempering

water, rammed specimens were prepared from a moldable mixture of each

clay tempered with two different amounts of water. The compression

strength of such rammed specimens was determined after they were al-

lowed to stand in the air for varying periods of time. The moisture con-

tent was determined at the time of measuring the compression strength.

A similar series of tests was conducted on rammed specimens allowed to

remain varying lengths of time in a 100° F. oven.

Some specimens were rammed six times instead of three in order to

study the effect of the amount of ramming on the strength developed

during the gradual loss of moisture on drying slowly in the air and in a

100° F. oven.

Standard A.F.A. sand was used in all the experiments.

Dry Compression Strength in Relation to Tempering Water
montmorillonite clay ia

The relation between dry compression strength and amount of temper-

ing water for mixtures with various quantities of this clay is shown in

figure 1. The curves show the very high dry compression strength de-

veloped in sands bonded with this class of clay, and the very great varia-

tion in dry strength with extremely small variations in amount of temper-

ing water. A variation of less than 0.1 percent in the tempering water may
cause a change of more than 10 lb. per sq. in. in the strength. Apparatus

was not readily available for determining accurately very high strength

so that the maximum dry compression strength was not measured for any

of the mixtures.

Dry compression strength for any given amount of tempering water in

a workable range can be represented by the formula DC = (T—M)K when
T is the amount of tempering water, M is the tempering water in percent

theoretically required before any dry compression strength is developed,

and K is an empirical coefficient. The value for M is indicated by the



4 CLAYS IN DRY MOLDING SANDS

intersection of the curves with the base line. K is the same for all amounts

of clay and increases from 50 to 200 as T increases. K is essentially the

dry compression strength developed per unit of tempering water in excess

of that required for the start of dry strength.
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Fig. 1. Dry Compression Strength versus Amount of Tempering
Water in Sands Bonded with Varying Amounts of

montmorillonite clay ia

The curves and formula indicate that dry compression strengths in

excess of 100 lb. per sq. in. are developed in any mixture with as much as

4 percent of this type of clay by adjusting the amount of the tempering

water. On the basis of data from other types of clay, it is probable that the

maximum dry strength would increase with the amount of clay. 3
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From table 1 it can be seen that the theoretical amount of water re-

quired to start the development of dry compression strength (M) increases

as the amount of clay increases. Computations indicate that the M value

is equal to an amount of water slightly in excess of that necessary to

develop a sheet of water two molecular layers thick on each unit of mont-

morillonite. Actually dry strengths below about 10 lb. per sq. in. cannot

be measured so that somewhat more tempering water than the M value is

required for appreciable dry strength. Since a water layer three molecules

thick is rigid6 and that in excess of this amount loses some rigidity, it can

be concluded that water about equal to that which can be held rigidly is

necessary for any dry strength, and that water in excess of this amount

causes very rapid increase in strength. In other words a quantity of water

adequate to develop incompletely rigid water on the surface of the mont-

morillonite units is necessary to get high dry strength values in this type

of clay.

Table 1.

—

Water Required to Start Development of Dry
Strength in Sands Bonded with Montmorillonite Clay IA

Percent clay M
Molecular layers

of water
per unit cell at M

4 1.25 3 +
6 1.4 2+
8 1.8 2 +
10 2.5 2 +
12 3.1 2 +
15 3.75 2 +

Briggs and Morey 3 have published dry strength data for a clay that

probably belongs to this class. Their findings are in general agreement with

those presented herein except the conclusion that high clay (8 to 10 per-

cent) content sands developed less dry strength with small amounts of

tempering water than low clay content sands with the same amount
of tempering water. The failure to check this point may have been the

result of a slight difference in the clay or testing sand.

MONTMORILLONITE CLAY IB

As shown in figure 2, sands bonded with this class of clay require a

certain minimum amount of tempering water to develop any dry strength.

Above the minimum amount, dry strength increases with amount of

tempering water up to a maximum value which is reached abruptly.
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The maximum dry compression strength of this class of montmorillonite

clays is much less than that of class IA, and considerably more water is

required to develop moderate strengths, particularly in mixtures with high

clay content.
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Fig. 2. Dry Compression Strength versus Amount of Tempering Water in Sands

Bonded with Varying Amounts of Montmorillonite Clay IB

A striking feature of this clay is that maximum dry compression

strength is about the same for mixtures containing 6, 10, 12, and 15 per-

cent clay. The maximum values for 8 percent mixtures are slightly higher,

but the difference is probably within experimental error. This means that

it is impossible to get more than a certain dry strength with this class of
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montmorillonite clay regardless of the amount used. The use of more clay

merely makes it necessary to use more tempering water to develop the

same maximum dry strength.

Table 2.

—

Water Required to Start Development of Dry
Strength and at Maximum Dry Strength in Sands

Bonded with Montmorillonite Clay IB

Percent clay M
Molecular layers of water

per unit cell

At M At maximum D.C.

4

6

8

10

12

15

1

1

1.5

2

2.7

4.2

2 +
2-

2-

2 +
2 +
3

8 +

6 +

5 +
5 +

5 +

5 +

Using the formula DC = (T—M)K, K is about the same for all con-

tents of clay and, unlike class IA montmorillonite clay, does not vary with

the amount of tempering water. K is equal to about 22 which is an inter-

mediate value, that is, the rate of increase of dry strength with tempering

water is less than that for illite, kaolinite, or montmorillonite IA clays,

but greater than that for halloysite clays.

This type of clay requires somewhat more water than M amount

before a mixture is obtained from which a specimen can be made for

testing. Actually about 1 percent additional tempering water is required,

and with this amount, water slightly in excess of that required to develop

3 molecular water layers per unit cell of montmorillonite is present. It has

been suggested6 that this type of montmorillonite holds water layers 4

molecules thick with complete rigidity, and it seems, therefore, that some

dry strength develops before there is enough water to provide incom-

pletely rigid water. However, this is not a certain conclusion for this class

of clays because not all of the unit cell surfaces of montmorillonite may
be available to water so that the amount actually present on available

surfaces may be greater than computed values.

