

UNIVEFF:TY OF CALIFORNIM, DEPARTMEI. OF CIVILENGINEERINO BERIS:゙っEY, CAUFORNIA

2

4

National Tube Company

BOOK OF STANDARDS
 AND

USEFUL INFORMATION

CONTAINING

TABLES OF SIZES AND
OTHER USEFUL INFORMATION PERTAINING TO TUBULAR GOODS

THE ENGINEERING DATA FOR THIS BOOK EDITED BY

PROF. REID T. STEWART

1872

Price, $\$ 1.00$
1902

National Tube Company

BLACK AND GALVANIZED WROUGHT MERCHANT PIPE

 Of All Kinds in Sizes from $1 / 8$ to 30 inches.
BOILER TUBES

Of Mild Steel and Charcoal Iron For Stationary, Locomotive and Marine Work.

CASING, TUBING and DRIVE PIPE FOR WELL PURPOSES.

GAS AND OIL LINE PIPE.

CYLINDERS,

Lapwelded and Seamless, tested 100 lbs . to $3,700 \mathrm{lbs}$., for Compressed Air, Carbonic Acid Gas, Anhydrous Ammonia, Etc., Etc., Etc.

WATER AND GAS MAINS.

CONVERSE AND MATHESON LEAD JOINT PIPE FOR MAINS.

Seamless Tubes, Shrapnel, Projectiles and Miscellaneous Forgings.
$8003 \div 5$

National Tube Company

WORKS AT

MCKEESPORT
Pennsylvania PITTSBURGH
*
MIDDLETOWN
PHILADELPHIA CHESTER OIL CITY
ELLWOOD CITY
CHRISTY PARK
VERSAILLES
WHEELING West Virginia
YOUNGSTOWN OHIO
WARREN
SYRACUSE NEW YORK
COHOES
NEW CASTLE DELAWARE

GENERAL OFFICE
FRICK BUILDING, PIT'TSBURGH, PA.

LOCAL SALES OFFICES

Havemeyer Building 420 California Street
${ }_{267}$ South Fourth Street
Western Union Building
The Frick Building
National Tube Works

NEW YORK CITY, N. Y. SAN FRANCISCO, CAL. PHILADELPHIA, PA. CHICAGO, ILL. PITTSBURGH, PA. ST. LOUIS, MO.

FOREIGN OFFICE

Dock House, Billiter Street, LONDON, E. C., ENG.

PREFACE

In the following tables of Standard dimensions of Tubular Goods, it has been our aim to group together in one book all of the dimensions and data pertaining to standards as manufactured by National Tube Co. at this date, swith the object of making this book a practical and valuable aid to all users of Pipes, Tubes, etc. The use of Tubular Goods has become so extensive that a great variety of articles necessary for different purposes has to be manufactured, and a large amount of data has accumulated on the subject, and we trust that our effort to put this before the public in a compact form will prove of balue.

We have also taken up certain subjects closely related to the use of pipes, tubes, etc., and furnished such general information and engineering data pertaining to same, as, we think, woill be useful and appropriate in a book of this kind, woith the idea of popularizing such information that would lead to the intelligent application of tubular goods for purposes where engineering skill and judgment should be exercised. This data was prepared for publication by Prof. Reid T. Sterwart and is largely compiled from modern waell-known engineering authorities on the subjects.

Tables

OF

STANDARD DIMENSIONS

OF

Tubular Goods

AS MANUFACTURED BY THE

National Tube Co.

NATIONAL TUBE COMPANY.
NATIONAL TUBE CO.-Black or Galvanized Standard Weight Pipe.

Diameter.			$\begin{aligned} & \text { Thick- } \\ & \text { ness. } \end{aligned}$	Circumference.		Transverse Areas.			Nom.Wgt. per ft. lbs.	Threads per In.
Nom	External.	Internal.		External.	Internal.	External.	Internal.	Metal.		
1/8	. 405	. 269	. 068	1.272	. 845	. 1288	. 0568	. 0720	. 241	27
$1 / 4$. 540	. 364	. 088	1.696	1.144	. 2290	. 1041	. 1249	. 42	18
$3 / 8$. 675	. 493	. 091	2.121	1.549	. 3578	. 1909	. 1669	. 559	18
1/2	. 840	. 622	. 109	2.639	1.954	. 5542	. 3039	. 2503	. 837	14
3/4	1.050	. 824	. 113	3.299	2.589	. 8659	. 5333	. 3326	1.115	14
$1{ }^{14}$	1.315	1.047	. 134	4.131	3.289	1.3581	. 8609	. 4972	1.668	$111 / 2$
11/4	1.660	1.380	. 140	5.215	4.335	2.1642	1.4957	. 6685	2.244	$111 / 2$
$11 / 2$	1.900	1.610	. 145	5.969	5.058	2.8353	2.0358	. 7995	2.678	$111 / 2$
2	2.375	2.067	. 154	7.461	6.494	4.4301	3.3556	1.074	3.609	$111 / 2$
21/2	2.875	2.467	. 204	9.032	7.750	6.4918	4.7800	1.712	5.739	8
3	3.500	3.066	. 217	10.996	9.632	9.6211	7.3827	2.238	7.536	،
$31 / 2$	4.000	3.548	. 226	12.566	11.146	12.566	9.886	2.680	9.001	"
4	4.500	4.026	. 237	14.137	12.648	15.904	12.730	3.174	10.665	"
$41 / 2$	5.000	4.508	. 246	15.708	14.162	19.635	15.960	3.675	12.34	'6
5	5.563	5.045	. 259	17.477	15.849	24.306	19.985	4.321	14.502	"
6	6.625	6.065	. 280	20.813	19.054	34.472	28.886	5.586	18.762	,
7	7.625	7.023	. 301	23.955	22.063	45.664	38.743	6.921	23.271	"
8	8.625	7.981	. 322	27.096	25.073	58.426	50.021	8.405	28.177	'
9	9.625	8.937	. 344	30.238	28.076	72.760	62.722	10.04	33.701	.
10	10.750	10.018	. 366	33.772	31.472	90.763	78.822	11.94	40.065	/
11	11.750	11.000	. 375	36.913	34.558	108.43	95.034	13.40	45.95	*
12	12.750	12.000	. 375	40.055	37.699	127.68	113.09	14.59	48.985	"

[^0]| DiAMETER. | | | Thickness. | Circumperence. | | TRANSVERSE AREAS. | | | Nom. Wgt. per ft. lbs. | Threads per In. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nom. | External. | Internal. | | External. | Internal. | External. | Internal. | Metal. | | |
| 1/8 | .405 | . 205 | .100 | 1.272 | .644 | 129 | . 033 | .096 | 29 | 27 |
| $1 / 4$ | .540 | . 294 | . 123 | 1.696 | . 924 | 229 | . 068 | 161 | 54 | 18 |
| $3 / 8$ | .675 | . 421 | . 127 | 2.121 | 1.323 | . 358 | 139 | . 219 | 74 | 18 |
| 1/2 | 840 | . 542 | . 149 | 2.639 | 1.703 | . 554 | 231 | . 323 | 1.09 | 14 |
| $3 / 4$ | 1.050 | .736 | .157 | 3.299 | 2.312 | . 866 | .425 | . 441 | 1.39 | 14 |
| 1 | 1.315 | .951 | . 182 | 4.131 | 2.988 | 1.358 | .710 | . 648 | 2.17 | 111/2 |
| $11 / 4$ | 1.660 | 1.272 | . 194 | 5.215 | 3.996 | 2.164 | 1.271 | . 893 | 3.00 | $111 / 2$ |
| $11 / 2$ | 1.900 | 1.494 | . 203 | 5.969 | 4.694 | 2.835 | 1.753 | 1.082 | 3.63 | $111 / 2$ |
| 2 | 2.375 | 1.933 | . 221 | 7.461 | 6.073 | 4.430 | 2.935 | 1.495 | 5.02 | $111 / 2$ |
| $21 / 2$ | 2.875 | 2.315 | . 280 | 9.032 | 7. 273 | 6.492 | 4.209 | 2.283 | 7.67 | 8 |
| 3 | 3.500 | 2.892 | . 304 | 10.996 | 9.086 | 9.621 | 6.569 | 3.052 | 10.25 | 66 |
| $31 / 2$ | 4.000 | 3.358 | . 321 | 12.566 | 10.549 | 12.566 | 8.856 | 3.710 | 12.47 | 66 |
| 4 | 4.500 | 3.818 | .341 | 14.137 | 11.995 | 15.904 | 11.449 | 4.455 | 14.97 | |
| $41 / 2$ | 5.000 | 4.280 | .360 | 15.708 | 13.446 | 19.635 | 14.387 | 5.248 | 18.22 | 68 |
| 5 | 5.563 | 4.813 | .375 | 17.4777 | 15.120 | 24.306 | 18.193 | 6.113 | 20.54 | 6 |
| 6 | 6.625 | 5.751 | . 437 | 20.813 | 18.067 | 34.472 | 25.976 | 8.496 | 28.58 | 6 |
| 7 | 7.625 | 6.625 | .500 | 23.955 | 20.813 | 45.664 | 34.472 | 11.192 | 37.67 | 66 |
| 8 | 8.625 | 7.625 | . 500 | 27.096 | 23.955 | 58.426 | 45.664 | 12.762 | 43.00 | 6 |
| 9 | 9.625 | 8.625 | . 500 | 30.238 | 27.096 | 72. 760 | 58.426 | 14.334 | 48.25 | 6 |
| 10 | 10.750 | 9.750 | .500 | 33.772 | 30.631 | 90.763 | 74.662 | 16.101 | 54.25 | 66 |
| 12 | 12.750 | 11.750 | . 500 | 40.055 | 36.914 | 127.68 | 108.43 | 19.25 | 65.00 | 66 |

NATIONAL TUBE CO.-Standard Double Extra Strong Pipe.

DiAmeter.			Thickness.	Circumference.		Transverse Areas.			Nom. Wgt. per ft. lbs.	Threads per In.
Nom.	External.	Internal.		External.	Internal.	External.	Internal.	Metal Area.		
1/2	. 840	. 244	. 298	2.639	. 767	. 554	. 047	.507	1.7	14
3/4	1.050	. 422	. 314	3.299	1.326	. 866	. 140	. 726	2.44	14
1	1.315	. 587	. 364	4.131	1.844	1.358	. 271	1.087	3.65	$111 / 2$
$11 / 4$	1.660	. 885	. 388	5.215	2.780	2.164	. 615	1.549	5.2	$111 / 2$
$11 / 2$	1.900	1.088	. 406	5.969	3.418	2.835	. 930	1.905	6.4	$111 / 2$
2	2.375	1.491	. 442	7.461	4.684	4.430	1.744	2.686	9.02	$111 / 2$
$21 / 2$	2.875	1.755	. 560	9.032	5.514	6.492	2.419	4.073	13.68	8
3	3.500	2.284	. 608	10.996	7.176	9.621	4.097	5.524	18.56	"
$31 / 2$	4.000	2.716	. 642	12.566	8.533	12.566	5.794	6.772	22.75	"
4	4.500	3.136	. 682	14.137	9.852	15.904	7.724	8.180	27.48	"
$41 / 2$	5.000	3.564	. 718	15.708	11.197	19.635	9.976	9.659	32.53	${ }^{6} 6$
5	5.568	4.063	. 750	17.477	12.764	24.306	12.965	11.341	38.12	6
6	6.625	4.875	. 875	20.813	15.315	34.472	18.665	15.807	53.11	" 6
7	7.625	5.875	. 875	23.955	18.457	45.664	27.109	18.555	62.38	"
8	8.625	6.875	. 875	27.096	21.598	58.426	37.122	21.304	71.62	*

[^1]HEATING SURFACE.

STANDARD WEIGHT PIPE. Length of Pipe in Ft. per Sq. Ft. of			EXTRA STRONG PIPE.			DBLE. EX. STRONG PIPE.		
Size.	External	Internal SURFACE.	Size.	EXTERNAL	Internal	Size.	External	Internal Surface.
	9.44	14.2	1/8	9.44	18.63	1/2	4.55	15.67
$1 / 4$	7.07	10.5	$1 / 4$	7.07	12.99	$3 / 4$	3.64	9.05
$3 / 8$	5.66	7.76	$3 / 8$	5.66	9.07		2.90	6.51
1/2	4.55	6.15	1/2	4.55	7.05	11/4	2.30	4.32
$3 / 4$	3.64	4.64	3,	3.64	5.11	$11 / 2$	2.01	3.51
	2.90	3.66	$1{ }^{1 / 4}$	2.90	4.02	,	1.61	2.56
11/4	2.30	2.77	$11 / 4$	2.30	3.00	$21 / 2$	1.33	2.18
$13 / 2$	2.01	2.38	$11 / 2$	2.01	2.56	$31 / 2$	1.09	1.67
2	1.61	1.85	2	1.61	1.97	$31 / 2$. 955	1.41
$23 / 2$	1.33	1.55	21/2	1.33	1.65	4	. 849	1.22
3	1.09	1.25	3	1.09	1.33	$41 / 2$. 764	1.07
$31 / 2$. 955	1.08	$31 / 2$. 955	1.14	5	. 687	. 94
4	. 849	. 949	4	. 849	1.00	6	. 577	. 78
$41 / 2$. 764	. 848	$41 / 2$. 764	. 893	8	. 501	. 65
5	. 687	. 757	5	. 687	. 793	8	. 443	. 55
6	. 577	. 630	6	. 577	. 664	\ldots	\ldots
7	. 501	. 544	7	. 501	. 598		
8	. 443	. 478	8	. 443	. 502	\ldots		
9	. 397	. 427	9	. 397	. 443		\ldots	
10	. 355	. 381	10	. 355	. 399	\ldots	\ldots	
11	. 325	. 348						
12	. 299	. 319	12	299	. 325	\ldots	\ldots

DIAMETER.

DIAMETER.			THICKNESS.		CIRCUMFERENCE.		Transverse Areas.			Nom. Wgt. per ft. lbs.	Threads per inch.	Nom. Diam.
Nom.	Exter'l\|	Inter'l.	Ins.	S.W.G.	Exter'1	Inter'l.	Exter'l.	Inter'l.	Metal.			
2	2.25	2.06	. 095	13	7.069	6.4717	3.976	3.33	.643	2.22	14	2
21/4	2.50	2.282	. 109	12	7.854	7. 1691	4.909	4.090	819	2.82	14	21/4
21/2	2.75	2.532	.109	12	8.639	7.9545	5.939	5.035	904	3.13	14	21/2
23/4	3.	2.782	. 109	12	9.425	8.7399	7.069	6.078	.991	3.45	14	23/4
3	3.25	3.01	. 120	11	10.210	9.4562	8.296	7.116	1.180	4.10	14	3
$31 / 4$	3.50	3.26	. 120	11	10.996	10.2416	9.621	8.347	1.274	4.45	14	$31 / 4$
31/2	3.75	3.51	.120	11	11.781	11.0270	11.045	9.676	1.369	4.78	14	$31 / 2$
33	4.	3.732	. 134	10	12.566	11.7244	12.566	10.940	1.626	5.56	14	$33 / 4$
4	4.25	3.982	. 134	10	13.352	12.5098	14.186	12.454	1.732	6.00	14	4
41/4	4.50	4.218	. 141		14.137	13.2513	15.904	13.973	1.931	6.36	14	41/4
$41 / 4$	4.50	4.094	. 203	6	14.137	12.8617	15.904	13.163	2.741	9.38	14	
41/2	4.75	4.468	. 141		14.923	14.0367	17.728	15.676	2.052	6.73	14	41/2
41/2	4.75	4.344	. 203	6	14.923	13.6471	17.728	14.820	2.908	9.39	14	41/2,
$43 / 4$	5.	4.704	. 148	9	15.708	14.7781	19.635	17.380	2.255	7. 7.80	14	$43 / 4$
5	5.25	4.954	. 148	9	16.493	15.5634	21.648	19.275	2.373	8.20	14	5
5	5.25	4.867	. 191		16.493	15.2902	21.648	18.604	3.044	9.86	14	5
5	5.25	4.753	. 248	$31 / 2$	16.493	14.9320	21.648	17.743	3.905	12.80	111/2	5
5	5.25	4.65	. 300	1	16.493	14.6084	21.648	16.982	4.666	15.88	111/2	5
$5 \frac{3}{16}$	5.50	5187	. 156		17.279	16.2955	23.758	21.131	2.627	8.62	14	$5 \frac{8}{16}$
5	5.50	5.042	. 229	41/2	17.279	15.8399	23.758	19.965	3.793	12.49	111/2	$5 \frac{3}{16}$
$55 / 8$	6.	5.688	. 156	,	18.850	17.8694	28.274	25.40%	2.867	10.46	14	$55 / 8$

National Tube Co. Standard Line Pipe.

2	2.375	. 154	3.609	111	8	8.625	. 281	25.00	8
21/2	2.875	. 204	5.739	8	8	8.625	. 322	28.177	8
3	3.5	. 217	7.536	8	9	9.625	. 344	33.701	8
31/2	4.	. 2226	9.001	8	10	10.75	. 2865	32.00	8
4	4.5	. 237	10.665	8	10	10.75	. 3145	35.00	8
41/2	5.	. 246	12.49	8	10	10.75	. 366	40.065	8
5	5.563	. 259	14.502	8	12	12.75	. 340	45.00	8
6	6.625	. 28	18.762	8	12	12.75	. 375	48.985	8
7	7.625	. 301	23.271	8					

National Tube Co. Standard Oil Well Tubing.

2	2.375	. 1725	4.	11	41/2		. 246	12.49	8
2	2.375	. 1935	4.50	$111 /$	5	5.563	. 259	14.502	8
$21 / 6$	2.875	. 204	5.739	111\%	6	6.625	. 28	18.76	8
$21 / 2$	2.875	. 221	6.25	111%	7	7.625	. 301	23.271	8
3	3.5	. 217	7.536	111/2	8	8.625	. 322	28.177	8
3	3.5	. 2445	8.50	1113	8	8.625	. 363	32.00	8
3	3.5	. 2925	10.00	111/2	9	9.625	. 344	33.701	8
31/2	4.	. 226	9.001	8	10	10.75	. 366	40.065	8
4	4.5	. 237	10.665	8	12	12.75	. 375	49.98	8
4	4.5	. 2595	11.75	8					

National Tube Co. Standard Drive Pipe.

2	2.375	. 154	3.609	111/2	6	6.625	. 28	18.76	8
21/2	2.875	. 204	5.789	8	7	7.625	. 301	23.271	8
3	3.5	. 217	7.536	8	8	8.625	. 322	28.177	8
31/2	4.	. 226	9.001	8	9	9.625	. 344	33.701	8
4	4.5	. 237	10.665	8	10	10.75	. 366	40.065	8
4112		. 246	12.49	8	12	12.75	. 375	49.98	8
5	5.563	. 259	14.502	8					

NATIONAL TUBE COMPANY.
Thickness of Metal Required for Flush Joint Pipe and Tubing.

SIZE.	5 Inch Pipe.	$\left\|\begin{array}{c}5 \text { Inch } \\ \text { Extern'l } \\ \text { Diame- } \\ \text { ter. }\end{array}\right\|$	6 Inch Pipe.	$\left\|\begin{array}{c}6 \text { Inch } \\ \text { Extern'l } \\ \text { Diame- } \\ \text { ter. }\end{array}\right\|$	$\begin{aligned} & 7 \text { Inch } \\ & \text { Pipe. } \end{aligned}$	$\left\|\begin{array}{c}7 \text { Inch } \\ \text { Extern'l } \\ \text { Diame- } \\ \text { ter. }\end{array}\right\|$	8 Inch Pipe.	8 Inch Extern'l Diameter.	9 Inch Pipe.	9 Inch Extern'l Diame- ter.
Thickness of Metal, inches	1/4	$1 / 4$	$\frac{9}{32}$	$\frac{9}{32}$	${ }_{1}^{5} 6$	${ }_{1}^{5}$	$\frac{1}{3} \frac{1}{2}$	$\frac{1}{3} \frac{1}{2}$	$\frac{1}{3} \frac{1}{2}$	$\frac{1}{3} \frac{1}{2}$
SIZE.	10 Inch	$\left\|\begin{array}{c}10 \text { Inch } \\ \text { Extern'l } \\ \text { Diame- } \\ \text { ter. }\end{array}\right\|$	11 Inch	$\left\|\begin{array}{c}11 \text { Inch } \\ \text { Fxtern'l } \\ \text { Diame- } \\ \text { ter. }\end{array}\right\|$	12 Inch Pipe.	$\left\|\begin{array}{c}12 \text { Inch } \\ \text { Extern'l } \\ \text { Diame- } \\ \text { ter. }\end{array}\right\|$	13 Inch Extern'l Diameter.	14 Inch Extern'l Diame- ter.	15 Inch Extern'l Diame- ter.	
Thickness of Metal, inches	9/8	3/8.	3/8	9/8	9/8	9/8	$\frac{13}{2}$	$\frac{1}{3} \frac{3}{2}$	$\frac{13}{3}$	

Nominal Weight in Pounds per Foot of Standard Thicknesses of Large Sizes O. D. Pipe.

O. D.	1/4 in. thick	$\frac{5}{58}$ in. thick	38 in . thick	Is in. thick	12 in. thick	$\frac{16}{16}$ in. thick	5/8 in. thick	\% in. thick	$3 / 4$ in. thick
14 inches	36.75	45.72	54.61	63.42	72.16	80.80	89.36	97.84	106.2
15 *	39.42	49.06	58.62	68.10	77.50	86.81	96.03	105.2	114.2
16 6	42.09	52.40	62.63	72.78	82,85	92.83	102.7	112.5	122.2
17 "	44.76	55.74	66.64	77.46	88.19	98.84	109.4	119.9	130.3
18 6	47.44	59.08	70.65	82.14	93.54	104.8	116.1	127.2	138.3
20	52.78	65.76	78.67	91.49	104.2	116.9	129.4	141.9	154.3
21 6	55.45	69.10	82.68	96.17	109.6	122.9	136.1	149.3	162.3
22 "		7244	86.68	100.8	114.9	128.9	142.8	156.6	170.3
24.4		79.13	94.70	110.2	125.6	140.9	156.2	171.3	186.3
26 :			102.7	119.5	136.3	152.9	169.5	186.0	202.4
28 4			110.7	128.9	147.0	165.0	182.9	200.7	218.4
30 4	-.....	****	-....	138.2	157.7	177.0	196.3	215.4	234.4

NATIONAL TUBE CO,-Standard Boiler Tubes.

Diameter.		Thickness.		Circumference.		Transverse Areas.			Length of Tube Per Square Ft.		Nom. Wgt. per ft. lbs.
O. D.	I. D.	Ins.	Nearest B.W.G.	External.	Internal.	External.	Internal.	Metal.	Ex. Surf.	In. Surf.	
1	. 810	. 095	13	3.142	2.545	. 7854	.5153	. 2701	3.819	4.715	. 90
$11 / 4$	1.060	. 095	13	3.927	3.330	1.2272	. 8825	. 3447	3.056	3.603	1.15
11/2	1.310	. 095	13	4.712	4.115	1.7671	1.3478	. 4193	2.547	2.916	1.40
13/4	1.560	. 095	13	5.498	4.901	2.4053	1.9113	. 4940	2.183	2.448	1.66
2	1.810	. 095	13	6.283	5.686	3.1416	2.5730	. 5686	1.909	2.110	1.91
21/4	2.060	. 095	13	7.069	6.472	3.9761	3.3329	. 6432	1.698	1.854	2.16
$21 / 2$	2.282	. 109	12	7.854	7.169	4.9087	4.0899	. 8188	1.528	1.674	2.75
23/4	2.532	. 109	12	8.639	7.954	5.9396	5.0349	. 9047	1.389	1.508	3.04
3	2.782	. 109	12	9.425	8.740	7.0686	6.0787	. 9899	1.273	1.373	3.33
$31 / 4$	3.010	. 120	11	10.210	9.456	8.2958	7.1157	1.1801	1.175	1.269	3.96
$31 / 2$	3.260	. 120	11	10.996	10.242	9.6211	8.3469	1.274	1.091	1.171	4.28
$33 / 4$	3.510	. 120	11	11.781	11.027	11.045	9.6762	1.369	1.018	1.088	4.6
4	3.732	. 134	10	12.566	11.724	12.566	10.939	1.627	. 955	1.024	5.47
41/2	4.232	. 134	10	14.137	13.295	15.904	14.066	1.838	. 849	. 902	6.17
5	4.704	. 148	9	15.708	14.778	19.635	17.379	2.256	. 764	. 812	7.58
6	5.670	. 165	8	18.850	17.813	28.274	25.249	3.025	. 637	673	10.16
7	6.670	. 165	8	21.991	20.954	38.485	34.941	3.544	. 546	.573	11.9

NATIONAL TUBE CO.-Standard Boiler Tubes.

DIAMETER.		Thickness.		Circumperence.		Transverse Areas.			Length of Tube Per Square Ft.		Nom. Wgt. per ft. lbs.
O. D.	I. D.	Ins.	Nearest B. W.G.	External.	Internal.	External.	Internal.	Metal.	Ex. Surf.	In. Surf.	
8	7.670	. 165	8	25.133	24.096	50.265	46.204	4.061	. 477	. 498	13.65
9	8.640	. 180	7	28.274	27.143	63.617	58.629	4.988	. 424	. 442	16.76
10	9.594	. 203	6	31.416	30.140	78.540	72.291	6.249	. 382	. 398	21.00
11	10.560	. 220	5	34.558	33.175	95.033	87.582	7.451	.347	. 362	25.00
12	11.542	. 229	41/2	37.699	36.260	113.10	104.63	8.47	.319	. 330	28.50
13	12.524	. 238	4	40.841	39.345	132.73	123.19	9.54	.294	.305	32.06
14	13.594	. 248	$31 / 2$	43.982	42.424	153.94	143.22	10.72	. 273	. 283	36.00
15	14.482	. 259	3	47.124	45.496	176.71	164.72	11.99	. 254	. 264	40.60
16	15.460	. 270	21/2	50.265	48.569	201.06	187.71	13.35	. 239	. 247	45.20 53.00
18	17.432	. 284	2	56.549	54.764	254.47	238.66	15.81	. 212	. 219	53.00
20	19.376	. 312	1	62.832	60.872	314.16	294.86	19.30	. 190	.197	65.00
22	21.314	. 343	0	69.115	66.960	380.13	356.80	23.33	. 173	.179	78.00
24	23.25	. 375	00	75.398	73.042	452.39	424.56	27.83	. 159	.164	93.00
26	25.25	. 375	00	81.681	79.325	530.93	500.74	30.19	. 147	. 151	101.00
28	27.25	. 375	00	87.965	85.608	615.75	583.21	32.54	. 136	. 140	109.00
30	29.25	. 375	00	94.248	91.892	706.86	671.96	34.90	. 127	. 130	117.00

[^2]Cannot cut to length closer than $\frac{1}{18}$ inch.

DIAMETER.		Thickness.		Circumference.		Transverse Areas.			LengTh of TUBE Per Square Ft.		Nom. Wgt. per ft. lbs.
Ext.	Internal	Dec.	B. W.G.	External.	Internal.	External.	Internal.	Metal.	Ex. Surf.	In. Surf.	
11/8	. 935	. 095	13	3.534	2.937	. 9940	. 6866	. 3074	3.395	4.085	1.04
$1{ }^{1} 8$	1.122	. 095	13	4.123	3.526	1.3530	. 9896	. 3634	2.910	3.403	1.22
$13 / 8$	1.185	. 095	13	4.320	3.723	1.4849	1.1029	. 3820	2.778	3.223	1.29
158	1.435	. 095	13	5.105	4.508	2.0739	1.6173	. 4566	2.351	2.662	1.53
17/8	1.685	. 095	13	5.890	5.294	2.7612	2.2299	. 5313	2.037	2.266	1.78
21/8	1.935	. 095	13	6.676	6.079	3.5466	$2.940{ }^{7}$. 6059	1.797	1.974	2.04
23/8	2.185	. 095	13	7.461	6.864	4.4301	3.7497	. 6804	1.608	1.748	2.30
27/8	2.657	. 109	12	9.032	8.347	6.4918	5.5446	. 94772	1.328	1.439	3.18
$41 / 4$	3.982	. 134	10	13.352	12.51	14.186	12.453	1.733	.899	. 959	5.82
$43 / 4$	4.482	. 134	10	14.923	14.081	17.728	15.777	1.951	. 804	. 852	6.53 7 7.97
$51 / 4$	4.954	. 148	9	16.493	15.563	21.648	19.275	2.373 2.488	.728 .694	.771 .734	7.97 8.36
$51 / 2$	5.204	. 148	9	17.279	16.349	23.758	21.270	2.488	. 694	. 734	8.36

[^3]NATIONAL TUBE COMPANY.
NATIONAL TUBE CO.-Bedstead Tubing.

STANDARD DIMENSIONS OF COUPLINGS

FOR

STEAM, GAS AND WATER PIPE,

BLACK AND GALVANIZED.

Size of Pipe. Nominal Inside Diameter	Inside Diameter of Coupling	Outside Diameter of Coupling	$\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { Coupling } \end{aligned}$	Thread per Inch of Screw.	Average Weight of Coupling in Pounds.
Inches.	Inches.	Inches.	Inches.		
1/8	$\frac{11}{32}$	$\frac{1}{3} \frac{9}{2}$	$\frac{1}{1} \frac{3}{6}$	27	. 031
$1 / 4$	$\frac{1}{8} \frac{5}{2}$	$\frac{23}{3}$	$\frac{1}{1} \frac{5}{6}$	18	. 046
$3 / 8$	$\frac{87}{64}$	$\frac{27}{32}$	$1 \frac{1}{16}$	18	. 078
1/2	$\frac{23}{32}$	1	$1 \frac{5}{16}$	14	. 124
$3 / 4$	$\frac{63}{6}$	$1 \frac{21}{64}$	116	14	. 250
1	$1 \frac{11}{4}$	$1 \frac{9}{16}$	$1 \frac{18}{16}$	$111 / 2$. 455
11/4	$11 / 2$	$16 \frac{1}{4}$	$21 / 8$	$111 / 2$. 562
$11 / 2$	13/4	$2 \frac{7}{38}$	23/8	$111 / 2$. 800
2	$2 \frac{7}{82}$	23/4	25/8	$111 / 2$	1.250
$21 / 2$	$2 \frac{21}{2}$	$3{ }^{9} 2$	27/8	8	1.757
3	$31 / 4$	$3 \frac{1}{1} \frac{5}{6}$	$31 / 8$	8	2.625
$31 / 2$	$3 \frac{25}{32}$	$4{ }_{16}^{7}$	$35 / 8$	8	4.000
4	$4 \frac{1}{6} \frac{7}{4}$	5	$35 / 8$	8	4.125
$41 / 2$	$43 / 4$	$51 / 2$	$35 / 8$	8	4.875
5	$5 \frac{9}{32}$	$6 \frac{7}{82}$	41/8	8	8.437
6	$6 \frac{11}{32}$	$7{ }^{7} 6$	$41 / 8$	8	10.625
7	$73 / 8$	$8{ }_{16}{ }^{\frac{5}{6}}$	$41 / 8$	8	11.270
8	$83 / 8$	$9{ }_{1}^{56}$	$45 / 8$	8	15.150
9	$9{ }_{1}^{7}{ }^{7}$	103/8	$51 / 8$	8	17.820
10	$10 \frac{7}{16}$	$11 \frac{21}{82}$	$61 / 8$	8	27.700
11	$11 \frac{15}{3}$	$12 \frac{2}{8} \frac{1}{2}$	$61 / 8$	8	33.250
12	$12^{7}{ }^{7}$	$137 / 8$	$61 / 8$	8	43.187
13	$13 \frac{1}{1} \frac{1}{6}$	$15^{\frac{1}{16}}$	$61 / 8$	8	49.280
14	$14 \frac{28}{32}$	$163 / 8$	$61 / 8$	8	63.270
15	$15 \frac{11}{16}$	173/8	$61 / 8$	8	66.000

STANDARD DIMENSIONS OF COUPLINGS

FOR

REGULAR CASING.

Size of Casing. Nominal Inside Diameter	Inside Diameter of Coupling	Outside Diameter of Coupling	$\begin{gathered} \text { Length } \\ \text { of } \\ \text { Coupling } \end{gathered}$	Thread per Inch of Screw.	Average Weight Coupling in Lbs.
Inches.	Inches.	Inches.	Inches.		
$13 / 4$	$17 / 8$	$2{ }^{\frac{5}{6}}$	$23 / 8$	14	. 90
2	$2{ }^{74}$	$2{ }^{\frac{2}{3} \frac{5}{8}}$	25/8	14	1.31
$21 / 4$	$2{ }^{\frac{11}{82}}$	$2 \frac{2}{32}$	25/8	14	1.50
$21 / 2$	$2 \frac{19}{3}$	$3{ }^{\frac{5}{3}}$	25/8	14	1.62
23/4	$2{ }^{2 \frac{27}{8}}$	$318{ }^{\frac{1}{2}}$	25/8	14	1.75
3	$3{ }^{\frac{3}{8}}$	$33 / 4$	$31 / 8$	14	2.62
$31 / 4$	$3 \frac{11}{33^{2}}$	4	$31 / 8$	14	2.87
$31 / 2$	$3{ }^{\frac{10}{10}{ }^{\frac{2}{2}} \text { (}}$	$41 / 4$	$31 / 8$	14	3.06
$33 / 4$	$3 \frac{3}{3 \frac{3}{2}}$	$41 / 2$	$31 / 8$	14	2.25
4	$4{ }_{1}^{16}$	$4{ }^{\frac{2}{8}}$	$35 / 8$	14	3.62
41/4	$43 / 8$	$5{ }^{\text {a }}$	35\%	14	3.93
$41 / 2$	$4 \frac{1}{3}$ 星	$5 \frac{7}{8 \frac{7}{2}}$	358	14	4.06
43/4	$4 \frac{15}{18}$	$5 \frac{15}{8 \frac{5}{8}}$	358	14	4.93
5	$5^{\frac{186}{64}}$	$5 \frac{18}{18}$	$41 / 8$	14 \& 111/2	5.68
$5 \frac{3}{16}$	$5^{\frac{6}{18}}$	$61 \frac{1}{12}$	$41 / 8$	14 \& $1111 / 2$	5.93
55\%	$5 \frac{15}{65}$	65\%	$41 / 8$	14 \& 111/2	6.37
61/4	$6 \frac{18}{6}$	$7 \frac{6}{82}$	$41 / 8$	14 \& 111/2	7.93
65/8	${ }_{65}^{65}$	758	458	14 \& 111/2	9.68
$71 / 4$	${ }^{7} \frac{1}{65}$	$81 / 4$	45/8	14 \& $111 / 2$	9.93
75/8	$7{ }^{\frac{8}{85}{ }^{\frac{8}{2}} 8}$	$8 \frac{83}{38}$	$51 / 8$	$111 / 2$	14.00
81/4	$8 \frac{8}{8 \frac{8}{2}}$	$93 / 8$	$51 / 8$	$111 / 2$	15.37
85/8		$93 / 4$	$51 / 8$	$111 / 2$	15.93
$95 / 8$	$93 / 4$	$10 \frac{25}{82}$	$61 / 8$	$111 / 2$	24.60
$101 / 4$	$101 / 2$	$111 / 2$	$61 / 8$	$111 / 2$	26.00
$105 / 8$	$10 \frac{2}{85}$	$117 / 8$	$61 / 8$	$111 / 2$	27.83
115/8	$11{ }^{\frac{8}{3} \frac{8}{8} \text { 5 }}$	127/8	$61 / 8$	$111 / 2$	29.75
$121 / 2$	$12{ }^{\frac{5}{8} \frac{5}{8}}$	14	$61 / 8$	$111 / 2$	35.00
$131 / 2$	$13{ }^{\frac{8}{8} \text { \% }}$	15	$61 / 8$	$111 / 2$	42.50
$141 / 2$	$14{ }^{3} / 4$	$161 / 8$	$61 / 8$	$111 / 2$	50.00
151/2	$153 / 4$	171/8	$61 / 8$	$111 / 2$	52.50

STANDARD DIMENSIONS OF COUPLINGS

FOR
LINE PIPE.

Size of Pipe, Nominal Inside Diameter	$\left\lvert\, \begin{gathered} \text { Inside } \\ \text { Diameter } \\ \text { of } \\ \text { Coupling } \end{gathered}\right.$	Outside Diameter of Coupling	$\left\lvert\, \begin{gathered} \text { Length } \\ \text { of } \\ \text { of } \end{gathered}\right.$	Thread per Inch of Screw.	Average Weight of Coupling in Pounds.
Inches.	Inches.	Inches.	Inches.		
$1 / 4$	$\frac{15}{82}$	$\frac{51}{64}$	$1{ }_{18}{ }^{\frac{5}{6}}$	18	. 06
3/8	$\frac{37}{64}$	$\frac{31}{32}$	15/8	18	. 17
1/2	$\frac{23}{32}$	$1 \frac{5}{38}$	$1 \frac{1}{1} \frac{8}{6}$	14	. 29
3/4	$\frac{15}{16}$	$13 / 8$	$2 \frac{1}{16}$	14	. 41
1	$1 \frac{11}{64}$	15/8	$2{ }^{\frac{5}{16}}$	$111 / 2$. 64
11/4	$11 / 2$	$21 / 8$	$2 \frac{18}{3}$	$111 / 2$	1.10
$11 / 2$	$1 \frac{23}{32}$	$2 \frac{9}{32}$	$2 \frac{13}{16}$	$111 / 2$	1.18
2	$2{ }^{\frac{5}{82}}$	27/8	33/4	$111 / 2$	2.50
$21 / 2$	$2 \frac{19}{88}$	$3{ }_{1}^{76}$	33/4	8	3.12
3	$3 \frac{7}{88}$	$4 \frac{1}{16}$	$33 / 4$	8	3.85
$31 / 2$	33/4	$4 \frac{23}{32}$	$4 \frac{8}{16}$	8	5.00
4	$4{ }^{\frac{7}{8}}$	$5 \frac{8}{16}$	$4 \frac{3}{16}$	8	6.50
$41 / 2$	$4 \frac{23}{3}$	55/8	$4 \frac{8}{16}$	8	7.70
5	51/4	$6{ }_{16}^{5}$	51/8	8	11.21
6	$6 \frac{5}{16}$	$7 \frac{18}{8 \frac{1}{2}}$	$51 / 8$	8	12.00
7	$7 \frac{11}{8 \frac{1}{2}}$	$8 \frac{15}{3}$	$61 / 8$	8	14.75
8	$8 \frac{11}{8 \frac{1}{2}}$	99	$51 / 8$	8	23.25
9	911 ${ }^{18}$	$10 \frac{9}{16}$	$61 / 8$	8	26.48
10	103/8	11111	$61 / 8$	8	29.50
11	113/8	$12 \frac{11}{16}$	$61 / 8$	8	34.75
12	$12{ }^{7} 7$	137/8	$61 / 8$	8	39.50
13	$13 \frac{11}{16}$	$15 \frac{1}{16}$	$61 / 8$	8	46.00
14	$14 \frac{2}{8} \frac{3}{8}$	$16 \frac{5}{16}$	$61 / 8$	8	59.75
15	$15 \frac{11}{16}$	$171 / 4$	$61 / 8$	8	62.25

STANDARD DIMENSIONS OF COUPLINGS

FOR DRIVE PIPE.

Size of Pipe Nominal Inside	Inside Diameter Diameter of Ooupling	Outside Diameter of oupling	Length of of Coupling	Thread per Inch of Screw.	Average Weight of Coupling
in Pounds.					

STANDARD DIMENSIONS OF COUPLINGS
FOR
TUBING.

Size of Tube Nominal Inside Diameter	Inside Diameter of Coupling	Outside Diameter of Coupling	Length of Coupling	Thread per Inch of Screw.	Average Weight of Coupling in Pounds.
Inches.	Inches.	Inches.	Inches.		
$11 / 4$	$11 / 1{ }^{2}$	$21 / 8$			
2_{2}^{112}	123 238 285		2013	$111 / 9$	1.18 2.50
$21 / 2$	23 23 23 23	2188	334	$111 /$	3.12
3	- $3 \frac{3}{7}$	$4{ }^{18}$	334	111/2	3.85
31/2	$3{ }^{8}$	$4{ }^{13}$	$4{ }^{16}$	8	5.09
4	$4{ }^{\frac{7}{37}}$	$5{ }^{\frac{3}{3}}$	$4{ }^{16}$	8	6.50
41/83	$4{ }^{\frac{3}{23}}$	55%	$4{ }^{\frac{185}{15}}$	8	7.70
5	$51 / 4$	${ }^{6}{ }^{\frac{8}{6}}$	$51 / 8$	8	1121
6	6_{16}^{5}	$7 \frac{1}{3} \frac{3}{2}$	51/8	8	12.00

$$
\begin{aligned}
& \text { - ว๖จ }
\end{aligned}
$$

WKKXAXAXXAXAXXAXA

Nox Nox

－Sวsurid

 jo red 10 วपร！วМ

s s log ј0 ч7จับวา	玉ixino r- ix
jo daqunN	ササーण000000000000
$\begin{aligned} & \text { "ə8ueाH } \\ & \text { jo qnH } \\ & \text { fo ssəuyग! } \end{aligned}$	

spu＇g Id －adid jo foog 	
әృए	
7sə L II！	

－2d！ 10

－चd！\ddagger

LAP-WELDED PIPE FIT'TED WITH CAST IRON COLLAR FLANGES.

Complete.
All Quotat
All Quotations Based on Random Lengths.

－2d！d 10 $\text { - } \mathrm{O} \text { ' }$	
－372＇sliog ＇sə8u飞IH प7！M	ท
＇ad！ 10 700 ェəd $74812 M$	

	$\cdots \infty$ Wొ్సొ＝－ HAXXAXAXHMXHKXAX NownNo

＇Sə．8UとIM 10 	

$\begin{aligned} & \text { ©S7IOg } \\ & \text { jO } 2 z I S \end{aligned}$	
＊S70G ј0 प78นวา	

＇ə．nnssəxd $\partial \mathrm{JeS}$	
$\begin{gathered} \text { "əd!d } \\ \text { jo } \\ \text { วsəL IIIN } \end{gathered}$	
$\begin{gathered} \text { •⿰d!! } \\ \text { јo ssəuyว! } \end{gathered}$	

I O	
'sasuel.f पł!M әd!d 10700 H ェə	O규기N

sә,surid jo 	를
$\begin{aligned} & \text { şlog } \\ & \text { jo } \operatorname{zz!S} \end{aligned}$	
-S7[0G 	

- ว8ัue[f ๖0 ssəuभว!บL	

$\begin{gathered} \text { •əd!̣d } \\ \text { jo } \ddagger s ə \mathrm{~L}[1!\mathrm{N} \end{gathered}$	
əd!d 	
$\text { A O } 0$	-

LAP－WELDED
All Quotations are Based on Random Lengths．

 әd！d 30700 Д

	Wixumbunm
งұำg јо чวรัวา	
səoh ¥og jo วさไuวว	にた

$\begin{aligned} & \text { osurit u! } \\ & \text { soloH fiog jo } \\ & \text { raquinN } \end{aligned}$	－ $000000 \times$ Nañ
－ว8иет јо ssәuצग！чL	
${ }^{2} \cdot \mathrm{a}$	ジロ○日

－spug id	
	－

－யueat 	
$\begin{array}{\|c\|} \hline \text {-d!!d } \\ \text { jo } 7 \mathrm{~s} \partial \mathrm{~L} \text { I!!W } \end{array}$	
$\begin{gathered} \text {-ad!d } \\ \text { fo ssวuभp! } \end{gathered}$	

10	
10x	

～ず

SPECIAL LIGET LAP-WELDED PIPE Fitted with Cast Iron Lugged Flanges.

LAP-WELDED PIPE
Fitted with Cast Iron Collar Flanges.

LAP-WELDED PIPE
Fitted with Cast Iron Double Riveted Flanges.

LAP-WELDED PUMP COLUMNS
Fitted with Cast Iron Lugged Pump Column Flange.

LAP-WELDED PIPE
Fitted with Cast Iron Single Riveted Flanges.

Fitted with Solid Welded Flanges.

Pipe Size.	Outside Diameter of Flange	Thickness of Face.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { ofts. } \end{gathered}$	Size of Bolts.	Bolt Hole Circle.	Weight per Pair in Lbs.
Inches. 2	Inches. 6	Inches. 5/8	4	Inches.	Inches. 43/4	8
$21 / 2$	7	$\frac{11}{1} 8$	4	1/2	$51 / 2$	12
3	$71 / 2$	3/4	4	1/2	6	14
$31 / 2$	$81 / 2$	$\frac{1}{18}$	4	1/2	7	20
4	9	$\frac{1}{15}$	4	5/8	$71 / 2$	24
$41 / 2$	91/4	$\frac{15}{15}$	8	5/8	73/4	25
5	10	$\frac{1}{15}$	-8	5/8	$81 / 2$	30
6	11	1	8	5/8	$91 / 2$	34
7	121/2	$1 \frac{1}{16}$	8	5/8	103/4	46
8	$131 / 2$	$11 / 8$	8	5/8	113/4	54
9	15	$11 / 8$	12	5/8	131/4	66
10	16	$1{ }_{1}{ }^{\frac{8}{6}}$	12	$3 / 4$	141/4	74
12	19	11/4	12	$3 / 4$	17	112
14 o.d.	21	$13 / 8$	12	7/8	183/4	147
15 "	221/4	$13 / 8$	16	7/8	20	162

SPECIAL

Steel Lap-Welded Pipe,

FITTED WITH
CONVERSE PATENT LOCK JOINT. (Cast Iron Hub.)

SILVERTIN.

Size.
APPROXIMATE, WEIGHT.

O. D. Inches.	Nearest B'g'm Wire Gauge.	Plain Ends, per foot. lbs.	Hub. lbs.	Lead, one side. lbs.	Complete, per foot. lbs.
2	13	1.91	5	1	2.00
3	12	3.33	9	2	3.94
4	11	4.89	14	$21 / 2$	5.81
5	10	6.85	19	3	8.02
6	10	8.26	21	4	9.65
7	9	10.65	32	$51 / 2$	12.74
8	9	12.21	35	7	14.54
9	$81 / 2$	14.58	$371 / 2$	$71 / 2$	17.08
10	81/2	16.18	41	8	18.90
12	7	22.35	58	10	26.13
14	7	25.25	73	12	30.00
15	$61 / 2$	30.00	85	15	36.40
16	5	39.60	132	$171 / 2$	46.25
18	1/4"	47.00	149	30	56.25
20	5 ${ }^{16}$	65.15	217	38	78.50
22	$\frac{11}{82}{ }^{\prime \prime}$	78.50	280	50	96.00
24	$3{ }^{\prime \prime}$	93.50	342	$581 / 2$	114.50
26	$3 / 8{ }^{\prime \prime}$	102.00	380	70	138.00
28	$3 / 8$ "	110.00	430	85	151.00
30	$7^{7 \prime \prime}$	136.60	475	100	168.60

WEIGHTS OF FITTINGS.

Converse Joint.

As a matter of convenience and to give an idea of the average weight of Converse Patent Lock Joint Fittings, we submit the following list of a few standard patterns.

All ends are Converse Lock Bells, except where otherwise stated. Bell connections for cast iron pipe are indicated by an asterisk (*) ; bell connections for threaded pipe, by a single dagger (\dagger).

REDUCING TEES.

Size.	$\left\|\begin{array}{c} \text { Weight } \\ \text { lbs. } \end{array}\right\|$	Size.	$\begin{gathered} \text { Weight } \\ \text { 1bs. } \end{gathered}$	Size.	$\begin{gathered} \text { Weight } \\ \text { lbs. } \end{gathered}$
3×2x2	34	6x5x5	81	$14 \times 14 \times 10$	
$3 \times 2 \mathrm{x} 3$	30	$6 \times 6 \times 5$	97	$14 \times 14 \times 12$	
$3 \times 3 \times 2$	36	$7 \times 4 \times 7$		16x16x 4	330
3x4x3	35	$7 \times 7 \times 4$	81	16x16x 6	355
$4 \times 2 \times 4$	43	$7 \times 5 \times 7$		16x16x 8	
$4 \times 3 \times 2$	39	$7 \times 7 \times 5$	\ldots	16x16x10	
$4 \times 4 \times 2$	35	$7 \times 6 \times 7$...	16x16x12	
$4 \times 3 \times 4$	36	7x7x6	...	16x16x14	
$4 \times 4 \times 3$	37	7x6x6		18x18x 6	
$4 \times 3 \times 3$	40	$8 \times 4 \times 8$	107	18x18x10	
$4 \times 4 \times 6$	55	$8 \times 8 \times 4$	91	18x18x12	
$5 \times 3 \times 5$		$8 \mathrm{x} 5 \times 8$	117	18x 18×16	
5x5x3	57	8 x 8 x 5	118	20x20x 6	
$5 \times 4 \times 5$		$8 \times 6 \times 5$	100	$20 \times 20 \times 8$	640
5x5x4	60	$8 \times 6 \times 8$	103	$20 \times 20 \times 10$	
5x5x6	70	$8 \times 8 \times 6$	97	$20 \times 20 \times 12$	
6x3x3	60	$8 \times 6 \times 6$	87	20x20x14	
6x3x6	60	10x10x4	118	20x20x16	
6x4x5	76	10x10x5		$24 \times 24 \mathrm{x} 6$	
6x4x6	68	10x6x 10		$24 \times 24 \mathrm{x} 8$	
6x6x3	59	10x10x6	141	$24 \times 24 \times 10$	
6x6x4	70	10x10x8	136	$24 \times 24 \times 12$	
6x5x4	79	12x12x4	161	$24 \times 24 \times 14$	
6x4x4	58	12x12x6	156	$24 \times 24 \times 16$	
$6 \times 5 \times 6$		12x12x8	160		

CONVERSE JOINT FIT'TINGS.

CROSSES.

Size.	$\begin{gathered} \text { Weight } \\ \text { lbs. } \end{gathered}$	Size.	$\begin{gathered} \text { Weight } \\ \text { lbs. } \end{gathered}$	Size.	$\begin{gathered} \text { Weight } \\ \text { lbs. } \end{gathered}$
2x2x2x2	21	$8 \mathrm{x} \mathrm{8x} 8 \mathrm{x} 8$	156	18x18x18x18	
$3 \mathrm{x} 3 \times 3 \times 3$	39	$10 \times 10 \times 10 \times 10$	205	20x20x20x20	
$4 \times 4 \times 4 \times 4$	57	$12 \times 12 \times 12 \times 12$	306	22x22x22x22	
5x5x5x5	71	14x14x14x14	...	$24 \times 24 \times 24 \times 24$	
6x6x6x6	104	16x16x16x16			

REDUCING CROSSES.

Size.	$\left.\begin{gathered} \text { Weight } \\ \text { lbs. } \end{gathered} \right\rvert\,$	Size.	$\begin{array}{\|c\|} \hline \text { Weight } \\ \text { lbs. } \end{array}$	Size.	$\begin{gathered} \text { Weight } \\ \text { lbs. } \end{gathered}$
$3 \times 3 \times 2 \times 2$		6x $4 \times 6 \times 4$	78	10x $8 \times 10 \times 8$	218
$3 \times 2 \times 3 \times 2$		6 x 6 x 6 x 3	103	12x12x 6x 6	166
$4 \times 4 \times 2 \times 2$	39	8 x 8 x 4 x 4	98	12 x 6 x 12 x 6	
$4 \times 4 \times 3 \times 3$	46	8 x 4 x 8 x 8	131	12 x 12 x 8 x 8	
4x3x4x3	60	8 x 6 x 8 x 6	129	12x $8 \times 12 \mathrm{x} 8$	
5x5x3x3	50	8 x 6 x 4 4 4	132	$12 \times 10 \times 12 \times 10$	261
$5 \mathrm{x} 3 \times 5 \mathrm{x} 3$		8 x 8 x 6 x 6	118	$14 \times 14 \times 12 \times 12$	
$5 \times 5 \times 4 \times 4$	71	8 x 8 xx 5 x	127	$16 \times 16 \times 10 \times 10$	
$5 \times 4 \times 5 \times 4$		10x10x 4x 4	125	$16 \times 16 \times 12 \times 12$	
$5 \times 5 \times 5 \times 4$	71	10x 4x10x 4	123	$18 \times 18 \mathrm{x}$ 6x 6	
6x6x4x4	77	$10 \times 10 x 5 \times 5$	162	$18 \times 18 \times 10 \times 10$	
$6 \times 6 \times 3 \times 3$	67	10x 5x10x 5		18x18x12x12	646
6x3x6x3		$10 \times 10 x 686$	166	20x20x 6x 6	
$6 \times 6 \times 5 \times 5$	120	10x 6x10x 6		$20 \times 20 \times 10 \times 10$	
6x5x6x5	102	10x10x 8x $8 \mid$	198	20x20x16x16	

MISCELLANEOUS CROSSES.

Size.	Weight lbs.	Size.	$\begin{gathered} \text { Weight } \\ \text { lbs. } \end{gathered}$	Size.	$\begin{gathered} \text { Weight } \\ \text { lbs. } \end{gathered}$
$4 \times 4 \times 6 \times 4$	92	6x6x6x4	105	$8 \times 6 \times 8 \times 4$	
$6 \mathrm{x} 5 \times 6 \mathrm{x} 4$	110	$6 \times 6 \times 6 \times 3$	103	$8 \mathrm{x} 4 \times 6 \times 6$	136
$6 \mathrm{x} 4 \times 4 \times 4$	90	$8 \times 6 \times 8 \times 5$	126		
6x4x6x3	93	$8 \mathrm{x} 4 \times 8 \times 8$	131

Some of the weights in these tables of Converse Joint Fittings are not given ; the reason being that there are not Standard patterns for the sizes where weights are omitted, and the patterns of some other sizes are made adaptable for same. This would cause a variation in weights, and for this reason it is thought best to give no fixed weights for fittings so manufactured.

TEES.

Size.	Weight, lbs.	Size.	Weight, lbs.	Size.	$\begin{aligned} & \text { Weight, } \\ & \text { lbs. } \end{aligned}$
$2 \times 2 \times 2$	17	8 x 8 x 8	127	$15 \times 15 \times 15$	\ldots
$3 \times 3 \times 3$	29	9 x 9 x 9		16x16x16	\ldots
$4 \times 4 \times 4$	45	$10 \times 10 \times 10$	178	$18 \times 18 \times 18$	
$5 \times 5 \times 5$	56	$12 \times 12 \times 12$	192	20x20x20	95%
6x6x6	70	$13 \times 13 \times 13$		$22 \times 22 \times 22$	
$7 \times 7 \times 7$	84	$14 \times 14 \times 14$	359	$24 \times 24 \times 24$	

MISCELLANEOUS TEES.

SIzE.	Weight, lbs.	Size.	Weight, lbs.	Size.	Weight, lbs.
$6 \times 5 \times 4$	79	10x 8×10	135	12 x 8 x 12	282
10x 4×10		$10 \times 10 \times 12$	182	$12 \times 8 \mathrm{x} 8$	
10x 5×10		10x 8×8		$14 \times 12 \times 14$	
10x 6x 6	110	$12 \times 6 \times 12$		16x 8x16	600

REDUCERS.

Size.	Weight, lbs.	Size.	Weight, lbs.	Size.	Weight, lbs.
3 to 2	27	8 to 5	70	16 to 6	295
4 to 2	22	8 to 6	63	16 to 8	
4 to 3	27	10 to 4	90	16 to 10	256
5 to 3	39	10 to 5	94	16 to 12	256
5 to 4	36	10 to 6	94	18 to 16	442
6 to 2	55	10 to 8	107	20 to 12	395
6 to 3	36	12 to 5	154	20 to 18	505
6 to 4	40	12 to 6	154	20 to 16	608
6 to 5	46	12 to 8	138	24 to 12	
7 to 5	52	12 to 10		24 to 18	
8 to 3	60	13 to 12	90	24 to 20	
8 to 4	53	14 to 13	88		

ELLS.

Size.	Wt. lbs.	Size.	Wt. 1bs.	SIzE.	wt. lbs.
$2 \times 2 \times 90^{\circ}$	12	$7 \times 7 \times 45^{\circ}$.	$14 \times 14 \times 22 \frac{1}{2}^{\circ}$	
$2 \times 2 \times 60^{\circ}$		$7 \times 7 \times 30^{\circ}$		$14 \times 14 \times 10^{\circ}$	
$2 \times 2 \times 45^{\circ}$	9	$7 \times 7 \times 22 \frac{1}{2}^{\circ}$	39	$15 \times 15 \times 90^{\circ}$	
$2 \times 2 \times 30^{\circ}$	8	$7 \times 7 \times 10^{\circ}$		$15 \times 15 \times 60^{\circ}$	
$2 \times 2 \times 22 \frac{1}{2}^{\circ}$		$8 \times 8 \times 90^{\circ}$	95	$15 \times 15 \times 45^{\circ}$	
$2 \times 2 \times 10^{\circ}$		$8 \mathrm{x} 8 \times 60^{\circ}$	71	$15 \times 15 \times 30^{\circ}$	
$3 \times 3 \times 90^{\circ}$	25	$8 \mathrm{x} 8 \times 45^{\circ}$	69	$15 \times 15 \times 22 \frac{1}{2}^{\circ}$	
$3 \times 3 \times 60^{\circ}$		$8 \mathrm{x} 8 \times 30^{\circ}$		$15 \times 15 \times 10^{\circ}$	
$3 \times 3 \times 45^{\circ}$	12	$8 \mathrm{x} 8 \times 22 \frac{1}{2}^{\circ}$	64	$16 \times 16 \times 90^{\circ}$	420
$3 \times 3 \times 30^{\circ}$		$8 \mathrm{x} 8 \times 10^{\circ}$	50	$16 \times 16 \times 60^{\circ}$	
$3 \times 3 \times 22 \frac{1}{2}^{\circ}$	13	$10 \times 10 \times 90^{\circ}$	148	$16 \times 16 \times 45^{\circ}$	265
$3 \times 3 \times 10^{\text {- }}$		$10 \times 10 \times 60^{\circ}$		$16 \times 16 \times 30^{\circ}$	
$4 \times 4 \times 90^{\circ}$	32	$10 \times 10 \times 45^{\circ}$	93	$16 \times 16 \times 22 \frac{1}{2}^{\circ}$	
$4 \times 4 \times 60^{\circ}$	25	$10 \times 10 \times 30^{\circ}$		$16 \times 16 \times 10^{\circ}$	
$4 \times 4 \times 4{ }^{\circ}$	23	$10 \times 10 \times 22 \frac{1}{2}^{\circ}$		$18 \times 18 \times 90^{\circ}$	
$4 \times 4 \times 30^{\circ}$	17	$10 \times 10 \times 10^{-}$		$18 \times 18 \times 60^{\circ}$	
$4 \times 4 \times 22 \frac{1}{2}^{\circ}$.	$12 \times 12 \times 90^{\circ}$	205	$18 \times 18 \times 45^{\circ}$	
$4 \times 4 \times 10^{\circ}$		$12 \times 12 \times 60^{\circ}$		$18 \times 18 \times 30^{\circ}$	
$5 \times 5 \times 90^{\circ}$	41	$12 \times 12 \times 45^{\circ}$	132	$18 \times 18 \times 22 \frac{1}{2}^{\circ}$	
$5 \times 5 \times 60^{\circ}$		$12 \times 12 \times 30^{\circ}$	108	$18 \times 18 \times 10^{\circ}$	
$5 \mathrm{x} 5 \times 45^{\circ}$	32	$12 \times 12 \times 22 \frac{1}{2}^{\circ}$	112	$20 \times 20 \times 90^{\circ}$	840
$5 \times 5 \times 30{ }^{\circ}$		$12 \times 12 \times 10^{\circ}$	95	$20 \times 20 \times 60^{\circ}$	
$5 \times 5 \times 22{\frac{1}{}{ }^{\circ}}$.	$13 \times 13 \times 90^{\circ}$	230	$20 \times 20 \times 45^{\circ}$	
$5 \times 5 \times 10^{\circ}$		$13 \times 13 \times 60^{\circ}$.	$20 \times 20 \times 30^{\circ}$	620
$6 \times 6 \times 90^{\circ}$	5%	$13 \times 13 \times 45^{\circ}$		$20 \times 20 \times 22 \frac{1}{2}^{\circ}$	365
$6 \times 6 \times 60^{\circ}$	48	$13 \times 13 \times 30^{\circ}$		$20 \times 20 \times 10^{\circ}$	
$6 \times 6 \times 45^{\circ}$	41	$13 \times 13 \times 22^{\frac{1}{2}}{ }^{\circ}$		$24 \times 24 \times 90^{\circ}$	1143
$6 \times 6 \times 30^{\circ}$	39	$13 \times 13 \times 10^{\circ}$		$24 \times 24 \times 60^{\circ}$	
$6 \times 6 \times 22 \frac{1}{2}^{\circ}$	30	$14 \times 14 \times 90^{\circ}$	247	$24 \times 24 \times 45^{\circ}$	
$6 \times 6 \times 10^{\circ}$	30	$14 \times 14 \times 60^{\circ}$		$24 \times 24 \times 30^{\circ}$	
$7 \times 7 \times 90^{\circ}$	72	$14 \times 14 \times 45^{\circ}$	163	$24 \times 24 \times 22 \frac{1}{2}^{\circ}$	550
$7 \times 7 \times 60^{\circ}$		$14 \times 14 \times 30^{\circ}$		$24 \times 24 \times 10^{\circ}$	

Y'S.

Size.	Wt. 1bs.	Size.	Wt. 1bs.	Size.	Wt. 1bs.
3x3x 3	33	$6 \times 6 \times 6$	123	$12 \times 12 \times 12$	350
$4 \times 4 \times 4$	70	$8 \times 8 \times 8$	180	$18 \times 18 \times 18$	1145
$5 \times 5 \times 5$	95	$10 \times 10 \times 10$	262	20x20x20	2400

PLUGS.

SIZE.	Wt. lbs.	SIZE.	Wt. lbs.	SIZE.	Wt. lbs.
		1	6	10	10
3	3	7	14	12	25
4	5	8	19	14	40
5	9	9	22	16	54

MISCELLANEOUS.

CROSSES.		TEES.		ELLS.	
Size.	Wt. lbs.	Size.	Wt. lbs.	Size.	Wt. lbs.
$\begin{aligned} & 3 \times 3 \times 1+\times 1 \dagger \\ & 4 \times 4 \times 2+\times 2 \dagger \\ & 4 \times 4 \times 6^{*} \times 6^{*} \\ & 4 \times 4 \times 4 \times 2 \dagger \\ & 6 \times 6 \times 8^{*} \times 8^{*} \\ & 6 \times 6 \times 4 \times 2 \dagger \end{aligned}$	22	$2 \mathrm{x} 2 \times \mathrm{l}+$	11	$6 \mathrm{x} 4+\mathrm{x} 90^{\circ}$	70
	56	$2 \mathrm{x} 2 \mathrm{x} 1 \frac{1}{2}+$	11	$6 \mathrm{x} 5+\times 90^{\circ}$	65
	124	$3 \mathrm{x} 3 \mathrm{x} 1{ }^{+}$	22	$12 \times 12+$ x $60{ }^{\circ}$	180
	75	$3 \mathrm{x} 2 \dagger \mathrm{x} 3$	43	REDUCE	RS.
	184	4x 4×2	44	Size.	Wt. 1bs
	83	$\begin{array}{llll}5 \times 1 & 3 & \mathrm{x} 2 \\ 6 \mathrm{x} & 6 & \mathrm{x} 2\end{array}$	97	4 to $2 \downarrow$	17
		$10 \times 10 \times 4 \frac{1}{2}+$	163	12 to 12^{*}	247
		$10 \times 10 \times 7{ }^{7}$	165	16 to 16^{*}	450
		4x 4×4	49	8 to $8 *$	61
		$2 \mathrm{x} 2 \mathrm{x} 2+$	16	8* to 6	62
		$6 \times 6 \times 6$ *	115	6^{*} to 6	46

Fittings on the above Miscellaneous List may vary in weight 15 per cent. All combinations of Converse and threaded pipe, and Converse and cast-iron pipe connections will be uncertain weights, as patterns are changed for each requirement.

SPECIAL

Steel Lap-Welded Pipe

FITTED WITH
 MATHESON PATENT JOINT.

| O. D. | Thick-
 ness
 nearest
 B. W. G. | Approximate Weights. | | Per Foot
 Complete. | Pounds of
 Lead
 in Joint. |
| :---: | :---: | :---: | :---: | :---: | :---: | | Lead |
| :---: |
| Space. |\quad| Size of |
| :---: |
| Rings. |

WEIGHT OF FITTINGS.

 Matheson Joint.Heavy-faced figures indicate openings tapped for Standard Pipe.

TEES.

| Size. | Wgt. 1bs.\|| | Size. | Wgt. 1bs. |
| :---: | :---: | :---: | :---: |
| $2 \times 2 \times 2$ | 11 | $6 \mathrm{x} 5 \times 4$ | 96 |
| $3 \times 3 \times 3$ | 19 | 6 x ¢ 63 | 93 |
| $3 \mathrm{x} 3 \times 4$ | 35 | 6 x 4 x | 100 |
| $4 \times 4 \times 4$ | 35 | $6 \mathrm{x} 3 \times 16$ | 90 |
| $4 \times 4 \times 4$ | 39 | $7 \times 7 \times 7$ | |
| $4 \times 4 \times 3$ | 35 | $7 \times 7 \times 6$ | 115 |
| $4 \times 4 \times 3$ | 35 | 8 x ¢ 8 x 8 | 159 |
| $4 \times 4 \times 2$ | 37 | $8 \times 8 \times 6$ | 173 |
| $4 \times 4 \times 2$ | 36 | $8 \times 8 \times 4$ | 172 |
| $4 \times 4 \times 1$ | 34 | $8 \times 6 \times 8$ | 176 |
| $4 \times 4 \times 6$ | 98 | $9 \times 9 \times 10$ | |
| $4 \times 3 \times 4$ | 35 | $10 \times 10 \times 10$ | 256 |
| $5 \times 5 \times 5$ | 41 | $10 \times 10 \times 8$ | 270 |
| $5 \times 5 \times 4$ | 58 | $10 \times 10 \times 6$ | 268 |
| $5 \times 5 \times 4$ | 58 | $10 \times 10 \times 4$ | 285 |
| $5 \times 3 \times 5$ | 56 | $11 \times 11 \times 11$ | 353 |
| $6 \times 6 \times 6$ | 91 | $12 \times 12 \times 12$ | . . |

ELBOWS.

Size.	Degree.	Wgt lbs.	Size.	Degree.	Wgt.1bs.
2×2	90	9	8×8	30	60
3×3	45	11	8×8	45	77
3×3	90	18	8×8	90	137
4×4	45	22	9×9	45	..
4×4	90	33	9×9	90	
4×3	90	32	10×10	13	66
5×5	45	36	10×10	16	78
5×5	90	45	10×10	18	79
6×6	30	29	10×10	25	90
6×6	45	45	10×10	28	98
6×6	45	45	10×10	30	98
6×6	90	79	10×10	36	110
7×7	45	57	10×10	45	126
7×7	90	100	10×10	90	235

ELBOWS.

Size.	Degree.	Weight lbs.	SIzE.	Degree.	Weight lbs.
11×11	45	160	12×12	45	\ldots
11×11	60	192	12×12	90	372
11×11	90	255			

CROSSES.

Size.	Weight. lbs.	SIze.	Weight. lbs.
$2 \times 2 \times 2 \times 2$	13	$6 \times 4 \times 3 \times 3$	125
$3 \times 3 \times 3 \times 3$	28	$7 \times 7 \times 7 \times 7$	135
$4 \times 4 \times 4 \times 4$	42	$7 \times 7 \times 6 \times 6$	153
$4 \times 4 \times 4 \times 3$	43	8×8 x 8 x 8	200
$4 \times 4 \times 3 \times 3$	46	$8 \times 8 \times 8 \mathrm{x} 4$	229
$4 \times 4 \times 2 \times 2$	45	$8 \times 8 \times 8 \times 6$	230
$4 \times 4 \times 2 \times 2$	43	$8 \times 8 \times 4 \times 4$	209
$4 \times 3 \times 3 \times 3$	45	$8 \times 8 \times 14 \times 16$	1190
$5 \times 5 \times 5 \times 5$	66	$8 \times 6 \times 8 \times 6$	220
$5 \times 5 \times 5 \times 4$	69	$8 \times 6 \times 8 \times 4$	235
$5 \times 5 \times 4 \times 4$	74	$8 \times 6 \times 3 \times 3$	238
$5 \times 4 \times 5 \times 5$	72	$8 \times 4 \times 4 \times 4$	218
$6 \times 6 \times 6 \times 6$	108	$9 \times 9 \times 9 \times 9$	
$6 \times 6 \times 4 \times 4$	117	$10 \times 10 \times 10 \times 10$	337
$6 \times 6 \times 4 \times 3$	120	$10 \times 10 \times 10 \times 8$	339
$6 \times 4 \times 4 \times 4$	127	$12 \times 12 \times 12 \times 12$	

Heavy faced figures indicate openings tapped for Standard Pipe.

REDUCERS.

