






J*
1



14ATH/STA1





THE BOSTON COLLOQUIUM

LECTURES ON MATHEMATICS

DELIVERED FROM SEPTEMBER 2 TO 5, 1903, BEFORE

MEMBERS OF THE AMERICAN MATHEMATICAL SOCIETY

IN CONNECTION WITH THE SUMMER MEETING HELD

AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

BOSTON, MASS.

BY

EDWARD BURR VAN VLECK
HENRY SEELY WHITE

FREDERICK SHENSTONE WOODS

Neto orfc

PUBLISHED FOR

THE AMERICAN MATHEMATICAL SOCIETY
BY

THE MACMILLAN COMPANY
LONDON: MACMILLAN & CO., LTD.



MATH.-
STAT.

LIBRARY

COPYRIGHT, 1905

BY THE MACMILLAN COMPANY

PRESS OF

THE NEW ERA PRINTIRG COMPANY,

LANCASTER, PA,



A&amp;lt;-f37/

05

TO

PROFESSOR JOHN MONROE VAN VLECK, LL.D.

THESE LECTURES ARE AFFECTIONATELY INSCRIBED BY

HIS FORMER PUPILS

HENRY SEELY WHITE

EDWARD BURR VAN VLECK

FREDERICK SHENSTONE WOODS





PREFACE.

FOR a number of years the American Mathematical Society has

held a Colloquium in connection with its Summer Meeting at in

tervals of two or three years. In the circular sent out prior to the

first Colloquium, in 1896, the purpose and the plan of the under

taking were described as follows: 1 a The objects now attained

by the Summer Meeting are two-fold : an opportunity is offered

for presenting before discriminating and interested auditors the

results of research in special fields, and personal acquaintance and

mutual helpfulness are promoted among the members in attend

ance. These two are the prime objects of such a gathering. It

is believed however that a third no less desirable result lies within

reach. From the concise, unrelated papers presented at any

meeting only few derive substantial benefit. The mind of the

hearer is too unprepared, the impression is of too short duration

to produce accurate knowledge of either the content or the method.

. . . Positive and exact knowledge, scientific knowledge, is rarely

increased in these short and stimulating sessions.

&quot; On the other hand, the courses of lectures in our best univer

sities, even with topics changing at intervals of a few weeks, do

give exact knowledge and furnish a substantial basis for reading

and investigation. . . .

Of. Bull Am. Math. Soc., ser. 2, vol. 3 (1896), p. 49.

vii
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&quot;To extend the time of a lecture to two hours, and to multiply

this time by three or by six, would be practicable within the limits

of one week. An expert lecturer could present, in six two-hour

lectures, a moderately extensive chapter in some one branch of

mathematics. With some new matter, much that is old could be

mingled, including for example digests of recent or too much

neglected publications. There would be time for some elemental y
details as well as for more profound discussions. In short, lectures

could be made profitable to all who have a general knowledge of

the higher mathematics.&quot;

As a forerunner of the Colloquia here outlined may be men

tioned the Evanston Colloquium of 1893, which followed the

Congress of Mathematics held in connection with the World s

Fair in Chicago, Professor Klein, of Gottingen, being the sole

speaker. But whereas that Colloquium covered, in a descriptive

manner, a variety of topics, it comprised twelve lectures,

the Colloquia of the Society have been characterized by close con

tact with the actual analytical development of the topic treated.

The following Colloquia have been held :

I. THE BUFFALO COLLOQUIUM, 1896.

(a) Professor MAXIME BOCHER, of Harvard University :
&quot; Lin

ear Differential Equations, and Their Applications.&quot;

This Colloquium has not been published, but several papers

appeared at about the time of the Colloquium^ in which the

author dealt with topics treated in the lectures.*

(b) Professor JAMES PIERPONT, of Yale University :
&quot; Galois s

Theory of Equations.&quot;

This Colloquium was published in the Annals of Mathe

matics, ser. 2, vols. 1 and 2 (1900).

*Two of these papers were :
&quot;

Eegular Points of Linear Differential Equa
tions of the Second Order&quot;; Harvard University, 1896

;
&quot;Notes on Some Points

in the Theory of Linear Differential Equations,&quot; Annals of Math., vol. 12, 1898.
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II. THE CAMBRIDGE COLLOQUIUM, 1898.

(a) Professor WILLIAM F. OSGOOD, of Harvard University:
&quot; Selected Topics in the Theory of Functions.&quot;

This colloquium was published in the Bulletin of the

Amer. Math. Soc.
y
ser. 2, vol. 5 (1898), p. 59.

(6) Professor ARTHUR G. WEBSTER, of Clark University : &quot;The

Partial Differential Equations of Wave Propagation.&quot;

III. THE ITHACA COLLOQUIUM, 1901.

(a) Professor OSCAR BOLZA, of the University of Chicago :
&quot; The

Simplest Type of Problems in the Calculus of Variations.&quot;

Published in amplified form under the title : Lectures on

the Calculus of Variations, Chicago, 1904.

(b) Professor ERNEST W. BROWN, of Haverford College :
&quot; Mod

ern Methods of Treating Dynamical Problems, and in Par

ticular the Problem of Three Bodies.&quot;

IV. THE BOSTON COLLOQUIUM, 1903.

(a) Professor HENRY S. WHITE, of Northwestern University :

three lectures on &quot; Linear Systems of Curves on Algebraic

Surfaces.&quot;

(b) Professor FREDERICK S. WOODS, of the Massachusetts Institute

of Technology : three lectures on &quot; Forms of Non-Euclidean

Space.&quot;

(c) Professor EDWARD B. VAN VLECK, of Wesleyan University ;

six lectures on &quot; Selected Topics in the Theory of Divergent
Series and Continued Fractions.&quot;

This colloquium is here published in full.

At Commencement, 1903, Professor John Monroe Van Vleck,

M.A., LL.D., completed his fiftieth year of service at Wesleyau

University, and retired shortly after from the chair of Mathematics
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and Astronomy. All three of the speakers at the Boston Collo

quium were former students of his, one of them being his SOD

and colleague in the department of mathematics. It is fitting that

this volume of lectures held at that Colloquium be inscribed to him.

THOMAS S. FISKE,

WILLIAM F. OSGOOD,
Committee on Publication.
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LINEAR SYS , SMS OF CURVES ON ALGEBRAIC
SURFACES.

BY HENRY S. WHITE.

CHAPTER 1.

Transition from Plane Carves to Surfaces.

THE notion of equivalence as formulated in protective geometry
has simplified greatly the study of algebraic curves and surfaces,

particularly those of low order. The next step toward a wider

survey is the admission of all birational transformations of the

plane, or of space of three or more dimensions. In the plane, the

theory of Cremona transformations is no longer new, and the

elements are familiar to all students of geometry. Not so, how

ever, in space of more than two dimensions
; probably for the

reason that nothing is known analogous to the theorem that a

plane Cremona transformation is resolvable into a succession of

quadric transformations and collineations. And even in plane

geometry the intricacies of the transformations themselves have

kept most students from the matter of higher importance, the

properties of figures that remain invariant under all transforma

tions of the group. Yet there does exist a body of doctrine under

the accepted title of &quot;

Geometry on an algebraic curve/
7 and a

fair beginning has been made upon a similar theory, the &quot;

Geometry
on an algebraic surface.&quot;

* These titles are intended to cover

*
Consult, for an outline of the geometry upon an algebraic curve, Pascal s

Repertorium der hoheren Mathematik, Part II, Chapter V, | 4
;

or the more
extended articles-: C. Segre,

&quot; Introduzione alia geometria sopra un ente

algebrico semplicemente infinito&quot;; E. Bertini, &quot;La geometria delle serie

lineari sopra una curva piana secondo il metodo algebrico,&quot; both in Annali
di Matematica, ser. 2, vol. 22 (1894). For the corresponding theories regard
ing surfaces, the best reference is to the comprehensive summary by Castel-

nuovo and Enriques : &quot;Sur quelques recents resultats dans la theorie des

surfaces
alge&quot;briques,&quot;

Math. Annaten, vol. 48 (1896). Supplementary results

are summarized in a later paper by the same authors : &quot;Sopra alcune qnestioni
fondamentali nella teoria delle superticie algebriche,&quot; Annali di matematici pura
edapplicata, ser. 3, vol. 6 (1901).

I 1



2 MIE BOSTON COLLOQUIUM.

only such properties of a curve or surface as appertain to the

entire class of curves or surfaces that can be related birationally

to the fundamental form.

A plane algebraic curve may have its order changed by a Cre

mona transformation, but not its deficiency (genre, Geschlecht).

As to sets of points on the curve, two sets which together make

up a complete intersection of a second curve with the first do not

lose that property by birational transformation, if we exclude

from consideration fundamental points introduced by the transfor

mation itself.* Mutually residual sets of points, and corresidual

sets, preserve their relation. Hence the group of sets of points

corresidual with any given set becomes of importance. If a given

set of D points lies on a curve of deficiency p, and if a corresidual

set can be found containing k arbitrary points, then these numbers

are connected by the relation constituting the Riemann-Roch

theorem

where p is zero if D
&amp;gt; 2p 2.

The totality of all sets of D points corresidual to any one set is

termed a group or series, and is denoted by a symbol g$. Such a

series is called complete. If by any algebraic restrictions a series

is separated out from it, of course that would be called incomplete

or partial. For example, on a plane nodal cubic a series g\ is

cut out by all straight lines, incomplete because any three arbi

trary points of the curve are corresidual to any other three.

Every series g% can be cut out upon the fundamental curve by a

linear system of auxiliary curves whose equation may be written,

with k parameters :

As on a single curve sets of points, so in a plane, linear systems

of curves are studied. By every birational transformation, linear

*Or if we employ no auxiliary curves except such as are adjoint to that con

taining the point sets.
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systems are carried over into linear systems. A complete linear

system is defined most easily by specifying the multiplicity that a

curve of the system must have in each point of a fundamental set

and by prescribing the order of the curves. Thus (^ /;;;)
can in

dicate that in a
1 every curve is to have a multiple point of order

at least sv etc. If the base points alone, with their respective

multiplicities, determine a system under consideration, that system
is termed complete. If the base points actually impose, for curves

of order m, fewer conditions than would be expected from their

several multiplicities, the system is special; otherwise it is regu

lar. It is an important theorem that no set of r base points can

be so located as to produce an (r -f l)th variable multiple point

on the curves of the system ;
i.

&amp;lt;.,

the multiple points of the

generic curve of a plane linear system lie all in the base points of

the system.

Adjoint curves of a linear system are familiar to the student

of function theory ; they have in every multiple point of order s

for the given system a multiplicity of order at least s I. The

adjoints of order lower by 3 than the original system are important
from the fact that they transform always into the corresponding

system of adjoints to the transformed curves. On this account

the term adjoint, as used ordinarily, implies a curve of order

m 3 unless differently specified. Second adjoints are adjoint to

adjoints of the system, etc. The employment of successive adjoint

systems as a means of investigation is due to S. Kantor and to G.

Castelnuovo, the latter acknowledging the priority of the former.*

On every curve its adjoints cut out a unique complete series g%~lz ,

called the canonical series. The deficiency of the first or second

adjoints of a linear system is denoted by Pl
or P

2,
and may be

termed first, or second, canonical deficiency. Aside from the

canonical series upon curves of a system, the most important are

the characteristic series of the system, that is the totality of sets of

points in which two curves of the system intersect. If a plane
linear system is complete, then the characteristic series on each

*See Math. Annalen, vol. 44 (1894), p. 127.
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curve is a complete series upon that curve. So far the definitions

and propositions refer to curves in a plane ;
the question is in

order whether they can be transferred to systems of curves lying

upon curved surfaces.

First, it is noticed that by means of a linear system of curves

the plane may be related point for point to a surface in space of

three or more dimensions.* If the system is &-fold infinite, k + 2

members of the system can be related arbitrarily to k + 2 hyper-

planes in space of ^--dimensions. Take k = 3 for ease
;
then a

curve of the system

Vl + W2/2 + W
3/3 + W4/4 =

may be assigned to a plane (w }
: n

z
: u

3
: w

4)
in ordinary space.

Curves through one point become then planes through one point,

and the oo
2

points of the plane become the oo
2

points of some

algebraic surface F. All such surfaces are called rational. Simi

larly a linear family of curves triply infinite upon any surface

relate that surface point for point to another surface in threefold

space, linear systems of curves in one giving rise to linear systems

upon the other, and the transformed system will lack fundamental or

base points. The value of such protectively related pictures of a

linear system of curves was first emphasized by C. Segre.

Secondly, there are surfaces not rational. For example, there

are irrational ruled surfaces. But for many purposes, ruled sur

faces and rational surfaces are classed together and constitute, with

their equivalents, a small, indeed an exceptional, plass in the vast

field of algebraic surfaces. Planes are also regular surfaces, that

is, they have their geometrical and numerical (or arithmetical)

deficiencies equal, as will be explained directly. On regular sur

faces, most of the theorems upon linear systems of curves on

rational surfaces retain their validity ;
not so on the irregular.

New characters crop out in the systems of curves, characters which

indicate the nature of the surface. But the linearity of a system

*
Exceptional cases are discussed by Enriques :

&quot; Kicerche di geometria sulle

superficie algebriche,&quot; Torino Memorie, ser. 2, vol. 44 (1893), p. 178.
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of curves is still susceptible of precise definition, and that in two

ways whose equivalence constitutes an important theorem.

If on any surface, rational or not, there exists a system of

curves doubly infinite, such that two arbitrary points determine

one and only one curve containing them, that may be termed a

linear net upon the surface in question ;
and Enriques proves that

the oo
2 curves of such a system can be protectively related to the

straight lines of a plane. If the series is oc 3
,
and if three arbi

trary points determine uniquely a curve of the system which shall

contain them, then its curves are referable projectively to the

planes of three-space, etc. Only simply infinite systems escape

this far-reaching theorem, and thus give rise to a most interesting

unsettled question, indicated by Castelnuovo.*

Definitions of residual and corresidual curves upon a surface

are those which any one could formulate at once from the use of

these terms for sets of points upon a curve
;

their significance

upon a twisted curve is the same as upon its plane projection.

So of complete systems, both of curves and of surfaces, the latter

admitting of course multiple curves as well as base points. For

a surface of order m, the adjoints invariantively related are of

order m 4, containing as
(s l)-fold curve every s-fold curve

of the given surface. If these first adjoint surfaces form a &-fold

infinite linear system, the number k is an invariant of the surface

and is termed its geometric deficiency (pg). Attempting to express

this number in terms of the order m of the surface, the order d

and deficiency TC of its double curve (if any), and of the number

t of triple points on this double curve, one would find a second

number

p n
=

i(m - 1) (m
-

2) (m - 3)
- d (m

-
4) + &amp;lt;2t + x - 1,

called the numerical deficiency of the surface. This number also

is an invariant of the surface, as Noether first proved, and may

* Castelnuovo :

&quot; Alcuni risultati sui sistemi linear! di curve appartenenti ad

una superficie algebrica.&quot; Memorie di rnatematica e di fisica delta Societd Italiana

delle Scienze, ser. 3, vol. 10 (1896), pp. 82-102. See especially the close of his

preface.
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be either equal to or less than p ,
but never greater. Rational

surfaces have pg
= pn

=
;
ruled surfaces have pn negative. If

pg
= pn ,

then the above-mentioned theorem of Enriques concern

ing linearity holds true also for systems which are only simply/
infinite. Surfaces of the first adjoint system cut out upon a given
surface a system of curves, each of deficiency p(l} or less. This

invariant number p(l) we may call the canonical deficiency of the

surface
;
the curves form an unique complete linear system, just

as do the point sets of the canonical series on a plane curve.

The definitions here given are but a part of those found useful

in this fascinating branch of geometry. The true way to learn

something of the subject is not to master first all its definitions

and distinctions, but to study the proofs of some few leading

theorems. Such are Enriques s proof of the equivalence of two

geometrical definitions of the linearity of a system (mentioned

above), and the following less elementary propositions :

1. Surfaces whose plane or hyperplane sections are irreducible

unicursal curves are either ruled or rational (Noether).*

2. So also surfaces whose plane or hyperplane sections are irre

ducible elliptic curves (Castelnuovo),f or hyperelliptic of any de

ficiency 7i (Enriques). J For plane sections, not hyperelliptic, of

deficiency n
&amp;gt; 2, the corresponding theorem is not yet fully

known. The proof of this theorem I shall give in full.

3. Upon any algebraic surface f(x, y, z, t)
= a linear differ

ential of first kind is said to exist (Picard), if an expression in

volving four rational functions Pv P2,
JP

3,
jP

4,
of ,the coordinates:

/ [P, (x, y, z, t)
fa + P2 &amp;gt;ly

+ P3
&amp;lt;fe + Pt d(\

is finite and determinate, independent of the path of integration,

* Noether s theorem is more general. See Math. Annalen, vol. 3 (1871) :

11 Ueber Flachen, welche Schaaren rationaler Curven besitzen.&quot;

f &quot;Sulle superficie algebriche,&quot; etc., Lincei Rendiconti, January, 1894.

J &quot;Sui sistemi linear!,&quot; etc., Math. Annalen, vol. 46 (1895), pp. 179-199.

\ For full information, see the second paper, cited above, of Castelnuovo and

Enriques. I regret that this paper had not come to my notice before giring these

lectures.
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when taken upon the surface between any two arbitrary points.

If the surface /= is a cone, such differentials exist, for they

are the abelian differentials of first kind upon its plane sections.

Picard proves* that if the surface /= have no multiple points

or curves, then no such differential can exist upon it. There are

however surfaces of all orders above the third which contain (or

admit) one such integral ; others, from the sixth order upward,

which admit two, and so on. These surfaces and the mode of dis

covering them and of denning them have been the occasion of

some of the most interesting studies of Picard and Humbert. The

elementary part of Picard s first paper upon this topic I shall give

in some detail, indicating in conclusion certain points that might

prove worthy of further study.

CHAPTER 2.

Linear Systems of Curves on an Algebraic Surface. The Two

Geometric Definitions are Concordant.

IN plane geometry a linear system of algebraic curves is defined

analytically by an equation containing linearly and homogeneously

two or more parameters ;
as for example :

x
4&amp;gt;
+ \^ + x

2 c/&amp;gt;2 + . - +\A = o,

the X s being parameters, and the
&amp;lt;J&amp;gt;

s a set of polynomials homo

geneous of like degree in the current coordinates. This is called

a K-fold infinite (OC
K

)
linear system. As we restrict our field to

include only systems defined by fixed base points, the curves

&amp;lt;f).

= must be supposed all to contain the base points of the

system. In a plane such a system may be studied by means of

its equation, but for other surfaces one must either assume an

analytic representation as definition, or else take such geometric

features of a plane linear system as seem most important and

transfer them to sets of curves on surfaces in general. NVe follow

* Picard et Sitnart : Theorie des fonctions algebriques de deux variables indepcn-

dantes, vol. 1 (1897), pp. 119-120.
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the latter plan, and two definitions naturally present themselves.

First, using an auxiliary hyper-space of as many dimensions as

the system of curves exhibits, an oo system of curves on an alge
braic surface is called linear if its elements (the individual curves)
can be put in correspondence one-to-one, projectively, with the

hyper-planes of a space of r dimensions, S
r

.

Second, using no auxiliary outside the points of the surface

itself, an cc
r

system of curves on an algebraic surface is called

linear if through r generic points of that surface there passes one

and only one curve of the system. This definition is to be used

only when r
&amp;gt; 1. For if r = 1, the generators of a ruled sur

face would fall under this definition, and one sees immediately
the impropriety of calling them a linear system.

Notice that a system linear under the first definition must also

be linear under the second. For by relating curves to hyper-

planes we relate the algebraic surface F to a new surface F in

$., as explained in the preceding chapter ;
and through r points

on F there will pass one hyperplane, hence through r points in

F there will pass one curve of the system and no more. The
first definition therefore includes the second

;
does the second

include the first? We shall show that it does, so that the two

definitions shall be proven equivalent for all cases except r 1,

that is, for all except linear sheaves or pencils. The proof is

essentially that of Enriques
* as presented by Segre.f

Two lemmas may well precede the theorem.

LEMMA 1 . Projectivity of two flat spaces. Two flat spaces of n

dimensions, Sn
and S

H ,
can be protectively related by assigning

to any n -f 2 generic hyperplanes or $_/ of the first any n -f 2

generic S ^/s of the second, one to one, as corresponding forms.

The proof is by mathematical induction
;

to gain a clear idea of it,

state it for points instead of hyperplanes, and model the transition

from S
H
and S

n
to Sn+1 and S

i+l upon von Staudt s J transition

*
Enriques :

&quot; Una questione sulla linearita del sistemi di curve appartenenti
ad una superficie algebrica.&quot; Rome, Lincei Rendiconti, July, 1893.

f Segre : Lac. cif. in Annati di Matematica, ser. 2, vol. 22, $27.

von Staudt : Geometric der Laye, p. 69.
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from S
2
to Sy In S

3
take any 5 points A, B, G, D, E, such that

no four lie in a plane, and in 8
^ similarly A ,

B
, (7, D ,

E
,
like

letters denoting corresponding points. In the plane C D E f

or

$2 call P r

the point of intersection with the line A B
,
and in CDE

or S
2
let P be on the line AB. As P and P must correspond,

this gives 4 points in 8
2 corresponding to 4 fixed points of S

2)
and

therefore by hypothesis fixes the projectivity between the two

planes. The pencil of rays in S
2 through P corresponds projec-

tively to that through P in the other plane, 8
2

. If now Q
denotes any point of *S

Y

3 ,
to find its corresponding point Q in S

^

let Q be projected from A and from B into two points A v
and B

l

of the plane 82
. These are collinear with P, and we can find their

corresponding points A[ and B[ collinear with P in 8
29
and so,

by using A and B as centers of projection, the point Q desired.

Points on the line AB itself have their corresponding points fixed

by the assignment of 3 points A, B, P to the points A ,
B

,
P

respectively in the line AB .

LEMMA 2. In an oo
2

algebraic system of irreducible curves

upon an algebraic surface, if the system is linear according to the

second definition, then the points of the surface form sets of n (some

finite number), such that if a curve of the system contains one

point of any set it must necessarily contain also the other n 1

points of that set.

The proof rests on the algebraic characters of the system. Call

the system (C) and any curve of the system C.. Select any point

A
l
of the surface. It does not determine a curve. Let C^ and C

2

be any two irreducible curves through A r They intersect in

n 1 other points A 2 , A^ ,
A

n , (n = l). Since two of these

points, e.
&amp;lt;/.,

A
1
and A

2
lie on two curves, they must lie on an

infinity of curves
;

i. e., it will require at least one additional point

to determine a single curve from among those that contain both A
l

and A
2

. If P is a generic point not on all curves that contain A v

then by hypothesis the two points A v
and P determine one curve,

which shall be denoted by C7
3

. Also among the curves that con

tain A^ and A^ at least one will contain the additional point P.
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This can be none other than (7
3 ,

hence the curve which is deter

mined by A l
and the generic point P will contain also A,. By

parity of reasoning it must contain as well A
B , ,

A
n

. But as P
was any point, C3

was any curve through A v consequently every

curve of (0) that contains an arbitrary point A l
must contain also

n 1 other determinate points, as asserted by the lemma.

The principal theorem can now be proven if two facts are estab

lished. First the theorem should be found to subsist for the

particular case r = 2, so that the base may be provided for a

mathematical induction. Then, secondly, the mode of induction

employed in Lemma 1 must be shown to be applicable to a sys

tem of curves conforming to the second definition.

PARTICULAR THEOREM. A doubly infinite algebraic system of
(

irreducible algebraic curves upon any algebraic surface can be

brought into a one-to-one relation with the system of all lines in a

plane by assigning to four arbitrarily chosen curves of the system

(no three through one point), four arbitrarily chosen lines of the

plane (no three through one point), as corresponding lines, and by

requiring further that to curves having a common point shall cor

respond lines with a point in common.

To prove this, associate every set of m points, such as the

A v A 2 , -,
Am ,

of Lemma 2, together as one element A. Then

there is upon the surface an oo
2

system of C s and a second system

of A s related thus : Two generic C s determine one A and two

A s determine one C. Now these are precisely the incidence rela

tions upon which depends the familiar proof that four lines of one

plane and four of another determine a projectivity of the two sys

tems of lines
;

here the lines and points of the one plane are

replaced by elements C and A. The requisite of continuity is

provided for by the hypothesis that the system is of algebraic

character. Therefore the lines of a plane and the curves of the

system (C) stand in a one to one relation, as asserted by the

theorem. This relation is called projective, meaning that it is

independent of the particular four pairs, line and curve, that may
be selected to determine the correspondence. Otherwise stated :
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If the lines of two planes are related in the mode above described

to the curves of a system, the planes are thereby protectively

related to each other.

As to the second matter, it is needful to show that the elements

used as auxiliaries in Lemma 1 have unique analogues in a sys

tem, triply infinite, of curves conforming to the second definition.

What were called points there have become curves here, hence

the lines and planes must be replaced by oo
1 and oo

2

systems

of curves. We need only examine, accordingly, whether the

postulate : a line and a plane intersect in one point, retains its

validity. Let a &quot; line
&quot; be given by two curves, a &quot;

plane
&quot;

by

three
;
or to adhere more closely to the definition, consider an S

l

given by two points, a and b, and an 8
2 consisting of all the

curves of the oo
3

system 3
that pass through a third point c.

Then will S
l
and 8

2
have in common one and only one curve.

For in the 8
3
there is an $2 containing the point a

;
in this 8

2

there is one curve C that contains the points b and c (and by the

explanations of the above theorem we see that it must contain all

the intersections of any two curves fixing the 8^. As containing

a and b it lies in 8^ ;
as containing c it lies in $

2,
and as contain

ing these three arbitrary points it is by the definition unique.

Therefore, all the constructions of Lemma 1 have their unique

analogues in the system 83
.

We conclude that the transition from an oo
2

system to one oo 3

is possible, and that for r = 3 the first and second definitions

are equivalent. Mutatis mutandis, the induction from r = m to

r = m + 1 can be made by similar means. Recapitulating we

have therefore the theorem :

An &amp;lt;x&amp;gt;

r

algebraic system of irreducible algebraic curves upon any

algebraic surface is linear if either (1) its elements can be put in a

one-to-one correspondence, protectively, with the hyperplanes of an

r-fold space ; or (2) if through r generic points of the surface there

passes one omd only one curve of the system. For r
&amp;gt;

1 these two

defining properties can be inferred, each from the other.
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CHAPTER 3.

Surfaces ivhose Plane Sections are Hyperelliptic Curves.

PLANE curves of any deficiency above 1 may be hyperelliptic,
and those of deficiency 2 are necessarily so. The specific feature

of an hyperelliptic plane curve of order n is this, that its adjoint
curves of order n 3, its

&quot;

&amp;lt;/&amp;gt;-curves,&quot; arrange its points in pairs.

That is, if a c^-curve contains any one point P of a hyperelliptic
curve C, it will of necessity contain a second determinate point

Q of C; then P and Q form what is called a conjugate pair ; each

is the conjugate point of the other. It is well known that a &amp;lt;-

curve can be found which shall contain p 1 arbitrary points
of C, where p denotes the deficiency of the curve C. These facts

lead to interesting conclusions about any linear system of hyper

elliptic curves in a plane, or in any rational surface.

In a plane, a linear system of hyperelliptic curves may be of

the first or second kind. In a system of the first kind, a curve

passing through any one point is not thereby necessitated to pass

through a determinate second point; in a system of the second

kind this compulsion does exist, and all curves of the system that

contain a point P contain also Q, its conjugate point. Of the

second kind, for example, is a certain family of plane sextics hav

ing double points in seven common points of three cubics :
(j&amp;gt; l
= 0,

$2 = (\ $3
= 0- The equation

E^*A =
(,,*= 1,2,3)

gives a linear system of sextics, the C
ik being arbitrary . Outside

of the seven base points, let any point P be on both cubics :

(f&amp;gt; l

= and
c/&amp;gt;2
= 0.

Their ninth intersection, ,
is determined by the eighth, a familiar

theorem
;
and sextics of the system which pass through P, being

given by the equation (according to Noether s theorem)

&amp;lt;?,i# + 2
&amp;lt;W2 + G^l + &amp;lt;f&amp;gt;^A

+
&amp;lt;?*,)

= o

must contain also the remaining intersection Q of ^ = and



LINEAR SYSTEMS OF CURVES. 13

^ __ o. Notice that c^, fa, (/&amp;gt; 3
are adjoint $ s of all sextics of the

system, so that Q is the conjugate point of P on every sextic that

contains them.

We mention systems of this second kind, only in order to ex

clude them from further discussion here. Let (II) be an oo
3

system

of the first kind of hyperelliptic plane curves Hv H2 , etc., of order

n, and let ($) be the system of adjoint curves of order n 3, i. e.
y

let the curves fa, fa,
- have as

(i l)-fold points the /-fold base

points of the system (H). Consider any point P of the plane.

Its conjugate Q on any curve H of the system must lie, by defini

tion, upon every c^-curve containing P. Since Q is a variable

point, its locus must needs form a part of every c^-curve through

P, and these &amp;lt;-curves accordingly must be degenerate. By parity

of argument every c^-curve must consist of (p 1) distinct parts

where p is the common deficiency of curve H
9
and each part must

intersect every curve H in only two points, a conjugate pair, out

side the multiple base points of the system (H). For an example

of this, let the system (//) consist of all curves of order n having

in a fixed point a multiple point of order n 2. Any &amp;lt;-curve

must have in an (n 3)-fold point, and is itself of order n 3,

therefore it will consist of n 3 right lines through 0. Every

constituent right line has with any curve H n 2 intersections

in 0, and two outside that point ;
the latter two are conjugate points

on the curve, which is consequently hyperelliptic. Another ex

ample, with the &amp;lt; s compounded of conies, is the system of curves

of order 2m + 3 with four fixed multiple points of order m + 1.

The fact that for these plane systems the points conjugate to a

given point fill out a definite locus is the thing to which we shall

wish to recur.

In space of three dimensions, let a surface F have all its plane

sections hyperelliptic curves (C) of deficiency p. Can these be

represented by a system of curves all in one plane ? Is the sur

face F rational, i. e., transformable into a plane, point-for-point,

rationally ? This question again may be approached by the aid

of conjugate pairs of points. We should expect of course that
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analogues of (^-curves would be, in space, ^-surfaces, and that

those that pass through a point P on any curve of the system
would contain its conjugate Q; and further, that all points Q
conjugate to P would lie on some determinate curve of the sur

face. This last supposition can be established by redudio ad

absurdum.

The surface F and its plane sections (C) are algebraic. Each

curve C containing a selected point P has, by hypothesis, one par
ticular point Q conjugate to P. Therefore the Q s on the oo

2

curves through P must suit one of the following three descriptions.

(a) They may be finite in number, Qv Q2 ,
- - - Qr But then

every plane section of the surface through P would need to con

tain the line PQV or P
2 , , or PQk

. This is absurd.

(6) The Q s may be simply infinite, oo
1
in number, filling one

or more algebraic curves on the surface, or lastly

(c)
The Q s may fill all the oo

2

points of the surface F. We
shall reject this after showing that in this case the surface must

be rational
;

i. e., rationally and reversibly transformable into a

plane, whereas on the contrary, in a plane or any other rational

surface the Q s must be only a simple infinity, oo
1
.

Suppose, therefore, that every point Q of the surface is conju

gate to a given P upon some one or more curves of the system.

It cannot be so upon all plane sections through the secant PQ, for

then must every point of any plane section be conjugate to P on

that section, contrary to the hyperelliptic hypothesis. Through

every ray PQ there lie then a finite number r of planes in which

P and Q are conjugate. Any one of these determines all the others,

for P and the plane through P fix
,
and the rest follow. Now

such a grouping of the planes through P into sets of r planes, each

set being determined by any one of its planes, is called an involu

tion. Castelnuovo *
proves the remarkable theorem, that every

involution of the planes about a point in space of three dimensions

is rational; i. e. its groups can be correlated univocally and

reversibly to the points of a plane, each group to one point.

*Math. Annalen, vol. 44 (1894), pp. 125-155.
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Thus through the involution every point Q of the surface can be

related to some one point of an auxiliary plane, and vice verso.

But if the surface F be transformed algebraically and univocally

into a plane, then its plane sections will be transformed into a

linear system of hyperelliptic curves in that plane, conjugate

points going into conjugate points : whereas we have seen that in

a plane the conjugates Q of P do not fill the whole plane, but

only an oc
1
locus. Supposition (c)

is thus dismissed, and
(6) alone

is tenable.

We have then as a starting point this fact, that for a generic

point P of the surface there is a definite curve p containing all its

conjugates Q on the curves of the system (C) ;
and this curve p

can meet each curve (each plane) only once outside the point P
itself. If then p is of order s, it must have in P an (s l)-fold

point. It must also be a plane curve
;
for a plane can be passed

through P and two arbitrary points of
79,

and will contain

81 +1 + 1 = 8+1 points of a curve of order s, hence must

contain the entire curve p. This curve p can be shown to be either

a straight line or a conic.

If p is not a line or a conic, its order s must be at least 3,

whence it must have in P a double point (2 = s 1) or multi

plicity of higher order. As p is a plane curve, this means that

its plane is tangent in P to the surface F; and so that every line

joining P to a conjugate Q is a tangent in P to the surface, and

by symmetry of the relation between P and
, tangent also to F

in Q. This is not possible unless either the curve p is a curve of

plane contact (so that P would be an exceptional point of F\ or

else the curve p consists wholly of straight lines through P. This

alternative is equally impossible, as no ruled surface has through

every point three or more generators. Therefore the hypothesis
s = 3 leads to absurdity ;

and we have to examine the two possi

ble cases : s = 1 and s = 2.

= 1. If p is a straight line, it does not contain P, since

s 1 = 0. To P is associated one generator p of the ruled sur

face F, and conversely, to every point Q of p must be associated
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the generator q passing through P. F is then a ruled surface, of

hyperelliptic section, with its generators arranged in pairs cutting

conjugate points in every plane.

s = 2. Ifp is a conic, three cases can be distinguished. First,

to every point Q on p may belong a conic q containing P but

different from p, and these may be in themselves complete plane
sections of the surface, If this were so, the surface would be a

quadric. But the conies may not be complete plane sections of

the surface, and this possibility it is convenient to divide into two

parts, as follows : Secondly, the q s may be conies distinct from

the p s. The surface F will contain in this second case a doubly

infinite system of decomposable or reducible plane sections. Or

thirdly (the only case not trivial), the conic g, while its corre

sponding point Q describes the conic p, may continually coincide

with p. There is then only a simple infinity of conies (p) upon
the surface. To show that this system is a rational sheaf, con

sider its section by an arbitrary plane : on the hyperelliptic section

curve each conic p cuts two conjugate points P and Q, and either

P or determines p completely, hence the system (p) is in one-

to-one relation with the series of pairs of conjugate points upon a

hyperelliptic plane curve a linear series, and must therefore be

rational.* Now these three alternatives lead to a single conclu

sion, through the application of well known theorems.

First if the surface F were quadric, it would be rational
;
but

then it would be discussed as a surface with all its plane sections

rational.f For the second case we adduce Kronecker s theorem J

* Indeed these planes form the developable of a twisted cubic curve, since no

one of them counts twice
;
Castelnuovo shows that the immediate generalization

of this remark holds for hyperspace.

|See paper by E. Picard : &quot;Sur les surfaces algebriques dont toutes les sec

tions planes sont unicursales,&quot; Crelles Journal, vol. 100 (1885); and a correlated

paper of E. H. Moore :

&quot;

Algebraic surfaces of which every plane section is uni-

cursal in the light of n-dimensional geometry,&quot; Amer. Jour, of Math., vol. 10

(1888), p. 17.

J See the historical note and demonstration by Castelnuovo. &quot; Sulle superficie

algebriche che ammettono un sistema doppiamente infinite di sezioni piane

riduttibili,&quot; Lincei Rendiconti, January, 1894.
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that a surface having a double infinity of plane sections that are de

composable curves is either a Steiner s quartic surface or a ruled

surface. Steiner s &quot;Roman Surface&quot; is the quartic having three

double lines through a triple point, and is rational, since it can be

projected from its triple point upon a plane. The third case is

decided by Noether s theorem * that a surface containing a rational

system of rational curves is rational.

The conclusion can be condensed now into the form : Every

algebraic surface ivhose plane sections are hyperelliptic curves of

deficiency or more is either (7) a ruled surface or (2) a rational

surface, and in the latter alternative it contains a rational sheaf of

conies. This latter phrase obviously rejects two of the alterna

tives of the preceding paragraph, and this is warranted by the

rationality of the surface, the representative system of plane curves

being therefore the criterion. For we recall that in a linear

system of plane hyperelliptics the _p-curves and g-curves discussed

above are component parts of the degenerate (^-curves, and a p
coincides with all its y s.

This highly general theorem allows us to study upon plane systems
the geometry upon an extensive family of surfaces in space and in

hyperspace as well, since the existence of a triply infinite linear

system of hyperelliptic curves in a surface is equivalent to the

hypothesis that we have used concerning plane sections in ordi

nary space. And for linear systems of the first kind in a plane
reduced types have been found by Castelnuovo,f from which all

others are derived by Cremona transformations. It remains to

develop to the same extent the theory of systems of the second

kind. This would demand an acquaintance with the work of

Bertini on plane involutions of index 2, and of Clebsch and Noether

on rational double planes.

An extension in another direction has been given by Castel-

f M. Noether :

&quot; Ueber Flachen, welche Schaaren rationaler Curven besitzen,&quot;

Math. Annalen, vol. 3 (1871), pp. 173-4. The theorem is more general than
that here cited.

&quot;Sulle superficie algebriche le cui sezioni piane sono curve iperellittiche.&quot;

Palermo Bendiconti, vol. 4 (1890), pp. 73-88.