Maximum dry compression strength is developed when there is water

equivalent to more than 5 molecular layers per unit cell of montmoril-

lonite. This is more water than can be held in a completely rigid condi-
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tion. In general it would seem that the development of relatively high dry

strength of any class of clay requires incompletely rigid water between the

clay units, probably so that adjustment of clay units can take place

easily. It would seem further that a certain amount of water would pro-

vide all possible adjustment of flakes so that water in excess of the given

amount would not cause greater strength.
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Fig. 3. Dry Compression Strength versus Amount of Tempering Water in

Sands Bonded with Varying Amounts of Halloysite Clay

HALLOYSITE CLAY

The curves in figure 3, showing the relation of dry compression strength

to tempering water for various amounts of halloysite clay, indicate that

this class of clay develops low dry strength. However, as will be shown

presently (page 27) halloysite clay has high air-set properties, so that

strengths greater than dry strength are developed without much loss of
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tempering water when a rammed specimen stands for some minutes in the

air. Also, this class of clays is unique in that complete removal of water

on drying does not increase the strength above that which will develop

with considerable retained water (page 28)

.

The maximum dry compression strength increases as the amount of

clay increases and is about directly proportional to the amount of clay.

Unlike other classes of clay the maximum strength is attained gradually

rather than abruptly.

Applying the formula DC = (T—M)K, K varies from 8 in 4 percent

mixtures to 16.5 in 15 percent mixtures. The value for K is lower than

that of any other class of clay, which means that the strength changes

only slightly with variations in the amount of tempering water. This may
be a valuable property because it means that the amount of tempering

water in plant practice does not require very critical control.

Table 3.

—

Water Required to Start Development of Dry Strength and at Maximum
Dry Strength in Sands Bonded with Halloysite Clay

Molecular layers of water per unit cell

Percent clay M K
At M At maximum D.C.

4 1.8 8 2 + 5

6 2.2 9.5 2 + 4 +
8 2.4 13.5 2- 4

10 2.6 13.5 2- 3 +
12 2.9 16.5 1 + 3 +
15 2.9 16.5 1 + 3 +

A striking feature of this class of clays is the low M value, that is the

small amount of tempering water necessary to start dry strength. Not all

the surfaces of halloysite are readily available to water, and, as shown by

the air-set property, some time is required for water to penetrate to such

surfaces as are available. Therefore the water layer to be found on each

available surface is undoubtedly considerably greater than that given in

table 3.

By the same reasoning the water layer per available halloysite cell

surface is probably greater at maximum strength than the values given in

table 3. In any case the amount of water is probably considerably larger

than that which is held rigidly.
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ILLITE CLAY

As shown in figure 4 illite clays develop high dry compression strength

—higher generally than any other class of clays except montmorillonite

clay IA. The maximum dry strength increases with the amount of clay
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Fig. 4. Dry Compression Strength versus Amount of Tempering
Water in Sands Bonded with Varying Amounts of Illite Clay

and develops abruptly. A distinctive character of this class of clays is

that maximum strength is developed with relatively small amounts of

tempering water.

In the formula DC = (T—M)K, K is constant at about 30 for all

amounts of clay, and likewise M is about the same (1.6) regardless of the
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amount of clay. That is, the amount of water necessary to begin the forma-

tion of dry strength does not increase as the amount of clay increases,

and the rate of increase of strength with increasing tempering water is

the same for all amounts of clay.

The fact that M and K are always the same means that in this class

of clays a certain dry strength develops at a given moisture content re-

gardless of the amount of clay, provided it is in excess of a minimum
value. Thus, at 3.5 percent tempering water, sands with 6, 8, 10, 12, or 15

percent clay all develop about the same dry strength, 56 to 62 lb. per sq. in.

Stated another way, if a sand with 70 lb. per sq. in. dry strength is wanted,

it can be obtained in any mixture with from 6 to at least 15 percent clay

when 4 percent tempering water is used. An explanation for this char-

acteristic is given later in this report.

There is very little penetration of water between the illite units so that

no computations of thickness of water layer per unit cell are justified.

KAOLINITE CLAY

As shown in figure 5 the maximum dry compression strength obtain-

able with kaolinite clay is reached abruptly and increases with the amount

of clay in the mixture. In general this class of clay yields slightly less dry

strength than illite clays, and slightly more water is required to develop

equivalent strength in a given mixture. The dry strength is less than that

of montmorillonite clay IA, but is greater than that of montmorillonite

clay IB in mixtures with more than 10 percent clay, because the maxi-

mum attainable dry strength of montmorillonite clay IB remains constant

in mixtures with large amounts of clay. Clays of the illite and kaolinite

classes, in which the strength continues to increase with the clay content,

develop higher dry strength than montmorillonite clay IB in high clay

content sands.

In the formula DC — (T—M)K, M is equal to about 1.6 for all amounts

of clay at least to 15 percent, which is the same as the M value for illite

clays. K is the same for all amounts of clay and is equal to 23. This is less

than the K value for illite clays, which means that the variation of dry

strength with tempering water is more gradual in kaolinite clays.

As in the case of illite clays, since M and K are essentially the same

for all amounts of clays up to 15 percent, the dry compression strength

will be the same in all mixtures tempered with the equal amounts of water

regardless of the amount of clay, provided the clay is more abundant

than a certain minimum amount. This property of illite and kaolinite

clays is valuable in foundry practice.
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Computations of the thickness of water layers per unit cell cannot be

justified because there is little immediate penetration of water between

the unit cells of kaolinite.
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Dry Compression Strength in Relation to Amount
and Type of Clay

The maximum dry compression strength attainable in mixtures bonded

with halloysite, illite, kaolinite, and probably also montmorillonite IA

clays increases with the amount of clay in the mixture. An inspection of
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the data in table 4 shows that the maximum possible dry compression

strength for mixtures with a given clay content varies with the kind of

bond as follows: Montmorillonite IA > illite > kaolinite > halloysite.

Montmorillonite clay IB is unique in that maximum attainable dry

strength increases as the amount of clay increases up to about 8 percent,

but with larger amounts of clay there is no further improvement in

strength. The maximum dry strength of sands bonded with up to 8 per-

cent montmorillonite clay IB is about equal to that of sands bonded with

equal amounts of illite. With more than 8 percent clay, illite bonded sands

have a higher maximum strength.