Size.	Weight	Size.	Weight Lbs.	Size.	$\begin{aligned} & \text { Weight } \\ & \text { Lbs. } \end{aligned}$
3×2	.	6×4	21	9×8	.
4×3	11	6×3	.	9×7	-
4×3	14	6×3	25	9×6	.
4×2	12	7×6	.	10×9	.
5×5	19	7×5	-	10×8	50
5×4	17	8×7		10×6	46
5×3	.	8×6	39	10×4	52
6×5	.	8×4	43	12×10	75
6×4	22				

PLUGS.

Size.	Weight Lbs.	Size.	Weight Lbs.	Size.	Weight Lbs.
2	1	6	7	10	23
3	2	7	13	12	\ldots
4	3	8	15	14	58
5	5	9	\ldots	16	88
			14		

Heavy-faced figures indicate openings tapped for Standard Pipe.
Some of the weights in these tables of Matheson Joint Fittings are not given; the reason being that there are not Standard patterns for sizes where weights are omitted and the patterns of some other size are made adaptable for same. This would cause a variation in weights, and for this reason it is thought best to give no fixed weights for fittings so manufactured.

PLAIN UPSET.

UPSET TUBES are becoming very generally used for Marine Boiler work ; in many cases the ordinary, as well as the Stay Tubes, are thickened or upset on ends, greater durability and strength being claimed for same.

The difficulties encountered in upsetting ends of tubes are not generally appreciated, and upsets are often asked for that are either very difficult or practically impossible to make. As a guide for ordering such tubes a set of tables has been prepared showing the practicable limits that should be observed in tubes of this kind. If a greater diameter is required for upset end than that shown on table giving maximum upset-this can be accomplished by expanding the end after upsetting as is shown in the cut below. The tables are all based on an upset $21 / 2$ inches long which is the usual length for Boiler Stay Tubes. If shorter length will answer a heavier upset than those shown on maximum table can be secured.

UPSET AND SWELLED.
NATIONAL TUBE COMPANY.
TABLE SHOWING ORDINARY UPSET FOR TUBES.

		Outside Diameter in Inches.																
		$11 / 2$	$13 / 4$	2	21/4	21/2	$23 / 4$		$31 / 4$	$31 / 2$	$33 / 4$	4	41/4	41/2	$43 / 4$	5		
10	. 134	1.70	1.95	2.20	2.45	2.70	2.95	3.20	3.45	3.70	3.95	4.20	4.45	4.70	4.95	5.20	Outsid of	Diameter Upset.
9	. 148	1.72	1.97	2.22	2.47	2.72	2.97	3.22	3.47	3.72	3.97	4.22	4.47	4.72	4.97	5.22	*	,
8	. 165	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	c	"
7	. 188	1.78	2.03	2.28	2.53	2.78	3.03	3.28	3.53	3.78	4.03	4.28	4.53	4.78	5.03	5.28	6	6
6	. 203	1.80	2.05	2.30	2.55	2.80	3.05	3.30	3.55	3.80	4.05	4.30	4.55	4.80	5.05	5.30	6	6
5	. 219	1.83	2.08	2.33	2.58	2.83	3.08	3.33	3.58	3.83	4.08	4.33	4.58	4.83	5.08	5.33	،	*
4	. 238	1.86	2.11	2.36	2.61	2.86	3.11	3.36	3.61	3.86	4.11	4.36	4.61	4.86	5.11	5.36	66	"
$1 / 4$. 250	1.88	2.13	2.38	2.63	2.88	3.13	3.38	3.63	3.88	4.13	4.38	4.63	4.88	5.13	5.38	6	6
-989	. 281	1.92	2.17	2.42	2.67	2.92	3.17	3.42	3.67	3.92	4.17	4.42	4.67	4.92	5.17	5.42	.	*
88 16 16	. 313	1.97	2.22	2.47	2.72	2.97	3.22	3.47	3.72	3.97	4.22	4.47	4.72	4.97	5.22	5.47	,	6
16 $\frac{11}{82}$. 344	2.02	2.27	2.52	2.77	3.02	3.27	3.52	3.77	4.02	4.27	4.52	4.77	5.02	5.27		،	6
82 $3 / 8$. 375	2.06	2.31	2.56	2.81	3.06	3.31	3.56	3.81	4.06	4.31	4.56	4.81	5.06				،
$\frac{1}{8} \frac{8}{3}$. 406	2.11	2.36	2.61	2.86	3.11	3.36	3.61	3.86	4.11	4.36	4.61	4.86				,	/f
$\frac{1}{7}{ }^{7}$ 16	. 438	2.16	2.41	2.66	2.91	3.16	3.41	3.66	3.91	4.16	4.41	4.66						f

山. 『『		Outside Diameter in Inches																
	烒烒药	11／2	$13 / 4$	2	214	21／2	23／4	3	31／4	31／2	33／4	4	$41 / 4$	$41 / 2$	$43 / 4$	5		
10	． 134	1.77	2.02	2.27	2.52	2.77	3.02	3.27	3.52	3.77							Outsi	de Diameter f Upset．
9	． 148	1.80	2.05	2.30	2.55	2.80	3.05	3.30	3.55	3.80	4.05	4.30						،
8	． 165	1.83	2.08	2.33	2.58	2.83	3.08	3.33	3.58	3.83	4.08	4.33	4.58	4.83				＂
7	． 188	1.88	2.13	2.38	2.63	2.88	3.13	3.38	3.63	3.88	4.13	4.38	4.63	4.88	5.13	5.38		＊
6	． 203	1.91	2.16	2.41	2.66	2.91	3.16	3.41	3.66	3.91	4.16	4.41	4.66	4.91	5.16	5.41		＊
5	． 219	1.94	2.19	2.44	2.69	2.94	3.19	3.44	3.69	3.94	4.19	4.44	4.69	4.94	5.19	5.44		6
4	． 238	1.98	2.23	2.48	2.73	2.98	3.23	3.48	3.73	3．98	4.23	4.48	4.73	4．94	5.23	5．48		－6
1／4	． 250	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	5.50	，	${ }^{6}$
－${ }^{2}$	． 281	2.06	2.31	2.56	2.81	3.06	3.31	3.56	3.81	4.06	4.31	4.56	4.81	5.06	5.31	5.56		6
$\frac{5}{16}$	． 313	2.13	2.38	2.63	2.88	3.13	3.38	3.63	3.88	4.13	4.38	4.63	4.88	5.13	5.38	5.63	，	＊
$\frac{11}{81}$.344	2.19	2.44	2.69	2.94	3.19	3.44	3.69	3.94	4.19	4.44	4.69	4.94	5.19	5.44			＊
3／8	． 375	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25				＂
$\frac{18}{8} \frac{8}{2}$	． 406	2.31	2.56	2.81	3.06	3.31	3.56	3.81	4.06	4.31	4.56		5.06					6 6
$\frac{7}{16}$	． 438	12.38	2.63	2.88	3.13	3.38	3.63	3.88	4.13	4.38	4.63	4.88	｜				6	،

PIPE BENDS.

The attached table gives the advisable radius and the greatest and least radii to which standard thickness pipe may be bent.

If the radius must be reduced from the minimum given in the table, the thickness of the pipe must be increased. For such bends it is best to submit sketch.

When the radius is greater than the maximum given in the list, the bend is apt to look like a series of kinks, owing to the Bender having to take short heats, unless the radius is so great that the pipe may be bent cold.

With offset bends try to make according to Drawing F.-261, rather than Drawings F. -257 or 262 . The straight length between the bends is of advantage to the pipe Bender.

With the welded flanges there must be a short straight length of pipe adjacent to each flange. On sizes under 4 inches this should equal, at least, one and a half diameters. On sizes over 4 inches it should equal, at least, one diameter of the pipe. In all cases it is better if equal to two diameters of straight pipe.

BENT TUBES.

These are more difficult to bend than standard weight pipe. Try not to vary from the advisable radius given in the table. With tubes it is frequently necessary to increase the thickness over that of standard boiler tubes in order to bend them.

TABLE OF RADII

FOR

PIPE BENDS.

Pipe Size.	Minimum Radius.	Maximum Radius.	Advisable Radius.
Inches.	Inches.	Inches.	Inches.
21/2	10	25	15
3	12	30	18
$31 / 2$	14	35	21
4	16	40	24
41/2	18	45	27
5	20	50	30
6	24	60	36
7	28	70	42
8	32	80	48
9	36	90	54
10	40	100	60
11	44	110	66
12	48	120	72
14 o. d.	60	140	84
15 "	68°	145	90
16 "	76	150	100
18 "	90	165	125
20 "	120	180	150
22 "	132	198	165
24 "	144	216	180

STOCK PIPE BENDS

AMERICAN OR ENGLISH STANDARD

 THREADS AND COUPLINGS.

Pipe Size.	Radius "R."	Centre To Face" A."
Inches.	Inches.	Inches.
$1 / 8$	$11 / 4$	2
$1 / 4$	$1 \frac{5}{16}$	$21 / 4$
$3 / 8$	$1 \frac{7}{16}$	$2 \frac{9}{16}$
$1 / 2$	$13 / 4$	$31 / 8$
$3 / 4$	$2 \frac{3}{16}$	$3 \frac{15}{16}$
1	$2 \frac{9}{16}$	$4 \frac{9}{16}$
$11 / 4$	3	$51 / 8$
$11 / 2$	$3 \frac{5}{16}$	$5 \frac{11}{16}$
2	$4 \frac{7}{16}$	$6 \frac{1}{16}$
$21 / 2$	$6 \frac{11}{16}$	$9 \frac{7}{16}$
3	8	10

OFFSET BEND, No. F. 257.

ANGLE BEND, No. F. 260.

OFFSET BEND, No. F, 26 r.

OFFSET BEND, No. F. 262.

180° BEND, No. F. 258.
90° BEND, No. F. 259.

DIMENSIONS

of
National Trolley Poles

AND

DEFLEC'TIONS
UNDER STATED LOADS
Length of Pole, 34 feet.

Length of Pole, 34 feet.

Length of Pole, 33 feet.

Length of Pole, 33 feet.

Length of Pole， 32 feet．

	$\begin{aligned} & \stackrel{+}{0} \\ & \text { B } \\ & 0.0 \\ & B \end{aligned}$	BUTT．		MIDDLE．		END．${ }^{\text {a }}$		Table		OF	Deflections			Measured			Fref		End．
勉		$16^{\prime}-10^{\prime \prime}$		$10^{\prime}-2^{\prime \prime}$		$8^{\prime}-0^{\prime \prime}$													
号		－	\％	$\dot{0}$	0	－		Top Line Gives Loads					in Pounds		Applied		18＂From		End．
		\bigcirc	震	\bigcirc	$\underset{H}{H}$	\bigcirc	豆	400	600	800	1000	1200	1400	1600	1800	2000	2200	2400	2600
53	1552	9.625	0.625	8.00	0.437	7.00	0.312	1.14	1.71	2.29	2.86	3.42	4.00	4.58	5.15	5.72	6.29	6.84	7.44
54	1416	＂	0.562	＂	0.406	＂	0.281	1.22	1.83	2.43	3.04	3.65	4.26	4.86	5.47	6.08	6.69	7.30	7.90
55	1319	＂	0.500	＂	＂	＂	،	1.29	1.94	2.59	3.24	3.88	4.54	5.18	5.83	6.48	7.13	7.76	
6	1144	＂	0.437	8.625	0.312	7.625	0.220	1.39	2.09	2.80	3.49	4.19	4.89	5.60	6.28	6.98			2800
57	1068	＂	0.406	＂	0.281	＂	＂	1.50	2.26	3.00	3.76	4.52	5.26	6.00	6.77				8.00
58	1013	＂	0.375	8.00	0.312	7.00	0.218	1.65	2.47	3.30	4.12	4.94	5.77	6.60					
59	918	，	0.312	8.625	0.281	7.625	0.220	1.77	2.65	3.53	4.42	5.30	6.19						
60	971	9.00	0.375	8.00	0.300	7.00	0.220	1.92	2.89	3.85	4.81	5.77	6.73						
61	848	＂	0.312	＂	0.281	＂	0.220	2.20	3.29	4.39	． 49		7.69						

Length of Pole, 31 feet.

Length of Pole, 30 feet.

Length of Pole, 29 feet.

NATIONAL TUBE COMPANY.
Length of Pole, 29 feet.

$\begin{aligned} & \dot{\Phi} \\ & \text { 品 } \\ & \text { z } \\ & \text { z } \end{aligned}$	$\begin{aligned} & \stackrel{3}{3} \\ & \stackrel{0}{0} \\ & 0 \\ & 3 \end{aligned}$	BUTT.		MIDDLE.		END.		TABLE OF		DEFLECTION			S Measured			AT	FREE END.				
				$9^{\prime}-2^{\prime \prime}$		$7^{\prime}-3^{\prime \prime}$															
		$\begin{array}{l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \dot{\sim} \\ \hline 0 & \dot{\sim} \\ \hline \end{array}$		$\begin{array}{l\|l} \hline \dot{A} & \dot{u} \\ \dot{0} & \dot{y} \\ \hline \end{array}$		$\begin{array}{l\|l\|l} \hline \dot{a} & \underset{\sim}{u} \\ \dot{u} \\ \dot{u} \end{array}$		top Line Gives Loads in Pounds Applied 18* From End.													
				100	200			300	400	500	600	700	800	900	1000	1200	1400				
140	867	8.625	0.406			7.625	0.281	6.625	0.220	0.366	0.732	1.101	1.461	1.83	2.20	2.56	2.92	3.29	3.66	4.40	5.12
141	786	6	0.343	6	6	"	"	0.400	0.800	1.201	1.60	2.00	2.40	2.80	3.20	3.60	4.00	4.80	5.60		
142	702	"	0.281	"	${ }^{6}$	${ }^{\prime \prime}$	"	0.459	0.918	1.381	1.84	2.30	2.76	3.21	3.68	4.13	4.59	5.52			
143	772	8.00	0.375	6.625	0.343	5.562	0.203	0.494	0.988	1.481	1.98	2.47	2.96	3.46	3.96	4.45					
144	695	6	0.343	${ }^{6}$	0.281	6	,	0.547	1.09	1.64	2.18	2.74	3.28	3.83	4.36	4.92					
145	646	"	0.281	7.00	,	6.00	0.220	0.582	1.16	1.742	2.33	2.91	3.49	4.07	4.66	5.24			1600		
146	653	7.625	0.343	6.625	0.259	5.00	0.203	0.622	1.24	1.87	2.49	3.11	3.73	4.35	4.98	5.60					
147	587	6	0.281	"	*	5.562	6	0.694	1.39	2.08	2.78	3.47	4.16	4.86	5.56	6.25			84		
148	564	${ }^{6}$	4	6.00	'	5.00	16	0.763	1.53	2.29	3.05	3.82	4.58	5.34	6.10	6.87			0		
149	609	7.00	0.343	5.562	0.312	4.50	6	0.856	1.71	2.57	3.42	4.28	5.14	5.99	6.84	7.70					
150	537	\%	0.281	6.00	0.259	5.00	16	0.919	1.84	2.76	3.68	4.60	5.51	b. 43	7.36	8.27					
151	516	"	"	5.562	6	4.50	6	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00						
152	503	6.625	0.30	.	0.238	,	6	1.10	2.20	3.30	4.40	5.50	6.60	7.70							
153	464	"	0.259	"	6	"	*	1.20	2.40	3.60	4.80	6.00	7.20	8.40							
154	514	6.00	0.343	5.00	0.281	4.00	\%	1.36	2.72	4.08	5.446	6.80	8.16								
155	467	6	0.312	"	0.238	"	"	1.49	2.98	4.47	5.96	7.45	8.94								
156	418	*	0.259	${ }^{6}$,	،	6	1.65	3.30	4.95	6.60	8.25	9.90								

Length of Pole, 28 feet.

Length of Pole, 27 feet.

Length of Pole, 27 feet.

	$\begin{aligned} & \stackrel{1}{8} \\ & \dot{80} \\ & \dot{0} \\ & \stackrel{B}{3} \end{aligned}$	$\begin{gathered} \text { BUTT. } \\ 14^{\prime}-4^{\prime \prime} \end{gathered}$		$\frac{\text { MIDDLE. }}{8^{\prime}-2^{\prime \prime}}$		END．$6^{\prime}-6^{\prime \prime}$			ABLE	OF	Deflections			Measured		D AT	Free		END．
			$\begin{array}{r} \text { 苞 } \\ \text { H } \\ \hline \end{array}$	$\stackrel{\dot{\circ}}{\dot{\circ}}$	$\begin{array}{r} \dot{U} \\ \text { U } \\ \text { 畨 } \\ \hline \end{array}$	$\dot{0}$	\square	Top Line Gives Loads in Po						ounds APplied			18＊From		End．
								1000	1200	1400	1600	1800	2000	2200	2400	＇2600	2800	3000	3300
209	1297	9.625	0.625	8.00	0.437	7.00	0.312	1.23	1.48	1.72	1.97	2.21	2.46	2.71	2.96	3.20	3.44	3.69	4.06
210	1183	6	0.562	＂	0.406	＂	0.281	133	1.60	1.86	2.13	2.39	2.66	2.93	3.20	3.46	3.72	3.99	4.39
211	1100	＇	0.500	＂	＂	＂	＂	1.42	1.70	1.99	2.27	2.56	2.84	3.12	3.40	3.69	3.98	4.26	
212	954	＂	0.437	8.625	0.312	7.625	0.220	1.53	1.84	2.14	2.45	2.75	3.06	3.37	3.68	3.98			3600
3	891	＂	0.406	＂	0.281	＂	＂	1.64	1.97	2.30	2.62	2.95	3.28	3.61	3.94				4.44
214	845	＂	0.375	8.00	0.312	7.00	0.218	1.80	2.16	2.52	2.88	3.24	3.60	3.96					
215	764	＂	0.312	8.625	0.281	7.625	0.220	1.94	2.23	2.72	3.10	3.49	3.88						
216	810	9.00	0.375	8.00	0.300	7.00	＂	2.10	2.52	2.94	3.36	3.78	4.20						
217	705	＂	0.312	，	0.281		＂	2.39	2.87	3.35									

NATIONAL TUBE COMPANY.
Length of Pole, 26 feet.

	$\begin{aligned} & \stackrel{3}{3} \\ & \text { B } \\ & 0 \\ & B \\ & 3 \end{aligned}$	BUTT.		MIDDLE.		END.			ABLE	OF	DEFLECTIONS			Measured		AT	Free		End.
		$13^{\prime}-11^{\prime \prime}$		$7^{\prime}-10^{\prime \prime}$		6'-3'													
		\dot{A}	$\begin{aligned} & \text { M } \\ & \text { U } \\ & \text { H } \\ & \hline \end{aligned}$	$\stackrel{A}{0}$	蜜	$\begin{aligned} & \dot{\theta} \\ & \dot{0} \end{aligned}$	总	Top Line Gives Loads in P						Ounds	Applied		18^{*} From		End.
								1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3400
235	1255	9.625	0.625	8.00	$0.437{ }^{7}$	7.00	0.312	1.05	1.26	1.47	1.68	1.89	2.10	2.31	2.5	2.73	2.94		3.67
236	1144	.	0.562	"	0.406	"	0.281	1.13	1.36	1.58	1.8	2.03	2.26	2.			3.16	39	3.84
7	1063	-	0.500	"	،	،	"	1.18	1.42	1.67	1.90	2.14	2.38	2.62	2.84	3.09	3.34	3.	
8	923	'،	0.437	8.625	0.312	7.625	0.220	1.30	1.56		2.08	2.34	2.60	2.86	3.12	3.38	3.64		3800
239	862	"	0.406	"	0.281	- ${ }^{\prime}$	"	1.41	1.69	1.97	2.26	2.54	2.82	3.10	3.38	3.67			3.99
240	817	"	0.375	8.00	0.312	7.00	0.218	1.53	1.84		2.45	2.75	3.06	3.37	3.68				
2	738	"	0.312	8.625	0.281	7.625	0.220	1.63	1.95	2.28	2.61	2.93	3.26	3.59					
242	783	9.00	0.375	8.00	0.300	7.00	"	1.78	2.14	2.49	2.85	3.20	3.56	3.92					
243	682	"	0.312	"	\|0.281	"	' ${ }^{\prime}$	2.02	2.4	2.83	3.23								

Length of Pole, 24 feet.

Length of Pole， 24 feet．								End									
	药	$\frac{\text { BUTt. }}{13^{\prime}-6^{\prime}}$		$\left.\frac{\text { MIDDLE. }}{7^{\prime}-6^{\prime \prime}} \right\rvert\,$		$\frac{\text { END. }}{6^{\prime}-0^{\prime \prime}}$		Table of Deflections Measured at Free End．									
								Top	Line	Gives	Loa		Pounds	PpLI	ED $18{ }^{\circ}$	${ }^{\circ}$ From	m En
		\bigcirc	总	\bigcirc	云	0	总	100	200	300	400	600	80010		1400	1600	18002000
270		8.625	50	7.625	50.281	6.625	50.220		0.336	0.5	0672	1.01	1，34 1.68		2.35	2.69	3.02336
		＂	0.343				＂	0.185	0.370	0.555	（0．740		1481.85	2.22	2.59	2.96	3.333 .70
			0.281			5.	30	0212			0.848		1.802 .12				
	3655	8.00	${ }^{0.375}$	6.625	50.343	5． 563	0.203	0．227	0.454	$\begin{aligned} & 40.681 \\ & 40756 \end{aligned}$	10.908	1.36	1828.27				
		＂،	$\begin{gathered} 0.343 \\ 0.281 \end{gathered}$		0.281	6.00	0.220	${ }_{0}^{0.252}$		$\begin{aligned} & 40.756 \\ & 0.813 \end{aligned}$	$\begin{aligned} & 81.01 \\ & 81.08 \end{aligned}$	1.51	2．1622．52				
276	555	7.625	50.842	6.625	0．259	5.00	0.203	0.288	0.576	0.864	1.15	1.73	2.302 .88	3．46			
	497		0.281			5.563		0.322	0644	0.966	1.29		2.58322	3.86			04
	479	＂	，	6.00	．	5.00	＂	0.358	0716	1.07	1.43	2.14	2.86 3．58				
	517	7.00	0.343	5.562	20.312	4.50	＂	0.391	0.782	1.17	1.56		3．12 3.91				
	454		0.281	6.00	0.259	5.00	＂	0.426	0852	1.28	1.70	2.56	3.404 .26				
	1438	＂		5.562	2 ＂	4.50		0.460	0.920	1.38	1.84	2.76	3.68				
	428	6.625	50.300		${ }^{0.238}$		＂،	0.508	1.02	1.52	2.03	${ }_{3}^{3.04}$	${ }^{4.06}$				
	3395		0.259		＂	＂		0553		1.66	2，22	3.32	4.44				
	437	6.00	0.343	5.00	0.281	1.00	＂＂	0.622	1.24	1.87	2.48	3.74 4 10	496				
	5397	＂	［ $\begin{aligned} & 0.312 \\ & 0.259\end{aligned}$	0	0.238	＂	＂،	${ }_{0}^{0.682}$		2．28	${ }_{3}^{2.72}$	$\left\|\begin{array}{l} 4.10 \\ 4.53 \end{array}\right\|$					

Seamless

Tubular Goods

SEAMLESS DRAWN TUBING.

In submitting the following information on the subject of Seamless Tubing, together with the accompanying tables, etc., we call attention to the rapid strides made in the demand and in process of manufacture of this grade of Tubes in the last few years. These Tubes are becoming generally used for high grade Boiler work, where high steam pressures are required, especially for Marine Boilers, the Navy Department of all first-class Naval powers having extensively adopted the same. In both Locomotive and Stationary Boilers the use of this Tubing is becoming recognized as a high grade quality. The extending use of compressed air and other gases under high pressures has developed a good demand for these tubes for storage tanks, high pressure bottles, transmission lines, etc. The absence of all laps or seams, together with uniformity of size, gauge and quality, recommends this grade of material as very superior where unquestioned uniformity and strength are required, in connection with the lightest weight available for the purpose.

Seamless Tubes with varying thicknesses of walls are also being used quite extensively for Mechanical and Engineering purposes; for bushings, collars, hollow shafts, spindles, axles, etc., in the construction of different classes of machinery.

Different grades of steel can be used, giving a wide range of ductility and tensile strength, which allows a selection of material suited and adaptable to the requirements demanded. The methcd of manufacture of Seamless Tubes is such that the possibilities of physical defects in material are reduced to a minimum.

Extract from Proceedings of Niagara Falls Society of American Mechanical Engineers. December, 1898.

What Constitutes a Seamless Tube?

"Henry Souther said, in the discussion of this question, that the scientific and technical designation of a tube, whether seamed or seamless, depended solely upon the tube itself, and not upon the process followed in its manufacture. Referring to the dictionary you will find that the word "seamless" means without seam, which conveys no light upon the subject. Turning to the word "seam" it is found that it is defined as a joint, suture, or line of union, and here in the last term we find the key. A tube jointed in any way cannot be seamless. If, in the primary stages of its manufacture, it be lap, butt or lock-jointed, it cannot by any subsequent operation be deprived of the seam, and therefore cannot be considered, when completed, as being seamless A strictly seamless tube may be made by any one of three operations. First, a billet may be, by successive steps, punched into the form of a tube with extremely thick sides; and these may then, by the ordinary drawing processes, be reduced to a tube with thin walls. Next, the billet may be bored, or the blank may be cast with a hole in it, and in either case then drawn to the required dimensions. Thirdly, the tube may be made by the cupping process, which consists in taking a disk of the metal, forming it into a cup shape, gradually elongating the cup and reducing it in diameter, and finally by this means producing a tube. Each and all of these processes yield a tube which is absolutely seamless and about which there is and can be no dispute. In all tubes formed with a seam the edges have first been separated, then united, either by lap or butt weld, or by some lock-joint system, and in these the joint cannot be eliminated by any after processes. The Custom House of the United States recognizes the difference between a seam and a seamless tube. A seamless tube is one in which the walls have never been separated from the time the metal was in a molten condition to the time of the completion of the tube."

COLD DRAWN TUBES.

The Weight Sheet for Seamless Cold Drawn Tubes, as given on following page, is applicable for Tubes intended for many different purposes. The sizes from $3 / 8$ inch to $11 / 2$ inch diameter and from 16 to 23 gauge inclusive are generally classified as Bicycle Tubing, on account of their very general use in Bicycle construction. They are used, however, for many other different purposes. These Tubes are manufactured from Open Hearth Steel of analysis best suited for the purpose. They have a fine finish and are drawn accurate to size and gauge. These tubes are admirably adapted for all construction requiring a maximum strength and minimum weight. They have great rigidity and are suited for high transverse strains.

Tubes for boiler purposes, from 1 inch to 4 inches, and and from 13 to 6 gauge inclusive, are made of mild Open Hearth Steel, of analysis best suited to give toughness and ductility. The process of manufacture is such that only material free from laps, seams, cracks and all physical imperfections can be used. This insures a high uniformity of quality and reduces the possibility of accident, due to imperfections of material, laps and welds, to a minimum.

Tubes of thicknesses other than those given above are generally termed " Mechanical Tubes," and are used in the construction of many classes of machinery for bushings, hollow shafts and spindles, axles, collars, rings, ferrules, pump barrels, etc., etc. Often a considerable saving in machine work is effected by the use of these tubes in place of parts heretofore made by boring and turning round bars, the tubes admitting of a lighter and stronger construction than by using the former material.
Tubing for Locomotive, Marine and Stationary
Purposes. Engineering Foot of Seamless Cold Drawn
$\|$ | 4 -

Table showing Weight per Foot in Pounds of Various Diameters and Thicknesses of HOT FINISHED TUBES.

Table showing Weight per Foot in Pounds of Various Diameters and Thicknesses of HOT FINISHED TUBES.
(CONTINUED.)

©	THICKNESS OF WALL.									
$0 \cdot \frac{\pi}{a}$	1/4	${ }^{5}$	3/8	${ }^{\frac{7}{16}}$	1/8	${ }^{18}$	58	$3 / 4$	7/8	1
7	17.83	22.08	26.25	30.33	34.33	38.25	42.09	49.51	56.60	63.36
1/8	18.17	22.50	26.75	30.92	35.00	3899	42.92	50.51	57.79	64.69
	18.50	22.92	27.25	81.49	35.67	39.74	43.75	51.51	58.95	66.02
	18.83	23.33	27.75	32.07	36.33	40.49	44.58	52.50	60.11	67.35
	19.16	23.74	28.24	32.66	36.99	41.23	45.41	53.49	61.27	68.67
	19.49	24.16	28.74	33.24	37.66	41.98	46.24	54.49	62.43	70.00
	19.82	24.57	29.24	33.82	38.32	42.73	47.07	55.49	63.57	71.33
$7 / 8$	20.15	24.98	29.73	34.40	38.98	43.47	47.90	56.48	64.73	72.65
8	20.48	25.39	30.22	34.97	39.64	44.21	48.72	57.47	65.89	73.97
$1 / 8$	20.80	25.80	30.71	35.54	40.29	44.95	49.54	58.46	67.04	75.29
14	21.12	26.20	31.20	36.11 -	40.94	45.68	50.36	59.44	68.19	76.61
8	21.44	26.61	31.68	36.68	41.59	46.41	51.17	60.42	69.34	77.92
$1 / 9$	21.77	27.02	32.17	37.25	42.25	47.15	51.99	61.41	70.49	79.24
5	22.10	27.44	32.66	37.82	42.90	47.89	52.81	62.39	71.64	80.56
	22.43	27.85	33.15	38.39	43.55	48.62	53.63	63.37	72.79	81.87
7/8	22.76	28.26	33.64	38.96	44.20	49.36	54.44	64.35	73.93	83.18
9	23.08	28.67	34.13	39.53	44.85	50.09	55.25	65.33	75.07	84.49
$1 / 8$	23.41	29.08	34.63	40.11	45.51	50.83	56.07	66.31	7622	85.80
	23.74	29.48	35.12	40.69	46.17	51.57	56.89	67.29	77.37	87.11
3	24.07	29.88	35.61	41.26	46.83	52.31	57.71	68.27	78.51	88.42
	24.40	30.29	36.10	41.83	47.48	53.05	58.53	69.25	79.65	89.73
	${ }^{24}{ }^{\prime} 73$	30.71	36.60	42.41	48.14	53.79	59.36	70.24	80.80	91.04
3	25.06	31.12	37.10	42.99	48.80	54.53	60.18	71.23	81.95	92.35
7/8	25.39	31.53	37.59	43.57	49.46	55.27	61.00	72.22	83.10	93.66
10	25.72	31.94	38.08	44.14	50.12	56.01	61.82	73.20	84.25	94.97
$1 / 8$	26.04	32.35	38.57	44.71	50.77	56.75	62.64	74.18	85.40	96.28
	26.36	32.75	39.06	45.28	51.42	57.48	63.46	75.16	86.54	97.59
	26.68	33.15	39.54	45.85	5207	58.21	64.27	76.14	87.68	98.90
	27.01	33.56	40.03	46.42	52.73	58.95	65.09	77.13	88.83	100.21
	27.34	33.97	40.52	46.99	53.37	59.69	65.91	78.11	89.98	101.52
	27.67	34.38	41.01	47.56	54.02	60.42	66.73	79.09	91.13	102.83
78	28.00	34.79	41.50	48.13	54.68	61.15	67.54	80.07	92.27	104.14
11	28.32	35.20	41.99	48.70	55.33	61.88	68.35	81.05	93.41	105.45
	28.65	35.61	42.49	49.28	55.99	62.62	69.17	8203	94.56	106.76
	28.98	36.02	42.98	49.8 :	56.65	63.36	69.99	83.01	95.71	108.07
	29.31	36.43	43.47	50.44	57.31	64.10	70.81	83.99	96.85	109.38
	29.64	36.84	43.96	51.01	57.96	64.84	71.63	84.97	97.99	110.69
	29.97	37.26	44.46	51.59	58.60	65.58	72.46	85.96	99.14	112.00
	30.30	37.67	44.96	52.17	59.26	66.32	73.28	86.95	100.29	113.81
78	30.63	38.08	45.45	52.74	59.92	67.06	74.10	87.94	101.44	114.62

Table showing Weight per Foot in Pounds of Various

 Diameters and Thicknesses of HOT FINISHED TUBES.(CONTINUED.)

这	THICKNESS OF WALL.									
$0 \stackrel{\pi}{\square}$	$1 / 4$	${ }^{5} 8$	3/8	16	1/2	16	5/8	$3 / 4$	7/8	1
	30.96	38.49	45.94	53.31	60.58	67.80	74.92	88.92	102.59	115.93
	31.28	38.90	46.43	53.88	61.23	68.54	75.74	89.90	103.73	117.24
	31.60	39.30	46.92	54.45	61.88	69.27	76.56	90.88	104.87	118.55
	31.92	39.70	47.40	55.02	62.53	70.00	77.37	91.86	106.01	119.86
	32.25	40.11	47.89	55.59	63.19	70.74	78.19	92.85	107.16	121.17
	32.58	40.52	4838	5616	63.84	71.48	79.01	93.83	108.31	122.48
	32.92	40.94	48.88	56.74	64.50	72.22	79.84	94.82	109.47	123.80
	33.26	41.36	49.38	57.32	65.16	72.96	80.66	95.81	110.62	125.12
13.818	33.60	41.79	49.89	57.91	65.83	78.71	81.49	96.81	111.78	126.45
	33.94	42.21	50.40	58.50	66.50	74.46	82.32	97.80	112.	127.77
	34.28	42.64	50.91	59.10	67.18	75.22	88.16	98.80	114.11	129.10
	34.62 34.96	43.06	51.42	59.69	67.86	75.98	84.00	99.80	115.28	130.43
	34.96	43.49	51.93	60.29	68.54	76.75	84.85	100.81	116.	131.77
	35.28 35.59	43.89 44.29	52.42 52.90	60.86 61.43	69.20 69.85	77.49	85.68	101.80	117.60	$\begin{aligned} & 133.08 \\ & 134.39 \end{aligned}$
	35.90	44.68	53.38	61.99	70.50	78.96	87.32	103.78	119.90	135.70
1	36.	45.	53.85	62.55	71.14	79.69	88.13	104.76	121.05	137.01
	36.52	45.45	54.32	63.10	71.78	80.41	88.94	105.74	122.20	138.32
	36.85	45.86	54.79	63.66	72.42	81.14	89.75	106.72	123.35	139.64
	37.19	46.28	55.29	64.22	73.07	81.87	90.57	107.71	124.51	140.97
	37.54	46.71	55.80	64.81	78.72	8.2.61	91.39	108.70	125.67	142.30
	${ }_{38}^{37.90}$	47.15	56.32	65.41	74.40	83.35	92.22	109.70	126.84	143.64
	38.25	47.59	56.84	66.01	75.08	84.11	93.04	110.69	128	144.97
	38.60	48.03	57.37	66.62	75.77	84.88	93.89			
15$1 / 8$18388818587488	38.94	48.46	57.89	67.23	76.46	85.65	94.74	112.68	130.33	147.64
	3927	48.88	58.40	67.83	77.15	86.42	95.59	113.69	131.49	148.97
	39.60	49.79	58.90	68.42	77.83	87.19	96.44	114.70	132.64	150.29
	39.92	49.70	59.39	69.00	78.50	87.95	97.29	115.71	133.81	151.61
	40.24	50.10	59.88	69.57	79.16	88.70	98.13	116.72	134.98	152.92
	40.56	50.50	60.36	70.14	79.81	89.41	98.96	117.73	136.15	154.25
	40.88	50.90	60.84	70.70	80.46	9017	99.78	118.73	137.32	155.58
	41.20	51.30	61.32	71.26	81.12	90.90	100.59	119.72		156.91
16	41.52	51.70	61.80	71.82	81.76	91.62	101.40	120.70	139.65	158.24
	41.84	52.10	62.28	72.38	82.40	92.34	102.20	121.67	140	159.57
	42.14	52.48	62.74	72.92	83.02	93.04	102.98	122.62	141.92	160.87
	42.45	52.87	63.21	73.47	83.65	93.75	103.77	123.57	143.04	162.17
	4276	53.26	63.68	74.02	84.28	94.45	104.56	124.52	144.16	163.46
	43.13	53.71	64.21	74.63	84.97	95.23	105.41	125.53	145.33	164.80
	43.47	54.11	64.69	75.19	85.61	95.95	106.21	126.49	146.45	166.09
78	43.82	54.55	65.19	75.77	86.27	96.69	107.03	127.47	147.59	167.39
17	44.19	55.00	65.73	76.37	86.95	97.45	107.87	128.47	148.75	168.71

Table Showing Weight Per Foot in Lbs. of Various Diameters and Gauges of

B. W. G.	0	1	2	8	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Decimal of 1 Inch.	. 34	. 3	. 284	. 259	. 238	. 220	. 203	. 180	. 165	. 148	. 131	. 120	. 109	. 095	. 083	.072	. 065	. 058	. 049
Nearest Fraction of 1 Inch.	${ }^{\frac{11}{3}}$	192	$\frac{9}{32}$	$\frac{17}{6}$	$\frac{1}{6} \frac{5}{4}$	${ }^{\frac{7}{32}}$	$\frac{1}{64}$	$\frac{3}{16}$	$\frac{11}{6}$	$\frac{9}{84}$	${ }^{17}$	1/8	${ }^{7} 8$	3^{32}	${ }_{12}^{12}$	${ }^{86}$	$\frac{1}{18}$	1788	$\frac{3}{64}$
Outside Diam.																			
$1 / 8$	2.82	2.61	2.51	2.34	2.23	2.10	1.97	1.79	1.68	1.53	1.41	1.27	1.17	1.03	0.91	0.80	0.72	0.64	0.55
	3.27	3.01	2.88	2.68	2.54	2.38	2.23	2.02	1.87	1.72	1.58	1.42	1.31	1.15	1.02	0.90	081	0.72	0.61
	8.72	3.40	3.26	3.02	2.85	266	2.49	2.25	2.08	1.91	1.75	157	1.45	1.27	1.18	0.99	0.89	0.79	0.68
	4.17	3.80	3.63	3.36	3.16	2.96	2.76	2.49	2.30	2.10	1.93	1.73	1.59	1.40	1.24	1.09	0.98	0.87	074
	4.62	4.19	4.00	3.70	3.48	3.25	3.03	2.72	2.51	${ }_{2}^{2} 30$	2.10	1.89	178	1.52	1.35	1.18	1.06	0.95	0.81
	5.07	4.59	4.38	4.04	3.79	3.54	329	2.96	2.73	2.49	2.28	2.05	1.88	1.65	1.46	1.28	1.15	1.02	0.87
378	5.52	4.98	4.75	4.38	4.11	3.84	3.56	3.20	2.95	. 2.69	2.46	2.21	2.02	1.77	1.57	1.37	1.24	1.10	0.94
2	5.97	5.38	5.12	4.72	4.42	3.13	3.88	3.43	3.16	2.88	2.63	2.36	2.16	1.90	1.68	1.47	1.32	1.18	1.00
$1 / 8$	6.42	5.77	5.50	5.06	4.74	4.41	4.09	3.67	3.38	3.08	2.81	2.52	2.31	2.02	1.79	1.56	1.41	1.25	1.07
	6.87	6.17	5.87	5.40	5.05	4.70	4.36	3.91	3.60	3.27	2.98	2.68	2.45	2.15	1.90	1.66	1.49	1.33	1.13
	7.31	6.56	6.24	5.74	5.36	4.99	4.63	4.14	3.81	3.46	3.16	2.84	2.59	2.27	2.01	1.75	1.58	1.40	1.20
	7.76	6.96	6.62	6.08	5.69	5.28	489	4.38	4.03	3.66	3.34	3.00	2.74	2.40	2.12	1.85	1.66	1.48	1.26
	8.21	7.35	6.99	6.42	6.00	5.57	5.16	4.62	4.25	3.85	3.51	3.15	2.88	2.52	2.23	1.94	1.75	1.56	1.33
	8.66	7.74	7.36	${ }^{6} .76$	6.32	5.80	5.43	4.85	4.46	4.05	3.69	3.31	3.02	265	2.34	2.04	1.84	1.63	1.39
	9.11	8.23	7.74	7.10	${ }^{6.63}$	6.14	5.69	5.03	4.68	4.24	386	3.47	3.16	2.77	2.45	2.13	1.92	1.71	1.46
	9.56	8.63	8.11	7.44	${ }^{6.95}$	6.43	5.96	5.32	4.90	4.44	4.04	363	3.31	2.90	2.56	2.23	2.01	1.79	1.52
1/8	10.03	9.02	8.48	7.78	7.26	6.72	6.23	5.56	5.11	4.63	4.22	3.79	3.45	3.02	2.67	2.32	2.09	1.86	1.58

T＇able Showing Weight Per Foot in Lbs．of Various Diameters and Gauges of

$\stackrel{\infty}{\sim}$	\％	mes	
\pm	$\begin{aligned} & \infty \\ & 0.8 \end{aligned}$	－${ }^{\circ}$	
\cdots	$\ddot{8}$	\％	
$\stackrel{20}{7}$	\％	0	
\pm	$\ddot{\circ}$	~凮	サーナ゙サー
¢	風	筬	
$\stackrel{\text { a }}{\sim}$	$\begin{aligned} & 8 \\ & \hline \end{aligned}$	＊＊	
\cdots	K్	\cdots	
	※	~N	இZ
∞	$\stackrel{\infty}{7}$	${ }^{\circ}$	$\infty \infty 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 00^{\circ}=\dot{1}$
∞	$\underset{\sim}{4}$	筬	ふ ふ0 0iosoco
\cdots	$\stackrel{\otimes}{\square}$	\％	8\％ion
ω	$\stackrel{\text { ® }}{\text { \& }}$	${ }^{20}$	
10	䯋	${ }^{*}$	
＊	品	－\％	
∞	$\begin{aligned} & \text { R } \\ & \text { T? } \end{aligned}$	－	K゙M\％గి サivioup op op
$\bar{\sim}$	永	${ }^{\circ}$	
\square	∞	910	
\bigcirc	¢	筬	म్రి かo
$\begin{aligned} & \dot{0} \\ & \dot{B} \end{aligned}$			

NATIONAL TUBE COMPANY.

NATIONAL TUBE COMPANY．
Table Showing Weight Per Foot in Lbs．of Various Diameters and Gauges of

$\underset{\sim}{\infty}$	\％	挽	
\％	\％	－1／4	ర\％స్で
$\stackrel{\oplus}{-}$	\％	－	
4	处	\sim_{*}^{*}	
\pm	ஜ̈	\cdots	$\infty \infty \infty^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$
$\stackrel{\sim}{\square}$	20	留	
Q	윽	N\％	
\cdots	$\underset{\underset{T}{\underset{\sim}{2}}}{ }$	\cdots	
악	$\stackrel{\text { ® }}{\underset{\sim}{7}}$	＊	
∞	$\stackrel{\infty}{7}$	${ }^{\circ} \mathrm{F}$	
∞	$\stackrel{\text { O}}{7}$	\％	추N心．
\sim	$\stackrel{\text { ¢ }}{\sim}$	20\％	かo
\bullet	$\begin{aligned} & \text { \%े } \\ & \text { है } \end{aligned}$	閑	
10	\％	N00900	
＊	\％	${ }_{70}$	
∞	\％		か Wio
${ }^{\circ}$	\％	－	
\cdots	$\stackrel{\square}{\square}$	－10	\＆ign
0	\％	－	
$\begin{gathered} \text { 4. } \\ \text { M } \end{gathered}$			

TABLE OF LENGTHS AND WEIGHTS OF WORKING BARRELS.

Length in Feet.	2 Inch Barrel Weight in lbs.			21/2 Inch Barrel Weight in lbs.			3 Inch Barrel Weight in lbs.		
5		to			to		47	to	55
6		"		43	"		54	"	
7	38	'،			،		61	"	69
8	41	"			"		68	"	76
9	44	"			"		75	'	83

ILLUSTRATIONS

OF

Standard and Special Seamless Cylinders.

${ }_{2}^{x} 5$ inch Standard Seamless Cylinder.
(See Table, page 84.)

8 inch Standard Seamless Cylinder.
(See Table, page 85.)

8 inch Special Seamless Cylinder.

(See Table, page 86.)

Table of Weights and Capacities of 5 inch Standard Seamless Cylinders.

Outside Diameter, $5_{18}{ }^{\circ}$ inches. Thickness of Wall, $\frac{13}{8}$ inch. (See illustration, page 83.)
Tested to 3700 lbs . per square inch Hydrostatic Pressure.

Length over all in inches.	Average Weight in lbs.	Capacity in Cubic inches.	Capacity in Cubic feet.	Capacity in U.S. Gallons.	Capacity in lbs. Liquid Carbonic Acid Gas.
36	39.00	653	0.8779	2.88	15.
361/2	39.47	663	0.3839	2.87	15.2
37	39.94	673	0.3900	2.92	15.4
371/2	40.41	683	0.8961	2.96	15.6
38	40.88	694	0.4022	3.01	15.8
381/8	41.35	704	0.4083	3.05	16.
39	41.82	714	0.4143	3.10	16.4
391/2	42.29	725	0.4204	3.14	16.4
40	42.76	735	0.4265	3.19	16.6
401/2	43.23	745	0.4326	3.23	16.8
41	43.71	756	0.4387	3.28	17.
411/3	44.18	766	0.4447	3.32	17.2
42	44.65	776	0.4508	3.37	17.4
421/2	45.12	786	0.4569	3.41	17.6
43	45.59	797	0.4630	3.46	17.8
431/2	46.06	807	0.4691	3.50	18.
44	46.53	817	0.4751	3.55	18.2 .
441/2	47.00	828	0.4812	3.59	18.4
45	47.47	838	0.4873	3.64	18.6
451/3	47.94	848	0.4934	3.68	18.8
46	48.42	859	0.4995	3.73	19.
461/2	48.89	869	0.5055	3.77	19.2
47	49.36	879	0.5116	3.81	19.4
471/3	49.83	889	0.5177	3.85	19.6
48	50.30	900	0.5238	3.90	19.8
481/2	50.77	910	0.5299	3.94	
49	51.24	920	0.5359	3.99	20.2
491/2	51.71	981	0.5420	4.03	20.4
50.	52.18	941	0.5481	4.08	20.6
501/2	52.65	951	0.5542	4.12	20.8
51.	53.13	962	0.5603	4.17	21.
511/3	53.60	972	0.5663	4.21	21.2
52	54.07	982	0.5724	4.26	21.4
521/2	54.54	992	0.5785	4.30	21.6
53	55.01	1003	0.5846	4.35	21.8
531/2	55.48	1013	0.5907	4.39	
54	55.95	1023	0.5967	4.44	22.2
5416	56.42	1034	0.6028	4.48	22.4
55	56.89	1044	0.6089	4.53	22.6
551/3	57.36	1054	0.6150	4.57	22.8
56	57.84	1065	0.6211	4.62	23.
561/2	58.81	1075	0.6271	4.66	23.2
57	58.78	1085	0.6332	4.71	23.4
571/2	59.25	1095	0.6393	475	23.6
58	59.72	1106	0.6454	4.80	23.8
581/2	60.19	1116	0.6515	4.84	24.
59	60.66	1126	0.6575	4.89	24.2
${ }_{60}^{591 / 2}$	61.18	1137	0.6636 0.6697	4.93 4.97	24.4 24.6
60	61.60	1147	0.6697	4.97	24.6

Table of Weights and Capacities of 8 inch Standard

Seamless Cylinders.

Outside Diameter, $8_{{ }^{9} 8}$ inches. Thickness of Wall, ${ }_{37}^{3}$ inch.
(See illustration, page 83.)
Tested to 3700 lbs . per square inch Hydrostatic Pressure.

Length over all in inches.	Average Weight in lbs.	Capacity in Cubic inches.	Capacity in Cubic feet.	Capacity in U. S. Gallons.	Capacity in lbs. Liquid Carbonic Acid Gas.
36	69.4	1781	1.0307	7.71	37.
361/2	70.25	1806	1.0454	7.82	37.5
37	71.1	1832	1.0601	7.94	38.
371/2	71.95	1857	1.0783	8.05	88.5
38	72.8	1883	1.0895	8.16	39.
381/2	73.65	1908	1.1042	8.27	99.5
39	74.5	1934	1.1189	8.38	40.
391/2	75.35	1952	1.1336	8.49	40.5
40	76.2	1985	1.1483	8.60	41.
401/2	77.05	2010	1.1630	8.71	41.5
41	77.9	2036	1.1778	8.82	42.
411/2	78.75	2061	1.1925	8.93	42.5
42	79.7	2087	1.2072	9.04	43.
4216	80.55	2112	1.2219	9.15	43.5
43	81.4	2138	1.2368	9.26	44.
431/8	82.25	2163	1.2515	9.37	44.5
44	83.1	2189	1.2662	9.48	45.
441/2	83.95	2214	1.2809	9.59	45.5
45	84.8	2240	1.2956	9.70	46.
451/3	85.65	2265	1.3103	9.81	46.5
46	86.5	2291	1.3251	9.92	47.
461/2	87.35	2316	1.3398	10.03	47.5
47	88.2	2342	1.3545	10.14	48.
4719	89.05	2367	13692	10.25	48.5
48	89.9	2393	1.3839	10.36	49.
481/2	90.75	2418	1.8966	10.47	49.5
49	91.6	2444	1.4113	10.58	50.
491/2	92.45	2469	1.4260	10.69	50.5
50	93.3	2495	1.4407	10.80	51.
501/2	94.1	2520	1.4554	10.91	51.5
51	95.	2546	1.4702	11.02	52.
$511 / 2$	95.85	2571	1.4849	11.13	52.5
52	96.7	2597	1.4996	11.24	53.
521/2	97.55	2622	1.5143	11.35	53.5
53	98.4	2648	1.5290	11.46	54.
$531 / 2$	99.25	2673	1.5437	11.57	54.5
54	100.1	2699	1.5585	11.68	55.
541/2	100.95	2724	1.5732	11.79	55.5
55	101.8	2750	1.5879	11.90	56.
$551 / 8$	102.65	2775	-1.6026	12.01	56.5
56	103.5	2801	1.6174	12.12	57.
561/3	104.35	2826	1.6321	12.23	57.5
57 571	105.2 106.05	2852	1.6468	12.34 12.45	58.
5712 58	106.05 106.9	2877	1.6615 1.6762	12.45	58.5 59.
581/2	107.75	2928	-1.6909	12.67	59.5
59	108.6	2954	[1.7056	12.78	60.
$591 / 8$	109.45	2979	1.7203	12.89	60.5
60	110.5	3005	1.7303	13.00	61.

Table of Weights and Capacities of 8 inch Special Seamless

Cylinders for Holding Carbonic Gas.

Outside Diameter, 8 inches. Thickness of Wall, ${ }_{3 \pi}^{75}$ inch.
(See illustration, page 83.)
Tested to 3000 lbs . per square inch Hydrostatic Pressure.

Length over all in inches.	Average Weight in lbs.	Capacity in Cubic inches.	Capacity in Cubic feet.	Capacity in U. S. Gallons.	Capacity in lbs. Liquid Carbonic Acid Gas.
36	74.2	1459	. 8448	6.31	30.
361/3	75.0	1482	.8573	6.41	30.4
37	75.8	1504	. 8703	6.51	30.9
371/2	76.6	1526	. 8833	6.60	31.3
38	77.4	1549	. 8963	6.70	31.8
381/2	78.2	1571	. 9093	6.80	32.2
39	79.0	1594	. 9223	6.89	32.7
391/2	79.8	1616	. 9353	6.99	33.1
40	80.6	1639	. 9483	7.09	33.6
401/2	81.4	1661	. 9613	7.19	34.
41	82.2	1684	. 9744	7.28	34.5
411/2	83.0	1706	. 9874	7.38	34.9
42	83.8	1729	1.0004	7.48	35.4
421/2	84.6	1751	1.0134	7.58	35.8
43	85.4	1773	1.0264	7.68	36.3
431/2	86.2	1796	1.0394	7.77	36.7
44	87.0	1818	1.0524	7.87	37.2
441/2	87.8	1841	1.0654	7.96	37.6
45	88.6	1863	1.0784	8.06	38.1
451/2	89.4	1886	1.0914	8.16	38.5
46	90.2	1908	1.1045	8.26	39.
461/2	91.0	1931	1.1175	8.35	89.4
47	91.8	1953	1.1305	8.45	39.9
4716	92.6	1976	1.1435	8.55	40.3
	93.4	1998	1.1565	8.65	40.8
481/2	94.2	2020	1.1695	8.74	41.2
49	95.0	2043	1.1825	8.84	41.7
491/2	95.8	2067	1.1955	8.94	42.1
50	96.6	2090	1.2085	9.04	42.6
501/2	97.4	2112	1.2215	9.13	43.0
51	98.2	2135	1.2346	9.23	43.5
$511 / 2$	99.0 99.8	2157	1.2476 1.2606	9.33 9.42	43.9 44.3
52	99.8 100.6	2180	1.2606 1.2736	9.42 9.52	44.3 44.8
521/8	100.6 101.4	2202	1.2736 1.2866	9.52 9.62	44.8 45.2
531/2	102.2	2247	1.2996	9.72	45.7
54	103.0	2269	1.8126	9.81	46.1
541/2	103.8	2292	1.3256	9.91	46.6
55	104.6	2314	1.3386	10.01	47.0
551/2	105.4	2337	1.3516	10.11	47.5
56	106.2	2359	1.3647	10.20	479
561/8	$10^{\prime \prime} .0$	2381	1.3777	10.30	48.4
57	107.8	2403	1.3907	10.40	48.8
$571 / 2$	108.6	2426	1.4037	10.49	49.3
58	109.4	2449	1.4167	10.59	49.7
$581 / 2$ 59	110.2	2471	1.4297	10.69	502
$59.1 / 2$	111.0 111.8	2493 2516	1.4427	10.79 10.88	50.6
60	112.6	2538	1.4687	10.98	51.5

Table of Weights and Capacities of Seamless Cylinders

 of various diameters.

Tested 3700 lbs. per square inch Hydrostatic Pressure.

Table of Weights and Capacities of Seamless Cylinders

of various diameters.
(COntinued.)

Table of Weights and Capacities of 5 inch Standard Lap-Welded Cylinders (Class B).

Outside Diameter, 5_{16}^{9} inches. Thickness of Wall, $1 / 4 \mathrm{inch}$.

Tested to 3700 lbs. per square inch Hydrostatic Pressure.

Length over all in inches.	Average Weight in lbs.	Capacity in Cubic inches.	Capacity in Cubic fect.	Capacity in U.S. Gallons.	Capacity in lbs. Liquid Carbonic Acid Gas.
36	49.14	618.	0.3576	2.68	14.
361/2	49.67	628.	0.3636	2.72	14.2
37	50.20	638.	0.3696	2.77	14.4
371/2	50.73	648.	0.3756	2.81	14.6
38	51.26	658.	0.3816	2.86	14.8
$381 / 2$	51.79	668.	0.3876	2.90	15.
39	52.32	679.	0.3930	2.95	15.2
391/2	52.85	689.	0.3996	2.99	15.4
40	53.38	699.	0.4056	3.04	15.6
401/2	53.91	709.	0.4116	3.08	15.8
41	54.44	719.	0.4176	3.13	16.
411/2	54.97	730.	0.4236	3.17	16.2
42	55.50	740.	0.4296	3.22	16.4
421/2	56.03	750.	0.4356	3.26	16.6
43.	56.56	760.	0.4416	3.31	16.8
431/2	57.09	770.	0.4476	3.35	17.
44	57.62	781.	0.4536	3.40	17.2
441/2	58.15	791.	0.4596	3.44	17.4
45	58.68	801.	0.4656	3.49	17.6
451/8	59.21	811.	0.4716	3.53	17.8
46	59.74	821.	0.4776	3.58	18.
461/2	60.27	831.	0.4836	3.62	18.2
$4{ }^{3}$	60.80	842.	04896	8.67	18.4
471/2	61.33	852.	0.4956	3.71	18.6
48	61.86	862.	0.5016	3.76	18.8
481/3	62.39	872.	0.5076	3.80	19.
49	62.92	882.	0.5136	3.85	19.2
491/2	63.45	892.	0.5196	3.89	19.4
50	63.98	903.	0.5256	3.94	19.6
501/2	64.51	913.	0.5316	3.98	19.8
51.	6504	923.	0.5376	4.03	20.
511/2	65.57	933.	0.5436	4.07	20.2
52	66.10	943.	0.5496	4.12	20.4
521/2	66.63	954.	0.5556	4.16	20.6
53	67.16	964.	0.5616	4.21	20.8
$531 / 2$	67.69	974.	C. 5676 0.5736	4.26	21.
54.	68.22	984.	0.5736	4.31	21.2
5416	68.75	994.	0.5796	4.35	21.4
${ }_{5516}$	69.28 69.81	1005.	0.5856 0.5916	4.40 4.44	21.6 21.8
56	70.84	1025.	0.5916 0.5976	4.48	21.8
561/2	70.87	1035.	0.6036	4.52	22.2
57	71.40	1045.	0.6096	457	22.4
571/2	71.93	1055.	0.6156	4.61	22.6
58	72.46	1066.	0.6216	4.66	22.8
581/2	72.99	1076.	0.6276	4.70	23.
59	78.52	1086.	0.6336	4.73	23.2
591/8	74.05	1096.	0.6396	4.76	23.4
60	74.58	1106.	0.6456	4.80	23.6

Illustrations of Various Hydraulic Forgings.
 Various Styles of Valve Protecting Caps used on Carbonic Acid Gas Cylinders.

These Caps are made of light material in various sizes, suitable for the Valves of Cylinders.

Boiler Shells.

These Shells are made in various sizes from $6^{\prime \prime}$ Diameter, by ${ }^{1}$ foot long, to 24^{*} Diameter, x 3 feet long. They are made from Steel of 55,000 to 60,000 Tensile Strength.

Seamless Floats For Feed Water Regulators.

These Floats are made from Steel of High Tensile Strength, so as to make them as light as possible. They are subjected to a Hydrostatic Collapsing Test of sco lbs. per square inch.

Shrapnel Forging.

These iShrapnels are made of a_{a}^{*} Special Grade of Steel, and Forged from a Solid Billet.

Shrapnel Forging.

These Shrapnels are made of a Special Grade of Steel, and Forged from a Solid Billet.

Shrapnel Forging.

These Shrapnels are made of a Special Grade of Steel, and Forged from a Solid Billet.

Illustrations of Various Hydraulic Forgings.

 Projectile Forging.

Made from Special Grade of Steel, and Forged from a Solid Billet.

Bushing Forging for Axle Bearings.

These are made from High Grade Steel, and forged from a Solid Billet.

Separator T'ubular Forging.

Separator Bowl Forging.

These Bowls are made from High Grade Steel of 85,000 to 90,000 Tensile Strength.
Separator Bowl Forging.
Separator Bowl Forging.

These Bowls are made from High Grade Steel of 85,000 to 90,000 Tensile Strength.

These Bowls are made from High Grade Steel of 85,000 to 90,000 Tensile Strength.

USEFUL INFORMATION

RELATING CHIEFLY TO

Tubular Construction
 COMPILED BY
 NATIONAL TUBE CO.

WATER.

Water is composed of two gases, hydrogen and oxygen, in the ratio of two volumes of former to one of the latter. It is never found pure in nature, owing to the readiness with which it absorbs impurities from the air and soil. Water boils under atmospheric pressure (14.7 lb .) at 212°, passing off as steam. Its greatest density is at $39.1^{\circ} \mathrm{F}$., when it weighs 62.425 lbs . per cubic ft .

Weight of Water per Cubic Foot at Different Temperatures.

32°	62.42	140°	61.37	240°	59.10	350°	55.52	460°	51.26
40	62.42	150	61.18	250	58.81	360	55.16	470	50.85
50	62.41	160	60.98	260	58.52	370	54.79	480	50.44
60	62.37	170	60.77	270	58.21	380	54.41	490	50.05
70	62.31	180	60.55	280	57.90	390	54.03	500	49.61
80	62.23	190	60.32	290	57.59	400	53.64	510	49.20
90	62.13	200	60.07	300	57.26	410	53.26	520	4878
100	62.02	210	59.82	310	56.93	420	52.86	530	48.36
110	61.89	212	59.71	320	56.58	430	52.47	540	47.94
120	61.74	220	59.64	330	56.24	440	52.07	550	47.52
130	61.56	230	59.37	340	55.88	450	51.66	560	47.10

One ft . of water column at $39^{\circ} .1 \mathrm{~F}=62.425 \mathrm{lbs}$. on the square ft .

"	"	"	"	"	-0.4335 " " " "
"	"	"	"	"	-0.0295 atmospheric pressure
"	"	"	"	-0.8826 in. mercury column at	
$32^{\circ} . \mathrm{F}$.					

" $\quad=773.3 \mathrm{ft}$. of air column at $32^{\circ} . \mathrm{F}$. and atmospheric pressure.
One lb. pressure on sq. $\mathrm{ft} .=0.01602 \mathrm{ft}$. water column at $39.1^{\circ} \mathrm{F}$. " " " " " in $=2.307$ " " " " $39.1^{\circ} \mathrm{F}$.
One atmospheric pressure $=29.92 \mathrm{in}$. mercury column -33.9 ft . water column.
One inch of mercury column at $32^{\circ} \mathrm{F}$. -1.133 ft water column. One foot of air column at $32^{\circ} \mathrm{F}$. and 1 atmospheric pressure 0.001293 ft . water column.

BOILER INCRUSTATION AND CORROSION.

Water, from natural sources, as a rule contains more or less carbon dioxide, which holds in solution carbonates of lime and magnesia. On boiling the water, the carbon dioxide is driven out and the lime and magnesium in solution are thrown down in the form of a white or grayish mud, that may be easily removed from the boiler by thorough washing. The presence of other impurities, such as organic matter or sulphate of lime, is likely to make the deposit hard and adhering.

Sulphate of lime is more soluble in cold than in hot water, and is entirely thrown down at a temperature of 280° Fahrenheit. It forms a hard and adhering scale and has a bad effect upon scales and deposits, composed chiefly of carbonates.

The evident treatment of water containing sulphate of lime is to heat the feed water, before entering the boiler, to a temperature of at least 280° Fahrenheit. This should be done in such a manner as to give time for the deposition of the sulphate of lime when thrown out of solution.

A deposition may arise from the settling of clay and other matter held in suspension in the water. In water otherwise free from impurities this matter commonly deposits in the form of a soft mud that may be easily removed from the boiler. In conjunction, however, with other impurities, as, for example, sulphate of lime, it may form an adhesive scale, in which case it is usually best to free the feed water from suspended matter by filtration.

In some cases chemical treatment, either internally or externally, should be resorted to. This is especially the case with feed waters containing much free acid, in which case the free acid should be neutralized by chemical treatment, preferably before entering the boiler.

If more than 100 parts per 100,000 of total solid residue be present in the water, it will ordinarily cause trouble from scale, and should be condemned for use in the boiler unless a better supply be unattainable. Scale reduces the efficiency of the heating surface by detracting from the conducting quality of the metal and is apt to cause overheating or burning of the metal, or even bulging of the plates that are subjected to the intense heat of the furnace. Grease, owing to its adhesive nature, may, by collecting impurities contained in the water, become sufficiently heavy to sink. In this condition it is apt to attach itself to a plate or pipe near the furnace and may, owing to its non-conducting qualities, cause serious overheating, resulting in burning, bulging or even blowing out.

If water contains more than 5 parts per 100,000 of free sulphuric or nitric acid, serious corrosion will ensue not only in boiler plates, but also in tubes, pipes, cylinders and other parts with which the steam comes in contact.

Animal and vegetable oils and greases decompose into fatty acids when subjected to the temperature of high pressure steam. Because of this their presence in a high pressure steam engine or boiler will cause serious corrosion.

Experiments have shown that pure water, into which air has been forced, on boiling causes corrosion.

Highly heated surfaces in contact with water containing common salt corrode and pit rapidly. The sides of the furnace, the tube plates and the hottest tubes suffer most.

It is clear then that feed-water, free from solids, combined or in suspension, organic matter, acids of all kinds, and air, would be best for the life of boilers.

TABULAR VIEW.

Troublesome Trouble.
Substance.
Remedy or
Paliliation.

Sediment, mud, clay, Incrustation. Filtration ; blowing etc.

Readily soluble salts.

Bicarbonates of lime, magnesia, iron.

Sulphate of lime.
" Blowing off.
(Heating feed. Addition of causticsoda, lime, or magnesia, etc.
$\left\{\begin{array}{c}\text { Addition of carbon- } \\ \text { ate soda, barium } \\ \text { chloride, etc. }\end{array}\right.$

Chloride and sulphate of magne- $\}$ Corrosion. $\left\{\begin{array}{l}\text { Addition of carbon- } \\ \text { ate of soda, etc }\end{array}\right.$ sium.
$\left.\begin{array}{c}\text { Carbonate of soda in } \\ \text { large amounts. }\end{array}\right\}$ Priming. $\left\{\begin{array}{c}\text { Addition of barium } \\ \text { chloride, etc. }\end{array}\right.$ Acid(inminewaters). Corrosion. Alkali.
$\left.\begin{array}{c}\text { Dissolved carbonic } \\ \text { acid and oxygen. }\end{array}\right\}$

Organic matter (sew-
age).
Organic matter. Corrosion, Ditto.

Analyses in Parts per 100,000 of Water giving Bad Results in Steam-boilers. (A. E. Hunt.)

						$$	号			
Coal-mine	110	25	119	39	890	590	780	30	640	
Salt-well.	151	38	1.90	48	360	990	38	21	30	13.10
Spring.............	75	89	95	120	310	21	75	10	80	36
Monongahela River..	130	21	161	33	210	38	70			
"6 "6	80	70					90			
Allegheny River near	32	82	61	1.04		1.90	38			
Allegheny River near Oil-works......	30	50	41	68	890	42	23			

In cases where water containing large amounts of total solid residue is necessarily used, a heavy petroleum oil, free from tar or wax, which is not acted upon by acids or alkalies, not having sufficient wax in it to cause saponification, and which has a vaporizing-point at nearly 600° F., will give the best results in preventing boiler-scale. Its action is to form a thin greasy film over the boiler linings, protecting them largely from the action of acids in the water and greasing the sediment which is formed, thus preventing the formation of scale and keeping the solid residue from the evaporation of the water in such a plastic suspended condition that it can be easily ejected from the boiler by the process of "blowing off." If the water is not blown off sufficiently often, this sediment forms into a "putty" that will necessitate cleaning the boilers.

Oxidation of pipes may be prevented by coating the pipe with some protecting material. Galvanizing is coating the pipe with zinc, which, being practically unacted upon by water from most natural sources, preserves it. A coating of hot coal tar is very effective as a preventive of corrosion by fresh or salt water.

WATER PRESSURE．

The pressure of still water in pounds per square inch against the sides of any pipe or vessel of any shape what－ ever，is due alone to the head，or height of the surface of the water above the point considered pressed upon， and is equal to 0.434 pounds per square inch for every foot of head．The fluid pressure per square inch is equal in all directions．

To find the total pressure of quiet water against and perpendicular to any surface，whether vertical，horizontal or inclined at any angle，whether it be flat or curved； multiply together the area in square feet of the surface pressed，the vertical depth of its center of gravity below the surface of the water，and the constant 62.5 ．The product will be the required pressure in pounds．This may be expressed by formula as follows ：

$$
\mathrm{P}=62.5 \mathrm{~A} \mathrm{D}
$$

In which $P=$ the pressure in pounds of quiescent water on the surface considered．
$A=$ the area pressed upon in square feet，and
$\mathrm{D}=$ the vertical depth in feet of center of gravity of surface considered．
Pressures in Pounds per Square Inch in Pipes，Etc．，under different Heads of Water．

									亗品 ๗．． 运岢
1	0.43	15	6.49	29	12.55	43	18.62	57	24.69
2	$0 . \diamond 6$	16	6.93	30	12.99	44	19.05	58	25.12
3	1.30	17	7.36	31	13.42	45	19.49	59	25.55
4	1.73	18	7.79	32	13.86	46	19.92	60	25.99
5	2.16	19	8.22	33	14.29	47	20.35	61	26.42
6	2.59	20	8.66	34	$14 . \% 2$	48	20.79	63	26.85
7	3.03	21	9.09	35	15.16	49	21.22	63	27.29
8	3.46	22	9.53	36	15.59	50	21.65	64	27.72
9	3.89	23	9.96	37	16.02	51	22.09	65	28.15
10	4.33	24	10.39	38	16.45	52	22.52	66	28.58
11	4.76	25	10.82	39	16.89	53	22.95	67	29.02
12	5.20	26	11.26	40	17.32	54	23.39	68	29.45
13	5.63	27	11.69	41	17.75	55	23.82	69	29.88
14	6.06	28	12.12	42	18.19	56	24.26	70	30.32

Pressures in Pounds per Square Inch in Pipes, Etc., under different Heads of Water.
(CONTINUED.)