2
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nuovo,* who discussed under only one specializing restriction the

surfaces whose plane sections are of deficiency 3. These are of

four kinds, so far as numerated, and not all rational, f In looking

for other possible extensions, it should be remembered that there

are other classes of highly specialized curves, differing from the

hyperelliptic in the degree of the singular series of special groups

which occurs upon them. Of such classes, individual curves have

received some study, but linear systems little or none.

CHAPTER 4.

Linear Exact Differentials of the First Kind on an Algebraic

Surface.

1. The Existence of Integrals on Given Surfaces.

WHEN the theory of integrals upon algebraic curves was ex

tended to surfaces, the first step was the discussion of double

integrals. These have been described already (Chapter 1),
and

attention has been called to two important numbers, characteristic

of a surface, to which they give rise, the geometrical and the numer

ical deficiency. Every surface above the lowest orders possesses

double integrals of the first kind, everywhere finite, unless its

singularities have become too numerous. The increase of singular

points and lines causes a diminution of the geometrical deficiency,

p . Double integrals and their classification were introduced by

Clebsch and Noether about 1870. Fifteen years later a different

and even more interesting extension of curve theory to surfaces

was made by Picard.^ The new integrals that he introduced

are simple integrals whose path of integration is restricted to

*
&quot;Sulle superficie algebriche le cui sezioni sono curve di genere 3.&quot; Torino

Atti, vol. 25 (1890).

| If the surface is of order above the fourth, with plane sections all of deficiency

3, it is rational. See Castelnuovo and Enriques &quot;Sopra alcune questioni fon-

damentali nella teoria delle superficie algebriche,&quot;
Annali di Matematica, ser.

3, vol. 6 (1901), esp. Sec. V, 16.

J
&quot; Sur les integrates de differentielles totales algebriques de premiere espece,&quot;

Jour, demath., ser. 4, vol. 1 (1885).



LINEAR SYSTEMS OF CURVES. 19

lie in the surface, while the integrals are further required to be

functions of their limit points alone, not of the particular path of

integration. The number of linearly independent, everywhere

finite, integrals of this kind is a new invariant characteristic of

the surface
;
and it is found that this number is zero when the

surface is non-singular, but increases (according to a law not pre

cisely known) with the multiplication of singularities. This is

the theory of which I propose now to give a sketch, following

very closely Picard s article cited above.*

Upon an algebraic surface

/=/(*, y, *)
= o

a linear differential expression in dx, dy, dz can be reduced by the

use of the relation :

(1) f dx+fdy+f dz = V.

By this means any expression of the form

Adx -f Bdy + Cdz

may take on either one of the three aspects :

Let the first be chosen, and abbreviate it to

Qdx Pdy

/;

Concerning this expression two things are to be noted. First, if

the surface be cut by an arbitrary plane, then by the adjunction

of the equation of that plane this must become an abelian differen

tial of the first kind upon the plane curve of section. Secondly,

* For details, see also the book of Picard and Simart.
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either x or y could have been taken as dependent variable instead

of*.

From the first observation it follows that both P and Q must

be entire functions of x, y, z, of order m 2 when m denotes the

order of the surface /= 0.

From the second, converting the differential into its two equiv
alent forms :

Pd, -
j,
- *

J z

;

we find further that the fractional form

must reduce to an integral form upon the surface, i. e., by virtue

of the equation of the surface. Let R denote this integral

form, and N a suitable polynomial of order m 3, so that we

shall have identically :

This gives us for equivalent differential expressions on the sur

face :

Q-dx P- dy Rdy Q-dz Pdz - Rdx

-jr-
,7--

j,

~
.

J z J x J y

There is yet to apply the condition for an exact differential, in

order that the integral between any limiting pointy may be a func

tion of those limits independent of the path of integration. That

condition in one form will be, upon the surface :

W
,1

Performing these differentiations by the aid of
(1),

and multiply

ing by (/^)
2 we have for/= :

dP dQ dR _
~dx

+
d~y

+
dz

=



LINEAR SYSTEMS OF CURVES. 21

This must hold over the surface /= 0, hence using (2) and com

pleting the algebraic identity by a term in/(#, y, z) we find :

where L denotes some integral function of
a?, yy z, of order 2??i 6.

Expanding in part the third term, we distinguish terms which on

their face must contain a factor f(x, yy z) :

N

Since the first group of four terms are integral, and of order lower

than m, they cannot contain the factor
/(a?, y, z) otherwise than by

vanishing identically. Thus we must have for all values of x, y, z

the identity

, +f++-.
Insert again the equivalent of AT

-/from (2) :

The form of this identity invites us to write / homogeneously
in

(ar, y, z, t),
and of course the other functions also, and to

employ Euler s identity

so that equation (7) becomes :

(mP + .riV)/; + (mQ -f yN)f
;/
-f (mE + zN)f s -f- tN -ft

= 0.

In this it will appear more simple to write

mP + xN = tev mQ+yN= t6.
2
mR + zN= t0

3 ,

N=B,
To show that V 0^ 6^ are integral, recall that

7T
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is a total differential nowhere infinite, and that in the plane /=
it is an abelian integral of the first kind, and so must have the

form

ydx xdy*

where
&amp;lt;f&amp;gt;

is of order m 3. For this reason we must have iden

tically :

P =
x&amp;lt;l&amp;gt;

+ tfa, Q = yt + tfv R =
z&amp;lt;l&amp;gt;
+ ty,,

where
(/&amp;gt;

is homogeneous of order m 3 in x, y, z
y
and

&amp;lt;/&amp;gt;v &amp;lt;

2,
&amp;lt;

3

are of order m 3 in x, y, z, and t. Therefore

or

= 111$ 4- t(f)4
.

These expressions give for the O s the integral forms :

_ m(x$ + ^) 4- .T(- m 4- ^4)

C7,
-

^

-

6&amp;gt;

2
= m^2 + ^4 ,

6&amp;gt;

3
= wi03 4- z &amp;lt;

4 ,
6&amp;gt;

4
= -

wi^ + ^4
.

Effecting the substitutions (8) in conditions (6) and
(7),

and

using Euler s relation for A7
:

we have the two relations which the ^ s must satisfy :

ae ae de e&amp;gt;8

(io) o + e + e + g,!).1 dx dy
3 dz 4 dt

These conditions are now symmetrical in the four homogeneous

variables, and by the aid of four parameters cv c
2,

c
3 ,

c
4
we can
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bring the integral (3) into the symmetrical form used by Berry.*

1
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order to admit one, two, . . .
, independent exact differentials of this

first kind might prove an accessible and profitable subject for fur

ther inquiry. To extend this inquiry to surfaces in hyperspace
would require a systematic preliminary study of curves and sur

faces in such a space not yet completed.

2. The Existence of Surfaces of Given Character, in particular

Hi/perelliptic Surfaces.

If a surface in threefold space, /= 0, possesses exactly two

linearly independent exact differentials of the first kind

Qdx Pdy Qax - ^ y
jr- = du and

^-,

= dv,

then every algebraic curve lying upon it has the same two inde

pendent abelian differentials of the first kind, and hence these in

tegrals have four independent sets of periods. It can be proven

easily that the geometrical deficiency of the surface is

and that the expression

ff
QPl

f
Q&amp;gt;1

/;&quot;

is the double integral of the first kind, finite for all boundary
curves on the surface.

Conversely PIOARD shows, (/. c.) that if
.r, y, z are given as

fourfold periodic functions of two independent variables, the locus

of a point (.r, y, z) is a surface of this sort. For a simplest illus

tration let the functions reduce to elliptic, and in the Weierstrass

notation set

This gives an equation between
.r, ?/,

and z :

or for brevity

z = i/^(.r) -f VR(y].
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Accordingly the surface is of the sixth order :

4A
(.r) B(y)

-
[r
-

f!(x)
- K(y)Y =/(.r, y, z)

= 0.

The two integrals on the surface, u and r, are represented as

follows :

r dx Cz*-R(x} + R(y)=
J VR&-J /r

. f_d^. c***?}V - I .--- ^* I / /

J l/AX?/) J /,

As to double integrals, the one of the first kind belonging to

the surface degenerates into
J*

du di^ which is evidently finite.

The double lines of the sextic surface may be perceived imme

diately, one of them being obviously the straight line x =
?/,

z =
;
another a conic in the

(.r, y) plane ;
and three lines at

infinity.

One linear differential of the first kind can exist on a surface

of order as low as the fourth. There are five types of such quartic

surfaces, found by Poincare&quot;,* Berryf and de Franchis
;
the five

types are protectively distinct, that is, collineations cannot trans

form one into another
;
but Berry has found that under birational

transformations all five are equivalent to a cubic cone devoid of

double line.

Of these five types, perhaps the easiest of derivation is the fol

lowing. The quantities 9, being of order m 3, are linear. Let

their planes coincide with those of the tetrahedron of reference, viz.:

e
t

=
x, e,

= y ,
e
3 =-z, e

t
= -t,

thus satisfying the condition (9). It remains to satisfy (10),

df df dfy--z4 ~tL = 0.y
dy dz dt

*
Comptes Kerulus, vol. 99 (Dec. 29, 1884).

f Ibidem, Sept. 2, 1899. See also his papers, cited above, in the Tram. Cam

bridge Phil. Soc.
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Since also by Euler s identity for homogeneous functions

df df df df

i+^+ s+ s&quot;*1

it follows that

df df df dfX ~- + y -Z-
= z ~ -f t-- = 2/.dx cy dz dt

Hence the form is homogeneous of order 2 in x and y, also in z

and t. Symbolically

/= (a,*
2 + 2apy + a^XV + 2b

2
zt + If),

each product ab
k denoting an arbitrary real quantity. This is a

familiar ruled quartic surface with two double lines (x = y =
and z = t =

0).
It is generated by taking for directrices these two

double lines and any plane quartic which has nodes upon the two

lines.

This suggests the interpretation of conditions (9) and (10) by a

complex of lines. The connex

ufa + u
2 2 + u

B 3 + u
4 4
= 6 =

gives rise to a complex when every point (x) is joined to its cor

responding point, and condition (10) is the requirement that the

complex line originating in a point (x) of the surface /= 0, shall

be tangent to that surface. Speaking of the line joining a point

(x) to its corresponding point in the connex : 6 = as a trajectory

of that connex, we say : A surface f= of order m will possess a

linear exact differential of the first kind if a complex (m 3, 1)

exists such that the trajectories of all points on the surface are tangent

to the surface.

Remark. When one linear exact differential exists on the sur

face, and only one, it is invariantively related to the surface under

a much larger group than that of the collineations and a fortiori

under the latter group. Instead of seeking the integral when the

surface is given, and finding it as an irrational covariant of the

surface, one might attempt to determine the surface as a rational
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covariant of the forms
19 2 , 3 , 4 , occurring in the integral. But

the surface may be not determinate. (In the above example it

had still 8 free parameters.) Also the s depend on the choice

of planes of reference. Hence more precisely one should seek to

determine the mixed form f(x, u) (connex) covariant with the

connex

such that every set of values (u) makes the surface f(x, ?/.)
= a

surface possessing the integral of the first kind represented in (11).

In other words the connex is to satisfy the relation

d*0 d2 d2 d*0
. L

j_ {_
= 0.

du
l
dx

1
du

2
dx

2
du-

3
dx

3
du

4
dx

4

while the covariant /(#, it), or/, is to be of order in the (x) higher

by 3 than
}
and shall satisfy also identically the equation :

Cu uf uu (Jf u\j uf Cv ut
_i_ _i_

_j_
= 0.

Of course the chief interest in this problem would be found in

the lower orders, 4, 5, 6. It might be possible to solve a similar

problem of the theory of forms when the surface is to have two or

more independent integrals of the first kind.

To return to surfaces with two independent exact differentials

of the first kind, we note two theorems of Picard. The existence

of two such differentials is impossible upon any surface of order

m
&amp;lt;

6. If a surface have two such differentials,
its plane sections

are curves of deficiency at least p = 2, and its geometrical deficiency

Picard establishes directly the existence of a class of surfaces

with two differentials, in brief as follows : Let the Cartesian

coordinates of a point be given as uniform functions, quadruply

periodic, of two independent variables. Let the relation be such

that to every point (x, y, z) of the surface there corresponds one

and only one pair of values of the two independent variables
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u, v. Then the surface has exactly two linear differentials of the

first kind.*

For if the surface equation

/fa & *)
=

is satisfied identically by three uniform functions

x = F&, v), y = F
2(u, v), z = F

3(u, v)

and the functions F
lt
F

2 ,
F

3
have four simultaneous systems of

periods, then since

dF. dF,
ax = -~ du -f

- - dv
du dv

dy = -^~
2 du -f ^-

2
- dv

these partial derivatives

dF
{

dF
2

da dv

must be likewise quadruply periodic uniform functions of w, ?, and

therefore rational functions of x, y, z. Accordingly the solutions

of these two equations
du = Q^dx

dv = Q2
d,v - P

2dy

are differentials of the first kind upon the surface, and independ
ent by hypothesis. But any third differential of this kind on the

surface is necessarily a linear function of these two, with constant

coefficients. If it be denoted by die :

dw = d., - ld

*Lioui illf
t
ser. 4, vol. 1 (1885).
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then as the functions $ and
-^r

are assumed to remain finite

throughout the surface / = 0, and are seen by the foregoing to be

rational in x, y, z, they can be nothing but constants, as was to be

proven. The double integral of first kind on the surface is

ffdu-dv; the proof that it is unique is closely similar to the

above. Functions of the properties required for Fv F
2t

F.
A ,

are readily expressed by quotients of theta-functions of two

variables.

Surfaces of this sort are called by Picard and Humbert hyper-

elliptic surfaces. They are to be distinguished carefully from sur

faces whose plane sections are hyperelliptic, or which have a linear

net of hyperelliptic curves upon them, for those we have seen to

be rational (pg 0); while these, possessing one double integral

everywhere finite, have pg
= 1 .

Hyperelliptic surfaces of order lower than the sixth do not

exist, as was said. This evokes recollections of Rummer s sur

face of the fourth order
;
but that, as Picard shows, is not of this

class, because it has two sets of values (w, v) for every point (.r, y, z).

Humbert has discussed hyperelliptic surfaces in extenso,* in par

ticular those of sixth order. He extends this mode of establishing

their existence by theta-formulse, so as to employ the next higher

class of thetas, those in three independent variables. In this way he

reaches surfaces containing three linearly independent exact linear

differentials of the first kind and proves that their order must be

higher than six. An example is given of the eighth order, but the

order seven is left in doubt. Of such representation of these sur

faces, the chief advantage is that every algebraic curve lying in the

surface is given by the vanishing of some theta function, so that by

the use of theorems more or less familiar in the theory of thetas,

one obtains an exhaustive treatment of geometry upon a surface.

It is apparent that this line of investigation opens a prospect

of a classification of surfaces based on properties much more gen

eral than those merely projective. As was indicated in a remark

upon quartics, this calls for the projective study (for the sake of

*Liouville, ser. 4, vol. 5 (1889), vol. 9 (1893), and ser. 5, vol. 2 (1896).
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models) of surfaces which become interesting under this more

searching light. And the special classes as those related to

point-pairs on one curve, on two curves, those in which the

periods of the arguments fall into some integral relation, etc.

those offer a field most inviting and likely to yield rich fullness

of even the simpler geometric forms.



FORMS OF NON-EUCLIDEAN SPACE.

BY FREDERICK S. WOODS.

By a non-euclidean geometry we shall mean any system of

geometry which, while differing in essential particulars from that

of Euclid, is nevertheless in accord with the facts of experience

within the limits of the errors of observation. The space in which

such a geometry is valid is a non-euclidean space. It is clear that

the test of experience can be applied only within a restricted por

tion of space, so that non-euclidean spaces, while having essen

tially the same properties in such a restricted region, may differ

widely when considered in their entirety. It is the purpose of the

present lectures to present especially those non-euclidean spaces,

investigated by Clifford, Klein and Killing, which have been

named by the last author the Clifford-Klein sehe Raumformen*
For the sake of clearness it is necessary to begin with the

geometry of a restricted portion of space. Here the author has

followed the development of his own article on &quot;

Space of Con

stant Curvature,&quot;f to which the reader is referred for references

to the literature and for fuller handling of some of the subject

matter of the first five paragraphs of these lectures.

The point of view adopted is that objective space presents cer

tain phenomena of form, position and magnitude, which demand

explanation as do other physical phenomena. This explanation

the geometrician gives by the assumption of certain hypotheses,

*
Clifford, W. K., &quot;A Preliminary Sketch of Biquaternions,&quot; Mathematical

Papers, No. XX.

Klein, F., &quot;Zur Nicht-Euklidischen Geometric,&quot; Math. Annalen, vol. 37

(1890), p. 344. Lectures on Mathematics, Lecture XI, New York, 1894. &quot;Zur

ersten Vertheilung der Lobatchewsky Preise,&quot; Math. Annalen, vol. 59 (1898),

especially pp. 591-592.

Killing, AV.,
&quot; Ueber Clifford-Klein sche Raumformen,&quot; Math. Annalen, vol.

39 (1891). Einfdhrung indie Grundlagen der Geometric, vol. 1, Chap. 4; Pader-

born, 1893.

J Annals of Mathematics, ser. 2, vol. 3 (1902), p. 71.
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which he is free to make as he pleases, provided that they are

self-consistent. The test of the validity of the hypotheses lies in

their results. We make at first hypotheses which follow the ideas

of Riemann s famous Habilitationsschrift.*

It is admitted that questions may be raised which lie back of

these hypotheses, as, for example, the possibility of reducing them

to simpler axioms, but the discussion of such questions lies outside

our present province. The Riemann method has for us the double

advantage of allowing the immediate use of analytic methods and

of restricting the discussion at the outset to a small region of space.

A geometry having thus been developed in a restricted portion

of space is extended to all space by means of new hypotheses,

which are essentially those used by Killing in his Grundlagen

der Geometric. In the further development the ideas of the last

named treatise have been largely followed.

1. THE FIRST Two HYPOTHESES.

As already said, we adopt in our investigations the method of

Riemann by which our objective space is assumed to be an example
of an extent (Mannigfaltikcif) of three dimensions in which an

element may be determined by means of coordinates. We assert

this explicitly in the following words :

FIRST HYPOTHESIS. Space is a continuum of three dimensions

in which a point may be determined by three independent real coor

dinates (zv z
2 ,

2
3). If a properly restricted portion of space is con

sidered, the correspondence between point and coordinate is one-to-one

and continuous.

Within our space, we may pick out at pleasure one-dimensional

extents or lines. We shall restrict ourselves to lines which may
be expressed by the equations

*,=/,(&amp;lt;), *,=/,, *3=/3,

where t is an arbitrary parameter and fv f2
and /3

are continuous

*
Riemann, B.,

&quot; Ueber die Hypothesen, welche der Geometric zu Grunde

liegen,&quot; Gesammelte Wrrke, 1st ed. p. 254; 2d ed. p. 272.
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functions possessing continuous first derivates, nowhere vanishing

simultaneously. For such a line we may introduce the concep
tion of length as follows. Consider a portion of the line corre

sponding to values of t lying between the values t
Q
and T inclu

sive, and let this portion be divided into n segments to the

extremities of which correspond the values t
})

t
2 ,

ty
- - t

a_ l9
T. Let

further
(zv z

2 ,
z
3)

and (z l + Bz
lf

z
2 -f Sz

2 ,
z
3 + Sz

3 )
be the coordi

nates of the extremities of any segment, corresponding respect

ively to t. and t.+l . We may then assume arbitrarily a function

which has the following two properties : First, it shall become

infinitesimal with Bzv Sz
2 ,

z
3,
and consequently with t. +l t.

;
and

secondly, the sum of the n values of this function, computed for the

n segments of the line, shall approach a limit as n is indefinitely

increased and each of the n quantities t.
+l t approaches zero, this

limit to be independent of the manner in which the segments of

the line are taken. This limit is defined as the length of the line.

If in particular we take

(i,
k = 1

, 2, 3
j OH

the length of the line is expressed by the integral

a dt dt

The differential of this integral, namely,

ds =

we call the line-element of the space. We express these conventions

in a new hypothesis as follows :

SECOND HYPOTHESIS. The length of a line shall be determined

by means of a line-element given by the equation

ds = V^aik
dxdxv (aki

= a
ik ; i,k=l, 2, 3)

where the a.
k
are functions of zv z

2 ,
z
3, possessing continuous deriva

tives of the first four orders, the determinant
\

a
ik \

does not vanish

identically, and the expression under the radical sign is positive for
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all values zv z
2 ,

z
3 ,

dzv dz
2 ,

dz
3, provided that (z l9

z.
2 ,

z
3]

is a point

of space and that dzv dz
2 ,

dz
3
are not all zero.

2. DEFINITIONS.

We proceed now to develop the conceptions of a geodesic sur

face, a geodesic line, an angle and a direction, which shall corre

spond to the conceptions of a straight line, a plane, an angle and

a direction in Euclidean space.

1. Geodesic Line. A geodesic line is defined roughly as the

shortest distance between two points. To determine its equa

tions, we have to find the conditions that the integral

till/. *&quot;*/ ,

&quot;-.it dt*

shall be a minimum. The Calculus of Variations gives as neces

sary conditions, the three equations

1
1 _ da.

k
dz dz

k
=

2 TT^ if ~dz, dt dt(

where I 1, 2, 3, and
dz

{
dz

kE = 2,-j~ -~.
lK dt dt

If we take as the independent parameter the length s, as defined

by the integral, these equations take the somewhat simpler form

d[ dz
l

dz
2

dz
s
~\ da

ik
dz.dzk

ds
a

~ds
H a

^ds H a
&quot;~ds

- ** dz ds &amp;lt;&amp;gt;

n ^ , *+^P2^ 2^ 23^~
dT dz dz dz^

dz, ds ds&amp;gt;

which must be considered in connection with the identity

dz. dz
k _* a

*~di ~ds
~

Conversely these conditions are sufficient if s is not too great.
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More precisely : Let (sff\
z(

2
0)

, sf&amp;gt;)
be any point point of space, and

(ZP z
2 ,

z
3) any second point such that

|

z. ^0) does not exceed a

suitably chosen positive quantity, h. Then the above equations

admit one and only one solution which passes through the points

(z
(0)

)
and

(z)
and has all its points lying in the region

|

z(

f
}

z.
\

&amp;lt;
h

and for the corresponding curve the integral s has a smaller value

than for any other curve joining the points (z
(0)

)
and

(z).

We take the equations accordingly as the defining equations of

the geodesic lines and shall apply this name to the curves satis

fying these equations, even if the curves have been so prolonged

that the minimum property no longer holds.

2. Direction. In accordance with the theory of differential

equations it is always possible to find one and only one solution

ofthe above equations which takes on at an arbitrary point (zv z.2,
z
s)

any arbitrary values (not all zero) of the differential coefficients

dz
l

dz
2 dz^

ds&amp;gt; ds ds

If these differential coefficients satisfy initially the condition

2a *&amp;lt;**=!
ik ds ds

this relation will be fulfilled for all values of s.

The geodesic lines which radiate from a point are hence dis

tinguished from each other by the ratios of the values of the dif

ferential coefficients, which may consequently be regarded as

fixing the direction of the line
;
the direction being, broadly, that

property of the line which distinguishes it from all others through

the same point. It will be convenient to denote dz./ds by ?4
and

to speak shortly of the direction (fj, ?2 , fa), or f. These quantities

satisfy the relation

2aa?&=l-
3. Angle. The angle 6 between two intersecting curves with

the directions f and
?&quot;

is defined by the equation

cos e = 2.?r.
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In particular two intersecting curves are perpendicular if

4. Geodesic Surface. A geodesic surface is defined as a pencil

of geodesic lines. More precisely : Take any two geodesic lines

OA and OB intersecting at 0, having at that point the directions

a. and /3 respectively, and making the angle &&amp;gt; with each other.

Consider any other geodesic line OM with the direction

where X and
/JL are parameters subject only to the condition

X2
-J- fji

2
-f- 2X/4 cos w = 1,

which arises from substitution in

As X, /u take all possible values, OM generates a pencil of lines,

which is defined as a geodesic surface. It may be shown without

difficulty that in this pencil there is one and only one line per

pendicular to OA and that this may replace OB in defining the

pencil. We shall then have

f. = a. cos 6 -f /3. sin 0,

where is the angle between OA and OM.
If now P is any point on OM and r is the length of OP, the

coordinates z
{
of P are determined by integrating the equations of

the geodesic lines, choosing the solution which has at the direc

tion f, and substituting r for s. We have then

* =

the functions
&amp;lt;^ being continuous together with their partial

derivatives of the first and second orders. By taking and r as

independent parameters, we have the equations of the geodesic

surfaces.
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3. THE THIRD HYPOTHESIS.

The method of superposition, involving the assumption that

a geometric figure may be moved from one position to another

without altering its size or properties, is fundamental in the

Euclidean geometry and would seem to be a necessity in any ex

planation of spatial phenomena. The hypotheses thus far made

do not carry with them the necessity of any such superposition.

This may be clearly seen by examples from the Euclidean geom

etry of a kind which we shall frequently employ in the follow

ing pages. In thus using the Euclidean geomety, we do not as

sume that it is objectively true, but that it is a self-consistent system

which explains experience. Consider any surface on which a sys

tem of curvilinear coordinates (u, v) have been established. This

surface is a two-dimensional space satisfying the first two hypoth

eses, the line element being of the form

ds2 = Edit2 + ZFdudv + Gdv2
.

Such surfaces, however, offer various possibilities in the matter of

superposing one portion upon another. One needs only to con

sider the ellipsoid, the right circular cylinder, and the sphere as

examples.

To bring the principle of superposition into our present discus

sion, we shall define a displacement as a transformation by which

a continuous portion of space is brought into a continuous point

for point correspondence either with itself or with another portion

of space in such a manner that the lengths of corresponding por

tions of lines are the same. Let S be a portion of space in which

the coordinates of a point P are (zv z
2,

z
3),

and let S be a portion

of space in which the coordinates at a point P are (zv z
2 ,

z
3 ).

Let the line-element in $be denoted by

ds = i/S&amp;lt;

and the line element in S by

ds =
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where a\ k denotes the value of a
ik

for
(z[, z

2 ,
z
3 ).

In order that

may be displaced into S
,
it is necessary that

d = ds

by virtue of relations of the form

where the ty. are continuous functions of
(z[,

z
2 ,

z
3 ), possessing

continuous first derivatives, and establishing a one-to-one relation

between the points of S and 8 .

It is easy to show that by any displacement, geodesic lines are

transformed into geodesic lines, geodesic surfaces into geodesic

surfaces, and angles are left unchanged.
The existence of displacements in space is made the subject of

a new hypothesis.

THIRD HYPOTHESIS. If P is any point of space, it shall be

possible to displace a restricted portion of space surrounding P upon

itself in such a manner that any two geodesic lines through P shall

correspond to any other two geodesic lines through P, provided only

that the two latter lines make the same angle with each other as do

the two former lines.

The question of displacement of a surface is intimately con

nected with the quantity called by Gauss the measure of the

curvature, or simply the curvature, of the surface. Under that

term we understand a quantity K defined by the relation

1_ / d r F dE I dG^(

f2 \ fa [_ ~EVEG^!T* dv
~
~V^b F2 ~fa J

d
~

2 dF 1 dE F dE__
VEG F2 fa

~]\

J /

With the geometric interpretation of the curvature as usually

given on the hypothesis that the surface lies in Euclidean space

we have nothing to do. For us the curvature is simply the above

expression which is fully determined when the line-element of the

surface is given, and may be shown to be an invariant of the sur

face, that is independent of the coordinates used to define a point
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upon the surface. When K is the same for all points of the sur

face, the surface is said to be one of constant curvature. The im

portance of the curvature lies in the two theorems :

A necessary condition that two portions of surfaces may be brought

into point for point correspondence with preservation of distance is

that they have the same curvature at corresponding points.

If the two portions of surfaces are of constant curvature, the con

dition is also sufficient.

The Gaussian measure of curvature of a surface is extended by
Riemann to space of n dimensions. For three dimensions consider

a point (z { ,
z
29 3)

and two directions
(&amp;lt;zp 2 , 3)

and
(/5p /32, $,),

taken from that point. Then the Riemann curvature is a function

K(*19 *2&amp;gt; *3 5
1&amp;gt; 2&amp;gt; S J #1&amp;gt; @2&amp;gt; )

which gives the Gaussian curvature of the geodesic surface deter

mined by the point and the directions. The Riemann curvature

of a general space is accordingly dependent both on the point

of space for which it is reckoned and on the directions of the

lines taken through that point to define a geodesic surface. But

if the space satisfies our third hypothesis, the curvature is a func

tion of the point only. For by this hypothesis, any two geodesic

pencils with their vertices at the same point P may be brought

into point for point correspondence with preservation of distance.

Hence by the surface theorems above quoted, the two geodesic

surfaces formed by the pencils must have the same curvature at

corresponding points and in particular at P. Schur * has proved
that when the curvature is thus constant at each point, it does not

change as we pass from point to point. The space is then said to

be of constant curvature. A new proof of Schur s theorem will

be given in the following paragraph.

4. THE LINE-ELEMENT.

Take any point at which the functions a
ik

are single-valued

and continuous. Then, as we have seen, there exists around

*
Schur, F., &quot;Ueber den Znsammenhang der Riiume constanten Riemann -

schen Kriimmungsmasses,&quot; Math. Annalen, vol. 27 (1886), p. 593.
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a region of space such that any point P of the region can be joined

to by one and only one geodesic line lying in the region. We
shall call this region T. Through take in T three mutually

perpendicular geodesic lines OA, OB, OC. This can be done by

taking directions (a1? 2 , 3), (/3p /32 , 3), (7^ 72 , 73)
so as to satisfy

the relations

where a(

k signifies the value of a
ik

at 0. The direction of any

geodesic line through is then

where a,, a
2 , 3

are independent parameters subject only to the

condition

a\ -f a
2 + a

3
= 1,

which arises from

The direction may accordingly be named by means of (av a
2, 3).

Let P be any point on this geodesic line and let the distance

OP be denoted by r, where r is positive if measured in the direc

tion a., and negative if measured in the opposite direction. We
may take the quantities (ap a

2 ,
a
3 , r) as the coordinates of P.

Then to any set of values of the coordinates corresponds only one

point P, and to any point P correspond only the coordinates

(j, a
2 ,
a
3 , r) or

(
av 2 ,

a
3, ?).

Between old the and

new coordinates, there exist relations of the form

Z =

where the functions F. are continuous and possess continuous

derivatives of the first two orders since they are the solutions of

the differential equations of the geodesic lines.

By the substitution in

ds2 ^

the form of the line-element is obtained as
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/fa^r + A^dr\ (i, k,l=l, 2, 3)

A _~

The direct calculation of the values of the coefficients is difficult :

but we shall prove by an indirect method that the proper form is

where k is a constant.

To do this, consider any curve
(7, defined by the equations

If P is any fixed point on C and is the angle between the

geodesic lines OP and OP, is a function of and hence t is a

function of 6, which for small portions of C is one valued. We
may consequently write for the equations of C

If from these four equations we omit the fourth, thus allowing
r to take any value, we have the equations of a surface, which

passes through the curve (7, as is evident, and also contains the

point O since the equations are satisfied by r = 0. The surface

is analogous to a cone of the Euclidean geometry, for the lines

= const, are geodesic lines radiating from to the points of C.

These lines form one of the systems of coordinate curves on the

surface
;
the other system is composed of the lines r = const.,

each of which is the locus of points equally distant from 0. If we
refer to the general form of the line-element of a surface

ds2 = Edr2 + 2Fdrd6 + GdO\

it is clear that in the present case, ^=1, since s r when
6 = const.

;
and F = 0, since the curves r = const, cut the

geodesies = const, at right angles by a theorem of the Calculus

of Variations.* We have therefore on the surface

ds2 = GdO2 + dr2

,

*Cf. Kneser, A., Variationsrechnung, p. 48. Bolza, O., Calculus of Variations,

p. 164.
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and we proceed next to replace d0 by its value in terms of ar

For that, we call 80 the angle between two neighboring geodesic

lines OP and OQ, with directions a and a -f Sa, where

a\ 4- a\ + a\
= 1,

(at H- 8a0
2 + ( 2 + S

2)

2 + (as + 8a
s)

2 = 1.

Then
cos 50 = afa 4- Soj) 4- 2(a2 +Sa2) + a

3(a3 H-8as)

= 1 + a8a + a^a -f aa$

a 4-

so that

From this follows in the differential notation

dO* = da\ 4 da\ + daj,

So that the line-element of the suface is

ds2 = G(da\ 4 dal 4- c?5) 4- di\

This is in particular the element of the length of the curve C,

since Cis on the surface. But C is any curve in space and hence

the above expression is the line-element of the space.

We seek now to determine G. For that purpose consider

where (see p. 40)

z.= F,(av a
2 ,
a
s , r)

= z 4 (a^ + a^

Hence
G = t^Sa^a^ 4

and consequently

Thus far the discussion is applicable to any space which satisfies

the first two hypotheses. We examine now the effect of intro

ducing the third hypotheses. A geodesic surface formed by a
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pencil of lines with its vertex at is a special case of the conical

surfaces just discussed and its line-element is therefore

ds2 = GdO2 + dr2
.

The formula for the curvature K reduces to

,/Y ---
-&amp;gt;oVG W

By the third hypothesis, any one of these surfaces may be

brought into correspondence with any other by means of a dis

placement by which a point at the distance r from O on the one

surface corresponds to any point at the same distance r from on

the other surface. Hence the curvature Kis a function of r alone,

that is

_ .

y G W
From this and the conditions governing G when r = 0, it follows

that G is a function of r only.

The exact form of G is obtained by the following considerations :

The equations of the geodesic lines in the new coordinates are

d*r G_ + _
where

dG
G =

and

Take now the geodesic surface
3
= 0, for which the line-ele

ment is

ds2 =

and apply the Calculus of Variations to determine the shortest
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line on this surface connecting any two points. Such a line exists

if the points are not too remote, and its equations will be found to

be exactly those obtained when a
3
is placed equal to in the equa

tions of the geodesic lines in space. It follows that any two points

on the surface
3
= may be connected by a geodesic line lying

wholly on the surface. In particular any point of the surface is

the vertex of a pencil of geodesic lines which lies on the surface.

Take now P
l any point in a

3
= 0, and choose on the geodesic

line OP
1
the point M equidistant from and Pr This point M

may be used as the vertex of a pencil which covers the surface.

By the third hypothesis, there exists a displacement by which this

pencil is self-corresponding, the point M being fixed and the geo
desic line MP corresponding to MO. Hence the curvature of

a
3
= at P

l equals that at 0, and the surface is consequently one

of constant curvature. But the surface
3
= may be brought

into correspondence with any other geodesic surface formed by a

pencil of lines with vertex 0. Hence K is independent of r

throughout and is consequently constant. We place

and have the three cases of a space of constant positive curvature,

a space of constant negative curvature, or a space of zero curva

ture, according as k is real, pure imaginary, or zero. To determine

6r, we have the differential equation

VG

with the initial conditions

Hence

If k is real this determination of k is final.
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If k is pure imaginary,we may place k = ik and

sinh k r

If k is zero, we may place
sin kr

y G Lim 7 = r.

It will be more convenient to retain the general form for k, since

the above changes are readily made. We have accordingly the

line-element in the desired form,

Sill n*7*

ds2 = p- (da* + dal -f da*) -f dr\

It is to be emphasized that we have shown the existence of a

displacement by which is transferred into any other point Pl

and reciprocally. By the combination of two such displacements,

a displacement may be found by which any point Pl
of T may be

made to correspond to any other point P2
of T.

5. GEOMETRY IN A RESTRICTED PORTION OF SPACE.

We shall, for the present, confine our attention to the portion

of space T already defined and introduce the coordinates *

X
Q
= cos Icr,

&quot;I

(i)
X

i
a

i ^ /

where

J + (^ + J + 4).l. (2)

The line-element is now

ds2 =
p dxl -f dx\ + dx\ + dx*

3 , (3)

and the differential equations of the geodesic lines are

d2x
+ V = 0. (i-0, 1,2,3) (4)

* These coordinates are called by Killing the Weierstrassian coordinates, be

cause they were first used by Weierstrass in seminar work in 1872.
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The integrals of these equations are

x. = A. sin ks -f B. cos fo, (i
= 0, 1, 2, 3) (5)

where the constants must be so chosen as to satisfy the conditions

Al -f- k\A\ + A\ + AD = 1, l

5J -f F(* + Bl + 3

2

)
= 1, (6)

-^A + *VA + *A + A^) = o, J

which are necessary and sufficient in order that the conditions (2)

and (3) may be satisfied. In fact the constants B. are the coordi

nates of the point from which s is measured and the constants kA
t

are the values of ckc./ds at that point and consequently fix the

direction of the line.

We may write the equations of a geodesic line in terms of any
two points upon it. Let yi

and z. be the two points, and let / be

the distance between them measured on the geodesic line. If we

measure s from z., we have from (5),

z. =
f, yi

= A
i
sin Id + B. cos kl. (7)

From these follow, with aid of the relation (6),

2/0*0 + k\yiZl + 2/2*2 + 2/3*3)
= COS

M&amp;gt; (
8

)

an important formula which gives the distance between two

points in T.

If x. is any other point on the geodesic line, we have from (5)

and (T)
. = Xy. + ^., (9)

where

sin ks sin k(l s)X = -
jjj P iii &amp;gt;

sin kl sin kl

or, otherwise written,

X sin kl = sin ks, X cos Id -f- p = cos ks.

Hence X and p must satisfy the condition

\2 4. ^2 + 2x^ cos U = 1, (10)



FORMS OF NON-EUCLIDEAN SPACE. 47

which is also the necessary and sufficient condition that x
i may

satisfy relation (2).

Conversely any equations of the form (9) for which conditions

(10) and (8) hold represent a geodesic line, provided they are sat

isfied by points in T. For it is always possible to find an angle v,

such that

sin kv = X sin M,

COS kv = X COS U -f fJL.

From the condition (3) it follows that ds2 = dv2
. It can then be

verified that the functions

*i
= x

2/i + /*i

satisfy the differential equations (4).