The K value is much higher for montmorillonite clay IA than for any

other class of clay—that is, the dry compression strength shows the largest

change with variations in amount of tempering water. In this clay, varia-

tions of 0.1 percent water cause changes of 5 to 20 lb. per sq. in. in dry

strength. Halloysite clay has the lowest K value—variations of 0.1 percent

water cause changes of only 0.8 to 1.6 lb. per sq. in. in dry strength. The

K values for montmorillonite IB, illite, and kaolinite clays are intermedi-

ate but are much closer to halloysite clay than to montmorillonite clay IA.

The M value, the theoretical amount of water required to begin the

development of dry strength, increases with increasing amounts of clay in

the montmorillonite and halloysite clays. Since montmorillonite clay IB

and halloysite clay also have low K values, rather large amounts of water

are required to develop much dry strength in mixtures bonded with these

clays. A condition is rapidly approached wherein the sands are so wet that

no more adjustment of clay mineral flakes is possible with additional

water, and as a consequence the maximum dry strength is relatively low

(pp. 5, 8) . In the case of sands bonded with montmorillonite clay IA, the

K value is so high that extremely high strength is developed in sands with

relatively low moisture contents.

In sands bonded with illite or kaolinite clay, the M value is low and

constant so that, even though the K value is moderate, high maximum dry

strength is attained in mixtures with relatively large clay contents con-

taining moderate amounts of tempering water.

Illite and kaolinite clays are unique in that both the M and K values

are constant for all amounts of clay studied. As indicated previously this

means that a certain dry strength develops at a given moisture content

regardless of the amount of clay, provided it is in excess of the amount

that develops a maximum strength at the moisture content used.
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Theory of Dry Compression Strength

The theory of dry compression strength that seems to fit best with the

experimental dry strength data for the different classes of clay and that

agrees with the facts and theories of green strength and air-set strength

is as follows:

Wedge-block-shaped masses at the junctions of the sand grains hold

the grains in place and give rise to dry compression strength. The strength

of the wedge-block and, therefore, the amount of dry compression strength

is determined by the homogeneity and uniformity of the wedge-block.

A relatively small completely homogeneous wedge-block composed of uni-

formly sized and arranged flakes will provide greater dry compression

strength than a larger one composed of a mixture of large and small par-

ticles with a random arrangement because in the latter case planes of

weakness must be present because of the nonuniform character.

The function of the tempering water is to separate the clay mineral

particles and to act as a lubricant so that, on ramming, movement can take

place between them. As a result a homogeneous structure can be formed

which on drying will provide a dense and therefore strong wedge-block.

Dry compression strength in general increases with the amount of temper-

ing water because more water gives more separation and lubrication of the

clay particles and consequently results in a more homogeneous wedge-

block. The K value is a measure of the speed of the separating and lubri-

cating effect of the water.

There is, of course, a limit to the perfection of the wedge-block that

can develop with increased amounts of tempering water. As the amount

of water is increased, a point is reached where all possible separation of

clay mineral particles is attained and they are completely lubricated. Ob-

viously more water cannot lead to the formation of a stronger wedge-

block. There is, therefore, a maximum dry strength for a given amount of

clay, i.e., a strength which is not increased by the further addition of

tempering water.

MONTMORILLONITE CLAY IA

In the presence of water this type of clay breaks down easily and

completely into clay mineral flakes approaching unit cell dimensions and

therefore of about equal size. A wedge develops with this class of clay

that is composed entirely of flakes of approximately the same size and

shape. The tempering water penetrates easily between flakes and separates

each from its neighbor. The first tempering water entering between the

flakes tends to develop a definite structure, and as a consequence the

water is rigid. As the water layers between the montmorillonite flakes

increase in thickness, the rigidity of the central part of the water layer
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decreases. An important effect of this water relationship is that the indi-

vidual flakes tend to become arranged in the wedge with their flat surfaces

parallel and separated by about equal thicknesses of water. On drying, a

wedge develops that is composed of flakes of about equal size and shape

lying parallel one on top of the other. The character of the clay leads to

the formation of a practically homogeneous wedge with a minimum num-
ber of planes of weakness. The wedge is therefore very strong, and very

high dry compression strength is characteristic of this clay.

Because water penetrates between all the individual units that make
up this clay, it follows that the amount of water necessary to start the

development of dry strength (M value) should increase with the amount

of clay. The M value means that a minimum amount of water is required

to get sufficient separation and lubrication of flakes so that adjustments

can take place between them leading to homogeneity in the wedge and

thereby strength. It is shown in table 1 that the M value increases in such

a way that the water per unit of clay is about the same for all amounts

of clay. It is shown further that this minimum thickness is about equal

to the thickness at which the rigidity of the water begins to decrease. This

is in accord with expected conditions since more water would be required

than that held with complete rigidity before there could be any lubri-

cating action and adjustment of the individual flakes.

The high K value of this class of clays indicates that once there is

enough water separating each flake so that there is the possibility of

adjustment of the flakes, small increments of water cause great increases

in strength. This would be expected since slight increases in the amount

of water and the degree of its nonrigidity would cause a great increase

in the lubrication between flakes.

MONTMORILLONITE CLAY IB

This type of montmorillonite clay also breaks down in water into

flake-shaped units approaching unit cell dimensions, and as a consequence,

the observed increase in M value with the increase in amount of clay

would be expected. As in the case of montmorillonite clay IA, the amount

of water necessary to begin the development of dry strength is probably

about equal to that required for the presence of some incompletely

rigid water.

Since both types of montmorillonite clay seem to break down to indi-

vidual clay mineral flakes in the presence of water, it would seem that

they should both provide wedge-blocks of about equal homogeneity with

the consequence that maximum dry compression strength would be about

the same. Yet this is not the case—montmorillonite clay IA has much
higher dry compression strength and also a much higher K value.
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The explanation for these differences probably rests in the difference

in the exchangeable base composition of the two montmorillonite clays

and the resulting difference in the attractive force between the flakes

and the character of the water adsorbed on the clay mineral flake surfaces.