71	30.75	121	52.41	171	74.07	221	95.73	271	117.39
72	31.18	122	52.84	172	74.50	222	96.16	272	117.82
73	31.62	123	53.28	173	74.94	223	96.60	273	118.26
74	32.05	124	53.71	174	75.37	224	97.03	274	118.69
75	32.48	125	54.15	175	75.80	225	97.46	275	119.12
76	32.92	126	54.58	176	76.23	226	97.90	276	119.56
77	33.35	127	55.01	177	76.67	227	98.33	277	119.99
78	33.78	128	55.44	178	77.10	228	98.76	278	120.42
79	34.21	129	55.88	179	77.53	229	99.20	279	120.85
80	34.65	130	56.31	180	77.97	230	99.63	280	121.29
81	35.08	181	56.74	181	78.40	231	100.06	281	121.72
82	35.52	132	57.18	182	78.84	232	100.49	282	122.15
83	35.95	133	57.61	183	79.27	233	100.93	283	122.59
84	36.39	134	58.04	184	79.70	234	101.36	284	123.02
85	36.82	135	58.48	185	80.14	235	101.79	285	123.45
86	37.25	136	58.91	186	80.57	236	102.23	286	123.89
87	37.68	137	59.34	187	81.00	237	102.66	287	124.82
88	38.12	138	59.77	188	81.43	238	103.09	288	124.75
89	38.55	139	60.21	189	81.87	239	103.53	289	125.18
90	38.98	140	60.64	190	8230	240	103.96	290	125.62
91	39.42	141	61.07	191	82.73	241	104.39	291	126.05
92	39.85	142	61.51	192	83.17	242	104.83	292	126.48
93	40.28	143	61.94	193	83.60	243	105.26	293	126.92
94	40.72	144	62.37	194	84.03	244	105.69	294	127.35
95	41.15	145	62.81	195	84.47	245	106.13	295	127.78
96	41.58	146	63.24	196	84.90	246	106.56	296	128.22
97	42.01	147	63.67	197	85.33	247	106.99	297	128.65
98	42.45	148	64.10	198	85.76	248	107.43	298	129.08
99	42.88	149	64.54	199	86.20	249	107.86	299	129.51
100	43.31	150	64.97	200	86.63	250	108.29	300	129.95
101	43.75	151	65.40	201	87.07	251	108.73	310	134.28
102	44.18	152	65.84	202	87.50	252	109.16	320	138.62
103	44.61	153	66.27	203	87.93	253	109.59	330	142.95
104	45.05	154	66.70	204	88.36	254	110.03	340	147.28
105	45.48	155	67.14	205	88.80	255	110.46	350	151.61
106	45.91	156	67.57	206	89.23	256	110.89	360	155.94
107	46.34	157	68.00	207	89.66	257	111.32	370	160.2 \%
108	46.78	158	68.43	208	90.10	258	111.76	380	164.61
109	47.21	159	68.87	209	90.53	259	112.19	390	168.94
110	47.64	160	69.31	210	90.96	260	112.62	400	173.27
111	48.08	161	69.74	211	91.39	261	113.06	500	216.58
112	48.51	162	70.17	212	91.83	262	113.49	600	259.90
113	48.94	163	70.61	213	92.26	263	118.92	700	303.22
114	49.38	164	71.04	214	92.69	264	114.36	800	346.54
115	49.81	165	71.47	215	93.13	265	114.79	900	389.86
116	50.24	166	71.91	216	9356	266	115.22	1000	433.18
117	50.68	167	72.34	217	93.99	26%	115.66		
118	51.11	168	72.77	218	94.43	268	116.09		
119	51.54	169	73.20	218	94.86	269	116.52		
120	51.98	170	73.64	220	95.30	270	116.96		

FLOW OF WATER IN PIPES.

The vertical height of the source of water above the outlet is called the head. The greater the head the greater will be the velocity of efflux if the length and diameter of the pipe remain constant.

To find the velocity of water discharged from a pipe line longer than 4 times its diameter, knowing the head, length and inside diameter, use the following formula:

$$
\mathrm{v}=\mathrm{m} \sqrt{\frac{\mathrm{hd}}{\mathrm{~L}+54 \mathrm{~d}}},
$$

In which $\mathrm{v}=$ approximate mean velocity in feet per second,
$\mathrm{m}=$ coefficient from table below,
$\mathrm{d}=$ diameter of pipe in feet,
$\mathrm{h}=$ total head in feet,
$\mathrm{L}=$ total length of line in feet.

VALUES OF COEFFICIENT M.

h	Diameter of Pipe in Feer.							
L+54d	0.05	0.10	0.50	1	1.5	2	3	4
	M	M	M	M	M	M	M	M
0.005	29	31	33	35	37	40	44	47
0.01	34	35	37	39	42	45	49	53
0.02	39	40	42	45	49	52	56	59
0.03	41	43	47	50	54	57	60	63
0.05	44	47	52	54	56	60	64	67
0.10	47	50	54	56	58	62	66	70
0.20	48	51	55	58	60	64	67	70

The above coefficients are averages deduced from a large number of experiments.' In most cases of pipes carefully laid and in fair condition, they should give results within 5 to 10 per cent. of the truth.

Example.-Given the head, $h=50 \mathrm{ft}$; the length, $L=5280 \mathrm{ft}$.; and the diameter, $d=2 \mathrm{ft}$.; to find the velocity and quantity of discharge.

Substituting these values in above formula, we get:

$$
\sqrt{\frac{\mathrm{d} \mathrm{\times h}}{\mathrm{~L}+54 \mathrm{~d}}}=\sqrt{\frac{2 \times 50}{2580+108}}=\sqrt{\frac{100}{5388}}=0.136
$$

In column headed $\sqrt{\frac{h d}{L+54 d}}$ find 0.10 , which is the value nearest to 0.136 , and look along this line until column headed " 2 " is reached, then read 62 as the value of coefficient m.

Then $v=62 \times 0.136=8.432 \mathrm{ft}$. per sec., the required velocity.

To find the discharge in $\mathrm{cu} . \mathrm{ft}$. per sec., multiply this velocity by area of cross section of pipe in sq. ft .

Thus, $3.1416 \times(1)^{2} \times 8.432=26.49 \mathrm{cu} . \mathrm{ft}$. per sec.
Since there are 7.48 gal . in a $\mathrm{cu} . \mathrm{ft}$., the discharge in gal. per sec. $=26.49 \times 7.48=198.2$.

The above formula is only an approximation, since the flow is modified by bends, joints, incrustations, etc. Wrought Iron and Steel Pipes are smoother than cast iron ones, thereby presenting less friction and less encouragement for deposits ; and, being in longer lengths, the number of joints is reduced, thus lessening the undesirable effects of eddy currents.

To find the head in feet necessary to give a stated discharge in cu. ft., use the formula.*

$$
\mathrm{h}=\frac{0.000704 \mathrm{Q}^{2}(\mathrm{~L}+54 \mathrm{~d})}{\mathrm{d}^{5}}
$$

In which h - total head in feet,
$\mathrm{L}=$ total length of line in feet,
d - diameter of pipe in feet,
Q - quantity of water in $\mathrm{cu} . \mathrm{ft}$. per second.
Example.-Given the diameter of pipe, $d=0.5 \mathrm{ft}$.; the length of pipe, $L=20 \mathrm{ft}$.; and the quantity of water to be discharged, $q=3.07 \mathrm{cu} . \mathrm{ft}$. per sec.; to find the necessary head.

Substituting these values in the above formula,* we get:

$$
\mathrm{h}=\frac{0.000704 \times 9.4 \times(20+27)}{(0.5)^{5}}
$$

$$
=\frac{0.000704 \times 9.4 \times 47}{0.03125}=9.95 \mathrm{ft} ., \text { the required head. }
$$

The following formula* is simpler and can be used when $54 d$ in relation to L is so small as to be negligible.

$$
h=\frac{0.000704 Q^{2} \times L}{d^{5}}
$$

If the pipe, instead of being straight, has easy curves (say with radius not less than 5 diameters of the pipe) either horizontal or vertical, the discharge will not be materially diminished, so long as the total heads, and total actual lengths of pipe remain the same, but it is advisable to make the radius as much more than 5 diameters as can conveniently be done.

To find the diameter of a pipe of given length to deliver a given quantity of water under a given head, use the following :

$$
\mathrm{d}=0.234 \sqrt[s]{\frac{\mathrm{Q}^{2} \mathrm{~L}}{\mathrm{~h}}}
$$

In which d - diameter of pipe in feet,
$\mathrm{Q}=\mathrm{cu} . \mathrm{ft}$. per second delivered,
L - length of line in feet,
h - head in feet.
Example.-Given the head, $\mathrm{h}=700$ feet ; the length of pipe, $L=3000$ feet; the quantity to be delivered, $Q=4$ $\mathrm{cu} . \mathrm{ft}$. per. sec.; required the diameter of pipe necesssary.

Substituting these values in the above formula,* we get :

$$
\mathrm{d}=0.234 \sqrt[5]{\frac{16 \times 3000}{700}}=0.234 \sqrt[5]{68.57}=0.545 \mathrm{ft} .=6.54 \mathrm{in}
$$

The diameter of a pipe may also be found by using the following formula : *

$$
\mathrm{D}=125 \sqrt[5]{\frac{q^{2} \times \mathrm{L}}{\mathrm{~h}}}
$$

In which $\mathrm{D}=$ diameter of pipe in inches, $\mathrm{q}=$ gallons per second,
${ }^{\circ} \mathrm{L}=$ length of line in feet, $\mathrm{h}=$ head in feet.

If, in formula $v=m \sqrt{\frac{d \times h}{L+54 d}}$ we substitute 48 as an average value for m, we get :

$$
v=48 \sqrt{\frac{\mathrm{~d} \times \mathrm{h}}{\mathrm{~L}+54 \mathrm{~d}}}
$$

The following table, calculated by the above formula shows the velocities and discharges through a pipe one mile long and one foot in diameter, under different heads. But they will be very nearly the same for any greater lengths; and also quite approximate for shorter ones not less than 1000 or even 500 diameters long, provided that in all cases they have the same RATE OF HEAD ; that is, if the given pipe of one foot diameter is 2 or 3 miles long, it must have 2 or 3 times as much head as the pipe in the table in order to have very nearly the same velocity and discharge.

[^4]The velocities and discharges through a straight, smooth pipe one foot in diameter, and one mile or 5280 diameters in length.

Head in feet per 100 feet.	Head in feet mile.	Velocity in feet per second.	Discharge in cubic feet per second.	Discharge in cubic feet per 24 hours.
.0019	.1	.208	.1633	14,114
.0038	.2	.293	.2301	19,880
.0057	.3	.359	.2819	24,360
.0076	.4	.415	.3267	28,229
.0095	.5	.464	.3638	31,435
.0114	.6	.508	.3989	34,464
.0132	.7	.549	.4311	37,247
.0151	.8	.585	.4602	39,760
.0170	.9	.623	.4901	42,343
.0189	1.	.656	.5144	44,431
.0237	.25	.735	.5753	49,701
.0284	.5	.805	.6322	54,604
.0331	.75	.871	.6832	59,011
.0379	2.	.928	.7276	62,870
.0426	.25	.984	.7696	66,484
.0473	.5	1.04	.8168	70,572
.0521	.75	1.08	.8482	73,284
.0568	3.	1.13	.8914	76,982
.0758	4.	1.31	1.028	88,862
.0947	5.	1.47	1.150	99,403
.1136	6.	1.61	1.264	109,209
.1325	7.	1.74	1.366	118,022
.1514	8.	1.86	1.455	125,740
.1703	9.	1.96	1.539	132,969
.1894	10.	2.08	1.633	141,145
.2273	12.	2.27	1.782	153,964
.2652	14.	2.45	1.924	166,233
.3030	16.	2.62	2.057	177,724
.3409	18.	2.78	2.183	188,611
.388	20.	2.93	2.301	198,806
.4735	25.	3.28	2.572	222,156
.5682	30.	3.59	2.819	243,604
.6629	35.	3.88	3.047	263,260
.7576	40.	4.15	3.267	282,288
.8523	45.	4.40	3.451	298,209
.9470	50.	4.64	3.638	314,352
1.136	60.	5.08	3.989	344,649
1.326	70.	5.49	4.311	372,470
1.515	80.	5.85	4.602	397,613

The velocities and discharges through a straight, smooth pipe one foot in diameter, and one mile or 5280 diameters in length.

Head in feet per 100 feet.	Head in feet per mile.	Velocity in feet per second.	Discharge in cubic feet per second.	Discharge in cubic feet per 24 hours.
1.704	90.	6.23	4.900	423,435
1.894	100.	6.56	5.144	444,312
2.083	110.	6.87	5.395	466,128
2.272	120.	7.18	5.639	487,209
2.462	130.	7.47	5.866	506,822
2.652	140.	7.76	6.094	526,521
2.841	150.	8.05	6.322	546,048
3.030	160.	8.30	6.534	564,576
3.219	170.	8.55	6.715	580,176
3.408	180.	8.80	6.903	596,418
3.596	190.	9.04	7.100	613,440
3.788	200.	9.28	7.276	628,704
4.261	225.	9.84	\%.696	664,848
4.735	250.	10.4	8.168	1705,728
5.208	275.	10.8	8.482	1732,844
5.682	300.	11.3	8.914	'769,824
6.629	350.	12.3	9.621	831,168
7.576	400.	13.1	10.28	888,624
8.532	450.	13.9	10.91	943,056
9.47	500.	14.7	11.50	994,032
10.41	550.	15.4	12.09	1,044,576
11.36	600.	16.1	12.64	1,092,096
12.30	650.	16.7	13.11	1,132,704
13.25	700.	17.4	13.66	1,180,224
14.20	750.	18.0	14.13	1,220,832
15.15	800.	18.6	14.55	1,257,408
16.09	850.	19.1	15.00	1,296,000
17.04	900.	19.6	15.39	1,329,696
17.99	950.	20.3	15.94	1,377,216
18.94	1000.	20.8	16.33	1,411,456
22.73	1200.	22.7	17.82	1,539,648
26.52	1400.	24.5	19.24	1,662,336
30.30	1600.	26.2	20.57	1,777,248
34.08	1800.	27.8	21.83	1,886,112
37.87	2000.	29.3	23.01	1,988,064
47.35	2500.	32.8	25.72	2,221,560
56.81	3000.	35.9	28.19	2,436,040

Head is the vertical distance from the surface of the water in the reservoir to the center of gravity of the lower end of the pipe when the discharge is into the air ; or to the level surface of the lower reservoir when the discharge is under water.

To reduce cubic feet to U. S. Gallons, multiply by 7.48.

To find either the area of pipe, the mean velocity, or the quantity discharged, when the other two are given, use the following:

Mean velocity in _Discharge in cubic feet per second, feet per second. Area in square feet.

Discharge in cubic feet $=$ Area in \times Mean velocity in per second. $=$ square feet \times feet per second.
[The terms may be in inches instead of feet; and in minutes or hours instead of seconds.]

For the diameter of a long pipe required to deliver either more or less water than that of a 1 foot diameter, and under the same rate of inclination, or of head in feet per mile, see table on next page.

The use of this table is not sufficiently correct for pipes less than about 1,000 (or at furthest 500) diameters long.

1	. 0833	. 0020	$12 \mathrm{x} / 2$	1.042	1.106
$11 / 2$. 1250	. 0055	13	1.083	1.221
2	. 1667	. 0113	14	1.167	1.470
$21 / 2$. 2083	. 0198	15	1.250	1.746
3	. 2500	. 0310	16	1.333	2.053
$31 / 2$. 2917	. 0458	17	1.417	2.388
4	. 3333	. 0643	18	1.5	2.754
$41 / 2$. 3750	. 0857	19	1.583	3.153
5	. 4167	. 1119	20	1.667	3.585
$51 / 2$. 4583	. 1422	21	1.75	4.051
6	. 5	. 1767	22	1.833	4.551
$61 / 2$. 5417	. 2159	23	1.917	5.084
7	. 5833	. 2600	24		5.649
$71 / 2$. 6250	. 3090	245/8	2.052	6.000
8	. 6667	. 3631	26	2.167	6.912
$81 / 2$. 7083	. 4220	28	2.333	8.319
9	. 75	. 4871	30	2.5	9.822
$91 / 2$. 7917	. 5575	301/4	2.521	10.
$10^{1 / 2}$. 8333	. 6337	32	2.667	11.6
$101 / 2$. 8750	. 7157	34	2.833	13.5
11	. 9167	. 8044 .	36	3.	15.5
$111 / 2$. 9583	. 8987	38	3.167	17.8
12	1.	1.	40	3.333	20.2

To find the discharge from a pipe (not less than 1,000 , or at least 500 times its own diameter in length) when the head is given, take from the first table the discharge through a pipe one ft . in diameter for the given head, and divide the required discharge by this tabular one; then look for the quotient in the column of the second table, headed "Ratio of Discharge," and opposite it, in columns 1 and 2 , will be found the required diameter.

From this table we see that a 14 inch pipe will deliver nearly $11 / 2$ times as much as a 12 inch pipe, and a 16 inch one fully twice as much as a 12 inch, all having the same length and head.

EXAMPLE.-Having given the head from a reservoir to a certain point of delivery, as 20 ft . in a distance of $1,860 \mathrm{ft}$., what must be the diameter of a pipe to deliver 6 cubic feet of water per second ?

We find that a fall of 20 ft . in 1,860 , is equal to a fall of 1.075 ft . in 100 ; or $1,860: 20=100: 1.075$. Then we see by the first table that with a fall of 1.075 ft . in 100 , a long pipe of 1 ft . diameter discharges about 3.8 cubic feet per second. But we want $\frac{{ }_{3}}{}{ }^{6} \frac{8}{8}=1.58$ times as much as the 1 ft . pipe can deliver; then by the second table, we see that the pipe to do this, under the same rate of head, must be about $141 / 2 \mathrm{in}$. in diameter. In practice we should adopt at least 15 in .

EXAMPLE.-Given 120 feet head and 600 feet length of 18 inch pipe, discharging 3500 gallons per minute : To find effective head: Look in column headed " 18 inch Pipe," and opposite 3500 in . first column read " 4.7 ft ." (which is the loss of head by friction for an 18 in . pipe 1000 ft . long), and multiplying this by $600 / 1000$, or 0.6 , we get 2.82 ft , the loss of head. The effective head required then equals 120 ft . less 2.8 ft . or 117.2 ft .

Flow of Water in Pipes for a Velocity of 100 Ft. per Minute.

$\underset{\text { in }}{\text { Diameter }}$ Inches.	Area in Square Feet.	Flow in Cubic Feet per Minute.	Flow in U.S. Minute.	$\underbrace{\substack{\text { Gallons } \\ \hline}}_{\substack{\text { Ullow in } \\ \text { per Hour. }}}$
3/8	. 00077	0.077	. 57	34
3/2	. 00136	0.136	1.02	61
13/4	. 00307	0.307	2.30	138
1.	. 00545	0.545	4.08	245
11/4	. 00852	0.852	6.38	383
$11 / 2$. 01227	1.227	9.18	551
13/4	. 01670	1.670	12.50	750
,	. 02182	2.182	16.32	979
21/2	. 0341	3.41	25.50	1,530
3	. 0491	4.91	${ }^{36.72}$	2,203
4	. 0873	8.73	65.28	3,917
5	. 136	13.6	102.00	6,120
6	. 196	19.6	146.88	8,813
7	. 267	26.7	199.92	11,995
8	. 349	34.9	261.12	15,667
9	. 442	44.2	330.48	19,829
10	. 545	54.5	408.00	24,480
11	. 660	66.0	493.68	29,621
12	. 785	78.5	587.52	35,251

To find the quantity in gallons a pipe will deliver, the velocity of flow being 100 ft . per minute: Square the diameter in inches and multiply by 4.08 .

Flow of Water in House-service Pipes.

(Thomson Meter Co.)

$\begin{aligned} & \text { Condition } \\ & \text { of } \\ & \text { Discharge. } \end{aligned}$		Discharge in Cubic Feet per Minute from the Pipe.								
		Nominal Diameters of Iron or Lead Ser-vice-pipe in Inches.								
		1/2	5/8	$3 /$	1	11/2	2	3		6
Through 35 feet of servicepipe, no back pressure.	301	1.10	1.923	3.01	6.13	16.58	33.34	88.16	173.85	444.63
	40	1.27	2.223	3.48	7.08	19.14	38.50	101.80	200.75	513.42
	50	1.42	2.483	389	7.92	21.40	43.04	113.82	224.14	574.02
	60	1.56	2.71	4.26	8.67	23.44	47.15	124.68	245.87	628.81
		1.74	3.03	4.77	9.70	26.21	52.71	139.39	274.89	703.03
	100	2.013	3.505	5.50	11.20	30.27	60.87	160.96	317.41	811.79
	130	2.29	3.99	6.28	12.77	34.51	69.40	183.52	361.91	925.58
Through 100 feet of servicepipe, no back pressure.	80	0.66	1.161	1.8	3.78	10	21.30	58.19	118.13	317.23
	40	0.77	1.34	2.12	4.36	12.01	24.59	67.19	136.41	366.30
	50	0.86	1.50	2.37	4.88	13.43	27.50	75.13	152.51	409.54
	60	0.94	1.65	2.60	5.34	14.71	30.12	82.30	167.06	448.63
	75	1.05	1.84	2.91	5.97	16.45	33.68	92.01	186.78	501.58
	10	1.22	2.	3.	6.90	18.99	38.89	106.24	215.68	579.18
	130	1.39	2.423	3.83	7.86	21.66	44.34	121.14	245.91	660.36
Through 100 feet of servicepipe, and 15 feet vertical rise.	30	0.55	0.961	1.	3.11	57	17.55	47	17	260
	0,	0.66	1.151	1.81	3.72	10.24	20.95	57.20	116.01	311.09
	50	0.75	1.312	2.06	4.24	11.67	23.87	65.18	132.20	354.49
	60	0.83	1.45	2.29	4.70	12.94	26.48	72.28	146.61	393.13
	75	0.	1.64	2.59	5.32	14.64	29.96	81.79	165.90	444.85
	100	1.10	1.923	3.02	6.21	17.10	35.00	95.55	193.82	519.72
	130	1.26	2.203	3.48	7.14	19.66	40.23	109.82	222.75	597.31
Through 100 feet of servicepipe, and 30 feet vertical rise.	30	0.44	0.77	1.22	2.5	8.80	14	38	78.54	211
	40	0.55	0.97	1.53	3.15	8.68	17.79	48.68	98.98	266.59
	f 50	0.65	1.14	1.79	3.69	10.16	20.82	56.98	115.87	312.08
	60	0.73	1.28	2.02	4.15	11.45	23.47	64.22	130.59	351.73
	75	0.84	1.	232	4.77	13.15	28.95	73.76	149.99	403.98
	100	1.00	1.74	2.75	5.65	15.58	31.93	87.38	177.67	478.55
	130			3.19	6.55	18.07	37.02	101	206.04	554.96

RELATIVE DISCHARGING CAPACITIES OF FULL SMOOTH PIPES．

$\stackrel{\infty}{\square}$	
＊	
9	
¢	
\％	
\％	だ $0^{28}{ }^{\circ}$ 会
\％	
\＃	
\％	
\％	
$\stackrel{\infty}{\sim}$	
$\stackrel{\bullet}{\square}$	
\cdots	
$\stackrel{\sim}{\sim}$	
윽	
∞	：
\bullet	
\cdots	க\＆゙రず
∞	Fザ

[^5]SAFE PRESSURES AND EQUIVALENT HEADS OF WATER FOR CAST IRON PIPE OF
（Calculated by F．H．Lewis，from Fanning＇s Formula．）
SIZE OF PIPE．

दे	$\begin{gathered} \text { тәәg } \\ \text { u! peวн } \end{gathered}$	
		凹ボ\＆\％Fivicicik
$\stackrel{\infty}{\sim}$	－7әә兵 प！реән	
	-spunod u! $\partial . \operatorname{lnss} x_{d}$	F®\％\％
－	－7әә号 и！реән	
	${ }_{\text {－spunod }}^{\text {annsead }}$ d！	
\＃		
	－spunod u！ ә．nnssadd	
$\stackrel{\square}{4}$	$\stackrel{\text { «әə }}{\text { u! }}$	
	${ }_{\text {spunod }}{ }_{\text {anssad }} \mathrm{d}$	ぶ\％
O	－7әән u！реән	
	$\operatorname{spunod}_{\text {annssaid }}$	
∞		
	${ }_{\text {－spunod }}^{\text {annserd }}$ U！	－Wirone
\bigcirc		
	$\operatorname{spunod}_{\text {annsse. }}^{d!}$	
＊	－วәә委 u！реән	
－ssวuษว！પL		

Safe Pressures and Equivalent Heads of Water for Cast Iron Pioe of Different Sizes and＇Thicknesses．（Cont＇d）

0．E気E	SIZE OF PIPE．																	
	22^{*}		$24^{\prime \prime}$		27		30°				36^{*}		$42^{\prime \prime}$		48°		60°	
																$\begin{aligned} & \text { 志 } \\ & \text { تِّ } \\ & \text { 芯 } \\ & \text { 出 } \end{aligned}$		$\begin{aligned} & \text { 思 } \\ & \text { ت̈ } \\ & \text { 芯 } \\ & \text { 出 } \end{aligned}$
	40	92	30	69	19	64												
	60	138	49	113	36	83	24	55										
$1{ }^{1}$	80	184	68	$15{ }^{\prime \prime}$	52	120	39	90										
	101	233	86	198	69	159	54	124	42	97	32	74						
	121	279	105	242	85	196	69	159	55	127	44	101						
1	142	327	124	286	102	235	84	194	69	159	57	181	38	88		55		
	182	419	161	371	135	311	114	263	96	221	8	189	59	136	43	99		
114	224	516	199	458	169	389	144	332	124	286	107	$\stackrel{247}{ }$	81	187	62	143	34	78
138	．．．．．	．．．．	237	546	202	465	174	401	151	348	132	304	103	237	81	187	49	118
11%	……	．．．．．	2s	，	236	544	204	470 538	178	410	157	362	124	286	99 9	228	64	147
108					．．．．．．	234	538	205	472 537	182	419	145	334 385	118	272 313	79	182
138	．．．．．．．．							．．．．．．．．	233	537	207	477	167	385 433	136 155 15	313 357	94 109	217
${ }_{2}^{178}$	．．．．．．．．										．．．．．．		188	433	155 174	357 401	109 124	251 286
												．．．．．．	210	484	174	401	124 139	286 320
218	．\cdot												．．．．．		193 212	488	139	320 355
－ 217																	184	424
234										．	．．．		．．．．	．	．	．．．．	214	482

[^6]
WEIGH'TS OF CAST' IRON PIPE TO LAY 12 FEE'T LENGTHS.

 Weights are in Pounds and include Hub. (Calculated by F. H. Lewis.)

Contents in Cubic Feet and U. S. Gallons of Pipes and Cylinders of Various Diameters and One Foot in Length.

1 gallon=231 cubic inches. 1 cubic foot-7.4805 gallons.

	For 1 Foot in Length.			For 1 Foot in Length.			For 1 Foot in Length.	
	Cubic ft. also Area in Sq. ft	$\left\lvert\, \begin{gathered} \text { U.S. } \\ \text { Gals. } \\ 231 \\ \text { Cu. In. } \end{gathered}\right.$		Cubic Ft. also Area in Sq. Ft.	U. S. Gals. 231 Cu. In.		Cubic Ft. also Area in Sq. Ft.	$\begin{gathered} \text { U.S. } \\ \text { Gals. } \\ 231 \\ \mathrm{Cu} . \mathrm{In} . \end{gathered}$
	. 0003	. 0025		. 2485	1.859	19	1.969	14.73
	. 0005	. 004		. 2673	1.999	191/2	2.074	15.51
\%/8	. 0008	. 0057	$71 / 4$. 2867	2.145	20	2.182	16.32
7^{76}	. 001	. 0078	71.2	. 3068	2.295	201/2	2.292	1715
	. 0014	. 0102	$73 / 4$. 3276	2.45	21	2.405	17.99
	. 0017	. 0129	8	. 3491	2.611	213/2	2.521	18.86
	. 0021	. 0159	$81 / 4$. 3712	2.777	22	2.640	19.75
	. 0026	. 0193	81.2	. 3941	2.948	2212	2.761	20.66
	. 0031	. 0233	$83 / 4$.4176	3.125	23	2.885	21.58
	. 0036	. 0269	9	. 4418	3.305	231/2	3.012	22.53
	. 0042	.0312	$91 / 4$. 4667	3.491	24	3.142	23.50
	. 0048	. 0359	91%	. 4922	3.682	25	3.409	25.50
	. 0055	. 0408	$93 / 4$. 5185	3.879	26	3.687	27.58
$11 / 4$. 0085	. 0638	10	. 5454	4.08	27	3.976	29.74
112	. 0123	. 0918	1014	. 5730	4.286	28	4.276	31.99
134	. 0167	. 1249	101/2	. 6013	4.498	29	4.587	34.31
,	. 0218	. 1632	1034	. 6303	4.715	30	4.909	36.72
$21 / 4$. 0276	. 2066	11.	. 66	4.937	31	5.241	39.21
$21 / 2$. 0341	. 2550	1114	. 6903	5.164	32	5.585	41.78
23	. 0412	. 3085	1112	. 7213	5.396	33	5.940	44.43
3	. 0491	. 3672	1134	. 7530	5.633	34	6.305	47.16
$31 / 4$. 0576	. 4309	12	. 7854	5.875	35	6.681	49.98
317	. 0668	. 4998	121/2	. 8522	6.375	36	7.069	52.88
334	. 0767	. 5738	13	. 9218	6.895	37	7.467	55.86
4	. 0873	. 6528	131/2	. 994	7.436	38	7.876	58.92
414	. 0985	. 7369	14	1.069	7.997	39	8.296	62.06
412	. 1134	.8263	141/2	1.147	8.578	40	8.727	65.28
$43 / 4$. 1231	. 9206	15	1.227	9.180	41	9.168	68.58
5	. 1364	1.020	151/2	1.310	9.801	42	9.621	71.97
$51 / 4$. 1503	1.125	16	1.396	10.44	43	10.085	75.44
51.3	. 1650	1.234	161/2	1.485	11.11	44	10.559	78.99
534	. 1803	1.349	17	1.576	11.79	45	11.045	82.62
6	. 1963	1.469	171/2	1.670	12.49	46	11.541	86.33
$61 / 4$. 2131	1.594	18	1.768	13.22	47	12.048	90.13
61/2	. 2304	1.724	181/2	1.867	18.96	48	12.566	94.00

To find the capacity of pipes greater than those given, look in the table for a pipe of one half the given size, and multiply its capacity by 4 ; or one of one third its size, and multiply its capacity by 9 , etc.
To find the weight of water in any of the given sizes multiply the capacity in cubic feet by the weight of a cubic foot of water at the temperature of the water in the pipe.
To find the capacity of a cylinder in U. S. gallons, multiply the length by the square of the diameter and by 0.0034 .

CYLINDRICAL VESSELS, TANKS, CISTERNS, ETC.
Diameter in Feet and Inches, Area in Square Feet, and U. S. Gallons Capacity for One Foot in Depth.

1 gallon $=231$ cubic inches $=0.1337$ cubic foot.

Diam.	Area.	Gals.	Diam.	Area.	Gals.	Diam.	Area.	Gals.
Ft. In.	Sq. ft.	One foot depth.	Ft. In.	Sq. ft.	Onefoot depth.	Ft. In.	Sq. ft.	One foot depth.
1	785	5.87		8.727	65.28		25.22	188.66
11	. 922	6.89	35	9.168	68.58	5 9	25.97	194.25
12	1.069	8.00		9.621	71.97	510	26.73	199.92
13	1.227	9.18		10.085	75.44	511	27.49	205.67
1	1.396	10.44		10.559	7899	6	28.27	211.51
15	1.576	11.79		11.045	82.62	$6 \quad 3$	30.68	229.50
16	1.767	13.22	$3 \quad 10$	11.541	86.33		33.18	248.23
17	1.969	14.73	311	12.048	90.13	6 9	35.78	267.69
18	2.182	13.32	4	12.566	94.00	7	38.48	287.88
19	2.405	17.99		13.095	97.96		41.28	308.81
110	2.640	19.75		13.635	102.00		44.18	330.48
111	2.885	21.58		14.186	106.12	$7 \quad 9$	47.17	352.88
2	3.142	23.50		14.748	110.32	8	50.27	376.01
21	3.409	25.50		15.321	114.61	$8 \quad 3$	53.46	399.88
22	3.687	27.58		15.90	118.97		56.75	424.48
23	3.976	29.74		16.50	123.42		60.13	449.82
2	4.276	31.99		17.10	127.95	9	63.62	475.89
25	4.587	34.31	$4 \quad 9$	17.72	132.56		67.20	502.70
26	4.909	36.72	$4 \quad 10$	18.35	137.25		70.88	530.24
27	5.241	39.21	411	18.99	142.02		74.66	558.51
28	5.585	41.78	5	19.63	146.88	10	78.54	587.52
29	5.940	44.43	5	20.29	151.82	$10 \quad 3$	82.52	617.26
210	6.305	47.16	5 2	20.97	156.83	106	86.59	647.74
211	6.681	49.98	5	21.65	161.93	109	90.76	678.95
3	7.069	52.88	54	22.34	167.12	11	95.03	710.90
$3 \begin{array}{ll}3 & 1\end{array}$	7.467	55.86	5 5	23.04	172.38	$11 \quad 3$	99.40	743.58
$3 \quad 2$	7.876	58.92	56	23.76	177.72	11	103.87	776.99
$3 \quad 3$	8.296	62.06	57	24.48	183.15	11.9	108.43	811.14

CYLINDRICAL VESSELS, TANKS, CISTERNS, ETC.
Diameter in Feet and Inches, Area in Square Feet, and U. S. Gallons Capacity for One Foot in Depth. 1 gallon $=231$ cubic inches $=0.1337$ cubic foot.
(CONTINUED.)

Diam.	Area.	Gals.	Diam.	Area.	Gals.	Diam.	Area.	Gals.
Ft. In.	Sq. ft.	One foot depth.	Ft. In.	Sq. ft.	One foot depth.	Ft. In.	Sq. ft.	One foot depth.
12	113.10	846.03	19	283.53	2120.9	26	530.93	3971.6
12	117.86	881.65	$19 \quad 3$	291.04	2177.1	$26 \quad 3$	541.19	4048.4
12	122.72	918.00		298.65	2234.0	$26 \quad 6$	551.55	4125.9
129	127.68	955.09	$19 \quad 9$	306.35	2291.7	269	562.00	4204.1
13	132.73	992.91	20	314.16	2350.1	27	572.56	4283.0
13	137.89	1031.5	$20 \quad 3$	322.06	2409.2	$27 \quad 3$	583.21	4362.7
13	143.14	1070.8	$20 \quad 6$	330.06	2469.1	276	593.96	4443.1
139	148.49	1110.8	$20 \quad 9$	338.16	2529.6	$27 \quad 9$	604.81	4524.3
14	153.94	1151.5	21	346.36	2591.0	28	615.75	4606.2
14	159.48	1193.0	$21 \quad 3$	354.66	2653.0	$28 \quad 3$	626.80	4688.8
14	165.13	1235.3	$21 \quad 6$	363.05	2715.8	286	637.94	4772.1
14	170.87	1278.2	$21 \quad 9$	371.54	2779.3	289	649.18	4856.2
15	176.71	1321.9	22	380.13	2843.6	29	660.52	4941.0
15	182.65	1366.4	223	388.82	2908.6	293	671.96	5026.6
15	6188.69	1411.5	226	397.61	2974.3	296	683.49	5112.9
15.9	194.83	1457.4	229	406.49	3040.8	$29 \quad 9$	695.13	5199.9
16	201.06	1504.1	23	415.48	3108.0	30	706.86	5287.7
16	207.39	1551.4	$23 \quad 3$	424.56	3175.9	$30 \quad 3$	718.69	5376.2
16	613.82	1599.5	236	433.74	3244.6	306	730.62	5465.4
169	920.35	1648.4	$23 \quad 9$	443.01	3314.0	309	742.64	5555.4
17	226.98	1697.9	24	452.39	3384.1	31	754.77	5646.1
17.3	3233.71	1748.2	$24 \quad 3$	461.86	3455.0	$31 \quad 3$	766.99	5737.5
17	6240.53	1799.3	246	471.44	3526.6	316	779.31	5829.7
$17 \quad 9$	9247.45	1851.1	$24 \quad 9$	481.11	3598.9	319	791.73	5922.6
18	254.47	1903.6	25	490.87	3672.0	32	804.25	6016.2
18 3	261.59	1956.8	253	500.74	3745.8	323	816.86	6110.6
18	6268.80	2010.8	256	510.71	3820.3	326	829.58	6205.7
189	276.12	2065.5	250	520.77	3895.6	329	842.39	6301.5

Weight of Water in Foot Lengths of Pipe of Different Bores.

(62.425 Lbs. Per Cubic Foot.)

Bore In.	Water Lbs.						
1/8	0.0053	3	3.0643	$73 / 4$	20.450	17	98.397
$1 / 4$	0.0213	31/8	3.3250	8	21.790	171/2	104.27
$3 / 8$	0.0479	31/4	3.5963	81/4	23.174	18	110.31
1/2	0.0851	33/8	3.8782	$81 / 2$	24.599	181/2	116.53
$5 / 8$	0.1330	31/2	4.1708	$83 / 4$	26.068	19	122.91
$3 / 4$	0.1915	35/8	4.4741	9	27.579	191/2	129.47
7/8	0.2607	$33 / 4$	4.7879	$91 / 4$	29.132	20	136.19
	0.3405	37/8	5.1125	$91 / 2$	30.728	21	150.15
$11 / 8$	0.4309		5.4476	93/4	32.366	22	164.79
11/4	0.5320	$41 / 4$	6.1498	10	34.048	23	180.11
13/8	0.6437	41/2	6.8946	101/2	37.537	24	196.11
11/2	0.7661	43/4	7.6820	11	41.198	25	212.80
15/8	0.8997	5	8.5119	111/2	45.028	26	230.16
$13 / 4$	1.0427	51/4	9.3844	12	49.028	27	248.21
17/8	1.1970	51/2	10.299	121/2	53.199	28	266.93
2	1.3619	53/4	11.257	13	57.540	29	286.34
21/8	1.5375	6	12.257	131/2	62.052	30	306.43
21.4	1.7237	61/4	13.300	14	66.733	31	327.20
23/8	1.9205	$61 / 2$	14.385	141/2	71.585	32	348.65
$21 / 2$	2.1280	63/4	15.513	15	${ }^{76.607}$	33	370.78
25/8	2.3461	7	16.683	$151 / 2$	81.799	34	393.59
$23 / 4$	2.5748	71/4	17.896	16	87.162	35	417.08
27/8	2.8142	71/2	19.152	161/2	92.694	36	441.26

Weights of water in cylinders of the same length are proportional to the squares of the diameters. Therefore, to get weight of cylinder of water one foot long and 60 inches diameter, take from above table weight of water of 30 inch pipe and multiply it by the square of $60 \div 30$, or the square of two; thus, $306.43 \times 4=1225.72=$ the weight of water in one foot length of a 60 inch pipe.

Number of U. S. Gallons in Rectangular Tanks.

For One Foot in Depth.

EXAMPLE.-To find number of gallons in a rectangular tank that is 7.5 ft . by 10 ft ., the water being 4 ft . deep: Look in extreme left hand column for 7.5 and opposite to this in column headed " 10 " read 561.04 , which being multiplied by 4 , the depth of water in the tank, gives 2244.2 the number of gallons required.
Theo Note．－The actual discharge will be less than the theoretical one given below，varying with the form of nozzle or tube through which the water flows．For a ring nozzle 64 per cent．，and for a good form of tapering smooth nozzle about 82 per cent．，can be assumed as the actual discharge．

	$\underset{\sim}{2}$	ค్ ⿷匚 io ion
	\bigcirc	D్ర ๗T15：
	$\stackrel{\sim}{\sim}$	
	－${ }^{\text {－}}$	T－
	\cdots	
	N	
	お ${ }^{\text {＊}}$	 以ీ
	100	 ๗்
	Re	
	∞	
	＊	
	～	
	\cdots	
	\cdots	た్య $00^{\circ} 0^{\circ} 00^{\circ} 00^{\circ} 00^{\circ} 0$ नiनinirininirinirin
	$\begin{aligned} & \breve{0} \text {. } \\ & \text { L } \end{aligned}$	
	$\begin{aligned} & \stackrel{\rightharpoonup}{む} \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$	
	号	

WATER-POWER.

(Kent's Pocket Book.)

Power of a Fall of Water-Efficiency.-The gross power of a fall of water is the product of the weight of water discharged in a unit of time into the total head, i. e., the difference of vertical elevation of the upper surface of the water at the points where the fall in question begins and ends. The term " head" used in connection with waterwheels is the difference in height from the surface of the water in the wheel-pit to the surface in the pen-stock when the wheel is running.

If $Q=$ cubic feet of water discharged per second, $D=$ weight of a cubic foot of water $=62.36 \mathrm{lbs}$. at $60^{\circ} \mathrm{F} ., H$ $=$ total head in feet; then
$D Q H=$ gross power in foot-pounds per second, and $D Q H \div 550=0.1134 Q H=$ gross horse power.

If Q^{\prime} is taken in cubic feet per minute,

$$
\text { H. P. }=\frac{Q^{\prime} H \times 62.36}{33,000}=0.00189 Q^{\prime} H
$$

A water-wheel or motor of any kind cannot utilize the whole of the head H, since there are losses of head at both the entrance to and the exit from the wheel. There are also losses of energy due to friction of the water in its passage through the wheel. The ratio of the power developed by the wheel to the gross power of the fall is the efficiency of the wheel. For 75% efficiency, net horsepower $=0.00142 Q^{\prime} H=\frac{Q^{\prime} H}{706}$

Horse-power of Water Flowing in a Tube.-The head due to the velocity is $\frac{v^{2}}{2 g}$; the head due to the pressure is $\frac{f}{w}$; the head due to actual height above the datum plane is h feet. The total head is the sum of these $=\frac{v^{2}}{2 g}+h+\frac{f}{w^{3}}$ in feet, in which $v=$ velocity in feet per second, $f=$ pressure in lbs. per sq. ft., $w=$ weight of $1 \mathrm{cu} . \mathrm{ft}$. of water $=62.4 \mathrm{lbs}$. If $p=$ pressure in lbs. per sq. in., $\frac{f}{w}=2.309 p$. In hydraulic transmission the velocity and the height above datum are usually small compared with the pressure-head. The work or energy of a given quantity of water under pressure $=$ its volume in cubic feet \times its pressure in lbs. per sq. ft .; or if $Q=$ quantity in cubic feet per second, and $p=$ pressure in lbs. per square inch, $W=144 p Q$, and the H. P. $=\frac{144 p Q}{550}=0.2618 p Q$.
Formula for Computing Power of Jet Water-Wheels of the Pelton Type. (F, K. Blue).
Let $H P=$ horse-power delivered by the water-wheel ; $d=$ diameter of nozzle ; $w=$ weight of one $\mathrm{cu} . \mathrm{ft}$. of water, or 62.5 lbs ; $E=$ efficiency of the water-wheel ; $q=$ quantity of water in cubic feet per minute ; $c=$ coefficient of discharge from the nozzle, which may be ordinarily taken as $0.9 ; h=$ effective head (actual head less friction head) in feet ; then

$$
\begin{gathered}
\mathrm{HP}=\frac{\mathrm{wE} \mathrm{q} \mathrm{~h}}{33,000}=0.00189 \mathrm{Eq} \mathrm{~h}=0.00436 \mathrm{Eq} \mathrm{p} .= \\
0.00496 \mathrm{Ec} \mathrm{~d} \\
\mathrm{q}=529 \frac{\mathrm{HP}}{\mathrm{Eh}}=2.62 \mathrm{c}^{\mathrm{h}^{3}}=0.0174 \mathrm{Ec} \mathrm{~d} \sqrt{\mathrm{~h}}=4 \mathrm{c} \mathrm{~d}^{2} \sqrt{\mathrm{p}^{3}} . \\
\mathrm{d}=14.2 \sqrt{\frac{\mathrm{HP}}{\mathrm{Ec} \sqrt{\mathrm{~h}^{3}}}}=7.58 \sqrt{\frac{\mathrm{HP}}{\mathrm{Ec} \sqrt{\mathrm{p}^{3}}}}= \\
0.62 \sqrt{\frac{\mathrm{q}}{\mathrm{c} \sqrt{\mathrm{~h}}}}=1 / 2 \sqrt{\frac{\mathrm{q}}{\mathrm{c} \sqrt{\mathrm{p}}}} .
\end{gathered}
$$

The Pelton Water-wheel.-Mr. Ross E. Browne (Eng'g News, Feb. 20 , 1892) thus outlines the principles upon which this water-wheel is constructed :

The function of a water-wheel, operated by a jet of water escaping from a nozzle, is to convert the energy of the jet, due to its velocity, into useful work. In order to utilize this energy fully the wheel-bucket, after catching the jet, must bring it to rest before discharging it, without inducing turbulence or agitation of the particles.

This cannot be fully effected, and unavoidable difficulties necessitate the loss of a portion of the energy. The principal losses occur as follows : First, in sharp or angular diversion of the jet in entering, or in its course through the bucket, causing impact, or the conversion of a portion of the energy into heat instead of useful work. Second, in the so-called frictional resistance offered to the motion of the water by the wetted surfaces of the buckets, causing also the conversion of a portion of the energy into heat instead of useful work. Third, in the velocity of the water, as it leaves the bucket, representing energy which has not been converted into work

Hence, in seeking a high efficiency: 1. The bucketsurface at the entrance should be approximately parallel to the relative course of the jet, and the bucket should be curved in such a manner as to avoid sharp angular deflection of the stream. If, for example, a jet strikes a surface at an angle and is sharply deflected, a portion of the water is backed, the smoothness of the stream is disturbed, and there results considerable loss by impact and otherwise. The entrance and deflection in the Pelton bucket are such as to avoid these losses in the main.

Fig. 134.

Fig. 135.
2. The number of buckets should be small, and the path of the jet in the bucket short; in other words, the total wetted surface should be small, as the loss by friction will be proportional to this.
3. The discharge end of the bucket should be as nearly tangential to the wheel periphery as compatible with the clearance of the bucket which follows; and great differences of velocity in the parts of the escaping water should be avoided. In order to bring the water to rest at the discharge end of the bucket, it is shown, mathematically, that the velocity of the bucket should be one half the velocity of the jet.

A bucket, such as shown in Fig. 135, will cause the heaping of more or less dead or turbulent water at the point indicated by dark shading. This dead water is subsequently thrown from the wheel with considerable velocity, and represents a large loss of energy. The introduction of the wedge in the Pelton bucket (see Fig. 134) is an efficient means of avoiding this loss.

A wheel of the form of the Pelton conforms closely in construction to each of these requirements.

In a test made by the proprietors of the Idaho mine, near Grass Valley, Cal., the dimensions and results were as follows: Main supply-pipe, 22 in . diameter, 6900 ft . long, with the head of $3861 / 2$ feet above centre of nozzle. The loss by friction in the pipe was 1.8 ft ., reducing the effective head to 384.7 ft . The Pelton wheel used in the test was 6 ft . in diameter and the nozzle was 1.89 in . diameter. The work done was measured by a Prony brake, and the mean of 13 tests showed a useful effect of 87.3%.

Fig. 136.

Miners' Inch Measurements. (Pelton Water Wheel Co.)

The cut, Fig. 136, shows the form of measuring-box ordinarily used, and the following table gives the discharge in cubic feet per minute of a miner's inch of water, as measured under the various heads and different lengths and heights of apertures used in California.

Length of Opening in inches.	Openings 2 Inches High.			Openings 4 Inches High.		
	Head to					
	Centre 5 inches.	Centre 6 inches.	Centre 7 inches.	Centre, 5 inches.	Centre, 6 inches.	Centre, 7 inches.
	Cu ft .	Cu ft .	$\mathrm{Cu} . \mathrm{ft}$.	Cu. ft.	Cu. ft.	Cu. ft.
4	1.348	1.473	1.589	1.320	1.450	1.570
6	1.355	1.480	1.596	1.336	1.470	1.595
8	1.359	1.484	1.600	1.344	1.481	1.608
10	1.361	1.485	1.602	1.349	1.487	1.615
12	1.363	1.487	1.604	1.352	1.491	1.620
14	1.364	1.488	1.604	1.354	1.494	1.623
16	1.365	1.489	1.605	1.356	1.496	1.626
18	1.365	1.489	1.606	1.357	1.498	1.628
20	1.365	1.490	1.606	1.359	1.499	1.630
22	1.366	1.490	1.607	1.359	1.500	1.631
24	1.366	1.490	1.607	1.360	1.501	1.632
26	1.366	1.490	1.607	1.361	1.502	1.633
28	1.367	1.491	1.607	1.361	1.503	1.634
30	1.367	1.491	1.608	1.362	1.503	1.635
40	1.367	1.492	1.608	1.363	1.505	1.637
50	1.368	1.493	1.609	1.364	1.507	1.639
60	1.368	1.493	1.609	1.365	1.508	1.640
70	1.368	1.493	1.609	1.365	1.508	1.641
80	1.368	1.493	1.609	1.366	1.509	1.641
90	1.369	1.493	1.610	1.366	1.509	1.641
100	1.369	1.494	1.610	1.366	1.509	1.642

PUMPS AND PUMPING ENGINES.

(Kent's Pocket Book.)

Theoretical Capacity of a Pump.-Let $Q^{\prime}=\mathrm{cu} . \mathrm{ft}$. per min. $; G^{\prime}=$ Amer. gals. per min. $=7.4805 Q^{\prime} ; d=$ dianı. of pump in inches ; $l=$ stroke in inches; $N=$ number of single strokes per min.

Capacity in $\mathrm{cu} . \mathrm{ft}$. per min.

$$
Q^{\prime}=\frac{\pi}{4} \cdot \frac{d^{2}}{144} \cdot \frac{l N}{12}=0.0004545 N d^{2} l
$$

Capacity in gals. per min.

$$
G^{\prime}=\frac{\pi}{4} \cdot \frac{N d^{2} l}{231}=0.0034 N d^{2} l
$$

Diameter required for a given capacity per min.

$$
d=46.9 \sqrt{\frac{Q^{\prime}}{N l}}=17.15 \sqrt{\frac{G^{\prime}}{N l}}
$$

If $v=$ piston speed in feet per min.,

$$
d=13.54 \sqrt{\frac{Q^{\prime}}{v}}=4.95 \sqrt{\frac{\bar{G}^{\prime}}{v}}
$$

If the piston speed is 100 feet per min.:

$$
\begin{gathered}
N l=1200, \text { and } d=1.354 \sqrt{Q^{\prime}}=0.495 \sqrt{G^{\prime}} ; \\
G^{\prime}=4.08 d^{2} \text { per min. }
\end{gathered}
$$

The actual capacity will be from 60% to 95% of the theoretical, according to the tightness of the piston, valves, suction-pipe, etc.

Theoretical Horse-power required to raise Water to a given Height.

Let $Q^{\prime}=\mathrm{cu} . \mathrm{ft}$. per $\min . ; G^{\prime}=$ gals. per $\min . ; W=\mathrm{wt}$. in lbs.; $P=$ pressure in lbs. per sq. ft.; $p=$ pressure in lbs. per sq. in.; $H=$ height of lift in ft .; $W=62.36 Q^{\prime}, P$ $=144 p, p=0.433 H, H=2.309 p, \mathrm{G}^{\prime}=7.4805 Q^{\prime}$.

$$
\begin{aligned}
& \mathrm{HP}=\frac{Q^{\prime} P}{33,000}=\frac{Q^{\prime} H \times 144 \times .433}{33,000}=\frac{Q^{\prime} H}{529.2}=\frac{G^{\prime} H}{3958.7} \\
& \mathrm{HP}=\frac{W H}{33,000}=\frac{Q^{\prime} \times 62.36 \times 2.309 p}{33,000}=\frac{Q^{\prime} p}{229.2}=\frac{G^{\prime} p}{1714.5}
\end{aligned}
$$

For the actual horse-power required an allowance must be made for the friction, slips, etc., of engine, pump, valves, and passages.

Depth of Suction,-Theoretically a perfect pump will lift water from a depth of nearly 34 feet, corresponding to a perfect vacuum ($14.7 \mathrm{lbs} . \times 2.309=33.95$ feet); but since a perfect vacuum cannot be obtained, on account of valve-leakage, air contained in the water, and the vapor of the water itself, the actual height is generally less than 30 feet. In pumping hot water, the water must flow into the pump by gravity. The following table shows the theoretical maximum depth of suction for different temperatures, leakage not considered :

$\begin{gathered} \dot{x} \\ \dot{Z} \\ \underset{\sim}{0} \\ H \end{gathered}$							
101.4	1	27.88	31.6	183.0	8	13.63	15.5
126.2	2	25.85	29.3	188.4	9	11.59	13.2
144.7	3	23.81	27.0	193.2	10	9.55	10.9
153.3	4	21.77	24.7	197.6	11	7.51	8.5
162.5	5	19.74	22.4	201.9	12	5.48	6.2
170.3	6	17.70	20.1	205.8	13	3.44	3.9
177.0	7	15.66	17.8	209.6	14	1.40	1.6

STEAM

AND
STEAM APPARATUS.

STEAM.

Under the ordinary atmospheric pressure of 14.7 pounds per square inch, water boils at 212° Fahr., passing off as steam, the temperature at which it boils varying with a variation in the pressure.

Dry steam is steam not containing any free moisture. It may be either saturated or superheated.

Wet steam is steam containing free moisture in the form of spray or mist, and has the same temperature as dry saturated steam of the same pressure.

Saturated steam is steam in its normal state, that is, steam whose temperature is that due its pressure; by which is meant steam at the same temperature as that of the water from which it was generated and upon which it rests.

Superheated steam is steam at a temperature above that due to its pressure.

A British thermal unit is the quantity of heat required to raise one pound of water at $39^{\circ} .1$ Fahr. through one degree of temperature.

The total heat of the water is the number of British thermal units needed to raise one pound of water from $32^{\circ} \mathrm{F}$. to the boiling point, under the given pressure.

The latent heat of steam is the number of British thermal units required to convert one pound of water, at the boiling point, into steam of the same temperature.

The total heat of saturated steam is the number of heat units required to raise a pound of water from $32^{\circ} \mathrm{F}$. to the boiling point, at the given pressure, plus the number required to evaporate the water at that temperature.

The specific heat of steam is the quantity of heat required to raise the temperature of one pound of steam through one degree of temperature. In British units and near the saturation temperature it equals, at constant pressure, 0.48 .

The specific gravity of steam at any temperature and pressure, as compared with air of same temperature and pressure, is approximately 0.623 . One cubic inch of water evaporated into steam at $212^{\circ} \mathrm{F}$. becomes 1646 cubic in., that is, nearly one cu. ft.

Water in contact with saturated steam has the same temperature as the steam itself. Water introduced into superheated steam will be vaporized until the steam becomes saturated, and its temperature becomes that due its pressure. Cold water, or water at a lower temperature than that of the steam, introduced into saturated steam, will condense some of it, thus lowering both the temperature and pressure of the rest until the temperature again equals that due its pressure.

PROPERTIES OF SATURATED STEAM．

1	101.99	70.0	1043.0	1113.1	0.00299	334.5
2	126.27	94.4	1026.1	1120.5	0.00576	173.6
3	141.62	109.8	1015.3	1125.1	0.00844	118.5
4	153.09	121.4	1007.2	1128.6	0.01107	90.33
5	162.34	130.7	1000.8	1131.5	0.01366	73.21
6	170.14	138.6	995.2	11338	0.01622	61.65
7	176.90	145.4	990.5	1135.9	0.01874	53.39
8	182.92	151.5	986.2	1137.7	0.02125	47.06
9	188.33	156.9	982.5	1139.4	0.02374	42.12
10	193.25	161.9	979.0	1140.9	0.02621	38.15
15	213.03	181.8	965.1	1146.9	0.03826	26.14
20	227.95	196.9	954.6	1151.5	0.05023	19.91
25	240.04	209.1	946.0	1155.1	0.06199	16.13
30	250.27	219.4	938.9	1158.3	0.07360	13.59
35	259.19	228.4	932.6	1161.0	0.08508	11.75
40	267.13	236.4	927.0	1163.4	0.09644	10.37
45	274.29	243.6	922.0	1165.6	0.1077	9.285
50	280.85	250.2	917.4	1167.6	0.1188	8.418
55	286.89	256.3	913.1	1169.4	0.1299	7.698
60	292.51	261.9	909.3	1171.2	0.1409	7.097
65	297.77	267.2	905.5	1172.7	0.1519	6.583
70	302.71	272.2	902.1	1174.8	0.1628	6.143
75	307.38	276.9	898.8	1175.7	0.1736	5.760
80	311.80	281.4	895.6	1177.0	0.1843	5.426
85	316.02	285.8	892.5	1178.3	0.1951	5.126
90	320.04	290.0	889.6	1179.6	0.2058	4.859
95	323.89	294.0	886.7	1180.7	0.2165	4.619
100	327.58	297.9	884.0	1181.9	0.2271	4.403
105	331.13	301.6	881.3	1182.9	0.2378	4.205
110	334.56	305.2	878.8	1184.0	0.2484	4.026
115	337.86	308.7	876.3	1185.0	0.2589	3.862
120	341.05	312.0	874.0	1186.0	0.2695	3.711
125	344.13	315.2	871.7	1186.9	0.2800	3.571
130	347.12	318.4	869.4	1187.8	0.2904	3.444
140	352．85	324.4	865.1	1189.5	0.3118	3.212
150	358.26	330.0	861.2	1191.2	0.3321	3.011
160	363.40	335.4	857.4	1192.8	0.3530	2.833
170	368.29	340.5	853.8	1194.3	0.8737	2.676
180	372.97	345.4	850.3	1195.7	0.3945	2.535
190	377.44	350.1	847.0	1197.1	0.4153	2.408
200	381.73	354.6	843.8	1198.4	0.4359	2.294
225	391.79	365.1	836.3	1201.4	0.4876	2.051
250	400.99	374.7	829.5	1204.2	0.5393	1.854
275	409.50	383.6	823.2	1206.8	0.5913	1． 691
300	417.42	391.9	817.4	1209.3	0.644	1.553
325	424.82	399.6	811.9	1211.5	0.696	1.437
350	431.90	406.9	806.8	1213.7	0.748	1.337
375	438.40	414.2	801.5	1215.7	0.800	1.250
400	445.15	421.4	796.8	1217.7	0.853	1.172
500	466.57	444.8	779.9	1224.2	1.065	0.939

The absolute pressures given in column one may be converted into gauge pressures by subtracting the constant 14．7：Thus， 115 lbs．，absolute $=115-14.7=100.3$ lbs．gauge．

FACTORS OF EVAPORATION.

	STEAM PRESSURE IN POUNDS PER SQUARE INCH, GAUGE.									
	0.	5.	15	25.	35.	45.	55.	65.	75.	85.
Dgrs.										
32	$1.18{ }^{\text {\% }}$	1.192	1.199	1.204	1.209	1.212	1.216	1.218	1.221	1.223
35	1.184	1.189	1.196	1.201	1.206	1.209	1.213	1.215	1.218	1.220
40	1.179	1.184	1.191	1.196	1.201	1.204	1.208	1.219	1.213	1.215
45	1.173	1.178	1.185	1.190	1.195	1.198	1.202	1.204	1.207	1.209
50	1.168	1.173	1.180	1.185	1.190	1.193	1.197	1.199	1.202	1.204
55	1.163	1.168	1.175	1.180	1.185	1.188	1.192	1.194	1.197	1.199
60	1.158	1.163	1.170	1.175	1.180	1.183	1.187	1.189	1.192	1.194
65	1.153	1.158	1.165	1.170	1.175	1.178	1.182	1.184	1.187	1.189
70	1.148	1.153	1.160	1.165	1.170	1.173	1.177	1.179	1.182	1.184
75	1.143	1.148	1.155	1.160	1.165	1.168	1.172	1.174	1.177	1.179
80	1.137	1.142	1.149	1.154	1.159	1.162	1.166	1.168	1.171	1.173
85	1.132	1.137	1.144	1.149	1.154	1.157	1.161	1.163	1.166	1.168
90	1.127	1.132	1.139	1.144	1.149	1.152	1.156	1.158	1.161	1.163
95	1.122	1.127	1.134	1.139	1.144	1.147	1.151	1.153	1.156	1.158
100	1.117	1.122	1.129	1.134	1.139	1.142	1.146	1.148	1.151	1.153
105	1.111	1.116	1.123	1.128	1.133	1.136	1.140	1.142	1.145	1.147
110	1.106	1.111	1.118	1.123	1.128	1.131	1.135	1.137	1.140	1.142
115	1.101	1.106	1.113	1.118	1.123	1.126	1.130	1.132	1.135	1.187
120	1.096	1.101	1.108	1.113	1.118	1.121	1.125	1.127	1.130	1.132
125	1.091	1.096	1.103	1.108	1.113	1.116	1.120	1.122	1.125	1.127
130	1.085	1.090	1.097	1.102	1.107	1.110	1.114	1.116	1.119	1.121
135	1.080	1.085	1.092	1.097	1.102	1.105	1.109	1.111	1.114	1.116
140	1.075	1.080	1.087	1.092	1.097	1.100	1.104	1.106	1.109	1.111
145	1.070	1.075	1.082	1.087	1.092	1.095	1.099	1.101	1.104	1.106
150	1.065	1.070	$1.0 \mathrm{C}^{7}$	1.082	1.087	1.090	1.094	1.096	1.099	1.101
155	1.059	1.064	1.071	1.076	1.081	1.084	1.088	1.090	1.094	1.095
160	1.054	1.059	1.066	1.071	1.076	1.079	1.083	1.085	1.088	1.090
165	1.049	1.054	1.061	1.066	1.071	1.074	1.078	1.080	1.083	1.085
170	1.044	1.049	1.056	1.061	1.066	1.069	1.073	1.075	1.078	1.080
175	1.039	1.044	1.051	1.056	1.061	1.064	1.068	1.070	1.073	1.075
180	1.033	1.038	1.045	1.050	1.055	1.058	1.062	1.064	1.067	1.069
185	1.028	1.033	1.040	1.045	1.050	1.053	1.057	1.059	1.062	1.064
190	1.023	1.028	1.035	1.040	1.045	1.048	1.052	1.054	1.057	1.059
195 200	1.018	1.023	1.030	1.035	1.040	1.043	1.047	1.049	1.052	1.054
200	1.013	1.018	1.025	1.030	1.035	1.038	1.042	1.044	1.047	1.049
205	1.007	1.012	1.019	1.024	1.029	1.032	1.036	1.038	1.041	1.043
210	1.002	1.007	1.014	1.019	1.024	1.027	1.031	1.033	1.036	1.038
212	1.000	1.005	1.012	1.017	1.022	1.025	1.029	1.081	1.084	1.036

FACTORS OF EVAPORATION.

Tivid	STEAM PRESSURE IN POUNDS PER SQUARE INCH, GAUGE.									
	95.	105.	115.	125.	135.	145.	155.	165.	175.	185.
Dgrs.										
32	1.226	1.228	1.230	1.231	1.233	1.235	1.236	1.238	1.239	1.240
35	1.223	1.225	1.227	1.228	1.230	1.232	1.233	1.235	1.236	1.237
40	1.218	1.220	1.222	1.223	1.225	1.227	1.228	1.230	1.231	1.232
45	1.212	1.214	1.216	1.217	1.219	1.221	1.222	1.224	1.225	226
50	1.207	1.209	1.211	1.212	1.214	1.216	1.217	1.219	1.220	1.221
55	1.202	1.204	1.206	1.207	1.209	1.211	1.212	1.214	1.215	1.216
60	1.197	1.199	1.201	1.202	1.204	1.206	1.207	1.209	1.210	1.211
65	1.192	1.194	1.196	1.197	1.199	1.201	1.202	1.204	1.205	1.206
70	1.187	1.189	1.191	1.192	1.194	1.196	1.197	1.199	1.200	1.201
75	1.182	1.184	1.186	1.187	1.189	1.191	1.192	1.194	1.195	1.196
80	1.176	1.178	1.180	1.181	1.183	1.185	1.186	1.188	1.189	1.190
85	1.171	1.173	1.175	1.176	1.178	1.180	1.181	1.183	1.184	1.185
90	1.166	1.168	1.170	1.171	1.173	1.175	1.176	1.178	1.179	1.180
95	1.161	1.163	1.165	1.166	1.168	1.170	1.171	1.173	1.174	1.175
100	1.156	1.158	1.160	1.161	1.163	1.165	1.166	1.168	1.169	1.170
105	1.150	1.152	1.154	1.155	1.157	1.159	1.160	1.162	1.163	1.164
110	1.145	1.147	1.149	1.150	1.152	1.154	1.155	1.157		1.159
115	1.140	1.142	1.144	1.145	1.147	1.149	1.150		1.153	1.154
120	1.135	1.137	1.139	1.140	1.142	1.144	1.145	1.147	1.148	1.149
125	1.130	1.132	1.134	1.135	1.137	1.139	1.140	1.142	1.143	
130	1.124	1.126	1.128	1.129	1.131	1.133	1.134	1.136	1.137	1.138
135	1.119	1.121	1.123	1.124	1.186	1.128	1.129	1.131	1.132	1.133
140	1.114	1.116	1.118	1.119	1.121	1.123	1.124	1.126	1.127	1.128
145	1.109	1.111	1.113	1.114	1.116	1.118	1.119	1.121	1.122	1.123
150	1.104	1.106	1.108	1.109	1.111	1.118	1.114	1.116	1.117	1.118
155	1.098	1.100	1.102	1.103	1.105	1.107	1.108	1.110	1.111	1.112
160	1.093	1.095	1.097	1.098	1.100	1.102	1.103	1.105	1.106	1.107
165	1.088	1.090	1.092	1.093	1.095	1.097	1.098	1.100	1.101	1.102
170	1.083	1.085	1.087	1.088	1.090	1.092	1.093	1.095	1.096	1.097
175	1.078	1.080	1.082	1.083	1.085	1.087	1.088	1.090	1.091	1.092
180	1.072	1.074	1.076	1.077	1.079	1.081	1.082	1.084	1.085	1.086
185	1.067	1.069	1.071	1.078	1.074	1.076	1.077	1.079	1.080	1.081
190	1.062	1.064	1.066	1.067	1.069	1.071	1.072	1.074	1.075	1.076
195	1.057	1.059	1.061	1.062	1.064	1.066	1.066	1.069	1.070	1.071
200	1.052	1.05	1.056	1.057	1.05	1.061	1.062	1.064	1.0	1.
205	1.046	1.048	1.050	1.051	1.053	1.055	1.056	1.058	1.059	1.060
210	1.041	1.043	1.045	1.046	1.048	1.050	1.051	1.053	1.054	1.055
212	1.039	1.041	1.043	1.044	1.046	1.048	1.049	1.051	1.052	1.053

Explanation of Table of Properties of Saturated Steam:

 The first column shows the absolute pressure of steam as it rises freely from water of the same temperature, and is equal to 14.7 lbs . + the pressure shown by the steam gauge.The second column shows the temperatures in degrees Fahrenheit at which water vaporizes under the pressures opposite in column one.

The third column shows the number of British thermal units required to raise one pound of water from $32^{\circ} \mathrm{F}$. to the boiling temperatures opposite in column two.

The fourth column shows the number of heat units that are absorbed, or changed from sensible to latent heat, when one pound of water at the boiling point changes to steam of the same temperature.

The fifth column shows the number of heat units absorbed when one pound of water at $32^{\circ} \mathrm{F}$. has its temperature raised to the boiling point and is then changed to steamat constant pressure and temperature. This column gives the total heat of formation of steam from water at $32^{\circ} \mathrm{F}$.

The sixth column shows the weights in pounds per cubic ft . of saturated steam at the corresponding pressures and temperatures given in columns one and two.

The seventh column shows volumes in cubic ft. of one pound of steam.

Explanation of Table of Factors of Evaporation: The factors in this table were obtained, for the various feedwater temperatures and steam pressures given, by subtracting the heat above $32^{\circ} \mathrm{F}$. in one pound of feed-water from the total heat above 32° in one pound of steam, and then dividing the remainder thus obtained by 965.7 , the latent heat of steam at atmospheric pressure.

Example:-Given the boiler pressure $=105 \mathrm{lbs}$. per square in. guage, and the feed-water temperature $=55^{\circ} \mathrm{F}$.; to find the factor of evaporation. Look in the column or steam pressures headed 105 and opposite to 55 degrees in the first column, read 1.204, the factor required. It will therefore require 1.204 times as many heat units to evaporate a certain weight of water from a feed-water temperature of $55^{\circ} \mathrm{F}$. into steam under 105 pounds guage as would be required to evaporate the same weight of water from a temperature of $212^{\circ} \mathrm{F}$. into steam under one atmospheric pressure. that is, from and at $212^{\circ} \mathrm{F}$.
This table is useful in rating boilers and in preparing reports of tests.

FLOW OF STEAM FROM ORIFICES.

The flow of steam from a vessel of one pressure into that of another pressure becomes greater the greater the difference in pressure between the two vessels, until the lower is 0.58 the absolute pressure of the higher. Any further reduction of the pressure in the second vessel, even down to a vacuum, fails to enhance the flow of the steam between the two. In flowing through the best shaped nozzle the steam expands to the external pressure and also to the volume corresponding to this pressure, so long as it is not less than 58 per cent. of the internal pressure. For an external pressure of 58 per cent. or less, the ratio of expansion becomes constant and is 1.624.

OUTFLOW OF STEAM INTO THE ATMOSPHERE.

(D. K. CLARK.)