We collect these important results in the following theorem :

Any geodesic line may be represented by the equations

a. = Xy. + /^, (*=0, 1,2,3)

where y{
and z. are any two points on the line, and X and

//.
are

parameters satisfying the relation

X2
-f ^ + 2X/-6 cos U =* 1

,

/ being the distance between the two points y. and %..

Conversely any equations of the above form represent a geodesic

line if they are satisfied by points of T.

From this follows immediately :

Any two linear homogeneous equations in x
{ represent a geodesic

line if satisfied by coordinates of points in T; and conversely any

geodesic line may be represented by two such equations.

As to the geodesic surfaces we have the theorem :

Any geodesic surface is represented by a linear homogeneous equa
tion in x

{ ;
and conversely any such equation represents a geodesic

surface if it is satisfied by points in T.

To prove the last theorem, consider a pencil of geodesic lines

determined by two lines through B. with the directions A\ and

A
l respectively. It has the equations

x. = (\A\ -f nA&quot;?)
cos ks -f B. sin

Jcs,
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where
X2 ^2\j,cos 0=1

6 being the angle between the two lines A\ and A&quot;. From this

it readily follows that the coordinates of any point on the pencil

satisfy an equation of the form

cyc 4- eft + c
2
x

2 4- c
3
x
3
= 0.

Conversely if this equation is given and y. and z
f
are any two

points satisfying it, the point

x
{
= \y. 4- /AZ., (X

2
4- At

2
4- 2X/A cos H = 1)

will also satisfy it. Hence any points on the locus of the equa

tion may be connected by a geodesic line lying wholly on the

locus. The locus may therefore be considered as a pencil of geo

desic lines and is therefore a geodesic surface.

Explicit formulas for the displacements in T may now be writ

ten. Since these displacements are continuous, one-to-one point

transformations by which a geodesic line is transformed into a geo

desic line and the expression for cos kl is invariant they will have

the form :

x{
= aft 4- a

2
x

2 4- a
3
x

3 -f
&amp;lt;V

,

a?;
=

/3ft -f frp, 4- /33
*
3 4- /3tf

T
,

* = 7 + 7^ 4-

where

8J + V(l + 01 + jl)
=

1,

S] + p(a; + /s; + 7!)
= f, (*

-
1, 2, 3)

8.8,, + P( A + /8A + 7 (7,.)
= 0. (i,

h - 0, 1, 2, 3
;

i + A)

From these conditions it follows that determinant
| o^ffjy^ |

==b 1.

If we add to our definition of a displacement the condition that

it may be reduced to the identical substitution by a continuous

change of the coefficients, we shall have the new condition
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Conversely, any linear substitution in which the coefficients sat

isfy the above conditions represents a displacement in T, provided

that it is satisfied by at least one pair of corresponding points

in T.

We have now the full data for constructing a system of geom

etry in T. The following are some of the fundamental theorems

which are readily proved.* In fact some have already been

proved in the preceding discussions and the theorems are repeated

here for completeness.

1. A geodesic line is completely and uniquely determined by

any two points.

2. A geodesic surface is completely and uniquely determined

by any three points not in the same geodesic line.

3. If two points on a geodesic surface are connected by a geo

desic line, the line lies wholly on the surface.

4. Two geodesic lines, or a geodesic line and a geodesic surface,

intersect in at most one point.

5. Two geodesic surfaces intersect in a geodesic line, if they

intersect at all.

6. On a given geodesic surface, one and only one geodesic line

can be drawn perpendicular to a given geodesic line at a given

point.

7. If a geodesic line is perpendicular to each of two intersecting

geodesic lines at their point of intersection, it is perpendicular to

every line of the pencil defined by the two intersecting lines.

Such a line is said to be perpendicular to the geodesic surface

defined by the pencil.

8. Through any point of a geodesic surface, one and only one

geodesic line can be drawn perpendicular to the surface.

9. Through a given point on a geodesic surface, one geodesic

line can in general be drawn perpendicular to a given geodesic line

on the surface not passing through the given point, and never

more than one.

10. Through a given point not on a geodesic surface, one

* Proofs of all these theorems may be found in the Annals article already cited.

4



50 THE BOSTON COLLOQUIUM.

geodesic line can in general be drawn perpendicular to the surface,

and never more than one.

11. The sum of the angles of a triangle formed by three inter

secting geodesic lines is equal to, greater than, or less than, TT,

according as k is zero, real, or pure imaginary.

It appears that the geodesic lines in T have all the properties

of the straight lines of practical life or of the Euclidean geometry.

In the endeavor to construct a material line which shall be
&quot;

straight,&quot;
we may proceed by attempting to realize the shortest

distance between two points by stretching a string or otherwise.

The result is simply a geodesic line by definition. Or we may
look for a line which may be revolved upon itself when two

points are fixed. This is also a property of the geodesic lines. A
geodesic surface has the properties of a plane. The practical

testing of a plane surface by the application of a straight edge has

its full significance in T. The practical measurement of length

and angle by the application of an assumed unit is also possible

in T. We see then that the groundwork of experimental geometry

is the same for all spaces which satisfy our three hypotheses.

These spaces agree also in the first ten theorems above stated.

A distinction appears first in the eleventh theorem, which appears

to present a means for determining the curvature of our objective

space. The test fails, however, owing to the impossibility of

exact measurements. All we can discover is that the sum of

the angles of a triangle does not differ very much from TT and

it is possible to show that if the sides of a triangle are sufficiently

large compared with k the divergence of the sum of its angles

from TT is within the limits of the errors of observation.*

We may say then : Any space which satisfies the three hypotheses

is, as far as our present knowledge goes, infiUl accord with all facts

of experience, provided suitable values are given to the constants

involved.

*
See, for example, the calculation in Lobachevsky s Zicei geometrische Abhand-

lungen, translated by F. Engel, Leipzig, 1899, pp. 22-24.
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6. THE FOURTH AND FIFTH HYPOTHESES.

In order to extend our system of geometry outside of the region

Tj new hypotheses are necessary. These hypotheses must be

such that their verification transcends experience, but it lies close

at hand to assume that certain properties which are true as far as

experience extends are everywhere true. We accordingly frame

our hypotheses as follows :

FOURTH HYPOTHESIS. Any portion of space in which the

greatest geodesic distance does not exceed some constant M, dependent

on the nature of the space, may be so displaced that an arbitrary point

of this portion of space may be made to coincide with any point

whatever in space.

FIFTH HYPOTHESIS. A displacement of a portion of space is

completely and uniquely determined by the displacement of any por

tion of space which forms a three-dimensional part of thefirst portion.

The meaning of the fourth hypothesis may be illustrated by
the plane and the cone of the Euclidean geometry, as examples of

two dimensional spaces satisfying the first three hypotheses. The

region corresponding to T may be taken indefinite in extent in

the case of the plane, but for the cone must be so taken that no

point of the cone shall be covered more than once. The size of

this region on the cone depends then upon its nearness to the

vertex of the cone. It is clear that the cone does not satisfy the

fourth hypothesis, since by definition a displacement demands a

one-to-one correspondence of two regions and no matter how small

a region may be taken on a cone this region can not be moved

indefinitely near the vertex of the cone without overlapping itself.

A right circular cylinder in Euclidean space would satisfy the

fourth hypothesis, the quantity M being then the circumference

of the right section. Similarly a Euclidean sphere satisfies the

fourth hypothesis.

In like manner the fourth hypothesis applied to a three dimen

sional space rules out singular points and involves the assumption
that space is boundless. It does not however assert that space is

infinite in any or all directions.
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The fifth hypothesis asserts that if a definite displacement is

applied to a region of space S., any other region 8k
which is con

nected with S
t
in a definite manner suffers at the same time a

certain definite displacement determined by the displacement of

8
t
. It leaves it still possible, however, that the displacement of

S
k may depend upon the manner in which S

k
is connected with

S
t
. Take, for example, the Euclidean right circular cylinder, and

consider two strips of the surface connecting the same two points

but in such a way that one strip winds around the cylinder more

times than does the other. The same motion imparted to the

same end of each strip imparts a different motion to the other

ends.

The fifth hypothesis also asserts that if by a continuous dis

placement 8. returns to its original position, so does also S
k

.

7. THE EXTENDED COORDINATE SYSTEM.

We may now extend our coordinate system x. from the region

T, for which it has been defined, to all points of space. For that

purpose, let us consider a region of space S
Q composed of the

points whose geodesic distances from are less than, or equal to

a constant R, where R is less than the smaller of the two quan
tities p and M/2, p being the length of the shortest geodesic line

which can be drawn from in T and M being the constant men

tioned in the fourth hypothesis. Analytically we have in S
Q

X
Q
= cos

where

,
R

&amp;lt; p, R&amp;lt;-

We shall first prove that any geodesic line can be indefinitely con

tinued. For consider any geodesic line OQ in S of length R}
and

take O
l
a point on OQsuch that 00

l
= I

&amp;lt;
R. There exists a dis

placement such that the point corresponds to O
l
and a region T
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around corresponds to a region Tv
around O

l
in such a manner

that the portion of the geodesic line OQ which lies in T
Q corresponds

to the portion of the same line which lies in T
x
and extends in the

same direction. Here T
Q
and T

v
are both contained in S

Q9
but by vir

tue of the fifth hypothesis this displacement of T
Q
into ?\ determines

a displacement ofS into a new position $r The line OQ of length

R goes then into a line O
l Ql

of the same length ;
that is, the line

OQl
has the length R -j- I. Now we can repeat this operation with

the region Sl by selecting on O
l Q l

a point 2
such that

1 2
=

I,

and displacing O
l
into

2
in the proper manner. In this way

the line OQ is extended indefinitely, but it is of course consistent

with the theorem that the line should be a closed line.

Any point in space may be joined to by a geodesic line. A
rigorous proof of this statement may be given by means of the

method introduced by Hilbert into the Calculus of Variations

under the name of the &quot;

Hdufungsverfahren.&quot;* The details are

too involved to be presented here. We content ourselves with

noticing that since space is a continuum by our first hypothesis,

any point P may be connected with by a continuous curve.

Now the Hilbert method consists in showing that among all the

curves that can be drawn between and P there is one such that

no other has a greater length, and that this curve in sufficiently

small portions is a geodesic line as we have defined it.

By virtue of the two theorems just proved, we may write

sin ks

Vi=Vi-J-&amp;gt;
=1

&amp;gt; 2,3)

x = cos ks, (a\ + a\ -f a\
=

1),

where s is unrestricted, with the assurance that all values of x
i

thus determined represent a point of space and that any point of

space may be represented in this way. This is our generalized

coordinate system.

Let us take now any point P. By the fourth hypothesis, the

* Consult for example the dissertation of Chas. A. Noble,
&quot; Eine neue Methode

in der Variationsrechung,&quot; Gottingen, 1901.
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region S
Q may be so displaced that corresponds with P and $

with a congruent region 8n . There exist then relations between

the coordinates of points in 8n and the coordinates of points in 8 .

We shall show that these relations have the same form as those

which define a displacement in S
Q

. For that purpose connect

and P with a geodesic line and take on this line the points

0, 19 2, .-., H
= P, such that the distance

{
0.+l is less

than R. If then is displaced so as to coincide in succession

with Ov 2 ,
-

, P, there is determined a chain of congruent

regions S
Q ,
8

lf
$

2, ,
8

n9
each of which has points in common

with the preceding one. The displacement of 8 into S
l
however

is fully determined by the fact that a region around is dis

placed into a region around Ov both regions lying in S
Q

. Hence

all coordinates of all the points in 8
}

are connected with those of

8 by relations of the form given in paragraph 5. It follows that

in
Sj_

the line element is the same as in $
,
that a linear equation

represents a geodesic surface, that two such equations represent a

geodesic line, and that a displacement of a portion of S
l
is repre

sented by equations of the same form as in 8 . In like manner

we can proceed from 8
l
to S

2 ,
and hence eventually to 8

n ,
thus

establishing the fact to be proved.

It is clear that if more than one geodesic line can be drawn

from to Pj P will have more than one set of coordinates and

more than one set of equations will connect the coordinates of

S
n
and 8 .

Let now any displacement be imparted to 8 . By the fifth

hypothesis, a displacement is then imparted to 8
n through the

chain 8
Q ,
Sv S

2 ,

-

,
S

n
. It is easy to see that the analytic ex

pression of this displacement of 8
n
will be found by substituting

in the displacement defined for $ the coordinates of the points of

8
n
determined by the chain 8

Q&amp;gt;

8V -
,
8n .

We may now establish the important proposition : If k is a real

quantity, every geodesic line is closed and has a length not exceeding

*This theorem is due to Killing. His proof is essentially that of the text.
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For proof consider a point Q at a distance 7r/2k from on the

geodesic line #
2=0, #

3
=0. The coordinates of Q are (1 /&, 0, 0, 0).

Let a chain of congruent regions S ,
S

} ,
S

29
- - -

,
S
n ,
be strung along

the line OQ, the point Q lying in S
n9
and each region being ob

tained from the preceding one by the substitution

sin Id
x

{
x

l
cos U 4- X

Q
v j

x
Q
= xjc sin & -f- # cos Id,

where I
&amp;lt;

R.

Apply now to 8 the displacement

= x
l
sin &amp;lt; 4- a?

2
cos

This displacement will be transmitted to S
n through the chain

S
Q , 8^ - -

-,
Sn . The distance D between the new and the original

position of a point is given by

cos = cc Xy + x + x
2
x

2

=
xl -I- k2x2

B + ^2

(a?J -|- x\) cos
(/&amp;gt;

= cos
&amp;lt;;&amp;gt;

+ (; + ifeX) (
x - cos (

/
&amp;gt;

)-

Now the line x = 0, #
3
= 0, a portion of which lies in S

n9
is dis

placed into itself, each point being moved through a distance D
where

cos kD = cos
c/&amp;gt;.

Hence as &amp;lt; varies from to 2?r, the point Q is moved on # = 0,

a?
3
= through a distance 27r/^. But a continuous variation of &amp;lt;

from to 27r restores 8 and hence n̂ to its original position.

Hence the geodesic line X
Q
= 0, #

3
= cannot have a length greater

than 27T/&. The theorem is thus proved for a particular geodesic
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line
;
but by proper choice of the origin and coordinate axes, any

geodesic line may be given the equations XQ
= 0, x

s
= and hence

the theorem holds universally. It may be explicitly noted that

we have not proved that a geodesic line may not have a length

less than 27T/&, nor that all geodesic lines have the same length.

We are now prepared to prove the proposition :

To any set of values (XQ ,
x

l9
ar

2,
a?
3) satisfying the fundamental rela

tion

xl + tf(x\ + x\ + xl)
= I

corresponds one and only one point of space.

In the proof, it will be convenient to separate the three cases

of zero, negative, and positive curvature.

1. If k = 0, the coordinates of any point are

*,-Vi *-!. (;=1, 2, 3.)

2. If k = ik
,
the coordinates are

sinh k r .
, ..

x. = a.
p-

,
x = cosh kr

(i
= 1

, 2, 3).

3. If k is real, the coordinates are

sin AT .

x. = a
i j ,

X
Q
= cos kr

(i
= 1

, 2, 6).

It is now readily seen that if the quantities x. are given, the

quantities ,,
a

2 ,
a-

3 ,
r are uniquely determined in cases 1 and 2,

except for sign ;
while in case 3 multiples of 2-7T/& may be added

to r and the signs are also ambiguous. The change of sign of all

four quantities (a., r) does not alter the point determined by them

and an addition of 2?r//c to r in case 3 amounts simply to travers

ing the length of the geodesic line one or more times. Given the

quantities x. therefore, we lay off at a definite direction a
i
and

measure on the geodesic line with this direction a definite dis

tance r. We obtain in this way one and only one point.
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8. THE AUXILIAKY SPACE 2.

The discussion of the following paragraphs will be clarified by

making use of familiar propositions of the projective geometry.

Iii so doing, we avail ourselves of theorems which are in essence

analytic. Their geometric clothing lends vividness to their

meaning and helps greatly in their application. We consider

then a projective geometry in which a point is fixed by the homo

geneous coordinates

fe & : fe * fr

A linear homogeneous equation defines a plane, two such equations

a straight line. In this geometry we define a system of projective

measurement, based upon the fundamental quadric

The distance A between two points is by definition given by the

relation

COS &A = : rr=~=

Any collineation which leaves the fundamental quadric invariant

we shall call a movement of the projective space. Such a move

ment leaves distance and angle unaltered. The space in which

this geometry prevails we shall call the auxiliary space 2.

The points of 2 may be made to correspond to the points of S

by placing

(l
= l 2 3)

where the sign of the radical is the same for all values of i. It is

clear that geodesic lines and surfaces in S correspond to straight

lines and planes in 2 and conversely. Geodesic distances and

angles in S correspond to projective lengths and angles in 2 and

a displacement in S corresponds to a movement in 2 and con

versely.

Now if k is zero or pure imaginary, x is always positive, since
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X
Q
= cos ks. Hence in these two cases, the sign of the radical is

unambiguous. If k is real, however, X
Q may be either positive or

negative, and hence either sign of the radical may be taken.

Hence :

Ifk is zero or pure imaginary, any point of 2 corresponds to one

and only one point of S; while if k is real, any point of 2 may cor

respond either to one or to two points of S according as a\ and x.

are the coordinates of the same or of different points of S.

On the other hand, any point of S corresponds to as many
points of 2 as there are different sets of coordinates belonging to

the point of S. To follow this more in detail, let us consider the

point which corresponds in 2 to the point (0:0:0:1). If O
has other coordinates it must be possible to draw 9 geodesic line

from which shall again return to 0. This follows from the

expressions for the coordinates. Let us call this line g. Corre

spondingly, we have in 2 a straight line 7 connecting two points
o and o

,
each of which corresponds to 0. The length of g, and

hence of 7, most be less than the quantity R which occurred in

the definition of 8 : for all lines of length R or less, radiating
from determine points in S

Q ,
in which no closed line is pos

sible. Since any point of space may be taken for 0, we may say :

Two points in 2 which correspond to the same point in 8 can not

be nearer together than a certain finite quantity.

9. FORMS OF SPACE WHICH ALLOW FREE MOTION AS A
WHOLE.

We are to examine in this paragraph the results of assuming
that the displacement of Sn caused by a displacement of 8 is

independent of the manner in which 8n is connected with 8
Q ;

that

is, it is independent of the chain of bodies 8
,
8V ,

8n . In this

case any displacement of 8 imparts a unique displacement to each

and every point of space. We express this by saying that space

allows free motion as a whole. We assert :

If 8 allows free motion as a whole, any point of 8 corresponds to

one and only one point of 2.
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Consider a point P in S
Q
and let us assume that P corresponds

to two points II and II . As shown in the last paragraph, if II

and II are connected by a straight line 7, there will correspond in

S a line g which starts from P and returns to the same point.

Along this line we may construct a chain of congruent regions S ,

&i&amp;gt; $2&amp;gt; &amp;gt;

&
n ,
where S

n
is the same region as S . Corresponding

to this configuration, we have in 2 a chain of regions 2 ,
2

X ,
2

2,

-,
2

w ,
where 2

n
is distinct from 2 . Now any displacement im

parted to S is transmitted through the chain S
,
S

iy
-

,
S

n
back

to Sn . But this displacement of 8n must be the same as that of

S
Q,

if space is movable as a whole. If, for example, S is so moved

that all points on a geodesic line I are fixed, Sn must be moved in

the same manner. Correspondingly, we must have in 2 a dis

placement by which two straight lines X and X
,
one lying in 2

,

the other lying in 2
n are each point for point fixed. This, how

ever, is impossible unless 2n coincides with 2 . Hence the as

sumption that P corresponds to two points II and II is untenable.

Spaces of Zero Curvature.

If k 0, the relation between points of S and those of S is one

to one. In other words, to each point of S corresponds one and

only one set of coordinates x. and conversely. We have there

fore a geometry in which the theorems of paragraph 5 hold univer

sally. In addition all geodesic lines are infinite in length. We
may consequently introduce the conception of parallel lines by the

following definition : A line AB is parallel to CD when AB is

the limit approached by a line A G intersecting CD, as the point

of intersection recedes indefinitely. It may then be shown that

through any point of space there goes one and only one geodesic

line which is parallel to a given geodesic line not passing through
the given point. The resulting geometry is the Euclidean Geometry.

Spaces of Constant Negative Curvature.

If k is pure imaginary, again the relation between the points of

S and those of 2 is one to one. We have again a space in which
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the theorems of paragraph 5 hold universally and in which all

geodesic lines are infinite in length. If parallel geodesic lines are

defined as for k = 0, then through a given point there go two and

only two geodesic lines parallel to a given geodesic line not pass

ing through the given point. All other geodesic lines through

the point and lying on the geodesic surface determined by the

given point and the given geodesic line are separated by the

parallel lines into two classes, consisting respectively of the lines

which do, and of the lines which do not, intersect the given geodesic

line. The geometry is the Lobaehevskian Geometry.

/Spaces of Constant Positive Curvature.

If k is real, two cases present themselves. In the first case, the

relation between the points of S and those of 2 is two-to-one.

Then to each point of S corresponds only one set of coordinates

and conversely. In particular, the coordinates x. and x
{ belong

to different points of space. The theorems of paragraph 5 hold

only in a restricted portion of space in which the greatest geodesic

distance is
Tr/Jc.

All geodesic lines are closed and of length equal

to
2-7T/&.

Two intersecting geodesic lines intersect again at a dis

tance TT/& on each of them from the first point of intersection.

There are no parallel lines in the sense of the definition given for

k = 0. In fact any two geodesic lines on the same geodesic surface

intersect. All geodesic lines perpendicular to the same geodesic

surface intersect in two points which are distant 7r/2/c from the sur

face. The geometry is that called by Klein the Spherical Geometry.

In the second case, the relation between the points of S and those

of 2 is one-to-one, in the sense that to each point of S belongs the

two sets of coordinates x
i
and x.. The theorems of paragraph

5 hold for a portion of space in which the greatest geodesic dis

tance is Tr/k.
All geodesic lines are closed and of a length 7r/k

and any two intersecting geodesic lines return to the point of in

tersection without previously meeting. All geodesic lines per

pendicular to the same geodesic surface meet in a point at a dis

tance 7T/2& from the surface. The geometry is called by Klein

the Elliptic Geometry.
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We may sum up as follows :

The only spaces satisfying our five hypotheses and allowing free

motion as a whole are the Euclidean, Lobachevskian, Spherical and

Elliptic spaces.

10. FORMS OF SPACE WHICH r&amp;gt;o NOT ALLOW FREE

MOTION AS A WHOLE.

We consider next spaces in which the displacement of Sn caused

by the displacement of is dependent upon the manner in which

8
n

is connected with 8
Q

. These are called by Killing the Clifford-

Klein space. They have been illustrated in paragraph 6.

From what has preceded, it is clear that in the Clifford-Klein

spaces a point must have more than one set of ^-coordinates.

Consider then the region A% and let x. be one set of coordinates of

its points. Then if x\ are also the coordinates of its points, x\ may
be obtained from x

{,
as we have seen, by following out a chain of

displacements by which 8
Q
takes in succession the positions 8Q)

8
iy

S
2 ,

... S
n
= 8 . That is x . and x. are connected by relations

which have the form of the displacement formulas. Suppose these

relations denoted by Dr Let now y. be the coordinates of a point

P lying outside of 8
Q

. It may be connected with S
Q by a geodesic

line and a chain of regions SQ ,
S

l9
8

2 , ,
8
n
constructed along this

line. If the displacement J)
l
is imposed upon $ ,

it will be trans

mitted to S
n ;

and since 8
Q
returns to its original position the same

is true of S
n , by the fifth hypothesis. That is the transformation

D
l gives a relation between two sets of coordinates of any point of

space. Such a transformation is said by Killing to represent the

coincidence of points.

It is clear that the inverse transformation D&quot;
1
also represents

the coincidence of points, and if D
l
and D

2
each represents the

coincidence of points, the transformation D^D2
does also, and this

is true when D
2

is the same as Dr That is, the transformations

which represent the coincidence of points in space form a group.

This group we shall call the group of the space.

The group of the space interpreted in 2 is a group of collinea-
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tions by which the fundamental quadric is invariant and by which

points that correspond to the same point in S are transformed into

each other. Because of the theorems established in paragraph 8

it follows that the group of the space interpreted in 2 must not

only be properly discontinuous but must be subject to the condition

that the distance between corresponding points shall never be less

than a certain finite quantity. In particular, no transformation

of the group may have a real fixed point. If the region of discon

tinuity of the group in 2 is obtained, this region will correspond
in a one-to-one manner to 8, when k is zero or pure imaginary,

and in either a one-to-one manner or a one-to-two manner to 8
when k is real. Conversely, the region of discontinuity of any

properly discontinuous group in 2, by which the distance between

two corresponding points is never less than a finite quantity, will

furnish an example of a space satisfying the five hypotheses.

Hence the problem to determine the Clifford-Klein space is

reduced to the problem to determine all groups with the required

properties.

Before proceeding to the nearer discussion of the problem, we

may note that our derivation of the group of the space is based

upon the consideration of a three-dimensional region 8 in which

each point has different sets of coordinates. This region gives

opportunity to apply the fifth hypothesis. There is still the pos

sibility therefore that certain exceptional one-dimensional or two-

dimensional regions may exist, upon which the same point may
have sets of coordinates not connected by transformations of the

group. The following two examples are given by Killing of a

two-dimensional space of zero curvature having an exceptional

line.

1. Consider a cylinder in Euclidian space standing upon a cubic

curve with a double point. The geometry of the cylinder is that

of the Euclidean plane except for the presence of the double line.

We call 2a the length of the loup of the cubic, and take as the

origin of coordinates the point on the loup equidistant from the

double point in each direction. Then if we take for one coordinate



FOKMS OF NON-EUCLIDEAN SPACE. 63

the length s of the cubic and for the other the length h of

an element of the cylinder, the coordinates
(s, h) correspond in

a one-to-one manner to the points of the surface, except that

the coordinates (a, 7i)
and

( a, h) correspond to the same point

of the surface.

2. Consider a cylinder in Euclidean space standing on a lemnis-

cate. Its geometry is the same as that of the Euclidean plane

for restricted portions. We will take the origin at the double

point of the lemniscate, define s as the length of the curve and h

as the length of an element of the cylinder. Then if 2a is the

entire length of the lemniscate, the group of the surface is

s = s -j- 2na,

h = h,

where n is an integer ;
that is, the coordinates (s, h) and

(s + 2na, h)

refer to the same point of the surface. But the coordinates (0, h)

and (na, h) also refer to the same point of the surface, since they

give points on the double line.

Examples of a similar kind may be formed for three dimensional

spaces without difficulty as far as the analytic work is concerned.

How far they are conceivable as an explanation of physical space,

involving as they do the passing of space through itself without

break in the continuity of each of the intersecting portions may
be open to question. They have been examined by no one in

detail and we shall rule them out of the following discussion.

We pass now to the special consideration of the three kinds of

space.

Spaces of Zero Curvature.

If k = 0, 2 is the Euclidean space and its movements are the

Euclidean movements. A rotation around an axis cannot be a

transformation of the group of the space S since, as we have seen,

no transformation of the group can have a real fixed point. We
must form the group therefore by the use of translations and screw

motions.

The use of translations alone lead to three and only three
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properly discontinuous groups, having for regions of discontinuity
respectively :

(a) A parallelepiped with three finite edges.

(b) The limiting figure of a parallelepiped when one edge be
comes infinite.

(c) The limiting figure of a parallelepiped when two edges be
come infinite.

The geometry in S may be readily constructed by operating
with the Euclidean geometry in the regions (a), (b), (c), respec

tively. Whenever a straight line meets a bounding face of the

region, it is continued from the corresponding point of the oppo
site face. For brevity we shall mention without proof some of
the results in case

(a).

Some geodesic lines are closed and some are infinite in length
and those which are closed are not all of the same length. In
fact geodesic lines can be drawn, having the finite length
la -f mb + nc, where a, b, c, are the lengths of the edges of the

parallelepiped and
I, m, n, are any three relatively prime integers.

Geodesic surfaces are of three kinds. Some are indefinite in ex

tent, possessing no points with more than one set of coordinates.

On these the geometry is identical with the Euclidean geometry.
Others are represented in 2 by a strip of a plane bounded by
parallel lines and have in S the connectivity and geometry of a

Euclidean cylinder. Other surfaces are represented in 2 by a

plane parallelogram and have in S the connectivity of a ring
surface.

No exhaustive study has been made of the Clifford-Klein spaces
whose groups contain screw motions. In fact Klein says, without

proof, that a screw motion is not allowable, but Killing gives the

following two examples which seem valid :

(a) The group of the space is generated by a single screw

motion :

x[
= x

l
cos a x

2
sin a,

x x
l
sin a -J- x2

cos a,
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where a and h are constants. The region of discontinuity in 2 is

then bounded by two parallel planes at a distance h units from

each other.

(6) The group of the space is

x(
=

( 1)X + ma,

x
2
=

( I)
lx

2 -f nb,

where a, 6, c, are constants and
/, w, n, are arbitrary parameters.

We give without proof some of the striking peculiarities of S in

the case
(a).

There is a unique geodesic line of length h which we shall call

the axis of the space. If a and TT are incommensurable, this is

the only closed geodesic line
;

if a and TT are commensurable, all

geodesic lines parallel to the axis are closed and of lengths equal

to multiples of A. For all values of a. there are geodesic lines

with double points. Through any point of space there goes an

infinite number of such geodesic lines having the given point for

a double point; and for a given direction, not parallel or perpen
dicular to the axis, there exist an infinite number of geodesic lines

with double points. Geodesic surfaces are of three kinds : (1)

those perpendicular to the axis, (2) those parallel to or contain

ing the axis, (3) those which have neither of these relations to the

axis. On geodesic surfaces of the first kind, all geodesic lines are

infinite in length and the geometry is that of the Euclidean plane.

On geodesic surfaces of the second kind, there are no closed

geodesic lines but a geodesic line may have a double point. On

geodesic surfaces of the third kind, all kinds of geodesic lines lie.

The last two kinds of surfaces present the peculiarities of cylinders

with double lines mentioned on pp. 62-3.

Spaces of Constant Positive Curvature.

If k is real, there is a fundamental difference between spaces of

an even and those of an odd number of dimensions. It is a

simple matter to apply our foregoing discussion to space of two
5
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dimensions by dropping the coordinate x
3
and making necessary

changes. It appears that any displacement has a real fixed point
and consequently there can be no group of the space. If we rule

out such special lines and points as occur on cylinders with

double lines, we are then led to the discussion of paragraph 9.

Hence the theorem :

A non-endidean space of two dimensions and of constant positive

curvature for which our hypotheses hold and in which no special

points exist has the connectivity and the geometry of either the

spherical surface or the elliptic plane.

Consider now a space of three dimensions. The study of the

collineations which leave invariant the quadric

and which we call the movements of 2, lead to the following
results.* By any real movement in 2 two real lines G and H,

reciprocal polars with respect to the fundamental quadric, are

unaltered as a whole, each point on each of the lines being dis

placed through a distance which is constant for that line. If the

displacement is different for the two lines G and H, these are the

only fixed lines. If however the displacement is the same for G
and Hj then all lines of a certain line congruence are fixed, this

congruence being made up of all lines which intersect the same

two conjugate imaginary generators of the fundamental quadric.

Any point of 2 is then displaced a constant distance along the

line of the congruence which contains the point. ,

Such a transformation is the nearest analogy in a space of con

stant positive curvature to a translation in Euclidean space. It

is accordingly called a translation, and the congruence of fixed

lines are called Clifford parallels. The name parallels is sug

gested by the relation of these lines to a translation, but they

have other properties analogous to those of the Euclidean par

allels. For example, from any point in either of two Clifford

* Consult for the details of the geometry of this paragraph: Klein, &quot;Zur

Nicht-Euklidischen Geometric,&quot; Math. Annalen, vol. 37 (1890), p. 544.
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parallels a common perpendicular can be drawn to the two, and

the portion of the perpendicular included between the two has

always the same length. Again, if a line cut two Clifford par

allels the corresponding angles are equal.

The Clifford parallels are of two kinds, according as the gener

ators of the fundamental quadric which determine them belong to

one or the other of the two sets of generators of the quadric.

Similarly we must distinguish between two kinds of translations.

Two translations of the same kind carried out in succession are

equivalent to a translation of the same kind, but two translations

of different kinds are not equivalent to a translation. Hence the

translations of each kind form by themselves a group.

Let us consider first non-euclidean spaces whose groups are

formed by translations alone. These translations must all be of

the same kind. If we place k = 1, for convenience, and intro

duce X and ft as the parameters of a point on the fundamental

quadric, whereby

then any translation of the one kind causes a substitution of the

form

and conversely.

On the other hand, if we interpret X in the usual manner as a

complex variable upon the unit sphere, the above substitution

represents a rotation of the sphere. To any translation of the one

kind in 2 corresponds then a rotation of the sphere, and in fact

the angle of rotation of the sphere is equal to the distance by
which the points of 2 are displaced along a system of Clifford par
allels. The group of the space corresponds to a group of rotations

of the sphere, and since the amount of displacement by any trans

formation of the group is never less than a finite quantity R it
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follows that the group of rotations can contain no infinitesimal

rotation. This condition is met only by the groups of rotations

by which a regular polyedron concentric with the sphere is trans

formed into itself. We have accordingly the theorem :*

If a Clifford-Klein space of constant positive curvature is trans

formed into itself by a group of translations, this group must be

holoedric-isomorph ivith a group of the regular polyedra ; and con

versely, to any group of the regular polyedra correspond four spaces

of constant positive curvature, according as the coordinates x
{
and

x
i represent the same or different points of space and as the group

of the space is made up of translations of one or the other kind.

It remains to ask if groups of the space may contain displace

ments which are not translations. This question is answered in

the negative by Killing (7. c.) but his proof is not satisfactory. He

shows conclusively that if D is a displacement belonging to the

group of the space and if G and H are the two fixed lines, then

the smallest displacement along either line caused by the repeti

tion of D must be irjq, where q is an integer, the same for both

lines. But he errs in assuming that this minimum displacement

is caused in both lines by the same transformation. For example,

consider the displacement D
7T

,

7T

x = x cos _ -TO sin r ,

O O

7T 7T

x
2

x
{
sin _ -f x

2
cos -

r
i

r f

37T
,

3&amp;lt;7T

# = x.
A
cos

-p.
X

Q
sin -

r &amp;gt;

o O_ .

O7T O7T

and the group D, D2

,
D3

,
D4

,
D5 = 1. The two fixed lines are

* This theorem is new as far as the author knows. Killing ( Grundlagen der

Geometric, vol. 1, p. 341) notices that if the group of a space of k = 1 contains a

translation, the amount of the translation must be an aliquot part of TT, but he

leaves the impression that any three such translations may be combined at pleas

ure to form a group of a space.
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G (#j
= 0, x2

=
0) and H(x^ = 0, XQ

=
0) and the smallest displace

ment along each is vr/5. But this displacement is produced along

G by D and Z)
4 and is produced along II by D2 and Z&amp;gt;

3
. By no

substitution of the group, however, can the distance between two

corresponding points fall below a definite finite quantity. Hence

the group, which is not composed of translations, is allowable as

the group of a non-euclidean space. The investigation of such

groups is yet to be made.

Clifford s Surface of Zero Curvature.

It is of interest at this point to mention Clifford s surface of

zero curvature and finite extent which first led to the conception

of the Clifford-Klein spaces. This surface may be obtained by

choosing on the fundamental quadric of the above space of con

stant positive curvature two conjugate imaginary lines from each

set of generators. The quadric surface which passes through the

quadrilateral thus formed is the surface required. It is clear that the

surface contains two sets of Clifford parallels and is transformed

into itself by two translations. If we take the four lines on

the fundamental quadric as corresponding respectively to X = 0,

X = oo, JJL
= 0, and IJL

= oo in our previous notation, the equation

of the surface is

where a is a real constant.

We may define the two sets of Clifford parallels on the surface

by the parameters u and v, where

2 + a
1

a
s

?i + of3 = _ ?2 + qfo = v

2
a%0 *1 a

&amp;gt;3

To obtain the line-element of the surface, we write first f = px{,

where p
2 = 2f

2
. Then for the space
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and this applied to the surface gives

,
2 _ duz a2

1 dudv dv2

&quot;(1-f
u2

)

2
&quot;

a2

+1(1+ u2

)(l + v2

)

+
(1 + v2

)

2

If we take next as parameters &amp;lt;r and T the lengths of the gener

ators, by placing

Jdu
r dv

T~t 29 T =
I 1 2)

1 4- u J 1 4- V

the line element takes the simpler form

- 2 3-rT d(rdr + d^

From this it appears that the Gaussian curvature of the surface

is zero.

The relation between a point of the surface and a value-pair

(u, v) is one-to-one. Hence if v is kept constant and u varies from

oo to -f oo the corresponding point describes a generator once.

At the same time &amp;lt;r varies continuously from ?r/2 to ?r/2. The
total length of a generator is then TT, a finite quantity.

The area of a portion of a surface of which the line element is

ds2 = Edu2
-f 2Fdudv + Gdv2

is defined by the double integral

VEG -F2 dudv

taken over the portion. Hence the total area of the Clifford sur

face is

r\ r*_2o_
J-w J-.^-1-l

We have therefore an example of an unbounded surface of zero

curvature upon which the connectivity and the geometry is that
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of a parallelogram on the Euclidean plane, the opposite sides of

the parallelogram corresponding point for point.

Spaces of Constant Negative Curvature.

If k is pure imaginary, we may place k = i for convenience.