In montmorillonite clay IA, sodium is the principal exchangeable base and

it is found mainly between the individual flakes of the mineral. Because

sodium is monovalent, it affords little bond to hold the montmorillonite

flakes together. Increasing amounts of water easily and rapidly separate

the flakes because no strong force is encountered tending to hold them

together. On the other hand, in montmorillonite clay IB, calcium is the

principal exchangeable ion and it is also found between the unit layers.

Calcium is divalent so that one valence bond is available to tie to the

underlying montmorillonite layer and another valence bond to the over-

lying layer. As a consequence, the unit layers are held together more

securely than in the sodium montmorillonite, and more water is required

to develop the same amount of lubricating action so long as the amount

of water is less than the amount that provides much nonrigid water and

complete lubrication. There is then a possible reason for the difference in

K value for the montmorillonite clays.

A further factor rests in the character of the water adsorbed on the

surface of the clay mineral surfaces. In the case of calcium-montmoril-

lonite clays (IB), water probably extends to a fairly definite and limited

distance from the flake surface beyond which it abruptly becomes non-

rigid. In the case of sodium-montmorillonite clays, the change from rigid

to nonrigid water is very gradual so that water with some degree of

rigidity extends a great distance from the surfaces of the individual clay

mineral flakes. The probable resulting situation is that in montmorillonite

IB clay-bonded sands, a point is reached quickly on the addition of water

where some nonrigid, that is, fluid, water is present, whereas in sands

bonded with montmorillonite clay IA the water always (except at very

high moisture contents) has some orientation. In the presence of liquid

water the possible perfection of the orientation of the clay mineral flake

is reduced, thereby reducing the homogeneity of the wedge and the

strength that develops.

A striking character of montmorillonite clay IB is that clay contents

above about 8 percent cause no further increase in strength. This means

that wedge-blocks larger than a certain size cause no increase in strength.

It might be expected that wedge-blocks composed of montmorillonite

clays that are made up of relatively uniformly oriented individual flakes

would have maximum strength at a given size of wedge-block whereas

wedge-blocks of the other clay minerals would continue to increase in
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strength as they increased in size because they are composed of larger

units less perfectly oriented. In the latter type of wedge-block there would

be planes of weakness between the clay mineral particles that would

have less chance of passing all the way through a layer unit. Contrary

to this line of reasoning is the probability 3 that the maximum attainable

strength of montmorillonite clay IA increases with the amount of clay.

It must be concluded, therefore, that a satisfactory explanation for this

character is not at hand.
HALLOYSITE CLAY

In halloysite clays there seems to be some penetration of water between

the individual unit laths of the mineral, and therefore the increase in M
value with increasing amounts of clay would be expected. Not all the

surfaces of the halloysite are available to the water, at least not imme-

diately after mixing (see air-set strength), and therefore the variation in

M value is less than for the montmorillonite clays.

A possible explanation for the very small K factor for halloysite clays

is afforded by the lath-shaped units9 that make up this type of clay, as

compared to flake-shaped units in other classes of clay. Units of this shape

might be expected to require a larger amount of water for a given amount

of adjustment of the laths to each other than units composed of about

equidimensional flakes.

Halloysite clays do not break down to individual units like montmoril-

lonite clays, and the wedge-blocks that develop, even with maximum
lubrication, are composed of larger units that are less regularly arranged.

As a result, sands bonded with halloysite clay have lower maximum
strength than those bonded with the montmorillonite clays.

Halloysite clays are unique in that maximum dry compression strength

is not attained abruptly, but gradually with increasing amounts of temper-

ing water. Halloysite also develops outstanding air-set strength, and the

two characteristics go together. Because the reaction between water and

halloysite is relatively slow, a sharp point would not be expected at which

there is no further increase in strength because all possible adjustment of

laths was attained. By the same line of reasoning, the slow reaction be-

tween the halloysite and water may be, at least partially, responsible for

the low K value.

ILLITE AND KAOLINITE CLAYS

These clays can be considered together because they have the same

general dry strength characteristics.

The M value of illite and kaolinite clay is the same and it does not vary

with the amount of clay. In the illite clay, water does not seem to pene-

trate between the individual units of the illite. All of the tempering water
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is around and on the outside of aggregate masses of the clay, and some of

it, not on basal surfaces, is probably not completely rigid, perhaps even

when the water content is very small. The situation is unlike that in

montmorillonite clays where the initial water is taken up between the clay

mineral units and fixed rigidly. Therefore, from the start of the addition

of tempering water, there is probably some liquid water, and this situation

prevails regardless of the amount of clay. It would be expected, as a conse-

quence, that the M value would be the same for about all amounts of

illite clay. The same situations prevail in kaolinite clays except that some

slight penetration of water into the kaolinite aggregates is indicated by the

air-set strength.

The K factor is small for illite and kaolinite clays, because the clay

aggregates are large and irregular so that a large amount of water is re-

quired for a small amount of adjustment. The kaolinite aggregates are

perhaps larger and more irregular in shape than the illite aggregates, with

the consequence that less water for a given amount of lubrication would

be required by the illite clay. As a consequence illite clays have a slightly

higher K factor.

Because illite and kaolinite clays do not break down to individual

units, resulting wedge-blocks would be composed of sizable units with less

homogeneity and less strength. Maximum attainable dry compression

strength should, therefore, be lower than that developed in clays that

break down to individual units, namely montmorillonite clay IA, and this

is the case. It follows further that such relatively imperfect wedge-blocks

should increase in strength as they increase in size, and as a consequence

the increase in maximum attainable strength with increasing clay contents

is to be expected.

Compression Strength Developed During Gradual

Loss of Tempering Water

In the course of the present researches it was discovered that sands

bonded with halloysite or kaolinite clays developed greatly increased

strength when rammed specimens were allowed to stand in the air for

short periods of time immediately after ramming. This increased strength

is developed without the loss of much moisture. Such increases in strength

without accompanying water losses were not found in sands bonded with

the other classes of clay. Halloysite and kaolinite clays have, therefore,

another type of strength in addition to green strength and dry strength

which is called here air-set strength.