Initial Pressure.	External Pressure.	Expansion in nozzle.	Velocity of outflow at constant density.	Actual velocity of outflow expanded.	Discharge
Lbs. per sq. in. absolute.	Lbs. per sq. in. absolute.	Ratio.	Ft. per sec.	$\begin{aligned} & \text { Ft. per } \\ & \text { sec. } \end{aligned}$	Lbs. per sq. in. per minute.
25.37	14.7	1.624	863	1401	22.81
30	14.7	1.624	867	1408	26.84
40	14.7	1.624	874	1419	35.18
45	14.7	1.624	877	1424	39.78
50	14.7	1.624	880	1429	44.06
60	14.7	1.624	885	1437	52.59
70	14.7	1.624	889	1444	61.07
75	14.7	1.624	891	1447	65.30
90	14.7	1.624	895	1454	77.94
100	14.7	1.624	898	1459	86.34
115	14.7	1.624	902	1466	98.76
135	14.7	1.624	906	1472	115.61
155	14.7	1.624	910	1478	132.21
165	14.7	1.624	912	1481	140.46
215	14.7	1.624	919	1493	181.58

The weight of steam discharged from a cylindrical nozzle or a short pipe may be approximately found, when the pressure of the atmosphere receiving the steam is less than 58 per cent. of the initial pressure, by the following formula (Napier's Rule): $W=a p \div 70$; in which $W=$ flow in pounds per second, $a=$ area of orifice in square inches; and $p=$ absolute initial pressure per square inch of the steam.

For a circular opening in a thin plate multiply the discharge as obtained from the above formula by 0.65 .

FLOW OF STEAM IN PIPES.

(KENT'S POCKET BOOK).
A formula commonly used for velocity of flow of steam in pipes is the same as Downing's for the flow of water in smooth cast iron pipes, viz.:

$$
\mathrm{V}=50 \sqrt{\frac{\mathrm{H}}{\mathrm{~L}} \mathrm{D}}
$$

in which $V=$ velocity in feet per second, $L=$ length, and $D=$ diameter of pipe in feet, $H=$ height in feet of a column of steam, of the pressure of the steam at the entrance, which would produce a pressure equal to the difference of pressures at the two ends of the pipe. (For derivation of the coefficient 50 , see Briggs on "Warming Buildings by Steam," Proc. Inst. C. E., 1882.)

If $Q=$ quantity in cubic ft. per minute, $d=$ diameter in inches, L and H being in feet, the formula reduces to

$$
Q=4.723 \sqrt{\frac{\mathrm{H}}{\mathrm{~L}} \mathrm{~d}^{\mathrm{s}}} \quad \mathrm{H}=0.448 \frac{\mathrm{Q}^{2} \mathrm{~L}}{\mathrm{~d}^{5}}, \quad \mathrm{~d}=0.537 \sqrt[5]{\frac{\mathrm{Q}^{2} \mathrm{~L}}{\mathrm{H}}} .
$$

If $p_{1}=$ pressure in pounds per sq. in. of the steam at the entrance to the pipe, $p^{2}=$ the pressure at the exit, then $144\left(p_{1}-p_{2}\right)=$ difference in pressure per sq. ft. Let $w=$ density or weight per cu. ft . of steam at the pressure p_{1}, then the height of column equivalent to the difference in pressures is

$$
H=\frac{144\left(p_{1}-p_{2}\right)}{w} \text { and } Q=60 \times 0.7854 \times 50 D^{2} \sqrt{\frac{144\left(p_{1}-p_{2}\right) D}{w L}}
$$

If $W=$ weight of steam flowing in pounds per minute $=Q w$ and d is taken in inches, L being in feet:

$$
\begin{aligned}
& W=56.68 \sqrt{\frac{w\left(p_{1}-p_{2}\right) d^{5}}{L}} ; Q=56.68 \sqrt{\frac{\left(p_{1}-p_{2}\right) d^{s}}{L W}} ; \\
& \quad d=0.199 \sqrt[5]{\frac{W^{2} L}{w\left(p_{1}-p_{2}\right)}}=0.199 \sqrt[5]{\frac{Q^{2} w L}{p_{1}-p_{2}}} . \\
& \text { Velocity } \frac{\text { in feet per minute }=V=Q \div 0.7854 \frac{d^{2}}{144}}{=10390 \sqrt{\frac{\left.p_{1}-p_{2}\right) d}{w L}}}
\end{aligned}
$$

For a velocity of 6000 feet per minute, $d=\frac{w L}{3\left(p_{1}-p_{2}\right)}$; $\mathrm{p}_{1}-\mathrm{p}_{2}=\frac{\mathrm{w} \text { L }}{3 \mathrm{~d}}$.

For a velocity of 6000 feet per minute, a steam pressure of 100 pounds gauge, or $W=0.264$, and a length of 100 feet.

$$
\mathrm{d}=\frac{8.8}{\mathrm{p}_{1}-\mathrm{p}_{2}} ; \quad \mathrm{p}_{1}-\mathrm{p}_{2}=\frac{8.8}{\mathrm{~d}}
$$

That is, a pipe 1 inch diameter, 100 feet long, carrying steam of 100 pounds gauge pressure at 6000 feet velocity per minute, would have a loss of pressure of 8.8 pounds per sq. inch, while steam traveling at the same velocity in a pipe 8.8 inches diameter would lose only 1 pound pressure.
G. H. Babcock in "Steam," gives the formula

$$
W=87 \sqrt{\frac{w\left(p_{1}-p_{2}\right) d^{\delta}}{L\left(1+\frac{3.6}{d}\right)}}
$$

One of the most widely accepted formulae for flow of water is D'Arcy's, which is

$$
V=c \sqrt{\frac{H D}{L 4}}
$$

Using D'Arcy's coefficients, and modifying his formula to make it apply to steam, to the form

$$
Q=c \sqrt{\frac{\left(p_{1}-p_{2}\right) d^{5}}{w L}} ; \text { or } W=c \sqrt{\frac{w\left(p_{1}-p_{2}\right) d^{5}}{L}}
$$

we obtain for,
Diam. in. $\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ $\begin{array}{lllllllll}\text { Value of } c, & 45.3 & 52.7 & 56.1 & 57.8 & 58.4 & 59.5 & 60.1 & 60.7\end{array}$
$\begin{array}{lllllllll}\text { Diam. in. } & 9 & 10 & 12 & 14 & 16 & 18 & 20 & 24\end{array}$ $\begin{array}{lllllllll}\text { Value of } \mathrm{c}, & 61.2 & 61.8 & 62.1 & 62.3 & 62.6 & 62.7 & 62.9 & 63.2\end{array}$

In the absence of direct experiments these coefficients are probably as accurate as any that may be derived from formulae for flow of water.

Loss of pressure in lbs. per sq. in. $=p_{1}-p_{8}=\frac{Q^{2} w L}{c^{2} d^{5}}$.

RESISTANCE TO FLOW BY BENDS,

VALVES, ETC.

Mr. Briggs states that in "Warming Buildings by Steam," that the resistance at the entrance to a pipe consists of two parts, namely: the head $\frac{v^{2}}{2 g}$, which is necessary to create the velocity of flow, and the head $0.505 \frac{v^{2}}{2 g}$, which overcomes the resistance to entrance offered by the mouth of the pipe. The total loss of head at entrance then equals the sum of these, or $1.505 \frac{v^{2}}{2 g}$, in which $V=$ velocity of flow of steam in the pipe, in feet per second, and $g=$ acceleration due to gravity, or 32.2 .

The Babcock \& Wilcox Co. state in "Steam" that the resistance at the opening, and that at a globe valve, are each about the same as that caused by an additional length of straight pipe, as computed by the formula,

Additional length of pipe $=\frac{114 \times \text { diameter of pipe }}{1+(3.6 \div \text { diameter })}$, from which has been computed the following table:

Diameter in inches	2	$2 \frac{1}{2}$	3	$3 \frac{1}{2}$	4	5	6	7
Additional length, feet	7	10	13	16	20	28	36	44
Diameter in inches	8	10	12	15	18	20	22	24
Additional length, feet	53	70	88	115	143	162	181	200

The resistance to flow at a right-angled elbow is about equal to $2 / 3$ that of a globe valve.

The above values are to be considered as being only approximations to the truth.

Example.-Find the discharge from a steam pipe when the given length $=120$ feet and the diameter $=8$ inches; the pipe containing 6 right-angled elbows and two globe valves, the pressure at the two ends being respectively 105 and 103 lbs. per sq. in. gauge.

The resistance to entrance, from the above table, for 8 inch pipe $=53$ feet; the resistance of 6 elbows $=6 \times 53 \times 2 / 3$ $=212$ feet; the resistance of two globe valves $=2 \times 53=$ 106 feet; making a total resistance $=53+212+106=371$ feet of additional length of pipe. Therefore, the steam would encounter the same resistance flowing through a straight 8 -inch pipe, whose length equals $120+371$, or 491 feet, as it would in flowing through the given pipe with its various resistances.

Then in the formula $W=c \sqrt{\frac{w\left(p_{1}-p_{2}\right) d^{5}}{L}}$,
$L=491$ feet; $p_{1}=105 \mathrm{lbs}$. per sq. in.; $p_{2}=103 \mathrm{lbs}$. per sq. in.; $d=8$ inches; c, for an 8 -inch pipe $=60.7$; and w, from table of Properties of Saturated Steam, $=0.27$

Substituting in formula we get

$$
\mathrm{W}=60.7 \sqrt{\frac{0.27(105-103) 8^{5}}{491}}=364 .
$$

The pipe, then, under the stated conditions, would discharge approximately 364 pounds of steam per minute, or $21,800 \mathrm{lbs}$. per hour; which, on the basis of 30 lbs . per horse-power hour, would have a capacity of 728 boiler horse-power. Since one pound of steam at 104 lbs . gauge has a volume of $3.7 \mathrm{cu} . \mathrm{ft}$., the pipe would discharge $1,350 \mathrm{cu} . \mathrm{ft}$. per minute, or $81,000 \mathrm{cu} . \mathrm{ft}$. per hour.

＇！！	
\pm	
\bigcirc	
19	
\pm	
$\stackrel{\square}{\sim}$	
${ }_{\sim}^{\sim}$	
Ξ	\＃゙
윽	
∞	Fin
∞	
－	
\bigcirc	
10	
\square	
∞	
\％	ロッボ
${ }^{\circ}$	下o \％ Mザ
\leadsto	
\cdots	
む゙	
－	

The above table was calculated by the formula $W \propto$ (varies as) $\frac{d^{3}}{d+3.6}$, in which $W=$ weight of fluid delivered in a given time, and $d=$ diameter (internal) in inches. In the upper right hand triangle of the table the figures refer to nominal diameters, while in the lower triangle they refer to actual diameters.

Example.-To find number of standard 2 inch pipes to deliver as much fluid as one standard 7 inch pipe: In the upper triangle look in column headed 7 and opposite 2 in the extreme right hand column, read 29. Twentynine 2-inch pipes will then deliver as much as one 7-inch pipe.

NON-CONDUCTING COVERINGS FOR S'TEAM PIPES.

A bare pipe carrying steam, and made of iron, steel or other conducting material, loses heat by convection to the surrounding air and by radiation to the surrounding objects, both of which cause a loss of steam by condensation.

This loss is lessened in practice by covering the outer surface of the steam pipe with a material that will offer a greater resistance to the flow of heat than that offered by the material of the pipe.

A good material for this purpose should not suffer serious deterioration from the heat or vibration to which it would be subjected in practice; and in all cases where damage from fire might result, it should never consist of combustible matter. Under the conditions of practice, especially in places where it may become damp, a good pipe covering should consist of materials that will not rapidly deteriorate, and should contain nothing that will seriously corrode the pipe.

Since air does not take up heat by radiation, but receives heat by contact with a hot body only, it would appear that the greater the porosity of a material, that is, the greater the percentage of volume of finely divided
air it contains, the greater will be its non-conducting qualities. This is noticeably the case in the commercial pipe coverings that consist substantially of the same materials, when these materials contain different percentages of still air. In every case the more porous the material, other things being equal, the greater will be its non-conducting properties.

The following table contains averages made up from results obtained by a number of carefully conducted tests, and represent approximately what may be expected when these materials are properly applied as steam-pipe coverings in practice. The table gives the quantity of heat transmitted through covered steampipes, when that transmitted through a naked pipe is taken as 100 , the covering, except where otherwise indicated, being one inch thick.
Kind of Covering.
Relative Amount of Heat Transmitted.
Naked pipe 100
Hair felt, asbestos lined and canvas covered.... 16 to 18Wool felt, " " " "
Two layers of asbestos paper 70 to 80
Four 45 to 55
Asbestos mixed with some plaster of paris. 28 to 34
Magnesia mixed with a little asbestos fiber, can-vas covered18 to 20
Best mineral wool, lined and canvas covered 18 to 20
Pipe painted with black asphaltum. about 105
Pipe painted with white glossy paint 95

For coverings having values less than 25 in the above table, the values for thicknesses of covering of $11 / 2$ and 2 inches (those in the table being for one inch, as noted) may be approximately obtained by multiplying respectively by 0.78 and 0.58 . Thus, a pipe covered with magnesia and canvas covered would transmit an amount, if $11 / 2$ inches thick $=(18$ to 20$) \times 0.78=14$ to 15.5 ; and if 2 inches thick an amount $=(18$ to 20$) \times 0.58=10.5$ to 11.5 , that transmitted by a similar bare pipe being 100 in the same length of time.

LOSS OF HEAT FROM BARE IRON STEAM PIPES.

Steam pressure $=100 \mathrm{lbs}$. gauge, surrounding air at $62^{\circ} \mathrm{F}$. Steam temperature $=338^{\circ}$ Fahr.

11/2	423	6	1221	12	2290	22	3949
2	494	7	1420	14	2645	24	4264
3	692	8	1580	16	2961	26	4617
4	869	9	1738	18	3315	28	4932
5	1067	10	1935	20	3632°	30	5288

CONDENSATION OF STEAM IN BARE IRON PIPES.

Steam pressure $=100 \mathrm{lbs}$. gauge, surrounding air at $62^{\circ} \mathrm{F}$. Steam temperature $=338^{\circ}$ Fahr.

11	0.48	6	1.39	12	2.61	22	4.51
	0.56	7	1.62	14	3.02	24	4.87
3	0.79	8	1.80	16	3.38	26	5.27
4	0.99	9	1.98	18	3.78	28	5.63
5	1.22	10	2.21	20	4.15	30	6.04

CONDENSA'TION OF STEAM IN COVERED
 IRON PIPES.

Corresponding to a percentage of that in a bare pipe varying from 15 per cent. for a 30 -inch pipe to 19 for a $11 / 2$ inch pipe, which approximates to what may be expected in practice from the application of the best commercial pipe coverings.

Steam pressure $=100 \mathrm{lbs}$. gauge, surrounding air at $62^{\circ} \mathrm{F}$.
Steam temperature $=338^{\circ}$ Fahr.

11/2	0.09	6	0.22	12	0.40	22	0.68
2	0.10	7	0.25	14	0.46	24	0.73
3	0.13	8	0.28	16	0.51	26	0.79
4	0.16	9	0.30	18	0.57	28	0.84
5	0.19	10	0.34	20	0.63	30	0.90

Example.-Find the saving resulting from covering an 8 -inch steam pipe that is 120 feet long.
Condensation in bare pipe $=1.80 \times 120=216.0 \mathrm{lbs}$. per hr.

$$
\text { " "covered" }=0.28 \times 120=33.6 \text { " " " }
$$

Saving of steam effected by covering $=182.4$ " " " Which on a 10 -hour basis would amount to an annual saving of about 550,000 pounds of steam. Assuming that one lb . of coal evaporates, under actual conditions, 9 lbs . of water, the saving of fuel in this case resulting from the application of a good commercial pipe covering, would amount to about $60,000 \mathrm{lbs}$. of coal, or 30 short tons per annum. At two, three and four dollars per ton for fuel this would amount to an annual saving of $\$ 60.00$, $\$ 90.00$ and $\$ 120.00$ respectively.

Since the steam carrying capacity of a pipe of this size, as ordinarily installed for power purposes, would be about $24,000 \mathrm{lbs}$. of steam per hour, the above saving would represent about $1 / 2$ of one per cent. of its carrying capacity.

Where fuel is inexpensive and the steam pipes are short, the net saving due to covering the pipes is, of course, insignificant; but even in this case, especially in confined situations, the pipes should be ordinarily covered in order to make the temperature of the space near them less unendurable to workmen and others, in warm weather.

POWER OF ENGINES AND BOILERS.

Work, in the mechanical sense, is the overcoming of resistance through space, and is measured by the amount of the resistance multiplied by the distance through which it is overcome.

The unit of work, in Great Britain and the United States, is the foot-pound, which is an amount of energy equivalent to the lifting of one pound through a height of one foot.

The unit of rate of doing work is a quantity of work equivalent to the doing of 33,000 foot-pounds in one minute, and is called a horse-power. This is a mechanical horse-power, and should not be confused with the boiler horse-power, which is based upon the evaporation of a stated quantity of water under certain stated conditions.

The indicated horse-power of a steam engine is the horse-power developed by the steam in the cylinder and delivered to the piston. In a double acting single cylinder engine, the indicated horse-power $=\frac{\text { plan }}{33,000,}$, in which $p=$ the mean effective pressure in lbs. per sq. in., as obtained from the indicator card, $l=$ length of stroke in feet, $a=$ area of piston in sq. inches and $n=$ number of working strokes per minute. If the engine has more than one cylinder compute the power of each and take
the sum. If great accuracy is desired the area of crosssection of piston rod should be deducted from the piston area for the crank end, and the powers of the two ends computed separately, since the mean effective pressures of the two ends will not ordinarily be found to be exactly the same. For single acting engines substitute for n the number of working strokes only.

Net or brake horse-power of an engine is the horsepower delivered by the engine from its shaft, by belt or otherwise. It may be obtained from the indicated horsepower by multiplying by the mechanical efficiency: For example, an engine indicating 300 H.P., with a mechanical efficiency of 88 per cent., would have a net or brake horse-power $=300 \times 0.88=264$.

The unit of evaporation is the number of B.T.U. necessary to convert one pound of water at $212^{\circ} \mathrm{F}$. into steam of the same temperature, and is therefore equal to 965.7 B.T.U., the latent heat of one pound of steam at atmospheric pressure.

Boiler Horse-power. A Committee of the American Society of Mechanical Engineers recommended the unit of boiler power known as the "Centennial Standard," and this is now generally accepted. They advised that the commercial horse-power be taken as an evaporation of 30 pounds of water per hour from a feed water temperature of $100^{\circ} \mathrm{Fahr}$. into steam at 70 pounds per square inch gauge pressure. This is equivalent to $341 / 2$ units of evaporation, that is, to $341 / 2$ pounds of water evaporated from a feed water temperature of 212° Fahr. into steam at the same temperature. This "Centennial Standard" unit is equivalent to 33,305 British thermal units per hour.

It was the opinion of this Committee that a boiler rated at any stated power should be capable of developing that power with easy firing, moderate draught, and ordinary fuel, while exhibiting good economy; and, at times, when maximum economy is not the most important object to be attained, at least one-third more than its rated power to meet emergencies.

Example.-A battery of boilers evaporate $20,000 \mathrm{lbs}$. of feed-water per hour, the temperature of feed-water being $40^{\circ} \mathrm{F}$., and the gauge pressure 100 lbs . per sq. in. Find the equivalent evaporation from and at $212^{\circ} \mathrm{F}$.; also the commercial horse-power.

The factor of evaporation, from $40^{\circ} \mathrm{F}$. and at 100 lbs . gauge, is (see table of factors of evaporation) 1.219. Therefore the equivalent evaporation from and at $212^{\circ}=$ $20,000 \times 1.219=24,380 \mathrm{lbs}$. per hr.

Since one commercial horse-power is equivalent to the evaporation of 34.5 lbs . of water per hour, from and at 212°, the commercial horse-power $=24,380 \div 34.5=707$.

In the above example the steam is assumed to be dry and saturated. In case it is not a correction must be made.

1. Assume that the steam contains 2 per cent. of moisture. Of the $20,000 \mathrm{lbs}$. of feed-water, then, 98 per cent. or $19,600 \mathrm{lbs}$. will be evaporater and the remaining 400 lbs. will pass from the boiler as water at the temperature of the steam. Each pound of this water will carry away from the boiler an amount of heat necessary to raise its temperature from $40^{\circ} \mathrm{F}$., the temperature of the feedwater, to 337°, the temperature of the steam, or 296 B.T.U. per 1 lb . of entrained water. Had the entrained water been evaporated each pound would have carried away an additional amount equal to its latent heat at boiler pressure, or 876 B.T.U. per 1b., or $876 \times 400=350,400$ B.T.U. per hour, for the total amount of entrained water. Under the assumed conditions, then, the boiler imparts 350,400 heat units less to the feed-water per hour than would have been the case had there been no entrained water; that is, its capacity is less by $350,400 \div 33,305$ (the heat equivalent of a boiler H.P.) $=10.5$ horse-power. The actual commercial horse power of the boiler then $=707-$ $10.5=696.5$.
2. Assume that the steam is superheated 20 degrees; that is, to a temperature of $337^{\circ}+20^{\circ}=357^{\circ} \mathrm{F}$. Then the additional heat imparted to each pound of feed-water over that necessary to generate dry saturated steam is $20^{\circ} \times 0.48$ (the specific heat of steam) $=9.6$ heat units per 1 lb ., or $9.6 \times 20,000=192,000$ per hr., or $192.000 \div 33,305=$ 5.8 horse-power. The actual horse-power of boiler then $=707+5.8=712.8$.

Horse-power per Pound Mean Effective Pressure.

Formula, $\frac{\text { Area in sq. in. } \times \text { piston-speed }}{33,000}$.

The indicated horse-power of an engine equals $\frac{\text { plan }}{33,000}=$ $\underline{a \times l n \times p}=\underline{\text { area of piston } \times \text { piston speed }} \times p$, in which $p=$ 33,000 33,000
mean effective pressure in lbs. per sq. in.; $l=$ length of stroke in ft .; $a=$ effective area of piston in sq. in.; and $n=$ number of impulse strokes per minute.

The piston speed for a single acting, double acting or a multiple cylinder engine $=$ the length of stroke in $\mathrm{ft} . \times$ number of impulse strokes per minute.

FEED-WATER HEA'TERS.-(kent).

Percentage of Saving for Each Degree of Increase in Temperature of Feed-water Heated by Waste Steam.

Initial Temp.	Pressure of Steam in Boiler, lbs. per sq. in. above Atmosphere.										
	0	20	40	60	80	100	120	140	160	180	200
32°	. 0872	. 0861	. 0855	0851	0847	. 0844	0841	. 0839	. 0837	0835	0833
40	. 0878	. 0867	. 0861	. 0856	0853	. 0850	. 0847	. 0845	. 0843	0841	. 0839
50	. 0886	. 0875	. 0868	. 0864	. 0860	. 0857	. 0854	. 0852	. 0850	. 0848	. 0816
60	. 0894	. 0883	. 0876	. 0872	0867	. 0864	. 0862	. 0859	. 0856	0855	. 0853
70	. 0902	. 0890	. 0884	. 0879	. 0875	. 0872	. 0869	. 0867	. 0864	0862	. 0860
80	. 0910	. 0898	. 0891	. 0887	. 0883	. 0879	. 0877	. 0874	. 0872	. 0870	. 0868
90	. 0919	. 0907	. 0900	. 0895	. 0888	. 0887	. 0884	. 0883	0879	0877	0875
100	.0927	. 0915	. 0908	. 0903	. 0899	. 0895	. 0892	. 0890	. 0887	0885	. 0883
110	. 0936	. 0923	. 0916	. 0911	. 0907	. 0903	. 0900	. 0898	. 0895	0893	. 0891
120	. 0945	. 0932	0925	. 0919	. 0915	. 0911	. 0908	. 0906	0903	. 0901	. 0899
130	. 0954	. 0941	. 0934	. 0928	0924	0920	. 0917	. 0914	. 0912	. 0909	. 0907
140	. 0963	. 0950	. 0943	. 0937	. 0932	. 0929	.0925	. 0923	. 0920	0918	. 0916
150	. 0973	. 0959	. 0951	. 0946	. 0941	. 0937	. 0934	. 0931	. 0929	. 0926	. 0924
160	. 0982	. 0968	. 0961	. 0955	. 0950	0946	. 0943	. 0940	. 0937	. 0935	0933
170	. 0992	. 0978	. 0970	. 0964	. 0959	. 0955	. 0952	. 0949	. 0946	. 0944	. 0941
180	. 1002	. 0988	. 0981	. 0973	. 0969	. 0965	. 0961	. 0958	. 0955	. 0953	. 0951
190	. 1012	. 0998	. 0989	. 0983	. 0978	. 0974	. 0971	. 0968	. 0964	. 0962	. 0960
200	. 1022	. 1008	. 0999	. 0993	. 0988	. 0984	. 0980	. 0977	. 0974	. 0972	. 0969
210	. 1033	. 1018	. 1009	. 1003	. 0998	. 0994	. 0990	. 0987	. 0984	. 0981	. 0979
220		. 1029	. 1019	. 1013	. 1008	. 1004	. 1000	. 0997	. 0994	0991	. 0989
230		. 1039	. 1031	1024	. 1018	. 1012	. 1010	. 1007	. 1003	1001	. 0999
240		. 1050	1041	1034	. 1029	. 1024	. 1020	. 1017	. 1014	1011	. 1009
25		. 106	10	10	1040	. 1035	10	102	10	10	. 1019

An approximate rule for the conditions of ordinary practice is: A saving of 1% is made by each increase of 11° in the temperature of the feed-water. This corresponds to 0.0909 per cent. for each degree.

The calculation of saving is made as follows: Let total heat of 1 lb . of steam at the boiler-pressure $=H$; tơtal heat of 1 lb . of feed-water before entering the heater $=h_{1}$, and after passing through the heater $=h_{2}$; then the saving made by the heater is $\frac{h_{2}-h_{1}}{H-h_{1}}$.

Example.-Given boiler pressure $=100 \mathrm{lbs}$. gauge; feed water temperature, original $=60^{\circ} \mathrm{F}$. and final $=209^{\circ} \mathrm{F}$.; to find the percentage of saving resulting from heating the feed-water. From the table of properties of saturated steam we find $H=1185$ B.T.U.; $h_{1}=60-32=28$ B.T.U.; $h_{2}=209-32=177$ В.Т.U.
Then the saving by heater $=\frac{h_{2}-h_{1}}{H-h .}=\frac{177-28}{1185-28}=12.9$ per cent.

To solve by table look in column of steam pressures headed " 100 " and opposite to 60° in first column read 0.0864 , which multiplied by $(209-60=149)$ the increase of temperature of feed-water, gives 12.9 per cent., as before.

Safe Working Pressures in Cylindrical Shells of Boilers, Tanks, Pipes, etc., in Pounds per Square Inch.
(KENTS POCKET BOOK).
Longitudinal seams double-riveted.
(Calculated from formula $P=14000 \times$ thickness \div diameter.)

	DIAMETER IN INCHES.										
	24	30	36	38	40	42	44	46	48	50	52
1	36.5	29.2	24.3	23.0	21.9	20.8	$\overline{19.9}$	19.0	18.2	17.5	16.8
2	72.9	58.3	48.6	46.1	43.8	41.7	39.8	38.0	36.5	35.0	33.7
3	109.4	87.5	72.9	69.1	65.6	62.5	59.7	57.1	54.7	52.5	50.5
4	145.8	116.7	97.2	92.1	87.5	83.3	79.5	76.1	72.9	70.0	67.3
5	182.3	145.8	121.5	115.1	109.4	104.2	99.4	95.1	91.1	87.5	84.1
6	218.7	175.0	145.8	138.2	131.3	125.01	119.3	114.1	109.41	105.0	101.0
7	255.2	204.1	170.1	161.2	153.1	145.91	139.2	133.2	127.6	122.5	117.8
8	291.7	233.3	194.4	184.2	175.0	166.71	159.1	152.2	145.81	140.0	134.6
0	328.1	262.5	218.8	207.2	196.9	187.5	179.0	171.2	164.1	157.5	151.4
10	364.6	291.7	243.1	230.3	218.8	208.3	198.9	190.2	182.3	175.0	168.3
11	401.0	320.8	267.4	253.3	240.6	229.2	218.7	209.2	200.5	192.5	185.1
12	437.5	350.0	291.7	276.3	262.5	250.0	238.6	228.3	218.7	210.0	201.9
13	473.9	379.2	316.0	299.3	284.4	270.9	258.5	247.3	237.0	227.5	218.8
14	410.4	408.3	340.3	322.4	306.3	291.7	278.4	266.3	255.2	245.0	235.6
15	546.9	437.5	364.6	345.4	328.1	312.5	298.3	285.3	273.4	266.5	252.4
16	583.				350		318.2	304.4		280.0	269
	DIAMETER IN INCHES.										
	54	60	66	72	78	84	90	96	102	108	120
1	16.2	14.6	13.3	12.2	11.2	10.4	9.7	9.1	8.6	8.1	7.3
${ }_{3}$	32.4	29.2	26.5	24.3	22.4	20.8	19.4	18.2	17. 2	16.2	14.6
3	48.6	43.7	39.8	36.5	33.7	31.3	29.2	27.8	25.7	24.3	21.9
4	64.8	58.3	53.0	48.6	44.9	41.7	38.9	36.5	34.3	32.4	29.2
5	81.0	72.9	66.3	60.8	56.1	52.15	48.6	45.6	42.9	40.5	36.5
6	97.2	87.5	79.5	72.9	67.3	62.5	58.3	54.7	51.5	48.6	43.8
8	113.4	102.1	92,8	85.1	78.5	72.9	68.1	63.8	60.0	56.7	51.0 58.3
8	129.6	116.7	106.1	97.2 109.4	89.7	83.3 93.8	77.8	72.9	68.6 77.2	64.8 72.9	58.3 65.6
10	162.0	145.8	132.6	121.5	112.2	104.2	87.2	81.1	85.8	81.0	72.9
11	178.2	160.4	145.8	133.7	123.4	114.6	106.9	100.3	94.4	89.1	80.2
12	194.4	175.0	159.1	145.8	134.6	125.0	116.7	109.4	4102.9	97.2	87.5
13	210.7	189.6	172.4	158.0	145.8	135.4	126.4	118.5	111.5	105.3	94.8
14	228.9	204.2	185.6	170.1	157.1	1145.8	136.1	127.6	120.1	113.4	102.1
15	243.1	218.7	198.9	182.3	168.3	3156.3	145.8	136.7	7128.7	121.5	109.4
16	1259.3	233.3	3212.1	194.4	1179.5	5166.7	155.6	145.8	8137.3	3129.6	6116.7

The preceding table has been computed for externallyfired boilers, with longitudinal seams double-riveted and having an efficiency of 0.7 . A factor of safety of 5.5 has been assumed for steel of $55,000 \mathrm{lbs}$. tensile strength.

SIZES OF CHIMNEYS FOR STEAM BOILERS.

by william kent, m. e.

The accompanying tabe of sizes of chimneys for various horse powers of boilers is based on the following data:

1. The draught power of the chimney varies as the square root of the height.
2. The retarding of the ascending gases by friction may be considered as equivalent to a diminution of the area of the chimney, or to a lining of the chimney by a layer of gas which has no velocity. The thickness of this lining is assumed to be two inches for all chimneys, or the diminution of area equal to the perimeter \times two inches (neglecting the overlapping of the corners of the lining). Expressed algebraically, let $D=$ diameter, $A=$ area, $E=$ effective area.

For square chimneys, $E=D^{2}-\frac{8 D}{12}=A-\frac{2 \sqrt{A}}{3}$. For round chimneys, $E=\pi\left(D^{2}-\frac{8 D}{12}\right)=A-0.592 \sqrt{ } \bar{A}$.

For simplifying calculations, the coefficient of \sqrt{A} may be taken as 0.6 for both square and round chimneys, and the formula becomes

$$
E=A-0.6 \sqrt{A}
$$

3. The power varies directly as this effective area E.
4. A chimney 80 feet high, 42 inches diameter, has been found to be sufficient to cause a rate of combustion
of 120 pounds of coal per hour per square foot of area of chimney, or if the grate area is to the chimney area as 8 to 1 , a combustion of 15 pounds of coal per square foot of grate per hour. This is fair practice for a boiler of modern type, in which flues, or tubes are of moderate diameter, gas passages circuitous, and heating surface extensive in proportion to rate of combustion, so as to cool the chimney gases to 400° or $500^{\circ} \mathrm{Fahr}$. and produce high economy.
5. A chimney should be proportioned so as to be capable of giving sufficient draught to cause the boiler to develop much more than its rated power, in case of emergencies, or to cause the combustion of 5 pounds of fuel per rated horse-power of boiler per hour.

Conditions 4 and 5 being assumed, the 80 feet $\times 42$ inches chimney, 9.62 square feet area, will cause the combustion of $9.62 \times 120=1154.4$ pounds of coal per hour, or at 5 pounds of coal per horse-power per hour, is rightly proportioned for 231 horse-power of boilers.
The power of the chimney varying directly as the effective area, E, and as the square root of the height, h, the formula for horse-power of boiler for a given size of chimney will take the form,-

HP. $=C E \sqrt{h}$, in which C is a constant.
For the $80^{\prime} \times 42^{\prime \prime}$ chimney,

$$
\begin{aligned}
E=A-0.6 \sqrt{A} & =7.76 \text { square feet. } \\
\sqrt{h} & =8.944 \text { feet. }
\end{aligned}
$$

Substituting these values in the formula it becomes -

$$
\begin{aligned}
& 231=C \times 7.76 \times 8.944 \text {, } \\
& \text { whence } C=3.33 \text {, }
\end{aligned}
$$

and the formula for horse-power is
HP. $=3.33 E \sqrt{h}$, or, HP. $=3.33(A-0.6 \sqrt{A}) \sqrt{h .}$
If the horse-power of boiler is given, to find the size of chimney, the height being assumed,

$$
E=\frac{0.3 \mathrm{HP}}{\sqrt{h}} .
$$

For round chimneys, diameter of chimney $=$ Diam. of $E+4^{\prime \prime}$.
For square chimneys, side of chimney $=\sqrt{E+4^{\prime \prime}}$.
In the formulae and table no account has been taken of the difference which is believed by some authorities to exist in the efficiencies of round and square chimneys of equal area, nor of the differences of friction and of rate of cooling of the gases in iron and in brick chimneys. Should experimental data of these differences, or of the effect of infiltration of air into brick chimneys, be obtained in future, the formulae and table may be corrected accordingly.

AIR.

AIR.

Air consists of a mechanical mixture of the two gases oxygen and nitrogen in the ratio of 20.7 parts of the former to 79.3 of the latter by volume, and 23 of the former to 77 of the latter by weight. In its natural state it contains small quantities of various substances, such as moisture, carbon dioxide, CO_{2}, the lately discovered element argon, etc.

The weight of dry air at $32^{\circ} \mathrm{F}$. and atmospheric pressure (14.7 lbs . per sq. in.) is 0.0807 lbs . per cu. ft.; from which the volume of one pound $=12.4 \mathrm{cu} . \mathrm{ft}$. At other temperatures and pressures its weight in lbs. per cu. ft . is $W=\frac{1.325 \times B}{459 . 亡+\mathrm{t}}$, in which $B=$ reading of barometer in inches and $t=$ temperature F .

The absolute zero of temperature, on the Fahr. scale is 492° below 32°, or $-460^{\circ} \mathrm{F}$.

The absolute temperature then is obtained by adding 460° to the temperature as read from the Fahr. scale. Thus $60^{\circ} \mathrm{F} .=60^{\circ}+460^{\circ}=520^{\circ}$ absolute; and $-20^{\circ} \mathrm{F} .=$ $-20^{\circ}+460^{\circ}=440^{\circ}$ absolute.
Mechanical equivalent of heat.-Heat energy and mechanical energy are mutually convertible, that is, a unit of heat requires for its production, and produces by its disappearance, a definite amount of mechanical energy, namely, 778 foot-pounds of work for each British thermal unit.

Boyle's law states that the product of the pressure and volume of a portion of gas is constant so long as the temperature is constant, that is, $p v=c$, in which $p=$ pressure in lbs. per sq. ft. and $v=$ volume in $\mathrm{cu} . \mathrm{ft}$. For air at $32^{\circ} \mathrm{F}$, , this constant quantity is 26,200 foot-pounds, or $p v=26,200 \mathrm{ft} .1 \mathrm{bs}$.

Charles' and Gay Lussac's law states that when the pressure is constant all gases expand alike for the same increase of temperature. The amount of this expansion
between 32° and $212^{\circ} \mathrm{F}$, is 0.365 of the original volume: and for each degree it equals $0.365 \div 180=0.00203$. Similiarly, when the volume remains constant the pressure varies in the above ratio.

Combining Boyle's and Charles' laws we see that the product of the pressure and volume of a portion of gas is proportional to the absolute temperature. Thus, $\frac{p v}{p_{1} v_{1}}=$ $\frac{T}{T_{1}}$, in which p and $p_{1}=$ absolute pressures (that is pressures above a vacuum) in 1 bs . per sq. ft .; v and $v_{1}=$ volumes in cu. ft.; T and $T_{1}=$ absolute temperatures.

Transforming the above equation and substituting 32 for T_{1} and 26,200 for $p_{1} v_{1}$, we get

$$
p v=\frac{p_{1} v_{1}}{T_{1} \cdot} T=53.2 T
$$

The specific heat of a gas is the quantity of heat, in heat units, necessary to raise the temperature of one pound of the gas through one degree of temperature.

The specific heat of air at constant pressure is $c_{p}=0.238$ and at constant volume is $\dot{c}_{\mathrm{v}}=0.169$ British thermal unit.

Adiabatic expansion or compression of a gas means that the gas is expanded or compressed without transmission of heat to or from the gas. This would be the case were the expansion or compression to take place in an absolutely non-conducting cylinder, in which case the temperature, pressure and volume would vary as indicated by the following formulae.

$$
\begin{array}{lll}
\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}=\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)^{0.71}: & \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\left(\frac{\mathrm{v}_{2}}{\mathrm{v}_{2}}\right)^{1.41}: & \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}\right)^{0.41}: \\
\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}=\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)^{2.46}: & \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{3.46}: & \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{0.29}:
\end{array}
$$

in which p_{1}, v_{1} and $T_{1}=$ initial absolute pressure, volume and absolute temperature and $\mathrm{p}_{2}, \mathrm{v}_{2}$ and $\mathrm{T}_{2}=$ final absolute pressure, volume and absolute temperature of the gas.

Table for Adiabitic Compression or Expansion of Air. (Proc., Inst. M. E., Jan. 1881, p. 123.)

Absolute Pressure.		Absolute Temperature.		Volume.	
$\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}$	$\frac{\mathrm{P}_{1}}{\mathrm{P}_{\mathrm{a}}}$	$\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$	$\frac{T_{1}}{T_{2}}$	$\frac{V_{1}}{V_{2}}$	$\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
1.2	8.33	1.054	. 948	1.138	8.79
1.4	7.14	1.102	. 907	1.270	. 788
1.6	. 625	1.146	. 873	1.396	. 716
1.8	. 556	1.186	. 843	1.518	. 659
2.0	. 500	1.222	. 818	1.636	. 611
2.2	. 454	1.257	. 796	1.750	. 571
2.4	. 417	1.289	. 776	1.862	. 537
2.6	. 385	1.319	. 758	1.971	. 507
2.8	. 357	1.348	. 742	2.077	. 481
3.0	. 333	1.375	. 727	2.182	. 458
3.2	. 312	1.401	. 714	2.284	. 438
3.4	. 294	1.426	. 701	2.384	. 419
3.6	. 278	1.450	. 690	2.483	. 403
3.8	. 263	1.473	. 679	2.580	. 388
4.0	. 250	1.495	. 669	2.676	. 374
4.2	. 238	1.516	. 660	2.770	. 361
4.4	. 227	1.537	. 651	2.863	. 349
4.6	. 217	1.557	. 642	2.955	. 338
4.8	. 208	1.576	. 635	3.046	. 328
5.0	. 200	1.595	. 62%	3.135	. 319
6.0	. 167	1.681	. 595	3.569	. 280
7.0	. 143	1.758	. 569	3.981	. 251
8.0	. 125	1.828	. 547	4.377	. 228
9.0	. 111	1.891	. 529	4.759	. 210
10.0	. 100	1.950	. 513	5.129	. 195

Work of adiabatic compression of air.-If air is compressed from a volume v_{1} and pressure p_{1} to a volume v_{2} and pressure p_{2}, in a non-conducting cylinder without clearance, the work involved in delivering one pound is as follows:

Work of compression $=2.46 \mathrm{p}_{1} \mathrm{v}_{1}\left[\left(\frac{\mathrm{v}_{\mathrm{i}}}{\mathrm{v}_{\mathbf{2}}}\right)^{0.41}-1\right]=$ $2.46 p_{1} v_{1}\left[\left(\frac{p_{2}}{p_{2}}\right)^{0.29}-1\right]$.

Work of expulsion $=p_{2} v_{3}=p_{1} v_{1}\left(\frac{p_{2}}{p_{2}}\right)^{0.29}$
Total work is the sum of the work of compression and expulsion less the work, $p_{1} v_{1}$, of the atmosphere done on the piston during admission, or

Total work $=3.46 \mathrm{p}_{1} \mathrm{v}_{1}\left[\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{0.29}-1\right]$.
The mean effective pressure equals the total work \div the initial volume, v_{1}, or

$$
3.46 \mathrm{p}_{1}\left[\left(\frac{\mathrm{p}_{3}}{\mathrm{p}_{1}}\right)^{0.29}-1\right]
$$

Isothermal expansion or compression of a gas means that the gas is expanded or compressed with the addition or rejection of sufficient heat to maintain the temperature constant. In this case, the temperature being constant, the pressure and volume will vary according to Boyle's law, namely

$$
p v=C
$$

in which $p=$ absolute pressure in lbs. per sq. ft., $v=$ volume in cu. ft., and $C=a$ constant depending upon the temperature. For a temperature of $32^{\circ} \mathrm{F}$. this constant is $26,200 \mathrm{ft} .1 \mathrm{bs}$., and for isothermals corresponding to other temperatures it may be found from the formula $C=53.2 T$, in which $T=$ the absolute temperature of the isothermal.

Work of isothermal compression of air.-If air is compressed from a volume v_{1} and pressure p_{1} to a volume v_{2} and pressure p_{2}, in a cylinder without clearance, in such manner as to keep the temperature constant, the work involved in delivering one pound is as follows:

Work of compression $=p_{1} v_{1} \log _{e} \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}$.
Work of expulsion $=p_{2} \mathrm{v}_{2}=\mathrm{p}_{1} \mathrm{v}_{\mathrm{i}}$.
The total work then is the sum of the work of compression and expulsion less the work, $\mathrm{p}_{1} \mathrm{v}_{1}$, of the atmosphere done on the piston during admission, or

Total work $=p_{1} v_{1} \log _{e} \frac{v_{1}}{v_{3}}+p_{1} v_{1}-p_{1} v_{1}=p_{1} v_{1}$ $\log e \frac{V_{2}}{V_{2}}$.

In this formula Naperian, or hyperbolic, logarithms must be used. These may be obtained from the common logarithms by multiplying by the constant 2.303 .

The mean effective pressure equals the total work \div the initial volume, v_{1}, or $p_{1} \log _{e} \frac{v_{1}}{v_{2}}$.

Volumes Mean Pressures per Stroke, 'Temperatures, etc., in the Operation of Air-compression from from 1 Atmosphere and 60° Fahr. (F. Richards, Am. Mach., March 30, 1893.)

1	2	3	4	5	6	7
0	1	1	1	0	0	60°
1	1.068	. 9363	. 950	. 96	. 97	71
2	1.136	. 8803	. 910	1.87	1.91	80
3	1.204	. 8305	. 876	2.72	2.80	89
4	1.272	. 7861	. 840	3.53	3.67	98
5	1.340	. 7462	. 810	4.30	4.50	106
10	1.680	. 5952	. 690	7.62	8.27	145
15	2.020	. 4950	. 606	10.33	11.51	178
20	2.360	. 4237	. 543	12.62	14.40	207
25	2.700	. 3703	. 494	14.59	17.01	234
30	3.040	. 3289	. 453	16.34	19.40	252
35	3.381	. 2957	. 420	17.92	21.60	281
40	3.721	. 2687	. 393	19.32	23.66	302
45	4.061	. 2462	. 370	20.57	25.59	321
50	4.401	. 2272	. 350	21.69	27.39	339
55	4.741	. 2109	. 331	22.76	29.11	357
60	5.081	. 1968	. 314	23.78	30.75	375
65	5.423	. 1844	. 301	24.75	32.32	389
70	5.762	. 1735	. 288	25.67	33.83	405
75	6.102	. 1639	. 276	26.55	35.27	420

Volumes, Mean Pressures per Stroke, Temperatures, etc. (CONTINUED.)

1	2	3	4	5	6	7
80	6.412	. 1552	. 2670	27.38	36.64	432°
85	6.782	. 1474	. 2566	28.16	37.94	447
90	7.122	. 1404	. 2480	28.89	39.18	459
95	7.462	. 1340	. 2400	29.57	40.40	472
100	7.802	. 1281	. 2324	30.21	41.60	485
105	8.142	. 1228	. 2254	30.81	42.78	496
110	8.483	. 1178	. 2189	31.39	43.91	507
115	8.823	. 1133	. 2129	31.98	44.98	518
120	9.163	. 1091	. 2073	32.54	46.04	529
125	9.503	. 1052	. 2020	33.07	47.06	540
130	9.843	. 1015	. 1969	33.57	48.10	550
135	10.183	. 0981	. 1922	34.05	49.10	560
140	10.523	. 0950	. 1878	34.57	50.02	570
145	10.864	. 0921	. 1837	35.09	51.00	580
150	11.204	. 0892	. 1796	35.48	51.89	589
160	11.880	. 0841	. 1722	36.29	53.65	607
170	12.560	. 0796	.165'\%	37.20	55.39	624
180	13.240	. 0755	. 1595	37.96	57.01	640
190	13.920	. 0718	. 1540	38.68	58.57	657
200	14.600	. 0685	. 1490	39.42	60.14	672

Combined compression of air, is compression under conditions that permit of some withdrawal of heat during compression, but not sufficient to keep the temperature of the air constant. In this case the compression curve lies between the isothermal and adiabatic curves, and the relation of pressure to volume may be expressed by the formula

$$
p v^{n}=C
$$

in which $p=$ absolute pressure in lbs, per sq. ft.; $v=$ volume in cu . ft.; $C=$ a constant; and $n=$ an exponent whose value may vary from 1 , that for isothermal, to 1.41, that for adiabatic compression or expansion.

Work of combined compression.-If air is compressed from a volume v_{1} and pressure p_{1} to a volume v_{2} and pressure p_{2}, in a cylinder without clearance, the work involved in delivering one pound is as follows:

$$
\begin{aligned}
& \text { Work of compression }=\left(p_{2} v_{2}-p_{1} v_{1}\right) \frac{v_{2}}{v_{1}-v_{2}}= \\
& 53.2\left(T_{2}-T_{1}\right) \frac{v_{2}}{v_{1}-v_{3}}
\end{aligned}
$$

Work of expulsion $=\mathrm{p}_{2} \mathrm{v}_{\mathbf{2}}$.
The total work is the sum of the work of compression and expulsion less the work, $\mathrm{p}_{1} \mathrm{v}_{1}$, done by the atmosphere on the piston during admission, or

$$
\begin{aligned}
\text { Total work } & =\left(p_{2} v_{2}-p_{1} v_{1}\right) \frac{v_{2}}{v_{1}-v_{2}}+p_{2} v_{2}-p_{1} v_{1} \\
& =\left(p_{2} v_{2}-p_{1} v_{1}\right) \frac{v_{1}}{v_{1}-v_{2}}
\end{aligned}
$$

The results of air compression and expansion are shown by the above diagram.

Useful information on Volume and Pressure Curves of Air.

(FROM COMPRESSED AIR MAGAZINE.)

In the diagram on the preceding page, the figures at the left indicate pressures in atmospheres above a vacuum ; the corresponding figures at the right denote pressures in pounds per square inch, by the gauge. At the top are volumes from one-tenth to one. At the bottom, degrees of temperatures from zero to 1,000 degrees Fahrenheit. The two curves which begin at the lower left hand corner and extend to the upper right are the lines of compression, or expansion. The upper one being the "Adiabatic" curve, or that which represents the pressure at any point on the stroke, with the heat developed by compression remaining in the air; the lower is the "Isothermal," or the pressure curve, when the heat of compression is withdrawn so as to keep the temperature constant. The three curves which begin at the lower right hand corner and rise to the left are heat curves, and represent the increase of temperature corresponding to different pressures and volumes, assuming in one case that the temperature of the air before admission to the compressor is zero, in another sixty degrees, and in another one hundred degrees.

Beginning with the adiabatic curve, we find that for one volume of air, when compressed without cooling, the curve intersects the first horizontal line at a point between 0.6 and 0.7 volume, the gauge pressure being 14.7 pounds. If we assume that this air was admitted to the compressor at a temperature of zero, it will reach about 100° when the gauge pressure is 14.7 pounds. If the air had been admitted to the compressor at 60°, it would register about 176° at 14.7 pounds gauge pressure. If the air were 100° before compression, it would go up to about 230° at this pressure. Following this adiabatic curve until it intersects line No. 5, representing a pressure of five atmospheres above a vacuum (58.8 pounds
gauge pressure), we see that the total increase of temperature on the zero heat curve is about 270°; for the 60° curve it is about 370°, and for the 100° curve it is 435°. The diagram shows that when a volume of air is compressed adiabatically to 21 atmospheres (294 pounds gauge pressure), it will occupy a volume a little more than one-tenth; the total increase of temperature with an initial temperature of zero, is about 650°; with 60° initial temperature it is 800° and with 100° initial it is 900°. It will be observed that the zero heat curve is flatter than the others, indicating that when free air is admitted to a compressor cold, the relative increase of temperature is less than when the air is hot. This points to the importance of low initial temperature. It is plain that a high initial temperature means a higher temperature throughout the stroke of a compressor. The diagram gives the loss of temperature during compression from initial temperatures of $0^{\circ}, 60^{\circ}, 100^{\circ}$. If we compare the compression line from zero with the compression line from 100°, we observe that in compressing the air from, say 1 atmosphere to 10 atmospheres, the original difference, which at the start was only 100°, has now been about doubled; that is, it has reached 200°, and in carrying the compression to 20 atmospheres, the difference now becomes about 250°. Each horizontal division represented by the figures at the bottom is equal to 100°, and the space between any two adjacent horizontal lines may be sub-divided into 100 equal parts representing 1° each.

Where there is a system of cooling the air during compression, the lines on the indicator cards can be traced between the adiabatic and isothermal curves on the diagram.

For all practical purposes in using this diagram, it is best to follow the adiabatic curve in all determinations, except where the exact pressure line is known. This diagram will be found convenient to those who are called upon to figure the pressure at different points in the
stroke of an air compressor, and it points out the common error of neglecting to take into consideration in one's figures the fact that, at the beginning of the stroke, one atmosphere in volume already exists. Beginning at the lower left hand corner, the adiabatic pressure curve intersects the first horizontal line at that point in the stroke when the pressure on the gauge will register 14.7 pounds.

The next horizontal line shows where the gauge reaches 29.4 pounds, and it is evident here that the piston of an air compressor travels much farther in reaching 14.7 pounds than in doubling that pressure or in reaching 29.4 pounds; thus an air compressor is an engine of unevenly distributed resistance. During the early stages of the stroke it has a slowly accumulating load to carry, while later on this load is multiplied very rapidly. This is one of the reasons for heavy flywheels in air compressors.

Compressed Air.

EFFFECT OF COMPOUNDING, COOLING, INTER-COOLING, AFTER-COOLING AND REHEATING.
(From Compressed Air Magazine.)
Builders of air compressors and those who use compressed air will agree that the problem of heating or cooling air is a difficult one. Hot air in the cylinder of an air compressor means a reduction in the efficiency of the machine. The trouble is, that there is not sufficient time during the stroke to cool thoroughly by any available means. Water-jacketing is the generally accepted practice, but it does not by any means effect through cooling. The air in the cylinder is so large in volume that but a fraction of its surface is brought in contact with the jacketed parts. Air is a bad conductor of heat and takes time to change its temperature. The piston while pushing the air towards the head rapidly drives it away from the jacketed surfaces; so that little or no cooling takes place. This is especially true of large cylinders where the economy effected by water-jackets is considerably less than in small cylinders. Engineers who are shown indicator cards from large air compressors with pressure lines running away from the adiabatic, naturally regard them with suspicion and look for leaks past the piston or through the valves. Such leaks will explain many isothermal cards, and until something better than a water-jacket is devised, it is well to seek economy in air compression through compounding.

The great advantage of compounding is in the fact that the inter-cooler, which should always be used with compound machines, effects a larger saving by cooling and thereby causing the air to shrink in volume between the stages. A properly designed inter-cooler should reduce the temperature of the air back to the orginal
point, that is, to the temperature of the intake air. It can even do more than this, especially in winter, when the water used in the inter-color is of low temperature. A simple coil of pipe submerged in water is not an effective inter-cooler, because the air passes through the coil too rapidly to be cooled to the core, and such intercoolers do not sufficiently split up the air to enable it to be cooled rapidly. This splitting up of air is an important point. A nest of tubes carrying water and arranged so that the air is forced between and around the tubes is an efficient form of inter-cooler.

Receiver inter-coolers are more efficient than those of the common type because the air is given more time to pass through the cooling stages and because of the freedom from wire drawing which may take place in intercoolers of small volumetric capacity.

After-coolers are in some installations as important as inter-coolers. An after-cooler serves to reduce the temperature of the air after the final compression. In doing this it serves as a drier, reducing the temperature of air to the dew point, thus abstracting moisture before the air is started on its journey. In cold weather with air pipes laid over the ground an after-cooler may prevent accumulation of frost in the interior walls of the pipes, for where the hot compressed air is allowed to cool gradually the walls of the pipe in cold weather act like a surface condenser and moisture may be deposited on the inside, for the same reason that we have frost on the inner side of a window pane. Another advantage of the aftercooler is that it keeps the temperature of the line pipe uniform, otherwise this pipe will be hottest near the compressor, gradually cooling down and being thus subject to irregularities of expansion and contraction.
The following table will serve to illustrate the large saving that it is possible to effect by compounding. This table gives the percentage of work lost by the heat of compression, taking isothermal compression, or compression without heat, as a base.

	One Stage.		Two Stage.		Four Stage.	
			$\begin{aligned} & \text { \% of work lost in } \\ & \text { terms of Isothermal } \\ & \text { Compression. } \end{aligned}$			
60	30. \%	23. \%	13.38\%	11.8%	4.65\%	4.45\%
80	34.	25.26	15.12	13.12	5.04	4.80
100	38.	27.58	17.10	14.62	8.00	7.41
200	52.35	34.40	23.20	18.88	9.01	8.27
400	68.60	40.75	29.70	22.90	12.40	11.04
600	83.75	44.60	32.65	24.60	15.06	13.10
800	90.	47.40	35.80	26.33	16.74	14.32
1000	96.80	49.20	39.00	28.10	16.90	14.45
1200	106.15	51.60	40.00	28.60	17.45	14.85
1400	108.	52.	41.60	29.4	17.70	15.00
1600	110.	53.3	42.90	30.0	18.40	15.54
1800	116.80	54.	44.40	30.6	19.12	16.05
2000	121.70	54.8	44.60	30.8	20.00	16.65

In the above table no account is taken of jacket cooling, it being a well known fact among pneumatic engineers that water jackets, especially cylinder jackets, though useful and perhaps indispensable, are not efficient in cooling, especially so in large compressors. The volume of air is so great in proportion to the surface exposed and at the time of compression so short, that little or no cooling takes place. Jacketed heads are useful auxiliaries in cooling, but it has become an accepted theory among engineers that compounding or stage compression is more fertile as a means of economy than any other system that has yet been devised. The two and four stage figures in this table (columns 3 and 4), are based on reduction to atmospheric temperature, or 60° Fahrenheit, between stages. A rule which might be
observed to advantage among engineers is to specify that the manufacturers should supply a compressor with coolers provided with one square foot of tube cooling surface for every ten cubic feet of free air furnished by the compressor when running at its normal speed.

Referring again to the table, we learn that when air is compressed to 100 pounds pressure per square inch in a single stage compressor without cooling, the heat loss may be thirty-eight (38) per cent. This condition, of course, does not exist in practice, except perhaps, at exceedingly high speeds, as there will be some absorption of heat by the exposed parts of the machine. It is safe, however, to say that in large air compressors that compress in a single stage up to 100 pounds gauge pressure, the heat loss reaches thirty (30) per cent. This, as shown by the table, may be cut down more than onehalf by compressing in two-stages, and with three-stages this loss is brought down to eight (8) per cent. theoretically, and perhaps to three or five (3 or 5) per cent. in practice. As higher pressures are used, the gain by compounding is greater.

Efficiency of Air Compressors at

Different Altitudes.

The altitude, where the compressor is to operate, is an important factor because it affects its capacity to a greater or lesser extent, according to the elevation. As the density of the atmosphere decreases with the altitude, a compressor located at a high altitude takes in less weight of air at each revolution, that is to say, the air being taken in at a lower pressure, the early part of each stroke is occupied in compressing the air up to the normal pressure of 14.7 pounds, and the capacity of the air cylinder is correspondingly diminished. The power
required to drive the same compressor is also less than at sea level, but the decrease in power required is not in as great a ratio as the reduction in capacity. Therefore, compressors to be used at high altitudes should have the steam and air cylinders properly proportioned to meet the varying conditions at different places.

The following table shows the efficiency and loss in capacity of compressors working at different altitudes, also the approximate decrease in power required as compared with the same compressor working at sea level, and delivering air at 70 pounds pressure per square inch.

TABLE OF EFFICIENCIES A'T DIFFEREN'T AL'TITUDES.

 the efficiency at sea level being 100 per cent.| | Barometric Pressure. | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Inches, Mercury. | Pounds per Square Inch. | | | |
| 1000 | 28.88 | 14.20 | 97. | 3. | 1.8 |
| 2000 | 27.80 | 13.67 | 93. | 7. | 3.5 |
| 3000 | 26.76 | 13.16 | 90. | 10. | 5.2 |
| 4000 | 25.76 | 12.67 | 87. | 13. | 6.9 |
| 5000 | 24.79 | 12.20 | 84. | 16. | 8.5 |
| 6000 | 23.86 | 11.73 | 81. | 19. | 10.1 |
| 7000 | 22.97 | 11.30 | 78. | 22. | 11.6 |
| 8000 | 2211 | 10.87 | 76. | 24. | 13.1 |
| 9000 | 21.29 | 10.46 | 73. | 271 | 14.6 |
| 10000 | 20.49 | 10.07 | 70. | 30. | 16.1 |
| 11000 | 19.72 | 9.70 | 68. | 32. | 17.6 |
| 12000 | 18.98 | 9.34 | 65. | 35. | 19.1 |
| 13000 | 18.27 | 8.98 | 63. | 37. | 20.6 |
| 14000 | 17.59 | 8.65 | 60. | 40. | 22.1 |
| 15000 | 16.93 | 8.32 | 58. | 42. | 23.5 |

Horse-power Required to Compress 100 Cubic Feet Free Air, from Atmospheric to Various Pressures.

Gauge Pressure, Pounds.	One-Stage Compression, D. H. P.	Gauge Pressure, Pounds.	Two-Stage Compression, D. H. P.	Four-Stage Compression, D H. P.
10	3.60	60	11.70	
15	5.03	80	13.70	10.80
20	6.28	100	15.40	14.50
25	7.42	200	21.20	18.75
30	8.47	300	24.50	21.80
35	9.42	400	27.70	24.00
40	10.30	500	29.75	25.90
45	11.14	600	31.70	27.50
50	11.90	700	33.50	28.90
55	12.67	800	34.90	30.00
60	13.41	900	36.30	31.00
70	14.72	1000	37.80	31.80
80	15.94	1200	39.70	33.30
90	17.06	1600	43.00	35.65
100	18.15	2000	45.50	37.80
		2500		39.06
		3000		40.15

D. H. P., delivered horse-power at compressor cylinder.

Capacity of Air Compressors.

To ascertain the capacity of an air compressor in cubic feet of free air per minute, the common practice is to multiply the area of the intake cylinder by the feet of piston travel per minute. The free air capacity of the compressor divided by the number of atmospheres will give the volume of compressed air per minute. To ascertain the number of atmospheres at any given pressure, add 14.7 lbs . to the gauge pressure, divide this sum by 14.7 and the result will be the number of atmospheres.

The above method of calculation, however, is only theoretical and these results are never obtained in actual practice even with compressors of the very best design.

Allowances should be made for losses of various kinds, the principal loss being due to clearance spaces, but in machines of poor design and construction other considerable losses occur through imperfect cooling, leakages past the piston and through the discharge valves, insufficient area and improper working of inlet valves, etc. We have seen compressors where the total loss was fully 25 to 30 per cent., whereas, 3 to 10 per cent. should be the maximum-according to the size-in compressors of proper design and construction.

Weights of Air, Vapor of Water, and Saturated Mixtures of Air and Vapor at Different 'Temperatures, under the Ordinary Atmospheric Pressure of 29.92 inches of Mercury.

		$\begin{aligned} & \text { Elastic Force of Vapor, } \\ & \text { Inches of Mercury. } \end{aligned}$	Mixtures of AIr Saturated with Vapor				
				Weight of Cubic Foot of the Mixture of Air and Vapor.			$\begin{aligned} & \text { Weight of Vapor } \\ & \text { mixed with } 116 \text { of } \\ & \text { Air, } 1 \mathrm{bs} \text {. } \end{aligned}$
0	. 0864	. 044		. 0863	. 000079	. 086379	2
12	. 0842	. 074	29.849	. 0840	. 000130	. 084130	. 00155
2	. 0824	. 118	29.803	. 0821	. 000202	. 082302	. 00245
32	. 0807	. 181	29.740	. 0802	. 000304	. 080504	. 00379
42	. 0791	. 267	29.654	. 0784	. 000440	. 078840	. 00561
52	. 0776	. 388	29.533	. 0766	. 000627	. 077227	. 00819
62	. 0761	. 556	29.365	. 0747	. 000881	. 075581	. 01179
72	. 0747	. 785	29.136	. 0727	. 001221	. 073921	. 01680
82	. 0733	1.092	28,829	. 0706	. 001667	.072267	. 02361
92	. 0720	1.501	28.420	. 0684	. 002250	. 070717	. 03289
102	. 0707	2.036	27.885	. 0659	. 002997	. 068897	. 04547
112	. 0694	2.731	27.190	. 0631	. 003946	. 067046	. 06253
122	. 0682	3.621	26.300	. 0599	. 005142	. 065042	. 08584
132	. 0671	4.752	25.169	. 0564	. 0006639	. 063039	. 11771
142	. 0660	6.165	23.756	. 0524	. 008473	. 060873	. 16170
152	. 0649	7.930	21.991	. 0477	. 010716	. 058416	. 22465
162	. 0638	10.099	19.822	. 0423	. 013415	. 055715	. 31713
172	. 0628	12.758	17.163	. 0360	. 016682	. 052682	. 46338
182	. 0618	15.960	13.961	. 0288	. 020536	. 0493336	. 71300
192	. 0609	19.828	10.093	. 0205	. 025142	.045642	1.22643
202	. 0600	24.450	5.471	. 0109	. 030545	. 041445	2.80230
212	. 0591	29.92	0.000	. 0000	036820	.036820	Infinite

FLOW OF AIR THROUGH AN ORIFICE FROM A RESERVOIR INTO 'T'HE ATMOSPHERE,

In Cubic Feet of Free Air per Minute for Varying Diameters of Orifice and Gauge Pressures.

	45	50	${ }_{60}^{60}$ lbs.	70 lbs.	80 lbs.	90 lbs.	100 lbs.	125 lbs.	150 lbs.
$\frac{7}{64}$	0.208	0.225	0.26	0.295	0.33	0.364	0.40	0.486	0.57
$\frac{1}{31}$	0.843	0.914	1.05	1.19	1.33	1.47	1.61	1.97	2.33
${ }^{32}$	3.36	3.64	4.2	4.76	5.32	5.87	6.45	7.85	9.25
	13.4	14.50	16.8	19.0	21.2	23.50	25.8	31.4	37.2
14	53.8	58.2	67.	76.	85.	94.	103.	125.	148.
3	121.	130.	151.	171.	191.	211.	231.	282.	334.
1	215.	232.	268.	304.	340.	376.	412.	502.	596.
5/8	336.	364.	420.	476.	532.	587.	645.	785.	925.
3	482.	522.	604.	685.	765.	843.	925.		
178	658.	710.	622.	930.	1004.				
1	860.	930.							

The above table was computed with the aid of Fliegner's equations and have given results that approximate very closely to the conditions of actual practice. These equations are :

$\begin{aligned} & \text { For } p_{1}>2 p a, G=0.530 F \frac{p_{1}}{\sqrt{T_{1}}} \\ &$$$
p_{1}>2 p a, G=1.060 F \sqrt{\frac{p a\left(p_{1}-p a\right)}{T_{1}}} ; \text { in which }
$$$\end{aligned}$

$G=$ flow of air through the orifice in lbs. per sec.,$F=$ area of orifice - in square inches, $p_{2}=$ pressure in reservoir in lbs. per sq. in., $p a=$ pressure of atmosphere, $T_{1}=$ absolute temperature, Fahrenheit, of air in reservoir.

FLOW OF AIR THROUGH PIPES.*

The following new and original tables are based upon D'Arcy's formula adapted to the flow of elastic fluids, namely:
$\left.\begin{array}{c}\text { Discharge in cubic } \\ \text { feet per minute }\end{array}\right\}=c \sqrt{\frac{d^{5} \times\left(p_{1}-p_{g}\right)}{l \times w_{1}} .}$
As it is most convenient in the case of compressed air installations to deal with its equivalent volume of free air, $i . e .$, air at atmospheric pressure, these tables have been specially calculated with this end in view.

Table I. Gives the theoretical volume of equivalent free air in cubic feet that will flow per minute at various pressures through straight pipes of various diameters, each roo feet long, no reduction of the final pressure being allowed for.

The formula by which it is calculated is:
$\left.\begin{array}{c}\text { Theoretical discharge } \\ \text { of free air }\end{array}\right\}=F_{\mathrm{t}}=\frac{c \sqrt{d^{\mathrm{s}}}}{10} \times \frac{f_{1}}{\sqrt{w_{1}}}$.
Table II. Is a table of multipliers to be used in connection with F_{t}, as found by Table I., by which may be obtained the theoretical discharge of equivalent free air from pipes of various lengths up to 60,000 feet. It is calculated from

$$
\left.\begin{array}{l}
\text { Multiplier for } \\
\text { length of pipe }
\end{array}\right\}=M_{1}=\sqrt{\frac{100}{l}} .
$$

[^7]Table III. Is a table of Multipliers to be used in connection with F_{t} and M_{1} as found by Tables I. and II., to obtain the real volume of discharge of equivalent free air, for reductions of the terminal pressure varying from 1 to 50 pounds. It is calculated from

$$
\left.\begin{array}{l}
\text { Multiplier for } \\
\text { real discharge }
\end{array}\right\}=M_{\mathrm{r}}=\frac{f_{2}}{f_{1}} \times \sqrt{p_{1}-p_{2}}
$$

The notation used in above formulas is
$d=$ actual diameter of pipe in inches.
$l=$ length of pipe in feet.
$c=$ a co-efficient, (D'Arcy's) varying with the diameter of the pipe.
$w_{1}=$ density of the air at initial gauge pressure.
p_{1} and $p_{2}=$ initial and terminal gauge pressures.
f_{1} and $f_{2}=$ factors to reduce compressed air at initial and terminal pressures p_{1} and p_{2} to their corresponding volumes of free air.

Tables are also added showing the increase in the length of pipe to be allowed for on account of the friction caused by globe valves, elbows and tees.

Several examples are worked out to show the method of using the tables for the solution of problems likely to be met with by the Engineer.
TABLE I. TABLE I. Giving the Theoretical Volume of Equivalent Free Air, in Cubic Feet, that will flow per minute at
various pressures throughstraight pipes of different diameters, each 100 feet long, not allowing for reduction of pressure.

12	15	18	20	22	24
14530	22530	36280	48180	61870	77880

 | 8 禺是

तe

ज
Ce

©

TABLE II. MULTIPLIERS FOR LENGTH OF PIPE.

Length, feet.	Multipler M_{1}.	Length, feet.	Multipler M_{1}.
100	1.0	6000	0.129
200	0.707	7000	0.119
300	0.577	8000	0.112
400	0.500	9000	0.105
500	0.447	10000	0.100
600	0.408	12000	0.0912
7750	0.365	15000	0.0817
1000	0.316	20000	0.0707
1250	0.283	25000	0.0632
1500	0.258	30000	0.0577
2000	0.224	35000	0.0534
2500	0.200	40000	0.0500
3000	0.183	45000	0.0471
3500	0.169	50000	0.0447
4000	0.158	55000	0.0426
5000	0.141	60000	0.0408

The formulas by which these tables have been calculated show that the following factors enter into their composition :

$$
\text { The diameter of the pipe. }=d \text {. }
$$

The length of the pipe........... $=l$. $\left.\begin{array}{l}\text { The initial and final pressures, } \\ \text { or the reduction of pressure }\end{array}\right\}=p_{1}-p_{2}$. The equivalent free air discharged .$=F$.
It being often required to find any one of these factors when the others are known, the following examples are given to show the method of procedure in each case.