We have then in 2 the fundamental quadric

points in the interior of which correspond to real values of x. and

hence to real points of S. Any collineation which leaves this

quadric invariant determines a linear substitution of the param
eters X and X where

ft + tfc ft -if,* -
~_rr * =

T~-~f*o 3 So 3

and conversely any pair of linear substitutions

a\ + aX +*~ =

where the determinants aS /ity and aE fly are not zero, de

termines such a collineation.* These collineations are the move
ments of 2. A real movement occurs when and only when

a, /3, 7 and
S&quot;,

are conjugate imaginary to a, /3, 7, 8, respect

ively. A real movement may consequently be determined by the

single substitution

. ,
&amp;lt;*X +=

Let us suppose first that the substitution in X leaves two dis

tinct values of X unaltered. There correspond two fixed points
on the fundamental quadric, and we may without loss of general

ity assume the coordinate system in such a way that these cor

respond to the values X= =b 1. The substitution may then be

written

* Consult for proof and historical references : Fricke-Klein, Vorlesungen ilber

die Theorie der automorphen Fundionen, vol. 1, pp. 44-59.



72 THE BOSTON COLLOQUIUM.

X - 1 . X 1__ ea+i0_
X + 1 X + 1

and is a loxodromic substitution when a. 4= 0, /3 4= 0? an elliptic

substitution when a = 0, /3 =)= 0, and a hyperbolic substitution

when a 4= 0, ft = 0. The corresponding substitution of #. is

readily computed to be

x[
= x

l
cosh a X

Q
sinh a,

x
2

x
2
cos /3 X

B
sin /3,

&3
= x

2
sin /3 -{- x3

cos yS,

^ = x
l
sinh a + X

Q
cosh a,

and the distance I between two corresponding points is determined

by the equation

cosh I = x(x l
x

2
x

2
x

s
x
3 -f XyX

= ~~
(
x

l + XD cos ^ + (
x

l
~

^i) cosn a

= cosh a + (x + (cosh a cos /3).

If a = 0, every point on the line x
2
= 0, x

z
is fixed. Hence

an elliptic substitution can not occur in the group of the space.

If a
=f= 0, 1 3^ a. Hence hyperbolic or loxodromic substitutions

may occur in the group.

Consider next a parabolic substitution of X by which only one

value of X is unaltered. By proper choice of the coordinate sys

tem this substitution may take the form

X = X + a

and the corresponding substitution of x. is

a -f a.
! =!+ ^ (

X X
3)&amp;gt;

i (a \ a)
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a + a i (a a) ad .

X
Z
= X

3 + 2~
X

l + ~
2
- X

* +T^ ~ **

a + a i(d a) ad
x

&amp;lt;

=
*&amp;lt;&amp;gt;

+
&quot;2^1

+
T~&quot;

x
* +

-2~&amp;lt;X)

-
^3)-

The distance I between two corresponding points is given by

the equation

There is no fixed point in finite space, for the assumption X
Q
= x

z

carries with it the equality

J + **=-!.

We may however find corresponding points whose distance

apart is less than any assigned quantity. For if we take y. to

represent any point, the coordinates

represent a point for all values of X and ^ which satisfy the

relation

The displacement I of the point x. is determined by

ad

and / can be made as small as we please by taking X sufficiently

small. Hence a parabolic substitution can not occur in the group

of the space.

We may have then as allowable groups of a Clifford-Klein space

of constant negative curvature only those which correspond to groups

of linear substitutions of X which are properly discontinuous when

interpreted in 2 and contain only hyperbolic and loxodromic sub

stitutions.

The more minute discussion of the Cliiford-Klein space depends

therefore upon the knowledge of the groups called by Poincare
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the Kleinian groups. It is worth noticing that whereas in the

group theory the greatest attention has been paid to Kleinian

groups with elliptic and parabolic substitutions, it is exactly these

groups which are of no interest in the geometric problem before

us. Geometry here waits for the development of the theory of

groups.



SELECTED TOPICS IN THE THEORY OF DIVER
GENT SERIES AND OF CONTINUED FRACTIONS.

BY EDWAKD B. VAN VLECK.

PART I.

LECTURES 1-4. DIVERGENT SERIES.

IT may not be inappropriate for me to preface the first four

lectures with a few words of a general character concerning diver

gent series. These will serve the double purpose of indicating

the nature of the problems to be treated and of binding together

the separate lectures.

The problem presented by any divergent series is essentially a

functional one. When a divergent series of numbers is given, its

genesis is usually to be found in some known or unknown func

tion. The value which we attach to it is defined as the limit of

a suitably chosen convergent process, and the elements of the proc

ess are the terms of the given series or are functions having these

terms for their individual limits. Most commonly the given

numerical series

a
Q + a

l + a
t +

is connected with the power series

(1) + ap + a
2
x2

-f .-,

and the question thus reduces to that of determining under what

conditions or restrictions a value may be assigned to the latter

series when x approaches 1. The primary topic therefore is the

divergent power series, and to this we shall confine our attention

exclusively.

This topic, if broadly considered, presents itself under at least

four very different aspects. What is given is in every case a

power series with a radius of convergence which is not infinite.

Suppose first that the radius is greater than zero and that the

75
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circle of convergence is not a natural boundary. Then the series

defines within this circle an analytic function. In the region of

divergence without the circle the value of the function may be

obtained by the familiar process of analytic continuation. The

oretically the determination of the function is a satisfactory one,

for Poincare * has shown that the function throughout the domain

in which it is regular can be obtained by means of an enume

rable set of elements, Pn(x a
n). Practically, however, when

Weierstrass process is employed for analytic continuation, the

labor is so excessive as to render the process nearly valueless

except for purposes of definition. Hence to-day a search is being

made for a workable substitute. I may refer particularly in this

connection to the investigations by Borel and Mittag-Leffler. As

I consider the work of the former to be both suggestive and

practical, I have taken it as the basis of my second lecture.

A second aspect of our topic, intimately connected with the

continuation of the function defined by (1), is the determination

of the position and character of its singularities in the region

where the series diverges. This subject is treated in Lecture 3.

When the circle of convergence is a natural boundary, it does

not appear to be impossible, despite the earlier view of Poincare

to the
contrary,&quot;)&quot;

to discover, at least in a certain class of cases,

an appropriate, although a non-analytic mode of continuing the

function across the boundary into other regions where it will be

again analytic. The thesis of Borel and its recent continuation in the

Ada Mathematica^ together with some excellent remarks by Fabry^

appear to be about all that has been done in this direction. A very

brief discussion of the subject will be given in the fourth lecture

in connection with series of polynomials and of rational fractions.

Lastly, we have the conundrum of the truly divergent power

series the series which converges only when x = 0. It is upon

* Rendiconti del Circolo Matematico di Palermo, vol. 2 (1888), p. 197, or see

Borel s Theorie des fonctions, p. 53.

fThe conclusions of Poincare and Borel are not actually inconsistent, but a

new point of view is taken by the latter.

$Compt. Rend., vol. 128 (1899), p. 78.



DIVERGENT SERIES AND CONTINUED FRACTIONS. 77

this interesting problem that our attention will be especially

focused in the first two lectures. In applying henceforth the

term divergent to power series, I shall restrict it to series having
a zero-radius of convergence.

I shall offer no excuse for any irregularity or incompleteness of

treatment. The admirable treatise by Borel on Les Series diver-

gentes (1901) and the masterly little book of Hadamard, La S&rie

de Taylor et son prolongement analytique (1901), leave little or noth

ing to be desired in the line of systematic development. While it

is impossible not to repeat much that is found in these books, I

have also supplemented with other material and sought to give as

fresh a presentation as possible.

LECTURE 1. Asymptotic Convergence.

Few more notable instances of the difference between theoretical

and practical mathematics are to be found than in the treatment

of divergent series. After the dawn of exact mathematics with

Cauchy the theoretical mathematician shrank with horror from the

divergent series and rejected it as a treacherous and dangerous

tool. The astronomer, on the other hand, by the exigencies of his

science was forced to employ it for the purpose of computation.

The very notion of convergence is said by Poincare* to present itself

to the astronomer and to the mathematician in complementary or

even contradictory aspects. The astronomer requires a series which

converges rapidly at the outset. He cares not what the ultimate

character may be, if only the first few terms, twenty for example,
suffice to compute the desired function to the degree of accuracy

required. Consequently he judges the series by these terms.

If they increase, the series is for him non-convergent. To the

mathematician the question is not at all concerning the nature of

the series ab initio, but solely concerning its ultimate character.

Let me illustrate the difference by referring to BesseVs series

X / X X \

&quot;

=
2^!V

~
2(2n + 2)

+
2T4(2n + 2) (2n + 4)

&quot;

/

Les methodes nouvelles de la mecanique celeste, vol. 2, p. 1.
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which is a solution of the equation

This is convergent for all values of .T, but when x is very large

the series is worthless for computation owing to the rapid and

long-continued increase of the terms before the convergence finally

sets in. The astronomer and physicist therefore have been driven

to use for large values of x an expansion which is of the form *

sn
. f A A, A.
mx

(
A

* + -^ + -J+\ xx
/

+ Bx-* cos x
(
7? -f

]

\ x

or, what is the same thing,

(3)

-f De-**x-*
[
D

n 4-
l + | + .

x x2

Here the multipliers of C and D are only formal solutions of the

differential equation (2).
In respect to convergence they have a

character exactly opposite to that of 7
n ,

since for very large values

of x the terms at first decrease rapidly but finally an increase

begins. At this point the computer stops and obtains a good ap

proximate value of Jn .

What is the significance of this ? It is strange indeed that no

attempt was made to study the question until 1886, when Poin-

care f and Stieltjes J simultaneously took it up. That so evident

and important a problem should have been so long ignored by
the mathematician emphasizes strongly the need of closer touch

between him and the astronomer and the physicist. Both Poincari

and Stieltjes regarded the series as the asymptotic representation

*
See, for example, Gray and Mathew s Treatise on Bessd Functions, chap. 4.

f^cto Math., vol. 8, p. 295 ff.

t Thesis, Ann. de P EC. Nor., ser. 3, vol. 3, p. 201.
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of one or more functions. While the latter writer studied care

fully certain divergent series of special importance with the object

of obtaining from the series a yet closer approximation to the

function by a species of interpolation, Poincar6 developed the

idea of asymptotic representation into a general theory.

To explain this theory
* and at the same time to develop certain

aspects scarcely considered by Poincare, I shall start with the

genesis of a Taylor s series. Take an interval (0, a) of the posi

tive real axis, and denote by f(x) any real function which is con

tinuous and has n -f 1 successive derivatives at every point within

the interval. No hypothesis need be made concerning the char

acter of the function at the extremities of the interval except to

suppose that/(x),/ (ce), -, f(n

\x)/n ! have limiting values a
,
av

-

,
a
n
when x approaches the origin. Thus the function at any

point within the interval will be represented by Taylor s formula :

f(x)
= + a,x + af + + ax&quot; +

,
/ ( &quot; +1)

(Bx)

If the function is unlimitedly differentiable and limiting values.

off(n
\x)/n\ exist for all values of n when x approaches 0, the

number of terms in the formula can be increased to any assigned.

value. Thus the function gives rise formally to a series

(1) -f arr + a#?+ ,

uniquely determined by the limiting values of the function and its

derivatives.

The converse conclusion, that the series determines uniquely a

function fulfilling the conditions above imposed in some small in

terval ending in the origin, can not, however, be drawn. This is

not even the case when the series is convergent. Suppose, for

example, that a
n
= for all values of n. Then in addition to

* Cf. Peano, Atti delta E. Accad. delle Scienze di Torino, vol. 27 (1891), p. 40
;

reproduced as Anhang III (&quot;Ueber die Taylor sche Formel&quot;) in Genocchi-

Peano s Differential- und Integral-Reclmung, p. 359.
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f(x) s= we have the functions e~ l/x
,
er^ /x

\ - -

,
which fulfill the

assigned conditions. They are, namely, unlimitedly diiferentiable

within a positive interval terminating in the origin, and when x

approaches the origin from within this interval, the functions and

their derivatives have the limit 0. From this it follows imme

diately that if values other than zero be prescribed for the a
n ,
the

function will not be uniquely determined, since to any one deter

mination we may add constant multiples of e~l/x
,
e~ 1/x2

,

Inasmuch as the correspondence between the function and the

series is not reversibly unique, the series can not be used, in

general, for the computation of the value of the generating func

tion. Nevertheless, although this is the case, the series is not

without its value. For consider the first m terms, m being a

fixed integer. If x is sufficiently diminished in value, each of

these terms can be made as small as we choose in comparison with

the one which precedes it, and the series therefore at the begin

ning has the appearance of being rapidly convergent, even though

it be really divergent. Evidently also as x is decreased, it has

this appearance for a greater and greater number of terms, if not

throughout its entire extent. Now by hypothesis the generating

function was unlimitedly differentiable within the interval, and

the successive derivatives are consequently continuous within (0, a).

Hence if the interval is sufficiently contracted, f(m+l
\x)/(m -f 1) !

can be made as nearly equal to am+l throughout the interval as is

desired. We have then for the remainder in Taylor s formula :

(4) B^ t (x)-ij * +1 = .+i^ (l + ?) ( I
f

]&amp;lt; ),

in which e is an arbitrarily small positive quantity. Consequently

if the first m + 1 terms of the series should be used to compute

the value of the generating function, the error committed would

be approximately equal to the next term, provided x be taken suf

ficiently small.

In these considerations there is, of course, nothing to indicate

when x is sufficiently small for the purpose. If the result holds
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simultaneously for a large number of consecutive values of m, the

best possible value for the function consistent with our informa

tion would evidently be obtained by carrying the computation
until the term of least absolute value is reached and then stopping.

Herein is probably the justification for the practice of the com

puter in so doing.

Equation (4) which gave a limit to the error in stopping with

the (m -f l)th term shows also that this limit grows smaller as x

diminishes. Since, furthermore, by increasing m sufficiently the

(m + 2)th term of (1) may be made small in comparison with the

(m -f l)th term, it is clear that on the whole, as x diminishes, we

must take a greater and greater number of terms to secure the best

approximation to the function. These two facts may be comprised
into a single statement by saying that the approximation given

by the series is of an asymptotic character. This will hold

whether the series is convergent or divergent.

This notion can be at once embodied in an equation. From (4)

we have

(5) lim/Mr-^-f.*
-----

&quot;-.X&quot;

\ / 1

lim
&quot; = m = 1 2

This equation is an exact equivalent of the two properties just

mentioned and is adopted by Poincare * as the definition of asymp
totic convergence. More explicitly stated, the series (1) is said

by him to represent a function f(x) asymptotically when equation

(5) holds for all values of m.

It will be noticed that this definition omits altogether the

assumptions concerning the nature of the function with which we
started in deriving the series. Not only has the requirement of

unlimited differentiability within an interval been omitted but the

existence of right-hand limits for the derivatives as x approaches
the origin is not even postulated. If the value a

Q
be assigned to

* Loc. cit.

(v
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the function at the origin, it will have a first derivative, a
l9

at this

point but it need not have derivatives of higher order.*

The exclusion of the requirement of differentiability has un

doubtedly its advantages. It enlarges the class of functions which

can be represented asymptotically by the same series. It also

simplifies the application of the theory of asymptotic representa

tion, and this is perhaps the chief gain. The results of Poincare s

theory can readily be surmised. The sum and product of two

functions represented asymptotically by two given series are

represented asymptotically by the sum- and product-series respec

tively, and the quotient of the two functions will be represented

correspondingly, provided the constant term of the divisor is not 0.

Also if f(x) is any function represented by the series (1), whether

convergent or divergent, and

&amp;lt;f)(x)

= 6
Q -f- bi& -\- byf? -{

is a second series having a radius of convergence greater than
|

a
Q ,

the asymptotic representation of
&amp;lt;j&amp;gt;[f(xj]

will be the series which

is obtained from

6
&amp;lt;&amp;gt;

+ 6iK + a
i
x + ) + 6

2K + a
i
x + -

)

2 +

by rearranging the terms in ascending powers of x. Lastly, the

integral of f(x) will have for its asymptotic representation the

term by term integral of (1).
But the correspondence of the func

tion and series may be lost in differentiation, for even if the

function permits of differentiation, its derivative will not neces

sarily be a function having an asymptotic power series. Examples

of this kind can be readily given.f

* The ordinary definition of an nth derivative is here assumed. If, however,

we define the second derivative by the expression

and the higher derivatives in similar fashion, the function must have derivatives

of all orders.

f Cf. Borel, Les Series divergence*, p. 35.



DIVERGENT SERIES AND CONTINUED FRACTIONS. 83

This failure is on many accounts an unfortunate one. If a

further development of Poincare s theory is to be made and this

seems to me both a possibility and a desirability his definition

probably should be restricted by requiring (a) that the function

corresponding to the series shall be unlimitedly diiferentiable in

some interval terminating in the origin, and (6) that the deriva

tives of the function should correspond asymptotically to the

derivatives of the power series. These demands are satisfied in

the case of an analytic function defined by a convergent series and

seem to be indispensable for an adequate theory of divergent

series.*

Thus far we have considered asymptotic representation only for

a single mode of approach to the origin. Suppose now that an

analytic function of a complex variable x is represented by (1) for

all modes of approach to the origin, and let a be the value assigned

to the function at this point. Then if the function is one-valued

and analytic about the origin, it must also be analytic at this point

since it remains finite. Hence the series must be convergent.

The case which has an interest therefore is that in which the

asymptotic representation is limited to a sector terminating in the

origin. Suppose then that (1) is a given divergent series, and let

a function be sought which fulfills the following conditions : (a)

the function shall be analytic within the given sector for values of

* These requirements are formulated from a mathematical standpoint with a

view to extending the theory of analytic functions, and doubtless will be too

stringent for various astronomical investigations. Prof. E. W. Brown suggests
that for such investigations the conditions might perhaps be advantageously
modified by making the requirements for only m derivatives, m being a number
which varies with x and increases indefinitely upon approach to the critical point.
He also points out the difficulties of an extension in the case of numerous astro

nomical series which have the form/(x, t)
= a -f a^x -f a2x

2 -}-, where a
t
is a

function of x and t, 8f/dt being a convergent series. Poincare s definition is how
ever still applicable.

Oftentimes in celestial mechanics the only information concerning the func

tion sought is afforded in the approximation given by the asymptotic series. An
objection to Poincare s definition is that it presupposes a knowledge of the func

tion sought, for example, that lira f(x) =a ,
when x= Q. As a matter of fact

the properties are often unknown. See in this connection p. 89 of these lectures.
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x which are sufficiently near to the origin ; (6) it shall be repre

sented asymptotically by the given series within the sector, whether

inclusive or exclusive of the boundary will remain to be deter

mined
; (c)

the asymptotic representation shall not be valid if the

angle of the sector is enlarged. So far as I am aware, the exist

ence of a function or of functions which meet these requirements

has never been demonstrated, though it seems likely that they in

general exist. It is, however, very possible that the sector must

be restricted in position as well as in magnitude. It may be

found necessary to require that the interior of the sector shall

not include certain arguments of x for example, in the case

of the series *2mlxm * the argument 0, for which the terms

have all the same sign, f If this be true, the sector will

very probably have two such arguments for its boundaries.

When there is a function which satisfies the conditions im

posed, it can not be unique. For clearly e~1Ac
,
e~ 1Ac7

,
e~ }/

**, ,

within certain sectors of angle TT, 2?r, STT, ,
have an asymptotic

series in which each coefficient is 0. If, then, any function has

been obtained satisfying the conditions stated, one or more of these

exponentials, after multiplication by suitable constants, may be

added to the function without destroying its properties. Hence

if a divergent series is to represent a function uniquely, supple

mentary conditions must be imposed. The nature of these condi

tions has not yet been ascertained. J

In closing the general discussion a simple extension of the

notion of asymptotic convergence should be mentioned which is

necessary for the applications to follow. F(x) is said to be repre

sented asymptotically by

* This series is discussed in the next lecture.

tBorel (Joe. cit., p. 36) in his exposition of Poincare s theory seems to make

the definite statement that there are arguments for which no corresponding func

tion exists, but I am unable to find any proof of the statement.

J In this connection see pp. 89-92 of Borel s article, Ann. de V EC. Nor., ser. 3,

vol. 16 (1899).
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when the series in parenthesis gives such a representation of

The applications of P&incar&a theory have been made chiefly

in the province of differential equations* where divergent series

are of very common occurrence. We will take for examination

the class of equations, of which the theory is perhaps the most

widely known, the homogeneous linear differential equation with

polynomial coefficients :

(6) P ! + P._,(x) ~i + + P (% = 0.

This is, in fact, the class of equations to which Poincare first

applied his theory,f but his discussion of the asymptotic repre

sentation of the integrals was limited to a single rectilinear mode

of approach to the singular point under consideration. The de

termination of the sectors of validity for the asymptotic series

has been made by Horn,^ who in a number of memoirs has care

fully studied the application of the theory to ordinary differential

equations.

As is well known, the only singular points of (6) are the roots

of P
H(x) and the point x = oo. For a regular singular point ||

we

have the familiar convergent expressions for the integrals given

by Fuchs. Consider now an irregular singular point. By a linear

transformation this point maybe thrown to oo, the equation being
still kept in the form

(6). Suppose then that this has been done.

If P
n

is of the pt\\ degree, the condition that x = oo shall be a

regular singular point is that the degrees of P
n_v Pn_2 ,

- -

,
P

Q

shall be at most equal to p 1, p 2, , p n, respectively.

For an irregular singular point some one or more of the

degrees must be greater. Let h be the smallest positive integer

for which the degrees will not exceed successively

* In addition to the memoirs cited below Poincare&quot; s Les methodes nouvelles d&quot; la

mecanique celeste and various memoirs by Kneser may be consulted.

\Acta Math., vol. 8 (1886), p. 303. See also Amer. Jour., vol. 7 (1885), p. 203.

\MatJi. Ann., vol. 50 (1898), p. 525.

\ See various articles in Crelle s Journal and the Mathematische Annalen.

II Stdle der Bestimmtheit.
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The number h is called the rank of the singular point oo, and the

differential equation can be satisfied formally by the series of

Thomae or the so-called normal series :

s =

(i=l, 2, ...,).

Unless certain exceptional conditions are fulfilled, there are n of

these expansions, and in general they are divergent. To simplify

the presentation let us confine ourselves to the case for which

h= 1. Then at least one of the polynomials succeeding Pn
will

be of the pth degree, and none of higher degree. Place

and construct the equation

(8) Ajf + A^tf-1 + ... + A^o.
The n roots of this equation are the n quantities a. which appear

in the exponential components of the S
t
.

As a particular illustration of the class of equations under con

sideration, BesseVs equation ( Eq. (2) ) may be cited, Here the

point oo is of rank 1, the characteristic equation is

A
Q
a* + A

l
az + A 2

= a2 +l = 0,

with the roots

a
t

= *
,

&amp;lt;*

2
= 4- ?

,

and the two Thomaean integrals are
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in which p { , p.2
are yet to be ascertained. After this has been

done, the coefficients of (9) can be determined by direct substitu

tion in (2).

To avoid complications we will assume that the n roots of the

characteristic equation (8) are all distinct, also that the real parts of

no two roots are equal. Mark now in the complex plane the points

av 2 , -,
a
n ,
and draw from them to infinity a series of parallel

rays having such a direction that no one of the rays with its pro

longation in the opposite direction shall contain two or more of

these points. Finally surround the points a. with small circles,

so that we shall have the familiar loop circuits for the paths of

integration of the integrals which we now proceed to form. Put

(10) (i= 1, ..., n),

in which v.(z) is a function to be subsequently fixed. In order

that the integral may have a sense, x will be so restricted that the

real part of zx shall be negative for the rectilinear parts of the

loop circuits. We can then so determine
v.(z)

that 77. shall be a

solution of
(6).

For this purpose substitute rj. for y in (6). A reduction, based

on the integration of (10) by parts,* gives for v
t(z)

the equation

(11) (Ajf 0,

This is known as Laplace s transformed equation. While the

original equation was of the nth order with coefficients of the pth

*Cf. Picard s Traile d Analyse, vol. 3, p. 383 ff., or Poincare, Amer. Jour.,

vol. 7 (1885), p. 217 ff.
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degree, the transform is of the
/&amp;gt;th

order with coefficients of the nth

degree. Its singular points in the finite plane are the roots of the

first coefficient of (11), which is identical with the left hand mem
ber of (8). Furthermore, an inspection of (11) shows immedi

ately that each of these singular points a. is regular, and the

exponents which belong to it are

0, ]
, 2, ., p - 2, /3 (

= -
(Pi + 1) (&amp;lt;- 1, 2,

. .
., ),

in which p. is the exponent of x, hitherto undetermined in (7).

Hence if /3. is not an integer, there is an integral of (13) having
the form

(*
-

,)&quot;(*. + *,(*
-

,) + * -^ + ).

which, when continued analytically, can be taken as the function

v.. Thus for the solution of (6) we obtain

Vi= f *&quot;*(*

- a
,)

Si
(*o + *i(*

-
.) + )*

If, finally, a. -f yfx is substituted for z the integral becomes

(12) ^

where the transformed path of integration is a loop circuit which

encloses the origin of the y-plane, the rectilinear portion of the

path lying in the half plane for which the real part of y is negative.

We have thus reached a solution of the differential equation

under the form of an improper integral of a convergent series.

The integration of (12) term* by term, which is a purely formal

process, gives at once the normal integral S. of (7),
in which

The asymptotic character of $. can be quickly demonstrated.*

For let unR
n(u) denote the remainder after n terms of the series

+ \u + k
2
u2

-f - - ..

Then

*Horn, toe. cit., or Ada Math., vol. 24 (1901), pp. 299 ft.
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Since the integral in the right hand member, taken along the loop

circuit, can be shown to remain finite when x= oc, we have

- 0.

But this is the statement of Poincar&s definition of asymptotic

convergence for x = oc.

I have sketched this lengthy process in some detail because it

is a thoroughly typical one and indicates the present status of the

theory of asymptotic series. It will be observed that the follow

ing course is pursued :

1. First, it is discovered that the differential equation permits

of formal solution by a certain divergent series.

2. By some independent process the existence of an actual solu

tion is ascertained which permits formally of expansion into the

series. Usually the solution is found under the form of an inte

gral, and Horn has applied the theory chiefly in cases in which

solutions of this form were known. (Lately, however, he has

used solutions obtained from the differential equation by the

process of successive approximation.*)

3. The asymptotic character of the series is then argued and,

finally, the sector within which this representation is valid is

determined.

The status of the theory thus exhibited seems to me an unsat

isfactory and transitional one. It is to be hoped that ultimately

the theory will be so developed that the mere existence of a diver

gent power series as a formal solution of the differential equation

will be sufficient for the immediate affirmation of the existence of

one or more solutions which are analytic functions with certain

specified properties.

* Math. Ami., vol. 51 (1898), p. 346. In Crelle s Journal, vol. 118 (1897),

still another method is used for obtaining the solutions.
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It remains yet to fix the sectors within which the solutions rj.

can be represented asymptotically by the normal integrals. These

sectors have been specified by Horn* in the following manner.

Let straight lines be drawn from each singular point a. to every
other point and produce each joining line to infinity in both direc

tions. A set of lines will be thus fixed, radiating from the point oo.

Let their arguments, taken in the order of decreasing magnitude,
be denoted by

Suppose now that the argument of the rectilinear part of the

path of integration for 77. in the plane of z lies between o&amp;gt;

p_ 1
and

&)
p

. Then rj. is represented asymptotically by 8
t
for values of the

argument of a? between Tr/2 &)
p
_

1
and Tr/2 ft&amp;gt;

p+r.f

To the general solution of (6), c
l rj 1 -f c

2rj2 + -f c
?i
?7 n ,

there

corresponds the divergent expansion

c- + +

(13)

Here the real parts of two exponents, ax and ax, are equal only

when arg(a. a^x is an odd multiple of Tr/2; that is, when argx
is equal to Tr/2 a),

(i 1, , 2r). Suppose then that for

7T/2
fi&amp;gt;

p_! &amp;lt; arg x
&amp;lt; Tr/2

- co
p+r

-

we so assign subscripts to the a. that

E(a lx) &amp;gt; R(a2x) &amp;gt; &amp;gt; E(ax).

Then all the integrals for which c
1 4= have in common the

asymptotic series c
l
Sv while those for which C

L
= c

2
= = c._v

*Horn, Math. Ann., vol. 50 (1898), p. 531.

fin certain cases the asymptotic representation may be valid for a greater

range of values of the argument of x, as in the case of Bessel s equation discussed

below.
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c.
=}= 0, are represented by c.S

{
. Thus it appears that between the

arguments considered Sn
is the only one of the n asymptotic series

JS. which defines a solution of the differential equation (6) uniquely.

Changes in the asymptotic series representing a solution may
occur from two causes, either because x passes through one of the

critical values above mentioned for which there is a change in the

dominant exponential in (13), or because of a sudden alteration in

the values of the constants c. for certain values of the argument.

This can be made clear, in conclusion, by illustrating with BesseVs

equation.* For this equation, as we saw,

and hence

3-7T 7T

Also since Laplacds transform for the particular case before us is f

the exponent pi
for either of the two singular points z = i has

the value -

J. Accordingly the series (13) for c
l rj l -f c

2rj2 may be

written

Ct*X-*

= CU(x) + DV(x),

as previously given in
(3).

If the imaginary part of x is nega

tive, CU(x) is the dominant term in (3) and gives the asymptotic

representation of the general solution, c
l

i

rj l -f c
2rj2

. On the other

hand, if the imaginary part is positive, the dominant term is

* A brief but very interesting discussion is given in a letter of Stokes in the

Ada Math., vol. 26 (1902), pp. 393-397. Compare also $3 of Horn s article,

Math, Ann., vol. 50 (1898), p. 525.

f Math. Ann., vol. 50, p. 539, Eq. J5 .
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DV(x). The changes in the values of C and I) take place only
when arg x passes through the values (In -f l)7r/2. Then the

coefficient of the dominant term remains unaltered, while the coeffic

ient of the inferior term is altered by an amount proportional to the

coefficient of the dominant term.f We conclude, therefore, that

in general the asymptotic series for any solution of .BesseVs equa
tion changes abruptly for values of the argument congruent with

(mod TT). Furthermore, the series can not be valid for a

greater range of values of the argument unless when arg x = 0,

either D = or C = 0. In the former case we have a particular

solution Cij l
which is represented by the series CU(x) for

TT
&amp;lt; arg x

&amp;lt; STT,

and in the latter case a solution D^ represented by D V(x) for

27T
&amp;lt;^ arg x

&amp;lt;
TT.

Thus from the infinitely many solutions of Vessel s equation having

the common asymptotic representation CU(x) and DV(x) respec

tively, these two solutions can be singled out by the requirement

that the asymptotic representation shall have the maximum sector

of validity.

LECTURE 2. The Application of Integrals to Divergent Series.

In the first lecture a divergent series was connected with a group

of functions, for which it afforded a common asymptotic represen

tation. In the present lecture I shall treat of methods which

have been used to derive a function uniquely from the series.

To establish, whenever possible, such a unique connection, to

develop the properties of the function, and to determine the laws

and conditions under which the series can be manipulated as a sub

stitute for the function this may be said to be the ultimate aim

of the theory of divergent series.

Up to the present time this goal has been reached only for a

restricted class of divergent series. Furthermore, the uniqueness
^_

f Stokes, loc. cit.
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of correspondence between the function and the series has been

attained, not by a specification of the properties of the function,

but by means of some algorithm which, when applied to the series,

yields a single function. Unquestionably the instrument by which

the greatest progress has been made thus far is the integral. The

first successes, however, were reached by Laguerre
* and Stieltjes f

through the use of continued fractions, and very possibly in the

end the continued fraction will prove to be the best, as it was the

earliest tool. But as yet it has been applied only in cases in which

the function can be represented under the form of an integral as

well as of a continued fraction, although with greater difficulty.

To explain the use of integrals let us consider the familiar

divergent series treated by Laguerre9

(1) 1 +cc + 2!x2
-h3!x

3
+....

This is, I believe, historically the first divergent series from which

a functional equivalent was derived. J Since

*See No. 20 of the bibliography at the end of lecture 6.

f Bibliography, No. 26a.

i Laguerre (loc. cit.) gives the function first in the form of a continued fraction

and later proves its identity with the integral which gives rise to the divergent

series. Borel at the opening of the second chapter of Les Series divergentes remarks

that &quot;

Laguerre parait avoir le premier montre nettement 1 utilite qu il peut y
avoir a transformer une serie divergente ... en une fraction continue conver-

gente.&quot; It seems almost to have escaped notice (see, however, p. 110 of Prings-

heim s report, Encyklopddie der Math. Wissenschaften, I A 3), that Euler (Biblio

graphy, No. 46 ) derived a continued fraction from the divergent series

1 -f mx -)- m(m -f n}x
2

-f- m(m -\- n] (m -f- 2n}x
3
-\- ,

of which Laguerre s series is a special case, and clearly realizes the utility of the

continued fraction. Moreover, a close parallel to the course followed by Laguerre
is found in the work of Laplace who derives from the expression

ex
~

f*e-**dx

a divergent series and from this in turn a continued fraction, the convergents of

which were stated by him and proved by Jacobi to be alternately greater and less

than the expression. Had Jacobi proved also the convergence of the continued

fraction, the work of Laguerre would have had an exact parallel for real values

of x. Cf. No. 47 of the bibliography.
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ml = T(m + 1)
= fV*sB

&amp;lt;fe,

Jo

the series may be written

X/OC
X,.

e-*Js +-35 I e~=zdz + z2 er~-dz + . .

.,

i/O Jo

the path of integration being the positive real axis. If, then, by
a merely formal process, the sum of the integrals is replaced by
the integral of the sum, we obtain

or a function
fe-*(l

+ o;z + a5V + ...)dz,

(2) /()
in which

F(zx) 1 zx

The function thus derived is an improper integral which has a

significance for all values of x except those which are real and

positive. It can be shown also to be analytic for all except the

excluded values of x. One of the simplest proofs is as a corol

lary of the following exceedingly fundamental theorem of Vallee-

Poussin* which we shall have occasion to use again later : If in

the proper integral

the integrand is continuous in z and x for all values of z upon the

path of integration and for all values of x within a region T; -if,

furthermore, for each of the above values of z it is analytic in x over

the region T, the integral will also be an analytic function of x in

the interior of T. By this theorem, if Ms a point on the positive
real axis,

&quot; er dz

f. 1305
*Ann. de la Soc. Sclent, de Bruxdles, vol. 17 (1892-3), p. 323.
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will represent an analytic function of x over any closed region of

the x-plane which excludes the positive real axis. If, now, t

passes through any indefinitely increasing set of values,

^i &amp;lt;
t
2 &amp;gt;

&amp;lt; tv &amp;gt;

we have in

^&amp;gt;=ff- zx

a series of analytic functions which is seen at once to converge

uniformly over the region considered, since

zx
&amp;lt;e

for sufficiently great values of i andj. The limit (2) is therefore

analytic.

By deforming the path of integration the same conclusion con

cerning the analytic character of

the function (2) can be extended ( \
-&amp;gt;

to all values of x upon the posi

tive real axis excepting and oo, and when the deformation is

made on opposite sides of a fixed point x, the two values of the

integral will be found to differ by

1 i

(3) 2/7T-6 x.
X

The integral accordingly represents a multiple-valued function

with the singular points and oo, the various branches of which

differ from one another by multiples of the period (3).
For the

initial branch which was given in (2) the limit of f(n

\x)/n\ will

be the (n + l)th coefficient of (1) if x approaches the origin

along any rectilinear path except the positive real axis.

Let the process which has been adopted for the series of La-

guerre be applied next to any other series

(I) + ! -f a
2
x* H
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having a finite radius of convergence. If we write the series in

the form

-f op + 2 !

s

,
+ . . . +

then replace the factor n I by its expression as a F-integral, and

finally, by a step having in general only formal significance, bring

all the terms under a common integral sign, we shall obtain

I e~
z
( 1 + a,a + ^

2

,

xV -f
Jdz

or

(4) f e- P(zx)dz,
Jo

in which

(5) F(u) = 1 -f chu + |
2

,

u* + +
f&amp;gt;

1

+; -

(u
= s4

This integral is the expression upon which Borel builds his theory

of divergent series, and may be regarded as a generalization of a

very interesting theorem of Caesaro* The series (5) is called

the associated series of (I).

Two cases are now to be distinguished according as the funda

mental series (I) has, or has not, a radius of convergence li which

is greater than 0. If the radius is not zero, the associated series

has an infinite radius since

n L

A

and it accordingly represents an entire function. It is a simple

matter to prove that the integral (4) will have a sense if x lies

within the circle of convergence of (I), and that the values of the

integral and series are identical. But the integral may also have

a sense for values of x which lie without the circle, and in this case

the integral may be used to get the analytic continuation of (I).

* Cf. Borel, Les Series divergent&s, pp. 88-98.
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The series is said by Borel to be summable * at a point x when the

integral (4) has a meaning at this point.

The second case is that in which the fundamental series is

divergent. The associated series in this case may be either con

vergent or divergent. If it is convergent only over a portion of

the plane of u = zx, we are to understand by F(u) not merely the

value of the associated series but of its analytic continuation.

Let x for an instant be given a fixed value. Then when z

describes the positive real axis, u in its plane describes the ray

from the origin passing through the point x. If F(u) is holomor-

phic along this ray, it is possible that the integral (4) will have a

sense. Suppose that this holds good as long as x lies within a

certain specified region of its plane. Then for this region a func

tion will be obtained uniquely from the divergent series by the use

of the integral, precisely as in the case of the series of Laguerre.

This method of treatment is obviously restricted to divergent

series for which the associated series are convergent, and it will

not always be applicable even to these. A divergent series in which

there is an infinite number of coefficients of the same order of mag
nitude as the corresponding coefficients of

(6) 1 + x + (2 !)V + (3 !)V + . + (w!)V + .

can not be summed in this manner. It will be noticed, however,

that the series just given is one whose first associated series is the

series of Laguerre, and whose second associated series is conse

quently convergent.

The method of Borel can be readily extended so as to take

account also of such series, or, more generally, of series that have

an associated series of the nth order which is convergent. One

mode of doing this is by the introduction of an n-fold integral.