Unless metal is poured into a mold almost immediately after ramming

or unless the mold has been dried rapidly to develop true dry strength,
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the mold characteristics are frequently very unlike those that would be

suggested by either green or dry strength tests. The degree that mold

characteristics, which develop during an interval of slow drying, vary from

those that might be predicted from green and dry compression tests is a

function of the type of clay. The variation is probably greatest for those

types of clay that have air-set properties. Many casting problems no doubt

are the result of the fact that metal is frequently poured into a mold

which has far different properties from the ones it is thought to have on

the basis of green and dry strength tests.

It is therefore necessary in a fundamental study of the bonding action

of clays in molding sands, to determine the strength that develops in

rammed specimens when they are allowed to lose their moisture slowly.

In the following pages results are presented of tests planned to investigate

this point. Moldable mixtures of each type of clay were prepared at two

moisture contents; one at about temper and another on the wet side of

temper. Compression strength and moisture were determined on rammed

specimens after they were allowed to stand in the air or in a 100° F.

oven for varying periods of time up to 10 hours. By the use of air drying

and oven drying at 100° F., loss of moisture at two different rates was

attained, and 10 hours proved adequate for the removal of essentially all

the tempering water.

All of the experiments were repeated several times in order to get trust-

worthy data. Even with the utmost precautions it was not possible to

check results closely because of inherent difficulties in the experimental

procedure, chiefly resulting from small variables that could not be con-

trolled, such as variations in room temperature and relative humidity. It

should be emphasized, therefore, that the results show only trends, but

that the trends have been substantiated by repeated experiments.

The results of the experiments are presented in a series of curves show-

ing the relation of moisture retained to compression strength and time of

drying to compression strength. The moisture values given are those re-

tained by the mixture after drying and at the time the compression

strength was determined. The curves showing time versus compression

strength, of course, show no absolute relationship since the position of the

curve would shift with rate of drying. The shape of the curve, however,

is significant for the various classes of clay. Such curves are also of con-

siderable practical importance because a foundryman, by noting the time

a mold has dried, can estimate from the curves something of the strength

of the mold if he knows the kind of clay in the bond.
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MONTMORILLONITE CLAY IA

As shown in figure 6, there is only a slight increase in strength accom-

panying the first loss of water, but following this the strength increases in

direct relation to the loss of water. There is no suggestion of air-set

strength, that is, development of strength without an accompanying-

water loss.
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The curves in figure 6 show that the strength developed during gradual

drying is dependent on the initial moisture content as well as the moisture

remaining at any given time. The strength is higher, the greater the initial

moisture content. Thus the data show that when sands with 6 percent clay

and with initial water contents of about 5.0 percent and 3.5 percent are

dried slowly until they both have 2 percent water, the strength of the

former is about twice that of the latter. The explanation probably does not

reside in the greater amount of time required by the wetter sand to reach

2 percent water, but in the more perfect clay wedge-block (see page 15)

developed in the initially wetter sand.

Standard A.F.A. dry compression tests of montmorillonite IA clay

in mixtures with 6 percent clay tempered with either 5.0 or 3.5 percent

water yield values in excess of 270 lb. per sq. in., whereas similar batches

with the same initial moisture content dried slowly to a very low moisture

content (0.5 percent) develop only about 90 lb. per sq. in. compression



22 CLAYS IN DRY MOLDING SANDS

strength. This suggests that the very high A.F.A. dry strength of this class

of clay is due either to an effect of the 220° F. temperature or that the

rate of drying is a factor in the strength developed. It is clear that a

regular A.F.A. dry compression test gives no indication of the strength

in a dry sand mold unless the mold has been dried very rapidly and

completely.

The curves in figure 7 show a gradual increase in strength with time

of drying because of the gradual water loss with time. Increased rate of

drying causes a more rapid loss of water and a more rapid increase in

strength, so that after any given intermediate time the samples dried at

100° F. are stronger than those dried in the air. The samples with 5 per-

cent tempering water show about a straight-line relationship between time

and developed strength except that there appears to be an increased rate

of strength development after about 8 hours when the drying is at 100° F.
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Oven for Varying Periods of Time

The samples with 3.5 percent tempering water show approximately a

straight-line relationship after drying about two hours. For shorter drying

periods a slightly more rapid rate seems to prevail.

In sands bonded with this type of clay the strength developed on dry-

ing for any period of time up to about 10 hours for rapid drying and more

than 10 hours for slow drying is greater in sands with initially lower

moisture content. Thus after 6 hours drying, the batch with 3.5 percent

initial water is stronger than that with 5 percent initial water. The reason
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is that the drier initial sand loses water faster, so that at any given time

its retained moisture, is less than the initially wetter sand with a conse-

quent higher strength. As noted above, sands starting wetter will be

stronger when they arrive at the same moisture content as the initially

drier sand, but it takes much longer for the wetter sand to reach a given

moisture content so that for a considerable period of time the drier sand

is the stronger. If sands bonded with this type of clay are not dried in the

foundry very rapidly, it is usually better to work them dry as otherwise

the inherent strength of the wetter sand will not be utilized.

In sands bonded with montmorillonite clay IA the strength of molds

depends not only on the amount of clay and amount of tempering water,

but on the amount of water retained on drying and on the rate of drying.

Molds allowed to stand only slightly different lengths of time may have

strengths that vary from one another as much as 100 percent. .
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MONTMORILLONITE CLAY IB

The curves in figure 8 indicate that sands bonded with montmorillonite

clay IB, like those bonded with montmorillonite clay IA, show a direct

gain in strength with loss of water on gradual drying. There is no air-set

strength. Such clay-bonded sands show a sharp increase in strength with

the loss of the first water, even from very wet sands.
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The strength developed on drying to a given moisture content varies

with the initial amount of tempering water—the strength is higher in sands

which have the greater initial water content.