The simple statement of the formula, adapted to the tables becomes

Free air discharged $=F=F_{\mathrm{t}} \times M_{1} \times M_{\mathrm{r}}$
and by this all problems involving any of the above factors may be solved, as shown in the examples.

Example 1.-To find the volume of free air discharged.
Example 2.-To find the reduction of pressure.
" 3.-To find a suitable diameter of pipe.
" 4.-To find the length of pipe which may be used.
Example I.-Given a 3 -inch pipe, 10,000 feet long, initial pressure $1,100 \mathrm{lbs}$., terminal pressure $1,050 \mathrm{lbs}$.; to find the volume of equivalent free air discharged.

By Table I.-Under $3^{\prime \prime}$ pipe and opposite 1,100 lbs. we find $F_{\mathrm{t}}=2,906$.
By Table II.-For 10,000 feet of pipe, $M_{1}=0.1$. "، "، III.-Under 50 1bs. reduction and opposite $1,100 \mathrm{lbs} ., M_{\mathrm{r}}=6.75$.
Then as shown
$F=F_{\mathrm{t}} \times M_{1} \times M_{\mathrm{r}}=2,906 \times 0.1 \times 6.75=1,961$ cubic feet free air.

Example 2.-Given a 4 -inch pipe, 600 feet long, initial pressure 60 lbs ., required to discharge 1,200 cubic feet free air. What will be the reduction of pressure and the terminal pressure?

By Table I.-Under 4" pipe and opposite 60 lbs., we find $F_{t}=1,535$.
By Table II.-For 600 feet, $M_{1}=0.408$. Given $F=1,200$.
By transposing the formula

$$
M_{\mathrm{r}}=\frac{\mathrm{F}}{F_{\mathrm{t}} \times M_{1}}=\frac{1,200}{1,535 \times 0.408}=1.9
$$

Now by Table III., opposite 60 lbs . pressure, and under 4 lbs . reduction, we find $M_{\mathrm{r}}=1.89$, so that the terminal pressure will be slightly less than $60-4=56$ pounds.

Example 3.-It is required to discharge 1000 cubic feet of free air from a pipe 2,500 feet long. The initial pressure is 100 lbs . and the terminal pressure must not be less than 90 lbs . What diameter of pipe should be used ?

Here we have given $F=1000$.
By Table II $M_{1}=0.200$ for 2,500 feet.
" " III. $M_{\mathrm{r}}=2.88$ for $p_{1}=100 \mathrm{lbs}$., and $p_{2}=90 \mathrm{lbs}$.
By transposing the formula we get

$$
\mathrm{F}_{\mathrm{t}}=\frac{F}{M_{1} \times M_{\mathrm{r}}}=\frac{1,000}{0.200 \times 2.88}=1,736
$$

By Table I. looking along the line of 100 lbs . pressure we see that the value of F_{t} for a $31 / 2$-inch pipe is 1,370 , and for a 4 -inch pipe 1,904 , so that this latter size of pipe would have to be used.

Example 4.-It is required to transmit 4,000 cubic feet of free air through a 6 -inch pipe, the initial pressure being 200 lbs . How far can it be carried with a reduction of pressure of 10 lbs .?

Here we have given $F=4,000$.
By Table I..... $F_{\mathrm{t}}=7,489$ for 200 lbs . pressure and $6^{\prime \prime}$ pipe.
By Table III..... $M_{\mathrm{r}}=3.01$ for 200 lbs . pressure and io lbs. reduction.
Then by transposing the formula:

$$
M_{1}=\frac{F}{F_{\mathrm{t}} \times M_{\mathrm{r}}}=\frac{4,000}{7,489 \times 3.01}=0.177
$$

Now by Table II. we see that this is an intermediate value of M_{1} between 3000 and 3500 feet, so that the distance sought is approximately 3250 feet.

GLOBE VALVES, TEES AND ELBOWS.

The reduction of pressure produced by globe valves is the same as that caused by the following additional lengths of straight pipe, as calculated by the formula :

$$
\text { Additional length of pipe }=\frac{114 \times \text { diameter of pipe }}{1+(3.6 \div \text { diameter })}
$$

$\left.\begin{array}{l}\text { Diameter of pipe. } \\ \hline \text { Addition'llength. }\end{array}\right\} \begin{array}{cccccccccccc}1 & 1 \frac{1}{2} & 2 & 2 \frac{1}{2} & 3 & 3 \frac{1}{2} & 4 & 5 & 6 & \text { inches. } \\ 2 & 4 & 7 & 10 & 13 & 16 & 20 & 28 & 36 & \text { feet. }\end{array}$

$$
\begin{array}{cccccccccc}
7 & 8 & 10 & 12 & 15 & 18 & 20 & 22 & 24 & \mathrm{ins} . \\
\hline 44 & 53 & 70 & 88 & 115 & 143 & 162 & 181 & 200 & \mathrm{ft} .
\end{array}
$$

The reduction of pressure produced by elbows and tees is equal to $\frac{2}{8}$ of that caused by globe valves.

These additional lengths of pipe for globe valves, elbows and tees must be added in each case to the actual lengths of straight pipe. Thus, a 6 -inch pipe, 500 feet long, with one globe valve, 2 elbows and three tees, would be equivalent to a straight pipe $500+36+(2 \times 24)$ $+(3 \times 24)=656$ feet long, and' this is the length which must be used in the tables as the value of M_{1}.

GENERAL EXAMPLE.

How much free air will a 6 -inch pipe, 8,000 feet long, discharge under the following conditions, namely: Initial pressure 150 lbs ., terminal pressure 135 lbs ., with 2 globe valves, 3 elbows and 1 tee?

The equivalent length of straight pipe must first be found as follows :

$$
8,000+(2 \times 36)+(3 \times 24)+24=8,168 \text { feet. }
$$

Now we have
By Table I., $F_{\mathrm{t}}=6,558$ for 6 inch pipe and 150 lbs . pressure.
By Table II., $M_{1}=0.112$ for 8000 feet, making by interpolation say 0.110 for 8,168 feet.
By Table III., $M_{\mathrm{r}}=3.42$ for 150 lbs . pressure and 14 lbs . reduction, and 3.61 for 150 lbs . pressure and 16 lbs . reduction, so that by interpolation M_{r} would be 3.51 for 15 lbs . reduction of pressure.
Then by the formula :
Free air discharged $=F=F_{\mathrm{t}} \times M_{1} \times M_{\mathrm{r}}$.

$$
=6,558 \times 0.11 \times 3.51
$$

$=2,532$ cubic feet equivalent free air per minute.

FORMULA FOR FLOW OF AIR IN PIPES.

Mr. Richards, in Am. Mach., Dec. 27, 1894, published a new formula, viz.:

$$
\begin{gathered}
p=\frac{V^{2} L}{10,000 d^{5} a} ; \quad V=\sqrt{\frac{10,000 d^{5} a p}{L} ; \quad L=\frac{10,000 d^{5} a p}{V^{2}}} ; \\
d^{5} a p=\frac{V^{2} L}{10,000 p} ;
\end{gathered}
$$

in which $V=$ actual volume of compressed air delivered, in cubic feet per minute (not the volume of free air, as
in the other formula), $L=$ length of pipe in feet, $d=$ internal diameter of pipe in inches, $p=$ head or additional pressure in pounds per square inch required to maintain the flow, and a is a coefficient varying with the diameter of the pipe. Its value for different nominal diameters of wrought-iron pipe is given by Mr. Richards as follows :

Diam., Inches.	Value of a.	Diam., Inches.	Value of a.	Diam., Inches.	Value of a.
1	.35	$31 / 2$.79	12	1.26
114	.44	4	.84	16	1.34
$11 / 2$.50	5	.93	20	1.4
2	.56	6	1.	24	1.45
$21 / 2$.65	8	1.125		
3	.73	10	1.2		

The following values of the fifth power of d and of $d^{5} a$ are given by Mr. Richards to facilitate calculations:

Fifth Powers of d.		Value of $d^{5} a$.	
1 1........ 1	$5^{\prime \prime} \ldots$ 3,125	$1^{\prime} \ldots \ldots .$.	5"... 2,918.75
$114, \ldots \ldots .3 .05$	$6^{\prime \prime} \ldots \quad 7,776$	$1141 .34$	$6^{*} \ldots$... 7,776
112"....... 7.59	$8^{\prime \prime} \ldots \quad 32,768$	112"..... 3.80	$8^{*} \cdot \cdots 636,864$
2'......... 32	$10^{*} \ldots .100,000$	$2^{\prime \prime} \ldots . . .{ }^{18.08}$	$10^{\prime \prime} \ldots \quad 120,000$
2119.…... 97.65	$12^{*} \ldots$... 248,832	21/8'..... 63.47	$12^{*} \ldots \quad 313,528$
$3^{*} \ldots \ldots \ldots . .243$	$16^{\prime \prime} \ldots . .1,048,576$	$3^{\prime \prime} \ldots1{ }^{177.4}$	$16^{*} \ldots .1,405,091$
31/2'...... 525	20..... 3,200,000	31/6... . 413.2	$20^{\circ} \cdots .4,480,000$
4*........ 1024	24".... 7,962,624	$4^{*} \ldots860 .2$	$24^{\prime \prime} \ldots . .11,545,805$

GAS.

FLOW OF GAS IN PIPES.

If $d=$ diameter of pipe in inches ; $Q=$ quantity of gas delivered in cu. ft. per hour ; $l=$ length of pipe in yards ; $h=$ pressure in inches of water column; $s=$ specific gravity of the gas, air being one; then

$$
\begin{gathered}
Q=1000 \sqrt{\frac{d^{5} h}{s l}}, \quad \text { (Molesworth). } \\
Q=1350 d^{2} \sqrt{\frac{d h}{s l}}, \quad \text { (King's Treatise on Coal Gas.) }
\end{gathered}
$$

$$
Q=1290 \sqrt{\frac{d^{5} h}{d(s+l)}} \text {,(J. P. Gill, Am. Gas-light Jour., 1894). }
$$

Mr. Gill's formula is said to be based on experimental data, and to make allowance for obstructions by tar, etc., that tend to check the flow of gas through the pipe.

An experiment made by Mr. Klegg, in London, on a 4 inch pipe, 6 miles long, gave a discharge that corresponds very closely with that computed by the use of Molesworth's formula.

Maximum Supply of Gas through Pipes in cu. ft. per Hour, Specific Gravity being 0.45. Formula $Q=1000 \sqrt{d^{5} h \div s l}$.
(Molesworth.)
Length of Pipe $=10$ Yards.

	Pressure by the Water-gauge in Inches.									
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
$3 / 8$	13	18	22	26	29	31	34	36	38	41
$1 / 8$	26	37	46	53	59	64	70	74	79	83
34	73	103	126	145	162	187	192	205	218	230
	149	211	258	298	333	365	394	422	447	471
$11 / 4$	260	368	451	521	582	638	689	737	781	823
11/3	411	581	711	821	918	1006	1082	1162	1232	1299
	843	1192	1460	1686	1886	2066	2231	2385	2530	2667

Maximum Supply of Gas through Pipes, etc.-(Continued.)
Length of Pipe $=100$ Yards.

U.	Pressure by the Water-gauge in Inches.										
$\stackrel{\square}{\square}$	0.1	0.2	0.3	0.4	0.5	0.75	1.0	1.25	1.5	2.0	2.5
$1 / 3$	8	12	14	17	19	23	26	29	32	36	42
$3 / 4$	23	32	42	46	51	63	73	81	89	103	115
1	47	67	82	94	105	129	149	167	183	211	236
11/4	82	116	143	165	184	225	260	291	319	368	412
$11 / 3$	130	184	225	260	290	356	411	459	503	581	649
2	267	377	462	533	596	730	843	943	1033	1193	1333
2116	466	659	807	932	1042	1276	1473	1647	1804	2083	2329
)	735	1039	1270	1470	1643	2012	2323	2598	2846	3286	3674
31/2	1080	1528	1871	2161	2416	2958	3416	3820	4184	4831	5402
	1508	2133	2613	3017	3373	4131.	4770	5333	5842	6746	7542

Length of PIPE $=1000$ Yards.

	Pressure by the Water-gauge in Inches.						
	0.5	0.75	1.0	1.5	2.0	2.5	3.0
1	33	41	47	58	67	75	82
11/2	92	113	130	159	184	205	226
2	189	231	267	327	377	422	462
216	329	403	466	571	659	737	807
3	520	636	735	900	1039	1162	1273
4	1067	1306	1508	1847	2133	2385	2613
5	1863	2282	2635	3227	3727	4167	4564
6	2939	3600	4157	5091	5879	6573	7200

Length of Pipe $=5000$ Yards.

"\%	Pressure by the Water-gauge in Inches.				
同	1.0	1.5	2.0	2.5	3.0
2	119	146 402	169 465	189 520	207
3	329	402	465	520	569
4	675	826	955	1067	1168
5	1179	1443	1667	1863	2041
6	1859	2277	2629	2939	3220
7	2733	3347	3865	4321	4734
8	3816	4674	5397	6034	6610
9	5123	6274	7245	8100	8873
10	6667	8165	9428	10541	11547
12	10516	12880	14872	166\%8	18215

Where there is apt to be trouble from frost no pipe less than $3 / 4$ inch should be used, and in extremely cold climates the smallest size should not be less than one inch.

To provide for the resistance due to bends, one rule is to allow a pressure of 0.204 inch of water column for each right angled elbow.

Services for Burners.

The following table is the standard of the principal gas works. It governs the size of pipe used by gas fitters for consumers, and will be found of value. Every service should have a T so placed as to permit of easily clearing the service pipe should any obstruction occur in it.

Size of Pipe.	Threads per Inch.	Weight per Foot.	Length allowed.	Number of Burners.
			Feet.	
	27	.243	2	1
$1 / 4$	18	.422	6	1
$3 / 8$	14	.561	20	3
$1 / 2$	14	.845	30	6
$1 / 4$	$111 / 2$	1.126	50	20
11	$111 / 2$	1.670	70	35
$11 / 4$	$111 / 2$	2.258	100	60
$11 / 2$	$111 / 2$	2.694	150	100
2	8	3.367	200	200
$21 / 2$	8	5.773	300	300
3	8	7.547	450	450
4	8	10.728	600	750

TABLE OF AQUEOUS VAPOR

Contained in 1000 Cubic Feet of Gas at Indicated Temperature.

Temp. Degres	Volume, Aqueous Vapor.	Temp Degrees	Volume, Aqueous Vapor.	Temp. Degrees	Volume, Aqueous Vapor.
40	9.33	54	15.33	68	24.06
41	9.73	55	15.86	69	24.83
42	10.13	56	16.40	70	25.66
43	10.53	57	16.93	71	26.53
44	10.93	58	17.53	72	27.40
45	11.33	59	18.10	73	28.30
46	11.73	60	18.66	74	29.23
47	12.13	61	19.23	75	30.20
48	12.53	62	19.80	76	31.20
49	12.93	63	20.50	77	32.20
50	13.33	64	21.20	78	33.23
51	13.80	65	21.90	79	34.23
52	14.26	66	22.60	80	35.33
53	14.80	67	23.30	81	36.43

TABLE OF THE WEIGHTS OF GAS－HOLDERS．

In Pounds for every One－tenth of an Inch maximum
Pressure，and for Diameter from 20 to 200 Feet．

20	164	53	1149	86	3026	119	5793
21	181	54	1193	87	3097	120	5891
22	198	55	1238	88	3168	121	5990
23	217	56	1283	89	3241	122	6089
24	236	57	1329	90	3314	123	6189
25	256	58	1376	91	3388	124	6290
26	277	59	1424	92	3463	125	6392
27	298	60	1473	93	3538	126	6495
28	321	61	1522	94	3615	127	6598
29	344	62	1573	95	3692	128	6703
30	368	63	1624	96	3770	129	6808
31	393	64	1676	97	3849	130	6914
32	419	65	1729	98	3929	131	7021
33	446	66	1782	99	4010	132	7128
34	473	67	1837	100	4091	133	7237
35	501	68	1892	101	4173	134	7346
36	530	69	1948	102	4256	135	7456
37	560	70	2005	103	4340	136	7567
38	591	71	2062	104	4425	137	7678
39	622	72	2121	105	4510	138	7791
40	655	73	2180	106	4597	139	7904
41	688	74	2240	107	4684	140	8018
42	723	75	2301	108	4772	141	8133
43	757	76	2363	109	4861	142	8249
44	792	77	2426	110	4950	143	8366
45	828	78	2489	111	5041.	144	8483
46	866	79	2553	112	5132	145	8601
47	904	80	2618	113	5224	146	8720
48	943	81	2684	114	5317	147	8840
49	982	82	2751	115	5410	148	8961
50	1023	83	2818	116	5505	149	9083
51	1064	84	2887	117	5600	150	9205
52	1106	85	2956	118	5696	200	16364

Example.-Find the weight of a gas-holder 80 feet in diameter, the maximum pressure being 3.2 inches water column, or $32 / 10$ ths.

In preceding table, opposite 80 in column of diameters read 2618 , the weight for $1 / 10$ th inch pressure. Therefore the weight required $=2618 \times 32=83,7761 \mathrm{bs}$.

IRON AND STEEL.

IRON AND ST'EEL.

Wrought Iron is the product of the puddling process. It is made in a reverberatory furnace by melting pig iron on a hearth of iron oxide, over which passes a reducing flame which causes the carbon to unite with the oxide during the mixing which the puddler gives it, and further causes a large portion of the impurities to enter the surrounding slag. As the impurities-carbon, manganese, phosphorus, sulphur, silicon-leave the molten iron, the melting point rises so that the iron becomes first viscous, then pasty. When it has been worked into a ball the puddler carries it, still at a welding heat, to the hammer or squeezer where the greater part of the slag which permeated it is expelled from the mass. The roughly shapen slab is then rolled into muck bar, which, when piled, rolled and re-rolled becomes the wrought iron of commerce.

Steel is the malleable product of either the cementation process, the crucible, the converter or the open hearth furnace.

Cementation is the earliest process that we know of for making steel, and was founded upon the fact that wrought iron if packed in charcoal and heated to a high temperature, while excluded from air, absorbs carbon. The process consisted in packing bars of wrought iron, of about $3 / 4$ inch thickness, in charcoal, and then sealing up the vessel and keeping it at a yellow heat until the carbon had penetrated to the centres of the bars and converted them into steel. The carbon penetrates the bar at the rate of about $1 / 8$ inch in 24 hours, and while the point of saturation of iron by carbon is about 1.50%, yet the average content of carbon by this process in the finished bars, is about 1% or lower.

The use of steel made by this process was always limited because of the fact that it contained the old seams and slag imarks which everywhere crossed and
recrossed the iron, causing great trouble in the manufacture of cutting tools. But by melting this steel (called also blister steel, because its surface was covered with blisters) in a covered crucible, the seams and fibres of slag all disappeared, and a homogeneous ingot was the result. But this was a long way to a steel ingot, and the pursuit of cheapness gave rise to the direct method of melting iron in a crucible, made for the purpose, together with the requisite carbon and other ingredients necessary for imparting hardness, toughness, etc. The molten iron absorbs the carbon very quickly and gives a product which approaches closely the merit of that produced by the older method.

Up to the middle of the nineteenth century these two processes were the principal ones, yet they were too expensive for a product of general use, except for tools.

About 1856, Sir Henry Bessemer completed his experiments and gave to the world his famous process. In this process the pig iron is melted and poured into a bottle shaped vessel. Air is then blown into it from the bottom, burning out, first the silicon, then the manganese and carbon, (the first two elements entering the slag, the last one going out of the mouth of the converter as gas) but not reducing either the phosphorus or sulphur. When the carbon is burned out-a fact recognized by the color of the flame-the vessel contains practically pure wrought iron, which becomes steel on the addition of sufficient carbon and manganese to give the requisite hardness and toughness to the cast.

When the iron is melted in a Converter which has a silicon lining the process is called the Acid Bessemer, and the principal fuel to keep the bath liquid is silicon. If the iron is high in phosphorus and melted in a vessel lined with dolomite or magnesite the process is called the Basic Bessemer and phosphorus is the principal element of fuel.

Following the introduction of Sir Henry Bessemer's process, William Siemans invented the regenerative
furnace, a furnace in which the heat of the waste gases passes through chambers checkered off with fire brick, which so obstruct the passage of the gases to the chimney as to make them give up their heat. The air and fuel gas entering the furnace is then passed through this hot checker work and highly heated, thus returning to the furnace a large part of the heat carried out before by the gases passing to the stack. In a furnace of similar construction Open Hearth Steel is made. Pig iron, steel scrap, wrought iron, and iron ore charged together, or separately, (all, one or any two of them) are rendered steel by burning out their impurities with an oxidizing flame. If the metal is melted on a hearth lined with sand, the carbon, manganese and silicon are burned out and the sulphur and phosphorus remain as before. This is the Acid Open Hearth Process. But if, on the other hand, the bottom is made of dolomite or magnesite, and lime is added to hold the phosphorus in the slag formed (as in the case of Basic Bessemer) the phosphorus, silicon, carbon and manganese are burned out, and sulphur remains as before. This is the Basic Open Hearth process.

We have, then, steel made by the following processes:
1st. Cementation.
2d. Crucible.
3rd. Bessemer, $\left\{\begin{array}{l}\text { Acid } \\ \text { Basic }\end{array}\right\}$ Converter.
4th. Open Hearth, $\left\{\begin{array}{c}\text { Acid } \\ \text { Basic }\end{array}\right\}$ Furnace.

Standard Specifications for Special Open-Hearth Plate and Rivet Steel, as adopted by the Association of American Steel Manufacturers.

Testing and Inspection (1). All tests and inspections shall be made at place of manufacture prior to shipment.

Test Pieces (2). The tensile strength, limit of elasticity and ductility, shall be determined from a standard test
piece cut from the finished material. The standard shape of the test piece for sheared plates shall be as shown by the following sketch :

Piece to be of same thickness as the plate.

On tests cut from other material the test piece may be either the same as for plates, or it may be planed or turned parallel throughout its entire length. The elongation shall be measured on an original length of 8 inches, except when the thickness of the finished material is $5-16$ inch or less, in which case the elongation shall be measured in a length equal to sixteen times the thickness; and except in rounds of $5 / 8$ inch or less in diameter, in which case the elongation shall be measured in a length equal to eight times the diameter of section tested. Four test pieces shall be taken from each melt of finished material ; two for tension and two for bending.

Annealed Test Pieces (3). Material which is to be used without annealing or further treatment is to be tested in the condition in which it comes from the rolls. When material is to be annealed or otherwise treated before use, the specimen representing such material is to be similarly treated before testing.

Marking (4). Every finished piece of steel shall be stamped with the melt number. Rivet steel may be shipped in bundles securely wired together, with the melt number on a metal tag attached.

Finish (5). All plates shall be free from surface defects and have a workmanlike finish.

Chemical Properties (6).
\(\left.\left.$$
\begin{array}{llll}\text { Extra soft and } \\
\text { Fire Box Steel. }\end{array}
$$\right\} \begin{array}{lll}Maximum \& Phosphorous, \& .04 \%

Flange or boiler\end{array}\right\} \quad\)| Sulphur. |
| :--- | :--- |, $.04 \%$

Physical Properties (7). Steel shall be of four gradesExtra Soft, Fire Box, Flange or Boiler, and Boiler Rivet Steel.

Extra Soft Steel (8). Ultimate strength, 45,000 to 55,000 pounds per square inch.

Elastic limit, not less than one-half the ultimate strength. Elongation, 28 per cent.

Cold and Quench bends, 180 degrees flat on itself, without fracture on outside of bent portion.

Fire Box Steel (9). Ultimate strength, 52,000 to 62,000 pounds per square inch.

Elastic limit, not less than one-half the ultimate strength. Elongation 26 per cent.

Cold and Quench bends, 180 degrees, flat on itself, without fracture on outside of bent portion.

Flange or Boiler Steel (10). Ultimate strength, 52,000 to 62,000 pounds per square inch.

Elastic Wimit, not less than one-half the ultimate strength. Elongation, 25 per cent.

Cold and Quench bends, 180 degrees flat on itself, without fracture on outside of bent portion.

Boiler Rivet Steel (11). Steel for boiler rivets shall be made of the extra soft quality specified in paragraph No. 8.

Variation When Ordered to Gauge (12). For all plates ordered to gauge, there will be permitted an average excess of weight over that corresponding to the dimensions on the order equal in amount to that specified in the following table, provided no plate shall be rejected for light gauge measuring $.01^{\prime \prime}$ or less, below the ordered thickness.

Table of Allowances for Overweight for Rectangular Plates 1/4 Inch Thick and Heavier.

Note.-The weight of 1 cubic inch of rolled steel is taken at 0.2833 pounds.

Thickness of Plate.	Width of Plate.		
	Up to 75 in .	75 in . to 100 in .	Over 100 in.
$1_{6} / 1.10$.	${ }_{8} 10$ per cent.	14 per cent.	18 per cent.
		$\begin{array}{ll} 12 & " ، \\ 10 & " 4 \end{array}$	$\begin{array}{ll} 16^{\circ} \\ 13 & " ، \end{array}$
	6 ،	8 "	10 "
1/2	5	$7{ }^{7}$	9 "
	41/2 "	61/2 "	$81 / 2$ "
		6^{6} "	
Over 5/8"...	$31 / 2$	5 "	$61 / 2$ "

Table of Allowances for Overweight for Rectangular Plates less than 1/4 Inch in Thickness.

Thickness of Plate.	Width of Plate.	
	Up to 50 in .	50 in . and above.
$1 / 8 \mathrm{in}$. up to $\frac{5}{82}$ in. $\begin{array}{llll}\frac{8}{82} & \text { " } & \frac{8}{16} & " \\ \frac{3}{16} & \text { " } & 1 / 4 & "\end{array}$	$\begin{array}{cc} 10 & \text { per cent. } \\ 81 / 2 & " \\ 7 & " \\ \hline \end{array}$	$\begin{aligned} & 15 \text { per cent. } \\ & 12 \text { " } \\ & 10 \end{aligned}$

Variation When Ordered to Weight (13). Plates $121 / 2 \mathrm{lbs}$. or heavier when ordered to weight, shall not average more variation than $21 / 2$ per cent., either above or below the theoretical weight.

Plates from 10 to $121 / 2$ lbs., when ordered to weight, shall not average a greater variation than the following:

Up to 75 inches wide, $21 / 2$ per cent., either above or below the theoretical weight.

75 inches and over, 5 per cent., either above or below the theoretical weight.

Plates under 10 lbs . down to 5 lbs . when ordered to weight shall not average more variation than 3 per cent. above or 5 per cent. below the theoretical weight.

Plates under 5 lbs . when ordered to weight shall not average more variation than 5 per cent. either above or below the theoretical weight.
TABLE OF STRENGTH OF MATERIALS IN POUNDS PER SQUARE INCH.

Tensile Strength.		Compressive Strength.		Shearing Strength.	Modulus of Elasticity.	
Elastic Limit.	Ultimate.	Elastic Limit.	Ulitimate.	Ultimate.	Tension.	Shear.
36,000	56,000	34,000	.	43,000	30,000,000	9,000,000
42,000	68,000	39,000	48.000	"	, ${ }^{6}$
47,000	68,000	43,000	53,000	4	4
48,000	80,000	46,000	57,000	6	46
53,000	89,000	53,000	60,000	4	"
63,000	103,000	63,000	.	68,000	"	${ }^{4}$
80,000	120,000	80,000		,	30,000,000	12,000.000
190,000	80,000	36,000,000	14,000,000
.	80,000
......	250,000 60,000
.......	60,000 80,000	-..........
28,000	56,000	40,000	28,000,000	$9,000,000$
24,000	45,000			32,000		
......	15,000	.	70,000	13,000	15,000,000	5,000,000
0	25,000	-. ...	110,000	20,000	20,000,000	8,000,000
15,000	25,000	-......
22,000	35,000
......	18,000 ${ }^{\text {a }}$
	48,000
17,000	36,000	12,000,000
51,000	74,000	,000	13,000,000	,
5,500	20.000	4,000	15,000,000	5,000,000
......	30,000			16,000,000	-
	58000			17,000,000	
20,000	58,000		43,000	14,000,000	5,000,000
......	82,000 65,000
30,000	65,000 60,000	125,000
80,000	100.000	120,000	

MATER1AL.

Steel, Bessemer and open

$0^{\circ} 0^{\circ} 0^{\circ}$
uoqrej јо 'ұиәง 1әd

Steel, crucible.................. tempered
Steel, 8 to 5\% nickel..................... $\left\{\begin{array}{l}\text { from } \\ \text { to }\end{array}\right.$
Steel castings. $\left\{\begin{array}{l}\text { from } \\ \text { to }\end{array}\right.$
Wrought iron.................. $\{$ high grade
Cast iron............................... $\left\{\begin{array}{l}\text { from } \\ \text { to }\end{array}\right.$
Malleable cast iron.................. $\left\{\begin{array}{l}\text { from } \\ \text { to }\end{array}\right.$ on
$\underbrace{\text { an }}$ Delta metal.......................... $\left\{\begin{array}{l}\text { castings } \\ \text { rolled }\end{array}\right.$ (castings Copper........................ $\left\{\begin{array}{l}\text { called plates } \\ \text { roll drawn } \\ \text { hard }\end{array}\right.$
 Aluminum bronze....... $\left\{\begin{array}{lll}0.1 & \text { al., } & 0.9 \\ 0.07 & \text { c. } & 0.93\end{array}\right.$ Manganese bronze.

TENACITY OF METALS AT VARIOUS

TEMPERATURES.

Tensile Strength of Iron and Steel at High Temperatures.James E. Howard's tests (Iron Age, April 10, 1890), shows that the tensile strength of steel diminishes as the temperature increases from 0° until a minimum is reached between 200° and $300^{\circ} \mathrm{F}$., the total decrease being about $4,000 \mathrm{lbs}$. per square inch in the softer steels and from 6,000 to $8,000 \mathrm{lbs}$. in steels of over $80,000 \mathrm{lbs}$. tensile strength. From this minimum point the strength increases up to a temperature of 400° to $650^{\circ} \mathrm{F}$., the maximum being reached earlier in the harder steels, the increase amounting to from 10,000 to $20,000 \mathrm{lbs}$. per square inch above the minimum strength at from 200° to 300°. From this maximum, the strength of all the steels decreases steadily at a rate approximating $10,000 \mathrm{lbs}$. decrease per 100° increase of temperature. A strength of $20,000 \mathrm{lbs}$. per square inch is still shown by 0.10 C . steel at about 1000 F ., and by 0.60 to 1.00 C . steel at about $1600^{\circ} \mathrm{F}$.

The strength of wrought iron increases with temperature from 0° up to a maximum at from 400 to $600^{\circ} \mathrm{F}$., the increase being from 8,000 to $10,000 \mathrm{lbs}$. per square inch, and then decreases steadily till a strength of only 6,000 lbs. per square inch is shown at $1,500^{\circ} \mathrm{F}$.

Cast iron appears to maintain its strength, with a tendency to increase, until 900° is reached, beyond which temperature the strength gradually diminishes. Under the highest temperatures, $1,500^{\circ}$ to $1,600^{\circ} \mathrm{F}$., numerous cracks on the cylindrical surface of the specimen were developed prior to rupture. It is remarkable that cast iron, so much inferior in strength to the steels at atmospheric temperature, under the highest temperatures has nearly the same strength the high-temper steels then have.

Strength of Iron and Steel Boiler-plate at High Temperatures. (Chas. Huston, Jour. F. I., 1877.)

Average of Three Tests of Each.

Temperature F		${ }_{5750}{ }^{5750}$	${ }^{925} 5^{\circ}$
Charcoal iron plate, ${ }_{\text {/4 }}$ tensile strength, libs..	$\underset{26}{55,366}$	$\begin{gathered} 63,080 \\ 23 \end{gathered}$	65,343 21
Soft open-hearth steel, tensile strength, ib . ${ }^{\text {a }}$.	54,600	66,083	64,350
"\% "\% ${ }^{\text {a }}$ " contr. \%...........	47		33
" Crucible steel, tensile strength, ibs...	64,000 36	69,266 30	68,600

Strength of Wrought Iron and Steel at High Temperatures.

 -(Jour. F. I., cxii., 1881, p. 241.) Kollmann's experiments at Oberhausen included tests of the tensile strength of iron and steel at temperatures ranging between 70° and $2000^{\circ} \mathrm{F}$. Three kinds of metal were tested, viz., fibrous iron having an ultimate tensile strength of $52,464 \mathrm{lbs}$., an elastic strength of $38,280 \mathrm{lbs}$., and an elongation of 17.5%; fine-grained iron having for the same elements values of $56,892 \mathrm{lbs}$., $39,113 \mathrm{lbs}$, and 20%; and Bessemer steel having values of $84,826 \mathrm{lbs} ., 55,029 \mathrm{lbs}$., and 14.5%. The mean ultimate tensile strength of each material expressed in per cent. of that at ordinary atmospheric temperature is given in the following table, the fifth column of which exhibits, for purposes of comparison, the results of experiments carried on by a committee of the Franklin Institute in the years 1832-36.| Temperature Degrees F. | Fibrous Wrought Iron, p. c. | Fine-grained Iron, per cent. | Bessemer Steel, per cent. | Franklin Institute, per cent. |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 100.0 | 100.0 | 100.0 | 96.0 |
| 100 | 100.0 | 100.0 | 100.0 | 102.0 |
| 200 | 100.0 | 100.0 | 100.0 | 105.0 |
| 300 | 97.0 | 100.0 | 100.0 | 106.0 |
| 400 | 95.5 | 100.0 | 100.0 | 106.0 |
| 500 | 92.5 | 98.5 | 98.5 | 104.0 |
| 600 | 88.5 | 95.5 | 92.0 | 99.5 |
| 700 | 81.5 | 90.0 | 68.0 | 92.5 |
| 800 | 67.5 | 77.5 | 44.0 | 75.5 |
| 900 | 44.5 | 51.5 | 36.5 | 53.5 |
| 1000 | 26.0 | 36.0 | 31.0 | 36.0 |
| 1100 | 20.0 | 30.5 | 26.5 | |
| 1200 | 18.0 | 28.0 | 22.0 | |
| 1300 | 16.5 | 23.0 | 18.0 | |
| 1400 | 13.5 | 19.0 | 15.0 | |
| 1500 | 10.0 | 15.5 | 12.0 | |
| 1600 | 7.0 | 12.5 | 10.0 | . . |
| 1700 | 5.5 | 10.5 | 8.5 | |
| 1800 | 4.5 | 8.5 | 7.5 | |
| 1900 | 3.5 | 7.0 | 6.5 | |
| 2000 | 3.5 | 5.0 | 5.0 | |

MECHANICS OF MATERIALS RELATING TO

TUBULAR CONSTRUCTION.

STRENGTH OF MATERIALS.

A tensile stress is produced in the walls of a cylindrical vessel, such as a pipe, tank, boiler, etc. when it contains a fluid such as water, steam or air, under pressure.

The ultimate or breaking strength of a material is reached when the tensile stress equals its cohesive force, in which case the material is on the point of being ruptured.

The working strength of a material is that fraction, or portion, of the ultimate or breaking strength that experience has shown it is best to use in practice, in order to guard against failure due to unforeseen causes, such as defects and the possible action of unknown forces.

The unit working strength of a material is the working strength of one square inch of cross section of that material.

The factor of safety is the factor or number by which the ultimate strength is divided in order to obtain the working strength. The proper factor to use in any given case would depend upon the characteristics of the material and the nature of the forces, whether quiescent or impulsive.

In tubular construction, reasonably free from vibration and shock, a factor of safety of from 5 to 6 should be ordinarily used for wrought iron and steel, and from 8 to 10 for cast iron. Where there is uncertainty as to the magnitude and nature of the forces acting, or where there is much vibration or shock, such as water hammer in steam pipes or the sudden stoppage of flow in a water pipe, these factors should be increased to from one and one-half to three or more times the values given, depending upon the severity of the vibration or shock.

It is best, when possible, to compute the straining actions of shocks, as for example the increase in fluid pressure in a long water pipe when the flow is more or less quickly checked, in which case they should be added to the normal straining action. Having provided for these abnormal forces, the ordinary factors of safety should then be used.

Stress and Strain.-Should the fluid pressure in a cylindrical vessel be gradually increased from zero, it will be
observed that the walls of the vessel will stretch, thus increasing its volume. The stretch of the material constituting the walls is termed the strain due to the force tending to tear the material asunder.

The molecular actions within the material which oppose the external forces, and which resist deformation, are termed stresses.

An elastic material when deformed by a straining action recovers its original form when the straining action is removed; as, for example, spring steel, ivory, etc.

A plastic material when deformed does not recover its original form when the straining action is removed; as, for example, lead, putty, etc.

Elastic limit.-Materials such as wrought iron and low carbon steel are elastic under some conditions and plastic under others. At ordinary atmospheric temperatures, these materials may be strained up to a point, termed the elastic limit, without suffering any permanent deformation when the straining action is removed.

Should, however, the elastic limit be exceeded, the material will but partially recover its original form when the straining action is removed, in which case it is said to have received a permanent deformation or set.

Up to the elastic limit the strain is proportional to the stress, that is, strain \div stress $=$ a constant. Beyond the elastic limit this constant becomes ordinarily an increasing varible.

The modulus of elasticity of a material is obtained by dividing the unit stress by the strain, for unit length.

Shearing strength of a material.-When a cylindrical vessel, made up from plates, connected together in the usual manner by riveted joints, is subjected to a fluid pressure, the adjoining plates will tend to separate by sliding one upon the other, thus subjecting the material of the rivets to a shearing action. The ability of a rivet to resist this action is known as its shearing strength, and the stress created by snch action is called the shearing stress.

Unit shearing strength of a material is the shearing strength of one square inch of cross-section of that material.

VALUES OF I (Moment of Inertia), AND S. (Section Modulus), FOR USUAL SECTIONS.

sections.	I

$\mathrm{x} \times$ Denotes position of neutral axis.

Bending Moments and Defiections of Beams under Various Systems of Loading.

$W=$ total load.
$l=$ length of beam.
(1) Beam fixed at one end and loaded at the other.

Maximum bending moment at point of support $=W l$.
Maximum shear at point of support $=W$.
Deflection $=\frac{W l^{3}}{3 E I}$
(3) Beam supported at both ends, single load in the middle

Maximum bending moment at middle of beam $=\frac{W l}{4}$
Maximum shear at points of support $=1 / 2 / W$.
Deflection $=\frac{W l^{3}}{48 E I}$
(5) Beams supported at both ends, single unsymmetrical load.

Maximum bending moment under load $=\frac{W a b}{l}$
Maximum shear : at support near $a=\frac{W b}{l}$; at other support $=\frac{W a}{l}$
Maximum deflection

$$
=\frac{W a b(2 l-a)}{9 E I l} \sqrt{1 / 3 a(2 l-a)}
$$

$I=$ moment of inertia $E=$ modulus of elasticity.
(2) Beam fixed at one end, and uniformly loaded.

Maximum bending moment at point of support $=\frac{W l}{2}$
Maximum shear at point of support $=W$.
Deflection $=\frac{W l^{3}}{8 E I}$
(4) Beam supported at both ends and uniformly loaded.

Maximum bending moment at middle of beam $=\frac{W l}{8}$
Maximum shear at points of support $=1 / 2 W_{W l^{3}}$
Deflection $=\frac{W}{76.8 E I}$
(6) Beam fixed at both ends and uniformly loaded.

Maximum bending moment at point of support $=\frac{W l}{12}$

Maximum shear at points of support $=1 / 2 W$.
Deflection $=\frac{W l^{3}}{384 E I}$

DEFLECTION AND STRENGTH OF PIPES TO RESIST BENDING ACTION.

The bending moment of a force is obtained by multiplying the force, P, in pounds, by the lever arm, l, in inches, with which it acts. Thus in the case of a trolley pole the bending moment at the ground, G , is

$$
\mathrm{M}=\mathrm{P} 1, \text { and at } \mathrm{G}_{1} \text { is } \mathrm{M}_{1}=\mathrm{Pl}_{1}
$$

The deflection of a pipe or tube when loaded transversely, that is, so as to subject it to a bending moment, is the deformation in inches produced by the given loading, and is due, of course, to the elasticity of the materials constituting it. In case of a trolley pole the greatest deformation will be at the extreme top of the pole.

For a horizontal pipe supported at equidistant points the greatest deflection will be midway between supports.

The moment of inertia of a section is the sum of the products of each elementary area of the section by the square of its distance from an assumed axis of rotation. It is a necessary factor in formulæ for the determination of deflection of structures considered as beams.

The moment of resistance of cross-section of a beam is the moment that resists a bending action at that crosssection.

The section modulus is the factor that when multiplied by the unit working strength of the material will give the moment of resistance of cross-section of a structure considered as a beam.

In every case when a beam, as for example a trolley pole or a horizontal pipe supported at points, is subjected to a bending action the following condition must exist at every cross-section, namely: Bending moment $=$ moment
of resistance of cross-section=unit working strength of material \times section modulus.

Example 1.-A 4 inch steel pipe has one end firmly fixed in a wall so as to project horizontally a distance of 8 feet. Find the greatest safe load it will carry at the free end, also the deflection with this load.
Solution: From the table of Standard Steam and Gas Pipe, we see that the outside and inside diameters are $\mathrm{d}=4.500$ and $\mathrm{d}_{1}=4.026$ inch. Assuming an ultimate strength of material $=60,000 \mathrm{lbs}$. per sq. inch, and a factor of safety of 6 , we get as a working unit strength $60,000 \div 6=10,000 \mathrm{lbs}$. From the table of Section Moduli we get

$$
\text { Section modulus }=0.098\left(\mathrm{~d}^{3}-\frac{\mathrm{d}_{1}^{4}}{\mathrm{~d}}\right)
$$

which multiplied by the unit working strength gives

$$
\text { Moment of resistance }=980\left(d^{3}-\frac{d_{1}^{4}}{d}\right)
$$

$$
\mathrm{d}^{3}=(4.5)^{3}=91.125 \text { (see table of cubes). }
$$

$\log \cdot \frac{d_{1}{ }^{4}}{d}=\log \cdot \frac{(4.026)^{4}}{4.5}=4 \log \cdot 4.026-\log .4 .5=4 \times 0.60$
$-0.6532=1.7664$, or $\frac{d_{1}^{4}}{d}=58.4$, the number whose log. is 1.7664
Then moment of resistance $=980(91.1-58.4)=32,046$ inch 1bs.

The bending moment at support $=\mathrm{WL}=\mathrm{W} 8 \times 12=$ 96 W inch lbs. Since the bending moment equals the moment of resistance, then

$$
\begin{aligned}
96 \mathrm{~W} & =32,046, \text { or } \\
\mathrm{W} & =333 \mathrm{lbs} . \text {, the required load. }
\end{aligned}
$$

For this style of loading (see table) the

$$
\text { Deflection }=\frac{W 1^{3}}{3 \mathrm{EI}}
$$

In which $W=333$, the safe load as computed;

$$
\begin{aligned}
& L_{1}=96, \text { the length of beam in inches; } \\
& E=26,000,000 . \text { the modulus of elasticity; } \\
& I=0.049\left(d^{4}-d_{1}^{4}\right)=0.049\left[\left(4.5^{4}-(4.026)^{4}\right]=\right.
\end{aligned}
$$

7.21, the moment of inerta of cross-section.

Substituting these values in above formula we get

$$
\text { Deflection }=\frac{333 \times(96)^{3}}{3 \times 26,000,00 \times 7.21}=0.53 \text { inch }
$$

Example 2.-A 10 inch standard lap welded steel pipe, carrying water, is suspended from the top of a tunnel, as shown in the figure, the points of support being spaced at a distance of 20 feet apart.

Find the deflection, D, due to the weight of the pipe and its contained water, on the supposition that the pipe bears equally on all of its supports.

Solution: From the table of Standard Steel Welded Pipe we get weight of pipe per $\mathrm{ft} .=40.06 \mathrm{lbs}$., and weight of contained water per $\mathrm{ft} .=34.13 \mathrm{lbs}$., making a gross weight per foot of 74.2 lbs ., or for 20 feet a total weight of approximately 1500 pounds.

Since the pipe is assumed to run continuously from one support to another, the deflection will be greatest midway between supports, and will be the same as that for a beam
fixed at both ends and uniformly loaded. For this style of loading (see page 212) the

$$
\text { Deflection }=\frac{\mathrm{W} 1^{3}}{384 \mathrm{EI}}
$$

In which $W=1500$ pounds;

$$
L_{1}=20 \times 12=240 \text { inches; }
$$

$E=26,000,000$, the modulus of elasticity;
$\mathrm{I}=0.049\left(\mathrm{~d}^{4}-\mathrm{d}_{1}{ }^{4}\right)=0.049\left[(10.75)^{4}-(10.02)^{4}\right]$
$=160$, the moment of inertia of cross-section.
Substituting these values in above formula we get

$$
\text { Deflection }=\frac{1500 \times(240)^{3}}{384 \times 26,000,000 \times 160}=0.014 \text { inch. }
$$

In practice, where the usual rigid joints are used, it is often the case that a pipe does not bear equally upon all the hangers, and in cases of careless erecting or of shifting of hangers, the pipe may not receive any support from one or more of the hangers.

Should each alternate hanger, in the above example, become inactive, owing to any cause, the maximum deflection then would be that due to an unsupported length of 40 feet of pipe. An inspection of the formula will show that the deflection of a beam increases directly as the weight $\times(\text { length })^{3}$, or, for uniformly loaded beams, since the weight increases directly as the length, as the (length) ${ }^{4}$.

Since in this case the length is doubled, the deflection will be increased 16 fold (that is 2^{4}), or to an amount $=$ $0.014 \times 16=0.22$ inch.

In the same manner it can be shown that an unsupported portion of 60 feet in length will deflect or sag an amount $=0.014 \times 3^{4}=1.13 \mathrm{inch}$.

Should the pipe be merely supported at the ends, and not straight and continuous from one support to another, then the conditions would be those of a simple beam uniformly loaded and supported at the ends.

By comparing the deflection formulæ for the case just considered and this case, it will appear that the deflection for this case will be five times as great; or, for the three cases considered above, $0.07,1.10$ and 5.65 inches respectively.

The maximum deflection, or sag, that should be permitted in practice will depend ordinarily upon the effective thickness of wall of pipe and the unit working strength of the material composing it.

The effective thickness of pipe in any particular case will be the thickness remaining after deducting the depth of screw-thread (for wrought pipe with threaded ends for coupling or flange connections) plus a reasonable amount for the deterioration due to corrosion, or other causes; which amount will depend upon the nature of the service and the expected life of pipe.

In every practical example the effective thickness of pipe should be used in applying all formulæ relating to strength of pipe to resist either bending or bursting.

STRESS DUE TO INTERNAL BURSTING PRESSURE.

Owing to the difference in the nature of the stress occuring in thin and thick walls of cylinders, pipes, etc., when subjected to a fluid pressure, it will be necessary to divide them into two classes, namely, those having thin walls and those having thick walls. In the following discussion only those having thin walls will be considered.

Let $d=$ internal diameter in inches ;
$\mathrm{t}=$ thickness of cylinder wall in inches ;
$\mathrm{p}=$ internal fluid pressure, 1 bs . per sq. inch ;
$\pi=3.1416$;
$\mathrm{f}_{\mathrm{t}}=$ unit working strength in tension ;
$\mathrm{f}_{\mathrm{c}}=$ " " " " compression ;
$\mathrm{f}_{\mathrm{s}}=$ " " " "shear;
$e=$ efficiency of joint, or $\frac{\text { strength of joint }}{\text { strength of plate }} ;$
$\mathrm{c}=$ thickness of metal, in inches, allowed for wasting away due to corrosion, or other causes.

STRENGTH OF THIN CYLINDERS TO RESIST' BURSTING.

The force tending to tear the plate along a line lying circumferentially around the cylinder, as, for example, along the section lying in the plane A B, will equal the fluid pressure exerted on one end of the cylinder, which equals the area of a cross-section of cylinder in square inches \times internal pressure per square inch, or
$\left.\begin{array}{l}\text { Longitudinal bursting pressure } \\ \text { tending to rupture circumferentially }\end{array}\right\}=\frac{\pi \mathrm{d}^{2}}{4} \mathrm{p}$.
This bursting pressure will be resisted by the tenacity of the metal whose cross-section lies in the plane AB, which equals the circumference, or distance around the cylinder, multiplied by the thickness of the metal. Hence
$\left.\begin{array}{l}\text { Resistance to bursting pressure } \\ \text { tending to rupture circumferentially }\end{array}\right\}=\pi \mathrm{dt} \mathrm{f}_{\mathrm{t}}$.
Since the resistance to the bursting pressure must equal the pressure itself, we have

$$
\pi d \mathrm{tf}_{\mathrm{t}} .=\frac{\pi \mathrm{d}^{2}}{4} \mathrm{p}, \text { or } \mathrm{t}=\frac{\mathrm{dp}}{4 \mathrm{f}_{\mathrm{t}}} ; \mathrm{p}=\frac{4 \mathrm{f}_{\mathrm{t}} \mathrm{t}}{\mathrm{~d}}
$$

The force tending to tear the plate along a line extending longitudinally, as, for example, along the section lying in the plane $C D$, will equal the sum of the normal components of the fluid pressures on the inner surface of the cylinder, which it can be shown is the same as the fluid pressure on a surface equal to the length of the cylinder multiplied by its diameter, or d. We then have
$\left.\begin{array}{l}\text { Transverse bursting pressure } \\ \text { Tending to rupture longitudinally }\end{array}\right\}=\mathrm{d} 1 \mathrm{p}$.
This bursting pressure will be resisted by the tenacity of the metal whose cross-section lies in the plane CD, which latter equals twice the length of cylinder multiplied by the thickness of the metal. Hence

$$
\left.\begin{array}{l}
\text { Resistance to bursting pressure } \\
\text { Tending to rupture longitudinally }
\end{array}\right\}=21 \mathrm{t} \mathrm{f}_{\mathrm{t}} \text {. }
$$

Since the resistance to the bursting pressure must equal the pressure itself, we have

$$
21 \mathrm{t} \mathrm{f}_{\mathrm{t}}=\mathrm{d} 1 \mathrm{p}, \text { or } \mathrm{t}=\frac{\mathrm{d} p}{2 \mathrm{f}_{\mathrm{t}}} ; \mathrm{p}=\frac{2 \mathrm{f}_{\mathrm{t}} \mathrm{t}}{\mathrm{~d}}
$$

From a comparison of the above formulæ, it will be seen that the force due to a fluid pressure within a pipe, boiler, or other cylindrical vessel, that tends to cause rupture longitudinally is twice that which tends to cause rupture transversely, that is circumferentially or around the pipe.

From the above relations, then, it will appear that a pipe, or other cylindrical vessel having walls of uniform thickness, when subjected to a fluid pressure only, will always tend to rupture longitudinally. The strength at the joints, resisting rupture transversely, may be reduced by the cutting of threads or riveting to flanges, or otherwise, to an amount equal to one-half the strength of the
metal of pipe in cross-section, without altering the tendency of the pipe to rupture longitudinally.

Example 1.-Find the safe working pressure and also the bursting pressure of a standard 10 -inch lap-welded steel pipe, having plain ends, or welded heads.

Solution: Assuming that the pipe is not subjected to shock or vibration, we will assume a unit working strength of material $=10,000 \mathrm{lbs}$., which allows a factor of safety of 6 on the assumption that the ultimate tensile strength is $60,000 \mathrm{lbs}$. per sq. inch.

Then in the formula for the internal fluid pressure.

$$
\mathrm{p}=\frac{2 \mathrm{f}_{\mathrm{t}} \mathrm{t}}{\mathrm{~d}}
$$

$f_{t}=10,000 \mathrm{lbs} .$, the unit working strength of material;
$\mathrm{t}=0.366 \mathrm{inch}$, the thickness of wall of pipe;
$d=10.385$, the diameter of pipe.
Substituting these values we get

$$
\mathrm{p}=\frac{2 \times 10,000 \times 0.366}{10.385}=705 \mathrm{lbs} . \text { per sq. in. }
$$

The bursting pressure, on the above assumption, would be six times the working pressure, or

Bursting pressure $=705 \times 6=4,230 \mathrm{lbs}$. per sq. in.
Example 2.-Find the working pressure for the pipe given in example 1, when provision is made for wasting away of the metal by corrosion, or otherwise, so as to reduce the thickness of the walls by $1 / 8$ inch.

Then $\mathrm{t}=0.366-0.125=0.241$ inch, the thickness of wall after corrosion of $1 / 8$ inch has occurred, the other values remaining the same as before. Substituting in the formula for pressure we get

$$
p=\frac{2 \times 10,000 \times 0.241}{10.385}=465 \text { lbs. per sq. in. }
$$

In practice it is often necessary to provide, especially in steam and water pipes, for stresses due to vibration, shock, temperature changes and various other causes, in which case the factor of safety of six assumed in the above examples should be increased to from 8 to 15 for
wrought pipe, depending upon the severity of these actions.

Assuming a factor of safety of 12 , the safe working pressure in the above examples would be for Example 1, 350 lbs. per sq. in., and for example 2, 230 lbs . per sq. inch.

Example 3.-Find the thickness of a mild steel seamless cylindrical receiver, 20 inches in diameter, to contain air at $2,000 \mathrm{lbs}$. per sq. in. gauge pressure.

Solution: Assuming a unit working strength of material of $12,000 \mathrm{lbs}$. then in the formula for thickness,

$$
\mathrm{t}=\frac{\mathrm{d} \mathrm{p}}{2 \mathrm{f}_{\mathrm{t}}}
$$

$\mathrm{d}=20$, the diameter of receiver in inches;
$p=2,000$, the internal pressure in lbs. per sq. inch;
$f_{t}=12,000$, the working strength per sq. in. of material;
Substituting these values in the formula we get

$$
\mathrm{t}=\frac{20 \times 2,000}{2 \times 12,000}=1.67 \text { inches }
$$

In tubular construction, having longitudinal riveted joints intended to resist internal fluid pressure, the formulæ for thickness of wall and for safe working pressure will become

$$
t=\frac{d p}{2 e f_{t}} ; \quad p=\frac{2 e f_{t} t}{d}
$$

In which $\mathrm{d}=$ diameter of vessel in inches;
$t=$ thickness of wall in inches;
$\mathrm{p}=$ internal fluid pressure, 1 bs . per sq. inch;
$f_{t}=u n i t$ working strength of material in tension;
$\mathrm{e}=$ efficiency of riveted joint, from 0.6 to 0.8 .
To provide in practice for wasting away of the metal, due to corrosion, or other causes, the above formulæ will become

$$
t=\frac{d p}{2 e f_{t}}+c ; \quad p=\frac{2 e f_{t}(t-c)}{d}
$$

Where $c=$ reduction in the thickness, in inches, of the metal constituting the wall of the vessel, because of the wasting away of the metal in practice due to corrosion and other causes.

Example 4.-Find the thickness of plate for a 60 -inch steam boiler, to carry 100 lbs . gauge pressure, the longitudinal riveted joints having an efficiency of 0.7 , the ultimate tensile strength of the material being $60,000 \mathrm{lbs}$. per sq. inch.

Solution: Assuming an actual factor of safety of five and allowing $1 / 8$ inch for wasting away of plates during the life of the boiler, we have in the above formula for thickness of plate:
$d=60$, the diameter of boiler in inches;
$p=100$, the gauge pressure per sq. inch;
$f_{t}=12,000$, the unit working strength of material;
$e=0.7$, the efficiency of longitudinal joint;
$c=0.125$, the allowance for corrosion, etc.
Substituting these values in the formula we get

$$
\mathrm{t}=\frac{60 \times 100}{2 \times 0.7 \times 12,000}+0.125=0.48 \text { inch }
$$

Example 5.-Find the greatest steam pressure that could be carried by the boiler, in Example 4, when new, that is, before any wasting away of metal has occurred, all other conditions being the same.

Solution: Making $\mathbf{c}=0$ in the above equation, we get

$$
t=\frac{d p}{2 e f_{t}} ; \text { and } p=\frac{2 e f t}{d}
$$

Which are the general equations for the thickness, t, in inches and safe fluid pressure, p, in 1 bs , per sq. inch, for pipes or other cylindrical vessels having longitudinal riveted joints.

Substituting the values, given in Example 4, in the above formula for pressure, we get

$$
\mathrm{p}=\frac{2 \times 0.7 \times 12,000 \times 0.48}{60}=135 \text { lbs. gauge. }
$$

In Examples 4 and 5 an actual factor of safety at the longitudinal joints is assumed, which makes the apparent factor of safety, that is, the factor of safety on the plate itself, for the assumed conditions, $=5 \div 0.7=7.1$.

In practice an apparent factor of safety of 5 is often used, for double riveted longitudinal lap joints, resulting in an actual factor of safety of $5 \times(0.68$ to 0.72$)=$ from 3.4 to 3.6. Very often no allowance is made for the wasting away of the metal, which fact in conjunction with the use of too small a factor of safety will account for a large number of the boiler explosions that have occurred in practice.

STRENGTH OF CYLINDER ENDS OR HEADS.

The ends or heads of a cylindrical vessel intended to contain a fluid under pressure, should be designed so as to be as strong as the cylindrical part of the vessel. This can ordinarily be best accomplished by giving the end the form of a portion of a hollow sphere, as shown in the figure, whose radius equals the diameter of the cylindrical part, in which case to be equally strong throughout the thickness should be the same as that of the cylindrical part. This is because of the fact that for a given internal fluid pressure, the stress created in the walls of a thin hollow cylinder will be the same as that created, for the same pressure, in the walls of a thin hollow sphere of double the diameter.

The use of flat ends should be avoided, except for constructions such as tube plates, where they are desirable because of constructional reasons and can be easily stayed.
HOLLOW, CYLINDRICAL, WROUGHT IRON PILLARS.-BREAKING LOADS IN TONS.
Calculated by Gordon's Formula (Trautwine.) Thickness 1/8 Inch.

Thickness $1 / 4$ Inch.

WROUGHT IRON PILLARS, ETc.-(CONTINUED)
OUter Diameters in Inches.

Thickness 1 Inch.

SHEARING AND BEARING VALUE OF RIVETS.

SHEARING AND BEARING VALUE OF RIVETS.

Diam. of Rivet in Inches.		Area. of Rivet.	$\begin{array}{\|c\|} \text { Single } \\ \text { Shear at } \\ 7,500 \mathrm{lbs} . \\ \text { per } \\ \text { sq. in. } \\ \hline \end{array}$	Bearing Value for different Thicknesses of Plate at $15,000 \mathrm{lbs}$. per square inch ($=$ Diameter of Rivet \times Thickness of Plate $\times 15,000 \mathrm{lbs}$.)										
Fraction	Decimal			$1 / 4{ }^{\prime \prime}$	$\frac{5}{18}^{\prime \prime}$	$3 / 8{ }^{\prime \prime}$	$\frac{7}{16}{ }^{\prime \prime}$	$1 / 2^{\prime \prime}$	$\frac{9}{18}^{\prime \prime}$	5/8"	$\frac{1}{1 \frac{1}{6}}{ }^{n}$	3/4"	$\frac{1}{1} \frac{3}{6}{ }^{\prime \prime}$	7/8"
$\begin{aligned} & 3 / 8 \\ & \frac{7}{16} \end{aligned}$.375 .4375	.1104 .1503	828 1130	1410 1640	2050									
$1 / 2$ 16	.5 .5625	.1963 .2485	1470 1860	1880 2110	2340 2640	2810 3160	3690							
5/8	. 625	. 3068	2300	2340	2930	3520	4100							
$\frac{11}{1} 6$. 6875	. 3712	2780		3220	3870	4510	5160						
$3 / 4$. 75	. 4418	3310		3520	4220	4920	5630	6330					
$\frac{1}{18}$. 8125	.5185	3890			4570	5330	6090	6860	7620				
$7 / 8$ 15	. 875	. 6013	4510 5180			4920 5270	5740 6150	6560 77030	7380 7910	8200 8790				
$\frac{1}{1} \frac{5}{6}$. 9875	. 6903	5180			5270	6150	7030	7910	8790	9670			
	1.	. 7854	5890				6560	7500	8440	9380	10310	11250		
$1 \frac{1}{16}$	1.0625	. 8866	6650				6970	7970	8960	9960	10960	11950	12950	
11/8	1.125	. 9940	7460					8440	9490	10550	11600	12660	13710	14770
$1 \frac{8}{16}$	1.1875	1.1075	8310					8910	10020	11130	12250	13360	14470	15590

WEIGHT OF RIVETS IN POUNDS PER 100.

 Length from under head. One cubic ft. weighing 480 lbs .| Length
 Inches. | 3/8" | 1/2" | 5/8' Diam. | $3 / 4 \text { " }$
 Diam. | $7 / 8^{\prime \prime}$
 Diam. | $1 \prime$ Diam. | $\begin{aligned} & 11 / 8^{\prime \prime} \\ & \text { Diam. } \end{aligned}$ | $\begin{aligned} & 11 / 4^{\prime \prime} \\ & \text { Diam. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 114 | 5.4 | 12.6 | 21.5 | 28.7 | 43.1 | 65.3 | 91.5 | 123. |
| 11/2 | 6.2 | 13.9 | 23.7 | 31.8 | 47.3 | 70.7 | 98.4 | 133. |
| 13/4 | 6.9 | 15.3 | 25.8 | 34.9 | 51.4 | 76.2 | 105. | 142. |
| 2 | 7.7 | 16.6 | 27.9 | 37.9 | 55.6 | 81.6 | 112. | 150. |
| $21 / 4$ | 8.5 | 18.0 | 30.0 | 41.0 | 59.8 | 87.1 | 119. | 159. |
| $21 / 2$ | 9.2 | 19.4 | 32.2 | 44.1 | 63.0 | 92.5 | 126. | 167. |
| $23 / 4$ | 10.0 | 20.7 | 34.3 | 47.1 | 68.1 | 98.0 | 133. | 176. |
| 3 | 10.8 | 22.1 | 36.4 | 50.2 | 72.3 | 103. | 140. | 184. |
| $31 / 4$ | 11.5 | 23.5 | 38.6 | 53.3 | 76.5 | 109. | 147. | 193. |
| 31/2 | 12.3 | 24.8 | 40.7 | 56.4 | 80.7 | 114. | 154. | 201. |
| 33/4 | 13.1 | 26.2 | 42.8 | 59.4 | 84.8 | 120. | 161. | 210. |
| 4 | 13.8 | 27.5 | 45.0 | 62.5 | 89.0 | 125. | 167. | 218. |
| $41 / 4$ | 14.6 | 28.9 | 47.1 | 65.6 | 93.2 | 131. | 174. | 227. |
| 41/2 | 15.4 | 30.3 | 49.2 | 68.6 | 97.4 | 136. | 181. | 236. |
| $43 / 4$ | 16.2 | 31.6 | 51.4 | 71.7 | 102. | 142. | 188. | 244. |
| 5 | 16.9 | 33.0 | 53.5 | 74.8 | 106. | 147. | 195. | 253. |
| 514 | 17.7 | 34.4 | 55.6 | 77.8 | 110. | 153. | 202. | 261. |
| $51 / 2$ | 18.4 | 35.7 | 57.7 | 80.9 | 114. | 158. | 209. | 270. |
| $53 / 4$ | 19.2 | 37.1 | 59.9 | 84.0 | 118. | 163. | 216. | 278. |
| 6 | 20.0 | 38.5 | 62.0 | 87.0 | 122. | 169. | 223. | 287. |
| 61/2 | 21.5 | 41.2 | 66.3 | 93.2 | 131. | 180. | 236. | 304. |
| 7 | 23.0 | 43.9 | 70.5 | 99.3 | 139. | 191. | 250. | 321. |
| $71 / 2$ | 24.6 | 46.6 | 74.8 | 106. | 147. | 202. | 264. | 338. |
| 8 | 26.1 | 49.4 | 79.0 | 112. | 156. | 213. | 278. | 355. |
| 81/2 | 27.6 | 52.1 | 83.3 | 118. | 164. | 223. | 292. | 372. |
| 9 | 29.2 | 54.8 | 87.6 | 124. | 173. | 234. | 306. | 389. |
| $91 / 2$ | 30.7 | 57.6 | 91.8 | 130. | 181. | 245. | 319. | 406. |
| 10 | 32.2 | 60.3 | 96.1 | 136. | 189. | 256. | 333. | 423. |
| 101/2 | 33.8 | 63.0 | 101. | 142. | 198. | 26%. | 347. | 440. |
| 11 | 35.3 | 65.7 | 105. | 148. | 206. | 278. | 361. | 457. |
| 111/2 | 36.8 | 68.5 | 109. | 155. | 214. | 289. | 375. | 474. |
| 12 | 38.4 | 71.2 | 113. | 161. | 223. | 300. | 388. | 491. |
| Heads | 1.8 | 5.7 | 10.9 | 13.4 | 22.2 | 38.0 | 57.0 | 82.0 |

WEIGHT IN POUNDS OF 100 BOLTS WITH SQUARE HEADS AND NUTS.

One cubic foot weighing 480 lbs .

品	Diameter of Bolt, Inches.								
\cdots	$1 / 4$	$\frac{5}{18}$	9/8	${ }^{7} 18$	1/2	5/8	$3 / 4$	7/8	1
11/6	4.0	6.8	$\underline{10.6}$	15.0	23.9	40.5	70.0		
$13 / 4$	4.4	7.3	11.3	16.1	25.1	42.7	73.1		
2	4.7	7.8	12.0	17.2	26.3	44.8	76.2		
214	5.1	8.4	12.6	18.2	27.7	47.0	79.3		
21	5.4	8.9	13.3	19.2	29.0	49.2	82.4	120.5	
234	5.8	9.5	14.0	20.2	30.4	51.4	85.5	124.7	
3	6.1	10.0	14.7	21.2	31.8	53.5	88.7	128.9	185.0
3112	6.8	11.1	16.0	23.2	34.7	57.9	95.0	137.4	196.0
4	7.5	12.2	17.4	25.2	37.5	62.3	101.2	145.8	207.0
41	8.2	13.2	18.7	27.2	40.2	66.7	107.5	159.2	218.0
	8.9	14.3	20.0	29.1	43.0	71.0	113.7	167.7	229.0
	9.6	15.4	21.4	31.2	45.7	75.4	120.0	176.1	240.0
	10.3	16.5	22.8	33.1	48.4	79.8	126.2	184.6	251.0
	11.0	17.6	24.1	35.1	51.2	84.1	132.5	193.0	262.0
	11.7	18.6	25.9	37.1	54.0	88.5	138.7	201.4	273.0
71/2	12.4	19.7	27.7	39.1	56.7	92.9	145.0	209.9	284.0
8	13.1	20.8	29.5	41.0	59.4	97.2	151.2	218.3	295.0
9			33.1	45.0	64.8	106.0	163.7	240.2	317.0
10		36.7	49.0	70.3	114.7	176.2	257.1	339.0
11		40.4	53.0	75.8	123.5	188.7	273.9	360.0
12		44.0	57.0	81.3	132.2	201.0	290.0	382.0
13					86.7	140.7	213.4	307.7	404.0
14					92.2	149.2	225.9	324.5	426.0
15					97.7	157.6	238.3	341.4	448.0
16					103.1	166.1	250.8	358.3	470.0
17					108.6	174.6	263.2	375.2	492.0
18	\ldots	114.1	183.1	275.6	392.0	514.0
19 20					119.5	191.5	288.1	408.9	536.0
20	\ldots		125.0	200.0	300.5	425.8	558.0
Per in. additional.	1.4	2.2	3.6	4.0	5.5	8.5	12.4	16.9	22.0

APPROXIMATE WEIGHT OF NUT'S AND BOLT HEADS IN POUNDS.

Diam. of Bolt in Inches	$1 / 4$	${ }^{5}$	3/8	${ }^{7}$	-1/2	5/8	$3 / 4$
Weight of Hexagon Nut and Head.....	. 017	. 042	. 057	. 109	. 128	. 267	. 43
Weight of Square Nut and Head.....	. 021	. 049	. 069	. 120	. 164	. 320	. 55
Diam. of Bolt in Inches	7/8	1	11/4	11/2	1344	2	21/2
Weight of Hexagon Nut and Head.....	$:^{73}$	1.10	2.14	3.78	5.6	8.75	17.0
Weight of Square Nut and Head 88	1.31	2.56	4.42	7.0	10.5	21.0

Sizes and Weights of Hot Pressed Hexagon Nuts.

The sizes are the usual manufacturers', not the Franklin Institute Standard. Both weights and sizes are for unfinished Nuts. One cubic foot weighing 480 lbs .