Suppose, for example, that in (6) one of the two factorials n ! is

replaced by
x:

e~K
z
ndz

f.
* Some other term would be preferable since his definition refers only to one

of many possible modes of summation. A series may be simultaneously &quot;sum

mable&quot; at a point x by one method, and non-summable by another.
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and the other by

f e- rdt.

The (n -f- l)th term of the series becomes

r r -*-xn
I I e

z
z
n
t
n
dzdt,

Jo JQ

and we obtain the two-fold integral

Z

dzdt
. tzx

for the functional equivalent of the series. This is a function,

the initial branch of which is analytic over the entire plane of x

except at the points and oo.

We turn now to the consideration of the region of summability,

in which x must lie in order that the integral shall have a sense.

Borel has determined the shape of this region when the funda

mental series (I) is convergent, but in so doing he restricts him

self to what he calls the absolutely summable series. The series

(I) is said to be absolutely summable for any value of x when the

integral (4) is absolutely convergent and when, furthermore, the

successive integrals

(7) f &amp;lt;r*

Jo

-& (X-1,2,

have also a sense.*

To fix the shape of the region Borel shows first that if a func

tion defined by a convergent series (I) is absolutely summable at

a point P, it is analytic within the circle described upon the line

OP as diameter, connecting P with the origin ; conversely, if it

is analytic within and upon a circle having OP as diameter, it

must be absolutely summable along OP, inclusive of the point

*The condition (7) was not originally included in Borel s definition of abso

lute summability (Ann. de V EC. Nor., ser. 3, vol. 16, 1899), and is superfluous

in fixing the shape of the region. Cf. Math. Ann., vol. 55 (1902), p. 74. The

modification of the definition was introduced in the Series divergencies and is

needed for the developments explained below, p. 102. Chapters 3 and 4 of this

treatise can be read in connection with the present lecture.
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P. As P moves outward from the origin along any ray, the lim

iting position for the circle is one in which it first passes through
a singular point Sy

and at this point SP and OS subtend a right

angle. The region of absolute summability can therefore be

obtained as follows : Mark on each ray from the origin the

nearest singular point of the function defined by (I),
if there

is such a point in the finite plane. Then through this point

draw a perpendicular to the line. Some or all of these per

pendiculars will bound a polygon, the interior of which con

tains the origin and is not penetrated by any one of the perpen

diculars. This region is called the polygon of summability. If

the singularities of the function are a set of isolated points, the

polygon will be rectilinear. For the extreme case in which the

circle of convergence is a natural boundary, the polygon and

circle coincide. In every other case the circle is included in the

polygon. Thus by the use of (4) Borel effects an analytic con

tinuation of the series over a perfectly definite region whenever an

analytic continuation exists. On passing to the exterior of the

polygon the series ceases to be absolutely summable. As an

example of this result, take the series

xs x5

* + - + - + ...,

which is the familiar expansion of J log (1 + ^)/(l #) The

singular points of the function are + 1 and 1, the circle of

convergence is the unit circle, and the polygon of summability
is a strip of the plane included between two perpendiculars to the

real axis through the points 1.

When the given series is divergent, the form of the domain of

summability has not been determined with such precision. The

only information which we have upon the subject is contained in

a brief but important communication by Phragmen in the Comp-
tes Rendus* published since the appearance of BoreVs work.

Phragmen considers here the domain, not of absolute, but of sim

ple summability for Laplace s integral

*Vol. 132, p. 1396
; June, 1901.
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(8)

in which f(zx) denotes an arbitrary function.

To adopt a term of Mittag-Leffler, the domain is a &quot;

star/

which is derived as follows : Draw any ray from the origin. If

the series is summable at a point X
Q
of this line, Phragmen shows

that it is summable at every point between X
Q
and the origin 0.

There is therefore some point P of the line which separates the

interval of summability from the interval of non-summability.

If the function is summable for the entire extent of the ray, P
lies at infinity. In any case let the segment OP be obliterated

and then make a cut along the remainder of the line. When the

same thing is done for every ray which terminates at the origin,

there is left a region called a star, bounded by a set of lines radi

ating from a common center, the point at infinity.

Phragmen says that the proof of this result is so simple that it

can be given
&quot; en deux mots&quot; For this reason I shall repro

duce it here. We are to show that if the integral converges for

any value x = X
Q)

it will also converge for x = 0x
Q ,

if
&amp;lt;

6
&amp;lt;

1 .

Place

/K) =
&amp;lt;KZ)

+
*&amp;gt;(*).

For x = X
Q
the real and imaginary components of the integrals,

(9) PV(s)e-*&amp;lt;fe,
i f ^(z)e-*dz,

Jo /o
t
,r

have a sense. We are to prove that the integrals

(10) f
&amp;lt;l&amp;gt;(z0)er

s

dz, f ^ (z0)er
s

dz,
Jo ^o

obtained by replacing x by 0x
,
also exist. Consider either inte

gral, for example the former. Let
&amp;lt;

a
1

&amp;lt;a2 &amp;lt; oo, and put



DIVERGENT SERIES AND CONTINUED FRACTIONS. 101

By the change of variable w Oz this becomes

~~

6 1
r\J b I Y\ )

0i t/ Qai

Since e~w(l/e~ 1} is a positive and decreasing function in the interval

considered, the second mean-value theorem of the integral calculus*

may be applied, giving

(11) /= * I
&amp;lt;t&amp;gt;(w)e~

w
dw,

*J Qa\

in which a designates an appropriate value between a
l
and ar

This, as Phragmen says, proves the theorem, but a word or two

of explanation additional to his &quot; deux mots &quot;

may not be unac

ceptable to some of my hearers. The necessary and sufficient

condition for the existence of the first of the two integrals given
in (10) is that by taking two values a

l
and a

2 sufficiently small or

two values sufficiently large, the integral / may be made as small

as we choose. Now this is true of

&amp;lt;t&amp;gt;(w)e~

wdw

since the integrals (9) exist, and equation (11) show then that it

must be true likewise of / because the factor e~ai(l~ e}
j6 has an

upper limit for
&amp;lt; L &amp;lt;

6
&amp;lt;

1 and
&amp;lt;

a
t &amp;lt;

oo. It follows

therefore that the integrals (10) exist.

Two other facts stated by Phragmen are also of interest. The
function of x defined by (8) is a monogenic function which is holo-

morphic at every point in the interior of a circle described upon
OP as diameter. If, also, in place of f(zx) we take the associated

series F(zx) of a convergent series (I), the star of convergence
coincides with BorePs polygon of absolute summability. Thus
the regions of absolute and non-absolute summability are the

same, or differ at most only in respect to the nature of the boun

dary points.

* Bonnet s form : Encyklopadie der Math. Wiss., II A 2, 35.
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It might be thought that the result of Phragmen makes the con

cept of absolute summability useless. This is, however, in no

wise the case. At any rate, Borel employs the concept to estab

lish the important conclusion that a divergent series, if absolutely

summable, can be manipulated precisely as a convergent series.

Thus if two absolutely summable series, whether convergent or

divergent, are multiplied together, the resultant series will also be

absolutely summable, and the function which it defines will be

the sum or product of the functions defined by the two former

series. Or, again, if an absolutely summable series is differen

tiated term by term, another such series is obtained, and the latter

yields a function which is the derivative of the one defined by
the former series. Lastly, the function determined by an abso

lutely summable series can not be identically zero, unless all the

coefficients of the series vanish.

These facts make possible the immediate application of Borel?s

theory to differential equations. If, in short,

P(x, y, y
f

, ...,^&amp;gt;)=0

is a differential equation which is holomorphic in x at the origin and

is algebraic in y and its derivatives, any absolutely summable

series (I), which satisfies formally the equation, defines an analytic

function that is a solution of the equation. For example, it will be

found that the series of Laguerre satisfies formally the equation

and hence the function

e~ zdz

zx

must be a solution of the equation.

These conclusions of Borel should be strongly emphasized.

In any complete theory of divergent series it is an ultimatum

that they shall in all essential points
*
permit of manipulation

*In an absolutely summable series it is not always legitimate to change the

order of an infinite number of terms. Cf. Borel, Journ. deMath., ser. 5, vol. 2

(1896), p. 111.
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precisely as convergent series, this property being a requisite for

satisfactory application to differential equations.

In our preceding exposition of BoreVs theory, we have intro

duced his chief integral by a method which permits of expansion
in various directions. Le Roy in his very excellent thesis *

suggests

a change of the function in Laplace s integral which greatly en

larges the applicability f of Borel s method without essentially

changing its character. Let the initial series (I) be first written

and then replace the second factor in each term by

T(np +-.!)
-
f e- /p

z
vp- l

+&amp;lt;]z.

P Jo

This gives for the formal equivalent of the series the integral

(12)

in which the associated function is now

The number p remains to be fixed. If the series (I) is divergent,

there is a critical value of p such that any smaller value of p

gives an associated series having a zero radius of convergence,
while a larger value gives one with an infinite radius of conver

gence. This critical value p may be said to gauge or measure

* Annalesde Toulouse, ser. 2, vol. 2 (1900), p. 416.

f Since this was written, a very interesting application of Le Roy s idea to

differential equations has been made by Maillet, Ann. de V EC. Nor., ser. 3, vol.

20 (1893), p. 487 ff.
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the degree of divergence of the series. For the divergent series

treated by Borel, p = 1. If p = 0, the series (I) has a finite

radius of convergence. On the other hand, when p = oo, Le Roy s

integral can not be applied, but it may be conjectured that such

cases will be of very rare occurrence. Le Roy proposes to employ
the integral when the associated series is convergent for p = p and

when also its circle of convergence has a finite radius and is

not a natural boundary. The function obtained from (12) will

be unique, and he shows that the series which are summable by
its use like the series of Borel, can be manipulated as convergent

series. One might also inquire whether, in case (13) diverges for

p = p and we take p &amp;gt;p ,
we shall not get a unique result irre

spective of the value of p.

Other forms of integrals may also be selected for the summa

tion of the series, as for example,*

fJo
in which

J\zx)
= /3

To generate the given series (I) we must so select/ (x) and F(zx)

that
&quot;

f(z) z
n
dz.

Borel chooses for f(z) the exponential function, making in conse

quence F(zx), his associated series, dependent only upon the given

series. Hence his process is called very appropriately the ex

ponential method of summation. Stieltjes, f on the other hand,

with his continued fraction arrives at an integral in which F(u) is

the fixed function and /(a) is the variable function dependent on

the series given. For the fixed function he takes

F(zx) = T-
1 zx

*Cf. Le Roy, loc. cit., pp. 414-415.

f Loc. cit.
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so that

(14) =
f&quot;f.z&quot;d.I/O

At first sight this choice of functions would seem to be a very desir

able one, for the function defined by the divergent series is obtained

in the familiar form

f(z)dz

Upon examination, however, it turns out to be otherwise. For

suppose the divergent series to be given and /(z) is to be found.

The problem is then a very difficult one, that of the inversion of

the integral (14) when a
n is given for all values of n. This is

what Stieltjes terms &quot; the problem of the moments.&quot; It does not

admit of a unique solution, for Stieltjes himself* gives a function,

f/ \ \

f(z)
= e v sin yZ)

which will make a
n
= for all values of n. If the supplementary

condition is imposed that f(z) shall not be negative between the

limits of integration, only a single solution f(z) is possible, but

the divergent series is thereby restricted to belong to that class

which Stieltjes derives naturally and elegantly by the considera

tion of his continued fraction.

Thus far our attention has been confined exclusively to integrals

in which one of the limits of integration is infinite. There are,

however, advantages in using appropriate integrals having both

limits finite, at least if the given series is convergent and the

integral is used for the purpose of analytic continuation. In

particular, the integral

(16) f(x)
= V(z)F(*x)dz

should be noted, to which Hadamard has drawn attention in his

thesis.f This falls under Vallee-Poussin s theorem when V(z) is

*Loc. cit., 55.

t Journ. de Math., ser. 4, vol. 8 (1892), pp. 158-160.
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continuous along the path of integration and when also F(u) is

analytic in u = zx for all values of z upon the path of integration

and for values of x in some specified region of the cc-plane. If,

as we suppose, the path is rectilinear, the values of x to be ex

cluded are evidently those which lie on the prolongations of the

vectors from the origin to the singular points of F(x). The

region of convergence of (16) is consequently a star, whose boun

dary consists of prolongation of these vectors.* Thus Hadamard s

integral, when applied to the analytic continuation of a function,

is superior to Borel s in the extent of its &quot;region
of summ ability.&quot;

This is illustrated in Le Roy s thesis f with the very familiar series :

r ^ 2-4

Here the coefficient of x11

is

z
ndz

/z(l z)

so that

dz

Since F(zx)
=

1/(1 &r), the region of summability is the entire

plane of x with the exception of the part of the real axis between

x = 1 and x oo. Borel s polygon of summability for the series,

on the other hand, is only the half plane lying to the left of a

perpendicular to the real axis through the point x = 1.

Much, it seems to me, can yet be done in following up the use

of Hadamard s integral. One special case has been studied already

by Le Roy, in which the (n + l)th coefficient of (I) has the form

I

Jo
z
n

cf)(z)dz.

* This conclusion also holds if only C V(z}dz is an absolutely convergent inte-
\J o

gral, as is shown by Hadamard.

fp.411.
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The series therefore defines a function

/*y I -zx

which is analytic over the entire plane except along the real axis

between x = I and x = oo. The path of integration may also

permit of deformation so as to show that the cut between the

points is not an essential cut. It is interesting to note that if

&amp;lt;(z)
is positive between and 1, the primary branch of the func

tion has only real roots which are, moreover, greater than 1.*

LECTURE 3. On the Determination of the Singularities of Func

tions Defined by Power Series.

Up to the present time comparatively little successful work has

been done in determining the singularities of functions defined by

power series, and the little which has been done relates mostly to

singularities upon the circle of convergence. Work of this special

nature I shall omit from consideration here, thus passing over the

memoirs of Fabry, and I shall call your attention to the literature

which treats of the singularities in a wider domain.

The most fundamental and practical result yet obtained is

undoubtedly a brilliant theorem of Hadamard^ in the wake of

which a number of other interesting memoirs have followed.

This theorem is as follows :

If two analytic functions are defined by the convergent power series

(1) () = a + ajX + a
2
x2 + . .

-,

(2) +(x) = b^ + b
l
x

the only singularities of the function

(3) f(x) = a 6 + afrx -f a
2
b
2
x2 +

will be points whose affixes y^ are the product of affixes of the singu
lar points a. and yS. of the first two functions.

*Le Roy, foe. cit., pp. 330-331.

f Acta Math., vol. 22 (1898), p. 55.
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The possibility that x = should, in addition, be a singular

point has been pointed out since by Lindelof.

Although Hadamard s proof of the theorem is not a compli
cated one, I shall present here a still simpler proofgiven by Borel*

Let R and R be the radii of convergence of (1) and (2) respec

tively, and take a number p such that R/p &amp;gt; IjR. If then

I I

^
| px |

&amp;lt;
R and

|

x
&amp;gt; 1AR ,

the product of $(zx) and

^r(l/x) can be developed into a Laurent s power series which is

valid in a circular ring in the x-plane, having its center at the

origin and the outer and inner radii R/p and l/R respectively.
In this product the absolute term is obviously

(4) f(z)
= a b

Q + a&z + afo* +....

Consider now the integral

(5 ) j f
2i7TJ c X

in which c is a closed path surrounding the origin and contained

within the circular ring. As long as z in its plane lies within a

circle of radius p &amp;lt;
RR

, having its center in the origin, the

integral will surely define a function of z, and this function is

evidently equal to the residue of the integrand for x = 0, which

is /(*)

We shall now seek to extend this function by varying z and at

the same time deforming appropriately the path of integration. By
the theorem of Vallee Poussln quoted in Lecture 2, the integral

will continue to represent an analytic function of z, provided at

every stage the integrand remains analytic in x and z
;
x being

any point upon the path of integration. Now the values to be

avoided are clearly the singular points of the functions
&amp;lt;f&amp;gt;(zx)

and

x) ; namely the points :

* Bull, de la Soc. Math, de France, vol. 26 (1898), pp. 238-248.

An interesting proof &quot;in multi case&quot; is given without the use of integrals by
Pincherle in the Rendiconto della R. Accad. delle Scienze di Bologna, new ser., vol.

3 (1898-9), pp. 67-74.
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The points & = 1//3. lie within the circle (1/72 )
which is the inner

circumference of the ring, while the points x = ajz before the

variation of z lie without the outer circumference (RJP). For

simplicity of presentation it may be convenient to assume at first

that these points form an aggregate

of isolated points. Suppose then

that z follows any path in its plane

emerging from the circle
(/&amp;gt;).

Then

the points ajz describe certain cor

responding paths which we will

mark in the as-plane. At the same

time the contour c may be deformed

continuously so as to recede before

the points ajz without sweeping

over any point l//^., provided merely that ajz never collides with

a point 1/yS^;
that is, z must never pass through a point a./B^

Now when z is held fixed, a deformation in the contour c, subject

of course to the condition indicated, produces no change in the value

of the integral f(z), since the integrand is holomorphic between

the initial and deformed paths. On the other hand, when the

path is kept fixed and z is varied, we have the analytic continu

ation of f(z) in accordance with the theorem of Vallee Poussin.

By the two changes together f(z) may be continued over the entire

plane of z with the exception of the points a.j3j
=

7^..
To these

should, of course, be added z = oo, also z = as a possible singular

point for any branch off(z) except the initial branch.

It should be observed that y
if

is shown to be a potential rather

than an actual singular point. When, however, it is such a point,

the character of the point depends in general solely upon the nature

of the singularities a. and (3. for (1) and (2) respectively. This fact

was noticed by Borel and demonstrated in the following manner.

Let
c 4- 2

x2
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be any convergent series defining a function ^(x) which is regu
lar at a.. Then &amp;lt;

2(cc)
=

^(aj) 4 &amp;lt;j&amp;gt;(

x
)

is a function which has at

a. the same singularity as
&amp;lt;(#).

The combination of the series

for
(f)2(x) and for -^(x) by Hadamard s process gives the function

/2(x)
=

( -f c )6 -f (aj+ c^aj 4- (a2 +c-3)b#? -f =/() 4-/i(a)&amp;gt;

in which

f} (x)
== c 6 4- Cj/^as 4 c

2
6
2
.x

2 4 .

Now since ^(x) is regular at a., when compounded with
-i/r(cc)

it must give a function f^x) which is regular at y
fj

. It follows

that f2(x) and f(x) have the same singularity at y... Thus the

nature of this singular point is not altered by any change in
&amp;lt;j&amp;gt;(x)

or \lr(x)
which does not affect the character of the points a. and ft..

It depends therefore solely upon the character of the singularities

compounded.

Complications arise only when there is a second pair of singu
larities a

k , j3
l

such that

Clearly the resultant singularity is then dependent upon both

pairs. Their effects may be so superimposed as to create an ugly

singularity, or they may, on the other hand, so neutralize each

other that yy is a regular point. Very simple examples of the

latter occurrence can be easily given. It seems probable that

when
y.j

is but once a product of an a. by a /3, it must always be

a singular point, but this has not yet been proved . Its demon

stration will greatly enhance the value and applicability of Hada
mard s theorem, for then it can be stated in numerous cases, not

what the singular points of/(#) may be, but what they actually are.

A detailed study of the nature of the dependence of the singu

larity y.y upon a. and
fy

would probably be both interesting and

profitable. Borel examines the case in which &amp;lt;rand p.. are poles of

any orders, p and q, and shows that
y^.

is then a pole of order

p 4 q 1. It can. furthermore, be easily shown that whenever

a. is a pole of the first order, y^ is the same kind of singular point
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as 0.. For suppose that we put a. = 1
,
which may be done without

loss of generality. The principal part of
&amp;lt;f&amp;gt;(x)

at the pole a. is then

,

and the composition of this with ty(x) gives for the corresponding

component of f(x)

- A
{ (bQ + hp + b^

2 + ..-).

Hence the singularities 7^.
and /3y

differ by a multiplicative

constant.

Only one other general fact concerning the composition of sin

gularities seems to be known. Borel proves that if the functions

&amp;lt;t&amp;gt;(x)

and -|r(x) are one-valued at a. and
/^. respectively, /(#) is

also one-valued at
7^..

Thus when two one-valued functions are

compounded, the resultant function is also one-valued. But

this statement, as he himself points out, must be correctly con

strued and will not necessarily hold true when the singular points

of the two given functions are not sets of isolated points but con

dense in infinite number along curves. To construct an example
in which f(x) in not one-valued, Borel makes use of the fact,

now so well known, that the decision whether the circle of con

vergence is or is not a natural boundary of a given series depends

upon the arguments of its coefficients. If, for instance, we take

the series

which has a radius of convergence equal to 1, by a proper choice

of the arguments 6
H
the circle of convergence can be made a natu

ral boundary. Put now

in which the coefficients are necessarily real. Clearly the unit

circle will be a natural boundary for

&amp;lt;f)x

= c + cx -h Cei9a-x 2
-f ....
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and for

-^(x)
= 1 + e~^x -f e~i9o-x

2
-f-

Yet the function f(x) which is derived from these two one-

valued functions by Hadamard a process is the two-valued func

tion (6) which exists over the entire plane of x.

I have dwelt at some length upon Hadamard?s theorem and its

consequences because of their evident interest and importance. It

is worthy of note that for analytic functions defined by power
series the first great advance in the determination of the singu

larities over their entire domain has been made by methods that

are roughly parallel to those currently employed in the considera

tion of their convergence. The convergence of series is indeed

too difficult a question to be settled by any one rule or by any
finite set of rules, but the methods of comparison with series known

to be convergent have been found to be not only most efficient

but also adequate for most practical purposes. In somewhat

similar fashion Had/award s theorem will determine the singular

points of numerous functions by linking them with other series,

of which the singularities are known.

One of the simplest applications of this theorem is obtained by

compounding a given series

(7) a
Q + o^ + a

2
x2 + .

with itself once, twice, ,
to m times. All the singularities of

the resulting series

(8) aj + a[x + aja
2
-f .

(i
= 1, 2,

. . .

, m),

except possibly x = and x = oo, are included among the points

obtained by multiplying i affixes of the singular points of (7)

among themselves in all possible ways. If the m series (8) are

multiplied each by a constant fc. and are then added, a new series

(9) G(a )+G(aJx+G(

is obtained, in which G(u) denotes the polynomial \u + -
-f- kmu

m
.
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This function has no singular points other than those which are

possible for the m series from which it was derived. When r

different series

are used, a similar conclusion is reached for the series

G
(
a

o&amp;gt;

bv &quot;&amp;gt;

r
o) + #K&amp;gt;

b
i ~&amp;gt;

r
i)
x +

#K&amp;gt;
6

2&amp;gt;

-

.,
r
2)x

2 + ,

where G denotes a polynomial in which the constant term is lacking.

These results are of particular interest when applied to the

series

(10) 1 + x + 2x2 + ----
f- nx

n
-f . . .

and

en) i + x+
*
+ .,. +?.+ ...,

which are the expansions of 1 4- cc/(l xf and log (1 4- x). Since

these functions have only one singular point, x = 1, in the finite

plane, the only possible singularities of

are x= 0, 1, oo.*

The continued repetition of the above process for combining
series leads naturally to a consideration of series of the form

(12) 2P(&amp;gt;

in which a convergent power series P(u) appears in place of the

polynomial G(u). Various theorems concerning cases of this

*
Obviously a constant term can be included now in the polynomial G(n, 1/n).
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series have been given recently by Lean* Le Royfi Desaint,^

Lindelof^ Fvrd
\\
and Faber^ though the proof of some of these

theorems has no direct relation to Hadamard s theorem. The

importance of such work is, however, apparent, inasmuch as nu

merous series which occur in analysis can be put into the form

under consideration, as for example 2
(sin rr/n) x

n
.

Three cases must be distinguished according as the radius of

convergence of the initial series (7) is less than, equal to, or

greater than 1. If the radius is less than 1, the singular point

nearest to the origin has a modulus less than 1, and the continued

multiplication of the affix of the point by itself gives a series of

points which approach indefinitely close to the origin. The pre

sumption, therefore, would naturally be that the series (12) is then

divergent, but this is very far from being always true, as will be

seen at once by referring to the series 2(o;
n
sin ajand S(#

n cos a
n)

in which a
n

is real. The applicability of Hadamard s theorem

consequently ceases.

The case in which the radius of convergence of (7) is greater

than 1 has been investigated very recently by Desaint. In this case

the expected theorem is obtained. If, namely, P(u) is a conver

gent series without a constant term, 2P(aJ#
n defines a function

which can have no singular points, besides x = and x = oo,

than those which result from the multiplication of the affixes of

the singular points among themselves in all possible ways and to

any number of times.** Desaint s proof is based upon the fact

that 2P(an)s
n
,
after the omission of a suitable number of terms,

can be expressed in the form

*Journ. de Math., ser. 5, vol. 5 (1899), p. 365.

| Loc. tit.

%Journ. de Math., ser. 5, vol. 8 (1902), p. 433.

\ Acta Societatis Sdentiarum Fennicce, vol. 31 (1902).

II Joum. de Math., ser. 5, vol. 9 (1903), p. 223.

1f Math. Ann., vol. 57 (1903), p. 369.

** This is a somewhat sharper statement of the result than that given by De-

saint. In his theorem x 1 is given as a possible singular point, but this, as

appears from the proof to be given here, is due solely to the admission of a con

stant term into P(u). He also fails to note that x= may be a singular point.
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in which f(t) is the function defined by (7) for x =
,
c is an ap

propriately chosen contour, and c
n
denotes the nth coefficient of

P(u) = c^ -f c
2
u2

-f .

Although his proof is essentially simple in character, I shall give

here a new and simpler proof, based directly upon Hadamard s

theorem.

Place first

f.(x)
=

aj + a(x + ajx
2 + - - -

(i
=

2, 3,
. .

.),

and consider the expression

/ + .+ !/.+ ,(*) +

in which n denotes some fixed integer. If r
&amp;gt;

1 denotes the

radius of convergence of the fundamental series (7), the radius of

f.(x) will be r\ Describe about the origin a circle
(? ) having a

radius r
&amp;lt;

rn . If a sufficient number of initial terms be cut off in

each of the series,

/.(*), /+,(*), &amp;gt; /*(*),

the maximum absolute values of the remainders within or upon
the circle (r )

can be made as small as is desired. Suppose then

that after m terms of each have been removed, the remainders

do not exceed

e
n
,

en+1
, ,

e
2 1

respectively, in which e is some small positive number. Let us

now substitute in Hadamard s integral
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f
-si /

2i7rj c

any two of the functions (13) for
&amp;lt;/&amp;gt;

and

Put for example

and choose the unit circle as the path of integration. Then if

||=r ,
the absolute values of the arguments of the series

&amp;lt;f)(zx)

and ^r(l/a?) will be less than their radii of convergence since

\x |

= 1 and r
&amp;gt;

1. The conditions for the existence of Hada-

mard s integral are therefore fulfilled. Since also

we have

But by Hadqmard * theorem F(z) = r2n+i+ .(z),
and hence

(14) \rt ()\&amp;lt;* (M^O,
for all values of i from 2n to 4n inclusive. The reasoning can

now be repeated with 2n in place of n, and so on
;
therefore (14)

is true for all values of i= n.

Thus far the value of e has remained arbitrary. Let its value

now be taken less than the radius of convergence of P (u).
Then

by (14) the series

cn+lrn+l (x)

will be uniformly convergent in (r ). Since, furthermore, all the

component series rn+i (i
= 0, 1, 2,

. .

)
are likewise so convergent,

by a fundamental and familiar theorem of Weierstrass * the terms

of the collective series (15) may be rearranged into an ordinary

series in ascending powers of x. But this rearrangement gives

* Harkness and Morley s Introduction to the Theory of Analytic Functions, p. 134.
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j=

or the remainder after the (m l)th power of x in

(16)
;=0

Now the series (15) before its rearrangement was a uniformly

convergent series of analytic functions and defined a function

which was analytic within (r ).
It follows that (16) is also

analytic within this circle, and hence

has no singularities within this circle except those of

But the radius of (r )
was any quantity short of r

n
,
and this con

clusion therefore holds within a circle having its center in the

origin and a radius equal to r
n

. By increasing n indefinitely, the

theorem of Desaint results. It is evident also that if /j (x),
and

therefore
/&amp;lt;(#), represents a one-valued function, ^P(an)x

n must

also be such a function.

There remains yet for consideration the third class of cases in

which the radius of convergence of the fundamental series is 1.

If upon the circle of convergence there is any singular point with

an incommensurable argument, the continued multiplication of its

affix by itself gives a set of points everywhere dense upon the

circle of convergence. It is therefore to be expected that this

circle will be, in general, a natural boundary for ^LP(an)x
n
,
and

accordingly the cases which will be of chief interest will be those

in which all the singular points upon the circle have commensur

able arguments. A simple case of this character is obtained

when either (10) or (11) is chosen as the generating series. If

the former be selected, the resulting series has the form ^P(n)x
n

.

This has a special interest inasmuch as its study has proved to
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be of profit both for the theory of analytic continuation and of

divergent series. The reason becomes apparent when the state

ment is made that it is possible to throw any Taylor s series,

Sa
nof, whether convergent or divergent, into the particular form

2P(n)x
n
,
and in an infinite number of ways. This fact follows

as a corollary of a very general theorem of Mittag-Leffler* which,
when restricted to the special case before us, establishes the exist

ence of a function P(x), which is holomorphic over the entire

finite plane and assumes the pre-assigned values
,
a

l9
a

2,
- in

the points x = 0, 1, 2, . Consequently the character of the

function defined by 2P(n)x
n

is made to depend upon the behavior

of P(x) as x approaches oo .

Inasmuch as 2P(n)#
n

is perfectly general, limitations must be

imposed upon P(u) in any attempt to extend Hadamard s theorem

to this series. But whenever the theorem is applicable, the only

possible singularities of ^P(n)x
n
are x = 0, 1, oo. Lean f estab

lishes the correctness of this result when P(u) is an entire function

of order less than 1,J giving also a more general theorem concern

ing ^P(at)x
n of which this is a special case. The like conclusion

holds concerning the singular points of 2P(l/n)of, provided only

that P(x) is holomorphic at the origin. ||

Very recently these results of Lean have been proved more

simply by Faber, but in a more restricted form, an artificial cut

being drawn from x = 1 to x = oo to obtain a one valued func

tion. In addition, Faber shows that if for any prescribed e and

for a sufficiently large r the inequality ,
f

(17) | P(re**) |

&amp;lt;
e*

r

* Acta Math., vol. 4 (1884), p. 53, theorem D. For a reference to this theorem

I am indebted to Professor Osgood. Theorem 2 of Desaint s memoir (p. 438)

is in contradiction with this, but his proof is here inadequate since r* (p. 440) has

not necessarily a lower limit.

fioc. cit., p. 418.

J He also shows that 2P(n)x
n

is then a one-valued function.

$Loc. cit., p. 417. See also Bull, de la Soc. Math, de France, vol. 26 (1898),

p. 267.

\\Loc. cit., p. 418
;
see also p. 407.
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is fulfilled, the point x 1 must be an essential singularity, and

the function represented by ^P(n)x
n
is consequently one-valued.*

Conversely, if f(x) is a one-valued function which has only one

singular point, and if that point is an essential singularity, f(x)
can be expressed in the form 2P(/i);c

n
,
in which P(u) is an entire

function satisfying (17). More generally, if there are I essential

singularities x
l9 ,

x
l
and no other singular points in the finite

plane, the coefficient of xn must be

in which P^n), ,
P

t(n) are entire functions of the nature above

specified and in which lim l/an
= 0. This converse has an espe

cial interest because as yet few theorems have been discovered

giving the necessary form of the coefficients of a power series for

an analytic function with prescribed functional properties.

Other theorems concerning ^P(n)x
n have recently been derived

without requiring that P(n) shall be holomorphic over the entire

plane.

As a sample of these I shall cite in conclusion the following
theorem of Lindelof: f

If P(n) represents a function fulfilling the following conditions :

1. P(z) is analytic for every point of the complex plane
zT-^it for which r = (except possibly at the origin, for

which P(z) has a determinate value).

2. A number being arbitrarily given, it is possible to find

another number R such that by putting z re** we will have for

r&amp;gt; R

* Le Roy three years earlier had noted this conclusion when P(x) is an entire

function whose &quot;apparent order&quot; is less than 1; loc. cit., p. 348, footnote.

Faber does not seem to be aware of Le Roy s statement. The difference between
the two statements is slight but becomes important in formulating the new and

interesting converse which Faber adds.

\Loc. cit., 13.
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then the principal branch of the function 2P(ri)z
n
will be holo-

morphic throughout the complex plane excepting possibly on the

segment (1, + oo
)
of the real axis. Furthermore, the function

approaches as a limit when x tends toward the point at infinity

along any ray having an argument between and 2-Tr.

LECTURE IV. On Series of Polynomials and of Rational

Fractions.

In the last two lectures I have spoken of the use of integrals for

the study of analytic extension and of divergent series. The topic
of to-day s lecture is the representation of functions by means of

series of polynomials and of rational fractions. This subject forms

a very natural transition to the succeeding lecture upon continued

fractions, since an algebraic continued fraction is in reality noth

ing but a series of rational fractions advantageously chosen for the

study of a corresponding function which, when known, is com

monly given in the form of a power series.

The literature relating directly or indirectly to series of poly
nomials and of rational fractions is a vast one, with many ramifi

cations. Thus in one direction there are various researches of

importance upon the non-uniform convergence of series of contin

uous functions, and in this connection I may refer particularly to

the recent work of Osgood and Baire, an excellent report of which

is contained in Schonflies* Bericht uber die Mengenlehre.* An
other part of the field comprises numerous memojrs devoted to

special series of polynomials and rational fractions. Quite re

cently a more systematic and general study has been begun by

Borel, Mittag-Leffler, and others, and it is to this that I am to

call your especial attention.

Two very familiar facts, both discovered by Weierstrass, may
be said to be the origin of this study. I refer, of course, to the

theorem that any function which is continuous in a given finite

interval of the real axis can be expressed in that interval as an

* Jahrcsbericht der deutschen Mathematiker- Vereinigung, vol. 8, pp. 224-241.



DIVERGENT SERIES AND CONTINUED FRACTIONS. 121

absolutely and uniformly convergent series of polynomials,* and,

secondly, to the possibility that a single series of rational fractions

may represent two or more distinct analytic functions in different

portions of its domain of convergence. A notable advance upon
the theorem first mentioned was made by Runge^ in 1884, who

proved that any one-valued analytic function throughout the do

main of its existence can be represented by a series of rational

functions; furthermore, this domain may be of any shape what

soever, provided only it forms a two-dimensional continuum.

Runge s proof of these important results is not only worthy of

careful study, but contains also certain conclusions which were an

nounced again by Painleve% in 1898, though without proof.

The conclusions reached were as follows :

Let D be a domain consisting of any number of separate pieces

of the complex plane, in each of which we will suppose an analytic

function to be defined. The functions thus defined can be, at

pleasure, either distinct functions or parts of one or more func

tions. In any case a series of rational functions can be formed

which will converge absolutely and uniformly in any region

lying in the interior of D and represent in each separate piece

the prescribed function. Furthermore, this representation can

be made in an infinite number of ways. Let the ensemble of

the points excluded from D be represented by E. When E con

sists of a single connected continuum of any sort, whether linear

or areal, any point a of E can be arbitrarily selected, and the

function can be expanded into the series

&quot; Ueber die analytische Darstellbarkeit sogenannter willkiirlicher Functionen
einer reellen Veranderlichen &quot;

;
Berliner Sitzungsberichte, 1885, p. 633 or Werke,

vol. 3, p. 1. Simple proofs of the theorem have been given by Lebesque, Bull,

des Sciences Math., ser. 2, vol. 22 (1898), p. 278, and by Mittag-Leffler, Eendiconti

di Palermo, vol. 14 (1900), p. 217, with an extension to functions of two variables.

In this connection see Painleve s note in the Compt. Rend., vol. 126 (1898), p. 459.

t Acta Math., vol. 6, p. 229.

Compt. Eend., vol. 126, pp. 201 and 318.
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in which 6r
n [l /(x a)] denotes a polynomial in 1 j(x a). If, in

particular, the continuum E contains the point x = oo, an ordinary

series of polynomials, 2Gn(x), can be employed. When E con

sists of a finite number of separate pieces (or isolated points), the

expansion can be put under the form

in which a
x , ,

a are points arbitrarily chosen in the separate

pieces.

In the familiar case in which only a single analytic function

(1)
a + a^x

- a)+ a
2(a
-

a)
2 + -

is given, it is natural to seek a series of polynomials having the

greatest possible domain of convergence. Unless the function is

one-valued, the most convenient domain is in general the star of

Mittag-Leffler. This is constructed for the series (1) by first marking

on each ray which terminates in a the nearest singular point and then

obliterating the portion of the ray beyond this point. The region

which remains when this has been done is a star having a for its

center. Mittag-Leffler
* shows that within the star the given ana

lytic function can be represented by a series of polynomials in

which the coefficients of the polynomials depend only upon the

value of the function and its derivatives at a, f or, in other words,

upon the coefficients of (1). If, in short, we put f

and

* Ada Math., vol. 23 (1899), p. 43
;
vol. 24, pp. 183, 205

;
vol. 26, p. 353. A

good summary is found in the Proc. of the London Math. Soc., vol. 32 (1900), pp.

72-78.

t In this respect his work is superior to that of Runge and others. Range,

for example, presupposes a knowledge of the function at an infinite number of

points.
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00

then^ @n(%) is a series which converges uniformly in any region
n=0

lying, with its boundary, entirely in the interior of the star. The

series may also converge outside the star. Borel * has shown,

furthermore, that the series of Mittag-Leffler is not the only possi

ble one, but there is an infinity of polynomial series sharing the

same property within the star.