The curves in figure 8 for air drying and drying at 100° F. show con-

siderable variation but no constant relationship, suggesting that rate of

drying is unimportant. The maximum attainable dry compression strength

for a sand bonded with 6 percent of montmorillonite clay IB is about

77 lb. per sq. in. as shown in figure 2. This value is closely approached

by gradual drying. Unlike montmorillonite clay IA, montmorillonite clay

IB develops a strength on slow drying about equal to that of standard

A.F.A. dry strength, if there is enough time for almost complete moisture

loss. This further suggests that rate of drying is not a significant factor in

determining the strength that develops on loss of tempering water. In

this type of clay, regular A.F.A. dry compression tests are therefore fairly

indicative of the strength of a mold if it is dried to a low moisture content.
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The curves in figure 9 illustrating the relation of time to strength show

a rapid increase of strength in the first few hours and then a slower

gradual increase in strength with further loss of water. The initial rapid

development of strength is due to the more rapid loss of water when the

sands are very wet. This type of clay characteristically gains strength with

the very first water loss.
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The rapid (100° F.) drying curves flatten out gradually and approach,

when low moisture contents are attained, the regular A.F.A. dry strength.

The slow (air) drying curves show a regular and constant approach to

the A.F.A. dry strength. As a consequence, after short drying periods, the

more rapidly dried sands are stronger because they have a lower moisture

content, whereas after long drying periods the sands have about the same

strength because they have both attained about the same low moisture

content.

The crossing of the curves in figure 9 means that for this type of clay,

the initially wetter samples develop the higher strength after about eight

hours if the drying is slow and after about five hours if the drying is

rapid. Like montmorillonite clay IA, therefore, unless the mold is dried

rapidly or for a long time, the greater strength will be developed if the

sand is worked on the dry side of temper.

The strength of a sand-mold prepared with montmorillonite clay IB

depends on the amount of clay, the amount of initial tempering water, and

the moisture retained after drying. Rate of drying is not significant, and

unlike montmorillonite clay IA the usual green and dry compression tests

may give a fairly accurate appraisal of the strength of the sand mold.

ILLITE CLAY

The curves in figure 10 show that the strength of sands bonded with

illite clay gradually increases as the tempering water is lost during slow

drying without any suggestion of air-set strength. The increase in strength

begins immediately with the loss of the first water. Samples with the same

initial moisture content dried at 100° F. develop slightly greater strength

than those dried in the air to the same moisture content. Samples with

different initial moisture contents develop very different strengths when
dried to the same moisture content, the initially wetter samples developing

the greater strength within these limits of water content.

After 10 hours' drying in either the air or a 100° F. oven, and reducing

the moisture content to about 0.5 percent, the strength is increased to about

80 lb. per sq. in. This strength is, however, still considerably less than

standard A.F.A. dry strength (270 lb. per sq. in.) developed on rapid

drying of similar sands at 230° F. In sands bonded with this type of clay,

therefore, molds dried at a relatively slow rate do not develop the strength

that would be anticipated on the basis of standard A.F.A. dry compres-

sion tests.

The curves in figure 11 show that the strength of sands bonded with

illite clay increases relatively rapidly during about the first hour of dry-

ing and then more gradually. On drying only about Y2 hour at 100° F. and
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2i/2 hours in the air the batches with the initially higher moisture content

develop the greatest strength. This indicates that in foundry practice

when molds are allowed to dry a few hours before pouring, stronger molds

will develop from rather wet sands.

In molds prepared with sands bonded with illite clays, the strength

depends on the amount of clay, the amount of initial tempering water,

and the moisture content to which the mold is dried. The rate of drying

is of slight importance when the drying is relatively slow. However, with

slow drying, strengths equal to those obtained by standard A.F.A. dry

compression tests are not obtained even after drying 10 hours in a 100° F.

oven. Therefore A.F.A. dry strength tests cannot be used to determine the

strength of molds that are dried slowly.

HALLOYSITE CLAY

The curves in figure 12 show that drying of halloysite clay-bonded

sands causes little increase in strength until a certain definite moisture

content is reached (about 5 percent for 12 percent clay mixtures) and

that with further loss of water there is an abrupt increase in strength until

with about 2.5 to 3.5 per cent retained water a strength about 15 times

greater than green strength is developed. On drying to less than 2.5 per-

cent water content there is a slight decrease in strength. On further slow

drying to low moisture contents (0.5 percent), strengths about equal to

standard A.F.A. dry strengths are obtained. The striking feature of sands

bonded with halloysite clay is that they develop a higher strength when
they still retain a considerable amount of tempering water (2.5 to 3.5

percent for 12 percent clay mixtures) than they do when essentially all

the water is removed. This is air-set strength, and for halloysite clay-

bonded sands it is higher than dry strength. Air-set strength is much
greater than the maximum green strength, since the maximum attainable

green compression strength at optimum moisture content in a 12 percent

clay mixture using the same silica sand is about 25 lb. per sq. in.
6

The curves in figure 12 suggest that slightly higher air-set strength

develops as the rate of drying is decreased. This effect of rate of drying

seems to be more pronounced in sands with higher initial water contents.

The sands with higher initial amounts of tempering water develop

higher air-set strength just as they develop higher dry strength. However,

the moisture content at which maximum air-set strength develops varies

only slightly with the amount of initial tempering water.

Computations show that maximum air-set strength is reached when

there is enough water to coat the basal surface of each unit cell of halloy-

site with a film of water 4 to 5 A thick. Since not all of the basal surfaces
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of the halloysite cells are available to water, the actual thickness of water

on the available surface is in excess of this value, perhaps about 6 A or the

thickness of a water layer 2 molecules thick.

It is interesting that maximum green strength is attained when the com-

puted water per unit basal surface is 7 A thick whereas for maximum air-

set strength the computed thickness is 4 to 5 A. The difference is about 3 A
or the thickness of a single molecular layer. This may well be a fortuitous

situation because the most probable theory of air-set strength suggests that

many more basal surfaces are coated with water at air-set strength than

at green strength.
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The curves for the sands bonded with halloysite clay illustrating the

relation of drying time to compression strength (fig. 13) show the rapid

increase in strength after very short periods of time followed by a slight

decrease with longer periods of time. The wetter sands show a very slight

increase at first and then a very rapid increase. Since the maximum air-set

strength develops with a definite amount of retained water, a longer dry-

ing period is required for the wetter sands to reach maximum air-set

strength because there is more water to evaporate. The curves again sug-

gest that slightly higher air-set strength develops as a result of a slower

rate of drying.