Size of Bolt.	$\begin{aligned} & \text { Weight } \\ & \text { of } 100 \\ & \text { Nuts. } \end{aligned}$	Rough Hole.	Thickness of Nut.	Short Diameter.	$\begin{aligned} & \text { Long } \\ & \text { Dia- } \\ & \text { meter. } \end{aligned}$	No. of Nuts in 100 lbs.
1/4	1.3	$\frac{7}{32}$	1/4	1/2	. 58	8000.
$\frac{5}{16}$	2.4	88	16	5/8	. 72	4170.
3/8	4.1	$\frac{11}{3}$	3/8	3/4	. 87	2410.
$\frac{7}{16}$	6.8	$\frac{18}{8 \frac{8}{8}}$	$\frac{7}{16}$	7/8	1.01	1460.
1/2	7.1	$\frac{7}{16}$	1/2	7/8	1.01	1410.
1/2	9.8	7	1/2	1	1.15	1020.
$\frac{9}{16}$	14.0	1/2	$\frac{9}{16}$	11/8	1.30	710.
5/8	14.7	$\frac{9}{16}$	5/8	11/8	1.30	680.
5/8	19.1	$\frac{9}{16}$	5/8	11/4	1.44	520.
5/8	22.9	$\frac{9}{16}$	$3 / 4$	11/4	1.44	440.
3/4	27.2	$\frac{21}{8 \frac{1}{8}}$	3/4	13/8	1.59	370.
3/4	39.	$\frac{31}{3}$	7/8	15/8	1.73	256.
7/8	44.	$\frac{35}{82}$	7/8	11/2	1.88	226.
7/8	50.	$\frac{25}{3}$	1	$15 / 8$	1.88	198.
1	57.	7/8	1	13/4	2.02	176.
1	64.	7/8	$11 / 8$	$13 / 4$	2.02	156.
11/8	96.	$\frac{1}{15}$	11/4	2	2.31	104.
11/4	134.	$1 \frac{1}{16}$	13/8	21/4	2.60	75.
$13 / 8$	180.	$1 \frac{8}{16}$	11/2	$21 / 2$	2.89	56.
11/2	235.	$1 \frac{5}{16}$	15/8	23/4	3.18	42.
15/8	300.	$1 \frac{7}{16}$	13/4	3	3.46	33.4
$13 / 4$	370.	$1 \frac{9}{16}$	17/8	31/4	3.75	26.7
17/8	460.	$1 \frac{11}{16}$	2	31/2	4.04	21.5
2	450.	$1 \frac{18}{18}$	2	$31 / 2$	4.04	22.4
21/8	560.	178	21/8	$33 / 4$	4.33	18.0
21/4	560.	$2{ }^{\circ}$	21/4	$33 / 4$	4.33	17.7
23/8	680.	21/8	23/8	4	4.62	14.7
$21 / 2$	810.	$21 / 4$	21/2	41/4	4.91	12.3
23/4	980.	$2 \frac{7}{16}$	$23 / 4$	41/2	5.20	10.2
3	1150.	$2 \frac{11}{1}$	3	$43 / 4$	5.48	8.7
31/4	1340.	$2 \frac{1}{1} \frac{5}{6}$	31/4	5	5.77	7.5
$31 / 2$	1580.	31/8	31/2	$51 / 4$	6.06	6.3

Sizes and Weights of Hot Pressed Square Nuts.
The sizes are the usual manufacturers', not the Franklin Institute Standard. Both weights and sizes are for unfinished Nuts. One cubic foot weighing 480 lbs.

Size of Bolt.	$\begin{gathered} \text { Weight } \\ \text { of } 100 \\ \text { Nuts. } \\ \hline \end{gathered}$	Rough Hole.	Thickness of Nut.	Side of Square	Diagonal	$\begin{aligned} & \text { No. of } \\ & \text { Nuts in } \\ & 100 \mathrm{lbs} \end{aligned}$
1/4	1.5	$\frac{7}{82}$	1/4	1/2	. 71	6800.
- ${ }^{16}$	2.9	$\frac{9}{82}$	- 16	5\%	. 88	3480.
3/8	4.9	$\frac{11}{82}$	$3 / 8$	$3 / 4$	1.06	2050.
$\frac{7}{16}$	7.7	$\frac{1}{8} \frac{3}{2}$	$\frac{7}{16}$	7/8	1.24	1290.
1/2	8.6	$\frac{7}{16}$	1/2	7/8	1.24	1170.
1/2	11.8	$\frac{7}{16}$	1/2	18	1.41	850.
${ }^{2}{ }^{2}$	16.7	1/2	$\frac{9}{16}$	11/8	1.59	600.
5/8	17.7	$\frac{9}{16}$	5/8	11/8	1.59	570.
5\%	22.8	16	5/8	11/4	1.77	440.
$3 / 4$	32.3	$\frac{21}{8} \frac{1}{2}$	$3 / 4$	13/8	1.94	310.
3/4	39.8	$\frac{8}{8} \frac{1}{2}$	3/4	11/2	2.12	251.
7/8	53.	$\frac{2}{8} \frac{5}{2}$	7/8	15/8	2.30	190.
7/8	63.	$\frac{2}{8} \frac{8}{5}$	$7 / 8$	$13 / 4$	2.47	159.
1	68.	7/8	1	13/4	2.47	146.
1	94.	7/8	1	2	2.83	106.
11/8	103.	$\frac{1}{1} \frac{15}{6}$	11/8	2	2.83	97.
11/8	137.	$\frac{1}{16}$	11/8	21/4	3.18	73.
11/4	145.	$1 \frac{1}{16}$	11/4	21/4	3.18	69.
11/4	186.	11.	11/4	21/2	3.54	54.
13/8	247.	$1 \frac{3}{16}$	13/8	23/4	3.89	41.
11/2	319.	$1 \frac{5}{16}$	11/2	3	4.24	31.3
15\%	400	$1{ }^{7} 6$	$15 / 8$	31/4	4.60	24.8
$13 / 4$	500.	196	$13 / 4$	31/2	4.95	19.9
17/8	620.	$1 \frac{11}{16}$	17/8	$33 / 4$	5.30	16.2
2	750.	$1 \frac{1}{1} \frac{8}{8}$	2	4	5.66	13.4
21/8	780.	$17 / 8$	21/8	4	5.66	12.8
21/4	930.	2	$21 / 4$	41/4	6.01	10.7
23/8	960.	21/8	23/8	41/4	6.01	10.4
$21 / 2$	1130.	$21 / 4$	$21 / 2$	41/2	6.36	8.9
23/4	1370.	$2{ }_{16}$	$23 / 4$	$43 / 4$	6.72	7.3
3	1610.	$21 \frac{1}{8}$	3	5	7.07	6.2
$31 / 4$	2110.	$2 \frac{1}{6}$	31/4	51/2	7.78	4.7
31/2	2750.	31/8	31/2	6^{1}	8.49	3.6

STANDARD GAUGES.

8	Thickness in Decimals of an Inch.						
$\begin{aligned} & \text { y } \\ & 4 \\ & 0 \\ & 0 \\ & z \end{aligned}$	Birmingham Stubb's Iron Wire	Browne \& Sharpe	United States	British Imperial	Washburn \& Moen Co.	Trenton Iron Co.	Stubs Steel Wire
$7{ }^{\circ}$ 50000	. 500 \cdot.	
6°			. 46875	. 464		
5°			. 43750	. 432		. 45
4°	. 454	. 46000	. 40625	. 400	. 3938	. 40
$3{ }^{\circ}$. 425	. 40964	. 37500	. 372	. 3625	. 36	...
$2{ }^{\circ}$. 380	. 36480	. 34375	. 348	. 3310	. 33
0	. 340	. 32486	. 31250	. 324	. 3065	. 305	\ldots
1	. 300	. 28930	. 28125	. 300	. 2830	. 285	. 227
2	. 284	. 25763	. 26562	. 276	. 2625	. 265	. 219
3	. 259	.22942	. 25000	. 252	. 2437	. 245	. 212
4	. 238	. 20431	. 23437	. 232	. 2253	. 225	. 207
5	. 220	. 18194	. 21875	. 212	. 2070	. 205	. 204
6	. 203	. 16202	. 20312	. 192	. 1920	. 190	. 201
7	. 180	. 14428	. 18750	. 176	. 1770	. 175	. 199
8	. 165	. 12849	. 17187	. 160	. 1620	. 160	. 197
9	. 148	. 11443	. 15625	. 144	. 1483	. 145	. 194
10	. 134	. 10189	. 14062	. 128	. 1350	. 130	. 191.
11	. 120	. 09074	. 12500	. 116	. 1205	. 1175	. 188
12	. 109	. 08081	. 10937	. 104	. 1055	. 1050	. 185
13	. 095	. 07196	. 09375	. 092	. 0915	. 0925	. 182
14	. 083	. 06408	. 07812	. 080	. 0800	. 0800	. 180
15	. 072	. 05707	. 07031	. 072	.0720	. 0700	. 178
16	. 065	. 05082	. 06250	. 064	.0625	. 0610	. 175
17	. 058	. 04526	. 05625	. 056	. 0540	. 0525	. 172
18	. 049	. 04030	. 05000	. 048	. 0475	. 0450	. 168
19	. 042	. 03589	. 04375	. 040	. 0410	. 0400	. 164
20	. 035	. 03196	. 03750	. 036	. 0348	. 0350	. 161
21	. 032	. 02846	. 03437	. 032	. 0317	. 0310	. 157
22	. 028	. 02535	. 03125	. 028	. 0286	. 0288	. 155
23	. 025	. 02257	. 02812	. 024	. 0258	. 0250	. 153
24	. 022	. 02010	. 02500	. 022	. 0230	.0225	. 151
25	. 020	. 01790	. 02187	. 020	. 0204	. 0200	. 148
26	. 018	. 01594	. 01875	. 018	. 0181	. 0180	. 146
27	. 016	. 01419	. 01719	. 0164	. 0173	. 0170	. 143
28	. 014	. 01264	. 01562	. 0148	. 0162	. 0160	. 139
29	. 013	. 01126	. 01406	. 0136	. 0150	. 0150	. 134
30	. 012	. 01002	. 01250	. 0124	. 0140	. 0140	. 127
31	. 010	. 00893	. 01094	. 0116	. 0132	. 0130	. 120
32	. 009	. 00795	. 01016	. 0108	. 0128	. 0120	. 115
33	. 008	. 00708	. 00938	. 0100	. 0118	. 0110	. 112
34	. 007	. 00630	. 00859	. 0092	. 0104	. 0100	. 110
35	. 005	. 00561	. 00781	. 0084	. 0095	. 0095	. 108
36	. 004	. 00500	. 00703	. 0076	. 0090	. 0090	. 106
37 00445	. 00664	. 0068 0085	. 103
38	.	. 00398	. 00625	. 0060 0080	. 101
39 40		. 00353	 0075	. 099
40	..	. 00314 0070	. 097

DECIMALS OF AN INCH AND FOOT FOR

EACH $\frac{1}{6}$.

DECIMALS OF A FOOT FOR EACH INCH.

In	Ft.	In.	Ft.								
1	.0833	3	.2500	5	.4167	ry	.5833	9	.7500	11	.9167
2	.1667	4	.3333	6	.500	8	.6667	10	.8333	12	1.0000

WEIGHTS OF SHEETS AND PLATES OF STEEL, WROUGH'T IRON, COPPER AND BRASS.

Birmingham Gauge.

No. of Gauge.	Thickness in Inches.	Weight per Square Foot.			
		Steel.	Iron.	Copper.	Brass.
0000	. 454	18.5232	18.16	20.5662	19.4312
000	. 425	17.3400	17.00	19.2525	18.1900
00	. 380	15.5040	15.20	17.2140	16.2640
0	. 340	13.8720	13.60	15.4020	14.5520
1	. 300	12.2400	12.00	13.5900	12.8400
2	. 284	$11.58 i 2$	11.36	12.8652	12.1552
3	. 259	10.5672	10.36	11.7327	11.0852
4	. 238	9.7104	9.52	10.7814	10.1864
5	. 220	8.9760	8.80	9.966	9.4160
6	. 203	8.2824	8.12	9.1959	8.6884
7	. 180	7.3440	7.20	8.1540	7.7040
8	. 165	6.7320	6.60	7.4745	7.0620
9	. 148	6.0384	5.92	6.7044	6.3344
10	. 134	5.4672	5.36	6.0702	5.7352
11	. 120	4.8960	4.80	5.4360	5.1360
12	. 109	4.4472	4.36	4.9377	4.6655
13	. 095	3.8760	3.80	4.3035	4.0660
14	. 083	3.3864	3.32	3.7599	8.5524
15	. 072	2.9376	2.88	3.2616	3.0816
16	. 065	2.6520	2.60	2.9445	2.7820
17	. 058	2.3664	2.32	2.6274	2.4824
18	. 049	1.9992	1.96	2.2197	2.0977
19	. 042	1.7136	1.68	1.9026	1.7976
20	. 035	1.4280	1.40	1.5855	1.4980
21	. 032	1.3056	1.28	1.4496	1.3696
22	. 028	1.1424	1.12	1.2684	1.1984
23	. 025	1.0200	1.00	1.1325	1.0700
24	.022	. 8976	. 88	. 9966	. 9416
25	. 020	. 8160	. 80	. 9060	. 8560
26	. 018	. 7344	. 72	. 8154	. 7704
27	. 016	. 6528	. 64	. 7248	. 6848
28	. 014	. 5712	. 56	. 6342	. 5992
29	. 013	. 5304	. 52	. 5889	. 5564
30	. 012	.4896	. 48	. 5436	. 5136
31	. 010	. 4080	. 40	. 4530	. 4280
32	. 009	. 3672	. 36	. 4077	. 3852
33	. 008	. 3264	. 32	. 3624	. 3424
34	. 007	. 2856	. 28	. 3171	. 2996
35	. 005	. 2040	. 20	. 2265	$.2140$
36	. 004	. 1632	.16	. 1812	$.1712$
Specific Gravities. Weight of a Cubic Ft.		7.85	7.70	8.72	8.24
		489.6	480.0	543.6	513.6
		0.2833	0.2778	0.3146	0.2972

WEIGHTS OF SHEETS AND PLATES OF STEEL, WROUGH'T IRON, COPPER AND BRASS.

American or Browne \& Sharpe Gauge.

No. of Gauge.	Thickness in Inches.	Weight per Square Foot.			
		Steel.	Iron.	Copper.	Brass.
0000	.460000	18.7680	18.4000	20.8380	19.6880
000	.409642	16.7134	16.3857	18.5556	17.5327
00	. 364796	14.8837	14.5918	16.5253	15.6133
0	. 324861	18.2543	12.9944	14.7162	13.9041
1	. 289297	11.8033	11.5719	13.1052	12.3819
2	. 257627	10.5112	10.3051	11.6705	11.0264
3	. 229423	9.3605	9.1769	10.3929	9.8193
4	. 204307	8.3357	8.1723	9.2551	8.7443
5	.181940	7.4232	7.2776	8.2419	7.7870
6	. 162023	6.6105	6.4809	7.3396	6.9346
7	. 144285	5.8868	5.7714	6.5361	6.1754
8	.128490	5.2424	5.1396	5.8206	5.4994
9	. 114423	4.6685	4.5769	5.1834	4.8973
10	. 101897	4.1574	4.0759	4.6159	4.3612
11	. 090742	3.7023	3.6297	4.1106	3.8838
12	. 080808	3.2970	3.2323	3.6606	3.4586
13	. 071962	2.9360	2.8785	3.2599	3.0800
14	. 064084	2.6146	2.5634	2.9030	2.7428
15	. 057068	2.3284	2.2827	2.5852	2.4425
16	. 050821	2.0735	2.0328	2.3022	2.1751
17	.04525\%	1.8465	1.8103	2.0501	1.9370
18	. 040303	1.6444	1.6121	1.8257	1.7250
19	. 035890	1.4643	1.4356	1.6258	1.5361
20	. 031961	1.3040	1.2784	1.4478	1.3679
21	. 028462	1.1612	1.1385	1.2893	1.2182
22	. 0235346	1.0341	1.0138	1.1482	1.0348
${ }_{24}^{23}$.022572	. 922094	. 902888	1.0225 .91058	.96608 .86032
25	. 017900	. 73032	. 71600	. 81087	.76612
26	. 015941	. 65039	. 63764	. 72213	. 68227
27	. 014195	. 57916	. 56780	. 64303	. 60755
28	. 012641	. 51575	. 50564	. 577264	. 54103
29	. 011257	. 45929	. 45028	. 50994	. 48180
30	. 010025	. 40902	. 40100	. 45413	. 42907
31	. 008928	. 36426	. 35712	. 40444	. 38212
32	. 007950	. 32436	. 31800	. 36014	. 34026
33	. 007080	. 28886	. 28320	. 32072	. 30302
84	. 006305	. 25724	. 25220	. 28562	. 26985
35	. 005615	. 22909	. 22460	. 25436	. 24032
36	. 005000	. 20400	. 20000	. 22650	. 21400

WEIGHT OF PLATE IRON IN POUNDS PER LINEAL FOOT.
(Based on 480 lbs . per Cubic Foot. For Steel add 2 per cent.)

	Thickness in Inches.							
	${ }_{18}^{18}$	1/8	$\frac{3}{16}$	1/4	${ }_{18}^{18}$	3/8	${ }^{\frac{7}{818}}$	1/2
12	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00
13	2.71	5.42	8.13	10.83	13.54	16.25	18.96	21.67
14	2.92	5.83	8.75	11.67	14.58	17.50	20.42	23.33
15	313	6.25	9.38	12.50	15.63	18.75	21.88	25.00
16	3.33	6.67	10.00	13.33	16.67	20.00	23.33	26.67
17	3.54	7.08	10.63	14.17	17.71	21.25	24.79	28.33
18	3.75	7.50	11.25	15.00	18.75	22.50	26.25	30.00
19	3.96	7.92	11.87	15.83	19.79	23.75	27.71	31.67
20	4.17	8.33	12.50	16.67	20.83	25.00	29.17	33.33
21	4.38	8.75	13.13	17.50	21.88	26.25	30.63	35.00
22	4.58	9.17	13.75	18.33	22.92	27.50	32.08	36.67
23	4.79	9.58	14.38	19.17	23.96	28.75	33.54	38.33
24	5.001	10.00	15.00	20.00	25.00	30.00	35.00	40.00
25	5.21	10.42	15.62	20.83	26.04	31.25	36.46	41.67
26	5.421	10.83	16.25	21.67	27.08	32.50	37.92	43.33
27	5.63	11.25	16.88	22.50	28.13	33.75	39.38	45.00
	5.831	11.67	17.50	23.33	29.17	35.00	40.83	46.67
29	6.041	12.08	18.13	24.17	30.21	36.25	42.29	48.33
30	6.25	12.50	18.75	25.00	31.25	37.50	43.75	50.00
32	6.67	13.33	20.00	26.67	33.33	40.00	46.67	53.33
34	7.081	14.17	21.25	28.33	35.42	42.50	49.58	56.67
36	7.501	15.00	22.50	30.00	37.50	45.00	52.50	60.00
38	7.921	15.83	23.75	31.67	39.59	47.50	55.42	63.33
		16.67	25.00	33.33	41.67	50.00	58.33	66.67
42	8.75	17.50	26.25	35.00	43.75	52.50	61.25	70.00
44	9.171	18.33	27.50	36.67	45.84	55.00	64.17	73.33
46	9.58	19.17	28.75	38.33	47.92	57.50	67.08	76.67
48	10.00	20.00	30.00	40.00	50.00	60.00	70.00	80.00
	10.42	20.83	31.25	41.67	52.08	62.50	72.91	83.33
52	10.83	21.67	32.50	43.33	54.17	65.00	75.83	86.67
	11.25	22.50	33.75	45.00	56.25	67.50	78.75	90.00
	11.67	23.33	35.00	46.67	58.33	70.00	81.66	93.33
58	12.08	24.17	36.25	48.33	60.42	72.50	84.58	96.67
60	12	25.00	37.50	50.00	62.50	75.00	87.50	100.00

WEIGHT OF PLATE IRON IN POUNDS PER LINEAL FOOT
(CONTINUED.)

	THICKNESS							
	${ }_{16}$	5/8	$\frac{11}{16}$	$3 / 4$	$\frac{18}{18}$	7/8	$\frac{1}{1} \frac{5}{6}$	1
12	22.50	25.00	27.50	30.00	32.50	35.00	37.50	40.00
13	24.38	27.08	29.79	32.50	35.21	37.92	40.63	43.33
14	26.25	29.17	32.08	35.00	37.92	40.83	43.75	46.67
15	28.13	31.25	34.38	37.50	40.63	43.75	46.88	50.00
16	30.00	33.33	36.67	40.00	43.33 .	46.67	50.00	53.33
17	31.88	35.42	38.96	42.50	46.05	49.59	53.13	56.67
18	33.75	37.50	41.25	45.00	48.75	52.50	56.25	60.00
19	35.67	39.58	43.54	47.50	51.45	55.41	59.37	63.33
20	37.50	41.67	45.83	50.00	54.17	58.33	62.50	66.67
21	39.38	43.75	48.13	52.50	56.88	61.25	65.63	70.00
22	41.25	45.83	50.42	55.00	59.58	64.17	68.75	73.33
23	43.13	47.92	52.71	57.50	62.30	67.09	71.88	76.67
24	45.00	50.00	55.00	60.00	65.00	70.00	75.00	80.00
25	46.88	52.08	57.29	62.50	67.70	72.91	78.13	83.33
26	48.75	54.17	59.58	65.00	70.42	75.83	81.25	86.67
27	50.63	56.25	61.88	67.50	73.13	78.75	84.38	90.00
28	52.50	58.33	64.17	70.00	75.84	81.67	87.50	93.33
29	54.38	60.42	66.46	72.50	78.55	84.59	90.63	96.67
30	56.25	62.50	68.75	75.00	81.25	87.50	93.75	100.0
32	60.00	66.67	73.33	80.00	86.67	93.33	100.0	106.7
34	63.75	70.83	77.91	85.00	92.08	99.17	106.3	113.3
36	67.50	75.00	82.50	90.00	97.50	105.0	112.5	120.0
38	71.25	79.17	87.09	95.00	102.9	110.8	118.8	126.7
40	75.00	83.33	91.67	100.0	108.3	116.7	125.0	133.3
42	78.75	87.50	96.25	105.0	113.7	122.5	131.3	140.0
44	82.50	91.67	100.8	110.0	119.2	128.3	137.5	146.7
46	86.25	95.83	105.4	115.0	124.6	134.2	143.8	153.3
48	90.00	100.0	110.0	120.0	130.0	140.0	150.0	160.0
50	93.75	104.2	114.6	125.0	135.4	145.8	156.3	166.7
52	97.50	108.3	119.2	130.0	140.8	151.7	162.5	173.3
54	101.3	112.5	123.8	135.0	146.3	157.5	168.8	180.0
56	105.0	116.7	128.3	140.0	151.7	163.3	175.0	186.7
58	108.8	120.8	132.9	145.0	157.1	169.2	181.3	193.3
60	112.5	125.0	137.5	150.0	162.5	175.0	187.5	200.0

Angle of thread $=60^{\circ}$.

UNITED STATES, OR SELLERS SYSTEM OF SCREW-HEADS.-(continued.)

-sə૫วuI -bS U! peait jo 700 y 7e eว.IV	
-səyวuI -bS U! кроя 7 log jo еә. V	
? јо ЧІР! M	an wnon
- YouI دәđ speәiч,	- 00 ค

STANDARD SIZES OF SCREW-THREADS FOR BOLTS AND TAPS.

(CHAS. A BAUER.)

1	2	3	4	5	6	7	8	9	10
A	n	D	d	h		$D^{\prime}-D$	D^{\prime}	$d^{\prime \prime}$	H
$\begin{aligned} & 1 / 4 \\ & 5 \\ & \frac{16}{6} \\ & 78 \\ & 76 \\ & 58 \\ & \hline 8 \\ & 0 / 4 \\ & 7 / 8 \end{aligned}$		Inches							
	20	. 2608	. 1855	. 0379	. 0062	006	2668	1915	2024
	18	. 3245	. 2403	421	. 0070	. 006	. 3305	2	2589
	16	. 3885	. 2938	0474	. 0078	. 006	3945	2998	3139
	14	. 5166	.34000	. 0548	. 00096	. 0006	. 4590	4060	3670
	12	. 5805	.4543	. 0631	. 0104	. 007	. 5875	. 4613	. 4802
	11	. 6447	. 5069	. 0689	. 0114	. 007	. 6517	. 5139	. 5346
	10	. 7717	. 6201	. 0758	. 0125	. 007	. 7787	. 6271	. 6499
	9	. 8991	. 7307	. 0842	. 0139	. 007	. 9061	. 7377	. 7630
	8	1.0271	. 8376	. 0947	. 0156	. 007	1.0311	. 8446	. 8731
$11 / 8$	7	1.1559	. 9394	. 1083	. 0179	. 007	1.1629	. 9464	. 9789
11/4	7	1.2809	1.0644	. 1083	. 0179	. 007	1.2879	1.0714	1.1039

$A=$ nominal diameter of bolt.
$D=$ actual diameter of bolt.
$d=$ diameter of bolt at bottom of thread.
$n=$ number of threads per inch.
$f=$ flat of bottom of thread.
$h=$ depth of thread.
D^{\prime} and $d^{\prime}=$ diameters of tap.
$H=$ diameter of hole in nut before tapping.

$$
\begin{aligned}
& D=A+\frac{.2165}{n} \\
& d=A-\frac{1.29904}{n} \\
& h=\frac{.7577}{n}=\frac{D-d}{2} \\
& f=\frac{.125}{n} \\
& H=D^{\prime}-\frac{1 \cdot 288}{n}=D^{\prime}-.85(2 h)
\end{aligned}
$$

Efficiency of Screw-bolts.-Mr. Lewis gives the following approximate formula for ordinary screw-bolts (V threads, with collars): $p=$ pitch of screw, $d=$ outside diameter of
screw，$F=$ force applied at circumference to lift a unit of weight， $\mathrm{E}=$＝efficiency of screw．For an average case，in which the coefficient of friction may be assumed at 0.15 ，

$$
F=\frac{p+d}{3 d}, \quad E=\frac{p}{p+d}
$$

For bolts of the dimensions given above， $1 / 2$－inch pitch， and outside diameters $11 / 2,21 / 2,31 / 2$ ，and $41 / 2$ in．，the efficiencies according to this formula would be，respec－ tively， $0.25,0.167,0.125$ ，and 0.10 ．

James McBride（Trans．A．S．M．E．，xii．781）describes an experiment with an ordinary 2 －in．screw－bolt，with a V thread， $41 / 2$ threads per inch，raising a weight of 7500 lbs ．， the force being applied by turning the nut．Of the power applied 89.8% was absorbed by friction of the nut on its supporting washer and of the threads of the bolt in the nut．The nut was not faced，and had the flat side to the washer．

STRENGTH OF WROUGHT IRON BOLTS．
（COMPUTED BY A．F．NAGLE．）

	Number of Threads．			Stress upon Bolt upon Basis of working strength of					
				苟	岗	殸	بِّ	茳	
					．	．	फ่	－	
						\&		ర్రి 耳్ర	
				s．	lbs．	lbs．	lbs．	lbs．	lbs．
1／3	13	． 38	． 12	350	460	580	810	1160	5800
${ }^{16}$	12	． 44	． 15	450	600	750	1050	1500	7500
	11	． 49	． 19	560	750	930	1310	1870	9000
	10	． 60	． 28	750	1130	1410	1980	2830	14000
	9 8	． 81	． 39	1180	1570	1970	2760	3940	19000
	8	． 91	． 62	1550	2070	2600	3630	5180	25000
11	7	1.04	． 65	1950	2600	3250	4560	6510	30000
$13 / 8$	6	1.12	1.00	3000	4000	5000	7000	10000	6000
11.2	6	1.25	1.23	3680	4910	6140	8600	12280	6000
18	51／2	1.35	1.44	4300	5740	7180	10000	14360	65000
134	5	1.45	1.65	4950	6600	8250	11560	16510	74000
17／8	5	1.57	1.95	5840	7800	9800	13640	19500	85000
${ }_{21}$	41／3	1.66	2.18	6540	8720	10900	15æ60	21800	95000
$21 / 4$	$41 / 2$	1.92	2.88	8650	11530	14400	20180	28800	125000
219	4	${ }_{2}^{2.12}$	3.55	10640	14200	17730	24830	35500	150000
$23 / 4$	316	$\stackrel{2.37}{2.57}$	4.43	13290	17770	22150	31000	44300	186000
31／2	$31 / 4$ $31 / 4$	3.57	5.20 7.25	15580	20770	26000	36360	52000	213000
	8	3.50	9.62	28860	38500	48100	67350	96200	290000 385000

When the greatest load that has to be sustained by a bolt is known, and the working strength per sq. in. of the material constituting it is determined, look in the proper column for the given load. Should the load sought be not found, then take the load next larger as found in the column, and opposite to it in the first column read the required size of bolt.

Effect of Initial Strain in Bolts.-Suppose that bolts are used to connect two parts of a machine and that they are screwed up tightly before the effective load comes on the connected parts. Let $P_{1}=$ the initial tension on a bolt due to screwing up, and $P_{2}=$ the load afterwards added. The greatest load may vary but little from P_{1} or P_{2}, according as the former or the latter is greater, or it may approach the value $P_{1}+P_{2}$, depending upon the relative rigidity of the bolts and of the parts connected. Where rigid flanges are bolted together, metal to metal, it is probable that the extension of the bolts with any additional tension relieves the initial tension, and that the total tension is P_{1} or P_{2}, but in cases where elastic packing, as india rubber, is interposed, the extension of the bolts may very little affect the initial tension, and the total strain may be nearly $P_{1}+P_{2}$. Since the latter assumption is more unfavorable to the resistance of the bolt, this contingency should usually be provided for. (See Unwin, "Elements of Machine Design" for demonstration.)

WEIGHTS
AND
MEASURES.

WEIGHTS AND MEASURES.

AVOIRDUPOIS OR COMMERCIAL WEIGHT.

UNITED STATES AND BRITISH.

Grains.	Ounces.	Pounds.	Hundredweight.	Gross Tons.
${ }_{437.5}^{1 .}$	1.002286	0.000143 0.0625	0.00000128 0.0005588	0.0000000176 0.0002790
7000.	16.		${ }_{0}^{0.00059884}$	${ }_{0}^{0.00004464}$
784000.	1792.	112.	1.	0.05
5680000.	35840 .	2240.	20.	1.

1 pound avoirdupois $=1.215278$ pounds troy.
1 net ton $=2000$ pounds $=0.892857$ gross tons.
1 pound troy $=0.82286$ pounds avoirdupois.

LINEAR MEASURE.

UNITED STATES AND BRITISH.

Inches.	Feet.	Yards.	Rods.	Miles.
12.	1.08333	0.02778 0.33333	0.0050505 0.0606061	0.00001578 0.00018939
36.			0.1818182	0.00056818
198. 63360.	16.5 5280.	${ }_{1760.5}$	1. 320.	0.003125 1.

GUNTER'S CHAIN MEASURE.

USED IN SURVEYING.

1 link $=7.92$ inches $=0.01$ chain $=0.000125 \mathrm{mile}$.
1 chain $=100$ links $=66$ feet $=4$ rods $=0.0125$ mile
1 mile $=80$ chains $=8000$ links.

SQUARE OR SURFACE MEASURE.

UNITED STATES AND BRITISH.

Square Inches.	Square Feet.	Square Yards	Square Rods.	Acres.	Square Miles.
1	0.006944	0.0007716			
144 1296		${ }^{0.111111}$		0.0002066	
39204	${ }_{272.25}^{9}$	30.25		0.00625	0.000009\% ${ }^{\text {a }}$
6272640	$425360 .$	$\begin{gathered} 4840 . \\ 309760 \end{gathered}$	$\begin{array}{r} 160 . \\ 102400 \end{array}$	1. 640	0.0015625

1 acre $=10$ square chains.

CUBIC MEASURE.

1728 cubic inches $=1$ cubic foot,
27 cubic feet $=1$ cubic yard $=46656$ cubic inches, 1 cord wood $=4 \mathrm{ft} . \times 4 \mathrm{ft} . \times 8 \mathrm{ft} .=128$ cubic feet, 1 perch of masonry $=16.5 \mathrm{ft} . \times 1.5 \mathrm{ft} . \times 1 \mathrm{ft} .=24.75$ cubic feet, but is generally assumed to be 25 cubic feet.

DRY MEASURE.

UNITED STATES ONLY.

Struck Bush.	Pecks.	Quarts.	Pints.	Gallons.	Cubic Inch.
1	4	32.	64	8.	2150.4
	1	8.	16	2.	537.6
		1.	2	0.25	67.2
		0.5	1	0.125	33.6
		4.	8	1.	268.8

The United States standard unit for dry measure is the old English Winchester bushel, which contains 2,150.42 cubic inches, or 1.2445 cubic feet.

The heaped bushel, the cone of which is 6 inches above the brim of the measure, contains $2,747.7$ cubic inches.

In New York a bushel contains 2,218.2 cubic inches, or 1.2837 cubic feet, which is the same as the Imperial bushel of England. 33 English or Imperial bushels are equal to 34.04 Winchester or United States bushels.

LIQUID MEASURE.

UNITED STATES ONLY.

Cubic Inch.	Pints.	Quarts.	Gallons.	Barrels.	Hogshead.
28.875	1.	0.5	0.125	0.003968	
57.75	2.	1.	0.25	0.007937	
231.	8.	4.	1.	0.031746	
7276.5	252.	126.	31.5		0.5
14553.0	504.	252.	63.	2.	1.

The British Imperial gallon $=1.20032$ U. S. gallons.
The United States standard unit for liquid measure is the gallon $=231 \mathrm{cu}$. in. $=8.33888$ pounds, avoirdupois, of distilled water at 62° Fahr.

The English standard is the Imperial gallon $=277.2738$ cu . in. $=10$ pounds, avoirdupois, of distilled water at 62° Fahr.

NAUTICAL MEASURE.

A knot or nautical mile $=1.1527$ statute miles $=6086$. feet $=$ length of a minute of longitude of the earth at the equator, at the level of sea, as determined by U.S. Coast Survey.

3 knots = 1 league.

SHIPPING MEASURE.

1 Register ton $=100$ cubic feet.
1 U . S. Shipping ton $=40$ cubic feet.
1 British Shipping ton $=42$ cubic feet.

MEASURE OF WORK AND POWER.

A unit of work = one foot pound, or a pressure of one pound exerted through a space of one foot.

A British Thermal unit $=778$ foot pounds.

> 33,000 foot pounds per minute, 550 foot pounds per second, 42.42 heat units per minute, 0.707 heat units per second, 746 watts,
> 0.746 kilowatt.

'THE METRIC SYSTEM OF WEIGH'TS AND MEASURES.

In the Metric System, the Meter is the base of all the weights and measures which it employs.

The Meter is the primary unit of length and was intended to be one-ten millionth part of the distance, measured on a meridian of the earth, from the equator to the pole, and equals about 39.37 inches.

Upon the Meter are based the following primary units; the Square Meter the Are, the Cubic Meter or Stere the Liter, and the Gram.

The Square Meter or Centare is the unit of measure for small surfaces.

The Are is the unit of land measure ; this is a square whose side is ten meters in length, and which contains one hundred square meters or centares.

The Cubic Meter, or Stere, is the unit of volume; this is a cube whose edge is one meter in length.

The Liter is the unit of capacity; this is the capacity of a cube whose edge is one tenth of a meter, that is, one decimeter in length.

The Gram is the unit of weight ; this is the weight of distilled water at 4° centigrade, contained in a cube whose edge is the one hundredth part of a meter.

From these primary units the higher and lower orders of units are derived decimally as follows:

Scheme of the Weights and Measures of the Metric System.

Ratios	Lengths	Surfaces	Volumes	Weights
1,000,000.				Millier, or Tonneau
$100,000$. 10,000				
10,000.	Myr'iameter		Kii'oliter	Myr'iagram ${ }^{\text {Kil'ogram, or Kilo }}$
100.	Hec'tometer	Hect'are	Hec'toliter	Hec'togram
10.	Dek'ameter		Dek'aliter	Dek'agram
1.1	Meter	Are	Li'ter	Gram
${ }_{0.01}^{0.1}$	Cen'timeter	Cen'tare	Dec' ${ }^{\text {ditiliter }}$	Dec'igram
0.001	Mil'limeter		Mil'liliter	Mill'ligram

It will be seen, from this table, that ten millimeters equal one centimeter, ten centimeters equal one decimeter, and so on.

Multiples and sub-multiples of the units, meter, liter and gram are expressed by the prefixes :

$$
\begin{array}{l|l}
\text { Deka }=10 & \text { Deci }=0.1 \\
\text { Hecto }=100 & \text { Centi }=0.01 \\
\text { Kilo }=1000 & \text { Milli }=0.001
\end{array}
$$

ABBREVIATIONS COMMONLY IN USE.

mm, millimeter,
cm , centimeter,
dm, decimeter,
m , meter,
km, kilometer, mm^{2}, square millimeter, cm^{2}, " centimeter, dm ${ }^{2}$, " decimeter,
m^{2}, square meter, km^{2} " kilometer, mm^{8}, cubic millimeter, $\left.\mathrm{cm}^{8}\right\}$ " centimeter, dm^{3}, " decimeter, m^{3}, " meter,
a , are ; ha, hectare ; cl, centiliter; 1 , liter ; hl , hectoliter ; s, stere ; mg, milligram ; cg, centigram; g, gram; kg , kilo, or kilogram ; t , tonneau, or metric ton.

MET'RIC AND U. S. CONVERSION TABLE.

$$
\begin{aligned}
& \text { MEASURES OF LENGTH. } \\
& \text { METRIC Tо U. S. } \\
& 1 \text { millimeter }=0.03937 \text { inch. } \\
& 1 \text { centimeter }=0.3937 \\
& 1 \text { meter }=39.37 \text { inches. } \\
& 1 \text { " }=3.2808 \text { feet. } \\
& 1 \text { kilometer }=0.6214 \text { mile. } \\
& \text { U. S. то METRIC. } \\
& 1 \text { inch }=25.4 \text { millimeters. } \\
& 1 \text { " }=2.54 \text { centimeters. } \\
& 1 \text { " }=0.254 \text { meter. } \\
& 1 \text { foot }=0.3048 \text { " } \\
& 1 \text { mile }=1.609 \text { kilometers. }
\end{aligned}
$$

MEASURES OF SURFACE.

Metric to U.S.
1 sq. millimeter $=0.00155$ sq. inch.
1 " centimeter $=0.155$ " "
1 " meter $=10.764$ " feet.
1 " " $=1.196$ " yards.

1 hectare $=2.471$ acres.
1 " $=0.00386$ sq. mile.
1 sq. kilometer $=0.3861$ " '
U. S. to Metric.

1 sq. inch $=645.14$ sq. millimeters.
1 " " $=6.452$ " centimeters.

1 "foot $=0.0929$ " meter.
1 " yard = 0.8361 " "
$1 \quad$ acre $=0.4047$ hectares.
1 sq. mile $=259.00 \quad$ "
$1 " "=2.59$ sq. kilometers.

MEASURES OF VOLUME AND CAPACITY.

Metric to U. S.

| 1 cu. centimeter | $=0.061 \mathrm{cu}$ inch. | |
| :--- | :--- | :--- | :--- |
| 1 | " meter | $=35.316$ "، feet. |
| 1 | " | $=1.308$ " yards. | 1 liter $=1 \mathrm{cu}$. decimeter $=61.023 \mathrm{cu}$. inch.

LIQUID MEASURE.

1 liter	$=1.0567$	quart.
1	"	0.2642
1 gallon.		

DRY MEASURE.
1 liter $=0.908$ quart.
1 hectoliter $=2.8375$ bushels
U. S. to Metric.

1 cu. inch $=16.39 \mathrm{cu}$. centimeters.
1 " foot $=0.0283$ " meter.
1 " yard = 0.7645 " "
1 " foot $=28.32 \quad$ liters.
LIQUID MEASURE.
1 quart $=0.9463$ liter.
1 gallon $=3.7854$ liters.
1 " $=0.0038 \mathrm{cu}$. meter.

DRY MEASURE.

1 quart $=1.1013$ litres.
1 bushel $=0.3524$ hectoliter.

WEIGHTS.

Metric to U. S.
1 milligram $=0.0154$ grain.
1 gram $=15.432$ grains.
1 kilogram = 2.2046 lbs . (avoir.)
metric ton $=1.1023$ net tons.
1 " " $=0.9842$ gross ton.
U. S. to Metric.

1 grain	$=64.80$ milligrams.	
1 ""	$=0.0648$ gram.	
1 lb. (avoir.)	$=0.4536$	kilogram.
1 net ton	$=0.9076$ metric ton.	
1 gross ton	$=1.0161 \quad "$ tons.	

COMPOUND UNITS.

Metric to United States.

1 kilogram per meter $\quad=0.6720 \mathrm{lbs}$. per foot.
1 kilogram per sq. centimeter $=14.223 \mathrm{lbs}$. per sq. inch.
1 kilogram per sq. meter $\quad=0.2048 \mathrm{lbs}$. per sq. foot.
1 kilogram per cubic meter $=0.0624 \mathrm{lbs}$. per cubic ft .
1 kilogram-meter $\quad=7.233$ foot pounds.
1 chevel vapeur (metric H. P.) $=0.986$ horse-power.
1 kilo. watt
$=1.340$
1 kilo. per chevel
$=2.235 \mathrm{lbs}$. per H. P.

United States to Metric.

1 lb . per foot $\quad=1.4882$ kilograms per meter.
1 lb . per sq. inch $=0.0703$ kilo. per sq. centimeter.
1 lb . per sq. foot $=4.8825$ kilograms per sq. meter.
1 lb . per cubic foot $=16.0192$ kilo. per cubic meter.
1 foot pound $\quad=0.1383$ kilogram-meter,
1 horse-power $=1.014$ chevel vapeur (metric H. P.)
1 " " $=0.746$ kilo watt.
1 lb . per horse-power $=0.447$ kilos per chevel.

HEAT INTENSITY.

Temp. Centigrade $=\left(\right.$ temp. Fahr. $\left.-32^{\circ}\right) \frac{5}{9}$. Temp. Fahrenheit $=\left(\right.$ temp. C. $\left.\times \frac{9}{5}\right)+32^{\circ}$.

HEAT QUANTITY.

A kilogram calorie $\quad=3.968$ British thermal units.
A pound calorie $=1.8$ " " "
A British thernal unit $=0.252$ kilogram calorie
A British thermal unit $=0.555$ pound calorie.

MECHANICAL, ELECTRICAL AND HEAT EQUIVALENTS.
(H. W. LEONARD.)

Unit.	Equivalent Value in Other Units.
$\underset{\text { K. }}{\stackrel{1}{\mathrm{~W}} \mathrm{~W} .}$	1,000 watt hours. 1.34 horse-power hours. $2,654,200 \mathrm{ft}$.-lbs. $3,600,000$ joules. 3,412 heat units. 367,000 kilogram metres. 0.235 lb . carbon oxidized with perfect efficiency. 3.53 lbs . water evaporated from and at $212^{\circ} \mathrm{F}$. 22.75 lbs . of water raised from 62° to $212^{\circ} \mathrm{F}$.
$\stackrel{1}{\text { H. P. }}=$	0.746 K. W. hours. $1,980,000 \mathrm{ft}$.-lbs. 2,545 heat-units. $273,740 \mathrm{k} . \mathrm{g} . \mathrm{m}$. 0.175 lb . carbon oxidized with perfect efficiency. 2.64 lbs . water evaporated from and at $212^{\circ} \mathrm{F}$. 17.0 1bs. water raised from $62^{\circ} \mathrm{F}$. to $212^{\circ} \mathrm{F}$.
$\stackrel{1}{\text { Kilowatt }}=$	1,000 watts. 1.34 horse-power. $2,654,200 \mathrm{ft}$.-lbs. per hour. $44,240 \mathrm{ft}$.-1bs. per minute. 737.3 ft .-1bs. per second. 3,412 heat-units per hour. 56.9 heat-units per minute. 0.948 heat-unit per second. 0.2275 lb . carbon oxidized per hour. 3.53 lbs . water evaporated per hour from and at $212^{\circ} \mathrm{F}$.

MECHANICAL, ELECTRICAL AND HEAT EQUIVALENTS.-(CONTINUED).

Unit.	Equivalent Value in Other Units
H. $\stackrel{1}{\mathrm{P}} .=$	746 watts. 0.746 K . W. $33,000 \mathrm{ft}$. 1 lbs . per minute. 550 ft .-1bs. per second. 2,545 heat-units per hour. 42.4 heat-units per minute. 0.707 heat units per second. 0.175 lbs . carbon oxidized per hour. 2.64 lbs. water evaporated per hour from and at $212^{\circ} \mathrm{F}$.
$\stackrel{1}{\text { Joule }}=$	$\begin{aligned} & 1 \text { watt second. } \\ & 0.000000278 \mathrm{~K} . \mathrm{W} . \text { hour. } \\ & 0.102 \mathrm{k} . \mathrm{g} . \mathrm{m} . \\ & 0.0009477 \text { heat-units. } \\ & 0.7373 \mathrm{ft} .-\mathrm{lb} \text {. } \end{aligned}$
$\begin{gathered} 1 \\ \mathrm{Ft.-1b} . \end{gathered}$	1.356 joules. 0.1383 k . g. m. 0.000000377 K . W. hours. 0.001285 heat-units. 0.0000005 H . P. hour.
$\stackrel{1}{\text { Watt }}=$	1 joule per second. 0.00134 H. P. 3.412 heat-units per hour. 0.7373 ft .-lb. per second. 0.0035 lb . water evaporated per hour. 44.24 ft .-lbs. per minute.
1 Watt per sq. in. $=$	8.19 heat-units per square foot per minute. 6371 ft .-lbs. per square foot per minute. 0.193 H. P. per square foot.

MECHANICAL, ELECTRICAL AND HEAT EQUIVALENTS.-(CONTINUED).

Unit.	Equivalent Value in Other Units.
1 Heat unit. $=$	1,055 watt seconds. $778 \mathrm{ft} .-1 \mathrm{bs}$. 107.6 kilogram metres. 0.000293 K . W. hour. 0.000393 H. P. hour. 0.0000688 lb . carbon oxidized. 0.001036 lb . water evaporated from and at $212^{\circ} \mathrm{F}$.
1 Heatunit. per Sq.ft. per $\min .=$	0.122 watt per square inch. 0.0176 K . W. per square foot. 0.0236 H . P. per square foot.
1 Kiloggram Metre $=$	$7.233 \mathrm{ft} .-\mathrm{lbs}$. 0.00000365 H. P. hour. $0.00000272 \mathrm{~K} . \mathrm{W}$. hour. 0.0093 heat-units.
1 lb. Carbon Oxidized with perfect Efficiency	14,544 heat-units. 1.11 lb . Anthracite coal oxidized. 2.5 lbs . dry wood oxidized. 21 cubic feet illuminating-gas. $4.26 \mathrm{~K} . \mathrm{W}$. hours. 5.71 H. P. hours. $11,315,000 \mathrm{ft} .-1 \mathrm{bs}$. 15 lbs . of water evaporated from and at $212^{\circ} \mathrm{F}$.
1 lb . Water Evaported from and at $212^{\circ} \mathrm{F}$. $=$	0.283 K. W. hour. 0.379 H. P. hour. 965.7 heat-units. $103,900 \mathrm{k} . \mathrm{g} . \mathrm{m}$. $1,019,000$ joules. 751,300 ft. -1 bs. 0.0664 lb. of carbon oxidized.

MENSURATION,

TRIGONOMETRY

AND
MATHEMATICAL TABLES.

MENSURATION, TRIGONOMETRY AND MATHEMATICAL TABLES.

MENSURATION.

Mensuration of Surfaces.

Area of any parallelogram $=$ base \times perpendicular height.
" " " triangle \ldots. . $=$ base $\times 1 / 2$ perpendicular height.
" ، " circle $\ldots .$. . $=(\text { diameter })^{2} \times(0.7854$, or approx. 11/14.)
" " sector of circle.... $=\operatorname{arc} \times 1 / 2$ radius.
" " segment of circle $=$ area of sector of equal radius and arc less area of triangle.
" " parabola.......... $=$ base $\times 2 / 3$ height.
" " ellipse...... $=$ longest diameter \times shortest diameter $\times 0.7854$.
" " cycloid.......... $=$ area of generating circle $\times 3$.
" " any regular polygon $=$ sum of its sides X perpendicular from its center to one of its sides $\div 2$.
Surface of cylinder........ $=$ area of both ends + (length \times circumference.) " " cone.......... $=$ area of base + (circumference of base $\times 1 / 2$ slant height.)
" " sphere. $=(\text { diameter })^{2} \times(3.1416$, or approx. 22/7.)
" " frustum........ $=$ (sum of girt at both ends $\times 1 / 2$ slant height) + area of both ends.

Surface of cylindrical ring $=$ thickness of ring added to the inner diameter X by the thickness $\times 9.8698$. " " segment $=$ height of segment \times by whole circumference of sphere of which it is a part.

AREA OF AN IRREGULAR PLANE SURFACE.

Divide the surface into any number of parallel strips of equal widths, "d." Take the sum of the middle ordinates h_{1}, h_{2}, etc., to h_{n}, inclusive ; then the sum of these middle ordinates, multiplied by " d " will give the area required.

The result, of course, is only approximate, the closeness of the approximation depending upon the number of strips into which the surface is divided.

Any degree of accuracy desired may be attained by making the number of strips sufficiently numerous. In practice it is usually best to determine the area of an irregular figure by the use of a planimeter, an instrument especially designed for measuring areas of plane figures.

REGULAR POLYGONS.

1. To find the area of any regular polygon. Square one of its sides, and multiply this square by the corresponding number in the third column of the following table.
2. Having a side of a regular polygon, to find the radius of a circumscribing circle. Multiply the side by the corresponding number in the fourth column.
3. Having the radius of a circumscribing circle, to find the side of the inscribed regular polygon. Multiply the radius by the corresponding number in the fifth column.

TABLE OF REGULAR POLYGONS.

$\begin{aligned} & \dot{\ddot{0}} \\ & \dot{0} \\ & \dot{i n} \\ & \dot{0} \\ & \dot{8} \\ & \ddot{z} \end{aligned}$	Name of Polygon.	$\underset{S^{2} X}{\text { Area }}=$	$\begin{aligned} & \text { Radius } \\ & =S \times \end{aligned}$	$\begin{aligned} & \text { Side }= \\ & \mathrm{R} \times \end{aligned}$	Angle contained between two sides
3	$\left\{\begin{array}{c}\text { Equilateral } \\ \text { triangle }\end{array}\right\}$. 433	. 5774	1.732	60°
4	Square	1.	. 7071	1.4142	90°
5	Pentagon	1.7205	. 8507	1.1756	108°
6	Hexagon	2.5891			120°
7	Heptagon	3.6339	1.1524	. 8678	128.57°
8	Octagon	4.8284	1.3066	. 7654	135°
9	Nonagon	6.1818	1.4619	. 684	140°
10	Decagon	7.6942	1.618	. 618	144°
11	Undecagon	9.3656	1.7747	. 5635	147.27°
12	Dodecagon	11.1962	1.9319	. 5176	150°

In the above table $S=$ side of polygon and $R=$ radius of circumscribing circle.

PROPERTIES OF THE CIRCLE.

Diameter $\times 3.1416=$ circumference.
" $\times 0.8862=$ side of an equivalent square.
" $\quad \times 0.7071=$ side of an inscribed square.
$(\text { Diameter })^{2} \times 0.7854=$ area of circle.
Radius $\quad \times 6.2832=$ circumference.
Circumference $\div 3.1416=$ diameter.
The circle contains a greater area than any plane figure, bounded by an equal perimeter, or outline.

The areas of circles are to each other as the squares of their diameter, radii or circumferences. Thus, a circle whose diameter is double that of another has four times the area of the other.

VOLUMES OF SOLIDS.

Vol. of Cylinder $=$ area of one end \times length.
" " Sphere. $=$ cube of diameter $\times 0.5236$.
" " Segment of sphere $=$ (cube of the height + three times the square of radius of base \times height) \times 0.5236 .
" " Cone or pyramid... $=$ area of base $\times 1 / 3$ perpendicular height.
" " Frustum of cone... $=$ (product of diameter of both ends + sum of their squares) \times perpendicular height $\times 0.2618$.
" " Frustum of pyramid $=$ (sum of the areas of the two ends + square root of their product) \times by $1 / 3$ of the perpendicular height.
" "Wedge........... $=$ area of base $\times 1 / 2$ perpendicular height.
" "Frustum of wedge. . $=1 / 2$ perpendicular height \times sum of the areas of the two ends.
" "Ring $=$ (thickness + inner diameter) \times square of the thickness $\times 2.4674$.

TRIGONOMETRICAL FORMULAE.

TRIGONOMETRICAL EQUIVALENTS.

FUNCTIONS OF SUM AND DIFFERENCE OF TWO ANGLES.

$\operatorname{Sin}(x+y)=\sin x \cos y+\cos x \sin y$
$\operatorname{Sin}(x-y)=\sin x \cos y-\cos x \sin y$
$\operatorname{Cos}(x+y)=\cos x \cos y-\sin x \sin y$
$\operatorname{Cos}(x-y)=\cos x \cos y+\sin x \sin y$
$\operatorname{Tan}(x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}$
$\operatorname{Tan}(x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}$
$\operatorname{Cot}(x+y)=\frac{\cot x \cot y-1}{\cot x+\cot y}$
$\operatorname{Cot}(x-y)=\frac{\cot x \cot y+1}{\cot y-\cot x}$

FUNCTIONS OF HALF AN ANGLE.

$$
\begin{aligned}
& \operatorname{Sin} 1 / 2 z= \pm \sqrt{\frac{1-\cos z}{2}} \\
& \operatorname{Tan} 1 / 2 z= \pm \sqrt{\frac{1-\cos z}{1+\cos z}} \\
& \operatorname{Cos} 1 / 2 z= \pm \sqrt{\frac{1-\cos z}{2}} \\
& \operatorname{Cot} 1 / 2 z= \pm \sqrt{\frac{1+\cos z}{1-\cos z}}
\end{aligned}
$$

SUMS AND DIFFERENCES OF FUNCTIONS.

$\operatorname{Sin}(x+y)+\sin (x-y)=2 \sin x \cos y$
$\operatorname{Sin}(x+y)-\sin (x-y)=2 \cos x \sin y$
$\operatorname{Cos}(x+y)+\cos (x-y)=2 \cos x \cos y$
$\operatorname{Cos}(x-y)-\cos (x+y)=2 \sin x \sin y$

Then by making $(x+y)=A$ and $(x-y)=B$, we have $x=1 / 2(A+B)$ and $y=1 / 2(A-B)$, whence-
$\sin A+\sin B=2 \sin 1 / 2(A+B) \cos 1 / 2(A-B)$
$\sin A-\sin B=2 \cos 1 / 2(A+B) \sin 1 / 2(A-B)$
$\operatorname{Cos} A+\cos B=2 \cos 1 / 2(A+B) \cos 1 / 2(A-B)$
$\cos A-\cos B=2 \sin 1 / 2(A+B) \sin 1 / 2(A-B)$

$$
\begin{aligned}
& \frac{\operatorname{Sin} A+\sin B}{\operatorname{Sin} A-\sin B}=\frac{\tan 1 / 2(A+B)}{\tan 1 / 2(A-B)} \\
& \frac{\operatorname{Cos} A+\cos B}{\operatorname{Cos} A-\cos B}=\frac{\cot 1 / 2(A+B)}{\tan 1 / 2(A-B)}
\end{aligned}
$$

SOLUTION OF RIGHT TRIANGLE.

Given A and c, to find B, a and b. $B=90^{\circ}-A ; A=c \sin A ; b=c \cos A$.

Given A and a , to find B, b and c .

$$
B=90^{\circ}-A ; b=a \cot A ; c=\frac{a}{\sin A}
$$

Given A and b, to find B, a and c.
$B=90^{\circ}-A ; a=b \tan A ; c=\frac{b}{\cos A}$.
Given c and a , to find A, B and b .
$\operatorname{Sin} A=\frac{a}{c} ; B=90^{\circ}-A ; b=a \cot A$.
Given a and b , to find A, B and c .
$\operatorname{Tan} A=\frac{a}{b} ; \quad B=90^{\circ}-A ; c=\frac{a}{\sin A}$.

SOLUTION OF OBLIQUE TRIANGLE.

LAW OF'SINES.

$$
\frac{a}{b}=\frac{\sin A}{\sin B} ; \quad \frac{b}{c}=\frac{\sin B}{\sin C} ; \quad \frac{a}{c}=\frac{\sin A}{\sin C}
$$

LAW OF COSINES.

$$
\begin{aligned}
& a^{3}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

LAW OF TANGENTS.

$$
\begin{aligned}
& \frac{a-b}{a+b}=\frac{\tan 1 / 2(A-B)}{\tan 1 / 2(A+B)} \\
& \frac{a-c}{a+c}=\frac{\tan 1 / 2(A-C)}{\tan 1 / 2(A+C)} \\
& \frac{b-c}{b+c}=\frac{\tan 1 / 2(B-C)}{\tan 1 / 2(B+C)}
\end{aligned}
$$

Given a, A and B , to find C, b and c .

$$
C=180^{\circ}-(A+B) ; b=\frac{a \sin B}{\sin A} ; c=\frac{a \sin C}{\sin A}
$$

Given a, b and A , to find B, C and c .
$\sin \mathrm{B}=\frac{\mathrm{b} \sin \mathrm{A}}{\mathrm{a}} ; \mathrm{C}=180^{\circ}-(\mathrm{A}+\mathrm{B}) ; \mathrm{c}=\frac{\mathrm{a} \sin \mathrm{C}}{\sin \mathrm{A}}$

Given a, b and C , to find A, B and c .

$$
\begin{aligned}
& A=1 / 2(A+B)+1 / 2(A-B) \\
& B=1 / 2(A+B)-1 / 2(A-B)
\end{aligned}
$$

$c=\frac{b \sin C}{\sin B}$, or $=\frac{a \sin C}{\sin A}$, or $=\sqrt{a^{3}+b^{2}-2 a b \cos C}$.
Given a, b and c , to find A, B and C.
$\operatorname{Sin} 1 / 2 A=\sqrt{\frac{(S-b)(S-c)}{b c}} ;$ in which $S=1 / 2(a+b+c)$;
$\operatorname{Cos} 1 / 2 \mathrm{~A}=\sqrt{\frac{\mathrm{S(S-a)}}{\mathrm{bc}}} ; \operatorname{Tan} 1 / 2 \mathrm{~A}=\sqrt{\frac{(\mathrm{S}-\mathrm{b})(\mathrm{S}-\mathrm{c})}{\mathrm{S}(\mathrm{S}-\mathrm{a})}} ;$

$$
\begin{aligned}
& \operatorname{Sin} 1 / 2 B=\sqrt{\frac{(S-a)(S-c)}{a c}} ; \\
& \operatorname{Sin} 1 / 2 C=\sqrt{\frac{(S-a)(S-b)}{a b}}
\end{aligned}
$$

$$
\operatorname{Cos} 1 / 2 \mathrm{~B}=\sqrt{\frac{\mathrm{S(S-b)}}{\mathrm{ac}}} ; \quad \operatorname{Cos} 1 / 2 \mathrm{C}=\sqrt{\frac{\mathrm{S(S-c}}{a b}} ;
$$

$\operatorname{Tan} 1 / 2 \mathrm{~B}=\sqrt{\frac{(\mathrm{S}-\mathrm{a})(\mathrm{S}-\mathrm{c})}{\mathrm{S}(\mathrm{S}-\mathrm{b})}} ;$
$\operatorname{Tan} 1 / 2 C=\sqrt{\frac{(S-a)(S-b)}{S(S-c)}}$.

AREA OF A TRIANGLE.

Area $=1 / 2$ a $c \sin B$, that is, the area of a triangle equals $1 / 2$ the product of two sides multiplied by the sine of the included angle.

$$
\begin{gathered}
\text { Also area }=\sqrt{S(S-a)(S-b)(S-c)} \\
\text { Where } S=1 / 2(a+b+c)
\end{gathered}
$$

MATHEMATICAL TABLES.

	SINE.							
¢	0^{\prime}	10^{\prime}	20^{\prime}	30^{\prime}	40^{\prime}	50^{\prime}	60^{\prime}	
0	0.00000	0.00291	0.00582	0.00873	0.01164	0.01454	0.01745	89
1	0.01745	0.02036	002327	0.02618	0.02908	0.03199	0.03490	88
2	0.03490	0.03781	0.04071	0.04362	0.04653	0.04943	0.05234	87
3	0.05234	0.05524	0.05814	0.06105	0.06395	0.06685	0.06976	86
4	0.06976	0.07266	0.07556	0.07846	0.08136	0.08426	0.08716	85
5	0.08716	0.09005	0.09295	0.09585	0.09874	0.10164	0.10453	84
6	0.10453	0.10742	0.11031	0.11320	0.11609	0.11898	0.12187	3
7	0.12187	0.12476	0.12764	0.13053	0.13341	0.13629	0.13917	2
8	0.13917	0.14205	0.14493	0.14781	0.15069	0.15356	0.15643	81
9	0.15643	0.15931	0.16218	0.16505	0.16792	0.17078	0.17365	80
10	0.17365	0.17651	0.17937	0.18224	0.18509	0.18795	0.19081	79
11	0.19081	0.19366	0.19652	0.19937	0.20222	0.20507	0.20791	78
12	0.20791	0.21076	0.21360	0.21644	0.21928	0.22212	0.22495	77
13	0.22495	0.22778	0.23062	0.23345	0.23627	0.23910	0.24192	76
14	0.24192	0.24474	0.24756	0.25038	0.25320	0.25601	0.25882	75
15	0.25882	0.26163	0.26443	0.26724	0.27004	0.27284	0.27564	74
16	0.27564	0.27843	0.28123	0.28402	0.28680	0.28959	0.29237	73
17	0.29237	0.29515	0.29798	0.30071	0.30348	0.30625	0.30902	72
18	0.30902	0.31178	0.31454	0.31730	0.32006	0.32282	0.32557	71
19	0.32557	0.32832	0.33106	0.33381	0.33655	0.33929	0.34202	70
20	0.34202	0.34475	0.34748	0.35021	0.35293	0.35565	0.35837	69
21	0.35837	0.36108	0.36379	0.36650	0.36921	0.37191	0.37461	68
2\%	0.37461	0.37730	0.37999	0.38268	0.38537	0.38805	0.39073	67.
23	0.39073	0.39341	0.39608	0.39875	0.40142	0.40408	0.40674	66
24	0.40674	0.40939	0.41204	0.41469	0.41734	0.41998	0.42262	65
25	0.42262	0.42525	0.42788	0.43051	0.43313	0.43575	0.43837	64
$\stackrel{26}{ }$	0.43837	0.44098	0.44359	0.44620	0.44880	0.45140	0.45399	63
27	0.45399	0.45658	0.45917	0.46175	0.46433	0.46690	0.46947	62
28	0.46947	0.47204	0.47460	0.47716	0.47971	0.48226	0.48481	61
29	0.48481	0.48735	0.48989	0.49242	0.49495	0.49748	0.50000	60
30	-0.50000	0.50252	0.50503	0.50754	0.51004	0.51254	0.51504	59
31	0.51504	0.51753	0.52002	0.52250	0.52498	0.52745	0.52992	58
32	0.52992	0.53238	0.53484	0.53730	0.53975	0.54220	0.54464	57
33	0.54464	0.54708	0.54951	0.55194	0.55436	0.55678	0.55919	56
34	0.55919	0.56160	0.56401	0.56641	0.56880	0.57119	0.57358	55
35	0.57358	0.57596	0.57833	0.58070	0.58307	0.58543	0.58779	54
36	0.58779	0.59014	0.59248	0.59482	0.59716	0.59949	0.60182	53
37	0.60182	0.60414	0.60645	0.60876	0.61107	0.61337	0.61566	52
38	0.61566	0.61795	0.62024	0.62251	0.62479	0.62706	0.62932	51
39	0.62932	0.63158	0.63383	0.63608	0.63832	0.64056	0.64279	50
40	0.64279	064501	0.64723	0.64945	0.65166	0.65386	0.65606	49
41	0.65606	0.65825	0.66044	0.66262	0.66480	0.66697	0.66913	48
42	0.66913	0.67129	0.67344	0.67559	0.67773	0.67987	0.68200	47
43	0.68200	0.68412	0.68624	0.68835	0.69046	0.69256	0.69466	46
44	0.69466	0.69675	0.69883	0.70091	0.70298	0.70505	0.70711	45
	60^{\prime}	50^{\prime}	40°	30^{\prime}	20^{\prime}	10^{\prime}	0^{\prime}	*
				COSINE				$\stackrel{\circ}{\circ}$

MATHEMATICAL TABLES. (Continued.)

	COSINE.							
-	0^{\prime}	10^{\prime}	20^{\prime}	30^{\prime}	40'	50^{\prime}	60^{\prime}	
0	1.00000	1.00000	0.99998	0.99996	0.99993	0.99989	0.99985	89
1	0.99985	0.99979	0.99973	0.99966	0.99958	0.99949	0.99939	88
2	0.99939	0.99929	0.99917	0.99905	0.99892	0.99878	0.99863	87
3	0.99863	0.99847	0.99831	0.99813	0.99795	0.99776	0.99756	86
4	0.99756	0.99736	0.99714	0.99692	0.99668	0.99644	0.99619	85
5	0.99619	0.99594	0.99567	0.99540	0.99511	0.99482	0.99452	84
6	0.99452	0.99421	0.99390	0.99357	0.99324	0.99290	0.99255	83
7	0.99255	0.99219	0.99182	0.99144	0.99106	0.99067	0.99027	82
8	0.99027	0.98986	0.98944	0.98902	0.98858	0.98814	0.98769	81
9	0.98769	0.98723	0.98676	0.98629	0.98580	0.98531	0.98481	80
10	0.98481	0.98430	0.98378	0.98325	0.98272	0.98218	0.98163	79
11	0.98163	0.98107	0.98050	0.97992	0.97934	0.97875	0.97815	78
12	0.97815	0.97754	0.97692	0.97630	0.97566	0.97502	0.97437	77
13	0.97437	0.97371	0.97304	0.97237	0.97169	0.97100	0.97030	76
14	0.97030	0.96959	0.96887	0.96815	0.96742	0.96667	0.96593	75
15	0.96593	0.96517	0.96440	0.96363	0.96285	0.96206	0.96126	74
16	0.96126	0.96046	0.95964	0.95882	0.95799	0.95715	0.95630	73
17	0.95630	0.95545	0.95459	0.95372	0.95284	0.95195	0.95106	72
18	0.95106	0.95015	0.94924	0.94832	0.94740	0.94646	0.94552	71
19	0.94552	0.94457	0.94361	0.94264	0.94167	0.94068	0.93969	70
20	0.93969	0.93869	0.93769	0.93667	0.93565	0.93462	0.93358	69
21	0.93358	0.93253	0.93148	0.93042	0.92935	0.92827	0.92718	68
22	0.92718	0.92609	0.92499	0.92388	0.92276	0.92164	0.92050	67
23	0.92050	0.91936	0.91822	0.91706	0.91590	0.91472	0.91355	66
24	0.91355	0.91236	0.91116	0.90996	0.90875	0.90753	0.90631	65
25	0.90631	0.90507	0.90383	0.90259	0.90133	0.90007	0.89879	64
26	0.89879	0.89752	0.89623	0.89493	0.89363	0.89232	0.89101	63
27	0.89101	0.88968	0.88835	0.88701	0.88566	0.88431	0.88295	62
28	0.88295	0.88158	0.88020	0.87882	0.87743	0.87603	0.87462	61
29	0.87462	0.87321	0.87178	0.87036	0.86892	0.86748	0.86603	60
30	0.86603	0.86457	0.86310	0.86163	0.86015	0.85866	0.85717	59
31	0.85717	0.85567	0.85416	0.85264	0.85112	0.84959	0.84805	58
32	0.84805	0.84650	0.84495	0.84339	0.84182	0.84025	0.83867	57
33	0.83867	0.83708	0.83549	0.83389	0.83228	0.83066	0.82904	56
34	0.82904	0.82741	0.82577	0.82413	0.82248	0.82082	0.81915	55
35	0.81915	0.81748	0.81580	0.81412	0.81242	0.81072	0.80902	54
36	0.80902	0.80730	0.80558	0.80386	0.80212	0.80038	0.79864	53
37	0.79864	0.79688	0.79512	0.79335	0.79158	0.78980	0.78801	52
38	0.78801	0.78622	0.78442	0.78261	0.78079	0.77897	0.77715	51
39	0.77715	0.77531	0.77347	0.77162	0.76977	0.76791	0.76604	50
40	0.76604	0.76417	0.76229	0.76041	0.75851	0.75661	0.75471	49
41	0.75471	0.75280	0.75088	0.74896	0.74703	0.74509	0.74314	48
42	0.74314	0.74120	0.73924	0.73728	0.73531	0.73333	0.73135	47
43	0.73135	0.72937	0.72737	0.72537	0.72337	0.72136	0.71934	46
44	0.71934	0.71732	0.71529	0.71325	0.71121	0.70916	0.70711	45
	60^{\prime}	50^{\prime}	40^{\prime}	30^{\prime}	20^{\prime}	10^{\prime}	0^{\prime}	${ }_{8}$
				SINE.				ロٌ

MATHEMATICAL TABLES. (continued.)