It will be noticed that the construction of the series of Mittag-

Leffler is in no wise dependent upon the convergence of the initial

power series. In certain cases, at least, the polynomial series con

verges when the given series (1) is itself divergent. It is natural

therefore to look for a theory of divergent series based upon con

vergent series of polynomials. As yet, however, no such theory

has been invented. One of the chief difficulties in the way is that

the polynomial series do not afford a unique mode of representing

an analytic function. Now the difference between any two series

of polynomials for the same function in an assigned area is a third

series which vanishes at every point of the area, though the sep

arate terms do not. This is a decidedly awkward point, and

occasions difficulty in proving or disproving the identity of two

functions expressed by polynomial series. It is true, indeed, that

this difficulty will scarcely present itself when we start with a con

vergent power series which is to be continued analytically, the

polynomial series then giving continuations of a common function.

But when the series (1) is divergent and there is no known func

tion which it represents, it is an open question whether the differ

ent series of polynomials which are obtained from (1) by applica

tion of diverse laws will furnish the same or different functions.

If different functions, is there any ground for preferring one series

of polynomials to another ?

Up to the present time two essentially different principles seem

to have been followed in the formation of series of polynomials.
In the work of Runge, Borel, Painleve and Mittag-Leffler the co

efficients in the polynomials vary with the character of the ana-

*Ann. de F EC. Nor., ser. 2, vol. 16 (1899), p. 132, or Les Series divergentes,

p. 171.
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lytic function to be represented ;
for example, in the polynomials

of Mittag-Leffler they are functions of the coefficients of the given

element, ^&amp;lt;\#

n
. By appropriately choosing the coefficients of the

polynomials these writers obtain a very large region of conver

gence and at the same time are able to greatly vary its shape. On

the other hand, the series which are met in the practical branches

of mathematics for instance, in the theory of zonal harmonics

have the form

(2) %&(*) + &amp;lt;&amp;gt;&(*)
+ %&&) +

in which the polynomials G
n(x) are entirely independent of the

function represented, while the
c^ vary. The polynomials them

selves are selected according to the shape of the region of con

vergence. Thus if the region is a circle, we may put

and we have then the ordinary Taylor s series. Or if it be an

ellipse having the foci rh 1, we may take for our polynomials

either the successive zonal harmonics or a second succession of

polynomials (also called Legendre s polynomials) which are con

nected by the recurrent relation :

(3) O
a^(x)

- 2x(2n + 3) Gn+l(x) + 4(n + I)
2Gn(x)

= 0.

In a recent number of the Mathematische Annalen (July, 1903)

Faber has considered this second class of polynomials from a some

what general point of view and has demonstrated that any function

which is holomorphic within a closed branch of a single analytic

curve, as for example an ellipse or a lemniscate of one oval,

can be expressed by a series of the form (2). The properties

of his series are similar to those of Taylor s series. In the

case of the latter, to ascertain whether 2a
n

5

B
converges in the

interior of a circle having its center in the origin and a

radius R, we have only to determine the maximum modulus of

a point of condensation of the set of points V B (
n =

1&amp;gt;

2
? 3, )

If it is exactly equal to 1/R, the circle (R) is the circle of con-
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vergence, and there is at least one singularity upon its circumfer

ence. If, on the other hand, it is greater or less than \jR, the

series will have a smaller or a larger circle of convergence. So also

to the given branch of the analytic curve there corresponds a

certain critical value. When this is exactly equal to the upper

limit of
|

T/cn in Faber s series, the given analytic branch is the

curve of convergence. At every point within, the series converges,

while it diverges at every exterior point, and upon the curve there

must lie at least one singular point of the function defined by (2).

If, however, the upper limit is greater or less than the critical

value, we consider a certain series of simple, closed analytic curves,

(as for example a series of confocal ellipses), among which the given

analytic branch must, of course, be included. The curve of con

vergence is then fixed by the reciprocal of the upper limit of

|
i/cn provided this limit is not too large. Moreover, as in the

case of Taylor s series, the function cannot vanish identically un

less every c
n
= 0, and in consequence the series vanishes identi

cally. It is therefore impossible that the same function shall be

represented by two different series of the given form.

In view of the last mentioned fact it might be of especial inter

est to apply this class of polynomial series to the study of diver

gent series.

In the most familiar and useful polynomial series the successive

polynomials are connected by a linear law of recurrence,

(4) k,G^m(x) + *,(?+_,(*) + - + *(? =
0,

in which the coefficients k. are polynomials in x and n. Thus the

zonal harmonics have as their law of recurrence

(n + l)Gn+l (x) - (2n + l)xGn(x) + nG^(x) = 0.

Many series of this nature are also included in the class con

sidered by Faber. The form of the region of convergence has

been determined by Poincare *
upon the hypothesis that equation

*Amer. Journ. of Math., vol. 7 (1885), p. 243.
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(4) has a limiting form for n= oo. Let the equation be first

divided through by k
Q ,
and then denote the limits of the successive

coefficients for n = oo by kfa), Jc
2(x),

km(x). Construct next

the auxiliary equation

(5) z
m + ^(ajy-

1 + k
2(x)z-

2 + + km(x)
= 0.

Except for particular values of x there will be one root of this

equation which has a larger modulus than any other. Let r(x)

be that root. Poincare* shows that with increasing n the ratio

Gjfi)/ @*-i(&) will approach, in general, this root as its limit.

The region of convergence is therefore confined by a curve of the

form C= \r(x)\ }
and the value of C for the series (2) is to be

taken equal to the radius of convergence of 2c
ny

n
.f

By way of illustration let us take the series Tc
nGn(x) in which

the polynomial obeys the law

*More specifically, Poincare proves that if no two roots of (5) are of equal

modulus, Gn(x)lGn i(x) has always a limit, and this limit is equal to some root of

(5), usually the one of greatest modulus.

f Poincare&quot; has given no proof that the series (2) will converge at those points

within the curve
| r(x) \

= C, for which there are two or more distinct roots of

(5) having a common modulus greater than the moduli of the remaining roots.

Thus in the example which is quoted below (p. 127), these are the points of the

real axis which are included between -j- 1 and 1. This gap in Poincare s theory

can be filled in by the following theorem which I have given in the Transactions

of the Amer. Math. Soc.
t
vol. 1 (1900), p. 298: If the coefficients in the series

^Any
n are connected by a recurrent relation having the limiting form

A n+ kiAn-i 4- + kmAnm = 0,
f

the series will converge at the worst within a circle whose radius is the recipro

cal of the greatest modulus of any root of the auxiliary equation

Denote this maximum by r, irrespective of the number of roots having this maximum

modulus. Then
e)

n (n=l, 2, ...).

Hence if (7 is the radius of convergence of 2cM?/

n
,
the series 2cnAn will converge

when C^&amp;gt;r. Suppose now that An depends upon x and put A n= Gn(x). It

follows then from my theorem that 2cnGn (x) will always converge when (7&amp;gt;
r.

But this is what was to be proved.

At the time of the publication of my work I was not aware of Poincare s article,

and I therefore failed to point out the relation of the two memoirs.
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O2 + l)GH+2(x)
- 2n2xGn+l(x) + (n

2 + x2

)Gn(x)
= 0.

For n = oc the limiting form of this equation is

or the same as the limiting form for the zonal harmonic. The

auxiliary equation is

3 _ 2xz + 1 = 0,

of which the roots are

z = x i/a
2

1.

The curves
|

a? i/x
2

1 C are easily seen to be ellipses

having the foci 1. Hence if R is the radius of convergence
of 2c

ny
n
,
the region of convergence of (2) is the interior of an

ellipse,

Poincare also examines such exceptional cases as that which is

specified by relation (3), which has no proper limiting form. But

upon this work we can not longer dwell. I wish, however, to

emphasize its fundamental character, inasmuch as many previous,

and even subsequent conclusions concerning the convergence of

series of the form (2) are comprised in Poincare s result.

Somewhat earlier in the lecture I set forth the arbitrary charac

ter of the function which could be represented by series of poly
nomials and rational fractions. We have seen also how this arbi

trary element was entirely eradicated by confining ourselves to

polynomials which obey a linear law of recurrence. In the remain

der of this lecture I wish to develop the consequences of restrict

ing a series of rational fractions in the manner supposed by Borel in

his thesis * and its recent continuation in the Ada Mathematical
Borel seeks to so restrict a series of rational fractions, ^Pn(x)jRn(x) 9

as to ensure a connection between the position of the poles of its sep
arate terms and the position of the singular points of the function

which the series collectively represents. On this account he assigns

*Ann. de V EC. Nor., ser. 3, vol. 12 (1895), p. 1.

t Vol. 24 (1900), p. 309.
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an upper limit to the degrees of P
n (x) and R

n(x). But this is not

enough, and he proceeds therefore to limit the magnitude of the co

efficients in the numerators. On the other hand, he allows any dis

tribution whatsoever for the roots of the denominators, thus leaving

himself at liberty to vary greatly the nature of the function rep

resented.

In his thesis he develops the case

(6)

which had been previously considered by Poincar6 * and Goursat. f

To avoid semi-convergent series or, in other words, functions, of

which the character depends not merely upon the position of the

poles an and the values ofA n
but also upon the order of summation,

the condition is imposed that ^A
n
shall be absolutely convergent.

Then if there is any area of the z plane which contains no poles,

the series (6) must converge within this region. Since further

more it is uniformly convergent in any interior sub-region, it

defines an analytic function within the area. There may be

several such areas separated by lines or regions in which the poles

are everywhere dense. This is precisely the case to be considered

now.

To simplify matters, let us suppose that the poles are every

where dense along certain closed curves of ordinary character,

but nowhere inside the curves. Poincare and Goursat show that

each curve is a natural boundary for the analytic function
&amp;lt;(z)

defined by (6) in its interior. Borel s proof is as follows. De

note the component of (6) which corresponds to an by

B B _j B
l

and the remaining part by

* Acta Sodetatis Fennicoe, vol. 12 (1883), p. 341, and Amer. Journ. of Math.

vol. 14 (1892), p. 201.

t Compt. .Rend, vol. 94 (1882), p. 715.
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^ A\_
-

A&quot;.

It is evident that if a
n
lies within any one of the curves considered,

a
n
is a pole of(f&amp;gt;(z).

Now when these interior poles condense in in

finite number in the vicinity of any point of the curve, it must,

of course, be a singularity of
&amp;lt;f&amp;gt;(z).

Consider next any one of the

points a
n
which lies upon the boundary but is not a point of con

densation of the interior poles, and let z approach this point along

the normal. Describe a circle upon the line z a
n
as diameter.

If z is sufficiently near to a
n ,

the circle will exclude every one of

the points a
{) excepting a

n
which lies upon its boundary. Since

also S,A
n

is absolutely convergent, by increasing r the second

component of
&amp;lt;j&amp;gt;2(z) may be made less in absolute value than

/\z a
n \

m
j
in which is an arbitrarily small prescribed quantity.

If, then, H denotes the maximum of the first component oi

as z now moves up to a
nt
we have

Consequently,

lim
&amp;lt;( (z

- a
n )
m = lim ^(z) (z

- a
n)

m + lim ^(z) (z
- a

n)
m=Bm .

g=1n

This shows that
| &amp;lt;f)(z) \

increases indefinitely when z approaches

any pole a
n of the with order along a normal, and removes the pos

sibility that the poles, because they are infinitely thick upon the

curve, may so neutralize one another that the function can be car

ried analytically across the curve at a
n

. As, moreover, we sup

pose the points a
n
of order m to be everywhere dense upon the

curve, it must be a natural boundary.
It is apparent now that the expression (6) continues the initial

function
&amp;lt;j&amp;gt;(z)

across a natural boundary into other regions where

it defines in similar manner other analytic functions with natural

boundaries. But, it may be asked, is there any proper sense in

which these analytic functions may be regarded as a continuation

of one another? Just here Borel steps in and, after imposing
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further conditions, shows that when the function defined by (6)

within some one of the curves is zero, the functions defined within

the other curves must also vanish.* Take m = 1, so that

oo *0- 2
rh:

By a linear transformation

,
az -f 6

any interior point of one curve may be taken as the origin and

any interior point of a second curve may be transformed simul

taneously into the point at infinity without changing the character

of the series to be investigated. Now at the origin the successive

coefficients in the expansion of
&amp;lt;f&amp;gt;(z)

into a Taylor s series are the

negative of

while those in the expansion for z = oo are

(9) 2.4,, 2^A, 24,0;.

Borel proves that when

the coefficients (9) must vanish if those given in (8) do. Any one

of the analytic functions under discussion is therefore completely

determined by any other, the expression (7) being the intermediary

by which we pass from one to the other.

So far as yet appears, this method of continuing an analytic

function across a natural boundary is of very limited applicability.

Its significance has been made clearer by BoreVs later memoir in

the Ada Mathematics Here the rational fractions are of a less highly

specialized character, but the essential nature of the investigation

can still be exhibited without abandoning the expression (6).
Let

\A\&amp;lt;^ um+\ where u denotes the nth term of a convergent series
I n I

^^ * n

*Cf. pp. 32-33 of his thesis or pp. 94-98 of his Theorie des fonctions.
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of positive numbers. We shall suppose that the poles of the terms of

(6) are everywhere dense over a large portion of the plane, leaving,

however, at least one area free from poles, so that there shall be an

analytic function to continue, though even this is not necessary.

Borel proves that parallel to any assigned direction there will be

an infinity of straight lines, everywhere dense throughout the

plane, along which the series (6) will converge absolutely and

uniformly. The function defined along these lines is therefore a

continuous one.

The proof of this result is short and simple. Describe about

the poles a
n

as centers circles which have successively the radii

u
n (n 1, 2, ).

If there is any point which lies outside all of

these circles, the series (6) must there converge, since at such a

point the absolute value of the nth term is

that is, less than the nth term of a convergent series of positive

numbers. But are there points outside of all the circles ? To

settle this question, take any straight line perpendicular to the

assigned direction and project orthogonally all the circles upon the

line. The total sum of all the projections, 22w
n ,

will be conver

gent. Moreover, by cutting off a sufficient number of terms at

the beginning of (6), the sum of the projections may be made less

than any assigned segment ab of the line. Let N terms be cut

off for this purpose. Take any point c of the segment which does

not lie upon the projection of any circle nor coincide with the

projection of one of the first N poles of (6). At c erect a perpen
dicular to ab. This will be a line parallel to the assigned direc

tion which throughout its entire extent lies without all the circles,

excepting possibly the first N. Hence the series (6) will con

verge absolutely and uniformly along the line, even though the

line lie infinitesimally close to some set of poles in the system.

Lastly, because ab was an interval of arbitrary length, these lines

of convergence must be everywhere dense throughout the plane,

obviously forming a non-enumerable aggregate.
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Since the series is uniformly convergent, it can be integrated

term by term. Clearly also the numerators A. in (6) can be so

conditioned that the term-by-term derivative of (6) shall be

uniformly convergent. Then the derivative of
(f)(z)

is coincident

with the derivative of the series. It is even possible to so choose

the A. that the series will be unlimitedly differentiable.

I may add that in any region of the plane there will be an

infinite or, more specifically, a non-enumerable set of points,

through each of which passes an infinite number of lines of con

vergence. If a closed curve is given it will be possible to

approximate as closely as desired to this curve by a rectilinear

polygon, along whose entire length the series converges and defines

a continuous function. Integration around such a polygon gives

for the value of the integral the product of 2i?r into the sum of

the residues of those fractions whose poles lie in the interior of

the polygon. Finally, if we take for axes of x and y two perpen

dicular lines of continuity of $(2), all the lines of uniform continuity

which meet at their intersection will give a common value for $ (2),

and the real and imaginary parts of
(f&amp;gt;(z)

will satisfy Laplace s

equation :

d2u dzu _
dtf

+
df

=

Thus we have in
&amp;lt;(V)

a species of quasi-monogenic function.

One question Borel has as yet found himself unable to resolve.

If
&amp;lt;f&amp;gt;(z)

= along a finite portion of any line, will the series in

consequence vanish identically ? If this question be answered in

the affirmative, the analogy with an ordinary analytic function

will be still more complete.

Let us now return to the case in which two or more functions

with natural boundaries are defined by (7).
The lines of con

tinuity just described form an infinitely thick mesh-work along

which
&amp;lt;f&amp;gt;(z)

can be carried continuously from the one analytic

function into the others. Suppose again that the origin is not a

point of condensation of the poles a
n so that

&amp;lt;j&amp;gt;(z)

can be expanded
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at the origin into a Maclaurin s series 2^.2*. Now if a ray is

drawn from the origin through the pole a
n
and the portion of the

ray between a
n
and oo is retained as a cut, the mth term of (7) can

be expanded into a series of polynomials

which converges over the plane so cut. The series (7) can there

fore be resolved into a double series

*
(),\am/

and this expression will be valid on an infinity of rays from the origin

which do not pass through any of the poles. Since, moreover, the

poles are an enumerable set of points, these rays will be infinitely

dense between any two arguments which may be taken. By fur

ther conditioning the A
n)

Borel is able to rearrange the terms of

the double series so as to form a series of polynomials

in which

and in this way he obtains a series of polynomials which is con

vergent on a dense set of rays through the origin.

It also appears that the polynomial series 2 Qn(z)
can be formed

directly from 2c.s* without the intervention of (7). When, there

fore a Maclaurin s series is given which corresponds to such an

expression (7) as is now under discussion, the continuation of the

function can be made along the above set of rays. Now the rays

cut any curve upon which either (7) or 2
M(z)

defines a continuous

function in a set of points everywhere dense. The value of the

function along the entire curve therefore depends only upon the

coefficients c.
;

i. e.
y upon the value of the function and its deriva

tives at the origin. It is shown, moreover, that any point of the

plane which is not a point of condensation of the poles a
n may
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be converted by transformation of axes into such an origin.

Finally, Borel gives a case in which the poles may be everywhere
dense over the entire plane, so that the function defined by (7) is

nowhere analytic, and yet its value is determined along the lines

of continuity by the value of the function and its derivatives at

the origin. Here then is a class of non-analytic functions sharing a

most fundamental property in common with the analytic functions!

Is it not then possible, as Borel surmises, that there is a wider

theory of functions, similar in its outlines to the theory of ana

lytic functions and embracing this as a special case? If so, the con

ceptions of Weierstrass and of Meray are capable of generalization.

PART II. ON ALGEBRAIC CONTINUED FRACTIONS.

LECTURE 5. Fade s Table of Approximants and its

Applications.

Both historically and prospectively one of the most suggestive

and important methods of investigating divergent power series is

by the instrumentality of algebraic continued fractions. It is for

this reason that I have ventured to combine in a single course of

lectures two subjects apparently so unrelated as divergent series

and continued fractions. I shall not, however, confine myself to

the consideration of the latter subject solely with reference to the

theory of divergent series. It is rather my purpose to give some

account of the present status of the theory of algebraic continued

fractions. At the close of the next lecture a bibliography of

memoirs connected with the subject is appended, to which refer

ence is made throughout this lecture and the next by means of

numbers enclosed in square brackets.

By the term algebraic continued fraction is understood, in dis

tinction from a continued fraction with numerical elements, one

in which the elements i. e.
y
the partial numerators and denomi

nators are functions of a single variable x or of several varia

bles [16, a, p. 4] . Although the term algebraic does not seem to
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me to be fortunately chosen, I shall nevertheless accept it and use

it to indicate the class of continued fractions which it is proposed

to consider here.

The first foundations of a theory of continued fractions were

laid by Euler, who early employed them [1, a] to derive from a

given power series

& -f ^x + k#? + -. .

(kn =4= 0)

a continued fraction of the form

d^X a^X
\ / A~~ _i_ A i ^ ,

T ~| ^ i

*

A second form, also introduced by Enter *
[46, a] is the more

familiar one
n rt /v* /7 ^&amp;gt; /^ /&amp;gt;*

o^ 2
a?

o^c
1 + 1 + 1 + 1 +

which was later used by Gauss [34] in his celebrated continued

fraction for F(a, /3, 7, x)JF(a., /3 + 1, 7 + 1, a?).
From this time

on still other forms were discovered so that it became impossible-

to speak of a unique development of a function into a continued

fraction. Among these forms may be especially mentioned the

continued fraction

(3 )
ap + b

l -f a2
x + 6

2 -f a
3
x + 6

3 +

used by Heine, Tehebychef, and others in approximating to series

in descending powers of x. By the substitution of I/a? for x and

a simple reduction this can be transformed, after the omission of a

factor x, into

1 x2 r2

(3)
a, + 6rr + a

2 + 6.T -f

The reason for this variety of form and for the occurrence, in

*Pad in his thesis (p. 38) traces it back to Lambert [2, a] and Lagrange,
but Siller s use is earlier still.
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particular, of the three types just given is discussed by Fade in

his thesis [16, a] . As this thesis is the foundation for a systematic

study of continued fractions, it will be necessary to give a recapit
ulation of its chief results.

Let

(4) S(x) = c + Cl
x 4- c^

2 + .

(c
=

1)

be any given power series, whether convergent or divergent. If

N
p(x)jDq(x)

denotes an arbitrary rational fraction in which the

numerator and denominator are of the pih and qth degrees respec

tively, there will be p -f q + 1 parameters which can be made to

satisfy an equal number of conditions. Let them be so determined

that the expansion of NJDq
in ascending powers of x shall agree

with (4) for as great a number of terms as possible. In general,

we can equate to zero the first p + q -f 1 coefficients of the expan
sion of D

q/S(x)
N

p
in ascending powers of x, and no more.

Hence, unless N
p
and D

q
have a common divisor, the series for

NJDq agrees with (4) for an equal number of terms, and the

approximation is said to be of the (p -f q -f l)th order. In excep
tional cases the order of the approximation may be either greater

or less. Fade examines these exceptional cases and proves strictly

that among all the rational fractions in which the degrees of numer

ator and denominator do not exceed p and q respectively, there

is, taken in its lowest terms, one and only one, the expansion of

which in a series will agree with (4) for a greater number of terms

than any other. Such a rational fraction I shall term an approxi-

mant of the given series.

The existence of approximants was, of course, well known

before Fade, but no systematic examination of them had been

made except by Frobenius [13], who determined the important

relations which normally exist between them. Fade goes further,

and arranges the approximants, expressed each in its lowest terms,

into a table of double entry :
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p= p=l p= 2

9 =

-l -n-

9 = 2

N
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mants are the successive convergents.
* Thus a countless manifold

of continued fractions can be formed, any one of which through
its convergents gives the initial series to any required number of

terms and hence defines the series and table uniquely. In all of

Pad&s continued fractions the partial numerators are monomials

in x.

The continued fraction is called regular when its partial numer

ators are all of the same degree and likewise its denominators,

certain specified irregularities being admitted in the first one or

two partial fractions. These irregularities disappear when the

continued fraction, as is most usual, commences with the corner

element of the table. (Cf. the continued fractions (2) and (3).)

In a normal table a regular continued fraction can be obtained

in any one of three ways. If we take for the convergents the

approximants which fill a horizontal or vertical line, a continued

fraction is obtained which except for the irregularity permitted

at the outset is of the form (1) given above. If the approxi

mants lie upon the principal diagonal or any parallel line, the con

tinued fraction is of type (3). Lastly, if the convergents lie upon

a stair-like line, proceeding alternately one term horizontally to

the right and one term vertically downward, the continued fraction

is of the familiar form (2).

When a table is not normal, the approximants which are iden

tical with one another are shown by Pad to fill always a square,

the edges of which are parallel to the borders of the table. When

the square contains (n + I)
2

elements, the irregularity may be said

to be of the nth order. The vertical, horizontal, diagonal and

stair-like lines give regular continued fractions as before, unless

they cut into one or more of these square blocks of equal approxi

mants. When this happens, certain irregularities appear in the

continued fraction which give rise to various difficulties in the

consideration of matters of convergence and other questions.

On this account it is natural to inquire first whether the con

tinued fraction has or has not a normal character. If it has, the

*This is also tacitly implied in the relations given by Frobenius [13, p. 5].
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existence of the three regular types of continued fractions is as

sured. The necessary and sufficient condition that the table shall

be normal is that no one of the determinants

C
a-/3+l

C
a-/3+2

* * C
o

c. = if i
&amp;lt; 0)

shall vanish [16, a, p. 35]. It will be noticed that the determi

nants are of the same sort as those which play so conspicuous a

role in Hadamard s discussion of series representing functions

with polar singularities.

So far as I am aware, the normal character of the table has

been established as yet only in the following cases : (1) for the

exponential series [37] and for (1 -f x)
m when m is not an integer

[35, d] ,f by Padt ;
and (2) for the series of Stieltjes, by myself [45] .

The construction ofPad&s table leads at once to a number ofnew

and important questions. The numerators and the denominators of

the approximants constitute groups of polynomials which it is only

natural to expect will be characterized by common or kindred

properties. The table then affords a suitable basis for the classifi

cation of polynomials. Thus, for example, the polynomials of

f At least half of the table for F(a, 1, y, x) has a normal character. This was

proved incidentally in my thesis [76] by showing that the remainders corre

sponding to approximants on or above the diagonal of the table were all distinct.

The method of conformal representation was there employed, but the same fact

can also be demonstrated very simply by means of Gauss relationes inter contiguas

(formulas (19) and (20) of [34]). The approximants in the other half of my
table (Cf. [76], p. 44) were constructed on different principles from Fade s,

the approximation being made simultaneously with reference to two points,

x= and x=oo, but the resulting continued fractions were of the same form

as Pade&quot; s. It is noteworthy that the relationes inter contiguas lead to such a

table rather than to the one of Pade* s construction.

In the case of F( m, 1, 1, x) = (1 -f x)
m the half of Pade&quot; s table below the

diagonal is also normal, since the reciprocal of the approximants in the lower

half are the approximants in the upper half of the table for

The normal character of the table for ex then follows since e*=lim F(g, 1, 1, xjg).
g=&amp;gt;
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Legendre and similar polynomials are obtained from the series for

log (1 a) /(I + x\ while the numerators and denominators of the

approximants for (1 -f x)
m

are the hypergeometric polynomials
^7

( /*&amp;gt;

v ^ m
&amp;gt;

P + v, x), in which p and v are integers, or

the so-called polynomials of Jacobi [65] . In these, as in numerous
other cases, the denominators of the convergents and the remainder-

functions,* formed by multiplying each denominator into the cor

responding remainder, are solutions of homogeneous linear dif

ferential equations of the 2nd order which have a common group,
and the relations of recurrence between three successive denomi

nators or remainder-functions are the relationes inter contiglias of

Gauss and Riemann. (See in particular, [75, d] and [76].)
The further study of such groups of polynomials will probably

bring to light new and important properties. The position of

the roots of the denominators should especially be ascertained, be

cause the distribution of these roots has an intimate connection with

the form of the region of convergence of the continued fraction

and oftentimes also with the position and character of the function

which the continued fraction defines.

Probably the most fundamental question concerning Fade s

table is that of the convergence of the various classes of continued

fractions or lines of approximants. The first investigation of the

convergence of an algebraic continued fraction was made by Rie

mann [18] in 1863, followed by Thome [19] a few years later,f

Both writers investigated the continued fraction of Gauss by
rather painful methods, not based absolutely upon the algo

rithm of the continued fraction but upon extraneous considera

tions. This is not surprising, for there were at that time no gen
eral criteria for the convergence of continued fractions with

complex elements, and even now the number is astonishingly

small.

* In at least half of the table. See the preceding footnote.

t As Riemann s work appeared posthumously, Thome s has the priority of

publication (1866) but was itself preceded by Worpitzky s dissertation, to which

reference is made in a subsequent footnote.
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The two principal criteria for convergence correspond to the

familiar tests for the convergence of a real continued fraction

in which either (1) all the elements are positive or (2) the partial

denominators X
t
. are positive and the partial numerators ^ are

negative. The latter class of real continued fractions is known to

converge if X
t
.^l p.. Pringsheim [29] has shown that when

the elements are complex, the condition
|

X
rf |

= 1 + A^ |

is still

sufficient for convergence. If, furthermore, the continued frac

tion has the customary normal form in which nn
= I

,
the condition

may be replaced by the less restrictive one [29, p. 320],

1

X
2n 1

X,,

The necessary and sufficient condition for the convergence of the

first class of real continued fractions can be most easily expressed

after it has been reduced to the form

If then 2V is divergent, the continued fraction converges, while

it diverges if2V is convergent.* But in the latter case limits exist

for the even and the odd convergents when considered separately.

This result is included in the following theorem which I gave in

the Transactions of 1901 for continued fractions with complex
elements [31] : If in

1 1 1

!
+^ + a + iffi + s

+ ^3 +
the elements a. have all the same sign and the /3t

. are alternately

positive and negative, f the continued fraction will converge if

2
|

a
n + ij3n |

is divergent ;
on the other hand, if 2

|

a
n + iffn |

is

*Seidel, Habilitationsschrift, 1846, and Stern, Journ. fur Math., vol. 37 (1848),

p. 269.

fZero values are permissible for either a f or j3 im
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convergent and either the a. or the /3. fulfill the condition just

stated concerning their signs, the even and the odd convergents
have separate limits.

The most general criterion for the convergence of

1+1+1.+
(6t

. real or complex) seems to be the one which I gave in October,
1901 [32, 6, 5].

Two remarks of a general nature concerning the convergence
of algebraic continued fractions may be of interest. In the con

sideration of numerical continued fractions a difficulty frequently

encountered is that the removal of a finite number of partial

fractions Atf/\ at the beginning of (5) may affect its convergence
or divergence. The convergence is therefore not determined

solely by the ultimate character of the continued fraction, as is

true of a series. Pringsheim [29] has proposed to call the con

vergence unconditional when it is not destroyed by the removal

of the first n partial fractions of (5). The difficulties due to con

ditional convergence usually disappear from consideration in treat

ing algebraic continued fractions. For let N
njDn

now denote

the nth convergent. If after the removal of the first n partial

fractions the continued fraction converges uniformly in a given

region and accordingly represents a function F(z) which is holo-

morphic within the region, then after the restoration of the initial

terms the continued fraction will define the function

y. + JWy.-.

which must be either holomorphic or meromorphic within the given

region [32, a or c] . An exception occurs only if the denominator

of (6) vanishes identically in the region. This is impossible for

the second and third types of continued fractions, since the de

velopment of a rational fraction DJDn_ l
in either type (2)

or (3) consists of a finite number of terms, whereas the develop

ment of F(z\ by hypothesis, continues indefinitely.
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The second remark relating to convergence is that its discus

sion for a continued fraction is usually reduced to the correspond

ing question for an infinite series. The succession of convergents

is, in fact, obviously equivalent to the series

A
ftV

But the latter by means of the familiar relations connecting the

denominators or the numerators of three consecutive convergents

may be reduced to the form :

(7)

+~D + *D +T )

We turn now from these general considerations to the questions

of convergence connected with Pade s table. Under what con

ditions will the various lines of approximants converge ;
in par

ticular, the three standard types of continued fractions obtained

by following (1) the horizontal or vertical lines, (2) the stair-like

lines, and (3) the diagonal lines ? When they converge simul

taneously, have they a common limit? If not, what are the

mutual relations between the functions which they define? What

is the form of the region of convergence?

These and other questions press upon us, and are of great in

terest. A complete investigation has been made only for the

exponential series. Padt [37, a] finds that when p/q for any suc

cession of approximants NpJDpq converges to a value
o&amp;gt;,

the ap-

proximauts converge toward the generating function e
x

for all

values of .T. Furthermore, the numerators and denominators sepa

rately converge, the former to the limit e
&quot; x/&amp;lt;a+l

,
the latter to e~ x/&amp;lt;a+l

.

This smooth result is not, however, a typical one, not even for

entire functions. It is due at least in part to the fact that e
x

is
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an entire function without zeros. This will be apparent after an

examination has been made of the vertical and horizontal lines

of PadSs table, which we now proceed to consider.

It is obvious that the first p -f q -f 1 terms of the given series

(4) determine an equal number of terms of the series for its re

ciprocal. If, therefore, in the table each approximant is replaced

by its reciprocal and the rows and columns are then interchanged,
we shall obtain the table for the reciprocal series. The problems

presented by the horizontal and vertical lines of the table are con

sequently of essentially the same character, and our attention may
be confined henceforth to the horizontal lines alone.

By the interchange just described the zeros and poles of (4)
become the poles and zeros respectively of the reciprocal function.

In the case of the exponential function the reciprocal series has

the same character as the initial series, each defining an entire

function without zeros, and the simultaneous convergence of rows

and columns for all values of x was therefore to be expected ;
but

in general this does not hold.

In investigating the convergence of the horizontal lines the first

case to be considered is naturally that of a function having a number

of poles and no other singularities within a prescribed distance of

the origin. It is just this case that Montessus [33, a] has exam

ined very recently. Some of you may recall that four years ago in

the Cambridge colloquium Professor Osgood
* took Hadamard s

thesis f as the basis of one of his lectures. This notable thesis is

devoted chiefly to series defining functions with polar singularities.

Montessus builds upon this thesis and applies it to a table possess

ing a normal character. Although his proof is subject to this

limitation, his conclusion is nevertheless valid when the table is

not normal, as I shall show in some subsequent paper.

The first horizontal row of the table scarcely needs considera

tion, for it consists of the polynomials obtained by taking suc

cessively 1, 2, 3, terms of the series. Consequently the con

tinued fraction obtained from the first row,

*SuU. of the Amer. Math. Soc., vol. 5, pp. 74-78.

f Journ. de Math., ser. 4, vol. 8 (1892).
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1 a^ -f a a
2
x

is identical with the series, and its region of convergence is a

circle.

Let jR
x
be the radius of this circle and ql

the number of poles

of (4) which lie upon its circumference. Suppose also that the next

group of poles, q2
in number, lie upon a circle of radius R^ hav

ing its center in the origin ;
that

&amp;lt;?3 poles lie upon the next circle

(j 3) ;
and so on indefinitely or until a circle is reached which con

tains a non-polar singularity. Hadamard
(1. c., 18) has proved

that the denominators D
pq

of the approximants of the (ql
+ l)th

row, of the (ql + q2 + l)th row, and so on, approach a limiting

form as we advance in the row, and that the limiting polynomials

give the positions of the first qv q l
+ q2, poles respectively.

Thus if, for example,

and

the first group of poles are the roots of the polynomial

1 -f Bje + B
qi
xqi

. Using this result of Hadamard, Montes-

sus shows that in a normal table the approximants of the (^-f-ljth

row converge at every point within the circle (R2) excepting,

of course, at the q l poles but not without this circle
;
that the

approximants of the (ql + q2 + l)th row converge similarly within

the circle (R3) except at the included ql -f q2 poles ;
and so on.

In proving this Montessus makes use of an idea advanced in

Pad&s thesis ([16, a, p. 51] ,
or [24]) which, though applicable in

the present case, is possibly somewhat misleading. In Fade s con

tinued fractions the partial numerators /^ are monomials in x. This

is due to the fact that there is a steady increase in the order of the

approximation afforded by the successive convergents at x 0.

Consider now the series (7), and let T denote the region or set of

points in the #-plane for which D
n ,

from and after some value

of n, has both an upper and a lower limit Then in T the con-
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tinued fraction will converge or diverge simultaneously with the

power series,

(
8
) /*+!

~
/*n+l^n+2 + ^+1^+2^+3

Call C the circle of convergence of
(8). At all points of T

within C the continued fraction
&quot;converges, and at all exterior

points of T it diverges. On this account Pad6 proposes to call

C the &quot; circle of convergence
&quot;

of the continued fraction. In the

case which we have just been discussing this concept is applicable

because of the existence of limiting forms for the denominators of

the rows considered. The region T comprises the entire finite

plane with the exception of the roots of the limiting form, and

the circle C is successively identical with (^2), (R^ y
.... Thus,

as we pass down the rows of the table, we obtain continued frac

tions having an increasing region of convergence.

In introducing the term circle of convergence for a continued

fraction Pad& ignores all points not included in T. Call the ex

cluded point-set T . If
|

D
n |

increases indefinitely with increas

ing n over the whole or a part of T the series (7) may converge,

and this may happen even though (8) is a divergent series.* The

term circle of convergence is therefore an inappropriate one, al

though the considerations upon which it is based are useful.

Nothing more of account seems to be known concerning the

the convergence of the horizontal and vertical lines, f The more

common and important continued fractions are obtained from

diagonal and stair-like paths through the table. In many familiar

continued fractions of the second type,

a a,x ajc op
{ } 1+1 + 1 + 1 +

&quot;

*The coefficients in the continued fraction of Stieltjes (discussed later in the

lecture) can be easily so determined as to give a case of this sort, the region of

convergence of (7) being the entire plane with the exception of the negative

half of the real axis. We suppose, with Fade&quot; that the absolute term of Dn is

taken equal to 1.

t It is perhaps worth noting that the coefficients in the first type of continued

fractions can not be selected arbitrarily if it is to be connected with such a table

as Fade constructs. In the other two types the coefficients are entirely arbitrary.



DIVERGENT SERIES AND CONTINUED FRACTIONS. 147

a
n
with increasing n approaches a limit, as for instance in the con

tinued fraction of Gauss where lim a
n
=

J. The significance of

the existence of such a limit I first pointed out for a comprehen

sive class of cases in 1901 [32, a], and since then I have shown

by simpler methods [32, c] that the result is perfectly general.

Let lim a
n
= k. Then the continued fraction converges, save at

isolated points, over the entire plane of x with the exception of

the whole or a part of a cut drawn from x = I /4k to x = oo in

a direction which is a continuation of the vector from x = to

x = 1
/4fc.

Within the plane thus cut the limit of the continued

fraction is holomorphic except at the isolated points which (if they

exist) are poles. When there is no limit for a
n
but only an upper

limit U for its modulus, the continued fraction (see [32, &]) is mero-

morphic or holomorphic at least within a circle of radius 1/4U
having its center in the origin.* A special case is that in which

lim a
n
= 0. The limit of the continued fraction is then a function

which is holomorphic or meromorphic over the entire plane. A
comparison of this last result with that of Montessus shows that a

much greater region of convergence has now been obtained. This

is doubtless, in general, a reason for preferring the second and

third types of continued fractions to the first.