The crossing of the curves is a consequence of the fact that initially

wetter sands develop the higher air-set strength. From 2J/2 to about 3|/2
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hours' drying is required before the wetter sands develop the higher

strength. More rapid drying reduces only slightly the time required for

the development of maximum air-set strength in wet sands.

The compression strength of sands bonded with halloysite clay is de-

termined by the amount of clay, the amount of initial tempering water,

and the moisture content attained on drying. Because this type of clay

possesses great air-set strength, the last factor is very significant. Also

because of air-set strength, standard A.F.A. determinations of green and

dry compression strength may be meaningless in that they do not reveal

the true strength characteristics of the clay nor are they apt to give a

clue to the strength of an halloysite clay-bonded sand mold as it is pro-

duced and used in actual foundry practice.
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KAOLINITE CLAY

The curves in figure 14 show that sands bonded with kaolinite clay,

like sands bonded with halloysite clay, develop air-set strength. When
sands bonded with 10 percent kaolinite clay are dried, the strength in-

creases sharply until a maximum is reached when the moisture content

is reduced to 1.5 to 3 percent. With further decrease in moisture content

there is a slight decrease in strength, followed again by an increase in

strength at very low moisture content when true A.F.A. dry strength is

attained. The air-set strength developed with 1.5 to 3 percent moisture is
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5 to 10 times that of green strength and % to y2 that of A.F.A. dry

strength. The air-set characteristics of halloysite clay-bonded and kaolin-

ite clay-bonded sands are somewhat different in that A.F.A. dry strength

is slightly less than air-set strength in halloysite clay-bonded sands, and

considerably higher for kaolinite clay-bonded sands.

An increase in the amount of tempering water increases somewhat the

amount of air-set strength. Variations in the rate of drying seem to have

no effect on the air-set strength in sands with relatively small amounts

of tempering water. In wet sands the amount of air-set strength is also

about the same, regardless of the rate of drying, but it develops at a

slightly higher moisture content when the rate of drying is rapid.

Significant computations of the water per unit of kaolinite at maximum
air-set strength cannot be made because the percentage of the total kao-

linite surfaces that are available to water cannot be determined.
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The curves in figure 15 show that maximum air-set strength is reached

in the sands that have low initial moisture content in 2 to 3 hours whereas

for the wetter sands 2j^ to 31/4 hours are required. The explanation is,

of course, that some time is required to remove excess water from the wet

sands before appreciable air-set strength begins to develop.

More rapid drying causes the development of air-set strength in a

shorter period of time because the proper moisture content is reached

more quickly. The curves in figure 15 illustrate the greater strength de-
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veloped by the wetter sands, and the intermediate period between air-set

strength and dry strength when the strength of the batch is lower than

either air-set strength or A.F.A. dry strength.

The amount of clay, the amount of initial tempering water, and the

moisture content reached on drying are the factors that determine the

strength of a mold bonded with kaolinite clay. Because kaolinite clay has

air-set strength, the last factor is very significant. In sands bonded with

this type of clay, as in the case of sands bonded with halloysite clay,

standard A.F.A. determinations of green and dry compression strength do

not reveal the strength conditions in a mold unless the mold is poured im-

mediately after it is made or after a very long period of drying.
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Effect of Ramming on Air-Set Strength

It is well known2
-
10

>
u that increased ramming tends to increase the

strength characteristics of sand molds. Figures 16 and 17 present the re-

sults of compression tests made on two batches of halloysite clay-bonded

sand from which test specimens were prepared with ramming both 3 times

and 6 times. Increased ramming increases the air-set strength as well as

the green and dry strengths. From the similarity of the curves for ram-

ming 3 times and 6 times, it would seem that this increased ramming has

no unusual effects on air-set strength; it does not decrease the tendency
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for air-set strength to develop nor change the moisture content at which

maximum air-set strength occurs. Further the curves in figure 17 indicate

that the time required to develop maximum air-set strength does not

change with an increase in ramming of 3 to 6 times.
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Theory of Air-Set Strength

Air-set strength means in general that the wedge-blocks holding the

sand grains in place in a rammed sample become stronger in a short period

of time immediately after ramming and while a large amount of the

tempering water is still retained. The problem is, then, what causes

the wedge-blocks of halloysite or kaolinite clay to become stronger in the

presence of water. A satisfactory theory of air-set strength must explain

why this characteristic is restricted to halloysite and kaolinite clays.

It has been pointed out that there is a tendency for the tempering

water associated with clay minerals, particularly that penetrating between

the flake units, to become rigid because the individual water molecules

take up fixed definite positions. A wedge-block built entirely of clay

mineral units joined by rigid water will obviously be stronger than a

wedge-block made of clay mineral units and water in which some of the

water is liquid.
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In sands bonded with halloysite clay or kaolinite clay, many of the

basal surfaces capable of fixing water in a rigid condition are on the

interior of aggregates and large crystal particles where water cannot

reach them. As a consequence, immediately after ramming only part of

the tempering water is rigid. The remainder is that part which has not

reached a clay mineral surface capable of water fixation, and is there-

fore fluid.

Within a short period of time after ramming, some of this originally

fluid water penetrates to clay mineral surfaces and is fixed. There is,

therefore, a gradual change of some of the fluid water to a rigid condi-

tion, and as noted above this would be accompanied by an increase in the

strength of the wedge-blocks and consequently of the rammed sand. While

some of the originally liquid water is being fixed rigidly, some is being lost

by evaporation, so that in a short time there is no liquid water in the

rammed specimen. This is the condition at maximum air-set strength.

Thus in sands bonded with halloysite or kaolinite clays, some of the

tempering water becomes fixed rigidly at once and some strength is

developed— this is green strength. Much of the remainder of the water is

at first less rigid or perhaps fluid, but some of it gradually penetrates the

clay mineral and is fixed rigidly, thereby developing added strength—
this is air-set strength.