	TANGENT.							
	0^{\prime}	10^{\prime}	20^{\prime}	30^{\prime}	40^{\prime}	50^{\prime}	60^{\prime}	
0	0.00000	0.00291	0.00582	0.00873	0.01164	0.01455	0.01746	89
1	0.01746	0.02036	0.02328	0.02619	0.02910	0.03201	0.03492	88
2	0.03492	0.03783	0.04075	0.04366	0.04658	0.04949	0.05241	87
3	0.05241	0.05533	0.05824	0.06116	0.06408	0.06700	0.06993	86
4	0.06993	0.07285	0.08578	0.07870	0.08163	0.08456	0.08749	85
5	0.08749	0.09042	0.09335	0.09629	0.09923	0.10216	0.10510	84
6	0.10510	0.10805	0.11099	0.11394	0.11688	0.11983	0.12278	83
7	0.12278	0.12574	0.12869	0.13165	0.13461	0.13758	0.14054	82
8	0.14054	0.14351	0.14648	0.14945	0.15243	0.15540	0.15838	81
9	0.15838	0.16137	0.16435	0.16734	0.17033	0.17333	0.17633	80
10	0.17633	0.17933	0.18233	0.18534	0.18835	0.19136	0.19438	79
11	0.19438	0.19740	0.20042	0.20345	0.20648	0.20952	0.21256	78
12	0.21256	0.21560	0.21864	0.22169	0.22475	0.22781	0.23087	77
13	0.23087	0.23393	0.23700	0.24008	0.24316	0.24624	0.24933	76
14	0.24933	0.25242	0.25552	0.25862	0.26172	0.26483	0.26795	75
15	0.26795	0.27107	0.27419	0.27732	0.28046	0.28360	0.28675	74
16	0.28675	0.28990	0.29305	0.29621	0.29938	0.30255	0.30573	73
17	0.30573	0.30891	0.31210	0.31530	0.31850	0.32171	0.32492	72
18	0.32492	0.32814	0.33136	0.33460	0.33783	0.34108	0.34433	71
19	0.34433	0.34758	0.35085	0.35412	0.35740	0.36068	0.36397	70
20	0.36397	0.36727	0.37057	0.37388	0.37720	0.38053	0.38386	69
21	0.38386	0.38721	0.39055	0.39391	0.39727	0.40065	0.40403	68
22	0.40403	0.40741	0.41081	0.41421	0.41763	0.42105	0.42447	67
23	0.42447	0.42791	0.43136	0.43481	0.43828	0.44175	0.44523	66
24	0.44523	0.44872	0.45222	0.45573	0.45924	0.46277	0.46631	65
25	0.46631	0.46985	0.47341	0.47698	0.48055	0.48414	0.48773	64
26	0.48773	0.49134	0.49495	0.49858	0.50222	0.50587	0.50953	63
27	0.50953	0.51320	0.51688	0.52057	0.52427	0.52798	0.53171	62
28	0.53171	0.53545	0.53920	0.54296	0.54673	0.55051	0.55431	61
29	0.55431	0.55812	0.56194	0.56577	0.56962	0.57348	0.57735	60
30	0.57735	0.58124	0.58513	0.58905	0.59297	0.59691	0.60086	59
31	0.60086	0.60483	0.60881	0.61280	0.61681	0.62083	0.62487	58
32	0.62487	0.62892	0.63299	0.63707	0.64117	0.64528	0.64941	57
33	0.64941	0.65355	0.65771	0.66189	0.66608	0.67028	0.67451	56
34	0.67451	0.67875	0.68301	0.68728	0.69157	0.69588	0.70021	55
35	0.70021	0.70455	0.70891	0.71329	0.71769	0.72211	0.72654	4
36	0.72654	0.73100	0.73547	0.73996	0.74447	0.74900	0.75355	53
37	0.75355	0.75812	0.76272	0.76733	0.77196	0.77661	0.78129	52
38	0.78129	0.78598	0.79079	0.79544	0.80020	0.80498	0.80978	51
39	0.80978	0.81461	0.81946	0.82434	0.82923	0.83415	0.83910	50
40	0.83910	0.84407	0.84906	0.85408	0.85912	0.86419	0.86929	49
41	0.86929	0.87441	0.87955	0.88473	0.88992	0.89515	0.90040	48
42	0.90040	0.90569	0.91099	0.91633	0.92170	0.92709	0.93252	47
43	0.93252	0.93797	0.94345	0.94896	0.95451	0.96008	0.96569	46
44	0.96569	0.97133	0.97700	0.98270	0.98843	0.99420	1.00000	45
	60^{\prime}	50^{\prime}	40	30^{\prime}	20^{\prime}	10^{\prime}	0^{\prime}	
	COTANGENT.							-

MA'THEMATICAL TABLES. (continued.)

	COTANGENT.							
Q	$0 \times$	10^{\prime}	20^{\prime}	30^{\prime}	40^{\prime}	50^{\prime}	60^{\prime}	
0	∞	$\overline{343.77371}$	$\overline{171.88540}$	114.58865	85.93979	68.75009	$\overline{57.28996}$	89
1	57.28996	49.10388	42.96408	38.18846	34.36777	31.24158	28.63625	88
2	28.63625	26.43160	24.54176	22.90377	21.47040	20.20555	19.08114	87
3	19.08114	18.07498	17.16934	16.34986	15.60478	14.92442	14.30067	86
4	14.30067	13.72674	13.19688	12.70621	12.25051	11.82617	11.43005	85
6	11.43005	11.05943	10.71191	10.38540	10.07803	9.78817	9.51436	84
6	9.51436	9.25530	9.00983	8.77689	8.55555	8.34496	8.14435	83
7	8.14435	7.95302	7.77035	7.59575	7:42871	7.26873	7.11537	82
8	7.11537	6.96823	6.82694	6.69116	6.56055	6.43484	6.31375	81
9	6.313\%	6.19703	6.08444	5.97576	5.87080	5.76937	5.67128	80
10	5.67128	5.57638	5.48451	5.39552	5.30928	5.22566	5.14455	79
11	5.14455	5.06584	4.98940	4.91516	4.84300	4.77286	4.70463	78
12	4.70463	4.63825	4.57363	4.51071	4.44942	4.38969	4.33148	77
13	4.33148	4.27471	4.21933	4.16530	4.11256	4.06107	4.01078	76
14	4.01078	3.96165	3.91364	3.86671	3.82083	3.77595	3.73205	75
15	3.73205	3.68909	3.64705	3.60588	3.56557	3.52609	3.48741	74
16	3.48741	3.44951	3.41236	3.37594	3.34023	3.30521	3.27085	73
17	3.27085	3.23714	3.20406	3.17159	3.13972	3.10842	3.07768	72
18	3.077 ${ }^{\circ} 8$	3.04749	3.01783	2.98869	2.96004	2.93189	2.90421	71
19	2.90421	2.87700	2.85023	2.82391	2.79802	2.77254	2.74748	70
20	2.74748	2.72281	2.69853	2.67462	2.65109	2.62791	2.60509	69
21	2.60509	2.58261	2.56046	2.53865	2.51715	2.49597	2.47509	68
22	2.47509	2.45451	2.43422	2.41421	2.39449	2.37504	2.35585	67
23	2.35585	2.33693	2.31826	2.29984	2.28167	2.26374	2.24604	66
24	2.24604	2.22857	2.21132	2.19430	2.17749	2.16090	2.14451	65
25	2.14451	2.12832	2.11233	2.09654	2.08094	2.06553	2.05030	64
26	2.05030	2.03526	2.02039	2.00569	1.99116	1.97680	1.96261	63
27	1.96261	1.94858	1.93470	1.92098	1.90741	1.89400	1.88073	62
28	1.88073	1.86760	1.85462	1.84177	1.82906	1.81649	1.80405	61
29	1.80405	1.79174	1.77955	1.76749	1.75556	1.74375	1.73205	60
30	1.73205	1.72047	1.70901	1.69766	1.68643	1.67530	1.66428	59
31	1.66428	1.65337	1.64256	1.63185	1.62125	1.61074	1.60033	58
32	1.60033	1.59002	1.57981	1.56969	1.55966	1.54972	1.53987	57
33	1.53987	1.53010	1.52013	1.51084	1.50133	1.49190	1.48256	56
34	1.48256	1.47330	1.46411	1.45501	1.44598	1.43703	1.42815	55
35	1.42815	1.41934	1.41061	1.40195	1.39336	1.38484	1.37638	54
36	1.37638	1.36800	1.35968	1.35142	1.34323	1.33511	1.32704	5
37	1.32704	1.31904	1.31110	1.30323	1.29541	1.28764	1.27994	5
38	1.27994	1.2'230	1.26471	1.25717	1.24969	1.24227	1.23490	51
39	1.23490	1.22758	1.22031	1.21310	1.20593	1.19882	1.19175	50
40	1.19175	1.18474	1.17777	1.17085	1.16398	1.15715	1.15037	49
41	1.15037	1.14363	1.13694	1.13029	1.12369	1.11713	1.11061	48
42	1.11061	1.10414	1.09770	1.09131	1.08496	1.07864	1.07237	47
43	1.07237	1.06613	1.05994	1.05378	1.04766	1.04158	1.03553	46
44	1.03553	1.02952	1.02355	1.01761	1.01170	1.00583	1.00060	45
	60^{\prime}	50^{\prime}	40^{\prime}	30^{\prime}	20^{\prime}	10^{\prime}	0^{\prime}	¢

CIRCUMFERENCES AND AREAS OF CIRCLES. Diameter from $\frac{1}{84}$ to 100 , advancing chiefly by Eighths.

Diam.	Circum.	Area.	Diam.	Circum.	Area.	Diam.	Circum.	Area.
$\begin{aligned} & \frac{1}{64} \\ & \frac{1}{3 / 2} \\ & \frac{1}{3} \\ & 64 \\ & \frac{1}{18} \\ & \frac{18}{38} \\ & 1 / 8 \\ & 1 / 8 \\ & \frac{6}{32} \\ & 18 \\ & 17 \\ & 32 \end{aligned}$. 04909	. 00019		6.6759	3.5466	5. ${ }^{7}$	17.08217.279	23.221
	. 09818	. 00077		6.8722	3.7583			23.758
	.147\%6	. 00173		7.0686	3.9761	9	17.475	24.301
	. 19635	. 00307		7.2649	4.2000		17.671	24.850
	. 2945%	. 00690		7.4613	4.4301		17.868	25.406
	. 39270	.01227		7.6576	4.6664		18.064	25.967
	. 49087	. 01917		7.8540	4.9087		18.261	26.535
	. 58905	. 02761		8.0503	5.1572		18.457	27.109
	. 68722	. 03758		8.2467	5.4119	$\frac{16}{16}$	18.653	27.688
$\begin{aligned} & 1 / 4 \\ & \frac{1}{4} \\ & \frac{9}{3} \\ & \frac{1}{6} \\ & \frac{1}{3} \frac{1}{2} \\ & 3, \\ & \frac{18}{3} \\ & \frac{7}{7} \\ & \frac{1}{3} \frac{5}{2} \end{aligned}$. 78	. 04909			5.6727		18.850	28.274
	. 888357	. 06213		${ }_{8.8357}$	6.2126	1	19.242	
	. 98175	. 07670		$\begin{aligned} & 9.0321 \\ & 9.22 \times 4 \end{aligned}$	$\begin{aligned} & 6.4918 \\ & 6.7771 \end{aligned}$	$1 / 4$	19.635	30.680
	1.0799	. 09281				3/8	20.028	31.919
	1.1781	. 11045					20.813	33.183
	1.2763	. 12962	3.	9.4248	7.0686	58		34.4\%2
	1.3744	. 15033	${ }^{\frac{1}{16}}$	9.6211	7.3662	$3 / 4$	21.206	35.785
	1.4726	. 17257	$1 / 8$1818	9.8175	7.6699	278	21.598	37.122
				10.014	7.97988.2958			
	1.5708	. 19635	14	10.210		7.	21.991	38.485
	1.6690	. 22166	5	10.407			22.384	39.871
	1.7671	. 24850	988	10.603	8.6179 8.9462	$\begin{aligned} & 18 \\ & 34 \\ & 38 \end{aligned}$	22.776	41.28242.718
	1.8653	. 27688		10.799	9.2806		23.169	
	1.9635	. 30680	12	10.996	9.6211	$\begin{aligned} & 3 / 8 \\ & 1 / 2 \\ & \hline \end{aligned}$	23.562	42.718 44.179
	2.0617	. 33824		11.192	9.9678	$\begin{aligned} & 1 / 2 \\ & 5 \\ & 3 / 8 \end{aligned}$	23.955	45.664
	2.1598	. 37122	58	11.388	10.321		24.347	$\begin{aligned} & 47.173 \\ & 48.707 \end{aligned}$
	2.2580	. 40574		11.585	10.680	748	24.740	
	2.3562	. 44179		$\begin{aligned} & 11.781 \\ & 11.977 \end{aligned}$	11.045	8.	25.133	
	2.4541	. 479378		12.174	11.793	$\begin{aligned} & 1 / 8 \\ & 1 / 4 \\ & 3 \end{aligned}$	25.525	50.265 51.849
	2.5525			12.370	12.177		25.918	53.45655.088
	2.6507	$\begin{array}{r} .51849 \\ .55914 \end{array}$	${ }^{18}$					
	2.7489	. 60132	4.	12.566	12.56612.962	$\begin{aligned} & 34 \\ & 38 \\ & 16 \end{aligned}$	26.704	56.745
	2.8471	.64504.69029		$\begin{aligned} & 12.763 \\ & 12.959 \end{aligned}$		18	27.09627.489	58.426
	2.9452				13.364	$\begin{aligned} & 5 \% \\ & 5 \\ & 3 \end{aligned}$		$\begin{array}{r} 60.132 \end{array}$
	3.0434	. 73708		$\begin{aligned} & 13.155 \\ & 13.352 \end{aligned}$	$\begin{aligned} & 13.772 \\ & 14.186 \end{aligned}$	78	27.882	61.862
1.		. 7854						
			\% 8	13.548	14.607		${ }_{28} 8.267$	63.617
	3.5343	.8866 .9940		13.744	15.033		28.667	$\begin{aligned} & 65.397 \\ & 67.201 \end{aligned}$
	3.7306	$\begin{aligned} & 1.1075 \\ & 1.2272 \end{aligned}$	$\begin{aligned} & 98 \\ & 78 \\ & 1 / 2 \\ & 18 \end{aligned}$	14.13714.334	15.904	148888	29.452	
	3.9270		$\begin{aligned} & 2, \\ & \hline 18 \\ & \hline 18 \end{aligned}$		16.349	$\begin{aligned} & 1 / 5_{8} \\ & \hline \end{aligned}$	29.845	70.882
	4.1233	$\begin{aligned} & 1.2272 \\ & 1.3530 \end{aligned}$	5\%	14.53014.726	16.800		30.238	.760
	4.3197	1.4849			17.257	3	30.631	
	4.5160	1.6230		14.923	17.728	78	31.023	76.589
	4.7124	1.7671		15.119	18.190			
	4.9087	1.9175		15.315	18.665	10	31.416	78.540
	5.1051	2.0739	8	15.512	19.147	$1 /$	31.809	80.516
	5.3014	2.2365					32.201	82.516
	5.4978	2.4053		15.708	19.635		32.594	84.541
	5.6941	2.5802		15.904	20.129		32.987	86.590
	58905	2.7612		16.101	20.629		33.379	88.664
	6.0868	2.9483		16.297	21.135		33.772	90.763
				16.493	21.648	0	34.165	92.886
2.	6.2832	3.1416		16.690	22.166			
${ }_{18}^{18}$	6.4795	33410	3/8	16.886	22.691	11.	34.558	95.038

CIRCUMFERENCES AND AREAS OF CIRCLES. (CONTINUED.)

CIRCUMFERENCES AND AREAS OF CIRCLES.
(CONTINUED.)

CIRCUMFERENCES AND AREAS OF CIRCLES.
(CONTINUED.)

CIRCUMFERENCES AND AREAS OF CIRCLES.

(CONTINUED.)

Diam.	Circum.	Area.	Diam.	Circum.	Area.	Diam.	Circum.	Area.
67.14 $3 / 8$18883878	211.272	3552.0		230.907	4242.9	$\begin{array}{r} 79.34 \\ 78 \end{array}$	250.542	4995.2
	211.665	3565.2		231.300	4257.4		250.935	5010.9
	212.058	3578.5		231.692	4271.8			
	212.450	3591.7		232.085	4286.3		251.327	5026.5
	212.843	3605.0					251.720	5042.3
	213.236	1/8	$\begin{gathered} 1 / 8 \\ 14 \\ 38 \\ 18 \\ 19 \\ 58 \\ 3 \\ 74 \\ 78 \end{gathered}$	232.871	4300.8	14	252.113	5058.0
					4315.4		252.506	5073.8
	213.62	3631.7		233.263	4329.9		252.898	5089.6
	214.021	3645.0		233.656	4344.5		253.291	5105.4
	214.414	3658.4		234.049	4359.2		253.684	5121.2
	214.806	3671.8		234.441	4373.8	8	254.076	5137.1
	215.199	8685.3		234.834	4388.5			
	215.592	3698.7		235.227	4403.1	81.	254.469	5153.0
	215.984	3712.2	75.				254.862	5168.9
	216.377	3725.7		235.619	4417		255.254	5184.9
69.			$1 / 4$	236.012 236.405	4432.6	2	255.647	5200.8
	217.16	3752.8	$\begin{aligned} & 348 \\ & 3 \\ & 18 \end{aligned}$	236.798	4462.2	58	256.433	5216.8
	217.555	3766.4		237.190	4477.0		256.825	5248.95264.9
	217.948	3780.0		237.583	4491.8	78	257.218	
	218.34	3793.7	78	237.976	4506.7	82		5264.9
	218.733	3807.8		238.368	4521.5		1	5281.0
	219.126	3821.0						5297
	219.519		76.	238	45		258.396	5313.35329.4
			$\begin{aligned} & 1 / 8 \\ & 1 / 4 \\ & 8 / 8 \\ & 1 / \\ & 5 / 8 \\ & 3 / 4 \\ & 78 \end{aligned}$	239.154	4551.4	\% 18	258.789	
	219.911	3848.		239.546	4566.4		259.181	5345.6
	220.304	38622		239.939	4581.3		259.574	5361.8
	220.697	3876.0		240.332	4596.3	38	259.967	5378.1
	221.090	3889.8		240.725	4611.4		260.359	5394.3
	221.482	3903.6		241.117	4626.4			
	221.875	3917.5		241.510	4641.5		260.752	5410.6
	222.268	3931.4					261.145	5426.9
	222.660		77	241.903	465	14	261.538	
71.			$11 / 4$	242.295	4671.8		261.930262.323	5459.6
		3959.2		242.68	4686.9	\%		5476.0
	223.44	3973.1	1	243.081	4702.1		262.716	5492.4
	223.838	3987.1		243.473	4717.3		263.108	5508.8
	224.231	4001.1	5\%	243.866	4732.5	78	263.501	5525.3
	224.624	4015.2		244.259	4747.8			
	$\stackrel{225.017}{225}$	4029.2 4043.3	78	244.65	4763.1		264.286	5541.8
8	225.802	4057.4		245.0	4778		$\begin{aligned} & 264.679 \\ & 265.072 \end{aligned}$	$\begin{aligned} & 5558.3 \\ & 5574.8 \end{aligned}$
			$\begin{aligned} & 1 / 8 \\ & 1 / 4 \end{aligned}$	245.437	4793.7			5591.45607.9
	226.19	4071		245.830	4809.0	8	265.465	
	226.58	4085.7		246.222	4824.4		265.857	5607.9 5624.5
	226.980	4099.8		246.615	4839.8	88	266.250	$\begin{aligned} & 5641.2 \\ & 5657.8 \end{aligned}$
	227.373	4114.0		247.008	4855.2		266.643	
	227.765	4128.2		247.400	4870.7			
	228.158	4142.5	78	247.793	4886		267.035	5674.55691.2
	228.551	4156.8					267.428	
73. $1 / 8$$1 / 4$$3 / 8$	228.94	4171	79.		4901.7		267.821	5707.9 5724.7
	229.33			248.971	4932.7			5741.5 5758.3 5775.1 5791.9
	229.729			249.364	4948.3			
	230.122			249.757	4963.9			
	230.51			250.149	4979.5			

CIRCUMFERENCES AND AREAS OF CIRCLES.
(CONTINUED.)

am	Circum	Area.	Diam.	Circu	Area.	Diam.	Circum.	Area.
86. $1 / 8$18$3 / 8$18$5 / 8$3343	270.17	5808.8	90.7/8	285.492	6486.0	$\begin{array}{r} 95.5 / 8 \\ 34 \\ 7 / 8 \end{array}$	300.415	7181.8
	270.570	5825.7					300.807	7200.6
	270.962	5842.6		285.885	6503.9		301.200	7219.4
	271.35	5859.6		286.278	6521.8			
	271.74	5876.5		286.670	6539.7		301.5	23
	272.140	5893.5		287.06	6557.6		301.98	7257.1
	272.533	5910.6		287.456	6575.5		302.378	7276.0
	272.92	5927.6		287.848	6593.5		302.771	7294.9
		5944.7	78	28	6629.6	588	303.556	73332.8
	273.711	5961.8					303.949	7351.8
	274.104	5978.9	92.		6647.6	$8 / 8$	304.342	7370.8
	$274.49 \hat{1}$	5996.0		289.419	6665.7	.		
	274.88	6013.2		289.812	6683.8			7389.8
	275	6030.4		290.20	6701.9		30	7408.97428.0
	275	6047.6		290.597	6720.1		305.520	
78		6064.9	$\begin{aligned} & 73 \\ & 58 \\ & 38 \\ & 78 \end{aligned}$	$\begin{aligned} & 290.990 \\ & 291.383 \end{aligned}$	6738.2		305.913	7447.1 7466.
		60			6774.7	2	306.698	7485.3
	276853	6099.46116.7	93.	291.775			307.091	7504.5
	277.246			292.168	6792.9	78	307.483	7523.7
	277.63	6134.1		292.561	6811.2	98.	307.87	
	278.03	6151.4	14	292.954	6829.5 6847.8		307.876	7543.0
	278.424	6168.8	$\begin{aligned} & 17 \\ & 58 \\ & 3 / 4 \\ & 3 / 8 \end{aligned}$			98.	308.269	7543.0 7562.2
	278.816	$\begin{aligned} & 6186.2 \\ & 6203.7 \end{aligned}$		293.739	6866.1		308.661	7581.5
				$\begin{aligned} & 294.132 \\ & 294.524 \end{aligned}$	$\begin{aligned} & 6884.5 \\ & 6902.9 \end{aligned}$	888	309.054	7600.87620.1
		$\begin{aligned} & 6221.1 \\ & 6238.6 \end{aligned}$				5	$\begin{aligned} & 309.447 \\ & 309 \\ & \hline 840 \end{aligned}$	
				294.917	69213		$\begin{aligned} & 310.232 \\ & 310.625 \end{aligned}$	7658.9
	280.38	6256.1		295.310	6939.8	78		7678.3
	280.78	6273.7	94.	295.702	$\begin{aligned} & 6958.2 \\ & 6976.7 \end{aligned}$		810.6~	
	281.17	$\begin{aligned} & 6291.2 \\ & 6308.8 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 3 / 8 \\ & 18 \end{aligned}$	$\begin{aligned} & 296.095 \\ & 296.488 \end{aligned}$			311.018	7697.77717.1
	281.56				6976.7 6995.3	99.	311.410	
	281.95	63264	19	296.881	7013.8		311.803	7736.6
/8	28	6344.1	$\begin{aligned} & 5 \% \\ & 58 \\ & 3 / 4 \\ & 7 / 8 \end{aligned}$	$\underset{297.666}{297.273}$	$\begin{aligned} & 7032.4 \\ & 7051.0 \end{aligned}$	1/4	312.196312.588	7756.17775.6
		6361.76379.46397.1		298.059	$\begin{aligned} & 7051.0 \\ & 7069.6 \end{aligned}$	588	$\begin{aligned} & 312.981 \\ & 313.374 \end{aligned}$	7795.27814.8
	283.136		95.					
	283.529			$\begin{aligned} & 298.451 \\ & 298.844 \\ & 299.237 \\ & 299.629 \\ & 300.022 \end{aligned}$$300.022$	$\begin{aligned} & 7088.2 \\ & 7106.9 \\ & 7125.6 \\ & 7144.3 \\ & 7163.0 \end{aligned}$		$\begin{aligned} & 313.767 \\ & 314.159 \end{aligned}$	7834.47854.0
	283.921	$\begin{aligned} & 6397.1 \\ & 6414.9 \\ & 6432.6 \end{aligned}$	95. $1 / 8$183818			100.		
	284.314							
	284.707	$\begin{aligned} & 6432.6 \\ & 6450.4 \\ & 6468.2 \end{aligned}$						
$3 / 4$	285.100						314.159	

FIF'TH ROOTS AND FIF'TH POWERS.

Power.	No. or Root.	Power.	No. or Root.	Power.	No. or Root.
.0000100	. 1	. 000796	. 240	. 034503	. 51
. 0000110	. 102	. 000883	. 245	. 038020	. 52
. 0000122	. 104	. 000977	. 250	. 041820	. 53
. 0000134	. 106	. 001078	. 255	. 045917	. 54
. 0000147	. 108	. 001188	. 260	. 050328	. 55
. 0000161	. 110	. 001307	. 265	. 055073	. 56
. 0000176	. 112	. 001435	. 270	. 060169	. 57
. 0000193	. 114	.001573	. 275	. 065636	. 58
. 0000210	. 116	.001721	. 280	.071492	. 59
0000229	. 118	.001880	. 285	.077760	. 60
. 0000249	. 120	. 002051	. 290	. 084460	. 61
.0000270	.122	. 002234	. 295	. 091613	. 62
.0000293	. 124	. 002430	. 300	. 099244	. 63
. 0000318	. 126	. 002639	. 305	. 107374	. 64
. 0000344	. 128	. 002863	. 310	. 116029	. 65
. 0000371	. 130	. 003101	. 315	. 125233	. 66
. 0000401	. 132	. 003355	. 320	. 135012	. 67
. 0000432	. 134	. 003626	. 325	. 145393	. 68
. 0000465	. 136	. 003914	. 330	. 156403	. 69
. 0000500	. 138	. 004219	. 335	. 168070	. 70
. 0000538	. 140	. 004544	. 340	. 180423	. 71
. 0000577	. 142	. 004888	. 345	. 193492	. 72
. 0000619	. 144	. 005252	. 350	. 207307	. 73
. 0000663	. 146	. 005638	. 355	. 221901	. 74
. 0000710	. 148	. 006047	. 360	. 237305	. 75
. 0000754	.150	. 006478	. 365	. 253553	. 76
. 0000895	.155	. 006934	. 370	. 270678	. 77
. 000105	. 160	. 007416	. 375	. 288717	. 78
. 000122	. 165	. 007924	. 380	. 307706	. 79
. 000142	. 170	. 008459	. 385	. 327680	. 80
. 000164	. 175	. 009022	. 390	. 348678	. 81
. 000189	. 180	. 009616	. 395	. 370740	. 82
. 000217	. 185	. 010240	. 400	. 393904	. 83
. 000248	. 190	. 011586	. 41	. 418212	. 84
.000282	-195	. 013069	. 42	. 443705	. 85
. 000320	. 200	. 014701	. 43	. 470427	. 86
. 000362	. 205	. 016492	. 44	. 498421	. 87
. 000408	. 210	. 018453	. 45	. 527732	. 88
. 000459	. 215	. 020596	. 46	. 558406	. 89
. 000515	. 220	. 022935	. 47	. 590490	. 90
. 000577	. 225	. 025480	. 48	. 624032	. 91
. 000944	. 230	. 028248	. 49	. 659082	. 92
. 000717	. 235	. 031250	. 50	. 695688	. 93

Fifth Roots and Fifth Powers. (CONTINUED.)

Power.	No. or Root.	Power.	No. or Root.	Power.	No. or Root.
. 733904	. 94	15.9495	1.74	525.219	3.50
. 773781	. 95	16.8874	1.76	563.822	3.55
. 815373	. 96	17.8690	1.78	604.662	3.60
. 858734	.97	18.8957	1.80	647.835	3.65
. 903921	. 98	19.9690	1.82	693.440	3.70
. 950990	. 99	21.0906	1.84	741.577	3.75
1.	1	22.2620	1.86	792.352	3.80
1.10408	1.02	23.4849	1.88	845.870	3.85
1.21665	1.04	24.7610	1.90	902.242	3.90
1.33823	1.06	26.0919	1.92	961.58	3.95
1.46933	1.08	27.4795	1.94	1024.00	4.00
1.61051	1.10	28.9255	1.96	1089.62	4.05
1.76234	1.12	30.4317	1.98	1158.56	4.10
1.92541	1.14	32.0000	2.00	1230.95	4.15
2.10034	1.16	36.2051	2.05	1306.91	4.20
2.28775	1.18	40.8410	2.10	1386.58	4.25
2.48832	1.20	45.9401	2.15	1470.08	4.30
2.70271	1.22	51.5363	2.20	1557.57	4.35
2.93163	1.24	57.6650	2.25	1649.16	4.40
3.17580	1.26	64.3634	2.30	1745.02	4.45
3.43597	1.28	71.6703	2.35	1845.28	4.50
3.71293	1.30	79.6262	2.40	1950.10	4.55
4.00746	1.32	88.2735	2.45	2059.63	4.60
4.32040	1.34	97.6562	2.50	2174.03	4.65
4.65259	1.36	107.820	2.55	2293.45	4.70
5.00490	1.38	118.814	2.60	2418.07	4.75
5.37824	1.40	130.686	2.65	2548.04	4.80
5.77353	1.42	143.489	2.70	2683.54	4.85
6.19174	1.44	157.276	2.75	2824. 75	4.90
6.63383	1.46	172.104	2.80	2971.84	4.95
7.10082	1.48	188.029	2.85	3125.00	5.00
7.59375	1.50	205.111	2.90	3450.25	5.10
8.11368	1.52	223.414	2.95	3802.04	5.20
8.66171	1.54	243.000	3.00	4181.95	5.30
9.23896	1.56	263.936	3.05	4591.65	5.40
9.84658	1.58	286.292	3.10	5032.84	5.50
10.4858	1.60	310.136	3.15	5507.32	5.60
11.1577	1.62	335.544	3.20	6016.92	5.70
11.8637	1.64	362.591	3.25	6563.57	5.80
12.6049	1.66	391.354	3.30	7149.24	5.90
13.3828	1.68	421.419	3.35	7776.00	6.00
14.1986	1.70	454.354	3.40	8445.96	6.10
15.0537	1.72	488.760	3.45	9161.33	6.20

Fifth Roots and Fifth Powers. (CONTINUED.)

Power.	No. or Root.	Power.	No. or Root.	Power.	No. or Root.
9924.37	6.30	176234.	11.2	3043168.	19.8
10737.	6.40	192541.	11.4	3200000.	20.0
11603.	6.50	210034.	11.6	3363232.	20.2
12523.	6.60	$2287 \% 6$.	11.8	3533059 .	20.4
13501.	6.70	248832.	12.0	3709677 .	20.6
14539.	6.80	270271.	12.2	3893289 .	20.8
15640.	6.90	293163.	12.4	4084101.	21.0
16807.	7.00	317580.	12.6	4282322.	21.2
18042.	7.10	343597.	12.8	4488166.	21.4
19349.	7.20	371293.	13.0	4701850.	21.6
20731.	7.30	400746.	13.2	4923597.	21.8
22190.	7.40	432040.	13.4	5153632.	22.0
23730.	7.50	465259.	13.6	5392186.	22.2
25355.	7.60	500490.	13.8	5639493.	22.4
27068.	7.70	537824.	14.0	5895793.	22.6
28872.	7.80	577353.	14.2	6161327.	22.8
30771.	7.90	619174.	14.4	6436343.	23.0
32768.	8.00	663383.	14.6	6721093.	23.2
34868.	8.10	710082.	14.8	7015834.	23.4
37074.	8.20	759375.	15.0	7320825.	23.6
39390.	8.30	811368.	15.2	7636332.	23.8
41821.	8.40	866171.	15.4	7962624.	24.0
44371.	8.50	923896.	15.6	8299976.	24.2
47043.	8.60	984658.	15.8	8648666.	24.4
49842.	8.70	1048576.	16.0	9008978.	24.6
52773.	8.80	1115771.	16.2	9381200.	24.8
55841.	8.90	1186367.	16.4	9765625.	25.0
59049	9.00	1260493.	16.6	10162550.	25.2
62403.	9.10	1338278.	16.8	10572278.	25.4
65908.	9.20	1419857.	17.0	10995116.	25.6
69569.	9.30	1505366.	17.2	11431377.	25.8
73390.	9.40	1594947.	17.4	11881376.	26.0
77378.	9.50	1688742.	17.6	12345437.	26.2
81537.	9.60	1786899.	17.8	12823886.	26.4
85873.	9.70	1889568.	18.0	13317055.	26.6
90392.	9.80	1996903.	18.2	13825281.	26.8
95099 ,	9.90	2109061.	18.4	14348907.	27.0
100000.	10.0	2226203.	18.6	14888280.	27.2
110408.	10.2	2348493.	18.8	15443752.	27.4
121665.	10.4	2476099.	19.0	16015681.	27.6
133823.	10.6	2609193.	19.2	16604430.	27.8
146933.	10.8	2747949.	19.4	17210368.	28.0
161051.	11.0	2892547.	19.6	17833868.	28.2

Fifth Roots and Fifth Powers. (continued.)

Power.	No. or Root.	Power.	No. or Root.	Power.	No. or Root.
18475309.	28.4	28629151.	31.0	60466176.	36.0
19135075.	28.6	31013642.	31.5	64783487.	36.5
19813557.	28.8	33554432.	32.0	69343957.	37.0
20511149.	29.0	36259082.	32.5	74157715.	37.5
21228253.	29.2	39135393.	33.0	79235168.	38.0
21965275.	29.4	42191410.	33.5	84587005.	38.5
22722628.	29.6	45435424.	34.0	90224199.	39.0
23500728.	29.8	48875980.	34.5	96158012.	39.5
24300000.	30.0	52521875.	35.0	102400000.	40.0
26393634.	30.5	56382167.	35.5		

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Reciprocals, Circumferences and Circular Areas of Nos. from 1 to 1000.
(FROM CARNEGIE HAND BOOK.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ X \\ \text { Recip. } \end{gathered}$	No. = Dia.	
							Circ'm	Area.
1	1	1	1.0000	1.0000	0.00000	1000.000	3.142	0.7854
2	4	8	1.4142	1.2599	0.30103	500.000	6.283	3.1416
3	9	27	1.7321	1.4422	0.47712	333.333	9.425	7.0686
4	16	64	2.0000	1.5874	0.60206	250.000	12.566	12.5664
5	25	125	2.2361	1.7100	0.69897	200.000	15.708	19.6350
6	36	216	2.4495	1.8171	0.77815	166.667	18.850	28.2743
7	49	343	2.6458	1.9129	0.84510	142.857	21.991	38.4845
8	64	512	2.8284	2.0000	0.90309	125.000	25.133	50.2655
9	81	729	3.0000	2.0801	0.95424	111.111	28.274	63.6173
10	100	1000	3.1623	2.1544	1.00000	100.000	31.416	78.5398
11	121	1331	3.3166	2.2240	1.04139	90.9091	34.558	5.0332
12	144	1728	3.4641	2.2894	1.07918	83.3333	37.699	113.097
13	169	2197	3.6056	2.3513	1.11394	76.9231	40.841	132.732
14	196	2744	3.7417	2.4101	1.14613	71.4286	43.982	153.938
15	225	3375	3.8730	2.4662	1.17609	66.6667	47.124	176.715
16	256	4096	4.0000	2.5198	1.20412	62.5000	50.265	201.062
17	289	4913	4.1231	2.5713	1.23045	58.8235	53.407	226.980
18	324	5832	4.2426	2.6207	1.25527	55.5556	56.549	254.469
19	361	6859	4.3589	2.6684	1.27875	52.6316	59.690	283.529
20	400	8000	4.4721	2.7144	1.30103	50.0000	62.832	314.159
21	441	9261	4.5826	2.7589	1.32222	47.6190	65.973	346.361
22	484	10648	4.6904	2.8020	1.3424%	45.4545	69.115	380.133
23	529	12167	4.7958	2.8439	1.36173	43.4783	72.257	415.476
24	576	13824	4.8990	2.8845	1.38021	41.6667	75.398	452.389
25	625	15625	5.0000	2.9240	1.39794	40.0000	78.540	490.874
26	676	17576	5.0990	2.9625	1.41497	38.4615	81.681	530.929
27	729	19683	5.1962	3.0000	1.43136	37.0370	84.823	572.555
28	784	21952	5.2915	3.0366	1.44716	35.7143	87.965	615.752
29	841	24389	5.3852	3.0723	1.46240	34.4828	91.106	660.520
30	900	27000	5.4772	3.1072	1.47712	33.3333	94.248	706.858
31	961	29791	5.5678	3.1414	1.49136	32.2581	97.389	754.768
32	1024	32768	5.6569	3.1748	1.50515	31.2500	100.531	804.248
33	1089	35937	5.7446	3.2075	1.51851	30.3030	103.673	855.299
34	1156	39304	5.8310	3.2396	1.53148	29.4118	106.814	907.920
35	1225	42875	5.9161	3.2711	1.54407	28.5714	109.956	962.113
36	1296	46656	6.0000	3.3019	1.55630	27.7778	113.097	1017.88
37	1369	50653	6.0828	3.3322	1.56820	27.0270	116.239	1075.21
38	1444	54872	6.1644	3.3620	1.57978	26.3158	119.381	1134.11
39	1521	59319	6.2450	3.3912	1.59106	25.6410	122.522	1194.59
40	1600	64000	6.3246	3.4200	1.60206	25.0000	125.66	1256.64
41	1681	68921	6.4031	3.4482	1.61278	24.3902	128.81	1320.25
42	1764	74088	6.4807	3.4760	1.62325	23.8095	131.95	1385.44
43	1849	79507	6.5574	3.5034	1.63347	23.2558	135.09	1452.20
44	1936	85184	6.6332	3.5303	1.64345	$22.72 \% 3$	138.23	1520.53
45	2025	91125	6.7082	3.5569	1.65321	22.2222	141.37	1590.43

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

No	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ X \\ \text { Recip. } \end{gathered}$	No $=$ Dia.	
							Circ'm	Area.
46	2116	97336	6.7823	3.5830	1.66276	21.7391	144.51	1661.90
47	2209	103823	6.8557	3.6088	1.67210	21.2466	147.65	1734.94
48	23304	110592	6.9282	3.6342	1.68124	20.8333	150.80	1809.56
49	2401	117649	7.0000	3.6593	1.69020	20.4082	153.94	1885.74
50	2500	125000	7.0711	3.6840	1.69897	20.0000	157.08	1963.50
51	2601	132651	7.1414	3.6084	1.70757	19.6078	160.22	2042.82
52	2704	140608	7.2111	3.7325	1.71600	19.2308	163.36	2123.72
53	2809	148877	7.2801	3.7563	1.72428	18.8679	166.50	2206.18
54	2916	157464	7.3485	3.7798	1.73239	18.5185	169.65	2290.22
55	3025	166375	7.4162	3.8030	1.74036	18.1818	172.79	2375.83
56	3136	175616	7.4833	3.8259	1.74819	17.8571	175.98	2463.01
57	3249	185193	7.5498	3.8485	1.75587	17.5439	179.07	2551.76
58	3364	195112	7.6158	3.8709	1.76343	17.2414	182.21	2642.08
59	3481	205379	7.6811	3.8930	1.77085	16.9492	185.35	2733.97
60	3600	216000	7.7460	3.9149	1.77815	16.6667	188.50	2827.43
61	3721	226981	7.8102	3.9365	1.78533	16.3934	191.64	2922.47
62	3844	238328	7.8740	3.9579	1.79239	16.1290	194.78	3019.07
63	3969	250047	7.9373	3.9791	1.79934	15.8730	197.92	3117.25
64	4096	262144	8.0000	4.0000	1.80618	15.6250	201.06	3216.99
65	4225	274625	8.0623	4.0207	1.81291	15.3846	204.20	3318.31
66	4356	287496	8.1240	4.0412	1.81954	15.1515	207.35	3421.19
67	4489	300763	8.1854	4.0615	1.82607	14.9254	210.49	3525.65
68	4624	314432	8.2462	4.0817	1.83251	14.7059	213.63	3631.68
69	4761	328509	8.3066	4.1016	1.83885	14.4928	216.77	3739.28
70	4900	343000	8.3666	4.1213	1.84510	14.2857	219.91	3848.45
71	5041	357911	8.4261	4.1408	1.85126	14.0845	223.05	3959.19
72	5184	373248	8.4853	4.1602	1.85733	13.8889	226.19	4071.50
73	5329	389017	8.5440	4.1793	1.86332	13.6986	229.34	4185.39
74	5476	405224	8.6023	4.1983	1.86923	13.5135	23248	4300.84
75	5625	421875	8.6603	4.2172	1.87506	13.3333	235.62	4417.86
76	5776	438976	8.7178	4.2358	1.88081	13.1579	238.76	4536.46
77	5929	456533	8.7750	4.2543	1.88649	12.9870	241.90	4656.63
78	6084	474552	8.8318	4.2727	1.89209	12.8205	245.04	4778.36
79	6241	493039	8.8882	4.2908	1.89763	12.6582	243.19	4901.67
80	6400	512000	8.9443	4.3089	1.90309	12.5000	251.33	5026.55
81	6561	531441	9.0000	4.3267	1.90849	12.3457	254.47	5153.00
82	6724	551368	9.0554	4.3445	1.91381	12.1951	257.61	5281.02
83	6889	571787	9.1104	4.3621	1.91908	12.0482	260.75	5410.61
84	7056	592704	9.1652	4.3795	1.92428	11.9048	263.89	5541.77
85	7225	614125	9.2195	4.3968	1.92942	11.7647	267.04	5674.50
86	7396	636056	9.2736	4.4140	1.93450	11.6279	270.18	5808.80
87	7569	658503	9.3274	4.4310	1.93952	11.4943	273.32	5944.68
88	7744	681472	9.3808	4.4480	1.94448	11.3636	276.46	6082.12
89	7921	704969	9.4340	4.4647	1.94939	11.2360	279.60	6221.14

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ X \\ \text { Recip. } \end{gathered}$	No. = Dia.	
							Ci	.
				4.4814	1.95424	11.1111		6361.73
		753571	9.5394	4.4979	1.95904	10.9890		
92	8464	778688	9.5917	4.5144	1.96379	10.8696		6647.61
93	8649	804357	9.6437	4.5307	1.96848	10.7527	292.17	6792.91
94	8836	830584	9.6954	4.5468	1.97313	10.6388	295.31	6939.78
	9025	857375		4.56		10.5263		
	9216	884736	9.798	4.5789	1.98227	10.4167		
	9409	912673	9.8489	4.5947	198677	10.3093	304.73	7389.81
	9604	941192	9.8995	4.6104	1.99123	10. 2041	307.88	7542.96
99	980	970299	9.9499	4.6261	1.99564	10.1010		69
	100	1000	10.0	4.641	2.00000	10.0000	314.16	98
101	1020	1030301	10.0499	4.6570	2.00432	9.90099	317.30	8011.85
102	10404	1061208	10.0995	4.6723	2.00860	9.80392	320.44	171.28
103	10609	1092727	10.1489	4.6875	2.01284	9.70874	323.58	8332.29
104	10816	1124864	10.1980	4.7027	2.01703	9.61538	326.73	8494.87
105	11025	1157625	10.2470	4.717	2.02119	9.52381		. 01
106	11236	1191016	10.2956	4.7326	2.02531	9.43396	333.01	. 73
107	11449	1225043	10.3441	4.7475	2.02938	9.34579	336.15	02
108	11664	1259712	10.3923	4.7622	2.03342	9.25926	339.29	88
109	11881	1295029	10.4403	4.7769	2.03743	9.174		
	12	13	10	4.7		9.0		32
	12	13676	10.535	4.805	2.04	9.009	348.72	89
	12	140492	10.583	4.820	2.04	8.928	351.86	52.03
13	12	1442897	10.6301	4.8346	2.05308	8.84956	355.00	10028.7
114	129	1481544	10.6771	4.8488	2.05690	8.74193		10907.
115	1322	152087	10.723	4.8629	2.060	8.69		
116	13456	1560896	10.7703	4.8770	2.06446	8.62069	364.42	10568.3
117	13689	1601613	10.8167	3.8910	2.06819	8.54701	367.57	10751.3
118	13924	1643032	10.8628	4.9049	2.07188	8.47458	370.71	10935.9
119	14161	168515	10.908	4.9187	2.07555	8.4033		11122.0
	11	1728	10	4.9	2.07918	8.333		
	1464	177156	11.000	4.946	2.082	8.264	380.	11499.0
	1488	18158	11.045	4.959	2.	8.19672	383.	11689.9
123	15129	186086	11.0905	4.9782	2.08991	8.13008	386.42	11882.3
124	1537	190662	11.1355	4.98	2.09342	8.06152		
125	15625	1953125	11.1803	5.0000	2.09691	8.00000	392.70	12271.8
126	15876	2000376	11.2250	5.0133	2.10037	7.93651	395.84	12469.0
127	16129	204838	11.2694	5.0265	2.10380	7.87402	398.98	12667.7
128	16384	209715	11.3137	5.0397	2.10721	7.81250	402.12	12868.0
129	1664	214	11.357	5.0	2.1105	7.75194	405.2	13069.8
130	1690	219700	11.4018	5.0658	2.1139	7.692	408	13273.2
131	1716	224809	11.4455	5.0788	2.1172	7.633	411.5	13478.2
2	17424	2299968	11.4891	5. 0916	2.1205	7.57576	414.69	13684.8
133	17689	2352637	11.5326	5.1045	2.12385	7.51880	417.8	13892.9
134	1795	2406104	11.575	5.1172	2.1271	7.46269	420.	14102.6

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

			Square	Cube			No.	$=\mathrm{Dia}$
						Recip.	Circ'm	Area.
135	18225	2460375	11.6190	5.1299	2.13033	7.40741	424.12	14313.9
136	18496	2515456	11.6619	5.1426	2.13354	7.35294	427. 26	14526.7
137	18769	2571353	11.7047	5.1551	2.13678	7.29927	430.40	14741.1
138	19044	2628072	11.7473	5.1676	2.13988	7.24638	433.54	14957.1
139	19321	2685619	11.7898	5.1801	2.14301	7.19424	436.68	15174.7
140	19600	2744000	11.8322	5.1925	2.14613	7.14286	439.82	15393.8
141	19881	2803221	11.8743	5.2048	2.14922	7.09220	442.96	15614.5
142	20164	2863288	11.9164	5.2171	2.15229	7.04225	446.11	15836.8
143	20149	2924207	11.9533	5.2293	2.15534	6.99301	449.25	16060.6
144	20736	2985984	12.0000	5.2415	2.15836	6.94444	452.39	16286.0
145	21025	3048625	12.0416	5.2536	2.16137	6.89655	455.53	16513.0
146	21316	3112136	12.0830	5.2656	2.16435	6.84932	458.67	16741.5
147	21609	3176523	12.1244	5.2776	2.16732	6.80272	461.81	16971.7
148	21904	3241792	12.1655	5.2896	2.17026	6.75676	464.96	17203.4
149	22201	3307949	12.2066	5.3015	2.17319	6.71141	468.10	17436.6
150	22500	3375000	12.2474	5.3133	2.17609	6.66667	471.24	17671.5
151	22801	3442951	12.2882	5.3251	2.17898	6.62252	474.38	17907.9
152	23104	3511808	12.3288	5.3368	2.18184	6.57895	477.52	18145.8
153	23409	3581577	12.3693	5.3485	2.18469	6.53595	480.66	18385.4
154	23716	3652264	12.4097	5.3601	2.18752	6.49851	483.81	18626.5
155	24025	37288\%	12.4499	5.3717	2.19033	6.45161	486.95	18869.2
156	24336	3796416	12.4900	5.3832	2.19312	6.41026	490.09	19113.4
157	24649	3869893	12.5300	5.3947	2.19590	6.36943	493.23	19359.3
158	24964	3944312	12.5698	5.4061	2. 19866	6.32911	496.37	19606.7
159	25281	4019679	12.6095	5.4175	2.20140	6.28931	499.51	19855.7
160	25600	4096000	12.6491	5.4288	2.20412	6.25000	502.65	20106.2
161	25921	4173281	12.6886	5.4401	2.20683	6.21118	505.80	20358.3
162	26*44	4251528	12.7279	5.4514	2.20952	6.17284	508.94	20612.0
163	26569	4330747	12.7671	5.4626	2.21219	6.13497	512.08	20867.2
164	26896	4410944	12.8062	5.4737	2.21484	6.09756	515.22	21124.1
165	27225	4492125	12.8452	5.4848	2.21748	6.06061	518.36	21382.5
166	27556	4574296	12.8841	5.4959	2.22011	6.02410	521.50	21642.4
167	27889	4657463	12.9228	5.5069	2.22272	5.98802	524.65	21904.0
168	28224	4741632	12.9615	5.5178	2.22531	5.95238	527.79	22167.1
169	28561	4826809	13.0000	5.5288	2.22789	5.91716	530.93	22431.8
170	28900	4913000	13.0384	5.5397	2.23045	5.88235	534.07	22698.0
171	29241	5000211	13.0767	5.5505	2.23300	5.84795	537.21	22965.8
178	29584	5088448	13.1149	5.5613	2.23553	5.81395	540.35	23235.2
173	29929	5177717	13.1599	5.5721	2.23805	5.78035	543.50	28506.2
174	30276	5268024	13.1909	5.5828	2.24055	5.74713	546.64	23778.7
175	30625	5359375	13.2288	5.5934	2.24304	5.71429	549.78	24052.8
176	30976	5451776	13.2665	5.6041	2.24551	5.68182	552.92	24328.5
177	81329	5545233	13.3041	5.6147	2.24797	5.64972	556.06	24605.7
178	31684	5639752	13.3417	5.6252	2.25042	5.61798	559.20	24884.6
179	32041	5735339	13.3791	5.6357	2.25285	5.58659	562.35	25164.9

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ \text { X } \\ \text { Recip. } \end{gathered}$	No. $=$ Dia.	
							Circ'm	Area.
180	32100	5832000	13.4164	5.6462	2.25527	5.55556	565.49	25446.9
181	32761	5929741	13.4536	5.6567	2.25768	5.52486	568.63	25730.4
182	33124	6028568	13.4907	5.6671	2.26007	5.49451	571.77	26015.5
183	33489	6128487	13.5277	5.6774	2.26245	5.46448	574.91	26302.2
184	33856	6229504	13.5647	5.6877	2.26482	5.43478	578.05	26590.4
185	34225	6331625	13.6015	5.6980	2.26717	5.40541	581.19	26880.3
186	34596	6434856	13.6382	57083	2.26951	5.37634	584.34	27171.6
187	34969	6539203	13.6748	5.7185	2.27184	5.34759	587.48	27464.6
188	35344	6644672	13.7113	5.7287	2.27416	5.31915	590.62	27759.1
189	35721	6751269	13.7477	5.7388	2.27646	5.29101	593.76	28055.2
190	36100	6859000	13.7840	5.7489	2.27875	5.26816	596.90	28352.9
191	36481	6967871	13.8203	5.7590	2.28103	5.23560	600.04	28652. 1
192	36864	7077888	13.8564	5.7690	2.28330	5.20833	603.19	28952.9
193	37249	7189057	13.8924	5.7790	2.28556	5.18135	606.33	29255.3
194	37636	7301384	13.9284	5.7890	2.28780	5.15464	609.47	29559.2
195	38025	7414875	13.9642	5.7989	2.29003	5.12821	612.61	29864.8
196	38416	7529536	14.0000	5.8088	2.29226	5.10204	615.75	30171.9
197	38809	7645373	14.0357	5.8186	2.29447	5.07614	618.89	30480.5
198	39204	7762392	14.0712	5.8285	2.29667	5.05051	622.04	30790.7
199	39601	7880599	14.1067	5.8383	2.29885	5.02513	625.18	31102.6
200	40000	8000000	14.1421	5.8480	2.30103	5.00000	628.32	31415.9
201	40401	8120601	14.1774	5.8578	2.30320	4.97512	631.46	31730.9
202	40804	8242408	14.2127	5.8675	2.30535	4.95050	634.60	32047.4
203	41209	8365427	14.2478	5.8771	2.30750	4.92611	637.74	32365.5
204	41616	8489664	14.2829	5.8868	2.30963	4.90196	640.89	32685.1
205	42025	8615125	14.3178	5.8964	2.311^{175}	4.87805	644.08	33006.4
206	42436	8741816	14.3527	5.9059	2.31387	4.85437	647.17	33329.2
207	42819	8869743	14.3875	5.9155	2.31597	4.83092	650.31	33653.5
208	43264	8998912	14.4222	5.9250	2.31806	4.80769	653.45	33979.5
209	43681	9129329	14.4568	5.9345	2.32015	4.78469	656.59	34307.0
210	44100	9261000	14.4914	5.9439	2.32222	4.76190	659.73	34636.1
211	44521	9393931	14.5258	5.9533	2.32428	4.73934	662.88	34966.7
212	44944	9528128	14.5602	5.9627	2.32634	4.71698	666.02	35298.9
213	45369	9663597	14.5945	5.9721	2.32838	4.69484	669.16	35632.7
214	45796	9800344	14.6287	5.9814	2.33041	4.67290	$67 \% .30$	35968.1
215	46225	9938375	14.6629	5.9907	2.33244	4.65116	675.44	36305.0
216	46656	10077696	14.6969	6.0000	2.33445	4.62963	678.58	36643.5
217	47089	10218313	14.7309	6.0092	2.33646	4.60829	681.73	36983.6
218	47524	10360232	14.7648	6.0185	2.33846	4.58716	684.87	37925.3
219	47961	10503459	14.7986	6.0277	234044	4.56621	688.01	37668.5
220	48400	10648000	14.8324	6.0368	2.34242	4.54545	691.15	38013.3
221	48841	10793861	14.8661	60459	2.34439	4.52489	694.29	38359.6
222	49284	10941048	14.8997	6.0550	2.34635	4.50450	697.43	38707.6
223	49729	11089567	14.9332	6.0641	2.34830	4.48431	700.58	39057.1
224	50176	11239424	14.9666	6.0732	2.35025	4.46429	703.72	39408.1

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ X \\ \text { Recip. } \\ \hline \end{gathered}$	No. = Dia.	
							Circ'm	Area.
	5062	11390625	15.0000	6.0822	2.35218	4.44444		
226	5107	11543176	15.0333	6.0912	2.35411	4.42478	710.00	40115.0
227	51529	11697083	15.0665	6.1002	2.35603	4.40529	713.14	40470.8
228	51984	11852352	15.099	6.1091	2.85793	4.38596	716.28	40828.1
229	52441	12008989	15.1327	6.1180	2.35984	4.36681	719.42	41187.1
230	52900	12167000	15.1658	6.1269	2.36173	4.34783	722.57	41547.6
231	53361	12326391	15.1987	6.1358	2.36361	4.32900	725.71	41909.6
232	53884	12487168	15.2315	6.1446	2.36549	4.31034	728.85	42273.3
233	54289	12649337	15.2643	6.1534	2.36736	4.29185	731.99	42638.5
234	54756	12812904	15.2971	6.1622	2.36922	4.27350	735.13	43005.3
235	5522	129778	15.32	6.17	2.371	4.25532	738.	
236	55696	13144256	15.3623	6.179	2.37291	4.23729	741.42	43743.5
238	56169	13312053	15.3948	6.188	2.37475	4.21941	744.56	44115.0
238	56644	13481272	15.4272	6.1972	2.37658	4.20168	747.70	44488.1
239	57121	13651919	15.4596	6.2058	2.37840	4.18410	750.84	44862.7
240	57600	13824000	15.4919	6.2145	2.38021	4.16667	753.98	45238.9
241	58081	13997521	15.5242	6.2231	2.38202	4.14938	757.12	45616.7
242	58564	14172488	15.5563	6.2317	2.38382	4.13223	760.27	45996.1
243	59049	14348907	15.5885	6.2403	2.38561	4.11523	763.41	46377.0
244	59536	14526784	15.6205	6.2488	2.38739	4.09836	766.55	46759.5
245	6002	1470612	15.65	6.257	2.3891	4.081	769.69	47143.5
246	60516	14886936	15.6844	6.265	2.39094	4.06504	772.	47529.2
247	61009	15069223	15.7162	6.2743	2.392\%0	4.04858	775.97	47916.4
248	61504	15252992	15.7480	6.2828	2.39445	403226	779.12	48305.1
249	62001	15438249	15.7797	6.2912	2.39620	4.01606	782.26	48695.5
250	62500	15625000	15.8114	6.299	2.39794	4.00000	785.40	49087.4
251	63001	15813251	15.8430	6.3080	2.39967	3.98406	788.54	49480.9
252	63504	16003008	15.8745	6.3164	2.40140	3.96825	791	49875.9
253	64009	16194277	15.9060	6.3247	2.40312	3.95257	794.82	50272.6
254	645	16			2.	3.98701		
	65025	1658137	15.9687	6.3413	2.40654	3.92157	801.11	51070.5
256	65536	16777216	16.0000	6.3496	2.40824	3.90625	804.25	51471.9
257	66049	16974593	16.0312	6.3579	2.40993	3.89105	807.39	51874.8
258	66564	17173512	16.0624	6.3661	2.41162	3.87597	810.53	52279.2
259	67081	17373979	16.0935	6.3743	2.41330	3.86100	813.67	52685.3
260	6.600	17576000	16.1245	6.3825	2.414	3.84615	816.81	53092.9
26	68121	17779581	16.1555	6.390	2.41664	3.83142	819.96	53502.1
262	68644	17984728	16.1864	6.3988	241830	3.81679	823.10	53912.9
263	69169	18191447	16.2173	6.4070	2.41996	3.80228	826.24	54325.2
264	69696	18399744	16.2481	6.4151	2.42160	3.78788	829.38	54739.1
265	70225	18609625	16.2788	6.4232	2.42325	3.77358	832.52	55154.6
266	70756	18821096	16.3095	6.4312	2.42488	3.75940	835.66	55571.6
267	71289	19034163	16.3401	6.4393	2.42651	3. ${ }^{1} 4532$	838.81	55990.3
268	71824	19248832	16.3707	6.4473	2.42813	3.73134	841.95	56410.4
269	72361	19465	16	6.4	2.42	3.717	845	2.2

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.

(CONTINUED.)

o.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ X \\ \text { Recip. } \end{gathered}$	No. = Dla.	
							Circ'm	Ar
270	72900	19683000	164317	6.4	2.43136	3.70370		
271	73441	$199(12511$	16.4621	6.4713	2.43297	3.69004	851.37	57680.4
272	73984	20123648	16.4924	6.4792	2.43457	3.67647	854.51	58106.9
273	74529	20346417	16.5227	6.4872	2.43616	3.66300	857.66	58534.9
274	75076	20570824	16.5529	6.4951	2.43775	3.64964	860.80	
275	75	2079687	16.5	6.5	2.438	3.	863.94	
276	7617	21024576	16.61	6.51	2.44091	3.62319	867.08	
277	76729	21253933	16.64	6.518	2.44248	3.61011	870.22	60262.8
278	77784	21484952	16.673	6.5265	2.44404	3,59712	873.36	60698.7
279		21717639	16.703	6.5343	2.44560	3.58423	876.50	61136.2
280	78400	21952000	16.7332	6.5421	2.44716	3.57143	879.65	
281	78961	2:2188041	16.7631	6.5499	2.44871	3.55872	882.79	
282	79524	22425768	16.7929	6.55	2.45025	3.54610	885.93	. 0
283	80089	$2: 665187$	16.8226	6.5654	2.45179	3.5335	889.07	8
284	80656	22906304	16.8523	6.5731	2.45332	3.5211	892	
285	81	231	16	6.	2.4	3.50877	89	
28	81	2339365	16.911	6.6	2.456	3.49650	898.50	4
287	82	2363990	16.941	6.59	2.457	3.484	901.64	2.5
288	82944	238878 ¢	16.970	6.603	2.45939	3.4722	904.78	
89	83521	2413756		6.611	2.46090	3.46021		
290	84100	24389000	17.029	6.6191	2.46240	3.44828	911.06	
291	84681	24642171	17.0587	6.6267	2.46389	3.43643	914.20	66508.3
292	85264	24897088	17.0880	6.6343	2.46538	3.42466	917.35	
293	85849	25153757	17.1172	6.6419	2.46687	3.41297	920.49	
294	86436	25412184	17.1464	6.6494	2.46835	8.40136	923.63	
295	87025	25672375	17.1756	6.656	2.46982	3.38983	926.77	
296	87616	25934336	17.204	6.6644	2.4712	3.37838	929.91	
297	88209	26198078	17.233	6.6719	2.4727	3.36700	933.05	69279.2
298		28463592	17.2627	6.67	2.4742	8.35570	936.19	69746.5
299		26730899			2.475	3.34448	939.34	
100	90000	27000000	17.3205	6.69	2.4712	3.333	942.48	
301	90601	27270901	17.3494	6.7018	2.47857	3.32226	945.62	71157.9
302	91204	27543608	17.3781	6.7092	2.48001	3.31126	948.76	71631.5
303	91809	27818127	17.4069	6.7166	2.48144	3.30033	951.90	72106.6
304	92416	28094464	17.4356	6.7240	2.48287	3.28947		
305	93025	283726	17.46	6.73	2.484	3.278	958.19	
306	9363	28652616	17.492	6.738	2.4857	3.2679	961.	73541.5
307	94249	28934443	17.5214	6.74	2.4871	3.2573	964.	74023.0
308	94864	29218112	17.5499	6.753	2.48855	3.24675	967.61	74506.0
309	95481	29503629	17.578	6.760	2.4899	3.23625	970.	
310	96100	29791000	17.6068	6.7679	2.49136	3.22581	973.89	75476.8
311	96721	30080231	17.6352	6.7752	2.49276	3.21543	977.04	75964.5
312	97344	30371328	17.6635	6.7824	2.49415	3.20513	980.18	764
313	97969	30664297	17.6918	6.7897	2.49554	3.19489	983.32	76944.7
314	98596	30959144	17.7200	6.796	2.4969	3.1847	986.4	77437.1

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

o.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ \times \\ \text { Recip } \end{gathered}$	No $=$ Dia.	
							Circ'm	Ar
	998	31554	17.7	6.8113	2.49969	3.16456	992.74	
	100489	31855013	17.8045	6.8185	2.50106	3.15457		
	101124	32157432	17.8326	6.8256	2.50243	3.14465	999.03	79422.6
319	101761	32461759	17.8606	6.8328	2.50379	3.13480	1002.2	79922.9
						3.1		
321		330		6.8470	2.506	3.11		
322	103684	33388248		6.8	2.507	3.105		81433.2
323	104329	33698267	17.9722			3.09598	1014.7	81939.8
324	104978	34012224	18.0000	6.8683	2.51055	3.08642		82448.0
						3.07692		
	106276	34645	18.05	6.8824	2.51322	3.06749	1024.2	83469.0
	106929	34965	18.08	6.8894	2.514	3.05810	1027.3	83981.8
328	107584	3528	18.110	6.896	2.51587	3.04878	1030.4	84496.3
29					2.51720			
331	109561	36264691	18.193	6.917		3.	1039.9	0
332	110224	36594368	18.220	6.9244	2.52114			86569.7
333	110889	36926037	18.2483	6.9313	2.52244	3.00300	1046.2	87032.0
334				6.9382	2.52375	2.99401	1049.3	87615.9
								88141.3
	112	379	18	6.9	2.52	2.9		
	113569	38272	18	6.958	2.527			89196.9
2	114244	38614472	18.38	6.965	2.52			
339								
311	115600	39304000						
341	116281	39651821	18.4662	69864	2.53275	2.932	1071.3	
34.	116964	40001688	18.4932	6.9932	2.53403	2.9239	1074.4	91863.3
343	117649	40353607	18.5203	7.0000	2.53529	2.91545	1077.6	92401.3
34								
	119716	4142173	18.6011	7.0203	2.539	2.890	1087.0	94024.7
347	120409	41781923	18.6278	7.0271	2.540	2.8	1090.1	.
348	121104	42144192	18.6548	7.0338	2.5415		1093.3	
349	121801	42508549	18.6815	7.0106	2.51283	2.86		
350	122500	42875000	18.7083	7.0473	2.54407	2.85744	1109.6	3011.3
351	123201	43243551	18.7350	7.0540	2.54531	2.84900	1102.7	96761.8
	123904	43614208	18.7617	7.0607	2.54654	2.8409	1105.8	97314.0
35	1246	4398	18.7883	¢ 7.0674	2.54777	2.83286	1109.0	97867.7
35			18.8149	7.0740	2.549	2.82486	1112.1	
355	126025	44738875	18.8414	7.0807	2.55023	2.81690	1115.3	98979.8
356	126736	45118016	18.8680	7.0873	255145	2.80899	1118.4	99538. 2
357	127449	45499293	18.8944	7.0940	2.55267	2.80112	1121.5	100098
358	128164	45882712	18.9209	7.1006	2.55388	2.79330	1124.7	100660
359	12888	4626	18.947	7.107	2.555	2.7855	1127	1012

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ X \\ \text { Recip. } \end{gathered}$	No. $=$ Dia.	
							Circ'm	Area.
360	129600	46656	18.9	7.1138	2.55630	2.		101788
361	130321	47045881	19.000	7.1204	2.55751	2.77		
362	131044	47437928	19.0263	7.1269	2.55871	2.76	1137.3	102922
363	131769	47832147	19.0526	7.1335	2.55991	2.75482	1140.4	103491
364	132496	48228544	19.0788	7.1400	2.56110	2.747×5	1143.5	104062
365	1332	48627	19.1	7.1466	2.56	2.73		104635
366	13395	49027	19.131	7.1531	2.563	2.73	1149.8	105209
367	13468	494308	19.1572	7.159	2.56	2.724	1153.0	105785
808	135424	49836032	19.1833	7.1661	2.56585	2.71739	1156.1	106362
369	136161	50243409	19.2094	7.1726	2.56703	2.71003	1159.2	106941
310	136900	50653000	19.2354	7.1791	2.56820	2.70270	1162.4	107521
371	137641	51064811	19.2614	7.1855	2.56937	2.69542	1165.5	108103
372	138334	51478818	19.2873	7.1920	2.57054	2.68817	1168.7	108687
$3 \% 3$	139129	51895117	19.3132	7.1984	2.57171	2.68097	1171.8	109272
374	139876	52313624	19.339	7.2048	2.57287	2.6738	1175.0	109858
375	140	5273	19.3	7.2	2.5	2.6		110447
376	1413	5315737	19.390	7.217	2.575	2.659	1181.2	111036
377	14212	5358263	19.41	7.22	2.5763	2.652	1181.4	111628
8	142884	54010152	19.4422	7.2304	2.57749	2.6155	1187.5	112221
9	143641	54439939	19.4679	7.2368	2.57864	2.638		112815
380	144400	54872000	19.493	7.2432	2.57978	2.631	1193.8	
381	145161	55306341	19.5192	7.2495	2.58093	2.62467	1196.9	114009
382	145924	55742968	19.5448	7.2558	2.58206	2.61780	1200.1	114608
383	146689	56181887	19.5704	7.2622	2.58320	2.61097	1203.2	115209
384	147456	56623104	19.5959	7.2685	2.58433	2.60417	1206.4	115812
385	14822	57066625	19.621	7.274	2.5	2.597	1209.5	116416
386	148996	57512456	19.646	7.2811	2.586	2.59	1212.7	117021
387	149769	57960603	19.672	7.2874	2.5877	2.583	1215.8	117628
388	150544	58411072	19.6977	7.2936	2.5888	2.57732	1218.9	118237
389	151321	58863869	19.723	7.2999	2.58995	2.570		
390	152100	59319000	19.7484	7.3061	2.59106	2.56410	1225.2	119459
391	152881	59776471	19.7737	7.3124	2.59218	2.55755	1228.4	120072
392	153664	60236288	19.7990	7.3186	2.59329	2.55102	1231.5	120687
393	154449	60698457	19.8242	7.3248	2.59439	2.54453	1234.6	121304
394	155236	61162984	19.8494	7.3310	2.59550	2.53807	1237.8	121922
395	1560	6162987	19.874	7.3372	2.59660	2.581	1240.9	122542
396	15681	6209913	19.8997	7.343	2.597	2.525	1244	123163
397	157609	62570773	19.9249	7.349	2.598	2.5188	1247	123786
398	158404	63044792	19.9499	7.3558	2.59988	2.51256	1250.4	124410
399	159201	63521199	19.9750	7.3619	2.6009	2.50627	1253	125036
400	160000	64000000	20.0000	7.3681	2.60206	2.50000	1256.6	125664
401	160801	64481201	20.0250	7.3742	2.60314	2.49377	1259.8	126293
402	161604	64964808	20.0499	7.3808	2.60423	2.48756	1262.9	126923
403	162409	65450827	20.0749	7.3864	2.60531	2.48139	1266.1	127556
404	163216	6593926	20.099	7.392	2.6063	2.4752	1269.2	128190