As another illustration of the second type of continued fraction

I shall choose the celebrated continued fraction of Stieltjes [26, a],

In this each coefficient a
n

is positive. By putting x = 1/z in

(2), the continued fraction, after dropping a factor z, can be thrown

into the form

which is the form preferred by Stieltjes. To every such con

tinued fraction there corresponds a series

* A demonstration of this property within the circle (11417} has been pre

viously given in a dissertation by Worpitzky [18 bis], which has come to my
notice for the first time during the examination of the proof-sheets of these lec

tures. This dissertation bears the date 1865 and appears to be the earliest pub
lished memoir treating of the convergence of algebraic continued fractions.
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(9)

for which

A =s

(10)

C C
l

C
2

C
l

C
2

C
3



DIVERGENT SERIES AND CONTINUED FRACTIONS. 149

vergent, the two sets of alternate convergents have limits which

are distinct. The conclusion is next extended by Stieltjes to the

half of the complex plane for which the real part of z is positive.

This brings him to the difficult part of his problem, the exten

sion of the result to the other half-plane but with exclusion of the

real axis. Here, particularly, Stieltjes [26, a, 30] shows his

ingenuity. He overcomes the difficulty by establishing first a

preliminary theorem which is of vital importance for sequences

of polynomials or rational fractions. The theorem is as follows.

Let /j(), /2 (X)&amp;gt;

be a sequence of functions which are holomor-

phic within a given region T, and suppose that 2*=1/n(z) is uni

formly convergent in some part T&quot; of the interior of T. Then

if f^z) -f/2(X) + -f/n(X)
nas an upper limit independent of n in

any arbitrary region T which includes T&quot; but is contained in the

interior of T
9
the series 2/n() will converge uniformly in T and

therefore has as its limit a function which is holomorphic over the

whole interior of T*.

In the application of this theorem Stieltjes decomposes each

convergent Nn(z)/Dn(z) into partial fractions,

+
z -f- !

z + 2
z -f a

r

in which

From this it follows that N
n/Dn has an upper limit independent

of n in any closed region of the plane which does not contain a

point of the negative half-axis. If now in either the sequence

of the odd convergents or of the even convergents we denote the

nth term of the sequence by NnjDn
and place

the series 2*=1/n(z) converges uniformly in any portion of the plane

*For a further extension of this line of work, see Osgood, Annals of Math.,

ser. 2, vol. 3 (1901), p. 25.
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for which the real part of z is positive. All the conditions of the

lemma of Stieltjes are now fulfilled, and the region of convergence

may be extended over the entire plane with the exception of the

negative half-axis.

On account of the uniform character of the convergence the

limit of either sequence is holomorphic at every point exterior to

the negative half-axis. When 2a^ is divergent, the two limits

coincide and the continued fraction itself is convergent. On the

other hand, if 2a^ is convergent, the two limits are distinct.

Stieltjes shows also that in the latter case the numerators and the

denominators of either sequence converge to holomorphic functions

p(z), q(z) of genre 0, and the two pairs of functions are connected

by the equation

q(z)p l(z)
-

qj(z)p(z)
=

1,

which corresponds to the familiar relation

A more direct method [31] of demonstrating the convergence
results of Stieltjes is by an extension * of the criterion previously

cited for the convergence of continued fractions in which the

partial fractions l/(an -f ifin) have an a
n of constant sign and a

y8n of alternating sign. The introduction of the lemma of /Stieltjes

is consequently unnecessary, but I wish nevertheless to emphasize

its fundamental importance. Other notable results which it will

be impossible to reproduce here are also contained, in his splendid

memoir.

* If namely, 2$ I

an + ifln \
is divergent and the condition concerning the signs

either of the an or of the /3n is fulfilled, the continued fraction will converge pro

vided \a n \/\Pn\ has a lower or an upper limit respectively. Put now z =w2 in

(8 )
so that it becomes

-( -1- ..Vw \ a[w -f- a^w -j- a3w -j- /

When 5C is divergent, this falls under the extended criterion if we put

anw= a
n -j- i(3n, except when z is negative. On the other hand, when ^an

is con

vergent, the criterion applies without extension directly to (8
X
). In either case

the uniform character of the convergence follows with the addition of a few lines.
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It is interesting to bring this work of Stieltjes into connection

with the table of Fade [44] . The odd convergents of the con

tinued fraction of Stieltjes fill the principal diagonal of Fade s

table, thus constituting by themselves a continued fraction of the

third type, and the even convergents fill the parallel file immedi

ately below, forming a similar continued fraction. The signifi

cance of distinct limits for the two sets of convergents is thus

made clearer.

The series of Stieltjes has perhaps its greatest interest when

treated in connection with the theory of divergent series. Although
the continued fraction always converges if the series does, the con

verse is not true. For when the series (9) is divergent, two cases

are to be distinguished according as 2/ is divergent or conver

gent. In the former case the continued fraction gives one and

only one functional equivalent of the divergent series. Le Roy

states,* though without proof, that the function furnished is

identical with the one obtained from the series by the method of

Borelj whenever the latter method is applicable also. When Ha
n
is

convergent, two different functions are obtained from the con

tinued fraction, the one through the even and the other through
the odd convergents. And if there are two such functions which

correspond to the series, there must be an infinite number. For

if
&amp;lt;f&amp;gt;(x)

and ^(x), when expanded formally, give rise to the same

divergent series, so also will

in which c denotes an arbitrary constant. Special properties,

however, attach themselves to the two functions picked out by the

continued fraction of Stieltjes, upon which we can not linger here.

This result of Stieltjes seems to me to be especially significant,

since it indicates a division of divergent series into at least two

classes, the one class containing the series for which there is prop

erly a single functional equivalent and the other comprising the

* Loc. cit., p. 428.
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series which correspond to sets of functions. It is, of course,

just possible that this distinction may be due to the nature of the

algorithm employed in deriving the functional equivalent of the

series, but it is far more probable that the diiference is intrinsic

and independent of the particular algorithm. If this view be cor

rect, the method of Borel which gives a single functional equivalent,

is limited in its application to series of the first class.

An extension of the work of Stidtjes has been sought in two dis

tinct directions by modification of the conditions imposed upon his

series. Borel [43] so modifies them as to make the series (when

divergent) fulfill the requirement imposed in lecture 2 and permit of

manipulation precisely as a convergent series. In the last number of

the Transactions *
[45] I began a study of series which are subject to

only one of the two restrictions expressed in the inequalities (10),

but was obliged to bring the work to a hurried close to prepare these

lectures. In the main, the corresponding continued fractions have

the same properties as the continued fraction of Stidtjes, but a con

siderable difference is shown in regard to convergence. Though
the roots of the numerators and denominators of the convergents

are still real, they are no longer confined to the negative half

of the real axis, and may be infinitely thick along the entire

extent of the axis. In certain cases the continued fraction con

verges in the interior of the positive and negative half planes,

defining in each an analytic function which has the real axis as a

natural boundary. The continued fraction therefore effects the

continuation of an analytic function across such a boundary, and

gives a natural instance of such a continuation f natural in dis

tinction from artificial examples set up with the express object of

showing the possibility of a unique, non-analytic extension.

Pad& [17, a] has suggested the foundation of a theory of diver-

*July, 1903.

t Earlier instances of a natural continuation are also to be found, as, for

example, that afforded by VV L
m m&amp;gt; (m -f- w u)

4

across the axis of reals.
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gent series upon the continued fractions of his table. The diffi

culties of carrying out the suggestion are undoubtedly very great

and have been pointed out by Borel* Not only must the con

vergence of the principal lines of approximants and the agreement
of their limits be investigated, but the combination of two or more

divergent series must also be considered. It is not enough to point

out, as does Pade, that the approximants of given order for any
two series, whether divergent or convergent, determine uniquely
the approximants of the same or lower order for the sum- and

product-series. For practical application of the theory it must be

proved also that the function denned by the table corresponding
to the new series is, under suitable limitations, the sum or product
of the functions defined by the given divergent series. But great

as are the difficulties of such an investigation, even for restricted

classes of series, the reward will probably be correspondingly

great.

So far as it has been yet investigated, the diagonal type of con

tinued fractions seems to have accomplished nearly everthing that

can fairly be asked of a sequence of rational fractions. Not only
does it afford a convenient and natural algorithm for computing
the successive fractions, but in every known instance the region of

convergence is practically the maximum for a series of one valued

functions. The continued fraction ofHalphen [2 1
, a] ,

so frequently

cited as an instance of a continued fraction which diverges though
the corresponding series converges, might appear at first sight to

be an exception. But this divergence occurs only at special points.

In fact, the continued fraction not only converges at the center of the

circle of convergence for the series, but, as Halphen himself says,

continues the function over the entire plane with the exception of

certain portions of a line or curve. If then, continued fractions

offer such advantages for known series and classes of functions, is

it too much to expect that in the future they will throw a powerful

searchlight upon the continuation of analytic functions and the

theory of divergent series ?

* Les Series divergentes, p. 60.
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LECTURE 6. The Generalization of the Continued Fraction.

In the last lecture the algebraic continued fraction was presented

under the form of a series of approximants for a given function.

An immediate generalization of this conception can be obtained

either by increasing the number of points at which an approxima
tion is sought or by requiring a simultaneous approximation to

several functions. The latter generalization results at once from

an attempt to increase the dimensions of the algorithm or, in other

words, the number of terms in the linear relation of recurrence

between the successive convergents or approximants. As this

generalization is without doubt the more important, I shall make

it the chief subject of this lecture. But a few words, at least,

should be devoted to the former extension, which is worthy of a

more careful and systematic study than it has received.

Denote again by Np(x)/Dj(x) a rational fraction with arbitrary

coefficients. These can, in general, be so determined that its ex

pansion at x = shall agree for n
x
successive terms with a given

series

c + ^x + c
2
x2 + ...

its expansion at x a
L
for n.

2
successive terms with

at x =
2
for n

3
successive terms with

and so on, the total number of conditions thus imposed being equal

to p -f q + 1 or the number of parameters in the rational frac

tion. To each set of values for the n. and q there corresponds an

approximant, and the various approximants can be arranged into

a table of multiple entry according to the values of these quan

tities. Continued fractions, at least in the case of a normal table,

can then be obtained by following any path which passes succes

sively from one approximant to another contiguous to it but more

advanced in the table. As we proceed along the path, the degree of

approximation for each of the points 0, a lt
a

2 ,
- must not decrease
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while at each step it is to increase for at least some one point. The

partial numerators of the continued fraction are then either posi

tive integral powers of x, x a
lt
x a

29 ,
or the products of such

powers. The degrees of the approximations obtained by stopping

the continued fraction with any term can be inferred readily from

the degrees of the partial numerators in x, x av x a
2 ,

. The

details of the theory have not been worked out.*

The interest of such work can perhaps best be made apparent

by referring to the developments for the simplest case in which

each n. is taken equal to 1. The rational fraction N
p /
D

q
is then

completely determined by the requirement that at p + q 4- 1 given

points a
v
=

0, a
2,
a
s,

it shall take an equal number of pre

scribed values, Av A 2,
Ay

- -
. If these are the values which a

single function assumes at the points, we have the rational frac

tions which were introduced by Cauchy into the theory of inter

polation [99, a] and which have been quite recently formed into

a table and examined by Fade [112]. As p -f q + 1 increases,

the number of points at which the approximation is sought like

wise steadily increases.

When # = 0, the rational fraction becomes the familiar inter

polation-polynomial of Lagrange,

in which

This has been put into a very interesting form by Frobenius [95]
which permits, without reconstruction,f of an indefinite increase in

the number of its terms. Let us first take 1
/(z x) as the par

ticular function of x for which an approximation is sought. From
the equations

*The only investigation of this character is found in [76], but on account of the

nature of the functions there considered certain variations were made in the con

struction of the table.

tCf. also [99, a].
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1 1 X Q

x (z e&J (x aj
~~

z a
x

a
L

a a;

the series

W n^^^^ +^5^sA + &quot;

is immediately derived, provided that the a
{
are so distributed as

to fulfill proper conditions for the convergence of the series. If

now we take successively 1, 2, 3, terms of the expansion, we

obtain the series of polynomials,

1 AT/ \
1 x ~~ a

i~
z a ^ ~~

z a, (z a,Yz a^V ?

and it is evident that Nn(x) for the n + 1 values x = av a
2 , ,

an+

agrees in value with l/(z x). By applying to (1) the well-

known formula of Euler [1, a]* for converting any infinite series

into a continuous fraction it follows immediately that these poly

nomials are the successive convergents of the continued fraction

1 x a, x an

The generalization of formula (1) can be made at once in the

familiar manner by the use of Cauchy s integral. We get thus

a ^
, (^^i) r /()*

ai) 2i7r J (a
-

a,) (z
-

2
z -x~ i 2i7r (a

-
a,) (z

-
2)

which by placing

*() = (
x ~ a

i) (x-a2).-.(x- a
n)

may be written

* Cf. Encyklopddie der Math. Wiss., I A 3, p. 134, formula (104).
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(2) ffx) =/(&amp;lt;? ) -f (x a

For most interesting discussions of the convergence and properties

of series having the form

A -f A^x - Oj) + A
2(x a^(x a

2) -f . . .

I may refer to memoirs by Frobenius [95] and Bendixson [99, c].

I shall content myself here with pointing out one simple appli

cation which is given implicitly by both writers but has been

noted again recently by Laurent [103].

Lety(^) be any analytic function the values of which are given

at a series of points pi having a regular point P as their limit.

Describe about P as center any circle C within and upon which

f(x) is holomorphic, and denote the points p. which fall within

this circle by av a
2,

- . Then lim a. = P. If now z describes

the perimeter of the circle and x is a fixed interior point, the

series (1) will be uniformly convergent and consequently permit

of integration term by term. Equation (2) therefore gives an

expression for f(x) which is valid in the interior of C. This ex

pression shows at once that an analytic function is determined

uniquely when its values are known in a sequence of points having
a regular point P as their limit. If, in particular, each /(at.)

=
0,

f(x) must vanish identically. In other words, the zeros of an

analytic function can not be infinitely dense in the vicinity of a

non-singular point. Further, Bendixson points out that the con

vergence of the right hand member of (2) is not only the necessary

but the sufficient condition that /(aj, /(a2 )&amp;gt; /(aa)&amp;gt;

* sna^ be the

values of some analytic function at a set of points ai having a limit

point P.

We turn now to the generalization of the algorithm of the con

tinued fraction. The first investigation on this subject is found in
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a paper of Jacobi,* published posthumously in 1868. The devel

opments of Jacobi were, however, of a purely numerical nature.

On this side they have been perfected recently by Fr. Meyer [83] .

The first example of a functional extension was given by Hei^mite

in his famous memoir [84] upon the transcendence of e, and the

theory has been developed since independently of each other by
Pincherle and Fade.

To explain the nature of the generalization it will be desirable

first to refer to the mode in which a continued fraction is com

monly generated. Two numbers or functions, and/1?
are given,

from which a sequence of other numbers or functions is obtained

by placing

fz \fi ~/o&amp;gt;

in which the X. are determined in accordance with some stated

law. For the quotient f /fv we obtain successively

1 J&quot; ~

and it therefore gives rise to the continued fraction

By means of the equations (3) each fn+l can be expressed linearly

in terms of the initial quantities ,
. Thus

(5) fn+l
=

^1, n+ljl ~^~ ^0, n+lJO)

in which -*4
, +i&amp;gt; -4i,+i are polynomials in the elements Xr It is

easy to see that these polynomials both satisfy the same difference

*&quot;Allgemeine Theorie der kettenbruchlilmlichen Algorithrnen, in welchen

jede Zahl aus drei vorhergehenden gebildet wird.&quot; Journ. filr Math., vol. 69

(1868), p. 29.
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equation as / .,

/,,+ ,

= \/,, -/.-,;

and for their initial values we have

A
l l
=

1, J
0)1
= 0,

Consequently A 1&amp;gt;n

and A^ n are the numerator and denominator

of the
(ft

1 )th convergent of (4).

When the generating relations have the form

/o
= \/i + A*j/2 ,

/i
= V; + ^3/3,

the resultant continued fraction is

A distinction then appears between the system of functions

(^1,71+1? ^o,n+i) and the system which consists of the numerator

and denominator of the ?ith convergent. Though the quotient
of the two functions of either system is the nth convergent, the

former pair of functions satisfy the same relation of recurrence as

the/., namely,

fn
=

\+lfn+l + ^n+2/n+2

while the corresponding relation for the other system is

9n
=

\ffn-l + Pnffn-V

The latter equation is called by Pincherle [77, a] the inverse of

the former. In the continued fraction (4) we took
/-i

. = 1 so

that the two relations were coincident.

The immediate generalization of these considerations is obtained

by taking m + 1 initial quantities f ,fl9 -;fm in place of two.

With a very slight change of notation we may write



160 THE BOSTON COLLOQUIUM.

(6) =fm+2 ,

Jn-m l&quot;
&quot; n-m+lJn-m+l T ^n_TO+2/n-m+2

&quot;&quot; + V
nJn

==Jn +l&quot;

Then by expressing y^ in terms of the m -f 1 given quantities we
have

(7) fn = A
0i n/ + A

lt nf, + - . + A
mi nfm ,

in which A^ n is a polynomial in terms of the \
t., /Ai+1 , , ^+m_!

(i
=

1, 2, ,
w m). These m + 1 polynomials -4

4&amp;gt;

n satisfy

the same difference equation (6) as the fnf
and for their initial

values we plainly have

A A A
&quot;Q,

n
-&quot;!, -&quot;-m,

n

n=0 1 ...
0,

n=l 1 ...
0,

1.

Hence they constitute a complete system of independent integrals

of (6). Furthermore, in analogy with the relation between two

successive convergents of (4),

we have [83, a, p. 170]

(8)

,
n

A A
-&quot;0, n+l -^-l. (- 1)-.

J x4 xl

&quot;-0, n+m &quot;&quot;-1, H+TO -&quot;m, w+

The relation which is the inverse of (6) has the form

To obtain a system of independent integrals of this equation, let



DIVERGENT SERIES AND CONTINUED FRACTIONS. 161

P
0&amp;gt;n

denote the minor of A^ n in
(8),

P
l n the minor of A

l
&amp;gt;n

after

the first column has been moved over the remaining columns so

as to become the last, P2 n the minor of A
2 n after the first two

columns have been moved over the remaining columns so as to

become the last two, and so on. It can be demonstrated easily

that the desired system is obtained by placing gifn+m ^Pi

(i
= 0, 1, , m\ and these new polynomials rather than the

A
it n

are the true analogues of the numerator and denominator of

an ordinary continued fraction. The connection between the two

systems of polynomials is, however, both an intimate and a re

ciprocal one, for not only is (9) the inverse of (6) but the converse

is also true. On this account the two systems can be employed

simultaneously with advantage in working with the generalized

continued fraction.

For all except the very lowest values of n the new polynomials
can be found from the equations

*

(9 )
P

i&amp;gt;n

+ XnP
&amp;lt;&amp;gt;n

_, + ^Piin
_2 + . . . + v,P^n_m

= Pt __,.

In place of these relations it will be often found convenient to

employ such a process as is indicated in the following equations

for m= 2 [83, a, p. 180].f

P P ~D $2, 2
~

,!_ -To. 2
, 72,2 *0,J . 93,1

r&amp;gt; jf 3 1

_p,_4
. ^4, i

A*&quot;
1 1

+ J_

q, 1 + fr

1 ^4, 2

*Cf. [83, a, p. 174, eq. X].

fCf. E. Furstenau,
&quot; Ueber Kettenbriiche hoherer Ordnung&quot; ;

Jahresbericht

iiher das konigliche Realgymncuium za Wietbalen; 1873 4. See also Scott s De
terminant*, Chap. 13, \ 11-12.

11
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We may therefore very properly call the system of values

the norm of a generalized continued fraction, which itself consists

of the computation of the P
t n or their ratios.

To apply this generalization to the construction of algebraic

continued fractions, it is only necessary to select as the m + 1 initial

functions / , , fm series in ascending powers or series in

descending powers of x. The nature of the ensuing theory will

be explained sufficiently by developing here the simplest case, in

which three such series are given [77, c.]
Take then

a-Wi + k + - Co* ).

m m

If we next place

(10)
S + (aQ

x -f a
Q)Sl + b

Q
S

2
= S

3 ,

the coefficients ,
a

Q ,
& can be so determined that

3
shall begin

with at least as high a power of l/x as the third. Normally the

degree is exactly 3, and similarly for each consecutive value of n

we have
Sn -f (anX -f ^O^n+l ~f~ bn8n+2

=
^ft+3

in which 8n
denotes a series beginning with the ?ith power of

l/x. Hence unless certain specified conditions are satisfied, a

regular continued fraction will be obtained having the norm :

1 __L A
1* 1 1

1 a,x + a b
2
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This norm will not be altered in any way by dividing (10)

through by SQ
. It is therefore determined uniquely by the ratios

of S
,
Sv 82,

and conversely the ratios by the norm.

Without loss of generality we may set S =* 1. Place also

(11)

P =

Sn+3

B, C
ft.=

C A
R =

n+l

If then n + 3 in (11), is replaced successively by n and w -f 1,

and the two equations are solved for and S
2,
we obtain

* _
l
~

or

(12)

and

(13)

ft,

O _
*

n
r&quot;n_

2 P -P
An examination of P

n , QB ,
jR

n , \, /AM
will show that their degrees

in x are

n1, w 2, ?i

w 1, n 2, ?i

,
r 1, r.

,
r 1, r 1

(n = 2r),

(n=2r-f 1).

Hence the expansions of QJPn
and l^

n/Pn
in descending powers of

a?, agree with ^ and /S
2
to terms of degree 3r 1 and 3r 2 in

clusive if n=2r, and of the 3rth degree if ?i=2r-f- 1. The

generalized continued fraction therefore affords a solution of the

problem : to find two rational fractions with a common denom
inator which shall give as close an approximation to the given
functions $, and 8

2
as is consistent with the degrees prescribed for

their numerators and denominators.

When three series in ascending powers of x,

*
=!&amp;gt; 2, 3),
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are chosen as the initial functions, a more comprehensive algorithm

can be introduced. Fade [79, a] takes three polynomials A^(x)9

A%)(x), A (

p,(x) with undetermined coefficients, the degrees of which

are indicated by their subscripts, and requires that their coefficients

shall be so determined that the expansion of

in ascending powers of x shall begin with as high a power as

possible. Ordinarily this is the (p -f p -f p&quot; -f 2)th power. To

each set of values of p, p , p&quot;
he shows that there corresponds

uniquely a group of three polynomials which he terms the &quot; asso

ciated polynomials,&quot;
and these groups he arranges into a table of

triple entry according to the values of p } p , p&quot;.
An exactly

similar table can not be constructed for three series in descend

ing powers of x, inasmuch as the substitution of l/x for x in

A, - -

,
A (

fi gives three rational fractions, with powers of x in

the denominators which can not be thrown away unless

p=p =
p&quot;.

The new table is handled by Fade in the same manner as the

one previously constructed for a single series. In particular, he

examines the relations

aAy + PA? + yA^ = A? (i
= l, 2, 3),

which exist between four successive groups of associated poly

nomials, a, /3, 7 being rational functions of x which are indepen

dent of the value of i. When it is possible to so select a sequence

. . A (

;\ A(i
\ A (

r

{

\ A (

*\ A (i
t\ - that a, , 7, are polynomials of

invariable degree for any four consecutive terms in the sequence,

the sequence or continued fraction is said to be regular. In a

normal table there are found to be four distinct types of such con

tinued fractions. It is worth noting, however, that the diagonal

type which was the best in an ordinary table, no longer exists since

it is found that when the sequence fills a diagonal file of the table,

a, /3, and 7 are no longer polynomials but rational fractions having

a common denominator.
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In one important respect Fade s investigation has a narrower

reach than Pincherle s and needs completion. The existence of a

second group of associated polynomials the P
n , Qn ,

R
n
of Pin-

cherle is not brought to light. As has been already pointed out,

it is this second group of polynomials which is the true analogue

of the convergent of an ordinary continued fraction and which

must take precedence in considering the convergence of the algo

rithm or the closeness of the approximation afforded to the initial

functions. Pincherle s definition of convergence [82] is not, how

ever, so framed as to require explicitly the introduction of these

polynomials. If the given system of difference equations is

(14) /,1+3 =&amp;lt;UVu +&amp;lt;/,+, + /,, (n = 0,l,2,...),

the continued fraction is said by him to be convergent when the

two following conditions are fulfilled :

(1) There is a system of integrals Fn ,
F

n ,
F&quot;

n
of (14) such that

F
njFnJ F&quot;JFn

have limits for n = oo, and these limits are different

from 0.

(2) There is also one particular integral called by Pincherle

the integrate distinto the ratio of which to every other integral

of (14) has the limit zero.

Pincherle s interest is evidently concentrated upon this prin

cipal integral. It seems to me, however, more natural to call

the algorithm convergent when the ratios Qn/PH
and R

njPn (cf.

Equations 12 and 13) converge to finite limits for n = oo. Under

ordinary circumstances these limits will doubtless coincide with

the ratios of the generating functions, ./^// audf2/fQ .

In the case of an ordinary continued fraction the two definitions

coalesce. For suppose that the nth convergent NnjDn of (4 )
has

the limit L. Then N
n

LD
n

is such an integral of the differ

ence equation,

that its ratio to any other integral, \Nn -f &
2
D

w ,
has the limit 0.

Conversely, if the principal integral Nn
LD

n exists, there must

be a limit L for the continued fraction. Possibly the case in
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which the principal integral is D
n might be called an excep

tion, since the continued fraction is then convergent by Pincherle s

definition, but lim N
njDn

oo.

A study of the conditions of convergence, so far as I am aware,

has at present been made in only two special cases. Fr. Meyer

[83, a, 7] has made a partial investigation when the coefficients

X
n, ,

v
n
in equations (6) are negative constants. Pincherle [82]

has examined the case in which the coefficients of the recurrent

relation

/. + (.* + &amp;lt;)./:+,
+ */.+, -/.

have limiting values and finds that the generalized continued frac

tion is convergent for sufficiently large values of x. Let the limits

of the coefficients be denoted by a, a
,
and b respectively. To

demonstrate the convergence he avails himself of the notable the

orem of Poincartj already cited in Lecture 4. If, namely, no two

roots of the equation

(15) z
3 bz

2 -
(ax + a )f- 1=0

are of equal modulus, fjf,^ will have a limit for n = oo, and this

limit will be one of the roots of the auxiliary equation (15),

usually the root of greatest modulus. From this it follows di

rectly that AJA n_v BJBn_v CJCn_ l
as quotients of integrals of

the difference equation last given, also PJPn_v QJ Qn_ l9 RJRn_ l

as integrals of the inverse equation, have each a definite limit. The

existence of limits for Qn/Pn
and of RJPn

is then established

for sufficiently great values of x, and the analytic character of

these limits is finally argued. Let them be denoted by U(x) and

V(x). Then Xn
= A

n + B
n U(x) + Cn V(x) is the principal in

tegral of the difference equation, and has the following distinctive

property : Its expansion in powers of 1 jx begins with the highest

possible power consistent with the degrees of An ,
B

n ,
Cn ,

and

coincides with/
1

for each successive value of n.
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BIBLIOGRAPHY OF MEMOIRS RELATING TO ALGEBRAIC

CONTINUED FRACTIONS.

In the following bibliography only works in Latin, Italian,

French, German, and English are included. In Wolffing s Mathe-

matischer Bucherschatz (heading Kettenbruche) several dissertations,

etc., are mentioned which may possibly relate to algebraic con

tinued fractions but which are not accessible to the writer. They
are therefore not included here. The writer would be glad to

have his attention called to any noteworthy omissions in the

bibliography.

In many cases it has been extremely difficult to draw the line

between inclusion and exclusion, especially under divisions vi-ix.

Any classification of the material which may be adopted will be

open to objections, but even an imperfect classification will prob

ably add greatly to the usefulness of the bibliography. Since

much of the work relating to algebraic continued fractions appears

elsewhere under other headings, it is believed that such a bibliog

raphy as is here given may be of service.

For a brief resum6 of the theory of algebraic continued frac

tions the reader is referred to Osgood s section of the Encyklopddie

der Math. Wissenschaft, n B i, 38-39.

I. ON THE DERIVATION OF CONTINUED FRACTIONS FROM POWER
SERIES. GENERAL THEORY.

A. Early Works.

1. Euler. (a) Introductio in analysin infinitorum, vol. 1, chap. 18,

1748.

(b) De transformatione serierum in fractiones continuas. Opus-

cula analytica, vol. 2, pp. 138-177, 1785.

2. Lambert, (a) Verwandlung der Briiche. Beytrage zum Gebrauche

der Mathematik und deren Anwendung, vol. 2
1} p. 54 ff., p. 161,

1770.

(b) Memoire sur quelques proprietes remarquables des quantites

transcendentes circulaires et logarithmiques. Histoire de

1 Acad. roy. des sciences et belles-lettres & Berlin, 1768.
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3. Trembley. Recherches sur les fractions continues. Mem. de

1 Acad. roy. de Berlin, 1794, pp. 109-142.

4. Kausler. (a) Expositio naethodi series quascunque datas in frac-

tiones continuas convertendi. Mem. de 1 Acad. imp. des sci

ences de St. Petersbourg, vol. 1, pp. 156-174, 1802.

(6) De insigni usu fractionum continuarum in calculo integrate.

Ibid., vol. 1, pp. 181-194, 1803.

5. Viscovatov. (d) De la methode generale pour reduire toutes sortes

des quantites en fractions continues. Ibid., vol. 1, pp. 226-247,
1805.

(6) Essai d une methode generale pour reduire toutes sortes de

series en fractions continues. Nova Acta Acad. Scient. imp.

Petropolitanse, vol. 15, pp. 181-191, 1802.

6. Bret. Theorie generale des fractions continues. Gergonne s

Annales de Math., vol. 9, pp. 45-49, 1818. Unimportant.
7. Scubert. De transformatione seriei in fractionem continuam.

Mem. de 1 Acad. imp. des sciences de St. Petersbourg, vol. 7,

pp. 139-158, 1820.

&quot;8. Stern, (a) Zur Theorie der Kettenbriiche und ihre Anwendung.
Jour, fiir Math., vol. 10, pp. 241-265, 1833.

(b) Zur Theorie der Kettenbriiche. Jour, fiir Math., vol. 18, pp.

69-74, 1838.

9. Heilermann. (a) Ueber die Verwandlung der Keihen in Ketten

briiche. Jour, fiir Math., vol. 33, pp. 174-188, 1846
;
also vol.

46, pp. 88-95, 1853.

(b) Zusammenhang unter den Coefficienten zweier gleichen Ket-

tenbruche von verschiedener Form. Zeitschrift fiir Math, und

Phys., vol. 5, pp. 362-363, 1860. Unimportant.
10. Hankel. Ueber die Transformation von Reihen in Kettenbriiche.

Berichte der Sachischen Gesellschaft der Wissenschaft zu Leip

zig, vol. 14, pp. 17-22, 1862.

11. Muir. (a) On the transformation of Gauss hypergeometric series

into a continued fraction. Proc. of the London Math. Soc.,

vol. 7, pp. 112-118, 1876.

(b) New general formula for tfie transformation of infinite series

into continued fractions. Trans, of the R. Soc. of Edinburgh,

vol. 27, pp. 467-471, 1876.

The general formula in these memoirs, which Muir supposed

to be new, had been previously given by Heilermann in 9(a).

12. Heine. Handbuch der Kugelfunction, 2 ts

Auflage, 1878
; chap. 5,

Die Kettenbriiche, pp. 260-297.

This gives a good idea of the state of the theory up to 1878.
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B. The Modern Theory.

The beginnings of this theory are to be found in Nos. 110

and 111.

13. Frobenius. Ueber Relationen zwischen den Naherungsbruchen von

Potenzreihen. Jour. fin-Math., vol. 90, pp. 1-17, 1881.

This fundamental memoir marks an important advance. See

16(a).

14. Stieltjes. Sur la reduction en fraction continue d une serie pro-

cedant suivant les puissances descendantes d une variable.

Ann. de Toulouse, vol 3, H, pp. 1-17, 1889.

15. Pincherle. Sur une application de la theorie des fractions contin

ues algebriques. Comp. Rend., vol. 108, p. 888, 1889.

16. Fade, (a) Sur la representation approchee d une fonction par des

fractions rationnelles. Thesis, published in the Ann. de 1 Ec.

Nor., ser. 3, vol. 9, supplement, pp. 1-93, 1892.

This very fundamental memoir is the best one to read for the

purpose of learning the elements of the theory of algebraic

continued fractions. The same point of view is taken as by
Frobenius in (13) and is more completely developed. The
thesis was preceded by the two following preliminary notes :

(a
7
) Sur la representation approchee d une fonction par des

fractions rationnelles. Comp. Rend, vol. Ill, p. 674, 1890.

(a&quot;)
Sur les fractions continues regulieres relatives a e

x
.

Comp. Rend, vol. 112, p. 712, 1891.

(ft) Recherches nouvelles sur la distribution des fractions

rationnelles approchees d une fonction. Ann. de 1 Ec. Nor.,

ser. 3, vol. 19, pp. 153-189, 1902.

(c) Apercu sur les developpements recents de la theorie des

fractions continues. Compte rendu du deuxieme Congres inter

national des mathematiciens tenu a Paris, pp. 257-264, 1900.

Only a restricted portion of the field is here reviewed, and in

this portion the important work of Pincherle is overlooked.

17. Fade, (a) Sur les series entieres convergentes ou divergentes et

les fractions continues rationelles. Acta Math., vol. 18, pp.

97-111, 1894.

(a ) Sur la possibility de definir une fonction par une serie

entiere divergente. Comp. Rend., vol. 116, p. 686, 1893.

See also No. 26a, 76.

II. ON CONVERGENCE.

(For a resume of the criteria for the convergence of continued

fractions with real elements see PRINGSHEIM S report in the En-

cyklopadie der mathemalischen Wissenschaften, I A 3, p. 126, ff.)
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18. Riemann. Sullo svolgimento del quoziente di due serie ipergeo-

metriche in frazione continua infinita, 1863. Gesammelte math-

ematische Werke, pp. 400-406.

18, bis. Worpitzky. Untersuchung iiber die Entwickelung der mono-

dromen und monogenen Functionen durch Kettenbriiche. Pro-

gramm, Friedrichs Gymnasium und Realschule, Berlin, 1865.

This program and the two following memoirs of Thome were

published before Riemann s posthumous fragment.

19. Thome, (a) Ueber die Kettenbruchentwickelung der Gauss schen

Function F(a, 1, y, x). Jour, fur Math., vol. 66, pp. 322-336,

1866.

(b) Ueber die Kettenbruchentwickelung des Gauss schen Quo-

tienten

F(a, ff + 1, y+1, a?)

Ibid., vol. 67, pp. 299-309, 1867.

20. Laguerre. Sur 1 integrale

f
e~x

,
dx.

x

Bull, de la Soc. Math, de France, vol. 7, pp. 72-81, 1879, or

Oeuvres, vol. 1, p. 428.

Historically an important memoir because of its development

of the connection between a divergent power series and con

vergent continued fraction. See the first footnote in lecture 4
;

also No. 102, p. 30.

21. Halphen. (a) Sur la convergence d une fraction continue alge-

brique. Comp. Rend., vol. 100 (1885), pp. 1451-1454.

(b) Same subject. Ibid., vol. 106 (1888), pp. 1326-1329.

(c) Traite des fonctions elliptiques. Chap. 14. Fractions con

tinues et integrates pseudo-elliptiques.

22. Pincherle. Alcuni teoremi sulle frazioni continue. Atti delle R.

Accad. dei Lincei, ser. 4, vol. 5
1? pp. 640-643, 1889.

The test for convergence given here is included in a more

general criterion given later by Pringsheim, No. 29.

23. Pincherle. Sur les fractions continues algebriques. Ann. de 1 Ec.

Nor., ser. 3, vol. 6, pp. 145-152, 1889.

An incomplete result is here obtained. See No. 32c for the

complete theorem.

24. Pade. Sur la convergence des fractions continues simples. Comp.

Rend., vol. 112, p. 988, 1891. Also found in 45-47 of No. 16a.
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25. Banning. Ueber Kugel- und Cylinderfunktionen und deren Ket-

tenbruchentwickelung. Dissertation, Bonn, 1894, pp. 1-33.

26. Stieltjes. (a) Recherches sur les fractions continues. Annales de

Tonlouse, vol. 8, J, pp. 1-122, and vol. 9, A, pp. 1-47. 1894-95.

Published also in vol. 32 of the Memoires presentes a 1 Acad.

des sciences de 1 Institut National de France.

A rich memoir, developing particularly the connection

between an important class of continued fractions and the cor

responding integrals.

(a ) Sur un developpement en fraction continue. Comp.

Rend., vol. 99, p. 508, 1884.

(a&quot;)
Same subject. Ibid., vol. 108 (1889), p. 1297.

(a
/7/

) Sur une application des fractions continues. Ibid., vol.

118 (1894), p. 1315.

(a
iv

) Recherches sur les fractions continues. Ibid., vol. 118

(1894), p. 1401.

Markoff. (b) Note sur les fractions continues. Bull, de 1 Acad.

imp. des sciences de St. Petersbourg, ser. 5, vol. 2, pp. 9-13,

1895.

This gives a discussion of the relation of his work to that of

Stieltjes.

27. H. von Koch, (d) Sur un theoreme de Stieltjes et sur les fonctions

definies par des fractions continues. Bull, de la Soc. Math, de

France, vol. 23, pp. 33-40, 1895.

( ) Sur la convergence des determinants d ordre infini et des

fractions continues. Comp. Rend., vol. 120, p. 144, 1895.

28. Markoff. Deux demonstrations de la convergence de certaines frac

tions continues. Acta Math., vol. 19, pp. 93-104, 1895.

Contained also in his Differenzenrechnung (deutsche Ueber-

setzung), chap. 7, 21-22.