Air-set strength develops because a certain amount of time 7 (meas-

ured in minutes) is required for some of the tempering water to pene-

trate masses of halloysite or kaolinite clay and to become fixed in a rigid

condition. Sands bonded with these types of clay have a wet feel imme-

diately after mixing because of the presence of liquid water. The wet feel

disappears after air-set strength develops because the originally liquid

water either has been fixed or has evaporated.

In the process of allowing sand-clay mixtures to temper before testing,

there is time for the water to penetrate to many of the clay mineral

surfaces. However, when mixtures are rammed the relation between vari-

ous masses of clay and the individual clay mineral flakes is changed so

that new interfaces develop. The actual ramming operation probably dis-

rupts some of the lumps of clay so that additional surfaces are ultimately

available to water. Further, the equilibrium between the flake surfaces

and the water attained during tempering is probably disturbed by the

ramming. After ramming, water penetrates to new surfaces and becomes

rigid to develop a new equilibrium.

In montmorillonite clays, water penetrates easily and rapidly to about

all of the clay mineral surfaces. As a consequence the water becomes
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rigid at once without a time lag and there is no air-set strength. Such

clays develop all the strength they will ever have in the presence of water

immediately on ramming. With equivalent amounts of water, sands bonded

with montmorillonite clay, unlike those bonded with halloysite clay or

kaolinite clay, do not have a wet feel immediately after mixing, unless the

amount of water is very great.

In illite clays, there seems to be no appreciable penetration of the

tempering water into the clay mineral particles. There is, therefore, prac-

tically no water that requires a time lag after ramming in order to de-

velop a rigid condition. Like montmorillonite clays, but because of a

different character of the clay mineral, air-set strength has not been found

in such clays. Sands bonded with illite clay may have a wet feel after

mixing, and it does not disappear as in the case of the sands with air-set

strength.

Summary

1. Curves showing the relation of dry compression strength to amount

of tempering water are presented for varying amounts of each type of clay.

In general the curves show that dry strength increases with the amount

of tempering water up to a certain water content. With further increases

in the amount of water, there is no further increase in strength.

2. The maximum attainable dry strength increases with the amount of

clay for all types of clay except montmorillonite clay IB. For this type of

clay the addition of more than 8 percent clay causes no corresponding

increase in dry strength.

3. The maximum possible dry strength of the various types of clay is

in the following order: montmorillonite IA > illite > kaolinite > halloy-

site. At low clay contents montmorillonite clay IB is about equal to illite

clay whereas at high clay contents it is no stronger than halloysite clay.

4. The rate of increase of dry strength with increase of tempering

water is greatest for montmorillonite clay IA and least for halloysite clay.

The other types of clay have about the same rate which is closer to that

of halloysite than that of montmorillonite clay IA.

5. Water at least equal to that amount which can be held with com-

plete rigidity is required before any dry strength is developed in sands

bonded with montmorillonite clay IA. In sands bonded with mont-

morillonite clay IB or halloysite clay, it appears that some dry strength

may develop with somewhat less water.

6. The dry compression strength of a clay can be represented by the

formula DC = (T — M)K where T is the amount of tempering water in

percent, M is the amount of tempering water in percent theoretically re-

quired before any dry strength develops, and K is a coefficient indicating
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the dry strength developed per unit of tempering water. The K value,

therefore, is a comparative measure of the bonding value of a clay. K and

M values are presented for the various classes of clay.

7. In illite and kaolinite clays, M (the water value at which dry

strength starts) and K (the rate of increase of strength with increasing

amounts of tempering water) are the same for all amounts of clay. As a

consequence a certain dry strength develops at a given moisture content

regardless of the amount of clay, provided it is in excess of a mini-

mum value.

8. A theory of dry strength is presented based on the wedge-block

concept of holding the grains in place. A discussion is given to show that

the theory explains the distinctive dry strength properties of the individual

clays and agrees with the characteristics of the various clay minerals.

9. Sands bonded with halloysite clay or kaolinite clay develop greatly

increased strength without much loss of moisture when rammed speci-

mens are allowed to stand in the air. This so-called air-set strength is a

different type of strength from green or dry strength and appears to be

unique for these types of clay.

10. In sands bonded with 12 percent halloysite clay, air-set strength is

developed with about 2.5 to 3.5 percent retained tempering water. Maxi-

mum air-set strength is about 15 times greater than the green strength and

slightly higher than the dry strength developed with similar amounts of

tempering water. Increasing the amount of initial tempering water in-

creases slightly the air-set strength that will develop.

11. In sands bonded with 10 percent kaolinite clay, air-set strength

is developed with about 1.5 to 3 percent retained tempering water. It is 5

to 10 times greater than the green strength and about % to % that of the

dry strength developed with similar amounts of tempering water. The

air-set strength that will develop increases slightly with an increase in

the amount of initial tempering water.

12. Sands bonded with montmorillonite clay IA, montmorillonite clay

IB, or illite clay do not develop strength on drying without an accompany-

ing loss of water, that is, they do not show any air-set strength. The

increase in strength is in direct proportion to the amount of water lost,

and sands with initially higher moisture contents tend to have a higher

strength when dried to a given moisture content.

13. Air-set strength is explained on the basis that a certain amount

of time (measured in minutes) is required for some of the tempering water

to penetrate masses of halloysite or kaolinite clay and to become fixed in

a rigid condition, thereby increasing the strength of the wedge-block

holding the grains in place.
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14. In sands bonded with montmorillonite clay IA, compressive

strengths much smaller than standard A.F.A. dry strength are developed

when specimens are dried slowly to very low moisture contents. In sands

bonded with montmorillonite clay IB, strengths equal to standard A.F.A.

dry strength are developed on slow drying to low moisture contents. In

sands bonded with illite clay the strength developed on drying to a given

intermediate moisture content is independent of the rate of drying, and

slow drying to very low moisture contents does not develop strengths

equal to standard A.F.A. dry strength. Slow drying of sands bonded with

either halloysite or kaolinite clay to very low moisture contents develops

strength about equal to A.F.A. dry strength.

15. Increasing the amount of ramming increases the air-set strength

as well as the green and dry strengths.

16. The difficulty or, for some types of clay, impossibility of predict-

ing the strength characteristics of a partially dried mold from the usual

strength tests is discussed.
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