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ X \\ \text { Recip. } \end{gathered}$	No. = Dia.	
							Circ'm	Area.
405	164025	66430125	20.1246	7.3986	2.60746	2.46914	1272.3	128825
406	164836	66923416	20.1494	7.4047	2.60853	2.46305	1275.5	129462
407	165649	67419143	20.1742	7.4108	2.60959	2.45700	1278.6	130100
408	166464	67917312	20.1990	7.4169	2.61066	2.45098	1281.8	130741
409	167281	68417929	20.2237	7.4229	2.61172	2.44499	12849	131382
410	168100	68921000	20.24	7.4290	2.612	2.43902	1288.1	132025
11	168921	69426531	20.2731	7.4350	2.61384	2.43309	1291.2	132670
412	169744	69934528	20.2978	7.4410	2.61490	2.42718	1291.3	133317
413	170569	70444997	20.3224	7.4470	2.61595	2.42131	1297.5	133965
414	171396	70957944	20.3470	7.4530	2.61700	2.41546	1300.6	134614
415	172225	71473375	20.3715	7.4590	2.61805	2.40964	1303.8	135265
416	173056	71991296	20.3961	7.4650	2.61909	2.40385	1306.9	135918
417	173889	78511713	20.4206	7.4710	2.62014	2.398	1310.0	186572
418	174724	73034632	20.4450	7.4770	2.62118	2.39234	1313.2	137228
419	175561	73560059	20.4695	7.4829	2.62221	2.38664	1316.8	137885
0	176400	74088000	20.4939	7.4889	2.62325	2.38095	1319.5	138544
421	177241	74618161	20.5183	7.4948	262428	2.37530	1322.6	139205
422	178084	75151448	20.5426	7.5007	2.62531	2.36967	1325.8	139867
423	:789\%9	75686967	20.5670	7.5067	2.62634	$2.3640 \sim$	1328.9	140531
424	179776	76225024	20.5913	7.5126	2.62737	2.35849	1332.0	141196
425	180625	76765625	20.6155	7.5185	2.62839	2.35294	1335.2	141863
426	181476	77308776	20.6398	7.5244	2.62941	2.34742	1338	142531
427	182329	77854483	20.6640	7.5302	2.63043	2.34192	1341.5	143201
428	183184	78402752	20.6882	7.5361	2.63144	2.33645	1344.6	143872
429	184041	78953589	20.7123	7.5420	2.63246	2.38100	1347.7	141545
430	184900	79507000	20.7364	7.5478	2.63347	2.32558	1350.9	145220
431	185761	80062991	20.7605	7.5537	2.63448	2.32019	1354.0	145896
432	186624	80621568	20.7846	7.5595	2.63548	2.31482	1357.2	146574
433	187489	81182737	20.8087	7.5654	2.63649	2.30947	1360.3	147254
434	188356	81746504	208327	7.5712	2.63749	2.30415	1363.5	147934
435	189225	82312875	20.856	7.5770	2.63849	2.29885	1366.6	148617
436	190096	82881856	20.8806	7.5828	2.63949	2.29358	1369.7	149301
437	190969	83453453	20.9045	7.5886	2.64048	228833	1372.9	149987
438	191844	84027672	20.9281	7.5944	2.64147	2.28311	1376.0	150674
439	192721	84604519	20.9523	7.6001	2.64246	2.27790	1379.2	151363
440	193600	85184000	20.9762	7.6059	2.64345	2.27273	1382.3	152053
441	194481	85766121	21.0000	7.6117	2.64444	$2.26 \pi 57$	1385.4	152745
442	195364	86350888	21.0238	7.6174	2.64542	226244	1388.6	153439
443	196249	86938307	21.0476	7.6232	2.64640	2.25734	1391.7	154134
444	197136	87528384	21.0713	7.6289	2.64738	2.25225	1394.9	154830
445	198025	88121125	21.0950	7.6346	2.64836	2.24719	1398.0	155528
446	198916	88716536	21.1187	7.6403	2.64933	2.24215	1401.2	156228
447	199809	89314623	21.1424	7.6460	2.65031	2.23714	1404.3	156930
448	200704	89915392	21.1660	7.6517	2.65128	2.23214	1407.4	157633
449	201601	90518848	21.1896	7.6574	2.6522	2.2271	1410.	158337

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ \times \\ \text { Recip. } \end{gathered}$	No. = Dia.	
							Circ'm	Area.
450	202500	9112500	21.2132	7.6631	2.65321	2.22222		
451	203401	91733851	21.2368	7.6688	2.65418	2.21730		159751
452	204304	92345408	21.2603	7.6744	2.65514	2.21239	142	160460
453	205209	92959677	21.2838	7.6801	2.65610	2.20751	1423.1	161171
454	206116	93576664	21.3073	7.6857	2.65706	2.20264	1426.3	161883
	207025	94196375	21.3307	7.6914	2.65801	2.19780	1429.4	162597
456	207936	94818816	21.3542	7.6970	2.65896	2.19298	1432.6	163313
457	208849	95443993	21.3776	7.7026	2.65992	2.18818	1435	164030
458	209764	96071912	21.4009	7.7082	266087	2.18341	1438.9	164748
459	210681	96702579	21.4243	7.7138	2.66181	2.17865	1442.0	165468
460	21160	9733600	21.4476	7.7194	2.66	2.17		166190
461	212521	97972181	21.4709	7.7250	2.663	2.16920	1448.3	166914
462	213444	98611128	21.4942	7.730	2.66464	2.1645	1451	167639
463	214369	99252847	21.5174	7.7362	2.66558	2.1598	1454	168365
			21.5407	7.7418	2.66652	2.1551	1457.	
465	216225	100544625	21.5639	7.7473	2.66745	2.15054	1460.8	169823
466	217156	101194696	21.5870	7.7529	2.66839	2.14592	1464.0	170554
467	218089	101847563	21.6102	7.7584	2.66932	2.14133	1467.	171287
468	219024	102503232	21.6333	7.7639	2.67025	2.13675	1470.3	172021
469	219961	108161709	21.6564	7.7695	2.67117	2.13220	1473.4	172757
470	220900	10382300	21.679	7.7750	2.67210	2.127	1476.5	173494
471	221841	104487111	21.7025	7.7805	2.673	2.12314	1479	174234
472	222784	105154048	21.725	7.7860	2.67394	2.118	148	174974
73	223729	105823817	21.7486	7.7915	2.67486	2.1141	1486	175716
74	224676	106496424	21.7715	7.7970	2.67578	2.10971	1489.1	
475	225625	107171875	21.7945	7.8025	2.67669	2.10526	1492.3	177205
476	226576	107850176	21.8174	7.8079	2.67761	2.10084	1495	177952
477	227529	108531333	21.8403	7.8134	2.67852	2.09644	1498.5	178701
478	228484	109215352	21,8632	7.8188	2.67943	2.09205	1501.7	179451
479	229441	109902239	21.8861	7.8243	2.68034	2.08768	1504.8	180203
	230400	110592000	21.9089	7.829	2.68124	2.08333	1508.0	180956
	231361	111284641	21.9317	7.8352	2.682	2.07900		181711
482	232324	111980168	21.9545	7.8406	2.68305	2.07469	1514.3	182467
483	233289	112678587	21.9773	7.8160	2.68395	2.07039	1517.4	183225
484	234256	113379904	22.0000	7.8514	2.68485	2.06612	1520.5	183984
485	235225	114084125	22.0237	7.8568	2.68574	2.06186	1523.7	184745
486	236196	114791256	22.0454	7.8622	2.68664	2,05761	1526.8	185508
487	237169	115501303	22.0681	7.8676	268753	2.05339	1530.0	1862\%2
488	238144	116214272	22.0907	78730	2.68842	2.04918	1533.1	187038
489	239121	116930169	22.1133	7.8784	2.68931	2.04499	1536.2	187805
490	240100	117649000	22.1359	7.8837	2.69020	2.04082	1539.4	188574
491	241081	118370771	22.1585	7.8891	2.69108	2.03666	1542.5	189345
492	242064	119095488	22.1811	7.8944	2.69197	2.03252	1545.7	190117
493	243049	119823157	22.2036	7.8998	2.69285	2.02840	1548.8	190890
494	244036	12055378	22.2261	7.905	2.69373	2.02429	1551.	191665

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ \text { X } \\ \text { Recip. } \\ \hline \end{gathered}$	No. = Dia.	
							Circ'm	Area.
48	245025	121287375	22.2486	7.9105	2.69461	2.02020		192442
496	246016	122023936	22.2711	7.9158	2.69548	2.01613	1558.2	193221
497	247009	122763473	22.2935	7.9211	2.69636	2.01207	1561.4	194000
498	248004	123505992	22.3159	7.9264	2.69723	2.00803	1564.5	194782
499	249001	124251499	22.3383	7.9817	2.69810	2.00401	1567.7	195565
500	250000	1250000	22.360	7.93	2.698	2.000	1570.8	196350
501	251001	125751501	22.3830	7.942	2.69984	1.996	1573.9	197136
502	252004	12650600	22.4054	7.947	2.70070	1.992	1577.1	197923
503	253009	127263527	22.4277	7.9528	2.70157	1.98807	1580.2	198713
504	254016	128024064	22.4499	7.9581	2.70243	1.98413	1583.4	199504
505	255025	128787625	22.4722	7.9634	2.70329	1.98020	1586.5	200296
506	256036	129554216	22.4944	7.9686	2.70415	1.97629	1589.7	201090
507	257049	130323843	22.5167	7.9739	2.70501	1.9723	1592.8	201886
508	258064	131096512	22.5389	7.9791	2.70586	1.9685	1595.9	202683
509	259081	131872229	22.5610	7.9843	2.70672		1599.1	203482
510	260	13	22	7.9	2.70757	1.96	1602.2	204282
511	261121	133432831	22.6053	7.994	2.70842	1.9560	1605.4	205084
512	262144	134217728	22.6274	8.000	2.70927	1.95312	1608.5	205887
513	263169	135005697	22.6495	8.0052	2.71012	1.94932	1611.6	206692
514	264196	135796744	22.6716	8.0104	2.71096	1.94553	1614.8	207499
515	265225	135590875	22.6936	8.015	2.71181	1.941	1617.9	208307
516	266256	137388096	22.7156	8.0208	2.712	1.987	1621	209117
517	267289	138188413	22.7376	8.0260	2.71349	1.934	1624.2	209928
518	268324	138991832	22.7596	8.0311	2.71433	1.93050	1627.3	210741
519	269361	139798359	22.7816	8.036	2.	1.		
	270400			8.0415	2.71600	192308	1633.6	212372
521	271441	141420761	22.8254	8.0466	2.71684	1.91939	1636.8	213189
	$2 \pi 2484$	142236648	22.8473	80517	2.71767	191571	1639.9	214008
523	273529	143055667	22.8692	8.0569	2.71850	1.91205	1643.1	214829
524	274576	143877824	22.8910	8.0620	2.71933	1.90840		215651
525	275625	14470312	22.912	8.067	2.720	1.90476	1649.3	216475
526	276676	145531576	22.934	8.07	2.7209	1.901	1652.5	217301
5	277729	146363183	22.9565	8.077	2.72181	1.89753	1655.6	218128
528	278784	147197952	22.978	8.08	2.72263	1.89394	1658.8	218956
529	27981	14	23.000	8.087	2.7234	1.89036	1661.9	219787
	280900	148877000	23.0217	8.0927	2.72428	1.88679	1665.0	220618
531	281961	149721291	23.0434	8.0978	2.72509	1.88324	1668.2	221452
532	283024	150568768	23.0651	8.1028	2.72591	1.87970	1671	222287
533	284089	151419427	23.0868	8.1079	2.72673	1.87617	1674.5	223123
534	28515	152273304	23.1084	8.1130	2.7275	1.872	1677.6	223961
	28622	153130375	23.1301	8.1180	2.72835	1.86916	1680.8	224801
536	287296	153990656	23.1517	8.1231	2.72916	1.86567	1683.9	225642
537	288369	154854153	23.1733	8.1281	2.72997	1.86220	1687.0	226484
538	289444	155720872	23.1948	8.1332	2.73078	1.85874	1690.2	227329
539	290521	156590819	23.2164	8.1382	2.7315	1.85529	1693.3	228175

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ \text { X } \\ \text { Recip. } \end{gathered}$	No. = Dia.	
							Circ'm	Area.
	291600	157464000	23.2379	8.1433	273239	1.85185	1696.5	229022
1	292681	158340421	23.2594	8.1483	2.73320	1.84843		229871
542	293764	159220088	23.2809	8.1533	2.73400	1.84502	170	230722
543	294849	160103007	23.3024	8.1583	2.73480	1.84162	1705.9	231574
544	295936	160989184	23.3238	8.1633	2.73560	1.8382	1709.0	232428
545	2970	16187	23.3	8.1	2.73640	1.83	1712.2	233283
546	298116	1627713	23.366	8.17	2.73719	1.83150	1715.3	234140
	299209	1636673	23.388	8.1783	2.73799	1.82815	1718.5	234998
548	300304	16456659	23.4094	8.1833	1-73878	1.82482	1721.6	235858
549	301401	165469149	23.4307	8.1882	2.73957	1.82149	1724.7	236720
550	302500	166375000	23.4521	8.1932	2.74036	1.818	1727.9	237583
551	303601	167284151	23.4734	8.1982	2.74115	1.81		238448
552	304704	168196608	23.4947	8.2031	2.74194	1.81159	1734.2	239314
553	305809	169112377	23.5160	8.2081	2.74273	1.80832		240182
554	306916	170031464	23.5372	8.2130	2.74351	1.80505		241051
	30	1709	23	8.2	2.	1.8		241922
556	30913	17187961	23.5797	8.2229	2.74507	1.798		242795
	31024	17280869	23.6008	8.2278	2.74586	1.7953	1749.9	243669
558	311364	173741112	23.6220	8.2327	274663	1.79211	1753.0	244545
559	312481	174676879	23.6432	8.2377	2.74741	1.78891	1756.2	245422
560	313600	175616000	236643	8.2426	2.74819	1.78571	1759.3	246301
561	314721	176558481	23.6854	8.2475	2.74896	1.78253	1762.4	247181
562	315844	177504328	23.7065	8.2524	2.74974	1.77936	1765.6	248063
563	316969	178453547	23.7276	8.2573	2.75051	1.77620	1768.7	248947
564	318096	179406144	23.7487	8.2621	2.751	1.77305		
	3192	18636212	23.769	8.267	2.752	1.769	1775.0	250719
	320356	18132149	23.790	8.2719	2.752	1.766	1778.1	251607
	321489	18288426	23.8118	8.2768	2.75358	1.76367	1781.3	252497
808	322624	183250432	23.8328	8.2816	2.75435	1.76056	1784.4	253388
569	323761	184220009	23.8537	8.2865	2.75511	1.75747	1787.6	
570	324900	185193000	23.8747	8.2913	2.755	1.75439	1790.7	255176
571	328041	186169411	23.8956	8.2962	2.75664	1.75131	1793.9	256072
572	327184	187149248	23.9165	8.3010	2.75740	1.74825	1797.0	256970
573	328329	188132517	23.937	8.3059	2.75815	1.74520	1800.1	257869
574	329476	189		8.31	2.758	1.742		
	330625	190109375	23.9792	8.8155	2.75967	1.73913	1806.4	259672
576	331776	191102976	24.0000	8.3203	2.76042	1.73611	1809.6	260576
518	332929	192100033	24.0208	8.3251	2.76118	1.73310	1812.7	261482
578	334084	193100552	24.0416	8.3300	2.76193	1.73010	1815.8	262389
579	335241	194104539	24.0624	8.33	2.76268	1.78712	1819.0	263298
580	336400	195112000	24.0832	8.3396	2.76343	1.72414	1822.1	264208
581	337561	196122941	24.1039	8.3443	2.76418	1.72117	1825.3	265120
582	338724	197137368	24.1247	8.3491	2.76492	1.71821	1828.4	266033
583	3398	198155287	24.1454	8.3539	2.76567	1.71527	1831.6	266948
584	3410	19917670	24.1	8.35	2.76641	1.71233	1834	267

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.

(CONTINUED.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ \times \\ \text { Recip. } \end{gathered}$	No. $=$ Dia,	
							Circ'm	Area.
58	3422	20020		8.3634	2.76716	1.70940		268783
58	34339	201230056	24.2074	8.3682	2.76790	1.70649	1841.0	269701
58	344569	212262003	24.2281	8.3730	2. 76864	1.70358	1844.1	270624
588	34574	203297472	24.2487	8.3777	2.76938	1.70068	1847.3	271547
589	346921	204336469	24.2693	8.3825	2.77012	1.69779	1850.4	
590	348100	205379000	24.2899	8.38	2.77085	1.69492		
591	349281	206425071	24.3105	8.3919	2.77159	1.69205	1856.7	274325
592	350464	207474688	24.3311	8.3967	2.77232	1.68919	1859.8	275254
593	351649	208527857	24.3516	8.4014	2.77305	1.68634	1863.0	276184
594	352836	209584584	24.3721	8.4061	2.77379	1.68350	1866.1	277117
	35	210	24.	8.	2.77	1.680	1869.3	278051
596	35521	21170873	24.418	8.415	2.77525	1.677	1872.4	278986
597	356409	212776173	24.433	8.420	2.7759	1.675	1875.5	279923
-	357604	213847192	24.4540	8.4249	2.77670	1.67224	1878.7	280862
99	358801	214921799	24.4745	8.4296	2.77743	1.66945		
600	360000	216000000	24.4949	8.4343	2.77815	1.666	1885.0	282743
601	361201	217081801	24.5153	8.4390	2.77887	1.66389	1888.1	283687
602	362404	218167208	24.5357	8.4437	2.77960	1.66113	1891.2	284631
603	363609	219256227	24.5561	8.4484	2.78032	1.65837	1894.4	285578
604	364816	220348864	24.5764	8.4530	2.78104	1.65563	1897.5	286526
	366		24.5	8.4	2.78176		1900.7	
	367236	222545016	24.6171	8.4623	2.78247	1.650	1903.8	288426
607	368449	223648543	246374	8.4670	2.78319	1.647	1907	289879
608	369664	224755712	24.6577	8.4716	2.78890	1.64474	1910.1	290333
609	370881	225866529	24.6779	-8.4763	2.78462	1.64204	1913.2	
610	372100	226981000	24.698	8.48	2.7	1.6	1916.4	292347
611	373321	228099131	24.718	8.4856	2.78604	1.63666	1919	293206
61	374544	229220928	24.73	8.4902	2.78675	1.633	1922.	294166
613	37576	23034639	24.758	8.4948	2.78746	1.63132	1925.8	295128
61		2314755	2		2.		19	
			24.7992	8.5040	2.78888	1.6260	1932.1	29021
616	379456	233744896	24.8193	8.5086	2.78958	1.62338	1935.2	298024
617	380689	234885113	24.8395	85132	2.79029	1.62075	1938.4	298992
618	381924	236029032	24.8596	8.5178	2.79099	1.61812	1941.5	299962
619	383161	237176	24.8797	8.52	2.79169	1.61551	1944.7	
620	384	238328000	24.899	8.527	2.792	1.612	1947.8	301907
621	38564	239483061	24.9199	8.531	2.79309	1.6103	1950.9	302882
62	386884	240641848	24.9399	8.536	2.79379	1.60772	1954.1	303858
623	388129	241804367	24.9600	8.5408	2.79449	1.60514	1957.2	304836
624	389376	242970624	24.9800	8.5453	2.79518	1.60256	1960.4	305815
625	390625	244140625	25.0000	8.5499	2.79588	1.60000	1963.5	306796
626	391876	245314376	25.0200	8.5544	2.79657	1.59744	1966.6	307779
62	393129	246491883	25.0400	8.5590	2.7972'	1.59490	1969.8	308763
628	394384	247673152	25.0599	8.56	2.797	1.59236	1972.9	309748
29	3956	48858	25.0	8.56	2.798	1.589	197	310

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ X \\ \text { Recip. } \end{gathered}$	No. = Dia.	
							Circ'm	Area.
	396900	250047000	25.0998	8.5	2.79934	1.		31172
631	398161	251239591	25.1197	8.5772	2.80003	1.5847	1982.4	312715
632	399424	252435968	25.1396	8.5817	2.80072	1.58	1985.	313707
633	400689	25363613%	25.1595	8.5862	$2.8 \cup 140$	1.57978	1988.	314700
634	401956	254840104	25.1794	8.5907	2.80209	1.577	1991.8	315696
63	4032	2560	25.1	85	2.80	1.57	19949	316692
63	404496	257259456	25.219	8.5997	2.803	1.5	1998.1	317690
63	405769	258474853	25.2389	8.60	2.8041	1.569	2001.2	318690
638	407044	259694072	25.258	8.608	2.80482	1.56740	2004.3	2
639	408321	260917119	25.278	8.6132	2.80550	1.56495	2007.5	5
640	409	262144000	25.2982	8.6177	2.80618	1.562	2010.6	321699
641	410881	263374721	25.3180	8.6222	280686	1.5600		322705
642	412164	264609288	25.3377	8.6267	2.80754	1.5576	2016.9	323713
643	413449	265847707	25.3574	8.6312	2.80821	1.55521	2020.0	324722
644	414736	267089984	25.3772	8.6357	2.808	1.552	2023.2	
645	41602		25.			1.		45
646	417816	269586136	25.4165	8.64	2.8102	1.54	2029	327759
647	418609	270840023	25.4362	8.6490	2.81090	1.545	2032.6	75
648	419904	272097792	25.4558	8.653	2.81158	1.54321	2035.8	329792
649	421201	273359		8.657	2.81224	154083	2038.9	
		27462500	25.4951	8.6624	2.81291	1.53846	2042.0	331831
	423801	275894451	25.5147	8.6668	2.81358	1.53610	2045	332853
	425104	277167808	25.5313	8.6713	2.81425	1.53374		333876
653	426409	278445077	25.5539	8.6757	2.81491	1.53139	2051.5	334901
654	427716	27972626	25.5734	8.6801	2.81558	1.52905		
655	42902	28101137	25.593		2.816	1.52672	205	
656	430336	282300416	25.6125	8.689	2.8169	1.524	20	337985
757	431649	283593393	256320	8.693	2.8175	1.5220	206	339016
758	432964	284890312	25.6515	.	2.81823	1.51976	2067.2	340044
65	43					1.51745		
		28749600	25.6905	8.7066	2.81954	1.51515	2073.5	342119
	436921	288804781	25.7099	8.7110	2.82020	1.51286	2076.	343157
662	438244	290117528	257294	8.7154	2.82086	1.51057	2079.7	344196
663	439569	291434:247	25.7488	8.7198	2.82151	1.50830	2082.9	345237
664	440896	292754944	25.7682	8.7241	2.82217		2086.0	T
66	14222	294079	25.7	8.7	2.822	1.503		
	443	29540829	25.807	8.732	2.823	1.501	2092	348368
	444889	29674096	25.8263	8.737	2.8.4	1.49925	2095	349415
668	446224	298077632	25.8457	8.7416	2.82478	1.49701	2098.6	350464
669		29941830	25.865	8.746	2.825	1.49477	2101.7	
670	448900	300763000	25.8844	8.7503	2.82607	1.49254	2104.9	352565
671	450241	302111711	25.9037	8.7547	2.89672	1.49031	2108.0	353618
672	451584	303464448	25.9230	8.7590	2.82737	1.48810	2111.2	354673
673	452929	304821217	25.9422	8.7634	2.82802	1.48588	2114.3	355730
674	454276	30618202	25.961	8.7677	2.8286	1.4836	2117	356788

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ \times \\ \text { Recip } \end{gathered}$	No. $=$ Dia.	
							Circ'm	Area.
		3075	25.9868	8.7721	2.82930	1.48148		77
676	456976	308915776	26.0000	8.7764	2.82995	1.47929		358908
677	458329	310288783	26.0192	8.7807	2.83059	1.47711	2126.9	359971
678	459684	311665752	$26 . C 384$	8.7850	2.83123	1.47493	2130.0	361035
679	461041	313046839	26.0576	8.7893	2.83187	1.47875	2133.1	362101
680	462400	314432000	26.0768	8.7937	2.83251	1.47059	2136.3	363168
68	463761	315821241	26.0960	8.798	2.83315	1.46843	2139.4	364237
682	465124	317214568	26.1151	8.8023	2.83378	1.46628	2142.6	365308
683	466489	318611987	26.1343	8.8066	2.83442	1.46413		366380
68	467856	320013504	26.1534	8.8109	2.83506	1.46199	2148.9	
	469225	32141912	26.1725	8.8152	2.83569	1.459	2152.0	368528
68	470596	322828856	26.1916	8.8194	2.83632	1.45773	2155.1	369605
687	471969	324242703	26.2107	8.8237	2.83696	1.45560	2158.3	370684
688	473344	325660672	26.2298	8.8280	2.83759	1.45349	2161.4	371764
689	474721	327082769	26.2488	8.8323	2.83822	1.45138	2164.6	372845
690	476	328509000	26.2679	8.836	2.83885	1.449	2167.7	373928
69	477481	329939371	26.2869	8.8408	2.83948	1.44718	2170.8	375013
692	478864	331373888	26.3059	8.8451	284011	1.44509	2174.0	376099
693	480249	332812557	26.3249	8.8493	2.84073	1.44300	2177.1	377187
694	481636	334255384	26.3439	8.8536	2.84136	1.44092		
695	483025	335702375	26.3629	8.8578	2.84198	1.43885	2183.4	379367
696	484416	337153536	26.3818	8.8621	2.84261	1.43678	2186.6	380459
697	485809	338608873	26.4008	8.8663	2.84323	1.43472	2189.7	381554
698	487204	340068392	26.4197	8.8706	2.84386	1.43267	2192.8	382649
699		341532099	26.4386		2.84448	1.43062		
700	49000	34300000	26.4	8.8790	2.84510	1.42857		385845
701	491401	344472101	26.4764	8.8833	2.84572	1.42653	2202.3	385945
70:3	492804	345948408	26.4953	8.8875	2.84634	1.42450	2205.4	387047
703	494209	347428927	26.5141	88917	2.81696	1.42248	2208.5	388151
704	495616	348913664	26.5330	8.8959	2.84757	1.42046	2211.7	389256
705	497025	35040262	26.5518	8.9001	284819	1.41844	2214.8	390363
706	498436	351895816	26.5707	8.904	2.84880	1.416	2218	391471
707	499849	353393243	26.5895	89085	2.81942	1.4143		392580
708	501264	354894912	26.6083	8.9127	2.85003	1.41243	$2 \% 24.3$	393692
709	502681	356400829	26.6271	8.9169	2.85065	1.41044	2227.4	394805
710	504100	357911000	266458	8.9211	2.85126	1.40845	2230.5	395919
711	505521	359425431	26.6646	8.9253	2.85187	1.40647	2233.7	397035
712	506944	360944128	26.6833	8.9295	2.85248	1.40449	2236.8	398153
713	508369	362467097	26.7021	8.9337	2.85309	1.40253	2240.0	399272
714	509796	363994344	26.7208	8.9378	2.85370	1.40056	2243.1	400393
715	511225	365525875	26.7395	8.9420	2.85431	1.39860	2246.2	401515
716	512656	367061696	26.7582	8.9462	2.85491	1.39665	2249.4	402639
717	514089	368601813	26.7769	8.9503	2.85552	1.39470	2252.5	403765
718	515524	370146232	26.7955	8.9545	2.85612	1.39276	2255.7	404892
719	516961	371694959	26.8142	8.9587	2.85673	1.39082	2258.8	406020

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.

(CONTINUED.)

No.	Sq	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ \times \\ \text { Recip. } \end{gathered}$	No. = Dia.	
							Circ'm	Ar
72				8.96	2.855	1.3		
\%	519811	374805361	26.8514	8.9670	2.85			
722	521284	376367048	26.8701	8.9711	2.85854	1.38504	2268.2	409416
723	$522<29$	377933067	26.8887	8.9752	2.85914	1.38313	2271.4	410550
724	524176	379503424	25.9072	8.9794	2.85974	1.38122	2274.5	7
\%	525	3810	26.	8.98	2.86034	1.37931	2277	
72	527076	382657	26.9144	8.98	2.86094	1.37	2380.8	413965
72	528529	384240583	28.9629	8.9918	2.86153	1.375	2283.9	6
728	5209884	385828352	26.9815	8.9959	2.86213		2387.1	
29		38\% 420489	27.0000	9.0000	$2.862 \% 3$	1.	2290.2	3
730	532900	389017000	27.0185	9.0041	2.86332	1.36986		
731	534361	390617891	27.0370	9.0082	2.86392	1.36799	22	6
732	535824	3922233168	27.0555	9.0123	2.86451	1.3661	2299.7	420835
733	537289	39383283 '	27.0740	9.0164	2.86510	1.36426	2302	421986
734	$5: 38756$	395446904	27.0924	9.0205	2.865\%0	1.362	2305	
735	540	397	2	9.0	2.866	1.36054	2309.1	424293
736	54169	398689	27.1293	9.028	2.8668	1.35870	2312.2	425448
737	543169	40031555	27.1477	9.0328	2.86747	1.35685	2315.4	604
738	544644	401947272	27.1662	9.0369	2.86806	1.35501	2318.5	
739	546121	403583419	27.1846	9.0410	2.86864	1.35318	2321.6	
740	547600	405224000	27.2029	9.0450	2.869	1.35135	2324.8	430084
11	549081	406869021	27.2213	9.0491	2.868	1.34953	2327.9	431247
742	550564	408518488	27.2397	9.0532	2.87040	1.34771	2331	432412
743	552049	410172404	27.2580	9.0572	2.87099	1.34590		433578
744	55353	411830784	27.2764	9.0	2.	1.34409		
745	555025	41349362	27.2	9.065	2.87216	1.34228	2340.5	435916
\%	556516	415160936	27.3130	9.0694	2.87274	1.34048	2343.6	487087
74%	558009	416832723	27.3313	9.0735	2.87332	1.33869	2346.8	438259
748	559504	418508992	27.3496	9.0775	2.87390	1.33690	2349.9	439433
749	561001	420189749	27.3679	9.08	2.87448	133511		
350	562500	42187500	27.3861	9.0856	2.8750	1.33333	2356.2	441786
751	564001	423564751	27.4044	9.0896	2.87564	1.33156	2353	442965
752	565504	425259008	21.4236	9.0937	2.87622	1.329	2362	44146
753	567009	42695717	27.4408	9.0977	2.87680	1.3283	2365	445028
754	56851	42	27	9.1	2.8			
755	570	43036	27.47	9.1057	2.87795	1.32450	2371.9	447697
756	57153	4322081216	27.4955	9.1098	2.87852	1.32275	2375.0	448883
757	5730	433198093	27.5136	9.1138	2.87910	1.32100	2378.2	4500\% 2
758	574564	435519512	27.5318	9.1178	2.87967	1.31926	2381.3	451262
759	576081	437245479	27.5500	9.1218	2.8802	1.31752	2384	452453
760	577600	438976000	27.5681	9.1258	2.88081	1.31579	2387.6	453646
761	579121	440711081	27.5862	9.1298	2.88138	1.81406	2390.8	454841
762	580644	442450728	27.6043	9.1338	2.88196	1.3123	2393.9	45603\%
3	582169	414194947	27.6225	9.1378	2.88252	1.3106	2397.0	457234
764	583696	44594374	27.64	9.14	2.883	1.308	2400	458434

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc*
(CONTINUED.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log	$\begin{gathered} 1000 \\ \text { X } \\ \text { Recip. } \\ \hline \end{gathered}$	No. $=$ Dia.	
							Circ'm	Area
	58	4476			2.88366			
766	58675	449455096	27.6767	9.1498	2.88423	1.30548		
767	588289	451217663	27.6948	9.1537	2.88480	1.30378	2409.6	
768	589824	452984838	27.7128	9.1577	2.88536	1.30208	2412.7	
769	591361	454756609	27.7308	9.1617	2.88593	1.30039	2415.9	
770	592900	456533000	27.7	9.1657	2.88649	1.29870	2419.0	
771	594441	458314011	27.7669	9.1696	2.88705	1.29702	2422.2	
772	595984	460699648	27.7849	9.1736	2.88762	1.29534	2425.8	468085
773	597529	461889917	27.8029	9.1775	2.88818	1.29366	2428.5	469298
774	599076	463684824	27.8209	9.1815	2.88874	1.29199	2431.6	
7	600625	465484375	27.838	9.1855	2.88930	1.29032	2434.7	471730
776	602176	467288576	27.8568	9.1894	2.88986	1.28866	2437.9	472948
777	603729	469097433	27.8747	9.1933	2.89042	1.28700	2441.0	474168
778	605284	470910952	27.8927	9.1973	2.89098	1.28535	2444.2	475389
779	606841	472729139	27.9106	9.2012	2.89154	1.28370	2447.3	476612
88	608	474		9.		1.28205		477836
781	609961	47637954	27.946	9.2091	2.8926	1.28041	2453.6	479062
78	611524	47821176	27.9643	92130	2.893	1.27877	2456.7	480290
783	613089	48004868	27.9821	9.2170	2.8937	1.27714	2459.9	481519
784	614656	481890304	28	9.2209		1.27551		
8	616235	483736625	28.0179	9.224		1.27389	2466.2	
786	617796	485587656	28.0357	9.2487	2.89542	1.27226	2469.3	16
787	619369	487443403	28.0535	9.2326	2.89597	1.27065	2472.4	486451
788	620914	489303872	28.0713	9.2365	2.89653	1.26904	2475.6	487688
789	6.22521	491169069	28.0891	9.2404	2.89708	1.26743	2478.7	488927
60	62	49303900	28.1069	9.2	2.8	1.2	2481.9	490167
791	625681	494913671	28.124	9.2482	2.89818	1.26422	2485.0	491409
79	627264	49679308	28.1425	9.2521	2.89873	1.2626	2488	492652
79	628849	498677257	28.1603	9.2560	2.89927	1.26103	2491.3	493897
794	630436	500566184	28.1780	9.2599	2.89982	1.25945		
79	632025	50245	28.1957	9.2638	2.90037	1.25786	2497.6	496391
796	633616	504358336	28.2135	9.2677	2.90091	1.25628	2500.7	497641
\%97	635209	506261573	28.2312	9.2716	2.90146	1.25471	2503.8	498892
798	636801	508169592	28.2489	9.2754	2.90200	1.25313	2507.0	500145
799		510082399	28.2666	9.2793	2.90255	1.25156	25	501399
	640000	512000000	28.2843	9.283	2.9030	1.2500	2513.3	502655
80	641601	513922401	28.3019	9.287	2.9036	1.248	2516	503912
802	643204	515849608	28.3196	9.2909	2.90417	1.2468	2519	505171
803	644809	517781627	28.3373	9.2948	2.90472	1.24533	2522.7	506432
804	646416	51971846	28.3549	9.2986	2.90526	1.24378	2525.8	7694
80	648025	521660125	28.3725	9.3025	2.90580	1.24224	2529.0	508958
80	649636	523606616	28.3901	9.3063	2.90634	1.24069	2532.1	510223
80	051249	525557943	28.4077	9.3102	2.90687	1.23916	2535.3	511490
80	652864	527514112	28.4253	9.3140	2.90741	1.23762	2538.4	512758
809	65	5294751	28.4	9.3179	2.90795	1.2360	2541.	51

Squares，Cabes，Squar Roots，Cube Roots，Lagurithen，Eit．

a．	\＄0	Cuibe	Spuaver Finit	Cuite空mat．	Life．		$\mathrm{Na}=\mathrm{Dr}$ m	
							Cunctm	${ }^{\text {a }}$
					P1			
			YE	12.	P3115		35xtic	
		S	It 40	12 新定	2 Mnmati	1.3	［1551	5im
	6ter		95 可哏	T．304		11 \＃Yum	3	
	601934	Thationlat	It 3 3nm	4． 3 In	2 900ne	11.3 ancili	4xu－	
	（1）350	34\％me	mis	9．	［	$11.30{ }^{\text {a }}$	패제 \pm	\％）
	\％ 0^{4}	3utisyitur	25	T 1	21	1 zana	23．7．	Jixes
	709\％	Surmuper	758	9，其	\＃gintir	12		5
		54loli	935014	1 3		1．	25019	201
			5	T．			2	
	trix	33	运碞	9．7m	？${ }^{\text {a }}$	1.	ㅍำ29	淢
4 ys	$6{ }^{6}$	35xutrincts		1．${ }^{\text {anc }}$	$\pm .0$		pepe 4	뇌ํ
438		Sixiultam	25 men		$\pm 9 \mathrm{y}$	1.30	\＃int 5	करत4
＋4．4	478	\＃5uctumy	720．754		2． 3 ¢5			
				9，	2xuruss	$1 . .3$	4ymis	
420	Weas		23 74.0	9．tar	2．Mirus	1.3019	29xitil	3
	185		23 \％xta	T AIse	से		251	5ntif
	He9	Franeme	75．mimb	（1）．3MD	P STM｜	$1 . .714 \%$	2 man 2	
¢139		30	785 312	T 3	210105s	$11.9 n m e r ~$	2014．4	
							2nit． 5	Scalmill
			2\％	9．48	\＄ 9 9num	11.	3 mb	
		5	7385	T 4 UE		1.3	\＃has 3	Sug
23	639	\％	밴N	2．4部		1.30 Cl	wiontis	3wars
	685	कला				1.1		
		Fiencanis	\％					
6	$6{ }^{6}$	SEH2	$3{ }^{3}$	T 4 －431	2			Sukhre
S 2	TWM	कौ045	능	9．－484	2 2	II．		3nta
	7 l	5akialuma	25.9432	9 9．4ETM	－2993094	12．198		
S等		Wपाए	ast	9．45	2 2 Th			\％
			25.4	9．498	± 3	－	2mins 9	
		5 S 4	3	9.451		L LRAM	Hita	3andic
		354	푠	T－449	2.30 ers	1．15\％	\＃tixts． 2	
－ 4	TII	는	렝			11.1802	mathe	8
				9.	2	1.1	］atal	
	7144035	H02351135	maman	9．454	\％ 9	，	9\％	
4	［1．5u16	6ibu9acms	켄．48\％	4． 455	P． 35	1．1182	2150	
StI	717408	RNCHISH2S		9．4625	295	1． 1411	3	Subse
546		（andevinge	229 1314	9．4183	P 38	1． 11^{3}	mant	Hecrs
S		51		9.4	2		2ammen	
		45^{4}	균） 13445	9.4	23．99942	1．109	4	¢ล์
		cunarsisi	2n－174	9．060	＋${ }^{2}$ gramus	1．103n	3Ttu 5	30696
	Tissin4	firsforne	캔 11896	9． 1810	T．Smbut	1.17 mb	3950	
	TET619	neal		9．4538	P．	1．1m93is	3imp ${ }^{\text {a }}$	
534	\％mo	8	，	9－ 125	2． 5 \＄04	1．1103	7020	

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ \text { X } \\ \text { Recip. } \end{gathered}$	No. = Dia	
							Circ'm	Area.
	731025	625026375	29.2404	9.4912	2.98197	1.16959		
856	732736	627222016	29.2575	9.4949	2.93247	1.16822	2689.2	
857	734449	629422793	29.2746	9.4986	2.93298	1.16686	2692.3	576835
858	736164	631628712	29.2916	9.5023	2.93349	1.16550	2695.5	578182
859	737881	633839779	29.3087	9.5060	2.93399	1.16414	2698.6	579530
860	739600	636056000	29.325	9.5097	2.93450	1.16279	2701.8	580880
861	741321	638277381	29.3428	9.5134	2.93500	1.16144	2704.9	
862	743044	640503928	29.3598	9.5171	2.93551	1.16009	2708.1	583585
864	744769	${ }^{642735647}$	29.3769	9.5207	2.93601	1.15875	2711.2	584940
864	746496	644972544	29.3939	9.5244	2.93651	1.15741	2714.3	586297
865	748225	647214625	29.4109	9.5281	2.93702	1.15607	2717.5	587655
866	749956	649461896	29.4279	9.5317	2.93752	1.15473	2720.6	589014
867	751689	651714363	29.4449	9.5354	2.93802	1.15340	2723.8	590375
868	753424	653972032	29.4618	9.5391	2.93852	1.15207	2726.9	591738
869	755161	656234909	29.4788	9.5427	2.98902	1.15075	2730.0	593102
870	756	658503000	29	9.5	2.9	11	2733.2	594468
871	758641	$660{ }^{\prime \prime} 76311$	29.512i	9.5501	2.9400	1.148	2736.3	595835
872	760384	663054848	29.5296	9.5537	2.94052	1.14679	2739.5	597204
873	762129	665338617	29.5466	9.5574	2.94101	1.14548	2742.6	598575
874	763876	667627624	29.5635	9.5610	2.94151	1.14416	2745.8	599947
875	765625	669921875	29.5804	95647	2.94201	1.14286	2748.9	601320
876	767376	672221376	29.5973	9.5683	2.94250	1.14155	2752.0	602696
877	769129	674526133	29.6142	9.5719	2.94300	1.14025	2755.2	604073
878	770884	676836152	29.6311	9.5756	2.94349	1.13895	2758.3	605451
879	772641	679151439	29.6479	9.5792	2.9	1.137	27	60
880	774400	681472000		9.5828	2.9444	1.13636	2764.6	608212
881	776161	683797841	29.6816	9.5865	2.9449	1.13507	2767.7	609595
882	777924	686128968	29.6985	9.5901	2.94547	1.13379	2770.9	610980
883	779689	688465387	29.7153	9.5937	2.94596	1.13250	2774.0	612366
884	781456	690807104	29.7321	9.5973	2.94645	1.13122	2777.2	613754
885	783225	693154125	29.7489	9.6010	2.94694	1.12994	2780.3	615143
886	784996	695506456	29.7658	9.6046	2.9474	1.128	2783.	616534
	786769	697864103	29.7825	9.6082	2.94792	1.12740	2786.6	617927
888	788544	700227072	297993	9.6118	294841	1.12613	2789.7	619321
889	790321	702595369	29.8161	9.6154	2.94890	1.12486	2792.9	620717
890	792100	704969000	29.8329	9.6190	2.94939	1.12360	2796.0	622114
891	793881	707347971	29.8496	9.6226	2.94988	1.12233	2799.2	623513
892	795664	709732288	29.8664	96262	2.95036	1.12108	2802.3	624913
893	797449	712121957	29.8831	9.6298	2.95085	1.11982	2805.4	626315
894	799236	714516984	29.8998	9.6334	2.95134	1.11857	2808.6	627
895	801025	716917375	29.9166	9.6370	2.95182	1.11732	2811.7	629124
896	802816	719323136	29.9333	9.6406	2.95231	1.11607	2814.9	630530
897	804609	721734273	29.9500	9.6442	2.95279	1.11483	2818.0	631938
898	806404	724150792	29.9666	9.6477	2.95328	1.11359	2821.2	633348
899	808201	726572699	29.9833	9.6513	2.95376	1.11235	2824.3	634760

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.

(CONTINUED.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ \times \\ \text { Recip. } \\ \hline \end{gathered}$	No. $=$ Dia	
							Circ'm	Area.
	810	72			2.			636173
901	811801	731432701	30.0167	9.6585	2.95472	1.10988	2830	
902	813604	733870808	30.0333	9.6620	2.95521	1.10865	2833.7	639003
903	815409	736314327	30.0500	9.6656	2.95569	1.10742	2836.9	640421
904	817216	738763264	30.0666	9.6692	2.95617	1.10619	2840.0	641840
	8190	741		9.	2.9			
906	82083	7436774	30.	9.6	2.95	1.10375	28	644683
907	82264	7461426	30.11	9.6	2.957	1.102	28	646107
908	8:446	748613312	30.13	9.6	2.9580	1.10131	2852	647533
909	826	751089429	30.149	9.68	2.958	1.10011	2855.7	648960
	828100			9.690	2.95904	1.09890		
11	829921	756058031	30.1828	9.6941	2.95952	1.09769	2862	
912	831744	758550528	30.1993	9.6976	2.95999	1.09649	2865	53250
913	833569	761048497	30.2159	9.7012	2.96047	1.09529	2868	654684
914	835396	763551944	30.2324	9.7047	2.96095	1.09409		656118
		\%660	30.24	9.7	2.9			
916	83905	7685752	30.265	9.7	2.9619	1.09170	287	
917	84088	7710952	30.28	9.7	2.962	1.	28	660433
918	84	7736206		9.7	2.9		28	661874
918		776						
							2890.3	664761
921	848241	781229961	30.348	9.7294	2.96426	1.0857	28	
922	850084	783777448	30.3645	9.7329	2.96473	1.08460	2896	54
923	851929	786330467	30.3809	9.7364	2.96520	1.08342	2899.7	69103
924	853776	788889024	30.3974	9.7400	2.96567	1.08225	2902.8	
	8556	79145312	30.41	9.74	2.966	1.081		672006
	$85 \pi 47$	79402277	30.4302	9.747	2.966	1.0799	2909	673460
	85932	79659798	30.4467	9.750	2.967	1.078	2912	674915
	86118	79917875	30.4631	9.7540	2.96		29	676372
099			30.479					
		8033	30.49	9.	2.98	1.0		
931	86676	80695449	30.5123	9.764	2.96895	1.074	2924.8	0752
932	868624	80955756	30.5287	9.768	2.96942	1.072	2928.0	
933	870489	812166237	30.5450	9.7715	2.96988	1.07181	2931.1	683680
934		814780	30.5614	9.775	2.9	1.070	2934.2	685147
35	8742	81740037	30.5	9.7785	2.970	1.069	2937.	88615
936	876096	82002585	30.5941	9.7819	2.971	1.068	2940	688084
	877969	822656953	30.610	9.78	2.97174	1.067	2943.7	689555
	879844	825193672	30.626	9.7	2972	1.066	2946.8	691028
939		827936	30	9.7	2.9			
11	883600	830584000	30.6594	9.7959	2.97313	1.06383	2953.1	693978
941	885481	833237621	30.6757	9.7993	2.97359	1.06270	2956.2	
942	887364	835896888	30.6920	9.8028	2.97405	1.06157	2959.4	96934
943	889249	838561807	30.7083	9.8063	2.97451	1.06045	2962.5	698415
944	891136	84123238	30.724	9.809	2.97497	1.05932	2965.	699897

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

No.	Sq.	Cube.	Square Root.	Cube Root.	Log.	$\begin{gathered} 1000 \\ X \\ \text { Recip } \end{gathered}$	No. = Dia.	
							Circ'm	Area.
9	893025	8439086	30.7409	9.8132	2.97543	1.05820	2968.8	701380
9	894916	846590536	30.7571	9.8167	2.97589	1.05708	2971.9	702865
9	896809	849278123	30.7734	9.8201	2.97635	1.05597	2975.1	704352
948	898704	851971392	30.7896	9.8236	2.97681	1.05485	2978.2	705840
949	900601	854670349	30.8058	9.8270	2.97727	1.05374	29814	707330
950	902500	857375000	30.8221	9.8305	2.97772	1.05263	2984.5	
951	904401	860085351	30.8383	9.8339	2.97818	1.05152	2987.7	710315
952	906304	862801408	30.8545	9.8374	2.97864	1.05042	2990.8	711809
953	908209	865523177	30.8707	9.8408	2.97909	1.04932	2993.9	713306
954	910116	868250664	30.8869	9.8443	2.97955	1.04822	29971	\%14803
	912025	870983	30.9031	9.8	2.98000	1.0	3000.2	716303
95	913936	873722816	30.9192	9.8511	2.98046	1.0460	3003.4	717804
957	915849	876467493	30.9354	9.8546	2.98091	1.0449	3006.5	719306
958	917764	879217912	30.9516	9.8580	2.98137	1.04384	3009.6	720810
959	919681	8819\%4079	30.9677	9.8614	2.98182	1.04275	3012.8	722316
96	921600	884736000	30.9839	9.8648	2.98227	1.04167	3015.9	723823
961	923521	887503681	31.0000	9.8683	2.98272	1.04058	3019.1	725332
96	925444	890277128	31.0161	9.8717	2.98318	1.03950	3022.2	726842
96	927369	893056347	31.0322	9.8751	2.98363	1.03842	3025.4	728354
964	929296	8958	31.0483	9.8785	2.98408	1.03734	3028.5	
96	981225	898632125	31.0644	9.8819	2.98	1.03627	3031.6	731382
966	933156	901428696	31.0805	9.8854	2.98498	1.03520	3034.8	732899
967	935089	904231063	31.0966	9.8888	2.98543	1.03413	3037.9	734417
968	937024	907039232	31.1127	9.8922	2.98588	1.03306	3041.1	735937
969	938961	909853209	31.1288	9.8956	2.98632	1.08199	3044.2	737458
970	940900	912673000	31.1448	9.8990	2.98677	1.03093	3047.3	738981
971	942841	915498611	31.1609	9.9024	2.98722	1.02987	3050.5	740506
972	944784	918330048	31.1769	9.9058	2.98767	1.02881	3053.6	742032
973	946729	921167317	31.1929	9.9092	2.98811	1.02775	3056.8	743559
974	948676	924010424	31.2090	9.9126	2.9885			745088
975	950625	926859375	31.2250	9.9160	298900	1.02564	3063.1	746619
976	952576	929714176	31.2410	9.9194	2.98945	1.02459	3066.2	748151
977	954529	932574833	31.2570	9.9227	2.98989	1.02354	3069.3	749685
978	956484	935441352	31.2730	9.9261	2.99034	1.02249	3072.5	751221
979	958	938313739	31.2890	9.9295	2.99078	1.02145	3075.6	752758
980	960400	941192000	31.3050	9.9329	2.99123	1.02041	3078.8	754296
981	962361	944076141	31.3209	9.9363	2.99167	1.01937	3081.9	755837
982	964324	946966168	31.3369	9.9396	2.99211	1.01833	3085.0	757378
983	966289	949862087	31.3528	9.9430	2.99255	1.01729	3088.2	758922
984	968256	952763904	31.3688	9.9464	2.99300	1.01626	3091.3	760466
98	970225	955671625	31.3847	9.9497	2.99344	1.01523	3094.5	762013
98	972196	958585256	31.4006	9.9531	2.99388	1.01420	3097.6	763561
987	974169	961504803	31.4166	9.9565	2.99432	1.01317	3100.8	765111
988	976144	964430272	31.4325	9.9598	2.99476	1.01215	3103.9	766662
989	978121	967361669	31.4484	9.9632	2.9952	1.0111	3107	768

Squares, Cubes, Square Roots, Cube Roots, Logarithms, Etc.
(CONTINUED.)

No.	Sq.	Cuhe.	Square Root.	Cube Root.	Log	$\begin{gathered} 1000 \\ X \\ \text { Recip. } \end{gathered}$	No $=$ Dia.	
							Circ'm	Area.
990	980100	970299000	31.4643	9.9666	2.99564	1.01010	3110.2	769760
991	982081	973242271	31.4802	9.9699	2.99607	1.00908	3118.3	771325
2	984064	976191488	31.4960	9.9733	2.99651	1.00806	3116.5	772882
993	986049	979146657	31.5119	9.9766	2.99695	1.00705	3119.6	774441
994	988036	982107784	31.5278	9.9800	2.99739	1.00604	3122.7	776002
995	990025	985074875	31.5436	9.9833	2.99782	1.00503	3125.9	777564
996	992016	988047936	31.5595	9.9866	2.99826	1.00402	3129.0	779128
997	994009	991026973	31.5753	9.9900	2.99870	1.00301	3132.2	780693
88	996004	994011992	31.5911	9.9933	2.99913	1.00200	3135.3	782260
99	99800	9970029	31.607	9.996	2.9995	1.0010	3138.	783828

INDEX.

INDEX TO TABLES OF STANDARD DIMENSIONS OF TUBULAR GOODS.

PAGE
Axle bearings, bushing forgings for 91
Bearings, bushing forgings for 91
Bedstead tubing 14
Bends, offset pipe bends 44
" pipe bends 41-44
" stock pipe bends 43
Black standard weight pipe 2
Boiler tubes, cold drawn 73
" " special sizes 13
" " standard 10, 11
Boiler shells, seamless 90
Bowl forgings for separators 91
Bushing forgings for axle bearings 91
Caps for carbonic acid cylinders. 90
Carbonic acid cylinders 83-89
Casing, couplings for 16
" lap-welded 6, 7
Cold drawn tubes, description and uses of 72
" :" tubing for boilers, locomotives, etc. 73
" " tubes, tables of 77-81
Collar flanges, cast-iron 21, 25
Converse lock joint fittings 28-32
" patent lock joint for pipe 27
Couplings for drive pipe 18
" " line pipe 17
" " regular casing 16
" " steam, gas and water pipe 15
" " tubing 18
Cylinders, special $8^{\prime \prime}$ seamless 86
" standard $5^{\prime \prime}$ and $8^{\prime \prime}$ seamless 83-85
" standard $5^{\prime \prime}$ lap-welded 89
"، $3^{\prime \prime}$ to $20^{\prime \prime}$ seamless 87, 88
Deflections of National trolley poles 46-67
Double extra strong pipe 4
Double riveted pipe flanges 23, 25
Drawn tubing, uses of 70-72
Drive pipe 8
" " couplings 18
Extra strong pipe 3
Fittings, Converse joint fittings 28-32
" Matheson 33-36
Flanges, cast-iron collar 21, 25
" " " double riveted 23, 25
" " " single 22, 25
" " " lugged for special light pipe 19, 25
" " " " pump column 20, 25
" Master Steam Fitters' standard 26
" solid welded 24, 25
" threaded, cast-iron 26
Floats, seamless 90
Flush joint pipe and tubing 9
Franklinite locomotive boiler tubes 12
Galvanized standard weight pipe 2
Gas pipe couplings 15
Heating surface of pipe 5
Hot finished seamless tubes 74-76
Hydraulic forgings 90, 91
Joint, Converse lock 27
" Matheson 33
Lap-welded casing 6
$\begin{array}{cc}\text { " } & \text { " } \\ \text { ". } \\ \text { " } \\ \text { " } & \text { " } \\ \text { " } & \end{array}$ cylinders 89
pipe, special light with flanges 19, 25
" with collar flanges 21, 25
" " double riveted flanges 23, 25
single riveted flanges 22, 25
Converse lock joint 27Lap-welded pipe with Matheson joint33
" " " " solid welded flanges 24, 25
" " pump columns and flanges 20
" " tuyere pipe 14
Large size O. D. pipe 9
Light lap-welded pipe with cast-iron lugged flanges 19,25Line pipe8
Line pipe couplings 17
Lock joint, Converse 27
Locomotive boiler tubes, cold drawn 73
" " " lap-welded, special brands 12
Lugged flanges, cast-iron for special light pipe 19, 25
" " " " pump column 20, 25
Master Steam Fitters' standard pipe flanges 26
Matheson joint fittings 34-36
" patent pipe joint 33
Mechanical tubes, cold drawn 73
National trolley poles 46-67
Oil well tubing 8
Pipe bends 41-44
" couplings, see couplings
" flanges, see flanges
" joint, flush 9
Projectile forgings 91
Protecting caps for carbonic acid cylinders 90
Pump columns and pump column flanges 20
Radii for pipe bends 42
Riveted pipe flanges 22, 23, 25
Salamander locomotive boiler tubes 12
Seamless boiler shells 90
" cold drawn boiler tubes 73
" " " tubes 77-81
" cylinders 83-88
" illustrations of 83, 87

Seamless cylinders $3^{\prime \prime}$ to $20^{\prime \prime}$ diameter . 87,88
" drawn tubing, description and uses of 70-72
" . floats 90
" hot finished tubes . . . 74-76
. tubular goods 70-91
Separator bowl and tubular forgings . . . 91
Shrapnel forgings 90
Single riveted pipe flanges 22, 25
Solid welded flanges 24, 25
Special $8^{\prime \prime}$ seamless cylinders for carbonic acid . 86
Special light lap-welded pipe with flanges . . 19, 25
" sizes of boiler tubes 13
" steel lap-welded pipe with Converse joint . 27
" " " " " " Matheson joint 33
Standard boiler tubes 10, 11
" couplings for drive pipe 18
" "، " line pipe 17
" " " regular casing . . . 16
" " " steam, gas and water pipe 15
" " " tubing 18
" double extra strong pipe 4
" drive pipe 8
" extra strong pipe 3
" line pipe 8
" oil well tubing 8
" seamless cylinders $5^{\prime \prime}$ and $8^{\prime \prime}$. . 83-85
" weight pipe, black and galvanized . . 2
Steam pipe couplings 15
Stock pipe bends 43
Swelled tube ends 37
Threaded cast-iron pipe flanges 26
Trolley pole dimensions and deflections. . 46-67
Tubes, bent 41
" seamless cold drawn 77-81
" " hot finished 74-76
" special brands locomotive boiler tubes . 12
" " sizes of boiler tubes 13
Tubes, standard boiler tubes 10
" with upset ends 37-40
Tubing, bedstead 14
" couplings for 18
" oil well 8
" seamless cold drawn for boilers, etc 73
Tubular forgings for separators 91
Tuyere pipe. 14
Upset and swelled tube ends 37
"، tube ends $37-40$
Valve protecting caps for carbonic acid cylinders 90
Water pipe couplings, black and galvanized 15
Welded flanges, pipe with 24-25
Working barrels 82

INDEX TO USEFUL INFORMATION.

PAGE
Absolute temperature 164
" zero 164
Acid Bessemer process 201
" open hearth process 202
Acids in feed-water 96
Adiabatic compression and expansion of air, 165, 166, 172
After-coolers for air compressors 176
Air 164-192
" adiabatic compression and expansion of, 165, 166, 172
" Boyle's law for 164
" Charles' and Gay Lussac's law for 164
" composition of 164
" compression of 165-171
" compressors 175-180
" " after-coolers for 176
" ، compound 175-177
" " capacity of 180
" " efficiency of, at different altitudes 178-179
" " horse-power required for 180
" " inter-coolers for 175-178
" " saving due to compounding 177
" corrosion caused by air in water 96
" expansion of 165, 166
" flow of, through pipes 183-192
orifices 182
" in feed water 96
" isothermal compression and expansion of 167, 172
" pressure curves of 172
" resistance to flow by valves, etc. 190
" saturated with vapor 181
" specific heat of 165

- weight of 164, 181
" work of compression 166-170
Analysis of water 98
201
Basic Bessemer process202
Bearing value of rivets 228
Bending moments of beams, etc. 212, 213
Bessemer process for making steel 201
Boilers, acid in feed-water 96
" air in feed-water 96
" chimneys for. 158-161
" commercial horse power of 152
" corrosion in 96-98
" evaporation, unit of 152
" factors of evaporation, table of 137
" feed-water heaters 154
"r feed water, impurities in 95-98
" grease and oil in. 96-98
" horse-power of 152, 153
" impurities in feed-water 85-98
" incrustation 95-98
" lime in feed-water 95. 97, 98
" moisture in steam 153
" mudin feed-water 95,97
non-conducting coverings 147
" oil and grease in 96-98152, 153
" pressure, safe working 157, 222
" prevention of corrosion 95-98
" " " scaling 95, 97, 98
" salt in feed-water 96
" strength of 157, 218, 222
" treatment of impure feed-water 95-98
" unit of evaporation 152
Bolts, strain in 244
" strength of 243
" weight of 231
Boyle's law for air and gas 164
Brake horse-power 152
Brass plate, weight of 236, 237
British thermal unit 134

Burners, services for 196
Bursting pressure of pipes, etc. . . . 217-223
Capacity of air compressors 180
" " cisterns and tanks. 122
" " cylindrical vessels 119
" " pipes 118
" " rectangular tanks 123
Cementation process for making steel. . . 200
Charles' and Gay Lussac's law 164
Chimneys for boilers 158, 161
Circle, properties of 260
" table of, by eighths 271
" " " from 1 to 1000 281
Cisterns, capacity of 122
Commercial horse-power of boilers . . . 152
Composition of air 164
" of water 94
Compound air compressors 175, 177
Compound units, Metric and U. S. 253
Compressors of air 165, 171
Compressors for air 175, 180
Condensation of steam in pipes 149
Conversion table, Metric and U. S. . . . 251
Corrosion in boilers and tubes . . . 96, 98
Cosines, table of 268
Cotangents 270
Coverings for steam pipes 147
Cubes of numbers, table of 281
Cylinder heads, strength of 223
Decimals of an inch for each 1-64 235
" " a foot for each inch 235
Deflection of beams 212
" " pipes 212-217
Density of water 94
Depth of pump suction 131
Discharge of water from orifices and nozzles . 124

Discharge of water from pipes . 102, 105, 107, 108, 113
Dry steam, definition of . .r . . . 134
Effective head for water pipes 112
" thickness of pipe 217
Efficiency of bolts 242
" " air compressors . . . 178, 179
Elastic limit, definition of 210
" " of materials 206
Elastic material 210
Elasticity, modulus of 206, 210
Electrical equivalents 253-256
Equivalents, mechanical, electrical and heat 249, 253-256 trigonometrical 262
Evaporation, unit of 152
Expansion of air 165, 166
Factor of safety 209
Factors of evaporation, table of 137
Feed-water heaters 154
Feed-water, impurities in 95-98
Fifth roots and fifth powers 277
Flow of air in pipes 183-192
" "gas " " 194, 195
" " steam in pipes 142-147
" " water " " . $101,105,107,110,112,113$
" " air through orifices 182
" "gas " " 194, 195
" " steam " " 140, 141
" "water " " 124
Frictional heads 110-112
Frost, trouble from, in gas pipes . . 194, 195
Gas 194-198
" flow of, in pipes 194, 195
" frost, trouble from 195
" holders, weight of 197
" services for burners 196
" vapor contained in 196
Gauges, standard 234
Gay Lussac's law 164
Grease in boilers 96-98
Head, definition of 101, 107
" effective 112
" frictional 110-112
" of water for given discharge 102
" table of pressures due to 99
Heads, strength of cylinder 223
Heat equivalents 249, 253-256
" intensity 253
" loss from steam pipes 149, 150
" mechanical equivalent of 164
" specific heat of gases 165
steam 134
Horse-power, definition of 151, 152
" equivalents of 249
"، of boilers 152, 153
" of engines 151, 154
" of flowing water 126
". of water-wheels 126
" required for air compressors 180
House-service pipes 113
Impurities in water 95-98
Incrustation of boilers and pipes 95-98
Indicated horse-power 151
Inertia, moment of. 211, 213
Inter-coolers for air-compressors 175-178
Internal bursting pressure 217-223
Iron and steel 200-208
" " " tenacity of at different temperatures 207, 208
Iron, weight of plate 236-239
Isothermal compression and expansion of air, 167, 172
Latent heat of steam 134
Lime in feed-water 95, 97, 98
Logarithms, table of 281
Mathematical tables 267
Measurement of water 126
Measures 246
" Metric System of 249
Measure of work and power 249
Mechanical equivalents 249, 253-256
Mechanical equivalent of heat 164
Mensuration 258-261
Metric conversion tables 251
Metric system of weights and measures 249
Modulus of elasticity 206, 210
Modulus of section, definition of 213
" " " table of 211
Moisture in steam 153
Moment of inertia, definition of 213
" " " table of 211
Mud in feed-water 95,97
Non-conducting coverings 147
Nuts, size of 232, 233
" weight of 231-233
Oil in boilers 96-98
Pelton water-wheel 126, 127
Pillars, strength of wrought iron 224
Pipe, effective thickness of 217
" hangers for 216
" sag of 217
" equivalents 114, 146
Pipes, flow of air in 183-192
" " " steam in 142
" " " water in 103, 104, 107, 108, 113
" relative discharge of steam 146
" " " " water 114
" water capacity of 118
Plastic material 210
Plates, weight of 236-239
Polygons, regular 259,260
Power of boilers, 152, 153
" " engines 151, 154
" " water fall. 125
" " " wheels 125-127
" required to raise water 130
Powers, fifth 277
" second and third 281
Pressure curves of air 172
" internal bursting 217-223 94
.، under different heads 99
Pressures safe for boilers 157, 222
" safe for cast iron pipes 115
Prevention of corrosion and incrustation 95-98
Properties of the circle 260
Pump suction, depth of 131136, 139
Pumping hot water 131
Pumps and pumping engines
Regular polygons 259, 260
Relative discharging capacities of pipes 114
Resistance to flow by bends, etc. 144, 190
Rivets, strength of 228
" weight of 230
Roots, table of fifth 277
" " " square and cube 281
Safety factors 209
Safe pressures for cast-iron pipes 115
Safe working pressures in boilers 157
Sag of pipe 217
Salt in feed-water 96
Saturated steam, definition of 134
-" properties of 136, 139
Screw-threads 240-242
Services for gas burners. 196
Shearing strength of materials 206, 210
" " " rivets 228
Sheet metal, weight of 236-239
Sines, table of 267
Size of nuts 232, 233
Solids, volumes of 261
Specifications for steel 202
Specific gravity of steam 135
Specific heat of air 165
" " " steam 134
Square roots, table of 281
Squares of numbers, table of 281
Standard gauges 234
" screw-threads 240-242
" specifications for steel 202
Steam and steam apparatus 134-161
" condensation in pipes 149
" coverings for steam pipes 147
" dry, definition of 134
" factors of evaporation, table of 137
.. feed-water heaters 145
"، flow of from orifices 140, 141
" " " in pipes 142-147
" heat loss from pipes 149, 150
" horse-power of boilers 152, 153
" " " " engines 151, 154
" latent heat of 134
" moisture in 134, 153
" non-conducting coverings 147
" pipe coverings 147
" " equivalents 146
" power of boilers 152, 1 13
" " " engines 151, 154
" properties of saturated 136, 139
" resistance to flow by bends, etc 144
" safe working pressures in boilers 157
" saturated, definition of 134
" " table of properties of 136, 139
" specific gravity of 135
" " heat of 134Steam, super-heated, definition of134
" " " example of 153
" unit of evaporation 152
" wet, definition of 134
" " example 153
Steel 200-208
" properties of 206
" specifications for 202-205
" tenacity of, at different temperatures 207, 208
" weight of plate 236-239
Strain 209
Strain in bolts 244
Strength of boilers 157, 218, 222
" " bolts 243
" " cylinders against bursting 217-223
" " cylinder heads 223
"، " iron and 207, 208
" '! rivets 228 213-227
" " pipes
" " pipes
" " wrought iron pillars 224
Stress 209
Suction, depth of 131
Superheated steam, definition of 134
exanıple of 154
Tangents, table of 269
Tanks, capacity of 122, 123
Temperature conversion formula 253
Tenacity of metals at different temperatures 207
Treatment of impure feed-water 95-98
Triangles, solution of 264-266
Trigonometry 262-266
Unit of evaporation 152
"، " work 151
" working strength, definition of 209
" shearing 210
Units, compound, Metric and U. S. 253
Vapor contained in air 181
" " " gas 196
Velocity of discharge 101, 105, 107
Vessels, capacity of cylindrical 119
Volumes of solids 261
Water94-131
" acids in feed-water 96
" analysis of 98
" capacity of cisterns and tanks 122
" " " cylindrical vessels 119
" " " pipes 118
" " " rectangular tanks 123
" composition of 94
" depth of suction 131
" diameter of pipe for given discharge 103-109
" discharge from orifices and nozzles 124
" " " pipes $102,105,107,108$, 113
" 114
". effective head 112
" flow of, in pipes 113
" " " " house service pipes 113
" frictional heads. 110
" grease and oll in boilers 96-98
" greatest density of 94

- head, definition of 101, 107
" " in feet for given discharge 102
" " table of pressures due to 99
" horse power of flowing water 126
" " " " water-wheels 126
" impurities in 95-98
" lime in feed-water 95, 97, 98
" measurements of 129
"، miners' inch 129
" mud in feed-water 95
" oil and grease in boilers 96-98
" power of water fall 125
، "، " ، wheels. 125-127
Water, power required to raise water 130
pressure of water column 94
" " under different heads 99
pressures, safe for cast-iron pipes 115
prevention of corrosion and incrustation 95-98
pump suction, depth of 131
pumping hot water 131
pumps for water 130
" relative discharging capacities of pipes 114
"، salt in feed-water 96
" suction, depth of 131
" tabular view of troubles, etc., caused by im- purities in feed-water 97
" treatment of impure 95-98
" velocity of discharge 101, 105,107
" wheels and motors 125-127
." weight of 94
" " " in pipes 121
Weight of air 164, 181
" " bolts and nuts 231
" " rivets 230
." "sheet and plate metal 236
" " water 94
-. " " in pipes 121
Weights and measures 246
" of gas-holders 197
" Metric system of 249
Wet steam, definition of 134
" " example of 154
Work, definition of 151
" unit of 151
Work of compression of air 167, 170
Working strength, definition of 209

YA 03137

800375

Engineering
Libray
UNIVERSITY OF CALIFORNIA LIBRARY

[^0]: Allow variation in weight per foot of 5 per cent. above and 5 per cent. below. Cannot cut closer to length than
 riginch. Shipped threads and couplings unless otherwise ordered.

[^1]: Allow variation of 5 per cent. above and 5 per cent. below standard in weight per foot.
 Cannot cut to length closer than $\frac{1}{15}$ inch. Shipped plain ends unless otherwise ordered.

[^2]: Allow variation of 5 per cent. above and 5 per cent. below standard in weight per foot.

[^3]: Allow variation of 5% above and 5% below standard in weight per foot
 Cannot cut to length closer than $\frac{1}{16}$ inch.

[^4]: * When solving examples by the use of these formulas use the table of Fifth Powers and Fifth Roots. Solutions may also be easily effected by the use of logarithms.

[^5]: 쁜 6 is 12 inch pipe the last column ：Read 15.6 ；therefore in © 4 in column headed＂ 4 ＂and opposite to number required．

[^6]: FORMULA FOR THICKNESS OF CAST IRON WATER PIPE．

[^7]: *Copyright 1899, by the Ingersoll-Sergeant Drill Co., New York, and is reprinted, by permission, from their catalogue of air compressors.