This discusses the convergence of the usual continued frac

tion for

rmd
Ja zz y

when f(y] &amp;gt;
between the limits of integration.

29. Pringsheim. Ueber die Convergenz unendlicher Kettenbriiche.

Sitzungsberichte der math.-phys. Classe der k. bayer schen

Akad. der Wissenschaften, vol. 28, pp. 295-324, 1898.

The most comprehensive criteria for convergence yet obtained

are found in 29, 31, and 32&.
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30. Bortolotti. Sulla convergenza delle frazioni continue algebriche.
Atti della R. Accad. dei Lincei, ser. 5, vol. 8

17 pp. 28-33, 1899.

31. Van Vleck. On the convergence of continued fractions with com

plex elements. Trans. Amer. Math. Soc., vol. 2, pp. 215-233,
1901.

32. Van Vleck. (a) On the convergence of the continued fraction of

Gauss and other continued fractions. Annals of Math., ser. 2,

vol. 3, pp. 1-18, 1901.

(b) On the convergence and character of the continued fraction

1 + 1 + M-
&quot;

Trans. Amer. Math. Soc., vol. 2, pp. 476-483, 1901.

(c) On the convergence of algebraic continued fractions whose

coefficients have limiting values. Ibid., vol. 5, pp. 253-262,
1904.

33. Montessus. (a) Sur les fractions continues algebriques. Bull, de

la Soc. Math, de France, vol. 30, pp. 28-36, 1902.

The content of this memoir was discussed in lecture 5.

(b) Same title. Comp. Rend., vol. 134 (1902), p. 1489.

See also 37a
,
41.

III. ON VARIOUS CONTINUED FRACTIONS OF SPECIAL FORM.

A. The Continued Fraction of Gauss.

34. Gauss. Disquisitiones generates circa seriem infinitam

~-x* H

Deutsche Uebersetzung von Simon, or Werke, vol. 3, pp. 134-

138, 1812.
&quot;

34, bis. Vorsselman de Herr. Specimen inaugurale de fractionibus con-

tinuis. Dissertation, Utrecht, 1833.

Numerous references are given here to the early literature

upon continued fractions.

34, ter. Heine. Ausztig eines Schreibens iiber Kettenbriiche von Herrn

E. Heine an den Herausgeber. Jour, fur Math., vol. 53, pp.

284-285, 1857.

See also 40c, p. 231.

35. Euler. (a) Commentatio in fractionem continuam in qua illustris

Lagrange potestates binomiales expressit. Memoires de 1 Acad.

imp. des sciences de St. Petersbourg, vol. 6, pp. 3-11, 1818.
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Fade, (b) Sur la generalisation des dSveloppements en fractions

continues, donnes par Gauss et par Euler, de la fonction

(1 + x)
m

. Comp. Rend., vol. 129, p. 753, 1899.

(c) Sur la generalisation des developpements en fractions contin

ues, donnes par Lagrange de la fonction (1 + x)
m

. Ibid., vol.

129, p. 875, 1899.

(d) Sur 1 expression generale de la fraction rationnelle approchee

de (i _j_ XY\ Ibid., vol. 132, p. 754, 1901.

See also Nos. 11, 32a, 65.

B. The Continued Fractions for e
x

.

36. Winckler. Ueber angenaherte Bestimmungen. Wiener Berichte,

Math.-naturw, Classe, vol. 72, pp. 646-652, 1875.

37. Fade, (a) Memoire sur les developpements en fractions continues

de la fonction exponentielle, pouvant servir d introduction a la

theorie des fractions continues algebriques. Ann. de 1 Ec.

Nor., Ser. 3, vol. 16, pp. 395-426, 1899.

(a )
Sur la convergence des reduites de la fonction exponentielle.

Comp. Rend., vol. 127, p. 444, 1898.

See also Nos. 16a&quot;, 106, and pages 243-5 of 40c.

C. The Continued Fraction of Bessel.

38. Giinther. Bemerkungen iiber Cylinder-Functionen. Archiv der

Math, und Phys., vol. 56, pp. 292-297, 1874.

39. Graf, (a) Relations entre la fonction Besselienne de l re
espece et

une fraction continue. Annali di Mat., ser. 2, vol. 23, pp. 45-65,

1895.

Giving references to earlier works where the continued frac

tion of Bessel is found.

Crelier. (b) Sur quelques propri6tes des fonctions Besseliennes,

tirees de la the&quot;orie des fractions continues. Annali di Mat.,

vol. 24, pp. 131-163, 1896.

See also Nos. 25, 32a.

D. The Continued Fraction of Heine.

40. Heine, (a) Ueber die Reihe

(9 -l)(^-l) (g.-i)(g. + i-l)(g0-l)(gP -M- 1)
+

(q
~

1) (V ~ 1) (5-1) (&amp;lt;?*

-
1)&quot;&quot;(V

~
1) (V + 1 ~ 1

)
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Jour, fiir Math., vol. 32, pp. 210-212, 1846.

(b) Untersuchung iiber die (selbe) Reihe. Ibid., vol. 34, pp. 285-

328, 1847.

(c) Ueber die Zahler und Nenner der Naherungswerthe von Ket-
tenbriiche. Ibid., vol. 57, pp. 231-247, 1860.

Christoffel (d) Zur Abhandlung
&quot; Ueber Zahler und Nenner&quot;

(u. s. w.) des vorigen Bandes. Ibid., vol. 58, pp. 90-91, 1861.

41. Thomae. Beitrage zur Theorie der durch die Heine sche Reihe
darstellbaren Funktionen. Jour, fiir Math., vol. 70, 1869. See

pp. 278-281 where the convergence of Heine s continued frac

tion is proved.

See also 32a.

42. (On Eisensteiris continued fractions).
Heine, (a) Verwandlung von Reihen in Kettenbriiche. Jour, fur

Math., vol. 32, pp. 205-209, 1846.

See also vol. 34, p. 296.

Muir. (6) On Eisenstein s continued fractions. Trans. Roy. Soc.

of Edinburgh, vol. 28, part 1, pp. 135-143, 1877.

Muir plainly was not aware of the preceding memoir by
Heine.

E. The Continued Fraction of Stieltjes. (See No. 26.)

43. Borel. Les series de Stieltjes, Chap. 5 of his Memoire sur les

series divergentes. Ann. dePEc. Nor., ser. 3, vol. 16, pp. 107-

128
;
and also chap. 2 of his treatise, Les Series divergentes,

pp. 55-86, 1901.

44. Fade. Sur la fraction continue de Stieltjes. Comp. Rend., vol. 132,

p. 911, 1901.

45. Van Vleck. On an extension of the 1894 memoir of Stieltjes.

Trans. Amer. Math. Soc., vol. 4, pp. 297-332, 1903.

See also Nos. 27, 102.

F. The Continued Fraction for

1 + wia; + m(m -f rijx
2 + m(m -f- n) (m + 2w)x

3
-f

and its special cases.

46. Euler. (a) De seriebus divergentibus. Novi commentarii Acad.

scientiarum imperialis Petropolitanse, vol. 5, pp. 205-237, 1754-

5
;
in particular pp. 225 and 232-237.

(6) De transformatione seriei divergentis

1 mx -f- m(m + ^)#
2

w(w + n) (m + 2n)ar
3

-f-
.
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in fractionem continuam. Nova acta Acad. scientiarum im-

perialis Petropolitanse, vol. 2, pp. 36-45, 1784.

Gergonne. (c) Recherches sur les fractions continues. Gergonne s

Annales de Math., vol. 9, pp. 261-270, 1818.

47. Laplace. (a) Traite de rnecanique celeste. Oeuvres, vol. 4, pp.

254-257, 1805.
y^oo #2

Jacobi. (6) De fractione continua in quam integrale I e dx
Jx

evolvere licet. Jour, fur Math., vol. 12, pp. 346-347, 1834, or

Werke, vol. 6, p. 76.

See also p. 79 of No. 20, and the first note under lecture 2.

G. Periodic Continued Fractions, and Continued Fractions Connected with

the Theory of Elliptic functions.

48. Abel, (a) Sur 1 integration de la formule differentielle pete/V JB, R
et p etant des fonctions entieres. Jour, fur Math., vol. 1, pp.

185-221, 1826, or Oeuvres, vol 1, p. 104 ff.

Dobma. (b) Sur le developpemenc de VE en fraction continue.

Nouvelles Ann. de Math., ser. 3, vol. 10, pp. 134-140, 1891.

49. Jacobi. (a) Note sur une nouvelle application de 1 analyse des

fonctions elliptiques a 1 algebre. Jour, fur Math., vol. 7, pp.

41-43, 1831, or Werke, vol. 1, p. 327.

Borchardt. (b) Application des transcendantes abeliennes a la

theorie des fractions continues. Ibid., vol. 48, pp. 69-104, 1854.

50. Tchebychef. Sur 1 integration des differentielles qui contiennent

une racine carree d un polynome du troisieme ou du quatrieme

degre. M6moires de 1 Acad. imp. des sciences de St. Peters-

bourg, ser. 6, vol. 8, pp. 203-232, 1857.

51. Frobenius und Stickelberger. Ueber die Addition und Multiplication

der elliptischen Functionen. Jour, fur Math., vol. 88, pp. 146-

184, 1880.

52. Halphen. Sur les integrates pseudo-elliptiques. Comp. Rend., vol.

106 (1888), pp. 1263-1270.

53. Bortolotti. Sulle frazioni continue algebriche periodiche. Rendi-

conti del Circolo Mat. di Palermo, vol. 9, pp. 136-149, 1895.

See also Nos. 21, 26(o), 40.

H. Miscellaneous.

54. Euler. (a) Speculationes super formula integral!

xndx

/a2 2bx -f ex2
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ubi simul egregiae observations circa fractiones continuas oceur-

rent. Acta Acad. scientiarum imperialis Petropolitanae, 1784,

pars posterior, pp. 62-84, 1782.

(5) Summatio fractionis continues cujus indices progressionem
arithmeticam constituunt. Opuscula Analytica, vol. 2, pp. 217-

239, 1785.

55. Spitzer. (a) Darstellung des unendlichen Kettenbruchs

in geschlossener Form, nebst anderen Bemerkungen. Archiv

der Math, und Phys., vol. 30, pp. 81-82, 1858.

(b) Darstellung des unendlichen Kettenbruchs111
s/

in geschlossener Form. Ibid., vol. 30, pp. 331-334, 1858.

(c) Note iiber eine Kettenbriiche. Ibid., vol. 33, pp. 418-420,
1859.

(d) Darstellung des unendlichen Kettenbruches

/Wk /WB

V(x) = n(2x + 1) +
n(2x + 3) + n(2x + 5) +

in geschlossener Form. Ibid., vol. 33, pp. 474-475, 1859.

56. Laurent, (a) Note sur les fractions continues. Nouvelles Ann. de

Math., ser. 2, vol. 5, pp. 540-552, 1866.

This treats the continued fraction

XXX
1+1+1+

E. Meyer. (b) Ueber eine Eigeuschaft des Kettenbruches

x . Archiv der Math, und Phys., ser. 3, vol. 5,
3C&amp;gt; 3C

p. 287, 1903.

Meyer s results will be found on p. 548 of Laurent s memoir

and differs only in that x has been replaced by 1/z
2
.

57. Schlomilch. (a) Ueber den Kettenbruch fur tan z. Zeitschrift fur

Math, und Phys., vol. 16, pp. 259-260, 1871.

Glaisher. (b) A continued fraction for tan nx. Messenger of

Math., ser. 2, vol. 3, p. 137, 1874.

(c) Note on continued fractions for tan nx. Ibid., ser. 2, vol. 4,

pp. 65-58, 1875.
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58. Schlomilch. Ueber die Kettenbruchentwickelung far unvollstan-

dige Gamma-function. Zeitschrift fur Math, und Phys., vol.

16, pp. 261-262, 1871.

This gives the development of I t*~ l

e~*dt.
Jo

59. Schendel. Ueber eine Kettenbruchentwickelung. Jour, fiir Math.,

vol. 80, pp. 95-96, 1875.

60. Lerch. Note sur les expressions qui, dans diverses parties du plan,

representent des fonctions distinctes. Bull, des sciences Math,

ser. 2, vol. 10, pp. 45-49, 1886.

61. Stieltjes. (a) Sur quelques integrates definies et leur developpement
en fractions continues. Quar. Jour, of pure and applied Math.,

vol. 24, pp. 370-382, 1890.

(b) Note sur quelques fractions continues. Ibid., vol. 25, pp. 198-

200, 1891.

62. Hermite. Sur les polynomes de Legendre. Jour, fur Math., vol.

107, pp. 80-83, 1891.

This connects D (

x
^P(n

\x} with a continued fraction.

IV. ON THE CONNECTION OF CONTINUED FRACTIONS WITH DIFFEREN

TIAL EQUATIONS AND INTEGRALS.

A. RiccatVs Differential Equation.

63. Euler. (a) De fractionibus continuis observation es. Commentarii

academies scientiarum imperialis Petropolitanse, vol. 11, see

pp. 79-81, 1739.

(b) Analysis facilis sequationem Riccatianam per fractionem con-

tinuam resolvendi. Me&quot;moires de 1 Acad. imperiale des sciences

de St. Petersbourg, vol. 6, pp. 12-29, 1813.

64. Lagrange. Sur 1 usage des fractions continues dans le calcuHnte*-

gral. Nouveaax Mem. de 1 Acad. roy. des sciences et belles-

lettres de Berlin, 1776, pp. 236-264, or Oeuvres, vol. 4, p. 301 ff.

One of the few important early works.

See 546
;
also No. 66a for work on differential equations of the 1st order.

B. Miscellaneous Differential Equations of the Second Order.

In a numerous class of continued fractions the denominators

of the convergents satisfy allied (Heun,
&quot;

gleichgrvppige &quot;)
differ

ential equations of the second order. Early instances are found

in works of Gauss (No. 114), Jacobi (No. 65) and Heine (No. 72).

The theory, from two different aspects, is furthest developed in

66a and 76.
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65. Jacobi. Untersuchung iiber die Differentialgleichung der hyper-

geometrischen Reihe. Nachlass. Jour, fur Math., vol. 56, 1859
;

see in particular 8, pp. 160-161, or Werke, vol. 6, p. 184.

66. Laguerre. (a) Sur la reduction en fractions continues d une frac

tion qui satisfait a une equation differentielle lineaire du pre
mier ordre dont les coefficients sont rationnels. Jour, de Math.,
ser. 4, vol. 1, pp. 135-165, 1885.

This is a comprehensive memoir which incorporates substan

tially all the following memoirs :

(b) Sur la reduction en fractions continues d une classe assez

etendue de fonctions. Comp. Rend., vol. 87 (1878), p. 923, or

Oeuvres, vol. 1, p. 322.

(c) Same title as (a). Bull, de la Soc. Math, de France, vol. 8

(1880), pp. 21-27, or Oeuvres, vol. 1, p. 438.

(d) Sur la reduction en fraction continue d une fraction qui satis

fait a une equation lineaire du premier ordre a coefficients ration

nels. Comp. Rend., vol. 98 (1884), pp. 209-212 or Oeuvres,

vol. 1, p. 445.

67. Laguerre. (a) Sur 1 approximation des fonctions d une variable

au moyen de fractions rationnelles. Bull, de la Soc. Math, de

France, vol. 5 (1877), pp. 78-92 or Oeuvres, vol. 1, p. 277.

(6) Sur le developpement en fraction continue de

i\ r &amp;lt;**

arc tan
(

I = I ^\x) J I -f *
2

Ibid., vol. 5 (1877), pp. 95-99 or Oeuvres, vol. 1, p. 291.

/#+ l\ w

(c) Sur la fonction (
-

J
.

Ibid., vol. 8 (1879), pp. 36-52, or Oeuvres, vol. 1, p. 345.

(d) Sur la reduction en fractions continues de^e
F(x

-&amp;gt;, F(x) desig-

nant un polyn6me entier. Jour, de Math., ser. 3, vol. 6 (1880),

pp. 99-110, or Oeuvres, vol. 1, p. 325.

(d )
Same subject. Comp. Rend., vol. 87 (1878), p. 820, or Oeuvres,

vol. 1, p. 318.

68. Humbert. Sur la reduction en fractions continues d une classe de

fonctions. Bull, de la Soc. Math, de France, vol. 8, pp. 182-

187, 1879-1880.

69. Hermite et Fuchs. Sur un developpement en fraction continue.

Acta Math., vol. 4, pp. 89-92, 1884.

See also No. 20, 34 ter, 71-76.
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C. Differential Equations of Order Higher than the Second.

70. Pincherle. Sur la generation de systemes recurrents au moyen
d une equation lineaire differentielle. A eta Math.

,
vol. 16, pp.

341-363, 1892-3.

See also No. 15, 86, 87, 1246.

D. The integral
f*/^ -

Ja x Z

71. Heine, (a) Ueber Kettenbriiche. Monatsberichte der k. preussi-

schen Akad. der Wissenschaften zu Berlin, 1866, pp. 436-451.

(a
x
) Mittheilung iiber Kettenbruche. Auszug aus dem Monatsbe

richte, u. s. w. Jour, fiir Math., vol. 67, pp. 315-326, 1867.

See also Nos. 12, 26a, 28, 45, 102, 113, 118o.

E. Hyperelliptic and Similar Abelian Integrals.

72. Heine. Die Lame schen Functionen verschiedener Ordnungen.
Jour, fiir Math., vol. 60, 1862, pp. 252-303

;
in particular pp.

256, 275, 294-297. Or see his Handbuch, vol. 1 (2
te

Auf.), pp.

388-396 and 468.

73. Laguerre. Sur 1 approximation d une classe de transcendantes qui

comprennent comme cas particulier les integrates hyperellip-

tiques. Comp. Rend., vol. 84, pp. 643-645, 1877.

(Not found in vol. 1. of his Oeuvres.)
74. Humbert. Sur 1 equation difterentielle lineaire du second ordre.

Jour, de 1 Ec. Polytech., vol. 29, cahier 48, pp. 207-220, 1880.

75. Heun. (a) Die Kugelfunctionen und Lame schen Functionen als

Determinanten. Dissertation, pp. 1-32, Gottingen, 1881.

(b) Ueber lineare Differentialgleichungen zweiter Ordnung deren

Losungen durch den Kettenbruchalgorithmus verkniipft sind.

Habilitatiousschrift. 1881.

(c) Integration regularer linearer Differentialgleichungen zweiter

Ordnung durch die Kettenbruchentwickelung von ganzen Abel -

schen Integralen dritter Gattung. Math. Ann., vol. 30, pp.

553-560, 1887.

(d) Beitrage zur Theorie der Lame schen Functionen. Math.

Ann., vol. 33, pp. 180-196, 1889.

The important group-properties of the continued fraction are

here brought out and are further developed in No. 76.

76. Van Vleck. Zur Kettenbruchentwickelung hyperelliptischer und
ahnlicher Integrate. Dissertation, Gottingen ; published in the

Amer. Jour, of Math., vol. 16 (1894), pp. 1-91.
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After development first from an algebraic standpoint the sub

ject is carried further by the method of con formal representation.

The suggestion of this treatment is given in Klein s Differen-

tialgleichungen, 1890-91, vol. 1, pp. 180-186.

V. GENERALIZATION OF THE ALGEBRAIC CONTINUED FRACTION.

A. General Theory.

So far as I have been able to ascertain, the first instance of the

generalization is contained in Hermite s memoir, No. 84. The

development of a general theory is due to Fade and Pincherle.

Nos. 77a, 77ft, and 79a are especially recommended.

77. Pincherle. (a) Saggio di una generallizzazione delle frazioni con

tinue algebriche. Memoirie della R. Accad. delle Scienze dell

Istituto di Bologna, ser. 4, vol. 10, p. 513-538, 1890.

(a } Di un estensione dell algorithmo delle frazioni continue.

Rendiconti, R. Istituto Lombardo di Scienze e Lettere, ser. 2,

vol. 22, pp. 555-558, 1889.

(b) Sulla generalizzazione delle frazioni continue algebrique. An-

nali di Mat., ser. 2, vol. 19, pp. 75-95, 1891.

78. Hermite. Sur la generalisation des fractions continues algebriques.

Annali di Mat., ser. 2, vol. 21, pp. 289-308, 1893.

79. Fade, (a) Sur la generalisation des fractions continues alge

briques. Jour, de Math., ser. 4, vol. 10, pp. 291-329, 1894.

(a } Same subject. Comp. Rend., vol. 118, p. 848, 1894.

80. Bortolotti. Un contributo alia teoria delle forme lineari alle differ-

enze. Annali di Mat., ser. 2, vol. 23, pp. 309-344, 1895.

81. Cordone. Sopra un problema fundamental delle teoria delle fra

zioni continue algebriche generalizzate. Rendiconti del Circolo

di Palermo, vol. 12, pp. 240-257, 1898.

Cordone seeks the regular algorithms whk?h are similar to

those of Fade but occur in connection with n series in descend

ing powers of x.

B. Convergence of the Generalized Algorithm.

82. Pincherle. Contributo alia generalizzazione delle frazioni continue.

Memoirie della R. Accad. delle Scienze dell Istituto di Bologna,

ser. 5, vol. 4, pp. 297-320, 1894.

83. W. Franz Meyer, (a) Ueber kettenbruchahnlichen Algorithmen.

Verhand. des ersten internationalen Mathematiker-Kongresses

in Zurich, pp. 168-181, 1898
;
see in particular 7.
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(a
x
)
Zur Theorie der kettenbruchahnlichen Algorithmen. Schrif-

ten der phys-okonomischen Gesellschaft zu Konigsberg, vol.

38, pp. 57-66, 1897.

C. Special Cases of the Algorithm.

84. Hermite. Sur la fonction exponentielle. Comp. Rend., vol. 77, pp.

18-24, 74-79, 226-233, 285-293, 1873.

This is the famous work proving the transcendence of e.

85. Hermite. (a) Sur 1 expression U sin x + Fcos x+ W. Extrait

d une lettre a Monsieur Paul Gordan. Jour, fur Math., vol.

76, pp. 303-311, 1873.

(ft)
Sur quelques approximations algebriques. Ibid., vol. 76, pp.

342-344, 1873.

(c) Sur quelques equations differentielles lineaires. Extrait d une

lettre a M. L. Fuchs de Gottingue. Ibid., vol. 79, pp. 324-338,

1875.

86. Laguerre. Sur la fonction exponentielle. Bull.delaSoc.Math.de

France, vol. 8 (1880), pp. 11-18, or Oeuvres, vol. 1, p. 336.

87. Humbert, (a) Sur une generalisation de la theorie des fractions

continues algebriques. Bull, de la Soc. Math, de France, vol.

8, pp. 191-196
;
vol. 9, pp. 24-30, 1879-1881.

(b) Sur la fonction (x 1)&quot;. Ibid., vol. 9, pp. 56-58, 1880-81.

88. Pincherle. Sulla rappresentazione approssimata di una funzione

mediante irrazionali quadratic!. Rendiconti, R. Istituto Lom-

bardo di Scienze e Lettere, ser. 2, vol. 23, pp. 373-376, 1890.

89. Pincherle. (a) Una nuova estensione delle funzioni sferiche.

Memoirie della R. Accad. delle Scienze dell
7 Istituto di Bologna,

ser. 5, vol. 1, pp. 337-370, 1890.

(a
x
) Sulla generalizzazione delle funzioni sferiche. Bologna Ren

diconti, 1891-92, pp. 31-34.

(b) Un sistema d integrali ellittici considerati come funzioni

dell invariante assoluto. Atti della R. Accad. dei Lincei, ser.

4, vol. 7
17 pp. 74-80, 1891.

90. Bortolotti. (a) Sui sistemi ricorrenti del 3 ordine ed in particolare

sui sistemi periodici. Rendiconti del Circolo di Palermo, vol. 5,

pp. 129-151, 1891.

(b) Sulla generalizzazione delle frazioni continue algebriche peri-

odiche. Ibid., vol. 6, pp. 1-13, 1892.

VI. Series of Polynomials (Niiherungsnenner).

The series

-1 =
(2;i

-

v u ~,
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was first given by Heine in Crelle s Jour., vol. 42 (1851), p. 72.

See also his Handbuch, vol. 1, pp. 78-79, 197-200. Among
the numerous works relating to expansions in terms of Kugel
functionen erster und zweiter Gattung may be mentioned :

91. Bauer. Yon den Coefficienten der Reihen von Kugelfunctionen
einer Variablen. Jour, fur Math., vol. 56, pp. 101-121, 1859.

92. C. G. Neumann. Ueber die Entwickelung einer Function mit imag-
inarem Argumente nach den Kugelfunctionen erster und zweiter

Gattung, Halle, 1862.

93. Thome. Ueber die Reihen welche nach Kugelfunctionen fort-

schreiten. Jour, fur Math., vol. 66, pp. 337-343, 1866.

94. Laurent. Memoire sur les fonctions de Legendre. Jour, de Math.
,

ser. 3, vol. 1, pp. 373-398, 1875.

See the comments by Heine in vol. 2, pp. 155-157, also by
Darboux and Laurent in the same vol., pp. 240, 420.

Numerous memoirs relate to series in terms of the polynom
ials arising from the expansion of (1 2ax + a2

)&quot;.
It suffices

here to refer to the Encyklopiidie der Math. Wissenschaften,
I A 10, 31.

95. Frobenius. Ueber die Entwicklung analytischer Functionen in

Reihen, die nach gegebenen Functionen fortschreiten. Jour,

fur Math., vol. 73, pp. 1-30, 1871.

An interesting memoir.

96. Darboux. Sur 1 approximation des fonctions de tres-grands nom-

bres et sur une classe etendue de developpements en serie, Part

2. Jour, de Math., ser. 3, vol. 4, pp. 377-416, 1878.

97. Gegenbauer Ueber Kettenbriiche. Wiener Berichte, vol. 80, Abth.

2, pp. 763-775, 1880.

98. Poincare. (a) Sur les equations lineaires aux different!elles ordi-

naires et aux differences finies. Amer. Jour, of Math., vol. 7,

pp. 243-257, 1885.

This gives an important criterion for the convergence of series

of polynomials. See lecture 4.

(a ) Sur les series des polynomes. Comp. Rend., vol. 56, p. 637,

1883.

99. On the series lA
n(x a^(x a

2 ) (x aj.
A series of this form is employed in Newton s interpolation

formula, Philosophic naturalis principia, book 3, lemma V.

See the Encyklopiidie der Math. Wissenschafcen, I D 3, 3. A
similar u&amp;gt;e is made by
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Cauchy. (a) Sur les fonctions interpolates. Comp. Rend., vol.

11, pp. 775-789, 1841.

See next No. 95.

Peano. (6) Sulle funzioni interpolari. Atti della R. Accad. delle

Scienze di Torino, vol. 18, pp. 573-580, 1883.

Bendixson. (c) Sur une extension a 1 infini de la formule d inter

polation de Gauss. Acta Math., vol. 9, pp. 1-34, 1886.

(c
x
)
Sur la formule d interpolation de Lagrange. Comp. Rend.,

vol. 101 (1885), pp. 1050-1053 and 1129-1131.

Pincherle. (d) Sull interpolazione. Memoirie della R. Accad. delle

Scienze di Bologna, ser. 5, vol. 3, pp. 293-318.

(See a &quot; note historique&quot; by Enestrom, Comp. Rend., vol.

103, p. 523, 1886).

See also No. 103.

100. Pincherle, Sur le developpement d une fonction analytique en

serie de polynomes. Comp. Rend., vol. 107, p. 986, 1888.

101. Pincherle. Resume de quelques resultats relatifs a la theorie des

systemes recurrents de fonctions. Mathematical Papers, Chi

cago Congress, 1893, pp. 278-287.

102. Blumenthal. Ueber die Entwickelung einer willkuiiichen Funk-

tion nach den Nennern des Kettenbruches fur

r ^)
J-&amp;lt;x Z

Dissertation, Gottingen, 1898.

The most advanced development of this subject is found in

the work of Blumenthal and Pincherle.

103. Laurent. Sur les series de polynomes. Jour, de Math., ser. 5,

vol. 8, pp. 309-328, 1902.

104. Stekloff. Sur le developpement d une fonction donee en series

procedant suivant les polynomes de TchebichefF et, en particul-

ier, suivaut les polynomes de Jacobi. Jour, fur Math., vol.

125, pp. 207-236, 1903.

See also Nos. 20, 70, 71.

104 bis. Rouche. Memoire sur le developpement des fonctions en series

ordonnees suivant les denominateurs des reduites d une frac

tion continue. Jour, de 1 Ec Polytech., cahier 37, pp. 1-34.

This mem &amp;gt;ir has a close connection with the work of Tcheby-
chef.

VII. On the Roots of the Numerators and Denominators of the Convergents.

105. Sylvester, (a) On a remarkable modification of Sturm s theorem.

Phil. Mag., ser. 4, vol. 5, pp. 446-456, 1853.
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(b) Note on a remarkable modification of Sturm s theorem and on

a new rule for finding superior and inferior limits to the roots of

an equation. Ibid., vol. 6, pp. 14-20, 1853.

(c) On a new rule for finding superior and inferior limits to the

real roots of any algebraic equation. Ibid., vol. 6, pp. 138-140,

1853.

(d) Note on the new rule of limits. Ibid., vol. 6, pp. 210-213,

1853.

(e) On a theory of the syzygetic relations of two rational integral

functions, comprising an application to the theory of Sturm s

functions, and that of the greatest algebraic common measure.

Phil. Trans., 1853
;
see in particular p. 496 ff.

(/) Theoreme sur les limitesdes racines reelles des equations alge-

briques. Nouvelles Ann. de Math., ser. 1, vol. 12, pp. 286-287,

1853.

(g) Pour trouver une limite superieure et line limite inferieure des

racines reelles d une equation quelconque. Ibid., ser. 1, vol. 12,

pp. 329-336, 1853.

106. Laguerre. Sur quelques proprietes des equations algebriques qui

ont toutes les racines reelles. Nouvelles Ann. de Math., ser. 2,

vol. 19 (1880), pp. 224-239, or Oeuvres, vol. 1, pp. 113-118.

Laguerre considers here the roots of the numerators and de

nominators of the approximants for/(z) and !//(#) when /(#) is a

polynomial with real roots.

107. Gegenbauer. (a) Ueber algebraische Gleichungen welche nur reele

Wurzeln besitzen. Wiener Berichte, vol. 84 (1882), Abt. 2,

see in particular pp. 1106-1107.

(&amp;gt;)

Ueber algebraische Gleichungen welche eine bestimmte An-

zahl complexer Wulzeln besitzen. Ibid, vol. 87, pp. 264-270,

1883.

108. Markoff. Sur les racines de certaines equations. Math. Ann.,

vol. 27, pp. 143-150, 1886.

108 bis. Hurwitz. Ueber die Nullstellen der Bessel schen Function.

Math. Ann., vol. 33, pp. 246-266, 1889.

Although the functions considered in this memoir are of a

special character, the memoir is mentioned here on account of

the methods employed.
109. Porter. On the roots of functions connected by a linear recurrent

relation of the second order. Annals of Math., ser. 2, vol. 3,

pp. 55-70, 1902.

See also Nos. 20, 26a, 31, 32a, 45, 56, 71, 74, 76, 87a, 118a
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VIII. Approximation to a Function at More Than One Point. Connection

of Continued Fractions with the Theory of Interpolation.

Under No. 99 have been already classified various works

which relate to simultaneous approximation at several points.

In addition, the following memoirs may also be consulted:

110. Cauchy. Sur la formule de Lagrange relativ a interpolation.

Analyse Alg., p. 528, or Oeuvres, ser. 2, vol. 3, pp. 429-433.

111. Jacobi. Ueber die Darstellung eine Reihe gegebner Werthe durch

eine gebrochene rationale Function. Jour, fur Math., vol. 30,

pp. 127-156, 1846, or Werke, vol. 3, p. 479.

112. Fade. Sur 1 extension des proprietes des reduites d une fonction

aux fractions d interpolation de Cauchy. Comp. Rend., vol.

130, p. 697, 1900.

See also Nos. 95, 99.

For general works upon interpolation which bring out the

relation of the subject to continued fractions, see Heine s

Handbuch der Kugelfunctionen, vol. 2, and MarkofPs Differ-

enzenrechnung (deutsche Uebersetzung), chap. 1, 6, 7
;
also the

following memoir :

113. Posse. Sur quelques applications des fractions continues alge-

briques. Pp. 1-175, 1886.

114. Gauss. Methodus nova integralium valores per approximationem
inveniendi. Werke, vol. 3, pp. 165-196, 1816.

115. Christoffel. Ueber die Gaussische Quadratur und eine Verallge-

meinerung derselben. Jour, fiir Math., vol. 55, pp. 61-82, 1858.

116. Mehler. Bemerkungen zur Theorie der mechanischen Quadraturen .

Ibid., vol. 63, pp. 152-157, 1864.

117. Posse. Sur les quadratures. Nouvelles Ann. de Math., ser. 2,

vol. 14, pp. 49-62, 1875.

118. Stieltjes. (a) Quelques recherches sur la theorie des quadratures

dites mecaniques. Ann. de 1 Ec. Nor., ser. 3, vol. 1, pp. 409-

426, 1884.

We find here the origin of his notable 1894 memoir, No. 26a.

(a
x
) Sur 1 evaluation approchee des integrates. Comp. Rend.,

vol. 97, pp. 740 und 798, 1883.

(b) Note sur 1 integrate C
b

f(x)G(x)dx.
/

Nouv. Ann. de Math., ser. 3, vol. 7, pp. 161-171, 1888.

119. Markoff. Sur la methode de Gauss pour le calcul approche des in

tegrales. Math. Ann., vol. 25, pp. 427-432, 1885.
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120. Pincherle. Su alcune forme approssimate per la rappresentazione
di funzioni. Memoirie della K. Accad. delle Scienze dell Istituto

di Bologna, ser. 4, vol. 10, pp. 77-88, 1889.

121. Tchebychef. A brief sketch of the memoirs below will be found on

pp. 17-20 of Vassiliefs memoir on &quot; P. L. Tchebychef et son

oeuvre scientifique.&quot;

(a) Surles fractions continues. Jour, de Math., ser. 2, vol. 3, pp.

289-323, 1858, or Oeuvres, vol. 1, p. 203-230.

(ft)
Sur line formule d analyse. Bull. Phys. Math, de 1 Acad. des

sciences de St. Petersbourg, vol. 13, pp. 210-211, 1854, or Oeuv

res, vol. 1, pp. 701-702.

(c) Sur une nouvelle serie. Ibid., vol. 17, pp. 257-261, 1858, or

Oeuvres, vol. 1, pp. 381-384.

(d) Sur 1 interpolation par la methode des moindres carres. Mem.
de 1 Acad. des sciences de St. Petersbourg, ser. 7, vol. 1, pp.

1-24, 1859, or Oeuvres, vol. 1, pp. 473-498.

(e) Sur le developpement des fonctions a une seule variable. Bull,

de 1 Acad. imp. des sciences de St. Petersbourg, ser. 7, vol. l
r

pp. J 94-199, 1860, or Oeuvres, vol. 1, pp. 501-508.

IX. MISCELLANEOUS.

122. Tchebychef. (a) Sur les fractions continues algebriques. Jour, de

Math., ser. 2, vol. 10, pp. 353-358, 1865, or Oeuvres, vol. 1, pp.

611-614.

(b) Sur le developpement des fonctions en series a 1 aide des frac

tions continues, 1866. Oeuvres, vol. 1, pp. 617-636.

(c) Sur les expressions approchees, lineares par rapport a deux

polynomes. Bull, des sciences Math, et Astron., ser. 2, vol. 1,

pp. 289, 382
;
1877.

Hermite. (d) Sur une extension donnee a la theorie des fractions

continues par M. Tchebychef. Jour, fur Math., vol. 88, pp.

12-13, 1880.

123. Tchebychef. (a) Sur les valeurs limites des integrales. Jour, de

Math., ser. 2, vol. 19, pp. 157-160, 1874.

(ft)
Sur la representation des valeurs limites des integrales par des

residus integraux (1885). Acta. Math. vol. 9, pp. 35-56, 1887.

Markoff. (c) Demonstration de certaines inegalites de M. Tcheby

chef. Math. Ann., vol. 24, pp. 172-178, 1884.

(d ) Nouvelles applications des fractions continues. Math. Ann.
,

vol. 47, pp. 579-597, 1896.

124. Laguerre. (a) Sur le developpement de (x z)
m suivant les puis

sances de (z
2

1). Comp. Rend., vol. 86 (1878), p. 956, or

Oeuvres, vol. 1, p. 315.



DIVERGENT SERIES AND CONTINUED FRACTIONS. 187

(b) Sur le developpement d une fonction suivant les puissances
d une polynome. Jour, fur Math., vol. 88 (1880) ;

in particular,

p. 37, or Oeuvres, vol. 1, p. 298.

(c) Same subject. Comp. Rend., vol. 86, (1878) p. 383, or Oeuv
res, vol. 1, p. 295.

(d) Sur quelques theoremes de M. Hermite. Extrait d une lettre

addressee a M. Borchardt. Jour, fur Math., vol. 89 (1880), pp.

340-342, or Oeuvres, vol. 1, p. 360.

125. Sylvester. Preuve que TT ne peut pas etre racine d une equation

algebrique a coefficients entiers. Comp. Rend., vol. Ill, pp.

866-871, 1890.

A fundamental error in the proof has been pointed out by
Markoff. See p. 386 of vol. 30 of the Fortschritte der Math.

126. Gegenbauer. Ueber die Naherungsnenner regularer Kettenbriiche.

Monatshefte fur Math, und Phys., vol. 6, pp. 209-219, 1895.

127. Bortolotti. Sulla rappresentazione approssimata di funzioni alge-
briche per mezzo di funzioni razionale. Atti della R. Accad.
dei Lincei, ser. 5, vol. lp pp. 57-64, 1899.

ADDENDUM TO I A.

128. Euler. De fractionibus continuis dissertatio. Comment. Petrop.,
vol. 9, p. 129 ff., 1737.
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